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Abstract. Let G be a reductive algebraic group, with nilpotent cone
N and flag variety B. We construct an exact functor from perverse
sheaves on N to locally constant sheaves on B, and we use it to study
Ext-groups and stalks of simple perverse sheaves on N in terms of the
cohomology of B.
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1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field
k of good characteristic. Let N denote the nilpotent cone in its Lie algebra
g, and let W denote its Weyl group. An explicit description of the stalks of
simple perverse sheaves on N has been given by Lusztig [L], building on earlier
ideas of Shoji [S1, S2]. For most such perverse sheaves (those appearing in the
Springer correspondence), this description involves the representation theory
of W , and specifically its coinvariant algebra. The coinvariant algebra of W is
also isomorphic to the cohomology ring H•(B) of the flag variety B. However,
that cohomology ring does not appear in the proofs in [L], which rely instead
on orthogonality properties of character sheaves coming from the geometry of
semisimple classes.
The present paper is an attempt to understand Lusztig’s results directly in
terms of the geometry of B. Consider the diagram

(1.1) N Ñ
µ

oo π // B,

where Ñ denotes the cotangent bundle of B, π is the natural projection map,
and µ is the Springer resolution. We study the functor

(1.2) Φ = π!µ
∗ : Db

m(N ) → Db
m(B),

1The author was partly supported by National Security Agency grant H98230-09-1-0024.
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where Db
m(X) denotes the category of mixed complexes of Q̄ℓ-sheaves (for some

ℓ 6= chark) that are constructible with respect to the G-orbits on X .
The main results, proved in Sections 3–4, are summarized in the statement
below. This statement involves the following categories: PG(N ) ⊂ Db

m(N ) is
the abelian category of perverse sheaves; Spr ⊂ PG(N ) is the Serre subcate-
gory containing the simple perverse sheaves appearing in the Springer corre-
spondence; and ShG(B) ⊂ Db

m(B) is the abelian category of locally constant
sheaves.

Theorem 1.1. The functor Φ restricts to give an exact functor of abelian
categories Φ|PG(N ) : PG(N ) → ShG(B). Moreover, for F, F ′ ∈ Spr, the

objects Φ(F ) and Φ(F ′) and the vector space Homi(Φ(F ),Φ(F ′)) each carry a
natural action of the Weyl group W , and Φ induces an isomorphism

(1.3) Homi
Db

m
(N )(F, F

′)
∼
→ Homi

Db
m
(B)(Φ(F ),Φ(F

′))W .

Here, the notation “Hom” denotes a Hom-group equipped with an action of
Frobenius; along the way to the theorem above, we show that Homi

Db
m
(N )(F, F

′)

is pure. However, weights and purity are not used in any essential way; the
main results are also valid in the unmixed setting.
The W -action on Φ(F ) induces one on the space of global sections Γ(Φ(F )),
and the composition Γ◦Φ|Spr : Spr → Rep(W ) turns out to be an equivalence
of categories that may be regarded as a categorical version of the Springer
correspondence. On the other hand, the W -action on Homi(Φ(F ),Φ(F ′)) is a
generalization of the usual action of W on H•(B). Indeed, (1.3) can be used
together with known formulas for the fake degrees of W to carry out explicit
calculations of Ext-groups.
As an application, in Sections 5–6, we use Theorem 1.1 to give new proofs of
two results from [L]: a decomposition of Db

m(N ) into orthogonal subcategories,
and the algorithmic description of stalks of perverse sheaves on N mentioned
above.

Acknowledgments. The author is grateful to J.M. Douglass, A. Henderson,
and D. Treumann for helpful conversations.

2. Preliminaries

2.1. General conventions. Throughout the paper, G and all related vari-
eties will be assumed to be defined over the algebraic closure k of a finite field
Fq and equipped with an Fq-rational structure. For any G-variety X , Db

m(X)
will denote the category of mixed étale Q̄ℓ-complexes that are constructible
with respect to some G-stable stratification. Let 1X denote the constant sheaf
with value Q̄ℓ, and let pt = Spec k. Let ωX = a!1pt (where a : X → pt is the
constant map) denote the dualizing complex, and let D = RHom(·, ωX) denote
the Verdier duality functor.
For F, F ′ ∈ Db

m(X), we let Homi(F, F ′) = Hi(a∗ RHom(F, F ′)). This is a
mixed Q̄ℓ-sheaf on a point, i.e., a Q̄ℓ-vector space equipped with an action
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of Frobenius. Forgetting that action yields the Q̄ℓ-vector space of morphisms
F → F ′[i] over k.
Nearly all results (those not explicitly involving purity) are also valid in the
setting of unmixed sheaves over an arbitrary algebraically closed field k of good
characteristic, or for C-sheaves in the classical topology when k = C.

2.2. Further notation. Let d = dimB. We will frequently encounter shifts
and Tate twists related to dimB, so we adopt the following shorthand notation:
if F is any sheaf, morphism, or functor, we put

F ♭ = F [2d](d) and F ♯ = F [−2d](−d).

Because B is a smooth variety of dimension d, we have ωB ≃ 1♭
B
, and because π

is a smooth map of relative dimension d, we also have π! ≃ (π∗)♭ and ω♯
Ñ

≃ 1♭
Ñ
.

