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veröffentlicht Forschungsarbeiten aus allen mathematischen Gebieten und wird in
traditioneller Weise referiert. Es wird indiziert durch Mathematical Reviews, Science
Citation Index Expanded, Zentralblatt für Mathematik.

Artikel können als TEX-Dateien per E-Mail bei einem der Herausgeber eingereicht
werden. Hinweise für die Vorbereitung der Artikel können unter der unten angegebe-
nen WWW-Adresse gefunden werden.

Documenta Mathematica, Journal der Deutschen Mathematiker-Vereinigung,
publishes research manuscripts out of all mathematical fields and is refereed in the
traditional manner. It is indexed in Mathematical Reviews, Science Citation Index
Expanded, Zentralblatt für Mathematik.

Manuscripts should be submitted as TEX -files by e-mail to one of the editors. Hints
for manuscript preparation can be found under the following web address.

http://www.math.uni-bielefeld.de/documenta
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Claude Cibils, Maŕıa Julia Redondo, and Andrea Solotar
Fundamental Group of Schurian Categories
and the Hurewicz Isomorphism 581–595

Douglas S. Bridges
Characterising Weak-Operator
Continuous Linear Functionals on B(H) constructively 597–617

Jeffrey L. Boersema, Efren Ruiz, P. J. Stacey
The Classification of Real
Purely Infinite Simple C*-Algebras 619–655
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Abstract. This paper studies Emerton’s Jacquet module functor
for locally analytic representations of p-adic reductive groups, intro-
duced in [Eme06a]. When P is a parabolic subgroup whose Levi
factor M is not commutative, we show that passing to an isotypical
subspace for the derived subgroup ofM gives rise to essentially admis-
sible locally analytic representations of the torus Z(M), which have a
natural interpretation in terms of rigid geometry. We use this to ex-
tend the construction in of eigenvarieties in [Eme06b] by constructing
eigenvarieties interpolating automorphic representations whose local
components at p are not necessarily principal series.

2010 Mathematics Subject Classification: 11F75, 22E50, 11F70
Keywords and Phrases: Eigenvarieties, p-adic automorphic forms,
completed cohomology

1 Introduction

1.1 Background

Let G be a reductive group over a number field F . The automorphic represen-
tations of the group G(A), where A is the adèle ring of F , are central objects
of study in number theory. In many cases, it is expected that the set Π(G) of
automorphic representations contains a distinguished subset Π(G)arith of rep-
resentations which are (in some sense) “definable over Q”. The subject of this
paper is the p-adic interpolation properties of these representations (and their

0The second author is grateful for the support of EPSRC Postdoctoral Fellowship
EP/F04304X/2.
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2 Richard Hill and David Loeffler

associated Hecke eigenvalues). Following the pioneering work of Coleman and
Coleman-Mazur [Col96, Col97, CM98] for the automorphic representations at-
tached to modular forms with nonzero Hecke eigenvalue at p, it is expected
that these Hecke eigenvalues should be parametrised by p-adic rigid spaces
(eigenvarieties).

A very general construction of eigenvarieties is provided by the work of Emer-
ton [Eme06b], using the cohomology of arithmetic quotients of G. For any
fixed open compact subgroup Kf ⊆ G(Af ) (where Af is the finite adèles of F ),
and K◦∞ the identity component of a maximal compact subgroup of G(F ⊗R),
the quotients Y (Kf ) = G(F )\G(A)/KfK

◦
∞ are real manifolds, equipped with

natural local systems VX for each algebraic representation X of G. The coho-
mology groupsHi(Y (Kf ),VX) are finite-dimensional, and passing to the direct
limit over Kf gives an admissible smooth representation Hi(VX) of G(Af ).
Every irreducible subquotient of Hi(VX) is the finite part of an automorphic
representation; we say that the representations arising in this way are cohomo-
logical (in degree i).

Emerton’s construction proceeds in two major steps. Fix a prime p above

p and an open compact subgroup K(p) ⊆ G(A(p)
f ) (a “tame level”). Firstly,

from the spaces Hi(Y (K(p)Kp),VX) for various open compact subgroups Kp ⊆
G = G(Fp), Emerton constructs Banach space representations H̃i(K(p)) of G.

For any complete subfield L of Fp, the spaces H̃i(K(p))la of locally L-analytic
vectors are locally L-analytic representations of G, and there are natural maps

Hi(VX)K
(p) → Homg(X

′, H̃i(K(p))la) (1.1)

where g = LieG. In many cases, these maps are known to be isomorphisms; if
this holds, the automorphic representations which are cohomological in degree
i are exactly those which appear as subquotients of Homg(X

′, H̃i(K(p))la) for
some X and tame level K(p).

The second step in the construction is to extract the desired information from
the space H̃i(K(p))la. This is carried out by applying the Jacquet module func-
tor of [Eme06a], for a Borel subgroup B ⊆ G. This then produces an essentially
admissible locally analytic representation of the Levi factor M of B, which is
a torus. There is an anti-equivalence of categories between essentially admis-
sible locally analytic representations of M and coherent sheaves on the rigid-
analytic space M̂ parametrising characters of M . The eigenvariety E(i,K(p))
is then constructed from this sheaf by passing to the relative spectrum of the
unramified Hecke algebra Hsph of K(p); points of this variety correspond to
characters (κ, λ) ∈ M̂ ×SpecHsph such that the (M = κ,Hsph = λ)-eigenspace
of JB(H̃

i(K(p))la) is nonzero. Hence if the map (1.1) above is an isomorphism,
there is a point of E(i,K(p)) for each automorphic representation π =

⊗
v πv

which is cohomological in degree i with (π
(p)
f )K

(p) ⊗ JB(πp) 6= 0.

Documenta Mathematica 16 (2011) 1–31



Emerton’s Jacquet Functors 3

1.2 Statement of the main result

In this paper, we consider the situation where B is replaced by a general
parabolic subgroup P of G. This extends the scope of the theory in two ways:
firstly, it may happen that no Borel subgroup exists (G may not be quasi-split);
and even if a Borel subgroup exists, there will usually be automorphic represen-
tations for which JB(πp) = 0, which do not appear in Emerton’s eigenvariety.
As above, we choose a number field F , a connected reductive group G over F ,
and a prime p of F above the rational prime p. Let G = G×F Fp, a reductive
group over Fp, and G = G(Fp). Let us choose a parabolic subgroup P of G (not
necessarily arising from a parabolic subgroup of G), with unipotent radical N ;
and letM be a Levi factor of P , with centre Z and derived subgroup D. We
write G = G(Fp), and similarly for P,M,D,Z. We choose a complete extension
L of Qp contained in Fp, so G,P,M,D,Z are locally L-analytic groups.
Let Γ = D ×G(Ap

f )× π0, where π0 is the component group of G(F ⊗ R). Let
us choose an open compact subgroup U ⊆ Γ (this is the most natural notion of
a “tame level” in this context), and a finite-dimensional irreducible algebraic
representationW ofM. As we will explain below, the Hecke algebra H(Γ//U)
can be written as a tensor product Hram ⊗Hsph, where Hsph is commutative,
and Hram is finitely-generated (and supported at a finite set of places S).

Theorem (Theorem 6.3). There exists a rigid-analytic subvariety E(i, P,W,U)

of Ẑ × SpecHsph, endowed with a coherent sheaf F(i, P,W,U) with a right
action of Hram, such that:

1. The natural projection E(i, P,W,U) → z′ has discrete fibres. In particu-
lar, the dimension of E(i, P,W,U) is at most equal to the dimension of
Z.

2. The point (χ, λ) ∈ Ẑ × SpecHsph lies in E(i, P,W,U) if and only if the

(Z = χ,Hsph = λ)-eigenspace of HomU

(
W,JP (H̃

i)la

)
is nonzero. If

this is so, the fibre of F(i, P,W,U) at (χ, λ) is isomorphic as a right
Hram-module to the dual of that eigenspace.

3. If there is a compact open subgroup G0 ⊆ G such that (H̃i
la)

U(p)

is iso-
morphic as a G0-representation to a finite direct sum of copies of C la(G0)
(where U (p) = U ∩ G(Ap

f )), then E(i, P,W,U) is equidimensional, of di-
mension equal to the rank of Z.

Now let us suppose that W is absolutely irreducible, and write Π(i, P,W,U)
for the set of irreducible smooth G(Af ) × π0-representations πf such that
JP (πf )

U 6= 0, and πf appears as a subquotient of the cohomology spaceHi(VX)
for some irreducible algebraic representation X of G such that (X ′)N ∼=W ⊗χ
for a character χ. To any such πf , we may associate the point (θχ, λ) ∈
Ẑ × SpecHsph, where θ is the smooth character by which Z acts on JP (πp),
and λ the character by which Hsph acts on JP (πf )

U . Let E(i, P,W,U)cl denote

Documenta Mathematica 16 (2011) 1–31



4 Richard Hill and David Loeffler

the set of points of Ẑ × SpecHsph obtained in this way from representations
πf ∈ Π(i, P,W,U).

Corollary (Corollary 6.4). If the map (1.1) is an isomorphism in degree i
for all irreducible algebraic representations X such that (X ′)N is a twist of
W , then E(i, P,W,U)cl ⊆ E(i, P,W,U). In particular, the Zariski closure of
E(i, P,W,U)cl has dimension at most dimZ.

In the special case when G(F ⊗ R) is compact modulo centre, a related state-
ment has been proved (by very different methods) by the second author [Loe11].
If P1 and P2 are two different choices of parabolic, with P1 ⊇ P2, we have a
relation between the eigenvarieties attached to P1 and P2 under a mild addi-
tional hypothesis, namely that the tame level be of the form U (p) × Up, with
U (p) an open compact subgroup away from p and Up an open compact sub-
group of D1 = [M1,M1] which admits a certain decomposition with respect to
the parabolic P2∩D1 (see §5.2 below). In this situation, we have the following:

Theorem (Theorem 6.5). If U is of the above type, then the space
E(i, P1,W,U) is equal to the union of two subvarieties E(i, P1,W,U)P2−fs
and E(i, P1,W,U)P2−null, which are respectively endowed with sheaves of
Hram-modules F(i, P,W,U)P2−fs and F(i, P,W,U)P2−null whose direct sum is
F(i, P,W,U).
If πf ∈ Π(i, P,W,U) and πf is not annihilated by the map (1.1), then the point
of E(i, P1,W,U) corresponding to πf lies in the former subvariety if JP2(πp) 6=
0, and in the latter if JP2(πp) = 0. Moreover, there is a closed subvariety of

E(i, P2,W
N12 , U ∩D2) whose image in Ẑ1 × SpecHsph is E(i, P1,W,U)P2−fs.

2 Preliminaries

2.1 Notation and definitions

Let p be a prime. Let K ⊇ Qp be a complete discretely valued field, which will
be the coefficient field for all the representations we consider, and L a finite
extension of Qp contained in K. If V is a locally convex K-vector space, we
let V ′ denote the continuous dual of V . We write V ′b for V ′ endowed with the
strong topology (which is the only topology on V ′ we shall consider).
Let S be an abstract semigroup. A topological representation of S is a locally
convex Hausdorff topological K-vector space V endowed with a left action of
S by continuous operators. If S has a topology, we say that the representation
is separately continuous if the orbit map of each v ∈ V is a continuous map
S → V , and continuous if the map S × V → V is continuous. In particular,
this applies when S is a topological K-algebra and V is an S-module, in which
case we shall refer to V as a separately continuous or continuous topological
S-module.
If G is a locally compact topological group and V is a continuous representation
of G, then V ′ is a module over the algebra D(G) of measures on G [Eme04,

Documenta Mathematica 16 (2011) 1–31



Emerton’s Jacquet Functors 5

5.1.7], defined as C(G)′ where C(G) is the space of continuous K-valued func-
tions on G. If G is a locally p-adic analytic group, then for any open compact
subgroup H ⊆ G, the subalgebra D(H) is Noetherian, and we say V is admis-
sible continuous [ST02a, Lemma 3.4] if V is a Banach space and V ′ is finitely
generated over D(H) for one (and hence every) open compact H .
If G is a locally L-analytic group, in the sense of [ST02b], then we say the
representation V is locally analytic if it is a continuous G-representation on a
space of compact type, and the orbit maps are locally L-analytic functions G→
V . This implies [Eme04, 5.1.9] that V ′b is a separately continuous topological
module over the topological K-algebraDla(G) of distributions on G, defined as
C la(G)′b where C

la(G) is the space of locally L-analytic K-valued functions on
G. For H an open compact subgroup, the subalgebraDla(H) is a Fréchet-Stein
algebra [ST03, 5.1], so the category of coadmissible Dla(H)-modules is defined
[ST03, §3]; we say V is admissible locally analytic if V ′b is coadmissible as a
module over Dla(H) for one (and hence every) open compact H .
Finally, if G is a locally L-analytic group for which Z = Z(G) is topolog-
ically finitely generated, we say the representation V is Z-tempered if it is
locally analytic and can be written as an increasing union of Z-invariant
BH-spaces. This implies that for any open compact subgroup H ⊆ G, V ′b
is a jointly continuous topological module over the algebra Dess(H,Z(G)) =

Dla(H) ⊗̂Dla(Z∩H) C
an(Ẑ), where Ẑ is the rigid space1 parametrising charac-

ters of Z. The algebra Dess(H,Z(G)) is also a Fréchet-Stein algebra [Eme04,
5.3.22], and we say V is essentially admissible locally analytic if V ′b is coadmis-
sible as a module over Dess(H,Z(G)) for one (and hence every) open compact
H .
We write Reptop(G) for the category of topological representations of G, with
morphisms being G-equivariant continuous linear maps. We consider the fol-
lowing full subcategories:

• Repcts(G): continuous representations

• Repcts,ad(G): admissible continuous representations

• Reptop,c(G): topological representations on compact type spaces

• Repla,c(G): locally analytic representations

• Repzla,c(G): Z-tempered representations

• Repla,ad(G): admissible locally analytic representations

• Repess(G): essentially admissible locally analytic representations

• Repcts,fd(G): finite-dimensional continuous representations

• Repla,fd(G): finite-dimensional locally analytic representations

1The space Ẑ is in fact defined over L, but we shall always consider it as a rigid space
over K by base extension.
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6 Richard Hill and David Loeffler

Each of these categories is stable under passing to closed G-invariant sub-
modules. The categories Repcts,ad(G), Repla,ad(G) and Repess(G) have the
additional property that all morphisms are strict, with closed image.
The definition of Reptop and Reptop,c makes sense if G is only assumed to be a
semigroup. We will need one more category of representations of semigroups:
if S is a semigroup which contains a locally L-analytic subgroup S0, we define
Repzla,c(S) to be the full subcategory of Reptop,c(S) of representations which
are locally analytic as representations of S0, and can be written as an increasing
union of Z(S)-invariant BH-subspaces. We will, in fact, only use this when
either S is a group (in which case the definition reduces to the definition of
Repzla,c above) or S is commutative.

Remark. If V ∈ Reptop(G), V
′ naturally carries a right action of G. Hence

we follow the conventions of [Eme04, §5.1] by defining the algebra structures
on D(G) and its cousins in such a way that the Dirac distributions satisfy
δg ⋆ δh = δhg, so all of our modules are left modules. The alternative is to
consider the contragredient action on V ′, which is the convention followed in
[ST02b, ST03]; we do not adopt this approach here as we will occasionally wish
to consider semigroups rather than groups.

2.2 Smooth and locally isotypical vectors

We now present a slight generalisation of the theory of [Eme04, §7].
Let G be a locally compact topological group and H E G closed. We suppose
that G admits a countable basis of neighbourhoods of the identity consisting
of open compact subgroups; this is automatic if G is locally p-adic analytic, for
instance. The action of any g ∈ G onH by conjugation gives a homeomorphism
from H to itself, so the conjugation action of G preserves the set of open
compact subgroups of H .

Definition 2.1. Let V be an (abstract) K-vector space with an action of G.
We say a vector v ∈ V is H-smooth if there is an an open compact subgroup U
of H such that Uv = v.

Our assumptions imply that the space VH−sm of H-smooth vectors is G-
invariant.

Definition 2.2 ([Eme04, 7.1.1]). Suppose V ∈ Reptop(G). We define

VH−st.sm = lim−→
U⊆H
U open

V U ,

equipped with the locally convex inductive limit topology.

Clearly VH−st.sm can be identified with VH−sm as an abstract K-vector space,
but the inductive limit topology on the former is generally finer than the sub-
space topology on the latter. It is clear that the action of G on V induces a

Documenta Mathematica 16 (2011) 1–31



Emerton’s Jacquet Functors 7

topological action on VH−st.sm, so (−)H−st.sm is a functor from Reptop(G) to
itself, and the natural injection VH−st.sm →֒ V is G-equivariant. We say V is
strictly H-smooth if this map is a topological isomorphism.

Proposition 2.3.

(i) If V ∈ Repcts(G), then VH−st.sm ∈ Repcts(G).

(ii) If V ∈ Reptop,c(G), then VH−st.sm is of compact type and the natural map
VH−st.sm → V is a closed embedding.

Proof. To show (i), we argue as in [Eme04, 7.1.10]. We let G0 be an open
compact subgroup of G and (Hi)i≥0 a decreasing sequence of open compact
subgroups of H satisfying

⋂
iHi = {1} and with each Hi normal in G0; it is

clear that we may do this, by our assumption on G. We set Hi = Gi∩H . Then
V Hi is a G0-invariant closed subspace of V , and letting Vi denote the kernel
of the “averaging” map V Hi → V Hi−1 , we have V H−st.sm =

⊕
i Vi. Since each

Vi is in Repcts(G0), VH−st.sm ∈ Repcts(G0), which implies it is in Repcts(G).
Statement (ii) depends only on V as an H-representation, so we are reduced
to the case of [Eme04, 7.1.3].

It follows from (ii) that for V ∈ Reptop,c(G) we do not need to distinguish
between VH−st.sm and VH−sm. Moreover, we see that if V ∈ Repla,c(G) or any
of the subcategories of admissible representations introduced above, VH−st.sm
has the same property.

Definition 2.4. Let V,W be abstract K-vector spaces with an action of G. We
say a vector v ∈ V is locally (H,W )-isotypic if there is an integer n, an open
compact subgroup U of H, and a U -equivariant linear map Wn → V whose
image contains v.

The locally (H,W )-isotypic vectors clearly form a G-invariant subspace of V ,
sinceH is normal in G. By construction, this is the image of the evaluation map
HomH−sm(W,V )⊗KW → V , where HomH−sm(W,V ) denotes the subspace of
H-smooth vectors in HomK(W,V ) =W ′ ⊗K V with its diagonal G-action.
If V and W are in Reptop(G), with W finite-dimensional, then HomK(W,V )
has a natural topology (as a direct sum of finitely many copies of V ) and
we write HomH−st.sm(W,V ) for HomK(W,V )H−st.sm, with its inductive limit
topology as above. Then HomH−st.sm(W,V ) ⊗K W is an object of Reptop(G)
with a natural morphism to V .
We let V(H,W )−liso denote the image of HomH−st.sm(W,V )⊗KW in V , endowed
with the quotient topology from the source (which is generally finer than the
subspace topology on the target). We say V is strictly locally (H,W )-isotypical
if the map V(H,W )−liso → V is a topological isomorphism.

Definition 2.5. We say W is H-good if W is finite-dimensional, and for
any open compact subgroup U ⊆ H, EndU (W ) = EndH(W ) = EndG(W ).

Documenta Mathematica 16 (2011) 1–31



8 Richard Hill and David Loeffler

Proposition 2.6. Suppose W is H-good, with B = EndG(W ). Then for any
representation V of G on an abstract K-vector space, the natural map

HomK(W,V )H−sm ⊗B W → V

is a G-equivariant injection. Dually, for any abstract right B-module X with a
B-linear G-action which is smooth restricted to H, the natural map

X → HomK(W,X ⊗B W )H−sm

is an isomorphism.

Proof. If G = H , the first statement is [Eme04, 4.2.4] (the assumption in op.cit.
that W be algebraic is only used to show that W is H-good). For the general
case, the map exists and is injective at the level of H-representations, so it
suffices to note that the assumption on W implies that the left-hand side has
a well-defined G-action, for which the map is G-equivariant.
For the second part, it suffices to show that the map restricts to an isomorphism
XU → HomU (W,X ⊗B W ) for any open U ⊆ H . Since W is faithful as a B-
module by construction, the natural map is an injection. Since X is smooth as
anH-representation, any vector in the left-hand side is in HomU (W,X

U ′⊗BW )
for some U ′, which we may assume to be normal in U . However, we have

HomU (W,X
U ′ ⊗B W ) ⊆ HomU ′ (W,XU ′ ⊗B W ) = XU ′ ⊗B HomU ′(W,W ).

and since W is H-good, we have HomU ′(W,W ) = B, so HomU ′(W,XU ′ ⊗B
W ) = XU ′

. Passing to U/U ′-invariants gives the result.

Combining the preceding results shows that for W an H-good representation,
the two functors

HomH−st.sm(W,−) and −⊗BW
are mutually inverse equivalences between the categories of strictly lo-
cally (H,W )-isotypical representations of G and strictly H-smooth G-
representations on right B-modules.

Proposition 2.7. If H is a locally L-analytic group, and V is in Reptop(G)∩
Repla,c(H), then there is a topological isomorphism VH−st.sm ∼= V h, where h

is the Lie algebra of H. More generally, if W is an H-good locally analytic
representation of G, V(H,W )−liso ∼= Homh(W,V )⊗B W .

Proof. Clear from proposition 2.3(i), since a vector v ∈ V is in VH−sm if and
only if it is h-invariant.

3 Preservation of admissibility

3.1 Spaces of invariants

In this section we consider a group G and a normal subgroup H , and consider
the functor of H-invariants V 7→ V H : Reptop(G)→ Reptop(G/H). Our aim is
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to show that this preserves the various subcategories of admissible representa-
tions introduced in the previous section.

Proposition 3.1. If V is an admissible Banach representation of a locally
p-adic analytic group G, and H E G is a closed normal subgroup, then V H is
an admissible Banach representation of G/H.

Proof. Suppose first G is compact, so D(G) is Noetherian. Since H is nor-
mal and acts continuously on V , V H is a G-invariant closed subspace; so
(V H)′ is a D(G)-module quotient of a finitely-generated D(G)-module, and
hence is a finitely-generated D(G)-module. However, the closed embedding
C(G/H) →֒ C(G) dualises to a surjection D(G) → D(G/H), and it is clear
that the D(G)-action on (V H)′ factors through this surjection. Hence (V H)′ is
finitely-generated over D(G/H). In the general case, let G0 be a compact open
subgroup of G and H0 = G0∩H . Then G0/H0 is an open compact subgroup of
G/H . By the above, V H0 is an admissible continuous G0/H0-representation.
Since V H is a closed G0/H0-invariant subspace of V H0 it is also admissible
continuous as a representation of G0/H0 and hence of G/H .

We now suppose G is a locally L-analytic group. We write H EL G to mean
that H is a closed normal subgroup of G and the Qp-subspace Lie(H) ⊆ Lie(G)
is in fact an L-subspace, so H and G/H also inherit locally L-analytic struc-
tures.

Proposition 3.2. If V is an admissible locally analytic representation of G,
and H EL G. Then V H is an admissible locally analytic representation of
G/H.

Proof. As above, we may assume G is compact. As in the Banach case, we
note that V H is a closed G-invariant subspace of V , so it is an admissible
locally analyticG-representation [ST03, 6.4(ii)] on which the action of G factors
throughG/H . Hence the action ofDla(G) on (V H)′ factors throughDla(G/H).
Since the natural map C la(G/H)→ C la(G) is a closed embedding, Dla(G/H)
is a Hausdorff quotient of Dla(G) and hence a coadmissible Dla(G)-module,
and so by [ST03, 3.8] we see that (V H)′b is coadmissible as a D(G/H)-module
as required.

We now assume that G is a locally L-analytic group with Z(G) topologically
finitely generated, and H EL G. In this case Z(G/H) may be much larger
than Z(G)/(Z(G)∩H), as in the case of Q×p ⋉Qp; so an element of Repzla,c(G)
on which H acts trivially need not lie in Repzla,c(G/H). Moreover, it is not
obvious that Z(G/H) need be topologically finitely generated if Z(G) is so.
We shall therefore assume that G is a direct product H × J , with H, J EL G,
and Z(H) and Z(J) are both topologically finitely generated.

Proposition 3.3. In the above situation, for any essentially admissible locally
analytic G-representation V , the space V H is an essentially admissible locally
analytic representation of J .

Documenta Mathematica 16 (2011) 1–31
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Proof. By [Eme04, 6.4.11], any closed invariant subspace of an essentially ad-
missible representation is essentially admissible; so it suffices to assume that
V = V H . Let J0 ⊆ J and H0 ⊆ H be open compact subgroups. Then
G0 = J0×H0 is an open compact subgroup ofG. We have Z(G) = Z(H)×Z(J),
and hence Ẑ(G) = Ẑ(H)× Ẑ(J).
We now unravel the tensor products to find that the algebra

Dess(G0, Z(G)) = Dla(G0) ⊗̂
Dla(G0∩Z(G))

Can(Ẑ(G))

decomposes as

(
Dla(H0) ⊗̂

K
Dla(J0)

)
⊗̂

Dla(H0∩Z(H)) ⊗̂K Dla(J0∩Z(J))

(
Can(Ẑ(H)) ⊗̂

K
Can(Ẑ(J))

)

=

(
Dla(H0) ⊗̂

Dla(H0∩Z(H))
Can(Ẑ(H))

)
⊗̂
K

(
Dla(J0) ⊗̂

Dla(J0∩Z(J))
Can(Ẑ(J))

)

= Dess(H0, Z(H)) ⊗̂
K
Dess(J0, Z(J)).

By assumption, the action of Dess(H0, Z(H)) on V ′b factors through the
augmentation map to K; so the action of Dess(G0, Z(G)) factors through
Dess(J0, Z(J)). Since D

ess(J0, Z(J)) is a Hausdorff quotient of Dess(G0, Z(G)),
it is a coadmissible Dess(G0, Z(G))-algebra, and thus V ′b is a coadmissible
Dess(J0, Z(J))-module as required.

3.2 Admissible representations of product groups

In this section, we’ll recall the theory presented in [Eme04, §7] of represen-
tations of groups of the form G × Γ, where G is a locally L-analytic group
and Γ an arbitrary locally profinite (locally compact and totally disconnected)
topological group. This will allow us to give more “global” formulations of the
results of the previous section.

Let ∗ denote one of the set {“admissible Banach”, “admissible locally analytic”,
“essentially admissible locally analytic”}, so we shall speak of “∗-admissible
representations”. Whenever we consider essentially admissible representations
we will assume that the groups concerned have topologically finitely generated
centre, so the concept is well-defined.

Definition 3.4 ([Eme04, 7.2.1]). A ∗-admissible representation of (G,Γ) is a
locally convex K-vector space V with an action of G× Γ such that

• For each open compact subgroup U ⊆ Γ, V U has property ∗ as a repre-
sentation of G (in the subspace topology);

• V is a strictly smooth Γ-representation in the sense of definition 2.1.
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Remark. Our terminology is slightly different from that of [Eme04], where
such representations are described as ∗-admissible representations of G × Γ.
We adopt the formulation above in order to avoid ambiguity when Γ is also a
locally analytic group.

The results of the preceding section can be combined to prove:

Proposition 3.5. If G and H are locally L-analytic groups, V is a ∗-
representation of G ×H, and Z(H) is compact if ∗ = “essentially admissible
locally analytic”, then the space

VH−st.sm = lim−→
U⊆H

open compact

V U

is a ∗-admissible representation of (G,H).

Proof. Since the natural maps V U →֒ V U
′

for U ′ ⊆ U are closed embeddings,
the map V U →֒ VH−st.sm is also a closed embedding [Bou87, page II.32]; and

its image is clearly (VH−st.sm)
U
, so it suffices to check that V U has property ∗

for each U .
In the admissible Banach case, this is clear from proposition 3.1. In the ad-
missible locally analytic case, it likewise follows from proposition 3.2. In the
essentially admissible case, it suffices to note that the assumption on Z(H)
implies that V is essentially admissible as a representation of G×H if and only
if it is essentially admissible as a representation of G×U for any open compact
U ⊆ H ; so we are in the situation of proposition 3.3.

A slightly more general version of this applies to groups of the form G×H×J ,
where G and H are locally L-analytic and J is an arbitrary locally compact
topological group.

Theorem 3.6. Let V be a ∗-admissible representation of (G × H, J), where
Z(H) is compact in the essentially admissible case. Then VH−st.sm is a ∗-
admissible representation of (G,H × J).

Proof. We have

VH−st.sm = (VJ−st.sm)H−st.sm = lim−→
U⊆H,U ′⊆J

V U×U
′

,

which is clearly a strict inductive limit; and V U×U
′

is the U -invariants in
the ∗-admissible G × H-representation V U

′

, and hence an admissible G-
representation. The open compact subgroups of H × J of the form U × U ′

are cofinal in the family of all open compact subgroups, so VH−st.sm is a ∗-
admissible (G,H × J)-representation as required.

We write Repcts,ad(G,Γ) for the category of admissible continuous (G,Γ)-rep-
resentations, and similarly for the other admissibility conditions.
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3.3 Ordinary parts and Jacquet modules

Let G be a connected reductive algebraic group over L, and P a parabolic
subgroup of G with Levi factor M. We write Z = Z(M), D = Mss. We
use Roman letters G,P,M,Z,D for the L-points of these, which are locally
L-analytic groups. Note that the multiplication map Z × D → M has finite
kernel and cokernel, and hence a representation of M has property ∗ if and
only if it has the corresponding property as a representation of Z ×D.
Suppose that V ∈ Repcts,adm(G). We say V is unitary if the topology of V can
be defined by a G-invariant norm (or equivalently if V contains a G-invariant
separated open lattice); this is automatic if G is compact, but not otherwise.
The category Repu,adm(G) of unitary admissible Banach representations of G

over K is equivalent to Mod̟−admG (OK)Q, where Mod̟−admG (OK) is the cat-
egory considered in [Eme10, 2.4.5] and the subscript Q denotes the category
with the same objects but all Hom-spaces tensored with Q.
In [Eme10, §3], Emerton constructs the ordinary part functor

OrdP : Mod̟−admG (OK)→ Mod̟−admM (OK).

This functor is additive, so it extends to a functor

OrdP : Repu,adm(G)→ Repu,adm(M).

It is easy to extend this to representations of product groups of the type con-
sidered above. Let Γ be a locally profinite topological group, and V a uni-
tary admissible Banach (G,Γ)-representation (i.e. admitting a G×Γ-invariant
norm). We define

OrdP (V ) = lim−→
U⊆Γ
open

OrdP (V
U ).

Given any subgroups U ′ ⊆ U , there is an “averaging” map π : V U
′ → V U ; and

we may write V U
′

as a locally convex direct sum V U
′

= V U ⊕ V π, where V π
denotes the kernel of π. Since the ordinary part functor commutes with direct
sums, we find that OrdP (V

U ′

) = OrdP (V
U ) ⊕ OrdP (V

π); thus the natural
map OrdP (V

U )→ OrdP (V
U ′

) is a closed embedding, and if U ′ E U , we have
OrdP (V

U ′

)U = OrdP (V
U ). Passing to the direct limit, we have OrdP (V )U =

OrdP (V
U ), and OrdP (V ) is an admissible Banach (M,Γ)-representation.

An identical argument applies to the Jacquet module functor JP : Repess(G)→
Repess(M) of [Eme06a] (and indeed to any functor which preserves direct
sums). Combining this with theorem 3.6 above, we have:

Proposition 3.7.

(i) If V ∈ Repu,ad(G,Γ) and W ∈ Repcts,fd(M), then

HomD−st.sm(W,OrdP V ) ∈ Repcts,ad(Z,D × Γ).

Moreover, HomD−st.sm(W,OrdP V ) is unitary if W is.
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(ii) If V ∈ Repess(G,Γ) and W ∈ Repla,fd(M), and d = LieD, then

HomD−st.sm(W,JPV ) = Homd(W,JPV ) ∈ Repess(Z,D × Γ).

4 Jacquet modules of admissible representations

As in section 3.3 above, let G be the L-points of a connected reductive al-
gebraic group over L, and P a parabolic subgroup with Levi subgroup M .
Proposition 3.7(ii) gives us a copious supply of essentially admissible locally
analytic representations of the torus Z = Z(M): for any V ∈ Repess(G), any
open compact U ⊆ D = M ss, and any finite-dimensional M -representation
W , HomU (W,JPV ) = (W ′ ⊗K JPV )U ∈ Repess(Z). These correspond, by the
equivalence of categories of [Eme06b, 2.3.2], to coherent sheaves on the rigid

space Ẑ. For V ∈ Repess(Z), we will write ExpV for the support of the sheaf

corresponding to V , a reduced rigid subspace of Ẑ.
In this section, we’ll prove two results describing the geometry of the rigid
spaces ExpHomU (W,JPV ), for U ⊆ D open compact, under additional as-
sumptions on V . These generalise the corresponding results in [Eme06a] when
P is a Borel subgroup.

4.1 Compact maps

We begin by generalising some results from [Eme06a, §2.3] on compact endo-
morphisms of topological modules. Recall that a topological K-algebra is said
to be of compact type if it can be written as an inductive limit of Banach
algebras, with injective transition maps that are both algebra homomorphisms
and compact as maps of topological K-vector spaces. If A is such an algebra,
then a topological A-module is said to be of compact type if it is of compact
type as a topological K-vector space.
In this situation, we have the following definition of a compact morphism
(op.cit., def. 2.3.3):

Definition 4.1. A continuous A-linear morphism φ : M → N between com-
pact type topological A-modules is said to be A-compact if there is a commu-
tative diagram

M
φ //

α

!!B
BB

BB
BB

B N

N1

β
>>||||||||

V

γ
==||||||||

LL

d j
r

|
�

�

�

(4.1)

where N1 is a compact type topological A-module, α and β are continuous
A-linear maps, V is a compact type K-vector space, and γ is a continuous K-
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linear map for which A ⊗̂K V → N1 is surjective, and the composite dashed
arrow is compact as a map of compact type K-vector spaces.

Lemma 4.2. If M is a compact type module over a compact type topological
K-algebra A; φ : M → M is an A-compact map; N is a finitely-generated
module over a finite-dimensional K-algebra B; and ψ : N → N is K-linear,
then the map φ⊗ ψ :M ⊗K N →M ⊗K N is (A⊗K B)-compact.

Proof. We may assume without loss of generality that ψ is the identity, by
[Eme06a, 2.3.4(i)]. This case follows immediately by tensoring each of the
spaces in the diagram with N .

Lemma 4.3. Let σ : A → A′ be a finite morphism of compact type topological
K-algebras, and φ : M → N a morphism of topological A′-modules which is
A′-compact. Then φ is A-compact.

Proof. By assumption, we have a diagram as in lemma 4.1, where the map
A′ ⊗̂K V → N1 is surjective. Let a1, . . . , ak be a set of elements generat-
ing A′ as an A-module, let V ′ = V k, and define the map γ′ : V ′ → N1 by
(v1, . . . , vk) 7→

∑
aiγ(vi).

Then it is clear that 1 ⊗̂ γ′ gives a surjection A ⊗̂K V k → N1. Furthermore,
the composite φ ◦ γ′ : V ′ → N is the map (v1, . . . , vk) 7→

∑
β(aiγ(v)). As β is

a morphism of A′-modules, this equals
∑
ai(β ◦γ)(v), which is clearly compact

(since β◦γ is). So the map γ′ : V ′ → N1 witnesses φ as an A-compact map.

4.2 Twisted distribution algebras

Let L be a finite extension ofQp, andG a locally L-analytic group. Let (Hn)n≥0
be a decreasing sequence of good L-analytic open subgroups of G, in the sense
of [Eme04, §5.2], such that

• the subgroups Hn form a basis of neighbourhoods of the identity in G;

• Hn is normal in H0 for all n;

• the inclusion Hn+1 →֒ Hn extends to a morphism of rigid spaces be-
tween the underlying affinoid rigid analytic groups Hn+1 →֒ Hn, which is
relatively compact.

Such a sequence certainly always exists, since the choice of H0 determines
a Lie OL-lattice h in the Lie algebra of G, and we may take Hn to be the
subgroup attached to the sublattice πnh. We may use this sequence to write
the topological K-algebra A := Dla(H0) = C la(H0)

′
b as an inverse limit of

the spaces An := D(H◦n, H0) =
[
C(H0)H◦

n−an
]′
b
. For all n, An is a compact

type topological K-algebra, and the sequence (An)n≥0 is a weak Fréchet-Stein
structure on A.
We begin with a construction related to the “untwisting isomorphism” of
[Eme04, 3.2.4]. Let (ρ,W ) be any finite-dimensional K-representation of H0,
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and let E = EndKW . We consider the following commutative diagram of
K-vector spaces:

K[H0]⊗K E

g⊗m 7→
g⊗ρ(g)mγ

��

K[H0]

g 7→g⊗1
α

88qqqqqqqqqq

g 7→g⊗ρ(g)
β

&&MMMMMMMMMM

K[H0]⊗K E

(4.2)

Here α and β are ring homomorphisms, and although γ is not a ring homomor-
phism, it satisfies the relation γ(α(x)y) = β(x)γ(y), so it intertwines the two
K[H0]-module structures on K[H0]⊗K E given by α and β. Furthermore γ is
clearly invertible.
We now assume that (ρ,W ) is locally analytic (when W is equipped with its
unique Hausdorff locally convex topology).2 Hence there is an integer n(ρ)
such that WH◦

n−an =W for all n ≥ n(ρ).
Proposition 4.4. Let n ≥ n(ρ). Then there exist unique continuous maps
αn, βn : An → An ⊗K End(W ) and γn : An ⊗K End(W )

∼→ An ⊗K EndW
extending the maps α, β, γ above.

Proof. Taking the (algebraic) K-dual of the diagram (4.2), we have a diagram

F(H0, E
′)

α′

xxqqqqqqqqqqq

F(H0,K)

F(H0, E
′)

γ′

OO

β′
ffNNNNNNNNNN

where for K-vector space V , F(H0, V ) indicates the K-vector space of arbi-
trary functions H0 → V . One finds that for a function f : H0 → E′, we
have α′(f)(m) = f(m)(1) and β′(f)(m) = f(m)(ρ(m)), while γ′(f)(m) = x 7→
f(ρ(m)x). All of these maps manifestly preserve the subspaces of H◦n-analytic
functions for n ≥ n(ρ), and are continuous for the natural topologies of these
subspaces; so there are corresponding maps between the duals of these sub-
spaces, as required.

Corollary 4.5. For each n ≥ n(ρ), the map βn makes Bn = An ⊗K EndW
a finitely-generated topological An-module, and the natural map Bn+1 → Bn
induces an isomorphism An ⊗̂An+1 Bn+1

∼→ Bn.

2If L = Qp this is equivalent to the (a priori weaker) assumption that (ρ,W ) is continuous.
This follows from the p-adic analogue of Cartan’s theorem, which states that any continuous
homomorphism between two Qp-analytic groups is locally analytic; see [Ser92, Part II, §V.9].
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Proof. This is clearly true for the An-module structure on Bn given by αn, so
it follows for the βn-structure (since the untwisting isomorphisms γn and γn+1

are compatible with the map Bn+1 → Bn).

Proposition 4.6. Let n ≥ n(ρ) and let X be a compact type topological An-
module. Then the diagonal H0-action on X ⊗K W extends to a topological
An-module structure. Moreover, if n ≥ n(ρ) + 1, we have an isomorphism of
topological An−1-modules

An−1 ⊗̂
An

(X ⊗K W )
∼→ (An−1 ⊗̂

An
X)⊗K W.

Proof. We clearly have commuting, K-linear, continuous actions of An and
EndW on X⊗KW , so we obtain an action of An⊗K EndW . Pulling back via
the map βn, we obtain an An-module structure, which clearly restricts to the
diagonal action of H0. The isomorphism follows from the last statement of the
preceding corollary via the associativity of the tensor product, since

An−1 ⊗̂
An

(X ⊗K W )

=(An−1 ⊗̂
An

Bn) ⊗̂
Bn

(X ⊗K W )

=Bn−1 ⊗̂
Bn

(X ⊗K W )

=(An−1 ⊗̂
An

X)⊗K W.

4.3 Twisted Jacquet modules

We now return to the situation considered above, so G is the group of L-points
of a reductive algebraic group G over L as above, with P a parabolic subgroup,
M a Levi subgroup of P , N the unipotent radical, and Z = Z(M). We choose
a sequence (Hn)n≥0 of good L-analytic open subgroups of G admitting rigid
analytic Iwahori decompositions Hn = Nn ×Mn × Nn, as in [Eme06a, 4.1.6].
We also impose the additional condition that Mn = Zn×Dn where Zn and Dn
are the affinoid subgroups underlying good analytic open subgroups of Z and of
D =M ss; it is clear that we can always do this (by exactly the same method as
in Emerton’s case). We let Z+ be the submonoid {z ∈ Z(M) : zN0z

−1 ⊆ N0}
of Z.

Our starting point is the following, which is part of the proof of [Eme06a,
4.2.23]:

Proposition 4.7. Let V be an admissible locally analytic representation of G.
Then for all n ≥ 0, the action of M0 × Z+ on the space

Un =

(
D(H◦n, H0) ⊗̂

Dla(H0)
V ′b

)

N0
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extends to an An[Z
+]-module structure. Moreover, the transition map

An ⊗̂An+1 Un+1 → Un is An-compact and Z+-equivariant, and there is
some z ∈ Z+ (independent of n) such that there exists a map α : Un →
An ⊗̂An+1 Un+1 making the following diagram commute:

An ⊗̂An+1 Un+1
//

id ⊗̂ z

��

Un

z

��
α

xxr r
r

r
r

r

An ⊗̂An+1 Un+1
// Un.

(4.3)

We now let Ũn = Un ⊗K W , where (W,ρ) is a fixed, finite-dimensional, con-
tinuous representation of M . By the last proposition of the preceeding section
(taking the groups there denoted by G and Hi to be those we are now calling
M and Mi), we have a diagonal An-module structure on Ũn, and there is also
a diagonal action of Z+ on Ũn commuting with the M0-action.

Proposition 4.8. For any n ≥ n(ρ) the following holds:

• Ũn is a compact type topological An-module, and the action of Z+ is
An-linear.

• There is an An+1[Z
+]-linear map Un+1 → Un such that the induced map

An ⊗̂An+1 Ũn+1 → Ũn is An-compact.

• For any good z ∈ Z+, we can find a map α̃ : Un → An ⊗̂An+1 Ũn+1 such
that the diagram corresponding to (4.3) commutes.

Also, the direct limit lim←−Un (with respect to the transition maps above) is iso-

morphic as a topological A[Z+]-module to (V N0 ⊗W ′)′b.

Proof. Since Ũn is isomorphic to (Un)
⊕ dimW as a topological K-vector space,

it is certainly of compact type, and we have already observed that it is a
topological An-module for all n ≥ n(ρ). Furthermore the Z+-action commutes
with the M0-action, and thus it must be An-linear by continuity.

Moreover, we have an An-compact map An ⊗̂An+1 Un+1 → Un. Ten-
soring with the identity map gives a morphism of An ⊗ EndW -modules(
An ⊗̂An+1 Un+1

)
⊗K W → Un ⊗K W , which is An ⊗K EndW -compact by

lemma 4.2. But the map β : An → An ⊗K EndW is a finite morphism, so by
lemma 4.3, this map is An-compact.
Finally, we know that there exists a map α : Un → An ⊗̂An+1 Un+1 through
which z factors, and it is clear that if we define α̃ to be the map α⊗ ρ(z) then
the diagram corresponding to (4.3) commutes.

The preceding proposition asserts precisely that the hypotheses of [Eme06a,
3.2.24] are satisfied, and that proposition (and its proof) give us the following:
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Corollary 4.9. The space X =
[
(V N0 ⊗K W ′)fs

]′
b

is a coadmissible

Can(Ẑ) ⊗̂K A-module, where (−)fs denotes the finite-slope-part functor
Reptop,c(Z

+)→ Repzla,c(Z) of [Eme06a, 3.2.1].

Moreover, if (Yn)n≥0 is any increasing sequence of affinoid subdomains of Ẑ
whose union is the entire space, then for any n ≥ n(ρ) we have

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)

X = Can(Yn)
† ⊗̂
K[Z+]

Ũn.

By [Eme04, 3.2.9] we have X =
[
(V N0 ⊗K W ′)fs

]′
b
=
[
(V N0)fs ⊗K W ′

]′
b
=

[JP (V )⊗K W ′]′b, so the above corollary gives us a description of the strong
dual of the W -twisted Jacquet module.

We can now prove the first of the two main theorems of this section. Propo-
sition 3.7(ii) above shows that for any V ∈ Repess(G), (JP (V )⊗K W ′) ∈
Repess(Z,D). Equivalently, for any open compact subgroup Γ ⊆ D, the space

(JP (V )⊗K W ′)Γ is an essentially admissible locally analytic Z-representation,

and hence corresponds to a coherent sheaf on Ẑ. The previous corollary allows
us to describe the support of this sheaf when V is admissible:

Theorem 4.10. Suppose V is an admissible locally analytic G-representation,
W is a finite-dimensional locally analytic representation of M , and Γ is an
open compact subgroup of D. Let E ⊆ Ẑ be the support of the coherent sheaf
on Ẑ corresponding to (JP (V )⊗K W ′)Γ. Then the natural map E → (LieZ)′

(induced by the differentiation map Ẑ → (LieZ)′) has discrete fibres.

Proof. Since we are free to replace the sequence (Hn) of subgroups of G with
a cofinal subsequence, we may assume that Γ ⊇ D0. So it suffices to prove the
result for Γ = D0. Furthermore, since the differentiation map Ẑ0 → (LieZ)′

has discrete fibres, it suffices to show that for any character χ of Z0, the rigid
space

Exp (JP (V )⊗K W ′)
D0,Z0=χ ⊆ Ẑ

is discrete. If χ does not extend to a character of M , then this space
is clearly empty, so there is nothing to prove; otherwise, let us fix such
an extension, which gives us an isomorphism (JP (V )⊗K W ′)D0,Z0=χ =

[JP (V )⊗K (W ⊗K χ)′]M0 . So we may assume without loss of generality that
χ is the trivial character, and it suffices to show that

Can(Yn)
† ⊗̂
Can(Ẑ)

[
(JP (V )⊗K W ′)

M0

]′
b

is finite-dimensional over K for all n, or (equivalently) all sufficiently large n.

If we take the completed tensor product of both sides of the formula in corollary
4.9 with Can(Yn)

†, regarded as a Can(Yn)
† ⊗̂K An-algebra via the augmenta-
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tion map An → K, we have

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)
[JP (V )⊗K W ′]

′
b

= Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K[Z+]

Ũn

)
. (4.4)

The left-hand side of (4.4) simplifies as

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)
[JP (V )⊗K W ′]

′
b

= Can(Yn)
† ⊗̂
(Can(Ẑ) ⊗̂K A)

[JP (V )⊗K W ′]
′
b

= Can(Yn)
† ⊗̂
Can(Ẑ)

(
K ⊗̂

A
[JP (V )⊗K W ′]

′
b

)

= Can(Yn)
† ⊗̂
Can(Ẑ)

[
(JP (V )⊗K W ′)

M0

]′
b
.

Meanwhile, the right-hand side of (4.4) is

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K[Z+]

Ũn

)

= Can(Yn)
† ⊗̂
K[Z+]

(
K ⊗̂

An
Ũn

)
.

Any z ∈ Z+ that induces an An-compact endomorphism of Ũn will induce
a K-compact endomorphism of K ⊗̂An Ũn, by [Eme06a, 2.3.4(ii)]. Such a

z does exist, by hypothesis. Hence Can(Yn)
† ⊗̂K[Z+]

(
K ⊗̂An Ũn

)
is finite-

dimensional over K, by [Eme06a, 2.3.6]. Comparing the two sides of (4.4), we
are done.

We also have a version of [Eme06a, 4.2.36] in this context.

Theorem 4.11. If V is an admissible locally analytic representation of G
such that there is an isomorphism of H-representations V

∼→ C la(H)r, for
some open compact H ⊆ G and some r ∈ N, then for any W and Γ,
E = Exp (JP (V )⊗K W ′)Γ is equidimensional of dimension d, where d is the
dimension of Z.

Proof. As in [Eme06a], we may assume (by replacing the sequence (Gn)n≥0
with a cofinal subsequence if necessary) that H = H0 and Γ ⊇ D0. But then

we can identify (JP (V )⊗K W ′)Γ with a direct summand of (JP (V )⊗K W ′)D0 ;

this identifies Exp (JP (V )⊗K W ′)Γ with a union of irreducible components
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of Exp (JP (V )⊗K W ′)D0 . We may therefore assume that in fact Γ = D0.
As a final reduction, letting Un =

(
D(H◦n, H0) ⊗̂Dla(H0) V

′
b

)
N0

as before,

we note that the untwisting isomorphism Un
∼→ D(N

◦
n, N0)

r ⊗̂K An (equa-
tion 4.2.39 in [Eme04]) can be extended to an isomorphism Un ⊗K W →
D(N

◦
n, N0)

r dimW ⊗̂K An. We thus assume that W is the trivial represen-
tation.
Following Emerton, we choose Banach spaces Wn such that the map
D(N

◦
n+1, N0)

r → D(N
◦
n, N0)

r factors throughWn, and (exactly as in the Borel
case) for a suitable z ∈ Z+ we have

JP (V )′b
∼→ lim←−

n

K{{z, z−1}} ⊗̂
K[z]

(Wn ⊗̂
K
An),

for some An-linear action of z on Wn ⊗̂K An which factors through
D(N

◦
n+1, N0)

r ⊗̂K An. Taking the completed tensor product with the map
An → D(Z◦n, Z0) given by the augmentation map of D0, we have

[
JP (V )D0

]′
b

∼→ lim←−
n

K{{z, z−1}} ⊗̂
K[z]

Wn ⊗̂
K
D(Z◦n, Z0).

Let us write Ẑ0 as an increasing union of affinoid subdomains (Xn)n≥0,
such that the natural map Dla(Z0)

∼→ Can(Ẑ0) → Can(Xn) factors through

D(Z◦n, Z0). Extending scalars from D(Z◦n, Z0) to Can(Ẑ) via this map, the
above formula becomes

[
JP (V )D0

]′
b
= lim←−

n

K{{z, z−1}} ⊗̂
K[z]

Wn ⊗̂
K
Can(Xn).

The action of z onWn ⊗̂K Can(Xn) is a C
an(Xn)-compact morphism of an or-

thonormalizable Can(Xn)-Banach module, so the result follows by the methods
of [Buz07].

5 Change of parabolic

We now consider the problem of relating the geometric objects arising from the
above construction for two distinct parabolic subgroups.

5.1 Transitivity of Jacquet functors

Let us recall the definition of the finite-slope-part functor, which we have al-
ready seen in the previous section. We let Z be a topologically finitely gener-
ated abelian locally L-analytic group, and Z+ an open submonoid of Z which
generates Z as a group. Then we have the following functor Reptop,c(Z

+) →
Repzla,c(Z):

Definition 5.1 ([Eme06a, 3.2.1]). For any object V ∈ Reptop,c(Z
+), we define

Vfs = Lb,Z+(Can(Ẑ), V ),
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endowed with the action of Z on the first factor.

Lemma 5.2. Let Z be a topologically finitely generated abelian group and Y a
closed subgroup, and suppose Y + and Z+ are submonoids of Y and Z satisfying
the conditions above, with Y + ⊆ Y ∩ Z+. Then for all V ∈ Reptop,c(Z

+), the
natural map VY−fs → V induces an isomorphism

(VY−fs)Z−fs
∼→ VZ−fs.

Proof. Consider the canonical Z+-equivariant map VZ−fs → V . We note that
VZ−fs is in Repzla.c(Z), and hence a fortiori in Repzla.c(Y ). Hence by the univer-
sal property of [Eme06a, 3.2.4(ii)], the above map factors through VY−fs. The
factored map is still Z+-equivariant, so by a second application of the universal
property it factors through (VY−fs)Z−fs. This gives a continuous Z-equivariant
map VZ−fs → (VY−fs)Z−fs, which is clearly inverse to the map in the statement
of the proposition.

Now suppose P1 and P2 are parabolic subgroups of the reductive group G over
L, with P1 ⊇ P2. We let N1,N2 be their unipotent radicals, so we have a chain
of inclusions G ⊇ P1 ⊇ P2 ⊇ N2 ⊇ N1.
Let us choose a Levi subgroupM2 of P2, so P2 = N2⋊M2. There is a unique
Levi subgroup M1 of P1 containing M2; and P12 = P2 ∩M1 is a parabolic
subgroup of M1 of which M2 is also a Levi factor. We write Z1, Z2 for the
centres ofM1 andM2.
All of the above are algebraic groups over L, so their L-points are locally L-
analytic groups; we denote these groups of points by the corresponding Roman
letters.

Theorem 5.3.

1. For any unitary admissible continuous G-representation V , there is a
unique isomorphism of admissible continuous M2-representations

OrdP12 (OrdP1 V ) = OrdP2 V

commuting with the canonical lifting maps from both sides into V N2 .

2. For any essentially admissible locally analytic G-representation V , there
is a unique isomorphism of essentially admissible locally analytic M2-
representations

JP12 (JP1V ) = JP2V

commuting with the canonical lifting maps.

Proof. We begin by proving the second statement. We have N2 = N1 ⋊ N12,
where N12 = N2 ∩M1 is the unipotent radical of P12. Let N2,0 be an open
compact subgroup ofN2 which has the formN1,0⋊N12,0, for open compact sub-
groups of the two factors; such subgroups certainly exist, since the conjugation
action of N1 on N12 is continuous.
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For i = 1, 2 we write M+
i for the submonoid of elements m ∈ Mi for which

mNi,0m
−1 ⊆ Ni,0 and m−1N i,0m ⊆ N i,0, and Zi = M+

i ∩ Zi. Then we have
M+

2 ⊆M+
1 , and in particular Z+

1 ⊆ Z+
2 .

We have
JP1V = Lb,Z+

1

(
Can(Ẑ1), V

N1,0

)

endowed with the action of M1 = Z1×Z+
1
M+

1 determined by the actions of Z1

on Can(Ẑ1) and M
+
1 on V N1,0 . The restriction of this action to N12,0 is simply

the action on the right factor (since N12,0 ⊆M1,0 ⊆M+
1 ) and hence

(JP1V )N12,0 = Lb,Z+
1

(
Can(Ẑ1), (V

N1,0)N12,0

)
= Lb,Z+

1

(
Can(Ẑ1), V

N2,0

)
.

The Hecke operator construction of [Eme06a, §3.4] gives two actions of M+
2 on

V N2,0 , given respectively by m◦v = πN2,0mv and m◦v = πN12,0πN1,0mv, where
the operators πNi,0 are the averaging operators with respect to Haar measure
on the subgroups Ni,0. Since N2,0 = N12,0⋉N1,0, and the Haar measure on the
product is the product of the Haar measures on the factors, these two actions
coincide. Applying the preceding lemma with Z = Z2 and Y = Z1 gives the
result.
The statement for the ordinary part functor can be proved along similar lines,
but it is easier to note that the functor OrdP is right adjoint to the parabolic
induction functor IndG

P
[Eme10, 4.4.6], for P an opposite parabolic to P . Since

a composition of adjunctions is an adjunction, it suffices to check instead
that IndG

P 1
IndM1

P 12
U = IndG

P 2
U for any U ∈ Repu,adm(M2). We may iden-

tify C(G,C(M1, U)) with C(G×M1, U). Evaluating at 1 ∈M1 gives a map to
C(G,U), and it is easy to check that this restricts to an isomorphism between
the subspaces realising the two induced representations.

5.2 Hecke algebras and the canonical lifting

We now turn to studying the Jacquet functor in a special case; later we will
combine this with the transitivity result above to deduce a general statement.
As before, let G be a reductive algebraic group over L, and let H = [G,G], a
semisimple group. There is a bijection between parabolics of G and H, given
by P 7→ P ′ = P ∩H and P ′ 7→ P = NG(P ′).
We also choose an opposite parabolic P , determining a Levi subgroup M of
P , and also a LeviM′ of P ′ in the obvious way. Write ZM, ZM′ and ZG for
the centres of these subgroups, so ZM is isogenous to ZM′ × ZG . As before,
we use Roman letters for the L-points of these algebraic groups.
Let H0 be an open compact subgroup of H . We say H0 is decomposed with

respect to P ′ and P
′
if the product of the subgroups M ′0 = H0 ∩M ′, N0 =

H0 ∩N and N0 = H0 ∩N is H0, for any ordering of the factors.
We say an element m ∈ M is positive (for H0) if mN0m

−1 ⊆ N0 and
m−1N0m ⊆ N0 (see [Bus01, §3.1]). Let M⊕ ⊆ M be the monoid of posi-
tive elements, and Z⊕M its intersection with ZM ; and let H⊕(M ′0) denote the
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subalgebra of the Hecke algebra H(M ′0) supported on M ′+ =M+ ∩M ′. Note
that M⊕ is contained in the monoid M+ of the previous section, and clearly
has finite index therein.
We say an element z ∈ ZM is strongly positive if the sequences znN0z

−n and
z−nN0z

n tend monotonically to {1}; if this holds, then z−1 and M⊕ together
generate M . Such elements exist in abundance; any element whose pairing
with the roots corresponding to P has sufficiently large valuation will suffice.
In particular, there exist strongly positive elements in ZM ′ .

Proposition 5.4. For any essentially admissible G-representation V , we have
JP (V ) =

(
V N0

)
Y−fs, where Y is any closed subgroup of M that contains a

strongly positive element. In particular, JP (V ) = JP ′(V ).

Proof. For any open compact N0 ⊆ N , [Eme06a, lemma 3.2.29] and the dis-
cussion following it shows that V N0 is in the category denoted therein by
Repzla,c(Z

+
M ); thus the hypotheses of [Eme06a, prop 3.2.28] are satisfied for

the subgroup Y = ZM ′ . The conclusion of that proposition then states that
JP (V ) = (V N0)ZM−fs = (V N0)Y−fs.

We now lighten the notation somewhat by writing superscript + for ⊕, since
the proposition shows that the distinction betweenM+ andM⊕ is unimportant
from the perspective of Jacquet modules.

Proposition 5.5. Let j be the morphism H+(M ′0) → H(H0) constructed
in [Bus01, §3.3]. Then the natural inclusion V H0 →֒ VM

′
0N0 is H+(M ′0)-

equivariant, where H+(M ′0) acts via j on the first space and via its inclusion
into H(M ′0) on the second.

Proof. Easy check.

Proposition 5.6. For any essentially admissible locally analytic G-represen-
tation V which is smooth as an H-representation, the above inclusion induces
an isomorphism

(V H0)ZM′−fs
∼→ (VM

′
0N0)ZM′−fs = JP (V )M

′
0 .

Moreover, there exists a direct sum decomposition

V H0 = (V H0)ZM′−fs ⊕ (V H0)ZM′−null

where the summands are closed subspaces of V H0 , stable under the action of
ZG and H(M ′0).

Proof. Let Q = VM
′
0N0/V H0 . By the left-exactness of the finite slope part

functor [Eme06a, 3.2.6(ii)], there is a closed embedding

(VM
′
0N0)ZM′−fs/(V

H0)ZM′−fs →֒ QZM′−fs.
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But since V is smooth as an H-representation, every element v ∈ VM ′
0N0 is in

fact in V UM
′
0N0 for some open U ⊆ N ; any such U contains a Z+

M ′-conjugate of

N0, so there is some z ∈ Z+ such that zv ∈ V N0M
′
0 . Our hypothesis that H0

is decomposed implies that the averaging operator πN0 : V n → V N0 preserves

V N0M
′
0 , so z◦v = πN0(zv) ∈ V H0 . Therefore Q is Z+

M ′ -torsion, and thus clearly
QZ−fs = 0.
For the second statement, let z be any strongly positive element of ZM ′ . By
[Bus01, Theorem 1], there exists an integer n (depending only on P , H0 and
z) such that for any smooth H-representation V , the action of z on V H0 via j
satisfies

V H0 = znV H0 ⊕Ker(zn | V H0),

with z invertible on the subspace znV H0 . For representations V as in the
statement, the subspace Ker(zn | V H0) is clearly closed, and moreover zn gives
a continuous map from the essentially admissible ZG-representation V H0 to
itself, so its image is also closed.

In particular, since V H0 is an essentially admissible ZG-representation,
JP (V )M

′
0 is essentially admissible as a ZG-representation, not just as a rep-

resentation of the larger group ZG × ZM ′/(ZM ′ ∩H0).

Remark. If H0 satisfies the stronger conditions of [Bus01, §1.2], we obtain a
finer decomposition of V H0 into a direct sum of closed ZG-subrepresentations
corresponding to Bernstein components of H .

5.3 Jacquet modules of locally isotypical representations

We now extend the results onH-smooth representations above to certain locally
H-isotypical representations.

Proposition 5.7. If W is a twist of an absolutely irreducible algebraic repre-
sentation of G, and P = MN is a parabolic subgroup of G with [M,M ] = D,
then Endd(W

N ) = K, so in particular the M -representation WN is D-good.

Proof. The twist is of no consequence, so suppose that W is algebraic. Let us
choose a maximal torus T in M , and a field K ′ ⊃ K over which M is split;
then there is a Borel subgroup B ⊆ P defined over K ′ with Levi factor T . The
theory of highest weights then shows that W is absolutely irreducible if and
only if the highest weight space of W is 1-dimensional; applying this condition
to W and to the M -representation WN , we deduce that WN is absolutely
irreducible as an M -representation. Since M is isogenous to D×Z(M) and all
absolutely irreducible representations of Z(M) are one-dimensional, it follows
that WN is in fact absolutely irreducible as a D-representation.

Proposition 5.8. If W ∈ Repla,fd(G) is H-good, with B = Endh(W ) =

EndGW , and furthermore W n = WN , then for any X ∈ Repzla,c(G) which
is smooth as an H-representation and has a right action of B, we have

JP (X ⊗B W ) = JP (X)⊗B WN .
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Proof. Compare [Eme06a, 4.3.4]. Since X is smooth as an H-representation
it is certainly smooth as an N -representation. Arguing as in the proof of
proposition 2.6, we have (X ⊗B W )N0 = XN0 ⊗B WN0 , which by assumption
equals XN0 ⊗B WN . Passing to finite-slope parts now yields the result.

The condition W n =WN is certainly satisfied for any W that is algebraic as a
representation of N (since any open subgroup of N is Zariski-dense).

Proposition 5.9. Let W be a twist of an absolutely irreducible algebraic rep-
resentation of G, and let V ∈ Repzla,c(P ) be locally (H,W )-isotypical. Then

JP (V ) is locally (D,WN )-isotypical, and

Homd(W
N , JP (V )) = JP (Homh(W,V )).

Proof. Let X = Homh(W,V ). By proposition 2.6, we have V = X ⊗K W ; so
by proposition 5.8 and the remark following, JP (V ) = JP (X) ⊗K WN . Since
WN is D-good, we can apply the converse implication of proposition 2.6 to
deduce that JP (X) = Homd(W

N , JP (V )) as required.

5.4 Combining the constructions

We now summarize the results of the above analysis.

Theorem 5.10. For any V ∈ Repess(G), we have:

1. For any parabolic subgroup P ⊆ G with Levi subgroup M , any finite-
dimensional W ∈ Repla,c(M), and any open compact subgroup U ⊆ D =

[M,M ], there is a coherent sheaf F(V, P,W,U) on Ẑ(M) with a right

action of H(U), whose fibre at a character χ ∈ Ẑ(M) is isomorphic (as
a right H(U)-module) to the dual of the space HomU (W,JPV )Z(M)=χ.
In particular, a character χ lies in the subvariety S(V, P,W,U) =
supportF(V, P,W,U) if and only if this eigenspace is nonzero.

2. If V ∈ Repla,ad(G), then the projection S(V, P,W,U) → (LieZ)′ has
discrete fibres.

3. If V is isomorphic as an H-representation to C la(H)m for some m and
some open compact H ⊆ G, then S(V, P,W,U) is equidimensional of
dimension dimZ.

4. If P1, P2 are parabolics with P1 ⊇ P2 as above, W is an absolutely irre-
ducible algebraic representation of M1, and U is an open compact sub-
group of D1 which is decomposed with respect to the parabolic P2 ∩ D1,
then there is a decomposition

F(V, P1, U,W ) = F(V, P1, U,W )Z2−null ⊕F(V, P1, U,W )Z2−fs,
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where the latter factor is isomorphic to a quotient of the pushforward to
Z1 of the sheaf

F(V, P2,W
N , U ∩D2)

on Z2.

Proof. The only statement still requiring proof is the last one. Let Y =
(JP1V )D1,W−liso. The closed embedding Y →֒ JP1(V ) induces by functori-
ality a closed embedding JP12Y →֒ JP12(JP1V ). The right-hand side is simply
JP2V , by theorem 5.3. Thus we have a closed embedding

Homd2(W
N , JP12Y ) →֒ Homd2(W

N , JP2V ).

The left-hand side is isomorphic, by proposition 5.9, to JP12 [Homd1(W,Y )].
We may now apply proposition 5.6 to the M1-representation Homd1(W,Y ) =
Homd1(W,JP1V ), to deduce that there is a direct sum decomposition

HomU (W,JP1V ) = HomU (W,JP1V )Z2−fs ⊕HomU (W,JP1V )Z2−null

and the first direct summand is isomorphic as a Z2-representation to a closed
subspace of

HomU∩M ′
2
(WN , JP12Y ) ⊆ HomU∩D2(W

N , JP2V ).

Dualising, we obtain the stated relation between the sheaves F(. . . ).

6 Application to completed cohomology

6.1 Construction of eigenvarieties

Let us now fix a number field F , a connected reductive group G over F , and a
prime p of F above p. Let G = G ×F Fp, a reductive group over Fp, and G =
G(Fp). Let us choose a parabolic subgroup P of G (not necessarily arising from
a parabolic subgroup of G), and set P = P(Fp), and similarly for M,N,D,Z
as above. We suppose our base field L is a subfield of Fp, so G,P,M,N,D,Z
are locally L-analytic groups.
We recall from [Eme04, 2.2.16] the construction of the completed cohomology
spaces H̃i for each cohomological degree i ≥ 0, which are unitary admissible
Banach representations of (G,G(Ap

f )×π0), where π0 is the group of components
of G(F ⊗Q R). The following is immediate from the above:

Proposition 6.1. Let Γ = D ×G(Ap
f )× π0. For any i ≥ 0, we have:

1. For any W ∈ Repcts,fd(M), the space

HomD−st.sm(W,OrdP H̃
i)

is an admissible continuous (Z,Γ)-representation.
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2. For any W ∈ Repla,fd(M), the space

Homd(W,JP H̃
i
la)

is an essentially admissible locally L-analytic (Z,Γ)-representation.

Let us fix an open compact subgroup U ⊆ Γ (this is the most natural notion
of a “tame level” in this context). Then we can use the above result to define
an eigenvariety of tame level U , closely following [Eme06b, §2.3].
Let v be a (finite or infinite) prime of S. We set

Γv =





G(Fv) if v ∤∞ and v 6= p

D if v = p

π0(G(Fv)) if v | ∞.

Then Γ =
∏′
v Γv. Let us set Uv = U ∩ Γv. We say v is unramified (for U)

if v is finite, v 6= p, and Uv is a hyperspecial maximal compact subgroup of
Γv. Let S be the (clearly finite) set of ramified primes, and ΓS =

∏
v/∈S Γv,

ΓS =
∏
v∈S Γv.

It is easy to see that U = US × US , where US = U ∩ ΓS and similarly US =
U ∩ ΓS , and hence we have a tensor product decomposition of Hecke algebras

H(Γ//U) = H(ΓS//US)⊗H(ΓS//US) =: Hram ⊗Hsph.

As is well known, the algebra Hsph is commutative (but not finitely generated
over K), while Hram is finitely generated (but not commutative in general).
By construction, H(Γ//U) acts on the essentially admissible Z-representation
HomU (W,JP H̃

i
la), and hence it also acts on the corresponding sheaf

F(i, P,W,U) on Ẑ.

Definition 6.2. Let E(i, P,W,U) be the relative spectrum SpecA, where A is

the OẐ-subsheaf of EndF(i, P,W,U) generated by the image of Hsph.

For the definition of the relative spectrum, see [Con06, Thm 2.2.5]. By
definition E(i, P,W,U) is a rigid space over K, endowed with a finite mor-

phism π : E(i, P,W,U) → Ẑ and an isomorphism of sheaves of OẐ-algebras
A ∼= π∗OE(i,P,W,U). Consequently, F(i, P,W,U) lifts to a sheaf F(i, P,W,U)
on E(i, P,W,U).

We can regard E(i, P,W,U) as a subvariety of ẐK × SpecHsph (although the
latter will not be a rigid space if G is not the trivial group); in particular, a
K-point of E(i, P,W,U) gives rise to a homomorphism λ : Hsph → K.
We record the following properties of this construction, which are precisely
analogous to [Eme06b, 2.3.3]:

Theorem 6.3.
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1. The natural projection E(i, P,W,U) → z′ has discrete fibres. In particu-
lar, the dimension of E(i, P,W,U) is at most equal to the dimension of
Z.

2. The action of Hram on F(i, P,W,U) lifts to an action on F(i, P,W,U),

and the fibre of F(i, P,W,U) at a point (χ, λ) ∈ Ẑ × SpecHsph is iso-
morphic as a right Hram-module to the dual of the (Z = χ,Hsph = λ)-
eigenspace of HomU (W,JP H̃

i
la). In particular, the point (χ, λ) lies in

E(i, P,W,U) if and only if this eigenspace is non-zero.

3. If there is a compact open subgroup G0 ⊆ G such that (H̃i
la)

U(p)

is iso-
morphic as a G0-representation to a finite direct sum of copies of C la(G0)
(where U (p) = U ∩ G(Ap

f )), then E(i, P,W,U) is equidimensional, of di-
mension equal to the rank of Z.

Remark. The hypothesis in the last point above is always satisfied when i = 0
and G(F ⊗R) is compact, since for any open compact subgroup U (p) ⊆ G(Ap

f ),

the image of G(F ) ∩ U (p) in G is a discrete cocompact subgroup Λ, and the
U (p)-invariants H̃0(U (p)) are isomorphic as a representation of G and as a
H(U (p))-module to C(Λ\G). This case is considered extensively in an earlier
publication of the second author [Loe11].

Now let us suppose G is split over K, and fix an irreducible (and therefore
absolutely irreducible) algebraic representation W of M . We let Π(P,W,U)
denote the set of irreducible smooth G(Af ) × π0-representations πf such that
JP (πf )

U 6= 0, and πf appears as a subquotient of the cohomology spaceHi(VX)
of [Eme06b, §2.2] for some irreducible algebraic representation X of G with
(X ′)N ∼= W ⊗ χ for some character χ. To any such πf , we may associate

the point (θχ, λ) ∈ Ẑ × SpecHsph, where θ is the smooth character by which
Z acts on JP (πp), and λ the character by which Hsph acts on JP (πf )

U . Let

E(i, P,W,U)cl denote the set of points of Ẑ × SpecHsph obtained in this way
from representations πf ∈ Π(i, P,W,U).

