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Abstract. Let N be a positive integer. In this paper we shall
study the special values of multiple polylogarithms at Nth roots of
unity, called multiple polylogarithm values (MPVs) of level N . Our
primary goal in this paper is to investigate the relations among the
MPVs of the same weight and level by using the regularized double
shuffle relations, regularized distribution relations, lifted versions of
such relations from lower weights, and weight one relations which are
produced by relations of weight one MPVs. We call relations from
the above four families standard. Let d(w,N) be the dimension of the
Q-vector space generated by all MPVs of weight w and level N . Re-
cently Deligne and Goncharov were able to obtain some lower bound
of d(w,N) using the motivic mechanism. We call a level N standard
if N = 1, 2, 3 or N = pn for prime p ≥ 5. Our computation suggests
the following dichotomy: If N is standard then the standard relations
should produce all the linear relations and if further N > 3 then the
bound of d(w,N) by Deligne and Goncharov can be improved; oth-
erwise there should be non-standard relations among MPVs for all
sufficiently large weights (depending only on N) and the bound by
Deligne and Goncharov may be sharp. We write down some of the
non-standard relations explicitly with good numerical verification. In
two instances (N = 4, w = 3, 4) we can rigorously prove these relations
by using the octahedral symmetry of {0,∞,±1,±

√
−1}. Throughout

the paper we provide many conjectures which are strongly supported
by computational evidence.

Documenta Mathematica 15 (2010) 1–34



2 Jianqiang Zhao

2010 Mathematics Subject Classification: Primary 11R42, 11Y40;
Secondary 33B30.
Keywords and Phrases: Multiple polylogarithms, double shuffle rela-
tions, distribution relations, regularization, standard relations.

Contents

1 Introduction 2
1.1 Multiple polylog values at roots of unity . . . . . . . . . . . . . 3
1.2 Standard relations of MPVs . . . . . . . . . . . . . . . . . . . . 4
1.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 The double shuffle relations and the algebra A 6

3 Weight one relations 10

4 Regularized distribution relations 10

5 Lifted relations from lower weights 14

6 Some conjectures of FDS and RDS 16

7 The structure of MPVs and some examples 17
7.1 Weight one . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.2 Weight two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.3 Weight three . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.4 Upper bound of d(w,N) by Deligne and Goncharov . . . . . . 21

8 Computational results in weight two 21

9 Computational results in weight three, four and five 29

1 Introduction

In recent years, there is a revival of interest in multi-valued classical polyloga-
rithms (polylogs) and their generalizations. For any positive integers s1, . . . , sℓ,
multiple polylogs of complex variables are defined as follows (note that our in-
dex order is opposite to that of [19]):

Lis1,...,sℓ(x1, . . . , xℓ) =
∑

k1>···>kℓ>0

xk11 · · ·xkℓℓ
ks11 · · · ksℓℓ

, (1)

where |x1 · · ·xj | < 1 for j = 1, . . . , ℓ. It can be analytically continued to a
multi-valued meromorhpic function on Cℓ (see [29]). Conventionally ℓ is called

Documenta Mathematica 15 (2010) 1–34



Relations of Multiple Polylogarithm Values 3

the depth (or length) and s1 + · · · + sℓ the weight. When the depth ℓ = 1 the
function is nothing but the classical polylog. When the weight is also 1 one
gets the MacLaurin series of − log(1− x). Moreover, setting x1 = · · · = xℓ = 1
and s1 > 1 one obtains the well-known multiple zeta values (MZVs). If one
allows xj ’s to be ±1 then one gets the so-called alternating Euler sums.

1.1 Multiple polylog values at roots of unity

In this paper, the primary objects of study are the multiple polylog values at
roots of unity (MPVs). These special values, MZVs and the alternating Euler
sums in particular, have attracted a lot attention in recent years after they were
found to be connected to many branches of mathematics and physics (see, for
e.g., [7, 8, 10, 11, 15, 19, 28]). Results up to around year 2000 can be found in
the comprehensive survey paper [6].
Starting from early 1990s Hoffman [21, 22] has constructed some quasi-shuffle
(called stuffle in [6]) algebras reflecting the essential combinatorial properties of
MZVs. Later he [23] extends this to incorporate MPVs although his definition
of ∗-product is different from ours. This approach was then improved in [24] and
[26] to study MZVs and MPVs in general, respectively, where the regularized
double shuffle relations play prominent roles. One derives these relations by
comparing (1) with another expression of the multiple polylogs given by the
following iterated integral:

Lis1,...,sℓ(x1, . . . , xℓ) =

(−1)ℓ
∫ 1

0

(
dt

t

)◦(s1−1)
◦ dt

t− a1
◦ · · · ◦

(
dt

t

)◦(sℓ−1)
◦ dt

t− aℓ
, (2)

where ai = 1/(x1 . . . xi) for 1 ≤ i ≤ ℓ. Here, one defines the iterated integrals

recursively by
∫ b
a
f(t) ◦ w(t) =

∫ b
a

(
∫ x
a
w(t))f(x) for any 1-form w(t) and con-

catenation of 1-forms f(t). One may think the path lies in C; however, it is
more revealing to use iterated integrals in Cℓ to find the analytic continuation
of this function (see [29]).
The main feature of this paper is a quantitative comparison between the results
obtained by Racinet [26] who considers MPVs from the motivic viewpoint of
Drinfeld associators, and those by Deligne and Goncharov [17] who study the
motivic fundamental groups of P1−({0,∞}∪µN ) by using the theory of mixed
Tate motives over S-integers of number fields, where µN is the group of Nth
roots of unity.
Fix an Nth root of unity µ = µN := exp(2π

√
−1/N). An MPV of level N is a

number of the form

LN(s1, . . . , sℓ|i1, . . . , iℓ) := Lis1,...,sℓ(µ
i1 , . . . , µiℓ). (3)

We will always identify (i1, . . . , iℓ) with (i1, . . . , iℓ) (mod N). It is easy to see
from (1) that an MPV converges if and only if (s1, µ

i1) 6= (1, 1). Clearly, all

Documenta Mathematica 15 (2010) 1–34



4 Jianqiang Zhao

MPVs of level N are automatically of level Nk for every positive integer k.
For example when i1 = · · · = iℓ = 0 or N = 1 one gets the MZV ζ(s1, . . . , sℓ).
When N = 2 one recovers the alternating Euler sums studied in [8, 31]. To
save space, if a string S repeats n times then {S}n will be used. For example,
LN ({2}2|{0}2) = ζ(2, 2) = π4/120.

Standard conjectures in arithmetic geometry imply that Q-linear relations
among MVPs can only exist between those of the same weight. Let
MPV(w,N) be the Q-span of all the MPVs of weight w and level N .
Let d(w,N) denoted its dimension. In general, it is very difficult to de-
termine d(w,N) because any nontrivial lower bound would provide some
nontrivial irrational/transcendental result which is related to a variant of
Grothendieck’s period conjecture (see [16] or [17, 5.27(c)]). For example, one
can show easily thatMPV(2, 4) = 〈log2 2, π2, π log 2

√
−1, (K−1)

√
−1〉, where

K =
∑

n≥0(−1)n/(2n + 1)2 is the Catalan’s constant. From a variant of
Grothendieck’s period conjecture we know d(2, 4) = 4 (see [16]) but we don’t
have an unconditional proof yet. Namely, we cannot prove that the four num-
ber log2 2, π2, π log 2

√
−1, (K − 1)

√
−1 are linearly independent over Q. Thus,

nontrivial lower bound of d(w,N) is hard to come by.

On the other hand, one may obtain upper bound of d(w,N) by finding as
many linear relations inMPV(w,N) as possible. As in the cases of MZVs and
the alternating Euler sums the double shuffle relations play important roles in
revealing the relations among MPVs. In such a relation if all the MPVs involved
are convergent it is called a finite double shuffle relation (FDS). In general one
needs to use regularization to obtain regularized double shuffle relations (RDS)
involving divergent MPVs. We shall recall this theory in §2 building on the
results of [24, 26].

From the point of view of Lyndon words and quasi-symmetric functions Bigotte
et al. [3, 4] have studied MPVs (they call them colored MZVs) primarily by
using double shuffle relations and monodromy argument (cf. [4, Thm. 5.1]).
However, when the level N ≥ 2, these double shuffle relations often are not
complete, as we shall see in this paper (for level two, see also [5]).

1.2 Standard relations of MPVs

If the level N > 3 then there are many non-trivial linear relations in
MPV(1, N) of weight one whose structure is clear to us. Multiplied by MPVs
of weight w − 1 these relations can produce non-trivial linear relations among
MPVs of weight w which are called the weight one relations. Similar to these
relations one may produce new relations by multiplying MPVs on all of the
other types of relations among MPVs of lower weights. We call such relations
lifted relations.

It is well-known that among MPVs there are the so-called finite distribution
relations (FDT), see (14). Racinet [26] further considers the regularization of
these relations by regarding MPVs as the coefficients of some group-like element
in a suitably defined pro-Lie-algebra of motivic origin (see §4). Our computa-
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Relations of Multiple Polylogarithm Values 5

tion shows that the regularized distribution relations (RDT) do contribute to
new relations not covered by RDS and FDT. But they are not enough yet to
produce all the lifted RDS.

Definition 1.1. We call a Q-linear relation between MPVs standard1 if it can
be produced by some Q-linear combinations of the following four families of
relations: regularized double shuffle relations (RDS), regularized distribution
relations (RDT), weight one relations, and lifted relations from the above.
Otherwise, it is called a non-standard relation.

It is commonly believed that all linear relations among MPVs (i.e. levels one
MPVs) are consequences of RDS. When level N = 2 we believe that all lin-
ear relations among the alternating Euler sums are consequences of RDS and
RDT. Further, in this case, the RDT should correspond to the doubling and
generalized doubling relations of [5].

1.3 Main results

The main goal of this paper is to provide some extensive numerical evidence
concerning the (in)completeness of the standard relations. Namely, these re-
lations in general are not enough to produce all the Q-linear relation between
MPVs (see Remark 8.2 and Conjecture 8.5); however, we have the following
result (see Thm. 8.6 and Thm. 8.3).

Theorem 1.2. Let p ≥ 5 be a prime. Then d(2, p) ≤ (5p + 7)(p + 1)/24 and
d(2, p2) < (p2 − p+ 2)2/4. If a variant of Grothendieck’s period conjecture [17,
5.27(c)] is true then the equality holds for d(2, p) and the standard relations in
MPV(2, p) imply all the others.

If weight w = 2 and N = 52, 72, 112, 132 or 53, then our computation (see
Table 1) shows that the standard relations are very likely to be complete.
However, if N > 3 is a 2-power or 3-power or has at least two distinct prime
factors then the standard relations are often incomplete. Moreover, we don’t
know how to obtain the non-standard relations rigorously except that when
the level N = 4 we get (see Thm. 9.1)

Theorem 1.3. If the conjecture in [17, 5.27(c)] is true then all the linear
relations among MPVs of level four and weight three (resp. weight four) are the
consequences of the standard relations and the octahedral relation (53) (resp.
the five octahedral relations (54)-(58)).

Most of the MPV identities in this paper are discovered with the help of
MAPLE using symbolic computations. We have verified all relations numeri-
cally by GiNaC [27] with an error bound < 10−90. Some results contained in
this paper were announced in [30].

1This term was suggested by P. Deligne in a letter to Goncharov and Racinet dated Feb.
25, 2008.
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6 Jianqiang Zhao
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2 The double shuffle relations and the algebra A

In this section we recall the procedure to transform the shuffle relations among
MPVs into some pure algebra structures. This is a rather straight-forward
variation of a theme first studied by Hoffman for MZVs (see, for e.g., [22, 23])
and then further developed by Ihara et al. in [24] and by Racinet in [26].
Most of the results in this section are well-known but we include them for the
convenience of the reader.
It is Kontsevich [25] who first noticed that MZVs can be represented by iterated
integrals. One can easily extend this to MPVs [26]. Set

a =
dt

t
, bi =

µidt

1− µit for i = 0, 1, . . . , N − 1.

For every positive integer n define the word of length n

yn,i := an−1bi.

Then it is straight-forward to verify using (2) that if (s1, µ
i1) 6= (1, 1) then

(cf. [26, (2.5)])

LN(s1, . . . , sn|i1, i2, . . . , in) =

∫ 1

0

ys1,i1ys2,i1+i2 · · · ysn,i1+i2+···+in . (4)

One can now define an algebra of words as follows:

Definition 2.1. Set A0 = {1} to be the set of the empty word. Define
A = Q〈A〉 to be the graded noncommutative polynomial Q-algebra generated
by letters a and bi for i ≡ 0, . . . , N − 1 (mod N), where A is a locally finite
set of generators whose degree n part An consists of words (i.e., a monomial in
the letters) of depth n. Let A0 be the subalgebra of A generated by words not
beginning with b0 and not ending with a. The words in A0 are called admissible
words.

Documenta Mathematica 15 (2010) 1–34



Relations of Multiple Polylogarithm Values 7

Observe that every MPV can be expressed as an iterated integral over the
closed interval [0, 1] of an admissible word w in A0. This is denoted by

Z(w) :=

∫ 1

0

w. (5)

We remark that the length lg(w) of w is equal to the weight of Z(w). Therefore
in general one has (cf. [26, (2.5) and (2.6)])

LN(s1, . . . , sn|i1, i2, . . . , in) =Z(ys1,i1ys2,i1+i2 · · · ysn,i1+i2+···+in), (6)

Z(ys1,i1ys2,i2 · · · ysn,in) =LN(s1, . . . , sn|i1, i2 − i1, . . . , in − in−1). (7)

For example L3(1, 2, 2|1, 0, 2) = Z(y1,1y2,1y2,0). On the other hand, during
1960s Chen developed a theory of iterated integral which can be applied in our
situation.

Lemma 2.2. ([12, (1.5.1)]) Let ωi (i ≥ 1) be C-valued 1-forms on a manifold
M . For every path p,

∫

p

ω1 · · ·ωr
∫

p

ωr+1 · · ·ωr+s =

∫

p

(ω1 · · ·ωr)x(ωr+1 · · ·ωr+s)

where x is the shuffle product defined by

(ω1 · · ·ωr)x(ωr+1 · · ·ωr+s) :=
∑

σ∈Sr+s,σ−1(1)<···<σ−1(r)

σ−1(r+1)<···<σ−1(r+s)

ωσ(1) · · ·ωσ(r+s).

For example, one has

LN (1|1)LN(2, 3|1, 2) = Z(y1,1)Z(y2,1y3,3) = Z(b1x(ab1a
2b3))

=Z(b1ab1a
2b3 + 2ab21a

2b3 + (ab1)2ab3 + ab1a
2b1b3 + ab1a

2b3b1)

=Z(y1,1y2,1y3,3 + 2y2,1y1,1y3,3 + y22,1y2,3 + y2,1y3,1y1,3 + y2,1y3,3y1,1)

=LN (1, 2, 3|1, 0, 2) + 2LN(2, 1, 3|1, 0, 2) + LN (2, 2, 2|1, 0, 2)

+ LN (2, 3, 1|1, 0, 2) + LN(2, 3, 1|1, 2, N − 2).

Let Ax be the algebra of A together with the multiplication defined by shuffle
product x. Denote the subalgebra A0 by A0

x
when one considers the shuffle

product. Then one can easily prove

Proposition 2.3. The map Z : A0
x
−→ C is an algebra homomorphism.

On the other hand, MPVs are known to satisfy the series stuffle relations. For
example

LN(2|5)LN (3|4) = LN(2, 3|5, 4) + LN (3, 2|4, 5) + LN(5|9).

To study such relations in general one has the following definition.

Documenta Mathematica 15 (2010) 1–34



8 Jianqiang Zhao

Definition 2.4. Denote by A1 the subalgebra of A which is generated by
words ys,i with s ∈ N and i ≡ 0, . . . , N − 1 (mod N). Equivalently, A1 is
the subalgebra of A generated by words not ending with a. For any word
w = ys1,i1ys2,i2 · · · ysn,in ∈ A1 and positive integer j one defines the exponent
shifting operator τj by

τj(w) = ys1,j+i1ys2,j+i2 · · · ysn,j+in .

For convenience, on the empty word we adopt the convention that τj(1) = 1.
We then define another multiplication ∗ on A1 by requiring that ∗ distribute
over addition, that 1 ∗w = w ∗ 1 = w for any word w, and that, for any words
ω1, ω2,

ys,jω1 ∗ yt,kω2 = ys,j

(
τj
(
τ−j(ω1) ∗ yt,kω2

))
+ yt,k

(
τk
(
ys,jω1 ∗ τ−k(ω2)

))

+ ys+t,j+k

(
τj+k

(
τ−j(ω1) ∗ τ−k(ω2)

))
. (8)

This multiplication is called the stuffle product in [6].

If one denotes by A1
∗ the algebra (A1, ∗) then it is not hard to show that

Proposition 2.5. (cf. [22, Thm. 2.1]) The polynomial algebra A1
∗ is a commu-

tative graded Q-algebra.

Now one can define the subalgebra A0
∗ similar to A0

x
by replacing the shuffle

product by the stuffle product. Then by induction on the lengths and using
the series definition one can quickly check that for any ω1, ω2 ∈ A0

∗

Z(ω1)Z(ω2) = Z(ω1 ∗ ω2).

This implies that

Proposition 2.6. The map Z : A0
∗ −→ C is an algebra homomorphism.

Definition 2.7. Let w be a positive integer such that w ≥ 2. For nontrivial
ω1, ω2 ∈ A0 with lg(ω1) + lg(ω2) = w one says that

Z(ω1xω2 − ω1 ∗ ω2) = 0 (9)

is a finite double shuffle relation (FDS) of weight w.

It is known that even in level one these relations are not enough to provide all
the relations among MZVs. However, it is believed that one can remedy this by
considering regularized double shuffle relation (RDS) produced by the following
mechanism. This is explained in detail in [24] when Ihara, Kaneko and Zagier
consider MZVs where they call these extended double shuffle relations or EDS.
It is also contained in [26] with a different formulation.
To produce RDS, first, combining Propositions 2.6 and 2.3 one can easily prove
the following algebraic result (cf. [24, Prop. 1]):
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Relations of Multiple Polylogarithm Values 9

Proposition 2.8. One has two algebra homomorphisms:

Z∗ : (A1
∗, ∗) −→ C[T ], and Zx : (A1

x
,x) −→ C[T ]

which are uniquely determined by the properties that they both extend the eval-
uation map Z : A0 −→ C by sending b0 = y1,0 to T .

Second, in order to establish the crucial relation between Z∗ and Zx one can
adopt the machinery in [24] as follows. For any (s|i) = (s1, . . . , sn|i1, . . . , in)
where ij ’s are integers and sj’s are positive integers, let the image of the corre-
sponding words in A1 under Z∗ and Zx be denoted by Z∗(s|i)(T ) and Zx(s|i)(T )
respectively.

Theorem 2.9. (cf. [26, Cor. 2.24]) Define a C-linear map ρ : C[T ]→ C[T ] by

ρ(eTu) = exp

( ∞∑

n=2

(−1)n

n
ζ(n)un

)
eTu, |u| < 1.

Then for any index set (s|i) one has

Zx(s|i)(T ) = ρ(Z∗(s|i)(T )). (10)

Definition 2.10. Let w be a positive integer such that w ≥ 2. Let (s|i) be any
index set with the weight of s equal to w. Then every weight w MPV relation
produced by (10) is called a regularized double shuffle relation (RDS) of weight
w. This is obtained by formally setting T = 0 in (10).

Theorem 2.9 is a generalization of [24, Thm. 1] to the higher level MPV cases.
The proof is essentially the same. The above steps can be easily transformed
to computer codes which are used in our MAPLE programs. For example, one
gets by stuffle product

TLN(2|3) =Z∗(1|0)(T )Z∗(2|3)(T ) = Z∗(y1,0 ∗ y2,3)

=Z∗(1,2|0,3)(T ) + Z∗(2,1|3,3)(T ) + Z∗(3|3)(T ),

while using shuffle product one has

TLN(2|3) =Zx(1|0)(T )Zx(2|3)(T ) = Zx(y1,0xy2,3) = Zx(b0xab3)

=Zx(1,2|0,3)(T ) + Zx(2,1|0,3)(T ) + Zx(2,1|3,0)(T ).

Hence one discovers the following RDS by comparing the above two expressions
using Thm. 2.9:

LN (2, 1|3, 0) + LN (3|3) = LN (2, 1|3, N − 3) + LN(2, 1|0, 3).
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10 Jianqiang Zhao

3 Weight one relations

When N ≥ 4 there exist linear relations among MPVs of weight one by a
theorem of Bass [1]. These relations are important because by multiplying any
MPV of weight w− 1 by such a relation one can get a relation between MPVs
of weight w which is called a weight one relation. This is one of the key ideas
in finding the formula in [17, 5.25] concerning d(w,N).
Clearly, there are N − 1 MPVs of weight 1 and level N :

LN(1|j) = − log(1− µj), 0 < j < N,

where µ = µN = exp(2π
√
−1/N) as before. Here one can take C − (−∞, 0]

as the principle branch of the logarithm. Further, it follows from the motivic
theory of classical polylogs developed by Beilinson and Deligne in [2] and the
Borel’s theorem (see [20, Thm. 2.1]) that the Q-dimension of MPV(1, N) is

d(1, N) = dimK1(Z[µN ][1/N ])⊗Q + 1 = ϕ(N)/2 + ν(N),

where ϕ is the Euler’s totient function and ν(N) is the number of distinct
prime factors of N . Hence there are many linear relations among LN(1|j). For
instance, if j < N/2 then one has the symmetric relation

− log(1−µj) = − log(1−µN−j)− log(−µj) = − log(1−µN−j)+
N − 2j

N
π
√
−1.

Thus for all 1 < j < N/2

(N − 2)(LN(1|j)− LN(1|N − j)) = (N − 2j)(LN(1|1)− LN(1|N − 1)). (11)

Further, from [1, (B)] for any divisor d of N and 1 ≤ a < N/d one has the
distribution relation

∑

0≤j<d
LN(1|a+ jN/d) = LN(1|ad). (12)

It follows from the main result of Bass [1] (corrected by Ennola [18]) that all
the linear relations between LN(1|j) are consequences of (11) and (12). Hence
the weight one relations have the following forms in words: for all w ∈ A0





(N − 2)Z(y1,j ∗ w − y1,−j ∗ w) =(N − 2j)Z(y1,1 ∗ w − y1,−1 ∗ w),
∑

0≤j<d
Z(y1,a+jN/d ∗ w) =Z(y1,ad ∗ w). (13)

4 Regularized distribution relations

It is well-known that multiple polylogs satisfy the following distribution formula
(cf. [26, Prop. 2.25]):

Lis1,...,sn(x1, . . . , xn) = ds1+···+sn−n
∑

ydj=xj ,1≤j≤n
Lis1,...,sn(y1, . . . , yn), (14)
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for all positive integer d. When s1 = 1 one has to exclude the divergent case
x1 = 1. We call these finite distribution relations (FDT). Racinet further
considers the regularized version of these relations, which we now recall briefly.

Fix an embedding µN →֒ C and denote by Γ its image. Define two sets of
words

X := XΓ = {xσ : σ ∈ Γ ∪ {0}}, and Y := YΓ = {xn−10 xσ : n ∈ N, σ ∈ Γ}.

Then one may consider the coproduct ∆ of Q〈X〉 defined by ∆xσ = 1⊗ xσ +
xσ ⊗ 1 for all σ ∈ Γ ∪ {0}. For every path γ ∈ P1(C) − ({0,∞} ∪ Γ) Racinet
defines the group-like element Iγ ∈ C〈〈X〉〉 by

Iγ :=
∑

p∈N,σ1,...,σp∈Γ∪{0}
Iγ(σ1, . . . , σp)xσ1 · · ·xσp ,

where Iγ(σ1, . . . , σp) is the iterated integral
∫
γ ω(σ1) · · ·ω(σp) with

ω(σ)(t) =

{
σ dt/(1− σt), if σ 6= 0;
dt/t, if σ = 0.

(One has to correct the obvious typo in the displayed formula just before Prop.
2.8 in [26] by changing aj to αj .) This Iγ is essentially the same element
denoted by dch in [17]. Note that Q〈Y〉 is the sub-algebra of Q〈X〉 generated
by words not ending with x0. Let πY : Q〈X〉 → Q〈Y〉 be the projection. As
x0 is a primitive element one quickly deduces that (Q〈Y〉,∆) has a graded
co-algebra structure.

Let Q〈X〉
cv

be the sub-algebra of Q〈X〉 not beginning with x1 and not ending
with x0. Let πcv : Q〈X〉 → Q〈X〉

cv
be the projection. Passing to the limit one

gets:

Proposition 4.1. ([26, Prop.2.11]) The series Icv := lima→0+,b→1− πcv(I[a,b])
is group-like in (C〈〈X〉〉

cv
,∆).

Remark 4.2. The algebras A, A0 and A1 in §2 are essentially equal to Q〈X〉,
Q〈X〉

cv
and Q〈Y〉, respectively, after setting a = x0 and bj = xµj .

Let I be the unique group-like element in (C〈〈X〉〉,∆) whose coefficients of x0
and x1 are 0 such that πcv(I) = Icv. In order to do the numerical computation
one needs to determine explicitly the coefficients for I. Put

I =
∑

p∈N,,σ1,...,σp∈Γ∪{0}
C(σ1, . . . , σp)xσ1 · · ·xσp . (15)

Proposition 4.3. Let p, m and n be three non-negative integers. If p > 0 then
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12 Jianqiang Zhao

we assume σ1 6= 1 and σp 6= 0. Set (σ1, . . . , σp, {0}n) = (σ1, . . . , σq). Then

C({1}m, σ1, . . . , σp, {0}n)

=





0, if mn = p = 0;

Z
(
πcv(xσ1 · · ·xσp)

)
, if m = n = 0;

− 1

m

q∑

i=1

C({1}m−1, σ1, . . . , σi, 1, σi+1, . . . , σq), if m > 0;

− 1

n

p∑

i=1

C(σ1, . . . , σi−1, 0, σi, . . . , σp, {0}n−1), if m = 0, n > 0.

(16)

Here Z is defined by (5) after using the identification given by Remark 4.2.

Remark 4.4. This proposition provides the recursive relations one may use to
compute all the coefficients of I.

Proof. Since I is group-like one has

∆I = I ⊗ I. (17)

The first case follows from this immediately since C(0) = C(1) = 0. The second
case is essentially the definition (5) of Z. If m > 0 then one can compare the
coefficient of x1⊗xm−11 xσ1 · · ·xσq of the two sides of (17) and find the relation
(16). Finally, if m = 0 and n > 0 then one may similarly consider the coefficient
of xσ1 · · ·xσpxn−10 ⊗ x0 in (17). This finishes the proof of the proposition.

For any divisor d of N let Γd = {σd : σ ∈ Γ}, id : Γd →֒ Γ the embedding, and
pd : Γ։ Γd the dth power map. They induce two algebra homomorphisms:

pd∗ : Q〈XΓ〉 −→ Q〈XΓd〉

xσ 7−→
{
dx0, if σ = 0,

xσd , if σ ∈ Γ,

and

i∗d : Q〈XΓ〉 −→ Q〈XΓd〉

xσ 7−→





x0, if σ = 0,

xσ, if σ ∈ Γd,

0, otherwise.

It is easy to see that both i∗d and pd∗ are ∆-coalgebra morphisms such that
i∗d(I) and pd∗(I) have the same image under the map πcv. By the standard
Lie-algebra mechanism one has
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Proposition 4.5. ([26, Prop.2.26]) For every divisor d of N

pd∗(I) = exp


 ∑

σd=1,σ 6=1

Li1(σ)x1


 i∗d(I). (18)

Combined with Proposition 4.3 the above result provides the so-called regular-
ized distribution relations (RDT) which of course include all the FDT of MPVs
given by (14).
However, sometimes FDT are not independent of the other relations. In the
next theorem one sees that when the weight w = 2 and level N is a prime, all
the distribution relations in (14), where xj = 1 for all j, are consequences of
RDS of MPVs of level N .

Theorem 4.6. For any prime p write L(i, j) = Lp(1, 1|i, j) and D(i) = Lp(2|i).
Define for 1 ≤ i, j < p:

FDT := −D(0) + p

p−1∑

j=0

D(j), RDS(i) := D(i) + L(i, 0)− L(i,−i),

FDS(i, j) := D(i+ j) + L(i, j) + L(j, i)− L(i, j − i)− L(j, i− j).

Then one has

FDT =
∑

1≤i<p
FDS(i, i) + 2

∑

1≤j<i<p
FDS(i, j) + 2

p−1∑

i=1

RDS(i). (19)

Proof. When p = 2 the second term on the right hand side of (19) is vacuous.
Then it is easy to see that both sides of (19) are equal to D(0) + 2D(1).
We now assume p ≥ 3. Changing the order of summation yields that

2
∑

1≤j<i<p
D(i+ j) =

p−1∑

i=2

i−1∑

j=1

D(i + j) +

p−2∑

j=1

p−1∑

i=j+1

D(i + j)

=

p−2∑

i=2

p−1∑

i6=j=1

D(i+ j) +

p−2∑

j=1

D(j − 1) +

p−1∑

i=2

D(i + 1)

=(p− 3)

p−1∑

j=0

D(j)−
p−2∑

i=2

D(i)−
p−1∑

i=1

D(2i) +

p−2∑

j=1

D(j) +

p−1∑

j=2

D(j) + 2D(0)

=(p− 1)D(0) + (p− 3)

p−1∑

j=1

D(j)

since
∑p−1

j=0 D(i+j) =
∑p−1

j=0 D(j) for all i and
∑p−1

i=1 D(2i) =
∑p−1

i=1 D(i). This
implies that the dilogarithms on the right hand side of (19) exactly add up to
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FDT. Thus one only needs to show that all the double logarithms on the right
hand side of (19) cancel out.

First observe that L(i, 0) in FDS(i, i) and RDS(i) cancel out each other. Now
let us consider the lattice points (i, j) of Z2 corresponding to L(i, j). The
points (i, j) corresponding to L(i, j) with positive signs fill in exactly the area
inside the square [1, p− 1]× [1, p− 1] (including boundary): L(i, i) in FDS(i, i)
provides the diagonal y = x,

∑
1≤j<i<p L(i, j) (resp.

∑
1≤j<i<p L(j, i)) form

the lower right (resp. upper left) triangular region.

For the negative terms of the double logs, L(i,−i) in RDS(i) provides the

diagonal x + y = p,
∑

1≤j<i<p L(i, j − i) =
∑p−1

i=2

∑p−1
j=p+1−i L(i, j) form the

upper right triangular region. Similarly, by changing the order of summation∑
1≤j<i<p L(j, i−j) =

∑p−2
i=1

∑p−1
j=i+1 L(i, j−i) =

∑p−2
i=1

∑p−1−i
j=1 L(i, j) fills the

lower left region.

To conclude this section we remark that numerical evidence up to level N = 169
supports the following

Conjecture 4.7. In weight two, all RDT are consequences of the weight one
relations, RDS and depth two FDT.

5 Lifted relations from lower weights

Note that when N = 3 there are no weight one relations nor (regularized)
distribution relations. When we deal with MZVs (resp. alternating Euler sums)
we expect that all the linear relations come from RDS (resp. RDS and RDT).
Since there is no weight one relation when level N ≤ 3 it is natural to ask if
RDS and RDT are enough when N = 3. Surprisingly, the answer is no.

The first counterexample is in weight four, i.e., (w,N) = (4, 3). Easy compu-
tation shows that there are 144 MPVs in this case among which there are 239
nontrivial RDS of weight four which include 191 FDS of weight four (see (9)
and (10)). Furthermore, it is easy to verify that all the seven RDT (including
four FDT) can be derived from RDS. Using these relations we get 127 indepen-
dent linear relations among the 144 MPVs. But we have d(4, 3) ≤ 16 by [17,
5.25], so there must be at least one more linearly independent relation. Where
else can we find it? The answer is the so-called lifted relations..

We know that a product of two weight two MPVs is of weight four. So on
each of the five RDS (including two FDS) of weight two in MPV(2, 3) we can
multiply any one of the nine MPVs of (w,N) = (2, 3) to get a relation in
MPV(4, 3). For instance, we have a FDS

Z(y1,1 ∗ y1,1 − y1,1xy1,1) = L3(2|2) + 2L3(1, 1|1, 1)− L3(1, 1|1, 0) = 0.

Multiplying by L3(1, 1|1, 1) = Z(y1,1y1,2) we obtain a new relation which is
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linearly independent from RDS of weight four in MPV(4, 3):

Z
(
y1,1y1,2x(y2,0 + 2y1,1y1,2 − 2y1,1y1,0)

)

=L3(1, 1, 2|1, 1, 0) + 2L3(1, 2, 1|1, 1, 0) + 2L3(2, 1, 1|1, 1, 0)

+L3(2, 1, 1|2, 2, 1) + 4L3({1}4|1, 1, 2, 1) + 8L3({1}4|1, 0, 1, 0)

−6L3({1}4|1, 0, 0, 1)− 4L3({1}4|1, 0, 1, 2)− 2L3({1}4|1, 1, 2, 0) = 0.

Such relations coming from the lower weights are called lifted relations. In
this way, when (w,N) = (4, 3) we can produce 45 lifted RDS relations from
weight two, 58 from weight three. We may also lift RDT and obtain nine
and six relations from weight two and three, respectively. However, all the
lifted relations together only produce one new linearly independent relation, as
expected. Hence we find totally 128 linearly independent relations among the
144 MPVs with (w,N) = (4, 3). This implies that d(4, 3) ≤ 16 which is the
same bound obtained by [17, 5.25] and is proved to be exact under a variant
of Grothendieck’s period conjecture by Deligne [16].
For levels N ≥ 4 one may lift not only RDS and RDT but also the weight
one relations. But by a moment reflection one sees that the lifted weight one
relations are still weight one relations by themselves so one doesn’t really need
to consider them after all.

Definition 5.1. We call a Q-linear relation among MPVs standard if it can
be produced by some Q-linear combinations of the following four families of
relations: regularized double shuffle relations, regularized distribution relations,
weight one relations, and lifted relations from the above. Otherwise, it is called
a non-standard relation.

In general, there are no inclusion relations among the four families of the stan-
dard relations.
Computation in small weight cases supports the following

Conjecture 5.2. Suppose N = 3 or 4. Every MPV of level N is a linear
combination of MPVs of the form L({1}w|t1, . . . , tw) with tj ∈ {1, 2}. Con-
sequently, the Q-dimension of the MPVs of weight w and level N is given by
d(w,N) = 2w for all w ≥ 1.

Remark 5.3. The data in Table 2 in §7 shows that one cannot produce enough
relations by using only the standard relations when (w,N) = (3, 4). In fact,
even though one has d(3, 4) ≤ 8 and d(4, 4) ≤ 16 by [17, 5.25], one can only
show that d(3, 4) ≤ 9 and d(4, 4) ≤ 21 by using only the standard relations.
However, thanks to the octahedral symmetry of P1−({0,∞}∪µ4) one can find
(presumably all) the non-standard relations in these two cases (see Thm. 9.1).

Remark 5.4. Let N = 2, 3, 4 or 8. Assuming a variant of Grothendieck’s period
conjecture, Deligne [16] constructed explicitly a set of basis for MPV(w,N).
His results would also imply that d(w, 2) is given by the Fibonacci numbers,
d(w, 3) = d(w, 4) = 2w, and d(w, 8) = 3w under Grothendieck’s period conjec-
ture.
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6 Some conjectures of FDS and RDS

Fix a level N . Let R be a commutative Q-algebra with 1 and a homomorphism
ZR : A0 −→ R such that the finite double shuffle (FDS) property holds:

ZR(ω1xω2) = ZR(ω1 ∗ ω2) = ZR(ω1)ZR(ω2).

We then extend ZR to ZxR and Z∗R as before. Define an R-module automor-
phism ρR of R[T ] by

ρR(eTu) = AR(u)eTu

where

AR(u) = exp

( ∞∑

n=2

(−1)n

n
ZR(an−1b0)u

n

)
∈ R[[u]].

If a map ZR : A0 −→ R satisfies the FDS and (ZxR − ρR ◦ Z∗R)(ω) = 0 for all
ω ∈ A1 then we say that ZR has the regularized double shuffle (RDS) property.
Let RRDS be the universal algebra (together with a map ZRDS : A0 −→ RRDS)
such that for every Q-algebra R and a map ZR : A0 −→ R satisfying RDS there
always exists a map ϕR to make the following diagram commutative:

A0

ZR ##FF
FF

FF
FF

F

ZRDS // RRDS

ϕR

��
R

When N = 2 computation by Blümlein, Broadhurst and Vermaseren [5] shows
that the finite distribution relations and the regularized distribution relations
(18) contribute non-trivially when the weight w = 8 and w = 11, respectively.
When N = 3 computation shows that the lifted relations contribute non-
trivially when the weight w = 4 (see §5) and w = 5: we can only get d(5, 3) ≤ 33
instead of the conjecturally correct dimension 32 without using the lifted re-
lations. Note that in this case there are 612 FDS of weight five, 191 RDS of
weight five, 8 FDT and 7 RDT.
One may use the fact that ZR is an algebra homomorphism to produce lifted
finite double shuffle and lifted regularized double shuffle relations as follows: for
all ω1 ∈ A1, ω0, ω

′
0, ω
′′
0 ∈ A0 with lg(ω1)+lg(ω0) = lg(ω0)+lg(ω′0)+lg(ω′′0 ) = w

ZxR (ω1xω0)−ρR◦Z∗R(ω1)ZxR (ω0) = 0, ZR
(
(ω0∗ω′0)∗ω′′0−(ω0xω

′
0)∗ω′′0

)
= 0.

In general, one can define the universal objects ZSR and RSR corresponding
to the standard relations similar to ZRDS and RRDS such that for every Q-
algebra R and a map ZR : A0 −→ R satisfying the standard relations there
always exists a map ϕR to make the following diagram commutative:

A0

ZR ""EE
EE

EE
EE

ZSR // RSR

ϕR

��
R

(20)
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Recall that one has the evaluation map Z : A0 −→ C by Prop. 2.8 which
extends (5).

Conjecture 6.1. Let (R,ZR) = (R, Z) if N = 1, and (R,ZR) = (C, Z) if
N = 2, 3 or N = pn with prime p ≥ 5. If N = 1 (resp. N = 2) then the map
ϕR is injective, namely, the algebra of MPVs of level one or two is isomorphic
to RRDS (resp. RSR). If N = 3 or N = pn (p ≥ 5) then the map ϕC is injective
so the algebra of MPVs of level N is isomorphic to RSR.

The above conjecture generalizes [24, Conjecture 1]. It means that all the
linear relations among MPVs can be produced by RDS when N = 1 or 2, and
by the standard ones when N = 3 or pn with prime p ≥ 5. When N = p ≥ 5,
p a prime, this is proved in Thm. 8.6 under the assumption of a variant of
Grothendieck’s period conjecture.
Computation in many cases such as those listed in Remark 8.2 and Conjec-
ture 8.5 show that MPVs must satisfy some other relations apart from the
standard ones when N has at least two distinct prime factors, so a naive gener-
alization of Conjecture 6.1 to all levels does not exist at present. However, when
N = 4 one can show that octahedral symmetry of P1 − ({0,∞} ∪ µ4) provide
all the non-standard relations under the standard assumption (see Thm. 9.1).
But since we only have numerical evidence in weight three and weight four it
may be a little premature to form a conjecture for level four.

7 The structure of MPVs and some examples

In this section we concentrate on RDS between MPVs of small weights. Most of
the computations in this section are carried out by MAPLE. We have checked
the consistency of these relations with many known ones and verified our results
numerically using GiNac [27] and EZ-face [9].
By considering all the admissible words we see easily that the number of distinct
MPVs of weight w ≥ 2 and level N is N2(N + 1)w−2 and there are at most
N(N + 1)w−2 RDS (but not FDS). If w ≥ 4 then the number of FDS is given
by

(N−1)N2(N+1)w−3+
([w

2

]
−1
)
N4(N+1)w−4 =

(
N2
[w

2

]
−1
)
N2(N+1)w−4.

If w = 2 (resp. w = 3) then the number of FDS is (N − 1)2 (resp. N2(N − 1)).
Therefore, it is not hard to see that the number of standard relations grow
polynomially with the level N but exponentially with the weight w.

7.1 Weight one

From §3 we know that all relations in weight one follow from (11) and (12), and
no RDS exists. The relations in weight one are crucial for higher level cases
because they provide the weight one relations considered in §3. Moreover, easy
computation by (11) and (12) shows that there is a hidden integral structure,
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namely, in each level there exists a Q-basis consisting of MPVs such that every
other MPV is a Z-linear combination of the basis elements. This fact is proved
by Conrad [13, Theorem 4.6]. Similar results should hold for higher weight
cases and we hope to return to this in a future publication [14].

7.2 Weight two

There are N2 MPVs of weight two and level N :

LN (1, 1|i, j), LN(2|j), 1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1.

For 1 ≤ i, j < N the FDS Z∗(y1,i ∗ y1,j) = Zx(y1,ixy1,j) yields

LN (2|i+ j) + LN(1, 1|i, j) + LN (1, 1|j, i) = LN(1, 1|i, j − i) + LN(1, 1|j, i− j).
(21)

Now from RDS ρ(Z∗(y1,0 ∗ y1,i)) = Zx(y1,0xy1,i) we get for 1 ≤ i < N

LN (1, 1|i, 0) + LN(2|i) = LN(1, 1|i,−i). (22)

The FDT in (14) yields: for every divisor d of N , and 1 ≤ a, b < d′ := N/d

LN(2|ad) =d

d−1∑

j=0

LN(2|a+ jd′), (23)

LN (1, 1|ad, bd) =

d−1∑

j,k=0

LN (1, 1|a+ jd′, b+ kd′). (24)

To derive the RDT we can compare the coefficients of x1xµad in (18) and use
Prop. 4.3 to get: for every divisor d of N , and 1 ≤ a < d′

LN (1|ad)

d−1∑

j=1

LN(1|jd′) =

d−1∑

j=1

d−1∑

k=0

LN(1, 1|jd′, a+ kd′)

−
d−1∑

k=0

LN (1, 1|a+ kd′,−a− kd′)− LN (1, 1|ad,−ad). (25)

By definition, the weight one relations are obtained from (11) and (12). For
example, if N = p is a prime then (12) is trivial and (11) is equivalent to the
following: for all 1 ≤ j < h (h := (p− 1)/2)

LN(1|j)− LN(1| − j) = (p− 2j)(LN(1|h)− LN(1|h+ 1)). (26)

Thus multiplying by LN (1|i) (1 ≤ i < p) and applying the shuffle relation
LN (1|a)LN(1|b) = LN (12|a, b− a) + LN(12|b, a− b) (here we put LN(12|−) =
LN (1, 1|−) to save space) we get:

LN (12|i, j − i) + LN (12|j, i− j) − LN(12|i,−j − i) − LN (12| − j, i+ j)

= (p−2j)
(

LN (12|i, h− i)+LN(12|h, i−h)−LN(12|i,−i−h)−LN(12|−h, i+h)
)

.
(27)
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Computation shows that the following conjecture should hold.

Conjecture 7.1. The RDT (25) follows from the combination of the following
relations: the weight one relations, the RDS (21) and (22), and the FDT (23)
and (24).

7.3 Weight three

Apparently there are N2(N + 1) MPVs of weight three and level N : for each
choice (i, j, k) with 1 ≤ i ≤ N − 1, 0 ≤ j, k ≤ N − 1 we have four MPVs of level
N :

LN(13|i, j, k) := LN (1, 1, 1|i, j, k), LN (1, 2|i, j), LN (2, 1|j, k), LN (3|k).

For 1 ≤ i, j, k < N the FDS Z∗
(
y1,i ∗ (y1,jy1,k)

)
= Zx

(
y1,ix(y1,jy1,k)

)
yields

LN (13|i, j − i, k) + LN(13|j, i − j, k + j − i) + LN(13|j, k, i − k − j)
= LN(2, 1|i+ j, k) + LN (1, 2|j, i+ k)

+ LN(13|i, j, k) + LN(13|j, i, k) + LN(13|j, k, i). (28)

For 1 ≤ i, j < N the FDS Z∗(y1,i ∗ y2,j) = Zx(y1,ixy2,j) yields

LN (3|i+ j) + LN (1, 2|i, j) + LN (2, 1|j, i)
= LN(1, 2|i, j − i) + LN(2, 1|i, j − i) + LN(2, 1|j, i− j). (29)

Moreover, there are three ways to produce RDS. Since ρ(T ) = T the first
family of RDS come from Z∗

(
y1,0 ∗ (y1,iy1,i+j)

)
= Zx

(
y1,0x(y1,iy1,i+j)

)
for

1 ≤ i ≤ N − 1, 0 ≤ j ≤ N − 1:

y1,0 ∗ (y1,iy1,i+j) = y1,0y1,iy1,i+j + y1,iτi(y1,0 ∗ y1,j) + y2,iy1,i+j

=y1,0y1,iy1,i+j + y1,iy1,iy1,i+j + y1,iy1,i+jy1,i+j + y1,iy2,i+j + y2,iy1,i+j

On the other hand,

y1,0xy1,iy1,i+j = y1,0y1,iy1,i+j + y1,iy1,0y1,i+j + y1,iy1,i+jy1,0.

Hence

LN (13|i, 0, j) + LN (13|i, j, 0) + LN(1, 2|i, j) + LN(2, 1|i, j)
= LN (13|i,−i, i+ j) + LN(13|i, j,−i− j). (30)

The second family of RDS follow from ρ(Z∗(y1,0 ∗ y2,i)) = Zx(y1,0xy2,i):

y1,0y2,i + y2,iy1,i + y3,i = y1,0y2,i + y2,0y1,i + y2,iy1,0
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which implies that

LN(2, 1, i, 0) + LN (3, i) = LN (2, 1, i,−i) + LN (2, 1, 0, i). (31)

Now we consider the last family of RDS. By the definition of stuffle product:

y1,0 ∗ y1,0 ∗ y1,i =(2y21,0 + y2,0) ∗ y1,i
=2y1,0(y1,0 ∗ y1,i) + 2y31,i + 2y2,iy1,i + y2,0 ∗ y1,i
=2y21,0y1,i + 2y1,0y

2
1,i + 2y1,0y2,i + 2y31,i + 2y2,iy1,i + y2,0 ∗ y1,i.

Applying ρ ◦ Z∗ and noticing that Zx(2|0)(T ) = ζ(2) we get

(T 2 + ζ(2))Zx(1|i)(T ) = 2Zx(13|0,0,i)(T ) + 2Zx(13|0,i,i)(T ) + 2Zx(1,2|0,i)(T )

+ 2Zx(13|i,i,i)(T ) + 2Zx(2,1|i,i)(T ) + Zx(2|0)(T )Zx(1|i)(T ). (32)

On the other hand by the definition of shuffle product

y1,0xy1,0xy1,i = 2y21,0xy1,i = 2y21,0y1,i + 2y1,0y1,iy1,0 + 2y1,iy
2
1,0

Applying Zx we get

T 2Zx(1|i)(T ) = 2Zx(13|0,0,i)(T ) + 2Zx(13|0,i,0)(T ) + 2Zx(13|i,0,0)(T ). (33)

We further have

Zx(y1,0y
2
1,i + y1,0y2,i − y1,0y1,iy1,0)

=Zx(13|0, i, i)(T ) + Zx(1,2|0,i)(T )− Zx(13|0,i,0)(T )

=2Zx(13|i,0,0)(T )− Zx(2,1|i,0)(T )− Zx(2,1|0,i)(T )− Zx(13|i,0,i)(T )− Zx(13|i,i,0)(T )

where we have used the facts that

Zx(1,2|0,i)(T ) =TZx(2|i)(T )− Zx(2,1|i,0)(T )− Zx(2,1|0,i)(T )

Zx(13|0,i,i)(T ) =TZx(1,1|i,i)(T )− Zx(13|i,0,i)(T )− Zx(13|i,i,0)(T )

Zx(13|0,i,0)(T ) =TZx(1,1|i,0) − 2Zx(13|i,0,0)(T )

Zx(1,1|i,0)(T ) =Zx(2|i)(T ) + Zx(1,1|i,i)(T ).

Hence for 1 ≤ i < N we have by subtracting (33) from (32)

LN (13|i, 0, 0) + LN(2, 1|i, 0) + LN (13|i,−i, 0) =

LN(2, 1|i,−i) + LN (2, 1|0, i) + LN(13|i,−i, i) + LN (13|i, 0,−i). (34)

Setting j = 0 in (30) and subtracting from (34) we get

LN (13|i,−i, 0) = LN (2, 1|i,−i)+LN (2, 1|0, i)+LN (13|i, 0, 0)+LN (1, 2|i, 0). (35)
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7.4 Upper bound of d(w,N) by Deligne and Goncharov

By using the theory of motivic fundamental groups of P1 − ({0,∞} ∪ µN )
Deligne and Goncharov [17, 5.25] show that d(w,N) ≤ D(w,N) where D(w,N)
are defined by the formal power series

1 +

∞∑

w=1

D(w,N)tw =





(1− t2 − t3)−1, if N = 1;
(1− t− t2)−1, if N = 2;
(1− at+ bt2)−1, if N ≥ 3,

(36)

where a = a(N) := ϕ(N)/2 + ν(N), b = b(N) := ν(N) − 1, ϕ is the Euler’s
totient function and ν(N) is the number of distinct prime factors of N . If
N > 2 then we have

∞∑

w=1

D(w,N)tw = at+ (a2 − b)t2 + (a3 − 2ab)t3 + (a4 − 3a2b+ b2)t4 + · · ·

In particular, if p is a prime then for any positive integer n

D(w, pn) = a(pn)w =

(
pn−1(p− 1)

2
+ 1

)w
. (37)

We will compare the bound obtained by the standard relations to the bound
D(w,N) in the next two sections.

8 Computational results in weight two

In this section we combine the analysis in the previous sections and the theory
developed by Deligne and Goncharov [17] to present a detailed computation in
weight two and level N ≤ 169.
Let G := ι(LieUω) be the motivic fundamental Lie algebra (see [17, (5.12.2)])
associated to the motivic fundamental group of P1−({0,∞}∪µN ). As pointed
out in §6.13 of op. cit. one may safely replace G(µN )(ℓ) by G throughout [20].
Then it follows from the proof of [17, 5.25] that if conjecture [17, 5.27(c)] is
true, which we assume in the following, then

d(2, N) = D(2, N)− dim ker(βN ), (38)

where βN :
∧2 G−1,−1 −→ G−2,−2 is given by Ihara’s bracket βN (a∧ b) = {a, b}

defined by (5.13.6) of op. cit. Here G•,• is the associated graded of the weight
and depth gradings of G (see [20, §2.1]). Let k(N) := dim ker(βN ). Then

δ1(N) := dimG−1,−1 =

{
1, if N = 1 or 2;
ϕ(N)/2 + ν(N)− 1, if N ≥ 3,

(39)

by [20, Thm. 2.1]. Thus

i(N) := dim Im(βN ) = δ1(N)(δ1(N)− 1)/2− k(N). (40)
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N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

δ1 1 1 1 1 2 2 3 2 3 3 5 3 6 4 5 4

i 0 0 0 0 0 1 1 1 3 3 5 3 8 6 10 6

k 0 0 0 0 1 0 2 0 0 0 5 0 7 0 0 0

δ2 0 0 1 1 2 2 4 3 6 5 10 5 14 9 14 10

sr 0 0 1 1 2 2 4 4 6 6 10 8 14 12 16 16

D 1 2 4 4 9 8 16 9 16 15 36 15 49 24 35 25

SR 1 2 4 4 8 8 14 10 16 16 31 18 42 27 37 31

d 1 2 4 4 8 8 14 9 16 15 31 15 42 24 35 25

N 17 18 19 20 21 22 23 24 25 26 27 28 29
δ1 8 4 9 5 7 6 11 5 10 7 9 7 14
i 16 6 21 10 21 15 33 10 40 21 36 21 56
k 12 0 15 0 0 0 22 0 5 0 0 0 35
δ2 24 9 30 14 27 20 44 14 50 27 45 27 70
sr 24 18 30 24 32 30 44 32 50 42 54 48 70
D 81 24 100 35 63 48 144 35 121 63 100 63 225
SR 69 33 85 45 68 58 122 53 116 78 109 84 190
d 69 24 85 35 63 48 122 35 116 63 100 63 190

N 30 31 32 33 34 35 36 37 38 39 40 41

δ1 6 15 8 11 9 13 7 18 10 13 9 20

i 15 65 28 55 36 78 21 96 45 78 36 120

k 0 40 0 0 0 0 0 57 0 0 0 70

δ2 19 80 36 65 44 90 27 114 54 90 44 140

sr 48 80 64 80 72 96 72 114 90 112 96 140

D 47 256 81 143 99 195 63 361 120 195 99 441

SR 76 216 109 158 127 201 108 304 156 217 151 371

d 47 216 81 143 99 195 63 304 120 195 99 371

N 42 43 44 45 46 47 48 49 121 125 169
δ1 8 21 11 13 12 23 9 21 55 50 78
i 28 133 55 78 66 161 36 175 1155 1200 2288
k 0 77 0 0 0 92 0 35 330 25 715
δ2 34 154 65 90 77 184 44 196 1210 1250 2366
sr 96 154 120 144 132 184 128 196 1210 1250 2366
D 79 484 143 195 168 576 99 484 3136 2601 6241
SR 141 407 198 249 223 484 183 449 2806 2576 5526
d 79 407 143 195 168 484 99 449 2806 2576 5526

Table 1: Upper bounds of d(2, N) by the standard relations and [17, 5.25].
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Since dimG−2,−1 = ϕ(N)/2 if N > 2 and 0 otherwise the dimension of the
degree two part of G is

δ2(N) := dim G−2,−1 + dim G−2,−2 =

{
i(N), if N = 1 or 2;
ϕ(N)/2 + i(N), if N ≥ 3.

(41)
Let sr(N) be the upper bound of δ2(N) obtained by the standard relations.
This can be computed by the method described in [30, §2]. Let SR(N) be the
upper bound of d(2, N) similarly obtained by the standard relations. In Table
1 we use MAPLE to provide the following data: k(N), sr(N), and SR(N).
Then we can calculate δ1(N), i(N) and δ2(N) by (39), (40) (41), respectively.
From (38) we can check the consistency by verifying

sr(N) − δ2(N) = SR(N)− d(2, N) = SR(N)−D(2, N) + k(N)

which gives the number of linearly independent non-standard relations (as-
suming the conjecture in [17, 5.27(c)]). In Table 1 we provide some computa-
tional data of the above quantities. To save space we write D = D(2, N) and
d = d(2, N).

Definition 8.1. We call the level N standard if either (i) N = 1, 2 or 3, or
(ii) N is a prime power pn (p ≥ 5). Otherwise N is called non-standard.

Remark 8.2. We now make the following comments in the weight two case from
Table 1.
(a) When p ≥ 11 the vector space kerβp contains a subspace isomorphic to the
space of cusp forms of weight two onX1(p) which has dimension (p−5)(p−7)/24
(see [20, Lemma 2.3 & Theorem 7.8]). So it must contain another piece which
has dimension (p− 3)/2 since dim(kerβp) = (p2 − 1)/24 by [30, (6)]. One may
wonder if this missing piece has any significance in geometry and/or number
theory.
(b) If N is a 2-power or a 3-power then D(2, N) should be sharp. See Re-
mark 5.4.
(c) If N has at least two distinct prime factors then D(2, N) seems to be sharp,
though we don’t have any theory to support it.
(d) Suppose the conjecture in [17, 5.27(c)] is true. Then by [17, 5.27], (b)
and (c) is equivalent to saying that the kernel of βN is trivial if the level N is
non-standard. We believe this is also a necessary condition on N for βN to be
trivial.
(e) If the level N > 3 is standard then βN is unlikely to be injective. We con-
jecture that non-standard relation doesn’t exist (i.e., SR(N) is sharp), though
for prime power levels we only have verified this for the first four prime square
levels N = 52, 72, 112, 132, and the first cubic power level N = 53.

The equation dim βp = (p2 − 1)/24 (see [30, (6)]) together with Theorem 8.6
confirms Remark 8.2(e) for prime levels if we assume a variant of Grothendieck’s
period conjecture [17, 5.27(c)]. The next result partially confirms Remark
8.2(e) in the case when the level is a prime square.
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Theorem 8.3. If p ≥ 5 is a prime then kerβp2 6= 0 and

d(2, p2) < D(2, p2) = (p2 − p+ 2)2/4.

Proof. By the proof of Delign-Goncharov’s bound D(2, p2) in [17, 5.25] we only
need to show kerβp2 6= 0. In the following we adopt the same notation as in
[17] and [30].
Fix a primitive p2th root of unity µ. Put e(a) = eµa for all integer a. Define

gk,j = e(pk + j) + e(p2 − pk − j) + e(pj) + e(p2 − pj)
for 0 ≤ k < (p− 1)/2, 1 ≤ j ≤ p− 1, and for k = (p− 1)/2, 1 ≤ j ≤ (p− 1)/2.
One only needs to prove the following

Claim. Let h = (p− 3)/2. Then one has

h∑

k=0

h∑

l=k

p−2∑

j=2

{gk,1, gl,j}+

h+1∑

k=0

h+1∑

j=2

{gk,1, gh+1,j}

+
h∑

k=0

h∑

l=k+1

p−2∑

j=2

{gk,p−1, gl,j}+
h∑

k=0

h+1∑

j=2

{gk,p−1, gh+1,j}

−
h∑

k=0

h∑

l=k

p−2∑

j=2

{gk,j , gl,p−1} −
h∑

k=0

h∑

l=k

p−2∑

j=2

{gk,j , gl+1,1} = 0.

There are h(2h+ 3)2 = hp2 distinct terms on the left, each with coefficient ±1.

The proof of the claim is straight-forward by a little tedious change of indices
and regrouping.

−
h∑

k=0

h∑

l=k

p−2∑

j=2

{gk,j , gl+1,1} =

h∑

k=0

k∑

l=0

p−2∑

j=2

{gk+1,1, gl,j} =

h+1∑

k=1

k−1∑

l=0

p−2∑

j=2

{gk,1, gl,j}.

Then the expression in the claim becomes

h∑

k=1

h∑

l=0

p−2∑

j=2

{gk,1, gl,j}+
h∑

l=0

p−2∑

j=2

{g0,1, gl,j}+
h∑

l=0

p−2∑

j=2

{gh+1,1, gl,j}

+
h+1∑

k=0

h+1∑

j=2

{gk,1, gh+1,j}+
h∑

k=0

h∑

l=0

p−2∑

j=2

{gk,p−1, gl,j}+
h∑

k=0

h+1∑

j=2

{gk,p−1, gh+1,j}

=

h+1∑

k=0

h∑

l=0

p−2∑

j=2

{gk,1, gl,j}+

h+1∑

k=0

h+1∑

j=2

{gk,1, gh+1,j}

+

h∑

k=0

h∑

l=0

p−2∑

j=2

{gk,p−1, gl,j}+

h∑

k=0

h+1∑

j=2

{gk,p−1, gh+1,j}.

Let us write {a, b} = {e(a), e(b)}. By definition
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{gk,1, gl,j}
={pk + 1, pl + j}+ {−pk − 1, pl + j}+ {p, pl+ j}+ {−p, pl + j}
+{pk + 1,−pl− j}+ {−pk − 1,−pl− j}+ {p,−pl− j}+ {−p,−pl− j}
+{pk + 1, pj}+ {−pk − 1, pj}+ {p, pj}+ {−p, pj}
+{pk + 1,−pj}+ {−pk − 1,−pj}+ {p,−pj}+ {−p,−pj}
={pk + 1, pl + j}+ {p(p− k)− 1, pl + j}+ {p, pl + j}+ {−p, pl+ j}
+{pk + 1, p(p− 1− l) + p− j}+ {p(p− k)− 1, p(p− 1− l) + p− j}

+ {p, p(p− 1− l) + p− j}+ {−p, p(p− 1− l) + p− j}
+{pk + 1, pj}+ {p(p− k)− 1, pj}+ {p, pj}+ {−p, pj}
+{pk + 1, p(p− j)}+ {p(p− k)− 1, p(p− j)}+{p, p(p− j)}+{−p, p(p− j)}.
Then

h+1∑

k=0

h∑

l=0

p−2∑

j=2

{gk,1, gl,j} =
h+1∑

k=0

h∑

l=0

p−2∑

j=2

{pk + 1, pl + j}+ {p(p− k)− 1, pl + j}

+{pk + 1, p(p− 1− l) + j}+ {p(p− k)− 1, p(p− 1− l) + j}
+{p, pl + j}+ {−p, pl + j}+ {p, p(p− 1− l) + j}+ {−p, p(p− 1− l) + j}
+2{pk + 1, pj}+ 2{p(p− k)− 1, pj}+ 2{p, pj}+ 2{−p, pj}

=

h+1∑

k=0

p−1∑

l=0,l 6=h+1

p−2∑

j=2

{pk + 1, pl + j}+

p∑

k=h+2

p−1∑

l=0,l 6=h+1

p−2∑

j=2

{pk − 1, pl + j}

+

h+1∑

k=0

p−1∑

l=0,l 6=h+1

p−2∑

j=2

(
{p, pl+ j}+ {−p, pl + j}

)
+ 2(h+ 1)

h+1∑

k=0

p−2∑

j=2

{pk + 1, pj}

+2(h+ 1)

p∑

k=h+2

p−2∑

j=2

{pk − 1, pj}+ 2(h+ 2)(h+ 1)

p−2∑

j=2

(
{p, pj}+ {−p, pj}

)
.

Thus

h+1∑

k=0

h∑

l=0

p−2∑

j=2

{gk,1, gl,j}+

h+1∑

k=0

h+1∑

j=2

{gk,1, gh+1,j}

=

h+1∑

k=0

p−1∑

l=0

p−2∑

j=2

{pk + 1, pl + j}+

p∑

k=h+2

p−1∑

l=0

p−2∑

j=2

{pk − 1, pl + j}

+
p+ 1

2

p−1∑

l=0

p−2∑

j=2

(
{p, pl + j}+ {−p, pl+ j}

)
+ p

h+1∑

k=0

p−2∑

j=2

{pk + 1, pj}

+p

p∑

k=h+2

p−2∑

j=2

{pk − 1, pj}+
p(p+ 1)

2

p−2∑

j=2

(
{p, pj}+ {−p, pj}

)
.
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Similarly,

h∑

k=0

h∑

l=0

p−2∑

j=2

{gk,p−1, gl,j}+

h∑

k=0

h+1∑

j=2

{gk,p−1, gh+1,j}

=
h+1∑

k=1

p−1∑

l=0

p−2∑

j=2

{pk − 1, pl + j}+

p−1∑

k=h+2

p−1∑

l=0

p−2∑

j=2

{pk + 1, pl + j}

+
p− 1

2

p−1∑

l=0

p−2∑

j=2

(
{p, pl + j}+ {−p, pl+ j}

)
+ p

h+1∑

k=1

p−2∑

j=2

{pk − 1, pj}

+p

p−1∑

k=h+2

p−2∑

j=2

{pk + 1, pj}+
p(p− 1)

2

p−2∑

j=2

(
{p, pj}+ {−p, pj}

)
.

Altogether the expression in the claim is reduced to

X :=

p−1∑

k=0

p−1∑

l=0

p−2∑

j=2

{pk + 1, pl + j}+

p∑

k=1

p−1∑

l=0

p−2∑

j=2

{pk − 1, pl + j}

+p

p−1∑

l=0

p−2∑

j=2

(
{p, pl + j}+ {−p, pl+ j}

)
+ p

p−1∑

k=0

p−2∑

j=2

{pk + 1, pj}

+p

p∑

k=1

p−2∑

j=2

{pk − 1, pj}+ p2
p−2∑

j=2

(
{p, pj}+ {−p, pj}

)
.

To see this last expression can be reduced to 0 we recall that by definition [17,
(5.13.6)]

{a, b} = {ea, eb} = [ea, eb] + ∂a(eb)− ∂b(ea),

where ∂a is the derivation defined by ∂a(e0) = 0 and ∂a(eζ) = [−[ζ](ea), eζ ]
for any p2th root of unity ζ (see [17, (5.13.4)]). Thus by abuse of notation
[x, y] = [e(x), e(y)] we get

X =

p−1∑

k=0

p−1∑

l=0

p−2∑

j=2

(
[pk + 1, pl + j]− [p(k + l) + j + 1, pl + j]

+ [p(k + l) + j + 1, pk + 1]
)

(42)

+

p∑

k=1

p−1∑

l=0

p−2∑

j=2

(
[pk − 1, pl + j]− [p(k + l) + j − 1, pl + j]

+ [p(k + l) + j − 1, pk − 1]
)

(43)

+p

p−1∑

l=0

p−2∑

j=2

(
[p, pl + j]− [p(l + 1) + j, pl + j] + [p(l + 1) + j, p]
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+[−p, pl + j]− [p(l − 1) + j, pl + j] + [p(l − 1) + j,−p]
)

(44)

+p

p−1∑

k=0

p−2∑

j=2

(
[pk + 1, pj]− [p(j + k) + 1, pj] + [p(j + k) + 1, pk + 1]

)
(45)

+p

p∑

k=1

p−2∑

j=2

(
[pk − 1, pj]− [p(j + k)− 1, pj] + [p(j + k)− 1, pk − 1]

)
(46)

+p2
p−2∑

j=2

(
[p, pj]− [p(j + 1), pj] + [p(j + 1), p] + [−p, pj]

− [p(j − 1), pj] + [p(j − 1),−p]
)
. (47)

Now by skew-symmetry of Lie bracket

(42) + (43)

=

p−1∑

k=0

p−1∑

l=0

p−2∑

j=2

[pk + 1, pl + j] +

p−1∑

k=0

p−1∑

l=0

p−2∑

j=2

[pk + j, pl + j + 1]

−
p−1∑

k=0

p−1∑

l=0

p−1∑

j=3

[pk + 1, pl + j] +

p∑

k=1

p−1∑

l=0

p−2∑

j=2

[pk − 1, pl + j]

−
p∑

k=1

p−1∑

l=0

p−3∑

j=1

[p(k + l) + j, pl + j + 1] +

p∑

k=1

p−1∑

l=0

p−3∑

j=1

[pl + j, pk − 1]

=

p−1∑

k=0

p−1∑

l=0

[pk + 1, pl + 2] +

p−1∑

k=0

p−1∑

l=0

[pk + p− 2, pl + p− 1]

−
p−1∑

k=0

p−1∑

l=0

[pk + 1, pl + p− 1] +

p∑

k=1

p−1∑

l=0

[pk − 1, pl + p− 2]

−
p∑

k=1

p−1∑

l=0

[pk + 1, pl + 2] +

p∑

k=1

p−1∑

l=0

[pl + 1, pk − 1] = 0.

Similarly we can easily find that (44) = (45) = (46) = (47) = 0. This finishes
the proof of the theorem.

Remark 8.4. The theorem corrects a misprint in the statement of [30, Thm. 2].

In the three cases (w,N) = (2, 8), (2, 10) and (2, 12) we see that SR(N) >
d(w;N) = D(w;N). By numerical computation we have

Conjecture 8.5. We have

d(2, 8) = 9, d(2, 10) = d(2, 12) = 15,
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and the following relations are the linearly independent non-standard relations:

let LN(−) = LN (1, 1|−) and L
(2)
N (−) = LN (2|−), then

37L8(1, 1) =34L
(2)
8 (5) + 112L8(3, 1) + 11L8(3, 0) + 37L

(2)
8 (1)− 2L8(2, 6)

+ 3L8(7, 3)− 111L8(5, 7) + 38L8(7, 7)− 8L8(5, 5), (48)

7L10(5, 2) =72L
(2)
10 (1) + 265L

(2)
10 (7)− 7L10(2, 5) + 64L10(9, 8) + 14L10(5, 6)

− 467L10(4, 2) + 467L10(8, 6)− 164L10(9, 4) + 166L10(7, 9)

− 260L10(8, 1)− 66L10(3, 9)− 7L10(6, 9) + 7L10(6, 5). (49)

L12(8, 7) =5L
(2)
12 (5) + 8L12(8, 10)− 6L12(10, 11)− 8L12(9, 11) + L12(10, 9)

− 15L12(8, 1) + 5L12(9, 10) + 5L12(6, 1)− L12(1, 1)

+ 6L12(8, 11)− 11L12(6, 11) + 8L12(8, 3)− L12(11, 8), (50)

60L12(8, 11) =38L12(8, 7) + 348L12(10, 11) + 502L12(9, 11)

− 492L12(10, 9) + 600L12(8, 1)− 552L12(9, 10)

− 154L12(11, 10) + 20L12(6, 1) + 261L12(6, 11)

− 502L12(8, 3) + 221L12(11, 8)− 319L12(8, 10), (51)

221L12(1, 1) =1854L12(8, 10) + 562L12(8, 7)− 1018L12(10, 11)

− 2416L12(9, 11) + 319L12(10, 9)− 4270L12(8, 1)

+ 2293L12(9, 10) + 956L12(11, 10) + 1110L12(6, 1)

+ 2416L12(8, 11)− 3305L12(6, 11) + 2416L12(8, 3). (52)

When N is a non-standard level we find that very often there are non-standard
relations among MPVs. For examples, the five relations in Conjecture 8.5 are
discovered only through numerical computation. On the other hand, we expect
that the standard relations are enough to produce all the linear relations when
N is standard. In weight two, when N is a prime the answer is confirmed by
the next theorem if one assumes a variant of Grothendieck’s period conjecture.
Computations above provided the primary motivation of this result at the
initial stage of this work.

Theorem 8.6. ([30]) Let p ≥ 5 be a prime. Then

d(2, p) ≤ (5p+ 7)(p+ 1)

24
.

If the conjecture in [17, 5.27(c)] is true then the equality holds and the standard
relations inMPV(2, p) imply all the others.

Proof. See the proof of [30, Thm. 1].

It follows from [30, (6)] that the kernel βp has dimension

k(p) =
p2 − 1

24

for all prime p ≥ 5. From the data in Table 1 we have
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Conjecture 8.7. (a) For all prime p ≥ 5 kernel βp2 has dimension

k(p2) =
p(p− 1)(p− 2)(p− 3)

24
.

As a consequence, the upper bound of d(2, p2) produced by the standard relations
is

d(2, p2) ≤ 5p4 − 6p3 + 19p2 − 18p+ 24

24
.

(b) The standard relations produce all the linear relations and the upper bound
in (a) is sharp.

Conjecture 8.8. (a) For all prime p ≥ 5 kernel βp3 has dimension

k(p3) =
p2(p− 1)(p− 2)(p− 3)(p− 4)

24
.

As a consequence, the upper bound of d(2, p3) produced by the standard relations
is

d(2, p3) ≤ 5p6 − 2p5 − 29p4 + 74p3 − 48p2 + 24

24
.

(b) The standard relations produce all the linear relations and the upper bound
in (a) is sharp.

9 Computational results in weight three, four and five

In this last section we briefly discuss our results in weight three, four and five.
Since the computational complexity increases exponentially with the weight we
cannot do as many cases as we have done in weight two.
Combining the FDS (28), (29), RDS (30)-(35), and the weight one relations (13)
and using MAPLE we have verified that d(3, 1) = 1, d(3, 2) ≤ 3, d(3, 3) ≤ 8....

N 1 2 3 4 5 6 7
SR(3) 1 3 8 9 22 23 50
D(3) 1 3 8 8 27 21 64
SR(4) 1 5 16 21 61 69
D(4) 1 5 16 16 81 55 256
SR(5) 2 8 32
D(5) 2 8 32 32 243 144 1024

N 8 9 10 11 12 13
SR(3) 38 67 70 157 94 246
D(3) 27 64 56 216 56 343

Table 2: Upper bounds of d(w,N) by the standard relations and [17, 5.25].

Documenta Mathematica 15 (2010) 1–34



30 Jianqiang Zhao

We have done similar computation in other small weight and low level cases
and listed the results in Table 2. The values of Deligne and Goncharov’s bound
D(w) = D(w,N) in Table 2 should be compared with the bound SR(w) =
SR(w,N) obtained by the standard relations.
Note that SR(3, 4) = D(3, 4) + 1. By numerical computation using EZface [9]
and GiNac [27] we find the following non-standard relation in weight 3:

5L4(1, 2|2, 3) =46L4(1, 1, 1|1, 0, 0)− 7L4(1, 1, 1|2, 2, 1)− 13L4(1, 1, 1|1, 1, 1)

+ 13L4(1, 2|3, 1)− L4(1, 1, 1|3, 2, 0) + 25L4(1, 1, 1|3, 0, 0)

− 8L4(1, 1, 1|1, 1, 2) + 18L4(2, 1|3, 0), (53)

and five non-standard relations in weight 4:

0 =− 255608l1− 265360l2 − 219216l3− 19306179l4− 214008l5 + 45560l6

− 148296l7− 1117280l8− 677152l9 + 86512l10 − 239320l11 − 50032l12

− 121008l13− 96944l14 + 202328l15− 1178499l16 + 98944l17

+ 1565754l18 + 23071580l19 + 363568l20− 3310177l21, (54)

0 =29752l1 + 23312l2 + 10960l3 + 6123413l4 + 16440l5 − 12408l6

+ 7144l7 + 58272l8 + 86976l9 − 15952l10 + 41144l11 + 13552l12

+ 29552l13 + 9840l14 − 36696l15 + 375805l16− 41760l17

− 477366l18− 7196900l19 − 62128l20 + 1048983l21, (55)

0 =477444l1 + 431352l2 + 268168l3 + 98404710l4 + 308964l5− 233140l6

+ 130028l7 + 1563872l8 + 1516032l9− 296664l10 + 702308l11 + 190136l12

+ 506440l13 + 141592l14 − 636468l15 + 6027441l16− 701600l17

− 7683609l18− 115803282l19− 1063768l20 + 16877562l21, (56)

0 =− 5976l1 + 1776l2 + 8496l3 − 2132671l4 + 3176l5 + 1752l6

+ 3832l7 + 50976l8 − 2688l9 + 2320l10 − 10264l11 − 5808l12

− 6128l13 + 2320l14 + 8120l15 − 132307l16 + 13856l17

+ 162614l18 + 2487604l19 + 12720l20 − 368485l21, (57)

0 =− 474064l1− 405248l2 − 243520l3− 54556373l4− 283952l5 + 84368l6

− 170640l7− 1033056l8− 994784l9 + 174880l10 − 540432l11− 156544l12

− 240512l13− 49344l14 + 411152l15− 3357683l16 + 292256l17

+ 4291792l18 + 64572648l19 + 743136l20− 9470695l21. (58)

where by setting L = L4, 14 = {1}4, ...

l1 = L(14|2, 1, 0, 1), l2 =L(14|2, 12, 0), l3 =L(14|2, 0, 3, 1),
l4 = L(14|2, 03), l5 =L(14|1, 2, 0, 3), l6 =L(14|32, 0, 3),
l7 = L(14|3, 1, 3, 2), l8 =L(14|3, 03), l9 =L(14|3, 0, 1, 0),
l10 = L(14|3, 0, 12), l11 =L(2, 12|0, 3, 0), l12 =L(3, 1|0, 3),
l13 = L(14|2, 2, 3, 0), l14 =L(2, 12|3, 12), l15 =L(2, 12|3, 0, 3),
l16 = L(12, 2|23), l17 =L(14|2, 0, 1, 0), l18 =L(2, 12|22, 0),
l19 = L(14|{2, 0}2), l20 =L(22|3, 0), l21 =L(14|24).
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We now can prove this by using the octahedral symmetry of P1−({0,∞}∪µ4)
(see Remark 5.3). This idea was suggested to the author by Deligne in a letter
dated Feb. 14, 2008.

Theorem 9.1. ([30]) If the conjecture in [17, 5.27(c)] is true then all the linear
relations among MPVs of level four and weight three (resp. weight four) are the
consequences of the standard relations and the octahedral relation (53) (resp.
the five octahedral relations (54)-(58)).

Proof. For the proof please see[30, §3].

From the available data in Table 2 we can formulate the following conjecture.

Conjecture 9.2. Suppose the level N = p is a prime ≥ 5. Then

d(3, p) ≤ p3 + 4p2 + 5p+ 14

12
.

Moreover, equality holds if standard relations produce all the linear relations.

We formulated this conjecture under the belief that the upper bound of d(3, p)
produced by the standard relations should be a polynomial of p of degree 3.
Then we find the coefficients by the bounds of d(3, p) for p = 5, 7, 11, 13 in
Table 2.
When w > 2 it’s not too hard to improve the bound of d(w, p) given in [17,
5.25] by the same idea as used in the proof of [17, 5.24] (for example, decrease
the bound by (p2 − 1)/24). But they are often not the best. We conclude our
paper with the following conjecture.

Conjecture 9.3. If N is a standard level then the standard relations always
provide the sharp bounds of d(w,N), namely, all linear relations can be derived
from the standard ones, if further N > 3 then the bound D(w,N) in (36) by
Deligne and Goncharov can be lowered. If N is a non-standard level then the
bound D(w,N) is sharp and there exists a positive integer w0(N) so that at
least one non-standard relation exists in MPV(w,N) for each w ≥ w0(N).

It is likely that one can take w0(4) = w0(6) = w0(9) = 3 and w0(N) = 2 for all
the other non-standard levels N .
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mixte, Annales Scientifiques de lÉcole Normale Supérieure, 38 (1)(2005),
1–56. Also available math.NT/0302267.

[18] V. Ennola, On relations between cyclotomic units, J. Number Theory 4
(1972), 236–247.

[19] A. B. Goncharov, Polylogarithms in arithmetic and geometry, in: Proc.
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Abstract. Let G be an affine reductive algebraic group over an
algebraically closed field k. We determine the Picard group of the
moduli stacks of principal G–bundles on any smooth projective curve
over k.
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1. Introduction

As long as moduli spaces of bundles on a smooth projective algebraic curve
C have been studied, their Picard groups have attracted some interest. The
first case was the coarse moduli scheme of semistable vector bundles with fixed
determinant over a curve C of genus gC ≥ 2. Seshadri proved that its Picard
group is infinite cyclic in the coprime case [28]; Drézet and Narasimhan showed
that this remains valid in the non–coprime case also [9].
The case of principal G–bundles over C for simply connected, almost simple
groups G over the complex numbers has been studied intensively, motivated
also by the relation to conformal field theory and the Verlinde formula [1, 12,
20]. Here Kumar and Narasimhan [19] showed that the Picard group of the
coarse moduli scheme of semistable G–principal bundles over a curve C of
genus gC ≥ 2 embeds as a subgroup of finite index into the Picard group of the
affine Grassmannian, which is canonically isomorphic to Z; this finite index
was determined recently in [6]. Concerning the Picard group of the moduli
stack MG of principal G–bundles over a curve C of any genus gC ≥ 0, Laszlo
and Sorger [23, 30] showed that its canonical map to the Picard group Z of the
affine Grassmannian is actually an isomorphism. Faltings [13] has generalised
this result to positive characteristic, and in fact to arbitrary noetherian base
scheme.

1The second author gratefully acknowledges the support of the SFB/TR 45 ”Perioden,
Modulräume und Arithmetik algebraischer Varietäten”

Documenta Mathematica 15 (2010) 35–72



36 Indranil Biswas and Norbert Hoffmann

If G is not simply connected, then the moduli stackMG has several connected
components which are indexed by π1(G). For any d ∈ π1(G), let Md

G be the
corresponding connected component of MG. For semisimple, almost simple
groups G over C, the Picard group Pic(Md

G) has been determined case by case
by Beauville, Laszlo and Sorger [2, 22]. It is finitely generated, and its torsion
part is a direct sum of 2gC copies of π1(G). Furthermore, its torsion–free part
again embeds as a subgroup of finite index into the Picard group Z of the affine
Grassmannian. Together with a general expression for this index, Teleman [31]
also proved these statements, using topological and analytic methods.
In this paper, we determine the Picard group Pic(Md

G) for any reductive group
G, working over an algebraically closed ground field k without any restriction
on the characteristic of k (for all gC ≥ 0). Endowing this group with a natural
scheme structure, we prove that the resulting group scheme Pic(Md

G) over k
contains, as an open subgroup, the scheme of homomorphisms from π1(G) to
the Jacobian JC , with the quotient being a finitely generated free abelian group
which we denote by NS(Md

G) and call it the Néron–Severi group (see Theorem
5.3.1). We introduce this Néron–Severi group combinatorially in § 5.2; in par-
ticular, Proposition 5.2.11 describes it as follows: the group NS(Md

G) contains
a subgroup NS(MGab) which depends only on the torus Gab = G/[G ,G]; the
quotient is a group of Weyl–invariant symmetric bilinear forms on the root
system of the semisimple part [G ,G], subject to certain integrality conditions
that generalise Teleman’s result in [31].
We also describe the maps of Picard groups induced by group homomorphisms
G −→ H . An interesting effect appears for the inclusion ιG : TG →֒ G of a
maximal torus, say for semisimple G: Here the induced map NS(Md

G) −→
NS(Mδ

TG
) for a lift δ ∈ π1(TG) of d involves contracting each bilinear form

in NS(Md
G) to a linear form by means of δ (cf. Definition 4.3.5). In general,

the map of Picard groups induced by a group homomorphism G −→ H is
a combination of this effect and of more straightforward induced maps (cf.
Definition 5.2.7 and Theorem 5.3.1.iv). In particular, these induced maps are
different on different components ofMG, whereas the Picard groups Pic(Md

G)
themselves are essentially independent of d.
Our proof is based on Faltings’ result in the simply connected case. To deduce
the general case, the strategy of [2] and [22] is followed, meaning we “cover”
the moduli stack Md

G by a moduli stack of “twisted” bundles as in [2] under
the universal cover of G, more precisely under an appropriate torus times the
universal cover of the semisimple part [G ,G]. To this “covering”, we apply
Laszlo’s [22] method of descent for torsors under a group stack. To understand
the relevant descent data, it turns out that we may restrict to the maximal
torus TG in G, roughly speaking because the pullback ι∗G is injective on the
Picard groups of the moduli stacks.
We briefly describe the structure of this paper. In Section 2, we recall the
relevant moduli stacks and collect some basic facts. Section 3 deals with the
case that G = T is a torus. Section 4 treats the “twisted” simply connected
case as indicated above. In the final Section 5, we put everything together to
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prove our main theorem, namely Theorem 5.3.1. Each section begins with a
slightly more detailed description of its contents.
Our motivation for this work was to understand the existence of Poincaré fam-
ilies on the corresponding coarse moduli schemes, or in other words to decide
whether these moduli stacks are neutral as gerbes over their coarse moduli
schemes. The consequences for this question are spelled out in [4].

2. The stack of G–bundles and its Picard functor

Here we introduce the basic objects of this paper, namely the moduli stack of
principal G–bundles on an algebraic curve and its Picard functor. The main
purpose of this section is to fix some notation and terminology; along the way,
we record a few basic facts for later use.

2.1. A Picard functor for algebraic stacks. Throughout this paper,
we work over an algebraically closed field k. There is no restriction on the
characteristic of k. We say that a stack X over k is algebraic if it is an Artin
stack and also locally of finite type over k. Every algebraic stack X 6= ∅ admits
a point x0 : Spec(k) −→ X according to Hilbert’s Nullstellensatz.
A 1–morphism Φ : X −→ Y of stacks is an equivalence if some 1–morphism
Ψ : Y −→ X admits 2–isomorphisms Ψ ◦Φ ∼= idX and Φ ◦Ψ ∼= idY . A diagram

X A //

Φ

��

X ′

Φ′

��
Y B // Y ′

of stacks and 1–morphisms is 2–commutative if a 2–isomorphism Φ′◦A ∼= B◦Φ is
given. Such a 2–commutative diagram is 2–cartesian if the induced 1–morphism
from X to the fibre product of stacks X ′ ×Y′ Y is an equivalence.
Let X and Y be algebraic stacks over k. As usual, we denote by Pic(X ) the
abelian group of isomorphism classes of line bundles L on X . If X 6= ∅, then

pr∗2 : Pic(Y) −→ Pic(X × Y)

is injective because x∗0 : Pic(X × Y) −→ Pic(Y) is a left inverse of pr∗2.

Definition 2.1.1. The Picard functor Pic(X ) is the functor from schemes S
of finite type over k to abelian groups that sends S to Pic(X × S)/ pr∗2 Pic(S).

If Pic(X ) is representable, then we denote the representing scheme again by
Pic(X ). If Pic(X ) is the constant sheaf given by an abelian group Λ, then we
say that Pic(X ) is discrete and simply write Pic(X ) ∼= Λ. (Since the constant
Zariski sheaf Λ is already an fppf sheaf, it is not necessary to specify the
topology here.)

Lemma 2.1.2. Let X and Y be algebraic stacks over k with Γ(X ,OX ) = k.

i) The canonical map

pr∗2 : Γ(Y,OY) −→ Γ(X × Y,OX×Y)
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is an isomorphism.
ii) Let L ∈ Pic(X ×Y) be given. If there is an atlas u : U −→ Y for which

u∗L ∈ Pic(X × U) is trivial, then L ∈ pr∗2 Pic(Y).

Proof. i) Since the question is local in Y, we may assume that Y = Spec(A) is
an affine scheme over k. In this case, we have

Γ(X × Y,OX×Y) = Γ(X , (pr1)∗OX×Y) = Γ(X , A⊗k OX ) = A = Γ(Y,OY).

ii) Choose a point x0 : Spec(k) −→ X . We claim that L is isomorphic to
pr∗2 Lx0 for Lx0 := x∗0L ∈ Pic(Y). More precisely there is a unique isomorphism
L ∼= pr∗2 Lx0 whose restriction to {x0} × Y ∼= Y is the identity. To prove this,
due to the uniqueness involved, this claim is local in Y. Hence we may assume
Y = U , which by assumption means that L is trivial. In this case, statement
(i) implies the claim. �

Corollary 2.1.3. For ν = 1, 2, let Xν be an algebraic stack over k with
Γ(Xν ,OXν ) = k. Let Φ : X1 −→ X2 be a 1–morphism such that the induced
morphism of functors Φ∗ : Pic(X2) −→ Pic(X1) is injective. Then

Φ∗ : Pic(X2 × Y) −→ Pic(X1 × Y)

is injective for every algebraic stack Y over k.

Proof. Since Y is assumed to be locally of finite type over k, we can choose
an atlas u : U −→ Y such that U is a disjoint union of schemes of finite type
over k. Suppose that L ∈ Pic(X2×Y) has trivial pullback Φ∗L ∈ Pic(X1×Y).
Then (Φ × u)∗L ∈ Pic(X1 × U) is also trivial. Using the assumption on Φ∗ it
follows that u∗L ∈ Pic(X2 × U) is trivial. Now apply Lemma 2.1.2(ii). �

We will also need the following stacky version of the standard see–saw principle.

Lemma 2.1.4. Let X and Y be two nonempty algebraic stacks over k. If Pic(X )
is discrete, and Γ(Y,OY) = k, then

pr∗1⊕ pr∗2 : Pic(X )⊕ Pic(Y) −→ Pic(X × Y)

is an isomorphism of functors.

Proof. Choose points x0 : Spec(k) −→ X and y0 : Spec(k) −→ Y. The mor-
phism of functors pr∗1⊕ pr∗2 in question is injective, because

y∗0 ⊕ x∗0 : Pic(X × Y) −→ Pic(X ) ⊕ Pic(Y)

is a left inverse of it. Therefore, to prove the lemma it suffices to show that
y∗0 ⊕ x∗0 is also injective.
So let a scheme S of finite type over k be given, as well as a line bundle L on
X × Y × S such that y∗0L is trivial in Pic(X ). We claim that L is isomorphic
to the pullback of a line bundle on Y × S.
To prove the claim, tensoring L with an appropriate line bundle on S if nec-
essary, we may assume that y∗0L is trivial in Pic(X × S). By assumption,
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Pic(X ) ∼= Λ for some abelian group Λ. Sending any (y, s) : Spec(k) −→ Y × S
to the isomorphism class of

(y, s)∗(L) ∈ Pic(X )

we obtain a Zariski–locally constant map from the set of k–points in Y × S to
Λ. This map vanishes on {y0} × S, and hence it vanishes identically on Y × S
because Y is connected. This means that u∗L ∈ Pic(X × U) is trivial for any
atlas u : U −→ Y × S. Now Lemma 2.1.2(ii) completes the proof of the claim.
If moreover x∗0L is trivial in Pic(Y), then L is even isomorphic to the pullback of
a line bundle on S, and hence trivial in Pic(X ×Y). This proves the injectivity
of y∗0 ⊕ x∗0, and hence the lemma follows. �

2.2. Principal G–bundles over a curve. We fix an irreducible smooth
projective curve C over the algebraically closed base field k. The genus of C
will be denoted by gC . Given a linear algebraic group G →֒ GLn, we denote by

MG

the moduli stack of principal G–bundles E on C. More precisely,MG is given
by the groupoidMG(S) of principal G–bundles on S×C for every k–scheme S.
The stackMG is known to be algebraic over k (see for example [23, Proposition
3.4], or [24, Théorème 4.6.2.1] together with [29, Lemma 4.8.1]).
Given a morphism of linear algebraic groups ϕ : G −→ H , the extension of the
structure group by ϕ defines a canonical 1–morphism

ϕ∗ :MG −→MH

which more precisely sends a principal G–bundle E to the principal H–bundle

ϕ∗E := E ×G H := (E ×G)/H,

following the convention that principal bundles carry a right group action. One
has a canonical 2–isomorphism (ψ ◦ ϕ)∗ ∼= ψ∗ ◦ ϕ∗ whenever ψ : H −→ K is
another morphism of linear algebraic groups.

Lemma 2.2.1. Suppose that the diagram of linear algebraic groups

H
ψ2 //

ψ1

��

G2

ϕ2

��
G1 ϕ1

// G

is cartesian. Then the induced 2–commutative diagram of moduli stacks

MH

(ψ2)∗ //

(ψ1)∗

��

MG2

(ϕ2)∗

��
MG1

(ϕ1)∗

//MG

is 2–cartesian.
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Proof. The above 2–commutative diagram defines a 1–morphism

MH −→MG1 ×MGMG2 .

To construct an inverse, let E be a principal G–bundle on some k–scheme
X . For ν = 1, 2, let Eν be a principal Gν–bundle on X together with an
isomorphism Eν ×Gν G ∼= E; note that the latter defines a map Eν −→ E of
schemes over X . Then G1 × G2 acts on E1 ×X E2, and the closed subgroup
H ⊆ G1 ×G2 preserves the closed subscheme

F := E1 ×E E2 ⊆ E1 ×X E2 .

This action turns F into a principal H–bundle. Thus we obtain in particular
a 1–morphism

MG1 ×MGMG2 −→MH .

It is easy to check that this is the required inverse. �

Let Z be a closed subgroup in the center of G. Then the multiplication Z ×
G −→ G is a group homomorphism; we denote the induced 1–morphism by

⊗ :MZ ×MG −→MG

and call it tensor product. In particular, tensoring with a principal Z–bundle
ξ on C defines a 1–morphism which we denote by

(1) tξ :MG −→MG.

For commutative G, this tensor product makes MG a group stack.
Suppose now that G is reductive. We follow the convention that all reductive
groups are smooth and connected. In particular,MG is also smooth [3, 4.5.1],
so its connected components and its irreducible components coincide; we denote
this set of components by π0(MG). This set π0(MG) can be described as
follows; cf. for example [15] or [16].
Let ιG : TG →֒ G be the inclusion of a maximal torus, with cocharacter group
ΛTG := Hom(Gm, TG). Let Λcoroots ⊆ ΛTG be the subgroup generated by the
coroots of G. The Weyl group W of (G, TG) acts on ΛTG . For every root α with
corresponding coroot α∨, the reflection sα ∈ W acts on λ ∈ ΛTG by the formula
sα(λ) = λ− 〈α, λ〉α∨. As the sα generate W , this implies w(λ) − λ ∈ Λcoroots

for all w ∈ W and all λ ∈ ΛTG . Thus W acts trivially on ΛTG/Λcoroots, so this
quotient is, up to a canonical isomorphism, independent of the choice of TG.
We denote this quotient by π1(G); if π1(G) is trivial, then G is called simply
connected. For k = C, these definitions coincide with the usual notions for the
topological space G(C).
Sending each line bundle on C to its degree we define an isomorphism
π0(MGm) −→ Z, which induces an isomorphism π0(MTG) −→ ΛTG . Its in-
verse, composed with the map

(ιG)∗ : π0(MTG) −→ π0(MG) ,

is known to induce a canonical bijection

π1(G) = ΛTG/Λcoroots
∼−→ π0(MG),
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cf. [10] and [16]. We denote byMd
G the component ofMG given by d ∈ π1(G).

Lemma 2.2.2. Let ϕ : G ։ H be an epimorphism of reductive groups over
k whose kernel is contained in the center of G. For each d ∈ π1(G), the 1–
morphism

ϕ∗ :Md
G −→Me

H , e := ϕ∗(d) ∈ π1(H),

is faithfully flat.

Proof. Let TH ⊆ H be the image of the maximal torus TG ⊆ G. Let BG ⊆ G
be a Borel subgroup containing TG; then

BH := ϕ(BG) ⊂ H

is a Borel subgroup of H containing TH . For the moment, we denote

• byMd
TG
⊆MTG andMd

BG
⊆MBG the inverse images ofMd

G ⊆MG,
and
• byMe

TH
⊆MTH andMe

BH
⊆MBH the inverse images ofMe

H ⊆MH .

Let πG : BG ։ TG and πH : BH ։ TH denote the canonical surjections. Then

Md
BG = (πG)−1∗ (Md

TG) and Me
BH = (πH)−1∗ (Me

TH ),

because π0(MTG) = π0(MBG) and π0(MTH ) = π0(MBH ) according to the
proof of [10, Proposition 5]. Applying Lemma 2.2.1 to the two cartesian squares

TG

ϕT

��

BG

ϕB

��

� � //πGoooo G

ϕ

��
TH BH

� � //πHoooo H

of groups, we get two 2–cartesian squares

Md
TG

(ϕT )∗

��

Md
BG

oo //

(ϕB)∗

��

Md
G

ϕ∗

��
Me

TH
Me

BH
oo //Me

H

of moduli stacks. Since (ϕT )∗ is faithfully flat, its pullback (ϕB)∗ is so as well.
This implies that ϕ∗ is also faithfully flat, as some open substack of Me

BH
maps smoothly and surjectively onto Me

H , according to [10, Propositions 1
and 2]. �

3. The case of torus

This section deals with the Picard functor of the moduli stack M0
G in the

special case where G = T is a torus. We explain in the second subsection that
its description involves the character group Hom(T,Gm) and the Picard functor
of its coarse moduli scheme, which is isomorphic to a product of copies of the
Jacobian JC . As a preparation, the first subsection deals with the Néron–Severi
group of such products of principally polarised abelian varieties. A little care
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is required to keep everything functorial in T , since this functoriality will be
needed later.

3.1. On principally polarised abelian varieties. Let A be an abelian
variety over k, with dual abelian variety A∨ and Néron–Severi group

NS(A) := Pic(A)/A∨(k) .

For a line bundle L on A, the standard morphism

φL : A −→ A∨

sends a ∈ A(k) to τ∗a (L) ⊗ Ldual where τa : A −→ A is the translation by a.
φL is a homomorphism by the theorem of the cube [27, §6]. Let a principal
polarisation

φ : A
∼−→ A∨

be given. Let

cφ : NS(A) −→ EndA

be the injective homomorphism that sends the class of L to φ−1 ◦ φL. We
denote by † : EndA −→ EndA the Rosati involution associated to φ; so by
definition, it sends α : A −→ A to α† := φ−1 ◦ α∨ ◦ φ.

Lemma 3.1.1. An endomorphism α ∈ End(A) is in the image of cφ if and only
if α† = α.

Proof. If k = C, this is contained in [21, Chapter 5, Proposition 2.1]. For
polarisations of arbitrary degree, the analogous statement about End(A) ⊗ Q
is shown in [27, p. 190]; its proof carries over to the situation of this lemma as
follows.
Let l be a prime number, l 6= char(k), and let

el : Tl(A)× Tl(A∨) −→ Zl(1)

be the standard pairing between the Tate modules of A and A∨, cf. [27, §20].
According to [27, §20, Theorem 2 and §23, Theorem 3], a homomorphism
ψ : A −→ A∨ is of the form ψ = φL for some line bundle L on A if and only if

el(x, ψ∗y) = −el(y, ψ∗x) for all x, y ∈ Tl(A) .

In particular, this holds for φ. Hence the right hand side equals

−el(y, ψ∗x) = −el(y, φ∗φ−1∗ ψ∗x) = el(φ
−1
∗ ψ∗x, φ∗y) = el(x, ψ

∨
∗ (φ−1)∨∗ φ∗y) ,

where the last equality follows from [27, p. 186, equation (I)]. Since the pairing
el is nondegenerate, it follows that ψ = φL holds for some L if and only if

ψ∗y = ψ∨∗ (φ−1)∨∗ φ∗y for all y ∈ Tl(A) ,

hence if and only if ψ = ψ∨ ◦ (φ−1)∨ ◦φ. By definition of the Rosati involution
†, the latter is equivalent to (φ−1 ◦ ψ)† = φ−1 ◦ ψ. �

Let Λ be a finitely generated free abelian group. Let Λ⊗A denote the abelian
variety over k with group of S–valued points Λ⊗A(S) for any k–scheme S.
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Definition 3.1.2. The subgroup

Homs(Λ⊗ Λ,EndA) ⊆ Hom(Λ⊗ Λ,EndA)

consists of all b : Λ ⊗ Λ −→ EndA with b(λ1 ⊗ λ2)† = b(λ2 ⊗ λ1) for all
λ1, λ2 ∈ Λ.

Corollary 3.1.3. There is a unique isomorphism

cφΛ : NS(Λ ⊗A)
∼−→ Homs(Λ⊗ Λ,EndA)

which sends the class of each line bundle L on Λ⊗A to the linear map

cφΛ(L) : Λ⊗ Λ −→ EndA

defined by sending λ1 ⊗ λ2 for λ1, λ2 ∈ Λ to the composition

A
λ1⊗−−−→ Λ⊗A φL−→ (Λ⊗A)∨

(λ2⊗ )∨−−−−−→ A∨
φ−1

−→ A.

Proof. The uniqueness is clear. For the existence, we may then choose an
isomorphism Λ ∼= Zr; it yields an isomorphism Λ⊗A ∼= Ar. Let

φr = φ× · · · × φ︸ ︷︷ ︸
r factors

: Ar
∼−→ (A∨)r = (Ar)∨

be the diagonal principal polarisation on Ar. According to Lemma 3.1.1,

cφ
r

: NS(Ar) −→ End(Ar)

is an isomorphism onto the Rosati–invariants. Under the standard isomor-
phisms

End(Ar) = Matr×r(EndA) = Hom(Zr ⊗ Zr ,EndA),

the Rosati involution on End(Ar) corresponds to the involution (αij) 7−→ (α†ji)
on Matr×r(EndA), and hence the Rosati–invariant part of End(Ar) corre-
sponds to Homs(Zr ⊗ Zr,EndA). Thus we obtain an isomorphism

NS(Λ⊗A) ∼= NS(Ar)
cφ
r

−→ Homs(Zr ⊗ Zr ,EndA) ∼= Homs(Λ⊗ Λ,EndA).

By construction, it maps the class of each line bundle L on Λ⊗A to the map

cφΛ(L) : Λ⊗ Λ −→ EndA prescribed above. �

3.2. Line bundles on M0
T . Let T ∼= Grm be a torus over k. We will always

denote by

ΛT := Hom(Gm, T )

the cocharacter lattice. We set in the previous subsection this finitely generated
free abelian group and the Jacobian variety JC , endowed with the principal
polarisation φΘ : JC

∼−→ J∨C given by the autoduality of JC . Recall that φΘ
comes from a line bundle O(Θ) on JC corresponding to a theta divisor Θ ⊆ JC .

Definition 3.2.1. The finitely generated free abelian group

NS(MT ) := Hom(ΛT ,Z)⊕Homs(ΛT ⊗ ΛT ,EndJC)

is the Néron–Severi group of MT .
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For each finitely generated abelian group Λ, we denote by Hom(Λ, JC) the k–
scheme of homomorphisms from Λ to JC . If Λ ∼= Zr × Z/n1 × · · · × Z/ns,
then

Hom(Λ, JC) ∼= JrC × JC [n1]× · · · × JC [ns]

where JC [n] denotes the kernel of the map JC −→ JC defined by multiplication
with n.

Proposition 3.2.2. i) The Picard functor Pic(M0
T ) is representable by

a scheme locally of finite type over k.
ii) There is a canonical exact sequence of commutative group schemes

0 −→ Hom(ΛT , JC)
jT−→ Pic(M0

T )
cT−→ NS(MT ) −→ 0.

iii) Let ξ be a principal T–bundle of degree 0 ∈ ΛT on C. Then the diagram

0 // Hom(ΛT , JC)
jT // Pic(M0

T )
cT //

t∗ξ

��

NS(MT ) // 0

0 // Hom(ΛT , JC)
jT // Pic(M0

T )
cT // NS(MT ) // 0

commutes.

Proof. Let a line bundle L on M0
T be given. Consider the point in M0

T given
by a principal T –bundle ξ on C of degree 0 ∈ ΛT . The fiber of Lξ at this point
is a 1-dimensional vector space Lξ, endowed with a group homomorphism

w(L)ξ : T = Aut(ξ) −→ Aut(Lξ) = Gm

since L is a line bundle on the stack. AsM0
T is connected, the character w(L)ξ

is independent of ξ; we denote it by

w(L) : T −→ Gm

and call it the weight w(L) of L. Let

q :M0
T −→M0

T

be the canonical morphism to the coarse moduli scheme M0
T , which is an

abelian variety canonically isomorphic to Hom(ΛT , JC). Line bundles of weight
0 on M0

T descend to M0
T , so the sequence

0 −→ Pic(M0
T )

q∗−→ Pic(M0
T )

w−→ Hom(ΛT ,Z)

is exact. This extends for families. Since Pic(A) is representable for any abelian
variety A, the proof of (i) is now complete.
Standard theory of abelian varieties and Corollary 3.1.3 together yield another
short exact sequence

0 −→ Hom(ΛT , JC) −→ Pic(M0
T ) −→ Homs(ΛT ⊗ ΛT ,EndJC) −→ 0 .

Given a character χ : T −→ Gm and p ∈ C(k), we denote by χ∗Lunivp the line

bundle onM0
T that associates to each T –bundle L on C the Gm–bundle χ∗Lp.
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Clearly, χ∗Lunivp has weight χ; in particular, it follows that w is surjective, so
we get an exact sequence of discrete abelian groups

0 −→ Homs(ΛT ⊗ ΛT ,EndJC) −→ Pic(M0
T )/Hom(ΛT , JC) −→ Hom(ΛT ,Z) −→ 0 .

Since C is connected, the algebraic equivalence class of χ∗Lunivp does not

depend on the choice of p; sending χ to the class of χ∗Lunivp thus defines a
canonical splitting of the latter exact sequence. This proves (ii).
Finally, it is standard that t∗ξ (see (1)) is the identity map on Pic0(M0

T ) =

Hom(Λ, JC) (see [26, Proposition 9.2]), and t∗ξ induces the identity map on the

discrete quotient Pic(M0
T )/Pic0(M0

T ) because ξ can be connected to the trivial
T –bundle in M0

T . �

Remark 3.2.3. The exact sequence in Proposition 3.2.2(ii) is functorial in T .
More precisely, each homomorphism of tori ϕ : T −→ T ′ induces a morphism
of exact sequences

0 // Hom(ΛT ′ , JC)
jT ′ //

ϕ∗

��

Pic(M0
T ′)

cT ′ //

ϕ∗

��

NS(MT ′) //

ϕ∗

��

0

0 // Hom(ΛT , JC)
jT // Pic(M0

T )
cT // NS(MT ) // 0.

Corollary 3.2.4. Let T1 and T2 be tori over k. Then

pr∗1⊕ pr∗2 : Pic(M0
T1

)⊕ Pic(M0
T2

) −→ Pic(M0
T1×T2

)

is a closed immersion of commutative group schemes over k.

Proof. As before, let ΛT1 , ΛT2 and ΛT1×T2 denote the cocharacter lattices.
Then

pr∗1⊕ pr∗2 : Hom(ΛT1 , JC)⊕Hom(ΛT2 , JC) −→ Hom(ΛT1×T2 , JC)

is an isomorphism, and the homomorphism of discrete abelian groups

pr∗1⊕ pr∗2 : NS(MT1)⊕NS(MT2) −→ NS(MT1×T2)

is injective by Definition 3.2.1. �

4. The twisted simply connected case

Throughout most of this section, the reductive group G over k will be simply
connected. Using the work of Faltings [13] on the Picard functor of MG, we
describe here the Picard functor of the twisted moduli stacksMĜ,L introduced

in [2]. In the case G = SLn, these are moduli stacks of vector bundles with
fixed determinant; their construction in general is recalled in Subsection 4.2
below.
The result, proved in that subsection as Proposition 4.2.3, is essentially the
same: for almost simple G, line bundles on MĜ,L are classified by an integer,

their so–called central charge. The main tool for that are as usual algebraic
loop groups; what we need about them is collected in Subsection 4.1.
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For later use, we need to keep track of the functoriality in G, in particular
of the pullback to a maximal torus TG in G. To state this more easily, we
translate the central charge into a Weyl–invariant symmetric bilinear form on
the cocharacter lattice of TG, replacing each integer by the corresponding mul-
tiple of the basic inner product. This allows to describe the pullback to TG
in Proposition 4.4.7(iii). Along the way, we also consider the pullback along
representations of G; these just correspond to the pullback of bilinear forms,
which reformulates — and generalises to arbitrary characteristic — the usual
multiplication by the Dynkin index [20]. Subsection 4.3 describes these pull-
back maps combinatorially in terms of the root system, and Subsection 4.4
proves that these combinatorial maps actually give the pullback of line bundles
on these moduli stacks.

4.1. Loop groups. Let G be a reductive group over k. We denote

• by LG the algebraic loop group of G, meaning the group ind–scheme
over k whose group ofA–valued points for any k–algebraA is G(A((t))),
• by L+G ⊆ LG the subgroup with A–valued points G(A[[t]]) ⊆
G(A((t))),
• and for n ≥ 1, by L≥nG ⊆ L+G the kernel of the reduction modulo tn.

Note that L+G and L≥nG are affine group schemes over k. The k-algebra
corresponding to L≥nG is the inductive limit over all N > n of the k–algebras
corresponding to L≥nG/L≥N . A similar statement holds for L+G.
If X is anything defined over k, let XS denote its pullback to a k–scheme S.

Lemma 4.1.1. Let S be a reduced scheme over k. For n ≥ 1, every morphism
ϕ : (L≥nG)S −→ (Gm)S of group schemes over S is trivial.

Proof. This follows from the fact that L≥nG is pro–unipotent; more precisely:
As S is reduced, the claim can be checked on geometric points Spec(k′) −→ S.
Replacing k by the larger algebraically closed field k′ if necessary, we may thus
assume S = Spec(k); then ϕ is a morphism L≥nG −→ Gm.
Since the k–algebra corresponding to Gm is finitely generated, it follows that ϕ
factors through L≥nG/L≥NG for some N > n. Denoting by g the Lie algebra
of G, [8, II, §4, Theorem 3.5] provides an exact sequence

1 −→ L≥NG −→ L≥N−1G −→ g −→ 1.

Thus the restriction of ϕ to L≥N−1G induces a character on the additive group
scheme underlying g. Hence this restriction has to vanish, so ϕ also factors
through L≥nG/L≥N−1G. Iterating this argument shows that ϕ is trivial. �

Lemma 4.1.2. Suppose that the reductive group G is simply connected, in par-
ticular semisimple. If a central extension of group schemes over k

(2) 1 −→ Gm −→ H π−→ L+G −→ 1

splits over L≥nG for some n ≥ 1, then it splits over L+G.
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Proof. Let a splitting over L≥nG be given, i. e. a homomorphism of group
schemes σ : L≥nG −→ H such that π ◦ σ = id. Given points h ∈ H(S) and
g ∈ L≥nG(S) for some k-scheme S, the two elements

h · σ(g) · h−1 and σ(π(h) · g · π(h)−1)

in H(S) have the same image under π, so their difference is an element in
Gm(S), which we denote by ϕh(g). Sending h and g to h and ϕh(g) defines a
morphism

ϕ : (L≥nG)H −→ (Gm)H

of group schemes over H. Since L+G/L≥1G ∼= G and L≥N−1G/L≥N ∼= g for
N ≥ 2 are smooth, their successive extension L+G/L≥NG is also smooth. Thus
the limit L+G is reduced, so H is reduced as well. Using the previous lemma,
it follows that ϕ is the constant map 1; in other words, σ commutes with
conjugation. σ is a closed immersion because π ◦ σ is, so σ is an isomorphism
onto a closed normal subgroup, and the quotient is a central extension

1 −→ Gm −→ H
/
σ(L≥nG) −→ L+G

/
L≥nG −→ 1.

If n ≥ 2, then this restricts to a central extension of L≥n−1G/L≥nG ∼= g by
Gm. It can be shown that any such extension splits.
(Indeed, the unipotent radical of the extension projects isomorphically to the
quotient g. Note that the unipotent radical does not intersect the subgroup
Gm, and the quotient by the subgroup generated by the unipotent radical and
Gm is reductive, so this this reductive quotient being a quotient of g is in fact
trivial.)
Therefore, the image of a section g −→ H

/
σ(L≥nG) has an inverse image in H

which π maps isomorphically onto L≥n−1G ⊆ L+G. Hence the given central
extension (2) splits over L≥n−1G as well. Repeating this argument, we get a
splitting over L≥1G, and finally also over L+G, because every central extension
of L+G/L≥1G ∼= G by Gm splits as well, G being simply connected.

(To prove the last assertion, for any extension G̃ of G by Gm, consider the

commutator subgroup [G̃ , G̃] of G̃. It projects surjectively to the commutator

subgroup of G which is G itself. Since [G̃ , G̃] is connected and reduced, and G
is simply connected, this surjective morphism must be an isomorphism.) �

4.2. Descent from the affine Grassmannian. LetG be a reductive group
over k. We denote by GrG the affine Grassmannian of G, i. e. the quotient

LG/L+G in the category of fppf–sheaves. Let ÔC,p denote the completion of
the local ring OC,p of the scheme C in a point p ∈ C(k). Given a uniformising

element z ∈ ÔC,p, there is a standard 1–morphism

gluep,z : GrG −→MG

that sends each coset f ·L+G to the trivialG–bundles overC\{p} and over ÔC,p,
glued by the automorphism f(z) of the trivial G–bundle over the intersection;
cf. for example [23, Section 3], [13, Corollary 16], or [14, Proposition 3].
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For the rest of this subsection, we assume that G is simply connected, hence
semisimple. In this case, GrG is known to be an ind–scheme over k. More
precisely, [13, Theorem 8] implies that GrG is an inductive limit of projec-
tive Schubert varieties over k, which are reduced and irreducible. Thus the
canonical map

(3) pr∗2 : Γ(S,OS) −→ Γ(GrG×S,OGrG×S)

is an isomorphism for every scheme S of finite type over k.
Define the Picard functor Pic(GrG) from schemes of finite type over k to abelian
groups as in definition 2.1.1. The following theorem about it is proved in full
generality in [13]. Over k = C, the group Pic(GrG) is also determined in [25]
as well as in [20], and Pic(MG) is determined in [23] together with [30].

Theorem 4.2.1 (Faltings). Let G be simply connected and almost simple.

i) Pic(GrG) ∼= Z.
ii) glue∗p,z : Pic(MG) −→ Pic(GrG) is an isomorphism of functors.

The purpose of this subsection is to carry part (ii) over to twisted moduli stacks
in the sense of [2]; cf. also the first remark on page 67 of [13]. More precisely,
let an exact sequence of reductive groups

(4) 1 −→ G −→ Ĝ
dt−→ Gm −→ 1

be given, and a line bundle L on C. We denote by MĜ,L the moduli stack

of principal Ĝ–bundles E on C together with an isomorphism dt∗E ∼= L; cf.
section 2 of [2]. If for example the given exact sequence is

1 −→ SLn −→ GLn
det−→ Gm −→ 1,

then MGLn,L is the moduli stack of vector bundles with fixed determinant L.
In general, the stack MĜ,L comes with a 2–cartesian diagram

MĜ,L
//

��

MĜ

dt∗

��
Spec(k)

L //MGm

from which we see in particular thatMĜ,L is algebraic. It satisfies the following

variant of the Drinfeld–Simpson uniformisation theorem [10, Theorem 3].

Lemma 4.2.2. Let a point p ∈ C(k) and a principal Ĝ–bundle E on C × S
for some k–scheme S be given. Every trivialisation of the line bundle dt∗ E
over (C \ {p})× S can étale–locally in S be lifted to a trivialisation of E over
(C \ {p})× S.
Proof. The proof in [10] carries over to this situation as follows. Choose a max-

imal torus TĜ ⊆ Ĝ. Using [10, Theorem 1], we may assume that E comes from
a principal TĜ–bundle; cf. the first paragraph in the proof of [10, Theorem 3].
Arguing as in the third paragraph of that proof, we may change this principal
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TĜ–bundle by the extension of Gm–bundles along coroots Gm −→ TĜ. Since
simple coroots freely generate the kernel TG of TĜ ։ Gm, we can thus achieve
that this TĜ–bundle is trivial over (C \ {p})×S. Because Gm is a direct factor
of TĜ, we can hence lift the given trivialisation to the TĜ–bundle, and hence
also to E . �

Let d ∈ Z be the degree of L. Since dt in (4) maps the (reduced) identity

component Z0 ∼= Gm of the center in Ĝ surjectively onto Gm, there is a Z0–
bundle ξ (of degree 0) on C with dt∗(ξ)⊗OC(dp) ∼= L; tensoring with it defines
an equivalence

tξ :MĜ,OC(dp)

∼−→MĜ,L.

Choose a homomorphism δ : Gm −→ Ĝ with dt ◦δ = d ∈ Z = Hom(Gm,Gm).

We denote by tδ ∈ LĜ(k) the image of the tautological loop t ∈ LGm(k) under

δ∗ : LGm −→ LĜ. The map

tδ · : GrG −→ GrĜ

sends, for each point f in LG, the coset f · L+G to the coset tδf · L+Ĝ. Its
composition GrG −→MĜ with gluep,z factors naturally through a 1–morphism

gluep,z,δ : GrG −→MĜ,OC(dp),

because dt∗ ◦(tδ · ) : LG −→ LĜ −→ LGm is the constant map td, which via
gluing yields the line bundle OC(dp). Lemma 4.2.2 provides local sections of
gluep,z,δ. These show in particular that

glue∗p,z,δ : Γ(MĜ,OC(dp),OMĜ,OC (dp)
) −→ Γ(GrG,OGrG)

is injective. Hence both spaces of sections contain only the constants, since
Γ(GrG,OGrG) = k by equation (3). Using the above equivalence tξ, this implies

(5) Γ(MĜ,L,OMĜ,L
) = k .

Proposition 4.2.3. Let G be simply connected and almost simple. Then

glue∗p,z,δ : Pic(MĜ,OC(dp)) −→ Pic(GrG)

is an isomorphism of functors.

Proof. LG acts on GrG by multiplication from the left. Embedding the k–
algebra OC\p := Γ(C \ {p},OC) into k((t)) via the Laurent development at p
in the variable t = z, we denote by LC\pG ⊆ LG the subgroup with A–valued
points G(A ⊗k OC\p) ⊆ G(A((t))) for any k–algebra A. Consider the stack
quotient LC\pG\GrG. The map gluep,z descends to an equivalence

LC\pG\GrG
∼−→MG

because the action of LC\pG on GrG corresponds to changing trivialisations
over C \ {p}; cf. for example [23, Theorem 1.3] or [13, Corollary 16].
More generally, consider the conjugate

LδC\pG := t−δ · LC\pG · tδ ⊆ LĜ,
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which is actually contained in LG since LG is normal in LĜ. Using Lemma
4.2.2, we see that the map gluep,z,δ descends to an equivalence

LδC\pG\GrG
∼−→MĜ,OC(dp),

because the action of LδC\pG on GrG again corresponds to changing trivialisa-

tions over C \ {p}.
Let S be a scheme of finite type over k. Each line bundle on S ×MĜ,L with

trivial pullback to S × GrG comes from a character (LδC\pG)S −→ (Gm)S ,

since the map (3) is bijective. But LδC\pG is isomorphic to LC\pG, and every

character (LC\pG)S −→ (Gm)S is trivial according to [13, p. 66f.]. This already
shows that the morphism of Picard functors glue∗p,z,δ is injective.
The action of LG on GrG induces the trivial action on Pic(GrG) ∼= Z, for
example because it preserves ampleness, or alternatively because LG is con-
nected. Let a line bundle L on GrG be given. We denote by MumLG(L) the
Mumford group. So MumLG(L) is the functor from schemes of finite type over
k to groups that sends S to the group of pairs (f, g) consisting of an element

f ∈ LG(S) and an isomorphism g : f∗LS ∼−→ LS of line bundles on GrG×S.
If f = 1, then g ∈ Gm(S) due to the bijectivity of (3), while for arbitrary
f ∈ LG(S), the line bundles LS and f∗LS have the same image in Pic(GrG)(S),
implying that LS and f∗LS are Zariski–locally in S isomorphic. Consequently,
we have a short exact sequence of sheaves in the Zariski topology

(6) 1 −→ Gm −→ MumLG(L)
q−→ LG −→ 1 .

This central extension splits over L+G ⊆ LG, because the restricted action
of L+G on GrG has a fixed point. We have to show that it also splits over
LδC\pG ⊆ LG.

Note that LδC\pG = γ(LC\pG) for the automorphism γ of LG given by conju-

gation with tδ. Hence it is equivalent to show that the central extension

(7) 1 −→ Gm −→ MumLG(L)
γ−1◦q−−−−→ LG −→ 1

splits over LC\pG. We know already that it splits over γ−1(L+G), in particular

over L≥nG for some n ≥ 1. Thus it also splits over L+G, due to Lemma 4.1.2.
Hence it comes from a line bundle on LG/L+G = GrG (whose associated
Gm–bundle has total space MumLG(L)/L+G, where L+G acts from the right
via the splitting). According to Theorem 4.2.1(ii), this line bundle admits a
LC\pG–linearisation, and hence the extension (7) splits indeed over LC\pG.

Thus the extension (6) splits over LδC\pG, so L admits an LδC\pG–linearisation

and consequently descends to MĜ,OC(dp). This proves that glue∗p,z,δ is sur-

jective as a homomorphism of Picard groups. Hence it is also surjective as a
morphism of Picard functors, because Pic(GrG) ∼= Z is discrete by Theorem
4.2.1(i). �
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Remark 4.2.4. Put Gad := G/Z, where Z ⊆ G denotes the center. Given
a representation ρ : Gad −→ SL(V ), we denote its compositions with the

canonical epimorphisms G։ Gad and Ĝ։ Gad also by ρ. Then the diagram

Pic(MSL(V ))

ρ∗

��

glue∗p,z // Pic(GrSL(V ))

ρ∗

��
Pic(MĜ,L)

(tξ◦gluep,z,δ)∗ // Pic(GrG)

commutes.

Proof. Let tρ◦δ ∈ L SL(V ) denote the image of the canonical loop t ∈ LGm
under the composition ρ◦δ : Gm −→ SL(V ). Then the left part of the diagram

GrG
gluep,z,δ //

ρ∗

yytttttttttt

tδ·
��

MĜ,OC(dp)

��

tξ //MĜ,L

��
GrSL(V )

tρ◦δ· %%KK
KKK

KKK
KK

GrĜ
gluep,z //

ρ∗

��

MĜ

ρ∗

��

tξ //MĜ

ρ∗

��
GrSL(V )

gluep,z //MSL(V ) MSL(V )

commutes. The four remaining squares are 2–commutative by construction
of the 1–morphisms gluep,z,δ, gluep,z and tξ. Applying Pic to the exterior
pentagon yields the required commutative square, as L SL(V ) acts trivially on
Pic(GrSL(V )). �

4.3. Néron–Severi groups NS(MG) for simply connected G. Let G be
a reductive group over k; later in this subsection, we will assume that G is
simply connected. Choose a maximal torus TG ⊆ G, and let

(8) Hom(ΛTG ⊗ ΛTG ,Z)W

denote the abelian group of bilinear forms b : ΛTG ⊗ ΛTG −→ Z that are
invariant under the Weyl group W = WG of (G, TG).
Up to a canonical isomorphism, the group (8) does not depend on the choice of
TG. More precisely, let T ′G ⊆ G be another maximal torus; then the conjugation
γg : G −→ G with some g ∈ G(k) provides an isomorphism from TG to T ′G, and
the induced isomorphism from Hom(ΛT ′

G
⊗ΛT ′

G
,Z)W to Hom(ΛTG ⊗ΛTG ,Z)W

does not depend on the choice of g.
The group (8) is also functorial in G. More precisely, let ϕ : G −→ H be a
homomorphism of reductive groups over k. Choose a maximal torus TH ⊆ H
containing ϕ(TG).

Lemma 4.3.1. Let T ′G ⊆ G be another maximal torus, and let T ′H ⊆ H be a
maximal torus containing ϕ(T ′G). For every g ∈ G(k) with T ′G = γg(TG), there
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is an h ∈ H(k) with T ′H = γh(TH) such that the following diagram commutes:

TG
γg //

ϕ

��

T ′G

ϕ

��
TH

γh // T ′H

Proof. The diagram

TG

ϕ

��

TG
γg //

ϕ

��

T ′G

ϕ

��
TH // γ−1ϕ(g)(T

′
H)

γϕ(g) // T ′H

allows us to assume T ′G = TG and g = 1 without loss of generality. Then TH and
T ′H are maximal tori in the centraliser of ϕ(TG), which is reductive according
to [17, 26.2. Corollary A]. Thus T ′H = γh(TH) for an appropriate k–point h of
this centraliser, and γh ◦ ϕ = ϕ on TG by definition of the centraliser. �

Applying the lemma with T ′G = TG and T ′H = TH , we see that the pullback
along ϕ∗ : ΛTG −→ ΛTH of a WH–invariant form ΛTH ⊗ ΛTH −→ Z is WG–
invariant, so we get an induced map

(9) ϕ∗ : Hom(ΛTH ⊗ ΛTH ,Z)WH −→ Hom(ΛTG ⊗ ΛTG ,Z)WG

which does not depend on the choice of TG and TH by the above lemma again.
For the rest of this subsection, we assume that G and H are simply connected.

Definition 4.3.2. i) The Néron–Severi group NS(MG) is the subgroup

NS(MG) ⊆ Hom(ΛTG ⊗ ΛTG ,Z)W

of symmetric forms b : ΛTG ⊗ ΛTG −→ Z with b(λ ⊗ λ) ∈ 2Z for all
λ ∈ ΛTG .

ii) Given a homomorphism ϕ : G −→ H , we denote by

ϕ∗ : NS(MH) −→ NS(MG)

the restriction of the induced map ϕ∗ in (9).

Remarks 4.3.3. i) If G = G1 × G2 for simply connected groups G1 and G2,
then

NS(MG) = NS(MG1)⊕NS(MG2),

since each element of Hom(ΛTG⊗ΛTG,Z)WG vanishes on ΛTG1
⊗ΛTG2

+ΛTG2
⊗

ΛTG1
.

ii) If on the other hand G is almost simple, then

NS(MG) = Z · bG
where the basic inner product bG is the unique element of NS(MG) that satisfies
bG(α∨, α∨) = 2 for all short coroots α∨ ∈ ΛTG of G.
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iii) Let G and H be almost simple. The Dynkin index dϕ ∈ Z of a homo-
morphism ϕ : G −→ H is defined by ϕ∗(bH) = dϕ · bG, cf. [11, §2]. If ϕ is
nontrivial, then dϕ > 0, since bG and bH are positive definite.

Let Z ⊆ G be the center. Then Gad := G/Z contains TGad := TG/Z as a
maximal torus, with cocharacter lattice ΛT

Gad
⊆ ΛTG ⊗ Q.

We say that a homomorphism l : Λ −→ Λ′ between finitely generated free

abelian groups Λ and Λ′ is integral on a subgroup Λ̃ ⊆ Λ ⊗Q if its restriction

to Λ ∩ Λ̃ admits a linear extension l̃ : Λ̃ −→ Λ′. By abuse of language, we will

not distinguish between l and its unique linear extension l̃.

Lemma 4.3.4. Every element b : ΛTG ⊗ ΛTG −→ Z of NS(MG) is integral on
ΛT

Gad
⊗ ΛTG and on ΛTG ⊗ ΛT

Gad
.

Proof. Let α : ΛTG ⊗ Q −→ Q be a root of G, with corresponding coroot
α∨ ∈ ΛTG . Lemme 2 in [5, Chapitre VI, §1] implies the formula

b(λ⊗ α∨) = α(λ) · b(α∨ ⊗ α∨)/2

for all λ ∈ ΛTG . Thus b( ⊗ α∨) : ΛTG −→ Z is an integer multiple of α; hence
it is integral on ΛT

Gad
, the largest subgroup of ΛTG ⊗Q on which all roots are

integral. But the coroots α∨ generate ΛTG , as G is simply connected. �

Now let ιG : TG →֒ G denote the inclusion of the chosen maximal torus.

Definition 4.3.5. Given δ ∈ ΛT
Gad

, the homomorphism

(ιG)NS,δ : NS(MG) −→ NS(MTG)

sends b : ΛTG ⊗ ΛTG −→ Z to

b(−δ ⊗ ) : ΛTG −→ Z and idJC ·b : ΛTG ⊗ ΛTG −→ EndJC .

This map (ιG)NS,δ is injective if gC ≥ 1, because all multiples of idJC are then
nonzero in End JC . If gC = 0, then End JC = 0, but we still have the following

Lemma 4.3.6. Every coset d ∈ ΛT
Gad
/ΛTG = π1(Gad) admits a lift δ ∈ ΛT

Gad

such that the map (ιG)NS,δ : NS(MG) −→ NS(MTG) is injective.

Proof. Using Remark 4.3.3, we may assume that G is almost simple. In this
case, (ιG)NS,δ is injective whenever δ 6= 0, because NS(MG) is cyclic and its
generator bG : ΛTG ⊗ ΛTG −→ Z is as a bilinear form nondegenerate. �

Remark 4.3.7. Given ϕ : G −→ H , let ιH : TH →֒ H be a maximal torus with
ϕ(TG) ⊆ TH . If δ ∈ ΛTG , or if more generally δ ∈ ΛT

Gad
is mapped to ΛHad by

ϕ∗ : ΛTG ⊗Q −→ ΛTH ⊗Q, then the following diagram commutes:

NS(MH)
(ιH)NS,ϕ∗δ

//

ϕ∗

��

NS(MTH )

ϕ∗

��
NS(MG)

(ιG)NS,δ

// NS(MTG)
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4.4. The pullback to torus bundles. Let Ldet = Ldetn be determinant of
cohomology line bundle [18] onMGLn , whose fibre at a vector bundle E on C
is det H∗(E) = det H0(E)⊗ det H1(E)dual.

Lemma 4.4.1. Let ξ be a line bundle of degree d on C. Then the composition

Pic(MGm)
t∗ξ−→ Pic(M0

Gm)
cGm−→ NS(MGm) = Z⊕ EndJC

maps Ldet to 1− gC + d ∈ Z and − idJC ∈ EndJC .

Proof. For any line bundle L on C and any point p ∈ C(k), we have a canonical
exact sequence

0 −→ L(−p) −→ L −→ Lp −→ 0

of coherent sheaves on C. Varying L and taking the determinant of cohomology,
we see that the two line bundles Ldet and t∗O(−p)Ldet on M0

Gm
have the same

image in the second summand EndJC of NS(MGm). Thus the image of t∗ξLdet
in End JC does not depend on ξ; this image is − idJC because the principal
polarisation φΘ : JC −→ J∨C is essentially given by the dual of the line bundle
Ldet.
The weight of t∗ξLdet at a line bundle L of degree 0 on C is the Euler charac-
teristic of L⊗ ξ, which is indeed 1− gC + d by Riemann–Roch theorem. �

Let ι : TSLn →֒ SLn be the inclusion of the maximal torus TSLn := Gnm ∩ SLn,
where Gnm ⊆ GLn as diagonal matrices. Then the cocharacter lattice ΛTSLn

is
the group of all d = (d1, . . . , dn) ∈ Zn with d1 + · · ·+ dn = 0. The basic inner
product bSLn : ΛTSLn

⊗ ΛTSLn
−→ Z is the restriction of the standard scalar

product on Zn.

Corollary 4.4.2. Let ξ be a principal TSLn–bundle of degree d ∈ ΛTSLn
on C.

Then the composition

Pic(MSLn)
ι∗−→ Pic(MTSLn

)
t∗ξ−→ Pic(M0

TSLn
)
cTSLn−−−−→ NS(MTSLn

)

maps Ldet to bSLn(d ⊗ ) : ΛTSLn
−→ Z and − idJC ·bSLn : ΛTSLn

⊗ ΛTSLn
−→

End JC .

Proof. Since the determinant of cohomology takes direct sums to tensor prod-
ucts, the pullback of Ldetn to MGnm is isomorphic to pr∗1 Ldet1 ⊗ · · · ⊗ pr∗n Ldet1 ,
where prν : Gnm ։ Gm is the projection onto the νth factor. Now use the
previous lemma to compute the image of Ldetn in NS(MGnm) and then restrict
to NS(MTSLn

). �

Corollary 4.4.3. If ρ : SL2 −→ SL(V ) has Dynkin index dρ, then the pullback
ρ∗ : Pic(MSL(V )) −→ Pic(MSL2) maps Ldet to (Ldet2 )⊗dρ .
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Proof. Let ι : TSL(V ) →֒ SL(V ) be the inclusion of a maximal torus that con-
tains the image of the standard torus TSL2 →֒ SL2. The diagram

Pic(MSL(V ))
ι∗ //

ρ∗

��

Pic(MTSL(V )
)
t∗ρ∗(ξ) //

ρ∗

��

Pic(M0
TSL(V )

)
cTSL(V )//

ρ∗

��

NS(MTSL(V )
)

ρ∗

��
Pic(MSL2)

ι∗ // Pic(MTSL2
)

t∗ξ // Pic(M0
TSL2

)
cTSL2 // NS(MTSL2

)

commutes for each principal TSL2–bundle ξ on C. We choose ξ in such a way
that deg(ξ) ∈ ΛTSL2

∼= Z is nonzero if gC = 0. Then the composition

cTSL2
◦ t∗ξ ◦ ι∗ : Pic(MSL2

) −→ NS(MTSL2
)

of the lower row is injective according to Theorem 4.2.1 and Corollary 4.4.2.
The latter moreover implies that the two elements ρ∗(Ldet) and (Ldet2 )⊗dρ in
Pic(MSL2

) have the same image in NS(MTSL2
). �

Now suppose that the reductive groupG is simply connected and almost simple.
We denote by OGrG(1) the unique generator of Pic(GrG) that is ample on every
closed subscheme, and by OGrG(n) its nth tensor power for n ∈ Z.
Over k = C, the following is proved by a different method in section 5 of [20].

Proposition 4.4.4 (Kumar-Narasimhan-Ramanathan). If ρ : G −→ SL(V )
has Dynkin index dρ, then ρ∗ : Pic(GrSL(V )) −→ Pic(GrG) maps O(1) to
OGrG(dρ).

Proof. Let ϕ : SL2 −→ G be given by a short coroot. Then dϕ = 1 by
definition, and [13] implies that ϕ∗ : Pic(GrG) −→ Pic(GrSL2

) maps O(1) to
O(1), for example because ϕ∗ : Pic(MG) −→ Pic(MSL2) preserves central
charges according to their definition [13, p. 59]. Hence it suffices to prove
the claim for ρ ◦ ϕ instead of ρ. This case follows from Corollary 4.4.3, since
glue∗p,z(Ldetn ) ∼= OGrSLn (−1). �

As in Subsection 4.2, we assume given an exact sequence of reductive groups

1 −→ G −→ Ĝ
dt−→ Gm −→ 1

with G simply connected, and a line bundle L on C.

Corollary 4.4.5. Suppose that G is almost simple. Then the isomorphism

(tξ ◦ gluep,z,δ)
∗ : Pic(MĜ,L)

∼−→ Pic(GrG)

constructed in Subsection 4.2 does not depend on the choice of p, z, ξ or δ.

We say that a line bundle onMĜ,L has central charge n ∈ Z if this isomorphism

maps it to OGrG(n); this is consistent with the standard central charge of line
bundles on MG, as defined for example in [13].
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Proof. If ρ : G −→ SL(V ) is a nontrivial representation, then dρ > 0, as
explained in Remark 4.3.3(iii). Using Proposition 4.4.4, this implies that

ρ∗ : Pic(GrSL(V )) −→ Pic(GrG)

is injective. Due to Remark 4.2.4, it thus suffices to check that

glue∗p,z : Pic(MSL(V ))
∼−→ Pic(GrSL(V ))

does not depend on p or z. This is clear, since it maps Ldet to OGrSL(V )
(−1). �

The chosen maximal torus ιG : TG →֒ G induces maximal tori ιĜ : TĜ →֒ Ĝ and

ιGad : TGad →֒ Gad compatible with the canonical maps G →֒ Ĝ։ Gad. Given

a principal TĜ–bundle ξ̂ on C and an isomorphism dt∗ ξ̂ ∼= L, the composition

M0
TG

t
ξ̂−→MTĜ

(ιĜ)∗−→ MĜ

factors naturally through a 1–morphism

(10) ιξ̂ :M0
TG −→MĜ,L.

Remark 4.4.6. Given a representation ρ : Gad −→ SL(V ), let ι : TSL(V ) →֒
SL(V ) be a maximal torus containing ρ(TGad). Then the diagram

M0
TG

ι
ξ̂ //

ρ∗

��

MĜ,L

ρ∗

��
M0

TSL(V )

t
ρ∗ ξ̂ //MTSL(V )

ι∗ //MSL(V )

is 2–commutative, by construction of ιξ̂.

Proposition 4.4.7. i) Γ(MĜ,L,OMĜ,L
) = k.

ii) There is a canonical isomorphism

cG : Pic(MĜ,L)
∼−→ NS(MG).

iii) For all choices of ιG : TG →֒ G and of ξ̂, the diagram

Pic(MĜ,L)
ι∗
ξ̂ //

cG

��

Pic(M0
TG

)

cTG

��
NS(MG)

(ιG)NS,δ̄

// NS(MTG)

commutes; here δ̄ ∈ ΛT
Gad

denotes the image of δ̂ := deg ξ̂ ∈ ΛTĜ .

Proof. We start with the special case that G is almost simple. Here part (i) of
the proposition is just equation (5) from Subsection 4.2.
We let cG send the line bundle of central charge 1 to the basic inner product
bG ∈ NS(MG). Due to Theorem 4.2.1(i), Proposition 4.2.3, Corollary 4.4.5
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and Remark 4.3.3(ii), this defines a canonical isomorphism, and hence proves
(ii).
To see that the diagram in (iii) then commutes, we choose a nontrivial repre-
sentation ρ : Gad −→ SL(V ). We note the functorialities, with respect to ρ,
according to Remark 4.4.6, Remark 4.2.4, Proposition 4.4.4, Remark 4.3.7 and
Remark 3.2.3. In view of these, comparing Corollary 4.4.2 and Definition 4.3.5
shows that the two images of ρ∗Ldet ∈ Pic(MĜ,L) in NS(MTG) coincide. Since

the former generates a subgroup of finite index and the latter is torsionfree,
the diagram in (iii) commutes.
For the general case, we use the unique decomposition

G = G1 × · · · ×Gr
into simply connected and almost simple factors Gi. As Ĝ is generated by its

center and G, every normal subgroup in G is still normal in Ĝ. Let Ĝi denote

the quotient of Ĝ modulo the closed normal subgroup
∏
j 6=iGj ; then

0 // G //

pri
����

Ĝ //

����

Gm // 0

0 // Gi // Ĝi
dti // Gm // 0

is a morphism of short exact sequences. Since the resulting diagram

Ĝ

dt

��

// ∏
i Ĝi
∏

dti

��
Gm

diag // Grm

is cartesian, it induces an equivalence of moduli stacks

(11) MĜ,L

∼−→MĜ1,L
× · · · ×MĜr,L

due to Lemma 2.2.1. We note that equation (5), Lemma 2.1.2(i), Lemma
2.1.4, Remark 4.3.3(i) and Corollary 3.2.4 ensure that various constructions
are compatible with the products in (11). Therefore, the general case follows
from the already treated almost simple case. �

5. The reductive case

In this section, we finally describe the Picard functor Pic(Md
G) for any reductive

group G over k and any d ∈ π1(G). We denote

• by ζ : Z0 →֒ G the (reduced) identity component of the center Z ⊆ G,
and
• by π : G̃ −→ G the universal cover of G′ := [G ,G] ⊆ G.

Our strategy is to descend along the central isogeny

ζ · π : Z0 × G̃ −→ G,
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applying the previous two sections to Z0 and to G̃, respectively. The 1–
morphism of moduli stacks given by such a central isogeny is a torsor under a
group stack; Subsection 5.1 explains descent of line bundles along such torsors,
generalising the method introduced by Laszlo [22] for quotients of SLn. In
Subsection 5.2, we define combinatorially what will be the discrete torsionfree
part of Pic(Md

G); finally, these Picard functors and their functoriality in G are
described in Subsection 5.3.
The following notation is used throughout this section. The reductive group G
yields semisimple groups and central isogenies

G̃։ G′ ։ Ḡ := G/Z0 ։ Gad := G/Z.

We denote by d̄ ∈ π1(Ḡ) ⊆ π1(Gad) the image of d ∈ π1(G). The choice of a
maximal torus ιG : TG →֒ G induces maximal tori and isogenies

TG̃ ։ TG′ ։ TḠ ։ TGad.

Their cocharacter lattices are hence subgroups of finite index

ΛTG̃ →֒ ΛTG′ →֒ ΛTḠ →֒ ΛT
Gad

.

The central isogeny ζ · π makes ΛZ0 ⊕ ΛTG̃ a subgroup of finite index in ΛTG .

5.1. Torsors under a group stack. All stacks in this subsection are stacks
over k, and all morphisms are over k. Following [7, 22], we recall the notion of
a torsor under a group stack.
Let G be a group stack. We denote by 1 the unit object in G, and by g1 · g2 the
image of two objects g1 and g2 under the multiplication 1–morphism G×G −→
G.

Definition 5.1.1. An action of G on a 1–morphism of stacks Φ : X −→ Y
consists of a 1–morphism

G × X −→ X , (g, x) 7−→ g · x,
and of three 2–morphisms, which assign to each k–scheme S and each object

x in X (S) an isomorphism 1 · x ∼−→ x in X (S),

(g, x) in (G × X )(S) an isomorphism Φ(g · x) ∼−→ Φ(x) in Y(S),

(g1, g2, x) in (G × G × X )(S) an isomorphism (g1 · g2) · x ∼−→ g1 · (g2 · x) in X (S).

These morphisms are required to satisfy the following five compatibility con-
ditions: the two resulting isomorphisms

(g · 1) · x ∼−→ g · x in X (S),

(1 · g) · x ∼−→ g · x in X (S),

Φ(1 · x)
∼−→ Φ(x) in Y(S),

Φ((g1 · g2) · x)
∼−→ Φ(x) in Y(S),

and (g1 · g2 · g3) · x ∼−→ g1 · (g2 · (g3 · x)) in X (S),

coincide for all k–schemes S and all objects g, g1, g2, g3 in G(S) and x in X (S).
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Example 5.1.2. Let ϕ : G −→ H be a homomorphism of linear algebraic groups
over k, and let Z be a closed subgroup in the center of G with Z ⊆ ker(ϕ).
Then the group stack MZ acts on the 1–morphism ϕ∗ :MG −→MH via the
tensor product ⊗ :MZ ×MG −→MG.

From now on, we assume that the group stack G is algebraic.

Definition 5.1.3. A G–torsor is a faithfully flat 1–morphism of algebraic
stacks Φ : X −→ Y together with an action of G on Φ such that the resulting
1–morphism

G × X −→ X ×Y X , (g, x) 7−→ (g · x, x)

is an isomorphism.

Example 5.1.4. Suppose that ϕ : G ։ H is a central isogeny of reductive
groups with kernel µ. For each d ∈ π1(G), the 1–morphism

(12) ϕ∗ :Md
G −→Me

H e := ϕ∗(d) ∈ π1(H)

is a torsor under the group stackMµ, for the action described in example 5.1.2.

Proof. The 1–morphism ϕ∗ is faithfully flat by Lemma 2.2.2. The 1–morphism

Mµ ×MG −→MG ×MH MG, (L,E) 7−→ (L⊗ E,E)

is an isomorphism due to Lemma 2.2.1. Since ϕ∗ : π1(G) −→ π1(H) is injective,
Md

G ⊆MG is the inverse image ofMe
H ⊆MH under ϕ∗; hence the restriction

Mµ ×Md
G −→Md

G ×Me
H
Md

G

is an isomorphism as well. �

Definition 5.1.5. Let Φν : Xν −→ Yν be a G–torsor for ν = 1, 2. A morphism
of G–torsors from Φ1 to Φ2 consists of two 1–morphisms

A : X1 −→ X2 and B : Y1 −→ Y2
and of two 2–morphisms, which assign to each k–scheme S and each object

x in X1(S) an isomorphism Φ2A(x)
∼−→ BΦ1(x) in Y2(S),

(g, x) in (G × X1)(S) an isomorphism A(g · x)
∼−→ g · A(x) in X2(S).

These morphisms are required to satisfy the following three compatibility con-
ditions: the two resulting isomorphisms

A(1 · x)
∼−→ A(x) in X2(S),

Φ2A(g · x)
∼−→ BΦ1(x) in Y2(S)

and A((g1 · g2) · x)
∼−→ g1 · (g2 ·A(x)) in X2(S)

coincide for all k–schemes S and all objects g, g1, g2 in G(S) and x in X1(S).
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Example 5.1.6. Let a cartesian square of reductive groups over k

G1
α //

ϕ1

��

G2

ϕ2

��
H1

β // H2

be given. Suppose that ϕ1 and ϕ2 are central isogenies, and denote their
common kernel by µ. For each d1 ∈ π1(G1), the diagram

Md1
G1

α∗ //

(ϕ1)∗

��

Md2
G2

(ϕ2)∗

��

d2 := α∗(d1) ∈ π1(G2)

Me1
H1

β∗ //Me2
H2

eν := (ϕν)∗(dν) ∈ π1(Hν)

is then a morphism of torsors under the group stack Mµ.

Proposition 5.1.7. Let a G–torsor Φν : Xν −→ Yν with Γ(Xν ,OXν ) = k be
given for ν = 1, 2, together with a morphism of G–torsors

X1
A //

Φ1

��

X2

Φ2

��
Y1 B // Y2

such that the induced morphism of Picard functors A∗ : Pic(X2) −→ Pic(X1) is
injective. Then the diagram of Picard functors

Pic(X1) Pic(X2)
A∗

oo

Pic(Y1)

Φ∗
1

OO

Pic(Y2)

Φ∗
2

OO

B∗
oo

is a pullback square.

Proof. The proof of [22, Theorem 5.7] generalises to this situation as follows.
Let S be a scheme of finite type over k. For a line bundle L on S×Xν , we denote
by LinG(L) the set of its G–linearisations, cf. [22, Definition 2.8]. According
to Lemma 2.1.2(i), each automorphism of L comes from Γ(S,O∗S) and hence
respects each linearisation of L. Thus [22, Theorem 4.1] provides a canonical

bijection between the set LinG(L) and the fibre of

Φ∗ν : Pic(S × Yν) −→ Pic(S ×Xν)

over the isomorphism class of L.
Let T be an algebraic stack over k. We denote for the moment by Pic(T ) the
groupoid of line bundles on T and their isomorphisms. Lemma 2.1.2(i) and
Corollary 2.1.3 show that the functor

A∗ : Pic(T × X2) −→ Pic(T × X1)
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is fully faithful for every T . We recall that an element in LinG(L) is an iso-
morphism in Pic(G × S × Xν) between two pullbacks of L such that certain
induced diagrams in Pic(S ×Xν) and in Pic(G ×G × S ×Xν) commute. Thus
it follows for all L ∈ Pic(S ×X2) that the canonical map

A∗ : LinG(L) −→ LinG(A∗L)

is bijective. Hence the diagram of abelian groups

Pic(S ×X1) Pic(S ×X2)
A∗

oo

Pic(S × Y1)

Φ∗
1

OO

Pic(S × Y2)

Φ∗
2

OO

B∗
oo

is a pullback square, as required. �

5.2. Néron–Severi groups NS(Md
G) for reductive G.

Definition 5.2.1. The Néron–Severi group NS(Md
G) is the subgroup

NS(Md
G) ⊆ NS(MZ0)⊕NS(MG̃)

of all triples lZ : ΛZ0 −→ Z, bZ : ΛZ0⊗ΛZ0 −→ End JC and b : ΛTG̃⊗ΛTG̃ −→ Z
with the following properties:

(1) For every lift δ̄ ∈ ΛTḠ of d̄ ∈ π1(Ḡ), the direct sum

lZ ⊕ b(−δ̄ ⊗ ) : ΛZ0 ⊕ ΛTG̃ −→ Z

is integral on ΛTG .
(2) The orthogonal direct sum

bZ ⊥ (idJC ·b) : (ΛZ0 ⊕ ΛTG̃)⊗ (ΛZ0 ⊕ ΛTG̃) −→ End JC

is integral on ΛTG ⊗ ΛTG .

Lemma 5.2.2. If condition 1 above holds for one lift δ̄ ∈ ΛTḠ of d̄ ∈ π1(Ḡ),

then it holds for every lift δ̄ ∈ ΛTḠ of the same element d̄ ∈ π1(Ḡ).

Proof. Any two lifts δ̄ of d̄ differ by some element λ ∈ ΛTG̃ . Lemma 4.3.4 states
in particular that

b(−λ⊗ ) : ΛTG̃ −→ Z

is integral on ΛTḠ , and hence admits an extension ΛTG −→ Z that vanishes on
ΛZ0 . �

Remark 5.2.3. If G is simply connected, then NS(M0
G) coincides with the group

NS(MG) of definition 4.3.2. If G = T is a torus, then NS(Md
T ) coincides for

all d ∈ π1(T ) with the group NS(MT ) of definition 3.2.1.

Remark 5.2.4. The Weyl group W of (G, TG) acts trivially on NS(Md
G). Hence

the group NS(Md
G) does not depend on the choice of TG; cf. Subsection 4.3.
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Definition 5.2.5. Given a lift δ ∈ ΛTG of d ∈ π1(G), the homomorphism

(ιG)NS,δ : NS(Md
G) −→ NS(MTG)

sends (lZ , bZ) ∈ NS(MZ0) and b ∈ NS(MG̃) to the pair

lZ ⊕ b(−δ̄ ⊗ ) : ΛG −→ Z and bZ ⊥ (idJC ·b) : ΛTG ⊗ ΛTG −→ End JC

where δ̄ ∈ ΛTḠ denotes the image of δ.

Note that this definition agrees with the earlier definition 4.3.5 in the cases
covered by both, namely G simply connected and δ ∈ ΛTG .

Lemma 5.2.6. Given a lift δ ∈ ΛTG of d ∈ π1(G), the diagram

NS(Md
G)

(ιG)NS,δ

//
� _

��

NS(MTG)

(ζ·π)∗

��
NS(MZ0)⊕ NS(MG̃)

id⊕(ι
G̃
)NS,δ̄

// NS(MZ0)⊕ NS(MT
G̃
) �

� // NS(MZ0×T
G̃
)

is a pullback square; here δ̄ ∈ ΛT
Gad

again denotes the image of δ.

Proof. This follows directly from the definitions. �

Let e ∈ π1(H) be the image of d ∈ π1(G) under a homomorphism of reductive

groups ϕ : G −→ H . ϕ induces a map ϕ : G̃ −→ H̃ between the universal
covers of their commutator subgroups. If ϕ maps the identity component Z0

G

in the center ZG of G to the center ZH of H , then it induces an obvious pullback
map

ϕ∗ : NS(Me
H) −→ NS(Md

G)

which sends lZ , bZ and b simply to ϕ∗lZ , ϕ∗bZ and ϕ∗b. This is a special
case of the following map, which ϕ induces even without the hypothesis on the
centers, and which also generalises the previous definition 5.2.5.

Definition 5.2.7. Choose a maximal torus ιH : TH →֒ H containing ϕ(TG),
and a lift δ ∈ ΛTG of d ∈ π1(G); let η ∈ ΛTH be the image of δ. Then the map

ϕNS,d : NS(Me
H) −→ NS(Md

G)

sends (lZ , bZ) ∈ NS(MZ0
H

) and b ∈ NS(MH̃) to the pullback along ϕ : Z0
G −→

TH of (ιH)NS,η(lZ , bZ , b) ∈ NS(MTH ), together with ϕ∗b ∈ NS(MG̃).

Lemma 5.2.8. The map ϕNS,d does not depend on the choice of TG, TH or δ.

Proof. Let WG denote the Weyl group of (G, TG). It acts trivially on ΛZ0
G

, and

without nontrivial coinvariants on ΛTG̃ ; these two observations imply

(13) Hom(ΛTG̃ ⊗ ΛZ0
G
,Z)WG = 0.

Lemma 4.3.4 states that b is integral on ΛT
H̃
⊗ ΛTH̄ ; its composition with the

canonical projection ΛTH ։ ΛTH̄ is a Weyl–invariant map br : ΛT
H̃
⊗ ΛTH −→

Z. As explained in Subsection 4.3, Lemma 4.3.1 implies that ϕ∗br : ΛTG̃ ⊗
ΛTG −→ Z is still Weyl–invariant; hence it vanishes on ΛTG̃ ⊗ ΛZ0

G
by (13).
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Any two lifts δ of d differ by some element λ ∈ ΛTG̃ ; then the two im-

ages of (lZ , bZ , b) ∈ NS(Me
H) in NS(MTH ) differ, according to the proof of

Lemma 5.2.2, only by br(−λ ⊗ ) : ΛTH −→ Z. Thus their compositions with
ϕ : ΛZ0

G
−→ ΛTH coincide by the previous paragraph. This shows that the

two images of (lZ , bZ , b) have the same component in the direct summand
Hom(ΛZ0

G
,Z) of NS(Md

G); since the other two components do not involve δ at

all, the independence on δ follows.
The independence on TG and TH is then a consequence of Lemma 4.3.1, since
the Weyl groups WG and WH act trivially on NS(Md

G) and on NS(Me
H). �

Lemma 5.2.9. For all maximal tori ιG : TG →֒ G and ιH : TH →֒ H with
ϕ(TG) ⊆ TH , and all lifts δ ∈ ΛTG of d ∈ π1(G), the diagram

NS(Me
H)

(ιH)NS,η

//

ϕNS,d

��

NS(MTH )

ϕ∗

��
NS(Md

G)
(ιG)NS,δ

// NS(MTG)

commutes, with η := ϕ∗δ ∈ ΛTH and e := ϕ∗d ∈ π1(H) as in definition 5.2.7.

Proof. Given an element in NS(Me
H), we have to compare its two images in

NS(MTG). The definition 5.2.7 of ϕNS,d directly implies that both have the
same pullback to NS(MZ0

G
) and to NS(MTG̃

). Moreover, their components in

the direct summand Homs(ΛTG ⊗ ΛTG ,End JC) of NS(MTG) are both Weyl–
invariant due to Lemma 4.3.1; thus equation (13) above shows that these com-
ponents vanish on ΛTG̃⊗ΛZ0

G
and on ΛZ0

G
⊗ΛTG̃ . Hence two images in question

even have the same pullback to NS(MZ0
G×TG̃). But ΛZ0

G
⊕ΛTG̃ has finite index

in ΛTG . �

Corollary 5.2.10. Let ψ : H −→ K be another homomorphism of reductive
groups, and put f := ψ∗e ∈ π1(K). Then

ϕNS,d ◦ ψNS,e = (ψ ◦ ϕ)NS,d : NS(Mf
K) −→ NS(Md

G).

Proof. According to the previous lemma, this equality holds after composition
with (ιG)NS,δ : NS(Md

G) −→ NS(MTG) for any lift δ ∈ ΛTG of d. Due to
the Lemma 4.3.6 and Lemma 5.2.6, there is a lift δ of d such that (ιG)NS,δ is
injective. �

We conclude this subsection with a more explicit description of NS(Md
G). It

turns out that genus gC = 0 is special. This generalises the description obtained
for k = C and G semisimple by different methods in [31, Section V].

Proposition 5.2.11. Let q : G ։ G/G′ =: Gab denote the maximal abelian
quotient of G. Then the sequence of abelian groups

0 −→ NS(MGab)
q∗−→ NS(Md

G)
pr2−→ NS(MG̃)
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is exact, and the image of the map pr2 in it consists of all forms b : ΛTG̃ ⊗
ΛTG̃ −→ Z in NS(MG̃) that are integral

• on ΛTḠ ⊗ ΛTG′ , if gC ≥ 1;

• on (Zδ̄)⊗ ΛTG′ for a lift δ̄ ∈ ΛTḠ of d̄ ∈ π1(Ḡ), if gC = 0.

The condition does not depend on the choice of this lift δ̄, due to Lemma 4.3.4.

Proof. Since q : Z0 −→ Gab is an isogeny, q∗ is injective; it clearly maps into
the kernel of pr2. Conversely, let (lZ , bZ , b) ∈ NS(Md

G) be in the kernel of pr2;
this means b = 0. Then condition 1 in the definition 5.2.1 of NS(Md

G) provides
a map

lZ ⊕ 0 : ΛTG −→ Z

which vanishes on ΛTG̃ , and hence also on ΛTG′ ; thus it is induced from a map
on ΛTG/ΛTG′ = ΛGab . Similarly, condition 2 in the same definition provides a
map bZ ⊥ 0 on ΛTG ⊗ ΛTG which vanishes on ΛTG̃ ⊗ ΛTG + ΛTG ⊗ ΛTG̃ , and
hence also on ΛTG′ ⊗ ΛTG + ΛTG ⊗ ΛTG′ ; thus it is induced from a map on the
quotient ΛGab ⊗ ΛGab . This proves the exactness.
Now let b ∈ NS(Md

G) be in the image of pr2. Then b is integral on (Zδ̄)⊗ ΛG′

by condition 1 in definition 5.2.1. If gC ≥ 1, then

· idJC : Z −→ EndJC

is injective with torsionfree cokernel; thus condition 2 in definition 5.2.1 implies
that

0⊕ b : (ΛZ0 ⊕ ΛTG̃)⊗ ΛTG̃ −→ Z

is integral on ΛTG ⊗ ΛTG′ and hence, vanishing on ΛZ0 ⊆ ΛTG , comes from
a map on the quotient ΛTḠ ⊗ ΛTG′ . This shows that b satisfies the stated
condition.
Conversely, suppose that b ∈ NS(Md

G) satisfies the stated condition. Then b is
integral on (Zδ̄)⊗ ΛTG′ ; since ΛTG′ ⊆ ΛTG is a direct summand,

b(−δ̄ ⊗ ) : ΛTG′ −→ Z

can thus be extended to ΛTG . We restrict it to a map lZ : ΛZ0 −→ Z. In the
case gC = 0, the triple (lZ , 0, b) is in NS(Md

G) and hence an inverse image of b.
It remains to consider gC ≥ 1. Then b is by assumption integral on ΛTḠ⊗ΛTG′ ,
so composing it with the canonical subjection ΛTG ։ ΛTḠ defines a linear map
ΛTG⊗ΛTG′ −→ Z. Since b is symmetric, this extends canonically to a symmetric
linear map from

ΛTG ⊗ ΛTG′ + ΛTG′ ⊗ ΛTG ⊆ ΛTG ⊗ ΛTG

to Z. It can be extended further to a symmetric linear map from ΛTG ⊗ ΛTG
to Z, because ΛTG′ ⊆ ΛTG is a direct summand. Multiplying it with idJC
and restricting to ΛZ0 defines an element bZ ∈ Homs(ΛZ0 ⊗ΛZ0 ,EndJC). By
construction, the triple (lZ , bZ , b) is in NS(Md

G) and hence an inverse image of
b. �
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In particular, the free abelian group NS(Md
G) has rank

rk NS(Md
G) = r + r · rk NS(JC) +

r(r − 1)

2
· rk End(JC) + s

if Gab ∼= Grm is a torus of rank r, and Gad contains s simple factors.

5.3. Proof of the main result.

Theorem 5.3.1. i) Γ(Md
G,OMd

G
) = k.

ii) The functor Pic(Md
G) is representable by a k–scheme locally of finite

type.
iii) There is a canonical exact sequence

0 −→ Hom(π1(G), JC)
jG−→ Pic(Md

G)
cG−→ NS(Md

G) −→ 0

of commutative group schemes over k.
iv) For every homomorphism of reductive groups ϕ : G −→ H, the diagram

0 // Hom(π1(H), JC)
jH //

ϕ∗

��

Pic(Me
H)

cH //

ϕ∗

��

NS(Me
H) //

ϕNS,d

��

0

0 // Hom(π1(G), JC)
jG // Pic(Md

G)
cG // NS(Md

G) // 0

commutes; here e := ϕ∗(d) ∈ π1(H).

Proof. We record for later use the commutative square of abelian groups

π1(G) ΛTG
proooo

ΛZ0

ζ∗

OO

ΛZ0×TG̃ .

(ζ·π)∗

OO

pr1oooo

The mapping cone of this commutative square

(14) 0 −→ ΛZ0 ⊕ ΛTG̃ −→ ΛZ0 ⊕ ΛTG −→ π1(G) −→ 0

is exact, because its subsequence 0 −→ ΛTG̃ −→ ΛTG −→ π1(G) −→ 0 is exact,
and the resulting sequence of quotients 0 −→ ΛZ0 = ΛZ0 −→ 0 −→ 0 is also
exact.

Lemma 5.3.2. There is an exact sequence of reductive groups

(15) 1 −→ G̃ −→ Ĝ
dt−→ Gm −→ 1

and an extension π̂ : Ĝ −→ G of π : G̃ −→ G such that π̂∗ : π1(Ĝ) −→ π1(G)

maps 1 ∈ Z = π1(Gm) = π1(Ĝ) to the given element d ∈ π1(G).

Proof. We view the given d ∈ π1(G) as a coset d ⊆ ΛTG modulo Λcoroots. Let

ΛTĜ ⊆ ΛTG ⊕ Z
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be generated by Λcoroots ⊕ 0 and (d, 1), and let

(π̂, dt) : Ĝ −→ G×Gm

be the reductive group with the same root system as G, whose maximal torus
TĜ = π̂−1(TG) has cocharacter lattice Hom(Gm, TĜ) = ΛTĜ . As π∗ maps ΛTG̃
isomorphically onto Λcoroots, we obtain an exact sequence

0 −→ ΛTG̃
π∗−→ ΛTĜ

pr2−→ Z −→ 0,

which yields the required exact sequence (15) of groups. By its construction,

π̂∗ maps the canonical generator 1 ∈ π1(Gm) = π1(Ĝ) to d ∈ π1(G). �

Let µ denote the kernel of the central isogeny ζ · π : Z0 × G̃։ G. Then

ψ : Z0 × Ĝ −→ G×Gm, (z0, ĝ) 7−→
(
ζ(z0) · π̂(ĝ), dt(ĝ)

)

is by construction a central isogeny with kernel µ. Hence the induced 1–
morphism

ψ∗ :M0
Z0 ×M1

Ĝ
−→Md

G ×M1
Gm

is faithfully flat by Lemma 2.2.2. Restricting to the point Spec(k) −→ M1
Gm

given by a line bundle L of degree 1 on C, we get a faithfully flat 1–morphism

(ψ∗)L :M0
Z0 ×MĜ,L −→Md

G.

Since Γ(M0
Z0×MĜ,L,O) = k by Proposition 4.4.7(i) and Lemma 2.1.2(i), part

(i) of the theorem follows. The group stackMµ acts by tensor product on these
two 1–morphisms ψ∗ and (ψ∗)L, turning both into Mµ–torsors; cf. Example
5.1.4. The idea is to descend line bundles along the torsor (ψ∗)L.

We choose a principal TĜ–bundle ξ̂ on C together with an isomorphism of line

bundles dt∗ ξ̂ ∼= L. Then ξ := π̂∗(ξ̂) is a principal TG–bundle on C; their

degrees δ̂ := deg(ξ̂) ∈ ΛTĜ and δ := deg(ξ) ∈ ΛTG are lifts of d ∈ π1(G). The
diagram

(16) Z0 × TĜ
id×ιĜ //

ψ

��

Z0 × Ĝ
ψ

��
TG ×Gm

ιG×id // G×Gm

of groups induces the right square in the 2–commutative diagram

(17) M0
Z0 ×M0

TĜ

id×t
ξ̂ //

ψ∗

��

M0
Z0 ×Mδ̂

TĜ

(id×ιĜ)∗ //

ψ∗

��

M0
Z0 ×M1

Ĝ

ψ∗

��
M0

TG
×M1

Gm

tξ×id //Mδ
TG
×M1

Gm

(ιG×id)∗ //Md
G ×M1

Gm
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of moduli stacks; note that tξ̂ and tξ are equivalences. Restricting the outer

rectangle again to the point Spec(k) −→M1
Gm

given by L, we get the diagram

(18) M0
Z0×TG̃

∼

(ζ·π)∗ &&NNNNNNNNNNN
M0

Z0 ×M0
TG̃

id×ι
ξ̂ //

ζ∗⊗π∗

��

M0
Z0 ×MĜ,L

(ψ∗)L

��
M0

TG

(ιG)∗◦tξ //Md
G

containing an instance ιξ̂ of the 1–morphism (10) defined in Subsection 4.4.

According to the Proposition 3.2.2 and Proposition 4.4.7,

ι∗
ξ̂

: Pic(MĜ,L) −→ Pic(M0
TG̃

)

is a morphism of group schemes over k. This morphism is a closed immersion,

according to Proposition 4.4.7(iii), if gC ≥ 1 or if ξ̂ is chosen appropriately, as
explained in Lemma 4.3.6; we assume this in the sequel. Using Lemma 2.1.4
and Corollary 3.2.4, it follows that

(id×ιξ̂)∗ : Pic(M0
Z0)⊕ Pic(MĜ,L) ∼= Pic(M0

Z0 ×MĜ,L) −→ Pic(M0
Z0×TG̃)

is a closed immersion of group schemes over k as well.
The group stack Mµ still acts by tensor product on the vertical 1–morphisms
in (17) and in (18). Since the diagram (16) of groups is cartesian, (17) and
(18) are morphisms of G–torsors; cf. Example 5.1.6. Proposition 5.1.7 applies
to the latter morphism of torsors, yielding a cartesian square

(19) Pic(Md
G)

ψ∗
L

��

t∗ξ◦ι∗G // Pic(M0
TG

)

(ζ·π)∗
��

Pic(M0
Z0)⊕ Pic(MĜ,L)

(id×ι
ξ̂
)∗

// Pic(M0
Z0×TG̃

)

of Picard functors. Thus Pic(Md
G) is representable, and t∗ξ ◦ ι∗G is a closed

immersion; this proves part (ii) of the theorem.
The image of the mapping cone (14) under the exact functor Hom( , JC), and
the mapping cones of the two cartesian squares given by diagram (19) and
Lemma 5.2.6, are the columns of the commutative diagram
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0

��

0

��

0

��
Hom(π1(G), JC)

��

Pic(Md
G)

��

NS(Md
G)

��

0 //
Hom(ΛZ0 , JC)

⊕
Hom(ΛTG , JC)

j
Z0⊕jTG //

��

Pic(M0
Z0)

⊕
Pic(MĜ,L)

⊕
Pic(M0

TG
)

��

c
Z0⊕c

G̃
⊕cTG //

NS(MZ0)
⊕

NS(MG̃)
⊕

NS(MTG)

��

// 0

0 // Hom(ΛZ0×T
G̃
, JC)

��

j
Z0×T

G̃// Pic(M0
Z0×T

G̃
)

c
Z0×T

G̃ // NS(MZ0×T
G̃
) // 0

0

whose two rows are exact due to Proposition 3.2.2(ii) and Proposition 4.4.7(ii).
Applying the snake lemma to this diagram, we get an exact sequence

0 −→ Hom(π1(G), JC)
jG(ιG,δ)−−−−−→ Pic(Md

G)
cG(ιG,δ)−−−−−→ NS(Md

G) −→ 0.

The image of jG(ιG, δ) and the kernel of cG(ιG, δ) are a priori independent
of the choices made, since both are the largest quasicompact open subgroup
in Pic(Md

G). If G is a torus and d = 0, then this is the exact sequence of
Proposition 3.2.2; in general, the construction provides a morphism of exact
sequences
(20)

0 // Hom(π1(G), JC)
jG(ιG,δ) //

pr∗

��

Pic(Md
G)

t∗ξ◦ι
∗
G

��

cG(ιG,δ) // NS(Md
G)

//

(ιG)NS,δ

��

0

0 // Hom(ΛTG , JC)
jTG // Pic(M0

TG
)

cTG // NS(MTG) // 0

whose three vertical maps are all injective. Using Proposition 3.2.2(iii), this
implies that jG(ιG, δ) and cG(ιG, δ) depend at most on the choice of ιG : TG →֒
G and of δ, but not on the choice of Ĝ, L or ξ̂; thus the notation. Together
with the following two lemmas, this proves the remaining parts (iii) and (iv)
of the theorem. �

Lemma 5.3.3. The above map jG(ιG, δ) : Hom(π1(G), JC) −→ Pic(Md
G)

i) does not depend on the lift δ ∈ ΛTG of d ∈ π1(G),
ii) does not depend on the maximal torus ιG : TG →֒ G, and

iii) satisfies ϕ∗ ◦ jH = jG ◦ ϕ∗ : Hom(π1(H), JC) −→ Pic(Md
G) for all

ϕ : G −→ H.
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Proof. If G is a torus, then δ and ιG are unique, so (i) and (ii) hold trivially.
The claim is empty for gC = 0, so we assume gC ≥ 1. Then the above con-
struction works for all lifts δ of d, because ι∗

ξ̂
is a closed immersion for all

ξ̂.
Given ϕ : G −→ H and a maximal torus ιH : TH →֒ H with ϕ(TG) ⊆ TH , we
again put e := ϕ∗d ∈ π1(H) and η := ϕ∗δ ∈ ΛTH . Then the diagram

(21) Hom(π1(H), JC)
jH (ιH ,η) //

ϕ∗

��

Pic(Me
H)

ϕ∗

��
Hom(π1(G), JC)

jG(ιG,δ) // Pic(Md
G)

commutes, because it commutes after composition with the closed immersion

t∗ξ ◦ ι∗G : Pic(Md
G) −→ Pic(M0

TG)

from diagram (20), using Remark 3.2.3. In particular, (iii) follows from (i) and
(ii).
i) For G = GL2, it suffices to take ϕ = det : GL2 −→ Gm in the above diagram
(21), since det∗ : π1(GL2) −→ π1(Gm) is an isomorphism.
For G = PGL2, it then suffices to take ϕ = pr : GL2 ։ PGL2 in the same
diagram (21), since pr∗ : π1(GL2) −→ π1(PGL2) is surjective.
As (i) holds trivially for G = SL2, and clearly holds for G×Gm if it holds for
G, this proves (i) for all groups G of semisimple rank one.
In the general case, let α∨ ∈ ΛTG be a coroot, and let ϕ : Gα →֒ G be the
corresponding subgroup of semisimple rank one. Then the diagram (21) shows
jG(ιG, δ) = jG(ιG, δ + α∨), since ϕ∗ : π1(Gα) −→ π1(G) is surjective. This
completes the proof of i, because any two lifts δ of d differ by a sum of coroots.
ii) now follows from Weyl–invariance; cf. Subsection 4.3. �

Lemma 5.3.4. The above map cG(ιG, δ) : Pic(Md
G) −→ NS(Md

G)

i) does not depend on the lift δ ∈ ΛTG of d ∈ π1(G),
ii) does not depend on the maximal torus ιG : TG →֒ G, and

iii) satisfies ϕNS,d◦cH = cG◦ϕ∗ : Pic(Me
H) −→ NS(Md

G) for all ϕ : G −→
H.

Proof. If G is a torus, then δ and ιG are unique; if G is simply connected, then
cG(ιG, δ) coincides by construction with the isomorphism cG of Proposition
4.4.7(ii). In both cases, (i) and (ii) follow, and we can use the notation cG
without ambiguity.
Given a representation ρ : G −→ SL(V ), the diagram

(22) Pic(MSL(V ))
cSL(V ) //

ρ∗

��

NS(MSL(V ))

ρNS,d

��
Pic(Md

G)
cG(ιG,δ) // NS(Md

G)
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commutes, because it commutes after composition with the injective map

(ιG)NS,δ : NS(Md
G) −→ NS(MTG)

from diagram (20), using Lemma 5.2.9, Corollary 4.4.2, Remark 3.2.3, and the
2–commutative squares

M0
TG

tξ //

ρ∗

��

Mδ
TG

(ιG)∗ //

ρ∗

��

Md
G

ρ∗

��
M0

TSL(V )

tρ∗ξ //Mρ∗δ
TSL(V )

ι∗ //MSL(V ))

in which ι : TSL(V ) →֒ SL(V ) is a maximal torus containing ρ(TG).
Similarly, given a homomorphism χ : G −→ T to a torus T , the diagram

(23) Pic(Mχ∗d
T )

cT //

χ∗

��

NS(MT )

χ∗

��
Pic(Md

G)
cG(ιG,δ) // NS(Md

G)

commutes, again because it commutes after composition with the same injective
map (ιG)NS,δ from diagram (20), using Lemma 5.2.9, Remark 3.2.3, and the
2–commutative squares

M0
TG

tξ //

χ∗

��

Mδ
TG

(ιG)∗ //

χ∗

��

Md
G

χ∗

��
M0

T

tχ∗ξ //Mχ∗δ
T Mχ∗δ

T .

The two commutative diagrams (22) and (23) show that the restriction of
cG(ιG, δ) to the images of all ρ∗ and all χ∗ in Pic(Md

G) modulo Hom(π1(G), JC)
does not depend on the choice of δ or ιG. But these images generate a subgroup
of finite index, according to Proposition 5.2.11 and Remark 4.3.3. Thus (i) and
(ii) follow. The functoriality in (iii) is proved similarly; it suffices to apply
these arguments to homomorphisms ρ : H −→ SL(V ), χ : H −→ T and their
compositions with ϕ : G −→ H , using Corollary 5.2.10. �
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Abstract. We study the singular Bott-Chern classes introduced by
Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main
ingredient to define direct images for closed immersions in arithmetic
K-theory. In this paper we give an axiomatic definition of a theory
of singular Bott-Chern classes, study their properties, and classify
all possible theories of this kind. We identify the theory defined by
Bismut, Gillet and Soulé as the only one that satisfies the additional
condition of being homogeneous. We include a proof of the arithmetic
Grothendieck-Riemann-Roch theorem for closed immersions that gen-
eralizes a result of Bismut, Gillet and Soulé and was already proved by
Zha. This result can be combined with the arithmetic Grothendieck-
Riemann-Roch theorem for submersions to extend this theorem to ar-
bitrary projective morphisms. As a byproduct of this study we obtain
two results of independent interest. First, we prove a Poincaré lemma
for the complex of currents with fixed wave front set, and second we
prove that certain direct images of Bott-Chern classes are closed.
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0 Introduction

Chern-Weil theory associates to each hermitian vector bundle a family of closed
characteristic forms that represent the characteristic classes of the vector bun-
dle. The characteristic classes are compatible with exact sequences. But this
is not true for the characteristic forms. The Bott-Chern classes measure the
lack of compatibility of the characteristic forms with exact sequences.
The Grothendieck-Riemann-Roch theorem gives a formula that relates direct
images and characteristic classes. In general this formula is not valid for the
characteristic forms. The singular Bott-Chern classes measure, in a functorial
way, the failure of an exact Grothendieck-Riemann-Roch theorem for closed
immersions at the level of characteristic forms. In the same spirit, the analytic
torsion forms measure the failure of an exact Grothendieck-Riemann-Roch the-
orem for submersions at the level of characteristic forms. Hence singular Bott-
Chern classes and analytic torsion forms are analogous objects, the first for
closed immersions and the second for submersions.
Let us give a more precise description of Bott-Chern classes and singular Bott-
Chern classes. Let X be a complex manifold and let ϕ be a symmetric power
series in r variables with real coefficients. Let E = (E, h) be a rank r holo-
morphic vector bundle provided with a hermitian metric. Using Chern-Weil
theory, we can associate to E a differential form ϕ(E) = ϕ(−K), where K is
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the curvature tensor of E viewed as a matrix of 2-forms. The differential form
ϕ(E) is closed and is a sum of components of bidegree (p, p) for p ≥ 0.
If

ξ : 0 −→ E
′ −→ E −→ E

′′ −→ 0

is a short exact sequence of holomorphic vector bundles provided with hermitian

metrics, then the differential forms ϕ(E) and ϕ(E
′⊕E′) may be different, but

they represent the same cohomology class.
The Bott-Chern form associated to ξ is a solution of the differential equation

− 2∂∂̄ϕ(ξ) = ϕ(E
′ ⊕ E′)− ϕ(E) (0.1)

obtained in a functorial way. The class of a Bott-Chern form modulo the image
of ∂ and ∂ is called a Bott-Chern class and is denoted by ϕ̃(ξ).
There are three ways of defining the Bott-Chern classes. The first one is the
original definition of Bott and Chern [7]. It is based on a deformation between

the connection associated to E and the connection associated to E
′⊕E′′. This

deformation is parameterized by a real variable.
In [17] Gillet and Soulé introduced a second definition of Bott-Chern classes

that is based on a deformation between E and E
′ ⊕ E′′ parameterized by a

projective line. This second definition is used in [4] to prove that the Bott-
Chern classes are characterized by three properties

(i) The differential equation (0.1).

(ii) Functoriality (i.e. compatibility with pull-backs via holomorphic maps).

(iii) The vanishing of the Bott-Chern class of a orthogonally split exact se-
quence.

In [4] Bismut, Gillet and Soulé have a third definition of Bott-Chern classes
based on the theory of superconnections. This definition is useful to link Bott-
Chern classes with analytic torsion forms.
The definition of Bott-Chern classes can be generalized to any bounded exact
sequence of hermitian vector bundles (see section 2 for details). Let

ξ : 0 −→ (En, hn) −→ . . . −→ (E1, h1) −→ (E0, h0) −→ 0

be a bounded acyclic complex of hermitian vector bundles; by this we mean
a bounded acyclic complex of vector bundles, where each vector bundle is
equipped with an arbitrarily chosen hermitian metric. Let

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

As before, let ϕ be a symmetric power series in r variables. A Bott-Chern class
associated to ξ satisfies the differential equation

−2∂∂̄ϕ̃(ξ) = ϕ(
⊕

k

E2k)− ϕ(
⊕

k

E2k+1).

Documenta Mathematica 15 (2010) 73–176
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In particular, let “ch” denote the power series associated to the Chern character
class. The Chern character class has the advantage of being additive for direct
sums. Then, the Bott-Chern class associated to the long exact sequence ξ and
to the Chern character class satisfies the differential equation

−2∂∂̄c̃h(ξ) = −
n∑

k=0

(−1)i ch(Ek).

Let now i : Y −→ X be a closed immersion of complex manifolds. Let F be a
holomorphic vector bundle on Y provided with a hermitian metric. Let N be
the normal bundle to Y in X provided also with a hermitian metric. Let

0 −→ En −→ En−1 −→ . . . −→ E0 −→ i∗F −→ 0

be a resolution of the coherent sheaf i∗F by locally free sheaves, provided with
hermitian metrics (following Zha [32] we shall call such a sequence a metric on
the coherent sheaf i∗F ). Let Td denote the Todd characteristic class. Then
the Grothendieck-Riemann-Roch theorem for the closed immersion i implies
that the current i∗(Td(N)−1 ch(F )) and the differential form

∑
k(−1)k ch(Ek)

represent the same class in cohomology. We denote ξ the data consisting in the
closed embedding i, the hermitian bundle N , the hermitian bundle F and the
resolution E∗ −→ i∗F .
In the paper [5], Bismut, Gillet and Soulé introduced a current associated to
the above situation. These currents are called singular Bott-Chern currents and
denoted in [5] by T (ξ). When the hermitian metrics satisfy a certain technical
condition (condition A of Bismut) then the singular Bott-Chern current T (ξ)
satisfies the differential equation

−2∂∂̄T (ξ) = i∗(Td(N)−1 ch(F ))−
n∑

i=0

(−1)i ch(Ei).

These singular Bott-Chern currents are among the main ingredients of the
proof of Gillet and Soulé’s arithmetic Riemann-Roch theorem. In fact it is the
main ingredient of the arithmetic Riemann-Roch theorem for closed immersions
[6]. This definition of singular Bott-Chern classes is based on the formalism of
superconnections, like the third definition of ordinary Bott-Chern classes.
In his thesis [32], Zha gave another definition of singular Bott-Chern currents
and used it to give a proof of a different version of the arithmetic Riemann-Roch
theorem. This second definition is analogous to Bott and Chern’s original defi-
nition. Nevertheless there is no explicit comparison between the two definitions
of singular Bott-Chern currents.
One of the purposes of this note is to give a third construction of singular Bott-
Chern currents, in fact of their classes modulo the image of ∂ and ∂, which could
be seen as analogous to the second definition of Bott-Chern classes. Moreover
we will use this third construction to give an axiomatic definition of a theory
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of singular Bott-Chern classes. A theory of singular Bott-Chern classes is an
assignment that, to each data ξ as above, associates a class of currents T (ξ),
that satisfies the analogue of conditions (i), (ii) and (iii). The main technical
point of this axiomatic definition is that the conditions analogous to (i), (ii)
and (iii) above are not enough to characterize the singular Bott-Chern classes.
Thus we are led to the problem of classifying the possible theories of Bott-Chern
classes, which is the other purpose of this paper.
We fix a theory T of singular Bott-Chern classes. Let Y be a complex manifold
and let N and F be two hermitian holomorphic vector bundles on Y . We write
P = P(N ⊕ 1) for the projective completion of N . Let s : Y −→ P be the
inclusion as the zero section and let πP : P −→ Y be the projection. Let K∗ be
the Koszul resolution of s∗OY endowed with the metric induced by N . Then
we have a resolution by hermitian vector bundles

K(F,N) : K∗ ⊗ π∗PF −→ s∗F.

To these data we associate a singular Bott-Chern class T (K(F,N)). It turns
out that the current

1

(2πi)rkN

∫

πP

T (K(F,N)) = (πP )∗T (K(F,N))

is closed (see section 3 for general properties of the Bott-Chern classes that
imply this property) and determines a characteristic class CT (F,N) on Y for
the vector bundles N and F . Conversely, any arbitrary characteristic class for
pairs of vector bundles can be obtained in this way. This allows us to classify
the possible theories of singular Bott-Chern classes:

Claim (theorem 7.1). The assignment that sends a singular Bott-Chern class
T to the characteristic class CT is a bijection between the set of theories of
singular Bott-Chern classes and the set of characteristic classes.

The next objective of this note is to study the properties of the different theories
of singular Bott-Chern classes and of the corresponding characteristic classes.
We mention, in the first place, that for the functoriality condition to make sense,
we have to study the wave front sets of the currents representing the singular
Bott-Chern classes. In particular we use a Poincaré Lemma for currents with
fixed wave front set. This result implies that, in each singular Bott-Chern class,
we can find a representative with controlled wave front set that can be pulled
back with respect certain morphisms.
We also investigate how different properties of the singular Bott-Chern classes
T are reflected in properties of the characteristic classes CT . We thus charac-
terize the compatibility of the singular Bott-Chern classes with the projection
formula, by the property of CT of being compatible with the projection for-
mula. We also relate the compatibility of the singular Bott-Chern classes with
the composition of successive closed immersions to an additivity property of
the associated characteristic class.
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Furthermore, we show that we can add a natural fourth axiom to the conditions
analogue to (i), (ii) and (iii), namely the condition of being homogeneous (see
section 9 for the precise definition).

Claim (theorem 9.11). There exists a unique homogeneous theory of singular
Bott-Chern classes.

Thanks to this axiomatic characterization, we prove that this theory agrees
with the theories of singular Bott-Chern classes introduced by Bismut, Gillet
and Soulé [6], and by Zha [32]. In particular this provides us a comparison
between the two definitions. We will also characterize the characteristic class
CTh for the theory of homogeneous singular Bott-Chern classes.
The last objective of this paper is to give a proof of the arithmetic Riemann-
Roch theorem for closed immersions. A version of this theorem was proved by
Bismut, Gillet and Soulé and by Zha.
Next we will discuss the contents of the different sections of this paper. In
section §1 we recall the properties of characteristic classes in analytic Deligne
cohomology. A characteristic class is just a functorial assignment that asso-
ciates a cohomology class to each vector bundle. The main result of this section
is that any characteristic class is given by a power series on the Chern classes,
with appropriate coefficients.
In section §2 we recall the theory of Bott-Chern forms and its main properties.
The contents of this section are standard although the presentation is slightly
different to the ones published in the literature.
In section §3 we study certain direct images of Bott-Chern forms. The main
result of this section is that, even if the Bott-Chern classes are not closed,
certain direct images of Bott-Chern classes are closed. This result generalizes
previous results of Bismut, Gillet and Soulé and of Mourougane. This result is
used to prove that the class CT mentioned previously is indeed a cohomology
class, but it can be of independent interest because it implies that several
identities in characteristic classes are valid at the level of differential forms.
In section §4 we study the cohomology of the complex of currents with a fixed
wave front set. The main result of this section is a Poincaré lemma for currents
of this kind. This implies in particular a ∂∂̄-lemma. The results of this section
are necessary to state the functorial properties of singular Bott-Chern classes.
In section §5 we recall the deformation of resolutions, that is a generalization of
the deformation to the normal cone, and we also recall the construction of the
Koszul resolution. These are the main geometric tools used to study singular
Bott-Chern classes.
Sections §6 to §9 are devoted to the definition and study of the theories of sin-
gular Bott-Chern classes. Section §6 contains the definition and first properties.
Section §7 is devoted to the classification theorem of such theories. In section
§8 we study how properties of the theory of singular Bott-Chern classes and of
the associated characteristic class are related. And in section §9 we define the
theory of homogeneous singular Bott-Chern classes and we prove that it agrees
with the theories defined by Bismut, Gillet and Soulé and by Zha.
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Finally in section §10 we define arithmetic K-groups associated to a Dlog-
arithmetic variety (X , C) (in the sense of [13]) and push-forward maps for closed
immersions of metrized arithmetic varieties, at the level of the arithmetic K-
groups. After studying the compatibility of these maps with the projection
formula and with the push-forward map at the level of currents, we prove
a general Riemann-Roch theorem for closed immersions (theorem 10.28) that
compares the direct images in the arithmeticK-groups with the direct images in
the arithmetic Chow groups. This theorem is compatible, if we choose the the-
ory of homogeneous singular Bott-Chern classes, with the arithmetic Riemann-
Roch theorem for closed immersions proved by Bismut, Gillet and Soulé [6] and
it agrees with the theorem proved by Zha [32]. Theorem 10.28, together with
the arithmetic Grothendieck-Riemann-Roch theorem for submersions proved in
[16], can be used to obtain an arithmetic Grothendieck-Riemann-Roch theorem
for projective morphisms of regular arithmetic varieties.
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1 Characteristic classes in analytic Deligne cohomology

A characteristic class for complex vector bundles is a functorial assignment
which, to each complex continuous vector bundle on a paracompact topological
space X , assigns a class in a suitable cohomology theory of X . For example,
if the cohomology theory is singular cohomology, it is well known that each
characteristic class can be expressed as a power series in the Chern classes.
This can be seen for instance, showing that continuous complex vector bundles
on a paracompact space X can be classified by homotopy classes of maps from
X to the classifying space BGL∞(C) and that the cohomology of BGL∞(C)
is generated by the Chern classes (see for instance [28]).
The aim of this section is to show that a similar result is true if we restrict the
class of spaces to the class of quasi-projective smooth complex manifolds, the
class of maps to the class of algebraic maps and the class of vector bundles to
the class of algebraic vector bundles and we choose analytic Deligne cohomology
as our cohomology theory.
This result and the techniques used to prove it are standard. We will use the
splitting principle to reduce to the case of line bundles and will then use the
projective spaces as a model of the classifying space BGL1(C). In this section
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we also recall the definition of Chern classes in analytic Deligne cohomology
and we fix some notations that will be used through the paper.

Definition 1.1. Let X be a complex manifold. For each integer p, the analytic
real Deligne complex of X is

RX,D(p) = (R(p) −→ OX −→ Ω1
X −→ . . . −→ Ωp−1X )

∼= s(R(p)⊕ F pΩ∗X −→ Ω∗X),

where R(p) is the constant sheaf (2πi)pR ⊆ C. The analytic real Deligne
cohomology of X , denotedH∗Dan(X,R(p)), is the hyper-cohomology of the above
complex.

Analytic Deligne cohomology satisfies the following result.

Theorem 1.2. The assignment X 7−→ H∗Dan(X,R(∗)) =
⊕

pH
∗
Dan(X,R(p)) is

a contravariant functor between the category of complex manifolds and holo-
morphic maps and the category of unitary bigraded rings that are graded com-
mutative (with respect to the first degree) and associative. Moreover there exists
a functorial map

c : Pic(X) = H1(X,O∗X) −→ H2
Dan(X,R(1))

and, for each closed immersion of complex manifolds i : Y −→ X of codimen-
sion p, there exists a morphism

i∗ : H∗Dan(Y,R(∗)) −→ H∗+2p
Dan (X,R(∗ + p))

satisfying the properties

A1 Let X be a complex manifold and let E be a holomorphic vector bundle
of rank r. Let P(E) be the associated projective bundle and let O(−1) the
tautological line bundle. The map

π∗ : H∗Dan(X,R(∗)) −→ H∗Dan(P(E),R(∗))

induced by the projection π : P(E) −→ X gives to the second ring a
structure of left module over the first. Then the elements c(cl(O(−1)))i,
i = 0, . . . , r − 1 form a basis of this module.

A2 If X is a complex manifold, L a line bundle, s a holomorphic section
of L that is transverse to the zero section, Y is the zero locus of s and
i : Y −→ X the inclusion, then

c(cl(L)) = i∗(1Y ).

A3 If j : Z −→ Y and i : Y −→ X are closed immersions of complex mani-
folds then (ij)∗ = i∗j∗.
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A4 If i : Y −→ X is a closed immersion of complex manifolds then, for every
a ∈ H∗Dan(X,R(∗)) and b ∈ H∗Dan(Y,R(∗))

i∗(bi
∗a) = (i∗b)a.

Proof. The functoriality is clear. The product structure is described, for in-
stance, in [15]. The morphism c is defined by the morphism in the derived
category

O∗X [1]
∼=←− s(Z(1)→ OX) −→ s(R(1)→ OX) = RD(1).

The morphism i∗ can be constructed by resolving the sheaves RD(p) by means
of currents (see [26] for a related construction). Properties A3 and A4 follow
easily from this construction.
By abuse of notation, we will denote by c1(O(−1)) the first Chern class of
O(−1) with the algebro-geometric twist, in any of the groups H2(P(E),R(1)),
H2(P(E),C), H1(P(E),Ω1

P(E)). Then, we have sheaf isomorphisms (see for

instance [22] for a related result),

r−1⊕

i=0

RX(p− i)[−2i] −→ Rπ∗RP(E)(p)

r−1⊕

i=0

Ω∗X [−2i] −→ Rπ∗Ω
∗
P(E)

r−1⊕

i=0

F p−iΩ∗X [−2i] −→ Rπ∗F
pΩ∗P(E)

given, all of them, by (a0, . . . , ar−1) 7−→
∑
aic1(O(−1))i. Hence we obtain a

sheaf isomorphism

r−1⊕

i=0

RX,D(p− i)[−2i] −→ Rπ∗RP(E),D(p)

from which property A1 follows. Finally property A2 in this context is given
by the Poincare-Lelong formula (see [13] proposition 5.64).

Notation 1.3. For the convenience of the reader, we gather here together
several notations and conventions regarding the differential forms, currents and
Deligne cohomology that will be used through the paper.
Throughout this paper we will use consistently the algebro-geometric twist.
In particular the Chern classes ci, i = 0, . . . in Betti cohomology will live in
ci ∈ H2i(X,R(i)); hence our normalizations differ from the ones in [18] where
real forms and currents are used.
Moreover we will use the following notations. We will denote by E ∗X the sheaf of
Dolbeault algebras of differential forms on X and by D∗X the sheaf of Dolbeault
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complexes of currents on X (see [13] §5.4 for the structure of Dolbeault complex
of D∗X). We will denote by E∗(X) and by D∗(X) the complexes of global
sections of E ∗X and D∗X respectively. Following [9] and [13] definition 5.10, we
denote by (D∗( , ∗), dD) the functor that associates to a Dolbeault complex
its corresponding Deligne complex. For shorthand, we will denote

D∗(X, p) = D∗(E∗(X), p),

D∗D(X, p) = D∗(D∗(X), p).

To keep track of the algebro-geometric twist we will use the conventions of [13]
§5.4 regarding the current associated to a locally integrable differential form

[ω](η) =
1

(2πi)dimX

∫

X

η ∧ ω

and the current associated with a subvariety Y

δY (η) =
1

(2πi)dimY

∫

Y

η.

With these conventions, we have a bigraded morphism D∗(X, ∗) → D∗D(X, ∗)
and, if Y has codimension p, the current δY belongs to D2p

D (X, p). Then
D∗(X, p) and D∗D(X, p) are the complex of global sections of an acyclic res-
olution of RX,D(p). Therefore

H∗Dan(X,R(p)) = H∗(D(X, p)) = H∗(DD(X, p)).

If f : X → Y is a proper smooth morphism of complex manifolds of relative
dimension e, then the integral along the fibre morphism

f∗ : Dk(X, p) −→ Dk−2e(X, p− e)

is given by

f∗ω =
1

(2πi)e

∫

f

ω. (1.4)

If (D∗(∗), dD) is a Deligne complex associated to a Dolbeault complex, we will
write

D̃k(X, p) := Dk(X, p)/ dD Dk−1(X, p).

Finally, following [13] 5.14 we denote by • the product in the Deligne complex
that induces the usual product in Deligne cohomology. Note that, if ω ∈⊕

pD2p(X, p), then for any η ∈ D∗(X, ∗) we have ω • η = η • ω = η ∧ ω.
Sometimes, in this case we will just write ηω := η • ω.

We denote by ∗ the complex manifold consisting on one single point. Then

Hn
Dan(∗, p) =





R(p) := (2πi)pR, if n = 0, p ≤ 0,

R(p− 1) := (2πi)p−1R, if n = 1, p > 0.

{0}, otherwise.
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The product structure in this case is the bigraded product that is given by
complex number multiplication when the degrees allow the product to be non
zero. We will denote by D this ring. This is the base ring for analytic Deligne
cohomology. Note that, in particular, H1

Dan(∗, 1) = R = C/R(1). We will
denote by 11 the image of 1 in H1

Dan(∗, 1).
Following [23], theorem 1.2 implies the existence of a theory of Chern classes
for holomorphic vector bundles in analytic Deligne cohomology. That is, to
every vector bundle E, we can associate a collection of Chern classes ci(E) ∈
H2i
Dan(X,R(i)), i ≥ 1 in a functorial way.

We want to see that all possible characteristic classes in analytic Deligne coho-
mology can be derived from the Chern classes.

Definition 1.5. Let n ≥ 1 be an integer and let r1 ≥ 1, . . . , rn ≥ 1 be a collec-
tion of integers. A theory of characteristic classes for n-tuples of vector bundles
of rank r1, . . . , rn is an assignment that, to each n-tuple of isomorphism classes
of vector bundles (E1, . . . , En) over a complex manifold X , with rk(Ei) = ri,
assigns a class

cl(E1, . . . , En) ∈
⊕

k,p

Hk
Dan(X,R(p))

in a functorial way. That is, for every morphism f : X −→ Y of complex
manifolds, the equality

f∗(cl(E1, . . . , En)) = cl(f∗E1, . . . , f
∗En)

holds

The first consequence of the functoriality and certain homotopy property of
analytic Deligne cohomology classes is the following.

Proposition 1.6. Let cl be a theory of characteristic classes for n-tuples of vec-
tor bundles of rank r1, . . . , rn. Let X be a complex manifold and let (E1, . . . , En)
be a n-tuple of vector bundles over X with rk(Ei) = ri for all i. Let 1 ≤ j ≤ n
and let

0 −→ E′j −→ Ej −→ E′′j −→ 0,

be a short exact sequence. Then the equality

cl(E1, . . . , Ej , . . . , En) = cl(E1, . . . , E
′
j ⊕ E′′j , . . . , En)

holds.

Proof. Let ι0, ι∞ : X −→ X × P1 be the inclusion as the fiber over 0 and
the fiber over ∞ respectively. Then there exists a vector bundle Ẽj on
X × P1 (see for instance [19] (1.2.3.1) or definition 2.5 below) such that

ι∗0Ẽj ∼= Ej and ι∗∞Ẽj ∼= E′j ⊕ E′′j . Let p1 : X × P1 −→ X be the first

projection. Let ω ∈ ⊕k,pDk(X, p) be any dD-closed form that represents
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cl(p∗1E1, . . . , Ẽj , . . . , p
∗
1En). Then, by functoriality we know that ι∗0ω repre-

sents cl(E1, . . . , Ej , . . . , En) and ι∗∞ω represents cl(E1, . . . , E
′
j ⊕ E′′j , . . . , En).

We write

β =
1

2πi

∫

P1

−1

2
log tt̄ • ω,

where t is the absolute coordinate of P1. Then

dD β = ι∗∞ω − ι∗0ω

which implies the result.

A standard method to produce characteristic classes for vector bundles is to
choose hermitian metrics on the vector bundles and to construct closed differ-
ential forms out of them. The following result shows that functoriality implies
that the cohomology classes represented by these forms are independent from
the hermitian metrics and therefore are characteristic classes. When working
with hermitian vector bundles we will use the convention that, if E denotes the
vector bundle, then E = (E, h) will denote the vector bundle together with the
hermitian metric.

Proposition 1.7. Let n ≥ 1 be an integer and let r1 ≥ 1, . . . , rn ≥ 1
be a collection of integers. Let cl be an assignment that, to each n-tuple
(E1, . . . , En) = ((E1, h1), . . . , (En, hn)) of isometry classes of hermitian vector
bundles of rank r1, . . . , rn over a complex manifold X, associates a cohomology
class

cl(E1, . . . , En) ∈
⊕

k,p

Hk
D(X,R(p))

such that, for each morphism f : Y → X,

cl(f∗E1, . . . , f
∗En) = f∗ cl(E1, . . . , En).

Then the cohomology class cl(E1, . . . , En) is independent from the hermitian
metrics. Therefore it is a well defined characteristic class.

Proof. Let 1 ≤ j ≤ n be an integer and let E
′
j = (Ej , h

′
j) be the vector bundle

underlying Ej with a different choice of metric. Let ι0, ι∞ and p1 be as in the
proof of proposition 1.6. Then we can choose a hermitian metric h on p∗1Ej ,

such that ι∗0(p∗1Ej , h) = Ej and ι∗∞(p∗1Ej , h) = E
′
j . Let ω be any smooth closed

differential form on X × P1 that represents cl(p∗1E1, . . . , (p
∗
1E1, h), . . . , p∗1En).

Then,

β =
1

2πi

∫

P1

−1

2
log tt̄ • ω

satisfies
dD β = ι∗∞ω − ι∗0ω

which implies the result.
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We are interested in vector bundles that can be extended to a projective variety.
Therefore we will restrict ourselves to the algebraic category. So, by a complex
algebraic manifold we will mean the complex manifold associated to a smooth
quasi-projective variety over C. When working with an algebraic manifold, by
a vector bundle we will mean the holomorphic vector bundle associated to an
algebraic vector bundle.
We will denote by D[[x1, . . . , xr]] the ring of commutative formal power se-
ries. That is, the unknowns x1, . . . , xr commute with each other and with
D. We turn it into a commutative bigraded ring by declaring that the un-
knowns xi have bidegree (2, 1). The symmetric group in r elements, Sr acts
on D[[x1, . . . , xr]]. The subalgebra of invariant elements is generated over D
by the elementary symmetric functions. The main result of this section is the
following

Theorem 1.8. Let cl be a theory of characteristic classes for n-tuples of vector
bundles of rank r1, . . . , rn. Then, there is a power series ϕ ∈ D[[x1, . . . , xr]]
in r = r1 + · · · + rn variables with coefficients in the ring D, such that, for
each complex algebraic manifold X and each n-tuple of algebraic vector bundles
(E1, . . . , En) over X with rk(Ei) = ri this equality holds:

cl(E1, . . . , En) = ϕ(c1(E1), . . . , cr1(E1), . . . , c1(En), . . . , crn(En)). (1.9)

Conversely, any power series ϕ as before determines a theory of characteristic
classes for n-tuples of vector bundles of rank r1, . . . , rn, by equation (1.9).

Proof. The second statement is obvious from the properties of Chern classes.
Since we are assuming X quasi-projective, given n algebraic vector bundles
E1, . . . , En on X , there is a smooth projective compactification X̃ and vector
bundles Ẽ1, . . . , Ẽn on X̃, such that Ei = Ẽi|X (see for instance [14] proposition
2.2), we are reduced to the case when X is projective. In this case, analytic
Deligne cohomology agrees with ordinary Deligne cohomology.
Let us assume first that r1 = · · · = rn = 1 and that we have a characteristic
class cl for n line bundles. Then, for each n-tuple of positive integersm1, . . . ,mn

we consider the space Pm1,...,mn = Pm1

C × · · · × PmnC and we denote by pi the
projection over the i-th factor. Then

⊕

k,p

Hk
D(Pm1,...,mn ,R(p)) = D[x1, . . . , xn]

/
(xm1

1 , . . . , xmnn )

is a quotient of the polynomial ring generated by the classes xi = c1(p∗iO(1))
with coefficients in the ring D. Therefore, there is a polynomial ϕm1,...,mn in n
variables such that

cl(p∗1O(1), . . . , p∗1O(1)) = ϕm1,...,mn(x1, . . . , xn).

If m1 ≤ m′1, . . . , mn ≤ m′n then, by functoriality, the polynomial ϕm1,...,mn is
the truncation of the polynomial ϕm′

1,...,m
′
n
. Therefore there is a power series

Documenta Mathematica 15 (2010) 73–176
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in n variables, ϕ such that ϕm1,...,mn is the truncation of ϕ in the appropriate
quotient of the polynomial ring.
Let L1, . . . , Ln be line bundles on a projective algebraic manifold that are
generated by global sections. Then they determine a morphism f : X −→
Pm1,...,mn such that Li = f∗p∗iO(1). Therefore, again by functoriality, we
obtain

cl(L1, . . . , Ln) = ϕ(c1(L1), . . . , c1(Ln)).

From the class cl we can define a new characteristic class for n+ 1 line bundles
by the formula

cl′(L1, . . . , Ln,M) = cl(L1 ⊗M∨, . . . , Ln ⊗M∨).

When L1, . . . , Ln and M are generated by global sections we have that there
is a power series ψ such that

cl′(L1, . . . , Ln,M) = ψ(c1(L1), . . . , c1(Ln), c1(M)).

Moreover, when the line bundles Li⊗M∨ are also generated by global sections
the following holds

ψ(c1(L1), . . . , c1(Ln), c1(M)) = ϕ(c1(L1 ⊗M∨), . . . , c1(Ln ⊗M∨))

= ϕ(c1(L1)− c1(M), . . . , c1(Ln)− c1(M)).

Considering the system of spaces Pm1,...,mn,mn+1 with line bundles

Li = p∗iO(1)⊗ p∗n+1O(1), i = 1, . . . , n, M = p∗n+1O(1),

we see that there is an identity of power series

ϕ(x1 − y, . . . , xn − y) = ψ(x1, . . . , xn, y).

Now let X be a projective complex manifold and let L1, . . . , Ln be arbitrary
line bundles. Then there is a line bundle M such that M and L′i = Li ⊗M ,
i = 1, . . . , n are generated by global sections. Then we have

cl(L1, . . . , Ln) = cl(L′1 ⊗M∨, . . . , L′n ⊗M∨)

= cl′(L′1, . . . , L
′
n,M)

= ψ(c1(L′1), . . . , c1(L′n), c1(M))

= ϕ((c1(L′1)− c1(M), . . . , c1(L′n)− c1(M)))

= ϕ(c1(L1), . . . , c1(Ln)).

The case of arbitrary rank vector bundles follows from the case of rank one
vector bundles by proposition 1.6 and the splitting principle. We next recall
the argument. Given a projective complex manifold X and vector bundles
E1, . . . , En of rank r1, . . . , rn, we can find a proper morphism π : X̃ −→ X ,
with X̃ a complex projective manifold, and such that the induced morphism

π∗ : H∗D(X,R(∗)) −→ H∗D(X̃,R(∗))
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is injective and every bundle π∗(Ei) admits a holomorphic filtration

0 = Ki,0 ⊂ Ki,1 ⊂ · · · ⊂ Ki,ri−1 ⊂ Ki,ri = π∗(Ei),

with Li,j = Ki,j/Ki,j−1 a line bundle. If cl is a characteristic class for n-
tuples of vector bundles of rank r1, . . . , rn, we define a characteristic class for
r1 + · · ·+ rn-tuples of line bundles by the formula

cl′(L1,1, . . . , L1,r1, . . . , Ln,1, . . . , Ln,rn) =

cl(L1,1 ⊕ · · · ⊕ L1,r1 , . . . , Ln,1 ⊕ · · · ⊕, Ln,rn).

By the case of line bundles we know that there is a power series in r1 + · · ·+ rn
variables ψ such that

cl′(L1,1, . . . , L1,r1, . . . , Ln,1, . . . , Ln,rn) = ψ(c1(L1,1), . . . , c1(Ln,rn)).

Since the class cl′ is symmetric under the group Sr1 × · · · ×Srn , the same is
true for the power series ψ. Therefore ψ can be written in terms of symmetric
elementary functions. That is, there is another power series in r1 + · · · + rn
variables ϕ, such that

ψ(x1,1, . . . , xn,rn) = ϕ(s1(x1,1, . . . , x1,r1), . . . , sr1(x1,1, . . . , x1,r1), . . .

. . . , s1(xn,1, . . . , xn,rn), . . . , srn(xn,1, . . . , xn,rn)),

where si is the i-th elementary symmetric function of the appropriate number
of variables. Then

π∗(cl(E1, . . . , En)) = cl(π∗E1, . . . , π
∗En))

= cl′(L1,1, . . . , Ln,rn)

= ψ(c1(L1,1), . . . , c1(Ln,rn))

= ϕ(c1(π∗E1), . . . , cr1(π∗E1), . . . , c1(π∗En), . . . , crn(π∗En))

= π∗ϕ(c1(E1), . . . , cr1(E1), . . . , c1(En), . . . , crn(En)).

Therefore, the result follows from the injectivity of π∗.

Remark 1.10. It would be interesting to know if the functoriality of a charac-
teristic class in enough to imply that it is a power series in the Chern classes
for arbitrary complex manifolds and holomorphic vector bundles.

2 Bott-Chern classes

The aim of this section is to recall the theory of Bott-Chern classes. For more
details we refer the reader to [7], [4], [19], [31], [14], [10] and [12]. Note however
that the theory we present here is equivalent, although not identical, to the
different versions that appear in the literature.
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Let X be a complex manifold and let E = (E, h) be a rank r holomorphic
vector bundle provided with a hermitian metric. Let φ ∈ D[[x1, . . . , xr]] be a
formal power series in r variables that is symmetric under the action of Sr.
Let si, i = 1, . . . , r be the elementary symmetric functions in r variables. Then
φ(x1, . . . , xr) = ϕ(s1, . . . , sr) for certain power series ϕ. By Chern-Weil theory
we can obtain a representative of the class

φ(E) := ϕ(c1(E), . . . , cr(E)) ∈
⊕

k,p

Hk
Dan(X,R(p))

as follows.
We denote also by φ the invariant power series in r × r matrices defined by
φ. Let K be the curvature matrix of the hermitian holomorphic connection of
(E, h). The entries of K in a particular trivialization of E are local sections of
D2(X, 1). Then we write

φ(E, h) = φ(−K) ∈
⊕

k,p

Dk(X, p).

The form φ(E, h) is well defined, closed, and it represents the class φ(E).
Now let

E∗ = (. . .
fn+1−→ En

fn−→ En−1
fn−1−→ . . . )

be a bounded acyclic complex of hermitian vector bundles; by this we mean
a bounded acyclic complex of vector bundles, where each vector bundle is
equipped with an arbitrarily chosen hermitian metric.
Write

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

and let φ be a symmetric power series in r variables.
As before, we can define the Chern forms

φ(
⊕

i even

(Ei, hi)) and φ(
⊕

i odd

(Ei, hi)),

that represent the Chern classes φ(
⊕

i evenEi) and φ(
⊕

i odd Ei). The Chern
classes are compatible with respect to exact sequences, that is,

φ(
⊕

i even

Ei) = φ(
⊕

i odd

Ei).

But, in general, this is not true for the Chern forms. This lack of compatibility
with exact sequences on the level of Chern forms is measured by the Bott-Chern
classes.

Definition 2.1. Let

E∗ = (. . .
fn+1−→ En

fn−→ En−1
fn−1−→ . . . )
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be an acyclic complex of hermitian vector bundles, we will say that E∗ is an
orthogonally split complex of vector bundles if, for any integer n, the exact
sequence

0 −→ Ker fn −→ En −→ Ker fn−1 −→ 0

is split, there is a splitting section sn : Ker fn−1 → En such that En is the
orthogonal direct sum of Ker fn and Im sn and the metrics induced in the
subbundle Ker fn−1 by the inclusion Ker fn−1 ⊂ En−1 and by the section sn
agree.

Notation 2.2. Let (x : y) be homogeneous coordinates of P1 and let t = x/y
be the absolute coordinate. In order to make certain choices of metrics
in a functorial way, we fix once and for all a partition of unity {σ0, σ∞},
over P1 subordinated to the open cover of P1 given by the open subsets
{{|y| > 1/2|x|}, {|x| > 1/2|y|}}. As usual we will write∞ = (1 : 0), 0 = (0 : 1).

The fundamental result of the theory of Bott-Chern classes is the following
theorem (see [7], [4], [19]).

Theorem 2.3. There is a unique way to attach to each bounded exact complex
E∗ as above, a class φ̃(E∗) in

⊕

k

D̃2k−1(X, k) =
⊕

k

D2k−1(X, k)/ Im(dD)

satisfying the following properties

(i) (Differential equation)

dD φ̃(E∗) = φ(
⊕

i even

(Ei, hi))− φ(
⊕

i odd

(Ei, hi)). (2.4)

(ii) (Functoriality) f∗φ̃(E∗) = φ̃(f∗E∗), for every holomorphic map
f : X ′ −→ X.

(iii) (Normalization) If E∗ is orthogonally split, then φ̃(E∗) = 0.

Proof. We first recall how to prove the uniqueness.
Let Ki = (Ki, gi), where Ki = Ker fi and gi is the metric induced by the
inclusion Ki ⊂ Ei. Consider the complex manifold X × P1 with projections p1
and p2. For every vector bundle F on X we will denote F (i) = p∗1F ⊗p∗2OP1(i).

Let C̃∗ = C̃(E∗)∗ be the complex of vector bundles on X × P1 given by C̃i =

Ei(i) ⊕ Ei−1(i − 1) with differential d(s, t) = (t, 0). Let D̃∗ = D̃(E∗)∗ be the

complex of vector bundles with D̃i = Ei−1(i) ⊕ Ei−2(i − 1) and differential

d(s, t) = (t, 0). Using notation 2.2 we define the map ψ : C̃(E∗)i −→ D̃(E∗)i
given by ψ(s, t) = (fi(s)− t⊗ y, fi−1(t)). It is a morphism of complexes.

Definition 2.5. The first transgression exact sequence of E∗ is given by

tr1(E∗)∗ = Kerψ.
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On X × A1, the map p∗1Ei −→ C̃(E∗)i given by s 7−→ (s ⊗ yi, fi(s) ⊗ yi−1)
induces an isomorphism of complexes

p∗1E∗ −→ tr1(E∗)∗|X×A1 , (2.6)

and in particular isomorphisms

tr1(E∗)i|X×{0} ∼= Ei. (2.7)

Moreover, we have isomorphisms

tr1(E∗)i|X×{∞} ∼= Ki ⊕Ki−1. (2.8)

Definition 2.9. We will denote by tr1(E∗)∗ the complex tr1(E∗)∗ provided
with any hermitian metric such that the isomorphisms (2.7) and (2.8) are
isometries. If we need a functorial choice of metric, we proceed as follows.
On X × (P1 \ {0}) we consider the metric induced by C̃ on tr1(E∗)∗. On
X × (P1 \ {∞}) we consider the metric induced by the isomorphism (2.6). We
glue both metrics by means of the partition of unity of notation 2.2.

In particular, we have that tr1(E∗)|X×{∞} is orthogonally split. We assume
that there exists a theory of Bott-Chern classes satisfying the above properties.
Thus, there exists a class of differential forms φ̃(tr1(E∗)∗) with the following
properties. By (i) this class satisfies

dD φ̃(tr1(E∗)∗) = φ(
⊕

i even

tr1(E∗)i))− φ(
⊕

i odd

tr1(E∗)i).

By (ii), it satisfies

φ̃(tr1(E∗)∗) |X×{0}= φ̃(tr1(E∗)∗ |X×{0}) = φ̃(E∗).

Finally, by (ii) and (iii) it satisfies

φ̃(tr1(E∗)∗) |X×{∞}= φ̃(tr1(E∗)∗ |X×{∞}) = 0.

Let φ(tr1(E∗)∗) be any representative of the class φ̃(tr1(E∗)∗).
Then, in the group

⊕
k D̃2k−1(X, k), we have

0 = dD
1

2πi

∫

P1

−1

2
log(tt̄) • φ(tr1(E∗)∗)

=
1

2πi

∫

P1

(
dD
−1

2
log(tt̄) • φ(tr1(E∗)∗)−

−1

2
log(tt̄) • dD φ(tr1(E∗)∗)

)

= φ̃(tr1(E∗)∗)|X×{∞} − φ̃(tr1(E∗)∗)|X×{0}

− 1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i even

tr1(E∗)i)− φ(
⊕

i odd

tr1(E∗)i))

= −φ̃(E∗)−
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i even

tr1(E∗)i)− φ(
⊕

i odd

tr1(E∗)i)).
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Hence, if such a theory exists, it should satisfy the formula

φ̃(E∗) =
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i odd

tr1(E∗)i)− φ(
⊕

i even

tr1(E∗)i)). (2.10)

Therefore φ̃(E∗) is determined by properties (i), (ii) and (iii).
In order to prove the existence of a theory of functorial Bott-Chern forms, we
have to see that the right hand side of equation (2.10) is independent from the
choice of the metric on tr1(E∗)∗ and that it satisfies the properties (i), (ii) and
(iii). For this the reader can follow the proof of [4] theorem 1.29.

In view of the proof of theorem 2.3, we can define the Bott-Chern classes as
follows.

Definition 2.11. Let

E∗ : 0 −→ (En, hn) −→ . . . −→ (E1, h1) −→ (E0, h0) −→ 0

be a bounded acyclic complex of hermitian vector bundles. Let

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

Let φ ∈ D[[x1, . . . , xr]]
Sr be a symmetric power series in r variables. Then

the Bott-Chern class associated to φ and E∗ is the element of
⊕

k,p D̃k(EX , p)
given by

φ̃(E∗) =
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i odd

tr1(E∗)i)− φ(
⊕

i even

tr1(E∗)i)).

The following property is obvious from the definition.

Lemma 2.12. Let E∗ be an acyclic complex of hermitian vector bundles. Then,
for any integer k,

φ̃(E∗[k]) = (−1)kφ̃(E∗).

�

Particular cases of Bott-Chern classes are obtained when we consider a single
vector bundle with two different hermitian metrics or a short exact sequence of
vector bundles. Note however that, in order to fix the sign of the Bott-Chern
classes on these cases, one has to choose the degree of the vector bundles
involved, for instance as in the next definition.

Definition 2.13. Let E be a holomorphic vector bundle of rank r, let h0
and h1 be two hermitian metrics and let φ be an invariant power series of r
variables. We will denote by φ̃(E, h0, h1) the Bott-Chern class associated to
the complex

ξ : 0 −→ (E, h1) −→ (E, h0) −→ 0,

where (E, h0) sits in degree zero.
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Therefore, this class satisfies

dD φ̃(E, h0, h1) = φ(E, h0)− φ(E, h1).

In fact we can characterize φ̃(E, h0, h1) axiomatically as follows.

Proposition 2.14. Given φ, a symmetric power series in r variables, there is
a unique way to attach, to each rank r vector bundle E on a complex manifold
X and metrics h0 and h1, a class φ̃(E, h0, h1) satisfying

(i) dD φ̃(E, h0, h1) = φ(E, h0)− φ(E, h1).

(ii) f∗φ̃(E, h0, h1) = φ̃(f∗(E, h0, h1)) for every holomorphic map f : Y −→
X.

(iii) φ̃(E, h, h) = 0.

Moreover, if we denote Ẽ := tr1(ξ)1, then it satisfies

Ẽ|X×{∞} ∼= (E, h0), Ẽ|X×{0} ∼= (E, h1)

and

φ̃(E, h0, h1) =
1

2πi

∫

P1

−1

2
log(tt̄) • φ(Ẽ). (2.15)

Proof. The axiomatic characterization is proved as in theorem 2.3. In order
to prove equation (2.15), if we follow the notations of the proof of theorem
2.3 we have K0 = (E, h0) and K1 = 0. Therefore tr1(ξ)0 = p∗1(E, h0), while

Ẽ := tr1(ξ)1 satisfies Ẽ|X×{0} = (E, h1) and Ẽ|X×{∞} = (E, h0). Using the
antisymmetry of log tt̄ under the involution t 7→ 1/t we obtain

φ̃(E, h0, h1) = φ̃(ξ) =
1

2πi

∫

P1

−1

2
log(tt̄) • φ(Ẽ).

We can also treat the case of short exact sequences. If

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0

is a short exact sequence of hermitian vector bundles, by convention, we will
assume that E0 sits in degree zero. This fixs the sign of φ̃(ε).

Proposition 2.16. Given φ, a symmetric power series in r variables, there
is a unique way to attach, to each short exact sequence of hermitian vector
bundles on a complex manifold X

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0,

where E1 has rank r, a class φ̃(ε) satisfying
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(i) dD φ̃(ε) = φ(E0 ⊕ E2)− φ(E1).

(ii) f∗φ̃(ε) = φ̃(f∗(ǫ)) for every holomorphic map f : Y −→ X.

(iii) φ̃(ε) = 0 whenever ε is orthogonally split.

�

The following additivity result of Bott-Chern classes will be useful later.

Lemma 2.17. Let A∗,∗ be a bounded exact sequence of bounded exact sequences
of hermitian vector bundles. Let

r =
∑

i,j even

rk(Ai,j) =
∑

i,j odd

rk(Ai,j) =
∑

i odd
j even

rk(Ai,j) =
∑

i even
j odd

rk(Ai,j).

Let φ be a symmetric power series in r variables. Then

φ̃(
⊕

k even

Ak,∗)− φ̃(
⊕

k odd

Ak,∗) = φ̃(
⊕

k even

A∗,k)− φ̃(
⊕

k odd

A∗,k).

Proof. The proof is analogous to the proof of proposition 6.13 and is left to the
reader.

Corollary 2.18. Let A∗,∗ be a bounded double complex of hermitian vector
bundles with exact rows, let

r =
∑

i+j even

rk(Ai,j) =
∑

i+j odd

rk(Ai,j)

and let φ be a symmetric power series in r variables. Then

φ̃(TotA∗,∗) = φ̃(
⊕

k

A∗,k[−k]).

Proof. Let k0 be an integer such that Ak,l = 0 for k < k0. For any in-
teger n we denote by Totn = Tot((Ak,l)k≥n) the total complex of the ex-
act complex formed by the rows with index greater or equal than n. Then
Totk0 = Tot(A∗,∗). For each k there is an exact sequence of complexes

0 −→ Totk+1 −→ Totk ⊕
⊕

l<k

Al,∗[−l] −→
⊕

l≤k
Al,∗[−l] −→ 0,

which is orthogonally split in each degree. Therefore by lemma 2.17 we obtain

φ̃(Totk ⊕
⊕

l<k

Al,∗[−l]) = φ̃(Totk−1⊕
⊕

l≤k
Al,∗[−l]).

Hence the result follows by induction.
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A particularly important characteristic class is the Chern character. This class
is additive for exact sequences. Specializing lemma 2.17 and corollary 2.18 to
the Chern character we obtain

Corollary 2.19. With the hypothesis of lemma 2.17, the following equality
holds: ∑

k

(−1)kc̃h(Ak,∗) =
∑

k

(−1)kc̃h(A∗,k) = c̃h(TotA∗,∗).

�

Our next aim is to extend the Bott-Chern classes associated to the Chern
character to metrized coherent sheaves. This extension is due to Zha [32],
although it is still unpublished.

Definition 2.20. A metrized coherent sheaf F on X is a pair (F , E∗ → F)
where F is a coherent sheaf on X and

0→ En → En−1 → · · · → E0 → F → 0

is a finite resolution by hermitian vector bundles of the coherent sheaf F . This
resolution is also called the metric of F .

If E is a hermitian vector bundle, we will also denote byE the metrized coherent

sheaf (E,E
id−→ E).

Note that the coherent sheaf 0 may have non trivial metrics. In fact, any exact
sequence of hermitian vector bundles

0→ An → · · · → A0 → 0→ 0

can be seen as a metric on 0. It will be denoted 0A∗ . A metric on 0 is said to
be orthogonally split if the exact sequence is orthogonally split.

A morphism of metrized coherent sheaves F1 → F2 is just a morphism of
sheaves F1 → F2. A sequence of metrized coherent sheaves

ε : . . . −→ Fn+1 −→ Fn −→ Fn−1 −→ . . .

is said to be exact if it is exact as a sequence of coherent sheaves.

Definition 2.21. Let F = (F , E∗ → F) be a metrized coherent sheaf. Then
the Chern character form associated to F is given by

ch(F) =
∑

i

(−1)i ch(Ei).

Definition 2.22. An exact sequence of metrized coherent sheaves with com-
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patible metrics is a commutative diagram

...
...

...
↓ ↓ ↓

0 → En,1 → . . . → E0,1 → 0
↓ ↓ ↓

0 → En,0 → . . . → E0,0 → 0
↓ ↓ ↓

0 → Fn → . . . → F0 → 0
↓ ↓ ↓
0 0 0

(2.23)

where all the rows and columns are exact. The columns of this diagram are the
individual metrics of each coherent sheaf. We will say that an exact sequence
with compatible metrics is orthogonally split if each row of vector bundles is
an orthogonally split exact sequence of hermitian vector bundles.

As in the case of exact sequences of hermitian vector bundles, the Chern char-
acter form is not compatible with exact sequences of metrized coherent sheaves
and we can define a secondary Bott-Chern character which measures the lack
of compatibility between the metrics.

Theorem 2.24. 1) There is a unique way to attach to every finite exact
sequence of metrized coherent sheaves with compatible metrics

ε : 0→ Fn → · · · → F0 → 0

on a complex manifold X a Bott-Chern secondary character

c̃h(ε) ∈
⊕

p

D̃2p−1(X, p)

such that the following axioms are satisfied:

(i) (Differential equation)

dD c̃h(ε) =
∑

k

(−1)k ch(Fk).

(ii) (Functoriality) If f : X ′ −→ X is a morphism of complex manifolds,
that is tor-independent from the coherent sheaves Fk, then

f∗(c̃h)(ε) = c̃h(f∗ε),

where the exact sequence f∗ε exists thanks to the tor-independence.

(iii) (Horizontal normalization) If ε is orthogonally split then

c̃h(ε) = 0.
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2) There is a unique way to attach to every finite exact sequence of metrized
coherent sheaves

ε : 0→ Fn → · · · → F0 → 0

on a complex manifold X a Bott-Chern secondary character

c̃h(ε) ∈
⊕

p

D̃2p−1(X, p)

such that the axioms (i), (ii) and (iii) above and the axiom (iv) below are
satisfied:

(iv) (Vertical normalization) For every bounded complex of hermitian
vector bundles

· · · → Ak → · · · → A0 → 0

that is orthogonally split, and every bounded complex of metrized
coherent sheaves

ε : 0→ Fn → · · · → F0 → 0

where the metrics are given by Ei,∗ → Fi, if, for some i0 we denote

F ′i0 = (Fi0 , Ei0,∗ ⊕A∗ → Fi0)

and
ε′ : 0→ Fn → · · · → F

′
i0 → · · · → F0 → 0,

then c̃h(ε′) = c̃h(ε).

Proof. 1) The uniqueness is proved using the standard deformation argument.
By definition, the metrics of the coherent sheaves form a diagram like (2.23).

On X × P1, for each j ≥ 0 we consider the exact sequences Ẽ∗,j = tr1(E∗,j)
associated to the rows of the diagram with the hermitian metrics of definition
2.9. Then, for each i, j there are maps d: Ẽi,j → Ẽi−1,j , and δ : Ẽi,j → Ẽi,j−1.
We denote

F̃i = Coker(δ : Ẽi,1 → Ẽi,0).

Using the definition of tr1 and diagram chasing one can prove that there is a
commutative diagram

...
...

...
↓ ↓ ↓

0 → Ẽn,1 → . . . → Ẽ0,1 → 0
↓ ↓ ↓

0 → Ẽn,0 → . . . → Ẽ0,0 → 0
↓ ↓ ↓

0 → F̃n → . . . → F̃0 → 0
↓ ↓ ↓
0 0 0

(2.25)
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where all the rows and columns are exact. In particular this implies that the
inclusions i0 : X → X × {0} → X × P1 and i∞ : X → X × {∞} → X × P1

are tor-independent from the sheaves F̃i. But i∗0F̃∗ is isometric with F∗ and

i∗∞F̃∗ is orthogonally split. Hence, by the standard argument, axioms (i), (ii)
and (iii) imply that

c̃h(ε) =
∑

j

(−1)j c̃h(E∗,j). (2.26)

To prove the existence we use equation (2.26) as definition. Then the properties
of the Bott-Chern classes of exact sequences of hermitian vector bundles imply
that axioms (i), (ii) and (iii) are satisfied.

Proof of 2). We first assume that such theory exists. Let

· · · → Ak → · · · → A0 → 0

be a bounded complex of hermitian vector bundles, non necessarily orthogo-
nally split, and

ε : 0→ Fn → · · · → F0 → 0

a bounded complex of metrized coherent sheaves where the metrics are given
by Ei,∗ → Fi. As in axiom (iv), for some i0 we denote

F ′i0 = (Fi0 , Ei,∗ ⊕A∗ → Fi0)

and

ε′ : 0→ Fn → · · · → F
′
i0 → · · · → F0 → 0.

By axioms (i), (ii) and (iv), the class (−1)i0(c̃h(ε′)− c̃h(ε)) satisfies the prop-

erties that characterize c̃h(A∗). Therefore c̃h(ε′) = c̃h(ε) + (−1)i0 c̃h(A∗).
Fix again a number i0 and assume that there is an exact sequence of resolutions

0 // A•

��

// E
′
i0,∗

��

// Ei0,∗

��

// 0

0 // Fi0 Fi0

(2.27)

Let now ε′ denote the exact sequence ε but with the metric E
′
i0,∗ in the position

i0. Let ηj denote the j-th row of the diagram (2.27). Again using a deformation
argument one sees that

c̃h(ε′)− c̃h(ε) = (−1)i0


c̃h(A∗)−

∑

j

(−1)j c̃h(ηj)


 . (2.28)
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Choose now a compatible system of metrics

...
...

...
↓ ↓ ↓

0 → Dn,1 → . . . → D0,1 → 0
↓ ↓ ↓

0 → Dn,0 → . . . → D0,0 → 0
↓ ↓ ↓

0 → Fn → . . . → F0 → 0
↓ ↓ ↓
0 0 0

(2.29)

we denote by λj each row of the above diagram. For each i, choose a resolution

E
′
i,∗ −→ Fi such that there exist exact sequences of resolutions

0 // Ai,∗

��

// E
′
i,∗

��

// Ei,∗

��

// 0

0 // Fi Fi

(2.30)

and

0 // Bi,∗

��

// E
′
i,∗

��

// Di,∗

��

// 0

0 // Fi Fi

(2.31)

We denote by ηi,j each row of the diagram (2.30) and by µi,j each row of the
diagram (2.31). Then, by (2.28) and (2.26), we have

c̃h(ε) =
∑

j

(−1)j c̃h(λj) +
∑

i

(−1)i(c̃h(Bi,∗)− c̃h(Ai,∗))

+
∑

i,j

(−1)i+j(c̃h(ηi,j)− c̃h(µi,j)) (2.32)

Thus, c̃h(ε) is uniquely determined by axioms (i) to (iv). To prove the existence
we use equation (2.32) as definition. We have to show that this definition is
independent of the choices of the new resolutions. This independence follows
from corollary 2.19. Once we know that the Bott-Chern classes are well defined,
it is clear that they satisfy axioms (i), (ii), (iii) and (iv).
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Proposition 2.33. (Compatibility with exact squares) If

...
...

...
↓ ↓ ↓

. . . → Fn+1,m+1 → Fn+1,m → Fn+1,m−1 → . . .
↓ ↓ ↓

. . . → Fn,m+1 → Fn,m → Fn,m−1 → . . .
↓ ↓ ↓

. . . → Fn−1,m+1 → Fn−1,m → Fn−1,m−1 → . . .
↓ ↓ ↓
...

...
...

is a bounded commutative diagram of metrized coherent sheaves, where all the
rows . . . (εn−1), (εn), (εn+1), . . . and all the columns (ηm−1), (ηm), (ηm+1) are
exact, then ∑

n

(−1)nc̃h(εn) =
∑

m

(−1)mc̃h(ηm).

Proof. This follows from equation (2.32) and corollary 2.19.

We will use the notation of definition 2.13 also in the case of metrized coherent
sheaves.

It is easy to verify the following result.

Proposition 2.34. Let

(ε) . . . −→ En+1 −→ En −→ En−1 −→ . . .

be a finite exact sequence of hermitian vector bundles. Then the Bott-Chern
classes obtained by theorem 2.24 and by theorem 2.3 agree. �

Proposition 2.35. Let F = (F , E∗ → F) be a metrized coherent sheaf. We
consider the exact sequence of metrized coherent sheaves

ε : 0 −→ En → · · · → E0 → F → 0,

where, by abuse of notation, Ei = (Ei, Ei
=→ Ei). Then c̃h(ε) = 0.

Proof. Define Ki = Ker(Ei → Ei−1), i = 1, . . . , n and K0 = Ker(E0 → F).
Write

Ki = (Ki, 0→ En → · · · → Ei+1 → Ki), i = 0, . . . , n,

and K−1 = F . If we prove that

c̃h(0→ Ki → Ei → Ki−1 → 0) = 0, (2.36)
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then we obtain the result by induction using proposition 2.33. In order to prove
equation (2.36) we apply equation (2.32). To this end consider resolutions

D0,∗ −→ Ki−1, D0,k = Ek+i

D1,∗ −→ Ei, D1,k = Ek+i+1 ⊕ Ek+i
D2,∗ −→ Ki, D2,k = Ek+i+1

with the map D2,k
∆→ D1,k given by s 7→ (s, d s) and the map D1,k

∇→ D0,k

given by (s, t) 7→ t − d s. The differential of the complex D1,k is given by
(s, t) 7→ (t, 0). Using equations (2.32) and (2.26) we write the left hand side of
equation (2.36) in terms of Bott-Chern classes of vector bundles. All the exact
sequences involved are orthogonally split except maybe the sequences

λk : 0→ D2,k → D1,k → D0,k → 0.

But now we consider the diagrams

Ek+i+1

i1 //

id

��

Ek+i+1 ⊕ Ek+i
p2 //

f

��

Ek+i

id

��
Ek+i+1

∆ // Ek+i+1 ⊕ Ek+i
∇ // Ek+i

and

Ek+i
i2 //

id

��

Ek+i+1 ⊕ Ek+i
p1 //

f

��

Ek+i+1

id

��
Ek+i

i2 // Ek+i+1 ⊕ Ek+i
p1 // Ek+i+1

,

where ii, i2 are the natural inclusions, p1 and p2 are the projections and
f(s, t) = (s, t+ f(s)). These diagrams and corollary 2.19 imply that c̃h(λk) =
0.

Remark 2.37. In [32], Zha shows that the Bott-Chern classes associated to
exact sequences of metrized coherent sheaves are characterized by proposition
2.34, proposition 2.35 and proposition 2.33. We prefer the characterization in
terms of the differential equation, the functoriality and the normalization, be-
cause it relies on natural extensions of the corresponding axioms that define the
Bott-Chern classes for exact sequences of hermitian vector bundles. Moreover,
this approach will be used in a subsequent paper where we will study singular
Bott-Chern classes associated to arbitrary proper morphisms.

The following generalization of proposition 2.35 will be useful later. Let

ε : 0→ Gn → Gn−1 → · · · → G0 → F → 0
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be a finite resolution of a coherent sheaf by coherent sheaves. Assume that we
have a commutative diagram

...
...

...
↓ ↓ ↓

E1,n → . . . → E1,0

↓ ↓ ↓
E0,n → . . . → E0,0

↓ ↓ ↓
0 → Gn → . . . → G0 → F → 0

↓ ↓ ↓
0 0 0

where the columns are exact, the rows are complexes and the Ei,j are her-
mitian vector bundles. The columns of this diagram define metrized coherent
sheaves Gi. Let F be the metrized coherent sheaf defined by the resolution
Tot(E∗,∗) −→ F .

Proposition 2.38. With the notations above, let ε be the exact sequence of
metrized coherent sheaves

ε : 0→ Gn → Gn−1 → · · · → G0 → F → 0

Then c̃h(ε) = 0.

Proof. For each k, let Totk = Tot((E∗,j)j≥k). There are inclusions Totk −→
Totk−1. Let D∗,j = s(Totj+1 → Totj) with the hermitian metric induced by
E∗,∗. There are exact sequences of complexes

0 −→ E∗,j −→ D∗,j −→ s(Totj+1 → Totj+1) −→ 0 (2.39)

that are orthogonally split at each degree. The third complex is orthogonally
split. Therefore, if we denote by hE and hD the metric structures of Gj induced
respectively by the first and second column of diagram (2.39), then

c̃h(Gj , hE, hD) = 0. (2.40)

There is a commutative diagram of resolutions

...
...

...
...

↓ ↓ ↓ ↓
0 → D1,n → . . . → D1,0 → (Tot0)1 → 0

↓ ↓ ↓ ↓
0 → D0,n → . . . → D0,0 → (Tot0)0 → 0

↓ ↓ ↓ ↓
0 → Gn → . . . → G0 → F → 0

↓ ↓ ↓ ↓
0 0 0 0
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where the rows of degree greater or equal than zero are orthogonally split.
Hence the result follows from equation (2.26), equation (2.40) and proposition
2.33.

Remark 2.41. We have only defined the Bott-Chern classes associated to the
Chern character. Everything applies without change to any additive charac-
teristic class. The reader will find no difficulty to adapt the previous results to
any multiplicative characteristic class like the Todd genus or the total Chern
class.

3 Direct images of Bott-Chern classes

The aim of this section is to show that certain direct images of Bott-Chern
classes are closed. This result is a generalization of results of Bismut, Gillet and
Soulé [6] page 325 and of Mourougane [29] proposition 6. The fact that these
direct images of Bott-Chern classes are closed implies that certain relations
between characteristic classes are true at the level of differential forms (see
corollary 3.7 and corollary 3.8).
In the first part of this section we deal with differential geometry. Thus all the
varieties will be differentiable manifolds.
Let G1 be a Lie group and let π : N2 −→ M2 be a principal bundle with
structure group G2 and connection ω2. Assume that there is a left action of G1

overN2 that commutes with the right action ofG2 and such that the connection
ω2 is G1-invariant.
Let g1 and g2 be the Lie algebras of G1 and G2. Every element γ ∈ g1 defines
a tangent vector field γ∗ over N2 given by

γ∗p =
d

dt

∣∣∣∣
t=0

exp(tγ)p.

Let (γ∗)V be the vertical component of γ∗ with respect to the connection ω2.
For every point p ∈ N2, we denote by ϕ(γ, p) ∈ g2 the element characterized
by (γ∗)Vp = ϕ(γ, p)∗p, where ϕ(γ, p)∗ is the fundamental vector field associated
to ϕ(γ, p).
The commutativity of the actions of G1 and G2 and the invariance of the
connection ω2 implies that, for g ∈ G1 and γ ∈ g1, the following equalities hold

Lg∗(γ
∗) = (ad(g)γ∗), (3.1)

Lg∗(γ
∗)V = (ad(g)γ∗)V , (3.2)

ϕ(ad(g)γ, p) = ϕ(γ, g−1p). (3.3)

Let G2 be the vector bundle over M2 associated to N2 and the adjoint repre-
sentation of G2. That is,

G2 = N2 × g2
/〈

(pg, v) ∼ (p, ad(g)v)
〉
.
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Thus, we can identify smooth sections of G2 with g2-valued functions on N2

that are invariant under the action of G2. In this way, ϕ(γ, p) determines a
section

ϕ(γ) ∈ C∞(N2, g2)
G2 = C∞(M2,G2).

Equation (3.3) implies that, for g ∈ G1 and γ ∈ g1,

ϕ(ad(g)γ) = L∗g−1ϕ(γ).

We denote by Ωω2 the curvature of the connection ω2. Let P be an invariant
function on g2, then P (Ωω2 + ϕ(γ)) is a well defined differential form on M2.

Proposition 3.4. Let P be an invariant function on g2 and let µ be a current
onM2 invariant under the action of G1. Then µ(P (Ωω2 +ϕ(γ))) is an invariant
function on g1.

Proof. Let g ∈ G1. Then,

µ(P (Ωω2 + ϕ(ad(g)γ))) = µ(P (Ωω2 + L∗g−1ϕ(γ)))

= µ(P (L∗g−1Ωω2 + L∗g−1ϕ(γ)))

= Lg−1∗(µ)(P (Ωω2 + ϕ(γ)))

= µ(P (Ωω2 + ϕ(γ)))

Let nowN1 −→M1 be a principal bundle with structure groupG1 and provided
with a connection ω1. Then we can form the diagram

N1 ×N2
π1−−−−→ N1 ×

G1

N2

yπ′

yπ

N1 ×M2
π2−−−−→ N1 ×

G1

M2

yq

M1

Then π is a principal bundle with structure group G2. The connections ω1 and
ω2 induce a connection on the principal bundle π. The subbundle of horizontal
vectors with respect to this connection is given by π1∗(THN1⊕THN2). We will
denote this connection by ω1,2. We are interested in computing the curvature
ω1,2.
In fact, all the maps in the above diagram are fiber bundles provided with a
connection. When applicable, given a vector field U in any of these spaces, we
will denote by UH,1 the horizontal lifting to N1 × N2, by UH,2 the horizontal
lifting to N1 ×

G1

N2 and by UH,3 the horizontal lifting to N1 ×
G1

M2.
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The tangent space T (N1×N2) can be decomposed as direct sum in the following
ways

T (N1 ×N2) = THN1 ⊕ T VN1 ⊕ THN2 ⊕ T VN2

= THN1 ⊕ T VN1 ⊕ THN2 ⊕Kerπ1∗, (3.5)

For every point (x, y) ∈ N1 ×N2 we have that (Kerπ1∗)(x,y) ⊂ T Vx N1 ⊕ TyN2.
Moreover, there is an isomorphism g1 −→ (Ker π1∗)(x,y) that sends an element
γ ∈ g1 to the element (γ∗x,−γ∗y) ∈ T Vx N1 ⊕ TyN2.
The tangent space to N1 ×

G1

M2 can be decomposed as the sum of the subbundle

of vertical vectors with respect to q and the subbundle of horizontal vectors
defined by the connection ω1. The horizontal lifting to N1 × N2 of a vertical
vector lies in THN2 and the horizontal lifting of a horizontal vector lies in
THN1.
Let U , V be two vector fields on M1 and let UH,3, V H,3 be the horizontal
liftings to N1 ×

G1

M2. Then

Ωω1,2(UH,3,V H,3) = [UH,3, V H,3]H,2 − [UH,2, V H,2]

= π1∗([U
H,3, V H,3]H,1 − [UH,1, V H,1])

= π1∗([U
H,3, V H,3]H,1 − [U, V ]H,1 + [U, V ]H,1 − [UH,1, V H,1])

= π1,∗([U
H,3, V H,3]H,1 − [U, V ]H,1 + Ωω1(U, V )).

But, we have

Ωω1,2(UH,3, V H,3) ∈ T VN2,

Ωω1(U, V ) ∈ T VN1,

[UH,3, V H,3]H,1 − [U, V ]H,1 ∈ THN2.

Therefore, by the direct sum decomposition (3.5) we obtain that

Ωω1,2(UH,3, V H,3) = ((π1∗Ω
ω1(U, V )))V ,

where the vertical part is taken with respect to the fib re bundle π.
If U is a horizontal vector field over N1 ×

G1

M2 and V is a vertical vector field,

a similar argument shows that Ωω1,2(U, V ) = 0. Finally, if U and V are vector
fields on M2, they determine vertical vector fields on N1 ×

G1

M2. Then the

horizontal liftings UH,1 and V H,1 are induced by horizontal liftings of U and
V to N2. Therefore, reasoning as before we see that

Ωω1,2(U, V ) = Ωω2(U, V ).

Proposition 3.6. Let G1 and G2 be Lie groups, with Lie algebras g1 and
g2. For i = 1, 2, let Ni −→ Mi be a principal bundle with structure group
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Gi, provided with a connection ωi. Assume that there is a left action of G1

over N2 that commutes with the right action of G2 and that the connection ω2

is invariant under the G1-action. We form the G2-principal bundle π : N1 ×
G1

N2 −→ N1 ×
G1

M2 with the induced connection ω1,2 and curvature Ωω1,2 . Let

P be any invariant function on g2. Thus P (Ωω1,2) is a well defined closed
differential form on N1 ×

G1

M2. Let µ be a current on M2 invariant under the

G1-action. Being G1 invariant, the current µ induces a current on N1 ×
G1

M2,

that we denote also by µ. Let q : N1 ×
G1

M2 −→ M1 be the projection. Then

q∗(P (Ωω1,2) ∧ µ) is a closed differential form on M1.

Proof. Let U ⊂ M1 be a trivializing open subset for N1 and choose a trivial-
ization of N1 |U∼= U ×G1. With this trivialization, we can identify Ωω1 |U with
a 2-form on U with values in g1.
For γ ∈ g1, we denote by

ψµ(γ) = µ(P (Ωω2 + ϕ(γ)))

the invariant function provided by proposition 3.4.
Then

q∗(P (Ωω1,2) ∧ µ) = ψµ(Ωω1).

Therefore, the result follows from the usual Chern-Weil theory.

We go back now to complex geometry and analytic real Deligne cohomology
and to the notations 1.3, in particular (1.4).

Corollary 3.7. Let X be a complex manifold and let E = (E, hE) be a
rank r hermitian holomorphic vector bundle on X. Let π : P(E) −→ X be
the associated projective bundle. On P(E) we consider the tautological exact
sequence

ξ : 0 −→ O(−1) −→ π∗E −→ Q −→ 0

where all the vector bundles have the induced metric. Let P1, P2 and P3 be
invariant power series in 1, r − 1 and r variables respectively with coefficients
in D. Let P1(O(−1)) and P2(Q) be the associated Chern forms and let P̃3(ξ)
the associated Bott-Chern class. Then

π∗(P1(O(−1)) • P2(Q) • P̃3(ξ)) ∈
⊕

k

D̃2k−1(X, k)

is closed. Hence it defines a class in analytic real Deligne cohomology. This
class does not depend on the hermitian metric of E.

Proof. We consider Cr with the standard hermitian metric. On the space P(Cr)
we have the tautological exact sequence

0 −→ OP(Cr)(−1)
f−→ Cr −→ Q −→ 0.
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Let (x : y) be homogeneous coordinates on P1 and let t = x/y be the absolute

coordinate. Let p1 and p2 be the two projections of M2 = P(Cr) × P1. Let Ẽ
be the cokernel of the map

p∗1OP(Cr)(−1) −→ p∗1OP(Cr)(−1)⊗ p∗2OP1(1)⊕ p∗1Cr ⊗ p∗2OP1(1)
s 7−→ s⊗ y + f(s)⊗ x

with the metric induced by the standard metric of Cr and the Fubini-Study
metric of OP(1)(1).
Let N2 be the principal bundle over M2 formed by the triples (e1, e2, e3), where

e1, e2 and e3 are unitary frames of p∗1OP(Cr)(−1), p∗1Q and Ẽ respectively. The
structure group of this principal bundle is G2 = U(1)× U(r − 1) × U(r). Let
ω2 be the connection induced by the hermitian holomorphic connections on the
vector bundles p∗1OP(Cr)(−1), p∗1Q and Ẽ.

Now we denote M1 = X , and let N1 be the bundle of unitary frames of E.
This is a principal bundle over M1 with structure group G1 = U(r).

The group G1 acts on the left on N2. This action commutes with the right
action of G2 and the connection ω2 is invariant under this action.

Let µ = [− log(|t|)] be the current on M2 associated to the locally integrable
function − log(|t|). This current is invariant under the action of G1 because
this group acts trivially on the factor P1.
The invariant power series P1, P2 and P3 determine an invariant function P on
g2, the Lie algebra of G2.
Let ω1 be the connection induced in N1 by the holomorphic hermitian con-
nection on E. As before let ω1,2 be the connection on N1 ×

G1

N2 induced

by ω1 and ω2 and let q : N1 ×
G1

M2 −→ M1 be the projection. Observe that

N1 ×
G1

M2 = P(E)× P1 and q = π ◦ p1.

By the projection formula and the definition of Bott-Chern classes we have

π∗(P1(O(−1)) ∧ P2(Q) ∧ P̃3(ξ)) = q∗(µ • P (Ωω1,2)),

Therefore the fact that it is closed follows from 3.6. Since, for fixed P1, P2 and
P3, the construction is functorial on (X.E), the fact that the class in analytic
real Deligne cohomology does not depend on the choice of the hermitian metric
follows from proposition 1.7.

Corollary 3.8. Let E = (E, hE) be a hermitian holomorphic vector bundle on
a complex manifold X. We consider the projective bundle π : P(E ⊕C) −→ X.
Let Q be the universal quotient bundle on the space P(E ⊕C) with the induced
metric. Then the following equality of differential forms holds

π∗
∑

i

(−1)i ch(

i∧
Q
∨

) = π∗(cr(Q) Td−1(Q)) = Td−1(E).
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Proof. Let ξ be the tautological exact sequence with induced metrics. We first
prove that

π∗(cr(Q) Td(O(−1))) = 1.

We can write Td(O(−1)) = 1 + c1(O(−1))φ(O(−1)) for certain power series φ.
Since cr+1(E ⊕ C) = 0 we have

cr(Q)c1(O(−1)) = dD c̃r+1(ξ).

Therefore, by corollary 3.7, we have

π∗(cr(Q) Td(O(−1))) = π∗(cr(Q)) + π∗(cr(Q)c1(O(−1))φ(O(−1)))

= 1 + dD π∗(c̃r+1(ξ)φ(O(−1)))

= 1.

Then the corollary follows from corollary 3.7 by using the identity

π∗(cr(Q) Td−1(Q)) = π∗(cr(Q) Td(O(−1))π∗ Td−1(E))

+ dD π∗(cr(Q) Td(O(−1))T̃d−1(ξ)).

The following generalization of corollary 3.7 provides many relations between
integrals of Bott-Chern classes and is left to the reader.

Corollary 3.9. Let X be a complex manifold and let E = (E, hE) be a
rank r hermitian holomorphic vector bundle on X. Let π : P(E) −→ X be
the associated projective bundle. On P(E) we consider the tautological exact
sequence

ξ : 0 −→ O(−1) −→ π∗E −→ Q −→ 0

where all the vector bundles have the induced metric. Let P1 and P2 be invariant
power series in 1 and r − 1 variables respectively with coefficients in D and let
P3, . . . , Pk be invariant power series in r variables with coefficients in D. Let
P1(O(−1)) and P2(Q) be the associated Chern forms and let P̃3(ξ), . . . , P̃k(ξ)
be the associated Bott-Chern classes. Then

π∗(P1(O(−1)) • P2(Q) • P̃3(ξ) • · · · • P̃k(ξ))

is a closed differential form on X for any choice of the ordering in computing
the non associative product under the integral.

4 Cohomology of currents and wave front sets

The aim of this section is to prove the Poincaré lemma for the complex of
currents with fixed wave front set. This implies in particular a certain ∂∂̄-
lemma (corollary 4.7) that will allow us to control the singularities of singular
Bott-Chern classes.
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Let X be a complex manifold of dimension n. Following notation 1.3 recall
that there is a canonical isomorphism

H∗Dan(X,R(p)) ∼= H∗(D∗D(X, p)).

A current η can be viewed as a generalized section of a vector bundle and, as
such, has a wave front set that is denoted by WF(η). The theory of wave front
sets of distributions is developed in [25] chap. VIII. For the theory of wave front
sets of generalized sections, the reader can consult [24] chap. VI. Although we
will work with currents and hence with generalized sections of vector bundles,
we will follow [25].
The wave front set of η is a closed conical subset of the cotangent bundle of X
minus the zero section T ∗X0 = T ∗X \ {0}. This set describes the points and
directions of the singularities of η and it allows us to define certain products
and inverse images of currents.
Let S ⊂ T ∗X0 be a closed conical subset, we will denote by D∗X,S the subsheaf
of currents whose wave front set is contained in S. We will denote by D∗(X,S)
its complex of global sections.
For every open set U ⊂ X there is an appropriate notion of convergence in
D∗X,S(U) (see [25] VIII Definition 8.2.2). All references to continuity below are
with respect to this notion of convergence.
We next summarize the basic properties of wave front sets.

Proposition 4.1. Let u be a generalized section of a vector bundle and let P
be a differential operator with smooth coefficients. Then

WF(Pu) ⊆WF(u).

Proof. This is [25] VIII (8.1.11).

Corollary 4.2. The sheaf D∗X,S is closed under ∂ and ∂̄. Therefore it is a
sheaf of Dolbeault complexes.

Let f : X −→ Y be a morphism of complex manifolds. The set of normal
directions of f is

Nf = {(f(x), v) ∈ T ∗Y | df(x)tv = 0}.

This set measures the singularities of f . For instance, if f is a smooth map
then Nf = 0 whereas, if f is a closed immersion, Nf is the conormal bundle of
f(X). Let S ⊂ T ∗Y0 be a closed conical subset. We will say that f is transverse
to S if Nf ∩ S = ∅. We will denote

f∗S = {(x, df(x)tv) ∈ T ∗X0 | (f(x), v) ∈ S}.

Theorem 4.3. Let f : X −→ Y be a morphism of complex manifolds that is
transverse to S. Then there exists one and only one extension of the pull-back
morphism f∗ : E ∗Y −→ E ∗X to a continuous morphism

f∗ : D
∗
Y,S −→ D

∗
X,f∗S .

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 109

In particular there is a continuous morphism of complexes

D∗(Y, S) −→ D∗(X, f∗S).

Proof. This follows from [25] theorem 8.2.4.

We now recall the effect of correspondences on the wave front sets.
Let K ∈ D∗(X × Y ), and let S be a conical subset of T ∗Y0. We will write

WF(K)X = {(x, ξ) ∈ T ∗X0 | ∃y ∈ Y, (x, y, ξ, 0) ∈WF(K)}
WF′(K)Y = {(y, η) ∈ T ∗Y0 | ∃x ∈ X, (x, y, 0,−η) ∈WF(K)}

WF′(K) ◦ S = {(x, ξ) ∈ T ∗X0 | ∃(y, η) ∈ S, (x, y, ξ,−η) ∈WF(K)}.

Theorem 4.4. The image of the correspondence map

E∗c (Y ) −→ D∗(X)
η 7−→ p1∗(K ∧ p∗2(η))

is contained in D∗(X,WF (K)X). Moreover, if S ∩WF′(K)Y = ∅, then there
exists one and only one extension to a continuous map

D∗c (Y, S) −→ D∗(X,S′),

where S′ = WF(K)X ∪WF′(K) ◦ S.

Proof. This is [25] theorem 8.2.13.

We are now in a position to state and prove the Poincaré lemma for currents
with fixed wave front set. As usual, we will denote by F the Hodge filtration
of any Dolbeault complex.

Theorem 4.5 (Poincaré lemma). Let S be any conical subset of T ∗X0. Then
the natural morphism

ι : (E∗(X), F ) −→ (D∗(X,S), F )

is a filtered quasi-isomorphism.

Proof. Let K be the Bochner-Martinelli integral operator on Cn×Cn. It is the
operator

Ep,qc (Cn) −→ Ep,q−1(Cn)
ϕ 7−→

∫
w∈Cn k(z, w) ∧ ϕ(w),

where k is the Bochner-Martinelli kernel ([21] pag. 383). Thus k is a differential
form on Cn × Cn with singularities only along the diagonal.
Using the explicit description of k in [21], it can be seen that WF (k) = N∗∆0,
the conormal bundle of the diagonal. By theorem 4.4, the operator K defines
a continuous linear map from Γc(Cn,D∗Cn,S) to Γ(Cn,D∗Cn,S). This is the key

Documenta Mathematica 15 (2010) 73–176
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fact that allows us to adapt the proof of the Poincaré Lemma for arbitrary
currents to the case of currents with fixed wave front set.
We will prove that the sheaf inclusion

(EX , F ) −→ (DX,S , F )

is a filtered quasi-isomorphism. Then the theorem will follow from the fact
that both are fine sheaves.
The previous statement is equivalent to the fact that, for any integer p ≥ 0,
the inclusion

ι : E
p,∗
X −→ D

p,∗
X,S

is a quasi-isomorphism.
Let x ∈ X , since exactness can be checked at the level of stalks, we need to
show that

ιx : E
p,∗
X,x −→ D

p,∗
X,S,x

is a quasi-isomorphism. let U be a coordinate neighborhood around x and let
x ∈ V ⊂ U be a relatively compact open subset.
Let ρ ∈ C∞c (U) be a function with compact support such that ρ |V = 1. We
define an operator

Kρ : D
p,q
X,S(U) −→ D

p,q−1
X,S (V ).

If T ∈ D
p,q
X,S(U) and ϕ ∈ E∗c (V ) is a test form, then

Kρ(T )(ϕ) = (−1)p+qT (ρK(ϕ)).

Hence, using that ∂̄K(ϕ) +K(∂̄ϕ) = ϕ, and that ϕ = ρϕ, we have

(∂̄KρT +Kρ∂̄T + T )(ϕ) = −T (∂̄(ρ) ∧K(ϕ)).

Observe that, even if the support of ϕ is contained in V , the support of K(ϕ)
can be Cn; therefore the right hand side of the above equation may be non
zero.
We compute

T (∂̄(ρ) ∧K(ϕ)) = T

(
∂̄(ρ) ∧

∫

w∈Cn
k(w, z) ∧ ϕ(w)

)

= T

(∫

w∈Cn
∂̄(ρ) ∧ k(w, z) ∧ ϕ(w)

)
.

Since supp(ϕ) ⊂ V and ∂̄(ρ)|V ≡ 0, we can find a number ǫ > 0 such that,
if ‖z − w‖ < ǫ, then ∂̄(ρ) ∧ k(w, z) ∧ ϕ(w) = 0. Since the singularities of
k(w, z) are concentrated on the diagonal, it follows that the differential form
∂̄(ρ) ∧ k(w, z) ∧ ϕ(w) is smooth. Therefore, the current in V given by

ϕ 7−→ T

(∫

w∈Cn
∂̄(ρ) ∧ k(w, z) ∧ ϕ(w)

)
,
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is the current associated to the smooth differential form Tz
(
∂̄(ρ) ∧ k(w, z)

)
,

where the subindex z means that T only acts on the z variable, being w ∈ V
a parameter. This smooth form will be denoted by Ψ(T ).
Summing up, we have shown that, for any current T ∈ D

p,q
X,S(U) there exists a

smooth differential form Ψ(T ) ∈ E
p,q
X (V ) such that

T |V = −∂̄KρT −Kρ∂̄T −Ψ(T ).

Observe that we can not say that Ψ is a quasi-inverse of ιx because it depends
on the choice of ρ and it is not possible to choose a single ρ that can be applied
to all T . Hence it is not a well defined operator at the level of stalks. Let
now T ∈ D

p,∗
X,S,x be closed. It is defined in some neighborhood of x, say U ′.

Applying the above procedure we find a smooth differential form Ψ(T ) defined
on a relatively compact subset of U ′, say V ′, that is cohomologous to T . Hence
the map induced by ιx in cohomology is surjective. Let ω ∈ E

p,∗
X,x be closed

and such that ιxω = ∂̄T for some T ∈ D
p,∗−1
X,S,x . We may assume that ω and T

are defined is some neighborhood U ′′ of x. Then, on some relatively compact
subset V ′′ ⊂ U ′′, we have

ω |V ′′= ∂̄T |V ′′= −∂̄Kρω − ∂̄Ψ(T ).

Since Kρω and Ψ(T ) are smooth differential forms we conclude that the map
induced by ιx in cohomology is injective.

We will denote by D∗D(X,S, p) the Deligne complex associated to D∗(X,S).
The following two results are direct consequences of theorem 4.5.

Corollary 4.6. The inclusion D∗D(X,S, p) −→ D∗D(X, p) induces an isomor-
phism

H∗(D∗D(X,S, p)) ∼= H∗Dan(X,R(p)).

Corollary 4.7. (i) Let η ∈ DnD(X, p) be a current such that

dD η ∈ Dn+1
D (X,S, p),

then there is a current a ∈ Dn−1D (X, p) such that η+ dD a ∈ DnD(X,S, p).

(ii) Let η ∈ DnD(X,S, p) be a current such that there is a current a ∈
Dn−1D (X, p) with η = dD a, then there is a current b ∈ Dn−1D (X,S, p)
such that η = dD b.

�

5 Deformation of resolutions

In this section we will recall the deformation of resolutions based on the Grass-
mannian graph construction of [1]. We will also recall the Koszul resolution
associated to a section of a vector bundle.
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The main theme is that given a bounded complex E∗ of locally free sheaves
(with some properties) on a complex manifold X , one can construct a bounded
complex tr1(E∗)∗ over a certain manifold W . This new manifold has a bira-
tional map π : W −→ X ×P1, that is an isomorphism over X × P1 \ {∞}. The
complex tr1(E∗)∗ agrees with the original complex over X×{0} and is particu-
larly simple over π−1(X×{∞}). Thus tr1(E∗)∗ is a deformation of the original
complex to a simpler one. The two examples we are interested in are: first,
when the original complex is exact, then W agrees with X × P1 and tr1(E∗)∗
was defined in 2.5. Its restriction to π−1(X × {∞}) is split; second, when
i : Y −→ X is a closed immersion of complex manifolds, and E∗ is a bounded
resolution of i∗OY , then W agrees with the deformation to the normal cone of
Y and the restriction of tr1(E∗)∗ to π−1(X ×{∞}) is an extension of a Koszul
resolution by a split complex. Note that, if we allow singularities, then the
Grassmannian graph construction is much more general.
The deformation of resolutions is based on the Grassmannian graph construc-
tion of [1], and, in the form that we present here, has been developed in [6] and
[20].
In order to fix notations we first recall the deformation to the normal cone and
the Koszul resolution associated to the zero section of a vector bundle.
Let Y →֒ X be a closed immersion of complex manifolds, with Y of pure
codimension n. In the sequel we will use notation 2.2. Let W = WY/X be the
blow-up of X × P1 along Y × {∞}. Since Y and X × P1 are manifolds, W
is also a manifold. The map π : W −→ X × P1 is an isomorphism away from
Y × {∞}; we will write P for the exceptional divisor of the blow-up. Then

P = P(NY/X ⊗N−1∞/P1 ⊕ C).

Thus P can be seen as the projective completion of the vector bundle
NY/X ⊗ N−1∞/P1 . Note that N∞/P1 is trivial although not canonically trivial.

Nevertheless we can choose to trivialize it by means of the section y ∈ OP1(1).
Sometimes we will tacitly assume this trivialization and omit N∞/P1 from the
formulae.
The map qW : W −→ P1, obtained by composing π with the projection q : X×
P1 −→ P1, is flat and, for t ∈ P1, we have

q−1W (t) ∼=
{
X × {t}, if t 6=∞,
P ∪ X̃, if t =∞,

where X̃ is the blow-up of X along Y , and P ∩ X̃ is, at the same time, the
divisor at ∞ of P and the exceptional divisor of X̃ .
Following [6] we will use the following notations

P
f //

πP

��

W

π

��
Y × {∞} i∞ // X × P1
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i : Y −→ X,

W∞ = π−1(∞) = P ∪ X̃,
q : X × P1 −→ P1, the projection,
p : X × P1 −→ X, the projection,

qW = q ◦ π
pW = p ◦ π

qY : Y × P1 −→ P1, the projection,
pY : Y × P1 −→ Y, the projection,
j : Y × P1 −→ W the induced map,

j∞ : Y × {∞} −→ P.

Given any map g : Z −→ X ×P1, we will denote pZ = p ◦ g and qZ = q ◦ g. For
instance pP = p ◦ π ◦ f = pW ◦ f = i ◦ πP , where, in the last equality, we are
identifying Y with Y × {∞}.
We next recall the construction of the Koszul resolution. Let Y be a complex
manifold and let N be a rank n vector bundle. Let P = P(N ⊕ C) be the
projective bundle of lines in N ⊕ C. It is obtained by completing N with the
divisor at infinity. Let πP : P −→ Y be the projection and let s : Y −→ P be
the zero section. On P there is a tautological short exact sequence

0 −→ O(−1) −→ π∗P (N ⊕ C) −→ Q −→ 0. (5.1)

The above exact sequence and the inclusion C −→ π∗P (N ⊕C) induce a section
σ : OP −→ Q that vanishes along the zero section s(Y ). By duality we obtain
a morphism Q∨ −→ OP that induces a long exact sequence

0 −→
n∧
Q∨ −→ . . . −→

1∧
Q∨ −→ OP −→ s∗OY −→ 0.

If F is another vector bundle over Y , we obtain an exact sequence,

0 −→
n∧
Q∨ ⊗ π∗PF −→ . . . −→

1∧
Q∨ ⊗ π∗PF −→ π∗PF −→ s∗F −→ 0. (5.2)

Definition 5.3. The Koszul resolution of s∗(F ) is the resolution (5.2). The
complex

0 −→
n∧
Q∨ ⊗ π∗PF −→ . . . −→

1∧
Q∨ ⊗ π∗PF −→ π∗PF −→ 0

will be denoted by K(F,N). When N is a hermitian vector bundle, the ex-
act sequence (5.1) induces a hermitian metric on Q. If, moreover, F is also
a hermitian vector bundle, all the vector bundles that appear in the Koszul
resolution have an induced hermitian metric. We will denote by K(F,N) the
corresponding complex of hermitian vector bundles.

In particular, we shall write K(OY , N) if F = OY is endowed with the trivial
metric ‖1‖ = 1, unless expressly stated otherwise.
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We finish this section by recalling the results about deformation of resolutions
that will be used in the sequel. For more details see [1] II.1, [6] Section 4 (c)
and [20] Section 1.

Theorem 5.4. Let i : Y →֒ X be a closed immersion of complex manifolds,
where Y may be empty. Let U = X \ Y . Let F be a vector bundle over Y and
E∗ −→ i∗F −→ 0 be a resolution of i∗F . Then there exists a complex manifold
W = W (E∗), called the Grassmannian graph construction, with a birational
map π : W −→ X×P1 and a complex of vector bundles, tr1(E∗)∗, over W such
that

(i) The map π is an isomorphism away from Y × {∞}. The restriction of
tr1(E∗)∗ to X × (P1 \ {∞}) is isomorphic to p∗WE∗ restricted to X ×
(P1 \ {∞}). Moreover, If X̃ is the Zariski closure of U ×{∞} inside W ,

the restriction of tr1(E∗)∗ to X̃ is split acyclic. In particular, if Y is
empty or F is the zero vector bundle, hence E∗ is acyclic in the whole X,
then W = X × P1 and tr1(E∗)∗ is the first transgression exact sequence
introduced in 2.5.

(ii) When Y is non-empty and F is a non-zero vector bundle over Y , then
W (E∗) agrees with WY/X , the deformation to the normal cone of Y .
Moreover, there is an exact sequence of resolutions on P

0 // A∗ //

��

tr1(E∗)∗ |P //

��

K(F,NY/X ⊗N−1∞/P1) //

��

0

0 // (j∞)∗F
= // (j∞)∗F

,

where A∗ is split acyclic and K(F,NY/X ⊗N−1∞/P1) is the Koszul resolu-
tion.

(iii) Let f : X ′ −→ X be a morphism of complex manifolds and assume that
we are in one of the following cases:

(a) The map f is smooth.

(b) The map f is arbitrary and E∗ is acyclic.

(c) f is transverse to Y .

Then E′∗ := f∗(E∗) is exact over f−1(U),

W ′ := W (E′∗) = W ×
X
X ′,

with fW : W ′ −→ W the induced map, and we have f∗W (tr1(E∗)∗) =
tr1(f∗(E∗))∗.
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(iv) If the vector bundles Ei are provided with hermitian metrics, then one
can choose a hermitian metric on tr1(E∗)∗ such that its restriction to
X × {0} is isometric to E∗ and the restriction to U × {∞} is orthogo-
nally split. We will denote by tr1(E∗)∗ the complex tr1(E∗)∗ with such
a choice of hermitian metrics. Moreover, this choice of metrics can be
made functorial. That is, if f is a map as in item (iii), then

f∗W (tr1(E∗)∗) = tr1(f∗(E∗))∗

Proof. The case when E∗ is acyclic has already been treated. For the case
when Y is non-empty and F is non zero, we first recall the construction of the
Grassmannian graph of an arbitrary complex from [20], which is more general
than what we need here. If E is a vector bundle over X we will denote by E(i)
the vector bundle over X × P1 given by E(i) = p∗E ⊗ q∗O(i).

Let C̃∗ be the complex of locally free sheaves given by C̃i = Ei(i)⊕Ei−1(i− 1)
with differential given by d(a, b) = (b, 0). On X × (P1 \ {∞}) we consider,

for each i, the inclusion of vector bundles γi : Ei →֒ C̃i given by s 7−→ (s ⊗
yi, d s ⊗ yi−1). Let G be the product of the Grassmann bundles Gr(ni, C̃i)

that parametrize rank ni = rkEi subbundles of C̃i over X × P1. The inclusion
γ∗ :

⊕
Ei −→

⊕
C̃i induces a section s of G over X × A1.

Then W (E∗) is defined to be the closure of s(X×A1) in G. Since the projection
from G to X × P1 is proper, the same is true for the induced map π : W −→
X × P1. For each i, the induced map W −→ Gr(ni, C̃i) defines a subbundle

tr1(E∗)i of π∗C̃i. This subbundle agrees with Ei over X ×A1. The differential

of C̃∗ induces a differential on tr1(E∗)∗.
Assume now that the bundles Ei are provided with hermitian metrics. Us-
ing the Fubini-Study metric of O(1) we obtain induced metrics on C̃i. Over
π−1(X × (P1 \ {∞})) we induce a metric on tr1(E∗)i by means of the identifi-
cation with Ei. Over π−1(X × (P1 \ {0})) we consider on tr1(E∗)i the metric

induced by C̃i. We glue together both metrics with the partition of unity
{σ0, σ∞} of notation 2.2.

In the case we are interested there is a more explicit description of tr1(E∗)∗
given in [6] Section 4 (c). Namely, tr1(E∗)i is the kernel of the morphism

φ : p∗W C̃i = p∗WEi(i)⊕ p∗WEi−1(i− 1) −→ p∗WEi−1(i)⊕ p∗WEi−2(i− 1) (5.5)

given by φ(s, t) = (d s− t⊗ y, d t).
The only statements that are not explicitly proved in [6] Section 4 (c) or [20]
Section 1 are the functoriality when f is not smooth and the properties of the
explicit choice of metrics.

If the complex E∗ is acyclic, then the same is true for E′∗ = f∗E∗. In this
case W = X × P1 and W ′ = X ′ × P1. Then the functoriality follows from the
definition of tr1(E∗)∗.
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Assume now that we are in case (iii)c. We can form the Cartesian square

Y ′
i′ //

g

��

X ′

f

��
Y

i // X

where i′ is also a closed immersion of complex manifolds. Then we have that
E′∗ is a resolution of i′∗g

∗F . Hence W ′ = W (E′∗) is the deformation to the
normal cone of Y ′ and therefore W ′ = W ×

X
X ′. Again the functoriality of

tr1(E∗)∗ can be checked using the explicit construction of [20] Section 1 that
we have recalled above.

Remark 5.6. (i) The definition of tr1(E∗) can be extended to any bounded
chain complex over a integral scheme (see [20]).

(ii) There is a sign difference in the definition of the inclusion γ used in [20]
and the one used in [6]. We have followed the signs of the first reference.

6 Singular Bott-Chern classes

Throughout this section we will use notation 1.3. In particular we will write

D̃nD(X, p) = DnD(X, p)/ dD Dn−1D (X, p),

D̃nD(X,S, p) = DnD(X,S, p)/ dD Dn−1D (X,S, p).

A particularly important current is W1 ∈ D1
D(P1, 1) given by

W1 = [
−1

2
log ‖t‖2]. (6.1)

With the above convention, this means that

W1(η) =
1

2πi

∫

P1

−1

2
log ‖t‖2 • η. (6.2)

By the Poincaré-Lelong equation

dDW1 = δ∞ − δ0. (6.3)

Note that the current W1 was used in the construction of Bott-Chern classes
(definition 2.11) and will also have a role in the definition of singular Bott-
Chern classes.

Before defining singular Bott-Chern classes we need to define the objects that
give rise to them.
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Definition 6.4. Let i : Y −→ X be a closed immersion of complex manifolds.
Let N be the normal bundle of Y and let hN be a hermitian metric on N .
We denote N = (N, hN ). Let rN be the rank of N , that agrees with the
codimension of Y in X . Let F = (F, hF ) be a hermitian vector bundle on Y of
rank rF . Let E∗ → i∗F be a metric on the coherent sheaf i∗F . The four-tuple

ξ = (i, N, F ,E∗). (6.5)

is called a hermitian embedded vector bundle. The number rF will be called
the rank of ξ and the number rN will be called the codimension of ξ.
By convention, any exact complex of hermitian vector bundles on X will be
considered a hermitian embedded vector bundle of any rank and codimension.

Obviously, to any hermitian embedded vector bundle we can associate the
metrized coherent sheaf (i∗F,E∗ → i∗F ).

Definition 6.6. A singular Bott-Chern class for a hermitian embedded vector
bundle ξ is a class η̃ ∈⊕p D̃

2p−1
D (X, p) such that

dD η =
n∑

i=0

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]) (6.7)

for any current η ∈ η̃.

The existence of this class is guaranteed by the Grothendieck-Riemann-Roch
theorem, which implies that the two currents in the right hand side of equation
(6.7) are cohomologous.
Even if we have defined singular Bott-Chern classes as classes of currents with
arbitrary singularities, it is an important observation that in each singular
Bott-Chern class we can find representatives with controlled singularities. Let
N∗Y,0 be the conormal bundle of Y with the zero section deleted. It is a closed
conical subset of T ∗0 (X). Since the current

n∑

i=0

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )])

=

n∑

i=0

(−1)i[ch(Ei)]− Td−1(N) ch(F )δY

belongs to D∗D(X,N∗Y,0, p), by corollary 4.7, we obtain

Proposition 6.8. Let ξ = (i, N, F ,E∗) be a hermitian embedded vector bundle
as before. Then any singular Bott-Chern class for ξ belongs to the subset

⊕

p

D̃2p−1
D (X,N∗Y,0, p) ⊂

⊕

p

D̃2p−1
D (X, p).

�
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This result will allow us to define inverse images of singular Bott-Chern classes
for certain maps.
Let f : X ′ −→ X be a morphism of complex manifolds that is transverse to Y .
We form the Cartesian square

Y ′
i′ //

g

��

X ′

f

��
Y

i // X

.

Observe that, by the transversality hypothesis, the normal bundle to Y ′ on X ′

is the inverse image of the normal bundle to Y on X and f∗E∗ is a resolution
of i′∗g

∗F . Thus we write f∗ξ = (i′, f∗N, g∗F , f∗E∗), which is a hermitian
embedded vector bundle.
By proposition 6.8, given any singular Bott-Chern class η̃ for ξ, we can find
a representative η ∈ ⊕pD2p−1

D (X,N∗Y,0, p). By theorem 4.3, there is a well
defined current f∗η and it is a singular Bott-Chern current for f∗ξ. Therefore

we can define f∗(η̃) = f̃∗(η). Again by theorem 4.3, this class does not depend
on the choice of the representative η.
Our next objective is to study the possible definitions of functorial singular
Bott-Chern classes.

Definition 6.9. Let rF and rN be two integers. A theory of singular Bott-
Chern classes of rank rF and codimension rN is an assignment which, to each
hermitian embedded vector bundle ξ = (i : Y −→ X,N, F ,E∗) of rank rF and
codimension rN , assigns a class of currents

T (ξ) ∈
⊕

p

D̃2p−1
D (X, p)

satisfying the following properties

(i) (Differential equation) The following equality holds

dD T (ξ) =
∑

i

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]). (6.10)

(ii) (Functoriality) For every morphism f : X ′ −→ X of complex manifolds
that is transverse to Y , then

f∗T (ξ) = T (f∗ξ).

(iii) (Normalization) Let A = (A∗, g∗) be a non-negatively graded orthog-
onally split complex of vector bundles. Write ξ ⊕ A = (i : Y −→
X,N, F ,E∗ ⊕ A∗). Then T (ξ) = T (ξ ⊕ A). Moreover, if X = SpecC
is one point, Y = ∅ and E∗ = 0, then T (ξ) = 0.
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A theory of singular Bott-Chern classes is an assignment as before, for all
positive integers rF and rM . When the inclusion i and the bundles F and N
are clear from the context, we will denote T (ξ) by T (E∗). Sometimes we will
have to restrict ourselves to complex algebraic manifolds and algebraic vector
bundles. In this case we will talk of theory of singular Bott-Chern classes for
algebraic vector bundles.

Remark 6.11. (i) Recall that the case when Y = ∅ and E∗ is any bounded
exact sequence of hermitian vector bundles is considered a hermitian em-
bedded vector bundle of arbitrary rank. In this case, the properties above
imply that

T (ξ) = [c̃h(E∗)],

where c̃h is the Bott-Chern class associated to the Chern character. That
is, for acyclic complexes, any theory of singular Bott-Chern classes agrees
with the Bott-Chern classes associated to the Chern character.

(ii) If the map f is transverse to Y , then either f−1(Y ) is empty or it has the
same codimension as Y . Moreover, it is clear that f∗F has the same rank
as F . Therefore, the properties of singular Bott-Chern classes do not mix
rank or codimension. This is why we have defined singular Bott-Chern
classes for a particular rank and codimension.

(iii) By contrast with the case of Bott-Chern classes, the properties above are
not enough to characterize singular Bott-Chern classes.

For the rest of this section we will assume the existence of a theory of singular
Bott-Chern classes and we will obtain some consequences of the definition.
We start with the compatibility of singular Bott-Chern classes with exact se-
quences and Bott-Chern classes.
Let

χ : 0 −→ Fn −→ . . . −→ F 1 −→ F 0 −→ 0 (6.12)

be a bounded exact sequence of hermitian vector bundles on Y . For j =
0, . . . , n, let Ej,∗ −→ i∗Fj be a resolution, and assume that they fit in a com-
mutative diagram

0 // En,∗ //

��

. . . // E1,∗ //

��

E0,∗ //

��

0

0 // i∗Fn // . . . // i∗F1
// i∗F0

// 0

,

with exact rows. We write ξj = (i : Y −→ X,N, F j , Ej,∗). For each k, we
denote by ηk the exact sequence

0 −→ En,k −→ . . . −→ E1,k −→ E0,k −→ 0.
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Proposition 6.13. With the above notations, the following equation holds:

T (
⊕

j even

ξj)− T (
⊕

j odd

ξj) =
∑

k

(−1)k[c̃h(ηk)]− i∗([Td−1(N)c̃h(χ)]).

Here the direct sum of hermitian embedded vector bundles, involving the same
embedding and the same hermitian normal bundle, is defined in the obvious
manner.

Proof. We consider the construction of theorem 5.4 for each of the exact se-
quences ηk and the exact sequence χ. For each k, we have WX := W (ηk) =
X × P1 and we denote WY := W (χ) = Y × P1. On WY we consider the
transgression exact sequence tr1(χ)∗ and on WX we consider the transgression
exact sequences tr1(ηk)∗. We denote by j : WY −→WX the induced morphism.
Then there is an exact sequence (of exact sequences)

. . . −→ tr1(η1)∗ −→ tr1(η0)∗ −→ j∗ tr1(χ)∗ −→ 0.

We denote

tr1(χ)+ =
⊕

j even

tr1(χ)j , tr1(χ)− =
⊕

j odd

tr1(χ)j ,

tr1(ηk)+ =
⊕

j even

tr1(ηk)j , tr1(ηk)− =
⊕

j odd

tr1(ηk)j ,

and

tr1(ξ)+ = (j : WY −→WX , p
∗
YN, tr1(χ)+, tr1(η∗)+),

tr1(ξ)− = (j : WY −→WX , p
∗
YN, tr1(χ)−, tr1(η∗)−),

where here pY : WY −→ Y denotes the projection.
We consider the current on X × P1 given by W1 •

(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
.

This current is well defined because the wave front set of W1 is the conormal
bundle of (X × {0}) ∪ (X × {∞}), whereas the wave front set of T (tr1(ξ)±) is
the conormal bundle of Y × P1.
By the functoriality of the transgression exact sequences, we obtain that

tr1(ξ)+ |X×{0}=
⊕

j even

ξj , tr1(ξ)− |X×{0}=
⊕

j odd

ξj .

Moreover, using the fact that, for any bounded acyclic complex of hermitian
vector bundles E∗, the exact sequence tr1(E∗) |X×{∞} is orthogonally split, we
have an isometry

tr1(ξ)+ |X×{∞}∼= tr1(ξ)− |X×{∞} .
We now denote by pX : WX −→ X the projection. Using the properties that de-
fine a theory of singular Bott-Chern classes, in the group

⊕
p D̃

2p−1
D (X,N∗Y,0, p),
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the following holds

0 = dD(pX)∗
(
W1 • T (tr1(ξ)+)−W1 • T (tr1(ξ)−)

)

=
(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
|X×{∞} −

(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
|X×{0}

− (pX)∗
∑

k

(−1)kW1 • (ch(tr1(ηk)+)− ch(tr1(ηk)−))

+ (pX)∗
(
W1 • j∗

[
Td−1(p∗YN) ch(tr1(χ)+)− Td−1(p∗YN) ch(tr1(χ)−)

])

= −T (
⊕

j even

ξj) + T (
⊕

j odd

ξj) +
∑

(−1)k[c̃h(ηk)]− i∗[Td−1(N) • c̃h(χ)],

which implies the proposition.

The following result is a consequence of proposition 6.13 and theorem 2.24.

Corollary 6.14. Let Y −→ X be a closed immersion of complex manifolds.
Let χ be an exact sequence of hermitian vector bundles on Y as (6.12). For each
j, let ξj = (i : Y −→ X,N, F j , Ej,∗) be a hermitian embedded vector bundle.
We denote by ε the induced exact sequence of metrized coherent sheaves. Then

T (
⊕

j even

ξj)− T (
⊕

j odd

ξj) = [c̃h(ε)]− i∗([Td−1(N)c̃h(χ)]).

�

We now study the effect of changing the metric of the normal bundle N .

Proposition 6.15. Let ξ0 = (i, N0, F , E∗) be a hermitian embedded vector
bundle, where N0 = (N, h0). Let h1 be another metric in the vector bundle N
and write N1 = (N, h1), ξ1 = (i, N1, F , E∗). Then

T (ξ0)− T (ξ1) = −i∗[T̃d−1(N, h0, h1) ch(F )].

Proof. The proof is completely analogous to the proof of proposition 6.13.

We now study the case when Y is the zero section of a completed vector bundle.
Let F and N be hermitian vector bundles over Y . We denote P = P(N ⊕ C),
the projective bundle of lines in N ⊕ OY . Let s : Y −→ P denote the zero
section and let πP : P −→ Y denote the projection. Let K(F,N) be the Koszul
resolution of definition 5.3. We will use the notations before this definition.
The following result is due to Bismut, Gillet and Soulé for the particular choice
of singular Bott-Chern classes defined in [6].

Theorem 6.16. Let T be a theory of singular Bott-Chern classes of rank
rF and codimension rN . Let Y be a complex manifold and let F and N be
hermitian vector bundles of rank rF and rN respectively. Then the current
(πP )∗(T (K(F,N))) is closed. Moreover the cohomology class that it represents
does not depend on the metric of N and F and determines a characteristic
class for pairs of vector bundles of rank rF and rN . We denote this class by
CT (F,N).
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Proof. We have that

dD(πP )∗(T (K(F,N)))

= (πP )∗(dD T (K(F,N)))

= (πP )∗

(
r∑

k=0

(−1)k[ch(

k∧
Q
∨

)π∗P ch(F )]− s∗[Td−1(N) ch(F )]

)

=
(
(πP )∗[cr(Q) Td−1(Q)]− [Td−1(N)]

)
ch(F )).

Therefore, the fact that the current (πP )∗(T (K(F ,N))) is closed follows from
corollary 3.8. The fact that this class is functorial on (Y,N, F ) is clear from the
construction Thus, the fact that it does not depend on the hermitian metrics
of N and F follows from proposition 1.7.

Remark 6.17. By theorem 1.8 we know that, if we restrict ourselves to the
algebraic category, CT (F,N) is given by a power series on the Chern classes
with coefficients in D. By degree reasons

CT (F,N) ∈
⊕

p

H2p−1
Dan (Y,R(p)).

Let 11 ∈ H1
D(∗,R(1)) be the element determined by the constant function with

value 1 in D1(∗, 1). Then CT (F,N)/11 is a power series in the Chern classes
of N and F with real coefficients.

7 Classification of theories of singular Bott-Chern classes

The aim of this section is to give a complete classification of the possible theories
of singular Bott-Chern classes. This classification is given in terms of the
characteristic class CT introduced in the previous section.

Theorem 7.1. Let rF and rN be two positive integers. Let C be a characteristic
class for pairs of vector bundles of rank rF and rN . Then there exists a unique
theory TC of singular Bott-Chern classes of rank rF and codimension rN such
that CTC = C.

Proof. We first prove the uniqueness. Assume that T is a theory of singular
Bott-Chern classes such that CT = C. Let ξ = (i : Y −→ X,N, F ,E∗) be a
hermitian embedded vector bundle as in section 6. Let W be the deformation to
the normal cone of Y . We will use all the notations of section 5. In particular,
we will denote by pX̃ : X̃ −→ X and pP : P −→ X the morphisms induced by
restricting pW . Recall that pP can be factored as

P
πP−→ Y

i−→ X.

The normal vector bundle to the inclusion j : Y × P1 −→ W is isomorphic
to p∗YN ⊗ q∗YO(−1). We provide it with the hermitian metric induced by the

metric of N and the Fubini-Study metric of O(−1) and we denote it by N
′
.
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By theorem 5.4 we have a complex of hermitian vector bundles, tr1(E∗)∗ such
that the restriction tr1(E∗)∗|X×{0} is isometric to E∗, the restriction tr1(E∗)∗|X̃
is orthogonally split and there is an exact sequence on P

0 −→ A∗ −→ tr1(E∗)∗|P −→ K(F,N) −→ 0,

where A∗ is split acyclic and K(F,N) is the Koszul resolution. Recall that
we have trivialized N−1∞/P1 by means of the section y of OP1(1). We choose a

hermitian metric in every bundle of A∗ such that it becomes orthogonally split.
For each k we will denote by ηk the exact sequence of hermitian vector bundles

0 −→ Ak −→ tr1(E∗)k|P −→ K(F,N)k −→ 0. (7.2)

Observe that the current W1 is defined as the current associated to a locally
integrable differential form. The pull-back of this form to W is also locally
integrable. Therefore it defines a current on W that we also denote by W1.
Moreover, since the wave front sets of W1 and of T (tr1(E∗)∗) are disjoint,
there is a well defined current W1 • T (tr1(E∗)∗). Then, using the properties of
singular Bott-Chern classes in definition 6.9, the equality

0 = dD(pW )∗
(
W1 • T (tr1(E∗)∗)

)

= (pX̃)∗(T (tr1(E∗)∗)|X̃) + (pP )∗(T (tr1(E∗)∗)|P )− T (ξ)

− (pW )∗

(
W1 •

(∑

k

(−1)k ch(tr1(E∗)∗)− (j∗(ch(p∗Y F ) Td−1(N
′
))

))

holds in the group
⊕

k D̃2k−1(X, k). By properties 6.9(ii) and 6.9(iii),
T (tr1(E∗)∗)|X̃ = T (tr1(E∗)∗|X̃) = 0.
By proposition 6.13 we have

T (tr1(E∗)∗|P ) = T (K(F,N))−
∑

k

(−1)k[c̃h(ηk)].

Moreover, we have

(pP )∗(T (K(F,N))) = i∗(πP )∗(T (K(F ,N))) = i∗CT (F,N).

By the definition of N ′ and the choice of its metric, there are two differential
forms a, b on Y , such that

ch(p∗Y F ) Td−1(N
′
) = p∗Y (a) + p∗Y (b) ∧ q∗Y (c1(O(−1))).

We denote ω = −c1(O(−1)). By the properties of the Fubini-Study metric, ω
is invariant under the involution of P1 that sends t to 1/t. Then

(pW )∗
(
W1 • (j∗(ch(p∗Y F ) Td−1(N

′
))
)

= i∗(pY )∗(W1 • (p∗Y a+ p∗Y bω)) = 0
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because the current W1 changes sign under the involution t 7−→ 1/t.

Summing up, we have obtained the equation

T (ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + i∗CT (F,N). (7.3)

Hence the singular Bott-Chern class is characterized by the properties of defi-
nition 6.9 and the characteristic class CT .

In order to prove the existence of a theory of singular Bott-Chern classes, we
use equation (7.3) to define a class TC(ξ) as follows.

Definition 7.4. Let C be a characteristic class for pairs of vector bundles of
rank rF and rN as in theorem 7.1. Let ξ = (i : Y −→ X,N, F ,E∗) be as in
definition 6.9. Let A∗, tr1(E∗)∗ and η∗ be as in (7.2). Then we define

TC(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + i∗C(F,N). (7.5)

We have to prove that this definition does not depend on the choice of the metric
of tr1(E∗)∗ or the metric of A∗, that TC satisfies the properties of definition
6.9 and that the characteristic class CTC agrees with C.

First we prove the independence from the metrics. We denote by hk the her-
mitian metric on tr1(E∗)k and by gk the hermitian metric on Ak. Let h′k and
g′k be another choice of metrics satisfying also that (A∗, g′∗) is orthogonally
split, that (tr1(E∗)k, h′k)|X×{0} is isometric to Ek and that (tr1(E∗)k, h′k)|X̃ is
orthogonally split. We denote by η′k the exact sequence ηk provided with the

metrics g′ and h′. Then, in the group
⊕

p D̃2p−1(X, p), we have

∑

k

(−1)k(pP )∗[c̃h(ηk)]−
∑

k

(−1)k(pP )∗[c̃h(η′k)] =

∑

k

(−1)k(pP )∗
[
c̃h(Ak, gk, g

′
k)
]
−
∑

k

(−1)k(pP )∗
[
c̃h(tr1(E∗)k|P , hk, h′k)

]
.

(7.6)

Observe that the first term of the right hand side vanishes due to the hypothesis
of A∗ being orthogonally split for both metrics.
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Moreover, we also have,

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k, hk)

)
−

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k, h
′
k)

)
=

(pW )∗

(∑

k

(−1)kW1 • dD c̃h(tr1(E∗)k, hk, h
′
k)

)
. (7.7)

But, in the group
⊕

p D̃2p−1(X, p),

(pW )∗

(∑

k

(−1)kW1 • dD c̃h(tr1(E∗)k, hk, h
′
k)

)
=

∑

k

(−1)k(pX̃)∗[c̃h(tr1(E∗)k, hk, h
′
k)]|X̃

+
∑

k

(−1)k(pP )∗[c̃h(tr1(E∗)k, hk, h
′
k)]|P )

−
∑

k

(−1)k[c̃h(tr1(E∗)k, hk, h
′
k)]|X×{0}. (7.8)

The last term of the right hand side vanishes because the metrics hk and h′k
agree when restricted to X ×{0} and the first term vanishes by the hypothesis
that tr1(E∗)∗|X̃ is orthogonally split with both metrics. Combining equations
(7.6), (7.7) and (7.8) we obtain that the right hand side of equation (7.5) does
not depend on the choice of metrics.
We next prove the property (i) of definition 6.9. We compute

dD TC(ξ) = −
∑

k

(−1)k
(
(pX̃)∗ ch(tr1(E∗)k|X̃) + (pP )∗ ch(tr1(E∗)k|P )

)

+
∑

k

(−1)k ch(tr1(E∗)k|X×{0})

−
∑

k

(−1)k(pP )∗
(
ch(Ak) + ch(K(F ,N)k)− ch(tr1(E∗)k|P )

)
.

Using that A∗ and that tr1(E∗)∗|X̃ are orthogonally split and corollary 3.8 we
obtain

dD TC(ξ) =
∑

k

(−1)k ch(Ek)−
∑

k

(−1)k(pP )∗ ch(K(F ,N)k)

=
∑

k

(−1)k[ch(Ek)]− (pP )∗[cr(Q) Td−1(Q)]

=
∑

k

(−1)k[ch(Ek)]− i∗[ch(F ) Td−1(N)].
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We now prove the normalization property. We consider first the case when
Y = ∅ and E∗ is a non-negatively graded orthogonally split complex. We
denote by

Ki = Ker(di : Ei −→ Ei−1)

with the induced metric. By hypothesis there are isometries

Ei = Ki ⊕Ki−1.

Under these isometries, the differential is d(s, t) = (t, 0). Following the explicit
construction of tr1(E∗) given in [20], recalled in definition 2.5, we see that

tr1(E∗)i = p∗Ki ⊗ q∗O(i) ⊕ p∗Ki−1 ⊗ q∗O(i − 1) = Ki(i)⊕Ki−1(i − 1).

Moreover, we can induce a metric on tr1(E∗)∗ satisfying the hypothesis of
definition 2.9 by means of the metric of the bundles Ki and the Fubini-Study
metric on the bundles O(i). It is clear that the second and third terms of the
right hand side of equation (7.3) are zero. For the first term we have

∑

k

(−1)k(pW )∗W1 •
(
ch(tr1(E∗)k)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(Kk(k)
⊥
⊕Kk−1(k − 1))

)

= (pW )∗ (W1 • (a+ b ∧ ω)) ,

where ω is the Fubini-Study (1, 1)-form on P1 and a, b are inverse images of
differential forms on X . Therefore we obtain that TC(E∗) = 0.

Now let ξ = (i : Y −→ X,N, F ,E∗) and let B∗ be a non-negatively graded
orthogonally split complex of vector bundles. By [20] section 1.1, we have that
W (E∗ ⊕B∗) = W (E∗) and that

tr1(E∗ ⊕B∗) = tr1(E∗)⊕ π∗ tr1(B∗).

In order to compute TC(ξ), we have to consider the exact sequences of hermitian
vector bundles over P

ηk : 0 −→ Ak −→ tr1(E∗)k|P −→ K(F ,N)k −→ 0,

whereas, in order to compute TC(ξ ⊕B∗), we consider the sequences

η′k :

0 −→ Ak⊕π∗(tr1(B)k)|P −→ tr1(E∗)k⊕π∗(tr1(B)k)|P −→ K(F ,N)k −→ 0.
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By the additivity of Bott-Chern classes, we have that c̃h(ηk) = c̃h(η′k). There-
fore

TC(ξ ⊕ B̄∗)− TC(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗ ⊕B∗)k)

)

+ (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

= −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(B∗)k)

)

= 0.

The proof of the functoriality is left to the reader.
Finally we prove that CTC = C. Let Y be a complex manifold and let F and N
be two hermitian vector bundles. We write X = P(N ⊕C). Let i : Y −→ X be
the inclusion given by the zero section and let πX : X −→ Y be the projection.
On X we have the tautological exact sequence

0 −→ O(−1) −→ π∗X(N ⊕ C) −→ Q −→ 0

and the Koszul resolution, denoted K(F ,N). We denote

ξ = (i : Y −→ X,N, F ,K(F,N)).

Using the definition of TC , that is, equation (7.5), and the fact that TC satisfies
the properties of definition 6.9, hence equation (7.3) is satisfied, we obtain that

i∗C(F,N) = i∗CTC (F,N)

Applying (πX)∗ we obtain that C(F,N) = CTC (F,N) which finishes the proof
of theorem 7.1.

8 Transitivity and projection formula

We now investigate how different properties of the characteristic class CT are
reflected in the corresponding theory of singular Bott-Chern classes.

Proposition 8.1. Let i : Y →֒ X be a closed immersion of complex manifolds.
Let F be a hermitian vector bundle on Y and G a hermitian vector bundle on
X. Let N denote the normal bundle to Y provided with a hermitian metric.
Let E∗ be a finite resolution of i∗F by hermitian vector bundles. We denote
ξ = (i : Y −→ X,N, F ,E∗) and ξ ⊗ G = (i : Y −→ X,N, F ⊗ i∗G,E∗ ⊗ G).
Then

T (ξ ⊗G)− T (ξ) • ch(G) = i∗(CT (F ⊗ i∗G,N))− i∗(CT (F,N)) • ch(G).
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Proof. Since the construction of tr1(E∗)∗ is local on X and Y and compatible
with finite sums, we have that

W (E∗) = W (E∗ ⊗G), tr1(E∗ ⊗G)∗ = tr1(E∗)∗ ⊗ p∗WG.

We first compute

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗ ⊗G)∗)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)∗)p
∗
W ch(G)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)∗)

)
ch(G). (8.2)

The Koszul resolution of i∗(F ⊗ i∗G) is given by

K(F ⊗ i∗G,N) = K(F,N)⊗ p∗PG.

For each k ≥ 0, we will denote by ηk ⊗ p∗PG the exact sequence

0 −→ Ak ⊗ p∗PG −→ tr1(E∗ ⊗G)k|P −→ K(F ,N)k ⊗ p∗PG −→ 0.

Then, we have

(pP )∗[c̃h(ηk ⊗ p∗PG)] = (pP )∗[c̃h(ηk) • p∗P ch(G)] = (pP )∗[c̃h(ηk)] • ch(G) (8.3)

Thus the proposition follows from equation (8.2), equation (8.3) and formula
(7.3).

Definition 8.4. We will say that a theory of singular Bott-Chern classes is
compatible with the projection formula if, whenever we are in the situation of
proposition 8.1, the following equality holds:

T (ξ ⊗G) = T (ξ) • ch(G).

We will say that a characteristic class C (of pairs of vector bundles) is compatible
with the projection formula if it satisfies

C(F,N) = C(OY , N) • ch(F ).

Corollary 8.5. A theory of singular Bott-Chern classes T is compatible with
the projection formula if and only if it is the case for the associated character-
istic class CT .
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Proof. Assume that CT is compatible with the projection formula and that we
are in the situation of proposition 8.1. Then

i∗CT (F ⊗ i∗G,N)) = i∗(CT (OY , N) • ch(F ⊗ i∗G))

= i∗(CT (OY , N) • ch(F )i∗ ch(G))

= i∗(CT (OY , N) • ch(F )) ch(G)

= i∗(CT (F,N)) • ch(G).

Thus, by proposition 8.1, T is compatible with the projection formula.
Assume that T is compatible with the projection formula. Let F and N be
hermitian vector bundles over a complex manifold Y . Let s : Y →֒ P := P(N ⊕
C) be the zero section and let π : P −→ Y be the projection. Then

CT (F,N) = π∗(T (K(F,N)))

= π∗(T (K(OY , N)⊗ π∗F ))

= π∗(T (K(OY , N)) • π∗ ch(F ))

= π∗(T (K(OY , N))) • ch(F )

= CT (OY , N) • ch(F ).

We will next investigate the relationship between singular Bott-Chern classes
and compositions of closed immersions. Thus, let

Y
� �
iY/X //� s

iY/M

99X
� �
iX/M // M

be a composition of closed immersions. Assume that the normal bundles NY/X ,
NX/M and NY/M are provided with hermitian metrics. We will denote by ε
the exact sequence

ε : 0→ NY/X → NY/M → i∗Y/XNX/M → 0. (8.6)

Let PX/M = P(NX/M ⊕C) be the projective completion of the normal cone to
X in M . Then there is an isomorphism

NY/PX/M
∼= NY/X ⊕ i∗Y/XNX/M . (8.7)

We denote by NY/PX/M the vector bundle on the left hand side with the her-
mitian metric induced by the isomorphism (8.7).
Let F be a hermitian vector bundle over Y , let E∗ −→ (iY/X)∗F be a resolution

by hermitian vector bundles. Let E
′
∗,∗ be a complex of complexes of vector
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bundles over M , such that, for each k ≥ 0, E
′
k,∗ −→ (iX/M )∗Ek is a resolution,

and there is a commutative diagram of resolutions

. . . // E′k+1,∗ //

��

E′k,∗ //

��

E′k−1,∗ //

��

. . .

. . . // (iX/M )∗Ek+1 // (iX/M )∗Ek // (iX/M )∗Ek−1 // . . .

.

It follows that we have a resolution Tot(E
′
∗,∗) −→ (iY/M )∗F of (iY/M )∗F by

hermitian vector bundles.

Notation 8.8. We will denote

ξY →֒X = (iY/X , NY/X , F , E∗),

ξY →֒M = (iY/M , NY/M , F ,Tot(E
′
∗,∗)),

ξX →֒M,k = (iX/M , NX/M , Ek, E
′
k,∗).

We will also denote by ξY →֒PX/M the hermitian embedded vector bundle

(
Y →֒ PX/M , NY/PX/M , F ,Tot(π∗PX/ME∗ ⊗K(OX , NX/M ))

)
.

Let T be a theory of singular Bott-Chern classes, and let CT be its associ-
ated characteristic class. Our aim now is to relate T (ξY →֒X), T (ξY →֒M ) and
T (ξX →֒M,k).

Let WX be the deformation to the normal cone of X in M . As before we denote
by jX : X × P1 −→WX the inclusion.

We denote by W the deformation to the normal cone of jX(Y × P1) in WX .

This double deformation is represented in figure 1. There is a proper map
qW : W −→ P1 × P1. The fibers of qW over the corners of P1 × P1 are as
follows:

q−1W (0, 0) = M,

q−1W (∞, 0) = M̃X × {0} ∪ PX/M ,
q−1W (0,∞) = M̃Y ∪ PY/M ,
q−1W (∞,∞) = M̃X × {∞} ∪ P̃X/M ∪ PY/PX/M ,

where M̃X and M̃Y are the blow-up of M along X and Y respectively, PY/M =
P(NY/M ⊕ C) is the projective completion of the normal cone to Y in M ,

PY/PX/M of the normal cone to Y in PX/M and P̃X/M is the blow-up of PX/M
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M

W
Y

PY/M

W̃X

PY×P1 M̃
X
×
P
1

W
Y
/P

WX

M̃X × {∞}

P̃X/M

PY/PX/M

W

P1 × P1

(0,∞)

(0, 0) (∞, 0)

(∞,∞)

PX/M

M̃X × {0}

M̃Y

Figure 1: Double deformation

along Y . The preimages by π of the different faces of P1 × P1 are as follows:

q−1W (P1 × {0}) = WX ,

q−1W ({0} × P1) = WY ,

q−1W (P1 × {∞}) = W̃X ∪ PY×P1 ,

q−1W ({∞} × P1) = M̃X × P1 ∪WY/P ,

where WY is the deformation to the normal cone of Y in M , the component
W̃X is the blow-up of WX along jX(Y ×P1), while PY×P1 = P(NY×P1/WX

⊕C)
is the projective completion of the normal cone to jX(Y × P1) in WX and
WY/P is the deformation to the normal cone of Y inside PX/M . All the above
subvarieties will be called boundary components of W .
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We will use the following notations for the different maps.

pX : X × P1 −→ X pY : Y × P1 −→ Y

pY×P1 : Y × P1 × P1 −→ Y × P1 p
M̃X×P1 : M̃X × P1 −→M

pWY/P
: WY/P −→M pWY : WY −→M

pWX : WX −→M pPY×P1
: PY×P1 −→M

p
W̃X

: W̃X −→M pPY/PX/M : PY/PX/M −→M

pPX/M : PX/M −→M pP̃X/M : P̃X/M −→M

pPY/M : PY/M −→M pW : W −→M

jY : Y × P1 −→WY j′Y : Y × P1 −→WX

jY×P1 : Y × P1 × P1 −→W iY/PX/M : Y −→ PX/M

πPX/M : PX/M −→ X πPY/M : PY/M −→ Y

πPY/P : PY/PX/M −→ Y πPY×P1
: PY×P1 −→ Y × P1

π
M̃X

: M̃X −→M π
M̃Y

: M̃Y −→M

Note that the map p
M̃X×P1 factors through the blow-up M̃X −→ M and the

map p
W̃X

factors through the blow-up M̃Y −→ M , whereas the maps pWY/P
,

pPX/M and pP̃X/M factor through the inclusion X →֒ M and the maps pPY×P1
,

pPY/M and pPY/PX/M factor through the inclusion Y →֒M .

The normal bundle to X×P1 in WX is isomorphic to p∗XNX/M ⊗q∗XO(−1) and

we consider on it the metric induced by the metric on NX/M and the Fubini-

Study metric on O(−1). We denote it by NX×P1/WX
. The normal bundle to

Y × P1 in WX satisfies

NY×P1/WX
|Y×{0} ∼= NY/M

NY×P1/WX
|Y×{∞} ∼= NY/X ⊕ i∗Y/XNX/M .

On NY×P1/WX
we choose a hermitian metric such that the above isomorphisms

are isometries. Finally, on the normal bundle to Y ×P1×P1 in W , we define a
metric using the same procedure as the definition of the metric of NX×P1/WX

.

On WX we obtain a sequence of resolutions tr1(E
′
)n,∗ −→ (jX)∗p∗XEn. They

form a complex of complexes tr1(E
′
)∗,∗ and the associated total complex

Tot(tr1(E
′
)∗,∗) provides us with a resolution

Tot(tr1(E
′
)∗,∗)∗ −→ (j′Y )∗p

∗
Y F. (8.9)

The restriction of Tot(tr1(E
′
)∗,∗) to M is Tot(E

′
∗,∗). The restriction of each

complex tr1(E
′
)n,∗ to M̃X ×{0} is orthogonally split. Therefore the restriction

of Tot(tr1(E
′
)) to M̃X ×{0} is the total complex of a complex of orthogonally
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split complexes. So it is acyclic although not necessarily orthogonally split.

The restriction of each complex tr1(E
′
)n,∗ to PX/M fits in an exact sequence

0 −→ An,∗ −→ tr1(E
′
)n,∗|PX/M −→ π∗PX/MEn ⊗K(OX , NX/M )∗ −→ 0.

These exact sequences glue together giving a commutative diagram

Tot(A∗,∗)
� � //

��

Tot(tr1(E
′
)∗,∗|PX/M ) // //

��

Tot(π∗PX/ME∗ ⊗K(OX , NX/M )∗)

��
0

� � // (iY/PX/M )∗F // // (iY/PX/M )∗F

where the rows are short exact sequences. Even if the complexes (An)∗ are
orthogonally split, this is not necessarily the case for Tot(A∗,∗). To ease the
notation we will denote A∗ = Tot(A∗,∗).
Applying theorem 5.4 to the resolution (8.9), we obtain a complex of hermitian

vector bundles Ẽ′∗ = tr1(Tot(tr1(E
′
)∗,∗)) which is a resolution of the coherent

sheaf (jY×P1)∗p∗Y×P1p∗Y F .

We now study the restriction of Ẽ′∗ to each of the boundary components of W .

• The restriction of Ẽ′∗ to WX is just Tot(tr1(E
′
)) which has already been

described. For each k ≥ 0, we will denote by η1k the short exact sequence
of hermitian vector bundles on PX/M

Ak
� � // Tot(tr1(E

′
)∗,∗|PX/M )k // // Tot(π∗PX/ME ⊗K(OX , NX/M ))k ,

whereas, for each n, k ≥ 0 we will denote by η1n,k the short exact sequence

An,k
� � // tr1(E

′
)n,k|PX/M // // π∗PX/MEn ⊗K(OX , NX/M )k .

• Its restriction to WY is tr1(Tot(E
′
)). It is a resolution of (jY )∗p∗Y F . Its

restriction to M̃Y is orthogonally split, whereas its restriction to PY/M
fits in an exact sequence

0 −→ B∗ −→ tr1(Tot(E
′
))∗|PY/M −→ π∗PY/MF ⊗K(OY , NY/M ) −→ 0.

For each k ≥ 0 we will denote by η2k the degree k piece of the above exact
sequence.

• Its restriction to M̃X × P1 is an acyclic complex, such that its further
restriction to M̃X × {0} is acyclic and its restriction to M̃X × {∞} is
orthogonally split.
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• Its restriction to WY/P fits in a short exact sequence

0→ tr1(A∗)→ Ẽ′∗|WY/P
→ tr1(Tot(π∗PX/ME ⊗K(OX , NX/M )))→ 0.

For each k ≥ 0, we will denote by µ1
k the exact sequence of hermitian

vector bundles over WY/P given by the piece of degree k of this exact
sequence. The three terms of the above exact sequence become orthog-
onally split when restricted to P̃X/M . By contrast, when restricted to
PY/PX/M they fit in a commutative diagram

C
1

∗
� � //

��

C
2

∗
// //

��

C
3

��
tr1(A)∗|PY/PX/M

� � //

��

Ẽ′∗|PY/PX/M // //

��

D
2

∗

��
0

� � // D
1

∗
// // D

1

∗

where the complexes C
i

∗ are orthogonally split, and

D
1

∗ = π∗PY/PF ⊗K(OY , NY/PX/M ),

D
2

∗ = tr1(Tot(π∗PX/ME ⊗K(OX , NX/M )))|PY/PX/M .

For each k ≥ 0, we will denote by η3k the exact sequence corresponding
to the piece of degree k of the second row of the above diagram, by η4k
that of the second column and by η5k that of the third column. Notice
that the map in the third row is an isometry. We assume that the metric
on C1

∗ is chosen in such a way that the first column is an isometry. Since

the complexes C
i

∗ are orthogonally split, by lemma 2.17 we obtain

∑

k

(−1)k
(

c̃h(η3k)− c̃h(η4k) + c̃h(η5k)
)

= 0. (8.10)

Note that the restriction of µ1
k to PX/M agrees with η1k, whereas its re-

striction to PY/PX/M agrees with η3k.

• Its restriction to W̃X is orthogonally split.

• Finally its restriction to PY×P1 fits in an exact sequence

D∗
� � // Ẽ′∗|PY×P1

// // π∗PY×P1
p∗Y×P1F ⊗K(OY×P1 , NY×P1/WX

) ,
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where D∗ is orthogonally split. For each k ≥ 0 we will denote by µ2
k the

piece of degree k of this exact sequence. Note that the restriction of µ2
k

to PY/M agrees with η2k and the restriction of µ2
k to PY/PX/M agrees with

η4k.

On P1 × P1 we denote the two projections by p1 and p2. Since the currents
p∗1W1 and p∗2W1 have disjoint wave front sets we can define the current W2 =
p∗1W1 • p∗2W1 ∈ D2

D(P1 × P1, 2) which satisfies

dDW2 = (δ{∞}×P1 − δ{0}×P1) • p∗2W1 − p∗1W1 • (δP1×{∞} − δP1×{0}). (8.11)

The key point in order to study the compatibility of singular Bott-Chern classes
and composition of closed immersions is that, in the group

⊕
p D̃2p−1(M,p),

we have

dD(pW )∗

(∑

k

(−1)kW2 • ch(Ẽ′k)

)
= 0.

We compute this class using the equation (8.11). It can be decomposed as
follows.

dD(pW )∗

(∑

k

(−1)kW2 • ch(Ẽ′k)

)
=

(p
M̃X×P1)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|M̃X×P1)

)
(a)

+ (pWY/P
)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|WY/P
)

)
(b)

− (pWY )∗

(∑

k

(−1)kW1 • ch(Ẽ′k|WY )

)
(c)

− (p
W̃X

)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|W̃X
)

)
(d)

− (pPY×P1
)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|PY×P1
)

)
(e)

+ (pWX )∗

(∑

k

(−1)kW1 • ch(Ẽ′k|WX )

)
(f)

=: Ia + Ib − Ic − Id − Ie + If

We compute each of the above terms.
(a) Since the restriction Ẽ′|

M̃X×{∞} is orthogonally split, we have

Ia = −(π
M̃X

)∗c̃h(Ẽ′|
M̃X×{0}).
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But, using lemma 2.17 and the fact, for each k, the complexes tr1(E
′
)k,∗|M̃X

are orthogonally split, we obtain that Ia = 0.

(b) We compute

Ib =(pWY/P
)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|WY/P
)

)

=(pWY/P
)∗

(
W1 •

∑

k

(−1)k(− dD c̃h(µ1
k) + ch(tr1(A∗)k)

+ ch(tr1(Tot(π∗PX/ME ⊗K(OX , NX/M )))k))

)

=
∑

k

(−1)k(−(pPY/PX/M )∗c̃h(η3k)− (pP̃X/M )∗c̃h(µ1
k|P̃X/M ) + (pPX/M )∗c̃h(η1k))

− c̃h(A)

− (iX/M )∗(πPX/M )∗T (ξY →֒PX/M ) + (iY/M )∗CT (F,NY/PX/M )

−
∑

k

(−1)k(pPY/PX/M )c̃h(η5k),

where ξY →֒PX/M is as in notation 8.8.

By corollary 2.19 and the fact that the exact sequences Ak,∗ are orthogonally

split, the term c̃h(A) vanishes.

Also by corollary 2.19 we can see that

∑

k

(−1)k(pP̃X/M )∗c̃h(µ1
k|P̃X/M )

vanishes.

Therefore we conclude

Ib =
∑

k

(−1)k(−(pPY/PX/M )∗c̃h(η3k) + (pPX/M )∗c̃h(η1k))− (pPY/PX/M )c̃h(η5k)

− (iX/M )∗(πPX/M )∗T (ξY →֒PX/M ) + (iY/M )∗CT (F,NY/PX/M ).

(c) By the definition of singular Bott-Chern forms we have

Ic = −T (ξY →֒M ) + (iY/M )∗CT (F,NY/M )−
∑

k

(−1)k(pPY/M )∗c̃h(η2k),

(d) Since the restriction of Ẽ′∗ to W̃X is orthogonally split, we have Id = 0.
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(e) We compute

Ie =(pPY×P1
)∗

(∑

k

(−1)kW1 • ch(Ẽ′k|PY×P1
)

)

=(pPY×P1
)∗

(
W1 •

∑

k

(−1)k
(
− dD c̃h(µ2

k) + ch(Dk)

+ ch(π∗PY×P1
p∗Y F ⊗K(OY×P1 , NY×P1/WX

)k)
)
)
.

The term
∑

(−1)k ch(Dk) vanishes because the complex D∗ is orthogonally
split. We have

∑

k

(−1)k(pPY×P1
)∗(W1 • ch(π∗PY×P1

p∗Y F ⊗K(OY×P1 , NY×P1/WX
)k))

= (iY/M )∗ ch(F )•(pY )∗

(
W1 • π∗PY×P1

∑

k

(−1)k ch(K(OY×P1 , NY×P1/WX
)k)

)

= (iY/M )∗ ch(F ) • (pY )∗
(
W1 • Td−1(NY×P1/WX

)
)

= (iY/M )∗ ch(F ) • T̃d−1(εN ), (8.12)

where εN is the exact sequence (8.6).
Therefore we obtain

Ie = −
∑

k

(−1)k(pPY/PX/M )∗c̃h(η4k) +
∑

k

(−1)k(pPY/M )∗c̃h(η2k)

+ (iY/M )∗ ch(F ) • T̃d−1(εN ).

(f) Finally we have

If =−
∑

k

(−1)kT (ξX →֒M,k) +
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

−
∑

k,l

(−1)k+l(pPX/M )∗c̃h(η1k,l).

By corollary 2.19 we have that
∑

m,l

(−1)m+l(pPX/M )∗c̃h(η1m,l) =
∑

k

(−1)k(pPX/M )∗c̃h(η1k).

Thus

If =−
∑

k

(−1)kT (ξX →֒M,k) +
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

−
∑

k

(−1)k(pPX/M )∗c̃h(η1k).
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Summing up all the terms we have computed, and taking into account equation
(8.10) and the fact that

CT (F,NY/M ) = CT (F,NY/PX/M )

we have obtained the following partial result.

Lemma 8.13. Let iY/M = iX/M ◦ iY/X be a composition of closed immersions
of complex manifolds. Let T be a theory of singular Bott-Chern classes with
CT its associated characteristic class. Let ξY →֒M , ξX →֒M,k and ξY →֒PX/M be as

in notation 8.8, and let ε be as in (8.6). Then, in the group
⊕

p D̃2p−1(M,p),
the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k)−
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

+ (iX/M )∗(πPX/M )∗T (ξY →֒PX/M ) + (iY/M )∗ ch(F ) • T̃d−1(εN ) (8.14)

holds.

In order to compute the third term of the right hand side of equation (8.14)
we consider the following situation

Y ×X PX/M
j //

π

��

PX/M

π

��
Y

s

UU

i // X

s

UU
.

To ease the notation, we denote PX/M by P , Y ×
X
PX/M by X ′ and we denote by

P ′ the projective completion of the normal cone to X ′ in P and by πP ′ : P ′ −→
X ′, πX′/Y : X ′ −→ Y and πP ′/Y : P ′ −→ Y the projections. Observe that
X and X ′ intersect transversely along Y . Moreover, NY/X′ = i∗Y/XNX/M ,
NX′/P = π∗X′/YNY/X and NY/P = NY/X⊕NY/X′ . We use these identifications
to define metrics on NY/X′ , NX′/P and NY/P . Therefore the exact sequence

0 −→ NY/X′ −→ NY/P −→ i∗Y/X′NX′/P −→ 0

is orthogonally split.
We apply the previous lemma to the composition of closed inclusions

Y →֒ X ′ →֒ P,

the vector bundle F over Y and the resolutions

π∗F ⊗ j∗K(OX , NX/M )∗ −→ s∗F

π∗E∗ ⊗K(OX , NX/M )k −→ j∗(π
∗F ⊗ j∗K(OX , NX/M )k).
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We denote by ξY →֒P and ξX′ →֒P,k the hermitian embedded vector bundles cor-
responding to the above resolutions. If iY/P ′ : Y →֒ P ′ is the induced inclusion,

we denote by ξY →֒P ′ the hermitian embedded vector bundle
(
iY/P ′ , NY/P ′ , F ,Tot(π∗P ′j∗K(OX , NX/M )⊗K(OX′ , NX′/P )⊗ (πP ′/Y )∗F )

)
.

Note that the hermitian embedded vector bundle ξY →֒P agrees with the her-
mitian embedded vector bundle denoted ξY →֒PX/M in lemma 8.13. Moreover,
we have that

ξX′ →֒P,k = π∗ξY →֒X ⊗K(OX , NX/M )k.

Applying lemma 8.13, we obtain

T (ξY →֒PX/M ) =
∑

k

(−1)kT (ξX′ →֒PX/M ,k)

−
∑

k

(−1)kj∗CT (π∗F ⊗ j∗K(OX , NX/M )k, NX′/P )

+ j∗(πP ′ )∗T (ξY →֒P ′) (8.15)

By proposition 8.1,

∑

k

(−1)kT (ξX′ →֒PX/M ,k) =
∑

k

(−1)kT (π∗ξY →֒X ⊗K(OX , NX/M )k)

= T (π∗ξY →֒X) •
∑

k

(−1)k ch(K(OX , NX/M )k)

+
∑

k

(−1)kj∗CT (π∗F ⊗ j∗K(OX , NX/M )k, NX′/P )

−
∑

k

(−1)kj∗CT (π∗F,NX′/P ) • ch(K(OX , NX/M )k) (8.16)

We now want to compute the term (iX/M )∗(πPX/M )∗j∗(πP ′ )∗T (ξY →֒P ′).
Observe that we can identify

P ′ = P(i∗Y/XNX/M ⊕ C)×
Y
P(s∗NX′/P ⊕ C),

where s∗NX′/P is canonically isomorphic to NY/X .
Moreover

(iX/M )∗(πPX/M )∗j∗(πP ′ )∗T (ξY →֒P ′) = (iY/M )∗(πP ′/Y )∗T (ξY →֒P ′).

Definition 8.17. We denote

Cad
T (F,NY/X , i

∗
Y/XNX/M ) = (πP ′/Y )∗T (ξY →֒P ′)

and we define

ρ(F,NY/X , i
∗
Y/XNX/M ) = CT (F,NY/M )− Cad

T (F,NY/X , i
∗
Y/XNX/M ). (8.18)
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Lemma 8.19. The current Cad
T (F,NY/X , i

∗
Y/XNX/M ) is closed and defines a

characteristic class of triples of vector bundles. Therefore ρ is also a charac-
teristic class. Moreover the class ρ does not depend on the theory of singular
Bott-Chern classes T .

Proof. The fact that Cad
T (F,NY/X , i

∗
Y/XNX/M ) is closed and determines a char-

acteristic class is proved as in 6.16. The independence of ρ from to T is seen

as follows. We denote by K
′
∗ the complex

Tot(π∗P ′j∗K(OX , NX/M )⊗K(OX′ , NX′/P ))⊗ (πP ′/Y )∗F .

This complex is a resolution of (iY/P ′)∗F

Let W be the blow-up of P ′ × P1 along Y ×∞, and let tr1(K
′
)∗ be the defor-

mation of complexes on W given by theorem 5.4. Just by looking at the rank

of the different vector bundles we see that the restriction of tr1(K
′
)∗ to PY/P ′ ,

the exceptional divisor of this blow-up, is isomorphic (although not necessarily
isometric) to the Koszul complex K(F,NX/M )∗. Then, by equation (7.3)

T (ξY →֒P ′)− (iY/P ′)∗CT (F,NY/M ) =

− (pW )∗

(
W1 •

∑

k

(−1)k ch(tr1(K
′
)k)

)

−
∑

k

(−1)k(pP )∗c̃h(tr1(K
′
)k|PY/P ′ ,K(F ,NX/M )k).

Since the right hand side of this equation does not depend on the theory T ,
the result is proved.

Using equations (8.15), (8.16), lemma 8.19 and the projection formula, we
obtain

(πPX/M )∗T (ξY →֒PX/M ) =
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)

• (πPX/M )∗
∑

k

(−1)k ch(K(OX , NX/M )k)

+ (πPX/M )∗j∗(πP ′)∗T (ξY →֒P ′)

=
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)
• Td−1(NX/M )

+ (iY/X)∗C
ad
T (F,NY/X , i

∗
Y/XNX/M )

=
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)
• Td−1(NX/M )

+ (iY/X)∗CT (F,NY/M )− ρ(F,NY/X , i
∗
Y/XNX/M ).

(8.20)

Joining this equation and lemma 8.13 we obtain the main relationship between
singular Bott-Chern classes and composition of closed immersions.
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Proposition 8.21. Let iY/M = iX/M ◦ iY/X be a composition of closed im-
mersions of complex manifolds. Let T be a theory of singular Bott-Chern
classes with CT its associated characteristic class. Let ξY →֒M , ξX →֒M,k and

ξY →֒PX/M be as in notation 8.8 and let ε be as in (8.6). Then, in the group
⊕

p D̃2p−1(M,p), we have the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN )

+ (iY/M )∗C
ad
T (F,NY/X , i

∗
Y/XNX/M )

− (iX/M )∗((iY/X)∗CT (F,NY/X) • Td−1(NX/M ))

− (iX/M )∗
∑

k

(−1)kCT (Ek, NX/M )

We can simplify the formula of proposition 8.21 if we assume that our theory
of singular Bott-Chern classes is compatible with the projection formula.

Corollary 8.22. With the hypothesis of proposition 8.21, assume furthermore
that T is compatible with the projection formula. Then

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN )

+ (iY/M )∗
[
Cad
T (F,NY/X , i

∗
Y/XNX/M )− CT (F,NY/X) • Td−1(i∗Y/XNX/M ))

−CT (F, i∗Y/XNX/M ) • Td−1(NY/X)
]

Proof. Since T is compatible with the projection formula, then CT is also.
Therefore, using the Grothendieck-Riemann-Roch theorem for closed immer-
sions at the level of analytic Deligne cohomology classes, we have

∑

k

(−1)kCT (Ek,NX/M ) = CT (OX , NX/M ) •
∑

k

(−1)k ch(Ek)

= CT (OX , NX/M ) • (iY/X)∗(ch(F ) •Td−1(NY/X))

= (iY/X)∗(i
∗
Y/XCT (OX , NX/M ) • ch(F ) • Td−1(NY/X))

= (iY/X)∗(CT (F, i∗Y/XNX/M ) • Td−1(NY/X)),

which implies the result.

Definition 8.23. Let T be a theory of singular Bott-Chern classes. We will
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say that T is transitive if the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN ) (8.24)

holds. When equation (8.24) is satisfied for a particular choice of complex
immersions and resolutions, we say that the theory T is transitive with respect
to this particular choice.

We now introduce an abstract version of definition 8.17.

Definition 8.25. Given any characteristic class C of pairs of vector bundles,
we will denote

Cρ(F,N1, N2) := C(F,N1 ⊕N2)− ρ(F,N1, N2),

where ρ is the characteristic class of definition 8.17.

Note that, when T is a theory of singular Bott-Chern classes we have

CρT (F,N1, N2) = Cad
T (F,N1, N2).

Definition 8.26. We will say that a characteristic class C (of pairs of vector
bundles) is ρ-Todd additive (in the second variable) if it satisfies

C(F,N1 ⊕N2) = C(F,N1) • Td−1(N2) + C(F,N2) • Td−1(N1) + ρ(F,N1, N2)

or, equivalently,

Cρ(F,N1, N2) = C(F,N1) • Td−1(N2) + C(F,N2) • Td−1(N1).

A direct consequence of corollary 8.22 is

Corollary 8.27. Let T be a theory of singular Bott-Chern classes that is
compatible with the projection formula. Then it is transitive if and only if the
associated characteristic class CT is ρ-Todd additive.

Since we are mainly interested in singular Bott-Chern classes that are transitive
and compatible with the projection formula, we will study characteristic classes
that are compatible with the projection formula and ρ-Todd-additive in the
second variable. Since we want to express any characteristic class in terms of
a power series we will restrict ourselves to the algebraic category.

Proposition 8.28. Let C be a class that is compatible with the projection
formula and ρ-Todd additive in the second variable. Then C determines a
power series φC(x) given by

C(OY , L) = φC(c1(L)), (8.29)
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for every complex algebraic manifold Y and algebraic line bundle Y . Con-
versely, given any power series in one variable φ(x), there exists a unique
characteristic class for algebraic vector bundles that is compatible with the pro-
jection formula and ρ-Todd additive in the second variable such that equation
(8.29) holds.

Proof. This result follows directly from the splitting principle and theorem
1.8.

Remark 8.30. The utility of corollary 8.27 and proposition 8.28 is limited by
the fact that we do not know an explicit formula for the class ρ(OY , N1, N2).
This class is related with the arithmetic difference between PY (N1 ⊕N2 ⊕ C)
and PY (N1 ⊕C)×

Y
PY (N2 ⊕C), the second space being simpler than the first.

The main ingredients needed to compute this class are the Bott-Chern classes
of the tautological exact sequence. Therefore the work of Mourougane [29]
might be useful for computing this class.

Recall that an additive genus is a characteristic class for algebraic vector bun-
dles S such that

S(N1 ⊕N2) = S(N1) + S(N2).

Let φ(x) =
∑∞
i=0 aix

i be a power series in one variable. There is a one to one
correspondence between additive genus and power series characterized by the
condition that S(L) = φ(c1(L)), for each line bundle L.
Since the class ρ does not depend on the theory T it cancels out when con-
sidering the difference between two different theories of singular Bott-Chern
classes.

Proposition 8.31. Let C1 and C2 be two characteristic classes for pairs of
algebraic vector bundles that are compatible with the projection formula and
ρ-Todd-additive in the second variable. Then there is a unique additive genus
S12 such that

C1(F,N)− C2(F,N) = ch(F ) • Td(N)−1 • S12(N). (8.32)

We can summarize the results of this section in the following theorem.

Theorem 8.33. There is a one to one correspondence between theories of sin-
gular Bott-Chern classes for complex algebraic manifolds that are transitive and
compatible with the projection formula, and formal power series φ(x) ∈ R[[x]].
To each theory of singular Bott-Chern classes corresponds the power series φ
such that

CT (OY , L) = 11 • φ(c1(L)), (8.34)

for every complex algebraic manifold Y and every algebraic line bundle L. To
each power series φ it corresponds a unique class C, compatible with the pro-
jection formula and ρ-Todd-additive in the second variable, characterized by
equation (8.34) and a theory of singular Bott-Chern given by definition 7.4.
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Even if we do not know the exact value of the class ρ another consequence of
corollary 8.27 is that, in order to prove the transitivity of a theory of singular
Bott-Chern classes it is enough to check it for a particular class of compositions.

Corollary 8.35. Let T be a theory of singular Bott-Chern classes compatible
with the projection formula. Then T is transitive if and only if for any compact
complex manifold Y and vector bundles N1, N2, the theory T is transitive with
respect to the composition of inclusions

Y →֒ PY (N1 ⊕ C) →֒ PY (N1 ⊕ C)×Y PY (N2 ⊕ C)

and the Koszul resolutions. �

We can make the previous corollary a little more explicit. Let π1 and π2 be the
projections from P := PY (N1 ⊕ C)×Y PY (N2 ⊕ C) to P1 := PY (N1 ⊕ C) and
P2 := PY (N2 ⊕ C) respectively. Let K1 = K(OY , N1) and K2 = K(OY , N2)
be the Koszul resolutions in P1 and P2 respectively. Then,

K = π∗1K1 ⊗ π∗2K2

is a resolution of OY in P . Then the theory T is transitive in this case if

T (K) = π∗2T (K2) • π∗1(cr1(Q1) • Td−1(Q1)) + (i1)∗(T (K1) • p∗1 Td−1(N2)),

where r1 is the rank of N1, Q1 is the tautological quotient bundle in P1 with
the induced metric, i1 : P1 −→ P is the inclusion and p1 : P1 −→ Y is the
projection.
The singular Bott-Chern classes that we have defined depend on the choice of
a hermitian metric on the normal bundle and behave well with respect inverse
images. Nevertheless, when one is interested in covariant functorial properties
and, in particular, in a composition of closed immersions, it might be interesting
to consider a variant of singular Bott-Chern classes that depend on the choice
of metrics on the tangent bundles to Y and X .