Throughout the paper, W will denote the universal Weyl group of G, cf. [CG,
§3.1]. This group does not depend on the choice of a maximal torus or a Borel
subgroup, and we do not fix any such choice in this paper. Let Irr(W ) denote
the set of isomorphism classes of irreducible representations of W on Q̄ℓ-vector
spaces. For each χ ∈ Irr(W ), choose a representative Vχ. We will sometimes
regard Vχ as a pure object of weight 0 in Db

m(pt), by letting the Frobenius act
on it as the identity. It is known that

(2.1) Vχ ≃ V ∗
χ

for all χ ∈ Irr(W ). However, this isomorphism is not canonical.
It is well known that W acts naturally on the cohomology ring H•(B), and
that under this action, H•(B) can be identified with the coinvariant algebra of
W . Let

κ :W → Aut(H•(B))

denote this action.
Let Z denote the Steinberg variety Z = Ñ ×N Ñ . Finally, let ι : B → Ñ be
the inclusion of the zero section, and let i0 : pt → N denote the inclusion of
the point 0. We then have a cartesian square

(2.2) B
ι //

a

��

Ñ

µ

��
pt

i0
// N

2.3. Springer correspondence. Let A = µ∗1
♭
Ñ

= µ∗1Ñ [2d](d). This is a
semisimple perverse sheaf on N , known as the Springer sheaf. One approach to
studying A, developed in detail in [CG], involves Borel–Moore homology, which
is defined in terms of the hypercohomology of the dualizing complex. For our
purposes, it is convenient to adopt a slightly nonstandard normalization and
put

H̆i(X) = Hi(X,ωX [−4d](−2d)).
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The Borel–Moore homology of the Steinberg variety H̆•(Z) is equipped with a
“convolution product,” making it into a graded algebra. Two key results are
that there are natural algebra isomorphisms

(2.3) H̆0(Z) ≃ Q̄ℓ[W ] and H̆•(Z) ≃ Hom•(A,A),

and that the latter is an isomorphism of graded algebras. In particular, we
have a natural isomorphism Q̄ℓ[W ] ≃ End(A), and so an action

σ : W → Aut(A).

Any action ofW onA would allow us to decomposeA into isotypic components,
but since Q̄ℓ[W ] ≃ End(A), we actually have

(2.4) A ≃
⊕

χ∈Irr(W )

ICχ ⊗ Vχ,

where the ICχ are various distinct simple perverse sheaves on N . This labeling
of certain simple perverse sheaves by Irr(W ) is what is usually known as the
Springer correspondence. For χ ∈ Irr(W ), let Oχ ⊂ N be the unique open
G-orbit in the support of ICχ, and let Lχ be the irreducible local system given
by ICχ|Oχ [− dimOχ](−

1
2 dimOχ). Thus, ICχ ≃ IC(Oχ, Lχ).

2.4. Modules for H̆•(Z). The convolution product construction also makes

the Borel–Moore homology of any subvariety of Ñ into a graded H̆•(Z)-module.

The convolution action of H̆0(Z) on H̆•(B) ≃ H•(B)♯ is none other than the
action κ.
It is clear by base change in (2.2) that i∗0A ≃ H•(B)♭ ≃ H̆•(B)♭♭. The functor
i∗0 therefore induces a map i∗0 : End(A) → End(H•(B)) that is a homomor-

phism of H̆•(Z)-modules. In particular, it is W -equivariant, so we have

i∗0(σ(w)f) = κ(w)i∗0(f).

Finally, consider H̆•(Ñ ). This is a convolution algebra in its own right. Since

H̆•(Ñ ) ≃ H•(Ñ ), it has another algebra structure given by cup product in
ordinary cohomology, but it follows from [CG, Theorem 8.6.7] (cf. [DR, Theo-
rem 2.3]) that these two algebra structures coincide. The following theorem of

Douglass–Röhrle [DR] relates the W -action on H̆•(Ñ ) to that on H̆•(Z).

Theorem 2.1 (Douglass–Röhrle). Let δ : Ñ → Z be the diagonal embedding.

The induced map δ∗ : H̆•(Ñ ) → H̆•(Z) in Borel–Moore homology satisfies

δ∗(w ⋆ f) = w ⋆ δ∗(f) ⋆ w
−1.

for any w ∈W , where ⋆ denotes the convolution product.

2.5. Weakly Gm-equivariant objects. Let X be a variety endowed with
an action of Gm. An object F ∈ Db

m(X) is said to be weakly equivariant if
it is in the image of the forgetful functor U : Db

m,Gm
(X) → Db

m(X), where

Db
m,Gm

(X) denotes the Gm-equivariant derived category of X in the sense of

Bernstein–Lunts [BL]. Weakly equivariant objects have the following useful
property.
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Lemma 2.2 (Springer [Sp, Proposition 1], cf. Braden [B, Lemma 6]). Let p :
V → Z be a vector bundle, and suppose Gm acts linearly on the fibers of p with
strictly positive weights (or strictly negative weights). Let i : Z → V be the
inclusion of the zero section. For a weakly equivariant object S ∈ Db

m(V ), there
are natural isomorphisms i!S → p!S and p∗S → i∗S. �

Remark 2.3. Any object obtained by pullback or push-forward of a weakly
equivariant object along a Gm-equivariant map is automatically weakly equi-
variant, and the constant sheaf is always weakly equivariant. Therefore:

• If Gm acts on Ñ by scaling along the fibers, and on N by scaling, then
the objects 1Ñ , A, µ∗A, µ!A, and all direct summands of the last three
are weakly equivariant.

• If Gm acts on N by an action that factors through G̃, where G̃ is a
group isogenous to G with simply-connected derived subgroup, then
every semisimple perverse sheaf on N is weakly equivariant, since any
local system on any nilpotent orbit is G̃-equivariant.