Corollary 6.4. If the map (1.1) is an isomorphism for all irreducible algebraic
representations X such that (X ′)N is a twist of W , then E(i, P,W,U)cl ⊆
E(i, P,W,U). In particular, the Zariski closure of E(i, P,W,U)cl has dimension
at most dimZ.

Proof. Let πf ∈ Π(i, P,W,U). Then the locally algebraic (G,G(A(p)
f ) × π0)-

representation πf ⊗X ′ appears in Hi(VX) ⊗K X ′. By assumption, the latter

embeds as a closed subrepresentation of H̃i
la. The Jacquet functor is exact

restricted to locally X ′-algebraic representations (since this is so for smooth
representations). Moreover, the functor Homd(W,−) is exact restricted to lo-
cally W -algebraic representations, so Homd

[
W,JP (πf )⊗K (X ′)N

]
appears as

a subquotient of Homd

[
W,JP (H̃

i
la)
]
. Since (X ′)N =W ⊗ χ, the former space

is simply JP (πf ) ⊗K χ, so the point (θχ, λ) appears in E(i, P,W,U) as re-
quired.
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Remarks. 1. The entire construction can also be carried out with the spaces
H̃i replaced by the compactly supported versions H̃i

c or the parabolic
versions H̃i

par; we then obtain analogues of the above proposition for
the compactly supported or parabolic cohomology of the arithmetic quo-
tients.

2. It suffices to check that the map (1.1) is an isomorphism for L = Qp.
This is known to hold in many cases, e.g. in degree i = 0 for any G, and
in degree 1 for GL2(Q) (as shown in [Eme06b]) or for a semisimple and
simply connected group (as shown by the first author in [Hil07]). The
“weak Emerton criterion” of [Hil07, defn. 2] suffices to prove corollary
6.4 when W is not a character; this is known in many more cases, e.g.
when i = 2 and the congruence kernel of G is finite. When W is a
character χ : M → Gm, the weak Emerton criterion implies that the
points E(i, P,W,U)cl are contained in the union of E(i, P,W,U) and the
single point (χ−1, 1).

Theorem 6.5. Suppose P1 ⊇ P2 are two parabolics, and U = U (p)×Up, where

U (p) ⊆ G(A(p)
f )×π0 and Up ⊆ D1 is decomposed with respect to P2∩D1. Then

E(i, P1,W,U) is equal to a union of two closed subvarieties

E(i, P1,W,U)P2−fs ∩ E(i, P1,W,U)P2−null,

which are respectively equipped with sheaves of Hram-modules F(i, P,W,U)P2−fs
and F(i, P,W,U)P2−null whose direct sum is F(i, P,W,U).
The element of Hram corresponding to any strictly positive element of Z2 acts
invertibly on F(i, P,W,U)P2−fs and nilpotently on F(i, P,W,U)P2−null; and

there is a subvariety of E(i, P2,W
N12 , U ∩D2) whose image in Ẑ1 × SpecHsph

coincides with E(i, P1,W,U)P2−fs.

Proof. By theorem 5.10, we may decompose F(i, P1,W,U) as a direct sum of
a null part and a finite slope part; this decomposition is clearly functorial,
and hence it is preserved by the action of the Hecke algebra Hsph, so we may
define the spaces E(i, P1,W,U)P2−fs and E(i, P1,W,U)P2−null to be the relative
spectra of the Hecke algebra acting on the two summands.
For the final statement, we note that there is a quotient Q of F(i, P2,W

N12 , U∩
D2), corresponding to the Z2-subrepresentation

JP12

(
Homd1(W,JP1H̃

i
la)
)U∩M2

⊆ Homd2(W
N12 , JP2H̃

i
la)

U∩D2

such that the pushforward of Q to Ẑ1 is isomorphic to F(i, P1,W,U)P2−fs.
This isomorphism clearly commutes with the action of Hsph on both sides,
from which the result follows.
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Abstract. We study, locally on a curve of characteristic p > 0,
the relation between the log-growth filtration and the Frobenius slope
filtration for F -isocrystals, which we will indicate as ϕ-∇-modules,
both at the generic point and at the special point. We prove that a
bounded ϕ-∇-module at the generic point is a direct sum of pure ϕ-
∇-modules. By this splitting of Frobenius slope filtration for bounded
modules we will introduce a filtration for ϕ-∇-modules (PBQ filtra-
tion). We solve our conjectures of comparison of the log-growth filtra-
tion and the Frobenius slope filtration at the special point for particu-
lar ϕ-∇-modules (HPBQ modules). Moreover we prove the analogous
comparison conjecture for PBQ modules at the generic point. These
comparison conjectures were stated in our previous work [CT09]. Us-
ing PBQ filtrations for ϕ-∇-modules, we conclude that our conjecture
of comparison of the log-growth filtration and the Frobenius slope fil-
tration at the special point implies Dwork’s conjecture, that is, the
special log-growth polygon is above the generic log-growth polygon
including the coincidence of both end points.
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1 Introduction

The local behavior of p-adic linear differential equations is, in one sense, very
easy. If the equation has a geometric origin (i.e., if it is furnished with a Frobe-
nius structure), then the radius of convergence of solutions at any nonsigular
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point is at least 1. In general, the p-adic norm of the coefficients an in the Tay-
lor series of a solution is an increasing function on n. However, one knows that
some solutions are p-adically integral power series. B.Dwork discovered these
mysterious phenomena and introduced a measure, called logarithmic growth
(or log-growth, for simplicity), for power series in order to investigate this del-
icate difference systematically (see [Dw73] and [Ka73, Section 7]). He studied
the log-growth of solutions of p-adic linear differential equations both at the
generic point and at special points (see [Ro75], [Ch83]), and asked whether the
behaviors are similar to those of Frobenius slopes or not. He conjectured that
the Newton polygon of log-growth of solutions at a special point is above the
Newton polygon of log-growth of solutions at the generic point [Dw73, Con-
jecture 2]. We refer to it as Conjecture LGDw when there are not Frobenius
structures, and as Conjecture LGFDw where there are Frobenius structures
(see Conjecture 2.7). He also proved that the Newton polygon of log-growth of
solutions at the generic (resp. special) point coincides with the Newton polygon
of Frobenius slopes in the case of hypergeometric Frobenius-differential systems
if the systems are nonconstant, thus establishing the conjecture in these cases
[Dw82, 9.6, 9.7, 16.9].
On the other hand P.Robba studied the generic log-growth of differential mod-
ules defined over the completion of Q(x) under the p-adic Gauss norm by intro-
ducing a filtration on them via p-adic functional analysis [Ro75] (see Theorem
2.2). His theory works on more general p-adically complete fields, for example
our field E .
Let k be a field of characteristic p > 0, let V be a discrete valuation ring with
residue field k, and let K be the field of fractions of V such that the charac-
teristic of K is 0. In [CT09] we studied Dwork’s problem on the log-growth
for ϕ-∇-modules over E or K[[x]]0 which should be seen as localizations of F -
isocrystals on a curve over k with coefficients in K. Here K[[x]]0 is the ring
of bounded functions on the unit disk around x = 0, E is the p-adically com-
plete field which is the field of fractions of K[[x]]0, and ϕ (resp. ∇) indicates
the Frobenius structure (resp. the connection) (See the notation and terminol-
ogy introduced in Section 2). We gave careful attention to Dwork’s result on
the comparison between the log-growth and the Frobenius slopes of hypergeo-
metric Frobenius-differential equations. We compared the log-growth and the
Frobenius slopes at the level of filtrations.
Let M be a ϕ-∇-module over K[[x]]0. Let Mη =M ⊗K[[x]]0 E be a ϕ-∇-module
over E which is the generic fiber of M and let V (M) be the ϕ-module over K
consisting of horizontal sections on the open unit disk. Denote by Mλ

η the log-

growth filtration on Mη at the generic point indexed by λ ∈ R, and by V (M)λ

be the log-growth filtration with real indices on the ϕ-module V (M). Further-
more, let Sλ( · ) be the Frobenius slope filtration such that Sλ( · )/Sλ−( · ) is
pure of slope λ.
We proved that the log-growth filtration is included in the orthogonal part
of the Frobenius slope filtration of the dual module under the natural perfect
pairing Mη ⊗E M∨η → E (resp. V (M) ⊗K V (M∨) → K) at the generic point
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(resp. the special point) [CT09, Theorem 6.17] (see the precise form in Theorem
2.3):

Mλ
η ⊂ (Sλ−λmax(M

∨
η ))
⊥ (resp. V (M)λ ⊂ (Sλ−λmax(V (M∨)))⊥)

for any λ ∈ R if λmax is the highest Frobenius slope of Mη. We then conjec-
tured: (a) the rationality of log-breaks λ (both at the generic and special fibers)
and (b) if the bounded quotient Mη/M

0
η is pure as a ϕ-module then the inclu-

sion relation becomes equality both at the generic and special points [CT09,
Conjectures 6.8, 6.9]. The hypothesis of (b) will be called the condition of
being “pure of bounded quotient” (PBQ) in Definition 5.1. Note that there are
examples with irrational breaks, and that both Mλ− ) Mλ and Mλ ) Mλ+

can indeed occur for log-growth filtrations in absence of Frobenius structures
[CT09, Examples 5.3, 5.4]. We state the precise forms of our conjectures in
Conjecture 2.4 on E and Conjecture 2.5 on K[[x]]0, and denote the conjectures
by LGFE and LGFK[[x]]0, respectively. We have proved our conjectures LGFE
and LGFK[[x]]0 if M is of rank ≤ 2 [CT09, Theorem 7.1, Corollary 7.2], and
then we established Dwork’s conjecture LGFDw if M is of rank ≤ 2 [CT09,
Corollary 7.3].
Let us now explain the results in the present paper. First we characterize
bounded ϕ-∇-modules over E by using Frobenius structures (Theorem 4.1):

(1) A bounded ϕ-∇-module M over E (i.e., M0 = 0, which means that all
the solutions on the generic disk are bounded) is isomorphic to a direct
sum of several pure ϕ-∇-modules if the residue field k of V is perfect.

Note that the assertion corresponding to (1) is trivial for a ϕ-∇-module M
over K[[x]]0 such that Mη is bounded by Christol’s transfer theorem (see
[CT09, Proposition 4.3]). This characterization implies the existence of a
unique increasing filtration {Pi(M)} of ϕ-∇-modules M over E such that
Pi(M)/Pi−1(M) is the maximally PBQ submodule of M/Pi−1(M) (Corollary
5.5). This filtration is called the PBQ filtration. When we start with a ϕ-∇-
module M over K[[x]]0, we can introduce a similar PBQ filtration for M , i.e.,
a filtration consisting of ϕ-∇-submodules over K[[x]]0 whose generic fibers will
induce the PBQ filtration of the generic fiber Mη (Corollary 5.10). To this end
we use an argument of A.J. de Jong in [dJ98] establishing the full faithfulness
of the forgetful functor from the category of ϕ-∇-modules over K[[x]]0 to the
category of ϕ-∇-modules over E .
The need to study horizontality behavior for the PBQ condition with respect
to the special and generic points leads us to introduce a new condition for
ϕ-∇-modules over K[[x]]0, namely, the property of being “horizontally pure of
bounded quotient ” (which, for simplicity, we abbreviate as HPBQ, cf. Defini-
tion 6.1). Then in Theorem 6.5 we prove that

(2) our conjecture LGFK[[x]]0 (see 2.5) on the comparison between the log-
growth filtration and the Frobenius slope filtration at the special point
holds for a HPBQ module.
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A HPBQmodule should be understood as a ϕ-∇-module for which the bounded
quotient is horizontal and pure with respect to the Frobenius. Our method of
proof will lead us to introduce the related definition of equislope ϕ-∇-modules
overK[[x]]0 (Definition 6.7): they admit a filtration as ϕ-∇-modules overK[[x]]0
which induces the Frobenius slope filtration at the generic point. Note that a
PBQ equislope object is HPBQ. Using this result, we prove in Theorem 7.1
that

(3) our conjecture LGFE (see 2.4) on comparison between the log-growth
filtration and the Frobenius slope filtration at the generic point holds for
PBQ modules over E .

Indeed, for a ϕ-∇-module M over E , the induced ϕ-∇-module Mτ = M ⊗E
Et[[X − t]]0 (where Et[[X − t]]0 is the ring of bounded functions on the open unit
disk at generic point t) is equislope. For the proof of comparison for HPBQ
modules, we use an explicit calculation of log-growth for solutions of certain
Frobenius equations (Lemma 4.8) and a technical induction argument.
For a submodule L of a ϕ-∇-module M over E with N = M/L, the induced
right exact sequence

L/Lλ →M/Mλ → N/Nλ → 0

is also left exact for any λ if L is a maximally PBQ submodule ofM by Propo-
sition 2.6. Since there do exist PBQ filtrations, the comparison between the
log-growth filtrations and the Frobenius slope filtrations for PBQ modules both
at the generic point and at the special point implies the rationality of breaks
(Theorem 7.2 and Proposition 7.3) as well as Dwork’s conjecture (Theorem 8.1)
that the special log-growth polygon lies above the generic log-growth polygon
(including the coincidence of both end points):

(4) Our conjecture of comparison between the log-growth filtration and the
Frobenius slope filtration at the special point (Conjecture LGFK[[x]]0, 2.5)
implies Dwork’s conjecture (Conjecture LGFDw, 2.7).

As an application, we have the following theorem (Theorem 8.8) without any
assumptions.

(5) The coincidence of both log-growth polygons at the generic and special
points is equivalent to the coincidence of both Frobenius slope polygons
at the generic and special points.

Let us also mention some recent work on log-growth. Y.André ([An08]) proved
the conjecture LGDw of Dwork without Frobenius structures, that is, the log-
growth polygon at the special point is above the log-growth filtration at the
generic point for∇-modules, but without coincidence of both end points. (Note
that his convention on the Newton polygon is different from ours, see Remark
2.8). He used semi-continuity of log-growth on Berkovich spaces. K.Kedlaya
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defined the log-growth at the special point for regular singular connections and
studied the properties of log-growth [Ke09, Chapter 18].

This paper is organized in the following manner. In Section 2 we recall our
notation and results from [CT09]. In Section 3 we establish the independence
of the category of ϕ-∇-modules over E (resp. K[[x]]0) of the choices of Frobenius
on E (resp. K[[x]]0). In Section 4 we study when the Frobenius slope filtration
of ϕ-∇-modules over E is split and prove (1) above. In Section 5 we introduce
the notion of PBQ and prove the existence of PBQ filtrations. In Section 6 we
study the log-growth filtration for HPBQ ϕ-∇-modules over K[[x]]0 and prove
the comparison (2) between the log-growth filtration and the Frobenius slope
filtration. This comparison implies the comparison (3) for PBQ ϕ-∇-modules
over E in Section 7. In Section 8 we show that (4) our conjecture of comparison
at the special point implies Dwork’s conjecture.

2 Preliminaries

We fix notation and recall the terminology in [CT09]. We also review Dwork’s
conjecture and our conjectures.

2.1 Notation

Let us fix the basic notation which follows from [CT09].

p : a prime number.

K : a complete discrete valuation field of mixed characteristic (0, p).

V : the ring of integers of K.

k : the residue field of V .

m : the maximal ideal of V .

| | : a p-adically absolute value on K and its extension as a valuation field,
which is normalized by |p| = p−1.

q : a positive power of p.

σ : (q-)Frobenius on K, i.e., a continuous lift of q-Frobenius endomorphism
(a 7→ aq on k). We suppose the existence of Frobenius on K. We also
denote by σ a K-algebra endomorphism on AK(0, 1−), which is an exten-
sion of Frobenius on K, such that σ(x) is bounded and |σ(x)− xq|0 < 1.
Then K[[x]]λ is stable under σ. We also denote by σ the unique extension
of σ on E , which is a Frobenius on E . In the case we only discuss ϕ-∇-
modules over E , one can take a Frobenius σ on K such that σ(x) ∈ E
with |σ(x) − xq|0 < 1.
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K̂perf : the p-adic completion of the inductive limit Kperf of K
σ→K σ→· · · .

Then K̂perf is a complete discrete valuation field such that the residue

field of the ring of integers of K̂perf is the perfection of k and that the

value group of K̂perf coincides with the value group of K. The Frobenius

σ uniquely extend to K̂perf . Moreover, taking the p-adic completion

K̂al of the maximally unramified extension Kal of Kperf , we have a
canonical extension of K as a discrete valuation field with the same value
group such that the residue field of the ring of integers is algebraically
closed and the Frobenius extends on it. We use the same symbol σ for
Frobenius on the extension.

qλ : an element of K with logq|qλ| = −λ for a rational number λ such that

σ(qλ) = qλ. Such a qλ always exists if the residue field k is algebraically
closed and λ ∈ logq|K×|. In particular, if k is algebraically closed, then
there exists an extension L of K as a discrete valuation field with an
extension of Frobenius such that qλ is contained in L for a fix λ. In this
paper we freely extend K as above.

AK(c, r−) : the K-algebra of analytic functions on the open disk of radius r
at the center c, i.e.,

AK(c, r−) =

{ ∞∑

n=0

an(x − c)n ∈ K[[x− c]]
∣∣∣∣∣
|an|γn → 0 asn→∞
for any 0 < γ < r

}
.

K[[x]]0 : the ring of bounded power series over K, i.e.,

K[[x]]0 =

{ ∞∑

n=0

anx
n ∈ AK(0, 1−)

∣∣∣∣∣ supn
|an| <∞

}
.

An element of K[[x]]0 is said to be a bounded function.

K[[x]]λ : the Banach K-module of power series of log-growth λ in AK(0, 1−)
for a nonnegative real number λ ∈ R≥0, i.e.,

K[[x]]λ =

{ ∞∑

n=0

anx
n ∈ AK(0, 1−)

∣∣∣∣∣ supn
|an|/(n+ 1)λ <∞

}
,

with a norm |∑∞n=0 anx
n|λ = supn |an|/(n + 1)λ. K[[x]]λ is a K[[x]]0-

modules. K[[x]]λ = 0 for λ < 0 for the convenient. An element f ∈ K[[x]]λ
which is not contained in K[[x]]γ for γ < λ is said to be exactly of log-
growth λ.

E : the p-adic completion of the field of fractions of K[[x]]0 under the Gauss
norm | |0, i.e.,

E =

{ ∞∑

n=−∞
anx

n

∣∣∣∣∣ an ∈ K, supn
|an| <∞, |an| → 0 (asn→ −∞)

}
.
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E is a complete discrete valuation field under the Gauss norm | |0 in fact
K is discrete valuated. The residue field of the ring OE of integers of E
is k((x)).

t : a generic point of radius 1.

Et : the valuation field corresponding to the generic point t, i.e., the same
field as E in which x is replaced by t: we emphasize t in the notation with
the respect to [CT09]. We regard the Frobenius σ as a Frobenius on Et.

Et[[X − t]]0 : the ring of bounded functions in AEt(t, 1−). Then

τ : E → Et[[X − t]]0 τ(f) =

∞∑

n=0

1

n!
(
dn

dxn
f)|x=t(X − t)n

is a K-algebra homomorphism which is equivariant under the derivations
d
dx and d

dX . The Frobenius σ on Et[[X − t]]0 is defined by σ on Et and
σ(X − t) = τ(σ(x)) − σ(x)|x=t. τ is again σ-equivariant.

For a function f on R and for a matrix A = (aij) with entries in R, we define
f(A) = (f(aij)). In case where f is a norm | |, then |A| = supi,j |aij |. We use
1 (resp. 1r) to denote the unit matrix of suitable degree (resp. of degree r).
For a decreasing filtration {V λ} indexed by the set R of real numbers, we put

V λ− = ∩µ<λ V µ, V λ+ = ∪µ>λ V µ.

We denote by Wλ− = ∪µ<λWµ and Wλ+ = ∩µ>λWµ the analogous objects
for an increasing filtration {Wλ}λ, respectively.

2.2 Terminology

We recall some terminology and results from [CT09].
Let R be either K (K might be E) or K[[x]]0. A ϕ-module over R consists of a
free R-module M of finite rank and an R-linear isomorphism ϕ : σ∗M → M .
For a ϕ-module over K, there is an increasing filtration {Sλ(M)}λ∈R which is
called the Frobenius slope filtration. Then there is a sequence λ1 < · · · < λr of
real numbers, called the Frobenius slopes of M , such that Sλi(M)/Sλi−(M) is

pure of slope λi and M ⊗ K̂al ∼= ⊕i Sλi(M) ⊗K K̂al/Sλi−(M) ⊗K K̂al is the

Dieudonné-Manin decomposition as ϕ-modules over K̂al. We call λ1 the first
Frobenius slope and λr the highest Frobenius slope, respectively.
Let R be either E or K[[x]]0. A ϕ-∇-module over R consists of a ϕ-module
(M,ϕ) over R and a K-connection ∇ :M →M ⊗RΩR, where ΩR = Rdx, such
that ϕ ◦ σ∗(∇) = ∇ ◦ ϕ. For a basis (e1, · · · , er), the matrices A and G with
entries R,

ϕ(1 ⊗ e1, · · · , 1⊗ er) = (e1, · · · , er)A, ∇(e1, · · · , er) = (e1, · · · , er)Gdx
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are called the Frobenius matrix and the connection matrix of R, respectively.
Then one has

d

dx
A+GA = (

d

dx
σ(x))Aσ(G) (FC)

by the horizontality of ϕ. We denote the dual of M by M∨ .
Let M be a ϕ-∇-module over K[[x]]0. We define the K-space

V (M) = {s ∈M ⊗K[[x]]0 AK(0, 1−) | ∇(s) = 0}

of horizontal sections and the K-space of solutions,

Sol(M) = HomK[[x]]0[∇](M,AK(0, 1−)),

on the unit disk. Both dimK V (M) and dimK Sol(M) equal to rankK[[x]]0 M by
the solvability. If one fixes a basis of M , the solution Y of the equations





A(0)σ(Y ) = Y A
d
dxY = Y G
Y (0) = 1

in AK(0, 1−) is a solution matrix of M , where A(0) and Y (0) are
the constant terms of A and Y , respectively. The log-growth filtration
{V (M)λ}λ∈R is defined by the orthogonal space of the K-space Solλ(M) =
HomK[[x]]0[∇](M,K[[x]]λ) under the natural bilinear perfect pairing

V (M)× Sol(M)→ K.

Then V (M)λ = 0 for λ >> 0 by the solvability of M and the log-growth
filtration is a decreasing filtration of V (M) as ϕ-modules overK. The following
proposition allows one to change the coefficient field K to a suitable extension
K ′.

Proposition 2.1 ([CT09, Proposition 1.10]) Let M be a ϕ-module over
K[[x]]0. For any extension K ′ over K as a complete discrete valuation field
with an extension of Frobenius, there is a canonical isomorphism V (M ⊗K[[x]]0

K ′[[x]]0) ∼= V (M)⊗K K ′ as log-growth filtered ϕ-modules.

The induced ϕ-∇-module Mη = M ⊗K[[x]]0 E over E is said to be the generic
fiber of M , and the K-module V (M) is called the special fiber of M .

Let M be a ϕ-∇-module over E . We denote by Mτ the induced ϕ-∇-module
M ⊗E Et[[X − t]]0 over Et[[X − t]]0. Applying the theory of Robba [Ro75], we
have a decreasing filtration {Mλ}λ∈R of M as ϕ-∇-modules over E which is
characterized by the following universal property.

Theorem 2.2 [Ro75, 2.6, 3.5] (See [CT09, Theorem 3.2].) For any real num-
ber λ, M/Mλ is the maximum quotient of M such that all solutions of log-
growth λ of Mτ on the generic unit disk come from the solutions of (M/Mλ)τ .
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The filtration {Mλ} is called the log-growth filtration of M . Note that Mλ =
M for λ < 0 by definition and Mλ = 0 for λ >> 0 by the solvability. The
quotient module M/M0 is called the bounded quotient, and, in particular, if
M0 = 0, then M is called bounded.

Our main theorem in [CT09] is the following:

Theorem 2.3 ([CT09, Theorem 6.17])

(1) Let M be a ϕ-∇-module over E. If λmax is the highest Frobenius slope of
M , then Mλ ⊂ (Sλ−λmax(M

∨))⊥.

(2) Let M be a ϕ-∇-module over K[[x]]0. If λmax is the highest Frobenius
slope of Mη, then V (M)λ ⊂ (Sλ−λmax(V (M∨)))⊥.

Here S⊥ denotes the orthogonal space of S under the natural bilinear perfect
pairing

M ⊗E M∨ → E or V (M)⊗K V (M∨)→ K.

We conjectured that equalities hold in Theorem 2.3 if M is PBQ (Definition
5.1) in [CT09], and proved them if M is of rank ≤ 2 [CT09, Theorem 7.1,
Corollary 7.2].

Conjecture 2.4 ([CT09, Conjectures 6.8]) Let M be a ϕ-∇-module over E.
(1) All breaks of log-growth filtration of M are rational and Mλ = Mλ+ for

any λ.

(2) Let λmax be the highest Frobenius slope of M . If M/M0 is pure as ϕ-
module (PBQ in Definition 5.1 (1)), then Mλ = (Sλ−λmax(M

∨))⊥.

We denote Conjecture 2.4 above by LGFE .

Conjecture 2.5 ([CT09, Conjectures 6.9]) Let M be a ϕ-∇-module over
K[[x]]0.

(1) All breaks of log-growth filtration of V (M) are rational and V (M)λ =
V (M)λ+ for any λ.

(2) Let λmax be the highest Frobenius slope of Mη. If Mη/M
0
η is

pure as ϕ-module (PBQ in Definition 5.1 (2)), then V (M)λ =
(Sλ−λmax(V (M)∨))⊥.

We denote Conjecture 2.5 above by LGFK[[x]]0.

Note that we formulate the theorem and the conjecture in the case where
λmax = 0 in [CT09]. However, the theorem holds for an arbitrary λmax by
Proposition 2.1 (and the conjecture should also hold). Moreover, it suffices to
establish the conjecture when the residue field k of V is algebraically closed.

Documenta Mathematica 16 (2011) 33–69



Log-growth Filtration and Frobenius Slope Filtration 43

In section 7 we will reduce the conjecture LGFE (1) (resp. LGFK[[x]]0 (1)) to
the conjecture LGFE (2) (resp. LGFK[[x]]0 (2)) by applying the proposition
below to the PBQ filtration which is introduced in section 5. The following
proposition is useful for attacking log-growth questions by induction.

Proposition 2.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-
modules over E (resp. K[[x]]0) and let λmax be the highest Frobenius slope of M
and L (resp. Mη and Lη).

(1) Suppose that Lλ = (Sλ−λmax(L
∨))⊥ for λ. Then the induced sequence

0→ L/Lλ →M/Mλ → N/Nλ → 0

is exact.

(2) Suppose that V (L)λ = (Sλ−λmax(V (L)∨))⊥ for λ. Then the induced se-
quence

0→ V (L)/V (L)λ → V (M)/V (M)λ → V (N)/V (N)λ → 0

is exact.

Proof. (1) Since

L/Lλ →M/Mλ → N/Nλ → 0

is right exact by [CT09, Proposition 3.6], we have only to prove the injectivity
of the first morphism. There is an inclusion relation

Mλ ⊂ (Sλ−λmax(M
∨))⊥ = S(λmax−λ)−(M)

by Theorem 2.3 and the equality

Lλ = (Sλ−λmax(L
∨))⊥ = S(λmax−λ)−(L).

holds by our hypothesis on L. Since the Frobenius slope filtrations are strict for
any morphism, the bottom horizontal morphism in the natural commutative
diagram

L/Lλ −→ M/Mλ

=↓ ↓
L/S(λmax−λ)−(L) −→ M/S(λmax−λ)−(M)

is injective. Hence we have the desired injectivity.

(2) The proof here is similar to that of (1) on replacing [CT09, Proposition 3.6]
by [CT09, Proposition 1.8]. 2
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2.3 Dwork’s conjecture

We recall Dwork’s conjecture. We have proved it in the case where M is of
rank ≤ 2 [CT09, Corollary 7.3].

Conjecture 2.7 ([Dw73, Conjecture 2], [CT09, Conjecture 4.9]) Let M be a
ϕ-∇-module over K[[x]]0. Then the special log-growth is above the generic log-
growth polygon (with coincidence at both endpoints).

We denote Conjecture 2.7 above by LGFDw. We will prove that the conjecture
LGFDw follows from the conjectures LGFE and LGFK[[x]]0 in section 8. There
is also a version of Dwork’s conjecture without Frobenius structures, we denote
it by LGDw.
Let us recall the definition of the log-growth polygon: the generic log-growth
polygon is the piecewise linear curve defined by the vertices

(0, 0), (dimE
Mη

M
λ1+
η

, λ1 dimE
Mλ1−
η

M
λ1+
η

), · · · , (dimE Mη

M
λi+
η

,
∑i

j=1 λj dimE
M
λj−
η

M
λj+
η

),

· · · , (dimEMη,
∑r

j=1 λj dimE
M
λj−
η

M
λj+
η

),

where 0 = λ1 < · · · < λr are breaks (i.e., Mλ− 6= Mλ+) of the log-growth
filtration of Mη. The special log-growth polygon is defined in the same way
using the log-growth filtration of V (M).

Remark 2.8 (1) The convention of André’s polygon of log-growth
[An08] is different from ours. His polygon at the generic fiber is∑r
j=1 λj dimE

Mλj−

Mλj+
below our polygon in the direction of the vertical

axis and the starting point of the polygon is (dimEM, 0), and the same
at the special fiber. André proved the conjecture LGDw except the
coincidence of both endpoints in [An08].

(2) If the special log-growth polygon lies above the generic log-growth polygon
in both conventions of André’s and ours, then both endpoints coincide with
each other. However even if this is the case, we cannot prove Mλ

η =Mλ+
η

(resp. V (M)λ = V (M)λ+) for a break λ.

3 Choices of Frobenius

Let us recall the precise form of equivalence between categories of ϕ-∇-modules
with respect to different choices of Frobenius on E (resp. K[[x]]0) (see [Ts98a,
Section 3.4] for example). We will use it in the next section.

3.1 Comparison morphism ϑσ1,σ2

Let σ1 and σ2 be Frobenius maps on E (resp. K[[x]]0) such that the restriction
of each σi to K is the given Frobenius on K. Let M be a ϕ-∇-module. We

Documenta Mathematica 16 (2011) 33–69



Log-growth Filtration and Frobenius Slope Filtration 45

define an E-linear (resp. K[[x]]0-linear) morphism

ϑσ1,σ2 : σ∗1M → σ∗2M

by

ϑσ1,σ2(a⊗m) = a

∞∑

n=0

(σ2(x) − σ1(x))n ⊗
1

n!
∇( d

n

dxn
)(m).

Since M is solvable and |σ2(x) − σ1(x)| < 1, the right hand side converges in
σ∗2M . As a matrix representation, the transformation matrix is

H =

∞∑

n=0

σ2(Gn)
(σ2(x)− σ1(x))n

n!

for the induced basis 1 ⊗ e1, · · · , 1 ⊗ er, where G is the matrix of connection,
G0 = 1 and Gn+1 = GGn + d

dxGn for n ≥ 0.

Proposition 3.1 Let σ1, σ2, σ3, σ be Frobenius maps of E (resp. K[[x]]0) as
above. Then we have the cocycle conditions:

(1) ϑσ2,σ3 ◦ ϑσ1,σ2 = ϑσ1,σ3 .

(2) ϑσ,σ = idσ∗M .

Proposition 3.2 Let M be a ϕ-∇-module pure of slope λ over E and let A be
the Frobenius matrix ofM with respect to a basis. Suppose that |A−qλ1|0 ≤ q−µ
for µ ≥ λ. Then the representation matrix H of the comparison morphism
ϑσ1,σ2 with respect to the bases which are the pull-backs by σ1 and σ2 respec-
tively, satisfies |H − 1|0 < qλ−µ.

Proof. By replacing the Frobenius ϕ by q−λϕ, we may assume that λ = 0.
The assertion then follows from the fact that under these assumptions the
solution matrix Y at the generic point satisfies Y ≡ 1 (mod (X−t)mnOEt [[X−
t]]). Here n is the least integer such that |mn| ≤ q−µ. 2

3.2 Equivalence of categories

Let R be either E or K[[x]]0 and let σ1 and σ2 be Frobenius maps on R as in
the previous subsection. We define a functor

ϑ∗σ1,σ2
: (ϕ-∇-modules over (R, σ2))→ (ϕ-∇-modules over (R, σ1))

by (M,∇, ϕ) 7→ (M,∇, ϕ ◦ ϑσ1,σ2). Here ϑσ1,σ2 is defined as in the previous
section. The propositions of the previous subsection then give

Theorem 3.3 ϑ∗σ1,σ2
is an equivalence of categories which preserves tensor

products and duals. Moreover, ϑ∗σ1,σ2
preserves the Frobenius slope filtration

and the log-growth filtration of M (resp. V (M)) for a ϕ-∇-module M over E
(resp. K[[x]]0).
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4 Boundedness and splitting of the Frobenius slope filtration

4.1 Splitting theorem

Theorem 4.1 Suppose that the residue field k of V is perfect. A ϕ-∇-module
M over E is bounded if and only if M is a direct sum of pure ϕ-∇-modules,
that is,

M ∼= ⊕ri=1 Sλi(M)/Sλi−(M)

as ϕ-∇-modules, where λ1 < λ2 < · · · < λr are Frobenius slopes of M .

Since any pure ϕ-∇-module over E is bounded by [CT09, Corollary 6.5]. Hence,
Theorem 4.1 above follows from the next proposition.

Proposition 4.2 Suppose that the residue field k of V is perfect. Let 0 →
L → M → N → 0 be an exact sequence of ϕ-∇-modules over E such that
both L and N are pure of Frobenius slope λ and ν, respectively. If one of the
conditions

(1) ν − λ < 0;

(2) ν − λ > 1;

(3) M is bounded and 0 < ν − λ ≤ 1,

holds, then the exact sequence is split, that is, M ∼= L⊕N as ϕ-∇-modules.

In the case (1) the assertion easily follows from the fact that, for a ∈ E with
|a|0 < 1, aσ is a contractive operator on the p-adic complete field E . The rest
of this section will be dedicated to proving the assertion in cases (2) and (3).

4.2 Descent of splittings

Proposition 4.3 Let 0 → L → M → N → 0 be an exact sequence of ϕ-
modules over E such that L and N are pure and the two slopes are different.
Let E ′ be one of the following:

(i) E ′ is a p-adic completion of an unramified extension of E;

(ii) E ′ is the p-adic completion of E ⊗K K ′ for some extension K ′ of K as
a complete discrete valuation field with an extension σ′ of σ such that,
if G is the group of continuous automorphisms of K ′ over K, then the
invariant subfield of K ′ by the action of G is K.

If the exact sequence is split over E ′, then it is split over E. The same holds
for ϕ-∇-modules over E.
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Proof. In each case we may assume that E is the invariant subfield of E ′ by
the action of continuous automorphism group G. Let e1, · · · , er, er+1, · · · , er+s
be a basis of M over E such that e1, · · · , er is a basis of L. Put

ϕ(e1, · · · , er, er+1, · · · , er+s) = (e1, · · · , er, er+1, · · · , er+s)
(
A11 A12

0 A22

)
,

where A11 is of degree r and A22 is of degree s, respectively, and all entries
of A11, A12 and A22 are contained in E . By the hypothesis of splitting over E ′
there exists a matrix Y with entries in E ′ such that

A11σ(Y )− Y A22 +A12 = 0.

For any ρ ∈ G, ρ(Y ) also gives a splitting. Hence A11σ(Y − ρ(Y )) = (Y −
ρ(Y ))A22. By the assumption on slopes, ρ(Y ) = Y . Therefore, all entries of Y
are contained in E and the exact sequence is split over E . 2

Definition 4.4 An extension E ′ (resp. K ′) of E (resp. K) is allowable if E ′
is a finitely successive extension of E (resp. K) of type in (i) or (ii) (resp. (ii))
of Proposition 4.3.

4.3 Preparations

In this subsection we assume that the residue field k of V is algebraically closed.
Moreover we assume that the Frobenius on E (resp. K[[x]]0) is defined by
σ(x) = xq. For an element a =

∑
n anx

n in E (resp. K[[x]]) we define the
subseries a(q) by

∑
n aqnx

qn.

Lemma 4.5 Let

(
A11 A12

0 A22

)
be an invertible matrix of degree r + s over E

(resp. K[[x]]0) with A11 of degree r and A22 of degree s such that the matrix
satisfies the conditions:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix P over E (resp. K[[x]]0) with

|P |0 < 1,

(ii) A22 = A
(q)
22 and |A22 − 1s|0 < 1.

Suppose that A
(q)
12 6= 0. Then there exists an r × s matrix Y over E (resp.

K[[x]]0) with |Y |0 < |A(q)
12 |0 such that, if one puts B = A11σ(Y )− Y A22 +A12,

then |B(q)|0 < |A(q)
12 |0. Moreover, there exists an r × s matrix Y over E (resp.

K[[x]]0) such that if one defines B12 by

(
A11 B12

0 A22

)
=

(
1r −Y
0 1s

)(
A11 A12

0 A22

)(
1r σ(Y )
0 1s

)
,

then B
(q)
12 = 0.
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Proof. Take a matrix Y such that σ(Y ) = −PA(q)
12 . Such a Y exists since

the residue field k of V is perfect. Then |Y |0 < |A(q)
12 |0 and B = A11σ(Y ) −

Y A22 +A12 = A11PA
(q)
12 − Y A22 +A12 = A12 −A(q)

12 − Y A22. Hence |B(q)|0 =

|Y A(q)
22 |0 < |A

(q)
12 |0 and we have the first assertion. Applying the first assertion

inductively on the value |A(q)
12 |0, we have a desired matrix Y of the second

assertion since E (resp. K[[x]]0) is complete under the norm | |0. 2

We give a corollary of the preceding lemma for ϕ-∇-modules over E .

Proposition 4.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-
modules over E. Suppose that N is pure of Frobenius slope ν and all Frobenius
slopes of L are less than ν. Then there exist an allowable extension E ′ of E and
a basis e1, · · · , er, er+1, · · · , er+s of M ⊗E E ′ with respect to the exact sequence
such that, if one fixes an element x′ in the ring OE′ of integers of E ′ whose
image gives a uniformizer of the residue field of OE′ and a Frobenius σ′ on E ′

with σ′(x′) = x′q, then the Frobenius matrix

(
A11 A12

0 A22

)
of M ⊗E E ′ with

respect to σ′ (here we use Theorem 3.3) has the following form:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix |P |0 < qν ,

(ii) A22 = A
(q)
22 and |A22 − qν1s|0 < q−ν ,

(iii) A
(q)
12 = 0,

where a(q) is defined by using the parameter x′. Moreover, one can replaces the
inequality |A22 − qν1s|0 < q−ν in (ii) by the inequality |A22 − qν1s|0 < q−νη
for a given 0 < η ≤ 1 (the extension E ′ depends on η).

Proof. Since k is algebraically closed, there is a uniformizer π of K such
that σ(π) = π. Let Km be a Galois extension K(π1/m, ζm) of K for a positive
integer m, where ζm denotes a primitive m-th root of unity. Then σ on K
extends on Km. If we choose a positive integer m such that m/logq|π| is a
common multiple of denominators of ν and the highest Frobenius slope of L,
then ν and the highest Frobenius slope of L are contained in logq|K×m|. Hence
we may assume that ν = 0 and all Frobenius slopes of the twist πϕL of the
Frobenius ϕL of L are less than or equal to 0.

Let A =

(
A11 A12

0 A22

)
be a Frobenius matrix of M with respect to the

given exact sequence. Since any ϕ-module over E has a cyclic vector [Ts96,
Proposition 3.2.1], we may assume that A22 ∈ GLs(OE) by ν = 0. Then there
is a matrix X ∈ GLs(OE′) such that X−1A22σ(X) ≡ 1s (modmOE′) for some
finite unramified extension E ′ over E by [Ts98b, Lemma 5.2.2]. By applying
the existence of a cyclic vector again, we may assume that the all entries of
Frobenius matrix of L∨ are contained in mOE by the hypothesis on Frobenius
slopes of L.
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Now we fix a parameter x′ of E ′ and change a Frobenius σ′ on E ′ such that
σ′(x′) = x′q. The the hypothesis of the matrices A11 and A12 are stable by
Theorem 3.3. If one replaces the basis (e1, · · · , er+s) by (e1, · · · , er+s)A, then
the Frobenius matrix becomes σ′(A). Since the hypothesis in Lemma 4.5 hold
in our Frobenius matrix A, we have the assertion. 2

Now a variant of Proposition 4.6 for ϕ-∇-modules over K[[x]]0, which we use it
in section 6, is given.

Proposition 4.7 Let 0 → L → M → N → 0 be an exact sequence of ϕ-
∇-modules over K[[x]]0. Suppose that Nη is pure of Frobenius slope ν and all
Frobenius slopes of Lη are less than ν. Then there exist an allowable extension
K ′ of K with an extension of Frobenius σ′ and a basis e1, · · · , er, er+1, · · · , er+s
of M ⊗K[[x]]0 K

′[[x]]0 with respect to the exact sequence such that the Frobenius

matrix

(
A11 A12

0 A22

)
of M ⊗K[[x]]0 K

′[[x]]0 with respect to σ′ has the following

form:

(i) A11 = A
(q)
11 and A11 = P−1 for a matrix |P |0 < qν ,

(ii) A22 = qν1s,

(iii) A
(q)
12 = 0

Proof. We may assume µ = 0 and the highest Frobenius slope of Lη is
contained in logq|K×m| as in the proof of Proposition 4.6. Then N is a direct
sum of copies of the unit object (K[[x]]0, d, σ)’s since k is algebraically closed.
In order to find the matrix P , we apply the isogeny theorem [Ka79, Theorem
2.6.1] and the existence of a free lattice over V [[x]] in [dJ98, Lemma 6.1] for L∨.
The rest is again same as the proof of Proposition 4.6. 2

Lemma 4.8 Let ν be a nonnegative rational number. Suppose that y ∈ xK[[x]]
satisfies a Frobenius equation

y − q−νaσ(y) = f.

for a ∈ K with |a| = 1 and for f =
∑
n fnx

n ∈ xK[[x]].

(1) Suppose that f (q) = 0. If f ∈ K[[x]]ν \ {0}, then y ∈ K[[x]]ν \K[[x]]ν−, and
if f ∈ K[[x]]λ \K[[x]]λ− for λ > ν, then y ∈ K[[x]]λ \K[[x]]λ−.

(2) Let l be a nonnegative integer with q 6 | l. If f ∈ K[[x]]0 and |fl| > |qνf |0 =
q−ν |f |0 6= 0, then y ∈ K[[x]]ν \K[[x]]ν−.

Proof. Since the residue field k of V is algebraically closed, we may assume
that a = 1. Formally in K[[x]],

y =
∑

n

∞∑

m=0

(q−ν)mσm(fn)x
qmn
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is a solution of the equation.
(1) If qmn = qm

′

n′, then m = m′ and n = n′ because q 6 |n, n′. Hence,
y 6= 0. By considering a subseries

∑∞
m=0 (q

−ν)mσm(fn)x
qmn for fn 6= 0, y is of

log-growth equal to or greater than ν. Moreover, we have

|(q−ν)mσm(fn)|/(qmn+ 1)ν = |fn|/(n+ 1/qm)ν

Hence, if f ∈ K[[x]]ν , then y is exactly of log-growth ν. Suppose f ∈ K[[x]]λ \
K[[x]]λ−. Since for each m,n

|(q−ν)mσm(fn)|/(qmn+ 1)λ = |fn|/(qm(1−ν/λ)n+ 1/qmν/λ)λ,

the log-growth of y is exactly λ.
(2) There exists z ∈ xK[[x]]0 with |z|0 ≤ |qνf |0 = q−ν |f |0 such that, if g =
f−z+q−νσ(z) =∑n gnx

n, then g(q) = 0 and gl 6= 0 by the same construction
of the proof of Lemma 4.5. The assertion now follows from (1). 2

4.4 Proof of Proposition 4.2

Replacing K by an extension, we may assume that k is algebraically closed
and that λ = 0, ν > 0 and ν ∈ logq|K×| by Proposition 4.3 (see the beginning
of proof of Proposition 4.6). We may also assume σ(x) = xq by Theorem 3.3.

Let A =

(
A11 A12

0 A22

)
be a Frobenius matrix of M with respect to the basis

which is compatible with the given extension (i.e., the (1, 1)-part (resp. (2, 2)-

part) corresponds to L (resp. N)) and let G =

(
G11 G12

0 G22

)
be the matrix of

the connection, respectively. The commutativity of Frobenius and connection
(the relation (FC) in section 2.2) gives the relation

1◦
d

dx
A12 +G11A12 +G12A22 = qxq−1(A11σ(G12) +A12σ(G22))

of the (1, 2)-part of the matrix. We may assume that

2◦ A11 = A
(q)
11 , |A11 − 1r|0 ≤ q−1 and hence |G11|0 < q−1 (r is rank of L);

3◦ A22 = A
(q)
22 , |A22 − qν1s|0 ≤ q−ν−1 and |G22|0 < q−1 (s is rank of N);

4◦ A(q)
12 = 0.

by Proposition 4.6 Note that both inequalities |G11|0 < q−1 and |G11|0 < q−1

above follow from the relation (FC) in section 2.2 for L and N , respectively.
When ν 6= 1, we will first prove A12 = 0 and then prove G12 = 0. When ν = 1,
we will first prove G12 = 0 and then prove A12 = 0. Hence, we will have a
splitting in all cases.
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4.4.1 The case where ν > 1

Suppose ν > 1 (and λ = 0). Assume that A12 6= 0. By 4◦ we have
| ddxA12|0 > |qA12|0 = q−1|A12|0. Then |G11A12|0 < q−1|A12|0 < | ddxA12|0 and

|qxq−1A12σ(G22)|0 < q−1|A12|0 < | ddxA12|0. On the other hand, |G12A22|0 <
|qxq−1A11σ(G12)|0 by ν > 1 since A11 (resp. A22) is a unit matrix (resp. a
unit matrix times qν) modulo mOE (resp. qνmOE) by 2◦ (resp. 3◦). So we
have

d

dx
A12 ≡ qxq−1A11σ(G12) (mod q−logq|

d
dxA12|0mOE)

But, on comparing the x-adic order of both sides, this is seen to be impossible
by 2◦, 3◦ and 4◦. Hence A12 = 0. Now the commutativity of Frobenius and
connection (the relation 1◦) is just

G12A22 = qxq−1A11σ(G12).

Since any morphism between pure ϕ-modules with different Frobenius slopes
are 0, we have G12 = 0 by ν > 1.

4.4.2 The case where 0 < ν < 1

Suppose 0 < ν < 1 (and λ = 0). Assuming that A12 6= 0, we will show the
existence of unbounded solutions on the generic disk by applying Lemma 4.8
(2). This is a contradiction to our hypothesis of boundedness of M , and thus
we must have A12 = 0. Since ν 6= 1, we again have G12 = 0 by the slope reason.
Therefore, the extension is split.
Assume that A12 =

∑
n A12,nx

n 6= 0. Since |G12A22|0 = q−ν |G12|0,
|qxq−1A11σ(G12)|0 = q−1|G12|0, and | ddxA12|0 > q−1|A12|0 by 3◦, 2◦ and our
hypothesis, respectively, the formula 4◦ gives estimates

5◦ q−1|A12|0 < q−ν |G12|0 = |G12A22|0 = | ddxA12|0 ≤ |A12|0.
We also claim that

6◦ there is a positive integer m with q 6 |m such that | 1m!
dm

dxmA12|0 =
|A12|0

by 1◦. Indeed, let l be an integer such that |A12,l| = |A12|0. When l > 0, we

put m = l. Then the coefficient of 1
m!

dl

dxlA12 in the 0-th term x0 is A12,l and we

have | 1l! d
l

dxl
A12|0 = |A12,l| = |A12|0. When l < 0, we put m = q−l + l (remark

that any sufficient large power of q can be replaced by q−l). Then the coefficient

of 1
m!

dm

dxmA12 in the l−m(= −q−l)-th term xl−m is (−1)m
(
m− l − 1

m

)
A12,l

and we have | 1m!
dm

dxmA12|0 = |A12,l| = |A12|0 since (−1)m
(
m− l − 1

m

)
is a

p-adic unit.
In proving the assertion, we will consider the following two cases for A12:
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(i) | ddxA12|0 > q−ν |A12|0.

(ii) | ddxA12|0 ≤ q−ν |A12|0. (Hence we have |G12|0 ≤ |A12|0 by 5◦)

In order to prove the existence of unbounded solutions above, let us reorganize
the matrix representation by using changes of basis ofM , a change of Frobenius
and an extension of scalar field. Let us consider the induced ϕ-∇-module
Mτ = M ⊗E Et[[X − t]]0 over the bounded functions Et[[X − t]]0 at the generic
disk. Since Lτ and Nτ are pure, we have bounded solution matrices Y11 of L
and Y22 of N , that is,

7◦

L :





A11(t)σ(Y11) = Y11τ(A11)
d

dX
Y11 = Y11τ(G11)

Y11 ∈ 1r + q(X − t)Matr(OEt [[X − t]])

N :





A22(t)σ(Y22) = Y22τ(A22)
d

dX
Y22 = Y22τ(G22)

Y22 ∈ 1s + q(X − t)Mats(OEt [[X − t]])
by 2◦ and 3◦. Note that τ(f) =

∑
n

1
n! (

dn

dxn f)(t)(X − t)n for f ∈ E and
it is an isometry. Consider a change of basis of Mτ by the matrix Y −1 =(
Y −111 0
0 Y −122

)
. Then the new Frobenius matrix and the new connection

matrix are as follows:

Aτ = Y Aσ(Y )−1 =

(
A11(t) Y11τ(A12)σ(Y22)

−1

0 A22(t)

)

Gτ = Y d
dXY

−1 + Y GY −1 =

(
0 Y11τ(G12)Y

−1
22

0 0

)
.

Let us put Aτ12 =
∑

n A
τ
12,n(X − t)n (resp. Gτ12) to be the (1, 2)-part of the

Frobenius matrix Aτ (resp. Gτ ), and define Bτ12 =
∑

n>0 A
τ
12,n(X− t)n by the

subseries of positive powers. Then we have

8◦ |Bτ12|0 = |A12|0

9◦ |Gτ12|0 = |τ(G12)|0 = |G12|0.
by 6◦ and Y ≡ 1r+s (mod q(X − t)OEt [[X − t]]).
Now we consider a change of Frobenius. At first our Frobenius on E is given
by σ(x) = xq. Hence the induced Frobenius on the generic disk is given by
σ(X − t) = ((X − t) + t)q − tq. Let us replace σ by the Frobenius σ̃ defined by
σ̃(X − t) = (X − t)q. Note that

10◦ σ(X − t)− σ̃(X − t) ≡ qtq−1(X − t) (mod p(X − t)2OEt [[X − t]]).

Since | 1n! dn−1

dXn−1G
τ
12|0 ≤ |n|−1|G12|0 and |pn/n| ≤ |p| for all n ≥ 1, the matrix

H of comparison transform ϑ∗σ̃,σ(Mτ ) in section 3.1 satisfies the congruence
relation
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11◦

H = 1r+s +

∞∑

n=1

1

n!

(
0 σ( dn−1

dXn−1G
τ
12)

0 0

)
(σ(X − t)− σ̃(X − t))n

≡ 1r+s + qtq−1
(

0 σ(G12(t))
0 0

)
(X − t)

(mod pq−logq|G12|0(X − t)2OEt [[X − t]])

by 9◦ and 10◦. Our Frobenius matrix of Mτ with respect to the Frobenius σ̃ is

Ã = AτH =

(
A11(t) Aτ12 +A11(t)H12

0 A22(t)

)

by the definition of the equivalence (Theorem 3.3), whereH12 =
∑
n H12,n(X−

t)n is the (1, 2)-part of H . If we put Ã12 =
∑

n Ã12,n(X − t)n to be the (1, 2)-

part of Ã and put B̃12 =
∑

n>0 Ã12,n(X − t)n, then

12◦ there is a positive integer m with q 6 |m such that |Ã12,m|0 >

q−ν |B̃12|0.

Indeed, in the case (i) for A12, since Ã12,1 = Aτ12,1+A11(t)H12,1 and |H12,1|0 ≤
q−1|G12|0, we have |Ã12,1|0 = |Aτ12,1|0 = | ddxA12|0 by 5◦ and 11◦. On the other

hand, |B̃12|0 ≤ max{|Bτ12|0, |H12|0} ≤ max{|A12|0, |p||G12|0} < qν | ddxA12|0 by

5◦, 8◦ and 11◦ because of our hypothesis (i), | ddxA12|0 > q−ν |A12|0. Hence we
can take m = 1. In the case (ii), we take a positive integer m such as 6◦. Since
|G12|0 ≤ |A12|0 by the hypothesis (ii), we have |B̃12|0 ≤ max{|Bτ12|0, |H12|0} =
|A12|0 by 8◦ and 11◦.

By Proposition 2.1 we may replace Et by the p-adic completion Êurt of the

maximally unramified extension of Et. Then we may assume that Ã11 = 1r and
Ã22 = qν1s since the solutions of both (1, 1)-part and (2, 2)-part is 1 modulo q

by 2◦ and 3◦. The solution matrix ofMτ ⊗Et Êurt has a form Z =

(
1r Z12

0 1s

)

satisfying Ã|X=tσ̃(Z) = ZÃ and Z12|X=t = 0. In particular, Z12 satisfies the
relation

σ̃(Z12) = qνZ12 + B̃12.

On applying Lemma 4.8 (2) to Z12, one sees that one of entries of Z12 must be
exactly of log-growth ν by 12◦. Hence the non-vanishing of A12 implies that
M is unbounded.
This completes the proof for the case 0 < ν < 1.

4.4.3 The case where ν = 1

Suppose that ν = 1. Suppose that G12 6= 0. Let us develop G12 =
∑

n G12,nx
n

and let m be the least integer such that |G12,m| = |G12|0. If A12 6= 0, we have
| ddxA12|0 > q−1|A12|0 by 4◦. So the relation 1◦ induces a congruence
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13◦
d

dx
A12 + qG12 ≡ qxq−1σ(G12) (mod q1+logq|G12|0mOE)

by 2◦ and 3◦. This congruence 13◦ also holds when A12 = 0.
Suppose that m < −1. The least power of x which should appear in the right
hand side of the congruence 13◦ above is qm + q − 1. Since qm + q − 1 < m,
this is precluded by 4◦.
Suppose that m = −1. Then

14◦
τ(G12) =

∞∑

n=0

1

n!
(
dn

dxn
G12)(t)(X − t)n

=

∞∑

n=0

(G12,−1
(−1)n
tn

+ q−logq|G12|0Mat(t1−nV [[t]]0 +mOE))(X − t)n.

Let us calculate the solution matrix of Mτ by using 7◦ as in the previous case.

By changing a basis of Mτ by the invertible matrix Y =

(
Y −111 0
0 Y −122

)
as

before, our differential equation becomes

d

dX

(
1 Z
0 1

)
=

(
1 Z
0 1

)(
0 Y11τ(G12)Y

−1
22

0 0

)
.

in Z, that is, d
dXZ = Y11τ(G12)Y

−1
22 . Since all the coefficients of all the power

series which appear on the entries of Y11τ(G12)Y
−1
22 do not vanish modulo

q−logq|G12|0mOE by 7◦ and 14◦, at least one of entries of Z is exactly of log-
growth 1. This contradicts to our hypothesis of boundness of M . Hence,
m 6= −1.
Suppose that m > 0. Then we have

G12 ≡ −q−1x−1
(
x d
dxA12 + σ(x d

dxA12) + σ2(x d
dxA12) + · · ·

)

(mod q−logq|G12|0mOE)

by 4◦ and 13◦. The case where A12 = 0 is impossible since G12 6= 0. If
A12 6= 0, then we have a solution exactly of log-growth 1 on the generic disk by
the similar construction in the case m = −1. This contradicts our hypothesis.
Therefore, we have G12 = 0 in any case.
Now we prove A12 = 0. Suppose that A12 6= 0. Then the relation 1◦ is

d

dx
A12 +G11A12 = qxq−1A12σ(G22).

This is impossible by 2◦, 3◦ and 4◦. Hence, A12 = 0.
This completes the proof of Proposition 4.2. 2

Remark 4.9 There is another proof of Proposition 4.2: one can reduce Propo-
sition 4.2 to the case where q = p, that is, the Frobenius σ is a p-Frobenius.
Then, in the proof of the case 0 < ν < 1, it is enough to discuss only in the
case | ddxA12|0 = |A12|0.
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5 PBQ ϕ-∇-modules

5.1 Definition of PBQ ϕ-∇-modules
Definition 5.1 (Definition of “PBQ” ϕ-∇-modules)

(1) A ϕ-∇-module M over E is said to be pure of bounded quotient (called
PBQ for simplicity) if M/M0 is pure as a ϕ-module.

(2) A ϕ-∇-moduleM over K[[x]]0 is said to be pure of bounded quotient (called
PBQ for simplicity) if the generic fiberMη ofM is PBQ as a ϕ-∇-module
over E.

The notion “PBQ” depends only on the Frobenius slopes of the bounded quo-
tient of the generic fiber of ϕ-∇-modules. As we saw in Theorem 4.1, the
bounded quotient of the generic fiber always admits a splitting by Frobenius
slopes when it has different slopes.

Example 5.2 (1) A bounded ϕ-∇-module M over E is PBQ if and only if
M is pure as a ϕ-module. In particular, any ϕ-∇-module M over E of
rank 1 is PBQ.

(2) Any ϕ-∇-moduleM over E of rank 2 which is not bounded is PBQ [CT09,
Theorem 7.1].

(3) Let us fix a Frobenius on σ with σ(x) = xq. Let M be a ϕ-∇-module over
K[[x]]0 with a basis (e1, e2, e3) such that the Frobenius matrix A and the
connection matrix G are defined by

A =




1 −q1/2x −qx
0 q1/2 0
0 0 q


 , G =




0

∞∑

n=0

qn/2xq
n−1

∞∑

n=0

xq
n−1

0 0 0
0 0 0


 .

ThenMη is not bounded andM is not PBQ. Indeed, the K[[x]]0-submodule
L generated by e1 is a ϕ-∇-submodule ofM such that the quotient (M/L)η
is bounded and (M/L)η is not pure. On the other hand the dual M∨ of
M is PBQ.

Proposition 5.3 Any quotient of PBQ ϕ-∇-modules over E (resp. K[[x]]0) is
PBQ.

Proof. Let M be a PBQ ϕ-∇-module over E and let M ′ be a quotient of M .
The assertion follows from that the natural morphism M/M0 → M ′/(M ′)0 is
surjective by [CT09, Corollary 3.5]. 2
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5.2 Existence of the maximally PBQ ϕ-∇-submodules over E
Proposition 5.4 Suppose that the residue field k of V is perfect. Let M be
a ϕ-∇-module over E with highest Frobenius slope λmax and let N ′ be a ϕ-∇-
submodule of M/Sλmax−(M). Then there is a unique ϕ-∇-submodule N of M
such that N is PBQ and the natural morphism N/N0 → M/Sλmax−(M) gives
an isomorphism between N/N0 and N ′. When N ′ = M/Sλmax−(M), we call
the corresponding N the maximally PBQ submodule of M .

Proof. First we prove the uniqueness of N . Let N1 and N2 be a PBQ sub-
module of M such that both natural morphisms N1/N

0
1 → M/Sλmax−(M) ←

N2/N
0
2 give isomorphisms with N ′. Let N be the image of N1 ⊕ N2 →

M (a, b) 7→ a+b. Then N is PBQ by Proposition 5.3. Since N1/N
0
1 ⊕N2/N

0
2 →

N/N0 is surjective by [CT09, Proposition 3.6], the natural morphism N/N0 →
M/Sλmax−(M) gives an isomorphism with N ′. If N1 (resp. N2) is not N , then
the quotient N/N1 (resp. N/N2) has a bounded solution at the generic disk
whose Frobenius slope is different from λmax. But this is impossible because
N is PBQ. Hence N = N1 = N2.
Now we prove the existence of N . We use the induction on the dimension of
M . Let f : M → M/M0 be a natural surjection. Since M/M0 is bounded,
M/Sλmax−(M) is a direct summand of M/M0 by the maximality of slopes by
Theorem 4.1. Put L = f−1(N ′). If L is PBQ, then one can put N = L. If L is
not PBQ, then L is a proper submodule of M and there is a PBQ submodule
L′ of L such that L′/(L′)0 ∼= L/Sλmax−(L) = N ′ by the induction hypothesis.

2

Corollary 5.5 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over E. Then there is a unique filtration 0 = P0(M) ( P1(M) (
· · · ( Pr(M) = M of ϕ-∇-modules over E such that Pi(M)/Pi−1(M) is the
maximally PBQ submodule of M/Pi−1(M) for any i = 1, · · · , r. We call
{Pi(M)} the PBQ filtration of M .

5.3 Existence of the maximally PBQ ϕ-∇-submodules over K[[x]]0

Theorem 5.6 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over K[[x]]0. Then there is a unique ϕ-∇-submodule N of M over
K[[x]]0 such that the generic fiber Nη of N is the maximally PBQ submodule of
the generic fiber Mη of M . We call N the maximally PBQ submodule of M .

Proof. The proof of uniqueness of the maximally PBQ submodules is same
to the proof of Proposition 5.4.
We prove the existence of the maximally PBQ submodules by induction on the
rank of M . If M is of rank 1, then the assertion is trivial. For general M ,
if M is PBQ, then there is nothing to prove. Suppose that M is not PBQ.
Then there is a direct summand Lη of Mη/M

0
η such that Lη is pure with the

Frobenius slope which is less than the highest slope λmax of M by Theorem
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4.1. Consider the composite of natural morphisms M → Mη/M
0
η → Lη. It

is not injective by Lemma 5.7 below. Put M ′ to be the kernel. Then M ′ is
a ϕ-∇-submodule of M such that M ′η/Sλmax(M

′
η)
∼= Mη/Sλmax(Mη). By the

induction hypothesis there is a maximally PBQ submodule N of M ′ which
becomes the maximally PBQ submodule N of M . 2

Lemma 5.7 Suppose that the residue field k of V is perfect. Let M be a ϕ-
module over K[[x]]0 such that the highest Frobenius slope of the generic fiber
Mη of M is λmax. Suppose that there exists an injective K[[x]]0-homomorphism
f :M → Lη which is ϕ-equivariant, i.e., ϕ ◦ f = f ◦ ϕ for a pure ϕ-module Lη
over E. Then the Frobenius slope of Lη is λmax.

Proof. In [dJ98, Corollary 8.2] A.J. de Jong proved this assertion when Lη is
a generic fiber of a rank 1 pure ϕ-∇ module L over K[[x]]0. (Indeed, he proved
a stronger assertion.) We give a sketch of the proof which is due to [dJ98,

Propositions 5.5, 6.4 and 8.1]. Our E (resp. E†, resp. Ẽ , resp. Ẽ† introduced
below) corresponds to Γ (resp. Γc, resp. Γ2, resp. Γ2,c) in [dJ98]. We also

remark that Ẽ† is the extended bounded Robba ring R̃bd in [Ke08, 2.2].
We may assume that the residue field k of V is algebraically closed and all
slopes ofM are contained in the value group of logq|K×|. We may also assume
that σ(x) = xq by Theorem 3.3. Let us define K-algebras

Ẽ =




∑

n∈Q
anx

n

∣∣∣∣∣∣

an ∈ K, supn|an| <∞, |an| → −∞ (n→ −∞),
{n | |an| ≥ α} is a well-ordered set with respect to
the order ≤ for anyα ∈ R.





Ẽ† =




∑

n∈Q
anx

n ∈ Ẽ

∣∣∣∣∣∣
|an|ηn → 0 (n→ −∞) for some 0 < η < 1.



 .

Both Ẽ and Ẽ† are discrete valuation fields such that both ring of integers have
a same residue field

k((xQ)) =




∑

n∈Q
anx

n

∣∣∣∣∣∣
an ∈ k, {n | an 6= 0} is a well-ordered set
with respect to the order ≤ .



 ,

which includes an algebraic closure of k((x)) [Ke01], and that the p-adic com-

pletion of Ẽ† is Ẽ . Ẽ is naturally an E-algebra and σ naturally extends to Ẽ by
σ(
∑

n anx
n) =

∑
n σ(an)x

qn. Put

E† = Ẽ† ∩ E .

Then E† is stable under σ and the K-derivation d/dx. We also denote by OẼ†
the ring of integer of Ẽ†.
By explicit calculations we have the following sublemmas.
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Sublemma 5.8 For 0 < η < 1 and for
∑

n∈Q
anx

n ∈ Ẽ†, let us consider a

condition:

(∗)η : supn|an|max{ηn, 1} ≤ 1.

If f and g in Ẽ† satisfy the condition (∗)η, then so are f+g and fg. Moreover,
if f =

∑
n anx

n satisfies the condition (∗)η and |a0| = 1, then so is f−1.

Note that, if η < µ, then the condition (∗)η implies the condition (∗)µ.

Sublemma 5.9 (1) Let A = 1+B be a square matrix such that 1 is the unit
matrix and all entries of B contained in m

nOẼ† for a positive integer n.
Suppose that all entries of A satisfy the condition (∗)η in Sublemma 5.8.
Then there is a matrix Y = 1 + Z with Aσ(Y ) = Y such that all entries
of Z are contained in m

nOẼ† and satisfy the condition (∗)ηq .

(2) Let C be a matrix such that all entries are contained in m
nOẼ† for a

nonnegative integer n and satisfy the condition (∗)η. Then there is a
matrix Z satisfying σ(Z)−Z = C such that all entries of Z are contained
in m

nOẼ† and satisfy the condition (∗)ηq .

Proof. (1) follows from (2) by considering a congruence equation Aσ(Y ) ≡
Y (modmlOẼ†) inductively on l.

(2) Since the residue field k of V is perfect, σ is bijective. Put C =∑
n Cnx

n = C− + C0 + C+, where they are subseries of negative powers,
a constant term, and subseries of positive powers, respectively. The series
Z− =

∑
n<0

∑∞
i=1 σ

−i(Cn)xn/q
i

converges and all entries of Z− satisfies the
condition (∗)ηq , and the equation σ(Z−) − Z− = C− holds. Since k is al-
gebraically closed, there is a matrix Z0 over V with |Z0| ≤ |C0| such that
σ(Z0) − Z0 = C0. The series Z+ = −∑∞i=0 σ(C+) converges and satisfies
σ(Z+)− Z+ = C+. Hence, Z = Z− + Z0 + Z+ is the desired solution. 2

If N † is a ϕ-∇-submodule of M ⊗K[[x]]0 E† over E†, then there is a ϕ-∇-
submodule N of M over K[[x]]0 with N ⊗K[[x]]0 E† ∼= N by [dJ98, Proposition

6.4]. Hence, the induced morphism M ⊗K[[x]]0 E† → Lη is also injective. More-

over, since Ẽ† ⊗E† E → Ẽ is injective (the similar proof of [dJ98, Proposition

8.1] works), the induced morphism M ⊗K[[x]]0 Ẽ† → Lη ⊗E Ẽ is again injective.

Let λ1 < · · · < λr(= λmax) be Frobenius slopes of Mη. One can prove that

there exists an increasing filtration 0 = M̃0 ( M̃1 ( · · · ( M̃r = M ⊗K[[x]]0 Ẽ†
of ϕ-modules over Ẽ† such that (M̃i/M̃i−1)⊗Ẽ† Ẽ is pure of slope λr−i+1. This
existence of filtration of opposite direction corresponds to Proposition 5.5 in
[dJ98]. Indeed, since the residue field k((xQ)) includes an algebraic closure

of k((x)), there is a basis of M ⊗K[[x]]0 Ẽ† such that the Frobenius matrix of
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M ⊗K[[x]]0 Ẽ† has a form



qλ11
. . .

qλr1


+ (a square matrix with entries in m

nOẼ)

by Dieudonné-Manin classification of ϕ-modules and the density of Ẽ† in Ẽ .
Here qλ is a element ofK with logq|qλ| = −λ, 1 is the unit matrix with a certain
size (the first matrix is a diagonal matrix), and n is sufficiently large. One can

find a basis of M ⊗K[[x]]0 Ẽ† such that the Frobenius matrix of M ⊗K[[x]]0 Ẽ† is
a lower triangle matrix 


qλ11 0

. . .

∗ qλr1




by Sublemmas 5.8 and 5.9. Hence, one has a filtration of opposite direction.
Since M̃1 is pure of slope λr = λmax and the inclusion M̃1 ⊂ Lη ⊗E Ẽ is ϕ-
equivariant, the slope of Lη must be λmax. 2

Corollary 5.10 Suppose that the residue field k of V is perfect. LetM be a ϕ-
∇-module over K[[x]]0. Then there is a unique filtration 0 = P0(M) ( P1(M) (
· · · ( Pr(M) = M as ϕ-∇-modules over K[[x]]0 such that Pi(M)/Pi−1(M) is
the maximally PBQ submodule of M/Pi−1(M) for any i = 1, · · · , r. We call
{Pi(M)} the PBQ filtration of M .

Example 5.11 Let M be a ϕ-∇-module over K[[x]]0 which is introduced in
Example 5.2 (3). If P1(M) is a ϕ-∇-submodule of M over K[[x]]0 generated
by e1 and e3, the sequence 0 = P0(M) ( P1(M) ( P2(M) = M is the PBQ
filtration of M .

6 Log-growth and Frobenius slope for HPBQ ϕ-∇-modules over
K[[x]]0

6.1 Log-growth for HPBQ ϕ-∇-modules
Definition 6.1 (1) A ϕ-∇-module M over K[[x]]0 is horizontal of bounded

quotient (HBQ for simplicity) if there is a quotient N of M as a ϕ-∇-
module over K[[x]]0 such that the canonical surjection induces an isomor-
phism Mη/M

0
η
∼= Nη at the generic fiber.

(2) A ϕ-∇-module M over K[[x]]0 is horizontally pure of bounded quotient
(HPBQ for simplicity) if M is PBQ and HBQ.

Example 6.2 (1) A bounded ϕ-∇-moduleM over K[[x]]0 is HBQ. A bounded
ϕ-∇-module M over K[[x]]0 is HPBQ if and only if Mη is pure as a ϕ-
module.

Documenta Mathematica 16 (2011) 33–69



60 Chiarellotto, B. and Tsuzuki, N.

(2) Let M be a ϕ-∇-module M over K[[x]]0 of rank 2 which arises from the
first crystalline cohomology of a projective smooth family E of elliptic
curves over Spec k[[x]]. Then M is HBQ if and only if either (i) E is
a non-isotrivial family over Spec k[[x]] and the special fiber Es of E is
ordinary or (ii) E is an isotrivial family over Spec k[[x]]. In the case (i)
M is HPBQ, but in the case (ii) M is HPBQ if and only if E is an
isotrivial family of supersingular elliptic curves.

(3) Let M be a ϕ-∇-module over K[[x]]0 which is introduced in Example 5.2
(3). Then M is HBQ but is not HPBQ. The dual M∨ of M is HPBQ.

Proposition 6.3 Let M be a ϕ-∇-module over K[[x]]0. Then M is HBQ if
and only if

dimK V (M)/V (M)0 = dimEMη/M
0
η .

Moreover, when M is HBQ, the natural pairing M ⊗K Sol0(M) → K[[x]]0
induces an isomorphism

Mη/M
0
η
∼= V (M)/V (M)0 ⊗K E

as ϕ-∇-modules.

