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Abstract. Let k be a field. We attach a CW-complex to any
Schurian k-category and we prove that the fundamental group of this
CW-complex is isomorphic to the intrinsic fundamental group of the
k-category. This extends previous results by J.C. Bustamante in [8].
We also prove that the Hurewicz morphism from the vector space of
abelian characters of the fundamental group to the first Hochschild-
Mitchell cohomology vector space of the category is an isomorphism.
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1 Introduction

In this paper we consider Schurian categories, that is, small linear categories
over a field k such that each vector space of morphisms is either of dimension
one or zero.
Recall that there is no homotopy theory available for a k-algebra or, more
generally, for a k-linear category. More precisely there is neither homotopy
equivalence nor a definition of loops as in algebraic topology taking into account
the k-linear structure. As an alternative we consider an intrinsic fundamental
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200801-00487, PICT-2007-02182 and MATHAMSUD-NOCOMALRET. The second and
third authors are research members of CONICET (Argentina). The third author is a Regular
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group à la Grothendieck, that we have defined in [13] and [14] using connected
gradings. In [14] we have computed this group for matrix algebrasMp(k) where
p is a prime and k is an algebraically closed field of characteristic zero, obtaining
that π1(Mp(k)) = Fp−1×Cp where Fp−1 is the free group with p−1 generators
and Cp is the cyclic group of order p, using classifications of gradings provided
in [2, 4, 23].
The intrinsic fundamental group is defined in terms of Galois coverings provided
by connected gradings. It is the automorphism group of the fibre functor over
a fixed object. In case a universal covering U exists for a k-linear category C,
its fundamental group π1(C) is isomorphic to the automorphism group of the
covering U .
It is intrinsic in the sense that it does not depend on the presentation of the
k-category by generators and relations. If a universal covering exists, then we
obtain that the fundamental groups constructed by R. Mart́ınez-Villa and J.A.
de la Peña (see [27], and [1, 6, 20]) depending on the choice of a presentation
of the category by a quiver and relations are in fact quotients of the intrinsic
π1 that we introduce. Note that those groups can vary according to different
presentations of the same k-category (see for instance [1, 10, 25]).
The definition of π1(C) is inspired in the topological case considered for instance
in R. Douady and A. Douady’s book [16]. They are closely related to the
way in which the fundamental group is viewed in algebraic geometry after
A. Grothendieck and C. Chevalley.
Note that the existence of a universal covering for a k-linear category is equiv-
alent to the existence of a universal grading, namely a connected grading such
that any other connected grading is a quotient of it.
In this paper we will prove that a Schurian category C admits a universal
covering. In fact a universal grading is obtained through the topological fun-
damental group of a CW-complex CW (C) that we attach to C. We infer that
π1(C) = π1(CW (C)). The CW-complex we define is very close to a simplicial
complex. It is a simplicial complex when C is such that if yCx 6= 0 then xCy = 0
for x 6= y (where yCx is the vector space of morphisms from x to y).
J.C. Bustamante considers in [8] k-categories with a finite number of objects
subject to the above conditions which he calls ”Schurian almost triangular” in
order to prove a similar result through the fundamental group of a presentation
as defined in [6, 21, 27]. He uses the simplicial complex from [5, 7, 28] whose
2-skeleton coincides with ours in the Schurian almost triangular context. We
do not require that the category has a finite number of objects, neither that
it admits an admissible presentation. Moreover we provide an example of a
Schurian category which has no admissible presentation and we compute its
fundamental group. Note also that we generalize the result by M. Bardzell and
E. Marcos in [3], where they prove that the fundamental group of a Schurian
basic algebra does not depend on the admissible presentation.
We thank G. Minian for interesting discussions, and in particular for pointing
out that cellular approximation enables to provide homotopy arguments from
algebraic topology using the 1-skeleton. In [8], J.C. Bustamente uses the edge
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path group instead, which requires a finite number of objects. In [9] a CW-
complex attached to a presentation of a finite number of objects category is
considered in order to compute the fundamental group of the presentation.
In case of a complete Schurian category C, that is all the vector spaces of
morphisms are one dimensional and composition of non-zero morphisms is non-
zero, the CW-complex attached to C enables to retrieve that π1(C) = 1, see
[14, Corollary 4.6].
Finally we consider the Hurewicz morphism (see [1, 12, 31]) for a Schurian
category C. We show that this morphism from the vector space of abelian
characters of π1(C) to the first Hochschild-Mitchell cohomology vector space of
C is an isomorphism.
Even though the best understood class of coverings is that of Galois cover-
ings, general non-Galois coverings have also been considered. For instance,
in [17, 30], almost Galois coverings and balanced coverings, respectively, have
been defined. The approach is different since the focus is to get results in the
representation theory of algebras, but they also use gradings, and some notions
and results may have a connection with some parts of this paper.
The authors want to thank the referee for the comments and suggestions he/she
made, which contributed to improvements in the presentation of the results.