Remark 2.4. Suppose φ is a morphism of functors that is an isomorphism on
weakly equivariant objects. If the domain category of φ is generated as a
triangulated category by weakly equivariant objects, then a standard dévissage
argument shows that φ actually induces isomorphisms for all objects; in other
words, φ is an isomorphism of functors outright. This observation will be used
when we apply Lemma 2.2 and other results to Db

m(N ), which is generated by
the objects of PG(N ).

3. Exactness of Φ

In this section, we use hyperbolic localization to prove exactness results for the
functor Φ = π!µ

∗ : Db
m(N ) → Db

m(B) of (1.2), as well as for the dual functor

Φ′ = (π∗µ
!)♯ : Db

m(N ) → Db
m(B).

To study these functors, we will make use of the additional functor

Ψ = µ∗π
! ≃ (µ!π

∗)♭ : Db
m(B) → Db

m(N ).

It is clear that Ψ is left-adjoint to Φ′ and right-adjoint to Φ. In addition, we
have

Φ ≃ ι!µ∗, Φ′ ≃ (ι∗µ!)♯, Ψ(1B) ≃ A,

with the first two assertions relying on Remark 2.4. Moreover, since all objects
of ShG(B) are direct sums of copies of 1B, it follows that Ψ restricts to an
exact functor of abelian categories Ψ : ShG(B) → PG(N ). The main result of
this section is the following.

Theorem 3.1. The functors Φ,Φ′ : Db
m(N ) → Db

m(B) restrict to give isomor-
phic exact functors of abelian categories Φ ≃ Φ′ : PG(N ) → ShG(B).

We first require the following preliminary result.

Lemma 3.2. Let e : pt → B be the inclusion of a point. There is a natural
isomorphism of functors e∗π∗µ

!♯ ∼
→ e∗π!µ

∗ : Db
m(N ) → Db

m(pt).
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Proof. For this proof, we fix a choice of Borel subgroup B ⊂ G and maximal
torus T ⊂ B. Recall that these choices yield a canonical identification W =
NG(T )/T . Let g = ū ⊕ t ⊕ u be the corresponding triangular decomposition
of g. That is, t = Lie(T ), u is the nilpotent radical of Lie(B), and ū is the
nilpotent radical of the Lie algebra of the opposite Borel subgroup.
Choose a regular dominant cocharacter λ : Gm → T , and let Gm act on g

by composing λ with the adjoint action of T on g. Clearly, the triangular
decomposition of g is stable under this action. Moreover, Gm acts on u with
positive weights and on ū with negative weights, and it acts trivially on t. From
these observations, it is easy to see that the point 0 ∈ N is the unique fixed
point for the action of Gm on N , and that

u = {x ∈ N | lim
z∈Gm
z→0

zẋ = 0} and ū = {x ∈ N | lim
z∈Gm
z→∞

zẋ = 0}.

Consider the following diagram of inclusion maps:

pt
i //

ı̄

��

u

g

��

ū
ḡ

// N

This is a setting in which we may apply the formalism of hyperbolic localization,
following [B]. The main theorem of [B] states that there is a natural morphism
of functors ı̄∗ḡ! → i!g∗ that is an isomorphism on weakly equivariant objects.
By Remark 2.4, this is an isomorphism of functors in our situation.
Next, consider the constant maps p : u → pt and p̄ : ū → pt. Using Lemma 2.2,
we obtain a natural isomorphism p̄∗ḡ

! ∼
→ p!g

∗. Finally, let e : pt → B (resp. ē :
pt → B) be the inclusion of the point corresponding to the Borel subgroup B
(resp. the opposite Borel subgroup to B). Forming pullbacks over π, we obtain
the diagrams

u

ẽ

��

p
// pt

e

��

N Ñ
µ

oo π // B

ū

˜̄e

��

p̄
// pt

ē

��

N Ñ
µ

oo π // B

It is clear that µẽ = g and µ˜̄e = ḡ. By base change, we have p!ẽ
∗ ≃ e∗π!

and p̄∗ ˜̄e
!
≃ ē!π∗. Combining with our earlier observations, we obtain an iso-

morphism e!π∗µ
! ∼
→ ē∗π!µ

∗. It is clear that on Db
m(B), we have ē∗ ≃ e∗ and

e! ≃ e∗♯, so we now have the isomorphism e∗π∗µ
!♯ ∼
→ e∗π!µ

∗, as desired. �

Proof of Theorem 3.1. We begin by showing that Φ|PG(N ) is exact. Let F ∈
PG(N ). We wish to show that Hj(Φ(F )) = 0 for j 6= 0. First, observe that for
n < 0, we have

Hom(Φ(F ),1B[n]) ≃ Hom(F,Ψ(1B)[n]) ≃ Hom(F,A[n]) = 0.

This shows that Hj(Φ(F )) = 0 for j > 0.
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By duality, we have Hj(π∗µ
!F ) ≃ Hj(Dπ!µ

∗DF ) ≃ (DH−2d−j(π!µ
∗DF ))[−2d].

Thus, Hj(π∗µ
!F ) = 0 if j < −2d. For the inclusion of a point e : pt → B, we

know that e∗ is an exact functor on ShG(B), so it follows that Hj(e∗π∗µ
!F ♯) =

0 if j < 0. By Lemma 3.2, this implies that Hj(e∗π!µ
∗F ) = 0 for j < 0 as

well. Now, e∗ is also faithful on the abelian category ShG(B) (though not, of
course, on Db

m(B)), so that vanishing implies that Hj(π!µ
∗F ) = 0 for j < 0,

as desired. Thus, Φ|PG(N ) is exact.
Finally, note that the exact functor e∗ : ShG(B) → Sh(pt) is an equiva-
lence of categories. The isomorphism Φ|PG(N ) ≃ Φ′|PG(N ) then follows from
Lemma 3.2. �

Corollary 3.3. The functor Φ ≃ Φ′ : PG(N ) → ShG(B) preserves purity.
That is, it takes pure objects of weight w to pure objects of weight w.