Proof. Suppose that M is HBQ. Let N be the quotient as in Defi-
nition 6.1 (1). Since Nη is bounded, we have V (N)0 = 0 by Christol’s
transfer theorem (see [CT09, Proposition 4.3]) and dimK V (M)/V (M)0 ≥
dimK V (N)/V (N)0 = rankK[[x]]0 N = dimEMη/M

0
η . On the other hand, one

knows an inequality dimK V (M)/V (M)0 ≤ dimEMη/M
0
η by [CT09, Proposi-

tion 4.10]. Hence, we have an equality dimK V (M)/V (M)0 = dimEMη/M
0
η .

Now we prove the inverse. The natural pairing M ⊗K Sol0(M) → K[[x]]0 in-
duces the surjection M → V (M)/V (M)0⊗K K[[x]]0. If dimK V (M)/V (M)0 =
dimEMη/M

0
η , we have an isomorphism Mη/M

0
η
∼= V (M)/V (M)0 ⊗K E since

V (M)/V (M)0 ⊗K E is bounded. 2

Since any quotient of bounded ϕ-∇-modules over E is again bounded, the
proposition below follows from the chase of commutative diagrams.

Proposition 6.4 Any quotient of HBQ ϕ-∇-modules over K[[x]]0 is HBQ. In
particular, any quotient of HPBQ modules is HPBQ.

Proof. We may assume that the residue field of V is algebraically closed and
qλmax ∈ K. Since M is HBQ, there is a surjection M → V (M)/V (M)0 ⊗K
K[[x]]0 by Propoition 6.3 whose kernel is denoted by L. Then M0

η = Lη. If
f :M → N be the given surjection, N/f(L) is a quotient of V (M)/V (M)0⊗K
K[[x]]0 and hence a direct sum of copies of (K[[x]]0, q

λσ, d) for some λ. Since f
gives a surjection from M0

η to N0
η by [CT09, Proposition 3.6], we have

dimK V (N)/V (N)0 ≥ rankK[[x]]0 N/f(L) = Nη/N
0
η .
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On the other hand, dimK V (N)/V (N)0 ≤ dimE Nη/N0
η by [CT09, Proposition

4.10]. Hence dimK V (N)/V (N)0 = dimE Nη/N0
η . The rest follows from Propo-

sition 5.3. 2

Note that the notion PBQ is determined only by the generic fiber. On the
other hand, for ”HPBQ”, the bounded quotient is horizontal.

Theorem 6.5 Let M be a ϕ-∇-module M over K[[x]]0 which is HPBQ. Then
the conjecture LGFK[[x]]0 (see 2.5) holds for M .

Proof. We have only to prove the conjecture LGFK[[x]]0 (2) for M .
Then the property of Frobenius slopes implies the conjecture the conjecture
LGFK[[x]]0 (1) for M . We may assume that the residue field of V is alge-
braically closed and all Frobenius slopes of V (M) are contained in the valued
group logq|K×| by Proposition 2.1. We may also assume that our Frobenius
σ is defined by σ(x) = xq by Theorem 3.3. Let us denote by λmax the high-
est Frobenius slope of Mη (= the highest Frobenius slope of V (M)). Let
0 = M0 ( M1 ( · · · ( Mr = M be a filtration of M as ϕ-∇-modules over
K[[x]]0 such that Mi/Mi−1 (i = 1, · · · , r) is irreducible (i.e., it has no nontrivial
ϕ-∇-submodule over K[[x]]0). We will prove the induction on r. If r = 1, then
M ∼= (K[[x]]0, q

λmaxσ, d) and the assertion is trivial.
Now suppose r > 1. We may also assume dimK V (M)/V (M)0 =
1, hence Mr/Mr−1 ∼= (K[[x]]0, q

λmaxσ, d). Indeed, suppose that s =
dimK V (M)/V (M)0 > 1. By our assumption, there is a ϕ-∇-submodule L′

over K[[x]]0 such that the highest Frobenius slope of L′ is λmax with multi-
plicity 1 (note that L′ is Mr−s+1). Take the maximally PBQ submodule L
of L′. Then L is HPBQ such that the highest Frobenius slope is λmax with
multiplicity 1. Since both highest Frobenius slopes of L andM/L are λmax, the
assertion follows from the induction hypothesis by Propositions 2.6 and 6.4.
Since all Frobenius slopes of (Mr−1)η are less than λmax, one can take a basis

e1, · · · , es of M such that the Frobenius matrix A =

(
A1 B
0 qλmax

)
(A1 is

the Frobenius matrix of Mr−1) satisfies (i) all entries of A1 are contained in
K[[x]]0∩xqK[[xq]] and (ii) all entries ofB are contained in xK[[x]]0\xqK[[xq]]∪{0}
by Proposition 4.7. Moreover B 6= 0 by Lemma 6.6 below since M is PBQ. Let
G be the matrix of connection of M . Then the identification

Sol(M) =

{
y ∈ AK(0, 1−)

∣∣∣∣
d

dx
y = yG

}

is given by f 7→ (f(e1), · · · , f(es)). The inclusion relation in Theorem 2.3 for
the solution space is

Solλ(M) ⊃ Sλ−λmax(Sol(M)).

Then it is sufficient to prove the inclusion is equal for all λ. The ϕ-module is a
direct sum of 1-dimensional ϕ-spaces, on which ϕ acts by qδσ for some rational
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number δ such that λmax − δ is a Frobenius slope of M , by our assumption of
K. Let f ∈ Solλ(M) with ϕ(f) = qδf . Then the restriction of f onMr−1 gives
a (ϕ, ddx)-equivariant morphism

Mr−1 → (AK(0, 1−), q−δσ, d).

The kernel L of f is a ϕ-∇-module over K[[x]]0 and f is a solution of M/L of
log-growth λ.

Suppose that L 6= 0. Then the length of M/L is smaller than M and M/L
is HPBQ by Proposition 6.4. Considering f as a solution of M/L, we have
δ ≤ λ− λmax by the hypothesis of induction.

Suppose that L = 0. The Frobenius relation ϕ(f) = qδf is equivalent to

q−δσ(f(e1), · · · , f(es)) = (f(e1), · · · , f(es))A.

By the assumption of A1 we have f(ei) ∈ AK(0, 1−) ∩ xqK[[xq]]. Let us focus
on the s-th entry, then it is

q−δσ(f(es)) = qλmaxf(es) + (f(e1), · · · , f(es−1))B.

Since the highest Frobenius slope of Mr−1 is less than λmax, the log-growth
of the restriction of f on Mr−1 is of log-growth less than λmax + δ, and
so is (f(e1), · · · , f(es−1))B. Since f is injective, (f(e1), · · · , f(es−1))B ∈
AK(0, 1−) \ xqK[[xq]] is not 0. Hence, f(es) is exactly of log-growth λmax + δ
by Lemma 4.8 (1). This provides an inequality λmax + δ ≤ λ, and we have
δ ≤ λ− λmax.

Therefore, f ∈ Sλ−λmax(Sol(M)). This completes the proof of Theorem 6.5.
2

Lemma 6.6 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-modules
over K[[x]]0. If the exact sequence is split as ϕ-modules, then it is split as
ϕ-∇-modules.

Proof. Let A =

(
A1 B
0 A2

)
and G =

(
G1 H
0 G2

)
be the matrices of

Frobenius and connection, respectively. We should prove that B = 0 implies
H = 0. It is sufficient to prove the assertion above as AK(0, 1−)-modules with
Frobenius and connection. Solving the differential modules L and N , we may
assume that A1 and A2 are constant regular matrices and G1 = G2 = 0. Then
the horizontality of Frobenius structure means he relation

HA2 = qxq−1A1σ(H).

Then we have H = 0 by comparing the x-adic order of both sides. 2
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6.2 Equislope ϕ-∇-modules over K[[x]]0

Definition 6.7 A ϕ-∇-module M over K[[x]]0 is equislope if there is an in-
creasing filtration {Sλ(M)}λ∈R of ϕ-∇-module over K[[x]]0 such that Sλ(M)⊗E
gives the Frobenius slope filtration of the generic fiber Mη of M . We also call
{Sλ(M)}λ∈R the Frobenius slope filtration of M .

By [Ka79, 2.6.2] (see [CT09, Theorem 6.21]) we have

Proposition 6.8 A ϕ-∇-module M over K[[x]]0 is equislope if and only if both
the special polygon and generic polygon of Frobenius slopes of M coincides with
each other.

Corollary 6.9 Any subquotients, direct sums, extensions, tensor products,
duals of equislope ϕ-∇-modules over K[[x]]0 are equislope.

Proposition 6.10 Let M be an equislope ϕ-∇-module over K[[x]]0.

(1) M is HBQ. In particular, if M is PBQ, then M is HPBQ.

(2) If V (M)/V (M)0 is pure as a ϕ-module, then M is HPBQ.

Proof. (1) We may assume that the residue field of V is algebraically closed
and all slopes ofMη is contained in the value group logq|K×| of K× by Propo-
sition 2.1. Let us take a ϕ-∇-submodule L such that its generic fiber Lη is M0

η .
Such an L exists by Lemma 6.11 below. Since (M/L)η ∼= Mη/Lη is bounded,
M is HBQ by definition.
(2) The assertion follows from (1) and Proposition 6.3. 2

Lemma 6.11 Let M be an equislope ϕ-∇-module over K[[x]]0. Suppose that the
residue field of V is algebraically closed and all slopes of Mη are contained in
the valued group logq|K×|. The map taking generic fibers gives a bijection from
the set of ϕ-∇-submodules of M to the set of ϕ-∇-submodules of Mη.

Proof. Since the functor from the category ϕ-∇-module over K[[x]]0 to the
category ϕ-∇-module over E is fully faithful, it is sufficient to prove the surjec-
tivity [dJ98, Theorem 1.1].
We may assume that σ(x) = xq by Theorem 3.3. We use the induction on
the number of Frobenius slopes of M in order to prove the existence of a
submodule N over K[[x]]0 for a given submodule Nη over E . Suppose that M
is pure of slope λ. There are a basis e1, · · · , er of M such that the Frobenius
matrix is qλ1r since M is bounded. Let Nη be a ϕ-∇-submodule of Mη over
E which is generated by (e1, · · · , er)P for P ∈ Matrs(E) with s = dimC Nη.
Since Nη is a ϕ-submodule, there is a B ∈ GLs(E) such that qλσ(P ) = PB.
Since rank(P ) = s, there is a regular minor Q of P of degree s such that
qλσ(Q) = QB. If one puts R = PQ−1 ∈ Matrs(E), then σ(R) = R. Hence,
R ∈ Matrs(K). Since (e1, · · · , er)R is a basis of Nη such that (e1, · · · , er)R
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are included in M , the submodule N is given by the K[[x]]0-submodule of M
generated by (e1, · · · , er)R.
Let λ1 be the first slopes of Mη. By the induction hypothesis there are a ϕ-
∇-submodule N1 of Sλ1(M) such that the generic fiber (N1)η of N1 is Nη ∩
Sλ1(Mη) and a ϕ-∇-submodule N2 of M/Sλ1(M) such that the generic fiber
of N2 is Nη/(Sλ1(Mη) ∩Nη) = Nη/(N1)η. Let N3 be the inverse image of N2

by the surjection M/N1 → M/Sλ1(M). Since the intersection of Nη/(N1)η
and Sλ1(Mη)/(N1)η is 0 in Mη/(N1)η, (N3)η is a direct sum of Nη/(N1)η
and Sλ(Mη)/(N1)η. By applying the fully faithfulness of the functor from the
category of ϕ-∇-modules over K[[x]]0 to the category of ϕ-∇-modules over E
[dJ98, Theorem 1.1], there is a direct summand N4 of N3 as ϕ-∇-module over
K[[x]]0 such that the generic fiber of N4 is Nη/(N1)η. Then the inverse image
N of N4 by the surjection M →M/N1 is our desired one. 2

Theorem 6.12 The conjecture LGFK[[x]]0 (see 2.5) holds for any equislope
and PBQ ϕ-∇-module over K[[x]]0.

Proof. The assertion follows from Theorem 6.5 and Proposition 6.10 (1). 2

7 Log-growth filtration and Frobenius filtration at the generic
point

7.1 The log-growth of PBQ ϕ-∇-modules over E

Theorem 7.1 The conjecture LGFE (see 2.4) holds for any PBQ ϕ-∇-module
over E.

Proof. Let M be a PBQ ϕ-∇-module over E such that λmax is the highest
Frobenius slope ofM , and let us consider a ϕ-∇-moduleMτ =M⊗E Et[[X−t]]0
over the Et-algebra Et[[X − t]]0 of bounded functions on the generic disk. Then
Mτ is equislope since {(Sλ(M))τ} gives a Frobenius slope filtration of Mτ .
Moreover, since M is PBQ, Sol0(M,AEt(t, 1−)) is a pure ϕ-module. Hence
V (Mτ )/V (Mτ )

0 is pure, and Mτ is HPBQ by Proposition 6.10 (2). Applying
Theorem 6.5 to Mτ , we have

dimEM/Mλ = dimEt Solλ(M,AEt(t, 1−)) = dimEt V (Mτ )/V (Mτ )
λ

= dimEt V (M∨τ )− dimEt (Sλ−λmax(V (M∨τ )))
⊥

= dimEM∨ − dimE (Sλ−λmax(M
∨))⊥

= dimEM∨/(Sλ−λmax(M
∨))⊥

for any λ. Hence, Mλ = (Sλ−λmax(M
∨))⊥ by Theorem 2.3. Therefore, the

conjecture LGFE holds for M . 2
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7.2 Rationality of breaks of log-growth filtrations

Theorem 7.2 Let M be a ϕ-∇-module over E and let λ be a break of log-
growth filtration of M , i.e., Mλ− )Mλ+. Then λ is rational and Mλ =Mλ+.
In other words, the conjecture LGFE (1) (see 2.4) holds for any ϕ-∇-modules
over E.

Proof. We may assume that the residue field k of V is perfect by Proposition
2.1. Suppose that λmax be the maximal Frobenius slope of M . If M is PBQ,
then Mλ = (Sλ−λmax(M

∨))⊥ = S(λmax−λ)−(M) for any λ by Theorem 7.1.
Then we have

Mλ+ = ∪µ>λ S(λmax−µ)−(M) = ∪µ>λ S(λmax−µ)(M) = S(λmax−λ)−(M) =Mλ.

If λ is a break of log-growth filtration, then

Sλmax−λ(M) = S(λmax−λ)+(M) =Mλ− )Mλ = S(λmax−λ)−(M)

and λ is also a Frobenius slope filtration. Hence λ is rational.

For a generalM , we use the induction on the length of the PBQ filtration ofM .
Let L be the maximally PBQ submodule of M and suppose N = M/L. Then
we have the assertion by Proposition 2.6 (1), the PBQ case and the induction
hypothesis on L and N . 2

Proposition 7.3 Suppose that the residue field of V is perfect. Let M be a ϕ-
∇-module over K[[x]]0 and let λ be a break of log-growth filtration of V (M), i.e.,
V (M)λ− ) V (M)λ+, and let {Pi(M)} be the PBQ filtration ofM . Suppose that
the conjecture LGFK[[x]]0 (2) (see 2.5) holds for all Pi(M)/Pi−1(M). Then λ

is rational and V (M)λ = V (M)λ+. In particular, the conjecture LGFK[[x]]0 (2)
implies the conjecture LGFK[[x]]0 (1) for any ϕ-∇-modules over K[[x]]0.

Proof. The proof is similar to that of Theorem 7.2 by replacing Proposition
2.6 (1) by Proposition 2.6 (2). 2

8 Toward Dwork’s conjecture LGFDw

8.1 The comparison at the special point and Dwork’s conjecture
LGFDw

Theorem 8.1 The conjecture LGFK[[x]]0 (2) (see 2.5) implies the conjecture
LGFDw (see 2.7), that is, the special log-growth polygon lies above the generic
log-growth polygon (and they have the same endpoints).

The theorem above follows from the proposition below by Proposition 2.1.
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Proposition 8.2 Suppose that the residue field k of V is perfect. Let M be a
ϕ-∇-module over K[[x]]0 and let {Pi(M)} be the PBQ filtration of M . Suppose
that the conjecture LGFK[[x]]0 (2) (see 2.5) holds for all Pi(M)/Pi−1(M). Then
the special log-growth polygon of M lies above the generic log-growth polygon of
M (and they have the same endpoints).

Proof. For the PBQ ϕ-∇-modules arising from the PBQ filtration of M ,
the log-growth polygons at the generic (resp. special) fiber coincides with the
Newton polygon of Frobenius slopes of the dual at the generic (resp. special)
fiber under the suitable shifts of Frobenius actions by Theorem 7.1 (resp. our
hypothesis). The assertion follows from Proposition 2.6, Lemma 8.3 below
and the fact that the special Newton polygon of Frobenius slopes is above the
generic Newton polygon of Frobenius slopes and they have the same endpoints.

2

Lemma 8.3 Let 0 → L → M → N → 0 be an exact sequence of ϕ-∇-modules
over K[[x]]0 such that the induced sequences

0 → Lη/L
λ
η → Mη/M

λ
η → Nη/N

λ
η → 0

0 → V (L)/V (L)λ → V (M)/V (M)λ → V (N)/V (N)λ → 0

on both the generic fiber and the special fiber are exact for any λ.

(1) If the special log-growth polygon lies above the generic log-growth polygon
(the endpoints might be different) for both L and N , then the same holds
for M .

(2) If the special log-growth polygon and the generic log-growth polygon have
the same endpoints for both L and N , then the same holds for M .

(3) Suppose that the special log-growth polygon lies above the generic log-
growth polygon for both L and N . Then both the special and the generic
log-growth polygons coincide with each other for M if and only if the same
hold for L and N .

Proof. Let r be the rank of M . Let λ1 ≤ λ2 ≤ · · · ≤ λr be breaks of
log-growth filtration of Mη with multiplicities, and put b0(Mη) = 0 and

bj(Mη) = λ1 + · · ·+ λj

for 1 ≤ j ≤ r. Then the generic log-growth polygon of M is a polygon which
connects points (0, b0(Mη)), (1, b1(Mη)), · · · , (r, br(Mη)) by lines. We also de-
fine bj(V (M)) for the special log-growth of M . Then the exactness for any λ
implies the equality

bj(Mη) = min

{
bi(Lη) + bk(Nη)

∣∣∣∣
0 ≤ i ≤ rankL, 0 ≤ k ≤ rankN,

i+ k = j

}
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for all 0 ≤ j ≤ r, and the same holds for the special log-growth. The special
log-growth polygon lies above the generic log-growth polygon forM if and only
if bj(Mη) ≤ bj(V (M)) for all j, the special log-growth polygon and the generic
log-growth polygon have the same endpoints for M if and only if br(Mη) =
br(V (M)), and both the special and the generic log-growth polygons coincide
with each other for M if and only if bj(Mη) = bj(V (M)) for all j. Hence we
have the assertions. 2

Remark 8.4 If L is supposed to be HPBQ in the short exact sequence of the
previous lemma, then the induced sequences are automatically exact for all λ:
in fact one has Theorems 7.1 and 6.5 and can apply Proposition 2.6.

Remark 8.5 If one assumes that the conjecture LGFK[[x]]0 (2) (see 2.5) for
any PBQ ϕ-∇-module over K[[x]]0 of rank ≤ r, then the proofs of Proposition
7.3 and Theorem 8.1 works for any ϕ-∇-module over K[[x]]0 of rank ≤ r.

8.2 Dwork’s conjecture in the HBQ cases

Lemma 8.6 Let M be a HBQ ϕ-∇-module over K[[x]]0 and let N be a ϕ-∇-
submodule of M over K[[x]]0 which is PBQ. Then N is HPBQ. In particular,
suppose that the residue field of V is perfect and let {Pi(M)} be the PBQ
filtration of M , then Pi(M)/Pi−1(M) is HPBQ for all i.

Proof. We have dimK V (M)/V (M)0 = dimEMη/M
0
η and

dimK V (M/N)/V (M/N)0 = dimE (M/N)η/(M/N)0η by Proposition 6.3
since the quotient M/N is HBQ by Proposition 6.4. Comparing the in-
duced exact sequence 0 → Nη/N

0
η → Mη/M

0
η → (M/N)η/(M/N)0η → 0

at the generic point by Theorem 7.1 and Proposition 2.6 (1) to the corre-
sponding right exact sequence at the special point, we have an inequality
dimK V (N)/V (N)0 ≥ dimE Nη/N0

η . On the contrary, we know the inequality
dimK V (N)/V (N)0 ≤ dimE Nη/N0

η by [CT09, Proposition 4.10]. Hence,
dimK V (N)/V (N)0 = dimE Nη/N0

η and N is HPBQ.
The rest follows from the first part and Proposition 6.4. 2

Theorem 8.7 Let M be a HBQ ϕ-∇-module over K[[x]]0. Then the conjecture
LGFK[[x]]0 (1) (see 2.5) and the conjecture LGFDw (see 2.7) hold for M .

Proof. The assertions follows from the similar arguments of Theorems 7.2
and 8.1, respectively, by using Theorem 6.5 and Lemma 8.6. 2

8.3 When do the generic and special log-growth polygons coin-
cide?

Theorem 8.8 Let M be a ϕ-∇-module over K[[x]]0. The special log-growth
polygon and the generic log-growth polygon coincide with each other if and only
if M is equislope.
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Proof. We may assume that the residue field of V is algebraically closed by
Proposition 2.1. Let {Pi(M)} be the PBQ filtration ofM (Theorem 5.6). Each
condition (i) the coincidence of special and generic log-growth polygons or (ii)
equislope implies that Pi(M)/Pi−1(M) is HPBQ and M/Pi(M) is HBQ for all
i by Propositions 6.3, 6.4, and Lemma 8.6 for (i) and by Corollary 6.9 and
Proposition 6.10 (1) for (ii). Then we can apply Lemma 8.3 (3) inductively on
i by Remark 8.4 and Theorem 8.7. Hence it is sufficient to prove the assertion
when M is HPBQ by Corollary 6.9. Then the coincidence of the log-growth
filtration and the Frobenius slope filtration both at the special point (Theorem
8.7) and at the generic point (Theorem 7.1) implies our desired equivalence.

2

Example 8.9 (1) Let M be a ϕ-∇-module over K[[x]]0 such that Mη is
bounded. Then there is a ϕ-module L over K such that M ∼= L⊗KK[[x]]0
by Christol’s transfer theorem (see [CT09, Proposition 4.3]). Hence, M
is equislope.

(2) Let M be a ϕ-∇-module over K[[x]]0 of rank 2 such that Mη is not
bounded. Then we have identities Mλ = (Sλ−λmax(M

∨))⊥ and V (M)λ =
(Sλ−λmax(V (M∨)))⊥ for any λ [CT09, Theorem 7.1], where λmax is the
highest Frobenius slope of Mη. Hence the special log-growth polygon and
the generic log-growth polygon coincide with each other if and only if M
is equislope.
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No. 409, 167–200, Lecture Notes in Math., 317 (1973), Springer, Berlin.

Documenta Mathematica 16 (2011) 33–69



Log-growth Filtration and Frobenius Slope Filtration 69

[Ka79] Katz, N.M., Slope filtrations of F -isocrystals, Astérisque 63 (1979),
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Abstract. In a first result, we describe all finitely generated factorial
algebras over an algebraically closed field of characteristic zero that
come with an effective multigrading of complexity one by means of
generators and relations. This enables us to construct systematically
varieties with free divisor class group and a complexity one torus
action via their Cox rings. For the Fano varieties of this type that have
a free divisor class group of rank one, we provide explicit bounds for
the number of possible deformation types depending on the dimension
and the index of the Picard group in the divisor class group. As a
consequence, one can produce classification lists for fixed dimension
and Picard index. We carry this out expemplarily in the following
cases. There are 15 non-toric surfaces with Picard index at most
six. Moreover, there are 116 non-toric threefolds with Picard index
at most two; nine of them are locally factorial, i.e. of Picard index
one, and among these one is smooth, six have canonical singularities
and two have non-canonical singularities. Finally, there are 67 non-
toric locally factorial fourfolds and two one-dimensional families of
non-toric locally factorial fourfolds. In all cases, we list the Cox rings
explicitly.

2010 Mathematics Subject Classification: 13A02, 13F15, 14J45

Keywords and Phrases: Multigraded factorial ring, Fano variety, torus
action

Documenta Mathematica 16 (2011) 71–109



72 J. Hausen, E. Herppich, H. Süß

Introduction

Let K be an algebraically closed field of characteristic zero. A first aim of
this paper is to determine all finitely generated factorial K-algebras R with an
effective complexity one multigrading R = ⊕u∈MRu satisfying R0 = K; here
effective complexity one multigrading means that with d := dim R we have
M ∼= Zd−1 and the u ∈M with Ru 6= 0 generate M as a Z-module. Our result
extends work by Mori [23] and Ishida [17], who settled the cases d = 2 and
d = 3.

An obvious class of multigraded factorial algebras as above is given by poly-
nomial rings. A much larger class is obtained as follows. Take a sequence
A = (a0, . . . , ar) of vectors ai ∈ K2 such that (ai, ak) is linearly independent
whenever k 6= i, a sequence n = (n0, . . . , nr) of positive integers and a family
L = (lij) of positive integers, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni. For every
0 ≤ i ≤ r, we define a monomial

fi := T li1i1 · · ·T
lini
ini

∈ K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni],

for any two indices 0 ≤ i, j ≤ r, we set αij := det(ai, aj), and for any three
indices 0 ≤ i < j < k ≤ r, we define a trinomial

gi,j,k := αjkfi + αkifj + αijfk ∈ K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Note that the coefficients of gi,j,k are all nonzero. The triple (A, n, L) then
defines a K-algebra

R(A, n, L) := K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

It turns out that R(A, n, L) is a normal complete intersection, see Proposi-
tion 1.2. In particular, it is of dimension

dim R(A, n, L) = n0 + . . .+ nr − r + 1.

If the triple (A, n, L) is admissible, i.e., the numbers gcd(li1, . . . , lini), where
0 ≤ i ≤ r, are pairwise coprime, then R(A, n, L) admits a canonical effective
complexity one grading by a lattice K, see Construction 1.7. Our first result
is the following.

Theorem 1.9. Up to isomorphy, the finitely generated factorial K-algebras
with an effective complexity one grading R = ⊕MRu and R0 = K are

(i) the polynomial algebras K[T1, . . . , Td] with a grading deg(Ti) = ui ∈ Zd−1

such that u1, . . . , ud generate Zd−1 as a lattice and the convex cone on
Qd−1 generated by u1, . . . , ud is pointed,

(ii) the (K × Zm)-graded algebras R(A, n, L)[S1, . . . , Sm], where R(A, n, L)
is the K-graded algebra defined by an admissible triple (A, n, L) and
deg Sj ∈ Zm is the j-th canonical base vector.

Documenta Mathematica 16 (2011) 71–109



Multigraded Factorial Rings and Fano Varieties 73

The further paper is devoted to normal (possibly singular) d-dimensional Fano
varietiesX with an effective action of an algebraic torus T . In the case dim T =
d, we have the meanwhile extensively studied class of toric Fano varieties,
see [3], [27] and [4] for the initiating work. Our aim is to show that the above
Theorem provides an approach to classification results for the case dim T =
d− 1, that means Fano varieties with a complexity one torus action. Here, we
treat the case of divisor class group Cl(X) ∼= Z; note that in the toric setting
this gives precisely the weighted projective spaces. The idea is to consider the
Cox ring

R(X) =
⊕

D∈Cl(X)

Γ(X,OX(D)).

The ring R(X) is factorial, finitely generated as a K-algebra and the T -action
on X gives rise to an effective complexity one multigrading ofR(X) refining the
Cl(X)-grading, see [5] and [15]. Consequently, R(X) is one of the rings listed
in the first Theorem. Moreover, X can be easily reconstructed from R(X);
it is the homogeneous spectrum with respect to the Cl(X)-grading of R(X).
Thus, in order to construct Fano varieties, we firstly have to figure out the Cox
rings among the rings occuring in the first Theorem and then find those, which
belong to a Fano variety; this is done in Propositions 1.11 and 2.5.

In order to produce classification results via this approach, we need explicit
bounds on the number of deformation types of Fano varieties with prescribed
discrete invariants. Besides the dimension, in our setting, a suitable invariant
is the Picard index [Cl(X) : Pic(X)]. Denoting by ξ(µ) the number of primes
less or equal to µ, we obtain the following bound, see Corollary 2.2: for any pair
(d, µ) ∈ Z2

>0, the number δ(d, µ) of different deformation types of d-dimensional
Fano varieties with a complexity one torus action such that Cl(X) ∼= Z and
µ = [Cl(X) : Pic(X)] hold is bounded by

δ(d, µ) ≤ (6dµ)2ξ(3dµ)+d−2µξ(µ)
2+2ξ((d+2)µ)+2d+2.

In particular, we conclude that for fixed µ ∈ Z>0, the number δ(d) of different
deformation types of d-dimensional Fano varieties with a complexity one torus
action Cl(X) ∼= Z and Picard index µ is asymptotically bounded by dAd with
a constant A depending only on µ, see Corollary 2.4.

In fact, in Theorem 2.1 we even obtain explicit bounds for the discrete input
data of the rings R(A, n, L)[S1, . . . , Sm]. This allows us to construct all Fano
varieties X with prescribed dimension and Picard index that come with an
effective complexity one torus action and have divisor class group Z. Note
that, by the approach, we get the Cox rings of the resulting Fano varieties X
for free. In Section 3, we give some explicit classifications. We list all non-toric
surfaces X with Picard index at most six and the non-toric threefolds X with
Picard index up at most two. They all have a Cox ring defined by a single
relation; in fact, for surfaces the first Cox ring with more than one relation
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occurs for Picard index 29, and for the threefolds this happens with Picard
index 3, see Proposition 3.5 as well as Examples 3.4 and 3.7. Moreover, we
determine all locally factorial fourfolds X , i.e. those of Picard index one: 67 of
them occur sporadic and there are two one-dimensional families. Here comes
the result on the locally factorial threefolds; in the table, we denote by wi the
Cl(X)-degree of the variable Ti.

Theorem 3.2. The following table lists the Cox rings R(X) of the three-
dimensional locally factorial non-toric Fano varieties X with an effective two
torus action and Cl(X) = Z.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5] / 〈T1T 5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1) 8

2 K[T1, . . . , T5] / 〈T1T2T 4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

3 K[T1, . . . , T5] / 〈T1T 2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

4 K[T1, . . . , T5] / 〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1) 54

5 K[T1, . . . , T5] / 〈T1T 2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1) 24

6 K[T1, . . . , T5] / 〈T1T 3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1) 4

7 K[T1, . . . , T5] / 〈T1T 3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2) 16

8 K[T1, . . . , T5] / 〈T1T 5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

9 K[T1, . . . , T5] / 〈T1T 5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

Note that each of these varieties X is a hypersurface in the respective weighted
projective space P(w1, . . . , w5). Except number 4, none of them is quasismooth
in the sense that SpecR(X) is singular at most in the origin; quasismooth
hypersurfaces of weighted projective spaces were studied in [21] and [7]. In
Section 4, we take a closer look at the singularities of the threefolds listed
above. It turns out that number 1,3,5,7 and 9 are singular with only canonical
singularities and all of them admit a crepant resolution. Number 6 and 8 are
singular with non-canonical singularities but admit a smooth relative minimal
model. Number two is singular with only canonical singularities, one of them
of type cA1, and it admits only a singular relative minimal model. Moreover,
in all cases, we determine the Cox rings of the resolutions.

The authors would like to thank Ivan Arzhantsev for helpful comments and
discussions and also the referee for valuable remarks and many references.
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1 UFDs with complexity one multigrading

As mentioned before, we work over an algebraically closed field K of char-
acteristic zero. In Theorem 1.9, we describe all factorial finitely generated K-
algebras R with an effective complexity one grading and R0 = K. Moreover, we
characterize the possible Cox rings among these algebras, see Proposition 1.11.
First we recall the construction sketched in the introduction.

Construction 1.1. Consider a sequence A = (a0, . . . , ar) of vectors ai =
(bi, ci) in K2 such that any pair (ai, ak) with k 6= i is linearly independent, a
sequence n = (n0, . . . , nr) of positive integers and a family L = (lij) of positive
integers, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni. For every 0 ≤ i ≤ r, define a
monomial

fi := T li1i1 · · ·T
lini
ini

∈ K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni],

for any two indices 0 ≤ i, j ≤ r, set αij := det(ai, aj) = bicj − bjci and for any
three indices 0 ≤ i < j < k ≤ r define a trinomial

gi,j,k := αjkfi + αkifj + αijfk ∈ K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Note that the coefficients of this trinomial are all nonzero. The triple (A, n, L)
then defines a ring

R(A, n, L) := K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

Proposition 1.2. For every triple (A, n, L) as in 1.1, the ring R(A, n, L) is a
normal complete intersection of dimension

dim R(A, n, L) = n− r + 1, n := n0 + . . .+ nr.

Lemma 1.3. In the setting of 1.1, one has for any 0 ≤ i < j < k < l ≤ r the
identities

gi,k,l = αkl · gi,j,k + αik · gj,k,l, gi,j,l = αjl · gi,j,k + αij · gj,k,l.

In particular, every trinomial gi,j,k, where 0 ≤ i < j < k ≤ r is contained in
the ideal 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉.

Proof. The identities are easily obtained by direct computation; note that for
this one may assume aj = (1, 0) and ak = (0, 1). The supplement then follows
by repeated application of the identities.

Lemma 1.4. In the notation of 1.1 and 1.2, set X := V (Kn, g0, . . . , gr−2), and
let z ∈ X. If we have fi(z) = fj(z) = 0 for two 0 ≤ i < j ≤ r, then fk(z) = 0
holds for all 0 ≤ k ≤ r.

Proof. If i < k < j holds, then, according to Lemma 1.3, we have gi,k,j(z) = 0,
which implies fk(z) = 0. The cases k < i and j < k are obtained similarly.

Documenta Mathematica 16 (2011) 71–109



76 J. Hausen, E. Herppich, H. Süß

Proof of Proposition 1.2. Set X := V (Kn; g0, . . . , gr−2), where gi := gi,i+1,i+2.
Then we have to show that X is a connected complete intersection with at most
normal singularities. In order to see that X is connected, set ℓ :=

∏
ni
∏
lij

and ζij := ℓn−1i l−1ij . Then X ⊆ Kn is invariant under the K∗-action given by

t · z := (tζij zij)

and the point 0 ∈ Kn lies in the closure of any orbit K∗ ·x ⊆ X , which implies
connectedness. To proceed, consider the Jacobian Jg of g := (g0, . . . , gr−2).
According to Serre’s criterion, we have to show that the set of points of z ∈ X
with Jg(z) not of full rank is of codimension at least two in X . Note that the
Jacobian Jg is of the shape

Jg =




δ0 0 δ0 1 δ0 2 0 0
0 δ1 1 δ1 2 δ1 3 0

...

0 δr−3 r−3 δr−3 r−2 δr−3 r−1 0
0 0 δr−2 r−2 δr−2 r−1 δr−2 r




where δti is a nonzero multiple of the gradient δi := grad fi. Consider z ∈ X
with Jg(z) not of full rank. Then δi(z) = 0 = δk(z) holds with some 0 ≤ i <
k ≤ r. This implies zij = 0 = zkl for some 1 ≤ j ≤ ni and 1 ≤ l ≤ nk. Thus,
we have fi(z) = 0 = fk(z). Lemma 1.4 gives fs(z) = 0, for all 0 ≤ s ≤ r.
Thus, some coordinate zst must vanish for every 0 ≤ s ≤ r. This shows that z
belongs to a closed subset of X having codimension at least two in X .

Lemma 1.5. Notation as in 1.1. Then the variable Tij defines a prime ideal
in R(A, n, L) if and only if the numbers gcd(lk1, . . . , lknk), where k 6= i, are
pairwise coprime.

Proof. We treat exemplarily T01. Using Lemma 1.3, we see that the ideal of
relations of R(A, n, L) can be presented as follows

〈gs,s+1,s+2; 0 ≤ s ≤ r − 2〉 = 〈g0,s,s+1; 1 ≤ s ≤ r − 1〉.

Thus, the ideal 〈T01〉 ⊆ R(A, n, L) is prime if and only if the following binomial
ideal is prime

a := 〈αs+1 0fs + α0sfs+1; 1 ≤ s ≤ r − 1〉 ⊆ K[Tij ; (i, j) 6= (0, 1)].

Set li := (li1, . . . , lini). Then the ideal a is prime if and only if the following
family can be complemented to a lattice basis

(l1,−l2, 0, . . . , 0), . . . , (0, . . . , 0, lr−1,−lr).

This in turn is equivalent to the statement that the numbers gcd(lk1, . . . , lknk),
where 1 ≤ k ≤ r, are pairwise coprime.
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Definition 1.6. We say that a triple (A, n, L) as in 1.1 is admissible if the
numbers gcd(li1, . . . , lini), where 0 ≤ i ≤ r, are pairwise coprime.

Construction 1.7. Let (A, n, L) be an admissible triple and consider the
following free abelian groups

E :=

r⊕

i=0

ni⊕

j=1

Z·eij, K :=

n0⊕

j=1

Z·u0j ⊕
r⊕

i=1

ni−1⊕

j=1

Z·uij

and define vectors uini := u01 + . . .+ u0r − ui1 − . . .− uini−1 ∈ K. Then there
is an epimorphism λ : E → K fitting into a commutative diagram with exact
rows

0 // E α

eij 7→lijeij //

ηeij 7→uij
��

E
eij 7→eij //

λ

��

⊕
i,j Z/lijZ //

OO
∼=

��

0

0 // K
β

// K //
⊕

i,j Z/lijZ // 0

Define a K-grading of K[Tij; 0 ≤ i ≤ r, 1 ≤ j ≤ ni] by setting deg Tij :=

λ(eij). Then every fi = T li1i1 · · ·T
lini
ini

is K-homogeneous of degree

deg fi = li1λ(ei1) + . . .+ liniλ(eini) = l01λ(e01) + . . .+ l0n0λ(e0n0) ∈ K.

Thus, the polynomials gi,j,k of 1.1 are all K-homogeneous of the same degree
and we obtain an effective K-grading of complexity one of R(A, n, L).

Proof. Only for the existence of the commutative diagram there is something
to show. Write for short li := (li1, . . . , lini). By the admissibility condition, the
vectors vi := (0, . . . , 0, li,−li+1, 0, . . . , 0), where 0 ≤ i ≤ r−1, can be completed
to a lattice basis for E. Consequently, we find an epimorphism λ : E → K
having precisely lin(v0, . . . , vr−1) as its kernel. By construction, ker(λ) equals
α(ker(η)). Using this, we obtain the induced morphism β : K → K and the
desired properties.

Lemma 1.8. Notation as in 1.7. Then R(A, n, L)0 = K and R(A, n, L)∗ =
K∗ hold. Moreover, the Tij define pairwise nonassociated prime elements in
R(A, n, L).

Proof. The fact that all elements of degree zero are constant is due to the
fact that all degrees deg Tij = uij ∈ K are non-zero and generate a pointed
convex cone in KQ. As a consequence, we obtain that all units in R(A, n, L) are
constant. The Tij are prime by the admissibility condition and Lemma 1.5, and
they are pairwise nonassociated because they have pairwise different degrees
and all units are constant.
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Theorem 1.9. Up to isomorphy, the finitely generated factorial K-algebras
with an effective complexity one grading R = ⊕MRu and R0 = K are

(i) the polynomial algebras K[T1, . . . , Td] with a grading deg(Ti) = ui ∈ Zd−1

such that u1, . . . , ud generate Zd−1 as a lattice and the convex cone on
Qd−1 generated by u1, . . . , ud is pointed,

(ii) the (K ×Zm)-graded algebras R(A, n, L)[S1, . . . , Sm], where R(A, n, L) is
the K-graded algebra defined by an admissible triple (A, n, L) as in 1.1
and 1.7 and deg Sj ∈ Zm is the j-th canonical base vector.

Proof. We first show that for any admissible triple (A, n, L) the ring R(A, n, L)
is a unique factorization domain. If lij = 1 holds for any two i, j, then, by [15,
Prop. 2.4], the ring R(A, n, L) is the Cox ring of a space P1(A, n) and hence is
a unique factorization domain.

Now, let (A, n, L) be arbitrary admissible data and let λ : E → K be an epi-
morphism as in 1.7. Set n := n0 + . . . + nr and consider the diagonalizable
groups

Tn := SpecK[E], H := SpecK[K], H0 := SpecK[⊕i,jZ/lijZ].

Then Tn = (K∗)n is the standard n-torus and H0 is the direct product of the
cyclic subgroups Hij := SpecK[Z/lijZ]. Moreover, the diagram in 1.7 gives
rise to a commutative diagram with exact rows

0 Tnoo Tn
(t
lij
ij )←[(tij)

oo H0
oo 0oo

0 Hoo

ı

OO

Hoo



OO

H0
oo

��
∼=

OO

0oo

where tij = χeij are the coordinates of Tn corresponding to the characters
eij ∈ E and the maps ı,  are the closed embeddings corresponding to the
epimorphisms η, λ respectively.

Setting deg Tij := eij defines an action of Tn on Kn = SpecK[Tij ]; in terms of
the coordinates zij corresponding to Tij this action is given by t·z = (tijzij).
The torus H acts effectively on Kn via the embedding  : H → Tn. The generic
isotropy group of H along V (Kn, Tij) is the subgroup Hij ⊆ H corresponding
to K → K/λ(Eij), where Eij ⊆ E denotes the sublattice generated by all ekl
with (k, l) 6= (i, j); recall that we have K/λ(Eij) ∼= Z/lijZ.

Now, set l′ij := 1 for any two i, j and consider the spectra X := SpecR(A, n, L)
andX ′ := SpecR(A, n, L′). Then the canonical surjectionsK[Tij ]→ R(A, n, L)
and K[Tij ] → R(A, n, L′) define embeddings X → Kn and X ′ → Kn. These
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embeddings fit into the following commutative diagram

Kn oo
π

(z
lij
ij )←[(zij)

Kn

X ′ oo

OO

X

OO

The action of H leaves X invariant and the induced H-action on X is the one
given by the K-grading of R(A, n, L). Moreover, π : Kn → Kn is the quotient
map for the induced action of H0 ⊆ H on Kn, we have X = π−1(X ′), and
hence the restriction π : X → X ′ is a quotient map for the induced action of
H0 on X .

Removing all subsets V (X ;Tij, Tkl), where (i, j) 6= (k, l) from X , we obtain an
open subset U ⊆ X . By Lemma 1.8, the complement X\U is of codimension at
least two and each V (U, Tij) is irreducible. By construction, the only isotropy
groups of the H-action on U are the groups Hij of the points of V (U, Tij). The
image U ′ := π(U) is open in X ′, the complement X ′ \U ′ is as well of codimen-
sion at least two and H/H0 acts freely on U ′. According to [22, Cor. 5.3], we
have two exact sequences fitting into the following diagram

1

��
Pic(U ′)

π∗

��
1 // X(H0)

α // PicH0(U)
β //

δ

��

Pic(U)

∏
i,jX(Hij)

Since X ′ is factorial, the Picard group Pic(U ′) is trivial and we obtain that δ
is injective. Since H0 is the direct product of the isotropy groups Hij of the
Luna strata V (U, Tij), we see that δ ◦ α is an isomorphism. It follows that
δ is surjective and hence an isomorphism. This in turn shows that α is an
isomorphism. Now, every bundle on U is H-linearizable. Since H0 acts as a
subgroup of H , we obtain that every bundle is H0-linearizable. It follows that
β is surjective and hence Pic(U) is trivial. We conclude Cl(X) = Pic(U) = 0,
which means that R(A, n, L) admits unique factorization.

The second thing we have to show is that any finitely generated factorial K-
algebra R with an effective complexity one multigrading satisfying R0 = K is
as claimed. Consider the action of the torus G on X = SpecR defined by the
multigrading, and let X0 ⊆ X be the set of points having finite isotropy Gx.
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Then [15, Prop 3.3] provides a graded splitting

R ∼= R′[S1, . . . , Sm],

where the variables Sj are identified with the homogeneous functions defining
the prime divisors Ej inside the boundary X \X0 and R

′ is the ring of functions
of X0, which are invariant under the subtorus G0 ⊆ G generated by the generic
isotropy groups Gj of Ej .

Since R′0 = R0 = K holds, the orbit space X0/G has only constant functions
and thus is a space P1(A, n) as constructed in [15, Section 2]. This allows
us to proceed exactly as in the proof of Theorem [15, Thm 1.3] and gives
R′ = R(A, n, L). The admissibility condition follows from Lemma 1.5 and the
fact that each Tij defines a prime element in R′.

Remark 1.10. Let (A, n, L) be an admissible triple with n = (1, . . . , 1). Then
K = Z holds, the admissibility condition just means that the numbers lij are
pairwise coprime and we have

dim R(A, n, L) = n0 + . . .+ nr − r + 1 = 2.

Consequently, for two-dimensional rings, Theorem 1.9 specializes to Mori’s de-
scription of almost geometrically graded two-dimensional unique factorization
domains provided in [23].

Proposition 1.11. Let (A, n, L) be an admissible triple, consider the associ-
ated (K × Zm)-graded ring R(A, n, L)[S1, . . . , Sm] as in Theorem 1.9 and let
µ : K×Zm → K ′ be a surjection onto an abelian group K ′. Then the following
statements are equivalent.

(i) The K ′-graded ring R(A, n, L)[S1, . . . , Sm] is the Cox ring of a projective
variety X ′ with Cl(X ′) ∼= K ′.

(ii) For every pair i, j with 0 ≤ i ≤ r and 1 ≤ j ≤ ni, the group K ′ is
generated by the elements µ(λ(ekl)) and µ(es), where (i, j) 6= (k, l) and
1 ≤ s ≤ m, for every 1 ≤ t ≤ m, the group K ′ is generated by the
elements µ(λ(eij)) and µ(es), where 0 ≤ i ≤ r, 1 ≤ j ≤ ni and s 6= t,
and, finally the following cone is of full dimension in K ′Q:
⋂

(k,l)

cone(µ(λ(eij)), µ(es); (i, j) 6= (k, l)) ∩
⋂

t

cone(µ(λ(eij)), µ(es); s 6= t).

Proof. Suppose that (i) holds, let p : X̂ ′ → X ′ denote the universal torsor and
let X ′′ ⊆ X ′ be the set of smooth points. According to [14, Prop. 2.2], the
group H ′ = SpecK[K ′] acts freely on p−1(X ′′), which is a big open subset of
the total coordinate space SpecR(A, n, L)[S1, . . . , Sm]. This implies the first
condition of (ii). Moreover, by [14, Prop. 4.1], the displayed cone is the moving
cone of X ′ and hence of full dimension. Conversely, if (ii) holds, then the K ′-
graded ring R(A, n, L)[S1, . . . , Sm] can be made into a bunched ring and hence
is the Cox ring of a projective variety, use [14, Thm. 3.6].
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2 Bounds for Fano varieties

We consider d-dimensional Fano varieties X that come with a complexity one
torus action and have divisor class group Cl(X) ∼= Z. Then the Cox ring R(X)
ofX is factorial [5, Prop. 8.4] and has an effective complexity one grading, which
refines the Cl(X)-grading, see [15, Prop. 2.6]. Thus, according to Theorem 1.9,
it is of the form

R(X) ∼= K[Tij ; 0 ≤ i ≤ r, 1 ≤ j ≤ ni][S1, . . . , Sm] / 〈gi,i+1,i+2; 0 ≤ i ≤ r − 2〉,
gi,j,k := αjkT

li1
i1 · · ·T

lini
ini

+ αkiT
lj1
j1 · · ·T

ljnj
jnj

+ αijT
lk1
k1 · · ·T

lknk
knk

.

Here, we may (and will) assume n0 ≥ . . . ≥ nr ≥ 1. With n := n0 + . . .+ nr,
we have n + m = d + r. For the degrees of the variables in Cl(X) ∼= Z, we
write wij := deg Tij for 0 ≤ i ≤ r, 1 ≤ j ≤ ni and uk = deg Sk for 1 ≤ k ≤ m.
Moreover, for µ ∈ Z>0, we denote by ξ(µ) the number of primes in {2, . . . , µ}.
The following result provides bounds for the discrete data of the Cox ring.

Theorem 2.1. In the above situation, fix the dimension d = dim(X) and the
Picard index µ = [Cl(X) : Pic(X)]. Then we have

uk ≤ µ for 1 ≤ k ≤ m.

Moreover, for the degree γ of the relations, the weights wij and the exponents
lij, where 0 ≤ i ≤ r and 1 ≤ j ≤ ni one obtains the following.

(i) Suppose that r = 0, 1 holds. Then n+m ≤ d + 1 holds and one has the
bounds

wij ≤ µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,
and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ r, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

(ii) Suppose that r ≥ 2 and n0 = 1 hold. Then r ≤ ξ(µ) − 1 and n = r + 1
and m = d− 1 hold and one has

wi1 ≤ µr for 0 ≤ i ≤ r, l01 · · · lr1 | µ, l01 · · · lr1 | γ ≤ µr+1,

and the Picard index is given by

µ = lcm(gcd(wj1; j 6= i), uk; 0 ≤ i ≤ r, 1 ≤ k ≤ m).

(iii) Suppose that r ≥ 2 and n0 > n1 = 1 hold. Then we may assume l11 >
. . . > lr1 ≥ 2, we have r ≤ ξ(3dµ)− 1 and n0 +m = d and the bounds

w01, . . . , w0n0 ≤ µ, l01, . . . , l0n0 < 6dµ,

w11, l21 < 2dµ, w21, l11 < 3dµ,
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wi1 < 6dµ, li1 < 2dµ for 2 ≤ i ≤ r,
l11 · · · lr1 | γ < 6dµ,

and the Picard index is given by

µ = lcm(w0j , gcd(w11, . . . , wr1), uk; 1 ≤ j ≤ n0, 1 ≤ k ≤ m).

(iv) Suppose that n1 > n2 = 1 holds. Then we may assume l21 > . . . > lr1 ≥
2, we have r ≤ ξ(2(d+1)µ)− 1 and n0 + n1 +m = d+1 and the bounds

wij ≤ µ for i = 0, 1 and 1 ≤ j ≤ ni, w21 < (d+ 1)µ,

wij , lij < 2(d+ 1)µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,
l21 · · · lr1 | γ < 2(d+ 1)µ,

and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ 1, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

(v) Suppose that n2 > 1 holds and let s be the maximal number with ns > 1.
Then one may assume ls+1,1 > . . . > lr1 ≥ 2, we have r ≤ ξ((d+2)µ)− 1
and n0 + . . .+ ns +m = d+ s and the bounds

wij ≤ µ, for 0 ≤ i ≤ s,

wij , lij < (d+ 2)µ for 0 ≤ i ≤ r and 1 ≤ j ≤ ni,
ls+1,1 · · · lr1 | γ < (d+ 2)µ,

and the Picard index is given by

µ = lcm(wij , uk; 0 ≤ i ≤ s, 1 ≤ j ≤ ni, 1 ≤ k ≤ m).

Putting all the bounds of the theorem together, we obtain the following (raw)
bound for the number of deformation types.

Corollary 2.2. For any pair (d, µ) ∈ Z2
>0, the number δ(d, µ) of different

deformation types of d-dimensional Fano varieties with a complexity one torus
action such that Cl(X) ∼= Z and [Cl(X) : Pic(X)] = µ hold is bounded by

δ(d, µ) ≤ (6dµ)2ξ(3dµ)+d−2µξ(µ)
2+2ξ((d+2)µ)+2d+2.

Proof. By Theorem 2.1 the discrete data r, n, L and m occuring in R(X) are
bounded as in the assertion. The continuous data in R(X) are the coefficients
αij ; they stem from the family A = (a0, . . . , ar) of points ai ∈ K2. Varying the
ai provides flat families of Cox rings and hence, by passing to the homogeneous
spectra, flat families of the resulting Fano varieties X .
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Corollary 2.3. Fix d ∈ Z>0. Then the number δ(µ) of different deforma-
tion types of d-dimensional Fano varieties with a complexity one torus action,
Cl(X) ∼= Z and Picard index µ := [Cl(X) : Pic(X)] is asymptotically bounded

by µAµ
2/ log2 µ with a constant A depending only on d.

Corollary 2.4. Fix µ ∈ Z>0. Then the number δ(d) of different deforma-
tion types of d-dimensional Fano varieties with a complexity one torus action,
Cl(X) ∼= Z and Picard index µ := [Cl(X) : Pic(X)] is asymptotically bounded
by dAd with a constant A depending only on µ.

We first recall the necessary facts on Cox rings, for details, we refer to [14].
Let X be a complete d-dimensional variety with divisor class group Cl(X) ∼=
Z. Then the Cox ring R(X) is finitely generated and the total coordinate
space X := SpecR(X) is a factorial affine variety coming with an action of
K∗ defined by the Cl(X)-grading of R(X). Choose a system f1, . . . , fν of
homogeneous pairwise nonassociated prime generators forR(X). This provides
an K∗-equivariant embedding

X → Kν , x 7→ (f1(x), . . . , fν(x)).

where K∗ acts diagonally with the weights wi = deg(fi) ∈ Cl(X) ∼= Z on Kν .
Moreover, X is the geometric K∗-quotient of X̂ := X \ {0}, and the quotient

map p : X̂ → X is a universal torsor. By the local divisor class group Cl(X, x)
of a point x ∈ X , we mean the group of Weil divisors WDiv(X) modulo those
that are principal near x.

Proposition 2.5. For any x = (x1, . . . , xν) ∈ X̂ the local divisor class group
Cl(X, x) of x := p(x) is finite of order gcd(wi; xi 6= 0). The index of the Picard
group Pic(X) in Cl(X) is given by

[Cl(X) : Pic(X)] = lcmx∈X(|Cl(X, x)|).

Suppose that the ideal of X ⊆ Kν is generated by Cl(X)-homogeneous polyno-
mials g1, . . . , gν−d−1 of degree γj := deg(gj). Then one obtains

−KX =

ν∑

i=1

wi−
ν−d−1∑

j=1

γj , (−KX)d =




ν∑

i=1

wi −
ν−d−1∑

j=1

γj



d

γ1 · · · γν−d−1
w1 · · ·wν

for the anticanonical class −KX ∈ Cl(X) ∼= Z. In particular, X is a Fano
variety if and only if the following inequality holds

ν−d−1∑

j=1

γj <

ν∑

i=1

wi.

Proof. Using [14, Prop. 2.2, Thm. 4.19], we observe that X arises from the
bunched ring (R,F,Φ), where R = R(X), F = (f1, . . . , fν) and Φ = {Q≥0}.
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The descriptions of local class groups, the Picard index and the anticanonical
class are then special cases of [14, Prop. 4.7, Cor. 4.9 and Cor. 4.16]. The anti-
canonical self-intersection number is easily computed in the ambient weighted
projective space P(w1, . . . , wν), use [14, Constr. 3.13, Cor. 4.13].

Remark 2.6. If the ideal of X ⊆ Kν is generated by Cl(X)-homogeneous poly-
nomials g1, . . . , gν−d−1, then [14, Constr. 3.13, Cor. 4.13] show that X is a well
formed complete intersection in the weighted projective space P(w1, . . . , wν) in
the sense of [16, Def. 6.9].

We turn back to the case that X comes with a complexity one torus action
as at the beginning of this section. We consider the case n0 = . . . = nr = 1,
that means that each relation gi,j,k of the Cox ring R(X) depends only on
three variables. Then we may write Ti instead of Ti1 and wi instead of wi1,
etc.. In this setting, we obtain the following bounds for the numbers of possible
varieties X (Fano or not).

Proposition 2.7. For any pair (d, µ) ∈ Z2
>0 there is, up to deformation, only

a finite number of complete d-dimensional varieties with divisor class group Z,
Picard index [Cl(X) : Pic(X)] = µ and Cox ring

K[T0, . . . , Tr, S1, . . . , Sm] / 〈αi+1,i+2T
li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ; 0 ≤ i ≤ r − 2〉.

In this situation we have r ≤ ξ(µ)−1. Moreover, for the weights wi := deg Ti,
where 0 ≤ i ≤ r and uk := deg Sk, where 1 ≤ k ≤ m, the exponents li and the
degree γ := l0w0 of the relation one has

l0 · · · lr | γ, l0 · · · lr | µ, wi ≤ µξ(µ)−1, uk ≤ µ.

Proof. Consider the total coordinate space X ⊆ Kr+1+n and the universal
torsor p : X̂ → X as discussed before. For each 0 ≤ i ≤ r fix a point x(i) =

(x0, . . . , xr, 0, . . . , 0) in X̂ such that xi = 0 and xj 6= 0 for j 6= i hold. Then,
denoting x(i) := p(x(i)), we obtain

gcd(wj ; j 6= i) = |Cl(X, x(i))| | µ.

Consider i, j with j 6= i. Since all relations are homogeneous of the same degree,
we have liwi = ljwj . Moreover, by the admissibility condition, li and lj are
coprime. We conclude li|wj for all j 6= i and hence li| gcd(wj ; j 6= i). This
implies

l0 · · · lr | l0w0 = γ, l0 · · · lr | µ.
We turn to the bounds for the wi, and first verify w0 ≤ µr. Using the relation
liwi = l0w0, we obtain for every li a presentation

li = l0 ·
w0 · · ·wi−1
w1 · · ·wi

= ηi ·
gcd(w0, . . . , wi−1)
gcd(w0, . . . , wi)
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with suitable integers 1 ≤ ηi ≤ µ. In particular, the very last fraction is
bounded by µ. This gives the desired estimate:

w0 =
w0

gcd(w0, w1)
·

gcd(w0, w1)

gcd(w0, w1, w2)
· · ·

gcd(w0, . . . , wr−2)

gcd(w0, . . . , wr−1)
· gcd(w0, . . . , wr−1) ≤ µr.

Similarly, we obtain wi ≤ µr for 1 ≤ i ≤ r. Then we only have to show
that r + 1 is bounded by ξ(µ), but this follows immediately from the fact that
l0, . . . , lr are pairwise coprime.

Finally, to estimate the uk, consider the points x(k) ∈ X̂ having the (r+ k)-th
coordinate one and all others zero. Set x(k) := p(x(k)). Then Cl(X, x(k)) is
of order uk, which implies uk ≤ µ.

Lemma 2.8. Consider the ring K[Tij; 0 ≤ i ≤ 2, 1 ≤ j ≤ ni][S1, . . . , Sk]/〈g〉
where n0 ≥ n1 ≥ n2 ≥ 1 holds. Suppose that g is homogeneous with respect to a
Z-grading of K[Tij , Sk] given by deg Tij = wij ∈ Z>0 and deg Sk = uk ∈ Z>0,
and assume

deg g <
2∑

i=0

ni∑

j=1

wij +
m∑

i=1

ui.

Let µ ∈ Z>1, assume wij ≤ µ whenever ni > 1, 1 ≤ j ≤ ni and uk ≤ µ for
1 ≤ k ≤ m and set d := n0 + n1 + n2 +m − 2. Depending on the shape of g,
one obtains the following bounds.

(i) Suppose that g = η0T
l01
01 · · ·T

l0n0
0n0

+ η1T
l11
11 + η2T

l21
21 with n0 > 1 and

coefficients ηi ∈ K∗ holds, we have l11 ≥ l21 ≥ 2 and l11, l21 are coprime.
Then, one has

w11, l21 < 2dµ, w21, l11 < 3dµ, deg g < 6dµ.

(ii) Suppose that g = η0T
l01
01 · · ·T

l0n0

0n0
+ η1T

l11
11 · · ·T

l1n1

1n1
+ η2T

l21
21 with n1 > 1

and coefficients ηi ∈ K∗ holds and we have l21 ≥ 2. Then one has

w21 < (d+ 1)µ, deg g < 2(d+ 1)µ.

Proof. We prove (i). Set for short c := (n0 +m)µ = dµ. Then, using homo-
geneity of g and the assumed inequality, we obtain

l11w11 = l21w21 = deg g <

2∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui ≤ c+ w11 + w21.

Since l11 and l21 are coprime, we have l11 > l21 ≥ 2. Plugging this into the
above inequalities, we arrive at 2w11 < c+w21 and w21 < c+w11. We conclude
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w11 < 2c and w21 < 3c. Moreover, l11w11 = l21w21 and gcd(l11, l21) = 1 imply
l11|w21 and l21|w11. This shows l11 < 3c and l21 < 2c. Finally, we obtain

deg g < c+ w11 + w21 < 6c.

We prove (ii). Here we set c := (n0 + n1 +m)µ = (d+ 1)µ. Then the assumed
inequality gives

l21w21 = deg g <

1∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui + w21 ≤ c+ w21.

Since we assumed l21 ≥ 2, we can conclude w21 < c. This in turn gives us
deg g < 2c for the degree of the relation.

Proof of Theorem 2.1. As before, we denote byX ⊆ Kn+m the total coordinate
space and by p : X̂ → X the universal torsor.

We first consider the case that X is a toric variety. Then the Cox ring is a
polynomial ring, R(X) = K[S1, . . . , Sm]. For each 1 ≤ k ≤ m, consider the

point x(k) ∈ X̂ having the k-th coordinate one and all others zero and set
x(k) := p(x(k)). Then, by Proposition 2.5, the local class group Cl(X, x(k)) is
of order uk where uk := deg Sk. This implies uk ≤ µ for 1 ≤ k ≤ m and settles
Assertion (i).

Now we treat the non-toric case, which means r ≥ 2. Note that we have n ≥ 3.
The case n0 = 1 is done in Proposition 2.7. So, we are left with n0 > 1. For
every i with ni > 1 and every 1 ≤ j ≤ ni, there is the point x(i, j) ∈ X̂ with
ij-coordinate Tij equal to one and all others equal to zero, and thus we have
the point x(i, j) := p(x(i, j)) ∈ X . Moreover, for every 1 ≤ k ≤ m, we have the

point x(k) ∈ X̂ having the k-coordinate Sk equal to one and all others zero;
we set x(k) := p(x(k)). Proposition 2.5 provides the bounds

wij = deg Tij = |Cl(X, x(i, j))| ≤ µ for ni > 1, 1 ≤ j ≤ ni,

uk = deg Sk = |Cl(X, x(k))| ≤ µ for 1 ≤ k ≤ m.

Let 0 ≤ s ≤ r be the maximal number with ns > 1. Then gs−2,s−1,s is the last
polynomial such that each of its three monomials depends on more than one
variable. For any t ≥ s, we have the “cut ring”

Rt := K[Tij ; 0 ≤ i ≤ t, 1 ≤ j ≤ ni][S1, . . . , Sm] / 〈gi,i+1,i+2; 0 ≤ i ≤ t− 2〉

where the relations gi,i+1,i+2 depend on only three variables as soon as i > s
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holds. For the degree γ of the relations we have

(r − 1)γ = (t− 1)γ + (r − t)γ
= (t− 1)γ + lt+1,1wt+1,1 + . . .+ lr1wr1

<

r∑

i=0

ni∑

j=1

wij +

m∑

i=1

ui

=

t∑

i=0

ni∑

j=1

wij + wt+1,1 + . . .+ wr1 +

m∑

i=1

ui.

Since li1wi1 > wi1 holds in particular for t+1 ≤ i ≤ r, we derive from this the
inequality

γ <
1

t− 1




t∑

i=0

ni∑

j=1

wij +
m∑

i=1

ui


 .

To obtain the bounds in Assertions (iii) and (iv), we consider the cut ring Rt
with t = 2 and apply Lemma 2.8; note that we have d = n0 + n1 + n2 +m− 2
for the dimension d = dim(X) and that l22 ≥ 0 is due to the fact that X is non-
toric. The bounds wij , l0j < 6dµ in Assertion (iii) follow from lijwij = γ < 6dµ
and li1 < 2dµ follows from li1 | w21 for 3 ≤ i ≤ r. Moreover, li1 | w11 for
2 ≤ i ≤ r implies l11 · · · lr1 | γ = l11w11. Similarly wij , lij < 2(d + 1)µ in
Assertion (iv) follow from lijwij = γ < 2(d + 1)dµ and l21 · · · lr1 | γ = l21w21

follows from li1 | w21 for 3 ≤ i ≤ r. The bounds on r in (iii) in (iv) are as well
consequences of the admissibility condition.

To obtain the bounds in Assertion (v), we consider the cut ring Rt with t = s.
Using ni = 1 for i ≥ t+1, we can estimate the degree of the relation as follows:

γ ≤ (n0 + . . .+ nt +m)µ

t− 1
=

(d+ t)µ

t− 1
≤ (d+ 2)µ.

Since we have wij lij ≤ deg g0 for any 0 ≤ i ≤ r and any 1 ≤ j ≤ ni, we see
that all wij and lij are bounded by (d + 2)µ. As before, ls+1,1 · · · lr1 | γ is a
consequence of li1 | γ for i = s+ 2, . . . , r and also the bound on r follows from
the admissibility condition.

Finally, we have to express the Picard index µ in terms of the weights wij and
uk as claimed in the Assertions. This is a direct application of the formula
of Proposition 2.5. Observe that it suffices to work with the p-images of the
following points: For every 0 ≤ i ≤ r with ni > 1 take a point x(i, j) ∈ X̂ with
ij-coordinate Tij equal to one and all others equal to zero, for every 0 ≤ i ≤ r
with ni = 1 whenever ni = 1 take x(i, j) ∈ X̂ with ij-coordinate Tij equal to
zero, all other Tst equal to one and coordinates Sk equal to zero, and, for every
1 ≤ k ≤ m, take a point x(k) ∈ X̂ having the k-coordinate Sk equal to one
and all others zero.
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We conclude the section with discussing some aspects of the not necessarily
Fano varieties of Proposition 2.7. Recall that we considered admissible triples
(A, n, L) with n0 = . . . = nr = 1 and thus rings R of the form

K[T0, . . . , Tr, S1, . . . , Sm] / 〈αi+1,i+2T
li
i + αi+2,iT

li+1

i+1 + αi,i+1T
li+2

i+2 ; 0 ≤ i ≤ r − 2〉.

Proposition 2.9. Suppose that the ring R as above is the Cox ring of a non-
toric variety X with Cl(X) = Z. Then we have m ≥ 1 and µ := [Cl(X) :
Pic(X)] ≥ 30. Moreover, if X is a surface, then we have m = 1 and wi =
l−1i l0 · · · lr.

Proof. The homogeneity condition liwi = ljwj together with the admissibility
condition gcd(li, lj) = 1 for 0 ≤ i 6= j ≤ r gives us li | gcd(wj ; j 6= i). Moreover,
by Proposition 1.11, every set of m + r weights wi has to generate the class
group Z, so they must have greatest common divisor one. Since X is non-
toric, li ≥ 2 holds and we obtain m ≥ 1. To proceed, we infer l0 · · · lr | µ and
l0 · · · lr | deg gijk from Proposition 2.5. As a consequence, the minimal value
for µ and deg gijk is obviously 2 · 3 · 5 = 30. what really can be received as
the following example shows. Note that if X is a surface we have m = 1 and
gcd(wi; 0 ≤ i ≤ r) = 1. Thus, liwi = ljwj gives us deg gijk = l0 · · · lr and
wi = l−1i l0 · · · lr.

The bound [Cl(X) : Pic(X)] ≥ 30 given in the above proposition is even sharp;
the surface discussed below realizes it.

Example 2.10. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 5

2 and the grading

deg T0 = 15, deg T1 = 10, deg T2 = 6, deg T3 = 1.

Then we have gcd(15, 10) = 5, gcd(15, 6) = 3 and gcd(10, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 30. Further X is Fano because of

deg g = 30 < 32 = deg T0 + . . .+ deg T3.

Let us have a look at the geometric meaning of the condition n0 = . . . = nr = 1.
For a variety X with an action of a torus T , we denote by X0 ⊆ X the union of
all orbits with at most finite isotropy. Then there is a possibly non-separated
orbit space X0/T ; we call it the maximal orbit space. From [15], we infer that
n0 = . . . = nr = 1 holds if and only if X0/T is separated. Combining this with
Propositions 2.7 and 2.9 gives the following.

Corollary 2.11. For any pair (d, µ) ∈ Z2
>0 there is, up to deformation, only

a finite number of d-dimensional complete varieties X with a complexity one
torus action having divisor class group Z, Picard index [Cl(X) : Pic(X)] = µ
and maximal orbit space P1 and for each of these varieties the complement
X \X0 contains divisors.
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Finally, we present a couple of examples showing that there are also non-Fano
varieties with a complexity one torus action having divisor class group Z and
maximal orbit space P1.

Example 2.12. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 7

2 and the grading

deg T0 = 21, deg T1 = 14, deg T2 = 6, deg T3 = 1.

Then we have gcd(21, 14) = 7, gcd(21, 6) = 3 and gcd(14, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 42. Moreover, X is not Fano, because its canonical class
KX is trivial

KX = deg g − deg T0 − . . .− deg T3 = 0.

Example 2.13. Consider X with R(X) = K[T0, T1, T2, T3]/〈g〉 with g = T 2
0 +

T 3
1 + T 11

2 and the grading

deg T0 = 33, deg T1 = 22, deg T2 = 6, deg T3 = 1.

Then we have gcd(22, 33) = 11, gcd(33, 6) = 3 and gcd(22, 6) = 2 and therefore
[Cl(X) : Pic(X)] = 66. The canonical class KX of X is even ample:

KX = deg g − deg T0 − . . .− deg T3 = 4.

The following example shows that the Fano assumption is essential for the
finiteness results in Theorem 2.1.

Remark 2.14. For any pair p, q of coprime positive integers, we obtain a locally
factorial K∗-surface X(p, q) with Cl(X) = Z and Cox ring

R(X(p, q)) = K[T01, T02, T11, T21] / 〈g〉, g = T01T
pq−1
02 + T q11 + T p21;

the Cl(X)-grading is given by deg T01 = deg T02 = 1, deg T11 = p and
deg T21 = q. Note that deg g = pq holds and for p, q ≥ 3, the canonical
class KX satisfies

KX = deg g− deg T01− deg T02− deg T11− deg T21 = pq− 2− p− q ≥ 0.

3 Classification results

In this section, we give classification results for Fano varieties X with Cl(X) ∼=
Z that come with a complexity one torus action; note that they are neces-
sarily rational. The procedure to obtain classification lists for prescribed di-
mension d = dim X and Picard index µ = [Cl(X) : Pic(X)] is always the
following. By Theorem 1.9, we know that their Cox rings are of the form
R(X) ∼= R(A, n, L)[S1, . . . , Sm] with admissible triples (A, n, L). Note that for
the family A = (a0, . . . , ar) of points ai ∈ K2, we may assume

a0 = (1, 0), a1 = (1, 1), a2 = (0, 1).
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The bounds on the input data of (A, n, L) provided by Theorem 2.1 as well as
the criteria of Propositions 1.11 and 2.5 allow us to generate all the possible Cox
ringsR(X) of the Fano varietiesX in question for fixed dimension d and Picard
index µ. Note that X can be reconstructed fromR(X) = R(A, n, L)[S1, . . . , Sn]
as the homogeneous spectrum with respect to the Cl(X)-grading. Thus X is
classified by its Cox ring R(X).

In the following tables, we present the Cox rings as K[T1, . . . , Ts] modulo re-
lations and fix the Z-gradings by giving the weight vector (w1, . . . , ws), where
wi := deg Ti. The first classification result concerns surfaces.

