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Abstract. The goal of this note is to prove, under some assump-
tions, a formula relating the Selmer groups of isogenous Galois rep-
resentations. Local and global Euler-Poincaré characteristic formulas
are key tools in the proof. With additional hypotheses, we use the
isogeny formula to study how the formation of Selmer groups interacts
with normalization of the coefficient ring and discuss how a main con-
jecture for a big Galois representation over a non-normal ring follows
from a corresponding conjecture over the normalization.
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1 Introduction

1.1. Set GQ = Gal(Q/Q) and suppose given a continuous Galois representa-
tion

ρ : GQ −→ AutR(T ),

where R is a ring finite and free over the power series ring O[[X1, . . . , Xn]], with
O the integer ring of a p-adic field, and T is a finitely-generated R-module. One
can, under suitable hypotheses, attach a Selmer group Sel(ρ) to such ρ. This
Selmer group is a finitely-generated R-module which is canonically defined in
terms of the Galois cohomology of ρ.
The basic question we investigate below is the following. Given representations
ρ1 and ρ2 as above on R-modules T1 and T2 which are isogenous, i.e., such
that there is an R[GQ]-linear homomorphism T1 → T2 with R-torsion cokernel,
how are the Selmer groups Sel(ρ1) and Sel(ρ2) related? We prove the following
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formula relating the support divisors of Sel(ρ1) and Sel(ρ2) in terms of local
and global invariants of the quotient Q = T2/φ(T1) (see Theorem ?? for the
precise statement).

Theorem. If T1 and T2 satisfy certain natural hypotheses (cf. ??), then

div
(
Sel(ρ1)

)
− div

(
Sel(ρ2)

)
=

=
∑

v real

div(QKv
)− (r1 + r2) div(Q) +

∑

v|p

[Kv : Qp] div(F
+
v Q).

1.2. Our main motivation (and a key example of this type of representation)
comes from Hida theory. Let f be a p-ordinary cuspidal newform. By work
of Hida [?], such f belongs to a p-adic family F of newforms, which can be
viewed as a formal power series with coefficients in a ring R finite and free over
O[[X ]], where O is a suitable finite extension of Zp. The specializations of F
at appropriate values of T are power series expansions of classical p-stabilized
newforms of varying weight, level, and character. One can attach a Galois
representation ρF to F on a rank 2 module T over the ring R interpolating
the p-adic Galois representation attached to the classical newforms arising as
specializations of F . Many of the hypotheses imposed in ?? are automatically
satisfied by these representations.

1.3. An early investigation of how isogenies affect Iwasawa invariants was
undertaken by Schneider [?], who gave a formula relating the µ-invariants
for Selmer groups of isogenous abelian varieties over Zp-extensions of num-
ber fields. This formula was generalized by Perrin-Riou [?] to more general
p-adic representations. More recently, Ochiai [?] has given a similar formula
for invariants of big Galois representations with coefficients in a power series
ring Zp[[T1, . . . , Tn]]. Our isogeny formula is a generalization of Ochiai’s and has
a similar proof, which, in particular, depends on Euler-Poincaré characteristic
formulas and Poitou-Tate duality.

1.4. In Theorem ??, we prove somewhat general Euler-Poincaré characteristic
formulas for big Galois representations. For p > 2, the theorem can be deduced
from the corresponding statements in Nekovář [?, 4.6.9 and 7.8.6] (which ex-
clude the case of p = 2). Our main result, the isogeny formula of Theorem ??,
follows from a series of computations involving these. Fortunately, many of the
needed computations are contained in Greenberg’s series of papers [?, ?, ?]. In
a certain sense, therefore, this note may be viewed as an addition to that series.
Some of the results contained here can also be found in the second author’s
thesis [?, Ch. 1].

1.5. Under an additional “p-criticality” assumption on the representation T
(cf. ??), we show in §?? that the corresponding normalized representation T̃
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obtained by extending scalars to the normalization R̃ of R gives Selmer groups
which, when considered as R-modules, have the same divisor on SpecR. Using
this fact and some elementary commutative algebra, we discuss how a main
conjecture for the representation T̃ implies a corresponding main conjecture
for T . Thus, under our admittedly somewhat strict hypotheses, main conjec-
tures, roughly speaking, commute with normalization. This result should not
be surprising to the experts; its study was suggested by Greenberg [?, §1].