Notation 8.36. Let ξ = (i : Y −→ X,N, F ,E∗ → i∗F ) be a hermitian em-
bedded vector bundle. Let TX and TY be the tangent bundles to X and Y
provided with hermitian metrics. As usual we write Td(Y ) = Td(T Y ) and
Td(X) = Td(TX). We put

ξc = (i : Y −→ X,TX , TY , F , E∗ → i∗F ).

By abuse of notation we will also say that ξc is a hermitian embedded vector
bundle. In this situation we denote by ξNY/X the exact sequence of hermitian
vector bundles

ξNY/X : 0 −→ TY −→ i∗TX −→ NY/X −→ 0.

If there is no danger of confusion we will denote N = NY/X and therefore

ξN = ξNY/X .
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Definition 8.37. Let T be a theory of singular Bott-Chern classes. Then the
covariant singular Bott-Chern class associated to T is given by

Tc(ξc) = T (ξ) + i∗(ch(F ) • T̃d−1(ξNY/X ) Td(Y )) (8.38)

Proposition 8.39. The covariant singular Bott-Chern classes satisfy the fol-
lowing properties

(i) The class Tc(ξc) does not depend on the choice of the metric on NY/X .

(ii) The differential equation

dD Tc(ξc) =
∑

k

(−1)k ch(Ek)− i∗(ch(F ) • Td(Y )) • Td−1(X) (8.40)

holds.

(iii) If the theory T is compatible with the projection formula, then

Tc(ξc ⊗G) = Tc(ξc) • ch(G).

(iv) If, moreover, the theory T is transitive, then, using notation 8.8 adapted
to the current setting, we have

Tc(ξY →֒M,c) =
∑

k

(−1)kTc(ξX →֒M,k,c)

+ (iX/M )∗(Tc(ξY →֒X,c) • Td(X)) • Td−1(M). (8.41)

(v) With the hypothesis of corollary 6.14, we have

Tc(
⊕

j even

ξj,c)− Tc(
⊕

j odd

ξj,c) = [c̃h(ε)]− i∗([c̃h(χ) • Td(Y )]) • Td−1(X).

(8.42)

Proof. All the statements follow from straightforward computations.

9 Homogeneous singular Bott-Chern classes

In this section we will show that, by adding a natural fourth axiom to definition
6.9, we obtain a unique theory of singular Bott-Chern classes that we call
homogeneous singular Bott-Chern classes, and we will compare it with the
classes previously defined by Bismut, Gillet and Soulé and by Zha.
In the paper [6], Bismut, Gillet and Soulé introduced a theory of singular Bott-
Chern classes that is the main ingredient in their construction of direct images
for closed immersions.
Strictly speaking, the construction of [6] only produces a theory of singular
Bott-Chern classes in the sense of this paper when the metrics involved satisfy
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a technical condition, called Condition (A) of Bismut. Nevertheless, there is
a unique way to extend the definition of [6] from metrics satisfying Bismut’s
condition (A) to general metrics in such a way that one obtains a theory of
singular Bott-Chern classes in the sense of this paper.
In his thesis [32], Zha gave another definition of singular Bott-Chern classes,
and he also used them to define direct images for closed immersions in Arakelov
theory.
We will recall the construction of both theories of singular Bott-Chern classes
and we will show that they agree with the theory of homogeneous singular
Bott-Chern classes.
We warn the reader that the normalizations we use differ from the normal-
izations in [6] and [32]. The main difference is that we insist on using the
algebro-geometric twist in cohomology, whereas in the other two papers the
authors use cohomology with real coefficients.
Let rF and rN be two positive integers. Let Y be a complex manifold and let
F and N be two hermitian vector bundles of rank rF and rN respectively. Let
P = P(N ⊕ C) and let s be the zero section. We will follow the notations of
definition 5.3. Then T (K(F,N)) satisfies the differential equation

dD T (K(F,N)) = crN (Q) Td−1(Q) ch(π∗PF )− s∗(ch(F ) Td−1(N)).

Therefore, the class

ẽT (F ,N) := T (K(F,N)) • Td(Q) • ch−1(π∗PF )

satisfies the simpler equation

dD ẽT (F ,N) = [crN (Q)]− δY . (9.1)

Observe that the right hand side of this equation belongs to D2rN
D (P, rN ). Thus

it seems natural to introduce the following definition.

Definition 9.2. Let T be a theory of singular Bott-Chern classes of rank
rF > 0 and codimension rN . Then the class

ẽT (F ,N) = T (K(F,N)) • Td(Q) • ch−1(π∗PF )

is called the Euler-Green class associated to T . The class T (K(F,N)) is said
to be homogeneous if

ẽT (F ,N) ∈ D̃2rN−1
D (P, rN ).

A theory of singular Bott-Chern classes of rank 0 is said to be homogeneous if it
agrees with the theory of Bott-Chern classes associated to the Chern character.
Finally, a theory of singular Bott-Chern classes is said to be homogeneous if its
restrictions to all ranks and codimensions are homogeneous.

The main interest of the above definition is the following result.
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Theorem 9.3. Given two positive integers rF and rN there exists a unique
theory of homogeneous singular Bott-Chern classes of rank rF and codimen-
sion rN .

Proof. The proof of this result is based on the theory of Euler-Green classes.
Let P = P(N ⊕ C) be as before, and let s denote the zero section of P . Let
D∞ be the subvariety of P that parametrizes the lines contained in N . Then
D∞ = P(N).

Lemma 9.4. There exists a unique class ẽ(P,Q, s) ∈ D2rN−1
D (P, rN ) such that

(i) It satisfies

dD ẽ(P,Q, s) = [crN (Q)]− δY . (9.5)

(ii) The restriction ẽ(P,Q, s)|D∞ = 0.

Proof. We first show the uniqueness. Assume that ẽ and ẽ′ are two classes
that satisfy the hypothesis of the theorem. Then ẽ′ − ẽ is closed. Hence it
determines a cohomology class in H2rN−1

Dan (P, rN ). Since, by theorem 1.2, the
restriction

H2rN−1
Dan (P, rN ) −→ H2rN−1

Dan (D∞, rN ) (9.6)

is an isomorphism, condition (ii) implies that ẽ′ = ẽ. Now we prove the exis-
tence. Since Y is the zero locus of the section s, that is transversal to the zero
section of Q, we know that the currents [crN ] and δY are cohomologous. There-

fore there exists an element ã ∈ D̃2rN−1
D (P, rN ) such that dD ã = [crN (Q)]−δY .

Since Q restricted to D∞ splits as an orthogonal direct sum

Q|D∞ = S ⊕ C (9.7)

where the metric on the factor C is trivial, and the section s restricts to the
constant section 1, we obtain that ([crN (Q)]− δY )|D∞ = 0. Therefore ã deter-
mines a class in H2rN−1

Dan (P, rN ). Using again that (9.6) is an isomorphism, we

find an element b̃ ∈ H2rN−1
Dan (P, rN ), such that ẽ = ã− b̃ satisfies the conditions

of the lemma.

We continue with the proof of theorem 9.3. We first prove the uniqueness.
Let T be a theory of homogeneous singular Bott-Chern classes. The splitting
(9.7) implies easily that the restriction of the Koszul resolution K(F ,N) to
D∞ is orthogonally split. By the functoriality of singular Bott-Chern classes,
T (K(F,N))|D∞ = 0. Thus the class

ẽT (F ,N) := T (K(F,N)) • Td(Q) • ch−1(π∗PF ) ∈ D̃2rN−1
D (P, rN )

satisfies the two conditions of lemma 9.4. Therefore ẽT (F ,N) = ẽ(P,Q, s) and

T (K(F,N)) = ẽ(P,Q, s) • Td−1(Q) • ch(π∗PF ), (9.8)

Documenta Mathematica 15 (2010) 73–176
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where the right hand side does not depend on the theory T . In consequence
we have that

CT (F,N) = (πP )∗T (K(F,N)) (9.9)

does not depend on the theory T . Thus by the uniqueness in theorem 7.1 we
obtain the uniqueness here.
For the existence we observe

Lemma 9.10. The current

C(F,N) = (πP )∗(ẽ(P,Q, s) • Td−1(Q)) • ch(F )

is a characteristic class for pairs of vector bundles of rank rF and rN .

Proof. We first compute, using equation (9.5) and corollary 3.8,

dD C(F,N) = (πP )∗
(
dD ẽ(P,Q, s) • Td−1(Q)

)
• ch(F )

= (πP )∗
(
([crN (Q)]− δY ) • Td−1(Q)

)
• ch(F )

= (πP )∗
(
crN (Q) • Td−1(Q)

)
• ch(F )− Td−1(N) • ch(F )

= 0.

Thus C(F,N) determines a cohomology class. This class is functorial by con-
struction. By proposition 1.7 this class does not depend on the metric and
defines a characteristic class.

By the existence in theorem 7.1 we obtain a theory of singular Bott-Chern
classes TC that is easily seen to be homogeneous.

A reformulation of theorem 9.3 is

Theorem 9.11. There exists a unique way to associate to each hermitian em-
bedded vector bundle ξ = (i : Y −→ X,N, F ,E∗) a class of currents

T h(ξ) ∈
⊕

p

D̃2p−1
D (X,N∗Y,0, p)

that we call homogeneous singular Bott-Chern class, satisfying the following
properties

(i) (Differential equation) The equality

dD T
h(ξ) =

∑

i

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]) (9.12)

holds.

(ii) (Functoriality) For every morphism f : X ′ −→ X of complex manifolds
that is transverse to Y ,

f∗T h(ξ) = T h(f∗ξ).
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(iii) (Normalization) Let A = (A∗, g∗) be a non-negatively graded orthogonally
split complex of vector bundles. Write ξ ⊕ A = (i : Y −→ X,N, F ,E∗ ⊕
A∗). Then T h(ξ) = T h(ξ ⊕ A). Moreover, if X = SpecC is one point,
Y = ∅ and E∗ = 0, then T h(ξ) = 0.

(iv) (Homogeneity) If rF = rk(F ) > 0 and rN = rk(N) > 0, then, with the
notations of definition 9.2,

T h(K(F ,N)) • Td(Q) • ch−1(π∗PF ) ∈ D̃2rN−1
D (P, rN ).

�

The class ẽ(P,Q, s) of lemma 9.4 is a particular case of the Euler-Green classes
introduced by Bismut, Gillet and Soulé in [6]. The basic properties of the
Euler-Green classes are summarized in the following results.

Proposition 9.13. Let X be a complex manifold, let E be a hermitian holo-
morphic vector bundle of rank r and let s be a holomorphic section of E that
is transverse to the zero section. Denote by Y the zero locus of s. There is a
unique way to assign to each (X,E, s) as before a class of currents

ẽ(X,E, s) ∈ D̃2r−1
D (X,N∗Y,0, r)

satisfying the following properties

(i) (Differential equation)

dD ẽ(X,E, s) = cr(E)− δY . (9.14)

(ii) (Functoriality) If f : X ′ −→ X is a morphism transverse to Y then

ẽ(X ′, f∗E, f∗s) = f∗ẽ(X,E, s). (9.15)

(iii) (Multiplicativity) Let E1 and E2 be hermitian holomorphic vector bun-
dles, and let s1 and s2 be holomorphic sections of E1 and E2 respectively
that are transverse to the zero section and with zero locus Y1 and Y2. We
write E = E1 ⊕ E2 and s = s1 ⊕ s2. Assume that s is transverse to the
zero section; hence Y1 and Y2 meet transversely. With this hypothesis we
have

ẽ(X,E, s) = ẽ(X,E1, s1) ∧ cr2(E2) + δY1 ∧ ẽ(X,E2, s2)

= ẽ(X,E1, s1) ∧ δY2 + cr1(E1) ∧ ẽ(X,E2, s2).

(iv) (Line bundles) If L is a hermitian line bundle and s is a section of L,
then

ẽ(X,L, s) = − log ‖s‖. (9.16)
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Proof. Bismut, Gillet and Soulé prove the existence by constructing explicitly
an Euler-Green current in the total space of E and pulling it back to X by the
section s. For the uniqueness, first we see that properties (i) and (ii) imply
that, if h0 and h1 are two hermitian metrics in E, then

ẽ(X, (E, h0), s)− ẽ(X, (E, h1), s) = c̃r(E, h0, h1). (9.17)

We now consider π : P = P(E⊕C) −→ X , with the tautological exact sequence

0 −→ O(−1) −→ π∗E ⊕ C −→ Q −→ 0

On Q we consider the metric induced by the metric of E and the trivial met-
ric on the factor C, and let sQ the section of Q induced by the section 1
of C. Let D∞ be as in lemma 9.4. Then properties (ii) to (iv) imply that
ẽ(P,Q, sQ)|D∞ = 0. Hence by lemma 9.4 ẽ is uniquely determined. Finally, let
f : X −→ P be the map given by x 7−→ (s(x) : −1). Then f∗Q ∼= E, although
they are not necessarily isometric, and f∗sQ = s. Therefore, the functoriality
and equation (9.17) determine ẽ(X,E, s).

To prove the existence, we use lemma 9.4, functoriality and equation (9.17) to
define the Euler-Green classes. It is easy to show that they are well defined
and satisfy properties (i) to (iv).

Equation (9.8) relating homogeneous singular Bott-Chern classes and Euler-
Green classes in a particular case can be generalized to arbitrary vector bundles.

Proposition 9.18. Let X be a complex manifold, E a hermitian vector bundle
over X, s a section of E transversal to the zero section and i : Y −→ X the
zero locus of s. Let K(E) be the Koszul resolution of i∗OY determined by E
and s. We can identify NY/X with i∗E. We denote by NY/X the vector bundle
with the metric induced by the above identification. Then

T h(i,OY , NY/X ,K(E)) = ẽ(X,E, s) • Td−1(E).

Proof. Let P = P(E ⊕ C). We follow the notation of proposition 9.13. We
denote by h0 the original metric of E and by h1 the metric induced by the
isomorphism E ∼= f∗Q. Observe that h0 and h1 agree when restricted to Y ,
because the preimage of Q by the zero section agrees with E. Hence there is
an isometry NY/X

∼= i∗f∗Q. We denote T h(K(E)) = T h(i,OY , NY/X ,K(E)).
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Then we have

T h(K(E)) = f∗T h(K(OX , E)) +
∑

i

(−1)ic̃h(

i∧
E∨, h0, h1)

= f∗(ẽ(P,Q, sQ) • Td−1(Q)) + c̃r(E, h0, h1) • Td−1(E, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h1)− c̃r(E, h0, h1) • Td−1(E, h1)

+ c̃r(E, h0, h1) • Td−1(E, h1) + cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0)− ẽ(X,E, s) • dD T̃d−1(E, h0, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0)− dD ẽ(X,E, s) • T̃d−1(E, h0, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0) + i∗T̃d−1(E, h0, h1)|Y
= ẽ(X,E, s) • Td−1(E),

which concludes the proof.

Theorem 9.19. The theory of homogeneous singular Bott-Chern classes is
compatible with the projection formula and transitive.

Proof. We have

CTh (F,N) = (πP )∗T
h(K(F ,N))

= (πP )∗(ẽ(P,Q, s) • Td−1(Q) • ch(π∗PF ))

= (πP )∗(ẽ(P,Q, s) • Td−1(Q)) • ch(F )

= CTh(OY , N) • ch(F ).

Thus CTh is compatible with the projection formula.
We now prove the transitivity. Let Y , N1 and N2 be as in corollary 8.35.
We follow the notation after this corollary. Then applying proposition 9.18 we
obtain

T h(K) = ẽ(P, π∗1Q1 ⊕ π∗2Q2, s1 + s2) • Td−1(π∗1Q1 ⊕ π∗2Q2), (9.20)

where si denote the tautological section of Qi or its preimage by πi.
Then, by proposition 9.13 (iii), taking into account that Y1 = P2,

T h(K) = π∗1(cr1(Q1) Td−1(Q1)) • π∗2(ẽ(P2, Q2, s2) Td−1(Q2))

+ (i1)∗(ẽ(P1, Q1, s1) Td−1(Q1) • p∗1 Td−1(N2)). (9.21)
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Applying again proposition 9.18 we obtain

T h(K) = π∗1(cr1(Q1) Td−1(Q1)) • π∗2(T h(K2)) + (i1)∗(T
h(K1) • p∗1 Td−1(N2)).

(9.22)
Thus, by corollary 8.35 the theory of homogeneous singular Bott-Chern classes
is transitive.

We next recall the construction of singular Bott-Chern classes of Bismut, Gillet
and Soulé. Let i : Y −→ X be a closed immersion of complex manifolds and
let ξ = (i, N, F ,E∗) be a hermitian embedded vector bundle. We consider the
associated complex of sheaves

0→ En
v→ . . .

v→ E0 → 0,

where we denote by v the differential of this complex.
This complex is exact for all x ∈ X \ Y . The cohomology sheaves of this
complex are holomorphic vector bundles on Y which we denote by

Hn = Hn(E∗|Y ), H =
⊕

n

Hn.

For each x ∈ Y and U ∈ TxX we denote by ∂Uv(x) the derivative of the map v
calculated in any holomorphic trivialization of E near x. Then ∂Uv(x) acts on
Hx. Moreover, this action only depends on the class y of U in Nx. We denote
it by ∂yv(x). Moreover (∂yv(x))2 = 0; therefore the pull-back of H to the total
space of N together with ∂yv is a complex that we denote by (H, ∂yv).
On the total space of N , the interior multiplication by y ∈ N turns

∧
N∨ into a

Koszul complex. By abuse of notation we denote also by ιy the operator ιy⊗ 1
acting on

∧
N∨⊗F . There is a canonical isomorphism between the complexes

(H, ∂yv) and (
∧
N∨ ⊗ F, ιy). An explicit description of this isomorphism can

be found in [3] §1.
Let v∗ be the adjoint of the operator v with respect to the metrics of E∗. Then
we have an identification of vector bundles over Y

Hk = {f ∈ Ek | vf = v∗f = 0}.

This identification induces a hermitian metric on Hk, and hence on H . Note
that the metrics on N and F also induce a hermitian metric on

∧
N∨ ⊗ F .

Definition 9.23. We say that ξ = (i, N, F ,E∗) satisfies Bismut assumption
(A) if the canonical isomorphism between (H, ∂yv) and (

∧
N∨ ⊗ F, ιy) is an

isometry.

Proposition 9.24. Let ξ = (i, N, F ,E∗) be as before, with N = (N, hN ) and
F = (F, hF ). Then there exist metrics h′Ek over Ek such that the hermitian

embedded vector bundle ξ
′

= (i, N, F , (E∗, h′E∗
)) satisfies Bismut assumption

(A).
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Proof. This is [3] proposition 1.6.

Let ∇E be the canonical hermitian holomorphic connection on E and let V =
v + v∗. Then

Au = ∇E +
√
uV

is a superconnection on E.
Let ∇H be the canonical hermitian connection on H . Then

B = ∇H + ∂yv + (∂yv)∗

is a superconnection on H .
Let NH be the number operator on the complex (E, v), that is, NH acts on Ek
by multiplication by k, and let Trs denote the supertrace. Recall that here we
are using the symbol [ ] to denote the current associated to a locally integrable
differential form and the symbol δY to denote the current integration along a
subvariety, both with the normalizations of notation 1.3.
For 0 < Re(s) ≤ 1/2 let ζE(s) be the current on X given by the formula

ζE(s) =
1

Γ(s)

∫ ∞

0

us−1
{[

Trs
(
NH exp(−A2

u)
)]

− i∗

[∫

N

Trs
(
NH exp(−B2)

)]}
du. (9.25)

This current is well defined and extends to a current that depends holomorphi-
cally on s near 0.

Definition 9.26. Assume that ξ = (i, N, F ,E∗) satisfies Bismut assumption
(A). Then we denote

TBGS(ξ) = −1

2
ζ′E(0).

By abuse of notation we will denote also by TBGS(ξ) its class in⊕̃
pD̃2p−1

D (X, p).

Let now ξ = (i, N, F , (E∗, hE∗)) be general and let ξ
′

= (i, N, F , (E∗, h′E∗
)) be

any hermitian embedded vector bundle satisfying assumption (A) provided by
proposition 9.24. Then we denote

TBGS(ξ) = TBGS(ξ
′
) +

∑

i

(−1)ic̃h(Ei, hEi , h
′
Ei),

where c̃h(Ei, hEi , h
′
Ei

) is as in definition 2.13.

Remark 9.27. This definition only agrees (up to a normalization factor) with
the definition in [6] for hermitian embedded vector bundles that satisfy assump-
tion (A).
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Theorem 9.28. The assignment that, to each hermitian embedded vector bun-
dle ξ, associates the current TBGS(ξ), is a theory of singular Bott-Chern classes
that agrees with T h.

Proof. First we have to show that, when ξ does not satisfy assumption (A)

then TBGS(ξ) is well defined. Assume that ξ
′′

= (i, N, F , (E∗, h′E∗
)) is another

choice of hermitian embedded vector bundle satisfying assumption (A). By
lemma 2.17 we have that

c̃h(Ei, hi, h
′
i) + c̃h(Ei, h

′
i, h
′′
i ) + c̃h(Ei, h

′′
i , hi) = 0.

By [6] theorem 2.5 we have that

TBGS(ξ
′
)− TBGS(ξ

′′
) =

∑

i

(−1)ic̃h(Ei, h
′
Ei , h

′′
Ei).

Summing up we obtain that TBGS(ξ) is well defined.
If the hermitian embedded vector bundle ξ satisfies Bismut assumption (A)
then, by [6] theorem 1.9, TBGS(ξ) satisfies equation (6.10). If ξ does not
satisfy assumption (A) then, combining [6] theorem 1.9 and equation (2.4), we
also obtain that TBGS(ξ) satisfies equation (6.10).
The functoriality property is [6] theorem 1.10.
In order to prove the normalization property, let ξ = (i : Y −→ X,N, F ,E∗)
be a hermitian embedded vector bundle that satisfies assumption (A) and let
A be a non-negatively graded orthogonally split complex of vector bundles on
X . Observe that A is also a (trivial) hermitian embedded vector bundle. Then
A and ξ ⊕A also satisfy assumption (A). By [6] theorem 2.9

TBGS(ξ ⊕A) = TBGS(ξ) + TBGS(A).

But by [5] remark 2.3, TBGS(A) agrees with the Bott-Chern class associated
to the Chern character and the exact complex A. Since A is orthogonally split
we have TBGS(A) = 0. Now the case when ξ does not satisfy assumption (A)
follows from the definition.
By [6] theorem 3.17, with the hypothesis of proposition 9.18, we have that

TBGS(i,OY , NY/X ,K(E)) = ẽ(X,E, s) • Td−1(E)

= T h(i,OY , NY/X ,K(E)).

From this it follows that CTBGS = CTh and by theorem 7.1, TBGS = T h.

We now recall Zha’s construction. Note that, in order to obtain a theory of
singular Bott-Chern classes, we have changed the normalization convention
from the one used by Zha. Note also that Zha does not define explicitly a
singular Bott-Chern class, but such a definition is implicit in his definition of
direct images for closed immersions. Let Y be a complex manifold and let
N = (N, h) be a hermitian vector bundle. We denote P = P(N ⊕ C). Let
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π : P −→ Y denote the projection and let ι : Y −→ P denote the inclusion as
the zero section. On P we consider the tautological exact sequence

0 −→ O(−1) −→ π∗N ⊕OP −→ Q −→ 0.

Let h1 denote the hermitian metric on Q∨ induced by the metric of N and the
trivial metric on OP and let h0 denote the semi-definite hermitian form on Q∨

induced by the map Q∨ −→ OP obtained from the above exact sequence and
the trivial metric on OP . Let ht = (1 − t2)h0 + t2h1. It is a hermitian metric

on Q∨. We will denote Q
∨
t = (Q∨, ht). Let ∇t be the associated hermitian

holomorphic connection and let Nt denote the endomorphism defined by

d

d t
〈v, w〉t = 〈Ntv, w〉 .

For each n ≥ 1, let Det denote the alternate n-linear form on the space of n by
n matrices such that

det(A) = Det(A, . . . , A).

We denote det(B;A) = Det(B,A, . . . , A).
Zha introduced the differential form

ẽZ(Q
∨

) =
−1

2
lim
s→0

∫ 1

s

det(Nt,∇2
t ) d t (9.29)

which is a smooth form on P \ ι(Y ), locally integrable on P . Hence it defines a

current, also denoted by ẽZ(Q
∨

) on P . The important property of this current
is that it satisfies

dD eZ(Q∨) = cn(Q1)− δY . (9.30)

In [32], Zha denotes by C(Q
∨

) a form that differs from ẽZ by the normalization
factor and the sign. We denote it by ẽZ because it agrees with the Euler-Green
current introduced in [6].

Proposition 9.31. The equality

ẽZ(Q∨) = ẽ(P,Q1, sQ)

holds.

Proof. With the notations of lemma 9.4, both classes satisfy equation (9.30)
and their restriction to D∞ is zero. By lemma 9.4 they agree.

Definition 9.32. Let ξ = (i : Y −→ X,N, F ,E∗) be as in definition 6.9. Let
A∗, tr1(E)∗ and η∗ be as in (7.2). Then we define

TZ(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + (pP )∗(ch(π∗pF ) Td−1(Q1)ẽZ(Q
∨
1 )). (9.33)
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It follows directly from the definition that TZ is the theory of singular Bott-
Chern classes associated to the class

CZ(F,N) = (pP )∗(ch(π∗pF ) Td−1(Q1)ẽZ(Q
∨
1 )). (9.34)

Theorem 9.35. The theory of singular Bott-Chern classes TZ agrees with the
theory of homogeneous singular Bott-Chern classes T h.

Proof. The result follows directly from theorem 7.1, equation (9.34) and propo-
sition 9.18.

Next we want to use 8.33 to give another characterization of T h. To this end
we only need to compute the characteristic class CTh(OY , L) for a line bundle
L as a power series in c1(L).

Theorem 9.36. The theory of homogeneous singular Bott-Chern classes of
algebraic vector bundles is the unique theory of singular Bott-Chern classes
of algebraic vector bundles that is compatible with the projection formula and
transitive and that satisfies

CTh(OY , L) = 11 • φ(c1(L)),

where φ is the power series

φ(x) =
1

2

∞∑

n=0

(−1)n+1Hn+1

(n+ 2)!
xn,

and where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n , n ≥ 1 are the harmonic numbers.

We already know that T h is compatible with the projection formula and tran-
sitive. Thus it only remains to compute the power series φ.

Let L = (L, hL) be a hermitian line bundle over a complex manifold Y . Let
z be a system of holomorphic coordinates of Y . Let e be a local section of L
and let h(z) = h(ez, ez). Let P = P(L ⊕ C), with π : P −→ Y the projection
and ι : Y −→ P the zero section. We choose homogeneous coordinates on P
given by (z, (x : y)), here (x : y) represents the line of Lz ⊕ C generated by
xe(z) + y1, where 1 is a generator of C of norm 1. On the open set y 6= 0 we
will use the absolute coordinate t = x/y. Let

0 −→ O(−1) −→ π∗(L⊕ C) −→ Q −→ 0

be the tautological exact sequence. The section s = {1} is a global section of
Q that vanishes along the zero section. Moreover we have

‖s‖2(z,(x:y)) =
xx̄h(z)

yȳ + xx̄h(z)
=

tt̄h

1 + tt̄h
.
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Then (recall that we are using the algebro-geometric normalization)

c1(Q) = ∂∂̄ log ‖s‖2 (9.37)

= ∂∂̄ log
tt̄h

1 + tt̄h
(9.38)

= ∂

(
1 + tt̄h

tt̄h

t∂̄(t̄h)(1 + tt̄h)− t2t̄h∂̄(t̄h)

(1 + tt̄h)2

)
(9.39)

= ∂

(
t∂̄(t̄h)

tt̄h(1 + tt̄h)

)
(9.40)

= ∂

(
∂̄(t̄h)

t̄h

)
1

1 + tt̄h
− t̄∂(ht) ∧ ∂̄(t̄h)

t̄h(1 + tt̄h)2
(9.41)

=
π∗c1(L)

1 + tt̄h
− ∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)2
. (9.42)

We now consider the Koszul resolution

K : 0 −→ Q∨
s−→ Op −→ ι∗OX −→ 0.

We denote by T h(K) the singular Bott-Chern class associated to this Koszul
complex. Then, by proposition 9.13 and proposition 9.18,

T h(K) = −1

2
Td−1(Q) log ‖s‖2.

In order to compute π∗T h(K) we have to compute first π∗c1(Q)n log ‖s‖2. But

c1(Q)n =
π∗c1(L)n

(1 + tt̄h)n
− n

(
π∗c1(L)

(1 + tt̄h)

)n−1
∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)2
.

Therefore

π∗c1(Q)n log ‖s‖2 = −nc1(L)n−1
1

2πi

∫

P1

∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)n+1
log

tt̄h

1 + tt̄h

= −nc1(L)n−1
1

2πi

∫ 2π

0

∫ ∞

0

log
r2

1 + r2
−2ir d θ d r

(1 + r2)n+1

= nc1(L)n−1
∫ 1

0

log(1 − w)wn−1 dw

= −c1(L)n−1Hn,

where Hn, n ≥ 1 are the harmonic numbers. Since

Td−1(Q) =
1− exp(−c1(Q))

c1(Q)
=
∞∑

n=0

(−1)n

(n+ 1)!
c1(Q)n,
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we obtain

CTh(OY , L) = π∗T
h(K) =

1

2

∞∑

n=0

(−1)n+1Hn+1

(n+ 2)!
c1(L)n11.

Then, a reformulation of proposition 8.31 is

Corollary 9.43. Let T be a theory of singular Bott-Chern classes for algebraic
vector bundles that is compatible with the projection formula and transitive.
Then there is a unique additive genus ST such that

CT (F,N)− CTh(F,N) = ch(F ) • Td(N)−1 • ST (N). (9.44)

Conversely, any additive genus determines a theory of singular Bott-Chern
classes by the formula (9.44).

10 The arithmetic Riemann-Roch theorem for regular closed im-
mersions

In this section we recall the definition of arithmetic Chow groups and arithmetic
K-groups. We see that each choice of an additive theory of singular Bott-Chern
classes allows us to define direct images for closed immersions in arithmetic K-
theory. Once the direct images for closed immersions are defined, we prove
the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions. A
version of this theorem was proved earlier by Bismut, Gillet and Soulé [6] when
there is a commutative diagram

Y i //

f

��@
@@

@@
@@

X
g

��
Z

,

where i is a closed immersion and f and g are smooth over C. The version
of this theorem given in this paper is due to Zha [32], but still unpublished.

The theorem of Bismut, Gillet and Soulé compares g∗ ĉh(i∗E) with f∗ ĉh(E),

whereas the theorem of Zha compares directly ĉh(i∗E) with i∗ ĉh(E). The main
difference between the theorem of Bismut, Gillet and Soulé and that of Zha is
the kind of arithmetic Chow groups they use. In the first case these groups
are only covariant for proper morphisms that are smooth over C; thus the
Grothendieck-Riemann-Roch can only be stated for a diagram as above, while
in the second case a version of these groups that are covariant for arbitrary
proper morphisms is used.
Since each choice of a theory of singular Bott-Chern classes gives rise to
a different definition of direct images for closed immersions, the arithmetic
Grothendieck-Riemann-Roch theorem will have a correction term that depends
on the theory of singular Bott-Chern classes used. In the particular case of the

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 159

homogeneous singular Bott-Chern classes, which are the theories used by Bis-
mut, Gillet and Soulé and by Zha, this correction term vanishes and we obtain
the simplest formula. In this case the arithmetic Grothendieck-Riemann-Roch
theorem is formally identical to the classical one.
Let (A,Σ, F∞) be an arithmetic ring [18]. Since we will allow the arithmetic
varieties to be non regular and we will use Chow groups indexed by dimension,
following [20] we will assume that the ring A is equidimensional and Jacobson.
Let F be the field of fractions of A. An arithmetic variety X is a scheme flat and
quasi-projective over A such that XF = X × SpecF is smooth. Then X := XΣ

is a complex algebraic manifold, which is endowed with an anti-holomorphic
automorphism F∞. One also associates to X the real variety XR = (X,F∞).
Following [13], to each regular arithmetic variety we can associate different
kinds of arithmetic Chow groups. Concerning arithmetic Chow groups, we
shall use the terminology and notation in op. cit. §4 and §6.
Let Dlog be the Deligne complex of sheaves defined in [13] section 5.3; we refer
to op. cit. for the precise definition and properties. A Dlog-arithmetic variety
is a pair (X , C) consisting of an arithmetic variety X and a complex of sheaves
C on XR which is a Dlog-complex (see op. cit. section 3.1).
We are interested in the following Dlog-complexes of sheaves:

(i) The Deligne complex Dl,a,X of differential forms on X with logarithmic
and arbitrary singularities. That is, for every Zariski open subset U of
X , we write

E∗l,a,X(U) = lim−→
U

Γ(U, E ∗
U

(logB)),

where the limit is taken over all diagrams

U
ι //

ι

��@
@@

@@
@@

@ U

β

��
X

such that ι is an open immersion, β is a proper morphism, B = U \ U ,
is a normal crossing divisor and E ∗

U
(logB) denotes the sheaf of smooth

differential forms on U with logarithmic singularities along B introduced
in [8] .

For any Zariski open subset U ⊆ X , we put

D∗l,a,X(U, p) = (D∗l,a,X(U, p), dD) = (D∗(El,a,X(U), p), dD).

If U is now a Zariski open subset of XR, then we write

D∗l,a,X(U, p) = (D∗l,a,X(U, p), dD) = (D∗l,a,X(UC, p)
σ, dD),

where σ is the involution σ(η) = F ∗∞η as in [13] notation 5.65.
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Note that the sections of D∗l,a,X over an open set U ⊂ X are differential
forms on U with logarithmic singularities along X \U and arbitrary sin-
gularities along X \ X , where X is an arbitrary compactification of X .
Therefore the complex of global sections satisfy

D∗l,a,X(X, ∗) = D∗(X, ∗),

where the right hand side complex has been introduced in section §1. The
complex D∗l,a,X is a particular case of the construction of [12] section 3.6.

(ii) The Deligne complex Dcur,X of currents on X . This is the complex in-
troduced in [13] definition 6.30.

When X is regular, applying the theory of [13] we can define the arithmetic

Chow groups ĈH
∗
(X ,Dl,a,X) and ĈH

∗
(X ,Dcur,X). These groups satisfy the

following properties

(i) There are natural morphisms

ĈH
∗
(X ,Dl,a,X) −→ ĈH

∗
(X ,Dcur,X)

and, when applicable, all properties below will be compatible with these
morphisms.

(ii) There is a product structure that turns ĈH
∗
(X ,Dl,a,X)Q into an associa-

tive and commutative algebra. Moreover, it turns ĈH
∗
(X ,Dcur,X)Q into

a ĈH
∗
(X ,Dl,a,X)Q-module.

(iii) If f : Y −→ X is a map of regular arithmetic varieties, there are pull-back
morphisms

f∗ : ĈH
∗
(X ,Dl,a,X) −→ ĈH

∗
(Y,Dl,a,Y ).

If moreover, f is smooth over F , there are pull-back morphisms

f∗ : ĈH
∗
(X ,Dcur,X) −→ ĈH

∗
(Y,Dcur,Y ).

The inverse image is compatible with the product structure.

(iv) If f : Y −→ X is a proper map of regular arithmetic varieties of relative
dimension d, there are push-forward morphisms

f∗ : ĈH
∗
(Y,Dcur,Y ) −→ ĈH

∗−d
(X ,Dcur,X).

If moreover, f is smooth over F , there are push-forward morphisms

f∗ : ĈH
∗
(Y,Dl,a,Y ) −→ ĈH

∗−d
(X ,Dl,a,X).

The push-forward morphism satisfies the projection formula and is com-
patible with base change.
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(v) The groups ĈH
∗
(X ,Dl,a,X) are naturally isomorphic to the groups defined

by Gillet and Soulé in [18] (see [12] theorem 3.33). When X is generi-

cally projective, the groups ĈH
∗
(X ,Dcur,X) are isomorphic to analogous

groups introduced by Kawaguchi and Moriwaki [27] and are very similar
to the weak arithmetic Chow groups introduced by Zha (see [11]).

(vi) There are well-defined maps

ζ : ĈH
p
(X , C) −→ CHp(X ),

a: C̃2p−1(XR, p) −→ ĈH
p
(X , C),

ω : ĈH
p
(X , C) −→ ZC2p(XR, p),

where C is either Dl,a,X or Dcur,X . For the precise definition of these
maps see [13] notation 4.12.

When X is not necessarily regular, following [20] and combining with the defi-
nition of [13] we can define the arithmetic Chow groups indexed by dimension

ĈH∗(X ,Dl,a,X) and ĈH∗(X ,Dcur,X) (see [12] section 5.3).

They have the following properties (see [20]).

(i) If X is regular and equidimensional of dimension n then there are iso-
morphisms

ĈH∗(X ,Dl,a,X) ∼= ĈH
n−∗

(X ,Dl,a,X),

ĈH∗(X ,Dcur,X) ∼= ĈH
n−∗

(X ,Dcur,X).

(ii) If f : Y −→ X is a proper map between arithmetic varieties then there is
a push-forward map

f∗ : ĈH∗(Y,Dcur,Y ) −→ ĈH∗(X ,Dcur,X).

If f is smooth over F then there is a push-forward map

f∗ : ĈH∗(Y,Dl,a,Y ) −→ ĈH∗(X ,Dl,a,X).

(iii) If f : Y −→ X is a flat map or, more generally, a local complete intersec-
tion (l.c.i) map of relative dimension d, there are pull-back morphisms

f∗ : ĈH∗(X ,Dl,a,X) −→ ĈH∗+d(Y,Dl,a,Y ).

If moreover, f is smooth over F , there are pull-back morphisms

f∗ : ĈH∗(X ,Dcur,X) −→ ĈH∗+d(Y,Dcur,Y ).
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(iv) If f : Y −→ X is a morphism of arithmetic varieties with X regular, then
there is a cap product

ĈH
p
(X ,Dl,a,X)⊗ ĈHd(Y,Dl,a,Y ) −→ ĈHd−p(Y,Dl,a,Y )Q,

and a similar cap-product with the groups ĈHd(Y,Dcur,Y ). This product
is denoted by y ⊗ x 7→ y.fx,

For more properties of these groups see [20].
We will define now the arithmetic K-groups in this context. As a matter of
convention, in the sequel we will use slanted letters to denote a object defined
over A and the same letter in roman type for the corresponding object defined
over C. For instance we will denote a vector bundle over X by E and the
corresponding vector bundle over X by E.

Definition 10.1. A hermitian vector bundle on an arithmetic variety X , E ,
is a locally free sheaf E with a hermitian metric hE on the vector bundle E
induced on X , that is invariant under F∞. A sequence of hermitian vector
bundles on X

(ε) . . . −→ En+1 −→ En −→ En−1 −→ . . .

is said to be exact if it is exact as a sequence of vector bundles.
A metrized coherent sheaf is a pair F = (F , E∗ → F ), where F is a coherent
sheaf on X and E∗ → F is a resolution of the coherent sheaf F = FC by
hermitian vector bundles, that is defined over R, hence is invariant under F∞.
We assume that the hermitian metrics are also invariant under F∞.

Recall that to every hermitian vector bundle we can associate a collection of
Chern forms, denoted by cp. Moreover, the invariance of the hermitian metric
under F∞ implies that the Chern forms will be invariant under the involution
σ. Thus

cp(E) ∈ D2p
l,a,X(XR, p) = D2p(X, p)σ.

We will denote also by cp(E) its image in D2p
cur,X(XR, p). In particular we have

defined the Chern character ch(E) in either of the groups
⊕

pD2p
l,a,X(XR, p) or⊕

pD2p
cur,X(XR, p). Moreover, to each finite exact sequence (ε) of hermitian

vector bundles on X we can attach a secondary Bott-Chern class c̃h(ε). Again,
the fact that the sequence is defined over A and the invariance of the metrics
with respect to F∞ imply that

c̃h(ε) ∈
⊕

p

D̃2p−1
l,a,X (XR, p) =

⊕

p

D̃2p−1(X, p)σ.

We will denote also by c̃h(ε) its image in
⊕

p D̃
2p−1
cur,X(XR, p). The Bott-Chern

classes associated to exact sequences of metrized coherent sheaves enjoy the
same properties.
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Definition 10.2. Let X be an arithmetic variety and let C∗(∗) be one of the
two Dlog-complexes Dl,a,X or Dcur,X . The arithmetic K-group associated to the

Dlog-arithmetic variety (X , C) is the abelian group K̂(X , C) generated by pairs

(E , η), where E is a hermitian vector bundle on X and η ∈⊕p≥0 C̃2p−1(XR, p),
modulo relations

(E1, η1) + (E2, η2) = (E , c̃h(ε) + η1 + η2) (10.3)

for each short exact sequence

(ε) 0 −→ E1 −→ E −→ E2 −→ 0 .

The arithmetic K ′-group associated to the Dlog-arithmetic variety (X , C) is

the abelian group K̂ ′(X , C) generated by pairs (F , η), where F is a metrized

coherent sheaf on X and η ∈⊕p≥0 C̃2p−1(XR, p), modulo relations

(F1, η1) + (F2, η2) = (F , c̃h(ε) + η1 + η2) (10.4)

for each short exact sequence of metrized coherent sheaves

(ε) 0 −→ F1 −→ F −→ F2 −→ 0 .

We now give some properties of the arithmetic K-groups. As their proofs are
similar, in the essential points, to those of analogous statements in, for example,
[18] in the regular case and [20] in the singular case, we omit them.

(i) We have natural morphisms

K̂(X ,Dl,a,X) −→ K̂(X ,Dcur,X) and K̂ ′(X ,Dl,a,X) −→ K̂ ′(X ,Dcur,X).

When applicable, all properties below will be compatible with these mor-
phisms.

(ii) K̂(X ,Dl,a,X) is a ring. The product structure is given by

(F1, η1)·(F2, η2) = (F1⊗F2, ch(F1)•η2+η1•ch(F2)+dD η1•η2) (10.5)

(iii) K̂(X ,Dcur,X) is a K̂(X ,Dl,a,X)-module.

(iv) There are natural maps

K̂(X , C) −→ K̂ ′(X , C)

that, when X is regular, are isomorphisms.

(v) The groups K̂ ′(X ,Dl,a,X) and K̂ ′(X ,Dcur,X) are K̂(X ,Dl,a,X)-modules.
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(vi) There are natural maps

ω : K̂ ′(X , C) −→
⊕

p

ZC2p(p)

that send the class of a pair (F , η) with F = (F , E∗ → FC) to the form
(or current)

ω(F , η) =
∑

i

(−1)i ch(Ei) + dD η.

(vii) When X is regular, there exists a Chern character,

ĉh: K̂(X , C)Q −→
⊕

p

ĈH
p
(X , C)Q,

that is an isomorphism. Moreover, if C = Dl,a,X this isomorphism is
compatible with the product structure. If X is not regular, there is a
biadditive pairing

K̂(X ,Dl,a,X)⊗ ĈH∗(X ,Dl,a,X) −→ ĈH∗(X ,Dl,a,X)Q,

and a similar pairing with the groups ĈH∗(X ,Dcur,X), which is denoted

in both cases by α ⊗ x 7→ ĉh(α) ∩ x. For the properties of this product
see [20] pg. 496.

(viii) If Y and X are arithmetic varieties and f : Y → X is a morphism of
arithmetic varieties, f induces a morphism of rings:

f∗ : K̂(X ,Dl,a,X)→ K̂(Y,Dl,a,Y ).

When f is flat, the inverse image is also defined for the groups
K̂ ′(X ,Dl,a,X). Moreover, if fC is smooth, the inverse image can be de-

fined for the groups K̂(X ,Dcur,X) and, when in addition f is flat, for the

groups K̂ ′(X ,Dcur,X).

In what follows we will be interested in direct images for closed immersions.
Since the direct images in arithmetic K-theory will depend on the choice of a
metric, we have the following

Definition 10.6. A metrized arithmetic variety is a pair (X , hX) consisting of
an arithmetic variety X and a hermitian metric on the complex tangent bundle
TX that is invariant under F∞.

Let (X , hX) and (Y, hY ) be metrized arithmetic varieties and let i : Y −→ X
be a closed immersion. Over the complex numbers, we are in the situation of
notation 8.36. In particular we have a canonical exact sequence of hermitian
vector bundles

ξN : 0 −→ TY −→ i∗TX −→ NY/X −→ 0 (10.7)
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where the tangent bundles TY , TX are endowed with the hermitian metrics hY ,
hX respectively and the normal bundle NY/X is endowed with an arbitrary
hermitian metric hN . We will follow the conventions of notation 8.36.
We next define push-forward maps, via a closed immersion, for the elements
of the arithmetic K-group of a metrized arithmetic variety. We will define two
kinds of push-forward maps. One will depend only on a metric on the complex
normal bundle NY/X . By contrast, the second will depend on the choice of
metrics on the complex tangent bundles TX and TY . The second definition
allows us to see K ′( ,Dcur,Y ) as a functor from the category whose objects are
metrized arithmetic varieties and whose morphisms are closed immersions to
the category of abelian groups.
As we deal with hermitian vector bundles and metrized coherent sheaves, both
definitions will involve the choice of a theory of singular Bott-Chern classes. In
order for the push forward to be well defined in K-theory we need a minimal
additivity property for the singular Bott-Chern classes.

Definition 10.8. A theory of singular Bott-Chern classes T is called additive
if for any closed embedding of complex manifolds i : Y →֒ X and any hermi-
tian embedded vector bundles ξ1 = (i, N, F 1, E1,∗), ξ2 = (i, N, F 2, E2,∗) the
equation

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2)

is satisfied.
Let C be a characteristic class for pairs of vector bundles. We say that it is
additive (in the first variable) if

C(F1 ⊕ F2, N) = C(F1, N) + C(F2, N)

for any vector bundles F1, F2, N on a complex manifold X .

The following statement follows directly from equation 7.5:

Proposition 10.9. A theory of singular Bott-Chern classes T is additive if
and only if the corresponding characteristic class CT is additive in the first
variable.

Note that a theory of singular Bott-Chern classes consists in joining theories
of singular Bott-Chern classes in arbitrary rank and codimension (definition
6.9). The property of being additive gives a compatibility condition for these
theories, by respect to the hermitian vector bundles F (with the notation used
in definition 6.9). Note also that if a theory of singular Bott-Chern classes is
compatible with the projection formula then it is additive.

Definition 10.10. Let T be an additive theory of singular Bott-Chern classes,
and let Tc be the associated covariant class as in definition 8.37. Let
i : (Y, hY ) −→ (X , hX) be a closed immersion of metrized arithmetic varieties
and let N = NY/X = (NY/X , hN ) be a choice of a hermitian metric on the
complex normal bundle. The push-forward maps

iTc∗ , i
T
∗ : K̂(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,X)
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are defined by

iTc∗ (F , η) = [((i∗F , E∗ → (i∗F)C), 0)]− [(0, Tc(ξc))]

+ [(0, i∗(ηTd(Y )i∗ Td−1(X)))] (10.11)

iT∗ (F , η) = [((i∗F , E∗ → (i∗F)C), 0)]− [(0, T (ξ))]

+ [(0, i∗(ηTd−1(NY/X)))]. (10.12)

Here
0→ En → . . .→ E1 → E0 → (i∗F)C → 0

is a finite resolution of the coherent sheaf (i∗F)C by hermitian vector bundles,
ξ = (i, NX/Y ,FC, E∗) is the induced hermitian embedded vector bundle on X ,

and ξc = (i, TX , TY ,FC, E∗) as in definition 8.37.
We can extend this definition to push-forward maps

iTc∗ , i
T
∗ : K̂ ′(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,X)

by the rule

iTc∗ (F , η) = [((i∗F ,Tot(E∗,∗)→ (i∗F)C), 0)]−
∑

i

(−1)i[(0, Tc(ξi,c))]

+ [(0, i∗(ηTd(Y )i∗Td−1(X)))], (10.13)

iT∗ (F , η) = [((i∗F ,Tot(E∗,∗)→ (i∗F)C), 0)]−
∑

i

(−1)i[(0, T (ξi))]

+ [(0, i∗(ηTd−1(NY/X)))], (10.14)

where 0→ En → · · · → E0 → FC → 0 is a resolution of FC by hermitian vector
bundles, E∗,∗ is a complex of complexes of vector bundles over X , such that,
for each i ≥ 0, Ei,∗ → i∗Ei is also a resolution by hermitian vector bundles and
ξi = (i, NX/Y , Ei, Ei,∗) is the induced hermitian embedded vector bundle and

ξi,c is as in definition 8.37. We suppose that there is a commutative diagram
of resolutions

. . . // Ek+1,∗ //

��

Ek,∗ //

��

Ek−1,∗ //

��

. . .

. . . // i∗Ek+1
// i∗Ek // i∗Ek−1 // . . .

.

hence a resolution Tot(E∗,∗) −→ (i∗F)C by hermitian vector bundles.

Note that, whenever the push-forward iT∗ appears, we will assume that we have
chosen a metric on NY/X .
The two push-forward maps are related by the equation

iTc∗ (F , η) = iT∗ (F , η)−
[(

0, i∗

(
ω(F , η)T̃d−1(ξN ) Td(Y )

))]
, (10.15)

where ξN is the exact sequence (10.7).
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Proposition 10.16. The push-forward maps iT∗ , i
Tc∗ are well defined. That is,

they do not depend on the choice of a representative of a class in K̂, nor on the
choice of metrics on the coherent sheaf (i∗F)C. The first one does not depend
on the choice of metrics on TX nor on TY , whereas the second one does not
depend on the choice of a metric on the normal bundle NY/X . Moreover, if i is
a regular closed immersion or X is a regular arithmetic variety, then iTc∗ and
iT∗ can be lifted to maps

iTc∗ , i
T
∗ : K̂(Y,Dcur,Y ) −→ K̂(X ,Dcur,Y ).

Proof. The fact that iT∗ only depends on the metric on N and not on the
metrics on TX and TY and that for iTc∗ is the opposite, follows directly from
the definition in the first case and from proposition 8.39 in the second.
We will only prove the other statements for iTc∗ , as the other case is analogous.
We first prove the independence from the metric chosen on the coherent sheaf

(i∗F)C. If E∗ → (i∗F)C, E
′
∗ → (i∗F)C are two such metrics, inducing the

hermitian embedded vector bundles ξ respectively ξ
′
, then, using corollary 6.14

Tc(ξ
′
c)− Tc(ξc) = T (ξ

′
)− T (ξ) = c̃h(ε),

where ε is the exact complex of hermitian embedded vector bundles

ε : 0 −→ ξ −→ ξ
′ −→ 0,

where ξ
′

sits in degree zero.
Therefore, by equation 10.4,

[((i∗F , E∗ → (i∗F)C), 0)]− [(0, Tc(ξc))]

= [((i∗F , E′∗ → (i∗F)C), 0)]− [(0, Tc(ξ
′
c))].

Since the last term of equation 10.11 does not depend on the metric on (i∗F)C,
we obtain that iTc∗ does not depend on this metric.
For proving that the push-forward map iTc∗ is well defined it remains to show

the independence from the choice of a representative of a class in K̂(Y,Dcur,Y ).
We consider an exact sequence of hermitian vector bundles on Y

ε : 0 −→ F1 −→ F −→ F2 −→ 0

and two classes η1, η2 ∈
⊕

p≥0 D̃2p−1
cur (Y, p). We also denote ε the induced exact

sequence of hermitian vector bundles on Y . We have to prove

iTc∗ ([(F , η1 + η2 + c̃h(ε)]) = iTc∗ ([(F1, η1)]) + iTc∗ ([(F2, η2)]). (10.17)

Since it is clear that iTc∗ (0, η1 + η2) = iTc∗ (0, η1) + iTc∗ (0, η2), we are led to prove

iTc∗ ([(F , c̃h(ε)]) = iTc∗ ([(F1, 0)]) + iTc∗ ([(F2, 0)]). (10.18)
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We choose metrics on the coherent sheaves (i∗F1)C, (i∗F2)C and (i∗F)C re-
spectively:

E1,∗ −→ (i∗F1)C , E2,∗ −→ (i∗F2)C , E∗ −→ (i∗F)C.

We denote ξ1, ξ2, ξ the induced hermitian embedded vector bundles. We obtain
an exact sequence of metrized coherent sheaves on X :

ν : 0 −→ i∗F1 −→ i∗F −→ i∗F2 −→ 0.

Then, using the fact that the theory T is additive and equation (8.42) we have

Tc(ξ1,c) +Tc(ξ2,c)−Tc(ξc) = [c̃h(ν)]− i∗([c̃h(ε) •Td(Y )]) •Td−1(X). (10.19)

Moreover, by the relation (10.4),

[(i∗F1, 0)] + [(i∗F2, 0)] = [(i∗F , c̃h(ν))]. (10.20)

Hence, we compute,

iTc∗ ([(F , c̃h(ε)])− iTc∗ ([(F1, 0)])− iTc∗ ([(F2, 0)])

= [(i∗F , 0)]− [(i∗F1, 0)]− [(i∗F2, 0)]

− [(0, Tc(ξc))] + [(0, Tc(ξ1,c))] + [(0, Tc(ξ2,c))]

+ [(0, i∗([c̃h(ε)] • Td(Y ) • i∗ Td−1(X)))]

= −[(0, i∗([c̃h(ε)] • Td(Y ) • i∗ Td−1(X))))]

+ [(0, i∗([c̃h(ε)] • Td(Y ) • i∗Td−1(X))))]

= 0.

The proof that iTc∗ for metrized coherent sheaves is well defined is similar. The
proof of its independence from choice of a metric on NY/X or from the choice
of the resolutions and metrics in X is the same as before. Now let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence of metrized coherent sheaves on Y. This means that

we have resolutions E
′
∗ → F ′C, E∗ → FC and E

′′
∗ → F ′′C . Using theorem 2.24

we can suppose that there is a commutative diagram of resolutions

0 → E
′
∗ → E∗ → E

′′
∗ → 0

↓ ↓ ↓
0 → F ′C → FC → F ′′C → 0,

(10.21)

with exact rows. Moreover, we can assume that the complexes of complexes

E
′
∗,∗, E∗,∗, E

′′
∗,∗ used in definition 10.10 are chosen compatible with diagram

(10.21). Thus we obtain a commutative diagram

0 → TotE
′
∗,∗ → TotE∗,∗ → TotE

′′
∗,∗ → 0

↓ ↓ ↓
0 → i∗F ′C → i∗FC → i∗F ′′C → 0.

(10.22)
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We denote by ν the exact sequence of metrized coherent sheaves on X defined
by diagram (10.22). We denote χi the exact sequence of hermitian vector
bundles on Y

χi : 0 −→ E
′
i −→ Ei −→ E

′′
i −→ 0,

and by ε the exact sequence of metrized coherent sheaves on X

εi : 0 −→ i∗E
′
i −→ i∗Ei −→ i∗E

′′
i −→ 0.

Moreover, let ξi, ξ
′
i and ξ

′′
i denote the hermitian embedded vector bundles

defined by the above resolutions and Ei, E
′
i and E

′′
i respectively and let ξi,c,

ξ
′
i,c and ξ

′′
i,c be as in definition 8.37. Then, using proposition 2.38 and equation

(8.42) we obtain

c̃h(ν) =
∑

i

(−1)ic̃h(ε)

=
∑

i

(−1)i(Tc(ξ
′
i,c) + Tc(ξ

′′
i,c)− Tc(ξi,c)) (10.23)

+
∑

i

(−1)ii∗(c̃h(χi) • Td(Y )) • Td−1(X)

Now the proof follows as before, but using equation (10.23) instead of equation
(10.19).

If X is a regular arithmetic variety, the lifting property follows from the iso-
morphism between the K̂-groups and the K̂ ′-groups.

Suppose now that i : Y −→ X is a regular closed immersion and let [F , η] ∈
K̂(Y,Dcur,Y ). Then it follows from [2] III that the coherent sheaf i∗F can be
resolved

0 −→ En −→ . . . −→ E0 −→ i∗F −→ 0

with Ei locally free sheaves on X . Moreover we endow the vector bundles
Ei induced on X with hermitian metrics and so we obtain a metric on the
coherent sheaf i∗F and the corresponding hermitian embedded vector bundle
ξ. Using the independence from the resolutions and on the metrics we see that
the equation 10.11 defines an element in K̂(X ,Dcur,X).

Proposition 10.24. For any element α ∈ K̂ ′(Y,Dcur,Y ) we have

ω(iTc∗ (α)) Td(X) = i∗(ω(α) Td(Y )) (10.25)

ω(iT∗ (α)) = i∗(ω(α) Td−1(NY/X)) (10.26)

Proof. We will prove the statement only for iTc∗ . We consider first a class
of the form [F , 0]. Using equation (8.38) we obtain, after choosing a metric
Ei −→ (i∗F)C, and considering the induced hermitian embedded vector bundle
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ξc:

ω(iTc∗ ([F , 0])) Td(X) =
(∑

(−1)i ch(Ei)− dD Tc(ξc)
)

Td(X)

= i∗(ch(F ) • Td(Y ) • i∗ Td−1(X)i∗(Td(X)))

= i∗(ch(F ) • Td(Y ))

= i∗(ω([F , 0]) Td(Y ))

Taking now a class of the form [0, η] we obtain:

ω(iTc∗ ([0, η])) Td(X) = dD
(
i∗(ηTd(Y )i∗ Td−1(X))

)
Td(X)

= i∗ dD(ηTd(Y ))

= i∗(ω([0, η]) Td(Y ))

and hence the equality 10.25 is proved.

The next proposition explains the terminology “compatible with the projection
formula” and “transitive” that we used for theories of singular Bott-Chern
classes. The second statement is the main reason to introduce the push-forward
iTc∗ .

Proposition 10.27. If the theory of singular Bott-Chern classes is compatible
with the projection formula, we have that, for α ∈ K̂ ′(Y,Dcur,Y ) and β ∈
K̂(X ,Dl,a,X) the following equalities hold

iTc∗ (αi∗β) = iTc∗ (α)β,

iT∗ (αi∗β) = iT∗ (α)β.

If moreover the theory of singular Bott-Chern classes is transitive and
j : (Z, hZ) −→ (Y, hY ) is another closed immersion of metrized arithmetic
varieties, then

(i ◦ j)Tc∗ = iTc∗ ◦ jTc∗ .
Proof. We prove first the projection formula. For simplicity we will treat the
case when α ∈ K̂(Y,Dcur,Y ). Let α = (F , η), let ξc = (i, TX , TY ,FC, E∗) be a
hermitian embedded vector bundle and let β = (E , χ). Using equations (10.11)
and (10.5), we obtain

iTc∗ (αi∗β)− iTc∗ (α)β = −
∑

i

(−1)i ch(Ei) • χ+ dD(Tc(ξc)) • χ

+ i∗(ch((F)C) • Td(Y ))) • Td−1(X) • χ
+ Tc(ξc) • ch(EC)− Tc(ξc ⊗ EC)

= Tc(ξc ⊗ EC)− Tc(ξc) • ch(EC).

Therefore, if T is compatible with the projection formula, then the projection
formula holds.
The fact that, if moreover T is transitive then (i ◦ j)Tc∗ = iTc∗ ◦ jTc∗ follows
directly from the definition and equation (8.41).
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If i : Y −→ X is a regular closed immersion between arithmetic varieties, then
the normal cone NY/X is a locally free sheaf. The choice of a hermitian metric

on NY/X determines a hermitian vector bundle NY/X . If now i : (Y, hY ) −→
(X , hX) is a closed immersion between regular metrized arithmetic varieties,
then the tangent bundles TY and TX are virtual vector bundles. Since over C
they define vector bundles, we can provide them with hermitian metrics and
denote the hermitian virtual vector bundles by T X and T Y . There are well

defined clases T̂d(Y) = T̂d(T Y) and T̂d(X ) = T̂d(T X ).

The arithmetic Grothendieck-Riemann-Roch theorem for closed immersions
compares the direct images in the arithmetic K-groups with the direct images
in the arithmetic Chow groups.

Theorem 10.28 ([6], [32]). Let T be a theory of singular Bott-Chern classes
and let ST be the additive genus of corollary 9.43.

(i) Let i : Y −→ X be a regular closed immersion between arithmetic vari-
eties. Assume that we have chosen a hermitian metric on the complex
bundle NY/X . Then, for any α = (F , η) ∈ K̂(Y,Dcur,Y ) the equation

ĉh(iT∗ (α)) = i∗(ĉh(α)T̂d
−1

(NY/X ))− a(i∗(ch(FC) Td−1(NY/X)ST (N))
(10.29)

holds.

(ii) Let i : (Y, hY ) −→ (X , hX) be a closed immersion between regular

metrized arithmetic varieties. Then, for any α = (F , η) ∈ K̂(Y,Dcur,Y )
the equation

ĉh(iTc∗ (α))T̂d(X ) = i∗(ĉh(α)T̂d(Y))− a(i∗(ch(FC) Td(Y )ST (N)))
(10.30)

holds.

Proof. The proof follows the classical pattern of the deformation to the normal
cone as in [6] and [32].

Let W be the deformation to the normal cone to Y in X . We will follow the
notation of section 5. Since i is a regular closed immersion, there is a finite
resolution by locally free sheaves

0→ En → · · · → E1 → E0 → i∗F → 0.

We choose hermitian metrics on the complex bundles Ei = (Ei)C. The im-
mersion j : Y × P1 −→ W is also a regular immersion. The construction of
theorem 5.4 is valid over the arithmetic ring A. Therefore we have a resolution
by hermitian vector bundles

0→ G̃n → · · · → G̃1 → G̃0 → i∗F → 0.
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such that its restriction to X × {0} is isometric to E∗. Its restriction to X̃ is
orthogonally split, and its restriction to P = P(NY/X ⊕ OY) fits in a short
exact sequence

0 −→ A∗ −→ Ẽ∗|P −→ K(F ,NY/X ) −→ 0,

where A∗ is orthogonally split and K(F ,NY/X ) is the Koszul resolution. We
denote by ηk the piece of degree k of this exact sequence. Let t be the absolute
coordinate of P1. It defines a rational function in W and

d̂iv(t) = (X0 + P + X̃ , (0,−1

2
log tt))

The key point of the proof of the theorem is that, in the group ĈH
∗
(X ,Dcur,X),

we have

(pW)∗(ĉh(Ẽ∗)d̂iv(t)) = 0.

Using the definition of the product in the arithmetic Chow rings we obtain

(pW)∗(ĉh(Ẽ∗)d̂iv(t)) = ĉh(E∗)− (pX̃ )∗ĉh(Ẽ∗|X̃ )− (pP̃)∗ĉh(Ẽ∗|P )

+ a((pW )∗(ch((Ẽ∗)C) •W1)). (10.31)

But we have

ĉh(E∗) = ĉh(iT∗ (F)) + a(T (ξ)), (10.32)

(pX̃ )∗ĉh(Ẽ∗|X̃ ) = 0, (10.33)

(pP̃)∗ĉh(Ẽ∗|P) = i∗(πP )∗(ĉh(K(F ,NY/X ))−
∑

k

(−1)k a(c̃h(ηk))). (10.34)

Moreover, by equation (7.3),

a((pW )∗(ch((Ẽ∗)C) •W1)) = − a(T (ξ))−
∑

k

(−1)k a(c̃h(ηk)))

+ a(i∗CT (FC,NC)). (10.35)

Thus we are led to compute i∗(πP )∗ĉh(K(F ,NY/X )). This is done in the
following two lemmas.

Lemma 10.36. Let Y be an arithmetic variety, N a rank r hermitian vector
bundle over Y and denote P = P1(N ⊕ OY), and Q the tautological quotient
bundle. Let Y0 be the cycle defined by the zero section of P. Then

ĉr(Q) = (Y0, (cr(QC), ẽ(PC,QC, s))), (10.37)

where ẽ(PC,QC, s) is the Euler-Green current of lemma 9.4.
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Proof. We know that ĉr(Q) = (Y0, (cr(QC), ẽ)) for certain Green current ẽ. By
definition this Green current satisfies

dD ẽ = cr(QC)− δYC
.

Moreover, since the restriction of QC to D∞ has a global section of constant
norm we have that ẽ|D∞ = 0. Therefore, by lemma 9.4,

ẽ = ẽ(PC,QC, s).

Lemma 10.38. The following equality hold:

(πP )∗ĉh(K(F ,N )∗) =

ĉh(F)T̂d−1(N ) + a(CT (F ,N )− ch(FC) Td−1(NY/X)ST (N)). (10.39)

Proof. We just compute, using lemma 10.36,

(πP)∗ĉh(K(F ,N )∗) = (πP )∗
∑

k

(−1)k ĉh(

k∧
Q∨)ĉh(π∗PF)

= (πP )∗(ĉr(Q)T̂d−1(Q))ĉh(F)

= T̂d−1(N )ĉh(F) + a((πP )∗(ẽTd−1(Q)) ch(F ))

= T̂d−1(N )ĉh(F) + a((πP )∗(T
h(K(F,N))) ch(F ))

= T̂d−1(N )ĉh(F) + a(CTh (F,N))

= T̂d−1(N )ĉh(F) + CT (F,N)− a(Td−1(N) ch(F )ST (N)).

The equation (10.29) follows by combining equations (10.31), (10.32), (10.33),
(10.34), (10.35) and (10.39).
The equation (10.30) follows from equation (10.29) by a straightforward com-
putation.

Since T is homogeneous if and only if ST = 0, in view of this result, the the-
ory of homogeneous singular Bott-Chern classes is characterized for being the
unique theory of singular Bott-Chern classes that provides an exact arithmetic
Grothendieck-Riemann-Roch theorem for closed immersions. By contrast, if
one uses a theory of singular Bott-Chern classes that is not homogeneous,
there is an analogy between the genus ST and the R-genus that appears in the
arithmetic Grothendieck-Riemann-Roch theorem for submersions.
Since there is a unique theory of homogeneous singular Bott-Chern classes, the
following definition is natural.
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Definition 10.40. Let i : (Y, hY ) −→ (X , hX) be a closed immersion of
metrized arithmetic varieties, the push-forward map

i∗ : K̂ ′(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,Y )

is defined as i∗ = i
Thc∗ .

Corollary 10.41. The push-forward map makes K̂ ′( ,Dcur,Y ) and

K̂( ,Dcur,Y ) functors from the category of regular metrized arithmetic varieties
and closed immersions to the category of abelian groups.

Corollary 10.42. Let i : (Y, hY ) −→ (X , hX) be a closed immersion of regular
metrized arithmetic varieties, then

ĉh(iT∗ (α))T̂d(X ) = i∗(ĉh(α)T̂d(Y)). (10.43)

Remark 10.44. Combining theorem 10.28 with [16] we can obtain an arith-
metic Grothendieck-Riemann-Roch theorem for projective morphisms of regu-
lar arithmetic varieties.
In a forthcoming paper we will show that the higher torsion forms used to define
the direct images for submersions can also be characterized axiomatically.
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[25] L. Hörmander, The analysis of linear partial differential operators. I,
second ed., Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences], vol. 256, Springer-Verlag,
Berlin, 1990, Distribution theory and Fourier analysis. MR MR1065993
(91m:35001a)

[26] U. Jannsen, Deligne homology, Hodge-D-conjecture and motives, in
Rapoport et al. [30], pp. 305–372.

[27] S. Kawaguchi and A. Moriwaki, Inequalities for semistable families of
arithmetic varieties, J. Math. Kyoto Univ. 41 (2001), no. 1, 97–182. MR
MR1844863 (2002f:14036)

[28] J.W. Milnor and J.S. Stasheff, Characteristic classes, Annals of Math.
Studies, vol. 76, Princeton University Press, Princeton, New Jersey, 1974.

[29] Ch. Mourougane, Computations of Bott-Chern classes on P(E), Duke
Mathematical Journal 124 (2004), 389–420.

[30] M. Rapoport, N. Schappacher, and P. Schneider (eds.), Beilinson’s con-
jectures on special values of L-functions, Perspectives in Math., vol. 4,
Academic Press, 1988.
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Romania
litcanu@uaic.ro

Documenta Mathematica 15 (2010) 73–176



Documenta Math. 177

Hicas of Length ≤ 4

Vanessa Miemietz and Will Turner

Received: August 25, 2009

Communicated by Wolfgang Soergel

Abstract. A hica is a highest weight, homogeneous, indecompos-
able, Calabi-Yau category of dimension 0. A hica has length l if its
objects have Loewy length l and smaller. We classify hicas of length
≤ 4, up to equivalence, and study their properties. Over a fixed field
F , we prove that hicas of length 4 are in one-one correspondence with
bipartite graphs. We prove that an algebra AΓ controlling the hica
associated to a bipartite graph Γ is Koszul, if and only if Γ is not a
simply laced Dynkin graph, if and only if the quadratic dual of AΓ is
Calabi-Yau of dimension 3.

2010 Mathematics Subject Classification: 05. Combinatorics, 14. Al-
gebraic geometry, 16. Associative rings and algebras, 18. Category
theory, homological algebra

1. Introduction

Once a mathematical definition has been made, the theory surrounding that
definition usually begins with a study of small examples. A striking violation
of this principle occurred at the birth of category theory, where early theory
was concerned with establishing results valid for large and floppy mathematical
structures like the category of sets, or the category of groups, or the category
of topological spaces. But time has passed, categories have begun to be taken
seriously, and they are now objects of detailed study. Since categories are
often large and floppy, the 2-category of all categories is very large and very
floppy. To prove theorems about categories, it is necessary to make strong
restrictions on their structure. To prove classification theorems for categories,
it is necessary to make very strong restrictions on their structure.
There is by now an extensive collection of categorical classification theorems.
A category with one object and invertible morphisms is a group, and there are
many examples of classification theorems in group theory. Rings are endowed
with various categories, like their module categories. Classification theorems
for commutative rings can be thought of as classification theorems in algebraic
geometry. There are a number of classification theorems for rings of finite
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homological dimension, to which the term noncommutative geometry is ap-
plied. For example, hereditary algebras over an algebraically closed field can
be parametrised by quivers. Calabi-Yau algebras of dimensions 2 and 3 can
be loosely parametrised by quivers with a superpotential [2], [5], [8]. Cate-
gorical classification theorems also appear in the representation theory of 2-
categories: irreducible integrable representations of 2-Kac-Moody Lie algebras
can be parametrised by integral dominant weights [18].
Our paper runs in this vein. A hica is a highest weight, homogeneous,
indecomposable, Calabi-Yau category of dimension 0. Here, we say a high-
est weight category is homogeneous if its standard objects all have the same
Loewy length, and its costandard objects all have the same Loewy length. We
say a hica has length l if its projective objects have Loewy length l and smaller.
We classify hicas of length ≤ 4 up to equivalence.
Hicas show up naturally in group representation theory and in the theory of
tilings [20, 3, 14, 15]. A multitude of examples of hicas were constructed by
Mazorchuk and Miemietz [13]. Every hica can be realised as the module cate-
gory of some symmetric quasi-hereditary algebra. If the hica is not semisimple,
the corresponding algebra is necessarily infinite dimensional, noncommutative,
of infinite homological dimension.
Let us fix a field F , and consider hicas over F , up to equivalence. The only
hica of length 1 is the category of vector spaces over F . There are no hicas of
length 2. There is a unique hica of length 3, which is the module category of
the Brauer tree algebra on a bi-infinite line. Our first main result is

Theorem 1. There is a natural one-one correspondence

{bipartite graphs} ↔ {hicas of length 4}.

Here, and throughout this paper, a bipartite graph will by definition be con-
nected.
The one-one correspondence of Theorem 1 is obtained from a sequence of three
one-one correspondences: a one-one correspondence between bipartite graphs
and topsy-turvy quivers; a one-one correspondence between topsy-turvy quivers
and basic indecomposable self-injective directed algebras of Loewy length 3;
and a one-one correspondence between basic self-injective directed algebras of
Loewy length 3 and hicas of length 4.
Let us describe here the construction of a hica CΓ of length 4 from the following
bipartite graph Γ:

•

@@
@@

@@
@ •

•

�������

@@
@@

@@
@

@@
@@

@@
@

•

•
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First, we construct a quiver QΓ, by consecutively gluing together opposite
orientations of this bipartite graph, one next to the other:

• //

��@
@@

@@
@@

• //

��@
@@

@@
@@

• //

��@
@@

@@
@@

• //
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@@

@@
@@

• //
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@@

@@
@@

• //
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@@

@@
@@

•

... •

??������� // • //

??�������
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@@
@@
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@@
@@

•

??������� // • //

??�������
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•

??�������

??������� •

??�������

??�������

??������� •

??�������

??�������

??������� •
This quiver has an automorphism φ which shifts a vertex to a vertex which is
two steps horizontally to its right. We take the path algebra of this quiver. We
now construct a self-injective directed algebra BΓ of Loewy length 3, factoring
the path algebra by relations which insist that all squares commute, and that
paths u → v → w of length 2 are zero, unless w = φ(u). We define AΓ to be
the trivial extension BΓ ⊕ B∗Γ of BΓ by its dual. The module category CΓ of
AΓ is a hica of length 4. Its quiver is

• //

��@
@@

@@
@@

• //

��@
@@

@@
@@

•xx //

��@
@@

@@
@@

•xx //

��@
@@

@@
@@

•xx //
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... •
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@@
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��@
@@
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??������� // •xx //

??�������
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•xx ...

•

??�������

??�������

??������� •xx

??�������

??�������

??������� •xx

??�������

??�������

??������� •xx

The relations for AΓ are those for BΓ, along with relations which insist that
the product of two leftwards pointing arrows is zero whilst squares involving a
pair of parallel leftwards pointing arrows commute. The algebra AΓ has some
pleasing properties. It admits a derived self-equivalence ψγ for every vertex γ
of Γ. It also admits a number of Z3

+-gradings, one for each orientation of the

graph Γ. It is Koszul and its quadratic dual A!
Γ is Calabi-Yau of dimension 3.

More generally, we have the following theorem.

Theorem 2. Suppose Γ is a connected bipartite graph, and CΓ = AΓ -mod the
associated hica of length 4. The following are equivalent:

1. Γ is not a simply laced Dynkin graph.
2. AΓ is Koszul.
3. The quadratic dual of AΓ is Calabi-Yau of dimension 3.

The way this paper evolved was surprising to us. We began with the problem
of classifying small hicas, categories whose structural features (Calabi-Yau 0,
highest weight) were motivated by exposure to group representation theory.
We ended having made contact with mathematics of different kin: bipartite
graphs, Calabi-Yau 3s, and Dynkin classifications. The hica restrictions in-
deed capture some features of Lie theoretic representation theory, but they can
also be thought of as noncommutative geometric restrictions: highest weight
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categories were invented to capture stratification properties appearing in al-
gebraic geometry, whilst 0-Calabi-Yau categories are categories possessing a
homological duality with trivial Serre functor.

2. Preliminaries

Our main objects of study, hicas, are a species of abelian categories. As we
study them, we will use freely the languages of abelian categories, algebras, and
triangulated categories. Here we give a short phrasebook for these languages.
Let F be a field. The collection of F -algebras is a 2-category, whose arrows
are bimodules AMB which are flat on the right, and 2-arrows are bimodule
homomorphisms. We have a 2-functor

Algebra→ Abelian

from the 2-category Algebra of F -algebras to the 2-category Abelian of abelian
categories. This 2-functor takes an algebraA to its module category, a bimodule

AMB to the functor M ⊗B −, and a bimodule homomorphism to a natural
transformation. We have a 2-functor

Abelian→ Triangulated

taking values in the 2-category of triangulated categories, which takes an
abelian category A to its derived category D(A).
If X is an object of an abelian category of finite composition length, we define
the Loewy length of X (or length of X , or l(X)) to be the smallest number l
for which there exists a filtration of X with l nonzero sections, all of which are
semisimple. We define the head, or top of X to be the maximal semisimple
quotient of X , and the socle of X to be the maximal semisimple submodule.
If A is an abelian category, we define the length of A to be the supremum over
all lengths of objects in A. If A is an algebra, we define the length of A to be
the length of the abelian category A -mod of A-modules.
Given a finite dimensional F -vector space V , we denote by V ∗ the dual
HomF (V, F ) of V . We call an object X of a triangulated category compact
if Hom(X,−) commutes with infinite direct sums. We say an F -linear tri-
angulated category T is Calabi-Yau of dimension d if HomT (P,X) is finite
dimensional for objects X ∈ T , and compact objects P ∈ T , and

HomT (P,X) ∼= HomT (X,P [d])∗

naturally in objects X ∈ T , and compact objects P ∈ T . For background, we
recommend a survey article of B. Keller concerning Calabi-Yau triangulated
categories [8]. To avoid confusion here, let us emphasise that the definition of a
Calabi-Yau triangulated category Keller uses is slightly different from this one
since he makes no compactness assumption on P .
We say an F -linear abelian category A is Calabi-Yau of dimension d if its
derived category D(A) is Calabi-Yau of dimension d. We say an F -algebra A
is Calabi-Yau of dimension d if its module category A -mod is Calabi-Yau of
dimension d.
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Suppose A is a basic (not necessarily unital) F -algebra satisfying the following
assumptions:

(i) A has a countable set {ex | x ∈ Λ} of orthogonal primitive idempotents,
such that A = ⊕x,yexAey;

(ii) for any x, y ∈ Λ the F -vector space exAey is finite dimensional;
(iii) for any x ∈ Λ there exist only finitely many y ∈ Λ such that exAey 6= 0;
(iv) for any x ∈ Λ there exist only finitely many y ∈ Λ such that eyAex 6= 0.

Under these assumptions all indecomposable projective A-modules Aex and
all injective A-modules HomF (exA,F ) are finite-dimensional. A-modules
M = AM will be left A-modules unless they carry a right subscript as in
MA in which case they will be right A-modules. We denote by A -mod the
collection of all finite-dimensional left A-modules and by mod-A the collection
of all finite-dimensional right A-modules. We denote by A -perf the subcate-
gory of the derived category of A -mod consisting of perfect complexes, that
is the smallest thick subcategory of the derived category of A -mod containing
all projective objects of A -mod, or equivalently the subcategory of compact
objects in the derived category of A. We define A∗ to be the A-A-bimodule⊕

x∈Λ HomF (Aex, F ).
We say A is a symmetric algebra if A ∼= A∗ as A-A-bimodules. Then A is
symmetric if and only if A -mod is Calabi-Yau of dimension 0 (cf. [17], Theorem
3.1).
Suppose A is an algebra satisfying the above conditions, and Λ is ordered. For
λ ∈ Λ, let J≥λ =

∑
µ≥λAeµA and J>λ =

∑
µ>λAeµA. Let Jλ = J≥λ/J>λ.

We say A is quasi-hereditary if the product map Jλeλ ⊗F eλJλ → Jλ is an
isomorphism for every λ ∈ Λ [4].

Now suppose A is an abelian category over F , with enough projective ob-
jects, enough injective objects, and a countable set Λ indexing the isomor-
phism classes of simple objects of A, such that all objects of A have a finite
composition series with sections in Λ. Abusing notation, an element λ of Λ
we sometimes take to represent an index, sometimes an isomorphism class of
irreducible object, and sometimes a representative of the latter. We denote by
P (λ) a minimal projective cover of λ in A. Such exist, since we have enough
projectives, and finite composition series.
We call A a highest weight category [4] if there is an ordering < on Λ, and a
collection of objects ∆(λ), for λ ∈ Λ, such that

(i) there is an epimorphism ∆(λ)։ λ whose kernel X(λ) has composition
factors µ < λ;

(ii) P (λ) has a filtration with a single section isomorphic to ∆(λ) and every
other section isomorphic to ∆(µ), for µ > λ.

If A is quasi-hereditary, then A -mod is a highest weight category, with standard
objects A∆(λ) = Jλeλ, and mod-A is a highest weight category with standard
modules ∆A(λ) = eλJλ. Thus A has a filtration by ideals, whose sections are
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isomorphic to

A∆(λ) ⊗F ∆A(λ).

Conversely, if A is a highest weight category, then A =
⊕λ,µ∈ΛHom(P (λ), P (µ)) is a quasi-hereditary algebra.
The left and right costandard modules A∇(λ), ∇(λ)A of A are defined to be
the duals of the right and left standard modules ∇(λ)A, A∇(λ) of A. We write
∆ = ⊕λ∆(λ) and ∇ = ⊕λ∇(λ).

Lemma 3. Let A be a selfinjective quasi-hereditary algebra. If A is not semisim-
ple, then A is infinite dimensional.

Proof. Nonsemisimple selfinjective algebras have infinite homological dimen-
sion, since Heller translation is invertible. Finite dimensional quasi-hereditary
algebras have finite homological dimension. �

We say a highest weight category C is homogeneous if its standard objects
all have the same Loewy length, and its costandard objects all have the same
Loewy length. Equivalently, C = A -mod, where A is a quasi-hereditary algebra
whose left standard modules all have the same Loewy length, and whose right
standard modules all have the same Loewy length.

Definition 4. A hica is is a highest weight, homogeneous, indecomposable
Calabi-Yau category of dimension 0.

The collection Hica of hicas forms a 2-category (arrows are exact functors, 2-
arrows are natural transformations). We denote by Hical the 2-category of
hicas of length l.

Lemma 5. The 2-functor

{symmetric, homogeneous, quasihereditary basic algebras }։ Hica

which takes an algebra to its module category is essentially bijective on objects.

Proof. We must define a correspondence between objects of our 2-categories,
under which isomorphic algebras correspond to equivalent categories, and
vice versa. If A is a symmetric, ∆-homogeneous quasihereditary algebra
then A -mod is a hica ([4], [17], Theorem 3.1). If C is a hica, then A =
⊕λ∈Λ Hom(P (λ), P (µ)) is an algebra such that A -mod = C. �

A highest weight category C has a collection of indecomposable tilting modules
T (λ) indexed by Λ, characterised as indecomposable objects with a ∆-filtration
and a ∇-filtration. The Ringel dual C′ of C is the module category A′ -mod of
the algebra

A′ = ⊕λ,µ HomC(T (λ), T (µ)).

The Ringel dual C′ of C is a highest weight category. If C = A -mod, we call A′

the Ringel dual of A. If C ∼= C′ then we say C and A are Ringel self-dual.

Lemma 6. Suppose C = A -mod is a hica. Then

l(A) = l(A∆) + l(∆A)− 1.
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Proof. The length of A is the least number l such that the product of any
l elements of the radical of A is zero. This can be otherwise defined as the
radical length of the A ⊗ Aop-module A. Since A is quasi-hereditary, AAA
has a bimodule filtration with sections A∆(λ) ⊗F ∆A(λ). These sections have
radical length l(A∆) + l(∆A) − 1, as A ⊗ Aop-modules. Therefore the Loewy
length of A is at least l(A∆) + l(∆A)− 1.
The tops of all of these sections lie in the top of AAA. Since A is symmetric,
every irreducible lies in the socle of A. Since A is also quasi-hereditary, every
irreducible lies in the socle of some standard object ∆. Given λ ∈ Λ, the
socle Fxλ of Aeλ is generated by soc(A∆(ν)) ⊗F soc(∆A(ν)), for suitable ν,
modulo lower terms in the filtration. The lower terms in the filtration have zero
intersection with Fxλ, since this space is one dimensional. Therefore, lifting an
element of soc(A∆(ν)) ⊗ soc(∆A(ν)) to an element of radical length l(A∆) +
l(∆A)−1 in A, we obtain an element of Fxλ of radical length l(A∆)+l(∆A)−1.
It follows that the Loewy length of A is at most l(A∆) + l(∆A)− 1. �

We also wish to consider graded algebras, which may satisfy weaker assump-
tions than those given above. If G is a group, and A an algebra, then a
G-grading of A is a decomposition A = ⊕g∈GAg, such that Ag.Ah ⊂ Agh. A
graded A-module is an A module with a decomposition M = ⊕g∈GMg, such
that Ag.Mh ⊂ Mgh; a homomorphism φ : M → N of graded modules is an
A-module homomorphism sending Mg to Ng, for g ∈ G.
We say A is Z+-graded if it is Z-graded, with Ai = 0 for i < 0. Suppose
A a Z-graded algebra, whose degree 0 part A0 satisfies the conditions (i)-(iv)
above. Then we denote by A -mod the abelian subcategory of the category of
all A-modules generated by A0 -mod, and by A -gr the abelian subcategory of
the category of all graded A-modules generated by the category of finite di-
mensional A0 -mod〈i〉, for i ∈ Z. We denote by A -grperf the thick subcategory
of the the derived category of graded A-modules generated by objects of the
form A⊗A0 X〈i〉, where X ∈ A0 -mod and i ∈ Z.

3. Elementary constructions

Let us give some elementary constructions of symmetric algebras.
Suppose B is an algebra. Let A = T (B) denote the trivial extension of B by
B∗. Then A is symmetric, and A -mod is Calabi-Yau of dimension 0.
Suppose B is an algebra and M is a B-B-bimodule such that eλMeµ is finite-
dimensional for every λ, µ ∈ Λ and such that for every λ only finitely many
of eλMeµ and eµMeλ are non-zero. Define M∗ :=

⊕
λ∈Λ HomF (Meλ, F ) and

assume we have a fixed bimodule isomorphism M ∼= M∗. Then we have a
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sequence of bimodule homomorphisms

B → HomB(M,M) ∼= HomB(M,M∗) = HomB(M,
⊕

λ∈Λ
Hom(Meλ, F ))

∼=
⊕

λ∈Λ
HomB(M,Hom(Meλ, F ))

∼=
⊕

λ∈Λ
HomF (M ⊗B Meλ, F )

=
⊕

λ∈Λ
HomF ((M ⊗B M)eλ, F )

= (M ⊗B M)∗,

noting that M ⊗B M satisfies that eλM ⊗B Meµ =
⊕

ν∈Λ eλMeν ⊗B eνMeµ
is finite-dimensional (finitely many finite-dimensional direct summands) for all
λ, µ, and for every λ only finitely many of eλM ⊗BMeµ and eµM ⊗BMeλ are
nonzero. The obtained bimodule homomorphisms compose to give a bimodule
homomorphism B → (M ⊗B M)∗. Let µ : M ⊗B M → B∗ denote the dual
map.
Associated to the data (B,M), we have a Z-graded algebra U = U(B,M) con-
centrated in degrees 0,1, and 2 whose degree 0,1,2 part is B,M , B∗ respectively.
The product map U0⊗U i → U i is given by the left action of B on the bimod-
ule U i, for i = 0, 1, 2. The product map U i ⊗ U0 → U i is given by the right
action of B on the bimodule U i. We define the product U1⊗U0 U1 → U2 to be
given by µ. The product is associative since the product of three components
U i⊗U j⊗Uk is non-zero if and only if i+ j+k ≤ 2, in which case associativity
is clearly visible.

Lemma 7. U(B,M) -mod is Calabi-Yau of dimension zero.

Proof. We have a bimodule isomorphism U ∼= U∗ which exchanges U0 and U2,
and sends U1 to U1∗ via the fixed isomorphism M ∼= M∗. �

4. Topsy-turvy quivers

Given a vertex w in a quiver Q, let P(w) denote the collection of vertices v of Q
for which there is an arrow pointing from v to w (the past of w), counted with
multiplicity. Let F(u) denote the collection of vertices v of Q for which there
is an arrow pointing from u to v (the future of u), counted with multiplicity.

Definition 8. A connected quiver is topsy-turvy if it contains at least one
arrow, and there is an automorphism φ of the vertices of Q such that F(u) =
P(uφ) for every vertex u of Q.

For any topsy-turvy quiver, the automorphism φ extends to a quiver automor-
phism, since arrows from x to y can be placed in bijection with arrows from y
to xφ, which can be placed in bijection with arrows from xφ to yφ.

Lemma 9. If Q is a topsy-turvy quiver, then PF(w) = FP(w) for all vertices
w of Q.
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Proof. Any x in FP(w) lies in the future of some u in the past of w, and
therefore lies in the past of uφ; since Q is topsy-turvy, uφ also lies in the future
of w and x lies in PF(w). By symmetry, if x lies in PF(w) then x also lies in
FP(w). �

A directed topsy-turvy quiver Q can be Z-graded in the following way: take
an arbitrary vertex u of Q and place it in degree 0. We say another vertex
v in Q is in degree k if there exist i1, . . . , ir and j1, . . . , jr such that v ∈
P i1F j1 · · · P irF jr (u) and

∑
1≤s≤r js −

∑
1≤s≤r is = k. This is well-defined

since PF(w) = FP(w). It follows that all arrows in Q point from degree i to
degree i+ 1 and that φ has degree 2.
A bipartite graph is a countable connected graph Γ whose set V of vertices
decomposes into two nonempty subsets V = Vl ∪ Γr such that no edges of Γ
connect Vl to Vl, or Vr to Vr. Note that we do not call the graph with one
vertex and no arrows bipartite.
Given a graph Γ with a bipartite decomposition of vertices V = Vl∪Vr, we have
an associated directed topsy-turvy quiver QΓ, obtained by orienting Z copies
of Γ, identifying, for i even, the r-vertices of ith copy of Γ with the r-vertices
of the i + 1th copy of Γ, the l-vertices of ith copy of Γ with the l-vertices of
the i − 1th copy of Γ, and insisting that arrows in the ith copy of Γ point
from the i − 1th copy to the i + 1th copy, for i ∈ Z. Note that if we label our
bipartite decomposition with the opposite orientation, we obtain an isomorphic
topsy-turvy quiver.

Lemma 10. We have a one-one correspondence Γ ↔ QΓ between bipartite
graphs and directed topsy-turvy quivers.

Proof. Given a directed topsy-turvy quiver, we have a Z-grading of the set of
vertices V = ∐i∈ZVi, see above. Let Ai denote the set of arrows from Vi to Vi+1.
The set of arrows of our quiver is graded A = ∐i∈ZAi. The automorphism φ
defines isomorphisms between Vi and Vj and between Ai and Aj when i and j
are both even, or when i and j are both odd. We can thus identify the Vi for
i even with a single vertex set Veven, the Vi for i odd with a single vertex set
Vodd, the Ai for i even with a single arrow set Aeo from Veven to Vodd, the Ai
for i odd with a single arrow set Aoe from Vodd to Veven. The topsy-turviness
of the quiver means precisely that Aeo is the opposite of Aoe. We thus obtain a
graph with vertices Veven ∪ Vodd, and with edges between Veven and Vodd, such
that directing edges from Veven to Vodd gives us Aeo and directing edges from
Vodd to Veven gives us Aoe. This is a bipartite graph, by definition.
Reversing the above argument, from any bipartite quiver, we obtain a directed
topsy-turvy quiver. �

Example 11 The bipartite graph • • with two vertices and a single
edge results in a topsy-turvy quiver which can be depicted as an oriented line:

... • // • // • // • // • // • // • ...
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The bipartite graph

... • • • • • • • ...

results in a topsy-turvy quiver which can be depicted as a directed square
lattice in R2:

... •

��@
@@

@@
@@

•

��@
@@

@@
@@

• ...

•

??�������

��@
@@

@@
@@

•

??�������

��@
@@

@@
@@

... •

??������� •

??������� • ...

The bipartite graph whose vertices are elements of the square lattice lattice
in R2 results in a topsy-turvy quiver whose arrows can be thought of as the
diagonals of a face-centred cubic lattice in R3.

5. Self-injective directed algebras of length ≤ 3

Throughout the following, let B be an indecomposable self-injective directed
algebra. Here self-injective means that B ∼=

⊕
x∈Λ HomF (Aex, F ) as left B-

modules or, equivalently, that all projective B-modules are also injective, and
vice versa. Directed is understood to mean that the Ext1-quiver of B is a
directed quiver.
Note that such an algebra is necessarily infinite-dimensional, since directed
implies quasi-hereditary which, in the finite-dimensional case, implies finite
global dimension, contradicting self-injectivity.

Lemma 12. If B is radical-graded, all projective B-modules have the same
Loewy length.

Proof. For finite-dimensional algebras, this was shown in [12, Theorem 3.3]. We
remark that the same proof holds for algebras in our setup, as the comparisons
of Loewy length only need to be done using neighbouring projectives in the
Ext-quiver. �

Let us now assume that B be an indecomposable self-injective algebra of Loewy
length ≤ 3.

Lemma 13. B is radical-graded.

Proof. Set A0 :=
⊕
x∈Λ

Fex ∼= A/RadA realized by the semisimple algebra gen-

erated by the idempotents, this is obviously a subalgebra. It acts naturally on
the bimodule A1

∼= RadA/Rad2 A given by the arrows in the Ext-quiver and

on A2 := Rad2A. Obviously the multiplication maps A1 ⊗ A1 to A2, so A is
radical-graded. �

Corollary 14. All projectives of B have the same Loewy length.

Documenta Mathematica 15 (2010) 177–205



Hicas of Length ≤ 4 187

Lemma 15. The quiver of B is a topsy-turvy quiver.

Proof. A projective indecomposable B-module P (λ) can be identified with an
injective indecomposable B-module I(λφ). Here φ is a quiver isomorphism,
corresponding to the Nakayama automorphism of B. Since B is selfinjective
Loewy length 3, elements of F(λ) correspond to composition factors in the
heart of P (λ) =B Beλ. Switching from left action to right action, we find
elements of P(λφ) correspond to composition factors in the heart of eλBB.
Taking duals, we find elements of P(λφ) correspond to composition factors in
the heart of I(λφ). Since P (λ) = I(λφ), we conclude F(λ) = P(λφ). Thus B
has a topsy-turvy quiver, as required. �

To any topsy-turvy quiver Q, we can associate a self-injective algebra R(Q)
of Loewy length 3 by factoring out relations from the path algebra as follows:
make products of arrows of Q which do not lie in some F(u) ∪ P(uφ) equal to
zero; make squares in F(u) ∪ P(uφ) commute.
Let us now assume B is directed.

Lemma 16. (a) If B has Loewy length 2, it is isomorphic to the FQ/I,
where Q is the infinite quiver

... • // • // • // • // • // • // • ...

and I is the quadratic ideal generated by all paths of length two.
(b) If B has Loewy length 3, it is given by R(Q), where Q is a directed,

topsy-turvy quiver.

Proof. (a) Obvious.
(b) Since projectives are injectives, both have irreducible head and socle. Since
B is directed, projectives have structure

λ

µ1 ⊕ ...⊕ µn
ν,

where ν < µi < λ all i. We only have to worry about the nonzero relations.
These take the form ac = ξbd, for ξ ∈ F×, where a, b are arrows in F (u) and
c, d are arrows in P (uφ) for some u. We want to remove the scalars ξ from this
description.
Let us write B = FQ/I. Then Q is topsy-turvy with φ described by the
Nakayama automorphism of B. Since Q is directed as well, we can give the
collection of vertices of our quiver a Z-grading, so that arrows have degree 1,
and φ has degree 2. We now alter scalars inductively. Arrows from vertices of
degree 0 to vertices of degree 1 we leave alone. An arrow a from degree 1 to
degree 2 lies in P (t(a)), and in no other P (w). Therefore, multiplying arrows
between vertices of degree 1 and degree 2 by nonzero scalars if necessary, we
can force squares in quiver degree 0, 1, 2 to commute. Similarly, multiplying
arrows in degree 2, 3 by scalars, we can force squares in quiver degree 1, 2, 3
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to commute. And so on. Working backwards, make squares in degree −1, 0, 1
commute and so on. �

Suppose Γ is a bipartite graph. The double quiver of Γ is the quiver which has
vertices as Γ and a pair of opposing arrows running along each edge of Γ.

Definition 17. Let BΓ denote the self-injective directed algebra R(QΓ). Let AΓ

denote the trivial extension T (BΓ) of BΓ. Let CΓ denote the category AΓ -mod.

We define ZΓ to be the zigzag algebra associated to Γ [7]. It is the path algebra
of the double quiver associated to Γ modulo relations insisting that all quadratic
paths based at a single vertex are equal, whilst all other quadratic relations
are zero. Since the relations are homogeneous, ZΓ is a Z+-graded algebra with
homogeneous elements graded by path length.

Lemma 18. The category ZΓ -mod is Calabi-Yau of dimension 0. We have an
equivalence

ZΓ -gr ≃ BΓ -mod⊕2

between the category ZΓ -gr of graded modules of ZΓ, taken with respect to the
Z+-grading by path length, and the direct sum of two copies of BΓ -mod.
Under this equivalence, twisting by the automorphism φ of QΓ corresponds to
a degree shift by 2 in ZΓ -gr.

Proof. The irreducible objects of ZΓ -gr are S〈i〉, where S is an irreducible ZΓ-
module concentrated in degree 0. There are homomorphisms in ZΓ -gr between
S〈i〉 and T 〈j〉 precisely when S = T and i = j. There is an extension in ZΓ -gr
of S〈i〉 by T 〈j〉 precisely when there is an extension between S by T in ZΓ -mod
and j = i+1. In particular when there exists such an extension, S corresponds
to a vertex in Vl and T corresponds to a vertex in Vr. We thus have two blocks
in ZΓ -gr: one block is generated by S〈i〉 where S lies in Vl and i is even or S
lies in Vr and i is odd; the other block is generated by S〈i〉 where S lies in Vr
and i is even or S lies in Vl and i is odd. It is not difficult to see that each
block is isomorphic to BΓ -mod so that the automorphism φ corresponds to a
degree shift 〈2〉. �

For a quiver Q, we define PQ to be the path algebra of Q, modulo the ideal of
all paths of length ≥ 2.

Lemma 19. For every orientation
→
Γ of the bipartite graph Γ, we have an iso-

morphism
ZΓ
∼= T (P→

Γ
)

between ZΓ and the trivial extension algebra T (P→
Γ

) of P→
Γ
by its dual.

Proof. Projectives for P→
Γ

take two shapes: they are either of Loewy length

two, hence have a simple top with a certain number of extensions, or they are
simple. Similarly injectives are simple in the first case or of length two with
a simple socle and a certain number of simples in the top in the second case.
Projectives for T (P→

Γ
) are extensions of projectives for P→

Γ
by injectives for the
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same algebra, hence either of a module of Loewy length two with a certain
number of simples in the socle by a simple or of a simple by a module of Loewy
length two with a simple socle and some composition factors in the top. In both
cases top and socle of the resulting extension have to be simple which forces,
in the first case, all of the simples in the socle of the P→

Γ
-projective to extend

the simple P→
Γ

-injective, and in the second case, the simple P→
Γ

-projective to

extend all the simples in the top of the P→
Γ

-injective. This is the same as saying

that for every arrow in
→
Γ the quiver for T (P→

Γ
) has an arrow in the opposite

direction as well, and that all quadratic paths based at a single vertex are the
same (we can easily get rid of scalars by rescaling the arrows) while all other
quadratic relations are zero. This exactly describes the algebra ZΓ. �

In this way, every orientation
→
Γ of the graph Γ defines a Z{f,a}+ -grading on ZΓ,

whose f component corresponds to the Z+-grading of P→
Γ

by path length, and

whose a component corresponds to the Z+-grading of T (P→
Γ

) which puts P→
Γ

in

degree 0 and its dual in degree 1.

Correspondingly, the orientation
→
Γ of Γ gives rise to a Z{f,a}+ -grading of the

associated selfinjective directed algebra BΓ as follows: define a bigrading of the
corresponding topsy-turvy quiver by grading arrows with an f if they run with

the orientation
→
Γ of Γ, and grading them a if they run against the orientation.

This grading extends to a Z{f,a}+ -grading of BΓ.

6. Hicas of length ≤ 4

The following is a classical statement which holds for any quasi-hereditary
algebra:

Lemma 20. (a) A∆ ∼= (∇A)∗

(b) A∇ ∼= (∆A)∗

Lemma 21. Suppose C = A -mod is a highest weight category which is Calabi-
Yau of dimension 0, and Ringel self-dual. Then A is quasi-hereditary with
respect to two orders, denoted N and H, and we have

(a) A∆N ∼= A∇H

(b) A∆H ∼= A∇N

Proof. Let us suppose the quasi-hereditary structure onA is given by the partial
order N, and the one induced by Ringel duality is H. Since A is Ringel self-
dual, we have an isomorphism A ∼= A′. Say that under this homomorphism
the right projective exA corresponding to x ∈ Λ goes to the right projective
e′yA

′ for some y ∈ Λ. Then by HomA(Aex, A) ∼= exA ∼= e′yA
′ = HomA(T (y), A)

for T (y) the tilting module for y and the fact that any projective for A is
also injective and therefore tilting, it follows that T (y) = P (x). So all tilting
modules are projective A-modules. So, there is a 1-1-correspondence between
tilting modules and projective modules for A, say it is, in the above scenario
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given by y = ♯x. In particular this gives a one-to-one correspondence between
standard modules and their socles x = soc ∆N(♯x). This makes the definition
∆H(x) := ∇N(♯x) well-defined. Filtrations of projectives by ∆Hs as well as the
respective ordering conditions follow immediately from the dual statments for
injectives (=projectives) and ∇Ns. �

We wish to classify hicas of length ≤ 4. To warm up, let us classify hicas of
length ≤ 3.

Lemma 22. Hicas of length 1 are semisimple. There are no hicas of length 2.
There is a unique hica of length 3, which is the module category of the Brauer
tree algebra associated to a bi-infinite line.

Proof. Length 1 hicas are trivially semisimple.
Suppose C = A -mod is a hica of length 2. Standard objects in C must have
length 2, since C is indecomposable, but not semisimple. Since C itself has
length 2, all projective objects in C also have length 2. Thus standard objects
are projective, and the socle of a projective indecomposable object Aex has
irreducible summands indexed by elements y of Λ with y < x. Since A is a
symmetric algebra, the top and socle of Aex are equal, which is a contradiction.
Therefore there are no hicas of length 2.
Suppose C = A -mod is a hica of length 3. Then l(A∆)+ l(∆A) = 4, by Lemma
6. We have 1 ≤ l(A∆), l(∆A) ≤ 3 since C has length 3. It is impossible that
l(A∆) = 3, since this would imply standard objects are projective, leading to a
contradiction as in the case when C is a hica of length 2. It is dually impossible
that l(∆A) = 3. Therefore l(A∆) = l(∆A) = 2. The next step is to show our
hica C of length 3 is Ringel self-dual. This follows just in the proof of Ringel
duality for hicas of length 4 in Lemma 25 below: it is only necessary to replace
the numbers 4 and 3 by the numbers 3 and 2. Since a standard object ∆(x)
is a costandard object for some other ordering, by Lemma 21, ∆(x) must have
an irreducible socle x−1, as well as an irreducible top x = x0. Likewise, x is
the socle of some standard object ∆(x1), for some x1 > x. The projective Aex
has a filtration whose sections are ∆(x1) and ∆(x0); it is not possible there are
any other standard objects in a ∆-filtration since the existence of such would
imply either the socle or top of Aex was not irreducible. We conclude Aex has
top and socle isomorphic to xi, and top modulo socle isomorphic to x−1 ⊕ x1.
Inductively, we find xi ∈ Λ, for i ∈ Z, such that Aexi has a filtration whose top
and socle are isomorphic to xi, and top modulo socle isomorphic to xi−1⊕xi+1.
It follows A is isomorphic to the path algebra of the quiver

... •
αi−1

�� •
βi−1

__

αi

�� •
βi

__

αi+1

�� •
βi+1

__ ...

modulo relations αi+1αi = βiβi+1 = 0, and relations αiβi − λiβi+1αi+1 = 0,
for some nonzero λi ∈ k. Rescaling the generators if necessary, we may take
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all λi = 0. Thus A is isomorphic to the Brauer tree algebra associated to a
bi-infinite line. �

Let us now assume C is a hica of length 4. Thus C = A -mod for a symmetric
quasi-hereditary ∆-homogeneous algebra A of Loewy length 4.

Lemma 23. The endomorphism ring of a projective indecomposable object in C
is isomorphic to F [d]/d2.

Proof. The top and socle of a projective indecomposable are isomorphic, and
such a simple cannot appear in either of the middle radical layers as this would
imply a self-extension of the simple, contradicting quasi-heredity. �

Lemma 24. Either A∆ has length 3 and ∆A has length 2, or else A∆ has length
2 and ∆A has length 3.

Proof. Since A is a hica, we have

l(A∆) + l(∆A) = 5.

It is impossible that l(A∆) = 1 since this would imply that AA = ∆A, which
contradicts Lemma 23. Likewise it is impossible that l(∆A) = 1. It follows
that {l(A∆), l(∆A)} = {2, 3}, as required. �

We use < to mean “less than, in the order N”.

Lemma 25. C is Ringel self-dual.

Proof. To say that C is Ringel self-dual is to say that AA is a full tilting module
for A. This is equivalent to saying that AA is a full tilting module for A
(consider finite dimensional quotients/subalgebras, and pass to a limit). In
other words, A is left Ringel self-dual if and only if A is right Ringel self-dual.
To establish the Ringel self-duality of C, we may therefore assume that A∆ has
length 3, by Lemma 24.
Suppose C is not Ringel self-dual. Then we have a nonprojective indecompos-
able tilting module T (λ), which has a filtration with sections

∆(λ),∆(λ2), ...,∆(λn).

Note that ∆(λ) is the bottom section, and up to scalar we have a unique
homomorphism from P (λ) to T whose image is ∆(λ) (reference Ringel). Since
T is nonprojective, it has length < 4. Since the sections all have length 3,
the tilting module has length 3, and the tops of the sections all lie in the top
of T . The module T also has a ∇-filtration since it is tilting. Any simple in
the top of T must lie in the top of some ∇ of length 2. In particular, λ itself
must lie in the top of some ∇(µ) of length 2. The resulting homomorphism
P (λ)→ ∇(µ) must lift to a homomorphism P (λ)→ T . Up to scalar, there is a
unique such homomorphism whose image is ∆(λ), implying that µ is a factor
of ∆(λ). Thus, λ is a factor of ∇(µ) and µ is a factor of ∆(λ). Thus λ > µ > λ
which is a contradiction. �

Lemma 26. Standard modules for A have irreducible head and socle.
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Proof. A standard module in one ordering is isomorphic to a costandard module
in another ordering, by Lemmas 21 and 25. �

If there is a nonsplit extension of λ by µ then either λ > µ or λ < µ. We define
Rel to be the set of relations λ > µ or λ < µ of this kind. We define ↑ to be
the partial order on Λ generated by Rel. The order N is a refinement of ↑.
We define ↓ to be the ordering on Λ which is Ringel dual to ↑.
Lemma 27. C is a highest weight category with respect to the partial order ↑
on Λ.

Proof. C has length 4, which implies that either left or right standard mod-
ules have length two and, by Lemma 26, are therefore uniserial. The quasi-
hereditary structure induced by N is already determined by these non-split
extensions and therefore the order ↑ already induces the same quasi-hereditary
structure as its refinement N. �

From now on, whenever we refer to standard or costandard modules, or to
orderings, without specifying the order, we mean the order ↑.
We say an A-module M is directed, if given a subquotient of M which is a
non-split extension of a simple module λ by a simple module µ, λ is greater
than µ.

Lemma 28. Standard A-modules are directed.

Proof. We want that all standard modules are directed, which means for any
subquotient of a standard module which is a non-split extension of simple
modules λ by µ, λ is greater than µ. This is trivial for a standard module of
Loewy length 2.
Let ∆(x) be a standard module of Loewy length 3. It must have an irreducible
socle y by Lemma 26. Thus ∆(x) appears in a ∆-filtration of P (y). ∆(y)
appears as the top factor of a ∆-filtration of P (y). Indeed, since P (y) has
length 4 with irreducible top and socle, a ∆-filtration of P (y) has precisely two
factors, namely ∆(x) and ∆(y).
The module ∆(y) must have irreducible socle z, where y > z, by Lemma
26. Since P (y) has length 4 and ∆(y) has length 3, we conclude there is an
extension of z by y. Since ∇(y) is dual to a ∆ which has length 2, ∇(y) itself
has length 2, and it must in fact be this extension of z by y.
For any other nonsplit extension of an irreducible modules w by y, we must have
w > y by Lemma 27. These are precisely the extensions of w by y contained in
∆(x). The extensions of x by w contained in ∆(x) imply x > w by definition
of a standard module. Thus any extension of λ by µ in ∆(x) implies λ > µ as
required. �

Corollary 29. The orders ↑ and ↓ on Λ are opposite.

Proof. Just as standard modules are directed in the ↑ ordering, costandard
modules are directed in the ↓ ordering. But standard modules in the ↑ ordering
are equal to costandard modules in the ↓ ordering by Lemmas 21 and 25.
Therefore ↑ and ↓ orderings are opposite, as required. �
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Remark 30 If a finite-dimensional algebra is quasi-hereditary with respect
to two opposing orders then it must be directed, in which case the standard
modules are projectives in one ordering, and simples in the opposite order-
ing. This can easily be proved by induction on the size of the indexing set.
Symmetric quasi-hereditary algebras are never directed, since their projective
indecomposable objects have isomorphic head and socle.

Remark 31 It is not necessarily the case that a Ringel self-dual hica is a
highest weight category with respect to two opposing orderings. Examples of
length 5 are found amongst module categories of rhombal algebras [3].

Let X(λ) denote the kernel of the surjective homomorphism ∆(λ) ։ λ, for
λ ∈ Λ.

Definition 32. The ∆-quiver of A is the quiver with vertices indexed by Λ,
and with arrows λ → µ corresponding to simple composition factors µ in the
top of X(λ).

Lemma 33. Components of the ∆-quiver of length 2 are directed lines. Com-
ponents of the ∆-quiver of length 3 are directed topsy-turvy quivers.

Proof. The length 2 case is easy.
In length 3, we have a permutation φ 	 Λ which takes λ to the socle of
∆(λ). We prove that F(λ) = P(λφ) via a sequence of correspondences: arrows
emanating from λ in the ∆-quiver are in correspondence with simple compo-
sition factors µ in the top of X(λ); simple composition factors µ in the top of
X(λ) are in correspondence with extensions of λ by µ such that λ > µ; since
∆↑(λ) = ∇↓(λφ), whilst ↑ and ↓ are opposites, extensions of λ by µ such that
λ > µ are in one-one correspondence with extensions of µ by λφ such that
µ > λφ; extensions of µ by λφ such that µ > λφ are in correspondence with
simple composition factors λφ in the top of X(µ); simple composition factors
λφ in the top of X(µ) are in one-one correspondence with arrows into λφ in the
∆-quiver.
Since standard modules are directed, the ∆-quivers are also directed (ie they
generate a poset). �

We next find ∆-subalgebra of A, in the sense of S. Koenig [10].

Lemma 34. A has a ∆-subalgebra B.

Proof. We want to find B such that B∆ ∼= BB. Let us write A = FQ/I
as the path algebra of Q modulo relations, where Q is the Ext1-quiver of A.
If there is a positive arrow x → y in Q, that is to say an arrow x → y in
Q such that x > y, then x and y lie in the same component of the ∆-quiver.
Since all standard modules are directed, the connected component of the quiver
generated by these arrows are the components of the ∆-quiver.
Let B be the subalgebra of A generated by arrows x → y in Q such that
x > y. Since all standard modules are directed, composing the natural maps
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Beλ → Aeλ → ∆(λ) gives us a surjection Beλ ։ ∆(λ). To establish this
composition map is an isomorphism, we have to worry about its kernel, which
must lie in Rad2(B)eλ, which is the socle of B since A has length 4. Assume
there is a simple S in the kernel. Then S would have to be a factor of ∆(µ) in
a ∆-filtration of Aeλ; restrictions imply S would lie in the socle of some ∆(µ)
of length 2, where µ > λ (otherwise if ∆(µ) has length 3 then λ lies in the
socle of ∆(µ) so S > λ, λ > S since S appears in Beλ, contradiction). Since S
lies in Rad2(B)eλ, we have positive arrows λ→ ν → S, for some ν, so S must
lie in ∆(ν), and there is an arrow λ→ ν in the ∆-component of λ. There are
now two possibilities. Either ∆(λ) has length 3, implying S lies in a ∆-quiver
component of length 2 (for µ), and a ∆-quiver component of length 3 (for
λ)- contradiction. Else ∆(λ) has length 2, which implies we have a ∆-quiver
component of length 2 containing the quiver µ → S ← ν - contradiction (the
structure of any length 2 ∆-quiver component is an oriented line by Lemma
33). We conclude that the map B ։ ∆ must in fact have zero kernel, ie B is
a ∆-subalgebra.

�

Let B be the ∆-subalgebra of A.

Lemma 35. Suppose B has length 3. Then the algebra homomorphism B → A
splits.

Proof. Let I denote the ideal of A which is a sum of spaces AaA where a is
a negative arrow in the quiver Q of A. Then the kernel J of the A-module
homomorphism A → A∆ is contained in I, since A has length 4 and ∆s have
length 3, implying J is generated in the top of the radical of A. Also, J
contains I since I is generated as a vector space by products of 1, 2, or 3
arrows in the quiver, at least one of which lies in I, and these products all lie
in J since all ∆s are directed. Thus the kernel of A → A∆ is equal to I. By
symmetry, the homomorphism of right A-modules A → ∆A also has kernel I.
Therefore B ⊕ I → A is an isomorphism of B-B-bimodules, and the algebra
homomorphisms

B → A→ A/I

compose to give an algebra isomorphism B ∼= A/I. Therefore the homomor-
phism B → A splits as required. �

Lemma 36. B is self-injective.

Proof. We write ↑B for the A∆-subalgebra taken with respect to the ↑ ordering,
and B↓ the ∆A-subalgebra taken with respect to the ↓ ordering. We know that

B = ↑B ∼=
⊕

x∈Λ
A∆↑(x) ∼=

⊕

x∈Λ
A∇↓(x) ∼=

⊕

x∈Λ
(∆↓A(x))∗ ∼= (B↓)∗,

where B↓ is also a ∆-subalgebra of A. Thus ↑B ∼= (B↓)∗ as A-modules, and
therefore as ↑B-modules. To prove ↑B is self-injective we must show that
↑B ∼= B↓. Indeed, ↑B is defined to be the subalgebra generated by left positive
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↑-arrows, whilst B↓ is defined to be the subalgebra generated by right positive
↓-arrows. Passing from the left regular action of an algebra on itself to the
right regular action reverses arrow orientation. Therefore left positive ↑-arrows
are equal to right negative ↑-arrows which are equal to right positive ↓-arrows.
Thus ↑B ∼= B↓ as required. �

Lemma 37. If B has Loewy length 3, then A is isomorphic to T (B), the trivial
extension algebra of B by its dual.
If B has Loewy length 2, then A is isomorphic to U(B,M) where M is a self-
dual B-B-bimodule.

Proof. We may assume B = B↑ has Loewy length 3, in which case B↓ has
Loewy length 2. We have a surjection of algebras A։ B which splits, via an
algebra embedding B →֒ A. Dually, we have an embedding of A-A-bimodules
B∗ →֒ A∗. Since A ∼= A∗ as bimodules, we have a homomorphism of A-
A-bimodules B∗ →֒ A. Taking the sum of our two embeddings gives us a
homomorphism of B-B-bimodules,

B ⊕B∗ → A.

This homomorphism is a bimodule isomorphism, because every projective in-
decomposable A-module has a canonical ∆-filtration featuring precisely two
∆(λ)s, one of which is a summand of B, and the other of which is a summand
of B∗. We can thus identify the image of B∗ in A with the kernel of the algebra
homomorphism A→ B. The image of B∗ in A multiplies to zero, because the
map B∗ → A is a homomorphism of A-A-bimodules, on which the kernel of the
surjection A։ B acts trivially. The image of B in A multiplies via according
to multiplication in B. In other words, the map T (B) = B ⊕ B∗ → A is an
algebra isomorphism, as required.
The algebra A has a Z2

+-grading whose first component comes from the radical

grading on B↑, and whose second component comes from the trivial extension
grading, with B↑ in degree 0 and its dual in degree 1. In other words, the
degree (∗, 0) part of A is B↑. We can then identify the degree (0, ∗) part of
A with B↓, which is self-injective of Loewy length 2. The degree (2, ∗) part
of A is then isomorphic to B↓∗, and we define M to be the degree (1, ∗) part
of A. The isomorphism A ∼= A∗ exchanges the B↓-B↓-bimodules B↓ and B↓∗,
whilst it defines an isomorphism M ∼= M∗. This way, we obtain the algebra
isomorphism A ∼= U(B↓,M). �

Let Bip denote the 2-category whose objects are bipartite graphs; whose ar-
rows Γ → Γ′ are given by sequences (γ1, ..., γn) of distinct vertices of Γ, such
that Γ′ = Γ\{γ1, ..., γn}; whose 2-arrows are given by permutations of such
sequences.
The following result is a refinement of Theorem 1.

Theorem 38. The correspondence Γ 7→ CΓ extends to a 2-functor

Bip→ Hica4

which is essentially bijective on objects.
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Proof. The correspondence Γ 7→ AΓ -mod is essentially bijective on objects, by
Lemmas 16, 34, 36, and 37.
We have to associate functors and natural transformations in Hica4 to arrows
and 2-arrows in Bip. Suppose γ ∈ Γ is a vertex of a bipartite graph, and
Γ′ = Γ\γ. We have an isomorphism AΓ′ ∼= eΓ′AΓeΓ′ , and therefore an exact
functor

Fγ = eΓ′AΓ⊗AΓ : AΓ -mod→ AΓ′ -mod

which sends the irreducible corresponding to a vertex v to the irreducible cor-
responding to a vertex v, if v 6= γ and to zero if v = γ. To a sequence
(γ1, ..., γn) we associate the composition functor Fγn ...Fγ1 . There are natu-
ral isomorphisms between various functors corresponding to isomorphisms of
bimodules. �

Let B↑ = FQ↑/R↑, B↓ = FQ↓/R↓ be minimal presentations of B↑ and B↓ by
quiver and relations.
Let Q be the union of Q↑ and Q↓ in which we identify the vertices of these
quivers if they represent the same irreducible A-module. Let R be the union
of R↑, R↓ and Rl. Let Rl denote the set of relations which insist that squares
in Q involving two arrows of Q↑ and two arrows of Q↓ commute.

Lemma 39. A = FQ/R is a minimal presentation of A by quiver and relations.

Proof. We have a surjective map FQ ։ A. It is not difficult to see this must
factor through a map FQ/R ։ A. We now want to bound the dimension
of a projective of FQ/R. Without loss of generality assum that B = B↑ has
Loewy length 3 and B↓ therefore has Loewy length 2. So Q↑ is a topsy-turvy
quiver and Q↓ is linear. We claim that a spanning set of (FQ/R)ex is given
by abex where b ∈ B and a is either an idempotent or an arrow from Q↓.
Without a doubt a spanning set is given by the union of all elements of the
form a1b1 · · · arbrex where ai are either idempotents or arrows inQ↓ and bi ∈ B.
However, if we have an arrow a in Q↓ (say with source y and target φ−1(y))
and and arrow b ∈ Q↑ starting in φ−1(y) , the product baey = beφ−1yaey equals
a′b′ey where b′ = φ(b) and a′ is the unique arrow starting at the end vertex of
b′ey. Indeed, Q↑ being topsy turvy implies the existence of b′ and in Q↓ there
is an arrow from x to φ−1x for every x. So denoting by z the end vertex of b,
there is a square

y a //

φ(b)

��

φ−1(y)

b

��
z

a′ // φ−1(z)

.

By the required relations this has to commute and we obtain baey =
a′b′ey. Hence the path a1b1 · · · arbrex is equivalent modulo R to a path
a′1 · · · a′rb′1 · · · b′r = a′1 · · · a′rb′. However, by the relations in B↓, any product
of arrows in Q↓ is zero, so we obtain the claim that (FQ/R)ex is spanned
by abex where b ∈ B and a is either an idempotent or an arrow from Q↓.
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This implies that dim(FQ/R)ex ≤ 2 dimBex = dim(B + B∗)ex = dimAex,
the equality dimBex = dim(B + B∗)ex coming from the fact that B is self-
injective. Combining the above surjection FQ/R ։ A and this inequality, we
obtain the statment of the lemma. �

7. Koszulity

For an algebra C we denote by C ! the quadratic dual of C.

Theorem 40. The following are equivalent:

1. Γ is not a simply laced Dynkin graph.
2. ZΓ is Koszul.
3. BΓ is Koszul.
4. AΓ is Koszul.
5. A!

Γ -mod is Calabi-Yau of dimension 3.

The length of the proof of this result is the length of the section.

1 is equivalent to 2, by a theorem of Mart́ınez-Villa [11].

2 is equivalent to 3, since BΓ -mod⊕2 is equivalent to ZΓ -gr by Lemma 18.
The implication 3⇒ 4 follows from the following lemma, in case A = AΓ, and
B = BΓ.

Lemma 41. If B is a self-injective Koszul algebra of length n, the trivial ex-
tension algebra A = B ⊕B∗〈n〉 is Koszul.

Proof. Since B is selfinjective, we have an isomorphism B ∼= B∗ of B-modules.
The algebra A is a trivial extension A = B ⊕ B∗, and we thus have a map
A→ A of B-modules extending to a map of A-modules whose kernel is B∗ and
whose cokernel is B. Stringing these together gives us a projective resolution

...→ A→ A→ B

of B as a left A-module. Since B is self-injective and radical graded, every
injective B-module has length n, and consequently this is a linear resolution
of B as a left A-module. Taking summands, we find that every projective
B-module has a linear resolution as a left A-module.
If B is Koszul, then B0 has a linear resolution by projective B-modules. Thus
B0 is quasi-isomorphic to a linear complex of projective B-modules. Since
projective B-modules are quasi-isomorphic to a linear complex of projective
A-modules, we deduce B0 is isomorphic to a linear complex of projective A-
modules. That is to say, A0 = B0 has a linear resolution by projective A-
modules. In other words, A is Koszul. �

The implication 4⇒ 3 follows from the following lemma, in case A = AΓ, and
B = BΓ.

Lemma 42. If B is a radical-graded selfinjective algebra of length n, such that
A = B ⊕B∗〈n〉 is Koszul, then B is Koszul.
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Proof. We have a Z+ × Z+-grading on A in which B lies in degree (?, 0), the
dual of B lies in degree (?, 1), and in which the inherent Z+-grading on B is
the radical grading. This corresponds to the action of a two-dimensional torus
T on A. Thus T acts on A1 and we have an exact sequence

0→ R→ A1 ⊗A0 A1 → A2 → 0

of T-modules, where R denotes the relations for A and Aj refers to the jth
component in the total grading, whose dual

0← A!2 ← A!1 ⊗A!0 A!1 ← R! ← 0

is also an exact sequence of T-modules. Since A! is quadratic by definition,
with relations R!, we have an action of T on A!, which gives a Z+×Z+-grading
on A!. We have a linear resolution of W = A(0,0), given by the Koszul complex

A⊗W A!∗

of A ([1], 2.8). Here A!∗ denotes the graded dual of A!. The differential on
the Koszul complex respects the Z+ × Z+-grading on A and A! (see [1], 2.6).
In other words, it sends terms involving arrows in A(0,1) or A!(0,1)∗ to terms
involving arrows in A(0,1) or A!(0,1)∗, and terms not involving arrows in A(0,1)

or A!(0,1)∗ to terms not involving arrows in A(0,1) or A!(0,1)∗. Consequently
the subcomplex A(?,0)⊗RA!(−,0)∗) is a direct summand of the Koszul complex
regarded as a complex of B-modules. Taking this component gives us a linear
resolution of R = B0 as a B-module. Therefore B is Koszul. �

If C is a graded algebra and C -mod is Calabi-Yau of dimension n, then
Ext∗C(C0, C0) is a super-symmetric algebra concentrated in degrees 0, 1, ..., n,
by Van den Bergh A.5.2 [2]. We have a converse which applies for Koszul
algebras:

Theorem 43. Suppose K is a Koszul algebra such that K ! is super-symmetric
of length n+ 1, then K -mod is Calabi-Yau of dimension n.

Proof. There is an equivalence between derived categories of graded modules
for K ! and K via the Koszul complex. Since K ! is locally finite dimensional,
this restricts an equivalence of bounded derived categories, by a theorem of
Beilinson, Ginzburg, and Soergel ([1], Theorem 2.12.6). Under this equiva-
lence, simple K !-modules correspond to projective indecomposable K-modules.
Since K ! is locally finite-dimensional The equivalence therefore restricts to an
equivalence between Db(K ! -gr) and Db(K -grperf). Also under this equiva-
lence, injective K !-modules correspond to simple K-modules, whilst shifts 〈i〉
in Db(K ! -gr) correspond to shifts in degree 〈−i〉[−i] in Db(K -grperf). This
homological shift in degree means that the Calabi-Yau-n property for K -mod
is equivalent to the super-Calabi-Yau-0 property for K ! -perf, thanks to Van
den Bergh’s calculation A.5.2 [2]. To prove the super-Calabi-Yau-0 property
for K ! -perf, it is enough to check that K ! is a super-symmetric algebra (cf [17],
Theorem 3.1). �
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Assume 4. Then the Koszul dual A! of A is Calabi-Yau of dimension 3. The
Koszul dual of a supersymmetric algebra of length n + 1 is Calabi-Yau of di-
menion n by Theorem 43. The trivial extension algebra A = B + B∗〈3〉 is
super-symmetric with B concentrated in degrees 0, 1, 2, with B∗〈3〉 concen-
trated in degrees 3, 2, 1, and with bilinear form pairing Bi and (Bi)∗〈3〉 via

< β, b >= β(b) < b, β >= (−1)i(3−i)β(b),

for b ∈ Bi, β ∈ (Bi)∗. Thus 4 implies 5.

Assume 5. Since A! is Calabi-Yau of dimension 3, its relations are the deriva-
tives of a superpotential, and its degree 0 part has a 4-term resolution, its
Jacobi resolution [2]. The superpotential must be cubic, since A! is quadratic.
This implies further that the Jacobi resolution of A!0 is linear, so A! must be
Koszul. Thus 5 implies 4.

We have now shown that 1 ⇔ 2 ⇔ 3 ⇔ 4 ⇔ 5, completing the proof of
Theorem 40.

Remark 44 If Γ is a bipartite graph, then an orientation of Γ gives rise to
a Z3

+-grading on AΓ. If every vertex of Γ is attached to at least two vertices,

then this leads to a Z3
+-grading of the Calabi-Yau algebra A! of dimension 3,

which can otherwise be thought of as the action of a 3-dimensional torus on
A!. The algebra A! has homological dimension 3, and admits the action of a
3-dimensional torus. It thus belongs to the realm of 3-dimensional noncommu-
tative toric geometry.

Example 45 If Γ is given by tiling of a bi-infinite line

... • • • • • • • ...

then the Calabi-Yau algebra of dimension 3 we obtain is familiar from toric
geometry. It is the algebra associated to the brane tiling of the plane by
hexagons [6]. Its quiver can be thought of as an orientation of the A2-lattice (for
a picture, see section 8, assumption 3). If we give Γ an alternating orientation,

... • oo • // • oo • // • oo • // • ...

then in the resulting grading on A!, the three copies of Z+ correspond to the
three directions of arrows in the A2-lattice.

8. Relaxing the assumptions

We have given a combinatorial classification of hicas of length ≤ 4 by bipartite
graphs. Here we show that the relaxation of any of the homological assumptions
on our categories would necessarily introduce further combinatorial complexity
into the classification.

Assumption 1: highest weight structure.
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The existence of a highest weight structure on a category is a strong assump-
tion, and the assumptions of Ringel self-duality and homogeneity of standard
modules require the existence of a highest weight structure on the category. It
is a cinch to give examples of indecomposable Calabi-Yau 0 categories of length
4 which are not highest weight categories, such as the module category of the
local symmetric algebra F [x]/x4.

Assumption 2: Calabi-Yau 0 property.
The Calabi-Yau property is another strong homological restriction on a cate-
gory. An example of a length 4 highest weight category which is indecompos-
able and Ringel self-dual, and whose standard modules are homogeneous, is
the path algebra of the linear quiver

... • // • // • // • // • // • // • ...

modulo all relations of degree ≥ 4.

Assumption 3: homogeneity.
The homogeneity restriction on a hica is fairly natural, since the known exam-
ples of highest weight Calabi-Yau 0 categories arising in group representation
theory and the theory of tilings satisfy this restriction. However, some inter-
esting combinatorics arise in length 4 if the condition is dropped.
For example, let CΓ be the hica associated to a bi-infinite line Γ, whose quiver
is an orientation

.. •

��@
@@

@@
@@

•oo

��@
@@

@@
@@

..

•

??~~~~~~~

��@
@@

@@
@@

•oo

??�������

��@
@@

@@
@@

•oo

.. •

??������� •oo

??~~~~~~~
..

of the A2 lattice, by example 45, and by construction comes with a (horizontal)
projection π onto Γ.
There are two natural ways to obtain highest weight indecomposable Calabi-
Yau 0 categories which are not homogeneous from CΓ. The first is by choosing
a section of π, that is a path in the A2 lattice which projects homeomorphically
onto Γ via π. The elements of Λ to the right of the path form a coideal in the
poset. Truncating CΓ at this coideal gives us a highest weight category of length
4 which is CY-0, but not homogeneous (cf. [4], 3.5(b)). Such a truncation is
not Ringel self-dual. Beneath is a portion of such a truncated poset, whose left
edge defines an orientation of Γ. We use dotted arrows to represent directions
in a partial order on the vertices of the lattice, rather than solid arrows which
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represent arrows in a quiver:
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The second way to obtain an inhomogeneous highest weight indecomposable
Calabi-Yau 0 category from CΓ is by merely altering the ordering of the ver-
tices. Certain orderings of the vertices of the A2 lattice give AΓ -mod is an
inhomogeneous highest weight category, which is Ringel self-dual. Here is an
example of a portion of such a partial ordering:

•

��

• __ // •

��

• // •

��

•

•

��

??

• // •

��

??

• //__

__

•

??

��• __ // •

��

??

• //

__

•

��

??

• __ // •

• // •

??

•

__

// •

??

•

Assumption 4: length ≤ 4.
We have studied hicas of length 4, since 4 is the shortest length in which a
nontrivial classification is possible. There are two kinds of hicas of length 5:
those whose left and right standard modules have length 4 and 2, and those
whose left and right standard modules have length 3 and 3.
The category of graded modules over a radical-graded symmetric algebra of
length 4 is equivalent to the category of modules over a directed self-injective
algebras of length 4. Trivial extensions of directed self-injective algebras of
length 4 by their duals give examples of hicas of length 5 whose left and right
standard modules have length 4 and 2.
Michael Peach’s rhombal algebras give examples of hicas of length 5 associated
to rhombic tilings of the plane whose left and right standard modules have
length 3 and 3.
We would be interested to learn more about hicas of length 5.
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9. Tilting

There are natural self-equivalences of the derived categories of CΓ, which are
obtained from a standard tilting procedure for symmetric algebras:

Lemma 46. Suppose A is a symmetric algebra, and suppose that the endomor-
phism ring eλAeλ is isomorphic to the dual numbers F [d]/d2. Then we have an
exact self-equivalence ψλ of the derived category of A given by tensoring with
the two-term complex

Aeλ ⊗F eλA→ A,

whose arrow is the multiplication map.

Proof. This functor is obviously exact. It fixes all simple modules with the
exception of the simple top λ of Aeλ, which it sends to Ω(λ). The module
Ω(λ) has simple socle λ since A is symmetric, and other composition factors
different from λ since eλAeλ is isomorphic to the dual numbers. Therefore
collection of simples µ 6= λ, along with Ω generate Db(A -mod), and ψλ is an
equivalence. �

The self-equivalence ψλ is called a spherical twist, because the cohomology ring
of the sphere can be identified with the dual numbers (cf. [19]).
One way to obtain self-equivalences of Db(CΓ) from spherical twists is by lift-
ing self-equivalences of the derived category of the zigzag algebra ZΓ, whose
projective indecomposable modules for the algebra ZΓ all have an endomor-
phism ring isomorphic to the algebra of dual numbers. A second way to obtain
self-equivalences of Db(CΓ) is to apply spherical twists directly to CΓ, whose
projective indecomposable objects also have endomorphism rings isomorphic
to the dual numbers.
Let us consider the first case. The projective indecomposable modules for the
algebra ZΓ all have an endomorphism ring isomorphic to the algebra of dual
numbers. Standard tilts generate an action of a 2-category TΓ on Db(ZΓ -gr)
which lifts to an action of TΓ on Db(CΓ), by a result of Rickard [16, Thm 3.1].
A second way to obtain self-equivalences of Db(CΓ) is to apply Seidel-Thomas
twists directly to AΓ, whose projective indecomposable modules have endo-
morphism rings isomorphic to the dual numbers. Standard tilts generate the
action of a 2-category UΓ on Db(CΓ), whose combinatorics is rather different
from that of TΓ.

Example 47 When Γ is a bi-infinite line, we have an action of the braid 2-
category BC∞ on a bi-infinite line on the derived category of ZΓ, by a theorem
of Seidel and Thomas [9]. The action of BC∞ on Db(ZΓ -mod) lifts to an action
of BC∞ on CΓ. Arrows in BC∞ are braids with an infinite number of strands,
and 2-arrows are braid cobordisms, such as Reidemeister moves pictured as
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follows:
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In this picture, a rhombus represents a pair of braids running parallel to the
two sides and crossing in the middle.
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We have a natural 2-functor BC∞ → TΓ. The Reidemeister move depicted
above therefore corresponds in a natural way to a 2-arrow in TΓ. However,
this Reidemeister move also corresponds naturally to an arrow in SΓ. Let us
explain how. Suppose we remove edges of the A2-lattice to give a rhombic
tiling T of the plane, whose edges lie in the quiver Q of AΓ. We have a grading
of AΓ which places arrows in Q which are edges of T in degree 0 and arrows in
Q which are not edges of T in degree 1. Let us denote by DT the degree 0 part
of A taken with respect to this tiling. The algebra AΓ is a trivial extension of
DT by D∗T . If T ′ is obtained from T by a Reidemeister move centred on the
vertex λ,
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??~~~~~ •oo
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then DT ′ is derived equivalent to DT , because the complex ofDT -modules given
by the sum of DT eλ ⊗ eλDT → DT and DT eλ → 0 is a tilting complex whose
derived endomorphism ring is isomorphic to DT ′ . This derived equivalence
between DT and DT ′ lifts to an equivalence of trivial extensions, that is to say
a self-equivalence of Db(AΓ -mod) = Db(CΓ); this self-equivalence of Db(CΓ) is
precisely the spherical twist ψλ.
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Abstract. We propose a new method to derive certain higher order
estimates in quantum electrodynamics. Our method is particularly
convenient in the application to the non-local semi-relativistic models
of quantum electrodynamics as it avoids the use of iterated commuta-
tor expansions. We re-derive higher order estimates obtained earlier
by Fröhlich, Griesemer, and Schlein and prove new estimates for a
non-local molecular no-pair operator.
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1. Introduction

The main objective of this paper is to present a new method to derive higher
order estimates in quantum electrodynamics (QED) of the form

∥∥Hn/2
f (H + C)−n/2

∥∥ 6 const < ∞ ,(1.1)
∥∥ [H

n/2
f , H ] (H + C)−n/2

∥∥ 6 const < ∞ ,(1.2)

for all n ∈ N, where C > 0 is sufficiently large. In these bounds Hf denotes the
radiation field energy of the quantized photon field and H is the full Hamil-
tonian generating the time evolution of an interacting electron-photon system.
For instance, estimates of this type serve as one of the main technical ingredi-
ents in the mathematical analysis of Rayleigh scattering. In this context, (1.1)
has been proven by Fröhlich et al. in the case where H is the non- or semi-
relativistic Pauli-Fierz Hamiltonian [4]; a slightly weaker version of (1.2) has
been obtained in [4] for all even values of n. Higher order estimates of the form
(1.1) also turn out to be useful in the study of the existence of ground states
in a no-pair model of QED [8]. In fact, they imply that every eigenvector of
the Hamiltonian H or spectral subspaces of H corresponding to some bounded
interval are contained in the domains of higher powers of Hf . This information
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is very helpful in order to overcome numerous technical difficulties which are
caused by the non-locality of the no-pair operator. In these applications it is
actually necessary to have some control on the norms in (1.1) and (1.2) when
the operator H gets modified. To this end we shall give rough bounds on the
right hand sides of (1.1) and (1.2) in terms of the ground state energy and
integrals involving the form factor and the dispersion relation.
Various types of higher order estimates have actually been employed in the
mathematical analysis of quantum field theories since a very long time. Here
we only mention the classical works [5, 11] on P (φ)2 models and the more
recent articles [2] again on a P (φ)2 model and [1] on the Nelson model.
In what follows we briefly describe the organization and the content of the
present article. In Section 2 we develop the main idea behind our techniques in
a general setting. By the criterion established there the proof of the higher order
estimates is essentially boiled down to the verification of certain form bounds

on the commutator between H and a regularized version of H
n/2
f . After that,

in Section 3, we introduce some of the most important operators appearing in
QED and establish some useful norm bounds on certain commutators involving
them. These commutator estimates provide the main ingredients necessary to
apply the general criterion of Section 2 to the QED models treated in this
article. Their derivation is essentially based on the pull-through formula which
is always employed either way to derive higher order estimates in quantum
field theories [1, 2, 4, 5, 11]; compare Lemma 3.2 below. In Sections 4, 5, and 6
the general strategy from Section 2 is applied to the non- and semi-relativistic
Pauli-Fierz operators and to the no-pair operator, respectively. The latter
operators are introduced in detail in these sections. Apart from the fact that our
estimate (1.2) is slightly stronger than the corresponding one of [4] the results
of Sections 4 and 5 are not new and have been obtained earlier in [4]. However,
in order to prove the higher order estimate (1.1) for the no-pair operator we
virtually have to re-derive it for the semi-relativistic Pauli-Fierz operator by
our own method anyway. Moreover, we think that the arguments employed
in Sections 4 and 5 are more convenient and less involved than the procedure
carried through in [4]. The main text is followed by an appendix where we show
that the semi-relativistic Pauli-Fierz operator for a molecular system with static
nuclei is semi-bounded below, provided that all Coulomb coupling constants are
less than or equal to 2/π. Moreover, we prove the same result for a molecular
no-pair operator assuming that all Coulomb coupling constants are strictly less
than the critical coupling constant of the Brown-Ravenhall model [3]. The
results of the appendix are based on corresponding estimates for hydrogen-like
atoms obtained in [10]. (We remark that the considerably stronger stability of
matter of the second kind has been proven for a molecular no-pair operator in
[9] under more restrictive assumptions on the involved physical parameters.)
No restrictions on the values of the fine-structure constant or on the ultra-violet
cut-off are imposed in the present article.

Documenta Mathematica 15 (2010) 207–234



Higher Order Estimates 209

The main new results of this paper are Theorem 2.1 and its corollaries which
provide general criteria for the validity of higher order estimates and Theo-
rem 6.1 where higher order estimates for the no-pair operator are established.

Some frequently used notation. For a, b ∈ R, we write a ∧ b := min{a, b}
and a ∨ b := max{a, b}. D(T ) denotes the domain of some operator T acting
in some Hilbert space and Q(T ) its form domain, when T is semi-bounded
below. C(a, b, . . .), C′(a, b, . . .), etc. denote constants that depend only on the
quantities a, b, . . . and whose value might change from one estimate to another.

2. Higher order estimates: a general criterion

The following theorem and its succeeding corollaries present the key idea behind
of our method. They essentially reduce the derivation of the higher order
estimates to the verification of a certain sequence of form bounds. These form
bounds can be verified easily without any further induction argument in the
QED models treated in this paper.

Theorem 2.1. Let H and Fε, ε > 0, be self-adjoint operators in some Hilbert
space K such that H > 1, Fε > 0, and each Fε is bounded. Letm ∈ N∪{∞}, let
D be a form core for H, and assume that the following conditions are fulfilled:

(a) For every ε > 0, Fε maps D into Q(H) and there is some cε ∈ (0,∞)
such that

〈
Fε ψ

∣∣H Fε ψ
〉
6 cε 〈ψ |H ψ 〉 , ψ ∈ D .

(b) There is some c ∈ [1,∞) such that, for all ε > 0,

〈ψ |F 2
ε ψ 〉 6 c2 〈ψ |H ψ 〉 , ψ ∈ D .

(c) For every n ∈ N, n < m, there is some cn ∈ [1,∞) such that, for all
ε > 0,
∣∣〈H ϕ1 |Fnε ϕ2 〉 − 〈Fnε ϕ1 |H ϕ2 〉

∣∣
6 cn

{
〈ϕ1 |H ϕ1 〉+ 〈Fn−1ε ϕ2 |H Fn−1ε ϕ2 〉

}
, ϕ1, ϕ2 ∈ D .

Then it follows that, for every n ∈ N, n < m+ 1,

(2.1) ‖Fnε H−n/2 ‖ 6 Cn := 4n−1 cn
n−1∏

ℓ=1

cℓ .

(An empty product equals 1 by definition.)

Proof. We define

Tε(n) := H1/2 [Fn−1ε , H−1]H−(n−2)/2, n ∈ {2, 3, 4, . . .}.

Tε(n) is well-defined and bounded because of the closed graph theorem and
Condition (a), which implies that Fε ∈ L (Q(H)), where Q(H) = D(H1/2)
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is equipped with the form norm. We shall prove the following sequence of
assertions by induction on n ∈ N, n < m+ 1.

A(n) :⇔ The bound (2.1) holds true and, if n > 3, we have

∀ ε > 0 : ‖Tε(n)‖ 6 Cn/4c
2 .(2.2)

For n = 1, the bound (2.1) is fulfilled with C1 = c on account of Condition (b).
Next, assume that n ∈ N, n < m, and that A(1), . . . , A(n) hold true. To find
a bound on ‖Fn+1

ε H−(n+1)/2‖ we write

Fn+1
ε H−(n+1)/2 = Q1 + Q2(2.3)

with

Q1 := FεH
−1 Fnε H

−(n−1)/2 , Q2 := Fε
[
Fnε , H

−1 ]H−(n−1)/2 .
By the induction hypothesis we have

(2.4) ‖Q1‖ 6 ‖FεH−1/2‖ ‖H−1/2 Fε ‖ ‖Fn−1ε H−(n−1)/2‖ 6 c2 Cn−1 ,
where C0 := 1. Moreover, we observe that

(2.5) ‖Q2‖ = ‖FεH−1/2 Tε(n+ 1)‖ 6 c ‖Tε(n+ 1)‖ .
To find a bound on ‖Tε(n + 1)‖ we recall that Fε maps the form domain of
H continuously into itself. In particular, since D is a form core for H the
form bound appearing in Condition (c) is available, for all ϕ1, ϕ2 ∈ Q(H). Let
φ, ψ ∈ D . Applying Condition (c), extended in this way, with

ϕ1 = δ1/2H−1/2 φ ∈ Q(H) , ϕ2 = δ−1/2H−(n+1)/2 ψ ∈ Q(H) ,

for some δ > 0, we obtain

|〈φ |Tε(n+ 1)ψ 〉|
=
∣∣〈HH−1/2 φ

∣∣Fnε H−(n+1)/2 ψ
〉
−
〈
Fnε H

−1/2 φ
∣∣HH−(n+1)/2 ψ

〉∣∣

6 cn inf
δ>0

{
δ ‖φ‖2 + δ−1 ‖{H1/2 Fn−1ε H−n/2}H−1/2 ψ‖2

}

6 2 cn ‖{H1/2 Fn−1ε H−n/2}‖ ‖φ‖ ‖ψ‖ .
The operator {· · · } is just the identity when n = 1. For n > 1, it can be written
as

(2.6) H1/2 Fn−1ε H−n/2 = {H−1/2 Fε}Fn−2ε H−(n−2)/2 + Tε(n) .

Applying the induction hypothesis and c, cℓ > 1, we thus get ‖Tε(2)‖ 6 2 c1,
‖Tε(3)‖ 6 6 c c1c2, ‖Tε(4)‖ 6 14 c2c1c2c3 < C4/4c

2, and

c ‖Tε(n+ 1)‖ = c sup
{
|〈φ |Tε(n+ 1)ψ 〉| : φ, ψ ∈ D , ‖φ‖ = ‖ψ‖ = 1

}

6 2 cn (c2 Cn−2 + Cn/4c) < cn Cn = Cn+1/4c , n > 3 ,

since c2 Cn−2 6 Cn/16, for n > 3. Taking (2.3)–(2.5) into account we arrive at
‖F 2

ε H
−1‖ 6 c2 + 2c c1 < C2, ‖F 3

ε H
−3/2‖ 6 c3 + 6c2c1c2 < C3, and

‖Fn+1
ε H−(n+1)/2‖ < c2 Cn−2 + Cn+1/4c < Cn+1 , n > 3 ,

which concludes the induction step. �
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Corollary 2.2. Assume that H and Fε, ε > 0, are self-adjoint operators
in some Hilbert space K that fulfill the assumptions of Theorem 2.1 with (c)
replaced by the stronger condition

(c’) For every n ∈ N, n < m, there is some cn ∈ [1,∞) such that, for all
ε > 0,
∣∣〈H ϕ1 |Fnε ϕ2 〉 − 〈Fnε ϕ1 |H ϕ2 〉

∣∣
6 cn

{
‖ϕ1‖2 + 〈Fn−1ε ϕ2 |H Fn−1ε ϕ2 〉

}
, ϕ1, ϕ2 ∈ D .

Then, in addition to (2.1), it follows that, for n ∈ N, n < m, [Fnε , H ]H−n/2

defines a bounded sesquilinear form with domain Q(H)×Q(H) and

(2.7)
∥∥ [Fnε , H ]H−n/2

∥∥ 6 C′n := 4n cn−1
n∏

ℓ=1

cℓ .

Proof. Again, the form bound in (c’) is available, for all ϕ1, ϕ2 ∈ Q(H), whence
∣∣〈H φ |Fnε H−n/2 ψ 〉 − 〈Fnε φ |HH−n/2 ψ 〉

∣∣

6 cn inf
δ>0

{
δ ‖φ‖2 + δ−1

∥∥H1/2 Fn−1ε H−n/2 ψ
∥∥2} 6 2 cn ‖H1/2 Fn−1ε H−n/2‖ ,

for all normalized φ, ψ ∈ Q(H). The assertion now follows from (2.1), (2.6),
and the bounds on ‖Tε(n)‖ given in the proof of Theorem 2.1. �

Corollary 2.3. Let H > 1 and A > 0 be two self-adjoint operators in some
Hilbert space K . Let κ > 0, define

fε(t) := t/(1 + ε t) , t > 0 , Fε := fκε (A) ,

for all ε > 0, and assume that H and Fε, ε > 0, fulfill the hypotheses of
Theorem 2.1, for some m ∈ N∪{∞}. Then Ran(H−n/2) ⊂ D(Aκ n), for every
n ∈ N, n < m+ 1, and

∥∥Aκ nH−n/2
∥∥ 6 4n−1 cn

n−1∏

ℓ=1

cℓ .

If H and Fε, ε > 0, fulfill the hypotheses of Corollary 2.2, then, for every
n ∈ N, n < m, it additionally follows that AκnH−n/2 maps D(H) into itself
so that [Aκ n , H ]H−n/2 is well-defined on D(H), and

∥∥ [Aκ n , H ]H−n/2
∥∥ 6 4n cn−1

n∏

ℓ=1

cℓ .

Proof. Let U : K → L2(Ω, µ) be a unitary transformation such that a =
U AU∗ is a maximal operator of multiplication with some non-negative mea-
surable function – again called a – on some measure space (Ω,A, µ). We pick
some ψ ∈ K , set φn := U H−n/2 ψ, and apply the monotone convergence
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theorem to conclude that∫

Ω

a(ω)2κn |φn(ω)|2 dµ(ω) = lim
εց0

∫

Ω

fκε (a(ω))2n |φn(ω)|2 dµ(ω)

= lim
εց0
‖Fnε H−n/2 ψ‖2 6 Cn ‖ψ‖2,

for every n ∈ N, n < m+1, which implies the first assertion. Now, assume that
H and Fε, ε > 0, fulfill Condition (c’) of Corollary 2.2. Applying the dominated
convergence theorem in the spectral representation introduced above we see
that Fnε ψ → Aκn ψ, for every ψ ∈ D(Aκ n). Hence, (2.7) and Ran(H−n/2) ⊂
D(Aκ n) imply, for n < m and φ, ψ ∈ D(H),

∣∣〈φ
∣∣Aκ nH−n/2H ψ

〉
−
〈
H φ

∣∣Aκ nH−n/2 ψ
〉∣∣

= lim
εց0

∣∣〈Fnε φ
∣∣HH−n/2 ψ

〉
−
〈
H φ

∣∣Fnε H−n/2 ψ
〉∣∣

6 lim sup
εց0

∥∥ [Fnε , H ]H−n/2
∥∥ ‖φ‖ ‖ψ‖ 6 C′n ‖φ‖ ‖ψ‖ .

Thus, |〈H φ |Aκ nH−n/2 ψ 〉| 6 ‖φ‖ ‖AκnH−n/2‖ ‖H ψ‖ + C′n‖φ‖ ‖ψ‖, for all
φ, ψ ∈ D(H). In particular, AκnH−n/2 ψ ∈ D(H∗) = D(H), for all ψ ∈ D(H),
and the second asserted bound holds true. �

3. Commutator estimates

In this section we derive operator norm bounds on commutators involving the
quantized vector potential, A, the radiation field energy, Hf , and the Dirac
operator, DA. The underlying Hilbert space is

H := L2(R3
x × Z4)⊗Fb =

∫ ⊕R3

C4 ⊗Fb d
3x ,

where the bosonic Fock space, Fb, is modeled over the one-photon Hilbert
space

F
(1)
b := L2(A× Z2, dk) ,

∫
dk :=

∑

λ∈Z2

∫

A
d3k .

With regards to the applications in [8] we define A := {k ∈ R3 : |k| > m}, for
some m > 0. We thus have

Fb =

∞⊕

n=0

F
(n)
b , F

(0)
b := C , F

(n)
b := Sn L2

(
(A× Z2)n

)
, n ∈ N,

where Sn = S2n = S∗n is given by

(Sn ψ(n))(k1, . . . , kn) :=
1

n!

∑

π∈Sn
ψ(n)(kπ(1), . . . , kπ(n)),

for every ψ(n) ∈ L2
(
(A × Z2)n

)
, Sn denoting the group of permutations of

{1, . . . , n}. The vector potential is determined by a certain vector-valued func-
tion, G, called the form factor.
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Hypothesis 3.1. The dispersion relation, ω : A → [0,∞), is a measurable
function such that 0 < ω(k) := ω(k) 6 |k|, for k = (k, λ) ∈ A×Z2 with k 6= 0.
For every k ∈ (A\{0})×Z2 and j ∈ {1, 2, 3}, G(j)(k) is a bounded continuously

differentiable function, R3
x ∋ x 7→ G

(j)
x (k), such that the map (x, k) 7→ G

(j)
x (k)

is measurable and G
(j)
x (−k, λ) = G

(j)
x (k, λ), for almost every k and all x ∈ R3

and λ ∈ Z2. Finally, there exist d−1, d0, d1, . . . ∈ (0,∞) such that

2

∫
ω(k)ℓ ‖G(k)‖2∞ dk 6 d2ℓ , ℓ ∈ {−1, 0, 1, 2, . . .} ,(3.1)

2

∫
ω(k)−1 ‖∇x ∧G(k)‖2∞ dk 6 d21 ,(3.2)

where G = (G(1), G(2), G(3)) and ‖G(k)‖∞ := supx |Gx(k)|, etc.

Example. In the physical applications the form factor is often given as

(3.3) Ge,Λ
x (k) := −e 1{|k|6Λ}

2π
√
|k|

e−ik·x ε(k),

for (x, k) ∈ R3× (R3×Z2) with k 6= 0. Here the physical units are chosen such
that energies are measured in units of the rest energy of the electron. Length are
measured in units of one Compton wave length divided by 2π. The parameter
Λ > 0 is an ultraviolet cut-off and the square of the elementary charge, e > 0,
equals Sommerfeld’s fine-structure constant in these units; we have e2 ≈ 1/137
in nature. The polarization vectors, ε(k, λ), λ ∈ Z2, are homogeneous of degree

zero in k such that {k̊, ε(̊k, 0), ε(̊k, 1)} is an orthonormal basis of R3, for every

k̊ ∈ S2. This corresponds to the Coulomb gauge for ∇x ·Ge,Λ = 0. We remark

that the vector fields S2 ∋ k̊ 7→ ε(̊k, λ) are necessarily discontinuous. ⋄

It is useful to work with more general form factors fulfilling Hypothesis 3.1
since in the study of the existence of ground states in QED one usually en-
counters truncated and discretized versions of the physical choice Ge,Λ. For
the applications in [8] it is necessary to know that the higher order estimates
established here hold true uniformly in the involved parameters and Hypothe-
sis 3.1 is convenient way to handle this.
We recall the definition of the creation and the annihilation operators of a

photon state f ∈ F
(1)
b ,

(a†(f)ψ)(n)(k1, . . . , kn) = n−1/2
n∑

j=1

f(kj)ψ
(n−1)(. . . , kj−1, kj+1, . . .), n ∈ N,

(a(f)ψ)(n)(k1, . . . , kn) = (n+ 1)1/2
∫
f(k)ψ(n+1)(k, k1, . . . , kn) dk, n ∈ N0,

and (a†(f)ψ)(0) = 0, a(f) (ψ(0), 0, 0, . . .) = 0, for all ψ = (ψ(n))∞n=0 ∈ Fb such
that the right hand sides again define elements of Fb. a†(f) and a(f) are
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formal adjoints of each other on the dense domain

C0 := C⊕ ∞⊕

n=1

Sn L∞comp

(
(A× Z2)n

)
. (Algebraic direct sum.)

For a three-vector of functions f = (f (1), f (2), f (3)) ∈ (F
(1)
b )3, we write a♯(f) :=

(a♯(f (1)), a♯(f (2)), a♯(f (3))), where a♯ is a† or a. Then the quantized vector
potential is the triplet of operators given by

A ≡ A(G) := a†(G) + a(G) , a♯(G) :=

∫ ⊕R3

1C4 ⊗ a♯(Gx) d3x .

The radiation field energy is the direct sum Hf =
⊕∞

n=0 dΓ(n)(ω) : D(Hf) ⊂
Fb → Fb, where dΓ(0)(ω) := 0, and dΓ(n)(ω) denotes the maximal multiplica-

tion operator in F
(n)
b associated with the symmetric function (k1, . . . , kn) 7→

ω(k1) + · · · + ω(kn). By the permutation symmetry and Fubini’s theorem we
thus have

(3.4)
〈
H

1/2
f φ

∣∣H1/2
f ψ

〉
=

∫
ω(k) 〈 a(k)φ | a(k)ψ 〉 dk , φ, ψ ∈ D(H

1/2
f ) ,

where we use the notation

(a(k)ψ)(n)(k1, . . . , kn) = (n+ 1)1/2 ψ(n+1)(k, k1, . . . , kn) , n ∈ N0 ,

almost everywhere, and a(k) (ψ(0), 0, 0, . . .) = 0. For a measurable function

f : R→ R and ψ ∈ D(f(Hf)), the following identity in F
(n)
b ,

(a(k) f(Hf)ψ)(n) = f
(
ω(k) + dΓ(n)(ω)

)
(a(k)ψ)(n) , n ∈ N0 ,

valid for almost every k, is called the pull-through formula. Finally, we let
α1, α2, α3, and β := α0 denote hermitian four times four matrices that fulfill
the Clifford algebra relations

(3.5) αi αj + αj αi = 2 δij 1 , i, j ∈ {0, 1, 2, 3} .
They act on the second tensor factor in L2(R3

x × Z4) = L2(R3
x) ⊗ C4. As a

consequence of (3.5) and the C∗-equality we have

(3.6) ‖α · v‖L (C4) = |v| , v ∈ R3 , ‖α · z‖L (C4) 6
√

2 |z| , z ∈ C3 ,

where α · z := α1 z
(1) + α2 z

(2) + α3 z
(3), for z = (z(1), z(2), z(3)) ∈ C3. A

standard exercise using the inequality in (3.6), the Cauchy-Schwarz inequality,
and the canonical commutation relations,

[a♯(f) , a♯(g)] = 0 , [a(f) , a†(g)] = 〈 f | g 〉1 , f, g ∈ F
(1)
b ,

reveals that every ψ ∈ D(H
1/2
f ) belongs to the domain of α · a♯(G) and

(3.7)

‖α · a(G)ψ‖ 6 d−1 ‖H1/2
f ψ‖ , ‖α · a†(G)ψ‖2 6 d2−1 ‖H1/2

f ψ‖2 + d20 ‖ψ‖2.
(Here and in the following we identify Hf ≡ 1⊗Hf , etc.) These relative bounds

imply that α ·A is symmetric on the domain D(H
1/2
f ).
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The operators whose norms are estimated in (3.9) and the following lemmata
are always well-defined a priori on the following dense subspace of H ,

D := C∞0 (R3 × Z4)⊗ C0 . (Algebraic tensor product.)

Given some E > 1 we set

(3.8) Ȟf := Hf + E

in the sequel. We already know from [10] that, for every ν > 0, there is some
constant, Cν ∈ (0,∞), such that

(3.9)
∥∥ [α ·A , Ȟ−νf ] Ȟν

f

∥∥ 6 Cν/E
1/2 , E > 1 .

In our first lemma we derive a generalization of (3.9). Its proof resembles
the one of (3.9) given in [10]. Since we shall encounter many similar but
slightly different commutators in the applications it makes sense to introduce
the numerous parameters that obscure its statement (but simplify its proof).

Lemma 3.2. Assume that ω and G fulfill Hypothesis 3.1. Let ε > 0, E > 1,
κ, ν ∈ R, γ, δ, σ, τ > 0, such that γ + δ + σ + τ 6 1/2, and define

(3.10) fε(t) :=
t+ E

1 + εt+ εE
, t ∈ [0,∞) .

Then the operator Ȟν+γ
f fσε (Hf) [α · A , fκε (Hf)] Ȟ

−ν+δ
f f−κ+τε (Hf), defined a

priori on D , extends to a bounded operator on H and

∥∥ Ȟν+γ
f fσε (Hf) [α ·A , fκε (Hf)] Ȟ

−ν+δ
f f−κ+τε (Hf)

∥∥

6 |κ| 2(ρ+1)/2 (d1 + dρ)E
γ+δ+σ+τ−1/2 ,(3.11)

where ρ is the smallest integer greater or equal to 3 + 2|κ|+ 2|ν|.

Proof. We notice that all operators Ȟs
f and f sε (Hf) leave the dense subspace

D invariant and that α · a♯(G) maps D into D(Ȟs
f ), for every s ∈ R. Now, let

ϕ, ψ ∈ D . Then

〈
ϕ
∣∣ Ȟν+γ

f fσε (Hf) [α ·A , fκε (Hf)] Ȟ
−ν+δ
f f−κ+τε (Hf)ψ

〉

=
〈
ϕ
∣∣ Ȟν+γ

f fσε (Hf) [α · a(G) , fκε (Hf)] Ȟ
−ν+δ
f f−κ+τε (Hf)ψ

〉
(3.12)

−
〈
f−κ+τε (Hf) Ȟ

−ν+δ
f [α · a(G) , fκε (Hf)] f

σ
ε (Hf) Ȟ

ν+γ
f ϕ

∣∣ψ
〉
.(3.13)

For almost every k, the pull-through formula yields the following representa-
tion,

Ȟν+γ
f fσε (Hf) [a(k) , fκε (Hf)] Ȟ

−ν+δ
f f−κ+τε (Hf)ψ = F (k;Hf) a(k) Ȟ

−1/2
f ψ ,
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where

F (k; t) := (t+ E)ν+γ fσε (t)
(
fκε (t+ ω(k))− fκε (t)

)

· (t+ E + ω(k))−ν+δ+1/2 f−κ+τε (t+ ω(k))

=
( t+ E

t+ E + ω(k)

)ν
(t+ E)γ (t+ E + ω(k))δ+1/2

·
∫ 1

0

d

ds
fκε (t+ s ω(k)) ds

fσε (t) f τε (t+ ω(k))

fκε (t+ ω(k))
,

for t > 0. We compute

(3.14)
d

ds
fκε (t+ s ω(k)) =

κω(k) fκε (t+ s ω(k))

(t+ s ω(k) + E)(1 + ε t+ ε s ω(k) + εE)
.

Using that fε is increasing in t > 0 and that

(t+ ω(k) + E)/(t+ s ω(k) + E) 6 1 + ω(k) , s ∈ [0, 1] ,

thus

fκε (t+ s ω(k))/fκε (t+ ω(k)) 6 (1 + ω(k))−(0∧κ) , s ∈ [0, 1] ,

it is elementary to verify that

|Fε(k; t)| 6 |κ|ω(k) (1 + ω(k))δ+τ−(0∧κ)−(0∧ν)+1/2Eγ+δ+σ+τ−1/2 ,

for all t > 0 and k. We deduce that the term in (3.12) can be estimated as
∣∣〈ϕ

∣∣ Ȟν+γ
f fσε (Hf) [α · a(G) , fκε (Hf)] Ȟ

−ν+δ
f f−κ+τε (Hf)ψ

〉∣∣

6

∫
‖ϕ‖

∥∥α ·G(k) Ȟν+γ
f fσε (Hf) [a(k) , fκε (Hf)] Ȟ

−ν+δ
f f−κ+τε (Hf)ψ

∥∥ dk

6
√

2

∫
‖ϕ‖ ‖G(k)‖∞ ‖Fε(k;Hf)‖ ‖a(k) Ȟ

−1/2
f ψ‖ dk

6 |κ|
√

2
( ∫

ω(k) (1 + ω(k))2(δ+τ)−(0∧2κ)−(0∧2ν)+1 ‖G(k)‖2∞ dk
)1/2

·
( ∫

ω(k)
∥∥ a(k) Ȟ

−1/2
f ψ

∥∥2 dk
)1/2

‖ϕ‖Eγ+δ+σ+τ−1/2

6 |κ| 2(ρ−1)/2 (d1 + dρ) ‖ϕ‖
∥∥H1/2

f Ȟ
−1/2
f ψ

∥∥Eγ+δ+σ+τ−1/2 .
(3.15)

In the last step we used δ + τ 6 1/2 and applied (3.4). (3.15) immediately
gives a bound on the term in (3.13), too. For we have

f−κ+τε (Hf) Ȟ
−ν+δ
f [α · a(G) , fκε (Hf)] f

σ
ε (Hf) Ȟ

ν+γ
f ϕ

= Ȟ−ν+δf f τε (Hf) [f−κε (Hf) , α · a(G)] Ȟν+γ
f fκ+σε (Hf)ϕ ,

which after the replacements (ν, κ, γ, δ, σ, τ) 7→ (−ν,−κ, δ, γ, τ, σ) and ϕ 7→ −ψ
is precisely the term we just have treated. �
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Lemma 3.2 provides all the information needed to apply Corollary 2.3 to non-
relativistic QED. For the application of Corollary 2.3 to the non-local semi-
relativistic models of QED it is necessary to study commutators that involve
resolvents and sign functions of the Dirac operator,

DA := α · (−i∇x + A) + β .

An application of Nelson’s commutator theorem with test operator−∆+Hf+1
shows that DA is essentially self-adjoint on D . The spectrum of its unique
closed extension, again denoted by the same symbol, is contained in the union
of two half-lines, σ[DA] ⊂ (−∞,−1] ∪ [1,∞). In particular, it makes sense to
define

RA(iy) := (DA − iy)−1 , y ∈ R ,
and the spectral calculus yields

‖RA(iy)‖ 6 (1 + y2)−1/2,
∫R ∥∥ |DA|1/2RA(iy)ψ

∥∥2 dy
π

= ‖ψ‖2, ψ ∈H .

The next lemma is a straightforward extension of [10, Corollary 3.1] where it
is also shown that RA(iy) maps D(Hν

f ) into itself, for every ν > 0.

Lemma 3.3. Assume that ω and G fulfill Hypothesis 3.1. Then, for all κ, ν ∈ R,
we find ki ≡ ki(κ, ν, d1, dρ) ∈ [1,∞), i = 1, 2, such that, for all y ∈ R, ε > 0,

and E > k1, there exist Υκ,ν(iy), Υ̃κ,ν(iy) ∈ L (H ) satisfying

RA(iy) Ȟ−νf f−κε (Hf) = Ȟ−νf f−κε (Hf)RA(iy) Υκ,ν(iy)(3.16)

= Ȟ−νf f−κε (Hf) Υ̃κ,ν(iy)RA(iy) ,(3.17)

on D(Ȟ−νf ), and ‖Υκ,ν(iy)‖, ‖Υ̃κ,ν(iy)‖ 6 k2, where ρ is defined in Lemma 3.2.

Proof. Without loss of generality we may assume that ε > 0 for otherwise we
could simply replace ν by ν+κ and fκ0 by f0

0 = 1. First, we assume in addition
that ν > 0. We observe that

T0 :=
[
Ȟ−νf f−κε (Hf) , α ·A

]
Ȟν

f f
κ
ε (Hf) = T1 + T2

on D , where

T1 := [Ȟ−νf , α ·A] Ȟν
f , T2 := Ȟ−νf [f−κε (Hf) , α ·A] fκε (Hf) Ȟ

ν
f .

Due to (3.9) (or (3.11) with ε = 0) the operator T1 extends to a bounded
operator on H and ‖T1‖ 6 Cν/E

1/2. According to (3.11) we further have
‖T2‖ 6 Cκ,ν(d1 + dρ)/E

1/2. We pick some φ ∈ D and compute
[
RA(iy) , Ȟ−νf f−κε (Hf)

]
(DA − iy)φ = RA(iy)

[
Ȟ−νf f−κε (Hf) , DA

]
φ

= RA(iy)T0 Ȟ
−ν
f f−κε (Hf)φ

= RA(iy)T 0 Ȟ
−ν
f f−κε (Hf)RA(iy) (DA − iy)φ .(3.18)

Since (DA− iy) D is dense in H and since Ȟ−νf and fκε (Hf) are bounded (here
we use that ν > 0 and ε > 0), this identity implies

RA(iy) Ȟ−νf f−κε (Hf) =
(1+RA(iy)T 0

)
Ȟ−νf f−κε (Hf)RA(iy) .
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Taking the adjoint of the previous identity and replacing y by −y we obtain

Ȟ−νf f−κε (Hf)RA(iy) = RA(iy) Ȟ−νf f−κε (Hf) (1 + T ∗0 RA(iy)) .

In view of the norm bounds on T1 and T2 we see that (3.16) and (3.17) are valid

with Υκ,ν(iy) :=
∑∞
ℓ=0{−T ∗0 RA(iy)}ℓ and Υ̃κ,ν(iy) :=

∑∞
ℓ=0{−RA(iy)T ∗0 }ℓ,

provided that E is sufficiently large, depending only on κ, ν, d1, and dρ, such
that the Neumann series converge.
Now, let ν < 0. Then we write T0 on the domain D as

T0 = Ȟ−νf f−κε (Hf)
[
α ·A , Ȟν

f f
κ
ε (Hf)

]
,

and deduce that

RA(iy) Ȟν
f f

κ
ε (Hf) (1 + T 0RA(iy)) = Ȟν

f f
κ
ε (Hf)RA(iy)

by a computation analogous to (3.18). Taking the adjoint of this identity with
y replaced by −y we get

(1+RA(iy)T ∗0
)
Ȟν

f f
κ
ε RA(iy) = RA(iy) Ȟν

f f
κ
ε (Hf) .

Next, we invert 1+RA(iy)T ∗0 by means of the same Neumann series as above.
As a result we obtain

Ȟν
f f

κ
ε (Hf)RA(iy) = RA(iy) Υκ,ν(iy) Ȟν

f f
κ
ε (Hf) = Υ̃κ,ν(iy)RA(iy) Ȟν

f f
κ
ε (Hf),

where the definition of Υκ,ν and Υ̃κ,ν has been extended to negative

ν. It follows that RA(iy) Υκ,ν(iy) = Υ̃κ,ν(iy)RA(iy) maps D(Ȟ−νf ) =

D(Ȟ−νf f−κε (Hf)) = Ran(Ȟν
f f

κ
ε (Hf)) into itself and that (3.16) and (3.17) still

hold true when ν is negative. �

In order to control the Coulomb singularity 1/|x| in terms of |DA| and Hf in the
proof of the following corollary, we shall employ the bound [10, Theorem 2.3]

(3.19)
2

π

1

|x| 6 |DA|+Hf + k d21 ,

which holds true in sense of quadratic forms on Q(|DA|) ∩ Q(Hf). Here k ∈
(0,∞) is some universal constant. We abbreviate the sign function of the Dirac
operator, which can be represented as a strongly convergent principal value [6,
Lemma VI.5.6], by

(3.20) SA ψ := DA |DA|−1 ψ = lim
τ→∞

∫ τ

−τ
RA(iy)ψ

dy

π
.

We recall from [10, Lemma 3.3] that SA maps D(Hν
f ) into itself, for every

ν > 0. This can also be read off from the proof of the next corollary.

Corollary 3.4. Assume that ω and G fulfill Hypothesis 3.1. Let κ, ν ∈ R.
Then we find some C ≡ C(κ, ν, d1, dρ) ∈ (0,∞) such that, for all γ, δ, σ, τ > 0
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with γ + δ + σ + τ 6 1/2 and all ε > 0, E > k1,
∥∥ Ȟν

f f
κ
ε (Hf)SA Ȟ

−ν
f f−κε (Hf)

∥∥ 6 C,(3.21)
∥∥ |DA|1/2 Ȟν+γ

f fσε (Hf) [SA , fκε (Hf)] Ȟ
−ν+δ
f f−κ+τε (Hf)

∥∥ 6 C,(3.22)
∥∥ |x|−1/2 Ȟν

f f
σ
ε (Hf) [SA , f

κ
ε (Hf)] Ȟ

−ν−σ−τ
f f−κ+τε (Hf)

∥∥ 6 C.(3.23)

(k1 is the constant appearing in Lemma 3.3, Ȟf is given by (3.8), fε by (3.10).)

Proof. First, we prove (3.22). Using (3.20), writing

[RA(iy) , fκε (Hf)] = RA(iy) [fκε (Hf) , α ·A]RA(iy)

on D and employing (3.16), (3.17), and (3.11) we obtain the following estimate,
for all ϕ, ψ ∈ D , and E > k1,
∣∣〈 |DA|1/2 ϕ

∣∣ Ȟν+γ
f fσε (Hf) [SA , f

κ
ε (Hf)] Ȟ

−ν+δ
f fε(Hf)

−κ+τ ψ
〉∣∣

6

∫R ∣∣∣〈 Ȟν+γ
f |DA|1/2 ϕ

∣∣∣ fσε (Hf) [fκε (Hf) , RA(iy)]×

× Ȟ−ν+δf f−κ+τε (Hf)ψ
〉∣∣∣ dy

π

=

∫R ∣∣∣〈ϕ ∣∣∣ |DA|1/2RA(iy) Υσ,ν+γ(iy) Ȟν+γ
f fσε (Hf) [fκε (Hf) , α ·A]×

× Ȟ−ν+δf f−κ+τε (Hf) Υ̃κ−τ,ν−δ(iy)RA(iy)ψ
〉∣∣∣ dy

π

6 Cκ,ν (d1 + dρ)E
γ+δ+σ+τ−1/2 sup

y∈R{‖Υσ,ν+γ(iy)‖ ‖Υ̃κ−τ,ν−δ(iy)‖}

·
( ∫R ∥∥ |DA|1/2RA(iy)ϕ

∥∥2 dy
π

)1/2(∫R ∥∥RA(iy)ψ
∥∥2 dy

π

)1/2

6 Cκ,ν,d1,dρ E
γ+δ+σ+τ−1/2 ‖ϕ‖ ‖ψ‖ .

This estimate shows that the vector in the right entry of the scalar prod-
uct in the first line belongs to D((|DA|1/2)∗) = D(|DA|1/2) and that
(3.22) holds true. Next, we observe that (3.23) follows from (3.22) and
(3.19). Finally, (3.21) follows from ‖X‖ 6 const(ν, κ, d1, dρ), where X :=

Ȟν
f f

κ
ε (Hf) [SA , Ȟ−νf f−κε (Hf)]. Such a bound on ‖X‖ is, however, an imme-

diate consequence of (3.22) (where we can choose ε = 0) because

X = [Ȟν
f , SA] Ȟ−νf + Ȟν

f [fκε (Hf) , SA] f−κε (Hf) Ȟ
−ν
f

on the domain D . �

4. Non-relativistic QED

The Pauli-Fierz operator for a molecular system with static nuclei and N ∈ N
electrons interacting with the quantized radiation field is acting in the Hilbert
space

(4.1) HN := ANL2
(
(R3 × Z4)N

)
⊗Fb ,
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where AN = A2
N = A∗N denotes anti-symmetrization,

(AN Ψ)(X) :=
1

N !

∑

π∈SN
(−1)π Ψ(xπ(1), ςπ(1), . . . ,xπ(N), ςπ(N)) ,

for Ψ ∈ L2((R3 × Z4)N ) and a.e. X = (xi, ςi)
N
i=1 ∈ (R3 × Z4)N . a priori it is

defined on the dense domain

DN := ANC∞0
(
(R3 × Z4)N

)
⊗ C0 ,

the tensor product understood in the algebraic sense, by

(4.2) HV
nr ≡ HV

nr(G) :=

N∑

i=1

(D
(i)
A )2 + V + Hf .

A superscript (i) indicates that the operator below is acting on the pair of
variables (xi, ςi). In fact, the operator defined in (4.2) is a two-fold copy of the
usual Pauli-Fierz operator which acts on two-spinors and the energy has been
shifted by N in (4.2). For (3.5) implies

(4.3) D2
A = TA ⊕ TA , TA :=

(
σ · (−i∇x + A)

)2
+ 1 .

Here σ = (σ1, σ2, σ3) is a vector containing the Pauli matrices (when αj , j ∈
{0, 1, 2, 3}, are given in Dirac’s standard representation). We write HV

nr in the
form (4.2) to maintain a unified notation throughout this paper.
We shall only make use of the following properties of the potential V .

Hypothesis 4.1. V can be written as V = V+ − V−, where V± > 0 is a
symmetric operator acting in ANL2

(
(R3×Z4)4

)
such that DN ⊂ D(V±). There

exist a ∈ (0, 1) and b ∈ (0,∞) such that V− 6 aH0
nr+b in the sense of quadratic

forms on DN .

Example. The Coulomb potential generated by K ∈ N fixed nuclei located at
the positions {R1, . . . ,RK} ⊂ R3 is given as

(4.4) VC(X) := −
N∑

i=1

K∑

k=1

e2 Zk
|xi −Rk|

+

N∑

i,j=1
i<j

e2

|xi − xj |
,

for some e, Z1, . . . , ZK > 0 and a.e. X = (xi, ςi)
N
i=1 ∈ (R3 × Z4)N . It is

well-known that VC is infinitesimally H0
nr-bounded and that VC fulfills Hypoth-

esis 4.1. ⋄

It follows immediately from Hypothesis 4.1 thatHV
nr has a self-adjoint Friedrichs

extension – henceforth denoted by the same symbol HV
nr – and that DN is a

form core for HV
nr. Moreover, we have

(4.5) (D
(1)
A )2, . . . , (D

(N)
A )2, V+, Hf 6 HV+

nr 6 (1− a)−1 (HV
nr + b)

on DN . In [4] it is shown that D((HV
nr)

n/2) ⊂ D(H
n/2
f ), for every n ∈ N. We

re-derive this result by means of Corollary 2.3 in the next theorem where

Enr := inf σ[HV
nr] , H ′nr := HV

nr − Enr + 1 .
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Theorem 4.2. Assume that ω and G fulfill Hypothesis 3.1 and that V fulfills
Hypothesis 4.1. Assume in addition that

2

∫
ω(k)ℓ ‖∇x ∧G(k)‖2∞ dk 6 d2ℓ+2 ,(4.6)

∫
ω(k)ℓ ‖∇x ·G(k)‖2∞ dk 6 d2ℓ+2 ,(4.7)

for all ℓ ∈ {−1, 0, 1, 2, . . .}. Then, for every n ∈ N, we have D((HV
nr)

n/2) ⊂
D(H

n/2
f ), H

n/2
f (H ′nr)

−n/2 maps D(HV
nr) into itself, and

∥∥Hn/2
f (H ′nr)

−n/2 ∥∥ 6 C(N,n, a, b, d−1, d1, d5+n) (|Enr|+ 1)(3n−2)/2 ,
∥∥ [H

n/2
f , HV

nr] (H ′nr)
−n/2 ∥∥ 6 C′(N,n, a, b, d−1, d1, d5+n) (|Enr|+ 1)(3n−1)/2 .

Proof. We pick the function fε defined in (3.10) with E = 1 and verify that

the operators Fnε := f
n/2
ε (Hf), ε > 0, n ∈ N, and H ′nr fulfill the conditions

(a), (b), and (c’) of Theorem 2.1 and Corollary 2.2 with m = ∞. Then the
assertion follows from Corollary 2.3. We set Ȟf := Hf +E in what follows. By
means of (4.5) we find

(4.8) 〈Ψ |F 2
ε Ψ 〉 6 〈Ψ | Ȟf Ψ 〉 6 Enr + b+ E

1− a 〈Ψ |H ′nr Ψ 〉 ,

for all Ψ ∈ DN , which is Condition (b). Next, we observe that Fε maps DN

into itself. Employing (4.5) once more and using −V− 6 0 and the fact that
V+ > 0 and Fε act on different tensor factors we deduce that

〈
Fε Ψ

∣∣ (V +Hf)Fε Ψ
〉
6 ‖fε‖∞

〈
Ψ
∣∣ (V+ +Hf) Ψ

〉

6 ‖fε‖∞
Enr + b+ E

1− a 〈Ψ |H ′nr Ψ 〉 ,(4.9)

for every Ψ ∈ DN . Thanks to (3.11) with κ = 1/2, ν = γ = δ = σ = τ = 0,
and (4.5) we further find some C ∈ (0,∞) such that

∥∥D(i)
A Fε Ψ

∥∥2 6 2 ‖fε‖∞ ‖D(i)
A Ψ‖2 + 2 ‖fε‖∞

∥∥F−1ε [α ·A , Fε]
∥∥2 ‖Ψ‖2

6 C ‖fε‖∞ 〈Ψ |H ′nr Ψ 〉 ,(4.10)

for all Ψ ∈ DN . (4.9) and (4.10) together show that Condition (a) is fulfilled,
too. Finally, we verify the bound in (c’). We use

[α · (−i∇x) , α ·A] = Σ ·B− i (∇x ·A) ,

where B := a†(∇x ∧G) + a(∇x ∧G) is the magnetic field and the j-th entry
of the formal vector Σ is −i ǫjkℓ αk αℓ, j, k, ℓ ∈ {1, 2, 3}, to write the square of
the Dirac operator on the domain D as

D2
A = D2

0 + Σ ·B− i (∇x ·A) + (α ·A)2 + 2α ·Aα · (−i∇x) .
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This yields

[H ′nr, F
n
ε ] =

N∑

i=1

[
(D

(i)
A )2, Fnε

]
=

N∑

i=1

{
[Σ ·B(i) , Fnε ]− i [(∇x ·A(i)) , Fnε ]

+ α ·A(i) [α ·A(i) , Fnε ] + [α ·A(i) , Fnε ] (2D
(i)
A −α ·A(i) − 2β)

}

on DN . For every i ∈ {1, . . . , N}, we further write

[α ·A(i) , Fnε ]D
(i)
A = Q(i)

ε,n

(
D

(i)
A Fn−1ε −Q(i)

ε,n−1 F
n−2
ε

)

on DN , where

Q(i)
ε,n := [α ·A(i) , Fnε ]F 1−n

ε , n ∈ N , Q
(i)
ε,0 := 0 .(4.11)

According to (3.11) we have ‖Q(i)
ε,n‖ 6 n 2(n+2)/2 (d1 + d3+n),

‖Ȟ1/2
f Q

(i)
ε,n Ȟ

−1/2
f ‖ 6 n 2(n+3)/2(d1 + d4+n). Likewise, we write

[α ·A(i) , Fnε ]α ·A(i) = Q(i)
ε,n

(
{α ·A(i) Ȟ

−1/2
f } Ȟ1/2

f Fn−1ε −Q(i)
ε,n−1 F

n−2
ε

)

on DN , where ‖α ·A Ȟ
−1/2
f ‖2 6 2 d20+4 d2−1 by (3.7). Furthermore, we observe

that Lemma 3.2 is applicable to Σ ·B as well instead of α ·A; we simply have
to replace the form factor G by ∇x ∧G and to notice that ‖Σ · v‖L (C4) = |v|,
v ∈ R3, in analogy to (3.6). Note that the indices of dℓ are shifted by 2 because
of (4.6). Finally, we observe that Lemma 3.2 is applicable to ∇x · A, too.
To this end we have to replace G by (∇x ·G, 0, 0) and dℓ by some universal
constant times d2+ℓ because of (4.7). Taking all these remarks into account we
arrive at

∣∣〈Ψ1

∣∣ [H ′nr , Fnε ] Ψ2

〉∣∣ 6
N∑

i=1

{
‖Ψ1‖

∥∥ [Σ ·B(i) , Fnε ]F 1−n
ε

∥∥ ‖Fn−1ε Ψ2‖

+ ‖Ψ1‖
∥∥ [divA(i) , Fnε ]F 1−n

ε

∥∥ ‖Fn−1ε Ψ2‖
+ ‖Ψ1‖ ‖α ·A Ȟ

−1/2
f ‖

∥∥ Ȟ1/2
f Q(i)

ε,n Ȟ
−1/2
f

∥∥ ‖Ȟ1/2
f Fn−1ε Ψ2‖

+ ‖Ψ1‖ ‖Q(i)
ε,n‖

(
2 ‖D(i)

A Fn−1ε Ψ2‖+ ‖α ·A Ȟ
−1/2
f ‖ ‖Ȟ1/2

f Fn−1ε Ψ2‖
)

+ 3 ‖Ψ1‖ ‖Q(i)
ε,n‖ ‖Q(i)

ε,n−1‖ ‖Fn−2ε Ψ2‖+ 2 ‖Ψ1‖ ‖Q(i)
ε,n‖ ‖β‖ ‖Fn−1ε Ψ2‖

}
,

for all Ψ1,Ψ2 ∈ DN . From this estimate, Lemma 3.2, and (4.5) we readily infer
that Condition (c’) is valid with cn = (|Enr| + 1)C′′(N,n, a, b, d−1, . . . , d5+n).

�

5. The semi-relativistic Pauli-Fierz operator

The semi-relativistic Pauli-Fierz operator is also acting in the Hilbert space
HN introduced in (4.1). It is obtained by substituting the non-local operator
|DA| for D2

A in HV
nr. We thus define, a priori on the dense domain DN ,

HV
sr ≡ HV

sr (G) :=

N∑

i=1

|D(i)
A | + V + Hf ,
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where V is assumed to fulfill Hypothesis 4.1 with H0
nr replaced by H0

sr. To
ensure that in the case of the Coulomb potential VC defined in (4.4) this yields
a well-defined self-adjoint operator we have to impose appropriate restrictions
on the nuclear charges.

Example. In Proposition A.1 we show that HVC
sr is semi-bounded below on DN

provided that Zk ∈ (0, 2/πe2], for all k ∈ {1, . . . ,K}. Its proof is actually a
straightforward consequence of (3.19) and a commutator estimate obtained in
[10]. If all atomic numbers Zk are strictly less than 2/πe2 we thus find a ∈ (0, 1)
and b ∈ (0,∞) such that

(5.1)

N∑

i=1

K∑

k=1

e2Zk
|xi −Rk|

6 aH0
sr + b

in the sense of quadratic forms on DN . In particular, VC fulfills Hypothesis 4.1
with H0

nr replaced by H0
sr as long as Zk ∈ (0, 2/πe2), for k ∈ {1, . . . ,K}. ⋄

For potentials V as above HV
sr has a self-adjoint Friedrichs extension which we

denote again by the same symbol HV
sr . Moreover, DN is a form core for HV

sr

and we have the following analogue of (4.5),

(5.2) |D(1)
A |, . . . , |D

(N)
A |, V+, Hf 6 HV+

sr 6 (1− a)−1 (HV
sr + b)

on DN . In order to apply Corollary 2.3 to the semi-relativistic Pauli-Fierz
operator we recall the following special case of [7, Corollary 3.7]:

Lemma 5.1. Assume that ω and G fulfill Hypothesis 3.1. Let τ ∈ (0, 1]. Then
there exist δ > 0 and C ≡ C(δ, τ, d1) ∈ (0,∞) such that

(5.3) C + |DA|+ τ Hf > δ (|D0|+Hf) > δ (|D0|+ τ Hf) > δ2 |DA| − δ C
in the sense of quadratic forms on D .

In the next theorem we re-derive the higher order estimates obtained in [4] for
the semi-relativistic Pauli-Fierz operator by means of Corollary 2.3. (The sec-
ond estimate of Theorem 5.2 is actually slightly stronger than the corresponding
one stated in [4].) The estimates of the following proof are also employed in
Section 6 where we treat the no-pair operator. We set

Esr := inf σ[Hsr] , H ′sr := HV
sr − Esr + 1 .

Theorem 5.2. Assume that ω and G fulfill Hypothesis 3.1 and that V fulfills
Hypothesis 4.1 with H0

nr replaced by H0
sr. Then, for every m ∈ N, it follows

that D((HV
sr )m/2) ⊂ D(H

m/2
f ), H

m/2
f (H ′sr)

−m/2 maps D(HV
sr ) into itself, and

∥∥Hm/2
f (H ′sr)

−m/2 ∥∥ 6 C(N,m, a, b, d1, d3+m) (|Esr|+ 1)(3m−2)/2 ,
∥∥ [H

m/2
f , HV

sr ] (H ′sr)
−m/2 ∥∥ 6 C′(N,m, a, b, d1, d3+m) (|Esr|+ 1)(3m−1)/2 .

Proof. Let m ∈ N. We pick the function fε defined in (3.10) with E = k1 ∨C.
(k1 is the constant appearing in Lemma 3.3 with κ = m/2, ν = 0, and depends
on m, d1, and d3+m; C is the one in (5.3).) We fix some n ∈ N, n 6 m,
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and verify Conditions (a), (b), and (c’) of Theorem 2.1 and Corollary 2.2 with

Fε = f
1/2
ε (Hf), ε > 0. The estimates (4.8) and (4.9) are still valid without any

further change when the subscript nr is replaced by sr. Employing (5.3) twice
and using (5.2) we obtain the following substitute of (4.10),

〈
Fε Ψ

∣∣ |DA|Fε Ψ
〉
6 δ−1‖ |D0|1/2 Fε Ψ‖2 + δ−1 ‖Ȟ1/2

f Fε Ψ‖2

6 δ−1 ‖fε‖∞
(
‖ |D0|1/2 Ψ‖2 + ‖Ȟ1/2

f Ψ‖2
)
6 C′ ‖fε‖∞

〈
Ψ
∣∣H ′sr Ψ

〉
,

for all Ψ ∈ DN . Altogether we see that Conditions (a) and (b) are satisfied. In
order to verify (c’) we set

(5.4) U (i)
ε,n := [S

(i)
A , Fnε ]F 1−n

ε = Fnε [F−nε , S
(i)
A ]Fε , i ∈ {1, . . . , N} .

By virtue of (3.22) we know that the norms of U
(i)
ε,n and U

(i)
ε,n |D(i)

A |1/2 are
bounded uniformly in ε > 0 by some constant, C ∈ (0,∞), that depends only
on n, d1, and d3+n. We employ the notation (4.11) and (5.4) to write

[H ′sr , F
n
ε ] =

N∑

i=1

[
|D(i)

A | , Fnε
]

=

N∑

i=1

[
S
(i)
A D

(i)
A , Fnε

]

=

N∑

i=1

{
{U (i)

ε,n |D(i)
A |1/2}S

(i)
A |D

(i)
A |1/2 Fn−1ε

− U (i)
ε,nQ

(i)
ε,n−1 F

n−2
ε + S

(i)
A Q(i)

ε,n F
n−1
ε

}
.

The previous identity, (5.2), and |DA| > 1 permit to get

∣∣〈Ψ1

∣∣ [H ′sr , Fnε ] Ψ2

〉∣∣ 6
N∑

i=1

‖Ψ1‖
{
C
∥∥ |D(i)

A |1/2 Fn−1ε Ψ2

∥∥

+ C ‖Q(i)
ε,n‖ ‖Fn−2ε Ψ2‖+ ‖Q(i)

ε,n‖ ‖Fn−1ε Ψ2‖
}

6 cn
{
‖Ψ1‖2 +

〈
Fn−1ε Ψ2

∣∣H ′sr Fn−1ε Ψ2

〉 }
,

for all Ψ1,Ψ2 ∈ DN and some constant cn = C′′(n, a, b, d1, d3+n) (|Esr|+ 1). So
(c’) is fulfilled also and the assertion follows from Corollary 2.3. �

6. The no-pair operator

We introduce the spectral projections

(6.1) P+
A := E[0,∞)(DA) =

1

2
1+

1

2
SA , P−A := 1− P+

A .

The no-pair operator acts in the projected Hilbert space

H
+
N ≡ H

+
N (G) := P+

A,N HN , P+
A,N :=

N∏

i=1

P
+,(i)
A ,
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and is a priori defined on the dense domain P+
A,N DN by

HV
np ≡ HV

np(G) := P+
A,N

{ N∑

i=1

D
(i)
A + V +Hf

}
P+
A,N .

Notice that all operators D
(1)
A , . . . , D

(N)
A and P

+,(1)
A , . . . , P

+,(N)
A commute in

pairs owing to the fact that the components of the vector potential A(i)(x),
A(j)(y), x,y ∈ R3, i, j ∈ {1, 2, 3}, commute in the sense that all their spectral
projections commute; see the appendix to [9] for more details. (Here we use

the assumption that Gx(−k, λ) = Gx(k, λ).) So the order of the application of

the projections P
+,(i)
A is immaterial. In this section we restrict the discussion

to the case where V is given by the Coulomb potential VC defined in (4.4). To
have a handy notation we set

vi := −
K∑

k=1

e2 Zk
|xi −Rk|

, wij :=
e2

|xi − xj |
,

for all i ∈ {1, . . . , N} and 1 6 i < j 6 N , respectively. Thanks to [10, Proof
of Lemma 3.4(ii)], which implies that P+

A maps D into D(|D0|) ∩ D(Hν
f ), for

every ν > 0, and Hardy’s inequality, we actually know that HVC
np is well-defined

on DN . In order to apply Corollary 2.3 to HVC
np we extend HVC

np to a continu-
ously invertible operator on the whole space HN : We pick the complementary
projection,

P⊥A,N := 1− P+
A,N ,

abbreviate

P
+,(i,j)
A := P

+,(i)
A P

+,(j)
A = P

+,(j)
A P

+,(i)
A , 1 6 i < j 6 N ,

and define the operator H̃np a priori on the domain DN by

H̃np :=

N∑

i=1

{
|D(i)

A |+ P
+,(i)
A vi P

+,(i)
A

}
+

N∑

i,j=1
i<j

P
+,(i,j)
A wij P

+,(i,j)
A

+ P+
A,N Hf P

+
A,N + P⊥A,N Hf P

⊥
A,N .(6.2)

Evidently, we have [H̃np , P
+
A,N ] = 0 and H̃np P

+
A,N = HVC

np P
+
A,N on DN . In

Proposition A.2 we show that the quadratic forms of the no-pair operator HVC
np

and of H̃np are semi-bounded below on DN provided that the atomic numbers
Z1, . . . , ZK > 0 are less than the critical one of the Brown-Ravenhall model
determined in [3],

(6.3) Znp := (2/e2)/(2/π + π/2) .

Therefore, both HVC
np and H̃np possess self-adjoint Friedrichs extensions which

are again denoted by the same symbols in the sequel. DN is a form core for
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H̃np and we have the bound

(6.4) H̃np−
N∑

i=1

P
+,(i)
A vi P

+,(i)
A 6

Znp + |Z |
Znp − |Z |

(
H̃np +C(N,Z ,R, d−1, d1, d5)

)

on DN , where |Z | := max{Z1, . . . , ZK} < Znp. Moreover, it makes sense to
define

Enp := inf σ[HVC
np ] ,

so that

H ′np := H̃np − Enp P
+
A,N + 1 > 1 .

Theorem 6.1. Assume that ω and G fulfill Hypothesis 3.1 and let N,K ∈ N,
e > 0, Z = (Z1, . . . , ZK) ∈ [0, Znp)K , and R = {R1, . . . ,RK} ⊂ R3, where

Znp is defined in (6.3). Then D((H ′np)m/2) ⊂ D(H
m/2
f ), for every m ∈ N, and

∥∥Hm/2
f ↾

H
+
N

(Hnp − (Enp − 1)1
H

+
N

)−m/2
∥∥

L (H +
N ,HN )

6
∥∥Hm/2

f (H ′np)−m/2
∥∥

6 C(N,m,Z ,R, e, d−1, d1, d5+m) (1 + |Enp|)(3m−2)/2 <∞ .

Proof. Let m ∈ N. Again we pick the function fε defined in (3.10) and set

Fε := f
1/2
ε (Hf), ε > 0. This time we choose E = max{k d21, k1, C} where k is

the constant appearing in (3.19), C ≡ C(d1) is the one in (5.3), and k1 the one
appearing in Lemma 3.3 with |κ| = (m + 1)/2, |ν| = 1/2. Thus k1 depends
only on m, d1, and d5+m. On account of Corollary 2.3 it suffices to show that
the conditions (a)–(c) of Theorem 2.1 are fulfilled. To this end we observe that
on DN the extended no-pair operator can be written as H ′np = H0

sr + 1 + W ,
where

W :=

N∑

i=1

P
+,(i)
A vi P

+,(i)
A +

N∑

i,j=1
i<j

P
+,(i,j)
A wij P

+,(i,j)
A

− Enp P
+
A,N − 2Re

[
P+
A,N Hf P

⊥
A,N

]
.

The semi-relativistic Pauli-Fierz operator H0
sr has already been treated in the

previous section and the bound

(6.5) Hf 6 2P+
A,N Hf P

+
A,N + 2P⊥A,N Hf P

⊥
A,N

together with (6.4) implies

H0
sr 6 2 H̃np − 2

N∑

i=1

P
+,(i)
A vi P

+,(i)
A 6 C′ (1 + |Enp|)H ′np(6.6)

on DN , for some C′ ≡ C′(N,Z ,R, d−1, d1, d5) ∈ (0,∞). Hence, it only remains
to consider the operator W .
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We fix some n ∈ N, n 6 m. When we verify (a) we can ignore the potentials
vi since they are negative. Using [Fnε , P

⊥
A,N ] = [P+

A,N , F
n
ε ] we obtain

∣∣2Re
〈
P+
A,N Fε Ψ

∣∣Hf P
⊥
A,N Fε Ψ

〉∣∣

6
∥∥H1/2

f P+
A,N Fε Ψ

∥∥2 +
∥∥H1/2

f P⊥A,N Fε Ψ
∥∥2

6 2 ‖fε‖∞
∥∥H1/2

f P+
A,N Ψ

∥∥2 + 2 ‖fε‖∞
∥∥H1/2

f P⊥A,N Ψ
∥∥2

+ 4
∥∥H1/2

f [P+
A,N , Fε] Ȟ

−1/2
f

∥∥ ‖Ȟ1/2
f Ψ‖2,

for every Ψ ∈ DN , where, for all n ∈ N and ν ∈ R,

Ȟν
f [P+

A,N , F
n
ε ] Ȟ−νf F 1−n

ε =
N∑

i=1

{ i−1∏

j=1

Ȟν
f P

+,(j)
A Ȟ−νf

}
×

×
{
Ȟν

f [P
+,(i)
A , Fnε ] Ȟ−νf F 1−n

ε

}{ N∏

k=i+1

Ȟν
f F

n−1
ε P

+,(k)
A Ȟ−νf F 1−n

ε

}

on DN . On account of Corollary 3.4 we thus have, for |ν| 6 1/2,

(6.7) sup
ε>0

∥∥Hν
f [P+

A,N , F
n
ε ] Ȟ−νf F 1−n

ε

∥∥ 6 C(N,n, d1, d4+n) .

Likewise we have
∣∣〈Fε Ψ

∣∣P+,(i,j)
A wij P

+,(i,j)
A Fε Ψ

〉∣∣ 6 2 ‖fε‖
∥∥w1/2

ij P
+,(i,j)
A Ψ

∥∥2

+ 4
∥∥w1/2

ij [P
+,(i,j)
A , Fε] Ȟ

−1/2
f

∥∥2 ‖Ȟ1/2
f Ψ‖2,(6.8)

where the first norm in the second line of (6.8) is bounded (uniformly in ε > 0)
due to Lemma 6.2. Taking these remarks, vi 6 0, (6.4), and (6.5) into account
we infer that

〈
Fε Ψ

∣∣H ′np Fε Ψ
〉
6 cε

〈
Ψ
∣∣H ′np Ψ

〉
, Ψ ∈ DN ,

showing that (a) is fulfilled. The condition (b) with some constant c2 =
C(N,Z ,R, d−1, d1, d5)(1+|Enp|) follows immediately from F 2

ε 6 Ȟf 6 H
0
sr+E

on DN and (6.6). Finally, we turn to Condition (c). To this end let P ♯A,N and

P ♭A,N be P+
A,N or P⊥A,N . On DN we clearly have

[
P ♯A,N Hf P

♭
A,N , F

n
ε

]
= ± [P+

A,N , F
n
ε ]Hf P

♭
A,N ± P ♯A,N Hf [P+

A,N , F
n
ε ] .

(6.9)

For Ψ1,Ψ2 ∈ DN , we thus obtain
∣∣〈Ψ1

∣∣ [P ♯A,N Hf P
♭
A,N , F

n
ε

]
Ψ2

〉∣∣

6 ‖Ȟ1/2
f Ψ1‖

∥∥ Ȟ−1/2f [P+
A,N , F

n
ε ]H

1/2
f F 1−n ∥∥ ∥∥H1/2

f Fn−1ε P ♭A,N Ψ2

∥∥

+ ‖H1/2
f P ♯A,N Ψ1‖

∥∥H1/2
f [P+

A,N , F
n
ε ] Ȟ

−1/2
f F 1−n

ε

∥∥ ‖Ȟ1/2
f Fn−1ε Ψ2‖ ,(6.10)
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where we can further estimate
∥∥H1/2

f Fn−1ε P ♭A,N Ψ2

∥∥

6
{

1 +
∥∥H1/2

f Fn−1ε P+
A,N Ȟ

−1/2
f F 1−n

ε

∥∥} ‖Ȟ1/2
f Fn−1ε Ψ2‖

6
{

1 + ‖H1/2
f Fn−1ε P+

A Ȟ
−1/2
f F 1−n

ε ‖N
}
‖Ȟ1/2

f Fn−1ε Ψ2‖ ,(6.11)

and, of course,

‖Ȟ1/2
f Fn−1ε Ψ2‖ 6 ‖Ȟ1/2

f P+
A,N F

n−1
ε Ψ2‖+ ‖Ȟ1/2

f P⊥A,N F
n−1
ε Ψ2‖ .(6.12)

The operator norms in (6.10) can be estimated by means of (6.7) with ν =
±1/2, the one in the last line of (6.11) is bounded by some C(n, d1, d3+n) ∈
(0,∞) due to (3.21). In a similar fashion we obtain, for all i, j ∈ {1, . . . , N},
i < j, and Ψ1,Ψ2 ∈ DN ,
∣∣〈Ψ1

∣∣ [P+,(i,j)
A wijP

+,(i,j)
A , Fnε ] Ψ2

〉∣∣

6
∥∥F 1−n

ε w
1/2
ij [Fnε , P

+,(i,j)
A ] Ȟ

−1/2
f

∥∥ ‖Ȟ1/2
f Ψ1‖

∥∥Fn−1ε w
1/2
ij P

+,(i,j)
A Ψ2

∥∥

+
∥∥w1/2

ij P
+,(i,j)
A Ψ1

∥∥ ∥∥w1/2
ij [P

+,(i,j)
A , Fnε ]F 1−n

ε Ȟ
−1/2
f

∥∥ ‖Ȟ1/2
f Fn−1ε Ψ2‖.

(6.13)

Here we can further estimate
∥∥w1/2

ij Fn−1ε P
+,(i,j)
A Ψ2

∥∥ 6
∥∥w1/2

ij P
+,(i,j)
A Fn−1ε Ψ2

∥∥

+
∥∥w1/2

ij [Fn−1ε , P
+,(i,j)
A ] Ȟ

−1/2
f F 1−n

ε

∥∥ ‖Ȟ1/2
f Fn−1ε Ψ2‖ .(6.14)

Lemma 6.2 below ensures that all operator norms in (6.13) and (6.14) that

involve w
1/2
ij are bounded uniformly in ε > 0 by constants depending only

on e, n, d1, and d5+n. Furthermore, it is now clear how to treat the terms

involving vi or Enp. (In order to treat vi just replace P
+,(i,j)
A by P

+,(i)
A , wij by

vi, and w
1/2
ij by |vi|1/2 in (6.13) and (6.14).) Combining (6.9)–(6.14) and their

analogues for the remaining operators in W we arrive at
∣∣〈Ψ1

∣∣ [W , Fnε ] Ψ2

〉∣∣

6 C
∑

♯∈{+,⊥}

{〈
Ψ1

∣∣P ♯A,N Hf P
♯
A,N Ψ1

〉
+
〈
Fn−1ε Ψ2

∣∣P ♯A,N Hf P
♯
A,N F

n−1
ε Ψ2

〉}

+ C

N∑

i,j=1
i<j

{〈
Ψ1

∣∣P+,(i,j)
A wijP

+,(i,j)
A Ψ1

〉

+
〈
Fn−1ε Ψ2

∣∣P+,(i,j)
A wijP

+,(i,j)
A Fn−1ε Ψ2

〉}

+ C

N∑

i=1

{〈
Ψ1

∣∣P+,(i)
A |vi|P+,(i)

A Ψ1

〉
+
〈
Fn−1ε Ψ2

∣∣P+,(i)
A |vi|P+,(i)

A Fn−1ε Ψ2

〉}

+ C (1 + |Enp|)
{
‖Ψ1‖2 + ‖Fn−1ε Ψ2‖2

}
,

for all Ψ1,Ψ2 ∈ DN and some ε-independent C ≡ C(N,n, e, d1, d5+n) ∈ (0,∞).

Employing successively (3.19), which implies |vi| 6 (πe2|Z |/2)(|D(i)
A | + Ȟf),
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after that (3.21), which yields ‖Ȟ1/2
f P

+,(i)
A Ψ‖2 6 C(d1, d4)(‖Ȟ1/2

f P+
A,N Ψ‖2 +

‖Ȟ1/2
f P⊥A,N Ψ‖2), and finally (6.4) we conclude that Condition (c) is fulfilled

with cn = C(N,n,Z ,R, e, d−1, d1, d5+n)(1 + |Enp|). �

Lemma 6.2. For all i, j ∈ {1, . . . , N}, i < j, n ∈ Z, and σ, τ > 0 with σ+τ 6 1,

sup
ε>0

∥∥F σ−nε w
1/2
ij [Fnε , P

+,(i,j)
A ] Ȟ

−1/2
f F τε

∥∥

= sup
ε>0

∥∥w1/2
ij F σε [P

+,(i,j)
A , F−nε ] Ȟ

−1/2
f Fn+τε

∥∥ 6 eC(n, d1, d5+n) < ∞ .

Proof. We write

w
1/2
ij F σε [P

+,(i)
A P

+,(j)
A , F−nε ] Ȟ

−1/2
f Fn+τε = Y1 + w

1/2
ij Y2 + Y3 ,

where

Y1 := {w1/2
ij F σε [P

+,(i)
A , F−nε ] Ȟ

−1/2
f Fn+τε }{Ȟ1/2

f F−n−τε P
+,(j)
A Ȟ

−1/2
f Fn+τε },

Y2 := P
+,(i)
A F σε [P

+,(j)
A , F−nε ] Ȟ

−1/2
f Fn+τε ,

Y3 := w
1/2
ij [F σε , P

+,(i)
A ] [P

+,(j)
A , F−nε ] Ȟ

−1/2
f Fn+τε .

Applying Corollary 3.4 we immediately see that ‖Y1‖ 6 eC(n, d1, d5+n) and
that

‖Y3‖ 6
∥∥w1/2

ij [F σε , P
+,(i)
A ]F−σε

∥∥ ∥∥F σε [P
+,(j)
A , F−nε ]Fn+τε

∥∥ 6 eC(n, d1, d3+n)

uniformly in ε > 0. Employing (3.19) (with respect to the variable xj for each

fixed xi) and using [|D(j)
A |1/2, P

+,(i)
A ] = 0, we further get

∥∥w1/2
ij Y2 Ψ

∥∥2

6 (πe2/2) ‖P+,(i)
A ‖2

∥∥ |D(j)
A |1/2 F σε [P

+,(j)
A , F−nε ]Fn+τε

∥∥2 ‖Ȟ−1/2f ‖2

+ (πe2/2)
∥∥Ȟ1/2

f P
+,(i)
A Ȟ

−1/2
f

∥∥2 ∥∥Ȟ1/2
f F σε [P

+,(i)
A , F−nε ] Ȟ

−1/2
f Fn+τε

∥∥2.
By Corollary 3.4 all norms on the right hand side are bounded uniformly in
ε > 0 by constants depending only on n, d1, and d4+n. �

Appendix A. Semi-boundedness of HVC
sr and HVC

np

In this appendix we verify that the semi-relativistic Pauli-Fierz and no-pair op-
erators with Coulomb potential are semi-bounded below for all nuclear charges
less than the critical charges without radiation fields. We do not attempt to
give good lower bounds on their spectra since this is not the topic addressed
in this paper. Our aim here is essentially only to ensure that these operators
possess self-adjoint Friedrichs extensions. We recall that the stability of matter
of the second kind has been proven for the no-pair operator in [9] under cer-
tain restrictions on the fine-structure constant, the ultra-violet cut-off, and the
nuclear charges. The stability of matter of the second kind is a much stronger
property than mere semi-boundedness. It says that the operator is bounded
below by some constant which is proportional to the total number of nuclei
and electrons and uniform in the nuclear positions. The restrictions imposed
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on the physical parameters in [9] do, however, not allow for all atomic numbers
less than Znp.
First, we consider the semi-relativistic Pauli-Fierz operator. The following
proposition is a simple generalization of the bound (3.19) proven in [10] to the
case of N ∈ N electrons and K ∈ N nuclei.

Proposition A.1. Assume that ω and G fulfill Hypothesis 3.1 and let N,K ∈N, e > 0, Z = (Z1, . . . , ZK) ∈ (0, 2/πe2]K , and R = {R1, . . . ,RK} ⊂ R3.
Then

(A.1)

N∑

i=1

|D(i)
A | + VC + δ Hf > −C(δ,N,Z ,R, d1) > −∞ ,

for every δ > 0 in the sense of quadratic forms on DN .

Proof. In view of (3.19) we only have to explain how to localize the non-local
kinetic energy terms. To begin with we recall the following bounds proven in
[10, Lemmata 3.5 and 3.6]: For every χ ∈ C∞(R3

x, [0, 1]),

‖ [χ, SA] ‖ 6 ‖∇χ‖∞ ,
∥∥DA

[
χ , [χ, SA]

]∥∥ 6 2 ‖∇χ‖2∞ .(A.2)

Now, let Br(z) denote the open ball of radius r > 0 centered at z ∈ R3 in R3.
We set ̺ := min{|Rk − Rℓ| : k 6= ℓ}/2 and pick a smooth partition of unity
on R3, {χk}Kk=0, such that χk ≡ 1 on B̺/2(Rk) and supp(χk) ⊂ B̺(Rk), for

k = 1, . . . ,K, and such that
∑K

k=0 χ
2
k = 1. Then we have the following IMS

type localization formula,

(A.3) |DA| =

K∑

k=0

{
χk |DA|χk +

1

2

[
χk , [χk, |DA| ]

] }

on D , for every i ∈ {1, . . . , N}. A direct calculation shows that
[
χk , [χk, |DA| ]

]
= 2 iα · (∇χk) [χk, SA] +DA

[
χk , [χk, SA]

]
(A.4)

on D . By virtue of (3.6) and (A.2) we thus get

(A.5)
∥∥ [χk , [χk, |DA| ]

] ∥∥ 6 4 ‖∇χ‖2∞ ,
for all k ∈ {0, . . . ,K}. Since we are able to localize the kinetic energy terms
and since, by the choice of the partition of unity, the functions R3 ∋ x 7→
|x − Rk|−1 χ2

ℓ(x) are bounded, for k ∈ {1, . . . ,K}, ℓ ∈ {0, . . . ,K}, k 6= ℓ,
the bound (A.1) is now an immediate consequence of (3.19) (with δ replaced
by δ/N). (Here we also make use of the fact that the hypotheses on G are
translation invariant.) �

Next, we turn to the no-pair operator discussed in Section 6. The semi-
boundedness of the molecular N -electron no-pair operator is essentially a con-
sequence of the following inequality [10, Equation (2.14)], valid for all ω and
G fulfilling Hypothesis 3.1, γ ∈ (0, 2/(2/π+ π/2)), and δ > 0,

(A.6) P+
A (D

(i)
A − γ/|x|+ δ Hf)P

+
A > P+

A (c(γ) |D0| − C)P+
A ,
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in the sense of quadratic forms on P+
A D . Here C ≡ C(δ, γ, d−1, d0, d1) ∈ (0,∞)

and c(γ) ∈ (0,∞) depends only on γ.

Proposition A.2. Assume that ω and G fulfill Hypothesis 3.1 and let N,K ∈N, e > 0, Z = (Z1, . . . , ZK) ∈ (0, Znp)K , and R = {R1, . . . ,RK} ⊂ R3, where
Znp is defined in (6.3). Then the quadratic form associated with the operator

H̃np defined in (6.2) is semi-bounded below,

H̃np > −C(N,K,Z ,R, d−1, d1, d5) > −∞ ,

in the sense of quadratic forms on DN .

Proof. We again employ the parameter ̺ > 0 and the partition of unity
introduced in the paragraph succeeding (A.2). Thanks to [10, Proof of
Lemma 3.4(ii)] we know that P+

A maps D(D0 ⊗Hν
f ) into D(D0 ⊗Hν−1

f ), for
every ν > 1. The IMS localization formula thus yields

P
+,(i)
A vi P

+,(i)
A

=

K∑

k=0

{
χ
(i)
k P

+,(i)
A vi P

+,(i)
A χ

(i)
k +

1

2

[
χ
(i)
k , [χ

(i)
k , P

+,(i)
A vi P

+,(i)
A ]

]}

on D(D0 ⊗ Hf), where a superscript (i) indicates that χk = χ
(i)
k depends on

the variable xi. Using vi 6 0, we observe that

[
χ
(i)
k , [χ

(i)
k , P

+,(i)
A vi P

+,(i)
A ]

]

= −2 [χ
(i)
k , P

+,(i)
A ] vi [P

+,(i)
A , χ

(i)
k ]

+ 2 Re
{
P

+,(i)
A vi

[
χ
(i)
k , [χ

(i)
k , P

+,(i)
A ]

] }

> 2 Re
{
P

+,(i)
A vi

[
χ
(i)
k , [χ

(i)
k , P

+,(i)
A ]

] }
.(A.7)

We recall the following estimate proven in [10, Lemma 3.6], for every χ ∈
C∞(R3

x, [0, 1]),

∥∥ 1
|x|
[
χ , [χ , P+

A ]
]
Ȟ
−1/2
f

∥∥ 6 83/2 ‖∇χ‖2∞ ,

where Ȟf = Hf + E with E > 1 ∨ (4d1)2. Together with (A.7) it implies

〈
Ψ
∣∣ [χ(i)

k , [χ
(i)
k , P

+,(i)
A vi P

+,(i)
A ]

]
Ψ
〉

> −δ 〈Ψ | Ȟf Ψ 〉 − (83 ‖∇χk‖4∞/δ) ‖Ψ‖2,

for all k ∈ {0, . . . ,K}, i ∈ {1, . . . , N}, δ > 0, and Ψ ∈ D(D0 ⊗Hf). Next, we
pick cut-off functions, ζ1, . . . , ζK ∈ C∞0 (R3

x, [0, 1]), such that ζk = 1 in a neigh-
borhood of Rk and supp(ζk) ⊂ B̺/4(Rk), for k ∈ {1, . . . ,K}. By construction,
supp(ζk)∩ supp(χℓ) = ∅, for all k ∈ {1, . . . ,K} and ℓ ∈ {0, . . . ,K} with k 6= ℓ.

Denoting ζk := 1 − ζk and using the superscript (i) to indicate that ζk = ζ
(i)
k
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is a function of the variable xi, we obtain
〈

Ψ
∣∣χ(i)

k P
+,(i)
A vi P

+,(i)
A χ

(i)
k Ψ

〉

= −
〈

Ψ
∣∣∣χ(i)

k P
+,(i)
A

e2 Zk
|xi −Rk|

P
+,(i)
A χ

(i)
k Ψ

〉

−
K∑

ℓ=1
ℓ 6=k

〈
Ψ
∣∣∣χ(i)

k P
+,(i)
A

e2 Zℓ ζ
(i)
ℓ

|xi −Rℓ|
P

+,(i)
A χ

(i)
k Ψ

〉
(A.8)

−
K∑

ℓ=1
ℓ 6=k

〈
Ψ
∣∣∣χ(i)

k P
+,(i)
A

e2 Zℓ ζ
(i)

ℓ

|xi −Rℓ|
P

+,(i)
A χ

(i)
k Ψ

〉
,(A.9)

for all Ψ ∈ D(D0 ⊗ Hf). The operators appearing in the scalar products in
(A.9) are bounded by definition of ζℓ. Their norms depend only on R since
e2 Zℓ < 1. Furthermore, by virtue of Lemma A.3 below the term in (A.8)
is bounded from below by −δ 〈Ψ |Hf Ψ 〉 − Cδ ‖Ψ‖2, for all δ > 0 and some
Cδ ≡ Cδ(R, d1, d4) ∈ (0,∞); see (A.11).
Taking all the previous remarks into account, using (A.3)–(A.5), wij > 0,

|D(i)
A | > P

+,(i)
A D

(i)
A P

+,(i)
A , and writing

Hf =
1

N

N∑

i=1

K∑

k=0

χ
(i)
k (P

+,(i)
A + P

−,(i)
A )Hf χ

(i)
k ,

we deduce that

H̃np

> (1− 3δ)P+
A,N Hf P

+
A,N + (1− 3δ)P⊥A,N Hf P

⊥
A,N

+
∑

♯∈{+,⊥}

K∑

k=0

P ♯A,N

{ N∑

i=1

χ
(i)
k P

+,(i)
A

(
D

(i)
A −

e2Zk
|xi −Rk|

+
δ

N
Hf

)
P

+,(i)
A χ

(i)
k

+
δ

N

N∑

i=1

(
χ
(i)
k P

−,(i)
A Hf P

−,(i)
A χ

(i)
k +

∑

♭=±
χ
(i)
k P

♭,(i)
A [P

♭,(i)
A , Hf ]χ

(i)
k

)}
P ♯A,N

− const(N,R, d1, d4)

on DN , for every δ > 0. Thanks to Corollary 3.4 (with ε = 0) we know that

[P
♭,(i)
A , Hf ] Ȟ

−1/2
f extends to an element of L (HN ) whose norm is bounded by

some constant depending only on d1 and d5, whence

δ

N

N∑

i=1

K∑

k=0

〈
χ
(i)
k P ♯A,N Ψ

∣∣P ♭,(i)A [P
♭,(i)
A , Hf ]χ

(i)
k P ♯A,N Ψ

〉

> −(δ/2) ‖Ȟ1/2
f P ♯A,N Ψ‖2 − (δ/2)

∥∥[P
♭,(i)
A , Hf ]Ȟ

−1/2
f

∥∥2 ‖Ψ‖2,
for every Ψ ∈ DN , ♯ ∈ {+,⊥}, and ♭ = ±. For a sufficiently small choice of
δ > 0, the assertion of the proposition now follows from the semi-boundedness
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of P
+,(i)
A (D

(i)
A − e2 Zk/|xi −Rk| + (δ/N)Hf)P

+,(i)
A ensured by (A.6) and the

condition Zk < Znp. �

Lemma A.3. Let ζ ∈ C∞0 (R3, [0, 1]), χ ∈ C∞(R3, [0, 1]), such that 0 ∈ supp(ζ)
and supp(ζ) ∩ supp(χ) = ∅. Set Ȟf := Hf + E, where E > k1 ∨ d21. Then

∥∥DAH
1/2
f ζ P+

A χ Ȟ
−1/2
f

∥∥ 6 C(ζ, χ, d1, d4) ,(A.10)
∥∥ ζ
|x| P

+
A χ Ȟ

−1/2
f

∥∥ 6 C′(ζ, χ, d1, d4) .(A.11)

Proof. We pick some χ̃ ∈ C∞(R3, [0, 1]) such that supp(χ̃) ∩ supp(ζ) = ∅ and
χ̃ ≡ 1 on supp(∇χ). Using ζ χ = 0 = ζ χ̃ we infer that, for all ϕ, ψ ∈ D ,
∣∣〈DA ϕ

∣∣H1/2
f ζ P+

A χ Ȟ
−1/2
f ψ

〉∣∣ =
∣∣〈DA ϕ

∣∣H1/2
f ζ [P+

A , χ] Ȟ
−1/2
f ψ

〉∣∣

6

∫R ∣∣∣〈DA ϕ
∣∣∣H1/2

f ζ [RA(iy) , χ̃] iα · ∇χRA(iy) Ȟ
−1/2
f ψ

〉∣∣∣dy
2π

=

∫R ∣∣∣〈DA ϕ
∣∣∣H1/2

f ζ RA(iy) iα · ∇χ̃ RA(iy) iα · ∇χRA(iy) Ȟ
−1/2
f ψ

〉∣∣∣dy
2π

=

∫R ∣∣∣〈 ζ DA ϕ
∣∣∣RA(iy) Υ0,1/2(iy) iα · ∇χ̃ RA(iy) Υ0,1/2(iy)×

× iα · ∇χRA(iy) Υ0,1/2(iy)ψ
〉∣∣∣dy

2π
.

In the last step we repeatedly applied (3.16). Commuting ζ and DA and using
‖DARA(iy)‖ 6 1, ‖RA(iy)‖2 6 (1 + y2)−1, and the fact that ‖Υ0,1/2(iy)‖ is
uniformly bounded in y ∈ R, we readily deduce that

∣∣〈DA ϕ
∣∣H1/2

f ζ P+
A χ Ȟ

−1/2
f ψ

〉∣∣ 6 C(ζ, χ, χ̃, d1, d4) ‖ϕ‖ ‖ψ‖ ,
which implies (A.10). The bound (A.11) follows from (A.10) and the inequality

‖ |x|−1 ϕ ‖2 6 4 ‖DA ϕ ‖2 + 4 ‖Ȟ1/2
f ϕ‖ , ϕ ∈ D(D0 ⊗H1/2

f ) ,

which is a simple consequence of standard arguments (see, e.g., [10, Equa-
tion (4.7)]). �
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Abstract. We consider the problem of representing an analytic function
on a vertical strip by a bilateral Laplace transform. We givea Paley–Wiener
theorem for weighted Bergman spaces on the existence of suchrepresenta-
tions, with applications. We generalise a result of Batty and Blake, on ab-
scissae of convergence and boundedness of analytic functions on halfplanes,
and also consider harmonic functions. We consider analyticcontinuations
of Laplace transforms, and uniqueness questions: if an analytic function is
the Laplace transform of functionsf1, f2 on two disjoint vertical strips, and
extends analytically between the strips, when isf1 = f2? We show that
this is related to the uniqueness of the Cauchy problem for the heat equation
with complex space variable, and give some applications, including a new
proof of a Maximum Principle for harmonic functions.
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30E20, 31A10, 35K05
Keywords and Phrases: Laplace transform, Paley–Wiener theorem, heat
equation, Maximum Principle, analytic continuation, Hardy spaces,
Bergman spaces

1 Introduction and notation

We are concerned with Laplace transforms: for an analytic function F on
{a < Re(z) < b}, we would like to know when

F (z) = Lh(z) ∼
∫ ∞

t=−∞
e−zth(t) dt ∼

∫ ∞

t=−∞
e−xth(t)e−iyt dt

for someh, in some sense: either as an absolutely convergent Lebesgueintegral, or as
theL2 or tempered distribution Fourier transform ofe−xth(t). Our normalisation of
the Fourier transform is

f̂(ω) ∼
∫ ∞

t=−∞
e−iωtf(t) dt, f(t) ∼ 1

2π
̂̂
f(−t).
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In Section 2 we give a fairly general Paley–Wiener theorem which guarantees the
existence of such anh for analytic functionsF in certain weighted Bergman spaces,
with applications. In Section 3 we generalise a result of C. Batty and M. D. Blake
concerning bounded functions on halfplanes; we obtain the same result, but under
weaker assumptions, as well as a similar result for harmonicfunctions.
In Section 4 we consider theuniquenessproblem, which is important because ana-
lytic functions can sometimes be represented by Laplace transforms of differenth on
disjoint vertical strips. We obtain an explicit formula foranalytic continuation under
quite mild conditions, and relate this to the heat equation.Thus uniqueness theo-
rems on the heat equation immediately give uniqueness theorems for boundary values
of harmonic functions; see Corollaries 4.5, 4.6. Finally, Sections 5, 6 contain some
longer proofs.
The problem of existence of Laplace transform representations for functions in certain
spaces has been studied extensively; for example, see [4], [5], [9], [12], [20], [27],
[29].
Given any domainΩ ⊆ C and Banach spaceE, we writeHol(Ω, E) for the set of all
analytic functionsF : Ω → E, or justHol(Ω) whenE = C. We need the theory of
Hardy spaces: see [1], [10], [21], [25] and [26].
Let C+ = {z ∈ C : Re(z) > 0} andR+ = {t ∈ R : t > 0}. For any Banach space
E, 1 6 p <∞ andF ∈ Hol(C+, E), define

‖F‖Hp(C+,E) = sup
r>0

(∫ ∞

−∞
‖F (r + iy)‖pE

dy

2π

)1/p

.

The set of allF with ‖F‖ < ∞ is theHardy spaceHp(C+, E). WhenE = C we
write simplyHp(C+). We mainly use the casep = 2 with E a Hilbert space.
The classical Paley–Wiener Theorem says thatL : L2(R+, E) → H2(C+, E) is a
unitary operatorfromL2 ontoH2, providedthatE is a Hilbert space:

‖f‖L2(R+,E) =

(∫ ∞

t=0

‖f(t)‖2E dt
)1/2

= ‖Lf‖H2(C+,E),

andL−1 : H2(C+, E) → L2(R+, E) is well–defined. Here, we are thinking of
H2(C+, E) ⊂ L2(iR, E) in terms of a.e. boundary values.

2 Hilbert space Paley–Wiener type results

Theorem 2.1 Let−∞ 6 a < b 6 +∞, let E be a Hilbert space, and letΩ =
{z ∈ C : a < Re(z) < b}.
Suppose thatv : (a, b) → [0,+∞] is Lebesgue measurable, withv > 0 almost
everywhere. For anyF ∈ Hol(Ω, E), define

‖F‖2L2(Ω,v,E) =
1

2π

∫ b

x=a

∫ ∞

y=−∞
‖F (x+ iy)‖2E v(x) dy dx.
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For anyh : R→ E strongly measurable, define

Nv(h)2 =

∫

t∈R
‖h(t)‖2E

(∫ b

x=a

e−2xtv(x) dx

)
dt.

Then, wheneverNv(h) <∞, we haveNv(h) = ‖Lh‖L2(Ω,v,E).
Conversely, letF ∈ Hol(Ω, E) with ‖F‖L2(Ω,v,E) <∞. Assume alsothat:

∀ a < α < β < b, ∃ ε(α, β) > 0 such that
∫ β

α

v(x)−ε(α,β)dx <∞. (1)

Then: ∃h such thatF = Lh on Ω, andNv(h) = ‖F‖L2(Ω,v,E). Furthermore,
F ∈ L2(c + iR) for everya < c < b, so h is given by the standard Bromwich
Inversion Formula

h(t) ∼ 1

2π

∫ ∞

y=−∞
F (c+ iy)ecteiyt dy ∼ 1

2πi

∫

c+iR

F (z)ezt dz,

in the sense ofL2(R, E) Fourier transforms.

The paper [11] proves this result in the special casea = 0, b = ∞ andv(x) =
xr with r > 0, and gives some applications. However, their method is different
and probably cannot be generalised (the conformal transformation1−z1+z induces an
isometric isomorphism with a weighted Bergman space on the disc, for which(zn)n>0

is an orthogonal basis). Other related results and examples are given in Section 2
of [19].
Proof: The proof thatNv(h) < ∞ impliesLh ∈ L2(Ω, v, E) with the same
norm is not hard: by Fubini’s Theorem,

∫ b
x=a
‖e−xth(t)‖2L2(R,E)v(x) dx < ∞. Thus

e−xth(t) ∈ L2 for a.e.x ∈ (a, b), becausev > 0 a.e. Now the Plancherel Theorem
can be applied to the functione−xth, for a.e.x, and integrating withv(x)dx gives the
result.
For the converse: first, leta < α < β < b. We must show thatF is boundedon
{x + iy : α 6 x 6 β}. Let r > 0 be sufficiently small, so thata < α − r < α <
β < β + r < b. Fix ϕ ∈ E∗ and considerFϕ(z) = ϕ(F (z)). We have the following
result, which is a substitute for the lack of subharmonicityof |Fϕ|p whenp < 1. See
Lemma 2, p. 172 of [14], there attributed to Hardy and Littlewood; the proof is given
also on p. 185 of [23]:

∀ p > 0, |Fϕ(λ)| 6 Cp
(

1

πr2

∫

|z−λ|<r
|Fϕ(z)|p dA(z)

)1/p

, (2)

with someCp < ∞. (This is true more generally for harmonic functions in several
variables. The casep > 1 is trivial by the Mean Value Property). By assumption,∫ β+r
α−r v(x)−εdx < ∞ for someε > 0. Now let p = 2ε(1 + ε)−1. Apply Hölder’s

inequality with exponent2/p to obtain that
∫

|z−λ|<r
‖F (z)‖p dA(z) =

∫

|z−λ|<r
‖F (z)‖pv(x)p/2v(x)−p/2 dA(z)
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is bounded by a multiple of
(∫
|z−λ|<r ‖F (z)‖2v(x) dA(z)

)p/2
, independently ofλ

with α 6 Re(λ) 6 β. By (2) and (1), we now have|Fϕ(λ)| 6 K‖ϕ‖E∗ , so indeedF
is bounded on{α 6 x 6 β} as required.
Second, suppose that

∫∞
−∞ ‖F (x+iy)‖2 dy <∞ for x = α, β, wherea < α < β < b.

Thus for eachY > 0, Cauchy’s Integral Formula gives

F (λ) =
1

2πi

∫

∂RY

F (z)

z − λdz for all λ ∈ RY = (α, β)× (−Y, Y ).

But F is bounded onRY , uniformly in Y , by above; so we can letY → ∞ for each
fixedλ to obtain

F (λ) =
1

2πi

(∫

β+iR

−
∫

α+iR

)
F (z)

z − λdz, wheneverRe(λ) ∈ (α, β).

Now
∫
α+iR

F (z)
z−(α+ω)dz, as a function ofω ∈ C+, is the Szegö projection of the

L2(iR, E) functionF (iy+α) onto the Hardy spaceH2(C+, E), and so by the Paley–
Wiener Theorem it can be represented asLf1 for somef1 ∈ L2(R+, E). We can
consider similarly

∫
β+iR

F (z)
z−(β−ω)dz. Thus

F (λ) = −
∫ ∞

t=0

e−(λ−α)tf1(t) dt+

∫ ∞

t=0

e−(β−λ)tf2(t) dt,

and soF (λ) = Lh(λ) =
∫∞
t=−∞ e

−λth(t) dt on{α < Re(λ) < β}, with
∫ ∞

0

‖e−αth(t)‖2 dt,
∫ ∞

0

‖eβth(−t)‖2 dt <∞.

This shows thate−cth(t) ∈ L2(R, E) for eachα < c < β.
Now v > 0 a.e., so

∫∞
−∞ ‖F (x + iy)‖2 dy < ∞ for a.e. x ∈ (a, b). So choose

sequences(αj) ց a and (βj) ր b such that this holds withx = αj , βj . Then
F = Lhj on{αj < Re(λ) < βj} for eachj. By uniqueness of the Fourier transform
we must havehj ≡ h1 = h a.e.
So finallyF = Lh on{a < Re(λ) < b}, and Plancherel’s Theorem gives

1

2π

∫ ∞

y=−∞
‖F (x+ iy)‖2dy =

∫ ∞

t=−∞
e−2xt‖h(t)‖2 dt

for eacha < x < b. HenceNv(h) = ‖F‖L2(Ω,v,E).
�

Similarly, with the Hausdorff–Young theorem and Paley–Wiener theorem forHp, we
can easily obtain the following result:

Theorem 2.2 LetF ∈ Hol{a < Re(z) < b}, let 1 < p 6 2, let v satisfy the same
conditions as Theorem 2.1, and suppose that

∫ b

x=a

∫ ∞

y=−∞
|F (x+ iy)|p v(x) dy dx <∞. (3)
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Then there exists someh such thatF = Lh and

∫ b

x=a

(∫ ∞

t=−∞
e−p

′xt|h(t)|p′dt
)p−1

v(x) dx <∞. (4)

We can consider Dirichlet–type norms also; for example:

Corollary 2.3 LetF ∈ Hol(C+, E), for a Hilbert spaceE. Then

∫∫

C+

‖F ′(z)‖2x dx dy <∞ ⇐⇒ F ∈ H2(C+, E) + {constants}.

This is obvious, since
∫∞
0 ‖h(t)‖2dt/t2 < ∞ if and only if h(t)/t ∈ L2(R+, E) if

and only ifL(h(t)/t) ∈ H2.

Corollary 2.4 LetF ∈ Hol{0 < Re(z) < R} be bounded, for some0 < R 6
+∞. Then∃ g : R→ C such thatF (z) = zLg(z), and

∫ 0

−∞
e2R|t||g(t)|2 dt <∞, sup

T>1/R

(
1

T

∫ T

0

|g(t)|2 dt
)
<∞.

Alsosup06c6R ‖e−ctg‖BMO(R) <∞. In particular,

∫ ∞

t=0

|g(t)|+ e−Rt|g(−t)|
1 + t2

dt <∞.

In the caseR = +∞, we haveg(t) = 0 for all t < 0.

BMO(R) is the very important Bounded Mean Oscillation space, discussed in [1],
[16], [23] and many other books, which often serves as a useful substitute forL∞(R).
For locally integrablef : R→ C we have

‖f‖BMO(R) = sup
I
|f − fI |I , where fI =

1

|I|

∫

I

f(t) dt,

I ranges over allbounded intervalsof R, and|I| is thelength.
Proof: The existence ofg is immediate from Theorem 2.1, if we considerG(z) =
F (z)/z and take, e.g.v(x) = x/(1 + x3). The estimates follow from Plancherel’s
Theorem:

∫ ∞

−∞
e−2xt|g(t)|2 dt =

1

2π

∫ ∞

−∞

∣∣∣∣
F (x+ iy)

x+ iy

∣∣∣∣
2

dy ≪ 1

x
.

For the estimate witht > 0, letT > 1/R and consider
∫ T
t=0 only with x = 1/T . For∫ 0

t=−∞ we just letxր R.
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For theBMO result, let0 < c < R. ThenF (c+iy)
c+iy is anL2 function ofy ∈ R, with∣∣∣F (c+iy)

c+iy

∣∣∣ 6 sup |F |
|y| . We have

e−ctg(t) ∼ 1

2π

∫ ∞

−∞

F (c+ iy)

c+ iy
eiyt dy.

Now apply Lemma 2.5 below to get‖e−ctg‖BMO(R) 6 K for someK independent
of c. Forc = 0 andc = R, choose sequencescj ց 0 andcj ր R and use Dominated
Convergence: for each intervalI, (e−cjtg)I → gI or (e−Rtg)I as appropriate. Then
|e−cjtg− (e−cjtg)I |I also converges appropriately; since theBMO norm is given by
a supremum over allI, we have the result.
�

Lemma 2.5 If f ∈ L2(R) then
∥∥∥f̂
∥∥∥
BMO(R)

6 C supβ∈R |βf(β)|, whereC is a

universal constant independent off .

Proof: By considering the restrictions off to R+ andR− separately, it is enough
to considerf ∈ L2(R+) with |βf(β)| 6 1. Takeu ∈ L2(R+) and consider the
convolution(k ∗ u)(α) =

∫ α
s=0

k(α− s)u(s) ds. By Hardy’s Inequality (see [18]),
∫ ∞

α=0

|(βf ∗ u)(α)|2 dα
α2
6

∫ ∞

α=0

(
1

α

∫ α

s=0

|u(s)| ds
)2

dα

6 4

∫ ∞

s=0

|u(s)|2ds.

Taking Laplace transforms and using (the easy half of) Theorem 2.1 gives
∫∫

C+

|L(βf)(z)Lu(z)|2x dx dy 6 K‖Lu‖2H2(C+).

But this says exactly that|L(βf)(z)|2x dx dy = |(Lf)′(z)|2x dx dy is a Carleson
Measureon C+. HenceLf ∈ Hol(C+) is the Poisson integralof some function
U ∈ BMO, by [13]. But alsoLf ∈ H2(C+), and soLf is the Poisson integral of its
boundary function̂f . Hencef̂ = U ∈ BMO as required.
�

In Theorem 3.1 below we obtain further results ong, assuming extra conditions onF
(decay behaviour on a vertical line).

3 Results assuming decay on a vertical line

The following theorem generalises the main result of [3].

Theorem 3.1 Let 0 < R 6 +∞ and Ω = {z : 0 < Re(z) < R}. LetE be
a Banach space, and letF ∈ Hol(Ω, E) be bounded. Assume that∃ 0 < c < R,
0 < δ 6 1 andν > 1 such that

∀ϕ ∈ E∗,
∫ ∞

y=−∞

∣∣ϕ(F (c+ iy))
∣∣ν

(1 + |y|)1−δ dy <∞. (5)
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Thenthere exists some continuousg : R → E with F (z) = zLg(z) for all z ∈ Ω,
such that

‖g(t)‖ 6
{
M(1 + t) for t > 0,

MeRt(1 + |t|) for t < 0.
(6)

In the caseR = +∞, we haveg(t) = 0 for all t 6 0. Alsog satisfies local Ḧolder
estimates: there is someM <∞ such that

‖g(t+ s)− g(s)‖ 6Mecstδ/ν (∀ s ∈ R, 0 < t < 1). (7)

The proof is given in Section 5. Of course we can get additional information about
|ϕ(g(t))|2 by applying Corollary 2.4 above toϕ ◦ F .
In [3] the main result was the estimate (6) for the caseR = +∞ only, assuming the
much stronger condition

F = Lf with
∫ ∞

0

‖e−rtf(t)‖pdt <∞, p > 1, r > 0. (8)

[3] also explains that (8) is not sufficient in the casep = 1. Under assumption (8),
we would haveg(t) =

∫ t
0 f(s) ds. By increasingr if necessary and using Hölder’s

inequality, we could take1 < p 6 2 without loss of generality. Then the Hausdorff–
Young Theorem would give (5) forc = r with ν = (1− 1/p)−1 = p′ > 2 andδ = 1.
The estimate (6) is best possible in general, even under the extra assumption (8), as
shown in [2].
Additionally (7), which is aconclusionof our theorem, would follow automatically
from the assumption (8).
In the caseR = +∞, we have a similar result forharmonicfunctions:

Theorem 3.2 Let F : C+ → E be a boundedharmonicfunction, whereE is a
Banach space. Assume that(5) holds withc > 0.
Then:there existgj : R+ → E continuous,j = 1, 2, such that

gj(0) = 0, ‖gj(t)‖ 6 K(1 + t2),

F (z) = z Lg1(z) + z̄Lg2(z̄) onC+,

andg1, g2 satisfy the same Ḧolder estimate(7) from Theorem 3.1.

See Section 6 for the proof. Unfortunately, the caseR < ∞ is unsatisfactory. For
example, there is no functiong such thatz + a = zLg(z), with a ∈ C constant. Thus
2Re(z) = z + z̄ is harmonic and bounded on{0 < Re(z) < 1} butcannotbe written
aszLg1(z) + z̄Lg2(z̄) for any functionsg1, g2.

4 Uniqueness conditions

It is natural to consideruniqueness: if Lf1 = Lf2 on {a < Re(z) < b}, in any
reasonable sense, thenf1 = f2 by uniqueness of Fourier transforms. However, this
does not answer the following:
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Question 4.1 Leta1 < b1 < a2 < b2 andF ∈ Hol{a1 < Re(z) < b2}, with

sup
aj<c<bj

∫ ∞

−∞
|F (c+ iy)|2 dy <∞, for j = 1, 2,

so thatF = Lfj on {aj < Re(z) < bj} for some (uniquely determined)f1, f2, by
Theorem 2.1. When do we havef1 = f2?

In contrast to Laurent series on concentric annuli{rj < |z| < Rj}, it is possible to
havef1 6= f2. The paper [24] considers

G ∈ Hol(C), G(z) =

∫ ∞

t=0

eztt−tdt.

ThenG is entire, and bounded on{|Im(z)| > π/2 + δ} for eachδ > 0. Define
F (z) = −iG(iz). By Cauchy’s Theorem as in [24] we obtain

F (z) =

∫ ∞

s=0

e−zs exp
(
−is log s+

πs

2

)
ds, Re(z) >

π

2
.

SinceG(z̄) = G(z), we haveF (−z̄) = −F (z). Thus

F (z) = −
∫ 0

s=−∞
e−zs exp

(
−is log(−s)− πs

2

)
ds, Re(z) < −π

2
.

SoF is entire and represented bydifferentbilateral Laplace transforms on{x > π/2},
{x < −π/2}, even though (using Plancherel’s Theorem)

∫ ∞

−∞
|F (x+ iy)|2 dy 6M

(
|x| − π

2

)−1
whenever|x| > π/2.

Thus by rescaling, for anyǫ > 0 the “gap”{|x| < ǫ} is “unsafe”: crossing the gap
can change the Laplace transform function. However, we shall prove below that the
gap{x = 0} can be safely crossed under quite mild restrictions. First we derive an
explicit formulafor analytic continuation of Laplace transforms.

Theorem 4.2 LetΩ = {z : a < Re(z) < b} andF ∈ Hol(Ω, E), withE a Banach
space. Assume thata < c < b, κ > 0, and

∫ ∞

−∞
‖F (c+ iy)‖ exp(−κy2) dy <∞. (9)

DefineFσ ∈ Hol(C, E), for sufficiently smallσ > 0, by

Fσ(z) = Fσ,c(z) =

∫

λ∈c+iR
F (λ) exp

(
(λ− z)2

2σ2

)
dλ

iσ
√

2π

=

∫ ∞

y=−∞
F (c+ iy) exp

(
(c+ iy − z)2

2σ2

)
dy

σ
√

2π
.

ThensupC |Fσ − F | 6 K(C)σ2 for each fixed compactC ⊂ Ω. In particular,
Fσ → F locally uniformly onΩ, asσ → 0+.
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Proof: DefineG(λ, z) = F (λ)

iσ
√
2π

exp
(

(λ−z)2
2σ2

)
, so that

‖G(λ, x+ iy)‖ =
‖F (λ)‖
σ
√

2π
exp

( |x− Re(λ)|2 − |y − Im(λ)|2
2σ2

)
.

For each fixedz ∈ C, Fσ(z) is the integral ofG(λ, z) over the contourc+ iR, which
converges for1/2σ2 > κ by condition (9). SinceG(λ, z) is an analytic function of
λ, we can use Cauchy’s Theorem with the same contour as in Theorem 3.1. Pick
ω = ω1 + iω2 ∈ Ω and fix a squareΣ = {|x − ω1|, |y − ω2| 6 δ} ⊂ Ω. Let Y be
large, much larger thanδ, and consider the contours

Γ(x) = {Re(λ) = x, |Im(λ)− ω2| 6 Y },
Γ±Y (x) = {Re(λ) ∈ [x, c], Im(λ) = ω2 ± Y },

Γ′ = {Re(λ) = c, |Im(λ)− ω2| > Y }.

Forλ ∈ Γ±Y (x), we have

‖G(λ, z)‖ 6 sup
µ∈I
‖F (µ)‖ · σ−1 exp

(
M − Y 2/2

2σ2

)
,

uniformly for z ∈ Σ, whereI = Γ±Y (ω1 − δ) or I = Γ±Y (ω1 + δ) as appropriate
(depending on whetherω1 < c or ω1 > c). We are using(Y − y)2 > Y 2/2 and
(c− x)2 < M .
Thus

∫
Γ±
Y (x)Gdλ→ 0 rapidly asσ → 0, uniformly inz, as long asY is large enough.

By condition (9) again, also
∫
Γ′ Gdλ → 0 rapidly asσ → 0, uniformly for z ∈ Σ.

Finally, the integral overΓ(x) is a standard Gaussian convolution approximation to
F (z):

∫

Γ(x)

G(λ, x+ iy) dλ =

∫ ω2+Y

ω2−Y
F (x+ iu) exp

(−(y − u)2

2σ2

)
du

σ
√

2π
.

After Y is chosen,F (t+iu) is then bounded on the tall, narrow rectangle|t−ω1| 6 δ,
|u − ω2| 6 Y . If we approximateF (x + iu) by its Taylor series aboutx + iy, it is
now routine to verify that

∫
Γ(x)G(λ, x+ iy) dλ = F (x+ iy) +O(σ2), uniformlyfor

|x − ω1|, |y − ω2| < δ/2, say. The errors from the other contours are much smaller,
beingO(exp(−ν/σ2)) for someν > 0.
�

Corollary 4.3 WithF as in Theorem 4.2 andE = C, suppose that

∃ 1 6 p 6 2 such that
∫ ∞

−∞
|F (c+ iy)|p dy <∞.

Then

F (z) = lim
σ→0+

∫ ∞

t=−∞
e−zth(t) exp(−σ2t2/2) dt (10)
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locally uniformly forz ∈ Ω, for some measurableh satisfying
∫ ∞

−∞
|h(t)|e−δt2 dt <∞ ∀ δ > 0.

Proof: We use the Hausdorff–Young Theorem. Set

h(t)e−ct ∼ 1

2π
̂F (c+ iy)(−t) ∈ Lp′(R),

for p′ = (1− 1/p)−1 the conjugate exponent top. This is well–defined for a.e.t ∈ R.

Now
∫ ̂h(t)e−ct(y)g(y) dy =

∫
h(t)e−ctĝ(t) dt for every Schwartz functiong. Now

putF (c+ iy) ∼ ĥe−ct(y) in the definition ofFσ,c(z) and calculate.
�

Notice that (10) is just a weak kind of Laplace transform representation forF . It
says that a particular Abelian summability method assigns the valueF (z) to the for-
mal integral “

∫∞
−∞ e

−zth(t) dt”, even though this integral may diverge. See [17] for
much more on these topics; unfortunately the classical results given there appear to be
inadequate for our problem.

Corollary 4.4 Let Ω = {z : a < Re(z) < b} andF ∈ Hol(Ω). Suppose that
there exista < c1 < c2 < b andf1, f2 such that

F (cj + iy) ∼
∫ ∞

t=−∞
fj(t)e

−cjt exp(−iyt) dt (y ∈ R, j = 1, 2),

as Fourier transforms offj(t)e−cjt ∈ L2(R). Define

H(z, v) =

∫ ∞

t=−∞

(
f1(t)− f2(t)

)
exp(izt− vt2)dt

for z ∈ C, v > 0. ThenH has a continuous extensionH : iΩ× [0,∞)→ C satisfying

∂2H

∂z2
=
∂H

∂v
, H(z, 0) ≡ 0 (z ∈ iΩ).

Proof: By Corollary 4.3, equation (10) holds for bothh = f1 andh = f2.
Therefore,H(z, v)→ F (−iz)− F (−iz) = 0 asv → 0+, for eachz ∈ iΩ. Because
this convergence is locally uniform, we have the required continuity ofH . Finally, the
complex heat equation∂

2H
∂z2 = ∂H

∂v follows immediately by differentiating under the
integral sign.
�

The lettert is normally used for the time variable, but we usev = σ2/2 (for variance,
with an extra factor of2). Now we can apply known results on the heat equation. The
papers [6], [30] prove many results about functions on discs. The following corollaries
are closely related (after applying a conformal transformation), but our proofs are
easier and quite different.
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Corollary 4.5 LetF ∈ Hol({−1 < x < 1}) andA,B, r > 0, with

∫ ∞

−∞
|F (x+ iy)|2dy 6 A exp(B|x|−r), ∀x 6= 0.

Thensup−1<x<1

∫∞
−∞ |F (x + iy)|2dy < ∞. In particular, F is bounded on|x| <

1− ǫ, for eachǫ > 0.

Notice that, a priori, it is not obvious that any estimate for|F (iy)| is possible:
exp(B|x|−r) grows so rapidly as|x| → 0 that any simple attempt based on the Mean
Value Property must fail.
Proof: First, by Theorem 3.1, we know thatF = Lf+ on{0 < x < 1} andF =
Lf− on{−1 < x < 0}, with

∫∞
−∞ e

−2δt|f+(t)|2 dt ≪ exp(Bδ−r), and similarly for
f−. Now considerϕ = f+ − f−. Then

∫ ∞

−∞
e−2δ|t||ϕ(t)|2 dt≪ exp(Bδ−r).

Following Corollary 4.4, define

H(y, v) =

∫ ∞

−∞
exp(iyt− vt2)ϕ(t) dt

for y ∈ R andv > 0. ThenH satisfies the heat equation and extends to be continuous
on{v > 0}, withH(y, 0) ≡ 0. We calculate

|H(y, v)| 6
(∫ ∞

−∞
e−δ|t||ϕ(t)| dt

)
sup
τ∈R

exp(δ|τ | − vτ2)

≪ δ−1/2 exp(Bδ−r/2) exp(δ2/4v) 6 exp

(
Cδ−r +

δ2

4v

)
,

for any 0 < δ < 1. We have used the Cauchy–Schwarz inequality andδ−1/2 <
exp(δ−1/2) 6 exp(δ−r), as long asr > 1/2, which we could clearly assume from
the start. Notice thatC does not depend onδ.
Now chooseδ = vα with α = 1/(r + 2), so thatαr = 1− 2α, to obtain

|H(y, v)| 6 A′ exp

(
C + 4−1

v1−2α

)
= A′ exp(C′/vη), (11)

for all y ∈ R, 0 < v < 1, with 0 < η < 1. SinceH = H(y, v) is a solution to the
heat equation withH(y, 0) ≡ 0, condition (11) implies thatH ≡ 0. See [8], [15]. In
general the condition|H | 6 A(ǫ) exp(ǫ/v) for eachǫ > 0 is not sufficient, as shown
in [7], but our proof works because we have an estimate forA(ǫ). Thereforeϕ = 0
andf+ = f− almost everywhere, as required.
�
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Corollary 4.6 Let Ω = {x + iy : 0 < x < 1}. Let E be a Banach space,
F : Ω→ E continuous, harmonic onΩ, andF ∈ L∞(∂Ω). Suppose thatA,B, r > 0
satisfy

‖F (x+ iy)‖ 6 A exp(B[x(1 − x)]−r) ∀ 0 < x < 1, y ∈ R.

ThenF ∈ L∞(Ω) with supΩ ‖F‖ = sup∂Ω ‖F‖.

This is a Maximum Principle, similar in some ways (but quite different in other ways)
to the Phragmén–Lindelöf theorems.
Proof: By consideringϕ ◦ F for eachϕ ∈ E∗, it is enough to consider the case
E = C; by consideringRe(F ), Im(F ), we can takeE = R. Now let F̃ be the unique
boundedharmonic function withF = F̃ on∂Ω. For example, we could obtaiñF by
conformal mapping and the well–known Poisson Formula for the disc. By considering
F − F̃ , we only need to prove the special case whereF is real–valued, and zero on
∂Ω.
By the Schwarz Reflection Principle, we can extendF to be harmonic onC+ and
continuous oniR, by definingF (n + x + iy) = −F (n − x + iy) repeatedly for
x ∈ [0, 1], y ∈ R andn = 1, 2, 3, . . ..
Thus|F | ≪ exp(C · dist(x,Z)−r), wheredist meansdistance. We haveF = g + ḡ
for someg ∈ Hol(C+). Now

g′(λ) =
1

2πr

∫ 2π

0

F (λ + reiθ)e−iθdθ,

so that|g′| ≪ exp(C′dist(x,Z)−r), by simple estimates forF with the Mean Value

Property. Also
∫ n+1/2

n−1/2 |g′(t)| dt is independent ofn, because of the reflection process
used to extendF . Thus

|g(z)| =
∣∣∣∣g(1) +

∫ x

1

g′(t) dt+ i

∫ y

0

g′(x+ is) ds

∣∣∣∣

6 A′(1 + |z|) exp

(
C′

dist(x,Z)r

)
.

Now considerh(z) = g(z)(1+z)−1. By applying Corollary 4.5 toh repeatedly on the
domains{|x− n| < 1− ǫ} (with trivial rescaling), we obtain

∫∞
−∞ |h(x+ iy)|2dy 6

M(ǫ) for all x > ǫ, i.e. h ∈ H2({Re(z) > ǫ}) for eachǫ > 0. Thush = Lu onC+

for someu onR+ with
∫∞
0
e−δt|u(t)|2dt <∞ for all δ > 0. But now

0 =
F (n)

1 + n
= 2Re[h(n)] =

∫ ∞

0

e−nt2(Reu)(t) dt

for all n = 1, 2, 3, . . .. SoL(Re u) is bounded and analytic on{Re(z) > 1/2}, with
a zero at eachn, and thus identically zero everywhere by the Blaschke condition for
zero sequences of Hardy space functions. ThusReu = 0 almost everywhere.
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Soū = −u a.e., and nowh(x) = −h(x) for all x > 0, so thatF (x) = g(x) + g(x) =
0. Now the proof is finished; we have shown thatF = 0 on{0 < x < 1}. Applying
this toFα = F (z + iα) for eachα ∈ R, we obtain thatF ≡ 0, as required.
�

We remark, omitting the details, that Corollary 4.6 can be used to prove Corollary 4.5,
so they are equivalent: given an analyticF on {|x| < 1}, considerU(z) = F (z) −
F (−z̄) on{0 6 x 6 1/2}.

5 proof of Theorem 3.1

We first prove (6). First consider the scalar caseE = C. By Theorem 2.1 applied to
F (z)/z, we see immediately thatF (z)/z = Lg(z) for someg, given by

g(t) ∼ 1

2π

∫ ∞

−∞

F (c+ iy)

c+ iy
e(c+iy)t dy ∼ 1

2πi

∫

c+iR

F (z)

z
ezt dz.

If R = +∞ then Theorem 2.1 also givesg(t) ≡ 0 for t 6 0. But
∫
c+iR

∣∣∣F (z)
z

∣∣∣ |dz| <
∞ by Hölder’s inequality, so in factg : R → C is continuous(after changingg on a
set of measure zero).
The estimate|g(t)| 6 M(1 + t) for t > 0 was already proved in [3] for the special
caseR = +∞ andF ∈ Lq(c + iR) for someq > 1. But that proof needed only the
estimate

∫
|z|>κ

|F (z)|
|z| |dz| = O(κ−ǫ) for some0 < ǫ < 1, which follows from (5) by

Hölder’s inequality. The proof also applies without change whenR <∞. Fort < 0,
we can simply apply the result toF (R− z).
The Hölder estimate (7) follows by direct calculation: we have

|g(t+ s)− g(s)| ≪
∫

c+iR

∣∣∣∣
F (z)

z

∣∣∣∣ ecs|ezt − 1| |dz|.

By Hölder’s inequality, this is

≪ ecs
(∫

c+iR

|F (z)|ν
|z|1−δ dy

)1/ν
(∫

c+iR

|ezt − 1|ν′

|z|α |dz|
)1/ν′

,

whereα =
(
1− 1−δ

ν

)
ν′ = 1 + δ ν

′

ν > 1. Since|z| ≈ c + |y| ≈ 1 + |y|, the second
integral above is

≪
∫

R

|e(c+iy)it − 1|ν′

(1 + |y|)α dy

≪ tν
′

∫

|c+iy|<t−1

|c+ iy|ν′

(1 + |y|)α dy +

∫

|c+iy|>t−1

dy

(1 + |y|)α

≪ tν
′

∫

|y|<At−1

(1 + |y|)ν′−αdy +

∫

|y|>Bt−1

dy

(1 + |y|)α

≪ tν
′

(1/t)ν
′−α+1 + (1/t)1−α ≪ tα−1.
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Heret is small,A,B > 0 depend onc, and|eλ − 1| ≪ |λ| for λ bounded; note also
thatν′ > α. Since(α − 1)/ν′ = δ/ν, we obtain (7) as required,in the special case
whereE = C.
Now letE be a general Banach space. A standard Closed Graph Theorem argument
shows that

(∫

c+iR

|ϕ(F (z))|ν
|z|1−δ dy

)1/ν

6 K‖ϕ‖E∗

for all ϕ ∈ E∗, with some constantK < ∞. For eachϕ ∈ E∗ we considerϕ(F (z))
and apply the scalar–valued case, to obtain a continuousgϕ : R→ C such that

ϕ(F (z)) = zLgϕ(z), gϕ(t) =
1

2πi

∫

c+iR

ϕ(F (z))

z
ezt dz.

Examining the above proof carefully, we find that the constant M in (6) is bounded
by an absolute constant multiple of

∫

c+iR

|ϕ(F (z))|
|z| |dz|+ sup

z∈Ω
|ϕ(F (z))| ≪ ‖ϕ‖E∗ .

Thus |gϕ(t)| 6 M ′‖ϕ‖E∗(1 + t) with someM ′ < ∞ for t > 0, and similarly for
t < 0, so we can defineg : R→ E∗∗ by g(t)(ϕ) = gϕ(t). As usual, regardE ⊆ E∗∗
via the canonical embedding. We also have a similar estimateto (7) for

gϕ(t+ s)− gϕ(s) = [g(t+ s)− g(s)](ϕ),

which gives (7) with‖g(t+ s)− g(s)‖E∗∗ instead of‖ · ‖E . Crucially, this also shows
thatg : R→ E∗∗ is continuous.
But nowϕ(F (z)) = z(Lgϕ)(z) = [zLg(z)](ϕ), so thatF (z) = zLg(z), considered
as anE∗∗-valued function; note thatLg converges because we have an estimate for
‖g(t)‖E∗∗ . Thus all is finished, except thatg(t) ∈ E∗∗ instead ofE. Put

H : R→ E, H(t) =
1

2πi

∫

c+iR

F (z)

z2
ezt dz,

which is well–defined and continuous because
∫
c+iR

‖F (z)‖E
|z|2 |dz| < ∞. Now (ϕ ◦

H)′(t) = (ϕ ◦ g)(t) for eachϕ ∈ E∗ andt ∈ R. Becauseg, ϕ ◦ g are continuous, we
have

ϕ(H(t)) − ϕ(H(0)) =

∫ t

0

ϕ(g(τ)) dτ.

HenceH(t) = H(0) +
∫ t
0 g(τ) dτ as anE∗∗-valued integral, soH ′(t) = g(t) for

all t ∈ R, again by continuity ofg : R → E∗∗. Thus finallyg(t) ∈ E as required,
becauseH isE-valued.
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6 Proof of Theorem 3.2

Now F : C+ → E is harmonic; so there existanalyticFj ∈ Hol(C+, E), with j =
1, 2, such thatF (z) = F1(z) + F2(z̄). The functionsF1, F2 are unique up to additive
constants. We will show thatF1, F2 can be chosen to satisfy (5) in Theorem 3.1, and
thatF1, F2 are almost bounded (with only logarithmic unboundedness); the result will
then follow by a similar proof to Theorem 3.1.
F is bounded, so we can representF on{Re(z) > c} by its Poisson integral:

∀u > 0, F (c+ u+ iv) =
1

π

∫ ∞

−∞
F (c+ iy)

u

u2 + (v − y)2
dy.

Now we define

G1(λ) =
1

2πi

∫

c+iR

F (z)

λ− z dz, G2(λ) =
1

2πi

∫

c+iR

F (z)

λ− z̄ dz

for all Re(λ) > c, so that

Gj ∈ Hol({Re(λ) > c}, E), F (λ) = G1(λ) +G2

(
λ̄
)
.

Because(G1−F1)(λ) = −(G2−F2)(λ̄) onRe(λ) > c, the functionsG1−F1 ≡ F2−
G2 are constant; so we have analytic continuationsGj ∈ Hol(C+, E) for j = 1, 2.
We use the standard theory of the Weighted Hilbert Transform, found in [22], [16]
and many other sources. The famousMuckenhoupt weight conditionw ∈ Aν(R) for
w : R→ [0,+∞], 1 < ν <∞ is

sup
bounded intervalsI ⊂ R

(
1

|I|

∫

I

w(t) dt

)(
1

|I|

∫

I

w(s)−1/(ν−1) ds

)ν−1
<∞.

Noww ∈ Aν(R) is equivalentto the Hilbert transform being bounded onLν(w):

Hf(t) = lim
ε→0+

1

π

∫

y∈R, |y−t|>ε

f(y)

t− y dy exists for a.e.t ∈ R,

wheneverf ∈ Lν(w), i.e.
∫
R
|f |νw dt < ∞, and furthermore‖Hf‖Lν(w) 6

Cw‖f‖Lν(w) for some constantCw <∞ depending only onw.
For our problem, we easily check thatw(y) = |y|−ς satisfiesw ∈ Aν(R) for any
0 < ς < 1. Assume for the moment thatE = C. Define

Hε(α) =

∫

|y−α|>ε

F (c+ iy)

α− y dy,

so that by aboveHε(α) → H(α) as ε → 0, for almost everyα ∈ R and some
H ∈ Lν(|α|−(1−δ)). Fix α ∈ R such thatHε(α) → H(α) does hold. ForR large,
the condition (5) gives

∫
|y|>R

|F (c+iy)|
|y| dy ≪ R−η, and so

Hε(α) =

∫

ε<|y−α|<R

F (c+ iy)

α− y dy +O(R−η)
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asR→∞, for some unimportantη > 0. ButF is harmonic and thus smooth onC+,

so
∫
|y−α|<1

∣∣∣F (c+iy)−F (c+iα)
α−y

∣∣∣ dy <∞. Also
∫
ε<|y−α|<R

dy
α−y = 0, so we can write

Hε(α) =

∫

ε<|y−α|<R

F (c+ iy)− F (c+ iα)

α− y dy +O(R−η)

=

∫

|y−α|<R

F (c+ iy)− F (c+ iα)

α− y dy + oR + oε

whereoε → 0 asε → 0+, uniformly inR > 1, and similarlyoR → 0 asR → ∞,
uniformly in 0 < ε < 1. Now, for all0 < ξ < 1,

G1(c+ iα+ ξ) =
1

2π

∫

|y−α|<R

F (c+ iy)

ξ + i(α− y)
dy +O(R−η)

=
1

2π

∫

|y−α|<R

F (c+ iy)− F (c+ iα)

ξ + i(α− y)
dy + oR

+ F (c+ iα)I(R, ξ),

where

I(R, ξ) =
1

2π

∫

|y−α|<R

dy

ξ + i(α− y)
=

tan−1(R/ξ)

π
.

Now fix R and letξ → 0+. ThenI(R, ξ) → 1
2 andG1(c + ξ + iα) → G1(c + iα),

simply becauseG1 ∈ Hol(C+), so that

G1(c+ iα) =
1

2
F (c+ iα) +

1

2πi
Hε(α) + oR + oε

by Dominated Convergence, because
∫
|y−α|<R

∣∣∣F (c+iy)−F (c+iα)
α−y

∣∣∣ dy < ∞. Finally

let ε → 0 andR → ∞, to giveG1(c + iα) = 1
2F (c + iα) + 1

2πiH(α). This is true
for almost everyα, andF (c + iα), H(α) are both inLν(|α|−(1−δ)), and thus so is
G1(c+ iα).
Now we have

∫
c+iR

|G1|ν
|z|1−δ dy <∞, in the special caseE = C. In general, we get the

same forϕ ◦ G1, for eachϕ ∈ E∗. This is the estimate (5) we need in Theorem 3.1,
for G1 instead ofF .
Theorem 3.1 does not apply toG1 becauseG1 may be unbounded. However, the
unboundedness is at mostlogarithmic, by two simple calculations:

Lemma 6.1 Let F : Ω → E be harmonic, for some domainΩ. Then, for every
z ∈ Ω andr > 0 such that{λ : |λ− z| 6 r} ⊂ Ω, we have

∂F

∂z
=

1

2πi

∮

|λ−z|=r

F (λ)

(λ− z)2
dλ,

∥∥∥∥
∂F

∂z

∥∥∥∥ 6
max|λ−z|=r ‖F (λ)‖

r
.

The proof is immediate, from power series representations.
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Lemma 6.2 Let F : C+ → E be harmonic and bounded, withF (z) = G1(z) +
G2(z̄) for G1, G2 ∈ Hol(C+, E). Then there exist constantsMj <∞, j = 1, 2, such
that

‖Gj(x+ iy)‖E 6Mj

(
1 + | log x|+ log(1 + |y|)

)
. (12)

Proof: Givenu+ iv ∈ C+, we have

Gj(u+ iv)−Gj(1) =



∫
x∈[1,S],
y=0

+

∫
x=S,
y∈[0,v]

+

∫

x∈[S,u],
y=v


G′j(z) dz,

for any S > 1. But G′1 = ∂F/∂z, so with r = x/2 in Lemma 6.1 we obtain

‖G′1(x+ iy)‖ 6 2
(

supC+
‖F‖

)
/x. Thus

‖G1(u+ iv)‖ 6 ‖G1(1)‖+ 2 sup
C+

‖F‖
(

logS +
|v|
S

+ | logS − log u|
)
.

Now lettingS = |v|+ 1 gives the result forG1, and the proof forG2 is similar.
�

The logarithmic terms are unavoidable; e.g.2θ = −i(log z − log z̄) is harmonic and
bounded onC+ = {reiθ : r > 0, |θ| < π/2}.
Finally, to complete the proof of Theorem 3.2:G1 satisfies (12), and also the vertical
estimate (5) onc+ iR. Similarly, or by consideringF (z̄) instead,G2 also satisfies the
same estimates. The local Hölder estimate (7) follows fromthe proof of Theorem 3.1
without change, since only (5) is needed.
To estimate‖gj(t)‖ for larget > 0, we use the same method as Theorem 3.1 (which
in fact is the method used in [3]), but with additional logarithmic estimates. As usual,
considerϕ ◦ F for eachϕ ∈ E∗. In the contour integral formula

ϕ ◦ gj(t) =
1

2πi

∫

c+iR

ϕ ◦Gj(z)

z
ezt dz,

use Cauchy’s Theorem to replacec+ iR by the contours{c+ iy : |y| > κ}, {x± iκ :

t−1 < x < c} and{t−1 + iy : |y| 6 κ}, for t large. Estimating
∣∣∣ϕ◦Gj(z)z ezt

∣∣∣ on each

of these contours finally gives that|ϕ ◦ gj(t)|/‖ϕ‖E∗ is

≪ ectκ−ǫ + (1 + log t+ log(1 + κ))
[
ectκ−1 + exp(t−1 · t) log(κt)

]

for t large and some0 < ǫ < 1, which is≪ t2 upon takingκ = exp(ct/ǫ).
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Abstract. The main aim of the paper is to present some results
about products of pairwise mutually permutable subgroups and local
classes.
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1 Introduction

If A and B are subgroups of a group G, the product AB of A and B is defined
to be the subset of all elements of G with the form ab, where a ∈ A, b ∈ B. It
is well known that AB is a subgroup of G if and only if AB = BA, that is, if
the subgroups A and B permute. Should it happen that AB coincides with the
group G, with the result that G = AB = BA, then G is said to be factorized
by its subgroups A and B. More generally, a group G is said to be the product
of its pairwise permutable subgroups G1, G2, . . . , Gn if G = G1G2 . . .Gn and
GiGj = GjGi for all integers i and j with i, j ∈ {1, 2, . . . , n}. This implies
that for every choice of indices 1 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n, the product
Gi1Gi2 . . .Gik is a subgroup of G. Groups which are product of two of its
subgroups have played a significant part in the theory of groups over the past
sixty years. Among the central problems considered the following ones are of
interest to us:

Let the group G = G1G2 . . .Gn be the product of its pairwise permutable
subgroups G1, G2, . . . , Gn and suppose that the factors Gi, 1 ≤ i ≤ n, belong
to a class of groups X . When does the group G belong to X?. How does the
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structure of the factors Gi, 1 ≤ i ≤ n affect the structure of the group G?.

Obviously, if Gi, 1 ≤ i ≤ n, are finite, then the group G is finite. However not
many properties carry over from the factors of a factorized group to the group
itself. Indeed if one thinks about properties such as solubility, supersolubility,
or nilpotency, one soon realizes the difficulty of using factorization to obtain
information about the structure of the whole group. Two well known examples
support the above claim: there exist non abelian groups which are products of
two abelian subgroups and every finite soluble group is the product of pairwise
permutable nilpotent subgroups. However a prominent result by Itô shows that
every product of two abelian groups is metabelian, and an important result of
Kegel and Wielandt shows the solubility of every finite group G = G1G2 . . .Gn
which is the product of pairwise permutable nilpotent subgroups Gi, 1 ≤ i ≤ n.
In the much more special case when Gi, 1 ≤ i ≤ n, are normal nilpotent
subgroups of G, the product G1G2 . . . Gn is nilpotent. This is a well known
result of Fitting. However, if G1, G2, . . . , Gn are normal supersoluble subgroups
of G, the product G1G2 . . . Gn is not supersoluble in general even in the finite
case (see [1]). Consequently it seems reasonable to look into these problems
under additional assumptions. In this context, assumptions on permutability
connections between the factors turn out to be very useful. One of the most
important ones is the mutual permutability introduced by Asaad and Shaalan in
[1]. We say that two subgroups A and B of a group G are mutually permutable
if A permutes with every subgroup of B and B permutes with every subgroup
of A. If G = AB and A and B are mutually permutable, then G is called
a mutually permutable product of A and B. More generally, a group G =
G1G2 . . . Gn is said to be the product of the pairwise mutually permutable
subgroups G1, G2, . . . , Gn if Gi and Gj are mutually permutable subgroups of
G for all i, j ∈ {1, 2, . . . , n}. Asaad and Shaalan ([1]) proved that if G is a
mutually permutable product of the subgroups A and B and A and B are
finite and supersoluble, then G is supersoluble provided that either G′, the
derived subgroup of G, is nilpotent or A or B is nilpotent. This result was
the beginning of an intensive study of such factorized groups (see, for instance,
[2, 4, 6, 9] and the papers cited therein).

The extension of the above results on mutually permutable products of two
subgroups to general pairwise mutually permutable products turns out to be
difficult in many cases. Carocca proved (see [10]) that if the derived sub-
group of a pairwise mutually permutable product of supersoluble subgroups
is nilpotent, then the group G is supersoluble. However a pairwise mutually
permutable product of supersoluble groups in which one of them is nilpotent
is not supersoluble in general (see [4, Example]). Nevertheless in [4] we ob-
tained that if G is the pairwise mutually permutable product of supersoluble
subgroups with all factors but one nilpotent, then the group is supersoluble.

Some interesting results on pairwise mutually permutable products arise when
the factors belong to some classes of finite groups which are defined in terms
of permutability. They are the class of PST -groups, or finite groups G in
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which every subnormal subgroup of G permutes with every Sylow subgroup
of G, the class of PT -groups, or finite groups in which every subnormal
subgroup is a permutable subgroup of the group, the class of T -groups, or
groups in which every subnormal subgroup is normal, and the class of Y-
groups, or finite groups G for which for every subgroup H and for all primes q
dividing the index |G : H | there exists a subgroup K of G such that H is con-
tained in K and |K : H | = q, and their corresponding local versions (see [2, 3]).

The main purpose of this article is to take this program of research a step fur-
ther by analyzing the structure of the pairwise mutually permutable products
whose factors belong to some local classes of finite groups closely related to
the classes of all T -groups and Y-groups.

Therefore in the sequel all groups considered are finite.

2 The class C̄p and pairwise mutually permutable products

Throughout this section, p will be a prime.
Recall that a group G satisfies property Cp, or G is a Cp-group, if each subgroup
of a Sylow p-subgroup P of G is normal in the normalizer NG(P ). This class of
groups was introduced by Robinson in his seminal paper [14] as a local version
of the class of all soluble T -groups. In fact, he proved there that a group G is
a soluble T -group if and only if G is a Cp-group for all primes p.
In [7] the second and third authors introduce and analyze an interesting class
of groups closely related to the class of all T -groups. A group G is a T1-group if
G/Z∞(G) is a T -group. Here Z∞(G) denotes the hypercenter of G, that is, the
largest normal subgroup of G having a G-invariant series with central G-chief
factors. The local version of the class T1 in the soluble universe is the class C̄p
introduced and studied in [8]:

Definition 1. Let G be a group and let Zp(G) be the Sylow p-subgroup of
Z∞(G). A group satisfies C̄p if and only if G/Zp(G) is a Cp-group.

Theorem A ([8]) A group G is a soluble T1-group if and only if G is a
C̄p-group for all primes p.

The objective of this section is to analyze the behaviour of pairwise mutually
permutable products with respect to the class C̄p.

We begin with some results concerning the classes Cp and C̄p.

Lemma 1. [8, Lemma 2] Let p be a prime. Then:

(i) Cp is a subgroup-closed class.

(ii) Let M be a normal p′-subgroup of a group G. If G/M is a Cp-group, then
so is G.
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(iii) If G is a Cp-group and N is a normal subgroup of G, then G/N is a
Cp-group.

Lemma 2. Let G be a C̄p-group and let N be a normal subgroup of G. Then
G/N is a C̄p-group.
Proof Let Zp(G) be the Sylow p-subgroup of Z∞(G). Since G/Zp(G) is a
Cp-group, it follows that G/Zp(G)N is a Cp-group by Lemma 1. Let H/N
denote the Sylow p-subgroup of Z∞(G/N). Since Zp(G)N/N is contained in
H/N , we have that (G/N)/(H/N) is isomorphic to a quotient of G/Zp(G)N .
By Lemma 1, (G/N)/(H/N) is a Cp-group. Therefore G/N is a C̄p-group.

Recall that a group G is said to be p-supersoluble if it is p-soluble and every
p-chief factor of G is cyclic. It is rather clear that the derived subgroup of a
p-supersoluble group is p-nilpotent and, if p = 2, the group itself is 2-nilpotent.

Lemma 3. [8, Lemma 3] Let G be a p-soluble group. If G is a C̄p-group, then
G is p-supersoluble.

The main aim of this section is to show that pairwise mutually permutable
products of p-soluble C̄p-groups are p-supersoluble.

Theorem 1. Let G = G1G2 . . . Gk be the pairwise mutually permutable product
of the subgroups G1, G2, . . . , Gk. If Gi is a p-soluble C̄p-group for every i ∈
{1, 2, . . . , k}, then G is p-supersoluble.

Proof Assume that the theorem is false, and let G be a counterexample with
minimal order. By [4, Theorem 1], G is p-soluble. If p = 2, then Gi is 2-
nilpotent for all i = 1, 2, . . . , k and so G is 2-supersoluble by [4, Theorem
3]. This contradiction implies that p is odd. Note, that the hypotheses of
the theorem are inherited by all proper quotients of G. Therefore the minimal
choice of G yields G/N p-supersoluble for every minimal normal subgroup N of
G. Since the class of p-supersoluble groups is a saturated formation, it follows
that G has a unique minimal normal subgroup, say N , G/N is p-supersoluble,
the Frattini subgroup of G is trivial and then N = CG(N) = F (G) = Op(G).
Moreover, N is an elementary abelian p-group of rank greater than 1.
By Lemma 3, Gi is p-supersoluble, for all i = 1, 2, . . . , k. Consequently (Gi)

′

is p-nilpotent. Furthermore, by [4, Lemma 1(iii)], we have that (Gi)
′ is a

subnormal subgroup of G for all i. Since Op′(G) = 1, it follows that (Gi)
′

is a p-group and then Gi is supersoluble for all i. Then Gi is a Sylow tower
group with respect to the reverse natural ordering of the prime numbers for
all i. Applying [4, Corollary 1], G is a Sylow tower group with respect to the
reverse natural ordering of the prime numbers. Therefore p is the largest prime
dividing the order of G and F (G) = N is the Sylow p-subgroup of G.
Now we observe the following facts:

(i) For each i ∈ {1, 2, . . . , k}, either N ≤ Gi or N ∩Gi = 1.
Put R := N∩Gi, and assume that R 6= 1. Let Hj be a Hall p′-subgroup of
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Gj (such Hall subgroups exist since Gj is soluble). Then R = GiHj ∩N ,
so Gj ≤ NHj ≤ NG(R) for every j. Hence R is a normal subgroup of G
and R = N .

(ii) Let N ≤ Gi, with i ∈ {1, 2, . . . , k}. Then Z∞(Gi) = Z(Gi), N = Z(Gi)×
[N,Gi], and every subgroup of [N,Gi] is Gi-invariant.
Clearly N ≤ F (Gi) and Op′ (F (Gi)) ≤ CG(N) = N . Thus F (Gi) = N .
Therefore Z∞(Gi) ≤ N , and Z∞(Gi) = Z(Gi), since Gi/CGi(Z∞(Gi)) is
a p-group (Gi stabilizes a series of subgroups of Z∞(Gi), see [11, A, 12.4])
and N is a Sylow p-subgroup of Gi. Moreover, N = Z(Gi)× [N,Gi] since
Gi/N is a p′-group. As Gi ∈ C̄p and Z(Gi) = Z∞(Gi), Gi normalizes
every subgroup of [N,Gi].

(iii) Let N ≤ Gi with i ∈ {1, 2, . . . , k}, then every y ∈ Gi \ N induces a
non-trivial GF (p)-scalar multiplication on [N,Gi]; in particular CN (y) =
Z(Gi) and Gi/N is cyclic.
Note that G/N acts faithfully on N . So y induces a non-trivial linear
mapping on the GF (p)-space [N,Gi] that leaves invariant every subspace.
It is well-known that these mappings come from multiplication with an
element of GF (p).

(iv) Let N ≤ Gi and N ≤ Gj with i ∈ {1, 2, . . . , k}. Suppose that
NGi(Z(Gj)) � N . Then Gi ≤ NG(Z(Gj)).
Put R := NGi(Z(Gj)). By (iii), Z(Gj) = (Z(Gj) ∩ Z(Gi))× [Z(Gj), R],
and [Z(Gj), R] ≤ [N,Gi]. Thus by (ii), Z(Gj) is Gi-invariant.

(v) Suppose that N ≤ Gi and Gj ≤ NG(Z(Gi)). Then [Gi, Gj ] ≤ N ; in
particular, if N ≤ Gj , Gi ≤ NG(Z(Gj)).
Put H := GiGj . Then H/N is a p′-group. By Maschke’s Theorem
there exists an H-invariant complement N0 for Z(Gi) in N . By (iii)
N0 = [N,Gi] and [Gi, Gj ] ≤ CH(N0). Since also [Gi, Gj ] ≤ CH(Z(Gi)),
it follows that [Gi, Gj ] ≤ CH(N) ≤ N . Moreover if N ≤ Gj we have that

GHj = GGij = Gj [Gi, Gj ] = Gj , that is, Gj is a normal subgroup of H
and then Gi normalizes Z(Gj).

(vi) Let R ≤ N ∩Gi and Gj ∩N = 1. Then Gj normalizes R.
Since RGj is a subgroup of G, RGj ∩ N = R is a normal subgroup of
RGj .

(vii) Suppose that N ≤ Gj . Then Z(Gj) is a normal subgroup of G.
We may assume that there exists i ∈ {1, 2, . . . , k} such that Gi �
NG(Z(Gj)). In particular Z(Gj) 6= 1, and Z(Gj) ≤ N by (ii). Now the
application of (vi) yields Gi∩N 6= 1 and so by (i) also N ≤ Gi. Moreover,
Gi /∈ Cp and so Z∞(Gi) 6= 1. Applying (ii) Z∞(Gi) = Z(Gi) 6= 1, and by
(v) Gj � NG(Z(Gi)). Hence the situation is completely symmetric in i
and j.
Put H := GiGj . We first show:
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(*) Gi ∩ Gj = N , and NH(RN) = Gk for every k ∈ {i, j} and R ≤ Gk
with R � N .
Since Gk/N is cyclic by (iii), RN is a normal subgroup of Gk and
so NH(RN) = NGt(RN)Gk, where {t, k} = {i, j}. Now (iv) yields
NGt(RN) ≤ N . This shows that Gi ∩Gj = N and NH(RN) = Gk.
As a consequence of (*), Gi/N and Gj/N have trivial intersection, there-
fore H/N = (Gi/N)(Gj/N) is the totally permutable product of Gi/N
and Gj/N (see [6, Lemma 1]), that is, every subgroup of Gi/N permutes
with every subgroup of Gj/N . Thus there exists RN/N a minimal nor-
mal subgroup of H/N contained in Gi/N or in Gj/N (see [10]), suppose
RN/N ≤ Gi/N without loss of generality. Then NH(RN) = H . On the
other hand, by (*) NH(RN) = Gi. But then Gj ≤ Gi, a contradiction
since Gj � NG(Z(Gi)).

Since not all the factors Gi are p′-groups, there exists Gi with N ≤ Gi. It
suffices to show that every subgroup R of N is normal in G. By (i) and (vi)
every Gj with N � Gj normalizes R. On the other hand, by (vii) for every
Gj with N ≤ Gj either N = Z(Gj) = Gj or Z(Gj) = 1. In the first case
obviously Gj ≤ NG(R). In the second case Gj ∈ Cp and again Gj ≤ NG(R).
Consequently | N |= p, the final contradiction.

Combining Theorems A and 1 we have:

Corollary 1. Let G = G1G2 . . . Gk be a product of the pairwise mutually
permutable soluble T1-groups G1, G2, . . . , Gk. Then G is supersoluble.

3 The class Ẑp and pairwise mutually permutable products

Another interesting class of groups closely related to T -groups is the class T0
of all groups G whose Frattini quotient G/Φ(G) is a T -group. This class was
introduced in [15] and studied in [12, 13, 15].
The procedure of defining local versions in order to simplify the study of global
properties has also been successfully applied to the study of the classes T0 ([12])
and Y ([3]).

Definition 2. Let p be a prime and let G be a group.

(i) ([12]) Let Φ(G)p be the Sylow p-subgroup of the Frattini subgroup of G.

G is said to be a Ĉp-group if G/Φ(G)p is a Cp-group.

(ii) ([3, Definition 11]) We say that G satisfies Zp or G is a Zp-group when
for every p-subgroup X of G and for every power of a prime q, qm,
dividing | G : XOp′(G) |, there exists a subgroup K of G containing
XOp′(G) such that | K : XOp′(G) |= qm.
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It is rather clear that the class of all Ĉp-groups is closed under taking epi-

morphic images and all p-soluble groups belonging to Ĉp are p-supersoluble.
Moreover:

Theorem B ([12]) A group G is a soluble T0-group if and only if G is a
Ĉp-group for all primes p.

In the following two results we gather some useful properties of the Zp-groups.

Lemma 4. Let G be a group.

(i) If G is a p-soluble Zp-group, then G is p-supersoluble. [3, Lemma 20]

(ii) If G is a p-soluble Zp-group and N is a normal subgroup of G, then G/N
is a Zp-group. [3, Lemma 18]

(iiii) Let G be a soluble group. G is a Y-group if and only if G is a Zp-group
for every prime p. [3, Theorem 15]

Theorem C [3, Theorem 13] Let p be a prime and G a p-soluble group. Then
G satisfies Zp if and only if G satisfies one of the following conditions:

(1) G is p-nilpotent.

(2) G(p)/Op′(G(p)) is a Sylow p-subgroup of G/Op′(G(p)) and for every p-
subgroup H of G(p), we have that G = NG(H)G(p).

Here G(p) denotes the p-nilpotent residual of G, that is, the smallest normal
subgroup of G with p-nilpotent quotient.

The results of [5] show that the class Cp is a proper subclass of the class Zp.

In [2, Theorem 16] it is proved that a pairwise mutually permutable product
of Y-groups is supersoluble. There it is asked whether a pairwise mutually
permutable product of Zp-groups is p-supersoluble. In this section, we answer
to this question affirmatively. In fact, the main purpose here is to study pairwise
mutually permutable products whose factors belong to some class of groups
closely related to Zp-groups.

Definition 3. Let p be a prime, let G be a group and let Φ(G)p be the Sylow

p-subgroup of the Frattini subgroup of G. G is said to be a Ẑp-group if G/Φ(G)p
is a Zp-group.

Lemma 5. Let p be a prime andM a normal subgroup of G. If G is a Ẑp-group,
then G/M is a Ẑp-group.

Proof Assume that G is a Ẑp-group. Then G/Φ(G)p is a Zp-group. Since
Φ(G)pM/M is contained in Φ(G/M)p = L/M and the class of all Zp-groups
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is closed under taking epimorphic images, we have that G/L belongs to Zp.
This is to say that G/M is a Ẑp-group.

Since the class of all p-supersoluble groups is a saturated formation and, by
Lemma 4(i), every p-soluble Zp-group is p-supersoluble, we have:

Lemma 6. Let p be a prime and let G be a p-soluble group. If G is a Ẑp-group,
then G is p-supersoluble.

The main result of this section shows that pairwise mutually permutable prod-
ucts of Ẑp-groups are p-supersoluble.

Theorem 2. Let G = AB be the mutually permutable product of the p-
supersoluble group A and the p-soluble Ẑp-group B. Then G is p-supersoluble.

Proof Assume that the result is false, and let G be a counterexample of
minimal order. Applying [4, Theorem 1], G is p-soluble. Let N be a minimal
normal subgroup of G. Then G/N is the mutually permutable product of the
subgroups AN/N and BN/N . Moreover, AN/N is p-supersoluble and BN/N
is a p-soluble Ẑp-group by Lemma 5. The minimality of G implies that G/N is
p-supersoluble. Since p-supersoluble groups is a saturated formation, it follows
that G has a unique minimal normal subgroup, N say. Moreover N is an
elementary abelian p-group of rank greater than 1 and N = CG(N) = F (G) =
Op(G). Note further that, by Lemma 6, A and B are p-supersoluble.
Applying [6, Lemma 1(vii)], we have that A and B either cover or avoid N . If
A and B both avoid N , then |N | = p by [6, Lemma 2] and G is p-supersoluble.
This contradiction allows us to assume that N ≤ A. Suppose that B ∩N = 1
and let X be a minimal normal subgroup of A such that X ≤ N . Then
|X | = p and XB ∩ N = X is a normal subgroup of XB. It means that B
normalizes X and so X is a normal subgroup of G. This would imply that G is
p-supersoluble, contrary to our supposition. We obtain also a contradiction if
we assume N ≤ B and A∩N = 1. Therefore we may suppose that N ≤ A∩B.
Note that, by [4, Theorem 3], neither A nor B is p-nilpotent.
On the other hand, by [6, Theorem 1], we have that A′ and B′ are subnormal
subgroups of G. Since they are p-nilpotent and Op′p(G) = N , it follows that
〈A′, B′〉 ≤ N . Let 1 6= B(p) be the p-nilpotent residual of B. Then B(p) ≤
B′ ≤ N . Now observe that Op′(B) = 1 and B is p-closed. Then it is an
elementary fact that Φ(B) = Φ(Op(B)) = Φ(B)p. Since B is not p-nilpotent,
Theorem C gives B(p) ∈ Sylp(B), so N = B(p) and Φ(B) = Φ(N) = 1. In
particular B ∈ Zp and by Theorem C every subgroup of N is normal in B.
Therefore, if X is a minimal normal subgroup of A contained in N , we have
that X is a normal subgroup of G of order p. Consequently, G is p-supersoluble,
the final contradiction.

Theorem 3. Let G = G1G2 . . . Gn be the pairwise mutually permutable product
of the subgroups G1, G2, . . . , Gn. If Gi is a p-soluble Ẑp-group for every i, then
G is p-supersoluble.
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Proof Assume that the theorem is false, and among the counterexamples
with minimal order choose one G = G1G2 . . . Gn such that the sum |G1| +
|G2| + . . . + |Gn| is minimal. By Theorem 2, we have n > 2. Moreover, by
[4, Theorem 1], G is p-soluble. It is rather clear that the hypotheses of the
theorem are inherited by all proper quotients of G. Hence G contains a unique
minimal normal subgroup, N say, N is not cyclic, G/N is p-supersoluble and
N = CG(N) = Op(G). Hence Op′(G) = 1. By Lemma 6, Gi is p-supersoluble
and hence G′i is p-nilpotent for every i. Applying Lemma 1(iii) of [4], we have
that G′i is a subnormal subgroup of G for each i ∈ {1, 2, . . . , n}. Hence G′i
is contained in N and so Gi is supersoluble for each i ∈ {1, 2, . . . , n}. By
[4, Corollary 1], G is a Sylow tower group with respect to the reverse natural
ordering of the prime numbers, p is the largest prime divisor of |G| and N is
the Sylow p-subgroup of G.
Let i ∈ {1, 2, . . . , n} such that p divides |Gi|. Then N ∩ Gi is the non-trivial
Sylow p-subgroup of Gi. Let j ∈ {1, 2, . . . , n} such that j 6= i. Then Gi(Gj)p′ is
a subgroup of G and N ∩Gi is a Sylow p-subgroup of Gi(Gj)p′ . Since Gi(Gj)p′

is a Sylow tower group with respect to the reverse natural ordering of the prime
numbers, it follows that N ∩Gi is normal in Gi(Gj)p′ . This implies that N ∩Gi
is a normal subgroup of G and so N = N ∩Gi is contained in Gi.
Assume that there exists j ∈ {1, 2, . . . , n} such that p does not divide |Gj |.
We may assume without loss of generality j = 1. Then G′1 = 1, that is, G1

is an abelian p′-group, and T = G2G3 . . .Gn is p-supersoluble by the choice of
G. Let R be a minimal normal subgroup of T contained in N . Then |R| = p.
Moreover, G1R is a subgroup of G because N is contained in some of the factors
Gl, l > 1. Hence G1R ∩ N = R is a normal subgroup of G1R. Hence R is
a normal subgroup of G and so N = R. This is a contradiction. Therefore p
divides the order of Gi for every i ∈ {1, 2, . . . , n}. Consequently, N is contained
in Gi for every i ∈ {1, 2, . . . , n}.
Consider now W = G2G3 . . . Gn. Then W is p-supersoluble. Let X be a
minimal normal subgroup of W contained in N . Then |X | = p. Recall
that G1 is a Ẑp-group. Assume that G1/Φ(G1)p is p-nilpotent. Then G1 is
p-nilpotent. Since N is self-centralizing in G, it follows that G1 = N . Suppose
that G1/Φ(G1)p satisfies condition (2) of Theorem C. Then we can argue as
in the proof of Theorem 2 to obtain that N = G1(p), the p-nilpotent residual
of G1, and Φ(G1)p = 1. Consequently every subgroup of N is normal in G1.
In both cases, we have that G1 normalizes X . It means that N = X , the final
contradiction.

Applying Theorems C and 3 we have:

Corollary 2. Let G = G1G2 . . . Gn be a group such that G1, G2, . . . , Gn are
pairwise mutually permutable subgroups of G. If all Gi are p-nilpotent, then G
is p-supersoluble.

Since every Zp-group is a Ẑp-group, we can apply Lemma 4(iii) and Theorem
3 to obtain the following:
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Corollary 3. [2, Theorem 16] Let G = G1G2 . . . Gn be a group such that
G1, G2, . . . , Gn are pairwise mutually permutable subgroups of G. If all Gi are
Y-groups, then G is supersoluble.

Finally, applying Theorems B and 3, we have:

Corollary 4. Let G = G1G2 . . . Gn be a group such that G1, G2, . . . , Gn are
pairwise mutually permutable subgroups of G. If all Gi are soluble T0-groups,
then G is supersoluble.
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Dr. Moliner 50, 46100 Burjassot
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Abstract. In this paper, firstly we find an optimal constant for a
convolution problem on the unit circle via the variational method.
Then by using the optimal constant, we give a new and improved
sufficient condition on the initial data to guarantee the corresponding
strong solution blows up in finite time. We also analyze the cor-
responding ordinary difference equation associate to the convolution
problem and give numerical simulation for the optimal constant.
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1 Introduction

Although a rod is always three-dimensional, if its diameter is much less than
the axial length scale, one-dimensional equations can give a good description
of the motion of the rod. Recently Dai [16] derived a new (one-dimensional)
nonlinear dispersive equation including extra nonlinear terms involving second-
order and third-order derivatives for a compressible hyperelastic material. The
equation reads

vτ + σ1vvξ + σ2vξξτ + σ3(2vξvξξ + vvξξξ) = 0,

*Corresponding author, Email: yzhoumath@zjnu.edu.cn
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where v(ξ, τ) represents the radial stretch relative to a pre-stressed state, σ1 6=
0, σ2 < 0 and σ3 ≤ 0 are constants determined by the pre-stress and the
material parameters. If one introduces the following transformations

τ =
3
√−σ2
σ1

t, ξ =
√−σ2x,

then the above equation turns into

ut − utxx + 3uux = γ(2uxuxx + uuxxx), (1.1)

where γ = 3σ3/(σ1σ2). In [17], the authors derived that value range of γ is
from -29.4760 to 3.4174 for some special compressible materials. From the
mathematical view point, we regard γ as a real number.
When γ = 1 in (1.1), we recover the shallow water (Camassa-Holm) equation
derived physically by Camassa and Holm in [4] (found earlier by Fuchssteiner
and Fokas [18] as a bi-Hamiltonian generalization of the KdV equation) by ap-
proximating directly the Hamiltonian for Euler’s equations in the shallow water
region, where u(x, t) represents the free surface above a flat bottom. Recently,
the alternative derivations of the Camassa-Holm equation as a model for water
waves, respectively as the equation for geodesic flow on the diffeomorphism
group of the circle were presented in [27] and respectively in [9, 29]. For the
physical derivation, we refer to works in [10, 26]. Some satisfactory results
have been obtained for this shallow water equation. Local well-posedness for
the initial datum u0(x) ∈ Hs with s > 3/2 was proved by several authors,
see [30, 32, 35]. For the initial data with lower regularity, we refer to [33]
and [2]. While the regularized generalized Camassa–Holm equation was an-
alyzed in [15]. Moreover, wave breaking for a large class of initial data has
been established in [5, 7, 8, 30, 38, 39]. However, in [37], global existence of
weak solutions is proved but uniqueness is obtained only under an a priori
assumption that is known to hold only for initial data u0(x) ∈ H1 such that
u0 − u0xx is a sign-definite Radon measure (under this condition, global exis-
tence and uniqueness was shown in [12] also). Also it is worth to note that
the global conservative solutions and global dissipative solutions (with energy
being lost when wave breaking occurs) are constructed in [2, 22, 24] and [3, 25].
Recently, in [21], Himonas, Misio lek, Ponce and the third author showed the
infinite propagation speed for the Camassa-Holm equation in the sense that a
strong solution of the Cauchy problem with compact initial profile can not be
compactly supported at any later time unless it is the zero solution, which is
an improvement of previous results in this direction obtained in [6].
If γ = 0, (1.1) is the BBM equation, a well-known model for surface waves in
a canal [1], and its solutions are global.
For general γ ∈ R, the rod equation (1.1) was studied sketchily by the Con-
stantin and Strauss in [13] first. Local well-posedness of strong solutions to
(1.1) was established by applying Kato’s theory [28] and some sufficient con-
ditions on the initial data were found to guarantee the finite blow-up of the
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corresponding solutions for spatially nonperiodic case. Weak solutions was con-
structed in [14, 23]. Later, in [41], the third author proved the well-posedness
result in detail, and various refined sufficient conditions on the initial data were
found to guarantee the finite blow-up of the corresponding solutions for both
spatially periodic and nonperiodic cases. Recently, blow-up criteria for a spe-
cial class of initial data for the periodic rod equation was presented in [31, 42],
where S = R/Z is the unit circle. Furthermore, in [20], Guo and the third
author have investigated the persistence properties for this rod equation. It
should be mentioned that for γ < 1, (1.1) admits smooth solitary waves ob-
served by Dai and Huo [17]. Let u(x, t) = φ(ξ), ξ = x− ct be the solitary wave
to (1.1). It was shown that φ(ξ) satisfies

±ξ = −√−γ
(

1

2
π + arcsin

2γφ− (γ + 1)c

(1 − γ)c

)
− ln

(
√
c(c− φ) +

√
c(c− γφ))2

(1− γ)cφ

for γ < 0 and

±ξ =
√
γ ln

(
√
c− γφ)−

√
γ(c− φ))2

(1− γ)c
− ln

(
√
c− γφ+

√
c− φ)2

(1 − γ)φ

for 0 < γ < 1. In [13] (see [40] also), Constantin and Strauss proved the
stability of these solitary waves by applying a general theorem established by
Grillakis, Shatah and Strauss [19].

We conclude this introduction by outlining the rest of the paper. In section 2,
we recall the local well-posedness for (1.1) with initial datum u0 ∈ Hs, s > 3/2,
and the lifespan of the corresponding solution is finite if and only if its first-
order derivative blows up. In section 3, formulation of the optimal constant for
a convolution problem is settled by a variational method described in Struwe’s
book [36]. Then we solve the nonlinear ordinary differential equation in section
4. In section 5, a new blow-up criterion is established by applying the best con-
stant for the convolution problem. Finally, in section 6, another representation
will be showed, and a numerical simulation will be given.

2 Preliminaries

In this section, we concentrate on the periodic case. In [13, 41], it is proved
that

Theorem 2.1 [13, 41] Let the initial datum u0(x) ∈ Hs(S), s > 3/2. Then
there exists T = T (‖u0‖Hs) > 0 and a unique solution u, which depends con-
tinuously on the initial datum u0, to (1.1) such that

u ∈ C ([0, T );Hs(S)) ∩ C1
(
[0, T );Hs−1(S)

)
.

Moreover, the following two quantities E and F are invariants with respect to
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time t for (1.1).





E(u)(t) =

∫

S

(
u2(x, t) + u2x(x, t)

)
dx,

F (u)(t) =

∫

S

(
u3(x, t) + γu(x, t)u2x(x, t)

)
dx.

Actually, the local well-posedness was proved for both periodic and nonperiodic
case in the above paper.
The maximum value of T in Theorem 2.1 is called the lifespan of the solution, in
general. If T <∞, that is lim supt↑T ‖u(., t)‖Hs =∞, we say that the solution
blows up in finite time. The following theorem tells us that the solution blows
up if and only if the first-order derivative blows up.

Theorem 2.2 [13, 41] Let u0(x) ∈ Hs(S), s > 3/2, and u be the corresponding
solution to problem (1.1) with lifespan T . Then

sup
x∈S,0≤t<T

|u(x, t)| ≤ C(‖u0‖H1). (2.1)

T is bounded if and only if

lim inf
t↑T

inf
x∈S
{γux(x, t)} = −∞. (2.2)

For γ 6= 0, we set

m(t) := inf
x∈S

(ux(x, t)sign{γ}) , t ≥ 0, (2.3)

where sign{a} is the sign function of a ∈ R and we set m0 := m(t = 0).
Then for every t ∈ [0, T ) there exists at least one point ξ(t) ∈ S with m(t) =
ux(ξ(t), t).

Lemma 2.3 [13] Let u(t) be the solution to (1.1) on [0, T ) with initial data
u0 ∈ Hs(S), s > 3/2, as given by Theorem 2.1. Then the function m(t) is
almost everywhere differentiable on [0, T ), with

dm(t)

dt
= utx(ξ(t), t), a.e. on (0, T ).

Consideration of the quantity m(t) for wave breaking comes from an idea of
Seliger [34] originally. The rigorous regularity proof is given in [8] for the
Camassa-Holm equation.
Set Qs = (1− ∂2x)s/2, then the operator Q−2 can be expressed by

Q−2f = G ∗ f =

∫

T

G(x− y)f(y)dy
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for any f ∈ L2(S) with

G(x) =
cosh(x− [x]− 1/2)

2 sinh(1/2)
, (2.4)

where [x] denotes the integer part of x. Then equation (1.1) can be rewritten
as

ut + γuux + ∂xQ
−2
(

3− γ
2

u2 +
γ

2
u2x

)
= 0. (2.5)

Just as in [13, 41], it is easy to derive a equation for m(t) from (2.5) as

dm

dt
= −γ

2
m2 +

3− γ
2

u2(ξ(t), t) −
[
G ∗

(
3− γ

2
u2 +

γ

2
u2x

)]
(ξ(t), t) (2.6)

a.e. on (0, T ), where m(t) and ξ(t) are defined in (2.3) and Lemma 2.3.
If γ = 3, it turns out that (2.6) is a Riccati type equation with negative initial
data for any nonconstant u0. So the solutions to (1.1) in periodic case definitely
blow up in finite time with arbitrary nonconstant initial data u0.
In what follows, we assume that 0 < γ < 3.

3 The best constant for a convolution problem-formulation

To prove the blow-up result, one of the basic ingredients is to analyze equation
(2.6). It is clear that the difficult part is the convolution term.
In this section, we consider the following convolution problem

G ∗
(
f2 +

α

2
f2
x

)
(x),

where G, defined by (2.4), is the Green function for Q−2 in the unit circle,
α > 0 is a constant, and function f belongs to H1(S).
Direct computation which already done in [43] yields

G ∗ (f2 +
1

2
f2
x)(x) ≥ 1

2
f2(x),

for any x ∈ S.
Therefore,

G ∗
(
f2 +

α

2
f2
x

)
(x) ≥ min{α, 1}G ∗ (f2 +

1

2
f2
x)(x) ≥ min{α, 1}1

2
f2(x).

Our goal is to find an optimal constant C(α) for the following inequality:

G ∗
(
f2 +

α

2
f2
x

)
(x) ≥ C(α)f2(x), (3.1)

for all f ∈ H1(S).
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For this purpose, let

A = {f ∈ H1(S) | ‖f‖L∞ = 1}

and

I[f ](x) = G ∗
(
f2 +

α

2
f2
x

)
(x) =

∫

S

G(x − y)
(
f2(y) +

α

2
f2
x(y)

)
dy.

Since I[f ] is a translation invariant on the unit circle S, we can assume that A
is defined on the interval [0, 1] with f ≥ 0 and f(0) = f(1) = 1 without loss of
generality. Hence finding the best constant for the problem (3.1) is equivalent
to finding the minimum value for

I[f ](0) =
1

2 sinh(1/2)

∫ 1

0

cosh(x− 1/2)
(
f2(x) +

α

2
f2
x(x)

)
dx.

From now on, we follow the variational method discussed in a comprehensive
book written by Struwe [36].
It is clear that

min{α, 1} 1

2 sinh(1/2)

∫ 1

0

(
f2(x) + f2

x(x)
)
dx ≤ I[f ](0)

≤ max{α, 1} cosh(1/2)

2 sinh(1/2)

∫ 1

0

(
f2(x) + f2

x(x)
)
dx,

for any f ∈ A. The above inequality means that I[f ](0) is equivalent to the
H1-norm of f .
Suppose that {fk}∞k=1 is a minimizing sequence, i.e., I[fk](0)→ inff∈A I[f ](0),
as k →∞. Hence it is easy to show that there exists a subsequence {fkj}∞j=1 ⊂
{fk}∞k=1, denoted it by {fk}∞k=1 also, and a function g ∈ A with fk → g as
k →∞. For the details we refer to [38].
Due to the identities cosh(3x) = cosh3(x) + 3 cosh(x) sinh2(x) and sinh(3x) =
4 sinh3(x) + 3 sinh(x), we have

I [cosh(x− 1/2)/ cosh(1/2)] (0)

=
1

2 sinh(1/2) cosh2(1/2)

×
∫ 1

0

(
cosh3(x− 1/2) +

α

2
cosh(x− 1/2) sinh2(x− 1/2)

)
dx

=
1

2 sinh(1/2) cosh2(1/2)

∫ 1/2

−1/2

(
cosh(3x) +

(α
2
− 3
)

cosh(x) sinh2(x)
)
dx

=
2 sinh(3/2) + (α− 6) sinh3(1/2)

6 sinh(1/2) cosh2(1/2)
=

6 + (α+ 2) sinh2(1/2)

6 cosh2(1/2)

= 1− (4− α) sinh2(1/2)

6 cosh2(1/2)
< 1 = I[1](0),
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provided that α < 4.
For the case α ≥ 4, we consider the family

β + cosh(x− 1/2)

β + cosh(1/2)
,

where β > 0 is a constant to be determined later. By the same steps, one can
get

I

[
β + cosh(x − 1/2)

β + cosh(1/2)

]
(0)

=
6(β + 1) sinh(1/2) + (α+ 2) sinh3(1/2) + 6β cosh(1/2) sinh(1/2) + 3β

6 sinh(1/2)(β + cosh(1/2))2
.

Direct computation yields

I

[
β + cosh(x − 1/2)

β + cosh(1/2)

]
(0) < 1,

provided that
6β(β − 1)

sinh2(1/2)
> α− 4.

The above inequality implies that 1 is not the minimizer for I[f ](0), in other
words, there exists region U where the value of g is strictly less than 1.
Let φ be a smooth function with compact support in U . One can choose ǫ is
sufficient small such that g + ǫφ ∈ A. Now we set

i(t) = I[g + tǫφ](0) =

∫ 1

0

G(x)
(

(g + tǫφ)2 +
α

2
(gx + tǫφx)2

)
dx,

where t ∈ R such that g + tǫφ ∈ A. Since g is the minimizer, we have

0 = i′(0) = ǫ

∫ 1

0

(2Ggφ+ αGgxφx)dx = ǫ

∫ 1

0

(2Gg − α(Ggx)x)φdx.

Therefore the equation for g in the region g < 1 reads

α(Ggx)x = 2Gg, with G(x) =
cosh(x − 1/2)

2 sinh(1/2)
.

Just as what was done in [38], we have the following claim that g < 1 at all
points except 0 and 1. So the equation for g is

α(Ggx)x = 2Gg, in (0, 1), with g(0) = g(1) = 1. (3.2)

After changing variable we can rewrite (3.2) as

cosh(x)g′′(x) + sinh(x)g′(x) − 2

α
cosh(x)g(x) = 0, (3.3)
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x ∈ (−1/2, 1/2), where prime means taking derivative with respect to x.

If α = 1, equation (3.3) has been solved in [43] as

g =
1 + arctan(sinh(x− 1/2)) sinh(x− 1/2)

1 + arctan(sinh(1/2)) sinh(1/2)
, (3.4)

for x ∈ [0, 1].

For general case α 6= 1, we will solve the equation in the next section.

However, here we can find the optimal constant for the functional I achieved
by g satisfying the equation (3.3). Actually, from the equation (3.2), one has

Gg2 +
α

2
Gg2x =

α

2
(Gggx)x .

Therefore,

I[g](0) =

∫ 1

0

α

2
(Gggx)x

=
α

2 tanh(1/2)
(g(1/2)g′(1/2− 0)− g(−1/2)g′(−1/2 + 0))

=
α

tanh(1/2)
g′(1/2− 0),

since g(x) is an even function on [−1/2, 1/2], and g(−1/2) = g(1/2) = 1.

Hence, we have the following theorem

Theorem 3.1 For all f ∈ H1(S), and α > 0, the following inequality holds

G ∗
(
f2 +

α

2
f2
x

)
(x) ≥ C(α)f2(x), (3.5)

with

C(α) =
α

tanh(1/2)
g′(1/2− 0), (3.6)

where g(x) is an even function on [−1/2, 1/2] satisfying (3.3).

C(1) =
1

2
+

arctan(sinh(1/2))

2 sinh(1/2) + 2 arctan(sinh(1/2)) sinh2(1/2)
≈ 0.869,

which has been founded in [43].

Remark 3.1 From the above variational approach, it implies that C(α) < 1
for any α > 0.
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4 Solve the ordinary differential equation

For our convenience, we rewrite the equation (3.3) as

cosh(x)u′′λ(x) + sinh(x)u′λ(x) − λ(λ+ 1) cosh(x)uλ(x) = 0, (4.1)

x ∈ (−1/2, 1/2), with λ =
√
α+8−√α
2
√
α

> 0.

Now, letting s = sinh(x) and vλ(s) = uλ(x), then (4.1) changes to

(1 + s2)v′′λ(s) + 2sv′λ(s)− λ(λ+ 1)vλ(s) = 0. (4.2)

In general, the solution to (4.2) can be represented as the following power series:

vλ(s) = 1 +

∞∑

n=1

∏n−1
k=0 (λ− 2k)(λ+ 1 + 2k)

(2n)!
s2n, (4.3)

with convergence radius of 1. Hence it is convergent at s = sinh(1/2).
It is easy to find that, (4.3) is a polynomial with finite terms for λ being a
positive even number, i.e., λ = 2m, k ∈ N. For λ = 2m + 1, the solution to
(4.2) can be obtained by

vλ(s) = −v1(s)

∫ s

0

dτ

v21(τ)(1 + τ2)
, (4.4)

where

v1(s) = s

(
1 +

∞∑

n=1

∏n
k=1(λ + 2k)(λ+ 1− 2k)

(2n+ 1)!
s2n

)

is another solution to (4.2), which is independent of (4.3).
Due to the strategic steps established here, we can write down the solutions to
(4.2) for λ ∈ N. For example, we have

u1(x) = −s
∫ s

0

dτ

τ2(1 + τ2)
= 1 + s arctan s = 1 + sinh(x) arctan(sinh(x)),

(3.4) is recovered again. We also can write down the following solutions.

u2(x) = 1 + 3s2 = 1 + 3 sinh2(x),

u3(x) = −s
(

1 +
5

3
s2
)∫ s

0

dτ

τ2
(
1 + 5

3τ
2
)2

(1 + τ2)

= 1 +
15

4
s2 + s

(
9

4
+

15

4
s2
)

arctan s

= 1 +
15

4
sinh(x)2 + s

(
9

4
+

15

4
sinh(x)2

)
arctan (sinh(x)) ,
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u4(x) = 1 + 10s2 +
35

3
s4 = 1 + 10 sinh2(x) +

35

3
sinh4(x),

u5(x) = 1 +
105

64
s2(7 + 9s2) +

15

64
s(15 + 70s2 + 63s4) arctan s

= 1 +
105

64
sinh2(x)

(
7 + 9 sinh2(x)

)

+
15

64
sinh(x)

(
15 + 70 sinh2(x) + 63 sinh4(x)

)
arctan (sinh(x)) ,

u6(x) = 1 + 21s2 + 63s4 +
231

5
s6

= 1 + 21 sinh2(x) + 63 sinh4(x) +
231

5
sinh6(x).

For general λ > 0, we only have the form of (4.2) at present. We will do some
computation in section 6.

5 Blow-up criteria

After local well-posedness of strong solutions (see Theorem 2.1) is established,
the next question is whether this local solution can exist globally. As far as
we know, the only available global existence result is for the case γ = 1: see
the paper by Constantin [5] for a PDE approach, and the paper by Constantin
and McKean [11] for an approach based on the integrable structure of the
equation. If the solution exists only for finite time, how about the behavior
of the solution when it blows up? What induces the blow-up? On the other
hand, to find sufficient conditions to guarantee the finite time blow-up or global
existence is of great interest, especially for sufficient conditions added on the
initial data.
The main theorem of this section is as following:

Theorem 5.1 Let 0 < γ < 3. Assume that u0 ∈ H2(S) satisfies m0 < 0 and

m2
0 >

3− γ
2γ

(
1− C

(
2γ

3− γ

))
cosh(1/2)

sinh(1/2)
‖u0‖2H1(S), (5.1)

where C
(

2γ
3−γ

)
is defined by (3.6). Then the life span T > 0 of the correspond-

ing solution to (1.1) is finite.

Remark 5.1 When γ = 1, we recover the theorem established in [43]. The
cases for γ < 0 and γ > 3 were discussed in [41, 42].

First, we have the following blow-up result for a Riccati type ordinary differ-
ential equation.
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Lemma 5.2 [43] Assume that a differentiable function y(t) satisfies

y′(t) ≤ −Cy2(t) +K, (5.2)

with constants C,K > 0. If the initial datum y(0) = y0 < −
√

K
C , then the

solution to (5.2) goes to −∞ in finite time.

Secondly, let us recall the best constant for a Sobolev inequality proved in [38].

‖f‖2L∞(S) ≤
cosh(1/2)

2 sinh(1/2)
‖f‖2H1(S), (5.3)

for f ∈ H1(S). Moreover, it is an optimal constant for the Sobolev imbedding
H1 ⊂ L∞ in the sense that (5.3) holds if and only if f(x) = λG(x−y) for some
λ, y ∈ R.
We start the proof for the main theorem from (2.6).

dm

dt
= −γ

2
m2 +

3− γ
2

u2(ξ(t), t)−
[
G ∗

(
3− γ

2
u2 +

γ

2
u2x

)]
(ξ(t), t)

= −γ
2
m2 +

3− γ
2

u2(ξ(t), t)− 3− γ
2

[
G ∗

(
u2 +

1

2

2γ

3− γ u
2
x

)]
(ξ(t), t)

≤ −γ
2
m2 +

3− γ
2

u2(ξ(t), t)− 3− γ
2

C

(
2γ

3− γ

)
u2(ξ(t), t)

≤ −γ
2
m2 +

3− γ
2

(
1− C

(
2γ

3− γ

))
u2(ξ(t), t)

≤ −γ
2
m2 +

3− γ
2

(
1− C

(
2γ

3− γ

))
cosh(1/2)

2 sinh(1/2)
‖u0‖2H1(S),

where we used (3.5) and (5.3).
So, the proof can be completed by using the condition in Theorem 5.1 and
Lemma 5.2.

6 Another presentation and numerical simulation

We have the equation (4.2), and the local solution to (4.2) can be represented
as the power series (4.4), which is convergent at s = sinh(1/2) = 0.521 · · · .
By the transformation of variables

z := −s2, yλ(s) := vλ(s)

and let
a := −λ/2, b := (λ+ 1)/2, c := 1/2,

then

vλ(s) = 1 +

∞∑

n=1

zn

n!

n−1∏

k=0

(a+ k)(b+ k)

c+ k
=: F (a, b, c; z), (6.1)
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where F (a, b, c; z) is called the hypergeometric function, a regular solution of
the hypergeometric differential equation

z(1− z)y′′λ(z) + [c− (a+ b+ 1)z]y′λ(z)− abyλ(z) = 0.

Since

F ′(a, b, c; z) =
ab

c
F (a+ 1, b+ 1, c+ 1; z),

we obtain the analytic expression

C(α) =
cosh2(1/2)F (a+ 1, b+ 1, c+ 1;− sinh2(1/2))

sinh(1/2)F (a, b, c;− sinh2(1/2))
,

where α = 2/(λ(λ+ 1)).

Although the value of C(α) for each λ can be obtained by calling the hyper-
geometric functions in softwares such as Mathematica, Maple or MATLAB,
generally the calculation based on (6.1), thus the calculations are not efficient.
In the following, we give an efficient method for calculating C(α).

Define

qλ(s) :=
v′λ(s)

λ(λ+ 1)vλ(s)
, λ > 0,

then qλ(s) is the solution of the following initial value problem of the first order
ordinary differential equation

q′λ(s) +
2s

1 + s2
qλ(s) + µq2λ(s) =

1

1 + s2
, qλ(0) = 0, (6.2)

where µ := λ(λ + 1).

Thus

C(α) =
cosh2(1/2)qλ(sinh(1/2))

sinh(1/2)
. (6.3)

By using MATLAB programme, we can plot the graph of C(α) as Fig. 1. Here
α is taken from 0.01 to 10 with equal step length 0.01. The detailed MATLAB
code is given in the appendix.
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From Fig. 1 we see that C(α) is a strictly increasing function of α which can
be proved analytically as follows.

Differentiate both sides of (6.2) with respect to µ, we have a linear differential
equation of qλµ(s) = ∂qλ(s)/∂µ:

q′λµ(s) + 2

(
µqλ(s) +

s

1 + s2

)
qλµ(s) + q2λ(s) = 0, qλ(0) = 0. (6.4)

The solution to (6.4) is

qλµ(s) = − 1

1 + s2

∫ s

0

(1 + τ2) exp

(
−2µ

∫ s

τ

qλ(t) dt

)
q2λ(τ) dτ < 0. (6.5)

While

qλα(s) =
∂qλ(s)

∂µ

∂µ

∂α
= qλµ ·

−2

α2
> 0.

This completes the proof due to (6.3).

7 Appendix

Fig. 1 is plotted by two MATLAB routines for calculating C(α). We use
MATLAB because of its advantage of efficient vector operations. The argument
alpha can be a vector.
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1. The main function routine, MATLAB m-file named bestc.m:

function C=bestc(alpha)

% Input: alpha, may be a scalar or a vector;

% Output: C, the best coefficient corresponding to alpha, When alpha is
a vector, C is also a vector with the same size as alpha.

T=.52109530549374738495; % T = sinh(1/2)

G=2.4401300568286909964; % G = T+Tˆ(-1)

options=odeset(’RelTol’,2.221e-14,’ABsTol’,1e-15); % Set ODE solver’s
relative error tolerance and absolute error tolerance.

[S,Y]=ode45(@rod,[0,T],0*alpha,options,alpha); % Call ODE solver
ode45.

C=Y(end,:)*G;

% End of the main routine.

2. The ODE-file named rod.m is as follows:

function dqds = rod(s,q,alpha)

dqds = (1-2*s*q)/(1+sˆ2)-2*q.ˆ2./alpha;

% End of the ODE-file.
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1 Introduction

A long standing open problem in the mathematical physics literature is the
Ionization conjecture. It can be formulated as follows. Consider atoms with
arbitrarily large nuclear charge Z, is it true that the radius (see Definition 1.8)
and the maximal negative ionization remain bounded? A positive answer to
this question in the non-relativistic Hartree-Fock model has been given by the
second author in [23]. One of the aims of the present paper is to extend the
result taking into account some relativistic effects. The ionization conjecture
for the full Schrödinger theory is still open both in the non-relativistic and
relativistic case. See [13], [16], [17], [6], [7] and [22] for some Z-dependent
bounds on the maximal negative ionization. The best result is that N(Z) = Z+
O(Za) with a = 47/56 where N(Z) denotes the maximal number of electrons
a nucleus of charge Z binds (see [6], [7] and [22]) .

1 The authors wish to thank Heinz Siedentop for suggesting the problem. Support from
the EU IHP network Postdoctoral Training Program in Mathematical Analysis of Large

Quantum Systems, contract no. HPRN-CT-2002-00277 is gratefully acknowledged. Jan
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As a model for an atom with nuclear charge Z and N electrons we consider (in
units where ~ = m = e = 1) the operator

H =

N∑

i=1

α−1
(√
−∆i + α−2 − α−1 − Zα

|xi|
)

+
∑

1≤i<j≤N

1

|xi − xj |
, (1)

where α is Sommerfeld’s fine structure constant. The operator H acts on a
dense subset of the N body Hilbert space HF := ∧Ni=1L

2(R3;Cq) of antisym-
metric wave functions, where q is the number of spin states. The operator H
is bounded from below on this subspace if Zα ≤ 2/π (see [9] for N = 1, [5] and
[19] for N ≥ 1). In this paper we will consider the sub-critical case Zα < 2/π.
Let us notice here that to define the operator H there is an issue. Indeed for
Zα < 2/π the nuclear potential is only a small form perturbation of the kinetic
energy and hence one needs to work with forms to define the operator H . This
has been done in detail in [2].

The quantum ground state energy is the infimum of the spectrum of H con-
sidered as an operator acting on HF . In the Hartree-Fock approximation one
restricts to wave-functions ψ which are pure wedge products, also called Slater
determinants:

ψ(x1, σ1,x2, σ2, . . . ,xN , σN ) = 1√
N !

det(ui(xj , σj))
N
i,j=1, (2)

with {ui}Ni=1 orthonormal in L2(R3;Cq). The ui’s are also called orbitals.
Notice that ‖ψ‖L2(R3N ,CqN ) = 1. The Hartree-Fock ground state energy is

EHF(N,Z, α) := inf{q(ψ, ψ)|ψ ∈ Q(H) and ψ a Slater determinant},

with q the quadratic form defined by H and Q(H) the corresponding form
domain.

One of the main result of the paper is the following.

Theorem 1.1. Let Z ≥ 1 and α > 0. Let Zα = κ and assume that 0 ≤ κ <
2/π. There is a constant Q > 0 depending only on κ such that if N is such
that a Hartree-Fock minimizer exists then N ≤ Z +Q.2

The idea of the proof is the same as in [23]. One shows that the Thomas-
Fermi model is a good approximation of the Hartree-Fock model except in the
region far away from the nucleus. We first introduce some notation in order to
introduce the Hartree-Fock and Thomas-Fermi models.

2 In order to prove this result we need that N < CZ for a positive constant C. We do
not include a proof of this fact here for simplicity and since a much stronger result has been
proved by Lieb in [13] for αZ < 1/2. The needed extension of this result of Lieb to αZ < 2/π
will appear in [3] (see Theorem 1.6 below).
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1.1 Notation

Let e be the quadratic form with domain H
1
2 (R3,Cq) such that

e(u, v) = (E(p)
1
2 u,E(p)

1
2 v) for all u, v ∈ H 1

2 (R3,Cq), (3)

whereE(p) denotes the operatorE(i∇) =
√
−∆ + α−2. As usual (u, v) denotes

the scalar product of u and v in L2(R3,Cq). Let V (x) := Zα/|x| and v be the

quadratic form with domain H
1
2 (R3,Cq) defined by

v(u, v) = (V
1
2u, V

1
2 v) for all u, v ∈ H 1

2 (R3,Cq). (4)

From [10, 5.33 p.307] we have
∫

R3

|f(x)|2
|x| dx ≤ 2

π

∫

R3

|p||f̂(p)|2 dp for f ∈ H 1
2 (R3,C) (5)

with f̂ the Fourier transform of f . Thus since Zα ≤ 2/π and E(p) ≥ |p| it

follows that v(u, u) ≤ e(u, u) for all u ∈ H 1
2 (R3,Cq).

In the following t denotes the quadratic form associated to the kinetic energy;
i.e. for all u, v ∈ H 1

2 (R3,Cq)

t(u, v) := α−1e(u, v)− α−2(u, v) = α−1(T (p)
1
2 u, T (p)

1
2 v), (6)

with T (p) := E(p)− α−1.
A density matrix γ is a self-adjoint trace class operator that satisfies the oper-
ator inequality 0 ≤ γ ≤ Id . A density matrix γ : L2(R3;Cq)→ L2(R3;Cq) has
an integral kernel

γ (x, σ,y, τ) =
∑

j

λjuj(x, σ)uj(y, τ)∗, (7)

where λj , uj are the eigenvalues and corresponding eigenfunctions of γ. We
choose the uj’s to be orthonormal in L2(R3,Cq). Let ργ ∈ L1(R3) denote the
1-particle density associated to γ given by

ργ(x) =

q∑

σ=1

∑

j

λj |uj(x, σ)|2.

We define
A := {γ density matrix: Tr[T (p)γ] < +∞} , (8)

where for γ ∈ A written as in (7) Tr[T (p)γ] := Tr[E(p)γ]− α−1 Tr[γ] and

Tr[E(p)γ] :=
∑

j

λje(uj , uj). (9)

Similarly we use the following notation Tr [V γ] :=
∑

j λjv(uj , uj).

Remark 1.2. If γ ∈ A then ργ ∈ L1(R3) since γ is trace class and ργ ∈
L4/3(R3). The second inclusion follows from Daubechies’ inequality, a gener-
alization of the Lieb-Thirring inequality (see Theorem 2.3).
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1.2 Hartree-Fock theory

In Hartree-Fock theory one considers wave functions that are pure wedge prod-
ucts and that satisfy the right statistics: determinantal wave functions as in (2).
To define the HF-energy functional it is convenient to use the one to one corre-
spondence between Slater determinants and projections onto finite dimensional
subspaces of L2(R3,Cq). Indeed if ψ is given by (2) and γ is the projection
onto the space spanned by u1, . . . , uN the energy expectation depends only on
γ: (ψ,Hψ) = EHF(γ). Here EHF defines the HF-energy functional

EHF(γ) = α−1 Tr[(T (p)− V )γ] +D(γ)− Ex (γ) , (10)

where D(γ) is the direct Coulomb energy

D(γ) = 1
2

∫

R3

∫

R3

ργ(x)ργ(y)

|x− y| dxdy,

and Ex(γ) is the exchange Coulomb energy

Ex(γ) = 1
2

∫

R3

∫

R3

TrCq
[
|γ(x,y)|2

]

|x− y| dxdy,

where we think of the integral kernel γ(x, y) as a q × q matrix.
Using projections we can define as follows the HF-ground state.

Definition 1.3 (The HF-ground state). Let Z > 0 be a real number and N ≥ 0
be an integer. The HF-ground state energy is

EHF(N,Z, α) := inf
{
EHF(γ) : γ2 = γ, γ ∈ A, Tr[γ] = N

}
.

If a minimizer exists we say that the atom has a HF ground state described by
γHF.

We may extend the definition of the HF-functional from projections to density
matrices in A. We first notice that if γ ∈ A, then all the terms in EHF(γ) are
finite. From (5) it follows that

Tr[V γ] =
∑

j

λjv(uj , uj) ≤
∑

j

λje(uj, uj) = Tr[E(p)γ].

On the other hand if γ ∈ A then ργ ∈ L1(R3) ∩ L 4
3 (R3) (see Remark 1.2).

By Hölder’s inequality ργ ∈ L
6
5 (R3) and hence D(γ) is bounded by Hardy-

Littlewood-Sobolev’s inequality. The boundness of the exchange term follows
from 0 ≤ Ex(γ) ≤ D(γ). On the other hand if γ is a density matrix with γ /∈ A
then EHF(γ) =∞. Here we use also that Zα < 2/π.
Extending the set where we minimize, we could have lowered the ground state
energy and/or changed the minimizer. That this is not the case follows from
Lieb’s variational principle.
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Theorem 1.4 (Lieb’s variational principle, [12]). For all N non-negative inte-
gers it holds that

inf{EHF(γ) : γ ∈ A, γ2 = γ, Tr[γ] = N} = inf{EHF(γ) : γ ∈ A, Tr[γ] = N},

and if the infimum over all density matrices is attained so is the infimum over
projections.

The following existence theorem for the HF-minimizer in the pseudo-relativistic
case has been recently proved in [2].

Theorem 1.5. Let Zα < 2/π and let N ≥ 2 be a positive integer such that
N < Z + 1.
Then there exists an N -dimensional projection γHF = γHF(N,Z, α) minimizing
the HF-energy functional EHF given by (10), that is, EHF(N,Z, α) is attained.
Moreover, one can write

γHF(x, σ,y, τ) =

N∑

i=1

ui(x, σ)ui(y, τ)∗,

with ui ∈ L2(R3,Cq), i = 1, . . . , N , orthonormal, such that the HF-orbitals
{ui}Ni=1 satisfy:

1. hγHFui = εiui, with 0 > εN ≥ εN−1 ≥ · · · ≥ ε1 > −α−1 and

hγHF := T (p)− Zα

|x| + ρHF ∗ |x|−1 −KγHF , (11)

where ρHF denotes the density of the HF-minimizer and for f ∈ H 1
2 (R3)

(KγHFf)(x, σ) =

N∑

i=1

ui(x, σ)

q∑

τ=1

∫

R3

ui(y, τ)∗f(y, τ)|x − y|−1dy.