Theorem 3.1. Let X be a non-toric Fano surface with an effective K∗-action
such that Cl(X) = Z and [Cl(X) : Pic(X)] ≤ 6 hold. Then its Cox ring is
precisely one of the following.

[Cl(X) : Pic(X)] = 1

No. R(X) (w1, . . . , w4) (−KX)2

1 K[T1, . . . , T4]/〈T1T 5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3) 1

[Cl(X) : Pic(X)] = 2

No. R(X) (w1, . . . , w4) (−KX)2

2 K[T1, . . . , T4]/〈T 4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3) 2

[Cl(X) : Pic(X)] = 3

No. R(X) (w1, . . . , w4) (−KX)2

3 K[T1, . . . , T4]/〈T 3
1 T2 + T 3

3 + T 2
4 〉 (1, 3, 2, 3) 3

4 K[T1, . . . , T4]/〈T1T 3
2 + T 5

3 + T 2
4 〉 (1, 3, 2, 5) 1/3

5 K[T1, . . . , T4]/〈T 7
1 T2 + T 5

3 + T 2
4 〉 (1, 3, 2, 5) 1/3

[Cl(X) : Pic(X)] = 4

No. R(X) (w1, . . . , w4) (−KX)2

6 K[T1, . . . , T4]/〈T 2
1 T2 + T 3

3 + T 2
4 〉 (1, 4, 2, 3) 4

7 K[T1, . . . , T4]/〈T 6
1 T2 + T 5

3 + T 2
4 〉 (1, 4, 2, 5) 1

[Cl(X) : Pic(X)] = 5

No. R(X) (w1, . . . , w4) (−KX)2

Documenta Mathematica 16 (2011) 71–109



Multigraded Factorial Rings and Fano Varieties 91

8 K[T1, . . . , T4]/〈T1T2 + T 3
3 + T 2

4 〉 (1, 5, 2, 3) 5

9 K[T1, . . . , T4]/〈T 5
1 T2 + T 5

3 + T 2
4 〉 (1, 5, 2, 5) 9/5

10 K[T1, . . . , T4]/〈T 9
1 T2 + T 7

3 + T 2
4 〉 (1, 5, 2, 7) 1/5

11 K[T1, . . . , T4]/〈T 7
1 T2 + T 4

3 + T 3
4 〉 (1, 5, 3, 4) 1/5

[Cl(X) : Pic(X)] = 6

No. R(X) (w1, . . . , w4) (−KX)2

12 K[T1, . . . , T4]/〈T 4
1 T2 + T 5

3 + T 2
4 〉 (1, 6, 2, 5) 8/3

13 K[T1, . . . , T4]/〈T 8
1 T2 + T 7

3 + T 2
4 〉 (1, 6, 2, 7) 2/3

14 K[T1, . . . , T4]/〈T 6
1 T2 + T 4

3 + T 3
4 〉 (1, 6, 3, 4) 2/3

15 K[T1, . . . , T4]/〈T 9
1 T2 + T 3

3 + T 2
4 〉 (1, 3, 4, 6) 2/3

Proof. As mentioned, Theorems 1.9, 2.1 and Propositions 1.11, 2.5 produce a
list of all Cox rings of surfaces with the prescribed data. Doing this computa-
tion, we obtain the list of the assertion. Note that none of the Cox rings listed is
a polynomial ring and hence none of the resulting surfaces X is a toric variety.
To show that different members of the list are not isomorphic to each other,
we use the following two facts. Firstly, observe that any two minimal systems
of homogeneous generators of the Cox ring have (up to reordering) the same
list of degrees, and thus the list of generator degrees is invariant under isomor-
phism (up to reordering). Secondly, by Construction 1.7, the exponents lij > 1
are precisely the orders of the non-trivial isotropy groups of one-codimensional
orbits of the action of the torus T on X . Using both principles and going
through the list, we see that different members X cannot be T -equivariantly
isomorphic to each other. Since all listed X are non-toric, the effective com-
plexity one torus action on each X corresponds to a maximal torus in the linear
algebraic group Aut(X). Any two maximal tori in the automorphism group
are conjugate, and thus we can conclude that two members are isomorphic if
and only if they are T -equivariantly isomorphic.

We remark that in [28, Section 4], log del Pezzo surfaces with an effective K∗-
action and Picard number 1 and Gorenstein index less than 4 were classified.
The above list contains six such surfaces, namely no. 1-4, 6 and 8; these
are exactly the ones where the maximal exponents of the monomials form a
platonic triple, i.e., are of the form (1, k, l), (2, 2, k), (2, 3, 3), (2, 3, 4) or (2, 3, 5).
The remaining ones, i.e., no. 5, 7, and 9-15 have non-log-terminal and thus
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non-rational singularities; to check this one may compute the resolutions via
resolution of the ambient weighted projective space as in [14, Ex. 7.5].

With the same scheme of proof as in the surface case, one establishes the
following classification results on Fano threefolds.

Theorem 3.2. Let X be a three-dimensional locally factorial non-toric Fano
variety with an effective two torus action such that Cl(X) = Z holds. Then its
Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5] / 〈T1T 5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1) 8

2 K[T1, . . . , T5] / 〈T1T2T 4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

3 K[T1, . . . , T5] / 〈T1T 2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

4 K[T1, . . . , T5] / 〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1) 54

5 K[T1, . . . , T5] / 〈T1T 2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1) 24

6 K[T1, . . . , T5] / 〈T1T 3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1) 4

7 K[T1, . . . , T5] / 〈T1T 3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2) 16

8 K[T1, . . . , T5] / 〈T1T 5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

9 K[T1, . . . , T5] / 〈T1T 5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3) 2

The singular threefolds listed in this theorem are rational degenerations of
smooth Fano threefolds from [18]. The (smooth) general Fano threefolds of the
corresponding families are non-rational see [12] for no. 1-3, [8] for no. 5, [20]
for no. 6, [30, 29] for no. 7 and [19] for no. 8-9. Even if one allows certain mild
singularities, one still has non-rationality in some cases, see [13], [9, 25], [10],
[6].

Theorem 3.3. Let X be a three-dimensional non-toric Fano variety with an
effective two torus action such that Cl(X) = Z and [Cl(X) : Pic(X)] = 2 hold.
Then its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w5) (−KX)3

1 K[T1, . . . , T5]/〈T 4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3, 1) 27/2

2 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 1) 1/2

3 K[T1, . . . , T5]/〈T 8
1 T2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 1) 1/2

4 K[T1, . . . , T5]/〈T 4
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 2, 3, 2) 16
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5 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 2) 2

6 K[T1, . . . , T5]/〈T 8
1 T2 + T 5

3 + T 2
4 〉 (1, 2, 2, 5, 2) 2

7 K[T1, . . . , T5]/〈T1T 5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 2) 27/2

8 K[T1, . . . , T5]/〈T1T 9
2 + T 5

3 + T 2
4 〉 (1, 1, 2, 5, 2) 1/2

9 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T 5

3 + T 2
4 〉 (1, 1, 2, 5, 2) 1/2

10 K[T1, . . . , T5]/〈T1T 11
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 1) 1/2

11 K[T1, . . . , T5]/〈T 5
1 T

7
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 1) 1/2

12 K[T1, . . . , T5]/〈T1T 11
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 2) 2

13 K[T1, . . . , T5]/〈T 5
1 T

7
2 + T 3

3 + T 2
4 〉 (1, 1, 4, 6, 2) 2

14 K[T1, . . . , T5]/〈T 2
1 T

5
2 + T 3

3 + T 2
4 〉 (1, 2, 4, 6, 1) 2

15 K[T1, . . . , T5]/〈T 10
1 T2 + T 3

3 + T 2
4 〉 (1, 2, 4, 6, 1) 2

16 K[T1, . . . , T5]/〈T1T 2
2 + T 3

3 + T 2
4 〉 (2, 2, 2, 3, 1) 16

17 K[T1, . . . , T5]/〈T1T 4
2 + T 5

3 + T 2
4 〉 (2, 2, 2, 5, 1) 2

18 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 5

3 + T 2
4 〉 (2, 2, 2, 5, 1) 2

19 K[T1, . . . , T5]/〈T1T 2
2 + T3T4 + T 3

5 〉 (1, 1, 1, 2, 1) 81/2

20 K[T1, . . . , T5]/〈T1T 4
2 + T3T

2
4 + T 5

5 〉 (1, 1, 1, 2, 1) 5/2

21 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T3T

2
4 + T 5

5 〉 (1, 1, 1, 2, 1) 5/2

22 K[T1, . . . , T5]/〈T1T 3
2 + T 2

3 T4 + T 4
5 〉 (1, 1, 1, 2, 1) 16

23 K[T1, . . . , T5]/〈T1T 4
2 + T 3

3 T4 + T 5
5 〉 (1, 1, 1, 2, 1) 5/2

24 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 3

3 T4 + T 5
5 〉 (1, 1, 1, 2, 1) 5/2

25 K[T1, . . . , T5]/〈T1T 3
2 + T 2

3 T4 + T 2
5 〉 (1, 1, 1, 2, 2) 27

26 K[T1, . . . , T5]/〈T1T 5
2 + T 2

3 T
2
4 + T 3

5 〉 (1, 1, 1, 2, 2) 3/2

27 K[T1, . . . , T5]/〈T1T 5
2 + T 4

3 T4 + T 3
5 〉 (1, 1, 1, 2, 2) 3/2

28 K[T1, . . . , T5]/〈T 2
1 T

4
2 + T 4

3 T4 + T 3
5 〉 (1, 1, 1, 2, 2) 3/2

29 K[T1, . . . , T5]/〈T1T 5
2 + T 4

3 T4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

30 K[T1, . . . , T5]/〈T 3
1 T

3
2 + T 4

3 T4 + T 2
5 〉 (1, 1, 1, 2, 3) 8

31 K[T1, . . . , T5]/〈T1T 7
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 1, 2, 4) 1

32 K[T1, . . . , T5]/〈T 3
1 T

5
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 1, 2, 4) 1

33 K[T1, . . . , T5]/〈T1T 7
2 + T 6

3 T4 + T 2
5 〉 (1, 1, 1, 2, 4) 1

34 K[T1, . . . , T5]/〈T 3
1 T

5
2 + T 6

3 T4 + T 2
5 〉 (1, 1, 1, 2, 4) 1

35 K[T1, . . . , T5]/〈T1T 3
2 + T3T4 + T 4

5 〉 (1, 1, 2, 2, 1) 27
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36 K[T1, . . . , T5]/〈T1T 5
2 + T3T

2
4 + T 6

5 〉 (1, 1, 2, 2, 1) 3/2

37 K[T1, . . . , T5]/〈T1T 3
2 + T3T4 + T 2

5 〉 (1, 1, 2, 2, 2) 16

38 K[T1, . . . , T5]/〈T1T 5
2 + T3T

2
4 + T 3

5 〉 (1, 1, 2, 2, 2) 6

39 K[T1, . . . , T5]/〈T 2
1 T

4
2 + T3T

2
4 + T 3

5 〉 (1, 1, 2, 2, 2) 6

40 K[T1, . . . , T5]/〈T 3
1 T

3
2 + T3T

2
4 + T 2

5 〉 (1, 1, 2, 2, 2) 27/2

41 K[T1, . . . , T5]/〈T 3
1 T

5
2 + T3T

3
4 + T 2

5 〉 (1, 1, 2, 2, 2) 32

42 K[T1, . . . , T5]/〈T1T 5
2 + T3T

2
4 + T 2

5 〉 (1, 1, 2, 2, 3) 4

43 K[T1, . . . , T5]/〈T1T 7
2 + T3T

3
4 + T 2

5 〉 (1, 1, 2, 2, 4) 32

44 K[T1, . . . , T5]/〈T1T 9
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

45 K[T1, . . . , T5]/〈T1T 9
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

46 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

47 K[T1, . . . , T5]/〈T 3
1 T

7
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

48 K[T1, . . . , T5]/〈T 5
1 T

5
2 + T3T

4
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

49 K[T1, . . . , T5]/〈T 5
1 T

5
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 1, 2, 2, 5) 1/2

50 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 3
5 〉 (1, 2, 1, 2, 1) 48

51 K[T1, . . . , T5]/〈T 2
1 T2 + T 2

3 T4 + T 4
5 〉 (1, 2, 1, 2, 1) 27

52 K[T1, . . . , T5]/〈T1T 2
2 + T3T

2
4 + T 5

5 〉 (1, 2, 1, 2, 1) 10

53 K[T1, . . . , T5]/〈T1T 2
2 + T 3

3 T4 + T 5
5 〉 (1, 2, 1, 2, 1) 10

54 K[T1, . . . , T5]/〈T 3
1 T2 + T 3

3 T4 + T 5
5 〉 (1, 2, 1, 2, 1) 10

55 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 6
5 〉 (1, 2, 1, 2, 1) 3/2

56 K[T1, . . . , T5]/〈T 2
1 T2 + T 2

3 T4 + T 2
5 〉 (1, 2, 1, 2, 2) 32

57 K[T1, . . . , T5]/〈T 2
1 T

2
2 + T 4

3 T4 + T 3
5 〉 (1, 2, 1, 2, 2) 6

58 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 3
5 〉 (1, 2, 1, 2, 2) 6

59 K[T1, . . . , T5]/〈T 4
1 T2 + T 4

3 T4 + T 2
5 〉 (1, 2, 1, 2, 3) 27/2

60 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 4) 4

61 K[T1, . . . , T5]/〈T 2
1 T

3
2 + T 6

3 T4 + T 2
5 〉 (1, 2, 1, 2, 4) 4

62 K[T1, . . . , T5]/〈T 6
1 T2 + T 6

3 T4 + T 2
5 〉 (1, 2, 1, 2, 4) 4

63 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 4

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 5) 1/2

64 K[T1, . . . , T5]/〈T 8
1 T2 + T 4

3 T
3
4 + T 2

5 〉 (1, 2, 1, 2, 5) 1/2

65 K[T1, . . . , T5]/〈T 8
1 T2 + T 8

3 T4 + T 2
5 〉 (1, 2, 1, 2, 5) 1/2

66 K[T1, . . . , T5]/〈T 2
1 T2 + T3T4 + T 4

5 〉 (1, 2, 2, 2, 1) 32

67 K[T1, . . . , T5]/〈T 4
1 T2 + T3T

2
4 + T 6

5 〉 (1, 2, 2, 2, 1) 6
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68 K[T1, . . . , T5]/〈T 4
1 T2 + T3T

2
4 + T 2

5 〉 (1, 2, 2, 2, 3) 16

69 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T3T

4
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

70 K[T1, . . . , T5]/〈T 4
1 T

3
2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

71 K[T1, . . . , T5]/〈T 8
1 T2 + T3T

4
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

72 K[T1, . . . , T5]/〈T 8
1 T2 + T 2

3 T
3
4 + T 2

5 〉 (1, 2, 2, 2, 5) 2

73 K[T1, . . . , T5]/〈T1T2T 10
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

74 K[T1, . . . , T5]/〈T1T 2
2 T

9
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

75 K[T1, . . . , T5]/〈T1T 3
2 T

8
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

76 K[T1, . . . , T5]/〈T1T 4
2 T

7
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

77 K[T1, . . . , T5]/〈T1T 5
2 T

6
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

78 K[T1, . . . , T5]/〈T 2
1 T

3
2 T

7
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

79 K[T1, . . . , T5]/〈T 2
1 T

5
2 T

5
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

80 K[T1, . . . , T5]/〈T 3
1 T

4
2 T

5
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 4, 6) 1/2

81 K[T1, . . . , T5]/〈T1T2T 2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

82 K[T1, . . . , T5]/〈T1T 3
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

83 K[T1, . . . , T5]/〈T 2
1 T

2
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 2, 3) 27/2

84 K[T1, . . . , T5]/〈T1T2T 4
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

85 K[T1, . . . , T5]/〈T1T 3
2 T

3
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

86 K[T1, . . . , T5]/〈T1T 5
2 T

2
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

87 K[T1, . . . , T5]/〈T1T 7
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

88 K[T1, . . . , T5]/〈T 2
1 T

2
2 T

3
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

89 K[T1, . . . , T5]/〈T 2
1 T

6
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

90 K[T1, . . . , T5]/〈T 3
1 T

3
2 T

2
3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

91 K[T1, . . . , T5]/〈T 3
1 T

5
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

92 K[T1, . . . , T5]/〈T 4
1 T

4
2 T3 + T 5

4 + T 2
5 〉 (1, 1, 2, 2, 5) 1/2

93 K[T1, . . . , T5]/〈T1T2T 5
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

94 K[T1, . . . , T5]/〈T1T 3
2 T

4
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

95 K[T1, . . . , T5]/〈T1T 5
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

96 K[T1, . . . , T5]/〈T1T 7
2 T

2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

97 K[T1, . . . , T5]/〈T1T 9
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

98 K[T1, . . . , T5]/〈T 2
1 T

4
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2
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99 K[T1, . . . , T5]/〈T 2
1 T

8
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

100 K[T1, . . . , T5]/〈T 3
1 T

5
2 T

2
3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

101 K[T1, . . . , T5]/〈T 3
1 T

7
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

102 K[T1, . . . , T5]/〈T 4
1 T

6
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

103 K[T1, . . . , T5]/〈T 5
1 T

5
2 T3 + T 3

4 + T 2
5 〉 (1, 1, 2, 4, 6) 2

104 K[T1, . . . , T5]/〈T 2
1 T2T3 + T 3

4 + T 2
5 〉 (1, 2, 2, 2, 3) 16

105 K[T1, . . . , T5]/〈T 2
1 T2T

3
3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

106 K[T1, . . . , T5]/〈T 4
1 T2T

2
3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

107 K[T1, . . . , T5]/〈T 6
1 T2T3 + T 5

4 + T 2
5 〉 (1, 2, 2, 2, 5) 2

The varieties no. 2,3 and 25, 26 are rational degenerations of quasismooth vari-
eties from the list in [16]. In [11] the non-rationality of a general (quasismooth)
element of the corresponding family was proved.

The varieties listed so far might suggest that we always obtain only one relation
in the Cox ring. We discuss now some examples, showing that for a Picard index
big enough, we need in general more than one relation, where this refers always
to a presentation as in Theorem 1.9 (ii).

Example 3.4. A Fano K∗-surface X with Cl(X) = Z such that the Cox ring
R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T11, T21, T31]/〈g0, g1〉,

where the degrees of T01, T02, T11, T21, T31 are 29, 1, 6, 10, 15, respectively, and
the relations g0, g1 are given by

g0 := T01T02 + T 5
11 + T 3

21, g1 := α23T
5
11 + α31T

3
21 + α12T

2
31

Then R is the Cox ring of a Fano K∗-surface. Note that the Picard index is
given by [Cl(X) : Pic(X)] = lcm(29, 1) = 29.

Proposition 3.5. Let X be a non-toric Fano surface with an effective K∗-
action such that Cl(X) ∼= Z and [Cl(X) : Pic(X)] < 29 hold. Then the Cox
ring of X is of the form

R(X) ∼= K[T1, . . . , T4]/〈T l11 T l22 + T l33 + T l44 〉.

Proof. The Cox ring R(X) is as in Theorem 1.9, and, in the notation used
there, we have n0 + . . .+ nr +m = 2 + r. This leaves us with the possibilities
n0 = m = 1 and n0 = 2, m = 0. In the first case, Proposition 2.9 tells us that
the Picard index of X is at least 30.
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So, consider the case n0 = 2 and m = 0. Then, according to Theorem 1.9, the
Cox ring R(X) is K[T01, T02, T1 . . . , Tr] divided by relations

g0,1,2 = T l0101 T
l02
02 +T l11 +T l22 , gi,i+1,i+2 = αi+1,i+2T

li
i +αi+2,iT

li+1

i+1 +αi,i+1T
li+2

i+2 ,

where 1 ≤ i ≤ r − 2. We have to show that r = 2 holds. Set µ := [Cl(X) :
Pic(X)] and let γ ∈ Z denote the degree of the relations. Then we have γ = wili
for 1 ≤ i ≤ r, where wi := deg Ti. With w0i := deg T0i, Proposition 2.5 gives
us

(r − 1)γ < w01 + w02 + w1 + . . .+ wr.

We claim that w01 and w02 are coprime. Otherwise they had a common prime
divisor p. This p divides γ = liwi. Since l1, . . . , lr are pairwise coprime, p
divides at least r − 1 of the weights w1, . . . , wr. This contradicts the Cox ring
condition that any r+1 of the r+2 weights generate the class group Z. Thus,
w01 and w02 are coprime and we obtain

µ ≥ lcm(w01,w02) = w01 · w02 ≥ w01 +w02 − 1.

Now assume that r ≥ 3 holds. Then we can conclude

2γ < w01 + w02 + w1 + w2 + w3 ≤ µ+ 1 + γ

(
1

l1
+

1

l2
+

1

l3

)

Since the numbers li are pairwise coprime, we obtain l1 ≥ 5, l2 ≥ 3 and l3 ≥ 2.
Moreover, liwi = ljwj implies li | wj and hence l1l2l3 | γ. Thus, we have
γ ≥ 30. Plugging this in the above inequality gives

µ ≥ γ

(
2− 1

l1
− 1

l2
− 1

l3

)
− 1 = 29.

The Fano assumption is essential in this result; if we omit it, then we may even
construct locally factorial surfaces with a Cox ring that needs more then one
relation.

Example 3.6. A locally factorial K∗-surface X with Cl(X) = Z such that the
Cox ring R(X) needs two relations. Consider the Z-graded ring

R = K[T01, T02, T11, T21, T31]/〈g0, g1〉,

where the degrees of T01, T02, T11, T21, T31 are 1, 1, 6, 10, 15, respectively, and
the relations g0, g1 are given by

g0 := T 7
01T

23
02 + T 5

11 + T 3
21, g1 := α23T

5
11 + α31T

3
21 + α12T

2
31

Then R is the Cox ring of a non Fano K∗-surface X of Picard index one, i.e,
X is locally factorial.
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For non-toric Fano threefolds X with an effective 2-torus action Cl(X) ∼= Z,
the classifications 3.2 and 3.3 show that for Picard indices one and two we only
obtain hypersurfaces as Cox rings. The following example shows that this stops
at Picard index three.

Example 3.7. A Fano threefold X with Cl(X) = Z and a 2-torus action such
that the Cox ring R(X) needs two relations. Consider

R = K[T01, T02, T11, T12, T21, T31]/〈g0, g1〉

where the degrees of T01, T02, T11, T12, T21, T31 are 1, 1, 3, 3, 2, 3, respectively,
and the relations are given by

g0 = T 5
01T02 + T11T12 + T 3

21, g1 = α23T11T12 + α31T
3
21 + α12T

2
31.

Then R is the Cox ring of a Fano threefold with a 2-torus action. Note that
the Picard index is given by

[Cl(X) : Pic(X)] = lcm(1, 1, 3, 3) = 3.

Finally, we turn to locally factorial Fano fourfolds. Here we observe more than
one relation in the Cox ring even in the locally factorial case.

Theorem 3.8. Let X be a four-dimensional locally factorial non-toric Fano
variety with an effective three torus action such that Cl(X) = Z holds. Then
its Cox ring is precisely one of the following.

No. R(X) (w1, . . . , w6) (−KX)
4

1 K[T1, . . . , T6]/〈T1T 5
2 + T 3

3 + T 2
4 〉 (1, 1, 2, 3, 1, 1) 81

2 K[T1, . . . , T6]/〈T1T 9
2 + T 2

3 + T 5
4 〉 (1, 1, 2, 5, 1, 1) 1

3 K[T1, . . . , T6]/〈T 3
1 T

7
2 + T 2

3 + T 5
4 〉 (1, 1, 2, 5, 1, 1) 1

4 K[T1, . . . , T6]/〈T1T2T 4
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3, 1) 81

5 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 + T 3

4 + T 2
5 〉 (1, 1, 1, 2, 3, 1) 81

6 K[T1, . . . , T6]/〈T1T2T 8
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

7 K[T1, . . . , T6]/〈T1T 2
2 T

7
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

8 K[T1, . . . , T6]/〈T1T 3
2 T

6
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

9 K[T1, . . . , T6]/〈T1T 4
2 T

5
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

10 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

5
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

11 K[T1, . . . , T6]/〈T 3
1 T

3
2 T

4
3 + T 5

4 + T 2
5 〉 (1, 1, 1, 2, 5, 1) 1

12 K[T1, . . . , T6]/〈T1T2 + T3T4 + T 2
5 〉 (1, 1, 1, 1, 1, 1) 512

13 K[T1, . . . , T6]/〈T1T 2
2 + T3T

2
4 + T 3

5 〉 (1, 1, 1, 1, 1, 1) 243
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14 K[T1, . . . , T6]/〈T1T 3
2 + T3T

3
4 + T 4

5 〉 (1, 1, 1, 1, 1, 1) 64

15 K[T1, . . . , T6]/〈T1T 4
2 + T3T

4
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

16 K[T1, . . . , T6]/〈T1T 4
2 + T 2

3 T
3
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

17 K[T1, . . . , T6]/〈T 2
1 T

3
2 + T 2

3 T
3
4 + T 5

5 〉 (1, 1, 1, 1, 1, 1) 5

18 K[T1, . . . , T6]/〈T1T 3
2 + T3T

3
4 + T 2

5 〉 (1, 1, 1, 1, 2, 1) 162

19 K[T1, . . . , T6]/〈T1T 5
2 + T3T

5
4 + T 3

5 〉 (1, 1, 1, 1, 2, 1) 3

20 K[T1, . . . , T6]/〈T1T 5
2 + T 2

3 T
4
4 + T 3

5 〉 (1, 1, 1, 1, 2, 1) 3

21 K[T1, . . . , T6]/〈T1T 5
2 + T3T

5
4 + T 2

5 〉 (1, 1, 1, 1, 3, 1) 32

22 K[T1, . . . , T6]/〈T1T 5
2 + T 3

3 T
3
4 + T 2

5 〉 (1, 1, 1, 1, 3, 1) 32

23 K[T1, . . . , T6]/〈T1T 7
2 + T3T

7
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

24 K[T1, . . . , T6]/〈T1T 7
2 + T 3

3 T
5
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

25 K[T1, . . . , T6]/〈T 3
1 T

5
2 + T 3

3 T
5
4 + T 2

5 〉 (1, 1, 1, 1, 4, 1) 2

26 K[T1, . . . , T6]/〈T1T2T3T 3
4 + T 3

5 + T 2
6 〉 (1, 1, 1, 1, 2, 3) 81

27 K[T1, . . . , T6]/〈T1T2T 2
3 T

2
4 + T 3

5 + T 2
6 〉 (1, 1, 1, 1, 2, 3) 81

28 K[T1, . . . , T6]/〈T1T2T3T 7
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

29 K[T1, . . . , T6]/〈T1T2T 2
3 T

6
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

30 K[T1, . . . , T6]/〈T1T2T 3
3 T

5
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

31 K[T1, . . . , T6]/〈T1T2T 4
3 T

4
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

32 K[T1, . . . , T6]/〈T1T 2
2 T

2
3 T

5
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

33 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 T

4
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

34 K[T1, . . . , T6]/〈T1T 3
2 T

3
3 T

3
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

35 K[T1, . . . , T6]/〈T 2
1 T

2
2 T

3
3 T

3
4 + T 5

5 + T 2
6 〉 (1, 1, 1, 1, 2, 5) 1

36 K[T1, . . . , T6]/〈T1T2T3 + T4T
2
5 + T 3

6 〉 (1, 1, 1, 1, 1, 1) 243

37 K[T1, . . . , T6]/〈T1T2T 2
3 + T4T

3
5 + T 4

6 〉 (1, 1, 1, 1, 1, 1) 64

38 K[T1, . . . , T6]/〈T1T2T 3
3 + T4T

4
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

39 K[T1, . . . , T6]/〈T1T2T 3
3 + T 2

4 T
3
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

40 K[T1, . . . , T6]/〈T1T 2
2 T

2
3 + T4T

4
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

41 K[T1, . . . , T6]/〈T1T 2
2 T

2
3 + T 2

4 T
3
5 + T 5

6 〉 (1, 1, 1, 1, 1, 1) 5

42 K[T1, . . . , T6]/〈T1T2T 2
3 + T4T

3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 2) 162

43 K[T1, . . . , T6]/〈T1T2T 4
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

44 K[T1, . . . , T6]/〈T1T2T 4
3 + T 2

4 T
4
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3
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45 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

46 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 + T 2

4 T
4
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

47 K[T1, . . . , T6]/〈T 2
1 T

2
2 T

2
3 + T4T

5
5 + T 3

6 〉 (1, 1, 1, 1, 1, 2) 3

48 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 + T 3

4 T
3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

49 K[T1, . . . , T6]/〈T1T 2
2 T

3
3 + T4T

5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

50 K[T1, . . . , T6]/〈T1T2T 4
3 + T 3

4 T
3
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

51 K[T1, . . . , T6]/〈T1T2T 4
3 + T4T

5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 3) 32

52 K[T1, . . . , T6]/〈T1T2T 6
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

53 K[T1, . . . , T6]/〈T1T2T 6
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

54 K[T1, . . . , T6]/〈T1T 2
2 T

5
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

55 K[T1, . . . , T6]/〈T1T 2
2 T

5
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

56 K[T1, . . . , T6]/〈T1T 3
2 T

4
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

57 K[T1, . . . , T6]/〈T1T 3
2 T

4
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

58 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

3
3 + T4T

7
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

59 K[T1, . . . , T6]/〈T 2
1 T

3
2 T

3
3 + T 3

4 T
5
5 + T 2

6 〉 (1, 1, 1, 1, 1, 4) 2

60 K[T1, . . . , T6]/〈T1T2 + T3T4 + T5T6〉 (1, 1, 1, 1, 1, 1) 512

61 K[T1, . . . , T6]/〈T1T 2
2 + T3T

2
4 + T5T

2
6 〉 (1, 1, 1, 1, 1, 1) 243

62 K[T1, . . . , T6]/〈T1T 3
2 + T3T

3
4 + T5T

3
6 〉 (1, 1, 1, 1, 1, 1) 64

63 K[T1, . . . , T6]/〈T1T 3
2 + T3T

3
4 + T 2

5 T
2
6 〉 (1, 1, 1, 1, 1, 1) 64

64 K[T1, . . . , T6]/〈T1T 4
2 + T3T

4
4 + T5T

4
6 〉 (1, 1, 1, 1, 1, 1) 5

65 K[T1, . . . , T6]/〈T1T 4
2 + T3T

4
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

66 K[T1, . . . , T6]/〈T1T 4
2 + T 2

3 T
3
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

67 K[T1, . . . , T6]/〈T 2
1 T

3
2 + T 2

3 T
3
4 + T 2

5 T
3
6 〉 (1, 1, 1, 1, 1, 1) 5

68 K[T1, . . . , T7]/
〈
T1T2+T3T4+T5T6,

αT3T4+T5T6+T
2
7

〉
(1, 1, 1, 1, 1, 1, 1) 324

69 K[T1, . . . , T7]/
〈
T1T

2
2 +T3T

2
4 +T5T

2
6 ,

αT3T
2
4 +T5T

2
6 +T 3

7

〉
(1, 1, 1, 1, 1, 1, 1) 9

where in the last two rows of the table the parameter α can be any element from
K∗ \ {1}.

By the result of [26], the singular quintics of this list are rational degenerations
of smooth non-rational Fano fourfolds.

Documenta Mathematica 16 (2011) 71–109



Multigraded Factorial Rings and Fano Varieties 101

4 Geometry of the locally factorial threefolds

In this section, we take a closer look at the (factorial) singularities of the Fano
varieties X listed in Theorem 3.2. Recall that the discrepancies of a resolution
ϕ : X̃ → X of a singularity are the coefficients of KX̃ − ϕ∗KX , where KX

and KX̃ are canonical divisors such that KX̃ − ϕ∗KX is supported on the
exceptional locus of ϕ. A resolution is called crepant, if its discrepancies vanish
and a singularity is called canonical (terminal), if it admits a resolution with
nonnegative (positive) discrepancies. By a relative minimal model we mean a

projective morphism X̃ → X such that X̃ has at most terminal singularities
and its relative canonical divisor is relatively nef.

Theorem 4.1. For the nine 3-dimensional Fano varieties listed in Theo-
rem 3.2, we have the following statements.

(i) No. 4 is a smooth quadric in P4.

(ii) Nos. 1,3,5,7 and 9 are singular with only canonical singularities and all
admit a crepant resolution.

(iii) Nos. 6 and 8 are singular with non-canonical singularities but admit a
smooth relative minimal model.

(iv) No. 2 is singular with only canonical singularities, one of them of type
cA1, and admits only a singular relative minimal model.

The Cox ring of the relative minimal model X̃ as well as the the Fano degree
of X itself are given in the following table.

No. R(X̃) (−KX)
3

1 K[T1, . . . , T14]/(T1T2T
2
3 T

3
4 T

4
5 T

5
6 + T 3

7 T
2
8 T9 + T 2

10T11〉 8

2 K[T1, . . . , T9]/〈T1T2T 2
3 T

4
4 + T5T

2
6 T

3
7 + T 2

8 〉 8

3 K[T1, . . . , T8]/〈T1T 2
2 T

3
3 + T4T

3
5 + T6T

2
7 〉 8

4 K[T1, . . . , T5]/〈T1T2 + T3T4 + T 2
5 〉 54

5 K[T1, . . . , T6]/〈T1T 2
2 + T3T

2
4 + T 3

5 T6〉 24

6 K[T1, . . . , T6]/〈T1T 3
2 + T3T

3
4 + T 4

5 T6〉 4

7 K[T1, . . . , T7]/〈T1T 3
2 + T3T

3
4 + T 2

5 T6〉 16

8 K[T1, . . . , T7]/〈T1T 5
2 + T3T

5
4 + T 2

5 T6〉 2

9 K[T1, . . . , T46]/
〈

T1T2T3T
2
4 T

2
5 T

3
6 T

3
7 T

4
8 T

4
9 T

5
10 +

+ T11···T18T
2
19···T 2

24T
3
25T

3
26 + T27···T32T

2
33

〉
2
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For the proof, it is convenient to work in the language of polyhedral divisors
introduced in [1] and [2]. As we are interested in rational varieties with a
complexity one torus action, we only have to consider polyhedral divisors on
the projective line Y = P1. This considerably simplifies the general definitions
and allows us to give a short summary. In the sequel, N ∼= Zn denotes a lattice
and M = Hom(N,Z) its dual. For the associated rational vector spaces we
write NQ and MQ. A polyhedral divisor on the projective line Y := P1 is a
formal sum

D =
∑

y∈Y
Dy · y,

where the coefficients Dy ⊆ NQ are (possibly empty) convex polyhedra all
sharing the same tail (i.e. recession) cone DY = σ ⊆ NQ, and only finitely
many Dy differ from σ. The locus of D is the open subset Y (D) ⊆ Y obtained
by removing all points y ⊆ Y with Dy = ∅. For every u ∈ σ∨ ∩M we have the
evaluation

D(u) :=
∑

y∈Y
min
v∈Dy

〈u, v〉·y,

which is a usual rational divisor on Y (D). We call the polyhedral divisor D on
Y proper if deg D ( σ holds, where the polyhedral degree is defined by

deg D :=
∑

y∈Y
Dy.

Every proper polyhedral divisor D on Y defines a normal affine variety X(D)
of dimension rk (N) + 1 coming with an effective action of the torus T =
SpecK[M ]: set X(D) := SpecA(D), where

A(D) :=
⊕

u∈σ∨∩M
Γ(Y (D),O(D(u))) ⊆

⊕

u∈M
K(Y ) · χu.

A divisorial fan, is a finite set Ξ of polyhedral divisors D on Y , all having their
polyhedral coefficients Dy in the same NQ and fulfilling certain compatibility
conditions, see [2]. In particular, for every point y ∈ Y , the slice

Ξy := {Dy; D ∈ Ξ}

must be a polyhedral subdivision. The tail fan is the set ΞY of the tail cones
DY of the D ∈ Ξ; it is a fan in the usual sense. Given a divisorial fan Ξ, the
affine varieties X(D), where D ∈ Ξ, glue equivariantly together to a normal
variety X(Ξ), and we obtain every rational normal variety with a complexity
one torus action this way.

Smoothness of X = X(Ξ) is checked locally. For a proper polyhedral divisor
D on Y , we infer the following from [28, Theorem 3.3]. If Y (D) is affine,
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then X(D) is smooth if and only if cone({1} × Dy) ⊆ Q × NQ, the convex,
polyhedral cone generated by {1} × Dy, is regular for every y ∈ Y (D). If
Y (D) = Y holds, then X(D) is smooth if and only if there are y, z ∈ Y such
that D = Dyy+Dzz holds and cone({1}×Dy) + cone({−1}×Dz) is a regular
cone in Q×NQ. Similarly to toric geometry, singularities of X(D) are resolved
by means of subdividing D. This means to consider divisorial fans Ξ such that
for any y ∈ Y , the slice Ξy is a subdivision of Dy. Such a Ξ defines a dominant
morphism X(Ξ) → X(D) and a slight generalization of [2, Thm. 7.5.] yields
that this morphism is proper.

Proposition 4.2. The 3-dimensional Fano varieties No. 1-8 listed in Theo-
rem 3.2 and their relative minimal models arise from divisorial fans having the
following slices and tail cones.

1

b

(−1,1)

− 4
5− 3

4− 2
3− 1

2

b

1
3
1
2 1

b

1
2 1

bb

(0,1)

(0,-1)

(-1,6)

(1,0)

2

b
(− 1

4 ,
1
2 )

(0, 12 )

(−1,1)

b
(− 2

3 ,0)

(− 1
2 ,0)

b

(1,− 1
2 )

bb

(-4,3)

(1,0)

(2,-2.6)

(2,-1)

(1,-1)

(0,1)

(-1,1)

3

b

( 1
2 ,

1
2 )

( 2
3 ,

1
3 )

b

(0,− 1
3 )

b
(− 1

2 ,0) bb

(-3,-2)

(1,0)

(0,1)

(-1,0)

(1,1)

(0,-1)

4

b
(−1,0)

b

(0,−1)

b
( 1
2 ,

1
2 ) bb

(-1,1) (1,1)

(1,-1)(-1,-1)
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5

b
(− 1

2 ,0) b

(0,− 1
2 )

b
( 1
3 ,

1
3 ) bb

(-1,2)

(1,1)

(2,-1)

(-1,-1)
(0,-1)

(-1,0)

6

b
(− 1

3 ,0) b

(0,− 1
3 )

b
( 1
4 ,

1
4 ) bb

(-1,3)

(1,1)

(3,-1)

(-1,-1)
(0,-1)

(-1,0)

7

b

( 2
3 ,

1
3 )

b

(0,− 1
3 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-3,-2)

(-1,0)

(2,1)

(0,-1)

8

b

( 3
5 ,

1
5 )

b

(0,− 1
5 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-5,-2)

(-1,0)

(3,1)

(0,-1)

The above table should be interpreted as follows. The first three pictures in
each row are the slices at 0, 1 and ∞ and the last one is the tail fan. The
divisorial fan of the fano variety itself is given by the solid polyhedra in the
pictures. Here, all polyhedra of the same gray scale belong to the same poly-
hedral divisor. The subdivisions for the relative minimal models are sketched
with dashed lines. In general, polyhedra with the same tail cone belong all
to a unique polyhedral divisor with complete locus. For the white cones in-
side the tail fan we have another rule: for every polyhedron ∆ ∈ Ξy with the
given white cone as its tail there is a polyhedral divisor ∆ · y + ∅ · z ∈ Ξ, with
z ∈ {0, 1,∞} \ {y}. Here, different choices of z lead to isomorphic varieties,
only the affine covering given by the X(D) changes.
In order to prove Theorem 4.1, we also have to understand invariant divisors on
X = X(Ξ) in terms of Ξ, see [15, Prop. 4.11 and 4.12] for details. A first type
of invariant prime divisors, is in bijection Dy,v ↔ (y, v) with the vertices (y, v),
where y ∈ Y and v ∈ Ξy is of dimension zero. The order of the generic isotropy
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group along Dy,v equals the minimal positive integer µ(v) with µ(v)v ∈ N . A
second type of invariant prime divisors, is in D̺ ↔ ̺ with the extremal rays
̺ ∈ ΞY , where a ray ̺ ∈ ΞY is called extremal if there is a D ∈ Ξ such that
̺ ⊆ DY and deg D ∩ ̺ = ∅ holds. The set of extremal rays is denoted by Ξ×Y .
The divisor of a semi-invariant function f · χu ∈ K(X) is then given by

div(f · χu) = −
∑

y∈Y

∑

v∈Ξ(0)
y

µ(v) · (〈v, u〉+ ordyf) ·Dy,v −
∑

̺∈Ξ×
Y

〈n̺, u〉 ·D̺.

Next we describe the canonical divisor. Choose a point y0 ∈ Y such that
Ξy0 = ΞY holds. Then a canonical divisor on X = X(Ξ) is given by

KX = (s− 2) · y0 −
∑

Ξy 6=ΞY

∑

v∈Ξ(0)
i

Dy,v −
∑

̺∈Ξ×
Y

E̺.

Proposition 4.3. Let D be a proper polyhedral divisor with Y (D) = P1, let Ξ
be a refinement of D and denote by y1, . . . , ys ∈ Y the points with Ξyi 6= ΞY .
Then the associated morphism ϕ : X(Ξ)→ X(D) satisfies the following.

(i) The prime divisors in the exceptional locus of ϕ are the divisors Dyi,v

and D̺ corresponding to v ∈ Ξ
(0)
yi \ D(0)

yi and ̺ ∈ Ξ×Y \ D× respectively.

(ii) Then the discrepancies along the prime divisors Dyi,v and D̺ of (i) are
computed as

dyi,v = −µ(v) · (〈v, u′〉+ αy)− 1, d̺ = −〈v̺, u′〉 − 1,

where the numbers αi are determined by



−1 −1 . . . −1 0
µ(v11) 0 . . . 0 µ(v11)v

1
1

...
...

...
...

µ(vr11 ) 0 . . . 0 µ(vr11 )vr11
. . .

0 0 . . . µ(v1s) µ(v1s)v
1
s

...
...

...
...

0 0 . . . µ(vrss ) µ(vrss )vrss
0 0 . . . 0 n̺1
...

...
...

...
0 0 . . . 0 n̺r




·




αy1
...
αys
u


 =




2− s
1
...
1
1
...
1




Proof. The first claim is obvious by the characterization of invariant prime
divisors. For the second claim note that by [24, Theorem 3.1] every Cartier
divisor on X(D) is principal. Hence, we may assume

ℓ ·KX = div(f · χu), div(f) =
∑

y

αy · y.
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Then our formulæ for div(f · χu) and KX provide a row for every vertex vji ∈
Ξyi , i = 0, . . . , s, and for every extremal ray ̺i ∈ Ξ×, and ℓ−1(α, u) is the
(unique) solution of the above system.

Note, that in the above Proposition, the variety X(D) is Q-Gorenstein if and
only if the linear system of equations has a solution.

Proof of Theorem 4.1 and Proposition 4.2. We exemplarily discuss variety
number eight. Recall that its Cox ring is given as

R(X) = K[T1, . . . , T5]/(T1T
5
2 + T3T

5
4 + T 2

5 )

with the degrees 1, 1, 1, 1, 3. In particular, X is a hypersurface of degree 6
in P(1, 1, 1, 1, 3), and the self-intersection of the anti-canonical divisor can be
calculated as

(−K3
X) = 6 · (1 + 1 + 1 + 1 + 3− 6)3

1 · 1 · 1 · 1 · 3 = 2.

The embedding X ⊆ P(1, 1, 1, 1, 3) is equivariant, and thus we can use the tech-
nique described in [1, Sec. 11] to calculate a divisorial fan Ξ for X . The result
is the following divisorial fan; we draw its slices and indicate the polyhedral
divisors with affine locus by colouring their tail cones DY ∈ ΞY white:

b

( 3
5 ,

1
5 )

Ξ0

b

(0,− 1
5 )

Ξ1

b

(− 1
2 ,0)

Ξ∞

bb

ΞY

(1,2)

(1,0)

(-5,-2)

(-1,0)

One may also use [15, Cor. 4.9.] to verify that Ξ is the right divisorial fan: it
computes the Cox ring in terms of Ξ, and, indeed, we obtain again R(X). Now
we subdivide and obtain a divisorial fan having the refined slices as indicated
in the following picture.

b

( 3
5 ,

1
5 )

b

(0,− 1
5 )

b

(− 1
2 ,0)

bb

(1,2)

(1,0)

(-5,-2)

(-1,0)

(3,1)

(0,-1)

Here, the white ray Q≥0 · (1, 0) indicates that the polyhedral divisors with that
tail have affine loci. According to [15, Cor. 4.9.], the corresponding Cox ring is
given by

R(X̃) = K[T1, . . . , T7]/〈T1T 5
2 + T3T

5
4 + T 2

5 T6〉.
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We have to check that X̃ is smooth. Let us do this explicitly for the affine chart
defined by the polyhedral divisor D with tail cone DY = cone((1, 2), (3, 1)).
Then D is given by

D =

((
3

5
,
1

5

)
+ σ

)
· {0} +

([
−1

2
, 0

]
× 0 + σ

)
· {∞}.

Thus, cone({1} ×D0) + cone({−1}×D∞) is generated by (5, 3, 1), (−2,−1, 0)
and (−1, 0, 0); in particular, it is a regular cone. This implies smoothness of
the affine chart X(D). Furthermore, we look at the affine charts defined by
the polyhedral divisors D with tail cone DY = cone(1, 0). Since they have
affine locus, we have to check cone({1} × Dy), where y ∈ Y . For y 6= 0, 1, we
have Dy = DY . In this case, cone({1} × Dy) is generated by (1, 1, 0), (0, 1, 0)
and thus is regular. For y = 0, we obtain that cone({1} × Dy) is generated
by (5, 3, 1), (1, 0, 0), (0, 1, 0) and this is regular. For y = 1 we get the same
result. Hence, the polyhedral divisors with tail cone Dy = cone(1, 0) give rise
to smooth affine charts.

Now we compute the discrepancies according to Proposition 4.3. The resolution
has two exceptional divisors D∞,0 and E(1,0). We work in the chart defined by
the divisor D ∈ Ξ with tail cone DY = cone((1, 2), (1, 0)). The resulting system
of linear equations and its unique solution are given by




−1 −1 −1 0 0 −1
5 0 0 3 1 1
0 1 0 0 0 1
0 5 0 0 −1 1
0 0 2 −1 0 1



,




α0

α1

α∞
u


 =




0
1
0
−1
4



.

The formula for the discrepancies yields d∞,0 = −1 and d(1,0) = −2. In
particular, X has non-canonical singularities. By a criterion from [24, Sec. 3.4.],

we know that D∞,0 + 2 · E(1,0) is a nef divisor. It follows that X̃ is a minimal
model over X .
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[5] F. Berchtold, J. Hausen: Homogeneous coordinates for algebraic varieties.
J. Algebra 266 (2003), no. 2, 636–670.

[6] Cheltsov, Ivan; Park, Jihun Sextic double solids. In. Bogomolov, Fedor
(ed.) et al.: Cohomological and geometric approaches to rationality prob-
lems. New Perspectives. Boston, MA: Birkhäuser. Progress in Mathemat-
ics 282, 75–132 (2010).

[7] J.J. Chen, J.A. Chen, M. Chen: On quasismooth weighted complete
intersections. Preprint, arXiv:0908.1439.

[8] C.H. Clemens, P.A. Griffiths: The intermediate Jacobian of the cubic
threefold. Ann. Math. (2) 95 (1972), 281–356.

[9] A. Corti: Singularities of linear systems and 3-fold birational geometry.
Explicit birational geometry of 3-folds, 259 -312, London Math. Soc. Lec-
ture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.

[10] A. Corti, M. Mella: Birational geometry of terminal quartic 3-folds I.
Am. J. Math. 126 (2004), No. 4, 739–761.

[11] A. Corti, A. Pukhlikov, M. Reid: Fano 3-fold hypersurfaces. Explicit
birational geometry of 3-folds, 175–258, London Math. Soc. Lecture Note
Ser., 281, Cambridge Univ. Press, Cambridge, 2000.

[12] M.M. Grinenko: Mori structures on a Fano threefold of index 2 and degree
1. Tr. Mat. Inst. Steklova 246 (2004), Algebr. Geom. Metody, Svyazi i
Prilozh., 116–141; translation in Proc. Steklov Inst. Math. 2004, no. 3
(246), 103–128.

[13] M.M. Grinenko: Birational automorphisms of a three-dimensional double
cone. Mat. Sb. 189 (1998), no. 7, 37–52; translation in Sb. Math. 189
(1998), no. 7-8, 991–1007.

[14] J. Hausen: Cox rings and combinatorics II. Mosc. Math. J., 8 (2008),
711–757.
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1 Introduction

Shifts of finite type have been completely classified up to flow equivalence by
Boyle and Huang [4, 6, 15], but very little is known about the classification
of the class of sofic shift spaces introduced by Weiss [38], even though they
are a natural first generalization of shifts of finite type. The purpose of this
paper is to investigate the structure of - and relationships between - various
standard presentations (the Fischer cover, the Krieger cover, and the past set
cover) of sofic shift spaces. These results are used to find the range of the
flow-invariant introduced in [1], and to investigate the ideal structure of the
C∗-algebras associated to sofic shifts. In this way, the present paper can be
seen as a continuation of the strategy applied in [10, 11, 30], where invariants
for shift spaces are extracted from the associated C∗-algebras.
Section 2 recalls the definitions of shift spaces, labelled graphs, and covers
to make the paper self contained. Section 3 introduces a canonical and flow-
invariant cover generalizing the left Fischer cover to arbitrary sofic shifts.
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Section 4 introduces the concept of a foundation of a cover, which is used to
prove that the left Krieger cover and the past set cover can be divided into
natural layers and to show that the left Krieger cover of an arbitrary sofic shift
can be identified with a subgraph of the past set cover.
In Section 5, the structure of the layers of the left Krieger cover of an irre-
ducible sofic shift is used to find the range of the flow-invariant introduced
in [1]. Section 6 uses the results about the structure of covers of sofic shifts
to investigate ideal lattices of the associated C∗-algebras. Additionally, it is
proved that Condition (∗) introduced by Carlsen and Matsumoto [12] holds if
and only if the left Krieger cover is the maximal essential subgraph of the past
set cover.
Acknowledgements. This work was supported by the Danish National Re-
search Foundation (DNRF) through the Centre for Symmetry and Deforma-
tion. The author would like to thank David Pask, Toke Meier Carlsen, and
Søren Eilers for interesting discussions and helpful comments. The author
would also like to thank the anonymous referee for useful comments improving
the exposition and to thank the University of Wollongong, Australia and the
University of Tokyo, Japan where parts of the research for this paper were
carried out during visits funded by Rejselegat for Matematikere.

2 Background

Shift spaces. Here, a short introduction to the definition and properties of
shift spaces is given to make the present paper self-contained; for a thorough
treatment of shift spaces see [21]. Let A be a finite set with the discrete
topology. The full shift over A consists of the space AZ endowed with the
product topology and the shift map σ : AZ → AZ defined by σ(x)i = xi+1 for
all i ∈ Z. Let A∗ be the collection of finite words (also known as blocks) over
A. A subset X ⊆ AZ is called a shift space if it is invariant under the shift map
and closed. For each F ⊆ A∗, define XF to be the set of bi-infinite sequences in
AZ which do not contain any of the forbidden words from F . A subset X ⊆ AZ

is a shift space if and only if there exists F ⊆ A∗ such that X = XF (cf. [21,
Proposition 1.3.4]). X is said to be a shift of finite type (SFT) if this is possible
for a finite set F .
The language of a shift space X is defined to be the set of all words which occur
in at least one x ∈ X , and it is denoted B(X). X is said to be irreducible if
there for every u,w ∈ B(X) exists v ∈ B(X) such that uvw ∈ B(X). For each
x ∈ X , define the left-ray of x to be x− = · · ·x−2x−1 and define the right-ray
of x to be x+ = x0x1x2 · · · . The sets of all left-rays and all right-rays are,
respectively, denoted X− and X+.
A bijective, continuous, and shift commuting map between two shift spaces is
called a conjugacy, and when such a map exists, the two shift spaces are said
to be conjugate. Shift spaces (X, σX) and (Y, σY ) are said to be flow equivalent
if the corresponding suspension flows SX and SY are topologically equivalent.
Flow equivalence is generated by conjugacy and symbol expansion [35].
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Graphs. For countable sets E0 and E1, and maps r, s : E1 → E0 the quadruple
E = (E0, E1, r, s) is called a directed graph. The elements of E0 and E1 are,
respectively, the vertices and the edges of the graph. For each edge e ∈ E1,
s(e) is the vertex where e starts, and r(e) is the vertex where e ends. A
path λ = e1 · · · en is a sequence of edges such that r(ei) = s(ei+1) for all
i ∈ {1, . . . n− 1}. For each n ∈ N0, the set of paths of length n is denoted En,
and the set of all finite paths is denoted E∗. Extend the maps r and s to E∗

by defining s(e1 · · · en) = s(e1) and r(e1 · · · en) = r(en). A circuit is a path λ
with r(λ) = s(λ) and |λ| > 0. For u, v ∈ E0, u is said to be connected to v if
there is a path λ ∈ E∗ such that s(λ) = u and r(λ) = v, and this is denoted
by u ≥ v [21, Section 4.4]. A vertex is said to be maximal, if it is connected to
all other vertices. E is said to be irreducible if all vertices are maximal. If E
has a unique maximal vertex, this vertex is said to be the root of E. E is said
to be essential if every vertex emits and receives an edge. For a finite essential
directed graph E, the edge shift (XE , σE) is defined by

XE =
{
x ∈ (E1)Z | r(xi) = s(xi+1) for all i ∈ Z

}
.

A labelled graph (E,L) over an alphabet A consists of a directed graph E and a
surjective labelling map L : E1 → A. Extend the labelling map to L : E∗ → A∗
by defining L(e1 · · · en) = L(e1) · · · L(en) ∈ A∗. For a finite essential labelled
graph (E,L), define the shift space (X(E,L), σ) by

X(E,L) =
{
(L(xi))i ∈ AZ | x ∈ XE

}
.

The labelled graph (E,L) is said to be a presentation of the shift space X(E,L),
and a representative of a word w ∈ B(X(E,L)) is a path λ ∈ E∗ such that
L(λ) = w. Representatives of rays are defined analogously. If H ⊆ E0 then
the subgraph of (E,L) induced by H is the labelled subgraph of (E,L) with
vertices H and edges {e ∈ E1 | s(e), r(e) ∈ H}.
Sofic shifts. A function π : X1 → X2 between shift spaces X1 and X2 is said
to be a factor map if it is continuous, surjective, and shift commuting. A shift
space is called sofic [38] if it is the image of an SFT under a factor map. A
shift space is sofic if and only if it can be presented by a finite labelled graph
[14]. A sofic shift space is irreducible if and only if it can be presented by an
irreducible labelled graph (see [21, Section 3.1]). Let (E,L) be a finite labelled
graph and let πL : XE → X(E,L) be the factor map induced by the labelling
map L : E1 → A then the SFT XE is called a cover of the sofic shift X(E,L),
and πL is called the covering map.
A presentation (E,L) of a sofic shift space X is said to be left-resolving if no
vertex in E0 receives two edges with the same label. Fischer proved [14] that,
up to labelled graph isomorphism, every irreducible sofic shift has a unique
left-resolving presentation with fewer vertices than any other left-resolving pre-
sentation. This is called the left Fischer cover of X , and it is denoted (F,LF ).
An irreducible sofic shift is said to have almost finite type (AFT) [22, 33] if the
left Fischer cover is right-closing (see e.g. [21, Definition 5.1.4]).
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For x ∈ B(X) ∪ X+, define the predecessor set of x to be the set of left-rays
which may precede x in X (see [17, Sections I and III] and [21, Exercise 3.2.8]).
The follower set of a left-ray or word is defined analogously. Let (E,L) be a
labelled graph presenting X and let v ∈ E0. Define the predecessor set of v to
be the set of left-rays in X which have a presentation terminating at v. This
is denoted PE∞(v), or just P∞(v) when (E,L) is understood from the context.
The presentation (E,L) is said to be predecessor-separated if PE∞(u) 6= PE∞(v)
when u, v ∈ E0 and u 6= v.
The left Krieger cover of the shift space X is the labelled graph (K,LK) where
K0 = {P∞(x+) | x+ ∈ X+}, and where there is an edge labelled a ∈ A
from P ∈ K0 to P ′ ∈ K0 if and only if there exists x+ ∈ X+ such that
P = P∞(ax+) and P ′ = P∞(x+). The past set cover of the shift space X is
the labelled graph (W,LW ) where W 0 = {P∞(w) | w ∈ B(X)} and where the
edges and labels are constructed as in the Krieger cover. A shift space is sofic
if and only if the number of predecessor sets is finite [19, §2], so the left Krieger
cover is finite exactly when the shift space is sofic. The left Fischer cover, the
left Krieger cover, and the past set cover are left-resolving and predecessor-
separated presentations of X .
The right Krieger cover and the future set cover are right-resolving and follower-
separated covers defined analogously to the left Krieger cover and the past
set cover, respectively. Every result developed for left-resolving covers in the
following has an analogue for the corresponding right-resolving cover. These
results can easily be obtained by considering the transposed shift space XT

(see e.g. [21, p. 39]).

3 Generalizing the Fischer cover

Jonoska [16] proved that a reducible sofic shift does not necessarily have a
unique minimal left-resolving presentation. The aim of this section is to define
a generalization of the left Fischer cover as the subgraph of the left Krieger
cover induced by a certain subset of vertices. Let X be a sofic shift space, and
let (K,LK) be the left Krieger cover of X . A predecessor set P ∈ K0 is said
to be non-decomposable if V ⊆ K0 and P =

⋃
Q∈V Q implies that P ∈ V .

Lemma 3.1. If P ∈ K0 is non-decomposable then the subgraph of (K,LK)
induced by K0 \ {P} is not a presentation of X.

Proof. Let E be the subgraph of K induced by K0 \ {P}. Choose x+ ∈ X+

such that P = P∞(x+). Let V ⊆ K0 \ {P} be the set of vertices where a
presentation of x+ can start. Then Q ⊆ P∞(x+) = P for each Q ∈ V , and by
assumption, there exists y− ∈ P \⋃Q∈V Q. Hence, there is no presentation of

y−x+ in (E,LK |E).

Lemma 3.1 shows that a subgraph of the left Krieger cover which presents the
same shift must contain all the non-decomposable vertices. The next example
shows that this subgraph is not always large enough.
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Figure 1: Left Krieger cover of the shift considered in Example 3.2. Note
that the labelled graph is no longer a presentation of the same shift if the
decomposable predecessor set P = P1 ∪ P2 is removed.

Example 3.2. It is easy to check that the labelled graph in Figure 1 is the left
Krieger cover of a reducible sofic shift X . Note that the predecessor set P is
decomposable since P = P1∪P2, and that the graph obtained by removing the
vertex P and all edges starting at or terminating at P is not a presentation of
the same sofic shift since there is no presentation of f∞dbjk∞ in this graph.
Note that there is a path from P to the vertex P ′ which is non-decomposable.

Together with Lemma 3.1, this example motivates the following definition.

Definition 3.3. The generalized left Fischer cover (G,LG) of a sofic shift X
is defined to be the subgraph of the left Krieger cover induced by G0 = {P ∈
K0 | P ≥ P ′, P ′ non-decomposable}.

The following proposition justifies the term generalized left Fischer cover.

Proposition 3.4.

(i) The generalized left Fischer cover of a sofic shift X is a left-resolving and
predecessor-separated presentation of X.

(ii) If X is an irreducible sofic shift then the generalized left Fischer cover is
isomorphic to the left Fischer cover.

(iii) If X1, X2 are sofic shifts with disjoint alphabets then the generalized left
Fischer cover of X1∪X2 is the disjoint union of the generalized left Fischer
covers of X1 and X2.

Proof. Given y− ∈ X−, choose x+ ∈ X+ such that y− ∈ P∞(x+) = P . By
definition of the generalized left Fischer cover, there exist vertices P1, . . . , Pn ∈
G0 such that P =

⋃n
i=1 Pi. Choose i such that y− ∈ Pi. By construction,

the left Krieger cover contains a path labelled y− terminating at Pi. Since
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Pi ∈ G0, this is also a path in the generalized left Fischer cover. This proves
that the generalized left Fischer cover is a presentation of X−, and hence also a
presentation of X . Since the left Krieger cover is left-resolving and predecessor-
separated, so is the generalized left Fischer cover.
Let X be an irreducible sofic shift, and identify the left Fischer cover (F,LF )
with the top irreducible component of the left Krieger cover (K,LK) [19,
Lemma 2.7]. By the construction of the generalized left Fischer cover, it fol-
lows that the left Fischer cover is a subgraph of the generalized left Fischer
cover. Let x+ ∈ X+ such that P = P∞(x+) is non-decomposable. Let S ⊆ F 0

be the set of vertices where a presentation of x+ in (F,LF ) can start. Then
P =

⋃
v∈S P∞(v), so P ∈ S ⊆ F 0 by assumption.

Since X1 and X2 have no letters in common, the left Krieger cover of X1∪X2 is
just the disjoint union of the left Krieger covers of X1 and X2. The generalized
left Fischer cover inherits this property from the left Krieger cover.

The shift consisting of two non-interacting copies of the even shift is a simple
example where the generalized left Fischer cover is a proper subgraph of the
left Krieger cover.

Lemma 3.5. Let X be a sofic shift with left Krieger cover (K,LK). If there is
an edge labelled a from a non-decomposable P ∈ K0 to a decomposable Q ∈ K0

then there exists a non-decomposable Q′ ∈ K0 and an edge labelled a from P
to Q′.

Proof. Choose x+ ∈ X+ such that P = P∞(ax+) and Q = P∞(x+). Since Q is
decomposable, there exist n > 1 and non-decomposable Q1, . . . , Qn ∈ K0 \{Q}
such that Q = Q1 ∪ · · · ∪ Qn. Let S be the set of predecessor sets P ′ ∈ K0

for which there is an edge labelled a from P ′ to Qj for some 1 ≤ j ≤ n.
Given y− ∈ P , y−ax+ ∈ X , so y−a ∈ Q. Choose 1 ≤ i ≤ n such that
y−a ∈ Qi. By construction, there exists P ′ ∈ S such that y− ∈ P ′. Reversely,
if y− ∈ P ′ ∈ S then there is an edge labelled a from P ′ to Qi for some
1 ≤ i ≤ n, so y−a ∈ Qi ⊆ Q. This implies that y−ax+ ∈ X , so y− ∈ P .
Thus P =

⋃
P ′∈S P

′, but P is non-decomposable, so this means that P ∈ S.
Hence, there is an edge labelled a from P to Qi for som i, and Qi is non-
decomposable.

The following proposition is an immediate consequence of this result and the
definition of the generalized left Fischer cover.

Proposition 3.6. The generalized left Fischer cover is essential.

The left Fischer cover of an irreducible sofic shift X is minimal in the sense
that no other left-resolving presentation of X has fewer vertices. This is not
always the case for the generalized left Fischer cover.
Canonical. Krieger proved that a conjugacy Φ: X1 → X2 between sofic
shifts with left Krieger covers (K1,L1) and (K2,L2), respectively, induces a
conjugacy ϕ : XK1 → XK2 such that Φ ◦ π1 = π2 ◦ ϕ when πi : XKi → Xi is the
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covering map of the left Krieger cover of Xi [19]. A cover with this property is
said to be canonical. The next goal is to prove that the generalized left Fischer
cover is canonical. This will be done by using results and methods used by
Nasu [34] to prove that the left Krieger cover is canonical.

Definition 3.7 (Bipartite code). When A, C,D are alphabets, an injective
map f : A → CD is called a bipartite expression. If X1, X2 are shift spaces
with alphabets A1 and A2, respectively, and if f1 : A1 → CD is a bipartite
expression then a map Φ: X1 → X2 is said to be a bipartite code induced
by f1 if there exists a bipartite expression f2 : A2 → DC such that one of the
following two conditions is satisfied:

(i) If x ∈ X1, y = Φ(x), and f1(xi) = cidi with ci ∈ C and di ∈ D for all
i ∈ Z then f2(yi) = dici+1 for all i ∈ Z.

(ii) If x ∈ X1, y = Φ(x), and f1(xi) = cidi with ci ∈ C and di ∈ D for all
i ∈ Z then f2(yi) = di−1ci for all i ∈ Z.

A mapping Φ: X1 → X2 is called a bipartite code, if it is the bipartite code
induced by some bipartite expression.

It is clear that a bipartite code is a conjugacy and that the inverse of a bipartite
code is a bipartite code.

Theorem 3.8 (Nasu [34, Thm. 2.4]). Any conjugacy between shift spaces can
be decomposed into a product of bipartite codes.

Let Φ: X1 → X2 be a bipartite code corresponding to bipartite expressions
f1 : A1 → CD and f2 : A2 → DC, and use the bipartite expressions to recode
X1 and X2 to

X̂1 = {(f1(xi))i | x ∈ X1} ⊆ (CD)Z

X̂2 = {(f2(xi))i | x ∈ X2} ⊆ (DC)Z.

For i ∈ {1, 2}, fi induces a one-block conjugacy from Xi to X̂i, and Φ induces
a bipartite code Φ̂ : X̂1 → X̂2 which commutes with these conjugacies. If Φ
satisfies condition (i) in the definition of a bipartite code then (Φ̂(x̂))i = dici+1

when x̂ = (cidi)i∈Z ∈ X̂1. If it satisfies condition (ii) then (Φ̂(x̂))i = di−1ci
when x̂ = (cidi)i∈Z ∈ X̂1. The shifts X̂1 and X̂2 will be called the recoded shifts
of the bipartite code, and Φ̂ will be called the recoded bipartite code.
A labelled graph (G,L) is said to be bipartite if G is a bipartite graph (i.e.
the vertex set can be partitioned into two sets (G0)1 and (G0)2 such that no
edge has its range and source in the same set). When (G,L) is a bipartite
labelled graph over an alphabet A, define two graphs G1 and G2 as follows:
For i ∈ {1, 2}, the vertex set of Gi is (G

0)i, the edge set is the set of paths of
length 2 in (G,L) for which both range and source are in (G0)i, and the range
and source maps are inherited from G. For i ∈ {1, 2}, define Li : G1

i → A2
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by Li(ef) = L(e)L(f). The pair (G1,L1), (G2,L2) is called the induced pair
of labelled graphs of (G,L). This decomposition is not necessarily unique, but
whenever a bipartite labelled graph is mentioned, it will be assumed that the
induced graphs are specified.

Remark 3.9 (Nasu [34, Remark 4.2]). Let (G,L) be a bipartite labelled graph
for which the induced pair of labelled graphs is (G1,L1), (G2,L2). Let X1

and X2 be the sofic shifts presented by these graphs, and let XG1 ,XG2 be the
edge shifts generated by G1, G2. The natural embedding f : G1

1 → (G1)2

is a bipartite expression which induces two bipartite codes ϕ± : XG1 → XG2

such that (ϕ+(x))i = fiei+1 and (ϕ−(x))i = fi−1ei when x = (eifi)i∈Z ∈
XG1 . Similarly, the embedding F : L1(G1

1)→ (L(G1))2 is a bipartite expression
which induces bipartite codes Φ± : X1 → X2 such that (Φ+(x))i = biai+1 and
(Φ−(x))i = bi−1ai when x = (aibi)i∈Z ∈ X1. By definition, Φ± ◦ π1 = π2 ◦ ϕ±
when π1 : XG1 → X1, π2 : XG2 → X2 are the covering maps. The bipartite
codes ϕ± and Φ± are called the standard bipartite codes induced by (G,L).

Lemma 3.10 (Nasu [34, Cor. 4.6 (1)]). Let Φ: X1 → X2 be a bipartite code
between sofic shifts X1 and X2. Let X̂1 and X̂2 be the recoded shifts of X1 and
X2 respectively, and let (K1,L1) and (K2,L2) be the left Krieger covers of X̂1

and X̂2 respectively. Then there exists a sofic shift X̂ for which the left Krieger
cover is a bipartite labelled graph such that the induced pair of labelled graphs
is (K1,L1), (K2,L2) and such that the recoded bipartite code Φ̂ : X̂1 → X̂2 of
Φ is one of the standard bipartite codes Φ± induced by the left Krieger cover of
X̂ as defined in Remark 3.9.

The proof of the following theorem is very similar to the proof of the corre-
sponding result by Nasu [34, Thm. 3.3] for the left Krieger cover.

Theorem 3.11. The generalized left Fischer cover is canonical.

Proof. Let Φ: X1 → X2 be a bipartite code. Let X̂1, X̂2 be the recoded shifts,
let (K1,L1), (K2,L2) be the corresponding left Krieger covers, and let Φ̂ : X̂1 →
X̂2 be the recoded bipartite code. Use Lemma 3.10 to find a sofic shift X̂ such
that the left Krieger cover (K,L) of X̂ is a bipartite labelled graph for which the
induced pair of labelled graphs is (K1,L1), (K2,L2). Let (G1,L1), (G2,L2),
and (G,L) be the generalized left Fischer covers of respectively X̂1, X̂2, and
X̂.
The labelled graph (G,L) is bipartite since G is a subgraph of K. Note that a
predecessor set P in K0

1 or K0
2 is decomposable if and only if the corresponding

predecessor set in K0 is decomposable. If i ∈ {1, 2} and Q ∈ G0
i ⊆ K0

i then
there is a path in Ki from Q to a non-decomposable P ∈ K0

i . By considering
the corresponding path in K, it is clear that the vertex in K0 corresponding
to Q is in G0. Conversely, if Q ∈ G0 then there is a path in K from Q to
a non-decomposable P ∈ K0. If P and Q belong to the same partition K0

i

then the vertex in Ki corresponding to Q is in G0
i by definition. On the other

hand, if Q corresponds to a vertex in Ki and if P belongs to the other partition
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then Lemma 3.5 shows that there exists a non-decomposable P ′ in the same
partition as Q and an edge from P to P ′ in K. Hence, there is also a path
in Ki from the vertex corresponding to Q to the vertex corresponding to P ′,
so Q ∈ G0

i . This proves that the pair of induced labelled graphs of (G,L) is
(G1,L1), (G2,L2).
Let Ψ̂± : X̂1 → X̂2 be the standard bipartite codes induced by (G,L). Remark

3.9 shows that there exist bipartite codes ψ̂± : XG1 → XG2 such that Ψ̂± ◦
π̂1|XG1

= π̂2|XG2
◦ ψ̂±. The labelled graph (G,L) presents the same sofic shift

as (K,L), so they both induce the same standard bipartite codes from X̂1 to
X̂2, and by Lemma 3.10, Φ̂ is one of these standard bipartite codes, so Φ̂ = Ψ̂+

or Φ̂ = Ψ̂−. In particular, there exists a bipartite code ψ̂ : XG1 → XG2 such

that Φ̂ ◦ π̂1|XG1
= π̂2|XG2

◦ ψ̂.
By recoding X̂1 to X1 and X̂2 to X2 via the bipartite expressions inducing Φ,
this gives a bipartite code ψ such that Φ ◦ π1 = π2 ◦ ψ when π1, π2 are the
covering maps of the generalized left Fischer covers of X1 and X2 respectively.
By Theorem 3.8, any conjugacy can be decomposed as a product of bipartite
codes, so this proves that the generalized left Fischer cover is canonical.