1.6. We remark here on some of the hypotheses we impose, some of which could
be considered rather strong. The conditions (??)–(??) and the p-criticality hy-
pothesis imposed in §?? are somewhat standard and are known to hold for
many of the representations arising “in nature” from the study of Hida fami-
lies as discussed briefly above, with the possible exception of (??), which has
nonetheless been extensively studied. There are two additional, less standard,
hypotheses we employ.
The first of these is that the Galois modules we consider are assumed to be
free over the coefficient ring. There are two places where we make serious
use of this hypothesis. The first is in the application of a result of Greenberg
[?, Lemma 2.2.6] on vanishing of Galois invariants. We feel that this result
is probably true for even torsion-free modules. The second is in the proof of
Theorem ??, where we make use of the following property of free modules M
over a ring R with module-finite normalization R̃: the divisor (on SpecR)

associated to the torsion R-module (M ⊗R R̃)/M is rankRM times the divisor

associated to R̃/R. It is unclear to us whether there is a weaker hypothesis on
R-modules which guarantees this to hold.
The second is the condition (??) on the rank of compact Selmer groups, which
is necessary in order to conclude the surjectivity of a certain localization map.
It is a difficult and interesting question whether this condition holds for repre-
sentations arising from Hida theory and is not true in general (cf. [?, §4.9] or
[?, §7(d)] for an example).

2 Notation

2.1. Fix a prime p. Let R be a complete Noetherian local domain with maximal
ideal m and assume that R is finite and free over Zp[[T1, . . . , Tn]]. If V is a finite-
dimensional vector space over the fraction field FracR of R, then we call an
R-submodule T ⊆ V an R-lattice in V if T is a finitely-generated R-module
and T ⊗R FracR = V (where, here and subsequently, “=” means “canonically
isomorphic”).
Let K/Q be a finite extension. Fix a finite set Σ of primes of K containing the
archimedean primes and the primes lying over p. Denote by KΣ the maximal
extension of K unramified outside Σ and set GΣ = Gal(KΣ/K). Our main
objects of study in what follows are Galois representations

ρ : GΣ → GLn(FracR)
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which are continuous in the sense that the representation space V = Vρ of ρ
admits a GΣ-stable R-lattice T such that the induced representation, which by
abuse of notation we still denote by ρ : GΣ → AutR(T ), is continuous for the
Krull topology on GΣ and the topology on AutR(T ) induced by the topology
on R.
In what follows, we shall be studying free lattices, i.e., R-submodules of
(FracR)⊕n of rank n which are free R-modules. Without additional assump-
tions on R, it may not be the case that any continuous R-linear representation
of Gal(KΣ/K) admits a Gal(KΣ/K)-stable lattice which is free as anR-module.

2.2. If M is any Zp-module, denote by M∨ the Pontryagin dual of M , i.e.,
M∨ = HomZ(M,Qp/Zp). Note that R is a compact Zp-module, so its dual R∨

is discrete; we endow R∨ with the trivial Galois action. If M is a cofinitely-
generated, discrete R-module, then, by, e.g., Greenberg [?, Prop. 3.2], the
(continuous) Galois cohomology groups Hi(KΣ/K,M) are likewise cofinitely-
generated R-modules.

2.3 Ordinary data. For notational convenience, we now define a notion of
ordinary datum over R. Such a datum X consists of a pair (T,F), where T is
a finitely-generated free R-module with continuous GΣ-action and F consists
of GKv

-submodules F+
v T ⊆ T , one for each prime v of K lying over p, such

that F+
v T and F−

v T = T/F+
v T are free R-modules. We refer to the chain

T ⊇ F+
v T ⊇ 0 as the local filtration on T at v given by F.

Given ordinary data X1 = (T1,F1) and X2 = (T2,F2), we define a homomor-
phism φ : X1 → X2 to be an R[GΣ]-linear homomorphism φ : T1 → T2 which is
compatible with the filtrations in the sense that φ(F+

v T1) ⊆ F+
v T2 for all v | p.