2. ui ∈ C∞(R3 \ {0},Cq) for i = 1, . . . , N ;

3. ui ∈ H1(R3 \BR(0)) for all R > 0 and i = 1, . . . , N .

In the opposite direction the following result gives an upper bound on the
excess charge.

Theorem 1.6. Let αZ < 2
π . If N is a positive integer such that N > 2Z + 1

there are no minimizers for the HF-energy functional.

This theorem for Zα < 1/2 was proved by Lieb in [13]. With an improved
approximation argument the proof can be extended to Zα < 2/π (see [3]).
Notice that both proofs work not only in the Hartree-Fock approximation but
for the minimization problem on ∧NL2(R3).
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Definition 1.7. Let γHF be the HF-minimizer. The function

ϕHF(x) :=
Z

|x| −
∫

R3

ρHF(y)

|x− y| dy for x ∈ R3,

is called the HF-mean field potential and

ΦHF
R (x) :=

Z

|x| −
∫

|y|<R

ρHF(y)

|x− y| dy for x ∈ R3,

is the HF-screened nuclear potential.

Definition 1.8. We define the HF-radius RHF
Z,N (ν) to the ν last electrons by

∫

|x|≥RHF
Z,N (ν)

ρHF(x) dx = ν.

1.3 A bit of Thomas-Fermi theory

In this subsection we present briefly the Thomas-Fermi theory and especially
the result that will be used in the rest of the paper. We refer the interested
reader to [11].
Let U be a potential in L5/2(R3) + L∞(R3) with

inf{‖W‖∞ : U −W ∈ L 5
2 (R3)} = 0.

Then the TF-energy functional is defined by

ETF
U (ρ) = 3

10 (6π
2

q )
2
3

∫

R3

ρ(x)
5
3 dx−

∫

R3

U(x)ρ(x)dx + 1
2

∫

R3

∫

R3

ρ(x)ρ(y)

|x− y| dxdy,

on non-negative functions ρ ∈ L5/3(R3) ∩ L1(R3). As before, q denotes the
number of spin states.
We recall some properties of the TF-model, see [18].

Theorem 1.9. Let U be as above. For all N ′ ≥ 0 there exists a unique non-
negative ρTF

U ∈ L5/3(R3) such that
∫
ρTF
U ≤ N ′ and

ETF
U (ρTF

V ) = inf{ETF
U (ρ) : ρ ∈ L5/3(R3),

∫

R3

ρ(x) dx ≤ N ′}.

There exists a unique chemical potential µTF
U (N ′), with 0 ≤ µTF

U (N ′) ≤ supU,
such that ρTF

U is uniquely characterized by

ETF
U (ρTF

U ) + µTF
U (N ′)

∫

R3

ρTF
U (x) dx

= inf{ETF
U (ρ) + µTF

U (N ′)
∫

R3

ρ(x) dx : 0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3)}.
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Moreover ρTF
U is the unique solution in L5/3(R3) ∩ L1(R3) to the TF-equation

1
2 (6π

2

q )
2
3 (ρTF

U (x))
2
3 =

[
U(x)− ρTF

U ∗ |x|−1 − µTF
U (N ′)

]
+
.

If µTF
U (N ′) > 0 then

∫
ρTF
U = N ′. For all µ > 0 there is a unique minimizer

0 ≤ ρ ∈ L5/3(R3) ∩ L1(R3) to ETF
U (ρ) + µ

∫
ρ.

One defines the TF-mean field potential ϕTF
U , the TF-screened nuclear potential

ΦTF
U,R and the TF-radius RTF

N,Z(ν) to the ν last-electron similarly as in Defini-
tions 1.7 and 1.8 replacing the HF-density with the TF-density.

Theorem 1.10. If U(x) = Z/|x| (the Coulomb potential), then the minimizer
of ETF

U , under the condition
∫
ρ ≤ N, exists for every N . Moreover, µTF

U (N) =
0 if and only if N ≥ Z.
When U(x) = Z/|x| we denote the minimizer of the TF-functional, under the
condition

∫
ρ ≤ Z, simply by ρTF and

∫
ρTF = Z. Correspondingly ϕTF and

ΦTF
R denote, respectively, its mean field and screened nuclear potential. With

this notation
ETF(ρTF) = −e0Z

7
3 , (12)

where e0 is the total binding energy of a neutral TF-atom of unit nuclear charge.
We recall here a result due to Sommerfeld on the asymptotic behavior of the
TF-mean field potential, see [23, Th. 4.6].

Theorem 1.11 (Sommerfeld asymptotics). Assume that the potential U is con-
tinuous and harmonic for |x| > R and that it satisfies lim|x|→∞U(x) = 0.
Consider the corresponding TF-mean field potential ϕTF

U and assume that
µTF
U < lim inf

rցR
inf
|x|=r

ϕTF
U (x). With ζ = (−7 +

√
73)/2 define

a(R) := lim inf
rցR

sup
|x|=r

[( ϕTF
U (x)

342−1q−2π2r−4

)− 1
2 − 1

]
rζ

A(R, µTF
U ) := lim inf

rցR
sup
|x|=r

[ ϕTF
U (x) − µTF

U

342−1q−2π2r−4
− 1
]
rζ .

Then we find for all |x| > R

ϕTF
U (x) ≤ 34π2

2q2 (1 +A(R, µTF
U )|x|−ζ)|x|−4 + µTF

U and

ϕTF
U (x) ≥ max

{
34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−4, ν(µTF
U )|x|−1

}
,

where

ν(µTF
U ) := inf

|x|≥R
max

{
34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−3, µTF
U |x|

}
.

For easy reference we give here the estimate on the TF-mean field potential
corresponding to the Coulomb potential.
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Theorem 1.12 (Atomic Sommerfeld estimate, [23, Thm 5.2-5.4]). The atomic
TF-mean field potential satisfies the bound

Z

|x| −min
{ Z
|x| ,

Z
4
3

2β0

}
≤ ϕTF(x) ≤ min

{
34π2

2q2
1

|x|4 ,
Z

|x|
}
, (13)

with 2β0 = π
2
3 3−

5
3 2−

1
3 q−

2
3 , and for |x| ≥ R > 0

ϕTF(x) ≥ 34π2

2q2 (1 + a(R)|x|−ζ)−2|x|−4,

where ζ and a(R) are defined in Theorem 1.11.

Corollary 1.13. Let ζ and β0 be defined as in Theorem 1.11 and 1.12 re-
spectively. Then the TF-mean field potential satisfies the bound

ϕTF(x) ≥





Z

|x| −
Z

4
3

2β0
if |x| ≤ β0Z− 1

3

34π2

2q2
(1 + aZ−

ζ
3 |x|−ζ)−2|x|−4 if |x| > β0Z

− 1
3 ,

with a = βζ0 (32π/(qβ
3
2
0 )− 1).

Corollary 1.14. The TF-screened nuclear potential satisfies

ΦTF
|x| (x) ≤ 342π2

q2 |x|−4 for all x ∈ R3.

Corollary 1.15. The following estimate holds

∫

R3

(ρTF(x))
5
3 dx ≤ 4 2

2
3

π2
5
7q

4
3Z

7
3 .

Proof. By the TF-equation and since µTF = 0 we find

∫

R3

(ρTF(x))
5
3 dx = 2

5
2 ( q

6π2 )
5
3

∫

R3

(ϕTF(x))
5
2 dx.

The estimate follows from the atomic Sommerfeld upper bound.

1.4 Construction and main results

We present the basic idea for the proof of Theorem 1.1. Let us consider an
atomic system with N ≥ 2 fermionic particles and a nucleus of charge Z ≥ 1
with Zα = κ and 0 ≤ κ < 2/π. We assume that N ≥ Z and that N is such
that a HF-minimizer exists. That is: there exists a density matrix γHF ∈ A
such that Tr[γHF] = N and

EHF(γHF) = inf
{
EHF(γ) : γ = γ∗, 0 ≤ γ ≤ I,Tr[γ] = N

}
.
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Let ρTF be the TF-minimizer with potential U(x) = Z/|x| and under the
condition

∫
ρTF = Z. We know that such a minimizer exists and that the

corresponding chemical potential is zero (see Theorem 1.10).
Denoting by ρHF the density of the minimizer γHF, we find for all r > 0

N =

∫

R3

ρHF(x)dx

=

∫

|x|<r

[
ρHF(x) − ρTF(x)

]
dx +

∫

|x|<r
ρTF(x) dx +

∫

|x|>r
ρHF(x) dx.

By the equalities above and since
∫
|x|<r ρ

TF(x)dx ≤ Z, Theorem 1.1 follows

from the following result.

Theorem 1.16. There exist r > 0 and positive constants c1 and c2 independent
of N and Z but possibly depending on κ such that

∫

|x|<r

[
ρHF(x) − ρTF(x)

]
dx ≤ c1 and

∫

|x|>r
ρHF(x)dx ≤ c2.

The following theorem is the principal ingredient in the proof of the previous
one and is the main technical estimate in the paper.

Theorem 1.17. Let Zα = κ, 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1.
Then there exist universal constants α0 > 0, 0 < ε < 4 and CM and CΦ

depending on κ such that for all α ≤ α0
∣∣∣ΦHF
|x| (x)− ΦTF

|x| (x)
∣∣∣ ≤ CΦ|x|−4+ε + CM .

This main estimate is proven by an iterative procedure. We first prove the
estimate for small x (i.e. |x| ≤ β0Z

− 1
3 ), then for intermediate x (i.e. up to a

fixed distance independent of Z) and finally for big x.
By proving Theorem 1.17 we also get the following interesting results. The
proofs of those are given in Section 5.

Theorem 1.18 (Asymptotic formula for the radius). Let Zα = κ, 0 ≤ κ < 2/π.
Both lim infZ→∞RHF

Z,Z(ν) and lim supZ→∞RHF
Z,Z(ν) are bounded and behave

asymptotically as

3
4
3

2
1
2 π

2
3

q
2
3

ν−
1
3 + o(ν−

1
3 ) as ν →∞.

Theorem 1.19 (Bound on the ionization energy of a neutral atom). Let Zα =
κ, 0 ≤ κ < 2/π and Z ≥ 1. The ionization energy of a neutral atom EHF(Z −
1, Z)− EHF(Z,Z) is bounded by a universal constant.

Theorem 1.20 (Potential estimate). Let Zα = κ, 0 ≤ κ < 2/π. For all Z ≥ 1
and N with N ≥ Z for which a HF minimizer exists with

∫
ρHF = N , we have

|ϕTF(x) − ϕHF(x)| ≤ Aϕ|x|−4+ε0 +A1,

with A0, A1 and ε0 universal constants.
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2 Prerequisites

In this section we recall some results that will be used in the rest of the paper.
Localization of the kinetic energy. The following is the IMS formula corre-
sponding to the operator T (p).

Theorem 2.1 ([19]). Let χi, i = 0, . . . ,K, be real valued Lipschitz continuous

functions on R3 such that
∑K

i=0 χ
2
i (x) = 1 for all x ∈ R3. Then for every

f ∈ H1/2(R3)

t(f, f) =

K∑

i=0

t(χif, χif)− α−1
K∑

i=0

(f, Lif),

where Li is a bounded operator with kernel

Li(x,y) = α−2

4π2

|χi(x) − χi(y)|2
|x− y|2 K2(α

−1|x− y|), (14)

where K2 is a modified Bessel function of the second kind.

Remark 2.2. As in [24, App.A, pages 94–98] we use the following integral
formula for the modified Bessel function

K2(t) = t

∫ ∞

0

e−t
√
s2+1s2 ds , t > 0.

We recall that this function is decreasing and smooth in R+. Moreover,
∫ +∞

0

t2K2(t) dt = 3π
2 and K2 (t) ≤ 16 t−2e−

1
2 t for t > 0. (15)

The integral is computed in [21, (A6)] while the estimate follows directly from
the integral formula for K2 by estimating

√
s2 + 1 ≥ 1

2 + 1
2s.

Generalization of the Lieb-Thirring inequality. This result due to Daubechies
generalizes the Lieb-Thirring inequality to the pseudo-relativistic case.

Theorem 2.3 (Daubechies’ inequality, [4]). For γ ∈ A

Tr[T (p)γ] ≥
∫

R3

Gα(ργ(x))dx,

where Gα(ρ) = 3
8α
−4Cg(α(ρ/C)

1
3 ) − α−1ρ with C = .163q, q the number of

spin states and g(t) = t(1 + t2)
1
2 (1 + 2t2)− ln(t+ (1 + t2)

1
2 ).

Remark 2.4. The function Gα defined in the previous theorem is convex and
it has the following behavior:

9
20 min

{
1
5αC

− 2
3 ρ

5
3 , 12C

− 1
3 ρ

4
3

}
≤ Gα (ρ) ≤ 3

2 min
{

1
5αC

− 2
3 ρ

5
3 , 12C

− 1
3 ρ

4
3

}
.

(16)
(The proof of the estimate above is in Appendix A.) Notice that when α ց 0
then α−1Gα(ρ) tends to a constant times ρ5/3.
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Theorem 2.5 (Generalization of the Lieb-Thirring inequality, [4]). Let f−1

be the inverse of the function f(t) :=
√
t2 + α−2 − α−1, t ≥ 0, and define

F (s) =
∫ s
0
dt [f−1(t)]3. Then for any density matrix γ it holds

Tr[(T (p)− U)γ] ≥ −Cq
∫

R3

F (|U(x)|)dx,

with C ≤ 0.163.

Remark 2.6. Since f−1(t) = (t2 + 2α−1t)1/2 we find for F

F (s) = 2
3
2α−3/2

∫ s

0

t3/2
(
1 + 1

2αt
)3/2

dt for s ≥ 0, (17)

and since by convexity (1 + 1
2αt)

3
2 ≤
√

2 + 1
2 (αt)

3
2 we have

F (s) ≤ 23

5 α
− 3

2 s
5
2 + 1

2
√
2
s4 for s ≥ 0.

Hence for any density matrix γ and potential U ∈ L 5
2

(
R3
)
∩ L4

(
R3
)

Tr[(T (p)− U)γ] ≥ −Cq
∫

R3

(
23

5 α
− 3

2 |U(x)| 52 + 1
2
√
2
|U(x)|4)dx. (18)

Coulomb norm estimate. We present here only the definition of Coulomb norm
and the result we need. For a more complete presentation we refer to [23,
Sec.9].

Definition 2.7. For f, g ∈ L 6
5 (R3) we define the Coulomb inner product

D(f, g) := 1
2

∫

R3

∫

R3

f(x)g(y)

|x− y| dxdy,

and the corresponding norm ‖g‖C := D(g, g)
1
2 .

In the following we write the direct term in the HF-energy functional using
the Coulomb scalar product: i.e. D(γ) = D(ργ , ργ) = D(ργ). Similarly, for

ρ ∈ L1(R3) ∩ L 5
3 (R3) the term D(ρ) denotes D(ρ, ρ).

The next proposition follows as Corollary 9.3 in [23].

Proposition 2.8. For s > 0, x ∈ R3 and f ∈ L 6
5 (R3) it holds

f ∗ |x|−1 ≤
∫

|x−y|<s
[f(y)]+

( 1

|x− y| −
1

s

)
dy +

√
2 s−

1
2 ‖f‖C.

Moreover, for k > 0
∫

|y|<|x|

f(y)

|x− y|dy ≤
∫

A(|x|,k)

[f(y)]+
|x− y| dy + 2

3
2 k−1|x|− 1

2 ‖f‖C ,

where A(|x|, k) denotes the annulus

A(|x|, k) :=
{
y ∈ R3 : (1− 2k)|x| ≤ |y| ≤ |x|

}
.
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2.1 Improved relativistic Lieb-Thirring inequalities

A major difference between the pseudo-relativistic HF-model and the non-
relativistic one studied in [23] is that the boundness of the functional does not

yield a bound on the L
5
3 norm of the HF-density ρHF in the pseudo-relativistic

case. By Theorem 2.3 and Remark 2.4 we see that we can control only the L
4
3 -

norm of ρHF. Therefore one cannot estimate the term ρHF ∗ |x|−1 in L1-norm
simply by Hölder’s inequality with p = 5/2 and q = 5/3. To estimate it we are
going to use a combined Daubechies-Lieb-Yau inequality.
The following lemma can be found in [24, pages 98–99]3.

Lemma 2.9. For f ∈ S(R3),

∫

R3

e−µ|x|
2

|x| |f(x)|2dx ≤ π

2

1√
2− 1

(f, T (p)f),

with µ = π−1α−2.

The following is a slight generalization of the Daubechies-Lieb-Yau inequality
formulated in Theorem 2.8 in [24].

Theorem 2.10 (Daubechies-Lieb-Yau inequality). Assume that the potential
U ∈ L1

loc(R
3) satisfies

0 ≥ −U(x) ≥ −κ|x|−1 for |x| < max{α,R} , (19)

for α,R > 0 and 0 ≤ κ ≤ 2/π. Then we have

Tr[T (p)− U ]− ≥ −Cκ5/2α−3/2R1/2 − Cκ4α−1

−C
∫

|x|>R

(
α−

3
2 |U(x)| 52 + |U(x)|4

)
dx.

Proof. If (
√

2 − 1)/π ≤ κ ≤ 2/π then κ5/2α−3/2R1/2 + κ4α−1 ≥ Cκ5/2α−1

and the result follows immediately from Theorem 2.8 in [24] observing that for
R > α the two integrals of the potential on {α < |x| < R} are bounded by the
constants.
If 0 ≤ κ < (

√
2− 1)/π we write

U(x) = e−µ|x|
2

U(x)χ|x|<R + (1 − e−µ|x|2)U(x)χ|x|<R + U(x)χ|x|>R

with µ = α−2π−1. Using (19) and Lemma 2.9 we find that

T (p)− U(x) ≥ 1

2
T (p)− κ(1− e−µ|x|2)|x|−1χ|x|<R − U(x)χ|x|>R.

3The result of the lemma and the proof given in [24] are actually due to us, but we commu-
nicated the result to the authors of [24], where it is referred to as a a private communication.
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Hence from the generalization of the Lieb-Thirring inequality Theorem 2.5 (see
(18)) we obtain

Tr[T (p)− U ]− ≥ −C
∫

|x|<R
α−

3
2

(
κ(1− e−µ|x|2)|x|−1)

) 5
2 dx

−C
∫

|x|<R

(
κ(1− e−µ|x|2)|x|−1

)4
dx

−C
∫

|x|>R

(
α−

3
2 |U(x)| 52 + |U(x)|4

)
dx.

Since the two first integrals above are estimated below by −Cκ5/2α−3/2R1/2−
Cκ4α−1 we get the result in the theorem.

By Theorem 2.10 we find

κ

∫

|x−y|<R

ρHF(y)

|x− y| dy ≤ Tr[T (p)γHF] + C1κZ
3
2R

1
2 + C2κ

3Z, (20)

with κ ∈ [0, 2/π], κ = Zα and R > 0 parameters to be chosen. This is the
inequality that we use to estimate ρHF ∗ |x|−1 (see proof of Lemma 3.2 below).

2.1.1 Bound on the Hartree-Fock energy

As a first application of Theorem 2.10 we can give a lower bound to the HF-
energy.

Theorem 2.11 (Bound on the HF-energy). Let N > 0, Z > 0 and such that
Zα = κ with 0 ≤ κ ≤ 2/π. Then

EHF(N,Z) ≥ −2C
2
3Z2N

1
3 − Cκ2Z2,

with C the constant in Theorem 2.10.

Proof. Let γ be a N -dimensional projection. Since the electron-electron inter-
action is positive we see that

EHF(γ) ≥ α−1 Tr[(T (p)− Zα

| · | )γ]

= α−1 Tr[(T (p)− κ

| · |χ|x|<R)γ]− α−1 Tr[
κ

| · | (1 − χ|x|<R)γ]

with R > 0 a parameter to be chosen. By Theorem 2.10 we find

EHF(γ) ≥ −2C
2
3Z2N

1
3 − Cκ2Z2,

using that κ = Zα and by choosing R = C−
2
3Z−1N

2
3 .

Documenta Mathematica 15 (2010) 285–345



298 Anna Dall’Acqua and Jan Philip Solovej

3 Near the nucleus

In this section we prove the estimate in Theorem 1.17 in the region near the
nucleus (i.e. at distance of Z−

1
3 ).

We again assume that N ≥ Z and that an HF-minimizer γHF exists for this
N and Z. We denote the density of γHF by ρHF. We assume throughout that
αZ = κ is fixed with 0 ≤ κ < 2/π and Z ≥ 1.

Lemma 3.1. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Let Gα be the
function defined in Theorem 2.3. Then, there exists α0 > 0 such that for all
α ≤ α0

α−1
∫

R3

Gα(ρHF(x))dx ≤ CZ7/3, α−1 Tr[T (p)γHF] ≤ CZ7/3

and ‖ρTF − ρHF‖2C ≤ CZ2+ 3
11 ,

(21)

with C a universal constant depending only on κ.

Proof. Let µ ∈ (0, 1) be such that µ−1κ < 2/π. Notice that here we need
κ < 2/π. Splitting the kinetic energy into two parts we find

EHF(γHF) = (1− µ)α−1 Tr[T (p)γHF] +D(γHF)− Ex(γHF)

+µTr[(α−1T (p)− Z

µ|x| )γ
HF] = . . . ,

and introducing ρ ∈ L 5
3 (R3) ∩ L1(R3), ρ ≥ 0, to be chosen

. . . = (1− µ)α−1 Tr[T (p)γHF] + µ‖ρ− ρHF‖2C + (1− µ)D(γHF) (22)

−Ex(γHF)− µD(ρ) + µTr[(α−1T (p)−
( Z

µ|x| − ρ ∗
1

|x|
)
)γHF].

Here ‖ · ‖C denotes the Coulomb norm defined in Definition 2.7 and we used
that

‖ρ− ρHF‖2C = D(ρ)−
∫∫

ρHF(x)ρ(y)

|x− y| dxdy +D(γHF).

The estimates in the claim will follow from (22) with different choices of µ and
ρ. The main idea is to relate, up to lower order term, the last term on the right
hand side of (22) to the TF-energy of a neutral atom of nuclear charge Zµ−1.
This has been done in [21]. For completeness and easy reference we repeat the
reasoning in Propositions B.1 and B.2 in Appendix B.
To prove the first inequality in (21) we choose ρ as the minimizer of the TF-
energy functional of a neutral atom with charge µ−1Z. Since the corresponding
TF-mean field potential is Z/(µ|x|)−ρ∗1/|x| by Proposition B.2 in Appendix B
we find

Tr[(α−1T (p)− (
Z

µ|x| − ρ ∗
1

|x| ))γ
HF] ≥ −C1Z

7
3 +D(ρ). (23)
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Here we use (12). Since EHF(γHF) ≤ 0 from (22) and (23) leaving out the
positive terms we find

0 ≥ (1− µ)α−1 Tr[T (p)γHF]− Ex(γHF)− C1Z
7
3 . (24)

From (24) and Theorem 2.3 we get

(1 − µ)α−1
∫

R3

Gα(ρHF(x)) dx ≤ (1− µ)α−1 Tr[T (p)γHF] ≤ Ex(γHF) + C1Z
7
3 .

(25)
It remains to estimate the exchange term. By the exchange inequality (see [15])

Ex(γHF) ≤ 1.68

∫

R3

(
ρHF(x)

) 4
3 dx.

To proceed we separate R3 into two regions. Let us define

Σ =
{
x ∈ R3 : α

(
C−1ρHF(x)

) 1
3 ≥ 5

2

}
, (26)

with the same notation as in (16). By Remark 2.4, Gα(ρHF(x)) ≥ C2(ρHF(x))
4
3

in Σ and α−1Gα(ρHF(x)) ≥ C3(ρHF(x))
5
3 in R3 \Σ. Hence by Hölder’s inequal-

ity we find

Ex(γHF) ≤ 1.68

∫

Σ

(ρHF(x))
4
3 dx

+1.68
(∫

R3\Σ
(ρHF(x))

5
3 dx

) 1
2
( ∫

R3\Σ
ρHF(x) dx

) 1
2

≤C4

∫

R3

Gα(ρHF(x)) dx + C5

(∫

R3

α−1Gα(ρHF(x)) dx
) 1

2

N
1
2 .(27)

Choosing α0 such that 1− µ > 2C4α for α ≤ α0, from (25) and (27) we find

1−µ
2 α−1

∫

R3

Gα(ρHF(x)) dx ≤ C1Z
7
3 + C5

(∫

R3

α−1Gα(ρHF(x)) dx
) 1

2

N
1
2 .

The first estimate in (21) follows from the estimate above using that x2−bx−c ≤
0 implies x2 ≤ b2 + 2c and that N ≤ 2Z + 1 (Theorem 1.6). The second
inequality in (21) follows then from (25) and the bound on the exchange term.
To prove the third inequality in (21) we estimate from above and from below
EHF(γHF). For the one from below we choose in (22) µ = 1 and ρ = ρTF the
TF-minimizer of a neutral atom with nucleus of charge Z. We find

EHF(γHF) =
N∑

i=1

(ui, (α
−1T (p)−ϕTF)ui) + ‖ρHF−ρTF‖2C −D(ρTF)−Ex(γHF).

(28)
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From (28) and the proof of Proposition B.2 (see (B37)), we find

EHF(γHF) ≥ − 2
3
2

15π2 q

∫
dq(ϕTF(q))

5
2 − CZ2+1/5 (29)

−D(ρTF) + ‖ρHF − ρTF‖2C − Ex(γHF).

To estimate from above EHF(γHF) we may proceed exactly as in [23, page
543] using that α−1T (p) ≤ 1

2 |p|2. For completeness we repeat the main ideas.
We consider γ the density matrix that acts identically on each of the spin
components as

γj = 1
(2π)3

∫∫

1
2 |p|2≤ϕTF(q)

Πp,q dqdp for j = 1, . . . , q.

Here Πp,q is the projection onto the space spanned by hp,qs (x) := hs(x−q)eip.x

where hs is the ground state (normalized in L2(R3)) for the Dirichlet Laplacian
on the ball of radius Z−s with s ∈ (1/3, 2/3) to be chosen. One sees that
Tr[γ] = Z ≤ N since

ργ(x) = 23/2q
6π2 (ϕTF)3/2 ∗ h2s(x) = ρTF ∗ h2s(x),

where we have used the TF-equation. Hence EHF(γ) ≥ EHF(γHF). Now we
estimate from above EHF(γ). Since α−1T (p) ≤ 1

2 |p|2 and Ex(γ) ≥ 0 we find

EHF(γ) ≤ Tr[(− 1
2∆− Z

| · | )γ] +D(ργ) = . . . ,

and proceeding as in [23, page 543])

· · · = q
(2π)3

∫∫

1
2 |p|2≤ϕTF(q)

1
2 |p|2 dpdq− π2

2 Z
2sN −

∫

R3

Z

|x|ργ(x) dx +D(ργ).

Computing the integral and summing and subtracting the term
∫
ρTFϕTF we

get

EHF(γ) ≤ q2
1
2

5π2

∫

R3

(ϕTF(q))
5
2 dq− π2

2 Z
2sN −

∫

R3

ϕTF(x)ρTF(x) dx

−
∫

R3

Z

|x| (ργ(x)− ρTF(x))dx − 2D(ρTF) +D(ργ). (30)

By Newton’s theorem one sees that D(ργ) ≤ D(ρTF) and that

Z

∫

R3

ρTF(x)− ργ(x)

|x| dx ≤ Z
∫

|x|≤Z−s

ρTF(x)

|x| dx ≤ CZ 1
5 (12−s).

In the last step we use Hölder’s inequality and Corollary 1.15. From (30) using
the TF-equation, that N ≤ 2Z + 1 (Theorem 1.6) and optimizing in s we find

EHF(γ) ≤ − 2
3
2

15π2 q

∫

R3

(ϕTF(q))
5
2 dq + CZ

1
5 (12− 7

11 ) −D(ρTF). (31)
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Hence from (29) and (31) we obtain

∥∥ρHF − ρTF
∥∥2
C
≤ CZ2+ 3

11 + Ex(γHF).

The last estimate in (21) follows from the estimate above since Ex(γHF) ≤ CZ 5
3

using (27) and the estimate just proved on α−1
∫
Gα(ρHF(x)) dx.

Lemma 3.2. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Then, there

exists an α0 > 0 such that for all α ≤ α0, µ > 0 and x ∈ R3 with |x| ≤ βZ− 1+µ
3

we have

|ΦTF
|x| (x)− ΦHF

|x| (x)| ≤ Cβ 4
1+µ (1 + β

9
22(1+µ) |x|

2+11µ
22(1+µ) )|x|−4+ 4µ

1+µ .

Proof. By the definition of screened nuclear potential we have

∣∣∣ΦHF
|x| (x) − ΦTF

|x| (x)
∣∣∣ ≤

∫

|y|<|x|

|ρHF(y)− ρTF(y)|
|x− y| dy = . . .

and for all k > 0 by Proposition 2.8

. . . ≤ 2
3
2 k−1|x|− 1

2

∥∥ρHF − ρTF
∥∥
C

+

∫

A(|x|,k)

ρHF(y) + ρTF(y)

|x− y| dy. (32)

Since ‖ρTF‖
L

5
3 (R3)

≤ CZ 7
5 (Corollary 1.15) and

∫

A(|x|,k)

1

|x− y| 52
dy ≤ 8π|x| 12 (2k)

1
2 . (33)

(see [23] page 549) one finds

∫

A(|x|,k)

ρTF(y)

|x− y| dy ≤ CZ
7
5 |x| 15 k 1

5 . (34)

The term with the HF-density has to be treated differently since we do not
have a bound for the L

5
3 -norm of ρHF. For a R ∈ R+ to be chosen later we

consider the splitting
∫

A(|x|,k)

ρHF(y)

|x− y| dy =

∫
A(|x|,k)
|x−y|>R

ρHF(y)

|x− y| dy +

∫
A(|x|,k)
|x−y|<R

ρHF(y)

|x− y| dy. (35)

We consider these two terms separately. Let Σ be defined as in (26); i.e.

the region where Gα(ρHF) behaves like (ρHF)
4
3 (Remark 2.4). By Hölder’s

inequality we find
∫
A(|x|,k)
|x−y|>R

ρHF(y)

|x− y| dy ≤
(∫

A(|x|,k)
|x−y|>R

1

|x− y|4 dy
) 1

4
(∫

y∈Σ

(
ρHF(y))

4
3 dy

) 3
4

+
(∫

A(|x|,k)

1

|x− y| 52
dy
) 2

5
( ∫

y∈R3\Σ

(
ρHF(y)

) 5
3 dy

) 3
5

.
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From the inequality above, Remark 2.4 and estimate (21) we get

∫
A(|x|,k)
|x−y|>R

ρHF(y)

|x− y| dy ≤ CR−
3
8 |x| 18 k 1

8Z + C|x| 15 k 1
5Z

7
5 . (36)

On the other hand for the second term on the right hand side of (35) by (20)
and Lemma 3.1 we find

∫

|x−y|<R

ρHF(y)

|x− y| dy ≤ C(Z
4
3 +R

1
2Z

3
2 ). (37)

Hence from (32), Lemma 3.1, (34), (36) and (37), we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C
( Z1+ 3

22

|x|1/2k + Z
7
5 |x| 15 k 1

5 +R−
3
8 |x| 18 k 1

8Z +R
1
2Z

3
2 + Z

4
3

)
.

(38)

Choosing k such that Z
4
3 = Z

7
5 |x| 15 k 1

5 , i.e. k = |x|−1Z− 1
3 and R such that

R−
3
8Z1− 1

24 = Z
4
3 , i.e. R = Z−1 we find

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C(|x| 12Z 4
3+

3
22 + Z

4
3 ).

The claim follows using that |x| ≤ βZ− 1+µ
3 .

Theorem 3.3. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Then there

exists an α0 > 0 such that for all α ≤ α0 and x ∈ R3 with |x| ≤ βZ− 1
3 we have

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ Cβ2− 1
66 (1 + β2 + β

5
2 + β2+ 789

1936 |x| 179
1936 )|x|−4+ 1

66 . (39)

Moreover if |x| ≤ βZ− 1−µ
3 for µ < 2

11
1
49 , then

|ΦTF
|x| (x)− ΦHF

|x| (x)| ≤ Cβ2−a(µ)(1 + β2 + β
5
2 + βb(µ)|x|c(µ))|x|−4+a(µ), (40)

with a(µ) = 1
66(1−µ) −

49µ
12(1−µ) , b(µ) = 2 + 3

176

24−24µ− 1
11+

49
2 µ

1−µ and c(µ) = 1
11 −

3
11− 3

2 49µ

22(8−8µ) strictly positive constants.

Proof. Proceeding as in the proof of Lemma 3.2 up to (36) we get

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C(k−1|x|− 1
2Z1+ 3

22 + Z
7
5 |x| 15 k 1

5 + R−
3
8 |x| 18 k 1

8Z)

+

∫

|x−y|≤R

ρHF(y)

|x− y| dy, (41)

for R ∈ R+ to be chosen. It remains to estimate the last term on the right
hand side of (41). For ‘small’ R which is relevant for small x we already did it
in Lemma 3.2, for ‘big’ R which is relevant for big x we use Proposition B.1 in
Appendix B.
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Take γ ≤ 1/263 to be chosen. If |x| ≤ βZ− 1+γ
3 then by Lemma 3.2

|ΦTF
|x| (x)− ΦHF

|x| (x)| ≤ Cβ 4
1+γ (1 + β

9
22(1+γ) |x|

2+11γ
22(1+γ) )|x|−4+ 4γ

1+γ . (42)

If instead |x| > βZ−
1+γ
3 , let Hx be the Hamiltonian defined in (B2) with P = x

and ν = Z. Then by the definition of Hx and taking the HF-minimizer as a
trial wave function we have

inf
ψ∈∧Ni=1L

2(R3)
‖ψ‖2=1

〈ψ,Hxψ〉 ≤ EHF(γHF)− Z
∫

|x−y|<R

ρHF(y)

|x− y| dy

= inf
γ∈A
EHF(γ)− Z

∫

|x−y|<R

ρHF(y)

|x− y| dy = . . . .

Since 1
2 |p|2 ≥ α−1T (p), infγ∈A EHF(γ) is estimated from above by the HF-

ground state energy of the non-relativistic model (i.e. when the kinetic energy
is given by − 1

2∆). Moreover, this last one can be estimated from above by

ETF(ρTF) + CN
1
5Z2 (see [18] and [11]). Hence we find

· · · ≤ ETF(ρTF) + CN
1
5Z2 − Z

∫

|x−y|<R

ρHF(y)

|x− y| dy.

On the other hand since |x| > βZ−
1+γ
3 choosing for some l > 1+γ

3 , R < βZ−l/4
from Proposition B.1 it follows that there exists a constant depending only on
κ such that for t ∈ ((1 +γ)/3,min{l, 3/5}), and for every ψ ∈ ∧Ni=1L

2(R3) with
‖ψ‖2 = 1 we have

〈ψ,Hxψ〉 ≥ ETF(ρTF)− C(β1/2 + β−2)Z
5
2− t2 ,

Hence combining the two inequalities above we find
∫

|x−y|≤R

ρHF(y)

|x− y| dy ≤ C(β1/2 + β−2)Z
1
2 (3−t). (43)

From (41) and the inequality above we get

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ Ck−1|x|− 1
2Z1+ 3

22 + CZ
7
5 |x| 15 k 1

5

+CR−
3
8 |x| 18 k 1

8Z + C(β1/2 + β−2)Z
1
2 (3−t).

Choosing k such that Z
1
2 (3−t) = Z

7
5 |x| 15 k 1

5 , i.e k = |x|−1Z 1
2 (1−5t) and R such

that Z
1
2 (3−t) ∼ R− 3

8Z1+ 1
16 (1−5t), i.e R = βZ−

7
6+

1
2 t/4 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(|x| 12Z 7
11+

5
2 t + (β1/2 + β−2)Z

1
2 (3−t)). (44)

Notice that R < βZ−l/4 is satisfied choosing l = 4t/3. Then for x such that

βZ−
1+γ
3 ≤ |x| ≤ βZ− 1

3 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(|x|− 31
22− 15

2 tβ
21
11+

15
2 t + (β1/2 + β−2)β

3
2 (3−t)|x|− 3

2 (3−t)).
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Optimizing in t gives t = 1/3 + 1/99. For this value of t we get

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C(1 + β
5
2 )β2− 1

66 |x|−4+ 1
66 . (45)

Inequality (39) follows from (42) and (45) choosing γ such that 4γ/(1 + γ) =
1/66, i.e. γ = 1/263.

On the other hand from (44) for x such that βZ−
1+γ
3 ≤ |x| ≤ βZ− 1−µ

3 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C|x| 12− 3
1−µ ( 7

11+
5
2 t)β

3
1−µ (

7
11+

5
2 t)

+C(β1/2 + β−2)β
3

2(1−µ) (3−t)|x|− 3
2(1−µ) (3−t).

Optimizing in t gives t = 1/3 + 1/99− 1
18µ. For this value of t we get

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C(1 + β
5
2 )β2− 1

66(1−µ)+
49µ

12(1−µ) |x|−4+ 1
66(1−µ)−

49µ
12(1−µ) .

Inequality (40) follows from the one above and (42) choosing γ such that 4γ/(1+
γ) = 1

66(1−µ) −
49µ

12(1−µ) .

4 The exterior part

In this section we complete the proof of Theorem 1.17. We first estimate the
exterior integral of the density and study the minimization problem that the
exterior part of the minimizer satisfies. Then we prove the main estimate in
Theorem 1.17 in an intermediate zone, i.e. far from the nucleus but not further
than a fixed distance independent of Z. To study this area we need first to
construct a TF-model that gives a good approximation of the HF-density in
this intermediate zone. By the estimate on the exterior integral of the density
we can then also prove Theorem 1.17 in the region far away from the nucleus.

4.1 The exterior integral of the density

The main result of this section is the following lemma.

Lemma 4.1 (The exterior integral of the density). Assume that for some
R, σ, ε′ > 0

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ , (46)

holds for |x| ≤ R. Then for 0 < r ≤ R
∣∣∣
∫

|x|<r
(ρHF(x)− ρTF(x)) dx

∣∣∣ ≤ σr−3+ε′ (47)

and ∫

|x|>r
ρHF(x)dx ≤ C(1 + σrε

′

)(1 + r−3), (48)

with C a universal constant.
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We proceed similarly as in the proof of Lemma 10.5 in [23]. Since we need to
localize we first present some technical lemmas that will take care of the error
terms due to the localization. The localization error that will appear in the
argument below (see (58)) will be in the form of an operator L similar to the
error (14) in the IMS formula. We estimate this error in Lemma 4.3.

Remark 4.2. Let 0 ≤ β1 < .. < β4 be real numbers with possibly β4 =∞. Let
us denote Σr(βi, βj) = {x ∈ R3 : βir ≤ |x| ≤ βjr}. Then we have

∫∫
x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

K2(α−1|x− y|)2 dxdy ≤ 46π2

3

β3
2 − β3

1

β3 − β2
α4r2e−α

−1r(β3−β2) .

The proof of this estimate is given in Appendix A.

Lemma 4.3. Let r > 0 and λ, ν ∈ (0, 1). Let χ− be the characteristic function
of Br(1−ν)(0) and χ0 be the characteristic function of the sector {x ∈ R3 :
r(1 − ν) < |x| < r(1 + ν)/(1 − λ)}. Let η be a Lipschitz function such that
0 ≤ η(x) ≤ 1 for all x ∈ R3, η(x) ≡ 0 if |x| ≤ r, η(x) ≡ 1 if |x| ≥ r(1 − λ)−1

and ‖∇η‖∞ is bounded. Let L denote the operator with integral kernel

L(x,y) =
α−2

4π2

(η(x) − η(y))(η(x)|x| − η(y)|y|)
|x− y|2 K2(α−1|x− y|). (49)

Then for every function f ∈ L2(R3) we have

α−1|(f, Lf)| ≤ 3D(η, λ, r) ‖χ0f‖22 +D(η, λ, r)e−
1
2α

−1rν‖χ−f‖22 +α−1|(f,Qf)|,

with D(η, λ, r) := ‖∇η‖∞
(
‖∇η‖∞r

1−λ +1
)
and Q a positive semi-definite operator

such that

Tr[Q] ≤ CD(η, λ, r)α−1r2e−
1
2α

−1rν ,

with C depending only on λ and ν.

Proof. As a first step we decompose the operator L. We introduce a third
cut-off function χ+ such that 1 = χ−(x) + χ0(x) + χ+(x) for all x ∈ R3.
We decompose the operator L with respect to these characteristic functions as
follows:

L = χ−L(χ0 + χ+) + (χ0 + χ+)Lχ− + χ0Lχ+ + χ+Lχ0 + χ0Lχ0.

We proceed similarly as in [24, Proof of Theorem 2.6 (Localization error)]. For
Γ1,Γ2 bounded operators from (Γ1 − Γ2)(Γ1 − Γ2)∗ ≥ 0 it follows

Γ1Γ∗2 + Γ2Γ∗1 ≤ Γ1Γ∗1 + Γ2Γ∗2. (50)

We are going to use several times this inequality with different choices of Γ1

and Γ2.
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As a first choice we consider Γ1 =
√
ε1χ− and Γ2 = 1/

√
ε1(χ0 + χ+)Lχ− with

ε1 > 0 to be chosen. Using (50) we get

|(f, (χ−L(χ0 + χ+) + (χ0 + χ+)Lχ−)f)| ≤ ε1‖χ−f‖22 +
1

ε1
(f,Q1f), (51)

with Q1 = (χ0 + χ+)Lχ2
−L(χ0 + χ+). We estimate now the trace of Q1. By

the definition of η, χ−, χ0 and χ+ it follows that

Tr[Q1] =

∫

|x|≤r(1−ν)

∫

|y|≥r
L2(x,y) dxdy ≤ (16)2

3π2

(1−ν)3
ν D(η, λ, r)2r2e−α

−1rν .

In the last step we use the definition of L, Remark 4.2 and the definition of the
constant D(η, λ, r) given in the statement of the lemma.
Now we choose Γ1 =

√
ε2χ0 and Γ2 = 1/

√
ε2χ+Lχ0 with ε2 > 0 to be chosen.

Proceeding as above we get

|(f, (χ+Lχ0 + χ0Lχ+)f)| ≤ ε2‖χ0f‖22 +
1

ε2
(f,Q2f), (52)

with Q2 = χ+Lχ
2
0Lχ+ and such that

Tr[Q2] ≤ (16)2

3π2

1−(1−ν)3(1−λ)3
ν(1−λ)2 D(η, λ, r)2 r2e−α

−1r ν
1−λ .

It remains to study the term χ0Lχ0. This one has to be treated differently. By
Schwartz’s inequality one gets

|(f, χ0Lχ0f)| ≤ 3α
2 D(η, λ, r)

∫

R3

χ0(x)|f(x)|2, (53)

since
∫
R3 |L(x,y)|dxdy ≤ 3α

2 D(η, λ, r).

The claim follows from (51), (52) and (53) choosing ε1 = D(η, λ, r)αe−
1
2α

−1rν ,
ε2 = 3α

2 D(η, λ, r) and with Q := 1
ε1
Q1 + 1

ε2
Q2.

Definition 4.4 (The localization function). Fix 0 < λ < 1 and let G : R3 → R
be given by

G(x) :=





0 if |x| ≤ 1,
π
2 (|x| − 1) 1

(1−λ)−1−1 if 1 ≤ |x| ≤ (1− λ)−1,
π
2 if (1− λ)−1 ≤ |x|.

Let r > 0 and define the outside localization function θr(x) := sin(G( |x|r )).

Remark 4.5. From the definition it follows that ‖∇θr‖∞ ≤ π
2
1−λ
λ r−1.

Lemma 4.6. For all r > 0 and λ, ν ∈ (0, 1) the density ρHF of the minimizer
satisfies

∫

|x|>r(1−λ)−1

ρHF(x)dx ≤ 1 + 2
λ + 2 sup

|x|=r(1−λ)
|x|ΦHF

r(1−λ)(x) +R 1
2
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with

R = 6D(λ)r−1
∫

r(1−ν)<|x|<r 1+ν
1−λ

ρHF(x) dx + 2D(λ)(r−1N +Crα−2)e−
1
2α

−1rν ,

with D(λ) := (1 + π/(2λ(1− λ)))π/(2λ) and C = C(λ, ν).

Proof. Let γHF be the minimizer. By the variational principle, γHF is a projec-
tion onto the subspace spanned by u1, . . . , uN . These functions ui satisfy the
Euler Lagrange equations hγHFui = εiui, εi < 0, for i = 1, . . . , N , with hγHF

defined in (11).

Given η a function in C1(R3) with support away from zero, we find

0 ≥
N∑

i=1

εi

∫

R3

|ui(x)|2|x|η2(x)dx =

N∑

i=1

∫

R3

ui(x)∗|x|η2(x)hγHFui(x)dx.

Since ηT (p)ui ∈ L2(R3) (Theorem 1.5, (3)), using the Euler-Lagrange equa-
tions and treating all the terms, except the kinetic energy, as in [23, Formula
(63)] we get

0 ≥ α−1
N∑

i=1

(uiη| · |, ηT (p)ui)− Z
∫

R3

ρHF(x)η2(x)dx

+

∫

R3

∫

R3

[
ρHF(x)ρHF(y) − TrCq |γHF(x,y)|2

] |y|(1 − η2(x))η2(y)

|x− y| dxdy

+ 1
2

(∫

R3

ρHF(x)η2(x)dx
)2
− 1

2

∫

R3

ρHF(x)η2(x)dx. (54)

Now we look at the kinetic energy term. For each i ∈ {1, . . . , N} we may write

Re(uiη| · |, ηT (p)ui) = Re(uiη| · |, T (p)(ηui)) + Re(uiη| · |, [η, T (p)]ui), (55)

where [A,B] denotes the commutator of the operators A and B. The first term
on the right hand side of (55) is non-negative by the result of Lieb in [13].
Notice that here we may use that ηui ∈ H1(R3) (see Theorem 1.5, (3)).

Hence, from (54) and (55) we find

0 ≥ α−1
N∑

i=1

Re(uiη| · |, [η, T (p)]ui)− Z
∫

R3

ρHF(x)η2(x)dx

+

∫

R3

∫

R3

[
ρHF(x)ρHF(y) − TrCq |γHF(x,y)|2

] |y|(1 − η2(x))η2(y)

|x− y| dxdy

+ 1
2

(∫

R3

ρHF(x)η2(x)dx
)2
− 1

2

∫

R3

ρHF(x)η2(x)dx. (56)
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By a density argument we may choose η = θr the localization function defined
in Definition 4.4. Reasoning as on page 541 of [23], we get

0 ≥ α−1
N∑

i=1

Re(uiη| · |, [η, T (p)]ui) + 1
2

(∫

R3

ρHF(x)η2(x)dx
)2

−
(

1
2 + 1

λ + sup
|x|=r(1−λ)

|x|ΦHF
r(1−λ)(x)

) ∫

R3

ρHF(x)η2(x)dx. (57)

It remains to estimate the first term on the right hand side of (57). With the
same arguments used in the proof of the IMS formula, it can be rewritten as

α−1
N∑

i=1

Re(uiη| · |, [η, T (p)]ui) = −α−1
N∑

i=1

(ui, Lui), (58)

where L is the operator defined in (49). Using Lemma 4.3 and since ‖∇η‖∞ =
‖∇θr‖∞ ≤ π/ (2λr) we find, with D(λ) defined as in the statement,

α−1
∣∣∣
N∑

i=1

(ui, Lui)
∣∣∣ ≤ 3D(λ)r−1‖χ0ρ

HF‖1 +D(λ)r−1e−
1
2α

−1rν‖χ−ρHF‖1

+CD(λ)rα−2e−
1
2α

−1rν , (59)

where χ0, χ− and C are as defined in the statement of Lemma 4.3. Hence
combining (57) with (59), using the definition of χ0 and that ‖χ−ρHF‖1 ≤ N
we have

0 ≥ −3D(λ)r−1
∫

r(1−ν)<|x|<r 1+ν
1−λ

ρHF(x) dx−D(λ)r−1e−
1
2α

−1rνN

−CD(λ)rα−2e−
1
2α

−1rν + 1
2

( ∫

R3

ρHF(x)η2(x)dx
)2

−
(

1
2 + 1

λ + sup
|x|=r(1−λ)

|x|ΦHF
r(1−λ)(x)

) ∫

R3

ρHF(x)η2(x)dx.

The claim follows using that x2 −Bx− C ≤ 0 implies x ≤ B +
√
C.

Proof of Lemma 4.1. We proceed as in [23, page 551]. The first estimate follows
directly from the equality

∫

|x|<r
(ρHF(x)− ρTF(x)) dx = 1

4π r

∫

S2

(ΦHF
r (rω) − ΦTF

r (rω)) dω,

and (46). To prove (48) we use Lemma 4.6. We first notice that for 0 < β < γ
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and γ such that rγ ≤ R
∫

rβ<|y|<rγ
ρHF(y) dy ≤

∣∣∣
∫

|y|<rγ
(ρHF(y) − ρTF(y)) dy

∣∣∣

+
∣∣∣
∫

|y|<rβ
(ρHF(y) − ρTF(y)) dy

∣∣∣ +

∫

|y|>rβ
ρTF(y) dy

≤ Cr−3β−3(1 + σrε
′

). (60)

Here we used (47) and that by the TF-equation and (13)

∫

|y|>rβ
ρTF(y) dy ≤ 342π2

q2 β−3r−3.

Since
∫
|x|>r ρ

HF ≤
∫
|x|>2r/3 ρ

HF to prove the claim we estimate this second

integral. By Lemma 4.6 with r replaced by r/2, λ = 1
4 and ν = 1

2 we get

∫

|x|>2r/3

ρHF(x)dx ≤ 9 + 3
4r sup
|x|=3r/8

ΦHF
3r/8(x) +R 1

2 ,

with R defined as in the statement of Lemma 4.6. By (46) and Corollary 1.14
we find

sup
|x|=3r/8

ΦHF
3r/8(x) ≤ Cσr−4+ε′ + sup

|x|=3r/8

ΦTF
3r/8(x) ≤ C(1 + σrε

′

)r−4.

Moreover, from (60) with β = 1/4 and γ = 1, since N < 2Z + 1 and the
boundness of R+ ∋ x 7→ xpe−x for all p > 0, we find

R ≤ C(r−4(1 + σrε
′

) + r−1).

The claim follows directly.

4.2 Separating the inside from the outside

We consider the exterior part of the minimizer, i.e. the density matrix

γHF
r := θrγ

HFθr, (61)

with θr as defined in Definition 4.4. This density matrix almost minimizes a
new energy functional where there is no exchange term. Indeed sufficiently
far away from the nucleus the electrons are far apart and hence their mutual
interaction is small.

We define an auxiliary energy functional on A (see (8)) given by

EA(γ) := Tr[(α−1T (p)− ΦHF
r )γ] + D(ργ). (62)
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Theorem 4.7. Let r > 0 and λ, ν ∈ (0, 1). Let χ+
r denote the characteristic

function of R3 \Br(0). The density matrix γHF
r defined in (61) satisfies

EA(γHF
r ) ≤

{
EA(γ) : γ ∈ A, supp(ργ) ⊂ R3 \Br(0), ‖ργ‖1 ≤ ‖ρHFχr‖1

}
+R,

where

R = ( π2λ + C
λ2 r
−1)r−1

∫

r(1−λ)(1−ν)≤|x|
ρHF(x) dx + c′α−2(1 + αr−2)e−

1
2α

−1rd

+Ex(γHF
r ) + C

∫

r(1−λ)≤|x|≤ r
1−λ

[(
ΦHF
r(1−λ)(x)

) 5
2 + α3

(
ΦHF
r(1−λ)(x)

)4]
dx,

and c′, d are positive constants depending only on ν and λ.

Proof. We proceed as in [23, pages 532-6]. The first step of the proof is a
localization. Once again we have to treat carefully the localization error coming
from the kinetic energy. This is the main difference with [23]. For completeness
we repeat the main ideas of the reasoning.
We consider the following partition of unity of R3: 1 = θ2r(x) + θ20(x) + θ2−(x)
with θr defined as in Definition 4.4 and

θ0(x) :=
(
θ2r(1−λ)(x)− θ2r(x)

) 1
2 and θ−(x) :=

(
1− θ2r(1−λ)(x)

) 1
2 .

Associated to this partition of unity we define

γHF
0 := θ0γ

HFθ0 and γHF
− := θ−γ

HFθ−.

We prove the claim by showing that for all density matrices γ ∈ A such that
supp(ργ) ⊂ R3 \Br(0) and ‖ργ‖1 ≤ ‖ρHFχ+

r ‖1 it holds that

EA(γHF
r ) + EHF(γHF

− )−R ≤ EHF(γHF) ≤ EA(γ) + EHF(γHF
− ). (63)

The proof of the upper bound in (63) is as in [23, page 533].
To prove the lower bound as a first step we localize. By Theorem 2.1 we find

α−1 Tr[T (p)γHF] = α−1 Tr[T (p)(γHF
r + γHF

0 + γHF
− )]

−α−1
N∑

i=1

(ui, (Lr + L0 + L−)ui),

where Lr, L0 and L− are defined as the Li’s in (14).
We first estimate the error term. The procedure is similar to the one used
in the proof of Lemma 4.3. We introduce three cut-off functions: χ− be the
characteristic function of Br(1−λ)(1−ν)(0), χr the characteristic function of R3 \
Br 1+ν

1−λ
(0) and χ0 defined by χ0(x) = 1− χr(x)− χ−(x) for all x ∈ R3. Notice

that χ− and χr are the characteristic functions of sets where θ−, θ0 and θr are
constants. For k ∈ {−, 0, r} we have the following splitting

Lk = χ−Lk(χ0 + χr) + (χ0 + χr)Lkχ− + χrLkχ0 + χ0Lkχr + χ0Lkχ0,

Documenta Mathematica 15 (2010) 285–345



Excess Charge for Pseudo-Relativistic Atoms. . . 311

and proceeding as in the proof of Lemma 4.3 with ε1,k, ε2,k to be chosen we
find

(f, Lkf) ≤ ε1,k‖χ−f‖22 + ε−11,k(f,Q1f) + ε2,k‖χ0f‖22 + ε−12,k(f,Q2f)

+ 3α
2 ‖∇θk‖2∞‖χ0f‖22.

with operators Q1 and Q2 being positive semi-definite operators with

Tr[Q1] ≤ (16)2

3π2

(1−λ)2(1−ν)3
ν ‖∇θk‖4∞r2e−α

−1rν(1−λ)

Tr[Q2] ≤ (16)2

3π2
1

ν(1−λ)2 ‖∇θk‖4∞r2e
−α−1r ν

1−λ .

Choosing then

ε2,k = 3α
2 ‖∇θk‖2∞ and ε1,k = α‖∇θk‖2∞e−

1
2α

−1rν(1−λ),

since (‖∇θr‖2∞+ ‖∇θ0‖2∞+ ‖∇θ−‖2∞) ≤ 3π2/(4λ2)r−2 and ‖ρHFχ−‖1 ≤ N we
get

α−1
N∑

i=1

(ui, (Lr + L0 + L−)ui) ≤ 3π2

4λ2 r
−2‖ρHFχ0‖1 + 3π2

4λ2 r
−2e−

1
2α

−1rν(1−λ)N

+ cα−2e−
1
2α

−1rν(1−λ).

Here c is a constant that depends only on ν and λ.
Hence from (64), the inequality above and since N ≤ 2Z + 1 we find

EHF(γHF) ≥ Tr
[(
α−1T (p)− Z

| · |
)

(γHF
r + γHF

0 + γHF
− )

]
+D(γHF)

−Ex(γHF)− 3π2

4λ2 r
−2‖ρHFχ0‖1 − c′α−2(1 + αr−2)e−

1
2α

−1rd.

The constants c′, d depend only on λ and ν. Proceeding as in [23] we get

EHF(γHF) ≥ EHF(γHF
− ) + EA(γHF

r )− Ex(γHF
r )− c′α−2(1 + αr−2)e−

1
2α

−1rd

+ Tr
[(
α−1T (p)− ΦHF

r(1−λ)(·)
)
γHF
0

]

−( π2λ + 3π2

4λ2 r
−1)r−1

∫

|x|≥r(1−λ)(1−ν)
ρHF(x) dx.

The claim follows using Theorem 2.5.

4.3 Comparing with an Outside Thomas Fermi

At this point we introduce an “Outside Thomas Fermi”: a TF-energy functional
whose minimizer approximates the HF-density at a certain distance from the
nucleus.
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Let r > 0 such that

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ , (64)

for all |x| ≤ r for some σ > 0 and ε′ > 0. Let Vr be the potential defined by

Vr(x) = χ+
r (x)ΦHF

r (x) =

{
0 if |x| < r,
ΦHF
r (x) if |x| ≥ r. (65)

Here and in the following χ+
r (x) := 1 − χr(x), x ∈ R3, where χr is the

characteristic function of the ball of radius r centered at 0. Notice that
Vr ∈ L

5
2 (R3) + L∞(R3) with

inf{‖W‖∞ : Vr −W ∈ L
5
2 (R3)} = 0.

Let EOTF
r be the TF-functional ETF

Vr
corresponding to the potential Vr defined

in (65). Let ρOTF
r be the unique minimizer of EOTF

r under the condition
∫

R3

ρ(x)dx ≤
∫

|y|≥r
ρHF(y)dy,

(see Theorem 1.9). Then ρOTF
r is solution to the OTF-equation

1
2

(
6π2

q

) 2
3

(ρOTF
r )

2
3 = [ϕOTF

r − µOTF
r ]+ , (66)

where

ϕOTF
r (x) = Vr(x)−

∫

R3

ρOTF
r (y)

|x− y| dy,

is the OTF-mean field potential and µOTF
r is the corresponding chemical poten-

tial. From (66) (and µOTF
r ≥ 0) we see that the support of ρOTF

r is contained
in R3 \Br(0).
In the intermediary zone instead of comparing directly ΦHF

|x| and ΦTF
|x| we com-

pare first the HF-density with the OTF-density and then the OTF-density with
the TF-density. When comparing the TF and OTF there is no difference with
the non-relativistic case and for brevity we refer for the proofs to [23].
We start by studying the behavior of the minimizer and mean field potential
of the OTF. The proof of the following bounds is in [23, page 557-558] in the
case q = 2 and it can be directly generalised to the other values of q.

Lemma 4.8 ([23, Lem.12.1]). For all y ∈ R3 we have

ϕTF(y) ≤ 342−1q−2π2|y|−4 and ρTF(y) ≤ 352−1q−2π|y|−6.

Let β0 be as defined in Theorem 1.12, then for all |y| ≥ β0Z−
1
3 we have

ϕTF(y) ≥ C|y|−4 and ρTF(y) ≥ C|y|−6.
With r, σ, ε′ such that (64) holds and σrε

′ ≤ 1 we have for all |y| ≥ r
ρOTF
r (y) ≤ Cr−6 and ϕOTF

r (y) ≤ |Vr(y)| ≤ Cr−4.
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Lemma 4.9 ([23, Lem.12.2]). With r, σ, ε′ such that (64) holds for all |x| ≤ r
we have ∫

|y|≥r
(ρTF(y)− ρHF(y))dy ≤ σr−3+ε′ .

For x ∈ R3 with |x| > r we may write

ΦHF
|x| (x) − ΦTF

|x| (x) = A1(r,x) +A2(r,x) +A3(r,x), (67)

where

A1(r,x) = ϕOTF
r (x)− ϕTF(x),

A2(r,x) =

∫

|y|>|x|

ρOTF
r (y) − ρTF(y)

|x− y| dy

and

A3(r,x) =

∫

r<|y|<|x|

ρOTF
r (y)− ρHF(y)

|x− y| dy.

4.3.1 Estimate on A1 and A2

Lemma 4.10 ([23, Lem.12.4]). Let N ≥ Z. Given ε′, σ > 0 there exists a

constant D > 0 such that for all r with β0Z
− 1

3 ≤ r ≤ D for which (64) holds
for all |x| ≤ r, then µOTF

r = 0 and

34π2

2q2 |x|−4(1 + arζ |x|−ζ)−2 ≤ ϕOTF
r (x) ≤ 34π2

2q2 |x|−4(1 +Arζ |x|−ζ) for |x| > r,

where a,A are universal constants and ζ = (−7 +
√

73)/2.

Lemma 4.11 ([23, Lem.12.5]). Let N ≥ Z. Given ε′, σ > 0 there exists a

constant D > 0 depending only on ε′, σ such that for all r with β0Z
− 1

3 ≤ r ≤ D
for which (64) holds for |x| ≤ r, then for all |x| ≥ r

|A1(r,x)| ≤ C|x|−4−ζrζ and |A2(r,x)| ≤ C|x|−4−ζrζ ,
with ζ = (−7 +

√
73)/2 and C a universal constant.

The proof of the previous lemmas is in [23, p. 558-564].

4.3.2 Estimate on ‖χ+
r ρ

HF − ρOTF
r ‖C

Lemma 4.12. Let Gα be the function defined in Theorem 2.3 and ρHF
r (x) be

the one-particle density of the density matrix γHF
r defined in (61). Let Zα = κ

fixed, 0 ≤ κ < 2/π and Z ≥ 1.

Given constants ε′, σ > 0 there exists D < 4
5 such that for all r with β0Z

− 1
3 ≤

r ≤ D for which (64) holds for |x| ≤ r, it follows that

α−1
∫

R3

Gα(ρHF
r (x)) dx ≤ α−1 Tr[T (p)γHF

r ]

≤ 2R+ Cr−7 + Cr−4
∫

R3

ρHF
r (x) dx,
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with C a universal positive constant and R as defined in Theorem 4.7.

Proof. The first inequality follows directly from Theorem 2.3. To prove the
second inequality we proceed as in Lemma 3.1. In this case we are interested
only in the exterior part of the minimizer. Hence, instead of considering the
HF-energy functional we consider the auxiliary functional EA, defined in (62),
applied to the “exterior part of the minimizer”γHF

r .
Splitting the kinetic energy in two terms we find

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF

r ] +D(ρHF
r ) + 1

2 Tr[(α−1T (p)− 2ΦHF
r )γHF

r ]. (68)

Since ΦHF
r (x) is harmonic for |x| > r and going to zero at infinity

ΦHF
r (x) ≤ r

|x| sup
|y|=r

ΦHF
r (y) for |x| > r.

Hence, since supp(ρHF
r ) ⊂ R3 \Br(0) we find

Tr[(α−1T (p)− 2ΦHF
r )γHF

r ] ≥ Tr[(α−1T (p)− 2r

| · | sup
|y|=r

ΦHF
r (y))γHF

r ] = . . . .

Adding and subtracting 2D(ρ, ρHF
r ) for ρ ∈ L1(R3) ∩ L 5

3 (R3), ρ ≥ 0, to be
chosen

. . . = Tr[(α−1T (p)− Vρ)γHF
r ]−

∫

R3

∫

R3

ρHF
r (x)ρ(y)

|x− y| dxdy. (69)

where for simplicity of notation here and in the following Vρ is defined as
Vρ(x) := 2r

|x| sup|y|=r ΦHF
r (y) − ρ ∗ 1

|x| .

From (69), (68) and the definition of the Coulomb norm and scalar product
(Definition 2.7) we find

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF

r ] + 1
2D(ρHF

r ) + 1
2‖ρHF

r − ρ‖2C
− 1

2D(ρ) + 1
2 Tr[(α−1T (p)− Vρ)γHF

r ] (70)

≥ 1
2α
−1 Tr[T (p)γHF

r ] + 1
2

N∑

i=1

(θrui, (α
−1T (p)− Vρ)θrui)− 1

2D(ρ),

denoting by ui the HF-orbitals.
We now choose ρ as the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge 2r sup|y|=r ΦHF

r (y). Then Vρ
is the corresponding TF-mean field potential and we see that the last two terms
on the right hand side of (70) are like the ones in the claim of Proposition B.2.
The only difference is due to the presence of the localization function θr. We
now prove that these terms give the TF-energy modulo lower order terms. The
method is the same as that of Proposition B.2. We repeat the main steps
since in this case the scaling depends on r. Notice that since r > β0Z

− 1
3 the

contribution is coming only from the “outer zone”.
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Let g ∈ C∞0 (R3) be spherically symmetric, normalized in L2(R3) and with
support in B1(0). Let us define gr(x) := r−3g(xr−2) and ψr := g2r . Since Vρ is
sub-harmonic on |x| > 0, we see from the support properties of ψr and θr that

N∑

i=1

(θrui, (α
−1T (p)− Vρ)θrui) ≥

N∑

i=1

(θrui, (α
−1T (p)− Vρ ∗ ψr)θrui) = . . . .

For p,q ∈ R3 we define the coherent states gp,qr (x) := gr(x − q)eip·x. By the
formulas (B16) and (B17) with Lq the operator defined in the equation below
(B17) we get

. . . = 1
(2π)3α

−1
∫

R3

∫

R3

dpdq (T (p)− αVρ(q))

N∑

i=1

q∑

j=1

|(θruji , gp,qr )|2

−α−1
N∑

i=1

∫

R3

∫

R3

dxdq (θrui)(x)(Lqθrui)(x) , (71)

where uji denotes the j-th spin component of the orbital ui. By the choice of
the function gr and with the same arguments that led to (B19) in the appendix
we find

α−1
N∑

i=1

∫

R3

∫

R3

dxdq (θrui)(x)(Lqθrui)(x)

≤ 3

N∑

i=1

‖θrui‖22‖∇gr‖2∞V ol(supp(gr)) ≤ Cr−4‖ρHF
r ‖1. (72)

In the first term on the right hand side of (71) the integrand is zero if |q| <
1
4r

2 since in this case supp(θr) ∩ supp(gq,pr ) = ∅ (by the choice D < 4/5).
To estimate it further from below we consider only the negative part of the
integrand

1
(2π)3α

−1
∫

R3

∫

R3

dpdq (T (p)− αVρ(q))
N∑

i=1

q∑

j=1

|(θruji , gp,qr )|2

≥ q
(2π)3α

−1
∫∫

|q|> 1
4 r

2

T (p)≤αVρ(q)

dpdq (T (p)− αVρ(q)) , (73)

where we have used that 0 ≤∑N
i=1 |(θru

j
i , g

p,q
r )|2 ≤ 1 (Bessel’s inequality). We

split the domain of integration in p as follows

{p ∈ R3 : T (p) ≤ αVρ(q)} = Σ1 ∪ Σ2

with Σ1,Σ2 disjoint and Σ1 = {p ∈ R3 : 1
2 |p|2 ≤ Vρ(q)}. We treat these two

contributions separately. We have

α−1
∫∫
|q|> 1

4 r
2

p∈Σ2

dpdq (T (p)− αVρ(q)) ≥ −
∫∫
|q|> 1

4 r
2

p∈Σ2

dpdq [Vρ(q)]+ = . . .
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and computing the integral, using that (1 + x)
3
2 ≤ 1 + 3

2x+ 3
8x

2

· · · ≥ −C
∫

|q|> 1
4 r

2

dq (α2[Vρ(q)]
7
2
+ + α4[Vρ(q)]

9
2
+) ≥ −Cα2r−

23
2 − Cα4r−

33
2 .

(74)
In the last step we used that [Vρ(q)]+ ≤ 2 r

|q| sup|x|=r ΦHF
r (x) and that by the

hypothesis and Corollary 1.14

r sup
|x|=r

ΦHF
r (x) ≤ Cr−3, (75)

choosing D such that σrε
′ ≤ 1.

Since T (p) ≥ 1
2α|p|2 − 1

8α
3|p|4 we find

α−1
∫∫
|q|> 1

4 r
2

p∈Σ1

dpdq (T (p)− αVρ(q))

≥
∫∫

|q|> 1
4 r

2

1
2 |p|

2≤Vρ(q)

dpdq (
1

2
|p|2 − Vρ(q))− 1

8α
2

∫∫
|q|> 1

4 r
2

1
2 |p|2≤Vρ(q)

dpdq |p|4. (76)

Computing the last integral we find

α2

∫∫
|q|> 1

4 r
2

1
2 |p|2≤Vρ(q)

dpdq |p|4 ≤ Cα2r−1(2r sup
|x|=r

ΦHF
r (x))

7
2 ≤ Cα2r−

23
2 . (77)

While for the first term on the right hand side of (76), computing the integral
with respect to p, we get
∫∫

|q|> 1
4 r

2

1
2 |p|2≤Vρ(q)

dpdq (12 |p|2 − Vρ(q)) = −4π 2
5
2

15

∫

|q|> 1
4 r

2

dq [Vρ(q)]
5
2
+.

Hence collecting together (71), (72), (73) (74), (77) and the inequality above
we find

Tr[(α−1T (p)−Vρ)γHF
r ] ≥ − 2

3
2 q

15π2

∫

R3

dx [Vρ(x)]
5
2
+−Cr−4‖ρHF

r ‖1−Cr−
11
2 = . . . .

since β0Z
− 1

3 ≤ r implies β0α
1
3 ≤ κ

1
3 r. From the TF-equation that ρ satisfies

it follows that

. . . = 3
10 (6π

2

q )
2
3

∫

R3

dx ρ(x)
5
3 −

∫

R3

ρ(x)Vρ(x) dx− Cr−4‖ρHF
r ‖1 − Cr−

11
2

= ETF(ρ) +D(ρ)− Cr−4‖ρHF
r ‖1 − Cr−

11
2 .

Hence from (70) and the inequality above we get using (12) and (75)

EA(γHF
r ) ≥ 1

2α
−1 Tr[T (p)γHF]− Cr−7 − Cr−4‖ρHF

r ‖1.
The claim follows since EA(γHF

r ) ≤ R by the result of Theorem 4.7 considering
as a trial density matrix γ ≡ 0.

Documenta Mathematica 15 (2010) 285–345



Excess Charge for Pseudo-Relativistic Atoms. . . 317

Lemma 4.13. Let N ′ ∈ N and Zα = κ be fixed, 0 ≤ κ < 2/π and Z ≥ 1. Let
ej be the first N ′ negative eigenvalues of the operator α−1T (p)− ϕOTF

r acting
on functions with support on {x ∈ R3 : |x| ≥ r}.
Given constants ε′, σ > 0 there exists D < 4/5 such that for all r with β0Z

− 1
3 ≤

r ≤ D for which (64) holds for |x| ≤ r, for all µ ∈ (0, 1) and s < r we have

N ′∑

j=1

ej ≥ −( 2
1−µ )

3
2 1
15π2

∫

|q|>r
[ϕOTF
r (q)]

5
2
+ dq− Cr−8sµ− 3

2 − Cµ−3r−5s

−C(1− µ)−
7
2 r−5 − C(1 − µ)s−2N ′,

with C a positive constant.

Proof. Let fj be the eigenfunctions (normalized in L2(R3,Cq)) corresponding
to the eigenvalues ej , j = 1, .., N ′. Let g ∈ C∞0 (R3) with support in B1(0) and

define gs(x) = s−
3
2 g(x/s) for a positive parameter s, s < r. We then write for

µ ∈ (0, 1)
N ′∑

j=1

ej =
N ′∑

j=1

(fj , (α
−1T (p)− ϕOTF

r )fj) = B1 + B2,

where

B1 =

N ′∑

j=1

(fj , ((1− µ)α−1T (p)− ϕOTF
r ∗ g2s)fj),

B2 =

N ′∑

j=1

(fj , (µα
−1T (p)− ϕOTF

r + ϕOTF
r ∗ g2s)fj).

We estimate these two terms separately. Considering for p,q ∈ R3 the coherent
states gp,qs (x) := eip.xgs(x − q) using (B16) and (B17), we find

B1 = 1
(2π)3

∫∫
((1 − µ)α−1T (p)− ϕOTF

r (q))

N∑

j=1

|(fj , gp,qs )|2 dqdp

− (1− µ)α−1
N ′∑

j=1

∫

R3

∫

R3

dxdqfj(x)(Lqfj)(x) . (78)

Estimating the error term as done in (B32) and previous inequalities we get

(1− µ)α−1
N ′∑

j=1

∫

R3

∫

R3

dxdqfj(x)(Lqfj)(x) ≤ C(1 − µ)s−2N ′.

Since we are interested in an estimate from below and ϕOTF
r (q) ≤ 0 for |q| < r,
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from (78) we find

B1 ≥ 1
(2π)3

∫∫

|q|>r
((1− µ)α−1T (p)− ϕOTF

r (q))

N∑

j=1

|(fj , gp,qs )|2 dqdp

−C(1 − µ)s−2N ′. (79)

We estimate now the first term on the right hand side of (79). Considering

only the negative part of the integrand and since
∑N ′

j=1 |(fj , gp,qs )|2 ≤ 1 we get

1
(2π)3

∫∫

|q|>r
((1 − µ)α−1T (p)− ϕOTF

r (q))

N ′∑

j=1

|(fj, gp,qs )| dqdp

≥ 1
(2π)3

∫∫
|q|>r,

(1−µ)α−1T (p)≤ϕOTF
r (q)

((1 − µ)α−1T (p)− ϕOTF
r (q)) dpdq.

Now we split the domain of integration in p as follows

{p ∈ R3 : α−1(1− µ)T (p) ≤ ϕOTF
r (q)} = Σ1 ∪ Σ2,

with Σ1,Σ2 disjoint and Σ1 = {p ∈ R3 : (1 − µ)|p|2/2 ≤ ϕOTF
r (q)}. We treat

these two contributions separately. Then

1
(2π)3

∫∫
|q|>r,
p∈Σ2

((1 − µ)α−1T (p)− ϕOTF
r (q))dpdq

≥ − 1
(2π)3

∫∫
|q|>r,
p∈Σ2

[ϕOTF
r (q)]+dpdq = . . .

and since in the domain of integration

2
1−µ [ϕOTF

r (q)]+ ≤ |p|2 ≤ 2
1−µ [ϕOTF

r (q)]+(1 + 1
2(1−µ)α

2[ϕOTF
r (q)]+)

we get

. . . ≥ − C

(1−µ) 5
2
α2

∫

|q|>r
dq ([ϕOTF

r (q)]
7
2
+ + α2

8(1−µ) [ϕOTF
r (q)]

9
2
+)

≥ − C

(1−µ) 5
2
α2(r−11 + α2

1−µr
−15), (80)

using Lemma 4.10 in the last step.
Since

√
1 + t2 ≥ 1 + (1/2)t2 − (1/8)t4, we get

1
(2π)3

∫∫
|q|>r,
p∈Σ1

((1− µ)α−1T (p)− ϕOTF
r (q))dpdq

≥ 1
(2π)3

∫∫
|q|>r,
p∈Σ1

((1− µ)12 |p|2 − ϕOTF
r (q) − 1

8 (1− µ)α2|p|4)dpdq.
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The last term gives by Lemma 4.10

α2

∫∫
|q|>r
p∈Σ1

dpdq |p|4 = α2 4π
7

∫

|q|>r
dq ( 2

1−µ )
7
2 [ϕOTF

r (q)]
7
2
+ ≤ Cα2( 2

1−µ )
7
2 r−11.

(81)
While for the other terms computing the integral with respect to p, we get

1
(2π)3

∫∫
|q|>r,
p∈Σ1

((1 − µ)12 |p|2 − ϕOTF
r (q))dpdq

= −( 2
1−µ )

3
2 1
15π2

∫

|q|>r
dq [ϕOTF

r (q)]
5
2
+. (82)

For the term B2 using Theorem 2.5 and Remark 2.6 we find

B2 ≥ −Cq(µ−
3
2 ‖[ϕOTF

r − ϕOTF
r ∗ g2s ]+‖

5
2
5
2

+ α3µ−3‖[ϕOTF
r − ϕOTF

r ∗ g2s ]+‖44).

From the choice of gs it follows that ϕOTF
r − ϕOTF

r ∗ g2s ≤ Vr − Vr ∗ g2s and the
term Vr −Vr ∗ g2s is non-zero only for r− s ≤ |x| ≤ r+ s. Hence by Lemma 4.8
and since s < r

‖[ϕOTF
r −ϕOTF

r ∗g2s ]+‖
5
2
5
2

≤
∫

r−s≤|x|≤r+s
[Vr(x)−Vr ∗g2(x)]

5
2
+dx ≤ Cr−8s, (83)

and similarly ‖[ϕOTF
r − ϕOTF

r ∗ g2s ]+‖44 ≤ Cr−14s. The claim follows from (79),

(80), (81), (82) and (83) using that β0α
1
3 ≤ κ 1

3 r.

Lemma 4.14. Let Gα be the function defined in Theorem 2.3 and ρHF
r (x) the

one-particle density of the density matrix γHF
r defined in (61). Let Zα = κ be

fixed, 0 ≤ κ < 2/π and Z ≥ 1.
There exists α0 > 0 such that given ε′, σ > 0 there exists D < 1/4 such that

for all α ≤ α0 and r with β0Z
− 1

3 ≤ r ≤ D for which (64) holds for |x| ≤ r, we
have

‖χ+
r ρ

HF − ρOTF
r ‖C ≤ Cr−

7
2+

1
6 and

α−1
∫

R3

Gα(χ+
r ρ

HF(x))dx ≤ Cr−7, α−1 Tr[T (p)γHF
r ] ≤ Cr−7,

(84)

with C a universal positive constant.

Proof. The idea of the proof is the same as that of Lemma 3.1. In this case
we are interested only in the exterior part of the minimizer. Hence, instead
of considering the HF-energy functional we estimate from above and below
the auxiliary one EA, defined in (62), applied on the “exterior part of the
minimizer”γHF

r .
Step I. Estimate from above on EA(γHF

r ). Let us consider γ the density matrix
that acts identically on the spin components and on each as

γj = 1
(2π)3

∫∫
1
2 |p|2≤ϕOTF

r (q)

Πp,q dpdq,
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where j ∈ {1, . . . , q} is the spin index, Πp,q is the projection onto the space
spanned by hp,qs (x) = hs(x − q)eip.x where hs is the ground state for the
Dirichlet Laplacian on the ball of radius s for 0 < s < r. By the OTF-equation
(66) and since µOTF

r = 0 (see Lemma 4.10) we see that ργ(x) = ρOTF
r ∗|hs|2(x).

Moreover, by Lemma 4.10

Tr[− 1
2∆γ] = 3

10 (6π
2

q )
2
3

∫

R3

(ρOTF
r (x))

5
3 dx + Cs−2r−3. (85)

Since [ΦHF
r ]+ ∈ L

5
2

loc(R
3), by [23, Lemma 8.5] for λ′ ∈ (0, 1) we may find γ̃ such

that supp(ργ̃) ⊂ {x : |x| ≥ r}, ργ̃(x) ≤ ργ(x) for x ∈ R3 and

Tr[(− 1
2∆− ΦHF

r )γ̃] ≤ Tr[(− 1
2∆− χ+

r ΦHF
r )γ] + L1

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx

+ 1
2 ( π

2λ′r )2
∫

|x|≤ r
1−λ′

ργ(x) dx. (86)

Since
∫
ργ̃ ≤

∫
ργ =

∫
ρOTF
r ≤

∫
χ+
r ρ

HF we may choose γ̃ as a trial density
matrix in Theorem 4.7 and we find for λ, ν to be chosen

EA(γHF
r ) ≤ EA(γ̃) +R ≤ Tr[(− 1

2∆− ΦHF
r )γ̃] +R+D(ργ̃),

since α−1T (p) ≤ 1
2 |p|2. Notice that R depends on λ and ν. From (86) it

follows that

EA(γHF
r ) ≤ Tr[(− 1

2∆− χ+
r ΦHF

r )γ] + L1

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx

+ 1
2 ( π

2λ′r )2
∫

|x|≤ r
1−λ′

ργ(x) dx +R+D(ργ̃). (87)

From the OTF-equation (66) and Lemma 4.10 we get

∫

|x|≤ r
1−λ′

ργ(x) dx ≤
∫

|x|≤ 2−λ′

1−λ′
r

ρOTF
r (x) dx ≤ Cr−3.

While since Vr(y) ≤ Cr−4 (Lemma 4.8) and is non-zero only for |y| > r

∫

|x|≤ r
1−λ′

[Vr(x)]
5
2
+ dx ≤ Cr−7 λ′

(1−λ′)3 .

Hence, from (85) and (87) and the inequalities above we find choosing λ′ = r
2
3

EA(γHF
r ) ≤ 3

10 (6π
2

q )
2
3

∫

R3

(ρOTF
r (x))

5
3 dx−

∫

R3

Vr(x)ργ(x) dx + Cs−2r−3

+Cr−7+
2
3 +R+D(ργ̃) = . . . .
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Here we used that λ′ ≤ 1/2 which follows by the bound on D. Since ργ̃ ≤ ργ ,
D(ργ̃) ≤ D(ργ). Moreover by Newton’s Theorem D(ργ) ≤ D(ρOTF

r ). Hence
we get

. . . ≤ EOTF(ρOTF
r ) +

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx + Cs−2r−3

+Cr−7+
2
3 +R. (88)

We study now the second term on the right hand side of (88). Since ργ =
ρOTF ∗ |hs|2, rewriting

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx =

∫

R3

ρOTF
r (x)(Vr(x) − Vr ∗ |hs|2(x)) dx.

Since s < r, Vr is harmonic on |x| > r and ρOTF
r vanishes for |x| < r one sees

that the integrand on the right hand side of the equation above is non-zero
only for r < |x| < r + s. Hence by Lemma 4.8

∫

R3

Vr(x)(ρOTF
r (x) − ργ(x)) dx ≤

∫

r<|x|<r+s
ρOTF
r (x)Vr(x) dx ≤ Cr−8s.

Choosing s = r
5
3 we find from (88) that

EA(γHF
r ) ≤ EOTF(ρOTF

r ) + Cr−7+
2
3 +R. (89)

It remains to estimate R. From Lemma 4.1, choosing λ, ν ≤ 1/2 and D such
that σrε

′ ≤ 1 we find

( π
2λr + C

λ2r2 )

∫

|x|≥r(1−λ)(1−ν)
ρHF(x) dx ≤ Cr−5λ−2.

By Lemma 4.8, (65) and since λ ≤ 1/2 we get

∫

r(1−λ)≤|x|≤ r
1−λ

(ΦHF
r(1−λ)(x))

5
2 dx ≤ Cr−7λ,

and similarly

α3

∫

r(1−λ)≤|x|≤ r
1−λ

(ΦHF
r(1−λ)(x))4 dx ≤ Cr−4λ,

since r ≥ β0Z
− 1

3 implies αr−3 ≤ β−30 κ. Hence from the expression of R and
the boundness of tpe−t for t > 0, we find

R ≤ Ex(γHF
r ) + Cr−5λ−2 + Cr−7λ. (90)
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We estimate now the exchange term. By the exchange inequality ([15] or [23,
Th.6.4]) and proceeding as in (27) we find by Lemma 4.1 and Lemma 4.12

Ex(γHF
r ) ≤ C

∫

R3

Gα(ρHF
r (x))dx + Cr−

3
2

(
α−1

∫

R3

Gα(ρHF
r (x))dx

) 1
2

≤ CαR + Cαr−7 + Cr−
3
2 (R+ r−7)

1
2 .

Hence choosing α0 such that 1 − Cα ≥ 1/2 for all α ≤ α0 we get from the
inequality above and (90)

1
2R ≤ Cr−

3
2 (R+ r−7)

1
2 + Cr−5λ−2 + Cr−7λ ,

that gives
R ≤ C(r−5λ−2 + λr−7) . (91)

The second two inequalities in (84) follow from the estimate above and lem-
mas 4.1 and 4.12 choosing λ = 1/2 and replacing r with r/2.
Step II. Estimate from below on EA(γHF

r ). Adding and subtracting D(ρOTF
r )

and Tr[ρOTF
r ∗ 1

|·|γ
HF
r ] we write

EA(γHF
r ) = Tr[(α−1T (p)− ϕOTF

r )γHF
r ] + ‖ρOTF

r − ρHF
r ‖2C −D(ρOTF

r ), (92)

using that Vr = ΦHF
r on the support of ρHF

r . The first term on the right hand
side of (92) is estimated from below by the sum of the first N ′ eigenvalues of
the operator α−1T (p) − ϕOTF

r acting on the functions with support on {x :
|x| ≥ r}. Here N ′ denotes the smallest integer bigger than Tr[γHF

r ]. Hence by
Lemma 4.13 we find for µ ∈ (0, 1) and s < r

EA(γHF
r ) ≥ −( 2

1−µ )
3
2

q
15π2

∫

R3

[ϕOTF
r (q)]

5
2
+ dq− Cr−8sµ− 3

2 − Cµ−3r−5s

−C(1− µ)−
7
2 r−5 − C(1− µ)s−2

(∫

R3

ρHF
r (x) dx + 1

)

+‖ρOTF
r − ρHF

r ‖2C −D(ρOTF
r ) = . . . ,

Notice the factor q due to spin. Choosing D such that σrε
′ ≤ 1, by lemmas 4.1

and 4.10 we find
∫

R3

ρHF
r (x) dx ≤ Cr−3 and

∫

R3

[ϕOTF
r (q)]

5
2
+ dq ≤ Cr−7.

Hence considering µ ≤ 1/2

. . . ≥ −2
3
2

q
15π2

∫

R3

[ϕOTF
r (q)]

5
2
+ dq− Cr−7 − Cr−8sµ− 3

2 − Cµ−3r−5s

−Cs−2r−3 + ‖ρOTF
r − ρHF

r ‖2C −D(ρOTF
r ) = . . . .

By the OTF-equation (66) and since ρOTF
r has support where ϕOTF

r ≥ 0 we
find

· · · = EOTF(ρOTF
r )− Cr−7+ 1

3 + ‖ρOTF
r − ρHF

r ‖2C ,
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choosing µ = 1
2r
− 2

5 s
2
5 and s = r

11
6 .

Hence combining the inequality above with (89) and (91) we find

‖ρOTF
r − ρHF

r ‖2C ≤ Cr−7+
1
3 + C(r−5λ−2 + λr−7). (93)

We study now ‖χ+
r ρ

HF − ρHF
r ‖C . By Hardy-Littlewood-Sobolev inequality we

find

‖χ+
r ρ

HF− ρHF
r ‖C ≤ C‖χ+

r ρ
HF− ρHF

r ‖ 6
5
≤ C

(∫

r≤|x|≤ r
1−λ

ρHF(x)
6
5 dx

) 5
6

. (94)

To estimate the last term in (94) we are going to use the second estimate in
(84) that we have just proved. With Σ defined as in (26) we find by Hölder’s
inequality

∫

r≤|x|≤ r
1−λ

ρHF(x)
6
5 dx ≤

(∫

r≤|x|,
x∈Σ

ρHF(x)
4
3 dx

) 9
10
(∫

r≤|x|≤ r
1−λ

1 dx
) 1

10

+
(∫

r≤|x|,
x∈R3\Σ

ρHF(x)
5
3 dx

) 18
25
(∫

r≤|x|≤ r
1−λ

1 dx
) 7

25

≤ Cr−
33
10λ

1
10 + Cr−

21
5 λ

7
25 .

From the estimate above, (93) and (94) it then follows

‖χ+
r ρ

HF − ρOTF
r ‖C ≤ ‖χ+

r ρ
HF − ρHF

r ‖C + ‖ρHF
r − ρOTF

r ‖C
≤ Cr− 7

2+
1
6 + C(r−5λ−2 + λr−7)

1
2 + C(r−

11
4 λ

1
12 + r−

7
2λ

7
30 ),

that gives the claim choosing λ = r
5
7

4.3.3 Estimate on A3

Lemma 4.15. Let Gα be the function defined in Theorem 2.3. Let Zα = κ
fixed, 0 ≤ κ < 2/π and Z ≥ 1.
There exists α0 > 0 such that given ε′, σ > 0 there exists a constant D < 1/4
depending only on ε′ and σ such that if (64) holds for all |x| ≤ D, then for all
α ≤ α0

α−1
∫

|y|≥|x|
Gα(ρHF(y))dy ≤ C|x|−7 for all |x| ≤ D,

with C a universal positive constant.

Proof. If |x| < β0Z
− 1

3 we find by Lemma 3.1

α−1
∫

|y|>|x|
Gα(ρHF(y))dy ≤ α−1

∫

R3

Gα(ρHF(y))dy ≤ CZ 7
3 ≤ C|x|−7.

While if D ≥ |x| ≥ β0Z
− 1

3 the claim follows from the second estimate in
(84).

Documenta Mathematica 15 (2010) 285–345



324 Anna Dall’Acqua and Jan Philip Solovej

Lemma 4.16. Let Zα = κ fixed, 0 ≤ κ < 2/π, Z ≥ 1 and 0 < µ < 1
109 .

There exists α0 such that given ε′, σ > 0 there exists a constant D < 1/4
depending only on ε′ and σ such that for all α ≤ α0 and for all r with

β0Z
− 1−µ

3 ≤ r ≤ D for which (64) holds for |x| ≤ r, then for all x with |x| ≥ r

|A3(r,x)| ≤ C
( |x|
r

) 1
12

r−4+
3µ

1−µ ,

with C > 0 a universal constant.

Proof. We proceed similarly as in Theorem 3.3. By the formula for A3, Propo-
sition 2.8 and Lemma 4.14 we get

|A3(r,x)| ≤
∫

A(|x|,k)
χ+
r (y)

|ρOTF
r (y) − ρHF(y)|
|x− y| dy + Ck−1|x|− 1

2 r−
7
2+

1
6 . (95)

By Hölder’s inequality, Lemma 4.10, the OTF-equation (66) and (33) we find

∫

A(|x|,k)

ρOTF
r (y)

|x− y| dy ≤ Cr
− 21

5 |x| 15 k 1
5 . (96)

Once again, to estimate
∫
A(|x|,k)

χ+
r (y)ρHF(y)
|x−y| dy we have to proceed differently

than in [23, Lem.12.7] since ρHF is not in L
5
3 (R3). We consider the following

splitting

∫

A(|x|,k)
χ+
r (y)

ρHF(y)

|x − y| dy =

∫
A(|x|,k)

|x−y|>R,|y|>r

ρHF(y)

|x− y| dy +

∫
|y|>r,
|x−y|<R

ρHF(y)

|x− y| dy,

(97)
for R > 0 to be chosen. By Hölder’s inequality, Theorem 2.3, Remark 2.4, (33)
and Lemma 4.14 we get

∫
A(|x|,k)

|x−y|>R,|y|>r

ρHF(y)

|x− y| dy ≤ Cα
3
4R−

3
8 |x| 18 k 1

8 r−
21
4 + Cr−

21
5 |x| 15 k 1

5 . (98)

It remains to study the second term on the right hand side of (97). Let ν ∈ R+

be such that να ≤ 2/π. We consider the density matrix γHF
r/2 defined in (61)

with λ = 1/2. From Theorem 2.10 it follows that for x such that |x| ≥ r

Tr[(α−1T (p)− ν

| · −x|χBR(x)(·))γHF
r/2] ≥ −C(ν

5
2R

1
2 + ν4α2).

Hence we find

ν

∫

|y−x|<R
χ+
r (y)

ρHF(y)

|x − y| dy ≤ ν

∫

|y−x|<R

ρHF
r/2(y)

|x− y| dy

≤ Tr[α−1T (p)γHF
r/2] + C(ν

5
2R

1
2 + ν4α2)
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and by Lemma 4.14

∫

|y−x|<R
χ+
r (y)

ρHF(y)

|x − y| dy ≤ Cν
−1r−7 + C(ν

3
2R

1
2 + ν3α2). (99)

Hence from (95), (96), (98) and (99) it follows that

|A3(r,x)| ≤ Cν−1r−7 + C(ν
3
2R

1
2 + ν3α2) + Cα

3
4R−

3
8 |x| 18 k 1

8 r−
21
4

+Cr−
21
5 |x| 15 k 1

5 + Ck−1|x|− 1
2 r−

7
2+

1
6 .

So choosing ν = 1/2(β0r
−1)

3
1−µ (that gives να < 2/π), k such that

r−
21
5 |x| 15 k 1

5 = k−1|x|− 1
2 r−

7
2+

1
6 , i.e. k = |x|− 7

12 r
13
18 and R such that

α
3
4R−

3
8 |x| 18 5

12 r−
21
4 + 1

8
13
18 = r−4−

1
18 |x| 1

12 , i.e. R = α2|x|− 1
12 r−

5
18

|A3(r,x)| ≤ C(r−4+
3µ

1−µ + |x|− 1
24 r−

5
36− 9

2(1−µ)α+ r−
9

1−µα2 + |x| 1
12 r−4−

1
18 ).

Finally since r−1α
1−µ
3 ≤ β−10 κ

1−µ
3 , the claim follows for |x| ≥ r and µ <

1/(109).

4.4 The intermediate region

Here we prove the main estimate in Theorem 1.17 up to a fixed distance inde-
pendent of Z.

Lemma 4.17 (Iterative step). Let Zα = κ fixed with 0 ≤ κ < 2/π. Consider
µ = 1

11
1
49 and assume N ≥ Z ≥ 1.

Then there exists α0 > 0 such that for all δ, ε′, σ > 0 with δ < δ0, where δ0 is
some universal constant, there exists constants ε2, C

′
φ > 0 depending only on

δ and a constant D = D(ε′, σ) > 0 depending only on ε′, σ with the following

property. For all α ≤ α0 and R0 < D satisfying that β0Z
− 1−µ

3 ≤ R1+δ
0 and

that (64) holds for all |x| ≤ R0, there exists R′0 > R0 such that

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C′Φ|x|−4+ε2

for all x with R0 < |x| < R′0.

Proof. Let D > 0 depending on σ, ε′ be the smaller of the values of D occurring
in Lemma 4.11 and Lemma 4.16. Given δ > 0. We consider R0 < D satisfying

β0Z
− 1−µ

3 ≤ R1+δ
0 and such that (64) holds for all |x| ≤ R0.

Set R′0 = R1−δ
0 and r = R1+δ

0 . Then we have β0Z
− 1

3 ≤ β0Z−
1−µ
3 ≤ r ≤ R0 < D

we can therefore apply Lemma 4.11 and Lemma 4.16. From (67) we obtain
that for all |x| ≥ r and all α ≤ α0

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C|x|−4−ζrζ + C
( |x|
r

) 1
12

r−4+
3µ

1−µ .
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Since for R0 < |x| < R′0 we have

|x| 2δ
1−δ ≤ r

|x| ≤ |x|
δ

and thus

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C|x|−4+δζ + C|x|−4+3 µ
1−µ |x|− δ

1−δ (8+
1
6−

6µ
1−µ ).

Hence choosing δ0 sufficiently small there are C′Φ and ε2 such that the claim
holds.

Lemma 4.18. Let Zα = κ fixed with 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1.
Then there exist universal constants α0, ε ∈ (0, 4) and D,CΦ > 0, D < 1/4,
such that for all α ≤ α0 and x with |x| ≤ D we have

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ CΦ|x|−4+ε.

Proof. We fix µ = 1
11

1
49 as in Lemma 4.17. Since µ < 2

11
1
49 , by Theorem 3.3

we know that there exists constants a, b, c > 0 such that for all |x| ≤ βZ− 1−µ
3

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β2 + β5/2 + βb|x|c)β2−a|x|−4+a. (100)

We first show that we may choose δ small enough such that if we choose R̃1+δ =

β0Z
− 1−µ

3 we have for all |x| < R̃ that

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ C′′Φ|x|−4+
a
2 . (101)

Let β > 0 be such that (βZ−
1−µ
3 )1+δ = β0Z

− 1−µ
3 , i.e. β1+δ = β0Z

δ 1−µ
3 . Hence

from (100) we find for all |x| ≤ βZ− 1−µ
3

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + β2 + β5/2 + βb|x|c)β2− a2Z−
a
2

1−µ
3 |x|−4+ a

2 ,

and by the choice of β (and β0 < 1)

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ C(1 + Z2 δ
1+δ

1−µ
3 + Z

5
2

δ
1+δ

1−µ
3 + Z

δ
1+δ

1−µ
3 (b+c)Z−c

1−µ
3 )

Z(2− a2 )
1−µ
3

δ
1+δZ−

a
2

1−µ
3 |x|−4+ a

2 .

Hence if δ is small enough we may choose a universal constant C′′Φ such that
(101) holds.
Let now δ be small enough so that we may apply Lemma 4.17. This give
constant ε2 and C′Φ (depending only on δ) and for all σ, ε′ > 0 a constant
D < 1/4. Now choose σ = max{C′Φ, C′′Φ} and ε′ = min{a/2, ε2}. Now σ, ε′

and D are universal constants. To prove the claim we shall prove that for all
|x| ≤ D

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ σ|x|−4+ε′ . (102)
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We have to prove that D belongs to the set

M = {0 < R ≤ 1/4 : Inequality (102) holds for all |x| ≤ R}.

We reason by contradiction. If this was not true then D > R0 = supM and
in particular R0 < 1/4. From (101) and the choice of σ and ε′ it follows that
either R̃ > 1/4 or R̃ ∈ M. In the first case then R0 = supM = 1/4 > D
that contradicts our hypothesis. On the other hand if R̃ ∈ M, then R1+δ

0 ≥
R̃1+δ = β0Z

− 1−µ
3 . It then follows from Lemma 4.17 that there exists R′0 ∈ M

with R′0 > R0. This contradicts also our hypothesis.

4.5 The outer zone and proof of Theorem 1.17

The proof of Theorem 1.17 follows directly from Lemma 4.18 and the following
result.

Lemma 4.19. Let Zα = κ, 0 ≤ κ < 2/π. Assume N ≥ Z ≥ 1. Let D, ε and
CΦ be the constants introduced in Lemma 4.18.

Then there exist α0 > 0 and a universal constant CM > 0 such that for all
α ≤ α0 and x with |x| ≥ D we have

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ CM .

Proof. Here Ci, i = 1, . . . , 6 denote positive universal constants. We write

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ |ΦHF
D (x)− ΦTF

D (x)| +
∫

D<|y|<|x|

ρTF(y) + ρHF(y)

|x− y| dy.

(103)
Since ΦHF

D (x) − ΦTF
D (x) is harmonic for |x| > D and tends to zero at infinity

we have by Lemma 4.18

|ΦHF
D (x)− ΦTF

D (x)| ≤ sup
|x|=D

|ΦHF
D (x) − ΦTF

D (x)| ≤ CφD−4+ε. (104)

For the second term on the right hand side of (103) we write

∫

D<|y|<|x|

ρTF(y) + ρHF(y)

|x− y| dy

≤
∫
|x−y|<D/4
|y|>D

ρTF(y) + ρHF(y)

|x− y| dy +
4

D

∫

D<|y|
(ρTF(y) + ρHF(y)) dy. (105)

By Lemma 4.1, Lemma 4.18, estimate (13) and the TF-equation we find

∫

D<|y|
(ρTF(y) + ρHF(y)) dy ≤ C1(1 + CΦD

ε)(1 +D−3) + C1D
−3. (106)
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It remains to estimate the first term on the right hand side of (105). By
Hölder’s inequality, estimate (13) and the TF-equation we get
∫
|x−y|<D/4
|y|>D

ρTF(y)

|x− y| dy ≤ C2

(∫

|y|>D
(ρTF(y))

5
3 dy

) 3
5

D
1
5 ≤ C3D

−4. (107)

To estimate the term with the HF-density we use Theorem 2.10. Let γHF
D be

the exterior HF-density matrix as defined in (61) with r = D/2 and λ = 1/2.
Then by Theorem 2.10 with ν = β3

0D
−3

α−1 Tr[(T (p)− να

|x− ·|χBD
4
(x)(·))γHF

D/2] ≥ −C4(D
1
2 ν

5
2 + ν4α2),

and thus
∫

|x−y|<D/4

ρHF
D/2(y)

|x− y| dy ≤ C5D
3α−1 Tr[T (p)γHF

D/2] + C6D
−4,

Here we use that D > 2β0Z
− 1

3 (for α ≤ α0) and D < 1/4. By Lemma 4.14 we
conclude

∫

|x−y|<D/4
χ+
D(y)

ρHF(y)

|x − y| dy ≤
∫

|x−y|<D/4

ρHF
D/2(y)

|x− y| dy ≤ C7D
−4. (108)

The claim follows collecting together formula (103) to formula (108).

5 Proofs of Theorems 1.1, 1.18, 1.19 and 1.20

In this section we always assume the following: Zα = κ with 0 ≤ κ < 2/π and
N ≥ Z ≥ 1.

Proof of Theorem 1.1. Assume that a HF-minimizer exists with
∫
ρHF = N .

Let ρTF be the minimizer of the TF-energy functional of the neutral atom with
nuclear charge Z. Then for R > 0 to be chosen

N =

∫

|x|<R
ρTF(x) dx+

∫

|x|<R
(ρHF(x)−ρTF(x)) dx+

∫

|x|>R
ρHF(x) dx. (109)

By Theorem 1.17 we know that there exist universal positive constants
ε, α0, CM and CΦ such that for all α ≤ α0 and x ∈ R3

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ CΦ|x|−4+ε + CM . (110)

Let Z0 be such that Z0α0 = κ. Then α ≤ α0 corresponds to Z ≥ Z0. Let us
choose R such that CΦR

−4+ε = CM . Then from (109), (110) and Lemma 4.1
for all Z ≥ Z0 we find

N ≤
∫

|x|<R
ρTF(x) dx + 2CΦR

−3+ε + C(1 + CΦR
ε)(R−3 + 1) < Z + Q̃.

The claim follows choosing Q = max{Q̃, Z0 + 1}.
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Proof of Theorem 1.18. Let ρHF be the density of the HF-minimizer in the
neutral case N = Z. We have

∣∣∣
∫

|x|>R
(ρHF(x)− ρTF(x))dx

∣∣∣ =
∣∣∣
∫

|x|<R
(ρHF(x)− ρTF(x))dx

∣∣∣

=
∣∣∣ R
4π

∫

S2

dω(ΦHF
R (Rω)− ΦTF

R (Rω))
∣∣∣

≤ CΦR
−3+ε + CMR,

where in the last step we have used Theorem 1.17. Notice that for Z sufficiently
big α ≤ α0 where α0 is the constant given in Theorem 1.17. By the TF-
equation, Theorem 1.12 we then find

34
2π2

q2
R−3 − CΦR

−3+ε − CMR ≤
∫

|x|>R
ρHF(x)dx

≤ 34
2π2

q2
R−3 + CΦR

−3+ε + CMR,

from which the claim follows directly by the definition of HF-radius.

Proof of Theorem 1.19. Since EHF(Z − 1, Z) ≥ EHF(Z,Z) the ionization en-
ergy is bounded from below by zero. If Z is smaller than a universal constant
then we can also bound the ionization energy with a universal constant using
Theorem 2.11.
It remains to estimate from above the ionization energy when Z is larger than
a universal constant. We first construct a density matrix γ such that Tr[γ] ≤
Z − 1. Let θ− := (1 − θ2r(1−λ))

1
2 for r, λ positive parameters and θr defined in

Definition 4.4. We consider the density matrix γHF
− := θ−γHFθ− where γHF

is the HF-minimizer in the neutral case. By an opportune choice of r we will
then have Tr[γHF

− ] ≤ Z − 1. Indeed,

Tr[γHF
− ] =

∫

R3

ρHF(x) dx −
∫

R3

θ2r(1−λ)(x)ρHF(x) dx ≤ Z −
∫

|x|>r
ρHF(x) dx.

We now choose λ = 1
2 . Let R > 0 be such that CM = CΦR

−4+ε where
CM , CΦ, ε are the constants in Theorem 1.17. Then R is a universal constant.
We consider Z large enough so that β0Z

− 1
3 < R where β0 is the constant in

Theorem 1.12. This gives that Z has to be larger than some universal constant.
For r such that β0Z

− 1
3 < r < R by Theorem 1.17 we find

|ΦHF
|x| (x) − ΦTF

|x| (x)| ≤ 2CΦ|x|−4+ε for all |x| ≤ r.

Since
∫
ρTF =

∫
ρHF, by the choice of r and Lemma 4.1 we get

∫

|x|>r
ρHF(x) dx =

∫

|x|>r
ρTF(x) dx +

∫

|x|<r
(ρTF(x) − ρHF(x)) dx

≥
∫

|x|>r
ρTF(x) dx − 2CΦr

−3+ε ≥ Cr−3 − 2CΦr
−3+ε. (111)
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In the last step we used the TF-equation, Corollary 1.13 and that r > β0Z
− 1

3 .
Finally, it follows from (111) by choosing r sufficiently small that

∫
|x|>r ρ

HF > 1

and hence that Tr[γHF
− ] ≤ Z − 1. We may choose r sufficiently small by taking

Z large enough. Notice that r can be chosen universally and so Z has to be
larger than some universal constant.
By the last estimate in the proof of Theorem 4.7 we find

EHF(γHF
− ) ≤ EHF(γHF)− EA(γHF

r ) +R,
with R and γHF

r as defined in the statement of Theorem 4.7. Since EHF(γHF
− ) ≥

EHF(Z−1, Z) and EHF(γHF) = EHF(Z,Z) it remains to prove that−EA(γHF
r )+

R is bounded from above by some universal constant. Here we use repeteadly
that r is a universal constant. By estimate (91) we see that R ≤ Cr−7 a
universal constant. To estimate from below EA(γHF

r ) we first leave out the
kinetic energy term and the direct term since these are positive. Moreover,
since ΦHF

r is harmonic for |x| > r and tends to zero at infinity we see that

ΦHF
r (x) ≤ r

|x| sup
|y|=r

ΦHF
r (y) ≤ r

|x| sup
|y|=r

ΦTF
r (y) +

r

|x| sup
|y|=r

|ΦTF
r (y) − ΦHF

r (y)|,

which is bounded by C′/|x|, C′ a universal constant, by Theorem 1.17 and
Corollary 1.14. It then follows that

EA(γHF
r ) ≥ −Tr[

C′

| · |γ
HF
r ] ≥ −C

′

r

∫

|x|>r
ρHF(x) dx,

that is bounded from below by a universal constant using Lemma 4.1.

Proof of Theorem 1.20. Let α0 be the constant appearing in Theorem 1.17 and
Z0 be such that α0Z0 = κ. The claim follows directly for Z ≤ Z0 since both
functions are bounded for |x| large, while for |x| small the functions are bounded
by a constant times |x|−1.
The case Z > Z0 corresponds to α < α0 and for such values of α we can use the
result in Theorem 1.17. We separate the case small x, intermediate x and large
x. Once again, comparing with the proof in the non-relativistic case ([23]) we
have to do an extra splitting for small x.
By the definition of the mean field potential and Proposition 2.8 we find

|ϕTF(x)− ϕHF(x)| ≤
∫

|x−y|<s
(ρTF(y) + ρHF(y))

( 1

|x− y| −
1

s

)

+

√
2

s
1
2

‖ρTF − ρHF‖C .

Since ρTF is bounded in L
5
3 -norm, we find using Hölder’s inequality, Corol-

lary 1.15 and Lemma 3.1 that

|ϕTF(x) − ϕHF(x)| ≤
∫

|x−y|<s
ρHF(y)

( 1

|x− y| −
1

s

)
+ C(s

1
5Z

7
5 + s−

1
2Z1+ 3

22 ).

(112)
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For the integral with the HF-density we need to split the region where the
HF-density is bounded in L

4
3 -norm from the one where it is bounded in L

5
3 -

norm. Proceeding as in the proof of Lemma 3.2 (from (35) to (37) replacing
the integrals on A(|x|, k) with integrals on |x − y| < s) using the results of
Lemma 3.1 we get with R ∈ (0, s) to be chosen

∫

|x−y|<s
ρHF(y)

( 1

|x− y|−
1

s

)
≤ C(Z

7
5 s

1
5 +R−

1
4 (αZ

7
3 )

3
4 +Z

4
3 +R

1
2Z

3
2 ). (113)

Recall that Zα = κ is fixed. Choosing s such that Z
7
5 s

1
5 = Z

4
3 (i.e. s = Z−

1
3 )

and R such that R−
1
4Z = R

1
2Z

3
2 (i.e R = Z−

2
3 ; notice that R < s) we get from

(112) and (113)

|ϕTF(x)− ϕHF(x)| ≤ C(Z
4
3 + Z

7
6 ).

The claim follows from this inequality for x ∈ R3 such that |x| ≤ β0Z−
1+γ
3 for

γ > 0. We consider γ < 1
263 .

If |x| ≥ β0Z
− 1+γ

3 then proceeding as for very small x and as in the proof of
Theorem 3.3 up to inequality (43) we get for t ∈ (1+γ3 , 35 ), l > t and R < β0Z

−l

|ϕTF(x) − ϕHF(x)| ≤ C(s
1
5Z

7
5 + s−

1
2Z1+ 3

22 +R−
3
8 s

1
8Z + Z

1
2 (3−t)).

Here we have also used that Zα is a constant. So choosing s such that s
1
5Z

7
5 =

Z
1
2 (3−t) (i.e. s = Z

1
2− 5

2 t), R such that R−
3
8Z1+ 1

16− 5
16 t = Z

1
2 (3−t) (i.e. R =

Z−
7
6+

1
2 t) and optimizing in t (i.e. t = 1

3 + 4
3

1
77 ) we obtain

|ϕTF(x)− ϕHF(x)| ≤ CZ 4
3− 2

3
1
77 . (114)

Notice that t > 1+γ
3 , R < s by the choice of t and that R satisfies the condition

R < β0Z
−l, l > t, for Z sufficiently big. The claim then follows from (114) for

x ∈ R3 such that |x|1+δ ≤ β0Z− 1
3 for δ < 1

153 . We fix δ = 1
2

1
153 .

We turn now to study intermediate x. Let D ≤ 1 be such that CM ≤ CΦD
−4+ε

with CM , CΦ, ε the constants in Theorem 1.17. Then for all x such that |x| ≤ D

|ΦHF
|x| (x)− ΦTF

|x| (x)| ≤ 2CΦ|x|−4+ε.

Moreover we choose D such that Lemma 4.11 holds. Let x be such that
β0Z

− 1
3 ≤ |x|1+δ ≤ D

1+δ
1+µ with 0 < µ ≤ δ. We set r = |x|1+µ. Then β0Z

− 1
3 ≤

r ≤ D. We write ϕTF(x)− ϕHF(x) = ϕTF(x)− ϕOTF
r (x) + ϕOTF

r (x)− ϕHF(x)
with ϕOTF

r the mean field potential of the OTF-problem defined in Subsec-
tion 4.3. By the choice of r andD and Lemma 4.11 we get since |x| ≥ r = |x|1+µ

|ϕTF(x) − ϕOTF
r (x)| ≤ C|x|−4−ζrζ , (115)

for |x| ≥ r with ζ = (7 +
√

73)/2. For the other two terms we see

ϕHF(x) − ϕOTF
r (x) =

∫
ρOTF
r (y) − χ+

r (y)ρHF(y)

|x− y| dy,
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and proceeding as for small x with the Coulomb-norm estimate Proposition
2.8, by Lemma 4.14 and inequality (99)

|ϕHF(x)−ϕOTF
r (x)| ≤ C

( s 1
5

r
21
5

+
r−

7
2+

1
6

s
1
2

+R−
1
4 (αr−7)

3
4 +ν−1r−7+ν

3
2R

1
2 +ν3α2

)
.

Choosing ν = β3
0r
−3 1+δ

1+µ , so that να ≤ κ < 2/π, s such that s
1
5 r−

21
5 =

r−
7
2+

1
6 s−

1
2 (i.e. s = r1+

5
21 ), and choosing R such that the two terms where it

appears are equal (i.e. R = r2+9 δ−µ1+µ ; notice that R < s) we get

|ϕHF(x)− ϕOTF
r (x)| ≤ C(r−4+

1
21 + r−4+3 δ−µ1+µ ),

since αr−3
1+δ
1+µ is bounded and r ≤ 1. Collecting together the inequality above

and (115) and using that r = |x|1+µ the claim follows for β0Z
− 1

3 ≤ |x|1+δ ≤
D

1+δ
1+µ . We fix µ = δ/2.

It remains to study the case of large x, i.e. |x| ≥ D
1+δ
1+µ with D, δ, µ universal

constants. For simplicity of notation we fix the universal constant A := D
1+δ
1+µ .

We first notice that

ϕHF(x)− ϕTF(x) = ΦHF
|x| (x)− ΦTF

|x| (x) +

∫

|y|>|x|

ρTF(y) − ρHF(y)

|x− y| dy.

The difference of the first two terms is bounded by a universal constant for
|x| ≥ A by the result in Theorem 1.17. To estimate the last integral we split it
as follows

∫

|y|>|x|

|ρTF(y)− ρHF(y)|
|x− y| dy ≤

∫
|y|>|x|
|x−y|<1

ρTF(y)

|x− y| dy +

∫
|y|>|x|
|x−y|<1

ρHF(y)

|x− y| dy

+

∫

|y|>|x|
(ρTF(y) + ρHF(y)) dy.

Since |x| ≥ A the third term on the right hand side is bounded by a universal
constant by Lemma 4.1 (for ρHF) and Corollary 1.13 (for ρTF). We estimate
the first term by Hölder’s inequality and Corollary 1.15. We get a bound on the
second term proceeding as in (99) (using Theorem 2.10) and choosing ν = 1

2
and R = 1. We obtain

∫
|y|>|x|
|x−y|<1

ρTF(y) + ρHF(y)

|x− y| dy ≤ C(A−
21
5 +A−7 + α2).

Then there exists a universal contant A′ such that |ϕHF(x)−ϕTF(x)| ≤ A′ for
|x| ≥ A.
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A Technical lemmas

Proof of (16) By the definition of the function Gα the inequalities in (16)
are equivalent to the following ones

3
5 t

4 min{ 25 t, 1} ≤ g(t)− 8
3 t

3 ≤ 2t4 min{ 25 t, 1} for t ≥ 0. (A1)

As before we use the substitution t = α(ρ/C)
1
3 .

The estimates in (A1) follow directly from the study of the function g separating
the cases t < 5

2 and t ≥ 5
2 .

Proof of Remark 4.2 Using the estimate on K2 given in (15) we find

∫∫
x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

K2(α−1|x− y|)2 dxdy

≤ (16)2α4

∫∫
x ∈ Σr(β1, β2)
y ∈ Σr(β3, β4)

e−α
−1|x−y|

|x− y|4 dxdy

≤ (16)2α4e−α
−1r(β3−β2)4π

∫ ∞

r(β3−β2)

ρ−2dρ
∫

Σr(β1,β2)

dx,

since |x− y| ≥ (β3 − β2)r. The claim follows computing the two integrals.

A.1 Fourier transform

In the present sub-section we present our notation for the Fourier transform
(as in [20]). Given f ∈ L2(R3) we denote its Fourier transform by

f̂(p) = F(f)(p) := 1

(2π)
3
2

∫

R3

eip·xf(x)dx.

Let f, g ∈ L2(R3). The following formulas hold:

1. F(f ∗ g)(p) = (2π)
3
2 f̂(p)ĝ(p);

2. F(fg)(p) = (2π)−
3
2 (f̂ ∗ ĝ)(p);

3. if g(x) = e−λ|x|
2

then ĝ(p) = (2λ)−
3
2 e−|p|

2/(4λ);

4. |x|−α = π
α
2 (Γ(α2 ))−1

∫ +∞
0

e−π|x|
2λλ

α
2−1dλ for 0 < α < n (see [14, page

130]).

Moreover,

F
(f(x)

|x|
)

(k) = 1
2π2

∫

R3

f̂(p)

|k− p|2 dp.
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B Large Z-behavior of the energy

In [21] the author studies the large Z-behavior of the ground state energy for
problem (1). In this work we are going to use the same construction in several
points (Lemmas 3.1, 4.12, Theorem 3.3, ....) and with, in certain cases, a
slightly different Hamiltonian. For convenience we repeat here the main ideas
of the proof. We do it as it is needed in the proof of Theorem 3.3 since in
this case the proof is more involved. We remark that in our proof we use a
localisation less than in [21]. Thanks to Theorem 2.10 and [24, Theorem 2.8]
it is sufficient to consider the region near the nuclei and the one far away from
the nuclei. There is no need for an intermediate region.

Proposition B.1. Let Zα = κ be fixed with 0 ≤ κ < 2/π and Z ≥ 1. Let

us consider P ∈ R3, with |P| ≥ βZ−
1+µ
3 for β > 0 and µ ∈ (0, 4/5). Let

Z ≥ ν > 0 and R > 0 be such that R < βZ−l/4 for some 1+µ
3 < l. Moreover,

let ρTF denote the minimizer of the TF-energy functional of a neutral atom
with nucleus of charge Z. Consider the Hamiltonian

HP :=
N∑

i=1

(
α−1T (pi)−

Z

|xi|
− ν

|xi −P|χBR(P)(xi)
)

+
∑

i<j

1

|xi − xj |
, (B2)

acting on ∧Ni=1L
2(R3;Cq).

Then for all t ∈ (1+µ3 ,min{l, 35}) and ψ ∈ ∧Ni=1L
2(R3), with ‖ψ‖2 = 1,

〈ψ,Hpψ〉 ≥ ETF(ρTF)− C(β
1
2 + β−2)Z

5
2− 1

2 t,

with C depending only on q and κ.

Proof. Since ETF(ρTF) = −e0Z 7
3 (see (12)) to prove the claim it is sufficient to

show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we first reduce to a one-particle operator. Then
we localize the energy separating the contribution from the regions near the
nuclei from the contribution from the region far away from them. Finally we
study the contribution of each of these terms. The main contribution to the
energy is given by the region far away from the nuclei. This region will give
the TF-energy.

In the following, s = (3− t)/4 (t < s < 2/3).

In the proof C denotes a generic positive constant depending only on q and κ.

Reduction to a one-particle problem. We are going to estimate from below HP

by a one-particle operator. This allows us to consider only Slater determinants
when minimizing the energy.

Let g ∈ C∞0 (R3), g ≥ 0 be spherically symmetric with supp(g) ⊂ B1(0)
and such that ‖g‖2 = 1. Starting from these g we define Φs(x) :=
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(β/(8Zs))−3g2(8Zsx/β). Then by Newton’s theorem

∑

i<j

1

|xi − xj |
≥
∑

i<j

∫∫
Φs(xi − x)Φs(xj − y)

|x− y| dxdy =

= 1
2

N∑

i,j=1

∫∫
Φs(xi − x)Φs(xj − y)

|x− y| dxdy − N
2

∫∫
Φs(x)Φs(y)

|x− y| dxdy = . . .

and introducing ρ ∈ L1(R3) ∩ L 5
3 (R3), ρ ≥ 0, to be chosen

. . . = 1
2

∫

R3

∫

R3

(
∑N

i=1 Φs(xi − x)− ρ(x))(
∑N

j=1 Φs(xj − y)− ρ(y))

|x− y| dxdy

+

N∑

i=1

∫

R3

∫

R3

Φs(xi − x)ρ(y)

|x− y| dxdy −D(ρ)− N
2

∫

R3

∫

R3

Φs(x)Φs(y)

|x− y| dxdy

≥
N∑

i=1

ρ ∗ Φs ∗
1

|xi|
−D(ρ)− C‖g2‖26

5
Nβ−1Zs. (B3)

In the last inequality we use that the first term on the left hand side of (B3)
is non-negative and that

∫

R3

∫

R3

Φs(x)Φs(y)

|x− y| dxdy = Cβ−1Zs
∫

R3

∫

R3

g2(x)g2(y)

|x− y| dxdy

≤ Cβ−1Zs‖g2‖26/5,

by definition of Φs and Hardy-Littlewood-Sobolev’s inequality. Hence

HP ≥
N∑

i=1

(
α−1T (pi)−

Z

|xi|
− ν

|xi −P|χBR(P)(xi) + ρ ∗Φs ∗
1

|xi|
)

−D(ρ)− C‖g2‖26
5
Nβ−1Zs. (B4)

Choice of the localization. The localization will be given by the following func-
tions χ1, χ2 ∈ C∞0 (R3):

χ1(x) :=

{
1 if |x| < 1

4βZ
−t,

0 if |x| > 1
2βZ

−t,
χ2(x) :=

{
1 if |x−P| < 1

4βZ
−t,

0 if |x−P| > 1
2βZ

−t (B5)

and χ3 ∈ C∞(R3) such that
∑3
i=1 χ

2
i (x) = 1 for all x ∈ R3. Moreover we ask

that
‖∇χ1‖∞, ‖∇χ2‖∞, ‖∇χ3‖∞ ≤ 25β−1Zt. (B6)

Here t is the parameter given in the statement of the proposition. Notice that
by the assumptions on R and P the functions defined above give a well defined
partition of unity of R3. Moreover, BR(P) is a subset of {x ∈ R3 : χ2(x) = 1}.
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The localization in the energy expectation. We insert now the localization in
the energy expectation. As already observed, since we reduced the operator
to a one-particle operator in the energy expectation it is sufficient to consider
Slater determinants: i.e. ψ = u1∧· · ·∧uN with {ui}Ni=1 orthonormal functions

in L2(R3,Cq). We may assume that ui ∈ H 1
2 (R3,Cq) for i = 1, . . . , N .

From (B4) and Theorem 2.1 we find with ψ = u1 ∧ · · · ∧ uN

〈ψ,HPψ〉 ≥
N∑

i=1

3∑

j=1

(χjui, hχjui)−D(ρ)− C‖g2‖26
5
Nβ−1Zs

−α−1
N∑

i=1

3∑

j=1

(ui, Ljui), (B7)

with

h := α−1T (p)− Z

| · | −
ν χBR(P)(·)
| · −P| + ρ ∗ Φs ∗

1

| · | ,

and Lj is the operator (defined in Theorem 2.1) that gives the error due to the
localization in the kinetic energy. We first estimate this error term. Using the
definition of Lj we find for all j ∈ {1, 2, 3}, i ∈ {1, . . . , N}

(ui, Ljui) ≤
α−2

4π2
‖∇χj‖2∞

∫∫
K2(α−1|x− y|)|ui(y)||ui(x)| dxdy.

We then obtain by using Schwarz’s inequality

α−1
N∑

i=1

3∑

j=1

(ui, Ljui) ≤
α−3

4π2

3∑

j=1

‖∇χj‖2∞
N∑

i=1

∫
K2(α−1|z|)dz ≤ CNβ−2Z2t,

(B8)
since from (15)

∫

R3

K2(α−1|z|) dz = α3

∫

R3

K2(|z|) dz = 4πα3

∫ ∞

0

t2K2(t) dt = 6π2α3. (B9)

Collecting together (B7) and (B8) we get

〈ψ,HPψ〉 ≥
N∑

i=1

3∑

j=1

(χjui, hχjui)−D(ρ)−Cβ−2Z1+2t−Cβ−1Z7/4−t/4. (B10)

Here we used that N ≤ 2Z + 1, the choice of s and that we may choose g such
that ‖∇g‖22 ≤ 2π.
Near the nuclei. When j = 1 in the summation in the first term on the right
hand side of (B10) we find

N∑

i=1

(χ1ui, hχ1ui) ≥
N∑

i=1

(χ1ui, (α
−1T (p)− Z

| · | )χ1ui),
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since χBR(P)χ1 ≡ 0 by the choice of χ1, and the term Φs∗ρ∗ 1
|·| is non-negative.

Then by Theorem 2.10 we find

N∑

i=1

(χ1ui, hχ1ui) ≥ Tr[α−1T (p)− Z

| · |χ|x|< 1
2βZ

−t ]−

≥ −Cβ1/2Z5/2−t/2 − Cκ2Z2. (B11)

To estimate from below the term corresponding to j = 2 in the sum on the
right hand side of (B10) we use [24, Theorem 2.8]. Here we need the result in
[24] (instead of Theorem 2.10) because of the presence of the two nuclei. Notice
that Theorem 2.10 can be extended to include also different nuclei. We have

N∑

i=1

(χ2ui, hχ2ui) ≥
N∑

i=1

(χ2ui, (α
−1T (p)− Z

|x| −
ν

|x−P|χBR(P))χ2ui)

≥ Tr[α−1T (p)− Z

|x|χ|x−P|< 1
2βZ

−t − ν

|x−P|χBR(P)]−,

and by [24, Theorem 2.8] we get

N∑

i=1

(χ2ui, hχ2ui) ≥ −CZ5/2α1/2 − C
∫

1
2βZ

−t>|x−P|>α

(
Z5/2

|x|5/2 + α3 Z
4

|x|4
)
dx

−C
∫

R>|x−P|>α

(
ν5/2

|x−P|5/2 + α3 ν4

|x−P|4
)
dx

≥ −Cκ1/2Z2 − Cβ1/2Z5/2−t/2 − Cκ2Z2. (B12)

Here we used that t < l and Zα = κ.
The outer zone. This region gives the main contribution to the energy. The
term in (B10) that we still have to study is

N∑

i=1

(χ3ui, hχ3ui)−D(ρ) (B13)

We start by estimating the first term in (B13) using coherent states.
We consider again the function g ∈ C∞0 (R3) introduced at the beginning of the
proof and we define the function

gs(x) := (β/(8Zs))−
3
2 g(8Zsx/β) = Φ

1
2
s (x), (B14)

with s the same parameter as before. For simplicity of notation we write
Ṽ := Z/|x| − ρ ∗ 1/|x|. Then

Z

|x| − ρ ∗ Φs ∗
1

|x| = Ṽ ∗ Φs − ZΦs ∗
1

|x| +
Z

|x| .
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Since supp(gs) ∩ supp(χ3) = ∅ by Newton’s Theorem we find

N∑

i=1

(χ3ui, hχ3ui) =

N∑

i=1

(χ3ui, (α
−1T (p)− Ṽ ∗ Φs)χ3ui). (B15)

We consider the coherent states gp,qs defined for p,q ∈ R3 by

gp,qs (x) = gs(x− q)e−ip.x.

The following formulas hold for f ∈ H 1
2 (R3,C)

(f, f) = 1
(2π)3

∫

R3

dp

∫

R3

dq (f, gp,qs ) (gp,qs , f),

(f, V ∗ g2sf) = 1
(2π)3

∫

R3

dp

∫

R3

dqV (q) (f, gp,qs ) (gp,qs , f) (B16)

and

(f, T (p)f) = 1
(2π)3

∫

R3

dp

∫

R3

dq T (p) (f, gp,qs ) (gp,qs , f)

−
∫

R3

dx

∫

R3

dqf(x)(Lqf)(x), (B17)

where Lq has integral kernel

Lq(x,y) =
α−2

4π2
|gs(x− q)− gs(y − q)|2K2(α

−1|x− y|)
|x− y|2 .

Using these formulas we can rewrite (B15) as follows

N∑

i=1

(χ3ui, (α
−1T (p)− Ṽ ∗ Φs)χ3ui)

= 1
(2π)3α

−1
∫

R3

dp

∫

R3

dq(T (p)− αṼ (q))

q∑

j=1

N∑

i=1

|(χ3u
j
i , g

p,q
s )|2

−α−1
N∑

i=1

∫

R3

dx

∫

R3

dq χ3ui(x)(Lqχ3ui)(x), (B18)

Here uji is the j-th spin component of ui. We start by estimating the error
term, the last term on the right hand side of (B18). From the definition of Lq

it follows

Lq(x,y) ≤ α−2

4π2
‖∇gs‖2∞K2(α−1|x− y|)(χsupp(gs)(x− q) + χsupp(gs)(y − q)),

and by the definition of the function gs
∫

R3

Lq(x,y) dq ≤ C‖∇g‖2∞α−2β−2Z2sK2(α−1|x− y|).
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By the estimate above, Schwarz’s inequality, (B9) and the choice of s we find

α−1
N∑

i=1

∫

R3

dx

∫

R3

dq χ3ui(x)(Lqχ3ui)(x) ≤ C‖∇g‖2∞β−2Z3/2−t/2N. (B19)

It remains to study the first term on the right hand side of (B18). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < βZ−t/8 then supp(χ3g

p,q
s ) = ∅ (because Z−t > Z−s

since s > t) we find

1
(2π)3α

−1
∫

R3

dp

∫

R3

dq (T (p)− αṼ (q))

q∑

j=1

N∑

i=1

|(χ3u
j
i , g

p,q
s )|2

≥ q
(2π)3α

−1
∫

|q|≥ 1
8βZ

−t

dq

∫

T (p)−αṼ (q)≤0
dp (T (p)− αṼ (q)) = . . . , (B20)

where we also use that
∑N
i=1 |(χ3u

j
i , g

p,q
s )|2 ≤ 1 (Bessel’s inequality). We split

now the integral as a sum of two terms

. . . = q
(2π)3

α−1
∫∫

1
2 |p|2−Ṽ (q)≤0
|q|≥ 1

8βZ
−t

dqdp (T (p)− αṼ (q))

+ q
(2π)3α

−1
∫∫

α
2 |p|2≥αṼ (q)≥T (p)

|q|≥ 1
8βZ

−t

dqdp (T (p)− αṼ (q)). (B21)

We consider these two terms separately. The second term in (B21) gives a
lower order contribution. Indeed

q
(2π)3α

−1
∫∫

α
2 |p|2≥αṼ (q)≥T (p)

|q|≥ 1
8βZ

−t

dqdp (T (p)− αṼ (q))

≥ − q
(2π)3

∫∫
(α2[Ṽ (q)]2++2[Ṽ (q)]+)

1
2≥|p|≥(2[Ṽ (q)]+)

1
2

|q|≥ 1
8βZ

−t

dqdp [Ṽ (q)]+ = . . . ,

and computing the p-integral

· · · = −C
∫

|q|≥ 1
8βZ

−t

dq [Ṽ (q)]
5
2
+((1 +

α2

2
[Ṽ (q)]+)

3
2 − 1) = . . . .

Using (1 + x)
3
2 ≤ 1 + 3

2x + 3
8x

2 and that [Ṽ (q)]+ ≤ Z/|q| we get computing
the integral

. . . = −Cα2
∫
|q|≥ 1

8βZ
−t dq [Ṽ (q)]

7
2
+(1 + α2

8 [Ṽ (q)]+)

≥ −Cβ− 1
2 κ2Z3/2+t/2 − Cκ4β− 3

2Z1/2+3t/2.

(B22)
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Here we use that Zα = κ.
Since

√
1 + x ≥ 1 + x/2− x3/8 for all x > 0, we have

T (p) ≥ α 1
2 |p|2 − α3 1

8 |p|4,

and, for the first term on the right hand side of (B21), we obtain

q
(2π)3

α−1
∫∫

1
2 |p|2−Ṽ (q)≤0
|q|≥ 1

8βZ
−t

dqdp (T (p)− αṼ (q)) ≥

≥ q
(2π)3

∫∫
1
2 |p|2−Ṽ (q)≤0
|q|≥ 1

8βZ
−t

dqdp (12 |p|2 − 1
8α

2|p|4 − Ṽ (q)) = . . . .

Computing now the integral with respect to p, we find

· · · = − 2
3
2 q

15π2

∫

|q|> 1
8βZ

−t

[Ṽ (q)]
5
2
+ dq− Cα2

∫

|q|> 1
8βZ

−t

[Ṽ (q)]
7
2
+ dq. (B23)

We see that the second term on the right hand side of (B23) gives a lower order
contribution since it is of the same order as the one in (B22).
Collecting together (B10), (B11), (B12), (B15), (B18), (B19), (B22) and (B23)

〈ψ,HPψ〉 ≥ −C(β
1
2 + β−2)Z5/2−t/2 − 2

3
2 q

15π2

∫

R3

[Ṽ (q)]
5
2
+ dq−D(ρ) . (B24)

Here we used also that N < 2Z + 1, the choice of s and that t ≤ 3/5.
Now we choose ρ = ρTF the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge Z. Hence ρTF satisfies the
TF-equation

1
2

(
6π2

q

) 2
3 ρTF(x)

2
3 = [Ṽ (x)]+,

since Ṽ is the TF-mean field potential. Notice that here we use that the
chemical potential of a neutral atom is zero. By the choice of ρ from the
TF-equation it follows from (B24) that

〈ψ,HPψ〉 ≥ −C(β
1
2 + β−2)Z5/2−t/2 + 3

10

(
6π2

q

) 2
3

∫

R3

dx ρTF(x)
5
3

−Z
∫

R3

ρTF(x)

|x| dx +D(ρTF)

= ETF(ρTF)− C(β
1
2 + β−2)Z5/2−t/2 .

The claim follows.

Proposition B.2. Let ρTF be the minimizer of the TF-energy functional of a
neutral atom with nuclear charge Z. Let Zα = κ be fixed with 0 ≤ κ < 2/π
and Z ≥ 1.
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Then there is a constant depending only on κ and q such that for all {ui}Ni=1 ⊂
H

1
2 (R3;Cq) orthonormal in L2(R3) we have

N∑

i=1

(ui, (α
−1T (p)− ϕTF)ui)−D(ρTF) ≥ ETF(ρTF)− CZ2+ 1

5 ,

with D(·) = D(·, ·) the Coulomb scalar product.

Proof. Since ETF(ρTF) = −e0Z
7
3 (see (12)) to prove the claim it is sufficient to

show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we localize the energy separating the contribu-
tion from the region near the nucleus to the one far away. The region far away
from the nuclei will give the TF-energy.
In the proof C denotes a generic universal positive constant.

Choice of the localization. The localization will be given by the functions χ1 ∈
C∞0 (R3) and χ2 ∈ C∞(R3) such that: 0 ≤ χ1, χ2 ≤ 1, χ2

1 + χ2
2 = 1 in R3,

χ1(x) :=

{
1 if |x| < 2Z−3/5,
0 if |x| > 3Z−3/5.

(B25)

Moreover we ask that

‖∇χ1‖∞, ‖∇χ2‖∞ ≤ 22Z3/5. (B26)

The localization in the energy expectation. We insert now the localization in
the energy expectation. From Theorem 2.1 we find

N∑

i=1

(ui, (α
−1T (p)− ϕTF)ui)−D(ρTF) (B27)

≥
N∑

i=1

2∑

j=1

(χjui, (α
−1T (p)− ϕTF)χjui)−D(ρTF)− α−1

N∑

i=1

2∑

j=1

(ui, Ljui),

with Lj is the operator (defined in Theorem 2.1) that gives the error due to
the localization in the kinetic energy. We first estimate this error term. Since
N ≤ 2Z + 1 we find as in (B8) that

α−1
N∑

i=1

2∑

j=1

(ui, Ljui) ≤ CZ6/5N ≤ CZ2+1/5 . (B28)

Near the nucleus. Since

N∑

i=1

(χ1ui, (α
−1T (p)− ϕTF)χ1ui) ≥ Tr[α−1T (p)− ϕTFχ|x|<3Z−3/5 ]−,
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by Theorem 2.10 with R = 3Z−3/5 we find

N∑

i=1

(χ1ui, (α
−1T (p)− ϕTF)χ1ui) ≥ −CZ2+1/5 − Cκ2Z2. (B29)

Here we use that Zα = κ.
The outer zone. This region gives the main contribution to the energy.
Let g ∈ C∞0 (R3), g ≥ 0 be spherically symmetric with supp(g) ⊂ B1(0)
and such that ‖g‖2 = 1. Starting from these g we define ΦZ(x) :=
(Z−3/5)−3g2(xZ3/5) and

gZ(x) := (Z−3/5)−
3
2 g(xZ3/5) = Φ

1
2

Z(x).

Since supp(gZ) ∩ supp(χ2) = ∅ by Newton’s Theorem we find

N∑

i=1

(χ2ui, (α
−1T (p)− ϕTF)χ2ui) =

N∑

i=1

(χ2ui, (α
−1T (p)− ϕTF ∗ ΦZ)χ2ui).

(B30)
We consider the coherent states gp,qZ defined for p,q ∈ R3 by

gp,qZ (x) = gZ(x− q)e−ip.x.

Using formulas (B16) and (B17) we can rewrite (B30) as follows

N∑

i=1

(χ2ui, (α
−1T (p)− ϕTF ∗ g2Z)χ2ui)

= 1
(2π)3α

−1
∫

R3

dp

∫

R3

dq(T (p)− αϕTF(q))

q∑

j=1

N∑

i=1

|(χ2u
j
i , g

p,q
Z )|2

−α−1
N∑

i=1

∫

R3

dx

∫

R3

dq χ2ui(x)(Lqχ2ui)(x), (B31)

Here uji is the j-th spin component of ui. We start by estimating the error
term, the last term on the right hand side of (B31). We find as in (B19) that

α−1
N∑

i=1

∫

R3

dx

∫

R3

dq χ2ui(x)(Lqχ2ui)(x) ≤ C‖∇g‖2∞Z6/5N. (B32)

It remains to study the first term on the right hand side of (B31). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < Z−3/5 then supp(χ2g

p,q
Z ) = ∅ we find

1
(2π)3α

−1
∫

R3

dp

∫

R3

dq (T (p)− αϕTF(q))

q∑

j=1

N∑

i=1

|(χ2u
j
i , g

p,q
Z )|2

≥ q
(2π)3α

−1
∫

|q|≥Z−3/5

dq

∫

T (p)−αϕTF(q)≤0
dp (T (p)− αϕTF(q)) = . . . , (B33)
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where we also use that
∑N
i=1 |(χ3u

j
i , g

p,q
Z )|2 ≤ 1 (Bessel’s inequality). We split

now the integral as a sum of two terms

. . . = q
(2π)3

α−1
∫∫

1
2 |p|2−ϕTF(q)≤0
|q|≥Z−3/5

dqdp (T (p)− αϕTF(q))

+ q
(2π)3α

−1
∫∫

α
2 |p|2≥αϕTF(q)≥T (p)

|q|≥Z−3/5

dqdp (T (p)− αϕTF(q)). (B34)

We consider these two terms separately. The second term in (B34) gives a
lower order contribution. Indeed

q
(2π)3α

−1
∫∫

α
2 |p|2≥αϕTF(q)≥T (p)

|q|≥Z−3/5

dqdp (T (p)− αϕTF(q))

≥ − q
(2π)3

∫∫
(α2[ϕTF]2++2[ϕTF]+)

1
2≥|p|≥(2[ϕTF(q)]+)

1
2

|q|≥Z−3/5

dqdp [ϕTF(q)]+ = . . . ,

and computing the integral in p

· · · = −C
∫

|q|≥Z−3/5

dq [ϕTF(q)]
5
2
+((1 +

α2

2
[ϕTF(q)]+)

3
2 − 1) = . . . .

Using (1 + x)
3
2 ≤ 1 + 3

2x+ 3
8x

2 and that [ϕTF(q)]+ ≤ Z/|q| we get computing
the integral

. . . = −Cα2

∫

|q|≥Z−3/5

dq [ϕTF]
7
2
+(1 +

α2

8
[ϕTF(q)]+)

≥ −Cκ2Z2− 1
5 − Cκ4Z 7

5 .

(B35)

Since
√

1 + x ≥ 1 + x/2− x3/8 for all x ≥ 0, we have

T (p) ≥ α 1
2 |p|2 − α3 1

8 |p|4,

and, for the first term on the right hand side of (B34), we obtain

q
(2π)3

α−1
∫∫

1
2 |p|2−ϕTF(q)≤0
|q|≥Z−3/5

dqdp (T (p)− αϕTF(q)) ≥

≥ q
(2π)3

∫∫
1
2 |p|2−ϕTF(q)≤0
|q|≥Z−3/5

dqdp (12 |p|2 − 1
8α

2|p|4 − ϕTF(q)) = . . . .

Computing now the integral with respect to p, we find

· · · = − 2
3
2 q

15π2

∫

|q|>Z−3/5

[ϕTF(q)]
5
2
+ dq− Cα2

∫

|q|>Z−3/5

[ϕTF(q)]
7
2
+ dq. (B36)
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We see that the second term on the right hand side of (B36) gives a lower order
contribution since it is of the same order as the one in (B35).
Starting from (B27), by (B28), (B29), (B32), (B35) and (B36) we find

N∑

i=1

(ui, (α
−1T (p)− ϕTF)ui)−D(ρTF) (B37)

≥ −C(Z2+1/5 + Z2 + Z2−1/5 + Z7/5)− 2
3
2 q

15π2

∫

R3

[ϕTF(q)]
5
2
+ dq−D(ρTF).

The result follows from the TF-equation.
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Abstract. We determine a finite set of representatives of the set of
local solutions in a maximal lattice modulo the stabilizer of the lattice
in question for a quadratic Diophantine equation. Our study is based
on the works of Shimura on quadratic forms, especially [AQC] and
[IQD]. Indeed, as an application of the result, we present a criterion
(in both global and local cases) of the maximality of the lattice of
(11.6a) in [AQC]. This gives an answer to the question (11.6a). As one
more global application, we investigate primitive solutions contained
in a maximal lattice for the sums of squares on each vector space of
dimension 4, 6, 8, or 10 over the field of rational numbers.

2010 Mathematics Subject Classification: 11D09, 11E08, 11E12
Keywords and Phrases: Maximal lattices, Quadratic Diophantine
equations

1 Introduction

In this paper we study quadratic forms over global and local fields of charac-
teristic zero, i.e. over number fields and their p-adic completions. Let F be
a field of one of these two types. We let g denote the ring of all integers in
F (in both global and local cases). We denote by p the maximal ideal of g
in the local case. Throughout the paper we mainly follow the notion and the
notation in Shimura’s book [AQC] and the paper [IQD]. We denote by V an
n-dimensional vector space over F . Let ϕ : V × V → F be a nondegenerate
symmetric F -bilinear form. We denote by ϕ[x] the quadratic form ϕ(x, x) on
V . By a maximal lattice L in V with respect to ϕ, we understand a g-lattice L
in V , which is maximal among g-lattices on which the values ϕ[x] are contained
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in g. For simplicity, when ϕ is fixed on V , we will often refer to a maximal
lattice in V , omitting reference to the ϕ needed to define it. All results in the
paper concern only maximal lattices in V . Let SOϕ be the special orthogonal
group of ϕ. In this paper we consider the set of the solutions of the quadratic
Diophantine equation ϕ[x] = q in L, that is

L[q] = {x ∈ L | ϕ[x] = q},

and
L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b},

where q ∈ g ∩ F× and a fractional ideal b of F .
Assume now that F is local, put C(L) = {γ ∈ SOϕ | Lγ = L}, and take h ∈ L
such that ϕ[h] 6= 0. It was shown by Shimura that there exists a finite subset
A of SOϕ such that

L[ϕ[h]] =
⊔

α∈A
hαC(L)

([AQC, Theorem 10.3]) and

#{L[q, b]/C(L)} ≤ 1 if n > 2

([IQD, Theorem 1.3]). Note that [AQC, Theorem 10.3] is true even when L is
not maximal. In Theorem 3.5 we shall obtain, using the proof of [AQC, Theo-
rem 10.3], an explicit complete set {hα}α∈A of representatives for L[ϕ[h]]/C(L).
Also, we show that

L[ϕ[h]] =

{
L[ϕ[h], 2−1pτ(ϕ[h])] if ϕ is anisotropic,⊔τ(ϕ[h])
i=0 L[ϕ[h], 2−1pi] if ϕ is isotropic,

with the value τ(ϕ[h]); see Theorem 3.5.
As a result of this theorem we prove Theorem 5.3: Suppose F is local and
n ≥ 2. Then

L ∩ (Fh)⊥ is maximal in (Fh)⊥ if and only if h ∈ L[ϕ[h], 2−1pτ(ϕ[h])]

for h ∈ L such that ϕ[h] 6= 0. Here (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}. We also
obtain the global version of the maximality of the lattice L ∩ (Fh)⊥ in (Fh)⊥

in Theorem 6.3. This theorem answers the question raised in [AQC, (11.6a)].
As a global application of Theorem 3.5, in Theorem 7.5 we give the criterion
of the existence of solutions contained in L[q,Z] and L[q, 2−1Z] in both cases
when q is a squarefree positive integer, by taking V = Q1

n (4 ≤ n ≤ 10, n
even), the sums of squares as ϕ, and a maximal lattice L in V . It is known
that L[q] = L[q, 2−1Z]⊔L[q,Z]; see [AQC, (12.17)]. For example, when n = 6,
the set L[q,Z] = ∅ if and only if q − 1 ∈ 4Z. When n = 10, the genus of L
consists of two SOϕ-classes L10SO

ϕ and ΛSOϕ (cf. [CGQ, §3.2]). In this case,

L[q,Z] = ∅ if and only if

{
L ∈ L10SO

ϕ, q = 1 or q − 3 ∈ 4Z; or

L ∈ ΛSOϕ, q − 3 ∈ 4Z.
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We summarize the contents of the paper. In Section 2 we recall the notion
of Shimura [AQC] and [IQD] and introduce the basic facts of a local Witt
decomposition with respect to ϕ. In Sections 3 through 5 we treat local cases.
In Section 3 we introduce the result obtained from the proof of [AQC, Theorem
10.3] and state the first result. In Section 4 we prove Theorem 3.5. In Section
5 we shall give a criterion of the maximality of the lattice L∩ (Fh)⊥ in (Fh)⊥

in the local case. In Section 6 we prove the global version of Theorem 5.3. In
Section 7 we prove Theorem 7.5.

I would like to express my sincere thanks to Professor Koji Doi, who read the
manuscript and made several corrections and comments. I wish to thank Dr.
Manabu Murata for useful suggestions during the preparation of the paper.

Notations and Conventions As usual, Z (resp. Zp) is the ring of rational
(resp. p-adic) integers, Q (resp. Qp) the field of rational (resp. p-adic) num-
bers. In this paper we consider the base field F in two cases. One is a global
field and the other is a local field. When we do not need to specify the case of
F , we call it only “a field”.

If R is an associative ring with identity element, then R× is the group of units
of R. If K is a finite algebraic extension of a field F , then DK/F denotes the
relative discriminant of K over F . Let dK/F be the different of K relative to
F .

If F is a local field, then for x ∈ F×, put

ξ(x) =





1 if
√
x ∈ F,

−1 if F (
√
x) is an unramified quadratic extension of F ,

0 if F (
√
x) is a ramified quadratic extension of F

as in [NRQ, (3.3.1)].

If F is the field of quotients of a Dedekind domain g and V an n-dimensional
vector space over F , then by a g-lattice in V , we understand a finitely generated
g-module in V that spans V over F . In particular, if a is a g-lattice in F , we
call a a g-ideal of F . We write dimF (V ) for the dimension of V over F . We let
GL(V, F ) denote the group of all F -linear automorphisms of V . If R = F or g,
then we write Rmn for the ring of all m × n-matrices with entries in R and let
GLn(R) = (Rnn)×.

If X is a set, then #X denotes the cardinality of X . If X is a disjoint union
of its subsets Y1, · · · , Ym, we write X =

⊔m
i=1 Yi or X = Y1 ⊔ · · · ⊔ Ym. For a

subgroup H of a group G, we let [G : H ] = #(H \G).

We denote by δij Kronecker’s delta. For a real number a, we let [a] denote the
greatest integer not greater than a.
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2 Preliminaries

2.1. Let F be a field and we consider the pair (V, ϕ) as in the introduction.
Define

SOϕ(V ) = {α ∈ GL(V, F ) | det(α) = 1, ϕ[xα] = ϕ[x] for all x ∈ V }.

We understand that GL(V, F ) acts on V on the right. Let ϕ0 = [ϕ(xi, xj)]
n
i,j=1

for an F -basis {xi}ni=1 of V , then ϕ0 ∈ GLn(F ) such that ϕ0 = tϕ0. Define the
discriminant of (V, ϕ) by

(2.1) δ(ϕ) = δ(V, ϕ) = (−1)n(n−1)/2 det(ϕ0)F×2.

Let A(V ) = A(V, ϕ) be the Clifford algebra of ϕ (cf. [AQC, Chap. I Section 2]).
We say that (V1, ϕ1) is isomorphic to (V2, ϕ2) if there is an F -linear isomorphism
f of V1 onto V2 such that ϕ1[x] = ϕ2[xf ] for any x ∈ V1. If W is a subspace
of V , then we always consider (W,ψ), where ψ is the restriction of ϕ to W
(ψ[x] = ϕ[x] for x ∈W ).
For a g-lattice Λ in V , put

Λ̃ = Λ̃ = {x ∈ V | ϕ(x,Λ) ⊂ 2−1g},(2.2)

C(Λ) = {γ ∈ SOϕ(V ) | Λγ = Λ}.(2.3)

By an integral lattice L in V (with respect to ϕ), we understand a g-lattice L
in V such that ϕ[x] ∈ g for every x ∈ L. We call L maximal (with respect to
ϕ) if it is maximal among integral lattices in V . We note that L ⊂ L̃ when L
is an integral lattice in V .

2.2. Here we assume that F is a local field and L is a maximal lattice in V with
respect to ϕ. Considering the maximality of L, we have a Witt decomposition
by [AQC, Lemma 6.5];

V = Z +
r∑

i=1

(Ffi + Fei), L = N +
r∑

i=1

(gfi + gei),(2.4)

where

ϕ(ei, ej) = ϕ(fi, fj) = 0, ϕ(ei, fj) = 2−1δij ,(2.5)

Z = {z ∈ V | ϕ(ei, z) = ϕ(fi, z) = 0 for all i},(2.6)

N = {z ∈ Z | ϕ[z] ∈ g}.(2.7)

Here the restriction of ϕ to Z is anisotropic and N is a unique maximal lattice
in Z by [AQC, Lemma 6.4]. We say that Z is a core subspace of V with respect
to ϕ. Until the end of Section 5, we fix these decompositions. Put t = dimF (Z)
then n = 2r + t. We have t ≤ 4 by [AQC, Theorem 7.6(ii)]. We call t the core
dimension of (V, ϕ).
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2.3. We introduce here the basic notions of (Z,ϕ) and of N , which play an
important role in this paper. Note that we use the same letters c and δ, for
simplification, in the following different cases (I) (2.10), (II) (2.13), and (III)
(2.15).
(I) Assume t = 1 (cf. [AQC, §7.1 and §7.7(I)] and [IQD, §1.5(A)]). Take g ∈ Z
such that

N = gg(2.8)

and put

c = ϕ[g].(2.9)

Then Z = Fg and ϕ[xg] = cx2 for x ∈ F . Furthermore we obtain c ∈ g× (resp.
cg = p) if δ(ϕ) ∩ g 6= ∅ (resp. δ(ϕ) ∩ g = ∅) by (2.7). Put

(2.10) cg = pδ with δ ∈ Z.

By (2.2) and (2.8), we easily see that

(2.11) Ñ = 2−1p−δg.

(II) Next suppose t = 2 (cf. [AQC, §7.2 and §7.7(II)]). We can take g1, g2 ∈ Z
such that Z = Fg1 + Fg2 and ϕ(g1, g2) = 0 by [EPE, Lemma 1.8]. Put

(2.12) b = ϕ[g1] and c = ϕ[g2].

Put K = F + Fg1g2 in A(Z). Then K is a quadratic extension of F , which
is isomorphic to F (

√
−bc), Z = Kg2, and ϕ[xg2] = cNK/F (x) for x ∈ K. We

may assume c ∈ g× or cg = p. Moreover when K is a ramified extension of F ,
we can take c ∈ g×. Then by (2.7) we have N = rg2 if K is either unramified
or ramified, where r is the valuation ring of K. We put

(2.13) cg = pδ with δ ∈ Z.

(III) Suppose t = 3 (cf. [AQC, §7.3 and §7.7(III)] and [IQD, §1.5(B)]). There
exist gi ∈ Z such that Z = Fg1 +Fg2 +Fg3 and ϕ(gi, gj) = 0 if i 6= j by [EPE,
Lemma 1.8]. Put

(2.14) c = ϕ[g1]ϕ[g2]ϕ[g3].

Then we can take c ∈ g× (resp. cg = p) if δ(ϕ) ∩ g 6= ∅ (resp. δ(ϕ) ∩ g = ∅).
We put

(2.15) cg = pδ with δ ∈ Z.

Put ζ = g1g2g3, T = Fg1g2 + Fg2g3 + Fg3g1, and B = F + T in A(Z). Then
B is a division quaternion algebra over F and T = {x ∈ B | x+xι = 0}, where
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ι is the main involution of B. Moreover we have Z = Tζ and ϕ[xζ] = cxxι for
x ∈ T . Then by (2.7),

(2.16) N = (T ∩P−δ)ζ,

where P = {x ∈ B | xxι ∈ p}. By [AQC, Theorem 5.13], there exist an
unramified quadratic extension K over F and an element ω ∈ B such that
B = K + Kω, aω = ωaι for each a ∈ K, and ω2 ∈ πg×. Here π is a prime
element of F . Let r be the valuation ring of K. There exists u ∈ r such that
r = g[u] and u − uι ∈ r× by [AQC, Lemma 5.7]. Put v = u − uι. Then
T = Fv +Kω. For a, α ∈ g and b, β ∈ r,

ϕ[(av + bω1−2δ)ζ] = −c(a2v2 + ω2(1−2δ)NK/F (b)),(2.17)

ϕ((av + bω1−2δ)ζ, (αv + βω1−2δ)ζ) = −2−1c(2aαv2 + ω2(1−2δ)TrK/F (bβι)).

(2.18)

From (2.16) and (2.17),

(2.19) N = (gv + rω1−2δ)ζ = (gv + gω1−2δ + guω1−2δ)ζ.

From (2.2) and (2.19),

(2.20) Ñ = (2−1p−δv + rω−1)ζ.

Put TrB/F (x) = x+ xι and NB/F (x) = xxι for x ∈ B.
(IV) Finally assume t = 4 (cf. [AQC, Theorem 7.5 and §7.7(IV)]). There exist
a division quaternion algebra B over F and an F -linear isomorphism γ : B → Z
such that ϕ[xγ] = xxι for x ∈ B, where ι is the main involution of B. Then
N = Oγ. Here O is the unique maximal order of B.

3 A complete set of representatives for L[q]/C(L)

Until the end of Section 5, we assume that F is a local field and L is a maximal
lattice in V with respect to ϕ. In this section, we first introduce the facts
obtained from the proof of [AQC, Theorem 10.3]. After that, we state our first
main theorem.

3.1. We suppose that V and L are represented as in (2.4). If r ≥ 1, put
M = N +

∑r
i=2(gfi + gei). We consider M = N if r = 1. Then

(3.1) L = gf1 +M + ge1

for every r ≥ 1. For 0 ≤ i ∈ Z and q ∈ g ∩ F×, put

(3.2) Xi(q) = {x ∈M | ϕ[x] − q ∈ pi}.

Note that Xi(q) ⊃ Xi+1(q). Hereafter we take a prime element π of F and fix
it.
We obtain the following theorem from the proof of [AQC, Theorem 10.3].
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3.2 Theorem. (Shimura) Let the notation be as above. Let h ∈ L such that
ϕ[h] 6= 0 and ν ∈ Z such that ϕ[h]g = pν . Put C = C(L) in the notation of
(2.3). Let t, e1, and f1 be as in §2.2.
(1) Suppose r = 0. Then

L[ϕ[h]] =

{
hC ⊔ (−h)C, C = {1} if t = 1,

hC if t > 1.

(2) Suppose n = 2r = 2. Then L[ϕ[h]] =
⊔ν
i=0(πif1 + ϕ[h]π−ie1)C.

(3) Suppose n > 2, r > 0, and M [ϕ[h]] = ∅. Put

(3.3) κ0 = min({k ∈ Z | Xk(ϕ[h]) = ∅}).

Then

L[ϕ[h]] =

κ0−1⋃

i=0

⋃

b∈Xi(ϕ[h])/piM
[πif1 + b+ π−i(ϕ[h]− ϕ[b])e1]C.

Here b runs over all elements of Xi(ϕ[h])/piM .
(4) Suppose that n > 2, r > 0, M [ϕ[h]] 6= ∅, and that there exists a finite subset
B of M [ϕ[h]] such that M [ϕ[h]] = ⊔b∈BbC(M). Then

L[ϕ[h]] =
⋃

b∈B

⋃

y∈g/2ϕ(b,M)

(b+ ye1)C.

3.3 Lemma. Let the notation be the same as in Theorem 3.2. We let q ∈
g ∩ F×. Assume r ≥ 2. If there are a finite number of elements x0, · · · , xτ of
M such that

(3.4) M [q] = ⊔τi=0xiC(M) and ϕ(xi,M) = 2−1pi,

then we have L[q] = ⊔τi=0xiC and ϕ(xi, L) = 2−1pi.

Proof. From (3.4) and Theorem 3.2(4),

(3.5) L[q] =

τ⋃

i=0

⋃

y∈g/pi
(xi + ye1)C.

We fix 0 ≤ i ≤ τ . By (2.5), (2.6), (3.1), and (3.4),

ϕ(xi + ye1, L) = ϕ(xi,M) + 2−1yg =

{
2−1pi if y ∈ pi,

2−1yg if y /∈ pi.

From this and [IQD, Theorem 1.3],

(xi + ye1)C = L[q, ϕ(xi + ye1, L)] =

{
L[q, 2−1pi] if y ∈ pi,

L[q, 2−1yg] if y /∈ pi.
(3.6)
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For y ∈ g such that y /∈ pi, if yg = pj then 0 ≤ j ≤ i − 1. Thus we see that
∪y∈g/pi(xi + ye1)C = ⊔ij=0L[q, 2−1pj ] and L[q, 2−1pi] = xiC by (3.6). From
this and (3.5) we obtain

L[q] =

τ⋃

i=0

[
i⊔

j=0

L[q, 2−1pj]

]
=

τ⊔

i=0

L[q, 2−1pi] =

τ⊔

i=0

xiC.

Clearly ϕ(xi, L) = 2−1pi by (2.5), (2.6), (3.1), and (3.4). This completes the
proof.

3.4 Lemma. In the Witt decomposition of V of (2.4), let N be as in (2.7). Let
q be an element of g ∩ F× and ξ as in Notation. Let t and c be as in §2.2 and
§2.3, respectively. Then we obtain the following assertions:

(1) If t = 1, then N [q] 6= ∅ if and only if ξ(cq) = 1.
(2) Assume t = 2. Let K, r, and δ be as in §2.3(II). Let ν ∈ Z such that
qg = pν . Then N [q] 6= ∅ if and only if c−1q ∈ NK/F (r). Moreover if K is
unramified over F , then this is the case if and only if ν ≡ δ (mod 2).
(3) If t = 3, then N [q] 6= ∅ if and only if ξ(−cq) 6= 1.
(4) If t = 4, then we have N [q] 6= ∅ for all q ∈ g ∩ F×.
(5) Let L be a maximal lattice in V and r as in (2.4). If r > 0, then we have
L[q] 6= ∅ for all q ∈ g ∩ F×.

Proof. We may assume that:

if t = 1, then Z = F , N = g, and ϕ[x] = cx2 for x ∈ F ;
if t = 2, then Z = K, N = r, and ϕ[x] = cNK/F (x) for x ∈ K;

if t = 3, then Z = T , N = T ∩P−δ, and ϕ[x] = cNB/F (x) = −cx2 for x ∈ T ;
if t = 4, then Z = B, N = O, and ϕ[x] = NB/F (x) for x ∈ B
in (2.4); see §2.3. Then (1) and the first statement of (2) are trivial. We prove
the second assertion of (2). Assume that t = 2 and K is unramified over F ,
then πr = q and NK/F (r×) = g× by [BNT, Chapter VIII, Proposition 3]. Here
q is the maximal ideal of r. From these, we obtain the second assertion of
(2). Assume t = 3. Noticing that B is division, the “only if”-part of (3) is

immediate. If ξ(−cq) 6= 1, then F (
√
−c−1q) is a quadratic extension of F ,

and hence there exists z ∈ B such that z /∈ F and z2 = −c−1q by [AQC,
Proposition 5.15(ii)]. We easily see that z ∈ T ∩ P−δ, and hence N [q] 6= ∅.
Assume t = 4. Then we see that NB/F (O) = g from [AQC, Theorem 5.13] and
[AQC, Proposition 5.15(i)]. This implies (4). Finally we prove (5). Assume
r > 0. Since L can be represented as in (2.4), we have f1 + qe1 ∈ L[q] for every
q ∈ g ∩ F× with e1 and f1 in (2.4). This completes the proof.

Now, our first main result in this paper can be stated as follows:

3.5 Theorem. Let L be a maximal lattice in V and put C = C(L) as in
Theorem 3.2. Let ξ be as in Notation. Let q ∈ g ∩ F× and ν ∈ Z such that

Documenta Mathematica 15 (2010) 347–385



On the Solutions of Quadratic Diophantine Equations 355

qg = pν . Let κ ∈ Z such that 2g = pκ. Let r, t, er, fr, and N be as in §2.2.
For 0 ≤ i ∈ Z and x ∈ N , put

(3.7) hi,x = x+ πier, ki,x = πifr + x+
q − ϕ[x]

πi
er, ℓi = πifr + qπ−ier.

Then we have

L[q] =
⊔

u∈R
uC =

{
L[q, 2−1pτ(q)] if r = 0,⊔τ(q)
i=0 L[q, 2−1pi] if r ≥ 1.

(3.8)

Here the set R and the index τ(q) are defined as follows:
(i) Suppose t = 0 and r ≥ 1. Then

R =

{
{ℓi}νi=0 if r = 1,

{ℓi}τ(q)i=0 if r ≥ 2,

τ (q) = [ν/2].(3.9)

Moreover

L[q,2−1pi] =





ℓiC ⊔ ℓν−iC if r = 1 and 0 ≤ i < ν/2,

ℓν/2C if r = 1, ν ∈ 2Z, and i = ν/2,

ℓiC if r ≥ 2.

(3.10)

(ii) Suppose t = 1. Let c be as in (2.9) and δ as in (2.10). Let us define an
integer d ∈ Z as follows: DF (

√
cq)/F = pd when ξ(cq) = 0 (in the ordinary

sense) and d = 1 when ξ(cq) = −1 (This is only for a simplification of the
following statements (3.11) and (3.12)). When ξ(cq) = 1, we take any element
y of N [q] and fix it (By Lemma 3.4(1), N [q] 6= ∅). When 2 ∈ p, ξ(cq) 6= 1, and
ν ≡ δ (mod 2), take any element z of N [sq] and fix it, with

(3.11) s ∈ 1 + π2κ+1−dg× such that c−1qπδ−ν ∈ s−1g×2.

(As for the existence of s and z, see (4.30) and (4.31), respectively.) Then R
and τ(q) are given as follows:

R =





{±y} if r = 0 and ξ(cq) = 1,

{y} ⊔ {hi,y}τ(q)−1i=0 if r ≥ 1 and ξ(cq) = 1,

{ki,z}τ(q)i=0 if r ≥ 1, ξ(cq) 6= 1,

ν ≡ δ (mod 2), and 2 ∈ p,

{ℓi}τ(q)i=0 otherwise,

τ (q) =





κ+ ν+δ
2 if ξ(cq) = 1,

κ+
[
ν+1−d

2

]
if ξ(cq) 6= 1, ν ≡ δ (mod 2), and 2 ∈ p,

[
ν
2

]
otherwise.

(3.12)
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Moreover

L[q,2−1pi] =





yC ⊔ (−y)C if r = 0, ξ(cq) = 1, and i = τ(q),

yC if r ≥ 1, ξ(cq) = 1, and i = τ(q),

hi,yC if r ≥ 1, ξ(cq) = 1, and i < τ(q),

ki,zC if r ≥ 1, ξ(cq) 6= 1,

ν ≡ δ (mod 2), and 2 ∈ p,

ℓiC otherwise.

(3.13)

(iii) Suppose t = 2. Let c and δ be as in (2.12) and (2.13), respectively. Let K
and r be as in §2.3(II). Let d be the different of K relative to F . Let d ∈ Z

such that DK/F = pd when d 6= r. Put d = 1 when d = r (This is the same
simplification as in (ii)). When c−1q ∈ NK/F (r), we take any element y of N [q]
and fix it (By Lemma 3.4(2), N [q] 6= ∅). When c−1q /∈ NK/F (r) and d > 1, we
take any element z of N [sq] and fix it, with

(3.14) s ∈ 1 + πd−1g× such that c−1qπ−ν ∈ s−1NK/F (r×).

(As for the existence of s and z, see (4.32) and (4.33), respectively.) Then R
and τ(q) are given as follows:

R =





{y} if r = 0 and c−1q ∈ NK/F (r),

{y} ⊔ {hi,y}τ(q)−1i=0 if r ≥ 1 and c−1q ∈ NK/F (r),

{ki,z}τ(q)i=0 if r ≥ 1, c−1q /∈ NK/F (r), and d > 1,

{ℓi}τ(q)i=0 otherwise,

τ (q) =





ν+δ
2 if c−1q ∈ NK/F (r) and d = r,[
ν+d
2

]
if c−1q ∈ NK/F (r) and d 6= r,[

ν+d−1
2

]
otherwise.

(3.15)

Moreover

L[q,2−1pi] =





yC if c−1q ∈ NK/F (r) and i = τ(q),

hi,yC if c−1q ∈ NK/F (r) and i < τ(q),

ki,zC if c−1q /∈ NK/F (r) and d > 1,

ℓiC otherwise.

(3.16)

(iv) Suppose t = 3. Let c and δ be as in (2.14) and (2.15), respectively. When
ξ(−cq) 6= 1, we take any element y of N [q] and fix it (By Lemma 3.4(3),
N [q] 6= ∅). When ξ(−cq) = 1 and 2 ∈ p, we take any element z of N [sq] and
fix it, with

(3.17) s ∈ 1 + 4g such that s /∈ g×2.
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(As for the existence of s and z, see (4.34) and (4.35), respectively.) Then R
and τ(q) are given as follows:

R =





{y} if r = 0 and ξ(−cq) 6= 1,

{y} ⊔ {hi,y}τ(q)−1i=0 if r ≥ 1 and ξ(−cq) 6= 1,

{ki,z}τ(q)i=0 if r ≥ 1, ξ(−cq) = 1, and 2 ∈ p,

{ℓi}τ(q)i=0 if r ≥ 1, ξ(−cq) = 1, and 2 ∈ g×,

τ (q) =





κ+
[
ν
2

]
if ξ(−cq) = 1,

ν−δ+1
2 if ξ(−cq) 6= 1 and ν 6≡ δ (mod 2),

κ+ 1 + ν−δ−d
2 if ξ(−cq) = 0, ν ≡ δ (mod 2), and 2 ∈ p,

κ+ ν+δ
2 otherwise,

(3.18)

where d ∈ Z such that DF (
√−cq)/F = pd. Moreover

L[q, 2−1pi] =





yC if ξ(−cq) 6= 1 and i = τ(q),

hi,yC if ξ(−cq) 6= 1 and i < τ(q),

ki,zC if ξ(−cq) = 1 and 2 ∈ p,

ℓiC if ξ(−cq) = 1 and 2 ∈ g×.

(3.19)

(v) Suppose t = 4. Take any element y of N [q] and fix it. Then R and τ(q)
are given as follows:

R =

{
{y} if r = 0,

{y} ⊔ {hi,y}τ(q)−1i=0 if r ≥ 1,

τ (q) = [(ν + 1)/2].(3.20)

Moreover

L[q,2−1pi] =

{
yC if i = τ(q),

hi,yC if i < τ(q).
(3.21)

The proof of this theorem will be given in the following Section 4. Here we
insert one elementary lemma:

3.6 Lemma. Let F be a local field and L a maximal lattice in V . Let κ ∈ Z

such that 2g = pκ. Then for q ∈ g and i ∈ Z, we have L[q, pi] ⊂ L[q] if and
only if i ≥ −κ.
Proof. From (2.2), clearly i ≥ −κ if and only if L[q, pi] ⊂ L̃[q]. Here [AQC,
Lemma 6.2(3)] implies L̃[q] = L[q]. This proves the lemma.

3.7 Corollary. Let the notation be the same as in Theorem 3.5. Assume
L[q] 6= ∅ for q ∈ g ∩ F×. Then for every i ∈ Z,

L[q, 2−1pi] 6= ∅ ⇐⇒
{
i = τ(q) if n = t,

i ≤ τ(q) otherwise.
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Proof. For 0 ≤ i ∈ Z, the result follows from Theorem 3.5 and Lemma 3.6.
Assume i < 0. Clearly L[q, 2−1pi] = πi · L[π−2iq, 2−1g]. Here Lemma 3.6
implies L[π−2iq, 2−1g] ⊂ L[π−2iq]. Since πi · L[π−2iq] = (πiL)[q] ⊃ L[q], we
obtain L[π−2iq] 6= ∅. Applying Theorem 3.5 to (V, ϕ), L, and π−2iq, we find

that if n = t then L[π−2iq] = L[π−2iq, 2−1pτ(π
−2iq)] and τ(π−2iq) = τ(q)− i >

0. Therefore L[π−2iq, 2−1g] = ∅, and hence L[q, 2−1pi] = ∅. If n 6= t, then
L[π−2iq, 2−1g] 6= ∅ by Theorem 3.5, and hence L[q, 2−1pi] 6= ∅. This completes
the proof.

4 Proof of Theorem 3.5

4.1. We first prove Theorem 3.5(i). Assume t = 0. Then L[q] 6= ∅ for all
q ∈ g ∩ F× by Lemma 3.4(5).
First suppose r = 1. Then L = gf1 + ge1 by (2.4). We obtain

(4.1) L[q] =
ν⊔

i=0

ℓiC

by Theorem 3.2(2) with ℓi in (3.7). We have clearly

ϕ(ℓi, L) = 2−1πig + 2−1qπ−ig =

{
2−1pi if 0 ≤ i ≤ [ν/2],

2−1pν−i if i > [ν/2]
(4.2)

from (2.5). Assume ν ∈ 2Z. Then

(4.3) ϕ(ℓi, L) = ϕ(ℓν−i, L) = 2−1pi

for 0 ≤ i ≤ (ν − 2)/2 and ϕ(ℓν/2, L) = 2−1pν/2 by (4.2). Thus ℓiC ⊔ ℓν−iC ⊂
L[q, 2−1pi] for 0 ≤ i ≤ (ν − 2)/2 and ℓν/2C ⊂ L[q, 2−1pν/2]. On the other
hand, we have L[q, 2−1pi] ⊂ L[q] for 0 ≤ i ≤ ν/2 by Lemma 3.6. Hence
ℓiC ⊔ ℓν−iC = L[q, 2−1pi] for 0 ≤ i ≤ (ν − 2)/2 and ℓν/2C = L[q, 2−1pν/2].
From this and (4.1) we obtain the assertion in the case r = 1, t = 0, and
ν ∈ 2Z. Next assume ν /∈ 2Z. Then

(4.4) ϕ(ℓi, L) = ϕ(ℓν−i, L) = 2−1pi

for 0 ≤ i ≤ (ν − 1)/2. Thus ℓiC ⊔ ℓν−iC = L[q, 2−1pi] for 0 ≤ i ≤ (ν − 1)/2, in
the same manner as in the case ν ∈ 2Z. This proves the assertion when r = 1
and t = 0.
Next suppose r = 2. Then L = gf1 +M + ge1 by (3.1). We obtain

(4.5) ∅ 6= M [q] = ⊔νi=0ℓiC(M)

by Theorem 3.2(2) and Lemma 3.4(5). In this case we can not apply Lemma
3.3 since we have (4.3) and (4.4) in the notation of (4.1). By (4.5) and Theorem
3.2(4),

L[q] =

ν⋃

i=0

⋃

a∈g/2ϕ(ℓi,M)

(ℓi + ae1)C.
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Since

2ϕ(ℓi,M) =

{
pi if 0 ≤ i ≤ [ν/2],

pν−i if i > [ν/2]

by (4.2), we have

(4.6) L[q] =
[[ν/2]⋃

i=0

⋃

a∈g/pi
(ℓi + ae1)C

]⋃[ ν⋃

j>[ν/2]

⋃

b∈g/pν−j
(ℓj + be1)C

]
.

For 0 ≤ i ≤ [ν/2] and a ∈ g/pi,

ϕ(ℓi + ae1, L) = ϕ(ℓi,M) + 2−1ag =

{
2−1pi if a ∈ pi,

2−1ag if a /∈ pi

by (2.5) and (3.1). Therefore by [IQD, Theorem 1.3],

(4.7) (ℓi + ae1)C = L[q, ϕ(ℓi + ae1, L)] =

{
L[q, 2−1pi] if a ∈ pi,

L[q, 2−1ag] if a /∈ pi.

Similarly we have

(4.8) (ℓj + be1)C =

{
L[q, 2−1pν−j] if b ∈ pν−j ,

L[q, 2−1bg] if b /∈ pν−j

for j > [ν/2] and b ∈ g/pν−j. From (4.7) and (4.8), the argument in the proof
of Lemma 3.3 shows that

[ν/2]⋃

i=0

⋃

a∈g/pi
(ℓi + ae1)C =

[ν/2]⊔

i=0

ℓiC, ℓiC = L[q, 2−1pi],(4.9)

ν⋃

j>[ν/2]

⋃

b∈g/pν−j
(ℓj + be1)C =

ν⊔

j>[ν/2]

ℓjC, ℓjC = L[q, 2−1pν−j ].(4.10)

Combining (4.6), (4.9), and (4.10), we have

L[q] =
([ν/2]⊔

i=0

ℓiC
)
∪
( ν⊔

j>[ν/2]

ℓjC
)

=

[ν/2]⊔

i=0

L[q, 2−1pi] =

[ν/2]⊔

i=0

ℓiC

and L[q, 2−1pi] = ℓiC. This proves our theorem in the case r = 2 and t = 0.
As for the case r ≥ 3, we apply (repeatedly, if necessary) Lemma 3.3 and [IQD,
Theorem 1.3] to this case, we can reduce the proof to the case r = 2. This
completes the proof of (i).
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4.2 Lemma. Let F be a local field. Assume 2 ∈ p and let κ ∈ Z such that
2g = pκ. Let ξ be as in Notation. Put

(4.11) ε(a) = max({e ∈ Z | e ≤ 2κ+ 1 and a ∈ (1 + pe)g×2})
for a ∈ g×. Then we obtain the following assertions:

(1) For a ∈ g×,

ε(a) =





2κ+ 1− d if ξ(a) = 0,

2κ if ξ(a) = −1,

2κ+ 1 if ξ(a) = 1,

(4.12)

where d ∈ Z such that DF (
√
a)/F = pd.

(2) If ξ(a) = 0, then we have 2κ > ε(a) /∈ 2Z.
(3) If 0 < ℓ < 2κ and ℓ ∈ Z, /∈ 2Z, then g×2 ∩ (1 + πℓg×) = ∅.
(4) If a ∈ (1 + πℓg×)g×2 with 0 < ℓ ∈ Z, /∈ 2Z and ε(a) < 2κ, then ε(a) = ℓ.
(5) If a ∈ (1 + πℓg×)g×2 with 0 < ℓ ∈ Z, /∈ 2Z and ε(a) = 2κ+ 1, then
ε(a) ≤ ℓ.
Proof. Assertions (1) and (2) are in [NRQ, Lemma 3.5]. (3): If there exists
an element b ∈ g× such that b2 ∈ 1 + πℓg×, then b ∈ Zℓ. Here Zℓ = {x ∈
g× | x2 − 1 ∈ pℓ} as in [NRQ, §3.4]. By [NRQ, (3.5.1)], Zℓ = 1 + p(ℓ+1)/2,
and hence we can take y ∈ g such that b = 1 + π(ℓ+1)/2y. Then b2 = 1 +
πℓ+1y(2π−(ℓ+1)/2+y) ∈ 1+pℓ+1 since 2−1(ℓ+1) ≤ κ. This gives a contradiction.
Thus we obtain (3). (4): We find ℓ ≤ ε(a) from (4.11), (4.12), and [NRQ,
Lemma 3.2(1)]. Clearly

(4.13) (1 + πℓg×)g×2 ∩ (1 + pε(a))g×2 6= ∅.
If ℓ < ε(a), then (4.13) contradicts (3) settled above, and hence ℓ = ε(a). (5):
By (4.12), we have ξ(a) = 1. Thus

(4.14) g×2 ∩ (1 + πℓg×) 6= ∅.
If ℓ < ε(a) = 2κ+ 1, then (4.14) contradicts (3). This completes the proof.

4.3. Now we prove (ii), (iii), (iv), and (v) of Theorem 3.5. We may assume
that:

if t = 1, then Z = F , N = g, and ϕ[x] = cx2 for x ∈ F ;
if t = 2, then Z = K, N = r, and ϕ[x] = cNK/F (x) for x ∈ K;

if t = 3, then Z = T , N = gv + rω1−2δ, and ϕ[x] = cNB/F (x) for x ∈ T ;
if t = 4, then Z = B, N = O, and ϕ[x] = NB/F (x) for x ∈ B.

Then for x,w ∈ Z,

ϕ(x,w) =





cxw if t = 1,

2−1cT rK/F (xwρ) if t = 2,

2−1cT rB/F (xwι) if t = 3,

2−1TrB/F (xwι) if t = 4.

(4.15)
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Here ρ ∈ Gal(K/F ) such that ρ 6= 1. In this §4.3 we prove the theorem in the
case r = 0 and t > 0. Note that L = N in this case. If L[q] 6= ∅, then

L[q] =

{
yC ⊔ (−y)C if t = 1,

yC otherwise
(4.16)

by Theorem 3.2(1). Here, y is any element of L[q] and fix it until the end of
§4.3. This proves the first equality of (3.8) in this case. From Lemma 3.6 and
(4.16),

(4.17) L[q] = L[q, ϕ(y, L)]

for 1 ≤ t ≤ 4. Note that ϕ(y, L) ⊂ 2−1g since L is an integral lattice in V . To
prove the second equality of (3.8) we determine the ideal ϕ(y, L) as the next
step.

(4.18) We let µ denote the normalized order function of F.

First suppose t = 1, then C = {1}. Here Lemma 3.4(1) implies that L[q] 6= ∅
if and only if ξ(cq) = 1. Since y2 = c−1q, we have ϕ(y, L) = cyg = p(ν+δ)/2 by
(4.15).
Next suppose t = 2. We have L[q] 6= ∅ if and only if c−1q ∈ NK/F (r) by Lemma
3.4(2). From [BNT, Chapter VIII, Propositon 4] and (4.15), we see that

ϕ(y, L) = 2−1cT rK/F (yr) =

{
2−1p(ν+δ)/2 if d = r,

2−1p[(ν+d)/2] if d 6= r.

Note that we take c ∈ g× if K is ramified over F ; see §2.3.
Suppose t = 3. By Lemma 3.4(3),

(4.19) L[q] 6= ∅ if and only if ξ(−cq) 6= 1.

Take m ∈ Z such that ϕ(y, L) = 2−1pm. Let us determine m. Let µK be the
normalized order function of K. Since L = gv + rω1−2δ = v(g + rω1−2δ), we
can put y = v(a + bω1−2δ) with a ∈ g and b ∈ r. Then by (2.18), ϕ(y, L) =
2−1c(2ag + ω2(1−2δ)TrK/F (br)), and hence

(4.20) m = min(κ+ δ + µ(a), 1 + µK(b)− δ).

We have also

(4.21) q = ϕ[y] = −cv2(a2 − ω2(1−2δ)NK/F (b))

by (2.17), and hence

(4.22) ν − δ = min(2µ(a), 1 + 2(µK(b)− δ)).
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Assume ν 6≡ δ (mod 2). Then ν − δ = 1 + 2(µK(b)− δ) < 2µ(a) by (4.22), and
hence 2−1(ν−δ+1) = 1+µK(b)−δ ≤ κ+δ+µ(a). Thus we find m = 2−1(ν−δ+
1) by (4.20). Next assume ν ≡ δ (mod 2). Then ν−δ = 2µ(a) < 1+2(µK(b)−δ)
by (4.22). If 2 ∈ g×, then κ + 2−1(ν + δ) = κ + δ + µ(a) ≤ 1 + µK(b) − δ,
and hence m = κ + 2−1(ν + δ) from (4.20). If 2 ∈ p, then Lemma 4.2 implies
ε(−c−1qπδ−ν) ≤ 2κ since ξ(−c−1qπδ−ν) 6= 1 by (4.19). Put β = −c−1qπδ−ν ,
then

(4.23) ε(v−2β) =

{
ε(β) if ε(β) < 2κ,

2κ+ 1 if ε(β) = 2κ;

see the proof of [NRQ, Lemma 4.5]. By (4.21),
(4.24)
v−2β = (π(δ−ν)/2a)2(1−ω2(1−2δ)a−2NK/F (b)) ∈ (1−ω2(1−2δ)a−2NK/F (b))g×2.

Hence if ε(β) < 2κ, that is ξ(−cq) = 0 from Lemma 4.2, then Lemma 4.2(4)
and (4.23) imply ε(β) = 1 − 2δ − 2µ(a) + 2µK(b), and hence 1 + µK(b)− δ =
2−1(ε(β)+1)+2−1(ν−δ) ≤ κ+µ(a)+δ. Thus m = 2−1(ε(β)+1)+2−1(ν−δ)
from (4.20). Here Lemma 4.2(1) implies ε(β) = 2κ+ 1− d, where d ∈ Z such
that DF (

√−cq)/F = pd. Therefore m = κ+ 1 + (ν− δ−d)/2. If ε(β) = 2κ, then
Lemma 4.2(5), (4.23), and (4.24) imply 2κ+ 1 ≤ 1− 2δ− 2µ(a) + 2µK(b), and
hence 1 + µK(b) − δ ≥ κ+ µ(a) + δ. Thus m = κ + µ(a) + δ = κ + (ν + δ)/2
from (4.20). Consequently we obtain

ϕ(y, L) =





2−1p(ν−δ+1)/2 if ν 6≡ δ (mod 2),

p1+(ν−δ−d)/2 if ν ≡ δ (mod 2), 2 ∈ p, ξ(−cq) = 0,

p(ν+δ)/2 otherwise

(4.25)

under the assumption t = 3, r = 0, and ξ(−cq) 6= 1. Here d ∈ Z such that
DF (

√−cq)/F = pd. We see the second equality of (3.8) by (4.17) and (4.25).
Moreover combining this with (4.16), we obtain the theorem in the case r = 0
and t = 3.

Finally suppose t = 4. Then Lemma 3.4(4) implies L[q] 6= ∅ for every q ∈
g ∩ F×. From [AQC, Theorem 5.9(2), (6), (7)] and (4.15), we see that

(4.26) ϕ(y, L) = 2−1TrB/F (Pµ(NB/F (y))) = 2−1p[(ν+1)/2],

where P = {x ∈ O | NB/F (x) ∈ p}, with µ of (4.18). This completes the proof
of our theorem in the case r = 0 and t > 0.

4.4. Here we prove the theorem in the case r ≥ 1 and t > 0. First we note that
when r ≥ 2 we apply (repeatedly, if necessary) Lemma 3.3 and [IQD, Theorem
1.3] to this case, we can reduce the proof to the case r = 1.

Thus hereafter until the end of §4.7, we assume r = 1. Then L = gf1 +N +ge1
by (2.4). Assume 1 ≤ t ≤ 4. We recall here Lemma 3.4. We know that L[q] 6= ∅
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for all q ∈ g ∩ F× and

N [q] 6= ∅ ⇐⇒





ξ(cq) = 1 if t = 1,

c−1q ∈ NK/F (r) if t = 2,

ξ(−cq) 6= 1 if t = 3.

(4.27)

When t = 4, we have N [q] 6= ∅ for every q ∈ g ∩ F×.

4.5. In this § we prove the theorem in the case r = 1, 1 ≤ t ≤ 4, and N [q] 6= ∅.
Applying Theorem 3.2(1) and (4), we find

L[q] =

{[⋃
a∈g/2ϕ(y,N)(y + ae1)C

]⋃[⋃
a∈g/2ϕ(−y,N)(−y + ae1)C

]
if t = 1,

⋃
a∈g/2ϕ(y,N)(y + ae1)C otherwise,

where y is any element of N [q] and fix it. Since ϕ(y+ae1, L) = ϕ(−y+ae1, L),
we obtain (y + ae1)C = (−y + ae1)C by [IQD, Theorem 1.3]. Thus L[q] =⋃
a∈g/2ϕ(y,N)(y + ae1)C for 1 ≤ t ≤ 4. We have already obtained our theorem

in the case r = 0 and t > 0. Thus ϕ(y,N) = 2−1pτ(q). Put simply τ = τ(q).
The same argument as in the proof of Lemma 3.3 shows that

(y + ae1)C =

{
L[q, 2−1pτ ] if a ∈ pτ ,

L[q, 2−1pµ(a)] if a /∈ pτ

with µ of (4.18). If τ ≥ 1, then 0 ≤ µ(a) ≤ τ − 1 for a ∈ g such that a /∈ pτ .
Thus

L[q] =
⋃

a∈g/pτ
(y + ae1)C =

τ⊔

i=0

L[q, 2−1pi],

L[q, 2−1pτ ] = yC, and L[q, 2−1pi] = (y + πie1)C for 0 ≤ i ≤ τ − 1. If τ = 0,
then it is clear that L[q] = yC = L[q, 2−1g]. This proves the theorem in the
case r = 1, t > 0, and N [q] 6= ∅.

4.6. In §§4.6 and 4.7 we assume r = 1, t > 0, and N [q] = ∅. Then 1 ≤ t ≤ 3
since N [q] 6= ∅ for all q ∈ g ∩ F× if t = 4. By Theorem 3.2(3),

(4.28) L[q] =

κ0−1⋃

i=0

⋃

b∈Xi(q)/piN
ki,bC

with ki,b in (3.7). Let us determine κ0 in this §4.6. With the notation of (3.2)

(4.29) 0 ∈ Xν(q)

since q ∈ pν , and hence κ0 > ν with the notation of (3.3). Suppose t = 1, then
ξ(cq) 6= 1 by (4.27) and the assumption N [q] = ∅. First assume 2 /∈ p or ν 6≡ δ
(mod 2). If there exists x ∈ Xν+1(q), then x2 ∈ c−1q(1 + p) by (3.2). This
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implies ν ≡ δ (mod 2), and hence 2 /∈ p. Then by [NRQ, Lemma 3.2(1)], we
have 1+p ⊂ g×2, which contradicts ξ(cq) 6= 1. Thus κ0 = ν+1 by (4.29). Next
assume 2 ∈ p and ν ≡ δ (mod 2). Then ε(c−1qπδ−ν) ≤ 2κ from ξ(cq) 6= 1 and
Lemma 4.2. Hereafter we put ε = ε(c−1qπδ−ν). There exist

(4.30) s ∈ 1 + πεg× and α ∈ g× such that c−1qπδ−ν = s−1α2

by (4.11). From this we have c(π(ν−δ)/2α)2 = sq, and hence

(4.31) N [sq] 6= ∅.

Since N [sq] ⊂ Xν+ε(q), we obtain Xν+ε(q) 6= ∅, and hence κ0 > ν + ε in the
notation of (3.3). If there exists x ∈ Xν+ε+1(q), then we can take a ∈ pν+ε+1

such that cx2 + a = q. Thus c−1qπδ−ν = (1 + c−1x−2a)(π(δ−ν)/2x)2 ∈ (1 +
pε+1)g×2, which contradicts (4.11). Hence κ0 = ν + ε + 1. Moreover Lemma
4.2(1) implies that: if ξ(cq) = −1, then ε = 2κ, and hence κ0 = 2κ+ ν + 1; if
ξ(cq) = 0 andDF (

√
cq)/F = pd, then ε = 2κ+1−d, and hence κ0 = 2κ+ν+2−d.

Next suppose t = 2, then c−1q /∈ NK/F (r) by (4.27). Let d be as in Theorem

3.5(iii). If Xν+d(q) 6= ∅, then c−1q ∈ NK/F (r)(1 + pd) ⊂ NK/F (r) by [BNT,
Chapter VIII, Proposition 3] or the conductor-discriminant theorem according
as d = r or d 6= r. This contradicts c−1q /∈ NK/F (r). Thus κ0 ≤ ν + d.
In particular if d = r or q, that is d = 1, then κ0 = ν + 1 from (4.29).
Here q is the maximal ideal of r. Assume d = qd and d > 1. Take a prime
element πK of K such that NK/F (πK) = π. We see that 2 ∈ p by [BNT,
Chapter VIII, Corollary 3 of Proposition 7]. By local class field theory, we
have (1 + pd−1)NK/F (r×) = g×. Thus there exist

(4.32) s ∈ 1 + πd−1g× and α ∈ r× such that c−1qπ−ν = s−1NK/F (α).

Note that c ∈ g× since K is ramified over F ; see §2.3. Then cNK/F (πνKα) = sq,
and hence

(4.33) N [sq] 6= ∅.

We obtain N [sq] ⊂ Xν+d−1(q) by the definition of s. Thus κ0 = ν + d.
Finally suppose t = 3. Then ξ(−cq) = 1 by (4.27), and hence ν ≡ δ (mod 2).
For b ∈ g and 0 ≤ m ∈ Z, put

Ym(b) = {y ∈ N | y2 − b ∈ pm}

as in [NRQ, (4.1.3)]. Then Xi(q) = π(ν−δ)/2Yi−ν(−c−1qπδ−ν) if i > ν. The
proof of [NRQ, Lemma 4.2(2)] shows that Ym(−c−1qπδ−ν) = ∅ for m ≥ 2κ+ 1
even for cg = p. Thus κ0 ≤ ν + 2κ+ 1. If 2 ∈ g×, then κ0 = ν + 1 by (4.29).
Assume 2 ∈ p. There exists

(4.34) s ∈ 1 + 4g such that s /∈ g×2
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by [NRQ, Lemma 3.2(1)], then ξ(s) = −1 from Lemma 4.2(1). Thus ξ(−csq) =
−1, and hence, by Lemma 3.4(3),

(4.35) N [sq] 6= ∅.

We find N [sq] ⊂ Xν+2κ(q), and hence κ0 = ν + 2κ+ 1. Consequently we have

κ0 =





ν + 2κ+ 2− d if t = 1, ξ(cq) 6= 1, ν ≡ δ (mod 2), and 2 ∈ p,

ν + d if t = 2, c−1q /∈ NK/F (r), and d > 1,

ν + 2κ+ 1 if t = 3, ξ(−cq) = 1, and 2 ∈ p,

ν + 1 otherwise.

This completes the determination of the number κ0.

4.7. Now, in (4.28) we have ϕ(ki,b, L) = 2−1pi + ϕ(b,N) + 2−1(q − ϕ[b])p−i

by (2.5), (2.6), and (2.7) for 0 ≤ i ≤ κ0 − 1 and b ∈ Xi(q). Let m(i, b) ∈ Z

such that ϕ(ki,b, L) = 2−1pm(i,b). Here [IQD, Theorem 1.3] implies ki,bC =
L[q, 2−1pm(i,b)]. We have 0 ≤ m(i, b) ≤ µ(q − ϕ[b]) − i ≤ (κ0 − 1) − i in the
notation of (3.3), with µ of (4.18). From this and m(i, b) ≤ i, we see that

(4.36) 0 ≤ m(i, b) ≤ [(κ0 − 1)/2]

for 0 ≤ i ≤ κ0 − 1 and b ∈ Xi(q). On the other hand, when κ0 = ν + 1, put
z = 0; when κ0 > ν + 1, take any element z ∈ N [sq] and fix it. Here s is of
(4.30), (4.32), or (4.34) according as t = 1, 2, or 3. Then z ∈ Xκ0−1(q). We
assert that

(4.37) m(i, z) = i

for 0 ≤ i ≤ [(κ0−1)/2]. Indeed, if z = 0, then it is obvious. Suppose z ∈ N [sq].
Then µ(q − ϕ[z]) = κ0 − 1. From the theorem in the case r = 0 and t > 0, we
find that

ϕ(z,N) =

{
p(ν+δ)/2 if t = 1, 3,

2−1p[(ν+d)/2] if t = 2.

Therefore

m(i, z) =

{
min(i, κ+ (ν + δ)/2, (κ0 − 1)− i) if t = 1, 3,

min(i, [(ν + d)/2], (κ0 − 1)− i) if t = 2.

From this, we obtain (4.37). As a consequence, from (4.36) and (4.37),

L[q] =

κ0−1⋃

i=0

⋃

b∈Xi(q)/piN
ki,bC =

[(κ0−1)/2]⊔

i=0

L[q, 2−1pi]

and L[q, 2−1pi] = ki,zC. This completes the proof.
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5 The maximality of L ∩ (Fh)⊥

In this section still the field F is local and we prove the second main Theorem
5.3 as an application of Theorem 3.5. We first prepare two lemmas.

5.1 Lemma. Let ξ be as in Notation. Let α ∈ F× such that ξ(α) 6= 1. Let o be
the valuation ring of F (

√
α), qo the maximal ideal of o, dF (

√
α)/F the different

of F (
√
α) relative to F , and µ the normalized order function of F . Then we

obtain the following assertions:

(1) If 2 ∈ g× and µ(α) ∈ 2Z, then dF (
√
α)/F = o.

(2) If µ(α) /∈ 2Z, then dF (
√
α)/F = 2qo.

(3) If 2 ∈ p, µ(α) ∈ 2Z, ξ(α) = 0, and dF (
√
α)/F = qdo, then d ∈ 2Z.

Proof. The first two assertions are well known. Assertion (3) follows from
Lemma 4.2(1), (2).

5.2 Lemma. Let H be an integral lattice in V . Let t be the core dimension of
V . Let δ(ϕ) be defined as in (2.1). Assume n /∈ 2Z and δ(ϕ) ∩ g× = ∅. Then
we have H is maximal in V if and only if [H̃ : H ] = [g : 2p]. Here H̃ is defined
as in (2.2).

Proof. Assume that H is maximal in V . Then [AQC, Lemma 6.9] implies
[H̃ : H ] = [L̃ : L] with L of (2.4). Since L̃ = Ñ +

∑r
i=1(gfi + gei), we have [L̃ :

L] = [Ñ : N ]. By (2.8), (2.11), (2.19), and (2.20), we obtain [Ñ : N ] = [g : 2p]
since δ = 1. Thus we obtain the “only if”-part of the assertion. Conversely, we
assume that H is an integral lattice in V such that

(5.1) [H̃ : H ] = [g : 2p].

By [AQC, Lemma 6.2(1)], there exists a maximal lattice H0 in V such that
H ⊂ H0. Then

(5.2) H ⊂ H0 ⊂ H̃0 ⊂ H̃.

From the “only if”-part of the lemma, which is settled above, we obtain [H̃0 :
H0] = [g : 2p]. Combining this with (5.1) and (5.2), we obtain H = H0, and
hence H is maximal in V .

We remark that the index [H̃ : H ] of a maximal lattice H in V is given in
[AQC, Lemma 8.4(iv)] when n ∈ 2Z or δ(ϕ) ∩ g× 6= ∅.
Now, for h ∈ L such that ϕ[h] 6= 0, put

(5.3) (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}.

5.3 Theorem. Let L be a maximal lattice in V and τ(q) as in (3.8) for a
given q ∈ g ∩ F×. Assume n ≥ 2. Then for h ∈ L such that ϕ[h] 6= 0, we have

L ∩ (Fh)⊥ is maximal in (Fh)⊥ ⇐⇒ h ∈ L
[
ϕ[h], 2−1pτ(ϕ[h])

]
.
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Hereafter we prove this theorem until the end of §5.14.

5.4. Before stating the proof let us recall the basic notion and terminology
in the previous subsections, which will be needed in the next arguments. Put
q = ϕ[h], then h ∈ L[q]. Put simply τ = τ(q). We have

L[q] =

{
L[q, 2−1pτ ] if r = 0,⊔τ
i=0 L[q, 2−1pi] if r ≥ 1

(5.4)

by (3.8). Hence h ∈ L[q, 2−1pi] for some 0 ≤ i ≤ τ . Put W = (Fh)⊥. Our aim
is to show that L ∩W is maximal in W if and only if i = τ .
We have a Witt decomposition of V with respect to ϕ

(5.5) V = Z +

r∑

j=1

(Ffj + Fej), L = N +

r∑

j=1

(gfj + gej)

as in (2.4). Let t be the core dimension of (V, ϕ). Let ξ be as in Notation.
Assume t = 1. Let c and δ be as in (2.9) and (2.10), respectively. For q, let d
and s be as in Theorem 3.5(ii).
Assume t = 2. Let b and c be as in (2.12) and δ as in (2.13). Let K and r be
as in §2.3(II). Let q be the maximal ideal of r and ρ ∈ Gal(K/F ) such that
ρ 6= 1. Let d and d be as in Theorem 3.5(iii). Then

K is isomorphic to F (
√
−bc),(5.6)

d = dK/F = qd when d 6= r.(5.7)

For q, let s be as in Theorem 3.5(iii).
Assume t = 3. Let c and δ be as in (2.14) and (2.15), respectively. For q, let s
be as in Theorem 3.5(iv).
Let δ(ϕ) be as in (2.1). We may assume that: if t = 1 or 3 and δ(ϕ) ∩ g× 6= ∅,
then c ∈ g×; if t = 1 or 3 and δ(ϕ) ∩ g× = ∅, then cg = p; if t = 2, then
b, c ∈ g× ⊔ πg×; if t = 2 and K is ramified over F , then c ∈ g×; see §2.3.

5.5. First suppose that:

t = 1, r ≥ 1, and ξ(cq) = 1; or
t = 2 and c−1q ∈ NK/F (r); or
t = 3 and ξ(−cq) 6= 1; or
t = 4.

This assumption is equivalent to N [q] 6= ∅ by Lemma 3.4. Here 0 6= q = ϕ[h],
h ∈ L. Then h ∈ L[q, 2−1pi] for some 0 ≤ i ≤ τ by (5.4). We obtain

L[q, 2−1pi] =

{
yC if i = τ,

hi,yC if i < τ
(5.8)

by (3.13), (3.16), (3.19), and (3.21). Here, y is any element of N [q] and fix it.
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We first prove that L ∩ W is maximal in W when i = τ . In this case, h ∈
L[q, 2−1pτ ] = yC by (5.8). Therefore there exists γ ∈ C such that y = hγ.
We have L ∩ (Fy)⊥ = (L ∩W )γ since Lγ = L and (Fy)⊥ = Wγ. Therefore
L ∩ (Fy)⊥ is maximal in (Fy)⊥ if and only if L ∩W is maximal in W . Hence
we assume h = y and W = (Fy)⊥. Now, we have

W = (Z ∩W ) +

r∑

j=1

(Ffj + Fej)

since h ∈ N , (5.3), and (5.5). This is a Witt decomposition of W with respect
to the restriction of ϕ to W . Moreover we obtain

(5.9) L∩W = (N ∩W ) +

r∑

j=1

(gfj + gej), N ∩W = {x ∈ Z ∩W | ϕ[x] ∈ g}

from (2.7) and (5.5). Thus by [AQC, Lemma 6.5], L ∩W is maximal in W
when i = τ .
Next suppose i < τ . We shall show that L ∩W is not a maximal lattice in W
in this case. We obtain h ∈ hi,yC by (5.8). Thus we may assume h = hi,y. By
(3.8), N [q] = N [q, 2−1pτ ]. From this,

(5.10) ϕ(y,N) = 2−1pτ .

We see that

W = X +
r−1∑

j=1

(Ffj + Fej), X = {aer + x− 2π−iϕ(y, x)fr | a ∈ F, x ∈ Z},

(5.11)

L ∩W = H +

r−1∑

j=1

(gfj + gej), H = {aer + x− 2π−iϕ(y, x)fr | a ∈ g, x ∈ N}

by the definition of hi,y (in (3.7)), (5.3), (5.5), and (5.10). Take

(5.12) w ∈ N such that ϕ(y, w) = −2−1πτ

and fix it. Put u = πτ−ifr + w − πi−τϕ[w]er, v = πi−τer, and

Y = {x− 2πi−τϕ(x,w)er | x ∈ Z such that ϕ(x, y) = 0}.

Then we find that X = Y + Fu + Fv is a Witt decomposition of X by a
straightforward calculation. Here X is defined as in (5.11). Put Λ = {k ∈
Y | ϕ[k] ∈ g}, then Λ + gu + gv is maximal in X by [AQC, Lemma 6.5]. We
assert that H ( Λ + gu + gv. Indeed, it is clear that v /∈ H since i − τ < 0.
For any ℓ = aer + x − 2π−iϕ(y, x)fr ∈ H , put ξ = −2π−τϕ(y, x) and η =
aπτ−i + 2π−τϕ(y, x)ϕ[w] + 2ϕ(x,w) with w in (5.12). Then a straightforward
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computation shows that ξ, η ∈ g and ℓ − ξu − ηv ∈ Λ by (5.10). Therefore
H ( Λ + gu + gv. Thus H is not maximal in X , and hence L ∩ W is not
maximal in W by [AQC, Lemma 6.3]. This completes the proof in the case
N [q] 6= ∅.

5.6. Let us now suppose that:

t = 0 and r ≥ 1; or
t = 1, r ≥ 1, ξ(cq) 6= 1, and 2 ∈ g×; or
t = 1, r ≥ 1, ξ(cq) 6= 1, and ν 6≡ δ (mod 2); or
t = 2, r ≥ 1, c−1q /∈ NK/F (r), and dK/F = r; or
t = 2, r ≥ 1, c−1q /∈ NK/F (r), and dK/F = q; or
t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ g×.

Here ν ∈ Z such that qg = pν with 0 6= q = ϕ[h], h ∈ L. In this case we obtain

L[q] =

{
⊔τj=0ℓjC if t ≥ 1 or r ≥ 2,

⊔νj=0ℓjC if t = 0 and r = 1

with ℓj in (3.7) and τ = [ν/2] of Theorem 3.5. Moreover

(5.13) N [q] = ∅

by Lemma 3.4. We have h ∈ L[q, 2−1pi] for some 0 ≤ i ≤ τ by (5.4). Hereafter
until the end of §5.7 we prove the theorem in the case t ≥ 1 or r ≥ 2. Then

L[q, 2−1pi] = ℓiC for 0 ≤ i ≤ τ

by (3.10), (3.13), (3.16), and (3.19). Thus we may assume h = ℓi and W =
(Fℓi)

⊥ since h ∈ ℓiC.
In this §5.6 we determine [(L ∩W )̃ : L ∩W ]. Put

(5.14) w = fr − qπ−2ier

with er and fr in (5.5). Then

(5.15) W = (Fw + Z) +

r−1∑

j=1

(Ffj + Fej)

from the definition of ℓi (in (3.7)), (5.3), and (5.5). We understand that:∑r−1
j=1(Ffj + Fej) = {0} when t > 0 and r = 1; Z = {0} when t = 0 and

r ≥ 2. We assert that (5.15) is a Witt decomposition. Indeed, it is clear when
t = 0 and r ≥ 2. Assume t ≥ 1. If ϕ[aw + x] = 0 for a ∈ F and x ∈ Z, then
ϕ[x] = qπ−2ia2. If a 6= 0, then this is the case if and only if ϕ[a−1πix] = q,
and hence N [q] 6= ∅. This contradicts (5.13). Thus a = 0, and hence x = 0.
Therefore the restriction of ϕ to Fw + Z is anisotropic. Combining this with
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(2.5), (2.6), and (5.14), we see that (5.15) is a Witt decomposition. Now, we
have

(5.16) L ∩W = (gw +N) +
r−1∑

j=1

(gfj + gej)

by (5.5) and (5.15). Therefore a straightforward computation shows that

(5.17) (L ∩W )̃ = 2−1p2i−νw + Ñ +

r−1∑

j=1

(gfj + gej)

from (2.2) with (5.16). Combining (5.16) with (5.17), we have

(5.18) [(L ∩W )̃ : L ∩W ] = [g : 2pν−2i] · [Ñ : N ].

Here we obtain the index [Ñ : N ] by [AQC, Lemma 8.4(iv)] and Lemma 5.2.
Combining this with (5.18), we have

[(L ∩W )̃ : L ∩W ]

(5.19)

=





[g : 2pν−2i] if t = 0 and r ≥ 2,

[g : 4pν−2i+δ] if t = 1, r ≥ 1, ξ(cq) 6= 1, and 2 ∈ g×,

[g : 4pν−2i+δ] if t = 1, r ≥ 1, ξ(cq) 6= 1, and ν 6≡ δ (mod 2),

[g : 2pν−2i+2δ] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d = r,

[g : 2pν−2i+1] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d = q,

[g : pν−2i+2−δ] if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ g×.

Note that: if t = 2, r ≥ 1, and d = r, then c−1q /∈ NK/F (r) if and only if ν 6≡ δ
(mod 2) by Lemma 3.4(2); if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ g×, then ν ≡ δ
(mod 2).

5.7. In this § we still assume t ≥ 1 or r ≥ 2. For an integral lattice R in W ,
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the following assertion holds:

R is maximal in W

(5.20)

⇐⇒ [R̃ : R] =





[g : 2pν−2τ ] if t = 0 and r ≥ 2,

[g : p2δ] if t = 1, r ≥ 1, ξ(cq) 6= 1,

and ν ≡ δ (mod 2),

[g : 4p] if t = 1, r ≥ 1, ξ(cq) 6= 1,

and ν 6≡ δ (mod 2),

[g : 2p1+δ] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d = r,

[g : 2pν−2τ+1] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d = q,

[g : p2] if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ g×.

Note that if t = 1, r ≥ 1, ξ(cq) 6= 1, and ν ≡ δ (mod 2), then 2 ∈ g×. If
(5.20) holds, then combining (5.19) with (5.20), we obtain our theorem in the
case t ≥ 1 or r ≥ 2 since L ∩ W is an integral lattice in W . Let us prove
(5.20). We observe a core subspace Fw + Z of W with w of (5.14). If t = 0
and r ≥ 2, then dimF (Fw + Z) = 1 and δ(Fw + Z,ϕ) = ϕ[w]F×2 = −qF×2.
Here δ(Fw + Z,ϕ) is defined as in (2.1). This implies δ(Fw + Z,ϕ) ∩ g× 6= ∅
if ν ∈ 2Z and δ(Fw + Z,ϕ) ∩ g× = ∅ if ν /∈ 2Z. Therefore we have (5.20)
by [AQC, Lemma 8.4(iv)] and Lemma 5.2 when t = 0 and r ≥ 2. Assume
t = 1, r ≥ 1, and ξ(cq) 6= 1. Since ϕ[w] = −qπ−2i and Z = Fg with g of
(2.8), (Fw + Z,ϕ) is isomorphic to (F (

√
cq), ψ), where ψ[x] = cNF (

√
cq)/F (x)

for x ∈ F (
√
cq), as explained in §2.3(II). Suppose ν ≡ δ (mod 2), then 2 ∈ g×.

Thus Lemma 5.1(1) implies that F (
√
cq) is unramified. Therefore we have

(5.20) in this case by [AQC, Lemma 8.4(iv)]. Next suppose ν 6≡ δ (mod 2), then
dF (
√
cq)/F = 2qF (

√
cq) by Lemma 5.1(2), where qF (

√
cq) is the maximal ideal of

the valuation ring of F (
√
cq). Therefore [AQC, Lemma 8.4(iv)] implies (5.20)

when t = 1, r ≥ 1, ξ(cq) 6= 1, and 2 ∈ g× or ν 6≡ δ (mod 2). Assume t = 2,
r ≥ 1, and c−1q /∈ NK/F (r), then dimF (Fw + Z) = 3. Since Z = Fg1 + Fg2
with g1 and g2 in (2.12) and ϕ[w] = −qπ−2i, we have

(5.21) δ(Fw + Z,ϕ) = bcqF×2.

Suppose d = r. Then ν 6≡ δ (mod 2) by Lemma 3.4(2). Since K is unramified
over F , we have bg = cg(= pδ) by Lemma 5.1(2). Thus (5.21) implies δ(Fw +
Z,ϕ)∩g× = ∅ if δ = 0 and δ(Fw+Z,ϕ)∩g× 6= ∅ if δ = 1. From this we obtain
(5.20) by [AQC, Lemma 8.4(iv)] and Lemma 5.2 in this case. Next suppose
d = q. Here Lemma 5.1 implies bg = p since c ∈ g×. Therefore (5.21) implies
δ(Fw + Z,ϕ) ∩ g× = ∅ if ν ∈ 2Z and δ(Fw + Z,ϕ) ∩ g× 6= ∅ if ν /∈ 2Z. Hence
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we have (5.20) by [AQC, Lemma 8.4(iv)] and Lemma 5.2 when t = 2, r ≥ 1,
c−1q /∈ NK/F (r), and dK/F = r or q. Finally if t = 3, r ≥ 1, ξ(−cq) = 1, and
2 ∈ g×, then dimF (Fw + Z) = 4, and hence [AQC, Lemma 8.4(iv)] implies
(5.20). This proves the theorem in the case when N [q] = ∅, L[q] = ⊔jℓjC, and
t ≥ 1 or r ≥ 2.

5.8. In this § we prove the theorem in the case t = 0 and r = 1. Then

L[q, 2−1pi] =

{
ℓiC ⊔ ℓν−iC if t = 0, r = 1, and i 6= ν/2,

ℓiC if t = 0, r = 1, and i = ν/2

for 0 ≤ i ≤ τ , by (3.10). Since h ∈ L[q, 2−1pi] for some 0 ≤ i ≤ τ by (5.4), we
may assume that h = ℓi or h = ℓν−i when i 6= ν/2 and h = ℓi when i = ν/2. If
h = ℓi for 0 ≤ i ≤ τ (including the case h = ℓν/2), we can obtain the assertion
in the same way as §§5.6 and 5.7. Assume h = ℓν−i for 0 ≤ i < ν/2. Put here
w = f1 − qπ−2(ν−i)e1. Then we see that

W = (Fℓν−i)
⊥ = Fw, L ∩W = pν−2iw, and (L ∩W )̃ = 2−1gw

in a similar way as §5.6. Thus [(L ∩W )̃ : L ∩W ] = [g : 2pν−2i]. Therefore we
obtain the theorem in the same way as in the case when t = 0 and r ≥ 2 since
ϕ[w]F×2 = −qF×2. This completes the proof in the case when N [q] = ∅ and
L[q] = ⊔jℓjC.

5.9. Finally we suppose that:

t = 1, r ≥ 1, ν ≡ δ (mod 2), ξ(cq) 6= 1, and 2 ∈ p; or
t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d > 1; or
t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Note that c ∈ g× when t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d > 1. Then we
have

(5.22) L[q] =

τ⊔

j=0

kj,zC and kj,zC = L[q, 2−1pj]

with kj,z in (3.7), from (3.8), (3.13), (3.16), and (3.19). Here z is any element
of N [sq] with s of (3.11), (3.14), or (3.17) of Theorem 3.5 according as t = 1, 2,
or 3. We fix z. We obtain
(5.23)

τ =





κ+
[
ν+1−d

2

]
if t = 1, r ≥ 1, ξ(cq) 6= 1, ν ≡ δ (mod 2), and 2 ∈ p,[

ν+d−1
2

]
if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d > 1,

κ+
[
ν
2

]
if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p

from (3.12), (3.15), and (3.18), where κ ∈ Z such that 2g = pκ. Moreover, by
Lemma 3.4,

(5.24) N [q] = ∅.
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Applying Theorem 3.5 to (Z,ϕ), N , and sq, we have N [sq] = N [sq, 2−1pτ(sq)]
by (3.8). Here

τ(sq) =





κ+ ν+δ
2 if t = 1, r ≥ 1, ξ(cq) 6= 1,

ν ≡ δ (mod 2), and 2 ∈ p,[
ν+d
2

]
if t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d > 1,

κ+ ν+δ
2 if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p

(5.25)

from (3.12), (3.15), and (3.18). Thus

(5.26) ϕ(z,N) = 2−1pτ(sq).

Assume h ∈ L[q, 2−1pi] for some 0 ≤ i ≤ τ . Then by (5.22), h ∈ ki,zC, and
hence we may assume h = ki,z . Hereafter we show that L ∩W is maximal in
W if and only if i = τ . Put

(5.27) x1 = πi−τ [fr − π−2i(q − ϕ[z])er]

with er and fr in (5.5). Then

(5.28) ϕ[x1] = π−2τ (s− 1)q and πτ−ix1 ∈ L.

By a straightforward computation, we obtain
(5.29)

W = X +
r−1∑

j=1

(Ffj + Fej), X = {ax1 + x− 2π−iϕ(x, z)er | a ∈ F, x ∈ Z}

with x1 of (5.27). Then (5.29) is a Witt decomposition. Indeed, if ϕ[ax1 +
x − 2π−iϕ(x, z)er] = 0 for a ∈ F and x ∈ Z, then ϕ[x − π−τaz] = (π−τa)2q.
Assuming a 6= 0, we have ϕ[πτa−1x − z] = q, and hence N [q] 6= ∅. This
contradicts (5.24). Thus a = 0, and hence x = 0. Therefore the restriction of
ϕ to X is anisotropic. Combining this with (2.5), (2.6), and (5.27), we see that
(5.29) is a Witt decomposition. Now, we easily see that 2π−iϕ(x, z) ∈ g for
x ∈ N from (5.23), (5.25), (5.26), and 0 ≤ i ≤ τ . From this and (5.28),
(5.30)

L∩W = H+

r−1∑

j=1

(gfj+gej), H = {ax1+x−2π−iϕ(x, z)er | a ∈ pτ−i, x ∈ N}.

By [AQC, Lemma 6.3(1)], L∩W is maximal in W if and only if H is maximal
in X . Thus we consider the lattice H in X instead of L ∩W in W .

5.10. In this § we first determine the structure of N under the assumption of
§5.9. Now we put

(5.31) Y = {k ∈ Z | ϕ(k, z) = 0} and z1 = π−[ν/2]z.
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Then Z = Fz1 + Y .
First assume t = 1, r ≥ 1, ν ≡ δ (mod 2), ξ(cq) 6= 1, and 2 ∈ p. Since
ϕ[z1]g = pδ,

(5.32) N = gz1.

Next assume t = 2, r ≥ 1, c−1q /∈ NK/F (r), and d > 1. Then Lemma 5.1(1)
and (2) imply 2 ∈ p. Take y ∈ Y such that Y = Fy, then

(5.33) Z = Fz1 + Fy.

Thus from (2.1) and (2.12), we have ϕ[z1]ϕ[y]F×2 = −δ(Z,ϕ) = bcF×2, and
hence we may assume

ϕ[z1]ϕ[y](bc)−1 =

{
1 if bg = p,

π2λ if b ∈ g×,
(5.34)

where

(5.35) λ = ν − 2[ν/2].

From (5.6) and (5.34), we see that F + Fz1y ⊂ A(Z,ϕ) is isomorphic to K.
Here we identify F + Fz1y with K. Suppose bg = p. Then

(5.36) d = 2κ+ 1

by c ∈ g×, Lemma 5.1(2), and (5.7). Put

zν =

{
z1 if ν ∈ 2Z,

y if ν /∈ 2Z.

Then ϕ[zν ] ∈ g× from (5.31) and (5.34), and hence Z = Kzν and N = rzν by
(5.33). We find z1y ∈ r and (z1y − (z1y)ρ)r = 2q = d, and hence r = g[z1y] by
[AQC, Lemma 5.6(ii)]. Thus

(5.37) N = gz1 + gy.

Next suppose b ∈ g×. Then bc ∈ g× and 2 ∈ p from c ∈ g×, d > 1, and Lemma
5.1(1). Thus there exist

(5.38) α, β ∈ g× such that − bc = α−2(1 + π2κ+1−dβ)

by d > 1 and Lemma 4.2(1). Put η = π(d−2κ)/2(1 + απ−λz1y) in K with λ of
(5.35). Then η is a root of an Eisenstein equation x2 − 2π(d−2κ)/2x− πβ = 0,
and hence η is a prime element of K and (η − ηρ)r = (2η − 2π(d−2κ)/2)r = d.
Here x is an indeterminate. Thus r = g[η] by [AQC, Lemma 5.6(ii)]. By (5.31)
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and (5.34), we have ϕ[y]g = pλ. From this and η−1 = −π−1+(d−2κ)/2β−1(1 −
απ−λz1y), we obtain

(5.39) N = rη−λy = gy + gπ−λ+(d−2κ)/2[y + (−1)ναπ−λϕ[y]z1].

Finally assume t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p. Then ν ≡ δ (mod 2), and
hence ϕ[z1]g = pδ. We can take

(5.40) y1, y2 ∈ Y so that Y = Fy1 + Fy2 and ϕ(y1, y2) = 0

by [EPE, Lemma 1.8]. Then we may assume

(5.41) ϕ[y1]ϕ[y2] ∈ g×

since

(5.42) −ϕ[z1]ϕ[y1]ϕ[y2]F×2 = δ(Z,ϕ) = −cF×2

by (2.14), (5.31), and (5.40). Put

(5.43) T = Fy1y2+Fz1y1+Fz1y2, KY = F +Fy1y2, B = F +T, ζ = z1y1y2

in A(Z). Moreover put c1 = ϕ[z1]ϕ[y1]ϕ[y2]. Then Z = Tζ, Y = KY y2, B
is a division quaternion algebra over F , c1g = cg, and ϕ[xζ] = c1NB/F (x) for
x ∈ T . From ξ(−cq) = 1 and (5.42), we have (y1y2)2F×2 = sF×2. Thus KY is
an unramified quadratic extension of F by (3.17). We may assume

(5.44) ϕ[y1]g = ϕ[y2]g = g or ϕ[y1]−1g = ϕ[y2]g = p

by (5.41). Then we see that

ϕ[y2]g = p1−δ =

{
p if ν ≡ 0 (mod 2),

g if ν ≡ 1 (mod 2)
(5.45)

as shown below. Put

ω = z1y1 and v = y1y2.

Then B = KY +KY ω, ωv = −vω, ω2g = p2δ−1, v ∈ KY ∩T , and v2 ∈ g× from
(5.31), (5.40), (5.41), (5.42), (5.43), and (5.45). Therefore

(5.46) N = (gv + rY ω
−1)ζ = gz1 + rY y2;

see §2.3. Here rY is the valuation ring of KY . Now we assert (5.45). Indeed, if
this is not the case, then

ϕ[y2]g = pδ =

{
g if ν ≡ 0 (mod 2),

p if ν ≡ 1 (mod 2)
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by (5.44). Since KY is unramified over F , there exists θ ∈ B such that B =
KY + KY θ, θ

2g = p, and θy1y2 = −y1y2θ by the proof of [AQC, Theorem
5.13]. Then we easily see that θ ∈ Fz1y1 + Fz1y2. Put J = Fz1y1 + Fz1y2
and ψ[x] = NB/F (x) for x ∈ J . We consider the Clifford algebra A(J, ψ) of

ψ. Put KJ = F + Fz1y1 · z1y2, then J = KJz1y2, ψ[z1y2]g = p2δ, and KJ is
isomorphic to F (

√
s) which is an unramified quadratic extension of F . Thus

Lemma 3.4(2) implies ΛJ [ψ[θ]] = ∅, where ΛJ is a maximal lattice in J . Since
θ2g = p, this gives a contradiction, and hence ϕ[y2]g = p1−δ.

5.11. Put

(5.47) x2 = π−[ν/2](z − 2π−iϕ[z]er).

Then ϕ[x2] = ϕ[z1] with z1 in (5.31). From (5.30), (5.32), (5.37), (5.39), and
(5.46),

H =(5.48)




pτ−ix1 + gx2 if t = 1, r ≥ 1, ξ(cq) 6= 1,

ν ≡ δ (mod 2), and 2 ∈ p,

pτ−ix1 + gx2 + gy if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1,

and bg = p,

pτ−ix1 + gx3 + gy if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1,

and b ∈ g×,

pτ−ix1 + gx2 + rY y2 if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p

with x1 of (5.27), y ∈ Y satisfying (5.34), y2 of (5.40), and rY in (5.46).
Moreover x3 is given as

(5.49) x3 = π−λ+(d−2κ)/2[y + (−1)ναπ−λϕ[y]x2],

with λ of (5.35).

5.12. On the other hand for the space X in (5.29) we put

(5.50) Λ = {x ∈ X | ϕ[x] ∈ g}.
Then [AQC, Lemma 6.4] implies that Λ is a unique maximal lattice in X . Here
we put

(5.51) w = −πi(q − ϕ[z])−1ϕ[z]fr + z − π−iϕ[z]er

with er and fr in (5.5). Then we find that

x2 = π−[ν/2][w + πτ (q − ϕ[z])−1ϕ[z]x1],

(5.52)

ϕ[w] = (1− s)−1sq,
(5.53)

X = Fx1 + Fw + Y, ϕ(x1, w) = 0, Y = {k ∈ X | ϕ(k, x1) = ϕ(k, w) = 0}.
(5.54)
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Here Y is given in (5.31) and x2 is of (5.47).

5.13. In §§5.13 and 5.14 we determine the structure of Λ in the above (5.50).
In §5.13 we suppose that: t = 1, r ≥ 1, ν ≡ δ (mod 2), 2 ∈ p, and ξ(cq) 6= 1; or
t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p; or t = 3, r ≥ 1, ξ(−cq) = 1,
and 2 ∈ p. (The case when t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and b ∈ g×

will be treated in §5.14.) To prove the theorem in this case, it suffices to show
that

Λ =

(5.55)





gx1 + gx2 if t = 1, r ≥ 1, ξ(cq) 6= 1, ν ≡ δ (mod 2), and 2 ∈ p,

gx1 + gx2 + gy if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p,

gx1 + gx2 + rY y2 if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p

by (5.48).

First we shall show that

(5.56) gx1 + gx2 is maximal in Fx1 + Fw.

For the purpose, we consider the Clifford algebraA(Fx1+Fw) of the restriction
of ϕ to Fx1 +Fw. Put E = F +Fwx1 in A(Fx1 +Fw). Then we obtain that

(5.57) Fx1 + Fw = Ex1, ϕ[xx1] = ϕ[x1]NE/F (x) for x ∈ E,

and E is isomorphic to F (
√
s) since (wx1)2F×2 = sF×2 by (5.28) and (5.53).

First we suppose that:

t = 1, r ≥ 1, ξ(cq) = 0, ν /∈ 2Z, 2 ∈ p, and δ = 1; or
t = 1, r ≥ 1, ξ(cq) = −1, ν ≡ δ (mod 2), and 2 ∈ p; or
t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p; or
t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Then

DE/F =

{
pd if t = 1, r ≥ 1, ξ(cq) = 0, ν /∈ 2Z, 2 ∈ p, and δ = 1,

g otherwise.
(5.58)

Indeed, if t = 1, r ≥ 1, ξ(cq) = 0, ν /∈ 2Z, 2 ∈ p, and δ = 1, then cqF×2 = sF×2.
Thus we have (5.58) by the definition of d; see Theorem 3.5(ii). If t = 1, r ≥ 1,
ξ(cq) = −1, ν ≡ δ (mod 2), and 2 ∈ p, then from (3.11), Lemma 4.2(1), and
cq /∈ F×2, we have ε(s) = 2κ with ε of (4.11). Thus we obtain (5.58). If t = 2,
r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p, then ε(s) = 2κ from (3.14), (5.36),
and c−1q /∈ NK/F (r). If t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p, then clearly we
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have (5.58) by (4.34) and Lemma 4.2(1). Therefore we have (5.58) for all cases.
Now, by (5.23), (5.36), and Lemma 5.1(3),

τ =

{
κ+ (ν + 1− d)/2 if t = 1, r ≥ 1, ξ(cq) = 0, ν /∈ 2Z, 2 ∈ p, and δ = 1,

κ+ [ν/2] otherwise.

Thus by (3.11), (3.14), (3.17), and (5.28), we have
(5.59)

ϕ[x1]g =





g if t = 1, r ≥ 1, ξ(cq) = 0, ν /∈ 2Z, 2 ∈ p, and δ = 1,

pδ if t = 1, r ≥ 1, ξ(cq) = −1, ν ≡ δ (mod 2), and 2 ∈ p,

pλ if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p,

pδ if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Therefore rEx1 is a unique maximal lattice in Ex1, where rE is the valuation
ring of E. Since NE/F (x2x

−1
1 ) = ϕ[x2]ϕ[x1]−1 ∈ g, we have x2x

−1
1 ∈ rE .

By (5.52) and (5.58), NE/F (x2x
−1
1 − (x2x

−1
1 )ρE )g = DE/F , where 1 6= ρE ∈

Gal(E/F ). Thus [AQC, Lemma 5.6(ii)] implies rE = g[x2x
−1
1 ], and hence

gx1 + gx2 is a maximal lattice in Ex1 in this case.
Next suppose that t = 1, r ≥ 1, ξ(cq) = 0, ν ∈ 2Z, 2 ∈ p, and δ = 0. Then
d ∈ 2Z by Lemma 5.1(3). From this and (5.23), τ = κ + 2−1(ν − d). Thus

ϕ[x1]g = p from (3.11) and (5.28). Put η = π2−1d−κ(1 + πτϕ[z]−1wx1) ∈ E,

then η is a root of an Eisenstein equation x2 − 2π2−1d−κx − πd−2κϕ[z]−1(q −
ϕ[z]) = 0. Here x is an indeterminate. Therefore η is a prime element of

E and (η − ηρE )rE = (2η − 2π2−1d−κ)rE = dE/F . Here rE and ρE are the
same symbols as above. Thus rE = g[η] by [AQC, Lemma 5.6(ii)]. From
ϕ[x1]g = p, we have Λ = rEη

−1x1 = gx1 + gη−1x1 with Λ of (5.50). Since

η−1 = −πκ−2−1dϕ[z](q − ϕ[z])−1(1− πτϕ[z]−1wx1), we obtain Λ = gx1 + gx2.
This proves (5.56).
Now, we obtain (5.55) when t = 1, r ≥ 1, ν ≡ δ (mod 2), ξ(cq) 6= 1, and 2 ∈ p
by (5.56). When t > 1, we have

[(gx1 + gx2)̃ : gx1 + gx2] =

(5.60)

{
[g : p2λ] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p,

[g : p2δ] if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

by (5.56), (5.57), (5.58), (5.59), and [AQC, Lemma 8.4(iv)]. Put

ΛY =

{
gy if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p,

rY y2 if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Then ΛY is maximal in Y . Indeed, if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1,

and bg = p, then dimF (Fy) = 1. We have ϕ[y]g = p1−λ from (5.31) and

Documenta Mathematica 15 (2010) 347–385



On the Solutions of Quadratic Diophantine Equations 379

(5.34), and hence gy is maximal in Y by [AQC, Lemma 6.4]. If t = 3, r ≥ 1,
ξ(−cq) = 1, and 2 ∈ p, then KY in (5.43) is unramified over F and Y = KY y2.
Also we have ϕ[ky2] = ϕ[y2]NKY /F (k) for k ∈ KY . Thus rY y2 is maximal in Y
by (5.45) and [AQC, Lemma 6.4]. Since ΛY is maximal in Y , [AQC, Lemma
8.4(iv)] and Lemma 5.2 imply

[Λ̃Y : ΛY ] =

{
[g : 2p1−λ] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p,

[g : p2(1−δ)] if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Combining this with (5.60), we obtain

[(gx1 + gx2 + ΛY )̃ : gx1 + gx2 + ΛY ] = [(gx1 + gx2 )̃ : gx1 + gx2] · [Λ̃Y : ΛY ]

=





[g : 2p1+λ] if t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1,

and bg = p,

[g : p2] if t = 3, r ≥ 1, ξ(−cq) = 1, and 2 ∈ p.

Therefore gx1 + gx2 + ΛY is maximal in X by [AQC, Lemma 8.4(iv)] and
Lemma 5.2. Note that ϕ[x1]ϕ[w]ϕ[y]g = pν−2κ+1 by (5.34), (5.53), and (5.59),
when t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and bg = p. Therefore we obtain
(5.55).

5.14. Finally, we suppose that t = 2, r ≥ 1, c−1q /∈ NK/F (r), d > 1, and
b ∈ g×. We have already obtained

(5.61) H = gπτ−ix1 + gx3 + gy

by (5.48), with x1 of (5.27), y satisfying (5.34), and x3 of (5.49). Our aim is
to show that H coincides with the unique maximal lattice Λ in X if and only
if i = τ , with Λ of (5.50). For the purpose, we shall find a g-basis of Λ in a
similar way as §2.3(III) (cf. (2.19)).
We consider the Clifford algebra A(X) of the restriction of ϕ to X . Put

x0 = πλ−1x1 and w0 = π−(ν−d+λ)/2w

with λ of (5.35) and w of (5.51). Then {x0, w0, y} is an F -basis of X satisfying
ϕ(x0, w0) = ϕ(w0, y) = ϕ(y, x0) = 0 by (5.54) and Y = Fy with Y in (5.31).
Thus we obtain

X = TXζX and ϕ[xζX ] = cXNB/F (x) for x ∈ TX .

Here

TX = Fx0w0 + Fx0y + Fw0y,B = F + TX , cX = ϕ[x0]ϕ[w0]ϕ[y], ζX = x0w0y.

Note that B is a division quaternion algebra over F . Moreover we have cXg =
pλ by (5.28), (5.34), and (5.53). Therefore

(5.62) Λ = (TX ∩P−λ)ζX ,
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where P = {x ∈ B | NB/F (x) ∈ p}. Put

(5.63) ωX = −x1ζ−1X , uX = x3ζ
−1
X ω−1X , and vX = uX − uιX

in B, where ι is the main involution of B. Then we assert that

(5.64) Λ = [gvX + (g + guX)ωX ]ζX = gx1 + gx3 + gvXζX .

Indeed, we have ω2
Xg = p1−2λ by (5.34) and (5.53). Thus we obtain

NB/F (uX) = c−1X NB/F (ωX)−1πd−2κ−2λϕ[y](−π2κ+1−dβ) ∈ g×,

NB/F (vX) = NB/F (uX − uιX)

= 4π−2λ+d−2κϕ[x1]−1ϕ[y](s+ π2κ+1−dβ)(s − 1)−1 ∈ g×

by (5.28), (5.34), (5.38), (5.49), and (5.53). Note that 2κ+ 1 > d by d > 1 and
Lemma 4.2. Thus [AQC, Lemma 5.6(ii)] implies that F +FuX is an unramified
quadratic extension of F and g + guX is the valuation ring of F + FuX . Also
we have vX ∈ g[uX ]×. We see that B = (F + FuX) + (F + FuX)ωX and
vXωX = −ωXvX by a straightforward caluculation. Combining these with
(5.62), we obtain the first equality of (5.64) in the same way as §2.3(III). The
second equality of (5.64) is trivial from (5.63). This proves (5.64).
Now, we consider the g-base of both H and Λ, that is, {πτ−ix1, x3, y} and
{x1, x3, vXζX}; see (5.61) and (5.64) above. We see that

vXζX = 2πd−κ−1−(ν+λ)/2ϕ[y][w + (−1)ν+1π−(ν+λ)/2αϕ[w]y]

= A(πτ−ix1) +Bx3 + Cy

with

A = −2ϕ[y]ϕ[z](q − ϕ[z])−1πi+d−κ−1−(ν+λ)/2 ∈ pi−τ ,

B = (−1)ν2α−1πλ−1+2−1d ∈ g,

C = (−1)ν+12πd−κ−1(α−1 + αϕ[y]ϕ[w]π−ν−λ) ∈ g×

by (5.23), (5.34), (5.38), (5.53), and d > 1. Thus

(πτ−ix1, x3, y) = (x1, x3, vXζX)γ, γ =



πτ−i 0 −πτ−iAC−1

0 1 −BC−1
0 0 C−1


 .

Since γ ∈ g33 and det(γ)g = pτ−i, we obtain H = Λ if and only if i = τ , also in
this case. This completes the proof.

6 Global results

In this section we assume that F is a global field and L is a maximal lattice in
V with respect to ϕ. We state two global results which are derived from the
local cases.
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6.1. Let h be the set of nonarchmedean primes of F and fix v ∈ h. We let
Fv denote the completion of F at v. Then Fv is a local field. Let gv be the
valuation ring of Fv and pv the maximal ideal of gv. We also write pv for the
prime ideal of g corresponding to v. Put Xv = X⊗F Fv for a subspace X of V
and Λv = Λ⊗g gv for a g-lattice Λ in V . Let ϕv be the Fv-bilinear extension of
ϕ to Vv×Vv. We consider (Vv, ϕv). By [AQC, Lemma 9.4(iii)], Lv is a maximal
lattice in Vv. For q ∈ g ∩ F× such that Lv[q] 6= ∅, put

(6.1) τv(q) = max({i ∈ Z | Lv[q] ⊃ Lv[q, 2−1piv] 6= ∅}).

This is given by (3.9), (3.12), (3.15), (3.18), and (3.20) for every v ∈ h.

6.2 Proposition. Let the notation be as above. Let L be a maximal lattice
in V and q ∈ g ∩ F×. Let tv be the core dimension of (Vv, ϕv) for v ∈ h. Put
n = dimF (V ). Then for a g-ideal a =

∏
v∈h pivv such that a ⊂ g, we have

L[q, 2−1a] 6= ∅ =⇒
{
iv = τv(q) if n = tv,

iv ≤ τv(q) otherwise

for all v ∈ h.

Proof. Assume L[q, 2−1a] 6= ∅. For every v ∈ h, we have L[q, 2−1a] ⊂
Lv[q, 2

−1pivv ] since ϕ(x, L)v = ϕv(x, Lv) for any x ∈ V . Thus we obtain
∅ 6= Lv[q, 2

−1pivv ] ⊂ Lv[q] by Lemma 3.6, and hence Corollary 3.7 implies
the assertion.

6.3 Theorem. Let the notation be the same as in Proposition 6.2. Let L be a
maximal lattice in V . Assume n ≥ 2. Then for h ∈ L such that ϕ[h] 6= 0, we
have

L ∩ (Fh)⊥ is maximal in (Fh)⊥ ⇐⇒ h ∈ L
[
ϕ[h], 2−1

∏

v∈h
pτv(ϕ[h])v

]
.

Here (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}.

Proof. Put W = (Fh)⊥. Then we see that Wv = (Fvh)⊥ in Vv for all v ∈ h.
By [AQC, Lemma 9.4(iii)], L ∩W is maximal in W if and only if Lv ∩Wv =
(L∩W )v is maximal in Wv for every v ∈ h; Moreover Theorem 5.3 shows that

this is the case if and only if h ∈ Lv
[
ϕ[h], 2−1pτv(ϕ[h])v

]
for all v ∈ h. Since

ϕ(h, L)v = ϕv(h, Lv), the assertion holds.

This theorem answers the question raised in [AQC, (11.6a)].

7 Sums of squares

7.1. Put V = Q1
n and ϕ(x, y) = x·ty for x, y ∈ V . Let L be a maximal lattice in

V and {ei}ni=1 the standard Q-basis of V in this section. Then ϕ[x] =
∑n

i=1 x
2
i
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for x =
∑n

i=1 xiei ∈ V . Hereafter we assume that q is a squarefree positive
integer. By [AQC, (12.17)],

L[q] = L[q, 2−1Z] ⊔ L[q,Z].

Here we apply our results on L[q] in this case and investigate the sets L[q, 2−1Z]
and L[q,Z] when 4 ≤ n ≤ 10 and n ∈ 2Z. As for the case n /∈ 2Z, we can refer
to [AQC, Section 12].

7.2 Lemma. Assume n ≥ 4. Let L be a maximal lattice in V and q a squarefree
positive integer. Then

L[q,Z] = ∅ if





n ≡ 0 (mod 8); or

n ≡ ±1 (mod 8) and (−1)(n−1)/2q 6≡ 1 (mod 4); or

n ≡ ±2 (mod 8) and (−1)(n−2)/4q ≡ 3 (mod 4); or

n ≡ 4 (mod 8) and q ≡ 1 (mod 2)

and L[q, 2−1Z] = ∅ if n = 4 and q ≡ 0 (mod 2).

Proof. Let p be a rational prime number. The core dimension tp of (Vp, ϕp) is
given by [AQC, (7.12a) and (7.12b)]. Let cp be as in §2.3 when 1 ≤ tp ≤ 3. By a
Witt decomposition of Vp as in (2.4), we have (−1)(n−tp)/2cpQ×2p = δ(Vp, ϕp) =
Q×2p for tp = 1, 3. From this and [AQC, §7.15], we can take cp so that cp ∈ Z×p
when p 6= 2 and

c2 =

{
(−1)(n−t2)/2 if t2 = 1, 3,

(−1)(n−2)/4 if t2 = 2

when p = 2. Let τp(q) be as in (6.1). Then we see that

τp(q) =





1 if n ≡ ±1 (mod 8), p = 2, and (−1)(n−1)/2q ≡ 1 (mod 4);

or n ≡ ±2 (mod 8), p = 2, and (−1)(n−2)/4q 6≡ 3 (mod 4);

or n ≡ ±3 (mod 8) and p = 2;

or n ≡ 4 (mod 8), p = 2, and q ≡ 0 (mod 2),

0 otherwise

(7.1)

by Theorem 3.5 and Lemma 4.2(1). Note that NQ(
√−1)2/Q2

(Z[
√
−1]×2 ) = (1 +

4Z2)Z×22 . Combining (7.1) with Proposition 6.2, the assertion holds.

If n ≡ ±1 (mod 8), then this lemma is a restatement of [AQC, Lemma
12.13(ii)].

7.3. Put

(7.2) Ln = Ze1 + Ze2 +

n/2∑

i=2

(Ze2i−1 + Zg2i)
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for 4 ≤ n ≡ 2, 4, 6 (mod 8), where g2i = 2−1(e2i−3 + e2i−2 + e2i−1 + e2i). Then
Ln is maximal in V by [CGQ, Lemma 3.1]. When n = 10, we put

(7.3) Λ = H +M

with a maximal lattice H (resp. M) in
∑8
i=1 Qei (resp. Qe9 +Qe10). Then Λ

is a maximal lattice in V by [NRQ, §6.8]. Hereafter we suppose 4 ≤ n ≤ 10 and
n ∈ 2Z. By [AQC, §12.12], if n < 10, then the genus LSOϕA of L (cf. [AQC,
§§9.3 and 9.7]) equals to the SOϕ-class LSOϕ. Here SOϕA is the adelization of
SOϕ. If n = 10, then [CGQ, §3.2] and [AQC, Lemma 9.23(i)] imply LSOϕA =
L10SO

ϕ ⊔ ΛSOϕ.

7.4 Lemma. Let Ln be as in (7.2) and q a squarefree positive integer. Assume
n = 4, 6, or 10. Then we obtain the following assertions:

(1)Assume n = 4. Then we have L4[q, 2−1Z] = ∅ if and only if q ≡ 0 (mod 2)
and L4[q,Z] = ∅ if and only if q ≡ 1 (mod 2).
(2) If n > 4, then Ln[q, 2−1Z] 6= ∅.
(3) If n > 4 and q ≡ 0 (mod 2), then Ln[q,Z] 6= ∅.
(4) If n = 6 and q ≡ 3 (mod 4), then L6[q,Z] 6= ∅.
(5) Assume n = 10 and q ≡ 1 (mod 4). Then we have L10[q,Z] = ∅ if and
only if q = 1.

Proof. (1): Assume n = 4. Since L4 is maximal in V ,

L4[q] =

{
L4[q, 2−1Z] if q ≡ 1 (mod 2),

L4[q,Z] if q ≡ 0 (mod 2)

by Lemma 7.2. We have
∑4

i=1 Zei ⊂ L4, and hence

(7.4) L4[q] 6= ∅ for any squarefree positive integer q.

This proves (1). (2): Assume n > 4. We can take x ∈ L4 so that ϕ[x] = q or
q− 1 according as q ≡ 1 (mod 2) or q ≡ 0 (mod 2) by (7.4). If q ≡ 1 (mod 2),
then put h = x; if q ≡ 0 (mod 2), then put h = x + e5. By (1) settled above,
h ∈ Ln[q, 2−1Z] in both cases. This proves (2). In the proof of (3) and (4) we
take

(7.5) y =

4∑

i=1

yiei ∈
4∑

i=1

Zei such that ϕ[y] = q

for a given q. (3): Suppose n > 4 and q ≡ 0 (mod 2). Since q is even and
squarefree, at least two of y1, y2, y3, and y4 are even. We may assume y3, y4 ∈
2Z. Then y ∈ Ln[q,Z] from (1). This proves (3). Now, for h =

∑n
i=1 hiei ∈ V

such that ϕ[h] = q, we have

(7.6) h ∈ Ln[q,Z]⇐⇒ h ∈
n∑

i=1

Zei and

3∑

k=0

h2j−k ∈ 2Z for 2 ≤ j ≤ n/2.
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(4): Suppose n = 6 and q ≡ 3 (mod 4). Then one and only one of y1, y2, y3, and

y4 in (7.5) is even. We may assume y1 ∈ 2Z. Put h =
∑3
i=1 yiei + y4e5, then

h ∈ L6[q,Z] by (7.6). This proves (4). (5): Assume n = 10 and q ≡ 1 (mod 4).

Then L10[1,Z] = ∅ by (7.6). If q > 1, then there exists z =
∑4
i=1 ziei ∈∑4

i=1 Zei such that
∑4

i=1 z
2
i = 4−1(q− 5). Put h =

∑4
i=1 2zie2i +

∑5
j=1 e2j−1.

Then h ∈ L10[q,Z] by (7.6). This completes the proof.

7.5 Theorem. Let L be a maximal lattice in V and q a squarefree positive
integer. We assume 4 ≤ n ≤ 10 and n ∈ 2Z. Then

L[q,Z] = ∅ if and only if





n = 4 and q ≡ 1 (mod 2); or

n = 6 and q ≡ 1 (mod 4); or

n = 8; or

n = 10, L ∈ L10SO
ϕ, q = 1 or q ≡ 3 (mod 4); or

n = 10, L ∈ ΛSOϕ, q ≡ 3 (mod 4)

and L[q, 2−1Z] = ∅ if and only if n = 4 and q ≡ 0 (mod 2). Here L10 (resp.
Λ) is of (7.2) (resp. (7.3)).

Proof. If n = 4, 6, or, n = 10 and LSOϕ = L10SO
ϕ, then we have LSOϕ =

LnSO
ϕ. Therefore we obtain the assertion by Lemma 7.2 and Lemma 7.4.

Assume n = 8. Then Lemma 7.2 implies L[q] = L[q, 2−1Z]. By [AQC, Lemma

6.2(1)], we may assume
∑4

i=1 Zei ⊂ L, and hence L[q] 6= ∅. This proves our
theorem in the case n = 8. Next assume n = 10 and LSOϕ = ΛSOϕ. Then
we may put L = Λ. For x = h+m ∈ H +M = Λ, we have ϕ[x] = ϕ[h] + ϕ[m]
and ϕ(x,Λ) = ϕ(h,H) + ϕ(m,M). Thus we obtain H [q, 2−1Z] ⊂ Λ[q, 2−1Z].
From this and the result of the case n = 8, we have Λ[q, 2−1Z] 6= ∅. Next we
consider Λ[q,Z]. We see that L6 + Zf7 + Zg8 (resp. Ze9 + Ze10) is maximal

in
∑8

i=1 Qei (resp. Qe9 + Qe10) by [CGQ, Lemma 3.1]. Here L6 and g8 are
given in (7.2) and f7 = 2−1(e1 + e3 + e5 + e7). Thus we can put

Λ = H +M = L6 + Zf7 + Zg8 + Ze9 + Ze10.

Then, for x =
∑10

i=1 xiei ∈ V such that ϕ[h] = q, we have
(7.7)

x ∈ Λ[q,Z]⇐⇒ x ∈
10∑

i=1

Zei,

3∑

k=0

x2k+1 ∈ 2Z,

3∑

k=0

x2j−k ∈ 2Z for 2 ≤ j ≤ 4.

Assuming q 6≡ 3 (mod 4), we take y so that (7.5). Then at least two of y1, y2, y3,
and y4 are even. We may assume y1, y2 ∈ 2Z. Put h = y1e1+y2e2+y3e9+y4e10,
then h ∈ Λ[q,Z] by (7.7). Therefore if Λ[q,Z] = ∅, then q ≡ 3 (mod 4).
Combining this with Lemma 7.2, we obtain our theorem.
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Abstract. For a finite dimensional complex Lie algebra, its index
is the minimal dimension of stabilizers for the coadjoint action. A
famous conjecture due to A.G. Elashvili says that the index of the
centralizer of an element of a reductive Lie algebra is equal to the rank.
That conjecture caught attention of several Lie theorists for years. It
reduces to the case of nilpotent elements. In [Pa03a] and [Pa03b],
D.I. Panyushev proved the conjecture for some classes of nilpotent
elements (e.g. regular, subregular and spherical nilpotent elements).
Then the conjecture has been proven for the classical Lie algebras
in [Y06a] and checked with a computer programme for the exceptional
ones [deG08]. In this paper we give an almost general proof of that
conjecture.

2010 Mathematics Subject Classification: 22E46, 17B80, 17B20,
14L24
Keywords and Phrases: reductive Lie algebra; index; centralizer; argu-
ment shift method; Poisson-commutative family of polynomials; rigid
nilpotent orbit; Slodowy slice

1. Introduction

In this note k is an algebraically closed field of characteristic 0.

1.1. Let g be a finite dimensional Lie algebra over k and consider the
coadjoint representation of g. By definition, the index of g is the minimal
dimension of stabilizers gx, x ∈ g∗, for the coadjoint representation:

indg := min{dimgx; x ∈ g∗}.
The definition of the index goes back to Dixmier [Di74]. It is a very
important notion in representation theory and in invariant theory. By
Rosenlicht’s theorem [Ro63], generic orbits of an arbitrary algebraic ac-
tion of a linear algebraic group on an irreducible algebraic variety are
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separated by rational invariants; in particular, if g is an algebraic Lie
algebra,

indg = deg tr k(g∗)g,

where k(g∗)g is the field of g-invariant rational functions on g∗. The
index of a reductive algebra equals its rank. For an arbitrary Lie alge-
bra, computing its index seems to be a wild problem. However, there
is a large number of interesting results for several classes of nonreduc-
tive subalgebras of reductive Lie algebras. For instance, parabolic sub-
algebras and their relatives as nilpotent radicals, seaweeds, are con-
sidered in [Pa03a], [TY04], [J07]. The centralizers, or normalizers of
centralizers, of elements form another interesting class of such subalge-
bras, [E85a], [Pa03a], [Mo06b]. The last topic is closely related to the
theory of integrable Hamiltonian systems [Bol91]. Let us precise this
link.
From now on, g is supposed to be reductive. Denote by G the ad-
joint group of g. The symmetric algebra S(g) carries a natural Poisson
structure. By the so-called argument shift method, for x in g∗, we can
construct a Poisson-commutative family Fx in S(g) = k[g∗]; see [MF78]
or Remark 1.4. It is generated by the derivatives of all orders in the
direction x ∈ g∗ of all elements of the algebra S(g)g of g-invariants of
S(g). Moreover, if G.x denotes the coadjoint orbit of x ∈ g∗:

Theorem 1.1 ([Bol91], Theorems 2.1 and 3.2). There is a Poisson-
commutative family of polynomial functions on g∗, constructed by the ar-
gument shift method, such that its restriction to G.x contains 1

2dim(G.x)
algebraically independent functions if and only if indgx = indg.

Denote by rkg the rank of g. Motivated by the preceding result of
Bolsinov, A.G. Elashvili formulated a conjecture:

Conjecture 1.2 (Elashvili). Let g be a reductive Lie algebra. Then
indgx = rkg for all x ∈ g∗.

Elashvili’s conjecture also appears in the following problem: Is the alge-
bra S(gx)g

x
of invariants in S(gx) under the adjoint action a polynomial

algebra? This question was formulated by A. Premet in [PPY07, Conjec-
ture 0.1]. After that, O. Yakimova discovered a counterexample [Y07],
but the question remains very interesting. As an example, under cer-
tain hypothesis and under the condition that Elashvili’s conjecture holds,
the algebra of invariants S(gx)g

x
is polynomial in rkg variables, [PPY07,

Theorem 0.3].
During the last decade, Elashvili’s conjecture caught attention of many
invariant theorists [Pa03a], [Ch04], [Y06a], [deG08]. To begin with, de-
scribe some easy but useful reductions. Since the g-modules g and g∗ are
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isomorphic, it is equivalent to prove Conjecture 1.2 for centralizers of el-
ements of g. On the other hand, by a result due to E.B. Vinberg [Pa03a],
the inequality indgx ≥ rkg holds for all x ∈ g. So it only remains to
prove the opposite one. Given x ∈ g, let x = xs + xn be its Jordan
decomposition. Then gx = (gxs)xn . The subalgebra gxs is reductive of
rank rkg. Thus, the verification of Conjecture 1.2 reduces to the case of
nilpotent elements. At last, one can clearly restrict oneself to the case
of simple g.
Review now the main results obtained so far on Elashvili’s conjecture. If
x is regular, then gx is a commutative Lie algebra of dimension rkg. So,
Conjecture 1.2 is obviously true in that case. Further, the conjecture
is known for subregular nilpotent elements and nilpotent elements of
height 2 and 3, [Pa03a], [Pa03b]. Remind that the height of a nilpotent
element e is the maximal integer m such that (ade)m 6= 0. More recently,
O. Yakimova proved the conjecture in the classical case [Y06a]. To valid
the conjecture in the exceptional types, W. de Graaf used the computer
programme GAP, see [deG08]. Since there are many nilpotent orbits in
the Lie algebras of exceptional type, it is difficult to present the results of
such computations in a concise way. In 2004, the first author published
a case-free proof of Conjecture 1.2 applicable to all simple Lie algebras;
see [Ch04]. Unfortunately, the argument in [Ch04] has a gap in the final
part of the proof which was pointed out by L. Rybnikov.
To summarize, so far, there is no conceptual proof of Conjecture 1.2.
Nevertheless, according to Yakimova’s works and de Graaf’s works, we
can claim:

Theorem 1.3 ([Y06a], [deG08]). Let g be a reductive Lie algebra. Then
indgx = rkg for all x ∈ g∗.

Because of the importance of Elashvili’s conjecture in invariant theory,
it would be very appreciated to find a general proof of Theorem 1.3
applicable to all finite-dimensional simple Lie algebras. The proof we
propose in this paper is fresh and almost general. More precisely, it
remains 7 isolated cases; one nilpotent orbit in type E7 and six nilpotent
orbits in type E8 have to be considered separately. For these 7 orbits,
the use of GAP is unfortunately necessary. In order to provide a complete
proof of Theorem 1.3, we include in this paper the computations using
GAP we made to deal with these remaining seven cases.

1.2. Description of the paper. Let us briefly explain our approach.
Denote by N(g) the nilpotent cone of g. As noticed previously, it suffices
to prove indge = rkg for all e in N(g). If the equality holds for e, it
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does for all elements of G.e; we shortly say that G.e satisfies Elashvili’s
conjecture.
From a nilpotent orbit Ol of a reductive factor l of a parabolic sub-
algebra of g, we can construct a nilpotent orbit of g having the same
codimension in g as Ol in l and having other remarkable properties. The
nilpotent orbits obtained in such a way are called induced; the other
ones are called rigid. We refer the reader to Subsection 2.3 for more
precisions about this topic. Using Bolsinov’s criterion of Theorem 1.1,
we first prove Theorem 1.3 for all induced nilpotent orbits and so the
conjecture reduces to the case of rigid nilpotent orbits. To deal with
rigid nilpotent orbits, we use methods developed in [Ch04] by the first
author, and resumed in [Mo06a] by the second author, based on nice
properties of Slodowy slices of nilpotent orbits.

In more details, the paper is organized as follows:

We state in Section 2 the necessary preliminary results. In particular,
we investigate in Subsection 2.2 extensions of Bolsinov’s criterion and we
establish an important result (Theorem 2.7) which will be used repeat-
edly in the sequel. We prove in Section 3 the conjecture for all induced
nilpotent orbits (Theorem 3.3) so that Elashvili’s conjecture reduces to
the case of rigid nilpotent orbits (Theorem 3.3). From Section 4, we
handle the rigid nilpotent orbits: we introduce and study in Section 4
a property (P) given by Definition 4.2. Then, in Section 5, we are able
to deal with almost all rigid nilpotent orbits. Still in Section 5, the
remaining cases are dealt with set-apart by using a different approach.

1.3. Notations. • If E is a subset of a vector space V , we denote by
span(E) the vector subspace of V generated by E. The grassmanian of
all d-dimensional subspaces of V is denoted by Grd(V ). By a cone of V ,
we mean a subset of V invariant under the natural action of k∗ := k\{0}
and by a bicone of V × V we mean a subset of V × V invariant under
the natural action of k∗ × k∗ on V × V .
• From now on, we assume that g is semisimple of rank ℓ and we denote
by 〈., .〉 the Killing form of g. We identify g to g∗ through 〈., .〉. Unless
otherwise specified, the notion of orthogonality refers to the bilinear
form 〈., .〉.
• Denote by S(g)g the algebra of g-invariant elements of S(g). Let
f1, . . . , fℓ be homogeneous generators of S(g)g of degrees d1, . . . ,dℓ re-
spectively. We choose the polynomials f1, . . . ,fℓ so that d1≤ · · · ≤dℓ.
For i = 1, . . . , ℓ and (x, y) ∈ g × g, we may consider a shift of fi in di-
rection y: fi(x+ ty) where t ∈ k. Expanding fi(x+ ty) as a polynomial
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in t, we obtain

fi(x + ty) =

di∑

m=0

f
(m)
i (x, y)tm; ∀(t, x, y) ∈ k× g× g(1)

where y 7→ (m!)f
(m)
i (x, y) is the differential at x of fi of the order m

in the direction y. The elements f
(m)
i as defined by (1) are invariant

elements of S(g)⊗k S(g) under the diagonal action of G on g× g. Note

that f
(0)
i (x, y) = fi(x) while f

(di)
i (x, y) = fi(y) for all (x, y) ∈ g× g.

Remark 1.4. The family Fx := {f (m)
i (x, .); 1 ≤ i ≤ ℓ, 1 ≤ m ≤ di}

for x ∈ g, is a Poisson-commutative family of S(g) by Mishchenko-
Fomenko [MF78]. One says that the family Fx is constructed by the
argument shift method.

• Let i ∈ {1, . . . , ℓ}. For x in g, we denote by ϕi(x) the element of g

satisfying (dfi)x(y) = f
(1)
i (x, y) = 〈ϕi(x), y〉, for all y in g. Thereby, ϕi

is an invariant element of S(g)⊗k g under the canonical action of G. We

denote by ϕ
(m)
i , for 0 ≤ m ≤ di − 1, the elements of S(g) ⊗k S(g) ⊗k g

defined by the equality:

ϕi(x+ ty) =

di−1∑

m=0

ϕ
(m)
i (x, y)tm, ∀(t, x, y) ∈ k× g× g.(2)

• For x ∈ g, we denote by gx = {y ∈ g | [y, x] = 0} the centralizer of x
in g and by z(gx) the center of gx. The set of regular elements of g is

greg := {x ∈ g | dimgx = ℓ}
and we denote by greg,ss the set of regular semisimple elements of g.
Both greg and greg,ss are G-invariant dense open subsets of g.
We denote by C(x) the G-invariant cone generated by x and we denote
by xs and xn the semisimple and nilpotent components of x respectively.
• The nilpotent cone of g is N(g). As a rule, for e ∈ N(g), we choose an
sl2-triple (e, h, f) in g given by the Jacobson-Morozov theorem [CMa93,
Theorem 3.3.1]. In particular, it satisfies the equalities:

[h, e] = 2e, [e, f ] = h, [h, f ] = −2f

The action of adh on g induces a Z-grading:

g =
⊕

i∈Z

g(i) , g(i) = {x ∈ g | [h, x] = ix}.

Recall that e, or G.e, is said to be even if g(i) = 0 for odd i. Note that
e ∈ g(2), f ∈ g(−2) and that ge, z(ge) and gf are all adh-stable.
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• All topological terms refer to the Zariski topology. If Y is a subset of
a topological space X, we denote by Y the closure of Y in X.

1.4. Acknowledgments. We would like to thank O. Yakimova for her
interest and useful discussions and more particularly for bringing Bolsi-
nov’s paper to our attention. We also thank A.G. Elashvili for suggesting
Lawther-Testerman’s paper [LT08] about the centers of centralizers of
nilpotent elements.
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2. Preliminary results

We start in this section by reviewing some facts about the differentials
of generators of S(g)g. Then, the goal of Subsection 2.2 is Theorem 2.7.
We collect in Subsection 2.3 basic facts about induced nilpotent orbits.

2.1. Differentials of generators of S(g)g. According to subsec-
tion 1.3, the elements ϕ1, . . . ,ϕℓ of S(g) ⊗k g are the differentials of
f1, . . . ,fℓ respectively. Since fi(g(x)) = fi(x) for all (x, g) ∈ g × G, the
element ϕi(x) centralizes x for all x ∈ g. Moreover:

Lemma 2.1. (i)[Ri87, Lemma 2.1] The elements ϕ1(x), . . . ,ϕℓ(x) belong
to z(ge).
(ii)[Ko63, Theorem 9] The elements ϕ1(x), . . . ,ϕℓ(x) are linearly in-
dependent elements of g if and only if x is regular. Moreover, if so,
ϕ1(x), . . . ,ϕℓ(x) is a basis of gx.

We turn now to the elements ϕ
(m)
i , for i = 1, . . . , ℓ and 0 ≤ m ≤ di − 1,

defined in Subsection 1.3 by (2). Recall that di is the degree of the
homogeneous polynomial fi, for i = 1, . . . , ℓ. The integers d1−1, . . . , dℓ−
1 are thus the exponents of g. By a classical result [Bou02, Ch. V, §5,
Proposition 3], we have

∑
di = bg where bg is the dimension of Borel

subalgebras of g. For (x, y) in g× g, we set:

Vx,y := span{ϕ(m)
i (x, y) ; 1 ≤ i ≤ ℓ, 0 ≤ m ≤ di − 1}.(3)
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The subspaces Vx,y will play a central role throughout the note.

Remark 2.2. (1) For (x, y) ∈ g × g, the dimension of Vx,y is at most bg

since
∑
di = bg. Moreover, for all (x, y) in a nonempty open subset of

g× g, the equality holds [Bol91]. Actually, in this note, we do not need
this observation.
(2) By Lemma 2.1(ii), if x is regular, then gx is contained in Vx,y for all
y ∈ g. In particular, if so, dim[x, Vx,y] = dimVx,y − ℓ.

The subspaces Vx,y were introduced and studied by Bolsinov in [Bol91],
motivated by the maximality of Poisson-commutative families in S(g).
These subspaces have been recently exploited in [PY08] and [CMo08].
The following results are mostly due to Bosinov, [Bol91]. We refer
to [PY08] for a more recent account about this topic. We present them
in a slightly different way:

Lemma 2.3. Let (x, y) be in greg × g.
(i) The subspace Vx,y of g is the sum of the subspaces gx+ty where t runs
through any nonempty open subset of k such that x + ty is regular for
all t in this subset.
(ii) The subspace gy+Vx,y is a totally isotropic subspace of g with respect
to the Kirillov form Ky on g × g, (v,w) 7→ 〈y, [v,w]〉. Furthermore,

dim(gy + Vx,y)⊥ ≥ 1
2dimG.y.

(iii) The subspaces [x, Vx,y] and [y, Vx,y] are equal.

Proof. (i) Let O be a nonempty open subset of k such that x + ty is
regular for all t in O. Such an open subset does exist since x is regular.
Denote by VO the sum of all the subspaces gx+ty where t runs through
O. For all t in O, gx+ty is generated by ϕ1(x + ty), . . . ,ϕℓ(x + ty),
cf. Lemma 2.1(ii). As a consequence, VO is contained in Vx,y. Con-
versely, for i = 1, . . . , ℓ and for t1, . . . ,tdi pairwise different elements of

O, ϕ
(m)
i (x, y) is a linear combination of ϕi(x + t1y), . . . , ϕi(x + tdiy);

hence ϕ
(m)
i (x, y) belongs to VO. Thus Vx,y is equal to VO, whence the

assertion.
(ii) results from [PY08, Proposition A4]. Notice that in (ii) the inequal-
ity is an easy consequence of the first statement.
At last, [PY08, Lemma A2] gives us (iii). �

Let σ and σi, for i = 1, . . . , ℓ, be the maps

g× g
σ−→ kbg+ℓ

(x, y) 7−→ (f
(m)
i (x, y))1≤i≤ℓ,

0≤m≤di

,
g× g

σi−→ kdi+1

(x, y) 7−→ (f
(m)
i (x, y))0≤m≤di
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respectively, and denote by σ′(x, y) and σ′i(x, y) the tangent map at
(x, y) of σ and σi respectively. Then σ′i(x, y) is given by the differentials

of the f
(m)
i ’s at (x, y) and σ′(x, y) is given by the elements σ′i(x, y).

Lemma 2.4. Let (x, y) and (v,w) be in g× g.
(i) For i = 1, . . . , ℓ, σ′i(x, y) maps (v,w) to

(〈ϕi(x), v〉, 〈ϕ(1)
i (x, y), v〉+ 〈ϕ(0)

i (x, y), w〉,
. . . , 〈ϕ(di−1)

i (x, y), v〉+ 〈ϕ(di−2)
i (x, y), w〉, 〈ϕi(y), w〉).

(ii) Suppose that σ′(x, y)(v,w) = 0. Then, for w′ in g, σ′(x, y)(v,w′) = 0
if and only if w −w′ is orthogonal to Vx,y.
(iii) For x ∈ greg, σ

′(x, y)(v,w′) = 0 for some w′ ∈ g if and only if
v ∈ [x, g].

Proof. (i) The verifications are easy and left to the reader.
(ii) Since σ′(x, y)(v,w) = 0, σ′(x, y)(v,w′) = 0 if and only if
σ′(x, y)(v,w − w′) = 0 whence the statement by (i).
(iii) Suppose that x is regular and suppose that σ′(x, y)(v,w′) = 0
for some w′ ∈ g. Then by (i), v is orthogonal to the elements
ϕ1(x), . . . ,ϕℓ(x). So by Lemma 2.1(ii), v is orthogonal to gx. Since
gx is the orthogonal complement of [x, g] in g, we deduce that v lies in
[x, g]. Conversely, since σ(x, y) = σ(g(x), g(y)) for all g in G, the ele-
ment ([u, x], [u, y]) belongs to the kernel of σ′(x, y) for all u ∈ g. So, the
converse implication follows. �

2.2. On Bolsinov’s criterion. Let a be in g and denote by π the map

g×G.a π−→ g× kbg+ℓ

(x, y) 7−→ (x, σ(x, y)).

Remark 2.5. Recall that the family (Fx)x∈g constructed by the argument

shift method consists of all elements f
(m)
i (x, .) for i = 1, . . . , ℓ and 1 ≤

m ≤ di, see Remark 1.4. By definition of the morphism π, there is a
family constructed by the argument shift method whose restriction to
G.a contains 1

2dimG.a algebraically independent functions if and only

if π has a fiber of dimension 1
2dimG.a.

In view of Theorem 1.1 and the above remark, we now concentrate on
the fibers of π. For (x, y) ∈ g × G.a, denote by Fx,y the fiber of π at
π(x, y):

Fx,y := {x} × {y′ ∈ G.a | σ(x, y′) = σ(x, y)}.
Lemma 2.6. Let (x, y) be in g×G.a.
(i) The irreducible components of Fx,y have dimension at least 1

2dimG.a.
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(ii) The fiber Fx,y has dimension 1
2dimG.a if and only if any irreducible

component of Fx,y contains an element (x, y′) such that (gy
′

+ Vx,y′)
⊥

has dimension 1
2dimG.a.

Proof. We prove (i) and (ii) all together. The tangent space Tx,y′(Fx,y)
of Fx,y at (x, y′) in Fx,y identifies to the subspace of elements w of [y′, g]
such that σ′(x, y′)(0, w) = 0. Hence, by Lemma 2.4(ii),

Tx,y′(Fx,y) = [y′, g] ∩ V ⊥
x,y′ = (gy

′
+ Vx,y′)

⊥,

since [y′, g] = (gy
′
)⊥. But by Lemma 2.3(ii), (gy

′
+ Vx,y′)

⊥ has dimen-

sion at least 1
2dimG.a; so does Tx,y′(Fx,y). This proves (i). Moreover,

the equality holds if and only if (gy
′
+ Vx,y′)

⊥ has dimension 1
2dimG.a,

whence the statement (ii). �

Theorem 2.7. The following conditions are equivalent:

(1) indga = ℓ;
(2) π has a fiber of dimension 1

2dimG.a;

(3) there exists (x, y) ∈ g×G.a such that (gy +Vx,y)⊥ has dimension
1
2dimG.a;

(4) there exists x in greg such that dim(ga+Vx,a) = 1
2(dimg+dimga);

(5) there exists x in greg such that dimVx,a = 1
2dimG.a+ ℓ;

(6) σ(g× {a}) has dimension 1
2dimG.a+ ℓ.

Proof. By Theorem 1.1 and Remark 2.5, we have (1)⇔(2). Moreover,
by Lemma 2.6(ii), we have (2)⇔(3).
(3)⇔(4): If (4) holds, so does (3). Indeed, if so,

dimg− 1

2
dimG.a =

1

2
(dimg + dimga) = dim(ga + Vx,a).

Conversely, suppose that (3) holds. By Lemma 2.3(ii), gy + Vx,y has

maximal dimension 1
2(dimg+ dimgy). So the same goes for all (x, y) in

a G-invariant nonempty open subset of g × G.a. Hence, since the map
(x, y) 7→ Vx,y is G-equivariant, there exists x in greg such that

dim(Vx,a + ga) =
1

2
(dimg + dimga).

(4)⇔(5): Let x be in greg. By Lemma 2.3(iii), [x, Vx,a] = [a, Vx,a]. Hence
ga ∩ Vx,a has dimension ℓ by Remark 2.2(2). As a consequence,

dim(ga + Vx,a) = dimga + dimVx,a − ℓ,
whence the equivalence.
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(2)⇔(6): Suppose that (2) holds. By Lemma 2.6, 1
2dimG.a is the mini-

mal dimension of the fibers of π. So, π(g ×G.a) has dimension

dimg + dimG.a− 1

2
dimG.a = dimg +

1

2
dimG.a.

Denote by τ the restriction to π(g × G.a) of the projection map g ×
kbg+ℓ → kbg+ℓ. Then τ ◦π is the restriction of σ to g×G.a. Since σ is a
G-invariant map, σ(g×{a}) = σ(g×G.a). Let (x, y) ∈ greg,ss×G.a. The
fiber of τ at z = σ(x, y) is G.x since x is a regular semisimple element
of g. Hence,

dimσ(g × {a}) = dimπ(g×G.a)− (dimg− ℓ) =
1

2
dimG.a+ ℓ

and we obtain (6).
Conversely, suppose that (6) holds. Then π(g × G.a) has dimension
dimg + 1

2dimG.a by the above equality. So the minimal dimension of
the fibers of π is equal to

dimg + dimG.a− (dimg +
1

2
dimG.a) =

1

2
dimG.a

and (2) holds. �

2.3. Induced and rigid nilpotent orbits. The definitions and results
of this subsection are mostly extracted from [Di74], [Di75], [LS79]
and [BoK79]. We refer to [CMa93] and [TY05] for recent surveys.
Let p be a proper parabolic subalgebra of g and let l be a reductive
factor of p. We denote by pu the nilpotent radical of p. Denote by L the
connected closed subgroup of G whose Lie algebra is ad l and denote by
P the normalizer of p in G.

Theorem 2.8 ([CMa93],Theorem 7.1.1). Let Ol be a nilpotent orbit of l.
There exists a unique nilpotent orbit Og in g whose intersection with
Ol + pu is a dense open subset of Ol + pu. Moreover, the intersection of
Og and Ol+pu consists of a single P -orbit and codimg(Og) = codiml(Ol).

The orbit Og only depends on l and not on the choice of a parabolic
subalgebra p containing it [CMa93, Theorem 7.1.3]. By definition, the
orbit Og is called the induced orbit from Ol; it is denoted by Indg

l (Ol).
If Ol = 0, then we call Og a Richardson orbit. For example all even
nilpotent orbits are Richardson [CMa93, Corollary 7.1.7]. In turn, not
all nilpotent orbits are induced from another one. A nilpotent orbit
which is not induced in a proper way from another one is called rigid.
We shall say that e ∈ N(g) is an induced (respectively rigid) nilpotent
element of g if theG-orbit of e is an induced (respectively rigid) nilpotent
orbit of g. The following results are deeply linked to the properties of
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the sheets of g and the deformations of its G-orbits. We refer to [BoK79]
about these notions.

Theorem 2.9. (i) Let x be a non nilpotent element of g and let Og be the
induced nilpotent orbit from the adjoint orbit of xn in gxs. Then Og is

the unique nilpotent orbit contained in C(x) whose dimension is dimG.x.

Furthermore, C(x) ∩ N(g) = Og and C(x) ∩ N(g) is the nullvariety in

C(x) of fi where i is an element of {1, . . . , ℓ} such that fi(x) 6= 0.
(ii) Conversely, if Og is an induced nilpotent orbit, there exists a non

nilpotent element x of g such that C(x) ∩N(g) = Og.

Proof. (i) Let p be a parabolic subalgebra of g having gxs as a Levi
factor. Denote by pu its nilpotent radical and by P the normalizer of p
in G. Let O′ be the adjoint orbit of xn in gxs .

Claim 2.10. Let C be the P -invariant closed cone generated by x and
let C0 be the subset of nilpotent elements of C. Then C = kxs+O′ +pu,
C0 = O′ + pu and C0 is an irreducible subset of dimension dimP (x).

Proof. The subset xs + O′ + pu is an irreducible closed subset of p con-
taining P (x). Moreover, its dimension is equal to

dimO′ + dimpu = dimgxs − dimgx + dimpu = dimp− dimgx.

Since the closure of P (x) and xs +O′ +pu are both irreducible subsets of
g, they coincide. As a consequence, the set kxs +O′ + pu is contained in
C. Since the former set is clearly a closed conical subset of g containing
x, C = kxs + O′ + pu. Then we deduce that C0 = O′ + pu. �

Denote by G ×P g the quotient of G × g under the right action of P
given by (g, z).p := (gp, p−1(z)). The map (g, z) 7→ g(z) from G × g
to g factorizes through the quotient map from G × g to G ×P g. Since
G/P is a projective variety, the so obtained map from G ×P g to g is
closed. Since C and C0 are closed P -invariant subsets of g, G×P C and
G×P C0 are closed subsets of G×P g. Hence C(x) = G(C) and G(C0) is
a closed subset of g. So, by the claim, the subset of nilpotent elements of
C(x) is irreducible since C0 is irreducible. Since there are finitely many

nilpotent orbits, the subset of nilpotent elements of C(x) is the closure

of one nilpotent orbit. Denote it by Õ and prove Õ = Og.
For all k, l in {1, . . . , ℓ}, denote by pk,l the polynomial function

pk,l := fk(x)dlfdkl − fl(x)dkfdlk

Then pk,l is G-invariant and homogeneous of degree dkdl. Moreover

pk,l(x) = 0. As a consequence, C(x) is contained in the nullvariety of
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the functions pk,l, 1 ≤ k, l ≤ ℓ. Hence the nullvariety of fi in C(x) is
contained in the nilpotent cone of g since it is the nullvariety in g of
the functions f1, . . . ,fℓ. Then dim Õ = dimC(x) − 1 = dimG.x. Since

O′ + pu is contained in C(x), Theorem 2.8 tells us that Og is contained

in C(x). Moreover by Theorem 2.8, Og has dimension dimG.x, whence

Õ = Og. All statements of (i) are now clear.
(ii) By hypothesis, Og = Indg

l (Ol), where l is a proper Levi subalgebra
of g and Ol a nilpotent orbit in l. Let xs be an element of the center of l
such that gxs = l, let xn be an element of Ol and set x = xs + xn. Since
l is a proper subalgebra, the element x is not nilpotent. So by (i), the

subset of nilpotent elements of C(x) is the closure of Og. �

3. Proof of Theorem 1.3 for induced nilpotent orbits

Let e be an induced nilpotent element. Let x be a non nilpotent element
of g such that C(x) ∩ N(g) = G.e. Such an element does exist by
Theorem 2.9(ii).
As an abbreviation, we set:

kd := kd1+1 × · · · × kdℓ+1 ≃ kbg+ℓ,
kd× := (kd1+1 \ {0}) × · · · × (kdℓ+1 \ {0}),
Pd := P(kd1+1)× · · · × P(kdℓ+1) = Pd1 × · · · × Pdℓ .

For j = 1, . . . , ℓ, recall that σj is the map:

g× g
σj−→ kdj+1, (x, y) 7→ (f

(m)
j (x, y))0≤m≤dj .

Let Bj be the nullvariety of σj in g × g and let B be the union of
B1, . . . ,Bℓ; it is a bicone of g × g. Denote by ρ and τ the canonical
maps:

(g× g) \ {0} ρ−→ P(g× g)

kd× τ−→ Pd.

Let σ∗ be the restriction to (g × g) \B of σ; it has values in kd×. Since
σj(sx, sy) = sdjσj(x, y) for all (x, y) ∈ g × g and j = 1, . . . , ℓ, the map

τ ◦σ∗ factors through ρ. Denote by σ∗ the map from ρ(g × g \ B) to Pd

making the following diagram commutative:

g× g \B
σ∗=σ|g×g\B //

ρ

��

kd×

τ

��
ρ(g× g \B)

σ∗
//______ Pd

and let Γ be the graph of the restriction to ρ(g× C(x) \B) of σ∗.
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Lemma 3.1. The set Γ is a closed subset of P(g× g)× Pd.

Proof. Let Γ̃ be the inverse image of Γ by the map ρ × τ . Then Γ̃
is the intersection of the graph of σ and (g × C(x) \ B) × kd×. Since

σ−1(kd \ kd×) is contained in B, Γ̃ is the intersection of the graph of σ

and (g×C(x) \{0})×kd×; so Γ̃ is closed in (g×C(x))\{0}×kd×. As a
consequence, Γ is closed in P(g× g)×Pd, since P(g× g)×Pd is endowed
with the quotient topology. �

Denote by Z the closure of σ(g × C(x)) in kd.

Lemma 3.2. There exists an open subset U of Z, contained in σ(g×C(x)),
such that U ∩ σ(g×G.e) is not empty.

Proof. Let Γ2 be the projection of Γ ⊂ P(g×g)×Pd to Pd. By Lemma 3.1,
Γ2 is a closed subset of Pd since P(g × g) is complete. So τ−1(Γ2) is a
closed subset of kd×. Moreover,

τ−1(Γ2) = σ(g× C(x) \B)

since σ(g×C(x)) is stable under the action of k∗×· · ·×k∗ on kd. Hence

the open subset Z ∩ kd× of Z is contained in σ(g × C(x)). But for all
y in g such that fj(y) 6= 0 for any j, σ(y, e) belongs to kd×. Thus, the

open subset U = Z ∩ kd× of Z is convenient and the lemma follows. �

We are now ready to prove the main result of this section:

Theorem 3.3. Assume that indax = rka for all reductive subalgebras a
strictly contained in g and for all x in a. Then for all induced nilpotent
orbits Og in g and for all e in Og, indge = ℓ.

Proof. Let Og be an induced nilpotent orbit and let e be in Og. Using
Theorem 2.9(ii), we let x be a non nilpotent element of g such that

C(x) ∩ N(g) = Og. Since x is not nilpotent, gx is the centralizer in the
reductive Lie algebra gxs of the nilpotent element xn of gxs . Since gxs is
strictly contained in g and has rank ℓ, the index of gx is equal to ℓ by
hypothesis. Besides, by Theorem 2.7, (1)⇒(6), applied to x,

dimσ(g× {x}) =
1

2
dimG.x + ℓ.

Since σ is G-invariant, σ(g × {x}) = σ(g × G.x). Hence for all z in a
dense subset of σ(g × G.x), the fiber of the restriction of σ to g × G.x
at z has minimal dimension

dimg + dimG.x− (
1

2
dimG.x + ℓ) = dimg +

1

2
dimG.x− ℓ.
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Denote by Z the closure of σ(g×C(x)) in kd. We deduce from the above
equality that Z has dimension

dimg + dimC(x)− (dimg +
1

2
dimG.x− ℓ)

= dimC(x)− 1

2
dimG.x + ℓ

=
1

2
dimG.e+ ℓ+ 1,

since dimC(x) = dimG.x + 1 = dimG.e + 1.
By Lemma 3.2, there exists an open subset U of Z contained in σ(g ×
C(x)) having a nonempty intersection with σ(g × G.e). Let i be in
{1, . . . , ℓ} such that fi(x) 6= 0. For z ∈ kd, we write z = (zi,j) 1≤i≤ℓ

0≤j≤di

its

coordinates. Let Vi be the nullvariety in U of the coordinate zi,di . Then
Vi is not empty by the choice of U . Since U is irreducible and since
zi,di is not identically zero on U , Vi is equidimensional of dimension
1
2dimG.e + ℓ. By Theorem 2.9(i), the nullvariety of fi in C(x) is equal

to G.e. Hence σ−1(Vi) ∩ (g × C(x)) = σ−1(U) ∩ (g × G.e) is an open
subset of g ×G.e. So σ(g ×G.e) has dimension 1

2dimG.e + ℓ. Then by
Theorem 2.7, (6)⇒(1), the index of ge is equal to ℓ. �

From that point, our goal is to prove Theorem 1.3 for rigid nilpotent
elements; Theorem 3.3 tells us that this is enough to complete the proof.

4. The Slodowy slice and the property (P)

In this section, we introduce a property (P) in Definition 4.2 and we
prove that e ∈ N(g) has Property (P) if and only if indge = ℓ (Theo-
rem 4.13). Then, we will show in the next section that all rigid nilpotent
orbits of g but seven orbits (one in the type E7 and six in the type E8)
do have Property (P).

4.1. Blowing up of S. Let e be a nilpotent element of g and consider an
sl2-triple (e, h, f) containing e as in Subsection 1.3. The Slodowy slice
is the affine subspace S := e + gf of g which is a transverse variety to
the adjoint orbit G.e. Denote by Be(S) the blowing up of S centered
at e and let p : Be(S) → S be the canonical morphism. The variety
S is smooth and p−1(e) is a smooth irreducible hypersurface of Be(S).
The use of the blowing-up Be(S) for the computation of the index was
initiated by the first author in [Ch04] and resumed by the second author
in [Mo06a]. Here, we use again this technique to study the index of ge.
Describe first the main tools extracted from [Ch04] we need.
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For Y an open subset of Be(S), we denote by k[Y ] the algebra of regular
functions on Y . By [Ch04, Théorème 3.3], we have:

Theorem 4.1. The following two assertions are equivalent:
(A) the equality indge = ℓ holds,
(B) there exists an affine open subset Y ⊂ Be(S) such that Y ∩p−1(e) 6= ∅
and satisfying the following property:

for any regular map ϕ ∈ k[Y ] ⊗k g such that ϕ(x) ∈
[g, p(x)] for all x ∈ Y , there exists ψ ∈ k[Y ] ⊗k g such
that ϕ(x) = [ψ(x), p(x)] for all x ∈ Y .

An open subset Ω ⊂ Be(S) is called a big open subset if Be(S) \ Ω has
codimension at least 2 in Be(S). As explained in [Ch04, Section 2], there
exists a big open subset Ω of Be(S) and a regular map

α : Ω→ Grℓ(g)

such that α(x) = gp(x) if p(x) is regular. Furthermore, the map α is
uniquely defined by this condition. In fact, this result is a consequence
of [Sh94, Ch. VI, Theorem 1]. From now on, α stands for the so-defined
map. Since p−1(e) is an hypersurface and since Ω is a big open subset of

Be(S), note that Ω∩p−1(e) is a nonempty set. In addition, α(x) ⊂ gp(x)

for all x ∈ Ω.

Definition 4.2. We say that e has Property (P) if z(ge) ⊂ α(x) for all x
in Ω ∩ p−1(e).

Remark 4.3. Suppose that e is regular. Then ge is a commutative alge-
bra, i.e. z(ge) = ge. If x ∈ Ω ∩ p−1(e), then α(x) = ge since p(x) = e is
regular in this case. On the other hand, indge = dimge = ℓ since e is
regular. So e has Property (P) and indge = ℓ.

4.2. On the property (P). This subsection aims to show: Property (P)
holds for e if and only if indge = ℓ. As a consequence of Remark 4.3,
we can (and will) assume that e is a nonregular nilpotent element of g.
As a first step, we will state in Corollary 4.12 that, if (P) holds, then so
does the assertion (B) of Theorem 4.1.
Let Lg be the S(g)-submodule of ϕ ∈ S(g) ⊗k g satisfying [ϕ(x), x] = 0
for all x in g. It is known that Lg is a free module of basis ϕ1, . . . , ϕℓ,
cf. [Di79]. We investigate an analogous property for the Slodowy slice
S = e + gf . We denote by Sreg the intersection of S and greg. As e is
nonregular, the set (S \ Sreg) contains e.

Lemma 4.4. The set S \ Sreg has codimension 3 in S and each irreducible
component of S \ Sreg contains e.
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Proof. Let us consider the morphism

G× S −→ g

(g, x) 7−→ g(x)

By a Slodowy’s result [Sl80], this morphism is a smooth morphism. So
its fibers are equidimensional of dimension dimgf . In addition, by [V72],
g\greg is a G-invariant equidimensional closed subset of g of codimension
3. Hence S\Sreg is an equidimensional closed subset of S of codimension
3.
Denoting by t 7→ g(t) the one parameter subgroup of G generated by
adh, S and S \ Sreg are stable under the action of t−2g(t) for all t in
k∗. Furthermore, for all x in S, t−2g(t)(x) goes to e when t goes to ∞,
whence the lemma. �

Denote by k[S] the algebra of regular functions on S and denote by LS

the k[S]-submodule of ϕ ∈ k[S] ⊗k g satisfying [ϕ(x), x] = 0 for all x in
S.

Lemma 4.5. The module LS is a free module of basis ϕ1|S, . . . , ϕℓ|S where
ϕi|S is the restriction to S of ϕi for i = 1, . . . , ℓ.

Proof. Let ϕ be in LS. There are regular functions a1, . . . , aℓ on Sreg
satisfying

ϕ(x) = a1(x)ϕ1|S(x) + · · ·+ aℓ(x)ϕℓ|S(x)

for all x ∈ Sreg, by Lemma 2.1(ii). By Lemma 4.4, S \ Sreg has codi-
mension 3 in S. Hence a1, . . . , aℓ have polynomial extensions to S since
S is normal. So the maps ϕ1|S, . . . , ϕℓ|S generate LS. Moreover, by
Lemma 2.1(ii) for all x ∈ Sreg, ϕ1(x), . . . , ϕℓ(x) are linearly indepen-
dent, whence the statement. �

The following proposition accounts for an important step to interpret
Assertion (B) of Theorem 4.1:

Proposition 4.6. Let ϕ be in k[S] ⊗k g such that ϕ(x) ∈ [g, x] for all x
in a nonempty open subset of g. Then there exists a polynomial map
ψ ∈ k[S]⊗k g such that ϕ(x) = [ψ(x), x] for all x ∈ S.

Proof. Since gx is the orthogonal complement of [x, g] in g, our hypothe-
sis says that ϕ(x) is orthogonal to gx for all x in a nonempty open subset
S′ of S. The intersection S′ ∩ Sreg is not empty; so by Lemma 2.1(ii),
〈ϕ(x), ϕi|S(x)〉 = 0 for all i = 1, . . . , ℓ and for all x ∈ S′∩Sreg. Therefore,
by continuity, 〈ϕ(x), ϕi|S(x)〉 = 0 for all i = 1, . . . , ℓ and all x ∈ S. Hence
ϕ(x) ∈ [x, g] for all x ∈ Sreg by Lemma 2.1(ii) again. Consequently by
Lemma 4.4, Lemma 4.5 and the proof of the main theorem of [Di79],
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there exists an element ψ ∈ k[S]⊗k g which satisfies the condition of the
proposition. �

Let u1, . . . ,um be a basis of gf and let u∗1, . . . , u
∗
m be the corresponding

coordinate system of S = e + gf . There is an affine open subset Y ⊂
Be(S) with Y ∩p−1(e) 6= ∅ such that k[Y ] is the set of linear combinations
of monomials in (u∗1)−1, u∗1, . . . , u

∗
m whose total degree is nonnegative.

In particular, we have a global coordinates system u∗1, v
∗
2 , . . . , v

∗
m on Y

satisfying the relations:

u∗2 = u∗1v
∗
2 , . . . , u∗m = u∗1v

∗
m.(4)

Note that, for x ∈ Y , we so have: p(x) = e + u∗1(x)(u1 + v∗2(x)u2 +
· · · + v∗m(x)um). So, the image of Y by p is the union of {e} and the
complementary in S of the nullvariety of u∗1. Let Y ′ be an affine open
subset of Y contained in Ω and having a nonempty intersection with
p−1(e). Denote by LY ′ the set of regular maps ϕ from Y ′ to g satisfying
[ϕ(x), p(x)] = 0 for all x ∈ Y ′.

Lemma 4.7. Suppose that e has Property (P). For each z ∈ z(ge), there
exists ψz ∈ k[Y ′]⊗k g such that z − u∗1ψz belongs to LY ′.

Proof. Let z be in z(ge). Since Y ′ ⊂ Ω, for each y ∈ Y ′, there exists
an affine open subset Uy of Y ′ containing y and regular maps ν1, . . . ,νℓ
from Uy to g such that ν1(x), . . . ,νℓ(x) is a basis of α(x) for all x ∈ Uy.
Let y be in Y ′. We consider two cases:
(1) Suppose p(y) = e.
Since e has Property (P), there exist regular functions a1, . . . ,aℓ on Uy

satisfying
z = a1(x)ν1(x) + · · ·+ aℓ(x)νℓ(x),

for all x ∈ Uy ∩ p−1(e). The intersection Uy ∩ p−1(e) is the set of zeroes
of u∗1 in Uy. So there exists a regular map ψ from Uy to g which satisfies
the equality:

z − u∗1ψ = a1ν1 + · · ·+ aℓνℓ.

Hence [z− u∗1(x)ψ(x), p(x)] = 0 for all x ∈ Uy since α(x) is contained in

gp(x) for all x ∈ Ω.
(2) Suppose p(y) 6= e.
Then we can assume that Uy ∩ p−1(e) = ∅ and the map ψ = (u∗1)−1z
satisfies the condition: [z − u∗1(x)ψ(x), p(x)] = 0 for all x ∈ Uy.
In both cases (1) or (2), we have found a regular map ψy from Uy to g
satisfying: [z − (u∗1ψy)(x), p(x)] = 0 for all x ∈ Uy.
Let y1, . . . ,yk be in Y ′ such that the open subsets Uy1 , . . . ,Uyk cover Y ′.
For i = 1, . . . , k, we denote by ψi a regular map from Uyi to g such
that z − u∗1ψi is in Γ(Uyi ,L) where L is the localization of LY ′ on Y ′.
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Then for i, j = 1, . . . , k, ψi − ψj is in Γ(Uyi ∩ Uyj ,L). Since Y ′ is affine,

H1(Y ′,L) = 0. So, for i = 1, . . . , l, there exists ψ̃i in Γ(Uyi ,L) such that

ψ̃i − ψ̃j is equal to ψi − ψj on Uyi ∩ Uyj for all i, j. Then there exists
a well-defined map ψz from Y ′ to g whose restriction to Uyi is equal to

ψi − ψ̃i for all i, and such that z − u∗1ψz belongs to LY ′ . Finally, the
map ψz verifies the required property. �

Let z be in z(ge). We denote by ϕz the regular map from Y to g defined
by:

ϕz(x) = [z, u1] + v∗2(x)[z, u2] + · · ·+ v∗m(x)[z, um], for all x ∈ Y.(5)

Corollary 4.8. Suppose that e has Property (P) and let z be in z(ge).
There exists ψz in k[Y ′] ⊗k g such that ϕz(x) = [ψz(x), p(x)] for all
x ∈ Y ′.

Proof. By Lemma 4.7, there exists ψz in k[Y ′] ⊗k g such that z − u∗1ψz

is in LY ′ . Then

u∗1ϕz(x) = [z, p(x)] = [z − u∗1ψz(x), p(x)] + u∗1[ψz(x), p(x)],

for all x ∈ Y ′. So the map ψz is convenient, since u∗1 is not identically
zero on Y ′. �

The following lemma is easy but helpful for Proposition 4.10:

Lemma 4.9. Let v be in ge. Then, v belongs to z(ge) if and only if
[v, gf ] ⊂ [e, g].

Proof. Since [x, g] is the orthogonal complement of gx in g for all x ∈ g,
we have:

[v, gf ] ⊂ [e, g] ⇐⇒ 〈[v, gf ], ge〉 = 0

⇐⇒ 〈[v, ge], gf 〉 = 0 ⇐⇒ [v, ge] ⊂ [f, g].

But g is the direct sum of ge and [f, g] and [v, ge] is contained in ge since
v ∈ ge. Hence [v, gf ] is contained in [e, g] if and only if v is in z(ge). �

Proposition 4.10. Suppose that e has Property (P) and let ϕ be in
k[Y ] ⊗k g such that ϕ(x) ∈ [g, p(x)] for all x ∈ Y . Then there exists
ψ in k[Y ′]⊗k g such that ϕ(x) = [ψ(x), p(x)] for all x ∈ Y ′.

Proof. Since ϕ is a regular map from Y to g, there is a nonnegative
integer d and ϕ̃ ∈ k[S]⊗k g such that

(u∗1)d(x)ϕ(x) = (ϕ̃◦p)(x), ∀x ∈ Y(6)

and ϕ̃ is a linear combination of monomials in u∗1, . . . , u
∗
m whose total

degree is at least d. By hypothesis on ϕ, we deduce that for all x ∈ S
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such that u∗1(x) 6= 0, ϕ̃(x) is in [g, x]. Hence by Proposition 4.6, there

exists ψ̃ in k[S]⊗k g such that ϕ̃(x) = [ψ̃(x), x] for all x ∈ S.

Denote by ψ̃′ the sum of monomials of degree at least d in ψ̃ and denote
by ψ′ the element of k[Y ]⊗k g satisfying

(u∗1)d(x)ψ′(x) = (ψ̃′◦p)(x), ∀x ∈ Y.(7)

Then we set, for x ∈ Y , ϕ′(x) := ϕ(x) − [ψ′(x), p(x)]. We have to
prove the existence of an element ψ′′ in k[Y ′] ⊗k g such that ϕ′(x) =
[ψ′′(x), p(x)] for all x ∈ Y ′.
• If d = 0, then ϕ = ϕ̃◦p, ψ′ = ψ and ϕ′ = 0; so ψ′ is convenient in that
case.
• If d = 1, we can write

u∗1(x)ϕ(x) = ϕ̃(p(x))

= [ψ̃(p(x)), e + u∗1(x)(u1 + v∗2(x)u2 + · · ·+ v∗m(x)um)],

for all x ∈ Y , whence we deduce

u∗1(x)(ϕ(x) − [ψ′(x), p(x)])

= [ψ̃(e), e + u∗1(x)(u1 + v∗2(x)u2 + · · ·+ v∗m(x)um)]

for all x ∈ Y . Hence ψ̃(e) belongs to ge and [ψ̃(e), ui] ∈ [e, g] for all

i = 1, . . . ,m, since ϕ(x) ∈ [e, g] for all x ∈ Y ∩ p−1(e). Then ψ̃(e) is in
z(ge) by Lemma 4.9. So by Corollary 4.8, ϕ′ has the desired property.
• Suppose d > 1. For i = (i1, . . . , im) ∈ Nm, we set |i| := i1+· · ·+im and

we denote by ψi the coefficient of (u∗1)i1 · · · (u∗m)im in ψ̃. By Corollary
4.8, it suffices to prove:

{
ψi = 0 if |i| < d− 1;
ψi ∈ z(ge) if |i| = d− 1

.

For i ∈ Nm and j ∈ {1, . . . ,m}, we define the element i(j) of Nm by:

i(j) := (i1, . . . , ij−1, ij + 1, ij+1, . . . , im).

It suffices to prove:

Claim 4.11. For |i| ≤ d − 1, ψi is an element of ge such that [ψi, uj ] +
[ψi(j), e] = 0 for j = 1, . . . ,m.

Indeed, by Lemma 4.9, if

[ψi, uj ] + [ψi(j), e] = 0 and ψi ∈ ge

for all j = 1, . . . ,m, then ψi ∈ z(ge). Furthermore, if

[ψi, uj ] + [ψi(j), e] = 0 and ψi ∈ ge and ψi(j) ∈ ge
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for all j = 1, . . . ,m, then ψi = 0 since z(ge) ∩ gf = 0. So only remains
to prove Claim 4.11.
We prove the claim by induction on |i|. Arguing as in the case d = 1, we
prove the claim for |i| = 0. We suppose the claim true for all |i| ≤ l− 1
for some 0 < l ≤ d − 2. We have to prove the statement for all |i| ≤ l.
By what foregoes and by induction hypothesis, ψi = 0 for |i| ≤ l − 2.

For k = l+ 1, l+ 2, we consider the ring k[τk] where τkk = 0. Since (u∗1)d

vanishes on the set of k[τl+1]-points x = x0 + x1τl+1 + · · ·+ xlτ
l
l+1 of Y

whose source x0 is a zero of u∗1,

0 = [ψ̃(e+ τl+1v), e+ τl+1v] =
∑

|i|=l

τ ll+1[ψi, e](u
∗
1)i1 · · · (u∗m)im(v),

for all v ∈ gf . So ψi ∈ ge for |i| = l.
For |i| equal to l, the term in

τ l+1
l+2 (u∗1)i1 · · · (u∗ij−1

)ij−1(u∗ij+1)
ij+1(u∗ij+1

)ij+1 · · · (u∗m)im(v)

of [ψ̃(e + τl+2v), e + τl+2v] is equal to [ψi(j), e] + [ψi, uj ]. Since (u∗1)d

vanishes on the set of k[τl+2]-points of Y whose source is a zero of u∗1,
this term is equal to 0, whence the claim. �

Recall that Y ′ is an affine open subset of Y contained in Ω and having
a nonempty intersection with p−1(e).

Corollary 4.12. Suppose that e has Property (P). Let ϕ be in k[Y ′]⊗k g
such that ϕ(x) ∈ [g, p(x)] for all x ∈ Y ′. Then there exists ψ in k[Y ′]⊗kg
such that ϕ(x) = [ψ(x), p(x)] for all x ∈ Y ′.

Proof. For a ∈ k[Y ], denote by D(a) the principal open subset defined
by a. Let D(a1), . . . ,D(am) be an open covering of Y ′ by principal open
subsets of Y , with a1, . . . , ak in k[Y ]. Since ϕ is a regular map from Y ′ to
g, there is mi ≥ 0 such that ami

i ϕ is the restriction to Y ′ of some regular
map ϕi from Y to g. For mi big enough, ϕi vanishes on Y \D(ai); hence
ϕi(x) ∈ [g, p(x)] for all x ∈ Y . So, by Proposition 4.6, there is a regular
map ψi from Y ′ to g such that ϕi(x) = [ψi(x), p(x)] for all x ∈ Y ′. Then
for all x ∈ D(ai), we have ϕ(x) = [ai(x)−miψi(x), p(x)]. Since Y ′ is an
affine open subset of Y , there exists a regular map ψ from Y ′ to g which
satisfies the condition of the corollary. �

We are now in position to prove the main result of this section:

Theorem 4.13. The equality indge = ℓ holds if and only if e has Property
(P).
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Proof. By Corollary 4.12, if e has Property (P), then Assertion (B) of
Theorem 4.1 is satisfied. Conversely, suppose that indge = ℓ and show
that e has Property (P). By Theorem 4.1, (A)⇒(B), Assertion (B) is
satisfied. We choose an affine open subset Y ′ of Y , contained in Ω, such
that Y ′ ∩ p−1(e) 6= and verifying the condition of the assertion (B). Let
z ∈ z(ge). Recall that the map ϕz is defined by (5). Let x be in Y ′. If
u∗1(x) 6= 0, then ϕz(x) belongs to [g, p(x)] by (5). If u∗1(x) = 0 , then
by Lemma 4.9, ϕz(x) belongs to [e, g]. So there exists a regular map ψ
from Y ′ to g such that ϕz(x) = [ψ(x), p(x)] for all x ∈ Y ′ by Assertion
(B). Hence we have

[z − u∗1ψ(x), p(x)] = 0,

for all x ∈ Y ′ since (u∗1ϕz)(x) = [z, p(x)] for all x ∈ Y . So α(x) contains
z for all x in Ω∩Y ′∩p−1(e). Since p−1(e) is irreducible, we deduce that
e has Property (P). �

4.3. A new formulation of the property (P). Recall that Property
(P) is introduced in Definition 4.2. As has been noticed in the proof of
Lemma 4.4, the morphism G × S → g, (g, x) 7→ g(x) is smooth. As a
consequence, the set Sreg of v ∈ S such that v is regular is a nonempty

open subset of S. For x in Sreg, ge+t(x−e) has dimension ℓ for all t in a
nonempty open subset of k since x = e+(x−e) is regular. Furthermore,
since k has dimension 1, [Sh94, Ch. VI, Theorem 1] asserts that there is
a unique regular map

βx : k→ Grℓ(g)

satisfying βx(t) = ge+t(x−e) for all t in a nonempty open subset of k.
Recall that Y is an affine open subset of Be(S) with Y ∩ p−1(e) 6= ∅ and
that u∗1, v

∗
2 , . . . , v

∗
m is a global coordinates system of Y , cf. (4). Let S′reg

be the subset of x in Sreg such that u∗1(x) 6= 0. For x in S′reg, we denote
by x̃ the element of Y whose coordinates are 0, v∗2(x), . . . , v∗m(x).

Lemma 4.14. Let x be in S′reg.
(i) The subspace βx(0) is contained in ge.
(ii) If x̃ ∈ Ω, then α(x̃) = βx(0).

Proof. (i) The map βx is a regular map and [βx(t), e + t(x− e)] = 0 for
all t in a nonempty open subset of k. So, βx(0) is contained in ge.
(ii) Since S′reg has an empty intersection with the nullvariety of u∗1 in

S, the restriction of p to p−1(S′reg) is an isomorphism from p−1(S′reg) to

S′reg. Furthermore, βx(t) = α(p−1(e + tx− te)) for any t in k such that

e + t(x− e) belongs to S′reg and p−1(e + tx− te) goes to x̃ when t goes
to 0. Hence βx(0) is equal to α(x̃) since α and β are regular maps. �
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Corollary 4.15. The element e has Property (P) if and only if z(ge) ⊂
βx(0) for all x in a nonempty open subset of Sreg.

Proof. The map x 7→ x̃ from S′reg to Y is well-defined and its image is

an open subset of Y ∩ p−1(e). Let S′′reg be the set of x ∈ S′reg such that
x̃ ∈ Ω and let Y ′′ be the image of S′′reg by the map x 7→ x̃. Then S′′reg is

open in Sreg and Y ′′ is dense in Ω ∩ p−1(e) since p−1(e) is irreducible.
Furthermore, the image of a dense open subset of S′′reg by the map x 7→ x̃
is dense in Y ′′. Since α is regular, e has property (P) if and only if α(x)
contains z(ge) for all x in a dense subset of Y ′′. By Lemma 4.14(ii), the
latter property is equivalent to the fact that βx(0) contains z(ge) for all
x in a dense open subset of S′′reg. �

Corollary 4.16. (i) If z(ge) is generated by ϕ1(e), . . . , ϕℓ(e), then e has
Property (P).
(ii) If z(ge) has dimension 1, then e has Property (P).

Proof. Recall that ϕi(e) belongs to z(ge), for all i = 1, . . . , ℓ, by
Lemma 2.1(i). Moreover, for all x in Sreg and all i = 1, . . . , ℓ,

ϕi(e + t(x − e)) belongs to ge+t(x−e) for any t in k. So by continuity,
ϕi(e) belongs to βx(0). As a consequence, whenever z(ge) is generated
by ϕ1(e), . . . ,ϕℓ(e), e has Property (P) by Corollary 4.15.
(ii) is an immediate consequence of (i) since ϕ1(e) = e by our choice of
d1. �

5. Proof of Theorem 1.3 for rigid nilpotent orbits

We intend to prove in this section the following theorem:

Theorem 5.1. Suppose that g is reductive and let e be a rigid nilpotent
element of g. Then the index of ge is equal to ℓ.

Theorem 5.1 will complete the proof of Theorem 1.3 by Theorem 3.3. As
explained in introduction, we can assume that g is simple. We consider
two cases, according to g has classical type or exceptional type.

5.1. The classical case. Assume that g is simple of classical type.
More precisely, assume that g is one of the Lie algebras slℓ+1(k),
so2ℓ+1(k), sp2ℓ(k), so2ℓ(k).

Lemma 5.2. Let m be a positive integer such that xm − trxm belongs
to g for all x in g. Then em belongs to the subspace generated by
ϕ1(e), . . . ,ϕℓ(e).

Proof. Recall that Lg is the submodule of elements ϕ of S(g)⊗k g such
that [x, ϕ(x)] = 0 for all x in g. According to [Di79], Lg is a free module
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generated by the ϕ′
is. For all x in g, [x, xm] = 0. Hence there exist

polynomial functions a1, . . . ,aℓ on g such that

xm − trxm = a1(x)ϕ1(x) + · · ·+ aℓ(x)ϕℓ(x)

for all x in g, whence the lemma. �

Theorem 5.3. Let e be a rigid nilpotent element. Then z(ge) is generated
by powers of e. In particular, the index of ge is equal to ℓ.

Proof. Let us prove the first assertion. If g has type A or C, then z(ge)
is generated by powers of e by [Mo06c, Théorème 1.1.8] or [Y06b]. So
we can assume that g has type B or D.
Set n := 2ℓ + 1 if g has type Bℓ and n := 2ℓ if g has type Dℓ. Denote
by (n1, . . . ,nk), with n1≥ · · · ≥nk, the partition of n corresponding to
the nilpotent element e. By [Mo06c, Théorème 1.1.8] or [Y06b], z(ge)
is not generated by powers of e if and only if n1 and n2 are both odd
integers and n3 < n2. On the other hand, since e is rigid, nk is equal to
1, ni ≤ ni+1 ≤ ni + 1 and all odd integers of the partition (n1, . . . ,nk)
have a multiplicity different from 2 [Ke83, Sp82, ch. II] or [CMa93,
Corollary 7.3.5]. Hence, the preceding criterion is not satisfied for e.
Then, the second assertion results from Lemma 5.2, Corollary 4.16(i)
and Theorem 4.13. �

Remark 5.4. Yakimova’s proof of Elashvili’s conjecture in the classical
case is shorter and more elementary [Y06a]. The results of Section 4 will
serve the exceptional case in a more relevant way.

5.2. The exceptional case. We let in this subsection g be simple of
exceptional type and we assume that e is a nonzero rigid nilpotent el-
ement of g. The dimension of the center of centralizers of nilpotent
elements has been recently described in [LT08, Theorem 4]. On the
other hand, we have explicit computations for the rigid nilpotent orbits
in the exceptional types due to A.G. Elashvili. These computations are
collected in [Sp82, Appendix of Chap. II] and a complete version was
published later in [E85b]. From all this, we observe that the center of
ge has dimension 1 in most cases. In more details, we have:

Proposition 5.5. Let e be nonzero rigid nilpotent element of g.
(i) Suppose that g has type G2, F4 or E6. Then dim z(ge) = 1.
(ii) Suppose that g has type E7. If g

e has dimension 41, then dim z(ge) =
2; otherwise dim z(ge) = 1.
(iii) Suppose that g has type E8. If ge has dimension 112, 84, 76, or 46,
then dim z(ge) = 2, if ge has dimension 72, then dim z(ge) = 3; otherwise
dim z(ge) = 1.
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By Corollary 4.16(ii), indge = ℓ whenever dim z(ge) = 1. So, as an
immediate consequence of Proposition 5.5, we obtain:

Corollary 5.6. Suppose that either g has type G2, F4, E6, or g has type
E7 and dimge 6= 41, or g has type E8 and dimge 6∈ {112, 84, 76, 72, 46}.
Then dim z(ge) = 1 and the index of ge is equal to ℓ.

According to Corollary 5.6, it remains 7 cases; there are indeed two
rigid nilpotent orbits of codimension 46 in E8. We handle now these
remaining cases. We process here in a different way; we study technical
conditions on ge under which indge = ℓ. For the moment, we state
general results about the index.
Let a be an algebraic Lie algebra. Recall that the stabilizer of ξ ∈ a∗

for the coadjoint representation is denoted by aξ and that ξ is regular
if dimaξ = inda. Choose a commutative subalgebra t of a consisted of
semisimple elements of a and denote by za(t) the centralizer of t in a.
Then a = za(t)⊕[t, a]. The dual za(t)

∗ of za(t) identifies to the orthogonal
complement of [t, a] in a∗. Thus, ξ ∈ za(t)

∗ if and only if t is contained
in aξ .

Lemma 5.7. Suppose that there exists ξ in za(t)
∗ such that dim(aξ ∩

[t, a]) ≤ 2. Then

inda ≤ indza(t) + 1.

Proof. Let T be the closure in za(t)
∗×Gr3([t, a]) of the subset of elements

(η,E) such that η is a regular element of za(t)
∗ and E is contained in aη .

The image T1 of T by the projection from za(t)
∗ × Gr3([t, a]) to za(t)

∗

is closed in za(t)
∗. By hypothesis, T1 is not equal to za(t)

∗ since for all
η in T1, dim(aη ∩ [t, a]) ≥ 3. Hence there exists a regular element ξ0 in
za(t)

∗ such that dim(aξ0 ∩ [t, a]) ≤ 2. Since t is contained in aξ0 ,

aξ0 = za(t)
ξ0 ⊕ aξ0 ∩ [t, a].

If [t, a] ∩ aξ0 = {0} then inda is at most indza(t). Otherwise, aξ0 is not
a commutative subalgebra since t is contained in aξ0 . Hence ξ0 is not a
regular element of a∗, so inda < dimaξ0 . Since dimaξ0 ≤ indza(t) + 2,
the lemma follows. �

From now on, we assume that a = ge. As a rigid nilpotent element of g,
e is a nondistinguished nilpotent element. So we can choose a nonzero
commutative subalgebra t of ge consisted of semisimple elements. Denote
by l the centralizer of t in g. As a Levi subalgebra of g, l is a reductive
Lie algebra whose rank is ℓ. Moreover its dimension is strictly smaller
than dimg. In the preceding notations, we have zge(t) = zg(t)

e = le.
Let t1 be a commutative subalgebra of le containing t and consisting of
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semisimple elements of l. Then [t, ge] is stable under the adjoint action
of t1. For λ in t∗1, denote by geλ the λ-weight space of the adjoint action
of t1 in ge.

Lemma 5.8. Let λ ∈ t∗1 be a nonzero weight of the adjoint action of t1
in ge. Then −λ is also a weight for this action and λ and −λ have the
same multiplicity. Moreover, geλ is contained in [t, ge] if and only if the
restriction of λ to t is not identically zero.

Proof. By definition, geλ ∩ le = {0} if and only if the restriction of λ to
t is not identically zero. So geλ is contained in [t, ge] if and only if the
restriction of λ to t is not equal to 0 since

geλ = (geλ ∩ le)⊕ (geλ ∩ [t, ge]).

The subalgebra t1 is contained in a reductive factor of ge. So we can
choose h and f such that t1 is contained in ge∩gf . As a consequence, any
weight of the adjoint action of t1 in gf is a weight of the adjoint action
of t1 in ge with the same multiplicity. Furthermore, the t1-module gf for
the ajoint action is isomorphic to the t1-module (ge)∗ for the coadjoint
action. So −λ is a weight of the adjoint action of t1 in gf with the same
multiplicity as λ. Hence −λ is a weight of the adjoint action of t1 in ge

with the same multiplicity as λ, whence the lemma. �

Choose pairwise different elements λ1, . . . ,λr of t∗1 so that the weights
of the adjoint action of t1 in ge which are not identically zero on t
are precisely the elements ±λi. For i = 1, . . . , r, let vi,1, . . . ,vi,mi and
wi,1, . . . ,wi,mi be basis of geλi

and ge−λi
respectively. Then we set:

qi := det ([vi,k, wi,l])1≤k,l≤mi
∈ S(le).

Proposition 5.9. Suppose that ind le = ℓ and suppose that one of the
following two conditions is satisfied:

(1) for i = 1, . . . , r, qi 6= 0,
(2) there exists j in {1, . . . , r} such that qi 6= 0 for all i 6= j and such

that the basis vj,1, . . . ,vj,mj and wj,1, . . . ,wj,mj can be chosen so
that

det ([vj,k, wj,l])1≤k,l≤mj−1 6= 0.

Then, indge = ℓ.

Proof. First, observe that indge − indg is an even integer. Indeed, we
have:

indge − indg = (indge − dimge) + (dimge − dimg) + (dimg− indg).

But the integers indge − dimge, dimge − dimg and dimg − indg are
all even integers. Thereby, if indge ≤ indg + 1, then indge ≤ indg. In
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turn, by Vinberg’s inequality (cf. Introduction), we have indge ≥ indg.
Hence, it suffices to prove indge ≤ ind le + 1 since our hypothesis says
that ind le = ℓ = indg. Now, by Lemma 5.7, if there exists ξ in (le)∗

such that (ge)ξ ∩ [t, ge] has dimension at most 2, then we are done.
Denote by l1 the centralizer of t1 in g. Then l1 is contained in l and
le = le1 ⊕ [t1, l

e] and (le1)∗ identifies to the orthogonal of [t1, l
e] in the

dual of le. Moreover, for i = 1, . . . , r, qi belongs to S(le1). For ξ in (le1)∗,
denote by Bξ the bilinear form

[t, ge]× [t, ge] −→ k
(v,w) 7−→ ξ([v,w])

and denote by kerBξ its kernel. For i = 1, . . . , r, −qi(ξ)2 is the deter-
minant of the restriction of Bξ to the subspace

(geλi
⊕ ge−λi

)× (geλi
⊕ ge−λi

)

in the basis vi,1, . . . ,vi,mi , wi,1, . . . ,wi,mi .
If (1) holds, we can find ξ in (le1)∗ such that kerBξ is zero. If (2) holds, we
can find ξ in (le1)∗ such that kerBξ has dimension 2 since Bξ is invariant

under the adjoint action of t1. But kerBξ is equal to (ge)ξ∩[t, ge]. Hence
such a ξ satisfies the required inequality and the proposition follows. �

The proof of the following proposition is given in Appendix A since it
relies on explicit computations:

Proposition 5.10. (i) Suppose that either g has type E7 and dimge = 41
or, g has type E8 and dimge ∈ {112, 72}. Then, for suitable choices of
t and t1, Condition (1) of Proposition 5.9 is satisfied.
(ii) Suppose that g has type E8 and that ge has dimension 84, 76, or 46.
Then, for suitable choices of t and t1, Condition (2) of Proposition 5.5
is satisfied.

5.3. Proof of Theorem 1.3. We are now in position to complete the
proof of Theorem 1.3:

Proof of Theorem 1.3. We argue by induction on the dimension of g. If
g has dimension 3, the statement is known. Assume now that ind le

′
=

rk l for any reductive Lie algebras l of dimension at most dimg − 1
and any e′ ∈ N(l). Let e ∈ N(g) be a nilpotent element of g. By
Theorem 3.3 and Theorem 5.3, we can assume that e is rigid and that
g is simple of exceptional type. Furthermore by Corollary 5.6, we can
assume that dim z(ge) > 1. Then we consider the different cases given
by Proposition 5.10.
If, either g has type E7 and dimge = 41, or g has type E8 and dimge

equals 112, 72, or 46, then Condition (1) of Proposition 5.9 applies for
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suitable choices of t and t1 by Proposition 5.10. Moreover, if l = zg(t),
then l is a reductive Lie algebra of rank ℓ and strictly contained in
g. So, from our induction hypothesis, we deduce that indge = ℓ by
Proposition 5.9.
If g has type E8 and dimge equals 84, 76, or 46, then Condition (2)
of Proposition 5.9 applies for suitable choices of t and t1 by Proposi-
tion 5.10. Arguing as above, we deduce that indge = ℓ. �

Appendix A. Proof of Proposition 5.10: explicit
computations.

This appendix aims to prove Proposition 5.10. We prove Proposi-
tion 5.10 for each case by using explicit computations made with the
help of GAP; our programmes are presented below (two cases are de-
tailed; the other ones are similar). Explain the general approach. In our
programmes, x[1], . . . are root vectors generating the nilradical of the
Borel subalgebra b of g and the representative e (denoted by e in our
programmes) of the rigid orbit is chosen so that e and h belong to b and
h respectively. The element e is given by the tables of [GQT80]. In fact,
in [GQT80], they use the programme Lie which induces minor changes
in the numbering. Then, we exhibit suitable tori t and t1 of g contained
in ge which satisfies conditions (1) or (2) of Proposition 5.9. In each
case, our torus t is one dimensional; we define it by a generator, called t

in our programmes. Its centralizer in ge is denoted by le. The torus t1
has dimension at most 4. It is defined by a basis denoted by Bt1. The
weights of t1 for the adjoint action of t1 on ge are given by their values on
the basis Bt1 of t1. We list in a matrix W almost all weights which have
a positive value at Bt1. The other weights have multiplicity 1. In our
programmes, by the term S we check that no weight is forgotten; this
term has to be zero. Then, the matrices corresponding to the weights
given by W are given by a function A. Their determinants correspond to
the qi’s in the notations of Proposition 5.9. If there is only one other
weight, the corresponding matrix is denoted by a. At last, we verify that
these matrices have the desired property depending on the situations (i)
or (ii) of Proposition 5.10.
As examples, we detail below two cases:
(1) the case of E7 with dimge = 41 where we intend to check that
Condition (1) of Proposition 5.9 is satisfied;
(2) the case of E8 with dimge = 84 where we intend to check that
Condition (2) of Proposition 5.9 is satisfied.
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(1) E7, dimge = 41: In this case, with our choices, dim t = 1, dim le = 23
and dim t1 = 3. The order of matrices to be considered is at most 2.

L := SimpleLieAlgebra("E",7,Rationals);;

R := RootSystem(L);;

x := PositiveRootVectors(R);; y := NegativeRootVectors(R);;

e := x[14]+x[26]+x[28]+x[49];;

c := LieCentralizer(L,Subspace(L,[e]));

Bc := BasisVectors(Basis(c));;

> <Lie algebra of dimension 41 over Rationals>

z := LieCentre(c);; Bz := BasisVectors(Basis(z));;

t := Bc[Dimension(c)];;

le := LieCentralizer(L,Subspace(L,[t,e]));

> <Lie algebra of dimension 23 over Rationals>

n := function(k)

if k=2 then return 1;;

elif k=-2 then return 1;;

elif k=1 then return 8;;

elif k=-1 then return 8;; fi;; end;;

#The function n assigns to each weight of t

#the dimension of the corresponding

#weight subspace.

M := function(k) local m;;

m := function(j,k)

if j=1 then

return Position(List([1..Dimension(c)],

i->t*Bc[i]-k*Bc[i]),0*x[1]);;

else

return m(j-1,k)

+Position(List([m(j-1,k)+1..Dimension(c)],

i->t*Bc[i]-k*Bc[i]),0*x[1]);;

fi;;

end;;

return List([1..n(k)],i->m(i,k));;

end;;

Bt1 := [Bc[41],Bc[40],Bc[39]];;

N := function(k,p) local n;;

n := function(j,k,p)

if j=1 then

return Position(List([1..8],

i->Bt1[2]*Bc[M(k)[i]]-p*Bc[M(k)[i]]),0*x[1]);;

else
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return n(j-1,k,p)

+Position(List([n(j-1,k,p)+1..8],

i->Bt1[2]*Bc[M(k)[i]]-p*Bc[M(k)[i]]),0*x[1]);;

fi;;

end;;

return List([1..4],i->M(k)[n(i,k,p)]);;

end;;

r := function(t)

if t=1 then return 1;

elif t=-1 then return 1;;

elif t=0 then return 2;;

fi;;

end;;

Q := function(k,s,t) local q;;

q := function(j,k,s,t)

if j=1 then

return Position(List([1..4],

i->Bt1[3]*Bc[N(k,s)[i]]-t*Bc[N(k,s)[i]]),0*x[1]);;

else

return q(j-1,k,s,t)

+Position(List([q(j-1,k,s,t)+1..4],

i->Bt1[3]*Bc[N(k,s)[i]]-t*Bc[N(k,s)[i]]),0*x[1]);;

fi;;

end;;

return List([1..r(t)],i->N(k,s)[q(i,k,s,t)]);;

end;;

W := [[1,1,1],[1,-1,1],[1,1,-1],[1,-1,-1],

[1,1,0],[1,-1,0]];;

S := 2*(1+Sum(List([1..Length(W)],

i->Length(Q(W[i][1],W[i][2],W[i][3])))))

+Dimension(le)-Dimension(c);

> 0

A := function(i) return

List([1..r(W[i][3])],t->List([1..r(W[i][3])],

s->Bc[Q(W[i][1],W[i][2],W[i][3])[s]]*

Bc[Q(-W[i][1],-W[i][2],-W[i][3])[t]]));;

end;;

A(1);A(2);A(3);A(4);A(5);A(6);

> [ [ (-1)*v.63 ] ]

> [ [ v.63 ] ]

> [ [ v.63 ] ]
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> [ [ (-1)*v.63 ] ]

> [ [ (-1)*v.57+(-1)*v.60, (-1)*v.63 ],

[ (-1)*v.63, 0*v.1 ] ]

> [ [ (-1)*v.57+(-1)*v.60, (-1)*v.63 ],

[ (-1)*v.63, 0*v.1 ] ]

a := Bc[M(2)[1]]*Bc[M(-2)[1]];

> v.133

In conclusion, Condition (1) of Proposition 5.9 is satisfied for t := kt
and t1 :=span(Bt1).

(2) E8, dimge = 84: In this case, with our choices, dim t = 1, dim le = 48
and dim t1 = 3. The matrix A(7) has order 5 and it is singular of rank
4. The order of the other matrices is at most 2.

L := SimpleLieAlgebra("E",8,Rationals);;

R := RootSystem(L);;

x := PositiveRootVectors(R);; y := NegativeRootVectors(R);;

e := x[54]+x[61]+x[77]+x[97];;

c := LieCentralizer(L,Subspace(L,[e]));

Bc := BasisVectors(Basis(c));;

> <Lie algebra of dimension 84 over Rationals>

z := LieCentre(c);; Bz := BasisVectors(Basis(z));;

t := Bc[Dimension(c)];;

le := LieCentralizer(L,Subspace(L,[t,e]));

> <Lie algebra of dimension 48 over Rationals>

n := function(k)

if k=2 then return 1;;

elif k=-2 then return 1;;

elif k=1 then return 17;;

elif k=-1 then return 17;;

fi;;

end;;

M := function(k) local m;;

m := function(j,k)

if j=1 then

return Position(List([1..Dimension(c)],

i->Bc[84]*Bc[i]-k*Bc[i]),0*x[1]);;

else

return m(j-1,k)

+Position(List([m(j-1,k)+1..Dimension(c)],

i->Bc[84]*Bc[i]-k*Bc[i]), 0*x[1]);;

fi;;
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end;;

return List([1..n(k)],i->m(i,k));;

end;;

r := function(k,t)

if k=1 and t=1 then return 4;;

elif k=-1 and t=-1 then return 4;;

elif k=1 and t=-1 then return 4;;

elif k=-1 and t=1 then return 4;;

elif k=1 and t=0 then return 9;;

elif k=-1 and t=0 then return 9;;

fi;;

end;;

Bt1 := [Bc[84],Bc[83],Bc[82]];;

N := function(k,t) local p;;

p := function(j,k,t)

if j=1 then

return Position(List([1..n(k)],

i->Bt1[2]*Bc[M(k)[i]]-t*Bc[M(k)[i]]),0*x[1]);;

else

return p(j-1,k,t)

+Position(List([p(j-1,k,t)+1..n(k)],

i->Bt1[2]*Bc[M(k)[i]]-t*Bc[M(k)[i]]),0*x[1]);;

fi;;

end;;

return List([1..r(k,t)],i->M(k)[p(i,k,t)]);;

end;;

m := function(k,s,t)

if k=1 and s=1 and t=-1 then return 2;;

elif k=-1 and s=-1 and t=1 then return 2;;

elif k=1 and s=1 and t=0 then return 2;;

elif k=-1 and s=-1 and t=0 then return 2;;

elif k=1 and s=-1 and t=1 then return 2;;

elif k=-1 and s=1 and t=-1 then return 2;;

elif k=1 and s=-1 and t=0 then return 2;;

elif k=-1 and s=1 and t=0 then return 2;;

elif k=1 and s=0 and t=1 then return 2;;

elif k=-1 and s=0 and t=-1 then return 2;;

elif k=1 and s=0 and t=-1 then return 2;;

elif k=-1 and s=0 and t=1 then return 2;;

elif k=1 and s=0 and t=0 then return 5;;

elif k=-1 and s=0 and t=0 then return 5;;
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fi;;

end;;

Q := function(k,s,t) local q;;

q := function(j,k,s,t)

if j=1 then

return Position(List([1..r(k,s)],

i->Bt1[3]*Bc[N(k,s)[i]]-t*Bc[N(k,s)[i]]),0*x[1]);;

else

return q(j-1,k,s,t)

+Position(List([q(j-1,k,s,t)+1..r(k,s)],

i->Bt1[3]*Bc[N(k,s)[i]]-t*Bc[N(k,s)[i]]),0*x[1]);;

fi;;

end;;

return List([1..m(k,s,t)],i->N(k,s)[q(i,k,s,t)]);;

end;;

W := [[1,1,-1],[1,1,0],[1,-1,1],[1,-1,0],

[1,0,1],[1,0,-1],[1,0,0]];;

S := 2 + 2*Sum(List([1..Length(W)],

i->Length(Q(W[i][1],W[i][2],W[i][3]))))

+ Dimension(le)-Dimension(c);;

A := function(i) return

List([1..m(W[i][1],W[i][2],W[i][3])],

t->List([1..m(W[i][1],W[i][2],W[i][3])],

s->Bc[Q(W[i][1],W[i][2],W[i][3])[s]]*

Bc[Q(-W[i][1],-W[i][2],-W[i][3])[t]]));;

end;;

# A(1), A(2), A(3), A(5), A(6) are nonsingular.

# A(7) is singular of order 5 of rank 4; its minor

List([1..4],s->List([1..4],

t->Bc[Q(W[7][1],W[7][2],W[7][3])[s]]*

Bc[Q(-W[7][1],-W[7][2],-W[7][3])[t]]));;

# is different from 0.

a := Bc[M(2)[1]]*Bc[M(-2)[1]];;

In conclusion, Condition (2) of Proposition 5.9 is satisfied for t := kt
and t1 :=span(Bt1).
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1 Introduction

Atiyah and Bott [1] proved that for any semisimple group G the cohomology
ring of the moduli stack BunG of principal G-bundles on a Riemann surface C is
freely generated by the Künneth components of the characteristic classes of the
universal bundle on BunG×C. (Of course, in their article, this was expressed
in terms of equivariant cohomology instead of the cohomology of a stack. The
formulation in terms of stacks can also be found in Teleman’s article [42].) The
argument of Harder and Narasimhan [19] suggests that the result should also
hold for curves over finite fields.
The original aim of this article was to give an algebraic proof of the result of
Atiyah and Bott in positive characteristics. In the case of G = GLn this was
suggested by G. Harder, given as a Diploma thesis to the first author [21] (see
[10] for a different approach). For general G we have to use the recent con-
structions of coarse moduli spaces in arbitrary characteristics [15]. The results
of Behrend ([4], [5]) prove the Lefschetz trace formula for the moduli stack
BunG over finite fields. However, purity of the cohomology groups is not so
clear. One also has to check that the universal classes generate a sufficiently
large subring. To prove purity, we embed the cohomology of the stack into
the cohomology of a projective variety. This enables us to argue in two ways:
either we use the known calculations of the Tamagawa number to prove the
theorem with algebraic methods over finite fields (Theorem 3.3.5), or we use
the projective variety to apply base change (Corollary 3.3.4) and deduce the
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general result from the known one in characteristic 0. This in turn gives a
calculation of the Tamagawa number (Corollary 3.1.3) and thus provides a ge-
ometric proof of Harder’s conjecture that the Tamagawa number should be the
number of connected components of the moduli stack of principal G-bundles in
this situation (see also the introduction to [8]). In order to make this argument
precise the formalism of the six operations for sheaves on Artin stacks recently
constructed by Laszlo and Olsson [29] is applied.
As pointed out by Neumann and Stuhler in [33], the computation of the co-
homology ring over finite fields also gives an explicit description of the action
of the Frobenius endomorphism of the moduli stack on the cohomology of the
stack, even if the geometry of this action is quite mysterious.
As explained above, the main new ingredient in our approach is the purity of
the cohomology and the proof of a base change theorem for the cohomology of
BunG. The idea to prove these results is to embed the cohomology of BunG
into the cohomology of the stack of principal G-bundles together with flags
at a finite set of points of the curve (“flagged principal bundles”). On this
stack one can find a line bundle, such that the open subset of stable bundles
has a complement of high codimension. Furthermore, there exists a projective
coarse moduli space for stable flagged principal bundles. The existence of
coarse moduli spaces for flagged principal bundles in arbitrary characteristic
is demonstrated in the second part of this article. So here we use Geometric
Invariant Theory in order to obtain a result for the moduli stack, whereas one
usually argues in the other direction.
Our main theorem is:

Theorem. Assume that C is a curve over a field k. Then the cohomology of
the connected components BunϑG of BunG is freely generated by the canonical
classes, i.e.,

H⋆
(
Bunϑ

G,k
,Qℓ) = Qℓ[a1, . . . , ar]⊗ ⋆∧

[bji ]i=1,...r,j=1,...,2g ⊗Qℓ[f1, . . . , fr].
(The canonical classes are obtained from the Künneth components of the uni-
versal principal bundle on BunG × C, see Section 3.1.)
As remarked above, the main technical ingredient is the construction of proper
coarse moduli spaces for flagged principal bundles in positive characteristic.
It is contained in the second part of this paper and might be of independent
interest. Let us therefore give a statement of this result as well.
Since there are different definitions of parabolic bundles in the literature, we
have used the term flagged principal bundles instead. The precise definition is
as follows. Let x = (xi)i=1,...,b be a finite set of distinct k-rational points of C,
and let P = (Pi)i=1,...,b be a tuple of parabolic subgroups of G. A principal
G-bundle with a flagging of type (x, P ) is a tuple (P, s) that consists of a
principal G-bundle P on C and a tuple s = (s1, ..., sb) of sections si : {xi} →
(P ×C {xi})/Pi, i.e., si is a reduction of the structure group of P ×C {xi} to
Pi, i = 1, ..., b.
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In Section 4 we introduce a semistability concept for such bundles. It depends
on a parameter a which, as in the case of parabolic vector bundles, has to
satisfy a certain admissibility condition. Using this notion we show:

Theorem. For any type (x, P ) of flaggings and any admissible stability param-
eter a, there exists a projective coarse moduli space M (x, P )a-ss of a-semistable
flagged principal G-bundles.