Proof. Let F ∈ PG(N ) be pure of weight w. By the well-known rules [BBD,
5.1.14] for behavior of weights under various sheaf functors, we see that Φ =
π!µ

∗ takes F to an object with weights ≤ w, whereas Φ′ = π∗µ
! takes it to one

with weights ≥ w. �

4. Action of the Weyl Group

In Section 2, we considered the action σ of W on End(A), and the action κ
on H•(B). In this section, we discuss several additional actions, and prove a
W -equivariance result for Ψ. There are two natural commuting actions λ, ρ :
W → Aut(Homi(A,A)), given by

λ(w)(f) = σ(w) ◦ f and ρ(w)(f) = f ◦ σ(w−1).

The exactness result of Section 3 allows us to construct a new action as follows.

Proposition 4.1. For any F ∈ PG(N ), the sheaf Φ(F ) carries a natural action
of W . If F is simple, then we have

Φ(F ) ≃

{

0 if F /∈ Spr,

1B ⊗ V ∗
χ if F ≃ ICχ.

Proof. The following general principle is easy to see: if A is a semisimple k-
linear abelian category containing a unique simple object S up to isomorphism,
and End(S) ≃ k, then any object A is canonically isomorphic to S⊗Hom(S,A).
Applying this to ShG(B), we have Φ(F ) ≃ 1B ⊗Hom(1B,Φ(F )). By adjunc-
tion, Hom(1B,Φ(F )) ≃ Hom(Ψ(1B), F ) ≃ Hom(A, F ).
The W -action on A induces one on Hom(A, F ) for any F , and therefore on
Φ(F ) ≃ 1B⊗Hom(A, F ). For simple F , it is clear from (2.4) that Hom(A, F ) =
0 if F /∈ Spr, and that Hom(A, ICχ) ≃ V ∗

χ . �

The action described in this proposition will be denoted ν : W → Aut(Φ(F )).
This action gives rise to a W -action on the vector space Γ(Φ(F )) for any F ∈
PG(N ). In other words, the functor Γ ◦ Φ may be regarded as taking values
in Rep(W ). Since PG(N ) and Rep(W ) are both semisimple categories, the
following result is immediate from Proposition 4.1.
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Theorem 4.2. For a simple perverse sheaf F ∈ PG(N ), the functor Γ ◦ Φ :
PG(N ) → Rep(W ) is given by

(Γ ◦ Φ)(F ) ≃

{

0 if F /∈ Spr,

V ∗
χ if F ≃ ICχ.

In particular, Γ ◦ Φ|Spr : Spr → Rep(W ) is an equivalence of categories. �

Corollary 4.3. The category Spr ⊂ PG(N ) is stable under Verdier duality
D. In fact, for each simple perverse sheaf ICχ ∈ Spr, we have DICχ ≃ ICχ.

Proof. It follows from Theorem 3.1 and the fact that B is a projective variety
that Γ ◦ Φ commutes with D. For a simple perverse sheaf F ∈ PG(N ), we
see that (Γ ◦ Φ)(F ) 6= 0 if and only if (Γ ◦ Φ)(DF ) 6= 0, so D preserves Spr.
Moreover, for F ≃ ICχ, we have (Γ ◦ Φ)(DICχ) ≃ D(V ∗

χ ) ≃ Vχ. The result
follows using the noncanonical isomorphism (2.1). �

Note that when F = A, ν is obtained via the adjunction isomorphism

(4.1) θ : Hom(1B,Φ(A))
∼
→ Hom(A,A)

from the action on Hom(A,A) that we have called ρ. The other action λ on
Hom(A,A) also induces an action on Φ(A), which we denote

λ̂ :W → Aut(Φ(A)).

Since ρ and λ commute, ν and λ̂ commute as well. By an abuse of notation,

we will also write ν and λ̂ for the corresponding actions on the vector space
Homi(1B,Φ(A)). By definition, we have

(4.2) θ(λ̂(v)ν(w)f) = λ(v)ρ(w)θ(f) = σ(v) ◦ θ(f) ◦ σ(w−1).

Lemma 4.4. The map Ψ : Homi(1B,1B) → Homi(A,A) has the property that
Ψ(κ(w)f) = σ(w) ◦Ψ(f) ◦ σ(w−1).

Proof. This is essentially a restatement of Theorem 2.1 due to Douglass–Röhrle.
Note first that the functor π! induces a W -equivariant isomorphism H•(B)

∼
→

H•(Ñ ), so it suffices to study the W -equivariance of µ∗ : Db
m(Ñ ) → Db

m(N ).
Let q : Z → N be the natural projection map. We then have a commutative
diagram:

Ñ
δ

����
��

��
� µ

  
@@

@@
@@

@@

Z q
// N

Recall [CG, Section 8.6] that the second isomorphism in (2.3) arises from the

fact that q∗ω
♯♯
Z ≃ RHom(A,A). There is also a natural adjunction map

δ∗ωÑ → ωZ . Consider the composition

µ∗ω
♯♯

Ñ
// q∗ω

♯♯
Z

∼ // RHom(A,A).
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Applying RΓ to the first map yields the induced map δ∗ : H̆•(Ñ ) → H̆•(Z)

in Borel–Moore homology. On the other hand, we can identify ω♯♯
Ñ

≃ 1Ñ ≃

RHom(1Ñ ,1Ñ ), and then the composition above becomes the canonical mor-
phism

µ∗ RHom(1Ñ ,1Ñ ) → RHom(A,A),

and applying RΓ gives us the map Hom•(1Ñ ,1Ñ ) → Hom•(A,A) induced by
µ. To summarize, we have the following commutative diagram:

