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Abstract. The additivity theorem in algebraic K-theory, due to
Quillen and Waldhausen, is a basic tool. In this paper we present
a new proof, which proceeds by constructing an explicit homotopy
combinatorially.
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Introduction

In this paper1, we present a new proof of the additivity theorem of Quillen [7,
§3, Theorem 2] and Waldhausen [8, 1.3.2(4)]. See also [6] and [5]. Previous
proofs used Theorem A or Theorem B of Quillen [7], but this one proceeds by
constructing an explicit combinatorial homotopy, which is made possible by
suitably subdividing one of the spaces involved.
This research was partially supported by the National Science Foundation un-
der grant NSF DMS 08-10948. I thank Mona Merling for valuable remarks that
helped me improve the exposition substantially.

1. The additivity theorem

Let Ord denote the category of finite nonempty ordered sets. We regard a
simplicial object in a category C as a functor Ordop → C. For A ∈ Ord let
∆A denote the simplicial set it represents. For each n ∈ N let [n] denote the
ordered set {0 < 1 < · · · < n} ∈ Ord, and let ∆n denote the simplicial set it
represents. Let ∆A

top denote the corresponding topological simplex, consisting
of the functions p : A → [0, 1] that sum to 1; for A = [n] we may also write
p = (p0, . . . , pn).
If X is a simplicial set, we let [A, x, p] denote the point of the geometric real-
ization |X | corresponding to A ∈ Ord, x ∈ X(A), and p ∈ ∆A

top.
For objects A and B in Ord, let A ∗B ∈ Ord denote their concatenation; it is
the disjoint union, with the ordering extended so the elements of A are smaller

1Permanent ID of this document: 822f09c4645830c51423e431c01cd592; Date: 2011.04.18.
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than the elements of B. We make that precise by setting A ∗B := ({0} ×
A) ∪ ({1} × B), so (0, a) and (1, b) denote typical elements, and the ordering
is lexicographic. We do the analogous thing with multiple concatenation, e.g.,
A ∗B ∗C := ({0}×A)∪ ({1}×B)∪ ({2}×C). Given functions p : A→ R and
q : B → R, we let p ∗ q : A ∗ B → R be the function defined by (0, a) 7→ p(a)
and (1, b) 7→ q(b). An embedding ∆A

top ×∆B
top → ∆A∗B

top is defined by (p, q) 7→
(p/2) ∗ (q/2).
The reason for using Ord in this paper, instead of its full subcategory whose
objects are the ordered sets [n], is that it is closed under the concatenation
operation (A,B) 7→ A ∗B and under various other constructions used later
in the paper. Since the two categories are equivalent, nothing essential is
changed. Since Ord is not a small category, to make the definition of geometric
realization of a simplicial set work, one should either replace Ord by a small
subcategory containing each [n] and closed under the constructions used in this
paper, or one should interpret the point [A, x, p] introduced above as the point
[[n], θ∗x, pθ] where θ : [n]→ A is the unique isomorphism of its form.
For a simplicial object X , its two-fold edge-wise subdivision sub2X (see [3, §4],
[2], and [1]) is the simplicial object defined by A 7→ X(A ∗A). For a simplicial

set X , there is a natural homeomorphism Ψ : |sub2X|
∼=
−→ |X | (defined in [3,

§4]). It can be defined on each simplex as the affine map that sends each vertex
of |sub2X| to the midpoint of the corresponding (possibly degenerate) edge of
|X |. More precisely, it sends a point [A, x, p] ∈ |sub2X| to [A ∗ A, x, (p/2) ∗
(p/2)] ∈ |X |.
The edges of |sub2X| that map onto the two parts of each edge of |X | are
oriented in the same direction. There is another edge-wise subdivision where
the edges are oriented in opposite directions, defined by A 7→ X(A ∗Aop).
Subdivision into more parts can be accomplished by adding additional factors
of A or Aop. Our use of sub2X in this paper, rather than one of the other
available subdivisions, was based on rough sketches in low dimension of the
homotopy Θ produced in Lemma 7 below.
Let C be a category. Let Ar C denote the category of arrows in C. If f is an
arrow of C, let [f ] denote the corresponding object of Ar C.
As defined in [8, 1.1 and 1.2] a category with cofibrations and weak equivalences