Finally one should note that it is well known that one can use the compu-
tation of the cohomology of the moduli stack and the splitting of the Gysin
sequence for the Harder–Narasimhan stratification of BunG (as in [1], this holds
in arbitrary characteristic) to calculate the cohomology of the moduli stack of
semistable bundles. If the connected component BunϑG is such that there are
no properly semistable bundles, this gives a computation of the cohomology of
the coarse moduli space (as in the proof of Corollary 3.3.2).

2 Preliminaries

In this section we collect some well known results on the moduli stacks BunG
and their cohomology.

2.1 Basic Properties of the Moduli Stack of Principal Bundles

Let C be a smooth, projective curve of genus g over the (locally noetherian)
scheme S. It would be reasonable to assume that C is a curve over a field,
but since we want to be able to transport our results from characteristic p to
characteristic 0, we will finally need some base ring.
Let G/S be a reductive group of rank r. Denote by BunG the moduli stack of
principal G-bundles over C, i.e., for a scheme X → S, the X-valued points of
BunG are defined as

BunG(X) := Category of principal G-bundles over C ×X.

Recall the following basic fact which is proved in [4], Proposition 4.4.6 and
Corollary 4.5.2.

Proposition 2.1.1. The stack BunG is an algebraic stack, locally of finite type
and smooth of relative dimension (g − 1) dimG over S.

Furthermore the connected components of BunG are known ([14], Proposition
5, [24]). (In the first reference, the result is stated only for simply connected
groups, but the proof gives the result in the general case.)

Proposition 2.1.2. If S = Spec(k), or if G is a split reductive group, then the
connected components of BunG are in natural bijection to π1(G).

Remark 2.1.3. The stack BunG is smooth (2.1.1). Therefore, its connected
components are also irreducible.
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2.2 Behrend’s Trace Formula

Let us now assume that S = Spec(k) is the spectrum of a field. In the fol-
lowing, we will write Bunϑ

G,k
with ϑ ∈ π1(Gk) for the corresponding connected

component of BunG,k.

Since the stack BunϑG is only locally of finite type, we define its ℓ-adic coho-
mology as the limit of the cohomologies of all open substacks of finite type:

H⋆(BunϑG,Qℓ) := lim
U⊂BunG

open, fin. type

H⋆(U,Qℓ).
Remark 2.2.1. The basic reference for stacks and their cohomology is [30]. The
general formalism of cohomology has been developed in the articles by Laszlo
and Olsson [29]. Behrend in [7] also constructed all the functors that we will
use. In particular, we will compute cohomology groups with respect to the
lisse-étale topology. To simplify the statement of our main theorem we will useQℓ coefficients, because we want to chose generators of the cohomology ring
that are eigenvectors for the Frobenius action.

By semi-purity, which is recalled below, the cohomology of BunG in degrees
< 2i is equal to the cohomology of U ⊂ BunG, if the codimension of the
complement of U is at least i:

Lemma 2.2.2 (Semi-purity). Let X be a smooth stack of finite type and U
j→֒ X

an open substack with complement Z := X \ U i→֒ X. Then,

H⋆(X,Qℓ) ∼= H⋆(U,Qℓ) for ⋆ < 2 codim(Z).

Proof. As usual, this can be deduced from the corresponding statement for
schemes. For schemes instead of stacks, this follows from the long exact se-
quence for cohomology with compact support,

· · · −→ H⋆
c (U,Qℓ) −→ H⋆

c (X,Qℓ) −→ H⋆
c (Z,Qℓ) −→ · · · ,

the vanishing of H⋆
c (Z,Qℓ) for ⋆ > 2 dimZ, and Poincaré duality,

H2 dimU−⋆
c (U,Qℓ) ∼= H⋆

(
U,Qℓ(dimU)

)∨
.

Now, if X0 ։ X is a smooth atlas of the stack X , and Xn := X0 ×X X0 ×X
· · · ×X X0, then there is a spectral sequence:

Hp(Xq,Qℓ)⇒ Hp+q(X,Qℓ).
Since the codimension is preserved under smooth pull-backs, for any U ⊂ X , we
get the atlas U0 := U ×XX0 → U , and the induced embeddings Uq → Xq have
complements of codimension codim(U). Therefore we can apply the lemma in
the case of schemes to the morphism of spectral sequences

Hp(Uq,Qℓ)→ Hp(Xq,Qℓ)
to prove our claim.

Documenta Mathematica 15 (2010) 423–488



428 J. Heinloth, A. H. W. Schmitt

Remark 2.2.3. The same argument applies to the higher direct image sheaves
in the relative situation X → S, if X is smooth over S and U ⊂ X is of
codimension i in every fiber.

Behrend proved ([4], [5]) that, if C is a curve defined over a finite field k, the
Lefschetz trace formula holds for the stack BunG.

Theorem 2.2.4 (Behrend). Let C be a smooth, projective curve over the finite
field k = Fq and G a semisimple group over k. Let Frob denote the arithmetic
Frobenius acting on H⋆(BunG,k,Qℓ). Then, we have

qdim(BunG)
∑

i≥0
(−1)i tr

(
Frob, Hi(BunG,k,Qℓ)) =

∑

x∈BunG(Fq) 1

# Aut(x)(Fq) .
As in [19], a result of Siegel allows us to calculate the right hand side of the
formula. To state it, we first recall a theorem of Steinberg.

Proposition 2.2.5 (Steinberg). Let G be a semisimple group over k = Fq.
There are integers d1, . . . , dr and roots of unity ǫ1, . . . , ǫr such that:

• #G(Fq) = qdimG
∏r
i=1(1− ǫiq−di)

• Let BG be the classifying stack of principal G-bundles. Then,
H⋆(BGk,Qℓ) = Qℓ[c1, . . . , cr] with ci ∈ H2di(BG,Qℓ) and Frob(ci) =
ǫiq
−di .

The second part is of course not stated in this form in Steinberg’s book [40],
but one only has to recall the argument from topology. First the theorem
holds for tori, since H⋆(Gm,Qℓ) = Qℓ[x]. For a maximal torus T contained
in the Borel subgroup B ⊂ G, the map BT → BB induces an isomorphism
in cohomology: since the fibers are isomorphic to BU where U ∼= An is the
unipotent radical of B, they have no higher cohomology. The fibers of the
map BB → BG are isomorphic to the flag manifold G/B. Thus the map

indGT : BT → BG induces an injection indG,⋆T : H⋆(BG,Qℓ) →֒ H⋆(BT,Qℓ)
which lies in the part invariant under the Weyl group. For dimensional
reasons—since we already stated the trace formula, this follows most easily
from 1/(#G(Fq)) = q− dimG

∑
tr(Frob, Hi(BGk,Qℓ)) and the fact that the di

are the degrees of the homogeneous generators in H⋆(BTk,Qℓ)W—it must then
be isomorphic to the invariant ring.

With the notations from Steinberg’s theorem we can state a theorem of Siegel.
A nice reference for the theorem is [26], Section 3. In this article, you can also
find a short reminder on the Tamagawa number τ(G).

Theorem 2.2.6 (Siegel’s formula). Let G/Fq be a semisimple group, and denote

Documenta Mathematica 15 (2010) 423–488



Moduli Stacks of Principal Bundles 429

by αj the eigenvalues of the geometric Frobenius on H1(CFq ,Qℓ). Then,

∑

x∈BunG(Fq) 1

# Aut(x)(Fq) = τ(G)
∏

p∈C

1

vol(G(Op))

= τ(G)q(g−1) dimG
rkG∏

i=1

∏2g
j=1(1− ǫiαjq−di)

(1 − ǫiq−di)(1 − ǫiq(1−di))
.

3 The Cohomology of BunG

Our next aim is to recall from [1] the construction of the canonical classes in the
cohomology ring of BunG and to prove that these generate a free subalgebra
over any field. We will then explain how to deduce our main theorem from the
purity of the cohomology of BunG which will occupy the rest of this article.

3.1 The Subring Generated by the Atiyah–Bott Classes

Fix ϑ ∈ π0(BunG) = π1(G). The universal principal G-bundle Puniv on
BunϑG×C defines a map f : BunϑG×C → BG. The characteristic classes of
Puniv are defined as ci(Puniv) := f⋆ci where the ci are, as in Proposition
2.2.5, the standard generators of the cohomology ring of BG.
Note that the Künneth theorem for stacks can be deduced from the correspond-
ing result for schemes using the spectral sequence computing the cohomology
of the stack from the cohomology of an atlas as in Lemma 2.2.2.
We choose a basis (γi)i=1,...,2g of H1(C,Qℓ). In the case that C is defined over
a finite field k, we choose the γi as eigenvectors for the geometric Frobenius
of eigenvalue αi. The Künneth decomposition of ci(Puniv) is therefore of the
form:

ci(Puniv) =: ai ⊗ 1 +

2g∑

j=1

bji ⊗ γj + fi ⊗ [pt].

Note that di > 1, because we assume that G is semisimple. Thus, the fi are not
constant. Of course, these classes depend on ϑ, but we don’t want to include
this dependence in our notation.

Proposition 3.1.1. The classes (ai, b
j
i , fi) generate a free graded subalgebra of

the cohomology ring H⋆(Bunϑ
G,k

,Qℓ), i.e., there is an inclusion:

can: Qℓ[a1, . . . , ar]⊗ ⋆∧
[bji ]i=1,...r,j=1,...,2g ⊗Qℓ[f1, . . . , fr] →֒ H⋆(Bunϑ

G,k
,Qℓ).

If k is a finite field, then the classes ai, b
j
i , fi are eigenvectors for the action of

the arithmetic Frobenius with eigenvalues, q−di , q−diαj , q1−di respectively.

Proof. Denote by Can⋆ ⊂ H⋆(BunϑG,Qℓ) the subring generated by the classes
(ai, b

j
i , fi).
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Note first that the analog of the theorem holds for G = Gm. In this case,
BunGm is the disjoint union of the stacks BundGm classifying line bundles of

degree d. There is the Gm-gerbe BundGm → PicdC which is trivial over any field

over which C has a rational point, because in this case PicdC is a fine moduli
space for line bundles together with a trivialization at a fixed rational point
p. Forgetting the trivialization at p corresponds to taking the quotient of Pic
by the trivial Gm-action. Thus, BundGm ∼= Picd ×BGm and the cohomology of

this stack is H⋆(Picd,Qℓ)⊗Qℓ[c1]. Here, the first factor is the exterior algebra
generated by the Künneth components of the Poincaré bundle.

Let T ⊂ G be a maximal torus and fix an isomorphism T ∼= Grm in order to
apply the result for Gm. Then, X⋆(T )∨ ∼= Zr. Recall furthermore that the
G-bundle induced from a T -bundle of degree k ∈ Zr ∼= X⋆(T )∨ lies in BunϑG,
if and only if k ≡ ϑ ∈ X⋆(T )∨/Λ∨. We denote this coset by Zrϑ.

Write H⋆(BTk,Qℓ) ∼= Qℓ[x1, . . . xr ] and, for every degree k ∈ Zr, denote by

Ai, B
j
i ∈ H⋆(Bun

k
T ,Qℓ) the Künneth components of the Chern classes of the

universal T -bundle. Note that, since Λ∨ ⊂ Zr has finite index, we have the
injective mapQℓ[A1, . . . , Ar]⊗

⋆∧
[Bji ]i=1,...r,j=1,...,2g⊗Qℓ[K1, . . . ,Kr] →֒

∏

k∈ZrϑH⋆(Bun
k
T ,Qℓ)

defined by Ki 7→ (ki)k∈Zr
ϑ

where ki is considered as an element of

H0(Bun
k
T ,Qℓ) = Qℓ.

Recall that the induced map H⋆(BGk,Qℓ)→ H⋆(BTk,Qℓ) ∼= Qℓ[x1, . . . , xrkG]
is given by ci 7→ σi(x1, . . . , xr) where σi is a homogeneous polynomial of degree
di. Therefore, we can calculate the image of the canonical classes under the
map

H⋆(BunϑG,Qℓ)⊗H⋆(C,Qℓ)→ H⋆(BunT ,Qℓ)⊗H⋆(C,Qℓ)
∼=
∏

k∈ZrϑH⋆(Bun
k
T ,Qℓ)⊗H⋆(C,Qℓ)

which respects the Künneth decomposition. It is given by

ci(Puniv) 7→
∏

k∈Zrϑ σi(A1 ⊗ 1 +

2g∑

j=1

Bj1 ⊗ γj + k1 ⊗ [pt], . . .
)
.
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The Künneth decomposition of this class is

σi

(
A1 ⊗ 1 +

2g∑

j=1

Bj1 ⊗ γj + k1 ⊗ [pt], . . .
)

= σi(A1, . . . , Ar)⊗ 1

+

2g∑

j=1

( r∑

m=1

(∂mσi)(A1, . . . , Ar)
)
Bjm ⊗ γj

+

r∑

m=1

(∂mσi)(A1, . . . , ArkG)km ⊗ [pt]

+
∑

BjiB
j′
i′ · Pj,j′(A1, . . . , ArkG)⊗ [pt],

where the Pj,j′ are some polynomials. In particular, we see that the above map
factors through the subringQℓ[A1, . . . , Ar]⊗

⋆∧
[Bji ]i=1,...r, j=1,...,2g⊗Qℓ[K1, . . . ,Kr] →֒

∏

k∈ZrϑH⋆(Bun
k
T ,Qℓ)

defined above. We already know that the elements σi(A1, . . . , ArkG) are al-
gebraically independent in H⋆(BunT,k,Qℓ). In particular, since the mapArkG → ArkG ∼= (ArkG/W ) defined by the polynomials σi is generically a
Galois covering with Galois group W , we also know that the derivatives ∂σi
are linearly independent. This shows our claim.

Remark 3.1.2. In the proof above, we have only used the fact that
H⋆(Pic0C ,Qℓ) ∼= ∧⋆H1(C,Qℓ). Thus, one might note that the proof shows
that for any smooth, projective variety X the analogous classes ai, b

j
i , f

k
i , where

fki are the Künneth components corresponding to a basis of NS(X)Q, generate
a free subalgebra of the cohomology of the moduli stack of principal bundles
on X .

In the following, we will denote the graded subring constructed above by Can⋆.
Of course, we want to show that Can⋆ is indeed the whole cohomology ring of
Bunϑ

G,k
.

Corollary 3.1.3. Let k be a finite field and let G/k be a semisimple group.

If H⋆(Bunϑ
G,k

,Qℓ) is generated by the canonical classes for all ϑ, then the

Tamagawa number τ(G) satisfies τ(G) = dimH0(BunG,Qℓ) = #π0(BunG).
Conversely, if the cohomology of BunG is pure and the Tamagawa number
fulfills τ(G) = #π0(BunG), then H⋆(BunG,Qℓ) = Can⋆.

Proof. For the graded ring Cani generated by the canonical classes, we know
that

∞∑

i=0

(−1)i tr(Frob,Cani) =

∏r
i=1

∏2g
j=1(1− ǫiαjq−di)∏r

i=1(1 − ǫiq−di)(1 − ǫiq1−di)
.
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Comparing this with Siegel’s formula, we get the first claim.
Furthermore we know that the Zeta function of BunG converges and is equal
to

Z(BunG, t) = exp

( ∞∑

i=1

#BunG(Fqn)
ti

i

)

=

∞∏

i=0

det
(

1− Frob ·qdim(BunG) · t,Hi(BunG,Qℓ))(−1)i+1

.

Now, since such a product expansion of an analytic function is unique and the
eigenvalues of Frob on Hi have absolute value qi/2, there can be no cancella-
tions. Thus, the Poincaré series of the cohomology ring can be read off the
Zeta function.

3.2 The Main Results on Moduli Spaces of Flagged Principal Bun-
dles

Let x = (xi)i=1,...,b be a finite set of distinct k-rational points of C, and let P =
(Pi)i=1,...,b be a tuple of parabolic subgroups of G. A principal G-bundle with
a flagging of type (x, P ) is a tuple (P, s) that consists of a principal G-bundle
P on C and a tuple s = (s1, ..., sb) of sections si : {xi} → (P ×C {xi})/Pi,
i.e., si is a reduction of the structure group of P ×C {xi} to Pi, i = 1, ..., b.

Remark 3.2.1. For G = GLr(k), parabolic subgroups correspond to flags of
quotients of kr, so that a flagged principal GLr(k)-bundle may be identified
with a vector bundle E together with flags of quotients Exi ։ Vj,i, j = 1, ..., ti,
i = 1, ..., b, of the fibers of E at xi, i = 1, ..., b. (A “flag of quotients” means of
course that K1,i ( · · · ⊆ Kti,i, Kj,i := ker(Exi ։ Vj,i), j = 1, ..., ti, i = 1, ..., b.)
These objects were introduced by Mehta and Seshadri [31] and called quasi-
parabolic vector bundles. We had to chose a different name, because the notion
of a parabolic principal bundle has been used differently in [2]. The same objects
that we are looking at have also been considered in [9] and [43].

Lemma 3.2.2. Fix a type (x, P ) as in the definition.
i) The principal G-bundles with a flagging of type (x, P ) form the smooth alge-
braic stack BunG,x,P .
ii) The forgetful map BunG,x,P → BunG is a locally trivial bundle whose fibers
are isomorphic to

∏s
i=1(G/Pi).

iii) The cohomology algebra H⋆(BunG,x,P ,Qℓ) is a free module over

H⋆(BunG,Qℓ) with a basis of pure cohomology classes. The same holds
for all open substacks of BunG and their preimages in BunG,x,P .

Proof. The first parts are easy, because for a G-bundle P → T × C the
space

∏
i(P|T×xi)/Pi → T parameterizes flaggings of P at T × x. This is

a
∏s
i=1(G/Pi) bundle over T . The last part follows from the second by the

theorem of Leray–Hirsch: the flagging of the universal bundle at xi defines
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a Pi-bundle over BunG,x,P and thus a map BunG,x,P → BPi. But the map
G/Pi → BPi induces a surjection on cohomology, and thus the pull back of the
universal classes in H⋆(BPi,Qℓ) to H⋆(BunG,x,Qℓ) generate the cohomology
of all the fibers of BunG,x → BunG.

In Section 4, we will introduce a notion of a-stability for flagged principal
bundles depending on some parameter a. As in the case of vector bundles, we
will define a coprimality condition for a (see 4.2.1) as well as some admissibility
condition (following Remark 4.1.5).

In BunG,x,P there are open substacks Bun
a-(s)s
G,x,P of a-(semi)stable flagged prin-

cipal G-bundles of type (x, P ). Our main results on the coarse moduli spaces
of these substacks are collected in the following theorem.

Theorem 3.2.3. i) For any type (x, P ) and any admissible stability parameter
a, there exists a projective coarse moduli space M (x, P )a-ss for a-semistable
flagged principal G-bundles of type (x, P ).
ii) If a is of coprime type, then the notions of a-semi stability and a-stability
coincide. In this case, Bun

a-s
G,x,P is a proper, smooth quotient-stack with finite

stabilizer groups.
iii) For any substack U ⊂ BunG of finite type and any i > 0, there exist s > 0,
a type (x, P ), and an admissible stability parameter a of coprime type, such
that U lies in the image of the map Bun

a-s
G,x,P → BunG and such that the subset

of a-unstable bundles is of codimension > i in BunG,x,P .

The proof of this theorem takes up the largest part of this article. We will
prove the existence of the coarse moduli spaces in Section 5. The projectivity
then follows from our semistable reduction theorem 4.4.1. The last two parts
of the theorem are much easier. We will prove them in Section 4.

Remark 3.2.4. For simplicity, we have stated Theorem 3.2.3 only for curves
defined over a field. In order to prove our base change theorem, we will need
the result in the case that C is a smooth, projective family of curves with
geometrically reduced, connected fibers, defined over an integral ring R, finitely
generated over Z, and G a semisimple Chevalley group over R.
Seshadri proved in [39] (Theorem 4, p. 269) that GIT-quotients can be con-
structed for families over R. Further, the parameter spaces constructed in
Section 5 are given by quot schemes which exist over base schemes, and, in
Section 5.6, we finally need a Poincaré bundle on the relative Picard scheme.
A Poincaré bundle exists, if the family C −→ Spec(R) has a section. This
certainly holds after an étale extension of R. Hence, the first assertion still
holds after an étale extension of R.
Except for the properness assertion for the stack of stable flagged principal
bundles which is Lemma 3.3.1, the last two parts of the theorem carry over to
this situation without modification.
We will come back to the issue of the base ring in Remarks 5.2.4, 5.3.3, and
5.5.4.
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Before we proceed with the proof of the theorem, we want to deduce our main
application.

3.3 Purity of H⋆(BunG)

Assume that k is a finite field. Since all open substacks of finite type of BunG
can be written as [X/GLN ] where X is a smooth variety, we know that the

eigenvalues λi of the (arithmetic) Frobenius onHi(BunG,Qℓ) satisfy |λi| ≤ q−
i
2

[8]. To prove equality, i.e., to prove that the cohomology is pure, we cannot rely
on such a general argument. But, using the results on coarse moduli spaces,
we can show that for all i the cohomology Hi(BunG,Qℓ) occurs as a direct
summand in the i-th cohomology of a projective variety, parameterizing stable
flagged principal bundles.

Lemma 3.3.1. Assume that R is a field or a discrete valuation ring with quotient
field K. Let G/R be a reductive group, acting on the projective scheme XR and

L a G-linearized ample line bundle on XR, such that all points of X := X
ss

L

are stable with respect to the chosen linearization. Then, the quotient stack
[X/G] is separated and the map [X/G]→ X//G is proper.

Proof. If R is a field, we can apply GIT ([32] Corollary 2.5), saying that the map
G ×X → X ×X is proper. Therefore, the diagonal [X/G] → [X/G]× [X/G]
is universally closed, i.e., [X/G] is separated.
We claim that we may prove the separatednedness of the map [X/G]→ X//G
over a discrete valuation ring R in the same manner. To show the lifting
criterion for properness for the group action, we assume that we are given
x1, x2 ∈ X(R) and g ∈ G(K), such that g.x1 = x2. We have to show that
g ∈ G(R). We may (after possibly replacing R by a finite extension as in [32],
Appendix to Chapter 2.A) apply the Iwahori decomposition to write g = g0zg

′
0

with g0, g
′
0 ∈ G(R) and z ∈ T (K) for a maximal torus T ⊂ G. Thus, we have

reduced the problem to the case that g = z ∈ T (K). Choose a local parameter
π ∈ R. Multiplying with an element of T (R), we may further assume that there
is a one-parameter subgroup λ : Gm → T , such that z = λ(π). Assume that λ
is non-trivial. Now, embed XR ⊂ P(V ) into a projective space and decompose
V =

∑
i∈Z Vi into the eigenspaces of λ. Write x1 =

∑
i∈Z vi and x2 =

∑
i∈Z wi

as sums of eigenvectors for λ. Since the reduction x1 of x1 mod π is stable,
there must be indices i− < 0 < i+ with vi− 6= 0 6= vi+ . The analogous condition
holds for x2. But, one readily checks that x2 = z.x1 implies wi = 0, for i > 0,
a contradiction.
Now, for algebraically closed fields K, the map [X/G] → X//G induces a bi-
jection on isomorphism classes of K-points. Thus, since we already know sep-
aratedness, it is sufficient to show that given a discrete valuation ring R and
a point x ∈ X//G(R), then we can find an extension R′ of R, such that x lifts
to a point x ∈ X(R′) and thus to a point in [X/G]. Let K be the quotient
field of R, η ∈ X a point lying over the generic point of x. Then, the closure
of G× η ⊂ X is a G-invariant subset. Since X//G is a good quotient, its image
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is closed and contains x. Thus, the orbit of η specializes to a point lying over
the closed point of x, and we can find x ∈ X(R′) as claimed.

Corollary 3.3.2. Assume that C is a smooth projective curve, defined over
the finite field k. If a is of coprime type, then H⋆(Bun

a-s
G,x,P ,Qℓ) is pure.

Proof. The stack Bun
a-s
G,x,P of a-stable flagged principal G-bundles of type

(x, P ) is a smooth quotient stack. Therefore, its i-th cohomology is of weight
≥ i. This is proved in [8], Theorem 5.21. (Observe the different conventions
for the Frobenius map.) Furthemore, by the definition of stability, all auto-
morphism groups of stable parabolic bundles are finite. In particular, by the
preceding lemma, the map p : Bun

a-s
G,x,P → M (x, P )a-s is proper. In order to

prove that Rp⋆Qℓ ∼= Qℓ, it is therefore sufficient to compare the stalks of these
sheaves ([34], Theorem 1.3). But the fibers are quotients of Spec(K) by finite
group schemes. Thus, for rational coefficients, the higher cohomology of the
fibers vanishes. In particular, p induces an isomorphism on cohomology. Since
the scheme M (x, P )a-s is proper (Theorem 3.2.3), its i-th cohomology is of
weight ≤ i, by Deligne’s theorem ([12], Théorème I),

Remark 3.3.3. i) So far, we have treated the moduli spaces only over alge-
braically closed fields. Of course, they will be defined over a finite extension
of Fq. (In fact, as the construction of the moduli spaces will reveal, they will
be defined over the same field as the points in the tuple x.) If we replace Fq
by a finite extension, the new Frobenius is a power of the original Frobenius.
The purity statement is obviously not affected, because it concerns only the
absolute values of the eigenvalues of the Frobenius map.

ii) The moduli space M (x, P )a-s will, in general, have finite quotient singulari-
ties. Therefore, we could obtain both estimates for the weights from the coarse
moduli space.

Corollary 3.3.4. Suppose R is of finite type over Z, regular, and of dimension
at most 1, and let C/R be a smooth projective curve and G a split semisimple
group scheme over R. Then, the cohomology of BunG → Spec(R) is locally
constant over Spec(R).

Proof. By Theorem 3.2.3, iii), we know that, for fixed i, the i-th cohomology
sheaf of BunG is a direct summand of the corresponding sheaf of Bun

a-s
G,x,P for

suitable type (x, P ) and suitable stability parameter a. Further, by Lemma
3.3.1, the map p : Bun

a-s
G,x,P →M (x, P )a-s is proper. Since the coarse moduli

space is proper as well, we can again apply Olsson’s base change theorem ([34],
Theorem 1.3) to the proper map π : Bun

a-s
G,x,P → M (x, P )a-s → Spec(R). In

particular, the fibers of Rπ⋆Qℓ compute the cohomology of the fibers of π.

Moreover, the stack X := Bun
a-s
G,x,P is smooth. Thus, we may use local acyclic-

ity of smooth maps as in [11], Chapitre V. To see that this holds for stacks, let
us recall the argument. We may suppose that the base S = Spec(R) is strictly
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henselian. Denote by η the spectrum of an algebraic closure of the generic
point of S and let s denote the special point of S. We have a cartesian diagram

Xη
ǫ′ //

��

X

f

��

Xs
i′oo

��

η
ǫ // S {s}.ioo

Now, Rǫ′⋆Qℓ ∼= f⋆Rǫ⋆Qℓ, because this holds for any smooth covering U → X

and i′∗Rǫ⋆Qℓ = Qℓ. Thus, using the above calculation and proper base change
for the last equality, we find:

H⋆(Xη,Qℓ) ∼= H⋆(X ,Rǫ′⋆Qℓ) ∼= H⋆(Xs,Qℓ).
This settles the claim.

We may now derive our main result.

Theorem 3.3.5. Assume that C is a curve over the field k. Then, the coho-
mology of BunG is freely generated by the canonical classes, i.e.,

H⋆
(
Bunϑ

G,k
,Qℓ) = Qℓ[a1, . . . , ar]⊗ ⋆∧

[bji ]i=1,...,r,j=1,...,2g ⊗Qℓ[f1, . . . , fr].
Proof. First method. One can deduce the result from the theorem of Atiyah
and Bott. By the base change corollary above, knowing the theorem for k = C
implies the claim over an arbitrary algebraically closed field. For k = C Atiyah
and Bott proved the result. Namely they constructed a continuous atlas X →
BunG, where X is contractible and BunG is the quotient of X by the action
of an infinite dimensional group G . In the article of Atiyah and Bott the
equivariant cohomology of X with respect to this group action is computed.
However, the spectral sequence computing equivariant cohomology from the
cohomology of G coincides with the sequence computing the cohomology of
BunG from the atlas X → BunG.

Second method. By the base change corollary 3.3.4, it is sufficient to prove
the claim in the case that C is defined over a finite field k. We have just
seen (Corollary 3.3.2) that in this case the cohomology of BunG is pure. Fur-
thermore, Harder proved [18] that τ(G) = 1 for semisimple simply connected
groups and Ono showed how to deduce τ(G) = #π1(G) for arbitrary semisim-
ple groups (see [8], §6). Thus, we can apply Corollary 3.1.3 to Siegel’s formula
and Behrend’s trace formula.

Remark 3.3.6. For G = SLn(k) (or G = GLn(k)), one can use Beauville’s trick
[3] which shows that the cohomology of Bun

a-s
SLn,x,P

is generated by the classes
constructed in Remark 3.2.2. This gives a direct proof of the theorem.
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4 Semistability for Flagged Principal Bundles

In this section, we introduce the parameter dependent notion of semistability
for flagged principal bundles. After discussing its basic features, including the
important fact that any principal bundle can be turned into a stable flagged
principal bundle for a suitable type and a suitable stability parameter, we
apply Behrend’s formalism of complementary polyhedra to derive the Harder–
Narasimhan reduction for semistable flagged principal bundles. We conclude
with a proof of the semistable reduction theorem for flagged principal bundles,
generalizing the arguments from [22] and [23].

4.1 Definition of Semistability

We want to define a notion of semistability for flagged principal bundles. For
an algebraic group P let us denote by X⋆(P ) := Hom(P,Gm) the group of
characters and by X⋆(P )∨Q := Hom(X⋆(P ),Q) the rational cocharacters. The
notion of semistability will depend on parameters ai varying over the sets

X⋆(Pi)
∨Q,+ :=

{
a ∈ X⋆(Pi)

∨Q ∣∣∣ for all parabolic subgroups P ′ ⊃ Pi
a(detP ′ ⊗ det−1Pi ) < 0

}
,

i = 1, ..., b. (Since BunG,x,P → BunG is a locally trivial fibration with fiber∏s
i=1G/Pi, we see that the Picard group of BunG,x,P is a free Z-module gener-

ated by Pic(BunG) ∼= Z and
∏s
i=1X

⋆(Pi). Therefore the notion of semistabil-
ity should depend on an element in X⋆(Pi)

+. Since this has a canonical basis,
the dual appears in our definition.) To state this in terms closer to Geomet-
ric Invariant Theory, note that the pairing of characters and one-parameter
subgroups of a parabolic subgroup of G is invariant under conjugation. There-
fore, conjugacy classes of rational one-parameter subgroups of Pi are given
by X⋆(Pi)

∨Q, i = 1, ..., b. A one-parameter subgroup λ : Gm → G defines the
parabolic subgroup

P (λ) := PG(λ) =
{
g ∈ G

∣∣ lim
z→0

λ(z)gλ(z)−1 exists in G
}
.

For later purposes, we also introduce

QG(λ) := PG(−λ) =
{
g ∈ G

∣∣ lim
z→∞

λ(z)gλ(z)−1 exists in G
}
.

Example 4.1.1. Any one-parameter subgroup λ : Gm(k) −→ GL(V ) defines a
set of weights γ1 < · · · < γt+1 and a decomposition

V =

t+1⊕

l=1

V l with V l :=
{
v ∈ V

∣∣λ(z)(v) = zγl ·v, ∀z ∈ Gm(k)
}
, l = 1, ..., t+1,

into eigenspaces. We derive the flag

V•(λ) : {0} ( V1 := V 1 ( V2 := V 1 ⊕ V 2 ( · · · ( Vt := V 1 ⊕ · · · ⊕ V t ( V.
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Note that the group QGL(V )(λ) is the stabilizer of the flag V•(λ). As an ad-
ditional datum, we define the tuple β•(λ) = (β1, ..., βt) with βl := (γl+1 −
γl)/ dim(V ), l = 1, ..., t. The pair (V•(λ), β•(λ)) is the weighted flag of λ.

Since P (λ) = P (nλ) for all n ∈ N, the group P (λ) is also well defined for
rational one-parameter subgroups, and it only depends on the conjugacy class
of λ in P (λ). Finally, writing G as a product of root groups, we see that
λ ∈ X⋆(Pi)Q defines an element λ ∈ X⋆(Pi)

∨Q,+, if and only if Pi = P (λ).
It will often be convenient for us to view ai ∈ X⋆(Pi)

∨Q,+ as a rational one-
parameter subgroup of G which we will denote by the same symbol.

Remark 4.1.2. i) Let (P, s) be a flagged principal G-bundle and Pxi,Pi the Pi-
torsor over xi defined by si, i = 1, ..., b. Denote further Psi := AutPi(Pxi,Pi) ⊂
AutG(Pxi) the corresponding parabolic subgroup. Any (Pi-equivariant) triv-
ialization Pxi,Pi

∼= Pi defines an isomorphism Psi
∼= Pi. This isomorphism is

canonical up to inner automorphisms of Pi, so that we obtain canonical isomor-
phisms X⋆(Pi)Q ∼= X⋆(Psi)Q and X⋆(Pi)

∨Q,+ ∼= X⋆(Psi )
∨Q,+, i = 1, ..., b. Given

ai ∈ X⋆(Pi)
∨Q,+ we will denote the corresponding element in X⋆(Psi )

∨Q,+ by
asi . The “one-parameter subgroup” asi is well-defined only up to conjugation
in Psi . If we choose a maximal torus T ⊂ Psi , we may assume that asi is a
one-parameter subgroup of T . As such it is well-defined.
ii) Likewise, if a parabolic subgroup Q of G, a character χ of Q, and a reduction
PQ of P to Q are given, then we get in each point xi a parabolic subgroup
Qi in Aut(Pxi) and a character χsi of that parabolic subgroup, i = 1, ..., b.
iii) Any two parabolic subgroups P and Q of G share a maximal torus, and
all common maximal tori are conjugate in Q ∩ P . Let Qi ⊂ Aut(Pxi) be a
parabolic subgroup, i = 1, ..., b. By our previous remarks, we may assume that
asi is a subgroup of Qi ∩ Psi . Then, for any i and any character χi ∈ X⋆(Qi),
the value of the pairing 〈χi, asi〉 is well-defined.

These remarks also show the following.

Lemma 4.1.3. Let Q,P ⊂ G be parabolic subgroups, a ∈ X⋆(P )∨Q,+, and χ ∈
X⋆(Q) a dominant character. Denote by gχ = χ(g−1 · ·g) the corresponding
character of gQg−1. Then, the value of the function

G −→ Q
g 7−→ 〈gχ, a〉

at an element of G depends only on the image of that element in Q\G/P .

Example 4.1.4. Using the notations of the above lemma, assume that P = B
is a Borel subgroup and assume that Q contains B. Choose a maximal torus
T ⊂ B, denote by ∆P and ∆Q the roots of P and Q, respectively, and by W
and WQ the Weyl groups of G and Q/Ru(Q), respectively. Then, the double
coset Q\G/P is in bijection to WQ\W and, by Bruhat decomposition, we know
that QwP/P ⊂ G/P lies in the closure of Qw′P/P only if all roots of wQw−1

which do not lie in ∆P are contained in ∆w′Qw′−1 . Now, since a ∈ X⋆(P )∨Q,+,
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we know that 〈α, a〉 < 0 occurs precisely for the roots α 6∈ ∆P . Thus, we find
〈wχ, a〉 ≥ 〈w′

χ, a〉, whenever QwP lies in the closure of Qw′P and equality
implies that the double cosets coincide.
In particular the largest value of 〈wχ, a〉 is obtained for w = 1 and the most
negative one for the longest element of W .

Fix a ∈∏b
i=1X

⋆(Pi)
∨Q,+. Using Remark 4.1.2 and Lemma 4.1.3, we define the

a-parabolic degree (of the reduction PQ of P) as the function

a-deg(PQ) : X⋆(Q) −→ Q
χ 7−→ deg

(
PQ(χ)

)
+

b∑

i=1

〈χsi , asi〉.

(As usual, PQ(χ) is the line bundle on C that is associated with the principal
Q-bundle PQ and the character χ : Q −→ Gm(k).) We write a-deg(PQ) :=
a-deg(PQ)(detQ) where detQ is the character defined by the determinant of
the adjoint representation of Q.
A flagged principal G-bundle (P, s) is called a-(semi)stable, if for any parabolic
subgroup Q ⊂ G and any reduction PQ of P to Q, the condition

a-deg(PQ)(≤)0

is verified. Here the standard notation (≤) means that for stable bundles we
require a strict inequality, whereas for semistable bundles ≤ is allowed.
The a-parabolic degree of instability of (P, s) is set to be

idega(P, s) := max
{
a-deg(PQ)

∣∣Q ⊂ G a parabolic subgroup

and PQ a reduction of P to Q
}
.

Remark 4.1.5. i) Let Q be a maximal parabolic subgroup of G. Then, all
dominant characters on Q are positive rational multiples of the corresponding
fundamental weight. Thus, they are also positive rational multiples of the char-
acter detQ. If Q is an arbitrary parabolic subgroup and χ is a dominant char-
acter on it, then one finds maximal parabolic subgroups Q1, ..., QT that contain
it and such that χ is a positive rational linear combination of the characters
detQ1 ,...,detQT (viewed as characters of Q). Therefore, a flagged principal G-
bundle (P, s) is a-semistable, if and only if for any parabolic subgroup Q, any
reduction PQ of P to Q, and any dominant character χ ∈ X⋆(Q), we have
a-deg(PQ)(χ) ≤ 0. Or, equivalently, we may use anti-dominant characters
χ and require a-deg(PQ)(χ) ≥ 0. (We have used the version with dominant
characters, because this allows us to adapt Behrend’s existence proof of the
canonical reduction ([4], [6]) more easily. For our GIT computations below,
the formulation with anti-dominant characters seems better suited.)
ii) From our observations in i), we also infer that it suffices to test semistability
for maximal parabolic subgroups.
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iii) The a-parabolic degree of instability is finite, because the degree of insta-
bility is finite and the values of 〈χsi , asi〉, i = 1, ..., b, are bounded for every
fixed a, and only finitely many χ occur.

An element ai ∈ X⋆(Pi)
∨Q,+ is called admissible, if for some maximal torus

T ⊂ Pi, such that ai factors through T , we have |〈α, ai〉| < 1
2 for all roots α.

Note that this does not depend on the choice of T , because all maximal tori are
conjugate over k and conjugation permutes the roots. The stability parameter
a is called admissible, if ai is admissible for i = 1, ..., b.

4.2 General Remarks on Semistability

As in the case of vector bundles, the notions of a-semistability and a-stability
will coincide, if a satisfies some coprimality condition. In the following lemma,
we will also allow real stability parameters a ∈⊕b

i=1X
⋆(Pi)

∨R in order to define
a nice chamber decomposition. Clearly, a-(semi)stability may also be defined
for such parameters.

Lemma 4.2.1. Fix the type (x, P ). For every parabolic subgroup Q ∈ G and
every d ∈ Z, we introduce the wall

WQ,d :=

{
a ∈

b⊕

i=1

X⋆(Pi)
∨R ∣∣ b∑

i=1

〈detQ, ai〉 = d

}
.

Then, the following properties are satisfied:
i) For every bounded subset A ⊂ X⋆(Pi)

∨R, there are only finitely many walls
WQ,d with WQ,d ∩ A 6= ∅.
ii) If one of the groups Pi is a Borel subgroup, then WQ,d is for all parabolic
subgroups Q and all integers d a proper subset of codimension 1 or empty.
iii) If

a 6∈
⋃

Q⊂G parabolic, d∈ZWQ,d,

then every a-semistable bundle is a-stable.
iv) If the stability parameters a and a′ lie in the same connected component of

b⊕

i=1

X⋆(Pi)
∨R \ ⋃

Q⊂G parabolic, d∈ZWQ,d,

then the notions of a-(semi)stability and a′-(semi)stability coincide.

v) Let C be a connected component of
⊕b

i=1X
⋆(Pi)

∨R\⋃Q⊂G parabolic, d∈ZWQ,d.

If a ∈ C and a′ ∈ C , then every a′-stable bundle is a-stable and every a-
semistable bundle is a′-semistable.

A stability parameter a satisfying the condition stated in iii) of the lemma is
said to be of coprime type.
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Proof. Let c be a conjugacy class of parabolic subgroups in G and Qc a rep-
resentative of c. For a parabolic subgroup Q in the class c and i ∈ { 1, ..., b },
the number 〈detQ, ai〉 depends only on the class of Q in Qc\G/Pi. This was
shown in Lemma 4.1.3. Since there are only finitely many conjugacy classes of
parabolic subgroups and any set of the form Q\G/P , P , Q parabolic subgroups
of G, is finite, there are only finitely many functions of the form

a 7−→
b∑

i=1

〈detQ, ai〉

on
⊕b

i=1X
⋆(Pi)

∨R, and any bounded set A is “hit” by only finitely many walls.
The second part is easy, because, for a Borel subgroup, one has X⋆(B) =
X⋆(T ), so that 〈detQ, .〉 cannot vanish identically on X⋆(B)∨R.
For a properly semistable flagged principal G-bundle (P, s), there are
a parabolic subgroup Q and a reduction PQ of P to Q, such that∑b

i=1〈detQ, ai〉 = − deg(PQ) ∈ Z. This immediately yields iii) and also proves
the last two statements.

Proposition 4.2.2. Fix a connected component BunϑG of BunG and a Borel
subgroup B ⊂ G. Then, for all h ∈ Z, there exists a number b0 ∈ N, such
that, for any b > b0, and any collection x = (x1, ..., xb) of distinct k-rational

points on C, there is an admissible stability parameter ab ∈∏b
i=1X

⋆(B)∨Q,+ of
coprime type with the following property: for every principal G-bundle P with
degree of instability ≤ h, there exists a flagging s with si : {xi} → P|{xi}/B,

i = 1, ..., b, such that (P, s) is an ab-stable flagged principal G-bundle of type
(xb, (B, ..., B)).

Proof. Part v) of Lemma 4.2.1 shows that we may replace any stability param-
eter by one of coprime type, while enlarging the set of stable bundles. So we
do not have to worry about the coprimality condition on a.
Let Bunϑ,≤hG be the stack of principal G-bundles of instability degree ≤ h.
This is an open substack of finite type of BunG [4]. Choose a ∈ X⋆(B)∨Q,+,
such that for all parabolic subgroups Q ⊂ G one has either 〈detQ, a〉 > 0 or
〈detQ, a〉 < −2h. Such a choice is possible by Lemma 4.2.1, ii): we can find
a′ ∈ X⋆(B)Q, such that the finitely many values 〈detQ, a

′〉 are all non-zero.
Multiplying a′ with a sufficiently large constant, we find a. Set

D := max
{
〈detQ, a〉 |Q ⊂ G a parabolic subgroup

}
.

Note that this is a positive number.
Next, choose a sequence (xn)n≥1 of distinct points in C(k), set xb := (x1, ..., xb),
and consider, for b ∈ N, the stability parameter ab := (a/b, . . . , a/b). It will be
admissible for b≫ 0.

Observation. Let P be a principal G-bundle, Q ⊂ G a parabolic subgroup,
and PQ a reduction of P to Q, such that deg(PQ) < −D. Then, for any
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b and any choice of sections si : {xi} → P|{xi}/B, i = 1, ..., b, we have

ab- deg(PQ) < 0.

We want to estimate the dimension of the space of ab-unstable flagged principal
G-bundles (P, s) of type (xb, (B, ..., B)) with P ∈ Bunϑ,≤hG . First of all, the
stack

Reductions :=

〈
(
P,PQ

) ∣∣∣∣
P ∈ Bunϑ,≤hG ,
PQ a reduction of P to the parabolic
subgroup Q with deg(PQ) ≥ −D

〉

is an algebraic stack of finite type: reductions of a principal G-bundle P

to Q are given by sections of P/Q, and P/Q is projective over the base.
Thus, by Grothendieck’s construction of the quot schemes, these sections are
parametrized by a countable union of quasi-projective schemes. We may apply
this to the universal bundle over Bunϑ,≤hG ×C, because locally we may use the
quot schemes for any bounded family over a scheme and the resulting schemes
glue, because the functor is defined over the stack. The substack of reductions
of fixed degree is of finite type, because the reduction is defined by the induced
vector subbundle of the adjoint bundle of rank dim(Q) and the same degree as
the reduction. In any bounded family of vector bundles, the vector subbundles
of given rank and degree form also a bounded family. Finally, recall that we
look only at degrees between −D and h.
Therefore, the fiber product

Test := Reductions×
Bun

ϑ,≤h
G

Bunϑ,≤h
G,xb

parameterizing flagged principal G-bundles of type (xb, (B, ..., B)) together
with a reduction of bounded degree to a parabolic subgroup is for any b ∈ N of
finite type. Consider the closed substack Bad ⊂ Test given by (P, s,PQ)
with ab- deg(PQ) ≥ 0. We can estimate the dimension of the fibers of

Bad→ Reductions as follows: fix P ∈ Bunϑ,≤hG , a parabolic subgroup Q ⊂ G,
and a reduction PQ of P to Q. Given b, the variety of flaggings of P is

X
b
i=1P|{xi}/B ∼= (G/B)×b. Now, for every i, the subset

{
si ∈P|{xi}/B | 〈detQ, asi〉 < 0

}
⊂Pxi/B

is non-empty and open. Denote its complement by Zi. Now, if #{i|si 6∈ Zi} >
b · (h+D)/(2h+D), then (P, s) is ab-stable: indeed, we compute

ab- deg(PQ) = deg(PQ) +

b∑

i=1

〈detQ, asi〉

< h− b · h+D

2h+D
· 2h

b
+ b ·

(
1− h+D

2h+D

)
· D
b

= 0.

Thus,

dim(Bad) ≤ dim(Reductions) + b · dim(G/B)− b · h

2h+D
.
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Thus, for b≫ 0, we see that dim(Bad) < b ·dim(G/B) and therefore the image

of Bad in Bunϑ,≤h
G,xb

cannot contain any fiber of Bunϑ,≤h
G,xb

→ Bunϑ,≤hG .

Remark 4.2.3. The proof also shows that we may make the codimension of the
locus of ab-unstable flagged principal G-bundles as large as we wish.

4.3 The Canonical Reduction for Flagged Principal Bundles

Motivated by work of Harder [20], Stuhler explained in [41] how to define a
notion of stability for Arakelov group schemes over curves and how to use
Behrend’s technique of complementary polyhedra to prove the existence of a
canonical reduction to a parabolic subgroup in this situation. We only had
to translate this to our special case of flagged principal G-bundles. According
to Behrend, it suffices to show that the parabolic degree defined above defines
a complementary polyhedron, a concept which we will recall below. All the
results of this section are due to Behrend [6] (with some simplifications given
by Harder and Stuhler in the above references). We only have to verify that his
theory applies to our situation. Since in our case of flagged principal bundles
the arguments simplify a bit, we will try to give a self-contained account.
Let (P, s) be a flagged principal G-bundle on C and fix a stability parameter
a. Let P ⊂ G be a parabolic subgroup. A reduction PP of P to P is called
canonical, if

(1) a-deg(PP ) = idega(P, s).

(2) P is a maximal element in the set of parabolic subgroups for which there
is a reduction PP of degree idega(P, s).

Remark 4.3.1. Let PP be a canonical reduction of P and denote by Ru(P ) the
unipotent radical of P . Note that by Remark 4.1.2, iii), the induced principal
(P/Ru(P ))-bundle PP /Ru(P ) inherits a flagging s′: indeed, we may choose a
representative for asi which lies in a maximal torus of Aut(P)|{xi} which is
contained in the intersection of the parabolic subgroup given by the flagging at
xi with the parabolic subgroup given by the canonical reduction and define the
parabolic subgroup of Aut(PP /Ru(P ))|{xi} associated with asi as the flagging
s′i of PP /Ru(P ) at xi, i = 1, ..., b. Using this, we find that PP has the
following properties:

(1′) (PP /Ru(P ), s′) is an a-semistable flagged principal bundle.
This holds, because the preimage of a reduction of positive degree of
PP /Ru(P ) would define a parabolic reduction of larger degree in P.

(2′) For all parabolic subgroups P ′ containing P , one has the inequality
a-deg(PP )(detP ⊗ det−1P ′ ) > 0. In fact, by the definition of a canonical re-
duction, we know that a-deg(PP )(detP ′) = a-deg(PP ′) < a-deg(PP ) =
a-deg(PP )(detP ).

We can now state the analog of Behrend’s theorem for flagged principal bundles:
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Theorem 4.3.2. Let (P, s) be a flagged principal G-bundle and a an admissible
stability parameter. Then, there is a unique reduction of P to a parabolic
subgroup P ⊂ G, satisfying the above conditions (1′) and (2′). Moreover, this
is a canonical reduction of (P, s).

Let us rewrite Behrend’s proof in our situation. Since canonical reductions
of P exist, only the uniqueness has to be proved. Thus, fix two parabolic
subgroups P and Q of G and let PP and PQ be reductions of P to P and Q,
respectively. Since any two parabolic subgroups share a maximal torus, we may
assume that, locally at the generic point η ∈ C, there is a reduction PT,η of P

to a torus T ⊂ P ∩Q, such that PP,η = PT,η ×T P and PQ,η = PT,η ×T Q
as subbundles of P.
Note further that any reduction of the generic fiber of P to a parabolic sub-
group canonically extends to a reduction of P, so that PP and PQ are deter-
mined by PP,η and PQ,η, respectively. We therefore fix a reduction PT,η. For
any parabolic subgroup T ⊂ P ⊂ G, this defines a reduction PP of P, and we
only need to study how the degree of PP varies with P . Finally, given a Borel
subgroup T ⊂ B ⊂ P , the parabolic degree a-deg(PB) determines a-deg(PP ).
Thus, like Behrend, we consider these degrees as a map:

d :
{
T ⊂ B ⊂ G |Borel subgroup

}
−→ X⋆(T )∨

B 7−→ a-deg(PB).

This map is a “complementary polyhedron”, i.e., it satisfies:

(P1) If B and B′ are two Borel subgroups contained in the parabolic subgroup
P ⊂ G, then d(B)|X⋆(P ) = d(B′)|X⋆(P ).

(P2) Let B and B′ be two Borel subgroups, such that the simple roots of B
are IB = {α, α1, . . . αr−1} and {−α} = −IB ∩ ∆B′ . Then, d(B)(α) +
d(B′)(−α) ≤ 0.

(P1) is clear, since both sides only depend on the reduction of P to P .
To see (P2), let L be a Levi subgroup of Pα := BB′, and set L′ :=
Pα/Ru(Pα)Z(L) ∼= L/Z(L). Then, L := Pα/Ru(Pα)Z(L) is the principal
L′-bundle obtained from PPα by extension of the structure group via Pα → L′,
and we may compute d(B)(α) and d(B′)(α) from L and the induced reduc-
tions. Thus, by replacing G by L′, we may assume that G is semisimple of
rank one and that B and B′ define reductions LB and LB′ of L which are
opposite at the generic point. Denote by g, b, and b′ the Lie algebras of G, B,
and B′, respectively, and by uα the root space of α.
Since the reductions are opposite in the generic fiber, the composition

LB ×B uα ⊂ LB ×B g = LB′ ×B′

g→ LB′ ×B g/b′

is non-zero, i.e., there is an injective map of line bundles LB(α)→ LB′(α).
If this map is an isomorphism at xi, then LB and LB′ are opposite in this
fiber. In this case, if si defines a reduction to either LB,xi or LB′,xi , then
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〈α, asi〉LB + 〈−α, asi〉LB′ = 0, and, if the reduction is different from LB,xi

and LB′,xi , then 〈α, asi〉LB = 〈−α, asi〉LB′ ≤ 0. (Note that by our reduction
to the case of semisimple rank one, there are only two possible values for the
product 〈., .〉, by Lemma 4.1.3). If the map is not an isomorphism at xi, then
deg(LB(α)) ≤ deg(LB′(α))−1. Thus, our claim follows again, because we have
chosen a to be admissible, i.e., 2|〈α, ai〉| < 1. Altogether, we have established
(P2). In the case G = SL3, the above properties imply that the points d(B)
are the corners of a hexagon whose sides are parallel to the coroots. This might
motivate the following observation of Behrend. (For any M ⊂ X⋆(T )∨, denote
by conv(M) the convex hull of M (in X⋆(T )∨R).)

Lemma 4.3.3 ([6], Lemma 2.5). With the above notation, we have

conv
({
d(B) |T ⊂ B

})
=

⋂

P⊃T
P max. par.

{
x ∈ X⋆(T )∨ |x(detP ) ≥ a-deg(PP )(detP )

}
.

In particular, if (P, s) is semistable, then this convex set contains 0.

Note that, for a maximal parabolic subgroup P , the space X⋆(P )Q is one
dimensional, so that in the above we might replace detP by any dominant
character λ ∈ X⋆(P )Q.

Proof. Again, given a parabolic subgroup P ⊃ T , denote by ∆P the set of
roots of P and, given a Borel subgroup B ⊃ T , by IB the set of positive simple
roots.
To prove the inclusion “⊂”, we fix P and show that d(B)(detP ) ≥ d(P )(detP ).
If B ⊂ P , then this holds by definition. Otherwise, let −α0 ∈ IB \ ∆P be a
simple root of B which is not a root of P , so that α0 ∈ ∆P . Let B′ be the
Borel subgroup that differs fromB by α0, and let Pα0 be the parabolic subgroup
generated by BB′. If we show that detP = λα0 + mα0, with λα0 ∈ X⋆(Pα0)Q
and m ≥ 0, then, by the properties (P1) and (P2) of d, we see that

d(B)(detP ) = d(B)(λα0 ) +md(B)(α0)

≥ d(B′)(λα0 ) +md(B′)(α0) = d(B′)(detP ).

Iterating this procedure, we finally arrive at the case B ⊂ P .
Let (., .) be a W -invariant scalar product on X⋆(T )Q. Define α∨0 , such that
the reflection sα0 is given as λ 7→ λ − (λ, α∨0 )α0. Then, we need to show
that (detP , α

∨
0 ) ≥ 0. Recall that detP =

∑
α∈∆P α. For a root α ∈ ∆P

with (α, α∨0 ) < 0, we know that sα0(α) ∈ ∆P , because α0, α ∈ ∆P , and
(sα0(α), α∨0 ) = −(α, α∨0 ). Thus, our assertion is trivial.
To prove the other inclusion, Behrend proceeds by induction on the rank of
G. The claim holds, if X⋆(T ) is one dimensional. Let P ⊃ T be a maxi-
mal parabolic subgroup with Levi subgroup L. Then, the polyhedron for the
associated Levi bundle is given by

conv
({
d(B) |T ⊂ B ⊂ P

})

⊂
{
ϕ ∈ X⋆(T )∨Q |ϕ(detP ) = a-deg(PP )(detP )

} ∼= X⋆(T/Z(L))∨Q.
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Now, in the first step of the proof, we have seen that, for any Borel subgroup
B ⊃ T , either d(B)(detP ) > a-deg(PP )) or d(B) = d(B′) for some Borel
subgroup B′ ⊂ P . Thus,

conv
({
d(B) |T ⊂ B

})
∩
{
ϕ |ϕ(detP ) = a-deg(PP )

}

= conv
({
d(B) |T ⊂ B ⊂ P

})
.

This shows that the d(B) also span the intersection of the halfspaces.

Again, fix a scalar product (., .) on X⋆(T )∨Q which is invariant under the action
of the Weyl group of G. Then, Behrend’s theorem follows immediately from:

Proposition 4.3.4 ([6], Proposition 3.13). Let PQ be a reduction of P sat-
isfying (1′) and (2′), and let PT,η be a reduction of PQ to T at the generic
point of C. Then, PQ is also defined as the reduction to the parabolic sub-
group associated with the rational one-parameter subgroup of least distance to
the origin in conv({ d(B) |T ⊂ B }).

Proof. Again, let Q ⊂ G be the parabolic subgroup corresponding to the re-
duction PQ, and let L be a Levi subgroup of Q. The intersection

⋂

P⊃Q
P max. parabolic

{
x ∈ X⋆(T )∨Q |x(detP ) = a-deg(PP )

}
∩X⋆(Z(L))∨Q

contains only one point, call it yQ. Indeed, X⋆(Q)Q ∼= X⋆(Z(L))Q and, if
Pi ⊃ Q, i = 1, . . . ,m, are the maximal parabolic subgroups containing Q, then
(detPi)i=1,...,m is a basis for X⋆(Q)Q.
Claim 1: Under the identification X⋆(T )∨ ∼= X⋆(T ), the parabolic subgroup
defined by yQ ∈ X⋆(T ) is Q.
First, yQ ∈ X⋆(Z(L))∨ implies that yQ ∈ X⋆(Z(L))Q. Furthermore, since the
characters detPi , i = 1, ...,m, form a basis of X⋆(Q)Q, we have yQ(detP ) =
a-deg(PQ)(detP ), for all maximal parabolic subgroups P ⊃ Q. Therefore,
property (2′) of PQ implies that the parabolic subgroup associated with yQ is
Q (compare the comments before Remark 4.1.2).
Claim 2: yQ ∈ conv({ d(B) |T ⊂ B ⊂ Q }) ⊂ conv({ d(B) |T ⊂ B }).
We have the exact sequence

X⋆(Z(L))∨Q −→ X⋆(T )∨Q π−→ X⋆(T/Z(L))∨,

and π(conv{ d(B) |T ⊂ B ⊂ Q }) is the polyhedron of the Levi bun-
dle PQ/Ru(Q), which is semistable by assumption. In particular, 0 ∈
π(conv{ d(B) |T ⊂ B ⊂ Q }) (Lemma 4.3.3). Thus, conv({ d(B) |T ⊂ B ⊂
Q })∩X⋆(Z(L))∨ 6= ∅, and yQ is the only point that can be contained in this
intersection.
Claim 3: Under the identification X⋆(T )∨R ∼= X⋆(T )R given by the W -invariant
scalar product (., .), we have yQ =

∑m
i=1 ni detPi with ni > 0, i = 1, ...,m.
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First, X⋆(Q)R ∼= X⋆(Z(L))R is the intersection of the subspaces invariant
under the reflections sαi , for αi ∈ IB \ IQ, i.e., X⋆(Q)R = (

⊕
αi∈IB\IQ Rαi)⊥.

In particular, X⋆(Z(L))∨R is the subspace that is invariant under the Weyl group
WL of L.
Let B ⊂ Q be a Borel subgroup, αi a simple root of B for which −αi is not
a root of Q, and Pmin

i the parabolic subgroup obtained from Q by adding the
root αi, i = 1, ...,m. Define α̃i := detQ⊗ det−1

Pmin
i
∈ X⋆(Q), i = 1, ...,m. Then,

α̃i = lαi +
∑
β∈IB\IQ lββ ∈ X⋆(Q) with l > 0, lβ ≥ 0, i = 1, ...,m. Therefore,

α̃i is the l-fold multiple of the orthogonal projection of αi to X⋆(Q), i =
1, ...,m. Moreover, detPi is invariant under the reflection sα, for α ∈ IB \ {αi},
i = 1, ...,m. Since α̃i and detPi are both positive linear combinations of the
simple roots, we find that (detPj , α̃k) = cjδjk with cj > 0, j, k = 1, ...,m.
Now, yQ|X⋆(Q) = a-deg(PQ) and deg(PQ)(α̃i) > 0, i = 1, ...,m, because PQ

satisfies (2′). We infer yQ =
∑m
i=1 ni detPi with ni > 0, for i = 1, ...,m.

Claim 4: yQ is the point of least distance to 0 in conv(d(B)).
We have seen in Lemma 4.3.3 that

conv
({
d(B) |T ⊂ B

})
=

⋂

P⊃T
P max. parabolic

{
x ∈ X⋆(T )∨ |x(detP ) ≥ a-deg(PP )

}
.

Thus, for any x ∈ conv({ d(B) |T ⊂ B }) and any i ∈ { 1, ...,m }, we have
x(detPi) > a-deg(PQ)(detPi) = yQ(detPi). Since yQ =

∑m
i=1 ni detPi with

ni ≥ 0, i = 1, ...,m, we see that

(x− yQ, yQ) =

m∑

i=1

ni
(
x(detPi)− yQ(detPi)

)
≥ 0,

so that ‖x‖ ≥ ‖yQ‖.

4.4 Semistable Reduction for Flagged Principal Bundles

Following our strategy from [22],[23], we want to prove a semistable reduction
theorem for flagged principal bundles.

Theorem 4.4.1. Let C be a smooth projective curve over the discrete valuation
ring R with residue field k. Let { xi : Spec(R) → C | i = 1, . . . , b } be a finite
set of disjoint sections, G a semisimple Chevalley group scheme over R, P a
tuple of parabolic subgroups of G, and a an admissible stability parameter.
Then, for any a-semistable flagged principal G-bundle (PK , sK) over CK , there
is a finite extension R′ ⊃ R, such that (PK , sK) extends to an a-semistable
flagged principal G-bundle over CR′ .

Proof. In order to ease notation, we will assume that Pi = B, i = 1, ..., b, for a
fixed Borel subgroup B of G. For our main application, this case is sufficient.
The other cases are proved in the same way. Write S = { x1, . . . , xb }, and
consider S as a closed subscheme of C.
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First Step: Find an arbitrary extension of GK to CR′ .
We know ([22], First Step) that, after replacing R by a finite extension, we
can always extend the principal G-bundle PK to a principal bundle PR over
CR. The reductions of PR|S are parameterized by a scheme which is locally
(over R) isomorphic to G/B ×R S. Since this scheme is projective over R, the
flaggings of PK|K×RS extend uniquely to flaggings si of PR|S , i = 1, ..., b.
Second Step: Find a modification of (PR, s).
Fix a local parameter π ∈ R. Assume that (Pk, s) is not semistable. Then, by
Theorem 4.3.2, there is a canonical reduction of Pk to a parabolic subgroup
P ⊂ G. Let T ⊂ B ∩ P be a maximal torus of G. The relative position of the
reduction to P and to B at xi is given by an element of P\G/B ∼= WP \W ,
i = 1, ..., b. Here, W = N(T )/T is the Weyl group of G, and WP is the
Weyl group of the Levi quotient of P . For i = 1, . . . , b, we choose an element
wi ∈ N(T ) which defines the relative position at xi.
We want to describe (PR, s) by a glueing cocycle. Recall that any g ∈∏
S G((t))(R) defines a principal G-bundle Pg on C together with a trivial-

ization of the restrictions Pg|C\S and Pg|ÔC,S . In particular, the latter trivi-

alization also defines flaggings at S.
As in [22], we choose a maximal parabolic subgroup Q ⊃ P . Then, there
is a finite, disjoint set of sections U , such that we can find a cocycle g ∈∏
S G((t))(R) ×∏U G((t))(R) and g0 ∈

∏
S G(R), satisfying the following:

(1) gg0 defines (PR, s)

(2) g mod π ∈∏S∪U P ((t))(k) defines the canonical reduction of Pk to P .

(3) (g0)xi∈S mod π = (wi)xi∈S ∈ N(T )(k).

(4) Either g satisfies the conditions of [22], Proposition 7, or g ∈∏
S∪U P ((t))(R).

(5) If g ∈ ∏
S∪U P ((t))(R), then the maximal N , such that (g0)xi∈S ≡

(wi)xi∈S mod πN is finite. Furthermore, (g0)xi∈S mod πN+1 6∈∏
xi∈S PwiB.

For the above cocycle gg0, choose z = πℓ/N with ℓ maximal, such that the
cocycle zgg0(w

−1z−1w) = zgz−1zg0(w−1z−1w) is an R[π1/N ]-valued cocycle.
This defines a flagged principal G-bundle (P ′, s′) which is another extension
of (PK , sK).
Third Step: Show that (P ′

k, s
′) is less unstable.

The Harder–Narasimhan strata (HN-strata) that we shall consider in the fol-
lowing are understood as Harder–Narasimhan strata in the stack BunG,x,P ,a of
flagged principal G-bundles of type (x, P ) with respect to the stability param-
eter a.

Lemma 4.4.2. Let (Pη, s) be a flagged principal G-bundle which specializes to
the flagged principal G-bundle (P0, s), i.e., assume that there is a family of
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flagged principal G-bundles parameterized by the complete discrete valuation
ring R with special fiber (P0, s) and generic fiber (Pη, s). Assume further that
(Pη, s) has a canonical reduction defined over the generic point of R. Then,
idega(Pη, s) ≤ idega(P0, s). If the flagged principal G-bundles (Pη, s) and
(P0, s) do not lie in the same HN-stratum, then idega(Pη, s) < idega(P0, s).

Proof. Let PP,η denote the canonical reduction of (Pη, s). This induces a
reduction P0,P of the generic fiber by first extending the reduction to an open
subset of the special fiber and then extending this to a reduction over the
special fiber. Let us compare the contributions of the flaggings at the point
xi, i = 1, ..., b. First assume that the reduction PP,η extends to the special
fiber, locally at the point xi. In this case, this extension coincides with P0,P

and we can apply the semicontinuity argument of Example 4.1.4 to see that
the contribution of 〈detP , ai〉 can at most increase in the special fiber.
In the other case, the reduction PP,η|{xi} can also be extended to a reduction
of Pxi . We denote the corresponding reduction by PP,xi . To this reduction,
we can apply the same argument as before to see that the corresponding value
of 〈detP , ai〉 can at most increase in the special fiber.
Finally, let Pmax

p be the maximal subsheaf of P ×G Lie(G) that extends

Pη,P ×P Lie(P ). Then, in the special fiber over xi, we have

P
max
p|{xi,0 } ⊂Pxi,P ×P Lie(P ) ∩P0,P ×P Lie(P )|{xi,0 }, i = 1, ..., b.

Since a is admissible, this implies

ideg(Pη, s) ≤ a-deg(P0,P , s)(det(P ))−
− deg

(
coker(Pmax

p,0 →P0,P ×P Lie(P )
)
·

·
(
1− 2 ·max

{
|〈α, ai〉| |α a root of G, i = 1, . . . , b

})

≤ ideg(P0, s).

Therefore, we see that either ideg(Pη) < ideg(P0), or the canonical reduction
PP defines a reduction of P0 of the same parabolic degree, which must then
be the canonical reduction by Theorem 4.3.2.

Lemma 4.4.3. Let P be a principal G-bundle and (P, s) and (P, s′) two flag-
gings of P of the same type. Let PP be the canonical reduction of (P, s), and
denote by wi and w′i ∈ P\G/B the elements defined by the relative position
of the two reductions of P|{xi} to P and B given by si and s′i, respectively,
i = 1, ..., b. Assume that w′i specializes to wi, i = 1, ..., b. Then, (P, s′) is less
unstable than (P, s).

Proof. Since s′ specializes to s, we can apply Lemma 4.4.2 to see that
ideg(P, s) ≥ ideg(P, s′). Assume that both flagged principal G-bundles lie
in the same HN-stratum. Then, the canonical reduction of (P, s′) defines an-
other reduction P ′

P of P to P . Now, we may use Example 4.1.4 to see that
the parabolic degree of (P ′

P , s) is bigger than the parabolic degree of (PP , s
′),

because w 6= w′.
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Finally, as in [22], third step, choose a Levi subgroup L of Q, set PQ :=
PP ×P Q, and consider the family Qλ of principal Q-bundles over Ck × A1

that is isomorphic to PQ ×Gm over C ×Gm and such that the fiber over 0 is
PQ/Ru(Q)×L Q. Set Pλ := Qλ ×Q G. Note that the flagging of Pk induces
a flagging for the whole family (Pλ, sλ); denote by (P0, s0) the fiber over 0 of
this family.

Lemma 4.4.4. The flagged principal G-bundles (P0, s0) and (Pk, s) lie in the
same HN-stratum of BunG,x,P ,a.

Proof. The principal P -bundle PP also defines a reduction P0,P of P0 to P .
For this reduction, a-deg(P0,P ) = a-deg(PP ), because all terms in the defini-
tion of the degree depend only on the quotient of PP /Ru(P ). By Behrend’s
characterization of the canonical reduction, this implies that P0,P is the canon-
ical reduction of P0.

Corollary 4.4.5. The flagged principal G-bundle (P ′
k, s
′) is less unstable than

(Pk, s).

Proof. As in the case of principal bundles, we only need to compare the HN-
strata of (P ′

k, s
′) and (Pk, s). If P ′ and P are isomorphic as principal G-

bundles (i.e., without flagging), then the cocycle used to define P ′ satisfies
(5). Then, we know that the element g′0 specializes to w, in which case Lemma
4.4.3 proves our claim.

Otherwise, we can argue as in the case of principal bundles [23] to see that the
reduction of P0 to Q does not lift to P ′. So, again we know that P ′ is less
unstable.

As in the case of principal bundles without flaggings, we can now argue as fol-
lows: start with an arbitrary unstable extension (P, s) of the flagged principal
bundle (PK , sK). Either the special fiber of (P, s) is semistable, or we can find
another extension (P ′, s′) which is less unstable. Since the instability degree
of (P, s) is finite, this process will stop after finitely many iterations.

5 Construction of the Moduli Spaces

We will now carry out the GIT construction of the moduli spaces of flagged
principalG-bundles. The strategy is roughly the same as in the case of principal
G-bundles ([36], [38], [15]), i.e., we first introduce flagged pseudo G-bundles
whose moduli spaces can be constructed with the help of decorated flagged
vector bundles and then explain how we obtain the moduli spaces of flagged
principal G-bundles from there. At the end, we will give the full construction of
the moduli space of decorated flagged vector bundles, following and generalizing
[37].
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5.1 Reduction to a Problem for Decorated Vector Bundles

Fix the type (x, P ) of the flagging and the semistability parameter a. We want
to adapt the construction of moduli spaces for principal bundles given in [15] to
flagged principalG-bundles. Thus, we will fix a faithful representation ̺ : G −→
SL(V ) ⊂ GL(V ) on a finite dimensional k-vector space V . Given a principal
G-bundle P over C, we write P(V ) or P(̺) for the vector bundle with fiber
V that is associated with G via the representation ̺, PSL(V ) := P ×G SL(V )
for the corresponding principal SL(V )-bundle, and PGL(V ) := P ×G GL(V )
for the associated principal GL(V )-bundle.

̺-Flagged Principal G-Bundles. — Let P = (P1, ..., Pb) be a tuple of
parabolic subgroups of GL(V ). As before, we fix a tuple x = (x1, ..., xb) of
distinct k-rational points. Then, a ̺-flagged principal G-bundle (of type (x, P ))
is a tuple (P, s) that is composed of a principal G-bundle P and reductions
si : {xi} −→ (PGL(V ) ×C {xi})/Pi of the associated principal GL(V )-bundle
at the points xi, i = 1, ..., b. This time, the stability parameter will be a tuple
a = (a1, ..., ab) with ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b.
Before we introduce the correct notion of semistability, we point out that, given
a parabolic subgroup Q of G, a dominant character χ on Q, and ai as above,
there is no intrinsic way to define 〈χsi , asi〉 (compare Section 4). Thus, we have
to explain how we extend a parabolic subgroup of G and a dominant character
on it to a parabolic subgroup of GL(V ) and a dominant character on it. For
this, we use the construction introduced in [36] and [15].

Fix a basis for V and let T̃ ⊂ GL(V ) be the corresponding maximal torus

of diagonal matrices. The basis yields a basis for X⋆(T̃ ), i.e., an iso-

morphism X⋆(T̃ ) ∼= Zn. The symmetric bilinear map Zn × Zn −→ Z,
((b1, ..., bn), (b′1, ..., b

′
m)) 7−→ ∑n

i=1 bi · b′i induces the symmetric bilinear map

(., .) : X⋆(T̃ ) × X⋆(T̃ ) −→ Z. Let (., .)K : X⋆,K(T̃ ) × X⋆,K(T̃ ) −→ K be itsK-bilinear extension to the vector space X⋆,K(T̃ ) := X⋆(T̃ ) ⊗Z K, K = Q,R.
Since the pairing (., .) is invariant under the Weyl group, it induces similar
pairings on the character and cocharacter groups of any other maximal torus
T̃ ′ ⊂ GL(V ).

On the other hand, given a one-parameter subgroup λ ∈ X⋆(T̃ ) and a char-

acter χ̃ ∈ X⋆(T̃ ), the composition χ̃ ◦ λ : Gm(k) −→ Gm(k) is of the form

z 7−→ z〈χ̃,λ〉 and gives the duality pairing 〈., .〉 : X⋆(T̃ ) × X⋆(T̃ ) −→ Z. We

let 〈., .〉K : X⋆K(T̃ ) ×X⋆,K(T̃ ) −→ K, K = Q,R, X⋆K(T̃ ) := X⋆(T̃ ) ⊗Z K, be its

extensions. Thus, any rational one-parameter subgroup λ ∈ X⋆,Q(T̃ ) gives rise

to a character χ̃λ ∈ X⋆Q(T̃ ) defined by

(λ, λ′)Q = 〈 χ̃λ, λ′ 〉Q, ∀λ′ ∈ X⋆,Q(T̃ ).

One checks that χ̃λ comes from a character of Q := QGL(V )(λ) that depends
only on the conjugacy class of λ within Q. If the weighted flag of λ is, for
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example, ({0} ( U ( V, (1)), then

χ̃λ : QGL(V )(λ) −→ Gm(k) (1)
(
g ⋆
0 h

)
7−→ det(g)dim(U)−dim(V ) · det(h)dim(U).

If T ⊂ G is a maximal torus, then we may extend it to a maximal torus T̃ of
GL(V ). The scalar product on X⋆K(T̃ ) that we have obtained before restricts
to a scalar product on X⋆K(T ). Lemma 2.8 in Chapter II of [32] implies that
the scalar product on X⋆K(T ) thus obtained does not depend on the choice

of the extending torus T̃ . Furthermore, it is invariant under the Weyl group
N (T )/T .
If λ : Gm(k) −→ G is a one-parameter subgroup, then we associate with
it the parabolic subgroup QG(λ), the anti-dominant character χλ, and the
dominant character χ−λ = −χλ. Likewise, we have QGL(V )(λ), the anti-
dominant character χ̃λ, and the dominant character χ̃−λ = −χ̃λ. Note that
QG(λ) = QGL(V )(λ) ∩G and χ̃±λ|QG(λ) = χ±λ.

Proposition 5.1.1. The assignment λ 7−→ (QG(λ), χ−λ) (λ 7−→ (QG(λ), χλ))
is a surjection from the set of one-parameter subgroups of G onto the set of
pairs consisting of a parabolic subgroup of G and a dominant (anti-dominant)
character on that parabolic subgroup.

Proof. See Section 3.2 of [15].

We say that a ̺-flagged principal G-bundle (P, s) is a-(semi)stable, if, for
every one-parameter subgroup λ : Gm(k) −→ G and every reduction of P to
the parabolic subgroup Q := QG(λ), the inequality

deg
(
PQ(χ−λ)

)
+

b∑

i=1

〈
(χ̃−λ)si , asi

〉
(≤)0

holds true.

Associated Flagged Principal Bundles and Semistability. — Now,
we return to the situation where we are given a type (x, P ) with x as usual and
P = (P1, ..., Pb) a tuple of parabolic subgroups of G and a stability parameter
a = (a1, ..., ab) with ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b. As we have explained in Sec-
tion 4, we may view ai as a rational one-parameter subgroup ofG with PG(ai) =

Pi, i = 1, ..., b. We set ̺⋆(P ) := (P̃1, ..., P̃b) := (PGL(V )(a1), ..., PGL(V )(ab)) and
̺⋆(a) := (ã1, ..., ãb) := (̺ ◦ a1, ..., ̺ ◦ as). Next note that any flagged principal
G-bundle (P, s) of type (x, P ) defines the ̺-flagged principal GL(V )-bundle
(PGL(V ), ̺⋆(s)), ̺⋆(s) = (s̃1, ..., s̃b), with

s̃i : {xi} si−→P|{xi}/Pi →֒PGL(V )|{xi}/P̃i, i = 1, ..., b.
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Lemma 5.1.2. A flagged principal G-bundle (P, s) of type (x, P ) is a-
(semi)stable, if and only if the associated ̺-flagged principal GL(V )-bundle
(PGL(V ), ̺⋆(s)) of type (x, ̺⋆(P )) is ̺⋆(a)-(semi)stable.

Proof. By Proposition 5.1.1, (P, s) is a-(semi)stable, if and only if, for every
one-parameter subgroup λ : Gm(k) −→ G and every reduction PQ of P to
Q := QG(λ), one has

deg
(
PQ(χ−λ)

)
+

b∑

i=1

〈
(χ−λ)si , asi

〉
(≤)0.

Our contention therefore reduces to the trivial fact 〈(χ−λ)si , asi〉 =
〈(χ̃−λ)si , ãsi〉, i = 1, ..., b.

Another Formulation of Semistability for ̺-Flagged Principal
Bundles. — Before we may introduce even more general objects, we have
to reformulate the notion of a-(semi)stability. The first trivial reformulation
is that we may say that (P, s) is a-(semi)stable, if, for every one-parameter
subgroup λ : Gm(k) −→ G and every reduction of P to the parabolic subgroup
Q := QG(λ), the inequality

deg
(
PQ(χλ)

)
+

b∑

i=1

〈
(χ̃λ)si , asi

〉
(≥)0

holds true.
Next, assume we are given a principal G-bundle P, a one-parameter subgroup
λ : Gm(k) −→ G with weighted flag

(
V•(λ), β•(λ)

)
=
(
{0} ( V1 ( · · · ( Vt ( V, (β1, ..., βt)

)
,

and a reduction PQ of P to Q := QG(λ). Then, we obtain an induced
reduction PQGL(V )(λ) of the principal GL(V )-bundle PGL(V ) to QGL(V )(λ).
The datum of that reduction is equivalent to the datum of a filtration

E•(PQ) : {0} ( E1 ( · · · ( Et ( E with rk(Ei) = dim(Vi), i = 1, ..., t.

Using (1), one easily computes

deg
(
PQ(χλ)

)
=

t∑

i=1

βi ·
(
deg(E) · rk(Ei)− deg(Ei) · rk(E)

)
. (2)

Note that a parabolic subgroup of GL(V ) is the stabilizer of a flag in V . Thus,
the tuple P of parabolic subgroups of GL(V ) gives quotients V −→ Wij , and
subspaces Vij := ker(V −→Wij), j = 1, ..., ti, i = 1, ..., b, such that Vij ( Vij+1,
j = 1, ..., ti − 1, i = 1, ..., b.
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Next, let λ : Gm(k) −→ G be a one-parameter subgroup with weighted flag

(
V•(λ), β•(λ)

)
=
(
{0} ( V ′1 ( · · · ( V ′t ( V, (β1, ..., βt)

)

and a a rational one-parameter subgroup of G with weighted flag

(
V•(a), β•(a)

)
=

(
{0} ( V1 ( · · · ( Vτ ( V,

1

dim(V )
· (a1, ..., aτ )

)
.

In addition, define

Qh := V/Vh, Rih := V ′i /(V
′
i ∩ Vh), rih := dim(Rih), i = 1, ..., t, h = 1, ..., τ,

r := dim(V ). We claim that

〈χ̃λ, a〉 =

t∑

i=1

(
βi ·

τ∑

h=1

ah ·
(
r · rih − rj · dim(Qh)

))
. (3)

By bilinearity, this has to be checked only for τ = t = 1, β1 = 1, and a1 = r.
In this case, it follows easily from the definitions and (1).

Finally, suppose we are given a stability parameter a = (a1, ..., ab) with ai ∈
X⋆(Pi)

∨Q,+, i = 1, ..., b. Then, we write β•(ai) =: (1/r)·(ai1, ..., aiti), i = 1, ..., b.
The parabolic subgroups P1, ..., Pb define quotients V −→ Wij , and we set
rij := dim(Wij), j = 1, ..., ti, i = 1, ..., b. Suppose that (P, s) is a ̺-flagged
principal G-bundle of type (x, P ). Then, we have the associated vector bundle
E, and the reductions si define quotients qij : Ei −→ Qij with dim(Qij) = rij ,
j = 1, ..., ti, i = 1, ..., b. For any subbundle {0} ( F ( E, we set

a-deg(F ) := deg(F )−
b∑

i=1

ti∑

j=1

aij · dim
(
qij(F )

)
.

Putting (2) and (3) together, we infer the following characterization of semista-
bility.

Proposition 5.1.3. The ̺-flagged principal G-bundle is a-(semi)stable, if and
only if, for every one-parameter subgroup λ of G and every reduction PQ of
P to Q := QG(λ), the inequality

t∑

i=1

βi
(
a-deg(E) · rk(Ei)− a-deg(Ei) · rk(E)

)
(≥)0

is verified. Here,

E•
(
PQ

)
= {0} ( E1 ( · · · ( Et ( E and β•(λ) = (β1, ..., βt).
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Reminder on Pseudo G-Bundles. — Following the general strategy from
[36] and [15], we will first embed principal G-bundles into pseudo G-bundles
which in turn can be embedded into decorated vector bundles for which we
finally can do the GIT-calculations. We have already chosen to view principal
G-bundles as principal GL(V )-bundles together with a reduction to G, i.e.,
as pairs (P, σ) that consist of a principal GL(V )-bundle P and a section
σ : C −→ P/G. Given such a pair (P, σ), let E be the corresponding vector
bundle. Then,

P = Isom(V ⊗ OC , E) ⊂Hom(V ⊗ OC , E) = Spec
(
Sym⋆(V ⊗ E∨)

)
.

Moreover, the good quotient Hom(V ⊗ OC , E)//G = Spec(Sym⋆(V ⊗ E)G)
exists and there is the open embedding

Isom(V ⊗ OC , E)/G ⊂Hom(V ⊗ OC , E)//G.

Thus, σ is given by a non-trivial homomorphism τ : Sym⋆(V ⊗E∨)G −→ OC .
This suggests the following definition: a pseudo G-bundle (E, τ) consists of
a vector bundle E with trivial determinant det(E) ∼= OC and a non-trivial
homomorphism τ : Sym⋆(V ⊗ E∨)G −→ OC of OC -algebras. Not any homo-
morphism τ gives rise to a principal G-bundle, but the following result ([36],
Corollary 3.4) gives an important characterization when it does.

Lemma 5.1.4. Let (E, τ) be a pseudo G-bundle with associated section σ : C −→
Hom(V ⊗OC , E)//G. Then, (E, τ) is a principal G-bundle, if and only if there
exists a point x ∈ C, such that

σ(x) ∈ Isom(V,E|{x})/G.

For our purposes, we therefore look at the following objects: a ̺-flagged pseudo
G-bundle (E, τ, q) is a pseudo G-bundle (E, τ) together with quotients

qij : E|{xi} −→ Qij

onto k-vector spaces Qij , j = 1, ..., ti, i = 1, ..., b, such that

ker(qij) ⊆ ker(qij+1), j = 1, ..., ti − 1, i = 1, ..., b. (4)

The tuple (x, r) with r = (rij := dim(Qij), j = 1, ..., ti, i = 1, ..., s) will be
referred to as the type of the flagging. There is an obvious notion of isomorphism
of ̺-flagged pseudo G-bundles.
The algebra Sym⋆(V ⊗ E∨)G is finitely generated, so that the morphism τ is
determined, for s ≫ 0, by its restriction τ≤s :

⊕s
i=1 Symi(V ⊗ E∨)G −→ OC .

In particular, ̺-flagged pseudo-G-bundles form an algebraic stack, locally of
finite type. Lemma 5.1.4 implies that the stack of ̺-flagged G-bundles is an
open substack of the stack of ̺-flagged pseudo G-bundles. Following [15], we
choose s≫ 0, such that
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a) Sym⋆(V ⊗ kr∨)G is generated by elements in degree ≤ s.

b) Sym(s!)(V ⊗ kr∨)G is generated by elements in degree 1, i.e., by the
elements in the vector space Syms!(V ⊗ kr∨)G.

SetVs(E) :=
⊕

(d1,...,ds):

di≥0,
∑
idi=s!

(
Symd1

(
(V ⊗ E∨)G

)
⊗ · · · ⊗ Symds

(
Syms(V ⊗ E∨)G

))
.

Then, τ induces morphisms

τs! : Syms!(V ⊗ E∨)G −→ OC

and
ϕ : Vs(E)։ Syms!(V ⊗ E∨)G −→ OC .

Homogeneous Representations. — Instead of the representation Vs, we
can also allow a more general class of representations without complicating the
arguments. This might be useful for other applications, too. A representation
κ : GLr(k) −→ GL(U) is called a polynomial representation, if it extends to a
(multiplicative) map κ : Mr(k) −→ End(U). We say that κ is homogeneous of
degree u ∈ Z, if

κ
(
z · Er) = zu · idU , ∀z ∈ Gm(k).

Let P (r, u) be the abelian category of homogeneous polynomial representations
of GLr(k) of degree u. It comes with the duality functor

⋆ : P (r, u) −→ P (r, u)

κ 7−→
(
κ ◦ id∨GLr(k)

)∨
.

Here, .∨ stands for the corresponding dual representation. An example for a
representation in P (r, u) is the u-th divided power (Symu(idGLr(k)))

⋆, i.e., the
representation of GLr(k) on

Du(W ) :=
(
Symu(W∨)

)∨
, W := kr.

More generally, we look, for u, v > 0, at the GLr(k)-moduleDu,v(W ) :=
⊕

(u1,...,uv):

ui≥0,
∑v
i=1

ui=u

(
Du1(W )⊗ · · · ⊗Duv (W )

)
. (5)

Lemma 5.1.5. Let κ : GLr(k) −→ GL(U) be a homogeneous polynomial repre-
sentation of degree u. Then, there exists an integer v > 0, such that U is a
quotient of the GL(U)-module Du,v(W ). If κ is homogeneous, but not polyno-
mial, then it is a quotient of Du,v(W )⊗ (

∧rW )⊗−w for some w > 0.
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Proof. The proof of Proposition 5.3 in [27] shows that any representation
κ′ : GLr(k) −→ GL(U ′) in P (r, u) is, for suitable v > 0, a sub-representation
of the representation of GLr(k) on the vector space

⊕

(u1,...,uv):

ui≥0,
∑v
i=1

ui=u

(
Symu1(W )⊗ · · · ⊗ Symuv (W )

)
.

Applying this result to the dual κ⋆ : GLr(k) −→ GL(U⋆) of κ proves the first
assertion.
The second assertion follows from the obvious fact that U ⊗ (

∧rW )⊗w will be
a polynomial representation for large w.

Remark 5.1.6. As is apparent from the construction in [27], the above result
also holds over the ring of integers.

Fix natural numbers u, v and let A be any vector bundle on the curve C, that
is, we do not assume A to have rank r. Then, we set for w ≥ 0Du,v(A) :=

⊕

(u1,...,uv):

ui≥0,
∑v
i=1

ui=u

(
Du1(A)⊗· · ·⊗Duv (A)

)
, Dw(A) :=

(
Symw(A∨)

)∨
.

Remark 5.1.7. Any surjective homomorphism ψ : A −→ B between vector bun-
dles induces a surjective homomorphismDu,v(ψ) : Du,v(A) −→ Du,v(B).

Decorated Flagged Vector Bundles. — Now, fix a line bundle L on
C. A decorated flagged vector bundle of type (r, d, x, r, u, v, L) is a tuple (E, q, ϕ)
which consists of a vector bundle E on C of rank r and degree d, a non-trivial
homomorphism

ϕ : Du,v(E) −→ L,

and a flagging q = (qij : E|{xi} −→ Qij , j = 1, ..., ti, i = 1, ..., s) of type r =
(rij , j = 1, ..., ti, i = 1, ..., s). The moduli functors for the objects we have
considered, so far, are straightforward to define (just form the isomorphism
classes in the corresponding stack). For decorated flagged vector bundles, this
is slightly more delicate. Thus, we give the definition. A family of decorated
flagged vector bundles of type (r, d, x, r, u, v, L) (parameterized by the scheme
S) is a tuple (ES , qS ,NS , ϕS) which consists of a vector bundle ES of rank r
on S × C and fiberwise of degree d, a tuple q

S
= (qS,ij : ES|S×{xi} −→ QS,ij)

of surjections onto vector bundles QS,ij of rank rij , j = 1, ..., ti, i = 1, ..., b,
subject to the conditions in (4), a line bundle NS on S, and a homomorphism
ϕS : Du,v(ES) −→ π⋆C(L) ⊗ π⋆S(NS) which is non-trivial on every fiber {s} ×
C. Two such families (ES , qS ,NS , ϕS) and (E′S , q

′
S
,N ′

S , ϕ
′
S) are said to be

isomorphic, if there exist isomorphisms ψS : ES −→ E′S and χS : NS −→ N ′
S

fulfilling
qS,ij = q′S,ij ◦ ψS|S×{xi}, j = 1, ..., ti, i = 1, ..., b,
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and
ϕS =

(
idπ⋆C(L) ⊗ π⋆S(χS)

)−1 ◦ ϕ′S ◦Du,v(ψS).

Thus, we may form the functor that assigns to every scheme the set of isomor-
phism classes of families of decorated vector bundles of type (r, d, x, r, u, v, L)
parameterized by S.
By Lemma 5.1.5, the representation Vs can be written as the quotient ofDu,v(W ) ⊗ (

∧r
W )⊗−s!. Now, suppose we are given a vector bundle ES on

S ×C, a homomorphism τS : Sym⋆(V ⊗E∨S )G −→ OS×C and a flagging q
S

of
type (x, r) of ES . Then, the determinant of ES is isomorphic to the pullback
of a line bundle DS on S. Choose an isomorphism det(ES) ∼= π⋆S(DS), and set
NS := D⊗s!, so that τS gives rise toDu,v(ES)⊗N

∨
S ։ Vs(ES)։ Syms!(V ⊗ E∨S )G −→ OS×C .

Thus, we obtain the family (ES , qS ,NS , ϕS) of decorated flagged vector bun-
dles. Its isomorphism class does not depend on the choice of the isomorphism
det(ES) ∼= π⋆S(DS), so that this construction gives rise to a natural transfor-
mation of functors.

Lemma 5.1.8. The above natural transformation applied to S = Spec(K), K
an algebraically closed extension of k, is injective.

Proof. The proof is the same as the one of Lemma 5.1.1 in [15].

We now come to the definition of semistability. Fix the stability parameter a
for the flagging. Here, we view a = (aij , j = 1, ..., ti, i = 1, ..., s) as a tuple of
rational numbers, and we assume that

• aij > 0, j = 1, ..., ti, i = 1, ..., s;

• ∑ti
j=1 aij < 1, i = 1, ..., s.

Then, given a decorated flagged vector bundle (E, q, ϕ) and a weighted filtration
(E•, β•) of E, we define

Ma(E•, β•) :=
t∑

j=1

βj ·
(
a-deg(E) · rk(Ej)− a-deg(Ej) · rk(E)

)
.

The quantity µ(E•, β•;ϕ) is obtained as follows. Let η be the generic point of
the curve C and let E stand for the restriction of E to {η}. Then, the restricted
homomorphism ϕ|{η} gives a point

ση ∈ P(Du,v(E)
)
.

We may choose a one-parameter subgroup λK : Gm(K) −→ SL(E), K := k(C),
whose weighted flag agrees with the restriction of (E•, β•) to {η} and define

µ
(
E•, β•;ϕ

)
:= µ(λK , ση).

This does not depend on the choice of λK .
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Remark 5.1.9. By construction, the vector bundle Du,v(E) is a subbundle of
(E⊗u)⊕N for some N > 0. Set Et+1 := E and, for (i1, ..., iu) ∈ { 1, ..., t+1 }×u,

Ei1 ⋆ · · · ⋆ Eiu :=
(
Ei1 ⊗ · · · ⊗ Eiu

)⊕N ∩Du,v(E).

For a weighted filtration (E•, β•) of the vector bundle E, we define the associ-
ated (integral) weight vector

(
γ1, . . . , γ1︸ ︷︷ ︸
(rkE1)×

, γ2, . . . , γ2︸ ︷︷ ︸
(rkE2−rkE1)×

, . . . , γt+1, . . . , γt+1︸ ︷︷ ︸
(rkE−rkEt)×

)
:=

t∑

l=1

βl · γ(rkEl)r . (6)

(Note that we recover βl = (γl+1 − γl)/r, l = 1, ..., t.)
With these concepts, one readily verifies

µ
(
E•, β•;ϕ

)
=

−min
{
γi1 + · · ·+ γiu

∣∣ (i1, ..., iu) ∈ { 1, ..., t+ 1 }×u : ϕ|(Ei1⋆···⋆Eiu ) 6≡ 0
}
.

To define semistability, we also fix a positive rational number δ. Then, we say
that a decorated flagged vector bundle is (a, δ)-(semi)stable, if the inequality

Ma(E•, β•) + δ · µ
(
E•, β•;ϕ

)
(≥)0

holds for any weighted filtration (E•, β•) of E.

Boundedness. — The starting point for the GIT construction is the bound-
edness of the family of (a, δ)-semistable decorated flagged vector bundles of type
(r, d, x, r, u, v, L). This property is a consequence of the following statement.

Proposition 5.1.10. Fix the type (r, d, x, r, u, v, L) and the stability parameter
δ. Then, there is a positive constant D0, such that, given a tuple a = (aij , j =

1, ..., ti, 1 = 1, ..., s) of positive rational numbers with
∑ti

j=1 aij < 1 for i =
1, ..., s and an (a, δ)-semistable decorated flagged vector bundle (E, q, ϕ) of type
(r, d, x, r, u, v, L), one finds

µmax(E) ≤ d

r
+D0.

Proof. Let (F, q̃) be any vector bundle with a flagging of type r. Setting R :=
max{ rij | j = 1, ..., ti, i = 1, ..., s }, we derive, for a as in the proposition, the
obvious estimate

deg(F ) ≥ a-deg(F ) ≥ deg(F )− s · R.

Now, let (E, q, ϕ) be as above and 0 ( F ( E a subbundle. For the weighted
filtration (E• : 0 ( F ( E, β• = (1)), one checks

µ(E•, β•;ϕ) ≤ u · (r − 1).
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Together with these two estimates, the condition of (a, δ)-semistability implies

d · rk(F )− deg(F ) · r + s · r ·R + δ · u · (r − 1)

≥ a-deg(E) · rk(F )− a-deg(F ) · r + δ · µ(E•, β•;ϕ) ≥ 0.

We transform this into the inequality

µ(F ) ≤ d

r
+
s · r · R+ δ · u · (r − 1)

rk(F ) · r ≤ d

r
+ s · R+

δ · u · (r − 1)

r︸ ︷︷ ︸
=:D0

.

This is the assertion we made.

5.2 The Moduli Space of Decorated Flagged Vector Bundles

Suppose we are given a constant D. Then, we let S be the bounded family of
isomorphism classes of vector bundles of rank r and degree d with µmax(E) ≤ D.
We also fix an ample line bundle OC(1) of degree one on C, a natural number n,
such that E(n) is globally generated and H1(E(n)) = {0} for any vector bundle
E, such that [E] ∈ S, as well as a vector space Y of dimension d+ r(n+ 1− g).
Now, a quotient family of decorated flagged vector bundles of type
(r, d, x, r, u, v, L) (parameterized by the scheme S) is a tuple (kS , qS ,NS , ϕS)
which consists of a quotient kS : Y ⊗ π⋆C(OC(n)) −→ ES , a tuple
q
S

= (qS,ij : ES|S×{xi} −→ QS,ij, j = 1, ..., ti, i = 1, ..., b), a line bundle
NS on S, and a homomorphism ϕS : Du,v(ES) −→ π⋆C(L)⊗ π⋆S(NS) with the
following properties:

• ES is a vector bundle on S × C, such that [ES|{s}×C ] ∈ S, for every
s ∈ S(k),

• πS⋆(kS ⊗ idπ⋆C(OC(n))) : Y ⊗ OS −→ πS⋆(ES ⊗ π⋆C(OC(n))) is an isomor-
phism,

• q
S

consists of surjections onto vector bundles QS,ij of rank rij , j =
1, ..., ti, i = 1, ..., b, subject to the conditions in (4), and

• ϕS is non-trivial on every fiber {s} × C.

Two such families (kS , qS ,NS , ϕS) and (k′S , q
′
S
,N ′

S , ϕ
′
S) are said to be iso-

morphic, if there exist isomorphisms ψS : ES −→ E′S and χS : NS −→ N ′
S ,

fulfilling

kS = k′S ◦ ψS , qS,ij = q′S,ij ◦ ψS|S×{xi}, j = 1, ..., ti, i = 1, ..., b,

ϕS =
(
idπ⋆C(L) ⊗ π⋆S(χS)

)−1 ◦ ϕ′S ◦Du,v(ψS).

Suppose we are also given stability parameters a and δ as above. Then, we
take D = D0 from Proposition 5.1.10. The first step toward the construction
of the moduli spaces is the construction of a suitable parameter space:
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Proposition 5.2.1. Fix the input data (r, d, x, r, u, v, L), and let D0 be a before.
Then, the functor that assigns to a scheme S the set of isomorphism classes of
quotient families of type (r, d, x, r, u, v, L) is representable by a quasi-projective
scheme P.

By its universal property, the parameter scheme P comes with a natural action
of GL(Y ). The next theorem is the main GIT-result that we will prove.

Theorem 5.2.2. i) There are open subschemes P(a,δ)-(s)s whose k-rational
points are the classes of tuples (q : Y ⊗ OC(−n) −→ E, q, ϕ), such that
(E, q, ϕ) is an (a, δ)-(semi)stable decorated flagged vector bundle of type
(r, d, x, r, u, v, L).
ii) The good quotient

M (r, d, x, r, u, v, L)(a,δ)-ss := P(a,δ)-ss//GL(Y )

exists as a projective scheme over Spec(k), and the geometric quotient

M (r, d, x, r, u, v, L)(a,δ)-s := P(a,δ)-s/GL(Y )

as an open subscheme of M (r, d, x, r, u, v, L)(a,δ)-ss.

Let M(r, d, x, r, u, v, L)(a,δ)-(s)s stand for the functor that associates with a
scheme S the set of isomorphism classes of families of (a, δ)-(semi)stable deco-
rated flagged vector bundles of type (r, d, x, r, u, v, L) parameterized by S. We
infer from the above theorem:

Corollary 5.2.3. The scheme M (r, d, x, r, u, v, L)(a,δ)-(s)s is the coarse mod-
uli scheme for the functor M(r, d, x, r, u, v, L)(a,δ)-(s)s.

Remark 5.2.4. The divided powers are clearly defined over the integers. There-
fore, the above theorem also works in the relative setting, i.e., for a curve
C −→ Spec(R), possessing a section. The justification has already been given
in Remark 3.2.4.

Now that we have stated our main result on the moduli spaces of decorated
flagged vector bundles and have explained how we get from flagged principal
G-bundles to decorated flagged vector bundles, we must next show how to work
our way back from the above theorem to get moduli spaces of flagged principal
G-bundles. This will be the content of the next sections.

5.3 The Moduli Space for ̺-Flagged Pseudo G-Bundles

Let D, S, n, and Y be as above. A quotient family of ̺-flagged pseudo G-
bundles of type (x, r) (parameterized by the scheme S) is a tuple (kS , τS , qS)
which is composed of a quotient kS : Y ⊗ π⋆C(OC(n)) −→ ES , a homomor-
phism τS : Sym⋆(V ⊗ E∨S ) −→ OS×C , and a tuple q

S
= (qS,ij : ES|S×{xi} −→

QS,ij, j = 1, ..., ti, i = 1, ..., b), such that
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• ES is a vector bundle on S × C, such that [ES|{s}×C ] ∈ S, for every
s ∈ S(k),

• πS⋆(kS ⊗ idπ⋆C(OC(n))) : Y ⊗ OS −→ πS⋆(ES ⊗ π⋆C(OC(n))) is an isomor-
phism, and

• τS is non-trivial on every fiber {s} × C.

For these quotient families, we have an obvious notion of isomorphism.

Proposition 5.3.1. Fix the input data D and (x, r). The functor that assigns
to a scheme S the set of isomorphism classes of quotient families of ̺-flagged
pseudo G-bundles of type (x, r) is representable by a quasi-projective scheme
F̺-FLPsBun.
Let Q be the quasi-projective scheme that parameterizes quotients q : Y ⊗
OC(−n) −→ E, such that [E] ∈ S and H0(q(n)) is an isomorphism.
The natural morphism F̺-FLPsBun −→ Q induces a projective morphism
F̺-FLPsBun//Gm(k) −→ Q. (Here, the Gm(k)-action comes from the embedding
of Gm(k) into GL(Y ) as the group of homotheties and the natural GL(Y )-action
on F̺-FLPsBun.)

Fix stability parameters a and δ as before. We say that a ̺-flagged pseudo G-
bundle (E, τ, q) is (a, δ)-(semi)stable, if the associated decorated flagged vector
bundle (E, q, ϕ) is so. Given the type (x, r), we define the moduli functor

M(̺, x, r)(a,δ)-(s)s as the functor that assigns to a scheme S the isomorphism
classes of (a, δ)-(semi)stable ̺-flagged pseudo G-bundles parameterized by S.
In order to obtain the moduli spaces, we proceed as follows.
The natural transformation from the functor of isomorphism classes of families
of ̺-flagged pseudo G-bundles into the functor of decorated flagged vector
bundles gives rise to the GL(Y )-equivariant morphism

AD: F̺-FLPsBun

&&M
MMMMMMMMMM

// P

����
��

��
�

Q

.

The subgroup Gm(k) = Gm(k) · idV acts trivially on P and Q, so that AD
induces the SL(Y )-equivariant morphism

AD: F̺-FLPsBun//Gm(k)

((P
PPPPPPPPPPPPP

// P

����
��

��
��

Q

.

By Proposition 5.3.1, the scheme F̺-FLPsBun//Gm(k) is proper over Q, so that
AD is a proper morphism. According to Lemma 5.1.8, it is also an injective
map. Altogether, we realize that AD is a finite map.
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Theorem 5.2.2 claims that there are the SL(Y )-invariant open subsets P(a,δ)-(s)s

that correspond to the (a, δ)-(semi)stable decorated flagged vector bundles. By
definition,

F
(a,δ)-(s)s
̺-FLPsBun := AD−1

(
P(a,δ)-(s)s)

is set the of (a, δ)-(semi)stable ̺-flagged pseudo G-bundles, and we find

F
(a,δ)-(s)s
̺-FLPsBun//Gm(k) = AD

−1(
P(a,δ)-(s)s).

We have seen that the good quotient P(a,δ)-ss// SL(Y ) exists as a projective
scheme that contains the geometric quotient P(a,δ)-s/ SL(Y ) as an open sub-
scheme. Since AD is finite, the quotients

M (̺, x, r)(a,δ)-(s)s :=
(
F
(a,δ)-(s)s
̺-FLPsBun//Gm(k)

)
// SL(Y )

also exist. The scheme M (̺, x, r)(a,δ)-ss is a projective good quotient and
M (̺, x, r)(a,δ)-s, an open subscheme of M (a,δ)-ss(̺, r), is a geometric quotient.
Since

(
F
(a,δ)-(s)s
̺-FLPsBun//Gm(k)

)
// SL(Y ) = F

(a,δ)-(s)s
̺-FLPsBun//

(Gm(k)× SL(Y )
)

= F
(a,δ)-(s)s
̺-FLPsBun//GL(Y ),

the scheme M (̺, x, r)(a,δ)-ss is the moduli space we were striving at. (More
details on the above arguments may be found in the paper [15].) This con-
struction implies the following result.

Theorem 5.3.2. The coarse moduli spaces M (̺, x, r)(a,δ)-(s)s for the functors
M(̺, x, r)(a,δ)-(s)s exist, the scheme M (̺, x, r)(a,δ)-ss being projective.

Remark 5.3.3. The construction of this moduli space does not immediately
generalize to curves over a base ring. Let us explain the remedy.
We assume that G and the representation ̺ : G −→ GL(VZ) are defined over the
integers. By Seshadri’s generalization of GIT relative to base varieties which
are defined over Nagata rings [39], the algebra

Sym⋆(VZ ⊗ Zr)G
is a finitely generated Z-algebra, and we have the good quotients

π : Hom(VZ,Zr) −→ Hom(VZ,Zr)//G := Spec
(
Sym⋆(VZ ⊗ Zr)G) −→ Spec(Z)

and

π : P(Hom(VZ,Zr)∨) //___ P(Hom(VZ,Zr)∨)//G := Proj
(
Sym⋆(VZ ⊗ Zr)G)

��

Spec(Z).

Documenta Mathematica 15 (2010) 423–488



464 J. Heinloth, A. H. W. Schmitt

The quotient
π0 : Isom(VZ,Zr) −→ Isom(VZ,Zr)/G

is a principal G-bundle and thus a universal categorical quotient. However,
the quotients π and π are not necessarily universal categorical quotients. This
fact accounts for the slight modifications which we do have to make. The
good quotient parameterizes orbits of geometric points with respect to the
equivalence relation that two points map to the same point in the quotient, if
and only if the closures of their orbits intersect. This implies the following.

Lemma 5.3.4. Let Z →֒ Spec(Z) be a closed subscheme. Then, the canonical
morphisms

(
Hom(VZ,Zr)×Spec(Z) Z)//G −→ (

Hom(VZ,Zr)//G)×Spec(Z) Z
and
(P(Hom(VZ,Zr)∨)×Spec(Z) Z)//G −→ (P(Hom(VZ,Zr)∨)//G)×Spec(Z) Z

are bijective on geometric points.

Let us write
(
Hom(VZ,Zr)×Spec(Z) Z)/̃/G :=

(
Hom(VZ,Zr)//G)×Spec(Z) Z

and
(P(Hom(VZ,Zr)∨)×Spec(Z) Z)/̃/G :=

(P(Hom(VZ,Zr)∨))//G)×Spec(Z) Z.
Next, assume that E is a locally free sheaf on the scheme Y which is of fi-
nite type over Spec(R), R a Nagata ring. Then, we may easily construct the
geometric quotient

H̃ := Hom(V ⊗ OY , E)/̃/G :=(
Isom(Rr ⊗ OY , E)×Spec(R)

(
Hom(VZ,Zr)×Spec(Z) Spec(R)

)
/̃/G
)
/GLr(R),

using local trivializations. The construction of Hom(V ⊗ OY , E)/̃/G clearly
commutes with base changes Y ′ −→ Y . Moreover, we have the natural mor-
phism

Hom(V ⊗ OY , E)//G −→Hom(V ⊗ OY , E)/̃/G

which is bijective, by Lemma 5.3.4. This construction has an algebraic coun-

terpart. Define π̃ : H̃ −→ Y as the projection map, and let

S̃ym
⋆
(E∨ ⊗ V )G

be the sheaf π̃⋆(OH̃
). Then, we obtain the homomorphism

ps(E) : S̃ym
⋆
(E∨ ⊗ V )G −→ Sym⋆(E∨ ⊗ V )G
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that induces the bijective map Hom(V ⊗ OY , E)//G −→ H̃ .
Now, assume that C −→ Spec(R) is a curve over the Nagata ring R and that
S −→ Spec(R) is a scheme of finite type over R. Then, a family of weak pseudo

G-bundles on C parameterized by S, is a pair (ES , τ̃S) that consists of a locally
free sheaf ES of rank dim(V ) on S ×Spec(R) C , such that det(ES) is a pullback
from S, and a homomorphism

τ̃ : S̃ym
⋆
(E∨S ⊗ V )G −→ OS×Spec(R)C

whose fibers over S are non-trivial. Unlike the pseudo G-bundles that we had
considered before, there is a pull-back for weak pseudo G-bundles, so that there
are reasonable stacks and moduli functors for them. In the same manner, we
can define ̺-flagged weak pseudo G-bundles and families of such.
Next, suppose that the algebra Sym⋆(VZ ⊗ Zr)G is generated in degrees ≤ s.
By Remark 5.1.6, we may write

⊕

(d1,...,ds):

di≥0,
∑
idi=s!

Symd1
(
(VZ ⊗ Zr)G)⊗ · · · ⊗ Symds

(
Symi(VZ ⊗ Zr)G)

as the quotient of Ds!,v(Zr), for an appropriate integer v > 0. As before, we
may therefore associate with a family of ̺-flagged weak pseudo G-bundles a
family of ̺-flagged decorated vector bundles.
We also point out the following result:

Lemma 5.3.5. Let G be a reductive algebraic group, X and Y projective schemes
equipped with a G-action, and π : X −→ Y a finite and G-equivariant mor-
phism. Suppose L is a G-linearized ample line bundle on Y . Then, for any
point x ∈ X and any one-parameter subgroup λ : Gm −→ G, one has

µπ⋆(L )(λ, x) = µL

(
λ, π(x)

)
.

Proof. This is Lemma 2.1 in [38] and also holds in positive characteristic: sim-
ply replace theG-module splitting by a splitting of the induced Gm-module.

In particular, we may apply this lemma to the finite morphism

π : P(Hom(V, kr)∨
)
//G −→ P(Hom(V, kr)∨

)
/̃/G.

(Note that the ample line bundle N on the left hand space with which we
compute the µ-function is indeed the pullback of the ample line bundle L

on the right hand space with respect to which we compute the µ-function.
Indeed, for r ≫ 0, N is constructed from the invariant global sections in
OP(Hom(V,kr)∨)(r) whereas L is constructed from those invariant sections that
extend to P(Hom(VZ,Zr)∨).) The lemma therefore shows that, if we use the
above new construction to associate with a principal G-bundle P = (E, τ)
a decorated vector bundle (E,ϕ), we may still characterize those weighted
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filtrations (E•, β•) that arise from reductions of P to one-parameter subgroups
of G by the condition “µ(E•, β•;ϕ) = 0”, as in [15], Lemma 5.4.2.
These considerations clearly show that the moduli spaces of ̺-flagged weak
pseudo G-bundles on C may be constructed from the moduli spaces of ̺-flagged
decorated vector bundles in the same way as before.
Note that, for ̺-flagged principal G-bundles, nothing changes, because

Isom(V ⊗ OY , E)/G is still an open subscheme of Hom(V ⊗ OY , E)/̃/G.

S-equivalence. — As usual, the points in the moduli space will be in one
to one correspondence to the S-equivalence classes of (a, δ)-semistable pseudo
G-bundles. So, in order to identify the closed points of M (̺, x, r)(a,δ)-ss, we
have to explain this equivalence relation.

Suppose that (E, τ, q) is an (a, δ)-semistable ̺-flagged pseudo G-bundle with
associated decorated flagged vector bundle (E, q, ϕ) and that (E•, β•) is a
weighted filtration of E with

Ma(E•, β•) + δ · µ
(
E•, β•;ϕ

)
= 0.

We first define the associated admissible deformation df(E•,β•)(E, τ, q) =

(Edf , τdf , qdf). We set Edf =
⊕t

i=0 Ei+1/Ei. Let λ : Gm(k) −→ SLr(k) be
a one-parameter subgroup whose weighted flag (W•(λ), β•(λ)) in kr satisfies:

• dim(Wi) = rk(Ei), i = 1, ..., t, in W•(λ) : 0 (W1 ( · · · (Wt ( kr;

• β•(λ) = β•.

Then, the given filtration E• corresponds to a reduction of the structure group
of Isom(O⊕rC , E) to Q(λ). On the other hand, λ defines a decomposition

Sym⋆
(
V ⊗ (kr)∨

)G
=
⊕

i∈Z U i,
U i being the eigenspace to the character z 7−→ zi, i ∈ Z. With Ui :=

⊕
j≤i U

i,
we define the filtration

· · · ⊂ Ui−1 ⊂ Ui ⊂ Ui+1 ⊂ · · · ⊂ Sym⋆
(
V ⊗ (kr)∨

)G
. (7)

Observe that Q(λ) fixes this filtration. Thus, we obtain a Q(λ)-module struc-
ture on ⊕

i∈Z Ui/Ui−1 ∼= Sym⋆
(
V ⊗ (kr)∨

)G
. (8)

Next, we write Q(λ) = Ru(Q(λ)) ⋊ L(λ) where L(λ) ∼= GL(W1/W0) ×
· · · × GL(kr/Wt) is the centralizer of λ. Note that (8) is an isomorphism
of L(λ)-modules. The process of passing from E to Edf corresponds to
first reducing the structure group to Q(λ), then extending it to L(λ) via
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Q(λ) −→ Q(λ)/Ru(Q(λ)) ∼= L(λ), and then extending it to GLr(k) via the
inclusion L(λ) ⊂ GLr(k). By (7), there is a filtration

· · · ⊂ Ui−1 ⊂ Ui ⊂ Ui+1 ⊂ · · · ⊂ Sym⋆(V ⊗ E∨)G,

and, by (8), we have a canonical isomorphism

Sym⋆(V ⊗ E∨df)G ∼=
⊕

i∈Z Ui/Ui−1. (9)

Observe that the modules Ui and Ui/Ui−1, i ∈ Z, are graded by the degree in
the algebra Sym⋆(V ⊗E∨)G, so that the algebra in (9) is in fact bigraded. We
now look at the subalgebra Sµ consisting of the components of bidegree (d, i)
where either d = 0 or d > 0 and

i

d
=

1

s!
· µ(E•, β•;ϕ).

Then, τ clearly induces a non-trivial homomorphism τµ on Sµ, and we define
τdf as τµ on Sµ and as zero on the other components. The flagging q

df
of Edf

is obtained by a similar procedure.

Remark 5.3.6. If (E, τ, q) is a ̺-flagged principal G-bundle and δ ≫ 0, the
arguments of [15], proof of Theorem 5.4.1, show that admissible deformations
are associated with weighted filtrations (E•, β•), such that Ma(E•, β•) = 0 and
µ(E•, β•;ϕ) = 0. In that case, S0 = U0. Recall that µ(E•, β•;ϕ) = 0 means
that (E•, β•) comes from a reduction of P = (E, τ) to a parabolic subgroup
([15], Lemma 5.4.2).

A ̺-flagged pseudo G-bundle (E, τ, q) is said to be (a, δ)-polystable, if it is (a, δ)-
semistable and equivalent to every admissible deformation df(E•,β•)(E, τ, q) =
(Edf , τdf , qdf) associated with a filtration (E•, β•) of E with Ma(E•, β•) + δ ·
µ
(
E•, β•;ϕ

)
= 0.

Lemma 5.3.7. Let (E, τ, q) be an (a, δ)-semistable ̺-flagged pseudo G-bundle.
Then, there exists an (a, δ)-polystable admissible deformation gr(E, τ, q) of
(E, τ, q). The ̺-flagged pseudo G-bundle gr(E, τ, q) is unique up to equiva-
lence.

In general, not every admissible deformation will immediately lead to a
polystable ̺-flagged pseudo G-bundle, but any iteration of admissible deforma-
tions (leading to non-equivalent ̺-flagged pseudo G-bundles) will do so after
finitely many steps. We call two (a, δ)-semistable ̺-flagged pseudo G-bundles
(E, τ, q) and (E′, τ ′, q′) S-equivalent, if gr(E, τ, q) and gr(E′, τ ′, q′) are equiva-
lent.

Sketch of proof of Lemma 5.3.7. The lemma follows from our GIT construc-
tion of the moduli space. As is well-known, two points y, y′ ∈ F(a,δ)-ss,
F := F̺-FLPsBun, will be mapped to the same point in the quotient, if and only
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if the closures of their orbits intersect. Let us call the resulting equivalence re-
lation orbit equivalence. Let y ∈ F(a,δ)-ss be a point and λ : Gm(k) −→ SL(Y ) a
one parameter subgroup with µ(λ, y) = 0. Define y∞(λ) := limz→∞ λ(z)·y. By
the Hilbert–Mumford criterion (see [32], p. 53, i), and Lemma 0.3), orbit equiv-
alence is the equivalence relation that is generated by y ∼ y∞(λ), y ∈ F(a,δ)-ss,
λ a one-parameter subgroup of SL(Y ) with µ(λ, y) = 0.

On the other hand, if y represents the ̺-flagged pseudo G-bundle (E, τ, q), then
λ induces a weighted filtration (E•, β•) with Ma(E•, β•) + δ · µ(E•, β•;ϕ) = 0
and y∞(λ) represents the admissible deformation df(E•,β•)(E, τ, q). Conversely,
any admissible deformation of (E, τ, q) comes from a one-parameter subgroup
λ of SL(Y ) with µ(λ, y) = 0. The assertion of the lemma now results from the
fact that the closure of any orbit contains a unique closed orbit.

The details of the above proof consist of a very careful but routine analysis of
the computations with the Hilbert–Mumford criterion (which will be performed
in Section 5.6).

Corollary 5.3.8. The closed points of the moduli space M (̺, x, r)(a,δ)-ss are
in one to one correspondence to the S-equivalence classes of (a, δ)-semistable ̺-
flagged pseudo G-bundles of type r, or, equivalently, to the isomorphism classes
of (a, δ)-polystable ̺-flagged pseudo G-bundles of type r.

5.4 The Moduli Spaces for ̺-Flagged Principal G-Bundles

Let us remind the reader of the set-up for ̺-flagged principal G-bundles. First,
we fix an element ϑ ∈ π1(G), a tuple x = (x1, ..., xb) of distinct k-rational
points on C, and a tuple P = (P1, ..., Pb) of parabolic subgroups of GL(V ).
The tuple P gives rise to a tuple r = (rij , j = 1, ..., ti, i = 1, ..., b) of positive
integers.

Let a = (a1, ..., ab) be a stability parameter where ai ∈ X⋆(Pi)
∨Q,+, i = 1, ..., b.

Then, representing ai by a rational one-parameter subgroup, we obtain a
weighted flag (V•(ai), β•(ai)) in V , i = 1, ..., b. The tuple β•(ai) does not de-
pend on the choice of the representative for ai. Hence, we get the well-defined
tuple a̺ = (a̺ij , j = 1, ..., ti, i = 1, ..., b) via

(
a̺i1, ..., a

̺
iti

)
:= r · β•(ai), i = 1, ..., b.

Proposition 5.4.1. There is a positive rational number δ0, such that for ev-
ery rational number δ > δ0 and every ̺-flagged principal G-bundle (P, s) of
type (x, P ) with associated ̺-flagged pseudo G-bundle (E, τ, q) of type (x, r) the
following properties are equivalent:

i) (P, s) is an a-(semi)stable ̺-flagged principal G-bundle.

ii) (E, τ, q) is an (a̺, δ)-(semi)stable ̺-flagged pseudo G-bundle.
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Proof. First note that the set of isomorphism classes of a-semistable ̺-flagged
principal G-bundles of type (x, P ) is bounded. Indeed, given a parabolic sub-
group Q of G, we write the pair (Q, detQ) as (QG(λ), χ−λ) for some one-
parameter subgroup λ of G. Since there only finitely many conjugacy classes
of parabolic subgroups of G, it is clear that we may find a constant D1 with

〈
(χ̃λ)si , asi

〉
= −

〈
(χ̃−λ)si , asi

〉
≥ D1,

for any reduction PQ of P to Q and i = 1, ..., b. The condition of a-
semistability thus gives the estimate

deg
(
PQ(detQ)

)
≥

b∑

i=1

〈
(χ̃λ)si , asi

〉
≥ b ·D1.

Therefore, the degree of instability of P as a principal G-bundle is bounded
from below by a constant that depends only on the input data. As is well known
(see, e.g., [4]) this implies that P belongs to a bounded family of isomorphism
classes of principal G-bundles.
Using Proposition 5.1.3, the rest of the arguments are now identical to those
given in the proof of Theorem 5.4.1 in [15].

As is obvious from Lemma 5.1.4, there is an open and GL(Y )-invariant sub-
scheme

F̺-FlBun ⊂ F̺-FlPsBun

that parameterizes the ̺-flagged principal G-bundles. We claim that

F
a-ss
̺-FlBun := F

(a̺,δ)-ss
̺-FlPsBun ∩ F̺-FlBun

is a saturated open subset, i.e., for every point f ∈ F
a-ss
̺-FlBun, the closure of the

orbit GL(Y ) · f inside F
(a̺,δ)-ss
̺-FlPsBun is contained in F

a-ss
̺-FlBun. The discussion of

S-equivalence of ̺-flagged pseudo G-bundles shows that this statement is equiv-
alent to the fact that the set of isomorphism classes of a-semistable ̺-flagged
principal bundles is closed under S-equivalence inside the set of isomorphism
classes of (a̺, δ)-semistable ̺-flagged pseudo G-bundles. To see this, note that,
by Remark 5.3.6, an admissible deformation of the ̺-flagged principal bundle
(E, τ, q) is associated with a weighted filtration (E•(PQ), β•(PQ)), coming
from a reduction PQ of P to a parabolic subgroup Q of G, such that

Ma

(
E•(PQ), β•(PQ)

)
= 0.

It is easy to verify that (Edf , τdf) in df(E•(δ),β•(δ))(E, τ, q) = (Edf , τdf , qdf) de-
fines again a principal G-bundle. (In fact, P is obtained from PQ by means
of extending the structure group via Q ⊂ G. Extending the structure group
of PQ via Q −→ L ⊂ G, L a Levi subgroup of Q, yields the principal bundle
Pdf corresponding to (Edf , τdf).)
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Since F
a-ss
̺-FlBun is a saturated subset of F

(a̺,δ)-ss
̺-FlPsBun, there is an open subset

U ⊂ F
(a̺,δ)-ss
̺-FlPsBun//GL(Y ), such that F

a-ss
̺-FlBun is the preimage of U under the

quotient map F
(a̺,δ)-ss
̺-FlPsBun −→ F

(a̺,δ)-ss
̺-FlPsBun//GL(Y ), and

U = F
a-ss
̺-FlBun//GL(Y )

is the good quotient. Likewise, we see that the geometric quotient
F
a-s
̺-FlBun/GL(Y ) does exist. We define

M (ϑ, ̺, x, P )a-(s)s := F
a-(s)s
̺-FlBun//GL(Y ).

Theorem 5.4.2. Assume that the stability parameter a is such that
∑ti

j=1 a
̺
ij <

1 for i = 1, ..., b. Then, the moduli spaces M (ϑ, ̺, x, P )a-(s)s for the functors
that assign to a scheme S the set of isomorphism classes of families of a-
(semi)stable ̺-flagged principal G-bundles of topological type ϑ and type (x, P )
exist as quasi-projective schemes.

Finally, we note that the same argument as in Theorem 5.4.4 in [15] gives the
following result:

Theorem 5.4.3 (Semistable reduction). Assume that the representation
̺ : G −→ GL(V ) is of low separable index or that G is an adjoint group,
̺ : G −→ GL(Lie(G)) is the adjoint representation, and that the characteristic
of k is larger than the height of ̺. Then, M (ϑ, ̺, x, P )a-(s)s is projective.

5.5 The Moduli Spaces for Flagged Principal G-Bundles

We fix ϑ ∈ π1(G), x = (x1, ..., xb), and the tuple P = (P1, ..., Ps) of
parabolic subgroups of G. Let a = (a1, ..., ab) be a stability parameter with
ai ∈ X⋆(Pi)

∨Q,+, i = 1, ..., b.
For the moment, let ̺ : G −→ GL(V ) be any (not necessarily faithful) represen-
tation. We assume that we may represent the ai by rational one-parameter sub-
groups that do not lie in the kernel of ̺. Then, the same construction as in the
last section provides us with a tuple a̺ = (a̺ij , j = 1, ..., ti, i = 1, ..., b) of pos-
itive rational numbers. We say that the stability parameter a is ̺-admissible,
if the condition

ti∑

j=1

a̺ij < 1, i = 1, ..., b,

is verified.

Lemma 5.5.1. The stability parameter a is Ad-admissible, if and only it is
admissible in the sense of the definition following Remark 4.1.5.

Proof. Let a be a rational one-parameter subgroup of the maximal torus T ⊂ G.
The eigenspaces of a are direct sums of root spaces, and a acts on the space
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for the root α with the weight 〈α, a〉. The Lie algebra of T is contained in the
eigenspace to the weight zero. Since, for every root α, −α is also a root, the
weights of the eigenspaces of a are (in increasing order)−γs, ...,−γ1, 0, γ1, ..., γs.
If (a1, ..., at) = dim(G) · β•(a), we infer

t∑

j=1

aj = 2γs.

The condition
∑t

j=1 aj < 1 thus amounts to the condition γs < 1/2. Since
|〈α, a〉| ≤ γs for all roots and equality holds for at least one root, these consid-
erations establish our claim.

Note that there is a GL(Y )-invariant closed subscheme

FFlBun →֒ F̺-FlBun

that parameterizes the flagged principalG-bundles. Recall that we have verified
in Lemma 5.1.2 the compatibility of the notions of (semi)stability. Theorem
5.4.2 thus immediatly implies:

Theorem 5.5.2. Let a be a stability parameter, such that there exists a faithful
representation ̺ : G −→ GL(V ) for which a is ̺-admissible. Then, the moduli
spaces M (ϑ, x, P )a-(s)s for the functors of isomorphism classes of families of
a-(semi)stable flagged principal G-bundles of topological type ϑ and type (x, P )
exist as quasi-projective schemes. They are projective by Theorem 4.4.1.

Corollary 5.5.3. Assume that the stability parameter a is admissible. Then,
the moduli spaces M (ϑ, x, P )a-(s)s exist as projective schemes.

Proof. If G is an adjoint group, the quasi-projectivity of the moduli space is
a restatement of Theorem 5.4.2, taking into account Lemma 5.5.1. Properness
follows from Theorem 4.4.1.
In general, one can use Ramanathan’s method to construct the moduli space
for an arbitrary semisimple group from the one of the adjoint group. (Observe
that every flagged principal G-bundle (P, s) defines in a natural way an adjoint
flagged principal G-bundle Ad(P, s), such that (P, s) is a-semistable, if and
only if Ad(P, s) is so.) The necessary techniques are described in Section 5 of
[16].

Remark 5.5.4. i) The corollary gives a complete construction of the moduli
spaces of flagged principal G-bundles in all characteristics. Note that we do
not need it for our applications, because we are allowed to make the stability
parameter a as small as we wish to (cf. the proof of Proposition 4.2.2). Thus,
having prescribed any faithful representation ̺, we may for our purposes assume
that a is ̺-admissible.
ii) Note that, in our application, we need only the moduli spaces for stability
parameters of coprime type. For these stability parameters, the properness of
the moduli space implies the semistable reduction theorem, by Lemma 3.3.1.
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iii) Suppose that R is, as in Corollary 3.3.4, a ring of finite type over Z, reg-
ular and of dimension at most 1. Assume that C −→ Spec(R) is a smooth
projective curve. We claim that in this setting, we can construct our mod-
uli space MC (ϑ, x, P )a-ss as a projective scheme over Spec(R). The only case
in which this is not completely obvious is the case when Spec(R) dominates
Spec(Z). By Remark 5.3.3, we know that we can construct MC (ϑ, x, P )a-ss

as a quasi-projective scheme; let M −→ Spec(R) be the closure that is ob-
tained as the quotient of the closure of the locus a-semistable flagged principal

G-bundles in F
(a,δ)-ss
̺-FLPsBun. By Proposition 2.1.2 and Remark 2.1.3, the moduli

space MC (ϑ, x, P )a-ss is irreducible, so that the same holds for M . Let Cη be
the generic fiber of C over Spec(R). We know that the generic fiber of M is the
projective moduli space MCη(ϑ, x, P )a-ss. By the same argument as before, this
moduli space is irreducible and, hence, connected. If r ∈ Spec(R) is a closed
point, and Cr is the fiber of C over r, then the semistable reduction theorem
(Theorem 4.4.1 and 5.4.3) implies that MCr(ϑ, x, P )a-ss is a connected compo-
nent of the fiber of M over r. Thus, we have to show that M −→ Spec(R) has
connected fibers. This follows from Stein factorization: indeed, if we factorize
M −→ Spec(R′) −→ Spec(R), such that the morphism M −→ Spec(R′) has
connected fibers, then Spec(R′) −→ Spec(R) must be an isomorphism. This
follows, because it is an isomorphism at the generic point (the generic fiber of
M was already connected) and R is assumed to be normal.

5.6 Construction of the Moduli Spaces for Decorated Flagged
Vector Bundles

In this section, we will first give the proof of Proposition 5.2.1 by an explicit
construction and then carry out the most difficult parts in the proof of Theorem
5.2.2.

Construction of the Parameter Space. — We fix the type
(r, d, x, r, u, v, L). Again, we pick a point x0 ∈ C and write OC(1) for OC(x0).
By Proposition 5.1.10, we can choose an integer n0, such that, for every n ≥ n0

and every (a, δ)-semistable decorated flagged vector bundle (E, q, ϕ) of type
(r, d, x, r, u, v, L), the following conclusions are true:

• H1(E(n)) = {0} and E(n) is globally generated;

• H1(det(E)(rn)) = {0} and det(E)(rn) is globally generated.

Furthermore, we suppose:

• H1(L(un)) = {0} and L(un) is globally generated.

Choose some n ≥ n0 and set l := d+ rn+ r(1− g). Let Y be a k-vector space
of dimension l. We define Q0 as the quasi-projective scheme parameterizing
equivalence classes of quotients k : Y ⊗ OC(−n) −→ E where E is a vector
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bundle of rank r and degree d on C and H0(k(n)) is an isomorphism. Then,
there is the universal quotient

kQ0 : Y ⊗ π⋆C
(
OC(−n)

)
−→ EQ0

on Q0 × C. Set

H := Hom
(Du,v(Y ), L(un)

)
and H := P(H ∨)×Q0.

We let

kH : Y ⊗ π⋆C
(
OC(−n)

)
−→ EH

be the pullback of kQ0 to H × C. Now, on H × C, there is the tautological
homomorphism

sH : Du,v(Y )⊗ OH −→ π⋆C
(
L(un)

)
⊗ π⋆H

(
OH(1)

)
.

Let T be the closed subscheme defined by the condition that sH⊗π⋆C(idOC(−un))
vanishes on

ker
(Du,v(Y )⊗ π⋆C

(
OC(−un)

)
−→ Du,v(EH)

)
(cf. Remark 5.1.7).

Let

kT : Y ⊗ π⋆C
(
OC(−n)

)
−→ ET

be the restriction of kH to T × C. By definition, there is the universal homo-
morphism

ϕT : Du,v(ET

)
−→ π⋆C(L)⊗ π⋆T(NT).

Here, NT is the restriction of OH(1) to T.
Next, let Gij be the Graßmann variety that parameterizes the rij -dimensional
quotients of the vector space Y , j = 1, ..., ti, i = 1, ..., s, and set G :=

Xj=1,...,ti,i=1,...,sGij . We construct the parameter space P as a closed sub-

scheme of T × G: on the scheme P̃ := T × G, there are the tautological
quotients

q̃P̃,ij : Y ⊗ OP̃×C −→ R̃P̃,ij , j = 1, ..., ti, i = 1, ...., s.

We define the closed subscheme P by the condition that q̃
P̃,ij vanishes on the

kernel of the restriction of k
P̃

to P̃× {xi}, for all j = 1, ..., ti, i = 1, ...., s. Let
NP be the pullback of NT to P. Similarly, we may pull back kT and ϕT from
T× C to P× C in order to obtain

kP : Y ⊗ π⋆C
(
OC(−n)

)
−→ EP

and

ϕP : Du,v(EP

)
−→ π⋆C(L)⊗ π⋆P(NP).
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Finally, on P× {xi}, we have the quotients

qP,ij : EP|P×{xi} −→ RP,ij , j = 1, ..., ti, i = 1, ...., s.

We call (EP; q
P

;ϕP) the universal family. This name is justified, because any

family of decorated flagged vector bundles parameterized by a scheme S is
locally induced by a morphism to P and this universal family.
Finally, we note that there is a canonical action of the group GL(Y ) on the
parameter space P, and it will be our task to construct the good and the
geometric quotient of the open subsets that parameterize the semistable and
the stable objects, respectively. Since the center Gm(k) · idY acts trivially on
P, it suffices to construct the respective quotients for the action of SL(Y ).

The Map to the Gieseker Space. — Let Jacd be the Jacobian variety
that classifies the line bundles of degree d on C, and choose a Poincaré sheaf
P on Jacd×C. By our assumptions on n, the sheaf

K1 := Hom
( r∧

(Y )⊗ OJacd , πJacd ⋆
(
P ⊗ π⋆C(OC(rn))

))

is locally free. We set K1 := P(K ∨
1 ). By replacing P with P ⊗ π⋆

Jacd
(suffi-

ciently ample)∨, we may assume that OK1(1) is very ample. Let d : P −→ Jacd

be the morphism associated with
∧r

(EP), and let AP be a line bundle on P
with

∧r
(EP) ∼= (d× idC)⋆(P)⊗ π⋆P(AP). Then,

r∧(
kP⊗ idπ⋆C(OC(n))

)
:

r∧
(Y )⊗OP −→ (d× idC)⋆(P)⊗π⋆C

(
OC(rn)

)
⊗π⋆P(AP)

defines a morphism ι1 : P −→ K1 with ι⋆1(OK1(1)) ∼= AP.
DefineK2 := P(H ∨) (see above) as well as the Gieseker space G := K1×K2×G,
and let

ι := (ι1 × idK2 × idG) : P −→ G
be the natural, SL(Y )-equivariant, and injective morphism. Using the ample
line bundles on the Gij that are induced by the Plücker embedding, we find,
for every tuple e := (e1; e2; εij , j = 1, ..., ti, i = 1, ..., s) of positive rational
numbers, the SL(Y )-linearized ample Q-line bundle

Le := O
(
e1; e2; εij , j = 1, ..., ti, i = 1, ..., s

)

on the Gieseker space G.
Linearize the SL(Y )-action on G in Le with

e1 := l−u·δ−
s∑

i=1

ti∑

j=1

rij ·aij , e2 := r·δ, εij := r·aij , j = 1, ..., ti, i = 1, ..., s,

(10)
and denote by Ge-(s)s the sets of points in G that are SL(Y )-(semi)stable with
respect to the linearization in the line bundle Le.
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Theorem 5.6.1. Given a point p ∈ P, denote by (Ep; qp;ϕp) the restriction of

the universal family to P × {p}. Then, for n large enough, the following two
properties hold true.
i) The preimages ι−1(Ge-(s)s) consist exactly of those points p ∈ P for which
(Ep; qp;ϕp) is an (a, δ)-(semi)stable decorated flagged vector bundle of type

(r, d, x, r, u, v, L).
ii) The morphism

ι′ : Pe-ss −→ Ge-ss,
induced by restricting the morphism ι to the preimage Pe-ss of Ge-ss, is proper.
The proof resembles the one of Theorem 2.11 in [37] and Theorem 4.4.1 in [15].
A part of it will be explained in the following section.

Elements of the Proof of Theorem 5.6.1. — Let p be a point in the
parameter space P, such that the decorated flagged vector bundle (Ep; qp;ϕp)

is (a, δ)-(semi)stable. In this section, we will demonstrate that the Gieseker
point ι(p) is (semi)stable with respect to the chosen linearization of the SL(Y )-
action.
By the Hilbert–Mumford criterion, we have to show that, for every one-
parameter subgroup λ : Gm(k) −→ SL(Y ), the inequality

µLe

(
λ, ι(p)

)
= e1 · µOK1

(1)

(
λ, ι1(t)

)
+ e2 · µOK2

(1)

(
λ, ι2(t)

)

+

s∑

i=1

ti∑

j=1

εij · µOGij
(1)(λ, qij) (≥) 0 (11)

is satisfied. The one-parameter subgroup λ provides us with the weighted flag
(Y•(λ), δ•(λ)) in the vector space Y . We write

Y•(λ) : 0 =: Y0 ( Y1 ( · · · ( Yτ ( Yτ+1 := Y ; δ•(λ) = (δ1, ..., δτ ).

We remind the reader that there is an integer N > 0 (which is the number of
summands in (5)), such thatDu,v(Y ) ⊂ Yu,N :=

(
Y ⊗u

)⊕N
.

Let kp : Y ⊗ OC(−n) −→ Ep be the quotient corresponding to p. For h ∈
{ 1, ..., τ }, define lh := dim(Yh) and Fh := kp(Yh⊗OC(−n)). Now, using (11),
we compute

µLe

(
λ, ι(p)

)
= e1 ·

τ∑

h=1

δh ·
(
l · rk(Fh)− lh · r

)
+ e2 · µOK2

(1)

(
λ, ι2(t)

)
+

+

s∑

i=1

ti∑

j=1

εij ·
τ∑

h=1

δh ·
(
l · dim(qij(Fh))− lh · rij

)
.
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We first inspect the quantity µOK2
(1)(λ, ι2(t)). To this end, let Ẽh be the

subbundle of Ep that is generated by Fh, h = 0, ..., τ + 1. Note that improper

inclusions may occur among the bundles Ẽh, i.e., there might exist indices
h′ < h with Ẽh′ = Ẽh. We eliminate these improper inclusions in order to find
the filtration

E• : 0 =: E0 ( E1 ( · · · ( Et ( Et+1 := Ep.

With each index j ∈ { 1, ..., t }, we associate the set

T (j) :=
{
h ∈ { 1, ..., τ }

∣∣ Ẽh = Ej

}

and the positive rational number

βj :=
∑

h∈T (j)

δh. (12)

Setting β• := (β1, ..., βt), we have defined the weighted filtration (E•, β•) of
E. In addition, we define the function J : { 1, ..., τ } −→ { 1, ..., t } by requiring

that Ẽh = EJ(h), h = 1, ..., τ . For an index j ∈ { 0, ..., t+ 1 }, we set

h(j) := min
{
h = 1, ..., τ | Ẽh = Ej

}
, Y j := Yh(j),

h(j) := max
{
h = 1, ..., τ | Ẽh = Ej

}
, Y j := Yh(j),

and also, for j = 1, ..., t,
Ỹj := Y j/Y j−1.

Next, given an index tuple (i1, ..., iu) ∈ I := { 1, ..., t+ 1 }×u, we introduce the
vector space

Ỹi1,...,iu :=
(
Ỹi1 ⊗ · · · ⊗ Ỹiu

)⊕N
.

We fix a basis y for Y that consists of eigenvectors for the one-parameter
subgroup λ and has the property

〈 y1, ..., ylh 〉 = Yh, h = 0, ..., τ + 1.

Using this basis, we may view (Ỹi1,...,iu)⊕N as a subspace of Yν,N , and declare

Ỹ ⋆i1,...,iu := Ỹi1,...,iu ∩Du,v(Y ).

If we are also given a weight vector γ = (γ1, ..., γl), we let λ(y, γ) be the
one-parameter subgroup with λ(y, γ)(yi) = zγi · yi, z ∈ Gm(k), i = 1, ..., l.
Apparently,

λ = λ(y, γ) for γ =

τ∑

h=1

δh · γ(lh)l .

We also define the one-parameter subgroups λh := λ(y, γ
(lh)
l ), h = 1, ..., τ .

Then, the subspaces Ỹ ⋆i1,...,iu, (i1, ..., iu) ∈ I, that we have just defined are
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eigenspaces for all the one-parameter subgroups λ1, ..., λτ . Indeed, define for
i ∈ I and j ∈ { 0, ..., t+ 1 },

νj(i) = #
{
ik ≤ j | k = 1, ..., u

}
.

Since h(j) ≤ h holds precisely when j ≤ J(h), the one-parameter subgroup

λh acts on Ỹ ⋆i1,...,iu with weight lh · u − l · νJ(h)(i1, ..., iu), i = (i1, ..., iu) ∈ I,
h = 1, ..., τ .
The homomorphism ϕp is determined by the homomorphism

Fp : Du,v(Y ) −→ H0
(
L(un)

)
.

Therefore,

µOK2(1)
(λ, Fp) ≥ (13)

−min
{ τ∑

h=1

δh
(
lh · u− l · νJ(h)(i1, ..., iu)

) ∣∣ i = (i1, ..., iu) ∈ I : Fp|Ỹ ⋆i1,...,iu
6≡ 0

}
.

Let i0 = (i01, ..., i
0
u) ∈ I be an index tuple, such that the minimum in the second

formula in Remark 5.1.9 is achieved for this index tuple.

Lemma 5.6.2. The restricted homomorphism Fp|Ỹ ⋆
i0
1
,...,i0u

is non-trivial.

Proof. Under the surjection Du,v(Y ⊗OC(n)) −→ Du,v(Ep(n)) that is induced
by kp, the vector space Fp|Ỹ ⋆

i0
1
,...,i0u

maps to the global sections of the bundle

Ei01 (n) ⋆ · · · ⋆ Ei0u(n), and

(Du,v(Y ) ∩
(
Y ′i01 ⊗ · · · ⊗ Y

′
i0u

)⊕N )⊗OC(un) with Y ′j :=

j⊕

k=1

Ỹk, j = 1, ..., t,

generically generates that bundle. To see these assertions, observe that

Du1(Y )⊗ · · · ⊗Duv (Y ) ⊂ Y ⊗u, for u1 + · · ·+ uv = u,

is, by definition, the submodule that is invariant under action of Σu1×· · ·×Σuv ,
Σw being the symmetric group in w letters, w > 0. The intersection

Du1(Y )⊗ · · · ⊗Duv (Y ) ∩
(
Y ′i01 ⊗ · · · ⊗ Y

′
i0u

)

is consequently of the form

Du1(Y ′i⋆1 )⊗ · · · ⊗Duv (Y ′i⋆v )

where i⋆1 is the smallest index among i01,...,i0u1
, i⋆2 is the smallest index among

i0u1+1,...,i0u2
, and so on. The map (Y ⊗OC(−n))⊗u −→ E⊗up is certainly equiv-

ariant under the (Σu1×· · ·×Σuv )-action and is easily seen to induce a surjection
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Du1(Y ⊗ OC(−n)) ⊗ · · · ⊗ Duv (Y ⊗ OC(−n)) −→ Du1(Ep) ⊗ · · · ⊗ Duv (Ep).
Since the isomorphism Y −→ H0(Ep(n)) maps Y ′j to the global sections of
Ej(n), j = 1, ..., t, and Y ′j generically generates the bundle Ej , we see that
Du1(Y ′i⋆1 )⊗ · · · ⊗Duv (Y ′i⋆v ) generically generates

Du1(Ei⋆1 )⊗ · · · ⊗Duv (Ei⋆v ) =
(
Du1(Ep)⊗ · · · ⊗Duv (Ep)

)
∩
(
Ei01 ⊗ · · · ⊗ Ei0u

)
.

Therefore, if Fp|Ỹ ⋆
i0
1
,...,i0u

were zero, we would find indices i′j ≤ i0j , j = 1, ..., u,

where at least one inequality is strict, such that Fp|Ỹ ⋆
i′
1
,...,i′u

6≡ 0. By the same

argument as before, this would imply that the restriction of ϕp to Ei′1 ⋆ · · ·⋆Ei′u
was non-trivial. But clearly

γi′1 + · · ·+ γi′u < γi01 + · · ·+ γi0u .

This contradicts our choice of i0.

Using (13), we find

µOK2(1)
(λ, Fp) ≥ −

τ∑

h=1

δh ·
(
lh · u− l · νJ(h)(i01, ..., i0u)

)

≥ −
t∑

j=1

βj ·
(
h0(Ej(n)) · u− l · νj(i01, ..., i0u)

)
. (14)

We note our first estimate:

µLe

(
λ, ι(p)

)
≥ e1 ·

τ∑

h=1

δh ·
(
l · rk(Fh)− lh · r

)
+

+e2 ·
t∑

j=1

βj ·
(
l · νj(i01, ..., i0u)− h0(Ej(n)) · u

)
+ (15)

+
s∑

i=1

ti∑

j=1

εij ·
τ∑

h=1

δh ·
(
l · dim(qij(Fh))− lh · rij

)
.

For j ∈ { 1, ..., t }, choose h⋆(j) ∈ T (j), such that

e1 ·
(
l · rk(Fh⋆(j))− lh⋆(j) · r

)
+

+

s∑

i=1

ti∑

j=1

εij ·
(
l · dim(qij(Fh⋆(j)))− lh⋆(j) · rij

)

= min
{
e1 ·

(
l · rk(Fh)− lh · r

)
+

s∑

i=1

ti∑

j=1

εij ·
(
l · dim(qij(Fh)) − lh · rij

) ∣∣

h ∈ T (j)
}
.
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Together with (15), we arrive at our second estimate:

µLe

(
λ, ι(p)

)
≥ e1 ·

t∑

k=1

βk ·
(
l · rk(Fh⋆(k))− lh⋆(k) · r

)
+

+e2 ·
t∑

k=1

βk ·
(
l · vk(i0)− h0(Ek(n)) · u

)
+ (16)

+

s∑

i=1

ti∑

j=1

εij ·
t∑

k=1

βk ·
(
l · dim(qij(Fh⋆(k)))− lh⋆(k) · rij

)
.

Plugging in the definition (10) of the linearization parameters, Formula (16)
transforms into

µLe

(
λ, ι(p)

)

≥
t∑

k=1

βk ·
(
l2 · rk(Fh⋆(k))− l · u · δ · rk(Fh⋆(k))−

−l ·
s∑

i=1

ti∑

j=1

rij · aij · rk(Fh⋆(k))− l · lh⋆(k) · r
)

+

+r · δ ·
t∑

k=1

βk · l · νk(i0) + r ·
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk · l · dim(qij(Fh⋆(k))).

Note that lh⋆(k) ≤ h0(Fh⋆(k)(n)), so that we find

µLe

(
λ, ι(p)

)

≥
t∑

k=1

βk

(
l2 · rk(Fh⋆(k))− l · u · δ · rk(Fh⋆(k))−

−l ·
s∑

i=1

ti∑

j=1

rij · aij · rk(Fh⋆(k))− l · h0(Fh⋆(k)(n)) · r
)

+

+r · δ ·
t∑

k=1

βk · l · νk(i0) + r ·
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk · l · dim(qij(Fh⋆(k))).

We divide the quantity on the right hand side by l and rearrange it, until we
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get

µLe

(
λ, ι(p)

)
≥

t∑

k=1

βk ·
(
l · rk(Fh⋆(k))− h0(Fh⋆(k)(n)) · r

)
+

+δ ·
t∑

k=1

βk ·
(
r · νk(i0)− u · rk(Ek)

)
+ (17)

+
s∑

i=1

ti∑

j=1

aij

t∑

k=1

βk
(
r · dim(qij(Fh⋆(k)))− rk(Fh⋆(k)) · rij

)
.

By our choice of i0, the number
∑t
k=1 βk · (r · νk(i0) − u · rk(Ek)) equals

µ(E•, β•;ϕp). Our contention is therefore a consequence of the next result.

Proposition 5.6.3. Having fixed the input data r, d, u, v, and L, as well
as the stability parameters a and δ, there exists an n1, such that any (a, δ)-
(semi)stable decorated flagged vector bundle (E,L, ϕ) of type (r, d, x, r, u, v, L)
has the following property: Let

0 ( F1 ( · · · ( Ft ( E

be a filtration of E by not necessarily saturated subsheaves, such that 0 <
rk(F1) < · · · < rk(Ft) < r, let

E• : 0 ( E1 ( · · · ( Et ( E

be the filtration of E by the subbundles Ei := ker(E −→
(E/Fi)/Torsion(E/Fi)), i = 1, ..., t, and let β• = (β1, ..., βt) be a tuple
of positive rational numbers. Then, for all n ≥ n1,

0 ≤
t∑

k=1

βk ·
(
h0(E(n)) · rk(Fk)− h0(Fk(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Fk))− rk(Fk) · rij

)
.

Proof. We choose n1 ≥ n0, so that h1(E(n)) = 0 and l := h0(E(n)) =
d + r(n + 1 − g). First, we assume that the sheaves F1(n), ...,Ft(n) are all
globally generated and have trivial first cohomology spaces. The same holds
then for E1(n),...,Et(n). Let Ti be the torsion sheaf Ei/Fi, i = 1, ..., t. Since
H1(Fi(n)) = {0}, the map H0(Ei(n)) −→ Ti is surjective, so that

h0
(
Ei(n)

)
= h0

(
Fi(n)

)
+ dim(Ti), i = 1, ..., t. (18)

Invoking
∑ti

j=1 aij < 1, i = 1, ..., s, once more, we discover

ti∑

j=1

aij · dim(qij(Ek)) ≤
ti∑

j=1

aij · dim(qij(Fk)) + dim(Tk|{xi}), i = 1, ..., s.
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In this case, we consequently find

t∑

k=1

βk ·
(
h0(E(n)) · rk(Ek)− h0(Fk(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Fk))− rk(Fk) · rij

)

≥
t∑

k=1

βk ·
(
h0(E(n)) · rk(Ek)− h0(Ek(n)) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Ek))− rk(Ek) · rij

)
(19)

=

t∑

k=1

βk ·
(
deg(E) · rk(Ek)− deg(Ek) · r

)
+ δ · µ(E•, β•;ϕ) +

+

s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Ek))− rk(Ek) · rij

)

= Ma(E•, β•) + δ · µ(E•, β•;ϕ) (≥) 0.

Let S be the bounded family of isomorphism classes of locally free sheaves E of
rank r and degree d on C for which there exists an (a, δ)-semistable decorated
flagged vector bundle (E, q, ϕ) of type (r, d, x, r, u, v, L). Suppose that we have
fixed some positive constant K. Then, we divide the locally free sheaves F on
C that may occur as subsheaves of sheaves in the family S into two classes:

A. µ(F ) ≥ d/r −K
B. µ(F ) < d/r −K.

By the Langer–LePotier–Simpson estimate [28], there are non-negative con-
stants K1 andK2 which depend only on r, such that any locally free OC -module
A on C of rank at most r satisfies

h0(A) ≤

rk(A) ·
(

rk(A)− 1

rk(A)
·
[
µmax(A) +K1 + 1

]
+

+
1

rk(A)
·
[
µ(A) +K2 + 1

]
+

)
.

For a sheaf A in Class B, this leads to

h0
(
A(n)

)
≤ rk(A) ·

(
d

r
+ n+ 1 + (r − 1)(K0 +K1) +K2 −

1

r
·K
)
,

if the right hand side is positive. There exists an integer n′(K) =
n′(r, d,K1,K2,K) such that this holds for n ≥ n′(K). Furthermore, we es-
timate

h0(E(n)) · rk(A) − h0(A(n)) · r ≥
−(r − 1)rg − (r − 2)(r − 1)r(K0 +K1)− (r − 2)rK2 +K =: L.
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We choose K so large that

L ≥ δ · u · (r − 1) +

( s∑

i=1

ti∑

j=1

aij

)
· (r − 1)2.

Suppose that all the sheaves F1, ...,Ft belong to Class B. Then,

t∑

k=1

βk ·
(
h0(E(n)) · rk(Fk)− h0(Fk(n)) · r

)
− δ · u · (r − 1) ·

l∑

k=1

βk +

+
s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk ·
(
r · dim(qij(Fk))− rk(Fk) · rij

)

≥
l∑

k=1

βk ·
(
L− δ · u · (r − 1)

)
−

s∑

i=1

ti∑

j=1

aij ·
t∑

k=1

βk · rk(Ek) · rij (20)

≥
l∑

k=1

βk ·
(
L− δ · u · (r − 1)− (r − 1)2 ·

( s∑

i=1

ti∑

j=1

aij

))
> 0.

Note that the sheaves in Class A form a bounded family: the ranks and degrees
of those sheaves belong to finite sets and their µmax is bounded by µmax(E),
[E] ∈ S. Hence, there is an n′′(K), such that, for any n ≥ n′′(K) and any sheaf
A of Class A, one finds that A(n) is globally generated and that h1(A(n)) =
0. Set n1 := max{n′(K), n′′(K) }. We have to verify our assertion. To do
so, we set I := { 1, ..., t }, IA := { i ∈ I |Fi is in Class A }, and IB := { i ∈
I |Fi is in Class B }, so that I = IA ⊔ IB. Write IA/B = { iA/B1 , ..., i

A/B
tA/B
} with

i
A/B
1 < · · · < i

A/B
tA/B

. This gives the weighted filtrations

(
E

A/B
• : 0 ( E

i
A/B
1

( · · · ( E
i
A/B
tA/B

( E, β
A/B
• = (β

i
A/B
1

, ..., β
i
A/B
tA/B

)
)
.

It is then easy to see that

µ
(
E•, β•;ϕ

)
≥ µ

(
EA
• , β

A
• ;ϕ

)
− u · (r − 1) ·

tB∑

j=1

βiBj . (21)

Equation (21) together with the formulae (19) and (20) finally establishes the
contention of the Proposition.

The Remaining Steps. — The converse assertion, namely the fact that
(Ep, qp, ϕp) is (a, δ)-(semi)stable, if the Gieseker point associated with p is

(semi)stable with respect to the linearization in Le, is proved along similar
lines, but is easier. The same holds for the proof of properness of the Gieseker
map. The reader should combine the above arguments with those from [37]
and [15] to fill in the details.
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5.7 Construction of the Parameter Spaces for ̺-Flagged Pseudo
G-Bundles

We next include the explicit construction of the parameter space F̺-FLPsBun

that will make the asserted properties in Proposition 5.3.1 evident.
There is a quasi-projective quot scheme Q which parameterizes quotients k : Y⊗
OC(−n) −→ E where E is a vector bundle of rank r and degree zero, such that
µmax(E) ≤ D, and where H0(k(n)) is an isomorphism. The scheme Q × C
carries the universal quotient

kQ : Y ⊗ π⋆C
(
OC(−n)

)
−→ EQ.

For the vector bundle EQ, as for any vector bundle of rank r, we have the
canonical isomorphism

E∨Q ∼=
r−1∧(

EQ

)
⊗
( r∧(

EQ

))∨
.

Since the restriction of (
∧r(EQ))∨ to any fiber {k}×C, k ∈ Q, is trivial, there

is a line bundle A on Q, such that

( r∧(
EQ

))∨ ∼= π⋆Q(A ).

Gathering all this information, we find a surjection

Sym⋆
(
V ⊗

r−1∧(
Y ⊗ π⋆C(OC(−n))

)
⊗ π⋆Q(A )

)G
−→ Sym⋆

(
V ⊗ E∨Q

)G
.

For a point [q : Y ⊗ OC(−n) −→ E] ∈ Q, any homomorphism τ : Sym⋆(V ⊗
E∨)G −→ OC of OC -algebras is determined by the composite homomorphism

s⊕

i=1

Symi
(
V ⊗

r−1∧(
Y ⊗ OC(−n)

))G
−→ OC

of OC -modules. Noting that

Symi
(
V ⊗

r−1∧(
Y ⊗ OC(−n)

))G ∼= Symi
(
V ⊗

r−1∧
Y
)G
⊗ OC

(
−i(r − 1)n

)
,

τ is determined by a collection of homomorphisms

ϕi : Symi
(
V ⊗

r−1∧
Y
)G
⊗ OC −→ OC

(
i(r − 1)n

)
, i = 1, ..., s.

Since ϕi is determined by the induced linear map on global sections, we will
construct the parameter space inside

Y :=
s⊕

i=1

Hom

(
Symi

(
V ⊗

r−1∧
Y ⊗ π⋆Q(A )

)G
, H0

(
OC
(
i(r − 1)n

))
⊗ OQ

)
.
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Write π : Y −→ Q for the bundle projection and observe that, over Y × C,
there are universal homomorphisms

ϕ̃i : Symi
(
V ⊗

r−1∧
Y ⊗

(
πQ◦(π×idC)

)⋆
(A )

)G
→ H0

(
OC
(
i(r−1)n

))
⊗OY×C , .

i = 1, ..., s. Define ϕi = ev ◦ ϕ̃i as the composition of ϕ̃i with the evaluation
map ev : H0(OC(i(r − 1)n)) ⊗ OY×C −→ π⋆C(OC(i(r − 1)n)), i = 1, ..., s. We

twist ϕi by idπ⋆C(OC(−i(r−1)n)) and put the resulting maps together to obtain
the homomorphism

ϕ : VY −→ OY×C
with

VY :=

s⊕

i=1

Symi

(
V ⊗

r−1∧(
Y ⊗ π⋆C

(
OC(−n)

))
⊗
(
πQ ◦ (π × idC)

)⋆
(A )

)G
.

Next, ϕ yields a homomorphism of OY×C-algebras

τ̃Y : Sym⋆
(
VY

)
−→ OY×C .

On the other hand, there is a surjective homomorphism

β : Sym⋆(VY) −→ Sym⋆
(
V ⊗ (π × idC)⋆

(
E∨Q
))G

of graded algebras where the left hand algebra is graded by assigning the weight
i to the elements in Sym i(· · · )G. The parameter space Y is defined by the
condition that τ̃Y factorizes over β, i.e., setting EY := ((π × idC)⋆(EQ))|Y×C ,
there is a homomorphism

τY : Sym⋆
(
V ⊗ E∨Y

)G −→ OY×C

with τ̃Y|Y×C = τY ◦β. Formally, Y is defined as the scheme theoretic intersec-
tion of the closed subschemes

Yd :=
{
y ∈ Y

∣∣ τ̃d
Y|{y}×C : ker

(
βd|{y}×C

)
−→ OC is trivial

}
, d ≥ 0.

The family (EY, τY) is the universal family of pseudo G-bundles parameterized
by Y.

Remark 5.7.1. i) The scheme Y is equipped with a natural GL(Y )-action, and
the vector bundle EY is linearized with respect to this group action.
ii) Note that elimination theory shows that there is an open subscheme Y0

that parameterizes the principal G-bundles. Moreover, there exists a universal
principal G-bundle PY0 on Y0 × C.
iii) There is a locally closed and GL(Y )-invariant subscheme Yϑ,≥h ⊂ Y0 which
parameterizes those principal G-bundles P that have topological type ϑ and
instability degree at least h. By construction, every such principal bundle P

is represented by at least one point in Yϑ,≥h, so that we have a surjective map
Yϑ,≥h −→ Bunϑ,≥hG . In fact, this map identifies Bunϑ,≥hG with the quotient
[Yϑ,≥h/GL(Y )].
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We proceed to parameterize ̺-flagged pseudo G-bundles. For this, we fix the
tuple x = (x1, ..., xb) of points on C and the type r = (rij , j = 1, ..., ti, i =
1, ..., b) of the flaggings. The tuple (ri1, ..., riti) determines the conjugacy class

of a parabolic subgroup of GL(V ). Pick representatives P̃i for these conjugacy
classes, i = 1, ..., b, and define

F̃i :=
(
Isom

(
V ⊗ OY, EY|(Y×{xi})

))
/P̃i, i = 1, ..., b,

and
F̺-FlPsBun := F̃1 ×Y · · · ×Y F̃b.

Remark 5.7.2. Since the vector bundle EY is linearized, F̃i, i = 1, ..., b, and
F̺-FlPsBun inherit GL(Y )-actions. The equivalence relation on geometric points
that is induced by the group action on F̺-FlPsBun is isomorphy of ̺-flagged
pseudo G-bundles.
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Abstract. We investigate a few types of generalizations of the Hurwitz
zeta function, written Z(s, a) in this abstract, where s is a complex
variable and a is a parameter in the domain that depends on the type.
In the easiest case we take a ∈ R, and one of our main results is that
Z(−m, a) is a constant times Em(a) for 0 ≤ m ∈ Z, where Em is the
generalized Euler polynomial of degree n. In another case, a is a positive
definite real symmetric matrix of size n, and Z(−m, a) for 0 ≤ m ∈ Z

is a polynomial function of the entries of a of degree ≤ mn. We will also
define Z with a totally real number field as the base field, and will show
that Z(−m, a) ∈ Q in a typical case.

2010 Mathematics Subject Classification: 11B68, 11M06, 30B50, 33E05.

Introduction

This paper is divided into four parts. In the first part we consider a gener-
alization of Hurwitz zeta function given by

(0.1) ζ(s; a, γ) =

∞∑

n=0

γn(n+ a)−s,

where s ∈ C, 0 < a ∈ R, and γ ∈ C, 0 < |γ| ≤ 1. Clearly the infinite series is
convergent for Re(s) > 1. For γ = 1 this becomes

∑∞
n=0(n+a)−s, which is the

classical Hurwitz zeta function usually denoted by ζ(s, a). This generalization
is not new. It was considered by Lerch in [Le], a work five years after the paper
[Hu] of Hurwitz in 1882. Its analytic properties can be summarized as follows.

Theorem 0.1. For a and γ as above the product (e2πis−1)Γ (s)ζ(s; a, γ) can
be continued to an entire function in s. In addition, there exists a holomorphic
function in (s, a, γ)∈C3, defined for Re(a)>0 and γ /∈

{
x∈R

∣∣ x≥1
}
with no

condition on s, that coincides with the product when Re(s) > 1, 0 < a ∈ R,
and 0 < |γ| ≤ 1.

The proof will be given in §1.1.
To state a more interesting fact, we first put
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(0.2) e(z) = exp(2πiz) (z ∈ C),

and define a function Ec,n(t) in t for c ∈ C and 0 < n ∈ Z, that is called the
nth generalized Euler polynomial, by

(0.3)
(1 + c)etz

ez + c
=

∞∑

n=0

Ec,n(t)

n!
zn.

We assume c = −e(α) with α ∈ R, /∈ Z. The function Ec,n(t) was introduced
in [S07]. If c = 1, E1,n(t) is the classical Euler polynomial of degree n. In [S07]
we showed that Ec,n(t) is a polynomial in t of degree n; it is also a polynomial
in (1 + c)−1. Its properties are listed in [S07, pp. 25–26]. We mention here only

(0.3a) Ec,n(1− t) = (−1)nEc−1,n(t),

(see [S07, (4.3f)]), which will become necessary later. Now we have

Theorem 0.2. For 0 < k ∈ Z, Re(a) > 0, and γ /∈
{
x ∈ R

∣∣x ≥ 1
}
the value

ζ(1− k, a; γ) is a polynomial function of a and (γ − 1)−1. More precisely, we
have

(0.4) ζ(1 − k; a, γ) = Ec,k−1(a)/(1 + c−1)

for such k, a, and γ, where c = −γ−1.
This will be proven in §1.2.
As for the original Hurwitz function, there is a well known relation

(0.5) ζ(1− k, a) = −Bk(a)/k for 0 < k ∈ Z,

where Bk is the k-th Bernoulli polynomial. This is essentially due to Hurwitz;
see [Hu, p. 92]; cf. also [E, p.27, (11)] and [WW, p. 267, 13.14].

In [S07] and [S08] we investigated the critical values of the L-function L(s, χ)
with a Dirichlet character χ, and proved especially (see [S07, Theorem 4.14]
and [S08, Theorem 1.4])

Theorem 0.3. Let χ be a nontrivial primitive Dirichlet character modulo a
positive integer d, and let k be a positive integer such that χ(−1) = (−1)k.

(i) If d = 2q + 1 with 0 < q ∈ Z, then

(0.6) L(1− k, χ) =
dk−1

2kχ(2)− 1

q∑

b=1

(−1)bχ(b)E1,k−1(b/d).

(ii) If d = 4d0 with 1 < d0 ∈ Z, then

(0.7) L(1− k, χ) = (2d0)k−1
d0−1∑

a=1

χ(a)E1,k−1(2a/d).

In §1.4 we will give a shorter proof for these formulas by means of (0.4), and
in Section 2 we will prove a functional equation for ζ(s; a, γ) by producing an
expression for ζ(1 − s; a, γ).

The second part of the paper concerns the analogue of (0.1) defined when
the base field is a totally real algebraic number field F. If F 6= Q, there are
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nontrivial units, which cause considerable difficulties, and for this reason we
cannot give a full generalization of which (0.1) is a special case. However,
taking such an F as the base field, we will present a function of a complex
variable s and two parameters a and p in F, that includes as a special case at
least ζ(s; a, γ) with a ∈ Q and γ a root of unity. We then prove in Theorem
3.4 a rationality result on its critical values.

The third part is a kind of interlude. Observing that the formula for L(k, χ)
(not L(1 − k, χ)) involves the Gauss sum G(χ) of χ, we will give in Section 4
a formula for G(χλ)/G(χ) for certain Dirichlet characters χ and λ.

The fourth and final part of the paper, which has a potential of future devel-
opment, concerns the analogue of (0.1) defined for a complex variable s, with
nonnegative and positive definite symmetric matrices of size n in place of n
and a. We will show in Section 5 that it is an entire function of s and also that
its value at s = −m for 0 ≤ m ∈ Z is a polynomial function of the variable
symmetric matrix of degree ≤ mn.

1. Proof of Theorems 0.1, 0.2, and 0.3

1.1. To prove Theorem 0.1, assuming that 0 < a ∈ R and 0 < |γ| ≤ 1, we
start from an easy equality Γ (s)(n+ a)−s =

∫∞
0
xs−1e−(n+a)xdx. Therefore

Γ (s)ζ(s; a, γ) =
∞∑

n=0

Γ (s)γn(n+ a)−s =
∞∑

n=0

∫ ∞

0

xs−1γne−(n+a)xdx

=

∫ ∞

0

∞∑

n=0

xs−1γne−(n+a)xdx =

∫ ∞

0

xs−1e−ax

1− γe−x dx.

Our calculation is justified for σ = Re(s) > 1, since
∞∑

n=0

∫ ∞

0

∣∣xs−1γne−(n+a)x
∣∣dx ≤

∞∑

n=0

Γ (σ)(n + a)−σ <∞.

Thus we obtain

(1.1) Γ (s)ζ(s; a, γ) =

∫ ∞

0

xs−1ex(1−a)

ex − γ dx for Re(s) > 1.

We now consider ∫ 0+

∞

zs−1ez(1−a)

ez − γ dz

with the standard symbol
∫ 0+

∞ of contour integration. The integral is the sum

of three integrals:
∫ δ
∞,
∮

on the circle |z| = δ, and
∫∞
δ , where 0 < δ ∈ R; we

naturally take the limit as δ tends to 0. We take zs−1 = exp
(
(s − 1) log z

)

for the first integral
∫ δ
∞ with log z ∈ R for 0 < z ∈ R; for the evaluation of

the other integrals we continue zs−1 analytically without passing through the
positive real axis. Then the first and third integrals produce

(e(s)− 1)

∫ ∞

δ

xs−1ex(1−a)

ex − γ dx,

which is meaningful for every s ∈ C and every (a, γ) ∈ C2 such that
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(1.1a) Re(a) > 0 and γ /∈
{
x ∈ R

∣∣x > 1
}
.

As for
∮
, we first observe that given γ ∈ C, we can find a small δ0 ∈ R, > 0,

such that ez 6= γ for 0 < |z| ≤ δ0, since the map z 7→ w = ez sends the
punctured disc 0 < |z| ≤ δ0 into a punctured disc 0 < |w − 1| < ε that does
not contain γ. (This is clearly so even for γ = 1.) Therefore

∮
is meaningful for

every s ∈ C and sufficiently small δ in both cases γ 6= 1 and γ = 1; the integral
is independent of δ because of Cauchy’s theorem. Now put z = δeiθ with δ
such that 0<δ < δ0 and 0 ≤ θ < 2π. Then zs−1 = exp{(s−1)(log δ+ iθ)}, and
so for s = σ+ iτ with real σ and τ, we have |zs−1| = δσ−1|e−θτ | ≤ δσ−1e2π|τ |.
If γ 6= 1, we see that Min|z|≤δ0 |ez−γ| > 0, and so |ez(1−a)/(ez−γ)| is bounded

for |z| ≤ δ0. If γ = 1, the function ez(1−a)/(ez − γ) is 1/z plus a holomorphic
function at z = 0. Thus for 0 < δ ≤ δ0 we see that

∣∣ ∮ ∣∣ ≤ Mδσ if γ 6= 1 and∣∣ ∮ ∣∣ ≤Mδσ−1 if γ = 1 with a constant M that depends on a, γ, and δ0, and

so
∮

tends to 0 as δ → 0 if Re(s) > 1, and we obtain

(1.2) (e(s)− 1)Γ (s)ζ(s; a, γ) =

∫ 0+

∞

zs−1ez(1−a)

ez − γ dz

for 0 < |γ| ≤ 1, 0 < a ∈ R, and Re(s) > 1. (If γ 6= 1, the condition Re(s) > 0
instead of Re(s) > 1 is sufficient.) Now the right-hand side of (1.2) is mean-
ingful for every (s, a, γ) ∈ C3 under condition (1.1a) and so it establishes the
product on the left-hand side as an entire function of s. If γ 6= 1, the contour
integral can define the product for the variables s, a, γ as described in The-
orem 0.1. The integrand as a function of (z, s, a, γ) is not finite in a domain
including γ = 1, and so the result for γ = 1 must be stated separately.

Remark. If 0 < |γ| ≤ 1 and γ 6= 1, then the series of (0.1) is convergent
for Re(s) > 0 and defines a holomorphic function of s there. This is clear if
|γ| < 1. For |γ| = 1 and γ 6= 1, this follows from [S07, Lemma 4.3].

We are interested in the value of ζ(s; a, γ) at s = −m with 0 ≤ m ∈ Z. We
first note {

(e(s)− 1)Γ (s)
}
s=−m = 2πi(−1)m/m!.

For s = −m the function zs−1 in the integrand is a one-valued function, and

so
∫ δ
∞+

∫∞
δ

= 0. Therefore

(1.3)

∫ 0+

∞
=

∮
= 2πi ·Resz=0

z−m−1e(1−a)z

ez − γ .

By (0.3), for γ 6= 1 we have

z−m−1e(1−a)z

ez − γ =
1

1− γ

∞∑

n=0

E−γ,n(1− a)

n!
zn−m−1,

and so the residue in question is (1 − γ)−1E−γ,m(1 − a)/m!. Combining this
with (0.3a) and (1.2), we obtain

(1.4) ζ(−m; a, γ) = Ec,m(a)/(1 + c−1) for 0 ≤ m ∈ Z,
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where c = −γ−1. This proves (0.4). In [S07, p. 26] we showed that Ec, n(t) is a
polynomial in t and (1+c)−1. For c = −γ−1 we have (1+c)−1 = 1+(γ−1)−1,
and so we obtain Theorem 0.2.

For the reader’s convenience, we give a proof of (0.5) here. If γ = 1, instead
of (0.2) we use zetz/(ez − 1) =

∑∞
n=0Bn(t)zn/n!. Then we obtain (0.5) in the

same manner as in the case γ 6= 1.

1.3. Let us insert here a historical remark. Fixing a positive integer m and
an integer a such that 0 ≤ a ≤ m, Hurwitz considered in [Hu] an infinite series

(1.5) f(s, a) =

∞∑

n=0

(mn+ a)−s.

Since this depends on m, he also denoted it by f(s, a|m). He proved analytic
continuation of these functions and stated a functional equation for f(1−s, a),
basically following Riemann’s methods for the investigation of ζ(s) in [R].
At that time not much was known about Dirichlet’s L-function beyond his
formulas for the class number of a binary quadratic form and his theorem
about prime numbers in an arithmetic progression. Employing the results
on f(s, a), Hurwitz was able to prove that the L-function for a quadratic
character has analytic continuation and satisfies a functional equation. Using
the standard notation ζ(s, a) =

∑∞
n=0(n+ a)−s employed at present, we have

f(s, a|m) = m−sζ(s, a/m), and so he considered ζ(s, a) only for a ∈ Q. It is
noticeable however that he proved essentially (0.5) as we already said.

As noted at the beginning of the paper, Lerch investigated the series of (0.1);
one can also find an exposition of this topic in [E, p. 27, §1.11]. The paper [Li]
of Lipschitz may be mentioned in this connection.

1.4. Let the symbols be as in Theorem 0.3(i). Put

Λ(s) =
∞∑

n=1

(−1)nχ(n)n−s.

Then Λ(s) + L(s, χ) = 2
∑∞
n=1 χ(2n)(2n)−s = χ(2)21−sL(s, χ), and so

(1.6) Λ(s) = L(s, χ)
{
χ(2)21−s − 1

}
.

Since
{
a
∣∣ 1 ≤ a < d

}
=
{
a
∣∣ 1 ≤ a ≤ q

}
⊔
{
d− a

∣∣ 1 ≤ a ≤ q
}
, we have

Λ(s)=

q∑

a=1

∞∑

n=0

(−1)nd+aχ(a)(nd+a)−s+
q∑

a=1

∞∑

n=0

(−1)nd+d−aχ(−a)(nd+d−a)−s,

and so dsΛ(s) equals
q∑

a=1

(−1)aχ(a)

{ ∞∑

n=0

(−1)n
(
n+

a

d

)−s
− χ(−1)

∞∑

n=0

(−1)n
(
n+

d− a
d

)−s}

=

q∑

a=1

(−1)aχ(a)
{
ζ(s; a/d, −1)− (−1)kζ(s; 1− a/d, −1)

}
.

Putting s = 1− k and employing (0.4) and (0.3a), we obtain (0.6).
Our next task is to prove (0.7). Let d = 4d0 with 1 < d0 ∈ Z as in Theorem

1.3(ii). We note an easy fact(see [S08, Lemma 1.3]):
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(1.7) χ(2d0 + a) = −χ(a) for every a ∈ Z.

Observe that
{
x ∈ Z

∣∣ x > 0, d0 ∤x
}

is a disjoint union

(∗)
{
nd+ a

∣∣ 0<a<d0, 0 ≤ n∈Z
}
⊔
{
nd+ 2d0 + a

∣∣ 0<a<d0, 0 ≤ n∈Z
}

⊔
{
nd− a

∣∣ 0<a<d0, 0<n∈Z
}
⊔
{
nd+ 2d0 − a

∣∣ 0<a<d0, 0 ≤ n∈Z
}
.

The sum of
∑
χ(x)x−s for x belonging to the first two sets equals

d0−1∑

a=1

{ ∞∑

ν=0

χ(a)(4νd0 + a)−s +

∞∑

ν=0

χ(2d0 + a)
(
2(2ν + 1)d0 + a

)−s
}
.

Employing (1.7), we see that this equals

(1.8)

d0−1∑

a=1

∞∑

m=1

(−1)mχ(a)(2md0 + a)−s = (2d0)−s
d0−1∑

a=1

χ(a)ζ(s; 2a/d,−1).

Similarly, from the last two sets of (∗) we obtain

d0−1∑

a=1

{ ∞∑

ν=1

χ(−a)(4νd0 − a)−s +

∞∑

ν=0

χ(2d0 − a)
(
2(2ν + 1)d0 − a

)−s
}

= −
d0−1∑

a=1

∞∑

m=0

χ(−a)(−1)m(2md0 + 2d0 − a)−s

= −(2d0)−s
d0−1∑

a=1

χ(−a)ζ(s; 1− 2a/d, −1)

by (1.7). Thus, adding (1.8) to this and putting s = 1−k, from (0.4) we obtain

(2d0)1−kL(1− k, χ) = 2−1
d0−1∑

a=1

χ(a)
{
E1,k−1(2a/d)−χ(−1)E1,k−1(1− 2a/d)

}
.

Suppose χ(−1) = (−1)k; then applying (0.3a) to E1,k−1(1 − 2a/d), we obtain
(0.7). The proof of Theorem 0.3 is now complete

1.5. The case d = 4 is excluded in Theorem 0.3(ii). In this case, however,

the matter is simpler. Indeed, for µ4(n) =

(−1

n

)
we have

L(s, µ4) =
∞∑

m=0

(−1)m(2m+ 1)−s

= 2−s
∞∑

m=0

(−1)m(m+ 1/2)−s = 2−sζ(s; 1/2, −1),

and so by (0.4) we obtain

(1.9) L(1− k, µ4) = 2k−2E1,k−1(1/2) = E1,k−1/2

for every odd positive integer k, where E1,n denotes the nth Euler number.
This is classical, except that the result is usually given in terms of L(k, µ4)
instead of L(1− k, µ4).
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1.6. Let us now show that a special case of Theorem 0.3(ii) can be given in
a somewhat different way. Let ψ be a primitive character whose conductor d
is odd, µ4 the primitive character modulo 4 as above, and k a positive integer
such that ψ(−1) = (−1)k+1; put m = (d− 1)/2. Then

(1.10) L(1− k, ψµ4) = (−1)m(2d)k−1
m∑

j=1

(−1)jψ(2j)E1,k−1
(
1
2 + j

d

)
.

This was given in [S07, (6.2)], if in terms of L(k, ψµ4), but we can derive
it also from Theorem 0.3(ii) as follows. Take χ = ψµ4 in (0.7). Then the

sum on the right-hand side of (0.7) is
∑2m

a=1 χ(a)E1,k−1(a/2d), which equals∑2m
b=1 χ(d − b)E1,k−1

(
(d − b)/2d

)
. Since the bth term is nonvanishing only

for even b, employing (0.3a), we see that the last sum equals ψ(−1) times∑m
j=1(ψµ4)(d− 2j)E1,k−1

(
(d+ 2j)/2d

)
. Since d− 2j = 2(m− j) + 1, we have

µ4(d− 2j) = (−1)m−j, and so we obtain (1.10).

1.7. We can show that ζ(−m; a, γ) for 0 ≤ m ∈ Z is a polynomial in a by
a formal calculation as follows. Assuming that |γ| < 1, we have

ζ(−m; a, γ) = am +

∞∑

n=1

γn(n+ a)m = am +

m∑

ν=0

(
m
ν

)
am−νcν

with cν =
∑∞

n=1 n
νγn, and so ζ(−m; a, γ) is a polynomial in a at least for

|γ| < 1, and so Theorem 0.1 guarantees the same in a larger domain as described
in that theorem

We have cν−1 = γ(1 − γ)−νPν(γ) for 1 ≤ ν ∈ Z with a polynomial Pν
introduced in [S07, (2.16)]; see also [S08, (4.3)]. We showed that Pν+1(γ) = (γ−
1)νE−γ,ν(0) for ν > 0 in [S07, (4.6)] and that γn−2Pn(γ−1) = Pn(γ) in [S07,

(2.19)]; also, Ec,n(t) =
∑n
k=0

(
n
k

)
Ec,k(0)tn−k by [S08, (1.15)]. Combining

these together, we obtain (0.4).
Though clearly this is not the best way to prove (0.4), at least it explains an

elementary aspect of the nature of the problem. In Section 5, we will return to
this idea in our discussion in the higher-dimensional case.

2. The functional equation for ζ(s; a, γ)

2.1. For Re(s) > 1 Hurwitz proved (see [Hu, p. 93, 1)] and [WW, p. 269])

(2.1) ζ(1− s, a)

=
2Γ (s)

(2π)s

{
cos(πs/2)

∞∑

n=1

cos(2πna)

ns
+ sin(πs/2)

∞∑

n=1

sin(2πna)

ns

}
.

Therefore it is natural to ask if there is a meaningful formula for ζ(1−s, a; γ).
Though this was essentially done by Lerch in [Le], here we take a different
approach. For s ∈ C, a ∈ R, p ∈ R, and ν = 0 or 1 we put

(2.2) Dν(s; a, p) =
∑

−a 6=n∈Z
(n+ a)ν |n+ a|−ν−se

(
p(n+ a)

)
,
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(2.3) T ν(s; a, p) = gν(s)Dν(s; a, p), gν(s) = π−(s+ν)/2Γ
(
(s+ ν)/2

)
.

These were introduced in [S08]. In particular, we proved

(2.4) T ν(1− s; a, p) = i−νe(ap)T ν(s; −p, a).

Let γ = e(p) and b = 1− a with 0 < a < 1. Then it is easy to verify that

(2.5a) D0(s; a, p) = e(ap)ζ(s; a, γ) + e(−bp)ζ(s; b, γ−1),
(2.5b) D1(s; a, p) = e(ap)ζ(s; a, γ)− e(−bp)ζ(s; b, γ−1),

and so

(2.6) 2e(ap)ζ(s; a, γ) = D0(s; a, p) +D1(s; a, p).

Employing (2.3) and (2.4), we obtain

(2.7) 2ζ(1− s; a, γ) =
g0(s)

g0(1− s)D
0(s; −p, a)− ig1(s)

g1(1 − s)D
1(s; −p, a).

From (2.5a, b) we see that Dν(s; −p, a) is a linear combination of ζ(s; −p, δ)
and ζ(s; 1 + p, δ−1), where δ = e(a). Thus, for −1 < p < 0 we have

2ζ(1− s; a, γ) = e(−ap)Aζ(s; −p, δ) + e(−a− ap)Bζ(s; 1 + p, δ−1)

with

(2.8) A =
g0(s)

g0(1− s) −
ig1(s)

g1(1− s) , B =
g0(s)

g0(1− s) +
ig1(s)

g1(1 − s) .

Recalling that Γ (s/2)Γ ((s + 1)/2) = 21−sπ1/2Γ (s) and Γ (s)Γ (1 − s) =
π/ sin(πs), we find that

(2.9) A = 21−sπ−se(−s/4)Γ (s), B = 21−sπ−se(s/4)Γ (s),

and so we obtain

(2.10) ζ(1− s; a, γ)

=
e(−ap)Γ (s)

(2π)s

{
e(−s/4)ζ(s; −p, δ) + e(s/4− a)ζ(s; p+ 1, δ−1)

}
.

at least when −1 < p < 0 and 0 < a < 1, where γ = e(p) and δ = e(a).
This does not apply to the case γ = 1. In this case we have

2ζ(s; a, 1) = D0(s; a, 0) +D1(s; a, 0) for 0 < a ≤ 1,

Dν(s; 0, a) = δζ(s; 1, δ) + (−1)νδ−1ζ(s; 1, δ−1).

Repeating the same argument as in the case γ 6= 1, we find that

2ζ(1− s; a, 1) = δAζ(s; 1, δ) + δ−1Bζ(s; 1, δ−1)

with the same A and B as in (2.8) and (2.9), and so

(2.11) ζ(1 − s; a, 1)

=
Γ (s)

(2π)s

{
e

(
a− s

4

)
ζ(s; 1, δ) + e

(
s

4
− a
)
ζ(s; 1, δ−1)

}
.

where δ = e(a), 0 < a ≤ 1. This gives (2.1). Indeed, we have
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e(±a)ζ(s; 1, δ±1) =

∞∑

m=1

δ±m

ms
=

∞∑

m=1

cos(2πma)± i sin(2πma)

ms
,

and so a simple calculation transforms (2.11) into (2.1).
Returning to (2.10) in which we assumed −1 < p < 0, put q = −p. Then

0 < q < 1 and

(2.12)
(2π)s

Γ (s)
ζ
(
1− s; a, e(q)−1

)

= e(−s/4)

∞∑

h=0

e
(
a(h+ q)

)

(h+ q)s
+ e(s/4)

∞∑

h=0

e
(
a(q − h− 1)

)

(h+ 1− q)s .

Then employing (0.4), for 0 < s = k ∈ Z we obtain

(2.13)
(2πi)k

(k − 1)!(1 + c−1)
Ec,k−1(a) =

∑

h∈Z

e
(
a(h+ q)

)

(h+ q)k
,

where c = −e(q). This formula was given in [S07, (4.5)]. Thus we have given a
proof of (2.13) different from that of [S07]. (The case k = 1 must be handled
carefully; see [S07, pp. 26–27].) In [S08] we asked the question whether the
parameter k in (2.13) can be extended to a complex variable, and presented
Dν(s; a, p) as an answer. Since (2.13) is a special case of (2.12), we can now
say that (2.12) is another answer to that question.

3. The case of a totally real number field

3.1. Let F be a totally real algebraic number field. We ask whether we can
define a function similar to ζ(s; a, γ) by taking the totally positive integers in
F in place of n in (0.1). We are going to give a partially affirmative answer
to this question. We let g denote the maximal order of F, d the different of
F relative to Q, and a the set of all archimedean primes of F. For each v ∈ a

we denote by Fv the v-completion of F, identified with R. In other words, v
defines an injection of F into R, and for ξ ∈ F we denote by ξv the image of ξ
under this injection. We put [F : Q] = g, Fa =

∏
v∈a Fv, and F×a =

∏
v∈a F

×
v .

Then Fa can be identified with Rg, and for ξ ∈ F the map ξ 7→ (ξv)v∈a defines
an injection of F into Fa. We then put

ea(ξ) = e
(∑

v∈a ξv
)

(ξ ∈ Fa),

ξk =
∏

v∈a
ξkvv , ξa =

∏

v∈a
ξv, (k = (kv)v∈a ∈ Za, ξ ∈ F×a ).

We also put N(ξ) = NF/Q(ξ) for ξ ∈ F. Then N(ξg) = |N(ξ)| = |ξa| for ξ ∈
F×. We write ξ ≫ 0 if ξv > 0 for every v ∈ a and put g×+ =

{
u ∈ g×

∣∣u≫ 0
}
.

Now for s ∈ C, a fractional ideal b, and a, p ∈ F we put

(3.1) ζ(s; b, a, p) = [g×+ : U ]−1
∑

0≪ξ∈b+a (mod U)

|N(ξ)|−sea(pξ).

Here the sum is taken over F×/U under the condition that ξ ≫ 0 and ξ− a ∈
b. We take a subgroup U of g×+ of finite index such that u − 1 ∈ a−1b ∩
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p−1(b−1d−1 ∩ a−1d−1) for every u ∈ U. Clearly such a U exists, the sum of
(3.1) is meaningful, and ζ(s; b, a, p) is well defined independently of the choice
of U.

This is an analogue of (0.1), but it should be remembered that here both a
and p belong to F. Thus (1.5) is a special case of (3.1).

Next, let k ∈ Za. With s, b, a, and p as above, we put

(3.2) Dk(s; b, a, p) = [g×+ : U ]−1
∑

06=ξ∈b+a (mod U)

ξ−k|ξ|k−saea(pξ),

where the summation is the same as in (3.1) except that this time we do not
impose the condition ξ ≫ 0. This is well defined and both (3.1) and (3.2) are
convergent for Re(s) > 1.

Lemma 3.2. Let k ∈ Za with kv = 0 or 1 for every v ∈ a. Then the product

Dk(s; b, a, p)
∏

v∈a
Γ
(
(s+ kv)/2

)

can be continued to a meromorphic function of s on the whole s-plane that is
holomorphic except for possible simple poles at s = 0 and 1, which occur only
when k = 0. The pole at s = 0 occurs if and only if k = 0 and a ∈ b.

This is included in [S00, Lemma 18.2], as Dk(s; b, a, p) is a special case of
the series Dk(s, κ) of [S00, (18.1)]. Notice that Dk(s; b, a, p) is finite at s = 0
for every k.

Lemma 3.3. For 0 < µ ∈ Z and k ∈ Za with kv = 0 or 1 the following
assertions hold:

(i) Dk(1− µ; b, a, p) = 0 if kv − µ /∈ 2Z for some v ∈ a.
(ii) Suppose kv − µ ∈ 2Z for every v ∈ a; then Dk(1 − µ; b, a, p) ∈ Qab,

where Qab denotes the maximal abelian extension of Q; in particular, Dk(1 −
µ; b, a, 0) ∈ Q.

Proof. Suppose kv − µ /∈ 2Z for one particular v. Then Γ
(
(s + kv)/2

)
has

a pole at s = 1 − µ, and so (i) follows from Lemma 3.2. As for (ii), that
Dk(1−µ; b, a, 0) ∈ Q is given in Proposition 18.10(ii) of [S00]. For any p ∈ F,
we see that Dk(s; b, a, p) is a finite Qab-linear combination of Dk(s; b′, a′, 0)
with several (b′, a′), and so Dk(1− µ; b, a, p) ∈ Qab.

Now our principal result on ζ(s; b, a, p) can be stated as follows.

Theorem 3.4. (i) ζ(s; b, a, p) can be continued to a meromorphic function
of s on the whole s-plane, which is holomorphic except for a possible simple
pole at s = 1.

(ii) Let 0 < µ ∈ Z. Then ζ(1 − µ; b, a, p) ∈ Qab, and in particular, ζ(1 −
µ; b, a, 0) ∈ Q.

Proof. For ξ ∈ F× we note an easy fact
∑

k∈Za/2Za

ξ−k|ξ|k =

{
2g if ξ ≫ 0,

0 otherwise,

where g = [F : Q]. Therefore we obtain
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(3.3) 2gζ(s; b, a, p) =
∑

k∈Za/2Za

Dk(s; b, a, p),

and so assertion (i) follows immediately from Lemma 3.2. Take µ as in (ii).
By Lemma 3.3(i), the terms on the right-hand side of (3.3) vanish except for
the term with k such that kv − µ ∈ 2Z for every v. Therefore we obtain the
desired result from Lemma 3.3(ii), and our proof is complete.

4. Some explicit expressions for Gauss sums

4.1. There are two kinds of formulas for the critical values of L(s, χ): one is
for L(k, χ) and the other for L(1−k, χ). The former involves π and the Gauss
sum of χ, whereas the latter does not. In a sense L(1 − k, χ) is conceptually
more natural than L(k, χ), but there is an interesting aspect in the computation
of L(k, χ), since it allows us to find an explicit expression for a certain Gauss
sum. This can be achieved by computing L(k, χ) in two different ways, which
involve two different Gauss sums. Let us begin with the definition of a Gauss
sum and an easy lemma.

Given a primitive or an imprimitive Dirichlet character χ′ modulo a positive
integer, we take the primitive character χ associated with χ′, and define the
Gauss sum G(χ′) to be the same as the Gauss sum G(χ) of χ, given by

(4.1) G(χ) =

d∑

a=1

χ(a)e(a/d),

where d is the conductor of χ. Now we have an elementary

Lemma 4.2. (i) Let χ1, . . . , χm be Dirichlet characters. Then the number
G(χ1) · · ·G(χm)/G(χ1 · · ·χm) belongs to the field generated by the values of
χ1, . . . , χm over Q.

(ii) Let ψ and χ be primitive characters of conductor c and d, respectively.
If c and d are relatively prime, then

(4.2) G(ψχ) = ψ(d)χ(c)G(ψ)G(χ).

Proof. For the proof of (i) see [S78, Proposition 4.12], which generalizes [S76,
Lemma 8]. In the setting of (ii) take r, s ∈ Z so that cr + ds = 1. Then for
x, y ∈ Z the map (x, y) 7→ xds+ycr gives a bijection of (Z/cZ)× (Z/dZ) onto
Z/cdZ, and so

G(ψχ) =

c∑

x=1

d∑

y=1

e
(
(xds+ ycr)/cd

)
ψ(xds)χ(ycr)

=

c∑

x=1

ψ(xds)e(xs/c)

d∑

y=1

χ(ycr)e(yr/d),

which proves (4.2).

Theorem 4.3. Let χ be a primitive character of conductor d such that
χ(−1) = −1, and let λ(m) =

(
3
m

)
. Suppose d is odd and 0 < d/9 ∈ Z.

Then
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(4.3)
G(χλ)

G(χ)
=

{
2
√

3χ(2)

d−1∑

a=1

(χλ)(a)

}/{ d−g∑

j=1−g
(−1)jχ(j)

}
,

where g = [d/6] + 1.

Proof. In [S07, Theorem 6.3(v)] we gave a formula for L(k, χλ). Taking k = 1
and χ̄ in place of χ, we obtain

2
√

3χ(2)(πi)−1G(χ)L(1, χ̄λ) =

d−g∑

j=1−g
(−1)jχ(j),

since E1,0(t) = 1. Now χ̄λ is primitive and has conductor 4d, and so the
formula [S07, (4.34)] applied to χ̄λ produces

(πi)−1G(χλ)L(1, χ̄λ) =

d−1∑

a=1

(χλ)(a).

Taking the quotient of these two formulas, we obtain (4.3).

In [S07, Theorem 6.3] we gave eight formulas for L(k, χλ), where λ is a
“constant” character and χ is a “variable” character. In the above theorem
we employed only one of those formulas. We can actually state results about
G(χλ)/G(χ) in the other seven cases, but they are not so interesting, since we
can apply (4.2) to χλ in those cases, and the case we employed in the above
theorem is the only case to which (4.2) is not applicable. Even in that case,
the significance of (4.3) is rather obscure. Still, the formula is clear-cut and
nontrivial, and we state it here with the hope that future researchers will be
able to clarify its nature in a better perspective.

We end our discussion of this subject by showing the quantity of (4.3) can
be determined in a different way. We begin with some preliminary results.

Lemma 4.4. Let χ and ψ be primitive characters of conductor pm and pn,
respectively, where p is a prime number and m, n are positive integers. Sup-
pose m ≥ n and χψ has conductor pm. Then

(4.4) G(χ)G(ψ) = G(χψ)

pn∑

a=1

χ(1 − pm−na)ψ(a).

This was given in [S76, (4.2)].

Lemma 4.5. Let χ be a primitive character of conductor c, where c = 3m

with m > 1 or c = 2m with m > 3, and let µ3 and µ4 denote the primitive
characters of conductor 3 and 4, respectively. Let χ′ = χµ3 if c = 3m and
χ′ = χµ4 if c = 2m. Then G(χ′) = εG(χ) with ε = ±1 determined by
χ(1− 3m−1) = e(ε/3) if c = 3m and χ(1− 2m−2) = e(ε/4) if c = 2m.

Proof. We first consider the case c = 2m. By (4.4), G(χ)G(µ4)/G(χ′) = β− γ
with β = χ(1−2m−2) and γ = χ(1+2m−2). Since m > 3, we have (1−2m−2)2 ≡
1−2m−1 (mod 2m), (1−2m−2)(1+2m−2) ≡ 1 (mod 2m), and (1−2m−2)4 ≡ 1
(mod 2m), and so β4 = βγ = 1. Suppose β = ±1. Then χ(1− 2m−1) = 1, and
so χ(1 − 2m−1a) = χ(1 − 2m−1)a = 1 for every a ∈ Z, which means that χ
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has conductor ≤ 2m−1, a contradiction. Thus β 6= ±1, and so β = εi with
ε = ±1. Since G(µ4) = 2i, we have G(χ)/G(χ′) = (β − β−1)/2i = ε, which
proves the case c = 2m.

If c = 3m, we have similarly G(χ)G(µ3)/G(χ′) = β−γ with β = χ(1−3m−1)
and γ = χ(1 + 3m−1). We easily see that βγ = β3 = 1 and β 6= 1. Since

G(µ3) =
√

3i, we have G(χ)/G(χ′) = (β − β−1)/
√

3i = ε, and ε is determined
by β = e(ε/3). This completes the proof.

4.6. Returning to the setting of Theorem 4.3, put d = 3mf with m ∈ Z and
0 < f ∈ Z, 3 ∤ f ; put also χ = χ0χ1 with characters χ0 and χ1 of conductor
3m and f, respectively. Since λ = µ3µ4, we have χλ = χ0µ3χ1µ4. By (4.2) we
have G(χ1µ4) = 2iχ1(4)µ4(f)G(χ1), and so

G(χλ) = (χ1µ4)(3m)(χ0µ3)(4f)G(χ0µ3)G(χ1µ4)

= 2i(−1)mχ0(f)χ(4)χ1(3m)λ(f)G(χ0µ3)G(χ1).

Also, G(χ) = χ0(f)χ1(3m)G(χ0)G(χ1). Therefore

G(χλ)/G(χ) = 2i(−1)mλ(f)χ(4)G(χ0µ3)/G(χ0).

Applying Lemma 4.5 to G(χ0µ3)/G(χ0), we thus obtain

(4.5) G(χλ)/G(χ) = 2i(−1)mλ(f)χ(4)ε,

where ε = ±1 is determined by χ0(1− 3m−1) = e(ε/3).

5. The case of a domain of positivity

5.1. There is a natural analogue of ζ(s; a, γ) defined on the space of sym-
metric matrices. To be explicit, with a positive integer n we denote by V the
set of all real symmetric matrices of size n, and write h > 0 resp. h ≥ 0 for
h ∈ V when h is positive definite resp. nonnegative. We put VC = V ⊗R C,

κ = (n+ 1)/2, P =
{
h ∈ V

∣∣h > 0
}
, and

H =
{
x+ iy ∈ VC

∣∣x ∈ V, y ∈ P
}
.

For h ∈ V we denote by λ(h) and µ(h) the maximum and minimum absolute
value of eigenvalues of h, respectively. We easily see that V is a normed
space with λ(h) as the norm of h, that is, λ(ch) = |c|λ(h) for c ∈ R and
λ(h + k) ≤ λ(h) + λ(k). For 0 ≤ d ∈ Z we denote by Sd the space of all
C-valued homogeneous polynomial functions on V of degree d. Here are two
easy facts:

(5.1) tr(gh) ≥ λ(h)µ(g) if g, h ∈ P.
(5.2) |ξ(h)| ≤ cξλ(h)d for every ξ ∈ Sd and h ∈ V with a positive constant

cξ that depends only on ξ.

To prove (5.1), we may assume that g is diagonal. For g = diag[µ1, . . . , µn]
we have tr(gh) =

∑n
i=1 µihii ≥ µ(g)tr(h) ≥ µ(g)λ(h), since tr(h) is the sum of

all eigenvalues of h. As for (5.2), given h ∈ V, take an orthogonal matrix p so
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that h = tp · diag[κ1, . . . , κn]p with κi ∈ R. Since |pij | ≤ 1 and |κi| ≤ λ(h),
we see that |hij | ≤ nλ(h), from which we obtain (5.2).

We now consider three types of infinite series:

(5.3) Φ(s; L, a, z) =
∑

h∈L
det
(
2πi(h− z)

)−s
e
(
tr(a(h− z))

)
,

(5.4) F (s; L, a, z) =
∑

h∈L,h+a>0

det(h+ a)−se
(
tr(hz)

)
,

(5.5) F0(s; L, a, z) =
∑

0≤h∈L
det(h+ a)−se

(
tr(hz)

)
.

Here s ∈ C, L is a lattice in V, a ∈ V, z ∈ H, and the sum of (5.4) is extended
over all h ∈ L such that h+ a ∈ P ; the sum of (5.3) is simply over all h ∈ L;
in (5.5) we assume that a > 0 and the sum is extended over all nonnegative
h in L. For z ∈ H and s ∈ C we define det(−2πiz)s so that it coincides with
det(2πp)s if z = ip with p ∈ P.
Lemma 5.2. For every ξ ∈ Sd the infinite series

(5.6)
∑

h∈L,h+a>0

det(h+ a)sξ(h+ a)e
(
tr(hz)

)

converges absolutely and locally uniformly for (s, a, z) ∈ C× V × H.

Proof. For a fixed positive number α the number of h ∈ L such that λ(h)≤α
is finite, as

{
h∈V

∣∣λ(h)≤α
}

is compact and L is discrete in V. Thus, to prove
the convergence of (5.6), we can restrict h to those that satisfy λ(h) > λ(a)+1
for every a ∈ A, where A is a fixed compact subset of V. For such an h we
have 1 ≤ λ(h + a) < 2λ(h) and det(h + a) ≤ λ(h + a)n ≤ 2nλ(h)n. Also,
by (5.2), |ξ(h + a)| ≤ cξλ(h + a)d ≤ cξ2

dλ(h)d. Thus for Re(s) = σ we have
| det(h + a)sξ(h + a)| ≤ 2nσ+dcξλ(h)nσ+d. On the other hand, for 0 < N ∈ Z

the number of h ∈ L such that N ≤ λ(h) < N + 1 is less than CN b with
positive constants C and b. Put g = 2πIm(z). Then |e(tr(hz)

)
| = e−tr(gh).

Since −tr(gh) ≤ −λ(h)µ(g) by (5.1), our partial sum can be majorized by
2nσ+dcξC

∑∞
N=1(N + 1)nσ+d+be−Nµ(g), which proves our lemma.

Theorem 5.3. (i) The infinite series of (5.3) converges absolutely and locally
uniformly in (s, a, z) ∈

{
s ∈ C

∣∣Re(s) > n
}
× V × H. Thus it defines a

holomorphic function in s for Re(s) > n.
(ii) The infinite series of (5.4) and (5.5) converge absolutely and locally uni-

formly in (s, a, z) ∈ C× V × H, and so they define entire functions of s.
(iii) For Re(s) > n we have

(5.7) vol(V/L)F (κ− s; L, a, z) = Γn(s)Φ(s; L′, a, z),

where L′ =
{
x ∈ V

∣∣ tr(xL) ⊂ Z
}
and

Γn(s) = πn(n−1)/4
n−1∏

k=0

Γ
(
s− (k/2)

)
.
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(iv) For 0 ≤ m ∈ Z the values F (−m; L, a, z), F0(−m; L, a, z), and Φ(κ+
m; L, a, z) are polynomial functions of a of degree ≤ mn, whose coefficients
depend on L and z.

Statement (iv) for F0 can be taken literally, but the cases of F and Φ require
some clarifications, which will be given in the proof.

Proof. Assertion (i) is included in [S82, Lemma 1.3]; (ii) follows from Lemma
5.2. To prove (iii), given s ∈ C and p ∈ P, we consider a function g on V
defined by

g(u) =

{
e−tr(up) det(u)s−κ (u ∈ P ),

0 (u /∈ P ),

and define its Fourier transform ĝ by

ĝ(t) =

∫

V

e
(
− tr(ut)

)
g(u)du (t ∈ V ),

where du =
∏
i≤j duij . As shown in [S82, (1.22)], ĝ(t) = Γn(s) det(p+ 2πit)−s,

provided Re(s) > κ − 1. Then the Poisson summation formula establishes
equality (5.7) with both sides multiplied by e

(
tr(az)

)
for z = (−2πi)−1p

when the series of (5.3) and (5.4) are convergent, which is the case at least
when Re(s) > n. Since both sides of (5.7) are holomorphic in z if Re(s) > n,
we obtain (iii) as stated.

To prove (iv), take a C-basis B of
∑mn

d=0 Sd. For 0 ≤ m ∈ Z we have

(5.8) F0(−m; L, a, z) =
∑

0≤h∈L
det(h+ a)me

(
tr(hz)

)
.

We can put det(h+a)m =
∑
β∈B β(a)fβ(h) with polynomial functions fβ , and

so

(5.8a) F0(−m; L, a, z) =
∑

β∈B
β(a)Gβ(z) with

(5.8b) Gβ(z) =
∑

0≤h∈L
fβ(h)e

(
tr(hz)

)
.

Thus F0(−m; L, a, z) is a polynomial in a as stated in (iv). This argument is
basically valid for F in place of F0, but the functions corresponding to Gβ in
that case may depend on a. To avoid that difficulty, we first take a compact
subset A of V and restrict a to A. As shown in the proof of Lemma 5.2, we
can find a subset M of L independent of a such that{

h ∈ L
∣∣h > 0, h+ a > 0

}
= M ⊔Ka,

with a finite set Ka for each a ∈ A. Then, taking F in place of F0, we obtain,
for a ∈ A,
(5.9a) F (−m; L, a, z) =

∑

β∈B
β(a)Hβ(z) with

(5.9b) Hβ(z) =
∑

h∈Ka
fβ(h)e

(
tr(hz)

)
+
∑

h∈M
fβ(h)e

(
tr(hz)

)
.
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Thus the statement about F (−m; L, a, z) in (iv) must be understood in the
sense of (5.9a, b). It is a polynomial in a whose coefficients Hβ(z) is the sum
of a “principal part” that is independent of a and a finite sum depending on
a.

As for the value of Φ, from (5.7) we see that Φ is an entire functions of s.
Also Γn(s)−1 is nonzero for (n − 1)/2 < s ∈ R. Thus Φ(κ + m; L′, a, z) is
a nonzero constant times F (−m; L, a, z), and so is a polynomial in a in the
sense explained above.

5.4. Let us add some remarks. Clearly F0 of (5.5) is a natural generalization
of (0.1), but we introduced F and Φ as in (5.4) and (5.3), as we think they
are natural objects of study closely related to (5.5). It must be remembered,
however, that (5.5) includes (0.1) as a special case only if |γ| < 1. To define
something like (5.5) that includes (0.1) with |γ| = 1 is one of the open problems
in this area.

Next, there are four classical types of domains of positivity associated with
tube domains discussed in [S82]. Our V, P, and H in this section belong to the
easiest type. We can in fact define the analogues of (5.3), (5.4), and (5.5) for
all three other types of domains, and prove the results similar to Theorem 5.3
in those cases.

As to the nature of the polynomials in the variable a obtained in Theorem
5.3(iv), we do not have their description as explicit as what we know about
Ec,m(t). Still, we can show that they are of a rather special kind. For that
purpose we need a matrix of differential operators ∂a = (∂ij)

n
i,j=1 on V as

folows. Taking a variable symmetric matrix a = (aij) on V, we put ∂ii = ∂/∂aii
and ∂ij = 2−1∂/∂aij for i 6= j. Then for every ϕ ∈ Sd we can define a diffrential
operator ϕ(∂a). In particular, taking ϕ(a) = det(a), we put

(5.10) ∆a = det(∂a) =
∑

σ

sgn(σ)∂1σ(1) · · · ∂nσ(n),

where σ runs over all permutations of {1, . . . , n}. It is well known that

(5.11) ∆a

(
det(a)s

)
=
n−1∏

k=0

(s+ k/2) · det(a)s−1.

This is a special case of a general formula on ϕ(∂a) det(z)s for ϕ ∈ Sd given
in [S84].

Fixing L and z, for 0 ≤ m ∈ Z put

(5.12) Em(a) = F0(−m; L, a, z).

We have shown that Em is a polynomial of degree ≤ mn. Notice that E0(a) =∑
0≤h∈L e

(
tr(hz)

)
. From (5.8) and (5.11) we obtain

(5.13) ∆aEm(a) =

n−1∏

k=0

(m+ k/2) · Em−1(a).

This is a generalization of the formula (d/dt)Ec,m(t) = mEc,m−1(t), noted in
[S07, (4.3c)].
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Locally Well Generated

Homotopy Categories of Complexes

Jan Šťov́ıček 1

Abstract. We show that the homotopy category of complexes K(B)
over any finitely accessible additive category B is locally well gener-
ated. That is, any localizing subcategory L in K(B) which is generated
by a set is well generated in the sense of Neeman. We also show that
K(B) itself being well generated is equivalent to B being pure semisim-
ple, a concept which naturally generalizes right pure semisimplicity of
a ring R for B = Mod-R.

2010 Mathematics Subject Classification: 18G35 (Primary) 18E30,
18E35, 16D90 (Secondary)
Keywords and Phrases: compactly and well generated triangulated
categories, complexes, pure semisimplicity

Introduction

The main motivation for this paper is to study when the homotopy category of
complexes K(B) over an additive category B is compactly generated or, more
generally, well generated.

In the last few decades, the theory of compactly generated triangulated cate-
gories has become an important tool unifying concepts from various fields of
mathematics. Standard examples are the unbounded derived category of a ring
or the stable homotopy category of spectra. The key property of such a cate-
gory T is the Brown Representability Theorem, cf. [30, 25], originally due to
Brown [9]:

Any contravariant cohomological functor F : T → Ab which
sends coproducts to products is representable.

1The author was supported by the Research Council of Norway through the Storforsk-
project “Homological and geometric methods in algebra” and also by the grant GAUK 301-
10/252216.
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This theorem is an important tool and has been used in several places. We
mention Neeman’s proof of the Grothendieck Duality Theorem [30], Krause’s
work on the Telescope Conjecture [28, 24], or Keller’s representation theorem
for algebraic compactly generated triangulated categories [23].
Recently, there has been a growing interest in giving criteria for certain ho-
motopy categories K(B) to be compactly generated, [15, 20, 29, 31]. Here, B
typically was a suitable subcategory of a module category. The main reason for
studying such homotopy categories were results concerning the Grothendieck
Duality Theorem [17, 31] and relative homological algebra [19]. There is, how-
ever, a conceptual reason, too. Namely, every algebraic triangulated category
is triangle equivalent to a full subcategory of some homotopy category, [25,
§7.5].
It turned out when studying the homotopy category of complexes of projective
modules over a ring R in [31] that it is useful to consider well generated tri-
angulated categories in this context. More precisely, K(Proj-R) is always well
generated, but may not be compactly generated. Well generated categories have
been defined by Neeman [32] in a natural attempt to extend results such as the
Brown Representability from compactly generated triangulated categories to a
wider class of triangulated categories.

Although one has already known for some time that there exist rather natural
triangulated categories, such as the homotopy category of complexes of abelian
groups, which are not even well generated, one has typically viewed those as
rare and exceptional cases.
We will give some arguments to show that this interpretation is not very accu-
rate. First, the categories K(Mod-R) for a ring R are rarely well generated. It
happens if and only if R is right pure semisimple, which establishes the converse
of [15, §4 (3), p. 17]. Moreover, we generalize this result to the homotopy cat-
egories K(B) with B additive finitely accessible. This way, we obtain a fairly
complete answer regarding when K(Flat-R) is compactly or well generated,
see [15, Question 4.2].
We also give a partial remedy for the typical failure of K(B) to be well gen-
erated. Roughly speaking, the main problem with K(B), where B is finitely
accessible, is that it may not have any set of generators at all. But if we take
a localizing subcategory L generated by any set of objects, it will automati-
cally be well generated. We will call a triangulated category with this property
locally well generated.
We will also give basic properties of locally well generated categories and see
that some of the usual results regarding localization hold in the new setting.
For example, any localizing subcategory generated by a set of objects is real-
ized as the kernel of a localization endofunctor. This version of a Bousfield
localization theorem generalizes [26, §7.2] and [2, 5.7]. However, one has to be
more careful. The Brown Representability theorem as stated above does not
work for locally well generated categories in general, and there are localizing
subcategories which are not associated to any localization endofunctor. We
illustrate this in Example 3.7.
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1. Preliminaries

Let T be a triangulated category. A triangulated subcategory S ⊆ T is called
thick if, whenever X ∐ Y ∈ S, then also X ∈ S. From now on, we will assume
that T has arbitrary (set-indexed) coproducts. A full triangulated subcategory
L ⊆ T is called localizing if it is closed under forming coproducts. Note that
by [32, 1.6.8], T has splitting idempotents and any localizing subcategory L ⊆
T is thick.
If S is any class of objects of T , we denote by LocS the smallest localizing
subcategory of T which contains S. In other words, LocS is the closure of S
under shifts, coproducts and triangle completions.
Given T and a localizing subcategory L ⊆ T , one can construct the so-called
Verdier quotient T /L by formally inverting in T all morphisms in the class
Σ(L) defined as

Σ(L) = {f | ∃ triangle X
f→ Y → Z → X [1] in T such that Z ∈ L}.

It is a well known fact that the Verdier quotient always has coproducts, admits
a natural triangulated structure, and the canonical localization functor Q :
T → T /L is exact and preserves coproducts, [32, Chapter 2]. However, one
has to be careful, since T /L might not be a usual category in the sense that
the homomorphism spaces might be proper classes rather than sets. This fact,
although often inessential and neglected, as T /L has a very straightforward
and constructive description, may nevertheless have important consequences
in some cases; see eg. [6].
Let L : T → T be an exact endofunctor of T . Then L is called a localization
functor if there exists a natural transformation η : IdT → L such that LηX =
ηLX and ηLX : LX → L2X is an isomorphism for each X ∈ T .
It is easy to check that the full subcategory KerL of T given by

KerL = {X ∈ T | LX = 0}
is always localizing [2, 1.2]. Moreover, there is a canonical triangle equivalence
between T /KerL and ImL, the essential image of L; see [32, 9.1.16] or [26,
4.9.1]. This among other things implies that all morphism spaces in T /KerL
are sets. Note that although ImL has coproducts as a category, it might not
be closed under coproducts in T . This type of localization, coming from a
localization functor, is often referred to as Bousfield localization. However, not
every localizing subcategory L is realized as the kernel of a localization functor,
[6, 1.3]. Namely, L is of the form KerL for some localization functor if and
only if the inclusion L → T has a right adjoint, [2, 1.6].

A central concept in this paper is that of a well generated triangulated category.
Let κ be a regular cardinal number. An object Y in a category with arbitrary
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coproducts is called κ–small provided that every morphism of the form

Y −→
∐

i∈I
Xi

factorizes through a subcoproduct
∐
i∈J Xi with |J | < κ.

Definition 1.1. Let T be a triangulated category with arbitrary coproducts
and κ be a regular cardinal. Then T is called κ–well generated provided there
is a set S of objects of T satisfying the following conditions:

(1) If X ∈ T such that T (Y,X) = 0 for each Y ∈ S, then X = 0;
(2) Each object Y ∈ S is κ–small;
(3) For any morphism in T of the form f : Y → ∐

i∈I Xi with Y ∈ S,
there exists a family of morphisms fi : Yi → Xi such that Yi ∈ S for
each i ∈ I and f factorizes as

Y −−−→
∐

i∈I
Yi

∐
fi−−−→
∐

i∈I
Xi.

The category T is called well generated if it is κ–well generated for some regular
cardinal κ.

This definition differs to some extent from Neeman’s original definition in [32,
8.1.7]. The equivalence between the two follows from [27, Theorem A] and [27,
Lemmas 4 and 5]. Note that if κ = ℵ0, then condition (3) is vacuous and ℵ0–
well generated triangulated categories are precisely the compactly generated
triangulated categories in the usual sense.
The key property of well generated categories is that the Brown Representabil-
ity Theorem holds:

Proposition 1.2. [32, 8.3.3] Let T be a well generated triangulated category.
Then:

(1) Any contravariant cohomological functor F : T → Ab which takes
coproducts to products is, up to isomorphism, of the form T (−, X) for
some X ∈ T .

(2) If S is a set of objects of T which meets assumptions (1), (2) and (3)
of Definition 1.1 for some cardinal κ, then T = LocS.

Next we turn our attention to categories of complexes. Let B be an additive
category. Using a standard notation, we denote by C(B) the category of chain
complexes

X : · · · → Xn−1 dn−1

→ Xn dn→ Xn+1 → . . . ,

of objects of B. By K(B), we denote the factor-category of C(B) modulo the
ideal of null-homotopic chain complex morphisms. It is well known that K(B)
has a triangulated structure where triangle completions are constructed using
mapping cones (see for example [14, Chapter I]). Moreover, if B has arbitrary
coproducts, so have them both C(B) and K(B), and the canonical functor
C(B)→ K(B) preserves coproducts.

Documenta Mathematica 15 (2010) 507–525



Locally Well Generated Homotopy Categories . . . 511

We will often take for B module categories or their subcategories. In this
case, R will denote an associative unital ring and Mod-R the category of all
(unital) right R–modules. By Proj-R and Flat-R we denote, respectively, the
full subcategories of projective and flat R–modules.
In fact, our considerations will usually work in a more general setting. Let
A be a skeletally small additive category and Mod-A be the category of all
contravariant additive functors A → Ab. We will call such functors right
A–modules. Then Mod-A shares many formal properties with usual module
categories. We refer to [18, Appendix B] for more details. Correspondingly, we
denote by Proj-A the full subcategory of projective functors and by Flat-A the
category of flat functors. We discuss the categories of the form Flat-A more
in detail in Section 4 since those are, up to equivalence, precisely the so called
additive finitely accessible categories. Many natural abelian categories are of
this form.

Finally, we spend a few words on set-theoretic considerations. All our proofs
work in ZFC with an extra technical assumption: the axiom of choice for proper
classes. The latter assumption has no algebraic significance, it is only used to
keep arguments simple in the following case:
Let F : C → D be a covariant additive functor. If we know, for example by the
Brown Representability Theorem, that the composition of functors

C F−−−−−→ D D(−,X)−−−−−→ Ab

is representable for each X ∈ D, we would like to conclude that F has a right
adjoint G : D → C. In order to do that, we must for each Y ∈ C choose one
particular value for GY from a class of mutually isomorphic candidates.

2. Pure semisiplicity

A relatively straightforward but crucial obstacle causing a homotopy category
of complexes K(B) not to be well generated is that the additive base category
B is not pure semisimple. Here, we use the following very general definition:

Definition 2.1. An additive category B with arbitrary coproducts is called
pure semisimple if it has an additive generator. That is, there is an object
X ∈ B such that B = AddX , where AddX stands for the full subcategory
formed by all objects which are summands in (possibly infinite) coproducts of
copies of X .

The term is inspired by the case B = Mod-R, where we have the following
proposition:

Proposition 2.2. A ring R is right pure semisimple (that is, each pure
monomorphism between right R–modules splits) if and only if Mod-R is pure
semisimple in the sense of Definition 2.1.

Proof. If every pure monomorphism in Mod-R splits, then also every pure
epimorphism splits. That is, every module is pure projective, or equivalently
a summand in a direct sum of finitely presented modules. By a theorem of
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Kaplansky, [21, Theorem 1], it follows that every module is a direct sum of
countably generated modules. Hence, Mod-R is pure semisimple according to
our definition. In fact, one can show more in this case: Every module is even a
direct sum of finitely presented modules; see for example [16] or [18, App. B].
Let us conversely assume that Mod-R is a pure semisimple additive category.
Using [3, Theorem 26.1], which is a variation of [21, Theorem 1] for higher
cardinalities, we see that if Mod-R = AddX for some κ–generated module X ,
then each module in Mod-R is a direct sum of λ–generated modules where
λ = max(κ,ℵ0). This fact implies that every module is Σ–pure injective, [12].
In particular, each pure monomorphism in Mod-R splits and R is right pure
semisimple. �

If R is an artin algebra, then the conditions of Proposition 2.2 are well-known to
be further equivalent to R being of finite representation type; see [4, Theorem
A]. For more details and references on this topic, we also refer to [16]. It turns
out that the pure semisimplicity condition has a nice interpretation for finitely
accessible additive categories as well. We will discuss this more in detail in
Section 4.

For giving a connection between pure semisimplicity of B and properties of
K(B), we recall a structure result for the so-called contractible complexes in
C(B). A complex Y ∈ C(B) is contractible if it is mapped to a zero object
under C(B)→ K(B). It is clear that the complexes of the form

IX,n : · · · → 0→ 0→ X = X → 0→ 0→ . . . ,

such that the first X is in degree n, are contractible. Moreover, all other
contractible complexes are obtained in the following way:

Lemma 2.3. Let B be an additive category with splitting idempotents and Y ∈
C(B). Then the following are equivalent:

(1) Y is contractible;
(2) Y is isomorphic in C(B) to a complex of the form

∐
n∈Z IXn,n.

Proof. (2) =⇒ (1). This is trivial given the fact that the functor C(B) →
K(B) preserves those componentwise coproducts of complexes which exist in
C(B).
(1) =⇒ (2). Let us fix a contractible complex in K(B):

Y : . . .
dn−2

−−−→ Y n−1
dn−1

−−−→ Y n
dn−−−→ Y n+1 dn+1

−−−→ . . . .

By definition, the identity morphism of Y is homotopy equivalent to the zero
morphism in C(B), so there are morphisms sn : Y n → Y n−1 in B such that

1Y n = dn−1sn + sn+1dn.

When composing with dn, we get dn = dnsn+1dn, so sn+1dn : Y n → Y n is
idempotent in B for each n ∈ Z. Hence there are morphisms pn : Y n → Xn

and jn : Xn → Y n in B such that pnjn = 1Xn and jnpn = sn+1dn. Let us
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denote by fn : Xn−1 ∐ Xn → Y n and gn : Y n → Xn−1 ∐Xn the morphisms
defined as follows:

fn = (dn−1jn−1, jn), and gn =

(
pn−1sn

pn

)
.

Using the identities above, it is easy to check that fngn = 1Y n and gnfn is an
isomorphism in B for each n. Therefore, both fn and gn are isomorphisms and
gnfn is the identity morphism. Finally, it is straightforward to check that the
family of morphisms (fn | n ∈ Z) induces an (iso)morphism f :

∐
n∈Z IXn,n →

Y in C(B). �

It is not difficult to see that the condition of B having splitting idempotents
is really necessary in Lemma 2.3. However, there is a standard construction
which allows us to amend B with the missing summands if B does not have
splitting idempotents.

Definition 2.4. Let B be an additive category. Then an additive category B̄
is called an idempotent completion of B if

(1) B̄ has splitting idempotents;
(2) B is a full subcategory of B̄;
(3) Every object in B̄ is a direct summand of an object in B.

It is a classical result that idempotent completions always exist. We refer for
example to [5, §1] for a particular construction. Moreover, it is well-known that
if B has arbitrary coproducts, then also B̄ has them and they are compatible
with coproducts in B.
Now we can state the main result of the section showing that for K(B) being
generated by a set (and, in particular, for K(B) being well generated), the
category B is necessarily pure semisimple.

Theorem 2.5. Let B be an additive category with arbitrary coproducts and
assume that there is a set of objects S ⊆ K(B) such that K(B) = LocS. Then
B is pure semisimple.

Proof. Note that we can replace S by a singleton {Y }; take for instance Y =∐
Z∈S Z. Let us denote by X ∈ B the coproduct

∐
n∈Z Y

n of all components
of Y . We will show that B = AddX . First, we claim that K(AddX) is a
dense subcategory of K(B), that is, each object in K(B) is isomorphic to one
in K(AddX). Indeed, Y ∈ K(AddX) and one easily checks that the closure of
K(AddX) under taking isomorphic objects in K(B) is a localizing subcategory.
Hence K(AddX) is dense in K(B) and the claim is proved.
Suppose for the moment that B has splitting idempotents. If we identify B
with the full subcategory of K(B) formed by complexes concentrated in degree
zero, we have proved that each object Z ∈ B is isomorphic to a complex Q ∈
K(AddX). That is, there is a chain complex homomorphism f : Z → Q such
that Q ∈ C(AddX) and f becomes an isomorphism in K(B). In particular,
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the mapping cone Cf of f is contractible:

Cf : . . . −→ Q−3
d−3

−→ Q−2
(d

−2

0 )−→ Q−1 ∐ Z (d−1,f0)−→ Q0 d0−→ Q1 −→ . . .

Here, f0 is the degree 0 component of f . Consequently, Lemma 2.3 yields the
following commutative diagram in B with isomorphisms in columns:

Q−2
(d

−2

0 )−−−−→ Q−1 ∐ Z (d−1,f0)−−−−−→ Q0

∼=
y ∼=

y ∼=
y

U ∐ V (0 1
0 0)−−−−→ V ∐W (0 1

0 0)−−−−→ W ∐ Z
It follows that V,W and also Q−1 ∐Z and Z are in AddX . Hence B = AddX .
Finally, let B be a general additive category with coproducts and B̄ be its
idempotent completion. From the fact that K(B) has splitting idempotents,
[32, 1.6.8], one easily sees that the full embedding K(B)→ K(B̄) is dense. We
already know that if K(B) = LocS for a set S, then B̄ = AddX for some
X ∈ B̄. In fact, we can take X ∈ B by the above construction. But then
clearly B = AddX when the additive closure is taken in B. Hence B is pure
semisimple. �

Remark. When studying well generated triangulated categories, an important
role is played by so-called κ–localizing subcategories, see [32, 26]. We recall
that given a cardinal number κ, a κ–coproduct is a coproduct with fewer than
κ summands. If T is a triangulated category with arbitrary κ–coproducts, a
thick subcategory L ⊆ T is called κ–localizing if it is closed under taking κ–
coproducts. In this context, one can state the following “bounded” version of
Theorem 2.5:
Let κ be an uncountable regular cardinal and B be an additive category with
κ–coproducts. If K(B) is generated as a κ–localizing subcategory by a set S
of fewer than κ objects, then there is X ∈ B such that every object of B is a
summand in a κ–coproduct of copies of X .

Note that Theorem 2.5 gives immediately a wide range of examples of categories
which are not well generated. For instance, K(Mod-R) is not well generated
for any ring R which is not right pure semisimple. One can take R = Z or
R = k(·⇉ ·), the Kronecker algebra over a field k. The fact that K(Ab) is
not well generated was first observed by Neeman, [32, E.3.2], using different
arguments. In fact, we can state the following proposition, which we later
generalize in Section 5:

Proposition 2.6. Let R be a ring. Then the following are equivalent:

(1) K(Mod-R) is well generated;
(2) K(Mod-R) is compactly generated;
(3) R is right pure semisimple.

If R is an artin algebra, the conditions are further equivalent to:

(4) R is of finite representation type.
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Proof. (2) =⇒ (1) is clear, as compactly generated is the same as ℵ0–well
generated. (1) =⇒ (3) follows by Theorem 2.5 and Proposition 2.2. (3) =⇒
(2) has been proved by Holm and Jørgensen, [15, §4 (3), p. 17]. Finally, the
equivalence between (3) and (4) is due to Auslander, [4, Theorem A]. �

3. Locally well generated triangulated categories

We have seen in the last section that a triangulated category of the form
K(Mod-R) is often not well generated. One might get an impression that
handling such categories is hopeless, but the main problem here actually is
that the category is very big in the sense that it is not generated by any set.
Otherwise, it has a very reasonable structure. We shall see that it is locally
well generated in the following sense:

Definition 3.1. A triangulated category T with arbitrary coproducts is called
locally well generated if LocS is well generated for any set S of objects of T .

In fact, we prove that K(Mod-A) is locally well generated for any skeletally
small additive category A. To this end, we first need to be able to measure the
size of modules and complexes.

Definition 3.2. LetA be a skeletally small additive category and M ∈ Mod-A.
Recall that M is a contravariant additive functor A → Ab by definition. Then
the cardinality of M , denoted by |M |, is defined as

|M | =
∑

A∈S
|M(A)|,

where |M(A)| is just the usual cardinality of the group M(A) and S is a fixed
representative set for isomorphism classes of objects from A. The cardinality
of a complex Y = (Y n, dn) ∈ K(Mod-A) is defined as

|Y | =
∑

n∈Z
|Y n|.

It is not so difficult to see that the category of all complexes whose cardinalities
are bounded by a given regular cardinal always gives rise to a well-generated
subcategory of K(Mod-A):

Lemma 3.3. Let A be a skeletally small additive category and κ be an infinite
cardinal. Then the full subcategory Sκ formed by all complexes of cardinality
less than κ meets conditions (2) and (3) of Definition 1.1.
In particular, Tκ = LocSκ is a κ–well generated subcategory of K(Mod-A) for
any regular cardinal κ.

Proof. Let Y ∈ K(Mod-A) such that |Y | < κ. If (Zi | i ∈ I) is an arbitrary
family of complexes in K(Mod-A), we can construct their coproduct as a com-
ponentwise coproduct in C(Mod-A). Then whenever f : Y → ∐

i∈I Zi is a
morphism in C(Mod-A), it is straightforward to see that f factorizes through∐
i∈J Zi for some J ⊆ I of cardinality less than κ. Hence Y is κ–small in

K(Mod-A).
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Regarding part (3) of Definition 1.1, consider a morphism f : Y →∐
i∈I Zi. We

have the following factorization in the abelian category of complexes C(Mod-A):

Y
(fi)−→

∐

i∈I
Im fi

j−→
∐

i∈I
Zi.

Here, fi : Y → Zi are the compositions of f with the canonical projections
πi :

∐
i′∈I Zi′ → Zi, and j stands for the obvious inclusion. It is easy to see

that | Im fi| < κ for each i ∈ I and that the morphism j is a coproduct of the
inclusions Im fi → Zi. Hence (3) is satisfied.
For the second part, let κ be regular and Tκ = LocSκ. Let us denote by S ′ a
representative set of objects in Sκ. It only remains to prove that S ′ satisfies
condition (1) of Definition 1.1, which is rather easy. Namely, let X ∈ Tκ such
that Tκ(Y,X) = 0 for each Y ∈ S ′. Then T ′ = {Y ∈ Tκ | Tκ(Y,X) = 0} defines
a localizing subcategory of Tκ containing Sκ. Hence, T ′ = Tκ and X = 0. �

We will also need (a simplified version of) an important result, which is es-
sentially contained already in [32]. It says that the property of being well
generated is preserved when passing to any localizing subcategory generated
by a set. In particular, every well generated category is locally well generated.

Proposition 3.4. [26, Theorem 7.2.1] Let T be a well generated triangulated
category and S ⊆ T be a set of objects. Then LocS is a well generated trian-
gulated category, too.

Now, we are in a position to state a theorem which gives us a major source of
examples of locally well generated triangulated categories.

Theorem 3.5. Let A be a skeletally small additive category. Then the trian-
gulated category K(Mod-A) is locally well generated.

Proof. As in Lemma 3.3, we denote by Sκ the full subcategory of K(Mod-A)
formed by complexes of cardinality less than κ and put Tκ = LocSκ, the
localizing class generated by Sκ in K(Mod-A). Then Tκ is (κ–)well generated
for each regular cardinal κ by Lemma 3.3 and clearly

K(Mod-A) =
⋃

κ regular

Sκ =
⋃

κ regular

Tκ.

Now, if S ⊆ K(Mod-A) is a set of objects, then S ⊆ Tκ for some κ. Hence
also LocS ⊆ Tκ and LocS is well generated by Proposition 3.4. It follows that
K(Mod-A) is locally well generated. �

Having obtained a large class of examples of locally well generated triangulated
categories, one might ask for some basic properties of such categories. We will
prove a version of the so-called Bousfield Localization Theorem here:

Proposition 3.6. Let T be a locally well generated triangulated category and
S ⊆ T be a set of objects. Then T /LocS is a Bousfield localization; that
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is, there is a localization functor L : T → T such that KerL = LocS. In
particular, we have

ImL = {X ∈ T | T (Y,X) = 0 for each Y ∈ S},
there is a canonical triangle equivalence between T /LocS and ImL given by
the composition

ImL
⊆−→ T Q−→ T /LocS,

and all morphism spaces in T /LocS are sets.

Proof. The proof is rather standard. LocS is well generated, so it satisfies the
Brown Representability Theorem (see Proposition 1.2). Hence the inclusion
i : LocS → T has a right adjoint by [32, 8.4.4]. The composition of this
right adjoint with i gives a so-called colocalization functor Γ : T → T whose
essential image is equal to LocS. The definition of a colocalization functor is
formally dual to the one of a localization functor; see [26, §4.12] for details.
A well-known construction then yields a localization functor L : T → T such
that KerL = LocS. We refer to [32, 9.1.14] or [26, 4.12.1] for details. The rest
follows from [32, 9.1.16] or [26, 4.9.1]. �

Remark. Proposition 3.6 has been proved before for well generated triangu-
lated categories. This is implicitly contained for example in [26, §7.2]. It also
generalizes more classical results, such as a corresponding statement for the
derived category D(B) of a Grothendieck category B, [2, 5.7]. To see this, one
only needs to observe that D(B) is well generated, see [26, Example 7.7].

An obvious question is whether the Brown Representability Theorem also holds
for locally well generated categories, as this was the crucial feature of well
generated categories. Unfortunately, this is not the case in general, as the
following example suggested by Henning Krause shows.

Example 3.7. According to [10, Exercise 1, p. 131], one can construct an
abelian category B with some Ext-spaces being proper classes. Namely, let
U be the class of all cardinals, and let B = Mod-Z〈U〉, the category of all
“modules over the free ring on the proper class of generators U .” That is, an
object X of B is an abelian group such that each κ ∈ U has a Z-linear action
on X and this action is trivial for all but a set of cardinals. Such a category
admits a valid set-theoretical description in ZFC. If we denote by Z the object
of B whose underlying group is free of rank 1 and κ · Z = 0 for each κ ∈ U ,
then Ext1B(Z,Z) is a proper class (see also [26, 4.15] or [6, 1.1]).
Given the above description of objects of B, one can easily adjust the proof of
Theorem 3.5 to see that K(B) is locally well generated. Let Kac(B) stand for
the full subcategory of all acyclic complexes in K(B). Then Kac(B) is clearly
a localizing subcategory of K(B), hence locally well-generated.
It has been shown in [6] that Kac(B) does not satisfy the Brown Representabil-
ity Theorem. In fact, one proved even more: Kac(B) is localizing in K(B),
but it is not a kernel of any localization functor L : K(B) → K(B). More
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specifically, the composition of functors, the second of which is contravariant,

Kac(B)
⊆−−−−→ K(B)

K(B)(−,Z)−−−−−−−→ Ab

is not representable by any object of Kac(B).

Yet another natural question is what other triangulated categories are locally
well generated. A deeper analysis of this problem is left for future research,
but we will see in Section 4 that K(B) is locally well generated for any finitely
accessible additive category B. For now, we will prove that the class of locally
well generated triangulated categories is closed under some natural construc-
tions. Let us start with a general lemma, which holds even if morphism spaces
in the quotient T /L are proper classes:

Lemma 3.8. Let T be a triangulated category and L ⊆ L′ be two localizing
subcategories of T . Then L′/L is a localizing subcategory of T /L.
Proof. It is easy to see that L′/L is a full subcategory of T /L which is closed
under taking isomorphic objects, see [33, Théorème 4-2] or [22, Proposition
1.6.5]. The rest follows directly from the construction of T /L. �

Now we can show that taking localizing subcategories and localizing with re-
spect to a set of objects preserves the locally well generated property.

Proposition 3.9. Let T be a locally well generated triangulated category.

(1) Any localizing subcategory L of T is itself locally well generated.
(2) The Verdier quotient T /LocS is locally well generated for any set S of

objects in T .
Proof. (1) is trivial. For (2), put L = LocS and consider a set C of objects in
T /L. We have to prove that the localizing subcategory generated by C in T /L
is well generated. Since the objects of T and T /L coincide by definition, we
can consider a localizing subcategory L′ ⊆ T defined by L′ = Loc (S ∪C). One
easily sees using Lemma 3.8 that L′/L = Loc C in T /L. Since both L and L′
are well generated by definition, so is L′/L by [26, 7.2.1]. Hence T /L is locally
well generated. �

We conclude this section with an immediate consequence of Theorem 3.5 and
Proposition 3.9, which will be useful in the next section:

Corollary 3.10. Let A be a small additive category and B be a full subcategory
of Mod-A which is closed under arbitrary coproducts. Then K(B) is locally well
generated.

4. Finitely accessible additive categories

There is a natural generalization of module categories, namely the additive
version of finitely accessible categories in the terminology of [1]. As we have
seen, there is quite a lot of freedom to choose B in the above Corollary 3.10. We
will use this fact and a standard trick to (seemingly) generalize Theorem 3.5
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from module categories to finitely accessible additive categories. We start with
a definition.

Definition 4.1. Let B be an additive category which admits arbitrary filtered
colimits. Then:

• An object X ∈ B is called finitely presentable if the representable func-
tor B(X,−) : B → Ab preserves filtered colimits.
• The category B is called finitely accessible if there is a set A of finitely

presentable objects from B such that every object in B is a filtered
colimit of objects from A.

Note that if B is finitely accessible, the full subcategory fp(B) of B formed by all
finitely presentable objects in B is skeletally small, [1, 2.2]. Several other general
properties of finitely accessible categories will follow from Proposition 4.2.
Finitely accessible categories occur at many occasions. The simplest and most
natural example is the module category Mod-R over an associative unital ring.
It is well-known that finitely presentable objects in Mod-R coincide with finitely
presented R–modules in the usual sense. The same holds for Mod-A, the cate-
gory of modules over a small additive category A. Motivated by representation
theory, finitely accessible categories were studied by Crawley-Boevey [8] under
the name locally finitely presented categories; see [8, §5] for further examples.
The term from [8], however, may cause some confusion in the light of other def-
initions. Namely, Gabriel and Ulmer [11] have defined the concept of a locally
finitely presentable category which is, in our terminology, a cocomplete finitely
accessible category. As the latter concept has been used quite substantially in
one of our main references, [26], we stick to the terminology of [1].
The crucial fact about finitely accessible additive categories is the following
representation theorem:

Proposition 4.2. The assignments

A 7→ Flat-A and B 7→ fp(B)

form a bijective correspondence between

(1) equivalence classes of skeletally small additive categories A with split-
ting idempotents, and

(2) equivalence classes of additive finitely accessible categories B.
Proof. See [8, §1.4]. �

Remark. The correspondence from Proposition 4.2 restricts, using [8, §2.2], to
a bijection between equivalence classes of skeletally small additive categories
with finite colimits (equivalently, with cokernels) and equivalence classes of
locally finitely presentable categories in the sense of Gabriel and Ulmer [11].

One of the main results of this paper has now become a mere corollary of
preceding results:

Theorem 4.3. Let B be a finitely accessible additive category. Then K(B) is
locally well generated.
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Proof. Let us put A = fp(B), the full subcategory of B formed by all finitely
presentable objects. Using Proposition 4.2, we see that B is equivalent to the
category Flat-A. The category K(Flat-A) is locally well generated by Corol-
lary 3.10, and so must be K(B). �

The remaining question when K(B) is κ–well generated and which cardinals κ
can occur will be answered in the next section. For now, we know by Theo-
rem 2.5 that a necessary condition is that B be pure semisimple. In fact, we
will show that this is also sufficient, but at the moment we will only give a
better description of pure semisimple finitely accessible additive categories.

Proposition 4.4. Let B be a finitely accessible additive category. Then the
following are equivalent:

(1) B is pure semisimple in the sense of Definition 2.1;
(2) Each object in B is a coproduct of (indecomposable) finitely presentable

objects;
(3) Each flat right A–module is projective, where A = fp(B).

Proof. For the whole argument, we putA = fp(B) and without loss of generality
assume that B = Flat-A.
(1) =⇒ (3). Assume that Flat-A is pure semisimple. As in the proof for
Proposition 2.2, we can use a generalization [3, Theorem 26.1] of Kaplansky’s
theorem, to deduce that there is a cardinal number λ such that each flat A–
module is a direct sum of at most λ–generated flat A–modules. The key step is
then contained in [13, Corollary 3.6] which says that under the latter condition
A is a right perfect category. That is, it satisfies the equivalent conditions
of Bass’ theorem [18, B.12] (or more precisely, its version for contravariant
functors A → Ab). One of the equivalent conditions is condition (3).
(3) =⇒ (2). This is a consequence of Bass’ theorem; see [18, B.13].
(2) =⇒ (1). Trivial, B = AddX where X =

⊕
Y ∈A Y . �

For further reference, we mention one more condition which one might impose
on a finitely accessible additive category. Namely, it is well known that for
a ring R, the category Flat-R is closed under products if and only if R is
left coherent. This generalizes in a natural way for finitely accessible additive
categories. Let us recall that an additive category A is said to have weak
cokernels if for each morphism X → Y there is a morphism Y → Z such that
A(Z,W )→ A(Y,W )→ A(X,W ) is exact for all W ∈ A.

Lemma 4.5. Let B be a finitely accessible additive category and A = fp(B).
Then the following are equivalent:

(1) B has products.
(2) Flat-A is closed under products in Mod-A.
(3) A has weak cokernels.

Proof. See [8, §2.1]. �
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Remark. If B has products, one can give a more classical proof for Proposi-
tion 4.4. Namely, one can then replace the argument by Guil Asensio, Izurdiaga
and Torrecillas [13] by an older and simpler argument by Chase [7, Theorem
3.1].

5. When is the homotopy category well generated?

In this final section, we have developed enough tools to answer the question
when exactly is the homotopy category of complexes K(B) well generated if B
is a finitely accessible additive category. This way, we will generalize Propo-
sition 2.6 and also give a rather complete answer to [15, Question 4.2] asked
by Holm and Jørgensen. Finally, we will give another criterion for a triangu-
lated category to be (or not to be) well generated and this way construct other
classes of examples of categories which are not well generated.
First, we recall a crucial result due to Neeman:

Lemma 5.1. Let A be a skeletally small additive category. Then the homotopy
category K(Proj-A) is ℵ1–well generated. If, moreover, A has weak cokernels,
then K(Proj-A) is compactly generated.

Proof. Neeman has proved in [31, Theorem 1.1] that, given a ring R, the cate-
gory K(Proj-R) is ℵ1–well generated, and if R is left coherent then K(Proj-R)
is even compactly generated. The actual arguments, contained in [31, §§4–7],
immediately generalize to the setting of projective modules over small cate-
gories. The role of finitely generated free modules over R is taken by repre-
sentable functors, and instead of the duality between the categories of left and
right projective finitely generated modules we consider the duality between
the idempotent completions of the categories of covariant and contravariant
representable functors. �

We already know that K(B) is always locally well generated. When employing
Lemma 5.1, we can show the following statement, which is one of the main
results of this paper:

Theorem 5.2. Let B be a finitely accessible additive category. Then the fol-
lowing are equivalent:

(1) K(B) is well generated;
(2) K(B) is ℵ1–well generated;
(3) B is pure semisimple.

If, moreover, B has products, then the conditions are further equivalent to

(4) K(B) is compactly generated.

Proof. (1) =⇒ (3). If K(B) is well generated, it is in particular generated by
a set of objects as a localizing subcategory of itself; see Proposition 1.2. Hence
B is pure semisimple by Theorem 2.5.
(3) =⇒ (2) and (4). If B is pure semisimple and A = fp(B), then B is equiv-
alent to Flat-A by Proposition 4.2, and Flat-A = Proj-A by Proposition 4.4.
The conclusion follows by Lemmas 5.1 and 4.5.
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522 Jan Šťov́ıček

(2) or (4) =⇒ (1). This is obvious. �

Remark. (1) Neeman proved in [31] more than stated in Lemma 5.1. He de-
scribed a particular set of generators for K(Proj-A) satisfying conditions of Def-
inition 1.1. Namely, K(Proj-A) is always ℵ1–well generated by a representative
set of bounded below complexes of finitely generated projectives. Moreover, he
gave an explicit description of compact objects in K(Proj-A) in [31, 7.12].
(2) An exact characterization of when K(B) is compactly generated and thereby
a complete answer to [15, Question 4.2] does not seem to be known. We
have shown that this reduces to the problem when K(Proj-A) is compactly
generated. A sufficient condition is given in Lemma 5.1, but it is probably not
necessary. On the other hand, if R = k[x1, x2, x3, . . . ]/(xixj ; i, j ∈ N) where
k is a field, then K(Flat-R) coincides with K(Proj-R), but the latter is not a
compactly generated triangulated category; see [31, 7.16] for details.

Example 5.3. The above theorem adds other locally well generated but not
well generated triangulated categories to our repertoire. For example K(T F),
where T F stands for the category of all torsion-free abelian groups, has this
property.

We finish the paper with some examples of triangulated categories where the
fact that they are not generated by a set is less obvious. For this purpose, we
will use the following criterion:

Proposition 5.4. Let T be a locally well generated triangulated category and
L be a localizing subcategory. Consider the diagram

L ⊆−−−−→ T Q−−−−→ T /L.
If two of the categories L, T and T /L are well generated, so is the third.

Proof. If L = LocS and T /L = Loc C for some sets S, C, let L′ be the localizing
subcategory of T generated by the set of objects S ∪ C. Lemma 3.8 yields the
equality T /L = L′/L. Hence also T = L′, so T is generated by a set, and
consequently T is well generated.
If L and T are well generated, so is T /L by [26, 7.2.1]. Finally, one knows
that X ∈ T belongs to L if and only if QX = 0; see [32, 2.1.33 and 1.6.8].
Therefore, if T and T /L are well generated, so is L by [26, 7.4.1]. �

Remark. We stress here that by saying that T /L is well generated, we in
particular mean that T /L is a usual category in the sense that all morphism
spaces are sets and not proper classes.

Now we can conclude by showing that some homotopy categories of acyclic
complexes are not well generated.

Example 5.5. Let R be a ring, Kac(Mod-R) be the full subcategory of
K(Mod-R) formed by all acyclic complexes, and L = Loc {R}. It is well-known
but also an easy consequence of Proposition 3.6 that the composition

Kac(Mod-R)
⊆−→ K(Mod-R)

Q−→ K(Mod-R)/L
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is a triangle equivalence between K(Mod-R)/L and Kac(Mod-R).
By Proposition 2.6, K(Mod-R) is well generated if and only if R is right pure
semisimple. Therefore, Kac(Mod-R) is well generated if and only if R is right
pure semisimple by Proposition 5.4. In fact, Kac(Mod-R) is not generated by
any set of objects if R is not right pure semisimple. As particular examples,
we may take R = Z or R = k(·⇉ ·) for any field k.

Example 5.6. Let B be a finitely accessible category. Recall that B is equivalent
to Flat-A for A = fp(B). Then the natural exact structure on Flat-A coming
from Mod-A is nothing else than the well-known exact structure given by pure
exact short sequences in B (see eg. [8]).
We denote by Kpac(Flat-A) the full subcategory of K(Flat-A) formed by all
complexes exact with respect to this exact structure, and call such complexes
pure acyclic. More explicitly, X ∈ K(Flat-A) is pure acyclic if and only if X is
acyclic in Mod-A and all the cycles Zi(X) are flat. Note that Kpac(Flat-A) is
closed under taking coproducts in K(Flat-A).
Neeman proved in [31, Theorem 8.6] that X ∈ K(Flat-A) is pure acyclic if and
only if there are no non-zero homomorphisms from any Y ∈ K(Proj-A) to X .
Then either by combining Proposition 3.6 with Lemma 5.1 or by using [31, 8.1
and 8.2], one shows that the composition

Kpac(Flat-A)
⊆−→ K(Flat-A)

Q−→ K(Flat-A)/K(Proj-A)

is a triangle equivalence. Now again, Proposition 5.4 implies that Kpac(Flat-A)
is well generated if and only if B is pure semisimple. If B is of the form Flat-R
for a ring R, this precisely means that R is right perfect.
As a particular example, Kpac(T F) is locally well generated but not well gen-
erated, where T F stands for the class of all torsion-free abelian groups.
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Jan Šťov́ıček
Charles University (Prague)
Faculty of Math. and Phys.
Department of Algebra
Sokolovska 83, 186 75 Praha
Czech Republic
stovicek@karlin.mff.cuni.cz

Documenta Mathematica 15 (2010) 507–525



526

Documenta Mathematica 15 (2010)



Documenta Math. 527

Semigroup Properties

for the Second Fundamental Form

Feng-Yu Wang1

Received: April 12, 2009

Communicated by Friedrich Götze

Abstract. Let M be a compact Riemannian manifold with bound-
ary ∂M and L = δ+Z for a C1-vector field Z onM . Several equivalent
statements, including the gradient and Poincaré/log-Sobolev type in-
equalities of the Neumann semigroup generated by L, are presented
for lower bound conditions on the curvature of L and the second
fundamental form of ∂M . The main result not only generalizes the
corresponding known ones on manifolds without boundary, but also
clarifies the role of the second fundamental form in the analysis of
the Neumann semigroup. Moreover, the Lévy-Gromov isoperimetric
inequality is also studied on manifolds with boundary.
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1 Introduction

The main purpose of this paper is to find out equivalent properties of the Neu-
mann semigroup on manifolds with boundary for lower bounds of the second
fundamental form of the boundary. To explain the main idea of the study,
let us briefly recall some equivalent semigroup properties for curvature lower
bounds on manifolds without boundary.
Let M be a connected complete Riemannian manifold without boundary and
let L = ∆ + Z for some C1-vector field Z on M . Let Pt be the diffusion
semigroup generated by L, which is unique and Markovian if the curvature of
L is bounded below, namely (see [3]),

Ric−∇Z ≥ −K (1.1)

1Supported in part by NNSFC(10721091) and the 973-Project.
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holds on M for some constant K ∈ R. The following is a collection of known
equivalent statements for (1.1), where the first two ones on gradient estimates
are classical in geometry (see e.g. [1, 5, 6, 7]), and the remainder follows from
Propositions 2.1 and 2.6 in [2] (see also [9]):

(i) |∇Ptf |2 ≤ e2KtPt|∇f |2, t ≥ 0, f ∈ C1
b (M);

(ii) |∇Ptf | ≤ eKtPt|∇f |, t ≥ 0, f ∈ C1
b (M);

(iii) Ptf
2 − (Ptf)2 ≤ e2Kt − 1

K
Pt|∇f |2, t ≥ 0, f ∈ C1

b (M);

(iv) Ptf
2 − (Ptf)2 ≥ 1− e−2Kt

K
|∇Ptf |2, t ≥ 0, f ∈ C1

b (M);

(v) Pt(f
2 log f2) − (Ptf

2) log(Ptf
2) ≤ 2(e2Kt − 1)

K
Pt|∇f |2, t ≥ 0, f ∈

C1
b (M);

(vi) (Ptf){Pt(f log f) − (Ptf) log(Ptf)} ≥ 1− e−2Kt

2K
|∇Ptf |2, t ≥ 0, f ∈

C1
b (M), f ≥ 0.

These equivalent statements for the curvature condition are crucial in the study
of heat semigroups and functional inequalities on manifolds. For the case that
M has a convex boundary, these equivalences are also true for Pt the Neumann
semigroup (see [10] for one more equivalent statement on Harnack inequality).
The question is now can we extend this result to manifolds with non-convex
boundary, and furthermore describe the second fundamental using semigroup
properties?
So, from now on we assume that M has a boundary ∂M . Let N be the inward
unit normal vector field on ∂M . Then the second fundamental form is a two-
tensor on T∂M , the tangent space of ∂M , defined by

I(X,Y ) = −〈∇XN, Y 〉, X, Y ∈ T∂M.

If I ≥ 0(i.e. I(X,X) ≥ 0 for X ∈ T∂M), then ∂M (or M) is called convex. In
general, we intend to study the lower bound condition of I; namely, I ≥ −σ on
∂M for some σ ∈ R.
For x ∈M , let Ex be the expectation taken for the reflecting L-diffusion process
Xt starting from x. So, for a bounded measurable functional Φ of X ,

EΦ : x 7→ ExΦ

is a function on M . Moreover, let lt be the local time of Xt on ∂M . According
to [8, Theorem 5.1], (1.1) and I ≥ −σ imply

|∇Ptf | ≤ eKtE
[
|∇f |(Xt)|eσlt

]
, t > 0, f ∈ C1(M). (1.2)
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To see that (1.2) is indeed equivalent to (1.1) and I ≥ −σ, we shall make use
of the following formula for the second fundamental form established recently
by the author in [12]: for any f ∈ C∞(M) satisfying the Neumann condition
Nf |∂M = 0,

I(∇f,∇f) =

√
π|∇f |2

2
lim
t→0

1√
t

log
(Pt|∇f |p)1/p
|∇Ptf |

(1.3)

holds on ∂M for any p ∈ [1,∞). With help of this result and stochastic analysis
on the reflecting diffusion process, we are able to prove the following main result
of the paper.

Theorem 1.1. Let M be a compact Riemannian manifold with boundary and
let Pt be the Neumann semigroup generated by L = ∆ + Z. Then for any
constants K,σ ∈ R, the following statements are equivalent to each other:

(1) Ric−∇Z ≥ −K on M and I ≥ −σ on ∂M ;

(2) (1.2) holds;

(3) |∇Ptf |2 ≤ e2Kt(Pt|∇f |2)Ee2σlt , t ≥ 0, f ∈ C1(M);

(4) Pt(f
2 log f2)− (Ptf

2) logPtf
2 ≤ 4E

[
|∇f |2(Xt)

∫ t
0

e2σ(lt−lt−s)+2Ksds
]
,

t ≥ 0, f ∈ C1(M);

(5) Ptf
2−(Ptf)2 ≤ 2E

[
|∇f |2(Xt)

∫ t
0 e2σ(lt−lt−s)+2Ksds

]
, t ≥ 0, f ∈ C1(M);

(6) |∇Ptf |2 ≤
≤
( 2K

1− e−2Kt

)2(
Pt(f log f)− (Ptf) logPtf

)
E
[
f(Xt)

∫ t
0

e2σls−2Ksds
]
,

t > 0, f ≥ 0, f ∈ C1(M);

(7) |∇Ptf |2 ≤
2K2

(1− e−2Kt)2
(
Ptf

2 − (Ptf)2
)
E
∫ t
0 e2σls−2Ksds, t ≥ 0, f ∈

C1(M).

Theorem 1.1 can be extended to a class of non-compact manifolds with bound-
ary such that the local times lt is exponentially integrable. According to [13]
the later is true provided I is bounded, the sectional curvature around ∂M is
bounded above, the drift Z is bounded around ∂M , and the injectivity radius
of the boundary is positive. To avoid technical complications, here we simply
consider the compact case.
In the next section, we shall provide a result on gradient estimate and non-
constant lower bounds of curvature and second fundamental form, which im-
plies the equivalences among (1), (2) and (3) as a special case. Then we present
a complete proof for the remainder of Theorem 1.1 in Section 3. As mentioned
above, for manifolds without boundary or with a convex boundary an equiva-
lent Harnack inequality for the curvature condition has been presented in [10].
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Due to unboundedness of the local time which causes an essential difficulty
in the study of Harnack inequality, the corresponding result for lower bound
conditions of the curvature and the second fundamental form is still open. Nev-
ertheless, log-Harnack and Harnack inequalities for the Neumann semigroup on
non-convex manifolds have been provided by [13, Theorem 5.1] and [14, Theo-
rem 4.1] respectively. Finally, as an extension to a result in [4] where manifolds
without boundary is considered, the Lévy-Gromov isoperimetric inequality is
derived in Section 4 for manifolds with boundary.

2 Gradient estimate

Let K1,K2 ∈ C(M) be such that

Ric−∇Z ≥ −K1 on M, I ≥ −K2 on ∂M. (2.1)

According to [8, Theorem 5.1] this condition implies

|∇Ptf | ≤ E
[
|∇f |(Xt)e

∫
t
0
K1(Xs)ds+

∫
t
0
K2(Xs)dls

]
, t ≥ 0, f ∈ C1(M). (2.2)

The main purpose of this section is to prove that these two statements are
indeed equivalent to each other. To prove that (2.2) implies (2.1), we need the
following results collected from [11, Proof of Lemma 2.1] and [13, Theorem 2.1,
Lemma 2.2, Proposition A.2] respectively:

(I) For any λ > 0, Eeλlt <∞.

(II) For X0 = x ∈ ∂M, lim supt→0
1
t |Elt − 2

√
t/π| <∞.

(III) For X0 = x ∈ ∂M , there exists a constant c > 0 such that El2t ≤ ct, t ∈
[0, 1].

(IV) Let ρ be the Riemannian distance. For δ > 0 and X0 = x ∈ M \ ∂M
such that ρ(x, ∂M) ≥ δ, the stopping time τδ := inf{t > 0 : ρ(Xt, x) ≥ δ}
satisfies P(τδ ≤ t) ≤ c exp[−δ2/(16t)] for some constant c > 0 and all
t > 0.

Theorem 2.1. (2.1), (2.2) and the following inequality are equivalent to each
other:

|∇Ptf |2 ≤ (Pt|∇f |2)E
[
e2

∫
t
0
K1(Xs)ds+2

∫
t
0
K2(Xs)dls

]
, t ≥ 0, f ∈ C1(M). (2.3)

Proof. Since by [8] (2.1) implies (2.2) which is stronger than (2.3) due to the
Schwartz inequality, it remains to deduce (2.1) from (2.3).
(a) Proof of Ric−∇Z ≥ −K1. It suffices to prove at points in the interior. Let
X0 = x ∈M \ ∂M. For any ε > 0 there exists δ > 0 such that
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B̄(x, δ) ⊂M \ ∂M, sup
y∈B̄(x,δ)

|K1(y)−K1(x)| ≤ ε, (2.4)

where B̄(x, δ) is the closed geodesic ball at x with radius δ. Since lt = 0 for
t ≤ τδ, by (2.3), (I) and (IV) we have

|∇Ptf |2(x) ≤ (Pt|∇f |2(x))Ee2
∫
t
0
K1(Xs)ds+2

∫
t
0
K2(Xs)dls

≤ (Pt|∇f |2(x))
{

e2t(K1(x)+ε)P(τδ ≥ t) +
√
P(τδ < t)Ee4t‖K1‖∞+4‖K2‖∞lt

}

≤ (Pt|∇f |2(x))e2t(K1(x)+ε) + Ce−λ/t, t ∈ (0, 1]

for some constants C, λ > 0.
This implies

lim sup
t→0

|∇Ptf |2(x) − |∇f |2(x)

t
≤ lim sup

t→0

e2t(K1(x)+ε)Pt|∇f |2(x)− |∇f |2(x)

t
.

(2.5)
Now, let f ∈ C∞(M) with Nf |∂M = 0, we have

Ptf = f +

∫ t

0

PsLfds, t ≥ 0.

Then

lim sup
t→0

|∇Ptf |2(x)− |∇f |2(x)

t

= lim
t→0

1

t

{∣∣∣∣
∫ t

0

∇PsLfds

∣∣∣∣
2

+ 2

∫ t

0

〈∇f,∇PsLf〉ds
}

(x).

(2.6)

Moreover, according to the last display in the proof of [8, Theorem 5.1] (the
initial data u0 ∈ Ox(M) was missed in the right hand side therein),

∇PtLf = u0E
[
Mtu

−1
t ∇Lf(Xt)

]
,

where ut is the horizontal lift of Xt on the frame bundle O(M), and Mt is a
d × d-matrices valued right continuous process satisfying M0 = I and (see [8,
Corollary 3.6])

‖Mt‖ ≤ exp
[
‖K1‖∞t+ ‖K2‖∞lt

]
.

So, due to (I), |∇P·Lf | is bounded on [0, 1]×M and ∇PsLf → ∇Lf as s→ 0.
Combining this with (2.6) we obtain

lim sup
t→0

|∇Ptf |2(x)− |∇f |2(x)

t
= 2〈∇f,∇Lf〉(x). (2.7)
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On the other hand, applying the Itô formula to |∇f |2(Xt) we have

Pt|∇f |2(x) = |∇f |2(x) +

∫ t

0

PsL|∇f |2(x)ds+ E
∫ t

0

N |∇f |2(Xs)dls

≤ |∇f |2(x) +

∫ t

0

PsL|∇f |2(x)ds+ ‖∇|∇f |2‖∞Elt.
(2.8)

Since lt = 0 for t ≤ τδ, by (III) and (IV) we have

Elt ≤
√

(El2t )P(τδ ≤ t) ≤ c1e−λ/t, t ∈ (0, 1]

for some constants c1, λ > 0. So, it follows from (2.8) that

lim sup
t→0

Pt|∇f |2(x)− |∇f |2(x)

t
≤ L|∇f |2(x).

Combining this with (2.5) and (2.7), we arrive at

1

2
L|∇f |2(x) − 〈∇f,∇Lf〉(x) ≥ −(K1(x) + ε), f ∈ C∞(M), Nf |∂M = 0.

According to the Bochner-Weitzenböck formula, this is equivalent to (Ric −
∇Z)(x) ≥ −(K1(x) + ε). Therefore, Ric − ∇Z ≥ −K1 holds on M by the
arbitrariness of x ∈M \ ∂M and ε > 0.
(b) Proof of I ≥ −K2. Let X0 = x ∈ ∂M. For any f ∈ C∞(M) with Nf |∂M =
0, (2.3) implies that

|∇Ptf |2(x) ≤ eC1t(Pt|∇f |2(x))Ee2
∫
t
0
K2(Xs)dls , (2.9)

where C1 = 2‖K1‖∞. Let

εt = 2 sup
s∈[0,t]

|K2(Xs)−K2(x)|.

By the continuity of the reflecting diffusion process we have εt ↓ 0 as t ↓ 0.
Since there exists c0 > 0 such that for any r ≥ 0 one has er ≤ 1 + r+ c0r

3/2er,
we obtain

logEe2
∫
t
0
K2(Xs)dls ≤ log

{
1 + 2K2(x)Elt + E(εtlt) + C2E(l

3/2
t eC2lt)

}
(2.10)

for some constant C2 > 0. Moreover, by (I) and (III) we have

E(l
3/2
t eC2lt) ≤ (El2t )3/4(Ee4C2lt)1/4 ≤ C3t

3/4, t ∈ (0, 1]

for some constant C3 > 0. Substituting this and (2.10) into (2.9), we arrive at

Documenta Mathematica 15 (2010) 527–543



Semigroup Properties for the Second Fundamental Form 533

lim sup
t→0

1√
t

log
|∇Ptf |2(x)

Pt|∇f |2(x)
≤ lim sup

t→0

2K2(x)Elt + E(εtlt)√
t

.

Since Eε2t → 0 as t→ 0 and El2t ≤ ct due to (III), this and (II) imply

lim sup
t→0

1√
t

log
|∇Ptf |2(x)

Pt|∇f |2(x)
≤ 4K2(x)√

π
.

Combining this with (1.3) for p = 2 we complete the proof.

3 Proof of Theorem 1.1

Applying Theorem 2.1 to K1 = K and K2 = σ we conclude that (1), (2) and (3)
are equivalent to each other. Noting that the log-Sobolev inequality (4) implies
the Poincaré inequality (5) (see e.g. [6]), it suffices to prove that (2) ⇒ (4),
(5) ⇒ (1), and (2) ⇒ (6) ⇒ (7) ⇒ (1), where “ ⇒” stands for “implies”. We
shall complete the proof step by step.
(a) (2) ⇒ (4). By approximations we may assume that f ∈ C∞(M) with
Nf |∂M = 0. In this case

d

dt
Ptf = LPtf = PtLf.

So, for fixed t > 0 it follows from (2) that

d

ds
Pt−s{(Psf2) logPsf

2} = −Pt−s
|∇Psf2|2
Psf2

≥ −4e2KsPt−s
(E[f |∇f |(Xs)e

σls ])2

Psf2

≥ −4e2KsPt−sE[|∇f |2(Xs)e
2σls ].

(3.1)

Next, by the Markov property, for Fs = σ(Xr : r ≤ s), s ≥ 0, we have

Pt−s(E[|∇f |2(Xs)e
2σls ])(x) = ExEXt−s [|∇f |2(Xs)e

2σls ]

= Ex[Ex(e2σ(lt−lt−s)|∇f |2(Xt)|Ft−s)]

= Ex[|∇f |2(Xt)e
2σ(lt−lt−s)].

Combining this with (3.1) we obtain

d

ds
Pt−s{(Psf2) logPsf

2} ≥ −4E
[
|∇f |2(Xt)e

2Ks+2σ(lt−lt−s)], s ∈ (0, t).

This implies (4) by integrating both sides with respect to ds from 0 to t.
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(b1) (5) ⇒ Ric − ∇Z ≥ −K. Let X0 = x ∈ M \ ∂M and f ∈ C∞(M) with
Nf |∂M = 0. By (5) we have

Ptf
2 − (Ptf)2 ≤ 2E

[
|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds

]
. (3.2)

Let δ > 0 and τδ be as in the proof of Theorem 2.1(a). Then

E
[
|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds

]

≤ (Pt|∇f |2)

∫ t

0

e2Ksds+ t‖∇f‖∞e2KtE[e2σlt1{τδ<t}]

≤ e2Kt − 1

2K
Pt|∇f |2(x) + ce−λ/t, t ∈ (0, 1]

holds for some constants c, λ > 0 according to (IV). Combining this with (3.2)
we conclude that

Ptf
2(x) − (Ptf)2(x) ≤ e2Kt − 1

K
Pt|∇f |2(x) + 2ce−λ/t, t ∈ (0, 1]. (3.3)

Since f ∈ C∞(M) with Nf |∂M=0, we have

Ptf
2 − (Ptf)2 = f2 +

∫ t

0

PsLf
2ds−

(
f +

∫ t

0

PsLfds

)2

=

∫ t

0

(PsLf
2 − 2fPsLf)ds−

(∫ t

0

PsLfds

)2

.

(3.4)

Moreover, by the continuity of s 7→ PsLf , we have

(∫ t

0

PsLfds

)2

= (Lf)2t2 + ◦(t2), (3.5)

where and in what follows, for a positive function (0, 1] ∋ t 7→ ξt the notion
◦(ξt) stands for a variable such that ◦(ξt)/ξt → 0 as t→ 0; while©(ξt) satisfies
that ©(ξt)/ξt is bounded for t ∈ (0, 1]. Moreover, since

PsLf
2 − 2fPsLf =Lf2 − 2fLf +

∫ s

0

(PrL
2f2 − 2fPrL

2f)dr

+ E
∫ s

0

(NLf2 − 2f(x)NLf)(Xr)dlr,

and due to (IV)
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∣∣∣∣E
∫ t

0

{
NLf2 − 2f(x)NLf

}
(Xr)dlr

∣∣∣∣ ≤ c1Els ≤ c2e−λ/s, s ∈ (0, 1]

holds for some constants c1, c2, λ > 0, it follows from the continuity of Ps in s
that

∫ t

0

(PsLf
2 − 2fPsLf)ds = 2t|∇f |2 +

t2

2
(L2f2 − 2fL2f) + ◦(t2).

Combining this with (3.4) and (3.5) we obtain

Ptf
2(x)−(Ptf)2(x) =

= 2t|∇f |2(x) +
t2

2
(L2f2 − 2fL2f)(x)− t2(Lf)2(x) + ◦(t2)

= 2t|∇f |2(x) + t2(2〈∇f,∇Lf〉+ L|∇f |2)(x) + ◦(t2).

(3.6)

Similarly,

Pt|∇f |2(x) = |∇f |2(x) +

∫ t

0

PsL|∇f |2(x)ds+ E
∫ t

0

N |∇f |2(Xs)dls

= |∇f |2(x) + tL|∇f |2(x) + ◦(t).

Combining this with (3.3) and (3.6) we arrive at

1

t2
{
t2(2〈∇f,∇Lf〉+ L|∇f |2)(x) + ◦(t2)

}

≤ e2Kt − 1

Kt
L|∇f |2(x) + ◦(1) +

1

t

(e2Kt − 1

Kt
− 2
)
|∇f |2(x).

Letting t→ 0 we obtain

L|∇f |2(x)− 2〈∇f,∇Lf〉(x) ≥ −2K|∇f |2(x),

which implies (Ric−∇Z)(x) ≥ −K by the Bochner-Weitzenböck formula.
(b2) (5) ⇒ I ≥ −σ. Let X0 = x ∈ ∂M and f ∈ C∞(M) with Nf |∂M = 0.
Noting that Lf2 − 2fLf = 2|∇f |2, by the Itô formula we have

Ptf
2(x) − (Ptf)2(x) = f2 +

∫ t

0

PsLf
2ds−

(
f +

∫ t

0

PsLfds

)2

= 2

∫ t

0

Ps|∇f |2(x)ds+ 2

∫ t

0

[Ps(fLf)(x)− f(x)PsLf(x)]ds+©(t2).

(3.7)

Since Nf |∂M = 0 implies
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0 = 〈∇f,∇〈N,∇f〉〉 = Hessf (N,∇f)− I(∇f,∇f),

it follows that

I(∇f,∇f) = Hessf (N,∇f) =
1

2
N |∇f |2. (3.8)

So, by the Itô formula, (II) and (III) yield

Ps|∇f |2(x) = |∇f |2(x) +

∫ s

0

PrL|∇f |2(x)dr + E
∫ s

0

N |∇f |2(Xr)dlr

= |∇f |2(x) +©(s) + 2E
∫ s

0

I(∇f,∇f)(Xr)dlr

= |∇f |2(x) +
4
√
s√
π
I(∇f,∇f)(x) + ◦(s1/2).

(3.9)

Moreover, since (fNLf)(Xr)−f(x)(NLf)(Xr) is bounded and goes to zero as
r → 0, it follows from (III) that

2E
∫ t

0

ds

∫ s

0

[(fNf)(Xr)− f(x)(NLf)(Xr)]dlr = ◦(t3/2).

So, by the Iô formula

2

∫ t

0

[Ps(fLf)(x)− f(x)PsLf(x)]ds

= 2

∫ t

0

ds

∫ s

0

[PrL(fLf)(x)− f(x)PrL
2f(x)]dr

+ 2E
∫ t

0

ds

∫ s

0

[(fNLf)(Xr)− f(x)(NLf)(Xr)]dlr = ◦(t3/2).

Combining this with (3.7) and (3.9) we arrive at

lim
t→0

1

t
√
t

(
Ptf

2(x)− (Ptf)2(x) − 2t|∇f |2(x)
)

=
8√
π
I(∇f,∇f)(x) lim

t→0

1

t
√
t

∫ t

0

√
s ds =

16

3
√
π
I(∇f,∇f)(x).

(3.10)

On the other hand, by the Itô formula for |∇f |2(Xt), it follows from (3.8) and
(II) that
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At :=

=
1

t
√
t
E
{
|∇f |2(Xt)

∫ t

0

e2Ks+2σ(lt−lt−s)ds− t|∇f |2(x)

}

=
1√
t

(
E|∇f |2(Xt)− |∇f |2(x)

)
+ E

{ |∇f |2(Xt)

t
√
t

∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds

}

=
1√
t

{∫ t

0

PsL|∇f |2(x)ds+ E
∫ t

0

N |∇f |2(Xs)dls

}

+ E
{ |∇f |2(Xt)

t
√
t

∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds

}

=
4√
π
I(∇f,∇f)(x) + ◦(1) + E

{ |∇f |2(Xt)

t
√
t

∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds

}
.

(3.11)

Since by (I) and (III)

∣∣∣∣E
[(
|∇f |2(Xt)− |∇f |2(x)

) ∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds
]∣∣∣∣

≤ t
{
E
(
|∇f |2(Xt)− |∇f |2(x)

)2}1/2{
E
(
e2Kt+2σlt − 1

)2}1/2

= ◦(t) ·
(
E[4σ2l2t ] + ◦(t)

)
= ◦(t2),

it follows from (I) and (II) that

E
[
|∇f |2(Xt)

∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds

]

= ◦(t2) + |∇f |2(x)E
∫ t

0

(
e2Ks+2σ(lt−lt−s) − 1

)
ds

= ◦(t3/2) +
4σ|∇f |2(x)√

π

∫ t

0

(√
t−
√
t− s

)
ds

=
4σt
√
t

3
√
π
|∇f |2(x) + ◦(t3/2).

Combining this with (3.11) we arrive at

At ≤ ◦(1) +
4√
π
I(∇f,∇f)(x) +

4σ

3
√
π
|∇f |2(x).

So, (3.10) and (5) imply that

16

3
√
π
I(∇f,∇f)(x) ≤ lim sup

t→0
2At ≤

8√
π
I(∇f,∇f)(x) +

8σ

3
√
π
|∇f |2(x).
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Therefore, I(∇f,∇f)(x) ≥ −σ|∇f |2(x).
(c) (2) ⇒ (6). Let f ≥ 0 be smooth satisfying the Neumann boundary condi-
tion. We have

d

ds
Ps
{

(Pt−sf) logPt−sf
}

= Ps
|∇Pt−sf |2
Pt−sf

.

This implies

Pt(f log f)− (Ptf) logPtf =

∫ t

0

Ps
|∇Pt−sf |2
Pt−sf

ds. (3.12)

On the other hand, by (2) and applying the Schwartz inequality to the proba-
bility measure 2K

1−exp[−2Kt]e
−2Ksds on [0, t], we obtain

|∇Ptf |2 =

=

{
2K

1− e−2Kt

∫ t

0

|∇Ps(Pt−sf)|e−2Ksds
}2

≤
{

2K

1− e−2Kt

∫ t

0

E
[
|∇Pt−sf |(Xs)e

σls−Ks]ds
}2

≤
( 2K

1− e−2Kt

)2(
E
∫ t

0

|∇Pt−sf |2
Pt−sf

(Xs)ds

)∫ t

0

E
[
Pt−sf(Xs)e

2σls−2Ks]ds

=
( 2K

1− e−2Kt

)2(∫ t

0

Ps
|∇Pt−sf |2
Pt−sf

ds

)∫ t

0

E
[
Pt−sf(Xs)e

2σls−2Ks]ds.

Combining this with (3.12) and noting that the Markov property implies

E[Pt−sf(Xs)e
2σls ] = E[(EXsf(Xt−s))e

2σls ] = E[e2σlsE(f(Xt)|Fs)]

= E[E(f(Xt)e
2σls |Fs)] = E[f(Xt)e

2σls ],

we obtain (6).
(d) (6) ⇒ (7). The proof is similar to the classical one for the log-Sobolev
inequality to imply the Poincaré inequality. Let f ∈ C∞(M). SInce M is
compact, 1 + εf > 0 for small ε > 0. Applying (6) to 1 + εf in place of f , we
obtain

|∇Ptf |2 ≤
2K

ε2(1− e−2Kt)

{
Pt(1 + εf) log(1 + εf)− (1 + εPtf) log(1 + εPtf)

}

· E
{

(1 + εf(Xt))

∫ t

0

e2σls−2Ksds

}
.

(3.13)

Since by Taylor’s expansion
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Pt(1 + εf) log(1 + εf)− (1 + εPtf) log(1 + εPtf) =
ε2

2

(
Ptf

2 − (Ptf)2
)

+ ◦(ε2),

letting ε→ 0 in (3.13) we obtain (7).
(e1) (7) ⇒ Ric − ∇Z ≥ −K. Let X0 = x ∈ M \ ∂M and f ∈ C∞(M) with
Nf |∂M = 0. by (I) and (IV) we have

Ee2σls = 1 + E[e2σls1{τδ≤s}] = 1 + ◦(s).
So,

E
∫ t

0

e2σls−2Ksds =
1− exp[−2Kt]

2K
+ ◦(t).

Combining this with (3.6) and (7), we conclude that, at point x,

|∇Ptf |2 − |∇f |2
t

≤

≤ K

1− e−2Kt
{

2|∇f |2 + t
(
2〈∇f,∇Lf〉+ L|∇f |2

)}
− |∇f |

2

t
+ ◦(1)

=
1

t

( 2Kt

1− e−2Kt
− 1
)
|∇f |2 +

Kt

1− e−2Kt
(
2〈∇f,∇Lf〉+ L|∇f |2

)
+ ◦(1).

Letting t→ 0 and using (2.7), we obtain

2〈∇f,∇Lf〉 ≤ K|∇f |2 + 〈∇f,∇Lf〉+
1

2
L|∇f |2

at point x. This implies Ric − ∇Z ≥ −K at this point according to the
Bochner-Weitzenböck formula.
(e2) (7) ⇒ I ≥ −σ. Let X0 = x ∈ ∂M and f ∈ C∞(M) with Nf |∂M = 0. It
follows from (3.10), (7) and (II) that at point x,

|∇Ptf |2 ≤

≤ 2K2

(1− e−2Kt)2

(

2t|∇f |2 +
16t3/2

3
√
π

I(∇f,∇f) + ◦(t3/2)
)(

t+
8σt3/2

3
√
π

+ ◦(t3/2)
)

=
4K2t2

(1− e−2Kt)2
|∇f |2 +

4K2t5/2

(1− e−2Kt)2

( 8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2

)

+ ◦(t1/2).

Combining this with (2.7) we deduce at point x that

0 = lim
t→0

1√
t

(
|∇Ptf |2 −

4K2t2

(1− e−2Kt)2
|∇f |2

)

≤ lim
t→0

4K2t2

(1− e−2Kt)2

( 8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2

)

=
8

3
√
π
I(∇f,∇f) +

8σ

3
√
π
|∇f |2.
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Therefore, I(∇f,∇f)(x) ≥ −σ|∇f |2(x).

4 Lévy-Gromov isoperimetric inequality

As a dimension-free version of the classical Lévy-Gromov isoperimetric inequal-
ity, it is proved in [4] that if M does not have boundary then for V ∈ C2(M)
such that Ric−HessV ≥ R > 0 the following inequality

U (µ(f)) ≤
∫

M

√
U 2(f) +R−1|∇f |2 dµ, (4.1)

holds for any smooth function f with values in [0, 1], where µ(dx) :=
C(V )−1eV (x)dx for C(V ) =

∫
M

eV (x)dx is a probability measure on M , and

U = ϕ ◦ Φ−1 for Φ(r) = (2π)−1
∫ r
−∞ e−s

2/2ds and ϕ = Φ′. Since U (0) =
U (1) = 0, taking f = 1A (by approximations) in (4.1) for a smooth domain
A ⊂M , we obtain the isoperimetric inequality

RU (A) ≤ µ∂(∂A), (4.2)

where µ∂(∂A) is the area of ∂A induced by µ. This inequality is crucial in the
study of Gaussian type concentration of µ (see [4, 9]). Obviously, (4.1) follows
from the following semigroup inequality by letting t→∞:

U (Ptf) ≤ Pt
√

U 2(f) +R−1(1− e−2Rt)|∇f |2. (4.3)

In this section we aim to extend (4.3) to manifolds with boundary.
Now, let again M be compact with boundary ∂M , and let Pt be the Neumann
semigroup generated by L = ∆ + Z. We shall prove an analogue of (4.3) for
the curvature and second fundamental condition in Theorem 1.1(1).

Theorem 4.1. Let Ric − ∇Z ≥ −K and I ≥ −σ for some constants K ∈ R
and σ ≥ 0. Then for any smooth function f with values in [0, 1],

U (Ptf) ≤ E

√
U 2(f)(Xt) + |∇f |2(Xt)

(e2Kt − 1)e2σlt

K
, t ≥ 0. (4.4)

If in particular ∂M is convex (i.e. σ = 0), then

U (Ptf) ≤ Pt
√

U 2(f) + |∇f |2(Xt)
e2Kt − 1

K
, t ≥ 0.

If moreover K < 0, then (4.1) and (4.2) hold for R = −K > 0.

Proof. It suffices to prove the first assertion. To this end, we shall use the
following equivalent condition for Ric − ∇Z ≥ −K (see e.g. the proof of [9,
(1.14)]):

Γ2(f, f) :=
1

2
L|∇f |2 − 〈∇f,∇Lf〉 ≥ −K|∇f |2 +

|∇|∇f |2|2
4|∇f |2 . (4.5)
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To prove (4.4), we consider the process

ηs = U
2(Pt−sf)(Xs) + |∇Pt−sf |2(Xs)

(e2Ks − 1)e2σls

K
, s ∈ [0, t].

To apply the Itô formula for ηs, recall that Xs solves the equation

dXs =
√

2 us ◦ dBs +N(Xs)dls,

where us is the horizontal lift of Xs and Bs is the Brownian motion on Rd

provided M is d-dimensional. So,

dηs =
√

2
〈

2(U U
′)(Pt−sf)(Xs) +

(e2Ks − 1)e2σls

K
∇|∇Pt−sf |2(Xs), usdBs

〉

+
{

2(U ′
2

+ U U
′′)(Pt−sf)|∇Pt−sf |2 + 2Γ2(Pt−sf, Pt−sf)

(e2Ks − 1)e2σls

K

+ 2|∇Pt−sf |2e2Ks+2σls
}

(Xs)ds

+
(e2Ks − 1)e2σls

K

(
N |∇Pt−sf |2 + 2σ|∇Pt−sf |2

)
(Xs)dls.

Noting that U U ′′ = −1 and σ ≥ 0 so that e2σls ≥ 1, combining this with
(3.8), I ≥ −σ and (4.5), we obtain

dηs ≥
√

2
〈

2(U U
′)(Pt−sf)(Xs) +

(e2Ks − 1)e2σls

K
∇|∇Pt−sf |2(Xs), usdBs

〉

+
{

2U
′2(Pt−sf)|∇Pt−sf |2 +

(e2Ks − 1)e2σls |∇|∇Pt−sf |2|2
2K|∇Pt−sf |2

}
(Xs)ds.

Therefore, there exists a martingale Ms for s ∈ [0, t] such that

dη1/2s = dMs +
dηs

2η
1/2
s

−

−
∣∣2(U U ′)(Pt−sf)∇Pt−sf + (e2Ks−1)e2σls

K ∇|∇Pt−sf |2
∣∣2(Xs)

4η
3/2
s

= dMs +
1

4η
3/2
s

Bsds,

where
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Bs :=2ηs

(
2U
′2(Pt−sf)|∇Pt−sf |2 +

(e2Ks − 1)e2σls |∇|∇Pt−sf |2|2
2K|∇Pt−sf |2

)
(Xs)

−
∣∣∣2(U U

′)(Pt−sf)∇Pt−sf +
e2Ks − 1

K
e2σls∇|∇Pt−sf |2

∣∣∣
2

(Xs)

≥ (e2Ks − 1)e2σls

K

{
U 2(Pt−sf)|∇|∇Pt−sf |2|2

2|∇Pt−sf |2
+ 4|∇Pt−sf |4U ′2(Pt−sf)

− 4(U U
′)(Pt−sf)〈∇Pt−sf,∇|∇Pt−sf |2〉

}
(Xs)

≥0.

So, η
1/2
s is a sub-martingale on [0, t]. Therefore, Eη1/20 ≤ Eη1/2t , which is

nothing but (4.4).
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Abstract. Let p be an odd prime. We show that the classification
of p-divisible groups by Breuil windows and the classification of com-
mutative finite flat group schemes of p-power order by Breuil modules
hold over every complete regular local ring with perfect residue field
of characteristic p. We set up a formalism of frames and windows
with an abstract deformation theory that applies to Breuil windows.
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1 Introduction

Let R be a complete regular local ring of dimension r with perfect residue field
k of odd characteristic p. Let W (k) be the ring of Witt vectors of k. One can
write R = S/ES with

S = W (k)[[x1, . . . , xr]]

such that E ∈ S is a power series with constant term p. Let σ be the endomor-
phism of S that extends the Frobenius automorphism of W (k) by σ(xi) = xpi .
Following Vasiu and Zink, a Breuil window relative to S → R is a pair (Q,φ)
where Q is a free S-module of finite rank, and where

φ : Q→ Q(σ)

is an S-linear map with cokernel annihilated by E.

Theorem 1.1. The category of p-divisible groups over R is equivalent to the
category of Breuil windows relative to S→ R.
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If R has characteristic p, this follows from more general results of A. de Jong
[dJ]; this case is included here only for completeness. If r = 1 and E is an
Eisenstein polynomial, Theorem 1.1 was conjectured by Breuil [Br] and proved
by Kisin [K1]. When E is a deformation of an Eisenstein polynomial the result
is proved in [VZ1].
Like in these cases one can deduce a classification of commutative finite flat
group schemes of p-power order over R: A Breuil module relative to S→ R is
a triple (M,ϕ, ψ) where M is a finitely generated S-module annihilated by a
power of p and of projective dimension at most one, and where

ϕ : M →M (σ), ψ : M (σ) →M

are S-linear maps with ϕψ = E and ψϕ = E. If R has characteristic zero, such
triples are equivalent to pairs (M,ϕ) such that the cokernel of ϕ is annihilated
by E.

Theorem 1.2. The category of commutative finite flat group schemes over
R annihilated by a power of p is equivalent to the category of Breuil modules
relative to S→ R. 1

This result is applied in [VZ2] to the question whether abelian schemes or p-
divisible groups defined over the complement of the maximal ideal in SpecR
extend to SpecR.

Frames and windows

To prove Theorem 1.1 we show that Breuil windows are equivalent to Dieudonné
displays over R, which are equivalent to p-divisible groups over R by [Z2]; the
same route is followed in [VZ1]. So the main part of this article is purely
module theoretic.
We introduce a notion of frames and windows (motivated by [Z3]) which allows
to formulate a deformation theory that generalises the deformation theory of
Dieudonné displays developed in [Z2] and that also applies to Breuil windows.
Technically the main point is the formalism of σ1 in Definition 2.1; the central
result is the lifting of windows in Theorem 3.2.
This is applied as follows. Let mR be the maximal ideal of R. For each positive
integer a we consider the rings Sa = S/(x1, . . . , xr)

aS and Ra = R/maR. There
is an obvious notion of Breuil windows relative to Sa → Ra and a functor

κa : (Breuil windows relative to Sa → Ra)→ (Dieudonné displays over Ra).

Here κ1 is trivially an equivalence because S1 = W (k) and R1 = k. The
deformation theory implies that on both sides lifts from a to a+1 are classified
by lifts of the Hodge filtration in a compatible way. Thus κa is an equivalence
for all a by induction, and Theorem 1.1 follows.

1Recently, Theorems 1.1 and 1.2 have been extended to the case p = 2. See: A relation

between Dieudonné displays and crystalline Dieudonné theory (in preparation).
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Complements

There is some freedom in the choice of the Frobenius lift on S. Namely, let σ
be a ring endomorphism of S which preserves the ideal J = (x1, . . . , xr) and
which induces the Frobenius on S/pS. If the endomorphism σ/p of J/J2 is
nilpotent modulo p, Theorems 1.1 and 1.2 hold without change.
All of the above equivalences of categories are compatible with the natural
duality operations on both sides.
If the residue field k is not perfect, there is an analogue of Theorems 1.1 and
1.2 for connected groups. Here p = 2 is allowed. The ring W (k) is replaced by
a Cohen ring of k, and the operators φ and ϕ must be nilpotent modulo the
maximal ideal of S.
In the first version of this article [L3] the formalism of frames was introduced
only to give an alternative proof of the results of Vasiu and Zink [VZ1]. In
response, they pointed out that both their and this approach apply in greater
generality, e.g. in the case where E ∈ S takes the form E = g + pǫ such that ǫ
is a unit and g divides σ(g) for a general Frobenius lift σ as above. However,
the method of loc. cit. seems not to give Theorem 1.1 completely.

All rings in this article are commutative and have a unit. All finite flat group
schemes are commutative.

Acknowledgements. The author thanks A. Vasiu and Th. Zink for valuable
discussions, in particular Th. Zink for sharing his notion of κ-frames and for
suggesting to include section 10, and the referee for many helpful comments.

2 Frames and windows

Let p be a prime. The following notion of frames and windows differs from
[Z3]. Some definitions and arguments could be simplified by assuming that the
relevant rings are local, which is the case in our applications, but we work in
greater generality until section 4.
If S is a ring equipped with a ring endomorphism σ, for an S-module M we
write M (σ) = S ⊗σ,S M , and for a σ-linear map of S-modules g : M → N
we denote by g♯ : M (σ) → N its linearisation, g♯(s ⊗ m) = sg(m). If g♯ is
invertible, g is called a σ-linear isomorphism.

Definition 2.1. A frame is a quintuple

F = (S, I, R, σ, σ1)

consisting of a ring S, an ideal I of S, the quotient ring R = S/I, a ring
endomorphism σ : S → S, and a σ-linear map of S-modules σ1 : I → S, such
that the following conditions hold:

i. I + pS ⊆ Rad(S),

ii. σ(a) ≡ ap mod pS for a ∈ S,
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iii. σ1(I) generates S as an S-module.

We do not assume here that R is the specific ring considered in the introduction.
In our examples σ1(I) contains the element 1.

Lemma 2.2. For every frame F there is a unique element θ ∈ S such that
σ(a) = θσ1(a) for a ∈ I.

Proof. Condition iii means that the homomorphism σ♯1 : I(σ) → S is surjective.

Let us choose b ∈ I(σ) such that σ♯1(b) = 1. Then necessarily θ = σ♯(b). For

a ∈ I we compute σ(a) = σ♯1(b)σ(a) = σ♯1(ba) = σ♯(b)σ1(a) as desired.

Definition 2.3. Let F be a frame. A window over F , also called an F -
window, is a quadruple

P = (P,Q, F, F1)

where P is a finitely generated projective S-module, Q ⊆ P is a submodule,
F : P → P and F1 : Q → P are σ-linear map of S-modules, such that the
following conditions hold:

1. There is a decomposition P = L⊕ T with Q = L⊕ IT ,

2. F1(ax) = σ1(a)F (x) for a ∈ I and x ∈ P ,

3. F1(Q) generates P as an S-module.

A decomposition as in 1 is called a normal decomposition of (P,Q) or of P.

Remark 2.4. The operator F is determined by F1. Indeed, if b ∈ I(σ) satisfies
σ♯1(b) = 1, then condition 2 implies that F (x) = F ♯1 (bx) for x ∈ P . In particular
we have F (x) = θF1(x) when x lies in Q.

Remark 2.5. Condition 1 implies that

1′. P/Q is a projective R-module.

If finitely generated projective R-modules lift to projective S-modules, neces-
sarily finitely generated because I ⊆ Rad(S), condition 1 is equivalent to 1′. In
all our examples, this lifting property holds because S is either local or I-adic.

Lemma 2.6. Let F be a frame, let P = L⊕T be a finitely generated projective
S-module, and let Q = L ⊕ IT . The set of F -window structures (P,Q, F, F1)
on these modules is mapped bijectively to the set of σ-linear isomorphisms

Ψ : L⊕ T → P

by the assignment Ψ(l + t) = F1(l) + F (t) for l ∈ L and t ∈ T .

The triple (L, T,Ψ) is called a normal representation of (P,Q, F, F1).
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Proof. If (P,Q, F, F1) is an F -window, by conditions 2 and 3 of Definition
2.3 the linearisation of Ψ is surjective, thus bijective since P and P (σ) are
projective S-modules of equal rank by conditions i and ii of Definition 2.1.
Conversely, if Ψ is given, one gets an F -window by F (l + t) = θΨ(l) + Ψ(t)
and F1(l + at) = Ψ(l) + σ1(a)Ψ(t) for l ∈ L, t ∈ T , and a ∈ I.

Example. The Witt frame of a p-adic ring R is

WR = (W (R), IR, R, f, f1)

where W (R) is the ring of p-typical Witt vectors of R, f is its Frobenius
endomorphism, and f1 : IR → W (R) is the inverse of the Verschiebung homo-
morphism. Here θ = p. We have IR ⊆ Rad(W (R)) because W (R) is IR-adic;
see [Z1, Proposition 3]. Windows over WR are 3n-displays over R in the sense
of [Z1], called displays in [M2], which is the terminology we follow.

Functoriality

Let F = (S, I, R, σ, σ1) and F ′ = (S′, I ′, R′, σ′, σ′1) be frames.

Definition 2.7. A homomorphism of frames α : F → F ′, also called a frame
homomorphism, is a ring homomorphism α : S → S′ with α(I) ⊆ I ′ such that
σ′α = ασ and σ′1α = u · ασ1 for a unit u ∈ S′. If u = 1, then α is called strict.

Remark 2.8. The unit u is unique because ασ1(I) generates S′ as an S′-module.
We have α(θ) = uθ′. If we want to specify u, we say that α is a u-homo-
morphism. There is a unique factorisation of α into frame homomorphisms

F
α′

−→ F
′′ ω−→ F

′

such that α′ is strict and ω is an invertible u-homomorphism. Here F ′′ is the
u−1-twist of F ′ defined as F ′′ = (S′, I ′, R′, σ′, u−1σ′1).

Let α : F → F ′ be a u-homomorphism of frames.

Definition 2.9. Let P be an F -window and let P ′ be an F ′-window. A ho-
momorphism of windows g : P →P ′ over α, also called an α-homomorphism,
is an S-linear map g : P → P ′ with g(Q) ⊆ Q′ such that F ′g = gF and
F ′1g = u · gF1. A homomorphism of F -windows is an idP-homomorphism in
the previous sense.

Lemma 2.10. For each F -window P there is a base change window α∗P over
F ′ together with an α-homomorphism of windows P → α∗P that induces a
bijection HomF ′(α∗P,P ′) = Homα(P,P ′) for all F ′-windows P ′.

Proof. Clearly this requirement determines α∗P uniquely. It can be con-
structed explicitly as follows: If (L, T,Ψ) is a normal representation of P,
a normal representation of α∗P is (S′ ⊗S L, S′ ⊗S T,Ψ′) where Ψ′ is defined
by Ψ′(s′ ⊗ l) = uσ′(s′)⊗Ψ(l) and Ψ′(s′ ⊗ t) = σ′(s′)⊗Ψ(t).
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If α∗P = (P ′, Q′, F ′, F ′1), then P ′ = S′⊗S P , and Q′ ⊆ P ′ is the S′-submodule
generated by I ′P ′ and by the image of Q.

Remark 2.11. As suggested in [VZ2], the above definitions of frames and win-
dows can be generalised as follows. Instead of condition iii of Definition 2.1,
the element θ given by Lemma 2.2 is taken as part of the data. For a u-
homomorphism α : F → F ′ of generalised frames in this sense it is necessary
to require that α(θ) = uθ′. For a window over a generalised frame the relation
F (x) = θF1(x) of Remark 2.4 becomes part of the definition, and condition 3
of Definition 2.3 is replaced by the requirement that F1(Q) + F (P ) generates
P . Then the results of sections 2–4 hold for generalised frames and windows
as well. Details are left to the reader.

Limits

Windows are compatible with projective limits of frames in the following sense.
Assume that for each positive integer n we have a frame

Fn = (Sn, In, Rn, σn, σ1n)

and a strict frame homomorphism πn : Fn+1 → Fn such that the involved
maps Sn+1 → Sn and In+1 → In are surjective and Ker(πn) is contained in
Rad(Sn+1). We obtain a frame lim←−Fn = (S, I, R, σ, σ1) with S = lim←−Sn etc.
By definition, an F∗-window is a system P∗ of Fn-windows Pn together with
isomorphisms πn∗Fn+1

∼= Fn.

Lemma 2.12. The category of (lim←−Fn)-windows is equivalent to the category
of F∗-windows.

Proof. The obvious functor from (lim←−Fn)-windows to F∗-windows is fully
faithful. We have to show that for an F∗-window P∗, the projective limit
lim←−Pn = (P,Q, F, F1) defined by P = lim←−Pn etc. is a window over lim←−Fn.
The condition Ker(πn) ⊆ Rad(Sn+1) implies that P is a finitely generated pro-
jective S-module and that P/Q is projective over R. In order that P has a
normal decomposition it suffices to show that each normal decomposition of
Pn lifts to a normal decomposition of Pn+1. Assume that Pn = L′n ⊕ T ′n
and Pn+1 = Ln+1 ⊕ Tn+1 are normal decompositions and let Pn = Ln ⊕ Tn
be induced by the second. Since Tn ⊗ Rn ∼= Pn/Qn ∼= T ′n ⊗ Rn and
Ln ⊗ Rn ∼= Qn/IPn ∼= L′n ⊗ Rn, we have Tn ∼= T ′n and Ln ∼= L′n. Hence
the two decompositions of Pn differ by an automorphism of Ln⊕Tn of the type
ω =

(
a b
c d

)
with c : Ln → InTn. Now ω lifts to an endomorphism ω′ =

(
a′ b′

c′ d′

)

of Ln+1 ⊕ Tn+1 with c′ : Ln+1 → In+1Tn+1, and ω′ is an automorphism since
Ker(πn) ⊆ Rad(Sn+1). The required lifting of normal decompositions follows.
All remaining window axioms for lim←−Pn are easily checked.

Remark 2.13. Assume that S1 is a local ring. Then all Sn and S are local
too. Hence lim←−Fn satisfies the lifting property of Remark 2.5, so the normal
decomposition of P in the preceding proof is automatic.
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Duality

Let P, P ′, and P ′′ be windows over a frame F . A bilinear form of F -
windows β : P ×P ′ → P ′′ is an S-bilinear map β : P × P ′ → P ′′ such that
β(Q ×Q′) ⊆ Q′′ and

β(F1(x), F ′1(x′)) = F ′′1 (β(x, x′)) (2.1)

for x ∈ Q and x′ ∈ Q′. Let F also denote the F -window (S, I, σ, σ1). For every
F -window P there is a unique dual F -window Pt together with a bilinear
form P ×Pt → F which induces for each F -window P ′ an isomorphism
Hom(P ′,Pt) ∼= Bil(P ×P ′,F ). Explicitly we have Pt = (P∨, Qt, F t, F t1)
where P∨ = HomS(P, S) and

Qt = {x′ ∈ P∨ | x′(Q) ⊆ I}.

The operators F t1 and F t are determined by (2.1) with σ1 in place of F ′′1 . If
(L, T,Ψ) is a normal representation for P, a normal representation for Pt is
given by (T∨, L∨,Ψt) where (Ψt)♯ is equal to ((Ψ♯)−1)∨. This shows that F t1
and F t are well-defined. There is a natural isomorphism Ptt ∼= P.
For a more detailed exposition of the duality formalism in the case of
(Diedonné) displays we refer to [Z1, Definition 19] or [L2, Section 3].

Lemma 2.14. Let α : F → F ′ be a u-homomorphism of frames and let c ∈ S′
be a unit such that c−1σ′(c) = u. For all F -windows P there is a natural
isomorphism (depending on c)

α∗(P
t) ∼= (α∗P)t.

Proof. We consider the F ′-window F ′u = (S′, I ′, uσ′, uσ′1). The given bilinear
form P ×Pt → F induces a bilinear form α∗P × α∗(Pt) → F ′u; this is
easily verified using that under base change by α each of the operators F1,
F ′1, and F ′′1 = σ1 accounts for one factor of u in (2.1). Multiplication by
c is an isomorphism of F ′-windows F ′u ∼= F ′. The resulting bilinear form
α∗P × α∗(Pt)→ F ′ induces an isomorphism α∗(Pt) ∼= (α∗P)t.

3 Crystalline homomorphisms

Definition 3.1. A homomorphism of frames α : F → F ′ is called crystalline if
the functor α∗ : (F -windows)→ (F ′-windows) is an equivalence of categories.

Theorem 3.2. Let α : F → F ′ be a strict frame homomorphism that induces
an isomorphism R ∼= R′ and a surjection S → S′ with kernel a ⊂ S. We
assume that there is a finite filtration a = a0 ⊇ · · · ⊇ an = 0 with σ(ai) ⊆ ai+1

and σ1(ai) ⊆ ai such that σ1 is elementwise nilpotent on ai/ai+1. We assume
that finitely generated projective S′-modules lift to projective S-modules. Then
α is crystalline.
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In many applications the lifting property of projective modules holds because a
is nilpotent or S is local. The proof of Theorem 3.2 is a variation of the proofs
of [Z1, Theorem 44] and [Z2, Theorem 3].

Proof. The homomorphism α factors into F → F ′′ → F ′ where the frame F ′′

is determined by S′′ = S/a1, so by induction we may assume that σ(a) = 0. The
functor α∗ is essentially surjective because normal representations (L, T,Ψ) can
be lifted from F ′ to F . In order that α∗ is fully faithful it suffices to show that
α∗ is fully faithful on automorphisms because a homomorphism g : P → P ′

can be encoded by the automorphism
(
1 0
g 1

)
of P⊕P ′. Since for a window P

over F an automorphism of α∗P can be lifted to an S-module automorphism
of P , it suffices to prove the following assertion.
Assume that P = (P,Q, F, F1) and P ′ = (P,Q, F ′, F ′1) are two F -windows
such that F ≡ F ′ and F1 ≡ F ′1 modulo a. Then there is a unique F -window
isomorphism g : P ∼= P ′ with g ≡ id modulo a.
We write F ′1 = F1 + η and F ′ = F + ε and g = 1 + ω, where the σ-linear
maps η : Q → aP and ε : P → aP are given, and where ω : P → aP is an
arbitrary S-linear map. The induced g is an isomorphism of windows if and
only if gF1 = F ′1g on Q, which translates into the identity

η = ωF1 − F ′1ω. (3.1)

We fix a normal decomposition P = L⊕T , thus Q = L⊕ IT . For l ∈ L, t ∈ T ,
and a ∈ I we have

η(l + at) = η(l) + σ1(a)ε(t),

ω(F1(l + at)) = ω(F1(l)) + σ1(a)ω(F (t)),

F ′1(ω(l + at)) = F ′1(ω(l)) + σ1(a)F ′(ω(t)).

Here F ′ω = 0 because for a ∈ a and x ∈ P we have F ′(ax) = σ(a)F ′(x), and
σ(a) = 0. As σ1(I) generates S we see that (3.1) is equivalent to:

{
ε = ωF on T,
η = ωF1 − F ′1ω on L.

(3.2)

Since Ψ : L⊕ T F1+F−−−−→ P is a σ-linear isomorphism, to give ω is equivalent to
give a pair of σ-linear maps

ωL = ωF1 : L→ aP, ωT = ωF : T → aP.

Let λ : L→ L(σ) be the composition L ⊆ P
(Ψ♯)−1

−−−−→ L(σ) ⊕ T (σ) pr1−−→ L(σ) and
let τ : L → T (σ) be analogous with pr2 in place of pr1. Then the restriction
ω|L is equal to ω♯Lλ+ ω♯T τ , and (3.2) becomes:

{
ωT = ε|T ,
ωL − F ′1ω♯Lλ = η|L + F ′1ω

♯
T τ.

(3.3)
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Let H be the abelian group of σ-linear maps L→ aP . We claim that the en-
domorphism U of H given by U(ωL) = F ′1ω

♯
Lλ is elementwise nilpotent, which

implies that 1 − U is bijective, and (3.3) has a unique solution in (ωL, ωT )
and thus in ω. The endomorphism F ′1 of aP is elementwise nilpotent because
F ′1(ax) = σ1(a)F ′(x) and because σ1 is elementwise nilpotent on a by assump-
tion. Since L is finitely generated it follows that U is elementwise nilpotent.

Remark 3.3. The same argument applies if instead of σ1 being elementwise
nilpotent one demands that λ is (topologically) nilpotent, which is the original
situation in [Z1, Theorem 44]; see section 10.

4 Abstract deformation theory

Definition 4.1. The Hodge filtration of a window P is the submodule

Q/IP ⊆ P/IP.

Lemma 4.2. Let α : F → F ′ be a strict homomorphism of frames such that
S = S′; thus R → R′ is surjective and we have I ⊆ I ′. Then F -windows P

are equivalent to pairs consisting of an F ′-window P ′ = (P ′, Q′, F ′, F ′1) and a
lift of its Hodge filtration to a direct summand V ⊆ P ′/IP ′.
Proof. The equivalence is given by the functor P 7→ (α∗P, Q/IP ), which is
easily seen to be fully faithful. We show that it is essentially surjective. Let
an F ′-window P ′ and a lift of its Hodge filtration V ⊆ P ′/IP ′ be given and
let Q ⊆ P ′ be the inverse image of V ; thus Q ⊆ Q′. We have to show that
P = (P ′, Q, F ′, F ′1|Q) is an F -window. First we need a normal decomposition
for P; this is a decomposition P ′ = L ⊕ T such that V = L/IL. Since P ′

has a normal decomposition, P has one too for at least one choice of V . By
modifying the isomorphism P ′ ∼= L⊕ T with an automorphism ( 1 0

c 1 ) of L⊕ T
for some homomorphism c : L → I ′T one reaches every lift of the Hodge
filtration. It remains to show that F ′1(Q) generates P ′. In terms of a normal
decomposition P ′ = L ⊕ T for P this means that F ′1 + F ′ : L ⊕ T → P ′ is a
σ-linear isomorphism, which holds because P ′ is an F ′-window.

Assume that a strict homomorphism of frames α : F → F ′ is given such that
S → S′ is surjective with kernel a, and I ′ = IS′. We want to factor α into
strict frame homomorphisms

(S, I, R, σ, σ1)
α1−→ (S, I ′′, R′, σ, σ′′1 )

α2−→ (S′, I ′, R′, σ′, σ′1) (4.1)

such that α2 satisfies the hypotheses of Theorem 3.2.
Necessarily I ′′ = I + a. The main point is to define σ′′1 : I ′′ → S, which is
equivalent to defining a σ-linear map σ′′1 : a→ a that extends the restriction of
σ1 to I ∩ a and satisfies the hypotheses of Theorem 3.2. Once this is achieved,
Theorem 3.2 and Lemma 4.2 will show that F -windows are equivalent to F ′-
windows P ′ plus a lift of the Hodge filtration of P ′ to a direct summand of
P/IP , where P ′′ = (P,Q′′, F, F ′′1 ) is the unique lift of P ′ under α2.
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5 Dieudonné frames

Let R be a noetherian complete local ring with maximal ideal mR and with
perfect residue field k of characteristic p. If p = 2, we assume that p annihilates
R. Let Ŵ (mR) ⊂W (R) be the ideal of all Witt vectors whose coefficients lie in
mR and converge to zero mR-adically. There is a unique subring W(R) of W (R)
which is stable under the Frobenius f such that the projection W(R)→W (k)
is surjective with kernel Ŵ (mR), and the ring W(R) is also stable under the
Verschiebung v; see [Z2, Lemma 2]. Let IR be the kernel of the projection to
the first component W(R)→ R. Then v : W(R)→ IR is bijective.

Definition 5.1. The Dieudonné frame associated to R is

DR = (W(R), IR, R, f, f1)

with f1 = v−1.

Here θ = p. Windows over DR are Dieudonné displays over R in the sense
of [Z2]. We note that W(R) is a local ring, which guarantees the existence of
normal decompositions; see Remark 2.5. The inclusion W(R) → W (R) is a
strict homomorphism of frames DR → WR.
If R′ has the same properties as R, a local ring homomorphism R→ R′ induces
a strict frame homomorphism DR → DR′ .
Assume that R′ = R/b for an ideal b which is equipped with elementwise
nilpotent divided powers γ. Then W(R) → W(R′) is surjective with kernel
Ŵ (b) = W (b) ∩ Ŵ (mR). In this situation, a factorisation (4.1) of the homo-
morphism DR → DR′ can be defined as follows. We recall that the γ-divided
Witt polynomials are defined as

w′n(X0, . . . , Xn) = (pn − 1)!γpn(X0) + (pn−1 − 1)!γpn−1(X1) + · · ·+Xn.

Thus pnw′n is the usual Witt polynomial wn(X0, . . . , Xn) = Xpn

0 + · · ·+ pnXn.
Let b<∞> be the W (R)-module of all sequences [b0, b1, . . .] with elements
bi ∈ b that converge to zero mR-adically, such that x ∈ W (R) acts on b<∞>

by [b0, b1, . . .] 7→ [w0(x)b0, w1(x)b1, . . .]. We have an isomorphism of W (R)-
modules

log : Ŵ (b) ∼= b<∞>; b 7→ (w′0(b), w′1(b), . . .);

see the remark after [Z1, Cor. 82]. For b ∈ Ŵ (b) we call log(b) the logarithmic
coordinates of b. Let

IR/R′ = IR + Ŵ (b).

In logarithmic coordinates, the restriction of f1 to IR ∩ Ŵ (b) is given by

f1([0, b1, b2, . . .]) = [b1, b2, . . .].

Thus f1 : IR →W(R) extends uniquely to an f -linear map

f̃1 : IR/R′ →W(R)
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with f̃1([b0, b1, . . .]) = [b1, b2, . . .] on Ŵ (b), and we obtain a factorisation

DR
α1−→ DR/R′ = (W(R), IR/R′ , R′, f, f̃1)

α2−→ DR′ . (5.1)

Proposition 5.2. The frame homomorphism α2 is crystalline.

This is a reformulation of [Z2, Theorem 3] if mR is nilpotent, and the general
case is an easy consequence. As explained in section 4, it follows that defor-
mations of Dieudonné displays from R′ to R are classified by lifts of the Hodge
filtration; this is [Z2, Theorem 4].

Proof of Proposition 5.2. When mR is nilpotent, α2 satisfies the hypotheses of
Theorem 3.2; the required filtration of a = Ŵ (b) is ai = pia. In general, these
hypotheses are not fulfilled because f1 : a → a is only topologically nilpotent.
However, one can find a sequence of ideals R ⊃ I1 ⊃ I2 · · · which define the
mR-adic topology such that each b ∩ In is stable under the divided powers of
b. Indeed, for each n there is an l with mlR ∩ b ⊆ mnRb; for In = mnRb + mlR we
have b∩ In = mnRb. The proposition holds for each R/In in place of R, and the
general case follows by passing to the projective limit, using Lemma 2.12.

6 κ-frames

The results in this section are essentially due to Th. Zink (private communica-
tion); see also [Z3, Section 1] and [VZ1, Section 3].

Definition 6.1. A κ-frame is a frame F = (S, I, R, σ, σ1) such that

iv. S has no p-torsion,

v. W (R) has no p-torsion,

vi. σ(θ)− θp = p · unit in S.

The numbering extends i–iii of Definition 2.1. In the following we refer to
conditions i–vi without explicitly mentioning Definitions 2.1 and 6.1.

Remark 6.2. If ii and iv hold, we have a (non-additive) map

τ : S → S, τ(x) =
σ(x) − xp

p
,

and vi says that τ(θ) is a unit. Condition v is satisfied if and only if the
nilradical N (R) has no p-torsion, for example if R is reduced, or flat over Z(p).

Proposition 6.3. To each κ-frame F one can associate a u-homomorphism
of frames κ : F → WR lying over idR for a well-defined unit u of W (R).
The homomorphism κ and the unit u are functorial in F with respect to strict
frame homomorphisms.
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Proof. Conditions iv and ii imply that there is a well-defined ring homomor-
phism δ : S → W (S) with wnδ = σn; see [Bou, IX.1, proposition 2]. We have
fδ = δσ. Let κ be the composite ring homomorphism

κ : S
δ−→W (S)→W (R).

Then fκ = κσ and κ(I) ⊆ IR. Clearly κ is functorial in F . To define u we
write 1 =

∑
yiσ1(xi) in S with xi ∈ I and yi ∈ S. This is possible by iii.

Recall that θ =
∑
yiσ(xi); see the proof of Lemma 2.2. Let

u =
∑

κ(yi)f1κ(xi).

Then pu = κ(θ) because pf1 = f and fκ = κσ. We claim that f1κ = u · κσ1.
By condition v this is equivalent to the relation p · f1κ = pu ·κσ1, which holds
since pf1 = f and pu = κ(θ) and θσ1 = σ. It remains to show that u is a unit
in W (R). Let pu = κ(θ) = (a0, a1, . . .) as a Witt vector. By Lemma 6.4 below,
u is a unit if and only if a1 is a unit in R. In W2(S) we have δ(θ) = (θ, τ(θ))
because (w0, w1) applied to both sides gives (θ, σ(θ)). Hence a1 is a unit by vi.
We conclude that κ : F → WR is a u-homomorphism of frames.

Finally, u is functorial in F by its uniqueness, see Remark 2.8.

Lemma 6.4. Let R be a ring with p ∈ Rad(R) and let u ∈W (R) be given. For
an integer r ≥ 0 let pru = (a0, a1, a2, . . .). The element u is a unit in W (R) if
and only if ar is a unit in R.

Proof. Assume first that r = 0. It suffices to show that an element ū of
Wn+1(R) that maps to 1 in Wn(R) is a unit. If ū = 1+vn(x) with x ∈ R, then
ū−1 = 1 + vn(y) where y ∈ R is determined by the equation x+ y + pnxy = 0,
which has a solution since p ∈ Rad(R). For general r, by the case r = 0 we
may replace R by R/pR. Then we have p(b0, b1, . . .) = (0, bp0, b

p
1, . . .) in W (R),

which reduces the assertion to the case r = 0.

Corollary 6.5. Let F be a κ-frame with S = W (k)[[x1, . . . , xr]] for a perfect
field k of odd characteristic p. Assume that σ extends the Frobenius automor-
phism of W (k) by σ(xi) = xpi . Then u is a unit in W(R), and κ induces a
u-homomorphism of frames κ : F → DR.

Proof. We claim that δ(S) lies in W(S). Indeed, δ(xi) = [xi] because wn
applied to both sides gives xp

n

i . Thus for each multi-exponent e = (e1, . . . , er)
the element δ(xe) = [xe] lies in W(S). Let mS be the maximal ideal of S. Since
W(S) = lim←−W(S/mnS) and since for each n all but finitely many xe lie in mnS ,
the claim follows. Hence the image of κ : S → W (R) is contained in W(R).
By its construction the unit u lies in W(R); it is invertible in W(R) because
the inclusion W(R)→W (R) is a local homomorphism of local rings.
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7 The main frame

Let R be a complete regular local ring with perfect residue field k of charac-
teristic p ≥ 3. We choose a ring homomorphism

S = W (k)[[x1, . . . , xr]]
π−→ R

such that x1, . . . , xr map to a regular system of parameters of R. Since the
graded ring of R is isomorphic to k[x1, . . . , xr], one can find a power series
E0 ∈ S with constant term zero such that π(E0) = −p. Let E = E0 + p and
I = ES. Then R = S/I. Let σ : S → S be the ring endomorphism that
extends the Frobenius automorphism of W (k) by σ(xi) = xpi . We have a frame

B = (S, I, R, σ, σ1)

where σ1 is defined by σ1(Ey) = σ(y) for y ∈ S.

Lemma 7.1. The frame B is a κ-frame.

Proof. Let θ ∈ S be the element given by Lemma 2.2. The only condition to
be checked is that τ(θ) is a unit in S. Let E′0 = σ(E0). Since σ1(E) = 1, we
have θ = σ(E) = E′0 + p. Hence

τ(θ) =
σ(E′0) + p− (E′0 + p)p

p
≡ 1 + τ(E′0) mod p.

Since the constant term of E0 is zero, the same is true for τ(E′0), which implies
that τ(θ) is a unit as required.

Thus Proposition 6.3 and Corollary 6.5 give a ring homomorphism κ from S
to W(R), which is a u-homomorphism of frames

κ : B → DR.

Here the unit u ∈W(R) is determined by the identity pu = κσ(E).

Theorem 7.2. The frame homomorphism κ is crystalline (Definition 3.1).

To prove this we consider the following auxiliary frames. Let J ⊂ S be the
ideal J = (x1, . . . , xr), and let mR be the maximal ideal of R. For each positive
integer a let Sa = S/JaS and Ra = R/maR. Then Ra = Sa/ESa, where E is
not a zero divisor in Sa. There is a well-defined frame

Ba = (Sa, Ia, Ra, σa, σ1a)

such that the projection S → Sa is a strict frame homomorphism B → Ba.
Indeed, σ induces an endomorphism σa of Sa because σ(J) ⊆ J , and for y ∈ Sa

one can define σ1a(Ey) = σa(y).
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For simplicity, the image of u in W(Ra) is denoted by u as well. The u-
homomorphism κ induces a u-homomorphism

κa : Ba → DRa

because for e ∈ Nr we have κ(xe) = [xe], which maps to zero in W(Ra) when
e1 + · · ·+ er ≥ a. We note that Ba is again a κ-frame, so the existence of κa
can also be viewed as a consequence of Proposition 6.3.

Theorem 7.3. For each positive integer a the homomorphism κa is crystalline.

To prepare for the proof, for each a ≥ 1 we will construct the following com-
mutative diagram of frames, where vertical arrows are u-homomorphisms and
where horizontal arrows are strict.

Ba+1
ι //

κa+1

��

B̃a+1
π //

κ̃a+1

��

Ba

κa

��

DRa+1

ι′ // DRa+1/Ra
π′

// DRa

(7.1)

The upper line is a factorisation (4.1) of the projection Ba+1 → Ba. This
means that the frame B̃a+1 necessarily takes the form

B̃a+1 = (Sa+1, Ĩa+1, Ra, σa+1, σ̃1(a+1))

with Ĩa+1 = ESa+1 + Ja/Ja+1. We define σ̃1(a+1) : Ĩa+1 → Sa+1 to be the
extension of σ1(a+1) : ESa+1 → Sa+1 by zero on Ja/Ja+1. This is well-defined
because

ESa+1 ∩ Ja/Ja+1 = E(Ja/Ja+1)

and because for x ∈ Ja/Ja+1 we have σ1(a+1)(Ex) = σa+1(x), which is zero
since σ(Ja) ⊆ Jap.
The lower line of (7.1) is the factorisation (5.1) with respect to the trivial
divided powers on the kernel maR/m

a+1
R .

In order that the diagram commutes it is necessary and sufficient that κ̃a+1 is
given by the ring homomorphism κa+1.
It remains to show that κ̃a+1 is a u-homomorphism of frames. The only non-
trivial condition is that f̃1κa+1 = u · κa+1σ̃1(a+1) on Ĩa+1. This relation holds
on ESa+1 because κa+1 is a u-homomorphism of frames. On Ja/Ja+1 we have
κa+1σ̃1(a+1) = 0 by definition. For y ∈ Sa+1 and e ∈ Nr with e1 + · · ·+ er = a
we compute

f̃1(κa+1(xey)) = f̃1([x
e]κa+1(y)) = f̃1([xe])f(κa+1(y)) = 0

because log([xe]) = [xe, 0, 0, . . .] and thus f̃1([xe]) = 0. As these xe generate
Ja, the required relation on Ĩa+1 follows. Thus the diagram is constructed.
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Proof of Theorem 7.3. We use induction on a. The homomorphism κ1 is crys-
talline because it is invertible. Assume that κa is crystalline for some positive
integer a and consider the diagram (7.1). The homomorphism π′ is crystalline
by Proposition 5.2, while π is crystalline by Theorem 3.2; the required filtra-
tion of Ja/Ja+1 is trivial. Hence κ̃a+1 is crystalline. By Lemma 4.2, lifts of
windows under ι or under ι′ are classified by lifts of the Hodge filtration. Since
κa+1 lies over the identity of Ra+1 and since κ̃a+1 lies over the identity of Ra,
it follows that κa+1 is crystalline too.

Proof of Theorem 7.2. The frame homomorphism κ : B → DR is the pro-
jective limit of the frame homomorphisms κa : Ba → DRa . By Lemma 2.12,
B-windows are equivalent to compatible systems of Ba-windows for a ≥ 1, and
DR-windows are equivalent to compatible systems of DRa -windows for a ≥ 1.
Thus Theorem 7.2 follows from Theorem 7.3.

8 Classification of group schemes

The following consequences of Theorem 7.2 are analogous to [VZ1]. Recall that
we assume p ≥ 3. Let B = (S, I, R, σ, σ1) be the frame defined in section 7.

Definition 8.1. A Breuil window relative to S→ R is a pair (Q,φ) where Q
is a free S-module of finite rank and where φ : Q → Q(σ) is an S-linear map
with cokernel annihilated by E.

Lemma 8.2. Breuil windows relative to S → R are equivalent to B-windows
in the sense of Definition 2.3.

Proof. This is similar to [VZ1, Lemma 1]. For a B-window (P,Q, F, F1) the

module Q is free over S because I = ES is free. Hence F ♯1 : Q(σ) → P is
bijective, and we can define a Breuil window (Q,φ) where φ is the inclusion

Q → P composed with the inverse of F ♯1 . Conversely, if (Q,φ) is a Breuil
window, Coker(φ) is a free R-module. Indeed, φ is injective because it becomes
bijective over S[E−1], so Coker(φ) has projective dimension at most one over
S, which implies that it is free over R by using depth. Thus one can define a
B-window as follows: P = Q(σ), the inclusion Q → P is φ, F1 : Q → Q(σ) is
given by x 7→ 1⊗ x, and F (x) = F1(Ex). The two constructions are mutually
inverse.

By [Z2], p-divisible groups over R are equivalent to Dieudonné displays over R.
Together with Theorem 7.2 and Lemma 8.2 this implies:

Corollary 8.3. The category of p-divisible groups over R is equivalent to the
category of Breuil windows relative to S→ R.

Let us use the following abbreviation: An admissible torsion S-module is a
finitely generated S-module annihilated by a power of p and of projective
dimension at most one.
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Definition 8.4. A Breuil module relative to S→ R is a triple (M,ϕ, ψ) where
M is an admissible torsion S-module together with S-linear maps ϕ : M →
M (σ) and ψ : M (σ) →M such that ϕψ = E and ψϕ = E.

When R has characteristic zero, each of the maps ϕ and ψ determines the other
one; see Lemma 8.6 below.

Theorem 8.5. The category of (commutative) finite flat group schemes over
R annihilated by a power of p is equivalent to the category of Breuil modules
relative to S→ R.

This follows from Corollary 8.3 by the arguments of [K1] or [VZ1]. For com-
pleteness we give a detailed proof here.

Proof of Theorem 8.5. In this proof, all finite flat group schemes are of p-power
order over R, and all Breuil modules or windows are relative to S→ R.
A homomorphism g : (Q0, φ0)→ (Q1, φ1) of Breuil windows is called an isogeny
if it becomes invertible over S[1/p]. Then g is injective, and its cokernel is
naturally a Breuil module; the required ψ is induced by the S-linear map

Eφ−11 : Q
(σ)
1 → Q1. A homomorphism γ : G0 → G1 of p-divisible groups is

called an isogeny if it becomes invertible in Hom(G0, G1) ⊗ Q. Then γ is a
surjection of fppf sheaves, and its kernel is a finite flat group scheme.
We denote isogenies by X∗ = [X0 → X1]. A homomorphism of isogenies
q : X∗ → Y∗ is called a quasi-isomorphism if its cone is a short exact sequence.
In the case of p-divisible groups this means that q induces an isomorphism of
finite flat group schemes on the kernels; in the case of Breuil windows this
means that q induces an isomorphism of Breuil modules on the cokernels.
The equivalence between p-divisible groups and Breuil windows preserves isoge-
nies and short exact sequences, and thus also quasi-isomorphisms of isogenies.
We note the following two facts.

(a) Each finite flat group scheme over R of p-power order is the kernel of an
isogeny of p-divisible groups over R. See [BBM, Théorème 3.1.1].

(b) Each Breuil module is the cokernel of an isogeny of Breuil windows. This
is analogous to [VZ1, Proposition 2]; a proof is also given below.

Let us define an additive functor H 7→ M(H) from finite flat group schemes
to Breuil modules. We write each H as the kernel of an isogeny of p-divisible
groups G0 → G1 and define M(H) as the cokernel of the associated isogeny
of Breuil windows. Assume that h : H → H ′ is a homomorphism of finite flat
group schemes, andH ′ is written as the kernel of an isogeny of p-divisible groups
G′0 → G′1. We embed H into G′′0 = G0 ⊕G′0 by (1, h) and define G′′1 = G′′0/H .
The coordinate projectionsG0 ← G′′0 → G′0 induce homomorphisms of isogenies
G∗ ← G′′∗ → G′∗ such that the first map is a quasi-isomorphism, and the
composition induces h on the kernels. Let Q∗ ← Q′′∗ → Q′∗ be the associated
homomorphisms of isogenies of Breuil windows. The first map is a quasi-
isomorphism, and the composition induces a homomorphism M(h) : M(H)→
M(H ′) on the cokernels.
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One has to show that the construction is independent of the choice and de-
fines an additive functor. This is an easy verification based on the following
observation: If a homomorphism of isogenies of p-divisible groups q : G∗ → G′∗
induces zero on the kernels, then q is null-homotopic.