2 Fundamental group

Recall that, given a field k, a k-category is a small category C such that each
morphism set yCx from an object x ∈ C0 to an object y ∈ C0 is a k-vector space,
the composition of morphisms is k-bilinear and the k-multiples of the identity
at each object are central in its endomorphism ring.
A grading X of a k-category C by a group ΓX is a direct sum decomposition

yCx =
⊕

s∈ΓX

Xs
yCx

for each x, y ∈ C0, where Xs
yCx is called the homogeneous component of

degree s from x to y, such that for s, t ∈ ΓX

Xt
zCy Xs

yCx ⊂ Xts
zCx.

In case f ∈ Xs
yCx and f 6= 0 we write degX f = s and we say that f is

homogeneous of degree s.
In order to define a connected grading, we consider virtual morphisms. More
precisely, each non-zero morphism f from its source s(f) = x to its target
t(f) = y gives rise to a virtual morphism (f,−1) from y to x, and we put
s(f,−1) = y and t(f,−1) = x. We consider neither zero virtual morphisms nor
composition of virtual morphisms. A non-zero usual morphism f is identified
with the virtual morphism (f, 1) with the same source and target objects as f .
A walk w in C is a sequence of virtual morphisms

(fn, ǫn), . . . , (f1, ǫ1)
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where ǫi ∈ {+1,−1}, such that the target of (fi, ǫi) is the source of (fi+1, ǫi+1).
We put s(w) = s(f1, ǫ1) and t(w) = t(fn, ǫn).
The category C is connected if for any pair of objects (x, y) there exists a
walk w from x to y.
A homogeneous virtual morphism is a virtual morphism (f, ǫ) with f
homogeneous. We put degX(f, 1) = degX(f) and degX(f,−1) = degX(f)−1.
A homogeneous walk w is a walk made of homogeneous virtual morphisms,
and its degree is the ordered product of the degrees of the virtual morphisms.
By definition the grading X is connected if for any pair of objects (x, y)
and any group element s ∈ ΓX there exists a homogeneous walk w from x to
y such that degX w = s. Hence if a connected grading exists the category is
necessarily connected. In case the category C is already connected, a grading
is connected if for a fixed pair of objects (x0, y0) there exists a homogeneous
walk from x0 to y0 of degree s for any s ∈ ΓX , see [13].
In general a linear category does not admit a universal covering. However,
in case a universal covering U exists, according to the theory developed in
[13, 14], we have that the intrinsic fundamental group π1(C) is isomorphic
to the automorphism group of the universal covering. In this paper we will
not provide the general definition of the fundamental group since we will only
consider k-categories with a universal covering.

3 CW-complex

Let C be a connected Schurian k-category, that is a small linear category over
a field k such that each vector space of morphisms is either of dimension one
or zero. We choose a non-zero morphism yex in each one-dimensional space
of morphisms yCx, where xex = xIx is the unit element of the endomorphism
algebra of x.
Observe that xey yex 6= 0 is equivalent to yex xey 6= 0, since if xey yex = λ (xIx)
with λ ∈ k∗, then yex xey 6= 0 since otherwise yex xey yex is simultaneously
zero and a non-zero multiple of yex.