2.4. We now define discrete modules associated to a datum X = (T,F).
Denote by W ∗ = W ∗

X the discrete Galois module W ∗ = HomR

(
T,R∨(1)

)

dual to T . Thus, W ∗ ∼= T∨ as an R-module. (Note that we do not define
here a compact module T ∗ with Galois action the Tate dual of that on T .)
The filtrations F on T induce filtrations W ∗ ⊇ F+

v W
∗ ⊇ 0 for v | p via

F+
v W

∗ = HomR

(
F−
v T,R

∨(1)
)
.

2.5 Local conditions. A set ∆ of local conditions for an R[GΣ]-module
M is a choice of submodule H1

f (Kv,M) ⊆ H1(Kv,M) for each v ∈ Σ. Given
an ordinary datum X = (T,F), we define, following Greenberg [?, §4], the
Greenberg local conditions for W ∗ as follows: if v ∤ p, then set

H1
f (Kv,W

∗) = H1
ur(Kv,W

∗) = ker
(
H1(Kv,W

∗)
res
−−→ H1(Iv ,W

∗)
)
,

where Iv ⊆ GKv
is the inertia group. For v | p, set

H1
f (Kv,W

∗) = ker
(
H1(Kv,W

∗) −→ H1(Iv,F
−
v W

∗)
)
,
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where the homomorphism on the right is induced by the quotientW ∗ → F−
v W

∗

and restriction to Iv.
Let X = (T,F) be an ordinary datum. Recall that Tate local duality gives a
perfect pairing

H1(Kv, T )×H1(Kv,W
∗) −→ R∨.

We define the Greenberg local conditions H1
f (Kv, T ) for T as the orthogonal

complements of the Greenberg local conditions H1
f (Kv,W

∗) for W ∗ under this
pairing.

2.6. Given a set of local conditions ∆ on an R[GΣ]-module M , set

H1
s (Kv,M) = H1(Kv,M)/H1

f (Kv,M)

and define the Selmer group over K attached to M and ∆ by

Sel∆(M) = ker
(
H1(GΣ,M) −→

⊕

v∈Σ

H1
s (Kv,M)

)
,

where the homomorphism on the right-hand side is induced by the obvious
local-to-global map. If M = W ∗ or T and ∆ is the set of Greenberg local
conditions for M , then we omit the ∆ and denote the corresponding Selmer
group by Sel(M).
For a GΣ-module M and i ≥ 0, we further define Shafarevich-Tate groups

i(M) = ker
(
Hi(K,M) −→

⊕

v∈Σ

Hi(Kv,M)
)
.

Thus, 1(M) = Sel∆(M) for ∆ the set of local conditions defined by setting
H1

f (Kv,M) = 0 for all v ∈ Σ.
The representations arising in the case of Hida families come equipped with
additional structure that allows other natural definitions of local conditions
(e.g., the so-called Bloch-Kato local conditions) which in general give rise to
Selmer groups different from those discussed above. Ochiai has studied the
relationship between these Selmer groups, cf. [?, §3].

2.7. If M is a finitely-generated R-module and p ⊆ R is a prime ideal, then
we denote the p-length of M by

lgthpM = lgthRp
Mp,

which is finite if M is a torsion R-module. A simple argument shows that

lgthpM =

∞∑

j=0

rankR/p p
jM/pj+1M. (2.7.1)

A finitely-generated R-module M is said to be pseudo-null if lgthpM = 0 for
every height 1 prime p ⊆ R. Equivalently, M is pseudo-null if the set AssR(M)
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of associated primes of M contains only primes of height 2 or greater. If
M is cofinitely-generated, we say M is copseudo-null if M∨ is pseudo-null.
If R has dimension 2 and finite residue field, then a finitely-generated, resp.
cofinitely-generated, R-module is pseudo-null, resp. copseudo-null, if and only
if it contains only finitely many elements.

2.8 Conditions on X. Fix an ordinary datum X = (T,F). Below, we often
subject X to the following conditions.

(2.8.1) T (−1)GΣ
is a pseudo-null R-module.

(2.8.2) For each prime v | p of K, (F−
v T )(Iv) = 0, (F+

v T (−1))(Kv) = 0,
(F+

v T )(Kv) = 0, and (F−
v W

∗)(Kv) is copseudo-null over R.