The construction of an additive functor M 7→ H(M) from Breuil modules to
finite flat group schemes is analogous. Each M is written as the cokernel of an
isogeny of Breuil windows Q0 → Q1, and H(M) is defined as the kernel of the
associated isogeny of p-divisible groups. If m : M →M ′ is a homomorphism of
Breuil modules and if M ′ is written as the cokernel of an isogeny of Breuil win-
dows Q′0 → Q′1, let Q′′0 be the kernel of the surjectionQ′′1 = Q1⊕Q′1 →M ′ given
by (m, 1). The coordinate inclusions Q1 → Q′′1 ← Q′1 induce homomorphisms
of isogenies Q∗ → Q′′∗ ← Q′∗, where the second map is a quasi-isomorphism.
The associated homomorphisms of isogenies of p-divisible groups induce a ho-
momorphism of finite flat group schemes H(m) : H(M) → H(M ′) on the
kernels.

Again, it is easy to verify that this construction is independent of the choice
and defines an additive functor, using that a homomorphism of isogenies of
Breuil windows is null-homotopic if and only if it induces zero on the cokernels.
Clearly the two functors are mutually inverse.

Finally, let us prove (b). If (M,ϕ, ψ) is a Breuil module, one can find free
S-modules P and Q together with surjective S-linear maps ξ : Q → M and
ξ′ : P → M (σ) and S-linear maps ϕ̃ : Q → P and ψ̃ : P → Q which lift ϕ
and ψ such that ϕ̃ψ̃ = E and ψ̃ϕ̃ = E. Next one can choose an isomorphism
α : P ∼= Q(σ) compatible with the projections ξ′ and ξ(σ) to M (σ). Let φ = αϕ̃.
Then (Q,φ) is a Breuil window, and (M,ϕ, ψ) is the cokernel of the isogeny of
Breuil windows (Ker ξ, φ′)→ (Q,φ), where φ′ is the restriction of φ.

Lemma 8.6. If R has characteristic zero, the category of Breuil modules relative
to S→ R is equivalent to the category of pairs (M,ϕ) whereM is an admissible
torsion S-module and where ϕ : M → M (σ) is an S-linear map with cokernel
annihilated by E.

Proof. Cf. [VZ1, Proposition 2]. For a non-zero admissible torsion S-module
M the set of zero divisors on M is equal to p = pS because every associated
prime of M has height one and contains p. In particular, M →Mp is injective.
The hypothesis of the lemma means that E 6∈ p. For a given pair (M,ϕ) as

in the lemma this implies that ϕp : Mp → M
(σ)
p is surjective, thus bijective

because both sides have the same finite length. It follows that ϕ is injective,
and (M,ϕ) is extended uniquely to a Breuil module by ψ(x) = ϕ−1(Ex).

Duality

The dual of a Breuil window (Q,φ) is the Breuil window (Q,φ)t = (Q∨, ψ∨)
where Q∨ = HomS(Q,S) and where ψ : Q(σ) → Q is the unique S-linear map
with ψφ = E. Here we identify (Q(σ))∨ and (Q∨)(σ). For a p-divisible group
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G over R let G∨ be the Serre dual of G, and let M(G) be the Breuil window
associated to G by the equivalence of Corollary 8.3.

Proposition 8.7. There is a functorial isomorphism λG : M(G∨) ∼= M(G)t.

Proof. The equivalence between p-divisible groups over R and Dieudonné dis-
plays over R is compatible with duality by [L2, Theorem 3.4]. It is easy to see
that the equivalence of Lemma 8.2 preserves duality, so it remains to show that
the functor κ∗ preserves duality as well. By Lemma 2.14 it suffices to find a
unit c ∈ W(R) with c−1f(c) = u. Since E has constant term p, u maps to 1
in W (k) and thus lies in 1 + Ŵ (mR). Hence we can define c−1 by the infinite
product uf(u)f2(u) · · · , which converges in W(R) = lim←−W(R/mn) in the sense
that for each n, all but finitely many factors map to 1 in W(R/mn).

The dual of a Breuil module M = (M,ϕ, ψ) is defined as the Breuil module
Mt = (M⋆, ψ⋆, ϕ⋆) where M⋆ = Ext1S(M,S). Here we identify (M (σ))⋆ and
(M⋆)(σ) using that ( )(σ) preserves projective resolutions as σ is flat. For a
finite flat group scheme H over R of p-power order let H∨ be the Cartier dual
of H and let M(H) be the Breuil module associated to H by the equivalence
of Theorem 8.5.

Proposition 8.8. There is a functorial isomorphism λH : M(H∨) ∼= M(H)t.

Proof. Choose an isogeny of p-divisible groups G0 → G1 with kernel H . Then
M(H) is the cokernel of M(G0) → M(G1), which implies that M(H)t is the
cokernel of M(G1)t → M(G0)t. On the other hand, H∨ is the kernel of G∨1 →
G∨0 , so M(H∨) is the cokernel of M(G∨1 )→ M(G∨0 ). The isomorphisms λGi of
Proposition 8.7 give an isomorphism λH : M(H∨) ∼= M(H)t. One easily checks
that λH is independent of the choice of G∗ and functorial in H .

9 Other lifts of Frobenius

One may ask how much freedom we have in the choice of σ for the frame
B. Let R = S/ES be as in section 7; in particular we assume that p ≥ 3.
Let J = (x1, . . . , xr). To begin with, let σ : S → S be an arbitrary ring
endomorphism such that σ(J) ⊂ J and σ(a) ≡ ap modulo pS for a ∈ S. We
consider the frame

B = (S, I, R, σ, σ1)

with σ1(Ey) = σ(y). Again this is a κ-frame; the proof of Lemma 7.1 uses only
that σ preserves J . Thus Proposition 6.3 gives a homomorphism of frames

κ : B → WR.

By the assumptions on σ we have σ(J) ⊆ Jp + pJ , which implies that the
endomorphism σ : J/J2 → J/J2 is divisible by p.

Proposition 9.1. The image of κ : S → W (R) lies in W(R) if and only if
the endomorphism σ/p of J/J2 is nilpotent modulo p.
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We have a non-additive map τ : J → J given by τ(x) = (σ(x) − xp)/p. Let m
be the maximal ideal of S. We write grn(J) = mnJ/mn+1J .

Lemma 9.2. For n ≥ 0 the map τ preserves mnJ and induces a σ-linear endo-
morphism of k-modules grn(τ) : grn(J) → grn(J). We have gr0(τ) = σ/p as
an endomorphism of gr0(J) = J/(J2 + pJ). There is a commutative diagram
of the following type with πi = id

grn(J)
grn(τ)

//

π

��

grn(J)

gr0(J)
gr0(τ)

// gr0(J).

i

OO

Proof. Let J ′ = p−1mJ as an S-submodule of J ⊗ Q. Then J ⊂ J ′, and
grn(J) is an S-submodule of grn(J ′) = mnJ ′/mn+1J ′. The composition J

τ−→
J ⊂ J ′ can be written as τ = σ/p − ϕ/p, where ϕ(x) = xp. One checks
that ϕ/p : mnJ → mn+1J ′ (which requires p ≥ 3 when n = 0) and that
σ/p : mnJ → mnJ ′. Hence σ/p and τ induce the same map mnJ → grn(J ′).
This map is σ-linear and zero on mn+1J because this holds for σ/p, and its
image lies in grn(J) because this is true for τ .
We define i : gr0(J) → grn(J) by x 7→ pnx. For n ≥ 1 let Kn be the image of
mn−1J2 → grn(J). Then i maps gr0(J) bijectively onto grn(J)/Kn, so there
is a unique homomorphism π : grn(J) → gr0(J) with kernel Kn such that
πi = id. Clearly i commutes with gr(τ). Thus, in order that the diagram
commutes, it suffices that grn(τ) vanishes on Kn. We have σ(J) ⊆ mJ , which
implies that (σ/p)(mn−1J2) ⊆ mn+1J ′, and the assertion follows.

Proof of Proposition 9.1. Recall that κ = πδ, where δ : S → W (S) is defined
by wnδ = σn for n ≥ 0, and where π : W (S)→W (R) is the obvious projection.
For x ∈ J and n ≥ 1 let

τn(x) = (σ(x)p
n−1 − xpn)/pn,

thus τ1 = τ . It is easy to see that

τn+1(x) ∈ J · τn(x),

in particular we have τn : J → Jn. If δ(x) = (y0, y1, . . .), the coefficients yn are
determined by y0 = x and wn(y) = σwn−1(y) for n ≥ 1, which translates into
the equations

yn = τn(y0) + τn−1(y1) + · · ·+ τ1(yn−1).

Assume now that σ/p is nilpotent on J/J2 modulo p. By Lemma 9.2 this
implies that grn(τ) is nilpotent for every n ≥ 0. We will show that for x ∈ J the
element δ(x) lies is W(S), which means that the above sequence (yn) converges
to zero. Assume that for some N ≥ 0 we have yn ∈ mNJ for all but finitely
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many n. The last two displayed equations give that yn− τ(yn−1) ∈ mN+1J for
all but finitely many n. As grN (τ) is nilpotent it follows that yn ∈ mN+1J for
all but finitely many n. Thus δ(x) ∈W(S) and in particular κ(x) ∈W(R).

Conversely, if σ/p is not nilpotent on J/J2 modulo p, then gr0(τ) is not nilpo-
tent by Lemma 9.2, so there is an x ∈ J such that τn(x) 6∈ mJ for all n ≥ 0.
For δ(x) = (y0, y1, . . .) we have yn ≡ τnx modulo mJ . The projection S → R
induces an isomorphism J/mJ ∼= mR/m

2
R. It follows that κ(x) lies in W (mR)

but not in Ŵ (mR), thus κ(x) 6∈W(R).

Now we assume that σ/p is nilpotent on J/J2 modulo p. Then we have a
homomorphism of frames

κ : B → DR.

As earlier let Ba = (Sa, Ia, Ra, σa, σ1a) with Sa = S/Ja and Ra = R/maR.
The proof of Lemma 7.1 shows that Ba is a κ-frame. Since W(Ra) is the image
of W(R) in W (Ra), we get a homomorphism of frames compatible with κ:

κa : Ba → DRa .

Theorem 9.3. The homomorphisms κ and κa are crystalline.

Proof. The proof is similar to that of Theorems 7.2 and 7.3.

First we repeat the construction of the diagram (7.1). The restriction of σ1(a+1)

to E(Ja/Ja+1) = p(Ja/Ja+1) is given by σ1 = σ/p = τ , which need not
be zero in general, but still σ1 extends uniquely to Ja/Ja+1 by the formula
σ1 = σ/p. In order that κ̃a+1 is a u-homomorphism of frames we need that
f̃1κa+1 = u ·κa+1σ̃1(a+1) on Ja/Ja+1. Here u acts on Ja/Ja+1 as the identity.
By the proof of Proposition 9.1, for x ∈ Ja/Ja+1 we have in W (Ja/Ja+1)

δ(x) = (x, τ(x), τ2(x), . . .).

Since σ̃1(a+1)(x) = τ(x), the required relation follows easily.

To complete the proof we have to show that π : B̃a+1 → Ba is crystalline.
Now σ/p is nilpotent modulo p on Jn/Jn+1 for n ≥ 1. Indeed, for n = 1 this is
our assumption, and for n ≥ 2 the endomorphism σ/p of Jn/Jn+1 is divisible
by pn−1 since σ(J) ⊆ pJ +Jp. In order to apply Theorem 3.2 we need another
sequence of auxiliary frames: For c ∈ N let Sa+1,c = Sa+1/p

cJaSa+1 and

let B̃a+1,c = (Sa+1,c, Ia+1,c, Ra, . . .) be the obvious quotient frame of B̃a+1.

Then Ba is isomorphic to B̃a+1,0, and B̃a+1 is the projective limit of B̃a+1,c

for c → ∞. Theorem 3.2 shows that each projection B̃a+1,c+1 → B̃a+1,c is
crystalline, which implies that π is crystalline by Lemma 2.12.

If σ/p is nilpotent on J/J2 modulo p, then Corollary 8.3, Theorem 8.5, and
the duality Propositions 8.7 and 8.8 follow as before.
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10 Nilpotent windows

All results in this article have a nilpotent counterpart where only connected
p-divisible groups and nilpotent windows are considered; in this case k need not
be perfect and p need not be odd. The necessary modifications are standard,
but for completeness we work out the details.

10.1 Nilpotence condition

Let F = (S, I, R, σ, σ1) be a frame. For an F -window P = (P,Q, F, F1) there
is a unique S-linear map

V ♯ : P → P (σ)

with V ♯(F1(x)) = 1 ⊗ x for x ∈ Q. In terms of a normal representation
Ψ : L⊕ T → P of P we have V ♯ = (1 ⊕ θ)(Ψ♯)−1 for θ as in Lemma 2.2. For
simplicity, the composition

P
V ♯−−→ P (σ) (V ♯)(σ)−−−−−→ P (σ2) → · · · → P (σn)

is denoted (V ♯)n. The nilpotence condition depends on the choice of an ideal
J ⊂ S such that σ(J) + I + θS ⊆ J , which we call an ideal of definition for F .

Definition 10.1. Let J ⊂ S be an ideal of definition for F . An F -window
P is called nilpotent (with respect to J) if (V ♯)n ≡ 0 modulo J for sufficiently
large n.

Remark 10.2. For an F -window P we consider the composition

λ : L ⊆ L⊕ T (Ψ♯)−1

−−−−→ L(σ) ⊕ T (σ) → L(σ).

Then P is nilpotent if and only if λ is nilpotent modulo J .

10.2 Nil-crystalline homomorphisms

If α : F → F ′ is a homomorphism of frames and J ⊂ S and J ′ ⊂ S′ are ideals
of definition with α(J) ⊆ J ′, the functor α∗ preserves nilpotent windows. We
call α nil-crystalline if it induces an equivalence between nilpotent F -windows
and nilpotent F ′-windows. The following variant of Theorem 3.2 formalises
[Z1, Theorem 44].

Theorem 10.3. Let α : F → F ′ be a homomorphism of frames that induces an
isomorphism R ∼= R′ and a surjection S → S′ with kernel a ⊂ S. We assume
that there is a finite filtration a = a0 ⊇ · · · ⊇ an = 0 such that σ(ai) ⊆ ai+1

and σ1(ai) ⊆ ai. We assume that finitely generated projective S′-modules lift to
projective S-modules. If J ⊂ S is an ideal of definition for F such that Jna = 0
for large n, then α is nil-crystalline with respect to J ⊂ S and J ′ = J/a ⊂ S′.
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Proof. The assumptions imply that a ⊆ I ⊆ J , in particular J ′ is well-defined.
An F -window P is nilpotent if and only if α∗P is nilpotent. Using this,
the proof of Theorem 3.2 applies with the following modification in its final
paragraph. We claim that the endomorphism U of H is nilpotent, which again
implies that 1−U is bijective. Since P is nilpotent, λ is nilpotent modulo J , so
λ is nilpotent modulo Jn for each n ≥ 1 as J is stable under σ. Since Jna = 0
by assumption, the claim follows from the definition of U .

10.3 Nilpotent displays

Let R be a ring which is complete and separated in the c-adic topology for an
ideal c ⊂ R containing p. We consider the Witt frame

WR = (W (R), IR, R, f, f1).

Here IR ⊆ RadR as required since W (R) = lim←−Wn(R/cn) and the successive
kernels in this projective system are nilpotent. The inverse image of c is an
ideal of definition J ⊂ W (R). Nilpotent windows over WR with respect to
J are displays over R which are nilpotent over R/c. By [Z1] and [L1] these
are equivalent to p-divisible groups over R which are infinitesimal over R/c.
(Here one uses that displays and p-divisible groups over R are equivalent to
compatible systems of the same objects over R/cn for n ≥ 1; cf. Lemma 2.12
above and [M1, Lemma 4.16].)
Assume that R′ = R/b for a closed ideal b ⊆ c equipped with (not necessarily
nilpotent) divided powers. One can define a factorisation

WR
α1−→ WR/R′ = (W (R), IR/R′ , R′, f, f̃1)

α2−→ WR′

of the projection of frames WR → WR′ as follows. Necessarily IR/R′ = IR +
W (b). The divided Witt polynomials define an isomorphism

log : W (b) ∼= b∞,

and f̃1 : IR/R′ → W (R) extends f1 such that f̃1([b0, b1, . . .]) = [b1, b2, . . .] in
logarithmic coordinates on W (b). Let J ′ ⊂ W (R′) be the image of J . This is
an ideal of definition for WR′ , and J is an ideal of definition for WR/R′ .
We assume that the c-adic topology of R can be defined by a sequence of ideals
R ⊃ I1 ⊃ I2 · · · such that b ∩ In is stable under the divided powers of b for
each n. This is automatic when c is nilpotent or when R is noetherian; see the
proof of Proposition 5.2.

Proposition 10.4. The homomorphism α2 is nil-crystalline with respect to
the ideals of definition J for WR/R′ and J ′ for WR′ .

This is essentially [Z1, Theorem 44].

Proof. By a limit argument the assertion is reduced to the case where c ⊂ R is
a nilpotent ideal; see Lemma 2.12. Then Theorem 10.3 applies: The required
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filtration of a = W (b) is ai = pia. The condition Jna = 0 for large n is satisfied
because Jn ⊆ IR for some n and In+1

R ⊆ pnW (R) for all n, and W (b) ∼= b∞ is
annihilated by some power of p.

10.4 The main frame

Let now R be a complete regular local ring with arbitrary residue field k of
characteristic p. Let C be a complete discrete valuation ring with maximal
ideal pC and residue field k. We choose a surjective ring homomorphism

S = C[[x1, . . . , xr]]→ R

that lifts the identity of k such that x1, . . . , xr map to a regular system of
parameters for R. There is a power series E ∈ S with constant term p such
that R = S/ES. Let σ : S → S be a ring endomorphism which induces the
Frobenius on S/pS and preserves the ideal (x1, . . . , xr). Such σ exist because
C has a Frobenius lift; see [Gr, Chap. 0, Théorème 19.8.6]. We consider the
frame

B = (S, I, R, σ, σ1)

where σ1(Ey) = σ(y). Here θ = σ(E). The proof of Lemma 7.1 shows that B

is again a κ-frame, so we have a u-homomorphism of frames

κ : B → WR.

Let m ⊂ S and n ⊂W (R) be the maximal ideals.

Theorem 10.5. The homomorphism κ is nil-crystalline with respect to the
ideals of definition m of B and n of WR.

Proof. The proof of Theorem 9.3 applies with the following modification: The
initial case a = 1 is not trivial because C is not isomorphic to W (k) if k is
not perfect, but one can apply [Z3, Theorem 1.6]. In the diagram (7.1) the
frame homomorphisms π′ and π are only nil-crystalline in general; whether π
is crystalline depends on the choice of σ.

10.5 Connected group schemes

One defines Breuil windows relative to S → R and Breuil modules relative
to S → R as before. A Breuil window (Q,φ) or a Breuil module (M,ϕ, ψ) is
called nilpotent if φ or ϕ is nilpotent modulo the maximal ideal of S. The proof
of Lemma 8.2 shows that nilpotent Breuil windows are equivalent to nilpotent
B-windows. Hence Theorem 10.5 implies:

Corollary 10.6. Connected p-divisible groups over R are equivalent to nilpo-
tent Breuil windows relative to S→ R.

Similarly we have:
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Theorem 10.7. Connected finite flat group schemes over R of p-power order
are equivalent to nilpotent Breuil modules relative to S→ R.

This is proved like Theorem 8.5, using two additional remarks:

Lemma 10.8. Every connected finite flat group scheme H over R is the kernel
of an isogeny of connected p-divisible groups.

Proof. We know that H is the kernel of an isogeny of p-divisible groupsG→ G′.
There is a functorial exact sequence 0 → G0 → G → G1 → 0 of p-divisible
groups where G0 is connected and G1 is etale. Since Hom(H,G1) is zero, H is
the kernel of the isogeny G0 → G′0.

Lemma 10.9. Every nilpotent Breuil module (M,ϕ, ψ) relative to S→ R is the
cokernel of an isogeny of nilpotent Breuil windows.

Proof. See also [K2, Section 1.3]. As in the proof of Theorem 8.5 we see that
(M,ϕ, ψ) is the cokernel of an isogeny of Breuil windows (Q,φ) → (Q′, φ′).
There is a functorial exact sequence 0→ Q0 → Q→ Q1 → 0 of Breuil windows

where Q0 is nilpotent and where Q1 is etale in the sense that φ : Q1 → Q
(σ)
1 is

bijective. Indeed, by [Z2, Lemma 10] it suffices to construct the sequence over
k. Let φk : Q⊗S k → Q(σ)⊗S k be the special fibre of φ. Then Q0⊗S k is the
kernel of the obvious iterate (φk)n : Q⊗S k → Q(σn) ⊗S k for large n.

We claim that the free S-modules Q1 and Q′1 have the same rank. Let us
identify C with S/(x1, . . . , xr). Since Q → Q′ becomes bijective over S[1/p],
the homomorphism Q⊗S C → Q′ ⊗S C becomes bijective over C[1/p]. Hence
the etale parts (Q ⊗S C)1 and (Q′ ⊗S C)1 have the same rank. The claim
follows since (Q ⊗S C)1 = Q1 ⊗S C and similarly for Q′.
Let us consider M̄ = Q′1/Q1. Here φ′ induces a homomorphism ϕ̄ : M̄ → M̄ (σ),
which is surjective as Q′1 is etale. The natural surjection π : M → M̄ satisfies
π(σ)ϕ = ϕ̄π. Since ϕk is nilpotent it follows that ϕ̄k is nilpotent, thus M̄ = 0
by Nakayama’s lemma. Hence Q1 → Q′1 is bijective because both sides are free
of the same rank, and consequently M = Q′0/Q0 as desired.
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Basel, 2001

Eike Lau
Fakultät für Mathematik
Universität Bielefeld
D-33501 Bielefeld
lau@math.uni-bielefeld.de

Documenta Mathematica 15 (2010) 545–569



570

Documenta Mathematica 15 (2010)



Documenta Math. 571

Purity Results for p-Divisible Groups

and Abelian Schemes over Regular Bases

of Mixed Characteristic

Adrian Vasiu and Thomas Zink

Received: January 21, 2010

Revised: March 19. 2010

Communicated by Peter Schneider
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To Michel Raynaud, for his 71th birthday

1 Introduction

Let p be a prime number. We recall the following global purity notion introduced
in [V1], Definitions 3.2.1 2) and 9) and studied in [V1] and [V2].

Documenta Mathematica 15 (2010) 571–599



572 Adrian Vasiu and Thomas Zink

Definition 1 Let X be a regular scheme that is faithfully flat over SpecZ(p).
We say X is healthy regular (resp. p-healthy regular), if for each open sub-
scheme U of X which contains XQ and all generic points of XFp, every abelian
scheme (resp. p-divisible group) over U extends uniquely to an abelian scheme
(resp. a p-divisible group) over X.

In (the proofs of) [FC], Chapter IV, Theorems 6.4, 6.4′, and 6.8 was claimed
that every regular scheme which is faithfully flat over SpecZ(p) is healthy
regular as well as p-healthy regular. This claim was disproved by an exam-
ple of Raynaud–Gabber (see [Ga] and [dJO], Section 6): the regular scheme
SpecW (k)[[T1, T2]]/(p − (T1T2)p−1) is neither p-healthy nor healthy regular.
Here W (k) is the ring of Witt vectors with coefficients in a perfect field k
of characteristic p. The importance of healthy and p-healthy regular schemes
stems from their applications to the study of integral models of Shimura vari-
eties. We have a local version of Definition 1 as suggested by Grothendieck’s
work on the classical Nagata–Zariski purity theorem (see [Gr]).

Definition 2 Let R be a local noetherian ring with maximal ideal m such that
depthR ≥ 2. We say that R is quasi-healthy (resp. p-quasi-healthy) if each
abelian scheme (resp. p-divisible group) over SpecR \ {m} extends uniquely to
an abelian scheme (resp. a p-divisible group) over SpecR.

If R is local, complete, regular of dimension 2 and mixed characteristic (0, p),
then the fact that R is p-quasi-healthy can be restated in terms of finite flat
commutative group schemes annihilated by p over SpecR (cf. Lemma 20).
Our main result is the following theorem proved in Subsections 4.4 and 5.2.

Theorem 3 Let R be a regular local ring of dimension d ≥ 2 and of mixed
characteristic (0, p). We assume that there exists a faithfully flat local R-algebra
R̂ which is complete and regular of dimension d, which has an algebraically
closed residue class field k, and which is equipped with an epimorphism R̂ ։
W (k)[[T1, T2]]/(p−h) where h ∈ (T1, T2)W (k)[[T1, T2]] is a power series whose
reduction modulo the ideal (p, T p1 , T

p
2 , T

p−1
1 T p−12 ) is non-zero. Then R is quasi-

healthy. If moreover d = 2, then R is also p-quasi-healthy.

For instance, Theorem 3 applies if the strict completion of R is isomorphic to
W (k)[[T1, . . . , Td]]/(p−T1 ·. . .·Tm) with 1 ≤ m ≤ min{d, 2p−3} (cf. Subsection
5.3). The following consequence is also proved in Subsection 5.2.

Corollary 4 Let R be a regular local ring of dimension d ≥ 2 and of mixed
characteristic (0, p). Let m be the maximal ideal of R. We assume that p /∈ mp.
Then R is quasi-healthy. If moreover d = 2, then R is also p-quasi-healthy.

Directly from Theorem 3 and from very definitions we get:

Corollary 5 Let X be a regular scheme that is faithfully flat over SpecZ(p).
We assume that each local ring R of X of mixed characteristic (0, p) and di-
mension at least 2 is such that the hypotheses of Theorem 3 hold for it (for
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instance, this holds if X is formally smooth over the spectrum of a discrete val-
uation ring O of mixed characteristic (0, p) and index of ramification e ≤ p−1).
Then X is healthy regular. If moreover dimX = 2, then X is also p-healthy
regular.

The importance of Corollary 5 stems from its applications to Néron models
(see Section 6). Theorem 31 shows the existence of large classes of new types
of Néron models that were not studied before in [N], [BLR], [V1], [V2], or
[V3], Proposition 4.4.1. Corollary 5 encompasses (the correct parts of) [V1],
Subsubsection 3.2.17 and [V2], Theorem 1.3. Theorem 28 (i) shows that if X
is formally smooth over the spectrum of a discrete valuation ring O of mixed
characteristic (0, p) and index of ramification e at least p, then in general X
is neither p-healthy nor healthy regular. From this and Raynaud–Gabber ex-
ample we get that Theorem 3 and Corollary 4 are optimal. Even more, if
R = W (k)[[T1, T2]]/(p − h) with h ∈ (T1, T2), then one would be inclined to
expect that R is p-quasi-healthy if and only if h does not belong to the ideal
(p, T p1 , T

p
2 , T

p−1
1 T p−12 ); this is supported by Theorems 3 and 28 and by Lemma

12. In particular, parts (ii) and (iii) of Theorem 28 present two generalizations
of the Raynaud–Gabber example.

Our proofs are based on the classification of finite flat commutative group
schemes of p power order over the spectrum of a local, complete, regular ring R
of mixed characteristic (0, p) and perfect residue class field. For dimR = 1 this
classification was a conjecture of Breuil [Br] proved by Kisin in [K1] and [K2]
and reproved by us in [VZ], Theorem 1. Some cases with dimR ≥ 2 were also
treated in [VZ]. The general case is proved by Lau in [L1], Theorems 1.2 and
10.7. Proposition 15 provides a new proof of Raynaud’s result [R2], Corollary
3.3.6.

Subsection 5.1 disproves an additional claim of [FC], Chapter V, Section 6. It
is the claim of [FC], top of p. 184 on torsors of liftings of p-divisible groups
which was not previously disproved and which unfortunately was used in [V1]
and [V2], Subsection 4.3. This explains why our results on p-healthy regular
schemes and p-quasi-healthy regular local rings work only for dimension 2 (the
difficulty is for the passage from dimension 2 to dimension 3). Implicitly, the p-
healthy part of [V2], Theorem 1.3 is proved correctly in [V2] only for dimension
2.

The paper is structured as follows. Different preliminaries on Breuil windows
and modules are introduced in Section 2. In Section 3 we study morphisms
between Breuil modules. Our basic results on extending properties of finite
flat group schemes, p-divisible groups, and abelian schemes are presented in
Sections 4 and 5. Section 6 contains applications to integral models and Néron
models.

Acknowledgement. The first author would like to thank Binghamton and
Bielefeld Universities for good conditions with which to write this note; he was
partially supported by the NSF grant DMS #0900967. The second author
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would like to thank Eike Lau for helpful discussions. Both authors would like
to thank the referee for several valuable comments.

2 Preliminaries

In this paper the notions of frame and window are in a more general sense than
in [Z1]. The new notions are suggested by the works [Br], [K1], [VZ], and [L1].
In all that follows we assume that a ring is unitary and commutative and that
a finite flat group scheme is commutative and (locally) of p power order.

Definition 6 A frame F = (R,S, J, σ, σ̇, θ) for a ring R consists of the fol-
lowing data:

(a) A ring S and an ideal J ⊂ S.

(b) An isomorphism of rings S/J ∼= R.

(c) A ring homomorphism σ : S → S.

(d) A σ-linear map σ̇ : J → S.

(e) An element θ ∈ S.

We assume that pS + J is in the radical of S, that σ induces the Frobenius
endomorphism on S/pS, and that the following equation holds:

σ(η) = θσ̇(η), for all η ∈ J. (1)

Assume that
Sσ̇(J) = S. (2)

In this case we find an equation 1 =
∑
i ξiσ̇(ηi) with ξi ∈ S and ηi ∈ J . From

this and (1) we get that θ =
∑
i ξiσ(ηi). Therefore for each η ∈ J we have

σ(η) =
∑

i

ξiσ(η)σ̇(ηi) =
∑

i

ξiσ̇(ηηi) =
∑

i

ξiσ(ηi)σ̇(η) = θσ̇(η).

We conclude that the equation (2) implies the existence and uniqueness of an
element θ such that the equation (1) is satisfied.
If M is an S-module we set M (σ) := S ⊗σ,SM . The linearization of a σ-linear
map φ : M → N is denoted by φ♯ : M (σ) → N .

Definition 7 A window with respect to F is a quadruple (P,Q, F, Ḟ ) where:

(a) P is a finitely generated projective S-module.

(b) Q ⊂ P is an S-submodule.

(c) F : P → P is a σ-linear map.
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(d) Ḟ : Q→ P is a σ-linear map.

We assume that the following three conditions are satisfied:

(i) There exists a decomposition P = T ⊕ L such that Q = JT ⊕ L.

(ii) F (y) = θḞ (y) for y ∈ Q and Ḟ (ηx) = σ̇(η)F (x) for x ∈ P and η ∈ J .

(iii) F (P ) and Ḟ (Q) generate P as an S-module.

If (2) holds, then from the second part of (ii) we get that for x ∈ P we have
F (x) = 1F (x) =

∑
i ξiσ̇(ηi)F (x) =

∑
i ξiḞ (ηix); if moreover x ∈ Q, then

F (x) =
∑

i ξiσ(ηi)Ḟ (x) = θḞ (x). Thus if (2) holds, then we have an inclusion

F (P ) ⊂ SḞ (Q) and the first condition of (ii) follows from the second condition
of (ii). A decomposition as in (i) is called a normal decomposition.
We note that for each window (P,Q, F, Ḟ ) as above, the S-linear map

F ♯ ⊕ Ḟ ♯ : S ⊗σ,S T ⊕ S ⊗σ,S L→ T ⊕ L (3)

is an isomorphism. Conversely an arbitrary isomorphism (3) defines uniquely
a window with respect to F equipped with a given normal decomposition.
Let R be a regular local ring of mixed characteristic (0, p). Let m be the
maximal ideal of R and let k := R/m.
A finite flat group scheme H over SpecR is called residually connected if its
special fibre Hk over Spec k is connected (i.e., has a trivial étale part). If R
is complete, then H is residually connected if and only if H as a scheme is
connected and therefore in this case we will drop the word residually. We
apply the same terminology to p-divisible groups over SpecR.
In this section we will assume moreover that k is perfect and that R is complete
(in the m-adic topology). Let d = dimR ≥ 1.
We choose regular parameters t1, . . . , td of R. We denote by W (†) the ring of
Witt vectors with coefficients in a ring †. We set S := W (k)[[T1, . . . , Td]]. We
consider the epimorphism of rings

S։ R,

which maps each indeterminate Ti to ti.
Let h ∈ S be a power series without constant term such that we have

p = h(t1, . . . , td).

We set E := p− h ∈ S. Then we have a canonical isomorphism

S/ES ∼= R.

As R is a regular local ring of mixed characteristic (0, p), we have E /∈ pS. We
extend the Frobenius automorphism σ of W (k) to S by the rule

σ(Ti) = T pi .
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Note that σ : S → S is flat. Let σ̇ : ES→ S be the σ-linear map defined by
the rule

σ̇(Es) := σ(s).

Definition 8 We refer to the sextuple L = (R,S, ES, σ, σ̇, σ(E)) as a stan-
dard frame for the ring R. A window for this frame will be called a Breuil
window.

As σ̇(E) = 1, the condition (2) holds for L. Let Ŵ (R) ⊂W (R) be the subring
defined in [Z2], Introduction and let σR be its Frobenius endomorphism. There
exists a natural ring homomorphism

κ : S→ Ŵ (R)

which commutes with the Frobenius endomorphisms, i.e. for all s ∈ S we have

κ(σ(s)) = σR(κ(s)).

The element κ(Ti) is the Teichmüller representative [ti] ∈ Ŵ (R) of ti.

Theorem 9 (Lau [L1], Theorem 1.1) If p ≥ 3, then the category of Breuil
windows is equivalent to the category of p-divisible groups over SpecR.

This theorem was proved first in some cases in [VZ], Theorem 1. As in [VZ], the
proof in [L1] shows first that the category of Breuil windows is equivalent (via
κ) to the category of Dieudonné displays over Ŵ (R). Theorem 9 follows from
this and the fact (see [Z2], Theorem) that the category of Dieudonné displays
over Ŵ (R) is equivalent to the category of p-divisible groups over SpecR.
There exists a version of Theorem 9 for connected p-divisible groups over SpecR
as described in the introductions of [VZ] and [L1]. This version holds as well
for p = 2, cf. [L1], Corollary 10.6.
The categories of Theorem 9 have natural exact structures [Me2]. The equiva-
lence of Theorem 9 (or of its version for p ≥ 2) respects the exact structures.
For a prime ideal p of R which contains p, let κ(p)perf be the perfect hull of
the residue class field κ(p) of p. We deduce from κ a ring homomorphism
κp : S→W (κ(p)perf) = Ŵ (κ(p)perf).

Proposition 10 Let G be a p-divisible group over R. If p = 2, we assume that
G is connected. Let (P,Q, F, Ḟ ) be the Breuil window of G. Then the classical
Dieudonné module of Gκ(p)perf is canonically isomorphic (in a functorial way)

to W (κ(p)perf)⊗κp,S P endowed with the σκ(p)perf -linear map σκ(p)perf ⊗ F .

Proof. If G is connected, we consider its display (P ′, Q′, F ′, Ḟ ′) over W (R).
By [L1], Theorem 1.1 and Corollary 10.6 we have P ′ = W (R)⊗κ,SP . Let us de-
note by D(G) the Grothendieck–Messing crystal associated to G, cf. [Me1]. By
[Z1], Theorem 6 there is a canonical and functorial isomorphism D(G)W (R)

∼=
P ′ ∼= W (R)⊗κ,SP . The functor D commutes with base change. If we apply this
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to the morphism of pd-extensions W (R)→W (κ(p)perf) of R and κ(p)perf (re-
spectively), we get that D(Gκ(p)perf ) ∼= D(G)W (κ(p)perf )

∼= W (κ(p)perf)⊗κp,S P .
From this the proposition follows provided G is connected.
In the case p ≥ 3 the same argument works if we replace (P ′, Q′, F ′, Ḟ ′) by
the Dieudonné display of G over Ŵ (R). But in this case the isomorphism
D(G)Ŵ (R)

∼= P ′ follows from [L2], Theorem 6.9. �

All results in this paper are actually independent of the nonconnected part of
the last Proposition. This is explained in the proof of Corollary 21.
In what follows we will not need to keep track of the σκ(p)perf -linear maps

σκ(p)perf ⊗ F and thus we will simply call W (κ(p)perf)⊗κp,S P the fibre of the

Breuil window (P,Q, F, Ḟ ) over p.
We often write a Breuil window in the form (Q,φ) originally proposed by Breuil,
where φ is the composite of the inclusion Q ⊂ P with the inverse of the S-linear
isomorphism Ḟ ♯ : Q(σ) ∼= P . In this notation P , F , and Ḟ are omitted as they
are determined naturally by Ḟ ♯ and thus by φ (see [VZ], Section 2). A Breuil
window in this form is characterized as follows: Q is a finitely generated free
S-module and φ : Q → Q(σ) is a S-linear map whose cokernel is annihilated
by E. We note that this implies easily that there exists a unique S-linear map
ψ : Q(σ) → Q such that we have

φ ◦ ψ = E idQ(σ) , ψ ◦ φ = E idQ .

Clearly the datum (Q,ψ) is equivalent to the datum (Q,φ). In the notation
(Q,φ), its fibre over p is W (κ(p)perf)⊗κp,S Q(σ) = W (κ(p)perf)⊗σκp,S Q.
The dual of a Breuil window is defined as follows. Let M be a S-module. We
set M̂ := HomS(M,S). A S-linear map M → S defines a homomorphism
M (σ) → S(σ) = S. This defines a S–linear map:

M̂ (σ) = S⊗σ,S HomS(M,S)→ HomS(M (σ),S) = M̂ (σ).

It is clearly an isomorphism if M is a free S-module of finite rank and therefore
also if M is a finitely generated S-module by a formal argument which uses
the flatness of σ : S→ S.
If (Q,φ) is a Breuil window we obtain a S-linear map

φ̂ : Q̂(σ) = (̂Q(σ))→ Q̂.

More symmetrically we can say that if (Q,φ, ψ) is a Breuil window then

(Q̂, ψ̂, φ̂) is a Breuil window. We call (Q̂, ψ̂, φ̂) the dual Breuil window of
(Q,φ, ψ).
Taking the fibre of a Breuil window (Q,φ) over p is compatible with duals as
we have:

W (κ(p)perf)⊗κp,SQ̂
(σ)∼= HomW (κ(p)perf )(W (κ(p)perf)⊗κp,SQ

(σ),W (κ(p)perf)).
(4)
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We recall from [VZ], Definition 2 and [L1] that a Breuil module (M,ϕ) is a pair,
where M is a finitely generated S-module which is of projective dimension at
most 1 and which is annihilated by a power of p and where ϕ : M → M (σ) is
a S-linear map whose cokernel is annihilated by E. We note that the map ϕ
is always injective (the argument for this is the same as in [VZ], Proposition 2
(i)). It follows formally that there exists a unique S-linear map ϑ : M (σ) →M
such that we have

ϕ ◦ ϑ = E idM(σ) , ϑ ◦ ϕ = E idM .

We define the dual Breuil module (M∗, ϑ∗, ϕ∗) of (M,ϕ, ϑ) by applying the
functor M∗ = Ext1S(M,S) in the same manner we did for windows. It is easy
to see that the S-module M∗ has projective dimension at most 1. The fibre of
(M,ϕ) (or of (M,ϕ, ϑ)) over p is

W (κ(p)perf)⊗κp,S M (σ) = W (κ(p)perf)⊗σκp,S M. (5)

The duals are again compatible with taking fibres as we have:

W (κ(p)perf)⊗σκp,S M∗ ∼=
∼= Ext1W (κ(p)perf )(W (κ(p)perf)⊗σκp,S M,W (κ(p)perf))

= HomW (κ(p)perf )(W (κ(p)perf)⊗σκp,S M,W (κ(p)perf)⊗Z Q).

(6)

Assume that p annihilates M , i.e. M is a module over S̄ = S/pS. As depthM
is the same over either S or S̄ and it is d if M 6= 0, we easily get that M is
a free S̄-module. From this we get that M∗ = HomS̄(M, S̄) (to be compared
with the last isomorphism of (6)). Thus in this case the duality works exactly
as for windows.
If p ≥ 3, it follows from Theorem 9 that the category of finite flat group schemes
over SpecR is equivalent to the category of Breuil modules (the argument for
this is the same as for [VZ], Theorem 2). We have a variant of this for p = 2
(cf. [L1], Theorem 10.7): the category of connected finite flat group schemes
over SpecR is equivalent to the category of nilpotent Breuil modules (i.e., of
Breuil modules (M,ϕ) that have the property that the reduction of ϕ modulo
the maximal ideal of S is nilpotent in the natural way).
We recall from [VZ], Subsection 6.1 that the Breuil module of a finite flat group
scheme H over SpecR is obtained as follows. By a theorem of Raynaud (see
[BBM], Theorem 3.1.1) we can represent H as the kernel

0→ H → G1 → G2 → 0

of an isogeny G1 → G2 of p-divisible groups over SpecR. If p = 2, then we
assume that H and G1 are connected. Let (Q1, φ1) and (Q2, φ2) be the Breuil
windows of G1 and G2 (respectively). Then the Breuil module (M,ϕ) of H
is the cokernel of the induced map (Q1, φ1) → (Q2, φ2) in a natural sense.
From Proposition 10 we get that the classical covariant Dieudonné module of
Hκ(p)perf is canonically given by (5).
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3 Morphisms between Breuil modules

In this section, let R be a complete regular local ring of mixed characteristic
(0, p) with maximal ideal m and perfect residue class field k. We write R =
S/ES, where d = dimR ≥ 1, S = W (k)[[T1, . . . , Td]], and E = p− h ∈ S are
as in Section 2. We use the standard frame L of the Definition 8.
Let e ∈ N∗ be such that p ∈ me \me+1. It is the absolute ramification index of
R. Let r̄ := (T1, . . . , Td) ⊂ S̄ := S/pS = k[[T1, . . . , Td]]. Let h̄ ∈ r̄ ⊂ S̄ be the
reduction modulo p of h. The surjective function ord : S̄ ։ N ∪ {∞} is such
that ord(̄ri \ r̄i+1) = i for all i ≥ 0 and ord(0) =∞.
Let grR := grmR. The obvious isomorphism of graded rings

k[T1, . . . , Td]→ grR (7)

maps the initial form of h̄ to the initial form of p. Thus e is the order of the
power series h̄.

Lemma 11 We assume that R is such that p /∈ mp (i.e., e ≤ p − 1). Let C
be a S-module which is annihilated by a power of p. Let ϕ : C → C(σ) be a
S-linear map whose cokernel is annihilated by E. We assume that there exists
a power series f ∈ S \ pS which annihilates C. Then we have:

(a) If p /∈ mp−1 (i.e., if e ≤ p− 2), then C = 0.

(b) If e = p− 1, then either C = 0 or the initial form of p in grR generates an
ideal which is a (p− 1)-th power.

Proof. It suffices to show that C = 0 provided either e ≤ p − 2 or e = p− 1
and the initial form of p in grR generates an ideal which is not a (p − 1)-th
power. By the lemma of Nakayama it suffices to show that C/pC = 0. It is
clear that ϕ induces a S-linear map C/pC → (C/pC)(σ). Therefore we can
assume that C is annihilated by p.
Let u be the smallest non-negative integer with the following property: for
each c ∈ C there exists a power series gc ∈ S̄ such that ord(gc) ≤ u and gc
annihilates c.
From the existence of f in the annihilator of C we deduce that the number u
exists. If C 6= 0, then we have u > 0. We will show that the assumption that
u > 0 leads to a contradiction and therefore we have C = 0.
By the minimality of u there exists an element x ∈ C such that for each power
series a in the annihilator a ⊂ S̄ of x we have ord(a) ≥ u. Consider the S̄-linear
injection

S̄/a →֒ C (8)

which maps 1 to x. Let a(p) ⊂ S̄ be the ideal generated by the p-th powers of
elements in a. Each power series in a(p) has order ≥ pu.
If we tensorize the injection (8) by σ : S̄→ S̄ we obtain a S̄-linear injection

S̄/a(p) ∼= S̄⊗σ,S̄ S̄/a →֒ C(σ).
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Thus each power series in the annihilator of 1⊗ x ∈ C(σ) has at least order pu.
On the other hand the cokernel of ϕ is by assumption annihilated by h̄. Thus
h̄(1 ⊗ x) is in the image of ϕ. By the definition of u we find a power series
g ∈ S̄ with ord(g) ≤ u which annihilates h̄(1⊗ x). Thus gh̄ ∈ a(p). We get

u+ ord(h̄) ≥ ord(gh̄) ≥ pu.
Therefore e = ord(h̄) ≥ (p − 1)u ≥ p − 1. In the case (a) we obtain a contra-
diction which shows that C = 0.
In the case e = p − 1 we obtain a contradiction if u > 1. Assume that u = 1.
As gh̄ ∈ a(p) and as ord(gh̄) = p, there exists a power series f̄ ∈ S̄ of order 1
and a non-zero element ξ ∈ k such that

gh̄ ≡ ξf̄p mod r̄p+1.

This shows that the initial forms of g and f̄ in the graded ring grr̄ S̄ differ by
a constant in k. If we divide the last congruence by f̄ we obtain

h̄ ≡ ξf̄p−1 mod r̄p.

By the isomorphism (7) this implies that initial form of p in grR generates an
ideal which is a (p− 1)-th power. Contradiction. �

Lemma 12 We assume that d = 2 and we consider the ring S̄ = k[[T1, T2]].
Let h̄ ∈ S̄ be a power series of order e ∈ N∗. Then the following two statements
are equivalent:

(a) The power series h̄ does not belong to the ideal r̄(p) + r̄2(p−1) = (T p1 , T
p
2 ,

T p−11 T p−12 ) of S̄.

(b) If C is a S̄-module of finite length equipped with a S̄-linear map ϕ : C →
C(σ) whose cokernel is annihilated by h̄, then C is zero.

Proof. We consider the S̄-linear map

τ : k = k[[T1, T2]]/(T1, T2)→ k(σ) = k[[T1, T2]]/(T p1 , T
p
2 )

that maps 1 to T p−11 T p−12 modulo (T p1 , T
p
2 ). If h̄ ∈ r̄(p) + r̄2(p−1), then the

cokernel of τ is annihilated by h̄. From this we get that (b) implies (a).
Before proving the other implication, we first make some general remarks. The
Frobenius endomorphism σ : S̄ → S̄ is faithfully flat. If △ is an ideal of S̄,
then with the same notations as before we have σ(△)S̄ = △(p).
Let C be a S̄-module of finite type. Let a ⊂ S̄ be the annihilator of C. Then
a(p) is the annihilator of C(σ) = S̄⊗σ,S̄C. This is clear for a monogenic module
C. If we have more generators for C, then we can use the formula

a(p) ∩ b(p) = (a ∩ b)(p)

which holds for flat ring extensions in general.
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We say that a power series f ∈ S̄ of order u is normalized with respect to
(T1, T2) if it contains T u1 with a non-zero coefficient. This definition makes
sense with respect to any regular system of parameters T̃1, T̃2 of S̄.
We now assume that (a) holds and we show that (b) holds. Thus the S̄-module
C has finite length and the cokernel of ϕ : C → C(σ) is annihilated by h̄. Let
k′ be an infinite perfect field that contains k. Let S̄′ := k′[[T1, T2]]. To show
that C = 0, it suffices to show that S̄′⊗S̄C = 0. Thus by replacing the role of
k by the one of k′, we can assume that k is infinite. This assumption implies
that for almost all λ ∈ k, the power series h̄ is normalized with respect to
(T1, T2 +λT1). By changing the regular system of parameters (T1, T2) in S̄, we
can assume that h̄ is normalized with respect to (T1, T2). By the Weierstraß
preparation theorem we can assume that h̄ is a Weierstraß polynomial ([Bou],
Chapter 7, Section 3, number 8). Thus we can write

h̄ = T e1 + ae−1(T2)T e−11 + . . .+ a1(T2)T1 + a0(T2),

where a0(T2), . . . , ae−1(T2) ∈ T2k[[T2]].
We note that the assumption (a) implies that e ≤ 2p− 3.
Let u be the minimal non-negative integer such that there exists a power series
of the form T u1 + g ∈ S̄, with g ∈ T2S̄, for which we have (T u1 + g)C = 0. By
our assumptions, such a non-negative integer u exists.
We will show that the assumption that C 6= 0 leads to a contradiction. This
assumption implies that u ≥ 1. The annihilator a of the module C has a set of
generators of the following form:

T ui1 + gi, (with i = 1, . . . , l), gi (with i = l + 1, . . . ,m),

where ui ≥ u for i = 1, . . . , l and gi ∈ T2S̄ for i = 1, . . . ,m.
As the cokernel of ϕ is annihilated by h̄ we find that (T u1 + g)h̄C(σ) = 0. As
the annihilator of C(σ) is generated by the elements

T pui1 + gpi (with i = 1, . . . , l), gpi (with i = l+ 1, . . . ,m), (9)

we obtain the congruence

(T u1 + g)h̄ ≡ 0 mod (T up1 , T p2 ). (10)

We consider this congruence modulo T2. We have g ≡ 0 mod (T2) and h̄ ≡ T e1
mod (T2) because h̄ is a Weierstraß polynomial. This proves that

T u1 T
e
1 ≡ 0 mod (T up1 ).

But this implies that u + e ≥ up. If u ≥ 2, then e ≥ up− u ≥ 2p− 2 and this
contradicts the inequality e ≤ 2p− 3. Therefore we can assume that u = 1.
By replacing (T1, T2) with (T1+g, T2), without loss of generality we can assume
that T1C = 0 and (cf. (10) and the equality u = 1) that

T1h̄ ≡ 0 mod r̄(p).
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This implies that up to a unit in S̄ we can assume that h̄ is of the form:

h̄ ≡ T s2T p−11 +

∞∑

i=0

T i+p2 δi(T1) mod (T p1 ),

where 0 ≤ s ≤ p− 2 and where each δi ∈ k[T1] has degree at most p− 2.
Let now v be the smallest natural number such that T v2 C = 0. Then the
annihilator a of C is generated by T1, T

v
2 and the annihilator a(p) of C(σ) is

generated by T p1 , T
pv
2 . As the cokernel of ϕ is annihilated by h̄, we find that

T v2 h̄C
(σ) = 0. Thus we obtain the congruence

T v2 (T s2T
p−1
1 +

∞∑

i=0

T i+p2 δi(T1)) ≡ 0 mod (T p1 , T
pv
2 ).

But this implies v + s ≥ pv. Thus s ≥ (p− 1)v ≥ p− 1 and (as 0 ≤ s ≤ p− 2)
we reached a contradiction. Therefore C = 0 and thus (a) implies (b). �

Proposition 13 We assume that p /∈ mp (i.e., e ≤ p− 1). If p ∈ mp−1, then
we also assume that the ideal generated by the initial form of p in grR is not
a (p− 1)-th power (thus p > 2).
We consider a morphism α : (M1, ϕ1) → (M2, ϕ2) of Breuil modules for the
standard frame L. Let p be a prime ideal of R which contains p. We consider
the W (κ(p)perf)-linear map obtained from α by base change

W (κ(p)perf)⊗σκp,S M1 → W (κ(p)perf)⊗σκp,S M2. (11)

Then the following two properties hold:

(a) If (11) is surjective, then the S-linear map M1 →M2 is surjective.
(b) If (11) is injective, then the S-linear map M1 → M2 is injective and its
cokernel is a S-module of projective dimension at most 1.

Proof. We prove (a). We denote by p̃ the ideal of S which corresponds to p
via the isomorphism S/(E, p) ∼= R/(p). It follows from the lemma of Nakayama
that (M1)p̃ → (M2)p̃ is a surjection. Let us denote by (C,ϕ) the cokernel of α.
We conclude that C is annihilated by an element f /∈ p̃ ⊃ pS. Therefore we
conclude from Lemma 11 that C = 0. Thus (a) holds.
Part (b) follows from (a) by duality as it is compatible with taking fibres (6).
Indeed for the last assertion it is enough to note that the kernel of the surjection
M∗2 ։M∗1 has clearly projective dimension at most 1. �

Remark. If e = p−1 and the ideal generated by the initial form of p in grR is
a (p− 1)-th power, then the Proposition 13 is not true in general. This is so as
there exist non-trivial homomorphisms (Z/pZ)R → µµµp,R for suitable such R’s.

Proposition 14 We assume that R has dimension d = 2 and that h ∈ S does
not belong to the ideal (p, T p1 , T

p
2 , T

p−1
1 T p−12 ) of S. Let α : (M1, ϕ1)→ (M2, ϕ2)
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be a morphism of Breuil modules for the standard frame L. We assume that for
each prime ideal p of R with p ∈ p 6= m, the W (κ(p)perf)-linear map obtained
from α by base change

W (κ(p)perf)⊗σκp,S M1 →W (κ(p)perf)⊗σκp,S M2 (12)

is surjective (resp. is injective).
Then the S-linear map M1 → M2 is surjective (resp. is injective and its
cokernel is a S-module of projective dimension at most 1).

Proof. As in the last proof we only have to treat the case where the maps
(12) are surjective. We consider the cokernel (C,ϕ) of α. As in the last proof
we will argue that C = 0 but with the role of Lemma 11 being replaced by
Lemma 12. It suffices to show that C̄ := C/pC is zero. Let ϕ̄ : C̄ → C̄(σ) be
the map induced naturally by ϕ.
Lemma 12 is applicable if we verify that C̄ is a S̄-module of finite length.
We denote by p̄ the ideal of S̄ = S/pS which corresponds to p via the isomor-
phism S̄/(h̄) ∼= R/pR. It follows from (12) by the lemma of Nakayama that
for each prime ideal p̄ ⊃ h̄S̄ different from the maximal ideal of S̄ the maps
αp : (M1)p̄ → (M2)p̄ are surjective. Using this one constructs inductively a reg-
ular sequence f1, . . . , fd−1, h̄ in the ring S̄ such that the elements f1, . . . , fd−1
annihilate C̄. As C̄ is a finitely generated module over the 1-dimensional local
ring S̄/(f1, . . . , fd−1), we get that C̄[1/h̄] is a module of finite length over the
regular ring A = S̄[1/h̄]. If we can show that C̄[1/h̄] = 0, then it follows that
C̄ is of finite length.
As we are in characteristic p, the Frobenius σ acts on the principal ideal domain
A = S̄[1/h̄]. By the definition of a Breuil module the maps ϕi[1/h̄] for i = 1, 2
become isomorphisms. Therefore ϕ gives birth to an isomorphism:

ϕ̄[1/h̄] : C̄[1/h̄]→ (C̄[1/h̄])(σ). (13)

As A is regular of dimension d−1, for each A-module ‡ of finite length we have

length ‡(σ) = pd−1 length ‡.

We see that the isomorphism (13) is only possible if C̄[1/h̄] = 0. Thus C̄ has
finite length and therefore from Lemma 12 we get that C̄ = 0. This implies
that C = 0. �

4 Extending epimorphisms and monomorphisms

In this section let R be a regular local ring of mixed characteristic (0, p) with
maximal ideal m and residue class field k. Let K be the field of fractions of R.

4.1 Complements on Raynaud’s work

We first reprove Raynaud’s result [R2], Corollary 3.3.6 by the methods of the
previous sections. We state it in a slightly different form.
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Proposition 15 We assume that p /∈ mp−1 (thus p > 2). Let H1 and H2 be
finite flat group schemes over SpecR. Let β : H1 → H2 be a homomorphism,
which induces an epimorphism (resp. monomorphism) H1,K → H2,K between
generic fibres. Then β is an epimorphism (resp. monomorphism).

Proof. We prove only the statement about epimorphisms because the case
of a monomorphism follows by Cartier duality. It is enough to show that the
homomorphism H1 → H2 is flat. By the fibre criterion of flatness it is enough
to show that the homomorphism βk : H1,k → H2,k between special fibres is an
epimorphism. To see this we can assume that R is a complete local ring with
algebraically closed residue class field k.

We write R ∼= S/(p − h), with S = W (k)[[T1, . . . , Td]]. Then the reduction
h̄ ∈ k[[T1, . . . , Td]] of h modulo p is a power series of order e < p − 1. By
Noether normalization theorem we can assume that h̄ contains the monom T e1 .
By replacing R with R/(T2, . . . , Td), we can assume that R is one-dimensional.
We consider the morphism

(M1, ϕ1)→ (M2, ϕ2)

of Breuil modules associated to β. Let (C,ϕ) be its cokernel. Let C̄ := C/C0,
where C0 is the S-submodule of C whose elements are annihilated by a power
of the maximal ideal r of S. The S-linear map ϕ factors as

ϕ̄ : C̄ → S⊗σ,S C̄

and the cokernel of ϕ̄ is annihilated by h̄. The maximal ideal r of S is not
associated to S ⊗σ,S C̄. Thus either C̄ = 0 or depth C̄ ≥ 1. Therefore the
S-module C̄ is of projective dimension at most 1. As C̄ is annihilated by a
power of p, we conclude that (C̄, ϕ̄) is the Breuil module of a finite flat group
scheme D over SpecR. We have induced homomorphisms

H1 → H2 → D.

The composition of them is zero and the second homomorphism is an epi-
morphism because it is so after base change to k. As H1,K ։ H2,K is an
epimorphism we conclude that DK = 0. But then D = 0 and the Breuil
module (C̄, ϕ̄) is zero as well. We conclude by Lemma 11 that C = 0. �

The next proposition is proved in [R2], Remark 3.3.5 in the case of biconnected
finite flat group schemes H and D.

Proposition 16 Let R be a discrete valuation ring of mixed characteristic
(0, p) and index of ramification p− 1; we have K = R[1/p]. Let β : H → D be
a homomorphism of residually connected finite flat group schemes over SpecR
which induces an isomorphism (resp. epimorphism) over SpecK.
Then β is an isomorphism (resp. epimorphism).
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Proof. It is enough to show the statement about isomorphisms. Indeed,
assume that βK is an epimorphism. Consider the schematic closure H1 of the
kernel of βK in H . Then H/H1 → D is an isomorphism.
Therefore we can assume that βK is an isomorphism. By extending R we can
assume that R is complete and that k is algebraically closed. By considering
the Cartier dual homomorphism βt : Dt → Ht one easily reduces the problem
to the case when H is biconnected. As the case when D is also biconnected
is known (cf. [R2], Remark 3.3.5), one can easily reduce to the case when D
is of multiplicative type. Then D contains µµµp,R as a closed subgroup scheme.
We consider the schematic closure H1 of µµµp,K in H . Using an induction on the
order of H it is enough to show that the natural homomorphism β1 : H1 → µµµp,R
is an isomorphism. This follows from [R2], Proposition 3.3.2 3◦. For the sake
of completeness we reprove this in the spirit of the paper.
We write R = S/(E), where E ∈ S = W (k)[[T ]] is an Eisenstein polynomial
of degree e = p− 1. The Breuil window of the p-divisible group µµµp∞,R is given
by

S → S(σ) ∼= S
f 7→ Ef.

The Breuil module (N, τ) of µµµp,R is the kernel of the multiplication by p :
µµµp∞,R → µµµp∞,R and therefore it can be identified with

N = k[[T ]] → N (σ) = k[[T ]](σ) ∼= k[[T ]]
f 7→ T ef.

Let (M,ϕ) be the Breuil module of H1. As H1 is of height 1 we can identify
M = k[[T ]]. Then ϕ : M →M (σ) ∼= M is the multiplication by a power series
g ∈ k[[T ]] of order ord(g) ≤ e = p− 1. To the homomorphism β1 : H1 → µµµp,R
corresponds a morphism α1 : (M,ϕ) → (N, τ) that maps 1 ∈ M to some
element a ∈ N . We get a commutative diagram:

k[[T ]]
a //

g

��

k[[T ]]

T e

��
k[[T ]]

ap // k[[T ]].

We obtain the equation ga = apT p−1. As a 6= 0 this is only possible if

ord(g) = (p− 1)(ord(a) + 1).

As ord(g) ≤ p− 1, we get that ord(a) = 0 and ord(g) = p− 1. As ord(a) = 0,
both α1 and β1 are isomorphisms. Thus β : H → D is an isomorphism. �

4.2 Basic extension properties

The next three results will be proved for p = 2 under certain residually connec-
tivity assumptions. But in Subsection 4.3 below we will show how these results
hold under no residually connectivity assumptions even if p = 2.

Documenta Mathematica 15 (2010) 571–599



586 Adrian Vasiu and Thomas Zink

Proposition 17 We assume that dimR ≥ 2, that p /∈ mp, and that the initial
form of p in grR generates an ideal which is not a (p − 1)-th power. Let
β : H1 → H2 be a homomorphism of finite flat group schemes over SpecR
which induces an epimorphism (resp. a monomorphism) over SpecK. If p = 2,
we assume as well that H1 and H2 (resp. that the Cartier duals of H1 and H2)
are residually connected.
Then β is an epimorphism (resp. a monomorphism).

Proof. As before we can assume that R is a complete regular local ring. We
can also restrict our attention to the case of epimorphisms.
By Proposition 15 we can assume that p ∈ mp−1. Let p be a minimal prime
ideal which contains p. We show that the assumption that p ∈ pp−1 leads to
a contradiction. Then we can write p = ufp−1, where u, f ∈ R and f is a
generator of the prime ideal p. It follows from our assumptions that u /∈ m
and that f ∈ m \m2. Therefore the initial form of p in grR generates an ideal
which is a (p− 1)-th power. Contradiction.
We first consider the case when k is perfect. Let α : (M1, ϕ1) → (M2, ϕ2)
denote also the morphism of Breuil modules associated to β : H1 → H2. As
p /∈ pp−1, we can apply Proposition 15 to the ring Rp. It follows that β induces
an epimorphism over the spectrum of the residue class field κ(p) of p and thus
also of its perfect hull κ(p)perf . From this and the end of Section 2 we get
that the hypotheses of Proposition 13 hold for α. We conclude that α is an
epimorphism and thus β is also an epimorphism.
Let R → R′ be a faithfully flat extension of noetherian local rings, such that
mR′ is the maximal ideal of R′ and the extension of residue class fields k →֒ k′

is radical. We consider the homomorphism of polynomial rings grR → grR′.
As grR and grR′ are unique factorization domains, it is easy to see that the
condition that the initial form of p is not a (p − 1)-th power is stable by the
extension R→ R′. But β is an epimorphism if and only if βR′ is so. Therefore
we can assume that the residue class field of R is perfect and this case was
already proved. �

Proposition 18 We assume that dimR = 2. Let U = SpecR \ {m}. We also
assume that the following technical condition holds:

(*) there exists a faithfully flat local R-algebra R̂ which is complete, which
has an algebraically closed residue class field k, and which has a presentation
R̂ = S/(p − h) where S = W (k)[[T1, T2]] and where h ∈ (T1, T2) does not
belong to the ideal (p, T p1 , T

p
2 , T

p−1
1 T p−12 ).

Let β : H1 → H2 be a homomorphism of finite flat group schemes over SpecR.
We also assume that for each geometric point SpecL → U such that L has
characteristic p the homomorphism βL is an epimorphism (resp. a monomor-
phism); thus βU : H1,U → H2,U is an epimorphism (resp. a monomorphism).
If p = 2, we assume that H1 and H2 (resp. that the Cartier duals of H1 and
H2) are residually connected.
Then β is an epimorphism (resp. a monomorphism).
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Proof. We have dim R̂/mR̂ = 0 and thus Spec(R̂) \ (Spec(R̂) ×SpecR U) is

the closed point of Spec(R̂). Based on this we can assume that R = R̂. Thus
the proposition follows from Proposition 14 in the same way Proposition 17
followed from Propositions 15 and 13. �

Corollary 19 We assume that the assumptions on R of either Proposition
17 or Proposition 18 are satisfied (thus dimR ≥ 2). We consider a complex

0→ H1 → H2 → H3 → 0

of finite flat group schemes over SpecR whose restriction to U = SpecR\{m} is
a short exact sequence. If p = 2, then we assume that H2 and H3 are residually
connected. Then 0→ H1 → H2 → H3 → 0 is a short exact sequence.

Proof. Propositions 17 and 18 imply that H2 → H3 is an epimorphism. Its
kernel is a finite flat group scheme isomorphic to H1 over U and thus (as we
have dimR ≥ 2) it is isomorphic to H1. �

4.3 Dévissage properties

In this subsection we explain how one can get the results of Subsection 4.2
under no residually connectivity assumptions for p = 2.
We assume that dimR = 2 and that p is arbitrary. Let U = SpecR \ {m}. Let
V be a locally free OU -module of finite rank over U . The R-module H0(U,V)
is free of finite rank. Using this it is easy to see that each finite flat group
scheme over U extends uniquely to a finite flat group scheme over SpecR. This
is clearly an equivalence between the category of finite flat group schemes over
U and the category of finite flat group schemes over SpecR. The same holds
if we restrict to finite flat group schemes annihilated by p.
Next we also assume that R is complete. Each finite flat group scheme H over
SpecR is canonically an extension

0→ H◦ → H → H ét → 0,

where H◦ is connected and H ét is étale over SpecR. In particular a homo-
morphism from a connected finite flat group scheme over SpecR to an étale
finite flat group scheme over SpecR is zero. From this one easily checks that if
H1 → H2 is a homomorphism of finite flat group schemes over SpecR which is
an epimorphism over U and if H1 is connected, then H2 is connected as well.

Lemma 20 We assume that dimR = 2 and that R is complete. Then the
following four statements are equivalent:

(a) Each short exact sequence of finite flat group schemes over U extends
uniquely to a short exact sequence of finite flat group schemes over
SpecR.
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(b) Let H1 and H2 be connected finite flat group schemes over SpecR. A
homomorphism H1 → H2 over SpecR is an epimorphism if its restriction
to U is an epimorphism.

(c) Let H1 and H2 be connected finite flat group schemes over SpecR which
are annihilated by p. A homomorphism H1 → H2 over SpecR is an
epimorphism if its restriction to U is an epimorphism.

(d) The regular ring R is p-quasi-healthy.

Proof. It is clear that (a) implies (b). We show that (b) implies (a). Let

0→ H1 → H2 → H3 → 0

be a complex of finite flat group schemes over SpecR whose restriction to U is a
short exact sequence. It suffices to show that β : H1 → H2 is a monomorphism.
Indeed, in this case we can form the quotient group scheme H2/H1 and the
homomorphism H2/H1 → H3 is an isomorphism as its restriction to U is so.
We check that the homomorphism

β◦ : H◦1 → H◦2

is a monomorphism. Let H4 be the finite flat group scheme over R whose
restriction to U is H◦2,U/H

◦
1,U . We have a complex 0 → H◦1 → H◦2 → H4 → 0

whose restriction to U is exact. We conclude that H4 is connected. Thus we
have an epimorphism H◦2 ։ H4 (as we are assuming that (b) holds) whose
kernel is H◦1 . Therefore (b) implies that β◦ is a monomorphism.
As β◦ is a monomorphism, it suffices to show that the induced homomorphism
β̄ : H1/H

◦
1 → H2/H

◦
1 is a monomorphism. In other words, without loss of

generality we can assume that H1 = H ét
1 is étale.

Let H ′′1 be the kernel of H ét
2 → H ét

3 ; it is a finite étale group scheme over
SpecR. Let H ′1 be the kernel of H1 → H ′′1 . It suffices to show that H ′1 → H◦2
is a monomorphism. Therefore we can also assume that H2 is connected. This
implies that H3 is connected. As we are assuming that (b) holds, H2 → H3 is an
epimorphism. Its kernel is H1 and therefore β : H1 → H2 is a monomorphism.
Thus (b) implies (a).
We show that (c) implies (b). The last argument shows that a short exact
sequence of finite flat group schemes over U annihilated by p extends to a
short exact sequence of finite flat group schemes over SpecR. We start with
a homomorphism H2 → H3 between connected finite flat group schemes over
SpecR which induces an epimorphism over U . We extend the kernel of H2,U →
H3,U to a finite flat group scheme H1 over SpecR. Then we find a complex

0→ H1 → H2 → H3 → 0

whose restriction to U is a short exact sequence. To show that H2 → H3 is
an epimorphism it is equivalent to show that H1 → H2 is a monomorphism.
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As H1,U has a composition series whose factors are annihilated by p, we easily
reduce to the case where H1 is annihilated by p. We embed H2 into a p-divisible
group G over SpecR. To check that H1 → H2 is a monomorphism, it suffices
to show that H1 → G[p] is a monomorphism. But this follows from the second
sentence of this paragraph.
It is clear that (a) implies (d). We are left to show that (d) implies (c). It suffices
to show that a homomorphism β : H1 → H2 of finite flat group schemes over
SpecR annihilated by p is a monomorphism if its restriction βU : H1,U → H2,U

is a monomorphism. We embed H2 into a p-divisible group G over SpecR.
The quotient GU/H1,U is a p-divisible group over U which extends to a p-
divisible group G′ over SpecR (as we are assuming that (d) holds). The isogeny
GU → G′U extends to an isogenyG→ G′. Its kernel is a finite flat group scheme
and therefore isomorphic to H1. We obtain a monomorphism H1 → G. Thus
β : H1 → H2 is a monomorphism, i.e. (d) implies (c). �

Corollary 21 Propositions 17 and 18 (and thus implicitly Corollary 19) hold
without any residually connectivity assumption for p = 2.

Proof. We can assume that R is complete. By considering an epimorphism
R ։ R′ with R′ regular of dimension 2, we can also assume that dimR = 2.
Based on Lemma 20, it suffices to prove Propositions 17 and 18 in the case when
connected finite flat group schemes are involved. But this case was already
proved in Subsection 4.2. This also shows that for p ≥ 3 we can restrict to the
connected case and avoid to apply Proposition 10 for nonconnected p-divisible
groups. �

Corollary 22 We assume that k is perfect and that R = W (k)[[T1, T2]]/(p−
h) with h ∈ (T1, T2). Let h̄ ∈ k[[T1, T2]] be the reduction of h modulo p. Then
the fact that R is or is not p-quasi-healthy depends only on the orbit of the ideal
(h̄) of k[[T1, T2]] under automorphisms of k[[T1, T2]].

Proof. The category of Breuil modules associated to connected finite flat
group schemes over SpecR annihilated by p is equivalent to the category of
pairs (M,ϕ), where M is a free k[[T1, T2]]-module of finite rank and where
ϕ : M → M (σ) is a k[[T1, T2]]-linear map whose cokernel is annihilated by h̄
and whose reduction modulo the ideal (T1, T2) is nilpotent in the natural sense.
The last category depends only on the orbit of (h̄) under automorphisms of
k[[T1, T2]]. The corollary follows from the last two sentences and the equivalence
of (c) and (d) in Lemma 20. �

4.4 The p-quasi-healthy part of Theorem 3

In this subsection we show that if R is as in Theorem 3 for d = 2, then R is
p-quasi-healthy. It follows from the definition of a p-divisible group and the
uniqueness part of the first paragraph of Subsection 4.3, that it is enough to
show that a complex 0 → H1 → H2 → H3 → 0 of finite flat group schemes
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over SpecR is a short exact sequence if its restriction to SpecR \ {m} is a
short exact sequence. This is a local statement in the faithfully flat topology of
SpecR and thus to check it we can assume that R = R̂ = W (k)[[T1, T2]/(p−h)
with h ∈ (T1, T2) but h /∈ (p, T p1 , T

p
2 , T

p−1
1 T p−12 ). By Lemma 20 we can assume

that H2 and H3 are connected. Thus 0→ H1 → H2 → H3 → 0 is a short exact
sequence, cf. Corollary 19. �

5 Extending abelian schemes

Proposition 23 Let R be a regular local ring of mixed characteristic (0, p).

(a) Let U = SpecR \ {m}, where m is the maximal ideal of R. Let Ă be an
abelian scheme over U . If the p-divisible group of Ă extends to a p-divisible
group over SpecR, then Ă extends uniquely to an abelian scheme A over
SpecR.

(b) If R is p-quasi-healthy, then R is quasi-healthy.

Proof. The uniqueness part of (a) is well known (cf. [R1], Chapter IX,
Corollary 1.4). Part (a) is a particular case of either proof of [V2], Proposition
4.1 (see remark that starts the proof) or [V2], Remark 4.2. Part (b) follows
from (a). �

Lemma 24 Let S ։ R be a ring epimorphism between local noetherian rings
whose kernel is an ideal a with a2 = 0 and depthR a ≥ 2. We assume that
depthR ≥ 2 and that R is quasi-healthy. Then S is quasi-healthy as well.

Proof. Let m and n be the maximal ideals of R and S (respectively). We set
U = SpecR \ {m} and V = SpecS \ {n}.
Let B̆ be an abelian scheme over V and let Ă be its reduction over U .
Then Ă extends uniquely to an abelian scheme A over SpecR. Let π :
A ։ SpecR be the projection. It is well-known that the set of liftings
of A with respect to SpecR →֒ SpecS is a trivial torsor under the group
H0(SpecR,R1π∗Hom(ΩA/R, a)) and that the set of liftings of Ă with respect
to V ։ U is a trivial torsor under the group H0(U,R1π∗Hom(ΩA/R, a)). As
depthR a ≥ 2, the last two groups are equal. Thus there exists a unique abelian
scheme B over SpecS which lifts A and whose restriction to V is B̆. �

Proposition 25 Let S be a complete noetherian local ring of mixed charac-
teristic (0, p). Let S ։ R be a ring epimorphism with kernel a (thus R is
a complete noetherian local ring). We assume that there exists a sequence of
ideals

a = a0 ⊃ a1 ⊃ . . .
such that the intersection of these ideals is 0 and for all i ≥ 0 we have a2i ⊂ ai+1

and depthS ai/ai+1 ≥ 2. We also assume that depthR ≥ 2 and that R is quasi-
healthy. Let n be the maximal ideal of S. Let V := SpecS \ {n}.
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(a) Then each abelian scheme over V that has a polarization extends to an
abelian scheme over SpecS.

(b) We assume that S is integral and geometrically unibranch (like S is normal).
Then S is quasi-healthy.

Proof. By a well-known theorem we have S = lim
←
S/ai.

For (b) (resp. (a)) we have to show that each abelian scheme Ă (resp. each
abelian scheme Ă that has a polarization λĂ) over V extends to an abelian
scheme over SpecS. We write Ui = (SpecS/ai) \ {n}. The topological space
underlying Ui is independent of i and it will be denoted by U . It is easy to see
that depthS/ai ≥ 2. By Lemma 24 the ring S/ai is quasi-healthy. We denote
by Ăi the base change of Ă to Ui. Then Ăi extends uniquely to an abelian
scheme Ai over SpecS/ai. If S is integral and geometrically unibranch, then
from [R1], Chapter XI, Theorem 1.4 we get that Ă is projective over V . Thus
from now on we can assume that there exists a polarization λĂ of Ă and we
will not anymore differentiate between parts (a) and (b).
From the uniqueness of Ai we easily get that the reduction of λĂ modulo
ai extends uniquely to a polarization λAi of Ai (this also follows from [R1],
Chapter IX, Corollary 1.4). We get that the Ai’s inherit a compatible system
of polarizations. From this and the algebraization theorem of Grothendieck,
we get that there exists an abelian scheme A over SpecS which lifts the Ai’s.
Next we will prove that the p-divisible group G of A restricts over V to the
p-divisible group Ğ of Ă. This implies that Ă extends to an abelian scheme
over SpecS (cf. Proposition 23 (a)) which is then necessarily isomorphic to A.
Let Gi[m] be the kernel of the multiplication by pm : Ai → Ai, and let G[m]
be the kernel of the multiplication by pm : A→ A.
Let Ci[m] be the S/ai-algebra of global functions on Gi[m]. Then B[m] =
lim
←
Ci[m] is the S-algebra of global functions on G[m].

We write Spec C̆[m] = Ğ[m], where C̆[m] is a finite OĞ[m]-algebra. We have a
natural homomorphism:

H0(V, C̆[m])→ H0(U, (Ci[m])∼) = Ci[m].

Here (Ci[m])∼ is the restriction to U of the OSpecS/ai-algebra associated to
Ci[m]. The last equality follows from the fact that depthS/ai ≥ 2. This gives
birth to an S-algebra homomorphism

H0(V, C̆[m])→ B[m].

If we restrict it to a homomorphism between OV -algebras we obtain a homo-
morphism of finite flat group schemes over V

G[m]V → Ğ[m]

and thus a homomorphism of corresponding p-divisible groups GV → Ğ over
V . By construction this is an isomorphism if we restrict it to U . As V is
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connected, from the following proposition we conclude that GV → Ğ is an
isomorphism. �

Proposition 26 Let β : G → G′ be a homomorphism of p-divisible groups
over a noetherian scheme X. Then the set Y of points x ∈ X such that βx is
an isomorphism is open and closed in X. Moreover βY is an isomorphism.

Proof. It is clear that β is an isomorphism if and only if β[1] : G[1]→ G′[1] is
an isomorphism. Therefore the subfunctor of X defined by the condition that
βY is an isomorphism is representable by an open subscheme Z ⊂ X .
By the theorems of Tate and de Jong on extensions of homomorphisms between
p-divisible groups, we get that the valuative criterion of properness holds for
Z → X . Thus Z is as well closed in X and therefore we can take Y = Z. �

5.1 Counterexample for the p-quasi-healthy context

Lemma 24 does not hold for the p-quasi-healthy context even in the simplest
cases. Here is an elementary counterexample. We take R = W (k)[[T1]]. From
Subsection 4.4 we get that R is p-quasi-healthy. We take S = R[T2]/(T

2
2 ). Let

V := SpecS \ {n}, where n is the maximal ideal of S. Let O := R(T1); we have

a natural identification V = SpecS[ 1
T1

] ∪ SpecO[T2]/(T 2
2 ).

Let Ek be an elliptic curve over Spec k. We can identify the formal deformation
space of Ek with Spf R. Let E be the elliptic curve over SpecR which is the
algebraization of the uni-versal elliptic curve over Spf R. Let ι1 : R →֒ S[ 1

T1
]

be the W (k)-monomorphism that maps T1 to T1 + T2T
−1
1 ; it lifts the natural

W (k)-monomorphism R →֒ R[ 1
T1

]. The W (k)-monomorphism ι1 gives birth

to an elliptic curve E1 over SpecS[ 1
T1

] whose restriction to SpecS[ 1
T1

]/(T2) =

SpecR[ 1
T1

] extends to the elliptic curve E over SpecR.
We check that the assumption that E1 extends to an elliptic curve EV over V
leads to a contradiction. To EV and EU correspond morphisms U → V → A1,
where A1 is the j-line over SpecW (k). As the topological spaces of U and V
are equal, we get that we have a natural factorization U → V → SpecR→ A1,
where we identify SpecR with the completion of A1 at its k-valued point defined
by Ek. As S = H0(V,OV ), the image of ι1 is contained in S. Contradiction.
But the p-divisible group G1 of E1 extends to a p-divisible group GV over V .
This is so as each p-divisible group over SpecO extends uniquely to an étale
p-divisible group over SpecO[T2]/(T 2

2 ).
Finally we check that the assumption that GV extends to a p-divisible group
G2 over SpecS leads to a contradiction. Let E2 be the elliptic curve over
SpecS which lifts E and whose p-divisible group is G2. Let ι2 : R → S be the
W (k)-homomorphism that defines E2. We check that the resulting two W (k)-
homomorphisms ι1, ι2 : R → S[ 1

T1
] are equal. It suffices to show that their

composites ι3, ι4 : R → Ŝ(p) with the natural W (k)-monomorphism S[ 1
T1

] →֒
Ŝ(p) = R̂(p)[T2]/(T 2

2 ) are equal (here △̂ denotes the completion of the local ring
△). But this follows from Serre–Tate deformation theory and the fact that the
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composites ι5, ι6 : R→ R̂(p) of ι3, ι4 with the W (k)-epimorphism Ŝ(p) ։ R̂(p),

are equal. As the two W (k)-homomorphisms ι1, ι2 : R → S[ 1
T1

] are equal, the
image of ι1 is contained in S. Contradiction.
We conclude that S is not p-quasi-healthy. A similar argument shows that for
all n ≥ 2, the ring R[T2]/(T n2 ) is not p-quasi-healthy.
This counterexample disproves the claims on [FC], top of p. 184 on torsors of
liftings of p-divisible groups.

5.2 Proofs of Theorem 3 and Corollary 4

Let m be the maximal ideal of R. Let U = SpecR \ {m}. Let d = dimR.
We prove Theorem 3. We first assume that d = 2. It is enough to show that R
is p-quasi-healthy, cf. Proposition 23 (b). But this follows from Subsection 4.4.
We next assume that d ≥ 3. We have to show that each abelian scheme over U
extends uniquely to an abelian scheme over SpecR. This is a local statement
in the faithfully flat topology of SpecR and thus to check it we can assume
that R = R̂ is complete with algebraically closed residue class field k. We have
an epimorphism R ։ W (k)[[T1, T2]]/(p − h) where h is a power series in the
maximal ideal of W (k)[[T1, T2]] whose reduction modulo (p, T p1 , T

p
2 , T

p−1
1 T p−12 )

is non-zero. As W (k)[[T1, T2]]/(p− h) is p-quasi-healthy (cf. the case d = 2),
from Proposition 25 we get that R is quasi-healthy. This proves Theorem 3.
We prove Corollary 4. Thus dimR = d ≥ 2 and p /∈ mp. As in the pre-
vious paragraph we argue that we can assume that R = R̂ is complete with
algebraically closed residue class field k. We write R = S/(p − h) where
h ∈ (T1, . . . , Td) is such that its reduction h̄ ∈ S̄ = S/pS modulo p is a power
series of order e = ord(h̄) ≤ p− 1. Due to Noether normalization theorem we
can assume that h̄ contains the monom T e1 . We set R′ := S/(p−h, T3, . . . , Td);
if d = 2, then R′ = R. From Proposition 25 applied to the epimorphism
R ։ R′, we get that it suffices to show that R′ is quasi-healthy and p-quasi-
healthy. Thus in order not to complicate the notations, we can assume that
d = 2 (i.e., R = R′). As e ≤ p − 1, the reduction of h̄ modulo the ideal
(T p1 , T

p
2 , T

p−1
1 T p−12 ) is non-zero. Thus Corollary 4 follows from Theorem 3. �

5.3 Example

Let R be a regular local of mixed characteristic (0, p) such that the strict
completion of R is isomorphic to

Ck[[T1, . . . , Td]]/(p− T e11 · . . . · T emm )

where Ck is a Cohen ring of the field k, where 1 ≤ m ≤ d, and where the
m-tuple (e1, . . . , em) ∈ Nm has the property that there exists a disjoint union
{1, . . . ,m} = I1

⊔
I2 for which we have m1 :=

∑
i∈I1 ei ∈ {1, . . . , p − 1} and

m2 :=
∑

i∈I2 ei ∈ {0, . . . , p− 2}.
To check that R is quasi-healthy we can assume that the field k is algebraically
closed and that R = W (k)[[T1, . . . , Td]]/(p−T e11 · . . . · T emm ) (thus Ck = W (k)).
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We consider the ring epimorphism R ։ R′ := W (k)[[T1, T2]]/(p − Tm1
1 Tm2

2 )
that maps Ti with i ∈ I1 to T1, that maps Ti with i ∈ I2 to T2, and that maps
Ti with i > m to 0. From Theorem 3 we get that R is quasi-healthy.
Concrete example: if 1 ≤ m ≤ min{d, 2p − 3} and if the strict completion
of R is Ck[[T1, . . . , Td]]/(p − T1 · . . . · Tm), then R is quasi-healthy. From this
and Corollary 5 we get that each étale scheme over SpecO[T1, . . . , Td]/(p−T1 ·
. . . · Tm) is healthy regular, provided O is a discrete valuation ring of mixed
characteristic (0, p) and index of ramification 1.

5.4 Regular schemes which are not (p-) healthy

Let R be a local regular ring of dimension 2 and mixed characteristic (0, p).
Let m be the maximal ideal of R. Let U = SpecR \ {m}.
The ring R is (p-) quasi-healthy if and only if SpecR is (p-) healthy regular.
The next lemma provides an easy criterion for when R is not (p-) quasi-healthy.

Lemma 27 We assume that there exists a homomorphism H → D of finite flat
group schemes over SpecR which is not an epimorphism and whose restriction
to U is an epimorphism. Then R is neither quasi-healthy nor p-quasi-healthy.

Proof. We embed the Cartier dual Dt of D into an abelian scheme A over
SpecR, cf. [BBM], Theorem 3.1.1. The Cartier dual homomorphismHt

U → Dt
U

is a closed immersion. The abelian scheme AU/H
t
U over U does not extend to

an abelian scheme over SpecR. Based on [R1], Chapter IX, Corollary 1.4, the
argument for this is similar to the one used to prove that (d) implies (c) in
Lemma 20. Thus R is not quasi-healthy. From Proposition 23 (a) we get that
the p-divisible group of AU/H

t
U does not extend to SpecR. Thus the fact that

R is not p-quasi-healthy follows from either Lemma 20 or Proposition 23 (a).
�

Based on Lemma 27, the following theorem adds many examples to the classical
example of Raynaud–Gabber.

Theorem 28 We consider the ring S = W (k)[[T1, T2]]. Let h ∈ (T1, T2) \ pS.
Let R := S/(p− h). Let S̄ := S/pS and let h̄ be the reduction of h modulo p.
We assume that one of the following three properties hold:

(i) The element h̄ is divisible by up, where u is a power series in the maximal
ideal of S̄ (the class of rings R for which (i) holds includes O[[T ]], where
O is a totally ramified discrete valuation ring extension of W (k) of index
of ramification at least equal to p).

(ii) There exists a regular sequence u, v in S̄ such that up−1vp−1 divides h̄.

(iii) We can write h̄ = (aT p1 + bT p2 + cT p−11 T p−12 )c, where a, b, c ∈ S̄.

Then R is neither p-quasi-healthy nor quasi-healthy.
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Proof. It is enough to construct a homomorphism β : H → D of connected
finite flat group schemes over SpecR which is not an epimorphism but whose
restriction to U is an epimorphism, cf. Lemma 27.

We will constructH andD by specifying their Breuil modules (M,ϕ) and (N, τ)
(respectively) associated to a standard frame for R. We first present with full
details the case (i) and then we will only mention what are the changes required
to be made for the other two cases (ii) and (iii).

We assume that the condition (i) holds. We set M = S̄3 and we identify M (σ)

with S̄3. We choose an element t ∈ S̄ such that t and u are a regular sequence
in S̄. We define the homomorphism ϕ by the following matrix:

Γ =




0 0 up

t− tpup−1 u (u − tp−1)(t− tpup−1)
up−1 0 up−1(u− tp−1)


 .

It is easy to see that there exists a matrix ∆ ∈M3×3(S̄) such that

∆Γ = Γ∆ = upI3,

where I3 is the unit matrix. It follows that the cokernel of ϕ is annihilated
by up and thus also by h̄. Moreover the image of ϕ is contained in (t, u)M .
Therefore (M,ϕ) is the Breuil module H of a connected finite flat group scheme
over SpecR annihilated by p.

We set N = S̄ and N (σ) = S̄ and we define τ as the multiplication by up. This
defines another connected finite flat group scheme D over SpecR annihilated
by p.

One easily checks the following equation of matrices:

(tp, up, (tu)p)Γ = up(t, u, tu).

This equation shows that the S-linear map M → N defined by the matrix
(t, u, tu) is a morphism of Breuil modules

α : (M,ϕ)→ (N, τ).

As α is not surjective, the homomorphism β : H → D associated to α is not
an epimorphism. Let p 6= m be a prime ideal of R which contains p. The base
change of α by κp : S → W (κ(p)perf) (of Section 2) is an epimorphism as the
cokernel of α is k. This implies that βU : HU → DU is an epimorphism.

We assume that the condition (ii) holds. The proof in this case is similar to the
case (i) but with the definitions of M , Γ, τ , and M → N modified as follows.
Let M = S̄2. Let

Γ =

(
up−1 0

0 vp−1

)
.

Let τ be defined by (uv)p−1. Let M → N be defined by the matrix (v u).
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We assume that the condition (iii) holds. Let M = S̄2. Let

Γ =

(
aT1 + cT p−12 aT2

bT1 bT2 + cT p−11

)
.

Let τ be defined by aT p1 + bT p2 + cT p−11 T p−12 . Let M → N be defined by the
matrix (T1 T2). The determinant of Γ is h̄. �

6 Integral models and Néron models

Let O be a discrete valuation ring of mixed characteristic (0, p) and of index
of ramification at most p − 1. Let K be the field of fractions of O. A flat
O-scheme ⋆ is said to have the extension property, if for each O-scheme X
which is a healthy regular scheme, every morphism XK → ⋆K of K-schemes
extends uniquely to a morphism X → ⋆ of O-schemes (cf. [V1], Definition
3.2.3 3)).

Lemma 29 Let ZK be a regular scheme which is formally smooth over SpecK.
Then there exists at most one regular scheme which is a formally smooth O-
scheme, which has the extension property, and whose fibre over SpecK is ZK.

Proof. Let Z1 and Z2 be two regular schemes which are formally smooth
over SpecO, which satisfy the identity Z1,K = Z2,K = ZK , and which have the
extension property. Both Z1 and Z2 are healthy regular schemes, cf. Corollary
5. Thus the identity Z1,K = Z2,K extends naturally to morphisms Z1 → Z2

and Z2 → Z1, cf. the fact that both Z1 and Z2 have the extension property.
Due to the uniqueness part of the extension property, the composite morphisms
Z1 → Z2 → Z1 and Z2 → Z1 → Z2 are identity automorphisms. Thus the
identity Z1,K = Z2,K extends uniquely to an isomorphism Z1 → Z2. �

Corollary 30 The integral canonical models of Shimura varieties defined in
[V1], Definition 3.2.3 6) are unique, provided they are over the spectrum of a
discrete valuation ring O as above.

Let d ≥ 1 and n ≥ 3 be natural numbers. We assume that n is prime to p.
Let Ad,1,n be the Mumford moduli scheme over SpecZ[ 1n ] that parameterizes
principally polarized abelian scheme over SpecZ[ 1n ]-schemes which are of rel-
ative dimension d and which have level-n symplectic similitude structures (cf.
[MFK], Theorems 7.9 and 7.10). For Néron models over Dedekind domains we
refer to [BLR], Chapter I, Subsection 1.2, Definition 1.

Theorem 31 Let D be a Dedekind domain which is a flat Z[ 1n ]-algebra. Let K
be the field of fractions of D. We assume that the following two things hold:

(i) the only local ring of D whose residue class field has characteristic 0, is
K;
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(ii) if v is a prime of D whose residue class field has a prime characteristic
pv ∈ N∗, then the index of ramification of the local ring of v is at most
pv − 1.

Let N be a finite Ad,1,n,D-scheme which is a projective, smooth D-scheme.
Then N is the Néron model over D of its generic fibre NK.

Proof. Let Y be a smooth D-scheme. Let δK : YK → NK be a morphism of
K-scheme. Let V be an open subscheme of Y which contains YK and all generic
points of fibres of Y in positive characteristic and for which δK extends uniquely
to a morphism δV : V → N (cf. the projectiveness of N ). Let (BV , λV ) be
the pull back to V of the universal principally polarized abelian scheme over
Ad,1,n,D via the composite morphism νV : V → N → Ad,1,n,D. From Corollary
5 we get that BV extends uniquely to an abelian scheme B over Y . From [R1],
Chapter IX, Corollary 1.4 we get that λV extends (uniquely) to a polarization λ
of B. The level-n symplectic similitude structure of (BV , λV ) defined naturally
by νV extends uniquely to a level-n symplectic similitude structure of (B, λ),
cf. the classical Nagata–Zariski purity theorem. Thus νV extends uniquely to
a morphism ν : Y → Ad,1,n,D. As Y is a normal scheme, as N is finite over
Ad,1,n,D, and as ν restricted to V factors through N , the morphism ν factors
uniquely through a morphism δ : Y → N which extends δV and thus also δK.
Hence the Theorem follows from the very definition of Néron models. �

Remarks. (a) From Theorem 31 and [V3], Remark 4.4.2 and Example 4.5 we
get that there exist plenty of Néron models over O whose generic fibres are not
finite schemes over torsors of smooth schemes over SpecK.

We can take N to be the pull back to O of those Néron models of Theorem 31
whose generic fibres have the above property (cf. [V3], Remark 4.5). If p > 2
and e = p − 1, then these Néron models N are new (i.e., their existence does
not follow from [N], [BLR], [V1], [V2], or [V3]).

(b) One can use Theorem 28 (i) and Artin’s approximation theorem to show
that Theorem 31 does not hold in general if there exists a prime v of D whose
residue class field has a prime characteristic pv ∈ N∗ and whose index of rami-
fication is at least pv. Counterexamples can be obtained using integral models
of projective Shimura varieties of PEL type, cf. [V3], Corollary 4.3.
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Abstract. Generalizing earlier results for the disc and the ball, we give
a formula for the Dixmier trace of the product of 2n Hankel operators
on Bergman spaces of strictly pseudoconvex domains in Cn. The answer
turns out to involve the dual Levi form evaluated on boundary deriva-
tives of the symbols. Our main tool is the theory of generalized Toeplitz
operators due to Boutet de Monvel and Guillemin.
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1. Introduction

Let Ω be a bounded strictly pseudoconvex domain in Cn with smooth boundary,
and L2

hol(Ω) the Bergman space of all holomorphic functions in L2(Ω). For a
bounded measurable function f on Ω, the Toeplitz and the Hankel operator
with symbol f are the operators Tf : L2

hol(Ω) → L2
hol(Ω) and Hf : L2

hol(Ω) →
L2(Ω)⊖ L2

hol(Ω), respectively, defined by

(1) Tfg := Π(fg), Hfg := (I −Π)(fg),

where Π : L2(Ω) → L2
hol(Ω) is the orthogonal projection. It has been known

for some time that for f holomorphic and n > 1, the Hankel operator Hf

Research supported by GA AV ČR grant no. IAA100190802, Czech Ministry of Education
research plan no. MSM4781305904, and the Swedish Research Council (VR).
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belongs to the Schatten ideal Sp if and only if f is in the diagonal Besov space
Bp(Ω) and p > 2n, or f is constant (so Hf = 0) and p ≤ 2n; see Arazy, Fisher
and Peetre [1] for Ω = Bn, the unit ball of Cn, and Li and Luecking [21] for
general smoothly bounded strictly pseudoconvex domains Ω. This phenomenon
is called a cutoff at p = 2n. In dimension n = 1, the situation is slightly
different, in that the cutoff occurs not at p = 2 but at p = 1. One can rephrase
the above results also in terms of membership in the Schatten classes of the
commutators [Tf ,Tg] := TfTg − TgTf of Toeplitz operators. In fact, it is

immediate from (1) that

Tfg −TgTf = H∗gHf ,

and also that TfTg = Tfg if f or g is holomorphic; thus for holomorphic f

and g
[Tf ,Tg] = H∗gHf .

In any case, it follows that there are no nonzero trace-class Hankel op-
erators Hf , with f holomorphic, if n = 1, and similarly the product

H∗
f1

Hf2
. . . H∗

f2n−1

Hf2n
= [Tf2

,Tf1 ] . . . [Tf2n
,Tf2n−1 ], with f1, . . . , f2n holo-

morphic, is never trace-class if n > 1. In particular, there is no hope for n > 1
of having an analogue of the well-known formula for the unit disc,

(2) tr[Tf ,Tf ] =

∫

D

|f ′(z)|2 dm(z)

expressing the trace of the commutator [Tf ,Tf ] as the square of the Dirichlet
norm of the holomorphic function f , which is one of the best known Moebius
invariant integrals. (This formula actually holds for Toeplitz operators on any
Bergman space of a bounded planar domain, if the Lebesgue area measure
dm(z) is replaced by an appropriate measure associated to the domain, see [2].)
A remarkable substitute for (2) on the unit ball Bn is the result of Helton and
Howe [19], who showed that for smooth functions f1, . . . , f2n on the closed
ball, the complete anti-symmetrization [Tf1 ,Tf2 , . . . ,Tf2n ] of the 2n operators
Tf1 , . . . ,Tf2n is trace-class and

tr[Tf1 ,Tf2 , . . . ,Tf2n ] =

∫

Bn
df1 ∧ df2 ∧ · · · ∧ df2n.

There is, however, a generalization of (2) to the unit ball Bn, n > 1, in a
different direction — using the Dixmier trace. This may be notable especially
in view of the prominent applications of the Dixmier trace in noncommutative
differential geometry [9].
Namely, it was shown by the present authors and Guo [12] that for f1, . . . , fn
and g1, . . . , gn smooth on the closed ball, the product [Tf1 ,Tg1 ] . . . [Tfn ,Tgn ]
belongs to the Dixmier class SDixm and has Dixmier trace equal to

(3) Trω([Tf1 ,Tg1 ] . . . [Tfn ,Tgn ]) =
1

n!

∫

∂Bn

n∏

j=1

{fj, gj}b dσ,
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where dσ is the normalized surface measure on ∂Bn and {f, g}b is the “bound-
ary Poisson bracket” given by

{f, g}b :=
n∑

j=1

( ∂f
∂zj

∂g

∂zj
− ∂f

∂zj

∂g

∂zj

)
− (RfRg −RfRg),

with R :=
∑n
j=1 zj

∂
∂zj

and R :=
∑n

j=1 zj
∂
∂zj

the anti-holomorphic and the

holomorphic part of the radial derivative, respectively. In particular, for f
holomorphic on Bn and smooth on the closed ball, (H∗

f
Hf )n = [Tf ,Tf ]n ∈

SDixm and

Trω((H∗
f
Hf )n) =

1

n!

∫

∂Bn

( n∑

j=1

∣∣∣ ∂f
∂zj

∣∣∣
2

− |Rf |2
)n

dσ.

Note that for n = 1 the right-hand side vanishes, in accordance with the fact
that in dimension 1 the cutoff occurs at p = 1 instead of p = 2n = 2; in fact,
it was shown by Rochberg and the first author [13] that for n = 1 actually
|Hf | = (H∗fHf )1/2, rather than H∗fHf , is in the Dixmier class for any f ∈
C∞(D), and

Trω(|Hf |) =

∫

∂D

|∂f | dσ,

so, in particular,

Trω(|Hf |) =

∫

∂D

|f ′| dσ = ‖f ′‖H1

for f ∈ C∞(D) holomorphic on D, where H1 denotes the Hardy 1-space on
the unit circle.
In this paper, we generalize the result of [12] to arbitrary bounded strictly
pseudoconvex domains Ω with smooth boundary. Our result is that for any 2n
functions f1, g1, . . . , fn, gn ∈ C∞(Ω),

(4) Trω(H∗f1Hg1 . . .H
∗
fnHgn) =

1

n!(2π)n

∫

∂Ω

n∏

j=1

L(∂bgj , ∂bfj) η ∧ (dη)n−1,

where ∂b stands for the boundary ∂-operator [14], η∧ (dη)n−1 is a certain mea-
sure on ∂Ω, and L stands for the dual of the Levi form on the anti-holomorphic
tangent bundle; see §§ 2 and 4 below for the details.
In contrast to [12], where we were using the so-called pseudo-Toeplitz operators
of Howe [18], our proof here relies on Boutet de Monvel’s and Guillemin’s
theory of Toeplitz operators on the Hardy spaceH2(∂Ω) with pseudodifferential
symbols. (This is also the approach used in [13], however the situation Ω = D

treated there is much more manageable.)
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In fact, it turns out that for any classical pseudodifferential operator Q on
∂Ω of order −n, the corresponding Hardy-Toeplitz operator TQ belongs to the
Dixmier class and

(5) Trω(TQ) =
1

n!(2π)n

∫

∂Ω

σ−n(Q)(x, η(x)) η(x) ∧ (dη(x))n−1,

where σ−n(Q) is the principal symbol of Q, and η is a certain 1-form on ∂Ω; see
again §2 below for the details. In particular, in view of the results of Guillemin
[16] [17], this means that on Toeplitz operators TQ of order ≤ −n, the Dixmier
trace Trω TQ coincides with the residual trace TrRes TQ, a quantity constructed
using the meromorphic continuation of the ζ function of TQ (Wodzicki [24],
Boutet de Monvel [7], Ponge [23], Lesch [20], Connes [9]).

We recall the necessary prerequisites on the Dixmier trace, Hankel operators
and the Boutet de Monvel-Guillemin theory in Section 2. The proofs of (5)
and (4) appear in Sections 3 and 4, respectively. Some concluding comments
are assembled in the final Section 5.

Throughout the paper, we will denote Bergman-space Toeplitz operators by Tf ,
in order to distinguish them from the Hardy-space Toeplitz operators Tf
and TQ. Since Hankel operators on the Hardy space never appear in this
paper, Hankel operators on the Bergman space are denoted simply by Hf .

2. Background

2.1 Generalized Toeplitz operators. Let r be a defining function for Ω,
that is, r ∈ C∞(Ω), r < 0 on Ω, and r = 0, ‖∂r‖ > 0 on ∂Ω. Denote

by η the restriction to ∂Ω of the 1-form Im(∂r) = (∂r − ∂r)/2i. The strict
pseudoconvexity of Ω guarantees that η is a contact form, i.e. the half-line
bundle

Σ := {(x, ξ) ∈ T ∗(∂Ω) : ξ = tηx, t > 0}

is a symplectic submanifold of T ∗(∂Ω). Equip ∂Ω with a measure with smooth
positive density, and let L2(∂Ω) be the Lebesgue space with respect to this
measure. The Hardy space H2(∂Ω) is the subspace in L2(∂Ω) of functions
whose Poisson extension is holomorphic in Ω; or, equivalently, the closure in
L2(∂Ω) of C∞hol(∂Ω), the space of boundary values of all the functions in C∞(Ω)
that are holomorphic on Ω. (In dimensions greater than 1, H2(∂Ω) can also
be characterized as the null-space of the ∂b-operator, which will appear in
Section 4 further on.) We will also denote by W s(∂Ω), s ∈ R, the Sobolev
spaces on ∂Ω, and by W s

hol(∂Ω) the corresponding subspaces of nontangential
boundary values of functions holomorphic in Ω. (Thus W 0(∂Ω) = L2(∂Ω) and
W 0

hol(∂Ω) = H2(∂Ω).)

Unless otherwise specified, by a pseudodifferential operator or Fourier integral
operator (ΨDO or FIO for short) on ∂Ω we will always mean an operator which
is “classical”, i.e. whose total symbol (or amplitude) in any local coordinate

Documenta Mathematica 15 (2010) 601–622



Hankel Operators and the Dixmier Trace 605

system has an asymptotic expansion

p(x, ξ) ∼
∞∑

j=0

pm−j(x, ξ),

where pm−j is C∞ in x, ξ, and is positive homogeneous of degree m− j in ξ for
|ξ| > 1. Here j runs through nonnegative integers, while m can be any integer;

and the symbol “∼” means that the difference between p and
∑k−1
j=0 pm−j should

belong to the Hörmander class Sm−k, for each k = 0, 1, 2, . . . . The set of all
classical ΨDOs on ∂Ω as above (i.e. of order m) will be denoted by Ψm

cl ; and
we set, as usual, Ψcl :=

⋃
m∈Z Ψm

cl and Ψ−∞ :=
⋂
m∈Z Ψm

cl . The operators in

Ψ−∞ are precisely the smoothing operators, i.e. those given by a C∞ Schwartz
kernel; and for any P,Q ∈ Ψcl, we will write P ∼ Q if P − Q is smoothing.
Note that if P ∈ Ψm

cl , then P is continuous from W s(∂Ω) into W s−m(∂Ω), for
any s ∈ R.
For Q ∈ Ψm

cl , the generalized Toeplitz operator TQ : Wm
hol(∂Ω) → H2(∂Ω) is

defined as
TQ = ΠQ,

where Π : L2(∂Ω) → H2(∂Ω) is the orthogonal projection (the Szegö projec-
tion). Alternatively, one may view TQ as the operator

TQ = ΠQΠ

on all of Wm(∂Ω). Actually, TQ maps continuously W s(∂Ω) into W s−m
hol (∂Ω),

for each s ∈ R, because Π is bounded on W s(∂Ω) for any s ∈ R (see [6]).
It is known that the generalized Toeplitz operators TP , P ∈ Ψcl, have the
following properties.

(P1) They form an algebra which is, modulo smoothing operators, locally
isomorphic to the algebra of classical ΨDOs on Rn.

(P2) In fact, for any TQ there exists a ΨDO P of the same order such that
TQ = TP and PΠ = ΠP .

(P3) If P,Q are of the same order and TP = TQ, then the principal symbols
σ(P ) and σ(Q) coincide on Σ. One can thus define unambiguously the
order of a generalized Toeplitz operator as ord(TQ) := min{ord(P ) :
TP = TQ}, and its principal symbol (or just “symbol”) as σ(TQ) :=
σ(Q)|Σ if ord(Q) = ord(TQ). (The symbol is undefined if ord(TQ) =
−∞.)

(P4) The order and the symbol are multiplicative: ord(TPTQ) = ord(TP ) +
ord(TQ) and σ(TPTQ) = σ(TP )σ(TQ).

(P5) If ord(TQ) ≤ 0, then TQ is a bounded operator on L2(∂Ω); if ord(TQ) <
0, then it is even compact.

(P6) If Q ∈ Ψm
cl and σ(TQ) = 0, then there exists P ∈ Ψm−1

cl with TP = TQ.
In particular, if TQ ∼ 0, then there exists a ΨDO P ∼ 0 such that
TQ = TP .
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(P7) We will say that a generalized Toeplitz operator TQ of order m is elliptic
if σ(TQ) does not vanish. Then TQ has a parametrix, i.e. there exists
a Toeplitz operator TP of order −m, with σ(TP ) = σ(TQ)−1, such that
TQTP ∼ IH2(∂Ω) ∼ TPTQ.

We refer to the book [5], especially its Appendix, and to the paper [4] (which we
have loosely followed in this section) for the proofs and additional information
on generalized Toeplitz operators.

2.2 The Poisson operator. Let K denote the Poisson extension operator
on Ω, i.e. K solves the Dirichlet problem

(6) ∆Ku = 0 on Ω, Ku|∂Ω = u.

(Thus K acts from functions on ∂Ω into functions on Ω. Here ∆ is the ordinary
Laplace operator.) By the standard elliptic regularity theory (see e.g. [22]),

K acts continuously fromW s(∂Ω) onto the subspaceW
s+1/2
harm (Ω) of all harmonic

functions in W s+1/2(Ω). In particular, it is continuous from L2(∂Ω) into L2(Ω),
and thus has a continuous Hilbert space adjoint K∗ : L2(Ω) → L2(∂Ω).
The composition

K∗K =: Λ

is known to be an elliptic positive ΨDO on ∂Ω of order −1. We have

(7) Λ−1K∗K = IL2(∂Ω),

while

KΛ−1K∗ = Πharm,

the orthogonal projection in L2(Ω) onto the subspace L2
harm(Ω) of all harmonic

functions. (Indeed, from (7) it is immediate that the left-hand side acts as the
identity on the range of K, while it trivially vanishes on KerK∗ = (RanK)⊥.)
Comparing (7) with (6), we also see that the restriction

γ := Λ−1K∗|L2
harm(Ω)

is the operator of “taking the boundary values” of a harmonic function. Again,
by elliptic regularity, γ extends to a continuous operator from W s

harm(Ω) onto

W s−1/2(∂Ω), for any s ∈ R, which is the inverse of K.
The operators

Λw := K∗wK,

with w a smooth function on Ω, are governed by a calculus developed by Boutet
de Monvel [3]. It was shown there that for w of the form

(8) w = rmg, m = 0, 1, 2, . . . , g ∈ C∞(Ω),
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Λw is a ΨDO on ∂Ω of order −m− 1, with symbol

(9) σ(Λw)(x, ξ) =
(−1)mm!

2|ξ|m+1
g(x) ‖ηx‖m.

(In particular, σ(Λ)(x, ξ) = 1/2|ξ|.)
By abstract Hilbert space theory, K has, as an operator from L2(∂Ω)
into L2(Ω), the polar decomposition

(10) K = U(K∗K)1/2 = UΛ1/2,

where U is a partial isometry with initial space RanK∗ = (KerK)⊥ and final
space RanK; that is, U is a unitary operator from L2(∂Ω) onto L2

harm(Ω).

The operators γ, K and U = KΛ−1/2 can be used to “transfer” operators
on L2

harm(Ω) ⊂ L2(Ω) into operators on L2(∂Ω). The following proposition
appears as Proposition 8 in [11]; we reproduce its (short) proof here for com-
pleteness.

Proposition 1. γΠK = T−1Λ ΠΛ.

Proof. Set ΠΛ := KT−1Λ ΠΛγ, an operator on L2
harm(Ω); we need to show that

ΠΛ = Π|L2
harm

. Since T−1Λ ΠΛ acts as the identity on the range of Π, it is

immediate that Π2
Λ = ΠΛ; furthermore, ΠΛ = KT−1Λ ΠK∗ = KΠT−1Λ ΠK∗

is evidently self-adjoint. Thus ΠΛ is the orthogonal projection in L2
harm(Ω)

onto RanΠΛ. But

RanΠΛ = (KerΠΛ)⊥ = (KerKΠT−1Λ ΠK∗)⊥ = (KerT
−1/2
Λ ΠK∗)⊥

= (Ker ΠK∗)⊥ = RanKΠ = KH2(∂Ω)

= W
1/2
hol (Ω) = L2

hol(Ω).

So, indeed, ΠΛ = Π. �

Similarly to (10), the bounded (in fact — since Λ is of order < 0 — even
compact) operator Λ1/2Π on L2(∂Ω) has polar decomposition

Λ1/2Π = W (ΠΛΠ)1/2 = WT
1/2
Λ ,

where W is a partial isometry with initial space Ran ΠΛ1/2 = H2(∂Ω) and final

space Ran Λ1/2Π = Λ1/2H2(∂Ω); in particular,

(11) W ∗W = I on H2(∂Ω).

The following proposition is analogous to Corollary 9 of [11].
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Proposition 2. Let w ∈ C∞(Ω) be of the form (8). Then

U∗TwU = WT
−1/2
Λ TΛwT

−1/2
Λ W ∗ = WTQwW

∗,

where Qw is a ΨDO on ∂Ω of order −m with

σ(Qw)(x, ξ)|Σ =
(−1)mm!

|ξ|m g(x) ‖ηx‖m.

Proof. By Proposition 1, ΠK = KT−1Λ ΠΛ = KΠT−1Λ ΠΛ; hence

U∗TwU = Λ−1/2K∗ΠwΠKΛ−1/2

= Λ1/2ΠT−1Λ ΠK∗wKΠT−1Λ ΠΛ1/2

= Λ1/2ΠT−1Λ ΠΛwΠT−1Λ ΠΛ1/2

= Λ1/2ΠT−1Λ TΛwT
−1
Λ ΠΛ1/2

= WT
−1/2
Λ TΛwT

−1/2
Λ W ∗,

proving the first equality. The second equality follows from (9) and the prop-
erties (P1) and (P4). �

2.3 The Dixmier trace. Recall that if A is a compact operator acting on a
Hilbert space then its sequence of singular values {sj(A)}∞j=1 is the sequence of

eigenvalues of |A| = (A∗A)1/2 arranged in nonincreasing order. In particular if
A≫ 0 this will also be the sequence of eigenvalues of A in nonincreasing order.
For 0 < p <∞ we say that A is in the Schatten ideal Sp if {sj(A)} ∈ lp(Z>0).
If A ≫ 0 is in S1, the trace class, then A has a finite trace and, in fact,
tr(A) =

∑
j sj(A). If however we only know that

sj(A) = O(j−1) or that

Sk(A) :=
k∑

j=1

sj(A) = O(log(1 + k))

then A may have infinite trace. However in this case we may still try to
compute its Dixmier trace, Trω(A). Informally Trω(A) = limk

1
log kSk(A) and

this will actually be true in the cases of interest to us. We begin with the
definition. Select a continuous positive linear functional ω on l∞(Z>0) and
denote its value on a = (a1, a2, ...) by Limω(ak). We require of this choice
that Limω(ak) = lim ak if the latter exists. We require further that ω be scale
invariant; a technical requirement that is fundamental for the theory but will
not be of further concern to us.
Let SDixm be the class of all compact operators A which satisfy

(12)
( Sk(A)

log(1 + k)

)
∈ l∞.
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With the norm defined as the l∞-norm of the left-hand side of (12), SDixm

becomes a Banach space [15]. For a positive operator A ∈ SDixm, we define

the Dixmier trace of A, Trω(A), as Trω(A) = Limω( Sk(A)
log(1+k) ). Trω(·) is then

extended by linearity to all of SDixm. Although this definition does depend on
ω the operators A we consider are measurable, that is, the value of Trω(A) is
independent of the particular choice of ω. We refer to [9] for details and for
discussion of the role of these functionals.
It is a result of Connes [8] that if Q is a ΨDO on a compact manifold M of
real dimension n and ord(Q) = −n, then Q ∈ SDixm and

(13) Trω(Q) =
1

n!(2π)n

∫

(T ∗M)1

σ(Q).

(Here (T ∗M)1 denotes the unit sphere bundle in the cotangent bundle T ∗M ,
and the integral is taken with respect to a measure induced by any Riemannian
metric on M ; since σ(Q) is homogeneous of degree −n, the value of the integral
is independent of the choice of such metric.) In the next section, we will see
that for Toeplitz operators TQ on ∂Ω, Ω ⊂ Cn, the “right” order for TQ to
belong to SDixm is not − dimR ∂Ω = −(2n− 1), but − dimC Ω = −n.

3. Dixmier trace of generalized Toeplitz operators

Let T be a positive self-adjoint generalized Toeplitz operator on ∂Ω of order
1 with σ(T ) > 0. Let 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . be the points of its spectrum
(counting multiplicities) and let N(λ) denote the number of λj ’s less than λ.
It was shown in Theorem 13.1 in [5] that as λ→ +∞,

(14) N(λ) =
vol(ΣT )

(2π)n
λn +O(λn−1),

where ΣT is the subset of Σ where σ(T ) ≤ 1, and vol(ΣT ) is its symplectic
volume.
Using properties of generalized Toeplitz operators, it is easy to derive from here
the formula for the Dixmier trace.

Theorem 3. Let T be a generalized Toeplitz operator on H2(∂Ω) of order −n.
Then T ∈ SDixm, and

Trω(T ) =
1

n!(2π)n

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

In particular, T is measurable.

Proof. As the Dixmier trace is defined first on positive operators and then
extended to all of SDixm by linearity, while T may be split into its real and
imaginary parts each of which can be expressed as a difference of two positive
generalized Toeplitz operators of the same order, it is enough to prove the
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assertion when T is positive self-adjoint with σ(T ) > 0. Then T is elliptic, and
it follows from Seeley’s theorem on complex powers of ΨDO’s and from the
property (P2) that T−1/n is also a generalized Toeplitz operator, with symbol
σ(T )−1/n and of order 1 (see [10], Proposition 16, for the detailed argument).
Thus the eigenvalues λ1 ≤ λ2 ≤ . . . of T−1/n satisfy (14). Consequently,

Sk(T ) =

k∑

j=1

sj(T ) =

k∑

j=1

λ−nj =

∫

[λ1,λk]

λ−n dN(λ)

=

∫

[λ1,λk]

( c

N(λ)
+O

(
N(λ)−1−

1
n

))
dN(λ)

=

∫ k

1

( c
N

+O(N−1−
1
n )
)
dN

= c log k +O(1).

Here we have temporarily denoted c := (2π)−n vol(ΣT−1/n). Dividing by
log(k + 1) and letting k tend to infinity, it follows that T ∈ SDixm and

(15) Trω(T ) = lim
k→∞

Sk(T )

log(k + 1)
= c.

Let us parameterize Σ as (x, tηx) with x ∈ ∂Ω, t > 0. The subset ΣT−1/n is
then characterized by

σ(T )(x, tηx)−1/n ≤ 1, or t ≤ σ(T )(x, ηx)1/n.

A routine computation, which we postpone to the next lemma, shows that the
symplectic volume on Σ with respect to the above parameterization is given by
tn−1

(n−1)! dt ∧ η(x) ∧ (dη(x))n−1. Consequently,

vol(ΣT−1/n) =

∫

∂Ω

∫ σ(T )(x,ηx)
1/n

0

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1

=
1

n!

∫

∂Ω

σ(T )(x, ηx) η ∧ (dη)n−1.

Combining this with (15) and the definition of c, the assertion follows. �

Remark 4. Observe that, in analogy with (13), the last integral is independent
of the choice of the defining function. Indeed, if r is replaced by gr, with g > 0
on ∂Ω, then η = Im(∂r) is replaced by gη (since ∂(gr) = g∂r on the set where
r = 0), and η ∧ (dη)n−1 by gη ∧ (g dη + dg ∧ η)n−1 = gn η ∧ (dη)n−1 (because
η ∧ η = 0); as σ(T )(x, ξ) is homogeneous of degree −n in ξ, the integrand
remains unchanged. �
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Lemma 5. With respect to the parameterization Σ = {(x, tηx) : x ∈ ∂Ω, t >
0}, the symplectic form on Σ is given by

ω = t dη + dt ∧ η = d(tη).

Consequently, the symplectic volume in the (x, t) coordinates is given by

ωn

n!
=

tn−1

(n− 1)!
dt ∧ η ∧ (dη)n−1.

We are supplying a proof of this simple fact below, since we were unable to
locate it in the literature (though we expect that it must be at least implicitly
contained e.g. somewhere in [5]).

Proof. Recall that if (x1, x2, . . . , x2n−1) is a real coordinate chart on ∂Ω
and (x, ξ) the corresponding local coordinates for a point (x; ξ1dx1 + · · · +
ξ2n−1dx2n−1) in T ∗∂Ω, then the form α = ξ1dx1+ · · ·+ξ2n−1dx2n−1 is globally
defined and the symplectic form is given by ω = dα = dξ1∧dx1 + · · ·+dξ2n−1∧
dx2n−1. Since exterior differentiation commutes with restriction (or, more pre-
cisely, with the pullback j∗ under the inclusion map j : Σ→ T ∗∂Ω), it follows
that the symplectic form ωΣ = j∗ω on Σ is given by ωΣ = d(j∗α). As in our
case j∗α = tη, the first formula follows. (We will drop the subscript Σ from
now on.) The second formula is immediate from the first since η ∧ η = 0 and
(dη)n = 0. �

The following corollary is immediate upon combining Theorem 3 and Proposi-
tion 2.

Corollary 6. Assume that f ∈ C∞(Ω) vanishes at ∂Ω to order n. Then Tf

belongs to the Dixmier class, is measurable, and

Trω(Tf ) =
1

n!(4π)n

∫

∂Ω

Nnf
η ∧ (dη)n−1

‖η‖n ,

where N denotes the interior unit normal derivative.

4. Dixmier trace for products of Hankel operators

It is known [5] that the symbol of the commutator of two generalized Toep-
litz operators is given by the Poisson bracket (with respect to the symplectic
structure of Σ) of their symbols:

σ([TP , TQ]) = 1
i {σ(TP ), σ(TQ)}Σ.

We need an analogous formula for the semi-commutator TPQ−TPTQ of two gen-
eralized Toeplitz operators. Not surprisingly, it turns out to be given (at least
in the cases of interest to us) by an appropriate “half” of the Poisson bracket.
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Let us denote by T ′′ ⊂ T ∂Ω⊗C the anti-holomorphic complex tangent space
to ∂Ω, i.e. the elements of T ′′x , x ∈ ∂Ω, are the vectors

∑n
j=1 aj

∂
∂zj

, aj ∈ C,

such that
∑

j aj
∂r
∂zj

(x) = 0. (This notation follows [6], p. 141.) On the open

subset Um of ∂Ω where ∂r
∂zm
6= 0 (as m ranges from 1 to n, these subsets cover

all of ∂Ω), T ′′ is spanned by the n− 1 vector fields

Rj :=
∂

∂zj
− ∂r/∂zj
∂r/∂zm

∂

∂zm
, j 6= m.

(Thus Rj depends also on m, although this is not reflected by the notation.)
The (similarly defined) holomorphic complex tangent space T ′ is, analogously,
spanned on Um by the n− 1 vector fields

Rj :=
∂

∂zj
− ∂r/∂zj
∂r/∂zm

∂

∂zm
, j 6= m,

while the whole complex tangent space T ∂Ω⊗C is spanned there by the Rj ,

Rj and

E :=

n∑

j=1

∂r

∂zj

∂

∂zj
− ∂r

∂zj

∂

∂zj

(the “complex normal” direction).
The boundary d-bar operator ∂b : C∞(∂Ω) → C∞(∂Ω, T ′′∗) is defined as the
restriction

∂bf := df |T ′′ ,

or, more precisely, ∂bf = df̃ |T ′′ for any smooth extension f̃ of f to a neigh-
bourhood of ∂Ω in Cn (the right-hand side is independent of the choice of such
extension). On Um, T ′′∗ admits dzj |T ′′ , j 6= m, as a basis and

∂bf =
∑

j

Rjf dzj |T ′′ .

Under our parameterization of Σ by (x, t) ∈ ∂Ω×R+, the tangent bundle T Σ
is identified with T ∂Ω ×R, being spanned at each (x, tηx) ∈ Σ by Rj , Rj , E

and the extra vector T := ∂
∂t . Recall that the Levi form L′ is the Hermitian

form on T ′ defined by

L′(X,Y ) :=

n∑

j,k=1

∂2r

∂zj∂zk
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.

The strong pseudoconvexity of Ω means that L′ is positive definite. Similarly,
one has the positive-definite Levi form L′′ on T ′′ defined by

L′′(X,Y ) :=

n∑

j,k=1

∂2r

∂zk∂zj
XjY k if X =

∑

j

Xj
∂

∂zj
, Y =

∑

k

Yk
∂

∂zk
.
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In terms of the complex conjugationX 7→ X given byXj
∂
∂zj

= Xj
∂
∂zj

, mapping

T ′ onto T ′′ and vice versa, the two forms are related by

(16) L′′(X,Y ) = L′(Y ,X) ∀X,Y ∈ T ′′.

By the usual formalism, L′′ induces a positive definite Hermitian form1 on the
dual space T ′′∗ of T ′′; we denote it by L. Namely, if L′′ is given by a matrix
L with respect to some basis {ej}, then L is given by the inverse matrix L−1

with respect to the dual basis {êk} satisfying êk(ej) = δjk. An alternative
description is the following. For any α ∈ T ′′∗, let Z ′′α ∈ T ′′ be defined by

L′′(X,Z ′′α) = α(X) ∀X ∈ T ′′.

(This is possible, and Z ′′α is unique, owing to the non-degeneracy of L′′. Note
that α 7→ Z ′′α is conjugate-linear.) Then

L(α, β) = L′′(Z ′′β , Z
′′
α) = α(Z ′′β ) = β(Z ′′α).

Let, in particular, Z ′′f := Z ′′
∂bf

, so that

L′′(X,Z ′′f ) = ∂bf(X) ∀X ∈ T ′′,

and denote by Z ′f ∈ T ′ the similarly defined holomorphic vector field satisfying

L′(Y, Z ′f ) = ∂bf(Y ) ∀Y ∈ T ′,

where ∂bf := df |T ′ . Set

Zf := i(Z ′′f − Z ′f) ∈ T ′ + T ′′.

These objects are related to the symplectic structure of Σ as follows. Note that

dη = i∂∂r = i
n∑

k,l=1

∂2r

∂zk∂zl
dzk ∧ dzl,

hence
dη(X ′ +X ′′, Y ′ + Y ′′) = iL′(X ′, Y ′′)− iL′(Y ′, X ′′)

for all X ′, Y ′ ∈ T ′ and X ′′, Y ′′ ∈ T ′′. It follows that dη is a non-degenerate
skew-symmetric bilinear form on T ′ + T ′′, and

(17) dη(X,Zf ) = Xf ∀X ∈ T ′ + T ′′.

1or, perhaps more appropriately, a positive definite Hermitian bivector
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Indeed,

dη(X ′ +X ′′, Zf ) = iL′(X ′,−iZ ′f)− iL′(iZ ′′f , X ′′)
= L′(X ′, Z ′f ) + L′′(X ′′, Z ′′f )

= ∂bf(X ′) + ∂bf(X ′′) = df(X ′ +X ′′).

Let us define ET ∈ T ′ + T ′′ by

(18) dη(X,ET ) = dη(X,E) ∀X ∈ T ′ + T ′′

(again, this is possible and unambiguous by virtue of the non-degeneracy of dη
on T ′ + T ′′), and set

E⊥ :=
E − ET
η(E)

=
E − ET
i‖η‖2 .

The vector field E⊥ is usually called the Reeb vector field, and is defined by
the conditions η(E⊥) = 1, iE⊥dη = 0.

Proposition 7. Let f, g ∈ C∞(∂Ω), and let F,G be the functions on Σ ∼=
∂Ω×R+ given by

F (x, t) = t−kf(x), G(x, t) = t−mg(x).

Then the Poisson bracket of F and G is given by

{F,G}Σ = t−k−m−1
(
Zfg +mgE⊥f − kfE⊥g

)
.

Proof. Recall that the Hamiltonian vector field HF of F is the pre-dual of dF
with respect to the symplectic form ωΣ ≡ ω on Σ, namely

ω(X,HF ) = dF (X) = XF, ∀X ∈ T Σ.

Since F = t−kf(x), we have dF = t−kdf − kt−k−1fdt, so

(19) HF = t−kHf − kt−k−1fHt.

We claim that

(20) Ht = E⊥, Hf =
1

t
Zf − E⊥f T.

We check the formula for Ht, i.e.

ω(X,Ht) = dt(X) ∀X ∈ T Σ.
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For X = T ,

ω(T,E⊥) =
1

η(E)
(tdη + dt ∧ η)(T,E − ET )

=
1

η(E)
dt ∧ η(T,E − ET ) =

η(E) − η(ET )

η(E)

= 1 = dt(T ),

since η vanishes on T ′ + T ′′ ∋ ET . Similarly, for X = X ′ ∈ T ′,

ω(X ′, E⊥) =
1

η(E)
t dη(X ′, E⊥)

vanishes by the definition (18) of ET , and so does dt(E⊥) since E⊥ contains no
t-differentiations. Analogously for X = X ′′ ∈ T ′′. Finally, for X = E we have

ω(E,E⊥) = − 1

η(E)
ω(E,ET ) = − 1

η(E)
t dη(E,ET )

= − 1

η(E)
t dη(ET , ET ) = 0 = dt(E),

where in the third equality we have used (18) for X = ET .
Next we check the formula for Hf . For X = T , both ω(X,Hf) and df(X) are
zero. For X ∈ T ′ + T ′′, we have ω(X,T ) = dt∧ η(X,T ) = −η(X) = 0 and the
equality follows by (17). Finally for X = E

ω(E,Hf ) = t dη(E, 1tZf) + dt ∧ η(E,−E⊥f T )

= dη(ET , Zf ) + η(E)E⊥f

= ET f + η(E)E⊥f by (17)

= ET f + (E − ET )f,

which indeed coincides with df(E) = Ef .
By (20) and (19), we thus get

HF = t−k−1Zf − t−kE⊥f T − kt−k−1fE⊥.

Consequently,

{F,G}Σ = ω(HF , HG) = HFG

= t−k−m−1Zfg +mt−k−m−1gE⊥f − kt−k−m−1fE⊥g,

and the assertion follows. �
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Corollary 8. Let f, g ∈ C∞(∂Ω), and denote by f, g also the corresponding
functions on Σ ∼= ∂Ω×R+ constant on each fiber. Then

{f, g}Σ =
1

t
Zfg = i

L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
.

Proof. Immediate upon taking m = k = 0 in the last proposition, and observing
that

1

i
Zfg = Z ′′f g − Z ′fg = dg(Z ′′f )− dg(Z ′f )

= ∂bg(Z ′′f )− ∂bg(Z ′f ) = ∂bg(Z ′′f )− ∂bg(Z ′f )

= L(∂bg, ∂bf)− L(∂bg, ∂bf),

since Z ′f = Z ′′
f

by virtue of (16). �

We are now ready to state the main result of this section and, in some sense,
of this paper.

Theorem 9. Let U , W have the same meaning as in Proposition 2. Then for
f, g ∈ C∞(Ω),

U∗(Tfg −TgTf )U = WTQW
∗,

where TQ is a generalized Toeplitz operator on ∂Ω of order −1 with principal
symbol

(21) σ(TQ)(x, tηx) =
1

t
L(∂bf, ∂bg)(x).

Proof. By Proposition 2,

U∗(Tfg −TgTf )U = W (TQfg − TQgTQf )W ∗,

where TQf = T
−1/2
Λ TΛfT

−1/2
Λ is a generalized Toeplitz operator of order 0 with

symbol σ(TQf )(x, ξ) = f(x). By (P1) and (P4), the expression TQfg −TQgTQf
is thus a generalized Toeplitz operator TQ of order 0 with symbol σ(TQ) =
σ(TQfg ) − σ(TQg )σ(TQf ) = fg − gf = 0; thus by (P6), it is indeed, in fact,
a generalized Toeplitz operator of order −1. It remains to show that its symbol,
which we denote by ρ(f, g), is given by (21).
By the general theory, ρ(f, g) is given by a local expression, i.e. one involving
only finitely many derivatives of f and g at the given point, and linear in f
and g. (Indeed, the proof of Proposition 2.5 in [5] shows that the construction,
for a given ΨDO Q, of the ΨDO P from property (P2), i.e. such that TQ = TP
and [P,Π] = 0, is completely local in nature, so the total symbol of the P
corresponding to Q = Λf is given by local expressions in terms of the total
symbol of Λf , hence, by local expressions in terms of f ; the claim thus follows
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from the product formula for the symbol of ΨDOs.) It is therefore enough to
show that

(22) ρ(f, g) =
1

t
L(∂bf, ∂bg)

for functions f, g of the form uv, with u, v holomorphic on Ω. 2 Next, if u
and v are holomorphic on Ω, then TvTf = Tvf and TfTu = Tfu for any f ;
consequently, using Proposition 2 and (11),

U∗(Tufvg −TvgTuf )U = U∗Tv(Tfg −TgTf )TuU

= U∗TvUU
∗(Tfg −TgTf )UU∗TuU

= WTQvW
∗W (TQfg − TQgTQf )W ∗WTQuW

∗

= WTQv (TQfg − TQgTQf )TQuW
∗.

By (P4) we see that
ρ(uf, vg) = u ρ(f, g) v.

Since also
L(∂buf, ∂bvg) = uL(∂bf, ∂bg) v

(because ∂b(uf) = u ∂bf for holomorphic u), it in fact suffices to prove (22)
when f, g are both conjugate-holomorphic, i.e. ∂bf = ∂bg = 0. However, in that
case Tfg = TfTg, so, using again Proposition 2 and (11),

U∗(Tfg −TgTf )U = U∗[Tf ,Tg]U = [U∗TfU,U
∗TgU ]

= [WTQfW
∗,WTQgW

∗] = W [TQf , TQg ]W ∗,

implying that

ρ(f, g) = σ([TQf , TQg ])

= 1
i {σ(TQf ), σ(TQg )}Σ

= 1
i {f, g}Σ

=
L(∂bf, ∂bg)− L(∂bg, ∂bf)

t
by Corollary 8

= 1
t L(∂bf, ∂bg),

completing the proof. �

Remark 10. It seems much more difficult to obtain a formula for the symbol
of TPQ − TPTQ for general ΨDOs P and Q. �

We are now ready to prove the main result on Dixmier traces.

2In fact, even holomorphic polynomials u, v would do.
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Theorem 11. Let f1, g1, . . . , fn, gn ∈ C∞(Ω). Then the operator

H = H∗g1Hf1H
∗
g2Hf2 . . . H

∗
gnHfn

on L2
hol(Ω) belongs to the Dixmier class, and

(23) Trω(H) =
1

n!(2π)n

∫

∂Ω

L(∂bf1, ∂bg1) . . .L(∂bfn, ∂bgn) η ∧ (dη)n−1.

In particular, H is measurable.

Proof. Denote, for brevity, Vj := T
−1/2
Λ (TΛfjgj −TΛgj T

−1
Λ TΛfj )T

−1/2
Λ . We have

seen in the last theorem that H∗gjHfj = Tgjfj −TgjTfj satisfies

U∗H∗gjHfjU = WVjW
∗

and that Vj is a generalized Toeplitz operator of order −1 with symbol given by

σ(Vj)(x, tηx) = 1
tL(∂bfj, ∂bgj). By iteration and using (11), it follows that

U∗H∗g1Hf1H
∗
g2Hf2 . . . H

∗
gnHfnU = WV1V2 . . . VnW

∗ = WVW ∗,

where V := V1V2 . . . Vn is a generalized Toeplitz operator of order −n with
symbol σ(V )(x, tηx) = t−n

∏n
j=1 L(∂bfj , ∂bgj). An application of Theorem 3

completes the proof. �

Corollary 12. Let f be holomorphic on Ω and C∞ on Ω. Then |Hf |2n is in
the Dixmier class, measurable, and

Trω(|Hf |2n) =
1

n!(2π)n

∫

∂Ω

L(∂bf, ∂bf)n η ∧ (dη)n−1.

By standard matrix algebra, one has3

L(∂bf, ∂bg) =

[
∂g̃
0

]∗ [
∂∂r ∂r
∂r 0

]−1 [
∂f̃
0

]
,

3Let, quite generally, X be an operator on Cn, u ∈ Cn, and denote by A the compression
of X to the orthogonal complement u⊥ of u, i.e. A = PX|RanP where P : Cn → u⊥ is

the orthogonal projection. Assume that A is invertible. Then the block matrix

[

X u
u∗ 0

]

∈

C
(n+1)×(n+1) is invertible, and for any v, w ∈ C

n,

〈A−1Pv, Pw〉 =

[

w
0

]∗ [
X u
u∗ 0

]−1 [
v
0

]

.

Indeed, switching to a convenient basis we may assume that u = [0, . . . , 0, 1]t. Write X =
[

A b
c∗ d

]

, with b, c ∈ Cn, d ∈ C. Then

[

X u
u∗ 0

]

=





A b 0
c∗ d 1
0 1 0



 =





1 0 b
0 1 d
0 0 1









A 0 0
0 0 1
0 1 0









1 0 0
0 1 0
c∗ 0 1



 ,
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where f̃ , g̃ are any smooth extensions of f, g ∈ C∞(∂Ω) to a neighbourhood
of ∂Ω.
In particular, for Ω = Bd, the unit ball, with the defining function r(z) =
|z|2 − 1, we obtain

(24) L(∂bf, ∂bg) =
n∑

j=1

∂f̃

∂zj

∂g̃

∂zj
−Rf̃Rg̃,

where R :=
∑n

j=1 zj
∂
∂zj

is the anti-holomorphic radial derivative. One also

easily checks that η ∧ (dη)n−1 = (2π)n dσ where dσ is the normalized sur-
face measure on ∂Bn. The last two theorems thus recover, as they should,
the results from [12] (Theorem 4.4 — which is the formula (3) above — and
Corollary 4.5 there).
Note also that for n = 1, the expression (24) vanishes; in this case U∗H∗gHfU

is thus in fact of order not −1 but −2 (so that |H∗gHf |1/2 is in the Dixmier
class rather than H∗gHf ), and some additional work is needed to compute the
symbol (and, from it, the Dixmier trace); see [13].
Finally, we pause to remark that the value of the integral (23) remains un-
changed under biholomorphic mappings, as well as changes of the defining
function. Indeed, if r is replaced by gr, with g > 0 on ∂Ω, then T ′′ and ∂b are
unaffected, while the Levi form L on T ′′ gets multiplied by g. Hence its dual
L gets multiplied by g−1, and as η ∧ (dη)n−1 transforms into gnη ∧ (dη)n−1

(cf. Remark 4), the integrand in (23) does not change. Similarly, if φ : Ω1 → Ω2

is a biholomorphic map and r is a defining function for Ω2, one can choose φ◦r
as the defining function for Ω1; then it is immediate, in turn, that φ sends
T ′ into T ′ and T ′′ into T ′′, and that it transforms each of η, η ∧ (dη)n−1,
∂b, ∂b, L and L into the corresponding object on the other domain. Hence
L(∂bf, ∂bg) = (φ∗L)(φ∗∂bf, φ∗∂bg) = L(∂b(f ◦ φ), ∂b(g ◦ φ)) and, finally,
φ∗(
∏
j L(∂bfj , ∂bgj) η ∧ (dη)n−1) =

∏
j L(∂b(fj ◦ φ), ∂b(gj ◦ φ)) η ∧ (dη)n−1,

proving the claim. Note that e.g. even in the formula (3) for Ω = Bn, the
invariance of the value of the integral under biholomorphic self-maps of the
ball is definitely not apparent.

5. Concluding remarks

5.1 Manifolds. The results in this paper should all be generalizable to arbi-
trary strictly pseudoconvex manifolds.

whence





1 0 0
0 1 0
c∗ 0 1





[

X u
u∗ 0

]−1




1 0 b
0 1 d
0 0 1



 =





A 0 0
0 0 1
0 1 0





−1

=





A−1 0 0
0 0 1
0 1 0



 ,

and the claim follows.
The formula for L(∂bf, ∂bg) is obtained upon taking X = L, u = ∂r, v = ∂f and w = ∂g.
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5.2 Residual trace. Comparing Theorem 3 with the results of Guillemin
[16] [17], we see that the Dixmier trace for generalized Toeplitz operators coin-
cides (possibly up to different normalization) with the residual trace of Wodz-
icki, Guillemin, Manin and Adler. This is completely analogous to the situation
for ΨDOs, cf. Connes [8], Theorem 1.

5.3 Nonsmooth symbols. For the unit disc D in C, the analogue of Corol-
lary 12 is

Trω(|Hf |) =

∫

∂D

|f ′(eiθ)| dθ
2π

for f holomorphic on D and smooth on D; see [13]. It was shown in [13] that
the smoothness assumption can be dispensed with: namely, for f holomorphic
on D, |Hf | ∈ SDixm if and only if f ′ belongs to the Hardy 1-space H1(∂D),
and then

Trω(|Hf |) = ‖f ′‖H1 .

We expect that the same situation prevails also for general domains Ω of the
kind studied in this paper, in the following sense. For f holomorphic on Ω,
denote

Lf (z) :=

[
∂f
0

]∗ [
∂∂r ∂r
∂r 0

]−1 [
∂f
0

]
(z).

This is a smooth function defined in some neighbourhood of ∂Ω in Ω, whose
boundary values coincide with L(∂bf, ∂bf) if f is smooth up to the boundary.

Conjecture. Let f be holomorphic on Ω. Then |Hf |2n ∈ SDixm if and only if

‖f‖L := lim sup
ǫց0

( 1

n!(2π)n

∫

r=−ǫ
|Lf |n |η ∧ (dη)n−1|

)1/2n

is finite, and then
Trω(|Hf |2n) = ‖f‖2nL .

The proof for the disc went by showing first that ‖f ′‖H1 actually dominates
the SDixm norm of |Hf |; the result then followed from the one for f ∈ C∞(D)
by a straightforward approximation argument. This approach might also work
for general domains Ω (with ‖f‖L and |Hf |2n replacing ‖f ′‖H1 and |Hf |), but

the techniques for doing so (estimates for the oscillation of f ′ on Carleson-type
rectangles, etc.) are outside the scope of this paper.

5.4 Higher type. The generalized Toeplitz operators on H2(∂Ω) of higher

type m, m = 1, 2, . . . , are defined as T
(m)
Q = ΠmQΠm, where Q is a ΨDO on

∂Ω as before and Πm is the orthogonal projection in L2(∂Ω) onto the subspace

H2
(m)(∂Ω) of functions annihilated by the m-th symmetric power of ∂b; in other

words,

H2
(m)(∂Ω) = closure of {f ∈ C∞(∂Ω) : Rj1Rj2 . . . Rjmf = 0 ∀j1, j2, . . . , jm}.
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For m = 1, this recovers the ordinary Szegö projector Π and the generalized
Toeplitz operators discussed so far. As shown in §15.3 of [5], the projectors Πm

have almost the same microlocal description as Π, so it is conceivable that our
results could also be extended to these higher type Toeplitz operators.

5.5 Weighted spaces. Our methods also work, with only minimal modifi-
cations, for L2

hol(Ω) replaced by the weighted Bergman spaces L2
hol(Ω, |r|ν ) ⊂

L2(Ω, |r|ν), with any ν > −1. The formulas in Theorems 9 and 11, and in
Corollary 12, remain unchanged (i.e. they do not depend on ν).
Finally, it is immediate from Theorem 3, the property (P4) and the proof of
Theorem 9 that the formulas in Theorem 11 and Corollary 12 also remain valid
for Hankel operators on the Hardy space H2(∂Ω).
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Abstract. This article is a spinoff of the book of Harris and Taylor
[HT], in which they prove the local Langlands conjecture for GL(n),
and its companion paper by Taylor and Yoshida [TY] on local-global
compatibility. We record some consequences in the case of genus two
Hilbert-Siegel modular forms. In other words, we are concerned with
cusp forms π on GSp(4) over a totally real field, such that π∞ is
regular algebraic (that is, π is cohomological). When π is globally
generic (that is, has a non-vanishing Fourier coefficient), and π has
a Steinberg component at some finite place, we associate a Galois
representation compatible with the local Langlands correspondence
for GSp(4) defined by Gan and Takeda in a recent preprint [GT].
Over Q, for π as above, this leads to a new realization of the Galois
representations studied previously by Laumon, Taylor and Weissauer.
We are hopeful that our approach should apply more generally, once
the functorial lift to GL(4) is understood, and once the so-called book
project is completed. An application of the above compatibility is the
following special case of a conjecture stated in [SU]: If π has nonzero
vectors fixed by a non-special maximal compact subgroup at v, the
corresponding monodromy operator at v has rank at most one.
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1 Introduction

The interplay between modular forms and Galois representations has shown to
be extremely fruitful in number theory. For example, the Hasse-Weil conjec-
ture, saying that the L-function of an elliptic curve over Q has meromorphic
continuation to C, was proved in virtue of this reciprocity. Some of the most
basic examples are Hilbert modular forms and Siegel modular forms, both very
well-studied in the literature. In this paper, we study a mixture of these. First,
we introduce the Siegel upper half-space (of complex dimension three):

H df
= {Z = X + iY ∈M2(C) symmetric, with Y positive definite}.

For a moment, we will view the symplectic similitude group GSp(4) as an affine
group scheme over Z, by choosing the non-degenerate alternating form to be

(
0 I
−I 0

)
.

Later, beyond this introduction, we will switch to a skew-diagonal form. The
similitude character is denoted by c throughout. We then consider the subgroup
GSp(4,R)+ of elements with positive similitude. It acts on H in the standard
way, by linear fractional transformations. More precisely, by the formula:

gZ = (AZ +B)(CZ +D)−1, g =

(
A B
C D

)
∈ GSp(4,R)+, Z ∈ H.

The automorphy factor CZ+D will be denoted by j(g, Z) from now on. Next,
we look at the d-fold product of this setup. In more detail, we will concentrate
on a discrete subgroup Γ inside GSp(4,R)+d, and its diagonal action on Hd.
To exhibit examples of such Γ, we bring into play a totally real number field F ,
of degree d over Q, and label the real embeddings by σi. This ordering is used
to identify GSp(4,O)+ with a discrete subgroup Γ. Here the plus signifies that
we look at elements whose similitude is a totally positive unit in O, the ring of
integers in F . Finally, in order to define modular forms for Γ, we fix weights

ki = (ki,1, ki,2), ki,1 ≥ ki,2 ≥ 3, i = 1, . . . , d.

For each i, introduce the irreducible algebraic representation ρki of GL(2,C),

Symki,1−ki,2(C2)⊗ detki,2 .

The underlying space of ρki is just a space of polynomials in two variables,
homogeneous of a given degree. Following [Bai], we then define a Hilbert-
Siegel modular form for Γ, with weights ki, to be a holomorphic vector-valued
function

f : Hd →
d⊗

i=1

Symki,1−ki,2(C2)⊗ detki,2
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satisfying the following transformation property for every Z ∈ Hd and γ ∈ Γ:

f(γZ) =

d⊗

i=1

ρki(c(γi)
−1j(γi, Zi)) · f(Z).

Such f are automatically holomorphic at infinity, by the Koecher principle.
The form is often assumed to be cuspidal, that is, it vanishes at infinity. These
modular forms have rich arithmetic properties. To exploit them, it is useful
to switch to an adelic setup and instead look at automorphic representations.
For instance, this immediately gives rise to a workable Hecke theory. Thus,
from now on in this paper, instead of f we will focus on a cuspidal automor-
phic representation π of GSp(4) over the totally real field F . The analogues
of Hilbert-Siegel modular forms are those π which are holomorphic discrete
series at infinity. It is a basic fact that such π do not admit Whittaker mod-
els. However, it is generally believed that the L-function of π coincides with
the L-function of a π′ which does admit a Whittaker model. Hence, for our
purposes, there is no serious harm in assuming the existence of such a model.
For a while though, let us not make this assumption, and explain in detail
the expectations regarding Hilbert-Siegel modular forms and their associated
Galois representations.

Let π be a cuspidal automorphic representation of GSp(4) over some totally
real field F , and denote by Sπ the set of finite places where π is ramified. For
each infinite place v, we assume that πv is an essentially discrete series repre-
sentation, and that πv has central character a 7→ a−w. Here w is an integer,
independent of v. Under these assumptions, and a choice of an isomorphism
ι : Q̄ℓ → C, it is expected that there should be a semisimple continuous Galois
representation

ρπ,ι : Gal(F̄ /F )→ GL4(Q̄ℓ)

with the following properties: ρπ,ι is unramified at v /∈ Sπ not dividing ℓ, and

Lv(s−
3

2
, π, spin) = det(1− ιρπ,λ(Frobv) · q−sv )−1.

Here Frobv is the geometric Frobenius. More prudently, the above spin L-
factor should actually lie in L[q−sv ] for some number field L inside C, and
instead of ι one could focus on the finite place of L it defines. In the rational
case F = Q, the existence of ρπ,ι is now known, due to the work of many people
(Chai-Faltings, Laumon, Shimura, Taylor and Weissauer). See [Lau] and [Wei]
for the complete result. For arbitrary F , not much is known. Of course,
when π is CAP (cuspidal associated to parabolic), or a certain functorial lift
(endoscopy, base change or automorphic induction), ρπ,ι is known to exist by
[BRo]. However, in most of these cases ρπ,ι is reducible. In the opposite case,
that is, when π genuinely belongs to GSp(4), the representation ρπ,ι should be
irreducible. Obviously, this is the case we are interested in. Actually, we will
aim higher and consider the ramified places Sπ too. The impetus for doing
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so, is the recent work of Gan and Takeda [GT], in which they prove the local
Langlands conjecture for GSp(4). To an irreducible admissible representation
πv, they associate an L-parameter

recGT(πv) : W ′Fv = WFv × SL(2,C)→ GSp(4,C).

The notation recGT is ours. This correspondence is natural in a number of
respects. For example, it preserves the L- and ǫ-factors defined by Shahidi in
the generic case [Sha]. See section 2.2.2 below for a discussion of the com-
plete list of desiderata. Now, the representation ρπ,ι should satisfy local-global
compatibility. That is, for any finite place v (not dividing ℓ), the restriction
ρπ,ι|WFv

should correspond to recGT(πv) through the usual dictionary [Tat].
As it stands, this is only morally true; one has to twist πv. The precise folklore
prediction is:

Conjecture. Let π be a cuspidal automorphic representation of GSp(4) over
some totally real field F . Assume there is a cuspidal automorphic representa-
tion of GL(4) over F , which is a weak lift of π. Moreover, we assume that

π◦
df
= π ⊗ |c|w2 is unitary, for some w ∈ Z.

Finally, at each infinite place v, we assume that πv is an essentially discrete
series representation with the same central and infinitesimal character as the
finite-dimensional irreducible algebraic representation Vµ(v) of highest weight

t =




t1
t2

t3
t4


 7→ t

µ1(v)
1 t

µ2(v)
2 c(t)δ(v)−w, δ(v)

df
=

1

2
(w − µ1(v)− µ2(v)).

Here µ1(v) ≥ µ2(v) ≥ 0 are integers such that µ1(v)+µ2(v) has the same parity
as w. In particular, the central character ωπv is of the form a 7→ a−w at each
infinite place v. Under these assumptions, for each choice of an isomorphism
ι : Q̄ℓ → C, there is a unique irreducible continuous representation

ρπ,ι : Gal(F̄ /F )→ GSp4(Q̄ℓ)

characterized by the following property: For each finite place v ∤ ℓ of F , we
have

ιWD(ρπ,ι|WFv
)F−ss ≃ recGT(πv ⊗ |c|−

3
2 ).

Moreover, π◦ is tempered everywhere. Consequently, ρπ,ι is pure of weight

w
df
= w + 3. The representation ρπ,ι has the following additional properties:

• ρ∨π,ι ≃ ρπ,ι ⊗ χ−1 where the similitude character χ = ωπ◦ · χ−wcyc is totally
odd.

• The representation ρπ,ι is potentially semistable at any finite place v|ℓ.
Moreover, ρπ,ι is crystalline at a finite place v|ℓ when πv is unramified.
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• The Hodge-Tate weights are given by the following recipe: Fix an infinite
place v, and use the same notation for the place above ℓ it defines via ι.

dimQ̄ℓ gr
j(ρπ,ι ⊗Fv BdR)Gal(F̄v/Fv) = 0,

unless j belongs to the set

δ(v) + {0, µ2(v) + 1, µ1(v) + 2, µ1(v) + µ2(v) + 3},

in which case the above dimension is equal to one.

The notation used will be explained carefully in the main body of the text
below. Our main result is a proof of this conjecture in a substantial number of
cases. The depth (and the Swan conductor) are defined below in Section 4.5,
as is JQ.

Main Theorem.

(a) The above conjecture holds for globally generic π such that, for some finite
place v, the local component πv is an unramified twist of the Steinberg
representation.

(b) Let ρπ,ι be the Galois representation attached to a globally generic cusp
form π as in part (a). Let v ∤ ℓ be a finite place of F such that πv is
Iwahori-spherical and ramified. Then ρπ,ι|IFv acts unipotently. Moreover,

– πv of Steinberg type ⇐⇒ monodromy has rank 3.

– πv has a unique JQ-fixed line ⇐⇒ monodromy has rank 2.

– πv para-spherical ⇐⇒ monodromy has rank 1.

(c) Let ρπ,ι be the Galois representation attached to a globally generic cusp
form π as in part (a). Let v ∤ ℓ be a finite place of F such that πv is
supercuspidal, and not a lift from GO(2, 2). Then ρπ,ι|WFv

is irreducible.
Furthermore, ρπ,ι is trivial on some finite index subgroup of IFv , and

fSwan(ρπ,ι|IFv ) = 4 · depth(πv).

Part of our original motivation for writing this paper, was to determine the
rank of the monodromy operator for ρπ,ι at a place v where πv is Iwahori-
spherical (that is, has nonzero vectors fixed by an Iwahori-subgroup). The
question is completely answered by part (b). Here JQ denotes the Klingen
parahoric, and by πv being para-spherical we mean that it has nonzero vectors
fixed by a non-special maximal compact subgroup. The first two statements in
(b) are part of the Conjecture on p. 11 in [GTi], while the latter statement in
(b) is part of Conjecture 3.1.7 on p. 41 in [SU]. The holomorphic analogue of
the latter would have applications to the Bloch-Kato conjecture for modular
forms of square-free level. See [SU] and the authors thesis [Sor].
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The proof of part (b) essentially follows from the local-global compatibility
from part (a), and the classification of the Iwahori-spherical representations
of GSp(4). The dimensions of the parahoric fixed spaces for each class of
representations were tabulated in [Sch]. We only need the generic ones. For
those six types of representations, the data are reproduced in Table A in section
4.5 below.

The proof of part (a) is an application of the monumental work of Harris-
Taylor [HT], and its refinement by Taylor-Yoshida [TY]. Let us briefly sketch
the simple strategy: First, since π is globally generic, one can lift it to an
automorphic representation Π on GL(4) using theta series, by utilizing the
close connection with GO(3, 3). This is a well-known, though unpublished,
result of Jacquet, Piatetski-Shapiro and Shalika. Other proofs exist in the
literature. For example, see [AS] for an approach using the converse theorem.
We make use of Theorem 13.1 in [GT], saying that the lift π 7→ Π is strong.
That is, compatible with the local Langlands correspondence everywhere. We
note that, by the Steinberg assumption, Π must be cuspidal. Next, we base
change Π to a CM extension E over F , and twist it by a suitable character
χ to make it conjugate self-dual. We can now apply [HT] and [TY] to the
representation ΠE(χ), in order to get a Galois representation ρΠE(χ),ι over E.
Since E is arbitrary, a delicate patching argument shows how to descend this
collection to F , after twisting by ρχ̌,ι.

We note that the main theorem continues to hold if some πv is a generalized
Steinberg representation of Klingen type (see section 2 below), or a supercusp-
idal not coming from GO(2, 2). The point being that the local lift Πv on GL(4)
should remain a discrete series. However, eventually the book project of the
Paris 7 GRFA seminar should make any local assumption at v superfluous. In
fact, almost complete results of S.-W. Shin have been announced very recently
(to pin down the Frobenius semisimplification, at the time of writing, one has
to make a regularity assumption, which should be removable by a p-adic de-
formation argument). See Expected Theorem 2.4 in [Har]. Furthermore, the
assumption that π is globally generic is used exclusively to get a strong lift to
GL(4). Our understanding is that the current state of the trace formula should
at least give a weak lift more generally. See [Art] in conjunction with [Whi]. In
this respect, there is a very interesting preprint of Weissauer [We2], in which
he proves that if π is a discrete series at infinity, it is weakly equivalent to a
globally generic representation. However, apparently he needs to work over Q.
Perhaps ideas from [Lab] will be useful in treating F of degree at least two.
In any case, to get a strong lift, one would have to show that the L-packets
defined in [GT] satisfy the expected character relations. This seems to be quite
difficult.

In part (c) we let fSwan denote the Swan conductor, closely related to the more
commonly used Artin conductor, and the depth of πv is defined in [MP]. The
precise definitions are recalled below in section 4.5. The proof of part (c) relies
on two essential ingredients. One is a formula, due to Bushnell and Frolich [BF],
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relating the depth to the conductor in the case of supercuspidals on GL(n). The
second is a paper of Pan, showing that the local theta correspondence preserves
depth [Pan]. In particular, if πv has depth zero, we deduce that ρπ,ι is tamely
ramified at v. We finish the paper with another criterion for tame ramification,

due to Genestier and Tilouine [GTi] over Q: Suppose π
JQ,χ
v is nonzero, for

some non-trivial character χ of F∗v inflated to the units, then ρπ,ι is tamely
ramified:

ρπ,ι|IFv = 1⊕ 1⊕ χ⊕ χ.
Here χ is the character of IFv obtained via local class field theory. Moreover,
one can arrange for the two eigenspaces, for 1 and χ, to be totally isotropic.

From our construction of the compatible system ρπ,ι in part (a), one deduces
that it is motivic in the sense defined on p. 60 in [BRo]: There is a smooth
projective variety X/F , and an integer n, such that ρπ,ι is a constituent of

Hj(X ×F F̄ , Q̄ℓ)(n),

for all ℓ, where w = j − 2n. By invoking the Weil restriction, it is enough to
show the analogous result for ρπ,ι|ΓE for some CM extension E over F . For a
detailed argument, we refer to the proof of Proposition 5.2.1 on p. 86 in [BRo].
Over E, the variety is a self-product of the universal abelian variety over a
simple Shimura variety. See the bottom isomorphism on p. 98 in [HT]. As in
the case of Hilbert modular forms [BRo], one would like to have actual motives
over E associated with π. Seemingly, one of the main obstacles in deriving this
from [HT] is a multiplicity one issue for the unitary groups considered there:
Is the positive integer a in part (6) on p. 12 of [TY] in fact equal to one?
Conjecturally, one should even have motives over F attached to π. Even over
Q this is not yet known. One problem is that the Hecke correspondences on a
Siegel threefold do not extend to a given toroidal compactification. For a more
thorough discussion of these matters, and a slightly different approach, see [H].

Many thanks are due to D. Ramakrishnan for his suggestion that I should
look at the Hilbert-Siegel case by passing to a CM extension, and for sharing
his insights on many occasions. I am also grateful to M. Harris for useful
correspondence regarding the patching argument in section 4.3. Finally, I am
thankful to C. Skinner and A. Wiles for discussions relevant to this paper, and
for their encouragement and support.

2 Lifting to GL(4)

We will describe below how to transfer automorphic representations of GSp(4),
of a certain type, to GL(4). Throughout, we work over a totally real base field
F . Let us take π to be a globally generic cuspidal automorphic representation
of GSp(4), with central character ωπ. We do not assume it is unitary. For v|∞,

πv ≃ πWµ(v), µ1(v) ≥ µ2(v) ≥ 0, µ1(v) + µ2(v) ≡ w (mod 2).

Documenta Mathematica 15 (2010) 623–670



630 Claus M. Sorensen

The notation is explained more carefully below. Here we fix the integer w such
that ωπv takes nonzero a 7→ a−w for all archimedean places v. In particular,

π◦
df
= π ⊗ |c|w2 is unitary.

Using theta series, one can then associate an automorphic representation Π of
GL(4) with the following properties: It has central character ω2

π, and satisfies1

• Π⊗ ω−1π ≃ Π∨.

• For v|∞, the L-parameter of Πv has the following restriction to C∗,

z 7→ |z|−w ·




(z/z̄)
ν1+ν2

2

(z/z̄)
ν1−ν2

2

(z/z̄)−
ν1−ν2

2

(z/z̄)−
ν1+ν2

2


 ,

where ν1 = µ1 + 2 and ν2 = µ2 + 1 give the Harish-Chandra parameter of
πv. Here we suppress the dependence on v, and simply write µi = µi(v).

• L(s,Πv) = L(s, πv, spin), for finite v such that πv is unramified.

In fact, Gan and Takeda have recently defined a local Langlands correspondence
for GSp(4) such that the above lift is strong. That is, the L-parameters of πv
and Πv coincide at all places v. For later applications, we would like Π to
have a square-integrable component. Using table 2 on page 51 in [GT], we can
ensure this by assuming the existence of a finite place v0 where πv0 is of the
form

πv0 =

{
StGSp(4)(χ)

St(χ, τ)
=⇒ Πv0 =

{
StGL(4)(χ)

St(τ).

Here StGSp(4)(χ) is the Steinberg representation twisted by the character χ,
which need not be unramified. Also, Πv0 is supercuspidal if πv0 is a super-
cuspidal not coming from GO(2, 2). Most of the notation used here is self-
explanatory, except maybe the symbol St(χ, τ): It denotes the generalized
Steinberg representation, of Klingen type, associated to a supercuspidal τ on
GL(2) and a non-trivial quadratic character χ such that τ ⊗ χ = τ . We refer
to page 35 in [GT] for more details. As a bonus, the existence of such a place
v0 guarantees that Π is cuspidal: Otherwise, π is a theta lift from GO(2, 2),
but by [GT] the above πv0 do not participate here.

2.1 The archimedean case

2.1.1 Discrete series for GL(2,R)

In this section, we briefly set up notation for the discrete series representations
of GL(2,R). Throughout we use Harish-Chandra parameters, as opposed to

1We normalize the isomorphism W ab
R ≃ R∗ using the absolute value |z|C

df
= |z|2.
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Blattner parameters. We will follow the notation of [Lau]. Thus, for each posi-
tive integer n, we let σn be the unique (essentially) discrete series representation
of GL(2,R) which has the same central character and the same infinitesimal
character as the finite-dimensional irreducible representation Symn−1(C2).

σn(λ)
df
= σn ⊗ | det |λ,

for each λ ∈ C. More concretely, σn is induced from the neutral component:

σn = Ind
GL(2,R)
GL(2,R)+(σ+

n ),

where σ+
n is a certain representation of GL(2,R)+ on the Hilbert space of

f : H → C holomorphic, ‖f‖2 =

∫

H
|f(x+ iy)|2yn−1dxdy <∞.

Here H denotes the upper half-plane in C, and GL(2,R)+ acts by the formula

σ+
n

(
a c
b d

)
f(z) = (ad− bc)n(cz + d)−n−1f(

az + b

cz + d
).

If instead of z we use z̄ in the automorphy factor, this also defines a represen-
tation σ−n on the anti-holomorphic functions on H. Then σn can be thought
of as the direct sum σ+

n ⊕ σ−n , where a non-trivial coset representative acts
by reflection in the y-axis. Its Jacquet-Langlands correspondent σJL

n is simply
Symn−1(C2) viewed as a representation of the Hamilton quaternions H∗ em-
bedded into GL(2,C) in the standard fashion. Note that σn is not unitary,
unless n = 1. However, after a suitable twist it becomes unitary. Moreover,

HomGL(2,R)+(σ+
n (

1− n
2

), L2
cusp(R∗+Γ\GL(2,R)+))

can be identified with the space of weight n+1 elliptic cusp forms for the discrete
subgroup Γ. The weight n + 1 is the Blattner parameter of σn, describing its
minimal K-types. Up to isomorphism, σn is easily seen to be invariant under
twisting by the sign character of R∗. Consequently, σn is automorphically
induced from a character on C∗. More generally, its twist σn(λ) is induced
from

z 7→ |z|2λ−1zn = |z|n−1+2λ(z/z̄)
n
2 .

We want to write down an L-parameter for σn(λ). Thus, we let WR denote
the Weil group of R, generated by C∗ and an element j such that j2 = −1
and jz = z̄j for all z ∈ C∗. To σn(λ) is associated a conjugacy class of
homomorphisms

φn(λ) : WR → GL(2,C)

with semisimple images. By the above remarks, a concrete representative is:

φn(λ) : z 7→ |z|n−1+2λ ·
(

(z/z̄)
n
2

(z/z̄)−
n
2

)
, φn(λ) : j 7→

(
1

(−1)n

)
.

We note that the image of φn(λ) is bounded precisely when σn(λ) is unitary.
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2.1.2 Discrete series for GSp(4,R)

We parametrize the discrete series representations of GSp(4,R) in accordance
with [Lau]. Throughout, we realize symplectic groups with respect to the form

J =

(
S

−S

)
, S =

(
1

1

)
.

The similitude character is denoted by c. We take B to be the Borel subgroup
consisting of upper triangular matrices. The maximal torus T is of the form

T = {t =




t1
t2

t3
t4


 : c(t) = t1t4 = t2t3}.

We identify its group of rational characters X∗(T ) with the set of triples of
integers µ = µ0 ⊕ (µ1, µ2), such that µ1 + µ2 ≡ µ0 (mod 2), using the recipe:

tµ
df
= tµ1

1 tµ2

2 c(t)
µ0−µ1−µ2

2 .

Its restriction to the center Gm takes a 7→ aµ0 . Inside X∗(T ) we have the cone
of B-dominant weights X∗(T )+ consisting of all tuples µ such that µ1 ≥ µ2 ≥ 0.
By a fundamental result of Chevalley, the finite-dimensional irreducible alge-
braic representations are classified by their highest weights. For a B-dominant
weight µ as above, we let Vµ be the corresponding algebraic representation of
GSp(4). Its central character is given by µ0 as described above. To describe
the infinitesimal character of Vµ, we consider half the sum of B-positive roots:

δ
df
= 0⊕ (2, 1).

The Harish-Chandra isomorphism identifies the center of the universal envelop-
ing algebra, Z(g), with the invariant symmetric algebra Sym(tC)W . Under this
isomorphism, the aforementioned infinitesimal character corresponds to

ν
df
= µ+ δ = µ0 ⊕ (ν1, ν2) = µ0 ⊕ (µ1 + 2, µ2 + 1).

Up to infinitesimal equivalence, there are precisely two essentially discrete series
representations of GSp(4,R) with the same central character and the same
infinitesimal character as Vµ. Together, they form an L-packet,

{πWµ , πHµ }.

Here πWµ is the unique generic member, that is, it has a Whittaker model.

The other member πHµ is holomorphic, and does not have a Whittaker model.
They both have central character a 7→ aµ0 for real nonzero a. Another way to
distinguish the two representations, is to look at their (g,K)-cohomology: The
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generic member πWµ has cohomology of Hodge type (2, 1) and (1, 2), whereas

πHµ contributes cohomology of Hodge type (3, 0) and (0, 3). For example,

H3,0(g,K;πHµ ⊗ V ∗µ ) ≃ H0,3(g,K;πHµ ⊗ V ∗µ ) ≃ C,

and similarly for πWµ . We have consistently used the Harish-Chandra parameter
ν. Other authors prefer the Blattner parameter, because of its connection to
the weights of Siegel modular forms. In our case, the relation is quite simple:

k = (k1, k2), k1 = ν1 + 1 = µ1 + 3, k2 = ν2 + 2 = µ2 + 3.

See Theorem 12.21 in [Kn] for example. A word of caution: It is really only fair
to call k the Blattner parameter in the holomorphic case. In the generic case,
it does not give the highest weight of the minimal K-type. The restriction of
πHµ to the neutral component GSp(4,R)+, consisting of elements with positive

similitude, decomposes as a direct sum of a holomorphic part πH+
µ and a dual

anti-holomorphic part πH−µ . If we assume µ0 = 0, so that these are unitary,

HomGSp(4,R)+(πH+
µ , L2

cusp(R∗+Γ\GSp(4,R)+))

can be identified with cuspidal Siegel modular forms of weight k for the discrete
subgroup Γ. The minimal K-type of πH+

µ , where K is isomorphic to U(2), is

Symk1−k2(C2)⊗ detk2 .

This is the algebraic representation of GL(2,C) with highest weight tk11 t
k2
2 .

Next, we wish to explain how πWµ and πHµ can be described explicitly as certain
theta lifts: Up to equivalence, there are precisely two 4-dimensional quadratic
spaces over R of discriminant one. Namely, the anisotropic space V4,0 and
the split space V2,2. The latter can be realized as M(2,R) equipped with the
determinant. The former can be taken to be H endowed with the reduced
norm. In particular,

GSO(2, 2) = (GL(2,R)×GL(2,R))/R∗, GSO(4, 0) = (H∗ ×H∗)/R∗.

Here R∗ is embedded in the centers by taking a to the element (a, a−1).
Thus irreducible representations of GSO(2, 2) correspond to pairs of irreducible
representations of GL(2,R) having the same central character. Similarly for
GSO(4, 0). Now suppose σ and σ′ are irreducible representations of GL(2,R)
with the same central character. We say that the representation σ ⊗ σ′ is
regular if σ 6= σ′. The induced representation of the whole similitude group
GO(2, 2) then remains irreducible, and we denote it by (σ⊗ σ′)+ following the
notation of [Rob]. On the other hand, in the invariant case where σ = σ′,
there are exactly two extensions of σ ⊗ σ to a representation of GO(2, 2). By
Theorem 6.8 in [Rob], precisely one of these extensions participates in the theta
correspondence with GSp(4,R). It is again denoted by (σ⊗σ)+. The analogous
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results hold in the anisotropic case. Now, the following two identities can be
found in several places in the literature. See [Moe] for example, or Proposition
4.3.1 in [HK]:

πWµ = θ((σν1+ν2(
1

2
(µ0 − ν1 − ν2 + 1))⊗ σν1−ν2(

1

2
(µ0 − ν1 + ν2 + 1)))+),

and

πHµ = θ((σJL
ν1+ν2(

1

2
(µ0 − ν1 − ν2 + 1))⊗ σJL

ν1−ν2(
1

2
(µ0 − ν1 + ν2 + 1)))+).

Here the equalities signify infinitesimal equivalence. Since we are dealing with
theta correspondence for similitude groups, it is unnecessary to specify an
additive character. As a result, we can exhibit a parameter for the µ-packet
above:

φµ : z 7→ |z|µ0 ·




(z/z̄)
ν1+ν2

2

(z/z̄)
ν1−ν2

2

(z/z̄)−
ν1−ν2

2

(z/z̄)−
ν1+ν2

2


 ,

and

φµ : j 7→




1
1

(−1)µ0+1

(−1)µ0+1


 .

Visibly, φµ maps into the dual of the elliptic endoscopic group, consisting of




a b
e f
g h

c d


 =




1
1

1
1







a b
c d

e f
g h







1
1

1
1




−1

such that ad− bc equals eh− fg. Furthermore, the restriction of φµ ⊗ | · |−3 to
C∗ is a direct sum of distinct characters of the form z 7→ zpz̄q for two integers
p and q such that p+ q = µ0− 3. They come in pairs: If the type (p, q) occurs,
so does (q, p). We say that πWµ and πHµ are regular algebraic (up to a twist).

2.1.3 The Langlands classification for GL(4,R)

The Langlands classification for GL(4,R) describes all its irreducible admissible
representations up to infinitesimal equivalence. The building blocks are the
essentially discrete series σn(λ), and the characters sgnn(λ) of the multiplicative
group R∗. The representations of GL(4,R) are then constructed by parabolic
induction. For example, start out with the representations σn(λ) and σn′(λ′).
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We view their tensor product as a representation of the parabolic associated
with the partition (2, 2), by making it trivial on the unipotent radical. Consider

Ind
GL(4,R)
P(2,2)

(σn(λ) ⊗ σn′(λ′)),

where we use normalized induction. Consequently, this is unitary when σn(λ)
and σn′(λ′) are both unitary. By interchanging their roles, we may assume that

Re(λ) ≥ Re(λ′).

In this case, the induced representation has a unique irreducible quotient. We
denote it by σn(λ)⊞ σn′(λ′) and call it the isobaric sum. Its L-parameter is

φ = φn(λ)⊕ φn′ (λ′) : WR → GL(4,C).

We want to know when it descends to a parameter for GSp(4,R). First, in the
case where n = n′, it maps into the Levi subgroup of the Siegel parabolic:

P = {
(
A

c · τA−1
)



1 x y
1 z x

1
1


}.

Here τ is transposition with respect to the skew diagonal. This means
the packet for GSp(4,R) should be obtained by induction from the Klingen
parabolic,

Q = {



t

A
t−1 det(A)







1 z
1

1 −z
1







1 x y
1 x

1
1


}.

To be more precise, consider the following (unitarily) induced representation:

Ind
GSp(4,R)
Q (σn(λ′)⊗ | · |2λ−2λ′

).

When Re(λ) is strictly greater than Re(λ′) it has a unique irreducible quotient.
At the other extreme, when λ = λ′ it decomposes into a direct sum of two limits
of discrete series. Secondly, in the case where n 6= n′ we try to conjugate φ into
the dual of the elliptic endoscopic group. The determinant condition becomes:

λ− λ′ =
1

2
(n′ − n) ∈ Z+. (1)

If this is satisfied, the isobaric sum descends to a packet for GSp(4,R), whose
members can be constructed by theta correspondence as discussed above:

{πWµ , πHµ }, µ0 = n− 1 + 2λ, ν1 =
1

2
(n′ + n), ν2 =

1

2
(n′ − n).
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2.2 The non-archimedean case

2.2.1 The local Langlands correspondence for GL(n)

We will quickly review the parametrization of the irreducible admissible repre-
sentations of GL(n, F ), up to isomorphism, where F is a finite extension of Qp.
We will suppress F and denote this set by Π(GL(n)). This parametrization was
originally conjectured by Langlands, for any connected reductive group, and
recently proved for GL(n) in [HT] and [Hen] by two different methods. We let
WF be the Weil group of F . That is, the dense subgroup of the Galois group
acting as integral powers of Frobenius on the residue field. It gets a topology
by decreeing that the inertia group IF is open. From local class field theory,

F ∗
∼→W ab

F .

Here the isomorphism is normalized such that uniformizers correspond to lifts
of the geometric Frobenius. It is used tacitly to identify characters of F ∗ with
characters of WF . For arbitrary n, we consider the set Φ(GL(n)) consisting of
conjugacy classes of continuous semisimple n-dimensional representations

φ : W ′F = WF × SL(2,C)→ GL(n,C).

The groupW ′F is sometimes called the Weil-Deligne group. The local Langlands
correspondence is then a canonical collection of bijections recn, one for each n,

recn : Π(GL(n))
1:1→ Φ(GL(n))

associating an L-parameter φπ to a representation π. It satisfies a number of
natural properties, which in fact determine the collection uniquely. Namely,

• The bijection rec1 is given by local class field theory as above.

• For any two π ∈ Π(GL(n)) and σ ∈ Π(GL(r)), we have equalities

{
L(s, π × σ) = L(s, φπ ⊗ φσ),

ǫ(s, π × σ, ψ) = ǫ(s, φπ ⊗ φσ, ψ).

• The L-parameter of π ⊗ χ ◦ det equals φπ ⊗ χ, for any character χ.

• For any π as above, det(φπ) corresponds to its central character ωπ.

• For any π as above, recn(π∨) is the contragredient of recn(π).

Here ψ is a non-trivial character of F , used to define the ǫ-factors. The col-
lection recn does not depend on it. The L and ǫ-factors on the left-hand side
are those from [JPS]: They are first defined for generic representations, such as
supercuspidals, and then one extends the definition to all representations us-
ing the Langlands classification. For the explicit formulas, see [Kud] or [Wed].
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For the right-hand side, the definition of the L and ǫ-factors can be found in
[Tat]: The L-factors are given fairly explicitly, whereas the ǫ-factors are defined
very implicitly. One only has an abstract characterization due to Deligne and
Langlands. For a good review of these definitions, we again refer to [Wed].
It is useful to instead consider the (Frobenius semisimple) Weil-Deligne repre-
sentation of WF associated with a parameter φ as above. This is a pair (r,N)
consisting of a semisimple representation r of WF , and an operator N satisfying
the equation

r(w) ◦N ◦ r(w)−1 = |w|F ·N
for all w ∈ WF . This N is called the monodromy operator, and it is automat-
ically nilpotent. The correspondence relies on the Jacobson-Morozov theorem:

r(w) = φ(w,

(
|w|

1
2

F

|w|−
1
2

F

)
), exp(N) = φ(1,

(
1 1

1

)
).

The local Langlands correspondence recn satisfies a number of additional nat-
ural properties, expected to hold more generally, of which we mention only a
few:

• π is supercuspidal ⇔ φπ is irreducible (and the monodromy is trivial).

• π is essentially discrete series ⇔ φπ does not map into a proper Levi.

• π is essentially tempered ⇔ φπ |WF has bounded image in GLn(C).

• π is generic ⇔ the adjoint L-factor L(s,Ad ◦ φπ) has no pole at s = 1.

Here Ad denotes the adjoint representation of GLn(C) on its Lie algebra gln(C).

2.2.2 The local Langlands correspondence for GSp(4)

For GSp(4), the presence of endoscopy makes the parametrization of Π(GSp(4))
more complicated. It is partitioned into finite subsets Lφ, called L-packets, each
associated with a parameter φ as above mapping into the subgroup GSp(4,C).
We use the notation Φ(GSp(4)) for the set of GSp(4,C)-conjugacy classes of
such φ. The first attempt to define these L-packets, when p is odd, is the paper
[Vig]. The crucial case is when φ does not map into a proper Levi subgroup. In
this case, Vigneras defined certain subsets Lφ by theta lifting from various forms
of GO(4). However, she did not prove that these Lφ exhaust all of Π(GSp(4)).
The work of Vigneras was later refined, so as to include the case p = 2, in
the paper [Ro2]. More recently, Gan and Takeda [GT] were able to prove
the exhaustion, for all primes p. To do that, they used work of Muic-Savin,
Kudla-Rallis, and Henniart. The main theorem of [GT] gives a finite-to-one
surjection

L : Π(GSp(4))։ Φ(GSp(4)),

attaching an L-parameter φπ to a representation π, and having the properties:
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• π is essentially discrete series ⇔ φπ does not map into a proper Levi.

• For any generic or non-supercuspidal π ∈ Π(GSp(4)), and σ ∈ Π(GL(r)),




γ(s, π × σ, ψ) = γ(s, φπ ⊗ φσ, ψ),

L(s, π × σ) = L(s, φπ ⊗ φσ),

ǫ(s, π × σ, ψ) = ǫ(s, φπ ⊗ φσ, ψ).

• The L-parameter of π ⊗ χ ◦ c equals φπ ⊗ χ, for any character χ.

• For any π as above, c(φπ) corresponds to its central character ωπ.

In the generic case, the invariants occurring on the left-hand side of the second
condition are those from [Sha]. The definition can be extended to non-generic
non-supercuspidals, using the Langlands classification. See page 13 in [GT]. For
non-generic supercuspidals, L satisfies an additional technical identity, which
we will not state here. It expresses a certain Plancherel measure as a product of
four γ-factors. One has to include this last property to ensure the uniqueness
of L, as long as a satisfying theory of γ-factors is absent in this setup. For
completeness, let us mention a few extra properties of the map L: For a given
parameter φ, the elements of the fiber Lφ correspond to characters of the group

Aφ = π0(ZGSp(4,C)(imφ)/C∗) =

{
Z/2Z,
0.

Moreover, an L-packet Lφ contains a generic member exactly when L(s,Ad◦φ)
has no pole at s = 1. If in addition φ|WF has bounded image, the members
of Lφ are all essentially tempered, and the generic member is unique. It is
indexed by the trivial character of Aφ. Next, we wish to at least give some
idea of how the reciprocity map L is constructed in [GT]: The key is to make
use of theta liftings from various orthogonal similitude groups. In analogy with
the archimedean case, there are two 4-dimensional quadratic spaces over F
of discriminant one. We abuse notation slightly, and continue to denote the
anisotropic space by V4,0 and the split space by V2,2. They can be realized
as D equipped with the reduced norm, where D is a possibly split quaternion
algebra over F . Again,

GSO(2, 2) = (GL(2, F )×GL(2, F ))/F ∗, GSO(4, 0) = (D∗ ×D∗)/F ∗,

as previously, where D is here the division quaternion algebra. Furthermore,
one looks at the 6-dimensional quadratic space D⊕V1,1. When D is split, this
is simply V3,3. There is then a natural isomorphism, as given on page 9 in [GT],

GSO(3, 3) = (GL(4, F )× F ∗)/{(a · I, a−2) : a ∈ F ∗}.

Now, start with an irreducible representation π of GSp(4, F ). By Theorem 5.3
in [GT], which relies on the work [KR] of Kudla and Rallis on the conservation
conjecture, it follows that there are two possible mutually exclusive scenarios:
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1. π participates in the theta correspondence with GSO(4, 0),

2. π participates in the theta correspondence with GSO(3, 3).

In the first case, one has two essentially discrete series representations σ and
σ′ of GL(2, F ) having the same central character, such that π is the theta lift

π = θ((σJL ⊗ σ′JL)+) = θ((σ′JL ⊗ σJL)+).

By the local Langlands correspondence for GL(2), we have associated parame-
ters φσ and φσ′ with equal determinants. We then conjugate their sum φσ⊕φσ′

into the dual of the elliptic endoscopic group as in the archimedean case,

φπ = φσ ⊕ φσ′ : W ′F → GL(2,C)×C∗ GL(2,C) ⊂ GSp(4,C).

In the second case, we write θ(π) as a tensor product Π⊗ωπ for an irreducible
representation Π of GL(4, F ). The local Langlands correspondence for GL(4)
yields a parameter φΠ. We need to know that it maps into GSp(4,C) after
conjugation. When π is a discrete series, this follows from a result of Muic and
Savin [MS], stated as Theorem 5.4 in [GT]: Indeed, the exterior square L-factor

L(s,Π,∧2 ⊗ ω−1π )

has a pole at s = 0. When π is not a discrete series, Gan and Takeda compute
θ(π) explicitly, using standard techniques developed by Kudla. For a summary,
we refer to Table 2 on page 51 in their paper [GT]. It follows by inspection that
φΠ can be conjugated into a Levi subgroup of GSp(4,C). Their computation
works even for p = 2, and hence completes the exercise of Waldspurger [Wal].
Finally, in Proposition 11.1 of [GT], it is shown by a global argument that the
above construction is consistent with that of Vigneras and Roberts.

2.3 The globally generic case

In the global situation, functoriality predicts that one should be able to transfer
automorphic representations from GSp(4) to GL(4). It is widely believed that
this should eventually follow by using trace formula techniques. See [Art] for
a discussion on this approach. In the globally generic case, it has been known
for some time that one can obtain (weak) lifts using theta series. This was
first announced by Jacquet, Piatetski-Shapiro and Shalika, but to the best of
our knowledge they never wrote it up. However, many of the details are to be
found in [Sou]. Moreover, there is an alternative proof in [AS] relying on the
converse theorem. In this section, we wish to quote a recent refinement of the
above transfer, due to Gan and Takeda [GT]. First, for completeness, let us
recall the notion of being globally generic: Consider the upper-triangular Borel
subgroup

B = {




s
t

ct−1

cs−1







1 u
1

1 −u
1







1 x y
1 z x

1
1


}.
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We let N denote its unipotent radical. Now let F be a number field, and pick
a non-trivial character ψ of AF trivial on F . By looking at ψ(u + z) we can
view it as an automorphic character of N . An automorphic representation π of
GSp(4) over F is then said to be globally generic if the Whittaker functional

f 7→
∫

N(F )\N(AF )

f(n)ψ−1(n)dn, f ∈ π,

is not identically zero. This notion does not depend on ψ. As a consequence
of the theta series approach we are about to discuss, Soudry proved the strong
multiplicity one property in [Sou] for globally generic cusp forms π on GSp(4).
As mentioned above, the exterior square ∧2 defines an isogeny between the
groups GL(4) and GSO(3, 3). Thus, we need the global theta correspondence
for similitude groups. For this, we refer to section 5 of [HK], noting that the
normalization there differs slightly from [GT]. We will quickly review the main
features of the definition: The Weil representation ωψ extends naturally to

R = {(g, h) ∈ GSp(4)×GO(3, 3) : c(g) · c(h) = 1}.

Then, a Schwartz-Bruhat function ϕ defines a theta kernel θϕ on R by the
usual formula. The theta series lifting of a form f in π is hence given by the
integral

θϕ(f)(h) =

∫

Sp(4,F )\Sp(4,AF )

θϕ(ggh, h)f(ggh)dg,

where gh is any element with inverse similitude c(h). The space spanned by all
such theta series θϕ(f) constitute an automorphic representation of GO(3, 3),
which we will denote by θ(π). It is independent of ψ. By Proposition 1.2
in [Sou], it is nonzero precisely when π is globally generic. In fact, one can
express the Whittaker functional for θ(π) in terms of that for π given above.
In particular, θ(π) is always generic, even though it may not be cuspidal. From
now on, we will only view θ(π) as a representation of the subgroup GSO(3, 3).
As such, it remains irreducible. See Lemma 3.1 in [GT] for example. In turn,
via the identification ∧2 we view θ(π) as a representation Π ⊗ ωπ. We then
have:

Theorem 1. The global theta lifting π 7→ θ(π) = Π ⊗ ωπ defines an injec-
tion from the set of globally generic cuspidal automorphic representations π
of GSp(4) to the set of generic automorphic representations Π of GL(4) with
central character ωΠ = ω2

π. Moreover, this lifting has the following properties:

• Π ≃ Π∨ ⊗ ωπ.

• It is a strong lift, that is, φΠv = φπv for all places v.

• The image of the lifting consists precisely of those Π satisfying:

1. Π is cuspidal and LS(s,Π,∧2 ⊗ ω−1π ) has a pole at s = 1, or
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2. Π = σ ⊞ σ′ for cuspidal σ 6= σ′ on GL(2) with central character ωπ.

In the latter case, π is the theta lift of the cusp form σ⊗σ′ on GSO(2, 2).

Proof . See section 13 in [GT]. �

The refinements, due to Gan and Takeda, are primarily: The characterization
of the image, and the fact that the global lift is compatible with the local
Langlands correspondence at all (finite) places. The result that the lift is
strong, in this sense, essentially follows from the construction of the local
reciprocity map. However, locally one has to check that φΠ is equivalent to
φσ⊕φσ′ , when π is the theta lift of any σ⊗σ′ on GSO(2, 2). This is the content
of Corollary 12.13 in [GT]. It is a result of their explicit determination of the
theta correspondence.

3 Base change to a CM extension

In this section we will construct representations, for which the results from [HT]
on Galois representations apply. For that purpose, we will fix an arbitrary CM
(quadratic) extension E/F , and an arbitrary Hecke character χ of E with the
property:

χ|A∗
F

= ω−1π .

Since ωπv is of the form a 7→ a−w at each infinite place v, it follows that
every such χ is automatically algebraic. For all but finitely many E, the global
base change ΠE , to be defined below, is cuspidal. In fact, we will choose a
suitable quadratic CM extension E of F such that v0 is totally split in E, and
a suitable Hecke character χ of E. The suitability refers to the fact that the
Arthur-Clozel base change ΠE will be cuspidal, and that its twist by χ will be
conjugate self-dual,

ΠE(χ)θ ≃ ΠE(χ)∨.

Furthermore, ΠE(χ) is regular algebraic of weight zero, and we can arrange for
it to have at least one square integrable component, by imposing the condition
that E splits completely at v0. Hence Theorem C in [HT] applies. In this
section, we briefly review results of Arthur and Clozel on base change for GL(n),
and discuss the compatibility with the local Langlands correspondence.

3.1 Local base change

Now that the p-adic local Langlands correspondence is available for GL(n), due
to the works of Harris-Taylor and Henniart, base change makes sense for an
arbitrary finite extension of local fields E/F . Indeed, a representation ΠE of
GL(n,E) is the base change of a representation Π of GL(n, F ) precisely when

φΠE = φΠ|W ′
E
.
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However, eventually we will use results from [AC]. At the time this book was
written, one had to resort to a harmonic analytic definition of base change which
we will review below. Fortunately, the compatibility of the two definitions has
been checked by other authors. We will give precise references later. The latter
definition only works for a cyclic extension E/F . For simplicity, we take it to be
quadratic, and let θ be the non-trivial element in its Galois group. By lemma
1.1 in [AC], the norm map on GL(n,E), taking γ 7→ γγθ, defines an injection

N : {θ-conjugacy classes in GL(n,E)} →֒ {conjugacy classes in GL(n, F )}.

This is used to define transfer of orbital integrals: Two compactly supported
smooth functions f and fE are said to have matching orbital integrals when

Oγ(f) =

{
TOδθ(fE), γ = N δ,
0, γ is not a norm.

For the definitions of the integrals involved here, we refer to page 15 in [AC].
It is the content of Proposition 3.1 in [AC] that any fE has a matching func-
tion f . The fundamental lemma in this case is Theorem 4.5 in [AC]. We can
now state Shintani’s definition of local base change, following Definition 6.1 in
[AC]: Let Π and ΠE be irreducible admissible representations of GL(n, F ) and
GL(n,E) respectively, and assume that Πθ

E is isomorphic to ΠE . Let Iθ be an
intertwining operator between these, normalized such that I2θ is the identity.
This determines Iθ up to a sign. We then say that ΠE is a base change of Π if
and only if

tr(ΠE(fE) ◦ Iθ) = c · trΠ(f)

for all matching functions f and fE as above. The non-zero constant c depends
only on the choice of measures, and of Iθ. By Theorem 6.2 in [AC] local
base change makes sense for tempered representations. Using the Langlands
classification, the lift then extends to all representations. For this, see the
discussion on page 59 in [AC]. Since Shintani’s definition is employed in [AC],
we will need:

Theorem 2. Shintani’s harmonic analytic definition of the local cyclic base
change lifting is compatible with the local Langlands correspondence for GL(n).

Proof . In the non-archimedean case, this is part 5 of Lemma VII.2.6 on page
237 in [HT]. The archimedean case was settled, in general, by Clozel [Clo]. �

As an example in the archimedean case, let us base change σn(λ)⊞ σn′(λ′) to
GL(4,C). For simplicity, we will stick to the case of interest in this paper where
it descends to a discrete series L-packet for GSp(4,R). That is, we assume (1).

−w df
= n− 1 + 2λ = n′ − 1 + 2λ′

Following [Kna] we let [z] denote z
|z| . Then the unitarily induced representation

Ind
GL(4,C)
B ([·]n ⊗ [·]−n ⊗ [·]n′ ⊗ [·]−n′

)⊗ | det |−w
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has a unique irreducible quotient. This is the base change we are looking for.
The Langlands correspondence for GL(n,C), which is much simpler than the
real case, was first studied by Zelobenko and Naimark. A good reference for
their results is the expository paper [Kna]. In the non-archimedean case,

StGL(4)(χ)E = StGL(4)(χE), χE = χ ◦NE/F .

However, the generalized Steinberg representation St(τ) may not base change
to a discrete series. Indeed, if ωE/F denotes the associated quadratic character,

St(τ)E =

{
St(τE)

StGL(2)(ψ)⊞ StGL(2)(ψ
θ)

when

{
τ 6= τ ⊗ ωE/F
τ = τ ⊗ ωE/F .

Here ψ 6= ψθ is a certain character of E∗, with automorphic induction τ .

3.2 Global base change

We now let E/F denote an arbitrary CM extension of the totally real field F .
Thus, the extension E/F is quadratic, and E is totally imaginary. We let θ
be the non-trivial element in the Galois group. Let Π and ΠE be automorphic
representations of GL(n,AF ) and GL(n,AE) respectively. We will assume ΠE

is invariant under θ. Then, we say that ΠE is a strong base change lift of Π if

ΠE,w = Πv,Ew

for all places w|v. Here, the right-hand side is the local base change of Πv

to GL(n,Ew). When v is split in E, this lift is naturally identified with Πv.
By comparing trace formulas for GL(n), no stabilization required, Arthur and
Clozel proved that such lifts always exist. More precisely, we have the following:

Theorem 3. There is a unique strong base change lift Π 7→ ΠE between
isobaric automorphic representations on GL(n,AF ) and GL(n,AE), satisfying:

• ωΠE = ωΠ ◦NE/F .
• The image of the lifting consists precisely of the θ-invariant ΠE.

• If Π is cuspidal, ΠE is cuspidal if and only if Π 6= Π⊗ ωE/F .

Proof . This is essentially Theorem 4.2 combined with Theorem 5.1 in [AC].
Arthur and Clozel makes the assumption that Π is induced from cuspidal. This
is now superfluous; the residual spectrum of GL(n) is understood by [MW]. �

Note that, if Π is cuspidal, ΠE is cuspidal for all but finitely many CM exten-
sions E. Indeed, the self-twist condition is satisfied if the discriminant of E does
not divide the conductor of Π. The theory of base change goes hand-in-hand
with automorphic induction, which is a strong lift from isobaric automorphic
representations of GL(n,AE) to those of GL(2n,AF ) compatible with the recn,

π 7→ IFE (π), φIFE (π)v = IndFvEw(φπw ),
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for all w|v. Again, this is due to Arthur and Clozel in much greater generality.
See Theorem 6.2 in [AC]. For the compatibility with recn at the ramified places,
we again refer to Lemma VII.2.6 in [HT]. In analogy with the above, we have
the following result, which is not needed for the proof of the main theorem, but
we include it for future use:

Theorem 4. There is a strong automorphic induction lift π 7→ IFE (π) between
isobaric automorphic representations on GL(n,AE) and GL(2n,AF ), satisfy-
ing:

• ωIFE (π) = ωπ|A∗
F
.

• The image consists precisely of the Π such that Π = Π⊗ ωE/F .

• If π is cuspidal, IFE (π) is cuspidal if and only if π 6= πθ.

Proof . This is due to Arthur and Clozel. See section 6 of chapter 3 in [AC]. �

For the sake of completeness, let us mention a few links between base change
and automorphic induction. For any two cuspidal π and Π as above, we have:

IFE (ΠE) = Π⊞ (Π⊗ ωE/F ), IFE (π)E = π ⊞ πθ.

3.3 Conjugate self-dual twists

Let us now take any CM extension E/F , and consider ΠE , where Π is the theta
series lifting of our original globally generic π on GSp(4). We will assume πv0
is of (twisted) Steinberg type at some finite place v0 of F . Hence ΠE,w0 is
Steinberg at all places w0 of E dividing v0, and this ensures ΠE is cuspidal.
In [HT], one associates Galois representations to certain conjugate self-dual
representations. ΠE itself may not satisfy this condition, when ωπ,E 6= 1, but
certain twists do:

ΠE(χ)θ ≃ ΠE(χ)∨ ⇔ χ|A∗
F

= ω−1π ωnE/F ,

for n = 0 or n = 1. Such Hecke characters χ of E exist: Indeed, by Frobenius
reciprocity, any Hecke character of F has infinitely many extensions to E; they
are precisely the constituents of the induced representation of the compact idele
class group C1

E . By modifying this argument slightly, one can even control the
ramification of the extensions if need be. Now, recall that for every place v|∞,

ωπv(a) = a−w,

for all a ∈ R∗. Therefore, to retain algebraicity, take n = 0 above. In this case,
it follows that all the extensions χ are automatically algebraic. That is,

χw(z) = zaz̄b, a = a(w) ∈ Z, b = b(w) ∈ Z, a+ b = w,

for each infinite place w of E, not to be confused with the weight! For such
characters χ, the twist ΠE(χ) remains regular algebraic, and the weight is zero.
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4 Galois representations

4.1 Galois representations over CM extensions

Let E be an arbitrary CM extension of the totally real field F . One of the
ultimate goals of the book project [Har], is to attach an ℓ-adic Galois repre-
sentation ρΠ,ι to a regular algebraic conjugate self-dual cuspidal automorphic
representation Π of GL(n,AE), and a choice of an isomorphism ι : Q̄ℓ → C.
See expected Theorem 2.4 in [Har] for a more precise formulation. In the case
where Π has a square-integrable component at some finite place, pioneering
work on this problem was done by Clozel [Cl] and Kottwitz [Kot], relating
ρΠ,ι|WEw

to the unramified component Πw at most places w. Their work was
later extended to all places w ∤ ℓ in [HT], by Harris and Taylor, in the course
of proving the local Langlands conjecture. However, in [HT] the monodromy
operator is ignored. This issue has been taken care of by Taylor and Yoshida
in [TY], resulting in:

Theorem 5. Let E be a CM extension of a totally real field F , and let Π be a
cuspidal automorphic representation of GL(n,AE) satisfying the conditions:

• Π∞ is regular algebraic, H•(g,K; Π∞ ⊗ V∗) 6= 0.

• Π is conjugate self-dual, Π∨ ≃ Πθ.

• Πw0 is (essentially) square integrable for some finite place w0.

Fix an isomorphism ι : Q̄ℓ → C. Then there is a continuous representation

ρΠ,ι : Gal(F̄ /E)→ GL(n, Q̄ℓ)

such that for every finite place w of E, not dividing ℓ, we have the following:

ιWD(ρΠ,ι|WEw
)F−ss ≃ recn(Πw ⊗ | det | 1−n2 ).

P roof . This is Theorem 1.2 in [TY], which is a refinement of Theorem VII.1.9
in [HT]. Indeed, the former result identifies the monodromy operator: By Corol-
lary VII.1.11 in [HT] it is known that Πw is tempered for all finite places w.
Therefore, by parts (3) and (4) of Lemma 1.4 in [TY], it suffices to show that
ιWD(ρΠ,ι|WEw

) is pure. That is, up to a shift, the weight filtration coincides
with the monodromy filtration. This is proved in [TY] by a careful study of
the Rapoport-Zink weight spectral sequence, the main new ingredient being
the vanishing outside the middle-degree in Proposition 4.4 in [TY]. �

A word about the notation used in the previous Theorem: First, V denotes an
irreducible algebraic representation over C of the group RE/QGL(n), which we
will denote by G. Then g denotes the Lie algebra of G(R), and K is a maximal
compact subgroup times ZG(R). The symbol WD(ρ) stands for the Weil-
Deligne representation corresponding to an ℓ-adic representation ρ of WEw ,
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where w ∤ ℓ. This pair (r,N) is obtained by fixing a lift Frobw of the geometric
Frobenius, and a continuous surjective homomorphism tℓ : IEw → Zℓ, and then
writing

ρ(Frobmw σ) = r(Frobmw σ)exp(tℓ(σ)N)

for σ ∈ IEw and integers m. Then r is a representation of WEw having an open
kernel, and N is a nilpotent operator satisfying the formula mentioned above:

N ◦ r(Frobw) = qw · r(Frobw) ◦N.

Here qw is the order of the residue field of Ew. The isomorphism class of (r,N)
is independent of the choices made. Finally, the superscript F − ss signifies
Frobenius semisimplification. That is, leave N unchanged, but semisimplify r.
The representations ρΠ,ι above satisfy a number of additional nice properties:

• Π is square integrable at some finite w0 ∤ ℓ =⇒ ρΠ,ι is irreducible.

• Let w ∤ ℓ be a finite place of E, and let α be an eigenvalue of ρΠ,ι(σ) for
some σ ∈ WEw . Then α belongs to Q̄, and for every embedding Q̄ →֒ C,

|α| ∈ q
Z
2
w .

• Let w ∤ ℓ be a finite place, with Πw unramified, and let α be an eigenvalue
of ρΠ,ι(Frobw). Then α belongs to Q̄, and for every embedding Q̄ →֒ C,

|α| = q
n−1
2

w .

• The representation ρΠ,ι is potentially semistable at any finite place w|ℓ.
Moreover, ρΠ,ι is crystalline at a finite place w|ℓ when Πw is unramified.

The first property is clear since recn(Πw0 ⊗ | det | 1−n2 ) is indecomposable. This
was observed in Corollary 1.3 in [TY]. It is expected to continue to hold if
w0|ℓ (and even without the square-integrability condition, admitting the book
project). The second and the third property are parts 1 and 2 of Theorem
VII.1.9 in [HT]. The former is a special case of Lemma I.5.7 in [HT], which
apparently follows from the Rapoport-Zink weight spectral sequence in con-
junction with de Jong’s theory of alterations. The latter follows from Deligne’s
work on the Weil conjectures. The last property comes down to the com-
parison theorems of p-adic Hodge theory. To clarify these comments, we will
briefly sketch how ρΠ,ι is realized geometrically in [HT]: One starts off with an
n2-dimensional central division algebra B over E, equipped with a positive in-
volution ∗ such that ∗|E = θ. It is assumed to satisfy a list of properties, which
are irrelevant for our informal discussion. For a fixed β ∈ B such that ββ∗ = 1,
look at the unitary similitude group G defined as follows: For a commutative
Q-algebra R,

G(R) = {x ∈ (Bop ⊗Q R)∗: x∗βx = c(x)β, with c(x) ∈ R∗}.
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The element β is chosen such that, at infinity, the derived group takes the form

Gder(R) = U(n− 1, 1)× U(n)[F :Q]−1.

The group G has an associated Shimura variety of PEL type. That is, for each
sufficiently small compact open subgroup K inside the finite adeles G(Af ),
there is a smooth proper variety XK over E classifying isogeny classes of po-
larized abelian schemes A of dimension [F : Q]n2, endowed with a certain
homomorphism from B into End(A)Q and a so-called level-structure relative
to K. On XK one defines a Q̄ℓ-sheaf Lξ by fixing an algebraic representation ξ
of G defined over Q̄ℓ. Then, consider the following direct limit over subgroups
K, endowed with natural commuting actions of G(Af ) and of the Galois group
of E:

Hm(X,Lξ) df
= lim−→KH

m
et (XK ×E F̄ ,Lξ) =

⊕

πf

πf ⊗Rmξ (πf ).

Here πf runs over the irreducible admissible representations of G(Af ), and
Rmξ (πf ) is a finite-dimensional continuous Galois representation of E. To con-

struct ρΠ,ι, we first descend Π to an automorphic representation Π̃ of Bop,∗ via
the Jacquet-Langlands correspondence. Using results of Clozel and Labesse,
one shows that ψ × Π̃ is a base change from G, for some algebraic Hecke char-
acter ψ of E. In this way, we end up with an automorphic representation π of
G, and

Rn−1ξ (π∨f )ss ≃ ρaΠ,ι ⊗ ρψ,ι
for some positive integer a. For details see p. 228 in [HT], and p. 12 in [TY].

4.2 Hodge-Tate weights

We will now describe the Hodge-Tate weights, which are certain numerical
invariants of the restriction of ρΠ,ι to the Galois group of Ew for each place w|ℓ.
We briefly recall their definition: Let K be a finite extension of Qℓ. Following
Fontaine, we introduce the field of ℓ-adic periods BdR. This is a K-algebra, it
comes equipped with a discrete valuation vdR, and has residue field Cℓ. The
topology on BdR is coarser than the one coming form the valuation. The Galois
group of K acts continuously on BdR. If t ∈ BdR is a uniformizer, then we have

g · t = χcyc(g)t,

where χcyc is the ℓ-adic cyclotomic character. The valuation defines a filtration:

Filj(BdR)
df
= tjB+

dR, grj(BDR)
df
= Filj(BdR)/Filj+1(BdR) ≃ Cℓ(j).

If V is a finite-dimensional continuous Q̄ℓ-representation of Gal(Q̄ℓ/K), we let

DdR(V )
df
= (V ⊗Qℓ BdR)Gal(Q̄ℓ/K).
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This is a module over Q̄ℓ ⊗Qℓ K, inheriting a filtration from BdR. We say that
V is de Rham if this module is free of rank dimQ̄ℓ(V ). In this case, for each
embedding τ : K → Q̄ℓ we introduce a multiset of integers HTτ (V ). It contains
dimQ̄ℓ(V ) elements, and j occurs with multiplicity equal to the dimension of

grj(V ⊗τ,K BdR)Gal(Q̄ℓ/K) = grjDdR(V )⊗Q̄ℓ⊗Qℓ
K,1⊗τ Q̄ℓ.

over Q̄ℓ. If this is nonzero, j is called a Hodge-Tate weight for V relative to the
embedding τ . Now we specialize the discussion, and take V to be the restriction
of ρΠ,ι as above. We will quote a result from [HT], as stated in [Har], relating
the Hodge-Tate weights to the highest weights of the algebraic representation
V∗. Recall, this is the irreducible algebraic representation of G(C) such that
the tensor product Π∞⊗V∗ has cohomology. By the definition of the Q-group
G,

G(R) =
∏

σ∈Σ
GLn(E ⊗F,σ R), G(C) =

∏

σ∈Σ
GLn(E ⊗F,σ C),

where Σ is the set of embeddings σ : F → R. For each such σ, following [Har],
we let {σ̃, σ̃c} denote the two complex embeddings of E extending it. We write

V∗ = ⊗σ∈ΣV∗σ, V∗σ = V∗σ̃ ⊗ V∗σ̃c .

Here V∗σ̃ is naturally identified with an irreducible algebraic representation of
the group GLn(C), and we consider its highest weight relative to the lower
triangular Borel. This is the character of the diagonal torus corresponding to

µ(σ̃) = (µ1(σ̃) ≤ µ2(σ̃) ≤ · · · ≤ µn(σ̃)).

Similarly, we get a dominant n-tuple of integers µ(σ̃c) for V∗σ̃c . It is given by:

µi(σ̃
c) = −µn−i+1(σ̃),

by the polarization condition. The multisets HTτ for ρΠ,ι are determined by:

Theorem 6. Fix an embedding s : E → Q̄ℓ, and let w denote the associated
finite place of E above ℓ. Then the Hodge-Tate weights of ρΠ,ι restricted to the
Galois group Gal(Q̄ℓ/Ew) at w, where Ew = s(E)−, are all of the form

j = i− µn−i(ι(s)c), i = 0, . . . , n− 1.

In particular, the Hodge-Tate weights all occur with multiplicity one.

Proof . This is part 4 of Theorem VII.1.9 on p. 227 in [HT], but with the
normalization used in [Har] in (2.6) on p. 5: The shift from ι(s) to ι(s)c

reflects the fact that we work with the dual of the Π in [HT]. Note that the
inequalities on p. 3 in [Har] should be reversed. �
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4.3 Patching

The next key step is to descend the family ρΠE(χ),ι ⊗ χ−1 to the base field F .
This is done by a patching argument, used in various guises by other authors.
For example, see Proposition 4.3.1 in [BRo], or section 4.3 in [BRa]. Here we
will use a variant of Proposition 1.1 in [Har], which in turn is based on the
discussion on p. 230-231 in [HT]. The proof in [Har] is somewhat brief, and
somewhat imprecise at the end, so we decided to include a more detailed proof
below. Hopefully, this might serve as a convenient reference. In this section,
we use ΓF as shorthand notation for the absolute Galois group Gal(F̄ /F ). The
setup is the following: We let I be a set of cyclic Galois extensions E, of a fixed
number field F , of prime degree qE . For every E ∈ I we assume we are given
an n-dimensional continuous semisimple ℓ-adic Galois representation over E,

ρE : ΓE → GLn(Q̄ℓ).

Here ℓ is a fixed prime. The family of representations {ρE} is assumed to
satisfy:

(a) Galois invariance: ρσE ≃ ρE , ∀σ ∈ Gal(E/F ),

(b) Compatibility: ρE |ΓEE′ ≃ ρE′ |ΓEE′ ,

for all E and E′ in I. These conditions are certainly necessary for the ρE to
be of the form ρ|ΓE for a representation ρ of ΓF . What we will show, is that
in fact (a) and (b) are also sufficient conditions if I is large enough. That is,

Definition 1. Following [Har], for a finite set S of places of F , we say that I
is S-general if and only if the following holds: For any finite place v /∈ S, and
any finite extension M of F , there is an E ∈ I linearly disjoint from M such
that v splits completely in E. In this case, there will be infinitely many such E.

Recall that since E is Galois over F , it is linearly disjoint from M precisely
when E ∩M = F . Moreover, it is of prime degree, so this just means E is not
contained in M . Hence, I being S-general is equivalent to: For v /∈ S, there
are infinitely many E ∈ I in which v splits. A slightly stronger condition is:

Definition 2. We say that I is strongly S-general if and only if the following
holds: For any finite set Σ of places of F , disjoint from S, there is an E ∈ I
in which every v ∈ Σ splits completely.

To see that this is indeed stronger, we follow Remark 1.3 in [Har]: Fix a finite
place v /∈ S, and a finite extension M of F . Clearly we may assume M 6= F is
Galois. Let {Mi} be the subfields of M , Galois over F , with a simple Galois
group. For each i we then choose a place vi of F , not in S, which does not split
completely in Mi. We take Σ to be {v, vi} in the above definition, and get an
E ∈ I in which v and every vi splits. If E was contained in M , it would be one
of the Mi, but this contradicts the choice of vi. Thus, E and M are disjoint.
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Example. Let Σ = {pi} be a finite set of primes. As is well-known, for odd pi,

pi splits in Q(
√
d) ⇐⇒ pi ∤ d and

(
d

pi

)
= 1.

Here d is any square-free integer. Moreover, 2 splits when d ≡ 1 mod 8. The
set of all integers d satisfying the congruences d ≡ 1 mod pi, for all i, form
an arithmetic progression. By Dirichlet’s Theorem, it contains infinitely many
primes. Therefore, the following family of imaginary quadratic extensions

I = {Q(
√−p): almost all primes p}

is strongly ∅-general. This gives rise to a similar family of CM extensions of
any given totally real field F , by taking the set of all the composite fields FI.

The main result of this section, is a strengthening of Proposition 1.1 in [Har]:

Lemma 1. Let I be an S-general set of extensions E over F , of prime degree
qE, and let ρE be a family of semisimple Galois representations satisfying the
conditions (a) and (b) above. Then there is a continuous semisimple

ρ : ΓF → GLn(Q̄ℓ), ρ|ΓE ≃ ρE,

for all E ∈ I. This determines the representation ρ uniquely up to isomor-
phism.

Proof . The proof below is strongly influenced by the proofs of Proposition 1.1
in [Har], and of Theorem VII.1.9 in [HT]. We simply include more details and
clarifications. The proof is quite long and technical, so we divide it into several
steps. Before we construct ρ, we start off with noting that it is necessarily
unique: Indeed, for any place v /∈ S, we find an E ∈ I in which v splits. In
particular, Ew = Fv for all places w of E dividing v. Thus, all the restric-
tions ρ|ΓFv are uniquely determined. We conclude that ρ is unique, by the
Cebotarev Density Theorem. For the construction of ρ, we first establish some
notation used throughout the proof: We fix an arbitrary base point E0 ∈ I,
and abbreviate

ρ0
df
= ρE0 , Γ0

df
= ΓE0 , G0

df
= Gal(E0/F ), q0

df
= qE0 .

We let H denote the Zariski closure of ρ0(Γ0) inside GLn(Q̄ℓ), and consider its
identity component H◦. Define M to be the finite Galois extension of E0 with

ΓM = ρ−10 (H◦), Gal(M/E0) = π0(H).

Let T be the set of isomorphism classes of irreducible constituents of ρ0, ignor-
ing multiplicities. By property (a), the group G0 acts on T from the right. We
note that τ and τσ occur in ρ0 with the same multiplicity. We want to describe
the G0-orbits on T . First, we have the set P of fixed points τ = τσ for all σ.
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The set of non-trivial orbits is denoted by C. Note that any c ∈ C has prime
cardinality q0. For each such c, we pick a representative τc ∈ T , and let C0 be
the set of all these representatives {τc}. Each τ ∈ C0 obviously has a trivial
stabilizer in G0.

Step 1: The extensions of ρ0 to ΓF .

Firstly, a standard argument shows that each τ ∈ P has an extension τ̃ to ΓF .
This uses the divisibility of Q̄∗ℓ , in order to find a suitable intertwining operator
τ ≃ τσ. All the other extensions are then obtained from τ̃ as unique twists:

τ̃ ⊗ η, η ∈ Ĝ0.

Here Ĝ0 is the group of characters of G0. Secondly, for a τ ∈ c, we introduce

τ̃
df
= IndΓF

Γ0
(τ).

Since τ is not Galois-invariant, this τ̃ is irreducible. It depends only on the
orbit c containing τ , and it is invariant under twisting by Ĝ0. It has restriction

τ̃ |Γ0 ≃
⊕

σ∈G0

τσ.

If we let mτ denote the multiplicity with which τ ∈ T occurs in ρ0, we get that

{
⊕

τ∈C0

mτ · τ̃} ⊕ {
⊕

τ∈P

⊕
η∈Ĝ0

mτ̃ ,η · (τ̃ ⊗ η)}

is an extension of ρ0 to ΓF for all choices of non-negative mτ̃ ,η ∈ Z such that

∑
η∈Ĝ0

mτ̃ ,η = mτ

for every fixed τ ∈ P .

Step 2: ρ0(ΓNE0) is dense in H, when N is linearly disjoint from M over F .

To see this, let us momentarily denote the Zariski closure of ρ0(ΓNE0) by HN .
N is a finite extension, so HN has finite index in H . Consequently, we deduce
that H◦N = H◦. Now, NE0 and M are linearly disjoint over E0, and therefore

Γ0 = ΓNE0 · ΓM =⇒ ρ0(Γ0) ⊂ ρ0(ΓNE0) ·H◦ ⊂ HN .

Taking the closure, we obtain that HN = H .

Step 3: If N is a finite extension of F , linearly disjoint from M over F . Then:

(1) τ |ΓNE0
is irreducible, for all τ ∈ T .

(2) τ̃ |ΓN is irreducible, for all τ ∈ P .

(3) τ |ΓNE0
≃ τ ′|ΓNE0

⇒ τ ≃ τ ′, for all τ, τ ′ ∈ T .
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(4) τ̃ |ΓN ≃ (τ̃ ′ ⊗ η)|ΓN ⇒ τ ≃ τ ′ and η = 1, for all τ, τ ′ ∈ P and η ∈ Ĝ0.

Parts (1) and (3) follow immediately from Step 2, and obviously (1) implies
(2). Also, part (3) immediately implies that τ ≃ τ ′ in (4). Suppose η ∈ Ĝ0

satisfies:

τ̃ |ΓN ≃ τ̃ |ΓN ⊗ η|ΓN
for some τ ∈ P . In other words, η|ΓN occurs in EndΓNE0

(τ̃ |ΓN ), which is trivial
by part (1). So, η is trivial on ΓN and on Γ0. Hence, η = 1 by disjointness.

Step 4: τ̃ |ΓN is irreducible for all τ ∈ C0. That is, part (2) holds for all τ ∈ T .
Since N and E0 are linearly disjoint over F , we see that ΓF = ΓE · Γ0. Hence,

τ̃ |ΓN = IndΓF
Γ0

(τ)|ΓN ≃ IndΓN
ΓNE0

(τ |ΓNE0
),

by Mackey theory. Now, τ |ΓNE0
is irreducible and not Galois-invariant.

Step 5: Suppose E ∈ I is linearly disjoint from M over F . Then, for a unique
choice of non-negative integers mτ̃ ,η,E with η-sum mτ , we have the formula:

ρE ≃ {
⊕

τ∈C0

mτ · τ̃ |ΓE} ⊕ {
⊕

τ∈P

⊕
η∈Ĝ0

mτ̃ ,η,E · (τ̃ ⊗ η)|ΓE}.

In particular, ρ0 and ρE have a common extension to ΓF .

The uniqueness of the mτ̃ ,η,E follows directly from part (4) in Step 3. Recall,

ρE |ΓEE0
≃ ρ0|ΓEE0

≃ {
⊕

τ∈C0

mτ ·
⊕

σ∈G0

τ |σΓEE0
} ⊕ {

⊕

τ∈P
mτ · τ |ΓEE0

},

by the compatibility condition (b). Here all the τ |σΓEE0
are distinct by (3).

First, let us pick an arbitrary τ ∈ P . As representations of G0, viewed as the
Galois group of EE0 over E by disjointness, we have

HomΓEE0
(τ̃ |ΓE , ρE) ≃

⊕
η∈Ĝ0

dimQ̄ℓ HomΓE ((τ̃ ⊗ η)|ΓE , ρE) · η.

The Q̄ℓ-dimension of the left-hand side clearly equals mτ , and the right-hand
side defines the partition mτ̃ ,η,E of mτ . Next, let us pick an arbitrary τ ∈ C0.

By the same argument, using that τ̃ is invariant under twisting by Ĝ0, we get:

HomΓEE0
(τ̃ |ΓE , ρE) ≃ dimQ̄ℓ HomΓE (τ̃ |ΓE , ρE) ·

⊕
η∈Ĝ0

η.

Now the left-hand side obviously has dimension mτ q0. We deduce that τ̃ |ΓE
occurs in ρE with multiplicity mτ . Counting dimensions, we obtain the desired
decomposition of ρE . Note that we have not used the Galois invariance of ρE .
In fact, it is a consequence of the above argument, assuming E ∩M = F .
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Step 6: Fix an E1 ∈ I disjoint from M over F . Introduce the representation

ρ
df
= {

⊕

τ∈C0

mτ · τ̃} ⊕ {
⊕

τ∈P

⊕
η∈Ĝ0

mτ̃ ,η,E1 · (τ̃ ⊗ η)}.

Then ρ|ΓE ≃ ρE for all extensions E ∈ I linearly disjoint from ME1 over F .

By definition, and Step 5, we have that ρ|ΓE1
≃ ρE1 . Take E ∈ I to be any

extension, disjoint from ME1 over F . We compare the decomposition of ρ|ΓE ,

ρ|ΓE = {
⊕

τ∈C0

mτ · τ̃ |ΓE} ⊕ {
⊕

τ∈P

⊕
η∈Ĝ0

mτ̃ ,η,E1 · (τ̃ ⊗ η)|ΓE},

to the decomposition of ρE in Step 5. We need to show the multiplicities match:

mτ̃ ,η,E = mτ̃ ,η,E1 , ∀τ ∈ P , ∀η ∈ Ĝ0.

By property (b), for the pair {E,E1}, we know that ρ|ΓE and ρE become iso-
morphic after restriction to ΓEE1 . Once we prove EE1 is linearly disjoint from
M over F , we are done by (2) and (4). The disjointness folllows immediately:

EE1 ⊗F M ≃ E ⊗F E1 ⊗F M ≃ E ⊗F ME1 ≃ EE1M.

Step 7: ρ|ΓE ≃ ρE for all E ∈ I.

By Step 6, we may assume E ∈ I is contained in ME1. Now take an auxiliary
extension E ∈ I linearly disjoint from ME1 over F . Consequently, using (b),

ρ|ΓE ≃ ρE ⇒ ρ|ΓEE ≃ ρE |ΓEE ≃ ρE |ΓEE .

Thus, ρ|ΓE agrees with ρE when restricted to ΓEE . It suffices to show that the
union of these subgroups ΓEE , as E varies, is dense in ΓE . Again, we invoke the
Cebotarev Density Theorem. Indeed, let w be a place of E, lying above v /∈ S.
It is then enough to find an E ∈ I, as above, such that w splits completely
in EE . Then ΓEw is contained in ΓEE . We know, by the S-generality of I,
that we can find an E ∈ I, not contained in ME1, in which v splits completely.
This E works: This follows from elementary splitting theory, as E and E are
disjoint.

This finishes the proof of the patching lemma. �

Remark. From the proof above, we infer the following concrete description of
the patch-up representation ρ. First fix any E0 ∈ I, and let P be the set of
Galois-invariant constituents τ of ρE0 . For each such τ , we fix an extension τ̃
to F once and for all. Furthermore, let C0 be a set of representatives for the
non-trivial Galois orbits of constituents of ρE0 . Then ρ is of the following form

ρ ≃ {
⊕

τ∈C0

mτ · IndΓF
Γ0

(τ)} ⊕ {
⊕

τ∈P

⊕
η∈Gal(E0/F )∧

mτ̃ ,η · (τ̃ ⊗ η)}.
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Here the mτ̃ ,η are some non-negative integers with η-sum mτ , the multiplicity
of τ in ρE0 . This fairly explicit description may be useful in deriving properties
of ρ from those of ρE0 .

For future reference, we finish this section with a few remarks on the general-
ization of the patching lemma to solvable extensions. Thus, I now denotes a
collection of solvable Galois extensions E over F , and we assume we are given
Galois representations ρE , as above, satisfying (a) and (b). For any L over F ,

IL df
= {E ∈ I : L ⊂ E}.

Loosely speaking, we say that I is S-general if it is S-general in prime layers:

Definition 3. Following [Har], for a finite set S of places of F , we say that I
is S-general if and only if the following holds: For every L such that IL 6= ∅,

{prime degree extensions K/L, with IK 6= ∅}

is S(L)-general in the previous sense. S(L) denotes the places of L above S.

From now on, we will make the additional hypothesis that all the extensions
E ∈ I have uniformly bounded heights. That is, there is an integer HI such that
every index [E : F ] has at most HI prime divisors (not necessarily distinct).

Lemma 2. Assume the collection I has uniformly bounded heights. Then I is
S-general if and only if the following condition holds for every L with IL 6= ∅:
Given a finite place w /∈ S(L) and a finite extension M over L, there is an
extension E ∈ IL linearly disjoint from M over L, in which w splits completely.

Proof . The if part follows immediately by unraveling the definitions. The only
if part is proved by induction on the maximal height of the collection IL over
L, the height one case being the definition. Suppose IL has maximal height H ,
and assume the lemma holds for smaller heights. Let w and M be as above.
By S-generality, there is a prime degree extension K over L with IK 6= ∅,
disjoint from M over L, in which w splits. Fix a place w̃ of K above w. Now,
IK clearly has maximal height less than H . By the induction hypothesis there
is an E ∈ IK , disjoint from MK over K, in which w̃ splits. This E works. �

Under the above assumptions on I, a given place w /∈ S(L) splits completely
in infinitely many E ∈ IL, unless L belongs to I. One has a stronger notion:

Definition 4. We say that I is strongly S-general if and only if the following
holds: For any L such that IL 6= ∅, and any finite set Σ of places of L disjoint
from S(L), there is an E ∈ IL in which every v ∈ Σ splits completely.

As in the prime degree case, treated above, one shows that this is indeed a
stronger condition. Our next goal is to prove the following generalization of
the patching lemma to certain collections of solvable extensions:

Documenta Mathematica 15 (2010) 623–670



Galois Representations . . . 655

Theorem 7. Let I be an S-general collection of solvable Galois extensions E
over F , with uniformly bounded heights, and let ρE be a family of n-dimensional
continuous semisimple ℓ-adic Galois representations satisfying the conditions
(a) and (b) above. Then there is a continuous semisimple representation

ρ : ΓF → GLn(Q̄ℓ), ρ|ΓE ≃ ρE,
for all E ∈ I. This determines the representation ρ uniquely up to isomor-
phism.

Proof . Uniqueness is proved by paraphrasing the argument in the prime degree
situation. The existence of ρ is proved by induction on the maximal height of I
over F , the height one case being the previous patching lemma. Suppose I has
maximal height H , and assume the Theorem holds for smaller heights. Take
an arbitrary prime degree extension K over F , with IK 6= ∅. Clearly IK is an
S(K)-general set of solvable Galois extensions of K, of maximal height strictly
smaller than H . Moreover, the subfamily {ρE}E∈IK obviously satisfies (a) and
(b). By induction, we find a continuous semisimple ℓ-adic representation

ρK : ΓK → GLn(Q̄ℓ), ρK |ΓE ≃ ρE ,

for all E ∈ IK . We then wish to apply the prime degree patching lemma to
the family {ρK}, as K varies over extensions as above. By definition, such K
do form an S-general collection over F . It remains to show that {ρK} satisfies
(a) and (b). To check property (a), take any σ ∈ ΓF , and note that ρσK agrees
with ρK after restriction to ΓE for an arbitrary extension E ∈ IK . The union
of these ΓE is dense in ΓK by the Cebotarev Density Theorem: Every place
w of K, outside S(K), splits in some E ∈ IK , so the union contains ΓKw . To
check property (b), fix prime degree extensions K and K ′ as above. Note that

(ρK |ΓKK′ )|ΓEE′ ≃ (ρK′ |ΓKK′ )|ΓEE′ , ∀E ∈ IK , ∀E′ ∈ IK′ .

We finish the proof by showing that the union of these ΓEE′ is dense in ΓKK′ .
Let w be an arbitrary place of KK ′ such that w|F does not lie in S. Choose
an extension E ∈ IK linearly disjoint from KK ′ over K, in which w|K splits.
Then pick an extension E′ ∈ IK′ linearly disjoint from EK ′ over K ′, in which
w|K′ splits. By elementary splitting theory, w splits in EK ′, and any place of
EK ′ above w splits in EE′. Consequently, w splits in EE′, see the diagram:

EE′

EE
EE

EE
EE

EK ′

zzz
zz

zz
z

E′

E KK ′

zz
zz

zz
zz

EE
EE

EE
EE

K K ′
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The union then contains the Galois group of (KK ′)w. Done by Cebotarev. �

The previous result should be compared to Corollary 1.2 in [Har].

4.4 Galois representations associated to π

Let π be the globally generic cusp form on GSp(4) introduced earlier, Π its lift
to GL(4), and let ΠE be the base change of Π to GL(4) over a CM extension
E of F . Recall that, for certain algebraic Hecke characters χ of E, the twisted
representation ΠE(χ) is conjugate self-dual. We consider the representations

ρπ,ι,E
df
= ρΠE(χ),ι ⊗ ρχ̌,ι.

Up to isomorphism, this is independent of χ. Indeed, for each place w ∤ ℓ of E,

ιWD(ρπ,ι,E|WEw
)F−ss ≃ rec4(ΠE,w ⊗ | det |− 3

2 ).

We only consider CM extensions E, in which v0 splits, such that ΠE is cuspidal.
Here v0 is the place of F where πv0 is of Steinberg type. This collection I is
certainly strongly ∅-general, according to the example in the previous section.
Moreover, the family of 4-dimensional Galois representations ρπ,ι,E satisfies the
patching conditions (a) and (b). For example, to check the Galois invariance,

ρθπ,ι,E ≃ ρΠE(χ)θ ,ι ⊗ ρχ̌θ ,ι ≃ ρΠE(χ)∨,ι ⊗ ρχ̌θ,ι ≃ ρΠE(χθ),ι ⊗ ρχ̌θ,ι,

by our choice of χ. Taking χθ instead of χ, then shows that ρθπ,ι,E is isomorphic
to ρπ,ι,E by the aforementioned independence. Alternatively, one can use the
local description of ρπ,ι,E above at the unramified places, and the fact that ΠE

is a base change from F . To check the compatibility, note that for w ∤ ℓ,

ιWD(ρπ,ι,E|W(EE′)w
)F−ss ≃ rec4(Πv,(EE′)w ⊗ | det |− 3

2 ),

and similarly for ρπ,ι,E′. See Lemma VII.2.6 in [HT]. Now (b) follows from
Cebotarev. By the patching lemma, we finally get a continuous representation

ρπ,ι : ΓF → GL4(Q̄ℓ), ρπ,ι|ΓE ⊗ ρχ,ι ≃ ρΠE(χ),ι.

It is irreducible, since ρΠE(χ),ι is known to be irreducible [TY], and satisfies:

ιWD(ρπ,ι|WFv
)F−ss ≃ recGT(πv ⊗ |c|−

3
2 ),

at each finite place v ∤ ℓ of F . Here recGT is the local Langlands correspondence
for GSp(4), as defined by Gan and Takeda in [GT]. To see this, pick any E
in which v splits, and use the local description of ρπ,ι,E together with the fact
that Π is a strong lift of π. From the list of properties of ρΠE(χ),ι, we then read
off:
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• Let v ∤ ℓ be a finite place of F , and let α be an eigenvalue of ρπ,ι(σ) for
some σ ∈ WFv . Then α belongs to Q̄, and for every embedding Q̄ →֒ C,

|α| ∈ q
Z
2
v .

• Let v ∤ ℓ be a finite place, with πv unramified, and let α be an eigenvalue
of ρπ,ι(Frobv). Then α belongs to Q̄, and for every embedding Q̄ →֒ C,

|α| = q
w+3

2
v .

• The representation ρπ,ι is potentially semistable at any finite place v|ℓ.
Moreover, ρπ,ι is crystalline at a finite place v|ℓ when πv is unramified.

For the second part, we recall that χ is an algebraic Hecke character with
infinity types zaz̄b, where a+ b = w. In particular, for the unitary twist π◦ we
have:

Lv(s−
1

2
(w + 3), π◦, spin) = det(1− ιρπ,ι(Frobv) · q−sv )−1

at all places v ∤ ℓ where π◦ is unramified. Note that, by twisting ρπ,ι with
integral powers of the cyclotomic character χcyc, we may alter the motivic
weightw+3 by any even integer. We compare with the motivic weight k1+k2−3
in [Wei].

Temperedness of π◦: From the above, it follows immediately that π◦ has unitary
Satake parameters at all places v ∤ ℓ where π◦ is unramified. In fact, π◦ is
tempered at every place v: Indeed, by Corollary VII.1.11 in [HT], we know
that ΠE is essentially tempered everywhere. That is, φπv |WEw

has bounded
image in GL4(C) for every finite place w of E. Consequently, the same holds
for φπv |WFv

.

The image of ρπ,ι: Since the eigenvalues of ρπ,ι(Frobv) coincide with the inte-
gral Satake parameters of πv, for finite v ∤ ℓ where πv is unramified, Cebotarev
yields:

ρ∨π,ι ≃ ρπ,ι ⊗ χ−1, χ
df
= ωπ◦ · χ−w−3cyc ,

where we confuse ωπ◦ with its finite order ℓ-adic avatar. In other words, the
space of ρπ,ι has a non-degenerate bilinear form preserved by ΓF with similitude
χ. We have already observed that ρπ,ι is irreducible, so by Schur’s lemma this
bilinear form must be symmetric or symplectic. Thus, the image of ρπ,ι can
always be conjugated into GO(4) or GSp(4). Under our running assumptions
on π, in fact into the latter: Otherwise, by local-global compatibility at the
place v0 ∤ ℓ, the L-parameter of Πv0 is of orthogonal type. That is, it maps

rec(Πv0) : W ′Fv0 = WFv0
× SL(2,C)→ GO(4,C).

However, Πv0 is the transfer of πv0 , so rec(Πv0 ) also preserves a symplectic form
on C4. Now, Πv0 is a generalized Steinberg representation, and one verifies that

ZGL(4,C)(im(rec(Πv0))) = C∗
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by an easy computation. Indeed, rec(Πv0) is of the form φ ⊠ Sd, where φ is
an irreducible representation of WFv0

, and Sd is the d-dimensional irreducible
representation of SL(2,C). Ergo, the above symplectic form must agree with
the orthogonal form up to a scalar. This is a contradiction. The symplecticity
of ρπ,ι, just shown, is a special case of Theorem F on p. 6 in [CCl] when ωπ is
trivial. This result from [CCl] has recently been generalized to the CM case in
[BCh]. When F = Q, the symplecticity of ρπ,ι is shown in [Wei], for globally
generic π, using Poincare duality. Indeed, by [Sou], π occurs with multiplicity
one, so ρπ,ι can be realized as the πf -isotypic component of H3 of a Siegel
threefold. The cup product pairing then provides the desired symplectic form.

Baire category theory: To check that the image of ρπ,ι is in fact contained in
GSp4(L), for some finite extension L over Qℓ, we invoke the Baire Category
Theorem: Every locally compact Hausdorff space is a Baire space (that is, the
union of any countable collection of closed sets with empty interior has empty
interior). We will apply it to the compact subgroup ρπ,ι(ΓF ) inside GSp4(Q̄ℓ).

ρπ,ι(ΓF ) =
⋃

L/Qℓ finite
ρπ,ι(ΓF ) ∩GSp4(L)

is a countable union of closed subgroups, since each L is complete. Therefore,

ρπ,ι(ΓF ) ∩GSp4(L) has non-empty interior,

for some L, and hence this is an open subgroup. That is, the image of ΓM for
some finite extension M over F . In particular, it has finite index in ρπ,ι(ΓF ).
By enlarging L, to accomodate the finitely many coset representatives, we can
arrange for the image of ρπ,ι to be contained in the L-rational points GSp4(L).

Total oddness: χ(c) = −1 for every complex conjugation c ∈ ΓF from Q̄ →֒ C.

Hodge-Tate weights: Let us fix an embedding s : F → Q̄ℓ, and let v be the
associated place of F above ℓ. We wish to compute the Hodge-Tate weights of
ρπ,ι restricted to ΓFv , where Fv = s(F )−. That is, for each integer j, evaluate

dimQ̄ℓ grj(ρπ,ι ⊗Fv BdR)ΓFv .

We will reduce this to the analogous result for ρΠE(χ),ι already mentioned.
Thus, we fix a CM extension E, in which v splits. Once and for all, we fix a
divisor w of v, and look at a corresponding embedding s̃ : E → Q̄ℓ over s. This
canonically identifies Ew = s̃(E)− with Fv. Now note that, for characters χ as
above,

ρπ,ι|ΓFv ⊗ ρχ,ι|ΓEw ≃ ρΠE(χ),ι|ΓEw .
Therefore, we first record the Hodge-Tate weight of ρχ,ι|ΓEw . The associated
complex embedding ι(s̃) defines an infinite place of E, where χ has the form
zaz̄b. As is well documented elsewhere in the literature, for example in [Bla],
the Hodge-Tate weight is then −b, with our choice of normalization. Therefore,

dimQ̄ℓ grj(ρπ,ι ⊗Fv BdR)ΓFv = dimQ̄ℓ grj−b(ρΠE(χ),ι ⊗Ew BdR)ΓEw ,
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since DdR is a ⊗-functor. It remains to find the highest weight of the V with

H•(g,K; ΠE(χ)∞ ⊗ V∗) 6= 0.

More precisely, we let σ = ι(s) ∈ Σ, and consider the two complex embeddings
{σ̃, σ̃c} of E extending σ. Here σ̃ = ι(s̃). In our earlier notation, we need to
compute the quadruple µ(σ̃c). For this, we follow the proof of Lemma 3.14 on
p. 114 in [Cl2]: We consider the local component of ΠE(χ) at the infinite place
of E above σ. We know its L-parameter, so according to p. 113 in [Cl2]:





µ1(σ̃c) = b + 3− 1
2 (w + n′),

µ2(σ̃c) = b + 2− 1
2 (w + n),

µ3(σ̃c) = b + 1− 1
2 (w − n),

µ4(σ̃c) = b + 0− 1
2 (w − n′).

Here we have introduced n = ν1 − ν2 and n′ = ν1 + ν2. Moreover, the motivic
weight w+3 is denoted by w. From the above, and the result from section 4.2,
we deduce that the Hodge-Tate weights of ρπ,ι|ΓFv are given by the sequence:

1

2
(w − n′) < 1

2
(w − n) <

1

2
(w + n) <

1

2
(w + n′).

In particular, they are distinct. We will rewrite this slightly. For each σ ∈ Σ,

δ = δ(σ)
df
=

1

2
(w − n′) =

1

2
(w − µ1 − µ2) ∈ Z.

With this notation, the set of Hodge-Tate weights takes the following form:

HT(ρπ,ι|ΓFv ) = {δ, ν2 + δ, ν1 + δ, ν1 + ν2 + δ}.

In the case F = Q it is customary to take w = k1 + k2 − 3, that is, δ = 0. In
this case, we recover the Hodge types given in Theorem III on p. 2 in [Wei].

4.5 Consequences of local-global compatibility

Parahoric subgroups: We fix a finite place v of F , and define certain compact
open subgroups of GSp4(Fv), known as the parahoric subgroups. They arise as
stabilizers of points in the Bruhat-Tits builidng. We refer to [Tit] for a general
discussion. First, we have the hyperspecial maximal compact subgroup

K = Kv
df
= GSp4(Ov).

Inside of it, we have the pullbacks of the two parabolics via the reduction map:

{
JP = JP,v

df
= {k ∈ K: k (mod v) ∈ P (Fv)},

JQ = JQ,v
df
= {k ∈ K: k (mod v) ∈ Q(Fv)}.
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They are usually called the Siegel and Klingen parahoric, respectively. More-
over,

I = Iv
df
= JP ∩ JQ = {k ∈ K: k (mod v) ∈ B(Fv)}

is called the (upper-triangular) Iwahori subgroup. Furthermore, let us intro-
duce

η = ηv
df
=




1
1

̟v

̟v


, c(η) = −̟v, η2 = ̟v · I4.

This η is occasionally referred to as the Atkin-Lehner element. It depends
on the choice of a uniformizer ̟v, but it is well-defined modulo the maxi-
mal compact subgroup of the torus Tc. An explicit calculation shows that the
η-conjugate ηKη−1 is another hyperspecial maximal compact subgroup con-
taining the Siegel parahoric. There is one more maximal compact subgroup
containing I. Namely,

K̃ = K̃v
df
= subgroup generated by JQ and its η-conjugate.

This is the paramodular, or non-special, subgroup. We have thus described all
parahoric subgroups of GSp4(Fv) up to conjugacy. Note that η normalizes K̃
and JP , hence I. Therefore, if J is any one of these subgroups, and π is an
irreducible admissible representation, π(η) is a well-defined operator on the J-
invariants πJ . Its square is multplication by ωπ(̟v). In particular, if ωπ = 1,
the eigenvalues of π(η) are ±1. These are tabulated in table 3 on p. 16 in [Sch].

Nilpotent orbits: Suppose π is an irreducible representation of GSp4(Fv), as-
sumed to be Iwahori-spherical. That is, πI 6= 0. Then its L-parameter is given
by a semisimple element in GSp4(C) plus a compatible nilpotent element N in
the Lie algebra gsp4(C), both viewed up to conjugacy. Here we list the finitely
many possibilities for N . First, by the theory of the Jordan normal form,




0 1
0

0
0


,




0 1
0

0 1
0


,




0 1
0 1

0
0


,




0 1
0 1

0 1
0




represent the non-trivial nilpotent classes in gl4(C). An explicit computation
verifies that the third representative cannot be conjugated into gsp4(C). Recall
that sp4(C) consists of X such that JX is symmetric. Here J is the anti-
diagonal symplectic form fixed throughout the paper. However, the other three
representatives are in fact symplectic in this sense: They are conjugate to

N1
df
=




0
0 1

0
0


, N2

df
=




0 1
0

0 −1
0


, N3

df
=




0 1
0 1

0 −1
0
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respectively. Again, this follows immediately from the theory of normal forms.
Each Ni is contained in sp4(C). Note that Ni has rank i. It may be useful to
observe that N1 is a root vector for the long simple root β(t) = 2t2, whereas N2

is a root vector for the short simple root α(t) = t1 − t2. Their sum is N3. By
the Jacobson-Morozov theorem, [Jac, Theorem 3], the Ni in fact represent the
GSp4(C)-conjugacy classes of nilpotent elements in gsp4(C). To aid comparison
with [Sch], let us make the following remark: For the L-parameter of π to
have a more transparent semisimple part, one often takes a different set of
representatives, see p. 6 in [Sch]. For example, the two nilpotent elements

N ′1
df
=




0 1
0

0
0


, N ′2

df
=




0 1
0 1

0
0


,

are GSp4(C)-conjugate to N1 and N2 respectively. This is easy to check.

Iwahori-spherical generic representations: By a well-known result of Cassel-
man, see [Car] for a nice review, the Iwahori-spherical π are precisely the con-
stituents of unramified principal series. The way they decompose, in the case of
GSp4, was written out explicitly in [ST]. One gets 17 families of representations,

I, IIa, IIb, IIIa, IIIb, IV a− IV d, V a− V d, V Ia− V Id,

according to how the unramified principal series breaks up. We refer to pages
6-8 in [Sch] for a precise definition of each class of representations. Fortunately,
here we are only interested in the generic representations. That is, the 6 classes

I, IIa, IIIa, IV a, V a, V Ia.

We will briefly recall the definition of each of these classes. To do that, we will
first introduce the notation used in [ST]: For three quasi-characters χi, let

χ1 × χ2 ⋊ χ3
df
= IndB(χ1 ⊗ χ2 ⊗ χ3)

be the principal series for GSp4 obtained by normalized induction from

χ1 ⊗ χ2 ⊗ χ3 : t 7→ χ1(t1)χ2(t2)χ3(c(t)).

Similarly, if τ is an irreducible representation of GL2, and χ is a character, let

τ ⋊ χ
df
= IndP (τ ⊗ χ), χ⋊ τ

df
= IndQ(χ⊗ τ).

Again, we use normalized induction, and we identify the Levi subgroups of P
and Q with GL2 × GL1 in the natural way. Having this notation at hand,
we describe the generic classes of Iwahori-spherical representations discussed
above:
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(I) π = χ1 × χ2 ⋊ χ3,

(IIa) π = StGL(2)(χ1) ⋊ χ2,

(IIIa) π = χ1 ⋊ StGL(2)(χ2),

(IV a) π = StGSp(4)(χ),

(V a) π ⊂ StGL(2)(ν
1/2ξ0) ⋊ ν−1/2χ

(V Ia) π ⊂ 1⋊ StGL(2)(χ)

Here all the characters χ and χi are unramified. Moreover, ν denotes the nor-
malized absolute value, and ξ0 is the non-trivial unramified quadratic character.
According to Table 1 on p. 9 in [Sch], only IV a and V a are discrete series.
Type V Ia representations are the analogues of limits of discrete series. Table
3 on p. 16 in [Sch] lists the dimensions of the parahoric fixed spaces for all 17
families above, plus additional data such as the Atkin-Lehner eigenvalues when
ωπ = 1. Below, we concatenate parts of Table 2 and parts of Table 3 in [Sch].
That is,

type N K K̃ JP JQ I

I 0 1 2 4 4 8
IIa N1 0 1 1 2 4
IIIa N2 0 0 2 1 4
IV a N3 0 0 0 0 1
V a N2 0 0 0 1 2
V Ia N2 0 0 1 1 3

Table A: Parahoric fixed spaces and monodromy

We note that the assignment of monodromy operators in [Sch] is compatible
with the local Langlands correspondence, as defined by Gan and Takeda via
theta correspondence. This follows from the explicit calculations in section 12
of [GT], see their remarks on p. 33. By local-global compatibility, we deduce:

Corollary 1. Let ρπ,ι be the Galois representation attached to a globally
generic cusp form π as above. Let v ∤ ℓ be a finite place of F such that πv
is Iwahori-spherical and ramified. Then ρπ,ι|IFv acts unipotently. In fact, the
image ρπ,ι(IFv ) is topologically generated by a GSp4(Q̄ℓ)-conjugate of exp(Ni),
where

i =





1, πv of type IIa,

2, πv of type IIIa, Va, or VIa,

3, πv of type IVa.

In particular, we have the following consequences conjectured in [GTi] and [SU]:

• πv of Steinberg type ⇐⇒ monodromy has rank 3.
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• πv has a unique JQ-fixed line ⇐⇒ monodromy has rank 2.

• πv para-spherical ⇐⇒ monodromy has rank 1.

Proof . This follows immediately from Table A above. �

The first two consequences are part of the Conjecture on p. 11 in [GTi]. Note
that part 4 of that Conjecture is false: If πv has a unique JP -fixed line, one
cannot deduce that monodromy has rank one. The last consequence is Con-
jecture 3.1.7 on p. 41 in [SU], for globally generic π as above. Skinner and
Urban used the holomorphic analogue as a substitute for deep results of Kato,
in order to study Selmer groups for certain modular forms of square-free level.
Another application to the Bloch-Kato conjecture in this context, contingent
on the holomorphic analogue of the third consequence above, was given in [Sor].

Supercuspidal generic representations: According to Table 2 on p. 51 in [GT],
there are two types of supercuspidal generic representations π of GSp4. Firstly,

π = θ((σ ⊗ σ′)+),

for distinct supercuspidal representations σ 6= σ′ on GL2. In this case, the lift
to GL4 is the isobaric sum σ⊞σ′. Secondly, if π is not a lift from GO2,2, when
lifted to GL4 it remains supercuspidal. Again, by local-global compatibility:

Corollary 2. Let ρπ,ι be the Galois representation attached to a globally
generic cusp form π as above. Let v ∤ ℓ be a finite place of F such that πv
is supercuspidal. Then ρπ,ι is trivial on some finite index subgroup of IFv .
Moreover,

πv is not a lift from GO2,2 ⇐⇒ ρπ,ι|WFv
is irreducible.

On the contrary, when πv is a lift from GO2,2, the restriction ρπ,ι|ssWFv
breaks up

as a sum of two non-isomorphic irreducible two-dimensional representations.

Proof . This follows from the foregoing discussion. �

For a moment, let us continue with the setup of the previous Corollary. The
exponent of the Artin conductor of ρπ,ι|IFv is defined by the standard formula:

f(ρπ,ι|IFv )
df
=

∞∑

i=0

1

[ĨFv : ĨFv ,i]
· codimQ̄ℓ(ρ

ĨFv,i
π,ι ) ∈ Z,

where ĨFv ,i is the ith ramification group in ĨFv , in turn some finite quotient of
IFv through which ρπ,ι factors. This sum is finite. The exponent of the Swan
conductor, fSwan, is given by the same formula except the summation starts at
i = 1. By irreducibility, it is easy to see that ρπ,ι has no nonzero IFv -invariants:

fSwan(ρπ,ι|IFv ) = f(ρπ,ι|IFv )− 4.
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We wish to relate this to the depth of πv, a non-negative rational number
measuring its wild ramification. We very briefly recall the definition: Let G
be (the rational points of) a connected reductive group over Fv, and let x
be a point on its extended Bruhat-Tits building [Tit]. Its stabilizer Gx is
the corresponding parahoric subgroup. In [MP], Moy and G. Prasad defined
an exhaustive descending filtration of Gx, consisting of open subgroups Gx,r
parametrized by non-negative real numbers r. They then defined a pro-p group
Gx,r+ to be the union of the Gx,s for s > r. The breaks r, where Gx,r+ is a
proper subgroup of Gx,r, is known to form an unbounded discrete subset of R.
The depth of π is

depth(π)
df
= inf{r: πGx,r+ 6= 0, some x} ∈ Q.

Here π is any irreducible admissible representation of G. Our goal is to show:

Proposition 1. Let ρπ,ι be the Galois representation attached to a globally
generic cusp form π as above. Let v ∤ ℓ be a finite place of F such that πv is
supercuspidal, and not a lift from GO2,2. Then we have the following identity:

fSwan(ρπ,ι|IFv ) = 4 · depth(πv).

P roof . As is well-known, see [Tat], the Artin conductor fits into the ǫ-factor:

ǫ(s, ιWD(ρπ,ι|WFv
), ψ) = ǫ(0, ιWD(ρπ,ι|WFv

), ψ) · q−s(f(ρπ,ι|IFv )+4n(ψ))
v .

Here ψ is some fixed non-trivial character of Fv, and n(ψ) is the largest n such
that ψ is trivial on p−nv . Similarly, if Πv is the supercuspidal lift of πv to GL4,

ǫ(s,Πv, ψ) = ǫ(0,Πv, ψ) · q−s(f(Πv)+4n(ψ))
v .

Here f(Πv) is the standard conductor of Πv, that is, the smallest f such that Πv

has nonzero vectors fixed by the subgroup consisting of elements in GL4(Ov)
whose last row is congruent to (0, . . . , 0, 1) modulo pfv . Hence, we deduce that

f(ρπ,ι|IFv ) = f(Πv),

since the local Langlands correspondence for GL4 preserves ǫ-factors. The
determinant twist can be ignored. Now, the key ingredient is the following
formula due to Bushnell and Frölich [BF], which holds for supercuspidals on
any GLn,

f(Πv) = n · depth(Πv) + n, n = 4.

We note, in passing, that this formula was generalized to the square integrable
case in [LR]. It remains to explain why πv and Πv have the same depth. Keep
in mind that Πv ⊗ ωπv is the theta lift of πv to GSO3,3. Now invoke the main
result from [Pan], suitably extended to incorporate similitudes. For this last
step, Lemma 2.2 on p. 7 in [GT] is very useful. We omit the details. �
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Tame ramification: In the previous Proposition, let us take πv to have depth
zero. In other words, πv has nonzero vectors fixed by the pro-unipotent radical
of some parahoric subgroup. In this special case, ρπ,ι|IFv factors through the
tame quotient ItFv , a pro-cyclic group of pro-order prime-to-p. More concretely,
ρπ,ι|IFv is the direct sum of four ℓ-adic characters of IFv , of finite order prime-
to-p. Below, we will state a related result, due to Genestier and Tilouine in the
rational case. Let χ be any complex character of F∗v and view it as a character

χ : JQ,v → GL(2,Fv)× F∗v → F∗v → C∗,

where the second map is projection. If π is an irreducible admissible repre-
sentation of GSp4, we will be looking at the space πJQ,χ of vectors on which
JQ acts via the character χ. When χ 6= 1, this is non-trivial only for principal
series:

Lemma 3. Let π be an irreducible generic representation of GSp4(Fv), and let
χ be a non-trivial character of F∗v, viewed as a character of JQ as above. Then
πJQ,χ is nonzero if and only if π is a tamely ramified principal series of the
form

π = χ̃× (unram.) ⋊ (unram.),

for some extension χ̃ of χ inflated to a tamely ramified character of O∗v .
Proof . First, let us assume πJQ,χ contains nonzero vectors. On such vectors,
the Iwahori subgroup I acts via the character χ⊗1⊗1. By Roche’s construction
of types for principal series [Roc], see the formulation on p. 10 in [So2], we
deduce that π must be a subquotient of a principal series representation of the
form

χ̃× χ1 ⋊ χ2

as in the Lemma. That is, both χi are unramified, and χ̃ extends χ. Our
goal is to show that this principal series is necessarily irreducible. For that,
we use the criterion from Theorem 7.9 in [Tad]. Since χ̃ is ramified, the only
way it could be reducible is if χ1 = ν±1. Recall that ν denotes the normalized
absolute value on Fv. For simplicity, let us assume that χ1 = ν. The other
case is taken care of by taking the dual. Then, by Lemmas 3.4 and 3.9 in [ST],
there is a sequence

0→ χ̃⋊ StGL(2)(σ)→ χ̃× ν ⋊ ν−1/2σ → χ̃⋊ 1GL(2)(σ)→ 0,

where we write χ2 as ν−1/2σ. Both constituents are irreducible. However,
the quotient is non-generic, so π must be the subrepresentation. It remains to
check

(χ̃⋊ StGL(2)(σ))JQ ,χ = 0.

This is done by explicit calculation: We fix a complete set of representatives,

Q\G/JQ = {1, s1, s1s2s1}, s1
df
=




1
1

1
1


, s2

df
=




1
1

−1
1


.
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We are inducing from the Klingen parabolic, and an easy argument shows that
the χ-vectors in the induced representation are given by the χ-vectors in the
representation of the Levi subgroup. In our case, we get the three contributions:

• (χ̃⊗ StGL(2)(σ))Q∩JQ ,χ = χ̃O
∗,χ ⊗ StGL(2)(σ)GL2(O) = 0,

• (χ̃⊗ StGL(2)(σ))Q∩s1JQs1,χ = χ̃O
∗ ⊗ StGL(2)(σ)I,χ = 0,

• (χ̃⊗ StGL(2)(σ))Q∩s1s2s1JQs1s
−1
2 s1,χ = χ̃O

∗,χ′ ⊗ StGL(2)(σ)GL2(O) = 0.

Here χ′ is some irrelevant character. This proves the only if part of the Lemma.
The converse is easier. Indeed, by the same observation, it suffices to check
that

(χ̃⊗ χ1 ⊗ χ2)B∩JQ,χ = χ̃O
∗,χ ⊗ χO∗

1 ⊗ χO
∗

2 6= 0,

as follows from our assumptions on these characters. This finishes the proof.
�

As a last application of local-global compatibility, in conjunction with the pre-
vious Lemma, we obtain the following result due to Genestier and Tilouine in
the rational case F = Q; compare to the second part of Theorem 2.2.5 in [GTi].

Corollary 3. Let ρπ,ι be the Galois representation attached to a globally

generic cusp form π as above. Let v ∤ ℓ be a finite place of F such that π
JQ,χ
v

is nonzero for some non-trivial tamely ramified character χ of O∗v. It follows
that

ρπ,ι|IFv = 1⊕ 1⊕ χ⊕ χ.
Here χ is the character of IFv obtained via local class field theory. Moreover,
one can arrange for the two eigenspaces, for 1 and χ, to be totally isotropic.

Proof . The previous Lemma. See also (vi) of Proposition 12.15 in [GT]. �

In [GTi], this result was proved by a careful study of the bad reduction of Siegel
threefolds with Klingen level structure at v. The eigenspace polarization comes
from the cohomology of each irreducible component of the special fiber.
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Abstract. The purpose of the present paper is to explain the fake
projective plane constructed by J. H. Keum from the point of view
of arithmetic ball quotients. Beside the ball quotient associated with
the fake projective plane, we also analize two further naturally related
ball quotients whose minimal desingularizations lead to two elliptic
surfaces, one already considered by J. H. Keum as well as the one
constructed by M. N. Ishida in terms of p-adic uniformization.
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1 Introduction

In 1954, F. Severi raised the question if every smooth complex algebraic surface
homeomorphic to the projective plane P2(C) is also isomorphic to P2(C) as
an algebraic variety. To that point, this was classically known to be true in
dimension one, being equivalent to the statement that every compact Riemann
surface of genus zero is isomorphic to P1(C). F. Hirzebruch and K. Kodaira were
able to show that in all odd dimensions Pn(C) is the only algebraic manifold in
its homeomorphism class. But it took over 20 years until Severi’s question could
be positively answered. One obtains it as a consequence of S-T. Yau’s famous
results on the existence of Kähler-Einstein metrics on complex manifolds. Two
years after Yau’s results, in [Mum79], D. Mumford discussed the question, if
there could exist algebraic surfaces which are not isomorphic to P2(C), but
which are topologically close to P2(C), in the sense that they have same Betti
numbers as P2(C). Such surfaces are nowadays commonly called fake projective
planes, see [BHPVdV04]. The following characterization of fake projective
planes follows immediately from standard results in the theory of algebraic
surfaces in combination with above mentioned Yau’s result:
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Lemma 1.1. A smooth algebraic surface X is a fake projective plane if and
only if c2(X) = 3, c21(X) = 9, q(X) = pg(X) = 0, and kod(X) = 2. In
particular, the universal covering of X is isomorphic to the unit ball B2 ⊂ C2

and consequently
X ∼= Γ\B2 (1.1)

where Γ is a discrete, cocompact, and torsion free subgroup of Aut(B2) ∼=
PSU(2, 1).

Here, c2(X) and c21(X) denote the two Chern numbers of X which are inter-
preted as the Euler number and the selfintersection number of the canonical
divisor respectively, q(X) is the irregularity, pg(X) the geometric genus, and
kod(X) is the Kodaira dimension of X .

In the above mentioned work [Mum79], Mumford was also able to show the
existence of fake projective planes, constructing an example. However, his
construction is based on the theory of p-adic uniformization and his example
is not presented in the form (1.1), as one naturally would expect. Moreover,
his example is not even a complex surface, but a surface defined (apriori)
over the field of 2-adic numbers Q2. But, p-adic methods were for long time
the only way for producing examples of fake projective planes, of which only
fnitely many can exist, as pointed out by Mumford. Further examples of p-adic
nature have been given by M. -N. Ishida and F. Kato ([IK98]), whereas the first
complex geometric example seems to be the one constructed by J. H. Keum in
[Keu06]. Motivated by the work of M. N. Ishida ([Ish88]), the author finds a
fake projective plane as a degree 7 (ramified) cyclic covering of an explicitely
given properly elliptic surface. Again, as all the examples before, Keum’s
example is not given as a ball quotient. The breakthrough in the study of
fake projective planes came with the recent work of G. Prasad and S. Yeung,
[PY07], where the authors succeeded to determine all fake projective planes.
The main technical tool in their proof is a general volume formula developed
by Prasad which is applied to the case of SU(2, 1), and combined with the
fact that the fundamental group of a fake projective plane is arithmetic. The
resulting arithmetic groups are given rather explicitely in terms of Bruhat-Tits
theory.

In the following paper we identify Keum’s fake projective plane with a ball
quotient XΓ′ = Γ

′\B2. In fact, this ball quotient appears in [PY07] (see [PY07],
5. 9, and there the examples associated with the pair (7,2)). However, in this
paper we use a slightly modified approach to this quotient, motivated by [Kat],
who identified Mumford’s fake projective plane as a connected component of a
certain Shimura variety. Moreover, Mumford’s 2-adic example can be consid-
ered as a kind of a “2-adic completion“ of a ball quotient. This ball quotient
also appears in [PY07] and is also associated to the pair (7, 2) (in the sense of
[PY07]), but this ball quotient is not isomorphic to XΓ′ as remarked in [Keu08].
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Let us briefly describe the approach. We start with an explicit division algebra
D over Q with an involution of second kind ιb, a particular maximal order O,
and we consider the arithmetic group Γ = ΓO,b consisting of all norm-1 ele-
ments in O which are unitary with respect to the hermitian form corresponding
to ιb. Now, Γ

′

appears as a principal congruence subgroup of index 7 in Γ. The
explicit knowledge of Γ allows us to see particular elements of finite order in Γ
and gives us the possibility to explain the elliptic surface appearing in [Keu06]
from the point of view of ball quotients, namely as the minimal desingulariza-
tion of quotient singularities of XΓ = Γ\B2. Passing to a particular group Γ̃
containing Γ with index 3, we identify the minimal desingularization of the ball
quotient XΓ̃ with the elliptic surface of Ishida ([Ish88]) which is originally given
in terms of p-adic uniformization. We illustrate the situation in the following
diagram:

XΓ′

7

��
X̃Γ

��

// XΓ

3

��
X̃Γ̃

// XΓ̃

There, the arrows indicate finite cyclic coverings of compact ball quotients
with announced degree, XΓ′ is a fake projective plane, XΓ and XΓ̃ are singular

ball quotients, having only cyclic singularities and X̃Γ, X̃Γ̃ are the canonical
resolutions of singularities and are both smooth minimal elliptic surfaces of
Kodaira dimension one. Identifying X̃Γ̃ with Ishida’s elliptic surface in [Ish88],
we know the singular fibers of its elliptic fibration. Explicit knowledge of the
finite covering XΓ −→ XΓ̃ gives the elliptic fibration of X̃Γ, already determined
by Keum.

Acknowledgment: I would like to express my gratitude to the referee for
his careful reading of the manuscript and for pointing out a mistake in an earlier
version of the paper.

2 Preliminiaries on arithmetic ball quotients

In this section, we discuss arithmetically defined groups which act properly dis-
continuously on a symmetric domain isomorphic to the two-dimensional com-
plex unit ball and collect some basic properties of the corresponding locally
symmetric spaces.
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2.1 Arithmetic lattices

If H is a hermitian form over C in three variables with two negative and one
positive eigenvalue, then we speak of a form with signature (2, 1). The set of
positive definite lines

BH = {[l] ∈ P2(C) | H(l, l) > 0} ⊂ P2(C) (2.1)

with respect to such a hermitian form H is isomorphic to the two dimensional
complex unit ball B2. Alternatively, we can see BH as the symmetric space
BH ∼= SU(H)/K0 associated with the Lie group SU(H), that is the group of
isometries with respect to H of determinant 1, where K0 is a maximal compact
subgroup in SU(H). Every cocompact discrete and torsion free subgroup Γ
of SU(H) acts properly discontinously on BH as a group of linear fractional
transformations, but not effectively in general. However, the image PΓ of Γ in
PSU(H) acts effectively. The orbit space XΓ = Γ\BH has a natural structure of
a complex manifold, and even more: it has the structure of a smooth projective
algebraic variety. Arithmetic subgroups of SU(H) provide a large natural class
of discrete groups which act on BH . By the classification theory of forms of
algebraic groups, all arithmetic groups which act on the ball can be constructed
as follows:
Let F be a totally real number field and K/F a pure imaginary quadratic
extension (CM extension) ofK. LetA be a 9-dimensional central simple algebra
over K and assume that on A exists an involution of second kind, i. e. an anti-
automorphism ι : A → A such that ι2 = id and the restriction ι|K is the
complex conjugation x 7→ x ∈ Gal(K/F ). In that case, using the Skolem-
Noether theorem, we can always normalize ι in such a way that the extension
ιC on A ⊗ C ∼= M3(C) of ι is the hermitian conjugation, ιC(m) = mt. In this
case we say that ι is the canonical involution of second kind.
As a central simple algebra over a number field, A is a cyclic algebra

A = A(L, σ, α) = L⊕ Lu⊕ Lu2, (2.2)

where L/K is an (cyclic) extension of number fields of degree 3, σ is a generator
of Gal(L/K) and u ∈ A satisfies α = u3 ∈ K∗, au = uaσ for all a ∈ L. This
data already determine the isomorphy class of A. The structure of a division
algebra is determined by the class of α in K∗/NL/K(L∗) by class field theory:
A is a division algebra if and only if α /∈ NL/K(L∗), otherwise A is the matrix
algebra M3(K). We note that L is a splitting field of A, i. e. A ⊗ L ∼= M3(L)
and that we can embedd A in M3(L) if we put:

a 7→



a 0 0
0 aσ 0
0 0 aσσ


 for a ∈ L, u 7→




0 0 α
1 0 0
0 1 0


 (2.3)

and extend linearly to all A.
Consider again the canonical involution ι of second kind on A and let b ∈ A be
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an ι-invariant element, i. e. an element with bι = b. Then ιb : a 7→ baιb−1 defines
a further involution of second kind. Let A(1) denote the group of elements in
A of reduced norm 1 considered as an algebraic group and let Gb = {g ∈ A(1) |
ggιb = 1}. Then, Gb is an algebraic group defined over F . Let us further
assume that the matrix corresponding to b, obtained from the embedding A →֒
M3(C) induced by id ∈ Hom(F,C), represents a hermitian form of signature
(2, 1), and for every id 6= τ ∈ Hom(F,C) the induced matrix is a hermitian form
of signature (3, 0). Then the group of real valued points Gb(R) is isomorphic to
the product SU(2, 1)× SU(3)[F :Q]−1. Since SU(3) is compact, according to the
Theorem of Borel and Harish-Chandra, every arithmetic subgroup of Gb(F )
is a lattice in SU(2, 1), i. e. a discrete subgroup of finite covolume and acts
properly discontinuously on the ball. The arithmetic subgroups derived from
the pair (A, ιb) can be specified in terms of orders in A: Every such group is
commensurable to a group

ΓO,b = {γ ∈ O | γγιb = 1, nr(γ) = 1},

where O is a ιb-invariant order in A and nr(·) denotes the reduced norm. For
instance, take A = M3(K) and let H ∈M3(K) be hermitian with the property
that its signature is (2, 1) when considered as matrix over C and that the
signature of all matrices obtained by applying non-trivial Galois automorphisms
τ ∈ Gal(F/Q) to the entries is (3, 0). M3(oK) is definitively an order in M3(K)
and the arithmetic group ΓH = SU(H, oK) is called the (full) Picard modular
group. On the other hand, the arithmetic lattices constructed from the division
algebras are generally called arithmetic lattices of second kind.

2.2 Invariants of arithmetic ball quotients

Keeping the notations from the last paragraph, let Gb be an algebraic group
derived from a pair (A, ιb) for which b satisfies the additional condition Gb(R) ∼=
SU(2, 1)×SU(3)[F :Q]−1. Let Γ be an arithmetic subgroup in Gb(F ) and denote
XΓ = Γ\B2 the corresponding locally symmetric space. Then, the Godement’s
compactness criterion implies that XΓ is compact, except in the case where A
is the matrix algebra over an imaginary quadratic field K. After a possible
descent to a finite index normal subgroup, we can assume that Γ is torsion
free and XΓ is smooth. There is always a volume form µ on B2 such that the
volume volµ(Γ) of a fundamental domain of Γ is exactly the Euler number of
XΓ, when Γ is torsion free and cocompact. Under the assumption that the
arithmetic group is so-called principal arithmetic subgroup this volume can be
given explicitely by formulas involving exclusively data of arithmetical nature.
A principal arithmetic group Λ is defined as Λ = Gb(F ) ∩∏v Pv, where {Pv}
is a collection of parahoric subgroups Pv ⊂ Gb(Fv) (v a non-archimedian place
of F ), such that

∏
v Pv is open in the adelic group Gb(AF ) (see [Pra89], 3. 4,

or [BP89],1. 4. for details). Let us recall this formula for principal arithmetic
subgroups of SU(2, 1) established in [PY07] where the reader will find omitted
details (see also [Pra89] and [BP89] for the general case). Let DK and DF
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denote the absolute values of discriminants of the number fields K and F and
ζF (·) the Dedekind zeta function of F . For Re(s) > 1 a L-function is defined by
L(s, χK/F ) =

∏
v(1 − χK/F (pv)N(pv)

−s)−1 where v runs over all finite places
of F , pv denotes the prime ideal of oF corresponding to v, N(pv) = |oF /pv| and
χK/F (·) is a character defined to be 1,-1 or 0 according to whether pv splits,
remains prime or ramifies in K.

Lemma 2.1 (see [PY07]). Let Λ ⊂ Gb(F ) be a principal arithmetic subgroup.
Then

volµ(Λ) = 3
D

5/2
K

DF
(16π5)−[F :Q]ζF (2)L(3, χK/F )E

where E =
∏
v∈S e(v) is a product running over a finite set S of non-

archimedian places of F determined by the localization of Λ with rational num-
bers e(v), given explicitely in [PY07] 2. 5.

The above formula not only gives the Euler number of a smooth ball quo-
tient XΓ, when Γ is torsion free finite index normal subgroup of a principal
arithmetic Λ, but also other numerical invariants. Namely, by Hirzebruch’s
Proportionality Theorem, c21(XΓ) = 3c2(XΓ) for any smooth and compact ball
quotient. Consequently, the Noether formula implies for the Euler-Poincaré
characteristic χ(XΓ) := χ(OXΓ) of the structure sheaf OXΓ (arithmetic genus):
χ(XΓ) = c2(XΓ)/3. Similarly, the signature sign(XΓ) equals to c2(XΓ)/3 by
Hirzebruch’s Signature Theorem. In general, the remaining Hodge numbers
(irregularity and the geometric genus) are not immediately given. But, for a
large class of arithmetic groups, namely congruence subgroups of second kind,
i. e. those defined by congruences and contained in division algebras, there is
a vanishing Theorem of Rogawski (see [BR00], Theorem 1), saying that for
such groups H1(Γ,C) vanishes. Then it follows that the irregularity of the cor-
responding ball quotients vanishes, since we can identify the two cohomology
groups H∗(Γ) and H∗(XΓ).

3 Construction of the fake projective plane

Let ζ = ζ7 = exp(2πi/7) and L = Q(ζ). Then, L contains the quadratic sub-

field K = Q(λ) ∼= Q(
√
−7) with λ = ζ+ζ2+ζ4 = −1+√−7

2 . The automorphism
σ : ζ 7→ ζ2 generates a subgroup of Gal(L/Q) of index 2 and leaves K invariant,
therefore, 〈σ〉 = Gal(L/K). We put α = λ/λ. As we have seen before (compare
(2.2)), the triple (L, σ, α) defines a cyclic algebra D = D(L, σ, α) over K.

Lemma 3.1. The algebra D is a division algebra and has an involution of
second kind. The assignement a 7→ ā for a ∈ L, u 7→ ᾱu2 defines the canonical
involution of second kind ι. Let b = tr(λ) + λ̄u + λ̄u2. Then, the induced
hermitian matrix Hb has the signature (2, 1).

Proof. The choice of α ensures that α /∈ NL/K(L∗) by Hilbert’s Theorem 90.
This proves the first statement. The remaining statements are proven in an
elementary way, using the matrix representation of D given in (2.3).
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Hence, the algebraic group Gb is a Q-form of the real group SU(2, 1). Now, we
construct an arithmetic subgroup in Gb(Q) derived from a maximal order in
D. For this let

O = oL ⊕ oLλ̄u⊕ oLλ̄u
2. (3.1)

Clearly, O is an order in D. Also one easily sees that O is invariant under the
involution ιb defined by b. We know even more:

Lemma 3.2. O is a maximal order in D.

Proof. O is maximal if and only if the localization Ov is maximal for every
finite place v. Over a local field, any central simple algebra Av contains (up
to a conjugation) the unique maximal order Mv (see [Rei03]). Therefore the
discriminant d(Mv) completely characterizes Mv. The discriminant d(O) is
easily computed to be 26. Since d(Ov) = d(O)v, we immediately see that at all
places v not dividing 2, d(Ov) = 1. Exactly at those places Dv is the matrix
algebra, since α is an unit there, and Ov is maximal by [Rei03], p. 185. At the
two places λ and λ̄ dividing 2, Dv is a division algebra. There d(Ov) is exactly
the discriminant of the maximal order Mv ([Rei03], p. 151).

Let
ΓO,b = Gb(Q) ∩ O = {γ ∈ O | γγιb = 1, nr(γ) = 1} (3.2)

be the arithmetic subgroup of Gb(Q) defined by O. We shall summarize some
properties of ΓO,b:

Lemma 3.3. ΓO,b is a principal arithmetic subgroup. Every torsion element in
ΓO,b has the order 7. All such elements are conjugate in D.

Proof. By definition, ΓO,b will be principal if at all finite places p of Q its
localization is a parahoric subgroup of Gb(Qp). Since O is maximal, at all

places p 6= 2 the localization Γ
[p]
O,b is the special unitary group SU(Hb, op),

where op = oK ⊗ Qp. Then by [Tit79], Γ
[p]
O,b is maximal parahoric. Since 2 is

split in K, there is a division algebra D2 over Q2 such that D⊗Q2 = D2⊕Do
2,

where Do
2 denotes the opposite algebra to D2. The projection to the first factor

gives an isomorphism Gb(Q2) ∼= D
(1)
2 , the group of elements of reduced norm

1 in D2. Let M2 be the maximal order in D2. Then Γ
[2]
O,b = M(1)

2 . Again,
by [Tit79], this is a maximal parahoric group. In order to prove the second
statement let us consider an element τ of finite order in ΓO,b. Let η be an
eigenvalue of τ . Then η is a root of unity and Q(η) is a commutative subfield
of D. Conversly, every cyclotomic subfield of D containing K gives rise to an
element of finite order in D. Consequently, we have a bijection between the
set of the conjugacy classes of elements of finite order in D and the cyclotomic
fields C ⊂ D which contain the center K of D. Since L is the only such field,
only elements of order 7, 2 and 14 can occur. But since the reduced norm of
−1 is −1 again, elements of order 2 don’t belong to Γ. Thus, only elements of
order 7 are possible.
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Let us now consider a particular congruence subgroup of ΓO,b, namely the
principal congruence subgroup

ΓO,b(λ) = {γ ∈ ΓO,b | γ ≡ 1 mod λ} (3.3)

We have

Lemma 3.4. ΓO,b(λ) is torsion free subgroup of index [ΓO,b : ΓO,b(λ)]=7.

Proof. By Lemma 3.3 we have to show that ΓO,b(λ) contains no elements of
order 7. Let γ be an element in ΓO,b(λ) of finite order k. The eigenvalues of the
representing matrix mγ of γ are k-th roots of unity. Let η be such an eigenvalue
and E = Q(η). Then E ∼= L by arguments in the proof of Lemma 3.3. Since γ
belongs to the congruence subgroup defined by λ, λ divides the coefficients of
mγ − 13 ∈M3(E). Let x be an eigenvector of mγ . Multiplying with an integer
we can assume x ∈ o3E . Then λ|(mγ−13)x = (η−1)x from which follows that λ
divides η−1 in oE. Taking the norms we have NE/Q(λ)|NE/Q(η−1)|k. This is
not possible when assuming k = 7. Therefore, ΓO,b(λ) is torsion free. In order
to compute the index, we make use of the strong approximation property which
holds for Gb. It allows us to express the index [ΓO,b : ΓO,b(a)] of an arbitrary
principal congruence subgroup ΓO,b(a) defined by some ideal a =

∏
pnp of oK

as a product of local indices
∏
p|a[Γ

[p]
O,b : Γ

[p]
O,b(p

np)], where p = p ∩ Q. In the

case in question, we have [ΓO,b : ΓO,b(λ)] = [Γ
[2]
O,b : Γ

[2]
O,b(λ)]. But in the proof

of Lemma 3.3 we already determined the structure of the localizations of ΓO,b:

Γ
[2]
O,b
∼= M(1)

2 and therefore Γ
[2]
O,b(λ) is the congruence subgroup M(1)

2 (πD2),
where πD2 is the uniformizing element of D2. It follows from a Theorem of

Riehm ([Rie70] Theorem 7, see also [PY07]) that [M(1)
2 :M(1)

2 (πD2)] = [F∗23 :
F∗2] = 7.

Let us in the following shortly write Γ for ΓO,b and Γ
′

for ΓO,b(λ). The main
result of this section is

Theorem 3.5. The ball quotient XΓ′ is a fake projective plane.

Proof. First we would like to compute the Euler number c2(XΓ′ ) of XΓ′ . Since

Γ
′

is torsion free, c2(XΓ′ ) = vol(Γ
′

) = [Γ : Γ
′

]volµ(Γ) = 7volµ(Γ). By Lemma
3.3 Γ is principal, so we can apply Lemma 2.1 in order to compute volµ(Γ).
Well known is the value ζQ(2) = π2/6. The other value L(3, χK) = − 7

8π
37−5/2

is computed using functional equation and the explicit formula for generalized
Bernoulli numbers. In the last step, we determine the local factors E . Looking
at [PY07], 2. 2. non trivial local factors e(v) can only occur for v = 2 and
v = 7. Sections 2. 4. and 2. 5. of [PY07] give e(2) = 3 and e(7) = 1 since the
localizations of Γ are maximal parahoric. Altoghether we get volµ(Γ) = 3/7
and c2(XΓ′ ) = 3. Proportionality Theorem gives c21(XΓ′ ) = 9. Rogawski’s
vanishing result implies q(XΓ′ ) = 0. Then automatically pg(XΓ′ ) = 0. As a
smooth compact ball quotient XΓ′ is a surface of general type. By Lemma 1.1
XΓ′ is a fake projective plane.
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4 Structure of XΓ

Let the notations be as in the last section and in particular Γ := ΓO,b, Γ
′

:=
ΓO,b(λ), let in addition B denote the ball defined by (the matrix representation
of) b. In this section we are interested in the structure of the ball quotient
XΓ = Γ\B by the arithmetic group Γ. According to Lemma 3.3, the elements
of finite order in D correspond to the 7-th roots of unity. Hence, all elements
of finite order in Γ are conjugated to a power of ζ = ζ7. The torsion element
ζ doesn’t belong to Γ, since b is not invariant under the operation b 7→ ζbζι.
But ζcζι = c for c = ζ + ζ−1, which is ι-invariant element of signature (2, 1).
For this reason Z = g−1ζg is an element of order 7 in Γ, where g ∈ D is chosen
such that gbg−1 = c. Therefore XΓ is isomorphic to the quotient XΓ′ /〈Z〉 by
the finite subgroup 〈Z〉 < Γ. Let ψ : XΓ′ −→ XΓ′ /〈Z〉 denote the canonical
projection.

Proposition 4.1. The branch locus of ψ consists of three isolated points
Q1,Q2,Q3. They are cyclic singularities of XΓ, all of type (7, 3). Outside
of Q1,Q2,Q3, XΓ is smooth. The minimal resolution of each singularity Qi,
i = 1, 2, 3, is a chain of three rational curves Ei,1, Ei,2, Ei,3 with selfintersec-
tions (Ei,1)2 = −3, (Ei,2)2 = (Ei,3)2 = −2 and (Ei,1 ·Ei,2) = (Ei,2 · Ei,3) = 1,
(Ei,1 ·Ei,3) = 0 (Hirzebruch-Jung string of type (−3)(−2)(−2)).

Proof. The branch locus of ψ doesn’t depend explicitely on Γ
′

and is in
fact the image of the fixed point set in B of non-trivial finite order elements
in Γ under the canonical projection B −→ Γ\B coming from the ball. The
number of its components is exactly the number of Γ-equivalence classes of
elliptic fixed points in B. By (2.3) the matrix representation mζ of ζ is just
mζ = diag(ζ, ζ2, ζ4). Only one (projectivized) eigenvector of mζ–namely
e1–lies in the ball defined by c and represents an elliptic fixed point. Let
x := g−1e1 denote the corresponding fixed point in B of Z. Note that ζ can
be embedded into D in three different ways, namely as ζ, ζσ or ζσσ . The two
non-trivial embeddings give two further Γ-inequivalent fixed points xσ and
xσσ in the same way as x is given. Let Qi ∈ XΓ, i = 1, 2, 3 be the images of x,
xσ, xσσ under the canonical projection. They give the three branch points. It
is left to show that there are no more such points and that there are no curves
in the branch locus. We will give an argument for it subsequent to the next
Proposition. Looking at the action of 〈mζ〉 around e1 we find that around
Qi XΓO,b looks like C2/G, with G ∼= 〈diag(ζ, ζ3), which represents a cyclic
singularity of type (7, 3). By standard methods we get the minimal resolution
stated above.

Let X̃Γ
ρ−→ XΓ denote the minimal resolution of all singularities of XΓ. Our

goal is to determine the structure of X̃Γ. We start with topological invariants.

Proposition 4.2. c2(X̃Γ) = 12, sign(X̃Γ) = −8. Consequently c21(X̃Γ) = 0,

χ(X̃Γ) = 1.
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Proof. In [Hol98], R. -P. Holzapfel introduced two rational invariants of a two-
dimensional complex orbifold (X,B) (in the sense of [Hol98]), called the Eu-
ler height e(X,B) (see [Hol98], 3. 3.) and the Signature height sign(X,B)
([Hol98], 3. 4.), which in the case of a smooth surface are the usual Euler
number and the signature. In the general case, Euler- and Signature height
contain contributions coming from the orbital cycle B, a marked cycle of X ,
which should be thought as a virtual branch locus of a finite covering of X .
Most important result on these invariants is the nice property that they be-
have multiplicatively under finite coverings with respect to the degree. In

particular, if Y
f−→ (X,B) is a uniformization of (X,B), i. e. a smooth sur-

face which is a finite Galois cover of (X,B), ramified exactly over B, then
c2(Y ) = deg(f)e(X,B), sign(Y ) = deg(f)sign(X,B). In our case, XΓ′ is an
uniformization of the orbifold (XΓ, Q1, Q2, Q3). Since XΓ′ is a fake projec-
tive plane, we have e(XΓ′ ) = 3, sign(XΓ′ ) = 1. Applying Holzapfels formulas
[Hol98] prop. 3.3.4, and prop. 3.4.3, we get e(XΓ) = 3, sign(XΓ) = 1. The bi-
rational resolution map ρ consists of 9 monoidal transformations. Then, using
[Hol98], p. 142 ff, we obtain e(X̃Γ) = 3+9, sign(X̃Γ) = 1−9. The other invari-
ants are immediately obtained using facts from the general theory mentioned
at the end of section 2.2.

Proof of Proposition 4.1 continued. From the proof of the above Proposition
we can deduce that there are no more branch points than we have found.
Namely, if we assume that there are more, and knowing that no branch curves
exist, we immediately obtain a contradiction to the equality between the orbital
invariants c2(XΓ′ ) = 7e(XΓ) = 7(e(XΓ)−∑(1− 1/di)) (by definition we have
e(XΓ) = e(XΓ)−∑(1− 1/di), where sum is taken over the branch locus, and
di appears in the type (di, ei) of the branch point Qi, see [Hol98], 3. 3). Let
us give an argument that no branch curves are possible. Such a curve must be
subball quotient C = D/G, with D ⊂ B, D ∼= B1 a disc fixed by a reflection in Γ
and G ⊂ Γ an arithmetic subgroup consisting of all elements in Γ acting on D.
Then G is commensurable to a group of elements with reduced norm 1 in an
order of a quaternion subalgebra Q ⊂ D, which is necessarily a division algebra.
But for dimension reasons D cannot contain quaternion algebras. Therefore C
doesn’t exist.

In the next step we compute the irregularity and the geometric genus.

Proposition 4.3. q(X̃Γ) = pg(X̃Γ) = 0.

Proof. Due to the fact that χ(X̃Γ) = 1 − q(X̃Γ) + pg(X̃Γ) = 1, by preceding
propostion 4.2, it suffices to show that one of the above invariants vanishes,
let’s say pg(X̃Γ) = dimH0(X̃Γ,Ω

2
X̃Γ

). We know that pg(XΓ′ ) = 0. Let Ω2
XΓ

denote the space of holomorphic 2-forms on (the singular surface) XΓ. Then
Ω2
XΓ

is exactly the space of 〈ζ〉-invariant 2-forms on XΓ′ , i. e. Ω2
XΓ

= (Ω2
X

Γ
′
)〈ζ〉

(see [Gri76]). On the other hand we have an isomorphism between Ω2
X̃Γ

and

Ω2
XΓ

(again by [Gri76]). Altogether, pg(X̃Γ) = 0.
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Let us remark at this stage, that even if we know some invariants of X̃Γ, we
still need to determine the Kodaira dimension in order to classify X̃Γ, since
there exist surfaces with these invariants in every Kodaira dimension. We will
determine kod(X̃Γ) discussing the second plurigenus of X̃Γ. Using an argument
of Ishida [Ish88] we first prove

Lemma 4.4. Let A2(Γ, j) denote the space of Γ-automorphic forms of weight 2
with respect to the Jacobian determinant as the factor of automorphy and let
P2(X̃Γ) be the second plurigenus of X̃Γ. Then P2(X̃Γ) = dimA2(Γ, j).

Proof. We can identify A2(Γ, j) with the space of 〈ζ〉-invariant sections
H0(XΓ′ ,K⊗2X

Γ
′
)〈ζ〉. Every such section can be regarded as a holomorphic section

s ∈ H0(Xsm
Γ ,K⊗2XsmΓ ), where Xsm

Γ = XΓ\{Q1, Q2, Q3} denotes the smooth part

of XΓ. We can think of Xsm
Γ as an open dense subset of X̃Γ. The crucial point

is to show that s has a holomorphic continuation along the exceptional locus.
For this, let (s) be the divisor of X̃Γ corresponding to s and write (s) in three
different ways as (s) = ai,1Ei,1 + ai,2Ei,2 + ai,3Ei,3 + Di, i = 1, 2, 3, with Ei,j
as in Proposition 4.1 and no Ei,j is contained in the support of Di. Then, we
have to show that ai,j are nonnegative integers. Let K denote the canonical

divisor of X̃Γ. We notice that (s) and 2K are linearly equivalent. With our
convention stated in Proposition 4.1 the adjunction formula gives the following
intersection numbers:

((s) ·Ei,1) = (2K ·Ei,1) = 2,

((s) ·Ei,2) = (2K ·Ei,2) = 0, (4.1)

((s) ·Ei,3) = (2K ·Ei,3) = 0.

On the other hand,

((s) ·Ei,1) = (ai,1Ei,1 + ai,2Ei,2 + ai,3Ei,3 +Di ·Ei,1)

= −3ai,1 + ai,2 + di,1,

((s) ·Ei,2) = ai,1 − 2ai,2 + ai,3 + di,2, (4.2)

((s) ·Ei,3) = ai,2 − 2ai,3 + di,3,

with some nonnegative integers di,j . Now, (4.1) and (4.2) lead to a system of
linear equations, which has positive solutions ai,j , j = 1, 2, 3.

In [Hir66], F. Hirzebruch developed a formula for the dimension of spaces of au-
tomorphic forms Ak(∆, j) of weight k with respect to a discrete and cocompact
group which acts properly discontinously on some bounded hermitian symmet-
ric domain with emphasis on ball quotient case. Let us recall this formula in
the case of quotients of the n-dimensional ball:
Let ∆ be a discrete group which acts properly discontinuously on the
n-dimensional ball Bn with a compact fundamental domain. For δ ∈ ∆ let
∆δ be the centralizer of δ in ∆, Fix(δ) the fixed point set of δ in Bn, and m(δ)
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the number of elements in ∆δ which act trivially on Fix(δ). If r(δ) denotes the
dimension of Fix(δ) let R(r(δ), k) be the coefficient of zr(δ) in the formal power
series expansion of (1−z)k(n+1)−1∏n

i=r(δ)+1
1

1−νi+νiz , where νr(δ)+1, . . . , νn are

the eigenvalues of δ normal to Fix(δ). R(r(δ), k) is a polynomial in k of degree
r(δ). Hirzebruch’s result is:

dimAk(∆, j) =
∑

[δ]

e(∆δ\Fix(δ))jkδ
m(δ)(r(δ) + 1)

R(r(δ), k), (4.3)

where e(∆δ\Fix(δ)) is the “virtual Euler number“ (in the sense of [Hir66]), jδ
is the Jacobian determinant evaluated at an arbitrary point of Fix(δ) and the
sum is running over all conjugacy classes [δ] of elements with fixed points in
Bn.
We apply this formula to the group Γ, which after some elementary calculations
in combination with Lemma 4.4 gives the following result.

Proposition 4.5. P2(X̃Γ) = 1.

We use the above Proposition and an argument of Keum (see [Keu08]) to get

Corollary 4.6. kod(X̃Γ) = 1. Moreover, X̃Γ is a minimal elliptic surface.

Proof. If X̃Γ were of general type, the Riemann-Roch Theorem would imply
P2(X̃Γ) ≥ 2, which contradicts the Proposition 4.5. Also X̃Γ is not rational

by Castelnuovo’s criterion. Assuming kod(X̃Γ) = 0, X̃Γ can only an Enriques
surface because of its topological invariants and because the selfintersection
number of the canonical divisor is zero by Proposition 4.2 X̃Γ is not a blow-
up of an Enriques surface. The canonical divisor KXΓ of the normal surface
XΓ is a Q-Cartier divisor such that KX

Γ
′ is numerically equivalent to ψ∗KXΓ ,

where ψ : XΓ′ −→ XΓ denotes the degree-7 quotient morphism. Working with
intersection numbers of Q-divisors, it follows that (KX

Γ
′ ·KX

Γ
′ ) = deg(ψ)(KXΓ ·

KXΓ) and therefore (KXΓ ·KXΓ) = 9/7. This implies, with ρ : K
X̃Γ
−→ KXΓ

being the minimal desingularization, that (ρ∗KXΓ ·KX̃Γ
) = (KXΓ ·KXΓ) > 0.

Therefore K
X̃Γ

is not numerically equivalent to zero. But the canonical divisor

of an Enriques surface is numerically trivial. Contradiction. Since c2(X̃Γ) =

12 and c21(X̃Γ) = 0, X̃Γ has to be minimal by the classification theory (see
[BHPVdV04]).

Remark 4.7. In the above mentioned recent paper [Keu08], J. H. Keum studies
systematically quotients of fake projective planes by finite groups of automor-
phisms. According to his results the minimal desingularizations of such quo-
tients can only be surfaces of general type or surfaces of Kodaira dimension
1.
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5 Another elliptic surface

In this section we will study the ball quotient by an arithmetic group which
contains Γ. Its desingularization turns out to be another elliptic surface, which
has been already studied by Ishida [Ish88] p-adically. From there we obtain
the elliptic fibration on both of these surfaces.

5.1 Passage to the normalizer

In general, the normalizer NΛ in G(R) of a principal arithmetic group Λ ⊂
G(Q) is a maximal arithmetic group ([BP89], prop. 1. 4.). In fact, for the
principal group Γ = ΓO,b, we infer from [PY07], 5. 4. that the normalizer Γ̃
of Γ in the projective group PG(R) = G(R)/{center} contains Γ with index

3. Morover, Γ̃ ∩Gb(Q) = Γ. It is easily shown, that the matrix τ =
(

0 0 α
1 0 0
0 1 0

)

has the order three, normalizes Γ, and lastly represents a class in PGb(R) ∼=
PU(Hb). Consequently, XΓ̃ = XΓ/〈τ〉. Let XΓ

ϕ−→ XΓ̃ denote the canonical
projection. In the same way as in the Lemma 4.1, we obtain the following

Lemma 5.1. The ball quotient XΓ̃ is smooth outside four points Q,P1, P2, P3,
which are cyclic quotient singularities of type (7, 3) (represented by Q) and (3, 2)
(represented by P1, P2, P3). The minimal resolution of Q is a Hirzebruch-Jung
string A1 + A2 + A3 of type (−3)(−2)(−2) and each of Pi-s is resolved by a
Hirzebruch-Jung string Fi,1 + Fi,2 of type (−2) (−2), i = 1, 2, 3.

Proof. Let g ∈ D be the element introduced at the begining of section 4.
Using the relation τg = gστ , which in fact holds for any g ∈ D, it is directly
checked that τ permutes the three lines x, xσ and xσσ which are fixed by Z.
Consequently the three singular points Q1, Q2, Q3 of XΓ are mapped to one
single point Q ∈ XΓ̃ by ϕ. This point remains a quotient singularity of type
(7, 3). There is at least one singularity more, call it P1, coming from the positive
definite eigenline of τ corresponding to the eigenvalue ω = 1

2 (−1 +
√
−3). It

is a quotient singularity of type (3, 2) since around it τ acts as diag(ω, ω2).
In order to show that there are two more singularities, we make use of the
relation between orbifold invariants of XΓ and XΓ̃. We know namely that
e(XΓ) = 3e(XΓ̃). Furthermore, the (topological) Euler number e(XΓ̃) equals
3. In the same way as in the proof of Proposition 4.1 we exclude branch curves.
Then by definition e(XΓ̃) = 3 − 6/7 −∑r

k=1(1 − 1/dk), where r denotes the
number of elliptic branch points 6= Q, and dk appears in the type (dk, ek) of
the k-th branch point. On the other hand e(XΓ) = 3/7 = 3e(XΓ̃). This holds
only if r = 3 and dk = 3 for all k, as a short calculation shows. This gives two
further branch points P2 and P3. Using the same argument with the signature
height we conclude that all branch points, not of type (7, 3) must be of type
(3, 2). Namely, assuming the opposite we always get a contradiction to the
equation sign(XΓ) = 3sign(XΓ̃).

Again, we can ask about the structure of the minimal desingularization X̃Γ̃ of
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XΓ̃ as we did before for XΓ. With the same methods used in the investigation
of XΓ we get

Proposition 5.2. X̃Γ̃ is a minimal elliptic surface of Kodaira dimension one
with pg = q = 0.

Proof. The topological invariants are computed using the Euler- and Signature
height presented in the proof of Proposition 4.2 and Lemma 5.1. We get the
same topological invariants as in Proposition 4.2: e(X̃Γ̃) = 12, τ(X̃Γ̃) = −8.
The assertion about the irregularity and the geometric genus follows directly
from the (proof of) Proposition 4.3, since we have χ(X̃Γ̃) = 1 again. Lastly, we
can apply Hirzebruch’s formula in order to compute the second plurigenus, since
the proof of Lemma 4.4 works in the present case without any change. There-
fore, we can identify the second plurigenus with the dimension dimA2(Γ̃, j)
of the corresponding space of automorphic forms. By elementary calculations,
(4.3) leads to P2(X̃Γ̃) = 1. As in the proof of Corollary 4.6 we deduce the
asserted Kodaira dimension.

5.2 Elliptic fibration

We have to mention, that alternatively to the approach we have described, for
the proof of Proposition 5.2 we can completely refer to [Ish88], some of whose
arguments we have already used before. There, the author a priori works over
a non-archimedian field, but most of his arguments work independently of it.
Morover, in [Ish88], section 4, the singular fibers of the elliptic fibration on XΓ̃

are completely determined. The non-multiple singular fibers are closely related
to the exceptional curves on X̃Γ̃.To be precise, we have

Theorem 5.3 (compare [Ish88], section 4). X̃Γ̃ admits an elliptic fibration f
over P1. f has exactly one multiple fiber of multiplicity 2 and one multiple fiber
of multiplicity 3. Furthermore, it has four non-multiple singular fibers, all of
type I3 (in Kodaira’s notation) B0 = A2 + A3 + D0, B1 = F1,1 + F1,2 + D1,
B2 = F2,1 + F2,2 +D2, B3 = F3,1 + F3,2 +D3.

We can now use the knowledge of the elliptic fibration on XΓ̃ to reconstruct
the elliptic fibration on XΓ. Since we know the finite covering ϕ, this is not a
difficulty anymore. Again the non-multiple singular fibers contain the excep-
tional curves. For the proof of the next Theorem we can also refer to [Keu06]
whose starting point was exactly the determination of the elliptic fibration.

Theorem 5.4 (see [Keu06], Proposition 2. 1.). The elliptic fibration g on XΓ

over P1 has exactly two multiple fibers, one of multiplicity two and one of
multiplicity three. It has four non-multiple singular fibers, one of type I9: C0 =
E1,2 +E1,3 +E2,2 +E2,3 +E3,2 +E3,3 +D1,0 +D2,0 +D3,0, and three of type

I1: Ai = D
′

i, i = 1, 2, 3. There D
′

i is the inverse image of Di under ϕ.
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Abstract. Let µ ∈ Z+ be arbitrary. We prove a well-posedness
result for mixed boundary value/interface problems of second-order,
positive, strongly elliptic operators in weighted Sobolev spaces Kµa (Ω)
on a bounded, curvilinear polyhedral domain Ω in a manifold M of
dimension n. The typical weight η that we consider is the (smoothed)
distance to the set of singular boundary points of ∂Ω. Our model
problem is Pu := − div(A∇u) = f , in Ω, u = 0 on ∂DΩ, and
DP
ν u = 0 on ∂νΩ, where the function A ≥ ǫ > 0 is piece-wise smooth

on the polyhedral decomposition Ω̄ = ∪jΩ̄j , and ∂Ω = ∂DΩ ∪ ∂NΩ
is a decomposition of the boundary into polyhedral subsets corre-
sponding, respectively, to Dirichlet and Neumann boundary condi-
tions. If there are no interfaces and no adjacent faces with Neu-
mann boundary conditions, our main result gives an isomorphism
P : Kµ+1

a+1 (Ω) ∩ {u = 0 on ∂DΩ, DP
ν u = 0 on ∂NΩ} → Kµ−1a−1 (Ω) for

µ ≥ 0 and |a| < η, for some η > 0 that depends on Ω and P but
not on µ. If interfaces are present, then we only obtain regularity on
each subdomain Ωj . Unlike in the case of the usual Sobolev spaces,
µ can be arbitrarily large, which is useful in certain applications. An
important step in our proof is a regularity result, which holds for gen-
eral strongly elliptic operators that are not necessarily positive. The
regularity result is based, in turn, on a study of the geometry of our
polyhedral domain when endowed with the metric (dx/η)2, where η
is the weight (the smoothed distance to the singular set). The well-
posedness result applies to positive operators, provided the interfaces
are smooth and there are no adjacent faces with Neumann boundary
conditions.
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Introduction

Let Ω ⊂ Rn be an open, bounded set. Consider the boundary value problem

{
∆u = f in Ω

u|∂Ω = g, on Ω,
(1)

where ∆ is the Laplace operator. For Ω smooth, this boundary value problem
has a unique solution u ∈ Hs+2(Ω) depending continuously on f ∈ Hs(Ω) and
g ∈ Hs+3/2(∂Ω), s ≥ 0. See the books of Evans [25], Lions and Magenes [49],
or Taylor [72] for proofs of this basic and well known result.
It is also well known that this result does not extend to non-smooth domains
Ω. For instance, Jerison and Kenig prove in [35] that if g = 0 and Ω ⊂ Rn,
n ≥ 3, is an open, bounded set such that ∂Ω is Lipschitz, then Equation (1) has
a unique solution in W s,p(Ω) depending continuously on f ∈W s−2,p(Ω) if, and
only if, (1/p, s) belongs to a certain explicit hexagon. They also prove a similar
result if Ω ⊂ R2. A consequence of this result is that the smoothness of the
solution u (measured by the order s of the Sobolev space W s,p(Ω) containing
it) will not exceed, in general, a certain bound that depends on the domain Ω
and p, even if f is smooth.
In addition to the Jerison and Kenig paper mentioned above, a deep analysis of
the difficulties that arise for ∂Ω Lipschitz is contained in the papers of Babuška
[4], Baouendi and Sjöstrand [9], Băcuţă, Bramble, and Xu [14], Babuška and
Guo [31, 30], Brown and Ott [13], Jerison and Kenig [33, 34], Kenig [38],
Kenig and Toro [39], Koskela, Koskela and Zhong [43, 44], Mitrea and Taylor
[58, 60, 61], Verchota [73], and others (see the references in the aforementioned
papers). Results more specific to curvilinear polyhedral domains are contained
in the papers of Costabel [17], Dauge [19], Elschner [20, 21], Kondratiev [41, 42],
Mazya and Rossmann [54], Rossmann [63] and others. Excellent references are
also the monographs of Grisvard [27, 28] as well as the recent books [45, 46,
52, 53, 62], where more references can be found.
In this paper, we consider the boundary value problem (1) when Ω is a bounded
curvilinear polyhedral domain in Rn, or, more generally, in a manifold M of di-
mension n and, Poisson’s equation ∆u = f is replaced by a positive, strongly
elliptic scalar equation. We define curvilinear polyhedral domains inductively
in Section 2. We allow polyhedral domains to be disconnected for technical rea-
sons, more precisely, for the purpose of defining them inductively. Our results,
however, are formulated for connected polyhedral domains. Many polyhedral
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domains are Lipschitz domains, but not all. This fact is discussed in detail by
Vogel and Verchota in [74], where they also prove that the harmonic measure is
absolutely continuous with respect to the Lebesgue measure on the boundary
as well as the solvability of Equation (1) if f = 0 and g ∈ L2−ǫ(∂Ω), thus
generalizing several earlier, classical results. See also the excellent book [50].
The generalized polyhedra we considered are of combinatorial type if no cracks
are present. (For a discussion of more general domains, see the references
[68, 74, 75].)
Instead of working with the usual Sobolev spaces, as in several of the papers
mentioned above, we shall work in some weighted analogues of these papers.
Let Ω(n−2) ⊂ ∂Ω be the set of singular (or non-smooth) boundary points of Ω,
that is, the set of points p ∈ ∂Ω such ∂Ω is not smooth in a neighborhood of p.
We shall denote by ηn−2(x) the distance from a point x ∈ Ω to the set Ω(n−2).
We agree to take ηn−2 = 1 if there are no such points, that is, if ∂Ω is smooth.
We then consider the weighted Sobolev spaces

Kµa (Ω) = {u ∈ L2
loc(Ω), η

|α|−a
n−2 ∂αu ∈ L2(Ω), for all |α| ≤ µ}, µ ∈ Z+, (2)

which we endow with the induced Hilbert space norm. A similar definition
yields the weighted Sobolev spaces Ksa(∂Ω), s ∈ R+. By including an extra
weight h in the above spaces we obtain the spaces hKµa (Ω) and hKsa(∂Ω) (where
h is required to be an admissible weight, see Definition 3.8 and Subsection 5.1).
These spaces are closely related to the weighted Sobolev spaces on non-compact
manifolds considered, for example in the references [41, 42, 46, 54, 62, 63]
mentioned above, as well as in the works of Erkip and Schrohe [22], Grubb
[29], Schrohe [65], as well as the sequence of papers of Schrohe and Schulze
[66, 67] concerning related results on boundary value problems on non-compact
manifolds and, more generally, on the analysis on non-compact manifolds.
The main result of this article, Theorem 1.2 applies to operators with piece-
wise smooth coefficients, such as div a∇u = f , where a is allowed to have only
jumps across the interface. A simplified version of that result, when formulated
for the Laplace operator ∆ on Rn with Dirichlet boundary conditions, reads as
follows. In this theorem and throughout this paper, Ω will always denote an
open set.

Theorem 0.1. Let Ω ⊂ Rn be a bounded, curvilinear polyhedral domain and
µ ∈ Z+. Then there exists η > 0 such that the boundary value problem (1) has

a unique solution u ∈ Kµ+1
a+1 (Ω) for any f ∈ Kµ−1a−1 (Ω), any g ∈ Kµ+1/2

a+1/2 (∂Ω),

and any |a| < η. This solution depends continuously on f and g. If a = µ = 0,
this solution is the solution of the associated variational problem.

The case n = 2 of the above theorem is Theorem 6.6.1 in the excellent mono-
graph [45]. Results in higher dimensions related to the ones in our paper can be
found, for instance, in [19, 45, 51, 54, 62]. These works also use the framework
of the Kµa (Ω) spaces. The spaces hKµa (Ω), with h an admissible weight are some-
what more general (see Definition 3.8 for a definition of admissible weights). We
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also take the dimension n of the ambient Euclidean space Rn ⊃ Ω to be arbi-
trary. Furthermore, we impose mixed Dirichlet/Neumann boundary conditions
and allow the boundary conditions to change along (n− 2)-dimensional, piece-
wise smooth hypersurfaces in each hyperface of Ω. To handle this situation, we
include in the singular set of Ω all points where the boundary conditions change,
giving rise to a polyhedral structure on Ω which is not entirely determined by
geometry, but also takes into account the specifics of the boundary value prob-
lem. However, we consider only second order, strongly elliptic systems. For
n = 3, mixed boundary value problems for such systems in polyhedral domains
were studied in weighted Lp spaces by Mazya and Rossmann [54] using point
estimates for the Green’s function [55]. Since we work in L2-based spaces, we
use instead coercive estimates, which directly generalize to arbitrary dimension
and to transmission problems. We use manifolds in order to be able to prove
estimates inductively. The method of layer potentials seems to give more pre-
cise results, but is less elementary (see for example [38, 59, 60, 75]). Solvability
of mixed boundary value problems from the point of view of parametrices and
pseudodifferential calculus can be found in the papers by Eskin [23, 24], Vishik
and Eskin [76, 77, 78], and Boutet de Monvel [10, 11] among others.

As we have already pointed out, it is not possible to obtain full regularity in
the usual Sobolev spaces, when the smoothness of the solution as measured by
µ + 1 in Theorem 0.1 is too large. On the other hand, the weighted Sobolev
spaces have proved themselves to be as convenient as the usual Sobolev spaces
in applications. Possible applications are to partial differential equations, al-
gebraic geometry, representation theory, and other areas of pure and applied
mathematics, as well as to other areas of science, such as continuum mechan-
ics, quantum mechanics, and financial mathematics. See for example [7, 8, 48],
where optimal rates of convergence were obtained for the Finite element method
on 3D polyhedral domains and for 2D transmission problems using weighted
Sobolev spaces.

The paper is organized as follows. In Section 1, we introduce the mixed bound-
ary value/interface problem that we study, namely Equation (6), and state the
main results of the paper, Theorem 1.1 on the regularity of (6) in weighted
spaces of arbitrarily high Sobolev index, and Theorem 1.2 on the solvability
of (6) under additional conditions on the operator (positivity) and on the do-
main (smooth interfaces and no two adjacent faces with Neumann boundary
conditions). In Section 2, we give a notion of curvilinear, polyhedral domain in
arbitrary dimension using induction, then we specialize to the familiar case of
polygonal domains in R2 and polyhedral domains in R3, and describe the desin-
gularization Σ(Ω) of the domain Ω in these familiar settings. Before discussing
the desingularization in higher dimension, we recall briefly needed notions from
the theory of Lie manifolds with boundary in Section 3. Then, in Section 4 we
show that Σ(Ω), also defined by induction on the dimension, naturally carries
a structure of Lie manifold with boundary. We also discuss the construction of
the canonical weight function rΩ, which extends smoothly to Σ(Ω) and is com-
parable to the distance to the singular set. In turn, the Lie manifold structure
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on Σ(Ω) allows to identify the spaces Kµa (Ω), µ ∈ Z+, with standard Sobolev
spaces on Σ(Ω), and hence lead to a definition of the weighted Sobolev spaces
on the boundary Ksa(∂Ω), s ∈ R. Lastly Section 6 contains the proofs of the
main results and most of lemmas of the paper; in particular, it contains a proof
of the weighted Hardy-Poincaré inequality used to establish positivity or strict
coercivity for the problem of Equation (6). An earlier version of this paper was
first circulated as an IMA Preprint in August 2004.

We conclude this Introduction with a word on notation. By Ω we always mean
an open set in Rn. By a diffeomorphisms, we mean a C∞ invertible map with
C∞ inverse. By C we shall denote a generic constant that may change from
line to line. We also denote Z+ = {0, 1, 2, 3, . . .}.

Acknowledgments

We thank Bernd Ammann, Ivo Babuška, Wolfgang Dahmen, Alexandru
Ionescu, and Daniel Tătaru for useful discussions. We also thank Johnny Guz-
man for pointing the reference [42] to us and Yu Qiao for carefully reading our
paper. The second named author would like to thank Institute Henri Poincaré
in Paris and the Max Planck Institute for Mathematics in Bonn for their hos-
pitality while parts of this work were being completed.

1 The problem and statement of the main results

We begin by introducing the class of differential operators and the associated
mixed Dirichlet-Neumann boundary value/interface problem that will be the
object of study. For simplicity, we consider primarily the scalar case, although
our results extend to systems as well. Then, we state the main results of
this article, namely the regularity and the well-posedness of the mixed bound-
ary value/interface problem (6) in weighted Sobolev spaces for n-dimensional,
curvilinear polyhedral domains Ω ⊂ Rn. These are stated in Theorems 1.2
and 1.1.

Our analysis is general enough to extend to a bounded subdomain Ω ⊂ M
of a compact Riemannian manifold M . Initially the reader may assume the
polyhedron is straight, that is, informally, that every j-dimensional component
of the boundary, j = 1, . . . , n − 1 is a subset of an affine space. A complete
definition of a curvilinear polyhedral domain is given in Section 2.

1.1 The differential operator P and the associated problem

Let us denote by Ω ⊂ Rn a bounded, curvilinear stratified polyhedral domain
(see Definition 2.1). The domain Ω need not be connected, nor convex. We
assume that we are given a decomposition

Ω = ∪Nj=1Ωj , (3)
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where Ωj are disjoint polyhedral subdomains. In particular, every face of Ω is
also a face of one of the domains Ωj . This is possible since the faces of Ω are
not determined only by the geometry of Ω. As discussed in Section 4, a face of
codimension 1 of Ω is called a hyperface. For well-posedness results, we shall
assume that

Γ = ∪Nj=1∂Ωj \ ∂Ω, (4)

is a finite collection of disjoint, smooth (n−1)-hypersurfaces. We observe that,
since each Ωj is a polyhedron, each component of Γ intersects ∂Ω transversely.
We refer to Γ as the interface.

We also assume that the boundary of Ω is partition into two disjoint subsets

∂Ω = ∂DΩ ∪ ∂NΩ, (5)

with ∂NΩ consisting of a union of open faces of Ω. For well-posedness results,
we shall assume that ∂NΩ does not contain adjacent faces of ∂Ω.

We are interested in studying the following mixed boundary value/interface
problem for a certain class of elliptic, scalar operators P described below:





Pu = f on Ω,

u|∂DΩ = gD on ∂DΩ,

DP
ν u|∂NΩ = gN on ∂NΩ,

u+ = u−, DP+
ν u = DP−

ν u on Γ.

(6)

Above, ν is the unit outer normal to ∂Ω, which is defined almost everywhere,
DP
ν is the conormal derivative associated to the operator P (see (10)), and ±

refers to one-sided, non-tangential limits at the interface Γ. We observe that
DP±
ν is well-defined a.e. on each side of the interface Γ, since each smooth

component of Γ is the boundary of exactly two adjacent polyhedral domains
Ωj , by (4). The coefficients of P will have in general jump discontinuities
along Γ.

We next introduce the class of differential operators that we consider. At
first, the reader may assume P = −∆, the Laplace operator. We shall write
Re(z) := 1

2 (z + z), or simply Re z for the real part of a complex number z.

Let u ∈ H2
loc(Ω). We shall study the following scalar, differential operator in

divergence form

Pu(x) = −
n∑

j,k=1

∂j
[
Ajk(x)∂ku(x)

]
+

n∑

j=1

Bj(x)∂ju(x) + C(x)u(x). (7)

The coefficients Ajk, Bj , C are real valued with only jump discontinuities on
the interface Γ, the operator P is required to be uniformly strongly elliptic and
to satisfy another positivity condition. More precisely, the coefficients of P are
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assumed to satisfy:

Ajk, Bj , C ∈ ⊕Nj=1C∞(Ωj) ∩ L∞(Ω) (8a)

Re
( n∑

j,k=1

[Ajk(x)]ξjξk

)
≥ ǫ

n∑

j=1

|ξj |2, ∀ξj ∈ C, ∀x ∈ Ω, and (8b)

2C(x) −
n∑

j=1

∂jBj(x) ≥ 0, (8c)

for some ǫ > 0.
For scalar equations, one may weaken the uniform strong ellipticity condition
(8b), but this is not needed for our purposes. Our results extend to systems
satisfying the strong Legendre–Hadamard condition, namely

Re
( n∑

j,k=1

m∑

p,q=1

[Ajk(x)]pqξjpξkq

)
≥ ǫ

n∑

j=1

m∑

p=1

|ξjp|2, ∀ξjp ∈ C, (9)

and a condition on the lower-order terms equivalent to (8c). This condition is
not satisfied however by the system of anisotropic elasticity in R3, for which
nevertheless the well-posedness result holds if the elasticity tensor is positive
definite on symmetric matrices [56].
In (8a), the “regularity condition on the coefficients of P” means that the
coefficients and their derivatives of all orders have well-defined limits from each
side of Γ, but as equivalence classes in L∞ they may have jump discontinuities
along the interface. This condition can be relaxed, but it allows us to state a
regularity result of arbitrary order in each subdomains for the solution to the
problem (6). The conormal derivative associated to the operator P is formally
defined by:

Dν
Pu(x) =

n∑

i,j=1

νiAij∂ju(x), (10)

where ν = (νi) is the unit outer normal vector to the boundary of Ω. We
give meaning to (10) in the sense of trace at the boundary. In particular,
for u regular enough DP

ν u is defined almost everywhere on the boundary as a
non-tangential limit.
The problem (6) with gD = 0 is interpreted in a weak (or variational) sense,
using the bilinear form B(u, v) defined by:

B(u, v) :=

n∑

j,k=1

(
Ajk∂ku, ∂jv

)
+

n∑

j=1

(
Bj∂ju, v

)
+
(
Cu, v

)
, (11)

which is well-defined for any u, v ∈ H1(Ω). Then, (6) is weakly equivalent to

B(u, v) = (f, v)L2(Ω) + (gN , v)∂NΩ, (12)
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where the second parenthesis denotes the pairing between a distribution and
a (suitable) function. The jump or transmission conditions, u+ = u−,
DP
ν u

+ = DP
ν u
− at the interface Γ follow from the weak formulation and the

H1-regularity of weak solutions, and hence justify passing from the strong
formulation (6) to the weak one (12). Otherwise, in general, the difference
DP+
ν u−DP−

ν u may be non-zero and may be included as a distributional term
in f .
Condition (8c) implies the Hardy-Poincaré type inequality

ReB(u, u) > C(ηn−2u, ηn−2u)L2 , (13)

if there are no adjacent faces with Neumann boundary conditions and the
interface is smooth. In fact, it is enough to assume that the latter is satisfied
instead of (8c). For applications, however, it is more convenient to have the
concrete condition (8c).
Problems of the form (6) arise in many applications. An important example

is given by (linear) elastostatics. In this case, [Pu]i = −∑3
jkl=1 ∂j C

ijkl ∂ku
l,

i = 1, 2, 3, where C is the fourth-order elasticity tensor, modelling the response
of an elastic body under small deformations. Dirichlet or displacement bound-
ary conditions correspond to clamping (parts of) the boundary, while Neumann
or traction boundary conditions correspond to loading mechanically (parts of)
the boundary. Interfaces arise due to the use of different materials. A careful
analysis of mixed Dirichlet/Neumann boundary value problems for linear elas-
tostatics in 3-dimensional curvilinear, polyhedral domains, was carried out by
two of the authors in [56]. There, the concept of a “domain with polyhedral
structure” is more general than in this paper and includes cracks. In [48], they
studied mixed boundary value/interface problems and the implementation of
the Finite Element Method on “domains with polygonal structure” with non-
smooth interfaces (see also [15]). The results of this paper can be extended to
include domains with cracks, as in [56] and [48], but the topological machinery
used there, including the notion of an “unfolded boundary” [19] in arbitrary
dimensions is significantly more complex. (See [12] for related results.)

1.1.1 Operators on manifolds

We turn to consider the assumptions on P when the domain Ω is a curvilinear,
polyhedral domain in a manifold M of the same dimension. Let then E be a
vector bundle on M endowed with a hermitian metric. A coordinate free ex-
pression of the conditions in Equations (8a)–(8c) is obtained as follows. We as-
sume that there exist a metric preserving connection ∇ : Γ(E)→ Γ(E⊗T ∗M),
a smooth endomorphism A ∈ End(E ⊗ T ∗M), and a first order differential
operator P2 : Γ(E)→ Γ(E) with smooth coefficients such that

A+A∗ ≥ 2ǫI for some ǫ > 0. (14)

Then we define P1 = ∇∗A∇ and P = P1+P2. In particular, the operator P will
satisfy the strong Lagrange–Hadamard condition in a neighborhood of Ω in M .
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Note that if Ω ⊂ Rn and the vector bundle E is trivial, then the condition of
(14) reduces to the conditions of (8), by taking ∇ to be the trivial connection.
We can allow A to have jump discontinuities as well along polyhedral interfaces.

1.2 The main results

We are ready to state the principal results of this paper. We continue to
assume hypotheses (3)–(5) on the domain Ω and its decomposition into disjoint
subdomains Ωj separated by the interface Γ.
We begin with a regularity results for solutions to the problem (6) in weighted
Sobolev spaces hKµa , µ ∈ Z+, a ∈ R, where

Kµa (Ω) := {u ∈ L2
loc(Ω), η

|α|− a
n−2 ∂αu ∈ L2(Ω), for all |α| ≤ µ} , µ ∈ Z+,

and
hKµa(Ω) := {hu, u ∈ Kµa (Ω)}.

(See Section 5 for a detailed discussion and main properties of these spaces.)
Above, ηn−2 is the distance to the singular set in Ω given in Definition 2.5,
while h is a so-called admissible weight described in Definition 3.8. Initially,
the reader may assume that h = rbΩ, b ∈ R, where rΩ is a function comparable
to the distance function ηn−2 close to the singular set, but with better regularity
than ηn−2 away from the singular set. (We refer again to Subsection 5.1 for
more details). The weight h is important in the applications of the theory
developed here for numerical methods, where appropriate choices of h yield
quasi-optimal rates of convergence for the Finite Element approximation to
the weak solution of the problem (6) (see [6, 7, 8, 48]).

Theorem 1.1. Let Ω ⊂ Rn be a bounded, curvilinear polyhedral domain of
dimension n. Assume that the operator P satisfies conditions (8a) and (8b).
Let µ ∈ Z+, a ∈ R, and u ∈ hK1

a+1(Ω) be such that Pu ∈ hKµ−1a−1 (Ωj), for all

j, u|∂DΩ ∈ hKµ+1/2
a+1/2 (∂DΩ), DP

ν u|∂NΩ ∈ hKµ−1/2a−1/2 (∂NΩ). If h is an admissible

weight, then u ∈ hKµ+1
a+1 (Ωj), for all j = 1, . . . , N , and

‖u‖hKµ+1
a+1(Ωj)

≤ C
( N∑

k=1

‖Pu‖hKµ−1
a−1(Ωk)

+ ‖u‖hK0
a+1(Ω)+

‖u|∂DΩ‖hKµ+1/2

a+1/2
(∂DΩ)

) + ‖u|∂NΩ‖hKµ−1/2

a−1/2
(∂NΩ)

) (15)

for a constant C = C(Ω, P, µ, a, h) > 0, independent of u.

The proof of the regularity theorem exploits Lie manifolds and their structure
to reduce to the classical case of bounded, smooth domains. The proof can be
found in Section 6. Note that in this theorem we do not require the interfaces to
be smooth and we allow for adjacent faces with Neumann boundary conditions.
Under additional conditions on the set Ω and its boundary ensuring strict coer-
civity of the bilinear form B of equation (11), we obtain a well-posedness result
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for problem (6). In [48], two of the authors obtained a well-posedness result in
an augmented space on polygonal domains with “Neumann-Neumann vertices,”
i.e., vertices for which both sides joining at the vertex are given Neumann
boundary conditions, and for which the interface Γ is not smooth. Such result
is based on specific spectral properties of operator pencils near the vertices
and is not easily extendable to higher dimension. Note that Kµa (Ω) = hKµ0 (Ω)
for a suitable admissible weight h and hence there is no loss of generality to
assume a = 0 in Theorem 1.1. We will use the same reasoning to simplify the
statements of the following results.

Theorem 1.2. Let Ω ⊂ Rn be a bounded, connected curvilinear polyhedral do-
main of dimension n. Assume that ∂ΩN does not contain any two adjacent hy-
perfaces, that ∂DΩ is not empty, and that the interface Γ is smooth. In addition,
assume that the operator P satisfies conditions (8). Let Wµ(Ω), µ ∈ Z+, be the

set of admissible weights h such that the map P̃ (u) := (Pu, u|∂DΩ, D
P
ν u|∂NΩ)

establishes an isomorphism

P̃ : {u ∈
N⊕

j=1

hKµ+1
1 (Ωj) ∩ hK1

1(Ω), DP
ν u

+ = DP
ν u
− on Γ}

→
N⊕

j=1

hKµ−1−1 (Ωj)⊕ hKµ+1/2
1/2 (∂DΩ)⊕ hKµ−1/2−1/2 (∂NΩ).

Then the set Wµ(Ω) is an open set containing 1.

Theorem 1.2 reduces to a well-known, classical result when Ω is a smooth
bounded domain. (See Remark 6.11 for a result on smooth domains that is
not classical.) The same is true for the following result, Theorem 1.3, which
works for general domains on manifolds. Note however that for manifolds it is
more difficult to express the coercive property, so for more complete results we
restrict to the case of operators of Laplace type.

Theorem 1.3. Let Ω ⊂ M be a bounded, connected curvilinear polyhedral
domain of dimension n. Assume that every connected component of Ω has
a non-empty boundary and that the operator P satisfies condition (14). As-
sume additionally that no two adjacent hyperfaces of ∂Ω are endowed with
Neumann boundary conditions and that the interface Γ is smooth. Let c ∈ C
and W ′µ(Ω) be the set of admissible weights h such that the map P̃c(u) :=

(Pu+ cu, u|∂Ω, DP
ν u|∂Ω) establishes an isomorphism

P̃c : {u ∈
N⊕

j=1

hKµ+1
1 (Ωj) ∩ hK1

1(Ω), u+ = u−, DP
ν u

+ = DP
ν u
− on Γ}

→
N⊕

j=1

hKµ−1−1 (Ωj)⊕ hKµ+1/2
1/2 (∂DΩ)⊕ hKµ−1/2−1/2 (∂NΩ).
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Then the set W ′µ(Ω) is an open set, which contains 1 if the real part of c is
large or if P = ∇∗A∇ with A satisfying (14).

For the rest of this section, Ω and P will be as in Theorem 1.2. We discuss some
immediate consequences of Theorem 1.2. Analogous results can be obtained
from Theorem 1.3, but we will not state them explicitly. The continuity of the
inverse of P̃ is made explicit in the following corollary.

Corollary 1.4. Let A satisfy (14). There exists a constant C =
C(Ω, P, µ, a, h) > 0, independent of f , gD, and gN , such that

‖u‖hK1
1(Ω) + ‖u‖hKµ+1

1 (Ωj)
≤ C

( N∑

j=1

‖Pu‖hKµ−1
−1 (Ωj)

+ ‖u|∂DΩ‖hKµ+1/2

1/2
(∂DΩ)

+ ‖DP
ν u|∂NΩ‖hKµ+1/2

1/2
(∂NΩ)

)
,

for any u ∈ hK1
1(Ω) and any j.

From the fact that ηn−2 is equivalent to rΩ by Proposition 4.9 and Corollary
4.11, we obtain the following corollary.

Corollary 1.5. Let A satisfy (14). There exists η > 0 such that

(P,DP
ν ) : {u ∈

N⊕

j=1

Kµ+1
a+1 (Ωj) ∩K1

a+1(Ω), u|∂DΩ = 0,

DP
ν u

+ = DP
ν u
− on Γ} →

N⊕

j=1

Kµ−1a−1 (Ωj)⊕Kµ−1/2a−1/2 (∂NΩ)

is an isomorphism for all µ ∈ Z+ and all |a| < η.

Note above and in what follows that the interface matching condition u+ = u−

follows from u ∈ K1
a+1(Ω).

Proof. From the results in Sections 5 and 5.1, Kµ+1
a+1 = raΩKµ+1

1 and raΩ is an
admissible weight for any a ∈ R. The result then follows from the fact that
Wµ(Ω) is an open set containing the weight 1 by Theorem 1.2.

The following corollary gives a characterization of the set Wµ(Ω) in the spirit
of [15]. There, similar arguments give that for n = 2 the constant η in the
previous corollary is η = π/αM , where αM is the largest angle of Ω. See also
[42].

Corollary 1.6. Let h = raΩ and A satisfy (14). Assume that for all λ ∈ [0, 1]
the map

(P,DP
ν ) : {u ∈ hλK1

1(Ω), u|∂DΩ = 0, DP
ν u|∂NΩ = 0} → hλK−1−1(Ω)

is Fredholm. Then h ∈ Wµ(Ω).
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The corollary holds for more general weights h =
∏
H x

aH
H , where xH is the

distance to an hyperface H at infinity (see Section 5.1), as long as all aH ≥ 0
or all aH ≤ 0.

Proof. We proceed as in [15]. The family Pλ := h−λPhλ is continuous for
λ ∈ [0, 1], consists of Fredholm operators by hypothesis, and is invertible for
λ = 0 by Theorem 1.2. It follows that the family Pλ consists of Fredholm
operators of index zero. To prove that these operators are isomorphisms, it
is hence enough to prove that they are either injective or surjective. Assume
first that a ≥ 0 in the definition of h. Then K1+λ

1 (Ω) = hλK1
1(Ω) ⊂ K1

1(Ω).
Therefore P is injective on

hλK1
1(Ω) ∩ {u|∂DΩ = 0, Dν

Pu|∂NΩ = 0}.

This, in turn, gives that Pλ is injective.
Assume that a ≤ 0 and consider

Pλ : hλK1
1(Ω) ∩ {u|∂Ω = 0, Dν

Pu|∂NΩ = 0} → hλK−1−1(Ω). (16)

We have (Pλ)∗ = (P ∗)−λ. The same argument as above shows that P ∗λ is
injective, and hence that it is an isomorphism, for all 0 ≤ λ ≤ 1. Hence Pλ is
an isomorphism for all 0 ≤ λ ≤ 1.

2 Polyhedral domains

In this section we introduce the class of domains to which the results of the
previous sections apply. We then specialize to domains in 2 and 3 dimensions
and provide ample examples. The reader may at first concentrate on this case.
We describe how to desingularize the domain in arbitrary dimension later in the
paper, using the theory of Lie manifolds, which we recall in the next section.
Let Ω be a proper open set in Rn or more generally in a smooth manifold M of
dimension n. Our main focus is the analysis of partial differential equations on
Ω, specifically the mixed boundary value/interface problem (6). For this reason,
we give Ω a structure that is not entirely determined by geometry, rather it
takes into account the boundary and interface conditions for the operator P in
problem (6).
We assume that Ω is given together with a smooth stratification:

Ω(0) ⊂ Ω(1) ⊂ . . . ⊂ Ω(n−2) ⊂ Ω(n−1) := ∂Ω ⊂ Ω(n) := Ω̄. (17)

We recall that a smooth stratification S0 ⊂ S1 ⊂ . . . ⊂ X of a topological space
X is an increasing sequence of closed sets Sj = Sj(X) such that each point
of X has a neighborhood that meets only finitely many of the sets Sj , S0 is
a discrete subset, Sj+1 r Sj , j ≥ 0, is a disjoint union of smooth manifolds
of dimension j + 1, and X = ∪Sj . Some of the sets Sj may be empty for
0 ≤ j ≤ j0 < dim(X).
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We will always assume that the stratification {Ω(j)} satisfies the condition that
Ω(j) r Ω(j−1) has finitely many connected components, for all j. This assump-
tion is automatically satisfied if Ω is bounded, and it is not crucial, but simplifies
some of the later constructions.
We proceed by induction on the dimension to define a polyhedral structure on
Ω. Our definition is very closely related to that of Whitney stratified spaces
[79]. We first agree that a curvilinear polyhedral domain of dimension n = 0 is
simply a finite set of points. Then, we assume that we have defined curvilinear
polyhedral domains in dimension ≤ n − 1, n ≥ 1, and define a curvilinear
polyhedral domain in a manifold M of dimension n next. We shall denote by
Bl the open unit ball in Rl and by Sl−1 := ∂Bl its boundary. In particular,
we identify B0 = {1}, B1 = (−1, 1), and S0 = {−1, 1}.

Definition 2.1. Let M be a smooth manifold of dimension n ≥ 1. Let
Ω ⊂ M be an open subset endowed with the stratification (17). Then Ω ⊂ M
is a stratified, curvilinear polyhedral domain if for every point p ∈ ∂Ω, there
exist a neighborhood Vp in M such that:

(i) if p ∈ Ω(l) \ Ω(l−1), l = 1, . . . , n − 1, there is a curvilinear polyhedral
domain ωp ⊂ Sn−l−1, ωp 6= Sn−l−1, and

(ii) a diffeomorphism φp : Vp → Bn−l ×Bl such that φp(p) = 0 and

φp(Ω ∩ Vp) = {rx′, 0 < r < 1, x′ ∈ ωp} ×Bl, (18)

inducing a homeomorphism of stratified spaces.