Definition 3.1 The associated CW-complex CW (C) is defined as follows

• The 0-cells are given by the set of objects C0.

• Each morphism yex with x 6= y gives rise to a 1-cell still denoted yex
attached to x and y.

• If x, y and z are pairwise distinct objects such that yCx, zCy and zCx are
non-zero, and zey yex 6= 0, we add a 2-cell attached to the 1-cells yex,

zey and zex.

• If x and y are distinct objects such that yCx and xCy are non-zero, and

xey yex 6= 0 (equivalently yex xey 6= 0, as mentioned above), we add
exactly one 2-cell attached to the 1-cells yex and xey.
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Remark 3.2 Note that in case x and y are distinct objects such that yCx 6=
0 6= xCy, two 1-cells are attached to x and y.
Observe that in case x, y and z are distinct objects such that zey yex = 0, there
is no 2-cell attached, even in case zCx 6= 0.

The associated CW-complex we have just defined has no n-cells for n ≥ 3, it
coincides with its 2-skeleton. We do not need to go further since the funda-
mental group of any CW-complex coincides with the fundamental group of its
2-skeleton, see for instance [22, Chapter 2].

Example 3.3 (see [14, Corollary 4.6]) Let Dn be a complete Schurian

category with n-objects 1, . . . , n: for each pair of objects (x, y), the mor-
phism space Dn

x is one dimensional with a basis element yex, where xex = xIx.
Composition is defined by zey yex = zex for any triple of objects. Note that the
direct sum algebra of morphisms for Dn is the matrix algebra Mn(k).
We assert that CW (Dn) is contractible, that is, it has the homotopy type of a
point. Note that CW (D2) is a disk. For n ≥ 3 consider the CW-subcomplex
Ln consisting of all 0-cells of Dn and a chosen 1-cell attached to i and i+1 for
i = 1, . . . , n−1 (there are no 2-cells in Ln). This CW-subcomplex is closed and
contractible. Consequently the quotient CW (Dn)/Ln has the same homotopy
type than CW (Dn), see for instance [22, p.11]. Moreover CW (Dn)/Ln has
only one 0-cell. We assert that each 1-cell not in Ln is the border of at least
one disk in CW (Dn)/Ln. Indeed, in case of the 1-cell not in Ln between j and
j + 1, for j = 1, . . . , n− 1, the 2-cell attached to the two 1-cells between j and
j + 1 becomes the required disk in the quotient. In case the 1-cell is between j
and j + k, for j = 1, . . . , n − 2 with k = 2, . . . , n − j, the 2-cells given by the
triples (j, j +1, j + 2), (j, j + 2, j + 3), . . . , (j, j + k− 1, j + k) provide a disk in
the quotient having the original 1-cell as border. Finally there are two 1-cells
attached to n and 1, both are not in Ln and can be identified since a 2-cell
is attached to them; they are the border of the disk obtained with the 2-cells
(1, 2, 3), (1, 3, 4), . . . , (1, n− 1, n).

Let w = (fn, ǫn), · · · , (f1, ǫ1) be a walk in C from x to y. The inverse walk

w−1 is the walk (f1,−ǫ1), · · · , (fn,−ǫn) from y to x. Note that in case w is a
homogeneous walk for a grading X , then

degX w−1 = (degX w)−1.

Let C be a connected k-category and let X be a grading of C. Let c0 be an
object of C. A set of connector walks is a set of walks u = {xuc0}x∈C0

where xuc0 goes from c0 to x, such that degX xuc0 = 1 and c0uc0 = c0 Ic0 . If the
grading is connected a set of connector walks exist.
Let C be a k-category, x an object in C and let w = (fn, ǫn), · · · , (f1, ǫ1) be
a closed walk in C from x to x. In CW (C) there is a loop counterpart to
w that we still denote w and that we call the loop described by w which
is defined as follows. This loop is obtained as the continuous map from [0, 1]
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subdivided in n intervals Ii = [ i−1
n

, i
n
], where Ii corresponds to the 1-cell defined

by the non-zero morphism fi corresponding to the virtual one (fi, ǫi) and where
w( i−1

n
) = s(fi, ǫi) and w( i

n
) = t(fi, ǫi).

