
Documenta Math. 209

Divisorial Cohomology Vanishing on Toric Varieties

Markus Perling

Received: March 10, 2010

Revised: February 24, 2011

Communicated by Thomas Peternell

Abstract. This work discusses combinatorial and arithmetic aspects
of cohomology vanishing for divisorial sheaves on toric varieties. We
obtain a refined variant of the Kawamata-Viehweg theorem which is
slightly stronger. Moreover, we prove a new vanishing theorem related
to divisors whose inverse is nef and has small Iitaka dimension. Fi-
nally, we give a new criterion for divisorial sheaves for being maximal
Cohen-Macaulay.

2010 Mathematics Subject Classification: 13C14, 14B15, 14M25

Keywords and Phrases: toric varieties, cohomology, local cohomology,
Weil divisors, Maximal Cohen-Macaualy modules

Contents

1 Introduction 210

2 Toric Preliminaries 216

3 Discriminants and combinatorial aspects cohomology vanish-

ing 218

3.1 Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

3.2 Circuits and discriminantal arrangements . . . . . . . . . . . . 221

3.3 Secondary Fans . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

3.4 MCM sheaves, Q-Cartier divisors and the toric Kawamata-
Viehweg vanishing theorem . . . . . . . . . . . . . . . . . . . . 228

Documenta Mathematica 16 (2011) 209–251



210 Markus Perling

4 Arithmetic aspects of cohomology vanishing 230

4.1 Arithmetic cohomology vanishing for circuits . . . . . . . . . . 231
4.2 Arithmetic Kawamata-Viehweg vanishing . . . . . . . . . . . . 233
4.3 Nonstandard Cohomology Vanishing . . . . . . . . . . . . . . . 237
4.4 The case of complete toric surfaces. . . . . . . . . . . . . . . . . 237
4.5 Maximal Cohen-Macaulay Modules of Rank One . . . . . . . . 243

1 Introduction

This work is motivated by numerical experiments [Per04] related to the con-
jecture of King [Kin97] concerning the derived category smooth complete toric
varieties. These experiments led to the calculations of [HP06], where a coun-
terexample to King’s conjecture was given. Our goal is to develop a more
systematic approach to the combinatorial and arithmetic aspects of cohomol-
ogy vanishing for divisorial sheaves on toric varieties and to better understand
from these points of view some phenomena related to this problem.
Based on work of Bondal (see [Rud90], [Bon90]), it was conjectured [Kin97] that
on every smooth complete toric variety X there exists a full strongly excep-
tional collection of line bundles. That is, a collection of line bundles L1, . . . ,Ln

on X which generates Db(X) and has the property that Extk(Li,Lj) = 0
for all k > 0 and all i, j. Such a collection induces an equivalence of cate-
gories RHom(

⊕

i Li, . ) : Db(X) −→ Db
(

End(
⊕

i Li) − mod
)

. This possible
generalization of Beilinson’s theorem (pending the existence of a full strongly
exceptional collection) has attracted much interest, notably also in the context
of the homological mirror conjecture [Kon95]. For line bundles, the problem of
Ext-vanishing can be reformulated to a problem of cohomology vanishing for
line bundles by the isomorphisms

Extk(Li,Lj) ∼= Hk(X,Liˇ⊗ Lj) = 0 for all k ≥ 0 and all i, j.

So we are facing a quite peculiar cohomology vanishing problem: let n denote
the rank of the Grothendieck group of X , then we look for a certain constel-
lation of n(n − 1) – not necessarily distinct – line bundles, all of which have
vanishing higher cohomology groups. The strongest general vanishing theorems
so far are of the Kawamata-Viehweg type (see [Mus02] and [Fuj07], and also
[Mat02] for Bott type formulas for cohomologies of line bundles), but it can be
seen from very easy examples, such as Hirzebruch surfaces, that these alone in
general do not suffice to prove or disprove the existence of strongly exceptional
collections by means of cohomology vanishing. In [HP06], on a certain toric
surface X , all line bundles L with the property that Hi(X,L) = Hi(X,L )̌ = 0
for all i > 0 were completely classified by making use of an explicit toric repre-
sentation of the cohomology vanishing problem for line bundles. This approach
exhibits quite complicated combinatorial as well as number theoretic conditions
for cohomology vanishing which we are going to describe in general.
We will consider and partially answer the following more general problem. Let
D be a Weil divisor on any toric variety X and V ⊂ X a torus invariant closed

Documenta Mathematica 16 (2011) 209–251
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subscheme. Then what are necessary and sufficient conditions for the (global)
local cohomology modules Hi

V

(

X,OX(D)
)

to vanish? Given this spectrum
of cohomology vanishing problems, we have at one extreme the cohomology
vanishing problem for line bundles, and at the other extreme the classifica-
tion problem for maximal Cohen Macaulay (MCM) modules over semigroup
rings: on an affine toric variety X , the sheaf OX(D) is MCM if and only if
the local cohomologies Hi

x

(

X,OX(D)
)

vanish for i 6= dimX , where x ∈ X is
the torus fixed point. These local cohomologies have been studied by Stanley
[Sta82], [Sta96] and Bruns and Gubeladze [BG03] showed that only finitely
many sheaves in this class are MCM. MCM sheaves over affine toric varieties
have only been classified for some special cases (see for instance [BGS87] and
[Yos90]). Our contribution will be to give a more explicit combinatorial char-
acterization of MCM modules of rank one over normal semigroup rings and
their ties to the birational geometry of toric varieties.

One important aspect of our results is that, though we will also make use
of Q-divisors, our vanishing results will completely be formulated in the in-
tegral setting. We will illustrate the effect of this by the following exam-
ple. Consider the weighted projective surface P(2, 3, 5). Then the divisor
class group A1

(

P(2, 3, 5)
)

is isomorphic to Z and, after fixing the generator

D = 1 of A1

(

P(2, 3, 5)
)

to be Q-effective, the torus invariant irreducible di-
visors can be identified with the integers 2, 3, and 5, and the canonical divi-
sor has class −10. By the toric Kawamata-Viehweg theorem we obtain that
H2

(

(P(2, 3, 5),O(kD)
)

= 0 for k > −10. However, as we will explain in more
detail below, the set of all divisors kD with nontrivial second cohomology
is given by all k with −k = 2r + 3s + 5t with r, s, t positive integers. So,
Kawamata-Viehweg misses the divisor −11D. The reason is that the toric
Kawamata-Viehweg vanishing theorem tells us that the cohomology of some
divisor D′ vanishes if the rational equivalence class over Q of D′ −KP(2,3,5) is

contained in the interior of the nef cone in A1

(

P(2, 3, 5)
)

Q
. Over the integers,

the domain of cohomology vanishing thus in general is larger than over Q. Be-
low we will see that this is a general feature of cohomology vanishing, even for
smooth toric varieties, as can be seen, for instance, by considering the strict
transform of the divisor −11D along some toric blow-up X −→ P(2, 3, 5) such
that X is smooth.

The main results. The first main result will be an integral version of
the Kawamata-Viehweg vanishing theorem. Consider the nef cone nef(X) ⊂
Ad−1(X)Q, then the toric Kawamata-Viehweg vanishing theorem (see Theorem
3.29) can be interpreted such that if D − KX is contained in the interior of
nef(X), then Hi

(

X,OX(D)
)

= 0 for all i > 0. For our version we will define a
set Anef ⊂ Ad−1(X), which we call the arithmetic core of nef(X) (see definition
4.11). The set Anef has the property that it contains all integral Weil divisors
which map to the interior of the cone KX + nef(X) in Ad−1(X)Q. But in gen-
eral it is strictly larger, as in the example above. We can lift the cohomology
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vanishing theorem for divisors in nef(X) to Anef :

Theorem (4.14): Let X be a complete toric variety and D ∈ Anef. Then
Hi

(

X,OX(D)
)

= 0 for all i > 0.

One can consider Theorem 4.14 as an “augmentation” of the standard vanishing
theorem for nef divisors to the subset Anef of Ad−1(X). In general, Theorem
4.14 is slightly stronger than the toric Kawamata-Viehweg vanishing theorem
and yields refined arithmetic conditions.

However, the main goal of this paper is to find vanishing results which cannot
directly be derived from known vanishing theorems. Let D be a nef Cartier
divisor whose Iitaka dimension is positive but smaller than d. This class of
divisors is contained in nonzero faces of the nef cone of X which are contained
in the intersection of the nef cone with the boundary of the effective cone of X
(see Section 4.3). Let F be such a face. Similarly as with Anef , we can define
for the inverse cone −F an arithmetic core A−F (see 4.11) and associate to it
a vanishing theorem, which may be considered as the principal result of this
article:

Theorem (4.17): Let X be a complete d-dimensional toric variety. Then
Hi

(

X,O(D)
)

= 0 for every i and all D which are contained in some A−F ,
where F is a face of nef(X) which contains nef divisors of Iitaka dimension
0 < κ(D) < d. If A−F is nonempty, then it contains infinitely many divisor
classes.

This theorem cannot be an augmentation of a vanishing theorem for −F , as
it is not true in general that Hi

(

X,OX(−D)
)

= 0 for all i for D nef of Iitaka
dimension smaller than d. In particular, the set of Q-equivalence classes of
elements in A−F does not intersect −F .

For the case of a toric surface X we show that above vanishing theorems com-
bine to a nearly complete vanishing theorem for X . Recall that in the fan
associated to a complete toric surface X every pair of opposite rays by projec-
tion gives rise to a morphism from X to P1 (e.g. such a pair does always exist if
X is smooth and X 6= P2). Correspondingly, we obtain a family of nef divisors
of Iitaka dimension 1 on X given by the pullbacks of the sheaves OP1(i) for
i > 0. We get:

Theorem (4.21): Let X be a complete toric surface. Then there are only
finitely many divisors D with Hi

(

X,OX(D)
)

= 0 for all i > 0 which are not
contained in Anef ∪

⋃

F A−F , where the union ranges over all faces of nef(X)
which correspond to pairs of opposite rays in the fan associated to X.

Some more precise numerical characterizations on the sets A−F will be given in
subsection 4.3. The final result is a birational characterization of MCM-sheaves
of rank one. This is a test case to see whether point of view of birational geom-
etry might be useful for classifying more general MCM-sheaves. The idea for
this comes from the investigation of MCM-sheaves over surface singularities in
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Divisorial Cohomology Vanishing on Toric Varieties 213

terms of resolutions in the context of the McKay correspondence (see [GSV83],
[AV85], [EK85]). For an affine toric variety X , in general one cannot expect to
find a similar nice correspondence. However, there is a set of preferred partial
resolutions of singularities π : X̃ −→ X which is parameterized by the sec-
ondary fan of X . Our result is a toric analog of a technical criterion of loc.
cit.

Theorem (4.36): Let X be a d-dimensional affine toric variety whose associ-
ated cone has simplicial facets and let D ∈ Ad−1(X). If Riπ∗OX̃(π∗D) = 0 for

every regular triangulation π : X̃ −→ X, then OX(D) is MCM. For d = 3 the
converse is also true.

Note that the facets of a 3-dimensional cone are always simplicial.
To prove our results we will require a lot of bookkeeping, combining various
geometric, combinatorial and arithmetic aspects of toric varieties. This has the
unfortunate effect that the exposition will be rather technical and incorporate
many notions (though not much theory) coming from combinatorics. As this
might be cumbersome to follow for the more geometrically inclined reader, we
will give an overview of the key structures and explain how they fit together.
From now X denotes an arbitrary d-dimensional toric variety, ∆ the fan asso-
ciated to X , M ∼= Zd the character group of the torus which acts on X . We
denote N the dual module of M , l1, . . . , ln ∈ N the set of primitive vectors of
the 1-dimensional cones in ∆ and D1, . . . , Dn the corresponding torus invari-
ant prime divisors on X . By abuse of notion, we will often identify the sets
[n] := {1, . . . , n} and {l1, . . . , ln}.

The circuit geometry of a toric variety. In order to compute the
cohomology Hi

V

(

X,OX(D)
)

of a torus-invariant Weil divisor D =
∑n

i=1 ciDi

with respect to some torus-invariant support V ⊆ X , one uses the induced
eigenspace decomposition

Hi
V

(

X,OX(D)
)

∼=
⊕

m∈M

Hi
V

(

X,OX(D)
)

m
.

By a well-known formula, we can compute every eigenspace by computing the
relative cohomology of a certain simplicial complex:

Hi
V

(

X,OX(D)
)

m
∼= Hi−1(∆̂m, ∆̂V,m; k).