H̆•(Ñ )
∼ //

δ∗

��

Hom•(Ñ , Ñ )

µ

��

H̆•(Z) q
// Hom•(A,A)

Since the top isomorphism is W -equivariant, and the bottom one is an algebra
isomorphism sending w ∈ Q̄ℓ[W ] ≃ H̆0(Z) to σ(w) ∈ End(A), the result follows
from Theorem 2.1. �

Proposition 4.5. There is a natural isomorphism

α : H•(B) ⊗Hom(1B,Φ(A))
∼
→ Hom•(1B,Φ(A)).

Its composition with the adjunction θ, denoted

Θ = θ ◦ α : H•(B) ⊗Hom(1B,Φ(A))
∼
→ Hom•(A,A),

is W -equivariant in the following way: for u, v, w ∈W , we have

Θ(κ(u)f ⊗ λ̂(v)ν(w)g) = λ(v)ρ(w)Θ(κ(w−1u)f ⊗ g).

Proof. Recall from the proof of Proposition 4.1 that Φ(A) ≃ 1B ⊗
Hom(1B,Φ(A)). It follows that

Homi(1B,Φ(A)) ≃ Homi(1B,1B ⊗Hom(1B,Φ(A)))

≃ Homi(1B,1B)⊗Hom(1B,Φ(A)).

Since Hi(B) ≃ Homi(1B,1B), we obtain the desired isomorphism α. Note
that α is given by composition: that is, if f ∈ Homi(1B,1B) and g ∈
Hom(1B,Φ(A)), then

α(f ⊗ g) = g ◦ f.

The adjunction isomorphism θ behaves on compositions according to the rule
θ(g ◦ f) = θ(g) ◦Ψ(f). Using (4.2) and Lemma 4.4, we find

Θ(κ(u)f ⊗ λ̂(v)ν(w)g) = θ(λ̂(v)ν(w)g) ◦Ψ(κ(w)f)

= σ(v) ◦ θ(g)σ(w−1) ◦ σ(u) ◦Ψ(f) ◦ σ(u−1)

= σ(v) ◦ θ(g) ◦ σ(w−1u) ◦Ψ(f) ◦ σ(u−1w) ◦ σ(w−1)

= σ(v) ◦ θ(g) ◦Ψ(κ(w−1u)f) ◦ σ(w−1)

= λ(v)ρ(w)θ(g ◦ κ(w−1u)f).

The result follows. �
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Theorem 4.6. For χ, ψ ∈ Irr(W ), there is a natural isomorphism

(4.3) Homi(Φ(ICχ),Φ(ICψ)) ≃ Vχ ⊗Hi(B)⊗ V ∗
ψ ,

and thus Homi(Φ(ICχ),Φ(ICψ)) is endowed with a natural action of W . More-
over, Φ induces isomorphisms

Homi(ICχ, ICψ) ≃ Homi(Φ(ICχ),Φ(ICψ))
W ≃ (Vχ ⊗Hi(B) ⊗ V ∗

ψ )
W .

Proof. The isomorphism (4.3) is immediate from Proposition 4.1. Next, us-
ing (2.4), we can decompose Homi(A,A) as

Homi(A,A) ≃
⊕

χ,ψ

Homi(ICχ, ICψ)⊗ V ∗
χ ⊗ Vψ.

Thus, in terms of the action of W ×W on Homi(A,A) by λ⊠ ρ, we can find
Homi(ICχ, ICψ) by picking out the χ∗

⊠ ψ-isotypic component:

Homi(ICχ, ICψ) ≃ HomW×W (V ∗
χ ⊠ Vψ ,Hom

i(A,A)).

Using Proposition 4.5, this is isomorphic to

HomW×W (V ∗
χ ⊠ Vψ,H

i(1B)⊗Hom(1B,Φ(A))),

where W ×W acts on Hi(1B)⊗ Hom(1B,Φ(A)) by λ̂ ⊠ (κ⊗ ν). That is, for
v, w ∈W and f ⊗ g ∈ Hi(1B)⊗Hom(1B,Φ(A)), we put

(v, w) · (f ⊗ g) = κ(w)f ⊗ λ̂(v)ν(w)g.

Using the adjunction (4.1) and the isomorphism (2.3), we see that

Hom(1B,Φ(A)) decomposes under λ̂ ⊠ ν as Hom(1B,Φ(A)) ≃
⊕

φ Vφ ⊗ V ∗
φ .

Picking off the χ∗-isotypic component for the first factor of W , we find that

Homi(ICχ, ICψ) ≃ HomW (Vψ ,H
i(B)⊗ Vχ)) ≃ (V ∗

ψ ⊗Hi(B) ⊗ Vχ)
W . �

Corollary 4.7. For χ, ψ ∈ Irr(W ), Homi(ICχ, ICψ) vanishes if i is odd, and
is pure of weight i if i is even.