(2.8.3) Sel(W ∗) is a cotorsion R-module.

(2.8.4) No subquotient of W ∗[m] is isomorphic to µp as a GK-module.

(2.8.5) For all v ∈ Σ with v ∤ p∞, T (Kv) = 0 and W ∗(Kv) is copseudo-null
over R.

(2.8.6) rankR Sel(T ) = 0.

Note that T (−1)GΣ

∼= W ∗(K)∨, so (??) is equivalent to the statement that
W ∗(K) is copseudo-null. A similar remark applies to (??) and the modules
(F−

v W
∗)(Kv)

∨ ∼= F+
v T (−1)GKv

. Condition (??) implies T (K) = 0. Indeed,
(T/mT ) = HomZp

(W ∗, µp∞) = 0 under this assumption, so T (K)/mT (K) = 0
as well. As mentioned in the introduction, one cannot expect (??) to hold
in general. As discussed, e.g., in [?, §4.9] or [?, §7(d)], there are interesting
representations arising from Hida theory for which it should hold and for which
it should not hold. In the context of those examples, though not generally, (??)
and (??) should be equivalent.

3 Duality formulas

3.1. This section is devoted to the proof of various duality results for Selmer
groups. The first several subsections (up to ??) are devoted to the proof of the
following theorem, the global (??) and local (??) Euler-Poincaré characteristic
formulas. This theorem can be deduced from Nekovář [?, 4.6.9 and 7.8.6], at
least in the case p > 2.

3.2 Theorem. Suppose K has r1 real places and r2 conjugate pairs of complex
places. For any cofinitely-generated cotorsion R-module D and height 1 prime
p ⊆ R,

2∑

i=0

(−1)i lgthpH
i(GΣ, D)∨ =

∑

v real

lgthpD(Kv)
∨ − (r1 + r2) lgthpD

∨ (3.2.1)
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and, for every non-archimedean prime v of K,

2∑

i=0

(−1)i lgthpH
i(Kv, D)∨ =

{
0 v ∤ p

−[Kv : Qp] lgthpD
∨ v | p

(3.2.2)

3.3. Define, for any cofinitely-generated cotorsion R-module D,

δΣ(D) =

2∑

i=0

lgthp(−1)
iHi(GΣ, D)∨ −

∑

v real

lgthpD(Kv)
∨ + (r1 + r2)D

∨.

Similarly, for v a non-archimedean prime of K, if v ∤ p, then set

δv(D) =
2∑

i=0

(−1)i lgthpH
i(Kv, D)∨,

and if v | p, then set

δv(D) =

2∑

i=0

(−1)i lgthpH
i(Kv, D)∨ + [Kv : Qp] lgthpD

∨.

Thus, δ∗(D) is the difference between the right-hand side and left-hand side
of (??) (if ∗ = Σ) or of (??) (if ∗ is a prime of K), and we need to show that
δ∗(D) = 0.

3.4. The proof of Theorem ?? proceeds by induction on lgthpD
∨ and dévissage.

The base case is the following.

Lemma. If lgthp pD
∨ = 0, then δ∗(D) = 0 for ∗ = Σ or a prime of K.

Proof. Consider the short exact sequence

0 −→ D[p] −→ D −→ D/D[p] −→ 0.

By hypothesis, we have lgthp(D/D[p])∨ = 0, so p /∈ Supp(D/D[p])∨. As

SuppM∨ ⊇ SuppHi(G,M)∨ for any i ≥ 0, any cofinitely-generated R-module
M , and G = GΣ or GKv

, we see from the definition of δ∗ that δ∗(D) = δ∗(D[p]).
We may therefore assume without loss of generality that D[p] = D. Under this
assumption, D and all the Hi(G,D) are cofinitely-generated R/p-modules, so
lgthpD

∨ = corankR/pD and lgthpH
i(G,D)∨ = corankR/p H

i(G,D)∨ by (??).
Rephrased in this way via coranks, the statement of the lemma becomes the
same as [?, Prop. 4.1].