consists of a categoryN equipped with a subcategory coN of cofibrations and a
subcategory wN of weak equivalences satisfying five axioms, not repeated here.
Its K-theory space is denoted by KN or KwN , and is defined as the loop
space Ω|wS.N |, where wS.N is defined in [8, (1.3)] as follows. Given A ∈ Ord,
we regard it as a category in the usual way, and we let Exact(ArA,N ) denote
the category of functors N : ArA → N that are exact in the sense that (1)
N [a→ a] = ∗ for all a ∈ A, and (2) the sequence

N [a→ b]  N [a→ c] ։ N [b→ c]

is a cofibration sequence, for all a ≤ b ≤ c in A. (In the presence of condition
(1), condition (2) is equivalent to
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N [a→ b]
��

��

// N [b→ b]
��

��

N [a→ c] // N [b→ c]

being a pushout square.) Then S.N is the simplicial category that is defined
on objects by sending A ∈ Ord to Exact(ArA,N ), and is defined on arrows
in the natural way. Since N is equipped with a category of weak equivalences
wN , so is the exact category Exact(ArA,N ), as Waldhausen proves, yielding
a simplicial category denoted wS.N .
Now suppose F and G are exact functors M → N between categories with
cofibrations and weak equivalences. Choose a coproduct operation on N satis-
fying the identities N ∨ ∗ = N and ∗ ∨N = N . We define a map Φ = ΦF,G :
sub2S.M→ S.N by (ΦM)[a→ b] := FM [(0, a)→ (0, b)]∨GM [(1, a)→ (1, b)];
here we have A ∈ Ord, an exact functor M : Ar(A ∗A) →M regarded as an
element of (sub2S.M)(A), and an arrow a → b in A. One extends the defini-
tion of ΦM from objects to arrows by naturality and checks that it is exact
(using the identity (ΦM)[a→ a] = ∗∨ ∗ = ∗ and exactness of the coproduct of
two cofibration sequences), so Φ is well defined. The idea is that each edge of
S.M gets subdivided into two parts, and we apply F to the first part and G to
the second. (The same thing works for two homomorphisms between abelian
groups, with S. replaced by the nerve of the group.) Let sub2wS.M denote the
simplicial category obtained by applying edge-wise subdivision in the simplicial
direction. The functor Φ preserves weak equivalences, because F , G, and sum
do, yielding a map Φ : sub2wS.M→ wS.N of simplicial categories.
The following definition comes from the text above [8, Proposition 1.3.2].

Definition 1. A sequence F  G ։ H :M→ N of exact functors between
categories with cofibrations and weak equivalences is a cofibration sequence

if: (1) for all M ∈ M the sequence F (M)  G(M) ։ H(M) is a cofibra-
tion sequence of M; and (2) for any cofibration M ′

 M in M the map
G(M ′) ∪F (M ′) F (M)  G(M) is a cofibration in N .

Given a cofibration sequence F  G ։ H as in the definition above, the
additivity theorem (Theorem 8 below) states that F ∨H and G yield homotopic
maps wS.M→ wS.N . We will prove it by showing first that G and ΦH,F yield
homotopic maps, and then composing two such homotopies. To construct this
homotopy we need a new triangulation of the cylinder [0, 1] × |wS.M| that
agrees with that of |wS.M| at one end and with that of |sub2wS.M| at the
other end. Geometrically, it’s sort of clear that such a thing should exist, for
another description of the triangulation on |sub2X| for a simplicial set X , or
rather of its bisimplicial variant, is that it comes by intersecting the simplices
of |∆1 ×X| ∼= |∆1|× |X | with {p}× |X |, where p denotes the midpoint of |∆1|.
The new triangulation (called IX in Definition 4 below), or rather a bisimplicial
variant of it, arises by intersecting the simplices of |∆2 ×X| ∼= |∆2| × |X | with
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ℓ × |X |, where ℓ is the line segment in |∆2| joining the first vertex with the
midpoint of the opposite edge. However, we ignore that interpretation and give
a direct construction, as follows.