Proof. This follows from the previous theorem and the well-known fact that
Hi(B) vanishes if i is odd and is pure of weight i if i is even. �

5. Orthogonal Decomposition of Db
m(N )

For a G-stable locally closed subvariety Y ⊂ N , and let DSpr(Y ) ⊂ Db
m(Y )

be the full triangulated subcategory generated by objects ICχ|Y with Oχ ⊂ Y .
On the other hand, let D⊥

Spr(Y ) ⊂ Db
m(Y ) be the full triangulated subcategory

generated by simple perverse sheaves IC(O, L)|Y with O ⊂ Y but IC(O, L) /∈
Spr.

Theorem 5.1. For any G-stable locally closed subvariety u : Y →֒ N , we have

(5.1) Db
m(Y ) ≃ DSpr(Y )⊕D⊥

Spr(Y ).
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Moreover, if s : Z →֒ Y is the inclusion of a smaller G-stable locally closed
subvariety, the functors s∗ and s! respect this decomposition: we have

(5.2)
s∗(DSpr(Y )), s!(DSpr(Y )) ⊂ DSpr(Z),

s∗(D⊥
Spr(Y )), s!(D⊥

Spr(Y )) ⊂ D⊥
Spr(Z).

Proof. If s : Z → Y is an open embedding, then (5.2) is obvious. Since the
inclusion of any locally closed subvariety can be factored as a closed embedding
followed by an open embedding, we henceforth treat (5.2) only in the case where
Z is closed in Y .
Let nY denote the number of nilpotent orbits in Y r Y . We will prove (5.1)
and (5.2) simultaneously by induction on nY . Note that (5.1) is equivalent to
the assertion that for F ∈ DSpr(Y ) and F ′ ∈ D⊥

Spr(Y ), we have Hom(F, F ′) =

Hom(F ′, F ) = 0. We can further reduce to the case where F and F ′ are shifts
of simple perverse sheaves. That is, (5.1) is equivalent to the statement that if
F and F ′ are simple perverse sheaves with F ∈ DSpr(Y ) and F ′ ∈ D⊥

Spr(Y ),
then

(5.3) Homi(F, F ′) = Homi(F ′, F ) = 0 for all i ≥ 0.

We begin by proving (5.3) in the case where nY = 0, i.e., when Y is closed in
N . In fact, since u∗ : Db

m(Y ) → Db
m(N ) is faithful for any closed Y ⊂ N , we

may reduce to the case where Y = N . Since F ∈ Spr, F is a direct summand
of A, and it suffices to show that Homi(A, F ′) = Homi(F ′,A) = 0. Since
A ≃ Ψ(1B), we have by adjunction that

Homi(A, F ′) ≃ Homi(1B,Φ
′(F ′)) and Homi(F ′,A) ≃ Homi(Φ(F ),1B).

Since Φ(F ′) = Φ′(F ′) = 0 by Theorem 3.1 and Proposition 4.1, the desired
vanishing holds.
Suppose now that (5.1) is known to hold whenever nY ≤ k. Let us prove (5.2).
Since Z is assumed to be a closed subvariety of Y , we clearly have nZ ≤ nY ;
in particular, we know that Db

m(Z) ≃ DSpr(Z) ⊕ D⊥
Spr(Z). Therefore, given

F ∈ DSpr(Y ), we have a canonical decomposition s∗F ≃ (s∗F )Spr ⊕ (s∗F )⊥Spr
with (s∗F )Spr ∈ DSpr(Z) and (s∗F )⊥Spr ∈ D⊥

Spr(Z). We wish to prove that

(s∗F )⊥Spr = 0. If that is not the case, there certainly exists some simple perverse

sheaf F ′ ∈ D⊥
Spr(Z) and some i ∈ Z such that Homi((s∗F )⊥Spr, F

′) 6= 0. We

also know that Hom•((s∗F )Spr, F
′) = 0, so it follows that

0 6= Homi((s∗F )⊥Spr, F
′) ≃ Homi(s∗F, F ′) ≃ Homi(F, s∗F

′).

But s∗F
′ is clearly a simple perverse sheaf in D⊥

Spr(Y ), and since F ∈ DSpr(Y ),

we have a contradiction. Thus, s∗F ∈ DSpr(Z). The proofs of the other
assertions in (5.2) are parallel.
Now, suppose that (5.1) and (5.2) are both known for nY ≤ k, and let us
prove (5.3) when nY = k + 1. Let F and F ′ be simple perverse sheaves on
Y with F ∈ DSpr(Y ) and F ′ ∈ D⊥

Spr(Y ). Choose an orbit O that is open in

Y r Y , and let Ỹ = Y ∪ O. Let s : O → Ỹ and j : Y → Ỹ be the inclusion
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maps, and consider the objects j!∗F, j!∗F
′ ∈ Db

m(Ỹ ). These are simple perverse

sheaves on Ỹ ; moreover, we clearly have j!∗F ∈ DSpr(Ỹ ) and j!∗F
′ ∈ D⊥

Spr(Ỹ ).
Form the distinguished triangle

s∗s
!j!∗F

′ → j!∗F
′ → j∗j

∗j!∗F
′ → .

Note that j∗j!∗F
′ ≃ F ′. Next, form the long exact sequence

· · · →Homi(j!∗F, j!∗F
′) →Homi(j!∗F, j∗F

′) →Homi+1(j!∗F
′, s∗s

!j!∗F
′) →· · · .

Note that nỸ = nY − 1, so (5.3) holds on Ỹ by assumption. In particular,
we have Hom•(j!∗F, j!∗F

′) = 0. Since (5.2) also holds by assumption, we have
s∗j!∗F ∈ DSpr(O) and s!j!∗F

′ ∈ D⊥
Spr(O), so

Hom•(j!∗F
′, s∗s

!j!∗F
′) = Hom•(s∗j!∗F

′, s!j!∗F
′) = 0.