3.5 Lemma (Dévissage). For any short exact sequence

0 −→ A −→ B −→ C −→ 0

of cofinitely-generated R-modules with G-action for G = GKv
, resp. G = GΣ,

we have δ∗(A) − δ∗(B) + δ∗(C) = 0 for ∗ = Σ or a prime of K.
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Proof. As lgthp is additive in exact sequences, we may ignore the terms in the
definition of δ∗(D) which are multiples of lgthpD

∨. The lemma is slightly more
difficult when p = 2 and ∗ = Σ, so let us first assume either p > 2 or ∗ 6= Σ.
If v is an archimedean prime of K, then, as p > 2, Hi(Kv, D) = 0 for i > 1
and D = A, B, or C. The result then follows from the long exact cohomology
sequence and the fact that GΣ and GKv

have p-cohomological dimension 2
under our assumptions.
Now suppose p = 2 and ∗ = Σ. By the long exact GΣ-cohomology sequence,
we have

2∑

i=0

lgthpH
i(GΣ, A)−

2∑

i=0

lgthpH
i(GΣ, B) +

2∑

i=0

lgthpH
i(GΣ, C) =

= lgthp ker[H
3(GΣ, A)→ H3(GΣ, B)]. (3.5.1)

Recall ([?, Thm. 4.10], e.g.) that for any discrete ind-finite R[GΣ]-module D,
the natural map

Hq(GΣ, D) −→
∏

v real

Hq(Kv, D)

given by the product of restrictions to decomposition groups at real places is
an isomorphism for q ≥ 3, so the right-hand side of (??) is equal to

lgthp
∏

v real

ker[H3(Kv, A)→ H3(Kv, B)].

As GKv
is cyclic of order 2 for v a real place, the cohomology groups Hi(Kv, D)

are periodic of period 2 for i > 0, and all have equal p-length (cf. [?, Prop. 4.18]).
This implies that

lgthp ker[H
3(Kv, A)→ H3(Kv, B)] = lgthp ker[H

1(Kv, A)→ H1(Kv, B)]

for real v, which, by the long exact GKv
-cohomology sequences, shows that the

right hand side of (??) is equal to
∑

v real

(
lgthpA(Kv)− lgthpB(Kv) + lgthpC(Kv)

)
,

which proves the lemma for p = 2 and ∗ = Σ.

3.6 Proof of Theorem ??. The statement is true when lgthpD
∨ = 0 by

Lemma ??, so assume lgthpD
∨ > 0. Consider the short exact sequence

0 −→ pD∨ −→ D∨ −→ D∨/pD∨ −→ 0.

Lemma ?? implies the result if lgthp pD
∨ = 0. Similarly, if lgthpD

∨/pD∨ = 0,
then lgthpD

∨ = 0 by Nakayama’s Lemma, so a fortiori lgthp pD
∨ = 0 and we

are again done by Lemma ??. We may therefore assume that both lgthp pD
∨

and lgthpD
∨/pD∨ are positive and thus less than lgthpD

∨. The theorem then
follows from dévissage (Lemma ??) and induction.
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3.7 Theorem (Poitou-Tate global duality). There is a perfect pairing

1(W ∗)× 2(T ) −→ Qp/Zp

and a 9-term exact sequence

0 −→ H0(GΣ,W
∗) −→

⊕

v∈Σ

H0(Kv,W
∗) −→ H2(GΣ, T )

∨ −→

−→ H1(GΣ,W
∗) −→

⊕

v∈Σ

H1(Kv,W
∗) −→ H1(GΣ, T )

∨ −→

−→ H2(GΣ,W
∗) −→

⊕

v∈Σ

H2(Kv,W
∗) −→ H0(GΣ, T )

∨ −→ 0

Proof. For all n, R/mn is finite. Note that W ∗ = lim
−→

W ∗[mn], and T =

lim
←−

T/mnT . As W ∗[mn] ∼= HomZp

(
T/mnT,Qp/Zp(1)

)
, the theorem follows

from the version for finite modules (see [?, Thm. I.4.10], for example) by tak-
ing limits.

3.8. For a GΣ-module M with local filtrations at each v | p, e.g., for M arising
from an ordinary datum, we define semi-local cohomology groups by

Hi
loc(M) =

⊕

v|p

Hi(Kv,F
−
v M)⊕

⊕

v∈Σ
v∤p∞

Hi(Kv,M).