Definition 2. Given objects A and B of Ord, define A ⋉ B ∈ Ord to be
A × B equipped with the lexicographic ordering, where (a, b) ≤ (a′, b′) if and
only if (1) a < a′, or (2) a = a′ and b ≤ b′. (The notation is chosen to suggest
that the projection A⋉B → A is an order preserving map, but the projection
A⋉B → B is, in general, not.)

Definition 3. Given maps A
σ
−→ C

ϕ
←− B in Ord, define ϕ−1(σ) ∈ Ord to be

the ordered subset {(a, b) | σa = ϕb} ⊆ A ⋉ B. (The notation is chosen as a
reminder that when σ is injective, then projection to the second factor gives an

isomorphism ϕ−1(σ)
∼=
−→ ϕ−1(σ(A)) ⊆ B. On the other hand, if σ is the map

[n]→ [0], then ϕ−1(σ) = B ∗ . . . ∗B, the concatenation of n+ 1 copies of B.)

Definition 4. Let s : [2] → [1] be the map in Ord defined by s(0) = 0,
s(1) = 1, and s(2) = 1. For a simplicial set X we define a simplicial set IX
on objects by setting IX(A) := {(ϕ, x) | ϕ : A → [1], x ∈ X(ϕ−1(s))} for
A ∈ Ord; its definition on arrows arises from naturality. We point out that
ϕ−1(s) = ϕ−1{0} ∗ϕ−1{1} ∗ϕ−1{1}, so ϕ−1(s) ∼= A if ϕ = 0, and ϕ−1(s) ∼=
A ∗A if ϕ = 1. Consequently, the simplicial subset of IX defined by the
equation ϕ = 0 is isomorphic to X , and the simplicial subset of IX defined by
the equation ϕ = 1 is isomorphic to sub2X . We regard those isomorphisms as
identifications.

Definition 5. We define a map Ψ : |IX| → |∆1| × |X | as follows. The first
component |IX | → |∆1| arises from the simplicial map IX → ∆1 defined by
(ϕ, x) 7→ ϕ, and thus it sends a point [A, (ϕ, x), p] to the point [A,ϕ, p]. The
second component |IX | → |X | is the unique map, affine on each simplex, whose
behavior on vertices (each of which has either ϕ = 0 or ϕ = 1) is that it sends
those with ϕ = 0 to the corresponding vertex of |X | and those with ϕ = 1
to the midpoint of the corresponding (possibly degenerate) edge of |X |. More
precisely, the map sends a point [A, (ϕ, x), p] ∈ |IX| to [ϕ−1(s), x, ϕ ⋄ p] ∈ |X |,

where ϕ ⋄ p ∈ ∆
ϕ−1(s)
top is defined by (0, a) 7→ p(a) for a ∈ ϕ−1(0), and by

(1, a) 7→ p(a)/2 and (2, a) 7→ p(a)/2 for a ∈ ϕ−1(1). (Writing p′ for the
restriction of p to ϕ−1(0) and p′′ for the restriction of p to ϕ−1(1), we see that
ϕ ⋄ p = p′ ∗ (p′′/2) ∗ (p′′/2).)

Lemma 6. For a simplicial set X, the map Ψ : |IX| → |∆1| × |X | is a homeo-

morphism.

Proof. By commutativity with colimits, we may assume X = ∆n. The sim-
plicial set IX has only a finite number of nondegenerate simplices, so the source
and target of Ψ are compact Hausdorff spaces, and thus it is enough to show
that Ψ is a bijection.
To show surjectivity, consider a point ([[1], β, q], [[t], x, r]) in |∆1|×|X |, with r in
the interior of ∆t

top. Let k = q(0). We may assume that the partial sums sj :=
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∑j−1
i=0 ri, for j = 0, . . . , t+1, include k, for if not, then picking j so that sj < k <

sj+1, we may construct r′ = (r0, . . . , rj−1, k−sj , sj+1−k, rj+1, . . . , rt) ∈ ∆t+1
top ;