Here ∆̂ denotes the simplicial model of ∆, i.e. the abstract simplicial complex
on the set [n] such that any subset I ⊂ [n] is in ∆̂ iff there exists a cone σ
in ∆ such that elements in I are faces of σ. Similarly, ∆̂V is a subcomplex of
∆̂, generated by only those cones in ∆ whose associated orbits in X are not
contained in V (see also Section 2). For any character m ∈ M , ∆̂m and ∆̂V,m

are the full subcomplexes which are supported on those li with li(m) < −ci
(see Theorem 2.1).
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By this, for an invariant divisor D =
∑n

i=1 ciDi, the eigenspaces

Hi
V

(

X,OX(D)
)

m
depend on the simplicial complexes ∆̂, ∆̂V as well

as on the position of the characters m with respect to the hyperplanes
H

c
i = {m ∈ MQ | li(m) = −ci}, where MQ = M ⊗Z Q. The chamber

decomposition of MQ induced by the H
c
i (or their intersection poset) can be

interpreted as the combinatorial type of D. Our strategy will be to consider
the variations of combinatorial types depending on c = (c1, . . . , cn) ∈ Qn.
The solution to this discriminantal problem is given by the discriminantal ar-
rangement associated to the vectors l1, . . . , ln, which has first been considered
by Crapo [Cra84] and Manin and Schechtman [MS89]. The discriminantal
arrangement is constructed as follows. Consider the standard short exact
sequence associated to X :

0 −→ MQ
L

−→ Qn D
−→ AQ −→ 0, (1)

where L is given by L(m) =
(

l1(m), . . . , ln(m)
)

, and AQ := Ad−1(X) ⊗Z Q is
the rational divisor class group ofX . The matrixD is called the Gale transform
of L, and its i-th column Di is the Gale transform of li. The most important
property of the Gale transform is that the linear dependencies among the li and
among the Di are inverted. That is, for any subset among the li which forms a
basis, the complementary subset of the Di forms a basis of AQ, and vice versa.
Moreover, for every circuit, i.e. a minimal linearly dependent subset, C ⊂ [n]
the complementary set {Di | li /∈ C} spans a hyperplane HC in AQ. Then the
discriminantal arrangement is given by the hyperplane arrangement

{HC | C ⊂ [n] circuit}.

The stratification of AQ by this arrangement then is in bijection with the com-
binatorial types of the arrangements given by the H

c
i under variation of c. As

we will see, virtually all properties of X concerning its birational geometry and
cohomology vanishing of divisorial sheaves on X depend on the discriminantal
arrangement. In particular, (see Proposition 3.19), the discriminantal arrange-
ment coincides with the hyperplane arrangement generated by the facets of the
secondary fan. Ubiquitous standard constructions such as the effective cone,
nef cone, and the Picard group can easily be identified as its substructures.
Another interesting aspect is that the discriminantal arrangement by itself (or
the associated matroid, respectively) represents a combinatorial invariant of
the variety X , which one can refer to as its circuit geometry. This circuit
geometry refines the combinatorial information coming with the toric variety,
that is, the fan ∆ and the matroid structure underlying the li (i.e. their linear
dependencies). It depends only on the li, and even for two combinatorially
equivalent fans ∆, ∆′ such that corresponding sets of primitive vectors l1, . . . , ln
and l′1, . . . , l

′
n have the same underlying linear dependencies, their associated

circuit geometries are different in general. This already is the case for surfaces,
see, for instance, Crapo’s example of a plane tetrahedral line configuration
([Cra84], §4). Falk ([Fal94], Example 3.2) gives a 3-dimensional example.
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Divisorial Cohomology Vanishing on Toric Varieties 215

Circuits and the diophantine Frobenius problem. Circuits are also
the building blocks for our arithmetic conditions on cohomology vanishing,
which can easily be illustrated for the case of weighted projective spaces. As-
sume, for simplicity, that the first d+ 1 primitive vectors l1, . . . , ld+1 generate
N and form a circuit. Then we have a relation

d+1
∑

i=1

αili = 0 (2)

where the αi are nonzero integers whose largest common divisor is one. This
relation is unique up to sign and we assume for simplicity that αi > 0 for
at least one i. In the special case that all the αi are positive, l1, . . . , ld+1

generate the fan of a weighted projective space P(α1, . . . , αd+1). Denote D
the unique Q-effective generator of Ad−1

(

P(α1, . . . , αd+1)
)

. Then there is a
standard construction for counting global sections

dimH0
(

P(α1, . . . , αd+1),OP(α1,...,αd+1)(nD)
)

=
∣

∣

∣
{(k1, . . . , kd+1) ∈ Nd+1 |

d+1
∑

i=1

kiαi = n}
∣

∣

∣
=: VPα1,...,αd+1

(n),

for any n ∈ Z. Here, VPα1,...,αd+1
is the so-called vector partition function

(or denumerant function) with respect to the αi. The problem of determining
the zero set of VPα1,...,αd+1

(or the maximum of this set) is quite famously
known as the diophantine Frobenius problem. This problem is hard in general
(though not necessarily so in specific cases) and there does not exist a general
closed expression to determine the zero set (for a survey of the diophantine
Frobenius problem we refer to the book [Ram05]). Analogously, one can write
down similar functions for any circuit among the li (see subsection 4.1).

The basic idea now is to transport the discriminantal arrangement from AQ to
some diophantine analog in Ad−1(X). For any circuit C ⊂ [n] there is a short
exact sequence

0 −→ HC −→ AQ −→ AC,Q −→ 0.

By lifting the surjection AQ → AC,Q to its integral counterpart Ad−1(X) → AC ,
we lift the zero set of the corresponding vector partition function on AC to
Ad−1(X). By doing this for every circuit C, we construct in Ad−1(X) what we
call the Frobenius discriminantal arrangement. One can consider the Frobenius
discriminantal arrangement as an arithmetic thickening of the discriminantal
arrangement. This thickening in general is just enough to enlarge the rele-
vant strata in the discriminantal arrangement such that it encompasses the
Kawamata-Viehweg-like theorems. To derive other vanishing results, our anal-
ysis will mostly be concerned with analyzing the birational geometry of X and
its implications on the combinatorics of the discriminantal arrangement, and
the transport of this analysis to the Frobenius arrangement.
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Overview. Section 2 introduce some general notation and results related to
toric varieties. In section 3 we survey discriminantal arrangements, secondary
fans, and rational aspects of cohomology vanishing. Several technical facts
will be collected which are important for the subsequent sections. Section 4
contains all the essential results of this work. In 4.3 we will prove our main
arithmetic vanishing results. These will be applied in 4.4 to give a quite com-
plete characterization of cohomology vanishing for toric surfaces. Section 4.5
is devoted to maximal Cohen-Macaulay modules.

Acknowledgments. Thanks to Laurent Bonavero, Michel Brion, Lutz
Hille, Vic Reiner, and Jan Stienstra for discussion and useful hints.

2 Toric Preliminaries

In this section we first introduce notions from toric geometry which will be
used throughout the rest of the paper. As general reference for toric varieties
we use [Oda88], [Ful93]. We will always work over an algebraically closed field
k.
Let ∆ be a fan in the rational vector space NQ := N ⊗Z Q over a lattice
N ∼= Zd. Let M be the lattice dual to N , then the elements of N represent
linear forms on M and we write n(m) for the canonical pairing N ×M → Z,
where n ∈ N and m ∈ M . This pairing extends naturally over Q, MQ ×NQ →
Q. Elements of M are denoted by m, m′, etc. if written additively, and by
χ(m), χ(m′), etc. if written multiplicatively, i.e. χ(m + m′) = χ(m)χ(m′).
The lattice M is identified with the group of characters of the algebraic torus
T = Hom(M,k∗) ∼= (k∗)d which acts on the toric variety X = X∆ associated
to ∆. Moreover, we will use the following notation:

• cones in ∆ are denoted by small greek letters ρ, σ, τ, . . . , their natural
partial order by ≺, i.e. ρ ≺ τ iff ρ ⊆ τ ;

• |∆| :=
⋃

σ∈∆ σ denotes the support of ∆;

• for 0 ≤ i ≤ d we denote ∆(i) ⊂ ∆ the set of i-dimensional cones; for
σ ∈ ∆, we denote σ(i) the set of i-dimensional faces of σ;

• Uσ denotes the associated affine toric variety for any σ ∈ ∆;

• σ̌ := {m ∈ MQ | n(m) ≥ 0 for all n ∈ σ} is the cone dual to σ;

• σ⊥ = {m ∈ MQ | n(m) = 0 for all n ∈ σ};

• σM := σ̌ ∩M is the submonoid of M associated to σ.

We will mostly be interested in the structure of ∆ as a combinatorial cellular
complex. For this, we make a few convenient identifications. We always denote
n the cardinality of ∆(1). i.e. the number of 1-dimensional cones (rays) and
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Divisorial Cohomology Vanishing on Toric Varieties 217

[n] := {1, . . . , n}. The primitive vectors along rays are denoted l1, . . . , ln, and,
by abuse of notion, we will usually identify the sets ∆(1), the set of primitive
vectors, and [n]. Also, we will often identify σ ∈ ∆ with the set σ(1) ⊂ [n].
With these identifications, and using the natural order of [n], we obtain a com-
binatorial cellular complex with support [n]; we may consider this complex as
a combinatorial model for ∆. In the case where ∆ is simplicial, this complex
is just a combinatorial simplicial complex in the usual sense. If ∆ is not sim-
plicial, we consider the simplicial cover ∆̂ of ∆, modelled on [n]: some subset
I ⊂ [n] is in ∆̂ iff there exists some σ ∈ ∆ such that I ⊂ σ(1). The identity on
[n] then induces a surjective morphism ∆̂ −→ ∆ of combinatorial cellular com-
plexes. This morphism has a natural representation in terms of fans. We can
identify ∆̂ with the fan in Qn which is defined as follows. Let e1, . . . , en be the
standard basis of Qn, then for any set I ⊂ [n], the vectors {ei}i∈I span a cone
over Q≥0 iff there exists σ ∈ ∆ with I ⊂ σ(1). The associated toric variety X̂
is open in An

k , and the vector space homomorphism defined by mapping ei 7→ li
for i ∈ [n] induces a map of fans ∆̂ → ∆. The induced morphism X̂ → X is
the quotient presentation due to Cox [Cox95]. We will not make explicit use
of this construction, but it may be useful to have it in mind.
An important fact used throughout this work is the following exact sequence
which exists for any toric variety X with associated fan ∆:

M
L

−→ Zn −→ Ad−1(X) −→ 0. (3)

Here L(m) = (l1(m), . . . , ln(m)), i.e. as a matrix, the primitive vectors li
represent the row vectors of L. Note that L is injective iff ∆ is not contained
in a proper subspace of NQ. The sequence follows from the fact that every
Weil divisor D on X is rationally equivalent to a T -invariant Weil divisor,
i.e. D ∼

∑n
i=1 ciDi, where c = (c1, . . . , cn) ∈ Zn and D1, . . . , Dn, the T -

invariant irreducible divisors of X . Moreover, any two T -invariant divisors
D, D′ are rationally equivalent if and only if there exists m ∈ M such that
D −D′ =

∑n
i=1 li(m)Di. To every Weil divisor D, one associates its divisorial

sheaf OX(D) = O(D) (we will omit the subscript X whenever there is no
ambiguity), which is a reflexive sheaf of rank one and locally free if and only if
D is Cartier. Rational equivalence classes of Weil divisors are in bijection with
isomorphism classes of divisorial sheaves. If D is T -invariant, the sheaf O(D)
acquires a T -equivariant structure and the equivariant isomorphism classes of
sheaves O(D) are one-to-one with Zn.
Consider a closed T -invariant subscheme V ⊆ X . Then for any T -invariantWeil
divisor D there are induced linear representations of T on the local cohomology
groupsHi

V

(

X,O(D)
)

. In particular, each such module has a natural eigenspace
decomposition

Hi
V

(

X,O(D)
)

∼=
⊕

m∈M

Hi
V

(

X,O(D)
)

m
.

The eigenspacesHi
V

(

X,O(D)
)

m
can be characterized by the relative cohomolo-

gies of certain simplicial complexes. For any I ⊂ [n] we denote ∆̂I the maximal
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subcomplex of ∆̂ which is supported on I. We denote ∆̂V the simplicial cover
of the fan associated to the complement of the reduced subscheme underlying
V in X . Correspondingly, for I ⊂ [n] we denote ∆̂V,I the maximal subcomplex

of ∆̂V which is supported on I. If c ∈ Zn is fixed, and D =
∑

i∈[n] ciDi, then

every m ∈ M determines a subset I(m) of [n] which is given by

I(m) = {i ∈ [n] | li(m) < −ci}.

Then we will write ∆̂m and ∆̂V,m instead of ∆̂I(m) and ∆̂V,I(m), respectively.
In the case where ∆ is generated by just one cone σ, we will also write σ̂m, etc.
With respect to these notions we get:

Theorem 2.1: Let D ∈ Z∆(1) be a T -invariant Weil divisor on X. Then for
every T -invariant closed subscheme V of X, every i ≥ 0 and every m ∈ M
there exists an isomorphism of k-vector spaces

Hi
V

(

X,O(D)
)

m
∼= Hi−1(∆̂m, ∆̂V,m; k).