Additionally, let

lociM : Hi(GΣ,M)→ Hi
loc(M)

be the natural localization map.

3.9 Lemma. If X satisfies (??) and (??), then the natural homomorphism

H1(GΣ,W
∗) −→

⊕

v∈Σ

H1
s (Kv,W

∗)

is surjective.

Proof. Consider the exact sequence arising from local duality and the defini-
tions of the various groups involved:

H1(GΣ,W
∗) −→

⊕

v∈Σ

H1
s (Kv,W

∗) −→ Sel(T )∨ −→ 1(T )∨ −→ 0.

Under (??), [?, Prop. 2.2.1] states that H1(GΣ, T ) is Λ-torsion-free, whence
R-torsion-free, so the same is true of Sel(T ). The lemma then follows from the
assumption (??).
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3.10 Lemma. If X satisfies (??) and (??), then Sel(W ∗)/ ker loc1W∗ is a
copseudo-null R-module. In particular,

lgthp Sel(W
∗)∨ = lgthp ker(loc

1
W∗)∨

for every height 1 prime p ⊆ R. If X further satisfies (??) and (??), then
coker loc1W∗ is a copseudo-null R-module.

Proof. The inflation-restriction sequence for Iv ⊆ GKv
implies that the quotient

Sel(W ∗)/ ker loc1W∗ injects into
⊕

v|p

H1
(
Kur

v /Kv,F
−
v W

∗(Iv)
)
⊕

⊕

v∈Σ
v∤p∞

H1
(
Kur

v /Kv,W
∗(Iv)

)
, (3.10.1)

where Kur
v is the maximal unramified extension of Kv. The lemma thus follows

from the assumptions (??) and (??), which state that F−
v W

∗(Iv) and W
∗(Iv)

are copseudo-null R-modules.
In case X also satisfies (??) and (??), then Lemma ?? gives that the homo-
morphism

H1(GΣ,W
∗) −→

⊕

v∈Σ

H1
s (Kv,W

∗)

defining Sel(W ∗) is surjective. The module (??) above is the kernel of the
quotient map

H1
loc(W

∗) −→
⊕

v∈Σ

H1
s (Kv,W

∗),

so the final statement in the lemma follows from the fact that (??) is copseudo-
null.

3.11 Lemma. If X satisfies (??), (??), and (??), then the R-modules H2
loc(W

∗)
and H2(GΣ,W

∗) are trivial.

Proof. By local Tate duality, we have

H2(Kv,F
−
v W

∗) ∼= (F+
v T )(Kv)

for v | p, and
H2(Kv,W

∗) ∼= T (Kv)

for v ∈ Σ, v ∤ p∞. Both of these are trivial by (??) and (??), respectively, so
that H2

loc(K,W
∗) = 0.

We first show 2(W ∗) = 0. By [?, Prop. 6.6], 2(W ∗) is coreflexive, so it suffices
to show that corankR

2(W ∗) = 0. By [?, Prop. 4.4], 2(W ∗) has the same R-
corank as 1(W ∗). On the other hand, 1(W ∗) ⊆ Sel(W ∗), which is assumed
R-cotorsion by (??). By definition of , we have an exact sequence

0 −→ 2(W ∗) −→ H2(GΣ,W
∗) −→

⊕

v∈Σ

H2(Kv,W
∗).

We have just seen that 2(W ∗) = 0, and H2(Kv,W
∗) = 0 for v ∈ Σ by (??),

(??), and local duality.
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4 Isogenies

4.1. If T1 and T2 are finitely generated R-modules and φ : X1 → X2 is a ho-
momorphism with torsion kernel and cokernel, then we say that φ is an isogeny
or that T1 and T2 are isogenous if we do not wish to make the homomorphism
explicit. Note that an isogeny of torsion-free R-modules is necessarily injective.
Similarly, if W1 and W2 are cofinitely-generated R-modules, then we say that
a homomorphism ψ : W1 → W2 is an isogeny (and that W1 and W2 are isoge-
nous) if its Pontryagin dual ψ∨ : W∨

2 → W∨
1 is an isogeny. If Xi = (Ti,Fi),

i = 1, 2, are ordinary data, then we say that φ : X1 → X2 is an isogeny and
hence that the Xi are isogenous if φ : T1 → T2 is an isogeny. A homomorphism
of ordinary data φ : X1 → X2 is an isogeny if and only if the induced ho-
momorphism W ∗

X2
→W ∗

X1
is an isogeny. Isogeny is an equivalence relation on

the categories of finitely-generated R-modules, cofinitely-generated R-modules,
and ordinary data, cf. [?, §2].