its partial sums are those of r, together with k, and there is a surjective map
f : [t + 1] → [t] that collapses r′ to r. Letting x′ = f∗(x) = x ◦ f be the
corresponding degeneracy of x, we have [[t], x, r] = [[t + 1], x′, r′]. Similarly,
we may assume that each number w with k ≤ w ≤ k + (1 − k)/2 is a partial
sum of r if and only if w + (1 − k)/2 is. Pick b with sb = k and c with
sb+c = k + (1 − k)/2. Then, due to the symmetry of the partial sums, rb+i =
rb+c+i if 0 ≤ i < c, and b + 2c = t + 1. In more detail, one deduces the
equality as follows: one has rb+i = sb+i+1 − sb+i, in which sb+i+1 and sb+i

are adjacent partial sums between k and k + (1− k)/2, so by symmetry of the
partial sums, sb+i+1 + (1 − k)/2 = sb+c+i+1 and sb+i + (1 − k)/2 = sb+c+i,

hence rb+c+i = sb+c+i+1 − sb+c+i = sb+i+1 − sb+i = rb+i. Now let p ∈ ∆b+c−1
top

be defined by p = (r0, . . . , rb−1, 2rb, . . . , 2rb+c−1), and let ϕ : [b + c − 1] → [1]
be defined by ϕ(i) = 0 for 0 ≤ i < b and ϕ(i) = 1 for b ≤ i < b + c.
Then ([[1], β, q], [[t], x, r]) = Ψ([[b + c − 1], (ϕ, x′), p]), where x′ ∈ X(ϕ−1(s))
corresponds to x ∈ X([t]) via the unique isomorphism ϕ−1(s) ∼= [t].
To show injectivity, consider a point [A, (ϕ, x), p] ∈ |IX | where (ϕ, x) is non-
degenerate and p is an interior point of ∆A

top. Observe that x is a function

ϕ−1(s)→ [n], and that ϕ ⋄ p is an interior point of its simplex. The determin-
istic procedure described in the previous paragraph recovers A, ϕ, x, and p, up
to isomorphism, from the unique nondegenerate interior representatives of the
two components of Ψ([A, (ϕ, x), p]), showing injectivity. �

Lemma 7. Let F  G ։ H : M → N be a cofibration sequence of exact

functors between categories with cofibrations and weak equivalences. There is a

map Θ : IwS.M→ wS.N such that Θ agrees with G on the simplicial subset of

IwS.M where ϕ = 0 and with ΦH,F on the simplicial subset of IwS.M where

ϕ = 1.

Proof. The construction will be natural in the direction of the nerve of the
weak equivalences, so we don’t explicitly mention the weak equivalences in the

rest of the proof. For each object [M ′
f
−→M ] of ArM we choose a value in N

for

P [f ] := colim













F (M ′)
F (f)

//
��

��

F (M)

G(M ′)













.

The colimit exists because the vertical map in the diagram is a cofibration, and,
in the case where f is a cofibration, is the same as the pushout referred to in
part (2) of definition 1. We may ensure P [f ] = ∗ if M ′ = M = ∗. Having made
those choices, one defines P on maps in ArM to get a functor P : ArM→N .
Recall from [8, Lemma 1.1.1] that the full subcategory F1N of ArN , consisting
of the arrows of N that are cofibrations, is a category with cofibrations, where
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a cofibration [A  B]  [A′
 B′] is an arrow having the property that both

A  A′ and A ∪A′ B  B′ are cofibrations; the latter part of the condition
ensures that cofibrations are stable under pushout. It follows that P sends each
(horizontal) cofibration sequence

L′ // //

f

��

M ′ // //

g

��

N ′

h

��

L // // M // // N

of (vertical) maps (in which the rows are cofibration sequences of M) to a
cofibration sequence P [f ]  P [g] ։ P [h] of N . The point is that, according
to definition 1, the left vertical map in the pushout diagram

[FL′
 FM ′] //

��

��

[FL  FM ]
��

��

[GL′
 GM ′] // [P [f ]  P [g]]

is a cofibration in F1N , that the upper horizontal map is an arrow in F1N , and
thus that the pushout [P [f ]  P [g]] lies in F1N and is therefore a cofibration.
One also sees, using the gluing lemma [8, 1.2: Weq 2], that P sends each
(horizontal) weak equivalence

L′
∼

//

f

��

M ′

g

��

L
∼

// M

of (vertical) maps (in which the horizontal maps are weak equivalences ofM)

to a weak equivalence P [f ]
∼

−→ P [g] in wN .
We say that P is an exact functor, in the sense that it preserves cofibration
sequences and weak equivalences, as proved above.
We point out two special cases.