Note that hereHi−1(∆̂m, ∆̂V,m) denotes the reduced relative cohomology group

of the pair (∆̂m, ∆̂V,m).

Proof. For V = X it follows from [EMS00], §2 that Hi
(

X,O(D)
)

m
∼=

Hi−1(∆̂m; k) and Hi
(

X \ V,O(D)
)

m
∼= Hi−1(∆̂V,m; k). Then the assertion

follows from comparing the long exact relative cohomology sequence of the
pair (∆̂m, ∆̂V,m) with the long exact local cohomology sequence with respect
to X and V in degree m.

We mention a special case of this theorem, which follows from the long exact
cohomology sequence.

Corollary 2.2: Let X = Uσ and V a T -invariant closed subvariety of X
and denote σ̂ the simplicial model for the fan generated by σ. Then for every
m ∈ M and every i ∈ Z:

Hi
V

(

X,O(D)
)

m
=

{

0 if σ̂m = ∅,

Hi−2(σ̂V,m; k) else.

3 Discriminants and combinatorial aspects cohomology vanishing

A toric variety X is specified by the set of primitive vectors l1, . . . , ln ∈ N and
the fan ∆ supported on these vectors. We can separate three properties which
govern the geometry of X and are relevant for cohomology vanishing problems:

(i) the linear algebra given by the vectors l1, . . . , ln and their linear depen-
dencies as Q-vectors;
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(ii) arithmetic properties, which are also determined by the li, but considered
as integral vectors;

(iii) its combinatorics, which is given by the fan ∆.

In this section we will have a closer look into the linear algebraic and com-
binatorial aspects. In subsection 3.1 we will introduce the notion of oriented
and non-oriented circuits associated to the vectors li. In subsection 3.2 we
consider circuits of the matrix L and the induced stratification of Ad−1(X)Q.
In subsection 3.3 we will collect some well-known material on secondary fans
from [GKZ94], [OP91], and [BFS90] and explain their relation to discriminan-
tal arrangements. Subsection 3.4 then applies this to certain statements about
the birational geometry of toric varieties and cohomology vanishing.
For this section and the following sections we will introduce the following con-
ventions.

Convention 3.1: We will denote L the matrix whose rows are given by the li.
For any subset I of [n] we will denote LI the submatrix of L consisting of the
rows which are given by the li with i ∈ I. In general, we will not distinguish
between {li}i∈I and LI . Similarly, we will usually identify subsets I ⊂ [n] with
the corresponding subsets of {l1, . . . , ln}. If ∆ is a fan in NR such that ∆(1) is
generated by some subset of the li, then we say that ∆ is supported on L (resp.
on l1, . . . , ln).
Let C be a subset of [n] which is minimal with the property that the li with
i ∈ C are linearly dependent. Then the set {li}i∈C is called a circuit. By abuse
of notion we will also call C itself a circuit.

3.1 Circuits

Let C ⊆ [n] be a circuit. Then we have a relation

∑

i∈[n]

αili = 0,

which is unique up to a common multiple of the αi, and the αi are nonzero.
Without loss of generality, we will assume that the αi are integral and
gcd{|αi|}i∈[n] = 1. To simplify the discussion, we will further assume that
LC generates a submodule NC of finite index in N . For a fixed choice of the
αi, we have a partition C = C+

∐

C−, where C± = {i ∈ [n] | ±αi > 0}. This
decomposition depends only on the signs of the αi; flipping the signs exchanges
C+ and C−. We want to keep track of these two possibilities and call the choice
of C+

∐

C− =: C the oriented circuit with underlying circuit C (or simply an
orientation of C), and −C := −C+

∐

−C− its inverse, where −C± := C∓.

Definition 3.2: We denote C(L) the set of circuits of L and C(L) the set of
oriented circuits of L, i.e. the set of all orientations C,−C for C ∈ C(L).
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For a given circuit C, the primitive vectors LC can support at most two sim-
plicial fans, each corresponding to an orientation of C. For fixed orientation
C, we denote ∆ = ∆C the fan whose maximal cones are generated by C \ {i},
where i runs over the elements of C+. The only exception for this procedure
is the case where C+ is empty, which we leave undefined. The associated toric
variety X∆C

is simplicial and quasi-projective.

Definition 3.3: We call a toric variety X = X∆C
associated to an oriented

circuit C a toric 1-circuit variety.

Now let us assume that the sublattice NC of N which is generated by LC is
saturated. Then we have a short exact sequence

0 −→ M
LC−→ Zn GC−→ A −→ 0, (4)

such that A ∼= Z and thus torsion free. Here, LC is considered as a tuple of
linear forms on M , A ∼= Z and GC = (α1, . . . , αn) is a (1 × n)-matrix, i.e. we
can consider the αi as the Gale transform of the li. Conversely, if the αi are
given, then the li are determined up to a Z-linear automorphism of N . We will
make more extensive use of the Gale transform later on. For generalities we
refer to [OP91] and [GKZ94].
If NC ( N , we can formally consider the inclusion of NC as the image of N via
an injective endomorphism ξ of N . The inverse images of the li with respect to
ξ satisfy the same relation as the li. Therefore, a general toric circuit variety is
completely specified by ξ and the integers αi. More precisely, a toric 1-circuit
variety is specified by the Gale duals li of the αi and an injective endomorphism
ξ of N with the property that ξ(li) is primitive in N for every i ∈ [n].

Definition 3.4: Let α = (αi | i ∈ C) ∈ ZC with αi 6= 0 for every i and
gcd{|αi|}i∈[n] = 1, C the associated oriented circuit with C+ = {i | αi > 0},
and ξ : N −→ N an injective endomorphism of N which maps the Gale duals of
the αi to primitive elements pi in N . Then we denote P(α, ξ) the toric 1-circuit
variety associated to the fan ∆C spanned by the primitive vectors pi.

The endomorphism ξ translates into an isomorphism

P(α, ξ) ∼= P(α, idN)/H,

where H ∼= spec k[N/NC]. Note that in positive characteristic, H in general is a
group scheme rather than a proper algebraic group. Moreover, in sequence (4)
we can identify A with the divisor class group Ad−1

(

P(α, idN )
)

. Similarly, we

get Ad−1

(

P(α, ξ)
)

∼= A⊕N/NC and the natural surjection from Ad−1

(

P(α, ξ)
)

onto Ad−1

(

P(α, idN)
)

just projects away the torsion part.

Remarks 3.5: (i) In the case αi > 0 for all i and ξ = idN , we just recover the
usual weighted projective spaces. In many respects, the spaces P(α, ξ) can be
treated the same way as has been done in the standard references for weighted
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projective spaces, see [Del75], [Dol82], [BR86]. In our setting there is the slight
simplification that we naturally can assume that gcd{|αj |}j 6=i = 1 for every
i ∈ [n], which eliminates the need to discuss reduced weights.
(ii) In the case that LC spans a subspace N ′ of NQ of positive codimension r,
then for some orientation C of C the variety X(∆C) is isomorphic to P(α, ξ)×
(k∗)r , where P(α, ξ) is defined as before with respect to N ′. Note that if
C+ = C, then the fan ∆−C is empty. By convention, in that case one can define
X(∆−C) := (k∗)r as the associated toric variety.
(iii) The spaces P(α, ξ) are building blocks for the birational geometry of general
toric varieties. In fact, to every extremal curve V (τ) in some simplicial toric
variety X , there is associated some variety P(α, ξ) whose fan ∆C is a subfan of
∆ and which embeds as an open invariant subvariety of X . If |C+| /∈ {n, n−1},
the primitive vectors li span a convex polyhedral cone, giving rise to an affine
toric variety Y and a canonical morphism π : P(α, ξ) −→ Y which is a partial
resolution of singularities. Sign change α → −α then encodes the transition
from C to −C and and a birational map from P(α, ξ) to P(−α, ξ), which provides
a local model for well-known combinatorial operation which called bistellar
operation [Rei99] or modification of a triangulation [GKZ94]:

P(α, ξ)

π

""
FF

FF
FF

FF
F

//_______ P(−α, ξ)

π′

{{vvvvvvv
vv

Y

(for |C+| = d − 1, one can identify P(−α, ξ) with Y and one just obtains a
blow-down).

3.2 Circuits and discriminantal arrangements

Recall that for any torus invariant divisor D =
∑

i∈[n] ciDi, the isotypical

components Hi
V

(

X,O(D)
)

m
for some cohomology group depend on simplicial

complexes ∆̂I , where I = I(m) = {i ∈ [n] | li(m) < −ci}. So, the set of
all possible subcomplexes ∆̂I depends on the chamber decomposition of MQ

which is induced by the hyperplane arrangement which is given by hyperplanes
H

c
1 , . . . , H

c
n, where

H
c
i := {m ∈ MQ | li(m) = −ci}.

The set of all relevant I ⊂ [n] is determined by the map

sc : MQ −→ 2[n], m 7→ {i ∈ [n] | li(m) < −ci}.

Definition 3.6: For m ∈ MQ, we call s
c the signature of m. We call the image

of MQ in 2[n] the combinatorial type of c.

Remark 3.7: The combinatorial type encodes what in combinatorics is known
as oriented matroid (see [BLS+93]). We will not make use of this kind of
structure, but we will find it sometimes convenient to borrow some notions.
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So, given l1, . . . , ln, we would like to classify all possible combinatorial types,
depending on c ∈ Qn. The natural parameter space for all hyperplane ar-
rangements up to translation by some element m ∈ MQ is given by the set
AQ

∼= Qn/MQ, which is given by the following short exact sequence:

0 −→ MQ
L

−→ Qn D
−→ Ad−1(X)Q = AQ −→ 0.

Then the D1, . . . , Dn are the images of the standard basis vectors of Qn. This
procedure of constructing theDi from the li is often calledGale transformation,
and the Di are the Gale duals of the li.
Now, a hyperplane arrangement H

c
i for some c ∈ Qn, is considered in general

position if the hyperplanes H
c
i intersect in the smallest possible dimension.

When varying c and passing from one arrangement in general position to an-
other one which has a different combinatorial type, this necessarily implies
that has to take place some specialization for some c ∈ Qn, i.e. where the
corresponding hyperplanes H

c
i do not intersect in the smallest possible dimen-

sion. So we see that the combinatorial types of hyperplane arrangements with
fixed L and varying induce a stratification of AQ, where the maximal strata
correspond to hyperplane arrangements in general position. To determine this
stratification is the discriminant problem for hyperplane arrangements. To be
more precise, let I ⊂ [n] and denote

HI := {c+MQ ∈ AQ |
⋂

i∈I

H
c
i 6= 0},

i.e. HI represents the set of all hyperplane arrangements (up to translation)
such that the hyperplanes {Hi}i∈I have nonempty intersection. The sets HI

can be described straightforwardly by the following commutative exact dia-
gram:

HI� _

�

0 // MQ
L

// Qn D
//

��
��

AQ
//

��
��

0

MQ
LI

// QI
DI

// AI,Q // 0.

(5)

In particular, HI is a subvector space of AQ. Moreover, we immediately read
off diagram (5):

Lemma 3.8: (i) HI is generated by the Di with i ∈ [n] \ I.

(ii) dimHI = n− |I| − dim(kerLI).

(iii) If J ⊆ I then HI ⊆ HJ .

(iv) Let I, J ⊂ [n], then HI∪J ⊂ HI ∩HJ .
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Note that in (iv) the reverse inclusion in general is not true. It follows that the
hyperplanes among the HI are determined by the formula:

|I| = rkLI + 1.

By Lemma 3.8 (iii), we can always consider circuits fulfilling this condition. It
turns out that the hyperplane HC suffice to completely describe the discrimi-
nants of L:

Lemma 3.9: Let I ⊂ [n], then

HI =
⋂

C⊂Icircuit

HC ,

where, by convention, the right hand side equals AQ, if the li with i ∈ I are
linearly independent.

Hence, the stratification of AQ which we were looking for is completely deter-
mined by the hyperplanes HC .

Definition 3.10: We denote the set {HC | C ⊂ [n] a circuit} the discriminan-
tal arrangement of L.

Remark 3.11: The discriminantal arrangement carries a natural matroid
structure. This structure can be considered as another combinatorial invariant
of L (or the toric variety X , respectively), its circuit geometry. Discriminantal
arrangements seem to have been appeared first in [Cra84], where the notion
of ’circuit geometry’ was coined. The notion of discriminantal arrangements
stems from [MS89]. Otherwise, this subject seems to have been studied explic-
itly only in very few places, see for instance [Fal94], [BB97], [Ath99], [Rei99],
[Coh86], [CV03], though it is at least implicit in the whole body of literature on
secondary fans. Above references are mostly concerned with genericity proper-
ties of discriminantal arrangements. Unfortunately, in toric geometry, the most
interesting cases (such as smooth projective toric varieties, for example) virtu-
ally never give rise to discriminantal arrangements in general position. Instead,
we will focus on certain properties of nongeneric circuit geometries, though we
will not undertake a thorough combinatorial study of these.