4.2. For the remainder of the section, fix ordinary data X1 = (T1,F1) and
X2 = (T2,F2) and an isogeny φ : X1 → X2. Our goal is to use Theorem ?? to
prove a formula (Theorem ??) relating the p-lengths of Selmer groups for X1

and X2 in terms of various Galois invariants of the quotient module T2/φ(T1),
or, more precisely, its dual C = Cφ = ker[W ∗

2 → W ∗
1 ]. The key tools we need

are the global Euler-Poincaré characteristic formulas above and Poitou-Tate
duality, Theorem ??. The formula can be thought of as a reorganization of the
information provided by Poitou-Tate duality under the assumptions (??)–(??).

4.3 Proposition. If X satisfies (??)–(??), then for all height 1 primes p ⊆ R,

lgthp Sel(W
∗
1 )

∨ − lgthp Sel(W
∗
2 )

∨ =

=

2∑

i=1

(−1)i
(
lgthpH

i(GΣ, C)
∨ − lgthpH

i
loc(C)

∨
)

Proof. The commutative diagram

H1(GΣ, C)
α

//

��

H1(GΣ,W
∗
1 )

//

loc
1

W∗

1

��

H1(GΣ,W
∗
2 )

γ
//

loc
1

W∗

2

��

H2(GΣ, C)

��

H1
loc(C)

β
// H1

loc(W
∗
1 )

// H1
loc(W

∗
2 )

δ
// H2

loc(C)

has exact rows. Assumptions (??), resp. (??) and (??), imply that kerα,
resp. kerβ, is copseudo-null over R. Likewise, γ and δ have trivial cokernel
by Lemma ??. By Lemma ??, loc1W∗

1

and loc1W∗

2

have copseudo-null cokernels.
Examining the p-lengths in the above diagram for a height 1 prime p ⊆ R
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therefore gives

lgthp ker(loc
1
W∗

1

)∨ − lgthp ker(loc
1
W∗

2

)∨ =

=

2∑

i=1

(−1)i
(
lgthpH

i(GΣ, C)
∨ − lgthpH

1
loc(C)

∨
)
,

which implies the proposition by the first statement of Lemma ??.

4.4 Theorem. If X1 and X2 satisfy (??)–(??), then, for every height 1 prime
p ⊆ R,

lgthp Sel(W
∗
1 )

∨ − lgthp Sel(W
∗
2 )

∨ =

=
∑

v real

lgthpC(Kv)
∨ − (r1 + r2) lgthpC

∨ +
∑

v|p

[Kv : Qp] lgthp(F
−
v C)

∨.

Proof. By (??), H0(GΣ,W
∗
1 ) is copseudo-null, so H0(GΣ, C) and H1

loc(W
∗
1 ) are

also copseudo-null. The theorem thus follows immediately from Proposition ??

and the global Euler-Poincaré characteristic formula, Theorem ??.

5 Application to normalization

5.1. We now apply the main result of §?? to study how Selmer groups behave
with respect to normalization. Assume R is reduced and let R̃ be the integral
closure of R in its total ring of fractions. A well-known result of Nagata [?,

Thm. 7] states that R̃ is a finite R-module. If X is an ordinary datum over R,

then set X̃ = (T̃ , F̃), where T̃ = T ⊗R R̃ and F̃
+

v T = (F+
v T )⊗R R̃. Since R̃ is

finite over R, we may view X̃ as an ordinary datum over R or over R̃, and the
natural inclusion T → T̃ is an isogeny of ordinary data over R.