Proposition 3.4 Let C be a connected Schurian k-category, let X be a con-
nected grading of C and let u be a set of connector walks for X for an object c0.
There exists a connected grading ZX,u of C by the group π1(CW (C), c0), where
c0 is considered as a base point of the CW-complex.

Proof. Let u be a set of connector walks for X and let yex be a non-zero
morphism of yCx. We define its ZX,u-degree as the homotopy class of the loop
described by the walk yu

−1
c0

, yex, xuc0 in CW (C), that is,

degZX,u yex = [yu
−1
c0 yex xuc0].

In order to prove that this defines a grading, let x, y, z be objects in C. In case

zey yex = 0 there is nothing to prove. In case zey yex 6= 0 we have that

zey yex = zλx
y

zex

with zλx
y a non-zero element in k. We have to show that the following equality

holds:
(degZX,u zey)(degZX,u yex) = degZX,u zex.

The left hand side is the following homotopy class

[zu
−1
c0 zey yuc0 ][yu

−1
c0 yex xuc0 ] = [zu

−1
c0 zey yuc0yu

−1
c0 yex xuc0]

= [zu
−1
c0 zey yex xuc0 ].

Observe that since zeyyex is a non-zero morphism in C, the CW-complex has
a 2-cell attached, which means that the path described by the walk zey, yex is
homotopic to zex. This observation provides the required result. ⋄

Lemma 3.5 Let C be a connected Schurian category with a given base object
c0, let X be a connected grading of C and let ZX,u be the grading considered
above by the group π1(CW (C), c0). Let w be a closed walk at c0 in C. Then

degZX,u
w = [w] ∈ π1(CW (C), c0)

where [w] is the homotopy class of the loop described by w in CW (C).

Proof. Observe first that the degree of a pure virtual morphism (yex,−1) is
the homotopy class [yu

−1
c0 yex xuc0 ]

−1 = [xu
−1
c0 ye

−1
x yuc0 ]. Hence the connector

walks xuc0 annihilate succesively in π1(CW (C), c0), enabling us to obtain the
result (recall that c0uc0 = c0 Ic0). ⋄
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Proposition 3.6 Let C be a connected Schurian k-category and let X be a
connected grading. Then the grading ZX,u obtained in Proposition 3.4 is con-
nected.

Proof. Since C is connected, it is enough to prove that for any element [l] ∈
π1(CW (C), c0) there exists a closed walk w at c0 in C such that degZX,u

w = [l].
Recall that [l] is a homotopy class, more precisely l is a continuous map

[0, 1] → CW (C)

such that l(0) = l(1) = c0. We use cellular approximation (see for instance [22,
Theorem 4.8]) in order to obtain a homotopic cellular loop l′ such that the image
of l′ is contained in the 1-skeleton. Its image is compact. A compact set in a
CW-complex meets only finitely many cells (see for instance [22, Proposition
A.1, page 520]). We infer that l is homotopic to a loop l′ such that its image is
a closed walk w at c0 in C. The previous Lemma asserts that the ZX,u-degree
of w is precisely [l′] = [l]. ⋄

Definition 3.7 Let X and Z be gradings of a k-category C. We say that X
is a quotient of Z if there exists a surjective group map

ϕ : ΓZ → ΓX

such that for any pair of objects (x, y) we have that

Xs
yCx =

⊕

ϕ(r)=s

Zr
yCx.

Theorem 3.8 Let C be a connected Schurian k-category and let X be a con-
nected grading of C. Let ZX,u be the connected grading of C by π1(CW (C)), c0)
defined in the Proof of Proposition 3.4. Then X is a quotient of ZX,u through
a unique group map ϕ.