Theorem 3.12. For i ∈ {1, 2}, let Xi be a sofic shift with generalized left
Fischer cover (Gi,Li) and covering map πi : XGi → Xi. If Φ: SX1 → SX2 is
a flow equivalence then there exists a unique flow equivalence ϕ : SXG1 → SXG2

such that Φ ◦ Sπ1 = Sπ2 ◦ ϕ.
Proof. In [5] it is proved that the left Krieger cover respects symbol expansion:
If X is a sofic shift with alphabet A, a ∈ A, • is some symbol not in A, and if X̂
is obtained from X via a symbol expansion which inserts a • after each a then
the left Krieger cover of X̂ is obtained by replacing each edge labelled a in the
left Krieger cover of X by two edges in sequence labelled a and • respectively.
Clearly, the generalized left Fischer cover inherits this property. By [5], any
canonical cover which respects flow equivalence has the desired property, so the
result follows from Theorem 3.11.

4 Foundations and layers of covers

Let E = (E,L) be a finite left-resolving and predecessor-separated labelled
graph. For each V ⊆ E0 and each word w over the alphabet A of L define

wV = {u ∈ E0 | u is the source of a path labelled w terminating in V }.

Definition 4.1. Let S be a subset of the power set P(E0), and let ∼ be an
equivalence relation on S. The pair (S,∼) is said to be past closed if

• {v} ∈ S,

• {u} ∼ {v} implies u = v,

• aV 6= ∅ implies aV ∈ S, and

Documenta Mathematica 16 (2011) 111–131



120 Rune Johansen

• U ∼ V and aU 6= ∅ implies aV 6= ∅ and aU ∼ aV

for all u, v ∈ E0, U, V ∈ S, and a ∈ A.

Let (S,∼) be past closed. For each V ∈ S, let [V ] denote the equivalence class
of V with respect to ∼. When a ∈ A and V ∈ S, [V ] is said to receive a if
aV 6= ∅. For each [V ] ∈ S/∼, define |[V ]| = minV ∈[V ]|V |.

Definition 4.2. Define G(E , S,∼) to be the labelled graph with vertex set S/∼
for which there is an edge labelled a from [aV ] to [V ] whenever [V ] receives a.
For each n ∈ N, the nth layer of G(E , S,∼) is the labelled subgraph induced by
Sn = {[V ] ∈ S/∼ | n = |[V ]|}. E is said to be a foundation of any labelled
graph isomorphic to G(E , S,∼).

If a labelled graph H is isomorphic to G(E , S,∼) then the subgraph of H cor-
responding to the nth layer of G(E , S,∼) is be said to be the nth layer of H
with respect to E , or simply the nth layer if E is understood from the context.

Proposition 4.3. E and G(E , S,∼) present the same sofic shift, and E is la-
belled graph isomorphic to the first layer of G(E , S,∼).
Proof. By assumption, there is a bijection between E0 and the set of vertices
in the first layer of G(E , S,∼). By construction, there is an edge labelled a
from u to v in E if and only if there is an edge labelled a from [{u}] to [{v}] in
G(E , S,∼). Every finite word presented by G(E , S,∼) is also presented by E , so
they present the same sofic shift.

The following proposition motivates the use of the term layer by showing that
edges can never go from higher to lower layers.

Proposition 4.4. If [V ] ∈ S/∼ receives a ∈ A then |[aV ]| ≤ |[V ]|. If
G(E , S,∼) has an edge from a vertex in the mth layer to a vertex in the nth
layer then m ≤ n.

Proof. Choose V ∈ [V ] such that |V | = |[V ]|. Each u ∈ aV emits at least one
edge labelled a terminating in V , and E is left-resolving, so |[aV ]| ≤ |aV | ≤
|V | = |[V ]|. The second statement follows from the definition of G(E , S,∼).

Example 4.5. Let (F,LF ) be the left Fischer cover of an irreducible sofic
shift X . For each x+ ∈ X+, define s(x+) ⊆ F 0 to be the set of vertices
where a presentation of x+ can start. S = {s(x+) | x+ ∈ X+} ⊆ P(F 0) is
past closed since each vertex in the left Fischer cover is the predecessor set
of an intrinsically synchronizing right-ray, so the multiplicity set cover of X
can be defined to be G((F,LF ), S,=). An analogous cover can be defined by
considering the vertices where presentations of finite words can start. Thomsen
[37] constructs the derived shift space ∂X of X using right-resolving graphs,
but an analogous construction works for left-resolving graphs. The procedure
from [37, Example 6.10] shows that this ∂X is presented by the labelled graph
obtained by removing the left Fischer cover from the multiplicity set cover.
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Let X be a sofic shift, and let (K,LK) be the left Krieger cover of X . In order
to use the preceding results to investigate the structure of the left Krieger cover
and the past set cover, define an equivalence relation on P(K0) by U ∼∪ V if
and only if

⋃
P∈U P =

⋃
Q∈V Q. Clearly, {P} ∼∪ {Q} if and only if P = Q. If

U, V ⊆ K0, a ∈ A, aV 6= ∅, and U ∼∪ V then aU ∼∪ aV by the definition of
the left Krieger cover.

Theorem 4.6. For a sofic shift X, the generalized left Fischer cover (G,LG)
is a foundation of the left Krieger cover (K,LK), and no smaller subgraph is
a foundation.

Proof. Define S = {V ⊆ G0 | ∃x+ ∈ X+ such that P∞(x+) =
⋃
P∈V P}. Note

that {P} ∈ S for every P ∈ G0. If x+ ∈ X+ with P∞(x+) =
⋃
P∈V P and

if aV 6= ∅ for some a ∈ A then ax+ ∈ X+ and P∞(ax+) =
⋃
P∈aV P . This

proves that the pair (S,∼∪) is past closed, so G((G,LG), S,∼∪) is well defined.
Since (G,LG) is a presentation of X , there is a bijection ϕ : S/∼∪ → K0

defined by ϕ([V ]) =
⋃
P∈V P . By construction, there is an edge labelled a

from [U ] to [V ] in G((G,LG), S,∼∪) if and only if there exists x+ ∈ X+ such
that P∞(ax+) =

⋃
P∈U P and P∞(x+) =

⋃
Q∈V Q, so G((G,LG), S,∼∪) is

isomorphic to (K,LK). It follows from Lemma 3.1 that no proper subgraph of
(G,LG) can be a foundation of the left Krieger cover.

The example from [12, Section 4] shows that the left Krieger cover can be a
proper subgraph of the past set cover. The following lemma will be used to
further investigate this relationship.

Lemma 4.7. Let X be a sofic shift. For every right-ray x+ = x1x2x3 . . . ∈ X+

there exists n ∈ N such that P∞(x+) = P∞(x1x2 . . . xk) for all k ≥ n.

Proof. It is clear that P∞(x1) ⊇ P∞(x1x2) ⊇ · · · ⊇ P∞(x+). Since X is
sofic, there are only finitely many different predecessor sets of words, so there
must exist n ∈ N such that P∞(x1x2 . . . xk) = P∞(x1x2 . . . xn) for all k ≥ n.
If y− ∈ P∞(x1x2 . . . xn) is given, then y−x1x2 . . . xk ∈ X for all k ≥ n, so
y−x+ contains no forbidden words, and therefore y− ∈ P∞(x+). Since y− was
arbitrary, P∞(x+) = P∞(x1x2 . . . xn).

Theorem 4.8. For a sofic shift X, the generalized left Fischer cover (G,LG)
and the left Krieger cover (K,LK) are both foundations of the past set cover
(W,LW ).

Proof. Define S = {V ⊆ G0 | ∃w ∈ B(X) such that P∞(w) =
⋃
P∈V P},

and use Lemma 4.7 to conclude that S contains {P} for every P ∈ G0. By
arguments analogous to the ones used in the proof of Theorem 4.6, it follows
that G((G,LG), S,∼∪) is isomorphic to (W,LW ). To see that (K,LK) is also a
foundation, define T = {V ⊆ K0 | ∃w ∈ B(X) such that P∞(w) =

⋃
P∈V P},

and apply arguments analogous to the ones used above to prove that (W,LW )
is isomorphic to G((K,LK), T,∼∪).

Documenta Mathematica 16 (2011) 111–131



122 Rune Johansen

u v w x

+ + +

−−−

Figure 2: Left Fischer cover of the 3-charge constrained shift.
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Figure 3: Left Krieger cover of the 3-charge constrained shift.

In the following, the nth layer of the left Krieger cover (past set cover) will
always refer to the nth layer with respect to the generalized left Fischer cover
(G,LG). For a right-ray (word) x, P∞(x) is a vertex in the nth layer of the
left Kriger cover (past set cover) for some n ∈ N, and such an x is said to
be 1/n-synchronizing. Note that x is 1/n-synchronizing if and only if n is the
smallest number such that there exist P1, . . . , Pn ∈ G0 with

⋃n
i=1 Pi = P∞(x).

In an irreducible sofic shift with left Fischer cover (F,LF ), this happens if and
only if n is the smallest number such that there exist u1, . . . , un ∈ F 0 with⋃n
i=1 P∞(ui) = P∞(x).

Example 4.9. Figures 2 and 3 show, respectively, the left Fischer and the left
Krieger cover of the 3-charge constrained shift (see e.g. [21, Example 1.2.7] for
the definition of charge constrained shifts). There are 3 vertices in the second
layer of the left Krieger cover and two in the third. Note how the left Fischer
cover can be identified with the first layer of the left Krieger cover.

Corollary 4.10. If the left Krieger cover of a sofic shift is reducible then so
is the past set cover.

Proof. This follows from Proposition 4.4 and Theorem 4.8.
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5 The range of a flow invariant

Let E be a directed graph. Vertices u, v ∈ E0 properly communicate [1] if there
are paths µ, λ ∈ E∗ of length greater than or equal to 1 such that s(µ) = u,
r(µ) = v, s(λ) = v, and r(λ) = u. This relation is used to construct maximal
disjoint subsets of E0, called proper communication sets of vertices, such that
u, v ∈ E0 properly communicate if and only if they belong to the same subset.
The proper communication graph PC(E) is defined to be the directed graph
for which the vertices are the proper communication sets of vertices of E and
for which there is an edge from one proper communication set to another if and
only if there is a path from a vertex in the first set to a vertex in the second.
The proper communication graph of the left Krieger cover of a sofic shift space
is a flow-invariant [1].
Let X be an irreducible sofic shift with left Fischer cover (F,LF ) and left
Krieger cover (K,LK), and let E be the proper communication graph of K.
By construction, E is finite and contains no circuit. The left Fischer cover
is isomorphic to an irreducible subgraph of (K,LK) corresponding to a root
r ∈ E0 [19, Lemma 2.7], and by definition, there is an edge from u ∈ E0 to
v ∈ E0 whenever u > v. The following proposition gives the range of the
flow-invariant by proving that all such graphs can occur.

Proposition 5.1. Let E be a finite directed graph with a root and without
circuits. E is the proper communication graph of the left Krieger cover of an
AFT shift if there is an edge from u ∈ E0 to v ∈ E0 whenever u > v.

Proof. Let E be an arbitrary finite directed graph which contains no circuit
and which has a root r, and let Ẽ be the directed graph obtained from E by
adding an edge from u ∈ E0 to v ∈ E0 whenever u > v. The goal is to construct
a labelled graph (F,LF ) which is the left Fischer cover of an irreducible sofic
shift with the desired properties. For each v ∈ E0, let l(v) be the length of
the longest path from r to v. This is well-defined since E does not contain any
circuits. For each v ∈ E0, define n(v) = 2l(v) vertices v1, . . . , vn(v) ∈ F 0. The
single vertex corresponding to the root r ∈ E0 is denoted r1. For each v ∈ E0,
draw a loop of length 1 labelled av at each of the vertices v1, . . . , vn(v) ∈ F 0.
If there is an edge from u ∈ E0 to v ∈ E0 then l(v) > l(u). From each
vertex u1, . . . , un(u) draw n(u, v) = n(v)/n(u) = 2l(v)−l(u) ≥ 2 edges labelled

a1u,v, . . . , a
n(u,v)
u,v such that every vertex v1, . . . , vn(v) receives exactly one of these

edges. For each sink v ∈ E0 draw a uniquely labelled edge from each vertex
v1, . . . , vn(v) to r1. This finishes the construction of (F,LF ).
By construction, F is irreducible, right-resolving, and left-resolving. Addition-
ally, it is predecessor-separated because there is a uniquely labelled path to
every vertex in F 0 from r1. Thus, (F,LF ) is the left Fischer cover of an AFT
shift X . Let (K,LK) be the left Krieger cover of X .

For every v ∈ E0, P∞(a∞v ) =
⋃n(v)
i=1 P∞(vi) and no smaller set of vertices has

this property, so P∞(a∞v ) is a vertex in the n(v)th layer of the left Krieger
cover. There is clearly a loop labelled av at the vertex P∞(a∞v ), so it belongs
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Figure 4: A directed graph with root r and without circuits.
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a1y,z a2y,z a1y,z a2y,z

ax ax

ay ay
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Figure 5: Left Fischer cover of the sofic shift X considered in Example 5.2.

to a proper communication set of vertices. Furthermore, ba∞v ∈ X+ if and only
if b = av or b = aiu,v for some u ∈ E0 and 1 ≤ i ≤ n(u, v). By construction,

P∞(aiu,va
∞
v ) =

⋃n(u)
i=1 P∞(ui) = P∞(a∞u ), so there is an edge from P∞(a∞u ) to

P∞(a∞v ) if and only if there is an edge from u to v in E. This proves that E,
and hence also Ẽ, are subgraphs of the proper communication graph of K.
Since the edges which terminate at r1 are uniquely labelled, any x+ ∈ X+ which
contains one of these letters must be intrinsically synchronizing. If x+ ∈ X+

does not contain any of these letters then x+ must be eventually periodic with
x+ = wa∞v for some v ∈ E0 and w ∈ B(X). Thus, K only has the vertices
described above, and therefore the proper communication graph of K is Ẽ.

Example 5.2. To illustrate the construction used in the proof of Proposition
5.1, let E be the directed graph drawn in Figure 4. E has a unique maximal
vertex r and contains no circuit, so it is the proper communication graph of
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(F,LF )
r1

P∞(a∞x ) P∞(a∞y ) P∞(a∞z )

a1r,x

a2r,x
a1r,y a2r,y

a1r,z, a
2
r,z, a

3
r,z, a

4
r,z

a1y,z

a2y,z
ax ay az

Figure 6: Left Krieger cover of the shift space X considered in Example 5.2.
The structure of the irreducible component corresponding to the left Fischer
cover has been suppressed.

the left Krieger cover of an irreducible sofic shift. Note that l(x) = l(y) = 1
and that l(z) = 2. Figure 5 shows the left Fischer cover of a sofic shift X
constructed using the method from the proof of Proposition 5.1. Note that
the top and bottom vertices should be identified, and that the labelling of the
edges terminating at r1 has been suppressed. Figure 6 shows the left Krieger
cover of X , but the structure of the irreducible component corresponding to
the left Fischer cover has been suppressed to emphasize the structure of the
higher layers.

In [1], it was also remarked that an invariant analogous to the one discussed in
Proposition 5.1 is obtained by considering the proper communication graph of
the right Krieger cover. The following example shows that the two invariants
may carry different information.

Example 5.3. The labelled graph in Figure 7 is left-resolving, irreducible,
and predecessor-separated, so it is the left Fischer cover of an irreducible sofic
shift. Similarly, the labelled graph in Figure 8 is irreducible, right-resolving
and follower-separated, so it is the right Fischer cover of an irreducible sofic
shift. By considering the edges labelled d, it is easy to see that the two graphs
present the same sofic shift space X .

Every right-ray which contains a letter different from a or a′ is intrinsically
synchronizing, so consider a right-ray x+ ∈ X+ such that (x+)i ∈ {a, a′} for
all i ∈ N. By considering Figure 7, it is clear that P∞(x+) = P∞(u)∪P∞(v)∪
P∞(y) = P∞(y), so P (x+) is also in the first layer of the left Krieger cover.
Hence, the proper communication graph has only one vertex and no edges.

Every left-ray containing a letter different from a or a′ is intrinsically synchro-
nizing, so consider the left-ray a∞ ∈ X−. Figure 8 shows that F∞(a∞) =
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Figure 7: Left Fischer cover of the irreducible sofic shiftX discussed in Example
5.3.
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Figure 8: Right Fischer cover of the irreducible sofic shift X discussed in Ex-
ample 5.3.

F∞(u′) ∪ F∞(v′) and that no single vertex y′ in the right Fischer cover has
F∞(y′) = F∞(a∞), so there is a vertex in the second layer of the right Krieger
cover. In particular, the corresponding proper communication graph is non-
trivial.

6 C∗-Algebras associated to sofic shift spaces

Cuntz and Krieger [13] introduced a class of C∗-algebras which can naturally
be viewed as the universal C∗-algebras associated to shifts of finite type. This
was generalized by Matsumoto [23] who associated two C∗-algebras OX and
OX∗ to every shift space X , and these Matsumoto algebras have been studied
intensely [8, 18, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. The two Matsumoto
algebras OX and OX∗ are generated by elements satisfying the same relations,

Documenta Mathematica 16 (2011) 111–131



On the Structure of Covers of Sofic Shifts 127

but they are not isomorphic in general [12]. This paper will follow the approach
of Carlsen in [9] where a universal C∗-algebra OX̃ is associated to every one-

sided shift space X̃ . This also gives a way to associate C∗-algebras to every
two-sided shift since a two-sided shift X corresponds to two one-sided shifts
X+ and X−.
Ideal lattices. Let X be a sofic shift space and let OX+ be the universal
C∗-algebra associated to the one-sided shift X+ as defined in [9]. Carlsen
proved that OX+ is isomorphic to the Cuntz-Krieger algebra of the left Krieger
cover of X [8], so the lattice of gauge invariant ideals in OX+ is given by the
proper communication graph of the left Krieger cover of X [3, 20], and all
ideals are given in this way if the left Krieger cover satisfies Condition (K)
[36, Theorem 4.9]. Hence, Proposition 4.4 and Theorem 4.6 can be used to
investigate the ideal lattice of OX+ . For a reducible sofic shift, a part of the
ideal lattice is given by the structure of the generalized left Fischer cover, which
is reducible, but if X is an irreducible sofic shift, and the left Krieger cover of
X satisfies Condition (K) then the fact that the left Krieger cover has a unique
top component implies that OX+ will always have a unique maximal ideal. The
following proposition shows that all these lattices can be realized.

Proposition 6.1. Any finite lattice of ideals with a unique maximal ideal is
the ideal lattice of the universal C∗-algebra OX+ associated to an AFT shift X.

Proof. Let E be a finite directed graph whitout circuits and with a unique
maximal vertex. Consider the following slight modification of the algorithm
from the proof of Proposition 5.1. For each v ∈ E, draw two loops of length 1
at each vertex v1, . . . , vn(v) associated to v: One labelled av and one labelled
a′v. The rest of the construction is as before. Let (K,LK) be the left Krieger
cover of the corresponding sofic shift. As before, the proper communication
graph of K is given by E, and now (K,LK) satisfies Condition (K), so there is
a bijective correspondence between the hereditary subsets of E0 and the ideals
of C∗(K) ∼= OX+ . Since E was arbitrary, any finite ideal lattice with a unique
maximal ideal can be obtained in this way.

The C∗-algebras OX+ and OX− . Every two-sided shift spaceX corresponds
to two one-sided shift spaces X+ and X−, and this gives two natural ways to
associate a universal C∗-algebra to X . The next goal is to show that these two
C∗-algebras may carry different information about the shift space. Let OX−

be the universal C∗-algebra associated to the one-sided shift space (XT)+ as
defined in [9]. The left Krieger cover of XT is the transpose of the right Krieger
cover of X , so by [8], OX− is isomorphic to the Cuntz-Krieger algebra of the
transpose of the right Krieger cover of X .

Example 6.2. Let X be the sofic shift from Example 5.3. Note that the left
and right Krieger covers of X both satisfy Condition (K) from [36], so the
corresponding proper communication graphs completely determine the ideal
lattices of OX+ and OX− . The proper communication graph of the left Krieger
cover (K,LK) of X is trivial, so OX+ is simple, while there are precisely two
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vertices in the proper communication graph of the right Krieger cover of X , so
there is exactly one non-trivial ideal in OX− . In particular, OX+ and OX− are
not isomorphic.
Consider the edge shift Y = XK . This is an SFT, and the left and right Krieger
covers of Y are both (K,LId), where LId is the identity map on the edge setK1.
By [8], OX+ and OY + are isomophic to C∗(K). Similarly, OY − is isomorphic
to C∗(KT) and KT is an irreducible graph satisfying Condition (K), so OY −

is simple. In particular, OY − is not isomophic to OX− . This shows that the
C∗-algebras associated to X+ and X− are not always isomorphic, and that
there can exist a shift space Y such that OY + is isomorphic to OX+ while OY −

is not isomorphic to OX− .

An investigation of Condition (∗). In [12], two C∗-algebras OX and OX∗

are associated to every two-sided shift space X . The C∗-algebras OX , OX∗ ,
and OX+ are generated by partial isometries satisfying the same relations, but
OX+ is always universal unlike OX [9]. In [12], it is proved that OX and OX∗

are isomorphic when X satisifies a condition called Condition (∗). The example
from [12, Section 4] shows that not all sofic shift spaces satisfy this condition
by constructing a sofic shift where the left Krieger cover and the past set cover
are not isomorphic. The relationship between Condition (∗) and the structure
of the left Krieger cover and the past set cover is further clarified by the final
main result. For each l ∈ N and w ∈ B(X) define Pl(w) = {v ∈ B(X) |
vw ∈ B(X), |v| ≤ l}. Two words v, w ∈ B(X) are said to be l-past equivalent
if Pl(v) = Pl(w). For x+ ∈ X+, Pl(x

+) and l-past equivalence are defined
analogously.

Condition (∗). For every l ∈ N and every infinite F ⊆ B(X) such that Pl(u) =
Pl(v) for all u, v ∈ F there exists x+ ∈ X+ such that Pl(w) = Pl(x

+) for all
w ∈ F .

Lemma 6.3. A vertex P in the past set cover of a sofic shift X is in an essential
subgraph if and only if there exist infinitely many w ∈ B(X) such that P∞(w) =
P .

Proof. Let P be a vertex in an essential subgraph of the past set cover of
X , and let x+ ∈ X+ be a right ray with a presentation starting at P . Given
n ∈ N, there exists wn ∈ B(X) such that P = P∞(x1x2 . . . xnwn). To prove the
converse, let P be a vertex in the past set cover for which there exist infinitely
many w ∈ B(X) such that P = P∞(w). For each w, there is a path labelled
w[1,|w|−1] starting at P . There are no sources in the past set cover, so this
implies that P is not stranded.

Proposition 6.4. A sofic shift X satisfies Condition (∗) if and only if the left
Krieger cover is the maximal essential subgraph of the past set cover.

Proof. Assume that X satisfies Condition (∗). Let P be a vertex in an essential
subgraph of the past set cover and define F = {w ∈ B(X) | P∞(w) = P}.
Choose m ∈ N such that for all x, y ∈ B(X)∪X+, P∞(x) = P∞(y) if and only
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if Pm(x) = Pm(y). By Lemma 6.3, F is an infinite set, so Condition (∗) can
be used to choose x+ ∈ X+ such that Pm(x+) = Pm(w) for all w ∈ F . By the
choice of m, this means that P∞(x+) = P∞(w) = P for all w ∈ F , so P is a
vertex in the left Krieger cover.
To prove the other implication, assume that the left Krieger cover is the max-
imal essential subgraph of the past set cover. Let l ∈ N be given, and consider
an infinite set F ⊆ B(X) for which Pl(u) = Pl(v) for all u, v ∈ F . Since X is
sofic, there are only finitely many different predecessor sets, so there must exist
w ∈ F such that P∞(w) = P∞(v) for infinitely many v ∈ F . By Lemma 6.3,
this proves that P = P∞(w) is a vertex in the maximal essential subgraph of the
past set cover. By assumption, this means that it is a vertex in the left Krieger
cover, so there exists x+ ∈ X+ such that P∞(w) = P∞(x+). In particular,
Pl(x

+) = Pl(w) = Pl(v) for all v ∈ F , so Condition (∗) is satisfied.

In [2], it was proved that OX∗ is isomorphic to the Cuntz-Krieger algebra of the
past set cover of X when X satisfies a condition called Condition (I). According
to Carlsen [7], a proof similar to the proof which shows that OX+ is isomorphic
to the Cuntz-Krieger algebra of the left Krieger cover of X should prove that
OX∗ is isomorphic to the Cuntz-Krieger algebra of the subgraph of the past set
cover of X induced by the vertices P for which there exist infinitely many words
w such that P∞(w) = P . Using Lemma 6.3, this shows that OX∗ is always
isomorphic to the Cuntz-Krieger algebra of the maximal essential subgraph of
the past set cover of X .
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Abstract. A C∗-symbolic dynamical system (A, ρ,Σ) consists of a
unital C∗-algebra A and a finite family {ρα}α∈Σ of endomorphisms
ρα of A indexed by symbols α of Σ satisfying some conditions. The
endomorphisms ρα, α ∈ Σ yield both a subshift Λρ and a C∗-algebra
Oρ. We will study ergodic properties of the positive operator λρ =∑

α∈Σ ρα onA. We will next introduce KMS conditions for continuous
linear functionals on Oρ under gauge action at inverse temperature
taking its value in complex numbers. We will study relationships
among the eigenvectors of λρ in A∗, the continuous linear functionals
on Oρ satisfying KMS conditions and the invariant measures on the
associated one-sided shifts. We will finally present several examples
of continuous linear functionals satisfying KMS conditions.

2000 Mathematics Subject Classification: Primary 46L55, 37B10; Sec-
ondary 37D35.
Keywords and Phrases: C∗-algebra, symbolic dynamics, subshift, er-
godic, KMS condition, invariant measure.

1. Introduction

D. Olesen and G. K. Pedersen [37] have shown that the C∗-dynamical sys-
tem (ON , α,R) for the Cuntz algebra ON with gauge action α admits a KMS
state at the inverse temperature γ if and only if γ = logN , and the admit-
ted KMS state is unique. By Enomoto-Fujii-Watatani [9], the result has been
generalized to the Cuntz-Krieger algebras OA as γ = logrA, where rA is the
Perron-Frobenius eigenvalue for the irreducible matrix A with entries in {0, 1}.
These results are generalized to several classes of C∗-algebras having gauge
actions (cf. [7], [10], [11], [15], [17], [18], [27], [35], [36], [41], etc.).
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Cuntz-Krieger algebras are considered to be constructed by finite directed
graphs which yield an important class of symbolic dynamics called shifts of
finite type. In [29], the author has generalized the notion of finite directed
graphs to a notion of labeled Bratteli diagrams having shift like maps, which
we call λ-graph systems. A λ-graph system L gives rise to both a subshift ΛL

and a C∗-algebra OL with gauge action. Some topological conjugacy invari-
ants of subshifts have been studied through the C∗-algebras constructed from
λ-graph systems ([30]).
A C∗-symbolic dynamical system is a generalization of both a λ-graph system
and an automorphism of a unital C∗-algebra ([31]). It is a finite family {ρα}α∈Σ
of endomorphisms indexed by a finite set Σ of a unital C∗-algebra A such that
ρα(ZA) ⊂ ZA for α ∈ Σ and

∑
α∈Σ ρα(1) ≥ 1 where ZA denotes the center ofA.

A finite directed labeled graph G gives rise to a C∗-symbolic dynamical system
(AG , ρG ,Σ) such thatAG = CN for someN ∈ N. A λ-graph system L also gives
rise to a C∗-symbolic dynamical system (AL, ρ

L,Σ) such that AL is C(ΩL) for
some compact Hausdorff space ΩL with dimΩL = 0. A C∗-symbolic dynamical
system (A, ρ,Σ) yields a subshift denoted by Λρ over Σ and a Hilbert C∗-
bimodule (φρ,HρA) over A. By using general construction of C∗-algebras from
Hilbert C∗-bimodules established by M. Pimsner [40], a C∗-algebra denoted by
Oρ from (φρ,HρA) has been introduced in [31]. The C∗-algebraOρ is realized as
the universal C∗-algebra generated by partial isometries Sα, α ∈ Σ and x ∈ A
subject to the relations:

∑

γ∈Σ
SγS

∗
γ = 1, SαS

∗
αx = xSαS

∗
α, S∗αxSα = ρα(x)

for all x ∈ A and α ∈ Σ.We call the algebraOρ the C∗-symbolic crossed product
of A by the subshift Λρ. The gauge action on Oρ denoted by ρ̂ is defined by

ρ̂z(x) = x, x ∈ A and ρ̂z(Sα) = zSα, α ∈ Σ

for z ∈ C, |z| = 1. If A = C(X) with dimX = 0, there exists a λ-graph system
L such that Λρ is the subshift presented by L and Oρ is the C∗-algebra OL

associated with L. If in particular, A = CN , the subshift Λρ is a sofic shift
and Oρ is a Cuntz-Krieger algebra. If Σ = {α} an automorphism α of a unital
C∗-algebra A, the C∗-algebra Oρ is the ordinary C∗-crossed product A×α Z.
Throughout the paper, we will assume that the C∗-algebra A is commutative.
For a C∗-symbolic dynamical system (A, ρ,Σ), define the positive operator λρ
on A by

λρ(x) =
∑

α∈Σ
ρα(x), x ∈ A.

We set for a complex number β ∈ C the eigenvector space of λρ

Eβ(ρ) = {ϕ ∈ A∗ | ϕ ◦ λρ = βϕ}. (1.1)

Let Sp(ρ) be the set of eigenvalues of λρ defined by

Sp(ρ) = {β ∈ C | Eβ(ρ) 6= {0}}. (1.2)
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Let rρ denote the spectral radius of λρ on A. We set Tρ = 1
rρ
λρ. (A, ρ,Σ) is

said to be power-bounded if the sequence ‖T kρ ‖, k ∈ N is bounded. A state ϕ on
A is said to be invariant if ϕ ◦Tρ = ϕ. If an invariant state is unique, (A, ρ,Σ)
is said to be uniquely ergodic. If limn→∞ 1

n

∑n−1
k=0 T

k
ρ (a) exists in A for a ∈ A,

(A, ρ,Σ) is said to be mean ergodic. If there exists no nontrivial ideal of A
invariant under λρ, (A, ρ,Σ) is said to be irreducible. It will be proved that a
mean ergodic and irreducible (A, ρ,Σ) is uniquely ergodic and power-bounded
(Theorem 3.12).
Let A = [A(i, j)]Ni,j=1 be an irreducible matrix with entries in {0, 1}, and Si, i =
1, . . . , N be the canonical generating family of partial isometries of the Cuntz-
Krieger algebra OA. Let AA be the C∗-subalgebra of OA generated by the
projections SjS

∗
j , j = 1, . . . , N . Put Σ = {1, . . . , N} and ρAi (x) = S∗i xSi, x ∈

AA, i ∈ Σ. Then the triplet (AA, ρA,Σ) yields an example of C∗-symbolic
dynamical system such that its C∗-symbolic crossed product OρA is the Cuntz-
Krieger algebra OA. The above space Eβ(ρ) is identified with the eigenvector
space of the matrix A for an eigenvalue β. By Enomoto-Fujii-Watatani [9],
a tracial state ϕ ∈ Eβ(ρA) on AA extends to a KMS state for gauge action
on OA if and only if β = rA the Perron-Frobenius eigenvalue, and its inverse
temperature is log rA. The admitted KMS state is unique.
In this paper, we will study the space Eβ(ρ) of a general C∗-symbolic dynami-
cal system (A, ρ,Σ) for a general eigenvalue β in C not necessarily maximum
eigenvalue and then introduce KMS condition for inverse temperature taking
its value in complex numbers. In this generalization, we will study possibility
of extension of a continuous linear functional on A belonging to the eigen-
vector space Eβ(ρ) to the whole algebra Oρ as a continuous linear functional
satisfying KMS condition. For a C∗-algebra with a continuous action of the
one-dimensional torus group T = R/2πZ and a complex number β ∈ C, we
will introduce KMS condition for a continuous linear functional without as-
suming its positivity at inverse temperature Logβ. Let B be a C∗-algebra and
α : T −→ Aut(B) be a continuous action of T to the automorphism group
Aut(B). We write a complex number β with |β| > 1 as β = reiθ where
r > 1, θ ∈ R. Denote by B∗ the Banach space of all complex valued continuous
linear functionals on B.
Definition. A continuous linear functional ϕ ∈ B∗ is said to satisfy KMS
condition at Logβ if ϕ satisfies the condition

ϕ(yαi log r(x)) = ϕ(αθ(x)y), x ∈ Ba, y ∈ B, (1.3)

where Ba is the set of analytic elements of the action α : T −→ Aut(B) (cf.[3]).
We will prove

Theorem 1.1. Let (A, ρ,Σ) be an irreducible and power-bounded C∗-symbolic
dynamical system. Let β ∈ C be a complex number with |β| > 1.

(i) If β ∈ Sp(ρ) and |β| = rρ the spectral radius of the positive operator
λρ : A −→ A, then there exists a nonzero continuous linear functional
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on Oρ satisfying KMS condition at Logβ under gauge action. The
converse implication holds if (A, ρ,Σ) is mean ergodic.

(ii) Under the condition |β| = rρ, there exists a linear isomorphism be-
tween the space Eβ(ρ) of eigenvectors of continuous linear functionals
on A and the space KMSβ(Oρ) of continuous linear functionals on Oρ
satisfying KMS condition at Logβ.

(iii) If (A, ρ,Σ) is uniquely ergodic, there uniquely exists a state on Oρ
satisfying KMS condition at log rρ.

(iv) If in particular (A, ρ,Σ) is mean ergodic, then dim Eβ(ρ) ≤ 1 for all
β ∈ C.

In the proof of the above theorem, a Perron-Frobenius type theorem is proved
(Theorem 3.13).
Let Dρ be the C∗-subalgebra of Oρ generated by all elements of the form:
Sα1 · · ·SαkxS∗αk · · ·S∗α1

for x ∈ A, α1, . . . , αk ∈ Σ. Let φρ be the endomorphism
on Dρ defined by φρ(y) =

∑
α∈Σ SαyS

∗
α, y ∈ Dρ, which comes from the left-shift

on the underlying shift spase Λρ. Suppose that (A, ρ,Σ) is uniquely ergodic.
The restriction of the unique KMS state on Oρ is not necessarily a φρ-invariant
state. We will clarify a relationship between KMS states onOρ and φρ-invariant
states on Dρ as in the following way:

Theorem 1.2. Assume that (A, ρ,Σ) is irreducible and mean ergodic. Let τ
be the restriction to Dρ of the unique KMS state on Oρ at logrρ and xρ be a
positive element of A defined by the limit of the mean

lim
n→∞

1

n
(1 + Tρ(1) + · · ·+ T n−1ρ (1)).

Let µρ be a linear functional on Dρ defined by

µρ(y) = τ(yxρ), y ∈ Dρ.
(i) µρ is a faithful, φρ-invariant and ergodic state on Dρ in the sense that

the formula

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = µρ(y)µρ(x), x, y ∈ Dρ

holds.
(ii) µρ gives rise to a unique φρ-invariant probability measure absolutely

continuous with respect to the probability measure for the state τ .
(iii) µρ is equivalent to the state τ as a measure on Dρ.

For a C∗-symbolic dynamical system (AA, ρA,Σ) coming from an irreducible
matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, the subalgebra DρA is nothing
but the commutative C∗-algebra C(XA) of all continuous functions on the
right one-sided topological Markov shift XA. As φρA corresponds to the left-
shift σA on XA, the above unique φρA -invariant state τ is the Parry measure
on XA. The positive element xρA is given by the positive Perron eigenvector
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xρA = [xj ]
N
j=1 of the transpose At of A satisfying

∑N
j=1 τ(SjS

∗
j )xj = 1, where

[τ(SjS
∗
j )]

N
j=1 is the normalized Perron eigenvector of A.

This paper is organized as follows: In Section 2, we will briefly review C∗-
symbolic dynamical systems and its C∗-algebrasOρ. In Section 3, we will study
ergodic properties of the operator Tρ : A −→ A and the eigenspace Eβ(ρ) . In
Section 4, we will study extendability of a linear functional belonging to Eβ(ρ)
to the subalgebra Dρ of Oρ, which will extend to Oρ. In Section 5, we will
prove Theorem 1.1. In Section 6, we will study a relationship between KMS
states and φρ-invariant states on Dρ to prove Theorem 1.2. In Section 7, we
will present several examples of continuous linear functionals on Oρ satisfying
KMS conditions.

2. C∗-symbolic dynamical systems and their crossed products

Let A be a unital C∗-algebra. In what follows, an endomorphism of A means a
∗-endomorphism ofA that does not necessarily preserve the unit 1 ofA. Denote
by ZA the center {x ∈ A | ax = xa for all a ∈ A} of A. Let Σ be a finite set.
A finite family of nonzero endomorphisms ρα, α ∈ Σ of A indexed by elements
of Σ is said to be essential if ρα(ZA) ⊂ ZA for α ∈ Σ and

∑
α∈Σ ρα(1) ≥ 1. If

in particular, A is commutative, the family ρα, α ∈ Σ is essential if and only
if
∑

α∈Σ ρα(1) ≥ 1. We remark that the definition in [31] of “essential” for
ρα, α ∈ Σ is weaker than the above dfinition. It is said to be faithful if for any
nonzero x ∈ A there exists a symbol α ∈ Σ such that ρα(x) 6= 0.
Definition ([31]). A C∗-symbolic dynamical system is a triplet (A, ρ,Σ) con-
sisting of a unital C∗-algebra A and an essential, faithful finite family {ρα}α∈Σ
of endomorphisms of A.
Two C∗-symbolic dynamical systems (A, ρ,Σ) and (A′, ρ′,Σ′) are said to be
isomorphic if there exist an isomorphism Φ : A → A′ and a bijection π : Σ→ Σ′

such that Φ ◦ ρα = ρ′π(α) ◦Φ for all α ∈ Σ. For an automorphism α of a unital

C∗-algebra A, by setting Σ = {α}, ρα = α the triplet (A, ρ,Σ) becomes a C∗-
symbolic dynamical system. A C∗-symbolic dynamical system (A, ρ,Σ) yields
a subshift Λρ over Σ such that a word α1 · · ·αk of Σ is admissible for Λρ if and
only if ραk ◦ · · · ◦ ρα1 6= 0 ([31, Proposition 2.1]). We say that a subshift Λ acts
on a C∗-algebra A if there exists a C∗-symbolic dynamical system (A, ρ,Σ)
such that the associated subshift Λρ is Λ.
For a C∗-symbolic dynamical system (A, ρ,Σ) the C∗-algebra Oρ has been
originally constructed in [31] as a C∗-algebra from a Hilbert C∗-bimodule by
using a Pimsner’s general construction of Hilbert C∗-bimodule algebras [40]
(cf. [16] etc.). It is called the C∗-symbolic crossed product of A by the subshift
Λρ, and realized as the universal C∗-algebra C∗(x, Sα;x ∈ A, α ∈ Σ) generated
by x ∈ A and partial isometries Sα, α ∈ Σ subject to the following relations
called (ρ):

∑

γ∈Σ
SγS

∗
γ = 1, SαS

∗
αx = xSαS

∗
α, S∗αxSα = ρα(x)

for all x ∈ A and α ∈ Σ.
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Let G = (G, λ) be a left-resolving finite labeled graph with underlying finite
directed graph G = (V,E) and labeling map λ : E → Σ (see [28, p.76]). Denote
by v1, . . . , vN the vertex set V . Assume that every vertex has both an incoming
edge and an outgoing edge. Consider the N -dimensional commutative C∗-
algebra AG = CE1⊕· · ·⊕CEN where each minimal projection Ei corresponds
to the vertex vi for i = 1, . . . , N . Define an N ×N -matrix for α ∈ Σ by

AG(i, α, j) =

{
1 if there exists an edge e from vi to vj with λ(e) = α,

0 otherwise (2.1)

for i, j = 1, . . . , N . We set ρGα(Ei) =
∑N

j=1 A
G(i, α, j)Ej for i = 1, . . . , N.

Then ρGα, α ∈ Σ define endomorphisms of AG such that (AG , ρG ,Σ) is a C∗-
symbolic dynamical system for which the subshift ΛρG is the sofic shift ΛG
presented by G. Conversely, for a C∗-symbolic dynamical system (A, ρ,Σ), if
A is CN , there exists a left-resolving labeled graph G such that A = AG and
Λρ = ΛG the sofic shift presented by G ([31, Proposition 2.2]). Put AG(i, j) =∑

α∈ΣA
G(i, α, j), i, j = 1, . . . , N. The N × N matrix AG = [AG(i, j)]i,j=1,...,N

is called the underlying nonnegative matrix for G. Consider the matrix A
[2]
G =

[A
[2]
G (e, f)]e,f∈E indexed by edges E whose entries are in {0, 1} by setting

A
[2]
G (e, f) =

{
1 if f follows e,

0 otherwise.
(2.2)

The C∗-algebra OρG for the C∗-symbolic dynamical system (AG , ρG ,Σ) is the
Cuntz-Krieger algebra O

A
[2]

G

(cf. [30, Proposition 7.1], [1]).

More generally let L be a λ-graph system (V,E, λ, ι) over Σ. We equip each
vertex set Vl with discrete topology. We denote by ΩL the compact Hausdorff

space with dimΩL = 0 of the projective limit V0
ι← V1

ι← V2
ι← · · · as in

[30, Section 2]. Since the algebra C(Vl) denoted by AL,l of all continuous
functions on Vl is the commutative finite dimensional algebra, the commutative
C∗-algebra C(ΩL) is an AF-algebra, that is denoted by AL. We then have a
C∗-symbolic dynamical system (AL, ρ

L,Σ) such that the subshift ΛρL coincides
with the subshift ΛL presented by L. Conversely, for a C∗-symbolic dynamical
system (A, ρ,Σ), if the algebra A is C(X) with dimX = 0, there exists a λ-
graph system L over Σ such that the associated C∗-symbolic dynamical system
(AL, ρ

L,Σ) is isomorphic to (A, ρ,Σ) ([31, Theorem 2.4]). The C∗-algebra OρL
is the C∗-algebra OL associated with the λ-graph system L.
Let α be an automorphism of a unital C∗-algebra A. Put Σ = {α} and ρα =
α. The C∗-algebra Oρ for the C∗-symbolic dynamical system (A, ρ,Σ) is the
ordinary C∗-crossed product A×α Z.

In what follows, for a subset F of a C∗-algebra B, we will denote by C∗(F ) the
C∗-subalgebra of B generated by F .
Let (A, ρ,Σ) be a C∗-symbolic dynamical system over Σ and Λ the associated
subshift Λρ. We denote by Bk(Λ) the set of admissible words µ of Λ with length
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|µ| = k. Put B∗(Λ) = ∪∞k=0Bk(Λ), where B0(Λ) consists of the empty word.
Let Sα, α ∈ Σ be the partial isometries in Oρ satisfying the relation (ρ). For
µ = (µ1, . . . , µk) ∈ Bk(Λ), we put Sµ = Sµ1 · · ·Sµk and ρµ = ρµk ◦ · · · ◦ ρµ1 . In
the algebra Oρ, we set for k ∈ Z+,

Dkρ = C∗(SµxS
∗
µ : µ ∈ Bk(Λ), x ∈ A),

Dρ = C∗(SµxS
∗
µ : µ ∈ B∗(Λ), x ∈ A),

Fkρ = C∗(SµxS
∗
ν : µ, ν ∈ Bk(Λ), x ∈ A) and

Fρ = C∗(SµxS
∗
ν : µ, ν ∈ B∗(Λ), |µ| = |ν|, x ∈ A).

The identity SµxS
∗
ν =

∑
α∈Σ Sµαρα(x)S

∗
να for x ∈ A, µ, ν ∈ Bk(Λ) holds so

that the algebra Fkρ is embedded into the algebra Fk+1
ρ such that ∪k∈Z+Fkρ

is dense in Fρ. Similarly Dkρ is embedded into the algebra Dk+1
ρ such that

∪k∈Z+Dkρ is dense in Dρ. The gauge action ρ̂ of the one-dimensional torus
group T = {z ∈ C | |z| = 1} on Oρ is defined by ρ̂z(x) = x for x ∈ A and
ρ̂z(Sα) = zSα for α ∈ Σ. The fixed point algebra of Oρ under ρ̂ is denoted by
(Oρ)ρ̂. Let Eρ : Oρ −→ (Oρ)ρ̂ be the conditional expectaton defined by

Eρ(X) =

∫

z∈T
ρ̂z(X)dz, X ∈ Oρ. (2.3)

It is routine to check that (Oρ)ρ̂ = Fρ.
Definition ([33]). A C∗-symbolic dynamical system (A, ρ,Σ) satisfies condi-
tion (I) if there exists a unital increasing sequence

A0 ⊂ A1 ⊂ · · · ⊂ A
of C∗-subalgebras ofA such that ρα(Al) ⊂ Al+1 for all l ∈ Z+, α ∈ Σ, the union
∪l∈Z+Al is dense in A and for ǫ > 0, k, l ∈ N with k ≤ l and X0 ∈ Fkρ,l =
C∗(SµxS∗ν : µ, ν ∈ Bk(Λ), x ∈ Al), there exists an element g ∈ Dρ∩Al′(= {y ∈
Dρ | ya = ay for a ∈ Al}) with 0 ≤ g ≤ 1 such that

(i) ‖X0φ
k
ρ(g)‖ ≥ ‖X0‖ − ǫ,

(ii) gφmρ (g) = 0 for all m = 1, 2, . . . , k, where φmρ (X) =
∑

µ∈Bm(Λ) SµXS
∗
µ.

As the element g belongs to the diagonal subalgebra Dρ of Fρ, the condition
(I) is intrinsically determined by (A, ρ,Σ) by virtue of [31, Lemma 4.1]. The
condition (I) for (A, ρ,Σ) yields the uniqueness of the C∗-algebra Oρ under the
relations (ρ) ([33]).
If a λ-graph system L over Σ satisfies condition (I), then (AL, ρ

L,Σ) satisfies
condition (I) (cf. [30, Lemma 4.1]).
Recall that the positive operator λρ : A −→ A is defined by λρ(x) =∑

α∈Σ ρα(x), x ∈ Σ. Then a C∗-symbolic dynamical system (A, ρ,Σ) is said
to be irreducible, if there exists no nontrivial ideal of A invariant under λρ. It
has been shown in [31] that if (A, ρ,Σ) satisfies condition (I) and is irreducible,
then the C∗-algebra Oρ is simple.
Interesting examples of (A, ρ,Σ) in [31], [34] which we have seen from the
view point of symbolic dynamics come from ones for which A is commutative.
Hence we assume that the algebra A is commutative so that A is written as
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C(Ω) for some compact Hausdorff space Ω henceforth. For the cases that A is
noncommutative, our discussions in this paper well work by considering tracial
states on A in stead of states on A under slight modifications.

3. Ergodicity and Perron-Frobenius type theorem

In this section, we will study ergodic properties of a C∗-symbolic dynamical
system (A, ρ,Σ) and prove a Perron-Frobenius type theorem.
Let A∗ denote the Banach space of all complex valued continuous linear func-
tionals on A. For β ∈ C with β 6= 0, set

Eβ(ρ) = {ϕ ∈ A∗ | ϕ ◦ λρ(a) = βϕ(a) for all a ∈ A}.
It is possible that Eβ(ρ) is {0}. A nonzero continuous linear functional ϕ in
Eβ(ρ) is called an eigenvector of the operator λ∗ρ with respect to the eigenvalue
β. Let rρ be the spectral radius of the positive operator λρ : A −→ A. Since
λkρ(1) ≥ 1, k ∈ N, one sees that rρ ≥ 1. As Sp(λρ) = Sp(λ∗ρ) (cf. [8, VI. 2.7]),
we note rρ = r(λ∗ρ). Let S(A) denote the state space of A.
Lemma 3.1. (A, ρ,Σ) is irreducible if and only if for a state ϕ on A and a
nonzero element x ∈ A, there exists a natural number n such that ϕ(λnρ (x

∗x)) >
0.

Proof. Suppose that (A, ρ,Σ) is irreducible. For a state ϕ on A, put
Iϕ = {x ∈ A|ϕ(λnρ (x∗x)) = 0 for all n ∈ N}

which is an ideal of A because A is commutative. The Schwarz type inequality

λnρ (λρ(x)
∗λρ(x)) ≤ ‖λρ‖λn+1

ρ (x∗x) for x ∈ A
implies that Iϕ is λρ-invariant. Hence Iϕ is trivial.
Conversely, let I be an ideal of A invariant under λρ. Put B = A/I. Denote
by q : A −→ B the quotient map. Take ψ ∈ S(B) a state. Put ϕ = ψ ◦ q. For
y ∈ I, as ϕ(λnρ (y∗y)) = 0, n ∈ N, one sees that y = 0 and hence I = {0} by the
hypothesis. Hence (A, ρ,Σ) is irreducible. �

We denote by Tρ : A −→ A the positive operator 1
rρ
λρ. The spectral radius

of Tρ is 1. A state τ on A is called an invariant state if τ ◦ Tρ = τ on A,
equivalently τ ∈ Erρ(ρ).
Corollary 3.2. Suppose that (A, ρ,Σ) is irreducible. Then any positive eigen-
vector of λ∗ρ for a nonzero eigenvalue is faithful.

Proof. Let ϕ ∈ Eβ(ρ) be a positive linear functional for some nonzero β ∈ C.
Since ϕ(λρ(1)) = βϕ(1), one has β > 0. By the preceding lemma, one has
ϕ(x∗x) > 0 for nonzero x ∈ A. �

Yasuo Watatani has kindly informed to the author that the lemma below, which
is seen from [41, Theorem 2.5], is needed in the proof of Lemma 3.4. In our
restrictive situation, we may directly prove it as in the following way.
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Lemma 3.3. The spectral radius rρ of the operator λρ is contained in the spec-
trum Sp(λρ) of λρ.

Proof. The resolvent R(z) = (z − λρ)
−1 for λρ has the expansion R(z) =∑∞

n=0
λρ
n

zn+1 for z ∈ C, |z| > rρ which converges in norm. We note that the
family {R(z)}|z|>rρ is not uniformly bounded. Otherwise, there exists a con-
stant M > 0 such that ‖R(z)‖ < M for z ∈ C, |z| > rρ. By the compactness
of Sp(λρ), we may find z◦ ∈ Sp(λρ) with |z◦| = rρ. Take zn 6∈ Sp(λρ) satisfy-
ing limn→∞ zn = z◦ and |zn| > rρ. The resolvent equation R(zn) − R(zm) =
(zn − zm)R(zn)R(zm) implies the inequality ‖R(zn)−R(zm)‖ ≤ |zn − zm|M2

so that there exists a bounded linear operator R◦ = limn→∞R(zn) on A. The
equality (zn−λρ)R(zn)x = x, x ∈ A implies (z◦−λρ)R◦x = x, x ∈ A and hence
z◦ 6∈ Sp(λρ) a contradiction. Thus there exists rn ∈ C such that |rn| 6∈ Sp(λρ)
and |rn| ↓ rρ and limn→∞ ‖R(rn)f‖ = ∞ for some f ∈ A. We may assume
that f ≥ 0. For a state ϕ on A, one has

|ϕ(R(rn)f)| ≤
∞∑

k=0

ϕ(λρ
k(f))

|rn|k+1
= ϕ(R(|rn|)f).

Denote by w(y) the numerical radius of an element y ∈ A, which is defined by

w(y) = sup{ϕ(y) | ϕ ∈ S(A)}.
As the inequalities 1

2‖y‖ ≤ w(y) ≤ ‖y‖ always hold (cf. [13, p.95]), one sees

1

2
‖R(rn)f‖ ≤ w(R(rn)f) ≤ w(R(|rn|)f) ≤ ‖R(|rn|)f‖

so that
lim
n→∞

‖R(|rn|)f‖ =∞.
If rρ 6∈ Sp(λρ), the condition |rn| 6∈ Sp(λρ) means that R(|rn|) ↑ R(rρ) because
R(z) increases for z ↓ rρ. Hence R(|rn|)f ↑ R(rρ)f and limn→∞ ‖R(|rn|)f‖ =
‖R(rρ)f‖ <∞, a contradiction. Therefore we conclude rρ ∈ Sp(λρ). �

The following lemma is crucial.

Lemma 3.4. Suppose that (A, ρ,Σ) is irreducible. Then there exists a faithful
invariant state on A.
Proof. We denote by R∗(t) the resolvent of λ∗ρ : A∗ → A∗ defined by R∗(t)ϕ =

(t − λ∗ρ)−1ϕ for ϕ ∈ A∗, t > r(λ∗ρ). As rρ = r(λ∗ρ), there exists ϕ0 ∈ A∗ such
that ‖R∗(t)ϕ0‖ is unbounded for t ↓ rρ by Lemma 3.3. We may assume that
ϕ0 is a state on A. Put

ϕn =
R∗(rρ + 1

n )ϕ0

‖R∗(rρ + 1
n )ϕ0‖

for n = 1, 2, ....

Since R∗(t) is positive for t > rρ, each ϕn is a state on A so that there exists
a weak∗ cluster point ϕ∞ ∈ S(A) of the sequence {ϕn} in S(A). As we see

(rρ − λ∗ρ)ϕn = − 1

n
ϕn +

ϕ0

‖R∗(rρ + 1
n )ϕ0‖

,
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we get rρϕ∞ = λ∗ρϕ∞ so that ϕ∞ ∈ Erρ(ρ). By Corollary 3.2, one knows that
ϕ∞ is faithful on A. �

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to be uniquely
ergodic if there exists a unique invariant state on A. Denote by τ the unique
invariant state.
If (A, ρ,Σ) is irreducible and uniquely ergodic, the unique invariant state τ is
automatically faithful because any invariant state is faithful.
There is an example of a C∗-symbolic dynamical system (A, ρ,Σ) for which
a unique invariant state is not faithful, unless (A, ρ,Σ) is irreducible. Let

A = C ⊕ C, Σ = {1, 2} and ρ1 =

[
1 0
0 0

]
, ρ2 =

[
1 0
0 1

]
. Then λρ =

[
2 0
0 1

]
,

rρ = 2 and Tρ =

[
1 0
0 1

2

]
. The vector

[
1
0

]
is a unique invariant state on A, that

is not faithful.
We will see, in Section 7, that the C∗-symbolic dynamical system (AG , ρG ,Σ)
for a finite labeled graph G is uniquely ergodic if and only if the underlying
nonnegative matrix AG is irreducible.
We will next consider the eigenvector space of the operator λρ on A. We are
assuming that the algebra A is commutative so that A is written as C(Ω) for
some compact Hausdorff space Ω.

Lemma 3.5. Assume that (A, ρ,Σ) is irreducible.

(i) If Tρ has a nonzero fixed element in A, then Tρ has a nonzero positive
fixed element in A,

(ii) A nonzero positive fixed element by Tρ in A must be strictly positive.
(iii) If there exist two nonzero positive fixed elements by Tρ in A, then one

is a scalar multiple of the other.
(iv) The dimension of the space consisting of the fixed elements by Tρ is at

most one.

Proof. (i) Let y ∈ A be a nonzero fixed element by Tρ. Since y
∗ is also fixed by

Tρ, we may assume that y = y∗. Denote by y = y+ − y− with y+, y− ≥ 0 the
Jordan decomposition of y. We have y+ ≥ y and hence Tρ(y

+) ≥ Tρ(y) = y.
As Tρ(y

+) ≥ 0, one sees that Tρ(y
+) ≥ y+. Now (A, ρ,Σ) is irreducible so that

there exists a faithful invariant state τ on A. Since τ(Tρ(y
+) − y+) = 0, one

has Tρ(y
+) = y+. Similarly we have Tρ(y

−) = y−. As y 6= 0, either y+ or y−

is not zero.
(ii) Let y ∈ A be a nonzero fixed positive element by Tρ. Suppose that there
exists ω0 ∈ Ω such that y(ω0) = 0. Let Iy be the closed ideal of A generated
by y. For a nonzero positive element f ∈ A we have

Tρ(fy) ≤ ‖f‖Tρ(y) = ‖f‖y
so that Tρ(fy) belongs to Iy. As the ideal Iy is approximated by linear combi-
nations of the elements of the form fy, f ∈ A, f ≥ 0, the ideal Iy is invariant
under Tρ. Now (A, ρ,Σ) is irreducible so that Iy = A. As any element of Iy
vanishes at ω0, a contradiction.
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(iii) Let x, y ∈ A be nonzero positive fixed elements by Tρ. By the above

discussions, they are strictly positive. Set c0 = min{x(ω)y(ω) | ω ∈ Ω}. The
function x − c0y is positive element but not strictly positive, so that it must
be zero.
(iv) Let y ∈ A be a fixed element under Tρ, which is written as the Jordan
decomposition y = y1−y2+i(y3−y4) for some positive elements yi, i = 1, 2, 3, 4
in A. By the above discussions, all the elements yi, i = 1, 2, 3, 4 are fixed under
Tρ and they are strictly positive if it is nonzero. Hence (iii) implies the desired
assertion. �

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to satisfy (FP)
if there exists a nonzero fixed element in A under Tρ.
If in particular, (A, ρ,Σ) is irreducible, a nonzero fixed element can be taken
as a strictly positive element in A by the previous lemma.

Lemma 3.6. Assume that (A, ρ,Σ) is irreducible and satisfies (FP).

(i) If there exists a state in Eβ(ρ) for some β ∈ C with β 6= 0, then we
have β = rρ.

(ii) If in particular, (A, ρ,Σ) is uniquely ergodic, the eigenspace Erρ(ρ) is
of one-dimensional.

Proof. (i) Suppose that there exists a state ψ in Eβ(ρ) for some β ∈ C with
β 6= 0. Let x0 ∈ A be a nonzero fixed element by Tρ. One may take it to be
strictly positive by the preceding lemma. Since λρ(x0) = rρx0, one has

βψ(x0) = ψ(λρ(x0)) = rρψ(x0).

By Corollary 3.2, one has ψ(x0) > 0 so that β = rρ.

(ii) Take an arbitrary ϕ ∈ Erρ(ρ). Put ϕ∗(x) = ϕ(x∗), x ∈ A and hence

ϕ∗ ∈ Erρ(ρ). Both of the continuous linear functionals ϕRe = 1
2 (ϕ + ϕ∗) and

ϕIm = 1
2i (ϕ − ϕ∗) belong to Erρ(ρ) which come from real valued measures

on Ω. Put ψ = ϕRe. Let ψ = ψ+ − ψ− be the Jordan decomposition of ψ,
where ψ+, ψ− are positive linear functionals on A. Since ψ+ ≥ ψ, one has
T ∗ρψ+ ≥ T ∗ρψ = ψ. As T ∗ρψ+ is positive, one has T ∗ρψ+ ≥ ψ+. Now (A, ρ,Σ)
is irreducible and satisfies (FP) so that one finds a strictly positive element

x0 ∈ A fixed by Tρ. Then ψ̃ = T ∗ρψ+ − ψ+ is a positive linear functional

satisfying ψ̃(x0) = 0. It follows that ψ̃ = 0 so that T ∗ρψ+ = ψ+. Similarly
we have T ∗ρψ− = ψ−. As both ψ+, ψ− are positive linear functionals on A,
the unique ergodicity asserts that there exist 0 ≤ c+, c− ∈ R such that ψ+ =
c+τ, ψ− = c−τ . By putting cRe = c+ − c−, one has ϕRe = cReτ and similarly
ϕIm = cImτ for some real number cIm. Therefore we have

ϕ = (cRe + icIm)τ.

Hence any continuous linear functional fixed by Tρ is a scalar multiple of τ , so
that

dim Erρ(ρ) = 1.

�
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A C∗-symbolic dynamical system (A, ρ,Σ) is said to be power-bounded if the
sequence {‖T kρ ‖ | k ∈ N} is bounded. As T kρ : A −→ A is completely positive,

the equalities ‖T kρ ‖ = ‖T kρ (1)‖ = ‖ 1
rρk

∑
µ∈Bk(Λ) ρµ(1)‖ hold. We remark that

for an irreducible matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, the associ-

ated C∗-symbolic dynamical system (AA, ρA,Σ) defined in the Cuntz-Krieger
algebra OA is power-bounded. One indeed sees that there is a constant d > 0
such that

N∑

i,j=1

Ak(i, j) ≤ d · rkA (cf. [28, Proposition 4.2.1]).

Hence

‖λkA(1)‖ = max
i

N∑

j=1

Ak(i, j) ≤ d · rkA.

Lemma 3.7. Assume that (A, ρ,Σ) is irreducible. If (A, ρ,Σ) satisfies (FP),
then (A, ρ,Σ) is power-bounded.

Proof. As (A, ρ,Σ) is irreducible and satisfies (FP), there exists a strictly pos-
itive fixed element x0 of A under Tρ. Since Ω is compact, one finds positive
constants c1, c2 such that 0 < c1 < x0(ω) < c2 for all ω ∈ Ω. It follows that

c1T
n
ρ (1) = T nρ (c11) ≤ T nρ (x0) = x0 ≤ c2, n ∈ N.

Thus we have ‖T nρ ‖ = ‖T nρ (1)‖ ≤ c2
c1

for n ∈ N. �

We define the mean operator Mn : A −→ A for n ∈ N by setting

Mn(a) =
a+ Tρ(a) + T 2

ρ (a) + · · ·+ T n−1ρ (a)

n
, a ∈ A. (3.1)

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to be mean
ergodic if for a ∈ A the limit limn→∞Mn(a) exists in A under norm-topology.
For a mean ergodic (A, ρ,Σ), the limit limn→∞Mn(1) exists in A under norm-
topology, which we denote by xρ ∈ A
Lemma 3.8. Assume that (A, ρ,Σ) is irreducible. For a mean ergodic (A, ρ,Σ),
we have for a ∈ A,

lim
n→∞

Mn(a) = lim
n→∞

Mn(Tρ(a)) = lim
n→∞

Tρ(Mn(a)). (3.2)

In particular xρ is a nonzero positive element which satisfies xρ = Tρ(xρ) and
τ(xρ) = 1 for an invariant state τ ∈ Erρ(ρ).
Proof. For a ∈ A, the equality Tρ(Mn(a)) =Mn(Tρ(a)) is clear. As

(n+ 1)Mn+1(a)− nMn(a) = T nρ (a),

one has
1

n
T nρ (a) =Mn+1(a)−Mn(a) +

1

n
Mn+1(a)
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so that limn→∞ 1
nT

n
ρ (a) = 0. By the equality

Tρ(Mn(a))−Mn(a) =
1

n
(T nρ (a)− a)

we have

lim
n→∞

(Tρ(Mn(a))−Mn(a)) = lim
n→∞

1

n
(T nρ (a)− a) = 0.

Take a faithful invariant state τ on A, we have

τ(xρ) = lim
n→∞

τ(Mn(1)) = τ(1) = 1.

�

Proposition 3.9. Assume that (A, ρ,Σ) is irreducible. If (A, ρ,Σ) is mean
ergodic, there exists a faithful invariant state τ on A such taht

lim
n→∞

Mn(a) = τ(a)xρ, a ∈ A. (3.3)

Proof. For a ∈ A, the limit Φ(a) = limn→∞Mn(a) is fixed by Tρ so that it is
a scalar multiple of xρ by Lemma 3.5 (iv). One may put

Φ(a) = τ(a)xρ for some τ(a) ∈ C.

It is easy to see that τ : A −→ C is a state. As Φ(Tρ(a)) = Φ(a), one sees
τ(Tρ(a)) = τ(a) for a ∈ A. Hence τ is an invariant state on A. Now (A, ρ,Σ)
is irreducible, the invariant state is faithful. �

Hence the following corollary is clear.

Corollary 3.10. Assume that (A, ρ,Σ) is irreducible. Then the following two
assertions are equivalent:

(i) (A, ρ,Σ) is mean ergodic.
(ii) There exist an invariant state τ on A and a positive element x0 ∈ A

with τ(x0) = 1 such that limn→∞Mn(a) = τ(a)x0 for a ∈ A.
In this case x0 is given by limn→∞Mn(1)(= xρ), and τ is faithful.

Theorem 3.11. Assume that (A, ρ,Σ) is irreducible. Then the following two
assertions are equivalent:

(i) (A, ρ,Σ) is mean ergodic.
(ii) (A, ρ,Σ) is uniquely ergodic and satisfies (FP).

Proof. (i) ⇒ (ii): Suppose that (A, ρ,Σ) is mean ergodic. Put Φ(a) =
limn→∞Mn(a) for a ∈ A. The element xρ = Φ(1) is a nonzero fixed ele-
ment of A under Tρ. By the previous corollary, there exists an invariant state
τ on A satisfying Φ(a) = τ(a)xρ for a ∈ A. For any invariant state ψ on
A, we have ψ ◦ Mn(a) = ψ(a) for a ∈ A. Hence ψ(Φ(a)) = ψ(a) so that
ψ(a) = ψ(τ(a)xρ) = τ(a)ψ(xρ). Since ψ(xρ) = 1, we obtain ψ(a) = τ(a).
Therefore ψ = τ so that (A, ρ,Σ) is uniquely ergodic.
(ii) ⇒ (i): Suppose that (A, ρ,Σ) is uniquely ergodic and satisfies (FP). By

Lemma 3.7, (A, ρ,Σ) is power-bounded. Hence the sequence { 1n
∑n−1
k=0 T

k
ρ }n∈N
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is uniformly bounded. This means that Tρ : A −→ A is Cesàro bounded (cf.

[22, p.72]). As limn→∞
Tn−1
ρ (a)

n = 0 for a ∈ A, the operator Tρ : A → A
satisfies the assumption of [22, p.74 Theorem 1.4]. To prove mean ergodicity,
it suffices to show that F = {x ∈ A | Tρx = x} separates F ∗ = {ϕ ∈ A∗ |
ϕ ◦ Tρ = ϕ}. By Lemma 3.6, one knows that F ∗ = Cτ , where τ is a unique
faithful invariant state on A. Hence if ϕ = cτ ∈ F ∗ is nonzero, then c 6= 0 and
ϕ(xρ) = cτ(xρ) = c 6= 0. This implies that F separates F ∗. Thus by [22, p.74
Theorem 1.4], (A, ρ,Σ) is mean ergodic. �

Remark. In [22, p.179], it is shown that a mean ergodic irreducible “Markov
operator ”is uniquely ergodic. In our situation, the operator Tρ does not nec-
essarily satisfy Tρ(1) = 1. Hence the operator Tρ is not necessarily a Markov
operator.

We summarize results obtained in this section as in the following way:

Theorem 3.12. Assume that (A, ρ,Σ) is irreducible. Then the following im-
plications hold:

(ME)⇐⇒ (UE)+ (FP) =⇒ (FP) =⇒ (PB)

⇓
dim Erρ(ρ) = 1 =⇒ (UE),

where (ME) means mean ergodic, (UE) means uniquely ergodic, and (PB)
means power-bounded.

If in particular (A, ρ,Σ) is irreducible and mean ergodic, the following Perron-
Frobenius type theorem holds.

Theorem 3.13. Assume that (A, ρ,Σ) is irreducible and mean ergodic.

(i) There exists a unique pair of a faithful state τ on A and a strictly
positive element xρ in A satisfying the conditions:

τ ◦ λρ = rρτ, λρ(xρ) = rρxρ and τ(xρ) = 1,

where rρ is the spectral radius of the positive operator λρ on A.
(ii) If there exists a continuous linear functional ψ on A satisfying

ψ ◦ λρ = rρψ,

then ψ = cτ for some complex number c ∈ C.
(iii) If there exists a state ϕ on A and a complex number β ∈ C with β 6= 0

satisfying

ϕ ◦ λρ = βϕ,

then ϕ = τ and β = rρ.
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(iv) For any a ∈ A, the limit limn→∞ 1
n

∑n−1
k=0

λkρ(a)

rkρ
exists in A in the norm

topology such that

lim
n→∞

1

n

n−1∑

k=0

λkρ(a)

rkρ
= τ(a)xρ.

Proof. Under the assumption that (A, ρ,Σ) is irreducible, mean ergodicity is
equivalent to unique ergodicity with (FP). (i) and (iv) follows from Corollary
3.10 and unique ergodicity. (ii) follows from Lemma 3.6 (ii). (iii) follows from
Lemma 3.6 (i) and unique ergodicity. �

4. Extension of eigenvectors to Fρ
In this section, we will study extendability of an eigenvector in Eβ(ρ) to the
subalgebra Fρ. We fix a C∗-symbolic dynamical system (A, ρ,Σ) satisfying
condition (I) henceforth.

Lemma 4.1. Fix a nonnegative integer k ∈ Z+. For any element x ∈ Fkρ there
uniquely exists xµ,ν in A for each µ, ν ∈ Bk(Λ) such that

x =
∑

µ,ν∈Bk(Λ)

Sµxµ,νS
∗
ν and xµ,ν = ρµ(1)xµ,νρν(1).

(4.1)

If in particular x belongs to Dkρ , there uniquely exists xµ in A for each µ ∈
Bk(Λ) such that

x =
∑

µ∈Bk(Λ)

SµxµS
∗
µ and xµ = ρµ(1)xµρµ(1). (4.2)

Proof. For an element x in Fkρ and µ, ν ∈ Bk(Λ), put xµ,ν = S∗µxSν that
belongs to A and satisfies the equalities (4.1). �

We set

Dρalg = the algebraic linear span of SµaS
∗
µ for µ ∈ B∗(Λ), a ∈ A, and

Fρalg = the algebraic linear span of SµaS
∗
ν for µ, ν ∈ B∗(Λ), |µ| = |ν|, a ∈ A.

Hence Dρalg = ∪∞k=0Dkρ and Fρalg = ∪∞k=0Fkρ . They are dense ∗-subalgebras of
Dρ and Fρ respectively.

Lemma 4.2. For β ∈ C with |β| > 1 and ϕ ∈ Eβ(ρ) on A, put

ϕ̃(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ). (4.3)

Then ϕ̃ is a well-defined (not necessarily continuous) linear functional on Dρalg,
that is an extension of ϕ.
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Proof. By the expansion (4.2) for an element x ∈ Dkρ , the following definition

of ϕk(x) yields a linear functional ϕk on Dkρ

ϕk(x) =
∑

µ∈Bk(Λ)

1

βk
ϕ(xµ). (4.4)

We will show that ϕk = ϕk+1 on Dkρ . As SµxµS∗µ =
∑

α∈Σ Sµαρα(xµ)S
∗
µα and

ρµα(1)ρα(xµ)ρµα(1) = S∗αρµ(1)xµρµ(1)Sα = ρα(xµ), the following expression
of x in Dk+1

ρ

x =
∑

µ∈Bk(Λ),α∈Σ
Sµαρα(xµ)S

∗
µα

is the unique expression of (4.2). Hence we obtain

ϕk+1(x) =
∑

µ∈Bk(Λ),α∈Σ

1

βk+1
ϕ(ρα(xµ)) =

1

βk

∑

µ∈Bk(Λ)

ϕ(xµ) = ϕk(x).

The family {ϕk}k∈Z+ of linear functionals on the subalgebras {Dkρ}k∈Z+ yields

a linear functional on the algebra Dρalg. We denote it by ϕ̃. As the expansion
a =

∑
α∈Σ Sαρα(a)S

∗
α for a ∈ A is the unique expansion of a in (4.2) as an

element of D1
ρ, we have ϕ̃(a) = 1

β

∑
α∈Σ ϕ(ρα(a)) = ϕ(a) so that ϕ̃ = ϕ on

A. �

We will extend λρ on A to Fρ such as

λρ(x) =
∑

α∈Σ
S∗αxSα for x ∈ Fρ.