Given any p ∈ ∂Ω, let 0 ≤ ℓ(p) ≤ n − 1 be the smallest integer such that
p ∈ Ω(ℓ(p)), but p /∈ Ω(ℓ(p)−1) (by convention we set Ω(l) = ∅ if l < 0). By
construction, ℓ(p) is unique given p. Then, the domain ωp ⊂ Sn−ℓ(p)−1 in
the definition above will be called the link of Ω at p. We identify the ”ball”
B0 = {1} and the “sphere” S0 = ∂B1 = {−1, 1}. In particular if ℓ(p) = n− 1,
then ωp is a point.
The notion of a stratified polyhedron is well known in the literature (see for
example the monograph [71]). However, our definition is more general, and
well suited for applications to partial differential equations. See the papers of
Babuška and Guo [5], Mazya and Rossmann [54], and Verchota and Vogel [74,
75] for related definitions. We remark that, according to the above definition,
Ω does not need to be bounded, nor connected, nor convex. For applications
to the analysis of boundary value/interface problems, however, we will always
assume Ω is connected. The boundary ∂Ω need not be connected either, but it
does have finitely many connected components. We also stress that polyhedral
domains will always be open subsets.
The condition ωp 6= Sn−l−1 can be relaxed to ωp 6= Sn−l−1, thus allowing for
cracks and slits, but not punctured domains of the form M r {p}. We will not
pursue this generality in the paper, given also that submanifolds of codimension
greater than 2 consists of irregular boundary points for elliptic equations and
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may lead to ill-posedness in boundary value problems. We refer to the articles
[48, 56] for a detailed analysis of polyhedral domains with cracks in 2 and 3
dimensions.
We continue with some comments on Definition 2.1 before providing several
concrete examples in dimension n = 1, 2, 3. We denote by tBl the ball of
radius t in Rl, l ∈ N, centered at the origin. We also let tB0 to be a point
independent of t. Sometimes it is convenient to replace Condition (18) with
the equivalent condition that there exist t > 0 such that

φp(Ω ∩ Vp) = {rx′, 0 < r < t, x′ ∈ ωp} × tBl. (19)

We shall interchange conditions (18) and (19) at will from now on. For a cone
or an infinite wedge, t = +∞, so cones and wedges are particular examples of
polyhedral domain.
We have the following simple result that is an immediate consequence of the
definitions.

Proposition 2.2. Let ψ : M → M ′ be a diffeomorphism and let Ω ⊂ M
be a curvilinear polyhedral domain. Then ψ(Ω) is also a curvilinear polyhedral
domain.

Next, we introduce the singular set of Ω, Ωsing := Ω(n−2). A point p ∈ Ω(n−2)

will be called a singular point for Ω. We recall that a point x ∈ ∂Ω is called a
smooth boundary point of Ω if the intersection of ∂Ω with a small neighborhood
of p is a smooth manifold of dimension n − 1. In view of Definition 2.1, the
point p is smooth if φp satisfies

φp(Ω ∩ Vp) = (0, t)×Bn−1. (20)

This observation is consistent with ωp being a point in this case, since it is a
polyhedral domain of dimension 0.
Any point p ∈ ∂Ω that is not a smooth boundary point in this sense is a singular
point. But the singular set may include other points as well, in particular the
points where the boundary conditions change, i.e., the points of the boundary
of ∂DΩ in ∂Ω, and the points where the interface Γ meets ∂Ω. It is known
[36, 37] that the solution to the problem (6) near such points behaves in a
similar way as in the neighborhood of non-smooth boundary points. We call
the non-smooth points in ∂Ω the true or geometric singular points, while we
call all the other singular points artificial singular points.
The true singular points can be characterized by the condition that the domain
ωp of Definition 2.1 be an “irreducible” subset of the sphere Sn−l−1, in the sense
of the following definition.

Definition 2.3. A subset ω ⊂ Sn−1 := ∂Bn, the unit sphere in Rn will be
called irreducible if R+ω := {rx′, r > 0, x′ ∈ ω} cannot be written as V + V ′

for a linear subspace V ⊂ Rk of dimension ≥ 1 and V ′ an arbitrary subset
of Rn−k. (The sum does not have to be a direct sum and, in fact, V ′ is not
assumed to be an affine subspace.)
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For example, (0, α) ⊂ S1 is irreducible if, and only if, α 6= π. A subset ω ⊂ Sn−1
strictly contained in an open half-space is irreducible, but the intersection of
Sn−1, n ≥ 2, with an open half-space is not irreducible.
If p ∈ Ω(0), then we shall call p a vertex of Ω and we shall interpret the condition
(18) as saying that φp defines a diffeomorphism such that

φp(Ω ∩ Vp) = {rx′, 0 < r < t, x′ ∈ ωp}. (21)

This interpretation is consistent with our convention that the set B0 (the zero
dimensional unit ball) consists of a single point. We shall call any open, con-
nected component of Ω(1) r Ω(0) an (open) edge of Ω, necessarily a smooth
curve in M . Similarly, any open, connected component of Ω(j) r Ω(j−1) shall
be called a (open) j–face if 2 ≤ j ≤ n− 1. A n− 1-face will be called a hyper-
face. A j–face H is a smooth manifold of dimension j, but in general it is not a
curvilinear polyhedral domain (except if n = 2), because there might not exist
a j-manifold containing the closure of H in ∂Ω. This point will be addressed
in terms of the desingularization Σ(Ω) of Ω constructed in Section 4.

Notations 2.4. From now on, Ω will denote a curvilinear polyhedral domain
in a manifold M of dimension n with given stratification Ω(0) ⊂ Ω(1) ⊂ . . . ⊂
Ω(n) := Ω.

Some or all of the sets Ω(j), j = 0, . . . , n− 2, in the stratification of Ω may be
empty. In fact, Ω(n−2) is empty if, and only if, Ω is a smooth manifold, possibly
with boundary, a particular case of a curvilinear, stratified polyhedron. Finally
we introduce the notion of distance to the singular set Ω(n−2) of Ω (if not empty)
on which the constructions of the Sobolev spaces Kµa (Ω) given in Section 5 is
based. If Ω(n−2) = ∅, we let ηn−2 ≡ 1.

Definition 2.5. Let Ω be a curvilinear, stratified polyhedral domain of di-
mension n. The distance function ηn−2(x) from x to the singular set Ω(n−2)

is
ηn−2(x) := inf

γ
ℓ(γ), (22)

where ℓ(γ) is the length of the curve γ, and γ ranges through all smooth curves
γ : [0, 1]→ Ω, γ(0) = x, p := γ(1) ∈ Ω(n−2).

If Ω is not bounded, for example Ω is an infinite cone, then we modify the
definition of the distance function as follows:

ηn−2(x) := χ(inf
γ
ℓ(γ)), where

χ ∈ C∞([0,+∞)), χ(s) =





s, 0 ≤ s ≤ 1

≥ 1, s ≥ 1

2, s ≥ 3,

(23)

which has the effect of making ηn−2 a bounded function.

Documenta Mathematica 15 (2010) 687–745



702 C. Bacuta, A. L. Mazzucato, V. Nistor, L. Zikatanov

2.1 Curvilinear polyhedral domains in 1, 2, and 3 dimensions

In this subsection we give some examples of curvilinear polyhedral domains Ω
in R2, in S2, or in R3. These examples are crucial in understanding Definition
2.1, which we specialize here for n = 2, n = 3. The desingularization Σ(Ω) and
the function rΩ will be introduced in the next subsection in these special cases.
We have already defined a polyhedron in dimension 0 as a finite collection of
points. Accordingly, a subset Ω ⊂ R or Ω ⊂ S1 is a curvilinear polyhedral
domain if, and only if, it is a finite union of open intervals.
Let M be a smooth 2-manifold or R2. Definition 2.1 can be more explicitly
stated as follows.

Definition 2.6. A subset Ω ⊂M together with smooth stratification Ω(0) ⊂
Ω(1) ≡ ∂Ω ⊂ Ω(2) ≡ Ω will be called a curvilinear, stratified polygonal domain
if, for every point of the boundary p ∈ ∂Ω, there exists a neighborhood Vp ⊂M
of p and a diffeomorphism φp : Vp → B2, φp(p) = 0, such that:

(a) φp(Vp ∩ Ω) = { (r cos θ, r sin θ), 0 < r < 1, θ ∈ ωp }, where ωp is a union
of open intervals of the unit circle such that ωp 6= S1;

(b) if p ∈ Ω(1) r Ω(0), then ωp is exactly an interval of length π.

Any point p ∈ Ω(0) is a vertex of Ω, and p is a true vertex precisely when ωp is
not an interval of length π. The open, connected components of ∂ΩrΩ(0) are
the (open) sides of Ω. In view of condition (b) above, sides are smooth curves
γj : [0, 1] → M , j = 1, . . . , N , with no common interior points. Recall that
by hypothesis, there are finitely many vertices and sides. The condition that
ωp 6= S1 implies that either a side γj has a vertex in common with another
side γk or γj is a closed smooth curve or an unbounded smooth curve. In the
special case Ω(1) r Ω(0) = ∅, Ω has only isolated conical points (see Example
2.11 in the next subsection), while if Ω(0) = ∅, Ω has smooth boundary.

Notations 2.7. Any curvilinear, stratified polygon in R2 will be denoted by P
and its stratification by P(0) ⊂ P(1) = ∂P ⊂ P(2) = P.

Let now M be a smooth 3-manifold or R3. Definition 2.1 can also be stated
more explicitly.

Definition 2.8. A subset Ω ⊂M together with a smooth stratification Ω(0) ⊂
Ω(1) ⊂ Ω(2) ≡ ∂Ω ⊂ Ω(3) ≡ Ω will be called a curvilinear, stratified polyhedral
domain if, for every point of the boundary p ∈ ∂Ω, there exists a neighborhood
Vp ⊂M of p and a diffeomorphism φp : Vp → Bl ×B3−l, φp(p) = 0, such that:

(a) φp(Vp ∩ Ω) = { (y, rx′), y ∈ Bl, 0 < r < t, x′ ∈ ωp }, where t ∈ (0,+∞]
and ωp ⊂ S2−l is such that ωp 6= S2−l;

(b) if l = 0 (i.e., if p ∈ Ω(0)), then ωp ⊂ S2 is a stratified, curvilinear polygonal
domain;
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(c) if l = 1 (i.e., if p ∈ Ω(1)rΩ(0)), then ωp is a finite, disjoint union of finitely
many open intervals in S1 of total length less than 2π.

(d) if l = 2 then p is a smooth boundary point;

(e) φp preserves the stratifications.

Each point p ∈ Ω(0) is a vertex of Ω and p is a true vertex precisely when ωp is
an irreducible subset of S2 (according to Definition 2.3). The open, connected
components of Ω(1) r Ω(0) are the edges of Ω, smooth curves with no interior
common points by condition (c) above. The open, connected components of
Ω(2) r Ω(1), smooth surfaces with no common interior points, are the faces of
Ω. Recall that by hypothesis, there are only finitely many vertices, edges, and
faces in Ω. The condition that ωp be not the whole sphere S2−l (l = 1, 0)
implies that either an edge γj has a vertex in common with another edge γk
or γj is a closed smooth curve or an unbounded smooth curve (such as in a
wedge), and similarly for faces. Again, in the the case Ω(1) = Ω(0), Ω has only
isolated conical points, in the case Ω(0) = ∅, Ω has only edge singularities, and
in the case Ω(1) = Ω(0) = ∅, Ω is smooth.
The following subsection contains several examples.

2.2 Definition of Σ(Ω) and of rΩ if n = 2 or n = 3

We now introduce the desingularization Σ(Ω) for some of the typical examples
of curvilinear polyhedral domains in n = 2 or n = 3. The desingularization of
a domain Ω ⊂M depends in general on M , but we do not explicitly show this
dependence in the notation, and generally ignore it in order to streamline the
presentation, given that the manifold M will be mostly implicit. Associated to
the singularization is the function rΩ, which is comparable with the distance
to the singular set ηn−2 but is more regular. We also frame these definitions
as examples. The general case (of which the examples considered here are
particular cases) is in Section 4. The reader can skip this part at first reading.
The case n = 2 of a polygonal domain P in R2 is particularly simple. We use
the notation in Definition 2.6.

Example 2.9. The desingularization Σ(P) of P will replace each of the vertices
Aj , j = 1, . . . , k, of P with a segment of length αj > 0, where αj is the
magnitude of the angle at Aj (if Aj is an artificial vertex, then αj = π). We
can realize Σ(P) in three dimensions as follows. Let θj be the angle in a polar
coordinates system (rj , θj) centered at Aj . Let φj be a smooth function on
P that is equal to 1 on {rj < ǫ} and vanishes outside Vj := {rj < 2ǫ}. By
choosing ǫ > 0 small enough, we can arrange that the sets Vj do not intersect.
We define then

Φ : P r {A1, A2, . . . , Ak} → P× R ⊂ R3

by Φ(p) = (p,
∑
φj(p)θj(p)). Then Σ(P) is (up to a diffeomorphism) the closure

in R3 of Φ(P). The desingularization map is κ(p, z) = p. The structural Lie
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algebra of vector fields V(P) on Σ(P) is given by (the lifts of) the smooth vector
fields X on P r {A1, A2, . . . , Ak} that on Vj = {rj < 2ǫ} can be written as

X = ar(rj , θj)rj∂rj + aθ(rj , θj)∂θj , (24)

with ar and aθ smooth functions of (rj , θj) on [0, 2ǫ) × [0, αj ]. We can take

rΩ(x) := ψ(x)
∏k
j=1 rj(x), where ψ is a smooth, nowhere vanishing function

on Σ(Ω). (Such a factor ψ can always be introduced, and the function rΩ is
determined only up to this factor. We shall omit this factor in the examples
below.)

The examples of a domain with a single edge or of a domain with a single
vertex are among of the most instructive.

Example 2.10. Let first Ω be the wedge

W := {(r cos θ, r sin θ, z), 0 < r, 0 < θ < α, z ∈ R }, (25)

where 0 < α < 2π, and x = r cos θ and y = r sin θ define the usual cylindrical
coordinates (r, θ, z), with (r, θ, z) ∈ [0,∞) × [0, 2π) × R. Then the manifold
of generalized cylindrical coordinates is, in this case, just the domain of the
cylindrical coordinates on W:

Σ(W) = [0,∞)× [0, α]× R.

The desingularization map is κ(r, θ, z) = (r cos θ, r sin θ, z) and the structural
Lie algebra of vector fields of Σ(W) is

ar(r, θ, z)r∂r + aθ(r, θ, z)∂θ + az(r, θ, z)r∂z ,

where ar, az, and aθ are smooth functions on Σ(W). Note that the vector fields
in V(W) may not extend to the closure W. We can take rΩ = r, the distance
to the Oz-axis.

At this stage, we can describe a domain with one conical point and its desin-
gularization in any dimension.

Example 2.11. Let next Ω be a domain with one conical point, that is, Ω is
a curvilinear, stratified polyhedron in Rn such that Ω(j) = Ω(0) for all 1 ≤
j ≤ n − 2. We assume Ω is bounded for simplicity. Let p ∈ Ω(0) denote the
single vertex of Ω. There exists a neighborhood Vp of p such that, up to a local
change of coordinates,

Vp ∩ Ω = {rx′, 0 ≤ r < ǫ, x′ ∈ ω}, (26)

for some smooth, connected domain ω ⊂ Sn−1 := ∂Bn. Then we can realize
Σ(Ω) in R2n as follows. Assume p = 0, the origin, for simplicity. We define
Φ(x) = (x, |x|−1x) for x 6= p, where |x| is the distance from x to the origin (i.e.,
to p). The set Σ(Ω) is defined to be the closure of the range of Φ. The map κ
is the projection onto the first n components. The map κ is one-to-one, except
that κ−1(p) = {p} × ω. We can take rΩ(x) = |x|. The Lie algebra of vector
fields V(Ω) consists of the vector fields on Σ(Ω) that are tangent to κ−1(p).
This example is due to Melrose [57].
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Example 2.12. Let Ω ⊂ R3 be a convex polyhedral domain, such that all edges
are straight segments. To construct Σ(Ω), we combine the ideas used in the
previous examples. First, for each edge e we define (re, θe, ze) to be a coordinate
system aligned to that edge and such that θe ∈ (0, αe), as in Example 2.10.
Let v1, v2, . . . , vb be the set of vertices of Ω and e1, . . . , ea be the set of edges.
Then, for x not on any edge of Ω, we define Φ(x) ∈ R3+a+b by

Φ(x) =
(
x, θe1 , θe2 , . . . , θea , |x− v1|−1(x− v1), . . . , |x− vb|−1(x− vb)

)
.

The desingularization Σ(Ω) ⊂ R3+a+b is defined as the closure of the range
of Φ. The resulting set will be a manifold with corners with several different
types of hyperfaces. Namely, the manifold Σ(Ω) will have a hyperface for each
face of Ω, a hyperface for each edge of Ω, and, finally, a hyperface for each
vertex of Ω. The last two types of hyperfaces are the so-called hyperfaces at
infinity of Σ(Ω). Let xH be the distance to the hyperface H . We can take then
rΩ =

∏
H xH , where H ranges through the hyperfaces at infinity of Σ(Ω).

We can imagine Σ(Ω) as follows. Let ǫ > 0. Remove the sets {x ∈ Ω, |x− vj| ≤
ǫ} and {x ∈ Ω, |x − ek| ≤ ǫ2}. Call the resulting set Ωǫ. Then, for ǫ small
enough, the closure of Ωǫ is diffeomorphic to Σ(Ω).

The example above can be generalized to a curvilinear, stratified polyhedron,
using local change of coordinates as in Example 2.9 in 2 dimensions. A detailed
construction will be given in Section 4.

A nonstandard example of a curvilinear polyhedral domain is given below.

Example 2.13. We start with a connected polygonal domain P with connected
boundary and we deform it, within the class of connected polygonal domains,
until one, and exactly one of the vertices, say A, touches the interior of another
edge, say [B,C]. (It is clear that such a deformation exists since we allow
each side to have arbitrary finite curvature and length.) Let Ω be the resulting
connected open set. Then Ω will be a curvilinear polyhedral domain. We
define the set Σ(Ω) as for the polygonal domain P, but by introducing polar
coordinates in the whole neighborhood of the point A.

If we deform P to Ω, Σ(P) will deform continuously to a space Σ′(Ω), different
from Σ(Ω). For certain purposes, the desingularization Σ′(Ω) is better suited
than Σ(Ω).

3 Lie manifolds with boundary

The construction of the desingularization Σ(Ω) of a general, curvilinear, strat-
ified polyhedron Ω in n dimensions will be discussed in Section 4. Σ(Ω) will
be used both in the definition of weighted Sobolev spaces on the boundary and
the proof of a weighted Hardy-Poincaré inequality in Subsection 6.2, which
in turn is crucial in establishing coercive estimates for the mixed boundary
value/interface problem (6). Since the construction of the desingularization
Σ(Ω) relies on properties of manifolds with a Lie structure at infinity, we now
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recall the definition of a Lie manifold from [2] and of a Lie manifold with bound-
ary from [1], in order to make this paper as self-contained as possible. We also
recall a few other needed definitions and results from those papers.

3.1 Definition

We recall that a topological space M is, by definition, a manifold with cor-
ners if every point p ∈ M has a coordinate neighborhood diffeomorphic to
[0, 1)k × (−1, 1)n−k, k = 0, 1, . . . , n, such that the transition functions are
smooth (including at the boundary). Given p ∈ M, the least integer k with
the above property is called the depth of p. Since the transition functions are
smooth, it therefore makes sense to talk about smooth functions on M, these
being the functions that correspond to smooth functions on [0, 1)k×(−1, 1)n−k.
We denote by C∞(M) the set of smooth functions on a manifold with corners
M.
Throughout this paper, M will denote a manifold with corners, not necessarily
compact. We shall denote by M0 the interior of M and by ∂M = MrM0 the
boundary of M. The set M0 consists of the set of points of depth zero of M. It
is usually no loss of generality to assume that M0 is connected. Let Mk denote
the set of points of M of depth k and F0 be a connected component of Mk.
We shall call F0 an open face of codimension k of M and F := F 0 a face of
codimension k of M. A face of codimension 1 will be called a hyperface of M,
so that ∂M is the union of all hyperfaces of M. In general, a face of M need
not be a smooth manifold (with or without corners). A face F ⊂ M which is
a submanifold with corners of M will be called an embedded face.
Anticipating, a Lie manifold with boundary M0 is the interior of a manifold
with corners M together with a Lie algebra of vector fields V on M satisfying
certain conditions. To state these conditions, it will be convenient first to
introduce a few other concepts.

Definition 3.1. Let M be a manifold with corners and V be a space of vector
fields on M. Let U ⊂M be an open set and Y1, Y2, . . . , Yk be vector fields on
U ∩M0. We shall say that Y1, Y2, . . . , Yk form a local basis of V on U if the
following three conditions are satisfied:

(i) there exist vector fields X1, X2, . . . , Xk ∈ V , Yj = Xj on U ∩M0;

(ii) V is closed under products with smooth functions in C∞(M) (i.e.,
V = C∞(M)V) and for any X ∈ V , there exist smooth functions
φ1, φ2, . . . , φk ∈ C∞(M0) such that

X = φ1X1 + φ2X2 + . . .+ φkXk on U ∩M0 ; (27)

and

(iii) if φ1, φ2, . . . , φk ∈ C∞(M) and φ1X1 +φ2X2 + . . .+φkXk = 0 on U ∩M0,
then φ1 = φ2 = . . . = φk = 0 on U .
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We now recall structural Lie algebras of vector fields from [2].

Definition 3.2. A subspace V ⊆ Γ(M, TM) of the Lie algebra of all smooth
vector fields on M is said to be a structural Lie algebra of vector fields on M
provided that the following conditions are satisfied:

(i) V is closed under the Lie bracket of vector fields;

(ii) every vector field X ∈ V is tangent to all hyperfaces of M;

(iii) C∞(M)V = V ; and

(iv) for each point p ∈ M there exist a neighborhood Up of p in M and a
local basis of V on Up.

The concept of Lie structure at infinity, defined next, is also taken from [2].

Definition 3.3. A Lie structure at infinity on a smooth manifold M0 is
a pair (M,V), where M is a compact manifold, possibly with corners, and
V ⊂ Γ(M, TM) is a structural Lie algebra of vector fields on M with the
following properties:

(i) M0 = Mr ∂M, the interior of M, and

(ii) If p ∈ M0, then any local basis of V in a neighborhood of p is also a
local basis of the tangent space to M0. (In particular, the constant k of
Equation (27) equals n, the dimension of M0.)

A manifold with a Lie structure at infinity (or, simply, a Lie manifold) is a
manifold M0 together with a Lie structure at infinity (M,V) on M0. We shall
sometimes denote a Lie manifold as above by (M0,M,V), or, simply, by (M,V),
because M0 is determined as the interior of M.
Let Vb be the set of vector fields on M that are tangent to all faces of M. Then
(M,Vb) is a Lie manifold [57]. See [1, 2, 47] for more examples.

3.2 Riemannian metric

Let (M,V) be a Lie manifold and g a Riemannian metric on M0 := Mr ∂M.
We shall say that g is compatible (with the Lie structure at infinity (M,V))
if, for any p ∈ M, there exist a neighborhood Up of p in M and a local basis
X1, X2, . . . , Xn of V on Up that is orthonormal with respect to g on Up.
It was proved in [2] that (M0, g0) is necessarily of infinite volume and complete.
Moreover, all the covariant derivatives of the Riemannian curvature tensor of
g are bounded.
We also know that the injectivity radius is bounded from below by a positive
constant, i.e., (M0, g0) is of bounded geometry [18]. (A manifold with bounded
geometry is a Riemannian manifold with positive injectivity radius and with
bounded covariant derivatives of the curvature tensor, see for example [16] or
[69] and references therein).
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3.3 V-differential operators

We are especially interested in the analysis of the differential operators gener-
ated using only derivatives in V . Let Diff∗V(M) be the algebra of differential
operators on M generated by multiplication with functions in C∞(M) and
by differentiation with vector fields X ∈ V . The space of order m differen-
tial operators in Diff∗V(M) will be denoted DiffmV (M). A differential opera-
tor in Diff∗V(M) will be called a V-differential operator. We define the set
Diff∗V(M;E,F ) of V-differential operators acting between sections of smooth
vector bundles E,F →M in the usual way [1, 2].
A simple but useful property of the differential operator in Diff∗V(M) is that

xsPx−s ∈ Diff∗V(M) (28)

for any P ∈ Diff∗V(M) and any defining function x of some hyperface of M [3].
This property is easily proved using the fact that X is tangent to the hyperface
defined by x, for any X ∈ V (a proof of a slightly more general fact is included
in Corollary 6.3).

3.4 Lie manifolds with boundary

A subset N ⊂ M is called a submanifold with corners of M if N is a closed
submanifold of M such that N is transverse to all faces of M and any face of
N is a component of N ∩ F for some face F of M.
The following definition is a reformulation of a definition of [1].

Definition 3.4. Let (N,W) and (M,V) be Lie manifolds, where N ⊂M is a
submanifold with corners and

W = {X |N, X ∈ V , X |N tangent to N}.

We shall say that (N,W) is a tame submanifold of (M,V) if, for any p ∈ ∂N
and any X ∈ TpM, there exist Y ∈ V and Z ∈ TpN such that X = Y (p) + Z.

Let N ⊂ M be a submanifold with corners. We assume that M and N are
endowed with the Lie structures (N,W) and (M,V). We shall say that N is
a regular submanifold of (M,V) if we can choose a tubular neighborhood V of
N0 := Nr∂N = N∩M0 in M0, a compatible metric g1 on N0, a product-type
metric g1 on V that reduces to g1 on N0, and a compatible metric on M0 that
restricts to g1 on V . Theorem 5.8 of [2] states that every tame submanifold
is regular. The point of this result is that it is much easier to check that a
submanifold is tame than to check that it is regular.
In the case when N is of codimension one in M, the condition that N be tame
is equivalent to the fact that there exists a vector field X ∈ V that restricts
to a normal vector of N in M. The neighborhood V will then be of the form
V ≃ (∂N0)× (−ε0, ε0). Moreover, there will exist a compatible metric on M0

that restricts to the product metric g1 + dt2 on V , where g1 is a compatible
metric on N0.
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Let A be a subset of M. We denote by ∂MA := A r A the boundary of A
computed within M, which should not be confused with ∂A = A r A0, where
A0 is the interior of A, as a manifold with corners. Let D ⊂ M be an open
subset. We say that D is a Lie domain in M if, and only if,

∂MD = ∂MD (29)

and ∂MD is a regular submanifold of M. The condition (29) is included in order
to make sure that D is on only one side of its boundary. A typical example of
a Lie domain D ⊂ M is obtained by considering a regular submanifold with
corners N ⊂M of codimension one with the property that MrN consists of
two connected components. Any of these two components will be a Lie domain.

Definition 3.5. A Lie manifold with boundary is a triple (O0,O,V ′), where
O0 is a smooth manifold with boundary, O is a compact manifold with corners
containing O0 as an open subset, and V ′ is a Lie algebra of vector fields on O
with the property that there exists a Lie manifold (M0,M,V), a Lie domain
D in M and a diffeomorphism φ : O → D such that φ(O0) = D ∩M0 and
Dφ(V|D) = V ′.

We continue with some simple observations. First note that if (O0,O,V) is a
Lie manifold with boundary, then O0 is determined by (O,V). Indeed, if we
remove from O the hyperfaces H with the property that V consists only of
vectors tangent to H , then the resulting set is O0. Therefore, we can denote
the Lie manifold with boundary (O0,O,V) simply by (O,V).
Another observation is that ∂O0, the boundary of O0 (as a smooth manifold
with boundary), has a canonical structure of Lie manifold (∂O0, D = ∂MD,W),
where W = {X |D, X ∈ V , X |D is tangent to D}. The compactification D is
the closure of ∂O0 in O.

3.5 Sobolev spaces

The main reason for considering Lie manifolds (with or without boundary) in
our setting is that they carry some naturally defined Sobolev spaces and these
Sobolev spaces behave almost exactly like the Sobolev spaces on a compact
manifold with a smooth boundary. Let us recall one of the equivalent definitions
in [1]. See also [16, 32, 57, 64, 70] for results on Sobolev spaces on non-compact
manifolds.

Definition 3.6. Fix a Lie manifold (M,V). The spaces L2(M0) = L2(M0) are
defined using the natural volume form on M0 given by an arbitrary compatible
metric g on M0 (i.e., compatible with the Lie structure at infinity). All such
volume forms are known to define the same space L2(M), but with possibly
different norms. Let k ∈ Z+. Choose a finite set of vector fields X ⊂ V such
that C∞(M)X = V . The system X gives rise to the norm

‖u‖2X ,Ω :=
∑
‖X1X2 . . . Xµu‖2L2(Ω) , 1 ≤ p <∞, (30)
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the sum being over all possible choices of 0 ≤ l ≤ k and all possible choices of
vector fields X1, X2, . . . , Xl ∈ X , not necessarily distinct. We then set

Hk(M0) = Hk(M) := {u ∈ L2(M), ‖u‖X ,M <∞}.

The spaces Hs(M0) = Hs(M) are defined by duality (with pivot L2(M0))
when −s ∈ Z+, and then by interpolation, as above.

Let (O0,O,V) be a Lie manifold with boundary. We shall assume that O is the
closure of a Lie domain D of the Lie manifold M. The Sobolev spaces Hk(O0)
are defined as the set of restrictions to O0 of distributions u ∈ Hk(M0), using
the notation of Definition 3.5, k ∈ Z. In particular, we obtain the following
description of Hk(O0) from [1].

Lemma 3.7. We have, for k ≥ 0,

Hk(O0) = {u ∈ L2(O0), ‖u‖X <∞},

and

H−k(O0) = Hk
0 (O0)∗,

where Hk
0 (O0) is the closure of C∞c (O0) in Hk(M0).

Definition 3.8. The hyperfaces of O that do not intersect the boundary ∂O0

of the manifold with boundary O0 will be called hyperfaces at infinity. Let
xH be a defining function of the hyperface H of O. Any function of the form
h =

∏
xaHH , where H ranges through the set of hyperfaces at infinity of O and

aH ∈ R, will be called an admissible weight. If h is an admissible weight, we
set

hHµ(O0) = {hu; u ∈ Hµ(O0)}

with the induced norm.

Later in the paper, we will identify the weighted Sobolev spaces Ksa(Ω) with
suitable spaces hHs(O0) in Proposition 5.7 and utilize the spaces hHs(∂O0) to
define the spaces Ksa(∂Ω) on the boundary in Definition 5.8, for Ω a curvilinear,
stratified polyhedral domain in dimension n. The following proposition, which
summarizes the relevant results from Theorem 3.4 and 3.7 from [1], will then
imply Theorem 5.9.

Proposition 3.9. The restriction to the boundary extends to a continuous,
surjective map hHµ(O0)→ hHµ−1/2(∂O0), for any µ ≥ 1 and any admissible
weight h. The kernel of this map, for µ = 1, consists of the closure of C∞c (O0)
in hH1(O0).

For D, O, O0 as in the proposition above, hHs(D), hHs(O), and hHs(O0) will
all denote the same space.
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4 Desingularization of polyhedra

In this section, we introduce a desingularization procedure that we shall use
for studying curvilinear polyhedral domains. The desingularization will carry a
natural structure of Lie manifold with boundary. This construction will allow
us to study curvilinear polyhedral domains using Lie manifolds with boundary.
The desingularization of a domain Ω ⊂ M depends on M in general (since Ω
depends on M), but we do not include the dependence on M in the notation,
and generally ignore this issue in order to streamline the presentation, since
the manifold M will be clear from the context in most cases.
As before, Ω ⊂ M denotes a curvilinear, stratified polyhedral domain in an
n-dimensional manifold M . We shall construct by induction on n a canonical
manifold with corners Σ(Ω) and a differentiable map κ : Σ(Ω) → Ω that is a
diffeomorphism from the interior of Σ(Ω) to Ω. In particular, the map κ allows
us to identify Ω with a subset of Σ(Ω). We shall also construct a canonical
Lie algebra of vector fields V(Ω) on Σ(Ω). The manifold Σ(Ω) will be called
the desingularization of Ω, the map κ will be called the desingularization map,
and the Lie algebra of vector fields will be called the structural Lie algebra of
vector fields of Σ(Ω). We shall also introduce in this section a smooth weight
function rΩ equivalent to ηn−2.
The space Σ(Ω) that we construct is not optimal if the links ωp are not con-
nected. A better desingularization would be obtained if one considers a diffeo-
morphism φpC for each connected component C of Vp ∩ Ω that maps C to a
conic set of the form ωp,C×Bλ, with λ largest possible. The difference between
these two constructions is seen by looking at the Example 2.13.

Notations 4.1. From now on Vp and φp : Vp → tBn−l × tBl, l = ℓ(p), will
denote a neighborhood of p ∈ ∂Ω in M ⊃ Ω and φp will be a diffeomorphism
satisfying the conditions of Definition (2.1). In addition, ωp ⊂ Sn−l−1 will be
the curvilinear, stratified polyhedron such that

φp(Vp ∩ Ω) = {(rx′, x′′)}, r ∈ (0, t), x′ ∈ ωp and x′′ ∈ tBl},

i.e., ωp is the link of Ω at p. This notation will remain fixed throughout the
paper.

Recall that 0 ≤ ℓ(p) ≤ n − 1 is defined to be the smallest integer such that
p ∈ Ω(ℓ(p)), but p /∈ Ω(ℓ(p)−1). If ℓ(p) = 0, then Bl is reduced to a point, and
we just drop x′′ from the notation above. We will assume that φp extends to
the closure of Vp, if necessary.

4.1 The desingularization Σ(Ω)

We now define the canonical desingularization of a curvilinear polyhedral do-
main Ω ⊂ M , M an n-dimensional smooth manifold. For n = 0, Ω consists of
finitely many points. Then we define Σ(Ω) = Ω and κ = id. To define Σ(Ω)
for general Ω, we shall proceed by induction.
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We need first to make the important observation that the set ωp, p ∈ ∂Ω, of
Definition 2.1 is determined up to a linear isomorphism of Rn−l−1. Indeed, let
Sp ⊂ ∂Ω be the maximal connected manifold of dimension l = ℓ(p) passing
through p that is, the connected component of Ω(l) r Ω(l−1) containing p. Let
(TpSp)

⊥ = TpM/TpSp. The differential Dφp : TpM → Rn = T0Rn of the
map φp at p has then the property that Dφp(TpSp) = T0Rl, Dφp

(
(TpSp)

⊥) =
T0Rn/T0Rl = Rn−l. We will define a canonical set Np ⊂ (TpSp)

⊥ such that

Dφp(Np) ≃ R+ωp.

Since the definition of Np, which we give next, is independent of any choices
used in the definition of a polyhedral domain, it follows that ωp is unique,
up to a linear isomorphism of Rn−l−1. It remains to define the set Np with
the desired independence property. It is enough to define the complement of
Np. This complement is the projection onto (TpSp)

⊥ = TpM/TpSp of the set
γ′(0) ∈ TpM , where γ ranges through the set of smooth curves γ : [0, 1]→M ,
with γ(t) 6∈ Ω for t > 0, and γ(0) = p.
We let then σp := Np/R+, the set of rays in Np, for p ∈ ∂Ω. Any choice
of a metric on TpM/TpSp ⊃ Np will identify σp with a subset of the unit
sphere of TpM/TpSp, which depends however on the metric. In particular,
Dφp : σp → ωp is a diffeomorphism. If p is not in the singular set Ω(n−2) of
Ω, then σp consists exactly of one point. The map κ is the projection onto the
second component and is one-to-one above Ω and above Ω(n−1)rΩ(n−2) ⊂ ∂Ω.
We now proceed with the induction step. Assume Σ(ω) and κ : Σ(ω) → ω
have been constructed for all curvilinear, stratified polyhedral domains ω of
dimension at most n− 1. If p ∈ Ω, we then set σp = {0} = Σ(σp). Let Ω be an
arbitrary curvilinear, stratified polyhedral domain of dimension n. We define

Σ(Ω) :=
⋃

p∈Ω
{p} × Σ(σp) = Ω ∪

⋃

p∈∂Ω
{p} × Σ(σp). (31)

In particular, if Ω is a bounded domain with smooth boundary, then Σ(Ω) ≃
Ω. This definition is consistent as ωp is a curvilinear polyhedral domain of
dimension at most n−1. Below, an open embedding will mean a diffeomorphism
onto an open subset of the codomain.

Proposition 4.2. Let Ω ⊂M and Ω′ ⊂M ′ be curvilinear, stratified polyhedral
domains and Φ : M →M ′ be an open embedding such that Φ(Ω) is a union of
connected components of Ω′∩Φ(M). Then the embedding Φ defines a canonical
map Σ(Φ) : Σ(Ω)→ Σ(Ω′) such that

Σ(Φ ◦ Φ′) = Σ(Φ) ◦ Σ(Φ′),

for all open embeddings Φ and Φ′ for which Σ(Φ ◦ Φ′), Σ(Φ) ◦ Σ(Φ′) are well-
defined.

Proof. The proof is by induction. There is nothing to prove for n = 0. Let
p ∈ Ω. We have that Φ(Ω) ⊂ Ω′, and hence Φ(p) ∈ Ω′, as well. Let V ′p be an
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open neighborhood of Φ(p) in M ′ such that there exists a diffeomorphism φ′p :

V ′p → Bn−l ×Bl satisfying the condition (18) of the definition of a polyhedral

domain (i.e., φ′p(Ω
′∩V ′p) is R+ω

′
p×Bl, for some curvilinear polyhedral domain

ω′p ⊂ Sn−l−1). By decreasing V ′p , if necessary, we can assume that V ′p ⊂ Φ(M).
Then V ′p ∩ Φ(Ω) is a union of connected components of V ′p ∩ Ω′. Therefore ω′p
is a union of connected components of Φ(ωp), where ωp ⊂ Sn−l−1 is associated
to p ∈ Ω in the same way as ω′p was associated to Φ(p) ∈ Ω′. The induction
hypothesis then gives rise to a canonical, injective map Σ(ωp) → Σ(ω′p). The
map Σ(Φ) is obtained by combining these different maps.
The functoriality (i.e., the relation Σ(Φ◦Φ′) = Σ(Φ)◦Σ(Φ′)) is proved similarly
by induction.

Here is a corollary of the above proof.

Corollary 4.3. If Ω = Ω′∪Ω′′ is the disjoint union of two open sets, then the
inclusions Σ(Ω′) ⊂ Σ(Ω) and Σ(Ω′) ⊂ Σ(Ω) defined in Proposition 4.2 realize
Σ(Ω) = Σ(Ω′) ∪Σ(Ω′′), where the union is a disjoint union.

Proof. We use the same argument as in the proof of Proposition 4.2.

The desingularization has a simple behavior with respect to products.

Lemma 4.4. We have a canonical identification

Σ(M ′ × Ω) = M ′ × Σ(Ω),

for any smooth manifolds M and M ′ and any curvilinear polyhedral domain
Ω ⊂M .

Proof. Since M ′ is smooth, we can choose the structural local diffeomorphism
φ(p,q) in M ′ × Ω to be given by φp × ψq, where ψp is a local coordinate chart
defined in a neighborhood of p ∈ M ′ and φq is the local diffeomorphism of a
neighborhood of q in Ω. Indeed, then

Σ(M ′×Ω) := ∪p,q{(p, q)}×Σ(σ(p,q)) = ∪p,q{(p, q)}×Σ(σq) = M ′×Σ(Ω), (32)

where q ∈ Ω and p ∈M ′. Consequently, there is a canonical bijection σ(p,q) ≃
σq for any q ∈ Ω and any p ∈ M ′ (so (p, q) is in the closure of M ′ × Ω in
M ′ ×M).

It remains to define the topology and differentiable structure on Σ(Ω). These
definitions will again be canonical if we require that the map of the above
lemma, as well as the maps κ and Σ(φ), be differentiable, for any open embed-
ding φ.
Let Vp ⊂M and φp be as in Equation (19). By Proposition 4.2, we may assume
that φp is the identity, so that p = 0, Vp = Bn−l ×Bl, and Vp ∩Ω = Iωp ×Bl,
with I = (0, 1). Let (Σ(ωp), κ

′
p) be the canonical desingularization of ωp in

Sn−l−1. We shall need the following lemma.
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Lemma 4.5. We have a canonical identification

Σ(Vp ∩ Ω) = [0, 1)× Σ(ωp)×Bl

such that the desingularization map

κp : [0, 1)× Σ(ωp)×Bl → Vp ∩ Ω ⊂ Bn−l ×Bl

is given by κp(r, x
′, y) = (rκ′p(x

′), y).

Proof. We may assume p = 0. Let I = (0, 1). The closure of V0 ∩ Ω in
V0 = Vp is the disjoint union {0}×Bl ∪ Iω0 ×Bl. Accordingly, we decompose
Σ(V0∩Ω,M) into two disjoint sets, corresponding to this splitting of the closure
of V0∩Ω. Recall that by definition Σ(V0∩Ω) is the union ∪p∈V0∩Ω {p}×Σ(σp).
Using also Lemma 4.4, we then obtain

Σ(V0 ∩Ω) = Σ(V0 ∩Ω) ∪
⋃

q∈Bl
{(0, q)} × Σ(ω0)

= Σ((0, 1)× ω0 ×Bl) ∪
⋃

q∈Bl
{(0, q)} × Σ(ω0)

= (0, 1)× Σ(ω0)×Bl ∪ {0} × Σ(ω0)×Bl = [0, 1)× Σ(ω0)×Bl.

The formula for κ0 follows from the definition.

Since Σ(Ω) is the union of all the sets Σ(Vp ∩ Ω), with Vp in the covering
above, we can define the topology and smooth structure on Σ(Ω) by induction
as follows (there is nothing to define in the case Ω has dimension zero, since
then Σ(Ω) = Ω).

Definition 4.6. Let φp : Vp → Bn−l×Bl and ωp be as in Definition 2.1. The
topology and smooth structure on Σ(Ω) are such that the induced structure
on Σ(Vp ∩Ω) is the same as the one obtained from the canonical identification
Σ(Vp ∩Ω) = [0, 1)× Σ(ωp)×Bl of Lemma 4.5.

The smooth structure on Σ(Ω) is therefore defined using a covering with sets
of the form Σ(Vp ∩ Ω) (this desingularization is with respect to Vp and not
M ⊂ Ω!). We need to prove that the transition functions are smooth. This
property follows from the fact that the maps φp are diffeomorphisms and from
Lemma 4.5.
We have therefore completed the definition of the desingularization Σ(Ω) and
of its smooth structure.

4.2 The distance to singular boundary points

We continue with a study of the geometric and, especially, metric properties
of Σ(Ω). We first argue that Σ(Ω) has embedded faces and hence that every
hyperface of Σ(Ω) has a defining function.
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Let F0 be an open hyperface of a manifold with corners M. Then F0 is a
manifold of dimension n − 1. Its closure F , in general, will not necessarily
be a manifold, because it may have self-intersections. (A typical example is
the boundary of a curvilinear polygonal domain with only one vertex, the
“tear drop domain.”) By induction, however, it follows that F0 ∩ Vp will be
a manifold with corners, for any p. In particular, we obtain that all (closed)
faces of Σ(Ω) are embedded submanifolds of Σ(Ω). Let H be a hyperface of
Σ(Ω), since H is an embedded submanifold of codimension 1, there will exist
a function xH > 0 on Ω, H = {xH = 0}, and dxH 6= 0 on H . A function xH
with this property is called a defining function of H [57].
One of the main reasons for introducing the desingularization space Σ(Ω) is
the following result.

Proposition 4.7. Let Ω be a bounded, curvilinear, stratified polyhedral domain
and g1 and g2 be two smooth Riemannian metrics on M . Let us fix k and
assume Ω(k) 6= ∅. Let fj(x) be the modified distance from x ∈ Ω to the set
Ω(k) in the metric gj, computed within Ω. Then the quotient f2/f1 extends to
a continuous function on Σ(Ω).

Proof. It is enough to prove the given property in the neighborhood of every
point p ∈ Ω. So let us fix p ∈ Ω. By replacing Vp with a smaller neighborhood
of p, if necessary, we can also assume that g2(ξ) ≤ Cg1(ξ), which implies that
f2 ≤ Cf1, and hence that f2/f1 is bounded.
We shall prove the statement by induction on n. In the case n = 1, the only
possibility is that k = 0, or otherwise Ω(k) = ∅. Then f(x) is the distance to
the vertices of Ω. Recall that Ω is a disjoint union of open intervals in this
case, so that we can reduce to consider a single interval. If say Ω = [a, b], then
close to a, fj(x) = aj(x)(x − a), with aj smooth near a and aj(a) 6= 0. The
same situation holds at b. This proves our result in the case n = 1. We now
proceed with the induction step.
The function f1/f2 is clearly continuous on the open set Ω. Fix p ∈ ∂Ω. We
shall construct an open neighborhood Up of p in Ω such that f1/f2 extends to
a continuous function on κ−1(Up). Let Vp be as in the definition of polyhedral
domains (Definition 2.1). We shall identify Vp ∩ Ω with Iωp × Bl using the
diffeomorphism φp of Equation (19). If l > k, that is, p ∈ Ω(l) r Ω(k), then
both f1 and f2 extend to continuous, non-vanishing functions on Vp ∩Ω, which
can be lifted to continuous, non-vanishing functions on κ−1(Vp ∩ Ω). We shall
assume hence that k ≥ l.
On a smaller neighborhood V ′ ⊂ Vp, if necessary, we can arrange that the

function f1 gives the distance to V
(k)
p , that is, that the point of Ω(k) closest to

x ∈ V ′ ∩ Ω is, in fact, in Vp. By decreasing V ′ even further, we can further
arrange that the same holds for f2. Then we shall take Up := V ′.
To prove that f2/f1 extends to a continuous function on κ−1(Up), it is enough
to do that in the case Ω = Vp ∩Ω, because the quotient f2/f1 does not change
on Up∩Ω if we replace Ω with Vp∩Ω, as explained in the paragraph above. We
can also assume that g2 is the standard Euclidean metric, but then we have to
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prove that f1/f2 extends to a nowhere vanishing continuous function on Σ(Ω).
(Using also Proposition 4.2, we have reduced to the case Ω = Iωp × Bl ⊂ Rn,
I = (0, t).)
The scaling property of the Euclidean metric and our assumption that k ≥ l
imply that

f2(rx′, x′′) = rf2(x′, x′′),

for any r ∈ [0, 1]. Let g0 be a constant metric on Rn that coincides with g1 at
the origin.
Let f0 be associated to g0 in the same way as fj is associated to gj , for j =
1, 2, i.e., f0(x) = dist(x,Ω(k)) using the metric g0. We then have similarly
f0(rx′, x′′) = rf0(x′, x′′), so that the quotient f0(rx′, x′′)/f1(rx′, x′′) does not
depend on r. We can therefore fix r = 1. Consequently, we can work with the
lower dimensional polyhedral domain ω := ωp × Bl instead of Ω = Iωp × Bl,
and prove that f0/f1 extends by continuity to Σ(ω). It remains to see that
we can use induction to prove the existence of this extension. Since ω is by
construction a stratified polyhedron, we denote by ω(k) = ω(k) ×Bl k < n, its

associated stratification, where we set ω
(k−l−1)
p = ∅ if k − l − 1 < 0 as before.

Let f ′1 be the distance function to ω(k−1) on ω (i.e., computed within ω, with
respect to the metric induced by g1, as in the statement of Proposition 4.7).

We let f ′1 = 1 if ω
(k−l−1)
p = ∅.

We define f ′0 similarly. The inductive hypothesis guarantees that f ′0/f
′
1 extends

to a continuous function on Σ(ω) = Σ(ωp)×Bl. On the other hand, it is easy
to see that both f1/f

′
1 and f ′1/f1 extend to continuous functions on ω if we set

them to be equal to 1 on ω(k−1). The same is true of f0/f
′
0 and f ′0/f0. Putting

all these estimates together, it follows that

f0/f1 = (f0/f
′
0)(f

′
0/f
′
1)(f

′
1/f1)

extends to a continuous, nowhere vanishing function on Σ(ω).
Let us tackle now the case g2 arbitrary. Let f0 be defined as before. We then
have that f2(rx′, x′′) = rf0(x′, x′′) + r2h(rx′, x′′), with h a continuous function
on Σ(Vp × Ω) that vanishes on Ω(k). Then

f2
f1

=
f0
f1

+ r
h(rx′, x′′)
f1(x′, x′′)

.

The function f0/f1 was already shown to extend by continuity to Σ(Ω). The
same argument as above shows that h/f1 extends by continuity to a nowhere
vanishing function on

[ǫ, 1)× Σ(ωp)×Bl ⊂ [0, 1)× Σ(ωp)×Bl =: Σ(Ω).

The continuity of f2/f1 then follows from the boundedness of f2/f1.
The resulting function does not vanish at r = 0, because it is equal to f0/f1
there. It was already proved that it does not vanish for ǫ > 0. The proof is
complete.
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We shall need also the following corollary of the above proof.

Corollary 4.8. Identify Vp∩Ω = Ω with Iωp×Bl, I = (0, a), l = ℓ(p), using
the diffeomorphism φp given in Definition 2.1. Let g be a smooth metric on Vp,
and let f(x) be the distance from x to Ω(k), k ≥ l, f ′(x′, x′′) be the distance
from (x′, x′′) ∈ ω := ωp × Bl to ω(k−1) (within ω, as in Proposition 4.7) if
ω(k−1) 6= ∅, and f ′(x′, x′′) = 1 otherwise. Assume ωp is connected. Then

f(rx′, x′′)/rf ′(x′, x′′)

extends to a continuous, nowhere vanishing function on Σ(Ω) = [0, a)×Σ(ωp)×
Bl.

Proof. Assume first that ω(k−1) 6= ∅, where ω(k) is defined as in Proposition
4.7. Let f0 and f ′0 be defined in the same way f and f ′ were defined, but
replacing g with a constant metric g0. Then the proof of Proposition 4.7 gives
that f0(rx′, x′′)/rf ′0(x′, x′′) is independent of r. Hence f0(rx′, x′′)/rf ′0(x′, x′′)
extends to a continuous, nowhere vanishing function on Σ(Ω), as it was shown
in the proof of Proposition 4.7. Then

f(rx′, x′′)
rf ′(x′, x′′)

=
f(rx′, x′′)
f0(rx′, x′′)

× f0(rx′, x′′)
rf ′0(rx′, x′′)

× f ′0(x′, x′′)
f ′(x′, x′′)

.

We have just argued that the middle quotient in the above product extends
to a continuous function on Σ(Ω). The other two quotients also extend to
continuous functions on Σ(Ω), by Proposition 4.7 applied to Ω and ω.
Let us assume now that ω(k−1) = ∅. Then the same proof applies, given that
f ′0/f

′ = 1 clearly extends to a continuous function on Σ(Ω).

4.3 The weight function rΩ

Recall that ηn−2(x), given in Definition 2.5, denotes the distance from x ∈ Ω
to the singular set Ω(n−2).
The main goal of this subsection is to define on any curvilinear polyhedral
domain Ω a function

rΩ : Ω→ [0,∞)

that lifts to a smooth function on Σ(Ω) and is equivalent to ηn−2. (Additional
properties of rΩ will be established later on.) This will lead to a definition of
the Sobolev spaces Kma (Ω) as weighted Sobolev spaces on Lie manifolds with
boundary, Proposition 5.7. We again proceed by induction on n.
We define rΩ = 1 if n ≤ 1 (recall Ω(n−2) = ∅ if n < 2) or if Ω(n−2) = ∅, that is,
Ω is a smooth manifold, possibly with boundary.
Assume now that a function rω was defined for all curvilinear polyhedral do-
mains ω of dimension< n and let us define it for a given bounded n-dimensional
curvilinear polyhedral domain Ω.
We localize first to a neighborhood of a generic point p ∈ ∂Ω and then use
a partition of unity argument. We recall that by definition there exists a
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neighborhood Vp of p in M , a diffeomorphism φp : Vp → Bn−l × Bl, for
some 0 ≤ l = ℓ(p) ≤ n − 1, and a polyhedral domain ωp ⊂ Sn−l−1 such
that φp(Vp ∩ Ω) = I ωp × Bl, I = (0, ǫ), see Condition (18)). Therefore, we
can assume that φp is the identity map and replace in what follows Vp with
φ−1p

(
1
2B

n−l× 1
2B

l
)
. Since rΩ is already defined equal to 1 if p ∈ Ω(n−1)rΩ(n−2),

we restrict n − l − 1 ≥ 1 above. Let rωp be the function associated to the
curvilinear polyhedral domain ωp. Then we define

rVP (rx′, x′′) := rrωp(x′), (rx′, x′′) ∈ Ω ⊂ Vp, (33)

if x′ ∈ ωp, x′′ ∈ Bl, and 1 ≤ l = ℓ(p) ≤ n− 2. Following our usual procedures,
we set rVp(rx′) = rrωp (x′) if l = 0.

We consider next a locally finite covering of Ω with open sets Uα of one of the
three following forms

(i) Uα ⊂ Uα ⊂ Ω with ∂Uα smooth;

(ii) Uα = Vp with ℓ(p) = n− 1 (i.e., p is not in the singular set of Ω); or

(iii) such that for any x ∈ Uα ∩ Ω, the point of Ω(n−2) closest to x is in Vp
with ℓ(p) ≤ n− 2, and

p ∈ Uα ⊂ Uα ⊂ Vp. (34)

A condition similar to (iii) above was already used in the proof of Proposition
4.7. The conditions (i) and (ii) above correspond exactly to the case when
(∂Uα ∩ ∂Ω) is smooth (this includes the case when (∂Uα ∩ ∂Ω) is empty).
We then set

rα =

{
1 if (∂Uα ∩ ∂Ω) is smooth

rVp if Uα is as in (34).
(35)

and define
rΩ =

∑

α

ϕαrα, (36)

where ϕα is a smooth partition of unity subordinated to Uα. If Ω is not
bounded, we define instead:

rΩ = χ
(∑

α

ϕαrα
)
, (37)

where χ is defined as in (23). We notice that the definition of rΩ is not canon-
ical, because it depends on a choice of a covering {Uα} of Ω as above and a
choice of a subordinated partition of unity.

Proposition 4.9. Let Ω be a curvilinear, stratified polyhedral domain of di-
mension n ≥ 2. Then rΩ defined in Equation (36) (or (37)) is continuous on
Ω and rΩ ◦ κ is smooth on Σ(Ω). Moreover, ηn−2/rΩ extends to a continuous,
nowhere vanishing function on Σ(Ω) and rα/rΩ extends to a smooth function
on Σ(Vp ∩ Ω).
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Proof. Let η−1 := 1 for the inductive step. We shall prove the statement
on ηn−2/rΩ by induction on n ≥ 1. Since rΩ = 1 for polyhedral domains of
dimension n = 0, the result is obviously true for n = 1. We now proceed with
the inductive step.

We shall use the above results, in particular, Proposition 4.7, for k = n−2 ≥ 0.
Thus f = ηn−2 in the notation of Proposition 4.7. Let fα(x) be the distance
from x ∈ Vp to Vp ∩ Ω(n−2), if Uα ⊂ Vp is as in Equation (34) (so ℓ(p) ≤ n− 2
in this case). Thus fα = f on Uα ∩ Ω, by the construction of Uα. We identify
once again Vp ∩ Ω with (0, ǫ)ωp × Bl, l = ℓ(p), using the diffeomorphism φp,
and set again ω := ωp×Bl. Also, for any x ∈ ω, let f ′α(x) be the distance from
x to the singular set ω(n−l−2) of ω if it is not empty, f ′α(x) = 1 otherwise. Let
rα be as in the definition of rΩ, Equation (36). Then

fα(rx′, x′′)
rα(rx′, x′′)

=
fα(rx′, x′′)
rf ′α(x′, x′′)

f ′α(x′, x′′)
rωp(x′, x′′)

, for (rx′, x′′) ∈ Vp ∩ Ω.

The quotient f ′α(rx′, x′′)/rf ′α(x′, x′′) extends to a continuous, nowhere vanish-
ing function on Σ(Vp ∩ Ω), by Corollary 4.8. By the induction hypothesis, the
quotient f ′α(x′, x′′)/rωp(x′, x′′) also extends to a continuous, nowhere vanishing
function on Σ(ω) = Σ(ωp)×Bl. Since this quotient is independent of r, it also
extends to a continuous, nowhere vanishing function on Σ(Vp∩Ω). Hence fα/rα
extends to a continuous, nowhere vanishing function on Σ(Vp). Therefore

r/f =
∑

α

ϕαrα/f =
∑

α

ϕαrα/fα

extends to a continuous function on Σ(Ω).

The quotient r/f is immediately seen to be non-zero everywhere, from the
definition. Hence f/r also extends to a continuous function on Σ(Ω).

We have already noticed that rα/f extends to a continuous, nowhere vanishing
function on Σ(Vp). Hence rα/rΩ = (rα/f)(f/rΩ) extends to a continuous,
nowhere vanishing function on Σ(Vp ∩Ω). Since both rα and rΩ are smooth on
Σ(Vp ∩ Ω) and the set of zeroes of rΩ is the union of transversal manifolds on
which rΩ has simple zeroes, it follows that rα/rΩ extends to a smooth function
on Σ(Vp). Since Uα ⊂ Vp is compact, it follows from a compactness argument
that rα and r are equivalent on Uα. The proof is complete.

We can now prove the following result, which will be used in the proof of
Theorem 6.4.

Proposition 4.10. Let Ω be a bounded, curvilinear, stratified polyhedral do-
main. Suppose rΩ, r

′
Ω are two functions on Ω defined by formula (36) (or

(37)) with possibly different choices of open covering {Uα}, subordinate parti-
tion {ϕα}, and diffeomorphisms φp. Then r

′
Ω/rΩ extends to a smooth, nowhere

vanishing function on Σ(Ω).
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Proof. We know from Proposition 4.9, that f/r′Ω and f/rΩ extend to con-
tinuous, nowhere vanishing functions on Σ(Ω). Hence r′Ω/rΩ extends to a
continuous, nowhere vanishing function on Σ(Ω). Since both r′Ω and rΩ are
smooth functions on Σ(Ω) and the set of zeroes of rΩ is a union of transverse
manifolds, each a set of simple zeroes of rΩ, it follows that the quotient r′Ω/rΩ
is smooth on Σ(Ω).

We obtain the following corollary. Let H ⊂ Σ(Ω) be a hyperface (i.e., face of
maximal dimension) of Σ(Ω). Recall that a defining function of H is a smooth
function xH ≥ 0 defined on Σ(Ω), such that H = {x = 0} and dxH 6= 0 on
H . All the faces of Σ(Ω) are closed subsets of Σ(Ω), by definition. We have
already noticed that any face of Σ(Ω) has a defining function. We then have
the following corollary.

Corollary 4.11. Let η =
∏
H xH , where H ranges through the set of hy-

perfaces of Σ(Ω) that do not intersect ∂Ω r Ω(n−2). Then η/rΩ extends to a
smooth, nowhere vanishing function on Σ(Ω).

Proof. This is a local statement that can be checked by induction, as in the
previous proofs.

In particular, since the function rΩ is anyway determined only up to a factor
of h ∈ C∞(Σ(Ω)), h 6= 0, we obtain that we could take rΩ =

∏
H xH , where H

ranges through the set of hyperfaces of Σ(Ω) that do not intersect ∂ΩrΩ(n−2).
The function rΩ, for various versions of the set Ω, will play an important role
in the inductive definition of the structural Lie algebra of vector fields V(Ω) on
Σ(Ω), which we address next. The faces considered in the above corollary are
the hyperfaces at infinity of Σ(Ω). See Definition 3.8.

4.4 The structural Lie algebra of vector fields

We now proceed to define by induction a canonical Lie algebra of vector fields
V(Ω) on Σ(Ω), for Ω a curvilinear, stratified polyhedral domain of dimension
n ≥ 1. In view of Corollary 4.3, we can assume that Ω is connected. We denote
by

X (M) := Γ
(
M ;TM

)

the space of vector fields on a manifold M . We let

V(Ω) = X (Ω) = X (Σ(Ω)), if n = 1. (38)

In other words, there is no restriction on the vector fields X ∈ V(Ω), if Ω has
dimension one.
Assume now that the Lie algebra of vector fields V(ω) has been defined on Σ(ω)
for all curvilinear polyhedral domains ω of dimension 1 ≤ k ≤ n− 1 and let us
define V(Ω) for a curvilinear polyhedral domain of dimension n. We fix p ∈ ∂Ω
and let Vp and φp be as in Definition 2.1, as usual. We identify Vp ∩ Ω with
(0, 1)ωp ×Bl using φp. Assume 1 ≤ ℓ(p) ≤ n− 2, so that in particular ωp is a
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curvilinear polyhedral domain of dimension ≥ 1. Let M1 := [0, 1)×Σ(ωp)×Bl.
We notice that

TM1 = T ([0, 1)× Σ(ωp)×Bl) = T ([0, 1))× TΣ(ωp)× TBl

and hence

X
(
M1

)
= Γ

(
M1; T [0, 1)

)
×M1 Γ

(
M1; TΣ(ωp)

)
×M1 Γ

(
M1; TBl

)

⊂ Γ
(
M1; T [0, 1)

)
× Γ

(
M1; TΣ(ωp)

)
× Γ

(
M1; TB

l
)
.

Then we define

V(Vp ∩ Ω) = {X = (X1, X2, X3) ∈ X
(
M1

)

X1 ∈ Γ
(
M1; T [0, 1)

)
, X2 ∈ Γ

(
M1; TΣ(ωp)

)
, X3 ∈ Γ

(
M1; TBl

)

Y1 := r−1Ω X1 and Y3 := r−1Ω X3 are smooth, and

X2(t, x′, x′′) ∈ V
(
{t} × ωp × {x′′}

)
= V(ωp), for any fixed t, x′′}. (39)

In Equation (39) above, “smooth” means, “smooth including at r = 0.” If
ℓ(p) = 0, then we just drop the component X3, but keep the same conditions
on X1 and X2. By Proposition 4.10, the definition of V(Vp ∩Ω) is independent
of the choice of rΩ. All vector fields are assumed to be smooth.
Finally, we define V(Ω) to consist of the vector fields X ∈ X (Σ(Ω)) such that
X |Vp∩Ω ∈ V(Vp ∩ Ω) for all p ∈ Ω(n−2). In particular, only the smoothness
condition is imposed on our vector fields at the smooth points of ∂Ω. Note
that the vector fields in V(Ω) may not extend to the closure Ω, in general. This
was seen in Example 2.10.

4.5 Lie manifolds with boundary

We now proceed to show that the pair (Σ(Ω),V(Ω)) defines a Lie manifold
with boundary, introduced in [1], and the construction of which was recalled
in Definition 3.5.
We first establish some lemmata.

Lemma 4.12. Let X ∈ X (Σ(Ω)) be such that X = 0 in a neighborhood of the
boundary of Σ(Ω). Then X ∈ V(Ω).

Proof. The result follows immediately by induction from the definition of V(Ω).

We also get the following simple fact.

Lemma 4.13. If f : Σ(Ω)→ C is a smooth function and X ∈ V(Ω), then X(f)
is a smooth function on Σ(Ω) and fX ∈ V.
Proof. The vector field X is smooth on Σ(Ω), hence X(f) is smooth on Σ(Ω).
The second statement is local, so it is enough to check it on Ω and on each Vp,
on which it is as a direct consequence of the definition and induction.
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Lemma 4.14. For any X ∈ V(Ω) and any continuous function f : Ω→ C such
that f ◦ κ is smooth on Σ(Ω), we have

X(f) = f̃ rΩ,

where f̃ is a smooth function on Σ(Ω). In particular, X(rΩ) = fXrΩ, where
fX is a smooth function on Σ(Ω).

Proof. This is a local statement that can be checked by induction in any
neighborhood Vp, using the definition, as follows. Let us use the notation of
Equation (39) and write

X = (X1, 0, 0) + (0, X2, 0) + (0, 0, X3).

We shall write, with abuse of notation, X1 = (X1, 0, 0). Define X2 and X3

similarly. It is enough to check that Xjf(rx′, x′′) is of the indicated form, for
j = 1, 2, 3. We have X1 = rΩY1 and X3 = rΩY3, where Y1 and Y3 are smooth
(in appropriate spaces), by Equation (39). This observation proves our lemma
if X = X1 or X = X3. If X = X2, then we have

(Xf)(r, x′, x′′) = X2(f(rx′, x′′)) = rωpf1(r, x′, x′′), (40)

with f1 a smooth function on Σ(Vp ∩Ω) = [0, ǫ)×Σ(ωp)×Rl, by the induction
hypothesis. Moreover, given that by assumption (39) κ∗X is a vector field
tangent to the sphere Sn−l−1, we see that Xf(0, x′, x′′) = 0. Therefore Xf =
rrωp f̃ , for some smooth function f̃ on Σ(Vp ∩ Ω). Let us denote rα = rrωp , as
in Equation (35) and in Proposition 4.9. Proposition 4.9 gives that rα/rΩ is
smooth on its domain of definition. Hence Xf = rαf1 = rΩ(rα/rΩ)f1 = rΩf̃ ,
with f̃ smooth on each Σ(Vp ∩ Ω). Hence f̃ is smooth on Σ(Ω).

We next characterize which vector fields on Ω are restrictions of vector fields
on V(Ω). We begin by showing that the restriction property is local.

Lemma 4.15. Let Y be a vector field on Ω with the property that every point
p ∈ Ω has a neighborhood Up in M such that Y = XU on U ∩ Ω, for some
XU ∈ V(Ω). Then there exists X ∈ V(Ω) such that Y is the restriction of X
to Ω.

Proof. Let us cover Ω with a locally finite family of sets Up, p ∈ B ⊂ Ω. Let
ψp, p ∈ B, be a subordinated partition of unity.
We claim that X =

∑
p∈B ψpXUp ∈ V(Ω) (by Lemma 4.13) satisfies X(x) =

Y (x), x ∈ Ω. Indeed, X(x) =
∑
p∈B ψp(x)XUp(x) =

(∑
ψp(x)

)
Y (x) = Y (x).

We can now prove the following lemma.

Lemma 4.16. Let Y be a smooth vector field on Ω. Then rΩY is the restriction
to Ω ⊂ Σ(Ω) of a vector field X in V(Ω).
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Proof. By Lemma 4.15, it is enough to check this statement on a neighborhood
Vp of some p ∈ ∂Ω. We shall proceed by induction. Since the desingularization
and the definition of rΩ are covariant with respect to diffeomorphism (that
respect the stratification of Ω), we can assume that Vp = Bn−l × Bl and that
Vp ∩ Ω ≃ (0, 1)ωp ×Bl. Assume first that Y = ∂j is a constant vector field on
Vp. Let αt(x

′, x′′) = (tx′, x′′). Then Dαt(∂j) = t∂j . Therefore,

Dαt(X) = X, (41)

where X = rΩ∂j , where rΩ can be taken, on Vp, to be given by rrωp . Let us
decompose ∂j = (Y1, Y2, Y3) on Vp using the notation of Equation (39). Then Y3
is constant. In fact, either Y3 = ∂j or Y3 = 0. In any instance, if we write X =
(X1, X2, X3), then X3 = rΩY3 satisfies the condition of Equation (39). The
relation (41) gives that Y1(r, x′, x′′) = a1(x′)∂r and Y2(r, x′, x′′) = r−1Z(x′),
with a1 a smooth function and Z a smooth vector field on ωp. Clearly X1 =
rΩY1 will satisfy the conditions of Equation (39). The induction hypothesis
then gives that X2(r, x′, x′′) = rΩY2(r, x′, x′′) = rωp(x′)Z(x′) is the restriction
to Vp ∩Ω of a smooth vector field in V(Vp ∩Ω). (This vector field depends only
on the second factor in Σ(Vp ∩Ω) = [0, 1)× ωp ×Bl.)

We now identify a canonical metric on the vector fields V . Recall that the
concept of local basis of a space of vector fields was defined in Definition 3.1.

Proposition 4.17. Let us fix a metric h onM ⊃ Ω. Let q ∈ Σ(Ω) be arbitrary.
Then there exists a neighborhood U of q in Σ(Ω) and X1, X2, . . . , Xn ∈ V(Ω)
that form a local basis of V(Ω) on U and satisfy

h(Xj , Xk) = r2Ωδjk.

In other words, the vectors X1, X2, . . . , Xn form an orthonormal system on
Ω∩U for the metric r−2Ω h. A local basis X1, X2, . . . , Xn with this property will
be called a local orthonormal basis of V(Ω) over U .

Proof. If q ∈ Ω ⊂ Σ(Ω), the result follows from Lemma 4.12. Let p = κ(q).
We shall hence assume that p ∈ ∂Ω. This is again a local statement in p ∈ ∂Ω.
We can therefore proceed by induction. If the dimension n of Ω is 1, then there
is nothing to prove because rΩ = 1 in this case.
Once again, we let φp : Vp → Bn−l × Bl and ωp be as in Definition 2.1.
We can assume that φp is the identity map. If we can prove the result for
the function r = rΩ, then we can prove it for the function r′ = f ′r, where
f ′, 1/f ′ ∈ C∞(Σ(Ω)), simply by replacing Xj with f ′Xj . By Proposition 4.9,
we can therefore assume that rΩ = rrωp on Vp ∩ Ω. Let q = (0, x′, x′′) ∈
[0, 1)× Σ(ωp)×Bl.
Let h0 be the standard metric on Vp. For the induction hypothesis, we shall
need that the metric h0 is given by

h0(r, x′, x′′) = (dr)2 + r2(dx′)2 + (dx′′)2 (42)
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on Ω∩Vp = (0, 1)ωp×Bl. Here (dx′)2 denotes the metric on ωp induced by the
Euclidean metric on the sphere Sn−l−1. In other words, if X = (X1, X2, X3)
is a vector field on Vp ∩Ω, written using the product decomposition explained
above (or as in the Equation (39)), then

h0(X) = ‖X1‖2 + r2‖X2‖2 + ‖X3‖2

where the norms come from the standard metrics, respectively, on T [0, 1), on
TSn−l−1 ⊃ Tωp, and on TRl.
Let us assume first that h = h0, the standard metric on Rn. By the in-
duction hypothesis, we can construct Y2, . . . , Yn−l ∈ V(ωp) forming a local
orthonormal basis of V over some small neighborhood U ′ of x′ in Σ(ωp) (i.e.,
{Y2, . . . , Yn−l} ⊂ V(ωp) is orthonormal with respect to the metric r−2ωp (dx′)2).

Here (dx′)2 denotes the metric on ωp induced by the Euclidean metric on the
sphere Sn−l−1, as above. Let Y1 = rΩ∂r and Yj = rΩ∂j , j = n − l + 1, . . . , n,
where ∂j forms the standard basis of Rl−1. Then we claim that we can take
U = [0, 1)× U ′ ×Bl and

{X1, X2, . . . , Xn} = {Y1} ∪ {Y2, . . . , Yn−l} ∪ {Yn−l+1, . . . , Yn}. (43)

(If n− l = 1, then the second set in the above union is empty. If l = 0, then the
third set in the above union is empty.) Indeed, {X1, . . . , Xn} is a local basis by
construction and by the local definition of V(Ω) in Equation (39). Let us check
that this is an orthonormal local basis. To this end, we shall use the form of
the standard metric h0 given in Equation (42), to obtain

h0(X1) = r2Ω‖∂r‖2 = r2Ω , h0(Xn−l+1) = . . . = h0(Xn) = r2Ω

and h0(X2) = . . . = h0(Xn−l) = r2‖X2‖2 = r2r2ωp = r2Ω .

It is also clear that {X1, X2, . . . , Xn} is an orthogonal system. This completes
the induction step if h = h0, the standard metric on Rn.

If h is not the standard metric on Vl, we can nevertheless chose a matrix valued
function T defined on a neighborhood of q in U such that h(Tξ, T η) = h0(ξ, η).
We then let Xj = TYj and replace U with this smaller neighborhood.

This lemma gives the following corollary.

Corollary 4.18. Let X,Y ∈ V(Ω) and h be a fixed metric on M . Then the
function r−2Ω h(X,Y ), defined first on Ω, extends to a smooth function on Σ(Ω).

Proof. This is a local statement in the neighborhood of each point q ∈ Σ(Ω).
Let X1, X2, . . . , Xn be a local basis of V on a neighborhood U of q in Σ(Ω)
satisfying the conditions of Proposition 4.17 (i.e., orthogonal with respect to
r−2Ω h). Let X =

∑
φjXj and Y =

∑
ψjXj on U ∩Ω, where φj , ψj are smooth

functions on Σ(Ω). Then r−2Ω h(X,Y ) =
∑
φjψj is smooth on U .
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Lemma 4.19. Let p ∈ ∂Ω and X1, X2, . . . , Xn be vector fields on Ω that
define a local basis of TM on U , for some neighborhood U of p. Then
rΩX1, rΩX2, . . . , rΩXn is a local basis of V(Ω) on U , that is, for any Y ∈ V(Ω),
there exist unique smooth function φ1, φ2, . . . , φn on Σ(Ω) satisfying

Y = φ1rΩX1 + φ2rΩX2 + . . .+ φnrΩXn on U ∩ Ω ⊂ Σ(Ω). (44)

Conversely, if a vector field Y on Ω satisfies Condition (44) for any p and any
local basis X1, . . . , Xn of TM at p, then Y is the restriction to Ω of a vector
field in V(Ω).

Proof. The converse part is easier, so we prove it first. Let Y be a vector field
on Ω that satisfies Condition (44) for any p and any local basis X1, . . . , Xn of
TM at p. Fix an arbitrary p ∈ Ω. Lemmata 4.13 and 4.16 give that φjrΩXj is
the restriction to Ω of a vector field in V(Ω). Hence on each U ∩ Ω, Y is the
restriction of a vector field YU ∈ V(Ω). Lemma 4.15 then gives the converse
part of our lemma.
We now prove the direct part of the lemma. We can assume that the vector
fields X1, . . . , Xn form an orthonormal system on U with respect to some fixed
metric h on M . We know from Lemma 4.16 that rΩXj ∈ V(Ω).
Let then Y ∈ V(Ω) and note that φj = r−1Ω h(Y,Xj) = r−2Ω h(Y, rΩXj) ∈
C∞(Σ(Ω)), by Corollary 4.18. Then Y =

∑n
j=1 φjrΩXj on U ∩ Ω. The local

uniqueness of the functions φj follows from the fact that rΩX1, rΩX2, . . . , rΩXn

also form a local basis of TΩ on U ∩ Ω.

We are now ready to prove the following characterizations of V(Ω). We notice
that the restriction map V(Ω) ∋ X → X |Ω is injective, so we may identify V(Ω)
with a subspace of the space Γ(Ω, TM) of vector fields on Ω.

Proposition 4.20. Let Ω ⊂ M be a curvilinear, stratified polyhedral domain
of dimension n and let X be a smooth vector field on Ω. Fix an arbitrary
metric h on M . Then X ∈ V(Ω) if, and only if, r−1Ω h(X,Y ) extends to a
smooth function on Σ(Ω) for any smooth vector field Y on Ω.

Proof. In one direction the result follows from Lemma 4.16 and Corollary 4.18.
Indeed, let X ∈ V(Ω) and Y be a smooth vector field on Ω. Then rΩY ∈ V(Ω)
by Lemma 4.16 and hence r−1Ω h(X,Y ) = r−2Ω h(X, rΩY ) extends to a smooth
function on Σ(Ω) by Corollary 4.18. (We have already used this argument in
the proof of the previous lemma.)
Conversely, assume that r−1Ω h(X,Y ) extends to a smooth function on Σ(Ω)
for any smooth vector field on Ω. The statement that X ∈ V(Ω) is a local
statement, by Lemma 4.15. So let p ∈ Ω and let U be an arbitrary neighborhood
of p. Choose smooth vector fields defined in a neighborhood of Ω in M such that
X1, X2, . . . , Xn is a local orthonormal basis on U (orthonormal with respect to
h). Let

φj = r−1Ω h(Y,Xj),

by assumption φj ∈ C∞(Σ(Ω). Then Y =
∑n
j=1 φjXj on U ∩ Ω and∑n

j=1 φjXj ∈ V(Ω). Lemma 4.15 then shows that X ∈ V(Ω).
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We now prove the main characterization of the structural Lie algebra of vector
fields V(Ω).

Theorem 4.21. Let Ω ⊂ M be a bounded curvilinear, stratified polyhedral
domain of dimension n. Then V(Ω) is generated as a vector space by the vector
fields of the form φ rΩX, where φ ∈ C∞(Σ(Ω)) and X is a smooth vector field
on Ω.

Proof. We know that φrΩX ∈ V(Ω) whenever X is a smooth vector field on Ω,
by Lemmata 4.13 and 4.16. This remark shows that the linear span of vectors
of the form φ rΩX , where φ ∈ C∞(Σ(Ω)) and X is a smooth vector field in a
neighborhood of Σ, is contained in V(Ω).
Conversely, let Y ∈ V(Ω). Then Lemma 4.19 shows that we can find, in the
neighborhood Up of any point p ∈ Ω vector fields X1p, X2p, . . . , Xnp and smooth
functions φjp such that Y =

∑
φjprΩXjp on Up. The result then follows using

a finite partition of unity on Σ(Ω) subordinated to the covering Up.

If we drop the condition that Ω be bounded, we obtain the following result,
which was established in the first half of the above proof.

Proposition 4.22. Let Ω ⊂ M be a curvilinear polyhedral domain of dimen-
sion n. Then V(Ω) consists of the set of vector fields that locally can be written
as linear combinations of vector fields of the form φrΩX, where φ ∈ C∞(Σ(Ω))
and X is a smooth vector field on Ω.

We are finally in the position to endow Σ(Ω) with a structure of Lie manifold,
which we will exploit in the following sections to study the mixed boundary
value/interface problem (6). We set ∂′′Σ(Ω) to be the union of all hyperfaces
(i.e., faces of maximal dimension) H of Σ(Ω) such that κ(H) ⊂ Ω lies in the
singular set Ω(n−2), and let ∂′Σ(Ω) = ∂Σ(Ω) r ∂′′Σ(Ω). In particular, ∂′′Σ(Ω)
is the union of the hyperfaces at infinity of Σ(Ω), see Definition 3.8. The next
theorem is the main result of this subsection.

Theorem 4.23. Let Ω be a bounded curvilinear, stratified polyhedral domain
and let

O0 := Σ(Ω) r ∂′′Σ(Ω) = Ω ∪ ∂′Σ(Ω) = κ−1(Ω r Ω(n−2)).

Then (O0,Σ(Ω),V(Ω)) is a Lie manifold with boundary ∂′Σ(Ω). The projection
map κ : O0 → Ω r Ω(n−2) is such that κ−1(p) consists of exactly one point if
p ∈ Ω r Ω(n−2).

Proof. The last statement (on the number of elements in κ−1(p), p ∈ Ω r
Ω(n−2)) follows from the definition. Therefore, to prove the proposition, we
need, using the notation of Definition 3.5, to construct a compactification O of
O0 that identifies with the closure of a Lie domain in a Lie manifold M.
We shall choose then O = Σ(Ω). Then we shall let M be the “double” of Σ(Ω),
also denoted dΣ(Ω). More precisely, M is obtained from the disjoint union of
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two copies of Σ(Ω) by identifying the hyperfaces that are not at infinity. We
let V to be the set of smooth vector fields on M such that the restriction to
either copy of Σ(Ω) is in V(Ω).

Let D be obtained from the closure of Ω in M by removing the closure of
∂′Σ(Ω). Then D is an open subset of M whose closure is Σ(Ω). Moreover,
∂MD (the boundary of D regarded as a subset of M) is the closure of ∂′Σ(Ω).
To prove our theorem, we shall check that M is a manifold with corners, that
(M,V) is a Lie manifold, and that ∂D is a regular submanifold of M. Each of
these properties is local, so it can be checked in the neighborhood of a point of
M.

Fix Vp = (0, ǫ) × ωp × Bl. Then the union of the two copies of Σ(Vp) is the
double dΣ(Vp) of Σ(Vp). Denote by dωp the double of ωp. Then

dΣ(Vp) = [0, ǫ)× dωp ×Bl.

An inductive argument then shows that dΣ(Ω) is a manifold with corners and
that ∂D is a regular submanifold of M.

Let us check that V satisfies the conditions defining a Lie manifold structure
on M. It follows from Theorem 4.21 that V is a C∞(M)–module (this checks
condition (iii) of Definition 3.2). Theorem 4.21 and Lemmata 4.14, 4.13 show
that V is closed under Lie brackets (this checks condition (i) of Definition 3.2).
Condition (ii) of that definition follows from the definition of V(Ω). Condition
(iv) of Definition 3.2 as well as Condition (ii) of Definition 3.3 were proved in
Lemma 4.19. This shows that (M,V) is a Lie manifold.

An immediate consequence of the above Proposition is that the boundary
∂O0 = ∂′Σ(Ω) of O0 = Σ(Ω) r ∂′′Σ(Ω) will acquire the structure of a Lie
manifold, as explained after the definition of a Lie manifold with boundary,
Definition 3.5. Let D be the closure of ∂O0 in O. Then the Lie structure at
infinity is (∂O0, D,W), where

W = {X |D, X ∈ V , X |D is tangent to D}. (45)

As always, X ∈ W is completely determined by its restriction to O0.

5 Weighted Sobolev spaces

One of the main goals of this work, as mentioned already, is the study of mixed
boundary value/interface problems for second-order elliptic operators on n-
dimensional curvilinear, stratified polyhedral domains Ω in the framework of
certain weighted Sobolev spaces. This framework is adapted to the singular
geometry of polyhedral domains and allows to obtain optimal regularity, which
does not hold in general in the standard (unweighted) spaces.

We begin by giving a rigorous definition of the weighted spaces. Let f be a
continuous function on Ω, f > 0 on the interior of Ω. We define the µ-th
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Sobolev space with weight f and index a by

Kµa,f (Ω) = {u ∈ L2
loc(Ω), f |α|−a∂αu ∈ L2(Ω), for all |α| ≤ µ} , µ ∈ Z+.

(46)
The norm on Kµa,f (Ω) is given by

‖u‖2Kµa,f(Ω) :=
∑

|α|≤µ
‖f |α|−a∂αu‖2L2(Ω) . (47)

Definition 5.1. Let f, g be two continuous, non-negative functions on Ω. We
shall say that f and g are equivalent (written f ∼ g) if there exists a constant
C > 0 such that

C−1f(x) ≤ g(x) ≤ Cf(x),

for all x ∈ Ω.

Clearly, if f ∼ g, then the norms ‖u‖Kµa,f(Ω) and ‖u‖Kµa,g(Ω) are equivalent, and

hence we have Kµa,f (Ω) = Kµa,g(Ω) as Banach spaces.

Definition 5.2. Let f = ηn−2 be the distance to Ω(n−2), as before. Then we
define Kµa (Ω) = Kµa,f (Ω) and ‖u‖Kµa(Ω) = ‖u‖Kµa,f(Ω).

For example, K0
0(Ω) = L2(Ω). For Ω a polygon in the plane, ηn−2(x) = η0(x)

is the distance from x to the vertices of Ω and the resulting spaces Kµa (Ω) are
the spaces considered in Kondratiev’s paper [41]. Above in Definition 5.2, we
can and will replace ηn−2 with the equivalent function rΩ by Proposition 4.9.
If µ ∈ N = Z+ r {0}, we define K−µ−a(Ω) to be the dual of

◦
Kµa (Ω) := Kµa (Ω) ∩ {∂jνu|∂Ω = 0, j = 0, 1, . . . , µ− 1} (48)

with pivot K0
0(Ω). Later in this Section, we will identify Kma (Ω) with a suitable

space hHµ(Σ(Ω)) using the Lie structure on Σ(Ω). Then, Theorem 3.4 of [1]

(see also Lemma 3.7 and Proposition 3.9) gives that C∞c (Ω) is dense in
◦
Kµa (Ω)

and consequently K−µ−a(Ω) is the completion of the space of smooth functions
u on Ω satisfying

‖u‖K−µ
−a(Ω) = sup

06=v∈C∞c (Ω)

|(u, v)|
‖v‖Kµa(Ω)

< +∞. (49)

In order to make the identification Kµa (Ω) ≈ hHµ(Σ(Ω)), for suitable h, we
introduce next a class of “admissible weights” h.

5.1 The set of weights

If h > 0 on Ω, we denote

hKµa(Ω) := {hu, u ∈ Kµa (Ω)}, (50)
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with induced norm, that is ‖hu‖hKµa(Ω) = ‖u‖Kµa(Ω).
A weight h on Ω will be called admissible if it is admissible on Σ(Ω). One of
the main examples of an admissible weight is ηan−2, for a ∈ R. We recall that
an admissible weight on Σ(Ω) is a function h of the form h =

∏
H x

aH
H , where

H ranges through the set of hyperfaces at infinity of Σ(Ω) and aH ∈ R. The
topology is induced from the topology on the set {(aH)} of exponents.
As discussed after Corollary 4.11, we can always assume rΩ :=

∏
H xH . In

particular, raΩ, a ∈ R, is the most important example of an admissible weight.
It is more suitable to use this weight, which is intimately related to the structure
of Lie manifold on Σ(Ω) (r∂”Σ(Ω)) described in Theorem 4.23, instead of ηan−2.
We also have that

rtΩKµa (Ω) = Kµa+t(Ω), (51)

so in a statement about the spaces hKµa (Ω), where h is an admissible weight,
we can usually assume that a = 0, without loss of generality. These spaces are
weighted Sobolev spaces in the sense of the following definition. (These spaces
are sometimes called Babuška–Kondratiev spaces.)

Definition 5.3. Let h be an admissible weight on Ω. The weighted Sobolev
space of order µ ∈ Z and weight h on Ω is the space hKµ0 (Ω).

5.2 Sobolev spaces and Lie manifolds

We now identify the weighted Sobolev space Kµa (Ω) with hHµ(Σ(Ω)), for a

suitable admissible weight h; more precisely, h = r
a−n/2
Ω . The following de-

scription of V(Ω) for Ω a curvilinear polyhedral domain in Rn will be useful.
It follows readily from Theorem 4.21.

Corollary 5.4. Let Ω ⊂ Rn be a bounded curvilinear, polyhedral domain.
Then

V(Ω) = {φ1rΩ∂1 + φ2rΩ∂2 + . . .+ φnrΩ∂n, where φj ∈ C∞(Σ(Ω))}.

We shall denote by

DiffkΩ := DiffV(Ω)(Σ(Ω)) (52)

the space of differential operators with coefficients in C∞(Σ(Ω)) of order ≤ k
on Σ(Ω) generated by V(Ω). The algebra of differential operators Diff∞Ω is an
example of the algebra of differential operators considered in 3.3. From the last
corollary, we obtain directly the following lemma.

Lemma 5.5. Let X1, X2, . . . , Xk be smooth vector fields on M . Then

P := rkΩX1X2 . . . Xk ∈ DiffkΩ.

Moreover, DiffkΩ is generated linearly by φP , with P as above and φ ∈
C∞(Σ(Ω)).
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Proof. For k = 1, this follows from Lemma 4.16. Next, we have

rk+1
Ω X0X1 . . .Xk = rΩX0r

k
ΩX1 . . . Xk − kX0(rΩ)rkΩX1 . . .Xk.

The fact that P ∈ DiffkΩ then follows by induction, since X0(rΩ) ∈ C∞(Σ(Ω)),
by Lemma 4.14.
Conversely, we can similarly check by induction (using the same identity above)
that the product rΩX1rΩX2 . . . rΩXk can be written as a linearly combination
of differential operators of the form φP , with φ ∈ C∞(Σ(Ω)) and P as above.
Since rΩX generate V(Ω) as a C∞(Σ(Ω))–module (see Corollary 5.4 or the
second part of Theorem 4.21), the result follows.

We next provide a different description of the weighted Sobolev spaces Kµa (Ω),
µ ∈ Z+. For a multiindex α, we denote

(rΩ∂)α := (rΩ∂1)α1(rΩ∂2)α2 . . . (rΩ∂n)αn . (53)

Theorem 5.6. Let Ω ⊂ Rn be a bounded curvilinear, stratified polyhedral
domain and

‖u‖2µ,a :=
∑

|α|≤µ
‖r−aΩ (rΩ∂)α u‖2L2(Ω).

Then ‖u‖µ,a is equivalent to ‖u‖Kµa(Ω) of Definition 5.2. In particular,

Kµa (Ω) = {u, ‖u‖µ,a <∞}.

Proof. We have that

u ∈ Kµa (Ω) ⇔ r
|α|−a
Ω ∂αu ∈ L2(Ω) for all |α| ≤ µ by Proposition 4.9

⇔ r−aΩ (rΩ∂)αu ∈ L2(Ω) for all |α| ≤ µ by Proposition 5.5.

Above the corresponding square integrability conditions define the topology
on the indicated spaces. Therefore ⇔ also means that the topologies are the
same.

We are in position to identify the spaces Kµa with Sobolev spaces on Lie mani-
folds. If Ω is a bounded curvilinear, stratified polyhedral domain, we let

O0 := Σ(Ω) r ∂′′Σ(Ω) = Ω ∪ ∂′Σ(Ω) = κ−1(Ω r Ω(n−2)),

as in Theorem 4.23. Since (O0,O := Σ(Ω),V(Ω)) is a Lie manifold with bound-
ary by the same theorem, the definitions of Sobolev spaces on Lie manifolds
(with or without boundary) of Subsection 3.5 provide us with natural spaces
Hs(Σ(Ω)) = Hs(O) = Hs(O0) and Hs(∂′Σ(Ω)) = Hs(∂O0). For the last
equality we used that the boundary of O0 is ∂′Σ(Ω).
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Proposition 5.7. Let Ω be an n-dimensional, bounded curvilinear, stratified
polyhedral domain and let h be an admissible weight on Ω. We have an equality

hKµa (Ω) = hr
a−n/2
Ω Hµ(Σ(Ω)), µ ∈ Z.

Proof. This is again a local statement. We can therefore assume that Ω ⊂ Rn.
Furthermore, it is enough to prove the statement in the case h = 1, since the
weight h does not enter into the condition on derivatives in the definition 50
of weighted spaces. Equation (51) and Proposition 4.9 show that we can also
assume a = 0. Recall from Lemma 3.7 that the spaces Hk(Σ(Ω)) are defined
using L2(Σ(Ω)). In turn, L2(Σ(Ω)) is defined using the volume element of
a compatible metric. A typical compatible metric is r−2Ω ge, where ge is the
Euclidean metric. Therefore the volume element on Σ(Ω) is r−nΩ dx, where dx is

the Euclidean volume element. In particular, v ∈ L2(Ω)⇔ v ∈ r−n/2Ω L2(Σ(Ω)).
We notice next that r−tΩ (rΩ∂)αrtΩ − (rΩ∂)α is a linear combination with
C∞(Σ(Ω))–coefficients of monomials (rΩ∂)β, with |β| < |α|, by the second
part of Lemma 4.14. From this observation we obtain

u ∈ Kµ0 (Ω) ⇔ (rΩ∂)αu ∈ L2(Ω) for all |α| ≤ µ by Theorem 5.6

⇔ (rΩ∂)αu ∈ r−n/2Ω L2(Σ(Ω)) for all |α| ≤ µ
⇔ (rΩ∂)αr

n/2
Ω u ∈ L2(Σ(Ω)) for all |α| ≤ µ

⇔ u ∈ r−n/2Ω Hµ(Σ(Ω)).

This proves that Kµa (Ω) = r
a−n/2
Ω Hµ(Σ(Ω)) for µ ∈ Z+. For µ ∈ Z−, we

observe that, for (O,O0,V) a Lie manifold with boundary in a manifold with
corner M, the set of restrictions of distributions u ∈ H−µ(M) to O0 is the dual
of the closure of C∞c (O0) in H−µ(M). Hence

K−µ0 (Ω) :=
◦
Kµa (Ω)∗ =

(
r
−n/2
Ω

◦
H
µ(Σ(Ω))

)∗
= r
−n/2
Ω H−µ(Σ(Ω)).

The proof is concluded.

The identification given in Proposition 5.7 above allows to define weighted
spaces on the boundary hKma (∂Ω). We recall that the closure of a hyperface
of a curvilinear, stratified polyhedral domain Ω need not be contained in any
smooth n − 1 manifold. Consequently, we utilize the desingularization Σ(Ω).
In the special case that Ω ⊂ Rn is a (bounded) convex, stratified polyhedron

that in addition has straight faces (i.e., each connected component D
(l)
j of

Ω(l) r Ω(l−1), l = 1, . . . , n− 1 is contained in an affine space V
(l)
j of dimension

l), for example an n-simplex, we can more simply define the spaces on the
boundary as follows:

Kµa (D
(n−1)
j ) = {u ∈ L2

loc(D
(n−1)
j ), rk− aΩ X1 . . . Xku ∈ L2(D

(n−1)
j ), 0 ≤ k ≤ l} ,
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for all choices of vector fields Xj in a basis of the linear space containing D
(n−1)
j .

Then for any admissible weight h,

hKµa (∂Ω) = {hu, u ∈ L2
loc(∂Ω), u|

D
(n−1)
j

∈ Kµa (D
(n−1)
j ), for all j}. (54)

In the general case of a curvilinear, stratified polyhedral domain, we exploit the
structure of Lie manifold on Σ(Ω), following the notation of Proposition 5.7.

Definition 5.8. Let Ω be a bounded, curvilinear, stratified polyhedral do-
main. Then we define

hKµa (∂Ω) := hr
a−(n−1)/2
Ω Hµ(∂′Σ(Ω)),

for any admissible weight h.

Note that on each hyperface, the natural weight is the distance to the boundary
of that face, not the distance to the set of singular boundary points of that face.
The spaces K−µ−a (∂Ω) are defined to be the duals of Kµa (∂Ω) with pivot L2(∂Ω).
For reasons that will be explained later, we do not have to restrict to functions
with vanishing trace when studying weighted Sobolev spaces on the boundary.
In particular, the usual difficulties that appear in the treatment of Sobolev
spaces of fractional order on smooth, bounded domains [49], do not arise when
studying the weighted Sobolev spaces on ∂Ω, and we can define the spaces
Ksa(∂Ω), with s 6∈ Z, by complex interpolation. A similar attempt at defining
Ksa(Ω), with s ∈ Z + 1/2, would lead to the usual difficulties encountered in
the case of smooth domain [49].
We next prove a trace theorem, generalizing the corresponding well-known
result for smooth domains. Let C∞c (Ω) be the space of compactly supported
functions on the open set Ω.

Theorem 5.9. The restriction C∞c (ΩrΩ(n−2)) ∋ u→ u|∂Ω ∈ C∞c (∂ΩrΩ(n−2))
extends to a continuous, surjective map

Tr : Kµa (Ω)→ Kµ−1/2a−1/2 (∂Ω), µ ≥ 1.

Moreover, C∞c (Ω) is dense in the kernel of this map if µ = 1. Similarly, the
normal derivative ∂ν extends to a continuous, surjective map

∂ν : Kµa (Ω)→ Kµ−3/2a−3/2 (∂Ω), µ ≥ 1.

The result is a consequence of similar results for Lie manifolds contained in
Theorems 3.4 and 3.7 of [1] recalled here in Proposition 3.9. For the normal
derivative, we also use the fact that the rescaled normal vector rΩν extends to
a smooth vector field, first on the boundary of Σ(Ω), and then on the whole of
Σ(Ω). The rescaled normal vector is then a unit normal vector for the boundary
of Σ(Ω).
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Proof. The map Hµ(Σ(Ω))→ Hµ−1/2(∂′Σ(Ω)), where we follow the notation
of Proposition 5.7, is well defined, continuous, and surjective by Proposition
3.9. Proposition 5.7 then shows that the map

hKµa (Ω) = hr
a−n/2
Ω Hµ(Σ(Ω))→ hr

a−n/2
Ω Hµ−1/2(∂Σ(Ω)) = hKµ−1/2a−1/2 (∂Ω)

is also well defined, continuous, and surjective.
The density of C∞c (Ω) in the subspace of elements in hK1

a(Ω) with trace zero
also follows from Proposition 3.9 and Proposition 5.7.

6 Proofs

In this section, we establish the main results of the paper, Theorems 1.1, 1.2,
1.3, using material from previous sections. We first discuss some results on the
behavior of differential operators on the spaces hKma (Ω).

6.1 Differential operators

We recall that the algebra Diff∞Ω is the natural algebra of differential operators
on Ω associated to the Lie algebra of vector fields V(Ω), namely, it is generated
as an algebra by X ∈ V(Ω) and φ ∈ C∞(Σ(Ω)). (This algebra was used also in
Equation (52) and in Subsection 3.3.)

Proposition 6.1. Let P be a differential operator of order m on a manifold
M with smooth coefficients. Let Ω ⊂ M be a curvilinear, stratified polyhedral
domain. Then P maps hKµa (Ω) to hKµ−ma−m (Ω) continuously, for any admissible
weight h and any µ ∈ Z. Moreover, the resulting family h−λPhλ : Kµa (Ω) →
Kµ−ma−m (Ω) of bounded operators depends continuously on λ.

Before proceeding with the proof, we discuss a corollary, which will be relevant
in showing that Theorems 1.2 and 1.3 hold. Following the notation of those
theorems, below Wµ(Ω) represents the set of admissible weights h such that

the map P̃ (u) := (Pu, u|∂DΩ, D
P
ν u|∂NΩ) is an isomorphism {

N⊕

j=1

hKµ+1
1 (Ωj) ∩

hK1
1(Ω); u+ = u−, DP

ν u
+ = DP

ν u
− on Γ} ≃

N⊕

j=1

hKµ−1−1 (Ωj)⊕hKµ+1/2
1/2 (∂DΩ)⊕

hKµ−1/2−1/2 (∂NΩ).

Proposition 6.2. The set Wµ(Ω) is open.

Proof. This follows directly from Proposition 6.1. Indeed, the family
P :

⊕N
j=1 hK

µ+1
1 (Ωj)∩hK1

1(Ω)→ hKµ−1−1 (Ω) is unitarily equivalent to h−1Ph :⊕N
j=1K

µ+1
1 (Ωj) ∩ K1

1(Ω) → Kµ−1−1 (Ω). The result then follows since the set of
invertible operators is open.
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For the proof of Proposition 6.1, we observe that if Ω ⊂ Rn, the principal
symbol of (rΩ∂)α is (ıξ)α. This result follows from the definition of the prin-
cipal symbol in [2, 1] and from Corollary 5.4. (The reader can just assume
σ
(
(rΩ∂)α

)
= (ıξ)α by definition.)

Corollary 6.3. Let P be a differential operator of order m onM with smooth
coefficients. Then

(i) P0 := rmΩ P ∈ DiffΩ;

(ii) P is uniformly strongly elliptic if, and only if, rmΩ P is uniformly strongly
elliptic in DiffmΩ ;

(iii) hλPh−λ depends continuously on λ;

(iv) P maps hKµa (Ω)→ hKµ−ma−m(Ω) continuously.

Proof. The relation rmΩ P ∈ DiffmΩ was proved as part of Lemma 5.5. Strong
ellipticity is a local property, so we can assume Ω ⊂ Rn. The proof of Lemma
5.5 shows that P and rmΩ P have the same principal symbol. Therefore they are
elliptic (or strongly elliptic) at the same time.
For any X ∈ V and any defining function x of some hyperface at infinity of
Σ(Ω), we have that xλXx−λ = X − λx−1X(x). Since x−1X(x) is a smooth
function (as X is tangent to the face defined by x), we see that xλXx−λ ∈ Diff1

Ω

and depends continuously on λ, establishing (iii). It also shows, in particular,
that DiffkΩ is conjugation invariant with respect to defining functions of hyper-
faces at infinity (Equation (28)). We can therefore assume that h = 1.
Since (Σ(Ω),V(Ω)) is a Lie manifold with boundary (Theorem 4.23) any P0 ∈
DiffkΩ maps Hµ(Σ(Ω)) → Hµ−k(Σ(Ω)) continuously. (This simple property,
proved in [1], is an immediate consequence of the definitions.) The continuity
of P = r−mΩ P0 : Kµa (Ω) → Kµ−ma−m (Ω) then follows using also the fact that

multiplication by r−mΩ defines an isometry Kµ−ma (Ω) ≃ Kµ−ma−m (Ω).

6.2 A weighted Hardy–Poincaré’s inequality

The stepping stones in the proof of our main result on the solvability of the
mixed boundary value/interface problem (6), Theorem 1.2, consist of

(i) a Hardy–Poincaré type inequality (Theorem 6.4);

(ii) the regularity result for polyhedra (Theorem 1.1).

We address the Hardy-Poincaré inequality first and turn to the proof of the
regularity result, which is more general and of independent interest in the next
subsection. Let dx = dx1dx2 . . . dxn denote the standard volume element in
Rn. We continue to denote by Ω a curvilinear, stratified polyhedral domain
satisfying hypotheses (3)–(5).
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Theorem 6.4. Let Ω be a bounded, connected, curvilinear, stratified polyhedral
domain Ω ⊂ M . Assume that ∂DΩ 6= ∅ and ∂NΩ does not contain any two
adjacent hyperfaces. Then there exists a constant κΩ > 0, depending only on
the polyhedral structure of Ω, such that

‖u‖2K0
1(Ω) :=

∫

Ω

|u(x)|2
ηn−2(x)2

dx ≤ κΩ
∫

Ω

|∇u(x)|2 dx, (55)

for any function u ∈ H1
loc(Ω) such that u|∂DΩ = 0.

Above, if u/ηn−2 is not square integrable, the statement of the theorem is
understood to mean that ∇u is not square integrable either. By Propositions
4.9 and 4.10, we can replace the distance to the singular set ηn−2 with the more
regular weight rΩ.

The proof proceeds by induction on the dimension n. We discuss first the case
n = 2, 3.

The case n = 2. In view of the local nature of the definition of a curvilin-
ear, stratified polygonal domain, Definition 2.6, it will be sufficient to have the
Hardy-Poincaré inequality in a sector. By abuse of notation, we shall write
u(r, θ) := u(r cos θ, r sin θ) for a function u(x1, x2) expressed in polar coor-
dinates. The proof of the following elementary lemma can be found in e.g.
[62][Subsection 2.3.1]. See also [40].

Lemma 6.5. Let C = CR(α, β) := {(r cos θ, r sin θ) ∈ R2, 0 < r < R, β < θ <
α}, 0 < α− β < 2π. Then

∫

C

|u|2
r2

dx ≤ π2

(α− β)2

∫

C
|∇u|2dx

for any u ∈ H1
loc(C) satisfying u(r, θ) = 0 if θ = β or θ = α. The same result

holds if C is the disjoint union of domains CR(α, β), for different values of R,
α, and β.

From the Lemma above, we obtain the case n = 2 in Theorem 6.4, the first
step in our induction proof. A detailed proof can be found e.g. in the papers
[15, 56].

Lemma 6.6. Let Ω be a connected, curvilinear, stratified polygonal domain
in a two dimensional manifold M . Assume that ∂DΩ 6= ∅ and ∂NΩ does not
contain any two adjacent sides of Ω. Fix an arbitrary metric g on M and let
η0(z) be the distance from z to the vertices of Ω. Then there exists a constant
κΩ > 0 such that ∫

Ω

|u(w)|2
η0(w)2

dz ≤ κΩ
∫

Ω

|∇u(w)|2dz

for any u ∈ H1
loc(Ω) satisfying u = 0 on ∂DΩ.
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The case n = 3. The proof of Theorem 6.4 for n = 3 combines the methods
used in the previous two Lemmata and the inequality for the case n = 2. We
give a self-contained proof again, especially because the induction step in the
general case is very similar. The general case n > 3 will be completed using
Proposition 4.10.

Proof. Let us fix, for any p ∈ ∂Ω, a neighborhood Vp of p in M and a dif-
feomorphism φp : Vp → U = B3−l × Bl as in Definition 2.8, where l = ℓ(p).
We denote C := φp(Vp ∩ Ω). We shall use the notation ωp introduced in that
definition. By decreasing Vp, if necessary, we may assume that φp extends to a
diffeomorphism defined in a neighborhood of V p in R3.
Since ηn−2 = η1 is the distance to the singular set Ω(1) of Ω, we need only
discuss two cases:

(a) l = ℓ(p) = 0, i.e., p is a true or artificial vertex;

(b) l = ℓ(p) = 1, i.e., p belongs to a true or artificial edge.

If l = 0, we denote by ψ0(x′) the distance from a point x′ ∈ ωp ⊂ S2 to the
vertices of ωp and let rp(w) = ρψ0(x′), if φp(w) = ρx′, where
0 < ρ and x′ ∈ ωp. If l = 1, we let rp(w) = r if φp(w) = (r cos θ, r sin θ, z),
where 0 < r, 0 < θ < α, and z ∈ R. (These definitions agree with the
general definition of rΩ given in (36) with rp = rα given in (35).) As before,
the function η1(x)/rp(x) is bounded for any p, provided that we choose the
neighborhoods Vp small enough, uniformly in p. Below, we shall write u(x)
instead of u(φ−1p (x)), by abuse of notation.
If l = 1, C = C′ × (−1, 1), so that we exploit the Hardy-Poincaré inequality in
a sector of Lemma 6.5. In fact

∫

Vp∩Ω

|u(w)|2
η1(w)2

dw = C

∫

Ω∩Vp

|u(x)|2
r2

∣∣∣∣
∂w

∂x

∣∣∣∣ dx ≤ C
∫

C

|u(x)|2
r2

dx. (56)

so that we obtain

∫

C

|u(x)|2
r2

dx =

∫ 1

−1

(∫

C′

|u(x)|2
r2

dx1dx2

)
dx3

≤
∫ 1

−1

(∫

C′
|∇(x1,x2)u(x)|2 dx1dx2

)
dx3 ≤

∫ 1

−1

(∫

C′
|∇u(x)|2 dx1dx2

)
dx3

≤ C
∫

Vp∩Ω
|∇u(w)|2 dw. (57)

We perform a similar calculation on Vp ∩Ω when l = 0, using spherical coordi-
nates instead. Recall that C = φp(Vp ∩ Ω) = {ρx′, 0 < ρ < 1, x′ ∈ ωp}, hence
following (56) and using that Cη1(x) ≥ ρψ0(x) The inequality

∫

Vp∩Ω

|u(w)|2
η1(w)2

dw ≤ C
∫

C

|u(x)|2
ρ2ψ0(x′)2

dx, x = ρx′, |x′| = 1, (58)
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Next, we observe that ∇u(ρx′) = ρ−1∇′u(ρx′)+∂ρu(ρx′), with ∇′ the gradient
of a function defined on ωp, so that |∇′u(ρx′)|2 ≤ ρ2|∇u(ρx′)|, which gives

∫

C

|u(x)|2
ρ2ψ0(x)2

dx =

∫ 1

0

(∫

ωp

|u(ρx′)|2
ψ2
0

dx′
)
dρ

≤ C
∫ 1

0

(∫

ωp

|∇′u(ρx′)|2dx′
)
dρ ≤ C

∫ 1

0

(∫

ωp

ρ2|∇u(ρx′)|2dx′
)
dρ

≤ C
∫

Vp∩Ω
|∇u(w)|2 dw. (59)

We can rewrite the above inequalities simply as

∫

Vp∩Ω

|u(w)|2
η1(w)2

dz ≤ Cp
∫

Vp∩Ω
|∇u(w)|2 dz ≤ Cp

∫

Ω

|∇u(w)|2 dw, (60)

where the constant Cp depends on the point p ∈ Ω(1) but not on u.

To conclude the proof, as before we cover the singular set Ω(1) with finitely
many sets Vp = Vpk . Let C0 > η−21 outside the union of the sets Vpk . Let
κΩ = C0CΩ +

∑
Cpk , where CΩ is the standard Poincaré inequality constant

for the domain Ω. We add all inequalities (60) for p = pk and combine it with
the Poincaré inequality to get

∫

Ω

|u(w)|2
η21(w)

dw ≤ κΩ
∫

Ω

|∇u(w)|2dw. (61)

The proof of Theorem 6.4 is now complete for n = 3.

The general case n > 3. To conclude the proof of theorem 6.4, we need
only establish the induction step. The induction step follows very closely the
proof of the case n = 3. The only delicate point is showing that the ratio
ηn−2(x)/rα(x) is bounded on Ω, where ηn−2 is the distance to the singular
set Ω(n−2) of Ω and rα is as in Equation 35. This fact was established in
Proposition 4.9.

We conclude with an immediate corollary of Theorem 6.4, which will be used
in the proof of Theorem 1.2

Corollary 6.7. There exists a constant κ′Ω > 0, depending only on Ω, such
that

1

κ′Ω
‖u‖2K1

1(Ω) ≤
∫

Ω

|∇u(x)|2 dx ,

for any function u ∈ H1
loc(Ω) such that u|∂DΩ = 0, if ∂DΩ 6= ∅ and ∂NΩ does

not contain any two adjacent hyperfaces.
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6.3 Proofs of the main results

In this subsection, we finally tackle the proofs of the main results of the paper.
We first show how the proof of the regularity property for the mixed boundary
value/interface problem (6), Theorem 1.1 can be obtained from the results of
[1] and the theory developed in Section 4. The following result was proved
in [1].

Theorem 6.8. Let (M,V) be a Lie manifold with boundary and P0 := r2ΩP ∈
Diff2(M) be a second order, uniformly strongly elliptic operator. Let h be an
admissible weight and u ∈ hH1(M) be such that Pu ∈ hHµ−1(M) and u|∂M ∈
hHµ+1/2(∂M), µ ∈ Z+. Then u ∈ hHµ+1(M) and

‖u‖hHµ+1(M) ≤ C
(
‖Pu‖hHµ−1(M) + ‖u‖hH0(M) + ‖u|∂Ω‖hHµ+1/2(∂M)

)
. (62)

For mixed boundary value/interface problems we need the following extension
of this theorem, which is proved exactly in the same way.

Theorem 6.9. Let (M,V) be a Lie manifold with boundary and P0 = r2ΩP ∈
Diff2(M) be a second order, uniformly strongly elliptic operator with jump
discontinuities on sub Lie manifolds of M that partition it into subsets Mj.
Assume that ∂M = ∂DM ∪ ∂NM is a disjoint decomposition into open, dis-
joint subsets. Let h be an admissible weight and u ∈ hH1(M) be such that
Pu ∈ hHµ−1(Mj) and u|∂M ∈ hHµ+1/2(∂M), µ ∈ Z+. Then u ∈ hHµ+1(Mj)
and

‖u‖hHµ+1(Mj) + ‖u‖hH1(M) ≤ C
(∑

k

‖Pu‖hHµ−1(Mk) + ‖u‖hH0(M)

+ ‖u|∂Ω‖hHµ+1/2(∂DM) + ‖DP
ν u|∂Ω‖hHµ−1/2(∂NM)

)
.

Theorem 1.1 then follows by applying the above theorem to P0 := r2ΩP , which is
strongly elliptic by Corollary 6.3(ii), and using the identifications of Proposition
5.7 and Definition 5.8.

We now prove Theorem 1.2 assuming the results stated in the previous subsec-
tion. The proof of Theorem 1.3 is completely similar.

Remark 6.10. In the statement of Theorems 1.2 and 1.3, the spaces Kµ+1
1 (Ωj)

are defined intrinsically, without reference to Ω. However, the interface Γ
is assumed smooth for well-posedness in this paper (more general conditions
on Γ were for example considered in [48]) and the points where Γ intersects
∂Ω, necessarily transversely, are included in the singular sets Ω(n−2) of Ω;
consequently, rΩ is equivalent to rΩj in each Ωj .

Proof. We first notice that Theorem 5.9 allows us to reduce the proof to the
case gD = 0.
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We continue to denote with Wµ(Ω) the set of weights such that the operator

P̃ , defined below, is an isomorphism

P̃ := (Pu, u|∂DΩ, D
P
ν u|∂NΩ) :

{u ∈
N⊕

j=1

hKµ+1
1 (Ωj) ∩ hK1

1(Ω);u|∂DΩ = 0, u+ = u−, DP
ν u

+ = DP
ν u
− on Γ}

→
N⊕

j=1

hKµ−1−1 (Ωj)⊕ hKµ−1/2−1/2 (∂NΩ), (63)

which is an open set by Proposition 6.2. Therefore, it is enough to show that
1 ∈ Wµ(Ω) to complete the proof.
For solvability, we consider the case µ = 0. For µ = 0, the problem (6) is
interpreted in the weak sense (11), using that K1

1(Ω) ⊂ H1(Ω). More precisely,
we let

H := {u ∈ K1
1(Ω), u = 0 on ∂DΩ}, (64)

and we define the weak solution u of Equation (11) with gD = 0 as the unique
u ∈ K1

1(Ω) satisfying u = 0 on ∂DΩ in trace sense and

BP (u, v) = Φ(v) for all v ∈ H, (65)

where the element Φ ∈ H∗ is defined by Φ(u) =
∫
Ω fu dx +

∫
∂NΩ gNu dS(x),

this last integral being the pairing between K1/2
1/2(∂Ω) and K−1/2−1/2(∂Ω). Here, we

have employed the trace property, Theorem 5.9. We will establish the existence
and uniqueness of u by using the Lax-Milgram Lemma and coercive estimates
for P in weighted Sobolev spaces, which in turn follow from the (uniform)
strong ellipticity of P and the Hardy-Poincaré inequality of Theorem 6.4. This
result gives the first step of the proof, that is, 1 ∈ W0(Ω). We refer to [26] for
the version of the Lax–Milgram lemma needed in this proof, where P contains
lower-order terms.
Indeed, the sesquilinear form B is continuous on H × H by Proposition 6.1.
Furthermore, assumptions 8 on the coefficients Ajk, Bj , and C of the operator
P , together with Corollary 6.7 imply the following inequality for the real part
of B(u, v):

Re
(
Pu, u

)
=

∫

Ω

(
Re

n∑

j,k=1

Ajk∂ku∂ju
)
dx+

(
(2C −

∑

j

∂jBj)u, u
)
/2

≥ ǫ
n∑

j=1

‖∂ju‖2 ≥ ǫ‖u‖2K1
1(Ω) =: ǫ‖u‖2K1

1(Ω), (66)

which shows that B is strictly coercive on H.
The assumptions of the Lax-Milgram lemma are therefore satisfied, Hence P :
H → H∗ is an isomorphism (i.e., P is continuous with continuous inverse),
proving that 1 ∈ W0(Ω).

Documenta Mathematica 15 (2010) 687–745



740 C. Bacuta, A. L. Mazzucato, V. Nistor, L. Zikatanov

We next consider the case µ ≥ 1 and prove that W0(Ω) ⊂ Wµ(Ω) for any
µ ∈ Z+, so that, in particular, 1 ∈ Wµ(Ω). We pick h ∈ W0(Ω) and observe

that by the regularity theorem, Theorem 1.1, the map P̃ of Equation 63 above
is surjective. Since this map is also continuous (Proposition 6.1) and injective
(because h ∈ W0(Ω)), it is an isomorphism by the open mapping theorem. This
observation shows that W0(Ω) ⊂ Wµ(Ω), for any µ ∈ Z+.
Since we have already proved that Wµ(Ω) is open, the proof is complete.

Remark 6.11. It seems that it would be more natural to work in the framework
of stratified spaces than in the framework of polyhedral domains. For example,
if we consider a smooth, bounded domain Ω ⊂ Rn and a submanifold X ⊂ ∂Ω
of lower dimension, then we can consider ηn−2(x) to be the distance from x to
X . Then Theorem 1.2 remains true, with essentially the same proof, by taking
Ω(n−2) := X in this case.
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1. Introduction

Let π : X ⋆ → S be a semi-abelian variety of relative dimension g over the
spectrum S of a discrete valuation ring R with algebraically closed residue
field k such that the generic fibre Xη is a principally polarized abelian variety.
We assume that X ⋆ is contained in a complete rank-one degeneration X . In
particular, the special fibreX0 of X is a complete variety over k containing as an
open part the total space of the Gm-bundle associated to a line bundle J → B
over a (g − 1)-dimensional abelian variety B. The normalization ν : P → X0

of X0 can be identified with the P1-bundle over B associated to J and X0

is obtained by identifying the zero-section of P with the infinity-section of P,
both isomorphic to B, by a translation. Moreover, X0 is provided with a theta
divisor that is the specialization of the polarization divisor on the generic fibre.
If cη is an algebraic cycle on Xη we can take the Fourier-Mukai transform
ϕη := F (cη) and consider the limit cycle (specialization) ϕ0 of ϕη. A natural
question is: What is the limit ϕ0 of ϕη?
If q : P → B denotes the natural projection of the P1-bundle, the Chow ring
A∗(P) of P is the extension A∗(B)[η]/(η2− η · q∗c1(J)) of the Chow ring A∗(B)
of B with η = c1(OP(1)). We consider now cycles with rational coefficients.
We denote by c0 the specialization of the cycle cη on X0. We can write c0 as
ν∗(γ) with γ = q∗z + q∗w · η.

Theorem 1.1. Let cη be a cycle on Xη with c0 = ν∗(q∗z + q∗w · η), for z, w ∈
A∗(B). The limit ϕ0 of the Fourier-Mukai transform ϕη = F (cη) is given by
ϕ0 = ν∗(q∗a+ q∗b · η) with

a = FB(w) +

2g−2∑

n=0

n∑

m=0

(−1)m

(n+ 2)!
FB [(z + w · c1(J)) · cm1 (J)] · cn−m+1

1 (J)
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and

b =

2g−2∑

n=0

n∑

m=0

(−1)m

(n+ 2)!
FB [(((−1)n+1 − 1)z − w · c1(J)) · cm1 (J)] · cn−m1 (J) ,

where FB is the Fourier-Mukai transform on the abelian variety B.

We denote algebraic equivalence by
a
=. The relation c1(J)

a
=0 implies the fol-

lowing result.

Theorem 1.2. With the above notation the limit ϕ0 satisfies

ϕ0
a
= ν∗(q

∗FB(w) − q∗FB(z) · η) .

Note that this is compatible with the fact that for a principally polarized abelian
variety A of dimension g the Fourier-Mukai transform satisfies FA ◦ FA =
(−1)g(−1A)∗.
Beauville introduced in [2] a decomposition on the Chow ring with rational
coefficients of an abelian variety using the Fourier-Mukai transform. Theorem
1.2 can be used to deduce non-vanishing results for Beauville components of
cycles on the generic fibre of a semi-abelian variety of rank 1; we refer to § 7
for examples.
We prove the theorem by constructing a smooth model Y of X ×S X to which
the addition map X ⋆ ×S X ⋆ → X ⋆ extends and by choosing an appropriate
extension of the Poincaré bundle to Y. The proof is then reduced to a calcu-
lation in the special fibre. We refer to Fulton’s book [8] for the intersection
theory we use. The theory in that book is built for algebraic schemes over
a field. In our case we work over the spectrum of a discrete valuation ring.
But as is stated in § 20.1 and 20.2 there, most of the theory in Fulton’s book,
including in particular the statements we use in this paper, is valid for schemes
of finite type and separated over S. However, for us projective space denotes
the space of hyperplanes and not lines, which conflicts with Fulton’s book, but
is in accordance with [10].

2. Families of abelian varieties with a rank one degeneration

We now assume that R is a complete discrete valuation ring with local parame-
ter t, field of quotients K and algebraically closed residue field k. Suppose that
(X ⋆,L) is a semi-abelian variety over S = Spec(R) such that the generic fibre
Xη is abelian and the special fibre X∗0 has torus rank 1; moreover, we assume
that L is a cubical invertible sheaf (meaning that L satisfies the theorem of the
cube, see [7], p. 2, 8) and Lη is ample. In particular, the special fibre of X ⋆
fits in an exact sequence

1→ T0 → X∗0 → B → 0,

where B is an abelian variety over k and T0 the multiplicative group Gm over
k. The torus T0 lifts uniquely to a torus Ti of rank 1 over Si = Spec(R/(ti+1)
in X∗i = X ⋆ ×S Si. The quotient X∗i /Ti is an abelian variety Bi over Si. The
system {Bi}∞i=1 defines a formal abelian variety which is algebraizable, resulting
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in an abelian scheme B, so that we have an exact sequence of group schemes
over S

1→ T → G
π→ B → 0,

cf. [F-C, p. 34]. We assume now that we are given a line bundle M on B defining
a principal polarization λ : B → Bt and consider L = π∗(M). This defines a
cubical line bundle on G. The extension G is given by a homomorphism c of
the character group Z ∼= Z of T to Bt. The semi-abelian group scheme dual to
X ⋆ defines a similar extension

1→ T t → Gt → Bt → 0

and the polarization provides an isomorphism φ of the character group Z of T
with the character group Zt of T t. Now the degenerating abelian variety (i.e.
semi-abelian variety) X ⋆ over S gives rise to the set of degeneration data (cf.
[7], p 51, Thm 6.2, or [1], Def. 2.3):

(i) an abelian variety B over S and a rank 1 extension G. This amounts
to a S-valued point b of B = Bt.

(ii) a K-valued point of G lying over b.
(iii) a cubical ample sheaf L on G inducing the polarization on B and an

action of Z = Zt on Lη.

A section s ∈ Γ(G,L) possesses the analogue of a classical Fourier expansion
as explained in [7], p. 37. So s can be written uniquely as s =

∑
χ∈Z σχ(s),

where σχ : Γ(G,L) → Γ(B,Mχ) is a R-linear homomorphism and Mχ is the
twist of M by χ: in fact π∗(OG) = ⊕χOχ with Oχ the subsheaf consisting of
χ-eigenfunctions. (We refer to [7], p. 43; note also the sign conventions there
in the last lines.) We have now by the action

T ∗ct(y)M ∼= Mφ(y)
∼= M ⊗Oφ(y), y ∈ Zt.

This satisfies σχ+1(s) = ψ(1)τ(χ)T ∗b (σχ(s)), where τ is given by a point of
G(K) lying over b and ψ is a cubical trivialization of T ∗ct(y)M

−1
η as in [7], p.

44, Thm. 5.1. We refer to Faltings-Chai’s theorem (6.2) of [7], p. 51 for the
degeneration data.
The compactification X of X ⋆ is now constructed as a quotient of the action of
Zt on a so-called relatively complete model. Such a relatively complete model
P̃ for G can be constructed here in an essentially unique way. If B is trivial
(i.e. dim(B) = 0) and if the torus is T = Spec(R[z, z−1]) it is given as the
toroidal variety obtained by gluing the affine pieces

Un = Spec(R[xn, yn]), with xnyn = t

where G ⊂ P̃ is given by xn = z/tn, yn = tn+1/z, (cf. [13], also in [7], p.

306). By glueing we obtain an infinite chain P̃0 of P1’s in the special fibre. We
can ‘divide’ by the action of Zt; this is easy in the analytic case, more involved
in the algebraic case, but amounts to the same, cf. [13], also [7], p. 55-56.
In the special fibre we find a rational curve with one ordinary double point. If
instead we divide by the action of nZt for n > 1 we find a cycle consisting of
n copies of P1.
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In case the abelian part B is not trivial we take as a relatively complete model
the contracted (or smashed) product P̃ ×T G with P̃ the relatively complete

model for the case that B is trivial. Call the resulting space P̃ . Then P̃
corresponds by Mumford’s [loc. cit., p 29] to a polyhedral decomposition of
Zt ⊗ R = R with Zt the cocharacter group of T . Then we essentially quotient
by the action of Zt or nZt as before and obtain a proper X → S.
We describe the central fibre X0 of X . Let b be the k-valued point of B ∼= Bt

that determines the above Gm-extension. If M denotes a line bundle defining
the principal polarization ofB we let Mb be the translation ofM by b and we set
J = M⊗M−1b and define the projective bundle P = P(J⊕OB) with projection
q : P → B. The bundle P has two natural sections (with images) P1 and P2

corresponding to the projections J ⊕ OB → J and J ⊕ OB → OB . We have
O(P1) ∼= O(P2)⊗ q∗J and O(1) ∼= O(P1) with O(1) the natural line bundle on
P. We denote by P the non-normal variety obtained by gluing the sections P1

and P2 under a translation by the point b. The singular locus of P has support
isomorphic to B. The line bundle L̃ = O(P1)⊗ q∗Mb

∼= O(P2)⊗ q∗M descends
to a line bundle L on P with a unique ample divisor D, see [14]. The central
fibre X0 of the family π : X → S is then equal to P̄. The cubical invertible
sheaf L on X ⋆ extends (uniquely) to X and its restriction to the central fibre
P̄ is the line bundle L, see [15].

3. Extension of the addition map

The addition map µ : X ⋆×S X ⋆ → X ⋆ of the semi-abelian scheme X ⋆ does not
extend to a morphism X ×S X → X , but it does so after a small blow-up of
X ×S X as we shall see.
The degeneration data of X ⋆ defines (product) degeneration data for X ⋆×SX ⋆.
Indeed, we can take the fibre product of the relatively complete model P̃ ′ =
P̃ ×S P̃ and this corresponds (e.g. via [13], Corollary (6.6)) to the standard
polyhedral decomposition of R2 = (Zt ⊗R)2 by the lines x = m and y = n for

m,n ∈ Z. The special fibre of the model P̃ ′ is an infinite union of P1 × P1-
bundles over B × B glued along the fibres over 0 and ∞. The compactified
model of X ×S X is obtained by taking the ‘quotient’ of P̃ ′ under the action
of Zt × Zt. This is not regular; for example the criterion of Mumford ([13],
p. 29, point (D)]) is not satisfied. We can remedy this by subdividing. For
example, by taking the decomposition of R2 given by the lines x = m, y = n
and x+ y = l for m,n, l ∈ Z.
The special fibre of this model is an infinite union of copies of P1× P1-bundles
over B × B blown up in the two anti-diagonal sections (0,∞) = P1 × P2 and
(∞, 0) = P2 × P1. This is regular.
Both polyhedral decompositions are invariant under the action of translations
(x, y) 7→ (x + a, y + b) for fixed a, b ∈ Z. This means that we can form the
‘quotient’ by Zt×Zt ∼= Z2 (or a subgroup nZt×nZt) and obtain a completed
semi-abelian variety Y of relative dimension 2g over S. We denote by ǫ : Y →
Y ′ = X ×S X the natural map. We shall write V for Y0 and σ : Ṽ → V for
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its normalization. Then Ṽ is an irreducible component of the special fibre of
P̃ ′. We denote by τ : Ṽ → P × P the blow up map and by E12 and E21 the
exceptional divisors over the blowing up loci P1×P2 and P2×P1, respectively.
Now consider the addition map µ : X ⋆ ×S X ⋆ → X ⋆ with X ⋆ as in § 2. This
morphism induces (and is induced by) a map µ̃ : G×S G→ G. However, this

map does not extend to a morphism of the relatively complete model P̃ ′ since
the corresponding (covariant) map (Zt⊗R)2 → (Zt⊗R) does not map cells to
cells. After subdividing (by adding the lines x+y = l with l ∈ Z) this property
is satisfied (cf. [11], Thm. 7, p. 25). This means that the map µ extends to

µ̃ : P̃ ′ → P̃ for the polyhedral decomposition given by this subdivision. It is
compatible with the action of Z and Z× Z and hence descends to a morphism
µ̄ : Y → X . We summarize:

Proposition 3.1. The addition map of group schemes µ : X ⋆ ×S X ⋆ → X⋆

extends to a morphism µ̄ : Y → X .
We now describe an explicit local construction of the model Y by blowing
up the model X ×S X . Let Ag+1

S = Spec(R[x1, . . . , xg+1]) denote affine S-

space. In local coordinates, inside Ag+1
S , we may assume that the g-dimensional

fibration π : X ⋆ → S is given by the equation x1x2 = t, where the coordinates
x3, . . . , xg+1 are not involved, see [14] p. 361-362. We may assume that the
zero section of the family is defined by xi = 1 for i = 1, . . . , g + 1.
We form the fibre product π : Y ′ = X ×S X . We denote by Λ the support of
the singular locus of X0. The (2g+ 1)-dimensional variety Y ′ is singular in the
special fibre along Σ = Λ×kΛ ∼= B×kB of dimension 2g−2. The generic fibre
Y ′η is the product Xη ×K Xη of the abelian variety Xη, while the zero fibre Y ′0
is singular. The local equations of Y ′ in a neighborhood of the singular locus of
the family are given in our local coordinates by the system x1x2 = t, x′1x

′
2 = t.

The singular locus Σ of Y ′ is given by the equations x1 = x2 = x′1 = x′2 = t = 0.
The above blow up ǫ : Y → Y ′ is a small blow up and can be described directly
as follows: we blow up Y ′ along its subvariety Π defined by x1 = x′2 = 0 (a
2-plane contained in the central fibre of Y ′). The proper transform Y of Y ′ is
smooth. In local coordinates, the blow-up is given by the graph Γφ ⊆ Y ′ × P1

of the rational map φ : Y ′ −→ P1 given by φ(x1, . . . , x
′
g+1, t) = (x1 : x′2). The

equations of the graph Γφ ⊆ Y ′ × P1 ⊆ A2(g+1)
S ×S P1

S are given by the system

x1x2 = t, ux′2 − vx1 = 0, ux2 − vx′1 = 0 ,

where u, v are homogeneous coordinates on P1.
For later calculations we write down the morphism µ̄ explicitly on the special
fibre. We start with g = 1; then B is trivial and we may restrict the map to
an irreducible component of the special fibre of the relatively complete model
P̃ ×S P̃ and get the map m : P1 × P1 → P1 given by ((a : b), (a′ : b′)) 7→ (aa′ :
bb′). This is not defined in the points (0,∞) and (∞, 0). After blowing up these
points (which is the blow up Y → Y ′) the rational map becomes a regular map

m̃ : Ṽ → P1. It is defined by the two sections prop(p∗1{0}) + prop(p∗2{0}) and
prop(p∗1{∞})+prop(p∗2{∞}) of the linear system |τ∗(F1+F2)−E12−E21| with
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F1 and F2 the horizontal and vertical fibre (with prop( ) meaning the proper
transform). The map m̃ descends to a map m̄ : V → P̄ which is the restriction
of the morphism µ̄ : Y → X to the central fibre.
For the case g > 1, note that we have the addition map µX ⋆ . Its restriction to
the special fibre extends to a map of the relatively complete model and then
restricts to a morphism m̃ : Ṽ → P that lifts the addition map µB of B. That
means that it comes from a surjective bundle map (cf. [10], Ch. II, Prop. 7.12)

δ : m∗1(J ⊕OB) ∼= (p∗1q
∗J ⊗ p∗2q∗J)⊕OṼ → N

with m1 := µB ◦ (q × q) ◦ τ : Ṽ → B and N = τ∗(p∗1O(P1) ⊗ p∗2O(P1)) ⊗
O(−E12−E21)) with pi : P×P→ P the ith projection. Then m∗1(J⊕OB)∨⊗N
is isomorphic to the direct sum of

τ∗p∗1O(Pi)⊗ τ∗p∗2O(Pi)⊗O(−E12 − E21) (i = 1, 2).

The map δ is then given by the two sections prop(p∗1Pi) + prop(p∗2Pi) of
τ∗p∗1O(Pi)⊗ τ∗p∗2O(Pi)⊗O(−E12 −E21) for i = 1, 2. The map m̃ descends to
a map m̄ : V → P̄ which is the restriction of the morphism µ̄ : Y → X to the
central fibre.

4. Extension of the Poincaré bundle

We denote by j0 : X0 →֒ X and i0 : Y0 →֒ Y the inclusions of the special fibre.
Recall that we write V for Y0 and Ṽ for its normalization. We denote by Pη
the Poincaré bundle on Y ′η and by PB the Poincaré bundle on B.

Theorem 4.1. The Poincaré bundle Pη has an extension P such that the pull

back of P0 := i∗0P to Ṽ satisfies σ∗P0
∼= τ∗(q × q)∗PB ⊗O(−E12 − E21).

Proof. We have the following commutative diagram of maps

V
m̄

P

Ṽ

σ

τ

m̃
P

ν

P

q

P× P

q×q

pi
P

q

B B ×Bqi µB
B

Let L be the theta line bundle on the family X introduced in § 2. We define
the extension of Pη by

P := µ̄∗L⊗ ρ∗1L−1 ⊗ ρ∗2L−1,
where we denote by ρ1, ρ2 : Y → X the compositions of the natural projections
ρ′i : Y ′ → X with the blowing up map ǫ : Y → Y ′ of § 3. We then have
σ∗P0 = σ∗(m̄∗j∗0L)⊗σ∗i∗0ρ∗1L−1⊗σ∗i∗0ρ∗2L−1. Now m̄∗j∗0L = m̄∗L̄ and by using
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the description of L̄ in § 2 we have σ∗(m̄∗j∗0L) = m̃∗ν∗L̄ = m̃∗(O(P1)⊗ q∗Mb).
In view of O(P1) = O(1) we have by the discussion at the end of § 3 that

m̃∗O(P1) = τ∗p∗1O(P1)⊗ τ∗p∗2O(P1)⊗O(−E12 − E21)

and m̃∗q∗Mb = τ∗(q × q)∗µ∗BMb. On the other hand we have

σ∗(i∗0ρ
∗
iL) = τ∗p∗i ν

∗L̄ = τ∗p∗iO(P1)⊗ τ∗(q × q)∗q∗iMb

and putting this together we get the result. �

5. The basic construction

The fibration π : Y → S is a flat map since Y is irreducible and S is smooth 1-
dimensional, see [10], Ch. III, Proposition 9.7. The maps ρi = Y → X , i = 1, 2,
defined in the proof of Theorem 4.1, are flat maps too since they are maps of
smooth irreducible varieties with fibres of constant dimension g, see e.g. [12],
Corollary of Thm. 23.1.
We denote by Y0 (resp. Yη) the special fibre (resp. the generic fibre) and by
i0 : Y0 → Y (resp. iη : Yη → Y) the corresponding embedding. According to
[8], Example 10.1.2, i0 is a regular embedding. Similarly, j0 : X0 → X is a
regular embedding. We consider the diagram

Y0
i0

π0

Y
π

Spec(k)
s

S

Let i∗0 : Ak(Y) → Ak−1(Y0) be the Gysin map (see [8], Example 5.2.1). Since
Y0 is an effective Cartier divisor in Y the Gysin map i∗0 coincides with the Gysin
map for divisors (see [8], Example 5.2.1 (a) and § 2.6).
We now consider specialization of cycles, see [8], § 20.3. Note that according
to [8], Remark 6.2.1., in our case we have s!a = i∗0a, a ∈ A∗(Y). If Z is a
flat scheme over the spectrum of a discrete valuation ring S the specialization
homomorphism σZ : Ak(Zη) → Ak(Z0) is defined as follows, see [8], pg. 399:
If βη is a cycle on Zη we denote by β an extension of βη in Z (e.g. the Zariski
closure of βη in Z) and then σZ(βη) = i∗0(β), where i0 : Z0 → Z is the natural
embedding.
Let cη be a cycle on Xη and let ϕη = F (cη) be the Fourier-Mukai transform. It

is defined by F (cη) = ρ2∗(ec1(Pη) ·ρ∗1cη) ∈ A∗(Xη). Let σX : Ak(Xη)→ Ak(X0)
be the specialization map. We have to determine σX(F (cη)).
If βη is a cycle on Yη, we have ρ2∗σY (βη) = σXρ2∗(βη) by applying [8] Propo-

sition 20.3 (a) to the proper map ρ2 : Y → X . By choosing βη = ec1(Pη) · ρ∗1cη
we have

(1) σX(F (cη)) = ρ2∗σY (ec1(Pη) · ρ∗1cη) .

Therefore, in order to compute σX(F(cη)) we have to identify σY (ec1(Pη) ·ρ∗1cη).

We take the extension ec1(P) of ec1(Pη) and the extension of ρ∗1cη given by ρ∗1c,
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where c is the Zariski closure of cη in X . Since iη : Yη → Y is an open embedding

and hence a flat map of dimension 0, we have i∗η(ec1(P) · ρ∗1c) = ec1(Pη) · ρ∗1cη,

see [8], Proposition 2.3 (d). In other words, the cycle ec1(P) · ρ∗1c extends the
cycle ec1(Pη) · ρ∗1cη and hence σY (ec1(Pη) · ρ∗1cη) = i∗0(ec1(P) · ρ∗1c).
Now, for any k-cycle a on Y we have the identity

i∗0(c1(P) · a) = c1(P0) · i∗0(a)

in Ak−2(Y0), where P0 = i∗0P is the pull back of the line bundle and i∗0a the
Gysin pull back to the divisor Y0. This follows from applying the formula in
[8], Proposition 2.6 (e) to i0 : Y0 → Y, with D = Y0, X = Y and L = P the
Poincaré bundle. Hence

(2) σY (ec1(Pη) · ρ∗1cη) = ec1(P0) · i∗0(ρ∗1c) .

By the Moving Lemma (see [8], § 11.4), we may choose the cycle c on the regular
X such that it intersects the singular locus Λ of the central fibre properly.
Since Λ ⊆ X0 the cycle c0 = j∗0 (c) meets Λ properly by the following dimension
argument. We have dim(c ∩ Λ) = dim(c0 ∩ Λ), hence

dim(c0 ∩ Λ) = dim(c) + dim(Λ)− dim(X)

= (dim(c)− 1) + dim(Λ)− (dim(X)− 1)

= dim(c0) + dim(Λ)− dim(X0).

Since Λ is of codimension 1 in X0 = P̄, saying that c0 meets Λ properly, is
equivalent to saying that no component of c0 is contained in Λ.

Lemma 5.1. There exists a cycle γ on P with c0 = ν∗γ that meets the sections
Pi for i = 1, 2 properly.

Proof. If Λ is the singular locus of P̄ and A = P1 ∪ P2 its preimage in P, then
P̄\Λ ∼= P\A. We may assume that the cycle c0 is irreducible and we consider
the support of c0 ∩ (P̄\Λ) as a subset W of P\A. Its Zariski closure γ = W̄ is
an irreducible cycle on P. Then ν∗γ is an irreducible cycle on P̄ since the map
ν is a projective map. Also, ν∗γ ∩ (P̄\Λ) = c0 ∩ (P̄\Λ), hence ν∗γ is the Zariski
closure of c0 ∩ (P̄\Λ) and so, by the irreducibility, we have ν∗γ = c0. �

Lemma 5.2. If c0 = ν∗γ, then we have i∗0ρ
∗
1c = σ∗(τ∗(p∗1γ)).

Proof. We denote the restriction of ρi to the special fibre again by ρi. Then we
have i∗0ρ

∗
1c = ρ∗1c0 since ρ1 is a flat map and i0, j0 are regular embeddings (see

[8], Theorem 6.2 (b) and Remark 6.2.1). We will use the following commutative
diagram

Ṽ
τ

σ
V

ǫ

ρiP× P

pi

P× P

ρ′i

P
ν

P
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We may assume that c0 and γ are irreducible k-cycles. We claim that ρ∗1c0
is irreducible. Indeed, the map ρ1 is a flat map of relative dimension g. The
cycle ρ∗1c0 is then a cycle of pure dimension k + g and contains the proper
transform of (ρ′1)∗c0 and that is an irreducible cycle. Any other irreducible
component of ρ∗1c0 must have support on the preimage of Λ. But since the
cycle c0 intersects Λ along a k − 1-cycle, there is no irreducible component of
ρ∗1c0 on the preimage of Λ. On the other hand, since γ meets the sections Pi
properly, the cycle τ∗p∗1γ is an irreducible cycle, and hence so is σ∗(τ∗p∗1γ).
But as ρ∗1c0 and σ∗(τ∗p∗1γ) coincide outside the exceptional divisor of V , they
have to coincide everywhere. �

Proposition 5.3. We have σX(F(cη)) = ρ2∗(ec1(P0) · σ∗(τ∗p∗1γ)).

Proof. By equation (2) and Lemma 5.2 we have

(3) σY (ec1(Pη) · ρ∗1cη) = ec1(P0) · σ∗τ∗(p∗1γ) .

The result follows from equation (1). �

In order to calculate the limit of the Fourier-Mukai transform we are thus
reduced to a calculation in the special fibre.

6. A calculation in the special fibre - Proof of the main theorem

Recall the normalization map σ : Ṽ → V . Suppose we have a cycle ρ on Ṽ with
σ∗ρ = c0. We can consider the intersection c1(P0)k · c0, that is a successive
intersection of a cycle with a Cartier divisor on the singular variety V . On the
other hand we have the cycle σ∗(c1(σ∗P0)k · ρ) and the projection formula ([8],
Proposition 2.5 (c)) implies that

c1(P0)k · c0 = σ∗(c1(σ∗P0)k · ρ).

Now we will use the following diagram of maps.

Ṽ
σ

τ

V

P× P
p1

α2

q×q

α1

p2

P P

q

ν P×B
β1

κ1
B × P

β2

κ2
P

q

ν P

B B ×Bq1 q2 B

Lemma 6.1. Let x be a cycle on B ×B. Then the following holds.

(1) p2∗((q × q)∗x) = 0.
(2) p2∗((q × q)∗x · p∗1η) = q∗q2∗x.
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Proof. For (1) we observe that p2∗ = κ2∗α1∗, and (q×q)∗ = α∗1β
∗
2 and α1∗α∗1 =

0. For (2) we use the identities

p2∗((q × q)∗x · p∗1η) = p2∗(α
∗
2β
∗
1x · α∗2κ∗1η) = p2∗α

∗
2(β∗1x · κ∗1η)

= κ2∗α1∗α
∗
2(β∗1x · κ∗1η) = κ2∗β

∗
2β1∗(β

∗
1x · κ∗1η)

= κ2∗β
∗
2(x · β1∗κ∗1η) = q∗q2∗(x · q∗1q∗η) = q∗q2∗x.

�

Consider the following diagram of maps

Pi

λi

Pi × Pj

λij

Eij

ǫij

πij

P

q

P× P
p1

q×q

Ṽ
τ

σ

B B ×Bq1

q2

V

B

where pi, qi are the projections to the ith factor, πij the canonical map of the
projective bundle Eij and the maps λi, λij and ǫij the natural inclusions. The
map (q × q) ◦ λij is an isomorphism.
By the adjunction formula, the normal bundles to P1, P2 are NP1(P) = J and
NP2(P) = J−1. The exceptional divisors E12 and E21 are projective bundles
over the blowing up loci Pi × Pj . By identifying Pi × Pj with B × B, via the
map (q × q) ◦ λij , we have E12 = P(q∗1J

−1 ⊕ q∗2J) and E21 = P(q∗1J ⊕ q∗2J−1).
We set ξij = c1(O(1)) on Eij . By standard theory [[10], ch. II, Theorem 8.24
(c)] we have ǫ∗ijEij = −ξij .
We now introduce the notation

γ := c1(J), γi = q∗i γ, ηi = p∗i η, i = 1, 2.

Note that γ is algebraically equivalent to 0, but not rationally equivalent to 0.
We have the quadratic relations

(ξij − π′ij
∗
γj)(ξij + π′ij

∗
γi) = 0

where π′ij : Eij → B ×B is the natural map, showing that ξ2ij is expressible in
lower powers.

Lemma 6.2. Suppose that ξ satisfies the relation ξ2 + (a− b)ξ− ab = 0. Then,
with φk = (bk−(−a)k)/(b+a) we have ξk = φkξ+abφk−1 for any k ≥ 1 (where
we put φ0 = 0).

Proof. Immediate by checking the relation with ξ = b or ξ = −a. �

Documenta Mathematica 15 (2010) 747–763



The Rank-One Limit of the Fourier-Mukai Transform 757

Applying the above for the classes ξij of the bundles Eij , considered as bundles
over B ×B via the isomorphism (q × q) ◦ λij , we get, by choosing

φk =

k−1∑

m=0

(−1)mγm1 γ
k−1−m
2 ,

that
ξk12 =π′

∗
12φk · ξ12 + π′

∗
12(γ1γ2φk−1),

ξk21 =(−1)k+1π′
∗
21φk · ξ21 + (−1)kπ′

∗
21(γ1γ2φk−1) .

We view now the bundles Eij as bundles over Pi × Pj and, for any k ≥ 0, we
write ξkij = π∗ijAij(k)ξij + π∗ijBij(k), for some cycles Aij(k), Bij(k) on Pi × Pj .
By the above relations we have

(q × q)∗λij∗Aij(k) = (−1)(k+1)jφk .

Lemma 6.3. We have

λij∗Aij(k) = (−1)(k+1)j [(q × q)∗φk · η1η2 − (q × q)∗(φk γj) · ηi] .
Proof. We let ψij = (q×q)◦λij : Pi×Pj → B×B be the natural isomorphism.
We then have the identity

λij∗Aij(k) = λij∗(ψ
∗
ijψij∗Aij(k)) = (q × q)∗ψij∗Aij(k) · λij∗1Pi×Pj .

But λij∗1Pi×Pj = p∗1Pi · p∗2Pj = ηi(ηj − p∗jq∗γ) = η1η2 − ηi · (q × q)∗γj and the
result follows. �

Lemma 6.4. For a cycle class x = q∗z + q∗w · η on P the cycle class τ∗(τ∗p∗1x ·
(Ek12 + Ek21)) for k ≥ 1 is given by

k−2∑

m=0

(−1)m{(q × q)∗q∗1 [(((−1)k+1 − 1)z + (−1)k+1wγ) γm] · η1η2

+ (−1)k(q × q)∗q∗1 [(z + wγ) γm] · η1 · p∗2q∗γ
+ (q × q)∗q∗1(zγm+1) · η2} · p∗2q∗γk−2−m.

Note that for k = 1 the above sum is zero.

Proof. Since ǫ∗ijEij = −ξij we have Ekij = (−1)k−1ǫij∗ξ
k−1
ij . Therefore

τ∗(τ
∗p∗1x · Ekij) =(−1)k−1p∗1x · τ∗ǫij∗ξk−1ij

=(−1)k−1p∗1x · λij∗πij∗(π∗ijAij(k − 1)ξij + π∗ijBij(k − 1))

=(−1)k−1p∗1x · λij∗Aij(k − 1)

since πij∗ξij = 1Pi×Pj . Note that since Aij(0) = 0 the above calculation shows
that τ∗(τ∗p∗1x ·Eij) = 0. By Lemma 6.3 and by using the relation

p∗1x = (q × q)∗q∗1z + (q × q)∗q∗1w · η1,
we have

τ∗(τ
∗p∗1x ·Ekij) =(−1)k(j+1)+1((q × q)∗q∗1z + (q × q)∗q∗1w · η1)

· [(q × q)∗φk−1 · η1η2 − (q × q)∗(φk−1γj) · ηi]
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and this equals

(−1)k(j+1)+1[(q × q)∗(q∗1z · φk−1) · η1η2 − (q × q)∗(q∗1z · φk−1γj) · ηi
+ (q × q)∗(q∗1w · φk−1) · η21η2 − (q × q)∗(q∗1w · φk−1γj) · η1ηi]

We then have, by using the formula η2 = q∗γ · η, that

τ∗(τ
∗p∗1x ·Ek12) = (−1)k+1[(q × q)∗(q∗1(z + wγ) · φk−1) · η1η2

−(q × q)∗(q∗1(z + wγ) · φk−1) · η1 · p∗2q∗γ]

and

τ∗(τ
∗p∗1x ·Ek21) = −(q × q)∗(q∗1z · φk−1) · η1η2 + (q × q)∗(q∗1(z γ) · φk−1) · η2.

Using φk−1 =
∑k−2
m=0(−1)mγm1 · γk−2−m2 we deduce the proposition. �

We state now the basic result of this section.

Proposition 6.5. Let z, w be cycles on B. Then we have

p2∗τ∗(e
c1(σ

∗P0) · τ∗(p∗1(q∗z + q∗w · η)) = q∗a+ q∗b · η,
with a and b as in Theorem 1.1.

Proof. We put x = q∗z + q∗w · η. We want to calculate

p2∗τ∗(e
τ∗(q×q)∗c1(PB)−E12−E21 · τ∗(p∗1x))

which equals

p2∗(e
(q×q)∗c1(PB) · τ∗(e−E12−E21 · τ∗p∗1x)).

Since E12 · E21 = 0 we have

e−E12−E21 = 1 +

2g∑

k=1

(−1)k

k!
(Ek12 + Ek21)

and so τ∗(e−E12−E21 · τ∗p∗1x) equals

p∗1x+

2g∑

k=1

(−1)k

k!
τ∗[τ

∗p∗1x · (Ek12 + Ek21)].

We have

p2∗((q × q)∗ec1(PB) · p∗1x) =

= p2∗(e
(q×q)∗c1(PB) · p∗1(q∗z + q∗w η))

= p2∗((q × q)∗(ec1(PB)q∗1z) + (q × q)∗(ec1(PB)q∗1w) p∗1η)

= 0 + q∗q2∗(e
c1(PB)q∗1w) = q∗FB(w)

by Lemma 6.1. Combining the above with Lemma 6.4 we find that

p2∗τ∗(e
τ∗(q×q)∗c1(PB)−E12−E21 · τ∗(p∗1x))
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is the sum of the four terms: the first is q∗FB(w), the second is

2g∑

k=2

k−2∑

m=0

(−1)k+m

k!
{p2∗[(q × q)∗[ec1(PB)q∗1 [(((−1)k+1 − 1)z+

(−1)k+1wγ) γm]] · η1]} · η · q∗γk−2−m,
the third term is

2g∑

k=2

k−2∑

m=0

(−1)m

k!
{p2∗[(q × q)∗[ec1(PB)q∗1 [(z + wγ) γm]] · η1]} · q∗γk−1−m,

and finally the fourth is

2g∑

k=2

k−2∑

m=0

(−1)k+m

k!
{p2∗[(q × q)∗[ec1(PB)q∗1(zγm+1)]]} · η · q∗γk−2−m .

By applying now Lemma 6.1 and by making the substitution n = k− 2 we get
the desired expression. �

Corollary 6.6. Let z, w be cycles on B. Then modulo algebraic equivalence
we have

p2∗τ∗(e
c1(σ

∗P0) · τ∗(p∗1(q∗z + q∗w · η))
a
= q∗FB(w) − q∗FB(z) · η.

Proof. Indeed, since c1(J)
a
=0 it is clear that a

a
=FB(w) and b

a
= −q∗FB(z) since

the only non zero term of the sum corresponds to m = 0, n = 0. �

We conclude now with the proof of the basic Theorem 1.1 and Theorem 1.2:

Proof. By Proposition 5.3 we have ϕ0 = σXF (cη) = ρ2∗(ec1(P0) · σ∗(τ∗p∗1γ)).

By the projection formula we have ec1(P0) · σ∗(τ∗p∗1γ) = σ∗(ec1(σ
∗P0) · τ∗p∗1γ).

Observe now that ρ2 ◦ σ = ν ◦ (p2 ◦ τ) : Ṽ → P̄, see the diagram in the proof of
Lemma 5.2. The proof then follows from Proposition 6.5 and Corollary 6.6. �

7. Applications

Let X → S be a completed rank-one degeneration as described in § 2. According
to Beauville [2] we have a decomposition of AiQ(Xη) into subspaces which are
eigenspaces for the action by multiplication by an integer on Xη:

AiQ(Xη) = ⊕jAi(j)(Xη)

such that n∗(x) = n2i−j x for x ∈ Ai(Xη). (Beauville works over C, but his
proof does not use more than the Fourier-Mukai transform which works over the
residue field of η.) The multiplication map n acts as multiplication by n2i on ho-
mology and therefore all cycles in Ai(j)(Xη) are homologically trivial for j 6= 0.

Since under the Fourier-Mukai transform we have F (Ai(j)(Xη)) = Ag−i+j(j) (Xη),

the elements of Ai that lie in Ai(j) are characterized by the codimension of their

Fourier transform (namely g − i+ j).
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Suppose now that c =
∑
c(j) ∈ Ai(Xη) with c(j) ∈ Ai(j)(Xη), where the de-

composition corresponds to ϕ := F (c) =
∑
ϕ(j) with ϕ(j) ∈ Ag−i+j(Xη).

Theorem 7.1. Let c = cη =
∑
c(j) ∈ Ai(Xη) with c(j) ∈ Ai(j)(Xη). Assume

for some j′ that ϕ(j′)
0 6= 0, where ϕ0 is the specialization of ϕ and ϕ

(j′)
0 the

codimension g − i+ j′-part of ϕ0. Then c(j
′) 6= 0.

Proof. The specialization map preserves the codimension of cycles. Therefore,

if c(j
′) = 0 then ϕ(j′) = 0, hence ϕ

(j′)
0 = 0 and this contradicts our assumption.

�

This theorem, which holds as well for cycles modulo algebraic equivalence, can
be used to prove non-vanishing results for cycles. For the rest of this section we
work modulo algebraic equivalence. For example, consider a threefold Z/S such
that Zη is a smooth cubic threefold and Z0 is a generic nodal cubic threefold.
We shall consider the Picard variety of the Fano surface of this degenerating
cubic threefold and this will give us a degenerating abelian variety of dimension
5, cf. [5].
As is well-known the nodal cubic threefold Z0, and hence its Fano surface,
corresponds to a canonical genus 4 curve C in P3, see e.g. [9] Section 2. The
genericity assumption means that the curve C is a generic curve and hence we
may assume by Ceresa’s result [4] that the class C(1) does not vanish in the
Jacobian B of the curve C. Since C is a trigonal curve we have by [6] that

C(j) a= 0 for j ≥ 2. Hence the Beauville decomposition of C is [C]
a
=C(0) +C(1)

with FB(C(0)) ∈ A1
(0)(B) and FB(C(1)) ∈ A2

(1)(B).

The Picard variety X/S of the Fano surface of Z/S defines a principally polar-
ized semi-abelian variety with central fibre a rank-one extension of the Jacobian
B of the curve C, see [9], Corollary 6.3 and Section 10. The principal polariza-
tion on Xη is induced by a geometrically defined divisor Θ. Let Σ be the Fano
surface of lines in Zη. If s ∈ Σ we denote by ls the corresponding line in Zη.
For each s ∈ Σ we have the divisor

Ds = {s′ ∈ Σ, ls′ ∩ ls 6= ∅}
on Σ as defined in [5]. We then have a natural map

Σ→ Pic0(Σ), s 7→ Ds −Ds0 ,

with s0 ∈ Σ a base point. It is well known that the cohomology class of Σ in
Pic0(Σ) is equal to that of the cycle Θ3/3!, see [5]. By [2], Propositions 3 and
4, we have that A3

(j)(Xη) = 0 for j < 0 and A5
(j)(Xη) = 0 for j 6= 0. We have

therefore the decomposition

[Σ]
a
= Σ(0) + Σ(1) + Σ(2) with Σ(j) ∈ A3

(j).

Indeed, Σ(j) ∈ A3
(j)(Xη), hence F (Σ(j)) ∈ A2+j

(j) (Xη) which is zero for j ≥ 3.

Now we show that Σ(1)
a

6= 0, and we thus obtain a cycle which is homologically
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but not algebraically equivalent to zero. Since Θ ∈ A1
(0)(Xη) this implies that

Σ is homologically, but not algebraically equivalent to Θ3/3! .
We denote by X the completed rank one degeneration of Xη. The class [Σ]
degenerates to a cycle [Σ0] = ν∗(γ) on the central fibre X0 of class

γ
a
= q∗[C] +

1

2
q∗[C ∗ C] · η,

where C ∗ C is the Pontryagin product, see [9], Propositions 10.1 and 8.1. In

order to see that Σ(1)
a

6= 0 it suffices by Theorem 7.1 to show that ϕ
(1)
0

a

6= 0 with
ϕ0 the limit of the Fourier-Mukai transform. By Theorem 1.2, we have

ϕ0
a
= ν∗(

1

2
q∗[FB(C) · FB(C)]− q∗FB(C) · η),

hence

ϕ
(1)
0

a
= ν∗(q

∗[FB(C(0)) · FB(C(1))]− q∗FB(C(1)) · η).

Since C(1)
a

6= 0 we conclude that ϕ
(1)
0

a

6= 0, and this implies the result.
By using the specialization of the Fourier-Mukai transform we can deduce the
specialization of the Beauville decomposition. We do this working modulo
algebraic equivalence.

Proposition 7.2. Let c = cη ∈ Ai(Xη) with specialization c0 = ν∗(q∗z + q∗w ·
η), where z ∈ Ai(B) and w ∈ Ai−1(B). Let c =

∑
c(j) with c(j) ∈ Ai(j)(Xη),

and let z =
∑
z(j) with z(j) ∈ Ai(j)(B) and w =

∑
w(j) with w(j) ∈ Ai−1(j) (B)

be the Beauville decompositions. If c
(j)
0 is the specialization of c(j), then

c
(j)
0

a
= ν∗(q

∗z(j) + q∗w(j) · η) .

Proof. By the proof of the main theorem in [2], the component c(j) is defined as
(−1)gF ((−1)∗φ(j)) with φ(j) ∈ Ag−i+j(Xη) (notation as above). The inversion
on Xη leaves the cell decomposition of the toroidal compactification invariant

and hence extends naturally to X0. So c
(j)
0 equals (−1)gF ((−1)∗φ(j)0 ) with

φ
(j)
0 ∈ Ag−i+j(X0). Therefore, by Theorem 1.2, we have

c
(j)
0

a
= (−1)gF ((−1)∗ν∗(q

∗FB(w(j))− q∗FB(z(j)) · η))
a
= (−1)g+j(−1)g−1+jν∗(−q∗z(j) − q∗w(j) · η) = ν∗(q

∗z(j) + q∗w(j) · η) .

�

For example, let C → S be a genus g curve with Cη a smooth curve and

C0 a one-nodal curve with normalization C̃0. Let p be the node of C0 and
x1, x2 the points of C̃0 lying over p. The compactified Jacobian X = PC/S is

then a complete rank one degeneration with central fibre the P1-bundle over
Pic0(C̃0) associated to the line bundle J = O(x1 − x2). Let ū : C → X be the
compactified Abel-Jacobi map and let cη = [ū(Cη)]. The cycle cη specializes

then to the cycle c0 = [ū(C0)] with c0
a
= ν∗(q∗[pt] + q∗c̃0 · η), where [pt] is the
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class of a point and c̃0 is the class of the Abel-Jacobi image of the smooth curve
C̃0 in Pic0(C̃0), see e.g. [9], Proposition 7.1. By Proposition 7.2 we have then

c
(j)
0

a
=

{
q∗c̃(j)0 · η, j 6= 0 ,

q∗[pt] + q∗c̃(0)0 · η, j = 0 .

Acknowledgement The second author thanks the Korteweg-de Vries Insti-
tuut van de Universiteit van Amsterdam, where part of this work was done,
for its support and hospitality.
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Abstract. Thomason showed that the K-theory of symmetric
monoidal categories models all connective spectra. This paper de-
scribes a new construction of a permutative category from a Γ-space,
which is then used to re-prove Thomason’s theorem and a non-
completed variant.
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1. Introduction

In [15], Segal described a functor from (small) symmetric monoidal categories
to infinite loop spaces, or equivalently, connective spectra. This functor is often
called the K-theory functor: When applied to the symmetric monoidal cate-
gory of finite rank projective modules over a ring R, the resulting spectrum is
Quillen’s algebraic K-theory of R. A natural question is then which connective
spectra arise as the K-theory of symmetric monoidal categories? Thomason
answered this question in [18], showing that every connective spectrum is the
K-theory of a symmetric monoidal category; moreover, he showed that the
K-theory functor is an equivalence between an appropriately defined stable
homotopy category of symmetric monoidal categories and the stable homotopy
category of connective spectra.
This paper provides a new proof of Thomason’s theorem by constructing a new
homotopy inverse to Segal’s K-theory functor. As a model for the category of
infinite loop spaces, we work with Γ-spaces, following the usual conventions
of [1, 4]: We understand a Γ-space to be a functor X from Γop (finite based
sets) to based simplicial sets such that X(0) = ∗. A Γ-space has an associated
spectrum [15, §1] (or [4, §4] with these conventions), and a map of Γ-spaces
X → Y is called a stable equivalence when it induces a stable equivalence of

1The author was supported in part by NSF grant DMS-0804272
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the associated spectra. We understand the stable homotopy category of Γ-
spaces to be the homotopy category obtained by formally inverting the stable
equivalences. The foundational theorem of Segal [15, 3.4], [4, 5.8] is that the
stable homotopy category of Γ-spaces is equivalent to the stable category of
connective spectra.
On the other side, the category of small symmetric monoidal categories admits
a number of variants, all of which have equivalent stable homotopy categories.
We discuss some of these variants in Section 3 below. For definiteness, we state
the main theorem in terms of the category of small permutative categories
and strict maps: The objects are the small permutative categories, i.e., those
symmetric monoidal categories with strictly associative and unital product,
and the maps are the functors that strictly preserve the product, unit, and
symmetry. Segal [15, §2] constructed K-theory as a composite functor K ′ =
N ◦ K′ from permutative categories to Γ-spaces, where K′ is a functor from
permutative categories to Γ-categories, and N is the nerve construction applied
objectwise to a Γ-category to obtain a Γ-space. We actually use a slightly
different but weakly equivalent functor K = N ◦ K described in Section 3.
A stable equivalence of permutative categories is defined to be a map that
induces a stable equivalence on K-theory Γ-spaces. (We review an equivalent
more intrinsic homological definition of stable equivalence in Proposition 3.8
below.) We understand the stable homotopy category of small permutative
categories to be the homotopy category obtained from the category of small
permutative categories by formally inverting the stable equivalences.
In Section 4, we construct a functor P from Γ-spaces to small permutative
categories. Like K, we construct P as a composite functor P = P ◦ S, with
P a functor from Γ-categories to permutative categories and S a functor from
simplicial sets to categories applied objectwise. The functor S is the left adjoint
of the Quillen equivalence between the category of small categories and the
category of simplicial sets from [7, 17]; the right adjoint is Ex2N , where Ex is
Kan’s right adjoint to the subdivision functor Sd. As we review in Section 2,
we have natural transformations

(1.1) N S X ←− Sd2X −→ X and S NX −→ X
which are always weak equivalences, where we understand a weak equivalence
of categories as a functor that induces a weak equivalences on nerves. The
functor P from Γ-categories to permutative categories is a certain Grothendieck
construction (homotopy colimit)

P(X ) = A
∫
AX ,

we describe in detail in Section 4. In brief, A is a category whose objects are the
sequences of positive integers ~m = (m1, . . . ,mr) including the empty sequence,
and whose morphisms are generated by permuting the sequence, maps of finite
(unbased) sets, and partitioning; for a Γ-category X , we get a (strict) functor
AX from A to the category of small categories satisfying

AX (m1, . . . ,mr) = X (m1)× · · · × X (mr)
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and AX () = X (0) = ∗ (the category with a unique object ∗ and unique mor-
phism). The concatenation of sequences induces the permutative product on
PX with ∗ in AX () as the unit. In Section 4, we construct a natural transfor-
mation of permutative categories and natural transformations of Γ-categories

(1.2) PKC −→ C and X ←− WX −→ KPX ,
where W is a certain functor from Γ-categories to itself (Definition 4.8). In
Section 5, we show that these natural transformations are natural stable equiv-
alences, which then proves the following theorem, the main theorem of the
paper.

Theorem 1.3. The functor P from Γ-spaces to small permutative categories
preserves stable equivalences. It induces an equivalence between the stable ho-
motopy category of Γ-spaces and the stable homotopy category of permutative
categories, inverse to Segal’s K-theory functor.

The arguments actually prove a “non-group-completed” version of this theorem.
To explain this, recall that a Γ-space X is called special [4, p. 95] when the
canonical map X(a ∨ b) → X(a) ×X(b) is a weak equivalence for any finite
based sets a and b; we define a special Γ-category analogously. Note that
because of the weak equivalences in (1.1), a Γ-category X is special if and
only if the Γ-space NX is special, and a Γ-space X is special if and only if
the Γ-category SX is special. For special Γ-spaces, the associated spectrum
is an Ω-spectrum after the zeroth space [15, 1.4]; the associated infinite loop
space is the group completion of X(1). For any permutative category C, KC
is a special Γ-space and KC is a special Γ-category. We show in Corollary 5.5
that the natural transformation PKC → C of (1.2) is a weak equivalence for
any permutative category C, and we show in Theorem 4.10 and Corollary 5.6
that the natural transformations WX → X and WX → KPX of (1.2) are
(objectwise) weak equivalences for any special Γ-category X . We obtain the
following theorem.

Theorem 1.4. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of small permuta-
tive categories by inverting the weak equivalences.

(ii) The homotopy category obtained from the subcategory of special Γ-
spaces by inverting the objectwise weak equivalences.

Theorem 1.3 implies that for an arbitrary Γ-space X , the Γ-space KPX is a
special Γ-space stably equivalent to X . A construction analogous to P on the
simplicial set level produces such a special Γ-space more directly: For a Γ-space
X , we get a functor AX from A to based simplicial sets with

AX(m1, . . . ,mr) = X(m1)× · · · ×X(mr)

and AX() = X(0) = ∗. Define

EX = hocolimAAX.
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Using the Γ-spaces X(n ∧ (−)), we obtain a Γ-space EΓX ,

EΓX(n) = E(X(n ∧ (−)))/NA,
with EX → EΓX(1) a weak equivalence. The inclusion of X(1) as AX(1)
provides a natural transformation of simplicial sets X(1) → EX and of Γ-
spaces X → EΓX . In Section 6, we prove the following theorems about these
constructions.

Theorem 1.5. For any Γ-space X, the Γ-space EΓX is special and the natural
map X → EΓX is a stable equivalence. If X is special, then the natural map
X → EΓX is an objectwise weak equivalence.

Theorem 1.6. For any Γ-space X, the simplicial set EX has the natural struc-
ture of an E∞ space over the Barratt-Eccles operad (and in particular the struc-
ture of a monoid).

The previous two theorems functorially produce two additional infinite loop
spaces from the Γ-space X , the infinite loop space of the spectrum associated
to EΓX and the group completion of EX . Since the map X → EΓX is a
stable equivalence, it induces a stable equivalence of the associated spectra and
hence the associated infinite loop spaces. The celebrated theorem of May and
Thomason [12] then identifies the group completion of EX .

Corollary 1.7. For any Γ-space X, the group completion of the E∞ space
EX is equivalent to the infinite loop space associated to X.

As a consequence of Theorem 1.5, the Γ-space EΓX is homotopy initial among
maps from X to a special Γ-space. Theorem 1.6 then identifies EX ≃ EΓX(1)
as a reasonable candidate for the (non-completed) E∞ space of X . Motivated
by Theorem 1.4, we propose the following definition.

Definition 1.8. We say a map of Γ-spaces X → Y is a pre-stable equivalence
when the map EX → EY is a weak equivalence.

With this definition we obtain the equivalence of the last three homotopy cat-
egories in the following theorem from the theorems above. We have included
the first category for easy comparison with other non-completed theories of E∞
spaces; we prove the equivalence in Section 6.

Theorem 1.9. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of E∞ spaces over
the Barratt-Eccles operad (in simplicial sets) by inverting the weak
equivalences.

(ii) The homotopy category obtained from the category of Γ-spaces by in-
verting the pre-stable equivalences.

(iii) The homotopy category obtained from the subcategory of special Γ-
spaces by inverting the objectwise weak equivalences.

(iv) The homotopy category obtained from the category of small permuta-
tive categories by inverting the weak equivalences.
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The previous theorem provides a homotopy theory for permutative categories
and Γ-spaces before group completion, which now allows the construction of
“spectral monoid rings” associated to Γ-spaces. For a topological monoid M ,
the suspension spectrum Σ∞+M has the structure of an associative S-algebra
(A∞ ring spectrum) with M providing the multiplicative structure. The spec-
tral monoid ring is a stable homotopy theory refinement of the monoid ring
Z[π0M ], which is π0Σ∞+M or πS0M . For a Γ-space X , we can use EX in place
of M and Σ∞+ EX is an E∞ ring spectrum with the addition on EX providing
the multiplication on Σ∞+ EX . The spectral group ring of the associated infinite
loop space, Σ∞+ Ω∞X , is the localization of Σ∞+ EX with respect the multiplica-

tive monoid π0EX ⊂ πS0 EX . Spectral monoid rings and algebras arise in
the construction of twisted generalized cohomology theories (as explained, for
example, in [3, 2.5] and [2]), and the localization Σ∞+ EX → Σ∞+ Ω∞X , specif-
ically, plays a role in current work in extending notions of log geometry to
derived algebraic geometry and stable homotopy theory (see the lecture notes
by Rognes on log geometry available at [14]).

Acknowledgments. This paper owes an obvious debt to the author’s col-
laborative work with A. D. Elmendorf [5, 6]; the author thanks A. D. Elmen-
dorf for many useful conversations and remarks. The author thanks Andrew
J. Blumberg for all his help.

2. Review of Γ-categories and Γ-spaces

This section briefly reviews the equivalence between the homotopy theory of Γ-
spaces and of Γ-categories. We begin by introducing the notation used through-
out the paper.

Notation 2.1. We denote by n the finite set {1, . . . , n} and n the finite based
set {0, 1, . . . , n}, with zero as base-point. We write N for the category with
objects the finite sets n for n ≥ 0 (with 0 the empty set) and morphisms the
maps of sets. We write F for the category with objects the finite based sets n

for n ≥ 0 and morphisms the based maps of based sets.

We typically regard a Γ-space or Γ-category as a functor from F to simplicial
sets or categories rather than from the whole category of finite based sets.

Definition 2.2. A Γ-space is a functor X from F to simplicial sets with
X(0) = ∗. A map of Γ-spaces is a natural transformation of functors from F
to simplicial sets. A Γ-category is a functor X from F to the category of small
categories with X (0) = ∗, the category with the unique object ∗ and the unique
morphism id∗. A map of Γ-categories is a natural transformation of functors
from F to small categories.

We emphasize that X must be a strict functor to small categories: For φ : m→
n and ψ : n → p, the functors X (ψ ◦ φ) and X (ψ) ◦ X (φ) must be equal (and
not just naturally isomorphic). A map of Γ-categories f : X → Y consists of a
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sequence of functors fn : X (n) → Y(n) such that for every map φ : m → n in
F , the diagram

X (m)
fm

//

X (φ)

��

Y(m)

Y(φ)
��

X (n)
fn

// Y(n)

commutes strictly. In particular, applying the nerve functor objectwise to a Γ-
category then produces a Γ-space. We use this in defining the “strict” homotopy
theory of Γ-categories.

Definition 2.3. A map X → Y of Γ-spaces is a weak equivalence if each
map X(n) → Y (n) is a weak equivalence of simplicial sets. A map of Γ-
categories X → Y is a weak equivalence if the induced map NX → NY is a
weak equivalence of Γ-spaces.

More important than weak equivalence is the notion of stable equivalence,
which for our purposes is best understood in terms of very special Γ-spaces. A
Γ-space X is special when for each n the canonical map

X(n) −→ X(1)× · · · ×X(1) = X(1)×n

is a weak equivalence. This canonical map is induced by the indicator maps
n→ 1 which send all but one of the non-zero element of n to 0. For a special
Γ-space, π0X(1) is an abelian monoid under the operation

π0X(1)× π0X(1) ∼= π0X(2) −→ π0X(1)

induced by the map 2 → 1 sending both non-basepoint elements of 2 to the
non-basepoint element of 1. A special Γ-space is very special when the monoid
π0X(1) is a group.

Definition 2.4. A map of Γ-spaces f : X → Y is a stable equivalence when for
every very special Γ-space Z, the map f∗ : [Y, Z]→ [X,Z] is a bijection, where
[−,−] denotes maps in the homotopy category obtained by formally inverting
the weak equivalences. A map of Γ-categories X → Y is a stable equivalence
when the induced map NX → NY of Γ-spaces is a stable equivalence.

Equivalently, a map of Γ-spaces is a stable equivalence if and only if it induces
a weak equivalence of associated spectra [4, 5.1,5.8].
In order to compare the homotopy theory of Γ-spaces and Γ-categories, we use
the Fritsch-Latch-Thomason Quillen equivalence of the category of simplicial
sets and the category of small categories [7, 17]. We call a map in the cate-
gory of small categories a weak equivalence if it induces a weak equivalence on
nerves. The nerve functor has a left adjoint “categorization functor” c, which
generally does not behave well homotopically. However, c ◦ Sd2 preserves weak
equivalences, where Sd2 = Sd ◦ Sd is the second subdivision functor [8, §7].
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The functor Ex2N is right adjoint to c Sd2, and for any simplicial set X and
any category C, the unit and counit of the adjunction,

X −→ Ex2Nc Sd2X and c Sd2 Ex2NC −→ C,
are always weak equivalences. Since the natural map X → Ex2X is always a
weak equivalence and the diagrams

Sd2X //

∼
��

Nc Sd2X

∼
��

c Sd2NC
∼
��

X
∼ //

∼

66Ex2 Sd2X // Ex2Nc Sd2X c Sd2 Ex2NC ∼ // C

commute, we have natural weak equivalences

(2.5) Nc Sd2X ←− Sd2X −→ X and c Sd2NC −→ C.
The functor Sd2 takes the one-point simplicial set ∗ to an isomorphic simplicial
set; replacing Sd2 by an isomorphic functor if necessary, we can arrange that
Sd2 ∗ = ∗.
Definition 2.6. Let S be the functor from Γ-spaces to Γ-categories obtained
by applying c Sd2 objectwise.

We then obtain the natural weak equivalences of Γ-spaces and Γ-categories (1.1)
from (2.5). Inverting weak equivalences or stable equivalences, we get equiva-
lences of homotopy categories.

Proposition 2.7. The functors N and S induce inverse equivalences between
the homotopy categories of Γ-spaces and Γ-categories obtained by inverting the
weak equivalences.

Proposition 2.8. The functors N and S induce inverse equivalences between
the homotopy categories of Γ-spaces and Γ-categories obtained by inverting the
stable equivalences.

Since both the weak equivalences and stable equivalences of Γ-spaces provide
the weak equivalences in model structures (see, for example, [4]), the homotopy
categories in the previous propositions are isomorphic to categories with small
hom sets.

3. Review of the K-theory functor

This section reviews Segal’s K-theory functor from symmetric monoidal cate-
gories to Γ-spaces and some variants of this functor. All the material in this
section is well-known to experts, and most can be found in [5, 10, 11, 18]. We
include it here to refer to specific details, for completeness, and to make this
paper more self-contained.
For a small symmetric monoidal category C, we typically denote the symmetric
monoidal product as � and the unit as u. We construct a Γ-category KC as
follows.
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Construction 3.1. Let KC(0) = ∗ the category with a unique object ∗ and
the identity map. For n in F with n > 0, we define the category KC(n) to have
as objects the collections (xI , fI,J) where

• For each subset I of n = {1, . . . , n}, xI is an object of C, and
• For each pair of disjoint subsets I, J of n,

fI,J : xI∪J −→ xI � xJ

is a map in C
such that

• When I is the empty set ∅, xI = u and fI,J is the inverse of the unit
isomorphism.
• fI,J = γ◦fJ,I where γ is the symmetry isomorphism xJ�xI ∼= xI�xJ .
• Whenever I1, I2, and I3 are mutually disjoint, the diagram

xI1∪I2∪I3
fI1,I2∪I3 //

fI1∪I2,I3

��

xI1 � xI2∪I3

id�fI2,I3
��

xI1∪I2 � xI3
fI1,I2�id

// xI1 � xI2 � xI3

commutes (where we have omitted notation for the associativity iso-
morphism in C). We write fI1,I2,I3 for the common composite into a
fixed association.

A morphism g in KC(n) from (xI , fI,J) to (x′I , f
′
I,J) consists of maps hI : xI →

x′I in C for all I such that h∅ is the identity and the diagram

xI∪J
hI∪J //

fI,J

��

x′I∪J

f ′
I,J

��

xI � xJ
hI�hJ

// x′I � x
′
J

commutes for all disjoint I, J .

The categories KC(n) assemble into a Γ-category as follows. For φ : m→ n in
F and X = (xI , fI,J) in KC(m), define φ∗X = Y = (yI , gI,J) where

yI = xφ−1(I) and gI,J = fφ−1(I),φ−1(J)

(replacing ∗ with u or vice-versa if m or n is 0), and likewise on maps. We
obtain a Γ-space by applying the nerve functor to each category KC(n).

Definition 3.2. For a symmetric monoidal category C, KC is the Γ-space
KC(n) = NKC(n).

In terms of functoriality, K is obviously functorial in strict maps of symmetric
monoidal categories, i.e., functors F : C → D that strictly preserve the prod-
uct �, the unit object and isomorphism, and the associativity and symmetry
isomorphisms. In fact, K extends to a functor on the strictly unital op-lax
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maps: An op-lax map of symmetric monoidal categories consists of a functor
F : C → D, a natural transformation

λ : F (x� y) −→ F (x) � F (y),

and a natural transformation ǫ : F (u) → u such that the following unit, sym-
metry, and associativity diagrams commute,

F (u� y)

F (η)

��

λ // F (u)� F (y)

ǫ

��

F (x� y)
F (γ)

//

λ

��

F (y � x)

λ

��

F (y) u� F (y)η
oo F (x)� F (y) γ

// F (y)� F (x)

F (x� y)� F (z)

λ

((QQQQQQQQQQQQ

F ((x � y)� z)

F (α)

��

λ

88ppppppppppp

(F (x) � F (y))� F (z)

α

��

F (x� (y � z))

λ
&&NNNNNNNNNNN

F (x) � (F (y)� F (z))

F (x) � F (y � z)

λ

66mmmmmmmmmmmm

where η, γ, and α denote the unit, symmetry and associativity isomorphisms,
respectively. An op-lax map is strictly unital when the unit map ǫ is the
identity (i.e., F strictly preserves the unit object). A strictly unital op-lax map
C → D induces a map of Γ-categories KC → KD sending (xI , fI,J) in KC(n) to
(F (xI), λ ◦ F (fI,J)) in KD(n), and likewise for morphisms.
We will need the following additional structure in Section 5. Recall that an
op-lax natural transformation ν : F → G between op-lax maps is a natural
transformation such that the following diagrams commute.

F (x� y)
ν //

λ

��

G(x � y)

λ

��

F (u)
ν //

ǫ

  B
BB

BB
BB

B
G(u)

ǫ

~~||
||

||
||

F (x) � F (y)
ν�ν

// G(x) �G(y) u

An op-lax natural transformation between strictly unital op-lax maps induces a
natural transformation between the induced maps of Γ-categories, compatible
with the Γ-structure. We summarize the discussion of the previous paragraphs
in the following proposition.
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Proposition 3.3. K and K are functors from the category of small symmet-
ric monoidal categories and strictly unital op-lax maps to the category of Γ-
categories and the category of Γ-spaces, respectively. An op-lax natural trans-
formation induces a natural transformation on K and a homotopy on K between
the induced maps.

In particular, by restricting to the subcategory consisting of the permutative
categories and the strict maps, we get the functors K and K in the statements of
the theorems in the introduction. These functors admit several variants, which
extend to different variants of the category of symmetric monoidal categories.

Variant 3.4. In the construction of K, we can require the maps fI,J to be iso-
morphisms. This is Segal’s original K-theory functor as described for example
in [11]. The natural domain of this functor is the category of small symmet-
ric monoidal categories and strictly unital strong maps; these are the strictly
unital op-lax maps where λ is an isomorphism.

Variant 3.5. In the construction of K, we can require the maps fI,J to go the
other direction, i.e.,

fI,J : xI � xJ −→ xI∪J .

This is the functor called Segal K-theory in [5]; its natural domain is the
category of small symmetric monoidal categories and strictly unital lax maps.
A lax map C → D consists of a functor and natural transformations

λ : F (x)� F (y) −→ F (x � y) and ǫ : u −→ F (u)

making the evident unit, symmetry, and associativity diagrams commute. Put
another way, (F, λ, ǫ) defines an op-lax map C → D if and only if (F op, λ, ǫ)
defines a lax map Cop → Dop.

We also have variants which loosen the unit condition, but the constructions
occur most naturally by way of functors between different categories of small
symmetric monoidal categories. The inclusion of the category with strictly
unital op-lax maps into the category with op-lax maps has a left adjoint U .
Concretely, UC has objects the objects of C plus a new disjoint object v. Mor-
phisms in UC between objects of C are just the morphisms in C, and morphisms
to and from v are defined by

UC(x, v) = C(x, u), UC(v, x) = ∅, UC(v, v) = {idv},
for x an object of C and u the unit in C. We obtain a symmetric monoidal
product on UC from the symmetric monoidal product on C with v chosen to
be a strict unit (i.e., v � x = x for all x in UC); the inclusion of C in UC is
then op-lax monoidal and the functor UC → C sending v to u is strictly unital
op-lax (in fact, strict). Then K◦U defines a functor from the category of small
symmetric monoidal categories and op-lax maps to Γ-categories.
To compare these variants and to understand K, we construct weak equiva-
lences

(3.6) pn : KC(n) −→ C × · · · × C = C×n.
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Define pn to be the functor sends the object (xI , fI,J) of KC(n) to the object
(x{1}, . . . , x{n}) of C×n, and likewise for maps. This functor has a right adjoint
qn that sends (y1, . . . , yn) to the system (xI , fI,J) with

x{i1,...,ir} = (· · · (yi1 � yi2)� · · · )� yir
for i1 < · · · < ir and the maps fI,J induced by the associativity and symmetry
isomorphisms. In the case n = 1, these are inverse isomorphisms of categories,
and under these isomorphisms, (3.6) is induced by the indicator maps n→ 1.
Because an adjunction induces inverse homotopy equivalences on nerves, this
proves the following proposition.

Proposition 3.7. For any small symmetric monoidal category C, KC is a
special Γ-space with KC(1) isomorphic to NC.
Similar observations apply to the variant functors above. We have natural
transformations relating the strictly unital strong construction to both the
strictly unital lax and op-lax constructions. It follows that the K-theory Γ-
spaces obtained are naturally weakly equivalent. Likewise, the constructions
with the weakened units map to the constructions with strict units. Since
the map UC → C induces a homotopy equivalence on nerves, these natural
transformations induce natural weak equivalences of Γ-spaces.
Recall that we say that a functor between small categories is a weak equiv-
alence when it induces a weak equivalence on nerves. As a consequence of
the previous proposition, the K-theory functor preserves weak equivalences.
As in the introduction, we say that a strictly unital op-lax map of symmetric
monoidal categories is a stable equivalence if it induces a stable equivalence
on K-theory Γ-spaces, or equivalently, if it induces a weak equivalence on the
group completion of the nerves. Quillen’s homological criterion to identify the
group completion [13] then applies to give an intrinsic characterization of the
stable equivalences.

Proposition 3.8. A map of symmetric monoidal categories C → D is a stable
equivalence if and only if it induces an isomorphism of localized homology rings

H∗C[(π0C)−1] −→ H∗D[(π0D)−1]

obtained by inverting the multiplicative monoids π0C ⊂ H0C and π0D ⊂ H0D.
Although not needed in what follows, for completeness of exposition, we offer
the following well-known observation on the homotopy theory of the various
categories of symmetric monoidal categories. Recall that we say that a functor
between small categories is a weak equivalence when it induces a weak equiv-
alence on nerves. The following theorem can be proved using the methods of
[10, 4.2] and [6, 4.2].

Theorem 3.9. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of small permuta-
tive categories and strict maps by inverting the weak equivalences.
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(ii) The homotopy category obtained from the category of small symmet-
ric monoidal categories and strict maps by inverting the weak equiva-
lences.

(iii) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital strong maps by inverting the
weak equivalences.

(iv) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital op-lax maps by inverting the
weak equivalences.

(v) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital lax maps by inverting the weak
equivalences.

4. Construction of the inverse K-theory functor

In this section we construct the inverse K-theory functor P as a Grothendieck
construction (or homotopy colimit) over a category A described below. We
construct the natural transformations displayed in (1.2) relating the composites
KP and PK with the identity. This section contains only the constructions;
we postpone almost all homotopical analysis to the next section.
We begin with the construction of the category A. As indicated in the in-
troduction, we define the objects of A to consist of the sequences of positive
integers (n1, . . . , ns) for all s ≥ 0, with s = 0 corresponding to the empty se-
quence (). We think of each ni as the finite (unbased) set ni, and we define
the maps in A to be the maps generated by maps of finite sets, permutations
in the sequence, and partitioning ni into subsets. We make this precise in the
following definition.

Definition 4.1. For ~m = (m1, . . . ,mr) and ~n = (n1, . . . , ns) with r, s > 0, we
define the morphisms A(~m,~n) to be the subset of the maps of finite (unbased)
sets

m1 ∐ · · · ∐mr −→ n1 ∐ · · · ∐ ns
satisfying the property that the inverse image of each subset nj is either empty
or contained in a single mi (depending on j). For the object (), we define
A((), ~n) consist of a single point for all ~n in A and we define A(~m, ()) to be
empty for ~m 6= ().

For a Γ-category X , let AX () = X (0) and

AX (n1, . . . , ns) = X (n1)× · · · × X (ns).

For a map φ : ~m→ ~n in A, define

Aφ : X (m1)× · · · × X (mr) −→ X (n1)× · · · × X (ns)

as follows. If s = 0, then r = 0 and φ is the identity, and we take Aφ to be the
identity. If r = 0 and s > 0, we take Aφ to be the map X (0)→ X (nj) on each
coordinate. If r > 0, then by definition, for each j, the subset nj of

n1 ∐ · · · ∐ ns
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has inverse image either empty or contained in a single mi for some i; if the
inverse image is non-empty, then φ restricts to a map of unbased sets mi → nj ,
which we extend to a map of based sets mi → nj that is the identity on
the basepoint 0. In this case, we define Aφ on the j-th coordinate to be the
composite of the projection

X (m1)× · · · × X (mr) −→ X (mi)

and the map X (mi)→ X (nj) induced by the restriction of φ. In the case when
the inverse image of nj is empty, we define Aφ on the j-th coordinate to be the
composite of the projection

X (m1)× · · · × X (mr) −→ ∗ = X (0)

and the map X (0)→ X (nj). An easy check gives the following observation.

Proposition 4.2. A is a functor from the category of small Γ-categories to
the category of functors from A to the category of small categories.

We can now define the functors P and P , at least on the level of functors to
small categories.

Definition 4.3. Let PX = A
∫
AX . Let P = P ◦ S.

More concretely, the category PX has as objects the disjoint union of the
objects of AX (~n) where ~n varies over the objects of A. For x ∈ AX (~m) and
y ∈ AX (~n), a map in PX from x to y consists of a map φ : ~m→ ~n in A together
with a map φ∗x→ y in AX (~n), where φ∗ = Aφ is the functor AX (~m)→ AX (~n)
above.

Variant 4.4. We can regard AX as a contravariant functor on Aop and form
the contravariant Grothendieck construction P laxX = Aop

∫
AX . This has the

same objects as PX but for x ∈ AX (~m) and y ∈ AX (~n), a map in P laxX from
x to y consists of a map φ : ~n → ~m in A together with a map x → φ∗y. This
functor is better adapted to the category of symmetric monoidal categories
and strictly unital lax maps. All results and constructions in this paper admit
analogues for P lax, replacing “op-lax” with “lax” in the work below.

The category A has the structure of a permutative category under concate-
nation of sequences, with the empty sequence as the unit and the symmetry
morphisms induced by permuting elements in the sequences. The category of
small categories is symmetric monoidal under cartesian product and the functor
AX : A → Cat associated to a Γ-category X is a strong symmetric monoidal
functor. For formal reasons, then the Grothendieck construction PX natu-
rally obtains the structure of a symmetric monoidal category; we can describe
this structure concretely as follows. For any object x in AX (~m), we can write
x = (x1, . . . , xr) for objects xi in X (mi); then for y in AX (~n),

x� y = (x1, . . . , xr, y1, . . . , ys) ∈ ObAX (m1, . . . ,mr, n1, . . . , ns),

where we understand the unique object of AX () as a strict unit. The product
on maps admits an analogous description. This concrete description makes it
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clear that PX is in fact a permutative category. Moreover, a map X → Y of
Γ-categories induces a strict map of permutative categories PX → PY. We
obtain the following theorem.

Theorem 4.5. P defines a functor from the category of Γ-categories to the
category of permutative categories and strict maps.

Next we construct the natural transformations of (1.2). Starting with a sym-
metric monoidal category C, we construct the map PKC → C using the ho-
motopy colimit property of the Grothendieck construction. Specifically, we
construct functors α~m from APKC(~m) to C and suitably compatible natural
transformations for the maps in A.
For each ~m in A, define the functor

α~m : AKC(~m) = KC(m1)× · · · × KC(mr) −→ C
to take the object ~X = (X1, . . . , Xr) to

(· · · (x1m1
� x2m2

)� · · · )� xrmr
where Xi = (xiI , fI,J) for I ⊂ mi, and likewise for maps in KC(~m). For ~m = (),
we understand α() to include the category AKC() = ∗ in C as the unit u and
the identity on u.
For a map φ in A from ~m to ~n, define

αφ : α~m(y1, . . . , yr) −→ α~n(φ∗(y1, . . . , yr))

to be the map induced by the associativity, symmetry, and inverse unit isomor-
phisms in C and the maps f iI1,...,Ik in yi: if φ sends mi into nj1 , . . . , njt , then

composing maps f iI,J in yi gives a well-defined map

fI1,...,It : ximi −→ (· · · (xiI1 � xiI2)� · · · )� xiIt
where Ik is the subset of mi landing in njk . The map αφ is a natural transfor-
mation of functors from α~m to α~n ◦ φ∗. Moreover, given a map ψ from ~n to ~p
in A, the following diagram commutes

α~m ~X
αφ

//

αψ◦φ

��

α~n(φ∗ ~X)

αψ

��

α~p((ψ ◦ φ)∗ ~X) = α~p(ψ∗φ∗ ~X)

for any ~X in APKC(~m).

Definition 4.6. Let α : PKC → C be the functor A
∫
AX → KC that sends

~X in AKC(~m) to α~m ~X and sends the map

φ : ~m −→ ~n, f : φ∗ ~X −→ ~Y

to the map α~n(f) ◦ αφ in C.
Examining the construction of α and the symmetric monoidal structure on
PKC, we obtain the following theorem.
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Theorem 4.7. The functor α : PKC → C satisfies the following properties.

(i) α is a strictly unital strong map of symmetric monoidal categories.
(ii) α is natural up to natural transformation in strictly unital op-lax maps.

(iii) α is a strict map when C is a permutative category.
(iv) α is natural in strict maps.

The meaning of (ii) and (iv) is that for a strictly unital op-lax map F : C → D,
the diagram

PKC //

α

��

PKD
α

��

C // D
commutes up to natural transformation, namely, the natural transformation

λ : F (x1 � · · ·� xr) −→ F (x1)� · · ·� F (xr)

which is part of the structure of the op-lax map. When C → D is a strict map,
the diagram commutes strictly (the natural transformation is the identity).
For the remaining natural transformation in (1.2), note that for a Γ-category
X , we have a canonical inclusion ι : X (n) → KPX (n) sending an object x in
X (n) to the object ιx = (xI , fI,J) in KPX (n) with

xI = πI∗(x) ∈ X (m) = AX (m)

for m = |I|, I = {i1, . . . , im} with i1 < · · · < im, and πI : n→m the map that
sends ik to k and every other element of n to 0. The map

fI,J : xI∪J −→ xI � xJ = (xI , xJ ) ∈ AX (|I|, |J |)
is induced by the map (|I ∪J |)→ (|I|, |J |) in A corresponding to the partition
of the ordered set I ∪ J into I and J . This does not fit together into a map of
Γ-categories: For a map φ : m→ n in F ,

ι(φ∗x)I = πI∗(φ∗x), but φ∗(ιx)I = πφ
−1I
∗ (x).

Writing φ′ for the map in N corresponding to the restriction of φ to the map
φ−1I → I, then

πI ◦ φ = φ′ ◦ πφ−1I

in F . We can interpret φ′ as a map

πφ
−1I
∗ (x) −→ πI∗(φ∗x)

in PX . These maps in turn assemble to a map

ωφ : φ∗ιx −→ ιφ∗x

in KPX , natural in x.

Definition 4.8. For a Γ-category X , letWX (n) be the category whose objects
consist of triples (y, x, g) with y an object of KP(n), x an object of X (n) and
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g : y → ιx a map in KP(n). The morphisms of WX (n) are the commuting
diagrams. For φ : m→ n in F , define

WX (φ) : WX (m) −→WX (n)

to be the functor that takes (y, x, g) to (φ∗y, φ∗x, ωφ ◦ φ∗g).

We note for later use that for (y, x, g) an object inWX (n), writing y = (yI , fI,J)
with yI in PX , we must have each yI in AX () or AX (mI) for some mI . This
is because ιxI is in AX (n) and maps in A cannot decrease the length of the
sequence.
We claim that the categories WX (n) and functors WX (φ) assemble into a
Γ-category. For φ : m→ n, ψ : n→ p, and I ⊂ p, write

πI ◦ ψ ◦ φ = ψ′ ◦ πψ−1I ◦ φ = ψ′ ◦ φ′ ◦ πφ−1(ψ−1I)

as above, with ψ′ : ψ−1I → I and φ′ : φ−1(ψ−1I)→ ψ−1I the restrictions of ψ
and φ, using the natural order on I ⊂ p, ψ−1I ⊂ n, and φ−1(ψ−1I) ⊂ m to

view these as maps in F . Then ψ′ ◦ φ′ : (ψ ◦ φ)−1I → I is the restriction of
ψ ◦ φ; this is the check required to see that the diagram

π
(ψ◦φ)−1I
∗ x

//

##H
HH

HH
HH

HH
πψ

−1I
∗ (φ∗x)

zzvv
vv

vv
vv

v

πI∗((ψ ◦ φ)∗x)

in PX commutes. Examination of the structure maps fI,J in ιx shows that
the diagram

(ψ ◦ φ)∗ιx
ψ∗ωφ

//

ωψ◦φ
##G

GG
GG

GG
GG

ψ∗ι(φ∗x)

ωψ
||xxxx

xxxx

ι((ψ ◦ φ)∗x)

in KPX commutes. This proves the following theorem.

Theorem 4.9. The maps WX (φ) above make WX into a Γ-category.

Since WX is natural in maps of Γ-categories X , we can regard W as an endo-
functor on Γ-categories. By construction, the forgetful functors ω : WX → X
and υ : WX → KPX are natural transformations of endofunctors. For fixed
n, the functor WX (n) → X (n) is a left adjoint: The right adjoint sends x in
X (n) to (ιx, x, idιx) in WX (n). It follows that ω is always a weak equivalence
of Γ-categories. We summarize this in the following theorem.

Theorem 4.10. The maps υ : WX → KPX and ω : WX → X are natural
transformations of endofunctors on Γ-categories, and ω is a weak equivalence
for any X .
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5. Proof of Theorems 1.3 and 1.4

This section provides the homotopical analysis of the functors and natural
transformations constructed in the previous section. This leads directly to
the proof of the main theorem, Theorem 1.3, and its non-completed variant,
Theorem 1.4.
Most of the arguments hinge on the following lemma of Thomason [16]:

Lemma 5.1 (Thomason). Let A be a small category and F a functor from
A to the category of small categories. There is a natural weak equivalence of
simplicial sets

hocolimANF −→ N(A
∫
F ).

The natural transformation is easy to describe. We write an object of A
∫
F as

(~n, x) with ~n an object of A and x an object of F~n, and we write a map in A
∫
F

as (φ, f) : (~n, x) → (~p, y) where φ : ~n → ~p is a map in A and f : F (φ)(x) → y
is a map in F~p. Then a q-simplex of the nerve N(A

∫
F ) is a sequence of q

composable maps

(~n0, x0)
(φ1,f1)

// (~n1, x1)
(φ2,f2)

// · · ·(φq,fq) // (~nq, xq).
Likewise, a q-simplex in the homotopy colimit consists of a sequence of q com-
posable maps in A together with q composable maps in F (~n0):

~n0
φ1

// ~n1
φ2

// · · · φq
// ~nq

x0
f1

// x1
f2

// · · · fq
// xq.

The natural transformation sends this simplex of the homotopy colimit to the
simplex

(~n0, x0)
(φ1,f1)

// (~n1, x
′
1)

(φ2,f
′
2)// · · ·

(φq,f
′
q)
// (~nq, x

′
q),

where x′k = F (φk,...,1)(xk) and f ′k = F (φk−1,...,1)(fk) for φk,...,1 = φk ◦ · · · ◦ φ1.
A Quillen Theorem A style argument proves that this map is a weak equivalence
[16, §1.2].
Applying Thomason’s lemma to the Grothendieck construction A

∫
AX , we get

the following immediate observation.

Proposition 5.2. P preserves weak equivalences.

The following theorem provides the main homotopical result we need for the
remaining arguments in this section.

Theorem 5.3. Let X be a special Γ-category. Then the inclusion of X (1) in
PX is a weak equivalence.

Proof. Recall that N denotes the category with objects n = {1, . . . , n} and
morphisms the maps of sets. We have an inclusion η : N → A sending 0 to ()
and n to (n) for n > 0. We have a functor ǫ : A → N sending ~n = (n1, . . . , ns)
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to n with n = n1 + · · ·+ns. Let BX be the functor from A to small categories
defined by

BX (~n) = ǫ∗X (~n) = X (ǫ(~n)) = X (n).

Then the maps n → nj coming from the partition of n as ~n induce a natural
transformation of functors BX → AX . The hypothesis that X is special implies
that this map is an objectwise weak equivalence. Now applying Thomason’s
lemma, it suffices to show that the inclusion of NX (1) in hocolimANBX is a
weak equivalence.
Since BX = ǫ∗X as a functor on A and X = η∗BX as a functor on N , we have
canonical maps

(5.4) hocolimN NX −→ hocolimANBX −→ hocolimN NX
induced by ǫ and η. The composite map on hocolimN NX is induced by ǫ◦η =
IdN , and is therefore the identity. The composite map on hocolimANBX is
induced by η ◦ ǫ. We have a natural transformation from η ◦ ǫ to the identity
functor on A induced by the partition maps,

η ◦ ǫ(~n) = (n) −→ (n1, . . . , ns) = ~n.

Because

BX (η ◦ ǫ(~n)) = X (n) = BX (~n),

we get a homotopy from the composite map on hocolimANBX to the iden-
tity. In other words, we have shown that the maps in (5.4) are inverse homo-
topy equivalences. Since 1 is the final object in N , the inclusion of NX (1) in
hocolimN NX is a homotopy equivalence, and it follows that the inclusion of
NX (1) in hocolimANBX is a homotopy equivalence. �

When X = KC for a small symmetric monoidal category C, we have the canon-
ical isomorphism KC(1) ∼= C, and the composite map

C ∼= KC(1) −→ PKC −→ C
is the identity on C. Since KC is always a special Γ-category, we get the following
corollary.

Corollary 5.5. The natural map α : PKC → C is always a weak equivalence.

We also get a comparison for KPX when X is special.

Corollary 5.6. If X is special, then υ : WX → KPX is a weak equivalence.

Proof. Let X be a special Γ-category. The restriction of the map ω to the 1-
categories, WX (1)→ X (1), is an equivalence of categories, and the composite
map

X (1) −→WX (1) −→ KPX (1) = PX
is the map in the theorem, and therefore a weak equivalence. It follows that
the restriction of υ to the 1-categories is a weak equivalence. Since the map
ω : WX → X is a weak equivalence, WX is also a special Γ-category, and it
follows that υ is a weak equivalence. �
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Together with Proposition 2.7 and Theorem 4.10, Corollaries 5.5 and 5.6 prove
Theorem 1.4. To prove Theorem 1.3, we need to see that the map υ is always
a stable equivalence. For this we use the following technical lemma.

Lemma 5.7. The diagram

WKPX υ //

ω
&&M

MMMMMMMMMM KPKPX
Kα

��

KPWXKPυoo

KPω
xxqqqqqqqqqqq

KPX
commutes up to natural transformation of maps of Γ-categories. All maps in
the diagram are weak equivalences.

Proof. The weak equivalence statement follows from the diagram statement
since α and ω are always weak equivalences and K and P preserve weak equiv-
alences. For the diagram statement, it suffices to show that the diagrams

WKC υ //

ω
%%J

JJJJJJJJ KPKC
Kα
��

PKPX
α

��

PWXPυoo

Pω
yyss

sssssss
s

KC PX
commute up to natural transformation of maps of Γ-categories (on the left) for
all C and up to op-lax natural transformation (on the right) for all X .
On the left, starting with an object (y, x, g) inWKC(n), the top left composite
takes this to Kα(y) and the diagonal arrow takes this to x; the effect on maps
in WKC(n) admits the analogous description. Since Kα(ιx) = x, Kα(g) is a
map from Kα(y) to x, which is natural in WKC(n), and compatible with the
Γ-structure.
On the right, consider an element X = (X1, . . . , Xs) in AWX (~n), where Xi =
(yi, xi, gi) is an object in WX (ni). As per the remark following Definition 4.8,
we can write yi = (yiI , fI,J) for yiI some object of X (mI) (thought of as AX (m)
or AX ()) for some mI , where I ranges over the subsets of ni. The left down
composite sends X to

α(y1, . . . , ys) = (y1mn1

, . . . , ysmns
)

since the symmetric monoidal product in PX is concatenation. An analogous
description applies to maps of X in PWX . The diagonal in the diagram sends
X to (x1, . . . , xs) and we have the map

(gimni
) : (yimni

) −→ (ιximni

) = (xi).

in PX . This map is natural in X in PWX and is a strictly monoidal natural
transformation. �

Proof of Theorem 1.3. Given Propositions 2.7 and 2.8, Theorem 4.10, and
Corollaries 5.5 and 5.6, it suffices to show that the map υ : WX → KPX
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is always a stable equivalence. Writing [−,−] for maps in the homotopy cat-
egory obtained by formally inverting the weak equivalences, we need to show
that

υ∗ : [KPX ,Z] −→ [WX ,Z]

is a bijection for every very special Γ-category Z. Since K and P preserve weak
equivalences, they induce functors on the homotopy category. Using this and
the fact that υ is a weak equivalence for a special Γ-category, we get a map

R : [WX ,Z] −→ [KPX ,Z]

as follows: Given f in [WX ,Z], the map Rf in [KPX ,Z] is the composite

KPX KPω−1
// KPWX

KPf
// KPZ υ−1

// WZ ω // Z.
To see that the composite map on [WX ,Z] is the identity, consider the following
diagram,

X WXω
∼

oo
f

// Z

WX

ω ∼
OO

υ

��

WWXWω
∼

oo

ω ∼
OO

Wf
//

υ

��

WZ

ω ∼
OO

υ ∼
��

KPX KPWXKPω
∼oo

KPf
// KPZ

which commutes by naturality. We see that Wω is a weak equivalence (as
marked) by the two-out-of-three property since ω is always a weak equivalence.
The map R(f)◦υ is the composite map in the homotopy category of the part of
this diagram starting from the copy of WX in the first column and traversing
maps and inverse maps to Z by going down, right twice, and then up twice; this
agrees with the composite map in the homotopy category obtained by going
up and then right twice, f ◦ ω−1 ◦ ω = f .
On the other hand, starting with g in [KPX ,Z], then

R(g ◦ υ) = ω ◦ υ−1 ◦ KP(g ◦ υ ◦ ω−1).

The solid arrow part of the diagram

KPX WKPX
Wg

//

υ∼
��

ω
∼

oo WZ
υ∼
��

ω
∼

// Z

KPWX KPυ
//

KPω

OO

KPKPX KPg
//

Kα

ff

KPZ

commutes and Lemma 5.7 implies that the whole diagram commutes in the
homotopy category. By naturality of ω, the composite ω ◦ Wg ◦ ω−1 is g, and
it follows that R(g ◦ υ) is g. �
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6. Special Γ-spaces and non-completed E∞ spaces

This section explores the analogue in simplicial sets of the construction of P in
small categories, which provides a functor E from Γ-spaces to E∞ spaces over
the Barratt-Eccles operad. This section is entirely independent from the rest
of the paper and we have written it to be as self-contained as possible without
being overly repetitious. We assume familiarity with Γ-spaces, but not with
Γ-categories or permutative categories (except where we compare E and P in
Proposition 6.5).
Definition 4.1 describes a categoryA whose objects are the sequences of positive
integers (including the empty sequence). We think of a positive integer as
a finite (unbased) set, and maps between sequences ~m = (m1, . . . ,mr) and
~n = (n1, . . . , ns) are generated by permuting elements in the sequence, maps of
finite sets, and partitioning finite sets. For a Γ-space X , let AX be the functor
from A to based simplicial sets with

AX(~n) = X(n1)× · · · ×X(ns)

for s > 0 and AX() = ∗. In terms of the maps in A, a permutation of sequences
induces the corresponding permutation of factors; a map of finite unbased
sets φ : n → p induces the corresponding map X(φ) (for the corresponding
φ : n→ p); a partition n = p

1
∐ · · · ∐ p

t
induces the map

X(n) −→ X(p1)× · · · ×X(pt)

induced by the maps n → pi that pick out the elements of the subset pi and
send all the other elements to the basepoint. We consider the homotopy colimit.

Definition 6.1. Let EX = hocolimAAX .

It is clear from the definition that E preserves weak equivalences. The proof of
the remainder of the following theorem is identical to the proof of Theorem 5.3.

Theorem 6.2. E preserves weak equivalences. If X is a special Γ-space, then
the inclusion of X(1) in EX is a weak equivalence.

Recall that the Barratt-Eccles operad E has as its n-th simplicial set E(n) =
NTΣn the nerve of the translation category on the n-th symmetric group Σn,
with operadic multiplication induced by block sum of permutations. For any
permutation σ in Σn, we have a functor

σ : A×n −→ A
induced by permutation and concatenation:

σ(~m1, . . . , ~mn) = (mσ1
1 , . . . ,mσ1

rσ1 ,m
σ2
1 , . . . ,mσn

rσn).

Permutation induces a natural transformation

AX×n −→ AX

covering σ; we therefore get an induced map on homotopy colimits

σ∗ : (EX)×n −→ EX.
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For any other element σ′ ∈ Σn, the permutation σ′σ−1 induces a natural
transformation between functors

σ, σ′ : A×n −→ A,
compatible with the natural transformations AX×n → AX covering them.
These fit together to induce a map

(6.3) E(n)× EX×n ∼= NTΣn × hocolimA×n AX×n −→ EX.

An easy check of the definitions proves the following proposition, a restatement
of Theorem 1.6.

Proposition 6.4. The maps (6.3) define an action of the operad E on the
simplicial set EX. This action is natural in maps of the Γ-space X. Thus, E
defines a functor from Γ-spaces to E∞ spaces over E.
To compare the functor E with the functor P , recall that the nerve of a
permutative category has the natural structure of an E space with the map
σ∗ : NC×n → NC (for σ in Σn) induced by the permutation and the permuta-
tive product. In Section 5, we reviewed the map from the homotopy colimit
of the nerve to the nerve of the Grothendieck construction, which we can now
interpret as a natural transformation EN → NP . The following proposition is
clear from explicit description of the map in that section.

Proposition 6.5. For a Γ-category X , the canonical map ENX → NPX is
a map of E spaces and a weak equivalence.

Next we define the Γ-space version of the functor EX . For this we use the
Γ-spaces Xn defined by

Xn(m) = X(nm),

where we use lexicographical ordering to make nm a functor of m from F to F .
Taking advantage of the fact that nm is also a functor of n, the construction
EX(−) defines a functor from F to simplicial sets. However, since we require
Γ-spaces to satisfy X(0) = ∗, we need a reduced version.

Definition 6.6. Let EΓX be the Γ-space with EΓX(n) the based homotopy
colimit in the category of based simplicial sets

EΓX(n) = hocolim∗A AXn.

The inclusions ηn : Xn(1)→ EΓX(n) now assemble to a map of Γ-spaces X →
EΓX . Since A has an initial object (), the nerve NA is contractible. The map

EXn = hocolimA AXn −→ (hocolimAAXn)/NA = hocolim∗AAXn = EΓX(n)

is therefore a weak equivalence. Applying Theorem 6.2 objectwise to the map
X → EΓX , we get the following theorem.

Theorem 6.7. EΓ preserves weak equivalences. If X is a special Γ-space, then
the natural map X → EΓX is a weak equivalence.

We prove the following theorem at the end of the section.
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Theorem 6.8. For a Γ-space X, EΓX is a special Γ-space.

Finally, we need one further variant of this construction. Let AEX be the
functor from A to simplicial sets with

AEX(~n) = EXn1 × · · · × EXns

and AE() = EX0 = E∗: Although EX(−) is not a Γ-space, it is an F -space
(functor from F to simplicial sets), and this is all that is needed for the con-
struction of the functor AEX . Let E2X be the simplicial set

E2X = hocolimAAEX

(homotopy colimit in the category of unbased simplicial sets). The map of
F -spaces EX(−) → EΓX(−) induces a weak equivalence AEX → AEΓX and

a weak equivalence E2X → E(EΓX).
The advantage of E2X over E(EΓX) is that we can construct a map E2X →
EX as follows. For each ~m in A, we have a map

AEX(~m) = EXm1 × · · · × EXmr
∼= hocolimA×r (AXm1 × · · · ×AXmr )

−→ hocolimAAX = EX

induced by the functor ρ~m : A×r → A, defined by

ρ~m : (~n1, . . . , ~nr) 7→ (m1n1,1, . . . ,m1n1,s1 ,m2n2,1, . . . ,mrnr,sr)

(where ~ni = (ni,1, . . . , ni,si)), together with the canonical isomorphism

AXm1(~n1)× · · · ×AXmr (~nr)
∼= AX(ρ~m(~n1, . . . , ~nr))

covering ρ~m. These maps are compatible with maps ~m in A, and so induce
a map α : E2X → EX . The technical fact about this map we need is the
following lemma, which is an easy check of the construction.

Lemma 6.9. The diagram

EX
η

//

Eη

��

id

##G
GGG

GGG
GG E2X

α

��

E2X α
// EX

commutes where η is induced by the inclusion of EX as AEX(1) and Eη is
induced by the inclusion of AX in AEX.

Applying the lemma to Xn, we get a commuting diagram of F -spaces. We can
turn this into a diagram of Γ-spaces by taking the quotient by EX0 = E∗ or
E2X0 = E2∗ at each spot. We then get a commutative diagram of Γ-spaces

EΓX
η

//

Eη

��

id

''PPPPPPPPPPPPP
E2X(−)/E2∗

α

��

E2X(−)/E2∗
α

// EΓX.
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We note that E2∗ is contractible, and since EΓX is special, η is weak equiv-
alence. It follows that all maps in the diagram are weak equivalences. Since
both

η : EΓX −→ EΓEΓX and EΓη : EΓX −→ EΓEΓX

factor through the corresponding map EΓX → E2X/E2∗, we get the following
proposition.

Proposition 6.10. The maps η and EΓη from EΓX to EΓEΓX coincide in
the strict homotopy category of Γ-spaces, i.e., the homotopy category obtained
by formally inverting the objectwise weak equivalences.

We use this observation to prove the following theorem, which together with
Theorems 6.7 and 6.8 imply Theorem 1.5.

Theorem 6.11. For any Γ-space X, η : X → EΓX is a stable equivalence.
Moreover η is the initial map from X to a special Γ-space in the strict homotopy
category of Γ-spaces.

Proof. We need to show that for any special Γ-space Z, the map η induces a
bijection [EΓX,Z]→ [X,Z] where [−,−] denotes maps in the strict homotopy
category of Γ-spaces. Since EΓ preserves weak equivalences, it induces a functor
on the strict homotopy category. Given a map g in [X,Z], EΓg is a map in
[EΓX,EΓZ], and since η : Z → EZ is a weak equivalence, we can compose with
the map η−1 in the strict homotopy category to get an element Rg = η−1 ◦EΓg
in [EΓX,Z]. By naturality of η, R is a retraction. By examination of the solid
arrow commuting diagram

X
η

// EΓX
g

//

η∼
��

Z

η∼
��

EΓX
EΓη

//

id

99

EΓEΓX
EΓg

// EΓZ

and applying the previous proposition, we see that R is a bijection. �

The previous theorem also provides the final piece for the proof of Theorem 1.9.

Proof of Theorem 1.9. The equivalence of (iii) and (iv) is Theorem 1.4 proved
in the last section. The previous theorem proves the equivalence of (ii) and (iii),
and [12, 1.8] (and the argument for [9, 1.1]) prove the equivalence of (i) and (iii).

�

We close with the proof of Theorem 6.8. We thank Irene Sami for help putting
together this argument.

Proof of Theorem 6.8. It suffices to show that for every j > 0, the map

(6.12) EXj+1 −→ EXj × EX
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is a weak equivalence. Using EXj in place of EΓX(j) has the advantage that
we can write EXj × EX as a homotopy colimit:

EXj × EX ∼= hocolimA×A(AXj ×AX).

For clarity in formulas that follow, we will use brackets [m] rather than bold
m to denote finite based sets.
The map (6.12) is induced by the diagonal functor A → A×A and the natural
transformation

AXj+1(~m) −→ AXj(~m)×AX(~m).

We get a map

(6.13) EXj × EX −→ EXj+1

induced by the concatenation functor A×A → A and the natural transforma-
tion

AXj(~m)×AX(~n) −→ AXj+1(~m� ~n)

(where � denotes concatenation), sending

X([jm1])× · · · ×X([jmr]) −→ X([(j + 1)m1])× · · · ×X([(j + 1)mr])

by the map induced by the inclusion of [j] in [j + 1], and the map

X([n1])× · · · ×X([ns]) −→ X([(j + 1)n1])× · · · ×X([(j + 1)ns])

induced by including the non-basepoint element 1 of [1] as the element j + 1
of [j + 1]. We show that (6.12) and 6.13 are inverse generalized simplicial
homotopy equivalences.
First we show that the composite on Ej+1 is (generalized simplicial) homotopic
to the identity. We denote the composite on Ej+1 as (D, d). It is induced by
the functor D : A → A that sends ~m to the concatenation ~m � ~m and the
natural transformation

d : Xj+1(mi) =

X([(j + 1)mi]) −→ X([(j + 1)mi])×X([(j + 1)mi]) = Xj+1(mi,mi)

induced in the first factor by sending the element j+1 of [j+1] to the basepoint
and induced in the second factor by sending the elements 1, . . . , j of [j + 1] to
the basepoint.
We construct a new map (H,h) from En+1 to itself and simplicial homotopies
from (H,h) to (D, d) and from (H,h) to the identity as follows. Let H be the
functor A → A that sends (m1, . . . ,mr) to ((j + 1)m1, . . . , (j + 1)mr) and let

h : AXj+1(~m) = AX((j + 1)m1, . . . , (j + 1)mr)

−→ AX((j + 1)2m1, . . . , (j + 1)2mr) = AXj+1(H~m)

be the natural transformation induced by the diagonal map in F from [j + 1]
to [(j + 1)2]; then the functor H and natural transformation h induce a map
(H,h) from EXj+1 to itself.
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We have a natural transformation φ from H to D formed by concatenation and
permutation from the maps

((j + 1)mi) −→ (mi,mi)

in A sending collapsing the first j copies of mi to the first mi by the codiagonal
map and sending the last copy of mi onto the second mi. The composite map

AXj+1(~m)
h // AXj+1(H ~m)

AXj+1(φ)
// AXj+1(D~m)

is d. Thus, the natural transformation φ induces a homotopy between the maps
(H,h) and (D, d) on the homotopy colimit Ej+1.
Likewise, we have a natural transformation ψ from H to the identity induced
by the maps ((j + 1)mi) → (mi) in A that collapse the j + 1 copies of mi by
the codiagonal. Since the composite

AXj+1(~m)
h // AXj+1(H~m)

AXj+1(ψ)
// AXj+1(~m)

is the identity, it follows that ψ induces a homotopy from H to the identity
on EXj+1. This constructs the generalized simplicial homotopy equivalence
between the composite map and the identity map on EXj+1.
The argument for the other composite is easier: The composite on EXj ×EX
is induced by the functor D2 from A×A to itself

D2(~m,~n) = (~m� ~n, ~m� ~n)

and the natural transformation

d2 : AXj(~m)×AX(~n) −→ AXj(~m� ~n)×AX(~m� ~n)

induced on the first factor by the inclusion of ~m in ~m � ~n and on the second
factor by the inclusion of ~n in ~m� ~n. Since these maps

(~m,~n) −→ (~m� ~n, ~m� ~n)

assemble to a natural transformation in A × A from the identity functor to
D2, they induce a homotopy on EXj ×EX between the identity and the map
induced by D2, d2. �
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Introduction

According to a conjecture of Coleman, if we fix a genus g > 4 and consider
smooth projective curves C over C of genus g, there should be only finitely
many such curves, up to isomorphism, such that Jac(C) is an abelian variety
of CM type. This conjecture is known to be false for g ∈ {4, 5, 6, 7}, by virtue
of the fact that for these genera there exist special subvarieties S ⊂ Ag (also
known as subvarieties of Hodge type) of positive dimension that are contained
in the (closed) Torelli locus and that meet the open Torelli locus.
All known examples of such special subvarieties S arise from families of cyclic
covers of P1. As input for this we fix integers m > 2 and N > 4, together
with an N -tuple a = (a1, . . . , aN ); then we consider cyclic covers Ct → P1
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with covering group Z/mZ, branch points t1, . . . , tN in P1, and with local
monodromy ai about ti. Varying the branch points we obtain an (N − 3)-
dimensional closed subvariety Z = Z(m,N, a) ⊂ Ag given by the Jacobians of
the curves Ct, and for certain choices of (m,N, a) it can be shown that Z is a
special subvariety.

The main purpose of this paper is to give a list of monodromy data (m,N, a)
such that Z(m,N, a) is special, and to prove that there are no further such
examples.

By construction, the Jacobians Jt come equipped with an action of the group
ring Z[µm]. This action defines a special subvariety S(µm) ⊂ Ag that con-
tains Z and whose dimension can be easily calculated in terms of the given
monodromy data (m,N, a). We always have N − 3 6 dimS(µm), and if equal-
ity holds Z = S(µm) is special. To search for triples (m,N, a) for which
dimS(µm) = N − 3 is something that can be done on a computer, and it is
therefore surprising that this appears not to have been done until recently.
Thus, while examples in genera 4 and 6 have been given by de Jong and Noot
in [6]—and in fact, these examples at least go back to Shimura’s paper [24]—
examples with g = 5 and g = 7 were found only much later; see Rohde [22]. At
any rate, with the help of a computer program we find twenty examples with
dimS(µm) = N − 3. The main result of this paper is that this list is complete:

Main theorem. — Consider monodromy data (m,N, a) as above. Then the
closed subvariety Z(m,N, a) ⊂ Ag,C is special if and only if (m,N, a) is equiv-
alent to one of the twenty triples listed in Table 1.

Note that if N − 3 < dimS(µm), which means that the inclusion Z ⊂ S(µm)
is strict, Z could a priori still be a special subvariety. The main point of our
result is that even in these cases we are able to prove that Z is not special.

To get a feeling for the difficulty of the problem, consider, as an example, the
family of (smooth projective) curves of genus 8 given by y10 = x(x−1)(x− t)2,
where t ∈ T = P1

C \ {0, 1,∞} is a parameter. The corresponding family of
Jacobians J → T decomposes, up to isogeny, as a product Jold × Jnew of
two abelian fourfolds. (The old part comes from the quotient family u5 =
x(x − 1)(x − t)2; the new part is the family of Pryms.) Both Jold and Jnew

give rise to a 1-dimensional special subvariety in A4, and they both admit an
action by Z[ζ5] = Z[ζ10], with the same multiplicities on the tangent spaces at
the origin. A priori it might be true that Jold and Jnew are isogenous, in which
case the family J → T would define a special subvariety in A8. Our theorem
says, in this particular example, that this does not happen.

From the perspective of special points and the André-Oort conjecture, one
could state the problem, in the example at hand, as follows. There are infinitely
many values for t such that Jold

t is of CM type; likewise for Jnew
t . Do there

exist infinitely many t such that Jold
t and Jnew

t are simultaneously of CM type?
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Our theorem, combined with a result of Yafaev [25], implies the answer is no,
at least if we assume the Generalized Riemann Hypothesis. See Corollary 3.7.

Our proof of the main theorem uses techniques from characteristic p and is
based on a method that in some particular cases has already been used by de
Jong and Noot in [6], Section 5. For a suitable choice of a prime number p,
the Jacobians in our family will, at least generically, have ordinary reduction
in characteristic p. Moreover, if we assume Z(m,N, a) ⊂ Ag to be special then
by a result of Noot [18] we can arrange things in such a way that the canonical
liftings of these ordinary reductions are again Jacobians. Already over the Witt
vectors of length 2 this is a very restrictive condition that, using the results of
Dwork and Ogus in [8], can be turned into something computable.

In individual cases (such as the example sketched above, or the examples
treated in [6]), these techniques give a rather effective method to prove that
some given family of curves does not give rise to a special subvariety in Ag,C.
To do this for arbitrary data (m,N, a) is much harder, and some perseverance
is required to deal with the combinatorics that is involved. It would be inter-
esting to have a purely Hodge-theoretic proof of the main theorem; as it is,
we do not even have a Hodge-theoretic method that works well in individual
examples.

Let us give an overview the contents of the individual sections. In Section 1
we quickly review the notion of a special subvariety and we summarize some
facts we need. In Section 2 we introduce the families of curves that we want
to consider. In Section 3 we discuss the special subvariety S(µm) that contains
Z(m,N, a), we give the list of data (m,N, a) for which Z(m,N, a) = S(µm)
and we state the main results. Sections 4 and 5 contain the main technical
tools for the proof. In Section 4 we discuss how the VHS associated with our
family of curves decomposes and we give some results about the monodromy of
the summands. In Section 5 we briefly review the techniques of [8] and we give
some refinements that we need in order to deal with hyperelliptic families. In
Sections 6 and 7, finally, we prove the main theorem, first in the case N = 4,
then for N > 5. We refer to the beginning of Section 6 for a brief explanation
of how the proof works.

Acknowledgements. I thank Frans Oort for his encouragement and for stimu-
lating discussions. It is a great pleasure to dedicate this paper to him. I thank
Dion Gijswijt and Fokko van de Bult for helpful suggestions related to the com-
binatorics involved in the proof of Lemma 7.2. Further I thank Maarten Hoeve,
who wrote two Python programs (available upon request from the author) to
test some of the properties we need. The results of one of these programs are
used in the proof of Lemma 7.2. Finally, I thank the referee for his or her
comments on the paper and for some very helpful suggestions regarding the
exposition.
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Notation. If x is a real number, 〈x〉 = x − ⌊x⌋ denotes its fractional part. For
a ∈ Z/mZ or a ∈ Z we denote by [a]m the unique representative of the class a
(resp. the class a mod m) in {0, . . . ,m− 1}.

1. Some preliminaries about special subvarieties

In this section we work over C. We recall the notion of a special subvariety. For
further details we refer to [12], where the terminology “subvarieties of Hodge
type” was used, and [20].

(1.1) Consider the moduli space Ag,[n] of g-dimensional principally polarized
abelian varieties with a level n structure, for some n > 3. We first briefly recall
the description of this moduli space as a Shimura variety.
Let VZ := Z2g ⊂ V := Q2g, and let Ψ: VZ×VZ → Z be the standard symplectic
form. Let G := CSp(VZ,Ψ) be the group of symplectic similitudes. Let S :=
ResC/R Gm be the Deligne torus, and let H be the space of homomorphisms
h: S → GR that define a Hodge structure of type (−1, 0) + (0,−1) on VZ for
which ±(2πi) · Ψ is a polarization. The pair (GQ,H) is a Shimura datum,
and Ag can be described as the associated Shimura variety. Concretely, if

Kn :=
{
g ∈ G(Ẑ)

∣∣ g ≡ 1 mod n
}

then Ag,[n](C) ∼= G(Q)\H×G(Afin)/Kn.
In order to define special subvarieties, consider an algebraic subgroup H ⊂ GQ

such that

YH :=
{
h ∈ H

∣∣ h factors through HR

}

is non-empty. The group H(R) acts on YH by conjugation. It can be shown
(see [11], Section I.3, or [12], 2.4) that YH is a finite union of orbits under
H(R). We remark that the condition that YH is non-empty imposes strong
restrictions on H ; it implies, for instance, that H is reductive. If Y + ⊂ YH is
a connected component and ηKn ∈ G(Afin)/Kn, the image of Y + × {ηKn} in
Ag,[n] is an algebraic subvariety.

(1.2) Definition. — A closed irreducible algebraic subvariety S ⊂ Ag,[n] is
called a special subvariety if there exist Y + ⊂ YH and ηKn ∈ G(Afin)/Kn as
above such that S(C) is the image of Y + × {ηKn} in Ag,[n](C).

We refer to [12] and [20] for alternative descriptions and basic properties of
special subvarieties.

(1.3) As level structures play no role in what we are doing, we prefer to state
our results in terms of the moduli stack Ag. Of course this is a stack, not
a variety, but we allow ourselves to abuse terminology and speak of special
subvarieties in Ag (over C), where “special substack” would perhaps be more
correct. By definition, then, a special subvariety S ⊂ Ag is a closed, reduced
and irreducible algebraic substack such that for some (equivalently: any) n > 3
the irreducible components of the inverse image of S under the natural map
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Ag,[n] → Ag are special. (It is in fact enough to require that some irreducible
component is special.)

(1.4) Let f : X → T be a family of g-dimensional abelian varieties over an
irreducible non-singular complex algebraic variety T . Choose a principal po-
larization λ of X/T , and let φ: T → Ag be the resulting morphism. Whether
or not the closure of φ(T ) is a special subvariety of Ag only depends on the
isogeny class of the generic fibre of X/T as an abelian variety over the function
field of T . If we replace X/T by an isogenous family or choose a different λ,
the morphism φ is replaced by some other morphism φ′: T → Ag, but if φ(T )

is special then so is φ′(T ). (This is even true without the assumption that λ
is a principal polarization, but we shall not need this.) Without ambiguity we
may therefore say that X/T is special if φ(T ) ⊂ Ag is special for some choice
of a polarization.
One property we shall use is that if X/T is isogenous to Y1×Y2 and X is special,
the factors Yi are both special. The converse is not true: if Y1/T and Y2/T are
special, it is not necessarily the case that (Y1 × Y2)/T is special.

(1.5) Let f : X → T be as in 1.4. Consider the Q-VHS over T with fibres the
first cohomology groups H1(Xt,Q). Let b ∈ T (C) be a Hodge-generic point for
this VHS, and let M ⊂ GL

(
H1(Xb,Q)

)
be the generic Mumford-Tate group

of the family. Choose a principal polarization λ of X/T , let φ: T → Ag be the

resulting morphism, and write Z := φ(T ). Finally, let S ⊂ Ag be the smallest
special subvariety containing Z.
In order to calculate the dimension of S, it suffices to know the adjoint real
group Mad

R . More precisely, if Mad
R = Q1 × · · · × Qr is the decomposition of

this group as a product of simple factors, dim(S) =
∑r

i=1 d(Qi), where d(Qi)
is a contribution that only depends on the isomorphism class of the simple
group Qi. The only cases that are relevant for us are that
• d(Q) = 0 if Q is anisotropic (compact);
• d(Q) = pq if Q ∼= PSU(p, q);
• d(Q) = h(h+ 1)/2 if Q ∼= PSp2h.

2. The setup

In this section, given data (m,N, a) as in the introduction (see 2.1 below), we
construct a family of cyclic covers of P1 over some base scheme T . For later
purposes we shall do this over a ring R of finite type over Z.

(2.1) Let m and N be integers with m > 2 and N > 2, and consider an N -
tuple of positive integers a = (a1, . . . , aN ) such that gcd(m, a1, . . . , aN ) = 1.

We further require that ai 6≡ 0 modulo m for all i and
∑N

i=1 ai ≡ 0 modulo m.
The triple (m,N, a) serves as input for our constructions.
We call two such triples (m,N, a) and (m′, N ′, a′) equivalent if m = m′ and
N = N ′ and if the classes of a and a′ in (Z/mZ)N are in the same orbit under
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(Z/mZ)∗ × SN . Here we let (Z/mZ)∗ act diagonally by multiplication, and
the symmetric group SN acts by permutation of the indices.
In what follows we shall usually assume N > 4 but for some arguments it is
useful to allow N to be 2 or 3.

(2.2) Let (m,N, a) be a triple as in 2.1. Let R be the ring Z[1/m, u]/Φm with
Φm the mth cyclotomic polynomial. We write ζ ∈ R for the class of u; it is
a root of unity of order m. We embed R into C by sending ζ to exp(2πi/m).
The element ζ defines an isomorphism of R-group schemes (Z/mZ)R

∼−→ µm,R
by (b mod m) 7→ ζb.
Let U ⊂ (A1

R)N be the complement of the big diagonals. In other words, U
is the R-scheme of ordered N -tuples (t1, . . . , tN) of distinct points in A1. Let
B ⊂ P2

U be the projective curve over U obtained as the Zariski closure of the
affine curve whose fibre over a point (t1, . . . , tN ) is given by

ym = (x− t1)a1 · · · (x− tN )aN =

N∏

i=1

(x− ti)ai .

We have a µm-action on B over U by ζ · (x, y) = (x, ζ · y). The rational
function x defines a morphism πB : B → P1

U .
There exist an open subscheme T ⊂ U , a smooth proper curve f : C → T
equipped with an action of µm,T , and a µm,T -equivariant morphism ρ: C → BT ,
such that for every point t ∈ T the morphism on fibres ρt: Ct → Bt is a
normalization of Bt. Let π := πB ◦ ρ: C → P1

T , which is a finite morphism that
realizes P1

T as the quotient of C by the action of µm,T . If the context requires
it, we include the data (m,N, a) in the notation, writing C = C(m,N, a) for
instance. Further we write J → T for the Jacobian of C over T .
If k is a field and t = (t1, . . . , tN ) ∈ T (k), we can also describe πt: Ct → P1

k as
the µm-cover of P1

k with branch points t1, . . . , tN and local monodromy about ti
given by the element ζai ∈ µm.
The assumption that gcd(m, a1, . . . , aN) = 1 implies that the fibres of f : C → T
are geometrically irreducible. Let ri := gcd(m, ai). The Hurwitz formula gives
that the fibres have genus

(2.2.1) g = 1 +
(N − 2)m−∑N

i=1 ri
2

,

so we obtain a morphism ψ: T →Mg over R. Define

(2.2.2) φ: T → Ag

to be the composition of ψ with the Torelli morphism. Up to isomorphism, the
morphism ψ, and hence also φ, only depends on the equivalence class of the
triple (m,N, a) for the equivalence relation defined in 2.1.
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(2.3) Remark. — For computational purposes we have restricted our attention
to the case where all branch points ti are in A1 ⊂ P1, and we have not fixed
any of these branch points, thereby creating some redundancy and excluding
families where one of the branch points is fixed to be the point at ∞. For our
main results, the only thing that really matters is the closure of the image of
φC: TC → Ag,C. For instance, while the family of curves y10 = x(x− 1)(x− λ)
is not among the families we consider (the point at ∞ being a branch point),
the subvariety of A9 we obtain from this family is the same as the one obtained
by taking m = 10, with N = 4 and a = (1, 1, 1, 7).

(2.4) Convention. — In what follows we shall in several steps replace the
base scheme T by a subscheme. In such a case, it will be understood that
we replace C by its restriction to the new base scheme, and we again write
f : C → T for the curve thus obtained. Similarly, we retain the notation for
various other objects associated with our family of curves.

(2.5) Notation. — Let M be a module over some commutative R-algebra, or
a sheaf on some R-scheme, on which the group scheme µm acts. For n ∈ Z/mZ
we write

M(n) :=
{
x ∈M

∣∣ ζ(x) = ζn · x
}
,

which in the sheaf case has to be interpreted on the level of local sections. We
refer to M(n) as the n-eigenspace of M . We have M = ⊕n∈Z/mZM(n).

(2.6) Recall that ri = gcd(m, ai). Consider the µm-cover π: Ct → P1 for some
t ∈ T (k), where k is a field. For i ∈ {1, . . . , N} and n ∈ Z, let

l(i, n) := −1 +

⌈
ri − nai
m

⌉
=

⌊−nai
m

⌋
,

where the second equality easily follows from the fact that ri = gcd(m, ai).
Consider the differential forms

(2.6.1) ωn,ν := yn · (x− t1)ν ·
N∏

i=1

(x− ti)l(i,n) · dx ,

and note that these only depend on the pair (n mod m, ν).

The following result is standard.

(2.7) Lemma. — Let n ∈ Z/mZ with n 6= 0. The forms ωn,ν for 0 6

ν 6 −2 +
∑N
i=1

〈−nai
m

〉
are regular 1-forms on Ct and they form a k-basis

for H0(Ct,Ω
1)(n).
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3. The special subvariety given by the action
of the covering group

In this section we work over C and we fix a triple (m,N, a) as in 2.1 with N > 4.
We retain the notation introduced in the previous section, with the convention
that all objects are now considered over C via the chosen embedding R →֒ C.

(3.1) Definition. — We let Z(m,N, a) ⊂ Ag,C be the scheme-theoretic (or
rather, stack-theoretic) image of the morphism φ: T → Ag of (2.2.2).

In other words, Z(m,N, a) is the reduced closed substack of Ag,C with under-

lying topological space φ(T ). We note that Z(m,N, a) only depends on the
equivalence class of (m,N, a) and does not depend on the choice of the open
subscheme T in 2.1. The dimension of Z(m,N, a) equals N − 3.

(3.2) Notation. — It will be convenient to write

(3.2.1) I(m) :=
[
(Z/mZ) \ {0 mod m}

]
/{±1} .

Recall that 〈x〉 denotes the fractional part of x. For n ∈ Z/mZ we define

(3.2.2) dn :=

{
−1 +

∑N
i=1

〈−nai
m

〉
if n 6≡ 0,

0 if n ≡ 0,

which by Lemma 2.7 is the dimension of the (n)-eigenspace of H0(Ct,Ω
1), for

any t ∈ T (C).

(3.3) The substack Z(m,N, a) ⊂ Ag is contained in a special subvariety
S(µm) ⊂ Ag determined by the action of Z[µm] on the relative Jacobian
J → T . More precisely, S(µm) is the largest closed, reduced and irre-
ducible substack S ⊂ Ag containing Z(m,N, a) such that the homomorphism
Z[µm]→ End(J/T ) induced by the action of µm on C/T extends to an action
of Z[µm] on the universal abelian scheme over S.
Choose a base point b ∈ T (C), and let (Jb, λ) be the corresponding Jacobian
with its principal polarization. With (VZ,Ψ) as in 1.1, choose a symplectic
similitude σ: H1(Jb,Z)

∼−→ VZ, where we equip H1(Jb,Z) with its Riemann
form (i.e., the polarization, in the sense of Hodge theory, that corresponds
with λ). Via σ, the action of µm on Jb induces a structure of a Q[µm]-module
on V = VZ ⊗ Q. Consider the algebraic subgroup H ⊂ GQ = CSp(V,Ψ) of
Q[µm]-linear symplectic similitudes, i.e., the subgroup given by

H := GLQ[µm](V ) ∩ CSp(V,Ψ) .

With notation as in 1.1, the image of YH ⊂ H under the map

H→→ G(Z)\H ∼= G(Q)\H×G(Afin)/G(Ẑ) ∼= Ag(C)
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is (the set of C-points of) a finite union of algebraic subvarieties of Ag, and
the special subvariety S(µm) is the unique irreducible component of this image
that contains Z(m,N, a).
The dimension of S(µm) is given by

(3.3.1) dimS(µm) =
∑

d−ndn +

{
dk(dk+1)

2 if m = 2k is even,
0 if m is odd,

where the first sum runs over the pairs ±n ∈ I(m) with 2n 6≡ 0. See [14],
Section 5; see also Remark 4.6 below.
In particular, as Z(m,N, a) ⊂ S(µm) we have

(3.3.2) N − 3 6 dimS(µm) .

If equality holds then Z(m,N, a) = S(µm) ⊂ Ag is a special subvariety; it
then follows that among the Jacobians Jt, for t ∈ T (C), there are, up to
isomorphism, infinitely many Jacobians of CM type. (Here we use that on a
special subvariety the CM points lie dense.)

(3.4) Inventory of examples. — Table 1 lists twenty triples (m,N, a) with
N > 4 for which N − 3 = dimS(µm), so that Z(m,N, a) ⊂ Ag,C is a special
subvariety. Our assumption that N > 4 means we are only considering the
cases that give rise to a special subvariety of positive dimension.
The first column of the table gives a number that we assign to each example
for reference. The examples are sorted first by genus, then by degree of the
cover. The second column gives the genus of the curves in the family. In the
next three columns we give the data (m,N, a). In most cases there is a unique
a = (a1, . . . , aN ) in its equivalence class such that 1 6 a1 6 · · · 6 aN 6 m− 1
with

∑
ai = 2m, and if there is a unique such representative, this is the one we

list. If N = 4 there are usually two such representatives, the second one being
(m− a4,m− a3,m− a2,m− a1); we list the one which lexicographically comes
first. In the last column we give references to places in the literature where the
example can be found. Here “S(i)” refers to example (i) in [24], “Mi” refers
to example i in the appendix of [17], and dJN(1.3.i) refers to example (1.3.i)
in [6]. These examples can also be found in [22]; see 4.8 below.

(3.5) Remark. — If we have a triple (m,N, a) as in 2.1 with N = 3, the
associated subvariety Z = Z(m,N, a) is a special point in Ag.

The following theorem is the main result of this paper. It says that the list of
examples in Table 1 is exhaustive.

(3.6) Theorem. — Consider data (m,N, a) as in 2.1, with N > 4. Then
Z(m,N, a) ⊂ Ag,C is a special subvariety if and only if (m,N, a) is equivalent
to one of the twenty examples listed in Table 1.

By what was explained above, it only remains to be shown that Z(m,N, a) is
not special if (m,N, a) is not equivalent to one of the triples in the table. In 4.9
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genus m N a references

() 1 2 4 (1, 1, 1, 1)

() 2 2 6 (1, 1, 1, 1, 1, 1)

() 2 3 4 (1, 1, 2, 2)

() 2 4 4 (1, 2, 2, 3)

() 2 6 4 (2, 3, 3, 4)

() 3 3 5 (1, 1, 1, 1, 2) S(1), M41

() 3 4 4 (1, 1, 1, 1)

() 3 4 5 (1, 1, 2, 2, 2) S(3), M43

() 3 6 4 (1, 3, 4, 4)

() 4 3 6 (1, 1, 1, 1, 1, 1) S(2), M23, dJN(1.3.1)

() 4 5 4 (1, 3, 3, 3) S(4), dJN(1.3.2)

() 4 6 4 (1, 1, 1, 3)

() 4 6 4 (1, 1, 2, 2)

() 4 6 5 (2, 2, 2, 3, 3)

() 5 8 4 (2, 4, 5, 5)

() 6 5 5 (2, 2, 2, 2, 2) S(5), M44

() 6 7 4 (2, 4, 4, 4) S(6), dJN(1.3.3)

() 6 10 4 (3, 5, 6, 6)

() 7 9 4 (3, 5, 5, 5)

() 7 12 4 (4, 6, 7, 7)

Table 1: monodromy data that give rise to a special subvariety

we shall first prove this for m = 2. In Section 6 we shall prove the theorem for
N = 4. The case N > 4 is treated in Section 7.

Combining the theorem with the main result of [25] we obtain, for N = 4, the
following finiteness result for the number of CM fibres.

(3.7) Corollary. — Assume the Generalized Riemann Hypothesis for CM
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fields. If we have a triple (m,N, a) with N = 4 and the equivalence class
of this triple is not among the twenty examples listed in Table 1 then up to iso-
morphism there are finitely many Jacobians of CM type in the family J → TC.

4. Decomposition of the variation of Hodge structure

In this section we again work over C. We fix a triple (m,N, a) as in 2.1 with
N > 4. The corresponding family of curves C → T gives rise to a variation of
Hodge structure over T (over C) on which Q[µm] acts. We describe the resulting
decomposition of the VHS, and we give some results about the monodromy of
the summands.

(4.1) Let (m,N, a) be as in 2.1. For n ∈ Z/mZ, let N(n) be the number of
indices i ∈ {1, . . . , N} such that nai 6≡ 0 modulo m. In particular, N(n) = N
if n ∈ (Z/mZ)∗. If n 6= 0 then dn + d−n = N(n)− 2.
Let m′ > 2 be a divisor of m, say with m = rm′. Write N ′ := N(r mod m),
and consider the N ′-tuple a′ in (Z/m′Z)N

′

obtained from the N -tuple (a1 mod
m′, . . . , aN mod m′) by omitting the zero entries. Then (m′, N ′, a′) is again a
triple as in 2.1; we refer to it as the triple obtained from (m,N, a) by reduction
modulo m′.

(4.2) As in 2.2, consider the family of curves f : C → T associated with the
triple (m,N, a), where, as in the previous section, we work over C. The coho-
mology groups H1(Ct,Q) are the fibres of a polarized Q-VHS with underlying
local system V := R1fan

∗ QC . This Q-VHS comes equipped with an action of
the group ring Q[µm] =

∏
d|mKd, where Kd = Q[t]/Φd is the cyclotomic field

of dth roots of unity. Accordingly we have a decomposition of Q-VHS,

(4.2.1) V = ⊕d|mV[d] ,

where V[d] is a polarized Q-VHS over T equipped with an action of Kd.

(4.3) Let (m,N, a) be as in 2.1, with N > 4. Let m′ > 2 be a proper divisor
of m, and let (m′, N ′, a′) be the triple obtained from (m,N, a) by reduction
modulo m′, as in 4.1.
Let ρ: AN → AN

′

be the projection map, omitting the coordinates xi for all
indices i with ai ≡ 0 modulo m′. Performing the construction of 2.2 we may
choose T = T (m,N, a) ⊂ AN and T ′ = T (m′, N ′, a′) ⊂ AN

′

such that ρ maps T
to T ′. (The map T → T ′ is then dominant.) If f ′: C′ → T ′ is the family of
curves associated with the triple (m′, N ′, a′), the pull-back ρ∗C′ = C′×T ′T can
be identified with the quotient of C/T modulo the action of µr ⊂ µm, where
r = m/m′.
Let V′ = V(m′, N ′, a′) be the Q-VHS over T ′ associated with the triple
(m′, N ′, a′). The quotient morphism C → ρ∗C′ over T gives a map ρ∗V′ → V
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and this induces an isomorphism ρ∗V′ ∼= ⊕d|m′V[d]. We refer to the sub-Q-
VHS ρ∗V′ as the old part associated with the divisor m′. The direct summand
V[m] ⊂ V is called the new part ; in the decomposition (4.2.1) it is the only
direct summand that is not contained in an old part.

(4.4) Lemma. — Let the notation and assumptions be as in 4.3. Let g =
g(m,N, a) and g′ = g(m′, N ′, a′) be the respective genera. If Z(m,N, a) ⊂ Ag,C

is a special subvariety then Z(m′, N ′, a′) ⊂ Ag′,C is special, too.

Proof. Suppose Z(m,N, a) is special. Write J = J(m,N, a) → T and J ′ =
J(m′, N ′, a′)→ T ′ for the respective Jacobians. Then ρ∗J ′ is an isogeny factor
of J . Hence, if θ: T → Ag′,C is the morphism corresponding to ρ∗J ′, it follows
from 1.4 that the Zariski closure of the image of θ is a special subvariety. But
θ is just the composition of the projection ρ: T → T ′, which is dominant, and
the morphism φ(m′, N ′, a′): T ′ → Ag′,C associated with the data (m′, N ′, a′).
Hence the closure of the image of θ is Z(m′, N ′, a′). �

(4.5) With notation as in 2.5, the C-local system VC decomposes as VC =

⊕n∈Z/mZVC,(n). The relation with (4.2.1) is that V[d]
C is the sum of all VC,(n)

with ord(n) = d. We have VC,(0) = 0, and for n 6= 0 the C-local system VC,(n)

has rank N(n)− 2, where N(n) is defined as in 4.1. (See also [7], Section 2.)
With real coefficients, and with I(m) as in (3.2.1), we have a decomposition of
R-VHS

VR =


 ⊕

±n∈I(m),2n6≡0
VR,(±n)


⊕ VR,(m2 ) ,

where the last summand only occurs if m is even. The decomposition is such
that

VR,(±n) ⊗R C = VC,(n) ⊕ VC,(−n)
and

VR,(m2 ) ⊗R C = VC,(m2 ) (for even m) .

On the summand VR,(±n) the polarization of the VHS induces a (−1)-hermitian
form β±n of signature (dn, d−n); see also [7], Corollary (2.21) and (2.23). In
case m is even, the polarization induces a symplectic form βm

2
on VR,(m2 ).

As in 3.3 we choose a base point b ∈ T (C), and a symplectic similitude
σ: H1(Jb,Q)

∼−→ V . Via this similitude, we identify V with the fibre of V
at b. Correspondingly, we write VR,(±n) for the direct summand of VR that
under σ maps to the fibre at b of VR,(±n).
For what follows, it will be convenient to choose the base point b to be a Hodge-
generic point with respect to the variation V, so from now on we assume this.
Define Mon ⊂ GL(V ) and Hdg ⊂ GL(V ) to be the algebraic monodromy groups
of the Q-local system V and the Hodge group of the fibre at b, respectively.
(Since we have chosen b to be Hodge-generic, Hdg is the generic Hodge group
of the VHS.) By [3], Theorem 1, the identity component Mon0 is a semisimple
normal subgroup of Hdg.
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(4.6) Remark. — The generic Hodge group Hdg is contained in the algebraic
group H := GLQ[µm](V )∩CSp(V,Ψ) considered in 3.3. Extending scalars to R
we have

(4.6.1) HR
∼=


 ∏

±n∈I(m),2n6≡0
U(VR,(±n), β±n)


× Sp(VR,(m2 ), βm2 ) ,

where the symplectic factor only occurs if m is even. Our formula (3.3.1) follows
from this together with what was explained in 1.5.

We have Mon0 ⊂ Hdg ⊂ H . The next proposition gives us information about
the projections of the R-group Mon0

R onto the various factors in the decompo-
sition (4.6.1).

(4.7) Proposition. — (i) Suppose we have ±n ∈ I(m) with 2n 6≡ 0 such that
dn > 1 and d−n > 1. Then the image of Mon0

R in U(VR,(±n), β±n) is the special
unitary group SU(VR,(±n), β±n), which is isomorphic to SU(dn, d−n).

(ii) If m is even, the group Mon0
R projects surjectively to the symplectic group

Sp(VR,(m2 ), βm2 ), which is isomorphic to Sp2h,R with h = dm
2
.

Proof. For (i), see Rohde [22], Theorem 5.1.1. For (ii), assume m is even, and
let h := dm

2
. There are then 2h+2 indices i for which ai is even, and without loss

of generality we may assume these are the indices i ∈ {1, . . . , 2h+2}. With the

above notation, VR,(m2 ) is the same as V[2]
R , and if we define Mon[2] ⊂ GL(V [2])

as the algebraic monodromy group of the Q-local system V[2] then the image

of Mon0 in Sp(VR,(m2 ), βm2 ) equals Mon
[2],0
R . Further, V[2] is just the local system

obtained from the family of hyperelliptic curves u2 = (x − t1) · · · (x − t2h+2);
cf. 4.3. By [1], Theorem 1 (see also [2]), the connected algebraic monodromy
group of this local system is the full symplectic group. �

(4.8) Let (m,N, a) be a triple as in 2.1, with N > 4. Consider the following
condition.

(4.8.1)
There exists a ±n ∈ I(m) with {dn, d−n} = {1, N − 3},
and for all other ±n′ ∈ I(m), either dn′ = 0 or d−n′ = 0.

All examples in Table 1, with the exception of Example , satisfy this condition.
It has been proven by Rohde in [22] that these nineteen examples are the only
examples (up to equivalence) of triples (m,N, a) with N > 4 that satisfy (4.8.1).

(4.9) We now prove Theorem 3.6 for m = 2. In this case N is even, g =
(N − 2)/2, and up to equivalence a = (1, . . . , 1) is the only possibility. Further,
Z(2, N, a) ⊂ Ag,C is the closure of the hyperelliptic locus in Ag. The assertion is
that this is not special for g > 3. This is true because for g > 3 the hyperelliptic
locus is not dense in Ag, whereas by (ii) of Proposition 4.7 the generic Hodge
group Hdg is the full symplectic group.
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In what follows we may therefore assume m > 2.

5. Canonical liftings of ordinary Jacobians
in positive characteristic

(5.1) We need to recall some definitions and results from the paper [8] by
Dwork and Ogus. We first discuss their theory in a general setting. After that,
from 5.4 on, we return to the specific families of curves that interest us, and
we explain how the results of [8] apply to that situation.
Given an irreducible base scheme T and a smooth projective curve f : C → T
we write ωC/T for Ω1

C/T . Consider the Hodge bundle E = E(C/T ) := f∗ωC/T ,
which is a vector bundle on T of rank g, the genus of the fibres. We have a
Kodaira-Spencer map KS: Sym2(E)→ Ω1

T/R and we define

K = K (C/T ) := Ker
(
Sym2(E)

mult−−−→ f∗(ω
⊗2
C/T )

)
,

Q = Q(C/T ) := Coker
(
f∗(ω

⊗2
C/T )∨

mult∨−−−−→ Sym2(E)∨
)
,

where “mult” is the multiplication map. We remark that Q can be thought
of as the pull-back to T of the normal bundle to the Torelli locus inside Ag.
Outside the hyperelliptic locus, mult is surjective and K is the dual of Q.

(5.2) Let k be an algebraically closed field of characteristic p > 0. Consider a
smooth projective curve C/k of genus g such that its Jacobian J is ordinary.
Let λ be the natural principal polarization of J . By Serre-Tate theory (see [9]
or [10], Chap. 5) we have a canonical lifting of (J, λ) to a principally polarized
abelian variety (Jcan, λcan) over the ring of Witt-vectors W (k). In general, for
g > 4 this canonical lifting is not the Jacobian of a curve over W (k). More
precisely, Dwork and Ogus show that in general not even the canonical lifting
over W2(k), the Witt-vectors of length 2, is again a Jacobian.
Following [8] we call the ordinary curve C/k pre-W2-canonical if there exists
a smooth projective curve Y over W2(k) such that (Jcan, λcan) over W2(k) is
isomorphic, as a principally polarized abelian variety, to the Jacobian of Y .
The main advantage of working modulo p2 is that in this case there is a natural
class βC/k in Q(C/k) that vanishes if and only if C/k is pre-W2-canonical; see
[8], Prop. (2.4). This invariant βC/k cannot be defined in a family of curves (in
a sense that can be made precise, see [8], § 3), but its Frobenius pullback can,
as we shall discuss next.
Let T be a smooth k-scheme, and let FT : T → T be its absolute Frobenius
endomorphism. Consider a smooth projective curve f : C → T such that all
fibres Ct are ordinary. This assumption permits us to view the inverse Cartier
operator as an OT -linear homomorphism

γ: F ∗TE→ E ,
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with E = E(C/T ) the Hodge bundle. This map γ is the inverse transpose of
the Frobenius action on R1f∗OC .

Dwork and Ogus define a global section β̃C/T of F ∗TQ(C/T ) such that for any

t ∈ T (k) the value of β̃C/T at t is F ∗k (βCt/k). See [8], Prop. 2.7.

The sheaf F ∗TQ(C/T ) comes equipped with a canonical flat connection

∇: F ∗TQ(C/T )→ F ∗TQ(C/T )⊗ Ω1
T/k .

In particular, still with T smooth over k, if Ct/k is pre-W2-canonical for all t ∈
T (k), the section β̃C/T is zero, so certainly ∇β̃C/T = 0. One of the main points

of [8], then, is that ∇β̃C/T can be calculated explicitly. The result is easiest to
state under the additional hypothesis that the fibres Ct are not hyperelliptic.
We note that this assumption is not always satisfied in the situation we want
to consider. In Prop. 5.8 we shall give a modified version of the next result
that also works for hyperelliptic families.

If the Ct are not hyperelliptic, the multiplication map Sym2(E) → f∗(ω⊗2) is
surjective, so, with notation as introduced in 5.1, β̃C/T can be viewed as an
OT -linear map F ∗TK → OT .

The following result is [8], Prop. 3.2. (In [8] the result is stated under some ver-
sality assumption on the family C/T but one easily verifies that their Prop. 3.2
is true without this assumption.)

(5.3) Proposition (Dwork-Ogus). — With assumptions and notation as above,
and assuming the curves Ct to be non-hyperelliptic, −∇(β̃C/T ): F ∗TK → Ω1

T/k

is equal to the composition

F ∗TK ֒
incl−−→ F ∗TSym2(E)

Sym2(γ)−−−−−−→ Sym2(E)
KS−−→ Ω1

T/k .

(5.4) Assumptions. — In the rest of this section we fix data (m,N, a) as in 2.1
with m > 2 and N > 4, and we consider the family of curves f : C → T
as constructed in 2.2. We assume that (m,N, a) is not equivalent to one of
the triples listed in Table 1. We further assume that the closed subvariety
Z(m,N, a) ⊂ Ag,C is a special subvariety; our aim is to derive a contradiction.

Without loss of generality we may suppose (m,N, a) is minimal with respect
to the above assumptions, by which we mean that there is no triple (m′, N ′, a′)
that satisfies our assumptions and for which we have 4 6 N ′ < N or N ′ = N
and 2 6 m′ < m. In particular, it follows from Lemma 4.4 that if m′ is a
proper divisor of m and (m′, N ′, a′) is obtained from (m,N, a) by reduction
modulo m′, as in 4.3, either N ′ 6 3 or (m′, N ′, a′) is equivalent to one of the
twenty triples listed in Table 1.
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(5.5) Lemma. — (i) The subsheaf f∗(ω
⊗2
C/T )(0) of µm-invariant sections of

f∗(ω
⊗2
C/T ) is a locally free OT -module of rank N − 3.

(ii) The Kodaira-Spencer morphism KS: Sym2(E) → Ω1
T/R factors over the

composite map

Sym2(E)
pr−−→ Sym2(E)(0)

mult−−−→ f∗(ω
⊗2
C/T )(0)

and the induced map KS(0): f∗(ω
⊗2
C/T )(0) → Ω1

T/R is a fibrewise injective homo-

morphism of vector bundles.

Proof. (i) By a result of Chevalley and Weil in [5], for every t ∈ T (C) the
subspace of µm-invariants in H0(Ct,Ω

⊗2) has dimension N − 3.
(ii) The fibre of Sym2(E)(0) at a point t is dual to the space H1(Ct,Θ)(0), which
parametrizes the deformations of Ct for which the µm-action deforms along.
Since we have a µm-action on the whole family C/T , the Kodaira-Spencer
map factors through the projection Sym2(E) → Sym2(E)(0). For any family

of curves it also factors through the multiplication map Sym2(E)→ f∗(ω
⊗2
C/S);

hence KS factors through f∗(ω
⊗2
C/T )(0). The last assertion of (ii) just says that

at any t ∈ T (k) our family is complete in the sense of deformation theory: if
D → Spec

(
k[ǫ]
)

is a first-order deformation of Ct with its µm-action, D/k[ǫ]
can be obtained by pull-back from our family. This is clear, as the quotient
D/µm is isomorphic to P1

k[ǫ]. �

(5.6) Lemma. — There exists a prime number p with p ≡ 1 modulo m and,
for p a prime of R = Z[1/m, u]/Φm above p, a dense open subset U of T0 :=
T ⊗R (R/p), such that for any algebraically closed field k of characteristic p and
any t ∈ U(k) the curve Ct is ordinary and the Jacobian Jt is pre-W2-canonical.

Proof. Let p be any prime number with p ≡ 1 mod m. Note that in this case
R/p = Fp for any prime p ⊂ R above p. We write T ⊗ Fp for T ⊗R (R/p). By
[4], Prop. 7.4, there is a Zariski open U ⊂ T ⊗ Fp such that Ct is ordinary for
all t ∈ U(k). On the other hand, by a theorem of Noot [18], [19], in the slightly
more precise formulation of [13], Thm. 4.2, the assumption that Z = Z(m,N, a)
is special implies that for p large enough and t ∈ T0(k) any ordinary point, the
canonical lifting of Jt gives a W (k)-valued point of Z. In particular, Jt is then
pre-W2-canonical. �

(5.7) For most choices of (m,N, a) the general member in our family of curves
C → T is not hyperelliptic. In this case we may, and will, choose p and U in
Lemma 5.6 such that the curves Ct with t ∈ U(k) are non-hyperelliptic.
It may happen, however, that Z(m,N, a) is fully contained in the hyperelliptic
locus, in which case we call (m,N, a) a hyperelliptic triple. This occurs, for
instance, if m = 2m′ is even and a is of the form (a1, a2,m

′, . . . ,m′), or if
N = 4 and a = (1, 1,m− 1,m− 1). In such a case we will just choose p and U
as in Lemma 5.6.
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The following variant of Prop. 5.3 is the essential tool in our proof of Theo-
rem 3.6. Let p and U be chosen as above, and let CU → U be the restriction
of C/T to U . With notation as in 2.5 and 5.1 we have eigenspace decompo-
sitions Q(CU/U) = ⊕n∈Z/mZ Q(n); likewise for other OU [µm]-modules such as

K (CU/U) and EU = E(CU/U). Accordingly we can write β̃CU/U =
∑

n β̃(n),

with β̃(n) a section of F ∗UQ(n).

(5.8) Proposition. — With assumptions and notation as in 5.4 and 5.7, the
composite map
(5.8.1)

F ∗UK(0) ֒
incl−−→ F ∗USym2(EU )(0)

Sym2(γ)−−−−−−→ Sym2(EU )(0)
mult(0)−−−−−→ f∗(ω

⊗2
C/U )(0)

is zero.

Proof. If (m,N, a) is non-hyperelliptic this is immediate from Prop. 5.3 to-
gether with (ii) of Lemma 5.5. So from now on we may assume that Z(m,N, a)
is contained in the hyperelliptic locus. Let ι ∈ Aut(CU/U) be the hyperelliptic
involution. We remark that ι may or may not be contained in the subgroup
µm ⊂ Aut(CU/U); by inspection of the hyperelliptic examples mentioned in 5.7
we see that both cases occur.
Let ω = Ω1

CU/U
. In the hyperelliptic case the multiplication map Sym2(EU )→

f∗(ω⊗2) is no longer surjective. However, if we denote the invariants under the
action of ι by a subscript “even”,

mult(even): Sym2(EU )(even) → f∗(ω
⊗2)(even)

is again surjective; see for instance [21], Lemmas 2.12 and 2.13. The assump-
tion that Z(m,N, a) is fully contained in the hyperelliptic locus implies that
f∗(ω⊗2)(0) ⊂ f∗(ω⊗2)(even). Hence also mult(0) is surjective, and we may view

β̃(0) as an OU -linear map F ∗UK(0) → OU .

Our assumptions imply that β̃(0), hence also ∇β̃(0), is zero, so all that remains
to be checked is that for the 0-component the analogue of Prop. 5.3 holds.
For this we can follow the proof of [8], Prop. 3.2: The proof that loc. cit. dia-
gram (3.2.9) is commutative does not use the assumption that the curves are
non-hyperelliptic and therefore goes through in the hyperelliptic case. More-
over, in the notation of that proof, we can choose the lifted family Y /T (where
Y/T is our CU/U) such that it has an action of µm. Taking 0-components
in diagram (3.2.9) then gives that −∇β̃(0) equals the composition of (5.8.1)
and KS(0), and by (ii) of Lemma 5.5 we conclude that the map (5.8.1) is
zero. �

(5.9) Lemma. — Write q = (p − 1)/m. Let n ∈ Z/mZ, and let A = An(t) ∈
GLdn(OU ) be the matrix of the Cartier operator γ−1: EU,(n) → F ∗UEU,(n) with
regard to the frames

ωn,0, . . . , ωn,dn−1 , respectively ωn,0 ⊗ 1, . . . , ωn,dn−1 ⊗ 1 .
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Then the matrix coefficient Aρ,σ, for ρ, σ ∈ {0, . . . , dn − 1}, equals

(5.9.1) (−1)Σ ·
∑

j1+···+jN=Σ

(
q · [−na1]m

j1

)
· · ·
(
q · [−naN ]m

jN

)
· tj11 · · · tjNN ,

where Σ = (dn − σ)(p − 1) + (ρ− σ).

Proof. This is the dual version of [4], Lemma 5.1, part (i). �

We remark that the result of Bouw in [4] is valid in a more general context. She
uses this to prove the existence of cyclic covers whose p-rank reaches a natural
upper bound imposed by the local monodromy data; see [4], Thm. 6.1.

6. Proof of the main result: four branch points

In this section we prove Theorem 3.6 in the case N = 4. Let us first try to
explain the idea of the argument, by way of guide for the reader.
Assume we have a triple (m,N, a) that is not one of the twenty examples in
Table 1 but such that Z(m,N, a) is special. We want to show that this is
impossible. We have the family of curves C → T over a ring R of finite type
over Z; we then consider the reduction modulo p, with p chosen as in 5.7. The
nontrivial information we have, exploiting the assumption that Z(m,N, a) is
special, is that this gives a family of ordinary Jacobians in characteristic p such
that the canonical liftings over W2(k) are again Jacobians. In Prop. 5.8 we
have translated this, based on the theory in [8], into the vanishing of a certain
abstractly defined map. Lemma 5.9 enables us to calculate this map explicitly.
To apply this, we need a differential form that gives us an element in the source
of the map (5.8.1); we write down such a form in 6.2 below. The fact that the
image of this element is zero then gives us a polynomial identity (6.2.1). By
some combinatorial arguments we then show that this identity cannot hold if
(m,N, a) is not equivalent to one of the twenty special triples in Table 1.

(6.1) We retain the assumptions made in 5.4. In addition we assume N = 4.
Let

D(m, a) :=
{
±n ∈ I(m)

∣∣ dn = d−n = 1
}
.

(Here I(m) is as defined in (3.2.1) and dn is given by (3.2.2). Though not
indicated in the notation, dn depends on a.)
If ±n ∈ D(m, a), the equalities dn = d−n = 1 imply that nai 6≡ 0 modulo m
for all i ∈ {1, . . . , 4}. Hence,

(6.1.1) [−nai]m = m− [nai]m for all i, and

4∑

i=1

[−nai]m = 2m,

where we recall that [b]m denotes the representative of the class (b mod m) in
{0, 1, . . . ,m− 1}.

Documenta Mathematica 15 (2010) 793–819



Special Subvarieties and Families of Cyclic Covers 811

We first observe that dimS(µm) > 1. Indeed, if dimS(µm) = 1 then (4.8.1)
holds, and by the results of [22], Chapter 6, (m,N, a) is one of the triples in
Table 1, which contradicts our assumptions.
For n ∈ Z/mZ we have dn + d−n 6 2, and if m is even then dm

2
6 1. The

inequality dimS(µm) > 1 is therefore equivalent to the fact that #D(m, a) > 2.
Choose two distinct pairs ±n and ±n′ in D(m, a). Note that if m is even, we
may have n = −n or n′ = −n′.

(6.2) Choose p and U as in Lemma 5.6, where we may further assume that
the curves Ct for t ∈ U(k) are either all non-hyperelliptic or all hyperelliptic.
We keep the notation introduced in the previous section; in particular we recall
that K (CU/U) = ⊕n∈Z/mZ K(n).
It follows from (6.1.1) and the definition of the forms ωn,ν in (2.6.1) that

η := ωn,0 ⊗ ω−n,0 − ωn′,0 ⊗ ω−n′,0

is a section of K(0). For ν ∈ {±n,±n′} the matrix Aν = Aν(t) of Lemma 5.9 is
a polynomial in Fp[t1, . . . , t4]. As the Jacobians of the curves Ct for t ∈ U(k)
are ordinary, the Cartier operator γ−1 in Lemma 5.9 is an isomorphism of
vector bundles, so Aν(t) is invertible as a section of OU . Because ωn,0 ·ω−n,0 =
ωn′,0 · ω−n′,0 is a non-zero section of f∗(ω⊗2), it follows from Prop. 5.8 that

(6.2.1) An ·A−n = An′ ·A−n′

as polynomials.
Define Bν := Aν |t1=0, the polynomial obtained from Aν by substituting t1 = 0.
Explicitly,
(6.2.2)

Bν = (−1)p−1 ·
∑

j2+j3+j4=p−1

(
q · [−νa2]m

j2

)
· · ·
(
q · [−νa4]m

j4

)
· tj22 tj33 tj44 .

Fix an index ι ∈ {2, 3, 4}, and write {1, 2, 3, 4} = {1, ι} ∐ {κ, λ}. Let vn(ι) be
the largest integer v such that Bn is divisible by tvι . From (6.2.2) and (6.1.1)
we find

vn(ι) = max
{

0, (p− 1)− q · [−naκ]m − q · [−naλ]m
}

= max
{

0, q · [naκ]m + q · [naλ]m − (p− 1)
}
,

and similarly for v−n(ι).
Next let w±n(ι) be the largest integer w such that Bn ·B−n is divisible by twι .
We find

w±n(ι) = max
{

0, q · [naκ]m + q · [naλ]m − (p− 1)
}

+ max
{

0, q · [−naκ]m + q · [−naλ]m − (p− 1)
}
,

which by (6.1.1) we can rewrite as

(6.2.3)

w±n(ι) = max
{

0, q · [naκ]m + q · [naλ]m − (p− 1)
}

+ max
{

0, q · [na1]m + q · [naι]m − (p− 1)
}

= q ·max
{

[na1]m + [naι]m, [naκ]m + [naλ]m
}
− (p− 1) .
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(6.3) Lemma. — Consider two 4-tuples (b1, b2, b3, b4) and (b′1, b
′
2, b
′
3, b
′
4) in

{1, . . . ,m− 1}4 with
∑4

i=1 bi = 2m =
∑4
i=1 b

′
i. Suppose that for all partitions

{1, 2, 3, 4} = {1, ι} ∐ {κ, λ} we have {b1 + bι, bκ + bλ} = {b′1 + b′ι, b
′
κ + b′λ} as

sets. Then there is an even permutation σ ∈ A4 of order 2 such that either
b′i = bσ(i) for all i or b′i = m− bσ(i) for all i.

Proof. Straightforward checking of all 8 = 23 possible combinations (two for
each partition). �

(6.4) The relation (6.2.1) implies that for any partition {1, 2, 3, 4} = {1, ι} ∐
{κ, λ} we have w±n(ι) = w±n′(ι). Since

∑4
i=1 [nai]m = 2m =

∑4
i=1 [n′ai]m, it

follows from (6.2.3) that

{
[na1]m + [naι]m, [naκ]m + [naλ]m

}
=
{

[n′a1]m + [n′aι]m, [n
′aκ]m + [n′aλ]m

}

as sets. By the lemma it follows, possibly after replacing n by −n, which
we may do, that there is an even permutation σ ∈ A4 of order 2 such that
[n′ai]m = [naσ(i)]m for all i. As the pairs ±n and ±n′ are distinct, σ 6= 1.
Possibly after a permutation of the indices we may therefore assume that

(6.4.1)
[n′a1]m = [na2]m , [n′a3]m = [na4]m ,

[n′a2]m = [na1]m , [n′a4]m = [na3]m .

Since gcd(m, a1, . . . , a4) = 1 this implies that gcd(m,n) = gcd(m,n′).

(6.5) Let r = gcd(n,m). Let m′ = m/r, and consider the triple (m′, N ′, a′)
obtained from (m,N, a) by reduction modulo m′. Then we have a bijection
D(m, a)

∼−→ D(m′, a′) by (±n) 7→ (±nr ). Hence #D(m′, a′) > 2. In particular,
N ′ = 4, and (m′, N ′, a′) is not equivalent to one of the triples listed in Table 1.
By our minimality assumption on (m,N, a), see 5.4, it therefore follows that
r = 1. Hence we may replace the 4-tuple a by n′a = (n′a1, . . . , n′a4), which
means we may set n′ = 1 in the above. In this case, (6.4.1) tells us that n2 = 1
in (Z/mZ), and the 4-tuple a has the form a = (a1, na1, a3, na3) with n 6= ±1
and

(6.5.1) (n+ 1)(a1 + a3) = 2m.

From these relations we want to deduce that there is a pair ±ν ∈ D(m, a) with
gcd(m, ν) 6= 1, thereby obtaining a contradiction. Write m = 2k ·M with M
odd.
First assume n 6≡ −1 modulo M . For an odd prime number ℓ and an exponent
e > 1, the congruence n2 ≡ 1 mod ℓe only has n ≡ ±1 as solutions. Hence
there is an odd prime divisor ℓ of m such that n 6≡ −1 mod ℓ. But then (6.5.1)
gives a1 + a3 ≡ 0 mod ℓ, and since gcd(m, a1, . . . , a4) = 1 we further have
a1 6≡ 0 mod ℓ and a3 6≡ 0 mod ℓ. Taking ν := m/ℓ we find that ±ν ∈ D(m, a);
contradiction.

Documenta Mathematica 15 (2010) 793–819



Special Subvarieties and Families of Cyclic Covers 813

The only remaining possibility is that n ≡ −1 modulo M , and therefore n 6≡
−1 mod 2k. In particular, k > 2. In this case (6.5.1) implies a1+a3 ≡ 0 mod 4,
in which case ±m/4 ∈ D(m, a); contradiction. This completes the proof of
Thm. 3.6 in the case N = 4.

7. Proof of the main result: five or more branch points

We now turn to the case N > 5. The idea behind the proof is the same
as in the previous section, but there are some additional difficulties. In 7.2
and 7.3 we prove two technical results. Once we have these, we can again write
down elements in the source of the map (5.8.1). Similar to what we did in
Section 6, this gives us polynomial identities (7.4.1), and with some elementary
combinatorial arguments we can then conclude the proof.

(7.1) Assumptions. — We retain the assumptions made in 5.4. In addition we
now assume N > 5. Again we assume (m,N, a) is minimal. Because we have
already proven Thm. 3.6 for N = 4, it is again true that if m′ is a proper divisor
of m and (m′, N ′, a′) is obtained from (m,N, a) by reduction modulo m′, either
N ′ 6 3 or (m′, N ′, a′) is equivalent to one of the twenty triples listed in Table 1.

(7.2) Lemma. — With assumptions as in 7.1, there exists an index n ∈
(Z/mZ)∗ such that {dn, d−n} 6= {0, N − 2}.
With the terminology introduced in 4.3, the lemma says that the new part of
the local system V (as in Section 4) is not isotrivial.

Proof. We assume {dn, d−n} = {0, N − 2} for all n ∈ (Z/mZ)∗, and we
seek to derive a contradiction. It will be convenient to consider the function
δa: Z/mZ → Z>0 given by δa(n) =

∑N
i=1

〈−nai
m

〉
. Note that for n 6= 0 the dn

defined in (3.2.2) equals −1 + δa(n). For n ∈ (Z/mZ)∗ we have δa(n) > 1 and
δa(n) + δa(−n) = N . Our assumption is equivalent to the condition that

(7.2.1) {δa(n), δa(−n)} = {1, N − 1} for all n ∈ (Z/mZ)∗.

Possibly after replacing a = (a1, . . . , aN ) by −a, we may assume δa(1) = 1,
which means that

(7.2.2) [a1]m + · · ·+ [aN ]m = m.

We divide the proof into a couple of steps.

Step 1. Our first goal is to show that m > 60. For a given m, (7.2.2) leaves only
finitely many possible triples (m,N, a), up to equivalence. With the help of a
small computer program we check that for m 6 60 the only two possibilities
with N > 5 and {δa(n), δa(−n)} = {1, N − 1} for all n ∈ (Z/mZ)∗ are given
(up to equivalence) by

(7.2.3) m = 6 , N = 5 , a = (1, 1, 1, 1, 2) ;
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(7.2.4) m = 6 , N = 6 , a = (1, 1, 1, 1, 1, 1) .

So it remains to show that for these triples, Z(m,N, a) is not special.
In case (7.2.3), we have g = 7 and the family of Jacobians J → T decomposes,
up to isogeny, as a product of three factors: J ∼ Y1 × Y2 × Y3, with
— Y1 a pull-back of the Legendre family of elliptic curves, which is Example 

in Table 1; this is the old factor corresponding to the divisor 2 of m,
— Y2 a pull-back of Example ; this is the old factor corresponding to the

divisor 3 of m,
— Y3 the new part.

(The new part Y3 is in fact an isotrivial family of 3-dimensional abelian varieties
of CM type, but we will not need this.) Let b ∈ T (C) be a Hodge-generic point.
The fibre Y1,b is an elliptic curve with endomorphism ring Z; its Hodge group
is isomorphic with SL2. The fibre Y2,b is an abelian threefold that is easily seen
to be simple. (E.g., use the fact that Example  is special, together with [23],
Thm. 5.) By [16], Prop. 3.8 the Hodge group of Y1,b×Y2,b is the product of the
two Hodge groups. Hence the smallest special subvariety S ⊂ A7 that contains
Z(m,N, a) has dimension at least 1 + 2 = 3 (see 1.5), and since N − 3 = 2 < 3
this means that Z(m,N, a) is not special.
In case (7.2.4), we have g = 10 and the family of Jacobians J → T decomposes,
up to isogeny, as a product of three factors: J ∼ Y1 × Y2 × Y3, with
— Y1 a pull-back of Example ; this is the old factor corresponding to the

divisor 2 of m,
— Y2 a pull-back of Example ; this is the old factor corresponding to the

divisor 3 of m,
— Y3 the new part.

(In this case the new part Y3 is an isotrivial family of 4-dimensional abelian
varieties of CM type; again we will not need this.) For a Hodge-generic point
b ∈ T (C) the fibre Y1,b is an abelian surface with endomorphism ring Z; its
Hodge group H1 = Hdg(Y1,b) is isomorphic with Sp4. The fibre Y2,b is an
abelian fourfold. By Thm. 1.1 of [26] we have End(Y2,b) = Z[ζ3], and the
tangent multiplicities for the factor Y2 (=Example ) are given by d(1 mod 3) =
3 and d(2 mod 3) = 1. By [15], 7.4, it follows that for the generic Hodge group
H2 = Hdg(Y2,b) we have H2,R

∼= U(1, 3). If H = Hdg(Jb) is the generic
Hodge group in our family of Jacobians, H projects surjectively to H1 and H2.
It follows that among the simple factors of Had

R both a factor PSp4 and a
factor PSU(1, 3) occur; this implies that the smallest special subvariety S ⊂ A7

that contains Z(m,N, a) has dimension at least 3 + 3 = 6 (again see 1.5), and
since N − 3 = 3 < 6 this means that Z(m,N, a) is not special.

Step 2. The function δa has the property that δa(n1 + n2) 6 δa(n1) + δa(n2).
In particular, if n1, n2 and n1 + n2 are all in (Z/mZ)∗ then by (7.2.1) we have
the implication

(7.2.5) δa(n1) = δa(n2) = 1 ⇒ δa(n1 + n2) = 1 .
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Step 3. Next we show that m is not divisible by 2, 3 or 5. Let p ∈ {2, 3, 5},
and suppose m is divisible by p. Let m′ = m/p and let (m′, N ′, a′) be obtained
from (m,N, a) by reduction modulo m′. The new triple cannot be one of the
examples listed in Table 1, for this would imply (by inspection of the table)
that m = p ·m′ 6 5 · 12 = 60, which we have excluded. Hence our minimality
assumption on the triple (m,N, a) implies that N ′ 6 3.
Since N > 5, there are at least two indices i such that ai ≡ 0 modulo m′. For
p = 2 this contradicts (7.2.2). Hence 2 ∈ (Z/mZ)∗ and by repeated application
of (7.2.5), starting from δa(1) = 1, we find that δa(2k) = 1 for all k.
For p = 3 the only possibility left, in view of (7.2.2), is that there are precisely
two indices i with [ai]m = m/3 and that [ai]m < m/3 for all remaining indices.
This contradicts the fact that δa(2) = 1. Hence 3 does not divide m.
Finally take p = 5. The fact that δa(2) = 1 implies that there is a unique
index i with [ai]m > m/2 and that [ai]m < m/2 for all remaining indices.
Since N > 5 and N ′ 6 3 this leaves (possibly after a permutation of the
indices) two possibilities: either

[a1]m = 3m/5 , [a2]m = m/5 , [ai]m < m/5 for all i > 2,

or

m/2 < [a1]m < 3m/5 , [a2]m = [a3]m = m/5 , [ai]m < m/5 for all i > 3.

In both cases we get a contradiction with the fact that δa(4) = 1.

Step 4. We now show that m has at most four distinct prime divisors. To
see this, let p be any prime divisor of m, let m′ = m/p and let (m′, N ′, a′) be
obtained from (m,N, a) by reduction modulo m′. If the new triple is one of the
examples listed in Table 1, it can only be Example , for otherwise inspection
of the table gives that m′ (and hence m) is divisible by 2, 3, or 5, which we
have excluded. Example  has N ′ = 4 branch points, so this fact, together
with our minimality assumption on the triple (m,N, a), implies that N ′ 6 4.
The previous argument shows that for any prime divisor p of m, there are at
most 4 indices i such that ai is not divisible by m/p. On the other hand,
ai 6≡ 0 mod m, so for a given index i there can be at most one prime divisor p
of m such that ai is divisible by m/p. As N > 5 it follows that m has at most
four distinct prime divisors.

Step 5; conclusion of the proof. Combining the conclusion of Step 3 with (7.2.5),
we find that for all ρ ∈ {1, 2, 3, 4, 5} we have (ρ mod m) ∈ (Z/mZ)∗ and
δa(ρ mod m) = 1.
Let ν be an integer such that gcd(m, ν) = 1 and δa(ν mod m) = 1. Let ρ be
the smallest positive integer such that gcd(m, ν + ρ) = 1. The fact that m
has at most four distinct prime divisors, all greater than 5, implies that ρ 6 5.
But then gcd(ρ,m) = 1 and from (7.2.5) we get that δa(ν + ρ mod m) = 1.
Repeating this, we find that δa(n) = 1 for all n ∈ (Z/mZ)∗, which contradicts
the fact that δa(n) + δa(−n) = N > 3. This completes the proof of the
lemma. �
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(7.3) Our next goal is to show there exist two distinct pairs ±n and ±n′
in I(m) with

(7.3.1) d−n = d−n′ = 1 , and dn = dn′ = N − 3 .

(In particular, n 6≡ 0 and n′ 6≡ 0.) For this we work over C and we consider
the generic Mumford-Tate group M of the family C/T . As in 1.5, let Mad

R =
Q1 × · · · × Qr be the decomposition of Mad

R as a product of simple factors.
The assumption that Z(m,N, a) is special means that N − 3 =

∑r
i=1 d(Qi),

with notation as in 1.5. Further, this assumption implies that the connected
algebraic monodromy group Mon0 of the family is a normal subgroup of M ; in
particular, Mon0,ad

R =
∏
i∈K Qi for some subset K ⊂ {1, . . . , r}.

By Lemma 7.2 there exists an index n in (Z/mZ)∗ with {dn, d−n} 6= {0, N −
2}. By Prop. 4.7 it follows that one of the simple factors Qi, say Q1, is a
PSU(dn, d−n), which gives d(Q1) = dnd−n. Because n ∈ (Z/mZ)∗ we have
dn+d−n = N−2; hence dnd−n > N−3 with equality of and only if {dn, d−n} =
{1, N − 3}. Possibly after replacing n by −n we therefore have dn = N − 3
and d−n = 1. Further, the relation N − 3 =

∑r
i=1 d(Qi) implies that all other

simple factors Q2, . . . , Qr are anisotropic (i.e., compact).
Our assumptions imply that there is another index pair ±n′ ∈ I(m) with
dn′ 6= 0 and d−n′ 6= 0, for if this is not the case then (m,N, a) satisfies (4.8.1),
which implies it is one of the examples of Table 1. If m = 2m′ is even and
n′ = m′ then by Prop. 4.7 one of the factors Qi is a PSp2h with h = dn′ > 0.
As N − 3 > 2, this factor cannot be the factor Q1 = PSU(1, N − 3), and since
PSp2h is not anisotropic we arrive at a contradiction. So n′ 6= −n′, and, again
by Prop. 4.7, one of the Qi is a non-compact unitary factor PSU(dn′ , d−n′).
This factor must be the factor Q1; hence {dn′ , d−n′} = {1, N − 3}, which gives
what we want.

(7.4) Consider two distinct pairs ±n and ±n′ in I(m) for which (7.3.1) holds.
Let Γ ∈ GLN−3(OU ) be the matrix of γ(n): F

∗
UEU,(n) → EU,(n) with regard to

the frames given by the forms ωn,σ. It is the inverse of the matrix A = An of
Lemma 5.9. Similarly, let Γ′ be the matrix of γ(n′), and let A′ = An′ be its
inverse. Further, let c and c′ be the sections of O∗U (the inverses of the 1 × 1
matrices A−n and A−n′ of Lemma 5.9) such that γ(ω−n,0 ⊗ 1) = c · ω−n,0 and
γ(ω−n′,0 ⊗ 1) = c · ω−n′,0.
For σ ∈ {0, 1, . . . , N − 4}, let ησ ∈ Γ(U,K(0)) be given by

ησ := ω−n,0 ⊗ ωn,σ − ω−n′,0 ⊗ ωn′,σ .

As ω−n,0 · ωn,ρ = ω−n′,0 · ωn′,ρ as sections of f∗(ω⊗2), the image of ησ un-
der Sym2(γ) equals

N−4∑

ρ=0

(
c · Γρ,σ − c′ · Γ′ρ,σ

)
· (ω−n,0 · ωn,ρ) .
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Because the sections ω−n,0 ·ωn,ρ for ρ ∈ {0, . . . , N−4} are linearly independent,
it follows from Prop. 5.8 that c · Γρ,σ − c′ · Γ′ρ,σ for all σ, ρ ∈ {0, 1, . . . , N − 4},
which can be rewritten as

(7.4.1) c−1 ·Aρ,σ = c′,−1 · A′ρ,σ .

Choose two distinct indices κ, λ in {1, 2, . . . , N}, and write {1, . . . , N} =
{κ, λ} ∐ I. For ν ∈ {0, 1}, define vn(ν) to be the largest integer v such that
Aν,ν |tκ=0 is divisible by tvλ. Similarly, let v−n be the largest integer v such that
c−1|tκ=0 is divisible by tvλ. Using the explicit formulas for c−1 and the matrix A
from Lemma 5.9, we find

v−n = max
{

0, (p− 1)− q ·
∑

i∈I
[nai]m

}
,

vn(0) = max
{

0, (N − 3)(p− 1)− q ·
∑

i∈I
[−nai]m

}
,

vn(1) = 0 .

(Recall that q = (p− 1)/m.)
Next we define wn(ν) = v−n + vn(ν) to be the largest integer w such that(
c−1 · Aν,ν

)
|tκ=0 is divisible by twλ . Similar to (6.1.1), it follows from the fact

that d−n = 1 and dn = N − 3 that [−nai]m = m − [nai]m for all i and∑N
i=1 [nai]m = 2m. Using these relations we obtain

w(0) = max
{

(p− 1)− q ·
∑

i/∈I
[nai]m, (p− 1)− q ·

∑

i∈I
[nai]m

}

=
∣∣∣(p− 1)− q ·

∑

i/∈I
[nai]m

∣∣∣ = q ·
∣∣m− [naκ]m − [naλ]m

∣∣ ,

w(1) = max
{

0, (p− 1)− q ·
∑

i∈I
[nai]m

}

= max
{

0, (p− 1)− q ·
∑

i/∈I
[nai]m

}
= q ·max

{
0, [naκ]m + [naλ]m −m

}
.

We can do the same calculations for the pair ±n′; let us call w′(0) and w′(1)
the resulting values. From (7.4.1) we get the relations w(0) = w′(0) and
w(1) = w′(1). It follows that for all choices of κ and λ we have [naκ]m +
[naλ]m = [n′aκ]m + [n′aλ]m. This readily implies that [nai]m = [n′ai]m for all
i ∈ {1, . . . , N}. As gcd(m, a1, . . . , aN ) = 1 it follows that n = n′, which contra-
dicts our assumption that the pairs ±n and ±n′ are distinct. This completes
the proof of Theorem 3.6. �
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[3] Y. André, Mumford-Tate groups of mixed Hodge structures and the theorem
of the fixed part. Compositio Math. 82 (1992), 1–24.
[4] I. Bouw, The p-rank of ramified covers of curves. Compositio Math. 126
(2001), 295–322.
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Abstract. We address the problem of classification of contact Fano
manifolds. It is conjectured that every such manifold is necessarily
homogeneous. We prove that the Killing form, the Lie algebra grading
and parts of the Lie bracket can be read from geometry of an arbitrary
contact manifold. Minimal rational curves on contact manifolds (or
contact lines) and their chains are the essential ingredients for our
constructions.
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1 Introduction

In this article we are interested in the classification of contact Fano manifolds.
We review the relevant definitions in §2. So far the only known examples of
contact Fano manifolds are obtained as follows. For a simple Lie group G
consider its adjoint action on P(g), where g is the Lie algebra of G. This action
has a unique closed orbit X and this X has a natural contact structure. In
this situation X is called a projectivised minimal nilpotent orbit, or the adjoint
variety of G. By the duality determined by the Killing form, equivalently we
can consider the coadjoint action of G on P(g∗) and X is isomorphic to the
unique closed orbit in P(g∗).

1Dedicated in memory of Marcin Hauzer.
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Conjecture 1.1 (LeBrun, Salamon). If X is a Fano complex contact mani-
fold, then X is the adjoint variety of a simple Lie group G.

This problem originated with a problem in Riemannian geometry. In [Ber55]
a list of all possible holonomy groups of simply connected Riemannian mani-
folds is given. The existence problem for all the cases has been solved locally.
Also compact non-homogeneous examples with most of the possible holonomy
groups were constructed with the unique exception of the quaternion-Kähler
manifolds. It is conjectured that the compact quaternion-Kähler manifolds
must be homogeneous (see [LeB95] and references therein).

Conjecture 1.2 (LeBrun, Salamon). Let M be a compact quaternion-Kähler
manifold. Then M is a homogeneous symmetric space (more precisely, it is
one of the Wolf spaces — see [Wol65]).

The relation between the conjectures is given by the construction of a twistor
space. The S2-bundle of complex structures on tangent spaces to a quaternion-
Kähler manifold M is called the twistor space of M . If M is compact, it has
positive scalar curvature, and then the twistor space X has a natural complex
structure and is a contact Fano manifold with a Kähler-Einstein metric. In
particular, the twistor space of a Wolf space is an adjoint variety. Hence Con-
jecture 1.1 implies Conjecture 1.2. Conversely, if X is a contact Fano manifold
with Kähler-Einstein metric, then it is a twistor space of a quaternion-Kähler
manifold — see [LeB95].
In order to study the non-homogeneous contact manifolds (potentially non-
existent) it is natural to assume PicX ≃ Z and further thatX is not isomorphic
to a projective space. This only exludes the adjoint varieties of types A and C
(see §2 for more details).
With this assumption, we take a closer look at three pieces of the homogeneous
structure on adjoint varieties: the Killing form B on g, the Lie algebra grading
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (see [LM02, §6.1] and references therein) and a
part of the Lie bracket on g. Understanding the underlying geometry allows us
to define the appropriate generalisations of these notions on arbitrary contact
Fano manifolds.
An essential building block for our constructions is the notion of a contact line
(or simply line) on X . These contact lines were studied by Kebekus [Keb01],
[Keb05] and Wiśniewski [Wiś00]. Also they are an instance of minimal rational
curves, which are studied extensively. The geometry of contact lines was the
original motivation to study Legendrian subvarieties in projective space (see
[Bucz09] for an overview and many details). We briefly review the subject of
lines on contact Fano manifolds in §3.1.
The key ingedient is the construction of a family of divisors Dx parametrised
by points x ∈ X (see §3.3). These divisors are swept by pairs of intersecting
contact lines, one of which passes through x. In other words, set theoretically
Dx is the set of points of X , which can be joined with x using at most 2
intersecting contact lines. The idea to study these loci comes from Wiśnie-
wski [Wiś00] where he observed, that (under an additional minor assumption)
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these loci contain some non-trivial divisorial components and he studied the
intersection numbers of certain curves on X with the divisorial components.
Here we prove all the components of Dx are divisorial and draw conclusions
from that observation going into a different direction than those of [Wiś00].

Theorem 1.3. Let X be a contact Fano manifold with PicX ≃ Z and assume
X is not isomorphic to a projective space. Then the locus Dx ⊂ X swept by the
pairs of intersecting contact lines, one of which passes through x ∈ X is of pure
codimension 1 and thus Dx determines a divisor on X. Let 〈D〉 ⊂ H0(O(Dx))
be the linear system spanned by these divisors. Let φ : X → P〈D〉∗ be the map
determined by the linear system 〈D〉 and let ψ : X → P〈D〉 be the map x 7→ Dx.
Then:

(i) both φ and ψ are regular maps.

(ii) there exists a unique up to scalar non-degenerate bilinear form B on 〈D〉,
which determines an isomorphism P〈D〉∗ ≃ P〈D〉 making the following
diagram commutative:

P〈D〉∗

≃
��

X

φ 33ffffffffffffff
ψ

++XXXXXXXXXXXXXX

P〈D〉.

(iii) The bilinear form B is either symmetric or skew-symmetric.

(iv) If X ⊂ P(g∗) is the adjoint variety of simple Lie group G, then 〈D〉 = g
and B is the Killing form on g.

With the notation of the theorem, after fixing a pair of general points x,w ∈ X
there are certain natural linear subspaces of 〈D〉, which we denote 〈D〉−2,
〈D〉−1, 〈D〉0, 〈D〉1 and 〈D〉2 (see §5 for details).

Theorem 1.4. If X ⊂ P(g∗) is the adjoint variety of a simple Lie group G
with PicX ≃ Z and X not isomorphic to a projective space, then there exists
a choice of a maximal torus of G and a choice of order of roots of g, such that
〈D〉i = gi for every i ∈ {−2,−1, 0, 1, 2}, where g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 is
the Lie algebra grading of g.

Finally, if X is the adjoint variety of G, then there is a rational map

[·, ·] : X ×X 99K P(g),

which is the Lie bracket on g (up to projectivisation). Also there is a divisor
D ⊂ X ×X , such that for general (x, z) ∈ D the Lie bracket [x, z] is in X . We
recover this bracket restricted to D for general contact manifolds:
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Theorem 1.5. For X and Dx and in Theorem 1.3, let D ⊂ X × X be the
divisor consisting of pairs (x, z) ∈ X × X, such that z ∈ Dx. There exists a
rational map [·, ·]D : D 99K X, such that [x, z]D = y, where y is an intersection
point of a pair of contact lines that join x and z. In particular, this intersection
point y and the pair of lines are unique for general pair (x, z) ∈ D. Moreover,
if X is the adjoint variety of a simple Lie group G, then [·, ·]D is the restricion
of the Lie bracket.

In §2 we introduce and motivate our assumptions and notation.
In §3 we review the notion of contact lines and their properties. We continue
by studying certain types of loci swept by those lines and calculate their di-
mensions. In particular we prove there Theorem 3.6, which is a part of results
summarised in Theorem 1.3. We also study the tangent bundle to Dx as a
subspace of TX .
In §4 we study the duality of maps φ and ψ introduced in Theorem 1.3 together
with the consequences of this duality. This section is culminated with the proof
of Theorem 1.3.
In §5 we generalise the Lie algebra grading to arbitrary contact manifolds and
prove Theorem 1.4.
In §6 we prove that certain lines are integrable with respect to a special distri-
bution on Dx and we apply this to prove Theorem 1.5.
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2 Preliminaries

Throughout the paper all our projectivisations P are naive. This means, if V
is a vector space, then PV = (V \ 0)/C∗, and similarly for vector bundles.
A complex manifold X of dimension 2n+ 1 is contact if there exists a vector
subbundle F ⊂ TX of rank 2n fitting into an exact sequence:

0→ F → TX
θ→ L→ 0

such that the derivative dθ ∈ H0(
∧2
F ∗⊗L) of the twisted form θ ∈ H0(T ∗X⊗

L) is nowhere degenerate. In particular, dθx is a symplectic form on the fibre
of contact distribution Fx. See [Bucz09, §E.3 and Chapter C] and references
therein for an overview of the subject.
A projective manifold X is Fano, if its anticanonical divisor KX

∗ =
∧dimX

TX
is ample.
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If X is a projective contact manifold, then by Theorem of Kebekus, Peter-
nell, Sommese and Wiśniewski [KPSW00] combined with a result by Demailly
[Dem02], X is either a projectivisation of a cotangent bundle to a smooth pro-
jective manifold orX is a contact Fano manifold, with PicX ≃ Z. In the second
case, since KX ≃ (L∗)⊗(n+1), by [KO73], either X ≃ P2n+1 or PicX = Z · [L].
Here we are interested in the case X 6≃ P2n+1. Thus our assumption spelled
out below only exclude some well understood cases (the projectivised cotan-
gent bundles and the projective space) and they agree with the assumptions of
Theorems 1.3, 1.4 and 1.5.

Notation 2.1. Throughout the paper X denotes a contact Fano manifold with
PicX generated by the class of L, where L = TX/F and F ⊂ TX is the contact
distribution on X . We also assume dimX = 2n+ 1.

From Theorem of Ye [Ye94] it follows that n ≥ 2.

We will also consider the homogeneous examples of contact manifolds (i.e. the
adjoint varieties). Thus we fix notation for the Lie group and its Lie algebra.

Notation 2.2. Throughout the paper G denotes a simple complex Lie group,
not of types A or C (i.e. not isomorphic to SLn nor Sp2n nor their discrete
quotients). Further g is the Lie algebra of G. Thus g is one of son (types B
and D), or one of the exceptional Lie algebras g2, f4, e6, e7 or e8.

The contact structure on P2n−1 = P(C2n) is determined by a symplectic form ω
on C2n. The precise relation between the contact and symplectic structures is
decribed for instance in [Bucz09, §E.1] (see also [LeB95, Ex. 2.1]). In particular,
for all x ∈ X , the projectivisation of a fibre of the contact distribution PFx
comes with a natural contact structure.
Let M be a projective contact manifold (in our case M = X with X as in
Notation 2.1 or M = P2n−1). A subvariety Z ⊂ M is Legendrian, if for
all smooth points z ∈ Z the tangent space TzZ is contained in the contact
distribution of M and Z is of pure dimension 1

2 (dimM − 1).
Recall from [Har95, Lecture 20] or [Mum99, III.§3,§4] the notion of tangent
cone. For a subvariety Z ⊂ X , and a point x ∈ Z let τxZ ⊂ TxX be the
tangent cone of Z at x. In this article we will only need the following elementary
properties of the tangent cone:

• τxZ is an affine cone (i.e. it is invariant under the standard action of C∗

on TxX).

• dimx Z = dim τxZ and thus if Z is irreducible, then dimZ = dim τxZ.

• If x ∈ Z1 ⊂ Z2 ⊂ X , then τxZ1 ⊂ τxZ2.

• If Z is smooth at x, then τxZ = TxZ.

Since τxZ is a cone, let PτxZ ⊂ PTxX be the corresponding projective variety.
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3 Loci swept out by lines

A rational curve l ⊂ X is a contact line (or simply a line) if degL|l = 1.
LetRatCurvesn(X) be the normalised scheme parametrising rational curves on
X , as in [Kol96, II.2.11]. Let Lines(X) ⊂ RatCurvesn(X) be the subscheme
parametrising lines. Then every component of Lines(X) is a minimal compon-
ent of X in the sense of [HM04]. We fix H 6= ∅ a union of some irreducible
components of Lines(X).
By a slight abuse of notation, from now on we say l is a (contact) line if and
only if l ∈ H. For simplicity, the reader may choose to restrict his attention
to one of the extreme cases: either to the case H = Lines(X) (and thus
be consistent with [Wiś00] and the first sentence of this section) or to the
case where H is one of the irreducible components of Lines(X) (and thus be
consistent with [Keb01, Keb05]). In general it is expected that Lines(X) (with
X as in Notation 2.1) is irreducible and all the cases are the same.

3.1 Legendrian varieties swept by lines

We denote by Cx ⊂ X the locus of contact lines through x ∈ X . Let C x :=
PτxCx ⊂ P(TX). Note that with our assumptions both Cx and C x are closed
subsets of X or P(TxX) respectively.
The following theorem briefly summarises results of [Keb05] and earlier:

Theorem 3.1. With X as in Notation 2.1 let x ∈ X be any point. Then:

(i) There exist lines through x, in particular Cx and C x are non-empty.

(ii) Cx is Legendrian in X and C x ⊂ P(Fx) and C x is Legendrian in P(Fx).

(iii) If in addition x is a general point of X, then C x is smooth and each
irreducible component of C x is linearly non-degenerate in P(Fx). Further
Cx is isomorphic to the projective cone over C x ⊂ P(Fx), i.e. Cx ≃ C̃ x ⊂
P(Fx⊕C), in such a way that lines through x are mapped bijectively onto
the generators of the cone and restriction of L to Cx via this isomorphism
is identified with the restriction of OP(Fx⊕C)(1) to C̃ x. In particular all
lines through x are smooth and two different lines intersecting at x will
not intersect anywhere else, nor they will share a tangent direction.

Proof. Part (i) is proved in [Keb01, §2.3].
The proof of (ii) is essentially contained in [KPSW00, Prop. 2.9]. Explicit
statements are in [Keb01, Prop. 4.1] for Cx and in [Wiś00, Lemma 5] for C x.
Also [HM99] may claim the authorship of this observation, since the proof in
the homogeneous case is no different than in the general case.
Assume x ∈ X is a general point. The statements of (iii) are basically [Keb05,
Thm 1.1], which however assumes (in the statement) that H is irreducible.
This is never used in the proof, with the exception of the argument for the
irreducibility of Cx — see however Remark 3.2. Thus C x is smooth and Cx is
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isomorphic to the cone over C x as claimed. Each irreducible component C x

is non-degenerate in PFx by [Keb01, Thm 4.4] — again the statement is only
for C x, not for its components, however the proof stays correct in this more
general setup. In particular, [Keb01, Lemma 4.3] implies that Cx polarised by
L|Cx is not isomorphic with a linear subspace with polarised by O(1). Thus
the other results of this theorem give alternate (but more complicated) proof
of that generalised non-degeneracy.

�

Remark 3.2. Note that (assumingH is irreducible) Kebekus [Keb05] also stated
that Cx and C x are irreducible for general x. However it was observed by
Kebekus himself together with the author that there is a gap in the proof.
This gap is on page 234 in Step 2 of proof of Proposition 3.2 where Kebekus
claims to construct “a well defined family of cycles” parametrised by a divisor
D0. This is not necessarily a well defined family of cycles: Condition (3.10.4)
in [Kol96, §I.3.10] is not necessarily satisfied if D0 is not normal and there
seem to be no reason to expect that D0 is normal. As a consequence the map
Φ: D0 → Chow(X) is not necessarily regular at non-normal points of D0 and
it might contract some curves.

Let us define:

C2 ⊂ X ×X
C2 := {(x, y) | y ∈ Cx} ,

i.e. this is the locus of those pairs (x, y), which are both on the same contact
line. Again this locus is a closed subset of X ×X .
Analogously, define:

C3 := C2 ×X C2

so that:

C3 ⊂ X ×X ×X
C3 := {(x, y, z) | y ∈ Cx, z ∈ Cy} .

Finally, for x ∈ X we also define C2
x:

C2
x ⊂ X ×X ≃ {x} ×X ×X

C2
x := {(y, z) | y ∈ Cx, z ∈ Cy} ,

with the scheme structure of the fibre of C3 under the projection on the first
coordinate. Since for all x ∈ X all irreducible components of Cx are of dimen-
sion n (see Theorem 3.1) we conclude:

Proposition 3.3. All C2, C2
x, C

3 are projective subschemes, they are all of
pure dimension, and their dimensions are:

• dimC2 = 3n+ 1.
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• dimC2
x = 2n.

• dimC3 = 4n+ 1.

�

3.2 Joins and secants of Legendrian subvarieties

For subvarieties Y1, Y2 ⊂ PN recall that their join Y1 ∗ Y2 is the closure of the
locus of lines between points y1 ∈ Y1 and y2 ∈ Y2. Note that the expected
dimension of Y1 ∗ Y2 is dimY1 + dimY2 + 1. We are only concerned with two
special cases: either Y1 and Y2 are disjoint or Y1 = Y2.

Lemma 3.4. If Y1, Y2 ⊂ PN are two disjoint subvarieties of dimensions k − 1
and N−k respectively, then their join Y1∗Y2 fills out the ambient space, i.e. this
join is of expected dimension.

Proof. Let p ∈ PN be a general point and consider the projection π : PN 99K
PN−1 away from p. Let Zi = π(Yi) for i = 1, 2. Since p is general, dimZi =
dimYi and thus Z1 ∩ Z2 is non-empty. Let q ∈ Z1 ∩ Z2 be any point. The
preimage π−1(q) is a line in PN intersecting both Y1 and Y2 and passing through
p.

�

Recall, that the special case of join is when Y = Y1 = Y2 and σ2(Y ) := Y ∗ Y
is the secant variety of Y .

Proposition 3.5. • Let Y ⊂ P2n−1 be an irreducible linearly non-
degenerate Legendrian variety. Then σ2(Y ) = P2n−1.

• Let Y1, Y2 ⊂ P2n−1 be two disjoint Legendrian subvarieties. Then Y1∗Y2 =
P2n−1.

Proof. If Y is irreducible, then this is proved in the course of proof of
Prop. 17(2) in [LM07].
If Y1 and Y2 are disjoint, then the result follows from Lemma 3.4.

�

3.3 Divisors swept by broken lines

Following the idea of Wiśniewski [Wiś00] we introduce the locus of broken lines
(or reducible conics, or chains of 2 lines) through x:

Dx :=
⋃

y∈Cx
Cy.
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Note that Dx is a closed subset of X as it can be interpreted as the image of
projective variety C2

x ⊂ X × X under a proper map, which is the projection
onto the last coordinate. By analogy to the case of lines consider also:

D2 ⊂ X ×X
D2 := {(x, z) | ∃y∈Cx s.t. z ∈ Cy} ,

i.e. D2 is the projection of C3 onto first and third coordinates. Thus again D2

is a closed subset of the product. Set theoretically Dx is the fibre over x of
(either of) the projection D2 → X and if we consider D2 as a reduced scheme,
then we can assign to Dx the scheme structure of the fibre.
It follows immediately from the above discussion and Proposition 3.3, that
every component of Dx has dimension at most 2n and every component of D2

has dimension at most 4n+ 1. In fact the equality holds.

Theorem 3.6. Let x ∈ X be any point. Then the locus Dx is of pure codimen-
sion 1.

Proof. Assume first that x ∈ X is a general point. Recall, that C2
x ⊂ X ×X

has two projections:

C2
x

π2 // //

π1

����

Dx

Cx

Fix (Dx)• to be an irreducible component of Dx. Then (Dx)• is dominated by
some component (C2

x)• of C2
x. Dimension of (C2

x)• is equal to 2n by Proposi-
tion 3.3.
For y ∈ Cx the fiber π1

−1(y) ⊂ C2
x is equal to {y} × Cy. In particular, by

Theorem 3.1(ii) the fibers of π1 have constant dimension n. Thus (C2
x)• is

mapped onto an irreducible component (Cx)• of Cx. Finally, let C′ be an
irreducible component of the preimage π1

−1(x) which is contained in (C2
x)•.

Note that C′ can be identified with an irreducible component of Cx, because
π1
−1(x) = {x} × Cx.

We claim that the projectivised tangent cone Pτx(Dx)• contains the join of two
tangent cones

(PτxC′) ∗ (Pτx(Cx)•) ⊂ PFx ⊂ PTxX.

The proof of the claim is a baby version of [HK05, Thm 3.11]. There however
Hwang and Kebekus assume Cx is irreducible and thus their results do not
neccessarily apply directly here. Let l0 be a general line through x contained
in C′ and let l be a general line through x contained in (Cx)•. To prove the
claim it is enough to show there exists a surface S ⊂ Dx containing l0 and l
which is smooth at x, since in such a case TxS ⊂ τxDx and PTxS is the line
between PTxl and PTxl0.
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We obtain S by varying l0. Consider Hl ⊂ H the parameter space for lines on
X , which intersect l. By Theorem 3.1(iii) the space Hl comes with a projection
ξ : Hl 99K l, which maps l′ ∈ Hl to the intersection point of l and l′, and which
is well defined on an open subset containg all lines through x.
By generality of our choices, l0 is a smooth point of Hl and ξ is submersive at
l0. In the neighbourhood of l0 choose a curve A ⊂ Hl smooth at l0 for which
ξ|A is submersive at l0. Then the locus in X of lines which are in A sweeps a
surface S ⊂ X , which is smooth at x, contains l0, and contains an open subset
of l around x. Thus the claim is proved and:

(PτxC′) ∗ (Pτx(Cx)•) ⊂ Pτx(Dx)• (3.7)

Now we claim that Fx ⊂ τxDx. For this purpose we separate two cases.
In the first case C′ = (Cx)•. Then PτxC′ is non-degenerate by Theorem 3.1
and thus

(PτxC′) ∗ (Pτx(Cx)•) = σ2(PτxC′) = P(Fx)

by Proposition 3.5. Combining with (3.7) we obtain the claim.
In the second case C′ and (Cx)• are different components of Cx. Then by gen-
erality of x and by Theorem 3.1, the two tangent cones (PτxC′) and (Pτx(Cx)•)
are disjoint. Thus again

(PτxC′) ∗ (Pτx(Cx)•) = P(Fx)

by Proposition 3.5. Combining with (3.7) we obtain the claim.
Thus in any case for a general x ∈ X , every component of Dx has dimension
at least 2n. The dimension can only jump up at special points when one has a
fibration, thus also at special points every component of Dx has dimension at
least 2n. Earlier we observed that dimDx ≤ 2n, thus the theorem is proved.

�

Proposition 3.8. If X is the adjoint variety of G, and x ∈ X, then Dx is the
hyperplane section of X ⊂ P(g) perpendicular to x via the Killing form.

Proof. Let X = G/P , where P is the parabolic subgroup preserving x.
Notice, that Dx must be reduced (because D is reduced and Dx is a general
fibre of D). Also Dx is P -invariant, because the set of lines is G invariant and
Dx is determined by x and the geometry of lines on X . We claim, there is a
unique P -invariant reduced divisor on X , and thus it must be the hyperplane
section as in the statment of proposition.
So let ∆ be a P -invariant divisor linearly equivalent to Lk for some k ≥ 0. Also
let ρ∆ be a section of Lk which determines ∆. The module of sections H0(Lk)
is an irreducible G-module by Borel-Weil theorem (see [Ser95]), with some
highest weight ω. Since the Lie algebra p of P contains all positive root spaces,
by [FH91, Prop. 14.13] there is a unique 1-dimensional p-invariant submodule
of H0(Lk), it is the highest weight space H0(Lk)ω. So ρ∆ ∈ H0(Lk)ω and ∆
is unique.
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The hyperplane section of X ⊂ P(g) perpendicular to x via the Killing form is
a divisor in |L|, and it is P -invariant, and so are its multiples in |Lk|. So by
the uniqueness ∆ must be equal to k times this hyperplane section. Thus ∆ is
reduced if and only k = 1 and so Dx is the hyperplane section.

�

3.4 Tangent bundles restricted to lines

Let l be a line through a general point y ∈ X . Recall from [Keb05, Fact 2.3]
that:

TX |l ≃ Ol(2)⊕Ol(1)n−1 ⊕Oln−1 ⊕Ol2

F |l ≃ Ol(2)⊕Ol(1)n−1 ⊕Oln−1 ⊕Ol(−1)

T l ≃ Ol(2)

and for general z ∈ l:

TCz|l\{z} ≃ Ol(2)⊕Ol(1)n−1.

If x ∈ X is a general point and y ∈ Cx is a general point of any of the
irreducible components of Cx and l is a line through y, then we want to express
TDx|l in terms of those splittings. In a neighbourhood of l the divisor Dx is
swept by deformations lt of l = l0 such that lt intersects Cx. By the standard
deformation theory argument taking derivative of lt by t at a point z ∈ l, we
obtain that:

TzDx ⊃
{
s(z) ∈ TzX | ∃s ∈ H0(TX |l) s.t. s(y) ∈ TyCx

}
(3.9)

Moreover, at a general point z we have equality in (3.9). If we mod out TX |l
by the rank n positive bundle (TX |l)>0 := Ol(2)⊕Ol(1)n−1, then we are left
with a trivial bundle Oln+1. Thus, since by Theorem 3.6 the dimension of
TzDx = 2n for general z ∈ l, the vector space TyCx must be transversal to
(TX |l)>0 at y. In particular, if z 6= y, then dimension of the right hand side
in (3.9) is 2n and thus (3.9) is an equality for each point z ∈ l, such that z is
a smooth point of Dx.
We conclude:

Proposition 3.10. Let x ∈ X be a general point and y ∈ Cx be a general point
of any of the irreducible components of Cx and l be any line through y. Then
there exists a subbundle Γ ⊂ TX |l such that:

Γ = Ol(2)⊕Ol(1)n−1 ⊕Oln,
Γ ∩ F |l = Ol(2)⊕Ol(1)n−1 ⊕Oln−1 = (F |l)≥0

and if z ∈ l is a smooth point of Dx, then TzDx = Γz.

�
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4 Duality

An effective divisor ∆ on X is an element of divisor group (and thus a positive
integral combination of codimension 1 subvarieties of X) and also a point in
the projective space P(H0OX(∆)) or a hyperplane in P(H0OX(∆)∗). In this
section we will constantly interchange these three interpretations of ∆. In order
to avoid confusion we will write:

• ∆div to mean the divisor on X ;

• ∆P to mean the point in P(H0OX(∆)) or in a fixed linear subsystem.

• ∆P⊥ to mean the hyperplane in P(H0OX(∆)∗) or in dual of the fixed
subsystem.

In §3.3 we have defined D ⊂ X ×X , which we now view as a family of divisors
on X parametrised by X . Since the Picard group of X is discrete and X is
smooth and connected, it follows that all the divisorsDx are linearly equivalent.
Thus let E ≃ L⊗k be the line bundle OX(Dx). Consider the following vector
space 〈D〉 ⊂ H0(E):

〈D〉 := span {sx : x ∈ X} where sx is a section of E vanishing on Dx.

Hence P〈D〉 is the linear system spanned by all the Dx.

Further, consider the map

φ : X → P〈D〉∗

determined by the linear system 〈D〉, i.e. mapping point x ∈ X to the hyper-
plane in P〈D〉 consisting of all divisors containing x.

Remark 4.1. Note that φ is regular, since for every x ∈ X there exists w ∈ X ,
such that x /∈ Dw (or equivalently, w /∈ Dx).

Since E is ample, it must intersect every curve in X and hence φ does not
contract any curve. Therefore φ is finite to one.

Proposition 4.2. If X is an adjoint variety, then k = 1, i.e. E ≃ L. If k = 1
and the automorphism group of X is reductive, then X is isomorphic to an
adjoint variety.

Proof. If X is the adjoint variety of G, and x ∈ X , then Dx is the hyperplane
section of X ⊂ P(g) by Proposition 3.8.

If k = 1 and the automorphism group of X is reductive, since φ is finite to one,
we can apply Beauville Theorem [Bea98]. Thus X is isomorphic to an adjoint
variety.

�
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4.1 Dual map

In algebraic geometry it is standard to consider maps determined by linear
systems (such as φ defined above). However in our situation, we also have
another map determined by the family of divisors D. Namely:

ψ : X → P〈D〉
x 7→ Dx

P.

So let S ⊂ OX ⊗ 〈D〉∗ ≃ X × 〈D〉∗ be the pullback under φ of the universal
hyperplane bundle, i.e. the corank 1 subbundle such that the fibre of S over x
is Dx

P⊥ ⊂ 〈D〉∗. We note that P(S) is both a projective space bundle on X
and also it is a divisor on X × P〈D〉∗. Also D = (idX ×φ)∗P(S) as divisors.
We can also consider the line bundle dual to the cokernel of S → OX ⊗ 〈D〉∗,
i.e. the subbundle S⊥ ⊂ OX ⊗ 〈D〉. This line subbundle determines section
X → X × P〈D〉, where x 7→ (x,Dx

P). So ψ is the composition of the section
and the projection:

X → X × P〈D〉 → P〈D〉.
Every map to a projective space is determined by some linear system. We claim
the ψ is determined by 〈D〉, precisely the system that defines φ and thus that
there is a natural linear isomorphism between P〈D〉 and P〈D〉∗.

Proposition 4.3. We have ψ∗OP〈D〉(1) ≃ E and the linear system cut out by
hyperplanes

ψ∗H0
(
OP〈D〉(1)

)
:=
{
ψ∗s : s ∈ 〈D〉∗

}
⊂ H0(E)

is equal to 〈D〉.

Proof. For fixed x ∈ X let φ(x)⊥ ⊂ P〈D〉 be the hyperplane dual to φ(x) ∈
P〈D〉∗. To prove the proposition it is enough to prove

ψ∗(φ(x)⊥) = Dx
div. (4.4)

Since we have the following symmetry property of D:

x ∈ Dy ⇐⇒ y ∈ Dx,

the set theoretic version of (4.4) follows easily:

y ∈ ψ∗(φ(x)⊥) ⇐⇒ ψ(y) ∈ φ(x)⊥ ⇐⇒ Dy
P⊥ ∋ φ(x) ⇐⇒ Dy ∋ x.

However, in order to prove the equality of divisors in (4.4) we must do a bit more
of gymnastics, which translates the equivalences above into local equations.
The details are below.
The pull back of φ(x)⊥ by the projection X×P〈D〉 → P〈D〉 is just X×φ(x)⊥.
Then the pull-back of the product by the section X → X × P〈D〉 associated
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to S⊥ is just the subscheme of X defined by
{
y ∈ X | (S⊥)y ⊂ φ(x)⊥

}
(loc-

ally, this is just a single equation: the spanning section of S⊥ satisfies the
defining equation of φ(x)⊥). But this is clearly equal to the dual equation
{y | P(Sy) ∋ φ(x)}. If we let ρx be the section

ρx : X → X ×X
ρx(y) := (y, x)

then we have:

ψ∗(φ(x)⊥) = ρx
∗ ◦ (idX ×φ)∗(P(S)) = ρx

∗(D) = Dx
div

as claimed.
�

Thus we have a canonical linear isomorphism f : P〈D〉∗ → P〈D〉 giving rise to
the following commutative diagram:

P〈D〉∗

≃
��

X

φ 33ffffffffffffff
ψ

++XXXXXXXXXXXXXX

P〈D〉.

(4.5)

We will denote the underlying vector space isomorphism 〈D〉∗ → 〈D〉 (which
is unique up to scalar) with the same letter f . The choice of f combined with
the canonical pairing 〈D〉 × 〈D〉∗ → C, determines a non-degenerate bilinear
form B : 〈D〉 × 〈D〉 → C, with the following property:

B(φ(x), φ(y)) = 0 ⇐⇒ (x, y) ∈ D ⇐⇒ x ∈ Dy ⇐⇒ y ∈ Dx. (4.6)

Proposition 4.7. If X is the adjoint variety of G, then 〈D〉 = H0(L) ≃ g and
B is (up to scalar) the Killing form on g.

Proof. Follows immediately from Proposition 3.8 and Equation 4.6.
�

Corollary 4.8. φ(x) = φ(y) if and only if Dx = Dy.

Proof. It is immediate from the definition of ψ and from Diagram (4.5).
�

4.2 Symmetry

Note that B has the property that for x ∈ X ,

B(φ(x), φ(x)) = 0

(because x ∈ Dx).
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Proposition 4.9. The bilinear form B is either symmetric or skew-symmetric.

Proof. Consider two linear maps 〈D〉 → 〈D〉∗:

α(v) := B(v, ·) and β(v) := B(·, v).

If v = φ(x) for some x ∈ X , then

ker
(
α(v)

)
= span

(
ker
(
α(v)

)
∩ φ(X)

)
= span

(
φ(Dx)

)

and analogously ker(β(v)) = span(φ(Dx)). So ker(α(v)) = ker(β(v)) and hence
α(v) and β(v) are proportional. Therefore there exists a function λ : X → C
such that:

λ(x)α(φ(x)) = β(φ(x)).

So for every x, y ∈ X we have:

B(φ(x), φ(y)) = λ(x)B(φ(y), φ(x)) = λ(x)λ(y)B(φ(x), φ(y))

and hence:

∀(x, y) ∈ X ×X \D λ(x)λ(y) = 1.

Taking three different points we see that λ is constant and λ ≡ ±1. Therefore
±α(φ(x)) = β(φ(x)) and by linearity this extends to ±α = β so B is either
symmetric or skew-symmetric as stated in the proposition.

�

Example 4.10. If X is one of the adjoint varieties, then B is symmetric (because
the Killing form is symmetric).

Remark 4.11. Consider P2n+1 with a contact structure arising from a sym-
plectic form ω on C2n+2. Recall, that this homogeneous contact Fano manifold
does not satisfy our assumptions, namely, its Picard group is not generated
by the equivalence class of L — in this case L ≃ OP2n+1(2). However, Wiś-
niewski in [Wiś00] considers also this generalised situation and defines Dx to
be the divisor swept by contact conics (i.e. curves C with degree of L|C = 2)
tangent to the contact distribution F . Then for the projective space Dx is
just the hyperplane perpendicular to x with respect to ω. And thus in this
case 〈D〉 = H0 (OP2n+1(1)) and the bilinear form B defined from such family
of divisors would be proportional to ω, hence skew-symmetric.

Proof of Theorem 1.3. Dx is a divisor by Theorem 3.6. φ is regular by
Remark 4.1. ψ is regular by (4.5). The non-degenerate bilinear form B is con-
structed in §4.1. It is either symmetric or skew-symmetric by Proposition 4.9.
In the adjoint case B is the Killing form by Proposition 4.7.

�
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Corollary 4.12. If B is symmetric, then ψ(X) ⊂ P〈D〉 is contained in the
quadric B(v, v) = 0.

Corollary 4.13. If x ∈ X, then ψ(Cx) is contained in a linear subspace of

dimension at most
⌊
dim 〈D〉

2

⌋
.

Proof. If y, z ∈ Cx, then z ∈ Dy, so B(ψ(y), ψ(z)) = 0. Therefore
span(ψ(Cx)) is an isotropic linear subspace, which cannot have dimension big-

ger than
⌊
dim 〈D〉

2

⌋
.

�

5 Grading

Suppose X ⊂ Pg is the adjoint variety of G. Assume further that a maximal
torus and an order of roots in g has been chosen, then g has a natural grading
(see [LM02, §6.1]):

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

where:

(i) g0 ⊕ g1 ⊕ g2 is the parabolic subalgebra p of X .

(ii) g0 is the maximal reductive subalgebra of p.

(iii) for all i ∈ {−2,−1, 0, 1, 2} the vector space gi is a g0-module.

(iv) g2 is the 1-dimensional highest root space,

(v) g−2 is the 1-dimensional lowest root space.

(vi) The restriction of the Killing form to each g2 ⊕ g−2, g1 ⊕ g−1 and g0
is non-degenerate, and the Killing form B(gi, gj) is identically zero for
i 6= −j.

(vii) The Lie bracket on g respects the grading, [gi, gj ] ⊂ gi+j (where gk = 0
for k /∈ {−2,−1, 0, 1, 2}).

In fact the grading is determined by g−2 and g2 together with the geometry of
X only. So let X be as in Notation 2.1 and let x and w be two general points
of X . Define the following subspaces of 〈D〉:

• 〈D〉2 to be the 1-dimensional subspace ψ(x);

• 〈D〉−2 to be the 1-dimensional subspace ψ(w);

• 〈D〉1 to be the linear span of affine cone of ψ(Cx ∩Dw);

• 〈D〉−1 to be the linear span of affine cone of ψ(Cw ∩Dx);
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• 〈D〉0 to be the vector subspace of 〈D〉, whose projectivisation is:

⋂

y∈Cx∪Cw
f(Dy

P⊥)

In the homogeneous case this is precisely the grading of g.

Proof of Theorem 1.4. First note that the classes of the 1-dimensional
linear subspaces g2 and g−2 are both in X (as points in Pg). Moreover, they are
a pair of general points, because the action of the parabolic subgroup P < G
preserves g2 and moves freely g−2. This is because T̂[g−2]X = [g−2, g] = [g−2, p].
So fix x = [g2] and w = [g−2]. We claim the linear span of Cx (respectively Cw)
is just g2 ⊕ g1 (respectively g−2 ⊕ g−1). To see that, we observe the lines on
X through x are contained in the intersection of X and the projective tangent
space P(T̂xX) ⊂ P(g). In fact this intersection is equal to Cx: if y 6= x is a
point of the intersection, then the line in Pg through x and y intersects X with
multiplicity at least 3, but X is cut out by quadrics (see for instance [Pro07,
§10.6.6]), so this line must be contained in X . Also Cx is non-degenerate in
P(F̂x) ⊂ P(T̂xX). However F̂x is a p-invariant hyperplane in P(T̂xX) and the
unique p-invariant hyperplane in

T̂xX = [g, g2] = [g−2, g2]⊕ g1 ⊕ g2

is

F̂x = [g−1 ⊕ g0 ⊕ g1 ⊕ g2, g2] = g1 ⊕ g2.

Further we have seen in Proposition 3.8 that Dx (respectively Dw) is the inter-
section of P(g2

⊥B ) = P(g2⊕ g1⊕ g0⊕ g−1) and X (respectively P(g−2⊕ g−1⊕
g0 ⊕ g1) and X). Equivalently, f(Dx

P⊥) = P(g2 ⊕ g1 ⊕ g0 ⊕ g−1). Thus:

Cx ∩Dw = Cx ∩ f(Dw
P⊥) = Cx ∩ P(g−2 ⊕ g−1 ⊕ g0 ⊕ g1) = Cx ∩ P(g1).

Cx∩P(g1) is non-degenerate in P(g1), thus 〈D〉1 = g1 and analogously 〈D〉−1 =
g−1.
It remains to prove 〈D〉0 = g0.

P〈D〉0 =
⋂

y∈Cx∪Cw
f(Dz

P⊥)

= (Cx ∪ Cw)⊥B

= P(g2 ⊕ g1 ⊕ g−1 ⊕ g−2)⊥B

= P(g0).

�

We also note the following lemma in the homogeneous case:
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Lemma 5.1. If X is the adjoint variety of G, then

X ∩ P(g1) ⊂ Cx

where x is the point of projective space corresponding to g2.

Proof. Suppose y ∈ X ∩Pg1 and let l ⊂ Pg be the line through x and y. Note
that l ⊂ P(g1⊕ g2). Since g1⊕ g2 ⊂ [g, g2] = T̂xX , hence l∩X has multiplicity
at least 2 at x. Thus l ∩ X has degree at least 3 and since X is cut out by
quadrics, l is contained in X .

�

6 Cointegrable subvarieties

Definition 6.1. A subvariety ∆ ⊂ X is F -cointegrable if Tx∆ ∩ Fx ⊂ Fx is a
coisotropic subspace for general point x of each irreducible component of ∆.

Note that this is equivalent to the definition given in [Bucz09, §E.4] — this
follows from the local description of the symplectic form on the symplectisation
of the contact manifold (see [Bucz09, (C.15)]).
Clearly, every codimension 1 subvariety of X is F -cointegrable.
Assume ∆ ⊂ X is a subvariety of pure dimension, which is F -cointegrable and
let ∆0 be the locus where Tx∆∩Fx ⊂ Fx is a coisotropic subspace of dimension
dim ∆ − 1. We define the ∆-integrable distribution ∆⊥ to be the distribution
defined over ∆0 by:

∆⊥x := (Tx∆ ∩ Fx)⊥dθ ⊂ Fx
We say an irreducible subvariety A ⊂ X is ∆-integral if A ⊂ ∆, A ∩∆0 6= ∅,
and TA ⊂ ∆⊥ over the smooth points of A ∩∆0.

Lemma 6.2. Let A1 and A2 be two irreducible ∆-integral subvarieties. Assume
dimA1 = dimA2 = codimX ∆. Then either A1 = A2 or A1 ∩ A2 ⊂ ∆ \∆0.

�

Theorem 6.3. Consider a general point x ∈ X. Then:

(i) Dx (as reduced, but possibly not irreducible subvariety of X) is F -cointe-
grable.