Proof. Let [l] be a homotopy class in π1(CW (C)), c0). As in the previous
proof, using cellular approximation we can assume that the image of l is a
closed walk w at c0 in C. In order to define a group morphism

ϕ : π1(CW (C)), c0) → ΓX

we put ϕ([l]) = degX w.
In order to check that ϕ is well defined, we have to prove that degX w = degX w′

whenever w and w′ are closed walks at c0 providing homotopic loops in CW (C).
Assume first that w and w′ only differ by a 2-cell, that is, zey, yex is part of
w, zey yex 6= 0 and w′ coincide with w except that zey, yex is replaced by zex
through the corresponding 2-cell in CW (C). Since C is Schurian we have that

zey yex is a non-zero multiple of zex. Now since X is a grading

degX(zey yex) = degX zex
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and degX w = degX w′.
For the general case, let h be a homotopy from w to w′. Using again the result
in [22, Proposition A.1, page 520], we can assume that the compact image of h
meets a finite number of 2-cells. Consequently w and w′ only differ by a finite
number of 2-cells. By induction we obtain degX w = degX w′.
The map is clearly a group morphism. In order to prove that ϕ is surjective,
let s ∈ ΓX . Since X is connected, there exists a closed homogeneous walk w at
c0 of X-degree s. Clearly there is a loop l with image w, hence ϕ([l]) = s.
It remains to prove that the homogeneous component of a given X-degree s is
the direct sum of the corresponding ZX,u-homogeneous components. Observe
that since C is Schurian, the direct sum decomposition is reduced to only one
component. Let yex be a morphism which has X-degree s. By definition, its
ZX,u-degree is [yu

−1
c0 yex xuc0 ] and we have to prove that ϕ[yu

−1
c0 yex xuc0 ] = s,

that is, degX(yu
−1
c0 yex xuc0) = s. The result follows since the connectors xuc0

have trivial X-degree.
Concerning uniqueness, let ϕ′ : π1(CW (C)), c0) → ΓX be a surjective group
map such that for each morphism yex we have ϕ′(degZX,u yex) = degX yex,
that is,

ϕ′
([

yu
−1
c0 yex xuc0

])

= ϕ
([

yu
−1
c0 yex xuc0

])

.

This shows that ϕ and ϕ′ coincide on loops of this form. Let now l be an
arbitrary loop. In order to prove that ϕ′([l]) = ϕ([l]), we first replace l by a
cellular approximation in such a way that l describes a walk in C. Clearly any
loop at c0 in CW (C) is homotopic to a product of loops as above and their
inverses. We infer that ϕ and ϕ′ are equal on any loop. ⋄

We will prove next that ZX,u depends neither on the choice of the set u nor on
the connected grading X . We will consider a slightly more general situation in
order to prove these facts.
First recall that a set of connector walks depends on a given grading. In case
there is no grading, a set of connector walks means a set of connector walks
for the trivial grading by the trivial group. In other words a set of connector
walks for a linear category without a given grading is just a choice of a set of
walks from a given object c0 to each object x, where the walk from c0 to itself
is c0 Ic0 .
Let C be a connected Schurian k-category with a base object c0 and let u
be a set of connector walks. By definition the grading Zu of C with group
π1(CW (C), c0) is given by degZu yex = [yu

−1
c0 yex xuc0]. Next we will prove

that given two sets of connector walks u, v, the corresponding gradings Zu and
Zv differ in a simple way that we will call conjugation.

Definition 3.9 Let X be a grading of a connected k-category C. Let a =
(ax)x∈C0

be a set of group elements of ΓX . The conjugated grading aX has
the same homogeneous components than X but the degree is changed as follows:

(aX)s yCx = Xay sa
−1

x
yCx
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In order to consider morphisms between gradings, they must be understood in
the setting of Galois coverings, see [14]. More precisely any grading gives rise to
a Galois covering through a smash product construction, see [11]. The Galois
coverings obtained by smash products form a full subcategory of the category
of Galois coverings. Moreover, both categories are equivalent. Consequently
morphisms between gradings are morphisms between the corresponding smash
product Galois coverings.
Now, to each grading X of a k-category C we associate a new k-category C#X
and a functor FX : C#X → C as follows.