Lemma 4.3. Let ψ be a linear functional on Fρalg such that its restriction to
A is continuous. Then the following three conditions are equivalent:

(i) ψ is tracial and ψ ◦ λρ(x) = βψ(x) for x ∈ Fρalg.
(ii) ψ(SµxS

∗
ν ) = δµ,ν

1
β|µ|ψ(xS

∗
µSµ) for x ∈ Fρalg, µ, ν ∈ B∗(Λ) with |µ| =

|ν|.
(iii) There exists ϕ ∈ Eβ(ρ) such that

ψ(SµaS
∗
ν ) = δµ,ν

1

β|µ|
ϕ(aρµ(1)) for a ∈ A, µ, ν ∈ B∗(Λ)with |µ| = |ν|.

Proof. (i) ⇒ (ii): The equation (i) implies that for k ∈ N,

ψ(x) =
1

βk

∑

γ∈Bk(Λ)

ψ(S∗γxSγ), x ∈ Fρalg.

It then follows that for µ, ν ∈ Bk(Λ)

ψ(SµxS
∗
ν ) =

1

βk

∑

γ∈Bk(Λ)

ψ(S∗γSµxS
∗
νSγ) = δµ,ν

1

βk
ψ(xS∗µSµ).
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(ii) ⇒ (iii): Define a linear functional ϕ on A by the restriction of ψ to the
subalgebra A. By the equation (ii) for a ∈ A and hence S∗αaSα ∈ A, we see

ψ(SαS
∗
αa) = ψ(SαS

∗
αaSαS

∗
α) =

1

β
ψ(S∗αaSαS

∗
αSα) =

1

β
ψ(S∗αaSα)

so that ϕ ∈ Eβ(ρ). The equation (iii) is clear.
(iii) ⇒ (i): We will see that ψ is tracial. Let x, y ∈ Fkρ be expanded as in (4.1)
so that x =

∑
µ,ν∈Bk(Λ) Sµxµ,νS

∗
ν , y =

∑
µ,ν∈Bk(Λ) Sµyµ,νS

∗
ν . We have

xy =
∑

µ,ν,γ∈Bk(Λ)

Sµxµ,νρν(1)yν,γS
∗
γ =

∑

µ,γ∈Bk(Λ)

Sµ(
∑

ν∈Bk(Λ)

xµ,νyν,γ)S
∗
γ

and
∑
ν∈Bk(Λ) xµ,νyν,γ = ρµ(1)(

∑
ν∈Bk(Λ) xµ,νyν,γ)ργ(1), similarly

yx =
∑

η,ν∈Bk(Λ)

Sη(
∑

γ∈Bk(Λ)

yη,γxγ,ν)S
∗
ν

and
∑
γ∈Bk(Λ) yη,γxγ,ν = ρη(1)(

∑
ν∈Bk(Λ) yη,γxγ,ν)ρν(1). It follows that

ψ(xy) =
∑

µ,ν∈Bk(Λ)

1

βk
ϕ(xµ,νyν,µ) =

∑

γ,η∈Bk(Λ)

1

βk
ϕ(yη,γxγ,η) = ψ(yx).

Hence ψ is tracial on Fkρ .
We will finally show that the equality in (i) holds. For SµaS

∗
ν ∈ Fkρ with a ∈

A, µ = (µ1, . . . , µk), ν = (ν1, . . . , νk) ∈ Bk(Λ), put µ[2,k] = (µ2, . . . , µk), ν[2,k] =
(ν2, . . . , νk) ∈ Bk−1(Λ). One has

∑

α∈Σ
ψ(S∗α(SµaS

∗
ν)Sα)

=δµ1,ν1ψ(ρµ1(1)Sµ[2,k]
aS∗ν[2,k]ρν1(1))

=δµ1,ν1ψ(Sµ[2,k]
S∗µ[2,k]

ρµ1(1)Sµ[2,k]
aS∗ν[2,k]ρν1(1)Sν[2,k]S

∗
ν[2,k]

)

=δµ1,ν1ψ(Sµ[2,k]
ρµ(1)aρν(1)S

∗
ν[2,k]

)

=δµ1,ν1δµ[2,k],ν[2,k]

1

βk−1
ϕ(ρµ(1)aρν(1)ρν[2,k](1))

=δµ,ν
1

βk−1
ϕ(ρµ(1)aρν(1))

=βψ(SµaS
∗
ν ).

�

Let ED : Fρ −→ Dρ denote the expectation satisfying

ED(SµaS
∗
ν ) = δµ,νSµaS

∗
µ, a ∈ A, µ, ν ∈ B∗(Λ), |µ| = |ν|.

Once we have an extension ϕ̃ to Dρ of ϕ ∈ Eβ(ρ), ϕ̃ has a further extension to
Fρ by ϕ̃ ◦ ED. The extension ϕ̃ ◦ ED on Fρ is continuous if ϕ̃ is so on Dρ. It
satisfies

ϕ̃ ◦ ED(SµaS∗ν ) = δµ,ν
1

β|µ|
ϕ(aρµ(1)) (4.5)

Documenta Mathematica 16 (2011) 133–175



150 Kengo Matsumoto

for a ∈ A, µ, ν ∈ B∗(Λ) with |µ| = |ν|. Hence the extension of a continuous
linear functional on Dρ to Fρ is automatic. We have only to study extension
of a linear functional ϕ ∈ Eβ(ρ) on A to Dρ. The condition (iii) of Lemma 4.3

is equivalent to ψ = ϕ̃ ◦ ED where ϕ̃ is a linear functional on Dρalg obtained
from ϕ ∈ Eβ(ρ) as in Lemma 4.2, and so thst ψ is continuous if and only if

ϕ̃ is continuous. We call the extension ϕ̃ on Dρalg of ϕ ∈ Eβ(ρ) the canonical
extension of ϕ.

Lemma 4.4. Suppose that (A, ρ,Σ) is irreducible and power-bounded. For β ∈
C with |β| = rρ > 1, a (not necessarily positive) continuous linear functional
ϕ ∈ Eβ(ρ) on A extends to a continuous linear functional ϕ̃ on Dρ satisfying
(4.3).

Proof. As (A, ρ,Σ) is irreducible, we may take a faithful invariant state τ on
A, which we will fix. By the hypothesis that (A, ρ,Σ) is power-bounded, there
exists a positive number M such that

‖λkρ(1)‖
rkρ

< M for all k ∈ N. By [43,

Theorem 4.2], there exists a partial isometry v ∈ A∗∗ and a positive linear
functional ψ ∈ A∗ such that

ϕ(a) = ψ(av), a ∈ A.

For x =
∑

µ∈Bk(Λ) SµxµS
∗
µ ∈ Dkρ as in (4.2). Define a linear functional ϕk on

Dkρ by (4.4). As in Lemma 4.2, ϕk+1|Dkρ = ϕk and hence {ϕk}k∈N defines a

linear functional on Dρalg. It then follows that

|ϕ(xµ)| = |ψ(ρµ(1)xµρµ(1)v)| ≤ ψ(ρµ(1))
1
2 ‖x∗µxµ‖

1
2ψ(v∗ρµ(1)v)

1
2 .

Since ρµ(1) commutes with v and

‖xµ‖ = ‖SµxµS∗µ‖ ≤ max
ν∈Bk(Λ)

‖SνxνS∗ν‖ = ‖x‖, (4.6)

we have

|ϕ(xµ)| ≤ ‖x‖ψ(ρµ(1))
and hence

|ϕk(x)| ≤
1

|β|k
∑

µ∈Bk(Λ)

|ϕ(xµ)| ≤
1

|β|k ‖x‖ψ(λ
k
ρ(1)) =

‖λkρ(1)‖
rkρ

ψ(1)‖x‖.

Therefore we have

|ϕk(x)| ≤Mψ(1)‖x‖, x ∈ Dkρ
and hence {ϕk}k∈N extends to a continuous linear functional on the closure Dρ
of Dρalg. �

If in particular a linear functional ϕ ∈ Eβ(ρ) is positive on A, it always extends
to a continuous linear functionl on Dρ as in the following way:
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Lemma 4.5. Let β ∈ C be |β| > 1. If ϕ ∈ Eβ(ρ) is a positive linear functional
on A, then β becomes a positive real number and the canonical extension ϕ̃ to
Dρ is continuous on Dρ.

Proof. One may assume that ϕ 6= 0 and ϕ(1) = 1. We have β = βϕ(1) =
ϕ(λρ(1)) ≥ 1. For k ∈ N, define a linear functional ϕk on Dkρ by (4.4). Since

for x =
∑

µ∈Bk(Λ) SµxµS
∗
µ ∈ Dkρ we have by (4.6),

|ϕ(ρµ(1)xµρµ(1))| ≤ ϕ(ρµ(1))
1
2ϕ(ρµ(1)x

∗
µxµρµ(1))

1
2 ≤ ‖x‖ϕ(ρµ(1)),

it follows that

|ϕk(x)| ≤
1

|β|k
∑

µ∈Bk(Λ)

|ϕ(ρµ(1)xµρµ(1))| ≤
1

|β|k ‖x‖ϕ(λ
k
ρ(1)) = ‖x‖.

Therefore {ϕk}k∈N extends to a state on Dρ. �

We are now assuming that (A, ρ,Σ) is irreducible. By Lemma 3.4, there exists a
faithful invariant state τ ∈ Erρ(ρ) on A. By the previous lemma, the canonical
extension τ̃ is continuous on Dρ which satisfies

τ̃ (SµaS
∗
µ) =

1

r
|µ|
ρ

τ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ). (4.7)

Lemma 4.6. For a faithful invariant state τ ∈ Erρ(ρ) on A, the canonical
extension τ̃ is faithful on Dρ.

Proof. Suppose that τ̃ is not faithful on Dρ. Put
Iτ̃ = {x ∈ Dρ | τ̃ (x∗x) = 0}.

Since τ̃ is tracial on Dρ, Iτ̃ is a nonzero ideal of Dρ. By Lemma 4.3, the equality
τ̃ ◦λρ = rρτ̃ holds on Dρ so that Iτ̃ is λρ-invariant. The sequence Dkρ , k ∈ N of

algebras is increasing such that ∪k∈NDkρ is dense in Dρ. We may find k ∈ N

such that Iτ̃ ∩Dkρ 6= 0. It is easy to see that λkρ(Dkρ) ⊂ A so that there exists a

nonzero positive element x ∈ Iτ̃∩Dkρ such that λkρ(x) ∈ Iτ̃∩A. Hence Iτ̃∩A is a
nonzero λρ-invariant ideal of A. By the hypothesis that (A, ρ,Σ) is irreducible,
we have a contradiction. �

For a faithful invariant state τ on A, we will write the canonical extension τ̃ of
τ to Dρ as still τ . Define a unital endomorphism φρ : Dρ −→ Dρ by setting

φρ(y) =
∑

α∈Σ
SαyS

∗
α, y ∈ Dρ. (4.8)

It induces a unital endomorphism on the enveloping von Neumann algebraDρ∗∗
of Dρ, which we still denote by φρ. The restriction of the positive map λρ on
Fρ to Dρ similarly induces a positive map on Dρ∗∗. We then need the following
lemma for further discussions.
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Lemma 4.7. The equality

λρ(xφρ(y)) = λρ(x)y, x, y ∈ Dρ∗∗ (4.9)

holds.

Proof. Since Dρ is dense in Dρ∗∗ under σ(Dρ∗∗,Dρ∗)-topology, it suffices to
show the equality (4.9) for x, y ∈ Dρ. One has

λρ(xφρ(y)) =
∑

α,γ∈Σ
S∗αxSγyS

∗
γSα

=
∑

α∈Σ
S∗αxSαyS

∗
αSα =

∑

α∈Σ
S∗αxSαy = λρ(x)y.

�

Recall that for a continuous linear functional ψ on a C∗-algebra B there exist
a partial isometry v ∈ B∗∗ and a positive linear functional |ψ| ∈ B∗ in a unique
way such that

v∗v = s(|ψ|), ψ(x) = |ψ|(xv) for x ∈ B, (4.10)

where s(|ψ|) denotes the support projection of |ψ| (cf. [43, Theorem 4.2]).
The decomposition (4.10) is called the polar decomposition of ψ. The linear
functional ψ : x −→ |ψ|(xv) is denoted by v|ψ|.
Lemma 4.8. Let β = reiθ ∈ C be r, θ ∈ R with r > 1. For a (not necessarily

positive) linear functional ϕ ∈ Eβ(ρ) on A, let ϕ̃ be the extension on Dρalg
satisfying (4.3). Suppose that the linear functional ϕ̃ extends to a continuous
linear functional on Dρ. Denote by ϕ̃ = v|ϕ̃| its polar decomposition for a
partial isometry v ∈ Dρ∗∗ and a positive linear functional |ϕ̃| on Dρ such that
v∗v = s(|ϕ̃|). Then we have

φρ(v) = eiθv, |ϕ̃|(λρ(x)) = r|ϕ̃|(x) for x ∈ Dρ.
Hence the restriction of |ϕ̃| to A belongs to Er(ρ) and |ϕ̃| satisfies

|ϕ̃|(SµaS∗µ) =
1

r|µ|
|ϕ̃|(aρµ(1)), a ∈ A, µ ∈ B∗(Λ).

Proof. Put a positive linear functional ψ on Dρ and a partial isometry u in
Dρ∗∗ by setting

ψ(x) =
1

r
|ϕ̃|(λρ(x)) for x ∈ Dρ and u = e−iθφρ(v).

As λρ(xu) = e−iθλρ(x)v for x ∈ Dρ by Lemma 4.7. It follows that for x ∈ Dρ

(uψ)(x) =
1

r
|ϕ̃|(λρ(xu)) =

1

β
|ϕ̃|(λρ(x)v) = ϕ̃(x).

Hence we have

ϕ̃ = uψ on Dρ.
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We will next show that s(ψ) = u∗u. For y ∈ Dρ, we have by Lemma 4.7

ψ(yu∗u) =
1

r
|ϕ̃|(λρ(yu∗u)) =

1

r
|ϕ̃|(λρ(yφρ(v∗v))) =

1

r
|ϕ̃|(λρ(y)v∗v) = ψ(y).

Hence we have u∗u ≥ s(ψ). On the other hand, suppose that a projection
p ∈ Dρ∗∗ satisfies

ψ(yp) = ψ(y) for y ∈ Dρ.
We then have |ϕ̃|(λρ(y(1 − p))) = 0 for all y ∈ Dρ. For y = SαS

∗
α, α ∈ Σ, one

has |ϕ̃|(S∗α(1 − p)Sα)) = 0. As S∗α(1 − p)Sα is a projection in Dρ, one obtains
that S∗α(1 − p)Sα ≤ 1 − v∗v so that 1 − p ≤ 1 − φρ(v∗v). This implies that
u∗u ≤ p. Therefore we have u∗u ≤ s(ψ) and hence

u∗u = s(ψ).

By the uniqueness of the polar decomposition, we conclude that

v = u and |ϕ̃| = ψ on Dρ
so that

φρ(v) = eiθv, |ϕ̃|(λρ(x)) = r|ϕ̃|(x) for x ∈ Dρ.
�

Therefore we have

Theorem 4.9. Suppose that (A, ρ,Σ) is irreducible and power-bounded. For
β ∈ C with |β| > 1, a (not necessarily positive) linear functional ϕ ∈ Eβ(ρ) on
A extends to Dρ as a continuous linear functional ϕ̃ satisfying

ϕ̃(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ)

if |β| = rρ. If in particular, (A, ρ,Σ) is mean ergodic, the converse implication
holds.

Proof. The first part of the assertions is direct from Lemma 4.4. Under the
condition that (A, ρ,Σ) is mean ergodic, assume that the canonical extension
ϕ̃ is continuous on Dρ. The preceding lemma says that the positive linear
functional |ϕ̃| belongs to E|β|(ρ). Since the mean ergodicity implies (FP), by
Lemma 3.6 (i) we see that |β| = rρ. �

Let us now assume that (A, ρ,Σ) is irreducible and satisfies dim Erρ(ρ) = 1, and
hence it is uniquely ergodic. Take a unique invariant state τ on A and denote
still by τ its canonical extension on Dρ. Denote by pτ ∈ Dρ∗∗ its support
projection.

Lemma 4.10. Let w ∈ Dρ∗∗ be a partial isometry satisfying

w∗w = pτ and φρ(w) = w. (4.11)

Then w is a scalar multiple of the projection pτ .
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Proof. Put wτ(x) = τ(xw) for x ∈ Dρ and hence wτ ∈ Dρ∗. Since λρ(x)w =
λρ(xφρ(w)) = λρ(xw) by Lemma 4.7, it follows that for x ∈ Dρ

wτ(λρ(x)) = τ(λρ(xw)) = rρτ(xw) = rρwτ(x).

In particular, we have wτ ∈ Erρ(ρ). As dim Erρ(ρ) = 1 by hypothesis, wτ is
a scalar multiple of τ . Hence there exists c ∈ C such that τ(xw) = cτ(x) for
x ∈ A. Since wτ is the canonical extension of τ(· w) = wτ on A to Dρ and the
canonical extension is unique, one has τ(xw) = cτ(x) for x ∈ Dρ so that

τ(xw) = τ(xcpτ ) for x ∈ Dρ. (4.12)

As c = cτ(1) = τ(w), one has

1 = τ(pτ ) = τ(w∗w) = cτ(w∗) = cτ(w) = cc̄

so that

(cpτ )
∗(cpτ ) = pτ = w∗w.

By the uniqueness of the polar decomposition, we have by (4.12) w = cpτ . �

Proposition 4.11. Suppose that (A, ρ,Σ) is irreducible and satisfies
dim Erρ(ρ) = 1. Then dim Eβ(ρ) ≤ 1 for β ∈ C with |β| = rρ > 1.

Proof. Let |β| = rρ > 1. Take an arbitrary linear functional ϕ ∈ Eβ(ρ) with
ϕ 6= 0. Its canonical extension ϕ̃ to Dρ is continuous. Denote by ϕ̃ = vϕ̃|ϕ̃|
the polar decomposition in Dρ∗ where vϕ̃ is a partial isometry in Dρ∗∗. By
Lemma 4.7, the restriction of |ϕ̃| to A is a positive linear functional belonging
to Erρ(ρ). Since (A, ρ,Σ) is uniquely ergodic, by putting cϕ̃ = |ϕ̃|(1) one has
|ϕ̃| = cϕ̃τ as a positive linear functional on A. The canonical extension to Dρ
which satisfies (4.3) is unique and determined by its behavior on A. Hence
the equalty |ϕ̃| = cϕ̃τ holds as a positive linear functional on Dρ so that we
have supp(|ϕ̃|) = supp(τ) and hence v∗ϕ̃vϕ̃ = pτ . For another linear functional

ψ ∈ Eβ(ρ) with ψ 6= 0, we have similar decompositions

ψ̃ = vψ̃ |ψ̃|, |ψ̃| = cψ̃τ, v∗
ψ̃
vψ̃ = pτ .

Put a partial isometry w = v∗ϕ̃vψ̃ ∈ Dρ∗∗ so that w∗w = pτ . By Lemma 4.8,

one has φρ(w) = w. Lemma 4.10 implies w = cpτ for some c ∈ C with |c| = 1
so that vψ̃ = cvϕ̃. Therefore we have

ψ̃ = vψ̃|ψ̃| = cvϕ̃cψ̃τ = c
cψ̃
cϕ̃
ϕ̃

on Dρ. In particular we have ψ = c
cψ̃
cϕ̃
ϕ on A so that dim Eβ(ρ) ≤ 1. �

Corollary 4.12. Suppose that (A, ρ,Σ) is irreducible and mean ergodic. Then
for β ∈ C with |β| > 1, we have dim Eβ(ρ) ≤ 1 if |β| = rρ, otherwise Eβ(ρ) =
{0}.
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Suppose that (A, ρ,Σ) is irreducible and mean ergodic. Hence (A, ρ,Σ) is
uniquely ergodic with a unique faithful invariant state τ ∈ Erρ(ρ). Denote by
pτ ∈ Dρ∗∗ the support projection of the canonical extension of τ to Dρ, where
the extension is still denoted by τ . For β = reiθ ∈ C with r = rρ > 1, we set

Pβ(Dρ, τ) = {v ∈ Dρ∗∗ | φρ(v) = eiθv, v∗v = pτ}.

Denote by R+ the set of all nonnegative real numbers. For ϕ ∈ Eβ(ρ) denote
by ϕ̃ its canonical extension to Dρ. As |β| = rρ, ϕ̃ is continuous and has a
unique polar decomposition ϕ̃ = vϕ̃|ϕ̃| for some vϕ̃ ∈ Dρ∗∗ and positive linear
functional |ϕ̃| ∈ Dρ∗. By Lemma 4.8, we know the structure of the eigenspace
Eβ(ρ) as in the following way:

Proposition 4.13. Suppose that (A, ρ,Σ) is irreducible and mean ergodic.
There exists a bijective correspondence between the eigenspace Eβ(ρ) and the
product set Pβ(Dρ, τ) ×R+ through the correspondences

ϕ ∈Eβ(ρ) −→ (vϕ̃, |ϕ̃|(1)) ∈ Pβ(Dρ, τ)×R+,

cτ(· v) ∈Eβ(ρ)←− (v, c) ∈ Pβ(Dρ, τ)×R+.

5. Extension to Oρ and KMS condition

In [9], Enomoto-Fujii-Watatani have proved that KMS states for gauge action
on the Cuntz-Krieger algebra OA exist if and only if its inverse temperature
is log rA, where rA is the Perron-Frobenius eigenvalue for the irreducible ma-
trix A. They have showed that the KMS states bijectively correspond to the
normalized positive eigenvectors of A for the eigenvalue rA.
In this section, we will study KMS conditions for linear functionals without
assuming its positivity at inverse temperature taking complex numbers. The
extended notation is needed to study eigenvector spaces for C∗-symbolic dy-
namical systems.
Following after [3], KMS states for one-parameter group action α on a C∗-
algebra B is defined as follows: For a positive real number γ ∈ R, a state ψ on
B is a KMS state at inverse temperature γ if ψ satisfies

ψ(yαiγ(x)) = ψ(xy), x ∈ Ba, y ∈ B (5.1)

where Ba is the set of analytic elements of the action α : R −→ Aut(B) (cf.[3]).
The equation (5.1) for ψ is called the KMS condition with respect to the action
α.
In what follows, we restrict our interest to periodic actions so as to extend KMS
condition to (not necessarily positive) linear functionals at inverse temperature
taking complex numbers. We assume that an action α of R has its period 2π
so that α is regarded as an action of one-dimensional torus group T = R/2πZ.
Let B be a C∗-algebra and α : T −→ Aut(B) a continuous action of T to the
automorphism group Aut(B). We write a complex number β ∈ C as β = reiθ

where r, θ ∈ R with r > 1.
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Definition. A continuous linear functional ϕ ∈ B∗ on B is said to satisfy
KMS condition at Logβ if ϕ satisfies the following condition

ϕ(yαi log r(x)) = ϕ(αθ(x)y), x ∈ Ba, y ∈ B. (5.2)

Remark.

(i) As αθ(x) = αθ+2π(x), the right hand side ϕ(αθ(x)y) of (5.2) does not
depend on the choice of θ ∈ R as long as β = reiθ.

(ii) The above KMS condition (5.2) is equivalent to the following condition:

ϕ(yαζ+i log r(x)) = ϕ(αζ+θ(x)y), x ∈ Ba, y ∈ B, ζ ∈ C

(5.3)

(iii) In case of θ = 0, the above definition of KMS condition coincides with
the original definition of KMS condition for states.

(iv) The above equality (5.2) can be written formally as

ϕ(yαiLogβ(x)) = ϕ(xy), x ∈ Ba, y ∈ B, (5.4)

if we denote Logβ = log r + iθ.

We will present some examples of linear functionals satisfying the extended
KMS conditions.
Examples.

(i) Let α : T −→ Aut(B) be an action of T to a C∗-algebra B such that
there exists a projection H ∈ B satisfying αt(a) = eitHae−itH , a ∈
B, t ∈ T. Assume that there exists an α-invariant tracial state tr on B.
Put

ϕ(x) =
tr(e−LogβHx)
tr(e−LogβH)

, x ∈ B,

where Logβ = log r + iθ. Then ϕ satisfies KMS condition at Logβ.
(ii) Let B = ⊗∞k=1M2 be the UHF-algebra of type 2

∞ and α : T −→ Aut(B)
an action of T to B defined by

αt = ⊗∞k=1Ad

[
1 0
0 eit

]
, t ∈ T.

Put

Bn =⊗nk=1 M2 =M2 ⊗ · · · ⊗M2,

unt =⊗nk=1

[
1 0
0 eit

]
=

[
1 0
0 eit

]
⊗ · · · ⊗

[
1 0
0 eit

]
∈ Bn,

αnt =Ad(unt ) ∈ Aut(Bn), t ∈ T.

Let β = reiθ ∈ C be r > 1. Put

H =

[
0 0
0 1

]
∈M2, hn = ⊗nk=1

[
1 0
0 1

β

]
∈ Bn,
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and hence hn = ⊗nk=1e
−LogβH , αnt = ⊗nk=1Ad(e

itH), t ∈ T. It is
straightforward to see that

tr(e−LogβHbαi log r(a)) = tr(e−LogβHαθ(a)b), a, b ∈M2.

Put

ϕn(x) = ⊗nk=1tr(xhn) for x ∈ Bn
so that we have

ϕn(yαi log r(x)) = ϕn(αθ(x)y), x, y ∈ Bn.
As ‖hn‖ = 1, ϕn extends to a continuous linear functional on B, which
we denote by ϕ. Then ϕ satisfies KMS condition at Logβ:

ϕ(yαi log r(x)) = ϕn(αθ(x)y), x ∈ Ba, y ∈ B.
We see the following two propositions whose proofs are similar to the case of
usual KMS states.

Proposition 5.1 (cf. [39, 8.12.3]). Let α : T −→ Aut(B) be a continuous ac-
tion of T to the automorphism group Aut(B) of a C∗-algebra B and β a complex
number with β = reiθ, r > 1. The following conditions for a continuous linear
functional ϕ on B are equivalent:

(i) ϕ satisfies the KMS condition at Logβ.
(ii) ϕ satisfies the equality (5.2) for just a dense set of elements in Ba.
(iii) For all x, y ∈ B, there is a bounded continuous function f on the strip

Ωlog r = {ζ ∈ C | 0 ≤ Imζ ≤ log r}
such that f is holomorphic in the interior of Ωlog r and

f(t) = ϕ(yαt(x)), f(t+ i log r) = ϕ(αt+θ(x)y), t ∈ R.

Proposition 5.2 (cf. [39, 8.12.4]). Let B be a C∗-algebra and α : T −→
Aut(B) be a continuous action of T to the automorphism group Aut(B). Let ϕ
be a continuous linear functional on B. If ϕ satisfies KMS condition at Logβ
for some complex number β with β = reiθ with r > 1, then ϕ is α-invariant,
that is,

ϕ ◦ αt = ϕ, t ∈ T.

We henceforth go back to our previous situations. Let (A, ρ,Σ) be a C∗-
symbolic dynamical system. Recall that the positive operator λρ on A extends
to Fρ by setting λρ(x) =

∑
α∈Σ S

∗
αxSα, x ∈ Fρ. For β ∈ C with β 6= 0, we set

EDβ (ρ) = {ϕ ∈ Dρ∗ | ϕ(λρ(x)) = βϕ(x), x ∈ Dρ}, (5.5)

EFβ (ρ) = {φ ∈ Fρ∗ | φ(λρ(x)) = βφ(x), x ∈ Fρ, φ is tracial on Fρ}.
(5.6)

It is possible that both EDβ (ρ) and EFβ (ρ) are {0}. Recall that ED : Fρ −→ Dρ
is the canonical expectation satisfying by ED(SµaS∗ν ) = δµ,νSµaS

∗
ν for a ∈ A

with µ, ν ∈ B∗(Λ), |µ| = |ν|. By composing it to a given linear functional
ϕ ∈ EDβ (ρ) on Dρ, ϕ extends to Fρ.
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Lemma 5.3. Let β ∈ C with |β| > 1. A (not necessarily positive) continu-
ous linear functional ϕ ∈ EDβ (ρ) on Dρ uniquely extends to Fρ as a tracial
continuous linear functional φ = ϕ ◦ ED such that

φ(SµxS
∗
ν ) = δµ,ν

1

β|µ|
φ(xS∗µSν), x ∈ Fρ, µ, ν ∈ B∗(Λ) with |µ| = |ν|.

(5.7)

Hence the sets EDβ (ρ) and EFβ (ρ) bijectively correspond to each other.

Proof. For ϕ ∈ EDβ (ρ), as in the proof of Lemma 4.3 (i) ⇒ (ii), the equality

ϕ(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ)

holds so that

φ(SµaS
∗
ν) = δµ,ν

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ, ν ∈ B∗(Λ) with |µ| = |ν|.

By Lemma 4.3 (iii) ⇒ (i), φ belongs to EFβ (ρ). �

Recall that Eρ : Oρ −→ Oρρ̂ = Fρ denotes the conditional expectation defined
by (2.3).

Proposition 5.4. For any tracial continuous linear functional φ ∈ EFβ (ρ), the
composition ψ = φ ◦Eρ is a continuous linear functional on Oρ which satisfies
KMS condition at Logβ for gauge action ρ̂ of T.

Proof. Let Pρ be the dense ∗-subalgebra of Oρ generated algebraically by
Sα, α ∈ Σ and a ∈ A. It is clear that for each element x ∈ Pρ the func-
tion t ∈ T = R/2πR → ρ̂t(x) ∈ Oρ extends to an entire analytic function on
C. Put ψ = φ◦Eρ. We will show that the equality (5.2) holds for ψ. Elements
x, y ∈ Pρ can be expanded as finite linear combinations

x =
∑

x−νS
∗
ν + x0 +

∑
Sµxµ, y =

∑
y−νS

∗
ν + y0 +

∑
Sµyµ

(5.8)

for some x−ν , x0, xµ, y−ν, y0, yµ ∈ Fρalg. As ψ is a tracial linear functional on
Fρ, it suffices to check the equality (5.2) for the following two cases

(1) x = Sνxν , y = y−νS
∗
ν , (2) x = x−µS

∗
µ, y = Sµyµ.

Case (1):

ψ(yρ̂i log r(x)) = ψ(y−νS
∗
νe
−|ν| log rSνxν)

=
1

β|ν|
ψ(ei|ν|θxνy−νS

∗
νSν)

= ψ(ei|ν|θSνxνy−νS
∗
ν)

= ψ(ρ̂θ(x)y).
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Case (2):

ψ(yρ̂i log r(x)) = ψ(Sµyµe
|µ| log rx−µS

∗
µ)

=
r|µ|

β|µ|
ψ(yµx−µS

∗
µSµ)

= ψ(e−i|µ|θx−µS
∗
µSµyµ)

= ψ(ρ̂θ(x)y).

This completes the proof. �

Conversely we have

Lemma 5.5. If a continuous linear functional ψ on Oρ satisfies KMS condition
at Logβ for some β ∈ C with |β| > 1, then the restriction φ = ψ|Fρ to Fρ
belongs to EFβ (ρ) and satisfies the equality ψ = φ ◦ Eρ.

Proof. Let β = reiθ with r > 1. For any x ∈ Fρ, µ ∈ B∗(Λ), we see

ψ(Sµx) =
1

β|µ|
ψ(xSµ) =

1

β|µ|
ψ(Sµρ̂i log r(α−θ(x))) =

1

β|µ|
ψ(Sµx)

so that ψ(Sµx) = 0 because |β| > 1. We similarly have ψ(xS∗µ) = 0. Since
any element of Pρ can be expanded as in (5.8), we get ψ(y) = φ ◦ Eρ(y) for
y ∈ Pρ. We will next show that φ belongs to EFβ (ρ). For x, y ∈ Fρ, one sees

ρ̂i log r(x) = ρ̂−θ(x) = x so that ψ(yx) = ψ(xy). Hence ψ gives rise to a tracial
linear functional φ on Fρ. By KMS condition, we get for any x ∈ Fρ, µ ∈ B∗(Λ),

ψ(Sµ · xS∗µ) = ψ(xS∗µρ̂i log r(ρ̂−θ(Sµ)) =
1

β|µ|
ψ(xS∗µSµ).

Thus by Lemma 4.3, we know φ ∈ EFβ (ρ). �

We set for β ∈ C with |β| > 1,

KMSβ(Oρ)
={ψ ∈ Oρ∗ | ψ satisfies KMS condition at Logβ for gauge action}

and

Sp(ρ) = {β ∈ C | ϕ ◦ λρ = βϕ for some ϕ ∈ A∗ with ϕ 6= 0}.
By Proposition 5.4 and Lemma 5.5, we have

Proposition 5.6. Let (A, ρ,Σ) be an irreducible C∗-symbolic dynamical sys-
tem. Assume that (A, ρ,Σ) is power-bounded. Let β ∈ C be a complex number
with |β| > 1. If |β| = rρ and β ∈ Sp(ρ), we have KMSβ(Oρ) 6= {0}. If in
particular, (A, ρ,Σ) is mean ergodic, KMSβ(Oρ) 6= {0} if and only if |β| = rρ
and β ∈ Sp(ρ).
Proof. Under the assumption that (A, ρ,Σ) is power-bounded, any continuous
linear functional ϕ ∈ Eβ(ρ) on A can uniquely extend to a continuous linear
functional ϕ̃ on Dρ, that belongs to EDβ (ρ) if |β| = rρ. By Proposition 5.4,
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ϕ̃ ◦ ED ∈ EFβ (ρ) has an extension on Oρ as a continuous linear functional that
satisfies KMS condition at Logβ.
Conversely, the restriction of a continuous linear functional KMSβ(Oρ) to the
subalgebra A yields a nonzero element of Eβ(ρ) which has continuous extension
to Dρ. If in particular, (A, ρ,Σ) is mean ergodic, |β| must be rρ by Theorem
4.9. �

Therefore we conclude

Theorem 5.7. Let (A, ρ,Σ) be an irreducible C∗-symbolic dynamical system.
Let β ∈ C be a complex number with |β| = rρ > 1.

(i) Suppose that (A, ρ,Σ) is power-bounded. Then there exist linear iso-
morphisms among the four spaces Eβ(ρ), EDβ (ρ), EFβ (ρ) and KMSβ(Oρ)
through the correspondences ϕ ∈ Eβ(ρ), ϕ̃ ∈ EDβ (ρ), ϕ̃ ◦ ED ∈ EFβ (ρ),

ϕ̃ ◦ ED ◦ Eρ ∈ KMSβ(Oρ) respectively. In particular, there exists a
bijective correspondence between the set Eβ(ρ) of eigenvectors of λ∗ρ for
eigenvalue β consisting of continuous linear functionals on A and the
set KMSβ(Oρ) of continuous linear functionals on Oρ satisfying KMS
condition at Logβ.

(ii) Suppose that (A, ρ,Σ) is mean ergodic. Then the dimension
dimKMSβ(Oρ) of the space of continuous linear functionals on
Oρ satisfying KMS condition at Logβ is one if there exists a nonzero
eigenvector of λ∗ρ on A∗ for the eigenvalue β. In particular there
uniquely exists a faithful KMS state on Oρ at log rρ.

The following corollary is a generalization of [9, Theorem 6].

Corollary 5.8. Suppose that A is an irreducible matrix with entries in {0, 1}
with its period pA. Let β be a complex number with |β| > 1.

(i) There exists a nonzero continuous linear functional on the Cuntz-
Krieger algebra OA satisfying KMS condition for gauge action at Logβ
if and only if β is a pA-th root of the Perron-Frobenius eigenvalue rA
of A.

(ii) The space of admitted continuous linear functionals on OA satisfying
KMS condition for gauge action at Logβ is of one-dimensional.

(iii) If in particular β = rA, the space of admitted continuous linear func-
tionals on OA satisfying KMS condition for gauge action at log rA is
the scalar multiples of a unique KMS state.

6. KMS states and invariant measures

In this section, we will study a relationship between KMS states on Oρ and
invariant measures on Dρ under φρ. In what follows we assume that (A, ρ,Σ)
is irreducible and fix a faithful invariant state τ on A.
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We denote by ‖a‖2 the L2-norm τ(a∗a)
1
2 for a ∈ A, and by Hτ the completion

of A by the norm ‖ · ‖2. By the inequalities for n ∈ N, a ∈ A
τ(λnρ (a)

∗λnρ (a)) ≤ ‖λnρ‖τ(λnρ (a∗a)) = ‖λnρ‖rnρ τ(a∗a) ≤ ‖λnρ‖2‖a‖22,
(6.1)

the operators T nρ , n ∈ N induce bounded linear operators on Hτ . The induced
operators on Hτ , which we also denote by T nρ , n ∈ N, are uniformly bounded in
the operator norm on Hτ , if (A, ρ,Σ) is power-bonded. We provide the follow-
ing lemma, which shows power-boundedness of (A, ρ,Σ) induces an ordinary
mean ergodicity on Hτ , is a direct consequence from [22, p.73,Theorem 1.2].
We give a proof for the sake of completeness.

Lemma 6.1. Suppose that (A, ρ,Σ) is irreducible and power-bounded. Then

lim
n→∞

1 + Tρ + T 2
ρ + · · ·+ T n−1ρ

n

converges to an idempotent Pρ on Hτ under strong operator topology in B(Hτ ).
The subspace PρHτ consists of the vectors of Hτ fixed under Tρ.

Proof. The mean operators Mn, n ∈ N on A defined by (3.1) naturally act on
Hτ . Since (A, ρ,Σ) is power-bounded, there exists a positive number c > 0
such that ‖T nρ ‖ < c for all n ∈ N. As ‖Mn‖ < 1 + c, n ∈ N, the sequence
Mnv ∈ Hτ , n ∈ N for a vector v ∈ Hτ has a cluster point v0 under the weak
topology of Hτ . The identites

(I − Tρ)Mn =Mn(I − Tρ) =
1

n
(I − T nρ )

imply the inequalites

‖(I − Tρ)Mn‖ = ‖Mn(I − Tρ)‖ =
1

n
‖I − T nρ ‖ <

1

n
(1 + c). (6.2)

Hence we have Tρv0 = v0. Put

Qn =
1

n
{(I + Tρ) + (I + Tρ + T 2

ρ ) + · · ·+ (I + Tρ + · · ·+ T n−2ρ )}.

Then we have v −Mnv = (I − Tρ)Qnv, n ∈ N. Hence v − v0 belongs to the
weak closure Kτ of the subspace (I − Tρ)Hτ . The weak closure Kτ is also the
norm closure of the subspace (I − Tρ)Hτ . For w ∈ Kτ , take wj ∈ (I − Tρ)Hτ
such that ‖w − wj‖2 → 0 and wj = (I − Tρ)xj for some xj ∈ Hτ . We then
have by (6.2)

‖Mnw‖2 ≤ ‖Mn‖‖w − wj‖2 + ‖Mn(I − Tρ)xj‖2

≤ (1 + c)‖w − wj‖2 +
1

n
(1 + c)‖xj‖2

so that limn→∞ ‖Mnw‖2 = 0. Since Mnv − v0 =Mn(v − v0) and v − v0 ∈ Kτ ,
one has

lim
n→∞

‖Mnv − v0‖2 = 0.
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Put Pρv = v0. The inequality

‖Mnv − TρMnv‖2 = ‖(I − Tρ)Mnv‖2 <
1

n
(1 + c)‖v‖2

implies that Pρ = TρPρ that is equal to PρTρ. Therefore Pρ = MnPρ = PρMn

and hence Pρ = P 2
ρ . �

Remark. Under the same assumption above, one may prove that the limit

lim
r↓rρ

(r − rρ)R(r)

for the resolvent R(r) = (r − λρ)−1 with r > rρ converges to the idempotent
Pρ on Hτ under strong operator topology in B(Hτ ). Hence the equality

lim
r↓rρ

(r − rρ)R(r) = lim
n→∞

1 + Tρ + T 2
ρ + · · ·+ T n−1ρ

n
(6.3)

holds. We will give a proof of the equality (6.3). It is enough to consider
the limit limn→∞ 1

nR(rρ +
1
n ) instead of limr↓rρ(r − rρ)R(r). As in the above

proof, there exists c > 0 such that ‖T kρ (a)‖2 ≤ c‖a‖2 for a ∈ A, k ∈ N. Put

Rn = 1
nR(rρ +

1
n ). Since for y ∈ A

R(rρ +
1

n
)y =

∞∑

k=0

λkρ(y)

(rρ +
1
n )
k+1

one has

‖R(rρ +
1

n
)y‖2 ≤

∞∑

k=0

‖T kρ (y)‖
rkρ

(rρ +
1
n )
k+1
≤ nc‖y‖2

and hence ‖Rn‖ ≤ c for n ∈ N. The identites

(I − Tρ)Rn = Rn(I − Tρ) =
1

n

1

rρ
(Rn − I)

hold so that we have

‖(I − Tρ)Rn‖ = ‖Rn(I − Tρ)‖ ≤
1

n

1

rρ
(1 + c).

A similar argument to the proof of Lemma 6.1 works so that for u ∈ Hτ by
taking a cluster point u0 of the sequence Rnu, n ∈ N under the weak topology
of Hτ we have

lim
n→∞

‖Rnu− u0‖2 = 0.

Put P̂ρu = u0. The inequality ‖Rnu−TρRnu‖2 ≤ 1
n

1
rρ
(1+ c)‖u‖2 implies that

P̂ρ = TρP̂ρ that is equal to P̂ρTρ. Hence P̂ρ = RnP̂ρ and P̂ρ = P̂ 2
ρ . The equality

P̂ρ = TρP̂ρ implies P̂ρ =MnP̂ρ for all n ∈ N so that P̂ρ = PρP̂ρ. Similarly the

equalities Pρ = TρPρ and Rn =
∑∞

k=0 T
k
ρ

rkρ
(rρ+

1
n )k+1 imply Pρ = RnPρ for all

n ∈ N so that Pρ = P̂ρPρ. As PρP̂ρ = P̂ρPρ, one has Pρ = P̂ρ.
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We denote by ‖a‖1 the L1-norm τ(|a|) of a ∈ A, and by L1(A, τ) the completion
of A by the norm ‖ · ‖1. The positive operators λρ, Tρ : A −→ A and the state
τ : A −→ C extend to L1(A, τ) in natural way, that are also denoted by λρ, Tρ
and τ respectively.

Lemma 6.2. Suppose that (A, ρ,Σ) is uniquely ergodic and power-bounded.
Then for a ∈ A the limit limn→∞Mn(a) converges in L1(A, τ) under ‖ · ‖1-
topology. In particular limn→∞Mn(1) = xρ exists in L1(A, τ) and satisfies the
equalities

τ(xρ) = 1 and lim
n→∞

Mn(a) = τ(a)xρ for a ∈ A. (6.4)

Proof. Since (A, ρ,Σ) is irreducible and power-bounded, limn→∞Mn(a) for
a ∈ A converges in Hτ = L2(A, τ) under ‖ · ‖2-norm by the previous lemma.
By the inequality

‖Mn(a)−Mm(a)‖1 ≤ ‖Mn(a)−Mm(a)‖2, a ∈ A
the limit limn→∞Mn(a) exists in L

1(A, τ) under ‖ · ‖1-norm. We denote it by
Φ1(a). Hence xρ = Φ1(1). We will show that τ(f(Φ1(a) − τ(a)xρ)) = 0 for
f ∈ A. It suffices to show that τ(bΦ1(a)b

∗) = τ(a)τ(bxρb
∗) for b ∈ A. One may

assume that a ≥ 0. The inequality a ≤ ‖a‖1 and hence Mn(a) ≤ ‖a‖Mn(1)
implies bΦ1(a)b

∗ ≤ ‖a‖bxρb∗ so that we have 0 ≤ τ(bΦ1(a)b
∗) ≤ ‖a‖τ(bxρb∗).

Hence τ(bxρb
∗) = 0 implies τ(bΦ1(a)b

∗) = 0. We may assume that τ(bxρb
∗) 6=

0. Put ω(a) = τ(bΦ1(a)b
∗)

τ(bxρb∗)
, a ∈ A. As Φ1 ◦ Tρ(a) = Φ1(a), one sees that ω is

an invariant state on A. Hence we have ω = τ by the unique ergodicity of
(A, ρ,Σ). Therefore we have τ(bΦ1(a)b

∗) = τ(a)τ(bxρb
∗) for b ∈ A.

The equality τ(xρ) = 1 is clear. �

Lemma 6.3. Keep the above assumptions and notations. The limit
limn→∞Mn(f) for f ∈ L1(A, τ) converges in L1(A, τ) under ‖ · ‖1-topology
and satisfies the equality

lim
n→∞

Mn(f) = τ(f)xρ for f ∈ L1(A, τ).

Proof. Since for f ∈ L1(A, τ) the inequality |λρ(f)| ≤ λρ(|f |) holds, one has
|Tρ(f)| ≤ Tρ(|f |) and hence ‖Mn(f)‖1 ≤ ‖f‖1. Take ak ∈ A such as ‖f −
ak‖1 → 0 as k →∞. It then follows that

‖Mn(f)− τ(f)xρ‖1
≤‖Mn(f)−Mn(ak)‖1 + ‖Mn(ak)− τ(ak)xρ‖1 + ‖τ(ak)xρ − τ(f)xρ‖1
≤‖f − ak‖1 + ‖Mn(ak)− τ(ak)xρ‖1 + |τ(ak)− τ(f)|‖xρ‖1,

and hence limn→∞ ‖Mn(f)− τ(f)xρ‖1 = 0 by the preceding lemma. �

Proposition 6.4. Keep the above assumptions and notations. If f ∈ L1(A, τ)
satisfies Tρ(f) = f and τ(f) = 1, Then f = xρ. Namely the space of the fixed
elements in L1(A, τ) under Tρ is one-dimensional.
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Proof. By the preceding lemma, we have for f ∈ L1(A, τ) limn→∞Mn(f) =
τ(f)xρ in ‖ · ‖1-topology. By the condition Tρ(f) = f , we have Mn(f) = f
with τ(f) = 1 and hence f = xρ. �

Let us define the space L1(Dρ, τ) in a similar way to L1(A, τ). The operators
λρ, Tρ : Dρ −→ Dρ and the state τ : Dρ −→ C naturally act on L1(Dρ, τ). The
inclusion relation A ⊂ Dρ induces the inclusion relation L1(A, τ) ⊂ L1(Dρ, τ).
Lemma 6.5. Keep the above assumptions and notations. Let x be an element
of L1(Dρ, τ) such that Tρ(x) = x. Then x belongs to L1(A, τ).

Proof. Take xn ∈ Dρalg such that ‖xn − x‖1 → 0 as n → ∞. As |λρ(y)| ≤
λρ(|y|), y ∈ Dρ, it then follows that

‖λρ(xn)− λρ(x)‖1 = τ(|λρ(xn − x)|) ≤ τ(λρ(|xn − x|) = rρ‖xn − x‖1
so that ‖Tρ(xn)− Tρ(x)‖1 ≤ ‖xn − x‖1. The element x is fixed by Tρ so that

‖T kρ (xn)− x‖1 ≤ ‖xn − x‖1, n ∈ N, k ∈ N.

Since xn ∈ Dρalg, there exists kn ∈ N such that T knρ (xn) ∈ A. Hence x belongs

to L1(A, τ). �

Definition. A state µ on Dρ is called a φρ-invariant measure if it satisfies

µ(y) = µ(φρ(y)), y ∈ Dρ.
If the probability measure for a state µ on Dρ is absolutely continuous with
respect to the probability measure for the state τ on Dρ, we write it as µ≪ τ .

Proposition 6.6. Assume that (A, ρ,Σ) is irreducible and uniquely ergodic.
For a fixed positive element x ∈ L1(A, τ) by Tρ satisfying τ(x) = 1, the state
µx on Dρ defined by

µx(y) = τ(yx), y ∈ Dρ
is a φρ-invariant measure on Dρ such that µ ≪ τ . Conversely, for any φρ-
invariant measure µ on Dρ such that µ≪ τ , there exists a fixed positive element
xµ ∈ L1(A, τ) by Tρ satisfying τ(xµ) = 1 such that

µ(y) = τ(yxµ), y ∈ Dρ.

Proof. Let x ∈ L1(A, τ) be a fixed positive element by Tρ satisfying τ(x) = 1.
As λρ(x) = rρx, it follows that from Lemma 4.7

µx(φρ(y)) =
1

rρ
τ(λρ(φρ(y)x)) =

1

rρ
τ(yλρ(x)) = µx(y), y ∈ Dρ

so that the state µx is a φρ-invariant measure on Dρ such that µx ≪ τ . Con-
versely for a φρ-invariant measure µ on Dρ such that µ ≪ τ , there exists a
Radon-Nikodym derivative xµ ∈ L1(Dρ, τ) such that xµ ≥ 0, τ(xµ) = 1 and

µ(y) = τ(yxµ), y ∈ Dρ.
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By the equality τ(φρ(y)xµ) = τ(yTρ(xµ)), y ∈ Dρ, one sees that τ(yxµ) =
τ(yTρ(xµ)), y ∈ Dρ so that Tρ(xµ) = xµ, τ − a.e. Hence xµ is regarded as an
element of L1(A, τ) by the preceding lemma. This completes the proof. �

Especially the measure µρ defined by µρ(y) = τ(yxρ), y ∈ Dρ is a φρ-invariant
measure on Dρ such that µρ ≪ τ .
Therefore we have

Theorem 6.7. Assume that (A, ρ,Σ) is irreducible, uniquely ergodic and
power-bounded. Then a φρ-invariant measure on Dρ absolutely continuous with
respect to τ is unique and is of the form

µρ(y) = τ(yxρ), y ∈ Dρ. (6.5)

The measure µρ is faithful, and ergodic in the sense that the formula

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = µρ(y)µρ(x), x, y ∈ Dρ

holds.

Proof. Let µ be a φρ-invariant measure on Dρ. By the preceding proposition
there exists a fixed positive element xµ ∈ L1(A, τ) under Tρ satisfying τ(xµ) =
1 such that

µ(y) = τ(yxµ), y ∈ Dρ.
By Proposition 6.4 we have xµ = xρ. For x, y ∈ Dρ, the equality

λkρ(φ
k
ρ(y)xxρ) = yλkρ(xxρ)

holds by Lemma 4.7 so that

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) =

1

n

n−1∑

k=0

τ(φkρ(y)xxρ)

=
1

n

n−1∑

k=0

1

rkρ
τ(λkρ(φ

k
ρ(y)xxρ))

=
1

n

n−1∑

k=0

1

rkρ
τ(yλkρ(xxρ))

= τ(yMn(xxρ)).

Since
‖ · ‖1 − lim

n→∞
Mn(xxρ) = τ(xxρ)xρ = µρ(x)xρ,

we have

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = τ(yµρ(x)xρ)) = µρ(y)µρ(x).

�

Corollary 6.8. Assume that (A, ρ,Σ) is irreducible and mean ergodic.
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(i) The unique φρ-invariant probability measure absolutely continuous with
respect to τ is obtained by µρ(y) = τ(yxρ), y ∈ Dρ, where τ is the
restriction of the unique KMS state on Oρ and xρ is a positive element
of A defined by the limit of the mean limn→∞ 1

n (1 + Tρ(1) + · · · +
T n−1ρ (1)).

(ii) The state µρ is equivalent to the state τ as a measure on Dρ.

Proof. (i) Under the assumption that (A, ρ,Σ) is irreducible. Mean ergodicity
implies unique ergodicity and (FP), which implies power-boundedness. There-
fore the assertion is immediate.
(ii) By the mean ergodicity, the fixed element xρ belongs to A and is strictly
positive by Lemma 3.5 (ii). Hence we have τ(y) = µρ(yx

−1
ρ ), y ∈ Dρ so that

τ ≪ µρ. �

7. Examples

We will present examples of continuous linear functionals satisfying KMS con-
ditions on some C∗-symbolic dynamical systems.
1. Finite directed graphs
Let A = [A(i, j)]i,j=1,...,N be an N × N matrix with entries in nonnegative
integers. Denote by GA = (VA, EA) the associated finite directed graph with
vertex set V = {v1, . . . , vN} and edge set EA. Let OA[2] be the Cuntz-Krieger
algebra such that the generating partial isometries Se, e ∈ EA indexed by the
edges in GA satisfy

∑

f∈EA
SfS

∗
f = 1, S∗eSe =

∑

f∈EA
A[2](e, f)SfS

∗
f , e ∈ EA,

where A[2](e, f) is defined to be one if the edge f follows the edge e, other-
wise zero. Put AGA the C∗-subalgebra of OA[2] generated by the projections
S∗eSe, e ∈ EA. Denote by ρAe for e ∈ EA the endomorphism AGA defined
by ρAe (a) = S∗eaSe, a ∈ AGA . Consider the C∗-symbolic dynamical system
(AGA , ρA, EA). Its associated C∗-algebraOρA is nothing but the Cuntz-Krieger
algebra OA[2] . The finite directed graphs GA is naturally considered to be a
finite labeled graph by regarding an edge itself as its label. Hence this example
will be contained in the following examples.
2. Finite labeled graphs
Let G = (G, λ) be a left-resolving finite labeled graph over Σ with underlying
finite directed graph G = (V,E) and labeling map λ : E → Σ. Suppose
that the graph G is irreducible. Let {v1, . . . , vN} be the vertex set V . As
in Section 2, we have a C∗-symbolic dynamical system (AG , ρG ,Σ) such that

AG = CE1⊕· · ·⊕CEN and ρGα(Ei) =
∑N
j=1 A

G(i, α, j)Ej for i = 1, . . . , N, α ∈
Σ, where the N ×N -matrix [AG(i, α, j)]i,j=1,...,N for α ∈ Σ is defined by (2.1).
Put AG(i, j) =

∑
α∈ΣA

G(i, α, j) for i, j = 1, . . . , N . Then the matrix AG =

[AG(i, j)]Ni,j=1 is irreducible. Let rG denote the Perron-Frobenius eigenvalue of
the matrix AG . It is easy to see that rG is equal to the spectral radius rρG of
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the positive operator λρG (x) =
∑
α∈Σ ρ

G
α(x), x ∈ AG . As

λρG (Ei) =

N∑

j=1

AG(i, j)Ej , i = 1, . . . , N,

by identifying x =
∑N

i=1 xiEi ∈ AG with the vector [xi]
N
i=1 ∈ CN , one may

regard the operator λρG as the transposed matrix AtG of AG . For a complex
number β ∈ C with |β| > 1, let ϕ ∈ A∗G be a continuous linear functional

belonging to Eβ(ρG). The equality ϕ ◦ λρG (Ei) = βϕ(Ei) implies

N∑

j=1

AG(i, j)ϕ(Ej) = βϕ(Ei), i = 1, . . . , N

so that the vector [ϕ(Ej)]
N
j=1 is an eigenvector of AG for eigenvalue β. Con-

versely an eigenvector [ui]
N
i=1 ∈ C of the matrix AG for an eigenvalue β gives rise

to a continuous linear functional ϕ on AG by setting ϕ(Ei) = ui, i = 1, . . . , N
so that ϕ ∈ Eβ(ρG). Hence the space Eβ(ρG) is identified with the eigenvector
space of the matrix AG for eigenvalue β. Especially a faithful invariant state τ
on AG is the positive normalized eigenvector of AG for eigenvalue rG . Similarly

an element x =
∑N

j=1 xjEj ∈ AG is fixed by TρG if and only if the vector [xj ]
N
j=1

is an eigenvector of AtG for the eigenvalue rG . The ordinary Perron-Frobenius

theorem for nonnegative matrices asserts that (AG , ρG ,Σ) is mean ergodic if
AG is irreducible. The following proposition comes from the ordinary Perron-
Frobenius theorem for irreducible nonnegative matrices, which is a special case
of Theorem 3.13, and Corollary 6.8.

Proposition 7.1. Suppose that the adjacency matrix AG = [AG(i, j)]Ni,j=1 is

irreducible. Let [τi]
N
i=1 and [xi]

N
i=1 be right and left Perron eigenvector of AG

respectively, that is,

AG [τi]
N
i=1 = rG [τi]

N
i=1, AtG [xi]

N
i=1 = rG [xi]

N
i=1,

such that
∑N

i=1 τi = 1 and
∑N
i=1 τixi = 1. Put xρG =

∑N
i=1 xiEi ∈ AG and

τ(a) =
∑N
i=1 τiai for a =

∑N
i=1 aiEi ∈ AG . Then τ is a unique faithful invari-

ant state on AG such that the following equalities hold:

lim
n→∞

Mn(a) = lim
n→∞

1

n

n−1∑

k=0

T kρG (a) = τ(a)xρG .

Furthermore the measure µρG on DρG defined µρG (y) = τ(yxρG ) for y ∈ DρG is
a unique φρG -invariant measure equivalent to the measure τ on DρG .
Remark. Let XG be the right one-sided sofic shift presented by G. The
commutative C∗-algebraC(XG) onXG is naturally regarded as a C∗-subalgebra
of DρG through the correspondence

χν ∈ C(XG) −→ SνS
∗
ν ∈ DρG , ν ∈ Bk(ΛG)
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where χν is the characteristic function for the cylinder

Uν = {(xi)i∈N ∈ XG | x1 = ν1, . . . , νk = xk}.
The restriction of the φρG -invariant measure µρG on DρG to the subalgebra
C(XG) is nothing but a shift-invariant measure on XG (cf. [21]).
We will next find continuous linear functionals on OρG satisfying KMS con-
ditions in concrete way. Now suppose that the irreducible matrix AG has its
period pG and put

NG(i, j) = {n ∈ Z+ | AnG(i, j) > 0}.
It is well-known that for n,m ∈ NG(i, j) one has n ≡ m (mod pG). Then for

an eigenvalue β ∈ C of AG with |β| = rG ,
β
rG

is a pG-th root of unity. We fix a

vertex v1 and for k ∈ {1, 2, . . . , N} take nk ∈ NG(1, k). We set

uk = (
β

rG
)nkτ(Ek).

Then uk does not depend on the choice of nk as long as nk ∈ NG(1, k).

Lemma 7.2.
∑N
j=1 AG(i, j)uj = βui, i = 1, . . . , N .

Proof. If AG(i, j) 6= 0, one sees ni + 1 ∈ N(1, j) so that

AG(i, j)uj =
β

rG
(
β

rG
)niAG(i, j)τ(Ej) =

β

rG

ui
τ(Ei)

AG(i, j)τ(Ej).

It follows that

N∑

j=1

AG(i, j)uj =
β

rG

ui
τ(Ei)

N∑

j=1

AG(i, j)τ(Ej) =
β

rG

ui
τ(Ei)

rGτ(Ei) = βui.

�

Hence u = [uk]
N
k=1 yields a nonzero eigenvector of AG . Define a nonzero con-

tinuous linear functional ϕ on AG by setting

ϕ(Ek) = uk, k = 1, . . . , N

so that the equality ϕ ◦ λG = βϕ on AG holds. Put vϕ =
∑N

i=1
ui

τ(Ei)
Ei ∈ AG .

It is easy to see that vϕ is a partial isometry such that ϕ(Ej) = τ(Ejvϕ), j =
1, . . . , N so that

ϕ(x) = τ(xvϕ), x ∈ AG
holds. Therefore we have the following proposition.

Proposition 7.3. Let G = (G, λ) be a left-resolving finite labeled graph with
underlying finite directed graph G = (V,E) and labeling map λ : E → Σ. De-
note by {v1, . . . , vN} the vertex set V . Assume that G is irreducible. Consider
the N -dimensional commutative C∗-algebra AG = CE1⊕· · ·⊕CEN where each
minimal projection Ei corresponds to the vertex vi for i = 1, . . . , N . Define an
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N×N - nonnegative matrix AG = [AG(i, j)]Ni,j=1 by AG(i, j) =
∑

α∈ΣA
G(i, α, j)

where for α ∈ Σ and i, j = 1, . . . , N

AG(i, α, j) =

{
1 if there exists an edge e from vi to vj with λ(e) = α,

0 otherwise.

Let OAG be the associated Cuntz-Krieger algebra and τ be the unique KMS state
on OAG for gauge action. Let β ∈ C be an eigenvalue of AG such that |β| = rG
the Perron-Frobenius eigenvalue of the matrix AG . Then a continuous linear
functional on OAG satisfying KMS condition at Logβ is a scalar multiple of
ϕ ∈ O∗AG

giving by for k = 1, . . . , N

ϕ(Ek) = (
β

rG
)nkτ(Ek) where nk satisfies AnkG (1, k) 6= 0.

Consider a finite labeled graph G whose adjacency matrix A is

A =




0 0 1 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
1 1 0 0 0



.

As

A3 =




2 2 0 0 0
2 2 0 0 0
0 0 2 2 0
0 0 2 4 0
0 0 0 0 4



,

the period of the matrix is 3. The characteristic polynomial of A is det(t−A) =
t2(t3 − 4) so that Sp(A) = { 3

√
4, 3
√
4e

2π
3 i, 3
√
4e

4π
3 i, 0} and rA = 3

√
4. Hence

β ∈ Sp(A) satisfying |β| = 3
√
4 are

3
√
4,

3
√
4e

2π
3 i,

3
√
4e

4π
3 i.

Therefore the Cuntz-Krieger algebraOA has three continuous linear functionals
satisfying KMS conditions for gauge action at inverse temperatures

1

3
log 4,

1

3
log 4 +

2π

3
i,

1

3
log 4 +

4π

3
i

respectively.
3. Dyck shifts
We consider the Dyck shift DN for a fixed natural number N > 1 with alphabet
Σ = Σ− ∪ Σ+ where Σ− = {α1, . . . , αN},Σ+ = {β1, . . . , βN}. The symbols
αi, βi correspond to the brackets (i, )i respectively. The Dyck inverse monoid
has the relations

αiβj =

{
1 if i = j,

0 otherwise
(7.1)

Documenta Mathematica 16 (2011) 133–175



170 Kengo Matsumoto

for i, j = 1, . . . , N (cf. [23],[26]). A word ω1 · · ·ωn of Σ is admissible for DN

precisely if
∏n
m=1 ωm 6= 0. For a word ω = ω1 · · ·ωn of Σ, we denote by ω̃ its

reduced form. Namely ω̃ is a word of Σ ∪ {0,1} obtained after the operations
(7.1). Hence a word ω of Σ is forbidden for DN if and only if ω̃ = 0.
In [26], an irreducible λ-graph system presenting DN called the Cantor horizon
λ-graph system has been introduced. It is a minimal irreducible component of
the canonical λ-graph system LC(DN ) and written as LCh(DN ). Let us describe
the Cantor horizon λ-graph system LCh(DN ) of DN . Let ΣN be the full N -shift
{1, . . . , N}Z. We denote by Bl(DN ) and Bl(ΣN ) the set of admissible words
of length l of DN and that of ΣN respectively. The vertices Vl of L

Ch(DN ) at
level l are given by the words of length l consisting of the symbols of Σ+. That
is,

Vl = {(βµ1 · · ·βµl) ∈ Bl(DN ) | µ1 · · ·µl ∈ Bl(ΣN )}.

Hence the cardinal number of Vl is N
l. The mapping ι(= ιl,l+1) : Vl+1 → Vl

deletes the rightmost symbol of a word in Bl(ΣN ) such as

ι((βµ1 · · ·βµl+1
)) = (βµ1 · · ·βµl), (βµ1 · · ·βµl+1

) ∈ Vl+1.

There exists an edge labeled αj from (βµ1 · · ·βµl) ∈ Vl to (βµ0βµ1 · · ·βµl) ∈ Vl+1

precisely if µ0 = j, and there exists an edge labeled βj from (βjβµ1 · · ·βµl−1
) ∈

Vl to (βµ1 · · ·βµl+1
) ∈ Vl+1. The resulting labeled Bratteli diagram with ι-map

becomes a λ-graph system over Σ, denoted by LCh(DN ), that presents the Dyck
shift DN ([26]). It gives rise to a purely infinite simple C∗-algebra OLCh(DN )

([32]) such that

K0(OLCh(DN )) ∼= Z/NZ⊕ C(K,Z), K1(OLCh(DN ) ∼= 0.

Let us denote by (ADN , ρDN ,Σ) the C∗-symbolic dynamical system associated
to the λ-graph system LCh(DN ) as in Section 2. Since the vertex set Vl is indexed
by the set Bl(ΣN ) of words, the family of projections denoted by Eµ1...µl for
µ1 · · ·µl ∈ Bl(ΣN ) in the C∗-algebra ADN forms the minimal projectins of
Al = C(Vl) such that

∑

µ1···µl∈Bl(ΣN )

Eµ1...µl = 1, Eµ1...µl =
N∑

µl+1=1

Eµ1...µl+1
.

As the algebraAl is embedded into Al+1, the C
∗-algebraADN is a commutative

AF-algebra generated by the subalgebras Al, l ∈ N. The endomorphisms ρDNγ :

ADN −→ ADN for γ ∈ Σ are defined by

ρDNαj (Eµ1...µl) = Ejµ1...µl , ρDNβj (Ejµ1...µl−1
) =

N∑

µl,µl+1=1

Eµ1...µl+1
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for µ1 . . . µl ∈ Bl(ΣN ) and j = 1, . . . , N . It then follows that

λρDN (1) =

N∑

j=1

ρDNαj (1) +

N∑

j=1

ρDNβj (1)

=
N∑

j=1

∑

µ1···µl∈Bl(ΣN )

Ejµ1...µl +
N∑

j=1

∑

µ2···µl∈Bl−1(ΣN )

N∑

µl+1,µl+2=1

Eµ2...µl+2

= 1 +N

so that we have ‖λρDN ‖ = ‖λρDN (1)‖ = 1 +N . Hence we obtain

rρDN = 1 +N, TρDN (1) = 1.

This implies that 1 is a fixed element by TρDN and hence (ADN , ρDN ,Σ) satisfies
(FP). As in [32], (ADN , ρDN ,Σ) is irreducible and uniquely ergodic, so that
it is mean ergodic. One then sees that there exists a KMS state at inverse
temperature log β if and only if β = 1+N . The admitted KMS state is unique
([32, Theorem 1.2]).

4. β-shifts
Let β > 1 be an arbitrary real number. Take a natural number N with N−1 <
β ≤ N . Put Σ = {0, 1, ..., N − 1}. For a nonnegative real number t, we denote
by [t] the integer part of t. Let fβ : [0, 1]→ [0, 1] be the mapping defined by

fβ(x) = βx− [βx], x ∈ [0, 1]

that is called the β-transformation ([38], [42]). The β-expansion of x ∈ [0, 1] is
a sequence {di(x, β)}i∈N of integers of Σ determined by

di(x, β) = [βf i−1β (x)], i ∈ N.

By this sequence, we can write x as

x =

∞∑

i=1

di(x, β)

βi
.

We endow the infinite product ΣN with the product topology and the lex-
icographical order. Put ζβ = supx∈[0,1)(di(x, β))i∈ΣN . We define the shift-

invariant compact subset Xβ of ΣN by

Xβ = {ω ∈ ΣN|σi(ω) ≤ ζβ , i = 0, 1, 2, ...},
where σ denotes the shift σ((ωi)i∈N) = (ωi+1)i∈N. The one-sided subshift
(Xβ , σ) is called the right one-sided β-shift (cf. [38], [42]). Its (two-sided)
subshift

Λβ = {(ωi)i∈Z ∈ ΣZ | (ωi−k)i∈N ∈ Xβ , k = 0, 1, 2, . . .}
is called the β-shift. In [17], the C∗-algbera Oβ associated with the β-shift has
been introduced and studied. It is simple and purely infinite for every β > 1
and generated by N − 1 isometries S0, S1, . . . , SN−2 and one partial isometry
SN−1 having certain operator relations (see [17]). The family Oβ , 1 < β ∈ R
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interpolates the Cuntz algebras On, 1 < n ∈ N. Denote by Aβ the C∗-
subalgebra of Oβ genertaed by the family of the projections S∗µSµ, µ ∈ B∗(Λβ).
The algebra is commutative and is of infinite dimensional unless Λβ is sofic,
where Λβ is sofic if and only if the sequence (di(1, β))i∈N is ultimately periodic.

Define a family {ρβj }j=0,1,...,N−1 of endomorphisms on Aβ by

ρβj (x) = S∗j xSj , x ∈ Aβ , j = 0, 1, . . . , N − 1

so that we have a C∗-symbolic dynamical system (Aβ , ρβ,Σ). It is direct to
see that the C∗-algebra Oρβ is canonically isomorphic to the C∗-algebra Oβ .
We set the positive operator λβ on Aβ by

λβ(x) =

N−1∑

j=0

ρβj (x), x ∈ Aβ .

Lemma 7.4. The spectral radius rβ of the positive operator λβ on Aβ is β.

Proof. Denote by θk the cardinal number of the admissible words Bk(Λβ) of
length k. Then we have

‖λkβ‖ = ‖λkβ(1)‖ ≤
∑

µ∈Bk(Λβ)
‖S∗µSµ‖ = θk.

As in [44, p. 179], limk→∞
θk
βk

converges to a positive real number so that there

exists a positive constant M > 0 such that
‖λkβ‖
βk

< M for all k ∈ N. Hence

limk→∞ ‖λkβ‖
1
k ≤ β so that rβ ≤ β. As in [17], there exists a state τ on Aβ

satisfying τ ◦ λβ = βτ . This implies β ∈ Sp(λβ) so that rβ = β. �

Proposition 7.5. (Aβ , ρβ ,Σ) is irreducible, uniquely ergodic and power-
bounded.

Proof. It has been proved in [17] that there is no nontrivial ideal ofAβ invariant
under λβ and there exists a unique state τ on Aβ satisfying τ ◦λβ = rβτ . Hence
(Aβ , ρβ,Σ) is irreducible, uniquely ergodic. As in the proof of the above lemma,

there exists a positive constantM > 0 such that
‖λkβ‖
rk
β

< M for all k ∈ N. This

means that (Aβ , ρβ,Σ) is power-bounded. �

By the above proposition, one knows that (Aβ , ρβ ,Σ) satisfies the hypothesis
of Theorem 6.7 so that there uniquely exists a φρβ -invariant measure on Dρβ
absolutely continuous with respect to the restriction of the unique KMS-state
τ to Dρβ . We note that C(Xβ) is a C∗-subalgebra of Dρβ and the restriction
of φρβ to C(Xβ) comes from the shift transformation σ. As in [17], the re-
striction of the KMS-state τ to Dρβ corresponds to the Lebesgue measure on
[0, 1] in translating the β-shift to the β-transformation. Hence the uniqueness
of the φρβ -invariant measure on Dρβ absolutely continuous with respect to τ
exactly corresponds to the uniqueness of the invariant measure on [0, 1] un-
der the β-transformation absolutely continuous with respect to the Lebesgue
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measure studied in [14], [38] and [42]. In fact, the density function hβ ap-
peared in [14], [38] and [42] of the invariant measure for the β-transformation
with respect to the Lebesgue measure is the element xρβ realized as the mean

limn→∞ 1
n

∑n−1
k=0

λkβ(1)

βk
in Theorem 6.7.
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Abstract. We consider a W ∗-dynamical system (Mβ , τ), which
models finitely many particles coupled to an infinitely extended heat
bath. The energy of the particles can be described by an unbounded
operator, which has infinitely many energy levels. We show existence
of the dynamics τ and existence of a (β, τ) -KMS state under very
explicit conditions on the strength of the interaction and on the inverse
temperature β.
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1 Introduction

In this paper, we study a W ∗-dynamical system (Mβ , τ) which describes a
system of finitely many particles interacting with an infinitely extended bosonic
reservoir or heat bath at inverse temperature β. Here, Mβ denotes the W ∗-
algebra of observables and τ is an automorphism-group on Mβ , which is defined
by

τt(X) := eitLQ X e−itLQ , X ∈Mβ , t ∈ R. (1)

In this context, t is the time parameter. LQ is the Liouvillean of the dynamical
system at inverse temperature β, Q describes the interaction between particles
and heat bath. On the one hand the choice of LQ is motivated by heuristic
arguments, which allow to derive the Liouvillean LQ from the HamiltonianH of
the joint system of particles and bosons at temperature zero. On the other hand
we ensure that LQ anti-commutes with a certain anti-linear conjugation J , that
will be introduced later on. The Hamiltonian, which represents the interaction

1Supported by the DFG (SFB/TR 12)
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with a bosonic gas at temperature zero, can be the Standard Hamiltonian of the
non-relativistic QED, (see or instance [2]), or the Pauli-Fierz operator, which is
defined in [7, 2], or the Hamiltonian of Nelson’s Model. We give the definition
of these Hamiltonians in the sequel of Definition 11.
Our first result is the following:

Theorem 1.1. LQ, defined in (16), has a unique self-adjoint realization and
τt(X) ∈Mβ for all t ∈ R and all X ∈Mβ.