(ii) For general y in any of the irreducible components of Cx all lines through
y are Dx-integral.

(iii) For general z in any of the irreducible components of Dx the intersection
Cx ∩Cz is a unique point and the chain of two lines connecting x to z is
unique.
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Proof. Part (i) is immediate, since Dx is a divisor, by Theorem 3.6.
To prove part (ii) let l be a line through y. Then by Proposition 3.10:

TzDx ∩ Fz = (F |l)≥0

and for general z ∈ l we have (TzDx ∩ Fz)⊥dθz ⊂ Fz is the O(2) part, i.e. the
part tangent to l. So l is Dx-integral as claimed.
To prove (iii), let U ⊂ X be an open dense subset of points u ∈ X where two
different lines through u do not share the tangent direction and do not meet
in any other point. Note that since x is a general point, x ∈ U and thus each
irreducible component of Cx and Dx intersects U . Thus generality of z implies
that z ∈ U and thus each irreducible component of Cz and Dz intersects U .
Also Cx ∩ Cz intersects U . So fix y ∈ Cx ∩ Cz ∩ U .
By (ii) and Lemma 6.2 the line lz through z which intersects Cx is unique. In
the same way let lx be the unique line through x intersecting Cz. Thus

Cx ∩ Cz = lx ∩ lz.
In particular, y ∈ lx ∩ lz. But since y ∈ U the intersection lx ∩ lz is just one
point and therefore:

Cx ∩ Cz = {y} .

�

As a consequence of part (iii) of the theorem the surjective map π13 : C3 → D
is birational. Thus consider the inverse rational map D 99K C3 and compose
it with the projection on the middle coordinate π2 : C3 → X . We define the
composition to be the bracket map:

[·, ·]D : D 99K C3 π2→ X.

In this setting, for (x, z) ∈ D, one has [x, z]D = y = Cx ∩ Cz, whenever the
intersection is just one point.

Theorem 6.4. If X is the adjoint variety of G, then the bracket map defined
above agrees with the Lie bracket on g, in the following sense: Let ξ, ζ ∈ g
and set η := [ξ, ζ] (the Lie bracket on g). Denote by x, y and z the projective
classes in Pg of ξ, η and ζ respectively. If x ∈ Dz and η 6= 0, then the bracket
map satisfies [x, z]D = y.

Proof. It is enough to prove the statement for a general pair (x, z) ∈ D.
Suppose further w ∈ Cz is a general point. Then the pair (x,w) ∈ X ×X is a
general pair. Thus by Theorem 1.4, we may assume ξ ∈ g2 and ζ ∈ g−1. The
restriction of the Lie bracket to [ξ, g−1] determines an isomorphism g−1 → g1 of
g0-modules. In particular the minimal orbit X ∩Pg−1 is mapped onto X ∩Pg1
under this isomorphism. In particular y ∈ X ∩ Pg1 ⊂ Cx (see Lemma 5.1).
Analogously y ∈ Cz , so y ∈ Cx ∩ Cz.

�
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1. Introduction

The Fano index of a smooth Fano variety X is the maximal integer q(X) that
divides the anti-canonical class in the Picard group Pic(X) [IP99]. It is well-
known [KO73] that q(X) ≤ dimX + 1. Moreover, q(X) = dimX + 1 if and
only if X is a projective space and q(X) = dimX if and only if X is a quadric
hypersurface. In this paper we consider generalizations of Fano index for the
case of singular Fanos admitting terminal singularities.
A normal projective variety X is called Fano if some positive multiple −nKX of
its anti-canonical Weil divisor is Cartier and ample. Such X is called a Q-Fano
variety if it has only terminal Q-factorial singularities and its Picard number
is one. This class of Fano varieties is important because they appear naturally
in the Minimal Model Program.
For a singular Fano variety X the Fano index can be defined in different ways.
For example, we can define

qW(X) := max{q | −KX ∼ qA, A is a Weil Q-Cartier divisor},

qQ(X) := max{q | −KX ∼Q qA, A is a Weil Q-Cartier divisor}.
If X has at worst log terminal singularities, then the Picard group Pic(X) and
Weil divisor class group Cl(X) are finitely generated and Pic(X) is torsion
free (see e.g. [IP99, §2.1]). Moreover, the numerical equivalence of Q-Cartier

∗The author was partially supported by the Russian Foundation for Basic Research (grants
No 06-01-72017-MNTI a, 08-01-00395-a) and Leading Scientific Schools (grants No NSh-
1983.2008.1, NSh-1987.2008.1)
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divisors coincides with Q-linear one. This implies, in particular, that the Fano
indices qW(X) and qQ(X) defined above are positive integers. If X is smooth,
these numbers coincide with the Fano index q(X) defined above. Note also
that qQ(X) = qW(X) if the group Cl(X) is torsion free.

Theorem 1.1 ([Suz04]). Let X be a Q-Fano threefold. Then qW(X) ∈
{1, . . . , 11, 13, 17, 19}. All these values, except possibly for qW(X) = 10, occur.
Moreover, if qW(X) = 19, then the types of non-Gorenstein points and Hilbert
series of X coincide with that of P(3, 4, 5, 7).

It can be easily shown (see proof of Proposition 3.6) that the index qQ(X)
takes values in the same set {1, . . . , 11, 13, 17, 19}. Thus one can expect that
P(3, 4, 5, 7) is the only example of Q-Fano threefolds with qQ(X) = 19. In gen-
eral, we expect that Fano varieties with extremal properties (maximal degree,
maximal Fano index, etc.) are quasihomogeneous with respect to an action
of some connected algebraic group. This is supported, for example, by the
following facts:

Theorem 1.2 ([Pro05], [Pro07]). (i) Let X be a Q-Fano threefold. As-
sume that X is not Gorenstein. Then −K3

X ≤ 125/2 and the equality
holds if and only if X is isomorphic to the weighted projective space
P(13, 2).

(ii) Let X be a Fano threefold with canonical Gorenstein singularities.
Then −K3

X ≤ 72 and the equality holds if and only if X is isomorphic
to P(13, 3) or P(12, 6, 4).

The following proposition is well-known (see, e.g., [BB92]). It is an easy exercise
for experts in toric geometry.

Proposition 1.3. Let X be a toric Q-Fano 3-fold. Then X is isomorphic to
either P3, P3/µ5(1, 2, 3, 4), or one of the following weighted projective spaces:

P(13, 2), P(12, 2, 3), P(1, 2, 3, 5), P(1, 3, 4, 5), P(2, 3, 5, 7), P(3, 4, 5, 7).

We characterize the weighted projective spaces above in terms of Fano index.
The following is the main result of this paper.

Theorem 1.4. Let X be a Q-Fano threefold. Then qQ(X) ∈
{1, . . . , 11, 13, 17, 19}.

(i) If qQ(X) = 19, then X ≃ P(3, 4, 5, 7).
(ii) If qQ(X) = 17, then X ≃ P(2, 3, 5, 7).

(iii) If qQ(X) = 13 and dim | −KX | > 5, then X ≃ P(1, 3, 4, 5).
(iv) If qQ(X) = 11 and dim | −KX | > 10, then X ≃ P(1, 2, 3, 5).
(v) qQ(X) 6= 10.

(vi) If qQ(X) ≥ 7 and there are two effective Weil divisors A 6= A1 such
that −KX ∼Q qQ(X)A∼Q qQ(X)A1, then X ≃ P(12, 2, 3).

(vii) If qW(X) = 5 and dim | − 1
5KX | > 1, then X ≃ P(13, 2).

Note that in cases (iii) and (iv) assumptions about | −KX | are really needed.
Indeed, there are examples of non-toric Q-Fano threefolds with qQ(X) = 13
and 11.
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Example 1.5 ([BS07], see also Proposition 3.6). Let X = Xd ⊂ P(a1, . . . , a5)
be a general hypersurface of degree d. Assume that X is a Q-Fano with
qQ(X) ≥ 10 and such that OP(1)|X is a primitive element of Cl(X), then
X is one of the following:

(i) X = X12 ⊂ P(1, 4, 5, 6, 7), qQ(X) = 11, dim | −KX | = 10;
(ii) X = X10 ⊂ P(2, 3, 4, 5, 7), qQ(X) = 11, dim | −KX | = 8;

(iii) X ≃ X12 ⊂ P(3, 4, 5, 6, 7), qQ(X) = 13, dim | −KX | = 5.

In the proof we follow the use some techniques developed in our previous paper
[Pro07]. By Proposition 1.3 it is sufficient to show that our Q-Fano X is toric.
First, as in [Suz04], we apply the orbifold Riemann-Roch formula to find all
the possibilities for the numerical invariants of X . In all cases there is some
special element S ∈ |−KX | having four irreducible components. This S should
be a toric boundary, if X is toric. Further, we use birational transformations
like Fano-Iskovskikh “double projection” [IP99] (see [Ale94] for the Q-Fano
version). Typically the resulting variety is a Fano-Mori fiber space having
“simpler” structure. In particular, its Fano index is large if this variety is a
Q-Fano. By using properties of our “double projection” we can show that
the pair (X,S) is log canonical (LC). Then, in principle, the assertion follows
by Shokurov’s toric conjecture [McK01]. We prefer to propose an alternative,
more explicit proof. In fact, the image of X under “double projection” is a toric
variety and the inverse map preserves the toric structure. In the last section
we describe Sarkisov links between toric Q-Fanos that start with blow ups of
singular points.

Acknowledgements. The work was conceived during the author’s stay at
the University of Warwick in the spring of 2008. The author is grateful to
Professor M. Reid for invitation, hospitality and fruitful discussions. Part of
the work was done at Max-Planck-Institut für Mathematik, Bonn in August
2008. Finally, the author would like to thank the referee for careful reading the
manuscript and constructive suggestions.

2. Preliminaries, the orbifold Riemann-Roch formula and its
applications

Notation. Throughout this paper, we work over the complex number field C.
We employ the following standard notation:
∼ denotes linear equivalence;
∼Q denotes Q-linear equivalence.
Let E be a rank one discrete valuation of the function field C(X) and let D be a
Q-Cartier divisor on X . a(E,D) denotes the discrepancy of E with respect to

a boundary D. Let f : X̃ → X be a birational morphism such that E appears
as a prime divisor on X̃. Then ordE(D) denotes the coefficient of E in f∗D.

2.1. The orbifold Riemann-Roch formula [Rei87]. Let X be a threefold
with terminal singularities and let D be a Weil Q-Cartier divisor on X . Let
B = {(rP , bP )} be the basket of singular points of X [Mor85a], [Rei87]. Here
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each pair (rP , bP ) correspond to a point P ∈ B of type 1
rP

(1,−1, bP ). For
brevity, describing a basket we will list just indices of singularities, i.e., we
will write B = {rP } instead of B = {(rP , bP )}. In the above situation, the
Riemann-Roch formula has the following form

(2.2) χ(D) =
1

12
D · (D −KX) · (2D −KX)+

+
1

12
D · c2 +

∑

P∈B
cP (D) + χ(OX),

where

cP (D) = −iP
r2P − 1

12rP
+

iP−1∑

j=1

bP j(rP − bP j)
2rP

.

Clearly, computing cP (D), we always may assume that 1 ≤ bP ≤ rP /2.

2.3. Now let X be a Fano threefold with terminal singularities, let q := qQ(X),
and let A be an ample Weil Q-Cartier divisor on X such that −KX ∼Q qA. By
(2.2) we have

(2.4) χ(tA) = χ(OX) +
t(q + t)(q + 2t)

12
A3 +

tA · c2
12

+
∑

P∈B
cP (tA),

where χ(OX) = 1 and

cP (tA) = −iP,t
r2P − 1

12rP
+

iP,t−1∑

j=1

bP j(rP − bP j)
2rP

.

If q > 2, then χ(−A) = 0. Using this equality we obtain (see [Suz04])

(2.5) A3 =
12

(q − 1)(q − 2)

(
1− A · c2

12
+
∑

P∈B
cP (−A)

)
.

In the above notation, applying (2.2), Serre duality and Kawamata-Viehweg
vanishing to D = KX , we get the following important equality (see, e.g.,
[Rei87]):

(2.6) 24 = −KX · c2(X) +
∑

P∈B

(
rP −

1

rP

)
.

Theorem 2.7 ([Kaw92a], [KMMT00]). In the above notation,

(2.8) −KX · c2(X) ≥ 0,
∑

P∈B

(
rP −

1

rP

)
≤ 24.

Proposition 2.9. Let X be a Fano threefold with terminal singularities and
let Ξ be an n-torsion element in the Weil divisor class group. Let BΞ be the
collection of points P ∈ B where Ξ is not Cartier. Then

(2.10) 2 =
∑

P∈BΞ

bP iΞ,P
(
rP − bP iΞ,P

)

2rP
.
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where iΞ,P is taken so that Ξ ∼ iΞ,PKX near P ∈ B and is the residue
mod rP . Assume furthermore that n is prime. Then

(i) n ∈ {2, 3, 5, 7}.
(ii) If n = 7, then BΞ = (7, 7, 7).†

(iii) If n = 5, then BΞ = (5, 5, 5, 5), (10, 5, 5), or (10, 10).
(iv) If n = 3, then

∑
P∈BΞ rP = 18.

(v) If n = 2, then
∑
P∈BΞ rP = 16.

Proof. By Kawamata-Viehweg vanishing theorem, Riemann-Roch (2.2), and
Serre duality we have χ(OX) = 1,

0 = χ(Ξ) = 1 +
∑
P cP (Ξ),

0 = χ(KX + Ξ) = 1 + 1
12KX · c2(X) +

∑
P∈B cP (KX + Ξ).

Subtracting we get

0 = − 1

12
KX · c2(X) +

∑

P∈B
(cP (Ξ) − cP (KX + Ξ)).

Since niΞ,P ≡ 0 mod rP ,

0 = − 1

12
KX · c2(X) +

1

12

∑

P∈B

(
rP −

1

rP

)
−
∑

P∈B

bP iΞ,P
(
rP − bP iΞ,P

)

2rP
.

This proves (2.10).
Now assume that n is prime. If P ∈ BΞ, then n | rP . Write rP = nr′P . Since

rP | niP , iP = r′P i
′
P , where n ∤ i′P . Let ( )n be the residue mod n. Then

2 =
∑

P∈BΞ

bP i′Ξ,P r
′
(
nr′P − bP i′Ξ,P r′P

)

2nr′P
=
r′P (bP i′Ξ,P )n

(
n− (bP i′Ξ,P )n

)

2n
.

Therefore,

4n2 =
∑

P∈BΞ

rP (bP i′Ξ,P )n

(
n− (bP i′Ξ,P )n

)
.

Denote ξP := (bP i′Ξ,P )n. Then 0 < ξP < n, gcd(n, ξP ) = 1, and

4n =
∑

P∈BΞ

r′P ξP (n− ξP ) ≥ n2

4

∑

P∈BΞ

r′P , 16 ≥ n
∑

P∈BΞ

r′P .

If n ≥ 11, then
∑
r′P = 1, n | r′P , and rP ≥ n2 ≥ 121, a contradiction.

Therefore, n ≤ 7. Consider the case n = 7. Then ξP (n− ξP ) = 6, 10, or 12.
The only solution is BΞ = (7, 7, 7). The case n = 5 is considered similarly. If
n = 3, then ξP (n− ξP ) = 3 and

∑
rP = 3

∑
r′P = 18. Similarly, if n = 2,

then ξP (n− ξP ) = 1 and
∑
rP = 2

∑
r′P = 16. This finishes the proof. �

†More delicate computations show that this case does not occur. (We do not need this.)
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3. Computations with Riemann-Roch on Q-Fano threefolds of
large Fano index

Lemma 3.1 (see [Suz04]). Let X be a Fano threefold with terminal singularities
with q := qW(X), let A := − 1

qKX , and let r be the Gorenstein index of X.

Then

(i) r and q are coprime;
(ii) rA3 is an integer.

Lemma 3.2. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L, then q divides qW(X).
(ii) If −KX ∼Q qL for some Weil divisor L, then q divides qQ(X).

(iii) qW(X) divides qQ(X).
(iv) Let q := qQ(X) and let KX + qA∼Q 0. If the order of KX + qA in the

group Cl(X) is prime to q, then qW(X) = qQ(X).

Proof. To prove (i) write −KX ∼ qW(X)A and let d = gcd(qW(X), q). Then
d = u qW(X) + vq for some u, v ∈ Z. Hence, dA = u qW(X)A + vqA ∼
quL+ qvA = q(uL+ vA). Since A is a primitive element of Cl(X), q = d and
q | qW(X).
(ii) can proved similarly and (iii) is a consequence of (ii).
To show (iv) assume that Ξ := KX + qA is of order n. By our condition
qu + nv = 1, where u, v ∈ Z. Put A′ := A − uΞ. Then qA′ = qA − quΞ =
qA− Ξ ∼ −KX . Hence, q = qW(X) by (i) and (iii). �

Lemma 3.3. Let X be a Fano threefold with terminal singularities.

(i) qQ(X) ∈ {1, . . . , 11, 13, 17, 19}.
(ii) If qQ(X) ≥ 5, then −K3

X ≤ 125/2.

Proof. Denote q := qQ(X) and write, as usual, −KX ∼Q qA. Thus n(KX +
qA) ∼ 0 for some positive integer n. The element KX + qA defines a cyclic
étale in codimension one cover π : X ′ → X so that X ′ is a Fano threefold with
terminal singularities and KX′ + qA′ ∼ 0, where A′ := π∗A. Let σ : X ′′ → X ′

be a Q-factorialization. (If X ′ is Q-factorial, we take X ′′ = X ′). Run K-MMP
on X ′′: ψ : X ′′ 99K X̄ . At the end we get a Mori-Fano fiber space X̄ → Z.
Let A′′ := σ−1(A′) and Ā := ψ∗A′′. Then −KX̄ ∼ qĀ. If dimZ > 0, then for
a general fiber F of X̄/Z, we have −KF ∼ qĀ|F . This is impossible because
q > 3. Thus dimZ = 0 and X̄ is a Q-Fano.
(i) By Lemma 3.2 the number q divides qW(X̄). On the other hand, by Theo-
rem 1.1 we have qW(X̄) ∈ {1, . . . , 11, 13, 17, 19}. This proves (i).
To show (ii) we note that −K3

X̄
≥ −K3

X′′ = −K3
X′ ≥ −K3

X′′ . Here the first
inequality holds because for Fanos (with at worst log terminal singularities)
the number − 1

6K
3 is nothing but the leading term in the asymptotic Riemann-

Roch and dim | − tKX′′ | ≤ dim | − tKX̄ |. Now the assertion of (ii) follows from
Theorem 1.2. �

From Lemmas 3.2 and 3.3 we have
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Corollary 3.4. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L and q ≥ 5, then q = qW(X).
(ii) If −KX ∼Q qL for some Weil divisor L and q ≥ 5, then q = qQ(X).

Lemma 3.5 (cf. [Suz04]). Let X be a Fano threefold with terminal singularities
and let q := qW(X). Assume that qW(X) ≥ 8. Then one of the following
holds:

q = 8, B = (32, 5), (32, 5, 9), (3, 5, 11), (3, 7), (3, 9), (5, 7), (7, 11),
(7, 13), (11),
q = 9, B = (2, 4, 5), (23, 5, 7), (2, 5, 13),
q = 10, B = (7, 11),
q = 11, B = (2, 3, 5), (2, 5, 7), (22, 3, 4, 7),
q = 13, B = (3, 4, 5), (2, 32, 5, 7),
q = 17, B = (2, 3, 5, 7),
q = 19, B = (3, 4, 5, 7).

In all cases the group Cl(X) is torsion free.

Proof. We use a computer program written in PARI [PARI] ‡. Below is the
description of our algorithm.
Step 1. By Theorem 2.7 we have

∑
P∈B(1− 1/rP ) ≤ 24. Hence there is only

a finite (but very huge) number of possibilities for the basket B = {[rP , bP ]}.
In each case we know −KX · c2(X) from (2.6). Let r := lcm({rP }) be the
Gorenstein index of X .
Step 2. By Lemma 3.3 qQ(X) ∈ {8, . . . , 11, 13, 17, 19}. Moreover, the condi-
tion gcd(q, r) = 1 (see Lemma 3.1) eliminates some possibilities.
Step 3. In each case we compute A3 and −K3

X = q3A3 by formula (2.5). Here,
for D = −A, the number iP is uniquely determined by qiP ≡ bP mod rP and
0 ≤ iP < rP . Further, we check the condition rA3 ∈ Z (Lemma 3.1) and the
inequality −K3

X ≤ 125/2 (Lemma 3.3).
Step 4. Finally, by the Kawamata-Viehweg vanishing theorem we have
χ(tA) = h0(tA) for −q < t. We compute χ(tA) by using (2.4) and check
conditions χ(tA) = 0 for −q < t < 0 and χ(tA) ≥ 0 for t > 0.
At the end we get our list. To prove the last assertion assume that Cl(X)
contains an n-torsion element Ξ. Clearly, we also may assume that n is prime.
By Proposition 2.9 we have

∑
n|ri ri ≥ 16. Moreover,

∑
n|ri ri ≥ 18 if n = 3.

This does not hold in any case of our list. �

Proposition 3.6. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Let q :=
qQ(X) and let −KX ∼Q qA. Then the group Cl(X) is torsion free, qW(X) =
qQ(X), and one of the following holds:

‡The PARI code is available at http://mech.math.msu.su/department/algebra/staff/

prokhorov/q-fano.
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dim |kA|
q B A3 |A| |2A| |3A| |4A| |5A| |6A| |7A| | −K|

9 (2, 4, 5) 1
20 0 1 2 4 6 8 11 19

9 (2, 2, 2, 5, 7) 1
70 −1 0 0 1 1 2 3 5

10 (7, 11) 2
77 −1 0 1 1 3 4 6 13

11 (2, 3, 5) 1
30 0 1 2 3 5 7 9 23

11 (2, 5, 7) 1
70 0 0 0 1 2 3 4 10

11 (2, 2, 3, 4, 7) 1
84 −1 0 0 1 1 2 3 8

13 (3, 4, 5) 1
60 0 0 1 2 3 4 5 19

13 (2, 3, 3, 5, 7) 1
210 −1 −1 0 0 0 1 1 5

17 (2, 3, 5, 7) 1
210 −1 0 0 0 1 1 2 12

19 (3, 4, 5, 7) 1
420 −1 −1 0 0 0 0 1 8

Proof. First we claim that qW(X) = qQ(X). Assume the converse. Then,
as in the proof of Lemma 3.3, the class of KX + qA is a non-trivial n-torsion
element in Cl(X) defining a global cover π : X ′ → X . We have KX′ + qA′ ∼ 0,
where A′ = π∗A. Hence X ′ is such as in Lemma 3.5 and by Corollary 3.5 we
have Cl(X ′) ≃ Z · A′ and qW(X ′) = qQ(X ′) ≥ q. The Galois group µn acts
naturally on X ′. Consider, for example, the case q = 11 and BX′ = (2, 3, 5) (all
other cases are similar). Then X ′ has three cyclic quotient singularities whose
indices are 2, 3, and 5. These points must be µn-invariant. Hence the variety
X has cyclic quotient singularities of indices 2n, 3n, and 5n. By Lemma 3.2 we
have gcd(q, n) 6= 1. In particular, n ≥ 11. This contradicts (2.8). Therefore,
qW(X) = qQ(X) and so X is such as in Lemma 3.5.
Now we have to exclude only the case q = 9, B = (2, 5, 13). But in this case
by (2.6) and (2.5) we have A3 = 9/130 and −KX · c2 = 621/130. On the
other hand, by Kawamata-Bogomolov’s bounds [Kaw92a] we have 2673/130 =
(4q2−3q)A3 ≤ 4KX ·c2 = 1242/65 [Suz04, Proposition 2.2]. The contradiction
shows that this case is impossible. Finally, the values of A3 and dimensions of
|kA| are computed by using (2.5) and (2.4). �

Corollary 3.7. Let X be a Q-Fano threefold satisfying assumptions of (i)-(v)
of Theorem 1.4. Then X has only cyclic quotient singularities.

Proof. Indeed, in these cases the indices of points in the basket B are distinct
numbers and moreover B contains no pairs of points of indices 2 and 4. Then
the assertion follows by [Mor85a], or [Rei87] �

Corollary 3.8. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Then
dim |A| ≤ 0.

Computer computations similar to that in Lemma 3.5 allow us to prove the
following.

Documenta Mathematica 15 (2010) 843–872



Q-Fano Threefolds of Large Fano Index, I 851

Lemma 3.9. Let X be a Fano threefold with terminal singularities, let q :=
qW(X), and let A := − 1

qKX .

(i) If q ≥ 5 and dim |A| > 1, then q = 5, B = (2), and A3 = 1/2.
(ii) If q ≥ 7 and dim |A| > 0, then q = 7, B = (2, 3), A3 = 1/6.

3.10. Proof of (vi) and (vii) of Theorem 1.4. (vii) Apply Lemma 3.9.
Then the result is well-known: in fact, 2A is Cartier and by Riemann-Roch
dim |2A| = 6 = dimX + 3. Hence X is a variety of ∆-genus zero [Fuj75], i.e.,
a variety of minimal degree. Then X ≃ P(13, 2).
(vi) Put q := qQ(X), Ξ := KX + qA, and Ξ1 := A − A1. By our assumption
nΞ ∼ nΞ1 ∼ 0 for some integer n. If either Ξ 6∼ 0 or Ξ1 6∼ 0, then elements
Ξ and Ξ′ define an étale in codimension one finite cover π : X ′ → X such
that KX′ + qA′ ∼ 0 and A′ ∼ A′1, where A′ := π∗A and A′1 := π∗A1. If
Ξ ∼ Ξ1 ∼ 0, we put X ′ = X . In both cases, the following inequalities hold:
qW(X ′) ≥ 7 and dim |A′| ≥ 1. By Lemma 3.9 we have B(X ′) = (2, 3) and
qQ(X ′) = qW(X ′) = 7. Note that the Gorenstein index of X ′ is strictly less
than qW(X ′). In this case, X ′ ≃ P(12, 2, 3) according to [San96]. § Now it
is sufficient to show that π is an isomorphism. Assume the converse. By our
construction, there is an action of a cyclic group µp ⊂ Gal(X ′/X), p is prime,
such that π is decomposed as π : X ′ → X ′/µp → X . Here X ′/µp is a Q-Fano
threefold and there is a torsion element of Cl(X ′/µp) which is not Cartier
exactly at points where X ′ → X ′/µp is not étale. There are exactly four such
points and two of them are points of indices 2 and 3. Thus the basket of X ′/µp
consists of points of indices p, p, 2p, and 3p. This contradicts Proposition 2.9.

Lemma 3.11. Let X be a Q-Fano threefold with q := qQ(X). If there are three
effective different Weil divisors A, A1, A2 such that −KX ∼Q qA∼Q qA1∼Q qA2

and A 6∼ A1, then q ≤ 5.

Proof. Assume that q ≥ 6. As in 3.10 consider a cover π : X ′ → X . Thus on
X ′ we have A′ ∼ A′1 ∼ A′2 and −KX′ ∼ qA′. Moreover, dim |A′| = 1 according
to Lemma 3.9. In this case, the action of Gal(X ′/X) on the pencil |A′| is
trivial (because there are three invariant members A′, A′1, and A′2). But then
A ∼ A1 ∼ A2, a contradiction. �

4. Birational construction

4.1. Let X be a Q-Fano threefold and let A be the ample Weil divisor that
generates the group Cl(X)/∼Q. Thus we have −KX∼Q qA. Let M be a mobile
linear system without fixed components and let c := ct(X,M ) be the canon-
ical threshold of (X,M ). So the pair (X, cM ) is canonical but not terminal.
Assume that −(KX + cM ) is ample.

Recall that, for any point P ∈ X , the class of KX is a generator of the local
Weil divisor class group Cl(X,P ).

§The result also can be easily proved by using birational transformations similar to that
in §4.
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Lemma 4.2. Let P ∈ X be a point of index r > 1. Assume that M ∼ −mKX

near P , where 0 < m < r. Then c ≤ 1/m.

Proof. According to [Kaw92b] there is an exceptional divisor Γ over P of dis-
crepancy a(Γ) = 1/r. Let ϕ : Y → X be a resolution. Clearly, Γ is a prime
divisor on Y . Write

KY = ϕ∗KX +
1

r
Γ +

∑
δiΓi, MY = ϕ∗M − ordΓ(M )Γ− ordΓi(M )Γi,

where MY is the birational transform of M and Γi are other ϕ-exceptional
divisors. Then

KY + cMY = ϕ∗(KX + cM ) + (1/r − c ordΓ(M ))Γ + . . .

and so 1/r − c ordΓ(M ) ≥ 0. On the other hand, ordΓ(M ) ≡ m/r mod Z
(because mKX + M ∼ 0 near P ). Hence, ordΓ(M ) ≥ m/r and c ≤ 1/m. �

4.3. In the construction below we follow [Ale94]. Let f : X̃ → X be a K+cM -

crepant blowup such that X̃ has only terminal Q-factorial singularities:

(4.4) KX̃ + cM̃ = f∗(KX + cM ).

As in [Ale94], we run K + cM -MMP on X̃. We get the following diagram
(Sarkisov link of type I or II)

(4.5)

X̃ //___

f

����
��

��
��

X̄
g

��?
??

??
??

X X̂

where the varieties X̃ and X̄ have only Q-factorial terminal singularities,
ρ(X̃) = ρ(X̄) = 2, f is a Mori extremal divisorial contraction, X̃ 99K X̄ is
a sequence of log flips, and g is a Mori extremal contraction (either divisorial
or fiber type). Thus one of the following possibilities holds:

a) dim X̂ = 1 and g is a Q-del Pezzo fibration;

b) dim X̂ = 2 and g is a Q-conic bundle; or

c) dim X̂ = 3, g is a divisorial contraction, and X̂ is a Q-Fano threefold.

In this case, denote q̂ := qQ(X̂).

Let E be the f -exceptional divisor. In all what follows, for a divisor D on X ,
let D̃ and D̄ denote strict birational transforms of D on X̃ and X̄ , respectively.
If g is birational, we put D̂ := g∗D̄.

Claim 4.6 ([Ale94]). If the map g of (4.5) is birational, then Ē is not an
exceptional divisor. If g is of fiber type, then Ē is not composed of fibers.

Proof. Assume the converse. If g is birational, this implies that the map g ◦
χ ◦ f−1 : X 99K X̂ is an isomorphism in codimension 1. Since both X and X̂
are Fano threefolds, this implies that g ◦ χ ◦ f−1 is in fact an isomorphism.
On the other hand, the number of K + cM -crepant divisors on X̂ is less than
that on X , a contradiction. If dim X̂ ≤ 2, then Ē is a pull-back of an ample
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Weil divisor on X̂ . But then nĒ is a movable divisor for some n > 0. This
contradicts exceptionality of E. �

4.7. Notation. If |kA| 6= ∅, let Sk ∈ |kA| be a general member. Write

(4.8)

KX̃ = f∗KX + αE,

S̃k = f∗Sk − βkE,
M̃ = f∗M − β0E.

Then

(4.9) c = α/β0.

Remark 4.10. If α < 1, then a(E, |−KX |) < 1. On the other hand, 0 = KX +
|−KX | is Cartier. Hence, a(E, |−KX |) ≤ 0 and KX̃ + f−1∗ |−KX | is linearly
equivalent to a non-positive multiple of E. Therefore, f−1∗ |−KX | ⊂ |−KX̃ | and
so

dim|−KX̄ | = dim|−KX̃ | ≥ dim|−KX |.

In our situation X has only cyclic quotient singularities (see Corollary 3.7). So,
the following result is very important.

Theorem 4.11 ([Kaw96]). Let (Y ∋ P ) be a terminal cyclic quotient singularity

of type 1
r (1, a, r − a), let f : Ỹ → Y be a Mori divisorial contraction, and let

E be the exceptional divisor. Then f(E) = P , f is the weighted blowup with
weights (1, a, r − a) and the discrepancy of E is a(E) = 1/r.

We call this f the Kawamata blowup of P .

4.12. Notation. Assume that g is birational. Let F̄ be the g-exceptional
divisor and let F̃ and F be its proper transforms on X̃ and X , respectively.
Let n be the maximal integer dividing the class of F̄ in Cl(X̄). Let Θ be an

ample Weil divisor on X̂ that generates Cl(X̂)/∼Q. Write

Ŝk ∼Q skΘ and Ê ∼Q eΘ,

where sk, e ∈ Z, sk ≥ 0, e ≥ 1. Note that sk = 0 if and only if S̄k is contracted
by g.

Lemma 4.13. In the above notation assume that the group Cl(X) is torsion

free. Write F ∼ dA, where d ∈ Z, d ≥ 1. Then Cl(X̂) ≃ Z⊕ Zn and d = ne.

Proof. Write F̄ ∼ nḠ, where Ḡ is an integral Weil divisor. Then Ē ∼ eΘ̄ + kḠ
for some k ∈ Z and Cl(X̂) ≃ Cl(X̄)/F̄Z ≃ Z⊕ Zn. We have

Zd ≃ Cl(X)/〈F 〉 ≃ Cl(X̄)/〈Ē, F̄ 〉 ≃ Z⊕ Z/〈eΘ̄ + kḠ, nḠ〉.
Since the last group is of order ne, we have d = ne. �

From now until the end of this section we consider the case where X̂ is a surface.
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Lemma 4.14. Assume that X̂ is a surface. Then X̂ is a del Pezzo surface with
Du Val singularities of type An. The linear system |−KX̂ | is base point free. If

moreover the group Cl(X) is torsion free, then so is Cl(X̂) and there are only
the following possibilities:

(i) K2
X̂

= 9, X̂ ≃ P2;

(ii) K2
X̂

= 8, X̂ ≃ P(12, 2);

(iii) K2
X̂

= 6, X̂ ≃ P(1, 2, 3);

(iv) K2
X̂

= 5, X̂ has a unique singular point, point of type A4.

Proof. By the main result of [MP08b] the surface X̂ has only Du Val singular-

ities of type An. Since ρ(X̂) = 1 and X̂ is uniruled, −KX̂ is ample. Further,

since both X̄ and X̂ have only isolated singularities and Pic(X̄/X̂) ≃ Z, there

is a well-defined injective map g∗ : Cl(X̂)→ Cl(X̄). Hence the group Cl(X̂) is
torsion free whenever Cl(X) is. The remaining part follows from the classifica-
tion of del Pezzo surfaces with Du Val singularities (see, e.g., [MZ88]). �

Lemma 4.15. Let ϕ : Y → Z be a Q-conic bundle (we assume that Y is Q-
factorial and ρ(Y/Z) = 1). Suppose that there are two prime divisors D1 and
D2 such that ϕ(Di) = Z, the log divisor KY +D1 +D2 is ϕ-linearly trivial and
canonical. Suppose furthermore that Z is singular and let o ∈ Z be a singular
point. Then o ∈ Z is of type Ar−1 for some r ≥ 2 and there is a Sarkisov link

Ỹ
σ

����
��

��
��

χ //_______ Ȳ
ϕ̄

��>
>>

>>
>>

Y
ϕ

''OOOOOOOOOOOOOO Z̄
δ

wwoooooooooooooo

Z

where σ is the Kawamata blowup of a cyclic quotient singularity 1
r (1, a, r − a)

over o, χ is a sequence of flips, ϕ̄ is a Q-conic bundle with ρ(Ȳ /Z̄) = 1, and
δ is a crepant contraction of an irreducible curve to o. Moreover, if D̄i is the
proper transform of Di on Ȳ , then the divisor KȲ + D̄1 + D̄2 is linearly trivial
over Z and canonical.

Proof. Regard Y/Z as an algebraic germ over o. Since Di are generically sec-
tions, the fibration ϕ has no discriminant curve. By [MP08c] the central fiber
C := ϕ−1(o)red is irreducible and by the main result of [MP08b] Y/Z is toroidal,
that is, it is analytically isomorphic to a toric contraction:

Y ≃ (C2 × P1)/µr(a, r − a, 1)

for some r, a ∈ Z with r ≥ 2 and gcd(a, r) = 1. Here the map Y → Z
is the projection to Z ≃ C2/µr(a, r − a). In particular, Y has exactly two
singular points and these points are cyclic quotients of types 1

r (1, a, r− a) and
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1
r (−1, a, r − a). Since the pair (Y,D1 + D2) is canonical, D1 ∩ D2 = ∅. On
the other hand, the divisor D1 +D2 ∼ −KY must contain all points on indices
> 1. Hence Sing(Y ) = (D1 + D2) ∩ C. Further, the divisors Di are quotients
of two disjointed sections of C2 × P1 → C2 by µr. Therefore, Di · C = 1/r.

Now consider the Kawamata blowup σ : Ỹ → Y of C ∩ D1. Let E be the
exceptional divisor and let D̃i be the proper transform of Di. Since KỸ =

σ∗KY + 1
rE and the pair (Y,D1 +D2) is canonical, we have

KỸ + D̃1 + D̃2 = σ∗(KY +D1 +D2).

It is easy to check locally that the proper transform C̃ of the central fiber C
does not meet D̃1. Moreover, C̃ ∩ E is a smooth point of Ỹ and E. Thus we
have D̃1 · C̃ = 0, E · C̃ = 1, and D̃2 · C̃ = D2 ·C = 1/r. Hence, KỸ · C̃ = −1/r.

Since the set-theoretical fiber over o in Ỹ coincides with E ∪ C̃, the divisor
−KỸ is ample over Z and C̃ generates a (flipping) extremal ray R. Run the
MMP over Z in this direction, i.e., starting with R. Assume that we end up
with a divisorial contraction ϕ̄ : Ȳ → Z̄. Then ϕ̄ must contract the proper
transform Ē of E. Here Z̄/Z is a Mori conic bundle and the map Y 99K Z̄ is
an isomorphism in codimension one, so it is an isomorphism. Moreover, Z̄/Z
has a section, the proper transforms of Di. Hence the fibration Z̄/Z is toroidal
over o. Consider Shokurov’s difficulty [Sho85]

d(W ) := #{exceptional divisors of discrepancy < 1}.
Then d(Y ) = d(Z̄) = 2(r − 1). On the other hand,

d(Z̄)− 1 ≤ d(Ȳ ) < d(Ỹ ) = r − 1 + a− 1 + r − a− 1 = 2r − 3

(because the map Ỹ 99K Ȳ is not an isomorphism). The contradiction shows
that our MMP ends up with a Q-conic bundle. Clearly, the divisorKȲ +D̄1+D̄2

is linearly trivial and canonical. By [MP08b] the surface Z̄ has at worst Du
Val singularities of type A. Hence the morphism δ is crepant [Mor85b]. �

Corollary 4.16. In the above notation assume that Ȳ is a toric variety. Then
so is Y .

Corollary 4.17. Notation as in Lemma 4.15. Assume that the base surface
Z is toric. Then so is Y .

Proof. Induction by the number e of crepant divisors of Z. If e = 0, then Y
is smooth and Y ≃ P(E ), where E is a decomposable rank-2 vector bundle on
Z. �

Proposition 4.18. In notation of 4.3, let X̂ be a surface. Let Γ ∈ |−KX̂ | and
let G := g−1(Γ). Suppose that there are two prime divisors D1 and D2 such

that g(Di) = X̂ and KX̂ + D1 + D2 + G ∼ 0. Then the pair (X̄,D1 + D2) is

canonical. If furthermore the surface X̂ is toric, then so are X̄ and X.

Proof. Clearly, we may replace Γ with a general member of | − KX̂ |. Note
that G is an elliptic ruled surface and KG +D1|G +D2|G ∼ 0. Hence divisors
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D1|G and D2|G are disjointed sections. This shows that D1 ∩ D2 is either
empty or consists of fibers. Assume that D1 ∩ D2 6= ∅. We can take Γ so
that G ∩D1 ∩D2 = ∅. By adjunction −KD1 ∼ Ḡ|D1 + D2|D1 . Since D1 is a

rational surface (birational to X̂), the divisor Ḡ|D1 +D2|D1 must be connected,
a contradiction. Thus, D1 ∩D2 = ∅.
Therefore both divisors D1 and D2 contain no fibers and so D1 ≃ D2 ≃ X̂ .
Then the pair (X̄,D1 + D2) is PLT by the Inversion of Adjunction. Since
KX̄ + D1 + D2 is Cartier, this pair must be canonical. The second assertion
follows by Corollary 4.17. �

5. Case qQ(X) = 10

Consider the case qQ(X) = 10. We assume that a Q-Fano threefold with
qQ(X) = 10 exists and get a contradiction applying Construction (4.5).
By Proposition 3.6 the group Cl(X) is torsion free and B = (7, 11). Recall also
that

(5.1) |A| = ∅, dim |2A| = 0, and dim |3A| = 1.

For r = 7 and 11, let Pr be a (unique) point of index r. In notation of §4, take
M := |3A|. By (5.1) there exist a (unique) irreducible divisor S2 ∈ | − 2KX |
and M is a pencil without fixed components. Let S3 ∈M = |3A| be a general
member.
Apply Construction (4.5). Notations of 4.3 and 4.7 will be used freely. Near
P11 we have A ∼ −10KX, so M ∼ −8KX . By Lemma 4.2 we get c ≤ 1/8. In
particular, the pair (X,M ) is not canonical. For some a1, a2 ∈ Z we can write

KX̃ + 5S̃2 = f∗(KX + 5S2)− a1E ∼ −a1E,
KX̃ + 2S̃2 + 2S̃3 = f∗(KX + 2S2 + 2S3)− a2E ∼ −a2E.

Therefore,

(5.2)
KX̄ + 5S̄2 + a1Ē ∼ 0,

KX̄ + 2S̄2 + 2S̄3 + a2Ē ∼ 0,

where dim |S2| = 0 and dim |S3| = 1. Using (4.8) we obtain

(5.3)
5β2 = a1 + α,

2β2 + 2β3 = a2 + α.

Since S3 ∈M is a general member, by (4.9) we have c = α/β3 ≤ 1/8, so

(5.4) 8α ≤ β3 and a2 ≥ 15α+ 2β2.

5.5. First we consider the case where f(E) is either a curve or a Gorenstein
point on X . Then α and βk are non-negative integers. In particular, a2 ≥ 15.
From (5.2) and (5.4) we obtain that g is birational. Indeed, otherwise restricting
the second relation of (5.2) to a general fiber V we get that −KV is divisible
by some number a′ ≥ a2 ≥ 15. This is impossible because V is either P1 or a
smooth del Pezzo surface.
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Thus g is birational and X̂ is a Q-Fano. Again from (5.2) and (5.4) in notation
of 4.12 we get

−KX̂ ∼ 2Ŝ2 + 2Ŝ3 + a2Ê ∼Q (2s2 + 2s3 + a2e)Θ,

where s2, s3 ≥ 0, e ≥ 1, and a2 ≥ 15. This immediately gives us qQ(X̂) ≥ 15

and e = 1, that is, Ê∼Q Θ. By Proposition 3.6 the group Cl(X̂) is torsion free.

In particular, Ê ∼ Θ and |Θ| 6= ∅. On the other hand, again by Proposition
3.6 we have |Θ| = ∅, a contradiction.

5.6. Therefore f(E) is a non-Gorenstein point Pr of index r = 7 or 11. By
Theorem 4.11 f is Kawamata blowup and α = 1/r. Near Pr we can write
A ∼ −lrKX , where lr ∈ Z and 10lr ≡ 1 mod r. Then Sk + klrKX is Cartier
near Pr. Therefore, βk ≡ klrα mod Z and so βk = klr/r + mk, where mk =
mk,r ∈ Z. Explicitly, we have the following values of α, βk, and ak:

r α β2 β3 a1 a2

7 1
7

3
7 +m2

1
7 +m3 2 + 5m2 1 + 2m2 + 2m3

11 1
11

9
11 +m2

8
11 +m3 4 + 5m2 3 + 2m2 + 2m3

Claim 5.7. If r = 7, then m3 ≥ 1.

Proof. Follows from c = α/β3 ≤ 1/8. �

If g is not birational, then, as above, restricting relations (5.2) to a general
fiber V we get

−KV ∼ 5S̄2|V + a1Ē|V ∼ 2S̄2|V + 2S̄3|V + a2Ē|V ,
where E|V 6= 0 and S2|V , S3|V , and E|V are proportional to −KV (because

ρ(X̄/X̂) = 1). Since V is either P1, or a smooth del Pezzo surface, S2|V = 0
and ai ≤ 3. So, r = 7. By the above claim and computations in the table we
have a2 = 3, m1 = 1, and m2 = 0. Hence, a1 = 2. But then

−KV ∼ 2Ē|V ∼ 2S̄3|V + 3Ē|V ,
a contradiction.
Thus g is birational. Below we will use notation of 4.12. Since S̄3 is moveable,
s3 ≥ 1. Put

u := s2 + em2, v := s3 + em3.

5.8. Case: r = 11. Since Cl(X)/∼Q ≃ Z·Θ, pushing down (5.2) to X̂ we
obtain the following relations

(5.9)
q̂ = 5s2 + (4 + 5m2)e = 5u+ 4e,

q̂ = 2s2 + 2s3 + (3 + 2m2 + 2m3)e = 2u+ 2v + 3e.

Assume that u = 0. Then q̂ = 4e. The only solution of (5.9) with q̂ allowed by
Proposition 3.6 is the following: q̂ = 8, v = 1, e = 2. Hence, s2 = 0 and s3 = 1.
In particular, dim |Θ| ≥ dim |S3| = 1. On the other hand, by Lemma 4.13 the
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group Cl(X̂) is torsion free and by Lemma 3.9 the divisor Θ is not moveable,
a contradiction.
Therefore, u ≥ 1. By the first relation in (5.9) q̂ ≥ 9. Hence the group Cl(X̂)
is torsion free (Proposition 3.6). Then by Lemma 4.13 we have F ∼ eA. Since
|A| = ∅, e ≥ 2. Again by (5.9) q̂ ≥ 13 and e is odd. Thus, e = 3, u = 1, and
q̂ = 17. Further, s3 + em3 = v = 3 and s3 = 3 (because S̄3 is moveable). By
Proposition 3.6 we have 1 = dim |S3| ≤ dim |3Θ| = 0, a contradiction.

5.10. Case: r = 7. Recall that m3 ≥ 1 by Claim 5.7. As in 5.8 write

(5.11)
q̂ = 5s2 + (2 + 5m2)e = 5u+ 2e,

q̂ = 2s2 + 2s3 + (1 + 2m2 + 2m3)e = 2u+ 2v + e.

Hence, v = s3 + em3 ≥ 1 + e.
If u = 0, then q̂ = 2e = 2v + e, e = 2v, and q̂ = 4v ≥ 4(1 + e) = 4(1 + 2v), a
contradiction. If u = 2, then q̂ is even ≥ 12. Again we have a contradiction.
Assume that u ≥ 3. Using the first relation in (5.11) and Proposition 3.6 we
get successively

u = 3, q̂ ≥ 17, |Θ| = ∅, e ≥ 2, q̂ ≥ 19, |2Θ| = ∅, e ≥ 3,

and so q̂ ≥ 21, a contradiction.
Therefore, u = 1. Then q̂ = 5 + 2e = 2 + 2v + e and 2v = 3 + e = 2v ≥ 2 + 2e.
So, e = 1, v = 2, q̂ = 7. Since m3 ≥ 1, s3 = v−em3 = 1. Hence, Ŝ3∼Q Θ. Since

dim |Ŝ3| ≥ 1, by (vi) of Theorem 1.4 we have X̂ ≃ P(12, 2, 3). In particular,

the group Cl(X̂) is torsion free. By Lemma 4.13 the divisor F generates the
group Cl(X). This contradicts |A| = ∅.
The last contradiction finishes the proof of (v) of Theorem 1.4.

6. Case qQ(X) = 11 and dim | −KX | ≥ 11

In this section we consider the case qQ(X) = 11 and dim | − KX | ≥ 11. By
Proposition 3.6 the group Cl(X) is torsion free and B = (2, 3, 5). Recall that

dim |A| = 0, dim |2A| = 1, and dim |3A| = 2.

It is easy to see that, for m = 1, 2, and 3, general members Sm ∈ |−mKX | are
irreducible. For r = 2, 3, 5, let Pr be a (unique) point of index r. In notation
of §4, take M := |2A|. By the above, M is a pencil without fixed components.
Apply Construction (4.5). Near P5 we have A ∼ −KX and M ∼ −2KX. By
Lemma 4.2 we get c ≤ 1/2. In particular, the pair (X,M ) is not canonical.

Proposition 6.1. In the above notation, f is the Kawamata blowup of P5 and
X̂ is a del Pezzo surface with Du Val singularities with K2

X̂
= 5 or 6. Moreover,

for k = 1, 2 and 3, the image Ck := g(S̄k) is a curve on X̂ with −KX̂ ·Ck = k.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(6.2)

KX̄ + 11S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 5S̄2 + a2Ē ∼ 0,

KX̄ + 2S̄1 + 3S̄3 + a3Ē ∼ 0,
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(6.3)

11β1 = a1 + α,

β1 + 5β2 = a2 + α,

2β1 + 3β3 = a3 + α.

Since S2 ∈ M is a general member, by (4.9) we have c = α/β2 ≤ 1/2, so
2α ≤ β2 and a2 ≥ 9α + β1. Since 2S1 ∼ S2, we have 2β1 ≥ β2. Thus β1 ≥ α
and a1, a2 ≥ 10α.
First we consider the case where f(E) is either a curve or a Gorenstein point on
X . Then α and βk are integers, so a1, a2 ≥ 10. Restricting (6.2) to a general
fiber of g we obtain that g is birational. Moreover, in notation of 4.12 we have

q̂ ≥ 15, the group Cl(X̂) is torsion free, and Ê ∼ Θ. In particular, |Θ| 6= ∅.
This contradicts Proposition 3.6.

6.4. Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3 or 5. As
in 5.6 we have the following values of βk and ak:

r β1 β2 β3 a1 a2 a3

2 1
2
+m1 m2

1
2
+m3 5 + 11m1 m1 + 5m2 2 + 2m1 + 3m3

3 2
3
+m1

1
3
+m2 m3 7 + 11m1 1 +m1 + 5m2 1 + 2m1 + 3m3

5 1
5
+m1

2
5
+m2

3
5
+m3 2 + 11m1 2 +m1 + 5m2 2 + 2m1 + 3m3

Claim 6.5. If r = 2 or 3, then m2 ≥ 1.

Proof. Follows from 1/2 ≥ c = α/β2 = 1/rβ2. �

Assume that g is birational. By Proposition 3.6 and Remark 4.10 we have
dim | − KX̂ | ≥ | − KX | = 23. So, in notation of 4.12, q̂ ≤ 11. If S̄1 is not
contracted, then by the first relation in (6.2) we have q̂ ≥ 11 + a1 ≥ 13, a
contradiction. Therefore the divisor S̄1 is contracted. By Lemma 4.13 the
group Cl(X̂) is torsion free and Ê ∼ Θ. Hence, q̂ = a1 ≤ 7, m1 = 0, and r 6= 5.
But then m2 ≥ 1 (see Claim 6.5) and a2 ≥ 5. This contradicts the second
relation in (6.2).
Therefore g is of fiber type. Restricting (6.2) to a general fiber we get ai ≤ 3.
Thus, r = 5 and a1 = a2 = a3 = 2. Moreover, divisors S̄1, S̄2, and S̄3 are
g-vertical. Since S̄3 is irreducible and dim |S̄3| = 2, the variety X̂ cannot be

a curve. Therefore X̂ is a surface and the images g(S̄1), g(S̄2), and g(S̄3) are
curves. Since dim |S̄1| = 0, we have dim |g(S̄1)| = 0. Hence, K2

X̂
≤ 6 and g(S̄1)

is a line on X̂. By Lemma 4.14 there are only two possibilities: X̂ ≃ P(1, 2, 3)

and X̂ is an A4-del Pezzo surface. �

6.6. Consider the case where X̂ is an A4-del Pezzo surface. Assume that S̄6

is g-vertical. By Riemann-Roch for Weil divisors on surfaces with Du Val
singularities [Rei87] we have dim |S̄6| = dim |g(S̄6)| = 6. On the other hand,

dim |S̄6| = dim |S6| = 7, a contradiction. Thus g(S̄5) = X̂. Since KX + S5 +
S6 ∼ 0,

KX̄ + S̄5 + S̄6 + Ē ∼ 0.
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Therefore S̄6 and Ē are sections of g. By Proposition 4.18 the pair (X̄, S̄6 + Ē)

is canonical. Now since S̄5 is nef, the map X̄ 99K X̃ is a composition of steps
of the KX̄ + S̄6 + Ē-MMP. Hence the pair (X̃, S̃6 + E) is also canonical. In

particular, S̃6 ∩ E = ∅ and so P5 = f(E) /∈ S6, a contradiction.

6.7. Now consider the case X̂ ≃ P(1, 2, 3). As above, if g(S̄5) is a curve, then
dim |g(S̄5)| = 5 and g(S̄5) ∼ 5g(S̄1). On the other hand, g(S̄5) ∼ − 5

6KX̂ . But

then dim |g(S̄5)| = 4, a contradiction. Therefore, g(S̄5) = X̂. Similar to (6.2)
we have KX̄ + 2S̄5 + S̄1 + a4Ē ∼ 0. This shows that a4 = 0 and S̄5 is a section
of g. Thus we can write KX̄ + S̄5 + G + Ē ∼ 0, where G is a g-trivial Weil
divisor, i.e., G = g∗Γ for some Weil divisor Γ. Pushing down this equality to
X we get G ∼ 6S̄1, i.e., Γ ∈ | −KX̂ |. By Proposition 4.18 varieties X̄ and X
are toric. This proves (iv) of Theorem 1.4.

7. Case qQ(X) = 13 and dim | −KX | ≥ 6

In this section we consider the case qQ(X) = 13 and dim | − KX | ≥ 6. By
Proposition 3.6 B = (3, 4, 5). Recall that

dim |A| = dim |2A| = 0, dim |3A| = 1, dim |4A| = 2, and dim |5A| = 3.

Therefore, for m = 1, 3, 4, and 5, general members Sm ∈ | − mKX | are
irreducible. For r = 3, 4, 5, let Pr be a (unique) point of index r. In notation
of §4, take M := |4A|. Since 1 = dim |3A| > dim M = 2, the linear system
M has no fixed components. Apply Construction (4.5). Near P5 we have
A ∼ −2KX and M ∼ −3KX . By Lemma 4.2 we get c ≤ 1/3. In particular,
the pair (X,M ) is not canonical.

Proposition 7.1. In the above notation, f is the Kawamata blowup of P5, g
is birational, it contracts S̄1, and X̂ ≃ P(13, 2). Moreover, in notation of 4.12

we have Ŝ3 ∼ Ŝ4 ∼ Ê ∼ Θ and Ŝ5 ∼ 2Θ.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(7.2)

KX̄ + 13S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 4S̄3 + a2Ē ∼ 0,

KX̄ + S̄1 + 3S̄4 + a3Ē ∼ 0,

(7.3)

13β1 = a1 + α,

β1 + 4β3 = a2 + α,

β1 + 3β4 = a3 + α.

Since S4 ∈M is a general member, by (4.9) we have c = α/β4 ≤ 1/3, 3α ≤ β4
and a3 ≥ 8α + β1. Since 4S1 ∼ S4, we have 4β1 ≥ β4. Thus β1 ≥ α and
a1 ≥ 12α.
First we consider the case where f(E) is either a curve or a Gorenstein point
on X . Then α and βk are integers. In particular, a1 ≥ 12. From the first
relation in (7.2) we obtain that g is birational. Moreover, in notation of 4.12
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we have q̂ ≥ 13 and Ê ∼ Θ. In particular, |Θ| 6= ∅. By Proposition 3.6 we
have q̂ = 13, a1 = 13, S̄1 is contracted, and α = 1. This contradicts (7.3).
Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4 or 5. By
Theorem 4.11 α = 1/r. Similar to 5.6 we have (here mk ∈ Z≥0)

r β1 β3 β4 β5 a1 a2 a3

3 1
3
+m1 m3

1
3
+m4

2
3
+m5 4 + 13m1 m1 + 4m3 1 +m1 + 3m4

4 1
4
+m1

3
4
+m3 m4

1
4
+m5 3 + 13m1 3 +m1 + 4m3 m1 + 3m4

5 2
5
+m1

1
5
+m3

3
5
+m4 m5 5 + 13m1 1 +m1 + 4m3 2 +m1 + 3m4

Claim 7.4. If r = 3 or 4, then m4 ≥ 1.

Proof. Follows from 1/3 ≥ c = α/β4 = 1/rβ4. �

If g is not birational, then a1 = 3, r = 4, m4 ≥ 1, and a3 ≥ 3. In this case,
a2 = a3 = 3, g is a generically P2-bundle, and divisors S̄1, S̄3, S̄4 are g-vertical.
Since dim |S̄4| > 1 and the divisor S̄4 is irreducible, we have a contradiction.
Therefore g is birational. Below we will use notation of 4.12.
By Proposition 3.6 we have dim | −KX̂ | ≥ | −KX | = 19 and q̂ ≤ 13. From the
first relation in (7.2) we see that S̄1 is contracted. By Lemma 4.13 the group

Cl(X̂) is torsion free and Ê ∼ Θ. Moreover, m1 = 0 (because 13m1 < a1e =
q̂ ≤ 13). Thus q̂ = a1 = 4, 3, and 5 in cases r = 3, 4, and 5, respectively.
In cases r = 3 and 4 we have q̂ ≥ 3 + a3 ≥ 6, a contradiction. Therefore,
r = 5, q̂ = 5, and s3 = s4 = 1. Since dim |Θ| ≥ 1, by (vi) of Theorem

1.4 we have X̂ ≃ P(13, 2). Since dim |S5| = 3 and dim |Θ| = 2, s5 ≥ 2.
Similar to (7.2)-(7.3) we have KX̄ + S̄3 + 2S̄5 + a4Ē ∼ 0, 2s5 + a4 = 4, and
a4 = β3+2β5−α = m3+2m5. Thus, s5 = 2 and a4 = β5 = 0, i.e., P5 /∈ S5. �

Lemma 7.5. (i) S1 ∩ S3 is a reduced irreducible curve.
(ii) S1 ∩ S3 ∩ S4 = {P5}.

Proof. (i) Recall that A3 = 1/60 by Proposition 3.6. Write S1 ∩ S3 = C + Γ,
where C is a reduced irreducible curve passing through P5 and Γ is an effective
1-cycle. Suppose, Γ 6= 0. Then 1/4 = S1 · S3 · S5 > S5 · C. Since P5 /∈ S5,
C 6⊂ S5 and S5 · C ≥ 1/4, a contradiction. Hence, S1 ∩ S3 = C.
(ii) Assume that S1 ∩ S3 ∩ S4 ∋ P 6= P5. Since 1/5 = S1 · S3 · S4 = S4 · C and
P, P5 ∈ S4 ∩ C, we have C ⊂ S4. If there is a component C′ 6= C of S1 ∩ S4

not contained in S5, then, as above, 1/3 = S1 · S4 · S5 ≥ S5 ·C + S5 ·C′ ≥ 1/2,
a contradiction. Thus we can write S1 ∩ S4 = C + Γ, where Γ is an effective
1-cycle with Supp Γ ⊂ S5. In particular, P5 /∈ Γ. The divisor 12A is Cartier at
P3 and P4. We get

1

5
= 12A3 = 12A · S1 · (S4 − S3) = 12A · Γ ∈ Z,

a contradiction. �
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Lemma 7.6. Let X be a Q-Fano threefold and D = D1 + · · ·+D4 be a divisor
on X, where Di are irreducible components. Let P ∈ X be a cyclic quotient
singularity of index r. Assume that KX+D∼Q0, P /∈ D4, D1∩D2∩D3 = {P},
and D1 ·D2 ·D3 = 1/r. Then the pair (X,D) is LC.

Proof. Let π : (X♯, P ♯) → (X,P ) be the index-one cover. For k = 1, 2, 3, let

D♯
k be the preimage of Dk and let D♯ := D♯

1 + D♯
2 + D♯

3. By our assumptions

D♯
1 ∩ D♯

2 ∩ D♯
3 = {P ♯}. Since D1 · D2 · D3 = 1/r, locally near P ♯ we have

D♯
1 ·D♯

2 ·D♯
3 = 1. Hence D♯ is a simple normal crossing divisor (near P ♯). In

particular, (X♯, D♯) is LC near P ♯ and so is (X,D) near P .
Thus the pair (X,D) is LC in some neighborhood U ∋ P . Since D1∩D2∩D3 =
{P}, P is a center of LC singularities for (X,D). Let H be a general hyperplane
section through P . Write λD4∼QH , where λ > 0. If (X,D) is not LC in X \U ,
then the locus of log canonical singularities of the pair (X,D+ǫH−(λǫ+δ)D4)
is not connected for 0 < δ ≪ ǫ ≪ 1. This contradicts Connectedness Lemma
[Sho92], [Kol92]. Therefore the pair (X,D) is LC. �

7.7. Proof of (iii) of Theorem 1.4. By Lemma 7.6 the pair (X,S1 +S3 +
S4+S5) is LC. Since KX+S1+S3+S4+S5 ∼ 0, it is easy to see that a(E, S1+

S3+S4+S5) = −1. ThusKX̃+S̃1+S̃3+S̃4+S̃5 = f∗(KX+S1+S3+S4+S5) ∼ 0.

Therefore the pairs (X̄, S̄1 + S̄3 + S̄4 + S̄5 + Ē) and (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê)

are also LC. It follows from Proposition 7.1 and its proof that X̂ ≃ P(13, 2),

Ê ∼ Ŝ3 ∼ Ŝ4 ∼ Θ, and Ŝ5 ∼ 2Θ. We claim that Ŝ3 + Ŝ4 + Ŝ5 + Ê is a
toric boundary (for a suitable choice of coordinates in P(13, 2)). Let (x1 : x′1 :
x′′1 : x2) be homogeneous coordinates in P(13, 2). Clearly, we may assume that

Ê = {x1 = 0}, Ŝ3 = {x′1 = 0}, and Ŝ4 = {αx1 + α′x′1 + α′′x′′1 = 0} for some

constants α, α′, α′′. Since (X̂, Ŝ3+Ŝ4+Ê) is LC, α′′ 6= 0 and after a coordinate

change we may assume that Ŝ4 = {x′′1 = 0}. Further, the surface Ŝ5 is given by
the equation βx2+ψ(x1, x

′
1, x
′′
1 ) = 0, where β is a constant and ψ is a quadratic

form. If β = 0, then Ŝ3 ∩ Ŝ4 ∩ Ê ∩ Ŝ5 6= ∅ and the pair (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê)
cannot be LC. Thus β 6= 0 and after a coordinate change we may assume that
Ŝ5 = {x2 = 0}. Therefore Ŝ3 + Ŝ4 + Ŝ5 + Ê is a toric boundary. Then by

Lemma 7.8 below the varieties X̄, X̃, and X are toric. This proves (iii) of
Theorem 1.4.

Lemma 7.8 (see, e.g., [McK01, 3.4]). Let V be a toric variety and let ∆ be the
toric (reduced) boundary. Then every valuation ν with discrepancy −1 with

respect to KV + ∆ is toric, that is, there is a birational toric morphism Ṽ → V
such that ν corresponds to an exceptional divisor.

8. Case qQ(X) = 17

Consider the case qQ(X) = 17. By Proposition 3.6 B = (2, 3, 5, 7) and |A| = ∅,
dim |2A| = dim |3A| = dim |4A| = 0, dim |5A| = dim |6A| = 1, dim |7A| =
2. Therefore, for m = 2, 3, 5, and 7 general members Sm ∈ | − mKX | are
irreducible. For r = 2, 3, 5, 7, let Pr be a (unique) point of index r. In
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notation of §4, take M := |5A| and apply Construction (4.5). Near P7 we have
A ∼ −5KX and M ∼ −4KX . By Lemma 4.2 we get c ≤ 1/4. In particular,
the pair (X,M ) is not canonical.

Proposition 8.1. In the above notation, f is the Kawamata blowup of P7, g
is birational, it contracts S̄2, and X̂ ≃ P(12, 2, 3). Moreover, in notation of

4.12 we have Ŝ3 ∼ Ŝ5 ∼ Θ, Ê ∼ 2Θ, and Ŝ7 ∼ 3Θ.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(8.2)

KX̄ + 7S̄2 + S̄3 + a1Ē ∼ 0,

KX̄ + S̄2 + 5S̄3 + a2Ē ∼ 0,

KX̄ + S̄2 + 3S̄5 + a3Ē ∼ 0,

(8.3)

7β2 + β3 = a1 + α,

β2 + 5β3 = a2 + α,

β2 + 3β5 = a3 + α.

Since S5 ∈ M is a general member, by (4.9) we have c = α/β5 ≤ 1/4, so
4α ≤ β5 and a3 ≥ 11α+ β2. Since S2 + S3 ∼ S5, we have β2 + β3 ≥ β5 ≥ 4α.
Hence, a1 ≥ 6β2 + 3α and a2 ≥ 4β3 + 3α.
First we consider the case where f(E) is either a curve or a Gorenstein point
on X . Then α and βk are integers. In particular, a3 ≥ 11 and by the third
relation in (8.2) we obtain that g is birational. Moreover, in notation of 4.12

we have q̂ ≥ 11. In particular, the group Cl(X̂) is torsion free and so Ê ≥ 2Θ.
Hence, q̂ ≥ 2a3 ≥ 22, a contradiction.
Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3, 5 or 7. Similar
to 5.6 we have α = 1/r and

r β2 β3 β5 β7 a1 a2 a3

2 m2
1
2 +m3

1
2 +m5

1
2 +m7 7m2 +m3 2 +m2 + 5m3 1 +m2 + 3m5

3 1
3 +m2 m3

1
3 +m5

2
3 +m7 2 + 7m2 +m3 m2 + 5m3 1 +m2 + 3m5

5 1
5 +m2

4
5 +m3 m5

1
5 +m7 2 + 7m2 +m3 4 +m2 + 5m3 m2 + 3m5

7 3
7 +m2

1
7 +m3

4
7 +m5 m7 3 + 7m2 +m3 1 +m2 + 5m3 2 +m2 + 3m5

Claim 8.4. (i) If r = 2, then m5 ≥ 2 and m2 +m3 ≥ 2.
(ii) If r = 3, then m5 ≥ 1 and m2 +m3 ≥ 1.

(iii) If r = 5, then m5 ≥ 1.

Proof. Note that 1/4 ≥ c = α/β5 = 1/rβ5 and rβ5 ≥ 4. This gives us inequal-
ities for m5. The inequalities for m2 +m3 follows from β2 + β3 ≥ β5. �

From this we have min(a1, a2, a3) ≥ 3. Moreover, the equality min(a1, a2, a3) =
3 holds only if r = 7. Therefore the contraction g can be of fiber type only if
a1 = 3, r = 7, m2 = m3 = 0, min(a1, a2, a3) = 3, r = 7, m2 = m3 = m5 = 0,
a3 = 2, and a2 = 1. Then g is a del Pezzo fibration of degree 9 and by the
first relation in (8.2) divisors Ŝ2 and Ŝ3 are g-vertical. But then a2 = 3, a
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contradiction. From now on we assume that g is birational. Thus we use
notation of 4.12 as usual.
Since S̄5 is moveable, it is not contracted. Therefore, s5 ≥ 1. By (8.2) we have

q̂ = 7s2 + s3 + a1e,

q̂ = s2 + 5s3 + a2e,

q̂ = s2 + 3s5 + a3e.

Put
u := s2 + em2, v := s3 + em3, w := s5 + em5.

8.5. Case: r = 2. Then a3 ≥ 7 and q̂ ≥ 3s5 + a3 ≥ 10. Hence the group
Cl(X̂) is torsion free. So, e ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 17. In this case, |Θ| = ∅.
Therefore, s5 ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 20, a contradiction.

8.6. Case: r = 3. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (m2 + 5m3)e = u+ 5v,

q̂ = s2 + 3s5 + (1 +m2 + 3m5)e = u+ 3w + e.

Assume that u > 0. Then q̂ ≥ 9. Hence the group Cl(X̂) is torsion free and
e ≥ 2. Since dim |S5| = 1 and dim |Θ| ≤ 0, we have s5 ≥ 2. Since m5 ≥ 1 (see
Claim 8.4), we have w ≥ 4 and q̂ > 13. In this case, s5 ≥ 5, a contradiction.
Therefore, u = 0, m2 = 0, s3 6= 0, m3 ≥ 1, and v ≥ 2. So, q̂ = 5v ≥ 10. Then
we get a contradiction by (v) of Theorem 1.4.

8.7. Case: r = 5. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (4 +m2 + 5m3)e = u+ 5v + 4e,

q̂ = s2 + 3s5 + (m2 + 3m5)e = u+ 3w.

From the first two relations we have 3u = 2v + e and 1 ≤ u ≤ 2. Further,
q̂ − 4u = 3(v + e), so q̂ ≡ u mod 3.
If u = 2, then e is even and q̂ = 14 + v + 2e ≥ 18. So, q̂ = 19, a contradiction.
Thus u = 1, 3 = 2v+e, and q̂ = 7+v+2e ≥ 9. By (v) of Theorem 1.4 q̂ is odd.
Hence, v is even, e = 3, v = 0, q̂ = 13. In this case, s5 + 3m5 = w = 4. By
Claim 8.4 m5 = s5 = 1. Note that the group Cl(X̂) is torsion free and s2 = 1.
Thus dim |Θ| > 0. This contradicts Proposition 3.6.

8.8. Case: r = 7. Then

q̂ = 7s2 + s3 + (3 + 7m2 +m3)e = 7u+ v + 3e,

q̂ = s2 + 5s3 + (1 +m2 + 5m3)e = u+ 5v + e,

q̂ = s2 + 3s5 + (2 +m2 + 3m5)e = u+ 3w + 2e.

Assume that u > 0. Then q̂ ≥ 10, the group Cl(X̂) is torsion free and so e ≥ 2,
q̂ ≥ 13, u = 1. From the first two relations we get q̂ + 2 = 7v. Hence, v = 3,
q̂ = 19, e = 3, and s2 = 0. This contradicts the equality 1 = u = s2 + em2.
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Therefore, u = 0 and s2 = m2 = 0. From the first two relations we get q̂ = 7v.
Thus, q̂ = 7, v = 1, e = 2, w = 1, m3 = m5 = 0, and s3 = s5 = 1. By Lemma
4.13 the group Cl(X̂) is torsion free and so dim |Θ| ≥ dim |S̄5| > 0. From (vi)

of Theorem 1.4 we have X̂ ≃ P(12, 2, 3). In particular, dim |Θ| = 1. Further,
similar to (8.2) we have

KX̄ + S̄3 + 2S̄7 + a4Ē ∼ 0,

β3 + 2β7 = a4 + α.

This gives us a4 = 2β7 and s7 + a4 = 3. Since dim |S7| = 2, s7 > 1, s7 = 3,

Ŝ7 ∼ 3Θ, a4 = 0, and β7 = 0, i.e., P7 /∈ S7.

�

Lemma 8.9. (i) S2 ∩ S3 is a reduced irreducible curve.
(ii) S2 ∩ S3 ∩ S5 = {P7}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S2 ∩ S3 ∩ S5 ∋ P 6= P7. Since 1/7 =
S2 ·S3 ·S5 = S5 ·C and P, P7 ∈ S5∩C, we have C ⊂ S5. If there is a component
C′ 6= C of S2 ∩ S5 not contained in S7, then, as above, 7/15 = S2 · S7 · S7 ≥
S7 · C + S7 · C′ ≥ 2/5, a contradiction. Thus we can write S2 ∩ S5 = C + Γ,
where Γ is an effective 1-cycle with Supp Γ ⊂ S7. In particular, P7 /∈ Γ. The
divisor 30A is Cartier at P2, P3, and P5. We get

120

210
= 120A3 = 30A · S2 · (S5 − S3) = 30A · Γ ∈ Z,

a contradiction. �

Now the proof of (ii) of Theorem 1.4 can be finished similar to 7.7: the pair

(X̂, Ŝ3 + Ŝ5 + Ê + Ŝ7) is LC and the corresponding discrepancy of S̄2 is equal
to −1.

9. Case qQ(X) = 19

Consider the case qQ(X) = 19. By Proposition 3.6 B = (3, 4, 5, 7) and |A| =
∅, |2A| = ∅, dim |3A| = dim |4A| = dim |5A| = dim |6A| = 0, dim |7A| =
1. Therefore, for m = 3, 4, 5, and 7 general members Sm ∈ | − mKX | are
irreducible. For r = 3, 4, 5, 7, let Pr be a (unique) point of index r. In
notation of §4, take M := |7A| = |S7| and apply Construction (4.5). Near P5

we have A ∼ −4KX and M ∼ −3KX . By Lemma 4.2 we get c ≤ 1/3. In
particular, the pair (X,M ) is not canonical.

Proposition 9.1. In the above notation, f is the Kawamata blowup of P5, g
is birational, it contracts S̄3, and X̂ ≃ P(12, 2, 3). Moreover, in notation of

4.12 we have Ŝ4 ∼ Ŝ7 ∼ Θ, Ê ∼ 3Θ, and Ŝ5 ∼ 2Θ.
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Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3, a4 ∈ Z:

(9.2)

KX̄ + 5S̄3 + S̄4 + a1Ē ∼ 0,

KX̄ + S̄3 + 4S̄4 + a2Ē ∼ 0,

KX̄ + S̄4 + 3S̄5 + a3Ē ∼ 0,

KX̄ + S̄5 + 2S̄7 + a4Ē ∼ 0,

(9.3)

5β3 + β4 = a1 + α,

β3 + 4β4 = a2 + α,

β4 + 3β5 = a3 + α,

β5 + 2β7 = a4 + α.

Remark 9.4. Since S7 ∈ M is a general member, by (4.9) we have c =
α/β7 ≤ 1/3, so 3α ≤ β7 and a4 ≥ 5α + β5. Further, S3 + S4 ∼ S7. Thus,
β3 + β4 ≥ β7 ≥ 3α, a1 ≥ 4β3 + 2α, and a2 ≥ 3β4 + 2α.

Assume that X̂ is a surface. Then X̂ is such as in Lemma 4.14. From the first
and second relations in (9.2) we obtain that S3 and S4 are g-vertical. Since
dim |S̄k| = 0, dim |g(S̄k)| = 0, k = 3, 4. Hence, K2

X̂
≤ 6 and the curves g(S̄k)

are in fact lines on X̂. In particular, g(S̄3) ∼ g(S̄4). This implies S̄3 ∼ S̄4 and
S3 ∼ S4, a contradiction.
Now assume that X̂ is a curve and let G be a general fiber of g. Clearly,
divisors S̄3 and S̄4 are g-vertical. If the divisor S̄5 is also g-vertical, then
k3S̄3 ∼ k4S̄4 ∼ k5S̄5 ∼ G, where the ki are the multiplicities of corresponding
fibers. Considering proper transforms on X we get 3k3 = 4k4 = 5k5 and so
k3 = 20k, k4 = 14k, k5 = 12k for some k ∈ Z. This contradicts the main result
of [MP08a]. Therefore the divisor S̄5 is g-horizontal. In this case, the degree
of the general fiber is 9. As above we have k3S̄3 ∼ k4S̄4 ∼ G, 3k3 = 4k4. So,
k3 = 4k, k4 = 3k, k ∈ Z. Again by [MP08a] g has no fibers of multiplicity
divisible by 4.
From now on we assume that g is birational. Then in notation of 4.12,

(9.5) q̂ = 5s3 + s4 + a1e = s3 + 4s4 + a2e = s4 + 3s5 + a3e.

Consider the case where f(E) is either a curve or a Gorenstein point on X .
Then α and βk are integers. By Remark 9.4

a1 + a2 = 5(β3 + β4) + β3 − 2α ≥ 13α ≥ 13.

On the other hand, from (9.5) we obtain 2q̂ ≥ 6s3 + 5s4 + 13 ≥ 18. So, q̂ ≥ 9

(both S̄3 and S̄4 cannot be contracted). In this case, the group Cl(X̂) is torsion

free and by Lemma 4.13 we have Ê ≥ 3Θ. Since a4 ≥ 5, we have Ê ∼ 3Θ,
q̂ ≥ 15, and S̄3 is contracted. In this situation, |Θ| = ∅, so s5, s7 ≥ 2. This
contradicts the fourth relation in (9.2).
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Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4, 5 or 7. Similar
to 5.6 we have α = 1/r and

r β3 β4 β5 β7 a1 a2 a3

3 m3
1
3 +m4

2
3 +m5

1
3 +m7 5m3 +m4 1 +m3 + 4m4 2 +m4 + 3m5

4 1
4 +m3 m4

3
4 +m5

1
4 +m7 1 + 5m3 +m4 m3 + 4m4 2 +m4 + 3m5

5 2
5 +m3

1
5 +m4 m5

3
5 +m7 2 + 5m3 +m4 1 +m3 + 4m4 m4 + 3m5

7 2
7 +m3

5
7 +m4

1
7 +m5 m7 2 + 5m3 +m4 3 +m3 + 4m4 1 +m4 + 3m5

Claim 9.6. (i) If r = 3 or 4, then m7 ≥ 1 and m3 +m4 ≥ 1.
(ii) If r = 7, then m7 ≥ 1.

Proof. To get inequalities for m7 we use 1/3 ≥ c = α/β7 = 1/rβ7, rβ7 ≥ 3.
The inequalities for m3 +m4 follows from β3 + β4 ≥ β7. �

Thus, in all cases a1, a2 ≥ 1. Put

u := s3 + em3, v := s4 + em4, w := s5 + em5.

9.7. Case: r = 3. Then u+ v > e(m3 +m4) ≥ e by Claim 9.6. Further,

q̂ = 5s3 + s4 + (5m3 +m4)e = 5u+ v,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (2 +m4 + 3m5)e = v + 3w + 2e.

If u = 0, then v = q̂ = e + 4v, a contradiction.
Assume that u ≥ 2. Then q̂ ≥ 10, u ≤ 3, the group Cl(X̂) is torsion free and
by Lemma 4.13 we have e ≥ 3. If u = 2, then v ≥ 2, q̂ ≥ 13, v = q̂ − 10, and
e ≤ q̂ − 2 − 4v ≤ 2, a contradiction. If u = 3, then v = 2, e = 6, q̂ = 17, and
m3 = m4 = 0. This contradicts Claim 9.6.
Therefore, u = 1. Then v = q̂ − 5, 19 = e + 3q̂, and q̂ ≤ 6. We get only one
solution: q̂ = 6, u = v = w = e = 1. Recall that m3 + m4 ≥ 1 by Claim 9.6.
Hence either s3 = 0 and Ŝ4∼Q Ŝ5∼Q Ê∼Q Θ or s4 = 0 and Ŝ3∼Q Ŝ5∼Q Ê∼Q Θ.

In both cases Ŝ5 6∼ Ê (otherwise S̄5 ∼ Ē + lF̄ for some l ∈ Z and so S5 ∼ lF ,
a contradiction). Then we get a contradiction by Lemma 3.11.

9.8. Case: r = 4. As in the previous case, u+ v > e and

q̂ = 5s3 + s4 + (1 + 5m3 +m4)e = 5u+ v + e,

q̂ = s3 + 4s4 + (m3 + 4m4)e = u+ 4v.

If u is even, then so is q̂. Hence, q̂ ≤ 10. From the first relation we have u = 0,
q̂ = 4v, and e = 3v. This contradicts u+ v > e. Therefore u is odd.
Assume that u = 1. Then q̂ = 5 + v + e = 1 + 4v and e = 3v − 4. Since
u + v > e, there is only one possibility: v = e = 2, q̂ = 9. Then the group
Cl(X̂) is torsion free. By Lemma 4.13 we have F ∈ |2A| 6= ∅, a contradiction.
Finally, assume u ≥ 3. Then u = 3 and q̂ = 15 + v + e = 3 + 4v ≥ 16. Thus,
q̂ = 19, v = 4, and e = 0, a contradiction.
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9.9. Case: r = 7. Then

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (3 +m3 + 4m4)e = u+ 4v + 3e,

q̂ = s4 + 3s5 + (1 +m4 + 3m5)e = v + 3w + e.

In this case, u = (3v + e)/4 > 0. Assume that u ≥ 2. Then q̂ ≥ 13 and the

group Cl(X̂) is torsion free. By Lemma 4.13 we have e ≥ 3. Further, u = 2,
and q̂ ≥ 17. We get m3 = 0, s3 = 2, e ≥ 4, q̂ = 19, e = 4, and v = 1. This
contradicts the last relation.
Therefore, u = 1. Then 3v + e = 4. Assume that e = 4. Then v = 0, q̂ = 13,
w = 3, s4 = 0, s3 = 1, and m4 = m3 = 0. Since dim |Θ| = dim |2Θ| = 0, we
have s5 ≥ 3. Recall thatm7 ≥ 1 by Claim 9.6. Hence, β7 ≥ 1 and a4 = 2β7 ≥ 2.
This contradicts the fourth relation in (9.2).

Therefore, e < 4. In this case, e = 1, v = 1, and q̂ = 8. Then Ê∼Q Θ and either

Ŝ3∼Q Θ or Ŝ4∼Q Θ (because u = v = 1). This contradicts (vi) of Theorem 1.4.

9.10. Case: r = 5. From (9.2) we obtain

(9.11)

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (m4 + 3m5)e = v + 3w.

Then e = 3v − 4u. If u ≥ 2, then e = 3v − 4u ≤ 3v − 6, and so v ≥ 3. Hence,
q̂ ≥ 15 and the group Cl(X̂) is torsion free. By Lemma 4.13 we have e ≥ 3. So
q̂ = 19, e = 3, s3 = 0, and 2 = u = em3 ≥ 3, a contradiction.
Assume that u = 1, then e = 3v− 4 and v ≥ 2. Further, q̂ = 7v− 3 = v+ 3w ≤
19. We get q̂ = 11 and e = 2. This contradicts Lemma 4.13.
Therefore, u = 0. Then e = 3v, q̂ = 7v = 7, v = 1, e = 3, and w = 2. By
Lemma 4.13 the group Cl(X̂) is torsion free. Thus s3 = 0, i.e., S̄3 is contracted,
s4 = 1, s5 = 2, and m5 = β5 = 0. This means, in particular, that P5 /∈ S5.
From the fourth relation in (9.2) we get a4 = 1 and s7 = 1. In particular,

dim |Θ| > 0 and X̂ ≃ P(12, 2, 3) by (vi) of Theorem 1.4.

�

Lemma 9.12. (i) S3 ∩ S4 is a reduced irreducible curve.
(ii) S3 ∩ S4 ∩ S7 = {P5}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S3 ∩ S4 ∩ S7 ∋ P 6= P5. Since 1/5 =
S3 ·S4 ·S7 = S7 ·C and P, P5 ∈ S7∩C, we have C ⊂ S7. If there is a component
C′ 6= C of S3 ∩ S7 not contained in S5, then, as above, 1/4 = S3 · S7 · S5 ≥
S5 · C + S5 · C′ ≥ 2/7, a contradiction. Thus we can write S3 ∩ S7 = C + Γ,
where Γ is an effective 1-cycle with Supp Γ ⊂ S5. In particular, P5 /∈ S5. The
divisor 84A is Cartier at P3, P4, and P7. We get

9

5
= 84A · S3 · (S7 − S4) = 84A · Γ ∈ Z,
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a contradiction. �

Now the proof of (i) of Theorem 1.4 can be finished similar to 7.7.

10. Toric Sarkisov links

Proposition 10.1. Let X be a toric Q-Fano threefold and let P ∈ X be a
cyclic quotient singularity of index r. Let f : X̃ → X be the Kawamata blowup
of P ∈ X. Then a general member of | − KX | is a normal surface having
at worst Du Val singularities. The linear system | − KX | has only isolated

base points. In particular, −KX̃ is nef and big. The map f : X̃ → X can be
completed by a toric Sarkisov link (cf. (4.5)).

Proof. This can be shown by explicit computations in all cases of Proposition
1.3. Consider, for example, the case X = P(3, 4, 5, 7). Let x3, x4, x5, x7 be
quasi-homogeneous coordinates in P(3, 4, 5, 7). A section S ∈ | −KX | is given
by a quasi-homogeneous polynomial of degree 19. By taking this polynomial
as a general linear combination of x53x4, x33x

2
5, x43x7, x4x

3
5, x34x7, x5x

2
7 we see

that the base locus of | − KX | is the union of four coordinate points and the
surface S has only quotient singularities. Since KS is Cartier, the singularities
of S are Du Val. Further, we can write KX̃ + S̃ = f∗(KX +S) ∼ 0, where S̃ is

the proper transform of S. Hence, S̃ ∈ | −KS̃| and the linear system | −KX̃ |
has only isolated base points outside of f−1(P ). In particular, −KX̃ is nef.

It is easy to check that −K3
X̃
> 0, i.e., −KX̃ is big. Recall that ρ(X̃) = 2.

So, the Mori cone NE(X̃) has exactly two extremal rays, say R1 and R2. Let
R1 is generated by f -exceptional curves. If −KX̃ is ample, we run the MMP
starting from R2. Otherwise we make a flop in R2 and run the MMP. Clearly,
we obtain Sarkisov link (4.5). �

Explicitly, for weighted projective spaces from Proposition 1.3, we have the

following diagram of Sarkisov links. Here an arrow X1

1
r−→ X2 indicates that

there is a Sarkisov link described above that starts from the Kawamata blowup
of a cyclic quotient singularity of index r > 1 on X1 and the target variety is
X2.
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Abstract. Let Kf be the finite unramified extension of Qp of degree
f and E any finite large enough coefficient field containing Kf . We
construct analytic families of étale (ϕ,Γ)-modules which give rise to
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1 Introduction

Let p be a prime number and Q̄p a fixed algebraic closure of Qp. Let N be
a positive integer and g =

∑
n≥1

anq
n a newform of weight k ≥ 2 over Γ1(N)

with character ψ. The complex coefficients an are algebraic over Q and may
be viewed as elements of Q̄p after fixing embeddings Q̄ → C and Q̄ → Q̄p.
By work of Eichler-Shimura when k = 2 and Deligne when k > 2, there exists
a continuous irreducible two-dimensional p-adic representation ρg : GQ −→
GL2(Q̄p) attached to g. If l ∤ pN, then ρg is unramified at l and det(X −
ρg(Frobl)) = X2 − alX + ψ (l) lk−1, where Frobl is any choice of an arithmetic
Frobenius at l. The contraction of the maximal ideal of the ring of integers of
Q̄p via an embedding Q̄→ Q̄p gives rise to the choice of a place of Q̄ above p,
and the decomposition group Dp at this place is isomorphic to the local Galois
group GQp via the same embedding. The local representation

ρg,p : GQp −→ GL2(Q̄p),

obtained by restricting ρg to Dp, is de Rham with Hodge-Tate weights {0, k−1}
([Tsu99]). If p ∤ N the representation ρg,p is crystalline and the characteristic
polynomial of Frobenius of the weakly admissible filtered ϕ-module Dk,ap :=
Dcris (ρg,p) attached to ρg,p by Fontaine is X2 − apX + ψ (p) pk−1 ([Fal89] and
[Sc90]). The roots of Frobenius are distinct if k = 2 and conjecturally distinct
if k ≥ 3 (see [CE98]). In this case, weak admissibility imposes a unique up to
isomorphism choice of the filtration of Dk,ap , and the isomorphism class of the
crystalline representation ρg,p is completely determined by the characteristic
polynomial of Frobenius of Dk,ap . The mod p reduction ρ̄g,p : GQp −→ GL2(F̄p)
of the local representation ρg,p is well defined up to semisimplification and plays
a role in the proof of Serre’s modularity conjecture, now a theorem of Khare and
Wintenberger [KW09a], [KW09b], which states that any irreducible continuous
odd Galois representation ρ : GQ −→ GL2(F̄p) is similar to a representation of
the form ρ̄g for a certain newform g which should occur in level N(ρ), an integer
prime-to-p, and weight κ(ρ) ≥ 2, which Serre explicitly defined in [Ser87]. If ρg,p
is crystalline, the semisimplified mod p reduction ρ̄g,p has been given concrete
descriptions in certain cases by work of Berger-Li-Zhu [BLZ04] combined with
work of Breuil [Bre03], which extended previous results of Deligne, Fontaine,
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Serre and Edixhoven, and more recently by Buzzard-Gee [BG09] using the p-
adic Langlands correspondence for GL2 (Qp) . For a more detailed account and
the shape of these reductions see [Ber10, §5.2].

Recall that (up to unramified twist) all irreducible two-dimensional crystalline
representations of GQp with fixed Hodge-Tate weights in the range [0; p] have
the same irreducible mod p reduction. Reductions of crystalline representations
of GQ

pf
:= Gal(Q̄p/Qpf ) with f 6= 1, where Qpf is the unramified extension

of Qp of degree f, are more complicated. For example, in the simpler case
where f = 2, there exist irreducible two-dimensional crystalline representation
of GQp2

with Hodge-Tate weights in the range [0; p − 1] sharing the same
characteristic polynomial and filtration, with distinct irreducible or reducible
reductions (cf. Proposition 6.22).

The purpose of this paper is to extend the constructions of [BLZ04] to two-
dimensional crystalline representations of GQ

pf
, and to compute the semisim-

plified mod p reductions of the crystalline representations constructed. The
strategy for computing reductions is to fit irreducible representations of GKf
which are not induced from crystalline characters of GK2f

into families of rep-
resentations of the same Hodge-Tate type and with the same mod p reduction,
which contain some member which is either reducible or irreducible induced.

Serre’s conjecture has been recently generalized by Buzzard, Diamond and
Jarvis [BDJ] for irreducible totally odd two-dimensional F̄p-representations of
the absolute Galois group of any totally real field unramified at p, and has sub-
sequently been extended by Schein [Sch08] to cases where p is odd and tamely
ramified in F. Crystalline representations of the absolute Galois group of finite
unramified extensions of Qp arise naturally in this context of the conjecture of
Buzzard, Diamond and Jarvis, and their modulo p reductions are crucial for
the weight part of this conjecture (see [BDJ, §3]).

Let F be a totally real number field of degree d > 1, and let I = {τ1, ..., τd}
be the set of real embeddings of F. Let k = (kτ1 , kτ2 , ..., kτd , w) ∈ Nd+1

≥1 with
kτi ≡ wmod 2. We denote by O the ring of integers of F and we let n 6= 0
be an ideal of O. The space Sk(U1(n)) of Hilbert modular cusp forms of level
n and weight k is a finite dimensional complex vector space endowed with
actions of Hecke operators Tq indexed by the nonzero ideals q of O (for the
precise definitions see [Tay89]). Let 0 6= g ∈ Sk(U1(n)) be an eigenform for
all the Tq, and fix embeddings Q̄ → C and Q̄ → Q̄p. By constructions of
Rogawski-Tunnell [RT83], Ohta [Oht84], Carayol [Car86], Blasius-Rogawski
[BR89], Taylor [Tay89], and Jarvis [Jar97], one can attach to g a continuous
Galois representation ρg : GF → GL2(Q̄p), where GF is the absolute Galois
group of the totally real field F. Fixing an isomorphism between the residue field
of Q̄p with F̄p, the mod p reduction ρ̄g : GF → GL2(F̄p) is well defined up to
semisimplification. A continuous representation ρ : GF −→ GL2(F̄p) is called
modular if ρ ∼ ρ̄g for some Hilbert modular eigenform g. Conjecturally, every
irreducible totally odd continuous Galois representation ρ : GF −→ GL2(F̄p) is
modular ([BDJ]). We now assume that kτi ≥ 2 for all i. We fix an isomorphism
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Q̄p
i≃ C and an algebraic closure F̄ of F. For each prime ideal p ofO lying above

p we denote by Fp the completion of F at p, and we fix an algebraic closure F̄p of
Fp and an F -embedding F̄ →֒ F̄p. These determine a choice of a decomposition
group Dp ⊂ GF an isomorphism Dp ≃ GFp

. For each embedding τ : Fp → Q̄p,

let kτ be the weight of g corresponding to the embedding τ|F : F → Q̄p
i≃ C.

By works of Blasius-Rogawski [BR93], Saito [Sai09], Skinner [Ski09], and T.
Liu [Liu09], the local representation ρg,Fp

: GFp
−→ GL2(Q̄p), obtained by

restricting ρg to the decomposition subgroup GFp
, is de Rham with labeled

Hodge-Tate weights {k−kτ2 , k+kτ−22 }τ :Fp→Q̄p , where k = max{kτi}. This has
also been proved by Kisin [Kis08, Theorem 4.3] under the assumption that
ρg,Fp

is residually irreducible. If p is odd, unramified in F and prime to n,
then ρg,Fp

is crystalline by works of Breuil [Bre99, Théorème 1(1)] and Berger
[Ber04a, Théorème IV.2.1].
In the newform case, assuming that ρg,p is crystalline, the weight of g and the
eigenvalue of the Hecke operator Tp on g completely determine the structure of
the filtered ϕ-module Dcris(ρg,p). In the Hilbert modular newform case, assum-
ing that ρg,Fp

is crystalline, the structure of Dcris(ρg,Fp
) is more complicated

and the characteristic polynomial of Frobenius and the labeled Hodge-Tate
weights do not suffice to completely determine its structure. The filtration of
Dcris(ρg,Fp

) is generally unknown, and, even worse, the characteristic polyno-
mial of Frobenius and the filtration are not enough to determine the structure
of the filtered ϕ-module Dcris(ρg,Fp

). In this case, the isomorphism class is

(roughly) determined by an extra parameter in
(
Q̄×p
)fp−1

(for a precise state-
ment see [Dou10, §§6, 7]). As a consequence, if fp ≥ 2 there exist infinite
families of non-isomorphic, irreducible two-dimensional crystalline representa-
tions of GQ

p
fp

sharing the same characteristic polynomial and filtration.

For higher-dimensional crystalline E-representations of GQ
pf
, we mention that

even in the simpler case of three-dimensional crystalline representations of GQp ,
there exist non-isomorphic Frobenius-semisimple crystalline representations
sharing the same characteristic polynomial and filtration, with the same mod p
reductions with respect to appropriately chosen Galois-stable OE-lattices. This
follows by applying the constructions of §4 to the higher-dimensional case, and
a proof is not included in this paper.
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for their hospitality and the C.N.R.S. and the S.F.B. 478 “Geometrische Struk-
turen in der Mathematik” of Münster University for financial support.

1.1 Preliminaries and statement of results

Throughout this paper p will be a fixed prime number, Kf = Qpf the finite
unramified extension of Qp of degree f, and E a finite large enough extension of
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Kf with maximal ideal mE and residue field kE . We simply write K whenever
the degree over Qp plays no role. We denote by σK the absolute Frobenius of

K. We fix once and for all an embedding K
τ0→֒ E and we let τj = τ0 ◦σjK for all

j = 0, 1, ..., f − 1. We fix the f -tuple of embeddings | τ |:= (τ0, τ1, ..., τf−1) and
we denote E|τ | :=

∏
τ :K →֒E

E. The map ξ : E ⊗ K → E|τ | with ξK(x ⊗ y) =

(xτ(y))τ and the embeddings ordered as above is a ring isomorphism. The ring
automorphism 1E⊗σK : E⊗K → E⊗K transforms via ξ to the automorphism
ϕ : E|τ | → E|τ | with ϕ(x0, x1, ..., xf−1) = (x1, ..., xf−1, x0). We denote by
ej = (0, ..., 1, ..., 0) the idempotent of E|τ | where the 1 occurs in the τj -th
coordinate for each j ∈ {0, 1, ..., f − 1}.
It is well-known (see for instance [BM02, Lemme 2.2.1.1]) that every continuous
representation ρ : GK → GLn(Q̄p) is defined over some finite extension of Qp.
Let ρ : GK → GLE(V ) be a continuous E-linear representation. Recall that
Dcris(V ) = (Bcris ⊗Qp V )GK , where Bcris is the ring constructed by Fontaine in
[Fon88], is a filtered ϕ-module over K with E-coefficients, and V is crystalline
if and only if Dcris(V ) is free over E ⊗K of rank dimE V. One can easily prove
that V is crystalline as an E-linear representation of GK if and only if it is crys-
talline as a Qp-linear representation of GK (cf. [CDT99] appendix B). We may
therefore extend E whenever appropriate without affecting crystallinity. By a
variant of the fundamental theorem of Colmez and Fontaine ([CF00], Théorème
A) for nontrivial coefficients, the functor V 7→ Dcris(V ) is an equivalence of cate-
gories from the category of crystallineE-linear representations ofGK to the cat-
egory of weakly admissible filtered ϕ-modules (D, ϕ) over K with E-coefficients
(see [BM02], §3). Such a filtered module D is a module over E ⊗K and may
be viewed as a module over E|τ | via the ring isomorphism ξ defined above. Its
Frobenius endomorphism is bijective and semilinear with respect to the auto-
morphism ϕ of E|τ |. For each embedding τi of K into E we define Di := eiD. We

have the decomposition D =
f−1⊕
i=0

Di, and we filter each component Di by set-

ting FiljDi := eiFiljD. An integer j is called a labeled Hodge-Tate weight with
respect to the embedding τi of K in E if and only if eiFil−jD 6= eiFil−j+1D and

is counted with multiplicity dimE

(
eiFil−jD/eiFil−j+1D

)
. Since the Frobenius

endomorphism of D restricts to an E-linear isomorphism from Di to Di−1 for
all i, the components Di are equidimensional over E. As a consequence, there
are n = rankE⊗K(D) labeled Hodge-Tate weights for each embedding, count-
ing multiplicities. The labeled Hodge-Tate weights of D are by definition the
f -tuple of multisets (Wi)τi , where each such multiset Wi contains n integers,
the opposites of the jumps of the filtration of Di. For crystalline characters
we usually write (−k0,−k1, ...,−kf−1) instead of {−ki}τi . The characteristic
polynomial of a crystalline E-linear representation of GK is the characteristic
polynomial of the E|τ |-linear map ϕf , where (D, ϕ) is the weakly admissible
filtered ϕ-module corresponding to it by Fontaine’s functor.

Definition 1.1. A filtered ϕ-module (D, ϕ) is called F-semisimple, non-F-
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semisimple, or F-scalar if the E|τ |-linear map ϕf has the corresponding prop-
erty.

We may twist D by some appropriate rank one weakly admissible filtered ϕ-
module (see Proposition 3.5) and assume that Wi = {−win−1 ≤ ... ≤ −wi2 ≤
−wi1 ≤ 0} for all i = 0, 1, ..., f − 1, for some non-negative integers wij . The
Hodge-Tate weights of a crystalline representation V are the opposites of the
jumps of the filtration of Dcris(V ). If they are all non-positive, the crystalline
representation is called effective or positive. To avoid trivialities, throughout
the paper we assume that at least one labeled Hodge-Tate weight is strictly
negative.

Notation 1.2. Let ki be nonnegative integers which we call weights. Assume
that after ordering them and omitting possibly repeated weights we get w0 <
w1 < ... < wt−1, where w0 is the smallest weight, w1 the second smallest
weight,..., and wt−1, for some 1 ≤ t ≤ f, is the largest weight. The largest
weight wt−1 will be usually denoted by k. For convenience we define w−1 = 0.
Let I0 = {0, 1, ..., f − 1} and I+0 = {i ∈ I0 : ki > 0}. For j = 1, 2, ..., t− 1 we
let Ij = {i ∈ I0 : ki > wj−1} and for j = t we define It = ∅. Let f+ =

∣∣I+0
∣∣ be

the number of strictly positive weights.

For each subset J ⊂ I0 we write fJ =
∑
i∈J

ei and E|τJ | = fJ · E|τ |. We may

visualize the sets E|τIj | as follows: E|τI0 | is the Cartesian product Ef . Starting
with E|τI0 |, we obtain E|τI1 | by killing the coordinates where the smallest weight
occurs i.e. by killing the i-th coordinate for all i with ki = w0. We obtain E|τI2 |

by further killing the coordinates where the second smallest weight w1 occurs
and so on.

For any vector ~x ∈ E|τ | we denote by xi its i-th coordinate and by J~x its
support {i ∈ I0 : xi 6= 0}. We define as norm of ~x with respect to ϕ the

vector Nmϕ(~x) :=
f−1∏
i=0

ϕi(~x) and we write vp(Nmϕ(~x)) := vp

(
f−1∏
i=0

xi

)
, where

vp is the normalized p-adic valuation of Q̄p. If ℓ is an integer we write ~ℓ =

(ℓ, ℓ, ..., ℓ) and vp(~x) > ~ℓ (resp. if vp(~x) ≥ ~ℓ) if and only if vp(xi) > ℓ (resp.
vp(xi) ≥ ℓ) for all i. Finally, for any matrix A ∈ Mn(E|τ |) we define as its
ϕ-norm the matrix Nmϕ(A) := Aϕ(A) · · ·ϕf−1(A), with ϕ acting on each entry
of A.

In §3 we construct the effective crystalline characters of GKf . More precisely,
for i = 0, 1, ..., f − 1 we construct E-characters χi of GKf with labeled Hodge-
Tate weights −ei+1 = (0, ...,−1, ...0) with the −1 appearing in the (i+ 1)-
place for all i, and we show that any crystalline E-character of GKf with
labeled Hodge-Tate weights {−ki}τi can be written uniquely in the form χ =

η · χk10 · χk21 · · · · · χ
kf−1

f−2 · χk0f−1 for some unramified character η of GKf . In the
same section we prove the following.
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Theorem 1.3. Let {ℓi, ℓi+f} = {0, ki}, where the ki, i = 0, 1, ..., f − 1 are
nonnegative integers. Let f+ be the number of strictly positive ki and assume
that f+ ≥ 1.

(i) The crystalline character χ~ℓ = χℓ10 · χℓ21 · · · · · χ
ℓ2f−1

2f−2 · χℓ02f−1 of GK2f

has labeled Hodge-Tate weights (−ℓ0,−ℓ1, ...,−ℓ2f−1) and does not ex-

tend to GKf . The induced representation Ind
Kf
K2f

(
χ~ℓ
)
is irreducible and

crystalline with labeled Hodge-Tate weights {0,−ki}τi.

(ii) Let V be an irreducible two-dimensional crystalline E-representation of
GKf with labeled Hodge-Tate weights {0,−ki}τi , whose restriction to
GK2f

is reducible. There exist an unramified character η of GKf and
nonnegative integers mi, i = 0, 1, ..., 2f − 1, with {mi,mi+f} = {0, ki}
for all i = 0, 1, ..., f − 1, such that

V ≃ η ⊗ Ind
Kf
K2f

(
χm1
0 · χm2

1 · · · · · χm2f−1

2f−2 · χm0

2f−1

)
.

(iii) Ind
Kf
K2f

(
χ~ℓ
)
≃ Ind

Kf
K2f

(χ~m) if and only if χ~ℓ = χ~m or χσ~ℓ = χ~m, where

χσ~ℓ = χ
ℓ′1
0 ·χ

ℓ′2
1 ·· · ··χ

ℓ′2f−1

2f−2 ·χ
ℓ′f
2f−1, with ℓ

′
i = ℓi+f and indices viewed modulo

2f.

(iv) Up to twist by some unramified character, there exist precisely 2f
+−1 dis-

tinct isomorphism classes of irreducible two-dimensional crystalline E-
representations of GKf with labeled Hodge-Tate weights {0,−ki}τi , in-
duced from crystalline characters of GK2f

.

Next, we turn our attention to generically irreducible families of two-
dimensional crystalline E-representations of GKf . For any irreducible effective
two-dimensional crystalline E-representation of GKf with labeled Hodge-Tate
weights {0,−ki}τi which is induced from a crystalline character of GK2f

, we
construct an infinite family of crystalline E-representations of GKf of the same
Hodge-Tate type which contains it. The members of each of these families have
the same semisimplified mod p reductions which we explicitly compute.

Let V~ℓ = Ind
Kf
K2f

(
χℓ10 · χℓ21 · · · · · χ

ℓ2f−1

2f−2 · χℓ02f−1
)
, where {ℓi, ℓi+f} = {0, ki}

for all i = 0, 1, ..., f − 1, and assume that at least one ki is strictly positive.
Theorem 1.3 asserts that V~ℓ is irreducible and crystalline with labeled Hodge-
Tate weights {0,−ki}τi . We describe the members of the family containing
V~ℓ in terms of their corresponding by the Colmez-Fontaine theorem weakly
admissible filtered ϕ-modules.

Definition 1.4. We define the following four types of matrices

t1:

(
pki 0
Xi 1

)
, t2:

(
Xi 1
pki 0

)
, t3:

(
1 Xi

0 pki

)
, t4 :

(
0 pki

1 Xi

)
,
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where the Xi are indeterminates. Let k = max{ki, i = 0, 1, ..., f − 1} and let

m :=

{ ⌊k−1p−1 ⌋ if k ≥ p and ki 6= p for some i,

0 if k ≤ p− 1 or ki = p for all i.

Let P (
−→
X ) = (P1 (X1) , P2 (X2) , ..., Pf (Xf )) be a matrix whose coordinates

Pj (Xj) are matrices of type 1, 2, 3 or 4. To each such f -tuple we attach a

type-vector ~i ∈ {1, 2, 3, 4}f , where for any j = 1, 2, ..., f, the j-th coordinate of
~i is defined to be the type of the matrix Pj . We write P (

−→
X ) = P

~i(
−→
X ). The set

of all f -tuples of matrices of type 1, 2, 3, 4 will be denoted by P . There is no

loss to assume that the first f − 1 coordinates of P (
−→
X ) are of type 1 or 2 (see

Remark 6.13) and unless otherwise stated we always assume so. Matrices of
type t1 or t3 are called of odd type while matrices of type t2 or t4 are called of
even type.

For any vector ~a = (α1, α2, ..., αf ) ∈ (pmmE)f we obtain a matrix

P
~i (~α) = (P1 (α1) , P2 (α2) , ..., Pf (αf ))

by evaluating each indeterminate Xi at αi. We view indices of f -tuples mod f,
so Pf = P0. To construct the family containing V~ℓ we choose the types of the
matrices Pi as follows:
(1) If ℓ1 = 0, P1 = t2;
(2) If ℓ1 = k1 > 0, P1 = t1.
For i = 2, 3, ..., f − 1 we choose the type of the matrix Pi as follows:
(1) If ℓi = 0, then:

• If an even number of coordinates of (P1, P2, ..., Pi−1) is of even type,
Pi = t2;

• If an odd number of coordinates of (P1, P2, ..., Pi−1) is of even type, Pi =
t1.

(2) If ℓi = ki > 0, then:

• If an even number of coordinates of (P1, P2, ..., Pi−1) is of even type,
Pi = t1;

• If an odd number of coordinates of (P1, P2, ..., Pi−1) is of even type, Pi =
t2.

Finally, we choose the type of the matrix P0 as follows:
(1) If ℓ0 = 0, then:

• If an even number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t4;
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• If an odd number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t3.

(2) If ℓ0 = ki > 0, then:

• If an even number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t2;

• If an odd number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t1.

We define families of rank two filtered ϕ-modules
(
D~i~k (~α) , ϕ

)
over E|τ | by

equipping D~i~k (~α) = E|τ |η1
⊕
E|τ |η2 with the Frobenius endomorphism defined

by (ϕ (η1) , ϕ (η2)) = (η1, η2)P
~i (~α) and the filtration

Filj(D~i~k (~α)) =





E|τ |η1
⊕
E|τ |η2 if j ≤ 0,

E|τI0 | (~xη1 + ~yη2) if 1 ≤ j ≤ w0,

E|τI1 | (~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,
· · · · · ·

E|τIt−1
| (~xη1 + ~yη2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1,

(1.1)

where ~x = (x0, x1, ..., xf−1) and ~y = (y0, y1, ..., yf−1), with

(xi, yi) =

{
(1,−αi) if Pi has type 1 or 2,
(−αi, 1) if Pi has type 3 or 4.

(1.2)

Theorem 1.5. Let ~i be the type-vector attached to the f -tuple (P1, P2, ..., Pf )

defined above. For any ~α ∈ (pmmE)
f
,

(i) The filtered ϕ-module D~i~k(~α) is weakly admissible and corresponds to a

two-dimensional crystalline E-representations V
~i
~k

(~α) of GKf with labeled

Hodge-Tate weights {0,−ki}τi ;

(ii) V
~i
~k

(~0) = Ind
Kf
K2f

(
χℓ10 · χℓ21 · · · · · χ

ℓ2f−1

2f−2 · χℓ02f−1
)

;

(iii) V
~i
~k (~α) = V

~i
~k(~0);

(iv)

(
V
~i
~k (~α)|IKf

)s.s.
= ωβ2f,τ̄0

⊕
ωp

fβ
2f,τ̄0

, where β = −
2f−1∑
i=0

piℓi;

(v) The residual representation V
~i
~k (~α) is irreducible if and only if 1 + pf ∤ β;

(vi) Any irreducible member of the family
{
V
~i
~k

(~α) , ~α ∈ (pmmE)
f
}
, other

than V
~i
~k

(~0), is non-induced.
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Notice that in the cases where 1 + pf ∤ β, all the members of the fam-

ily
{
V
~i
~k

(~α) , ~α ∈ (pmmE)
f
}

are forced to be irreducible. Next, we compute

the semisimplified reduction of any reducible two-dimensional crystalline E-
representation of GKf . After enlarging E if necessary, any reducible rank

two weakly admissible filtered ϕ-module D over E|τ | with labeled Hodge-Tate
weights {0,−ki}τi contains an ordered basis η = (η1, η2) in which the matrix

of Frobenius takes the form Matη(ϕ) =

(
~α ~0

~∗ ~δ

)
such that D2 =

(
E|τ |

)
η2 is

a ϕ-stable weakly admissible submodule (see Proposition 6.4). The filtration
of D in such a basis η has the form

Filj(D) =





E|τ |η1
⊕
E|τ |η2 if j ≤ 0,

E|τI0 | (~xη1 + ~yη2) if 1 ≤ j ≤ w0,
E|τI1 | (~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,

· · · · · ·
E|τIt−1

| (~xη1 + ~yη2) if 1 + wt−2 ≤ j ≤ wt−1,
0 if j ≥ 1 + wt−1,

for some vectors ~x, ~y ∈ E|τ | with (xi, yi) 6= (0, 0) for all i. For each i ∈ I0, let

mi =

{
0 if xi 6= 0 ,
ki if xi = 0.

Theorem 1.6. Let V be any reducible two-dimensional crystalline E-
representation of GKf with labeled Hodge-Tate weights {0,−ki}τi corresponding
to the weakly admissible filtered ϕ-module D as above.

(i) There exist unramified characters ηi of GKf such that

V ≃
(
ψ1 ∗

0 ψ2

)
,

where ψ1 = η1 · χm1
0 · · · · · χmf−1

f−2 · χm0

f−1 and ψ2 = η2 · χk1−m1
0 · χk2−m2

1 ·
· · · · χkf−1−mf−1

f−2 · χk0−m0

f−1 ;

(ii)
(
V |IK

)s.s.
= ωβ1

f,τ̄0

⊕
ωβ2

f,τ̄0
, where β1 = −

f−1∑
i=0

mip
i and β2 =

f−1∑
i=0

(mi − ki) pi.

The computation of the semisimplified mod p reduction of a reducible two-
dimensional crystalline representation is easy and does not require the con-
struction of the Wach module (see §2.1 for the definition) corresponding to
some GKf -stable lattice contained in it. Computing the non-semisimplified
mod p reduction of a two-dimensional crystalline representations with reducible
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reduction is an interesting problem not pursued in this paper. For results of
this flavour for K = Qp2 , see [CD09].
Up to twist by some unramified character, any split-reducible two-dimensional
crystalline E-representations of GKf with labeled Hodge-Tate weights
{0,−ki}τi is of the form

V~ℓ,~ℓ′ (η) = η · χℓ10 · χℓ21 · · · · · χ
ℓf−1

f−2 · χℓ0f−1
⊕

χ
ℓ′1
0 · χ

ℓ′2
1 · · · · · χ

ℓ′f−1

f−2 · χ
ℓ′0
f−1,

for some unramified character η and some nonnegative integers ℓi and ℓ′i such
that {ℓi, ℓ′i} = {0, ki} for all i. In Theorem 1.5 we showed that each irreducible
representation of GKf induced from some crystalline character of GK2f

belongs
to an infinite family of crystalline representations of the same Hodge-Tate types
with the same mod p reductions. In the next theorem we prove the same for
any split-reducible, non-ordinary two-dimensional crystalline E-representation
of GKf . We list the weakly admissible filtered ϕ-modules corresponding to
these families. In order to construct the infinite family containing V~ℓ,~ℓ′ (η) , we

define a matrix P
~i(
−→
X ) ∈ P by choosing the (f − 1)-tuple (P1, P2, ..., Pf−1) as

in Theorem 1.5. If η = ηc is the unramified character which maps the geometric
Frobenius FrobKf of GKf to c, we replace the entry pk0 in the definition of the

matrix P0 by cpk0 . The type of the matrix P0 is chosen as follows:
(1) If ℓ0 = 0, then:

• If an even number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t3;

• If an odd number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t4.

(2) If ℓ0 = k0 > 0, then:

• If an even number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t1;

• If an odd number of coordinates of (P1, P2, ..., Pf−1) is of even type,
P0 = t2.

Using the matrices P
~i(
−→
X ) we define families of two-dimensional crystalline E-

representations
{
V
~i
~k

(~α) , ~α ∈ (pmmE)
f
}

of GKf as in Theorem 1.5 and prove

the following.

Theorem 1.7. Let ~i be the type-vector attached to the f -tuple (P1, P2, ..., Pf )
defined above.

(i) There exists some unramified character µ such that V
~i
~k

(~0) ≃ µ⊗ V~ℓ,~ℓ′(η);

(ii) Assume that ~ℓ 6= ~0 and ~ℓ′ 6= ~0. For any ~α ∈ (pmmE)
f
, V

~i
~k(~α) ≃ V

~i
~k(~0);
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(iii) V ~ℓ,~ℓ′(η)|IKf = ωβf,τ̄0
⊕
ωβ

′

f,τ̄0
, where β = −

f−1∑
i=0

ℓip
i and β′ = −

f−1∑
i=0

ℓ′ip
i.

A family as in Theorem 1.7 can contain simultaneously split and non-split
reducible, as well as irreducible crystalline representations. For example, in

the family
{
V

(1,3)
~k

(~α), ~α ∈ (pmmE)2
}
, the representation V

(1,3)
~k

(~α) is split-

reducible if and only if ~α = ~0, non-split-reducible if and only if precisely one
of the coordinates αi of ~α is zero, and irreducible if and only if α0α1 6= 0 (cf.

Proposition 6.21). The families of Wach modules which give rise to V
(1,3)
~k

(~α)
contain infinite sub-families of non-split reducible Wach modules which can be
used to compute the non-semisimplified mod p reduction of the correspond-
ing crystalline representations with respect to GKf -stable OE-lattices. Some
reducible two-dimensional crystalline representations with labeled Hodge-Tate
weights {0,−ki}τi are easily recognized by looking at their trace of Frobe-
nius. More precisely, if Tr

(
ϕf
)
∈ O×E , then the representation is reducible (cf.

Proposition 6.5), with the converse being false.

2 Overview of the theory

2.1 Étale (ϕ,Γ)-modules and Wach modules

The general theory of (ϕ,Γ)-modules works for arbitrary finite extensions K of
Qp. However, a theory of Wach modules, which is our main tool and which we
briefly recall in this section, currently exists only when K is unramified over
Qp. We temporarily allow K to be any finite extension of Qp; we will go back
to assume that K is unramified after Theorem 2.2. Let Kn = K(ζpn), where
ζpn is a primitive pn-th root of unity inside Q̄p, and let K∞ = ∪n≥1Kn. Let χ :
GK → Z×p be the cyclotomic character, and letHK = kerχ = Gal(Q̄p/K∞) and
ΓK = GK/HK = Gal(K∞/K). Fontaine ([Fon90]) has constructed topological
rings A and B endowed with continuous commuting Frobenius ϕ and GQp -
actions. Unless otherwise stated and whenever applicable, continuity means
continuity with respect to the topologies induced by the weak topologies of the
rings A and B. Let AK = AHK and BK = BHK , and define AK ,E := OE⊗ZpAK
and BK ,E := E ⊗Qp BK . The actions of ϕ and ΓK extend to AK,E and BK ,E

by OE (resp. E, kE)-linearity, and one easily sees that AK,E = AHKE and

BK,E = BHKE .

Definition 2.1. A (ϕ,Γ)-module over AK,E (resp. BK,E) is an AK,E-module
of finite type (resp. a free BK,E-module of finite type) endowed with a semilinear
and continuous action of ΓK , and with a semilinear map ϕ which commutes
with the action of ΓK . A (ϕ,Γ)-moduleM over AK,E is called étale if ϕ∗(M) =
M, where ϕ∗(M) is the AK,E-module generated by the set ϕ(M). A (ϕ,Γ)-
module M over BK,E is called étale if it contains a basis (e1, ..., ed) over BK,E
such that (ϕ(e1), ..., ϕ(ed)) = (e1, ..., ed)A for some matrix A ∈ GLd (AK,E) .
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If V is a continuous E-linear representation of GK , we equip the BK,E-module

D(V ) := (BE ⊗E V )
HK with a Frobenius endomorphism ϕ defined by ϕ(b ⊗

v) := ϕ(b) ⊗ v, where ϕ on the right hand side is the Frobenius of BE , and
with an action of ΓK given by ḡ(b ⊗ v) := gb ⊗ gv for any g ∈ GK . This
ΓK-action commutes with ϕ and is continuous. Moreover, D(V ) is an étale
(ϕ,Γ)-module over BK,E . Conversely, if D is an étale (ϕ,Γ)-module over BK,E ,
let V(D) :=

(
BE ⊗BK,E D

)ϕ=1
, where ϕ(b ⊗ d) := ϕ(b) ⊗ ϕ(d). The E-vector

space V(D) is finite dimensional and is equipped with a continuous E-linear
GK-action given by g(b ⊗ d) := gb ⊗ ḡd. We have the following fundamental
theorem of Fontaine.

Theorem 2.2. [Fon90]

(i) There is an equivalence of categories between continuous E-linear repre-
sentations of GK and étale (ϕ,Γ)-modules over BK,E given by

D : RepE (GK)→Mod ét
(ϕ,Γ) (BK,E) : V 7−→ D(V ) := (BE ⊗E V )

HK ,

with quasi-inverse functor

V :Mod ét
(ϕ,Γ) (BK,E)→ RepE (GK) : D 7−→ V(D) :=

(
BE ⊗BK,E D

)ϕ=1
.

(ii) There is an equivalence of categories between continuous OE-linear rep-
resentations of GK and étale (ϕ,Γ)-modules over AK,E given by

D : RepOE (GK)→Mod ét
(ϕ,Γ) (AK,E) : T 7−→ D(T ) := (AE ⊗OE T)

HK ,

with quasi-inverse functor

T :Mod ét
(ϕ,Γ) (AK,E)→ RepOE (GK) : D 7−→ T(D) :=

(
AE ⊗AK,E D

)ϕ=1
.

We return to assume that K is unramified over Qp. In this case AK has the form

AK = {
∞∑

n=−∞
αnπ

n
K : αn ∈ OK and lim

n→−∞
αn = 0} for some element πK which

can be thought of as a formal variable. The Frobenius endomorphism ϕ of AK
extends the absolute Frobenius of OK and is such that ϕ(πK) = (1 +πK)p− 1.
The ΓK-action of AK is OK-linear, commutes with Frobenius, and is such that
γ(πK) = (1 + πK)χ(γ) − 1 for all γ ∈ ΓK . For simplicity we write π instead of
πK . The ring AK is local with maximal ideal (p), fraction field BK = AK [ 1p ],

and residue field EK := kK((π)), where kK is the residue field of K. The
rings AK , AK,E , BK and BK,E contain the subrings A+

K = OK [[π]], A+
K,E :=

OE ⊗Zp A+
K , B+

K = A+
K [ 1p ] and B+

K,E := E ⊗Qp B+
K respectively, and these

subrings are equipped with the restrictions of the ϕ and the ΓK-actions of the
rings containing them. There is a ring isomorphism

ξ : A+
K,E →

∏

τ :K →֒E
OE [[π]] (2.1)
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given by ξ (a⊗ b) = (aτ0 (b) , aτ1 (b) , ..., aτf−1 (b)) , where τi

( ∞∑
n=0

βnπ
n

)
=

∞∑
n=0

τi (βn)πn for all b =
∞∑
n=0

βnπ
n ∈ A+

K . The ring OE [[π]]|τ | :=
∏

τ :K →֒E
OE [[π]]

is equipped via ξ with commutingOE -linear actions of ϕ and ΓK given by

ϕ(α0(π), α1(π), ..., αf−1(π)) = (α1(ϕ(π)), ..., αf−1(ϕ(π)), α0(ϕ(π))) (2.2)

and γ(α0(π), α1(π), ..., αf−1(π)) = (α0(γπ), α1(γπ), ..., αf−1(γπ)) (2.3)

for all γ ∈ ΓK .

Definition 2.3. Suppose k ≥ 0. A Wach module over A+
K,E (resp. B+

K,E)

with weights in [−k; 0] is a free A+
K,E-module (resp. B+

K,E-module) N of finite
rank, endowed with an action of ΓK which becomes trivial modulo π, and also
with a Frobenius map ϕ which commutes with the action of ΓK and such that
ϕ(N) ⊂ N and N/ϕ∗(N) is killed by qk, where q := ϕ(π)/π.

A natural question is to determine the types of étale (ϕ,Γ)-modules which
correspond to crystalline representations via Fontaine’s functor. An answer is
given by the following theorem of Berger who built on previous work of Wach
[Wac96], [Wac97] and Colmez [Col99].

Theorem 2.4. [Ber04a]

(i) An E-linear representation V of GK is crystalline with Hodge-Tate
weights in [−k; 0] if and only if D(V ) contains a unique Wach module
N(V ) of rank dimE V with weights in [−k; 0]. The functor V 7→ N(V )
defines an equivalence of categories between crystalline representations
of GK and Wach modules over B+

K,E , compatible with tensor products,
duality and exact sequences.

(ii) For a given crystalline E-representation V, the map T 7→ N(T) := N(V )∩
D(T) induces a bijection between GK-stable, OE-lattices of V and Wach
modules over A+

K,E which are A+
K,E-lattices contained in N(V ). Moreover

D(T) = AK,E ⊗A+
K,E

N(T).

(iii) If V is a crystalline E-representation of GK , and if we endow N(V ) with
the filtration FiliN(V ) = {x ∈ N(V )|ϕ(x) ∈ qiN(V )}, then we have an
isomorphism

Dcris(V )→ N(V )/πN(V )

of filtered ϕ-modules over E|τ | (with the induced filtration on
N(V )/πN(V )).

In view of Theorems 2.2 and 2.4, constructing the Wach module N(T ) of a
GK-stable OE-lattice T in a crystalline representation V amounts to explicitly
constructing the crystalline representation. Indeed, we have

V ≃ E ⊗OE
(
AK,E ⊗A+

K,E
N(T)

)ϕ=1

.
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An obvious advantage of using Wach modules is that instead of working with
the more complicated rings AK,E and BK,E , one works with the simpler ones
A+
K,E and B+

K,E .

2.2 Wach modules of restricted representations

In this section we relate the Wach module of an effective n-dimensional effective
crystalline E-representation VKf of GKf to the Wach module of its restriction
VKdf to GKdf .

Proposition 2.5. (i) The Wach module associated to the representation
VKdf is given by

N(VKdf ) = B+
Kdf ,E

⊗B+
Kf ,E

N(VKf ),

where N(VKf ) is the Wach module associated to VKf .

(ii) If TKf is a GKf -stable OE-lattice in Vf associated to the Wach-module
N(TKf ), then Vdf contains some GKdf -stable OE-lattice TKdf whose as-
sociated Wach module is

N(TKdf ) = A+
Kdf ,E

⊗A+
Kf ,E

N(TKf ).

Proof. (i) Since N(VKf ) is a free B+
Kf ,E

-module of rank dimE V contained in

D(VKf ), N := B+
Kdf ,E

⊗B+
Kf ,E

N(VKf ) is a free B+
Kdf ,E

-module of rank dimE V

contained in D(VKdf ) ⊇ D(VKf ). Moreover, N is endowed with an action of
ΓKdf which becomes trivial modulo π, and also with a Frobenius map ϕ which
commutes with the action of ΓKdf and such that ϕ(N) ⊂ N and N/ϕ∗(N)

is killed by qk. Hence N= N(VKdf ) by the uniqueness part of Theorem 2.4(i).

Part (ii) follows immediately from Theorem 2.4(ii) since A+
Kdf ,E

⊗A+
Kf ,E

N(TKf )

is an A+
Kdf ,E

-lattice in N(VKdf ).

We fix once and for all an embedding τ0Kdf : Kdf →֒ E and we let τ jKdf =

τ0Kdf ◦ σ
j
Kdf

for j = 0, 1, ..., df − 1, where σKdf is the absolute Frobenius of Kdf .

We fix the df -tuple of embeddings | τKdf |:= (τ0Kdf , τ
1
Kdf

, ..., τdf−1Kdf
). We adjust

the notation of §1.1 for the embeddings of Kf into E to the relative situation
considered in this section. Let ι be the natural inclusion of Kf into Kdf , in
the sense that ι ◦ σKf = σKdf ◦ ι, where σKf is the absolute Frobenius of Kf .

This induces a natural inclusion of A+
K to A+

Kdf
which we also denote by ι. Let

τ jKf := τ0Kdf ◦ ι ◦ σ
j
Kf

for j = 0, 1, ..., f − 1. We fix the f -tuple of embeddings

| τKf |:= (τ0Kf , τ
1
Kf
, ..., τf−1Kf

). Since the restriction of σKdf to Kf is σKf , we
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obtain the following commutative diagram

A+
Kf ,E

ξKf−−−−→ O|τKf |E [[π]]

1OE
⊗ι
y

yθ

A+
Kdf ,E

ξKdf−−−−→ O|τKdf |E [[π]]

where θ is the ring homomorphism defined by

θ(α0, α1, ..., αf−1) = (α0, α1, ..., αf−1, α0, α1, ..., αf−1, ..., α0, α1, ..., αf−1)︸ ︷︷ ︸
d-times

=: (α0, α1, ..., αf−1)⊗d.

For any matrix A ∈ Mn

(
O|τKf |E [[π]]

)
we denote by A⊗d the matrix obtained

by replacing each entry ~α of A by ~α⊗d. A similar commutative diagram is

obtained by replacing A+
K by B+

K and O|τK |E [[π]] by O|τK |E [[π]][ 1p ]. The following
proposition follows easily from the discussion above.

Proposition 2.6. Let VKf , VKdf , TKf , and TKdf be as in Proposition 2.5.

(i) If the Wach module N(VKf ) of VKf is defined by the actions of ϕ and ΓKf
given by (ϕ(η1), ϕ(η2), ..., ϕ(ηn)) = η ·ΠKf and (γ(η1), γ(η2), ..., γ(ηn)) =
η · GγKf for all γ ∈ ΓKf for some ordered basis η = (η1, η2, ..., ηn), then

the Wach module N(VKdf ) of VKdf is defined by (ϕ(η′1), ϕ(η′2), ..., ϕ(η′n)) =
η′ · ΠKdf and (γ(η′1), γ(η′2), ..., γ(η′n)) = η′ ·GγKdf for all γ ∈ ΓKdf , where

ΠKdf =
(
ΠKf

)⊗d
and GγKdf =

(
GγKf

)⊗d
for all γ ∈ ΓKdf , for some

ordered basis η′ of N(VKdf ).

(ii) If the Wach module N(TKf ) of TKf is defined by the actions of ϕ and ΓKf
given by (ϕ(η1), ϕ(η2), ..., ϕ(ηn)) = η ·ΠKf and (γ(η1), γ(η2), ..., γ(ηn)) =
η ·GγKf for all γ ∈ ΓKf for some ordered basis η = (η1, η2, ..., ηn), then the

Wach module N(TKdf ) of TKdf is defined by (ϕ(η′1), ϕ(η′2), ..., ϕ(η′n)) =
η′ · ΠKdf and (γ(η′1), γ(η′2), ..., γ(η′n)) = η′ ·GγKdf for all γ ∈ ΓKdf , where

ΠKdf =
(
ΠKf

)⊗d
and GγKdf =

(
GγKf

)⊗d
for all γ ∈ ΓKdf , for some

ordered basis η′ of N(VKdf ).

Corollary 2.7. If VKf is a two-dimensional effective crystalline
E-representation of GKf with labeled Hodge-Tate weights {0,−ki}τi ,
i = 0, 1, ..., f − 1, then VKdf is an effective crystalline E-representation of
GKdf with labeled Hodge-Tate weights {0,−ki}τi, i = 0, 1, ..., df − 1, with
kj = kj for all i, j = 0, 1, ..., df − 1 with i ≡ jmod f.
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Proof. By Proposition 2.6 there exist ordered bases η and η′ of N(VKf ) and

N(VKdf ) respectively, such that ϕ
(
η
)

= η · ΠKf , γ
(
η
)

= η · GγKf for all γ ∈

ΓKf and ϕ
(
η′
)

= η′ ·
(
ΠKf

)⊗d
, γ
(
η′
)

= η′ ·
(
GγKf

)⊗d
for all γ ∈ ΓKdf . By

Theorem 2.4, x ∈ Filj
(
N(VKf )

)
if and only if ϕ (x) ∈ qjN(VKf ), from which

it follows that Filj
(
N(VKdf )

)
=
(

Filj
(
N(VKf )

))⊗d
for all j. By Theorem 2.4,

D(VKf ) ≃ N(VKf )/πN(VKf ) as filtered ϕ-modules over E|τKf |. This implies

that Filj
(
D(VKdf )

)
=
(

Filj
(
D(VKf )

))⊗d
for all j and the corollary follows.

3 Effective Wach modules of rank one

In this section we construct the rank one Wach modules over OE [[π]]|τ | with
labeled Hodge-Tate weights {−ki}τi .

Definition 3.1. Recall that q = ϕ(π)
π where ϕ (π) = (1 + π)p − 1. We define

q1 = q and qn = ϕn−1 (q) for all n ≥ 1. Let λf =
∞∏
n=0

(
qnf+1

p

)
. For each

γ ∈ ΓK , we define λf ,γ =
λf
γλf

.

Lemma 3.2. For each γ ∈ ΓK , the functions λf and λf,γ ∈ Qp[[π]] have the
following properties:

(i) λf (0) = 1;

(ii) λf,γ ∈ 1 + πZp [[π]] .

Proof. (i) This is clear since qn(0)
p = 1 for all n ≥ 1. (ii) One can easily check

that q
γq ∈ 1 + πZp [[π]] . From this we deduce that λf,γ ∈ 1 + πZp [[π]] .

Consider the rank one module N~k,c =
(
OE [[π]]|τ |

)
η equipped with the semilin-

ear ϕ and ΓK-actions defined by ϕ(η) = (c · qk1 , qk2 , ..., qkf−1 , qk0)η and γ(η)=
(gγ1 (π), gγ2 (π), ...gγf−1(π), gγ0 (π))η for all γ ∈ ΓK , where c ∈ O×E . We want to de-

fine the functions gi(π) = gγi (π) ∈ OE [[π]] appropriately to make N~k,c a Wach

module over OE [[π]]|τ |. The actions of ϕ and γ should commute and a short
computation shows that g0 should satisfy the equation

ϕf (g0) = g0

(
γq

q

)k0
ϕ(
γq

q
)k1 · · ·ϕf−1(

γq

q
)kf−1 . (3.1)

Lemma 3.3. Equation 3.1 has a unique ≡ 1mod π solution in Zp[[π]] given by

g0 = λk0f,γϕ(λf,γ)k1ϕ2(λf,γ)k2 · · ·ϕf−1(λf,γ)kf−1 .
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Proof. Notice that ϕf (λf ) =
λf
( qp )

and ϕf (γλf ) =
γλf
( γqp ) , hence λf,γ =

λf
γλf

solves

the equation ϕf (u) = u
(
γq
q

)
. It is straightforward to check that

g0 = λk0f,γϕ(λf,γ)k1ϕ2(λf,γ)k2 · · ·ϕf−1(λf,γ)kf−1

is a solution of equation 3.1. By Lemma 3.2, g0 ≡ 1mod π. If g0 and g′0 are

two solutions of equation 3.1 congruent to 1mod π, then (
g′0
g0

) ∈ Zp[[π]] is fixed

by ϕf and is congruent to 1mod π, hence equals 1.

Commutativity of ϕ with the ΓK-actions implies that

g1 = (
q

γq
)k1ϕ(

q

γq
)k2 · · ·ϕf−2(

q

γq
)kf−1ϕf−1(λf,γ)

k0ϕf (λf,γ)
k1 · · ·ϕ2f−2(λf,γ)

kf−1 ,

· · · · · ·

gf−2 = (
q

γq
)kf−2ϕ(

q

γq
)kf−1ϕ2(λf,γ)

k0ϕ3(λf,γ)
k1 · · ·ϕf+1(λf,γ)

kf−1 ,

gf−1 = (
q

γq
)kf−1ϕ(λf,γ)

k0ϕ2(λf,γ)
k1ϕ3(λf,γ)

k2 · · ·ϕf (λf,γ)
kf−1 ,

and Lemma 3.2 implies that gi ≡ 1mod π for all i.

Proposition 3.4. We equip N~k,c =
(
OE [[π]]|τ |

)
η with semilinear ϕ and

ΓK-actions defined by ϕ(η) = (c · qk1 , qk2 , ..., qkf−1 , qk0)η and γ(η) =
(gγ1 (π), gγ2 (π), ...gγf−1(π), gγ0 (π))η for the gi(π) = gγi (π) defined above, where

c ∈ O×E . The module N~k,c is a Wach module over OE [[π]]|τ | with labeled Hodge-

Tate weights {−ki}τi . Moreover, D~k,c ≃ E|τ |
⊗
O|τ|
E

(
N~k,c/πN~k,c

)
as filtered ϕ-

modules over E|τ |, where D~k,c =
(
E|τ |

)
η is the filtered ϕ-module with Frobenius

endomorphism ϕ(η) = (c · pk1 , pk2 , ..., pkf−1 , pk0)η and filtration

Filj(D~k,c) =





E|τI0 |η if j ≤ w0,
E|τI1 |η if 1 + w0 ≤ j ≤ w1,

· · · · · ·
E|τIt−1

|η if 1 + wt−2 ≤ j ≤ wt−1,
0 if j ≥ 1 + wt−1.

Proof. (i) To prove that ΓK acts on N~k,c, it suffices to prove that gγ1γ2i (π) =

gγ1i γ1(gγ2i ) for all γ1, γ2 ∈ ΓK and i ∈ I0. This follows immediately from the
cocycle relations

q

γ1γ2(q)
=

q

γ1(q)
γ1

(
q

γ2(q)

)
and λf,γ1γ2 = λf,γ1γ1(λf,γ2 ),

and the definition of the gγi (π). Since gγi (π) ≡ 1mod π for all i ∈ I0, the action of
ΓK on N~k,c/πN~k,c is trivial. (ii) Let k = max{k0, k1, ..., kf−1} and let ϕ∗(N~k,c)
be the OE [[π]]|τ |-linear span of the set ϕ(N~k,c). Let c1 = c−1 and ci = 1 if
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i 6= 1. Since qkη =
f−1∑
i=0

(
qk−kiciei

)
ϕ(η) ∈ ϕ∗(N~k,c), it follows that qk kills

N~k,c/ϕ
∗(N~k,c). (iii) To compute the filtration of N~k,c, we use the fact that qj |

ϕ(x) if and only if πj | x for any x ∈ OE [[π]]. Let x = (x0, x1, ..., xf−1)η ∈ N~k,c.

By Theorem 2.4, x ∈ FiljN~k,c if and only if ϕ(x) ∈ qjN~k,c or equivalently qj |
ϕ(xi)q

ki for all i ∈ I0. If j ≤ ki there are no restrictions on the xi, whereas if
j > ki this is equivalent to xi ≡ 0mod πj−ki . Therefore,

eiFiljN~k,c =

{
eiN~k,c if j ≤ ki,

eiπ
j−kiOE [[π]]η if j ≥ 1 + ki.

This implies that

E|τ |
⊗

O|τ|
E

eiFilj
(
N~k,c/πN~k,c

)
=

{
eiE
|τ |η if j ≤ ki,
0 if j ≥ 1 + ki.

For the filtration, we have

E|τ |
⊗

O|τ|
E

Filj
(
N~k,c/πN~k,c

)
=

f−1⊕

i=0


E|τ |

⊗

O|τ|
E

eiFilj(N~k,c/πN~k,c)


 .

Recall from Notation 1.2 that after ordering the weights ki and omitting pos-
sibly repeated weights we get w0 < w1 < ... < wt−1. By the formulas above,

Filj(D~k,c) =





E|τ |
(
∑
i∈I0

ei

)
η if j ≤ w0,

E|τ |
(

∑
{i∈I0:ki>w0}

ei

)
η if 1 + w0 ≤ j ≤ w1,

E|τ |
(

∑
{i∈I0:ki>w1}

ei

)
η if 1 + w1 ≤ j ≤ w2

· · · · · ·

E|τ |
(

∑
{i∈I0:ki>wt−2}

ei

)
η if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

The formula for the filtration follows immediately, recalling that Ij = {i ∈ I0 :

ki > wj−1} for each j = 1, 2, ..., t − 1, and E|τIr | := Ef

(
∑
i∈Ir

ei

)
for each

r = 0, 1, ..., t− 1. The isomorphism of filtered ϕ-modules is obvious.

Proposition 3.5. Let k0, k1, ..., kf−1 be arbitrary integers.
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(i) The weakly admissible rank one filtered ϕ-modules over E|τ | with labeled
Hodge-Tate weights {−ki}τi are of the form D~k,~α =

(
E|τ |

)
η, with ϕ(η) =

(α0, α1, ..., αf−1)η for some ~α = (α0, α1, ..., αf−1) ∈ (E×)|τ | such that
vp(Nmϕ(~α)) =

∑
i∈I0

ki and

Filj(D~k,~α) =





E|τI0 |η if j ≤ w0,

E|τI1 |η if 1 + w0 ≤ j ≤ w1,
· · · · · ·

E|τIt−1
|η if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

(ii) The filtered ϕ-modules D~k,~α and D~v,~β are isomorphic if and only if ~k =

~v and Nmϕ(~α) = Nmϕ(~β).

Proof. Follows easily arguing as in [Dou10], §§4 and 6.

Corollary 3.6. All the effective crystalline E-characters of GK are those
constructed in Proposition 3.4.

Let c ∈ O×E and ~k = (−k1,−k2, ...,−kf−1,−k0) . We denote by χc,~k the crys-

talline character of GK corresponding to the Wach module N~k,c =
(
OE [[π]]|τ |

)
η

with ϕ action defined by ϕ(e) = (c·qk1 , qk2 , ..., qkf−1 , qk0)η and the unique com-
muting with it ΓK-action defined in Proposition 3.4. When c = 1 we simply
write χ~k. By Proposition 3.4 the crystalline character χi := χei has labeled
Hodge-Tate weights −ei+1 for all i. By taking tensor products we see that

χc,~k = χc,~0 · χk10 · χk21 · · · · · χ
kf−1

f−2 · χk0f−1. As usual, we denote by Frobp be the
geometric Frobenius of GQp and by FrobK the geometric Frobenius of GK . We
have the following.

Lemma 3.7. (i) The unramified character of GKf which maps FrobKf to c

equals χc,~0 for any c ∈ O×E ;

(ii) For any i = 0, 1, ..., f − 1, (χi)|GK2f
= χi · χi+f , where the character on

the left hand side is a character of GKf and the characters on the right
hand side are characters of GK2f

;

(iii) If χ is a crystalline character of GKf with labeled Hodge-Tate weights
{−ki}τi, i = 0, 1, ..., f − 1, its restriction to GK2f

has labeled weights
{−ki}τi, i = 0, 1, ..., 2f − 1, with ki+f = ki for all i = 0, 1, ..., f − 1;

(iv) If χ and ψ are crystalline characters of GKf , then χ|GKdf = ψ|GKdf if

and only if χ = η · ψ, where η is an unramified character of GKf which
maps FrobKf to a d-th root of unity.
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Proof. (i) Let f
√
c be any choice of an f -th root of c in E. The filtered ϕ-module

with trivial filtration and ϕ(e) = f
√
c · e corresponds to the unramified char-

acter η of GQp which maps Frobp to f
√
c. Since the FrobKf = (Frobp)

f
|Kf , the

restriction of ηc of η to Kf maps FrobKf to c. By Proposition 2.6 the rank one
filtered ϕ-module corresponding to the unramified character ηc has trivial fil-
tration and Frobenius ϕ(e) = ( f

√
c, f
√
c, ..., f

√
c) e, and by Proposition 3.5(ii) the

latter is isomorphic to the rank one filtered ϕ-module with trivial filtration and
ϕ(e) = (c, 1, ...1) e. Part (ii) follows from the definition of the characters χi and
Proposition 2.6. Part (iii) follows immediately from part (ii). For part (iv) it
suffices to prove that any crystalline character η of GKf with trivial restriction
to GKdf is an unramified character of GKf which maps FrobKf to a d-th root
of unity. The restriction of η to GKdf has all its labeled Hodge-Tate weights
equal to zero, and by Corollary 2.7 so does η. By part (i) η is an unramified
character of GKf which maps FrobKf to some constant, say c. The restriction

of η to GKdf is trivial and maps FrobKdf =
(
FrobKf

)d
|Kdf to cd, therefore c is a

d-th root of unity and part (iv) follows.

Let χ be any E-character of GK , and let h ∈ GQp . Since K is unramified over
Qp, it is h-stable and the character χh with χh (g) := χ

(
hgh−1

)
is well defined.

We have h|K =: σ
n(h)
K for a unique integer n (h) modulo f. We denote by T (χ)

the rank one OE-representation of GK defined by γe = χ (γ) e for any basis
element e and any γ ∈ GK .
Lemma 3.8. Let χ be the crystalline character corresponding to the Wach mod-

ule defined in Proposition 3.4, and let h ∈ GQp . Let η1 =
(
h̄−1|K

)
· η. The rank

one module Nh :=
(
OE [[π]]|τ |

)
η1 endowed with semilinear Frobenius and ΓK-

actions defined by

ϕ (η1) =
(
c · qkf+1−n(h) , qkf+2−n(h) , ..., qk2f−n(h)

)
η1 and

γ (η1) =
(
ghγh

−1

f+1+n(h−1), g
hγh−1

f+2−n(h), ..., g
hγh−1

2f−1−n(h), g
hγh−1

2f−n(h)

)
η1,

where the indices are viewed modulo f, is a Wach module whose corresponding
crystalline character is χh.

Proof. It is trivial to check that Nh with the above defined actions is a Wach

module. By Theorems 2.2 and 2.4, T (χ) ≃
(
AK,E ⊗A+

K,E
N (T (χ))

)ϕ=1

, hence

there exists some α ∈ AK,E such that ϕ (α⊗ η) = α ⊗ η and γ (α⊗ η) =
χ (γ) (α⊗ η) for all γ ∈ GK . This is equivalent to

ϕ (α) · ξ−1
(
c · qk1 , qk2 , ..., qk0

)
⊗ η = α⊗ η and (3.2)

γ (α) · ξ−1
(
gγ1 , g

γ
2 , ...g

γ
f−1, g

γ
0

)
⊗ η = χ (γ)α⊗ η (3.3)

for all γ ∈ GK , where ξ is the isomorphism defined in formula 2.1. A little
computation shows that for any (x0, x1, ..., xf−1) ∈ OE [[π]]|τ |,

h−1
(
ξ−1 (x0, x1, ..., xf−1)

)
= ξ−1

(
xf−n(h), xf+1−n(h), ..., x2f−1−n(h)

)
. (3.4)

Documenta Mathematica 15 (2010) 873–938



894 Gerasimos Dousmanis

Let α1 := h−1α ∈ AK,E . We show that ϕ (α1 ⊗ η1) = α1⊗η1 and γ (α1 ⊗ η1) =
χh (γ) (α1 ⊗ η1) for all γ ∈ GK . Indeed,

ϕ (α1 ⊗ η1) = ϕ
(
h−1α

)
⊗ ϕ (η1)

= h−1ϕ (α) · ξ−1
(
c · qkf+1−n(h) , qkf+2−n(h) , ..., qk2f−n(h)

)
⊗ η1

3.4
= h−1ϕ (α) · h−1ξ−1

(
c · qk1 , qk2 , ..., qkf−1 , qk0

)
⊗ h−1η

3.2
= h−1 (α⊗ η) = α1 ⊗ η1.

Also,

γ (α1 ⊗ η1) = γ
(

h−1α
)

· ξ−1
(

ghγh
−1

f+1−n(h), ghγh
−1

f+2−n(h), ..., ghγh
−1

2f−1−n(h), ghγh
−1

2f−n(h)

)

⊗ η1

3.4
= h−1

(

hγh−1α · ξ−1
(

ghγh
−1

1 , ghγh
−1

2 , ..., ghγh
−1

f−1 , ghγh
−1

f

)

⊗ η
)

3.3
= h−1 (χ

(

hγh−1)α⊗ η
)

= χh (γ) (α1 ⊗ η1)

for all γ ∈ GK . By Theorems 2.2 and 2.4, it follows that the crystalline character
which corresponds to Nh is χh.

Corollary 3.9. If χ is a crystalline E-characters of GK with labeled Hodge-
Tate weights {−ki}τi , the character χh is crystalline with labeled Hodge-Tate
weights {−ℓi}τi , where ℓi = kf+i−n(h) for all i, with the indices f + i − n (h)
viewed modulo f.

Corollary 3.10. The representation

VKf ≃ Ind
Kf
K2f

(
χk10 · χk21 · · · · · χ

k2f−1

2f−2 · χk02f−1
)

is crystalline. Moreover, VKf is irreducible if and only if ki 6= ki+f for some
i ∈ {0, 1, ..., f − 1}.

Proof. Since VK2f
is crystalline, VKf is crystalline. The corollary follows from

Mackey’s irreducibility criterion and Corollary 3.9.

Proposition 3.11. Let VK be an irreducible two-dimensional crystalline E-
representation of GKf with labeled Hodge-Tate weights {0,−ki}τi , whose re-
striction to GK2f

is reducible. There exist some unramified character η of GKf
and some nonnegative integers ℓi, i = 0, 1, ..., 2f − 1 with {ℓi, ℓi+f} = {0, ki}
for all i = 0, 1, ..., f − 1 and ℓi 6= ℓi+f for some i ∈ {0, 1, ..., f − 1}, such that

VKf ≃ η ⊗ Ind
Kf
K2f

(
χℓ10 · χℓ21 · · · · · χ

ℓ2f−1

2f−2 · χℓ02f−1
)
.
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Proof. Let χ be a constituent of VK2f
. By Corollary 3.6, χ = χc ·χℓ10 ·χℓ21 · · · · ·

χ
ℓ2f−1

2f−2 · χℓ02f−1 for some c ∈ O×E and some integers ℓi. Let η be the unramified

character of GKf which maps FrobKf to 2
√
c. Arguing as in the proof of Lemma

3.7(i) we see that the restriction of η to GK2f
is χc, hence χℓ10 ·χℓ21 · · · · ·χ

ℓ2f−1

2f−2 ·
χℓ02f−2 is a constituent of

(
η−1 ⊗ VKf

)
|K2f

. Since η−1 ⊗ VKf is irreducible,

η−1 ⊗ VKf ≃ Ind
Kf
K2f

(
χℓ10 · χℓ21 · · · · · χ

ℓ2f−1

2f−2 · χℓ02f−1
)

by Frobenius reciprocity. By Mackey’s formula and Corollary 3.9,

VK2f
≃
(
χc · χℓ10 · χℓ21 · · · · · χ

ℓ2f−1

2f−2 · χℓ02f−1
)⊕

⊕(
χc · χℓ1+f0 · χℓ2+f1 · · · · · χℓ3f−1

2f−2 · χ
ℓ3f
2f−1

)
,

where the indices of the exponents of the second summand are viewed modulo
2f. By Corollary 2.7, the restricted representation VK2f

has labeled Hodge-
Tate weights {0,−ki}τi, i = 0, 1, 2, ..., 2f − 1, where ki+f = ki for all i =
0, 1, ..., f − 1. The labeled Hodge-Tate weights of the direct sum of characters
in formula 3 with respect to the embedding τi of K2f to E are {−ℓi,−ℓi+f}
for all i = 0, 1, 2, ..., 2f − 1, with the indices i+ f viewed modulo 2f. Therefore
{ℓi, ℓi+f} = {0, ki} for all i = 0, 1, ..., f − 1. The rest of the proposition follows
from Corollary 3.10.

Proposition 3.12. Up to twist by some unramified character, there ex-

ist precisely 2f
+−1 distinct isomorphism classes of irreducible crystalline

two-dimensional E-representations of GKf with labeled Hodge-Tate weights
{0,−ki}τi, whose restriction to GK2f

is reducible.

Proof. In Proposition 3.11, notice that ℓi+f = ki−ℓl for all i = 0, 1, ..., f−1.The

corollary follows since Ind
Kf
K2f

(χ) ≃ Ind
Kf
K2f

(ψ) if and only if {χ, χh} = {ψ, ψh},
where h is any element in GQp lifting a generator of Gal (K2f/Kf) .

4 families of effective Wach modules of arbitrary weight and
rank

We extend the method used by Berger-Li-Zhu in [BLZ04] for two-dimensional
crystalline representations of GQp , in order to construct families of Wach mod-
ules of effective crystalline representations of GK of arbitrary rank. Fixing a
basis, we need to exhibit matrices Π and Gγ such that Πϕ(Gγ) = Gγγ(Π) for
all γ ∈ ΓK , with some additional properties imposed by Theorem 2.4. In the
two-dimensional case, for representations of GQp and for a suitable basis, it is
trivial to write down such a matrix Π assuming that the valuation of the trace
of Frobenius of the corresponding filtered ϕ-module is suitably large, and the
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main difficulty is in constructing a ΓK-action which commutes with Π. When
K 6= Qp, finding a matrix Π which gives rise to a prescribed weakly admis-
sible filtration seems to be already hard, even in the two-dimensional case.
Assuming that such a matrix Π is available, it is usually very hard to explicitly
write down the matrices Gγ . There are exceptions to this, for example some
split-reducible two-dimensional crystalline representations. In the general case,
instead of explicitly writing down the matrices Gγ we prove that such matrices
exist using a successive approximation argument.
Let S = {Xi ; i = 0, 1, ...,m− 1} be a set of indeterminates, were m ≥ 1 is any
integer. We extend the actions of ϕ and ΓK defined in equations 2.2 and 2.3
on the ring OE [[π]]|τ | :=

∏
τ :K →֒E

OE [[π]] to an action on OE [[π,S]]|τ | :=
∏

τ :K →֒E
OE [[π,S]], by letting ϕ and ΓK act trivially on each indeterminate Xi. We let
ϕ and ΓK act on the matrices of MSn := Mn(OE [[π,S]]|τ |) entry-wise for any
integer n ≥ 2. For any integer s ≥ 0, we write ~πs = (πs, πs, ..., πs) , and for any
α ∈ OE [[π,S]] and any vector ~r = (r0, r1, ..., rf−1) with nonnegative integer
coordinates we write α~r = (αr0 , αr1 , ..., αrf−1) . As usual, we assume that ki
are nonnegative integers and we write k := wt−1 = max{k0, k1,..., kf−1}. Let
ℓ ≥ k be any fixed integer. We start our constructions with the following
lemma.

Lemma 4.1. Let Πi = Πi(S), i = 0, 1, ..., f − 1 be matrices in Mn(OE [[π,S]])
such that det(Πi) = ciq

ki , with ci ∈ OE [[π]]×. We denote by Π(S) the ma-
trix (Π1,Π2, ...,Πf−1,Π0) and view it as an element of MSn via the natural
isomorphism MSn ≃ Mn(OE [[π,S]])|τ |. We denote by Pi = Pi(S) the reduc-
tion of Πimod π for all i. Assume that for each γ ∈ ΓK there exists a matrix

G
(ℓ)
γ = G

(ℓ)
γ (S) ∈MSn such that:

1. G
(ℓ)
γ (S) ≡ −→Idmod ~πℓ;

2. G
(ℓ)
γ (S)−Π(S)ϕ(G

(ℓ)
γ (S))γ(Π(S)−1) ∈ ~πℓMSn ;

3. There is no nonzero matrix H ∈ Mn(OE [[S]]|τ |) such that HU =
pftUH for some t > 0, where U = Nmϕ(P ) and P = P (S) =
(P1, P2, ..., Pf−1, P0) ;

4. For each s ≥ ℓ+ 1 the operator

H 7−→ H −QfH(pf(s−1)Q−1f ) : Mn (OE [[S]]) −→Mn (OE [[S]]) , (4.1)

where Qf = P1P2 · · ·Pf−1P0, is surjective.

Then for each γ ∈ ΓK there exists a unique matrix Gγ(S) ∈MSn such that

(i) Gγ(S) ≡ −→Idmod ~π and

(ii) Π(S)ϕ(Gγ (S)) = Gγ(S)γ(Π(S)).
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Proof. Uniqueness: Suppose that both the matrices Gγ(S) and G′γ(S) satisfy
the conclusions of the lemma and let H = G′γ(S)Gγ(S)−1. We easily see that

H ∈ ~Id + ~πMSn and HΠ(S) = Π(S)ϕ (H) . We’ll show that H = ~Id. We

write H = ~Id + πtHt + · · · , where Ht ∈ Mn(OE [[S]]|τ |) for some t ≥ 1 and
Π(S) = P + πP (1) + π2P (2) + · · · , and we will show that Ht = 0. Since

HΠ(S) = Π(S)ϕ (H), we have (H − ~Id)Π(S) = Π(S)ϕ(H − ~Id). We divide
both sides of this equation by πt using that ϕ(π) = qπ, and reduce mod π.
Since q ≡ pmod π, this gives HtP = ptPϕ (Ht) which implies that HtU =
pftUϕf (Ht), where U = Nmϕ(P ). Since ϕ acts trivially on Xi and OE , the
map ϕf acts trivially on Mn(OE [[S]]|τ |). Therefore HtU = pftUHt and Ht = 0
by assumption (iii) of the lemma.
Existence: Fix a γ ∈ ΓK . By assumptions (i) and (ii) of the lemma, there exists

a matrix G
(ℓ)
γ ∈ ~Id+ ~πℓ MSn such that

G(ℓ)
γ −Π(S)ϕ(G(ℓ)

γ )γ(Π(S)−1) = ~πℓR(ℓ)

for some matrix R(ℓ) = R(ℓ)(γ) ∈ MSn . We shall prove that for each s ≥
ℓ + 1 there exist matrices R(s) = R(s)(γ) ∈ MSn and G

(s)
γ ∈ MSn such that

G
(s)
γ ≡ G

(s−1)
γ mod ~πs−1MSn and G

(s)
γ − Π(S)ϕ(G

(s)
γ )γ(Π(S)−1) = ~πsR(s). Let

G
(s)
γ = G

(s−1)
γ + ~πs−1H(s), where H(s) ∈ Mn(OE [[S]]|τ |) and write R(s) =

R̄(s) + ~π · C with C ∈MSn . We need
(

G(s−1)
γ + ~π(s−1)H(s)

)

−Π(S)
(

ϕ(G(s−1)
γ ) + ~ϕ (π)(s−1)ϕ

(

H(s)
))

γ(Π(S)−1) ∈ ~πsMS
n ,

or equivalently

G(s−1)
γ −Π(S)ϕ(G(s−1)

γ )γ(Π(S)−1) + ~π(s−1)H(s)−

− ~(qπ)
(s−1)

Π(S)ϕ
(
H(s)

)
γ(Π(S)−1) ∈ ~πsMSn .

The latter is equivalent to

~π(s−1)R(s−1) + ~π(s−1)H(s) − ~(qπ)
(s−1)

Π(S)ϕ
(
H(s)

)
γ(Π(S)−1) ∈ ~πsMSn ,

which is in turn equivalent to

H(s) − ~q(s−1)Π(S)ϕ
(
H(s)

)
γ(Π(S)−1) ≡ −R(s−1)mod ~πMSn .

This holds if and only if

H(s) − ~p(s−1)P (S)ϕ
(
H(s)

)
P (S)

−1
= −R̄(s−1). (4.2)

Notice that ~p(s−1)P (S)
−1 ∈ Mn(OE [[S]]|τ |) since s − 1 ≥ ℓ ≥ k =

max{k0, k1, ..., kf−1}. We write

H(s) =
(
H

(s)
1 , H

(s)
2 , ..., H

(s)
f−1, H

(s)
0

)
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and
−R̄(s−1) =

(
R̄

(s−1)
1 , R̄

(s−1)
2 , ..., R̄

(s−1)
f−1 , R̄

(s−1)
0

)
.

Equation 4.2 is equivalent to the system of equations in Mn (OE [[S]])

H
(s)
i − Pi ·H

(s)
i+1 ·

(
ps−1P−1i

)
= R̄

(s−1)
i , (4.3)

where i = 1, 2, ..., f, with indices viewed mod f. These imply that

H
(s)
1 −QfH(s)

1 (pf(s−1)Q−1f ) = R̄
(s−1)
1 +Q1R̄

(s−1)
2 (p(s−1)Q−11 )+

+Q2R̄
(s−1)
3 (p2(s−1)Q−12 ) + · · ·+Qf−1R̄

(s−1)
0 (p(s−1)(f−1)Q−1f−1),

where Qi = P1 · · ·Pi for all i = 1, 2, ..., f. From equations 4.3 we see that the

matrices H
(s)
i , i = 2, 3, ..., f, are uniquely determined by the matrix H

(s)
1 , so

it suffices to prove that the operator defined in formula 4.1 contains

A = R̄
(s−1)
1 +Q1R̄

(s−1)
2 (p(s−1)Q−11 ) + Q2R̄

(s−1)
3 (p2(s−1)Q−12 ) + · · ·

+Qf−1R̄
(s−1)
0 (p(s−1)(f−1)Q−1f−1)

in its image. Since pi(s−1)Q−1i ∈ Mn (OE [[S]]) for all i, this is true by as-

sumption (iv) of the lemma. We define Gγ(S) = lim
s→∞

G
(s)
γ (S) and the proof is

complete.

Let M̃n be the ring Mn (OE [[S]]) /I where I is the ideal of Mn (OE [[S]]) gen-
erated by the set {p · Id, Xi · Id : Xi ∈ S} . We use the notation of Lemma
4.1 and its proof, and we are interested in the image of the operator H 7→
H −QfH(pfℓQ−1f ) : M̃n → M̃n where bar denotes reduction modulo I.

Proposition 4.2. If the operator

H 7→ H −QfH(pfℓQ−1f ) : M̃n → M̃n (4.4)

is surjective, then for each s ≥ ℓ + 1 the operator defined in formula 4.1 is
surjective.

Proof. Case (i). s ≥ k + 2. In this case f(s − 1) −
f−1∑
i=0

ki ≥ f (s− 1− k) ≥

f ≥ 1. Since Q−1f = P−10 P−1f−1P
−1
f−2...P

−1
1 and det(Pi) = c̄ip

ki , it follows that

pf(s−1)Q−1f ∈ pMn(OE [[S]]). Let B be any matrix in Mn (OE [[S]]) . We write

B = B −QfB
(
pf(s−1)Q−1f

)
+ pB1

for some matrix B1 ∈Mn (OE [[S]]) . Similarly,

B1 = B1 −QfB1

(
pf(s−1)Q−1f

)
+ pB2
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for some matrix B2 ∈Mn (OE [[S]]) and

B = (B + pB1)−Qf (B + pB1)
(
pf(s−1)Q−1f

)
+ p2B2.

Continuing in the same fashion we get

B =

(
N∑

i=0

piBi

)
−Qf

(
N∑

i=0

piBi

)(
pf(s−1)Q−1f

)
+ pN+1BN+1

for some matrix BN+1∈ Mn (OE [[S]]) with B0 = B. Let H =
∞∑
i=0

piBi. Then

H ∈Mn (OE [[S]]) and B = H −QfH
(
pf(s−1)Q−1f

)
.

Case (ii). ℓ = k and s = k + 1. We reduce modulo the ideal I defined before
Proposition 4.2. Let A be any element of Mn (OE [[S]]) . The operator

H 7−→ H −QfH
(
pfℓQ−1f

)
: M̃n → M̃n

contains Ā = Amod I in its image by the assumption of the lemma. Let

A = A0 − QfA0

(
pfℓQ−1f

)
mod I for some matrix A0 ∈ Mn (OE [[S]]) . We

write

A = A0 −QfA0

(
pfℓQ−1f

)
+ pBm +X0B0 + · · ·+Xm−1Bm−1

for matrices Bi ∈ Mn (OE [[S]]) . Similarly Bi = B0
i −QfB0

i

(
pfℓQ−1f

)
mod I

for matrices B0
i ∈Mn (OE [[S]]) and for all i. Then

A = A0 −QfA0

(
pfℓQ−1f

)
+ pB0

m −Qf
(
pB0

m

) (
pfℓQ−1f

)
+

+X0B
0
1 −Qf

(
X0B

0
1

) (
pfℓQ−1f

)
+

+ · · ·+Xm−1B
0
m−1 −Qf

(
Xm−1B

0
f−1
) (
pfℓQ−1f

)
mod I2,

therefore

A = (A0 + pB0
m +X0B

0
1 + · · ·+ Xm−1B

0
m−1)−

−Qf(A0 + pB0
m +X0B

0
1 + · · ·+Xf−1B

0
m−1)

(
pfℓQ−1f

)
mod I2.

By induction, A = H −QfH
(
pfℓQ−1f

)
for some H ∈Mn (OE [[S]]) .

The surjectivity assumption of Proposition 4.2 is usually trivial to check thanks
to the following proposition.

Proposition 4.3. Assume that ℓ > k or ℓ = k and the weights ki are not all
equal. Then the operator defined in formula 4.4 is surjective.
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Proof. The proposition follows immediately because detQf = c̄pk1+k2+···+kf ,
where c̄ = c̄1c̄2 · · · c̄f , since fℓ > k1 + · · ·+ kf and p ∈ I.
The following lemma summarizes the results of this section. We use the nota-
tion of Lemma 4.1.

Lemma 4.4. Let ℓ ≥ k be a fixed integer. We assume that for each γ ∈ ΓK
there exists a matrix G

(ℓ)
γ = G

(ℓ)
γ (S) ∈MSn such that:

1. G
(ℓ)
γ (S) ≡ −→Idmod ~πℓ;

2. G
(ℓ)
γ (S)−Π(S)ϕ(G

(ℓ)
γ (S))γ(Π(S)−1) ∈ ~πℓMSn ;

3. There is no nonzero matrix H ∈ Mn(OE [[S]]|τ |) such that HU =
pftUH for some t > 0;

4. If ℓ = k and k = ki for all i, we additionally assume that the operator

H 7→ H −QfH(pfℓQ−1f ) : M̃n → M̃n

is surjective.

Then for each γ ∈ ΓK there exists a unique matrix Gγ(S) ∈MSn such that

(i) Gγ(S) ≡ −→Idmod ~π, and

(ii) Π(S)ϕ(Gγ (S)) = Gγ(S)γ(Π(S)).

For any vector ~a = (a0, a1, ..., af−1) ∈ m
|S|
E we denote by Π(~a) =

(Π1(a1),Π2(a2), ...,Πf−1(af−1),Π0(a0)) the matrix obtained from Π(S) =
(Π1(X1),Π2(X2), ...,Πf−1(Xf−1),Π0(X0)) by substituting ai ∈ mE in each
indeterminate Xi of Πi(Xi).

Proposition 4.5. For any ~a = (a0, a1, ..., af−1) ∈ m
|S|
E and any γ1, γ2, γ ∈ ΓK ,

the following equations hold:

(i) Gγ1γ2(~a) = Gγ1(~a)γ1(Gγ2(~a)) and

(ii) Π(~a)ϕ(Gγ(~a)) = Gγ(~a)γ(Π(~a)).

Proof. Both matrices Gγ1γ2(S) and Gγ1(S)γ1(Gγ2(S)) are ≡ −→Idmod ~π and are
solutions in A of the equation Π(S)ϕ(A) = Aγ(Π(S)). They are equal by the
uniqueness part of Lemma 4.1. The second equation follows from part (ii) of
the same lemma.

For any vector ~a ∈ m
|S|
E we equip the module N(~a) =

n⊕
i=1

(
OE [[π]]|τ |

)
ηi

with semilinear ϕ and ΓK-actions defined by (ϕ(η1), ϕ(η2), ..., ϕ(ηn)) =
(η1, η2, ..., ηn)Π(~a) and (γ(η1), γ(η2), ..., γ(ηn)) = (η1, η2, ..., ηn)Gγ(~a) for any
γ ∈ ΓK . Proposition 4.5 implies that (γ1γ2)x= γ1(γ2x) and ϕ(γx) = γ(ϕ(x))

for all x ∈ N(~a) and γ, γ1, γ2 ∈ ΓK . Since Gγ(~a) ≡ −→Idmod ~π, it follows that ΓK
acts trivially on N(~a)/πN(~a).

Documenta Mathematica 15 (2010) 873–938



Reductions of Families of Crystalline Representations 901

Proposition 4.6. For any ~a ∈ m
|S|
E , the module N(~a) equipped with the ϕ

and ΓK-actions defined above is a Wach module over OE [[π]]|τ | corresponding
(by Theorem 2.4) to some GK-stable OE-lattice inside some n-dimensional
crystalline E-representation of GK with Hodge-Tate weights in [−k; 0].

Proof. The only thing left to prove is that qkN(~a) ⊂ ϕ∗(N(~a)). Since det(Πi) =
ciq

ki we have det Π(~a) = (c1q
k1 , c2q

k2 , ..., c0q
k0) and

(qkη1, q
kη2, ..., q

kηn)

= (η1, η2, ..., ηn) det Π(~a)
(
c−11 qk−k1 , c−12 qk−k2 , ..., c−10 qk−k0

)

= (η1, η2, ..., ηn) (Π(~a) · adj (Π(~a)))
(
c−11 qk−k1 , c−12 qk−k2 , ..., c−10 qk−k0

)

= (ϕ(η1), ϕ(η2), ..., ϕ(ηn)) · (adjΠ(~a))
(
c−11 qk−k1 , c−12 qk−k2 , ..., c−10 qk−k0

)
.

Hence (qkη1, q
kη2, ..., q

kηn) ∈ ϕ∗(N(~a)) and qkN(~a) ⊂ ϕ∗(N(~a)).

We proceed to prove the main theorem concerning the modulo p reductions of
the crystalline representations corresponding to the families of Wach modules
constructed in Proposition 4.6. By reduction modulo p we mean reduction
modulo the maximal ideal mE of the ring of integers of the coefficient field E.
If T is a GK -stable OE -lattice in some E-linear representation V of GK , we
denote by V = kE

⊗
OE

T the reduction of V modulo p, where kE is the residue

field of OE . The reduction V depends on the choice of the lattice T, and a
theorem of Brauer and Nesbitt asserts that the semisimplification

V
s.s.

=

(
kE
⊗
OE

T

)s.s.

is independent of T. Instead of the precise statement “there exist GK -stable
OE-lattices TV and TW inside the E-linear representation V and W of GK
respectively, such that kE

⊗
OE

TV ≃ kE
⊗
OE

TW ”, we abuse notation and write

V ≃W. For each ~a ∈ m
|S|
E , let V (~a) = E⊗OE T(~α), where T(~α) = T(D(~a)), and

D(~a) = AK,E
⊗

A+
K,E

N(~a). The representations V (~a) are n-dimensional crystalline

E-representations of GK with Hodge-Tate weights in [−k; 0]. Concerning their
mod p reductions, we have the following theorem.

Theorem 4.7. For any ~a ∈ m
|S|
E , the isomorphism V (~a) ≃ V (~0) holds.

Proof. We prove that the kE -linear representations kE
⊗
OE

T(~a) and kE
⊗
OE

T(~0)

of GK are isomorphic. Since Π(S) and Gγ(S) ∈ MSn , we have Gγ(~a) ≡
Gγ(~0)mod mE and Π(~a) ≡ Π(~0)mod mE. As (ϕ,ΓK)-modules over kE((π))|τ |,

D(~a)/mED(~a) ≃ D(~0)/mED(~0). Hence T (D(~a)/mED(~a)) ≃ T
(
D(~0)/mED(~0)

)
,

where T is Fontaine’s functor on representations mod mE . Since Fontaine’s
functor is exact, T (D(~a)/mED(~a)) ≃ T(~a)/mET(~a) and T(~a)/mET(~a) ≃
T(~0)/mET(~0).
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5 Families of two-dimensional crystalline representations

The main difficulty in applying Lemma 4.4 is in constructing the matrices

G
(ℓ)
γ (S) which satisfy conditions (1) and (2). Conditions (3) and (4) are usually

easy to check. Throughout this section we retain the notations of Lemma 4.4.
We denote by Eij the 2× 2 matrix with 1 in the (i, j)-entry and 0 everywhere
else. Recall that Eij · Ekl = δjk · Eil, where δ is the Kronecker delta function.
Also recall our assumption that at least one of the weights ki is strictly positive.

Proposition 5.1. The operator H 7→ H −QfH(pfℓQ−1f ) : M̃2 → M̃2 is sur-

jective, unless ℓ = k, k = ki for all i and Q̄f ∈ {E11, E22}.

Proof. It is straightforward to check that Q̄f = Eij for some i, j ∈ {1, 2} and

pkℓQ−1f mod I =





E22 if Q̄f = E11,
E11 if Q̄f = E22,
−E12 if Q̄f = E12,
−E21 if Q̄f = E21.

If Q̄f = E11 (respectively E22), the image is the set of matrices with zero (1, 2)
(respectively (2, 1)) entry, while if Q̄f = E12 or Q̄f = E21 the operator becomes

(
h11 h12
h21 h22

)
7−→

(
h11 h12 + h21
h21 h22

)

and (
h11 h12
h21 h22

)
7−→

(
h11 h12

h21 + h12 h22

)

respectively and is clearly surjective. The proposition follows from Proposition
4.3.

Lemma 5.2. If the matrix Qf = P1P2 · · ·Pf−1Pf (with Pf = P0) does not have
eigenvalues which are a scalar multiple of each other, then the matrix U =
Nmϕ(P ), where P = (P1, P2, ..., Pf−1, P0) , satisfies condition (3) of Lemma
4.4.

Proof. Let H ∈ Mn(OE [[S]]|τ |) be a nonzero matrix such HU = pftUH for
some t > 0. We write H = (H1, H2, ..., Hf ) and U = (U1, U2, ..., Uf ) . Since
P · ϕ(U) · P−1 = U, we have PiUi+1P

−1
i = Ui for all i. Since Qf = U1, none

of the Ui has eigenvalues which are a scalar multiple of each other. If H is
invertible then U1 = Qf has eigenvalues with quotient pft which contradicts
the assumption of the lemma. If H is nonzero and not invertible, there exists
an index i such that HiUi = pft UiHi and rank (Hi) = 1. There also exists an
invertible matrix B such that

BHiB
−1 =

(
α11 0
α21 0

)
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with (α11, α21) 6= (0, 0) . Let Γ = BUiB
−1 and write Γ = (γij) . The equation

HiUi = pftUiHi is equivalent to pftΓBHiB
−1 = BHiB

−1Γ which implies that
γ12 = 0 and pftγ11α11 = α11γ11. If α11 6= 0, then γ11 = 0 a contradiction
since Γ is invertible. If α11 = 0, then pftα21γ22 = α21γ11 and pftγ22 = γ11
(since α21 6= 0). Since γ12 = 0, the latter implies that Γ has two eigenvalues
with quotient pft. This in turn implies that Ui and its conjugate Qf = U1 have
eigenvalues with quotient pft and contradicts the assumption of the lemma.
Hence H = 0.

In the two-dimensional case, instead of checking condition (3) of Lemma 4.4 it
is often more convenient to use following corollary.

Corollary 5.3. If Tr (Qf) 6∈ Q̄p, then the matrix U = Nmϕ(P ) satisfies
condition (3) of Lemma 4.4.

Proof. Since the determinant of Qf is a nonzero scalar, the eigenvalues of Qf
are a scalar multiple of each other if and only if Tr (Qf ) is a scalar.

5.1 Families of rank two Wach modules

We now apply Lemma 4.4 for matrices Πi as in the following definition.

Definition 5.4. For a fixed integer ℓ ≥ k = max{k0, k1, ..., kf−1} we define
matrices of the following four types

t1:

(
ciq

ki 0
Xiϕ(zi) 1

)
, t2:

(
Xiϕ(zi) 1
ciq

ki 0

)
,

t3:

(
1 Xiϕ(zi)
0 ciq

ki

)
, t4:

(
0 ciq

ki

1 Xiϕ(zi)

)
,

where Xi is an indeterminate, ci ∈ OE , and zi is a polynomial of degree ≤
ℓ − 1 in Zp[π] such that zi ≡ pmℓmod π, where mℓ := ⌊ ℓ−1p−1⌋. Matrices of
type t1 or t3 are called of odd type while matrices of type t2 or t4 are called of

even type. We write Π
~i(S) = (Π1(X1),Π2(X2), ...,Πf−1(Xf−1),Π0(X0)) with

~i = (i1, i2, ..., if−1, i0) the vector in {1, 2, 3, 4}f whose j-th coordinate ij is the

type of the matrix Πj for all j ∈ I0. We call ~i the type-vector attached to the

matrix f -tuple Π
~i(S).

The polynomials zi appearing in the entries of the matrices Πi will be defined
shortly. We will also define functions xγi , y

γ
i ∈ 1 + πZp[[π]] such that

G(ℓ)
γ −Π(S)ϕ(G(ℓ)

γ )γ(Π(S)−1) ∈ ~πℓMS2

for all γ ∈ ΓK , where

G(ℓ)
γ = diag

((
xγ0 , x

γ
1 , ..., x

γ
f−1

)
,
(
yγ0 , y

γ
1 , ..., y

γ
f−1

))
.
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Let

Π(S) =

(
(α1, α2, ...αf−1, α0) (β1, β2, ..., βf−1, β0)
(γ1, γ2, ..., γf−1, γ0) (δ1, δ2, ..., δf−1, δ0)

)
with

(
αi βi
γi δi

)

belonging to the set
{(

ciq
ki 0

Xiϕ(zi) 1

)
,

(
Xiϕ(zi) 1
ciq

ki 0

)
,

(
1 Xiϕ(zi)
0 ciq

ki

)
,

(
0 ciq

ki

1 Xiϕ(zi)

)}
.

For each i = 1, 2, ..., f we demand that all of the elements

xγi−1 −
αiϕ (xγi ) (γδi)− βiϕ (yγi ) (γγi)

εi (γq)
ki

,
βiϕ (yγi ) (γαi)− αiϕ (xγi ) (γβi)

εi (γq)
ki

,

(5.1)

yγi−1 −
δiϕ (yγi ) (γαi)− γiϕ (xγi ) (γβi)

εi (γq)
ki

,
γiϕ (xγi ) (γδi)− δiϕ (yγi ) (γγi)

εi (γq)
ki

(5.2)

of OE [[π,X0, ..., Xf−1]][q−1] which belong to OE [[π]][q−1] are zero, and those
which contain an indeterminate belong to πℓOE [[π,X0, ..., Xf−1]], where in the
formulas above εi = 1 if Πi has type 1 or 3 and εi = −1 if Πi has type 2 or 4.
As usual lower indices are viewed modulo f.

Proposition 5.5. For each i, equations 5.1 and 5.2 imply that

xγi−1 =

(
q

γq

)ℓi
ϕ (wγi ) and yγi−1 =

(
q

γq

)ℓ′i
ϕ
(

(wγi )
′
)
, (5.3)

with ℓi ∈ {0, ki}, wγi ∈ {xγi , yγi }, ℓ′i = ki − ℓi, and (wγi )
′

=

{
xγi if wγi = yγi ,
yγi if wγi = xγi .

Proof. If Πi is of type 1, then βi = 0, αi = ciq
ki and δi = 1. We must have

qkiϕ (xγi ) = xγi−1 (γq)ki and ϕ (yγi ) = yγi−1. The proposition holds with ℓi = ki,

wγi = xγi , ℓ
′
i = 0, and (wγi )

′

= yγi . The cases where Πi is of type 2, 3, or 4 are
identical.

From Proposition 5.5 it follows that

xγ0 =

(
f−1∏

i=0

ϕi
(
q

γq

)si)
ϕf
(
zγf

)
and yγ0 =

(
f−1∏

i=0

ϕi
(
q

γq

)s′i)
ϕf
((

zγf

)′)
,

(5.4)

with s′i, si ∈ {ℓi, ℓ′i}. If zγf = xγ0 , then
(
zγf

)′
= yγ0 , and by Lemma 3.3 equations

5.4 have unique ≡ 1mod π solutions given by

xγ0 =

f−1∏

i=0

ϕi (λf,γ)si and yγ0 =

f−1∏

i=0

ϕi (λf,γ)s
′
i . (5.5)
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If If zγf = yγ0 , then
(
zγf

)′
= xγ0 and equations 5.4 imply that

xγ0 =

f−1∏

i=0

(
ϕi
(
q

γq

)si
· ϕi+f

(
q

γq

)s′i)
ϕ2f (xγ0 ) , (5.6)

yγ0 =

f−1∏

i=0

(
ϕi
(
q

γq

)s′i
· ϕi+f

(
q

γq

)si)
ϕ2f (yγ0 ) , (5.7)

which by Lemma 3.3 have unique ≡ 1mod π solutions given by

xγ0 =

f−1∏

i=0

(
ϕi (λ2f,γ)si · ϕi+f (λ2f,γ)s

′
i

)
, (5.8)

yγ0 =

f−1∏

i=0

(
ϕi (λ2f,γ)

s′i · ϕi+f (λ2f,γ)
s′i
)
. (5.9)

Equations 5.3 for i = f give the unique ≡ 1mod π solutions for xγf−1 and yγf−1,
and continuing for i = f − 1, f − 2, ..., 2, we get the unique ≡ 1mod π solutions
for xγi and yγi . We now define the polynomials zi so that for each γ ∈ ΓK , the

matrixG
(ℓ)
γ ≡

−→
Idmod ~π satisfies the congruenceG

(ℓ)
γ −Π(S)ϕ(G

(ℓ)
γ )γ(Π(S)−1) ∈

~πℓMS2 .

Lemma 5.6. Let R = {∑
i≥0

aiπ
i ∈ Qp[[π]] : vp(ai)+ i

p−1 ≥ 0 for all i ≥ 0}. The

set R endowed with the addition and the multiplication of Qp[[π]] is a subring
of Qp[[π]] which is stable under the ϕ and the ΓK-actions. Moreover,

(i) ( qnp )±1 ∈ R for all n ≥ 1 and (λf )±1 ∈ R for all f ≥ 1;

(ii) Let b = cpNb∗, where c ∈ O×E , n ∈ Z, and b∗ ∈ R \ {0} is such that
b∗

γb∗ ∈ 1 + πZp[[π]] for all γ ∈ ΓK . If ℓ ≥ 1 is a fixed integer, there

exists some polynomial z = z(ℓ, b) ∈ Zp[π] with degπ z ≤ ℓ − 1 and
z ≡ pmℓmod π, where mℓ = ⌊ ℓ−1p−1⌋, such that z − γz b

γb ∈ πℓZp[[π]] for
all γ ∈ ΓK .

Proof. We notice that the coefficients ai of πi in q
p are such that vp(ai)+

i
p−1 ≥ 0

for all i = 0, 1, .... Motivated by this we consider the set R of all functions of
Qp[[π]] with the same property. This is a ring with the obvious operations,

stable under ϕ and ΓK . One easily checks that
(
p
q

)±1
∈ R and therefore

(
qn
p

)±1
∈ R for all n ≥ 1 from which (i) follows easily. (ii) Since ΓK acts

trivially on O×E we may replace b by c−1b and assume that c = 1. We write
b = pnb∗. Let pmb = z + a, where a ∈ πℓQp[[π]] and degπ z ≤ ℓ− 1, for integer

m which will be chosen large enough so that z ∈ Zp[π]. Let z =
ℓ−1∑
j=0

zjπ
j . Since
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pm+nb∗ = z+a and b∗ ∈ R, we have vp(zj)−m−n+ j
p−1 ≥ 0 for all j ≥ 0. We

need vp(zj) > −1 for all j = 0, 1, ..., ℓ− 1 and it suffices to have m+n− ℓ−1
p−1 >

−1. We choose m = ⌊ ℓ−1p−1⌋−n. Then z ∈ Zp [π] , degπ z ≤ ℓ−1 and z ≡ pm+n =

pmℓmod π, For any γ ∈ ΓK , z − γz b
γb = pmb − a − bγ(b−1) (pm(γb)− γa) =

bγ(b−1)γa−a ∈ πℓQp[[π]]. Since z ∈ Zp [π] and bγ(b−1) ∈ 1 +πZp[[π]], we have
z − γz b

γb ∈ πℓZp [[π]] = Zp [[π]] ∩ πℓQp[[π]] for all γ ∈ ΓK .

Lemma 5.7. For any γ ∈ ΓK and i ∈ I0,

(i) xγi , y
γ
i ∈ 1 + πZp [[π]] ;

(ii) xγi = ai
γai

and yγi = bi
γbi

for some ai and bi with (ai)
±1

and (bi)
±1 ∈ R.

Proof. (i) is clear by the definition of the xγi , y
γ
i and Lemma 3.2. (ii) Let i = 0.

If zγf = xγ0 , by equation 5.5 we have xγ0 = a0
γa0

, where a0 =
f−1∏
i=0

ϕi (λf )
si ∈ R.

Since (λf )
±1 ∈ R and R is ϕ-stable, (a0)

±1 ∈ R. If zγf = yγ0 , by equation

5.8 we have xγ0 = a0
γa0

, where a0 =
f−1∏
i=0

(
ϕi (λf )

si ϕi+f (λf )
s′i
)
∈ R, therefore

(a0)
±1 ∈ R. The proof for yγ0 and (bi)

±1
is similar. For xγf−1, notice that xγf−1 =

(
q
γq

)ℓi
ϕ (wγi ) =

γ
(
ϕ(c0)( qp )ℓf

)

ϕ(c0)( qp)
ℓf

with c0 ∈ {a0, b0}. Since (a0)
±1
, (b0)

±1 ∈ R, it

follows that xγf−1 ∈ R. Since

(
ϕ (c0)

(
q
p

)ℓf)±1
∈ R, it follows that (af−1)

±1 ∈

R. Similarly yγf−1 and (bf−1)
±1 ∈ R. The lemma follows by induction.

To define the polynomials zi we will also need the following lemma.

Lemma 5.8. If α ∈ πℓOE [[π]] and 0 ≤ k ≤ ℓ is an integer, then ϕ(α)

(γq)k
∈

πℓOE [[π]].

Proof. Since γq
q ≡ 1mod π, it suffices to prove that ϕ(α)

qk ∈ πℓOE [[π]]. Let α =

πℓβ for some β ∈ OE [[π]]. We have ϕ
(
α
πk

)
= ϕ (π)

ℓ−k
ϕ (β) = qℓ−kπℓ−kϕ (β) .

Hence ϕ(α)
qk

= πkϕ
(
α
πk

)
= πkqℓ−kπℓ−kϕ (β) = πℓqℓ−kϕ (β) ∈ πℓOE [[π]].

Proposition 5.9. Let k = max{k0, k1, ..., kf−1}, let ℓ ≥ k be a fixed integer
and let mℓ = ⌊ ℓ−1p−1⌋. There exist polynomials zi ∈ Zp [π] with degπ zi ≤ ℓ − 1
such that zi ≡ pmℓmod π with the following properties:

(i) G
(ℓ)
γ ≡

−→
Idmod ~π;

(ii) G
(ℓ)
γ −Π(S)ϕ(G

(ℓ)
γ )γ(Π(S)−1) ∈ ~πℓMS2 for each γ ∈ ΓK .
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Proof. Suppose that Pi is of type 2 and αi = Xiϕ(zi) for some polynomial zi to
be defined. Then βi = 1 and βiϕ (yγi ) = xγi−1 (γβi) implies that xγi−1 = ϕ (yγi ) .
We need

Xi

(
ϕ(zi)ϕ (xγi )− xγi−1ϕ(γzi)

) 1

(γq)
ki
∈ πℓOE [[π,X0, ..., Xf−1]]

for all γ ∈ ΓK . By Lemma 5.8 it suffices to define zi so that zix
γ
i − yγi γzi ∈

πℓOE [[π]] for all γ ∈ ΓK . Since xγi ∈ 1 + πZp [[π]] for all γ ∈ ΓK , this is

equivalent to zi − yγi
xγi
γzi ∈ πℓOE [[π]]. By Lemma 5.7 we have

yγi
xγi

= b
γb , where

b = ai (bi)
−1 ∈ R. Since

yγi
xγi
∈ 1 + πZp [[π]] , the existence of the zi follows from

Lemmata 5.6 and 5.7. The proof for Pi of type 1, 3 and 4 is identical.

Proposition 5.10. If α (π) =
∞∑
n=0

αnπ
n ∈ Qp[[π]] is such that vp (αi) ≥ 0 for

all i = 0, 1, 2, ..., p− 2 and vp (αp−1) > −1, then the first p − 1 coefficients of
α (π)

p
are in Zp. In particular, the first p− 1 coefficients of the p-th power of

any element of R are in Zp.

Proof. Follows easily using the binomial expansion.

Proposition 5.11. If ki = p for all i, then there exist polynomials zi ∈
Zp [π] with degπ zi ≤ p − 1 such that zi ≡ 1mod π, and such that G

(p)
γ −

Π(S)ϕ(G
(p)
γ )γ(Π(S)−1) ∈ ~πpMS2 for any γ ∈ ΓK .

Proof. Assume that Pi is of type 2 and let xγ0 and yγ0 be as in the proof of
Proposition 5.9. First we notice that the exponents si and s′i in formulas
5.5 or 5.8 and 5.9 for the xγ0 and yγ0 are either 0 or p. With the notation

of Lemma 5.7 we have
yγ0
xγ0

= c0
(
γc−10

)
, where c0 = a−10 b0. The formulas for

a−10 and b0 in the proof of Lemma 5.7 imply that they are both p-th powers of
elements ofR. From the same formulas and Lemma 3.2 it follows that a−10 (0) =
b0 (0) = 1. By Lemma 5.10, c0 = z0 + a for some polynomial z0 ∈ Zp[π] of
degree ≤ p− 1 and constant term 1 and some a ∈ πpQp[[π]]. For any γ ∈ ΓK ,

z0− yγ0
xγ0
γz0 = c0−a−c0

(
γc−10

)
(γc0 − γa) = c0

(
γc−10

)
γa−a ∈ πpQp[[π]]. Since

yγ0
xγ0
∈ 1 + πZp[[π]] and z0 ∈ Zp[π], z0 − yγ0

xγ0
γz0 ∈ Zp[[π]] ∩ πpQp[[π]] = πpZp[[π]].

The proof for the other zi is similar, using formulas 5.3 and noticing that(
q
γq

)±1
∈ 1 + πZp[[π]]. The proof for Pi of type 1, 3 or 4 is identical.

Remark 5.12. If ki = p for all i, then there exist polynomials zi ∈ Zp [π]
with degπ zi ≤ p − 1 and zi ≡ 1mod π which satisfy properties (i) and (ii) of
Proposition 5.9. This follows immediately from Proposition 5.11.

Next, we explicitly determine when Tr (Qf) 6∈ Q̄p. We first need some defini-
tions.
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Definition 5.13. (i) We define C1 to be the set of f -tuples (P1, P2, ..., Pf )
where the types of the matrices Pi are chosen as follows: P1 ∈ {t2, t3}.
For i = 2, 3, ..., f − 1, Pi ∈ {t2, t3} if an even number of coordinates
of (P1, P2, ..., Pi−1) is of even type, and Pi ∈ {t1, t4} if an odd number
of coordinates of (P1, P2, ..., Pi−1) is of even type. Finally, P0 = t3 if
an even number of coordinates of (P1, P2, ..., Pf−1) is of even type, and
P0 = t4 otherwise.

(ii) We define C2 to be the set of f -tuples (P1, P2, ..., Pf ) where the types of the
matrices Pi are chosen as follows: P1 ∈ {t1, t4}. For i = 2, 3, ..., f−1, Pi ∈
{t1, t4} if an even number of coordinates of (P1, P2, ..., Pi−1) is of even
type, and Pi ∈ {t2, t3} if an odd number of coordinates of (P1, P2, ..., Pi−1)
is of even type. Finally, P0 = t1 if an even number of coordinates of
(P1, P2, ..., Pf−1) is of even type, and P0 = t2 otherwise.

In Definition 5.13 the type of the matrix P0 has been chosen so that an even
number of coordinates of the f -tuple (P1, P2, ..., Pf−1, P0) is of even type.

Definition 5.14. (i) We define C∗1 to be the set of f -tuples (P1, P2, ..., Pf )
where the types of the matrices Pi are chosen as follows: P1 ∈ {t2, t3}.
For i = 2, 3, ..., f − 1, Pi ∈ {t2, t3} if an even number of coordinates
of (P1, P2, ..., Pi−1) is of even type, and Pi ∈ {t1, t4} if an odd number
of coordinates of (P1, P2, ..., Pi−1) is of even type. Finally, P0 = t2 if
an even number of coordinates of (P1, P2, ..., Pf−1) is of even type, and
P0 = t1 otherwise.

(ii) We define C∗2 to be the set of f -tuples (P1, P2, ..., Pf ) where the types of
the matrices Pi are chosen as follows: P1 ∈ {t1, t4}. For i = 2, 3, ..., f−1,
Pi ∈ {t1, t4} if an even number of coordinates of (P1, P2, ..., Pi−1) is
of even type, and Pi ∈ {t2, t3} if an odd number of coordinates of
(P1, P2, ..., Pi−1) is of even type. Finally, P0 = t4 if an even number
of coordinates of (P1, P2, ..., Pf−1) is of even type, and P0 = t3 otherwise.

In Definition 5.14 the type of the matrix P0 has been chosen so that an odd
number of coordinates of the f -tuple (P1, P2, ..., Pf−1, P0) is of even type.

Lemma 5.15. Assume that f ≥ 2 and, as before, let Qf = P1P2 · · ·Pf .

(i) If (P1, P2, ..., Pf ) ∈ C∗1 , then Qf =

(
α β
γ 0

)
with β, γ nonconstant

polynomials in X1, X2, ..., Xf (with Xf = X0), linearly independent over
Q̄p, and α nonscalar.

(ii) If (P1, P2, ..., Pf ) ∈ C∗2 , then Qf =

(
0 β
γ δ

)
with β, γ nonconstant poly-

nomials in X1, X2, ..., Xf , linearly independent over Q̄p, and δ nonscalar.
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(iii) If (P1, P2, ..., Pf ) ∈ C1, then Qf =

(
α β
0 δ

)
with β a nonzero polyno-

mial in X1, X2, ..., Xf , and α, δ nonzero scalars.

(iv) If (P1, P2, ..., Pf ) ∈ C2, then Qf =

(
α 0
γ δ

)
with γ a nonzero polyno-

mial in X1, X2, ..., Xf , and α, δ nonzero scalars.

Proof. Follows easily by induction on f.

Lemma 5.16. Assume that f ≥ 2.

(i) If an odd number of coordinates of (P1, P2, ..., Pf ) is of even type, then
Qf has one of the following forms:

(a) Qf =

(
0 β
γ δ

)
with β, γ nonconstant polynomials in

X1, X2, ..., Xf , linearly independent over Q̄p, and δ nonscalar.
This case occurs if and only if (P1, P2, ..., Pf ) ∈ C∗2 .

(b) Qf =

(
α β
γ 0

)
with β, γ nonconstant polynomials in

X1, X2, ..., Xf , linearly independent over Q̄p, and α nonscalar.
This case occurs if and only if (P1, P2, ..., Pf ) ∈ C∗1 .

(c) In any other case, Qf =

(
α β
γ δ

)
with β, γ nonconstant polyno-

mials in X1, X2, ..., Xf , linearly independent over Q̄p, αδ 6= 0, and
Tr (Qf ) nonscalar.

(ii) If an even number of coordinates of (P1, P2, ..., Pf ) is of even type, then
Qf has one of the following forms:

(d) Qf =

(
α β
0 δ

)
with β a nonzero polynomial in X1, X2, ..., Xf , and

α, δ nonzero scalars. This case occurs if and only if (P1, P2, ..., Pf ) ∈
C1.

(e) Qf =

(
α 0
γ δ

)
with γ a nonzero polynomial in X1, X2, ..., Xf , and

α, δ nonzero scalars. This case occurs if and only if (P1, P2, ..., Pf ) ∈
C2.

(f) In any other case, Qf =

(
α β
γ δ

)
with β, γ nonconstant polyno-

mials in X1, X2, ..., Xf , linearly independent over Q̄p, αγ 6= 0 and
Tr (Qf ) is nonscalar.
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Proof. By induction on f. If f = 2 the proof of the lemma is by a direct
computation. Suppose f ≥ 3. Case (i). An odd number of coordinates of
(P1, P2, ..., Pf ) is of even type.
(a) If an odd number of coordinates of (P1, P2, ..., Pf−1) is of even type, then
P0 ∈ {t1, t3}. We have the following three subcases:

(α) Qf−1 =

(
0 β
γ δ

)
with β, γ nonconstant polynomials in X1, X2, , , .Xf−1,

linearly independent over Q̄p, and δ nonscalar. If P0 = t1, then Qf is as in
case (c), and by Lemma 5.15 (P1, P2, ..., Pf ) 6∈ C∗1 ∪C∗2 . If P0 = t3, then Qf is
as in case (a). By the inductive hypothesis (P1, P2, ..., Pf−1) ∈ C∗2 , and since
P0 = t3, (P1, P2, ..., Pf ) ∈ C∗2 .
(β) Qf−1 =

(
α β
γ 0

)
with β, γ nonconstant polynomials in X1, X2, , , .Xf−1,

linearly independent over Q̄p, and α nonscalar. If P0 = t1, then Qf is as in case
(b). By the inductive hypothesis (P1, P2, ..., Pf−1) ∈ C∗1 , and since P0 = t1,
(P1, P2, ..., Pf ) ∈ C∗1 . If P0 = t3, then Qf is as in case (c), and by Lemma 5.15
(P1, P2, ..., Pf ) 6∈ C∗1 ∪ C∗2 .
(γ) Qf−1 =

(
α β
γ δ

)
with β, γ nonconstant polynomials in X1, X2, , , .Xf−1,

linearly independent over Q̄p, αδ 6= 0, and Tr (Qf ) nonscalar. If P0 ∈ {t1, t3}
then Qf is as in case (c), and by Lemma 5.15 (P1, P2, ..., Pf ) 6∈ C∗1 ∪ C∗2 .
(b) If an even number of coordinates of (P1, P2, ..., Pf−1) is of even type, then
P0 ∈ {t2, t4}. We have the following three subcases:

(α) Qf−1 =

(
α β
0 δ

)
with β a nonzero polynomial in X1, X2, , , .Xf−1,

and α, δ nonzero scalars. If P0 = t2, then Qf is as in case (b). Since
(P1, P2, ..., Pf−1) ∈ C1 and P0 = t2, (P1, P2, ..., Pf ) ∈ C∗1 . If P0 = t4, then
Qf is as in case (c), and by Lemma 5.15 (P1, P2, ..., Pf ) 6∈ C∗1 ∪ C∗2 .
(β) Qf−1 =

(
α 0
γ δ

)
with γ a nonzero polynomial in X1, X2, , , .Xf−1, and

α, δ nonzero scalars. If P0 = t2, then Qf is as in case (c), and by Lemma
5.15 (P1, P2, ..., Pf ) 6∈ C∗1 ∪ C∗2 . If P0 = t4, then Qf is as in case (a). Since
(P1, P2, ..., Pf−1) ∈ C2 and P0 = t4, (P1, P2, ..., Pf ) ∈ C∗2 .
(γ) Qf−1 =

(
α β
γ δ

)
with β, γ nonconstant polynomials in X1, X2, , , .Xf ,

linearly independent over Q̄p, αγ 6= 0 and Tr (Qf) is nonscalar. Then
(P1, P2, ..., Pf−1) 6∈ C1 ∪ C2. If P0 ∈ {t2, t4}, then Qf is as in case (c), and
by Lemma 5.15 (P1, P2, ..., Pf ) 6∈ C∗1 ∪ C∗2 .
Case (ii). An even number of coordinates of (P1, P2, ..., Pf ) is of even type.
The rest of the lemma is proved by a case-by-case analysis similar to that of
Case (i).

Corollary 5.17. Tr (Qf) ∈ Q̄p if and only if (P1, P2, ..., Pf−1, P0) ∈ C1 ∪C2.

Remark 5.18. If (P1, P2, ..., Pf ) ∈ C1 ∪ C2, the filtered ϕ-modules D~i~k (~0)
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are weakly admissible and the corresponding crystalline representation is split-

reducible and ordinary (see §6.3). The filtered ϕ-modules D~i~k (~α) make sense

for any ~α ∈ OfE . One can check by induction that Tr
(
ϕf
)

= 1+p

f−1∑
i=0

ki
, therefore

whenever D~i~k (~α) is weakly admissible the corresponding crystalline represen-

tation is reducible (see Proposition 6.5). Since we have not constructed the
Wach modules which give rise to these filtered modules, weak admissibility is
not automatic and has to be checked.

We now turn our attention to condition (iv) of Lemma 4.4. By Proposition
5.1 the problematic cases are those with ℓ = k, all the weights ki equal and
Qf ∈ {E11, E22}. We have the following.

Lemma 5.19. If Q̄f = E11 then (P1, ..., Pf ) ∈ C1; (ii) If Q̄f = E22, then
(P1, ..., Pf ) ∈ C2.

Proof. By induction on f. First, we notice that

Pmod (p · Id, Xi · Id) =





E22 if P = t1,
E12 if P = t2,
E11 if P = t3,
E21 if P = t4.

Suppose that Q̄f = E11 and f = 2. Then P1 ∈ {t2, t3}. If P1 = t2 then
P0 = t4 and if P1 = t3 then P0 = t3. Suppose Q̄f = E11 and f > 2. Then
Q̄f−1 = E11 and Pf = t3 or Q̄f−1 = E12 and Pf = t4. In the first case
the inductive hypothesis implies that (P1, P2, ..., Pf−1) ∈ C1 and Pf = t3.
If an even number of coordinates of (P1, P2, ..., Pf−2) is of even type, then
Pf−1 = t3. In this case an even number of coordinates of (P1, P2, ..., Pf−1)
is of even type and Pf = t3, hence (P1, ..., Pf ) ∈ C1. If an odd number of
coordinates of (P1, P2, ..., Pf−2) is of even type, then Pf−1 = t4. In this case an
even number of coordinates of (P1, P2, ..., Pf−1) is of even type and Pf = t3,
hence (P1, ..., Pf ) ∈ C1. Now assume that Q̄f−1 = E12 and Pf = t4. This
implies that either Q̄f−2 = E12, Pf−1 = t4 and Pf = t4 which is absurd since
in this case Q̄f = 0, or Q̄f−2 = E11, Pf−1 = t2 and Pf = t4. If f = 3, then
P1 = t3, P2 = t2, P3 = t4 and the lemma holds. If f ≥ 4 and an even number
of coordinates (P1, P2, ..., Pf−3) is of even type, then Pf−2 = t3, Pf−1 = t2
and Pf = t4. Then an odd number of coordinates (P1, P2, ..., Pf−1) is of even
type and Pf = t4, hence (P1, ..., Pf ) ∈ C1. If an odd number of coordinates
(P1, P2, ..., Pf−3) is of even type, then Pf−2 = t4, Pf−1 = t2 and Pf = t4. Then
an odd number of coordinates (P1, P2, ..., Pf−1) is of even type and Pf = t4,
hence (P1, ..., Pf ) ∈ C1. Part (ii) is proved similarly.

Corollary 5.20. If (P1, P2, ..., Pf ) ∈ P and Tr (Qf ) 6∈ Q̄p, then the operator

H 7→ H −QfH(pfℓQ−1f ) : M̃2 → M̃2

is surjective.
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5.2 Corresponding families of rank two filtered ϕ-modules

Let Π
~i(S) = (Π1(X1),Π2(X2), ...,Πf−1(Xf−1),Π0(X0)) with ~i ∈ {1, 2, 3, 4}f

and matrices Πi(Xi) as in Definition 5.4. The definition of the Πi and Pi =
Πimod π depends on the choice of the zi in Proposition 5.9 and therefore on
ℓ. For the rest of the paper we assume that (P1, P2, ..., P0) 6∈ C1 ∪ C2 and we
choose ℓ = k = max{k0, k1, ..., kf−1}.
Proposition 5.21. For any γ ∈ ΓK , there exists a unique matrix Gγ(S) =
Gγ(S) ∈MS2 such that:

(i) Gγ(S) ≡ −→Idmod ~π;

(ii) Π
~i(S)ϕ(Gγ(S)) = Gγ(S)γ(Π

~i(S)).

Proof. Conditions (1) and (2) of Lemma 4.4 are satisfied by Proposition 5.9.
Condition (3) of Lemma 4.4 is satisfied by the assumption that (P1, P2, ..., P0) 6∈
C1 ∪ C2 and Corollaries 5.3 and 5.17. Finally, condition (4) of Lemma 4.4 is
satisfied by Proposition 5.1 and Lemma 5.19. The proposition follows from
Lemma 4.4.

For any ~a ∈ mfE we equip the module N~i~k(~a) =
(
OE [[π]]|τ |

)
η1
⊕(
OE [[π]]|τ |

)
η2

with semilinear ϕ and ΓK-actions defined as in Proposition 4.6. For any
~a ∈ mfE we consider the matrices of GL2

(
E|τ |

)
obtained from the matrices

P
~i(~a) = (P1(X1), P2(X2), ..., Pf−1(Xf−1), P0(X0)) by substituting Xj = aj in

Pj(Xj). We define families of filtered ϕ-modules D~i~k (~a) =
(
E|τ |

)
η1
⊕(

E|τ |
)
η2

with Frobenius endomorphisms given by (ϕ(η1), ϕ(η2)) = (η1, η2)P
~i(~a), and

filtrations given by

Filj(D~i~k (~a)) =





E|τ |η1
⊕
E|τ |η2 if j ≤ 0,

E|τI0 | (~xη1 + ~yη2) if 1 ≤ j ≤ w0,

E|τI1 | (~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,
· · · · · ·

E|τIt−1
| (~xη1 + ~yη2) if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1,
(5.10)

where ~x = (x0, x1, ..., xf−1) and ~y = (y0, y1, ..., yf−1) with

(xi, yi) =

{
(1,−αi) if Pi has type 1 or 2,
(−αi, 1) if Pi has type 3 or 4,

(5.11)

and αi = aizi(0) for all i. Since ℓ = k, Remark 5.12 implies that αi ∈ pmmE for
all i, where

m :=

{ ⌊k−1p−1 ⌋ if k ≥ p and ki 6= p for some i,

0 if k ≤ p− 1 or ki = p for all i.
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Proposition 5.22. For any ~a ∈ mfE the filtered ϕ-modules (D~i~k (~a) , ϕ) defined

above are weakly admissible and D~i~k (~a) ≃ E|τ |
⊗
O|τ|
E

(N~i~k(~a)/πN~i~k(~a)) as filtered

ϕ-modules over E|τ |.

Proof. By Theorem 2.4, ~xη1 + ~yη2 ∈ Filj(N~i~k(~a)) if and only if ϕ(~x)ϕ(η1)+

ϕ(~y)ϕ(η2) ∈ qjN~i~k(~a) or equivalently

eiϕ(~x)ϕ(η1) + eiϕ(~y)ϕ(η2) ∈ qjeiN~i~k(~a) for all i ∈ I0, (5.12)

with the idempotents ei as in §1.1. We fix some i ∈ I0 and calculate in the case

where Πi is of type 2. Then Πi(ai) =

(
0 ciq

ki

1 aiϕ(zi)

)
and equation 5.12 is

equivalent to

{
qj | ϕ(yi)q

ki ,
qj | ϕ(xi + yiaizi).

We use that qj | ϕ(x) if and only if πj | x
for any x ∈ OE [[π]]. If j ≥ 1 + ki, then xi, yi ≡ 0mod π. If 1 ≤ j ≤ ki, the
system above is equivalent to πj | xi + yiaizi. Since aizi ≡ αimod π,

ei~xη1 +ei~yη2 +πN~i~k(~a) =

{
αiȳieiη1 + ȳieiη2 + πN~i~k(~a) if 1 ≤ j ≤ ki,

0 if j ≥ ki

where ȳi = yimod π can be any element of OE . Since Fil0(N~i~k(~a)/πN~i~k(~a)) =

(O|τ |E )η1
⊕

(O|τ |E )η2, we get

eiFilj(N~i~k(~a)/πN~i~k(~a)) =





ei(O|τ |E )η1
⊕
ei(O|τ |E )η2 if j ≤ 0,

ei(O|τ |E )(~xiη1 + ~yiη2) if 1 ≤ j ≤ ki,
0 if j ≥ 1 + ki,

with ei~x
i = (0, ..., xi, ..., 0), ei~y

i = (0, ..., yi, ..., 0) and (xi, yi) = (−αi, 1). Cal-
culating for the other choices of Πi(ai) we see that for all i ∈ I0, (xi, yi) is as in

formula 5.10. Since Filj(N~i~k(~a)/πN~i~k(~a)) =
f−1⊕
i=0

eiFilj(N~i~k(~a)/πN~i~k(~a)), arguing

as in the proof of Proposition 3.4 we get

Filj(N~i~k(~a)/πN~i~k(~a)) =





(O|τ |E )η1
⊕

(O|τ |E )η2 if j ≤ 0,

(O|τ |E )fI0(~xη1 + ~yη2) if 1 ≤ j ≤ w0,

(O|τ |E )fI1(~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,
· · · · · ·

(O|τ |E )fIt−1 (~xη1 + ~yη2) if 1 + wt−2 ≤ j ≤ wt−1,
0 if j ≥ 1 + wt−1,

with ~x = (x0, x1, ..., xf−1) and ~y = (y0, y1, ..., yf−1) and (xi, yi) as in formula

5.10. The isomorphism D~i~k (~a) ≃ E|τ | ⊗
O|τ|
E

(N~i~k(~a)/πN~i~k(~a)) is now obvious.

The crystalline representation corresponding to D~i~k (~a) is denoted by V
~i
~k,~a
.
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6 Reductions of crystalline representations

In this section we explicitly compute the semisimplified modulo p reductions of
the families of crystalline representations constructed in §5. We will need the
following lemma.

Lemma 6.1. Let F be any field, G any group and H any finite index subgroup.
Let V be an irreducible finite-dimensional FG-module whose restriction to H
contains some FH-submodule W with dimF V = [G : H ] dimF W. Then V ≃
IndGH (W ) .

Proof. By Frobenius reciprocity there exists some nonzero α ∈
HomFG(IndGH (W ) , V ). It is an isomorphism because V is irreducible and
IndGH (W ) and V have the same dimension over F.

We start with the reductions of crystalline characters and reducible two-
dimensional crystalline representations of GK . The embeddings τi of Kf into

E fixed in the introduction induce embeddings of residue fields kKf
τ̄i→ kE .

The level f fundamental characters ωf,τ̄i of IKf are defined by composing the

embeddings τ̄i with the homomorphism IKf → k×Kf obtained from local class
field theory, with uniformizers corresponding to geometric Frobenius elements.
We recall the following lemma which follows immediately from [BDJ, Lemma
3.8], where the χi are as in §3.

Lemma 6.2. (i) (χ̄i)|IKf = ω−1f,τ̄i+1
for i = 0, 1, ..., f−1; (ii) ωf,τ̄i = ωp

i

f,τ̄0
for all

i; (iii) ω1+pf

2f,τ̄0
= ωf,τ̄0 ; (iv) ω =

∏
i∈I0

ωf,τ̄i , where ω is the cyclotomic character

modulo mE.

Our next goal is to compute the determinant of a two-dimensional crystalline
representations in terms of its labeled Hodge-Tate weights. To do this, we will
need some facts about weakly admissible filtered ϕ-modules which we briefly
recall. For the missing details we refer to [Dou10]. We remark that similar
results for odd p have been obtained by Imai in [Ima09].

Proposition 6.3. Let (D, ϕ) be a rank two F-semisimple, nonscalar filtered
ϕ-module over E|τ | with labeled Hodge-Tate weights {0,−ki}τi. After enlarging
E if necessary, there exists an ordered basis η of D over E|τ | with respect to

which the matrix of Frobenius takes the form Matη(ϕ) = diag(~α,~δ) for some

vectors ~α,~δ ∈ (E×)|τ | with Nmϕ(~α) 6= Nmϕ(~δ). The filtration in the same basis
has the form of formula 5.10 for some vectors ~x, ~y ∈ E|τ | with (xi, yi) 6= (0, 0)
for all i ∈ I0. We call such a basis η a standard basis of (D, ϕ). The Frobenius-

fixed submodules are 0, D, D1 :=
(
E|τ |

)
η1 and D2 :=

(
E|τ |

)
η2. The module D
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is weakly admissible if and only if

(1) vp(Nmϕ(~α)Nmϕ(~δ)) =
∑

i∈I0
ki;

(2) vp(Nmϕ(~α)) ≥
∑

{i∈I0: yi=0}
ki;

(3) vp(Nmϕ(~δ)) ≥
∑

{i∈I0: xi=0}
ki.

Assuming that D is weakly admissible,

(i) The filtered ϕ-module D is irreducible if and only if both the inequalities
(2) and (3) above are strict;

(ii) The filtered ϕ-module D is split-reducible if and only if both inequalities
(2) and (3) are equalities, or equivalently I+0 ∩ J~x ∩ J~y = ∅. In this case,
the only nontrivial weakly admissible submodules are Di, i = 1, 2, and we
have D = D1

⊕
D2;

(iii) In any other case the filtered ϕ-module D is reducible, non-split.

In the Proposition above, if vp(Nmϕ(~α)) =
∑

{i∈I0 : yi=0}
ki, the only nontriv-

ial weakly admissible submodule is (D1, ϕ). If vp(Nmϕ(~δ)) =
∑

{i∈I0: xi=0}
ki,

the only nontrivial weakly admissible submodule is (D2, ϕ). If (D, ϕ) is not
F-semisimple, after extending E if necessary, there exists an ordered basis
η = (η1, η2) of D over E|τ | with respect to which the matrix of Frobenius takes
the form

Matη(ϕ) =

(
~α ~0
~γ ~α

)

for some vectors ~α ∈ (E×)|τ | and ~γ ∈ E (see [Dou10, §2.1]). The filtration
in this basis has the shape of formula 5.10. The filtered ϕ-module (D, ϕ) is
weakly admissible if any only if 2 · vp(Nmϕ(~α)) =

∑
i∈I0

ki and vp(Nmϕ(~α)) ≥
∑

{i∈I0:xi=0}
ki. The corresponding crystalline representation is irreducible if and

only if the latter inequality is strict and reducible, non-split otherwise. In this
case, the only ϕ-stable weakly admissible submodule is (D2, ϕ) (see also [Dou10,
§ 5.4]). If (D, ϕ) is F-scalar, there exists an ordered basis η = (η1, η2) of D over

E|τ | with respect to which Matη(ϕ) = diag
(
α ·~1, α ·~1

)
for some α ∈ E× and

the filtration is as in formula 5.10. The only ϕ-stable submodules are the Di,
i = 1, 2 and D(c) =

(
E|τ |

)
(η1 + c · ~1 · η2) for any c ∈ E× (cf. [Dou10, §5.3]).

To summarize, we have the following.
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Proposition 6.4. Let (D, ϕ) be a reducible weakly admissible rank two filtered
ϕ-module over E|τ | with labeled Hodge-Tate weights {0,−ki}τi. After enlarging
E if necessary, there exists an ordered basis η = (η1, η2) of D over E|τ | with

respect to which the matrix of Frobenius takes the form Matη(ϕ) =

(
~α ~0

∗ ~δ

)

and is such that D2 =
(
E|τ |

)
η2 is a ϕ-stable, weakly admissible submodule.

The following propositions which will be used in §§ 6.2 and 6.3.

Proposition 6.5. A rank two weakly admissible effective filtered ϕ-module
(D, ϕ) with labeled Hodge-Tate weights {−ki, 0}τi and vp

(
Tr(ϕf )

)
= 0 is re-

ducible.

Proof. If D is F-semisimple and nonscalar, see [Dou10, Corollary 7.2]. Suppose
that this is not the case. Since we assume that ki > 0 for at least one i, for any
F-scalar or non-F-semisimple filtered ϕ-module with labeled weights {−ki, 0}τi,
vp

(
Tr(ϕf )

)
6= 0. Indeed, in this case there exists an ordered basis η of D over

E|τ | with respect to which the matrix of Frobenius takes the form

Matη(ϕ) =

(
~α ~0
~γ ~α

)

for some vectors ~α ∈ (E×)|τ | and ~γ ∈ E (see [Dou10, §2.1]). Weak admissibility
implies that 2 · vp(Nmϕ(~α)) =

∑
i∈I0

ki > 0 (see [Dou10, Propositions 4.3 and

4.4]), therefore vp

(
Tr(ϕf )

)
= vp (2 ·Nmϕ(~α)) > 0.

The following lemma allows us to compute determinants of two-dimensional
crystalline representations in terms of their labeled Hodge-Tate weights.

Lemma 6.6. If (D, ϕ) is a rank two weakly admissible filtered ϕ-module
over K with E-coefficients and labeled Hodge-Tate weights {0,−ki}τi, then
(∧2E⊗KD,∧2E⊗Kϕ) is weakly admissible with labeled Hodge-Tate weights
{−ki}τi .
Proof. Let η = (η1, η2) be a standard basis of (D, ϕ) such that Matη(ϕ) is as

in Proposition 6.4 and FiljD as in Formula 5.10. Clearly (∧2ϕ)(η1 ∧ η2) =

~α ·~δ(η1 ∧η2). Since Filj(D∧D) =
∑

j1+j2=j

(Filj1D∧E⊗K Filj2D) and J~x∪J~y = I0,

a simple computation yields

Filj(D ∧ D) =





E|τI0 |(η1 ∧ η2) if j ≤ w0,
E|τI1 |(η1 ∧ η2) if 1 + w0 ≤ j ≤ w1,

· · · · · ·
E|τIt−1

|(η1 ∧ η2) if 1 + wt−2 ≤ j ≤ wt−1,
0 if j ≥ 1 + wt−1,

from which the statement about the labeled Hodge-Tate weights follows imme-
diately. Weak admissibility is clear.

Documenta Mathematica 15 (2010) 873–938



Reductions of Families of Crystalline Representations 917

Corollary 6.7. If V is the crystalline representation corresponding to D, then

det V ≃ η · χk1e0 · χk2e1 · · · · · χ
kf−1
ef−2 · χk0ef−1

and (detV )|IK ≃ ωαf,τ̄0 ,

where η is an unramified character of GK and α = −
f−1∑
i=0

piki.

Proof. By Proposition 3.4 and Lemma 6.6 the crystalline character detV ⊗(
χk1e0 · χk2e1 · · · · · χ

kf−1
ef−2 · χk0ef−1

)−1
has labeled Hodge-Tate weights {0}τi. If the

corresponding filtered ϕ-module has Frobenius endomorphism ϕ(η) = ~a·η, then
by Proposition 3.5 Nmϕ(~a) = c ·~1 for some c ∈ E× with vp(c) = 0. Lemma 3.7

implies that detV ⊗
(
χk1e0 · χk2e1 · · · · · χ

kf−1
ef−2 · χk0ef−1

)−1
is the unramified char-

acter of GK which maps FrobK to c. The rest of the corollary follows from
Lemma 6.2.

We recall the following well-known proposition in which the fieldK has absolute
inertia degree f and is not assumed to be unramified over Qp.

Proposition 6.8. [Bre07, Prop. 2.7] Let ρ̄ : GK → GL2(F̄p) be a continuous
representation. Then

ρ̄|IK ≃
(
ωm2f ∗

0 ωmp
f

2f

)

for some integer m. The representation ρ̄ is irreducible if and only 1 + pf ∤ m,
and in this case ∗ = 0.

Corollary 6.9. Let χ be a crystalline character of GK2f
with labeled Hodge-

Tate weights {−ki}τi , where the ki are arbitrary integers for all i = 0, 1, ..., 2f−
1, and let V = Ind

Kf
K2f

(χ) . The residual representation V is irreducible if and

only if 1 + pf ∤
2f−1∑
i=0

piki.

Proof. Follows immediately from Lemma 6.2 and Proposition 6.8.

6.1 Reductions of reducible two-dimensional crystalline repre-
sentations

In this section we compute the semisimplified modulo p reduction of any re-
ducible two-dimensional crystalline representation of GKf .

Lemma 6.10. Let k0, k1, ..., kf−1 be arbitrary integers and let

FiljD =





E|τI0 |η if j ≤ w0,

E|τI1 |η if 1 + w0 ≤ j ≤ w1,
· · · · · ·

E|τIt−1
|η if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1.

(6.1)
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For each i ∈ I0,

eiFiljD =

{
eiE
|τI0 |η if j ≤ ki,
0 if r ≥ 1 + ki.

Proof. Let ki = wr for some r ∈ {1, ..., t− 1}. Since wr > wr−1 we have i ∈ Ir
from the definition of Ir . Similarly, since ki = wr we have i 6∈ Ir+1. The same is
clear for r = 0. Hence eifIr = ei and eifIr+1 = 0 for all r. Multiplying formula
6.1 by ei, we get

eiFiljD =

{
eiE
|τI0 |η if j ≤ wr,
0 if r ≥ 1 + wr .

Let D be as in Proposition 6.4 and let Matη(ϕ) =

(
~α ~0

∗ ~δ

)
. The filtration is

as in formula 5.10 for some vectors ~x, ~y ∈ E|τ |. By Proposition 2.10 in [Dou10]
(or by a direct computation),

Filj(D2) = D2 ∩ FiljD =





D2 if j ≤ 0,

E|τI0,~x |η2 if 1 ≤ j ≤ w0,
· · · · · ·

E|τIt−1,~x
|η2 if 1 + wt−2 ≤ j ≤ wt−1,

0 if j ≥ 1 + wt−1,

where Ir,~x = Ir ∩ J ′~x = {i ∈ Ir : xi = 0}. Let ~δ = (δ0, δ1, ..., δf−1). By Lemma
6.10,

eiFilj(D2) =





eiE
|τ |η2 if j ≤ 0

eiE
|τ |fJ′

~x
η2 if 1 ≤ j ≤ ki,

0 if j ≥ 1 + ki,

therefore the labeled Hodge-Tate weight of D2 with respect to the embedding
τi is

mi =

{
0 if xi 6= 0 ,
ki if xi = 0,

and (D2, ϕ2) corresponds to the effective crystalline character χc,~0 · χm0
ef−1

·

χm1
e0 · · · · ·χ

mf−1
ef−2 , where c =

(
∏
i∈I0

δi

)
· p
− ∑
i∈I0

ki

. The following theorem follows

immediately from Corollary 6.7.

Theorem 6.11. (i)

V ≃
(
ψ1 ∗

0 ψ2

)
,

where ψ1 = η1 · χm0
ef−1
· χm1

e0 · · · · · χ
mf−1
ef−2 and ψ2 = η2 · χk1−m1

e0 · χk2−m2
e1 ·

· · · · χkf−1−mf−1
ef−2 · χk0−m0

ef−1
, where ηi are unramified characters of GKf .
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(ii) (
V |IK

)s.s.
= ωα1

f,τ̄0
⊕ ωα2

f,τ̄0
,

where α1 = −
f−1∑
i=0

mip
i and α2 =

f−1∑
i=0

(mi − ki) pi.

Notice that for an ordered basis is in Proposition 6.4,
(
V |IKf

)s.s.
only depends

on the filtration with respect to that basis.

6.2 Proof of theorem 1.5

Let {ℓi, ℓi+f} = {0, ki} for i = 0, 1, ..., f − 1 and assume that at least one ki is
strictly positive. In this section we construct infinite families of crystalline rep-
resentations of Hodge-Tate type {0,−ki}τi which contain the irreducible rep-

resentations V~ℓ = Ind
GKf
GK2f

(
χℓ1e0 · χℓ2e1 · · · · · χ

ℓ2f−1
e2f−2 · χℓ0e2f−1

)
of Proposition 3.11,

and have the same mod p reductions with V~ℓ. We choose f -tuples of matrices
(Π1,Π2, ...,Πf ) (with Πf = Π0), where the types of the matrices Πi (recall
Definition 5.4) are chosen as follows:
(1) If ℓ1 = 0, Π1 ∈ {t2, t3};
(2) If ℓ1 = k1 > 0, Π1 ∈ {t1, t4}.
For i = 2, 3, ..., f − 1, we choose the type of the matrix Πi as follows:
(1) If ℓi = 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t2, t3};

• If an odd number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t1, t4}.

(2) If ℓi = ki > 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t1, t4};

• If an odd number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t2, t3}.

Finally, we choose the type of the matrix Π0 as follows:
(1) If ℓ0 = 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t4;

• If an odd number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t3.

(2) If ℓ0 = k0 > 0, then:
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• If an even number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t2;

• If an odd number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t1.

Notice that from the choice of Π0, an odd number of coordinates of
(Π1,Π2, ...,Πf ) is of even type. Let ~i = (i1, i2, ..., i0) ∈ {1, 2, 3, 4}f be the
type-vector attached to (Π1,Π2, ...,Πf ). For the matrices Πi, we assume that
ci = 1 for all i. Let Pi = Πimod π for each i and notice that from the choice
of the matrices Πi it follows that (P1, P2, ..., Pf ) 6∈ C1 ∪ C2. The type of Pi
is defined to be the type of Πi. For any ~a ∈ mfE we consider the families of

crystalline E-representations V
~i
~k

(~a) of GKf with labeled Hodge-Tate weights

{0,−ki}τi constructed in §5.2. We prove the following.

Proposition 6.12. (i) V
~i
~k

(~0) = Ind
Kf
K2f

(
χℓ1e0 · χℓ2e1 · · · · · χ

ℓ2f−1
e2f−2 · χℓ0e2f−1

)
and

V
~i
~k

(~0) is irreducible;

(ii) For any ~a ∈ mfE , V
~i
~k (~a) = V

~i
~k(~0);

(iii) For any ~a ∈ mfE,

(
V
~i
~k (~a)|IKf

)s.s.
= ωβ2f,τ̄0

⊕
ωp

fβ
2f,τ̄0

, where β =

−
2f−1∑
i=0

piℓi;

(iv) V
~i
~k (~a) is irreducible if and only if 1 + pf ∤ β;

(v) Any irreducible member of the family
{
V
~i
~k

(~a) , ~a ∈ mfE

}
, other than

V
~i
~k

(~0), is non-induced.

Proof. We restrict V
~i
~k

(~0) to GK2f
. By the construction of the representa-

tion V
~i
~k

(~0) in §5.1, there exists some GKf -stable lattice
(

T
~i
~k
(~0)
)
GKf

in-

side V
~i
~k

(~0) whose Wach module has ϕ-action defined by (ϕ (η1) , ϕ (η2)) =

(η1, η2) Π(~0), where Π(~0) = (Π1 (0) ,Π2 (0) , ...,Πf−1 (0) ,Π0 (0)) . By Propo-

sition 2.6, the Wach module of the GK2f
-stable lattice

(
T
~i
~k
(~0)
)
|GK2f

in-

side
(
V
~i
~k

(~0)
)
|GK2f

is defined by (ϕ (η1) , ϕ (η2)) = (η1, η2) Π (0)
⊗2
, therefore

the filtered ϕ-module corresponding to
(
V
~i
~k,~0

)
|GK2f

has Frobenius endomor-

phism (ϕ (η1) , ϕ (η2)) = (η1, η2)P (~0)⊗2. By Corollary 2.7 the restricted rep-

resentation
(
V
~i
~k

(~0)
)
|GK2f

has labeled Hodge-Tate weights ({0,−ki})τi , i =
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0, 1, ..., 2f − 1, with ki+f = ki for i = 0, 1, ..., f − 1, and filtration as in formula
5.10 for some vectors ~x, ~y, with the sets Ij being defined with respect to the

2f weights above. We prove that
(
V
~i
~k

(~0)
)
|GK2f

is reducible and determine its

irreducible constituents. First, we change the basis to diagonalize the matrix
of Frobenius. We see that

Pi (0) =

{
R
(
β̄i, γ̄i

)
, with {β̄i, γ̄i} = {1, pki} if Pi has type 2 or 4,

diag
(
ᾱi, δ̄i

)
, with {ᾱi, δ̄i} = {1, pki} if Pi has type 1 or 3,

where R
(
β̄i, γ̄i

)
is the 2 × 2 matrix with β̄i in the (1, 2) entry, γ̄i in the (2, 1)

entry, and zero on the diagonal. Let Q0 = Id,

Q1 =

{
Id if P1 ∈ {t1, t3},
R if P1 ∈ {t2, t4},

where R := R (1, 1) ,

Qi =





Id if Qi−1 = Id and Pi ∈ {t1, t3},
R if Qi−1 = Id and Pi ∈ {t2, t4},
R if Qi−1 = R and Pi ∈ {t1, t3},
Id if Qi−1 = R and Pi ∈ {t2, t4}

(6.2)

for i = 2, 3, ..., 2f − 1. Let Q = (Q0, Q1, ..., Q2f−1) . By the definition of the

matrices Qi, the matrix Q · P (~0)⊗2 · ϕ
(
Q−1

)
is diagonal. By induction, Q0 =

Id and

Qi =





Id if an even number of coordinates
of (P1, P2, ..., Pi) is of even type,

R if an odd number of coordinates
of (P1, P2, ..., Pi) is of even type,

(6.3)

for i = 1, 2, ..., 2f − 1, where Pi+f = Pi for i = 0, 1, ..., f − 1. We claim that
for each i = 0, 1, ..., f − 1, Qi = Id if and only if Qi+f = R. Indeed, for i = 0,
Q0 = Id. Since an odd number of coordinates of (P1, P2, ..., Pf ) is of even type,
Qf = R. Let qrij be the r-th coordinate of the (i, j)-entry ~qij of Q for each
i, j ∈ {1, 2} and r ∈ {0, 1, ..., 2f − 1}. Assume that i ∈ {1, 2, ..., f − 1}. From
the definition of the matrices Qi we see that

qi11 =





1 if an even number of coordinates
of (P1, P2, ..., Pi) is of even type,

0 if an odd number of coordinates
of (P1, P2, ..., Pi) is of even type.

(6.4)
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For any i = 0, 1, ..., f − 1 we have

qi+f11 =





1 if an even number of coordinates of
(P1, P2, ..., Pf , ...Pi+f ) is of even type,

0 if an odd number of coordinates of
(P1, P2, ..., Pf , ...Pi+f ) is of even type.

(6.5)

Since an odd number of coordinates of (P1, P2, ..., Pf ) is of even type and Pi =
Pi+f for all i, this is equivalent to

qi+f11 =





1 if an odd number of coordinates
of (P1, P2, ..., Pi) is of even type,

0 if an even number of coordinates
of (P1, P2, ..., Pi) is of even type,

(6.6)

which implies that qi+f11 = 1−qi11 for all i = 0, 1, ..., f−1. Similarly qr+fij = 1−qrij
for all entries ij. Consider the ordered basis ζ = (ζ1, ζ2) defined by (ζ1, ζ2) :=

(η1, η2)Q−1. In the ordered basis ζ the filtration is as in formula 5.10 with the
vector ~xη1 + ~yη2 replaced by ~x · (~q11 · ζ1 + ~q12 · ζ2) + ~y · (~q12 · ζ1 + ~q22 · ζ2) . Let
~z = ~x · ~q11 + ~y · ~q12 and ~w = ~x · ~q12 + ~y · ~q22. From the definition of the matrices
Qi, the matrix of Frobenius in this new basis is the diagonal matrix

diag
(
~λ, ~µ

)
:=

(
Q0 · P1 ·Q−11 , ..., Qf−1 · Pf ·Q−1f , Qf · Pf+1 ·Q−1f+1, ..., Q2f−1 · P0 ·Q−10

)
.

We prove that Nmϕ(~λ) = Nmϕ (~µ) = p

f−1∑
i=0

ki · ~1. First we see that λiµi = pki

for all i. Since Qi = Id if and only if Qi+f = R, a case by case analysis for
the choices of Qi and Qi+1, bearing in mind that Pi+f = Pi, implies that
Qi · Pi+1 · Q−1i+1 = diag (λi+1, µi+1) if and only if Qi+f · Pi+f+1 · Q−1i+f+1 =
diag (µi+1, λi+1) . Therefore,

2f−1∏

i=0

(
Qi · Pi+1 ·Q−1i+1

)

=

f−1∏

i=0

(
Qi · Pi+1 ·Q−1i+1

)
·
f−1∏

i=0

(
Qi+f · Pi ·Q−1i+f+1

)

=

f−1∏

i=0

diag (λi+1, µi+1) ·
f−1∏

i=0

diag (µi+1, λi+1) = p

f−1∑
i=0

ki · Id.

Next we notice that ~y = ~1 − ~x and ~q12 = ~1 − ~q11, so ~z = ~x · ~q11 +
(
~1− ~x

)
·

(
~1− ~q11

)
= ~1 + 2 · ~x · ~q11 − ~q11 − ~x. Since xi and qi11 ∈ {0, 1} for all i, zi = 0 if
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and only if qi11 = 1 and xi = 0, or qi11 = 0 and xi = 1. Recall from formula 5.11
that xi = 0 if and only if Pi ∈ {t3, t4} and xi = 1 if and only if Pi ∈ {t1, t2}.
This combined with the definition of the matrices Qi gives

zi = 0⇔





i = 0 and P0 ∈ {t3, t4}, or

i ≥ 1, Pi ∈ {t3, t4} and an even number of coordinates
of (P1, P2, ..., Pi) is of even type, or

i ≥ 1, Pi ∈ {t1, t2} and an odd number of coordinates
of (P1, P2, ..., Pi) is of even type.

(6.7)

Similarly,

zi = 1⇔





i = 0 and P0 ∈ {t1, t2}, or

i ≥ 1, Pi ∈ {t1, t2} and an even number of coordinates
of (P1, P2, ..., Pi) is of even type,

i ≥ 1, Pi ∈ {t3, t4} and an odd number of coordinates
of (P1, P2, ..., Pi) is of even type.

(6.8)

We claim that zi+f = 1−zi for all i = 0, 1, ..., f−1. Indeed, zi+f = 1+2 ·xi+f ·
qi+f11 − qi+f11 − xi+f . Since Pi = Pi+f , we have xi = xi+f for all i, and since

qi+f11 = 1− qf11 we get zi+f = 1− zi. Since zi ∈ {0, 1} for all i,

2f−1∑

i=0
zi=0

ki =

f−1∑

i=0
zi=0

ki +

f−1∑

i=0
zi+f=0

ki =

f−1∑

i=0

ki.

Since vp (Nmϕ (~µ)) =
f−1∑
i=0

ki =
2f−1∑
i=0
zi=0

ki, Proposition 6.31 implies that the rep-

resentation
(
V
~i
~k

(~0)
)
|GK2f

is reducible. If D2 :=
(
E|τK2f

|
)
ζ2, by [Dou10, proof

of Prop. 4.3] (or by a direct computation),

FiljD2 =





D2 if j ≤ 0,(
E|τK2f

|fIi,~z

)
ζ2 if 1 + wi−1 ≤ j ≤ wi, i = 0, 1, ..., t− 1,

0 if j ≥ 1 + wt−1,
(6.9)

where Ii,~z = Ii ∩ {j ∈ {0, 1, ..., 2f − 1} : zj = 0}. Let i ∈ {0, 1, ..., 2f − 1}.
1F-semisimplicity is not assumed here, but the part of Proposition 6.3 used still holds.
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Arguing as in Lemma 6.10 we see that

eiFiljD2 =





eiE
|τK2f

|ζ2 if j ≤ 0,

ei




2f−1∑
r=0
zr=0

ei


E|τK2f

|ζ2 if 1 ≤ j ≤ ki,

0 if j ≥ 1 + ki.

Hence

eiFiljD2 =

{
eiE
|τK2f

|ζ2 if j ≤ 0,
0 if j ≥ 1

if zi = 1 and

eiFiljD2 =

{
eiE
|τK2f

|ζ2 if j ≤ ki,
0 if j ≥ 1 + ki

if zi = 0. The labeled Hodge-Tate weight of D2 with respect to the embedding
τi of K2f into E is 0 if zi = 1 and −ki if zi = 0. Next we prove that

zi =

{
0 if ℓi = 0,
1 if ℓi = ki > 0

for i = 0, 1, ..., f − 1, and

zi+f =

{
1 if ℓi = 0,
0 if ℓi = ki > 0.

Since zi+f = 1 − zi for all i = 0, 1, ..., f − 1, it suffices to prove the first
formula. Suppose that ℓ1 = 0. Then P1 ∈ {t2, t3} and by formula 6.7, z1 = 0.
If ℓ1 = k1 > 0, then P1 ∈ {t1, t4} and formula 6.7 implies that z1 = 1. Let
i ∈ {1, 2, ..., f − 2} and assume that ℓi = 0. If an even number of coordinates
of (P1, P2, ..., Pi−1) is of even type, then Pi ∈ {t2, t3} and formula 6.7 implies
zi = 0. Arguing similarly we see that if ℓi = ki > 0, formula 6.8 implies zi = 1.
Finally, assume that i = f and ℓf = 0. If an even number of coordinates of
(P1, P2, ..., Pf−1) is of even type, then P0 = Pf = t4 and formula 6.7 implies
that z0 = zf = 0. We finish the proof by verifying similarly the remaining cases.
By the formulas above, the labeled Hodge-Tate weight of D2 with respect to
the embedding τi is {

−ki if ℓi = 0,
0 if ℓi = ki > 0

for i = 0, 1, ..., f − 1 and
{
−ki if ℓi = ki > 0,

0 if ℓi = 0

for i = f, f + 1, ..., 2f − 1. Therefore the labeled Hodge-Tate weight of D2 with
respect to the embedding τi is

{
− (ki − ℓi) if i = 0, 1, ..., f − 1
−ℓi if i = f, f + 1, ..., 2f − 1.
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Since {ℓi, ℓi+f} = {0, ki} for all i = 0, 1, ..., f − 1, the labeled Hodge-
Tate weights of D2 are (−ℓ0,−ℓ1, ...,−ℓf−1,−ℓf ,−ℓf+1, ...,−ℓ2f−1) . Since

Nmϕ (~µ) = p

f−1∑
i=0

ki · ~1, Proposition 3.5 implies that the crystalline character

corresponding to D2 is χℓ1e0 · χℓ2e1 · · · · · χ
ℓ2f−1
e2f−2 · χℓ0e2f−1

. Suppose that V
~i
~k

(~0) is re-

ducible. Then there exists some irreducible constituent of V
~i
~k

(~0) whose restric-

tion to GK2f
is χℓ1e0 ·χℓ2e1 ·· · ··χ

ℓ2f−1
e2f−2 ·χℓ0e2f−1

. Since the labeled weights of the latter

character are (−ℓ0,−ℓ1, ...,−ℓf−1,−ℓf , ...,−ℓ2f−1) , Corollary 2.7 implies that
ℓi = ℓi+f for all i = 0, 1, ..., f−1. Since {ℓi, ℓi+f} = {0, ki} for i = 0, 1, ..., f−1,

and since some labeled weight is strictly positive this is absurd. Hence V
~i
~k

(~0)

is irreducible and its restriction to GK2f
contains χℓ1e0 · χℓ2e1 · · · · · χ

ℓ2f−1
e2f−2 · χℓ0e2f−1

as an irreducible constituent. By Frobenius reciprocity,

V
~i
~k

(~0) = Ind
Kf
K2f

(
χℓ1e0 · χℓ2e1 · · · · · χ

ℓ2f−1
e2f−2 · χℓ0e2f−1

)
.

This finishes the proof of part (i). Part (ii) follows from Theorem 4.7
and parts (iii) and (4) follow from Corollary 6.9. For part (iv), no-

tice that any irreducible induced member of V
~i
~k

(~a) has the form ηc ·
Ind

Kf
K2f

(
χ
ℓ′1
e0 · χℓ

′
2
e1 · · · · · χ

ℓ′2f−1
e2f−2 · χℓ

′
0
e2f−1

)
for some unramified character ηc and

some nonnegative integers with {ℓ′i, ℓ′i+f} = {0, ki} for all i (see Proposi-

tion 3.11). All the members of V
~i
~k

(~a) have determinant (−1)
t
p

f−1∑
i=0

ki
, where

t is the number of even coordinates of ~i. This equals the determinant of

Ind
Kf
K2f

(
χ
ℓ′1
e0 · χℓ

′
2
e1 · · · · · χ

ℓ′2f−1
e2f−2 · χℓ

′
0
e2f−1

)
and forces the unramified character ηc

to be trivial. Hence the only irreducible induced member of our family is

V
~i
~k

(~0).

Remark 6.13. Let R be as in the proof of Proposition 6.12. If A is a set of
2×2 matrices, let RA := {R ·A : A ∈ A} and AR := {A ·R : A ∈ A}. We write
{ti, tj} for a set which contains matrices of type ti and tj. Then R{t1, t2} =
{t1, t2}, R{t3, t4} = {t3, t4}, {t1, t2}R = {t3, t4} and {t3, t4}R = {t1, t2}. In
the definition of the matrices Pi we may always assume that Pi ∈ {t1, t2} for
all i = 1, 2, ...f − 1. Indeed, let Q0 = R, and for i = 1, 2, ..., f − 1 let

Qi =

{
Id if Pi ∈ {t1, t2},
R if Pi ∈ {t3, t4}.

After changing the basis by the matrix Q = (Q0, Q1, ..., Qf−1) we have
Pi ∈ {t1, t2} for all i = 1, 2, ...f − 1. By the definition preceding Proposi-
tion 6.12, the type of the matrix P0 ∈ {t1, t2, t3, t4} is uniquely determined by
(P1, P2, ..., Pf−1) .

Theorem 6.14. Theorem 1.5 holds.
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Proof. Follows from Proposition 6.12 and Remark 6.13.

Example 6.15. Let f = 2 and ki > 0 for i = 0, 1. Up to twist by some
unramified character, there exist two distinct isomorphism classes of irreducible
two-dimensional crystalline E-representations of GK2 with labeled Hodge-Tate
weights ({0,−k0}, {0,−k1}) induced from crystalline characters of GK4 .
(i) If ℓ0 = k0 and ℓ1 = k1, then from the definition of the matrices Πi preceding
Proposition 6.12 and Remark 6.13, (Π1,Π0) = (t1, t2) . Let Pi = Πimod π. The
polynomials zi in the definition of the matrices Πi are such that zi ≡ pmmod π,

where m := ⌊max{k0,k1}−1
p−1 ⌋, unless k0 = k1 = p in which case we define m = 0.

For any ~a = (a0, a1) ∈ m2
E we consider the family of crystalline representations

V
(1,2)
~k,~a

constructed in §5.2. The corresponding family of filtered ϕ-modules is
(
D(1,2)
~k,~a

, ϕ
)
, with (ϕ (η1) , ϕ (η2)) = (η1, η2)P (1,2)(~a), where

P (1,2)(~a) =

( (
pk1 , a0p

m
)

(0, 1)(
a1p

m, pk0
)

(1, 0)

)
,

and the filtrations are

Filj(D(1,2)
~k,~a

) =





E2η1
⊕
E2η2 if j ≤ 0,

E2 (~x · η1 + ~y · η2) if 1 ≤ j ≤ w0,
E1fI1 (~x · η1 + ~y · η2) if 1 + w0 ≤ j ≤ w1,

0 if j ≥ 1 + w1,
(6.10)

with w0 = min{k0, k1} and w1 = max{k0, k1},

fI1 =





(0, 1) if k0 < k1,
(1, 0) if k1 < k0,
(0, 0) if k0 = k1,

and (~x, ~y) = ((1, 1) , (0, 0)) . We have

V
(1,2)
~k,~0

≃ IndK2

K4

(
χk1e0 · χk0e3

)
,

and for any ~a ∈ m2
E,

((
V

(1,2)
~k,~a

)
|IK2

)s.s.
≃ ω−(k0+pk1)4,τ̄0

⊕
ω
−(k0+pk1)p2
4,τ̄0

.

Let αi = aip
m and A = α1+pk1α0. Assume that A2 6= −4pk0+k1 and let ε0 6= ε1

be the distinct roots of the characteristic polynomial X2−A·X+pk0+k1 . Arguing
as in the proof of Proposition 2.2 in [Dou10], we get the following “standard

parametrization” for the family V
(1,2)
~k,~a

,

ϕ (η1) = (1, ε0) η1, ϕ (η2) =
(
λ,
ε1
λ

)
η2,
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where

λ = λ (α0) =
ε1
ε0
·
(
ε1 −A+ pk1α0

)

(ε0 −A+ pk1α0)

(notice that εi 6= A − α0p
k1), and filtrations are as in Formula 6.10 with ~x =

~y = ~1.
(ii) If ℓ0 = ℓ1 = 0. Again, taking into account Remark 6.13, we may only con-

sider the case (Π1,Π0) = (t2, t3) . For each ~a ∈ m2
E consider the family V

(2,3)
~k,~a

of

two-dimensional crystalline E-representations of GK2 with labeled Hodge-Tate
weights {0,−ki}τi , i = 0, 1. We have

V
(2,3)
~k,~0

≃ IndK2

K4

(
χk1e2 · χk0e1

)
≃ IndK2

K4

(
χk1e0 · χk0e3

)
.

For any ~a ∈ m2
E,
((

V
(2,3)
~k,~a

)
|IK2

)s.s.
≃ ω−(k0+pk1)4,τ0

⊕
ω
−(k0+pk1)p2
4,τ0

.

Notice that the family
{
V

(1,2)
~k,~a

, ~a ∈ m2
E

}
of case (i) coincides with the fam-

ily
{
V

(2,3)
~k,~a

, ~a ∈ m2
E

}
, as the second family is obtained from the first one by

changing the basis by the matrix Q = (R,R) .
(iii) Let f = 2, ℓ0 = 0 and ℓ1 = k1 > 0. Then (Π1,Π0) = (t1, t4) . For each ~a ∈
m2
E consider the family V

(1,4)
~k,~a

of two-dimensional crystalline E-representations

of GK2 with labeled Hodge-Tate weights {0,−ki}τi, i = 0, 1. Then

V
(1,4)
~k,~0

≃ IndK2

K4

(
χk1e0 · χk0e1

)
,

and for any ~a ∈ m2
E,

((
V

(1,4)
~k,~a

)
|IK2

)s.s.
≃ ω−(pk1+p2k0)

4,τ̄0

⊕
ω
−(pk1+p2k0)p2
4,τ̄0

.

Let αi = aip
m and A = α0+pk0α1. Assume that A2 6= −4pk0+k1 and let ε0 6= ε1

be the distinct roots of the characteristic polynomial X2−A·X+pk0+k1 . Arguing
as in the proof of Proposition 2.2 in [Dou10], we get the following “standard

parametrization” for the family V
(1,4)
~k,~a

,

ϕ (η1) = (1, ε0) η1, ϕ (η2) =
(
λ,
ε1
λ

)
η2,

where

λ = λ (α1) =

(
ε1
ε0

)2

·
(
A− pk0α1 − ε0

)

(A− pk0α1 − ε1)

(notice that εi 6= A−α1p
k0), and filtrations as in Formula 6.10 with ~x = ~y = ~1.

(iv) If f = 2 ℓ0 = k0 > 0 and ℓ1 = 0. Then (Π1,Π0) = (t2, t1) and this gives
the family obtained in case (iii).
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Example 6.16. If f = 2, k0 > 0 and k1 = 0. Then up to unramified twist,
IndK2

K4

(
χk0e3
)
is a unique isomorphism class of two-dimensional crystalline irre-

ducible E-representations of GK2 with labeled weights ({0,−k0}, {0, 0}) induced
from GK4 . We have

V
(2,3)
~k,~0

≃ IndK2

K4

(
χk0e3
)
≃ IndK2

K4

(
χk0e1
)
,

and for any ~a ∈ m2
E,

((
V

(2,3)
~k,~a

)
|IK2

)s.s.
≃ ω−k04,τ̄0

⊕
ω−p

2k0
4,τ̄0

.

Example 6.17. Let f = 3, ki > 0 for all i = 0, 1, 2. Up to twist by some
unramified character, there exist 4 distinct isomorphism classes of irreducible
two-dimensional crystalline E-representations of GK3 with labeled Hodge-Tate
weights ({0,−k0}, {0,−k1}, {0,−k2}) induced from GK6 . One of those classes
is represented by IndK3

K6

(
χk1e0 · χk2e1 · χk0e2

)
. For the families containing it we have

ℓi = ki > 0 for all i = 0, 1, 2. Since k0 > 0, Π0 = t2 if Π2 = t4 and Π0 = t1
if Π2 = t1. Hence (Π1,Π2,Π0) ∈ {(t4, t4, t2) , (t4, t1, t1) , (t1, t2, t1) , (t1, t3, t2)}.
By Remark 6.13 we may only consider the case (Π1,Π2,Π0) = (t1, t2, t1) . For

any ~a ∈ m3
E , consider the the families V

(1,2,1)
~k,~a

of two-dimensional crystalline E-

representations of GK3 with labeled Hodge-Tate weights {0,−ki}τi, i = 0, 1, 2.
We have

V
(1,2,1)
~k,~0

≃ IndK3

K6

(
χk1e0 · χk2e1 · χk0e2

)
,

and for any ~a ∈ m3
E,

((
V

(1,2,1)
~k,~a

)
|IK3

)s.s.
≃ ω−(k0+pk1+p2k2)

6,τ̄0

⊕
ω
−(k0+pk1+p2k2)p3
6,τ̄0

.

6.3 Proof of theorem 1.7

Let V~ℓ,~ℓ′ (η) = η ·χℓ1e0 ·χℓ2e1 · · · · ·χℓ0ef−1

⊕
χ
ℓ′1
e0 ·χℓ

′
2
e1 · · · · ·χℓ

′
0
ef−1 with {ℓi, ℓ′i} = {0, ki}

for all i, where η = ηc is the unramified character of GKf which maps the

geometric Frobenius FrobKf of GKf to c ∈ O×E . As usual, we assume that at
least one ki is strictly positive. We choose f -tuples of matrices (Π1,Π2, ...,Πf )
(with Πf = Π0) as follows:
(1) If ℓ1 = 0, Π1 ∈ {t2, t3};
(2) If ℓ1 = k1 > 0, Π1 ∈ {t1, t4}.
For i = 2, 3, ..., f − 1, we choose the type of the matrix Πi as follows:
(1) If ℓi = 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t2, t3};

• If an odd number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t1, t4}.
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(2) If ℓi = ki > 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t1, t4};

• If an odd number of coordinates of (Π1,Π2, ...,Πi−1) is of even type,
Πi ∈ {t2, t3}.

Finally, we choose the type of the matrix Π0 as follows:

(1) If ℓ0 = 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t3;

• If an odd number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t4.

(2) If ℓ0 = ki > 0, then:

• If an even number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t1;

• If an odd number of coordinates of (Π1,Π2, ...,Πf−1) is of even type,
Π0 = t2.

Notice that the type of Π0 has been chosen so that an even number of coordi-
nates of (Π1,Π2, ...,Πf ) is of even type. We choose the units ci appearing in the
entries of the matrices Πi in Definition 5.4 so that ci = 1 for all i = 1, 2, ..., f−1,
and c0 = c. Let ~i be the type-vector attached to (Π1,Π2, ...,Πf ) . We exclude

those vectors ~i for which (Π1,Π2, ...,Πf ) ∈ C1 ∪ C2, which is to exclude the

cases where ~ℓ = ~0 or ~ℓ′ = ~0. For any ~a ∈ mfE we consider the families of

crystalline E-representations V
~i
~k

(~a) of GKf with labeled Hodge-Tate weights

{0,−ki}τi constructed in §5.2.

Proposition 6.18. (i) For any type vector ~i chosen as above there exists

some unramified character µ such that µ⊗ V~i~k (~0) ≃ V~ℓ,~ℓ′(η);

(ii) For any ~a ∈ mfE , V
~i
~k (~a) ≃ V

~i
~k(~0) and

(
V
~i
~k (~a)

)

|IKf
≃
(
V ~ℓ,~ℓ′ (η)

)
|IKf
≃ ωαf,τ̄0 ⊕ ωα

′

f,τ̄0 ,

where α = −
f−1∑
i=i

ℓip
i and α′ = −

f−1∑
i=0

ℓ′ip
i.
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Proof. For simplicity assume that η = 1. The general case follows by choos-

ing the unit c0 in the definition of Π0 appropriately. We restrict V
~i
~k

(~0) to

GK2f
. By the construction of the representation V

~i
~k

(~0) in §5.1, there ex-

ists some GKf -stable lattice
(

T
~i
~k
(~0)
)
GKf

inside V
~i
~k

(~0) whose Wach mod-

ule has ϕ-action defined by (ϕ (η1) , ϕ (η2)) = (η1, η2) · Π(~0). By Proposi-

tion 2.6, the Wach module of the GK2f
-stable lattice

(
T
~i
~k
(~0)
)
|GK2f

inside
(
V
~i
~k

(~0)
)
|GK2f

is defined by (ϕ (η1) , ϕ (η2)) = (η1, η2) · Π (0)
⊗2
, therefore the

filtered ϕ-module corresponding to
(
V
~i
~k

(~0)
)
|GK2f

has Frobenius endomorphism

(ϕ (η1) , ϕ (η2)) = (η1, η2)·P (0)⊗2 . The restricted representation
(
V
~i
~k

(~0)
)
|GK2f

has labeled weights ({0,−ki})τi , i = 0, 1, ..., 2f − 1, with ki+f = ki for
i = 0, 1, ..., f − 1, and filtration as in formula 5.10 for some vectors ~x, ~y, with
the sets Ij being defined with respect to the 2f weights above. We prove that(
V
~i
~k

(~0)
)
|GK2f

is reducible and determine its irreducible constituents. First we

change the basis to diagonalize the matrix of Frobenius. We define matrices
Qi as in the proof of Proposition 6.12, and we let Q = (Q0, Q1, ..., Q2f−1) . By

the definition of the matrices Qi, the matrix Q · P (0)
⊗2 · ϕ

(
Q−1

)
is diagonal.

By the proof of Proposition 6.12, Q0 = Id and for i = 1, 2, ..., 2f − 1, Qi is as
in formula 6.3. We claim that for each i = 0, 1, ..., f − 1, Qi = Qi+f . Indeed,

from the definition of the matrices Qi we see that qi11 and qi+f11 are as in for-
mulas 6.4 and 6.5 respectively in the proof of Proposition 6.12. Since an even
number of coordinates of (P1, P2, ..., Pf ) are of even type, qi+f11 = qi11. Simi-

larly, qr+fij = qrij for any entry (i, j) . Consider the ordered basis ζ = (ζ1, ζ2)

defined by (ζ1, ζ2) := (η1, η2) · Q−1. Let ~qij be th (i, j)-entry of Q. In the new
basis ζ the filtration is as in formula 5.10 with the vector ~xη1 + ~yη2 replaced
by ~x · (~q11 · ζ1 + ~q12 · ζ2) + ~y · (~q12 · ζ1 + ~q22 · ζ2) . Let ~z = ~x · ~q11 + ~y · ~q12 and
~w = ~x·~q12+~y ·~q22. The matrix of Frobenius in this new basis is the diagonal ma-

trix diag
(
~λ, ~µ

)
. Arguing as in Proposition 6.12, and taking into account that

qr+fij = qrij for all r = 0, 1, ..., f − 1 and all entries (i, j) we see that zr+f = zr
for all r. From the proof of the same proposition, zi = 0 if and only if qi11 = 1
and xi = 0 or qi11 = 0 and xi = 1. Formula 5.11 implies that xi = 0 if and
only if Pi ∈ {t4, t3} and xi = 1 if and only if Pi ∈ {t2, t1}. Since zi = zi+f and
ki = ki+f for all i = 0, 1, ..., f − 1,

2f−1∑

i=0
zi=0

ki = 2

f−1∑

i=0
zi=0

ki = 2

f−1∑

i=0
Qi=R
Pi=t1

ki + 2

f−1∑

i=0
Qi=R
Pi=t2

ki + 2

f−1∑

i=0
Qi=Id
Pi=t3

ki + 2

f−1∑

i=0
Qi=Id
Pi=t4

ki.
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We now show that the (2, 2) entry of
2f−1∏
i=0

(
QiPi+1Q

−1
i+1

)
is the pn, where

n = 2

f−1∑

i=0
Qi=R
Pi=t1

ki + 2

f−1∑

i=0
Qi=R
Pi=t2

ki + 2

f−1∑

i=0
Qi=Id
Pi=t3

ki + 2

f−1∑

i=0
Qi=Id
Pi=t4

ki. (6.11)

Since the matrices QiPi+1Q
−1
i+1 are diagonal, and since Qi+f = Qi and Pi+f =

Pi for all i,

2f−1∏

i=0

(
QiPi+1Q

−1
i+1

)
=

f−1∏

i=0
Qi=Id
Pi+1=t4

(
QiPi+1Q

−1
i+1

)2 ·
f−1∏

i=0
Qi=Id
Pi+1=t3

(
QiPi+1Q

−1
i+1

)2 ·

f−1∏

i=0
Qi=Id
Pi+1=t1

(
QiPi+1Q

−1
i+1

)2 ·
f−1∏

i=0
Qi=Id
Pi+1=t2

(
QiPi+1Q

−1
i+1

)2 ·
f−1∏

i=0
Qi=R
Pi+1=t4

(
QiPi+1Q

−1
i+1

)2 ·

f−1∏

i=0
Qi=R
Pi+1=t3

(
QiPi+1Q

−1
i+1

)2 ·
f−1∏

i=0
Qi=R
Pi+1=t1

(
QiPi+1Q

−1
i+1

)2 ·
f−1∏

i=0
Qi=R
Pi+1=t2

(
QiPi+1Q

−1
i+1

)2
.

We notice that when Qi = Id and Pi+1 = t4, then by formula 6.2, Qi+1 = R

andQiPi+1Q
−1
i+1 = diag

(
pki+1 , 1

)
. Therefore the product

f−1∏
i=0

Qi=Id
Pi+1=t4

(
QiPi+1Q

−1
i+1

)

has no contribution to the (2, 2) entry of
2f−1∏
i=0

(
QiPi+1Q

−1
i+1

)
. Similarly, the

products

f−1∏

i=0
Qi=Id
Pi+1=t1

(
QiPi+1Q

−1
i+1

)
,

f−1∏

i=0
Qi=R
Pi+1=t3

(
QiPi+1Q

−1
i+1

)
and

f−1∏

i=0
Qi=R
Pi+1=t2

(
QiPi+1Q

−1
i+1

)

have no contribution to the (2, 2) entry of
2f−1∏
i=0

(
QiPi+1Q

−1
i+1

)
. We now compute

the product
f−1∏
i=0
Qi=R
Pi+1=t1

(
QiPi+1Q

−1
i+1

)
. Formula 6.2 implies that if Qi = R and

Pi+1 = t1 then Qi+1 = R, therefore QiPi+1Q
−1
i+1 = diag

(
1, pki+1

)
. Again, by

formula 6.2, Qi = R and Pi+1 = t1 is equivalent to Qi+1 = R and Pi+1 = t1.
Hence
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f−1∏

i=0
Qi=R
Pi+1=t1

(
QiPi+1Q

−1
i+1

)
=

f−1∏

i=0
Qi+1=R
Pi+1=t1

(
QiPi+1Q

−1
i+1

)
=

f−1∏

i=0
Qi=R
Pi=t1

diag
(
1, pki+1

)

which contributes the fourth summand of the right hand side of equation 6.11.
The claim made before formula 6.11 follows arguing similarly for the remaining

cases. Hence vp (Nmϕ (~µ)) =
2f−1∑
i=0
zi=0

ki. Proposition 6.3 implies that
(
V
~i
~k,~0

)
|GK2f

is reducible and (D2, ϕ) is a weakly admissible submodule, where D2 =
(
E2f

)
·

ζ2. By [Dou10, proof of Prop. 4.3] (or by a direct computation),

FiljD2 =





D2 if j ≤ 0,(
E|τK2f

|
)
fIi,~zζ2 if 1 + wi−1 ≤ j ≤ wi for all i = 0, 1, ..., t− 1,

0 if j ≥ 1 + wt−1,
(6.12)

where Ii,~z = Ii ∩{j ∈ {0, 1, ..., 2f − 1} : zj = 0}. As in the proof of Proposition
6.12, the labeled weight for the embedding τi is 0 if zi = 1 and −ki if zi = 0.
Next, we prove that for i = 0, 1, ..., f − 1,

zi = zi+f =

{
0 if ℓi = 0,
1 if ℓi = ki > 0.

(6.13)

This is proved exactly as in Proposition 6.12, taking into account that an even
number of the coordinates of (P1, P2, ..., Pf ) is of even type. We have zi = 0
for all i if and only if ℓi = 0 for all i if and only if (Π1,Π2, ...,Πf ) ∈ C1

and zi = 1 for all i if and only if ℓi = ki > 0 for all i if and only if
(Π1,Π2, ...,Πf ) ∈ C2, cases excluded. Therefore neither of the summands of

V
~i
~k

(~0) is unramified. By the discussion above the labeled weights of D2 are(
−ℓ′0,−ℓ′1, ...,−ℓ′f−1,−ℓ′0,−ℓ′1, ...,−ℓ′f−1

)
. By formula 6.13, vp (Nmϕ (~µ)) =

2f−1∑
i=0
zi=0

ki =
2f−1∑
i=0

ℓ′i. By Proposition 3.5 and Lemma 3.7, the corresponding crys-

talline character is ψ = χ
ℓ′1
e0 ·χℓ

′
2
e1 · · · · ·χ

ℓ′f−1
ef−2 ·χℓ

′
0
ef−1 ·χℓ

′
1
e0 ·χℓ

′
2
e1 · · · · ·χ

ℓ′f−1
ef−2 ·χℓ

′
0
ef−1 . If

V
~i
~k

(~0) is irreducible, then by Frobenius reciprocity V
~i
~k

(~0) = Ind
Kf
K2f

(ψ) , which

is absurd by Corollary 3.10. Hence V
~i
~k

(~0) is reducible and contains an irre-

ducible constituent which restricts to ψ. By Lemma 3.7(iv) the only choices

are η±1 ·χℓ1e0 ·χℓ2e1 · · · · ·χ
ℓf−1
ef−2 ·χℓ0ef−1

, and we are done after twisting by η∓1. The
rest of the proposition follows as in the proof of Proposition 6.12.

Theorem 6.19. Theorem 1.7 holds.

Proof. Follows from Proposition 6.18, taking into account Remark 6.13.

Documenta Mathematica 15 (2010) 873–938



Reductions of Families of Crystalline Representations 933

Example 6.20. Let f = 2, ℓ0 = 0 and ℓ1 = k1. Let (Π1,Π0) = (t1, t3) with

c0 = c1 = 1. After possibly twisting by η±1 we have V
(1,3)
~k

(~0) ≃ χk1e0 ⊕ χk0e1 .

In the next proposition we study closer the F-semisimple members of this family
assuming that c = 1.

Proposition 6.21. Assume that V
(1,3)
~k

(~α) is F-semisimple.

(i) V
(1,3)
~k

( ~α) is irreducible if and only if α0α1 6= 0, and is non-induced for

all but finitely many such ~α;

(ii) V
(1,3)
~k

(~α) is non-split reducible if and only if precisely one of the coordi-

nates αi of ~α is zero;

(iii) The families
{
V

(1,3)
~k

((α0, 0)) , α0 ∈ pmmE \ {0}
}

and
{
V

(1,3)
~k

((0, α1)) , α1 ∈ pmmE \ {0}
}

are disjoint;

(iv) V
(1,3)
~k

(~0) is split-reducible.

Proof. The weakly admissible filtered ϕ-module corresponding to V
(1,3)
~k

(~α) has
Frobenius endomorphism

(ϕ (η1) , ϕ (η2)) = (η1, η2)

( (
pk1 , 1

)
(0, α0)

(α1, 0)
(
1, pk0

)
)

and filtration

Filj (D) =





(E × E)η1
⊕

(E × E)η2 if j ≤ 0,
(E × E)fI0(~xη1 + ~yη2) if 1 ≤ j ≤ w0,
(E × E)fI1(~xη1 + ~yη2) if 1 + w0 ≤ j ≤ w1,

0 if j ≥ 1 + w1,

(6.14)

with ~x = (−α0, 1) and ~y = (1,−α1) . We diagonalize the matrix of Frobe-
nius arguing as in the proof of Proposition 2.2 in [Dou10]. The character-
istic polynomial is X2 −

(
pk0 + pk1 + α0α1

)
X + pk0+k1 , and we assume that(

pk0 + pk1 + α0α1

)2 6= 4pk0+k1 so that its roots ε0 and ε1 are distinct. We have
the following cases.
Case (1) . α0α1 6= 0. We change the basis to ξ = (ξ1, ξ2) , where

ξ1 = ((
ε0 − pk1 − α0α1

)
α1,

α0(ε0−ε1)(ε0−pk0)(ε0−pk0−α0α1)(ε1−pk1−α0α1)
(2ε0ε1−pk0ε1−pk1 ε0−α0α1ε1)(ε1−pk0−α0α1)

)
η1

+

((
ε0 − pk1 − α0α1

)
α1,

α0(ε0−ε1)(ε1−pk0)(ε0−pk0−α0α1)(ε1−pk1−α0α1)
(2ε0ε1−pk0ε1−pk1 ε0−α0α1ε1)(ε1−pk0−α0α1)

)
η2

and
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ξ2 =((
ε1 − pk1 − α0α1

) (
ε0 − pk1

)
,

α2
0(ε0−ε1)(ε1−pk1−α0α1)(ε1−pk0−α0α1)

(2ε0ε1−pk0ε1−pk1ε0−α0α1ε1)(ε1−pk0−α0α1)

)
η1

+

((
ε1 − pk1 − α0α1

) (
ε1 − pk1

)
,

α2
0(ε0−ε1)(ε1−pk1−α0α1)(ε1−pk0−α0α1)

(2ε0ε1−pk0ε1−pk1ε0−α0α1ε1)(ε1−pk0−α0α1)

)
η2

In the ordered basis ξ we have ϕ (ξ1) = (1, ε0) ξ1 and ϕ (ξ2) =
(
λ, ε1

λ

)
ξ2,

where

λ=−
(
ε0 − pk1 − α0α1

)

(ε1 − pk1 − α0α1)
·
(
ε1 − pk0 − α0α1

)

(ε0 − pk0 − α0α1)
·
(
2ε0ε1 − pk0ε1 − pk1ε0 − α0α1ε1

)

(2ε0ε1 − pk0ε0 − pk1ε1 − α0α1ε0)
,

and the filtration is as in formula 6.14, with ~xη1 + ~yη2 replaced by ξ1 + ξ2.

By Proposition 6.3, the representation V
(1,3)
~k

( ~α) is irreducible. Arguing as in

the proof of Proposition 6.12(iv) we see that the representations V
(1,3)
~k

( ~α) are
non-induced with the possibility of at most finitely many exceptions.
Case (2). α0 = 0, α1 6= 0. We argue as above and see that in the ordered basis
ξ = (ξ1, ξ2) , where

ξ1 = η2 and ξ2 =

(
1,

pk0 − pk1
α1pk1

)
η1 −

(
α1

pk0 − pk1 , p
k0−k1

)
η2

we have ϕ (ξ1) =
(
1, pk0

)
ξ1 and ϕ (ξ2) =

(
λ (α1) , pk1

λ(α1)

)
ξ2, with λ (α1) =

α−11

(
pk0 − pk1

)
. The filtration in this basis is given by formula 6.14, with

~xη1 + ~yη2 replaced by ξ1 + (0, 1) ξ2. By Proposition 6.3 the representation

V
(1,3)
~k

((0, α1)) is reducible and non-split.

Case (3). α1 = 0, α0 6= 0. In the ordered basis ξ = (ξ1, ξ2) , where

ξ1 = η2 −
(

pk1α0

pk1 − pk0 ,
α0

pk1 − pk0
)
η1 and ξ2 =

(
α0p

k0

pk1 − pk0 , 1

)
η1,

we have ϕ (ξ1) =
(
1, pk0

)
ξ1 and ϕ (ξ2) =

(
λ (α0) , pk1

λ(α0)

)
ξ2, with

λ (α0) = α−10

(
pk1 − pk0

)
pk1−k0 . The filtration in the basis ξ is

given by formula 6.14, with ~xη1 + ~yη2 replaced by (1, 0) ξ1 + ξ2. By

Proposition 6.3, V
(1,3)
~k

((α0, 0)) is reducible, non-split. By [Dou10,

Proposition 7.1] it follows that there are no isomorphisms between

members of the families
{
V

(1,3)
~k

((α0, 0)) , α0 ∈ pmmE \ {0}
}

and
{
V

(1,3)
~k

((0, α1)) , α1 ∈ pmmE \ {0}
}
.

Case (4) . α0 = α1 = 0. Then ϕ (η1) =
(
pk1 , 1

)
η1 and ϕ (η2) =

(
1, pk0

)
η2,

while the filtration is as in formula 6.14,with ~x = (0, 1) and ~y = (1, 0) . Since

J~x ∩ J~y = ∅, Proposition 6.3 implies that V
(1,3)
~k

(~0) is split-reducible.
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Proposition 6.22. Let 0 < vp (εi) < k0 + k1 with ε0 6= ε1 such that ε0ε1 =
pk0+k1 and assume that 0 ≤ ki ≤ p−1. Define the families of filtered ϕ-modules
D (λ) with

ϕ (η1) = (1, ε0) η1, ϕ (η2) =
(
λ,
ε1
λ

)
η2,

and filtrations as in formula 6.10 with ~x = ~y = ~1. These filtered modules are
weakly admissible, irreducible, sharing the same characteristic polynomial and
filtration. Let V (λ) be the corresponding to D (λ) crystalline representations of
GQp2

.

(i) If λ = ε1
ε0

(
pk1α−ε0
pk1α−ε1

)
, where α ∈ mE , then

(
V (λ)|IQ

p2

)ss
=

ω
−(k0+pk1)
4,τ̄0

⊕
ω
−(k0+pk1)p2
4,τ̄0

and V (λ) is irreducible;

(ii) If λ =
(
ε1
ε0

)2 (
pk1α−ε1
pk1α−ε0

)
, where α ∈ mE , then

(
V (λ)|IQ

p2

)ss
=

ω
−(pk1+p2k0)
4,τ̄0

⊕
ω
−(pk1+p2k0)p2
4,τ̄0

and V (λ) is irreducible;

(iii) If λ = 1, then V (λ) is reducible and V (λ)|IQ
p2

= ω−k12,τ̄0

⊕
ω−pk02,τ̄0

.

Proof. The common characteristic polynomial is X2 − (ε0 + ε1)X +
pk0+k1 . Parts (i) and (ii) follow from Examples 6.15 (i) and (iii) using

the “standard parametrization” for the families V
(1,2)
~k,~a

and V
(1,4)
~k,~a

, and taking

into account that m = 0 and Proposition 6.8. Part (iii) follows from Proposi-
tion 6.21(i) and a little computation to prove that if pk0 +pk1 +α0α1 = ε0 + ε1
and ε0ε1 = pk0+k1 , then λ = 1.
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Abstract. We prove that if p, r ∈ R, p ≥ 1 and 0 ≤ r ≤ p then the
Fuss-Catalan sequence

(
mp+r
m

)
r

mp+r is positive definite. We study the

family of the corresponding probability measures µ(p, r) on R from the
point of view of noncommutative probability. For example, we prove
that if 0 ≤ 2r ≤ p and r + 1 ≤ p then µ(p, r) is ⊞-infinitely divisible.

As a by-product, we show that the sequence mm

m! is positive definite
and the corresponding probability measure is ⊠-infinitely divisible.
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1. Introduction

For natural numbers m, p, r let Am(p, r) denote the number of all sequences
(a1, a2, . . . , amp+r) such that: (1) ai ∈ {1, 1− p}, (2) a1 + a2 + . . .+ as > 0 for
all s such that 1 ≤ s ≤ mp + r and (3) a1 + a2 + . . . + amp+r = r. It turns
out that this is given by the two-parameter Fuss-Catalan numbers (2.1) (see
[5, 13]). Note that the right hand side of (2.1) allows us to define Am(p, r) for
all real parameters p and r. In particular, the Catalan numbers Am(2, 1) are
known as moments of the Marchenko–Pastur distribution:

(1.1) dπ̃(x) =
1

2π

√
4− x
x

dx on [0, 4],

which in the free probability theory plays the role of the Poisson measure. In
this paper we are going to study the question for which parameters p, r ∈ R

1Research supported by MNiSW: N N201 364436, by ToK: MTKD-CT-2004-013389, by
7010 POLONIUM project: “Non-Commutative Harmonic Analysis with Applications to Op-

erator Spaces, Operator Algebras and Probability” and by joint PAN-JSPS project: “Non-

commutative harmonic analysis on discrete structures with applications to quantum proba-

bility”.
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the sequence {Am(p, r)}∞m=0 is positive definite, i.e. is the moment sequence of
some probability measure (which we will denote µ(p, r)). Recently T. Banica,
S. T. Belinschi, M. Capitaine and B. Collins [1] showed that if p > 1 then
{Am(p, 1)}∞m=0 is the moment sequence of a probability measure which can be

expressed as the multiplicative free power π̃⊠p−1.
We are going to prove that if p, r ∈ R, p ≥ 1 and 0 ≤ r ≤ p then {Am(p, r)}∞m=0

is the moment sequence of a unique probability measure µ(p, r) which has
compact support contained in [0,∞). Moreover, if 0 ≤ 2r ≤ p and r + 1 ≤ p
then µ(p, r) is infinitely divisible with respect to the free convolution⊞. In some
particular cases we are able to determine the multiplicative free convolution,
the boolean power and the monotonic convolution of the measures µ(p, r).

We will also prove that if 0 ≤ r ≤ p − 1 then the sequence
{(
mp+r
m

)}∞
m=0

is
positive definite and the corresponding probability measure can be expressed
as µ(p−r, 1)⊎p ⊲ µ(p, r), where ⊎ and ⊲ denote the boolean and the monotonic
convolution, respectively.
The paper is organized as follows. In Section 2 we prove three combinato-
rial identities. Then we use them to derive some formulas for the generating
functions. In Section 4 we regard the numbers Am(p, r) as moments of a prob-
ability quasi-measure µ(p, r) (by this we mean a linear functional µ : R[x]→ R
satisfying µ(1) = 1). On the class of probability quasi-measures one can intro-
duce the free, boolean and monotonic convolutions in combinatorial way. The
class of compactly supported probability measures on R, regarded as a sub-
class of the former, is closed under these operations. We prove some formulas
involving the probability quasi measures µ(p, r), for example we find the free
R- and S-transforms (4.8), (4.11), the boolean powers µ(p, 1)⊎t (4.18) and, in
special cases, the multiplicative free (4.12), (4.13), (4.14) and the monotonic
convolution (4.20) of the measures µ(p, r).
In Section 5 we prove that if p ≥ 1 and 0 ≤ r ≤ p then µ(p, r) is a measure (we
conjecture that this condition is also necessary for p, r > 0). The proof involves
the multiplicative free convolution ⊠. Moreover, we show that if 0 ≤ 2r ≤ p
and r + 1 ≤ p then µ(p, r) is ⊞-infinitely divisible.
In the final part we extend our results to the dilations of the measures µ(p, r),
with parameter h > 0. Taking the limit with h→ 0 we prove in particular that

the sequence
{
mm

m!

}∞
m=0

is positive definite and the corresponding probability
measure ν0 is ⊠-infinitely divisible.

2. Some combinatorial identities

We will work with the two-parameter Fuss-Catalan numbers (see [5, 13]) defined
by: A0(p, r) := 1 and

(2.1) Am(p, r) :=
r

m!

m−1∏

i=1

(mp+ r − i)
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for m ≥ 1, where p, r are real parameters. Note that (2.1) can be written as(
mp+r
m

)
r

mp+r , unless mp+ r = 0. One can check that for m ≥ 0

(2.2) Am(p, r) = Am(p, r − 1) +Am−1(p, p+ r − 1),

under convention that A−1(p, r) := 0, and

(2.3) Am(p, p) = Am+1(p, 1).

It is also known (see [13]) that

(2.4)
m∑

k=0

Ak(p, r)Am−k(p, s) = Am(p, r + s).

Now we are going to prove three identities, valid for c, d, p, r, t ∈ R, which will
be needed later on.

Proposition 2.1.

(2.5)

m∑

k=0

Ak(p− r, c)Am−k(p, kr + d) = Am(p, c+ d).

Proof. It is easy to check that the formula is true for m = 0 and m = 1.
Denoting the left hand side by Sm(p, r, c, d) we have from (2.2):

Sm(p, r, c, d) =

m∑

k=0

Ak(p− r, c)Am−k(p, kr + d)

=

m∑

k=0

[Ak(p− r, c− 1) +Ak−1(p− r, p− r + c− 1)]Am−k(p, kr + d)

=

m∑

k=0

Ak(p− r, c− 1)Am−k(p, kr + d)

+

m∑

k=1

Ak−1(p− r, p− r + c− 1)Am−k(p, kr + d)

= Sm(p, r, c− 1, d) +

m−1∑

k=0

Ak(p− r, p− r + c− 1)Am−1−k(p, kr + r + d)

= Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d),

so that we have

Sm(p, r, c, d) = Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d).

Fix m and assume that (2.5) holds for m−1. Now we prove that for m it holds
for every natural c. Indeed, it holds for c = 0 and if it does for c− 1 then, by
assumption and by (2.2):

Sm(p, r, c, d) = Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d)

= Am(p, c+ d− 1) +Am−1(p, p+ c+ d− 1) = Am(p, c+ d),
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which proves that the statement is true for c. Therefore it holds for all natural c.
Now we note that both sides of (2.5) are polynomials on c of order m, therefore
the formula holds for all c ∈ R, which completes the inductive step. �

Proposition 2.2.

(1− t)
m∑

l=0

Al
(
p, 1
)m−l∑

j=0

Am−l−j
(
p, j(p− 1) + r

)
tj(2.6)

+t

m∑

j=0

Am−j
(
p, j(p− 1) + r

)
tj = Am

(
p, r + 1

)
.

Proof. Using first (2.4) and then (2.2) we obtain:

t
m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1− t)
m∑

l=0

Al
(
p, 1
)m−l∑

j=0

Am−l−j
(
p, j(p− 1) + r

)
tj

= t

m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1− t)
m∑

j=0

m−j∑

l=0

Al(p, 1)Am−j−l(p, j(p− 1) + r)tj

= t

m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1− t)
m∑

j=0

Am−j(p, j(p− 1) + r + 1)tj

=

m∑

j=0

Am−j(p, j(p− 1) + r + 1)tj −
m−1∑

j=0

Am−j−1(p, j(p− 1) + r + p)tj+1

= Am(p, r + 1). �

Proposition 2.3.

(2.7)

m∑

k=0

Am−k(p, k(p− 1) + r)pk =

(
mp+ r

m

)
.
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Proof. Denoting the left hand side by Tm(p, r) we use (2.2) and get

Tm(p, r) =

=

m∑

k=0

Am−k(p, k(p− 1) + r)pk

=
m∑

k=0

[Am−k(p, k(p− 1) + r − 1) +Am−1−k(p, k(p− 1) + p+ r − 1)] pk

= Tm(p, r − 1) + Tm−1(p, p+ r − 1).

Now we proceed as in the proof of (2.5), using the binomial identity
(
mp+ r

m

)
=

(
mp+ r − 1

m

)
+

(
mp+ r − 1

m− 1

)
. �

3. Generating functions

In this part we are going to study the generating functions

(3.1) Bp(z) :=

∞∑

m=0

Am(p, 1)zm,

which are convergent in some neighborhood of 0 (to observe this one can use
the inequality

|Am(p, r)| ≤ |r|
[
m(|p|+ 1) + |r|

]m−1
/m!

and apply the Cauchy’s radical test). From (2.4) and (2.3) we have

(3.2) Bp(z)r =

∞∑

m=0

Am(p, r)zm

and

(3.3) Bp(z) = 1 + zBp(z)p.

Indeed, denoting the right hand side of (3.2) byAp,r(z) we haveAp,1(z) = Bp(z)
and, by (2.4), Ap,r(z) · Ap,s(z) = Ap,r+s(z), which implies that Ap,r(z) =
Bp(z)r. Taking r = p and applying (2.3) we get (3.3).
Now we are going to interpret formulas (2.5), (2.6), (2.7) in terms of these
generating functions.

Proposition 3.1. For any real parameters p, r we have

(3.4) Bp−r (zBp(z)r) = Bp(z).

Proof. First we note that if A(z) =
∑∞

m=0 amz
m, B(z) =

∑∞
n=1 bnz

n then

(3.5) A(B(z)) = a0 +

∞∑

m=1

zm
m∑

k=1

ak
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik .
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Putting bi := Ai−1(p, r) for fixed k,m we have:
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik =
∑

j1,j2,...,jk≥0
j1+j2+...+jk=m−k

Aj1(p, r)Aj2 (p, r) . . . Ajk(p, r)

= Am−k(p, kr),

the coefficient of Bp(z)kr at zm−k. Now we put ak := Ak(p− r, 1) and applying
(2.5), with c = 1, d = 0, we get

m∑

k=1

ak
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik(3.6)

=

m∑

k=0

Ak(p− r, 1)Am−k(p, kr) = Am(p, 1),

as Am(p, 0) = 0 for m ≥ 1, which completes the proof. �

Note that in the proof we applied (2.5) only with c = 1 and d = 0.
For p, r, t ∈ R we denote

(3.7) Dp,r,t(z) :=
Bp(z)1+r

(1− t)Bp(z) + t
.

Proposition 3.2. For p, r, t ∈ R we have

(3.8) Dp,r,t(z) =
∞∑

m=0

zm
m∑

k=0

Am−k(p, k(p− 1) + r)tk,

in particular:

(3.9) Dp,r,p(z) =

∞∑

m=0

(
mp+ r

m

)
zm.

Moreover

(3.10) Dp−r,s,t (zBp(z)r)Bp(z)r = Dp,r+s,t(z).

Proof. Using (2.6) we can verify that

[
(1− t)Bp(z) + t

]
·
[ ∞∑

m=0

zm
m∑

k=0

Am−k(p, k(p− 1) + r)tk

]
= Bp(z)1+r

which proves (3.8). Formulas (3.9) and (3.10) are consequences of (2.7) and
(3.4). �

Proposition 3.3. In some neighborhood of 0 we have

(3.11) Bp
(
z(1 + z)−p

)
= 1 + z,

and more generally, for r 6= 0 we have

(3.12) Bp
((

(1 + z)
1
r − 1

)
(1 + z)

−p
r

)r
= 1 + z.
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Proof. Since we have Bp(0) = 1 and B′p(0) = 1, there is a function fp defined on
a neighborhood of 0 such that fp(0) = 0 and B(fp(z)) = 1+z. Substituting z 7→
fp(z) in (3.3) we obtain fp(z) = z(1 + z)−p. Now we put z 7→ (1 + w)1/r − 1
to (3.11) and taking the r-th power we obtain (3.12). �

Remark. Note that (3.11) leads to an analytic proof of (3.4). Namely, substi-
tuting in (3.4) z 7→ z(1 + z)−p we get

Bp−r
(
z(1 + z)−pBp

(
z(1 + z)−p

)r)
= Bp−r

(
z(1 + z)−p(1 + z)r

)

= 1 + z = Bp
(
z(1 + z)−p

)
.

Finally we note a symmetry possessed by our generating functions.

Proposition 3.4. For p, r, t ∈ R we have

Bp(−z)r = B1−p(z)−r,(3.13)

Dp,r,t(−z) = D1−p,−1−r,1−t(z).(3.14)

Proof. One can check that (−1)mAm(p, r) = Am(1 − p,−r), which proves
(3.13), and by the definition (3.7), (3.13) implies (3.14). �

4. Relations with noncommutative probability

By a probability quasi-measure we will mean a linear functional µ on the set
R[x] of polynomials with real coefficients, satisfying µ(1) = 1. In the case when
µ is given by µ(P ) =

∫
P (t) dµ̃(t) for some probability measure µ̃ on R we

will identify µ with µ̃ and say that µ is proper or is just a probability measure.
A probability quasi-measure µ is uniquely determined by its moment sequence
{µ(xm)}∞m=0. It is proper if and only if its moment sequence is positive definite,
i.e. if

∞∑

i,j=0

µ(xi+j)αiαj ≥ 0

holds for every sequence {αi}∞i=0 of real numbers, with only finitely many
nonzero entries. All probability measures encountered in this paper are com-
pactly supported and therefore uniquely determined by their moment se-
quences. For a probability quasi-measure µ we define its moment generating
function, which is the (at least formal) power series

Mµ(z) :=

∞∑

m=0

µ(xm)zm

and its reflection µ̂ by µ̂(xm) := (−1)mµ(xm) or, equivalently, Mµ̂(z) :=
Mµ(−z). If µ is a probability measure then so is µ̂ and then we have
µ̂(X) = µ(−X) for every Borel subset of R.
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For p, r, t ∈ R we define probability quasi-measures µ(p, r) and ν(p, r, t) by

µ(p, r)(xm) := Am(p, r),(4.1)

ν(p, r, t)(xm) :=

m∑

k=0

Am−k(p, k(p− 1) + r)tk,(4.2)

in particular, by (2.7),

(4.3) ν(p, r, p)(xm) =

(
mp+ r

m

)
.

For example, µ(1, 1) = ν(1, 0, 1) = δ1 and for every p ∈ R we have µ(p, 0) =
ν(0, 0, 0) = δ0. Note that ν(p, r, 0) = µ(p, r) so that the class of probability
quasi-measures µ(p, r) is contained in that of ν(p, r, t), we will be interested
however mainly in the former.
First we note that Proposition 3.4 leads to

Proposition 4.1.

µ̂(p, r) = µ(1 − p,−r),(4.4)

̂ν(p, r, t) = ν(1 − p,−1− r, 1− t). �(4.5)

There are several convolutions of probability quasi-measures, apart from the
classical one: (µ ∗ ν)(xn) :=

∑n
k=0

(
n
k

)
µ(xk)ν(xn−k), which are related to var-

ious notions of independence (namely, the free, boolean and the monotonic
independence) in noncommutative probability.

1. Free convolution (see [2, 15, 11]) is defined in the following way. For a
probability quasi-measure µ we define its free R-transform (or the additive free
transform) Rµ(z) by the formula:

(4.6) Mµ(z) = Rµ(zMµ(z)) + 1.

The free cumulants rm(µ) are defined as the coefficients of the Taylor expan-
sion Rµ(z) =

∑∞
k=1 rk(µ)zk (combinatorial relation between moments and free

cumulants is described in [11] and [4]). Then the free convolution µ⊞ ν can be
defined as the unique probability quasi-measure which satisfies

(4.7) Rµ⊞ν(z) = Rµ(z) +Rν(z).

We also define free power µ⊞t, t > 0, by Rµ⊞t(z) := tRµ(z).

As a consequence of (4.6) and (3.4) we obtain:

Proposition 4.2. For the free additive transform of µ(p, r) we have

(4.8) Rµ(p,r)(z) = Bp−r(z)r − 1

so that for the free cumulants we have rm(µ(p, r)) = Am(p− r, r), m ≥ 1. �

The free S-transform (or the free multiplicative transform) of a quasi-measure
µ, with µ(x1) 6= 0, is defined by the relation

(4.9) Rµ(zSµ(z)) = z or, equivalently, Mµ

(
z(1 + z)−1Sµ(z)

)
= 1 + z.
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Then the multiplicative free convolution µ1 ⊠ µ2 and the multiplicative free
power µ⊠t, t > 0, are defined by

(4.10) Sµ1⊠µ2
(z) := Sµ1(z)Sµ2(z) and Sµ⊠t(z) := Sµ(z)t.

Proposition 4.3. For r 6= 0 the S-transform of the measure µ(p, r) is equal
to

(4.11) Sµ(p,r)(z) =
(1 + z)

1
r − 1

z

(
1 + z

) r−p
r .

Consequently

(4.12) µ(1 + p1, 1)⊠ µ(1 + p2, 1) = µ(1 + p1 + p2, 1),

and more generally

(4.13) µ(p1, r) ⊠ µ(1 + p2, 1) = µ(p1 + rp2, r).

We have also

(4.14) µ(1 + p, 1)⊠t = µ(1 + tp, 1).

Proof. Formula (4.11) is a consequence of (3.12). In particular

(4.15) Sµ(1+p,1)(z) = (1 + z)−p

which leads to (4.12), (4.13) and (4.14). �

2. The boolean convolution µ1 ⊎ µ2 and the boolean power µ⊎t, t > 0, (see
[14, 3]) can be defined by putting

1

Mµ1⊎µ2(z)
=

1

Mµ1(z)
+

1

Mµ2(z)
− 1,(4.16)

Mµ⊎t(z) =
Mµ(z)

(1− t)Mµ(z) + t
.(4.17)

Comparing this with definition (3.7) we get

Proposition 4.4. For p, t ∈ R we have

(4.18) µ(p, 1)⊎t = ν(p, 0, t). �

3. Monotonic convolution (see [10]) is an associative, noncommuting operation
⊲ which is defined by: µ1 ⊲ µ2 = µ iff

(4.19) Mµ(z) = Mµ1

(
zMµ2(z)

)
·Mµ2(z).

Then (3.4) and (3.10) yield

Proposition 4.5. For any parameters a, b, r, t ∈ R we have

µ(a, b) ⊲ µ(a+ r, r) = µ(a+ r, b+ r),(4.20)

ν(a, b, t) ⊲ µ(a+ r, r) = ν(a+ r, b+ r, t). �(4.21)
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In the next section we are going to study which of the probability quasi-
measures µ(p, r) and ν(p, r, t) are actually probability measures. For this pur-
pose we will use some of the the following facts, which are available in literature
(see [15, 11, 14, 10, 6, 7]): The class of all compactly supported probability mea-
sures on R is closed under the free, boolean, and monotonic convolution and
also under taking the powers µ⊞s, µ⊎t, for s ≥ 1, t > 0. Moreover, the class of
probability measures with compact support contained in [0,∞) is closed under
the free, multiplicative free, boolean and monotonic convolution and also under
taking the powers µ⊞s, µ⊠s and µ⊎t for s ≥ 1 and t > 0.
A probability measure µ on R (resp. on [0,∞)) is called ⊞-infinitely divisible
(resp. ⊠-infinitely divisible) if µ⊞t (resp. µ⊠t) is a probability measure for
every t > 0. If µ has compact support and rm(µ) are its free cumulants then
µ is ⊞-infinitely divisible if and only if the sequence {rm+2(µ)}∞m=0 is positive
definite.

5. Positivity

The aim of this section is to study which of the quasi measures µ(p, r) and
ν(p, r, t) are actually measures, i.e. for which parameters p, r, t ∈ R the corre-
sponding sequence is positive definite. We start with

Theorem 5.1. If p ≥ 1, 0 ≤ r ≤ p then {Am(p, r)}∞m=0 is the moment sequence
of a probability measure µ(p, r) with a compact support contained in [0,∞). If
p ≤ 0, p−1 ≤ r ≤ 0 then µ(p, r) is a probability measure which is the reflection
of µ(1− p,−r).
Proof. We know already that π̃ = µ(2, 1) is the free Poisson law (1.1). Then,
as was noted in [1], π̃ is ⊠-infinitely divisible and for s > 0 we have π⊠s =
µ(1+s, 1). Hence if p ≥ 1 then µ(p, 1) is a probability measure with a compact
support contained in [0,∞). By (2.3) it implies that the sequence Am(p, p) =
Am+1(p, 1) is also positive definite, namely we have

∫

R

f(x) dµ(p, p)(x) =

∫

R

f(x)x dµ(p, 1)(x)

for any continuous function f on R. Hence µ(p, p), p ≥ 1, is a probability
measure with a compact support contained in [0,∞). For 1 ≤ r ≤ p we apply
(4.13) to obtain:

µ(p, r) = µ(r, r) ⊠ µ(p/r, 1),

which proves the first statement for the sector 1 ≤ r ≤ p.
For r ∈ (0, 1) the measure µ(1, r) is related to the Euler beta function

(5.1) B(a, b) :=

∫ 1

0

xa−1(1 − x)b−1 dx.

We will use its well known properties: B(a, 1 − a) = π
sin aπ and B(a, b) =

a−1
a+b−1B(a− 1, b). If we define probability measure

(5.2) µr :=
sinπr

π
xr−1(1− x)−r dx
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on [0, 1] then we have
∫

R

xm dµr(x) =
sinπr

π
B(m+ r, 1− r) =

m∏

k=1

r + i− 1

i
= Am(1, r).

which means that µ(1, r) = µr. Now for s ≥ 0 we have

µ(1 + rs, r) = µ(1, r)⊠ µ(1 + s, 1),

which proves the first statement for (p, r) ∈ [1,+∞)× (0, 1). It remains to note
that µ(p, 0) = δ0 for every p ∈ R.
The second statement is a consequence of (4.4). �

We conjecture that the last theorem fully characterizes the set of parameters
p, r ∈ R for which µ(p, r) is a measure (apart from the trivial case µ(p, 0) = δ0).
It is easy to check that A0(p, r)A2(p, r) − A1(p, r)2 = r(2p − 1 − r)/2, hence
a necessary condition for positive definiteness of the sequence Am(p, r) is that
r(2p− 1− r) ≥ 0.

Remark. According to Penson and Solomon [12]:

(5.3) µ(3, 1) =
6
√

108
[
21/3

(
27 + 3

√
81− 12x

)2/3 − 6x1/3
]

12πx2/3(27 + 3
√

81− 12x)1/3
dx

on [0, 27/4]. More generally, for µ(p, 1) with p ∈ N we refer to [8].

Corollary 5.1. If either 0 ≤ 2r ≤ p, r+ 1 ≤ p or p ≤ 2r+ 1, p ≤ r ≤ 0 then
µ(p, r) is ⊞-infinitely divisible.

Proof. By Theorem 13.16 in [11], a compactly supported probability measure µ,
with free cumulants rm(µ), is ⊞-infinitely divisible if and only if the sequence
{rm+2(µ)}∞m=0 is positive definite. Then it is sufficient to refer to (4.8) and
to note that the numbers Am+2(p − r, r) are the moments of the measure
x2 dµ(p− r, r)(x). �

Corollary 5.2. If 0 ≤ r ≤ p− 1, t > 0 then ν(p, r, t) is a probability measure
with a compact support contained in [0,+∞). If p ≤ 1 + r ≤ 0, t < 1 then
ν(p, r, t) is a probability measure which is the reflection of ν(1−p,−1−r, 1− t).
In particular, if either 0 ≤ r ≤ p − 1 or p ≤ 1 + r ≤ 0 then the sequence{(
mp+r
m

)}∞
m=0

is positive definite.

Proof. For 0 ≤ r ≤ p− 1, t > 0 we apply (4.21) and (4.18):

ν(p, r, t) = ν(p− r, 0, t) ⊲ µ(p, r) = µ(p− r, 1)⊎t ⊲ µ(p, r)

and Theorem 5.1. Then we use (4.5). �

A measure ν on R is called symmetric if ν̂ = ν. For a probability quasi-measure
µ define its symmetrization µs by Mµs(z) := Mµ

(
z2
)
. If µ is a probability

measure with support contained in [0,∞) then µs is a symmetric measure on
R, which satisfies

∫
R
f(t2) dµs(t) =

∫
R
f(t) dµ(t) for every compactly supported

continuous function on R. Denote by µs(p, r) and νs(p, r, t) the symmetrization

Documenta Mathematica 15 (2010) 939–955



950 Wojciech M lotkowski

of µ(p, r) and ν(p, r, t). Then, by (3.4) and (4.9), for the free additive transform
we have

(5.4) Rµs(p,r)(z) = Bp−2r
(
z2
)r − 1.

In the same way as Corollary 5.2 one can prove

Corollary 5.3. If p ≥ 1, 0 ≤ r ≤ p then µs(p, r) is a symmetric probability
measure on R. Moreover, if p − 2r ≥ 1 and 0 ≤ 3r ≤ p then µs(p, r) is
⊞-infinitely divisible. �

Let us record some formulas:

µs(p, 1)⊎t = νs(p, 0, t),(5.5)

µs(a, b) ⊲ µs(a+ 2r, r) = µs(a+ 2r, b+ r),(5.6)

νs(a, b, t) ⊲ µs(a+ 2r, r) = νs(a+ 2r, b+ r, t).(5.7)

5.1. Picture for µ(p, r).
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Here we illustrate the main results concerning the measures µ(p, r).

(1) If µ(p, r) is a probability measure then r(2p− 1− r) ≥ 0 (the right-top
and left-bottom sector between the p-axis and the line r = 2p− 1),

(2) Σ+ (including Σ⊞∞
+ and Σ⊞∞

s ): µ(p, r) is a probability measure with a
compact support contained in [0,∞),

(3) Σ− (including Σ⊞∞
− ): µ(p, r) is a probability measure, the reflection of

µ(1− p,−r),
(4) Σ⊞∞

+ ∪Σ⊞∞
− (including Σ⊞∞

s ): µ(p, r) is ⊞-infinitely divisible,

(5) Σ⊞∞
s : the symmetrization of µ(p, r) is ⊞-infinitely divisible.
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6. Dilations

For a probability quasi-measure µ we define its dilation with parameter c > 0
by (Dcµ)(xm) := cmµ(xm). Then for the moment generating function we have:
MDcµ(z) = Mµ(cz) and similarly for the free R-transform: RDcµ(z) = Rµ(cz),
while for the S-transform we have SDcµ(z) = 1

cSµ(z). If µ is proper then we

have (Dcµ)(X) = µ
(
1
cX
)

for every Borel subset X of R. In this part we are
going to study dilations of the measures µ(p, r) and ν(p, r, t) and their limits
as the parameter goes to 0.
For h ≥ 0 and a, p, r ∈ R define sequences

(
a

m

)

h

:=
1

m!

m−1∏

i=0

(a− ih),(6.1)

Am(p, r, h) :=
r

m!

m−1∏

i=1

(mp+ r − ih),(6.2)

with A0(p, r, h) := 1. In particular Am(p, r, h) = r
mp+r

(
mp+r
m

)
h

whenever mp+

r 6= 0. Then, for h ≥ 0 and p, r, t ∈ R define probability quasi-measures:

µ(p, r, h)(xm) := Am(p, r, h),(6.3)

ν(p, r, t, h)(xm) :=

m∑

k=0

Am−k(p, k(p− h) + r, h)tk.(6.4)

and their moment generating functions Bp,r,h(z) and Dp,r,t,h(z) respectively.
Note that if h > 0 then Am(p, r, h) = hmAm(p/h, r/h) and hence these proba-
bility quasi measures can be represented as dilations:

µ(p, r, h) = Dhµ(p/h, r/h),(6.5)

ν(p, r, t, h) = Dhν(p/h, r/h, t/h).(6.6)

Therefore the corresponding moment generating functions are

Bp,r,h(z) = Bp/h(hz)r/h,(6.7)

Dp,r,t,h(z) = Dp/h,r/h,t/h(hz) =
hBp,h+r,h(z)

(h− t)Bp,h,h(z) + t
.(6.8)

These formulas allow us to derive properties of the probability quasi-measures
µ(p, r, h) and ν(p, r, t, h) directly from our previous results when h > 0, and,
after taking the limit with h→ 0, for h = 0.

Proposition 6.1. For h > 0 and p, r, t ∈ R

Bp,h,h(z) = 1 + zhBp,p,h(z),(6.9)

log (Bp,1,0(z)) = zBp,p,0(z),(6.10)

Dp,r,t,0(z) =
Bp,r,0(z)

1− ztBp,p,0(z)
.(6.11)
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Proof. First formula is a consequence of (3.3) and (6.7). Then we have

Bp,1,h(z)h − 1

h
=
Bp,h,h(z)− 1

h
= zBp,p,h(z).

Taking the limit with h→ 0 we obtain (6.10).
For (6.11) we write use (6.8) and (6.9) to get

1

h

[
(h− t)Bp,h,h(z) + t

]
= 1− (t− h)

Bp,h,h(z)− 1

h
= 1− (t− h)zBp,p,h(z)

and then we take limit with h→ 0. �

Proposition 6.2. For h ≥ 0 and p, r, s ∈ R we have

(6.12) Bp−r,s,h (zBp,r,h(z)) = Bp,s,h(z). �

Proposition 6.3. For h ≥ 0 and p, r ∈ R we have

(6.13) ν(p, r, p, h)(xm) =

(
mp+ r

m

)

h

.

Proof. For h > 0 the formula is a consequence of (6.6). Then we take limit
with h→ 0. �

Proposition 6.4. For h ≥ 0 and p, r, t ∈ R we have

̂µ(p, r, h) = µ(h− p,−r, h),(6.14)

̂ν(p, r, t, h) = ν(h− p,−h− r, h− t, h).(6.15)

Proof. First we note that Am(p, r, h)(−1)m = Am(h − p,−r, h) and then we
apply (6.8) and (3.14). �

Proposition 6.5. For the free transforms we have

Rµ(p,r,h)(z) = Bp−r,r,h(z)− 1(6.16)

Sµ(p,r,h)(z) =
(1 + z)h/r − 1

hz
(1 + z)(r−p)/r for h > 0,(6.17)

Sµ(p,r,0)(z) =
log(1 + z)

rz
(1 + z)(r−p)/r,(6.18)

Sν(p,0,t,0)(z) =
1

t
e

−pz
t(1+z) .(6.19)

In particular ν(p, 0, t, 0) = Dt

(
ν(1, 0, 1, 0)⊠p/t

)
.

Proof. Formulas (6.16), (6.17) are consequences of (6.7), (4.11) and (6.12).
Therefore, for h > 0 we have

(6.20) Bp,r,h
(

(1 + z)h/r − 1

h
(1 + z)−p/r

)
= 1 + z,

which leads to

(6.21) Bp,r,0
(

log(1 + z)

r(1 + z)p/r

)
= 1 + z
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and to (6.18). In particular, substituting (1 + z) 7→ e
pz

t(1+z) , we have

(6.22) Bp,p,0
(

z

t(1 + z)
e

−pz
t(1+z)

)
= e

pz
t(1+z)

which, combined with (6.11) gives

�(6.23) Dp,0,t,0
(

z

t(1 + z)
e

−pz
t(1+z)

)
=

1

1− z
1+z

= 1 + z.

Proposition 6.6. For h > 0 and p, t ∈ R we have

µ(p, h, h)⊎t = ν(p, 0, th, h),(6.24)

ν(p, 0, 1, 0)⊎t = ν(p, 0, t, 0).(6.25)

Proof. Since Bp,0,0(z) = 1, formula (6.25) is a consequence of (6.11). �

Proposition 6.7. For h ≥ 0, t > 0, a, b ∈ R we have

µ(a, b, h) ⊲ µ(a+ r, r, h) = µ(a+ r, b+ r, h),(6.26)

ν(a, b, t, h) ⊲ µ(a+ r, r, h) = ν(a+ r, b+ r, t, h). �(6.27)

Proposition 6.8. Assume that h ≥ 0.
1. If p ≥ h and 0 ≤ r ≤ p then µ(p, r, h) is a probability measure with support
contained in [0,∞). If p ≤ 0, p − h ≤ r ≤ 0 then µ(p, r, h) is a probability
measure which is the reflection of µ(h− p,−r, h).
2. If either 0 ≤ 2r ≤ p, r + h ≤ p or p ≤ 2r + h, p ≤ r ≤ 0 then µ(p, r, h) is
⊞-infinitely divisible.
3. If 0 ≤ r ≤ p − h, t > 0 then ν(p, r, t, h) is a probability measure with a
compact support contained in [0,+∞). If p ≤ h+ r ≤ 0, t < h then ν(p, r, t, h)
is a probability measure which is the reflection of ν(h− p,−h− r, h− t, h)
In particular, if either 0 ≤ r ≤ p − h or p ≤ h + r ≤ 0 then the sequence{(
mp+r
m

)
h

}∞
m=0

is positive definite. �

We conclude with some remarks on the probability measure ν0 := ν(1, 0, 1, 0),

for which the moments are ν0(xm) =
(
m
m

)
0

= mm

m! . From (4.9), (6.19) we have

Sν0(z) = e
−z
1+z ,(6.28)

Rν0
(
ze

−z
1+z

)
= z,(6.29)

Mν0

( z

1 + z
e

−z
1+z

)
= 1 + z.(6.30)

Theorem 6.1. The sequence
{
mm

m!

}∞
m=0

is positive definite and the correspond-

ing probability measure ν0 has compact support contained in [0, e]. Moreover,
ν0 is ⊠-infinitely divisible.

Proof. First observe that limm→∞ m

√
mm

m! = e, which implies that the support

of ν0 is contained in [0, e]. Now we recall (see Theorem 3.7.3 in [2]) that a
probability measure µ with support contained in [0,∞) is ⊠-infinite divisible if
and only if the function Σµ(z) := Sµ

(
z(1− z)−1

)
can be expressed as Σµ(z) =
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ev(z), where v : C \ [0,∞) 7→ C is analytic, satisfies v(z) = v(z) and maps the
upper half-plane C+ into the lower half-plane C−. In our case Σν0(z) = e−z

and the function v(z) = −z does satisfy these assumptions. �

Let us briefly reconstruct the way we have obtained the measure ν0. We started
with π̃ = µ(2, 1, 1), the free Poisson measure. Then

µ(p, h, h) = Dhµ(p/h, 1, 1) = Dh

(
π̃⊠ p

h−1
)
,

so putting h = 1/n, p = 1 and using (6.24) with t = 1/h = n we have

(6.31)
(

D 1
n

(
π̃⊠n−1

))⊎n
−→ ν0, with n→∞,

where the convergence here means that the m-th moment of
(

D 1
n

(
π̃⊠n−1))⊎n

tends to mm

m! . Note also that from (6.29) one can calculate free cumulants of

ν0: r1 = 1, r2 = 1, r3 = 1
2 , r4 = −1

3 . Since r4 < 0, the measure ν0 is not
⊞-infinitely divisible.
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Abstract. We prove that the classifying stack of an reductive group
scheme over a field is very close to being proper. Using this we prove
a result about isotrivial families of varieties. Fix a polarized variety
with reductive automorphism group. To prove that every isotrivial
family with this fibre has a rational section it suffices to prove this
when the base is projective, i.e., the discriminant of the family is
empty.

1. Introduction

Consider an algebraic stack of the form [Spec(k)/G] where G is a geometrically
reductive group scheme over a field k. It turns out that such a stack is nearly
proper, see Proposition 2.5.1. Our proof of this uses ideas very similar to those
used by Totaro and Edidin-Graham in their work on equivariant Chow theory.
It seems the application of these ideas here is novel.

Next, consider a pair (V,L) consisting of a projective variety V over k and an
invertible sheaf. Also, fix an integer d ≥ 1. We would like to know if every
d-dimensional family of polarized varieties X → S, N ∈ Pic(X), all of whose
fibres are isomorphic to (V,L), has a rational section. For example this is true
if V is a nodal plane cubic.

Theorem 1.0.1. (See Theorem 2.2.3 which is slightly more general.) Assume
G = Aut(V,L) is geometrically reductive. If X → S has a rational section
whenever S is a projective variety of dimension d then there is a rational section
whenever S is a quasi-projective variety, provided dimS ≤ d.

1J. Starr was supported by NSF grants DMS-0846972, DMS-0758521 and DMS-0734178.
A. J. de Jong was supported by NSF grants DMS-0600425 and DMS-0554442.
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Loosely speaking this means that if you prove the existence of rational sections
whenever the discriminant is empty then you prove it in general. For example,
it implies that if you are trying to find rational sections of families of polarized
homogenous varieties over surfaces then it suffices to do so in the case of families
of homogenous varieties over projective nonsingular surfaces. Our proof of this
theorem depends on the result on GIT-stacks mentioned above.

In a forthcoming article, joint with Xuhua He, we use this to prove that certain
families of polarized homogeneous varieties over surfaces always have rational
sections. This is the crucial step in resolving Serre’s “Conjecture II” over
function fields of surfaces, cf. [Ser02, p. 137], and also gives a proof of the first
author’s Period-Index Theorem, cf. [dJ04], valid in arbitrary characteristic
(another proof valid in arbitrary characteristic was proved independently by
Max Lieblich, who also proved some beautiful extensions, cf. [Lie08]).

2. Isotrivial families

The title of this section is a little misleading as usually one thinks of an isotrivial
family as having finite monodromy. As the reader will see such families are
certainly examples to which our discussion applies, but we also allow for a
positive dimensional structure group. The families will be isotrivial in the sense
that the fibres over a Zariski open will be all isomorphic to a fixed variety V .

2.1. Generalities on Isom. Let U be a base scheme. Let f : X → U and
g : Y → U be proper, flat morphisms. Let N be an f -ample invertible sheaf
on X , and let L be a g-ample invertible sheaf on Y . Consider the functor that
associates to a scheme T → U over U the set of pairs (φ, α), where φ : XT → YT
is an isomorphism over T and α : φ∗LT → NT is an isomorphism of invertible
sheaves. This functor is representable, see [Gro62, No. 221-19, §4.c], [Gro63,
Corollaire 7.7.8], and [LMB00, Théorème 4.6.2.1]. We will call the representing
U -scheme IsomU ((X,N ), (Y,L)).

In fact this U -scheme is affine over U . To see this, it is first convenient to
change L and N . For every integer N > 0 there is an obvious morphism

IsomU ((X,N ), (Y,L))→ IsomU ((X,NN ), (Y,LN )).

It is straightforward to verify that this morphism is finite. Therefore we can re-
duce to the case that L and N are relatively very ample and also have vanishing
higher direct images. Then the natural map

IsomU ((X,N ), (Y,L))→ IsomU (f∗N , g∗L)

is a closed immersion whose target is clearly affine over U , cf. [Gro63, 7.7.8,
7.7.9].

2.2. Statement of the result. Let k be an algebraically closed field of any
characteristic. We assume given a projective scheme V over k and an ample
invertible sheaf L over V . We let m = dimV . We introduce another integer
d ≥ 1 which will be an upper bound for the dimension of the base of our
families. We are going to ask the following question: Is it true that for any
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polarized family of schemes over a ≤ d-dimensional base whose general fibre is
V , there is a rational point on the generic fibre? We make this more precise as
follows.

Situation 2.2.1. Here we are given a triple (K/k,X → S,N ), with the fol-
lowing properties: (a) The field K is an algebraically closed field extension of
k. (b) The map X → S is a proper morphism to a projective variety S over
K. (c) The dimension of S is at most d. (d) We are given an invertible sheaf
N on X . (e) For a general point s ∈ S(K) we have (Xs,Ns) ∼= (VK ,LK).

The notation (VK ,LK) refers to the base change of the pair (V,L) to Spec K.
Part (e) means that there exists a nonempty Zariski open U ⊂ S over which
the morphism is flat and such that (Xs,Ns) ∼= (VK ,LK) as pairs over K for all
s ∈ U . We will see in Lemma 2.3.2 that this implies IsomU ((X,N ), (VU ,LU ))
is a torsor, hence all geometric fibres of X → S over U are isomorphic to a
suitable base change of V .

Question 2.2.2. Suppose we are in Situation 2.2.1. Is there a rational point
on the generic fibre of X → S? In other words: Is X(K(S)) not empty?

A natural problem that arises when studying this question is the possibility
of bad fibres in the family X → S. Let us define the discriminant ∆ of a
family (K/k,X → S,N ) as in Situation 2.2.1 as the Zariski closure of the set
of points s ∈ S(K) such that (Xs,Ls) is not isomorphic to (VK ,LK). A priori
the codimension of (the closure of) ∆ is assumed ≥ 1, and typically it will be 1.
In this section we show that it often suffices to answer Question 2.2.2 in cases
where the codimension of ∆ is bigger, at least as long as we are answering the
question for all families.

It is not surprising that the automorphism group G of the pair (V,L) is an
important invariant of the situation. The group scheme G has T -valued points
which are pairs (φ, α), where φ : VT → VT is an automorphism of schemes
over T , and α : φ∗LT → LT is an isomorphism of invertible sheaves. It is
representable by Subsection 2.1. The group law is given by (φ, α) · (ψ, β) =
(φ ◦ ψ, β ◦ ψ∗(α)). And G is an affine group scheme over k. In the following
theorem G◦red denotes the reduction of the identity component of G. Note that
G◦red is a smooth affine group scheme (since k is algebraically closed, and hence
perfect).

Theorem 2.2.3. Fix (V,L) and d as above. Assume that G◦red is reductive.
If the answer to Question 2.2.2 is yes whenever ∆ = ∅, then the answer to
Question 2.2.2 is yes in all cases.

The proof has 2 parts: deformation and specialization. The deformation ar-
gument proves the following: For every triple (K/k,X → S,N ), there is a
dense open subset U ⊂ S and a deformation of (XU → U,N|XU ) to a triple
(K ′/k,X ′ → S′,N ′) with trivial discriminant. The specialization argument
proves the following: Every rational point of the generic fiber of X ′ → S′ spe-
cializes to a rational point of the generic fiber of X → S. Thus Question 2.2.2
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has a positive answer for (K/k,X → S,N ) if it has a positive answer for
(K ′/k,X ′ → S′,N ′).

2.3. A bijective correspondence. To deform the pair (XU → U,N|XU ),
it is convenient to first convert the pair into a G-torsor over U , deform the
torsor, and then convert this back into a triple. This subsection describes how
to convert between pairs and G-torsors. As in subsection 2.2, denote by G
the automorphism group scheme of (V,L). Following is a quick proof of a
well-known result about homogeneous spaces.

Lemma 2.3.1. Let Γ be a finite type group scheme over k acting on a nonempty,
reduced, finite type k-scheme X. If the induced morphism

Ψ : Γ×Spec k X → X ×Spec k X, (g, x) 7→ (g · x, x)

is surjective on geometric points, then it is flat so that X is a homogeneous
space under Γ. If, moreover, Γ is smooth over k, then also X is smooth over
k.

Proof. By [Gro67, Théorème 11.1.1], the set U of points in Γ×Spec kX at which
Ψ is flat is open. The morphism Ψ is equivariant for the Γ×Spec k Γ-actions,

(Γ×Spec kΓ)×Spec k(Γ×Spec kX)→ Γ×Spec kX, (γ′, γ)·(g, x) := (γ′gγ−1, γ ·x),

(Γ×Spec kΓ)×Spec k(X×Spec kX)→ X×Spec kX, (γ′, γ)·(x′, x) := (γ′ ·x′, γ ·x).

Therefore U is (Γ ×Spec k Γ)-invariant. Every invariant subset of Γ ×Spec k X
is of the form Γ×Spec k V for a Γ-invariant subset V of X . Since X ×Spec k X
is reduced, Ψ is flat at every point of Γ ×Spec k X mapping to a generic point
of X ×Spec k X . And such points exist by the hypothesis that Ψ is surjective.
Therefore U is nonempty, i.e., V is nonempty. Finally, by the hypothesis that
Ψ is surjective, the only nonempty, Γ-invariant open subset V of X is V = X .
Therefore U equals Γ×Spec k X , i.e., Ψ is flat.

Finally, assume that Γ is smooth over k. For any k-point x of X (which exists
since X is nonempty), the induced morphism

Ψx : Γ→ X, g 7→ g · x
is flat, since it is the base change of Ψ by the morphism

X 7→ X ×Spec k X, x
′ 7→ (x′, x).

Therefore, by [Gro67, Proposition 17.7.7], X is smooth over k. �

Lemma 2.3.2. Let U be a k-scheme. Let (X → U,N ) be a pair where X → U
is a flat proper morphism and N is an invertible sheaf on X. Assume that the
geometric fiber of (X,N ) over U is isomorphic to the base change of (V,L) for
a dense set of geometric points of U . Also assume that U is reduced. Then the
scheme T := IsomU ((X,N ), (V,L)), with its natural G-action, is a G-torsor
over U .
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Proof. It suffices to prove that (X,N ) is locally in the fppf topology of U
isomorphic to the constant family (V,L) × U . To prove this we need some
notation.

Take N so large that LN is very ample on V and has vanishing higher cohomol-
ogy groups. Let n = dim Γ(V,LN ). A choice of basis of Γ(V,LN ) determines
a closed immersion i : V → Pn−1. This determines a point [i] of the Hilbert
scheme Hilb = HilbPn−1

/k
. The smooth algebraic group PGLn acts on Hilb,

and we denote by Z the orbit of [i], which is a locally closed subscheme of
Hilb. By Lemma 2.3.1, Z is a smooth scheme and the morphism PGLn → Z
associated to any k-point of Z is flat. By construction the pullback of the
universal family over Z to PGLn is canonically isomorphic to V ×PGLn, and
the invertible sheaf O(1) pulls back to LN ⊠O.

The question is local on U so we may assume that U is affine. By our choice of
N above, the invertible sheaf NN is very ample on every fibre of X over U with
vanishing higher cohomology groups. Hence after possibly shrinking U we can
find a closed immersion X → Pn−1

U which restricts to the embedding given by
the full linear series of NN on every geometric fibre. Consider the associated
moduli map m : U → Hilb. Since U is reduced, and since each pair (Xs,Ns)
for a dense set of geometric points s is isomorphic to a base change of (V,L),
we see that m(U) ⊂ Z.

This implies there is some surjective flat morphism U ′ → U and an U ′-
isomorphism X ′ ∼= V × U ′ with the property that NN pulls back to LN . The
fiber product U ′ = U ×Z PGLn parameterizes points of U together with an
autmorphism of Pn transforming the fiber of X isomorphically to i(V ). Since
PGLn → Z is surjective and flat, U ′ → U is also surjective and flat. To finish,
do the same thing for N + 1 to get some U ′′ → U . Then over U ′′′ := U ′×U U ′′
there is an isomorphism of the pullback of (X,N ) and the base change of (V,L).
This proves the result. �

Conversely, given a left G-torsor T over U we will construct a flat proper
family of varieties X → U and an invertible sheaf N on X such that
IsomU ((X,N ), (VU ,LU )) is isomorphic to T . Of course it will turn out that X
equals (V × T )/G (as an fppf sheaf), but we need to prove this is a scheme.

The structure morphism π : T → U is a flat surjective morphism of finite type.
We are going to descend the constant family V ×T to U using a descent datum

φ : V × T ×U T → V × T ×U T .
Before we describe the descent datum, we recall that the map

Ψ : G× T → T ×U T , (g, t) 7→ (g · t, t)
is an isomorphism. Also, let us denote m : V × G → V the map (v, g) 7→ gv,
where gv denote the natural action of g ∈ G on v ∈ V . Finally, we take

φ = IdV ×Ψ ◦m× IdT ◦ (IdV ×Ψ)−1.
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To verify the cocycle condition on T ×U T ×U T , we can think of φ as the
map (v, gt, t) 7→ (g−1v, gt, t). If on V × T ×U T ×U T we have a point
(v, g1g2t, g2t, t) then pr∗23(φ)(v, g1g2t, g2t, t) = (g2v, g1g2t, g2t, t) and pr∗12(φ) ◦
pr∗23(φ)(v, g1g2t, g2t, t) = (g1g2v, g1g2t, g2t, t) and pr∗13(φ)(v, g1g2t, g2t, t) =
((g1g2)v, g1g2t, g2t, t). Thus pr∗13(φ) = pr∗12(φ) ◦ pr∗23(φ) as desired.

Because all the maps in question lift canonically to the invertible ample sheaf
L this actually defines a descent datum on the pair (V,L) for T → U . As
L is ample, this descent datum is effective, cf. [Gro62, No. 190, §B.1]. Thus
there exists a pair (X → U,N ) over U and an isomorphism δ : T ×U (X,N )→
T × (V,L) such that φ equals pr∗1δ ◦ pr∗2δ

−1.

Conclusion 2.3.3. The above constructions give a bijective correspondence
between pairs (X → U,N ) and left G-torsors over U in case U is a reduced
scheme over k.

Remark 2.3.4. The construction of the family (X,N )/U starting from the
torsor T works more generally when k is a ring as long as: (1) V is a flat
projective scheme of finite presentation over k, (2) L is ample, and (3) the
automorphism group scheme G = Aut(V,L) is flat over k.

2.4. Deforming torsors over a Henselian DVR. Before proving The-
orem 2.2.3, it is useful to say what is known without the hypothesis that G
is reductive. We thank Ofer Gabber, Jean-Louis Colliot-Thélène and Max
Lieblich for explaining the following proposition.

Proposition 2.4.1. Let R be a Henselian DVR with residue field k, and let G
be a flat separated group scheme of finite type over Spec R. Every torsor for
the closed fiber Gk over Spec k is the closed fiber of a torsor for G over Spec R.

Proof. We first give a proof when G is affine which is all we will use in this
paper. The usual proof that every affine group scheme over a field is linear
extends to affine, flat group schemes over a DVR, see [ABD+65, Exposé VIB,
Remarque 11.11.1]. Choose a closed immersion G→ GLn,R. The quotient fppf
sheaf X = GLn,R/G is an algebraic space over R, cf. [Art74, Corollary 6.3].
In fact, by [Ana73, Proposition 3.4.2], there exists an fpqc cover Spec R′ →
Spec R such that the pullback Spec R′×Spec RX is a scheme. After base change
to R′, by [ABD+65, Exposé VIA, Proposition 9.2] the quotient morphism

GLn,R′ → Spec R′ ×Spec R X

is faithfully flat, in fact is a G-torsor, and Spec R′ ×Spec R X is smooth over
R′ . But each of these statements (in the category of algebraic spaces) can be
checked after faithfully flat base change. Thus also GLn,R → X is faithfully
flat, in fact a G-torsor, and X is smooth over R. Since H1(k,GLn,k) = {1}, any
torsor for Gk is the fibre of the map GLn,k → Xk over a k-point of X . Since R
is Henselian and since X is smooth, the map X(R)→ X(k) is surjective, and
hence every Gk-torsor lifts.
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In the general case, i.e., when G is not necessarily affine, we argue as fol-
lows. By [LMB00, Prop. 10.13.1], which relies upon Artin’s criterion for
algebraicity of a stack, the classifying stack BG is an algebraic stack over
Spec R. By [LMB00, Thm. 6.3], for each Gk-torsor there exists an affine R-
scheme X , a smooth morphism φ : X → BG, and a k-point x of X such that
φ(x) corresponds to the given Gk-torsor. Denote by t : Spec R → BG the
1-morphism associated to the trivial G-torsor. Since φ is smooth, the base-
change prR : Spec R ×t,BG,φ X → Spec R is smooth. Since t is a surjective
flat morphism, the base-change, prX : Spec R×t,BG,φX → X is surjective and
flat. By [Gro67, §6.5], it follows that X is smooth over Spec R. Since R is
Henselian and X is smooth over Spec R, X(R)→ X(k) is surjective; in partic-
ular there is an R-morphism Spec R → X extending the given k-point of X .
The composition of this morphism with φ determines a G-torsor over Spec R
whose closed fiber is isomorphic to the given Gk-torsor over Spec k. �

Corollary 2.4.2. Let R be a DVR with residue field k, and let G be a sepa-
rated, finite type, flat group scheme over Spec R. Let U be a finite type, integral
k-scheme, and let TU → U be a Gk-torsor. There exists an integral, flat, quasi-
projective R-scheme Y , with nonempty special fibre Yk, a G-torsor T → Y ,
and an open immersion j : Yk → U such that j∗TU is isomorphic to Tk as
Gk-torsors over Yk.

T

��

Tk

��

oo j // TU

��
Y Ykoo j // U

Proof. First we show there exists an integral, flat, quasi-projective R-scheme Z
and an open immersion j : Zk → U . It suffices to prove this after replacing U by
a dense open subset. Thus first replace U by a dense open affine. And then re-
place U by the regular locus Reg(U) which is open by [Gro67, Corollaire 6.12.5]
and which is dense since it contains the generic point of U (the stalk being a field
since U is integral). In particular this implies that U → Spec k is a local com-
plete intersection morphism, see [Gro67, Proposition 19.3.2]. So after shrink-
ing U some more we may assume that U = Spec k[x1, . . . , xn]/(f1, . . . , fc) is
a complete intersection, i.e., dimU = n − c. At this point we simply put
Z = Spec R[x1, . . . , xn]/(F1, . . . , Fc), where Fi ∈ R[x] lifts fi.

Define R′ to be the local ring of Z at the generic point of Zk. Then R′ is a
Noetherian 1-dimensional local ring. Denote by π a uniformizer of R. Clearly,
π maps into mR′ and R′/πR′ is the function field of Zk, i.e., the function field
of U . Because R′ is R-flat, π is a nonzerodivisor. Thus R′ is a DVR with
residue field K = k(U).

By Proposition 2.4.1, the Gk torsor over R′/πR′ lifts to a G-torsor T h over
the Henselization of R′. By a standard limit argument, this lift exists over an
étale extension R′ → R′′ contained in the Henselization of R′. Note that the
residue field R′′/πR′′ of R′′ is still the function field of U . By a standard limit
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argument, there is an étale morphism Y → Z such that Yk → Zk is an open
immersion and such that R′′ is the local ring of Y at the generic point of Yk.
After replacing Y by an open subscheme, there is a G-torsor T over Y that
pulls back to T h over R′′. We leave it to the reader to see that, after possible
shrinking Y again, this torsor satisfies the conditions of the corollary. �

Corollary 2.4.2 above is a weak version of the deformation principle that we
will establish later on. The remaining issue is whether there exists a datum
(Y → Spec R, T → Y, j : YK → U) such that the generic fiber of Y → Spec R
is projective. Presumably this is not always possible, but in case G is reductive
we will show that it is.

Corollary 2.4.2 can be used to lift problems in char p > 0 to characteristic 0.
Suppose that R is a complete discrete valuation ring with algebraically closed
residue field k. Let Ω be an algebraic closure of the fraction field of R. We
have in mind the case where char(k) = p > char(Ω) = 0. Suppose that VR is a
flat projective R scheme, and that LR is an ample invertible sheaf over VR. We
assume that VΩ and Vk are varieties. Let GR denote the automorphism group
scheme of (VR,LR) over R.

Corollary 2.4.3. Notations and assumptions as above. Fix d ∈ N. Assume
that GR is flat over R. If the answer to Question 2.2.2 is always ”yes” for the
pair (VΩ,LΩ) then the answer is always ”yes” for the pair (Vk,Lk).

Proof. Let (K/k,X → S,N ) be a triple as in Situation 2.2.1 for the pair
(Vk,Lk). Let U be the open subscheme of S over which all geometric fibres
of (X,N ) are isomorophic to the base change of (Vk,Lk). The construction in
Subsection 2.3 gives a corresponding GK-torsor TU over U .

There exists an extension of complete discrete valuation rings R ⊂ R′ such that
the induced extension of residue fields is K/k, see [Gro63, Chapitre 0, 10.3.1].
We apply Corollary 2.4.2 to obtain Y → Spec R′, T → Y and j : YK → U .
According to Conclusion 2.3.3 and Remark 2.3.4 there exists a pair (X ′ →
Y,N ′) over Y whose restriction to YK is isomorphic to (j∗X |U , j∗N|U ).