We conclude that Homi(j!∗F, j∗F
′) = 0. But that means Homi(j∗j!∗F, F

′) ≃
Homi(F, F ′) = 0 as well, as desired. �

One concrete consequence of this theorem is the following.

Corollary 5.2. If L is an irreducible local system on an orbit O ⊂ N that
occurs as a composition factor of some cohomology sheaf Hi(ICχ|O) with χ ∈
Irr(W ), then L ≃ Lψ for some ψ ∈ Irr(W ). �

6. Green Functions

The aim of this section is to study the restrictions ICχ|O as O varies over the
G-orbits in N . Specifically, we encode information about these restrictions in
a family of polynomials pχ,ψ(t), sometimes called Green functions. The main
result, Theorem 6.1, gives a way to compute these polynomials, by relating
them to the known groups Homi(ICχ, ICψ).
We begin with some notation. For a variety X , let K(X) denote the quotient
of the Grothendieck group of Db

m(X) obtained by identifying the classes of
simple perverse sheaves of the same weight that become isomorphic when the
Weil structure is forgotten. (Thus, K(X) does not detect twists in the Weil
structure by a root of unity.) For an object F ∈ Db

m(X), let [F ] denote its class
in K(N ). This Grothendieck group is naturally a module over the Laurent
polynomial ring Z[t, t−1], where multiplication by t corresponds to Tate twist:
[F (1)] = t−1[F ]. By choosing a square root of the Tate sheaf, we can regard
K(X) as a module over Z[t1/2, t−1/2], with [F (12 )] = t−1/2[F ]. For instance,

the group K(pt) is a free Z[t1/2, t−1/2]-module of rank 1, generated by the class
[1pt] of a 1-dimensional vector space of weight 0.

For an orbit O ⊂ N , the group K(O) is a free Z[t1/2, t−1/2]-module generated
by the classes of irreducible local systems on O. In view of Corollary 5.2, we
may write

(6.1) [ICχ|O] =
∑

{ψ|Oψ=O}

pχ,ψ(t)[Lψ] for some pχ,ψ(t) ∈ Z[t1/2, t−1/2].
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(That is, only local systems belonging to DSpr(O) may appear on the right-
hand side.) We clearly have ICχ|Oχ ≃ Lχ[dimOχ](

1
2 dimOχ) and ICχ|O = 0 if

O 6⊂ Oχ. In other words:

(6.2) pχ,ψ(t) =

{

t−(dimOχ)/2 if ψ = χ,

0 if Oψ 6⊂ Oχ, or if Oψ = Oχ and ψ 6= χ.

Our goal is to determine the polynomials pχ,ψ(t).
Another description of these polynomials is as follows. Each cohomology sheaf
Hi(ICχ|O) is, of course, a finite-length object in the category of local systems on
O. Let (Hi(ICχ|O) : Lψ(j)) denote the multiplicity of Lψ(j) in any composition
series. We then have

(6.3) pχ,ψ(t) =
∑

i∈Z, j∈ 1

2
Z

(−1)i(Hi(ICχ|O) : Lψ(j))t
−j .

A result of Springer leads to a tremendous simplification of this formula; see
Remark 6.2. Actually, pχ,ψ(t) lies in Z[t−1] and has nonnegative coefficients
(see (6.7)), but we will not require these facts.
To state the main result, we require two additional families of polynomials.
First, define λχ,ψ(t) ∈ Z[t1/2, t−1/2] as follows:

[RΓc(Oχ, Lχ ⊗ Lψ)] = λχ,ψ(t)[1pt] if Oχ = Oψ ,

λχ,ψ(t) = 0 if Oχ 6= Oψ .(6.4)

Second, define polynomials ωχ,ψ(t) by

[DRHom(ICχ, ICψ)] = ωχ,ψ(t)[1pt].

Recall from Corollary 4.7 that RHom(ICχ, ICψ) is pure of weight 0 and has
vanishing cohomology in odd degrees. The same statements then hold for its
dual as well. As with pχ,ψ(t) in (6.7), it follows that

ωχ,ψ(t) =
∑

i∈Z

dimH2i(DRHom(ICχ, ICψ))t
i =

∑

i∈Z

dimHom−2i(ICχ, ICψ)t
i.

The coinvariant algebra of W has the property that the W -action in com-
plementary degrees is related by tensoring with the sign character ε: that is,
Hi(B) ≃ H2d−i(B) ⊗ ε as W -representations. Using the noncanonical iso-
morphism (2.1) together with Theorem 4.6, we can rewrite the above formula
as

(6.5) ωχ,ψ(t) = t−2d
∑

i∈Z

dimHomW (Vχ ⊗ Vψ ⊗ ε,H2i(B))ti.

The main result of this section is the following.

Theorem 6.1. The matrices P = (pχ,ψ), Λ = (λχ,ψ), and Ω = (ωχ,ψ) satisfy

(6.6) PΛP t = Ω,
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where P t is the transpose of P . In other words, given χ, ψ ∈ Irr(W ), we have
∑

φ,φ′∈Irr(W )

pχ,φ(t)λφ,φ′(t)pψ,φ′(t) = ωχ,ψ(t).

Moreover, P and Λ are the unique matrices with entries in Q(t1/2) satisfy-
ing (6.6), (6.2), and (6.4).

Remark 6.2. This theorem is essentially equivalent to the part of [L, Theo-
rem 24.8] relevant to Spr. The most substantial difference is that in loc. cit.,
the polynomials pχ,ψ(t) are defined in a slightly different way. Correcting for
different normalization conventions (see Remark 6.3), the definition in [L] is

(6.7) pχ,ψ(t) =
∑

i∈Z

(H2i(ICχ|O) : Lψ(−i))t
i.