The proof follows from Theorem 4.2 and Lemma 5.2. The main difficulty in
the proof is, that LQ is not semi-bounded, and that one has to define a suitable
auxiliary operator in order to apply Nelson’s commutator theorem.
Partly, we assume that the isolated system of finitely many particles is con-
fined in space. This is reflected in Hypothesis 1, where we assume that the
particle Hamiltonian Hel possesses a Gibbs state. In the case where Hel is a
Schrödinger-operator, we give in Remark 2.1 a sufficient condition on the ex-
ternal potential V to ensure the existence of a Gibbs state for Hel. Our second
theorem is

Theorem 1.2. Assume Hypothesis 1 and that Ωβ0 ∈ dom(e−(β/2)(L0+Q)). Then
there exists a (β, τ)-KMS state ωβ on Mβ.

This theorem ensures the existence of an equilibrium state on Mβ for the
dynamical system (Mβ , τ). Its proof is part of Theorem 5.3 below. Here, L0
denotes the Liouvillean for the joint system of particles and bosons, where the
interaction part is omitted. Ωβ0 is the vector representative of the (β, τ)-KMS
state for the system without interaction. In a third theorem we study the
condition Ωβ0 ∈ dom(e−(β/2)(L0+Q)):

Theorem 1.3. Assume Hypothesis 1 is fulfilled. Then there are two cases,

1. If 0 6 γ < 1/2 and η
1
(1 + β) ≪ 1, then Ωβ0 ∈ dom(e−β/2 (L0+Q)).

2. If γ = 1/2 and (1 + β)(η
1
+ η

2
) ≪ 1, then Ωβ0 ∈ dom(e−β/2 (L0+Q)).

Here, γ ∈ [0, 1/2) is a parameter of the model, see (32) and η
1
, η

2
are parame-

ters, which describe the strength of the interaction, see (32). In a last theorem
we consider the case where Hel = −∆q+Θ2q2 and the interaction Hamiltonian
is λ qΦ(f) at temperature zero for λ 6= 0. Then,

Theorem 1.4. Ωβ0 is in dom(e−β/2 (L0 +Q)) for all β ∈ (0, ∞), whenever

|2Θ−1 λ| ‖|k|−1/2 f‖Hph < 1.

Furthermore, we show that our strategy can not be improved to obtain a result,
which ensures existence for all values of λ, see (60).
In the last decade there appeared a large number of mathematical contribu-
tions to the theory of open quantum system. Here we only want to mention
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some of them [3, 6, 8, 9, 10, 13, 14, 15], which consider a related model, in
which the particle Hamilton Hel is represented as a finite symmetric matrix
and the interaction part of the Hamiltonian is linear in annihilation and cre-
ation operators. In this case one can prove existence of a β- KMS without any
restriction to the strength of the coupling. (In this case we can apply Theorem
1.3 with γ = 0 and η

1
= 0). We can show existence of KMS-states for an infi-

nite level atom coupled to a heat bath. Furthermore, in [6] there is a general
theorem, which ensures existence of a (β, τ)-KMS state under the assumption,
that Ωβ0 ∈ dom(e−(β/2)Q), which implies Ωβ0 ∈ dom(e−(β/2)(L0+Q)). In Remark
7.3 we verify that this condition implies the existence of a (β, τ)-KMS state in
the case of a harmonic oscillator with dipole interaction λ q · Φ(f), whenever
(1 + β)λ‖(1 + |k|−1/2)f‖ ≪ 1.

2 Mathematical Preliminaries

2.1 Fock Space, Field- Operators and Second Quantization

We start our mathematical introduction with the description of the joint system
of particles and bosons at temperature zero. The Hilbert space describing
bosons at temperature zero is the bosonic Fock space Fb, where

Fb := Fb[Hph] := C⊕ ∞⊕

n=1

H(n)
ph , H(n)

ph :=

n⊗

sym

Hph.

Hph is either a closed subspace of L2(R3) or L2(R3×{±}), being invariant un-
der complex conjugation. If phonons are considered we choose Hph = L2(R3),
if photons are considered we choose Hph = L2(R3 × {±}). In the latter case
"+" or "-" labels the polarization of the photon. However, we will write
〈 f | g 〉Hph :=

∫
f(k) g(k) dk for the scalar product in both cases. This is

an abbreviation for
∑
p=±

∫
f(k, p) g(k, p) dk in the case of photons.

H(n)
ph is the n-fold symmetric tensor product of Hph, that is, it contains all

square integrable functions fn being invariant under permutations π of the
variables, i.e., fn(k1, . . . , kn) = fn(kπ(1), . . . , kπ(n)). For phonons we have
kj ∈ R3 and kj ∈ R3×{±} for photons. The wave functions in Hnph are states
of n bosons.
The vector Ω := (1, 0, . . .) ∈ Fb is called the vacuum. Furthermore we denote
the subspace Fb of finite sequences with Fbfin. On Fbfin the creation and
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annihilation operators, a∗(h) and a(h), are defined for h ∈ Hph by

(a∗(h) fn)(k1, . . . , kn+1) (2)

= (n+ 1)−1/2
n+1∑

i=1

h(ki) fn(k1, . . . , ki−1, ki+1, . . . , kn+1),

(a(h) fn+1)(k1, . . . , kn) (3)

= (n+ 1)1/2
∫
h(kn+1) fn+1(k1, . . . , kn+1) dkn+1,

and a∗(h)Ω = h, a(h)Ω = 0. Since a∗(h) ⊂ (a(h))∗ and a(h) ⊂ (a∗(h))∗,
the operators a∗(h) and a(h) are closable. Moreover, the canonical commuta-
tion relations (CCR) hold true, i.e.,

[a(h) , a(h̃)] = [a∗(h) , a∗(h̃)] = 0, [a(h) , a∗(h̃)] = 〈h | h̃ 〉Hph .

Furthermore we define field operator by

Φ(h) := 2−1/2 (a(h) + a∗(h)), h ∈ Hph.

It is a straightforward calculation to check that the vectors in Fbfin are analytic
for Φ(h). Thus, Φ(h) is essentially self-adjoint on Fbfin. In the sequel, we will
identify a∗(h), a(h) and Φ(h) with their closures. The Weyl operators W (h)
are given by W (h) = exp(iΦ(h)). They fulfill the CCR-relation for the Weyl
operators, i.e.,

W (h)W (g) = exp(i/2 Im 〈h | g 〉Hph)W (g + h),

which follows from explicit calculations on Fbfin. The Weyl algebra W (f) over
a subspace f of Hph is defined by

W (f) := cl LH{W (g) ∈ B(Fb) : g ∈ f}. (4)

Here, cl denotes the closure with respect to the norm of B(Fb), and "LH"
denotes the linear hull.
Let α : R3 → [0, ∞) be a locally bounded Borel function and dom(α) := {f ∈
Hph : αf ∈ Hph}. Note, that (αf)(k) is given by α(k) f(k, p) for photons.
If dom(α) is dense subspace of Hph, α defines a self-adjoint multiplication
operator on Hph. In this case, the second quantization dΓ(α) of α is defined
by

(dΓ(α) fn)(k1, . . . , kn) := (α(k1) + α(k2) + . . .+ α(kn)) fn(k1, . . . , kn)

and dΓ(α)Ω = 0 on its maximal domain.
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2.2 Hilbert space and Hamiltonian for the particles

Let Hel be a closed, separable subspace of L2(X, dµ), that is invariant under
complex conjugation. The Hamiltonian Hel for the particle is a self-adjoint op-
erator onHel being bounded from below. We setHel,+ := Hel − inf σ(Hel) + 1.
Partly, we need the assumption

Hypothesis 1. Let β > 0. There exists a small positive constant ǫ > 0, and

TrHel{e−(β− ǫ)Hel} < ∞.

The condition implies the existence of a Gibbs state

ωβel(A) = Z−1 TrHel{e−βHelA}, A ∈ B(Hel),

for Z = TrHel{e−βHel}.

Remark 2.1. Let Hel = L2(Rn, dn x) and Hel = −∆x + V1 + V2, where V1 is
a −∆x-bounded potential with relative bound a < 1 and V2 is in L2

loc(Rn, dnx).
Thus Hel is essentially self-adjoint on C∞c (Rn). Moreover, if additionally

∫
e−(β− ǫ)V2(x) dn x < ∞, (5)

then one can show, using the Golden-Thompson-inequality, that Hypothesis 1
is satisfied.

2.3 Hilbert space and Hamiltonian for the interacting system

The Hilbert space for the joint system is H := Hel⊗Fb. The vectors in H are
sequences f = (fn)n∈N0 of wave functions, fn ∈ Hel ⊗H(n)

ph , obeying

kn 7→ fn(x, kn) ∈ H(n)
ph for µ- almost every x

x 7→ fn(x, kn) ∈ Hel for Lebesgue - almost every kn,

where kn = (k1, . . . , kn). The complex conjugate vector is f := ( fn )n∈N0 .
Let Gj := {Gjk}k∈R3 , Hj := {Hj

k}k∈R3 and F := {Fk}k∈R3 be fam-
ilies of closed operators on Hel for j = 1, . . . , r. We assume, that
dom(F ∗k ), dom(Fk) ⊃ dom(H

1/2
el,+) and that

k 7→ Gjk, (H
j
k), FkH

−1/2
el,+ , (Fk)

∗H−1/2el,+ ∈ B(Hel)

are weakly (Lebesgue-)measurable. For φ ∈ dom(H
1/2
el,+) we assume that

k 7→ (Gjk φ)(x), (Hj
k φ)(x), (Fk φ)(x) ∈ Hph, (6)

k 7→ ((Gjk)
∗ φ)(x), ((Hj

k)
∗ φ)(x), ((Fk)

∗ φ)(x) ∈ Hph, for x ∈ X. (7)
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Moreover we assume for ~G = (G1, . . . , Gr), ~H := (H1, . . . , Hr) and F , that

‖ ~G‖w < ∞, ‖ ~H‖w < ∞, ‖F‖w,1/2 < ∞,

where

‖Gj‖2w :=

∫
(α(k) + α(k)−1)

(
‖(Gjk)∗‖2B(Hel) + ‖Gjk‖2B(Hel)

)
dk

‖ ~G‖2w :=

r∑

j=1

‖Gj‖2w, ‖F‖2w,1/2 := ‖FH−1/2el,+ ‖2w + ‖F ∗H−1/2el,+ ‖2w.

We define for f = (fn)
∞
n=0 ∈ dom(H

1/2
el,+) ⊗ F

fin
b the (generalized) creation

operator

(a∗(F ) fn)(x, k1, . . . , kn+1) (8)

:= (n+ 1)−1/2
n+1∑

i=1

(Fki fn)(x, k1, . . . , ki−1, ki+1, . . . , kn+1)

and a(F ) f0(x) = 0. The (generalized) annihilation operator is

(a(F ) fn+1)(x, k1, . . . , kn) (9)

:= (n+ 1)1/2
∫
(F ∗kn+1

fn+1)(x, k1, . . . , kn, kn+1) dkn+1.

Moreover, the corresponding (generalized) field operator is Φ(F ) :=

2−1/2 (a(F ) + a∗(F )). Φ(F ) is symmetric on dom(H
1/2
el,+) ⊗ F

fin
b . The

bounds follow directly from Equations (8) and (9).

‖ a(F )H−1/2el,+ f‖2H 6

∫
|α(k)|−1‖F ∗k H−1/2el,+ ‖2B(Hel) dk · ‖dΓ(|α|)

1/2f‖2H(10)

‖a∗(F )H−1/2el,+ f‖2H 6

∫
|α(k)|−1‖FkH−1/2el,+ ‖2B(Hel) dk · ‖dΓ(|α|)

1/2 f‖2H

+

∫
‖FkH−1/2el,+ ‖2B(Hel) dk · ‖f‖

2
H.

For (Gk)
j , (Hk)

j ∈ B(Hel), the factor H−1/2el,+ can be omitted. The Hamiltoni-
ans for the non-interacting, resp. interacting model are

Definition 2.2. On dom(Hel)⊗ dom(dΓ(α)) ∩ Ffinb we define

H0 := Hel ⊗ 1 + 1⊗ dΓ(α), H := H0 + W, (11)

where W := Φ(~G)Φ( ~H) + h. c. +Φ(F ) and Φ(~G)Φ( ~H) :=∑r
j=1 Φ(G

j)Φ(Hj). The abbreviation "h.c." means the formal adjoint operator

of Φ(~G)Φ( ~H).
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We give examples for possible configurations:
Let γ ∈ R be a small coupling parameter.
◮ The Nelson Model:
Hel ⊂ L2(R3N ), Hel := −∆ + V , Hph = L2(R3) and α(k) = |k|. The form
factor is Fk = γ

∑N
ν=1 e

−i kxν |k|−1/2 1[ |k| 6 κ], xν ∈ R3 and Hj, Gj = 0.
◮ The Standard Model of Nonrelativistic QED:
Hel ⊂ L2(R3N ), Hel := −∆ + V , Hph = L2(R3×{±}) and α(k) = |k|. The
form factors are

Fk = 4γ3/2 π−1/2
N∑

ν=1

(−i∇xν · ǫ(k, p))e−i γ
1/2kxν (2|k|)−1/2 1[ |k| 6 κ] + h. c.,

Gi, ν
k

= Hi, ν
k

= 2γ3/2 π−1/2 ǫi(k, p) e
−i γ1/2 kxν (2|k|)−1/2 1[ |k| 6 κ]

for i = 1, 2, 3, ν = 1, . . . , N, xν ∈ R3 and k = (k, p) ∈ R3×{±}. ǫi(k, ±) ∈R3 are polarization vectors.
◮ The Pauli-Fierz-Model:
Hel ⊂ L2(R3N ), Hel := −∆ + V , Hph = L2(R3) or Hph = L2(R3 × {±}),
and α(k) = |k|. The form factor is Fk = γ

∑N
ν=1 1[ |k| 6 κ] k · xν and

Gjk = Hj
k = 0

3 The Representation π

In order to describe the particle system at inverse temperature β we introduce
the algebraic setting. For f = {f ∈ Hph : α−1/2f ∈ Hph} we define the
algebra of observables by

A = B(Hel)⊗W(f).

For elements A ∈ A we define τ̃0t (A) := ei t H0 Ae−i tH0 and
τ̃gt (A) := ei t HAe− i tH . We first discuss the model without interaction.

3.1 The Representation πf

The time-evolution for the Weyl operators is given by

ei t ȞW(f) e−i t Ȟ = W(ei t α f).

For this time-evolution an equilibrium state ωβf is defined by

ωβf (W(f)) = 〈 f | (1 + 2 ̺β) f 〉Hph ,

where ̺β(k) =
(
exp(β α(k)) − 1

)−1
. It describes an infinitely extended gas

of bosons with momentum density ̺β at temperature β. Since ωβf is a quasi-

free state on the Weyl algebra, the definition of ωβf extends to polynomials of
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creation and annihilation operators. One has

ωβf (a(f)) = ωβf (a
∗(f)) = ωβf (a(f) a(g)) = ωβf (a

∗(f) a∗(g)) = 0,

ωβf (a
∗(f) a(g)) = 〈 g | ̺β f 〉Hph .

For polynomials of higher degree one can apply Wick’s theorem for quasi-free
states, i.e.,

ωβf (a
σ2m (f2m) · · ·aσ1(f1)) =

∑

P∈Z2

∏

{i,j}∈P

i>j

ωβf
(
aσi(fi) a

σj (fj)
)
, (12)

where aσk = a∗ or aσk = a for k = 1, . . . , 2m. Z2 are the pairings, that is

P ∈ Z2, iff P = {Q1, . . . , Qm}, #Qi = 2 and
⋃m
i=1 Qi = {1, . . . , 2m}.

The Araki-Woods isomorphism πf : W(f) → B(Fb ⊗Fb) is defined by

πf [W(f)] := Wβ(f) := exp(iΦβ(f)),

Φβ(f) := Φ((1 + ̺β)
1/2 f)⊗ 1 + 1⊗ Φ(̺

1/2
β f).

The vector Ωβf := Ω⊗ Ω fulfills

ωβf (W(f)) = 〈Ωβf |πf [W(f)] Ωβf 〉. (13)

3.2 The representation πel

The particle system without interaction has the observables B(Hel), the states
are defined by density operators ρ, i.e., ρ ∈ B(Hel), 0 6 ρ, Tr{ρ} = 1. The
expectation of A ∈ B(Hel) in ρ at time t is

Tr{ ρ ei tHel Ae−i t Hel}.

Since ρ is a compact, self-adjoint operator, there is an ONB (φn)n of eigenvec-
tors, with corresponding (positive) eigenvalues (pn)n. Let

σ(x, y) =
∞∑

n=1

p1/2n φn(x)φn(y) ∈ Hel ⊗Hel. (14)

For ψ ∈ Hel we define σ ψ :=
∫
σ(x, y)ψ(y) dµ(y). Obviously, σ is an operator

of Hilbert-Schmidt class. Note, σ ψ := σ ψ has the integral kernel σ(x, y). It
is a straightforward calculation to verify that

Tr{ρ ei t Hel Ae−i tHel} = 〈 e−i tLel σ | (A⊗ 1) e−i tLelσ 〉Hel⊗Hel ,

where Lel = Hel⊗1−1⊗Hel. This suggests the definition of the representation

πel : B(Hel)→ B(Hel ⊗Hel), A 7→ A⊗ 1.
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Now, we define the representation map for the joint system by

π : A → B(K), π := πel ⊗ πf ,

where K := Hel ⊗ Hel ⊗ Fb ⊗ Fb. Let Mβ := π[A]′′ be the enveloping W ∗-
algebra, here π[A]′ denotes the commutant of π[A], and π[A]′′ the bicommutant.
We set D := U1 ⊗ U1 ⊗ C, where C is a subspace of vectors in Ffinb ⊗ Ffinb ,
with compact support, and U1 := ∪∞n=1 ran 1[Hel 6 n]. On D the operator L0,
given by

L0 := Lel ⊗ 1 + 1⊗ Lf , on K,
Lf := dΓ(α)⊗ 1 − 1⊗ dΓ(α), on Fb ⊗Fb,

is essentially self-adjoint and we can define

τ0t (X) := ei tL0 X e−i tL0 ∈Mβ , X ∈Mβ, t ∈ R,
It is not hard to see, that

π[τ̃0t (A)] = τ0t (π[A]), A ∈ A, t ∈ R
On K a we introduce a conjugation by

J (φ1 ⊗ φ2 ⊗ ψ1 ⊗ ψ2) = φ2 ⊗ φ1 ⊗ ψ2 ⊗ ψ1.

It is easily seen, that J L0 = −L0 J . In this context one has M′β = J Mβ J ,
see for example [4]. In the case, where Hel fulfills Hypothesis 1, we define the
vector representative Ωβel ∈ Hel ⊗ Hel of the Gibbs state ωβel as in (14) for
ρ = e−βHel Z−1.
Theorem 3.1. Assume Hypothesis 1 is fulfilled. Then, Ωβ0 := Ωβel ⊗ Ωβf is a

cyclic and separating vector for Mβ. e
−β/2L0 is a modular operator and J is

the modular conjugation for Ωβ0 , that is

XΩβ0 ∈ dom(e−β/2L0), J X Ωβ0 = e−β/2L0 X∗Ωβ0 (15)

for all X ∈Mβ and L0 Ωβ0 = 0. Moreover,

ωβ0 (X) := 〈Ωβ0 |X Ωβ0 〉K, X ∈Mβ

is a (τ0, β)-KMS-state for Mβ, i.e., for all X, Y ∈ Mβ exists Fβ(X, Y, ·),
analytic in the strip Sβ = {z ∈ C : 0 < Im z < β}, continuous on the closure
and taking the boundary conditions

Fβ(X, Y, t) = ωβ0 (X τ0t (Y ))

Fβ(X, Y, t + i β) = ωβ0 (τ
0
t (Y )X)

For a proof see [14].
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4 The Liouvillean LQ

In this and the next section we will introduce the Standard Liouvillean LQ for
a dynamics τ on Mβ , describing the interaction between particles and bosons
at inverse temperature β. The label Q denotes the interaction part of the
Liouvillean, it can be deduced from the interaction partW of the corresponding
Hamiltonian by means of formal arguments, which we will not give here. In
a first step we prove self-adjointness of LQ and of other Liouvilleans. A main
difficulty stems from the fact, that LQ and the other Liouvilleans, mentioned
before, are not bounded from below. The proof of self-adjointness is given
in Theorem 4.2, it uses Nelson’s commutator theorem and auxiliary operators
which are constructed in Lemma 4.1. The proof, that τt(X) ∈Mβ for X ∈Mβ ,
is given in Lemma 5.2. Assuming Ωβ0 ∈ dom(e−β/2(L0+Q)) we can ensure
existence of a (τ, β)-KMS state ωβ(X) = 〈Ωβ |X Ωβ〉 · ‖Ωβ‖−2 on Mβ , where
Ωβ = e−β/2(L0+Q)Ωβ0 . Moreover, we can show that e−βLQ is the modular
operator for Ωβ and conjugation J . This is done in Theorem 5.3.
Our proof of 5.3 is inspired by the proof given in [6]. The main difference is
that we do not assume, that Q is self-adjoint and that Ωβ0 ∈ dom(e−βQ). For
this reason we need to introduce an additional approximation QN of Q, which
is self-adjoint and affiliated with Mβ , see Lemma 5.1.
The interaction on the level of Liouvilleans between particles and bosons is
given by Q , where

Q := Φβ(~G)Φβ( ~H) + h. c. +Φβ(F ), Φβ(~G)Φβ( ~H) :=

r∑

j=1

Φβ(G
j)Φβ(H

j).

For each family K = {Kk}k of closed operators on Hel with ‖K‖w,1/2 <∞ we
set

Φβ(K) :=
(
a∗((1 + ̺β)

1/2K)⊗ 1 + 1⊗ a∗(̺1/2β K∗)
)
+ h. c. .

Here, Kk acts as Kk ⊗ 1 on Hel ⊗ Hel. A Liouvillean, that describes the
dynamics of the joint system of particles and bosons is the so-called Standard
Liouvillean

LQ φ := (L0 + Q − QJ )φ, φ ∈ D, (16)

which is distinguished by J LQ = −LQ J . For an operator A, acting on K, the
symbol AJ is an abbreviation for J AJ . An important observation is, that
[Q , QJ ] = 0 on D. Next, we define four auxiliary operators on D

L(1)a := (Hel,+ ⊗ 1 + 1⊗Hel,+

)
⊗ 1+ 1⊗ Lf,a + 1 (17)

L(2)a := HQ
el,+ + (HQ

el,+)
J + c11⊗ Lf,a + c2

L(3)a := HQ
el,+ + (Hel,+)

J + c11⊗ Lf,a + c2

L(4)a := Hel,+ ⊗ 1+ (HQ
el,+)

J + c11⊗ Lf,a + c2,
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where Lf,a is an operator on Fb ⊗Fb and HQ
el,+ acts on K. Furthermore,

Lf,a = dΓ(1 + α)⊗ 1+ 1⊗ dΓ(1 + α) + 1,

Lel,a = Hel,+ ⊗ 1 + 1⊗Hel,+ HQ
el,+ := Hel,+ ⊗ 1+Q.

Obviously, L(i)a , i = 1, 2, 3, 4 are symmetric operators on D.

Lemma 4.1. For sufficiently large values of c1, c2 > 0 we have that L(i)a , i =
1, 2, 3, 4 are essentially self-adjoint and positive. Moreover, there is a constant
c3 > 0 such that

c−13 ‖L(1)a φ‖ 6 ‖L(i)a φ‖ 6 c3 ‖L(1)a φ‖, φ ∈ dom(L(1)a ). (18)

Proof. Let a, a′ ∈ {l, r} and Ki, i = 1, 2 be families of bounded operators
with ‖Ki‖w < ∞. Let Φl(Ki) = Φ(Ki) ⊗ 1 and Φr(Ki) := 1 ⊗ Φ(Ki). We
have for φ ∈ D

‖Φa(ηK1)Φa′(η
′K2)φ ‖ 6 const ‖Lf,a φ ‖ (19)

‖Φa(ηF )φ ‖ 6 const ‖(Lel,a)1/2(Lf,a)1/2 φ ‖,

where η, η′ ∈ {(1+̺β)1/2, ̺1/2β }. Note, that the estimates hold true, if Φa(ηKi)

or Φa(ηF ) are replaced by Φa(ηKi)
J or Φa(ηF )

J . Thus, we obtain for suffi-
ciently large c1 ≫ 1, depending on the form-factors, that

‖Qφ‖ + ‖QJ φ‖ 6 1/2
∥∥(Lel,a + c1 Lf,a

)
φ
∥∥. (20)

By the Kato-Rellich-Theorem ( [17], Thm. X.12) we deduce that L(i)a is self-
adjoint on dom(Lel,a + c1 Lf,a), bounded from below and that Lel,a + c1 Lf,a
is L(i)a -bounded for every c2 > 0 and i = 2, 3, 4. In particular, D is a core of
L(i)a . The proof follows now from ‖L(i)a φ‖ 6 ‖(Lel,a+c1 Lf,a)φ‖ 6 c1 ‖L(1)a φ‖
for φ ∈ D.

Theorem 4.2. The operators

L0, LQ = L0 +Q−QJ , L0 +Q, L0 −QJ , (21)

defined on D, are essentially self-adjoint. Every core of L(1)a is a core of the
operators in line (21).

Proof. We restrict ourselves to the case of LQ. We check the assumptions
of Nelson’s commutator theorem ([17], Thm. X.37). By Lemma 4.1 it suf-
fices to show ‖LQφ‖ 6 const ‖L(1)a φ‖ and |〈 LQφ | L(2)a φ〉 − 〈L(2)a φ| LQφ〉| 6
const ‖(L(1)a )1/2φ‖2 for φ ∈ D. The first inequality follows from Equation (20).
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To verify the second inequality we observe
∣∣〈LQ φ

∣∣L(2)a φ
〉
−
〈
L(2)a φ

∣∣LQ φ
〉∣∣ (22)

6 c1

∣∣∣
〈
Qφ
∣∣Lf,aφ

〉
−
〈
Lf,aφ

∣∣Qφ
〉∣∣∣

+ c1

∣∣∣
〈
QJφ

∣∣Lf,aφ
〉
−
〈
Lf,aφ

∣∣QJφ
〉∣∣∣

+
∣∣∣
〈
Lfφ

∣∣Qφ
〉
− 〈Qφ

∣∣Lfφ
〉∣∣∣+

∣∣∣
〈
Lfφ

∣∣QJφ
〉
−
〈
QJφ

∣∣Lfφ
〉∣∣∣,

where we used, that
[
HQ
el,+, (H

Q
el,+)

J ] = 0. Let Ki ∈ {Gj , Hj} and η, η′ ∈
{̺1/2, (1 + ̺)1/2}. We remark, that

[Φa(η K1)Φa′(η
′K2) , Lf,a] = iΦa(i (1 + α) η K1)Φa′v(η

′K2) (23)

+ iΦa(η K1)Φa′(i (1 + α) η′K2)

[Φa(η F ) , Lf,a] = iΦa(i (1 + α) η F ).

Hence, for φ ∈ dom(L(2)a ), we have by means of (10) that

∣∣〈φ | [Φa(ηK1)Φa′(η
′K2), Lf,a]φ

〉∣∣ 6 const ‖L1/2f,aφ‖2 (24)
∣∣〈φ | [Φa(ηF ), Lf,a]φ

〉∣∣ 6 const ‖L1/2f,aφ‖ ‖(Lel,a)1/2φ‖.

Thus, (24) is bounded by a constant times ‖(L(1)a )1/2φ‖2. The essential self-
adjointness of LQ follows now from estimates analog to (23) and (24), where
Lf,a is replaced by Lf in (23) and in the left side of (24). For L0+Q and L0−QJ
one has to consider the commutator with L(3)a and L(4)a , respectively.

Remark 4.3. In the same way one can show, that H is essentially self-adjoint
on any core of H1 := Hel + dΓ(1 + α), even if H is not bounded from below.

5 Regularized Interaction and Standard Form of Mβ

In this subsection a regularized interaction QN is introduced:

QN :=
{
Φβ(~GN )Φβ( ~HN ) + h. c.

}
+ Φβ(FN ). (25)

The regularized form factors ~GN , ~HN , FN are obtained by multiplying the
finite rank projection PN := 1[Hel 6 N ] from the left and the right. Moreover,
an additional ultraviolet cut-off 1[α 6 N ], considered as a spectral projection,
is added. The regularized form factors are

~GN (k) := 1[α 6 N ]PN ~G(k)PN , ~HN (k) := 1[α 6 N ]PN ~H(k)PN ,

FN (k) := 1[α 6 N ]PN F (k)PN .
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Lemma 5.1. i) QN is essentially self-adjoint on D ⊂ dom(QN ). QN is affiliated
with Mβ, i.e,. QN is closed and

X ′QN ⊂ QN X ′, ∀X ′ ∈M′β .

ii) L0 + QN , L0 − JQNJ and L0 + QN − JQNJ converges in the strong
resolvent sense to L0 +Q, L0 − JQJ and L0 +Q− JQJ , respectively.

Proof. Let QN be defined on D. With the same arguments as in the proof of
Theorem 4.2 we obtain

‖QNφ‖ 6 C‖Lf,aφ‖,
∣∣〈QNφ

∣∣Lf,aφ
〉
−
〈
Lf,aφ

∣∣QNφ
〉∣∣ 6 C

∥∥(Lf,a)1/2φ
∥∥2,

for φ ∈ D and some constant C > 0, where we have used that ‖FN‖w < ∞.
Thus, from Theorem 4.2 and Nelson’s commutator theorem we obtain that D
is a common core for QN , L0 +QN , L0 − QJN , L0 + QN −QJN and for the
operators in line (21). A straightforward calculation yields

lim
N→∞

QNφ = Qφ, lim
N→∞

JQNJ φ = JQJφ ∀φ ∈ D.

Thus statement ii) follows, since it suffices to check strong convergence on the
common core D, see [16, Theorem VIII.25 a)].
Let Nf := dΓ(1)⊗1+1⊗dΓ(1) be the number-operator. Since dom(Nf ) ⊃ D
and Wβ(f)

J : dom(Nf ) → dom(Nf ), see [4], we obtain

QN (A⊗ 1⊗Wβ(f))
J φ = (A⊗ 1⊗Wβ(f))

JQNφ (26)

for A ∈ B(Hel), f ∈ f and φ ∈ D. By closedness of QN and density arguments
the equality holds for φ ∈ dom(QN ) and X ∈ Mβ instead of A ⊗ 1 ⊗Wβ(f).
Thus QN is affiliated with Mβ and therefore ei tQN ∈Mβ for t ∈ R.

Lemma 5.2. We have for X ∈Mβ and t ∈ R
τt(X) = eit(L0+Q)X eit(L0+Q), τ0t (X) = eit(L0−QJ )X eit(L0−QJ ) (27)

Moreover, τt(X) ∈Mβ for all X ∈Mβ and t ∈ R, such as

EQ(t) := ei t (L0 +Q) e−i tL0 = ei tLQ e−i t (L0−QJ ) ∈Mβ .

Proof. First, we prove the statement for QN , since QN is affiliated with Mβ

and therefore eitQN ∈Mβ . We set

τ̂Nt (X) = ei t (L0 +QN )X e−i t (L0 +QN ), τ̂t(X) = ei t (L0 +Q)X e−i t (L0 +Q)

(28)
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On account of Lemma 5.1 and Theorem 4.2 we can apply the Trotter product
formula to obtain

τ̂Nt (X) = w-limn→∞
(
ei

t
nL0 ei

t
nQN

)n
X
(
e−i

t
nQN e−i

t
nL0
)n

= w-limn→∞ τ0t
n

(
ei

t
n QN · · · τ0t

n
(ei

t
n QN X e−i

t
nQN ) · · · e−i tnQN

)
.

Since ei
t
nQN , X ∈ Mβ and since τ0 leaves Mβ invariant, τ̂Nt (X) is the weak

limit of elements of Mβ , and hence τ̂Nt (X) ∈Mβ. Moreover,

τ̂t(X) = w-limN→∞ τ̂
N
t (X) ∈Mβ .

For EN (t) := ei t (L0 +QN )e−i tL0 ∈ B(K) we obtain

eit(L0 +QN )e−i tL0 = s-limn→∞
(
ei

t
n L0ei

t
n QN

)n
e−i tL0

= s-limn→∞ τ
0
t
n
(ei

t
n QN )τ02t

n
(ei

t
n QN ) · · · τ0nt

n
(ei

t
n QN ) ∈Mβ .

By virtue of Lemma 5.1 we get EQ(t) := ei t (L0 +Q) e−i tL0 =
w-limN→∞ EN (t) ∈ Mβ . Since J leaves D invariant and thanks to
Lemma 5.1, we deduce, that D is a core of JQNJ . Moreover, we have
e−itQ

J
N = J eitQNJ ∈M′β . Since we have shown, that τ̂N leaves Mβ invariant,

we get

τNt (X) = w-limn→∞(ei
t
n (L0+QN )ei

t
n (−QJ

N ))nX (e−i
t
n (−QJ

N ) e−i
t
n (L0+QN ))n

= w-limn→∞ τ̂
N
t
n

(
e−i

t
n Q

J
N · · · τ̂Nt

n
(e−i

t
n Q

J
N X ei

t
nQ

J
N ) · · · ei tnQJ

N
)

= τ̂Nt (X).

Thanks to Lemma 5.1 we also have

τt(X) = w-limn→∞ τ
N
t (X) = w-limN→∞ τ̂Nt (X) = τ̂t(X). (29)

The proof of τ0t (X) = eit(L0−QJ )X eit(L0−QJ ) follows analogously. Using the
Trotter product formula we obtain

eit(L0+QN ) e−itL0 = s-limn→∞
(
ei

t
n L0ei

t
nQN

)n
e−itL0

= s-limn→∞ τ
0
t
n
(ei

t
nQN )τ02t

n
(ei

t
nQN ) · · · τ0nt

n
(ei

t
nQN )

= s-limn→∞
(
ei

t
n (L0−QNJ )ei

t
nQN

)n
e−it(L0−QNJ )

= eit(L0+QN−JQNJ ) e−it(L0−QNJ ).

By strong resolvent convergence we may deduce E(t) = eitLQ e−it(L0−QJ ) .

Let C be the natural positive cone associated with J and Ωβ0 and let Mana
β be

the τ -analytic elements of Mβ , (see [4]).
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Theorem 5.3. Assume Hypothesis 1 and Ωβ0 ∈ dom(e−β/2 (L0 +Q)). Let Ωβ :=

e−β/2 (L0 +Q) Ωβ0 . Then

J Ωβ = Ωβ , Ωβ = eβ/2 (L0−QJ ) Ωβ0 , (30)

LQΩβ = 0, J X∗Ωβ = e−β/2LQX Ωβ , ∀X ∈Mβ

Furthermore, Ωβ is separating and cyclic for Mβ, and Ωβ ∈ C. The state ωβ

is defined by
ωβ(X) := ‖Ωβ‖−2 〈Ωβ |X Ωβ〉, X ∈Mβ

is a (τ, β)-KMS state on Mβ.

Proof. First, we define Ω(z) = e−z (L0+Q) Ωβ0 for z ∈ C with 0 6 Re z 6 β/2.
Since Ωβ0 ∈ dom(e−β/2 (L0+Q)), Ω(z) is analytic on Sβ/2 := {z ∈ C : 0 <
Re (z) < α} and continuous on the closure of Sβ/2, see Lemma A.2 below.

◮ Proof of J Ω(β/2) = Ω(β/2):
We pick φ ∈ ⋃

n∈N ran1[|L0| 6 n]. Let f(z) := 〈φ | J Ω(z) 〉 and
g(z) := 〈 e−(β/2− z)L0 φ | e−z (L0 +Q) Ωβ0 〉. Both f and g are analytic on Sβ/2
and continuous on its closure. Thanks to Lemma 5.2 we have EQ(t) ∈ Mβ ,
and hence

f(it) = 〈φ | J EQ(t)Ωβ0 〉 = 〈φ | e−β/2L0 EQ(t)
∗ Ωβ0 〉 = g(i t), t ∈ R.

By Lemma A.1, f and g are equal, in particular in z = β/2. Note that φ is
any element of a dense subspace.

◮ Proof of Ωβ0 ∈ dom(eβ/2 (L0−QJ )) and Ω(β/2) = eβ/2 (L0−QJ ) Ωβ0 :
Let φ ∈ ⋃

n∈N ran1[|L0 − QJ | 6 n]. We set g(z) :=

〈 ez(L0 −QJ ) φ | e−zL0 Ωβ0 〉. Since EQ(t)
J = ei t (L0−QJ ) e−i tL0 , g coin-

cides for z = i t with f(z) := 〈φ | J Ω(z) 〉. Hence they are equal in z = β/2.
The rest follows since eβ/2 (L0−QJ ) is self-adjoint.

◮ Proof of LQ Ω(β/2) = 0:
Choose φ ∈ ⋃

n∈N ran1[|LQ| 6 n]. We define g(z) :=

〈 e−zLQφ | ez (L0−QJ ) Ωβ0 〉 and f(z) := 〈φ |Ω(z) 〉 for z in the closure
of Sβ/2. Again both functions are equal on the line z = i t, t ∈ R.
Hence f and g are identical, and therefore Ω(β/2) ∈ dom(e−β/2LQ) and
e−β/2LQ Ω(β/2) = Ω(β/2). We conclude that LQΩ(β/2) = 0.

◮ Proof of J X∗Ω(β/2) = e−β/2LQ X Ω(β/2), ∀X ∈Mβ :
Fore A ∈Mana

β we have, that

J A∗ Ω(−it) = J A∗ EQ(t)Ωβ0 = e−β/2L0 EQ(t)
∗AΩβ0

= e−(β/2− i t)L0 e−it(L0+Q)AΩβ0

= e−(β/2−it)L0 τ−t(A) e
−it(L0+Q) Ωβ0 .
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Let φ ∈ ⋃
n∈N ran1[|L0| 6 n]. We define f(z) = 〈φ | J A∗ Ω(z) 〉 and

g(z) = 〈 e−(β/2−z)L0 φ | τiz(A)Ω(z) 〉. Since f and g are analytic and equal
for z = it, we have JA∗Ω(β/2) = τi β/2(A)Ω(β/2). To finish the proof we
pick φ ∈ ⋃n∈N ran1[|LQ| 6 n], and set f(z) := 〈φ | τiz(A)Ω(β/2) 〉 and
g(z) := 〈 e−zLQφ |AΩ(β/2) 〉. For z = i t we see

g(it) = 〈φ | e−itLQ AeitLQΩ(β/2) 〉 = 〈φ | τ−t(A)Ω(β/2) 〉 = f(i t).

Hence AΩ(β/2) ∈ dom(e−β/2LQ) and JA∗Ω(β/2) = e−β/2LQAΩ(β/2).
Since Mana

β is dense in the strong topology, the equality holds for all X ∈Mβ .

◮ Proof, that Ωβ is separating for Mβ :
Let A ∈Mana

β . We choose φ ∈ ⋃n∈N ran1[|(L0 +Q)| 6 n]. First, we have

J A∗ Ω(β/2) = τiβ/2(A)Ω(β/2).

Let fφ(z) = 〈φ|τz(A)Ω(β/2)〉 and gφ(z) = 〈ez(L0+Q)φ |Ae−(β/2+z)(L0+Q)Ωβ0 〉
for −β/2 6 Re z 6 0. Both functions are continuous and analytic if −β/2 <
Re z < 0. Furthermore, fφ(i t) = gφ(i t) for t ∈ R. Hence fφ = gφ and for
z = −β/2

〈φ | J A∗Ω(β/2) 〉 = 〈 e−β/2 (L0+Q)φ |AΩβ0 〉.
This equation extends to all A ∈ Mβ , we obtain AΩβ0 ∈ dom(e−β/2 (L0+Q)),
such as e−β/2(L0+Q)AΩβ0 = J A∗Ω(β/2) for A ∈ Mβ . Assume
A∗ Ω(β/2) = 0, then
e−β/2 (L0+Q)AΩβ0 = 0 and hence AΩβ0 = 0. Since Ωβ0 is separating, it follows
that A = 0 and therefore A∗ = 0.

◮ Proof of Ωβ ∈ C, and that Ωβ is cyclic for Mβ :
To prove that φ ∈ C it is sufficient to check that 〈φ |AJAΩβ0 〉 > 0 for all
A ∈Mβ . We have

〈Ω(β/2)|AJAΩβ0 〉 = 〈 JA∗Ω(β/2) |AΩβ0 〉
= 〈 e−β/2(L0+Q)AΩβ0 |AΩβ0 〉 > 0.

The proof follows, since every separating element of C is cyclic.
◮ Proof, that ωβ is a (τ, β)-KMS state:
For A, B ∈Mβ and z ∈ Sβ we define

Fβ(A, B, z) = c 〈 e−iz/2LQA∗Ωβ | eiz/2LQBΩβ 〉,

where c := ‖Ωβ‖−2. First, we observe

Fβ(A, B, t) = c 〈 e−it/2LQA∗Ωβ | eit/2LQBΩβ 〉 = c 〈Ωβ |Aτt(B)Ωβ 〉
= ωβ(Aτt(B))
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and

ωβ(τt(B)A) = c 〈 τt(B∗)Ωβ |AΩβ 〉 = c 〈 JAΩβ | J τt(B∗)Ωβ 〉
= c 〈 e−β/2LQA∗Ωβ | e−β/2LQτt(B)Ωβ 〉
= c 〈 e−i(iβ+t)/2LQA∗Ωβ | ei (iβ+t)/2LQBΩβ 〉
= Fβ(A, B, t+ iβ).

The requirements on the analyticity of Fβ(A, B, ·) follow from Lemma A.2.

6 Proof of Theorem 1.3

For sn := (sn, . . . , s1) ∈ Rn we define

QN (sn) := QN (sn) · · ·QN (s1), QN (s) := e−sL0QNe
sL0 , s ∈ R (31)

At this point, we check that QN (sn)Ω
β
0 is well defined, and that it is an analytic

vector of L0, see Equation (25). The goal of Theorem 1.3 is to give explicit
conditions on Hel and W , which ensure Ωβ0 ∈ dom(e−β/2 (L0+Q) ). Let

η
1

:=

∫ (
‖ ~G(k)‖2B(Hel) + ‖ ~H(k)‖2B(Hel)

)
(2 + 4α(k)−1) dk (32)

η
2

:=

∫ (
‖F (k)H−γel,+‖2B(Hel) + ‖F (k)

∗H−γel,+‖B(Hel)
)
(2 + 4α(k)−1) dk

The idea of the proof is the following. First, we expand e−β/2(L0+QN )eL0 in a
Dyson-series, i.e.,

e−β/2(L0+QN )eL0 (33)

= 1+

∞∑

n=1

(−1)n
∫

∆n
β/2

e−snL0QNe
sn L0 · · · e−s1L0QNe

s1 L0 dsn.

Under the assumptions of Theorem 1.3 we obtain an upper bound, uniform in
N , for

〈Ωβ0 | e−β(L0+QN )Ωβ0 〉 (34)

= 1 +

∞∑

n=1

(−1)n
∫

∆nβ

〈Ωβ0 | e−snL0QNe
sn L0 · · · e−s1L0QNe

s1 L0Ωβ0 〉 dsn.

This is proven in Lemma 6.4 below, which is the most important part of this
section. In Lemma 6.1 and Lemma 6.2 we deduce from the upper bound for
(34) an upper bound for ‖e−(β/2)(L0+QN )Ωβ0‖, which is uniform in N . The
proof of Theorem 1.3 follows now from Lemma 6.3, where we show that Ωβ0 ∈
dom(e−(β/2)(L0+Q)).
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Lemma 6.1. Assume

lim sup
n→∞

sup
06x6β/2

∥∥∥
∫

∆nx

QN (sn)Ω
β
0 dsn

∥∥∥
1/n

< 1.

for all N ∈ N. Then Ωβ0 ∈ dom(e−x(L0+QN )), 0 < x 6 β/2 and

e−x (L0+QN )Ωβ0 = Ωβ0 +

∞∑

n=1

(−1)n
∫

∆nx

QN (sn)Ω
β
0 dsn. (35)

In this context ∆n
x = {(s1, . . . , sn) ∈ Rn : 0 6 sn 6 . . . 6 s1 6 x} is a

simplex of dimension n and sidelength x.

Proof. Let φ ∈ ran1[|L0 + QN | 6 k] and 0 6 x 6 β/2 be fixed. An m-fold
application of the fundamental theorem of calculus yields

〈 e−x (L0 +QN ) φ | exL0 Ωβ0 〉 =
〈
φ |Ωβ0 +

m∑

n=1

(−1)n
∫

∆nx

QN(sn)Ω
β
0 dsn

〉

+(−1)m+1

∫

∆m+1
x

〈
e−sm+1 (L0 +QN )φ | esm+1 L0 QN (sm+1)Ω

β
0

〉
dsm+1.(36)

Since L0 Ωβ0 = 0 we have for r(sm+1) := (sm − sm+1, . . . , s1 − sm+1) that

esm+1L0 QN (sm+1)Ω
β
0 = QN QN (r(sm+1))Ω

β
0 ,

We turn now to the second expression on the right side of Equation (36), after
a linear transformation depending on sm+1 we get

(−1)m+1

∫ x

0

〈
e−sm+1(L0+QN )φ |QN

∫

∆mx−sm+1

QN(rm)Ωβ0 drm

〉
dsm+1.

Since ‖e−sm+1 (L0 +QN ) φ‖ 6 eβ/2k ‖φ‖, and using that QN(rm)Ωβ0 is a state
with at most 2m bosons, we obtain the upper bound

const ‖φ‖
√
(2m) (2m+ 1) sup

06 x6β/2

∥∥∥
∫

∆mx−sm+1

QN (rm)Ωβ0 drm

∥∥∥.

Hence, for m → ∞ we get

〈 e−x(L0+QN )φ | Ωβ0 〉 =
〈
φ |Ωβ0 +

∞∑

n=1

(−1)n
∫

∆nx

QN (sn)Ω
β
0 dsn

〉
.

Since
⋃∞
k=1 ran1[|L0 + QN | 6 k] is a core of e−x(L0 +QN ), the proof follows

from the self-adjointness of e−x(L0 +QN ).
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Lemma 6.2. Let 0 < x 6 β/2. We have the identity

∫

∆n
x/2

∫

∆m
x/2

〈
QN(rm)Ωβ0 |QN (sn)Ω

β
0

〉
drm dsn (37)

=

∫

∆n+m
β

1[zm > β − x > x > zm+1]
〈
Ωβ0
∣∣QN (z n+m)Ωβ0

〉
dzn+m.

For m = n it follows

∥∥∥
∫

∆n
x/2

QN (sn)Ω
β
0 dsn

∥∥∥
2

6

∫

∆2n
β

∣∣〈Ωβ0 |QN(s 2n)Ω
β
0

〉∣∣ ds 2n. (38)

Proof. Recall Theorem 3.1 and Lemma 5.1. Since J is a conjugation we have
〈φ |ψ 〉 = 〈 J ψ | J φ 〉, and for every operator X , that is affiliated with Mβ , we
have J X Ωβ0 = e−β/2L0 X∗ Ωβ0 . Thus,
∫

∆n
x/2

∫

∆m
x/2

〈
QN(rm)Ωβ0 |QN (sn)Ω

β
0

〉
drm dsn (39)

=

∫

∆n
x/2

∫

∆m
x/2

〈
e−β/2L0 QN (sn)

∗ Ωβ0
∣∣ e−β/2L0 QN (rm)∗ Ωβ0

〉
drm dsn

Since L0 Ωβ0 = 0 we have

e−βL0 QN (rm)∗ Ωβ0 = QN(β − r1) · · ·QN (β − rm)Ωβ0 .

Next, we introduce new variables for r, namely yi := β − rm−i+1. Let Dm
x/2 :=

{y
m
∈ Rm : β − x 6 ym 6 . . . 6 y1 6 β}. Thus the right side of Equation

(39) equals
∫

∆n
x/2

∫

Dm
x/2

〈
Ωβ0
∣∣QN (sn)QN (y

m
)∗ Ωβ0

〉
dsn dym

=

∫

∆n+m
β

1[zm > β − x > x > zm+1]
〈
Ωβ0
∣∣QN (z n+m)Ωβ0

〉
dzn+m.

The second statement of the Lemma follows by choosing n = m.

Lemma 6.3. Assume supN∈N ‖e−x(L0+QN )Ωβ0‖ < ∞ then Ωβ0 ∈
dom(e−x(L0+Q)) and

‖e−x(L0+Q)Ωβ0‖ 6 sup
N∈N ‖e−x(L0+QN ) Ωβ0‖

Proof. For f ∈ C∞0 (R) and φ ∈ K we define ψN := f(L0 + QN)φ. Obviously,
for g(r) = e−x r f(r) ∈ C∞0 (R) we have e−x (L0 +QN ) ψN = g(L0 + QN)φ.
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Since L0 + QN tends to L0 + Q in the strong resolvent sense as N →∞, we
know from [16] that limN→∞ ψN = f(L0 + Q)φ =: ψ and

lim
N→∞

e−x (L0 +QN ) ψN = lim
N→∞

g(L0 +QN)φ = g(L0 +Q)φ = e−x (L0 +Q) ψ.

Thus,

|〈 e−x(L0+Q) ψ |Ωβ0 〉| = lim
N→∞

|〈 e−x(L0+QN )ψN |Ωβ0 〉|

6 sup
N∈N ‖e−x (L0+QN )Ωβ0‖ ‖ψ‖,

Since {f(L0+Q)φ ∈ K : φ ∈ K, f ∈ C∞0 (R)} is a core of e−x(L0+Q), we obtain
Ωβ0 ∈ dom(e−x(L0+Q)).

Lemma 6.4. For some C > 0 we have
∫

∆nβ

∣∣∣
〈
Ωβ0 |QN(sn)Ωβ0

〉∣∣∣ dsn

6 const (n+ 1)2 (1 + β)n
(
8η

1
+

(8Cη
2
)1/2

(n+ 1)(1−2γ)/2

)n
,

where η
1

and η
2

are defined in (32).

Proof of 6.4. First recall the definition of QN and QN(sn) in Equation (25)
and Equation (31), respectively. Let

∫

∆nβ

∣∣〈Ωβ0 |QN (sn)Ω
β
0

〉∣∣ dsn =:

∫

∆n1

βn Jn(β, s) dsn,

The functions Jn(β, s) clearly depends on N , but since we want to find an upper
bound independent of N , we drop this index. Let W1 = Φ(~G)Φ( ~H) + h. c. ,
W2 := Φ(F ) and W := W1 +W2. By definition of ωβ0 in (3.1), see also (13),
we obtain

Jn(β, sn) = ωβ0

((
e−β snH0 W eβsnH0

)
· · ·
(
e−β s1H0 W eβ s1H0

))

= (Z)−1
∑

κ∈{1, 2}n
ωβf

(
TrHel

{
e−βHel

(
e−β snH0 Wκ(n) e

β snH0
)
· · ·

· · ·
(
e−β s1H0 Wκ(1) e

β s1H0
)})

By definition of ωβf it suffices to consider expressions with an even number of
field operators. In the next step we sum over all expression, where n1 times
W1 occurs and 2n2 times W2. The sum of n1 and n2 is denoted by m. For
fixed n1 and n2 the remaining expressions are all expectations in ωβf of 2m field
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operators. In this case the expectations in ωβf can be expressed by an integral
over R2m × {±}2m with respect to ν, which is defined in Lemma A.4 below.
To give a precise formula we define

M(m1, m2) = {κ ∈ {1, 2}n : #κ−1({i}) = mi, i = 1, 2}.

Thus we obtain

Jn(β, sn) = (Z)−1
∑

(n1, n2)∈N2

n1 +2n2 =n

∑

κ∈M(n1, 2n2)

m :=n1 +n2

∫
ν(dk 2m ⊗ dτ 2m) (40)

TrHel
{
e−(β−β(s1 − s2m))HelI2me

−β (s2m−1 − s2m)Hel · · · e−β (s1 − s2)Hel I1
}
,

Of course Ij depends on k 2m × τ 2m, namely for κ(j) = 1, 2 we have

Ij =

{
Ij(m, τ, m

′, τ ′), κ(j) = 1

Ij(m, τ), κ(j) = 2,

where (m, τ), (m′, τ ′) ∈ {(kj , τj) : j = 1, . . . ,m}. For κ(j) = 1 we have that

Ij(m, +, m
′, −) = ~G∗(m) ~H(m′) + ~H∗(m) ~G(m′)

Ij(m, −, m′, +) = ~G(m) ~H∗(m′) + ~H(m) ~G∗(m′)

Ij(m, +, m
′, +) = ~G∗(m) ~H∗(m′) + ~H∗(m) ~G∗(m′)

Ij(m, −, m′, −) = ~G(m) ~H(m′) + ~H(m) ~G(m′)

and for κ(j) = 2 we have that

Ij(m, +) = F ∗(m)

Ij(m, −) = F (m).

In the integral (40) we insert for (m, τ) and (m′, τ ′) in the definition of Ij from
left to right k2m, τ2m, . . . , k1, τ1.
For fixed (k 2m, τ 2m) the integrand of (40) is a trace of a product of 4m oper-
ators in Hel. We will apply Hölder’s-inequality for the trace, i.e.,

|TrHel{A2mB2m · · ·A1 B1}| 6
2m∏

j=1

‖Bj‖B(Hel) ·
2m∏

j=1

TrHel{A
pj
i }p

−1
j .

In our case pi := (si−1 − si)
−1 for i = 2, . . . , 2m and p1 := (1 − s1 + s2m)−1

and

(Aj , Bj) :=

{(
e−β p

−1
j Hel , Ij(m, τ, m

′, τ ′)
)
, κ(j) = 1(

e−β p
−1
j Hel Hγ

el,+, H
−γ
el,+ Ij(m, τ, )

)
, κ(j) = 2

.
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We define

η1(k) = max
{
‖ ~G(k)‖B(Hel)r , ‖ ~H(k)‖B(Hel)r

}

η2(k) = max
{
‖F (k)H−γel,+‖B(Hel), ‖F ∗(k)H

−γ
el,+‖B(Hel)

}
.

By definition of Bj we have

‖Bj‖B(Hel) 6
{
η1(m)η1(m

′), κ(j) = 1

η2(m), κ(j) = 2
. (41)

Furthermore,

TrHel{A
pj
i }p

−1
j = TrHel

{
e−βHel Hpjγ

el,+

}p−1
j

6 ‖e−ǫHel Hpjγ
el,+‖

p−1
j

Hel TrHel
{
e−(β−ǫ)Hel

}p−1
j , k(j) = 2

Let Egs := inf σ(Hel). The spectral theorem for self-adjoint operators implies

‖e−ǫHel Hpi γ
el,+‖

p−1
i

Hel 6 sup
r>Egs

e−ǫ p
−1
i r(r − Egs + 1)γ 6 ǫ−γ pγi e

−ǫ p−1
i (Egs− 1).

Inserting this estimates we get

TrHel
{
e−(β−β(s1 − s2m))HelI2me

−β (s2m−1 − s2m)Hel · · · e−β (s1 − s2)Hel I1
}

6 Cκ(sn)

2m∏

j=1

‖Bj‖B(Hel)

where

Cκ(sn) := (1− s1 + sn)
−α1

n−1∏

i=1

(si − si+1)
−αi (42)

and

αi =

{
0, κ(i) = 1

1/2, κ(i) = 2
(43)

Now, we recall the definition of ν. Roughly speaking, one picks a pair of
variables (ki, kj) and integrates over δki,kj coth(β/2α(ki)) dkidkj . Subsequently
one picks the next pair and so on. At the end one sums up all (2m)!

2mm! pairings
and all 4m combinations of τ 2m. Inserting Estimate (41) and that

∫
ην(k)ην′(k) coth(β/2α(k)) dk 6 (1 + β−1)η1/2

ν
η1/2
ν′ ,

we obtain

|Jn(β, s)| 6
(1 + β−1)n

Z
∑

(n1, n2)∈N2
0

n1 +2n2 =n

∑

κ∈M(n1, 2n2)

m :=n1 +n2

( η
1
)n1 (Cη

2
)n2

(2m)!2m

m!
Cκ(s)
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By Lemma A.3 below and since (2m)!/(m!)2 6 4m we have
∫

∆nβ

∣∣〈Ωβ0 |QN (sn)Ω
β
0

〉∣∣ dsn

6 const(1 + β)n
∑

(n1, n2)∈N2
0

n1 +2n2 =n

(
n

n1

)
(8η

1
)n1 (8C′η

2
)n2

(n+ 1)(1−2γ)n2−2

This completes the proof.

7 The Harmonic Oscillator

Let L2(X, dµ) = L2(R) andHel =: Hosc := −∆q+Θ2q2 be the one dimensional
harmonic oscillator and Hph = L2(R3). We define

H = Hosc + Φ(F ) + Ȟ, Ȟ := dΓ(|k|), (44)

where Φ(F ) = q · Φ(f), with λ (|k|−1/2 + |k|1/2) f ∈ L2(R3).
Hosc is the harmonic oscillator, the form-factor F comes from the dipole ap-
proximation.
The Standard Liouvillean for this model is denoted by Losc. Now we prove
Theorem 1.4.

Proof. We define the creation and annihilation operators for the electron.

A∗ =
Θ1/2 q − iΘ−1/2 p√

2
, A =

Θ1/2 q + iΘ−1/2 p√
2

, p = −i ∂x, (45)

Φ(c) = c1 q + c2 p, for c = c1 + i c2 ∈ C, ci ∈ R. (46)

These operators fulfill the CCR-relations and the harmonic- oscillator is the
number-operator up to constants.

[A, A∗] = 1, [A∗, A∗] = [A, A] = 0, Hosc = ΘA∗A + Θ/2, (47)

[Hosc, A] = −ΘA, [Hosc, A
∗] = ΘA∗. (48)

The vector Ω :=
(
Θ
π

)1/4
e−Θ q

2 /2 is called the vacuum vector. Note, that one
can identify Fb[C] with L2(R), since LH{(A∗)nΩ |n ∈ N0} is dense in L2(R).
It follows, that ωoscβ is quasi-free, as a state over W (C) and

ωoscβ (W (c)) = (Z)−1 TrHel{e−βHelW (c)} = exp
(
− 1/4 coth(βΘ/2) |c|2

)
,

(49)
where Z = TrHel{e−βHel} is the partition function for Hel.
First, we remark, that Equation (31) is defined for this model without reg-
ularization by PN := 1[Hel 6 N ]. Moreover we obtain from Lemma 6.2,
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that
∥∥∥
∫

∆n
β/2

Q(sn)Ω
β
0 ds 2n

∥∥∥
2

6

∫

∆2n
β

∣∣〈Ωβ0 |Q(s 2n)Ω
β
0

〉∣∣ ds 2n =: h2n(β, λ).

(50)
To show that Ωβ ∈ dom(e−β/2 (L0 +Q)) is suffices to prove, that∑∞

n=0 h2n(β, λ)
1/2 < ∞. We have

h2n(β, λ) =
(−β λ)2n
Z

∫

∆2n
1

ωoscβ

((
e−β s2n Hel q eβ s2n Hel

)
(51)

· · ·
(
e−β s1Hel q eβ s1Hel

))

·ωβf
(
(e−β s2n Ȟ Φ(f) eβ s2n Ȟ) · · · (e−β s1 Ȟ Φ(f) eβ s1 Ȟ)

)
ds 2n.

Moreover, we have

e−β siHel q eβ siHel = (2Θ)−1/2
(
e−βΘ si A∗ + eβΘ si A

)

e−β si Ȟ Φ(f) eβ si Ȟ = 2−1/2
(
a∗(e−β si |k| f) + a(eβ si |k| f)

)
. (52)

Inserting the identities of Equation (52) in Equation (51) and applying Wick’s
theorem [5, p. 40] yields

h2n(β, λ) = (β λ)2n
∫

∆2n
1

∑

P∈Z2

∏

{i, j}∈P
Kosc(|si − sj |, β)

·
∑

P ′∈Z2

∏

{k, l}∈P ′

Kf (|sk − sl|, β) ds 2n

=
(β λ)2n

(2n)!

∫

[0, 1]2n

∑

P, P ′∈Z2

∏

{i, j}∈P

{k, l}∈P ′

Kosc(|si − sj |, β)Kf (|sk − sl|, β) ds 2n,

(53)

where for k < l and i < j, such as

Kf (|sk − sl|, β) := ωβf ((e
−β sk Ȟ Φ(f) eβ sk Ȟ) (e−β sl Ȟ Φ(f) eβ sl Ȟ))

Kosc(|si − sj |, β) := ωoscβ (e−β siHel q eβ siHel e−β sj Hel q eβ sj Hel).

The last equality in (53) holds, since the integrand is invariant with respect to
a change of the axis of coordinates.
We interpret two pairings P and P ′ ∈ Z2 as an indirected graphG = G(P, P ′),
where M2n = {1, . . . , 2n} is the set of points. Any graph in G has two kinds
of lines, namely lines in Losc(G), which belong to elements of P and lines in
Lf (G), which belong to elements of P ′.
Let G(A) be the set of undirected graphs with points in A ⊂M2n, such that for
each point "i" in A, there is exact one line in Lf(G), which begins in "i", and

Documenta Mathematica 16 (2011) 177–208



An Infinite Level Atom 201

exact one line in Losc(G), which begins with "i". Gc(A) is the set of connected
graphs. We do not distinguish, if points are connected by lines in Lf(G) or by
lines in Losc(G).
Let

Pk :=
{
P :P = {A1, . . . , Ak}, ∅ 6= Ai ⊂M2n,

Ai ∩ Aj = ∅ for i 6= j,

k⋃

i=1

Ai = M2n

}

be the family of decompositions of M2n in k disjoint set. It follows

h2n(β, λ) =
(β λ)2n

(2n)!

∑

G∈G(M2n)

∫

M2n

∏

{i,j}∈Losc(G)

{k, l}∈Lf (G)

Kosc(|si − sj |, β)

Kf (|sk − sl|, β) dsn

=
(βλ)2n

(2n)!

2n∑

k=1

∑

{A1,..., Ak}∈Pk

∑

(G1,..., Gk)

Ga∈Gc(Aa)

k∏

a=1

J(Ga, Aa, β)

=
(βλ)2n

(2n)!

2n∑

k=1

1

k!

∑

A1,..., Ak⊂M2n,

{A1,..., Ak}∈Pk

∑

(G1,..., Gk)

Ga∈Gc(Aa)

k∏

a=1

J(Ga, Aa, β),

(54)

where

J(Ga, Aa, β) :=

∫

Aa

∏

{i, j}∈Losc(Ga)

{k,l}∈Lf (Ga)

Kosc(|si − sj |, β)Kf (|sk − sl|, β) ds. (55)

∫
Aa

ds means,
∫ 1

−1 dsj1
∫ 1

−1 dsj2 . . .
∫ 1

−1 dsjm , where Aa = {j1, . . . , jm} and
#Aa = m.
From the first to the second line we summarize terms with graphs, having con-
nected components containing the same set of points. From the second to the
third line the order of the components is respected, hence the correction factor
1
k! is introduced. Due to Lemma 7.2 the integral depends only on the number
of points in the connected graph, i. e. J(G, A, β) = J(#A, β). Moreover,
Lemma 7.2 states that β#A ·J(#A, β) 6 (2‖|k|−1/2 f‖2 (Θ β)−1)#A (C β + 1).
To ensure that Gc(Aa) is not empty, #Aa must be even. For (m1, . . . , mk) ∈ Nk
with m1 + · · ·+ mk = n we obtain

∑

A1,..., Ak⊂M2n,#Ai =2mi

{A1,..., Ak}∈Pk

1 =
(2n)!

(2m1)! · · · (2mk)!
. (56)
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Let now be Aa ⊂ M2n with #Aa = 2ma > 2 fixed. In Ga are #Aa lines in
Losc(Ga), since such lines have no points in common, we have (2ma)!

ma! 2ma
choices.

Let now be the lines in Losc(Ga) fixed. We have now
(
(2ma − 2)(2ma − 4) · · · 1

)

choices for ma lines in Lf(Ga), which yield a connected graph. Thus

∑

Ga∈Gc(Aa),
1 =

(2ma)!

ma! 2ma

(
(2ma − 2) (2ma − 4) · · · 1

)
=

(2ma)!

2ma
. (57)

For #Aa = 2 exists only one connected graph. We obtain for h2n

h2n(β, λ) = (λ)2n
2n∑

k=1

1

k!

∑

(m1,...,mk)∈Nk
m1 +...+mk =n

k∏

a=1

J(2ma, β)(β
2)ma

2ma
(58)

6 (2Θ−1 ‖|k|−1/2 f‖λ)2n
2n∑

k=1

1

k!

∑

(m1,...,mk)∈Nk
m1 +...+mk =n

k∏

a=1

(C β + 1)

2ma

6 (2Θ−1 ‖|k|−1/2 f‖λ)2n
2n∑

k=1

(
(C β + 1)/2

∑n
m=1

1
m

)k

k!
.

Since the
∑n

m=1
1
m can be considered as a lower Riemann sum for the integral∫m+1

1
r−1 dr, we have

∑n
m=1

1
m 6 ln(n+ 1). Thus,

h2n(β, λ) 6 (2Θ−1 ‖|k|−1/2 f‖λ)2n
2n∑

k=1

(
(C β + 1)/2 ln(n+ 1)

)k

k!
(59)

6 (2Θ−1 ‖|k|−1/2 f‖λ)2n(n + 1)(C β+1)/2.

Since 2|λ| ‖|k|1/2 f‖ < Θ the series
∑∞

n=0 h2n(β, λ)
1/2 converges absolutely for

all β > 0. It follows, that

e−β/2 (L0 +Q) Ωβ0 = Ωβ0 +

∞∑

n=1

∫

∆n
β/2

Q(sn)Ω
β
0 dsn

exists.

Conversely, Equation (58) and Lemma 7.2 imply

h2n(β, λ) > λ2n
J(2n, β)β2n

2n
=

(
Θ−1

∫ β2 λ2 |f(k)|2
sinh(|k| β/2) sinh(βΘ/2) dk

)n

2n
. (60)

Hence for every β > 0 exists a λ ∈ R, such that h2n(β, λ) > 1
2n . Thus∑∞

n=1 h2n(β, λ)
1/2 = ∞

Remark 7.1. We can therefore not extended Theorem 1.4 to an existence proof
for all λ > 0.
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Lemma 7.2. Following statements are true.

J(G, A, β) = J(#A, β), G ∈ Gc(A)
J(#A, β) 6 (2‖|k|−1/2 f‖2 (Θ β)−1)#A · (C β + 1)

J(#A, β) >
(
Θ−1

∫ |f(k)|2
sinh(|k|β/2) sinh(Θ β/2)

dk
)#A/2

,

where #A = 2m and C = (1/2) ‖f‖2
‖|k|1/2 f‖2 .

Proof of 7.2. A relabeling of the integration variables yields

J(G, A, β) 6Kf

∫

[0,1]2m
Kosc(|t1 − t2|, β)Kf (|t2 − t3|, β) · · ·

· · ·Kosc(|t2m−1 − t2m|, β) dt

for Kf := sups∈[0,1]Kf (s, β). We transform due to si := ti − ti+1, i 6
2m− 1 and s2m = t2m, hence −1 6 si 6 1, i = 1, . . . , 2m, since integrating
a positive function we obtain

J(G, A, β) 6
(∫ 1

−1
Kosc(|s|, β) ds

)m(∫ 1

−1
Kf (|s|, β) ds

)m− 1

· sup
s∈[0,1]

Kf(s, β).

We recall that
∫ 1

−1
Kosc(|s|, β) ds = (2Θ)−1

∫ 1

−1

cosh(βΘ |s| − Θ β/2)

sinh(Θ β/2)
ds = 2(Θ2 β)−1

and
∫ 1

−1
Kf (|s|, β) ds =

∫ 1

−1

∫
cosh(β |s| |k| − β|k|/2) |f(k)|2

2 sinh(β |k|/2) dk ds

= 2

∫ |f(k)|2
β |k| dk.

Using coth(x) 6 1 + 1/x and using convexity of cosh, we obtain

sup
s∈[0, 1]

Kf(s, β) 6 (1/2)

∫
|f(k)|2 dk +

1

β

∫ |f(k)|2
|k| dk.

Due to the fact, that t 7→ Kf(t, β) and t 7→ Kosc(t, β) attain their minima at
t = 1/2, we obtain the lower bound for J(#A, β).
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Remark 7.3. In the literature there is one criterion for Ωβ0 ∈
dom(e−β/2 (L0 +Q)), to our knowledge, that can be applied in this situa-

tion [6]. One has to show that ‖e−β/2Q Ωβ0‖ < ∞. If we consider the case,
where the criterion holds for ±λ, then the expansion in λ converges,

‖e−β/2QΩβ0‖2 =
∞∑

n=0

(λβ)2n

(2n)!
ωβel(q

2n)ωβf (Φ(f)
2n)

=

∞∑

n=0

(λβ)2n

(2n)!

((2n)!
n! 2n

)2
Kosc(0, β)

nKf (0, β)
n

=

∞∑

n=0

(λβ)2nΘ−n
(
2n

n

)
2−2n

(
coth(Θ β/2)

∫
|f(k)|2 coth(β |k|/2) dk

)n

>

∞∑

n=0

(λβ)2n(4Θ)−n
(∫
|f(k)|2 dk

)n
.

Obviously, for any value of λ 6= 0, there is a β > 0, for which ‖e−β/2QΩβ0‖ <
∞ is not fulfilled.
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A

Lemma A.1. Let f, g : {z ∈ C : 0 6 Re (z) 6 α} → C continuous and
analytic in the interior. Moreover, assume that f(t) = g(t) for t ∈ R. Then
f = g.