(C#X)0 = C0 × ΓX

(y,t)(C#X)(x,s) = Xt−1s
yCx

FX(x, s) = x

FX : (y,t)(C#X)(x,s) →֒ yCx

In particular FX is a Galois covering and any Galois covering is isomorphic to
one of this type. Note that C#X is a connected category if and only if the
grading X is connected.

Proposition 3.10 Let C be a connected k-category and X be a connected grad-
ing of C. Let a = (ax)x∈C0

be a set of group elements of ΓX and aX be the con-
jugated grading. The Galois coverings C#X and C#aX are isomorphic, more
precisely there exists a functor H : C#aX → C#X such that FXH = Fa

X .

Proof. Recall that (aX)syCx = Xaysa
−1

x yCx. Consequently

(y,t)(C#
aX)(x,s) = (aX)t

−1s
yCx = Xayt

−1sa−1

x
yCx = (y,ta−1

y )(C#
aX)(x,sa−1

x ).

This computation shows that defining H on objects by H(x, s) = (x, sa−1
x ) and

by the identity on morphisms provides the required isomorphism. ⋄

Proposition 3.11 Let C be a connected Schurian k-category, c0 a base object
and X,Y two connected gradings of C. Let ZX,u and ZY,v be the connected
gradings by the group π1(CW (C), c0), associated to the sets u and v of homo-
geneous connector walks for X and Y respectively, given by the choices xuc0

and xvc0 for any x ∈ C0. Then ZY,v and ZX,u are conjugated through the set
of group elements ax = xu

−1
c0 xvc0 .

Proof. Recall that degZX,u yex = [yu
−1
c0 yex xuc0 ], then by definition

dega
ZX,u yex = a−1

y (degZX,u yex) ax

= [yv
−1
c0 yuc0 yu

−1
c0 yex xuc0 xu

−1
c0 xvc0 ]

= degZY,v yex.

⋄
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Remark 3.12 Since all the gradings ZX,u are isomorphic, we can choose the
trivial grading by the trivial group. However we still need to choose connector
walks. Moreover we have shown that each connected grading is a unique quotient
of the grading by the group π1(CW (C), c0).

Corollary 3.13 Let C be a connected Schurian k-category, and let c0 be a
base object. Then

π1(C, c0) = π1(CW (C), c0).

Proof. From [13], we know that in case a universal covering exists, the
fundamental group of the category is its group of automorphisms. The results
we have proven show that the grading by the fundamental group of CW (C)
is a universal grading, consequently the smash product Galois covering is a
universal Galois covering with automorphism group π1(CW (C), c0). ⋄

Next we compute the intrinsic fundamental group of a k-category with an
infinite number of objects and without admissible presentation.

Example 3.14 Let C be the k-category given by the quiver:

...

��

...

a1
α1 //

β1

��

b1

OO

a0
α0 //

β0

��

b0

γ0

OO

a−1
α

−1 //

��

b−1

γ
−1

OO

...
...

OO

with the relations γiαiβi+1 = αi+1 for all i 6= 0 and γ0α0β1 = 0.
In CW (C) there is a 2-cell attached to each square except the 0-one. Conse-
quently π1(C) = Z.

4 Hurewicz isomorphism

Let C be a k-category. A k-derivation d with coefficients in C is a set of linear
morphisms ydx : yCx → yCx for each pair (x, y) of objects, verifying

zdx(gf) = zdy(g)f + gydx(f)
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for any f ∈ yCx and g ∈ zCy.
Let a = (ax)x∈C0

be a family of endomorphisms of each object x ∈ C0, namely
ax ∈ xCx. The inner derivation da associated to a is defined by

y(da)x(f) = ayf − fax.

The first Hochschild-Mitchell cohomology HH1(C) is the quotient of
the vector space of derivations by the subspace of inner ones (see [29] for the
general definition).

Remark 4.1 In fact HH1(C) has a Lie algebra structure, where the bracket of
derivations is given by

y[d, d
′]x = ydx yd

′
x − yd

′
x ydx.