The equivalence of this formula with (6.3) is implied by an important result of
Springer [Sp], which states that for any χ ∈ Irr(W ) and any orbit O ⊂ N , the
object ICχ|O ∈ Db

m(O) is pure of weight 0, and that Hi(ICχ|O) = 0 if i is odd.
The proof of (6.6) in [L] also relies on Springer’s purity theorem.

Remark 6.3 (Lusztig–Shoji algorithm). The uniqueness asserted in Theo-
rem 6.1 is proved by Lusztig [L] in a very explicit constructive way. This
proof, which will not be repeated here, consists primarily of a description
of an algorithm for finding P and Λ from knowledge of Ω. Since Ω can be
described as in (6.5) using only the representation theory of W , this algo-
rithm can be effectively used to compute the pχ,ψ(t). Generalizations of this
algorithm, sometimes called the Lusztig–Shoji algorithm, have been studied
in [AA, AH, GM, S3, S4, S5], and a computer implementation is available
at [A].
The reader should be aware that Lusztig originally used polynomials p′χ,ψ(t) and

ω′
χ,ψ(t) following different normalization conventions, while the recent works

mentioned above involve polynomials p′′χ,ψ(t) and ω
′′
χ,ψ(t) following a third con-

vention. The relationship among these is as follows:

p′χ,ψ(t) = t
1

2
dimOχpχ,ψ(t) p′′χ,ψ(t) = tdpχ,ψ(t)

ω′
χ,ψ(t) = t

1

2
(dimOχ+dimOψ)ωχ,ψ(t) ω′′

χ,ψ(t) = t2dωχ,ψ(t).

For the next three lemmas, let jO : O → N denote the inclusion of an orbit.

Lemma 6.4. For any F, F ′ ∈ Db
m(N ), we have

[DRHom(F, F ′)] =
∑

O⊂N

[DRHom(j∗OF, j
!
OF

′)].

Proof. Let X ⊂ N denote the closure of the support of F ′, and let O0 ⊂ X
be an orbit that is open in X . Let h : Y → N be the inclusion of the closed
subset Y = X r O0, and let s : (N r Y ) → N be the inclusion of its open
complement. Consider the distinguished triangle h∗h

!F ′ → F ′ → s∗s
∗F ′ →.

Since s∗F ′ ≃ s!F ′ is supported on O, we see that s∗s
∗F ′ is naturally isomorphic
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to jO0∗j
!
O0
F ′. Applying DRHom(F, ·) and the usual adjunction properties, we

obtain a distinguished triangle

DRHom(j∗O0
F, j!O0

F ′) → DRHom(F, F ′) → DRHom(h∗F, h!F ′) →,

so [DRHom(F, F ′)] = [DRHom(h∗F, h!F ′)] + [DRHom(j∗O0
F, j!O0

F ′)]. The
result then follows by induction on the number of orbits in the support of
F ′. �

Lemma 6.5. For any orbit O ⊂ N , we have

[j!OICχ] = t− dimO
∑

{ψ|Oψ=O}

pχ,ψ(t
−1)[Lψ].

Proof. Using Corollary 4.3, we have j!OICχ ≃ Dj∗O(DICχ) ≃ D(ICχ|O). We
can therefore obtain a formula for for [j!OICχ] by applying D to the right-
hand side of (6.1). For any local system Lψ on O, we have D(Lψ(−i)) ≃
Lψ[2 dimO](dimO + i), so the map [D(·)] : K(O) → K(O) sends ti[Lψ] 7→
t− dimO−i[Lψ]. The result follows. �

Lemma 6.6. We have

[DRHom(j∗OICχ, j
!
OICψ)] =

∑

{φ,φ′|Oφ=Oφ′=O}

pχ,φ(t)λφ,φ′(t)pψ,φ′(t)[1pt].

Proof. Observe that DRHom transforms Tate twists according to the formula
DRHom(F (n), F ′(m)) ≃ DRHom(F, F ′)(n−m). That means that the homo-
morphism [DRHom(·, ·)] : K(O)×K(O) → K(pt) is Z[t1/2, t−1/2]-linear in the
first variable, but antilinear with respect to the involution t1/2 7→ t−1/2 in the
second variable. Using (6.1) and Lemma 6.5, we find that

[DRHom(j∗OICχ, j
!
OICψ)] = tdimO

∑

{φ,φ′|Oφ=Oφ′=O}

pχ,φ(t)pψ,φ′(t)[DRHom(Lφ, Lφ′)].

It suffices to show that [DRHom(Lφ, Lφ′)] = t−2 dimOλφ,φ′(t)[1pt]. Using
Corollary 4.3, we have that RHom(Lφ, Lφ′) ≃ RHom(1O, L

∗
φ ⊗ Lφ′) ≃

RΓ(O, Lφ ⊗ Lφ′), where L∗
φ denotes the dual local system: L∗

φ =

(DLφ)[−2 dimO](− dimO). Therefore,

DRHom(Lφ, Lφ′) ≃ RΓc(O,D(Lφ ⊗ Lφ′) ≃ RΓ(O, Lφ ⊗ Lφ′)[2 dimO](dimO),

so [DRHom(Lφ, Lφ′)] = t− dimO[RΓc(O, Lφ ⊗ Lφ′)], as desired. �

Proof of Theorem 6.1. The equation (6.6) follows from Lemmas 6.4 and 6.6,
and the uniqueness assertion has been addressed in Remark 6.3. �
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