5.2. Fix an ordinary datum X over R. For Φ = FracR the fraction field of R,
define V = T ⊗R Φ, so V is a finite-dimensional Φ-vector space with a Φ-linear
action of GΣ. The filtrations F induce filtrations V ⊇ F+

v V ⊇ 0 for v | p.
Define

α(X) = dimΦ(resK/Q V )+ =
∑

v|∞

dimΦ V (Kv).

For v | p, define εv(X) = dimK F+
v V . We say that X is p-critical if

α(X) =
∑

v|p εv(x). For p-critical data, we have the following theorem re-
garding normalization.

5.3 Theorem. Let p ⊆ R be a height 1 prime. If p = 2, then assume that
T (Kv) is a summand of T for each real place v of K. If X and X̃, both viewed
as ordinary data over R, are p-critical and satisfy (??)–(??), then

lgthp Sel(W
∗)∨ = lgthp Sel(W̃

∗)∨.
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Proof. Let C = ker[W̃ ∗ → W ∗], the map being induced by the inclusion T →֒

T̃ . By (??), (??) and (??), we have that H0(GΣ, C) and H0
loc(C) are copseudo-

null over R, so it suffices by Proposition ?? to show that

2∑

i=0

(−1)i lgthpH
i(GΣ, C)

∨ =
2∑

i=0

(−1)iHi
loc(C)

∨ (5.3.1)

for all p ⊆ R of height 1. The global Euler-Poincaré formula (??) gives the
left-hand side of (??) as

∑

v real

lgthpC(Kv)
∨ − (r1 + r2) lgthpC

∨

and the local formula (??) gives the right-hand side as

∑

v|p

−[Kv : Qp] lgthp(F
−
v C)

∨.

Adding [K : Q] lgthpC
∨ to these yields

∑

v real

lgthpC(Kv)
∨ + r2 lgthpC

∨

and ∑

v|p

[Kv : Qp] lgthp(F
+
v C)

∨.

By freeness of T , lgthpC
∨ = rankR T lgthp R̃/R, and similarly for (F±

v C)
∨ and

C(Kv). The theorem thus follows from the p-criticality assumption on T .

5.4 Lemma. Let M and N be torsion R̃-modules and fix a height 1 prime
q ⊆ R. Then lgthpM = lgthpN for all height 1 primes p ⊆ R̃ such that p | q
if and only if lgthqM = lgthqN .

Proof. The content of the lemma is that the q-length of a torsion R̃-module M
(viewed as R-module) is determined by its p-lengths (viewed as R̃-module) for

p ⊆ R̃ lying over q, and conversely. Let p1, . . . , pn be the primes of R̃ lying
over q ⊆ R and set S = (R− q) ⊆ R̃. First consider a chain

Mq =Mq,0 ⊇Mq,1 ⊇ · · · ⊇Mq,k

computing the length of Mq as S−1R̃-module. Each successive quotient in

this chain is isomorphic to R̃/pi for some i. Localization of this chain to R̃pi

therefore computes lgthpi
M after removing repeated submodules and we see

that lgthqM determines and is determined by these lengths and lgthq R̃/pi.
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5.5. In the below corollary to Theorem ??, we say two finitely-generated R-
modules M and N have the same divisor if lgthpM = lgthqN for all height 1
primes p ⊆ R. Similarly, we say a finitely-generated R-module has the same
divisor as an element L ∈ R if M and R/L have the same divisor.

Corollary. Let 0 6= L ∈ R and let L̃ be the image of L in R̃. Using notation
and assumptions as in Theorem ??, with the exception that we now view X̃ as
an ordinary datum over R̃, Sel(W ∗)∨ has the same divisor as L if and only if

Sel(W̃ ∗)∨ has the same divisor as L̃.

Proof. Viewing R̃ as a rank 1 R-module, we use the formula [?, Lemma 11.7]
to see that, for every height 1 prime q ⊆ R,

lgthq R̃/(L̃) = lgthqR/(L),

so the result follows by combining Theorem ?? and Lemma ??.

5.6. Corollary ?? states, roughly speaking, that, under some assumptions, the
formation of the divisor of the Selmer group of an ordinary datum commutes
with normalization. In a situation where there is a p-adic L-function belong-
ing to R associated with the ordinary datum X , the corollary provides some
flexibility in proving a main conjecture for X , in that such a conjecture can be
proved equivalently before or after normalization.
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