Virtually all problems related to cohomology vanishing on a toric variety X
must depend on the associated discriminantal arrangement and therefore on the
circuits of L. In subsection 3.3 we will see that the discriminantal arrangement
is tightly tied to the geometry of X .
As we have seen in section 3.1, to every circuit C ⊂ [n] we can associate two
oriented circuits. These correspond to the signature of the bounded chamber
of the subarrangement in MQ given by the H

c
i with i ∈ C (or better to the

bounded chamber in MQ/ kerLI , as we do no longer require that the li with
i ∈ C span MQ). Lifting this to AQ, this corresponds to the half spaces in AQ

which are bounded by HC .
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Definition 3.12: Let C ⊂ [n] be a circuit, then we denote HC the half space
in AQ bounded by HC corresponding to the orientation C.

The following is straightforward to check:

Lemma 3.13: Let C be a circuit of L and C an orientation of C. Then the
hyperplane HC is separating, i.e. for every i ∈ [n] one of the following holds:

(i) i ∈ [n] \ C iff Di ∈ HC;

(ii) if i ∈ C+, then Di ∈ HC \HC ;

(iii) if i ∈ C−, then Di ∈ H−C \HC.

Now we are going to borrow some terminology from combinatorics. Consider
any subvector space U of AQ which is the intersection of some of the HC . Then
the set FU of all C ∈ C(L) such that HC contains U is called a flat. The
subvector space is uniquely determined by the flat and vice versa. We can do
the same for the actual strata rather than for subvector spaces. For this, we just
need to consider instead the oriented circuits and their associated half spaces
in AQ: any stratum S of the discriminantal arrangement uniquely determines
a finite set FS of oriented circuits C such that S ⊂ HC. From the set FS we
can reconstruct the closure of S:

S =
⋂

C∈FS

HC,

We give a formal definition:

Definition 3.14: For any subvector space U ⊂ AQ which is a union of strata
of the discriminantal arrangement, we denote FU := {C ∈ C(L) | U ⊂ HC}
the associated flat. For any single stratum S ⊂ AQ of the discriminantal
arrangement, we denote FS := {C ∈ C(L) | U ⊂ HC} the associated oriented
flat.

The notion of flats gives us some flexibility in handling strata. Note that
flats reverse inclusions, i.e. S ⊂ T iff FT ⊂ FS . Moreover, if a stratum S is
contained in some HC , then its oriented flat contains both HC and H−C, and
vice versa. So from the oriented flat we can reconstruct the subvector space of
AQ generated by S.

Definition 3.15: Let S := {S1, . . . , Sk} be a collection of strata of the dis-
criminantal arrangement. We call

FS :=

k
⋂

i=1

FSi

the discriminantal hull of S.
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The discriminantal hull defines a closed cone in AQ which is given by the
intersection

⋂

C∈FS
HC. This cone contains the union of the closures Si, but is

bigger in general.

Lemma 3.16: (i) Let S = {S1, . . . , Sk} be a collection of discriminantal

strata whose union is a closed cone in AQ. then FS =
⋂k

i=1 FSi
.

(ii) Let S = {S1, . . . , Sk} be a collection of discriminantal strata and U the
subvector space of AQ generated by the Si. Then the forgetful map FS →
FU is surjective iff FS = FSi

for some i.

Proof. For (i) just note that because
⋃k

i=1 Sk is a closed cone, it must be an
intersection of some HC. For (ii): the set

⋂

C∈FS
HC is a cone which contains

the convex hull of all the Si. If some C is not in the image of the forgetful map,
then the hyperplane HC must intersect the relative interior of this cone. So the
assertion follows.

3.3 Secondary Fans

For any c ∈ Qn the arrangement H
c
i induces a chamber decomposition of MQ,

where the closures of the chambers are given by

P I
c := {m ∈ MQ | li(m) ≤ −ci for i ∈ I and li(m) ≥ −ci for i /∈ I}

for every I ⊂ [n] which belongs to the combinatorial type of c. In particular, c
represents an element D ∈ AQ with

D ∈
⋂

I∈sc(MQ)

CI ,

where CI is the cone in AQ which is generated by the −Di for i ∈ I and the Di

with i /∈ I for some I ⊂ [n]. For an invariant divisor D =
∑

i∈[n] ciDi we will

also write P I
D instead of P I

c . If I = ∅, we will occasionally omit the index I.
The faces of the CI can be read off directly from the signature:

Proposition 3.17: Let I ⊂ [n], then CI is an nonredundant intersection of
the HC with C− ⊂ I and C+ ∩ I = ∅.

Proof. First of all, it is clear that CI coincides with the intersection of half
spaces

CI =
⋂

C
+⊂I

C
−∩I=∅

HC.

For any HC in the intersection let HC its boundary. Then HC contains a cone
of codimension 1 in AQ which is spanned by Di with i ∈ [n] \ (C ∪ I) and by
−Di with i ∈ I \ C which thus forms a proper facet of CI .
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Recall that the secondary fan of L is a fan in AQ whose maximal cones are in
one-to-one correspondence with the regular simplicial fans which are supported
on the li. That is, if c is chosen sufficiently general, then the polyhedron P ∅

c is
simplicial and its inner normal fan is a simplicial fan which is supported on the
li. Wall crossing in the secondary fan then corresponds locally to a transition
∆C −→ ∆−C as in section 3.1. Clearly, the secondary fan is a substructure of
the discriminantal arrangement in the sense that its cones are unions of strata
of the discriminantal arrangements. However, the secondary fan in general is
much coarser than the discriminantal arrangement, as it only keeps track of the
particular chamber P ∅

c . In particular, the secondary fan is only supported on
C∅ which in general does not coincide with AQ. Of course, there is no reason
to consider only one particular type of chamber — we can consider secondary
fans for every I ⊂ [n] and every type of chamber P I

c . For this, observe first
that, if B is a subset of [n] such that the li with i ∈ B form a basis of MQ, then
the complementary Gale duals {Di}i/∈B form a basis of AQ. Then we set:

Definition 3.18: Let I ⊂ [n] and B ⊂ [n] such that the li with i ∈ B form
a basis of MQ, then we denote KI

B the cone in AQ which is generated by −Di

for i ∈ I \ B and by Di for i ∈ [n] \ (I ∪ B). The secondary fan SF(L, I) of L
with respect to I is the fan whose cones are the intersections of the KI

B, where
B runs over all bases of L.

Note that SF(L, ∅) is just the secondary fan as usually defined. Clearly, the
chamber structure of the discriminantal arrangement still refines the chamber
structure induced by all secondary arrangements. But now we have sufficient
data to even get equality:

Proposition 3.19: The following induce identical chamber decompositions of
AQ:

(i) the discriminantal arrangement,

(ii) the intersection of all secondary fans SF(L, I),

(iii) the intersection of the CI for all I ⊂ [n].

Proof. Clearly, the facets of every orthant CI span a hyperplane which is part
of the discriminantal arrangement, so the chamber decomposition induced by
the secondary fan is a refinement of the intersection of the CI ’s. The CI induce
a refinement of the secondary fans as follows. Without loss of generality, it
suffices to show that every K∅

B is the intersection of some CI . We have

K∅
B ⊆

⋂

I⊂B

CI .

On the other hand, for every facet of K∅
B, we choose I such that CI shares this

face and K∅
B is contained in CI . This can always be achieved by choosing I so
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that every generator of CI is in the same half space as K∅
B. The intersection of

these CI then is contained in K∅
B.

Now it remains to show that the intersection of the secondary fans refines
the discriminantal arrangement. This actually follows from the fact, that for
every hyperplane HC , one can choose a minimal generating set which we can
complete to a basis of AQ from the Di, where i /∈ C. By varying the signs
of this generating set, we always get a simplicial cone whose generators are
contained in some secondary fan, and this way HC is covered by a set of facets
of secondary cones.

The maximal cones in the secondary fan SF(L, ∅) correspond to regular simpli-
cial fans supported on l1, . . . , ln. More precisely, if ∆ denotes such a fan, then
the corresponding cone is given by

⋂

B K∅
B, where B runs over all bases among

the li which span a maximal cone in ∆. With respect to a simplicial model ∆̂
for ∆, we define:

Definition 3.20: Let ∆ be a fan supported on L, then we set:

nef(∆) :=
⋂

B∈∆̂
B basis in L

K∅
B

and denote Fnef = Fnef(∆) the discriminantal hull of nef(∆).

Note that by our conventions we identify B ∈ ∆̂ with the set of corresponding
primitive vectors, or the corresponding rows of L, respectively. Of course,
nef(∆) is just the nef cone of the toric variety associated to ∆.

Proposition 3.21: We have:

nef(∆) =
⋂

∆̂∩(∆C)max 6=∅

HC.

Proof. For some basis B ⊂ [n], the cone K∅
B is simplicial, and for every i ∈

[n] \ B, the facet of K∅
B which is spanned by the Dj with j /∈ B ∪ {i}, spans

a hyperplane HC in P . This hyperplane corresponds to the unique circuit
C ⊂ B ∪ {i}. As we have seen before, a maximal cone in ∆C is of the form
C \ {j} for some j ∈ C+. So we have immediately:

KB =
⋂

∃F∈(∆C)max

with F⊂B

HC

and the assertion follows.

Remark 3.22: If ∆ = ∆̂ is a regular simplicial fan, then nef(∆) is a maximal
cone in the secondary fan. Let C be an oriented circuit such that ∆ is supported
on ∆C in the sense of [GKZ94], §7, Def. 2.9, and denote ∆′ the fan resulting in
the bistellar operation by changing ∆C to ∆−C. Then, by [GKZ94], §7, Thm.
2.10, the hyperplane HC is a proper wall of nef(∆) iff ∆′ is regular, too.
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3.4 MCM sheaves, Q-Cartier divisors and the toric Kawamata-

Viehweg vanishing theorem

Recall that a Q-divisor on X is Q-Cartier if an integral multiple is Cartier in
the usual sense. A torus invariant Weil divisor D =

∑

i∈[n] ciDi is Q-Cartier

iff for every σ ∈ ∆ there exists some mσ ∈ MQ such that ci = li(m) for all
i ∈ σ(1). A result of Bruns and Gubeladze [BG03] states that every toric Q-
Cartier divisor is maximal Cohen-Macaulay. The MCM property is useful, as
it allows to replace the Ext-groups by cohomologies in Serre duality:

Proposition 3.23: Let X be a normal variety with dualizing sheaf ωX and F
a coherent sheaf on X such that for every x ∈ X, the stalk Fx is MCM over
OX,x. Then for every i ∈ Z there exists an isomorphism

ExtiX
(

F , ωX

)

∼= Hi
(

X,Hom(F , ωX)
)

.

Proof. For any two OX -modules F ,G there exists the following spectral se-
quence

Epq
2 = Hp

(

X, ExtqOX
(F ,G)

)

⇒ Extp+q
OX

(F ,G).

We apply this spectral sequence to the case G = ωX . For every closed point
x ∈ X we have the following identity of stalks:

ExtqOX
(F , ωX)x ∼= ExtqOX,x

(Fx, ωX,x).

As F is maximal Cohen-Macaulay, the latter vanishes for all q > 0, and thus
the sheaf ExtqOX

(F , ωX) is the zero sheaf for all q > 0. So the above spectral
sequence degenerates and we obtain an isomorphism

Hp(X,Hom(F , ωX)) ∼= ExtpX(F , ωX)

for every p ∈ Z.

In the case where X a toric variety, we have ωX
∼= O(KX), where KX =

−
∑

i∈[n] Di. Then, if F = O(D) for some D ∈ A, we can identify

Hom(O(D), ωX) with O(KX −D):

Corollary 3.24: Let X be a toric variety and D a Weil divisor such that
O(D) is an MCM sheaf. Then there is an isomorphism:

ExtiX
(

O(D), ωX

)

∼= Hi
(

X,OX(KX −D)
)

.