(A) if f = 1 is an identity map (or an isomorphism), then there is a natural
isomorphism P [f ] ∼= G(M ′)

(B) if f = 0 is a map that factors through ∗, then there is a natural
isomorphism P [f ] ∼= F (M) ∨H(M ′)

Thus, in a precise sense, P includes G and F ∨H as special cases, allowing it
to play the lead role in the construction of Θ, which somehow deforms f = 1
to f = 0 continuously. (This basic idea was also used in [4, (10.3) and (10.4)]
to prove a different sort of additivity theorem.)
We define Θ : IwS.M → wS.N as follows. Given A ∈ Ord and (ϕ,M) ∈
(IwS.M)(A), we define Θ(ϕ,M) ∈ (wS.N )(A) as follows. Recall from defi-
nition 4 that ϕ is a map A → [1], that s is a certain map s : [2] → [1], and
that M ∈ (wS.M)(ϕ−1(s)). Introduce maps d ≤ e : [1] → [2] defined by
d(0) = e(0) = 0, d(1) = 1, and e(1) = 2; they are the sections of s, and thus,
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for any a ∈ A, we have (dϕa, a) ∈ ϕ−1(s) and (eϕa, a) ∈ ϕ−1(s). Our task is
to define an exact functor Θ(ϕ,M) : ArA→ N , so given an object [a→ b] in
ArA, we define an object of N as follows, introducing the label f for future
reference.

(Θ(ϕ,M))[a→ b] := P [M [(dϕa, a)→ (dϕb, b)]
f
−→M [(eϕa, a)→ (eϕb, b)]]

We extend the definition of Θ(ϕ,M) to arrows by naturality and by pointing
out that the construction preserves weak equivalences. Exactness of Θ(ϕ,M)
follows from exactness of M and of P , completing the definition of Θ.
The rest of the statement follows from the following two special cases, which
result from the previous ones.

(A) if ϕa = ϕb = 0 then f = 1 is an identity map, and thus there is a
natural isomorphism

(Θ(ϕ,M))[a→ b] ∼= GM [(0, a)→ (0, b)]

(B) if ϕa = ϕb = 1, then (dϕb, b) = (1, b) < (2, a) = (eϕa, a), which implies
that f = 0 (because it factors through the object M [(1, b)→ (1, b)] =
∗), and thus that there is a natural isomorphism

(Θ(ϕ,M))[a→ b] ∼= HM [(1, a)→ (1, b)] ∨ FM [(2, a)→ (2, b)]

�

Theorem 8 (Additivity, [8, 1.3.2(4)]). Let F  G ։ H be a cofibration

sequence of exact functors M → N between categories with cofibrations and

weak equivalences. Then F ∨H and G induce homotopic maps KM→ KN .

Proof. Combining lemma 7 and lemma 6 we see that G and ΦH,F induce
homotopic maps |wS.M| → |wS.N|. There is a cofibration sequence F 

F ∨H ։ H , so F ∨H and ΦH,F also induce homotopic maps. Composing the
two homotopies (after reversing one of them) yields the result. �

Remark 9. Waldhausen’s Additivity Theorem provides four equivalent formu-
lations of the result, so it is sufficient to prove only the fourth of them, as we do
here. Quillen’s version [7, §3, Theorem 2] of the additivity theorem was stated
for the Q-construction as a homotopy equivalence (s, q) : QE → QM× QM,
where M is an exact category, and E is the exact category of short exact se-
quences E = (0 → sE → tE → qE → 0) in M. Here s, q : E → M are the
exact functors that extract sE and qE from the exact sequence E. Quillen’s
formulation is analogous to Waldhausen’s first formulation [8, 1.3.2(1)] and is
implied by it.
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