Definition 4.2 Let X be a grading of a k-category C. The Hurewicz mor-

phism

h : Hom(ΓX , k+) → HH1(C)

is defined as follows. Let χ : ΓX → k+ be an abelian character and let f be a
homogeneous morphism in yCx. Then

yh(χ)x(f) = χ(degX f)f.

An arbitrary morphism is decomposed as a sum of its homogeneous components
in order to extend linearly the definition of yh(χ)x.

Remark 4.3 The set h(χ) is a derivation. This can be verified in a simple
way relying on the fact that X is a grading. Derivations of this type are called
”Eulerian derivations”, see for instance [18, 19].

The following result is immediate.

Lemma 4.4 The image of the Hurewicz morphism is an abelian Lie subalgebra
of HH1(C).

We recall that, under some assumptions, the Hurewicz morphism is injective.

Proposition 4.5 Let C be a k-category and assume the endomorphism algebra

xCx of each object x in C0 is equal to k. Let X be a connected grading of C.
Then the Hurewicz morphism is injective.

Proof. If h(χ) is an inner derivation,

t(f)h(χ)s(f)(f) = χ(degX f)f = at(f)f − fas(f)

for any homogeneous non-zero morphism f , where (ax)x∈C0
is a set of endomor-

phisms which are elements of k by hypothesis. Then χ(degX f) = at(f)−as(f).
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Now we assert that the same equality holds for any homogeneous walk w, that
is,

χ(degX w) = at(w) − as(w).

For instance let w = (g,−1), (f, 1) be a homogeneous walk where f ∈ yCx and
g ∈ yCz. Then

χ(degX w) = χ((degX g)−1(degX f)) = −χ(degX g) + χ(degX f)

= as(g) − at(g) + at(f) − as(f)

= az − ay + ay − ax = az − ax = at(w) − as(w).

Let c0 be any fixed object of C. Since X is a connected grading, for any group
element s ∈ ΓX there exists a homogeneous walk w, closed at c0, such that
degX w = s. Consequently

χ(s)w = (ac0 − ac0)w = 0

hence χ(s) = 0 for any s ∈ ΓX . ⋄

Theorem 4.6 Let C be a connected Schurian k-category and let U be its uni-
versal grading by the fundamental group π1(CW (C), c0). The corresponding
Hurewicz morphism is an isomorphism.

Proof. The previous result insures that h is injective. In order to prove that
h is surjective, let d be a derivation. We choose a non-zero morphism yex in
each 1-dimensional space of morphisms yCx, with xex = xIx. Let c0 be a fixed
object in C. To describe the universal grading, recall that we choose a set of
connector walks, hence

degU yex = [yu
−1
c0 yex xuc0] ∈ π1(CW (C), c0).

Since yCx is one dimensional, d(yex) = yλx yex with yλx ∈ k. In order to define
an abelian character χ such that h(χ) = d, let l be a loop at c0 in CW (C). By
cellular approximation we can assume that the image of l is a closed walk w in
C. In case w is of the form yu

−1
c0 yex xuc0 we define χ[l] = yλx. Otherwise the

cellular loop w is homotopic to a product of loops of the previous type or of
their inverses, and we define χ[l] to be the corresponding sum of scalars. We
have to verify that χ is well defined. First observe that if zey yex 6= 0, the
scalars of the derivation d verify

zλx = zλy + yλx.

Indeed, zey yex = µ zex, with µ 6= 0, hence

d(zey yex) = zey d(yex) + d(zey) yex

= µ (zλy + yλx) zex.
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We deduce the result since d(µ zex) = µ zλx zex. Consider now two cellular
loops l and l′ which are homotopic by a 2-cell, meaning that a walk zey, yex is
replaced by zex. The previous computation shows that χ[l] = χ[l′]. We have
already verified that any homotopy of cellular loops decomposes as a finite
number of homotopies of the previous type, hence we deduce that χ is a well
defined map. By construction χ : π1(CW (C), c0) → k+ is an abelian character
and clearly h(χ) = d. ⋄
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