And by Grothendieck-Serre duality:

Corollary 3.25: If X is a complete toric variety and D a Weil divisor such
that O(D) is an MCM sheaf, then

Hi
(

X,O(D)
)

∼= Hd−i
(

X,O(KX −D)
)

.̌
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For any Cartier divisor D on some normal variety X denote N(X,D) := {k ∈
N | H0

(

X,O(kD)
)

6= 0}. Then the Iitaka dimension of D is defined as

κ(D) := max
k∈N(X,D)

{dimφk(X)},

where φk : X //___ P|kD| is the family of morphisms given by the linear series

|kD|.
In the case where X is a toric variety and D =

∑

i∈[n] ciDi invariant, the Iitaka
dimension of D is just the dimension of PkD for k >> 0. For a Q-Cartier
divisor D, we define its Iitaka dimension by κ(D) := κ(rD) for r > 0 such that
rD is Cartier.
If D is a nef divisor, then the morphism φ : X −→ P|D| is torus equivariant,
its image is a projective toric variety of dimension κ(D) whose associated fan
is the inner normal fan of PD. If κ(D) < d, then necessarily D is contained in
some hyperplane HC such that C+ = C for some orientation C of C. The toric
variety X∆C

is isomorphic to a finite cover of a weighted projective space. This
kind of circuit will play an important role later on, so that we will give it a
distinguished name:

Definition 3.26: We call a circuit C such that C = C+ for one of its orien-
tations, fibrational. For D ∈ Ad−1(X)Q we denote fib(D) ⊂ C(L) the set of
fibrational circuits such that D ∈ HC .

By Proposition 3.17, such a divisor D is contained in the intersection of nef(X)
with the effective cone of X , which we identify with C∅. More precisely, it
follows from linear algebra that D is contained in all HC where C is fibrational
and li(PD) = 0 for all i ∈ C.
The fibrational circuits of a nef divisor D tell us immediately about its Iitaka
dimension:

Proposition 3.27: Let D be a nef Q-Cartier divisor. Then κ(D) = d− rkLT ,
where T :=

⋃

C∈fib(D) C.

Proof. We just remark that rkLT is the dimension of the subvector space of
MQ which is generated by the li which are contained in a fibrational circuit.

Proposition 3.28: Let X be a complete toric variety and D a nef divisor,
then Hi

(

X,O(−D)
)

= 0 for i 6= κ(D).

Proof. Consider the hyperplane arrangement given by the H
c
i in MQ. Let

m ∈ MQ and I = sc(m). Then the simplicial complex ∆̂I can be characterized
as follows. Consider Q ⊂ PD the union of the set faces of PD which are
contained in any H

c
i with i ∈ I. This is precisely the portion of PD, which the

the point m “sees”, and therefore contractible, where the convex hull of Q and
m provides the homotopy betweenQ andm. Therefore, every ∆̂I is contractible
with an exception for I = ∅, because ∆̂∅ = ∅, which is not acyclic with respect
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to reduced cohomology. Now we pass to the inverse, i.e. we consider the
signature of −m with respect to H

−c
i . Then for any such −m which does not

sit in the relative interior of the polytope P
[n]
−c , there exists m′ ∈ MQ with

signature sc(m′) =: J such that ∆̂J is contractible and s−c(m) = [n] \J . As ∆̂
is homotopic to a d− 1-sphere, we can apply Alexander duality and thus the
simplicial complex ∆̂[n]\J is acyclic. Thus there remain only the elements in

the relative interior of P
[n]
−c . Let m be such an element with signature I, then

∆̂I is isomorphic to a d− κ(D)− 1-sphere, and the assertion follows.

This proposition implies the toric Kodaira and Kawamata-Viehweg vanishing
theorems (see also [Mus02]):

Theorem 3.29 (Kodaira & Kawamata-Viehweg): Let X be a complete toric
variety and D, E Q-divisors with D nef and E =

∑

i∈[n] eiDi with −1 < ei < 0

for all i ∈ [n]. Then:

(i) if D is integral, then Hi
(

X,O(D +KX)
)

= 0 for all i 6= 0, d− κ(D);

(ii) if D + E is a Weil divisor, then Hi
(

X,O(D + E)
)

= 0 for all i > 0.

Proof. Because a toric Q-Cartier divisor is MCM, we can apply Serre duality
(Corollary 3.25) and obtain Hi

(

X,O(D + KX)
)

∼= Hd−i
(

X,O(−D
)

and (i)
follows from Proposition 3.28.
For (ii): D + E is contained the interior of every half space KX + HC for
C ∈ Fnef , and the result follows.

4 Arithmetic aspects of cohomology vanishing

In this section we want to generalize classical vanishing results for integral
divisors which cannot directly be derived from the setting of Q-divisors as in
section 3.4. From now on we assume that the li are integral. Recall that for
any integral divisor D =

∑

i∈[n] ciDi and any torus invariant closed subvariety

V of X , vanishing of Hi
V

(

X,O(D)
)

depends on two things:

(i) whether the set of signatures sc(MQ) consists of I ⊂ [n] such that the

relative cohomology groups Hi−1(∆̂I , ∆̂V,I ; k) vanish, and,

(ii) if Hi−1(∆̂I , ∆̂V,I ; k) for one such I, whether the corresponding polytope
P I
c contain lattice points m with sc(m) = I.

In the Gale dual picture, the signature sc(MQ) coincides with the set of I ⊂ [n]
such that the class of D in Ad−1(X)Q is contained in CI . For fixed I, the
classes of divisors D in Ad−1(X) such that the equation li(m) < −ci for i ∈ I
and li(m) ≥ −ci for i /∈ I is satisfied, is counted by the generalized partition
function. That is, by the function

D 7→
∣

∣

∣
{(k1, . . . , kn) ∈ Nn |

∑

i∈[n]\I

kiDi−
∑

i∈I

kiDi = D where ki > 0 for i ∈ I}
∣

∣

∣
.
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So, in the most general picture, we are looking for D lying in the common
zero set of the vector partition function for all relevant signatures I of D. In
general, this is a difficult problem to determine these zero sets, and it is hardly
necessary for practical purposes.
Vector partition functions play an important role in the combinatorial theory
of rational polytopes and have been considered, e.g. in [Stu95], [BV97] (see also
references therein). In [BV97] closed expressions in terms of residue formulas
have been obtained. Moreover it was shown that the vector partition function
is a piecewise quasipolynomial function, where the domains of quasipolynomi-
ality are chambers (or possibly unions of chambers) of the secondary fan. In
particular, for if P ∅

c is a rational bounded polytope, then the values of the vec-

tor partition function for P ∅
k·c for k ≥ 0, is just the Ehrhart quasipolynomial.

A special case which we will consider in subsection 4.1 is where the vectors
l1, . . . , ln form circuit. In this form, the computation of generalized partition
functions is essentially equivalent to the classically known diophantine Frobe-
nius problem (also known as money change problem or denumerant problem).
We refer to the book [Ram05] for a general overview.

4.1 Arithmetic cohomology vanishing for circuits

In this subsection we assume that n = d + 1 and C = [n] forms a circuit. In
light of Theorem 2.1, for cohomology vanishing on a toric 1-circuit variety, we
have to consider the reduced cohomology of simplicial complexes associated to
its fan:

Lemma 4.1: Let I ⊂ [n], such that I 6= C+, then Hi((∆̂C)I ; k) = 0 for all i.
Moreover,

(∆̂C)C+
∼= S|C+|−2 and (∆̂C)C−

∼= B|C−|−1,

where Bk is the k-ball, with B−1 := ∅.

Proof. It is easy to see that (∆̂C)C+ corresponds to the boundary of the

(|C+| − 1)-simplex, so it is homeomorphic to S|C+|−2. Similarly, {li}i∈C+ span

a simplicial cone in ∆C and thus (∆̂C)C−
∼= B|C−|−1. Now assume there exists

i ∈ C+ \ I, then I is a face of the cone σi and (∆̂C)I is contractible. On the
other hand, if C+ is a proper subset of I, the set I ∩ C− spans a cone τ in ∆C.
The simplicial complex ∆̂I then is homeomorphic to a simplicial decomposition
of the (|C+| − 1)-ball with center τ and boundary (∆̂C)C+ .

In this special situation, the chamber decomposition of MQ by hyperplanes
H

c
i as in subsection 3.2 contains at most one bounded chamber. In fact, if

D is a rational divisor, all maximal chambers are unbounded. If D ≁ 0, we
have precisely one bounded chamber for whose signatures there are precisely
two possibilities. Namely, we either have for every m in this chamber that
li(m) < −ci for every i ∈ C− and li(m) ≥ −ci for every i ∈ C+, or vice
versa. The set of rational divisor classes in Ad−1

(

P(α, ξ)
)

Q
∼= Q corresponding
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to torus invariant divisors whose associated bounded chamber has signature
either C+ or C− corresponds precisely to the two open intervals (−∞, 0) and
(0,∞), respectively, in Ad−1

(

P(α, ξ)
)

Q
.

To count lattice points in the bounded chamber we can use a special case of
the generalized partition function, i.e. the number of lattice points m such
that li(m) ≥ −ci for i ∈ C+ and li(m) < −ci for i ∈ C− coincides with the
cardinality of the following set:

{(k1, . . . , kd+1) ∈ Nd+1 | ki > 0 for i ∈ C− and
∑

i∈C+

kiDi −
∑

i∈C−

kiDi = D}.

For the integral case, this leads to arithmetic thickenings of the intervals
(−∞, 0) and (0,∞) as follows:

Definition 4.2: We denote FC ⊂ Ad−1

(

P(α, ξ)
)

the complement of the semi-
group of the form

∑

i∈C− ciDi−
∑

i∈C+ ciDi, where ci ∈ N for all i with ci > 0
for i ∈ C+.

The set FC is the complement of the set of classes whose associated chamber
has signature C− and contains a lattice point. With this we can give a complete
characterization of global cohomology vanishing:

Proposition 4.3: Let P(α, ξ) be as before with associated fan ∆C and D ∈
Ad−1

(

P(α, ξ)
)

, then:

(i) Hi
(

P(α, ξ),O(D)
)

= 0 for i 6= 0, |C+| − 1;

(ii) H |C+|−1
(

P(α, ξ),O(D)
)

= 0 iff D ∈ FC;

(iii) if C+ 6= C, then H0
(

P(α, ξ),O(D)
)

6= 0;

(iv) if C+ = C, then H0
(

P(α, ξ),O(D)
)

= 0 iff D ∈ F−C.

Proof. The proof is immediate. Just observe that the simplicial complex
(∆̂C)m, form an element in the bounded chamber, coincides either with (∆̂C)C+

or (∆̂C)C− .

Another case of interest is where C+ 6= C and V = V (τ), where τ is the cone
spanned by the li with i ∈ C−, i.e. V is the unique maximal complete torus
invariant subvariety of P(α, ξ).

Proposition 4.4: Consider P(α, ξ) such that αi < 0 for at least one i,
D ∈ Ad−1

(

P(α, ξ)
)

and V the maximal complete torus invariant subvariety
of P(α, ξ), then:

(i) Hd
V

(

P(α, ξ),O(D)
)

6= 0;

(ii) H
|C−|
V

(

P(α, ξ),O(D)
)

= 0 iff D ∈ FC;
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(iii) Hi
V

(

P(α, ξ),O(D)
)

= 0 for all i 6= d, |C−|.

Proof. Consider first I = C, then (∆̂C)I = ∆̂C
∼= Bd−1 and (∆̂C)V,I = (∆̂C)V ∼=

Sd−2. It follows that Hi
(

∆̂C; k
)

= 0 for all i and Hi−1
(

∆̂C, (∆̂C)V ; k
)

∼=

Hi−2
(

(∆̂C)V ; k
)

. As by assumption, C+ 6= C, so the associated hyperplane
arrangement contains an unbounded chamber such that li(m) ≥ −ci for all
i ∈ C and all m in this chamber. Hence (i) follows. As in the proof of lemma
4.1, it follows that ∆̂I is contractible whenever C+ ∩ I 6= ∅ and C− ∩ I 6= ∅. So
in that case Hi(∆̂I) = 0 for all i and Hi−1(∆̂I , ∆̂V,I ; k) = Hi−2(∆̂V,I ; k) for
all i.

Now let I = C+; then (∆̂C)I = (∆̂C)V,I ∼= SC
+−2, soHi

(

(∆̂C)I , (∆̂C)V,I ; k
)

= 0

for all i. For I = C−, then (∆̂C)I ∼= B|C−|−1 and (∆̂C)V,I ∼= S|C−|−2, the former

by Lemma 4.1, the latter by Lemma 4.1 and the fact that (∆̂C)V,I has empty
intersection with star(τ). This implies (ii) and consequently (iii).

4.2 Arithmetic Kawamata-Viehweg vanishing

A first — trivial — approximation is given by the observation that the divisors
D where the vector partition function takes a nontrivial value map to the cone
CI , shifted by the offset eI := −

∑

i∈I ei.

Definition 4.5: We denote O′(L, I) the saturation of the cone generated the
−Di for i ∈ I and the Di for i /∈ I and O(L, I) := eI + O′(L, I). Moreover,
we denote Ω(L, I) the zero set in O(L, I) of the vector partition function as
defined above.