Let Ω′ be an algebraic closure of the field of fractions Q(R′) of R′. Since
R ⊂ R′ we may and do assume that Ω ⊂ Ω′. Note that we do not know that
the geometric fibre YΩ′ is irreducible. However, our assumptions imply that
X ′ has a Ω′(Y ′)-valued point for every irreducible component Y ′ of YΩ′ . To
conclude we apply the lemma below. �

Lemma 2.4.4. Suppose that R is a DVR with algebraically closed residue field
K. Let Ω be an algebraic closure of Q(R). Let Y → Spec R be a flat, finite type
morphism, X → Y a projective morphism and let ξ ∈ YK . Assume in addition
that (a) ξ is the generic point of an irreducible component C of the scheme
YK , (b) the scheme YK is reduced at ξ, and (c) for every irreducible component
Y ′ of YΩ there exists a Ω(Y ′)-valued point of X. Then X has a K(C)-valued
point.
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Proof. Note that right from the start we may replace R by its completion, and
hence we may assume that R is excellent, cf. [Gro67, Scholie 7.8.3(iii)]. This
will guarantee that the integral closure of R in a finite extension of Q(R) is
finite over R, cf. [Gro67, Scholie 7.8.3(vi)]. (In fact this is not necessary if the
fraction field of R has characteristic 0, cf. [Mat89, Lemma 1, p. 262].)

By hypothesis, and a standard limit argument, there is a section of XΩ → YΩ
over a dense open V ⊂ YΩ, say s : V → XΩ. By a standard limit argument,
there is a finite extension Q(R) ⊂ L such that V and s are defined over L. Let
R′ be the integral closure of R in L. Since R is excellent the extension R ⊂ R′
is a finite extension of DVRs. The residue field of R′ is isomorphic to K as K
is algebraically closed.

By construction the scheme YR′ = Y ×R R′ has special fibre equal to YK . The
local ring O of YR′ at ξ is a DVR. This follows from flatness of YR′/R′ and
property (b), see proof of 2.4.2. Thus the image of Spec Q(O)→ YL is one of
the generic points of YL and hence contained in V . Since XR′ → YR′ is proper,
we see that s|Spec Q(O) extends to a O-valued point of XR′ , and in particular
we obtain a κ(ξ) = K(C)-valued point of (XK)κ(ξ) = XK(C) as desired. �

For example this corollary always applies to the case where (V,L) is the pair
consisting of a Grassmanian and its ample generator.

2.5. Deforming torsors for a reductive group. Under the additional
hypothesis that G is a geometrically reductive linear algebraic group we can
prove a stronger version of Corollary 2.4.2. First we prove that BG is proper
over k in some approximate sense.

Proposition 2.5.1. Let G be a geometrically reductive group scheme over the
field k. For each integer c, there exists a smooth k-scheme X, a smooth mor-
phism φ : X → BG, and an open immersion j : X → X such that

(i) X is a projective k-scheme,
(ii) for every infinite field K and every morphism Spec K → BG, there

exists a lift Spec K → X under φ.
(iii) X −X has codimension ≥ c,

The proof uses geometric invariant theory to construct X ⊂ X̄. With more
care it may be possible to remove the assumption that K is infinite from (ii).

Proof. Step 1. A “nice” projective representation. By definition G
is a linear group scheme. Let V be a finite dimensional k-vector space, and
let ρ′ : G → GL(V ) be a closed immersion of group schemes. Consider ρ :
G → SL(V ⊕ k ⊕ k) defined by ρ(g) = diag(ρ′(g), det(ρ′(g))−1, 1) (diagonal
blocks). Observe that the intersection of Image(ρ) and GmId is the trivial
group scheme. Thus, without loss of generality, assume ρ is a closed embedding
of G into SL(V ) such that Image(ρ) ∩ GmId is the trivial group scheme. In
other words, the induced morphism of group schemes Pρ : G → PGL(V ) is a
closed immmersion.
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Step 2. Making the “non-free” locus have codimension ≥ c. De-
note the dimension of V by n > 1. Let W be a finite-dimensional k-vector
space of dimension c. Denote by H the finite-dimensional k-vector space
Hom(W,Hom(V, V )). There is a linear action σ : GL(V ) × H → H , where
an element g ∈ GL(V ) acts on a linear map h : W → Hom(V, V ) by
σ(g, h)(w) = g ◦ h(w). This restricts to a linear action of G on H .

Step 3. The GIT quotient. The linear action of G on H determines an
action of G on the projective space PH of lines in H . It comes with a natural
linearization of the invertible sheaf L := OPH(1) so that the action of G on
H0(PH,O(1)) = Hom(H, k) is the dual of ρ. Denote by PHss, resp. PHs

(0),

the semistable, resp. properly stable, locus for the action of G on the pair
(PH,L). Denote by X the uniform categorical quotient PHss � G and denote
by p : PHss → X the quotient morphism. These exist by [MFK94, Thm. 1.10,
App. 1.A, App. 1.C]. By the remark on [MFK94, p. 40], X is projective. Also,
some power of L is the pullback under p of an ample invertible sheaf on X .
Thus (i) is satisfied for X.

Step 4. A large open subset of PHss
(0) which is a G-torsor. For every

element w ∈ W − {0}, define Fw to be the homogeneous, degree n polynomial
on H defined by Fw(h) = det(h(w)). For every g ∈ SL(V ),

Fw(σ(g, h)) = det(σ(g, h)(w)) = det(gh(w))
= det(g)det(h(w)) = det(h(w)) = Fw(h).

Thus Fw is invariant for the action of SL(V ). Thinking of Fw as an element
of Γ(PH,O(n)) it is invariant for the action of G. Denote by Hw ⊂ H , resp.
PHw ⊂ PH , the open complement of the zero locus of Fw. By what was
said above, PHw is contained in PHss. The next step is to prove that PHw is
contained in PHs

(0), and, in fact, the geometric quotient PHw → PHw/G is a

G-torsor.

Let W ′ be a subspace of W such that W = span(w)⊕W ′. Denote by H ′ ⊂ H
the subspace H ′ = Hom(W ′,Hom(V, V )). There is a morphism

qw : Hw → GL(V )×H ′, h 7→ (h(w), h(w)−1h|W ′).

The morphism qw is GL(V )-equivariant if we act on GL(V )×H ′ on the first
factor only. There is an inverse morphism

rw : GL(V )×H ′ → Hw

sending a pair (g, h′) to the unique linear map W → Hom(V, V ) such that
w 7→ g and w′ 7→ gh′(w′) for every w′ ∈ W ′. Thus, as a scheme with a left
GL(V )-action, Hw is isomorphic to GL(V ) × H ′. For the same reason, as a
scheme with a PGL(V )-action, PHw is isomorphic to PGL(V )×H ′. Thus the
categorical quotient of PHw by the action of G is the induced morphism PHw →
(PGL(V )/G) × H ′. Now the categorical quotient PGL(V ) → PGL(V )/G,
which is also a geometric quotient, is a G-torsor, see [ABD+65, Exposé VIA,
Théorème 3.2] or [MFK94, Proposition 0.9]. Thus also the categorical quotient
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PHw → (PGL(V )/G) × H ′ is a G-torsor. In particular, the action of G on
PHw is proper and free so that PHw is contained in PHss

(0).

Denote U =
⋃
PHw, where the union is over all w ∈ W − {0}. This is a

G-invariant open subscheme of PHs
(0). Therefore there exists a unique open

subscheme X ⊂ X such that p−1(X) = U . By the last paragraph, p : T → X
is a G-torsor. Since U is smooth and p is flat, by [Gro67, §6.5] also X is smooth.

Step 5. Lifting K-valued points of BG to X, K infinite. Associated
to the G-torsor U over X , there is a 1-morphism φ : X → BG. There are
also morphisms of stacks [H/G] → BG and [PH/G] → BG because BG =
[Spec k/G]. By construction, X is 2-equivalent to an open substack of [PH/G]
as a stack over BG. The morphism [PH/G] → BG is smooth, since PH
is smooth. Hence X → BG is smooth. For every field K and 1-morphism
Spec K → BG, the 2-fibered product Spec K ×BG [H/G] is a K-vector space,
and Spec K×BG [PH/G] is the associated projective space. Thus Spec K×BG
[PH/G] ∼= Pcn

2−1. Finally, Spec K ×BG X is a nonempty open subscheme of

Spec K ×BG [PH/G]. Since K is infinite every dense open subset of Pdn
2−1

K

contains a K-point. This proves (ii).

Step 6. The codimension of X − X is large. Finally, the codimension
of X − X is at least as large as the codimension of PH − U . Choosing a
basis (w1, . . . , wd) for W , PH − U is contained in the common zero locus of
Fw1 , . . . , Fwc , which clearly has codimension c. Therefore X −X has codimen-
sion at least c in X . This proves (iii). �

Corollary 2.5.2. Let the field k and the group scheme G be as in Proposition
2.5.1. Let R be a DVR containing k with residue field K. Let U be a finite
type, integral K-scheme, and let TU → U be a G-torsor. There exists a triple
(Y → Spec R, T → Y, j : YK → U) as in Corollary 2.4.2 with the additional
property that the generic fiber of Y is projective.

Proof. We may assume that dimU > 0. Let c be an integer larger than dim(U).
Let (φ : X → BG,X ⊂ X) be as in Proposition 2.5.1. The torsor TU corre-
sponds to a 1-morphism U → BG. By condition (ii), the base-change morphism
Spec K(U) → BG lifts to a morphism Spec K(U) → X . (Note that K(U) is
infinite since dimU > 0.) After replacing U by a dense open subscheme, this
comes from a morphism f : U → X lifting U → BG. Also, replace U by an
open subscheme that is quasi-projective, say a nonempty open affine. Then
for some positive integer N , there is a locally closed immersion of K-schemes,
f ′ : U → (X × PNk )K such prX ◦ f ′ equals f . Denote by m the codimension of
f ′(U) in (X × PNk )K .

The scheme (X × PNk )R is flat and projective over Spec R. Choose a closed
immersion in PMR for some positive integer M . As in the proof of 2.4.2 we will
use that the scheme U is a local complete intersection at a general point, and
we will use that X is smooth over k. This implies that f ′(U) is dense in a
component of a complete intersection of (X × PNk )K in PMK . More precisely,
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for some positive integer e, there exist homogoneous, degree e polynomials
F1, . . . , Fm on PMK such that the scheme Y K := V(F1, . . . , Fm)∩(X×PNk )K has
pure dimension dim(U) and contains a nonempty open subscheme U ′ that is an

open subscheme of f ′(U). Let F̃1, . . . , F̃c be homogeneous, degree e polynomials
on PMR such that for every i = 1, . . . ,m,

(∗) F̃i ≡ Fi (mod mR).

Denote by Y the zero scheme V(F̃1, . . . , F̃m)∩ (X ×PNk )R. Then Y is flat over
Spec R by Grothendieck’s lemma, see [Mat89, Corollary, p. 179]. The closed
fiber of Y equals Y K . Moreover,

dim((X −X)× PNk )−m ≤ dimX − c+N −m = dim f ′(U)− c < 0.

It is easy to see that the set of all possible choices of F̃i satisfying (∗) forms a
Zariski dense set of points in the relevant vector space of degree e polynomials
over the field of fractions Q(R) of R. Thus the dimension count shows there

exists a choice of F̃1, . . . , F̃c such that Y Q(R) does not intersect
(
(X − X) ×

PNk
)
Q(R)

. In other words, the generic fiber of Y → Spec R is contained in

(X × PNk )Q(R).

Let η be a generic point of Y that specializes to the generic point of U ′. Replace
Y by the closure of η, so that now Y is integral. (Presumably, a suitable
application of Bertini’s theorem could be used to replace this step.) Then Y
is an integral, flat, projective R-scheme, the closed fiber contains U ′ as an
open subscheme, and the generic fiber is contained in Spec R×Spec k (X×PNk ).
Define

Y = Y −
(
Y ×Spec R Spec K − U ′

)
.

This is an integral, flat, quasi-projective R-scheme whose generic fiber is pro-
jective. Moreover, YK equals U ′, which admits a dense, open immersion in S.
Finally, the projection prX : Y → X , and the 1-morphism φ ◦ prX : Y → BG
determine a G-torsor T over Y . By construction, the restriction of this G-
torsor to U ′ is isomorphic to the pullback of TU by the open immersion, as
desired. �

Remark 2.5.3. We remark that we did not claim that the generic fibre of Y →
Spec (R) is geometrically irreducible. Since X is smooth and geometrically

irreducible over k, it seems that with a careful choice of the F̃i and some
additional arguments one can obtain this property as well having YQ(R) smooth
over Q(R).

Next we deduce a corollary to help prove Theorem 2.2.3. Let k be an alge-
braically closed field, and let (V,L) be a pair of a projective k-scheme and
an ample invertible sheaf. Denote by G/k the group scheme G = Aut(V,L).
Let (K/k,X → S,N ) be as in Situation 2.2.1. Denote by G◦red the reduced,
connected component of the identity of G.
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Corollary 2.5.4. Notations as above. Let R be a DVR containing k and
with residue field K. If G◦red is reductive, there exists an integral, flat, quasi-

projective R-scheme Y , a projective, flat morphism f : X̃ → Y , an invertible

sheaf Ñ on X, and an open immersion j : YK → S such that:

(i) every geometric fiber of (X̃, Ñ ) over Y equals the base-change of (V,L),

(ii) the restriction of (X̃, Ñ ) to YK is isomorphic to the pullback of
j∗(X,N ), and

(iii) the generic fiber of Y → Spec R is projective.

In particular, let S′ be an irreducible component of the geometric generic fibre

of Y → Spec R. Then (X̃ → S′, Ñ ) over R is a triple (K ′/k,X ′ → S′,N ′)
with empty discriminant.

Proof. The hypothesis that G◦red is reductive implies that it is a geometrically
reductive group scheme over k by a result of Haboush, see [Hab75] and [MFK94,
Appendix 1.A, p. 191]. Note that G◦red is a closed normal subgroup scheme of
G and that the quotient G/G◦red is a finite group scheme. A finite group scheme
over k is geometrically reductive, and an extension of geometrically reductive
group schemes is reductive, see [Fog69, Exercise, p. 189 and Lemma 5.57, p.
193]. Hence G is geometrically reductive. Thus the result of this Corollary
follows from Corollary 2.5.2 above by applying the bijective correspondence of
Conclusion 2.3.3. �

Proof of Theorem 2.2.3. Let us start with an arbitrary triple (K/k,X →
S,N ). Let R = K[[t]]. So R is Henselian, contains k and has residue field

K. Let X̃ → Y → Spec R and Ñ be as in Corollary 2.5.4. Denote by Ω/k an
algebraic closure of the field of fractions Q(R) of R. Let S′ be any irreducible

component of YΩ and let X ′ = X̃|S′ , N ′ = Ñ |S′ . Thus (Ω/k,X ′ → S′,N ′) is a
triple as in Situation 2.2.1. By construction, this has empty discriminant. By
hypothesis, the generic fiber of X ′ → S′ has a K ′(S′)-point. At this point we
apply Lemma 2.4.4 to conclude. �

3. Simple applications

As mentioned in the introduction, our main application of these results is to
homogeneous spaces over fraction fields, which will appear in a forthcoming
article. But in this section we want to indicate some simple applications of
Theorem 2.2.3.

3.1. Fermat Hypersurfaces. As a first case we take V a Fermat hypersur-

face of degree d in Pd
2−1

V : T d0 + T d1 + . . . T dd2−1 = 0,
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with L = OV (1), say over the complex numbers C. In this case the group
scheme G is an extension of a finite group by Gm so certainly reductive. Con-
sider the following family with general fibre (V,L) over P2:

(∗)
∑

0≤i,j≤d−1
X iY jZ2d−2−i−jT di+dj = 0,

We learned about this family in personal communication with Tom Graber.
This family does not have a rational point over k(P2). The reader may enjoy
finding an elementary proof of this by looking at what it means to have a
polynomial solution to the above. We conclude from Theorem 3.1 that there is
a smooth projective family over a projective surface with every fibre isomorphic
to (V,L), without a rational section. We like this example because it is not
immediately obvious how to write one down explicitly.

There is another reason why the family given by (∗) is interesting. Tsen’s
theorem asserts that, if n ≥ d2 then any degree d hypersurface X ⊂ PnF , where
F is the function field of a surface has a rational point. The authors of this
paper wonder what the obstruction to the existence of a rational point is in

the boundary case, namely degree d in Pd
2−1. One guess is that it is a Brauer

class, i.e., an element α in the Brauer group of F such that for finite extensions
F ′/F one has: X(F ′) 6= ∅ ⇔ α|F ′ = 0. However, the example above shows
that this is not the case.

Namely, in our example F = C(x, y) where x = X/Z and y = Y/Z. Anand
Depokar pointed out that (∗) obtains a rational point over F (ξ) where ξ is a
dth root of a nonzero polynomial of the form

f(x, y) = −
∑

0≤i,j≤d−1,(i,j) 6=(0,0)

ai,jx
iyj .

(Just take T0 = ξ and Ti+jd = a
1/d
i,j .) Let C ⊂ P2 be an irreducible curve, not

the line at infinity Z = 0. Suppose that α ramifies along C. The ramification
data gives a cyclic extension C(C) ⊂ C(C)[g1/d

′

] of degree d′, where 1 < d′|d.
There is a choice of of ai,j such that the rational function f(x, y) restricts to
a rational function on C such that both f |C and g−1f |C are not d′th powers.
(Left to the reader.) Thus the pullback of α to F ′ is still ramified along the
pullback of C to the surface whose function field is C(x, y)(ξ). Contradiction.
Hence C does not exist. However, the only Brauer class on P2 ramified along
a single line is 0.

3.2. Projective spaces. Another case is where we take the pair (V,L) to
be (Pn,O(n + 1)). Note that O(n + 1) = ω−1Pn so the families in question
are canonically polarized, and we are just talking about the problem of hav-
ing nontrivial families of Brauer-Severi varieties. In particular, our theorem
reduces the problem of proving the nullity of the Brauer group of a curve to
the problem of proving the nonexistence of Brauer-Severi varieties having no
rational sections over projective nonsingular curves. As far as we know this is
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not really helpful, since the proof of Tsen’s theorem is pretty straigthforward
anyway. However, it illustrates the idea!
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Abstract. The antithesis of Specker’s theorem from recursive anal-
ysis is further examined from Bishop’s constructive viewpoint, with
particular attention to its passage to subspaces and products. Ishi-
hara’s principle BD-N comes into play in the discussion of products
with the anti-Specker property.
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1 Introduction

This note is set in the framework of BISH—Bishop-style constructive mathe-
matics. For all practical purposes this is mathematics with intuitionistic logic,
an appropriate set theory (such as that described in [1, 2]), and dependent
choice. We assume some familiarity with standard constructive notions such as
inhabited and located ; more on these, and on constructive analysis in general,
can be found in [4, 10].

First, we recall that a sequence (zn)n>1 in a metric space (Z, ρ) is

– eventually bounded away from the point z ∈ Z if there exist N

and δ > 0 such that ρ(z, zn) > δ for all n > N;

– eventually bounded away from the subset X of Z if there exist N
and δ > 0 such that ρ(x, zn) > δ for all x ∈ X and all n > N;

– eventually not in X if there exists N such that zn /∈ X for all n > N.
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We call a metric space Z a one-point extension of a subspace X if Z = X∪{ζ}
for some ζ such that ρ (ζ, X) > 0. Note that the expression “ρ (ζ, X) > 0” is
used, without any implication that the distance from ζ to X exists, as shorthand
for

∃r > 0∀x∈X (ρ(ζ, x) > r) .

If the distance ρ(x, X) exists, we say that X is located in Z.

In an earlier paper [6], we introduced the following (unrelativised)1 anti-
Specker property for X,

AS1
X For some one-point extension Z of X, every sequence in Z

that is eventually bounded away from each point of X is eventually
not in X,

which expresses the antithesis of Specker’s famous theorem of recursion theory
[14]. As is shown in [6], AS1

X is independent of the one-point extension Z with
respect to which it is stated. With classical logic, it is equivalent to the sequen-
tial compactness of X. Relative to BISH, AS1

[0,1] is equivalent to Brouwer’s

fan theorem FTc for so-called “c-bars”[3]; so it is not unreasonable to regard
the anti-Specker property as a serious candidate for the role of constructive
substitute for the classical, and clearly nonconstructive, property of sequential
compactness.

Now if AS1
X is to be a decent substitute for a classical compactness property, we

would expect it to have inheritance properties like those of the standard con-
structive notion of compactness (that is, completeness plus total boundedness).
Thus we might hope to prove that every inhabited, closed, located subspace of
a space with the anti-Specker property would have that same property; that if
an inhabited subspace Y of a metric space has the anti-Specker property, then Y

is closed and located; and that the product of two spaces with the anti-Specker
property has that property. We address such concerns in this paper.2

2 Anti-Specker for subspaces

For the proof of our first result we need a surprisingly useful result in con-
structive analysis, Bishop’s lemma: If Y is an inhabited, complete, located
subset of a metric space X, then for each x ∈ X there exists y ∈ Y such that if
ρ(x, y) > 0, then ρ(x, Y) > 0 ([4], page 92, Lemma (3.8)).

Proposition 1 Let X be a metric space with the property AS1
X, and let Y be

an inhabited, complete, located subspace of A. Then AS1
Y holds.

1There is a more general, relativised, anti-Specker property; see [3, 6].
2Some related work is found in [6, 7, 9]. For example, Proposition 10 of [9] tells us that

the anti-Specker property is preserved by pointwise continuous mappings.
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Proof. Fix a one-point extension Z ≡ X∪ {ζ} of X; then Y ∪ {ζ} is a one-point
extension of Y. Consider a sequence (wn)n>1 in Y ∪ {ζ} that is eventually
bounded away from each point of Y. Given x ∈ X, we show that (wn)n>1

is eventually bounded away from x. By Bishop’s lemma, there exists y ∈ Y

such that if ρ (x, y) > 0, then ρ(x, Y) > 0. Choose N and δ > 0 such that
ρ (wn, y) > δ for all n > N. Either ρ (x, y) > 0 or ρ (x, y) < δ/2. In the first
case, ρ (x, Y) > 0 and therefore ρ (wn, x) > ρ(x, Y) > 0 for all n. In the second
case, ρ (wn, x) > δ/2 for all n > N. Thus the sequence (wn)n>1 is eventually

bounded away from x. Since x ∈ X is arbitrary, we can apply AS1
X to show

that wn = ζ for all sufficiently large n. Hence AS1
Y holds.

We can drop the completeness hypothesis in Proposition 1 if, instead, we require
Y to be proximinal in X: that is, for each x ∈ X there exists y ∈ Y (a
closest point to x in Y) such that ρ (x, y) = ρ(x, Y). For in that case, with
Z, ζ, and (wn)n>1 as in the above proof, and given x ∈ X, we construct a
closest point y to x in Y. There exist δ > 0 and N such that ρ(wn, y) > δ

for all n > N. Either ρ(x, y) > δ/4 or ρ(x, y) < δ/2. In the first case,
ρ(wn, x) > ρ(x, Y) = ρ(x, y) > δ/4 for all n; in the second case, ρ(wn, x) > δ/2

for all n > N. Thus the sequence (wn)n>1 is eventually bounded away from

x. As before, this leads us to the conclusion that AS1
Y holds.

Next, consider an inhabited, located subset Y of a metric space X, such that
AS1

Y holds. We cannot expect to prove that Y is closed, since the proof of [9]
(Proposition 14) shows that the countably infinite, located subspace

{0} ∪
{
1

n
: n > 1

}

of [0, 1], whose closedness is an essentially nonconstructive proposition, has the
anti-Specker property. However, we can prove that Y has a property classically
equivalent to that of being closed. To do so, we need to define the complement
of Y (in X):

∼Y ≡ {x ∈ X : ∀y∈Y (x 6= y)} ,

where “x 6= y” means “ρ(x, y) > 0”.

Proposition 2 Let X be a metric space, and Y an inhabited, located subset of
X with the property AS1

Y. Then ∼Y is open in X.

Proof. Let Z ≡ Y ∪ {ζ} be any one-point extension of Y. Given x in ∼Y,
we need only prove that ρ (x, Y) > 0; for then the open ball B(x, ρ(x, Y)) is
contained in ∼Y. To that end, we may assume that ρ(x, Y) < 1/4. Construct
an increasing binary sequence (λn)n>1 such that

λn = 0 ⇒ ρ (x, Y) < 2−n,

λn = 1 ⇒ ρ (x, Y) > 2−n−1.
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Note that λ1 = 0. If λn = 0, pick zn ∈ Y with ρ (x, zn) < 2−n; if λn = 1, set
zn = ζ. Given y ∈ Y, choose N such that ρ (x, y) > 2−N+1. If n > N and
λn = 0, then

ρ (y, zn) > ρ(x, y) − ρ(x, zn) > 2−N+1 − 2−n > 2−N.

It follows that

ρ(y, zn) > min
{
2−N, ρ (ζ, Y)

}
(n > N) .

Hence the sequence (zn)n>1 is eventually bounded away from each point y of

Y. Using AS1
Y , we see that zn = ζ, and hence λn = 1, for all sufficiently large

n. Thus there exists n such that ρ (x, Y) > 2−n−1.

The foregoing proof provides a good example of how to set things up in order to
apply the anti-Specker property: create a sequence in the one-point extension
such that if the sequence is eventually not in the original space, then the desired
property holds. Proofs of this kind can be used widely in constructive analysis
in situations where the classical analyst would use sequential compactness.

3 Anti-Specker for products

So much for subspaces. We would also hope that the anti-Specker property
will freely pass between a product space and each of its “factors”. The passage
down from product to factors is relatively straightforward to prove.

Proposition 3 Let X ≡ X1×X2 be the product of two inhabited metric spaces
such that AS1

X holds. Then AS1
Xk

holds for each k.

Proof. For each k, let Zk ≡ Xk ∪ {ζk} be a one-point extension of Xk; then
Z ≡ X∪{(ζ1, ζ2)} is a one-point extension of X. Consider any sequence (yn)n>1

in Z1 that is eventually bounded away from each point of X1. Fixing ξ2 in X2,
define a sequence (zn)n>1 in Z by

zn ≡






(yn, ξ2) if yn ∈ X1

(ζ1, ζ2) if yn = ζ1.

Consider any (x1, x2) ∈ X. There exist N and δ > 0 such that ρ(yn, x1) > δ

for all n > N. Hence

ρ (zn, (x1, x2)) > min {δ, ρ ((ζ1, ζ2) , X)} > 0

for each n > N. Thus the sequence (zn)n>1 is eventually bounded away from

each point of X. By AS1
X, there exists ν such that zn = (ζ1, ζ2), and therefore

yn = ζ1, for all n > ν. Hence AS1
X1

, and similarly AS1
X2

, holds.
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For a converse of this proposition we recall some notions discussed in [8]. A
subset S of N is said to be pseudobounded if for each sequence (sn)n>1 in
S, there exists N such that sn < n for all n > N. Our definition of pseu-
doboundedness is equivalent to the original one given by Ishihara in [11]; see
[13]. In [11], Ishihara introduced the following principle, which has proved of
considerable significance in constructive reverse mathematics:

BD-N Every inhabited, countable, pseudobounded subset of N
is bounded.

Theorem 4 BISH + BD-N ⊢ Let X, Y be inhabited metric spaces, each having
the anti-Specker property. Then the product space X × Y has the anti-Specker
property.

Proof. Let X ∪ {ζ1} be a one-point extension of X with ρ (ζ1, X) > 1, and
Y ∪ {ζ2} a one-point extension of Y with ρ (ζ2, Y) > 1. Then Z ≡ (X × Y)
∪ {(ζ1, ζ2)} is a one-point extension of X × Y. Let (zn)n>1 be a sequence in Z

that is eventually bounded away from each point of X×Y. Given x ∈ X, we aim
to prove that the sequence (pr1(znk

))n>1 is eventually bounded away from x.
Fix ξ2 ∈ Y. If necessary, replacing (zn)n>1 by the sequence (z′n)n>1, where

z′n ≡






(x, ξ2) if n = 1

zn−1 if n > 1,

we may assume that pr1 (z1) = x. Construct a binary mapping α on N+×N+

such that

α(n, k) = 0 ⇒ ρ (pr1(zn), x) < 2−k and n > k,

α(n, k) = 1 ⇒ ρ (pr1(zn), x) > 2−k−1 or n < k.

Then α(1, 1) = 0, so the countable subset

S ≡
{
j ∈ N+ : ∃n (α(n, j) = 0)

}

of N+ is inhabited. We prove that S is pseudobounded. To that end, let (sk)k>1

be any sequence in S. By countable choice, there is a mapping k nk on N+

such that α(nk, sk) = 0 for each k. Construct a binary sequence (λk)k>1 such
that

λk = 0 ⇒ sk < k,

λk = 1 ⇒ sk >
k

2
.

Note that if λk = 1, then nk > sk > k/2,

ρ (pr1(znk
), x) < 2−sk < 2−k/2 < ρ(ζ1, X) 6 ρ (ζ1, x) ,
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and so znk
∈ X× Y. Now construct a sequence (θk)k>1 in Y ∪ {ζ2} as follows:

if λk = 0, set θk = ζ2; if λk = 1, set θk = pr2(znk
) ∈ Y. Given y ∈ Y, compute

a positive integer N such that ρ (zn, (x, y)) > 2−N for all n > N. Consider any
k > 2N. If λk = 0, then ρ (θk, y) > ρ(ζ2, Y) > 1 > 2−N. If λk = 1, then

ρ (znk
, (x, y)) > 2−N > 2−sk > ρ (pr1(znk

), x)

and therefore

ρ(θk, y) = ρ (pr2(znk
), y) = ρ (znk

, (x, y)) > 2−N.

Thus the sequence (θk)k>1 is eventually bounded away from each point of Y.

Since AS1
Y holds, there exists K such that θk = ζ2 for all k > K. It follows that

λk = 0, and therefore sk < k, for all such k. This completes the proof that S

is pseudobounded.

Applying BD-N, we can find J such that j < J for each j ∈ S. If n > J and
ρ (pr1(zn), x) < 2−J−1, then α(n, J) 6= 1, so α(n, J) = 0 and therefore J ∈ S,
a contradiction. It follows that if n > J, then ρ (pr1(zn), x) > 2−J−1. Since
x ∈ X is arbitrary, we conclude that the sequence (pr1(zn))n>1 is eventually

bounded away from each point of X. Applying AS1
X, we obtain N such that

pr1(zn) = ζ1, and therefore zn = (ζ1, ζ2), for all n > N.

The question remains: is BD-N necessary in order to prove

(*) the product of any two spaces having the anti-Specker property
also has that property.

The answer is “no”: R. Lubarsky [12] has a topological model in which (*)
holds but BD-N does not. In a private communication, he has conjectured
that the statement (*), which, in view of Theorem 4 and Lubarsky’s result, is
weaker than BD-N, may be independent of BISH; in that case, it would be an
interesting and possibly important business to find theorems of analysis that
are equivalent, over BISH, to (*).
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Good Reduction of Affinoids

on the Lubin-Tate Tower

Jared Weinstein1

Abstract. We analyze the geometry of the tower of Lubin-
Tate deformation spaces, which parametrize deformations of a one-
dimensional formal module of height h together with level structure.
According to the conjecture of Deligne-Carayol, these spaces realize
the local Langlands correspondence in their ℓ-adic cohomology. This
conjecture is now a theorem, but currently there is no purely local
proof. Working in the equal characteristic case, we find a family of
affinoids in the Lubin-Tate tower with good reduction equal to a rather
curious nonsingular hypersurface, whose equation we present explic-
itly. Granting a conjecture on the L-functions of this hypersurface, we
find a link between the conjecture of Deligne-Carayol and the theory
of Bushnell-Kutzko types, at least for certain class of wildly ramified
supercuspidal representations of small conductor.

2010 Mathematics Subject Classification: 14G22, 22E50, 11F70
Keywords and Phrases: Lubin-Tate spaces, local Langlands corre-
spondence, semistable model, rigid analysis

1 Introduction

Let F be a non-archimedean local field. By the local Langlands correspondence,
the irreducible admissible representations of GLh(F ) are parametrized in a sys-
tematic way by h-dimensional representations of the Weil-Deligne group of F .
This is established in [LRS93] for fields of positive characteristic and in [Hen00]
and [HT01] for p-adic fields. The local Langlands correspondence appears in
a geometric context; namely it is realized in the cohomology of the “Lubin-
Tate tower”, a projective system of deformation spaces of a one-dimensional
formal OF -module of height h, cf. [Dri74]. We refer to this phenomenon as
the conjecture of Deligne-Carayol, after the paper [Car90] which contains the

1The author was supported by NSF Postdoctoral Fellowship DMS-0803089.
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precise statement of the conjecture. The papers [Car83] and [Car86] prove the
conjecture for the case h = 2. The complete conjecture of Deligne-Carayol was
proved in [Boy99] for fields of positive characteristic and in [HT01] for p-adic
fields. Both papers involve embedding F into a global field and appealing to
results from the theory of Shimura varieties or Drinfeld modular varieties.

In [Har02], Harris identifies some unsettled problems in the study of the local
Langlands correspondence, and top among these is the lack of a purely local
proof of the correspondence. Bushnell and Kutzko’s theory of types [BK93]
parametrizes admissible representations of GLh(F ) by finite-dimensional char-
acters of open compact-mod-center subgroups. Naturally one hopes to link
the parametrization by types to the parametrization by Weil-Deligne repre-
sentations, so that one might obtain an “explicit local Langlands correspon-
dence.” There have been some remarkable efforts in this direction, see [Hen92],
[BH05a], [BH05b], [BH06], but these do not seem to interface with the geo-
metric interpretation of the local Langlands correspondence afforded by the
conjecture of Deligne-Carayol. Harris asks ([Har02], Question 9) whether the
Bushnell-Kutzko types can be realized in the cohomology of analytic subspaces
of the Lubin-Tate tower.

In the present effort we demonstrate progress towards an affirmative answer
to this question. We construct a family of open affinoids Z of the Lubin-Tate
tower which have good reduction equal to a hypersurface Z whose equation
we give explicitly, cf. Thm. 1.1 below. The cohomology of these affinoids
appears to contain exactly the Bushnell-Kutzko types for those supercuspidal
representations whose Weil parameters are of the form IndE/F θ, where E/F
is the unramified extension of degree h and θ is a character of the Weil group
of E of conductor p2E, where pE is the maximal ideal of OE . We refer to these
as the unramified supercuspidals of level π2. The action of the Weil group on
Z is completely transparent. The question of whether the affinoids Z really do
realize the local Langlands correspondence for such representations is reduced
to the calculation of certain L-functions attached to Z, see Conj. 1.6.

It is hoped that this paper will initiate a systematic study of open affinoids
with good reduction in the Lubin-Tate tower. The best outcome would be
the construction of a semistable model for the Lubin-Tate spaces, using an
appropriate covering by open affinoids. This is precisely what is done in [CM06]
for the classical modular curves X0(Np3), and in [Weib] for Lubin-Tate curves
with arbitrary level structure. Then the weight spectral sequence of Rapoport-
Zink [RZ80] would compute the cohomology of the Lubin-Tate tower in terms of
the reduction of the semistable model. A purely local proof of the conjecture of
Deligne-Carayol would then be reduced to the computation of the zeta functions
associated to the components of the reduction of the semistable model.

Before stating our main theorem, we introduce some notation. We write X(πn),
n ≥ 0, for the system of rigid-analytic spaces comprising the Lubin-Tate tower
of deformations of a height h one-dimensional formal OF -module with Drinfeld
level πn structure; see §2.1 for definitions. Crucial to the analysis are the
“canonical points” of X(πn) arising from the canonical liftings of Gross [Gro86]:
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these are the deformations with extra endomorphisms by the ring of integers in
a separable extension E/F . Such a point is defined over the extension En/Ê

nr

obtained by adjoining the πn-division points of a formal Lubin-Tate OE-module
of height one.
In our analysis we concentrate on those canonical points for which the associ-
ated extension E/F is unramified. We refer to these as unramified canonical
points. By performing explicit computations with coordinates, we find certain
affinoid neighborhoods around each unramified canonical point x which have
good reduction. These neighborhoods lie in a space intermediate in the cover-
ing X(π2) → X(π), which we call X(Kx,2) = X(π2)/Kx,2; for details, see §4.2.
Briefly put, x determines an embedding of OF -algebras OE →֒ Mn(OF ), and
Kx,2 is the congruence subgroup defined by

Kx,2 =

{
g ∈ 1 + πMn(OF )

∣∣∣∣ Tr((g − 1)OE) ⊂ p2F

}
.

Our main result is:

Theorem 1.1. Assume that F has positive characteristic, with residue field
Fq. Let x ∈ X(π2) be an unramified canonical point. There exists an open
affinoid neighborhood Z of the image of x in X(Kx,2) whose reduction is the
smooth hypersurface Z in the variables V1, . . . , Vh defined by the equation

det




V q
h

1 − V1 V q
h

2 − V2 V q
h

3 − V3 · · · V q
h

h−1 − Vh−1 V q
h

h − Vh
1 V q1 V q2 · · · V qh−2 V qh−1
0 1 V q

2

1 · · · V q
2

h−3 V q
2

h−2
...

. . .
...

0 0 0 · · · 1 V q
h−1

1




= 0.

Remark 1.2. Let R be the noncommutative polynomial ring Fqh [τ ]/(τh+1),
whose multiplication law is given by τα = αqτ , α ∈ Fqh . Let A = R ⊗F

qh

Fqh [V1, . . . , Vh], and let Φ: A→ A be the R-linear endomorphism which sends
Vi to V qi . Let g = 1 + V1τ + · · · + Vhτ

h ∈ A×; then the coefficient of τn

in Φh(g)g−1 is the determinant appearing in Thm. 1.1. This shows that the
hypersurface Z admits a large group of automorphisms, namely R×. See §5.3
for an interpretation of this automorphism group in terms of the Jacquet-
Langlands correspondence.

Remark 1.3. We expect the condition charF > 0 to be unnecessary. This
condition enables us to write down explicit models for universal deformations
of formal OF -modules with level structure, as in §2.2. It may be possible to
remove this condition if one is more careful with error terms.

Remark 1.4. In Yoshida’s paper [Yos10] the space X(π) is treated, with no
condition on the characteristic of F . In that case one finds an affinoid subdo-
main of X(π)⊗ E1 whose reduction is the Deligne-Lusztig variety for GLh(k),
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see §3.5. Based on this calculation, Yoshida proceeds to show that the vanish-
ing cycles of X(π) realize the local Langlands correspondence for supercuspidal
representations “of depth zero”.

Remark 1.5. Thm. 1.1 agrees well with our work in [Weib], which gives a
detailed description of a stable reduction of the tower X(πn) when h = 2. In
this case the curve Z is isomorphic over Fq to a disjoint union of copies of the
“Hermitian curve” Y + Y q = V q+1. The Hermitian curve also happens to be
isomorphic over Fq to the Deligne-Lusztig curve for SL2(Fq), but this seems
to be a coincidence which does not persist for h > 2.

In order to apply Thm. 1.1 to the conjecture of Deligne-Carayol, it will be
necessary to calculate the compactly supported ℓ-adic cohomology of Z, ℓ 6= p,
as a module for the action of the stabilizer of Z in GL2(OF ), which is the
group U1 = 1 + πMh(OF ). This in turn is equivalent to the calculation of the
L-functions of some ℓ-adic sheaves on affine (h − 1)-space. To wit, let X be
the hypersurface over Fqh whose equation is the one appearing in Thm. 1.1.
Then X is an Artin-Schreier cover of Ah−1/Fqh with Galois group Fqh . For

each character ψ of Fqh with values in Q
×
ℓ , let Lψ be the corresponding lisse

rank one sheaf on Ah−1. Then the zeta function Z(X, t) factors as a product
of the L-functions L(Ah−1,Lψ, t) as ψ runs over characters of Fqh .

Conjecture 1.6. Suppose ψ does not factor through TrF
qh
/F

qd
for any proper

divisor d of h. Then

L(Ah−1,Lψ, t) =
(

1 + (−1)hq
h(h−1)

2 t
)(−1)hq h(h−1)

2

.

The formula in Conj. 1.6 is striking: it implies that the contribution of
the ψ-part of the Euler characteristic H∗c (X ⊗ Fq,Qℓ) to the quantities
#X(Fqh),#X(Fq2h ), . . . is the maximum possible under the constraints of the
Riemann hypothesis for X . In fact we strongly suspect that X has the maxi-
mum number of Fqhn -rational points relative to its compactly supported Betti

numbers. More to the point, Conj. 1.6 would also imply that Hh−1
c (Z,Qℓ)

realizes the Bushnell-Kutzko types for the unramified supercuspidals of level
π2, and that the action of the Weil group of F on Z is in accord with the local
Langlands correspondence. We postpone the details of this claim for future
work, but see [Weia], §4 and §5 for a comprehensive calculation in the case
h = 2.
Conj. 1.6 itself can be verified quite easily for h = 2, in which case X is a
disjoint union of q copies of the Hermitian curve Y q + Y = Xq+1: this curve is
“maximal” over Fq2 in the sense that it attains the Hasse-Weil bound for the
maximum number of Fq2 -rational points. Conj. 1.6 can be verified numerically
for small values of q and h > 2, but unfortunately we cannot give a general
proof at this time. The polynomial on the right-hand side of the equation
in Thm. 1.1 is degenerate in the sense of [AS89], which frustrates efforts to
determine even the degree of the rational function L(Ah−1,Lψ, t).
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The construction of the explicit local Langlands correspondence for unram-
ified supercuspidals appears in [Hen92]. A salient feature of that paper is
the discrepancy between two means of passing from a regular character of
E× to a supercuspidal representation of GLh(F ). The first construction is
the local Langlands correspondence, the second construction is induction from
a compact-mod-center subgroup, and the discrepancy, which appears exactly
when h is even, manifests as the nontrivial unramified quadratic character of
E×. Granting Conj. 1.6, we arrive at a geometric explanation for this behavior
in terms of the eigenvalue of Frobenius on the middle cohomology of the hy-
persurface X , for these are positive if and only if h is odd. In the subsequent
papers [BH05a] and [BH05b] on the explicit local Langlands correspondence
there is a systematic treatment of this discrepancy between the two construc-
tions in the “essentially tame” case; we find it very likely that this discrepancy
can always be explained by the behavior of Frobenius eigenvalues acting on the
cohomology of an open affinoid in the Lubin-Tate tower having good reduction.
We outline our work: In §2, we review the relevant background material
from [Dri74] on one-dimensional formal modules and the Lubin-Tate tower.
In §3, we impose the condition that charF > 0 and establish a functorial con-
struction of top exterior powers of one-dimensional formal OF -modules which
may be of independent interest. The heart of the paper is §4. Given an un-
ramified canonical point x in X(π2), we construct a coordinate Y on that space
which is invariant under Kx,2. The coordinate Y is integral on a certain affinoid
neighborhood of x in X(π2), and the reduction of the minimal polynomial for
Y over the ring of integral functions on X(1) gives the equation appearing in
Thm. 1.1. We conclude in §5 with some basic observations about the hyper-
surface Z which we hope will illuminate the formulas in Conj. 1.6 and motivate
future work linking Thm. 1.1 to the local Langlands and Jacquet-Langlands
correspondences for GLh(F ).

2 Preliminaries on formal modules

2.1 Definitions

Throughout this paper, F is a local non-archimedean field with ring of integers
OF , uniformizer π and residue field k having cardinality q, a power of the
prime p. Let p be the maximal ideal of OF , and let v be the valuation on F ,
normalized so that v(π) = 1. We also use v for the unique extension of this
valuation to finitely ramified extension fields E of F contained in the completion
of the separable closure of F .

Definition 2.1. Let R be a commutative OF -algebra, with structure map
i : OF → R. A formal one-dimensional OF -module over R is a power series
F (X,Y ) = X + Y + · · · ∈ RJX,Y K which is commutative, associative, ad-
mits 0 as an identity, together with a power series [a]F (X) ∈ RJXK for each
a ∈ OF satisfying [a]F (X) ≡ i(a)X (mod X2) and F ([a]F (X), [a]F (Y )) =
[a]F (F (X,Y )).
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The addition law on a formal OF -module F will usually be written X+F Y . If
F and F ′ are two formal OF -modules, there is an evident notion of an isogeny
F → F ′, and Hom(F ,F ′) has the structure of an OF -module.

If R is a k-algebra, we either have [π]F (X) = 0 or else [π]F (X) = f(Xqh) for
some power series f(X) with f ′(0) 6= 0. In the latter case, we say F has height
h over R.
Fix an integer h ≥ 1. Let Σ be a one-dimensional formal OF -module over k of
height h. The functor of deformations of Σ to complete local Noetherian ÔFnr -
algebras is representable by a universal deformation Funiv over an algebra
A which is isomorphic to the power series ring ÔFnrJu1, . . . , uh−1K in (h − 1)
variables, cf. [Dri74]. That is, if A is a complete local Ônr

F -algebra with maximal
ideal P , then the isomorphism classes of deformations of Σ to A are given
exactly by specializing each ui to an element of P in Funiv.

2.2 The universal deformation in the positive characteristic case

The results of the previous paragraph take a very simple form in the equal
characteristic case. Assume charF = p, so that F = k((π)) is the field of
Laurent series over k in one variable, with OF = kJπK. Then a model for Σ is
given by the simple rules

X +Σ Y = X + Y

[ζ]Σ(X) = ζX, ζ ∈ k
[π]Σ(X) = Xqh

The universal deformation Funiv also has a simple model over A:

X +Funiv Y = X + Y

[ζ]Funiv (X) = ζX, ζ ∈ k
[π]Funiv (X) = πX + u1X

q + · · ·+ uh−1X
qh−1

+Xqh . (2.2.1)

Let OB = End Σ, and let B = OB ⊗OF F . Then B is the central division
algebra over F of invariant 1/h. Let kh/k be the field extension of degree h:
then OB is generated by the unramified extension OE = khJπK of OK of degree
h, which acts on Σ in an evident way, together with the endomorphism Φ(X) =
Xq. (The relations are Φh = π and Φζ = ζqΦ, ζ ∈ kh.) Inasmuch as A =
Ônr
F Ju1, . . . , uh−1K is the moduli space of deformations of Σ, the automorphism

group Aut Σ = O×B acts naturally on A. It is natural to ask how O×B acts on
the level of coordinates. The action of an element ζ ∈ k×n is simple enough:

ζ(ui) = ζq
i−1ui, i = 1, . . . , h− 1. On the other hand the action of an element

such as 1 + Φ ∈ O×B seems difficult to give explicitly.

2.3 Moduli of deformations with level structure

Let A be a complete local OF -algebra with maximal ideal M , and let F be
a one-dimensional formal OF -module over A, and let h ≥ 1 be the height of
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F ⊗A/M .

Definition 2.2. Let n ≥ 1. A Drinfeld level πn structure on F is an OF -
module homomorphism φ : (π−nOF /OF )⊕h →M for which the relation

∏

x∈(p−1/OF )⊕h

(X − φ(x))

∣∣∣∣ [π]F (X)

holds in AJXK. If φ is a Drinfeld level πn structure, the images under φ of
the standard basis elements (π−n, 0, . . . , 0), . . . , (0, 0, . . . , π−n) of (p−n/OF )⊕h

form a Drinfeld basis of F [πn].

Fix a formal OF -module Σ of height h over k. Let A be a noetherian local Ônr
F -

algebra such that the structure morphism Ônr
F → A induces an isomorphism

between residue fields. A deformation of Σ with level πn structure over A is a
triple (F , ι, φ), where ι : F ⊗ k → Σ is an isomorphism of OF -modules over k
and φ is a Drinfeld level πn structure on F .

Proposition 2.3. [Dri74] The functor which assigns to each A as above the
set of deformations of Σ with Drinfeld level πn structure over A is repre-
sentable by a regular local ring A(πn) of relative dimension h − 1 over Ônr

F .

Let X
(n)
1 , . . . , X

(n)
h ∈ A(πn) be the corresponding Drinfeld basis for Funiv[πn];

then these elements form a set of regular parameters for A(πn).

There is a finite injection of Ônr
F -algebras A(πn)→ A(πn+1) corresponding to

the obvious degeneration map of functors. We therefore may consider A(πn)

as a subalgebra of A(πn+1), with the equation [π]u

(
X

(n+1)
i

)
= X

(n)
i holding

in A(πn+1).
Let X(πn) = Spf A(πn), so that X(πn) is a formal scheme of relative dimension
h − 1 over Spf Ônr

F . Let X(πn) be the generic fiber of X(πn); then X(πn) is

a rigid analytic variety. The coordinates X
(n)
i are then analytic functions on

X(πn) with values in the open unit disc. We have that X(1) is the rigid-analytic
open unit polydisc of dimension h− 1.
The group GLh(OF /πnOF ) acts on the right on X(πn) and on the left onA(πn).
The degeneration map X(πn) → X(1) is Galois with group GLh(OF /πnOF ).
For an element M ∈ GLh(OF /πnOF ) and an analytic function f on X(πn),
we write M(f) for the translated function z 7→ f(zM). When f happens to

be one of the parameters X
(n)
i , there is a natural definition of M

(
X

(n)
i

)
when

M ∈Mh(OF /πnOF ) is an arbitrary matrix: if M = (aij), then

M
(
X

(n)
i

)
= [ai1]Funiv

(
X

(n)
1

)
+Funiv · · ·+Funiv [aih]Funiv

(
X

(n)
h

)
. (2.3.1)

3 Determinants

A natural first question in the study of the Lubin-Tate tower X(πn) is to com-
pute its zeroth cohomology; i.e. to determine its geometrically connected
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components along with the appropriate group actions. This question is an-
swered completely by Strauch in [Str08b]. Let LT be a one-dimensional formal
OF -module over ÔFnr for which LT⊗k has height one. Let F0 = F̂ nr, and
for n ≥ 1, let Fn = F0(LT[πn]) be the classical Lubin-Tate extension. Let
χ : Gal(Fn/F0)→ (OF /πnOF )× be the isomorphism of local class field theory,
so that Gal(Fn/F0) acts on LT[πn] through χ. Finally, let XLT(πn) be the
(zero-dimensional) space of deformations of LT⊗k with Drinfeld πn structure,
so that XLT(πn)(Fn) is the set of bases for LT[πn](Fn) as a free (OF /πnOF )-
module of rank one. We now paraphrase [Str08b], Thm. 4.4 in the context of
the rigid-analytic spaces X(πn).

Theorem 3.1. The geometrically connected components of X(πn) are defined
over Fn, and there is a bijection

π0(X(πn)⊗ Fn)−̃→XLT(πn)(Fn).

Under this bijection, the action of an element (g, b, τ) in GLh(OF ) × O×B ×
Gal(Fn/F0) on XLT(πn)(Fn) is through the character

(g, b, τ) 7→ det(g) NB/F (b)−1χ(τ)−1 ∈ (OF /πnOF )×. (3.0.2)

(In [Str08b], π0(X(πn) ⊗ Cπ) is identified with π0(Spec(Fn ⊗F0 Cπ)), where
Cπ is the completion of a separable closure of F . But this latter π0, being
the set of F0-linear embeddings of Fn into Cπ, is the same as the set of bases
for LT[πn](Cπ). Thus Thm. 3.1 carries the same content as the theorem cited
in [Str08b].)
As noted in the introduction to [Str08b], Thm. 3.1 suggests a determinant
functor F 7→ ΛhF assigning to each deformation F of Σ a deformation ΛhF
of LT⊗k. This functor would of course identify the top exterior power of
the Tate module T (F ) with T (ΛhF ). In this section we provide just such
a determinant functor in the case of equal characteristic, taking advantage of
the explicit model of the universal deformation Funiv described in §2.2. More
precisely we prove:

Theorem 3.2. Assume charF > 0. For each n ≥ 1 there exists a morphism

µn : F
univ[πn]× · · · ×F

univ[πn]→ LT[πn]⊗A

of group schemes over A = ÔF nrJu1, . . . , uh−1K which is OF -multilinear and
alternating, and which satisfies the following properties:

1. The maps µn are compatible in the sense that

µn([π]Funiv (X1), . . . , [π]Funiv (Xh)) = µn−1(X1, . . . , Xh)

for n ≥ 2.

2. If X1, . . . , Xh are sections of Funiv[πn] over an A-algebra R which form
a Drinfeld level πn structure, then µn(X1, . . . , Xh) is a Drinfeld level πn

structure for LT[πn]⊗R.
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Remark 3.3. It is also possible to show that µn transforms the action of
GLh(OF )×O×B×Gal(Fn/F̂

nr) on Funiv[πn]×· · ·×Funiv[πn] into the character
defined in Eq. (3.0.2), but we will not be needing this.

The proof of Thm. 3.2 will occupy §3.1 and §3.3. Up to isomorphism there is
only one formal OF -module LT whose reduction has height one, so we are free
to choose a model for it. For the remainder of the paper, LT will denote the
formal OF -module over ÔFnr with operations

X +LT Y = X + Y

[α]LT(X) = αX, α ∈ k
[π]LT(X) = πX + (−1)h−1Xq.

3.1 Determinants of level π structures

First define the polynomial in h variables

µ(X1, . . . , Xh) = det
(
Xqj

i

)
∈ k[X1, . . . , Xh]

(the exponent j ranges from 0 to h− 1). Then µ is a k-linear alternating form,
known as the Moore determinant, cf. [Gos96], Ch. 1. We will need two simple
identities involving µ. The first is

∏

06=a∈kh
(a1X1 + · · ·+ ahXh) = (−1)hµ(X1, . . . , Xh)q−1, (3.1.1)

in which the product runs over nonzero vectors a = (a1, . . . , ah) in kh. Second,
there is the identity

[π]LT(µ(X1, . . . , Xn)) = det

(
[π]Funiv (Xi)

∣∣∣∣ X
q
i

∣∣∣∣ · · ·
∣∣∣∣ X

qh−1

i

)

1≤i≤h
, (3.1.2)

valid in A[X1, . . . , Xn]. This is easily seen by expanding the first column of the
matrix according to Eq. (2.2.1).

Lemma 3.4. If X1, . . . , Xh are sections of Funiv[π], then µ(X1, . . . , Xh) is
a section of LT[π]. If the Xi form a Drinfeld basis for Funiv[π], then
µ(X1, . . . , Xh) constitutes a Drinfeld basis for LT[π].

Proof. Suppose X1, . . . , Xh are sections of Funiv[π] over an A-algebra R. Then
the claim that µ(X1, . . . , Xh) is annihilated by [π]LT follows from Eq. (3.1.2).
Now assume that X1, . . . , Xh is a Drinfeld basis for Funiv[π]. This means that

∏

a∈kh
(T − (a1X1 + · · ·+ ahXh)) divides [π]Funiv (T )
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in RJT K, hence in R[T ]. Since [π]Funiv(T ) is monic, these polynomials are
equal:

∏

a∈kh
(T − (a1X1 + · · ·+ ahXh)) = πT +u1T

q+ · · ·+uh−1T
qh−1

+T q
h

(3.1.3)

Equating coefficients of T and using Eq. (3.1.1) shows that

µ(X1, . . . , Xh)q−1 = (−1)hπ.

On the other hand,

∏

a∈k
(T − aµ(X1, . . . , Xh)) = T q − µ(X1, . . . , Xh)q−1T = (−1)h−1[π]LT(T ),

which shows that µ(X1, . . . , Xh) forms a Drinfeld basis for LT[π]⊗R.

3.2 Good reduction of an affinoid in X(π)

In this interlude we find an affinoid in X(π) whose reduction is the Deligne-
Lusztig variety for GLh(k). This is nothing new in light of [Yos10], Prop. 6.15,
but it will give a flavor of the corresponding calculation for X(π2).

Proposition 3.5. There is an isomorphism of local ÔF nr -algebras

ÔF nrJX1, . . . , XhK

µ(X1, . . . , Xh)q−1 − (−1)hπ
−̃→A(π)

carrying Xi onto X
(1)
i .

Proof. Let A(π)′ = ÔFnrJX1, . . . , XhK/(µ(X1, . . . , Xh)q−1 − (−1)hπ). By
Lemma 3.4 there is unique homomorphism A(π)′ → A(π) of ÔFnr -algebras

carrying Xi onto X
(1)
i . Since the X

(1)
i form a system of regular local param-

eters of A(π), this homomorphism is surjective. The algebra A(π) is a Galois
extension of A with group GLh(k). But we can also furnish A(π)′ with the

structure of an A-algebra, by identifying ui ∈ A with the coefficient of T q
i

on
the left-hand side of Eq. (3.1.3). Then A(π)′ becomes a Galois extension of A
with group GLh(k) as well, and the homomorphism A(π)′ → A(π) respects the
A-algebra structure. We conclude that A(π)′ → A(π) is an isomorphism.

Now let E/F be the unramified extension of degree h, and let E1/E
nr be the

extension obtained by adjoining a root ̟ of Xqh−1− (−1)hπ. Then E1/E
nr is

totally tamely ramified of degree qh−1. Let X(1)ts ⊂ X(1)⊗E1 be the affinoid
polydisc defined by the conditions

v(ui) ≥ v(̟qh−qi) =
qh − qi
qh − 1
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The notation is borrowed from [CM06]: This is exactly the domain on which
Funiv[π] admits no canonical subgroups; i.e. where Funiv is “too supersin-
gular”. Whenever F is a deformation of Σ lying in X(1)ts, all nonzero roots
of F [π] have valuation equal to v(̟). By applying the change of variables
Xi = ̟Vi to Prop. 3.5 we find:

Theorem 3.6. The preimage of X(1)ts in X(π)⊗E1 has reduction isomorphic
to the smooth affine hypersurface over k with equation µ(V1, . . . , Vh)q−1 = 1.

3.3 Determinants of structures of higher level.

Now let n ≥ 1, and suppose X1, . . . , Xh are sections of Funiv[πn]. We write
[πa]u(X) as an abbreviation for [πa]Funiv(X). We define the form µn by

µn(X1, . . . , Xh) =
∑

(a1,...,ah)

µ ([πa1 ]u(X1), . . . , [πah ]u(Xh)) ,

where the sum runs over tuples of integers (a1, . . . , ah) with 0 ≤ ai ≤ n − 1
whose sum is (h− 1)(n− 1). It is clear that µn is k-multilinear and alternating
in X1, . . . , Xh. Before proving that µn is OF -linear, we will show:

Proposition 3.7. For sections X1, . . . , Xh of Funiv[πn], we have

[π]LT(µn(X1, . . . , Xh)) = µn−1([π]u(X1), . . . , [π]u(Xh)).

In particular µn(X1, . . . , Xh) is a section of the group scheme LT[πn].

Proof. Let a = (a1, . . . , ah) be a tuple of nonnegative integers. Write [πa](X)
for the tuple ([πa1 ]u(X1), . . . , [πah ]u(Xh)). Applying Eq. (3.1.2) we find

[π]LT(µ ([πa](X))) = det

(
[πai+1]u(Xi)

∣∣∣∣ [πai ]u(Xi)
q

∣∣∣∣ · · ·
∣∣∣∣ [πai ]u(Xi)

qh−1

)

=
∑

σ∈Sh
sgn(σ)[πaσ(1)+1]u

(
Xσ(1)

) h−1∏

j=1

[πaσ(j+1) ]u
(
Xσ(j+1)

)qj

Now assume the Xi are sections of Funiv[πn]: this means that the terms in the
sum with aσ(1) = n − 1 vanish. The expression [π]LT(µn(X1, . . . , Xn)) is thus
a sum over pairs (a, σ), where σ ∈ Sh is a permutation and a = (a1, . . . , ah) is
a tuple of integers satisfying the conditions

1. 0 ≤ ai ≤ n− 1

2. aσ(1) < n− 1

3.
∑
i ai = (n− 1)(h− 1)
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Let b = (b1, . . . , bh) be the tuple defined by

bj =

{
aj, j = σ(1)

aj − 1, j 6= σ(1)

Note that each bi is nonnegative: If aj = 0 for some j 6= σ(1), the condition∑
i ai = (n − 1)(h − 1) forces ak = n − 1 for all k 6= j, which implies that

aσ(1) = n− 1, contradicting condition (ii) above. As (a, σ) runs over all pairs
of tuples and permutations satisfying (1)–(3), the pair (b, σ) runs over all pairs
of tuples and permutations satisfying 0 ≤ bi ≤ n− 2 and

∑
i bi = (n− 1)(h−

1)− (h− 1) = (n− 2)(h− 1). We find

[π]LT (µn(X1, . . . , Xh)) =
∑

(b,σ)

sgn(σ)

h−1∏

j=1

[πbσ(j)+1 ]u
(
Xσ(j)

)qj

=
∑

b

µ([πb1+1]u(X1), . . . , [πbh+1]u(Xh))

= µn−1 ([π]u(X1), . . . , [π]u(Xh))

as required.

Now we can establish the OF -linearity of µn. For this it suffices to show that
µn([π]u(X1), X2, . . . , Xh−1) = [π]LT(µn(X1, . . . , Xh)). We have

µn([π]u(X1), X2, . . . , Xh−1) =
∑

a

µ([πa](X)),

where a = (a1, . . . , ah−1) runs over tuples satisfying 1 ≤ a1 ≤ n − 1, 0 ≤
ai ≤ n − 1 for i > 1, and

∑
i ai = (h − 1)(n − 1) + 1. But these conditions

force ai ≥ 1 for i = 1, . . . , h. Write ai = bi + 1, so that 0 ≤ bi ≤ n − 2 and∑
i bi = (h− 1)(n− 1). Then

µn([π]u(X1), X2, . . . , Xh−1) =
∑

b

µ([πb1+1]u(X1), . . . , [πbh+1]u(Xh))

= µn−1([π]u(X1), . . . , [π]u(Xh))

= [π]LT(µn(X1, . . . , Xh))

by Prop. 3.7.
We have established part (1) of Thm. 3.2. Part (1) allows us to reduce part
(2) to the case of n = 1, which has already been treated in Prop. 3.4.

Recall that X
(n)
1 , . . . , X

(n)
h are the canonical coordinates on X(πn). Thm. 3.2

shows that the function ∆(n) = µn(X
(n)
1 , . . . , X

(n)
h ) is a nonzero root of

[πn]LT(T ). The following simple lemma will be useful in the next section.

Lemma 3.8. Let M ∈Mh(OF /πnOF ) be a matrix. Then

µn(M(X
(n)
1 ), . . . , X

(n)
h ) + · · ·+ µn(X

(n)
1 , . . . ,M(X

(n)
h )) = [TrM ]LT(∆(n)).
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4 An affinoid with good reduction

We now reach the technical heart of the paper. In this section we will construct
an open affinoid neighborhood Z around an unramified canonical point x whose
reduction is as in Thm. 1.1. These affinoids appear as connected components
of the preimage of a subdisc X(1)1 inside of the polydisc X(1). The polydisc
X(1)1 is small enough so that the local system Funiv[π] may be trivialized over
X(1)1, which is to say that the quotient map X(π) → X(1) admits a section
over X(1)1. An approximation to this section is computed explicitly in §4.1.
A consequence is that the preimage of X(1)1 in X(π) is a disjoint union of
polydiscs X(π)1,x indexed by the canonical points of X(π).
In §4.2 we turn to the space X(π2). An unramified canonical point x ∈ X(π2)
determines a subgroup Kx,2 of GLh(OF ) lying properly between 1 +πMh(OF )
and 1 + π2Mh(OF ). Let

X(Kx,2) = X(π2)/Kx,2.

Then the affinoid Z of Thm. 1.1 is the preimage of X(π)1,x in X(Kx,2). We
introduce a family of coordinates Y (ζ) on X(π2) which are invariant under
Kx,2, one for each ζ in OE . (The formation of the Y (ζ) is modeled on the
determinant functor µ2 from §3.) Thus the Y (ζ) are analytic functions on
X(Kx,2); it turns out (Prop. 4.2) that the Y (ζ) are integral functions on Z.
A simple linear combination Y of the coordinates Y (ζ) generates the ring of
integral analytic functions on Z as an algebra over the ring of integral analytic
functions on the polydisc X(π)x,1. The equation for the reduction Z follows
from the congruence calculated in Prop. 4.3.
We often work with affinoid algebras B over a field E, where E/F is a finitely
ramified extension contained in the completion of the separable closure of F .
For f ∈ B we write v(f) for the infimum of v(f(z)) as z runs though SpmB.

4.1 Analytic sections of Funiv[π]

Let E/F be the unramified extension of degree h, so that OE = khJπK. Let
F0 be the deformation obtained by specializing the variables ui to 0 in Funiv,

so that [π]F0(X) = πX + Xqh . Then F0 admits endomorphisms by OE . As
a formal OE-module, F0 has height 1. We will denote by x(0) the unramified
canonical point in X(1) corresponding to F0.
For n ≥ 1, let En be the extension of Ênr given by adjoining the roots of
[πn]F0(X). Thus the preimages of x(0) in X(π) are the points x = x(1) ∈ X(π)
corresponding to Drinfeld bases x1, . . . , xh ∈ pE1 for F0[π]. Let X(1)1 ⊂ X(1)
be the affinoid neighborhood defined by the conditions v(ui) ≥ 1, i = 1, . . . , h−
1. Let Vi = π−1ui, so that the Vi are a chart of integral coordinates on X(1)1.
The ring of integral analytic functions on X(1)1 is therefore ÔFnr〈V1, . . . , Vh−1〉.
We claim that over X(1)1 ⊗ E1, the local system Funiv[π] may be trivialized.
This means that every nonzero torsion point of F0[π] can be “spread out” to
a unique section of Funiv[π] over X(1)1 ⊗ E1. To be precise:
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Proposition 4.1. The preimage of X(1)1⊗E1 in X(π)⊗E1 is the disjoint union
of polydiscs X(π)1,x over E1, each containing a unique unramified canonical
point x. For such a point x, corresponding to the basis x1, . . . , xh of F0[π], we
have the following congruence, valid in the ring of integral analytic functions
on X(π)1,x:

X(1)
r ≡ (−1)h−1 det




V1 V2 · · · Vh−1 xr
1 V q1 · · · V qh−2 xqr + πxrV

q
h−1

0 1 · · · V q
2

h−3 xq
2

r + πxrV
q2

h−2
...

. . .
...

0 0 · · · 1 xq
h−1

r + πxrV
qh−1

1




(4.1.1)

modulo π
q−1+ q

qh−1 .

Proof. Let x1, . . . , xh be a basis of F0[π]. Consider the polynomial

[π]Funiv (X) = πX+πV1X
q + · · ·+πVh−1Xqh−1

+Xqh ∈ OF 〈V1, . . . , Vh−1〉[X ].
By studying the Newton polygon of the translate [π]Funiv (X − xr), we find
that there is a unique root Xr ∈ OE1〈V1, . . . , Vh−1〉 of [π]Funiv(X) for which
v(Xr − xr) > v(xr) = 1/(qh − 1). This root satisfies v(Xr − xr) = v(xqr) =
q/(qh − 1). Then v(Xr − xs) = 1/(qh − 1) for r 6= s. This already implies
that the preimage of X(1)1⊗E1 in X(π)⊗E1 is the union of polydiscs X(π)1,x,

where X(π)1,x is the affinoid described by the inequalities v(X
(1)
r −xr) ≥ v(xqr),

r = 1, . . . , h.
Now let D ∈ OE1 [V1, . . . , Vh−1] be the expression on the right hand side of
Eq. (4.1.1). Expand the determinant in Eq. (4.1.1) along its first row and label
the minors A1, . . . Ah, signed appropriately so that

D =

h−1∑

i=1

ViAi + xrAh. (4.1.2)

That is,

Ai = (−1)h−i det




V q
i

1 V q
i

2 · · · V q
i

h−i−1 xq
i

r + πxrV
qi

h−i
1 V q

i

1 · · · V q
i+1

h−i−2 xq
i+1

r + πxrV
qi+1

h−i−1
0 1 · · · V q

i+2

h−i−3 xq
i+2

r + πxrV
qi+2

h−i−2
...

. . .
...

...

0 0 · · · 1 xq
h−1

r + πxrV
qh−1

1




(4.1.3)

for i = 1, . . . , h− 1, and Ah = 1.
In order to complete the proof of Prop. 4.1, we will show that [π]Funiv (D) is
sufficiently close to 0 to ensure the congruence in Eq. (4.1.1).
Observe that for i = 1, . . . , h − 1 we have the following congruence modulo

π
q+ q

qh−1 :
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Dqi ≡ (−1)h−1 det



































V qi

1 V qi

2 · · · V qi

h−i V qi

h−i+1 · · · V qi

h−1 xqi

r

1 V qi+1

1 . . . V qi+1

h−i−1 V qi+1

h−i · · · V qi+1

h−2 xqi+1

r

...
. . .

...
...

...

0 0 . . . V qh−1

1 V qh−1

2 . . . V qh−1

i xqh−1

r

0 0 . . . 1 V qh

1 . . . V qh

i−1 −πxr

0 0 . . . 0 1 . . . V qh+1

i−2 0
...

...
...

. . .
...

...
0 0 . . . 0 0 . . . 1 0



































Placing the final column of this matrix into position (h − i + 1) transforms

the above matrix into one of the form

(
A B
0 C

)
, where A is a matrix with

dimensions (h− i+ 1)× (h− i+ 1) and C is an upper triangular matrix with
1s along the diagonal. We find

Dqi ≡ (−1)h+i det























V qi

1 V qi

2 · · · V qi

h−i−1 V qi

h−i xqi

r

1 V qi+1

1 · · · V qi+1

h−i−2 V qi+1

h−i−1 xqi+1

r

0 1 · · · V qi+2

h−i−3 V qi+2

h−i−2 xqi+2

r

...
. . .

...

0 0 · · · 1 V qh−1

1 xqh−1

r

0 0 · · · 0 1 −πxr























(mod π
q+ q

qh−1 ).

(4.1.4)

We can apply elementary row operations to use the 1 in column h− i of this
matrix to cancel the entries above it. When this is done, we find

Dqi ≡ −Ai (mod π
q+ q

qh−1 ), i = 1, . . . , h− 1 (4.1.5)

where A1, . . . , Ah−1 are the minors from Eq. (4.1.3). We also have

Dqh ≡ −πxr ≡ −πxrAh (mod π
q+ q

qh−1 ). (4.1.6)

Combining Eqs. (4.1.2), (4.1.5) and (4.1.6) gives

[π]Funiv (D) = πD + πV1D
q + · · ·+ πVh−1D

qh−1

+Dqh

≡ πD − π(V1A1 + · · ·+ Vh−1Ah−1 + xrAh)

≡ 0 (mod π
q+ q

qh−1 ).

The ring of integral analytic functions on the polydisc X(π)1,x is

OE1〈V1, . . . , Vh〉. In this ring we have the congruences D ≡ X
(1)
r ≡ xr

(mod xqr). Let Y = D − X(1)
r . Then Y ≡ 0 (mod xqr) and [π]Funiv (Y ) ≡ 0

(mod πq+1/(qh−1)). Examining the Newton polygon of [π]Funiv (X) shows that

Y ≡ 0 (mod πq−1+1/(qh−1)).
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4.2 Some invariant coordinates on X(π2).

Choose a compatible system of bases x
(n)
1 , . . . , x

(n)
h for F0[πn], n ≥ 1. This

is tantamount to choosing a compatible system of unramified canonical points
x(n) ∈ X(πn) lying above the point x(0) ∈ X(1) corresponding to the defor-
mation F0. Since F0 admits OF -linear endomorphisms by OE , our choice of
compatible system induces an embedding of OE into A = Mh(OF ), and we

identify OE with its image. For M ∈ A, recall the definition of M(X
(n)
i ) from

Eq. (2.3.1). We have ζ(X
(n)
i )(x(n)) = ζx

(n)
i for i = 1, . . . , h, ζ ∈ kh.

The unit group A× = GLh(OF ) has the usual filtration UnA = 1 + pnA, n ≥ 1.
Let C ⊂ A be the orthogonal complement of OE under the standard trace
pairing, and let pE be the maximal ideal of OE . Define a subgroup Kx,2 of A×

by
Kx,2 = 1 + p2E + pEC,

so that Kx,2 lies between U1
A and U2

A. In what follows we will assume the choice
of x is fixed and write simply K2. Write X(K2) for the quotient of X(π2) by
K2.
We shall construct an alternating k-linear expression Y in the canonical coor-

dinates X
(2)
1 , . . . , X

(2)
h which is fixed by K2, so that it descends to an analytic

function on X(K2). It happens that Y satisfies a polynomial equation with
coefficients in OE2〈V1, . . . , Vh〉 whose reduction modulo the maximal ideal of
OE2 gives the smooth hypersurface of Thm. 1.1.

We continue using the shorthand Xr = X
(1)
r . We introduce the new shorthand

Yr = X
(2)
r , so that [π]Funiv (Yr) = Xr. Also we let ∆ = ∆(1) = µ(X1, . . . , Xh);

this is a locally constant function satisfying ∆q−1 = (−1)hπ. For ζ ∈ OE , let

W (ζ) = µ(ζ(Y1), X2, . . . , Xh) + · · ·+ µ(X1, X2, . . . , ζ(Yh)).

Note that W (1) = µ2(X1, . . . , Xh) = ∆(2). We record the action of U1
A on the

functions W (ζ): For g = 1 + πM ∈ U1
A, we have

g(W (ζ)) = W (ζ) + [Tr(Mζ)]LT(∆) (4.2.1)

by Lemma 3.8. It follows that W (ζ) is invariant under K2, and that
[π]LT(W (ζ)) is invariant under U1

A, so that [π]LT(W (ζ)) belongs to A(π). We
can see this directly: by Eq. (3.1.2) we have

[π]LT(W (ζ)) = det



ζ(X1) Xq

1 · · · Xqh−1

1
...

...
. . .

...

ζ(Xh) Xq
h · · · Xqh−1

h


 , (4.2.2)

which visibly belongs to A(π).
We will use the symbol x to denote our compatible system of canonical points
x(n) ∈ X(πn). Then f(x) is well-defined when f is an analytic function on any
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of the spaces X(πn). We will use X(π)1,x to refer to the polydisc constructed
in §4.1 using the canonical point x(1).

By Prop. 4.1, the restriction of the function [π]LT(W (ζ)) to X(π)1,x lies in
OE1〈V1, . . . , Vh〉, where we recall that the variables Vr = π−1ur form our chart
of integral coordinates on X(1)1. Let Z be the preimage of the polydisc X(π)1,x

in X(K2)⊗E2. It will be useful to transform the functions W (ζ) into integral
functions Y (ζ) on Z for which |Y (ζ)|Z = 1. Let w(ζ) = W (ζ)(x), and let

Y (ζ) = (−1)h−1
W (ζ)− w(ζ)

∆
. (4.2.3)

Proposition 4.2. There exists ε > 0 for which the congruence

Y (ζ)q − Y (ζ) ≡




V1 V2 . . . Vh−1 0
1 V q1 . . . V qh−2 (ζq − ζ)V qh−1
0 1 . . . V q

2

h−3 (ζq
2 − ζ)V q2h−2

...
. . .

...

0 0 · · · 1 (ζq
h−1 − ζ)V q

h−1

1




(mod πε)

is valid in the ring of integral analytic functions on Z.

Proof. The idea is to apply Prop. 4.1 to Eq. (4.2.2). In preparation for this,
we need some determinant identities. For i = 1, . . . , h, let Bi ∈ k[V1, . . . , Vh−1]
be (−1)i times the determinant of the top left i× i submatrix of




V1 V2 · · · Vh−1 0
1 V q1 · · · V qh−2 V qh−1
0 1 · · · V q

2

h−3 V q
2

h−2
...

. . .
...

0 0 · · · 1 V q
h−1

1




Curiously, the transformation (V1, . . . , Vh−1) 7→ (B1, . . . , Bh−1) is an involu-
tion. That is, the determinant of the top left i× i submatrix of




B1 B2 · · · Bh−1 0
1 Bq1 · · · Bqh−2 Bqh−1
0 1 · · · Bq

2

h−3 Bq
2

h−2
...

. . .
...

0 0 · · · 1 Bq
h−1

1




is (−1)iVi: this can be proven by induction on i. This implies the following
identity, valid in the polynomial ring k[V1, . . . , Vh−1, z1, . . . , zh−1]:
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det




z1B1 z2B2 · · · zh−1Bh−1 0
1 Bq1 · · · Bqh−2 Bqh−1
0 1 · · · Bq

2

h−3 Bq
2

h−2
...

. . .
...

0 0
. . . 1 Bq

h−1

1




= det




V1 V2 · · · Vh−1 0
1 V q1 · · · V qh−2 z1V

q
h−1

0 1 · · · V q
2

h−3 z2V
q2

h−2
...

. . .
...

0 0 · · · 1 zh−1V
qh−1

1




(4.2.4)

This is because both expressions equal

z1B1V
q
h−1 + z2B2V

q2

h−2 + · · ·+ zh−1Bh−1V
qh−1

1 .

According to Prop. 4.1, the coordinate Xr may be expressed modulo π
q−1+ q

qh−1

as a linear combination of the powers xr, . . . , x
qh−1

r :

Xr ≡ (1−πBh)xr+B1x
q
r+B2x

q2

r +· · ·+Bh−1xq
h−1

r (mod π
q−1+ q

qh−1 ). (4.2.5)

For ζ ∈ kh we have

ζ(Xr) ≡ ζ(1−πBh)xr+ζqB1x
q
r+ζq

2

B2x
q2

r +· · ·+ζq
h−1

Bh−1x
qh−1

r (mod π
q−1+ q

qh−1 )
(4.2.6)

Also, for i = 1, . . . , h− 1 we have

Xqi

r ≡ −πBq
i

h−ixr + xq
i

r +Bq
i

1 x
qi+1

r + · · ·+Bq
i

h−1−ix
qh−1

r (mod πN ), (4.2.7)

where N ≥ q + q
qh−1 . Eqs. (4.2.6) and (4.2.7) may be combined into the
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congruence of matrices




ζ(X1) + E1 · · · ζ(Xh) + Eh
Xq

1 · · · Xq
h

...
. . .

...

Xqh−1

1 · · · Xqh−1

h




≡




ζ(1 − πBh) ζqB1 ζq
2

B2 . . . ζq
h−1

Bh−1
−πBqh−1 1 Bq1 · · · Bqh−2
−πBq

2

h−2 0 1 · · · Bq
2

h−3
...

. . .
...

−πBq
h−1

1 0 0 · · · 1




×




x1 · · · xh
...

. . .
...

xq
h−1

1 · · · xq
h−1

h


 (4.2.8)

modulo πN , where v(Ei) ≥ q − 1 + q/(qh − 1). We take determinants of both
sides of Eq. (4.2.8). On the left hand side, we apply Eq. (4.2.2): the determinant
is congruent to [π]LT(W (ζ)) modulo an error term πδ, of valuation

δ ≥ q − 1 +
q

qh − 1
+
q + q2 + · · ·+ qh−1

qh − 1
= q − 1 +

q − 1

qh − 1
+

1

q − 1
.

On the right hand side, the determinant is ∆ times

ζ − ζπBh + (−1)hπ det




ζqB1 ζq
2

B2 . . . ζq
h−1

Bh−1 0
1 Bq1 · · · Bqh−2 Bqh−1
0 1 · · · Bq

2

h−3 Bq
2

h−2
...

. . .
...

0 0 · · · 1 Bq
h−1

1



,

and by the identity in Eq. 4.2.4 this equals

ζ + (−1)hπ det




V1 V2 . . . Vh−1 0
1 V q1 . . . V qh−2 (ζq − ζ)V qh−1
0 1 . . . V q

2

h−3 (ζq
2 − ζ)V q

2

h−2
...

. . .
...

0 0 · · · 1 (ζq
h−1 − ζ)V q

h−1

1



.
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Equating determinants of both sides of Eq. (4.2.8) now yields

[π]LT(W (ζ)) ≡

≡ ζ∆ + (−1)hπ∆ det




V1 V2 . . . Vh−1 0
1 V q1 . . . V qh−2 (ζq − ζ)V qh−1
0 1 . . . V q

2

h−3 (ζq
2 − ζ)V q

2

h−2
...

. . .
...

0 0 · · · 1 (ζq
h−1 − ζ)V q

h−1

1




(mod πδ)

The functions V1, . . . , Vh−1 vanish at the canonical point x; therefore so do the
functions B1, . . . , Bh−1. Applying the above congruence to x gives

[π]LT(w(ζ)) ≡ ζ∆ (mod πδ). (4.2.9)

We have W (ζ) = w(ζ) + (−1)h−1∆Y (ζ), so that

[π]LT(W (ζ)) = [π]LT(w(ζ)) + (−1)hπ∆(Y (ζ)q − Y (ζ))

Therefore the congruence claimed in the proposition is valid modulo πε, where

ε = δ − 1− 1

q − 1
≥ q − 2 +

q − 1

qh − 1
> 0.

The functions Y (ζ) on Z each generate a degree q algebra over the field of mero-
morphic functions on the polydisc X(π)1,x. But the morphism Z→ X(π)1,x⊗E2

has degree qh. We will now construct a linear combination of the Y (ζ) which
generates the entire ring of integral analytic functions on Z as an algebra over
OE2〈V1, . . . , Vh−1〉.
Let ζ, ζq, . . . , ζq

h

be a basis for kh/k, and let β ∈ kh be such that

Trkh/k(βζq
i

) =

{
1, i = 0,

0 i = 1, . . . , h− 1.
(4.2.10)

This implies that β, . . . , βq
h−1

is a basis for kh/k as well. Let

Y =

h−1∑

i=0

βq
i

Y (ζq
i

). (4.2.11)

Then the stabilizer of Y in U1
A is exactly K2.

Proposition 4.3. There exists ε > 0 for which the congruence

Y q
h − Y ≡




V q
h

1 − V1 V q
h

2 − V2 · · · V q
h

h−1 − Vh−1 0
1 V q1 · · · V qh−2 V qh−1
0 1 · · · V q

2

h−3 V q
2

h−2
...

. . .
...

0 0 · · · 1 V q
h−1

1




(4.2.12)
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holds modulo πε in the ring of integral analytic functions on Z.

Proof. We have

Y qh − Y =

h−1
∑

j=0

βqj (Y (ζq
j

)q
h

− Y (ζq
j

))

=
h−1
∑

j=0

βqj
h−1
∑

i=0

(Y (ζq
j

)q − Y (ζq
j

))q
i

≡
h−1
∑

i=0

h−1
∑

j=0

βqj det



















V qi

1 V qi

2 . . . V qi

h−1 0

1 V qi+1

1 . . . V qi+1

h−2 (ζq
i+j+1 − ζq

i+j

)V qi+1

h−1

0 1 . . . V qi+2

h−3 (ζq
i+j+2 − ζq

i+j

)V qi+2

h−2

...
. . .

...

0 0 · · · 1 (ζq
i+j+h−1 − ζq

i+j

)V qh−1

1



















modulo πε, by Prop. 4.2. We now apply the orthogonality relations in
Eq. (4.2.10). The term with i = 0 is (−1)h−1Bh, and the term with 1 ≤ i ≤ h−1
is

det




V q
i

1 V q
i

2 · · · V q
i

h−i · · · V q
i

h−1 0

1 V q
i+1

1 · · · V q
i+1

h−i−1 · · · V q
i+1

h−2 0

0 1 · · · V q
i+2

h−i−2 · · · V q
i+2

h−3 0
...

...

0 0 · · · V q
h−1

1 · · · V q
h−1

i 0

0 0 · · · 1 · · · V q
h

i−1 V q
h

i

0 0 · · · 0 · · · V q
h+1

i−2 0
...

...
...

0 0 · · · 0 · · · 1 0




= (−1)h−1V q
h

i Bq
i

h−i,

so that

Y q
h − Y ≡ (−1)h−1(Bh + V q

h

1 Bh−1 + V q
h

2 Bh−2 + · · ·+ V q
h

h−1B1) (mod πε).

This last expression agrees with the determinant in the proposition, as can be
seen by expanding along the first row.

4.3 Conclusion of the proof.

We now complete the proof of Thm. 1.1. Let x be an unramified canonical
point on the Lubin-Tate tower. Since the unramified canonical points in X(1)
lie in the same orbit under O×B = Aut Σ, we may assume that x lies above the
point with u1 = · · · = uh−1 = 0 in X(1). Recall that X(π)1,x ⊂ X(π) ⊗ E1

is the affinoid defined by the conditions v(ui) ≥ 1 for i = 1, . . . , h − 1 and
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v(X
(1)
r − xr) ≥ v(xqr) for r = 1, . . . , h; we showed in Prop. 4.1 that X(π)1,x is a

polydisc over E1.

The quotient X(Kx,2) → X(π) is Galois with group H = U1
A/Kx,2 ≈ Fqh .

After passing to E2 coefficients, the affinoid Z was defined as the inverse image
of X(π)1,x in this quotient. Therefore Z → X(π)1,x ⊗ E2 is an étale cover of
affinoids with group H . Consider the integral coordinate Y on Z produced by
Prop. 4.3: the calculation in §5.1 below shows that the action of a nonzero
element of H translates Y by a nonzero element of Fqh . Thus the reduction

of the cover Z→ X(π)1,x ⊗ E2 is an étale cover of affine hypersurfaces over k,
also with group H .

For a tuple V = (V1, . . . , Vh−1), let d(V ) denote the determinant appearing on

the right hand side of Eq. (4.2.12). Let Z
′

denote the hypersurface over k with

equation Y q
h − Y = d(V ); then Z

′ → Ah−1 is an Artin-Schreier cover of affine
hypersurfaces with group H . Prop. 4.3 shows that Z→ Ah−1 factors through

an H-equivariant morphism Z → Z
′
. Since Z and Z

′
are both étale covers of

Ah−1 with group H , we find that Z→ Z
′

is an isomorphism.

Finally, Z
′

is isomorphic to the hypersurface described in Thm. 1.1 via Y =
(−1)h−1Vh. This concludes the proof of Thm. 1.1.

5 Group actions on a hypersurface

We close with a discussion of various group actions on the affinoid Z, with an
eye towards linking Thm. 1.1 with the local Langlands correspondence and the
Jacquet-Langlands correspondence. What follows is meant to indicate further
directions of research; no proofs will be given.

A large open subgroup of GLh(F ) × B× ×WF acts on the Lubin-Tate tower
X(πn), cf. the introduction to [HT01]. To investigate the question of whether
the cohomology of the affinoid Z realizes the appropriate correspondences
among the three factor groups, it will be useful to compute the stabilizer of
Z in each group, along with the action of the stabilizer on the reduction Z.
We do precisely this for the groups GLh(F ) and WF . The hypersurface Z,
when considered as an abstract variety over k, admits a nontrivial action by a
large subquotient of B×, but we cannot prove this action arises from the actual
action of B× on the Lubin-Tate tower.

Let X be the Fqh -rational model for Z/Fq from Conj. 1.6. That is, X ⊂ Ah
F
qh

is the hypersurface with equation

det




V q
h

1 − V1 V q
h

2 − V2 V q
h

3 − V3 · · · V q
h

h−1 − Vh−1 V q
h

h − Vh
1 V q1 V q2 · · · V qh−2 V qh−1
0 1 V q

2

1 · · · V q
2

h−3 V q
2

h−2
...

. . .
...

0 0 0 · · · 1 V q
h−1

1




= 0.
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The actions on Z we consider in this paragraph all descend to actions on the
Fqh -rational model X .

5.1 The action of GLh(F )

The affioid Z is stabilized by the group U1
A = 1 + πMh(OF ), and the action of

U1
A on Z factors through the quotient H = U1

A/K2. The action of H on the
reduction Z can be made completely explicit. We identify H with kh = Fqh via
the isomorphism 1 + γπ 7→ γ, γ ∈ kh. From Eq. (4.2.1) and the construction
of Y in Eqs. (4.2.3) and (4.2.11) we see that the action of an element γ ∈ H
on Z preserves the variables V1, . . . , Vh−1 and has the following effect on Vh:

Vh 7→ Vh +

h−1∑

j=1

βq
j

Trkh/k(ζq
j

γ) = Vh + γ. (5.1.1)

Of course, this action descends to an action of H on X by Fqh -rational auto-
morphisms.
We offer some brief remarks relating the characters of the groupH to the theory
of Bushnell-Kutzko types for GLh(F ), wherein supercuspidal representations
are constructed by induction from compact-mod-center subgroups. In fact, in
our particular situation, the construction goes back to Howe [How77]. Suppose
ψ is a character of H ≈ Fqh which does not factor through TrF

qh
/F

qd
for

any proper divisor d of h. This character pulls back to a character of U1
A =

1+πMh(OF ), which we also call ψ. Recall that we have fixed an embedding of
E into Mh(F ). Choose a character θ of E× for which θ|1+pE = ψ|1+pE . Then
θ is an admissible character in the sense that there is no proper subextension
E′ ⊂ E of E/F for which θ factors through the norm map E× → (E′)×. The
character θ has conductor p2E . Let η be the unique character of J = E×U1

A for

which η|E× = θ and η|U1
A

= ψ. Then π(θ) = Ind
GLh(F )
J η is a supercuspidal

representation of GLh(F ) of level π2: This is a special case of the construction
used to prove Theorem 2 of [How77].
Therefore the question of whether the cohomology of Z realizes the Bushnell-
Kutzko types for GLh(F ) is a matter of determining which characters of H
appear in the cohomology of X ; this is discussed in Conj. 5.1 below.

5.2 The action of inertia

The action of the inertia subgroup IF ⊂WF on Z can be made explicit as well.
Let I2 = Gal(E2/E

nr); we identify I2 with (OE/π2OE)× via the reciprocity
map of local class field theory. Thus if α ∈ O×E , and x ∈ X(π2) is an unram-
ified canonical point corresponding to a basis x1, . . . , xh of F0[π2], then α(x)
corresponds to the basis αx1, . . . , αxh. Since the definition of the affinoid Z
only depends on the image of x in X(π), the stabilizer of Z in I2 is the group
(1 + πOE)/(1 + π2OE). The action of an element 1 + γπ ∈ 1 + πOE on Z is
exactly as in Eq. (5.1.1).
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5.3 The action of B×

More subtle is the action of O×B = Aut Σ. The algebra OB is generated over
OF by OE and Φ, where Φh = π and Φα = αqΦ, α ∈ OE . For n ≥ 1, let
UnB = 1 + ΦnOB . Let CB be the orthogonal complement of OE in OB, so that

CB = OEΦ⊕ · · · ⊕ OEΦh−1,

and define a subgroup KB
2 of O×B by

KB
2 = 1 + p2E + pEC,

so that KB
2 lies properly between U1

B and U2
B. Let HB = U1

B/K
B
2 . Let R be

the noncommutative ring Fqh [τ ]/(τh+1) whose multiplication is given by the
rule ατ = ταq , α ∈ Fqh . Then HB is isomorphic to 1 + τR. As we observed in
Rmk. 1.2, R× acts on X . It seems likely that the stabilizer of Z in O×B is U1

B,
and that the action of U1

B on Z factors through the this action of HB ∼= 1+τR.

The action of such a large group of Fqh -rational automorphisms has conse-
quences for the cohomology of X which allow us to reinterpret Conj. 1.6. First,
let us provide a short description of the representation theory of the nilpotent
group HB. The subgroup Z = 1 + τhR is the center of 1 + τR ∼= HB. Let
ψ be a character of Z ≈ Fqh which does not factor through TrF

qh
/F

qd
for any

proper divisor d of h. There is a unique representation Vψ of HB lying over
ψ, of dimension qh(h−1)/2. Let H = H∗c (X ⊗ Fq,Qℓ), considered as a virtual
module for the action of Gal(Fq/Fqh)×HB . Conj. 1.6 now takes the following
alternate form:

Conjecture 5.1. Let Hψ = HomHB (Vψ,H), considered as a virtual module
for the action of Gal(Fq/Fqh). Then dimHψ = (−1)h−1, and the eigenvalue

of Frobqh on Hψ is qh(h−1)/2.

The formalism of Bushnell-Kutzko types for GLh(F ) in [BK93] has been ex-
tended to the context of its anisotropic form B× by Broussous [Bro95]. Grant-
ing Conj. 5.1, it will not be difficult to detect the types for B× in the middle co-
homology of Z. The types for B× appearing in Hh−1

c (Z,Qℓ) should correspond
exactly to those types for GLh(F ) which appear there; indeed this space should
realize the correspondence between types. There has already been much work
towards an “explicit Jacquet-Langlands correspondence”, whereby the admissi-
ble square-integrable duals of GLh(F ) and of B× are linked via the explicit pa-
rameterizations of each dual via types, see [Hen93], [BH00], [BH05c]. However
there are still outstanding cases where the explicit Jacquet-Langlands corre-
spondence is not established, including (in some instances) the supercuspidals
π(θ) of §5.1. For these there may be some advantage to the cohomological point
of view, given that the Jacquet-Langlands correspondence is already known to
be realized in the cohomology of the Lubin-Tate tower, cf. [HT01], [Str08a].

Documenta Mathematica 15 (2010) 981–1007



Good Reduction of Affinoids on the Lubin-Tate Tower 1005

References

[AS89] Alan Adolphson and Steven Sperber, Exponential sums and Newton
polyhedra: cohomology and estimates, Ann. of Math. (2) 130 (1989),
no. 2, 367–406.

[BH00] Colin J. Bushnell and Guy Henniart, Correspondance de Jacquet-
Langlands explicite. II. Le cas de degré égal à la caractéristique
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Abstract. Affine Deligne-Lusztig varieties are analogs of Deligne-
Lusztig varieties in the context of an affine root system. We prove
a conjecture stated in the paper [5] by Haines, Kottwitz, Reuman,
and the first named author, about the question which affine Deligne-
Lusztig varieties (for a split group and a basic σ-conjugacy class) in
the Iwahori case are non-empty. If the underlying algebraic group is
a classical group and the chosen basic σ-conjugacy class is the class
of b = 1, we also prove the dimension formula predicted in op. cit. in
almost all cases.
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1 Introduction

1.1

Affine Deligne-Lusztig varieties, which are analogs of usual Deligne-Lusztig
varieties [3] in the context of an affine root system, have been studied by several
people, mainly because they encode interesting information about the reduction
of Shimura varieties and specifically about the relation between the “Newton
stratification” and the “Kottwitz-Rapoport stratification”. Their definition is
purely group-theoretical. To recall it, we fix a split connected reductive group
over the finite field Fq with q elements. Let k be an algebraic closure of Fq,
let L = k((ǫ)) be the field of formal Laurent series over k, and let σ be the

1Partially supported by a Heisenberg grant and by the Sonderforschungsbereich TR 45
“Periods, Moduli spaces and Arithmetic of Algebraic Varieties” of the Deutsche Forschungs-
gemeinschaft.

2Partially supported by HKRGC grants 601409.
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1010 Ulrich Görtz, Xuhua He

automorphism of L defined by σ(
∑
anǫ

n) =
∑
aqnǫ

n. We also denote the
induced automorphism on the loop group G(L) by σ. Let T ⊂ G be a split
maximal torus, and denote by W the corresponding Weyl group. Furthermore,
let I ⊂ G(k[[ǫ]]) be an Iwahori subgroup containing T (k[[ǫ]]), and let W̃ be the
extended affine Weyl group attached to these data. See Section 2.1 for details.
For x ∈ W̃ and b ∈ G(L) the locally closed subscheme

Xx(b) = {g ∈ G(L)/I; g−1bσ(g) ∈ IxI}
of the affine flag variety G(L)/I is called the affine Deligne-Lusztig variety
attached to b and x. The Xx(b) are known to be finite-dimensional varieties
(locally of finite type over k), but are possibly empty, and it is not in general
easy to check whether Xx(b) = ∅ for a given pair x, b.
In [5, Conjecture 9.5.1 (a)] , Haines, Kottwitz, Reuman and the first named
author have stated the following conjecture, which extends a conjecture formu-
lated earlier by Reuman. For simplicity, let us assume that G is quasi-simple
of adjoint type.
We denote by W̃ ′ the lowest two-sided cell in the sense of Kazhdan and Lusztig.
In the terminology of [5], this is the union of the shrunken Weyl chambers. See
Section 2.3. The notion of basic σ-conjugacy class can be characterized by
saying that it contains an element of N(T )(L) which gives rise to a length 0
element of W̃ = N(T )(L)/T (k[[ǫ]]). Equivalently, a σ-conjugacy class is basic if
and only if its Newton vector is central. See [5, Lemma 7.2.1]. The σ-conjugacy
class of b = 1 is always basic.

Conjecture 1.1.1. Suppose that the σ-conjugacy class of b is basic, and that
x ∈ W̃ ′. If b and x are in the same connected component of G(L) and

η(x) ∈W \
⋃

T(S

WT ,

then Xx(b) 6= ∅ and

dimXx(b) =
1

2
(ℓ(x) + ℓ(η(x)) − defG(b)) .

Here S is the set of simple reflections, and for any T ⊂ S, WT denotes the
subgroup of W generated by T . Furthermore, η is the map W̃ → W given as
follows: If x = vtµw with v, w ∈ W and such that the alcove tµw lies in the
dominant chamber, then η(x) = wv. See Section 3.1. Finally, defG(b) is the
defect of b, see [11].
A strengthened version of the converse of the non-emptiness statement was
proved in [5, Proposition 9.5.4]. Here we prove

Theorem 1.1.2. Suppose that the σ-conjugacy class of b is basic, and that
x ∈ W̃ ′. Write x = vtµw as above. Assume that b and x are in the same
connected component of G(L) and that

η(x) ∈W \
⋃

T(S

WT .
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1. Then Xx(b) 6= ∅.

2. If v equals w0, the longest element of W , or µ is regular, then

dimXx(b) 6
1

2
(ℓ(x) + ℓ(η(x)) − defG(b)) .

3. If G is a classical group and b = 1, or of type An and b arbitrary basic,
then

dimXx(b) >
1

2
(ℓ(x) + ℓ(η(x)) − defG(b)) .

See Section 3.1 for more detailed statements and an outline of the proof.
Roughly speaking, our methods are combinatorial (whereas in [5] the theory of
ǫ-adic groups was used). Important ingredients are a refinement of the reduc-
tion method of Deligne and Lusztig (Section 2), and the results of the second
named author about conjugacy classes in affine Weyl groups, see [9].
In [1], E. Beazley obtained similar results for groups of type An, C2 or G2

using a similar method, but using only results on conjugacy classes in finite
Weyl groups.

In Section 4, we briefly consider the case that x ∈ W̃ \ W̃ ′, but all in all
this case remains unclear. Note however that the relation to stratifications of
the wonderful compactification of G might provide further insight in this case,
see [10]. Finally, a careful study of the reduction method also shows that affine
Deligne-Lusztig varieties in the affine flag varieties are not equidimensional in
general; we give a specific example in Section 5. Note that for affine Deligne-
Lusztig varieties in the affine Grassmannian, equidimensionality is known. For
b in the torus T (L), this was proved in [4, Proposition 2.17.1], and for basic b
in [6, Theorem 1.2]; for the intermediate cases, see [7, Corollary 6.8 (a)].

2 Preliminaries

2.1 Notation

Let G be a split connected reductive group over Fq. We assume that G is
quasi-simple of adjoint type. As explained in [4, 5.9], all problems about the
dimension of affine Deligne-Lusztig varieties easily reduce to this case.
Let L = k((ǫ)) be the field of formal Laurent series over k, and let σ be the
automorphism on L defined by σ(

∑
anǫ

n) =
∑
aqnǫ

n. We also denote the
induced automorphism on the loop group G(L) by σ.
Let T be a maximal torus of G, let B ⊃ T be a Borel subgroup of G, and let
B− be the opposite Borel subgroup so that T = B ∩ B−. Let Φ be the set
of roots and Y be the coweight lattice. We denote by Y+ the set of dominant
coweights. Let (αi)i∈S be the set of simple roots determined by (B, T ). We
denote by W the Weyl group N(T )/T . For i ∈ S, we denote by si the simple
reflection corresponding to i.
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For w ∈ W , we denote by supp(w) the set of simple reflections occurring in a
reduced expression of w. So the condition w ∈ W \⋃T(SWT is equivalent to
supp(w) = S.
For w ∈ W , we choose a representative in N(T ) and also write it as w. For
any J ⊂ S, let Φ+

J (resp. Φ−J ) be the positive (resp. negative) roots spanned
by (αj)j∈J .
Let I be the inverse image of B− under the projection map G(k[[ǫ]]) → G
sending ǫ to 0. Let W̃ = N(T (L))/(T (L) ∩ I) be the extended affine Weyl
group of G(L). Then it is known that W̃ = W ⋉ Y = {wǫχ;w ∈ W,χ ∈ Y }.
Let ℓ : W̃ → N ∪ {0} be the length function. For x = wǫχ ∈ W̃ , we also write
x for the representative wǫχ in N(T (L)).
Let X be the coroot lattice, and let Wa = W ⋉ X ⊂ W̃ be the affine Weyl
group. Set S̃ = S ∪ {0} and s0 = ǫθ

∨

sθ, where θ is the largest positive root
of G. Then (Wa, S̃) is a Coxeter system. Let κ : W̃ → W̃/Wa be the natural
projection.
For any J ⊂ S̃, let WJ be the subgroup of Wa generated by J and W̃ J (resp.
JW̃ ) be the set of minimal length coset representative of W̃/WJ (resp. WJ\W̃ ).
For example, SW̃ is the set of all elements for which the corresponding alcove
is contained in the dominant chamber. In the case where J ⊂ S, we write W J

for W̃ J ∩W and JW for JW̃ ∩W .
Let λ be a dominant coweight. Set I(λ) = {i ∈ S; 〈λ, αi〉 = 0}, the “set of
walls” that λ lies on. For J ⊂ S, let ρ∨J ∈ Y+ with

〈ρ∨J , αi〉 =

{
1, if j ∈ J
0, if j /∈ J .

We simply write ρ∨ for ρ∨S .

For any root α ∈ Φ, set δα =

{
1, if α ∈ Φ−

0, if α ∈ Φ+
.

2.2

Following [9, 1.4], we use the following notation: For x, x′ ∈ W̃ and i ∈ S̃,

we write x
si−→ x′ if x′ = sixsi and ℓ(x′) 6 ℓ(x). We write x→̃x′ if there

is a sequence x = x0, x1, · · · , xn = x′ of elements in W̃ such that for all k,
xk = τxk−1τ−1 for some τ ∈ W̃ with ℓ(τ) = 0 or xk−1

si−→ xk for some i ∈ S̃.
We write x≈̃x′ if x→̃x′ and x′→̃x.

2.3

Any element in W̃ can be written in a unique way as vtµw for µ ∈ Y+, v ∈ W
and w ∈ I(µ)W . Note that in this case tµw ∈ SW̃ , and ℓ(vτµw) = ℓ(v)+ℓ(tµ)−
ℓ(w). Set

W̃ ′ = {vtµw; µ ∈ Y+, w ∈ I(µ)W, 〈µ, αi〉+ δvαi − δw−1αi 6= 0 ∀i ∈ S}.
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It is proved by Lusztig [12], Shi [13] and Bédard [2] that W̃ ′ ∩C is a two-sided
cell for each Wa-coset C in W̃ . It is called the lowest two-sided cell. It is also
called the union of the shrunken Weyl chambers in [4] and [5].

2.4

We introduce a convenient notation for varieties of tuples of elements in Flag =
G(L)/I (i.e., the affine flag variety of G over k). Instead of giving a rigorous
definition, it is more useful to explain the notation by examples. We denote
by Ow ⊂ Flag×Flag the locally closed subvariety of pairs (g, g′) such that the
relative position of g and g′ is w. Then we set

{ g w // g′′
w′

// g′ } :=

{(g, g′, g′′) ∈ (Flag)3; (g, g′′) ∈ Ow, (g′′, g′) ∈ Ow′}.

Similarly,

{ g w //

w′′

??g′′
w′

// g′ } :=

{(g, g′, g′′) ∈ (Flag)3; (g, g′′) ∈ Ow, (g′′, g′) ∈ Ow′ , (g, g′) ∈ Ow′′}.

Finally, we need conditions on relative positions where elements g and bσ(g)
occur both—the simplest case being the affine Deligne-Lusztig varieties them-
selves:

Xx(b) = { g x // bσ(g) }.

In all these cases, we do not distinguish between the sets given by the conditions
on the relative position, and the corresponding locally closed sub-ind-schemes
of the product of affine flag varieties.
The following properties are easy to prove.
(1) Let x, y ∈ W̃ . If l(xy) = l(x) + l(y), then the map (g, g′, g′′) 7→ (g, g′) gives
an isomorphism

{ g x //

xy

??g′′
y // g′ } → { g xy // g′ }.

(2) Let w ∈ W̃ and s ∈ S̃. If ws < w, then

{ g w // g′′
s // g′ } = { g w //

ws

??g′′
s // g′ } ⊔ { g w //

w

??g′′
s // g′ },
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where the first set on the right hand side of the equation is open, and the second
one is closed. The projections (g, g′, g′′) 7→ (g, g′) give rise to Zariski-locally
trivial fiber bundles

{ g w //

ws

??g′′
s // g′ } → { g ws // g′ };

{ g w //

w

??g′′
s // g′ } → { g w // g′ }.

with fibers isomorphic to A1 in the first case, and isomorphic to A1 \ {0} in the
second case.

2.5 The reduction method of Deligne and Lusztig

Lemma 2.5.1 (He [8], Lemma 1). Let w,w′ ∈ W̃ . Then the set {uu′; u 6
w, u′ 6 w′} has a unique maximal element, which we denote by w ∗ w′. We
have ℓ(w ∗ w′) = ℓ(w) + ℓ(w−1(w ∗ w′)) = ℓ((w ∗ w′)(w′)−1) + ℓ(w′), and
supp(w ∗ w′) = supp(w) ∪ supp(w′).

Note that the operation ∗ is associative.

Proposition 2.5.2. Let w,w′ ∈ W̃ , and let w′′ ∈ {ww′, w ∗ w′}. All fibers of
the projection

π : { g w //

w′′

??g′′
w′

// g′ } −→ { g w′′
// g′ }

which maps (g, g′, g′′) to (g, g′) have dimension

dimπ−1((g, g′)) >

{
ℓ(w) + ℓ(w′)− ℓ(w ∗ w′) if w′′ = w ∗ w′,
1
2 (ℓ(w) + ℓ(w′)− ℓ(ww′)) if w′′ = ww′.

Proof. We proceed by induction on ℓ(w′). If w′ = 1, then the statement is
obvious. Now assume that l(w′) > 0. Then w′ = sw′1 for some s ∈ S̃ and
w′1 ∈ W̃ with ℓ(w′) = ℓ(w′1) + 1. Then

{ g w //

w′′

::g′′
s // g′′′

w′
1 // g′ } ∼= { g w //

w′′

??g′′
w′

// g′ }
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If ws > w, then

{ g w //

w′′

::g′′
s // g′′′

w′
1 // g′ } ∼= { g ws //

w′′

??g′′′
w′

1 // g′ .}

We also have that ℓ(ws) + ℓ(w′1) = ℓ(w) + 1 + ℓ(w′) − 1 = ℓ(w) + ℓ(w′),
wsw′1 = ww′ and (ws) ∗ w′1 = w ∗ s ∗ w′1 = w ∗ w′. Now the statement follows
from inductive hypothesis on w′1.
If ws < w, then

{ g w //

w′′

::g′′
s // g′′′

w′
1 // g′ } = X1 ⊔X2,

where

X1 = { g w //

w′′

::

ws

��
g′′

s // g′′′
w′

1 // g′ }

X2 = { g w //

w′′

::

w

��
g′′

s // g′′′
w′

1 // g′ }.

The projection from X1 to { g w′′
// g′ } factors through

X1 → { g

w′′

??
ws // g′′′

w′
1 // g′ } → { g w′′

// g′ },

where the first map is a bundle map whose fibers are all of dimension 1. If
w′′ = ww′, then by induction hypothesis on w′1, the fibers of the second map
all have dimension > 1

2 (ℓ(ws) + ℓ(w′1)− l(ww′)). Notice that ℓ(ws) + ℓ(w′1) =
ℓ(w) − 1 + ℓ(w′) − 1 = ℓ(w) + ℓ(w′) − 2. So the fibers of the map X1 →
{ g w′′

// g′ } all have dimension > 1
2 (ℓ(w) + ℓ(w′) − l(ww′)), which gives us

the desired lower bound on the fiber dimension.
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The projection from X2 to { g w′′
// g′ } factors through

X2 → { g

w′′

??
w // g′′′

w′
1 // g′ } → { g w′′

// g′ },

where the first map is a bundle map whose fibers are all of dimension 1. If
w′′ = w∗w′ = w∗s∗w′1 = w∗w′1, then by induction hypothesis on w′1, the fibers
of the second map all have dimension > (ℓ(w) + ℓ(w′1)− ℓ(w ∗w′)). Notice that

ℓ(w) + ℓ(w′1) = ℓ(w) + ℓ(w′)− 1. So the fibers of the map X2 → { g w′′
// g′ }

all have dimension > (ℓ(w) + ℓ(w′)− ℓ(w ∗ (w′)).

As a corollary, we can prove the analog, in the affine context, of the “reduction
method” of Deligne and Lusztig (see [3, proof of Theorem 1.6]). This result
can of course be proved directly, along the lines of the proof of the proposition
above, and was also worked out before by Haines at the suggestion of Lusztig.

Corollary 2.5.3. Let x ∈ W̃ , and let s ∈ S̃ be a simple affine reflection.

1. If ℓ(sxs) = ℓ(x), then there exists a universal homeomorphism Xx(b) →
Xsxs(b).

2. If ℓ(sxs) = ℓ(x)−2, then Xx(b) can be written as a disjoint union Xx(b) =
X1 ⊔ X2 where X1 is closed and X2 is open, and such that there exist
morphisms X1 → Xsxs(b) and X2 → Xsx(b) which are compositions of
a Zariski-locally trivial fiber bundle with one-dimensional fibers and a
universal homeomorphism.

Proof. By possibly exchanging, in case (1), x and sxs, we may assume that
sx < x. By the proposition, the projection

X ′ :=





g

s

��

x // bσ(g)

s

��
g1

sx

<<zzzzzzzzz
bσ(g1)




−→ { g x // bσ(g) } = Xx(b).

is an isomorphism, so we may replace Xx(b) by X ′. We write X ′ as the disjoint
union

X ′ = X1 ⊔X2 :=





g

s

��

x // bσ(g)

s

��
g1

sx

<<zzzzzzzzz
sxs

// bσ(g1)




⊔





g

s

��

x // bσ(g)

s

��
g1

sx

<<zzzzzzzzz

sx
// bσ(g1)
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Since we have ℓ(sx) < ℓ(x), the natural morphism

X1 → X ′1 = { g1 sx //

sxs

==
g2

s // bσ(g1) }

is a universal homeomorphism (note that the composition of X1 → X ′1 with
the projection to g2 is the map g 7→ bσ(g)).
Now we distinguish between the two cases. In case (1), X2 = ∅, and applying
the proposition once more, we find that in this case the projection

X ′1 = { g1 sx //

sxs

==
g2

s // bσ(g1) } −→ { g1 sxs // bσ(g1) } = Xsxs(b)

is an isomorphism.
Next we come to case (2). The projection

X ′1 = { g1 sx //

sxs

==
g2

s // bσ(g1) } −→ { g1 sxs // bσ(g1) } = Xsxs(b)

has fibers of dimension 1
2 (ℓ(sx) + ℓ(s) − ℓ(sxs)) = 1, which proves the claim

about X1. Furthermore X2 can be replaced with

X ′2 = { g1 sx //

sx

==
g2

s // bσ(g1) }

up to a universal homeomorphism, and X ′2 projects to Xsx(b) with 1-
dimensional fibers. The corollary is proved.

With slightly more care, one can show that in case (2) of the lemma, the fibers
of the projection X1 → Xsxs(b) are all isomorphic to A1, whereas the fibers of
X2 → Xsx(b) are A1 \ {0}. This reflects the properties discussed at the end of
subsection 2.4.

Lemma 2.5.4. Let x, τ ∈ W̃ with ℓ(τ) = 0. Then for any b ∈ G(L), Xx(b) is
isomorphic to Xτxτ−1(b).

Proof. Notice that Xx(b) = {gI; g−1bσ(g) ∈ IxI}. Thus the isomorphism
G(L)/I → G(L)/I, gI 7→ gIτ−1 = gτ−1I gives an isomorphism from Xx(b)
to {gI; (gτ)−1bσ(gτ) ∈ IxI} = {gI; g−1bσ(g) ∈ τIxIσ(τ)−1 = Iτxτ−1I} =
Xτxτ−1(b).

Applying this lemma and the conjugation steps in the reduction method of
Deligne and Lusztig, we obtain:

Corollary 2.5.5. Let x, x′ ∈ W̃ , b ∈ G(L). If x→̃x′, and Xx′(b) 6= ∅, then
Xx(b) 6= ∅ and dim(Xx(b))− dim(Xx′(b)) > 1

2 (ℓ(x) − ℓ(x′)).
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2.6

In the sequel, we often use the following property of the Bruhat order: if α ∈ Φ+

with corresponding reflection sα, and w ∈W , then

wsα > w if and only if wα > 0.

For further reference, we state the following version of the usual criterion for
length additivity.

Lemma 2.6.1. Let w, y ∈W such that wα < 0 for every α ∈ Φ+ with y−1α < 0.
Then ℓ(wy) = ℓ(w)− ℓ(y).

3 Proof of Reuman’s conjecture

3.1 Outline of the proof

We first state the result and give an outline of our strategy. Throughout this
chapter, we fix b ∈ G(L), and we assume that whenever we consider Xx(b),
then x and b are in the same connected component of G(L).

We consider the following maps from the extended affine Weyl group W̃ to the
finite Weyl group W :

η1 : W̃ = X∗(T ) ⋊W →W, the projection (1)

η2, where η2(x) is the unique element v such that v−1x ∈ SW̃ (2)

η(x) = η2(x)−1η1(x)η2(x). (3)

So if x = vtµw with µ dominant, v ∈ W , w ∈ I(µ)W , then η1(x) = vw,

η2(x) = v, and η(x) = wv. Furthermore, for x ∈ W̃ (as always, in the same
“connected component” as the fixed b ∈ G(L)) we define the virtual dimension:

d(x) =
1

2

(
ℓ(x) + ℓ(η(x)) − def(b)

)
.

As discussed above, it is conjectured in [5] that dimXx(b) = d(x) for b basic,
x ∈ W̃ ′ with Xx(b) 6= ∅.
We denote by w0 the longest element in W .

Theorem 3.1.1. Let x ∈ W̃ and assume that η2(x) = w0 or that the translation
part of x is given by a regular coweight. Then dim(Xx(b)) 6 d(x).

Theorem 3.1.2. Assume that b is basic. Let x ∈ W̃ ′ such that supp(η(x)) = S.
Then Xx(b) 6= ∅.
This proves the non-emptiness statement in Conjecture 9.5.1 (a) of [5]. To-
gether with op. cit., Proposition 9.5.4, which states that the converse of the the-
orem holds as well, this completely settles the emptiness versus non-emptiness
question for basic b and x in the shrunken Weyl chambers W̃ ′. The next theo-
rem proves that the dimension of Xx(b) is at least as large as predicted by the
conjecture if x ∈ W̃ ′, and G is a classical group and b = 1 or G is of type An:
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Theorem 3.1.3. (1) Let G be a classical group, x ∈ Wa such that supp(η(x)) =
S. If moreover, x ∈ W̃ ′ or η(x) is a Coxeter element of W , then dimXx(1) >
d(x).

(2) Let G = PGLn and τ ∈ W̃ with ℓ(τ) = 0. Let x ∈ Waτ such that
supp(η(x)) = S. If moreover, x ∈ W̃ ′ or η(x) is a Coxeter element of W , then
dimXx(τ) > d(x).

The idea of the proofs of these theorems is to relate the given element x to
other elements for which non-emptiness, a lower bound on the dimension, or
an upper bound on the dimension, respectively, are known. These relations
will mainly be shown using the reduction method of Deligne and Lusztig. To
this end, we introduce the following notation:

Definition 3.1.4. Let x, y ∈ W̃ such that x, y are in the same Wa-coset. We
write x⇒ y if for every b,

dimXx(b)− d(x) > dimXy(b)− d(y).

Here by convention, we set the dimension of the empty set to be −∞. If the
right hand side is −∞ then the inequality holds regardless of the left hand side.
In the definition (and in the theorem below) we do not assume that b is basic.
This is consistent with the expectation that whenever x ∈ W̃ ′ and Xx(b) 6= ∅,
the difference dimXx(b)− d(x) is a constant depending only on b, but not on
x.
Note that this relation is transitive: If x ⇒ y, y ⇒ z, then x ⇒ z. By
definition, if x ⇒ y and Xy(b) 6= ∅, then Xx(b) 6= ∅. In this case, the lower
bound dimXy(b) > d(y) implies the analogous bound for x, while the validity
of the upper bound dimXx(b) 6 d(x) implies the corresponding statement for
y. We prove the following statements about the relation ⇒:

Theorem 3.1.5. 1. Let µ be a dominant coweight, v ∈ W and w ∈ I(µ)W .
Assume that v = w0 or that µ is regular. Then

w0t
µ ⇒ vtµw.

2. Let a ∈ W with supp(a) = S, and let µ 6= 0 be a dominant coweight.
Then there exists a Coxeter element c ∈ W such that

atµ ⇒ tµc.

3. Assume that x ∈ W̃ ′, and that supp(η(x)) = S. Then there exist a
dominant coweight λ and a ∈ W with supp(a) = S such that

x⇒ atλ.

4. Assume that G is a classical group and x ∈ Wa with η(x) a Coxeter
element of W , then

x⇒ η(x).
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Now the non-emptiness statement in Theorem 3.1.2 follows from Theo-
rem 3.1.5 (2) & (3) and the following lemma (Lemma 9.3.3 in [5]), because
Coxeter elements obviously are cuspidal.

Lemma 3.1.6. Let µ ∈ Y , and let w ∈ W be a cuspidal element (i. e. the
conjugacy class of w does not meet any standard parabolic subgroup), let x =
tµw, and let b be basic with κG(b) = κG(x). Then x is σ-conjugate to b, and
in particular Xx(b) 6= ∅.
The upper bound on the dimension stated in Theorem 3.1.1 follows from The-
orem 3.1.5 (1) and the following lemma:

Lemma 3.1.7. Let x = w0t
µ, where µ is a dominant coweight. Then

dimXx(b) 6 d(x).

Proof. By the dimension formula for affine Deligne-Lusztig varieties in the
affine Grassmannian (see [4], [14]), we have

dimXµ(b) = 〈ρ, µ− νb〉 −
1

2
def(b),

where Xµ(b) denotes the affine Deligne-Lusztig variety in the affine Grassman-
nian, and νb denotes the (dominant) Newton vector of b. Since b is basic, its
Newton vector is central and hence does not actually contribute anything. On
the other hand, denoting by π : Flag→ Grass the projection, we have

π−1(Xµ(b)) =
⋃

x∈WtµW

Xx(b).

Therefore, for all w1, w2 ∈ W

dimXw1tµw2(b) 6 dimXµ(b) + dim(G/B) = 〈ρ, µ〉 − 1

2
def(b) + ℓ(w0)

=
1

2
(ℓ(w0t

µ) + ℓ(w0)− def(b)) = d(w0t
µ).

To prove the lower bound under the additional assumptions in Theorem 3.1.3
(1), we reduce to an element of the finite Weyl group. In fact, the following
lemma (for τ = id) shows that it suffices to prove that x⇒ c for some element
c ∈ W . If η(x) is a Coxeter element, then this follows immediately from
Theorem 3.1.5 (4). On the other hand, suppose x ∈ W̃ ′ and supp(η(x)) = S.
We apply Theorem 3.1.5 (3). If the coweight λ is = 0, then we are done.
Otherwise, we can use Theorem 3.1.5 (2) to see that there exists a dominant
coweight λ and a Coxeter element c ∈ W such that x ⇒ tλc. Writing tλc =
v1t

νv2 with tνv2 ∈ SW̃ , i. e. η2(tλc) = v1, we have c = v1v2 and η(tλc) = v2v1.
Since c = v1v2 is simply the decomposition into an element of WI(µ) and

an element of I(µ)W , we have ℓ(v1) + ℓ(v2) = ℓ(c) and since c is a Coxeter
element, v2v1 is also a Coxeter element of W . Therefore x ⇒ tλc ⇒ v2v1
(using Theorem 3.1.5 (4)).
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Lemma 3.1.8. Let τ ∈ W̃ with ℓ(τ) = 0. Let J ⊂ S with τ(J) = J . Then for
any w ∈WJ , dimXwτ(τ) = ℓ(w).

Proof. By [9, Lemma 9.7], dimXwτ (τ) = dimXτ (τ) + ℓ(w). By [9, Prop 10.3],
dimXτ (τ) = 0. So dimXwτ(τ) = ℓ(w).

Under the assumption in Theorem 3.1.3 (2), we have that τ = 1 or 0 < r < n
and that τ is the length 0-element that corresponds to the r-th fundamental
coweight of G. The case that τ = 1 is included in Theorem 3.1.3 (1). So we
only need to consider the latter case. Similarly to the proof above, we have
that x ⇒ tλc for some Coxeter element c of W . Let m = gcd(n, r). Then by
[9, Prop 6.7 (2)], tλc→̃(12 · · ·m)τ . Hence by Corollary 2.5.5 and the Lemma
above,

dimXtλc(τ) > dimX(12···m)τ (τ) +
1

2
(ℓ(tλc)− ℓ((12 · · ·m)τ))

=
1

2
(ℓ(tλc) +m− 1).

Since c is a Coxeter element, η(tλc) is also a Coxeter element of W . We
also have that def(τ) = n − m. Thus d(tλc) = 1

2 (ℓ(tλc) + n − 1 − def(τ)) =
1
2 (ℓ(tλc) +m− 1) 6 dimXtλc(τ). So we obtain d(x) 6 dimXx(τ).
Therefore it remains to prove Theorem 3.1.5. This is the goal of the following
sections.

3.2 Reduction of virtual dimension

Lemma 3.2.1. If x, x′ ∈ W̃ such that x→̃x′ and ℓ(η(x)) = ℓ(η(x′)), then x ⇒
x′.

Proof. Since ℓ(η(x)) = ℓ(η(x′)), we have d(x) − d(x′) = 1
2 (ℓ(x) − ℓ(x′)). The

Lemma now follows immediately from Corollary 2.5.5.

Lemma 3.2.2. Let x ∈ W̃ . Let s ∈ S be a simple reflection such that ℓ(sxs) =
ℓ(x)− 2. Then

d(x) > d(sx) + 1,

and equality holds if and only if ℓ(η(sx)) = ℓ(η(x)) − 1.

Proof. We write x as vtµw with v, w ∈ W and µ a dominant coweight such
that tµw ∈ SW̃ . Then η(x) = wv.
Since sx < x, we must have that sv < v. If ws < w, then tµws ∈ SW̃ and
xs > x, which is a contradiction. Therefore ws > w. Let α denote the simple
root corresponding to s, and write β = v−1(−α), which is a positive root
because sv < v. We then have wv(β) = w(−α) < 0 (since ws > w), and obtain

η(sx) = wsv = wvsβ < wv,

as desired.
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Similarly,

Lemma 3.2.3. Let x = vtµw with v, w ∈ W and µ a dominant coweight such
that tµw ∈ SW̃ . Let s ∈ S be a simple reflection such that ℓ(sxs) = ℓ(x)− 2.

1. We have d(x) = d(xs) + 1 if and only if ℓ(η(xs)) = ℓ(η(x)) − 1.

2. If tµws ∈ SW̃ or w = 1, then

d(x) > d(xs) + 1.

These results about the virtual dimension imply

Lemma 3.2.4. Let x ∈ W̃ , s ∈ S such that ℓ(sxs) < ℓ(x). Then

1. If ℓ(η(sx)) = ℓ(η(x)) − 1, then x⇒ sx.

2. If ℓ(η(xs)) = ℓ(η(x)) − 1, then x⇒ xs.

Proof. For (1), we simply use the Deligne-Lusztig reduction (where we con-
sider X2 in Corollary 2.5.3 (2)), and Lemma 3.2.2. For part (2), we first
use the Deligne-Lusztig reduction from x to sx as in the first case. Then we
use Corollary 2.5.3 (1) to reduce to xs = s(sx)s which has the same length
as sx. Altogether we see that if Xxs(b) 6= ∅, then Xx(b) 6= ∅, and, using
Lemma 3.2.3 (1),

dimXx(b)− dimXxs(b) > 1 = d(x) − d(xs).

3.3 Proof of Theorem 3.1.5 (1)

We write x = vtµw. First consider the case v = η2(x) = w0. Then we have
that w0t

µ ⇒ x = w0t
µw because we can successively apply Lemma 3.2.4 (2).

Now we consider the case that µ is regular. Since µ is regular, tµwvw0 ∈ SW̃ ,
so we can apply the “η2 = w0”-case to the element w0t

µwvw0 and obtain that
w0t

µ ⇒ w0t
µwvw0. Because µ is regular, Lemma 3.2.1 shows that

w0t
µwvw0 = w0v

−1(vtµw)vw0 ⇒ vtµw = x.

3.4 Proof of Theorem 3.1.5 (2)

We prove the following stronger result:
Let J ⊂ S and x = vtµw with v, w ∈ W , supp(v) = J , w is a Coxeter element
in WS−J , µ 6= 0 and tµw ∈ SW̃ . Then there exists a Coxeter element c of W
such that vtµw ⇒ tµc.
We proceed by induction on |J |. Suppose that the statement is true for all J ′ (
J , but not true for J . We may also assume that the claim of the proposition
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is true for all v′ with support supp(v′) = J and ℓ(v′) < ℓ(v). Let v = si1 · · · sik
be a reduced expression.

If tµwsi1 ∈ SW̃ , then ℓ(tµwsi1 ) = ℓ(tµ)−ℓ(wsi1) = ℓ(tµ)−ℓ(w)−1 = ℓ(tµw)−1
and ℓ(si1vt

µwsi1 ) = ℓ(si1v)+ℓ(tµwsi1 ) = ℓ(si1v)+ℓ(tµw)−1 = ℓ(vtµw)−2. By
Lemma 3.2.4 (1), vtµw⇒ si1vt

µw. If supp(si1v) = J , then by induction, there
exists a Coxeter element c of W such that si1vt

µw ⇒ tµc. Hence vtµw ⇒ tµc.
That is a contradiction.

Now suppose that tµwsi1 ∈ SW̃ , but supp(si1v) ( J . In that case, we have
ℓ(si1vt

µwsi1) = ℓ(vtµw) − 2. So vtµw ⇒ si1vt
µwsi1 by Lemma 3.2.1. That is

also a contradiction by induction hypothesis.

Now we can assume that tµwsi1 /∈ SW̃ . Then we have that tµwsi1 = si′1t
µw for

some i′1 ∈ S. So wsi1w
−1 = t−µsi′1t

µ is a reflection in W . So tµ commutes with

si′1 and wsi1w
−1 = si′1 is a simple reflection. By our assumptions on w, it follows

that i′1 = i1 and tµw commutes with si1 . In this case, if ℓ(si1vsi1) < ℓ(v), then
supp(si1v) = J and using Lemma 3.2.4 (1) and the induction hypothesis as in
the first case, we again have that vtµw ⇒ tµc for some Coxeter element c of
W , which is a contradiction.

Therefore we must have that si1 commutes with tµw and ℓ(si1vsi1 ) = ℓ(v).
In this case, vtµw ≈ si1vsi1t

µw. So dimXvtµw(b) = dimXsi1vsi1 t
µw(b)

by Corollary 2.5.3 (1). We also have d(vtµw) = d(si1vsi1t
µw), because

η(si1vsi1t
µw) = wsi1vsi1 has length ℓ(w) + ℓ(si1vsi1 ) (use that w is a Cox-

eter element in WS−J ). Applying the same argument to si1vsi1t
µw instead of

vtµw, we have that si2 commutes with tµw. Repeating the same procedure,
one can show that sij commutes with tµw for all 1 6 j 6 k. In particular, sk
commutes with w for all k ∈ J . Since G is quasi-simple, this is only possible if
J = ∅ or J = S. If J = ∅, then v = 1 and w is a Coxeter element of W and
the statement automatically holds. If J = S, then si commutes with tµ for all
i ∈ S. Thus µ = 0, which contradicts our assumption.

3.5 Proof of Theorem 3.1.5 (3)

Let x = vtµw ∈ W̃ ′ with µ ∈ Y+, v ∈ W , w ∈ I(µ)W . We first give the
definition of the elements γ and a that we use. Let J = {i ∈ S; siw < w}. Since
w ∈ I(µ)W , J∩I(µ) = ∅. Hence µ−ρ∨J ∈ Y+. By definition, 〈ρ∨J , αi〉−δw−1αi =

0 for any i ∈ S. Since x ∈ W̃ ′, we obtain 〈µ− ρ∨J , αi〉+ δvαi 6= 0 for any i ∈ S.

Let J ′ = I(µ − ρ∨J ). Then vαi < 0 for any i ∈ J ′. Thus v = v′w0
J′ for some

v′ ∈ W J′

. Here w0
J′ is the largest element in WJ′ . Now wv = (wv′)w0

J′ =

w′z for some w′ ∈ W J′

and z ∈ WJ′ . Define γ ∈ Y+ and y ∈ W I(γ) by
µ − ρ∨J + (w′)−1ρ∨J = yγ. Furthermore, we define a = (y−1z) ∗ (w′y). It has
support supp(a) = S since S = supp(wv) ⊆ supp(w′y) ∪ supp(y−1z).

We show that

(a) ℓ(w′y) = ℓ(w′)− ℓ(y).

Let α ∈ Φ+ with y−1α < 0. Then 〈γ, y−1α〉 6 0. If 〈γ, y−1α〉 = 0, then
y−1α ∈ Φ−I(γ) and α = y(y−1α) ∈ Φ−. That is a contradiction. Hence 〈µ−ρ∨J +
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(w′)−1ρ∨J , α〉 = 〈yγ, α〉 = 〈γ, y−1α〉 < 0. Since µ − ρ∨J ∈ Y+, 〈µ − ρ∨J , α〉 > 0.
Thus 〈ρ∨J , w′α〉 = 〈(w′)−1ρ∨J , α〉 < 0 and w′α < 0. Since w′α < 0 for any
α ∈ Φ+ with y−1α < 0, Lemma 2.6.1 shows that ℓ(w′y) = ℓ(w′)− ℓ(y). (a) is
proved.

Now set x1 = vz−1tµ−ρ
∨
J y and x2 = y−1ztρ

∨
Jw. Then x = x1x2 and we claim

that

(b) ℓ(x) = ℓ(x1) + ℓ(x2).

By the proof of (a), y ∈ J′

W . In fact, if for any j ∈ J ′, y−1αj < 0, then by

the proof of (a), w′αj < 0, which contradicts that w′ ∈ W J′

. Hence tµ−ρ
∨
J y ∈

SW̃ and ℓ(x1) = ℓ(vz−1) + ℓ(tµ−ρ
∨
J ) − ℓ(y) = ℓ(tµ−ρ

∨
J ) + ℓ(v) − ℓ(z) − ℓ(y).

Also ℓ(x2) = ℓ(y−1z) + ℓ(tρ
∨
J ) − ℓ(w) = ℓ(tρ

∨
J ) + ℓ(y) + ℓ(z) − ℓ(w). Thus

ℓ(x1) + ℓ(x2) = ℓ(tµ−ρ
∨
J ) + ℓ(tρ

∨
J ) + ℓ(v) − ℓ(w) = ℓ(tµ) + ℓ(v) − ℓ(w) = ℓ(x).

(b) is proved.

Now

Xx(b) = { g x // bσ(g) } = { g x1 // g1
x2 // bσ(g) }.

Set

X1 ={ g1 x2 // g2
x1 // bσ(g1) }

∼={ g1 y−1z // g3
tρ

∨
J w // g2

x1 // bσ(g1) }.

The map (g, g1) 7→ (g1, bσ(g)) is a universal homeomorphism from Xx(b) to
X1. Let

X2 = { g1 y−1z // g3
tρ

∨
J w //

w′ytγ

==
g2

x1 // bσ(g1) } ⊂ X1.

Then we have that dim(Xx(b)) > dim(X2).

Now let

X3 = { g1 y−1z // g3
w′ytγ // bσ(g1) },

and let f : X2 → X3 be the projection map. Notice that w′ytγ = tρ
∨
Jwx1.

Thus by 2.5.2 (1), the map is surjective and each fiber is of dimension
ℓ(tρ

∨
J w)+ℓ(x1)−ℓ(w′ytγ)

2 = ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ)
2 . Hence

(c) dim(Xx(b)) > dim(X3) + ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ)
2 .

Notice that

X3 = { g1 y−1z // g3
w′y // g4

tγ // bσ(g1) }.
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Recall that a = (y−1z) ∗ (w′y). We set

X4 ={ g1 y−1z //

a

@@g3
w′y // g4

tγ // bσ(g1) },

X5 ={ g1 a // g4
tγ // bσ(g1) }.

By 2.5.2 (2), dim(X3) > dim(X4) > dim(X5) + ℓ(y−1z) + ℓ(w′y)− ℓ(a). As we
proved above, ℓ(y−1z) + ℓ(w′y) = ℓ(w′) + ℓ(z) = ℓ(wv). Therefore ℓ(y−1z) +

ℓ(w′y) + ℓ(x)−ℓ(y−1z)−ℓ(w′y)−ℓ(tγ)
2 = ℓ(x)+ℓ(wv)−ℓ(tγ)

2 . So

(d) dim(Xx(b)) > dim(X5) + ℓ(x)+ℓ(wv)−ℓ(tγ)
2 − ℓ(a).

Notice that ℓ(atγ) = ℓ(a) + ℓ(tγ). Thus the map (g1, g4) 7→ g1 gives an isomor-
phism X5

∼= Xatγ (b).
If Xatγ (b) 6= ∅, then we obtain that Xx(b) 6= ∅, and

dimXx(b) > dimXatγ (b) + d(x) − d(atγ),

i.e., x⇒ atγ .

Example 3.5.1. Let us see what the elements a, γ are in the following two
special cases:

1. If v = 1, then the assumption that x ∈ W̃ ′ implies that J ′ = ∅. Therefore
w′ = w, z = y = 1, so that γ = µ and a = w. The result in this case is
that tµw ⇒ wtµ.

2. If µ is “very regular”, then I(µ) = I(µ − ρ∨J + (w′)−1ρ∨J ) = ∅, so that
a = w′ = wv. In this case we obtain vtµw ⇒ wvtγ .

3.6 Proof of Theorem 3.1.5 (4)

Since η(x) is a Coxeter element of W , by [9, Prop 6.7 (1)], we have that x→̃η(x).
By Lemma 3.2.1, x⇒ η(x).

4 Remarks on the critical strips

4.1 A sharpened criterion for non-emptiness

We have seen that the non-emptiness of Xx(b) for b basic and x ∈ W̃ ′ can be
decided by looking at η(x) = η2(x)−1η1(x)η2(x). In fact, if supp(η(x)) 6= S
and the translation part of x is non-trivial in the sense that it is different from
the Newton vector of b, then Xx(b) = ∅ ([5, Proposition 9.5.4]). If x ∈ W̃ \ W̃ ′,
then the converse is not true anymore, but one could ask whether it would help
to check whether supp(η′) = S for additional elements η′ ∈ W (depending on
x), and specifically one could try to replace η2(x) by a different element of W .
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The following proposition gives a result in this direction, using the notion of P -
alcove introduced in [5]. In the proposition, η2(x) is replaced by an element of
the form sαη2(x), where α depends on x. Recall that whenever x is a P -alcove
sufficiently far away from the origin, then Xx(b) = ∅.
Of course, the proposition is of particular interest, if xI ∩ Uα = I ∩ Uα (in
particular x /∈ W̃ ′, and more specifically, x lies in the “critical strip” attached
to α).

Proposition 4.1.1. Let x = vtµw ∈ W̃ , w ∈ I(µ)W , let α be a finite root such
that xI ∩Uα ⊆ I ∩Uα, and assume that −v−1α is a simple root. If there exists
j ∈ S such that

(sαv)−1η1(x)(sαv) ∈ WS\{j},

then x is a P -alcove for P = sαvP0, P0 = M0N0 the standard parabolic subgroup
whose Levi component M0 is generated by S \ {j}.
Proof. As usual, we write P = MN for the Levi decomposition of P , where M
is the Levi subgroup containing the fixed maximal torus. By definition of P ,
x ∈ W̃M , so we have to show that xI ∩Uβ ⊆ I for every root β occurring in N .
By assumption, −v−1α is a simple root αi.
Denote by U the unipotent radical of the fixed Borel subgroup of G. Since the
alcove v−1x lies in the dominant chamber, we have v

−1xI∩U ⊆ I. Furthermore,
by our normalization of I with respect to the dominant chamber, we have
v(I ∩ U) ⊂ I, so altogether we obtain

xI ∩ vU ⊂ I. (4)

The set RN of roots occurring in N is

RN = {vsiγ = sαvγ; γ a root in N0}.

We distinguish two cases: If i 6= j, i.e., si ∈ WM , then si stabilizes the set of
roots in N0, and therefore RN is the set of roots in vN0. In this case our claim
follows from (4).
Now let us consider the case i = j, so that αi ∈ RN0 , and α = −vαi = vsiαi ∈
RN . For all β ∈ RN \{α}, we have v−1β > 0, so xI∩Uβ ⊂ I by (4), and finally
we have xI ∩ Uα ⊂ I by assumption.

Even though the proposition yields examples of pairs (x, b) for which Xx(b) = ∅
although supp(η(x)) = S, it does not give rise to a sufficient criterion for non-
emptiness in the critical strips, as can be shown by examples for G = SL4.

5 An example of an affine Deligne-Lusztig variety which is not
equidimensional

5.1

Looking again at the reduction method of Deligne and Lusztig, Corollary 2.5.3,
we see that the situation in the affine case, in the shrunken Weyl chambers,
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is very much different from the classical situation: Whereas in the classical
situation we always have dimX1 = dimX − 1, dimX2 = dimX (denoting
by X the pertinent Deligne-Lusztig variety), in the affine shrunken case for
the expected dimensions we have d(sxs) + 1 = d(x), d(sx) + 1 6 d(x) — so
the closed part X1, if non-empty, always should have the same dimension as
the affine Deligne-Lusztig variety itself, while the open part has at most this
dimension. See the example below for a specific case where this inequality is
strict and where one can produce examples of affine Deligne-Lusztig varieties
which are not equidimensional.

5.2

To give an example of a non-equidimensional affine Deligne-Lusztig variety,
we again use Corollary 2.5.3 (2). Let x = vtµw ∈ Wa be an element with µ
dominant and very regular, and let s ∈ S such that

1. ℓ(sv) < ℓ(v), ℓ(ws) > ℓ(w),

2. ℓ(wsv) < ℓ(wv) − 1,

3. supp(wv) = supp(wsv) = S.

By (1), we have ℓ(sxs) = ℓ(x)− 2. We also have η(x) = η(sxs) = wv, η(sx) =
wsv. Therefore as in Corollary 2.5.3 (2), we write Xx(1) = X1 ∪X2, where X1

is of relative dimension 1 over Xsxs(1), and X2 is of relative dimension 1 over
Xsx(1).
By the main result and assumption (3), we have

dimX2 = dimXsx(1) + 1 = d(sx) + 1 < d(x) = dimXx(1),

where the < in the second line holds because of (2) and Lemma 3.2.2. (We also
see that dimX1 = dimX .) Since X2 is open in Xx(1) and has strictly smaller
dimension, Xx(1) cannot be equidimensional.
It remains to find elements v, w, and s that satisfy (1)–(3). But this is easy,
for instance for type A3, we can take

v = s1s2, w = s1s2s3s2, s = s1,

so that
wv = s1s2s3s2s1s2, wsv = s1s2s3.
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Abstract. The cohomology of the classifying space BU(n) of the
unitary group can be identified with the the ring of symmetric poly-
nomials on n variables by restricting to the cohomology of BT , where
T ⊂ U(n) is a maximal torus. In this paper we explore the situation
where BT = (CP∞)n is replaced by a product of finite dimensional
projective spaces (CP d)n, fitting into an associated bundle

U(n)×T (S2d+1)n → (CP d)n → BU(n).

We establish a purely algebraic version of this problem by exhibiting
an explicit system of generators for the ideal of truncated symmetric
polynomials. We use this algebraic result to give a precise descriptions
of the kernel of the homomorphism in cohomology induced by the
natural map (CP d)n → BU(n). We also calculate the cohomology of
the homotopy fiber of the natural map E Sn×Sn(CP d)n → BU(n).
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1. Introduction

One of the nicest calculations in algebraic topology is that of the cohomology
of the classifying space BU(n) of the unitary groups as the ring of symmetric
polynomials on n variables (see [3]). In fact the restriction map identifies
H∗(BU(n),Z) with the invariants in the cohomology of the classifying space
BT of a maximal torus under the action of the Weyl group Sn. This leads to a
beautiful description of the cohomology of the flag manifold U(n)/T and more
specifically a detailed understanding of the fibration U(n)/T → BT → BU(n).
In this paper we explore the situation where BT = (CP∞)n is replaced by a
product of finite dimensional projective spaces (CP d)n, fitting into an associ-
ated bundle

U(n)×T (S2d+1)n → (CP d)n → BU(n).
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This requires an analysis of truncated symmetric invariants and in par-
ticular a precise description of the kernel I(n, d) of the algebra surjection
H∗(BU(n),F)→ H∗((CP d)n,F)Sn . The purely algebraic version of this prob-
lem is studied in §5 and §6. In particular, Theorem 5.1 allows us to exhibit an
explicit set of generators for I(n, d) as follows.

Theorem 1.1. Let F be a field and I(n, d) be the kernel of the map
H∗(BU(n),F)→ H∗((CP d)n,F).

(a) If n! is invertible in F then I(n, d) is generated by the elements
Pd+1, Pd+2, . . . , Pd+n

(b) If n < 2 char(F)− 1 then I(n, d) is generated by Pd+1, Pd+2, . . . , Pd+n and
Pd + 1, . . . , d + 1︸ ︷︷ ︸

p times

.

For the definition of Pd+i and Pd + 1, . . . , d + 1︸ ︷︷ ︸
pi times

, see §5. Note that the degree of

Pd+i is 2(d+ i) and the degree of Pd + 1, . . . , d + 1︸ ︷︷ ︸
p times

is 2p(d+ 1).

If n! is invertible in a field F, then we show that the elements Pd+i, 1 ≤ i ≤ n,
form a generating regular sequence for I(n, d). In contrast, using Theorem 6.1
we show that in most other cases I(n, d) cannot be generated by a regular
sequence:

Theorem 1.2. If n ≥ char(F) > 0 and d > 1, then I(n, d) cannot be generated
by a regular sequence.

There is a free action of Sn on the fiber space W (n, d) = U(n) ×T (S2d+1)n

arising from the normalizer of the maximal torus in U(n). The orbit space
X(n, d) can be realized as the fiber of the natural map E Sn×Sn(CP d)n →
BU(n). Our algebraic results allow us to calculate the cohomology of this
space in good characteristic.

Theorem 1.3. If F is a field where n! is invertible, then the cohomology of
X(n, d) is an exterior algebra on n generators

H∗(X(n, d),F) ∼= ΛF(Ed+1, . . . , Ed+n)

where Ej is a cohomology class in dimension 2j − 1.

This has an interesting computational consequence.

Theorem 1.4. For any field F of coefficients, the Serre spectral sequence for
the fibration (S2d+1)n → W (n, d) → U(n)/T collapses at E2 if and only if
d ≥ n− 1. Consequently, we obtain an additive calculation

H∗(W (n, d),F) ∼= H∗(U(n)/T,F)⊗H∗((S2d+1)n,F)

whenever d ≥ n− 1. In particular if n! is invertible in F, then

H∗(X(n, d),F) ∼= [H∗(U(n)/T,F)⊗H∗((S2d+1)n,F)]Sn ∼= ΛF(Ed+1, . . . , Ed+n) .
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These results follow from a general theorem about the cohomology of fibrations
which, although “classical” in nature, seems to be new.

Theorem 1.5. Let F be a field and let π : E → B denote a fibration with fiber
F of finite type such that B is simply connected. Assume

• H∗(B,F) is a polynomial algebra on n even dimensional generators,
• π∗ : H∗(B,F)→ H∗(E,F) is surjective,
• the kernel of π∗ is generated by a regular sequence u1, . . . , un, where
|ui| = 2ri.

Then H∗(F,F) is an exterior algebra on n odd dimensional generators
e1, . . . , en, where |ei| = 2ri − 1.

It is natural to ask whether the results of this paper can be extended to compact
Lie groups, other than U(n). We thus conclude this introduction with the
following open problem.

Problem: Let G be a compact Lie group with maximal torus T of rank n and
Weyl group W . Describe generators for the kernel IG(n, d) of the natural map
H∗(BG,F) → H∗((CP d)n,F) and use this to describe the cohomology of the
homotopy fiber of (CP d)n → BG when |W | is invertible in F.

Theorems 5.1(a) and 6.1(a) have been independently proved in a recent
preprint [4] by A. Conca, C. Krattenthaler, J. Watanabe. We are grateful
to J. Weyman for bringing this preprint to our attention.

2. Bundles and symmetric invariants

A classical computation in algebraic topology is that of the cohomology of the
classifying space BU(n) where U(n) is the unitary group of n×n matrices. We
briefly recall how that goes; details can be found, e.g., in the survey paper [3] by
A. Borel. Let T = (S1)n ⊂ U(n) denote the maximal torus of diagonal matrices
in U(n); its classifying space isBT = (CP∞)n. The inclusion T ⊂ U(n) induces
a map between the cohomology of BU(n) and the cohomology of BT . Note that
the normalizer NT of the torus is a wreath product S1 ≀Sn, where the symmetric
group Sn acts by permuting the n diagonal entries. Thus the Weyl groupNT/T
is the symmetric group Sn. Recall that H∗(BT,Z) ∼= Z[x1, . . . , xn], where the
x1, . . . , xn are 2-dimensional generators.

Theorem 2.1. The inclusion T ⊂ U(n) induces an inclusion in cohomology
with image the ring of symmetric invariants in the graded polynomial algebra

H∗(BU(n),Z) ∼= H∗(BT,Z)Sn = Z[x1, . . . , xn]Sn ,

where the action of Sn arises from that of the Weyl group. �

Now recall that the complex projective space CP d is a natural subspace of
CP∞; this induces a map

F̃ (n, d) : (CP d)n → BT → BU(n).
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The permutation matrices Sn ⊂ U(n) act via conjugation on U(n); this restricts
to an action on the diagonal maximal torus T which permutes the factors.
Applying the classifying space functor yields actions of Sn on BT and BU(n)

which make the map F̃ (n, d) equivariant. Note however that the conjugation
action on U(n) is homotopic to the identity on BU(n). We conclude that

F̃ (n, d) induces the natural map

F̃ (n, d)∗ : H∗(BU(n),Z) ∼= Z[x1, . . . , xn]Sn → Z[x1, . . . , xn]/(xd+1
1 , . . . xd+1

n )

in integral cohomology whose image is precisely the ring of truncated symmetric
invariants. We should also note that the map F̃ (n, d) is (up to homotopy) the
classifying map for the n–fold product of the canonical complex line bundle
over CP d.
To make this effective geometrically, we need to describe the map F̃ (n, d) ex-
plicitly as a fibration. The space (CP d)n is a quotient of (S2d+1)n by the free
action of the maximal torus T . Using a standard induction construction we
can view our map as a fibration which lies over the classical fibration connect-
ing U(n)/T , BT and BU(n). Indeed, the following commutative diagram has
fibrations in its rows and columns:

(S2d+1)n

��

(S2d+1)n

��
W (n, d) U(n)×T (S2d+1)n //

��

(CP d)n
F̃ (n,d) //

��

BU(n)

U(n)/T // BT // BU(n)

Note that we also have a bundle

U(n)→ U(n)×T (S2d+1)n → (CP d)n

and its classifying map is F̃ (n, d).
In some of our applications it will also make sense to take a quotient by the
action of the symmetric group Sn. For technical reasons this requires taking a
homotopy orbit space which we now define.

Definition 2.2. Let G denote a compact Lie group acting on a space X ,
its homotopy orbit space XhG is defined as the quotient of the product space
EG×X by the diagonal G–action, where EG is the universal G–space.

Remark 2.3. It should be noted that if G is a finite group, X is a G–space and
|G| is invertible in the coefficients, then the natural projection XhG → X/G
induces an isomorphism in cohomology (this follows from the Vietoris-Begle
theorem). Hence for example if |G| is invertible in a coefficient field F, then
H∗(XhG,F) ∼= H∗(X,F)G (the algebra of invariants).
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In our context, the symmetric group Sn acts by permuting the factors in (CP d)n

and we can consider the associated homotopy orbit space

(CP d)nh Sn = E Sn×Sn(CP d)n.

More precisely, the map BT → BU(n) naturally factors through the classifying
space of the normalizer NT , as we have T ⊂ NT ⊂ U(n). The space BNT can
be identified with BTh Sn = (CP∞)nh Sn

, where Sn acts by permuting the factors,
as before. This homotopy orbit space restricts to the truncated projective
spaces, yielding a map

F (n, d) : (CP d)nh Sn → BU(n) ,

which is surjective in rational cohomology. We would also like to describe this
map as a fibration.

The map (CP d)n → BT is an Sn-equivariant fibration, with fiber (S2d+1)n.
This arises from the free T –action on the product of spheres, which extends in
the usual way to an action of the semidirect product NT . If we take homotopy
orbit spaces we obtain a fibration sequence

(S2d+1)n → (S2d+1)nhNT → BNT .

Dividing out by the free T –action we can identify (S2d+1)nhNT ≃ (CP d)nh Sn
.

This makes the fiber of the map (CP d)nh Sn
→ BNT very explicit. As before,

in order to describe the fibration with target BU(n), it suffices to induce up
the action on the fiber to a U(n)–action by taking the balanced product Z =
U(n)×NT (S2d+1)n. This yields a fibration sequence

Z → ZhU(n) → BU(n) .

Note that

ZhU(n) ≃ EU(n)×NT (S2d+1)n ≃ (S2d+1)nhNT ≃ (CP d)nh Sn ,

where the last equivalence follows from taking quotients by the free T –action,
as before. Our discussion is summarized in the following diagram of fibrations,
analogous to the non–equivariant situation:

(S2d+1)n

��

(S2d+1)n

��
X(n, d) U(n)×NT (S2d+1)n //

��

E Sn×Sn(CP d)n
F (n,d) //

��

BU(n)

U(n)/NT // BNT // BU(n)

Hence we have
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Proposition 2.4. Up to homotopy the map F̃ (n, d) : (CP d)n → BU(n) is a
fibration with fiber the compact simply connected manifold

W (n, d) = U(n)×T (S2d+1)n

of dimension equal to n(n + 2d). There is a free Sn–action on this manifold,
and its quotient

X(n, d) = U(n)×NT (S2d+1)n

is homotopy equivalent to the fiber of F (n, d) : (CP d)nh Sn
→ BU(n). �

Remark 2.5. Note that there are fibrations

(S2d+1)n → X(n, d)→ U(n)/NT

and
U(n)→ X(n, d)→ (CP d)nh Sn ,

where the second one is obtained from pulling back the universal U(n) bundle
over BU(n) using F (n, d).

One of our main results in this paper will be to calculate the cohomology of
the fibers W (n, d) and X(n, d) associated to the fibrations F̃ (n, d) and F (n, d)
respectively.

3. Cohomology calculations when n! is invertible

Our standing assumption in this section (unless stated otherwise) will be that
F is a field such that n! is invertible in F, and cohomology will be computed
with F–coefficients. A good example is the field Q of rational numbers. In this
situation we have H∗(X(n, d),F) ∼= H∗(W (n, d),F)Sn ; it is this cohomology
algebra that we will be most interested in.
We begin by considering the limit case d = ∞. In this case X(n,∞) =
U(n)/NT and we are looking at the classical fibration

U(n)/NT → BNT → BU(n)

Proposition 3.1. The map BNT → BU(n) induces an isomorphism in co-
homology and U(n)/NT is F–acyclic.

Proof. Indeed, both maps in the sequence

H∗(BU(n),F)→ H∗(BNT,F)→ H∗(BT,F)Sn

are isomorphisms. Since BU(n) is simply connected, this can only happen if
U(n)/NT is acyclic. �

Note that this computation is very different from what the cohomology of
the flag manifold U(n)/T looks like; when we divide out by the action of the
symmetric group all the reduced cohomology vanishes.
We now consider the unstable case of this result, namely when d is finite. This
is considerably more interesting, as we know that the cohomology must be non–
trivial. This calculation will be a special case of a more general result about
the cohomology of fibrations.
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Theorem 3.2. Let π : E → B denote a fibration with fiber F of finite type
such that B is simply connected and

• H∗(B,F) is a polynomial algebra on n even dimensional generators,
• π∗ : H∗(B,F)→ H∗(E,F) is surjective,
• the kernel of π∗ is generated by a regular sequence u1, . . . , un, where
|ui| = 2ri.

Then H∗(F,F) is an exterior algebra on n odd dimensional generators
e1, . . . , en, where |ei| = 2ri − 1.

Proof. The cohomology of the fiber F in a fibration

F → E → B

can be studied using the Eilenberg–Moore spectral sequence. We refer the
reader to [8], Chapter VIII for details. It has the form:

E∗,∗2 = TorH∗(B,F)(F, H∗(E,F)).

On the other hand, the hypotheses imply that

H∗(E,F) ∼= H∗(B,F)/(u1, . . . un) ,

where u1, . . . , un form a regular sequence of maximal length in H∗(B,F), a
polynomial algebra on n even dimensional generators. In other words the
cohomology of B is free and finitely generated over F[u1, . . . , un]. Thus the
spectral sequence simplifies to

E∗,∗2 = TorH∗(B,F)(F, H
∗(B,F)⊗F[u1,...,un] F) ∼= TorF[u1,...,un](F,F)

This can be computed using the standard Koszul complex, yielding

E2 = ΛF(e1, . . . , en) ,

where the ei are exterior classes in degree 2ri − 1. There are no further differ-
entials, as the algebra generators for E∗,∗2 represent non–trivial elements in the
cohomology of F which by construction must transgress to the regular sequence
{u1, . . . , un} in H∗(B,F) in the Serre spectral sequence for the fibration

F → E → B.

Therefore the Eilenberg–Moore spectral sequence collapses at E2 = E∞. Now
this algebra is a free graded commutative algebra, hence there are no extension
problems and it follows that

H∗(F,F) ∼= ΛF(e1, . . . , en)

as stated in the theorem. �

We now apply this result to the spaces X(n, d).

Theorem 3.3. The cohomology of X(n, d) is an exterior algebra on n genera-
tors

H∗(X(n, d),F) ∼= ΛF(Ed+1, . . . , Ed+n) ,

where Ej is a cohomology class in dimension 2j − 1.
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Proof. As observed previously we have a fibration

X(n, d)→ (CP d)nh Sn → BU(n) .

The Eilenberg–Moore spectral sequence can therefore be applied to compute
the cohomology of X(n, d). The map F (n, d) : (CP d)nh Sn

→ BU(n) induces a
surjection of algebras

H∗(BU(n),F)→ H∗((CP d)nh Sn ,F)→ 0

which can be identified with the natural map

F[x1, . . . , xn]Sn → (F[x1, . . . , xn]/(xd+1
1 , . . . xd+1

n ))Sn .

The kernel of this map is precisely the ideal

In,d = (xd+1
1 , . . . , xd+1

n ) ∩ F[x1, . . . , xn]Sn .

By Theorem 6.1(a), In,d is generated by a regular sequence of elements
Pd+1, . . . , Pd+n. Here each Pj is a homogeneous polynomial in x1, . . . , xn of
degree j; its degree as a cohomology class is 2j. These classes form a regular
sequence of maximal length in the polynomial algebra H∗(BU(n),F). Thus
the hypotheses of Theorem 3.2 hold, and the proof is complete. �

Corollary 3.4. If d < ∞, then X(n, d) is a compact, connected, orientable
manifold.

Proof. According to our calculation, for m = n(n + 2d) we have
Hm(X(n, d),Q) ∼= Q. This is precisely the dimension of the compact
manifold X(n, d) = U(n)×NT (S2d+1)n, whence the result follows. �

Remark 3.5. Note that as d gets large, the connectivity of the space X(n, d)
increases; this is consistent with the stable calculation, namely the acyclicity
of U(n)/NT . Also note that the manifold U(n)/NT is not orientable, as it is
Q–acyclic.

For the case of W (n, d) we offer the following general result:

Theorem 3.6. For any field F of coefficients, the Serre spectral sequence for
the fibration (S2d+1)n → W (n, d) → U(n)/T collapses at E2 if and only if
d ≥ n− 1, from which we obtain an additive calculation

H∗(W (n, d),F) ∼= H∗(U(n)/T,F)⊗H∗((S2d+1)n,F).

In particular if n! is invertible in F, then

H∗(X(n, d),F) ∼= [H∗(U(n)/T,F)⊗H∗((S2d+1)n,F)]Sn ∼= ΛF(Ed+1, . . . , Ed+n) .

Proof. Consider the Serre spectral sequence with F coefficients for the fibra-
tion (S2d+1)n → W (n, d) → U(n)/T . The base is simply connected and the
cohomology of the fiber is generated by the natural generators for the 2d+ 1–
dimensional cohomology of each sphere. The first differential in the spectral
sequence can be computed as follows: if ei ∈ H2d+1((S2d+1)n,F) is a natural
generator then

d2d+2(ei) = [xd+1
i ] ∈ H∗(U(n)/T,F) ∼= H∗(BT,F)/(s1, s2, . . . , sn) ,
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where the s1, s2, . . . , sn are the symmetric polynomials. This follows from the
diagram of fibrations in the previous section and the well-known calculation of
the cohomology of (CP d)n and U(n)/T as quotients of H∗(BT,F). We now
need the following algebraic lemma.

Lemma 3.7. Let F be a commutative ring and I be the ideal of F[x1, ..., xn]
generated by the elementary symmetric polynomials s1, ..., sn in x1, ..., xn. Then
(a) xn1 ∈ I but (b) xn−11 6∈ I.
Suppose Lemma 3.7 is established (we only need it in the case where F is a

field). Then we conclude that d2d+2(ei) = [xd+1
i ] = 0 in H∗(U(n)/T,F) for

all i = 1, . . . , n if and only if d ≥ n − 1. This implies that all the differentials
in the spectral sequence are zero and so it collapses at E2. The assertions of
Theorem 3.6 follow from this and Theorem 3.3.

It thus remains to prove Lemma 3.7.
(a) Recall that x1, . . . , xn are, by definition, the roots of the polynomial

xn − xn−1s1 + xn−2s2 − ...+ (−1)nsn = 0 .

Thus xn1 = xn−11 s1 − xn−2s2 + ...− (−1)nsn, and since every term in the right
hand side lies in I, part (a) follows.

(b) Assume, to the contrary, that

(1) xn−11 = f1s1 + ...+ fnsn

for some polynomials f1, ..., fn ∈ F[x1, . . . , xn]. If such an identity is possible
over F, and α : F → L is a ring homomorphism then, applying α to each of
the coefficients of f1, . . . , fn, we obtain an identity of the same form over L.
Thus, for the purpose of showing that (1) is not possible, we may, without loss
of generality, replace F by L. In particular, we may take L to be the algebraic
closure of the field F/M , where M is a maximal ideal of F. After replacing F
by this L, we may assume that F is an algebraically closed field.
Equating the homogeneous terms of degree n − 1 on both sides, we see that
after replacing f1, f2, . . . , fn−1 by their homogeneous parts of degrees n−2, n−
3, . . . , 0, respectively, we may assume that fn = 0.
Since F is an algebraically closed field, xn − 1 factors into a product of linear
terms

(2) xn − 1 = (x− ζ1)(x − ζ2) · . . . · (x− ζn) .

for some ζ1, . . . , ζn ∈ F. (As an aside, we remark that ζ1, . . . , ζn ∈ F are distinct
if p = char(F) does not divide n but not in general; at the other extreme, if n
is a power of p then ζ1 = · · · = ζn = 1.) By (2)

si(ζ1, . . . , ζn) = (−1)i (coefficient of xn−i in xn − 1) = 0

for every i = 1, . . . , n−1. Hence, substituting ζi for xi in (1), and remembering
that fn = 0, we obtain ζn−11 = 0, i.e., ζ1 = 0. Since ζ1 is a root of xn − 1 = 0,
we have arrived at a contradiction. This shows that (1) is impossible. The
proof of Lemma 3.7 and thus of Theorem 3.6 is now complete. �
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Calculations with field coefficients can be pieced together to provide informa-
tion on the integral cohomology of X(n, d).

Proposition 3.8. The cohomology ring H∗(X(n, d),Z) has no p–torsion if
p > n.

Proof. By our previous results if p > n then

dimFp H∗(X(n, d),Fp) = dimQ H∗(X(n, d),Q) = 2n.

Hence by the universal coefficient theorem, there can be no p–torsion in the
integral cohomology of X(n, d). �

The situation is more complicated if n ≥ p = char(F). In particular, we
will show that in this case the kernel I(n, d) of the map H∗(BU(p),Fp) →
H∗((CP d)p,Fp) cannot be generated by a regular sequence for any d ≥ 2 (and,
in most cases for d = 1 as well); see Theorem 6.1(b). We now provide an
explicit calculation in the case where n = d = p = 2.

Example 3.9. Consider the map F̃ (2, 1) : S2 × S2 → BU(2). Its fiber is

W (2, 1) = U(2)×T (S3 × S3)

which itself fibers over U(2)/T = S2 with fiber S3 × S3. Hence for dimensional
reasons H∗(W (2, 1),Z) ∼= H∗(S3 × S3 × S2,Z). The S2–action on this space
exchanges the two 3-spheres and applies the antipodal map on S2. Thus the
orbit space X(2, 1) will be rationally cohomologous to S3 × S5, as predicted
by Theorem 3.3. However, it can be shown that H∗(X(2, 1),F2) has Poincaré
series

p(t) = 1 + t+ t2 + t3 + t5 + t6 + t7 + t8 .

On the other hand, the corresponding Poincaré series for rational cohomology
is

q(t) = 1 + t3 + t5 + t8

which accounts for the torsion free classes in the integral cohomology. This
example illustrates the presence of 2–torsion in the cohomology of X(2, 1). Of
course in this case we have π1(X(2, 1)) = Z/2, which accounts for the classes
in degrees one and two in mod 2 cohomology, and by Poincaré duality for the
classes in degrees six and seven.
On the other hand, recall that if H∗(BU(2),F2) ∼= F2[c2, c4] and H∗(S2 ×
S2,F2) ∼= Λ(u2, v2) then F̃ (2, 1)∗(c2) = u2 + v2 and F̃ (2, 1)∗(c4) = u2v2. Thus

we see that F̃ (2, 1)∗ is not surjective and that its kernel is generated by the
classes c22, c

3
2 + c2c4, c

2
4. These classes correspond to the symmetric polynomials

P2 = x21 + x22, P3 = x31 + x32 and P2,2 = x21x
2
2. Note that if 2 is invertible in the

coefficients then

P2,2 =
P 2
2 − (x1 + x2)P3 + (x1x2)P2

2
,

and the third generator is redundant.
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More generally, using the algebraic calculations in Theorem 5.1, Theorem 6.1
and Corollary 6.3 we obtain the following.

Theorem 3.10. Assume that p ≤ n ≤ 2p − 1 and d ≥ 2. Then the kernel of
the map induced by F̃ (n, d) in cohomology

F̃ (n, d)∗ : H∗(BU(n),Fp)→ H∗((CP d)n,Fp)

is generated by the following n+ 1 elements:

• Pd+i, where 1 ≤ i ≤ n and |Pj | = 2j
• Pd + 1, . . . , d + 1︸ ︷︷ ︸

p times

and |Pd + 1, . . . , d + 1︸ ︷︷ ︸
p times

| = 2p(d+ 1)

Moreover this kernel cannot be generated by a regular sequence or by fewer than
n+ 1 elements. �

4. The orthogonal groups and more calculations at p = 2

The situation for p = 2 is somewhat different, as there are specific geometric
models which are special to this characteristic. Here we consider the standard
diagonal inclusion V = (Z/2)n →֒ O(n) into the group of orthogonal n × n
matrices. The group V is self-centralizing in O(n); its normalizer NV is the
wreath product NV = Z/2 ≀ Sn. The Weyl group W = NV/V of V in O(n)
is thus isomorphic to Sn; it acts on V = (Z/2)n by permuting the n factors
of Z/2. The classifying space for V is BV = (RP∞)n, its mod 2 cohomology
is a polynomial algebra on n one dimensional generators F2[x1, . . . , xn]. The
inclusion induces a map from the cohomology of BO(n) to this algebra, which
gives rise to an isomorphism onto the symmetric invariants. As before, the
truncated projective space RP d is a natural subspace of RP∞, and Theorem 5.1
provides a description of the kernel of the homomorphism induced by the map
H(n, d) : (RP d)n → BO(n) for n = 1, 2, 3.
The classifying space for NV = Z/2 ≀ Sn is BNV = (RP∞)nh Sn

. However,
as our calculations are at p = 2 and | Sn | is even, the homotopy orbit space
has a lot more cohomology than just the truncated symmetric invariants (for
example, it contains a copy of H∗(Sn,F2)). The wreath product NV acts on
(Sd)n extending the coordinatewise antipodal action of V . Thus we have a fiber
bundle (Sd)n → (RP d)nh Sn

→ BNV , where we identify (Sd)nhNV ≃ (RP d)nh Sn
.

Example 4.1. For n = 2 we can identify NV with the dihedral group D8 and
its cohomology has generators e, u v in degrees 1, 1, 2 respectively with the
single relation e · u = 0 (see [1]). The elements u, v can be identified with the
standard symmetric generators x1 +x2 and x1x2 in H∗(V,F2)S2 via the restric-
tion map. In fact we have isomorphisms (see [1], page 118) H∗(BD8,F2) ∼=
H∗(S2, H

∗(V,F2)) and H∗((Sd)2hD8
,F2) ∼= H∗(S2, H

∗((RP d)2,F2). Using these
descriptions and Theorem 5.1 it can be shown that the the kernel of the homo-
morphism H∗(BD8,F2)→ H∗((Sd)2hD8

,F2) is the ideal generated by the three

elements Pd+1 = xd+1
1 + xd+2

2 , Pd+2 = xd+2
1 + xd+2

2 and Pd+1,d+1 = xd+1
1 xd+1

2 .
This ideal is called the Fadell–Husseini index (see [6]) of the D8–space Sd×Sd;
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it has some interesting applications in topology and it has been fully calculated
in [2].

Geometrically, the fibration which our mod 2 calculations can be applied to is
described by the diagram:

(Sd)n

��

(Sd)n

��
Y (n, d) O(n) ×V (Sd)n //

��

(RP d)n
H(n,d) //

��

BO(n)

O(n)/V // BV // BO(n)

Here we recall some classical results. First, from the homotopy long ex-
act sequence of the fibration we see that O(n)/V is path–connected because
π1(BV ) → π1(BO(n)) ∼= Z/2 is surjective (the dual map in mod 2 coho-
mology is injective). Its fundamental group acts homologically trivially on
H∗((Sd)n,F2), as it acts through its image in V . Therefore the Serre spectral
sequence for the fibration (Sd)n → Y (n, d)→ O(n)/V has the form

E∗,∗2 = H∗(O(n)/V )⊗H∗((Sd)n,F2) =⇒ H∗(Y (n, d),F2) .

Using Lemma 3.7, we see that this spectral sequence collapses at E2 if and only
if d ≥ n− 1.

Theorem 4.2. If d ≥ n− 1 then we have an additive isomorphism

H∗(Y (n, d),F2) ∼= H∗(O(n)/V )⊗H∗((Sd)n,F2).

�

5. Truncated symmetric polynomials

The remainder of this paper will be devoted to the algebraic results used in
the previous sections. Let F be a field. We begin by recalling some standard
notational conventions and facts concerning the ring

Rn := F[x1, . . . , xn]Sn

of symmetric polynomials in n variables. For details we refer the reader to [7,
Chapter I.2].
If a1, . . . , an are non-negative integers, we will write Pa1,...,an for the sum of

monomials xa
′
1 . . . x

a′n
n , as a′1, . . . , a

′
n range over all possible permutations of

a1, . . . , an. A sum of this form is called a monomial symmetric function. It

has
n!

λ1! · · ·λm!
terms, where λ1, . . . , λm is the partition of n associated to

a1, . . . , an. (Recall that this means that that there are m distinct integers
among a1, . . . , an, occurring with multiplicities λ1, . . . , λm, respectively.)
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Permuting a1, . . . , an does not change Pa1,...,an , so we will always assume that
a1 ≥ · · · ≥ an. With this convention, the monomial symmetric functions
Pa1,...,an form a basis of Rn := F[x1, . . . , xn]Sn as an F-module. One easily
checks that the multiplication rule in this basis is given by

(3) Pa1,...,an · Pb1,...,bn =
∑

kc1,...,cnPc1,...,cn ,

where c1 ≥ . . . ≥ cn and there are exactly kc1,...,cn different ways to write

(c1, . . . , cn) = (a′1, . . . , a
′
n) + (b′1, . . . , b

′
n)

for some permutation a′1, . . . , a
′
n of a1, . . . , an and some permutation b′1, . . . , b

′
n

of b1, . . . , bn.
To make our formulas less cumbersome, we will often abbreviate Pa1,...,ar,0,...,0
as Pa1,...,ar . As long as the number of variables n is fixed, this will not lead to
any confusion. For example, in this notation,

Pi = xi1 + · · ·+ xin

is the usual power sum of degree i and

(4)

P1 = x1 + · · ·+ xn,
P1,1 = x1x2 + · · ·+ xn−1xn,
. . .
P1, . . . , 1︸ ︷︷ ︸

n times

= x1x2 . . . xn

are the elementary symmetric polynomials.
The main result of this section is the following theorem.

Theorem 5.1. Let F be a field of characteristic p ≥ 0.

(a) If p = 0 or n < p then the ideal In,d := (xd+1
1 , . . . , xd+1

n ) ∩ F[x1, . . . , xn]Sn

of Rn := F[x1, . . . , xn]Sn is generated by Pd+1, . . . , Pd+n.

(b) If n ≤ 2p− 1 then In,d is generated by Pd+1, . . . , Pd+n and Pd + 1, . . . , d + 1︸ ︷︷ ︸
p times

.

The rest of this section will be devoted to proving Theorem 5.1. Let I be
the ideal of Rn = F[x1, . . . , xn]Sn generated by the polynomials listed in the
statement of Theorem 5.1. Clearly, I ⊂ In,d; we want to prove the opposite
inclusion. First we note that every element of In,d is an F-linear combination
of monomial symmetric functions Pa1,...,an , where a1 ≥ d+ 1. Thus in order to
prove Theorem 5.1 it suffices to show that every Pa1,...,an with a1 ≥ d+ 1 lies
in I. Our first step in this direction is the following lemma.
We define the weight of the monomial symmetric function Pa1,...,an as the largest
integer r ≤ n such that ar ≥ 1. As mentioned above, we will abbreviate
Pa1,...,an of weight ≤ r as Pa1,...,ar .
We define the leading multiplicity of Pa1,...,an as the largest integer s ≤ n such
that a1 = · · · = as. Here, as always, we are assuming that a1 ≥ a2 ≥ . . . ≥
an ≥ 0.

Documenta Mathematica 15 (2010) 1029–1047



1042 Alejandro Adem and Zinovy Reichstein

Lemma 5.2. Let F be a field and Jn,d be the ideal of Rn = F[x1, . . . , xn]Sn

generated by Pd+1, . . . , Pd+n. Then Jn,d contains every monomial symmetric
function Pa1,...,an with a1 ≥ d+ 1, whose leading multiplicity is invertible in F.

The leading multiplicity of Pa1,...,an is, by definition, an integer between 1 and
n. Theorem 5.1(a) is thus an immediate consequence of this lemma.

Proof. We will argue by induction on the weight r of Pa1,...,an . For the base
case, let r = 1. That is, we claim that Pi ∈ Jn,d for every i ≥ d + 1. For
i = d+ 1, . . . , d+n this is given. Applying Newton’s identities (cf., e.g., [7, pp.
23-24])

Pm+n+1 = P1 · Pm+n − P1,1 · Pm+n−1 + · · ·+ (−1)n+1P1, . . . , 1︸ ︷︷ ︸
n times

· Pm+1

recursively, with m = d, d+ 1, d+ 2, etc., we see that Pm+n+1 ∈ Jn,d for every
m ≥ d. This settles the base case.
For the induction step assume that r ≥ 2. By (3),

Pa1 · Pa2,...,ar = sPa1,a2,...,ar + Pa1+a2,a3,...,ar + Pa1+a3,a2,a4,...,ar +

. . .+ Pa1+ar,a2,a3,...,ar−1 ,(5)

where s is the leading multiplicity of Pa1,...,an . Each of the terms

Pa1+a2,a3,...,ar , Pa1+a3,a2,a4,...,ar , . . . , Pa1+ar ,a2,a3,...,ar−1

is a monomial symmetric function of leading multiplicity 1 and weight r − 1.
By the induction assumption each of them lies in Jn,d. Since we also know that
Pa1 ∈ Jn,d, equation (5) tells us that Pa1,...,ar ∈ Jn,d whenever s is invertible
in F. �

We now turn to the proof of Theorem 5.1(b). Recall that it suffices to show
that

(6) Pa1,...,an ∈ I whenever a1 ≥ d+ 1.

Here I be the ideal of Rn = F[x1, . . . , xn]Sn generated by the polynomials listed
in the statement of Theorem 5.1(b). Denote the leading multiplicity of Pa1,...,an
by s. We will now consider three cases.

Case 1. s 6= p. Since we are assuming that n ≤ 2p− 1, this is equivalent to s
being invertible in F. Clearly, Jn,d ⊂ I; Lemma 5.2 thus tells us that (6) holds.

Case 2. s = p and Pa1,...,an has weight p. In other words, we want to show
that

(7) Pa, . . . , a︸ ︷︷ ︸
p times

∈ I .

Let e = a− (d+ 1). By (3) we see that

(8) Pd + 1, . . . , d + 1︸ ︷︷ ︸
p times

· Pe, . . . , e︸ ︷︷ ︸
p times

= Pa, . . . , a︸ ︷︷ ︸
p times

+ Γ ,
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where Γ is a positive integer linear combination of monomial symmetric func-
tions of leading multiplicity ≤ p−1. Thus Γ ∈ I by Case 1. Since by definition,
Pd + 1, . . . , d + 1︸ ︷︷ ︸

p times

lies in I, the left hand side also lies in I. This shows that (7)

holds.
Note that the above argument depends, in a crucial way, on our assumption
that n ≤ 2p − 1. For n ≥ 2p the sum Γ in (8) would contain a term of
the form Pd+1,...,d+1,e,...,e (or Pe,...,e,d+1,...,d+1, if e > d + 1), with each e and
d+1 repeating exactly p times. This monomial symmetric function has leading
multiplicity p, and in the case we cannot conclude that Γ ∈ I.

Case 3. s = p, general case. Denote a1 = · · · = ap by a. Using formula (3)
once again, we see that

Pa1,...,an = Pa, . . . , a︸ ︷︷ ︸
p times

· Pap+1,...,an + ∆ ,

where ∆ is an integer linear combination of orbit sums Pc1,...,cn of leading
multiplicity ≤ p − 1. Note that Pa, . . . , a︸ ︷︷ ︸

p times

∈ I by Case 2 and ∆ ∈ I by Case

1. We thus conclude that Pa1,...,an ∈ I as well. This completes the proof of
Theorem 5.1. �

6. Regular sequences

We now turn to the question of whether or not the ideal In,d =

(xd+1
1 , . . . , xd+1

n ) ∩ Rn of Rn = F[x1, . . . , xn]Sn can be generated by a regular
sequence. In the sequel we will sometimes use the same symbol for an element
of Rn and its coset in Rn/In,d; we hope that this slight abuse of notation will
make our formulas more transparent and will not lead to any confusion.
Our goal is to prove the following theorem.

Theorem 6.1. Let F be a field of characteristic p ≥ 0.

(a) If n! is not divisible by p then In,d is generated by the regular sequence
Pd+1, . . . , Pd+n in Rn.

(b) Assume that 0 < p ≤ n and either (i) n 6≡ −1 (mod p) and d ≥ 1 or (ii)
n ≡ −1 (mod p) and d ≥ 2. Then In,d is not generated by any regular sequence
in Rn.

The assumptions on d in part (b) cannot be dropped; see Remark 6.4. Our
proof of Theorem 6.1 will rely on the following elementary lemma.

Lemma 6.2. (a) The elements Pa1,...,an , with d ≥ a1 ≥ · · · ≥ an ≥ 0 form a
basis for Rn/In,d as an F-vector space.

(b) The Krull dimension of Rn/In,d is 0.

(c) Suppose In,d is generated by r1, . . . , rm ∈ Rn, as an ideal of Rn. Then
m ≥ n. Moreover, r1, . . . , rm form a regular sequence in Rn if and only if
m = n.
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Proof. (a) The power sums Pa1,...,an with a1 ≥ · · · ≥ an ≥ 0 form an F-basis
of Rn. The power sums Pa1,...,an with a1 ≥ · · · ≥ an ≥ 0 and a1 ≥ d+ 1 form
an F-basis of In,d, and part (a) follows.
(b) By part (a) Rn/In,d is a finite-dimensional F-vector space.
(c) Recall that Rn is a polynomial ring over F generated by the elementary
symmetric polynomials in x1, . . . , xn. In particular, Rn is a Cohen-Macauley
ring. Part (c) now follows from part (b). �

Proof of Theorem 6.1. (a) If p = char(F) does not divide n! then Theo-
rem 5.1(a) tells us that In,d is generated, as an ideal of Rn, by the n elements
Pd+1, . . . , Pd+n. By Lemma 6.2(c) these elements form a regular sequence in
Rn.

(b) If In,d is generated by a regular sequence then Socle(Rn/In,d) is a 1-
dimensional F-vector space; see, e.g. [9, p. 144] or [5, Section 21.2]. It is
an immediate consequence of the multiplication formula (3) that

Pd, . . . , d︸ ︷︷ ︸
n times

∈ Socle(Rn/In,d)

for any F, d and n.
Thus in order to show that In,d is not generated by a regular sequence it
suffices to exhibit a monomial symmetric function Pa1,...,an ∈ Socle(Rn/In,d),
with (a1, . . . , an) 6= (d, . . . , d). Note that Pa1,...,an and Pd, . . . , d︸ ︷︷ ︸

n times

are F-linearly

independent in Rn/In,d by Lemma 6.2(a).

(i) Suppose d ≥ 1 and n = pq + r, where q ≥ 1 and r ∈ {0, 1, . . . , p − 2}. We
claim that in this case Pa1,...,an lies in Socle(Rn/In,d), if

a1 = · · · = apq−1 = d and apq = apq+1 = · · · = an = d− 1.

To establish this claim, we need to check that for these values of a1, . . . , an,

Pa1,...,an · f ∈ In,d
for every f ∈ Rn. Since Rn is generated by the elementary symmetric polyno-
mials P1, P1,1, etc., it suffices to show that

(9) Pa1,...,an · Pb1,...,bn ∈ In,d,
where

(10) (b1, . . . , bn) = (1, . . . , 1︸ ︷︷ ︸
s times

, 0, . . . , 0) .

We want to prove (9) for each s = 1, . . . , n.
Let us examine the product Pa1,...,an · Pb1,...,bn using the multiplication for-
mula (3). First of all, note that we may assume without loss of generality that
1 ≤ s ≤ r + 1. Indeed, if s > r + 1 then every term Pc1,...,cn appearing in the
right hand side of the formula (3) will have c1 ≥ d+ 1 and thus will lie in In,d
(for any base field F).
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If 1 ≤ s ≤ r + 1, the only monomial symmetric functions Pc1,...,cn , with c1 ≤
d, appearing in the right hand side of (3), will have c1 = · · · = cpq+s−1 =
d and cpq+s = cpq+s+1 = · · · = cn = d − 1. This sum will appear with
coefficient kc1,...,cn = number of ways to write (c1, . . . , cn) as (a′1, . . . , a

′
n) +

(b′1, . . . , b
′
n), where (a′1, . . . , a

′
n) is a permutation of (a1, . . . , an) and (b′1, . . . , b

′
n)

is a permutation of (b1, . . . , bn). We claim that kc1,...,cn is divisible by p and
hence, is 0 in F; this will immediately imply (9). Indeed, in this case kc1,...,cn
is simply the number of ways to specify which s of the elements b′1, . . . , b

′
pq+s−1

should be equal to 1 (the remaining ones will be 0). Thus

kc1,...,cn =

(
pq + s− 1

s

)
.

Since q ≥ 1 and 1 ≤ s ≤ r+1 ≤ p−1, this number is divisible by p, as claimed.

(ii) Now suppose d ≥ 2 and n = pq+ p− 1, where q ≥ 1. We claim that in this
case Pa1,...,an lies in Socle(Rn/In,d), if

a1 = · · · = apq−1 = d, apq = apq+1 = · · · = apq+p−2 = d− 1

and apq+p−1 = d − 2. Once again, it suffices to show that (9) holds for every
s = 1, . . . , n, where (b1, . . . , bn) is as in (10). The analysis of the product
Pa1,...,an · Pb1,...,bn , based on formula (3), is similar to part (i) but a bit more
involved.
First of all, we may assume without loss of generality that 1 ≤ s ≤ p. Indeed,
if s ≥ p + 1, then every monomial symmetric function Pc1,...,cn appearing in
the right hand side of (3) will lie in In,d, so that (9) will hold over any base
field F.
If 1 ≤ s ≤ p then only two monomial symmetric functions Pc1,...,cn with c1 ≤ d
will appear in the right hand side of (3), namely

P d, . . . , d,︸ ︷︷ ︸
pq + s − 2

d − 1, . . . , d − 1︸ ︷︷ ︸
p − s + 1

and

P d, . . . , d,︸ ︷︷ ︸
pq + s − 1

d − 1, . . . , d − 1︸ ︷︷ ︸
p − s − 1

, d−2

with coefficients

k d, . . . , d,︸ ︷︷ ︸
pq + s − 2

d − 1, . . . , d − 1︸ ︷︷ ︸
p − s + 1

=

(
pq + s− 2

s− 1

)
(p− s+ 1)

and

k d, . . . , d,︸ ︷︷ ︸
pq + s − 1

d − 1, . . . , d − 1︸ ︷︷ ︸
p − s − 1

, d−2 =

(
pq + s− 1

s

)
,

respectively. (The second monomial symmetric function does not occur if s =
p.) Both of these coefficients are divisible by p and hence, are 0 in F. This
completes the proof of Theorem 6.1. �
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Corollary 6.3. Suppose (i) p ≤ n ≤ 2p− 2 and d ≥ 1 or (ii) n = 2p− 1 and
d ≥ 2. Then the ideal In,d can be generated by n+ 1 elements of Rn but cannot
be generated by n elements.

Proof. Theorem 5.1(b) tells us that In,d is generated by n + 1 elements. If
In,d could be generated by n elements then by Lemma 6.2(c) these n elements
would form a regular sequence in Rn, contradicting Theorem 6.1(b). �

Remark 6.4. The conditions that d ≥ 1 and d ≥ 2 in parts (i) and (ii) of
Theorem 6.1(b) respectively, cannot be dropped. The same goes for conditions
(i) and (ii) in Corollary 6.3.
Indeed, suppose d = 0. Recall that Rn = F[x1, . . . , xn]Sn is a polynomial alge-
bra F[s1, . . . , sn], where s1 = P1, s2 = P1,1, etc., are the elementary symmetric
polynomials in x1, . . . , xn. In,0 is clearly the maximal ideal of Rn generated by
the regular sequence s1, . . . , sn. Thus Theorem 6.1(b) fails if d = 0.
Now suppose d = 1 and n = 2p− 1, where char(F) = p. By Theorem 5.1(b),
In,1 is generated by the n+ 1 elements P2, . . . , Pn−1, Pn+1 and P2, . . . , 2︸ ︷︷ ︸

p times

.

Since we are in characteristic p, Pn+1 = P2p = P p2 , is a redundant generator. In
other words, In,1 is generated by the n elements P2, . . . , Pn−1, Pn and P2, . . . , 2︸ ︷︷ ︸

p times

.

By Lemma 6.2(c) these elements form a regular sequence in Rn. This shows
that Theorem 6.1(b) fails for d = 1 and n = 2p− 1. �
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Abstract. In this article, we consider singular equivariant arith-
metic schemes whose generic fibres are smooth. For such schemes, we
prove a relative fixed point formula of Lefschetz type in the context of
Arakelov geometry. This formula is an analog, in the arithmetic case,
of the Lefschetz formula proved by R. W. Thomason in [31]. In par-
ticular, our result implies a fixed point formula which was conjectured
by V. Maillot and D. Rössler in [25].
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1 Introduction

It is the aim of this article to prove a singular Lefschetz fixed point formula
for some schemes which admit the actions of a diagonalisable group scheme, in
the context of Arakelov geometry. We first roughly describe the history of the
study of such Lefschetz fixed point formulae and relative Lefschetz-Riemann-
Roch problems.
Let k be an algebraically closed field and let n be an integer which is prime
to the characteristic of k. A projective k−variety X which admits an auto-
morphism g of order n will be called an equivariant variety. An equivariant
coherent sheaf on X is a coherent sheaf F on X together with a homomor-
phism ϕ : g∗F → F . It is clear that this homomorphism induces a family of
endomorphisms Hi(ϕ) on cohomology spaces Hi(X,F ).
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A classical Lefschetz fixed point formula is to give an expression of the alter-
nating sum of the traces of Hi(ϕ), as a sum of the contributions from the com-
ponents of the fixed point subvariety Xg. On the other hand, roughly speaking,
a Lefschetz-Riemann-Roch theorem is a commutative diagram in equivariant
K−theory which can be regarded as a Grothendieck type generalization of the
Lefschetz fixed point formula. Indeed, when we choose the base variety in such
a commutative diagram to be a point, we will get the ordinary Lefschetz fixed
point formula. If X is nonsingular, P. Donovan has proved such a theorem in
[12] by using the results and some of the methods of the paper of A. Borel
and J. P. Serre on the Grothendieck-Riemann-Roch theorem (cf. [10]). In [1],
P. Baum, W. Fulton and G. Quart generalized Donovan’s theorem to singular
varieties, the key step of their proof heavily relies on an elegant method called
the deformation to the normal cone. Denote by G0(X, g) (resp. K0(X, g))
the Quillen’s algebraic K-group associated to the category of equivariant co-
herent sheaves (resp. vector bundles of finite rank) on X , then K0(Pt, g) is
isomorphic to the group ring Z[k] and G0(X, g) (resp. K0(X, g)) has a natural
K0(Pt, g)-module (resp. K0(Pt, g)-algebra) structure. Let f be an equivari-
antly projective morphism between two equivariant varieties X and Y , then
it is possible to define a push-forward morphism f∗ from G0(X, g) to G0(Y, g)
in a rather standard way. Let R be any flat K0(Pt, g)-algebra in which 1 − ζ
is invertible for each non-trivial n-th root of unity ζ in k. The main result of
Baum, Fulton and Quart reads: there exists a family of group homomorphisms
L. between K-groups making the following diagram

G0(X, g)
L. //

f∗

��

G0(Xg, g)⊗Z[k] R

fg∗
��

G0(Y, g)
L. // G0(Yg, g)⊗Z[k] R

commutative. If Z is a nonsingular equivariant variety such that there exists an
equivariant closed immersion from X to Z, then for every equivariant coherent
sheaf E on X the homomorphism L. is exactly given by the formula

L.(E) = λ−1−1(N∨Z/Zg ) ·
∑

j

(−1)jTorjOZ (i∗E,OZg )

where NZ/Zg stands for the normal bundle of Zg in Z and λ−1(N∨Z/Zg ) :=∑
(−1)j ∧j N∨Z/Zg .

We would like to indicate that one can use the same method so called the defor-
mation to the normal cone to extend Baum, Fulton and Quart’s result to general
scheme case where X and Y are Noetherian, separated schemes endowed with
projective actions of the diagonalisable group scheme µn associated to Z/nZ.
Here by a µn-action on X we understand a morphism mX : µn × X → X
which statisfies some compatibility properties. Denote by pX the projection
from µn ×X to X . For a coherent OX -module E on X , a µn-action on E we
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mean an isomorphism mE : p∗XE → m∗XE which satisfies certain associativity
properties. We refer to [20] and [21, Section 2] for the group scheme action
theory we are talking about.

In [31], R. W. Thomason used another way to generalize Baum, Fulton and
Quart’s result to the scheme case, and he removed the condition of projec-
tivity. The strategy Thomason followed was to use Quillen’s localization
sequence for higher equivariant K-groups to prove an algebraic concentra-
tion theorem. Let D be an integral Noetherian ring, and let µn be the
diagonalisable group scheme over D associated to Z/nZ. Denote the ring
K0(D,µn) ∼= K0(D)[T ]/(1− T n) by R(µn). We consider the prime ideal ρ
in R(µn) with which the intersection of Z[Z/nZ] is exactly the kernel of the
canonical morphism Z[T ]/(1− T n) → Z[T ]/(Φn) where Φn stands for the n-
th cyclotomic polynomial (cf. [31, Lem. 1.6]). By construction the elements
1− T k for k = 1, . . . , n− 1 are not contained in ρ. Let X be a µn-equivariant
scheme over D, then G0(X,µn) (resp. K0(X,µn)) has a natural R(µn)-module
(resp. R(µn)-algebra) structure. Denote by i the inclusion from Xµn to X .
The algebraic concentration theorem reads: there exists a natural group ho-
momorphism i∗ from G0(Xµn , µn)ρ to G0(X,µn)ρ which is an isomorphism.
Moreover, if X is regular, the inverse map of i∗ is given by λ−1−1(N∨X/Xµn ) · i∗
where NX/Xµn is the normal bundle of Xµn in X . This concentration theorem
can be used to prove a singular Lefschetz fixed point formula which is an exten-
sion of Baum, Fulton and Quart’s result in general scheme case. Thomason’s
approach has nothing to do with the construction of the deformation to the
normal cone, and the localization he used is slightly weaker than Baum, Fulton
and Quart’s in the sense that the complement of the ideal ρ in R(µn) is not the
smallest algebra in which the elements 1−T k (k = 1, . . . , n− 1) are invertible.
If one exactly chooses R to be the complement of the ideal ρ in R(µn), then
these two localizations are equal to each other.

In [21], K. Köhler and D. Rössler generalized the regular case of Baum, Fulton
and Quart’s result to Arakelov geometry. To every regular µn-equivariant arith-
metic scheme X , they associate an equivariant arithmetic K0-group K̂0(X,µn)
which contains some smooth form class on Xµn(C) as analytic datum. Such
an equivariant arithmetic K0-group has a ring structure so that it is also an
R(µn)-algebra. Let NX/Xµn

be the normal bundle with respect to the regular
immersion Xµn →֒ X which is endowed with the quotient metric induced by
a chosen Kähler metric of X(C), then the main theorem in [21] reads: the

element λ−1(N
∨
X/Xµn

) is invertible in K̂0(Xµn , µn)⊗R(µn) R and we have the
following commutative diagram

K̂0(X,µn)
ΛR(f)−1·τ //

f∗

��

K̂0(Xµn , µn)⊗R(µn) R

fµn ∗

��

K̂0(D,µn)
ι // K̂0(D,µn)⊗R(µn) R
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where ΛR(f) := λ−1(N
∨
X/Xµn

) · (1 +Rg(NX/Xµn )), τ stands for the restriction
map and ι is the natural morphism from a ring or a module to its localization
which sends an element e to e

1 . Here Rg(·) is the equivariant R-genus, the def-
inition of the two push-forward morphisms f∗ and fµn∗ involves an important
analytic datum which is called the equivariant analytic torsion. The strategy
Köhler and Rössler followed to prove such an arithmetic Lefschetz-Riemann-
Roch theorem was to use the construction of the deformation to the normal
cone to prove an analog of this theorem for equivariant closed immersions. Af-
ter that, they decompose the morphism f to a closed immersion h from X
to some projective space PrD followed by a smooth morphism p from PrD to
Spec(D). Then the theorem in general situation follows from an argument of
investigating the behavior of the error term under the morphisms h and p.

Provided X. Ma’s extension of equivariant analytic torsion to higher equivariant
analytic torsion form, it was conjectured by Köhler and Rössler in [22] that an
analog of [21, Theorem 4.4] in relative setting holds. We have already proved
this conjecture in [29]. Our method is similar to Thomason’s, we first show
that there exists an arithmetic concentration theorem in Arakelov geometry
and then deduce from it the relative Lefschetz fixed point formula. The same
as Thomason’s approach, our method has nothing to do with the construction
of the deformation to the normal cone, but unfortunately it only works for
regular arithmetic schemes.

One may naturally asked that whether it is possible to construct a more general
arithmetic Ĝ0-theory and prove a relative Lefschetz fixed point formula for
singular arithmetic schemes which is entirely an analog of Thomason’s singular
Lefschetz formula in Arakelov geometry. The answer is Yes, and this is what we
have done in this article. To do this, one needs a Ĝ0-theoretic vanishing theorem
which can be viewed as an extension of Köhler and Rössler’s fixed point formula
for closed immersions to the singular case. The proof of such a vanishing
theorem occupies a lot of space in this article. Let X and Y be two singular
equivariant arithmetic schemes with smooth generic fibres, and let f : X → Y
be an equivariant morphism which is smooth on the complex numbers. Assume
that the µn-action on Y is trivial and f can be decomposed to be h ◦ i where i
is an equivariant closed immersion from X to some regular arithmetic scheme
Z and h : Z → Y is equivariant and smooth on the complex numbers. Let
η be an equivariant hermitian sheaf on X . Referring to Section 6.1 for the
explanations of various notations, we announce that our main theorem in this
article is the following equality which holds in Ĝ0(Y, µn, ∅)ρ:

f∗(η) =fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

k

(−1)kTorkOZ (i∗η,OZµn ))

+

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg )
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+

∫

Xg/Y

T̃d(Tfg, ω
X , ωZX)chg(η)Tdg(NZ/Zg )Td−1g (F ).

The structure of this article is as follows. In Section 2, we recall some
differential-geometric facts for the convenience of the reader. In Section 3, we
formulate and prove a vanishing theorem for equivariant closed immersions in
a purely analytic setting. In Section 4, we define the arithmtic G0-groups with
respect to fixed wave front sets which are necessary for our later arguments. In
Section 5 and Section 6, we formulate and prove the arithmetic concentration
theorem and the relative Lefschetz fixed point formula for singular arithmetic
schemes.
Acknowledgements. The author wishes to thank his thesis advisor Damian
Rössler for providing such an interesting topic, also for his constant encourage-
ment and for many fruitful discussions between them. The author is greatful to
Xiaonan Ma, from whom he gets many meaningful comments and suggestions.
Finally, thanks to the referee, for his/her excellent work.

2 Differential-geometric preliminaries

2.1 Equivariant Chern-Weil theory

Let G be a compact Lie group and let M be a compact complex manifold which
admits a holomorphic G-action. By an equivariant hermitian vector bundle on
M , we understand a hermitian vector bundle on M which admits a G-action
compatible with the G-structure of M and whose metric is G-invariant. Let
g ∈ G be an automorphism of M , we shall denote by Mg = {x ∈M | g ·x = x}
the fixed point submanifold. Mg is also a compact complex manifold.
Now let E be an equivariant hermitian vector bundle on M , it is well known
that the restriction of E to Mg splits as a direct sum

E |Mg=
⊕

ζ∈S1

Eζ

where the equivariant structure gE of E acts on Eζ as multiplication by ζ.
We often write Eg for E1 and call it the 0-degree part of E |Mg . As usual,

Ap,q(M) stands for the space of (p, q)-forms Γ∞(M,ΛpT ∗(1,0)M ∧ΛqT ∗(0,1)M),
we define

Ã(M) =

dimM⊕

p=0

(Ap,p(M)/(Im∂ + Im∂)).

We denote by ΩEζ ∈ A1,1(Mg) the curvature form associated to Eζ . Let
(φζ)ζ∈S1 be a family of GL(C)-invariant formal power series such that φζ ∈
C[[glrkEζ (C)]] where rkEζ stands for the rank of Eζ which is a locally constant
function on Mg. Moreover, let φ ∈ C[[

⊕
ζ∈S1 C]] be any formal power series.

We have the following definition.
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Definition 2.1. The way to associate a smooth form to an equivariant her-
mitian vector bundle E by setting

φg(E) := φ((φζ (−ΩEζ

2πi
))ζ∈S1)

is called an g-equivariant Chern-Weil theory associated to (φζ)ζ∈S1 and φ. The

class of φg(E) in Ã(Mg) is independent of the metric.

Write ddc for the differential operator ∂∂
2πi . The theory of equivariant secondary

characteristic classes is described in the following theorem.

Theorem 2.2. To every short exact sequence ε : 0 → E
′ → E → E

′′ → 0 of
equivariant hermitian vector bundles on M , there is a unique way to attach a
class φ̃g(ε) ∈ Ã(Mg) which satisfies the following three conditions:

(i). φ̃g(ε) satisfies the differential equation

ddcφ̃g(ε) = φg(E
′ ⊕ E′′)− φg(E);

(ii). for every equivariant holomorphic map f : M ′ →M , φ̃g(f
∗ε) = f∗g φ̃g(ε);

(iii). φ̃g(ε) = 0 if ε is equivariantly and orthogonally split.

Proof. This is [21, Theorem 3.4].

We now give some examples of equivariant character forms and their corre-
sponding secondary characteristic classes.

Example 2.3. (i). The equivariant Chern character form chg(E) :=∑
ζ∈S1 ζch(Eζ).

(ii). The equivariant Todd form Tdg(E) :=
crkEg (Eg)

chg(
∑

rkE
j=0(−1)j∧jE

∨
)
. As in [18,

Thm. 10.1.1] one can show that

Tdg(E) = Td(Eg)
∏

ζ 6=1

det(
1

1 − ζ−1eΩ
Eζ

2πi

).

(iii). Let ε : 0 → E
′ → E → E

′′ → 0 be a short exact sequence of hermi-
tian vector bundles. The secondary Bott-Chern characteristic class is given by
c̃hg(ε) =

∑
ζ∈S1 ζ c̃h(εζ).

(iv). If the equivariant structure gε has the eigenvalues ζ1, · · · , ζm, then the
secondary Todd class is given by

T̃dg(ε) =

m∑

i=1

i−1∏

j=1

Tdg(Eζj ) · T̃d(εζi) ·
m∏

j=i+1

Tdg(E
′
ζj + E

′′
ζj ).

Remark 2.4. One can use Theorem 2.2 to give a proof of the statements (iii)
and (iv) in the examples above.
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Let E be an equivariant hermitian vector bundle with two different hermitian
metrics h1 and h2, we shall write φ̃g(E, h1, h2) for the equivariant secondary
characteristic class associated to the exact sequence

0→ (E, h1)→ (E, h2)→ 0→ 0

where the map from (E, h1) to (E, h2) is the identity map.

2.2 Equivariant analytic torsion forms

In [7], J.-M. Bismut and K. Köhler extended the Ray-Singer analytic torsion
to the higher analytic torsion form T for a holomorphic submersion. The
purpose of making such an extension is that the differential equation on ddcT
gives a refinement of the Grothendieck-Riemann-Roch theorem. Later, in his
article [23], X. Ma generalized J.-M. Bismut and K. Köhler’s results to the
equivariant case. In this subsection, we shall briefly recall Ma’s construction of
the equivariant analytic torsion form. This construction is not very important
for understanding the rest of this article, but the equivariant analytic torsion
form itself will be used to define a reasonable push-forward morphism between
equivariant arithmetic G0-groups.

We first fix some notations and assumptions. Let f : M → B be a proper
holomorphic submersion of complex manifolds, and let TM , TB be the holo-
morphic tangent bundle on M , B. Denote by JTf the complex structure on the
real relative tangent bundle TRf , and assume that hTf is a hermitian metric on
Tf which induces a Riemannian metric gTf . Let THM be a vector subbundle
of TM such that TM = THM⊕Tf , the following definition of Kähler fibration
was given in [4, Def. 1.4].

Definition 2.5. The triple (f, hTf , THM) is said to define a Kähler fibration
if there exists a smooth real (1, 1)−form ω which satisfies the following three
conditions:

(i). ω is closed;

(ii). THR M and TRf are orthogonal with respect to ω;

(iii). if X,Y ∈ TRf , then ω(X,Y ) = 〈X, JTfY 〉gTf .

It was shown in [4, Thm. 1.5 and 1.7] that for a given Kähler fibration, the
form ω is unique up to addition of a form f∗η where η is a real, closed (1, 1)-
form on B. Moreover, for any real, closed (1, 1)-form ω on M such that the
bilinear map X,Y ∈ TRf 7→ ω(JTfX,Y ) ∈ R defines a Riemannian metric and
hence a hermitian product hTf on Tf , we can define a Kähler fibration whose
associated (1, 1)-form is ω. In particular, for a given f , a Kähler metric on M
defines a Kähler fibration if we choose THM to be the orthogonal complement
of Tf in TM and ω to be the Kähler form associated to this metric.

We now recall the Bismut superconnection of a Kähler fibration. Let (ξ, hξ)
be a hermitian complex vector bundle on M . Let ∇Tf , ∇ξ be the holomorphic
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hermitian connections on (Tf, hTf) and (ξ, hξ). Let ∇Λ(T∗(0,1)f) be the con-
nection induced by ∇Tf on Λ(T ∗(0,1)f). Then we may define a connection on
Λ(T ∗(0,1)f)⊗ ξ by setting

∇Λ(T∗(0,1)f)⊗ξ = ∇Λ(T∗(0,1)f) ⊗ 1 + 1⊗∇ξ.

Let E be the infinite-dimensional bundle on B whose fibre at each point b ∈ B
consists of the C∞ sections of Λ(T ∗(0,1)f)⊗ ξ |f−1b. This bundle E is a smooth
Z-graded bundle. We define a connection ∇E on E as follows. If U ∈ TRB,
let UH be the lift of U in THR M so that f∗UH = U . Then for every smooth
section s of E over B, we set

∇EUs = ∇Λ(T∗(0,1)f)⊗ξ
UH s.

For b ∈ B, let ∂
Zb

be the Dolbeault operator acting on Eb, and let ∂
Zb∗

be
its formal adjoint with respect to the canonical hermitian product on Eb (cf.
[23, 1.2]). Let C(TRf) be the Clifford algebra of (TRf, h

Tf ), then the bundle
Λ(T ∗(0,1)f) ⊗ ξ has a natural C(TRf)-Clifford module structure. Actually, if
U ∈ Tf , let U ′ ∈ T ∗(0,1)f correspond to U defined by U ′(·) = hTf (U, ·), then
for U, V ∈ Tf we set

c(U) =
√

2U ′∧, c(V ) = −
√

2iV

where i(·) is the contraction operator (cf. [9, Definition 1.6]). Moreover, if

U, V ∈ TRB, we set T (UH , V H) = −PTf [UH , V H ] where PTf stands for the
canonical projection from TM to Tf .

Definition 2.6. Let e1, . . . , e2m be a basis of TRB, and let e1, . . . , e2m be the
dual basis of T ∗RB. Then the element

c(T ) =
1

2

∑

1≤α,β≤2m
eα ∧ eβ⊗̂c(T (eHα , e

H
β ))

is a section of (f∗Λ(T ∗RB)⊗̂End(Λ(T ∗(0,1)f)⊗ ξ))odd.

Definition 2.7. For u > 0, the Bismut superconnection on E is the differential
operator

Bu = ∇E +
√
u(∂

Z
+ ∂

Z∗
)− 1

2
√

2u
c(T )

on f∗(Λ(T ∗RB))⊗̂(Λ(T ∗(0,1)f)⊗ ξ).

Definition 2.8. Let NV be the number operator on Λ(T ∗(0,1)f)⊗ ξ and on E,
namely NV acts as multiplication by p on Λp(T ∗(0,1)f) ⊗ ξ. For U, V ∈ TRB,

set ωHH(U, V ) = ωM (UH , V H) where ωM is the closed form in the definition

of Kähler fibration. Furthermore, for u > 0, set Nu = NV + iωHH

u .
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We now turn to the equivariant case. Let G be a compact Lie group, we shall
assume that all complex manifolds, hermitian vector bundles and holomorphic
morphisms considered above areG−equivariant and all metrics areG-invariant.
We will additionally assume that the direct images Rkf∗ξ are all locally free
so that the G-equivariant coherent sheaf R·f∗ξ is locally free and hence a G-
equivariant vector bundle over B. [23, 1.2] gives a G-invariant hermitian metric
(the L2-metric) hR

·f∗ξ on the vector bundle R·f∗ξ.
For g ∈ G, let Mg = {x ∈M | g·x = x} and Bg = {b ∈ B | g·b = b} be the fixed
point submanifolds, then f induces a holomorphic submersion fg : Mg → Bg.
Let Φ be the homomorphism α 7→ (2iπ)−degα/2 of Λeven(T ∗RB) into itself. We
put

chg(R
·f∗ξ, h

R·f∗ξ) =

dimM−dimB∑

k=0

(−1)kchg(R
kf∗ξ, h

Rkf∗ξ)

and

ch′g(R
·f∗ξ, h

R·f∗ξ) =

dimM−dimB∑

k=0

(−1)kkchg(R
kf∗ξ, h

Rkf∗ξ).

Definition 2.9. For s ∈ C with Re(s) > 1, let

ζ1(s) = − 1

Γ(s)

∫ 1

0

us−1(ΦTrs[gNuexp(−B2
u)]− ch′g(R

·f∗ξ, h
R·f∗ξ))du

and similarly for s ∈ C with Re(s) < 1
2 , let

ζ2(s) = − 1

Γ(s)

∫ ∞

1

us−1(ΦTrs[gNuexp(−B2
u)]− ch′g(R

·f∗ξ, h
R·f∗ξ))du.

X. Ma has proved that ζ1(s) extends to a holomorphic function of s ∈ C near
s = 0 and ζ2(s) is a holomorphic function of s.

Definition 2.10. The smooth form Tg(ω
M , hξ) := ∂

∂s (ζ1 + ζ2)(0) on Bg is
called the equivariant analytic torsion form.

Theorem 2.11. The form Tg(ω
M , hξ) lies in

⊕
p≥0 A

p,p(Bg) and satisfies the
following differential equation

ddcTg(ω
M , hξ) = chg(R

·f∗ξ, h
R·f∗ξ)−

∫

Mg/Bg

Tdg(Tf, h
Tf)chg(ξ, h

ξ).

Here Ap,p(Bg) stands for the space of smooth forms on Bg of type (p, p).

Proof. This is [23, Theorem 2.12].

We define a secondary characteristic class

c̃hg(R
·f∗ξ, h

R·f∗ξ, h′R
·f∗ξ) :=

dimM−dimB∑

k=0

(−1)k c̃hg(R
kf∗ξ, h

Rkf∗ξ, h′R
kf∗ξ)
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such that it satisfies the following differential equation

ddcc̃hg(R
·f∗ξ, h

R·f∗ξ, h′R
·f∗ξ) = chg(R

·f∗ξ, h
R·f∗ξ)− chg(R

·f∗ξ, h
′R·f∗ξ),

then the anomaly formula can be described as follows.

Theorem 2.12. (Anomaly formula) Let ω′ be the form associated to another
Kähler fibration for f : M → B. Let h′Tf be the metric on Tf in this new
fibration and let h′ξ be another metric on ξ. The following identity holds in
Ã(Bg) :=

⊕
p≥0(Ap,p(Bg)/(Im∂ + Im∂)):

Tg(ω
M , hξ)− Tg(ω′M , h′ξ) =c̃hg(R

·f∗ξ, h
R·f∗ξ, h′R

·f∗ξ)

−
∫

Mg/Bg

[T̃dg(Tf, h
Tf , h′Tf )chg(ξ, h

ξ)

+ Tdg(Tf, h
′Tf )c̃hg(ξ, h

ξ, h′ξ)].

In particular, the class of Tg(ω
M , hξ) in Ã(Bg) only depends on (hTf , hξ).

Proof. This is [23, Theorem 2.13].

2.3 Equivariant Bott-Chern singular currents

The Bott-Chern singular current was defined by J.-M. Bismut, H. Gillet and
C. Soulé in [5] in order to generalize the usual Bott-Chern secondary char-
acteristic class to the case where one considers the resolutions of hermitian
vector bundles associated to the closed immersions of complex manifolds. In
[2], J.-M. Bismut generalized this topic to the equivariant case. We shall recall
Bismut’s construction of the equivariant Bott-Chern singular current in this
subsection. Similar to the equivariant analytic torsion form, the construction
itself is not very important for understanding our later arguments, we just re-
call it for the convenience of the reader. Bismut’s construction was realized via
some current valued zeta function which involves the supertraces of Quillen’s
superconnections. This is similar to the non-equivariant case.
As before, let g be the automorphism corresponding to an element in a com-
pact Lie group G. Let i : Y → X be an equivariant closed immersion of
G-equivariant Kähler manifolds, and let η be an equivariant hermitian vector
bundle on Y . Assume that ξ. is a complex (of homological type) of equivariant
hermitian vector bundles on X which provides a resolution of i∗η. We denote
the differential of the complex ξ. by v. Note that ξ. is acyclic outside Y and
the homology sheaves of its restriction to Y are locally free and hence they are
all vector bundles. We write Hn = Hn(ξ. |Y ) and define a Z-graded bundle
H =

⊕
nHn. For each y ∈ Y and u ∈ TXy, we denote by ∂uv(y) the derivative

of v at y in the direction u in any given holomorphic trivialization of ξ. near y.
Then the map ∂uv(y) acts on Hy as a chain map, and this action only depends
on the image z of u in Ny where N stands for the normal bundle of i(Y ) in X .
So we get a chain complex of holomorphic vector bundles (H, ∂zv).
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Let π be the projection from the normal bundle N to Y , then we have a
canonical identification of Z-graded chain complexes

(π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η), iz).

For this, one can see [3, Section I. b]. Moreover, such an identification is an
identification of G-bundles which induces a family of canonical isomorphisms
γn : Hn

∼= ∧nN∨ ⊗ η. Another way to describe these canonical isomorphisms
γn is applying [13, Exp. VII, Lemma 2.4 and Proposition 2.5]. These two
constructions coincide because they are both locally, on a suitable open covering
{Uj}j∈J , determined by any complex morphism over the identity map of η |Uj
from (ξ. |Uj , v) to the minimal resolution of η |Uj (e.g. the Koszul resolution).
The advantage of using the construction given in [13] is that it remains valid
for arithmetic varieties over any base instead of the complex numbers. Later
in [2], for the use of normalization, J.-M. Bismut considered the automorphism
of N∨ defined by multiplying a constant −

√
−1, it induces an isomorphism of

chain complexes

(π∗(∧N∨ ⊗ η), iz) ∼= (π∗(∧N∨ ⊗ η),
√
−1iz)

and hence
(π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η),

√
−1iz).

This identification induces a family of isomorphisms γ̃n : Hn
∼= ∧nN∨ ⊗ η. By

finite dimensional Hodge theory, for each y ∈ Y , there is a canonical isomor-
phism

Hy
∼= {f ∈ ξ.y | vf = 0, v∗f = 0}

where v∗ is the dual of v with respect to the metrics on ξ.. This means that H
can be regarded as a smooth Z-graded G-equivariant subbundle of ξ so that it
carries an induced G-invariant metric. On the other hand, we endow ∧N∨ ⊗ η
with the metric induced from N and η. J.-M. Bismut introduced the following
definition.

Definition 2.13. We say that the metrics on the complex of equivariant her-
mitian vector bundles ξ. satisfy Bismut assumption (A) if the identification
(π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η),

√
−1iz) also identifies the metrics, it is equiva-

lent to the condition that the identification (π∗H, ∂zv) ∼= (π∗(∧N∨ ⊗ η), iz)
identifies the metrics.

Proposition 2.14. There always exist G-invariant metrics on ξ. which satisfy
Bismut assumption (A) with respect to the equivariant hermitian vector bundles
N and η.

Proof. This is [2, Proposition 3.5].

From now on we always suppose that the metrics on a resolution satisfy Bismut
assumption (A). Let ∇ξ be the canonical hermitian holomorphic connection on
ξ., then for each u > 0, we may define a G-invariant superconnection

Cu := ∇ξ +
√
u(v + v∗)
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on the Z2-graded vector bundle ξ. Moreover, let Φ be the map α ∈ ∧(T ∗RXg)→
(2πi)−degα/2α ∈ ∧(T ∗RXg) and denote

(Td−1g )′(N) :=
∂

∂b
|b=0 (Tdg(b · Id−

ΩN

2πi
)−1)

where ΩN is the curvature form associated to N . We recall as follows the
construction of the equivariant singular current given in [2, Section VI].

Lemma 2.15. Let NH be the number operator on the complex ξ. i.e. it acts on
ξj as multiplication by j, then for s ∈ C and 0 < Re(s) < 1

2 , the current valued
zeta function

Zg(ξ.)(s) :=
1

Γ(s)

∫ ∞

0

us−1[ΦTrs(NHgexp(−C2
u)) + (Td−1g )′(N)chg(η)δYg ]du

is well-defined on Xg and it has a meromorphic continuation to the complex
plane which is holomorphic at s = 0.

Definition 2.16. The equivariant singular Bott-Chern current on Xg associ-
ated to the resolution ξ. is defined as

Tg(ξ.) :=
∂

∂s
|s=0 Zg(ξ.)(s).

Theorem 2.17. The current Tg(ξ.) is a sum of (p, p)-currents and it satisfies
the differential equation

ddcTg(ξ.) = ig∗chg(η)Td−1g (N)−
∑

k

(−1)kchg(ξk).

Moreover, the wave front set of Tg(ξ.) is contained in N∨g,R where N∨g,R stands
for the underlying real bundle of the dual of Ng.

Proof. This follows from [2, Theorem 6.7, Remark 6.8].

Finally, we recall a theorem concerning the relationship of equivariant Bott-
Chern singular currents involved in a double complex. This theorem will be
used to show that our definition of a general embedding morphism in equivari-
ant arithmetic G0-theory is reasonable.

Theorem 2.18. Let

χ : 0→ ηn → · · · → η1 → η0 → 0

be an exact sequence of equivariant hermitian vector bundles on Y . Assume
that we have the following double complex consisting of resolutions of i∗χ such
that all rows are exact sequences.

0 // ξn,· //

��

· · · // ξ1,· //

��

ξ0,· //

��

0

0 // i∗ηn // · · · // i∗η1 // i∗η0 // 0.
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For each k, we write εk for the exact sequence

0→ ξn,k → · · · → ξ1,k → ξ0,k → 0.

Then we have the following equality in Ũ(Xg) :=
⊕

p≥0(Dp,p(Xg)/(Im∂+Im∂))

n∑

j=0

(−1)jTg(ξj,·) = ig∗
c̃hg(χ)

Tdg(N)
−
∑

k

(−1)kc̃hg(εk).

Here Dp,p(Xg) stands for the space of currents on Xg of type (p, p).

Proof. This is [21, Theorem 3.14].

2.4 Bismut-Ma’s immersion formula

In this subsection, we shall recall Bismut-Ma’s immersion formula which reflects
the behaviour of the equivariant analytic torsion forms of a Kähler fibration
under composition of an immersion and a submersion. By translating to the
equivariant arithmetic G0-theoretic language, such a formula can be used to
measure, in arithmetic G0-theory, the difference between a push-forward mor-
phism and the composition formed as an embedding morphism followed by a
push-forward morphism. Although Bismut-Ma’s immersion formula plays a
very important role in our arguments, we shall not recall its proof since it is
rather long and technical.
Let i : Y → X be an equivariant closed immersion of G-equivariant Kähler
manifolds. Let S be a complex manifold with the trivial G-action, and let
f : Y → S, l : X → S be two equivariant holomorphic submersions such that
f = l ◦ i. Assume that η is an equivariant hermitian vector bundle on Y and
ξ. provides a resolution of i∗η on X whose metrics satisfy Bismut assumption
(A). Let ωY , ωX be the real, closed and G-invariant (1, 1)-forms on Y , X
which induce the Kähler fibrations with respect to f and l respectively. We
additionally assume that ωY is the pull-back of ωX so that the Kähler metric
on Y is induced by the Kähler metric on X . As before, denote by N the normal
bundle of i(Y ) in X . Consider the following exact sequence

N : 0→ Tf → T l |Y→ N → 0

where N is endowed with the quotient metric, we shall write T̃dg(Tf, T l |Y ) for

T̃dg(N ) the equivariant Bott-Chern secondary characteristic class associated
to N . It satisfies the following differential equation

ddcT̃dg(Tf, T l |Y ) = Tdg(Tf, h
Tf)Tdg(N)− Tdg(T l |Y , hTl).

For simplicity, we shall suppose that in the resolution ξ., ξj are all l−acyclic
and moreover η is f−acyclic. By an easy argument of long exact sequence, we
have the following exact sequence

Ξ : 0→ l∗(ξm)→ l∗(ξm−1)→ . . .→ l∗(ξ0)→ f∗η → 0.
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By the semi-continuity theorem, all the elements in the exact sequence above
are vector bundles. In this case, we recall the definition of the L2-metrics on
direct images precisely as follows. We just take f∗hη as an example. Note that
the semi-continuity theorem implies that the natural map

(R0f∗η)s → H0(Ys, η |Ys)

is an isomorphism for every point s ∈ S where Ys stands for the fibre over s.
We may endow H0(Ys, η |Ys) with a L2-metric given by the formula

< u, v >L2 :=
1

(2π)ds

∫

Ys

hη(u, v)
ωY

ds

ds!

where ds is the complex dimension of the fibre Ys. It can be shown that
these metrics depend on s in a C∞ manner (cf. [9, p.278]) and hence define a
hermitian metric on f∗η. We shall denote it by f∗hη.

In order to understand the statement of Bismut-Ma’s immersion formula, we
still have to recall an important concept defined by J.-M. Bismut, the equiv-
ariant R-genus. Let W be a G-equivariant complex manifold, and let E be an
equivariant hermitian vector bundle on W . For ζ ∈ S1 and s > 1 consider the
zeta function

L(ζ, s) =
∞∑

k=1

ζk

ks

and its meromorphic continuation to the whole complex plane. Define the
formal power series in x

R̃(ζ, x) :=

∞∑

n=0

(∂L
∂s

(ζ,−n) + L(ζ,−n)

n∑

j=1

1

2j

)xn
n!
.

Definition 2.19. The Bismut equivariant R-genus of an equivariant hermitian
vector bundle E with E |Xg=

∑
ζ Eζ is defined as

Rg(E) :=
∑

ζ∈S1

(
TrR̃(ζ,−ΩEζ

2πi
)− TrR̃(1/ζ,

ΩEζ

2πi
)
)

where ΩEζ is the curvature form associated to Eζ . Actually, the class of Rg(E)

in Ã(Xg) is independent of the metric and we just write Rg(E) for it. Further-
more, the class Rg(·) is additive.

Theorem 2.20. (Immersion formula) Let notations and assumptions be as
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above. Then the equality

m∑

i=0

(−1)iTg(ω
X , hξi)− Tg(ωY , hη) + c̃hg(Ξ, h

L2

)

=

∫

Xg/S

Tdg(T l, h
Tl)Tg(ξ.) +

∫

Yg/S

T̃dg(Tf, T l |Y )

Tdg(N)
chg(η)

+

∫

Xg/S

Tdg(T l)Rg(T l)

m∑

i=0

(−1)ichg(ξi)−
∫

Yg/S

Tdg(Tf)Rg(Tf)chg(η)

holds in Ã(S).

Proof. This is the combination of [8, Theorem 0.1 and 0.2], the main theorems
in that paper.

3 A vanishing theorem for equivariant closed immersions

3.1 The statement

By a projective manifold we shall understand a compact complex manifold
which is projective algebraic, that means a projective manifold is the complex
analytic space X(C) associated to a smooth projective variety X over C (cf.
[17, Appendix B]). Let µn be the diagonalisable group variety over C associated
to Z/nZ. We say X is µn-equivariant if it admits a µn-projective action, this
means the associated projective manifold X(C) admits an action by the group
of complex n-th roots of unity. Denote by Xµn the fixed point subscheme of X ,
by GAGA principle, Xµn(C) is equal to X(C)g where g is the automorphism
on X(C) corresponding to a fixed primitive n-th root of unity. If no confusion
arises, we shall not distinguish between X and X(C) as well as Xµn and Xg.
Since the classical arguments of locally free resolutions may not be compati-
ble with the equivariant setting, we summarize some crucial facts we need as
follows.
(i). Every equivariant coherent sheaf on an equivariantly projective scheme is
an equivariant quotient of an equivariant locally free coherent sheaf.
(ii). Every equivariant coherent sheaf on an equivariantly projective scheme
admits an equivariant locally free resolution. It is finite if the equivariant
scheme is regular.
(iii). An exact sequence of equivariant coherent sheaves on an equivariantly
projective scheme admits an exact sequence of equivariant locally free resolu-
tions.
(iv). Any two equivariant locally free resolutions of an equivariant coherent
sheaf on an equivariantly projective scheme can be dominated by a third one.
Now let i : Y → X be a µn-equivariant closed immersion of projective manifolds
with normal bundle N . Let S be a projective manifold with the trivial µn-
action and let h : X → S be an equivariant holomorphic submersion whose
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restriction f : Y → S is an equivariant holomorphic submersion. According to
our assumptions, we may define a Kähler fibration with respect to h by choosing
a µn(C)-invariant Kähler form ωX on X . By restricting ωX to Y we obtain a
Kähler fibration with respect to f . The same thing goes to hg : Xg → S and
fg : Yg → S. Let η be an equivariant hermitian holomorphic vector bundle on
Y , assume that (ξ., v) is a complex of equivariant hermitian vector bundles on
X which provides a resolution of i∗η, whose metrics satisfy Bismut assumption
(A).
Write Ng for the 0-degree part of N |Yg which is isomorphic to the normal
bundle of ig(Yg) in Xg and denote by F the orthogonal complement of Ng.
According to [13, Exp. VII, Lemma 2.4 and Proposition 2.5] we know that
there exists a canonical isomorphism from the homology sheaf H(ξ. |Xg ) to
ig∗(∧·F∨⊗η |Yg ) which is equivariant. Then the restriction of (ξ., v) to Xg can
always split into a series of short exact sequences in the following way:

(∗) : 0→ Im→ Ker→ ig∗(∧·F∨ ⊗ η |Yg )→ 0

and
(∗∗) : 0→ Ker→ ξ. |Xg→ Im→ 0.

Suppose that ∧·F∨ ⊗ η |Yg and ξ. |Xg are all acyclic (higher direct images
vanish). Then according to an easy argument of long exact sequence, these
short exact sequences (∗) and (∗∗) induce a series of short exact sequences of
direct images:

H(∗) : 0→ R0hg∗(Im)→ R0hg∗(Ker)→ R0fg∗(∧·F∨ ⊗ η |Yg)→ 0

and

H(∗∗) : 0→ R0hg∗(Ker)→ R0hg∗(ξ. |Xg )→ R0hg∗(Im)→ 0.

By semi-continuity theorem, all elements in the exact sequences above are
vector bundles. We endow R0hg∗(ξ. |Xg ) and R0fg∗(∧·F∨ ⊗ η |Yg ) with the
L2-metrics which are induced by the metrics on ξ., η and F . Here the normal
bundle N admits the quotient metric induced from the exact sequence

0→ Tf → Th |Y→ N → 0

and the bundle F admits the metric induced by the metric on N . Moreover,
we endow R0hg∗(Im) and R0hg∗(Ker) with the metrics induced by the L2-
metrics of R0hg∗(ξ. |Xg ) so that H(∗) and H(∗∗) become short exact sequences

of equivariant hermitian vector bundles. Denote by c̃hg(ξ., η) the alternating
sum of the equivariant secondary Bott-Chern characteristic classes of H(∗) and
H(∗∗) such that it satisfies the following differential equation

ddcc̃hg(ξ., η) =
∑

j

(−1)jchg(R
0fg∗(∧jF

∨ ⊗ η |Yg ))

−
∑

j

(−1)jchg(R
0hg∗(ξj |Xg )).

Documenta Mathematica 15 (2010) 1049–1108



Singular Fixed Point Formula of Lefschetz Type 1065

Now the difference

δ(i, η, ξ.) :=c̃hg(ξ., η)−
∑

k

(−1)kTg(ω
Yg , h∧

kF∨⊗η|Yg )

+
∑

k

(−1)kTg(ω
Xg , hξk|Xg )−

∫

Xg/S

Tg(ξ.)Td(Thg)

−
∫

Yg/S

Td(Tfg)Td−1g (F )chg(η)R(Ng)

−
∫

Yg/S

chg(η)Td−1g (N)T̃d(Tfg, Thg |Yg )

makes sense and it is an element in
⊕

p≥0A
p,p(S)/(Im∂ + Im∂). Here the

symbols Tg(·) in the summations stand for analytic torsion forms introduced
in Section 2.1, the symbol Tg(ξ.) in the integral is the equivariant Bott-Chern
singular current introduced in Section 2.2.

The vanishing theorem for equivariant closed immersions can be formulated as
the following.

Theorem 3.1. Let i : Y → X be an equivariant closed immersion of projective
manifolds, and let S be a projective manifold with the trivial µn-action. Assume
that we are given two equivariant holomorphic submersions f : Y → S and
h : X → S such that f = h ◦ i. Then X admits an equivariant hermitian very
ample invertible sheaf L relative to the morphism h, and for any equivariant
hermitian resolution 0→ ξm → · · · ξ1 → ξ0 → i∗η → 0 we have

δ(i, η ⊗ i∗L⊗n, ξ.⊗ L⊗n) = 0 for n≫ 0.

Here the metrics on the resolution are supposed to satisfy Bismut assumption
(A).

3.2 Deformation to the normal cone

To prove the vanishing theorem for closed immersions, we use a geometric
construction called the deformation to the normal cone which allows us to
deform a resolution of hermitian vector bundle associated to a closed immersion
of projective manifolds to a simpler one. The δ-difference of this new simpler
resolution is much easier to compute.

Let i : Y →֒ X be a closed immersion of projective manifolds with normal
bundle NX/Y . For a vector bundle E on X or Y , the notation P(E) will stand
for the projective space bundle Proj(Sym(E∨)).

Definition 3.2. The deformation to the normal cone W (i) of the immersion
i is the blowing up of X × P1 along Y × {∞}. We shall just write W for W (i)
if there is no confusion about the immersion.
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There are too many geometric objects and morphisms appearing in the con-
struction of the deformation to the normal cone, we have to fix various notations
in a clear way. We denote by pX (resp. pY ) the projection X × P1 → X (resp.
Y × P1 → Y ) and by π the blow-down map W → X × P1. We also denote by
qX (resp. qY ) the projection X ×P1 → P1 (resp. Y ×P1 → P1) and by qW the
composition qX ◦ π. It is well known that the map qW is flat and for t ∈ P1,
we have

q−1W (t) ∼=
{
X × {t}, if t 6=∞,

P ∪ X̃, if t =∞,

where X̃ is isomorphic to the blowing up of X along Y and P is isomorphic to
the projective completion of NX/Y i.e. the projective space bundle P(NX/Y ⊕
OY ). Denote the canonical projection from P(NX/Y ⊕OY ) to Y by πP , then
the morphism OY → NX/Y ⊕ OY induces a canonical section i∞ : Y →֒
P(NX/Y ⊕ OY ) which is called the zero section embedding. Moreover, let
j : Y × P1 →W be the canonical closed immersion induced by i× Id, then the
component X̃ doesn’t meet j(Y × P1) and the intersection of j(Y × P1) with
P is exactly the image of Y under the section i∞.
The advantage of the construction of the deformation to the normal cone
is that we may control the rational equivalence class of the fibres q−1W (t).
More precisely, in the language of line bundles, we have the isomorphisms
O(X) ∼= O(P + X̃) ∼= O(P )⊗O(X̃) which is an immediate consequence of the
isomorphism O(0) ∼= O(∞) on P1.
On P = P(NX/Y ⊕OY ), there exists a tautological exact sequence

0→ O(−1)→ π∗P (NX/Y ⊕OY )→ Q→ 0

where Q is the tautological quotient bundle. This exact sequence and the
inclusion OP → π∗P (NX/Y ⊕OY ) induce a section σ : OP → Q which vanishes
along the zero section i∞(Y ). By duality we get a morphism Q∨ → OP , and
this morphism induces the following exact sequence

0→ ∧nQ∨ → · · · → ∧2Q∨ → Q∨ → OP → i∞∗OY → 0

where n is the rank of Q. Note that i∞ is a section of πP i.e. πP ◦ i∞ = Id,
the projection formula implies the following definition.

Definition 3.3. For any vector bundle η on Y , the following complex of vector
bundles

0→ ∧nQ∨ ⊗ π∗P η → · · · → ∧2Q∨ ⊗ π∗P η → Q∨ ⊗ π∗P η → π∗P η → 0

provides a resolution of i∞∗η on P . This complex is called the Koszul resolu-
tion of i∞∗η and will be denoted by κ(η,NX/Y ). If the normal bundle NX/Y
admits some hermitian metric, then the tautological exact sequence induces a
hermitian metric on Q. If, moreover, the bundle η also admits a hermitian
metric, then the Koszul resolution is a complex of hermitian vector bundles
and will be denoted by κ(η,NX/Y ).

Documenta Mathematica 15 (2010) 1049–1108



Singular Fixed Point Formula of Lefschetz Type 1067

Now, assume that X is a µn-equivariant projective manifold and E is an
equivariant locally free sheaf on X . Then according to [20, (1.4) and (1.5)],
P(E) admits a canonical µn-equivariant structure such that the projection map
P(E)→ X is equivariant and the canonical bundle O(1) admits an equivariant
structure. Moreover, let Y → X be an equivariant closed immersion of projec-
tive manifolds, according to [20, (1.6)] the action of µn on X can be extended
to the blowing up BlYX such that the blow-down map is equivariant and the
canonical bundle O(1) admits an equivariant structure. So by endowing P1

with the trivial µn-action, the construction of the deformation to the normal
cone described above is compatible with the equivariant setting.
For the use of our later arguments, the Kähler metric chosen on W should be
well controlled on the fibres of the deformation. For this purpose, it is necessary
to introduce the following definition.

Definition 3.4. (Rössler) A metric h on W is said to be normal to the defor-
mation if
(a). it is invariant and Kähler;
(b). the restriction h |jg∗(Yg×P1) is a product h′ × h′′, where h′ is a Kähler

metric on Yg and h′′ is a Kähler metric on P1;
(c). the intersections of X ×{0} with j∗(Y ×P1) and of P with j∗(Y ×P1) are
orthogonal at the fixed points.

Lemma 3.5. For any µn-invariant Kähler metric hX on X which induces an
invariant Kähler metric hY on Y , there exists a metric hW on W which is
normal to the deformation and the restriction of hW to X ∼= X × {0} (resp.
Y ∼= Y × {∞}) is exactly hX (resp. hY ). Moreover, we may require that the
hermitian normal bundles NY×P1/Y×{0} and NY×P1/Y×{∞} are both isometric
to the trivial bundles with trivial metrics.

Proof. The existence of the metric which is normal to the deformation is the
content of [21, Lemma 6.13] and [28, Lemma 6.14], such a metric is constructed
via the Grassmannian graph construction. Roughly speaking, according to an-
other description of the deformation to the normal cone via the Grassmannian
graph construction, we have an embedding W → X × Pr × P1 and the metric
hW is the µn-average of the restriction of a product metric on X × Pr × P1

(cf. [28, Lemma 6.14]). When we endow X in the product with the metric
hX , the requirements on restrictions are automatically satisfied since hX is
µn-invariant. To fulfill the requirements on hermitian normal bundles, we may
just choose the Fubini-Study metric on P1.

We summarize some very important results about the application of the defor-
mation to the normal cone as follows. Their proofs can be found in [21, Section
2 and 6.2].

Theorem 3.6. Let i : Y → X be an equivariant closed immersion of equivari-
ant projective manifolds, and let W = W (i) be the deformation to the normal
cone of i. Assume that η is an equivariant hermitian vector bundle on Y . Then
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(i). there exists an equivariant hermitian resolution of j∗p∗Y (η) on W , whose

metrics satisfy Bismut assumption (A) and whose restriction to X̃ is equivari-
antly and orthogonally split;
(ii). the natural morphism from the deformation to the normal cone W (ig) to
the fixed point submanifold W (i)g is a closed immersion, this closed immersion

induces the closed immersions P(NXg/Yg ⊕OYg)→ P(NX/Y ⊕OY )g and X̃g →
X̃g;
(iii). the fixed point submanifold of P(NX/Y ⊕ OY ) is P(NXg/Yg ⊕
OYg )

∐
ζ 6=1 P((NX/Y )ζ);

(iv). the closed immersion i∞,g factors through P(NXg/Yg ⊕OYg) and the other
components P((NX/Y )ζ) don’t meet Y . Hence the complex κ(OY , NX/Y )g, ob-
tained by taking the 0-degree part of the Koszul resolution, provides a resolution
of OYg on P(NX/Y ⊕OY )g.

3.3 Proof of the vanishing theorem

We shall first prove the first part of the vanishing theorem for closed immersions
i.e. the existence of an equivariant hermitian very ample invertible sheaf on
X which is relative to the morphism h : X → S. Generally speaking, such an
invertible sheaf can be constructed rather easily since X admits a µn-projective
action and the µn-action on S is supposed to be trivial, but for the whole proof
of the vanishing theorem we would like to construct a special one which is the
pull-back of some equivariant hermitian very ample invertible sheaf on W (i)
under the identification X ∼= X × {0}. Our starting point is the following.

Definition 3.7. Let M be a µn-projective manifold, and let PnM be some
relative projective space over M . A µn-action on PnM arising from some µn-
action on the free sheaf O⊕n+1

M via the functorial properties of the Proj symbol
will be called a global µn-action.

The advantage of considering global µn-action is that on a projective space
which admits a global µn-action the twisted line bundle O(1) is naturally µn-
equivariant.

Lemma 3.8. The morphism h : X → S factors though some relative projective
space PrS which admits a global µn-action.

Proof. By assumption, X admits a µn-projective action. Then [21, Lemma 2.4
and 2.5] imply that there exists an equivariant closed immersion from X to
some projective space Pr endowed with a global action. By using the universal
property of fibre product, we obtain a morphism from X to PrS = S×Pr which
is equivariant. Moreover, this morphism is clearly a closed immersion. Since
the action on S is trivial, the induced action on the fibre product S×Pr is still
global. So we are done.

Lemma 3.9. Let l : W (i)→ S be the composition h◦pX ◦π. Then W (i) admits
an equivariant very ample invertible sheaf L which is relative to l.
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Proof. By Lemma 3.8, h : X → S factors through some relative projective
space PrS which admits a global µn-action. So X admits an equivariant very
ample invertible sheaf relative to h. Since the µn-action on S is supposed to be
trivial, P1

X = X×P1 ∼= X×SP1
S also admits an equivariant very ample invertible

sheaf relative to the morphism h ◦ pX which is denoted by G. Moreover, by
construction, W (i) admits a very ample invertible sheaf OW (1) ⊗ π∗G⊗b for
some b ≥ 0 which is relative to the blow-down map π (cf. [17, II. Proposition
7.10]). Assume that P1

X ×S PmS is the relative projective space associated to
OW (1) ⊗ π∗G⊗b, and that PnS is the relative projective space associated to
G. Then the very ample invertible sheave on P1

X ×S PmS with respect to the
embedding

P1
X ×S PmS →֒ PnS ×S PmS

can be written as G ⊠ OPmS
(1) whose restriction to W (i) is equal to OW (1) ⊗

π∗G⊗b+1. Therefore, OW (1)⊗π∗G⊗b+1 is a very ample invertible sheaf on W (i)
relative to l : W (i)→ S, this invertible sheaf is clearly equivariant.

From now on, we shall fix the equivariant very ample invertible sheaf L con-
structed in Lemma 3.9. We also fix a µn-invariant hermitian metric on L, note
that this metric always exists according to an argument of partition of unity.
When we deal with the tensor product of a coherent sheaf F with some power
L⊗n, we just write it as F(n) for simplicity. Before we give the proof of the rest
of the vanishing theorem, we shall recall the concept of equivariant standard
complex and some technical results.

Definition 3.10. Let S be a projective manifold and let ξ. be a bounded
complex of hermitian vector bundles on S. We say ξ. is a standard complex if
the homology sheaves of ξ. are all locally free and they are endowed with some
hermitian metrics. We shall write a standard complex as (ξ., hH) to emphasize
the choice of the metrics on the homology sheaves.

Definition 3.11. Let S be an equivariant projective manifold. An equivariant
standard complex on S is a bounded complex of equivariant hermitian vector
bundles on S whose restriction to Sg is standard and the metrics on the ho-
mology sheaves are g-invariant. Again we shall write an equivariant standard
complex as (ξ., hH) to emphasize the choice of the metrics on the homology
sheaves.

Due to [29, Theorem 5.9], to every equivariant standard complex (ξ., hH) on
an equivariant projective manifold S, there is a unique axiomatical way to
associate an element c̃hg(ξ., h

H) in
⊕

p≥0A
p,p(Sg)/(Im∂ + Im∂) which satisfies

the differential equation

ddcc̃hg(ξ., h
H) =

∑

j

(−1)jchg(Hj(ξ. |Sg ))−
∑

j

(−1)jchg(ξj).

Let 0→ ξ.
′ → ξ.→ ξ.

′′ → 0 be a short exact sequence of equivariant standard
complexes on S. Then by restricting to the fixed point submanifold Sg, we get a
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short exact sequence of standard complexes 0 → ξ.
′ |Sg→ ξ. |Sg→ ξ.

′′ |Sg→ 0.
Hence we obtain a long exact sequence of homology sheaves of these three
standard complexes. We shall make a stronger assumption. Suppose that for

any j ≥ 0, we have short exact sequence 0 → Hj(ξ.
′ |Sg) → Hj(ξ. |Sg) →

Hj(ξ.
′′ |Sg) → 0 which is denoted by χj . Moreover, for any j ≥ 0, denote by

εj the short exact sequence 0→ ξ
′
j → ξj → ξ

′′
j → 0.

Lemma 3.12. Let notations and assumptions be as above. The identity

c̃hg(ξ.
′
, hH)− c̃hg(ξ., h

H) + c̃hg(ξ.
′′
, hH) =

∑
(−1)j c̃hg(χj)−

∑
(−1)j c̃hg(εj)

holds in
⊕

p≥0 A
p,p(Sg)/(Im∂ + Im∂).

Proof. On Sg, every equivariant standard complex (ξ., hH) splits into a series of
short exact sequences of equivariant hermitian vector bundles in the following
way

0→ Im→ Ker→ H.→ 0

and
0→ Ker→ ξ. |Sg→ Im→ 0.

According to the argument given after [29, Remark 5.10], c̃hg(ξ., h
H) is equal

to the alternating sum of the equivariant Bott-Chern secondary characteristic
classes of the short exact sequences above. Now since we have supposed that

0 → Hj(ξ.
′ |Sg )→ Hj(ξ. |Sg )→ Hj(ξ.

′′ |Sg) → 0 are all exact, by using Snake

lemma, we know that 0 → Im(ξ.
′ |Sg ) → Im(ξ. |Sg ) → Im(ξ.

′′ |Sg ) → 0 and

0→ Ker(ξ.
′ |Sg)→ Ker(ξ. |Sg )→ Ker(ξ.

′′ |Sg )→ 0 are also all exact sequences.
Then the identity in the statement of this lemma immediately follows from the
construction of c̃hg(ξ., h

H) and the additivity property of the equivariant Bott-
Chern secondary characteristic classes.

Corollary 3.13. Let 0 → ξ.
(m) → · · · → ξ.

(1) → ξ.
(0) → 0 be an exact

sequence of equivariant standard complexes on S such that for every j ≥ 0,

0 → Hj(ξ.
(m) |Sg ) → · · · → Hj(ξ.

(1) |Sg ) → Hj(ξ.
(0) |Sg ) → 0 is exact. Then

the identity

m∑

k=0

(−1)k c̃hg(ξ.
(k)
, hH) =

∑
(−1)j c̃hg(χj)−

∑
(−1)j c̃hg(εj)

holds in
⊕

p≥0 A
p,p(Sg)/(Im∂ + Im∂).

Proof. We claim that for every 1 ≤ k ≤ m, the kernel of the complex morphism

ξ.
(k) → ξ.

(k−1)
is still an equivariant standard complex on S. It is clear that we

only need to prove this for k = 1. Firstly, the kernel of ξ.
(1) → ξ.

(0)
is a complex

of equivariant hermitian vector bundles, let’s denote it by K. By restricting to
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Sg and using an argument of long exact sequence, we know that the homology
sheaves of K |Sg are all equivariant hermitian vector bundles since for any

j ≥ 0 the bundle morphism Hj(ξ.
(1) |Sg) → Hj(ξ.

(0) |Sg ) is already surjective.
Therefore, the assumption of exactness on homologies implies that we can split

0 → ξ.
(m) → · · · → ξ.

(1) → ξ.
(0) → 0 into a series of short exact sequences

of equivariant standard complexes, so the identity in the statement of this
corollary follows from Lemma 3.12.

Remark 3.14. A generalized version of Corollary 3.13, in which the exact
sequence of (equivariant) standard complexes is replaced by an (equivariant)
double standard complex was obtained in Xiaonan Ma’s Ph.D thesis (cf. [24])
where more discussions concerning spectral sequences were involved. Anyway,
for arithmetical reason, we only need these special versions as in Lemma 3.12
and Corollary 3.13.

Now we turn back to our proof of the vanishing theorem. As before, let
W = W (i) be the deformation to the normal cone associated to an equiv-
ariant closed immersion of projective manifolds i : Y → X . For simplicity,
denote by P 0

g the projective space bundle P(NXg/Yg ⊕ OYg ). Moreover, given
an invariant Kähler metric on X , we fix an invariant Kähler metric on W which
is constructed in Lemma 3.5. In this situation, all normal bundles appearing in
the construction of the deformation to the normal cone will be endowed with
the quotient metrics. We recall the following lemma.

Lemma 3.15. Over W (ig), there are hermitian metrics on O(Xg), O(P 0
g ) and

O(X̃g) such that the isometry O(Xg) ∼= O(P 0
g ) ⊗ O(X̃g) holds and such that

the restriction of O(Xg) to Xg yields the metric of NW (ig)/Xg , the restriction

of O(X̃g) to X̃g yields the metric of NW (ig)/X̃g
and the restriction of O(P 0

g ) to

P 0
g induces the metric of NW (ig)/P 0

g
.

Proof. This is [21, Lemma 6.15].

Definition 3.16. Let η be an equivariant hermitian vector bundle on Y , we
say that a resolution

Ξ : 0→ ξ̃m → · · · → ξ̃0 → j∗p
∗
Y (η)→ 0

satisfies the condition (T) if

(i). the metrics on ξ̃. satisfy Bismut assumption (A);

(ii). the restriction of Ξ to X̃ is an equivariantly and orthogonally split exact
sequence;
(iii). the restrictions of Ξ∇ to W (ig), Xg, P

0
g , X̃g and P 0

g ∩ X̃g are complexes

with l-acyclic elements and l-acyclic homologies, here Ξ∇ is the complex of
hermitian vector bundles obtained by omitting the last term j∗p∗Y (η) in Ξ;

Documenta Mathematica 15 (2010) 1049–1108



1072 Shun Tang

(iv). the tensor products Ξ∇ |W (ig) ⊗O(−Xg), Ξ∇ |W (ig) ⊗O(−P 0
g ) and

Ξ∇ |W (ig) ⊗O(−X̃g) are complexes with l-acyclic elements and l-acyclic ho-
mologies.

From Theorem 3.6 (i), we already know that there always exists a resolution
of j∗p∗Y (η) which satisfies the conditions (i) and (ii) in Definition 3.16. Let Ξ
be such a resolution, we have the following.

Proposition 3.17. For n≫ 0, Ξ(n) satisfies the condition (T).

Proof. The reason is that W (ig), Xg, P
0
g , X̃g and P 0

g ∩ X̃g are all closed sub-
manifolds of W .

It is well known that both two squares in the following deformation diagram

Y × {0} s0 //

i

��

Y × P1

j

��

Y × {∞}s∞oo

i∞

��
X × {0} // W P(NX/Y ⊕NP1/∞)oo

are Tor-independent. Moreover, according to our choices of the Kähler metrics,
we may identify Y × {0} with Y , X × {0} with X , Y × {∞} with Y and
P(NX/Y ⊕NP1/∞) with P = P(NX/Y ⊕OY ). So if Ξ is a resolution of j∗p∗Y (η)

on W , then the restriction of Ξ to X (resp. P ) provides a resolution of i∗η
(resp. i∞∗η). The following theorem is the kernel of the whole proof of the
vanishing theorem.

Theorem 3.18. (Deformation theorem) Let Ξ be a resolution of j∗p∗Y (η) on
W which satisfies the condition (T), then we have δ(Ξ |X) = δ(Ξ |P ).

Proof. Consider the following tensor product of Ξ∇ |W (ig) with the Koszul
resolution associated to the immersion Xg →֒W (ig)

0→ Ξ∇ |W (ig) ⊗O(−Xg)→ Ξ∇ |W (ig) ⊗OW (ig) → Ξ∇ |W (ig) ⊗iXg∗OXg → 0.

We have to caution the reader that here the tensor product is not the usual
tensor product of two complexes, precisely our resulting sequence is a double
complex and we don’t take its total complex. Since we have assumed that Ξ
satisfies the condition (T), this tensor product induces a short exact sequence
of equivariant standard complexes on S by taking direct images. For j ≥ 0, its
j-th row is the following short exact sequence

εj : 0→ R0l0g∗(O(−Xg)⊗ ξ̃j |W (ig))→ R0l0g∗(ξ̃j |W (ig))→ R0hg∗(ξ̃j |Xg )→ 0

where l0g is the composition of the inclusion W (ig) →֒ W with the morphism l.

Note that the j-th homology of Ξ∇ |W (ig) is equal to jg∗(∧jF̃
∨
⊗p∗Ygη |Yg ) |W (ig)

where F̃ is the non-zero degree part of the normal bundle associated to the
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immersion j. Actually jg factors through j0g : Yg × P1 →֒ W (ig), then the

j-th homology of Ξ∇ |W (ig) can be rewritten as j0g∗(∧
jF̃
∨
⊗ p∗Ygη |Yg ). Write

Yg,0 := Yg × {0} for simplicity. Using the fact that j0g
∗O(−Xg) is isomorphic

to O(−Yg,0), we deduce from the short exact sequence

0→ j0g∗(O(−Yg,0)⊗ ∧jF̃
∨
⊗ p∗Ygη |Yg )→ j0g∗(OYg×P1 ⊗ ∧jF̃

∨
⊗ p∗Ygη |Yg )

→ j0g ∗(iYg∗OYg ⊗ ∧
jF̃
∨
⊗ p∗Ygη |Yg )→ 0

that the j-th homologies of the induced short exact sequence of equivariant
standard complexes form a short exact sequence

χj : 0→ R0ug∗(O(−Yg,0)⊗ ∧jF̃
∨
⊗ p∗Ygη |Yg )→ R0ug∗(∧j F̃

∨
⊗ p∗Ygη |Yg )

→ R0fg∗(∧jF
∨ ⊗ η |Yg )→ 0

where ug is the composition of the inclusion Yg × P1 →֒ W (ig) with the mor-
phism l0g.
The main idea of this proof is that the equivariant Bott-Chern secondary char-
acteristic class of the quotient term of the induced short exact sequence of
equivariant standard complexes is nothing but c̃hg(Ξ∇ |X , hH) which appears
in the expression of δ(Ξ |X) and the equivariant secondary characteristic classes
of χj , εj can be computed by Bismut-Ma’s immersion formula.
Precisely, denote by gXg the Euler-Green current associated to Xg which was
constructed by Bismut, Gillet and Soulé in [6, Section 3. (f)], it satisfies the dif-
ferential equation ddcgXg = δXg−c1(O(Xg)). We write Td(Xg) for Td(O(Xg)),

[6, Theorem 3.17] implies that Td−1(Xg)gXg is equal to the singular Bott-Chern

current of the Koszul resolution associated to Xg →֒W (ig) modulo Im∂+Im∂.
Moreover, write ξ. for the restriction Ξ∇ |X . Then for any j ≥ 0, we compute

c̃hg(εj) =Tg(ω
Xg , hξj |Xg )− Tg(ωW (ig), hξ̃j |W (ig ))

+ Tg(ω
W (ig), hO(−Xg)⊗ξ̃j |W (ig ))

+

∫

W (ig)/S

chg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

+

∫

Xg/S

chg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg )

+

∫

Xg/S

chg(ξj)R(NW (ig)/Xg )Td(Thg).

Here, one should note that to simplify the last two terms in the right-hand side
of Bismut-Ma’s immersion formula, we have used an Atiyah-Segal-Singer type
formula for immersion

ig∗(Td−1g (N)chg(x)) = chg(i∗(x)).
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This formula is the content of [21, Theorem 6.16]. Similarly, for any j ≥ 0, we
compute

c̃hg(χj) =Tg(ω
Yg , h∧

jF∨⊗η|Yg )− Tg(ωYg×P
1

, h
∧jF̃∨⊗p∗Ygη|Yg )

+ Tg(ω
Yg×P1

, h
O(−Yg,0)⊗∧j F̃∨⊗p∗Yg η|Yg )

+

∫

Yg×P1/S

chg(∧jF̃
∨
⊗ p∗Ygη |Yg )Td(Tug)Td−1(Yg,0)gYg,0

+

∫

Yg/S

chg(∧jF∨ ⊗ η |Yg )Td−1(NYg×P1/Yg,0)T̃d(Tfg, T ug |Yg,0)

+

∫

Yg/S

chg(∧jF∨ ⊗ η |Yg )R(NYg×P1/Yg,0 )Td(Tfg).

Denote by Ω(W (ig)) (resp. Ω(−Xg)) the middle (resp. sub) term of the in-
duced short exact sequence of equivariant standard complexes. According to
Lemma 3.12, we have

c̃hg(Ξ∇ |X , hH)− c̃hg(Ω(W (ig)), h
H) + c̃hg(Ω(−Xg), h

H)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=
∑

(−1)jTg(ω
Yg , h∧

jF∨⊗η|Yg )−
∑

(−1)jTg(ω
Yg×P1

, h
∧jF̃∨⊗p∗Ygη|Yg )

+
∑

(−1)jTg(ω
Yg×P1

, h
O(−Yg,0)⊗∧j F̃∨⊗p∗Ygη|Yg )

+

∫

Yg×P1/S

∑
(−1)jchg(∧j F̃

∨
⊗ p∗Ygη |Yg )Td(Tug)Td−1(Yg,0)gYg,0

+

∫

Yg/S

∑
(−1)jchg(∧jF∨ ⊗ η |Yg )Td−1(NYg×P1/Yg,0 )T̃d(Tfg, T ug |Yg,0)

+

∫

Yg/S

∑
(−1)jchg(∧jF∨ ⊗ η |Yg )R(NYg×P1/Yg,0)Td(Tfg)

−
∑

(−1)jTg(ω
Xg , hξj |Xg ) +

∑
(−1)jTg(ω

W (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ω
W (ig), hO(−Xg)⊗ξ̃j |W (ig ))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg )

−
∫

Xg/S

∑
(−1)jchg(ξj)R(NW (ig)/Xg )Td(Thg). (1)

Similarly, we consider the tensor products of Ξ∇ |W (ig) with the following three
Koszul resolutions

0→ O(−P 0
g )→ OW (ig) → iP 0

g ∗OP 0
g
→ 0,
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0→ O(−X̃g)→ OW (ig) → i
X̃g∗
O
X̃g
→ 0,

and

0→ O(−X̃g)⊗O(−P 0
g )→ O(−X̃g)⊕O(−P 0

g )→ OW (ig)

→ i
X̃g∩P 0

g ∗
O
X̃g∩P 0

g
→ 0.

We shall still denote by χ. (resp. ε.) the exact sequences consisting of homolo-
gies (resp. elements) in the induced exact sequences of equivariant standard
complexes.
For the first one, denote by gP 0

g
the Euler-Green current associated to P 0

g and

write ξ.
∞

for the restriction Ξ∇ |P . Moreover, denote by Ω(−P 0
g ) the sub term

of the induced short exact sequence of equivariant standard complexes and
denote by bg the composition of the inclusion P 0

g →֒W (ig) with the morphism
l0g. According to Lemma 3.12, we have

c̃hg(Ξ∇ |P 0
g
, hH)− c̃hg(Ω(W (ig)), h

H) + c̃hg(Ω(−P 0
g ), hH)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=
∑

(−1)jTg(ω
Yg , h∧

jF∨
∞⊗η|Yg )−

∑
(−1)jTg(ω

Yg×P1

, h
∧j F̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ω
Yg×P1

, h
O(−Yg,∞)⊗∧jF̃∨⊗p∗Ygη|Yg )

+

∫

Yg×P1/S

∑
(−1)jchg(∧jF̃

∨
⊗ p∗Ygη |Yg )Td(Tug)Td−1(Yg,∞)gYg,∞

+

∫

Yg/S

{
∑

(−1)jchg(∧jF∨∞ ⊗ η |Yg)Td−1(NYg×P1/Yg,∞)

· T̃d(Tfg, T ug |Yg,∞)}

+

∫

Yg/S

∑
(−1)jchg(∧jF∨∞ ⊗ η |Yg )R(NYg×P1/Yg,∞)Td(Tfg)

−
∑

(−1)jTg(ω
P 0
g , h

ξ∞j |P0
g ) +

∑
(−1)jTg(ω

W (ig), hξ̃j |W (ig))

−
∑

(−1)jTg(ω
W (ig), hO(−P 0

g )⊗ξ̃j |W (ig))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(P 0

g )gP 0
g

−
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
)

−
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )R(NW (ig)/P 0

g
)Td(Tbg) (2)

where F∞ is the non-zero degree part of the hermitian normal bundle N∞
associated to i∞.
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For the second one, denote by g
X̃g

the Euler-Green current associated to X̃g

and denote by Ω(−X̃g) the sub term of the induced short exact sequence of

equivariant standard complexes. Since the restriction of Ξ to the component X̃
is equivariantly and orthogonally split, we know that c̃hg(Ξ |X̃g , h

H) is equal to

0 and the summation
∑

(−1)jchg(ξ̃j) vanishes on X̃g. Using again Lemma 3.12,
we obtain

− c̃hg(Ω(W (ig)), h
H) + c̃hg(Ω(−X̃g), h

H)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=−
∑

(−1)jTg(ω
Yg×P1

, h
∧j F̃∨⊗p∗Ygη|Yg )

+
∑

(−1)jTg(ω
Yg×P1

, h
j0g

∗O(−X̃g)⊗∧j F̃∨⊗p∗Yg η|Yg )

−
∫

Yg×P1/S

{
∑

(−1)jchg(∧j F̃
∨
⊗ p∗Ygη |Yg )Td(Tug)

· c̃h(j0g
∗O(−X̃g), OYg×P1)}

+
∑

(−1)jTg(ω
W (ig), hξ̃j |W (ig ))

−
∑

(−1)jTg(ω
W (ig), hO(−X̃g)⊗ξ̃j |W (ig ))

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)gX̃g . (3)

Here the element c̃h(j0g
∗O(−X̃g), OYg×P1) is the equivariant secondary charac-

teristic class of the following short exact sequence

0→ 0→ j0g
∗O(−X̃g)→ OYg×P1 → 0.

We now consider the last one. This is also a Koszul resolution because X̃g

and P 0
g intersect transversally. By [6, Theorem 3.20], the Euler-Green current

associated to X̃g ∩ P 0
g is the current c1(O(P 0

g ))g
X̃g

+ δ
X̃g
gP 0

g
. Then, by using

the isometry O(Xg) ∼= O(P 0
g )⊗O(X̃g) and Corollary 3.13, we get

− c̃hg(Ω(W (ig)), h
H) + c̃hg(Ω(−X̃g), h

H)

+ c̃hg(Ω(−P 0
g ), hH)− c̃hg(Ω(−Xg), h

H)

=
∑

(−1)j c̃hg(χj)−
∑

(−1)j c̃hg(εj)

=−
∑

(−1)jTg(ω
Yg×P1

, h
∧jF̃∨⊗p∗Yg η|Yg )

+
∑

(−1)jTg(ω
Yg×P1

, h
j0g

∗O(−X̃g)⊗∧jF̃∨⊗p∗Ygη|Yg )

+
∑

(−1)jTg(ω
Yg×P1

, h
O(−Yg,∞)⊗∧jF̃∨⊗p∗Ygη|Yg )
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−
∑

(−1)jTg(ω
Yg×P1

, h
O(−Yg,0)⊗∧jF̃∨⊗p∗Ygη|Yg )

−
∫

Yg×P1/S

∑
(−1)jchg(∧jF̃

∨
⊗ p∗Ygη |Yg )Td(Tug)c̃h(Θ)

+
∑

(−1)jTg(ω
W (ig), hξ̃j|W (ig ))

−
∑

(−1)jTg(ω
W (ig), hO(−X̃g)⊗ξ̃j |W (ig))

−
∑

(−1)jTg(ω
W (ig), hO(−P 0

g )⊗ξ̃j |W (ig ))

+
∑

(−1)jTg(ω
W (ig), hO(−Xg)⊗ξ̃j |W (ig))

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)Td−1(P 0
g )

· [c1(O(P 0
g ))g

X̃g
+ δ

X̃g
gP 0

g
]}.

(4)

Here the element c̃h(Θ) is the equivariant secondary characteristic class of the
following short exact sequence

Θ : 0→ O(−Yg,0)→ j0g
∗O(−X̃g)⊕O(−Yg,∞)→ OYg×P1 → 0.

Since s0 : Y × {0} → Y × P1 and s∞ : Y × {∞} → Y × P1 are sections of
smooth morphism, the normal sequences

0→ Tfg → Tug |Yg,0→ NYg×P1/Yg,0 → 0

and

0→ Tfg → Tug |Yg,∞→ NYg×P1/Yg,∞ → 0

are orthogonally split so that T̃d(Tfg, T ug |Yg,0 ) and T̃d(Tfg, T ug |Yg,∞) are
both equal to 0. Moreover, the normal bundles NYg×P1/Yg,0 and NYg×P1/Yg,∞

are isomorphic to trivial bundles so that R(NYg×P1/Yg,0) and R(NYg×P1/Yg,∞)
are both equal to 0. Furthermore, we may drop all the terms where an integral

is taken over X̃g because
∑

(−1)jchg(ξ̃j) vanishes on X̃g.
Now, we compute (1)−(2)−(3)+(4) which is

c̃hg(Ξ∇ |X , hH)− c̃hg(Ξ∇ |P 0
g
, hH) +

∑
(−1)jTg(ω

Xg , hξj |Xg )

−
∑

(−1)jTg(ω
P 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ω

Yg , h∧
jF∨⊗η|Yg )

+
∑

(−1)jTg(ω
Yg , h∧

jF∨
∞⊗η|Yg )

=

∫

Yg×P1/S

{
∑

(−1)jchg(∧j F̃
∨
⊗ p∗Ygη |Yg )Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}
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−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(Xg)gXg

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg )

−
∫

Xg/S

∑
(−1)jchg(ξj)R(NW (ig)/Xg )Td(Thg)

+

∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(P 0

g )gP 0
g

+

∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
)

+

∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )R(NW (ig)/P 0

g
)Td(Tbg)

+

∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)gX̃g

−
∫

W (ig)/S

∑
(−1)jchg(ξ̃j)Td(T l0g)Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
.

Denote by iX (resp. iP ) the inclusion from X to W (i) (resp. P to W (i)). We
may use the Atiyah-Segal-Singer type formula for immersions and the projec-
tion formula in cohomology to compute

iXg∗
(∑

(−1)jchg(ξj)R(NW (ig)/Xg )Td(Thg)
)

=iXg∗
(
R(NW (ig)/Xg )Td(Thg)ig∗(Td−1g (NX/Y )chg(η))

)

=(iXg ◦ ig)∗
(
R(NW (ig)/Xg )Td(Thg)Td−1g (NX/Y )chg(η)

)
.

Note that the restriction of NW (ig)/Xg to Yg is trivial so that the last expression
vanishes. An entirely analogous reasoning implies that

iP g∗
(∑

(−1)jchg(ξ
∞
j )R(NW (ig)/P 0

g
)Td(Tbg)

)
= 0.

Thus, we are left with the equality

c̃hg(Ξ∇ |X , hH)− c̃hg(Ξ∇ |P 0
g
, hH) +

∑
(−1)jTg(ω

Xg , hξj |Xg )

−
∑

(−1)jTg(ω
P 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ω

Yg , h∧
jF∨⊗η|Yg )

+
∑

(−1)jTg(ω
Yg , h∧

jF∨
∞⊗η|Yg )

=

∫

Yg×P1/S

{
∑

(−1)jchg(∧j F̃
∨
⊗ p∗Ygη |Yg )Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g) · [Td−1(Xg)gXg − Td−1(P 0
g )gP 0

g
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− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

−
∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg )

+

∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).

Using the differential equation which Tg(ξ̃.) satisfies, we compute

−
∫

W (ig)/S

{
∑

(−1)jchg(ξ̃j)Td(T l0g) · [Td−1(Xg)gXg − Td−1(P 0
g )gP 0

g

− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}

=

∫

W (ig)/S

{Td(T l0g)Tg(ξ̃.) · [Td−1(Xg)δXg − Td−1(P 0
g )δP 0

g

− Td−1(X̃g)δX̃g + Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))δ
X̃g

]}

−
∫

W (ig)/S

{Td(T l0g)chg(p
∗
Y η)Td−1g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}.

(5)

Here we have used the equation

Td−1(Xg)c1(O(Xg))−Td−1(P 0
g )c1(O(P 0

g ))− Td−1(X̃g)c1(O(X̃g))

+Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))c1(O(X̃g)) = 0 (6)

which is [21, (23)].

Again using the fact that ξ̃. is equivariantly and orthogonally split on X̃, the
first integral in the right-hand side of (5) is equal to

∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg )

−
∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g

).

According to the normal sequence 0 → Thg → T l0g |Xg→ NW (ig)/Xg → 0, we
may write

Td(T l0g) = Td(Thg)Td(NW (ig)/Xg )− ddcT̃d(Thg, T l0g |Xg ).
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So we get

∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg )

=

∫

Xg/S

Td(Thg)Tg(ξ.)

−
∫

Xg/S

T̃d(Thg, T l0g |Xg )δYgchg(η)Td−1g (N )Td−1(NW (ig)/Xg )

+

∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg ).

Similarly we have

∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g
)

=

∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

−
∫

P 0
g /S

T̃d(Tbg, T l0g |P 0
g

)δYgchg(η)Td−1g (N∞)Td−1(NW (ig)/P 0
g

)

+

∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).

Note that the normal sequence of Thg in T l0g (resp. Tbg in T l0g) is orthog-

onally split on Yg × {0} (resp. Yg × {∞}), then T̃d(Thg, T l0g |Xg )δYg and

T̃d(Tbg, T l0g |P 0
g
)δYg are both equal to 0. Combining these computations above

we get

∫

Xg/S

Td(T l0g)Tg(ξ.)Td−1(NW (ig)/Xg )

−
∫

P 0
g /S

Td(T l0g)Tg(ξ.
∞

)Td−1(NW (ig)/P 0
g
)

=

∫

Xg/S

Td(Thg)Tg(ξ.)

+

∫

Xg/S

∑
(−1)jchg(ξj)Td−1(NW (ig)/Xg )T̃d(Thg, T l0g |Xg )

−
∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

−
∫

P 0
g /S

∑
(−1)jchg(ξ

∞
j )Td−1(NW (ig)/P 0

g
)T̃d(Tbg, T l0g |P 0

g
).

(7)
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We now compute the second integral in the right-hand side of (5). According
to the normal sequence

0→ Tug → T l0g |Yg×P1→ NW (ig)/Yg×P1 → 0,

we may write

Td(T l0g) = Td(Tug)Td(NW (ig)/Yg×P1)− ddcT̃d(Tug, T l0g |Yg×P1).

Hence

−
∫

W (ig)/S

{Td(T l0g)chg(p
∗
Y η)Td−1g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}

=−
∫

Yg×P1/S

{Td(Tug)chg(p
∗
Y η)Td−1g (F̃ ) · j0g

∗
[Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}

+

∫

Yg×P1/S

{T̃d(Tug, T l0g |Yg×P1)chg(p
∗
Y η)Td−1g (NW/Y×P1)

· [Td−1(Xg)(δXg − c1(O(Xg)))− Td−1(P 0
g )(δP 0

g
− c1(O(P 0

g )))

− Td−1(X̃g)(δX̃g − c1(O(X̃g)))

+ Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))(δ
X̃g
− c1(O(X̃g)))]}.

By our choices of the metrics, we have Td−1g (NW/Y×P1) |Yg,0= Td−1g (N),

Td(Xg) |Yg,0= 1 and Td−1g (NW/Y×P1) |Yg,∞= Td−1g (N∞), Td(P 0
g ) |Yg,∞= 1.

Furthermore, by replacing all tangent bundles by relative tangent bundles, on
can carry through the proof given in [21, P. 378-379] to show that

T̃d(Tug, T l0g |Yg×P1) |Yg,0= T̃d(Tfg, Thg |Yg )

and
T̃d(Tug, T l0g |Yg×P1) |Yg,∞= T̃d(Tfg, T bg |Yg ).

So combining with the equation (6), we get

−
∫

W (ig)/S

{Td(T l0g)chg(p
∗
Y η)Td−1g (NW/Y×P1)δYg×P1 · [Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}

=−
∫

Yg×P1/S

{Td(Tug)chg(p
∗
Y η)Td−1g (F̃ ) · j0g

∗
[Td−1(Xg)gXg

− Td−1(P 0
g )gP 0

g
− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0

g )c1(O(P 0
g ))g

X̃g
]}
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+

∫

Yg/S

chg(η)Td−1g (N)T̃d(Tfg, Thg |Yg )

−
∫

Yg/S

chg(η)Td−1g (N∞)T̃d(Tfg, T bg |Yg ).

(8)

At last, using the fact that the intersections in the deformation diagram are
transversal and the fact that j0g(Yg × P1) has no intersection with X̃g, we can
compute

∫

Yg×P1/S

{
∑

(−1)jchg(∧jF̃
∨
⊗ p∗Ygη |Yg)Td(Tug) · [Td−1(Yg,0)gYg,0

− Td−1(Yg,∞)gYg,∞ + c̃h(j0g
∗O(−X̃g), OYg×P1)− c̃hg(Θ)]}

=

∫

Yg×P1/S

{Td(Tug)chg(p
∗
Y η)Td−1g (F̃ ) · j0g

∗
[Td−1(Xg)gXg − Td−1(P 0

g )gP 0
g

− Td−1(X̃g)gX̃g + Td−1(X̃g)Td−1(P 0
g )c1(O(P 0

g ))g
X̃g

]}.
(9)

Gathering (5), (7), (8) and (9) we finally get

c̃hg(Ξ∇ |X , hH)− c̃hg(Ξ∇ |P 0
g
, hH) +

∑
(−1)jTg(ω

Xg , hξj |Xg )

−
∑

(−1)jTg(ω
P 0
g , h

ξ∞j |P0
g )−

∑
(−1)jTg(ω

Yg , h∧
jF∨⊗η|Yg )

+
∑

(−1)jTg(ω
Yg , h∧

jF∨
∞⊗η|Yg )

=

∫

Xg/S

Td(Thg)Tg(ξ.)−
∫

P 0
g /S

Td(Tbg)Tg(ξ.
∞

)

+

∫

Yg/S

chg(η)Td−1g (N)T̃d(Tfg, Thg |Yg )

−
∫

Yg/S

chg(η)Td−1g (N∞)T̃d(Tfg, T bg |Yg ). (10)

On the other hand, by definition, we have

δ(Ξ |P ) :=c̃hg(ξ.
∞
, η)−

∑

k

(−1)kTg(ω
Yg , h∧

kF∨
∞⊗η|Yg )

+
∑

k

(−1)kTg(ω
Pg , hξ

∞
k |Pg )

−
∫

Yg/S

Td(Tfg)Td−1g (F )chg(η)R(Ng)

−
∫

Pg/S

Tg(ξ.
∞

)Td(Tb′g)
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−
∫

Yg/S

chg(η)Td−1g (N∞)T̃d(Tfg, T b′g |Yg )

where b′ : P → S is the composition of the inclusion P →֒ W (i) and the
morphism l. Note that P 0

g is an open and closed submanifold of Pg and ξ.
∞

is

orthogonally split on the other components since they all belong to X̃g, then
we can rewrite δ(Ξ |P ) as

δ(Ξ |P ) =c̃hg(Ξ∇ |P 0
g
, hH)−

∑

k

(−1)kTg(ω
Yg , h∧

kF∨
∞⊗η|Yg )

+
∑

k

(−1)kTg(ω
P 0
g , h

ξ∞k |P0
g )

−
∫

Yg/S

Td(Tfg)Td−1g (F )chg(η)R(Ng)

−
∫

P 0
g /S

Tg(ξ.
∞

)Td(Tbg)

−
∫

Yg/S

chg(η)Td−1g (N∞)T̃d(Tfg, T bg |Yg ).

Comparing with the definition of δ(Ξ |X), the equality (10) implies that

δ(Ξ |X)− δ(Ξ |P ) = 0

which completes the proof of this deformation theorem.

Now we consider the zero section imbedding i∞ : Y → P = P(N∞⊕OY ). Here
we use the fact that N∞ is isomorphic to NX/Y , we caution the reader that this

is not necessarily an isometry since N∞ carries the quotient metric induced by
the Kähler metric on P but NX/Y carries the quotient metric induced by the
Kähler metric on X . We recall that on P we have a tautological exact sequence

0→ O(−1)→ π∗P (N∞ ⊕OY )→ Q→ 0.

The equivariant section σ : OP → π∗P (N∞ ⊕ OY ) → Q induces the following
Koszul resolution

0→ ∧rkQQ∨ → · · · → Q∨ → OP → i∞∗OY → 0.

Since σ is equivariant, the image of OPg under σ |Pg is contained in Qg. This
means that σ |Pg induces a Koszul resolution on Pg of the following form

0→ ∧rkQgQ∨g → · · · → Q∨g → OPg → i∞,g∗OYg → 0.

Proposition 3.19. Let κ := κ(η,N∞) be a hermitian Koszul resolution on P
defined in Definition 3.3. Then for n≫ 0, we have δ(κ(n)) = 0.
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Proof. Denote the non-zero degree part of Q |Pg by Q⊥, then we have the
following isometry

∧iQ∨ |Pg= ∧i(Q∨g ⊕Q
∨
⊥) ∼=

⊕

t+s=i

(∧tQ∨g ⊗ ∧sQ
∨
⊥).

Consider the following complex of equivariant hermitian vector bundles on Pg

0→ ∧rkQgQ∨g ⊗ (∧kQ∨⊥ ⊗ π∗Pgη |Yg )→ · · · → Q
∨
g ⊗ (∧kQ∨⊥ ⊗ π∗Pgη |Yg )

→ ∧kQ∨⊥ ⊗ π∗Pgη |Yg→ 0

which provides a resolution of i∞,g∗(∧kF
∨
∞ ⊗ η |Yg ) where F∞, as before, is

the non-zero degree part of the normal bundle N∞ associated to i∞. We
denote this resolution by κ(k), then according to the arguments given before

this proposition we have a decomposition of complexes κ∇ |Pg∼=
⊕

k≥0 κ
(k)
∇ [−k]

where κ
(k)
∇ [−k] is obtained from κ

(k)
∇ by shifting degree. Replacing κ by κ(n)

for big enough n, we may assume that all elements in κ and κ(k) are acyclic.
Therefore, by Bisumt-Ma’s immersion formula we have the following equality

c̃hg(b
′
g∗κ

(k)) =Tg(ω
Yg , h∧

kF∨
∞⊗η|Yg )−

rkQg∑

i=0

(−1)iTg(ω
Pg , h

∧iQ∨
g⊗∧kQ∨

⊥⊗π∗
Pg
η|Yg )

+

∫

Yg/S

chg(∧kF∨∞ ⊗ η |Yg )R(N∞,g)Td(Tfg)

+

∫

Pg/S

Td(Tb′g)Tg(κ
(k))

+

∫

Yg/S

chg(∧kF
∨
∞ ⊗ η |Yg )Td−1(N∞,g)T̃d(Tfg, T b′g |Yg ).

It is easily seen from the decomposition κ∇ |Pg=
⊕

k≥0 κ
(k)
∇ [−k] that the sec-

ondary characteristic class c̃hg(κ) appearing in the definition of δ(κ) is exactly∑
(−1)kc̃hg(b

′
g∗κ

(k)). So taking the alternating sum of both two sides of the
equality above and using the fact that equivariant analytic torsion form is ad-
ditive for direct sum of acyclic bundles, we know that to prove δ(κ) = 0, we
are left to show that

∑
(−1)kTg(κ

(k)) is equal to Tg(κ). In fact, by using [21,
Lemma 3.15], we have modulo Im∂ + Im∂

∑
(−1)kTg(κ

(k)) =
∑

(−1)kchg(∧kQ
∨
⊥)chg(π

∗
Pgη |Yg )Tg(∧·Q∨g )

= Td−1g (Q⊥)chg(π
∗
Pgη |Yg )Tg(∧·Q∨g )

= Td−1g (Q)chg(π
∗
Pgη |Yg )Tg(∧·Q∨g )Td(Qg)

= chg(π
∗
Pgη |Yg )Tg(∧·Q∨)

= Tg(κ).

So we are done.
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It’s now ready to finish the proof of the vanishing theorem for equivariant closed
immersions. Let η be an equivariant hermitian vector bundle on Y , assume that

Ψ : 0→ ξm → · · · → ξ1 → ξ0 → i∗η → 0

is a resolution of i∗η by equivariant hermitian vector bundles on X which
satisfies Bismut assumption (A). We need to prove that for n≫ 0, δ(Ψ(n)) = 0.

Proof. (of Theorem 3.1) We first construct a resolution of p∗Y η on W (i) as

Ξ : 0→ ξ̃m → · · · → ξ̃0 → ξ̃0 → j∗p
∗
Y (η)→ 0

which satisfies the condition (i) and (ii) in Definition 3.16. Then the restriction
of Ξ to X (resp. P ) provides a resolution of i∗η (resp. i∞∗η). Over X , we can
find a third resolution Φ of i∗η which dominates Ψ and Ξ |X . Namely we get
short exact sequences of exact sequences

0→ Ker(n)→ Φ(n)→ Ψ(n)→ 0

and

0→ Ker
′
(n)→ Φ(n)→ Ξ(n) |X→ 0.

Then after omitting i∗η their restrictions to Xg become two exact sequences
of complexes. Since n ≫ 0 we may assume that all elements and homologies
in the induced double complexes are acyclic, so that by taking direct images
we get two exact sequences of equivariant standard complexes on S. These
two short exact sequences of equivariant standard complexes clearly satisfy
the assumptions in Lemma 3.12. Therefore, using Lemma 3.12, Bismut-Ma’s
immersion formula and the double complex formula of equivariant Bott-Chern
singular currents (cf. Theorem 2.18), we obtain that

c̃hg(Ψ(n))− c̃hg(Φ(n)) + c̃hg(Ker(n))

+ Tg(ω
Xg , hΨ(n)∇)− Tg(ωXg , hΦ(n)∇) + Tg(ω

Xg , hKer(n)∇)

=

∫

Xg/S

[Tg(Ψ(n)∇)− Tg(Φ(n)∇) + Tg(Ker(n)∇)] · Td(Thg)

which implies that

δ(Φ(n)) = δ(Ψ(n)) + δ(Ker(n)).

By applying Bismut-Ma’s immersion formula to the case where the immersion
is the identity map and η is equal to the zero bundle, we get δ(Ker(n)) = 0 so
that δ(Φ(n)) = δ(Ψ(n)). Similarly, we have δ(Φ(n)) = δ(Ξ(n) |X) and hence
δ(Ψ(n)) = δ(Ξ(n) |X). An entirely analogous reasoning implies that δ(κ(n)) =
δ(Ξ(n) |P ). Then the vanishing of δ(Ψ(n)) follows from Theorem 3.18 and
Proposition 3.19.
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4 Equivariant arithmetic Grothendieck groups with fixed wave
front sets

By an arithmetic ring D we understand a regular, excellent, Noetherian integral
ring, together with a finite set S of embeddings D →֒ C, which is invariant
under a conjugate-linear involution F∞ (cf. [15, Def. 3.1.1]). Denote by µn
the diagonalisable group scheme over D associated to Z/nZ. A µn-equivariant
arithmetic scheme over D is a Noetherian scheme of finite type, endowed with
a µn-projective action over D (cf. [21, Section 2]). Let X be a µn-equivariant
arithmetic scheme whose generic fibre is smooth, then X(C), the set of complex
points of the variety

∐
σ∈S X ×D C, is a disjoint union of projective manifolds.

This manifold admits an action of the group of complex n-th roots of unity
and an anti-holomorphic involution induced by F∞ which is still denoted by
F∞. It was shown in [31, Prop. 3.1] that if X is regular, then the fixed point
subscheme Xµn is also regular. Fix a primitive n-th root of unity ζn and
denote its corresponding holomorphic automorphism on X(C) by g, by GAGA
principle we have a natural isomorphism Xµn(C) ∼= X(C)g.

Definition 4.1. An equivariant hermitian sheaf (resp. vector bundle) E on X
is a coherent sheaf (resp. vector bundle) E on X , assumed locally free on X(C),
endowed with a µn-action which lifts the action of µn on X and a hermitian
metric h on the associated bundle EC, which is invariant under F∞ and g.

Remark 4.2. Let E be an equivariant hermitian sheaf (resp. vector bundle)
on X , the restriction of E to the fixed point subscheme Xµn has a natural
Z/nZ-grading structure E |Xµn∼= ⊕k∈Z/nZEk. We shall often write Eµn for

E0. It is clear that the associated bundle of Eµn over X(C) is exactly equal to
Eg.

Over a complex manifold M , we may consider the current space which is the
continuous dual of the space of smooth complex valued differential forms (cf.
[27, Chapter IX]). The wave front set WF(ω) of a current ω over M is a closed
conical subset of the cotangent bundle T ∗RM0 := T ∗RM\{0}. This conical subset
measures the singularities of ω, actually the projection of WF(ω) in M is equal
to the singular locus of the support of ω. It also allows us to define certain
products and pull-backs of currents. We refer to [19, Chapter VIII] for the
definition and various properties of wave front set.
Now let X be a µn-equivariant arithmetic scheme with smooth generic fibre
and let S be a conical subset of T ∗RX(C)g,0, denote by Dp,p(X(C)g, S) the set
of currents ω of type (p, p) on X(C)g which satisfy F ∗∞ω = (−1)pω and whose

wave front sets are contained in S, we shall write Ũ(Xµn , S) for the current
class

Ũ(X(C)g, S) :=
⊕

p≥0
(Dp,p(X(C)g, S)/(Im∂ + Im∂)).

Let E be an equivariant hermitian sheaf or vector bundle on X . Following
the same notations and definitions as in [21, Section 3], we write chg(E) for
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the equivariant Chern character form chg((EC, h)) associated to the hermitian
holomorphic vector bundle (EC, h) on X(C). Similarly, we have the equivariant

Todd form Tdg(E). Furthermore, let ε : 0 → E
′ → E → E

′′ → 0 be an
exact sequence of equivariant hermitian sheaves or vector bundles on X , we
can associate to it an equivariant Bott-Chern secondary characteristic class
c̃hg(ε) ∈ Ũ(Xµn , ∅) which satisfies the differential equation

ddcc̃hg(ε) = chg(E
′
)− chg(E) + chg(E

′′
).

Definition 4.3. Let X be a µn-equivariant arithmetic scheme with smooth
generic fibre and let S be a conical subset of T ∗RX(C)g,0, we define the equiv-

ariant arithmetic Grothendieck group Ĝ0(X,µn, S) (resp. K̂0(X,µn, S)) with
respect to X and S as the free abelian group generated by the elements of
Ũ(Xµn , S) and by the equivariant isometry classes of equivariant hermitian
sheaves (resp. vector bundles) on X , together with the relations

(i). for every exact sequence ε as above, c̃hg(ε) = E
′ − E + E

′′
;

(ii). if α ∈ Ũ(Xµn , S) is the sum of two elements α′ and α′′ in Ũ(Xµn , S), then

the equality α = α′ + α′′ holds in Ĝ0(X,µn, S) (resp. K̂0(X,µn, S)).

Remark 4.4. (i). When S′ ⊂ S, [30, Theorem 3.9 (ii)] implies that the natural

map from Ũ(Xµn , S
′) to Ũ(Xµn , S) is injective. So the first generating relation

in Definition 4.3 does make sense.
(ii). When X is regular, one can carry out the proof of [21, Proposition 4.2]

to show that the natural morphism from K̂0(X,µn, S) to Ĝ0(X,µn, S) is an
isomorphism.
(iii). The definition of the equivariant arithmetic Grothendieck group implies
that there are exact sequences

Ũ(Xµn , S)
a // Ĝ0(X,µn, S)

π // G0(X,µn) // 0

and

Ũ(Xµn , S)
a // K̂0(X,µn, S)

π // K0(X,µn) // 0

where a is the natural map which sends α ∈ Ũ(Xµn , S) to the class of α in

Ĝ0(X,µn, S) (resp. K̂0(X,µn, S)) and π is the forgetful map. Here the group
G0(X,µn) is the Grothendieck group of µn-equivariant coherent sheaves which
are locally free on X(C), by a theorem of Quillen (cf. [26, Thm. 3 Cor. 1]) we
know that it is isomorphic to the ordinary Grothendieck group of µn-equivariant
coherent sheaves.

In [29, Section 3], we have introduced the ring structure of K̂0(X,µn, ∅). Since
we may have a well-defined product of two currents if their wave front sets have
no intersection, and the wave front set is invariant under the operation of mul-
tiplying a smooth current, we know that the Grothendieck group K̂0(X,µn, S)

has a K̂0(X,µn, ∅)-module structure. The same thing goes to Ĝ0(X,µn, S).
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Furthermore, consider the isomorphism R(µn) ∼= K0(D)[T ]/(1 − T n). Let I
be the µn-equivariant hermitian D-module whose term of degree 1 is D en-
dowed with the trivial metric and whose other terms are 0. Then we may
make K̂0(D,µn, ∅) an R(µn)-algebra under the ring morphism which sends
T to I. By doing pull-backs, we may endow every arithmetic Grothendieck
group we defined before with an R(µn)-module structure. Notice finally that

there is a well-defined map from Ĝ0(X,µn, ∅) (resp. K̂0(X,µn, ∅)) to the
space of complex closed differential forms, which is defined by the formula
chg(E + α) := chg(E) + ddcα where E is an equivariant hermitian sheaf (resp.

vector bundle) and α ∈ Ũ(Xµn , ∅).
Now we investigate the wave front set of a current after doing push-forward.
Let f be a holomorphic map of compact complex manifolds, we may define a
push-forward f∗ on current space which is the dual map of the pull-back of
smooth forms. When f is smooth, the push-forward f∗ extends the integration
of smooth forms over the fibre. Assume that we are given a smooth morphism
f : U → V of compact complex manifolds, then f∗ induces a current K over
the product space V × U defined as

K(α⊗ β) = (f∗β)(α)

where α and β are smooth forms over V and U respectively. Define

M = {(v, u) ∈ V × U | f(u) = v}

which is a submanifold in V ×U . From the fact that f∗β is just the integration
of smooth forms over the fibre, it is easily seen that the current K ∈ D∗(V ×U)
is exactly the object dSM in [19, Theorem 8.1.5]. Then by that theorem, the
wave front set of K is equal to

WF(K) = {(v, u, ξ,−f∗(ξ)) ∈ T ∗RV × T ∗RU | f(u) = v, ξ 6= 0}.

Let S be a conical subset of T ∗RU0, we fix some notations as follows.

WF(K)V ={(v, ξ) ∈ T ∗RV0 | ∃u ∈ U, (v, u, ξ, 0) ∈WF(K)}
WF′(K)U ={(u, η) ∈ T ∗RU0 | ∃v ∈ V, (v, u, 0,−η) ∈WF(K)}

WF′(K)V ◦ S ={(v, ξ) ∈ T ∗RV0 | ∃(u, η) ∈ S, (v, u, ξ,−η) ∈WF(K)}.

Theorem 4.5. Let notations and assumptions be as above. Assume that ω is a
current over U whose wave front set is contained in S with S ∩WF′(K)U = ∅,
then the wave front set of f∗ω is contained in

S′ := WF(K)V ∪WF′(K) ◦ S.

Proof. This follows from [19, Theorem 8.2.12 and 8.2.13].

Remark 4.6. (i) In our situation, the condition S ∩WF′(K)U = ∅ is always
satisfied because by definition we have WF′(K)U = ∅.
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(ii). In our situation, S′ is always equal to WF′(K) ◦ S because WF(K)V = ∅.
(iii). If S is the empty set, then S′ is also empty. This is compatible with the
push-forward of smooth forms.
(iv). Assume that the restriction of f to a closed submanifold W is also smooth.
Denote by NU/W the normal bundle of W in U . If S = N∨U/W,R \ {0}, then

S′ = ∅.

We now turn to the arithmetic case. Let X , Y be two µn-equivariant arithmetic
schemes with smooth generic fibres, and let f : X → Y be an equivariant
morphism over D which is smooth on the complex numbers. Fix a µn(C)-
invariant Kähler metric on X(C) so that we get a Kähler fibration with respect
to the holomorphic submersion fC : X(C) → Y (C). Let E be an f -acyclic
µn-equivariant hermitian sheaf on X , we know that the direct image f∗E is
locally free on Y (C) and it can be endowed with a natural equivariant structure

and the L2-metric. Let Ĝ0

ac
(X,µn, S) be the group generated by f -acyclic

equivariant hermitian sheaves on X and the elements of Ũ(Xµn , S), with the
same relations as in Definition 4.3. A theorem of Quillen (cf. [26, Cor.3 P.
111]) for the algebraic analogs of these groups implies that the natural map

Ĝ0

ac
(X,µn, S)→ Ĝ0(X,µn, S) is an isomorphism. So the following definition

does make sense.

Definition 4.7. Let notations and assumptions be as above. The push-forward
morphism f∗ : Ĝ0(X,µn, S)→ Ĝ0(Y, µn, S

′) is defined in the following way.
(i). For every f -acyclic µn-equivariant hermitian sheaf E on X , f∗E =
(f∗E, f∗hE)− Tg(ωX , hE).

(ii). For every element α ∈ Ũ(Xµn , S), f∗α =
∫
Xg/Yg

Tdg(Tf, h
Tf)α ∈

Ũ(Yµn , S
′).

Remark 4.8. If Y is regular, by Remark 4.4 (ii) we know that K̂0(Y, µn, S
′)

is naturally isomorphic to Ĝ0(Y, µn, S
′) so that (f∗E, f∗hE) admits a finite

equivariant hermitian resolution; if the morphism f is flat and Y is reduced,
then (f∗E, f∗hE) is locally free when E is so. Therefore in both two cases above,

one can also define a reasonable push-forward morphism f∗ : K̂0(X,µn, S) →
K̂0(Y, µn, S

′).

Theorem 4.9. The push-forward morphism f∗ is a well-defined group homo-
morphism.

Proof. The argument is the same as in the proof of [29, Theorem 6.2].

Lemma 4.10. (Projection formula) For any elements y ∈ K̂0(Y, µn, ∅) and

x ∈ Ĝ0(X,µn, S), the identity f∗(f∗y · x) = y · f∗x holds in Ĝ0(Y, µn, S
′).

Proof. Assume that y = E is an equivariant hermitian vector bundle and x = F
is an f -acyclic equivariant hermitian sheaf, then f∗y · x = f∗E ⊗ F . By
projection formula for direct images and the definition of L2-metric, we know
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that f∗(f∗E ⊗ F ) is isometric to E ⊗ f∗F . Moreover, concerning the analytic
torsion form, we have Tg(ω

X , hf
∗E⊗F ) = chg(E)Tg(ω

X , hF ). So the projection
formula f∗(f∗y · x) = y · f∗x holds in this case.
Assume that y = E is an equivariant hermitian vector bundle and x = α is
represented by some singular current. We write f∗g and fg∗ for the pull-back
and push-forward of currents respectively, then

f∗(f
∗y · x) =f∗(f

∗
g chg(E)α) = fg∗(f

∗
g chg(E)αTdg(Tf))

=chg(E)fg∗(αTdg(Tf))

=chg(E)

∫

Xg/Yg

αTdg(Tf) = y · f∗x.

Here we have used an extension of projection formula of smooth forms p∗(p∗α1∧
α2) = α1∧p∗α2 (cf. [14, Prop. IX p. 303]) to the case where the second variable
α2 is replaced by a singular current. The fact that this extension is valid follows
from the definition of p∗ and the definition of the product of smooth form and
singular current.
Assume that y = β is represented by some smooth form and x = E is an
f -acyclic hermitian sheaf, then

f∗(f
∗y · x) =f∗(f

∗
g (β)chg(F )) = fg∗(f

∗
g (β)chg(F )Tdg(Tf))

=βfg∗(chg(E)Tdg(Tf))

=β

∫

Xg/Yg

chg(E)Tdg(Tf) = β(chg(f∗F )− ddcTg(ω
X , hF ))

which is exactly y · f∗x.
Finally, assume that y = β is represented by some smooth form and x = α is
represented by some singular current, then

f∗(f
∗y · x) =f∗(f

∗
g (β)ddcα) = fg∗(f

∗
g (β)ddcαTdg(Tf))

=βddcfg∗(αTdg(Tf))

which is also equal to y · f∗x.
Since f∗ and f∗ are both group homomorphisms, we may conclude the projec-
tion formula by linear extension.

Remark 4.11. Lemma 4.10 implies that f∗ is a homomorphism of R(µn)-
modules, and hence it induces a push-forward morphism after taking localiza-
tion.

To end this section, we recall an important lemma which will be used frequently
in our later arguments.

Lemma 4.12. ([21, Lemma 4.5]) Let X be a regular µn-equivariant arithmetic
scheme and let E be an equivariant hermitian vector bundle on Xµn such that

Eµn = 0. Then the element λ−1(E) is invertible in K̂0(Xµn , µn, S)ρ.
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5 Arithmetic concentration theorem

In this section, we shall prove the arithmetic concentration theorem which
is an analog of Thomason’s result in Arakelov geometry. Let X be a µn-
equivariant arithmetic scheme with smooth generic fibre, we consider a special
closed immersion i : Xµn →֒ X where Xµn is the fixed point subscheme of
X . We shall first construct a well-defined group homomorphism i∗ between
equivariant arithmetic G0-groups as in the algebraic case. To construct i∗,
some analytic datum, which is the equivariant Bott-Chern singular current,
should be involved. Precisely speaking, let η be a µn-equivariant hermitian
sheaf on Xµn and let ξ. be a bounded complex of µn-equivariant hermitian
sheaves which provides a resolution of i∗η on X . Such a resolution always
exists since the generic fibre of X is supposed to be smooth. Then we may
have an equivariant Bott-Chern singular current Tg(ξ.) ∈ Ũ(Xµn). Note that
on the complex numbers the 0-degree part of the normal bundle N := NX/Xg
vanishes (cf. [21, Prop. 2.12]) so that the wave front set of Tg(ξ.) is the empty
set. This fact means that the following definition does make sense.

Definition 5.1. Let notations and assumptions be as above. The embedding
morphism

i∗ : Ĝ0(Xµn , µn, S)→ Ĝ0(X,µn, S)

is defined in the following way.
(i). For every µn-equivariant hermitian sheaf η on Xµn , suppose that ξ. is a
resolution of i∗η on X whose metrics satisfy Bismut assumption (A), i∗[η] =∑

k(−1)k[ξk] + Tg(ξ.).

(ii). For every α ∈ Ũ(Xµn , S), i∗α = αTd−1g (N).

Theorem 5.2. The embedding morphism i∗ is a well-defined group homomor-
phism.

Proof. The argument is the same as in the proof of [29, Theorem 5.2].

Lemma 5.3. (Projection formula) For any elements x ∈ K̂0(X,µn, ∅) and y ∈
Ĝ0(Xµn , µn, S), the identity i∗(i∗x · y) = x · i∗y holds in Ĝ0(X,µn, S).

Proof. Assume that x = E is an equivariant hermitian vector bundle and y = F
is an equivariant hermitian sheaf. Let ξ. be a resolution of i∗F on X , then E⊗ξ.
provides a resolution of i∗(i∗E ⊗ F ). By definition we have

i∗(i
∗x · y) =

∑
(−1)k[ξk ⊗ E] + chg(E)Tg(ξ.)

which is exactly x · i∗y. Assume that x = α is represented by some smooth
form and y = F is an equivariant hermitian sheaf. Again let ξ. be a resolution
of i∗F on X , then

i∗(i
∗x · y) = αTd−1g (NX/Xg )chg(F ) = α[ddcTg(ξ.) +

∑
(−1)kchg(ξk)]
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which is exactly x · i∗y. Now assume that x = E is an equivariant hermitian
vector bundle and y = α is represented by some singular current, then

i∗(i
∗x · y) = i∗(chg(E)α) = chg(E)αTd−1g (NX/Xg )

which is exactly x · i∗y. Finally, if x is represented by some smooth form and y
is represented by some singular current then their product is well-defined and
i∗(i∗x · y) is obviously equal to x · i∗y. Note that i∗ and i∗ are group homo-
morphisms, so we may conclude the projection formula from its correctness on
generators. This completes the proof.

Remark 5.4. Lemma 5.3 implies that i∗ is even a homomorphism of R(µn)-
modules so that it induces a homomorphism between arithmetic G0-groups
after taking localization.

With Remark 5.4, we may formulate the arithmetic concentration theorem as
follows.

Theorem 5.5. The embedding morphism i∗ : K̂0(Xµn , µn, S)ρ →
K̂0(X,µn, S)ρ is an isomorphism if X is regular. In this case, the in-

verse morphism of i∗ is given by λ−1−1(N
∨
X/Xµn

) · i∗ where NX/Xµn is the
normal bundle of i(Xµn) in X.

Before we give the proof of this concentration theorem, we recall a crucial
lemma as follows.

Lemma 5.6. Let η be an equivariant hermitian vector bundle on Xµn . Assume
that ξ. is an equivariant hermitian resolution of i∗η on X whose metrics satisfy
Bismut assumption (A). Then the equality

λ−1(N
∨
X/Xµn

) · η −
∑

j

(−1)ji∗(ξj) = Tg(ξ.)

holds in the group K̂0(Xµn , µn, S).

Proof. This is [29, Lemma 5.13].

Proof. (of Theorem 5.5) Denote by U the complement of Xµn in X , then j :
U →֒ X is a µn-equivariant open subscheme of X whose fixed point set is
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empty. We consider the following double complex

Ũ(Xµn , S)ρ
i∗ //

a

��

Ũ(Xµn , S)ρ
j∗ //

a

��

Ũ(Uµn , ∅)ρ //

a

��

0

K̂0(Xµn , µn, S)ρ
i∗ //

π

��

K̂0(X,µn, S)ρ
j∗ //

π

��

K̂0(U, µn, ∅)ρ //

π

��

0

K0(Xµn , µn)ρ
i∗ //

��

K0(X,µn)ρ
j∗ //

��

K0(U, µn)ρ //

��

0

0 0 0

whose first and second columns are both exact sequences according to Re-
mark 4.4 (iii). For the third column, K0(U, µn)ρ is equal to 0 by [31,

(2.1.3)], Ũ(Uµn , ∅)ρ is also equal to 0 since Uµn is empty. Then from Re-

mark 4.4 (iii) we know that K̂0(U, µn, ∅)ρ is equal to 0. We claim that

i∗ : K̂0(Xµn , µn, S)ρ → K̂0(X,µn, S)ρ is surjective. Indeed, for any element

x ∈ K̂0(X,µn, S)ρ we may find an element y ∈ K̂0(Xµn , µn, S)ρ such that
i∗π(y) = π(x) because the third line is exact. This means x − i∗(y) is in the

kernel of π, so there exists an element α ∈ Ũ(Xµn , S)ρ such that α = x− i∗(y)

in K̂0(X,µn, S)ρ. Set β = αTdg(N), we get i∗(y + β) = i∗(y) + α = x in

K̂0(X,µn, S)ρ. Hence, i∗ is surjective.

We now prove that the embedding morphism i∗ : K̂0(Xµn , µn, S)ρ →
K̂0(X,µn, S)ρ is really an isomorphism by constructing its inverse morphism.

Let ω be an element in Ũ(Xµn , S), by definition we have

λ−1−1(N
∨
X/Xµn

) · i∗i∗(ω) =λ−1−1(N
∨
X/Xµn

) · ωTd−1g (NX/Xg )

=chg(λ
−1
−1(N

∨
X/Xg ))ωTd−1g (NX/Xg )

=ω.

Let η be an equivariant hermitian vector bundle on Xµn and assume that ξ. is
an equivariant hermitian resolution of i∗η on X whose metrics satisfy Bismut
assumption (A), then by the definition of the embedding morphism i∗ and
Lemma 5.6 we have

λ−1−1(N
∨
X/Xµn

) · i∗i∗(η) =λ−1−1(N
∨
X/Xµn

) · i∗(
∑

k

(−1)kξk + Tg(ξ.)) = η.

So the inverse morphism of i∗ is of the form λ−1−1(N
∨
X/Xµn

) · i∗ and we are
done.
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6 A Lefschetz fixed point formula for singular arithmetic
schemes with smooth generic fibres

6.1 The statement

We formulate in this subsection the statement of our main theorem, a singular
Lefschetz fixed point formula for equivariant arithmetic schemes with smooth
generic fibres. Its proof will be given in next two subsections. Let f : X → Y
be a µn-equivariant morphism between two arithmetic schemes with smooth
generic fibres, which is smooth on the complex numbers. This morphism f
is automatically projective and hence proper, according to the definition of
equivariant arithmetic scheme. Suppose that f factors through some regular
equivariant arithmetic scheme Z. More precisely, our assumption is that there
exist an equivariant closed immersion i : X →֒ Z and an equivariant morphism
h : Z → Y such that f = h ◦ i and h is also smooth on the complex numbers.
Moreover, we shall assume that the µn-action on Y is trivial.

Let η be an equivariant coherent sheaf on X , then there exists a bounded
complex of equivariant vector bundles which provides a resolution of i∗η on
Z because Z is regular. Since any two equivariant resolution of i∗η can be
dominated by a third one, the symbol TorkOZ (i∗η,OZµn ) does make sense.
We choose arbitrary µn-invariant Kähler forms ωZ and ωX on Z(C) and X(C)
respectively, the Kähler form ωX is not necessarily the Kähler form induced by
ωZ . The Kähler form on X(C) induced by ωZ will be denoted by ωZX . Denote
by N the normal bundle of iC(X(C)) in Z(C), we endow it with the quotient
metric provided that TX(C) carries the Kähler metric corresponding to ωZX .
Let F be the non-zero degree part of N , then by [13, Exp. VII, Lem. 2.4 and
Prop. 2.5] for any equivariant hermitian sheaf η on X there exists a canonical
isomorphism on Xg

TorkOZ (i∗η,OZµn )C ∼= ∧kF∨ ⊗ ηC |Xg

which is equivariant. This means we may endow TorkOZ (i∗η,OZµn )C with a
hermitian metric induced by the metrics on F and η so that it becomes an
equivariant hermitian sheaf on Xµn . Moreover, we know that the hermitian
vector bundle F fits the following exact sequence

(F , ωX) : 0→ NX/Xg → NZ/Zg → F → 0

where NZ/Zg admits the quotient metric associated to ωZ and NX/Xg admits

the quotient metric associated to ωX . Similarly, we shall denote by (F , ωZX)
the hermitian exact sequence F whose metric on NX/Xg is induced by ωZX .

The push-forward homomorphism from the arithmetic G0-group Ĝ0(X,µn, ∅)
to Ĝ0(Y, µn, ∅) with respect to the Kähler form ωX is denoted by f∗ as usual.

The push-forward homomorphism from Ĝ0(Xµn , µn, ∅) to Ĝ0(Y, µn, ∅) with re-
spect to the Kähler form ωZX will be denoted by fZµn∗.
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Write T̃d(Tfg, ω
X , ωZX) for the secondary characteristic class of the exact se-

quence

0 // (Tfg, ωX)
Id // (Tfg, ωZX) // 0 // 0

where the middle term carries the metric induced by ωZX and the sub term
carries the metric induced by ωX . Then the singular Lefschetz fixed point
formula for equivariant arithmetic schemes with smooth generic fibres can be
formulated as follows.

Theorem 6.1. Let notations and assumptions be as above. Then for any equiv-
ariant hermitian sheaf η on X, the equality

f∗(η) =fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

k

(−1)kTorkOZ (i∗η,OZµn ))

+

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg )

+

∫

Xg/Y

T̃d(Tfg, ω
X , ωZX)chg(η)Tdg(NZ/Zg )Td−1g (F )

holds in the group Ĝ0(Y, µn, ∅)ρ.
Remark 6.2. This arithmetic Lefschetz fixed point formula was inspired by
[31, Théorème 3.5].

6.2 Equivariant arithmetic G0-theoretic vanishing theorem

The central actor in the proof of Theorem 6.1 is the following vanishing theorem
in equivariant arithmetic G0-theory, which can be viewed as a translation of
Theorem 3.1.

Theorem 6.3. Let notations and assumptions be as in last subsection. Let η
be an equivariant hermitian sheaf on X, and let

Ψ : 0→ ξm → · · · → ξ1 → ξ0 → i∗η → 0

be a resolution of i∗η by equivariant hermitian vector bundles on Z. De-
note by hµn∗ the push-forward homomorphism from K̂0(Zµn , µn, N

∨
g,R \ {0})

to Ĝ0(Y, µn, ∅) with respect to the Kähler form ωZ . Then the formula

fZµn∗(
∑

(−1)kTorkOZ (i∗η,OZµn ))− hµn∗(
∑

(−1)k(ξk |Zµn ))

=

∫

Zg/Y

Tg(ξ.)Td(Thg) +

∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)

+

∫

Xg/Y

chg(η)Td−1g (N)T̃d((Tfg, ω
Z
X), Thg |Xg )
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holds in Ĝ0(Y, µn, ∅).

Proof. Following the same arguments given in the proof of Lemma 3.9, we may
show that the deformation to the normal cone W (i) admits an equivariant
hermitian very ample invertible sheaf L which is relative to the morphism
l : W (i)→ Y . By Theorem 3.1 and the fact that L is very ample, we conclude
that there exists an integer k0 > 0 such that for n ≥ k0, L⊗n is l-acyclic and
δ(Ψ(n)C) = 0. Then l factors through an equivariant projective space bundle
P(E) where E is locally free of rank r + 1 on Y and l∗L⊗k0 is an equivariant
quotient of E . Denote by p : P(E)→ Y the canonical projection. On P := P(E),
we have a canonical exact sequence

H : 0→ OP → p∗(E∨)(1)→ · · · → p∗(∧r+1E∨)(r + 1)→ 0.

Restricting this sequence to Z, we obtain an exact sequence of exact sequences

0→ Ψ→ Ψ⊗ h∗(E∨)(1)→ · · · → Ψ⊗ h∗(∧r+1E∨)(r + 1)→ 0.

Endow E with any µn(C)-invariant hermitian metric. We claim that the as-

sumption that Theorem 6.3 holds for Ψ⊗h∗(∧nE∨)(n) with n ≥ 1 implies that
it holds for Ψ. In fact, since H is an exact sequence of flat modules, for any
k ≥ 0 we have the following exact sequence on Xµn

0→ TorkOZ (i∗η,OZµn )→TorkOZ (i∗η,OZµn )⊗ f∗µn(E∨)(1)→ · · ·
→TorkOZ (i∗η,OZµn )⊗ f∗µn(∧r+1E∨)(r + 1)→ 0.

We compute

fZµn∗(TorkOZ (i∗η,OZµn ))

=fZµn∗(−
r+1∑

j=1

(−1)jTorkOZ (i∗η,OZµn )⊗ f∗µn(∧jE∨)(j))

+

∫

Xg/Y

Td(Tfg, ω
Z
X)chg(∧kF

∨
)chg(η)(−1)r+1c̃hg(H)

and

m∑

k=0

(−1)khµn∗(ξk |Zµn )

=

m∑

k=0

(−1)khµn∗(−
r+1∑

j=1

(−1)jξk |Zµn ⊗h∗µn(∧jE∨)(j))

+

m∑

k=0

(−1)k
∫

Zg/Y

Td(Thg)chg(ξk)(−1)r+1c̃hg(H).
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Moreover, we have

∫

Xg/Y

Td(Tfg)chg(TorkOZ (i∗η,OZµn ))R(Ng)

=

∫

Xg/Y

−
r+1∑

j=1

(−1)jchg(TorkOZ (i∗η,OZµn )⊗ f∗µn(∧jE∨)(j))R(Ng)Td(Tfg)

and
∫

Zg/Y

Tg(ξ.)Td(Thg)

=

∫

Zg/Y

Td(Thg){δXgTd−1g (N)chg(η)(−1)r+1c̃hg(H)

−
m∑

k=0

(−1)kchg(ξk)(−1)r+1c̃hg(H)−
r+1∑

j=1

(−1)jTg(ξ.)chg(h
∗
µn(∧jE∨)(j))}

by the double complex formula of equivariant Bott-Chern singular currents. At
last, we also have

∫

Xg/Y

chg(η)Td−1g (N)T̃d((Tfg, ω
Z
X), Thg |Xg )

=

∫

Xg/Y

{ddc(−1)r+1c̃hg(H)chg(η)−
r+1∑

j=1

(−1)jchg(η ⊗ f∗(∧jE∨)(j))}

· Td−1g (N)T̃d((Tfg, ω
Z
X), Thg |Xg )

=−
∫

Xg/Y

(−1)r+1c̃hg(H)chg(η) · {Td−1g (N)Td(Thg)

− Td(Tfg, ω
Z
X)Td−1g (F )}

−
∫

Xg/Y

r+1∑

j=1

(−1)jchg(η ⊗ f∗(∧jE
∨

)(j))Td−1g (N)T̃d((Tfg, ω
Z
X), Thg |Xg ).

Gathering all these computations above and using our assumption, we get

fZµn∗(
∑

(−1)kTorkOZ (i∗η,OZµn ))− hµn∗(
∑

(−1)kξk |Zµn )

−
∫

Zg/Y

Tg(ξ.)Td(Thg)−
∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)

−
∫

Xg/Y

chg(η)Td−1g (N)T̃d((Tfg, ω
Z
X), Thg |Xg )

=

∫

Xg/Y

Td(Tfg, ω
Z
X)Td−1g (F )chg(η)(−1)r+1c̃hg(H)
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−
m∑

k=0

(−1)k
∫

Zg/Y

Td(Thg)chg(ξk)(−1)r+1c̃hg(H)

−
∫

Xg/Y

Td(Thg)Td−1g (N )chg(η)(−1)r+1c̃hg(H)

+

m∑

k=0

(−1)k
∫

Zg/Y

Td(Thg)chg(ξk)(−1)r+1c̃hg(H)

+

∫

Xg/Y

(−1)r+1c̃hg(H)chg(η){Td−1g (N)Td(Thg)

− Td(Tfg, ω
Z
X)Td−1g (F )}

which vanishes. This ends the proof of our claim.
By the construction of the projective space bundle P , we have already known
that δ(Ψ(n)C) vanishes from n = 1 to n = r + 1. Moreover, according to the
projection formula of higher direct images, the operation of tensoring with the

element l∗(∧nE∨) doesn’t change the property of l-acyclicity. Hence we also

have δ(Ψ⊗ h∗(∧nE∨)(n)C) = 0. By the generating relations and the definition
of push-forward morphisms of arithmetic G0-groups, this is equivalent to say

that Theorem 6.3 holds for Ψ ⊗ h∗(∧nE∨)(n). Therefore the equality in the
statement of this theorem follows from our claim before.

Corollary 6.4. Let notations and assumptions be as in Theorem 6.3, and let
x be any element in K̂0(Z, µn, ∅)ρ. Then the formula

fZµn∗(i
∗x |Xµn ·

∑
(−1)kTorkOZ (i∗η,OZµn ))

− hµn∗(x |Zµn ·
∑

(−1)k(ξk |Zµn ))

=

∫

Zg/Y

Tg(ξ.)Td(Thg)chg(x)

+

∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)chg(i
∗x)

+

∫

Xg/Y

chg(η)Td−1g (N)chg(i
∗x)T̃d((Tfg, ω

Z
X), Thg |Xg )

holds in Ĝ0(Y, µn, ∅)ρ.
Proof. If x = E is an equivariant hermitian vector bundle on Z, then ξ. ⊗ E
provides a resolution of i∗(η⊗i∗E). Hence the formula follows from Theorem 6.3
in this case. If x = α is represented by some smooth form, then

fZµn∗(i
∗x |Xµn ·

∑
(−1)kTorkOZ (i∗η,OZµn ))

=

∫

Zg/Y

Td(Tfg, ω
Z
X)Td−1g (F )chg(η)δXgα
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and

hµn∗(x |Zµn ·
∑

(−1)k(ξk |Zµn )) =

∫

Zg/Y

Td(Thg)α
∑

(−1)kchg(ξk).

Moreover, by the definition of chg(x) we have

∫

Zg/Y

Tg(ξ.)Td(Thg)chg(x) =

∫

Zg/Y

chg(η)Td−1g (N)δXgTd(Thg)α

−
∫

Zg/Y

∑
(−1)kchg(ξk)Td(Thg)α

and ∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)chg(i
∗x) = 0.

Finally, using the definition of T̃d we compute

∫

Xg/Y

chg(η)Td−1g (N)chg(i
∗x)T̃d((Tfg, ω

Z
X), Thg |Xg )

=

∫

Zg/Y

Td(Tfg, ω
Z
X)Td−1g (F )chg(η)δXgα

−
∫

Zg/Y

chg(η)Td−1g (N)δXgTd(Thg)α.

Gathering all computations above, we know that the formula still holds for x
which is represented by smooth form. Since both two sides are additive, we are
done.

Corollary 6.5. Let notations and assumptions be as in Theorem 6.3, and let
y be any element in K̂0(Zµn , µn, ∅)ρ. Then the formula

fZµn∗(i
∗
µny ·

∑
(−1)kTorkOZ (i∗η,OZµn ))− hµn∗(y ·

∑
(−1)k(ξk |Zµn ))

=

∫

Zg/Y

Tg(ξ.)Td(Thg)chg(y)

+

∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)chg(i
∗
µny)

+

∫

Xg/Y

chg(η)Td−1g (N)chg(i
∗
µny)T̃d((Tfg, ω

Z
X), Thg |Xg )

holds in Ĝ0(Y, µn, ∅)ρ.

Proof. Provided Corollary 6.4, it is enough to prove that for any y ∈
K̂0(Zµn , µn, ∅)ρ there exists an element x ∈ K̂0(Z, µn, ∅)ρ such that i∗Zx = y.
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Here iZ stands for the inclusion Zµn →֒ Z. Actually, set x = iZ∗(λ
−1
−1(N

∨
Z/Zµn

)·
y), we have

i∗Zx = i∗ZiZ∗(λ
−1
−1(N

∨
Z/Zµn

) · y) = λ−1(N
∨
Z/Zµn

) · λ−1−1(N
∨
Z/Zµn

) · y = y.

This follows from our arithmetic concentration theorem.

6.3 Proof of the fixed point formula

In this subsection, we provide a complete proof of Theorem 6.1 the singular
Lefschetz fixed point formula. Before that, we need to translate Bismut-Ma’s
immersion formula to an arithmetic G0-theoretic version. That’s the following.

Theorem 6.6. Let notations and assumptions be as in Section 6.1. Assume
that η is an equivariant hermitian sheaf on X and ξ. is a bounded complex of
equivariant hermitian vector bundles providing a resolution of i∗η on Z whose
metrics satisfy Bismut assumption (A). Then the equality

fZ∗ (η)−
m∑

j=0

(−1)jh∗(ξj) =

∫

Xg/Y

chg(η)Rg(N)Tdg(Tf)

+

∫

Zg/Y

Tg(ξ.)Tdg(Th)

+

∫

Xg/Y

chg(η)T̃dg((Tf, ω
Z
X), Th |X)Td−1g (N)

holds in Ĝ0(Y, µn, ∅).

Proof. We first suppose that η and ξ. are all acyclic, then the verification follows
rather directly from the generating relations of arithmetic G0-theory. In fact

fZ∗ (η)−
m∑

j=0

(−1)jh∗(ξj) =f∗η − Tg(ωZX , hη)− (
m∑

j=0

(−1)j(h∗ξj − Tg(ωZ , hξj )))

=c̃hg(h∗Ξ)− Tg(ωZX , hη) +
m∑

j=0

(−1)jTg(ω
Z , hξj ).

And the right-hand side of the last equality is exactly the left-hand side of
Bismut-Ma’s immersion formula. We emphasize again that to simplify the
right-hand side of Bismut-Ma’s immersion formula, we have used an Atiyah-
Segal-Singer type formula for immersion

ig∗(Td−1g (N)chg(x)) = chg(i∗(x)).

To remove the condition of acyclicity, one can use the argument which is es-
sentially the same as in the proof of Theorem 6.3. Since it doesn’t use any new
techniques, we omit it here.
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Definition 6.7. The inclusion i : X →֒ Z induces an embedding morphism

i∗ : Ĝ0(X,µn, ∅)→ K̂0(Z, µn, N
∨
g,R \ {0})

which is defined as follows.
(i). For every µn-equivariant hermitian sheaf η on X , suppose that ξ. is a
resolution of i∗η on Z whose metrics satisfy Bismut assumption (A), i∗[η] =∑

k(−1)k[ξk] + Tg(ξ.).

(ii). For every α ∈ Ũ(Xµn , ∅), i∗α = αTd−1g (N )δXg .

Remark 6.8. Similar to Theorem 5.2 and Lemma 5.3, one can prove that the
embedding morphism is a well-defined homomorphism of R(µn)-modules.

Proof. (of Theorem 6.1) We first prove that this fixed point formula holds
when ωX is equal to ωZX , namely the Kähler metric on X(C) is induced by
the Kähler metric on Z(C). By Theorem 6.6 and Definition 6.7, we have the
following equality

fZ∗ (η) =h∗i∗(η) +

∫

Xg/Y

chg(η)Rg(N)Tdg(Tf)

+

∫

Xg/Y

chg(η)T̃dg((Tf, ω
Z
X), Th |X)Td−1g (N)

which holds in Ĝ0(Y, µn, ∅). Now we claim that for any element y ∈
K̂0(Zµn , µn, N

∨
g,R \ {0})ρ, we have

hµn∗(y)− h∗iZ∗(y) = hµn∗(y ·Rg(NZ/Zµn )).

Since all morphisms are homomorphisms of R(µn)-modules, we can only con-

sider the generators of K̂0(Zµn , µn, N
∨
g,R \ {0}). Indeed, by applying Theo-

rem 6.6 to the closed immersion iZ , for any equivariant hermitian vector bundle
E on Zµn we have

hµn∗(E)− h∗iZ∗(E) =

∫

Zg/Y

chg(E)Rg(NZ/Zµn )Tdg(Thg)

=hµn∗(chg(E)Rg(NZ/Zµn )).

The first equality holds because the exact sequence

0→ Thg → Th |Zg→ NZ/Zg → 0

is orthogonally split on Zg so that T̃dg(Thg, Th |Zg ) = 0. The second equality
follows from [21, Lemma 7.3] and the fact that chg(E)Rg(NZ/Zµn ) is ddc-closed.

On the other hand, let α be an element in Ũ(Zµn , N
∨
g,R \ {0}), we have

hµn∗(α)− h∗iZ∗(α) =

∫

Zg/Y

αTdg(Thg)−
∫

Zg/Y

αTd−1g (NZ/Zµn
)Tdg(Th)

=

∫

Zg/Y

αTd−1g (NZ/Zµn
)ddcT̃dg(Thg, Th |Zg ) = 0.
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Combing these two computations, we get our claim by linear extension.

Now using arithmetic concentration theorem, we compute

h∗i∗(η) =h∗iZ∗iZ
−1
∗ i∗(η)

=hµn∗(iZ
−1
∗ i∗(η) · (1−Rg(NZ/Zµn )))

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) · iZ∗i∗(η) · (1 −Rg(NZ/Zµn )))

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) · {
∑

k

(−1)k(ξk |Zµn )

+ Tg(ξ.)} · (1−Rg(NZ/Zµn )))

=hµn∗(λ
−1
−1(N

∨
Z/Zµn

) ·
∑

k

(−1)k(ξk |Zµn ))

+ hµn∗(Tdg(NZ/Zµn
)Tg(ξ.))

− hµn∗(Tdg(NZ/Zµn )
∑

k

(−1)kchg(ξk)Rg(NZ/Zµn )).

According to Corollary 6.5, by setting y = λ−1−1(N
∨
Z/Zµn

), we compute

hµn∗(λ
−1
−1(N

∨
Z/Zµn

) ·
∑

k

(−1)k(ξk |Zµn ))

=fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

(−1)kTorkOZ (i∗η,OZµn ))

−
∫

Zg/Y

Tg(ξ.)Td(Thg)Tdg(NZ/Zg )

−
∫

Xg/Y

Td(Tfg)Td−1g (F )chg(η)R(Ng)Tdg(NZ/Zg )

−
∫

Xg/Y

chg(η)Td−1g (N)Tdg(NZ/Zg )T̃d((Tfg, ω
Z
X), Thg |Xg )

=fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

(−1)kTorkOZ (i∗η,OZµn ))

−
∫

Zg/Y

Tg(ξ.)Tdg(Th)−
∫

Xg/Y

Tdg(Tf)chg(η)R(Ng)

−
∫

Xg/Y

chg(η)Td−1g (N)Tdg(NZ/Zg )T̃d((Tfg, ω
Z
X), Thg |Xg ).

Here we have used various relations of character forms or characteristic classes
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arising from the following double complex

0

��

0

��

0

��
0 // (Tfg, ωZX) //

��

Thg

��

// Ng
//

��

0

0 // (Tf, ωZX) //

��

Th

��

// N //

��

0

0 // (NX/Xg , ω
Z
X) //

��

NZ/Zg
//

��

F

��

// 0

0 0 0

whose columns are all orthogonally split. Also, for this double complex, one
may use Example 2.3 (iv) to compute that

T̃dg((Tf, ω
Z
X), Th |X) =T̃dg(F , ωZX)Td(Ng)Td(Tfg, ω

Z
X)

+ T̃d((Tfg, ω
Z
X), Thg |Xg )Tdg(NZ/Zg ). (11)

We deduce from (11) that

∫

Xg/Y

chg(η)T̃dg((Tf, ω
Z
X), Th |X)Td−1g (N)

=

∫

Xg/Y

chg(η)T̃d((Tfg, ω
Z
X), Thg |Xg )Td−1g (N)Tdg(NZ/Zg )

+

∫

Xg/Y

chg(η)T̃dg(F)Td−1g (F )Td(Tfg, ω
Z
X). (12)

Moreover, we have

hµn∗(Tdg(NZ/Zµn
)Tg(ξ.)) =

∫

Zg/Y

Tg(ξ.)Td(Thg)Tdg(NZ/Zg )

=

∫

Zg/Y

Tg(ξ.)Tdg(Th) (13)

and

hµn∗(Tdg(NZ/Zµn )
∑

k

(−1)kchg(ξk)Rg(NZ/Zµn ))

=

∫

Zg/Y

Tdg(NZ/Zµn )δXgchg(η)Td−1g (N)Rg(NZ/Zg )Td(Thg)
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=

∫

Xg/Y

Tdg(NX/Xg )Tdg(F )chg(η)Td−1g (N)

· [Rg(NX/Xg ) +Rg(N)−R(Ng)]Td(Tfg)Td(Ng)

=

∫

Xg/Y

Tdg(Tf)chg(η)[Rg(NX/Xg ) +Rg(N)−R(Ng)]. (14)

Gathering (12), (13) and (14) we finally get

fZ∗ (η) =fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

k

(−1)kTorkOZ (i∗η,OZµn ))

+

∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZX)Td−1g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg )

which completes the proof of Theorem 6.1 in the case where the Kähler metric
on X(C) is induced by the Kähler metric on Z(C).

In general, in analogy with the notation T̃d(Tfg, ω
X , ωZX), we write

T̃dg(NX/Xg , ω
X , ωZX) for the secondary characteristic class of the exact

sequence

0 // NX/Xg
Id // NX/Xg // 0 // 0

where the middle term carries the metric induced by ωZX and the sub
term carries the metric induced by ωX . Similarly, we have the notation

T̃dg(Tf, ω
X , ωZX). Then by applying the argument in the proof of (11) to

the double complex

0

��

0

��

0

��
0 // (Tfg, ωX) //

��

(Tfg, ω
Z
X)

��

// 0 //

��

0

0 // (Tf, ωX) //

��

(Tf, ωZX)

��

// 0 //

��

0

0 // (NX/Xg , ω
X) //

��

(NX/Xg , ω
Z
X) //

��

0

��

// 0

0 0 0
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We get

T̃dg(Tf, ω
X , ωZX) =T̃d(Tfg, ω

X , ωZX)Tdg(NX/Xg , ω
Z
X)

+ T̃dg(NX/Xg , ω
X , ωZX)Td(Tfg, ω

X).

Moreover, by [30, Proposition 2.8], we obtain that

T̃dg(F , ωX) = T̃dg(F , ωZX) + T̃dg(NX/Xg , ω
X , ωZX)Tdg(F ).

With these two comparison formulae, we can compute

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1g (F )

−
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZX)Td−1g (F )

=

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1g (F )

−
∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωZX)Td−1g (F )

+

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωZX)Td−1g (F )

−
∫

Xg/Y

Td(Tfg, ω
Z
X)chg(η)T̃dg(F , ωZX)Td−1g (F )

=

∫

Xg/Y

T̃d(Tfg, ω
X , ωZX)chg(η)

· [Tdg(NX/Xg , ω
Z
X)Tdg(F )− Tdg(NZ/Zg )]Td−1g (F )

+

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(NX/Xg , ω

X , ωZX)

=

∫

Xg/Y

chg(η)T̃dg(Tf, ω
X , ωZX)

−
∫

Xg/Y

T̃d(Tfg, ω
X , ωZX)chg(η)Tdg(NZ/Zg )Td−1g (F ).

At last, using [21, Lemma 7.3], we get the equality

f∗(η)− fZ∗ (η) =

∫

Xg/Y

chg(η)T̃dg(Tf, ω
X , ωZX).

Together with the fact that the other two terms have nothing to do with the
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choice of the metric ωX , we finally obtain that

f∗(η) =fZµn∗(i
∗
µn(λ−1−1(N

∨
Z/Zµn

)) ·
∑

k

(−1)kTorkOZ (i∗η,OZµn ))

+

∫

Xg/Y

Td(Tfg, ω
X)chg(η)T̃dg(F , ωX)Td−1g (F )

−
∫

Xg/Y

Tdg(Tf)chg(η)Rg(NX/Xg )

+

∫

Xg/Y

T̃d(Tfg, ω
X , ωZX)chg(η)Tdg(NZ/Zg )Td−1g (F )

which ends the proof of Theorem 6.1.

Remark 6.9. Let Y be an affine arithmetic scheme Spec(D), and choose ωX

to be the induced Kähler form ωZX . Then the formula in Theorem 6.1 is the
content of [25, Conjecture 5.1].
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