In the next step we want to approximate the sets Ω(L, I) by reducing to the
classical diophantine Frobenius problem. For this, fix some I ⊂ [n] and consider
some polytope P I

c . It follows from Proposition 3.17 that D is contained in the

intersection of half spacesHC for C ∈ C(L) such that C− = C∩I. In the polytope
picture, we can interpret this as follows. For every C and its underlying circuit
C, we set

PC
c := {m ∈ MQ | li(m) ≤ −ci for i ∈ C− and li(m) ≥ −ci for i ∈ C+}.

Consequently, we get

P I
c =

⋂

C

PC
c ,

where the intersection runs over all C ∈ C(L) with C− = C ∩ I. It follows that
if there exists a compatible oriented circuit C such that PC

c does not contain a

lattice point, then P I
c also does not contain a lattice point. We want to capture

this by considering an arithmetic analogue of the discriminantal arrangement
in Ad−1(X) rather than in Ad−1(X)Q. Using the integral pendant to diagram
(5):
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Definition 4.6: Consider the morphism ηI : Ad−1(X) ։ AI . Then we denote
ZI its kernel. For I = C and C some orientation of C we denote by FC the
preimage in Ad−1(X) of the complement of the semigroup consisting of elements
∑

i∈C− ciDi −
∑

i∈C+ ciDi, where ci ≥ 0 for i ∈ C− and ci > 0 for i ∈ C+. We
set FC := FC ∩ F−C.

So, there are two candidates for a discriminantal arrangement in Ad−1(X), the
ZC on the one hand, and the FC on the other.

Definition 4.7: We denote:

• {ZC}C∈C(L) the integral discriminantal arrangement, and

• {FC}C∈C(L) the Frobenius discriminantal arrangement.

The integral discriminantal arrangement has similar properties as the HI , as
they give a solution to the integral discriminant problem (compare Lemma 3.9):

Lemma 4.8: Let I ⊂ [n], then

ZI =
⋂

C∈C(LI)

ZC .

We can now locate both the rational as well as the integral Picard group in
Ad−1(X)Q and Ad−1(X), respectively:

Theorem 4.9 (see [Eik92], Theorem 3.2): Let X be any toric variety, then:

(i) Pic(X)Q =
⋂

σ∈∆max
Hσ(1) =

⋂

C∈C(Lσ(1))
σ∈∆max

HC.

(ii) Pic(X) =
⋂

σ∈∆max
Zσ(1) =

⋂

C∈C(Lσ(1))
σ∈∆max

ZC.

Proof. (i) As remarked in subsection 3.4, a Q-Cartier divisor is specified by a
collection {mσ}σ∈∆ ⊂ MQ. In particular, all for every σ ∈ ∆, the hyperplanes
H

c
i with i ∈ σ(1) have nonempty intersection. So the first equality follows.

The second equality follows from Lemma 3.9.
(ii) A Cartier divisor is specified by a collection {mσ}σ∈∆ ⊂ M such that the
hyperplanes HC

i with i ∈ σ(1) intersect in integral points. So the first equality
follows. The second equality follows from Lemma 4.8.

The Frobenius discriminantal arrangement is not as straightforward. First, we
note the following properties:

Lemma 4.10: Let C ∈ C(L), then:

(i) FC is nonempty;

(ii) the saturation of ZC in Ad−1(X) is contained in FC iff C is not fibrational.
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Proof. The first assertion follows because FC contains all elements which map
to the open interval (KC,K−C) in AC,Q, where KC = −

∑

i∈C+ Di. For the
second assertion, note that the set {m ∈ M | li(m) = 0 for all i ∈ C} is in FC

iff C+ 6= C for either orientation C of C.

Lemma 4.10 shows that the FC are thickenings of the ZC with one notable
exception, where C is fibrational. In this case, FC can be considered as parallel
to, but slightly shifted away from ZC . In the sequel we will not make any
explicit use of the ZC anymore, but these facts should be kept in mind.

Regarding the Frobenius discriminantal arrangement, we want also to consider
integral versions of the discriminantal strata:

Definition 4.11: Let C ∈ C(L) and let FS be a discriminantal hull of S =
{S1, . . . , Sk}, then we denote

AS :=
⋂

C∈FS

FC.

the arithmetic core of FS . In the special case FS = Fnef we write Anef .

Remark 4.12: The notion core refers to the fact that we consider all FC,
instead of a non-redundant subset describing the set S as a convex cone.

We will use arithmetic cores to derive arithmetic versions of known vanishing
theorems formulated in the setting of Q-divisors and to get refined conditions
on cohomology vanishing. This principle is reflected in the following theorem:

Theorem 4.13: Let V be a T -invariant closed subscheme of X and S a dis-
criminantal stratum in Ad−1(X)Q. If Hi

V

(

X,O(D)
)

= 0 for some i and for all

integral divisors D ∈ S, then also Hi
V

(

X,O(D)
)

= 0 for all D ∈ AS.

Proof. Without loss of generality we can assume that dimS > 0. Consider
some nonempty P I

c for some I ⊂ [n]. Then for any such I, we can choose some

multiple of kD such that P I
kc contains a lattice point. But if Hi

V

(

X,O(D)
)

= 0,

then also Hi
V

(

X,O(kD)
)

= 0, hence Hi−1(∆̂I , ∆̂V,I ; k) = 0. Now, any divisor
D′ ∈ AS which does not map to S, is contained in FC for all C ∈ FS and
therefore for any I which is in the signature for D′ but not for D, the equations
li(m) < −c′i for i ∈ I and li(m) ≥ −c′i for i /∈ I cannot have any integral
solution.

We apply Theorem 4.13 to Anef :

Theorem 4.14 (Arithmetic version of Kawamata-Viehweg vanishing): Let X
be a complete toric variety. Then Hi

(

X,O(D)
)

= 0 for all i > 0 and all
D ∈ Anef.
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Proof. We know that the assertion is true if D is nef. Therefore we can apply
Theorem 4.13 to the maximal strata S1, . . . , Sk of nef(X). Therefore the as-
sertion is true for D ∈

⋂

i=1k ASi
. To prove the theorem, we have to get rid of

the FC, where HC intersects the relative interior of a face of nef(X). Let C be
such a circuit and R the face. Without loss of generality, dimR > 0. Then we
can choose elements D′ in R at an arbitrary distance from HC, i.e. such that
the polytope PC

c becomes arbitrarily big and finally contains a lattice point.

Now, if we move outside nef(X), but stay inside Anef , the lattice points of PC
c

cannot acquire any cohomology and the assertion follows.

One can imagine an analog of the set AS in Ad−1(X)Q as the intersection of
shifted half spaces

⋂

C∈FS

(

−
∑

i∈C+

Di +HC

)

.

The main difference here is that one would picture the proper facets of this
convex polyhedral set as “smooth”, whereas the proper “walls” of AS have
“ripples”, which arise both from the fact that the groups AC may have torsion,
and that we use Frobenius conditions to determine the augmentations of our
half spaces.
In general, the set FS is highly redundant when it comes to determine S, which
implies that above intersection does not yield a cone but rather a polyhedron,
whose recession cone corresponds to S. In the integral situation we do not
quite have a recession cone, but a similar property holds:

Proposition 4.15: Let V ⊂ X be a closed invariant subscheme and S =
{S1, . . . , Sk} a collection of discriminantal stata different from zero. Then for
any nonzero face of its discriminantal hull S there exists the class of an integral
divisor D′ ∈ S such that the intersection of the half line D+ rD′ for 0 ≤ r ∈ Q

with AS contains infinitely many classes of integral divisors.

Proof. Let R ⊂ S be any face of S, then the vector space spanned by R is
given by an intersection

⋂

C with C∈K HC for a certain subset K ⊂ FS . We
assume that K is maximal with this property. The intersection

⋂

C∈K FC is
invariant with respect to translations along certain (though not necessarily all)
D′ ∈ R. This implies that the line (or any half line, respectively), generated
by D′ intersects

⋂

C∈K FC in infinitely many points. As K is maximal, there is
no other C ∈ FC parallel to R and the assertion follows.

The property of Proposition 4.15 is necessary for elements in AS , but not
sufficient. This leads to the following definition:

Definition 4.16: Let S = {S1, . . . , Sk} be a collection of discriminantal strata
and D ∈ Ad−1(X) such that the property of Proposition 4.15 holds. If D is
not contained in AS , then we call D AS-residual. We call D 0-residual if it is
in the complement of A0 =

⋂

C∈C(L) FC.
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In the next subsections we will consider several special cases of interest for
cohomology vanishing, which are not directly related to Kawamata-Viehweg
vanishing theorems. In subsection 4.3 we will consider global cohomology van-
ishing for divisors in the inverse nef cone. In subsection 4.4 we will present a
more explicit determination of this type of cohomology vanishing for toric sur-
faces. Finally, in subsection 4.5, we will give a geometric criterion for determing
maximally Cohen-Macaulay modules.

4.3 Nonstandard Cohomology Vanishing

In this subsection we want to give a qualitative description of cohomology
vanishing which is related to divisors which are inverse to nef divisors of Iitaka
dimension 0 < κ(D) < d. We show the following theorem:

Theorem 4.17: Let X be a complete d-dimensional toric variety. Then
Hi

(

X,O(D)
)

= 0 for every i and all D which are contained in some A−F ,
where F is a face of nef(X) which contains nef divisors of Iitaka dimension
0 < κ(D) < d. If A−F is nonempty, then it contains infinitely many divisor
classes.

Proof. Recall that such a divisor, as a Q-divisor, is contained in the intersec-
tion

⋂

C∈fib(D) HC and therefore it is in the intersection of the nef cone with
the boundary of the effective cone of X by Proposition 3.17. Denote this in-
tersection by F . Then we claim that Hi

(

X,O(D′)
)

= 0 for all D′ ∈ A−F . By

Corollary 3.28 we know that Hi
(

X,O(E)
)

= 0 for 0 ≤ i < d for any divisor

E in the interior of the inverse nef cone. This implies that Hi
(

X,O(E)
)

= 0

for any E ∈ A−nef and hence Hi
(

X,O(D′)
)

= 0 for any D′ ∈ A−F , because
A−F ⊂ A−nef . The latter assertion follows from the fact that the assumption
on the Iitaka dimension implies that the face F has positive dimension.

Note that criterion is not very strong, as it is not clear in general whether the
set A−F is nonempty. However, this is the case in a few interesting cases, in
particular for toric surfaces, as we will see in the next subsection. The following
remark shows that our condition indeed is rather weak in general:

Remark 4.18: The inverse of any big and nef divisor D with the property
that PD does not contain any lattice point in its interior has the property that
Hi

(

X,O(D)
)

= 0 for all i. This follows directly from the standard fact in toric
geometry that the Euler characteristics χ(−D) counts the inner lattice points
of the lattice polytope PD.

4.4 The case of complete toric surfaces.

Let X be a complete toric surface. We assume that the li are cyclically ordered.
We consider the integers [n] as system of representatives for Z/nZ, i.e. for some
i ∈ [n] and k ∈ Z, the sum i+ k denotes the unique element in [n] modulo n.
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Proposition 4.19: Let X be a complete toric surface. Then nef(X) = S,
where S is a single stratum of maximal dimension of the discriminantal ar-
rangement.

Proof. X is simplicial and projective and therefore nef(X) is a cone of maximal
dimension in A1(X)Q. We show that no hyperplane HC intersects the interior
of nef(X). By Proposition 3.17 we can at once exclude fibrational circuits.
This leaves us with non-fibrational circuits C with cardinality three, having
orientation C with |C+| = 2. Assume that D is contained in the interior of
H−C. Then there exists m ∈ MQ such that C+ ⊂ sD(m), which implies that
the hyperplane H

c
i for {i} = C− does not intersect PD, and thus D cannot be

nef. It follows that nef(X) ⊂ HC.

Now assume there exist p, q ∈ [n] such that lq = −lp, i.e. lp and lq represent
a one-dimensional fibrational circuit of L. Then for any nef divisors D which
is contained in Hp,q, the associated polytope PD is one-dimensional. The only
possible variation for PD is its length in terms of lattice units. So we can
conclude that nef(X) ∩Hp,q is a one-dimensional face of nef(X).

Definition 4.20: Let X be a complete toric surface and C = {p, q} such that
lp = −lq. Then we denote Sp,q the relative interior of −nef(X)∩HC . Moreover,
we denote Ap,q the arithmetic core of Sp,q.

Our aim in this subsection is to prove the following:

Theorem 4.21: Let X be a complete toric surface. Then there are only finitely
many divisors D with Hi

(

X,O(D)
)

= 0 for all i > 0 which are not contained
in Anef∪

⋃

Ap,q, where the union ranges over all pairs {p, q} such that lp = −lq.

We will prove this theorem in several steps. First we show that the interiors
of the CI such that H0(∆̂I ; k) 6= 0 cover all of A1(X)Q except nef(X) and
−nef(X).

Proposition 4.22: Let D =
∑

i∈[n] ciDi be a Weil divisor which is not con-

tained in nef(X) or −nef(X), then the corresponding arrangement H
c
i in MQ

has a two-dimensional chamber P I
c such that complex ∆̂I has at least two com-

ponents.

Proof. Recall that nef(X) =
⋂

HC, where the intersection runs over all oriented
circuits which are associated to extremal curves of X . As the statement is well-
known for the case where X is either a 1-circuit toric variety or a Hirzebruch
surface, we can assume without loss of generality, that the extremal curves
belong to blow-downs, i.e. the associated oriented circuits are of the form
C+ = {i − 1, i + 1}, C− = {i} for any i ∈ [n]. Now assume that D is in the
interior of HC for such an oriented circuit C. Then there exists a bounded
chamber P I

c in MQ such that C− = C ∩ sc(m). In order for ∆̂sc(m) to be
acyclic, it is necessary that sc(m) ∩ ([n] \ C) = ∅. Let {j, k, l} =: D ⊂ [n]
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represent any other circuit such that D+ = {j, l} for some orientation D of D.
The hyperplane arrangement given by the three hyperplanes H

c
j , H

c
k, H

c
l has

six unbounded regions, whose signatures contain any subset of {j, k, l} except
{j, l} and {k}. In the cases j = i−2, k = i−1, l = 1 or j = i, k = i+1, l = i+2,
P I
c must be contained in the region with signature {i}. In every other case P I

c

must be contained in the region with signature ∅. In the case, say, {j, k, l} =
{i − 2, i − 1, i}, the hyperplane H

c
i−2 should not cross the bounded chamber

related to the subarrangement given by the hyperplanesH
c
i−1, H

c
i , H

c
i+1, as else

we obtain a chamber whose signature contains {i− 1, i+1}, but not {i− 2, i}.
Then the associated subcomplex of ∆̂ can never be acyclic. This implies that,
if D is in the interior of HC, then D ∈ HD, where either D = {i − 2, i − 1, i}
or D = {i, i + 1, i + 2}. By iterating for every extremal (i.e. every invariant)
curve, we conclude that D ∈

⋂

i∈[n] HC = nef(X). Analogously, we conclude

for D ∈ H−C that D ∈ −nef(X), and the statement follows.

Let {p, q} ⊂ [n] such that lp = −lq. Then these two primitive vectors span a 1-
dimensional subvector space of NQ, which naturally separates the set [n]\{p, q}
into two subsets.

Definition 4.23: Let {p, q} ⊂ [n] such that lp = −lq. Then we denote
A1

p,q, A
2
p,q ⊂ [n] the two subsets of [n] \ {p, q} separated by the line spanned by

lp, lq.

For some fibrational circuit {p, q}, the closure Sp,q is a one-dimensional cone
in A1(X)Q which has a unique primitive vector:

Definition 4.24: Consider{p, q} as before. Then the closure Sp,q is a one-
dimensional cone with primitive lattice vector Dp,q :=

∑

i∈A1
p,q

li(m)Di, where

m ∈ M the unique primitive vector on the ray in MQ with lp(m) = lq(m) = 0
and li(m) < 0 for i ∈ A1

p,q.

Proposition 4.25: Let X be a complete toric surface. Then every Ap,q-
residual divisor on X is either contained in Anef, or in some Ap,q, or is Anef-
residual.

Proof. For any nef divisor D ∈ −Sp,q, the polytope PD is a line segment such
that all H

c
i intersect this line segment in one of its two end points, depending

on whether i ∈ A1
p,q or i ∈ A2

p,q. This implies that the line spanned by Sp,q is
the intersection of all HC , where C ⊂ A1

p,q ∪ {p, q} or C ⊂ A2
p,q ∪ {p, q}. Let D

be Ap,q-residual and assume that Hi
(

X,O(D + rDp,q)
)

= 0 for all i and for
infinitely many r. We first show that D ∈ F{p,q}, i.e. that cp+ cq = −1 for any
torus invariant representative D =

∑

i∈[n] ciDi. Assume that cp + cq > −1.

Then there exists m ∈ M such that p, q /∈ sc(m). By adding sufficiently high
multiples of Dp,q such that D + rDp,q =

∑

c′iDi, we can even find such an

m such that A1 ∪ A2 ⊂ sc
′

(m), hence H1
(

X,O(D + rDp,q)
)

6= 0 for large r
and thus D is not Ap,q-residual. If cp + cq < −1, there is an m ∈ M with
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{p, q} ⊂ sc(m), and by the same argument, we get H2
(

X,O(D + rDp,q)
)

6= 0
for large r. Hence cp + cq = −1, i.e. D ∈ F{p,q}. This implies that for every
m ∈ M either p ∈ sc(m) and q /∈ sc(m), or q ∈ sc(m) and p /∈ sc(m). Now
assume that D /∈ FC for some C = {i, j, k} ⊂ A1 ∪ {p, q} such that C+ = {i, k}
for some orientation. Then there exists some m ∈ M with {i, k} ⊂ sc(m) or
{j} ⊂ sc(m). In the first case, as before we can simply add some multiple
of Dp,q such that i ∈ sc

′

(m) and i ∈ A2, hence sc
′

(m) contains at least two
−-intervals. In the second case, we have either p /∈ sc(m) or q /∈ s(m), thus at
least two −-intervals, too. Hence D ∈ Ap,q and the assertion follows.

Proposition 4.26: Let X be a complete toric surface. Then X has only a
finite number of Anef-residual divisors.

Proof. We can assume without loss of generality that X is not P2 nor a Hirze-
bruch surface. Assume there is D ∈ A1(X) which is not contained in FC for
some circuit C = {i − 1, i, i + 1} corresponding to an extremal curve on X .
Then there exists a chamber in the corresponding arrangement whose signa-
ture contains {i− 1, i+ 1}. To have this signature to correspond to an acyclic
subcomplex of ∆̂, the rest of the signature must contain [n] \ C. Now assume
we have some integral vector DC ∈ HC , then we can add a multiple of DC to
D such that D is parallel translated to nef(X). In this process necessarily at
least one hyperplane passes the critical chamber and thus creates cohomology.

Now, D might be outside of FD for some D ∈ C(L) not corresponding to
an extremal curve. If the underlying circuit is not fibrational, then D being
outside FD implies FC for some extremal circuit C. If D is fibrational and
D = {p, q}, then we argue as in Proposition 4.25 that D has cohomology. If
D is fibrational of cardinality three, the corresponding hypersurface HD is not
parallel to any nonzero face of nef(X) and there might be a finite number of
divisors lying outside FD but in the intersection of all FC, where C corresponds
to an extremal curve.

Proposition 4.27: Let X be a complete toric surface. Then X has only a
finite number of 0-residual divisors.

Proof. Let us consider some vector partition function VP(L, I) : OI −→ N,
for I such that CI does not contain a nonzero subvector space. Let D =
∑

i∈[n] ciDi ∈ Ω(L, I) and let PD the polytope in MQ such that m ∈ MQ is in

PD iff li(m) < −ci for i ∈ I and li(m) ≥ −ci for i ∈ [n] \ I. For any J ⊂ [n] we
denote PD,J the polytope defined by the same inequalities, but only for i ∈ J .
Clearly, PD ⊂ PD,J . Let J ⊂ [n] be maximal with respect to the property that
PD,J does not contain any lattice points. If J 6= [n], then we can freely move
the hyperplanes given by li(m) = −ci for i ∈ [n] \ I such that PD,J remains
constant and thus lattice point free. This is equivalent to say that there exists
a nonzero D′ ∈

⋂

C∈C(LJ)
HC and for every such D′ the polytope PD+jD′ does

not contain any lattice point for any j ∈ Q>0.
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Now assume that J = [n]. This implies that the defining inequalities of PD

are irredundant and thus there exists a unique maximal chamber in CI which
contains D (if I = ∅ this would be the nef cone by 4.19) and thus the com-
binatorial type of PD is fixed. Now, clearly, the number of polygons of shape
PD with parallel faces given by integral linear inequalities and which do not
contain a lattice point is finite.
By applying this to all (and in fact finitely many) cones OI such that CI does
not contain a nontrivial subvector space of AQ, we see that there are only
finitely many divisors D which are not contained in Anef or Ap,q.

Proof of theorem 4.21. By 4.22, nef(X) and the Sp,q are indeed the only rele-
vant strata, which by 4.25 and 4.26 admit only finitely many residual elements.
Hence, we are left with the 0-residuals, of which exist only finitely many by
4.27.

Example 4.28: Figure 1 shows the cohomology free divisors on the Hirzebruch
surface F3 which is given by four rays, say l1 = (1, 0), l2 = (0, 1), l3 = (−1, 3),
l4 = (0,−1) with respect to some choice of coordinates for N . In Pic(F3) ∼= Z2

there are two cones such that H1
(

X,O(D)
)

6= 0 for every D which is contained

in one of these cones. Moreover, there is one cone such that H2
(

X,O(D)
)

6= 0
for every D; its tip is sitting at KF3 . The nef cone is indicated by the dashed
lines.

2

H

H
H

1

1

Figure 1: Cohomology free divisors on F3.

The picture shows the divisors contained in Anef as black dots. The white dots
indicate the divisors in A2,4. There is one 0-residual divisor indicated by the
grey dot.
The classification of smooth complete toric surfaces implies that every such
surface which is not P2, has a fibrational circuit of rank one. Thus the theorem
implies that on every such surface there exist families of line bundles with
vanishing cohomology along the inverse nef cone. For a given toric surface X ,
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these families can be explicitly computed by checking for every C ⊂ A1 ∪{p, q}
and every C ⊂ A2 ∪ {p, q}, respectively, whether the inequalities

ci + li(m)

{

≥ 0 for i ∈ C+

< 0 for i ∈ C−,
ci + li(m)

{

≥ 0 for i ∈ −C+

< 0 for i ∈ −C−

have solutions m ∈ M for at least one of the two orientations C, −C of C. This
requires to deal with

(

|A1|+2
3

)

+
(

|A2|+2
3

)

, i.e. of order ∼ n3, linear inequalities.
We can reduce this number to order ∼ n2 as a corollary from our considerations
above:

Corollary 4.29: Let C ∈ Ai for i = 1 or i = 2. Then there exist {i, j} ⊂ C
such that F{p,q} ∩ FC ⊃ F{p,q} ∩ F{i,j,p} ∩ F{i,j,q}.

Proof. Assume first that there exists m ∈ M which for the orientation C of C =
{i1, i2, i3} with C+ = {i1, i3} which fulfills the inequalities lik(m) + cik ≥ 0 for
k = 1, 3 and li2(m)+ci2 < 0. This implies that H1

(

X,O(D)
)

6= 0, independent
of the configuration of the other hyperplanes, as long as cp + cq = −1. It is
easy to see that we can choose i, j ∈ C such that {i, j, p} and {i, j, q} form
circuits. We can choose one of those such that m is contained in the triangle,
fulfilling the respective inequalities, and which is not fibrational. For the inverse
orientation −C, we can the same way replace one of the elements of C by one
of p, q. By adding a suitable positive multiple of Dp,q, we can rearrange the
hyperplanes such that H1

(

X,O(D + rDp,q)
)

6= 0.

One should read the corollary the way that for any pair i, j in A1 or in A2,
one has only to check whether a given divisor fulfills certain inequalities for
triples {i, j, q} and {i, j, p}. It seems that it is not possible to reduce further
the number of equations in general. However, there is a criterion which gives
a good reduction of cases for practical purposes:

Corollary 4.30: Let X be a smooth and complete toric surface and D =
∑

i∈[n] ciDi ∈ Ap,q, then for every i ∈ A1 ∪ A2, we have:

ci−1 + ci+1 − aici ∈ [−1, ai − 1],

where the ai are the self-intersection numbers of the Di.

Proof. The circuit C = {i − 1, i, i+ 1} comes with the integral relation li−1 +
li+1 + aili = 0. So the Frobenius problem for these circuits is trivial and we
have only to consider the offset part.

The following example shows that these equalities are necessary, but not suffi-
cient in general:

Example 4.31: We choose some coordinates on N ∼= Z2 and consider the
complete toric surface defined by 8 rays l1 = (0,−1), l2 = (1,−2), l3 = (1,−1),
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l4 = (1, 0), l5 = (1, 1), l6 = (1, 2), l7 = (0, 1), l8 = (−1, 0). Then any divisor
D = c1D1 + · · · + c8D8 with c = (−1, 1, 1, 0, 0, 1, 0,−k) for some k ≫ 0 has
nontrivial H1, though it fulfills the conditions of corollary 4.30.

An interesting and more restricting case is the additional requirement that
also Hi

(

X,O(−D)
)

= 0 for all i > 0. One may compare the following with the
classification of bundles of type B in [HP06].

Corollary 4.32: Let X be a smooth and complete toric surface and D ∈ Ap,q

such that Hi
(

X,O(D)
)

= Hi
(

X,O(−D)
)

= 0 for all i > 0. Then for every
i ∈ A1 ∪ A2, we have:

ci−1 + ci+1 − aici ∈

{

{±1, 0} if ai < −1

{−1, 0} if ai = −1,

where the ai are the self-intersection numbers of the Di.

Proof. For −D, we have cp + cq = 1. Assume that there exists a circuit circuit
C with orientation C and C+ = {i, j} and C− = {k}, and morover, some lattice
point m such that sc(m)∩C = C−. Then we get s−c(−m)∩C = C+. this implies
that H1

(

X,O(−D)
)

6= 0. This implies the restriction ci−1 + ci+1 − aici ∈
[−1,min{1, ai − 1}].

Note that example 4.31 also fulfills these more restrictive conditions.

4.5 Maximal Cohen-Macaulay Modules of Rank One

The classification of maximal Cohen-Macaulay modules can sometimes be re-
lated to resolution of singularities, the most famous example for this being the
McKay correspondence in the case of certain surface singularities ([GSV83],
[AV85], see also [EK85]). In the toric case, in general one cannot expect to ar-
rive at such a nice picture, as there does not exist a canonical way to construct
resolutions. However, there is a natural set of preferred partial resolutions,
which is parameterized by the secondary fan.
Let X be a d-dimensional affine toric variety whose associated convex polyhe-
dral cone σ has dimension d. Denote x ∈ X torus fixed point. For any Weil
divisor D on X , the sheaf OX(D) is MCM if and only if Hi

x

(

X,OX(D)
)

for all
i < d. It was shown in [BG03] (see also [BG02]) that there exists only a finite
number of such modules.
Now let X̃ be a toric variety given by some triangulation of σ. The natural
map π : X̃ −→ X is a partial resolution of the singularities of X which is
an isomorphism in codimension two and has at most quotient singularities. In
particular, the map of fans is induced by the identity onN and, in turn, induces
a bijection on the set of torus invariant Weil divisors. This bijection induces
a natural isomorphism π−1 : Ad−1(X) −→ Ad−1(X̃) which can be represented
by the identity morphism on the invariant divisor group Zn. This allows us to
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identify a torus invariant divisor D on X with its strict transform π−1D on X̃ .
Moreover, there are the natural isomorphisms

π∗OX̃(π−1D) ∼= OX(D) and OX̃(π−1D) ∼=
(

π∗OX(D)
)

ˇ̌ .

Our aim is to compare local cohomology and global cohomology, i.e.
Hi

x

(

X,OX(D)
)

and Hi
(

X̃,OX̃(D)
)

.
Probably the easiest class of cones σ which one can consider is where the
primitive vectors l1, . . . , ln form a circuit C = [n]. Associated to this data are
two small resolutions of singularities π : P(α, ξ) −→ X and π′ : P(−α, ξ)) −→ X
which are induced by triangulations ∆C and ∆−C, respectively.
Now, the question whether O(D) is a maximal Cohen-Macaulay sheaf can be
decided directly on Y or, equivalently, on the resolutions:

Theorem 4.33: Let X be an affine toric variety whose associated cone σ is
spanned by a circuit C and denote P(α, ξ) and P(−α, ξ) the two canonical
small toric resolution of singularities. Then the sheaf O(D) is maximal Cohen-
Macaulay if and only if Riπ∗O(π−1D) = Riπ′

∗O((π′)−1D) = 0 for all i > 0.

Proof. This toric variety corresponds to the toric subvariety of Y which is the
complement of its unique fixed point, which we denote y. We have to show
that Hi

y

(

Y,O(D)
)

= 0 for all i < d. By Corollary 2.2, we have

Hi
y

(

Y,O(D)
)

m
= Hi−2(σ̂y,m; k)

for every m ∈ M , where σ̂y denotes the simplicial model for the fan associated
to Y \ {y}. Denote τ and τ ′ the cones corresponding to the minimal orbits
of P(α, ξ) and P(−α, ξ), respectively. We observe that (∆̂C)V (τ) = (∆̂C)V (τ ′)

both coincide with the subfan of σ generated by its facets. It follows that
the simplicial complexes relevant for computing the isotypical decomposition
of Hi

y

(

Y,O(D)
)

coincide with the simplicial complexes relevant for comput-

ing the Hi
V

(

P(α, ξ),O(π−1D)
)

and Hi
V ′

(

P(−α, ξ),O((π′)−1D)
)

, respectively,
where V, V ′ denote the exceptional sets of the morphisms π and π′, respectively.
By Proposition 4.4 the corresponding cohomologies vanish for i < d iff D ∈
FC ∩F−C. Now we observe that Γ

(

Y,Riπ∗O(π−1D)
)

= Hi
(

P(α, ξ),O(π−1D)
)

and Γ
(

Y,Riπ′
∗O((π′)−1D)

)

= Hi
(

P(−α, ξ),O((π′)−1D)
)

. By Proposition 4.3,
both cohomologies vanish for i > 0 iff D ∈ FC ∩ F−C.

Remark 4.34: The relation between maximal Cohen-Macaulay modules and
the diophantine Frobenius problem has also been discussed in [Sta96]. See
[Yos90] for a discussion of MCM-finiteness of toric 1-circuit varieties.

More generally, we have the following easy statement about general (i.e. non-
regular) triangulations:

Theorem 4.35: Let X be an affine toric variety of dimension d and D ∈
Ad−1(X). If D is 0-essential, then Riπ∗OX̃(π∗D) = 0 for every triangulation

π : X̃ −→ X.
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Proof. If D is 0-essential, then it is contained in the intersection of all FC ,
where C ∈ C(L), thus it represents a cohomology-free divisor.

Note that the statement does hold for any triangulation and not only for regular
triangulations. We have a refined statement for affine toric varieties whose
associated cone σ has simplicial facets:

Theorem 4.36: Let X be a d-dimensional affine toric variety whose associated
cone σ has simplicial facets and let D ∈ Ad−1(X). If Riπ∗OX̃(π∗D) = 0 for

every regular triangulation π : X̃ −→ X then OX(D) is MCM. For d = 3 the
converse is also true.

Proof. Recall that Hi
x

(

X,O(D)
)

m
= Hi−2(σ̂V,m; k) for some m ∈ M and

D ∈ A. We are going to show that for every subset I ( [n] there exists a
regular triangulation ∆̃ of σ such that the simplicial complexes σ̂V,I and ∆̃I

coincide. This implies that if Hi
x

(

X,OX(D)
)

m
6= 0 for some m ∈ M , then also

Hi+1
(

X̃,OX̃(D)
)

m
6= 0, i.e. if OX(D) is not MCM, then Hi

(

X̃,OX̃(D)
)

6= 0
for some i > 0.
For given I ⊂ [n] we get such a triangulation as follows. Let i ∈ [n] \ I and
consider the dual cone σ̌. Denote ρi := Q≥0li and recall that ρ̌i is a halfspace
which contains σ̌ and which defines a facet of σ̌ given by ρ⊥ ∩ σ̌. Now we move
ρ̌i to m+ ρ̌, where li(m) > 0. So we obtain a new polytope P := σ̌ ∩ (m+ ρ̌).
As ρ⊥ is not parallel to any face of σ̌, the hyperplane m+ ρ⊥ intersects every
face of σ̌. This way the inner normal fan of P is a triangulation ∆̃ of σ which
has the property that every maximal cone is spanned by ρi and some facet of
σ. This implies ∆̃I = σ̂V,I and the first assertion follows.
For d = 3, a sheaf O(D) is MCM iff H2

x

(

X,O(D)
)

= 0, i.e. H0(σV,m; k) = 0
for every m ∈ M . The latter is only possible if σV,m represents an interval

on S1. To compare this with H2
(

X̃,O(D)
)

for some regular triangulation X̃ ,

we must show that H1(∆̃m; k) = 0 for the corresponding complex ∆̃m. To
see this, we consider some cross-section σ ∩ H , where H ⊂ N ⊗Z R is some
hyperplane which intersects σ nontrivially and is not parallel to any of its
faces. Then this cross-section can be considered as a planar polygon and σV,m

as some connected sequence of faces of this polygon. Now with respect to the
triangulation ∆̃ of this polygon, we can consider two vertices p, q ∈ σV,m which
are connected by a line belonging to the triangulation and going through the
interior of the polygon. We assume that p and q have maximal distance in σV,m

with this property. Then it is easy to see that the triangulation of σ induces a
triangulation of the convex hull of the line segments connecting p and q. Then
∆̃m is just the union of this convex hulls with respect all such pairs p, q and the
remaining line segments and thus has trivial topology. HenceH2

x

(

X,O(D)
)

= 0

implies H2
(

X̃,O(D)
)

= 0 for every triangulation ∆̃ of σ.

Example 4.37: Consider the 3-dimensional cone spanned over the primitive
vectors l1 = (1, 0, 1), l2 = (0, 1, 1), l3 = (−1, 0, 1), l4 = (−1,−1, 1), l5 =
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(1,−1, 1). The corresponding toric variety X is Gorenstein and its divisor class
group is torsion free. For A2(X) ∼= Z2 we choose the basis D1+D2+D5, D5. In
this basis, the Gale duals of the li areD1 = (−1,−1),D2 = (2, 0), D3 = (−3, 1),
D4 = (2,−1), D5 = (0, 1). Figure 2 shows the set of MCM modules in
A2(X) which are indicated by circles which are supposed to sit on the lattice
A2(X) ∼= Z2. The picture also indicates the cones CI with vertices −eI , where
I ∈ {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 5}, {2, 4, 5}}.

Note that the picture has a reflection symmetry, due to the fact that X is
Gorenstein. Altogether, there are 19 MCM modules of rank one, all of which
are 0-essential. For C = {l1, l3, l4, l5}, the group A2(X)C ∼= Z ⊕ Z/2Z has tor-
sion. The two white circles indicate modules are contained in the Q-hyperplanes
D1 + D4 + HC and D2 + D3 + D5 + HC , respectively, but not in the sets
D1+D4+ZC and D2+D3+D5+ZC, respectively. Some of the OI are not sat-
urated; however, every divisor which is contained in some (−eI +CI)∩Ω(L, I)
is also contained in some OI′ \ Ω(L, I ′) for some other I ′ 6= I. So for this
example, the Frobenius arrangement gives a full description of MCM modules
of rank one.

g

g

g

g
4

3

1

g 2

5

Figure 2: The 19 MCM modules of example 4.37.

Example 4.38: To give a counterexample to the reverse direction of theorem
4.36 for d > 3, we consider the four-dimensional cone spanned over the primitive
vectors l1 = (0,−1,−1, 1), l2 = (−1, 0, 1, 1), l3 = (0, 1, 0, 1), l4 = (−1, 0, 0, 1),
l5 = (−1,−1, 0, 1), l6 = (1, 0, 0, 1). The corresponding variety X has 31 MCM
modules of rank one which are shown in figure 3. Here, with basis D1 and
D6, we have D1 = (1, 0), D2 = (1, 0), D3 = (−1,−2), D4 = (3, 1), D5 =
(−2,−2), D6 = (0, 1). There are six cohomology cones corresponding to I ∈
{

{1, 2}, {3, 5}, {4, 6}, {1, 2, 3, 5}, {1, 2, 4, 6}, {3, 4, 5, 6}
}

.
The example features two modules which are not 0-essential, indicated by
the grey dots sitting on the boundary of the cones −eI + CI , where I ∈
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 gg 4 1

g 6

g 5

g 3

, g 2

Figure 3: The 31 MCM modules of example 4.38.

{

{4, 6}, {1, 2, 3, 5}
}

. The white dots denote MCM divisors D,−D such that
there exists a triangulation of the cone of X such that on the associated vari-
ety X̃ we have Hi

(

X̃,O(±D)
)

6= 0 for some i > 0. Namely, we consider the
triangulation which is given by the maximal cones spanned by {l1, l2, l4, l5},
{l1, l2, l4, l6}, {l1, l2, l5, l6}, {l1, l3, l4, l6}, {l2, l3, l4, l6}. Figure 4.38 indicates
the two-dimensional faces of this triangulation via a three-dimensional cross-
section of the cone.

5

l
1

l

l

3

6

l

l
2

l
4

Figure 4: The triangulation for X̃ in example 4.38.

We find that we have six cohomology cones corresponding to I ∈
{

{1, 2}, {3, 5},

{1, 2, 3}, {4, 5, 6}, {1, 2, 3, 5}, {3, 4, 5, 6}
}

. In particular, we have non-vanishing
H1 for the points −D1 −D2 −D3 and for −D4 −D5 −D6, which correspond
to D and −D.
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