Proof of A.1. Let h : {z ∈ C : | Im (z) < α} → C defined by

h(z) :=

{
f( z ) − g( z ), on {z ∈ C : 0 6 Im (z) < α}
f( z )− g( z ), on {z ∈ C : −α < Im (z) < 0} (61)

Thanks to the Schwarz reflection principle h is analytic. Since h(t) = 0 for all
t ∈ R, we get h = 0. Hence f = g on {z ∈ C : 0 6 Re (z) < α}. Since both
f and g are continuous, we infer that f = g on the whole domain.

Lemma A.2. Let H be some self-adjoint operator in H, α > 0 and φ ∈
dom(eαH). Then φ ∈ dom(ez H) for z ∈ {z ∈ C : 0 6 Re (z) 6 α}.
z 7→ ez Hφ is continuous on {z ∈ C : 0 6 Re (z) 6 α} and analytic in the
interior.
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Proof of A.2. Due to the spectral calculus we have
∫
e2Re z sd〈φ |Es φ〉 6 ∫ (1 + e2α s)d〈φ |Es φ〉 =: C2

1 <∞.

Thus φ ∈ dom(ez H). Let ψ ∈ H and f(z) = 〈ψ | ez H φ〉. There is a sequence
{ψn} with ψn ∈

⋃
m∈N ran 1[|H | 6 m] and limn→∞ ψn = ψ. We set fn(z) =

〈ψn | ez H φ〉. It is not hard to see that fn is analytic, since ψn is an analytic
vector for H , and that |fn(z)| 6 C1 ‖ψn‖ and limn→∞ fn(z) = f(z). Thus
f is analytic and hence z 7→ ez Hφ is analytic. Thanks to the dominated
convergence theorem the right side of

‖eznHφ− ezHφ‖2 6
∫
(e2Re zns + e2Re zs − ez̄ns+zs − ez̄s+zns)d〈φ |Es φ〉 (62)

tends to zero for limn→∞ zn = z. This implies the continuity of z 7→ ez Hφ.

Lemma A.3. We have for n1 + n2 > 1

∫

∆n1

Cκ(s) dsn 6
const Cn2

(n1 + n2)! (n+ 1)(1−2γ)n2−2 (63)

Proof of A.3. We turn now to the integral

∫

∆n1

Cκ(s) dsn =

∫

∆n1

(1 − s1 + sn)
−α1

n− 1∏

i=1

(si − si+1)
−αi dsn. (64)

We define for k = 1, . . . , 2n, a change of coordinates by sk = r1 −
∑k

j=2 rj ,
the integral transforms to

∫

Sn
(1 − (r2 + · · ·+ rn))

−α1

n∏

i=2

r−αii dr n (65)

=

∫

Tn−1

(1 − (r2 + · · ·+ rn))
1−α1

n∏

i=2

r−αii drn−1

=
Γ(1 − α1)

−1Γ
(
1 − γ

)2n2

Γ
(
n1 + 2n2 (1− γ)

)

where S2n := {r ∈ R2n : 0 6 ri 6 1, r2 + · · · + r2n 6 r1} and T 2n−1 :=
{r ∈ R2n−1 : 0 6 ri 6 1, r2 + · · ·+ r2n 6 1}. From the first to the second
formula we integrate over dr1. The last equality follows from [11, Formula
4.635 (4)], here Γ denotes the Gamma-function.
From Stirling’s formula we obtain

(2π)1/2 xx− 1/2 e−x 6 Γ(x) 6 (2π)1/2 xx− 1/2 e−x+1, x > 1. (66)
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Since n1 + n2 > 1 get

Γ(n1 + n2 + 1)

Γ(n1 + 2(1− γ)n2)
6 (n+ 1)2

(n1 + 2(1− γ)n2

e

)−(1−2γ)n2

. (67)

Note that Γ(n1 + n2 + 1) = (n1 + n2)!.

Lemma A.4. Let (1 + α(k)−1/2) f1, . . . , (1 + α(k)−1/2) f2m ∈ Hph and σ ∈
{+,−}2m. Let a+ = a∗ and a− = a

ωβf
(
aσ2m(e−σ2m s2m α(k) f2m) · · · aσ1(e−σ1 s1 α(k) f1)

)

=

∫
fσ2m
2m (k2m, τ2m) · · · fσ1

1 (k1, τ1) ν(dk2m ⊗ dτ2m),

where ν(dk2m ⊗ dτ2m) is a measure on (R3)2m × {+, −}2m for phonons, re-
spectively on (R3 × {±})2m × {+, −}2m for photons, and

ν(dk2m ⊗ dτ2m) 6
∑

P∈Z2m

∑

τ∈{+,−}2m

∏

{i > j}∈P

(
δki, kj coth(β α(ki)/2)

)
dk2m.

(68)
for f+(k, τ) := f(k)1[τ = +] and f+(k, τ) := f(k)1[τ = −].

Proof of A.4. Since ωβf is quasi-free, we obtain with a+ := a∗ and a− := a

ωβf
(
aσ2m(e−σ2m s2m α(k) f2m) · · · aσ1(e−σ1 s1 α(k) f1)

)

=
∑

P∈Z2

∏

{i, j}∈P

i > j

ωβf
(
aσi(e−σi si α(k) fi) a

σj (e−σj sj α(k) fj)
)
,

see Equation (12). For the expectation of the so called two point functions we
obtain:

ωβf
(
a+(esi α(k) fi) a

+(esj α(k) fj)
)
= 0 = ωβf

(
a(e−si α(k) fi) a(e

−sj α(k) fj)
)
,

such as

ωβf
(
a+(exsiα(k)fi)a

−(e−x sjα(k)fj)
)

=

∫
fi(k) fj(k)

ex (si − sj)α(k)

eβ α(k) − 1
dk

ωβf
(
a−(exsiα(k)fi) a

+(e−xsjα(k)fj)
)

=

∫
fj(k) fi(k)

e(β+xsj−xsi)α(k)

eβα(k) − 1
dk

Hence it follows

ωβf
(
aσ2m(e−σ2m s2m α(k) f2m) · · · aσ1(e−σ1 s1 α(k) f1)

)

=

∫
fσ2m
2m (k2m, τ2m) · · · fσ1

1 (k1, τ1) ν(dk2m ⊗ dτ2m),
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where f+(k, τ) := f(k)1[τ = +] and f−(k, τ) := f(k)1[τ = −].
ν(d3(2m)k ⊗ d2mτ) is a measure on (R3)2m × {+, −}2m, which is defined by

∑

P∈Z2m

∑

τ∈{+,−}2m

∏

{i> j}∈P
δτ,−τ δki, kj (69)

(
δτ,+

ex (si − sj)α(ki)

eβ α(ki) − 1
+ δτ,−

e(β−x (si − sj))α(ki)

eβ α(ki) − 1

)
dk2m.
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1 Introduction

This work is motivated by numerical experiments [Per04] related to the con-
jecture of King [Kin97] concerning the derived category smooth complete toric
varieties. These experiments led to the calculations of [HP06], where a coun-
terexample to King’s conjecture was given. Our goal is to develop a more
systematic approach to the combinatorial and arithmetic aspects of cohomol-
ogy vanishing for divisorial sheaves on toric varieties and to better understand
from these points of view some phenomena related to this problem.
Based on work of Bondal (see [Rud90], [Bon90]), it was conjectured [Kin97] that
on every smooth complete toric variety X there exists a full strongly excep-
tional collection of line bundles. That is, a collection of line bundles L1, . . . ,Ln
on X which generates Db(X) and has the property that Extk(Li,Lj) = 0
for all k > 0 and all i, j. Such a collection induces an equivalence of cate-
gories RHom(

⊕
i Li, . ) : Db(X) −→ Db

(
End(

⊕
i Li) − mod

)
. This possible

generalization of Beilinson’s theorem (pending the existence of a full strongly
exceptional collection) has attracted much interest, notably also in the context
of the homological mirror conjecture [Kon95]. For line bundles, the problem of
Ext-vanishing can be reformulated to a problem of cohomology vanishing for
line bundles by the isomorphisms

Extk(Li,Lj) ∼= Hk(X,Liˇ⊗ Lj) = 0 for all k ≥ 0 and all i, j.

So we are facing a quite peculiar cohomology vanishing problem: let n denote
the rank of the Grothendieck group of X , then we look for a certain constel-
lation of n(n − 1) – not necessarily distinct – line bundles, all of which have
vanishing higher cohomology groups. The strongest general vanishing theorems
so far are of the Kawamata-Viehweg type (see [Mus02] and [Fuj07], and also
[Mat02] for Bott type formulas for cohomologies of line bundles), but it can be
seen from very easy examples, such as Hirzebruch surfaces, that these alone in
general do not suffice to prove or disprove the existence of strongly exceptional
collections by means of cohomology vanishing. In [HP06], on a certain toric
surface X , all line bundles L with the property that Hi(X,L) = Hi(X,L )̌ = 0
for all i > 0 were completely classified by making use of an explicit toric repre-
sentation of the cohomology vanishing problem for line bundles. This approach
exhibits quite complicated combinatorial as well as number theoretic conditions
for cohomology vanishing which we are going to describe in general.
We will consider and partially answer the following more general problem. Let
D be a Weil divisor on any toric variety X and V ⊂ X a torus invariant closed
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subscheme. Then what are necessary and sufficient conditions for the (global)
local cohomology modules Hi

V

(
X,OX(D)

)
to vanish? Given this spectrum

of cohomology vanishing problems, we have at one extreme the cohomology
vanishing problem for line bundles, and at the other extreme the classifica-
tion problem for maximal Cohen Macaulay (MCM) modules over semigroup
rings: on an affine toric variety X , the sheaf OX(D) is MCM if and only if
the local cohomologies Hi

x

(
X,OX(D)

)
vanish for i 6= dimX , where x ∈ X is

the torus fixed point. These local cohomologies have been studied by Stanley
[Sta82], [Sta96] and Bruns and Gubeladze [BG03] showed that only finitely
many sheaves in this class are MCM. MCM sheaves over affine toric varieties
have only been classified for some special cases (see for instance [BGS87] and
[Yos90]). Our contribution will be to give a more explicit combinatorial char-
acterization of MCM modules of rank one over normal semigroup rings and
their ties to the birational geometry of toric varieties.

One important aspect of our results is that, though we will also make use
of Q-divisors, our vanishing results will completely be formulated in the in-
tegral setting. We will illustrate the effect of this by the following exam-
ple. Consider the weighted projective surface P(2, 3, 5). Then the divisor
class group A1

(
P(2, 3, 5)

)
is isomorphic to Z and, after fixing the generator

D = 1 of A1

(
P(2, 3, 5)

)
to be Q-effective, the torus invariant irreducible di-

visors can be identified with the integers 2, 3, and 5, and the canonical divi-
sor has class −10. By the toric Kawamata-Viehweg theorem we obtain that
H2
(
(P(2, 3, 5),O(kD)

)
= 0 for k > −10. However, as we will explain in more

detail below, the set of all divisors kD with nontrivial second cohomology
is given by all k with −k = 2r + 3s + 5t with r, s, t positive integers. So,
Kawamata-Viehweg misses the divisor −11D. The reason is that the toric
Kawamata-Viehweg vanishing theorem tells us that the cohomology of some
divisor D′ vanishes if the rational equivalence class over Q of D′ −KP(2,3,5) is

contained in the interior of the nef cone in A1

(
P(2, 3, 5)

)
Q
. Over the integers,

the domain of cohomology vanishing thus in general is larger than over Q. Be-
low we will see that this is a general feature of cohomology vanishing, even for
smooth toric varieties, as can be seen, for instance, by considering the strict
transform of the divisor −11D along some toric blow-up X −→ P(2, 3, 5) such
that X is smooth.

The main results. The first main result will be an integral version of
the Kawamata-Viehweg vanishing theorem. Consider the nef cone nef(X) ⊂
Ad−1(X)Q, then the toric Kawamata-Viehweg vanishing theorem (see Theorem
3.29) can be interpreted such that if D − KX is contained in the interior of
nef(X), then Hi

(
X,OX(D)

)
= 0 for all i > 0. For our version we will define a

set Anef ⊂ Ad−1(X), which we call the arithmetic core of nef(X) (see definition
4.11). The set Anef has the property that it contains all integral Weil divisors
which map to the interior of the cone KX + nef(X) in Ad−1(X)Q. But in gen-
eral it is strictly larger, as in the example above. We can lift the cohomology
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vanishing theorem for divisors in nef(X) to Anef :

Theorem (4.14): Let X be a complete toric variety and D ∈ Anef. Then
Hi
(
X,OX(D)

)
= 0 for all i > 0.

One can consider Theorem 4.14 as an “augmentation” of the standard vanishing
theorem for nef divisors to the subset Anef of Ad−1(X). In general, Theorem
4.14 is slightly stronger than the toric Kawamata-Viehweg vanishing theorem
and yields refined arithmetic conditions.

However, the main goal of this paper is to find vanishing results which cannot
directly be derived from known vanishing theorems. Let D be a nef Cartier
divisor whose Iitaka dimension is positive but smaller than d. This class of
divisors is contained in nonzero faces of the nef cone of X which are contained
in the intersection of the nef cone with the boundary of the effective cone of X
(see Section 4.3). Let F be such a face. Similarly as with Anef , we can define
for the inverse cone −F an arithmetic core A−F (see 4.11) and associate to it
a vanishing theorem, which may be considered as the principal result of this
article:

Theorem (4.17): Let X be a complete d-dimensional toric variety. Then
Hi
(
X,O(D)

)
= 0 for every i and all D which are contained in some A−F ,

where F is a face of nef(X) which contains nef divisors of Iitaka dimension
0 < κ(D) < d. If A−F is nonempty, then it contains infinitely many divisor
classes.

This theorem cannot be an augmentation of a vanishing theorem for −F , as
it is not true in general that Hi

(
X,OX(−D)

)
= 0 for all i for D nef of Iitaka

dimension smaller than d. In particular, the set of Q-equivalence classes of
elements in A−F does not intersect −F .
For the case of a toric surface X we show that above vanishing theorems com-
bine to a nearly complete vanishing theorem for X . Recall that in the fan
associated to a complete toric surface X every pair of opposite rays by projec-
tion gives rise to a morphism from X to P1 (e.g. such a pair does always exist if
X is smooth and X 6= P2). Correspondingly, we obtain a family of nef divisors
of Iitaka dimension 1 on X given by the pullbacks of the sheaves OP1(i) for
i > 0. We get:

Theorem (4.21): Let X be a complete toric surface. Then there are only
finitely many divisors D with Hi

(
X,OX(D)

)
= 0 for all i > 0 which are not

contained in Anef ∪
⋃
F A−F , where the union ranges over all faces of nef(X)

which correspond to pairs of opposite rays in the fan associated to X.

Some more precise numerical characterizations on the sets A−F will be given in
subsection 4.3. The final result is a birational characterization of MCM-sheaves
of rank one. This is a test case to see whether point of view of birational geom-
etry might be useful for classifying more general MCM-sheaves. The idea for
this comes from the investigation of MCM-sheaves over surface singularities in
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terms of resolutions in the context of the McKay correspondence (see [GSV83],
[AV85], [EK85]). For an affine toric variety X , in general one cannot expect to
find a similar nice correspondence. However, there is a set of preferred partial
resolutions of singularities π : X̃ −→ X which is parameterized by the sec-
ondary fan of X . Our result is a toric analog of a technical criterion of loc.
cit.

Theorem (4.36): Let X be a d-dimensional affine toric variety whose associ-
ated cone has simplicial facets and let D ∈ Ad−1(X). If Riπ∗OX̃(π∗D) = 0 for

every regular triangulation π : X̃ −→ X, then OX(D) is MCM. For d = 3 the
converse is also true.

Note that the facets of a 3-dimensional cone are always simplicial.
To prove our results we will require a lot of bookkeeping, combining various
geometric, combinatorial and arithmetic aspects of toric varieties. This has the
unfortunate effect that the exposition will be rather technical and incorporate
many notions (though not much theory) coming from combinatorics. As this
might be cumbersome to follow for the more geometrically inclined reader, we
will give an overview of the key structures and explain how they fit together.
From now X denotes an arbitrary d-dimensional toric variety, ∆ the fan asso-
ciated to X , M ∼= Zd the character group of the torus which acts on X . We
denote N the dual module of M , l1, . . . , ln ∈ N the set of primitive vectors of
the 1-dimensional cones in ∆ and D1, . . . , Dn the corresponding torus invari-
ant prime divisors on X . By abuse of notion, we will often identify the sets
[n] := {1, . . . , n} and {l1, . . . , ln}.

The circuit geometry of a toric variety. In order to compute the
cohomology Hi

V

(
X,OX(D)

)
of a torus-invariant Weil divisor D =

∑n
i=1 ciDi

with respect to some torus-invariant support V ⊆ X , one uses the induced
eigenspace decomposition

Hi
V

(
X,OX(D)

) ∼=
⊕

m∈M
Hi
V

(
X,OX(D)

)
m
.

By a well-known formula, we can compute every eigenspace by computing the
relative cohomology of a certain simplicial complex:

Hi
V

(
X,OX(D)

)
m
∼= Hi−1(∆̂m, ∆̂V,m; k).

Here ∆̂ denotes the simplicial model of ∆, i.e. the abstract simplicial complex
on the set [n] such that any subset I ⊂ [n] is in ∆̂ iff there exists a cone σ
in ∆ such that elements in I are faces of σ. Similarly, ∆̂V is a subcomplex of
∆̂, generated by only those cones in ∆ whose associated orbits in X are not
contained in V (see also Section 2). For any character m ∈M , ∆̂m and ∆̂V,m

are the full subcomplexes which are supported on those li with li(m) < −ci
(see Theorem 2.1).
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By this, for an invariant divisor D =
∑n

i=1 ciDi, the eigenspaces

Hi
V

(
X,OX(D)

)
m

depend on the simplicial complexes ∆̂, ∆̂V as well
as on the position of the characters m with respect to the hyperplanes
H
c
i = {m ∈ MQ | li(m) = −ci}, where MQ = M ⊗Z Q. The chamber

decomposition of MQ induced by the H
c
i (or their intersection poset) can be

interpreted as the combinatorial type of D. Our strategy will be to consider
the variations of combinatorial types depending on c = (c1, . . . , cn) ∈ Qn.
The solution to this discriminantal problem is given by the discriminantal ar-
rangement associated to the vectors l1, . . . , ln, which has first been considered
by Crapo [Cra84] and Manin and Schechtman [MS89]. The discriminantal
arrangement is constructed as follows. Consider the standard short exact
sequence associated to X :

0 −→MQ
L−→ Qn

D−→ AQ −→ 0, (1)

where L is given by L(m) =
(
l1(m), . . . , ln(m)

)
, and AQ := Ad−1(X) ⊗Z Q is

the rational divisor class group ofX . The matrixD is called the Gale transform
of L, and its i-th column Di is the Gale transform of li. The most important
property of the Gale transform is that the linear dependencies among the li and
among the Di are inverted. That is, for any subset among the li which forms a
basis, the complementary subset of the Di forms a basis of AQ, and vice versa.
Moreover, for every circuit, i.e. a minimal linearly dependent subset, C ⊂ [n]
the complementary set {Di | li /∈ C} spans a hyperplane HC in AQ. Then the
discriminantal arrangement is given by the hyperplane arrangement

{HC | C ⊂ [n] circuit}.

The stratification of AQ by this arrangement then is in bijection with the com-
binatorial types of the arrangements given by the H

c
i under variation of c. As

we will see, virtually all properties of X concerning its birational geometry and
cohomology vanishing of divisorial sheaves on X depend on the discriminantal
arrangement. In particular, (see Proposition 3.19), the discriminantal arrange-
ment coincides with the hyperplane arrangement generated by the facets of the
secondary fan. Ubiquitous standard constructions such as the effective cone,
nef cone, and the Picard group can easily be identified as its substructures.
Another interesting aspect is that the discriminantal arrangement by itself (or
the associated matroid, respectively) represents a combinatorial invariant of
the variety X , which one can refer to as its circuit geometry. This circuit
geometry refines the combinatorial information coming with the toric variety,
that is, the fan ∆ and the matroid structure underlying the li (i.e. their linear
dependencies). It depends only on the li, and even for two combinatorially
equivalent fans ∆, ∆′ such that corresponding sets of primitive vectors l1, . . . , ln
and l′1, . . . , l

′
n have the same underlying linear dependencies, their associated

circuit geometries are different in general. This already is the case for surfaces,
see, for instance, Crapo’s example of a plane tetrahedral line configuration
([Cra84], §4). Falk ([Fal94], Example 3.2) gives a 3-dimensional example.
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Circuits and the diophantine Frobenius problem. Circuits are also
the building blocks for our arithmetic conditions on cohomology vanishing,
which can easily be illustrated for the case of weighted projective spaces. As-
sume, for simplicity, that the first d+ 1 primitive vectors l1, . . . , ld+1 generate
N and form a circuit. Then we have a relation

d+1∑

i=1

αili = 0 (2)

where the αi are nonzero integers whose largest common divisor is one. This
relation is unique up to sign and we assume for simplicity that αi > 0 for
at least one i. In the special case that all the αi are positive, l1, . . . , ld+1

generate the fan of a weighted projective space P(α1, . . . , αd+1). Denote D
the unique Q-effective generator of Ad−1

(
P(α1, . . . , αd+1)

)
. Then there is a

standard construction for counting global sections

dimH0
(
P(α1, . . . , αd+1),OP(α1,...,αd+1)(nD)

)

=
∣∣∣{(k1, . . . , kd+1) ∈ Nd+1 |

d+1∑

i=1

kiαi = n}
∣∣∣ =: VPα1,...,αd+1

(n),

for any n ∈ Z. Here, VPα1,...,αd+1
is the so-called vector partition function

(or denumerant function) with respect to the αi. The problem of determining
the zero set of VPα1,...,αd+1

(or the maximum of this set) is quite famously
known as the diophantine Frobenius problem. This problem is hard in general
(though not necessarily so in specific cases) and there does not exist a general
closed expression to determine the zero set (for a survey of the diophantine
Frobenius problem we refer to the book [Ram05]). Analogously, one can write
down similar functions for any circuit among the li (see subsection 4.1).

The basic idea now is to transport the discriminantal arrangement from AQ to
some diophantine analog in Ad−1(X). For any circuit C ⊂ [n] there is a short
exact sequence

0 −→ HC −→ AQ −→ AC,Q −→ 0.

By lifting the surjection AQ → AC,Q to its integral counterpart Ad−1(X)→ AC ,
we lift the zero set of the corresponding vector partition function on AC to
Ad−1(X). By doing this for every circuit C, we construct in Ad−1(X) what we
call the Frobenius discriminantal arrangement. One can consider the Frobenius
discriminantal arrangement as an arithmetic thickening of the discriminantal
arrangement. This thickening in general is just enough to enlarge the rele-
vant strata in the discriminantal arrangement such that it encompasses the
Kawamata-Viehweg-like theorems. To derive other vanishing results, our anal-
ysis will mostly be concerned with analyzing the birational geometry of X and
its implications on the combinatorics of the discriminantal arrangement, and
the transport of this analysis to the Frobenius arrangement.
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Overview. Section 2 introduce some general notation and results related to
toric varieties. In section 3 we survey discriminantal arrangements, secondary
fans, and rational aspects of cohomology vanishing. Several technical facts
will be collected which are important for the subsequent sections. Section 4
contains all the essential results of this work. In 4.3 we will prove our main
arithmetic vanishing results. These will be applied in 4.4 to give a quite com-
plete characterization of cohomology vanishing for toric surfaces. Section 4.5
is devoted to maximal Cohen-Macaulay modules.

Acknowledgments. Thanks to Laurent Bonavero, Michel Brion, Lutz
Hille, Vic Reiner, and Jan Stienstra for discussion and useful hints.

2 Toric Preliminaries

In this section we first introduce notions from toric geometry which will be
used throughout the rest of the paper. As general reference for toric varieties
we use [Oda88], [Ful93]. We will always work over an algebraically closed field
k.
Let ∆ be a fan in the rational vector space NQ := N ⊗Z Q over a lattice
N ∼= Zd. Let M be the lattice dual to N , then the elements of N represent
linear forms on M and we write n(m) for the canonical pairing N ×M → Z,
where n ∈ N and m ∈M . This pairing extends naturally over Q, MQ×NQ →
Q. Elements of M are denoted by m, m′, etc. if written additively, and by
χ(m), χ(m′), etc. if written multiplicatively, i.e. χ(m + m′) = χ(m)χ(m′).
The lattice M is identified with the group of characters of the algebraic torus
T = Hom(M,k∗) ∼= (k∗)d which acts on the toric variety X = X∆ associated
to ∆. Moreover, we will use the following notation:

• cones in ∆ are denoted by small greek letters ρ, σ, τ, . . . , their natural
partial order by ≺, i.e. ρ ≺ τ iff ρ ⊆ τ ;

• |∆| := ⋃σ∈∆ σ denotes the support of ∆;

• for 0 ≤ i ≤ d we denote ∆(i) ⊂ ∆ the set of i-dimensional cones; for
σ ∈ ∆, we denote σ(i) the set of i-dimensional faces of σ;

• Uσ denotes the associated affine toric variety for any σ ∈ ∆;

• σ̌ := {m ∈MQ | n(m) ≥ 0 for all n ∈ σ} is the cone dual to σ;

• σ⊥ = {m ∈MQ | n(m) = 0 for all n ∈ σ};

• σM := σ̌ ∩M is the submonoid of M associated to σ.

We will mostly be interested in the structure of ∆ as a combinatorial cellular
complex. For this, we make a few convenient identifications. We always denote
n the cardinality of ∆(1). i.e. the number of 1-dimensional cones (rays) and
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[n] := {1, . . . , n}. The primitive vectors along rays are denoted l1, . . . , ln, and,
by abuse of notion, we will usually identify the sets ∆(1), the set of primitive
vectors, and [n]. Also, we will often identify σ ∈ ∆ with the set σ(1) ⊂ [n].
With these identifications, and using the natural order of [n], we obtain a com-
binatorial cellular complex with support [n]; we may consider this complex as
a combinatorial model for ∆. In the case where ∆ is simplicial, this complex
is just a combinatorial simplicial complex in the usual sense. If ∆ is not sim-
plicial, we consider the simplicial cover ∆̂ of ∆, modelled on [n]: some subset
I ⊂ [n] is in ∆̂ iff there exists some σ ∈ ∆ such that I ⊂ σ(1). The identity on
[n] then induces a surjective morphism ∆̂ −→ ∆ of combinatorial cellular com-
plexes. This morphism has a natural representation in terms of fans. We can
identify ∆̂ with the fan in Qn which is defined as follows. Let e1, . . . , en be the
standard basis of Qn, then for any set I ⊂ [n], the vectors {ei}i∈I span a cone
over Q≥0 iff there exists σ ∈ ∆ with I ⊂ σ(1). The associated toric variety X̂
is open in Ank , and the vector space homomorphism defined by mapping ei 7→ li
for i ∈ [n] induces a map of fans ∆̂ → ∆. The induced morphism X̂ → X is
the quotient presentation due to Cox [Cox95]. We will not make explicit use
of this construction, but it may be useful to have it in mind.
An important fact used throughout this work is the following exact sequence
which exists for any toric variety X with associated fan ∆:

M
L−→ Zn −→ Ad−1(X) −→ 0. (3)

Here L(m) = (l1(m), . . . , ln(m)), i.e. as a matrix, the primitive vectors li
represent the row vectors of L. Note that L is injective iff ∆ is not contained
in a proper subspace of NQ. The sequence follows from the fact that every
Weil divisor D on X is rationally equivalent to a T -invariant Weil divisor,
i.e. D ∼ ∑n

i=1 ciDi, where c = (c1, . . . , cn) ∈ Zn and D1, . . . , Dn, the T -
invariant irreducible divisors of X . Moreover, any two T -invariant divisors
D, D′ are rationally equivalent if and only if there exists m ∈ M such that
D −D′ =∑n

i=1 li(m)Di. To every Weil divisor D, one associates its divisorial
sheaf OX(D) = O(D) (we will omit the subscript X whenever there is no
ambiguity), which is a reflexive sheaf of rank one and locally free if and only if
D is Cartier. Rational equivalence classes of Weil divisors are in bijection with
isomorphism classes of divisorial sheaves. If D is T -invariant, the sheaf O(D)
acquires a T -equivariant structure and the equivariant isomorphism classes of
sheaves O(D) are one-to-one with Zn.
Consider a closed T -invariant subscheme V ⊆ X . Then for any T -invariantWeil
divisor D there are induced linear representations of T on the local cohomology
groupsHi

V

(
X,O(D)

)
. In particular, each such module has a natural eigenspace

decomposition

Hi
V

(
X,O(D)

) ∼=
⊕

m∈M
Hi
V

(
X,O(D)

)
m
.

The eigenspacesHi
V

(
X,O(D)

)
m
can be characterized by the relative cohomolo-

gies of certain simplicial complexes. For any I ⊂ [n] we denote ∆̂I the maximal
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subcomplex of ∆̂ which is supported on I. We denote ∆̂V the simplicial cover
of the fan associated to the complement of the reduced subscheme underlying
V in X . Correspondingly, for I ⊂ [n] we denote ∆̂V,I the maximal subcomplex

of ∆̂V which is supported on I. If c ∈ Zn is fixed, and D =
∑

i∈[n] ciDi, then

every m ∈M determines a subset I(m) of [n] which is given by

I(m) = {i ∈ [n] | li(m) < −ci}.

Then we will write ∆̂m and ∆̂V,m instead of ∆̂I(m) and ∆̂V,I(m), respectively.
In the case where ∆ is generated by just one cone σ, we will also write σ̂m, etc.
With respect to these notions we get:

Theorem 2.1: Let D ∈ Z∆(1) be a T -invariant Weil divisor on X. Then for
every T -invariant closed subscheme V of X, every i ≥ 0 and every m ∈ M
there exists an isomorphism of k-vector spaces

Hi
V

(
X,O(D)

)
m
∼= Hi−1(∆̂m, ∆̂V,m; k).

Note that hereHi−1(∆̂m, ∆̂V,m) denotes the reduced relative cohomology group

of the pair (∆̂m, ∆̂V,m).

Proof. For V = X it follows from [EMS00], §2 that Hi
(
X,O(D)

)
m
∼=

Hi−1(∆̂m; k) and Hi
(
X \ V,O(D)

)
m
∼= Hi−1(∆̂V,m; k). Then the assertion

follows from comparing the long exact relative cohomology sequence of the
pair (∆̂m, ∆̂V,m) with the long exact local cohomology sequence with respect
to X and V in degree m.

We mention a special case of this theorem, which follows from the long exact
cohomology sequence.

Corollary 2.2: Let X = Uσ and V a T -invariant closed subvariety of X
and denote σ̂ the simplicial model for the fan generated by σ. Then for every
m ∈M and every i ∈ Z:

Hi
V

(
X,O(D)

)
m

=

{
0 if σ̂m = ∅,
Hi−2(σ̂V,m; k) else.

3 Discriminants and combinatorial aspects cohomology vanishing

A toric variety X is specified by the set of primitive vectors l1, . . . , ln ∈ N and
the fan ∆ supported on these vectors. We can separate three properties which
govern the geometry of X and are relevant for cohomology vanishing problems:

(i) the linear algebra given by the vectors l1, . . . , ln and their linear depen-
dencies as Q-vectors;
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(ii) arithmetic properties, which are also determined by the li, but considered
as integral vectors;

(iii) its combinatorics, which is given by the fan ∆.

In this section we will have a closer look into the linear algebraic and com-
binatorial aspects. In subsection 3.1 we will introduce the notion of oriented
and non-oriented circuits associated to the vectors li. In subsection 3.2 we
consider circuits of the matrix L and the induced stratification of Ad−1(X)Q.
In subsection 3.3 we will collect some well-known material on secondary fans
from [GKZ94], [OP91], and [BFS90] and explain their relation to discriminan-
tal arrangements. Subsection 3.4 then applies this to certain statements about
the birational geometry of toric varieties and cohomology vanishing.
For this section and the following sections we will introduce the following con-
ventions.

Convention 3.1: We will denote L the matrix whose rows are given by the li.
For any subset I of [n] we will denote LI the submatrix of L consisting of the
rows which are given by the li with i ∈ I. In general, we will not distinguish
between {li}i∈I and LI . Similarly, we will usually identify subsets I ⊂ [n] with
the corresponding subsets of {l1, . . . , ln}. If ∆ is a fan in NR such that ∆(1) is
generated by some subset of the li, then we say that ∆ is supported on L (resp.
on l1, . . . , ln).
Let C be a subset of [n] which is minimal with the property that the li with
i ∈ C are linearly dependent. Then the set {li}i∈C is called a circuit. By abuse
of notion we will also call C itself a circuit.

3.1 Circuits

Let C ⊆ [n] be a circuit. Then we have a relation

∑

i∈[n]
αili = 0,

which is unique up to a common multiple of the αi, and the αi are nonzero.
Without loss of generality, we will assume that the αi are integral and
gcd{|αi|}i∈[n] = 1. To simplify the discussion, we will further assume that
LC generates a submodule NC of finite index in N . For a fixed choice of the
αi, we have a partition C = C+

∐
C−, where C± = {i ∈ [n] | ±αi > 0}. This

decomposition depends only on the signs of the αi; flipping the signs exchanges
C+ and C−. We want to keep track of these two possibilities and call the choice
of C+

∐
C− =: C the oriented circuit with underlying circuit C (or simply an

orientation of C), and −C := −C+
∐−C− its inverse, where −C± := C∓.

Definition 3.2: We denote C(L) the set of circuits of L and C(L) the set of
oriented circuits of L, i.e. the set of all orientations C,−C for C ∈ C(L).
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For a given circuit C, the primitive vectors LC can support at most two sim-
plicial fans, each corresponding to an orientation of C. For fixed orientation
C, we denote ∆ = ∆C the fan whose maximal cones are generated by C \ {i},
where i runs over the elements of C+. The only exception for this procedure
is the case where C+ is empty, which we leave undefined. The associated toric
variety X∆C

is simplicial and quasi-projective.

Definition 3.3: We call a toric variety X = X∆C
associated to an oriented

circuit C a toric 1-circuit variety.

Now let us assume that the sublattice NC of N which is generated by LC is
saturated. Then we have a short exact sequence

0 −→M
LC−→ Zn

GC−→ A −→ 0, (4)

such that A ∼= Z and thus torsion free. Here, LC is considered as a tuple of
linear forms on M , A ∼= Z and GC = (α1, . . . , αn) is a (1 × n)-matrix, i.e. we
can consider the αi as the Gale transform of the li. Conversely, if the αi are
given, then the li are determined up to a Z-linear automorphism of N . We will
make more extensive use of the Gale transform later on. For generalities we
refer to [OP91] and [GKZ94].
If NC ( N , we can formally consider the inclusion of NC as the image of N via
an injective endomorphism ξ of N . The inverse images of the li with respect to
ξ satisfy the same relation as the li. Therefore, a general toric circuit variety is
completely specified by ξ and the integers αi. More precisely, a toric 1-circuit
variety is specified by the Gale duals li of the αi and an injective endomorphism
ξ of N with the property that ξ(li) is primitive in N for every i ∈ [n].

Definition 3.4: Let α = (αi | i ∈ C) ∈ ZC with αi 6= 0 for every i and
gcd{|αi|}i∈[n] = 1, C the associated oriented circuit with C+ = {i | αi > 0},
and ξ : N −→ N an injective endomorphism of N which maps the Gale duals of
the αi to primitive elements pi in N . Then we denote P(α, ξ) the toric 1-circuit
variety associated to the fan ∆C spanned by the primitive vectors pi.

The endomorphism ξ translates into an isomorphism

P(α, ξ) ∼= P(α, idN)/H,

where H ∼= spec k[N/NC]. Note that in positive characteristic, H in general is a
group scheme rather than a proper algebraic group. Moreover, in sequence (4)
we can identify A with the divisor class group Ad−1

(
P(α, idN )

)
. Similarly, we

get Ad−1
(
P(α, ξ)

) ∼= A⊕N/NC and the natural surjection from Ad−1
(
P(α, ξ)

)

onto Ad−1
(
P(α, idN)

)
just projects away the torsion part.

Remarks 3.5: (i) In the case αi > 0 for all i and ξ = idN , we just recover the
usual weighted projective spaces. In many respects, the spaces P(α, ξ) can be
treated the same way as has been done in the standard references for weighted
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projective spaces, see [Del75], [Dol82], [BR86]. In our setting there is the slight
simplification that we naturally can assume that gcd{|αj |}j 6=i = 1 for every
i ∈ [n], which eliminates the need to discuss reduced weights.
(ii) In the case that LC spans a subspace N ′ of NQ of positive codimension r,
then for some orientation C of C the variety X(∆C) is isomorphic to P(α, ξ)×
(k∗)r , where P(α, ξ) is defined as before with respect to N ′. Note that if
C+ = C, then the fan ∆−C is empty. By convention, in that case one can define
X(∆−C) := (k∗)r as the associated toric variety.
(iii) The spaces P(α, ξ) are building blocks for the birational geometry of general
toric varieties. In fact, to every extremal curve V (τ) in some simplicial toric
variety X , there is associated some variety P(α, ξ) whose fan ∆C is a subfan of
∆ and which embeds as an open invariant subvariety of X . If |C+| /∈ {n, n−1},
the primitive vectors li span a convex polyhedral cone, giving rise to an affine
toric variety Y and a canonical morphism π : P(α, ξ) −→ Y which is a partial
resolution of singularities. Sign change α → −α then encodes the transition
from C to −C and and a birational map from P(α, ξ) to P(−α, ξ), which provides
a local model for well-known combinatorial operation which called bistellar
operation [Rei99] or modification of a triangulation [GKZ94]:

P(α, ξ)

π

""FF
FF

FF
FF

F
//_______ P(−α, ξ)

π′

{{vvvvvvv
vv

Y

(for |C+| = d − 1, one can identify P(−α, ξ) with Y and one just obtains a
blow-down).

3.2 Circuits and discriminantal arrangements

Recall that for any torus invariant divisor D =
∑

i∈[n] ciDi, the isotypical

components Hi
V

(
X,O(D)

)
m

for some cohomology group depend on simplicial

complexes ∆̂I , where I = I(m) = {i ∈ [n] | li(m) < −ci}. So, the set of
all possible subcomplexes ∆̂I depends on the chamber decomposition of MQ

which is induced by the hyperplane arrangement which is given by hyperplanes
H
c
1 , . . . , H

c
n, where

H
c
i := {m ∈MQ | li(m) = −ci}.

The set of all relevant I ⊂ [n] is determined by the map

sc :MQ −→ 2[n], m 7→ {i ∈ [n] | li(m) < −ci}.

Definition 3.6: For m ∈MQ, we call s
c the signature of m. We call the image

of MQ in 2[n] the combinatorial type of c.

Remark 3.7: The combinatorial type encodes what in combinatorics is known
as oriented matroid (see [BLS+93]). We will not make use of this kind of
structure, but we will find it sometimes convenient to borrow some notions.
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So, given l1, . . . , ln, we would like to classify all possible combinatorial types,
depending on c ∈ Qn. The natural parameter space for all hyperplane ar-
rangements up to translation by some element m ∈ MQ is given by the set
AQ
∼= Qn/MQ, which is given by the following short exact sequence:

0 −→MQ
L−→ Qn

D−→ Ad−1(X)Q = AQ −→ 0.

Then the D1, . . . , Dn are the images of the standard basis vectors of Qn. This
procedure of constructing theDi from the li is often calledGale transformation,
and the Di are the Gale duals of the li.
Now, a hyperplane arrangement H

c
i for some c ∈ Qn, is considered in general

position if the hyperplanes H
c
i intersect in the smallest possible dimension.

When varying c and passing from one arrangement in general position to an-
other one which has a different combinatorial type, this necessarily implies
that has to take place some specialization for some c ∈ Qn, i.e. where the
corresponding hyperplanes H

c
i do not intersect in the smallest possible dimen-

sion. So we see that the combinatorial types of hyperplane arrangements with
fixed L and varying induce a stratification of AQ, where the maximal strata
correspond to hyperplane arrangements in general position. To determine this
stratification is the discriminant problem for hyperplane arrangements. To be
more precise, let I ⊂ [n] and denote

HI := {c+MQ ∈ AQ |
⋂

i∈I
H
c
i 6= 0},

i.e. HI represents the set of all hyperplane arrangements (up to translation)
such that the hyperplanes {Hi}i∈I have nonempty intersection. The sets HI

can be described straightforwardly by the following commutative exact dia-
gram:

HI� _

�

0 // MQ
L // Qn

D //

����

AQ
//

����

0

MQ
LI // QI

DI // AI,Q // 0.

(5)

In particular, HI is a subvector space of AQ. Moreover, we immediately read
off diagram (5):

Lemma 3.8: (i) HI is generated by the Di with i ∈ [n] \ I.

(ii) dimHI = n− |I| − dim(kerLI).

(iii) If J ⊆ I then HI ⊆ HJ .

(iv) Let I, J ⊂ [n], then HI∪J ⊂ HI ∩HJ .
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Note that in (iv) the reverse inclusion in general is not true. It follows that the
hyperplanes among the HI are determined by the formula:

|I| = rkLI + 1.

By Lemma 3.8 (iii), we can always consider circuits fulfilling this condition. It
turns out that the hyperplane HC suffice to completely describe the discrimi-
nants of L:

Lemma 3.9: Let I ⊂ [n], then

HI =
⋂

C⊂Icircuit
HC ,

where, by convention, the right hand side equals AQ, if the li with i ∈ I are
linearly independent.

Hence, the stratification of AQ which we were looking for is completely deter-
mined by the hyperplanes HC .

Definition 3.10: We denote the set {HC | C ⊂ [n] a circuit} the discriminan-
tal arrangement of L.

Remark 3.11: The discriminantal arrangement carries a natural matroid
structure. This structure can be considered as another combinatorial invariant
of L (or the toric variety X , respectively), its circuit geometry. Discriminantal
arrangements seem to have been appeared first in [Cra84], where the notion
of ’circuit geometry’ was coined. The notion of discriminantal arrangements
stems from [MS89]. Otherwise, this subject seems to have been studied explic-
itly only in very few places, see for instance [Fal94], [BB97], [Ath99], [Rei99],
[Coh86], [CV03], though it is at least implicit in the whole body of literature on
secondary fans. Above references are mostly concerned with genericity proper-
ties of discriminantal arrangements. Unfortunately, in toric geometry, the most
interesting cases (such as smooth projective toric varieties, for example) virtu-
ally never give rise to discriminantal arrangements in general position. Instead,
we will focus on certain properties of nongeneric circuit geometries, though we
will not undertake a thorough combinatorial study of these.

Virtually all problems related to cohomology vanishing on a toric variety X
must depend on the associated discriminantal arrangement and therefore on the
circuits of L. In subsection 3.3 we will see that the discriminantal arrangement
is tightly tied to the geometry of X .
As we have seen in section 3.1, to every circuit C ⊂ [n] we can associate two
oriented circuits. These correspond to the signature of the bounded chamber
of the subarrangement in MQ given by the H

c
i with i ∈ C (or better to the

bounded chamber in MQ/ kerLI , as we do no longer require that the li with
i ∈ C span MQ). Lifting this to AQ, this corresponds to the half spaces in AQ

which are bounded by HC .
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Definition 3.12: Let C ⊂ [n] be a circuit, then we denote HC the half space
in AQ bounded by HC corresponding to the orientation C.

The following is straightforward to check:

Lemma 3.13: Let C be a circuit of L and C an orientation of C. Then the
hyperplane HC is separating, i.e. for every i ∈ [n] one of the following holds:

(i) i ∈ [n] \ C iff Di ∈ HC;

(ii) if i ∈ C+, then Di ∈ HC \HC ;

(iii) if i ∈ C−, then Di ∈ H−C \HC.

Now we are going to borrow some terminology from combinatorics. Consider
any subvector space U of AQ which is the intersection of some of the HC . Then
the set FU of all C ∈ C(L) such that HC contains U is called a flat. The
subvector space is uniquely determined by the flat and vice versa. We can do
the same for the actual strata rather than for subvector spaces. For this, we just
need to consider instead the oriented circuits and their associated half spaces
in AQ: any stratum S of the discriminantal arrangement uniquely determines
a finite set FS of oriented circuits C such that S ⊂ HC. From the set FS we
can reconstruct the closure of S:

S =
⋂

C∈FS

HC,

We give a formal definition:

Definition 3.14: For any subvector space U ⊂ AQ which is a union of strata
of the discriminantal arrangement, we denote FU := {C ∈ C(L) | U ⊂ HC}
the associated flat. For any single stratum S ⊂ AQ of the discriminantal
arrangement, we denote FS := {C ∈ C(L) | U ⊂ HC} the associated oriented
flat.

The notion of flats gives us some flexibility in handling strata. Note that
flats reverse inclusions, i.e. S ⊂ T iff FT ⊂ FS . Moreover, if a stratum S is
contained in some HC , then its oriented flat contains both HC and H−C, and
vice versa. So from the oriented flat we can reconstruct the subvector space of
AQ generated by S.

Definition 3.15: Let S := {S1, . . . , Sk} be a collection of strata of the dis-
criminantal arrangement. We call

FS :=

k⋂

i=1

FSi

the discriminantal hull of S.
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The discriminantal hull defines a closed cone in AQ which is given by the
intersection

⋂
C∈FS

HC. This cone contains the union of the closures Si, but is
bigger in general.

Lemma 3.16: (i) Let S = {S1, . . . , Sk} be a collection of discriminantal

strata whose union is a closed cone in AQ. then FS =
⋂k
i=1 FSi .

(ii) Let S = {S1, . . . , Sk} be a collection of discriminantal strata and U the
subvector space of AQ generated by the Si. Then the forgetful map FS →
FU is surjective iff FS = FSi for some i.

Proof. For (i) just note that because
⋃k
i=1 Sk is a closed cone, it must be an

intersection of some HC. For (ii): the set
⋂

C∈FS
HC is a cone which contains

the convex hull of all the Si. If some C is not in the image of the forgetful map,
then the hyperplane HC must intersect the relative interior of this cone. So the
assertion follows.

3.3 Secondary Fans

For any c ∈ Qn the arrangement H
c
i induces a chamber decomposition of MQ,

where the closures of the chambers are given by

P Ic := {m ∈MQ | li(m) ≤ −ci for i ∈ I and li(m) ≥ −ci for i /∈ I}

for every I ⊂ [n] which belongs to the combinatorial type of c. In particular, c
represents an element D ∈ AQ with

D ∈
⋂

I∈sc(MQ)

CI ,

where CI is the cone in AQ which is generated by the −Di for i ∈ I and the Di

with i /∈ I for some I ⊂ [n]. For an invariant divisor D =
∑
i∈[n] ciDi we will

also write P ID instead of P Ic . If I = ∅, we will occasionally omit the index I.
The faces of the CI can be read off directly from the signature:

Proposition 3.17: Let I ⊂ [n], then CI is an nonredundant intersection of
the HC with C− ⊂ I and C+ ∩ I = ∅.

Proof. First of all, it is clear that CI coincides with the intersection of half
spaces

CI =
⋂

C+⊂I
C−∩I=∅

HC.

For any HC in the intersection let HC its boundary. Then HC contains a cone
of codimension 1 in AQ which is spanned by Di with i ∈ [n] \ (C ∪ I) and by
−Di with i ∈ I \ C which thus forms a proper facet of CI .
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Recall that the secondary fan of L is a fan in AQ whose maximal cones are in
one-to-one correspondence with the regular simplicial fans which are supported
on the li. That is, if c is chosen sufficiently general, then the polyhedron P ∅c is
simplicial and its inner normal fan is a simplicial fan which is supported on the
li. Wall crossing in the secondary fan then corresponds locally to a transition
∆C −→ ∆−C as in section 3.1. Clearly, the secondary fan is a substructure of
the discriminantal arrangement in the sense that its cones are unions of strata
of the discriminantal arrangements. However, the secondary fan in general is
much coarser than the discriminantal arrangement, as it only keeps track of the
particular chamber P ∅c . In particular, the secondary fan is only supported on
C∅ which in general does not coincide with AQ. Of course, there is no reason
to consider only one particular type of chamber — we can consider secondary
fans for every I ⊂ [n] and every type of chamber P Ic . For this, observe first
that, if B is a subset of [n] such that the li with i ∈ B form a basis of MQ, then
the complementary Gale duals {Di}i/∈B form a basis of AQ. Then we set:

Definition 3.18: Let I ⊂ [n] and B ⊂ [n] such that the li with i ∈ B form
a basis of MQ, then we denote KI

B the cone in AQ which is generated by −Di

for i ∈ I \ B and by Di for i ∈ [n] \ (I ∪ B). The secondary fan SF(L, I) of L
with respect to I is the fan whose cones are the intersections of the KI

B, where
B runs over all bases of L.

Note that SF(L, ∅) is just the secondary fan as usually defined. Clearly, the
chamber structure of the discriminantal arrangement still refines the chamber
structure induced by all secondary arrangements. But now we have sufficient
data to even get equality:

Proposition 3.19: The following induce identical chamber decompositions of
AQ:

(i) the discriminantal arrangement,

(ii) the intersection of all secondary fans SF(L, I),

(iii) the intersection of the CI for all I ⊂ [n].

Proof. Clearly, the facets of every orthant CI span a hyperplane which is part
of the discriminantal arrangement, so the chamber decomposition induced by
the secondary fan is a refinement of the intersection of the CI ’s. The CI induce
a refinement of the secondary fans as follows. Without loss of generality, it
suffices to show that every K∅B is the intersection of some CI . We have

K∅B ⊆
⋂

I⊂B
CI .

On the other hand, for every facet of K∅B, we choose I such that CI shares this

face and K∅B is contained in CI . This can always be achieved by choosing I so
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that every generator of CI is in the same half space as K∅B. The intersection of

these CI then is contained in K∅B.
Now it remains to show that the intersection of the secondary fans refines
the discriminantal arrangement. This actually follows from the fact, that for
every hyperplane HC , one can choose a minimal generating set which we can
complete to a basis of AQ from the Di, where i /∈ C. By varying the signs
of this generating set, we always get a simplicial cone whose generators are
contained in some secondary fan, and this way HC is covered by a set of facets
of secondary cones.

The maximal cones in the secondary fan SF(L, ∅) correspond to regular simpli-
cial fans supported on l1, . . . , ln. More precisely, if ∆ denotes such a fan, then
the corresponding cone is given by

⋂
BK

∅
B, where B runs over all bases among

the li which span a maximal cone in ∆. With respect to a simplicial model ∆̂
for ∆, we define:

Definition 3.20: Let ∆ be a fan supported on L, then we set:

nef(∆) :=
⋂

B∈∆̂
B basis in L

K∅B

and denote Fnef = Fnef(∆) the discriminantal hull of nef(∆).

Note that by our conventions we identify B ∈ ∆̂ with the set of corresponding
primitive vectors, or the corresponding rows of L, respectively. Of course,
nef(∆) is just the nef cone of the toric variety associated to ∆.

Proposition 3.21: We have:

nef(∆) =
⋂

∆̂∩(∆C)max 6=∅

HC.

Proof. For some basis B ⊂ [n], the cone K∅B is simplicial, and for every i ∈
[n] \ B, the facet of K∅B which is spanned by the Dj with j /∈ B ∪ {i}, spans
a hyperplane HC in P . This hyperplane corresponds to the unique circuit
C ⊂ B ∪ {i}. As we have seen before, a maximal cone in ∆C is of the form
C \ {j} for some j ∈ C+. So we have immediately:

KB =
⋂

∃F∈(∆C)max

with F⊂B

HC

and the assertion follows.

Remark 3.22: If ∆ = ∆̂ is a regular simplicial fan, then nef(∆) is a maximal
cone in the secondary fan. Let C be an oriented circuit such that ∆ is supported
on ∆C in the sense of [GKZ94], §7, Def. 2.9, and denote ∆′ the fan resulting in
the bistellar operation by changing ∆C to ∆−C. Then, by [GKZ94], §7, Thm.
2.10, the hyperplane HC is a proper wall of nef(∆) iff ∆′ is regular, too.
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3.4 MCM sheaves, Q-Cartier divisors and the toric Kawamata-
Viehweg vanishing theorem

Recall that a Q-divisor on X is Q-Cartier if an integral multiple is Cartier in
the usual sense. A torus invariant Weil divisor D =

∑
i∈[n] ciDi is Q-Cartier

iff for every σ ∈ ∆ there exists some mσ ∈ MQ such that ci = li(m) for all
i ∈ σ(1). A result of Bruns and Gubeladze [BG03] states that every toric Q-
Cartier divisor is maximal Cohen-Macaulay. The MCM property is useful, as
it allows to replace the Ext-groups by cohomologies in Serre duality:

Proposition 3.23: Let X be a normal variety with dualizing sheaf ωX and F
a coherent sheaf on X such that for every x ∈ X, the stalk Fx is MCM over
OX,x. Then for every i ∈ Z there exists an isomorphism

ExtiX
(
F , ωX

) ∼= Hi
(
X,Hom(F , ωX)

)
.

Proof. For any two OX -modules F ,G there exists the following spectral se-
quence

Epq2 = Hp
(
X, ExtqOX (F ,G)

)
⇒ Extp+qOX (F ,G).

We apply this spectral sequence to the case G = ωX . For every closed point
x ∈ X we have the following identity of stalks:

ExtqOX (F , ωX)x ∼= ExtqOX,x(Fx, ωX,x).

As F is maximal Cohen-Macaulay, the latter vanishes for all q > 0, and thus
the sheaf ExtqOX (F , ωX) is the zero sheaf for all q > 0. So the above spectral
sequence degenerates and we obtain an isomorphism

Hp(X,Hom(F , ωX)) ∼= ExtpX(F , ωX)

for every p ∈ Z.

In the case where X a toric variety, we have ωX ∼= O(KX), where KX =
−∑i∈[n]Di. Then, if F = O(D) for some D ∈ A, we can identify

Hom(O(D), ωX) with O(KX −D):

Corollary 3.24: Let X be a toric variety and D a Weil divisor such that
O(D) is an MCM sheaf. Then there is an isomorphism:

ExtiX
(
O(D), ωX

) ∼= Hi
(
X,OX(KX −D)

)
.

And by Grothendieck-Serre duality:

Corollary 3.25: If X is a complete toric variety and D a Weil divisor such
that O(D) is an MCM sheaf, then

Hi
(
X,O(D)

) ∼= Hd−i(X,O(KX −D)
)
.̌
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For any Cartier divisor D on some normal variety X denote N(X,D) := {k ∈
N | H0

(
X,O(kD)

)
6= 0}. Then the Iitaka dimension of D is defined as

κ(D) := max
k∈N(X,D)

{dimφk(X)},

where φk : X //___ P|kD| is the family of morphisms given by the linear series

|kD|.
In the case where X is a toric variety and D =

∑
i∈[n] ciDi invariant, the Iitaka

dimension of D is just the dimension of PkD for k >> 0. For a Q-Cartier
divisor D, we define its Iitaka dimension by κ(D) := κ(rD) for r > 0 such that
rD is Cartier.
If D is a nef divisor, then the morphism φ : X −→ P|D| is torus equivariant,
its image is a projective toric variety of dimension κ(D) whose associated fan
is the inner normal fan of PD. If κ(D) < d, then necessarily D is contained in
some hyperplane HC such that C+ = C for some orientation C of C. The toric
variety X∆C

is isomorphic to a finite cover of a weighted projective space. This
kind of circuit will play an important role later on, so that we will give it a
distinguished name:

Definition 3.26: We call a circuit C such that C = C+ for one of its orien-
tations, fibrational. For D ∈ Ad−1(X)Q we denote fib(D) ⊂ C(L) the set of
fibrational circuits such that D ∈ HC .
By Proposition 3.17, such a divisor D is contained in the intersection of nef(X)
with the effective cone of X , which we identify with C∅. More precisely, it
follows from linear algebra that D is contained in all HC where C is fibrational
and li(PD) = 0 for all i ∈ C.
The fibrational circuits of a nef divisor D tell us immediately about its Iitaka
dimension:

Proposition 3.27: Let D be a nef Q-Cartier divisor. Then κ(D) = d− rkLT ,
where T :=

⋃
C∈fib(D) C.

Proof. We just remark that rkLT is the dimension of the subvector space of
MQ which is generated by the li which are contained in a fibrational circuit.

Proposition 3.28: Let X be a complete toric variety and D a nef divisor,
then Hi

(
X,O(−D)

)
= 0 for i 6= κ(D).

Proof. Consider the hyperplane arrangement given by the H
c
i in MQ. Let

m ∈MQ and I = sc(m). Then the simplicial complex ∆̂I can be characterized
as follows. Consider Q ⊂ PD the union of the set faces of PD which are
contained in any H

c
i with i ∈ I. This is precisely the portion of PD, which the

the point m “sees”, and therefore contractible, where the convex hull of Q and
m provides the homotopy betweenQ andm. Therefore, every ∆̂I is contractible
with an exception for I = ∅, because ∆̂∅ = ∅, which is not acyclic with respect
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to reduced cohomology. Now we pass to the inverse, i.e. we consider the
signature of −m with respect to H

−c
i . Then for any such −m which does not

sit in the relative interior of the polytope P
[n]
−c , there exists m′ ∈ MQ with

signature sc(m′) =: J such that ∆̂J is contractible and s−c(m) = [n] \J . As ∆̂
is homotopic to a d− 1-sphere, we can apply Alexander duality and thus the
simplicial complex ∆̂[n]\J is acyclic. Thus there remain only the elements in

the relative interior of P
[n]
−c . Let m be such an element with signature I, then

∆̂I is isomorphic to a d− κ(D)− 1-sphere, and the assertion follows.

This proposition implies the toric Kodaira and Kawamata-Viehweg vanishing
theorems (see also [Mus02]):

Theorem 3.29 (Kodaira & Kawamata-Viehweg): Let X be a complete toric
variety and D, E Q-divisors with D nef and E =

∑
i∈[n] eiDi with −1 < ei < 0

for all i ∈ [n]. Then:

(i) if D is integral, then Hi
(
X,O(D +KX)

)
= 0 for all i 6= 0, d− κ(D);

(ii) if D + E is a Weil divisor, then Hi
(
X,O(D + E)

)
= 0 for all i > 0.

Proof. Because a toric Q-Cartier divisor is MCM, we can apply Serre duality
(Corollary 3.25) and obtain Hi

(
X,O(D + KX)

) ∼= Hd−i(X,O(−D
)
and (i)

follows from Proposition 3.28.
For (ii): D + E is contained the interior of every half space KX + HC for
C ∈ Fnef , and the result follows.

4 Arithmetic aspects of cohomology vanishing

In this section we want to generalize classical vanishing results for integral
divisors which cannot directly be derived from the setting of Q-divisors as in
section 3.4. From now on we assume that the li are integral. Recall that for
any integral divisor D =

∑
i∈[n] ciDi and any torus invariant closed subvariety

V of X , vanishing of Hi
V

(
X,O(D)

)
depends on two things:

(i) whether the set of signatures sc(MQ) consists of I ⊂ [n] such that the

relative cohomology groups Hi−1(∆̂I , ∆̂V,I ; k) vanish, and,

(ii) if Hi−1(∆̂I , ∆̂V,I ; k) for one such I, whether the corresponding polytope
P Ic contain lattice points m with sc(m) = I.

In the Gale dual picture, the signature sc(MQ) coincides with the set of I ⊂ [n]
such that the class of D in Ad−1(X)Q is contained in CI . For fixed I, the
classes of divisors D in Ad−1(X) such that the equation li(m) < −ci for i ∈ I
and li(m) ≥ −ci for i /∈ I is satisfied, is counted by the generalized partition
function. That is, by the function

D 7→
∣∣∣{(k1, . . . , kn) ∈ Nn |

∑

i∈[n]\I
kiDi−

∑

i∈I
kiDi = D where ki > 0 for i ∈ I}

∣∣∣.
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So, in the most general picture, we are looking for D lying in the common
zero set of the vector partition function for all relevant signatures I of D. In
general, this is a difficult problem to determine these zero sets, and it is hardly
necessary for practical purposes.
Vector partition functions play an important role in the combinatorial theory
of rational polytopes and have been considered, e.g. in [Stu95], [BV97] (see also
references therein). In [BV97] closed expressions in terms of residue formulas
have been obtained. Moreover it was shown that the vector partition function
is a piecewise quasipolynomial function, where the domains of quasipolynomi-
ality are chambers (or possibly unions of chambers) of the secondary fan. In
particular, for if P ∅c is a rational bounded polytope, then the values of the vec-

tor partition function for P ∅k·c for k ≥ 0, is just the Ehrhart quasipolynomial.
A special case which we will consider in subsection 4.1 is where the vectors
l1, . . . , ln form circuit. In this form, the computation of generalized partition
functions is essentially equivalent to the classically known diophantine Frobe-
nius problem (also known as money change problem or denumerant problem).
We refer to the book [Ram05] for a general overview.

4.1 Arithmetic cohomology vanishing for circuits

In this subsection we assume that n = d + 1 and C = [n] forms a circuit. In
light of Theorem 2.1, for cohomology vanishing on a toric 1-circuit variety, we
have to consider the reduced cohomology of simplicial complexes associated to
its fan:

Lemma 4.1: Let I ⊂ [n], such that I 6= C+, then Hi((∆̂C)I ; k) = 0 for all i.
Moreover,

(∆̂C)C+
∼= S|C

+|−2 and (∆̂C)C−
∼= B|C

−|−1,

where Bk is the k-ball, with B−1 := ∅.

Proof. It is easy to see that (∆̂C)C+ corresponds to the boundary of the

(|C+| − 1)-simplex, so it is homeomorphic to S|C
+|−2. Similarly, {li}i∈C+ span

a simplicial cone in ∆C and thus (∆̂C)C−
∼= B|C

−|−1. Now assume there exists
i ∈ C+ \ I, then I is a face of the cone σi and (∆̂C)I is contractible. On the
other hand, if C+ is a proper subset of I, the set I ∩ C− spans a cone τ in ∆C.
The simplicial complex ∆̂I then is homeomorphic to a simplicial decomposition
of the (|C+| − 1)-ball with center τ and boundary (∆̂C)C+ .

In this special situation, the chamber decomposition of MQ by hyperplanes
H
c
i as in subsection 3.2 contains at most one bounded chamber. In fact, if

D is a rational divisor, all maximal chambers are unbounded. If D ≁ 0, we
have precisely one bounded chamber for whose signatures there are precisely
two possibilities. Namely, we either have for every m in this chamber that
li(m) < −ci for every i ∈ C− and li(m) ≥ −ci for every i ∈ C+, or vice
versa. The set of rational divisor classes in Ad−1

(
P(α, ξ)

)
Q
∼= Q corresponding
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to torus invariant divisors whose associated bounded chamber has signature
either C+ or C− corresponds precisely to the two open intervals (−∞, 0) and
(0,∞), respectively, in Ad−1

(
P(α, ξ)

)
Q
.

To count lattice points in the bounded chamber we can use a special case of
the generalized partition function, i.e. the number of lattice points m such
that li(m) ≥ −ci for i ∈ C+ and li(m) < −ci for i ∈ C− coincides with the
cardinality of the following set:

{(k1, . . . , kd+1) ∈ Nd+1 | ki > 0 for i ∈ C− and
∑

i∈C+

kiDi −
∑

i∈C−

kiDi = D}.

For the integral case, this leads to arithmetic thickenings of the intervals
(−∞, 0) and (0,∞) as follows:

Definition 4.2: We denote FC ⊂ Ad−1
(
P(α, ξ)

)
the complement of the semi-

group of the form
∑

i∈C− ciDi−
∑

i∈C+ ciDi, where ci ∈ N for all i with ci > 0
for i ∈ C+.

The set FC is the complement of the set of classes whose associated chamber
has signature C− and contains a lattice point. With this we can give a complete
characterization of global cohomology vanishing:

Proposition 4.3: Let P(α, ξ) be as before with associated fan ∆C and D ∈
Ad−1

(
P(α, ξ)

)
, then:

(i) Hi
(
P(α, ξ),O(D)

)
= 0 for i 6= 0, |C+| − 1;

(ii) H |C
+|−1(P(α, ξ),O(D)

)
= 0 iff D ∈ FC;

(iii) if C+ 6= C, then H0
(
P(α, ξ),O(D)

)
6= 0;

(iv) if C+ = C, then H0
(
P(α, ξ),O(D)

)
= 0 iff D ∈ F−C.

Proof. The proof is immediate. Just observe that the simplicial complex
(∆̂C)m, form an element in the bounded chamber, coincides either with (∆̂C)C+

or (∆̂C)C− .

Another case of interest is where C+ 6= C and V = V (τ), where τ is the cone
spanned by the li with i ∈ C−, i.e. V is the unique maximal complete torus
invariant subvariety of P(α, ξ).

Proposition 4.4: Consider P(α, ξ) such that αi < 0 for at least one i,
D ∈ Ad−1

(
P(α, ξ)

)
and V the maximal complete torus invariant subvariety

of P(α, ξ), then:

(i) Hd
V

(
P(α, ξ),O(D)

)
6= 0;

(ii) H
|C−|
V

(
P(α, ξ),O(D)

)
= 0 iff D ∈ FC;
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(iii) Hi
V

(
P(α, ξ),O(D)

)
= 0 for all i 6= d, |C−|.

Proof. Consider first I = C, then (∆̂C)I = ∆̂C
∼= Bd−1 and (∆̂C)V,I = (∆̂C)V ∼=

Sd−2. It follows that Hi
(
∆̂C; k

)
= 0 for all i and Hi−1(∆̂C, (∆̂C)V ; k

) ∼=
Hi−2((∆̂C)V ; k

)
. As by assumption, C+ 6= C, so the associated hyperplane

arrangement contains an unbounded chamber such that li(m) ≥ −ci for all
i ∈ C and all m in this chamber. Hence (i) follows. As in the proof of lemma
4.1, it follows that ∆̂I is contractible whenever C+ ∩ I 6= ∅ and C− ∩ I 6= ∅. So
in that case Hi(∆̂I) = 0 for all i and Hi−1(∆̂I , ∆̂V,I ; k) = Hi−2(∆̂V,I ; k) for
all i.

Now let I = C+; then (∆̂C)I = (∆̂C)V,I ∼= SC+−2, soHi
(
(∆̂C)I , (∆̂C)V,I ; k

)
= 0

for all i. For I = C−, then (∆̂C)I ∼= B|C
−|−1 and (∆̂C)V,I ∼= S|C

−|−2, the former

by Lemma 4.1, the latter by Lemma 4.1 and the fact that (∆̂C)V,I has empty
intersection with star(τ). This implies (ii) and consequently (iii).

4.2 Arithmetic Kawamata-Viehweg vanishing

A first — trivial — approximation is given by the observation that the divisors
D where the vector partition function takes a nontrivial value map to the cone
CI , shifted by the offset eI := −

∑
i∈I ei.

Definition 4.5: We denote O′(L, I) the saturation of the cone generated the
−Di for i ∈ I and the Di for i /∈ I and O(L, I) := eI + O′(L, I). Moreover,
we denote Ω(L, I) the zero set in O(L, I) of the vector partition function as
defined above.

In the next step we want to approximate the sets Ω(L, I) by reducing to the
classical diophantine Frobenius problem. For this, fix some I ⊂ [n] and consider
some polytope P Ic . It follows from Proposition 3.17 that D is contained in the

intersection of half spacesHC for C ∈ C(L) such that C− = C∩I. In the polytope
picture, we can interpret this as follows. For every C and its underlying circuit
C, we set

PC
c := {m ∈MQ | li(m) ≤ −ci for i ∈ C− and li(m) ≥ −ci for i ∈ C+}.

Consequently, we get

P Ic =
⋂

C

PC
c ,

where the intersection runs over all C ∈ C(L) with C− = C ∩ I. It follows that
if there exists a compatible oriented circuit C such that PC

c does not contain a

lattice point, then P Ic also does not contain a lattice point. We want to capture
this by considering an arithmetic analogue of the discriminantal arrangement
in Ad−1(X) rather than in Ad−1(X)Q. Using the integral pendant to diagram
(5):
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Definition 4.6: Consider the morphism ηI : Ad−1(X)։ AI . Then we denote
ZI its kernel. For I = C and C some orientation of C we denote by FC the
preimage in Ad−1(X) of the complement of the semigroup consisting of elements∑

i∈C− ciDi −
∑

i∈C+ ciDi, where ci ≥ 0 for i ∈ C− and ci > 0 for i ∈ C+. We
set FC := FC ∩ F−C.
So, there are two candidates for a discriminantal arrangement in Ad−1(X), the
ZC on the one hand, and the FC on the other.

Definition 4.7: We denote:

• {ZC}C∈C(L) the integral discriminantal arrangement, and

• {FC}C∈C(L) the Frobenius discriminantal arrangement.

The integral discriminantal arrangement has similar properties as the HI , as
they give a solution to the integral discriminant problem (compare Lemma 3.9):

Lemma 4.8: Let I ⊂ [n], then

ZI =
⋂

C∈C(LI)
ZC .

We can now locate both the rational as well as the integral Picard group in
Ad−1(X)Q and Ad−1(X), respectively:

Theorem 4.9 (see [Eik92], Theorem 3.2): Let X be any toric variety, then:

(i) Pic(X)Q =
⋂
σ∈∆max

Hσ(1) =
⋂
C∈C(Lσ(1))
σ∈∆max

HC.

(ii) Pic(X) =
⋂
σ∈∆max

Zσ(1) =
⋂
C∈C(Lσ(1))
σ∈∆max

ZC.

Proof. (i) As remarked in subsection 3.4, a Q-Cartier divisor is specified by a
collection {mσ}σ∈∆ ⊂MQ. In particular, all for every σ ∈ ∆, the hyperplanes
H
c
i with i ∈ σ(1) have nonempty intersection. So the first equality follows.

The second equality follows from Lemma 3.9.
(ii) A Cartier divisor is specified by a collection {mσ}σ∈∆ ⊂ M such that the
hyperplanes HCi with i ∈ σ(1) intersect in integral points. So the first equality
follows. The second equality follows from Lemma 4.8.

The Frobenius discriminantal arrangement is not as straightforward. First, we
note the following properties:

Lemma 4.10: Let C ∈ C(L), then:

(i) FC is nonempty;

(ii) the saturation of ZC in Ad−1(X) is contained in FC iff C is not fibrational.
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Proof. The first assertion follows because FC contains all elements which map
to the open interval (KC,K−C) in AC,Q, where KC = −∑i∈C+ Di. For the
second assertion, note that the set {m ∈ M | li(m) = 0 for all i ∈ C} is in FC
iff C+ 6= C for either orientation C of C.

Lemma 4.10 shows that the FC are thickenings of the ZC with one notable
exception, where C is fibrational. In this case, FC can be considered as parallel
to, but slightly shifted away from ZC . In the sequel we will not make any
explicit use of the ZC anymore, but these facts should be kept in mind.

Regarding the Frobenius discriminantal arrangement, we want also to consider
integral versions of the discriminantal strata:

Definition 4.11: Let C ∈ C(L) and let FS be a discriminantal hull of S =
{S1, . . . , Sk}, then we denote

AS :=
⋂

C∈FS

FC.

the arithmetic core of FS . In the special case FS = Fnef we write Anef .

Remark 4.12: The notion core refers to the fact that we consider all FC,
instead of a non-redundant subset describing the set S as a convex cone.

We will use arithmetic cores to derive arithmetic versions of known vanishing
theorems formulated in the setting of Q-divisors and to get refined conditions
on cohomology vanishing. This principle is reflected in the following theorem:

Theorem 4.13: Let V be a T -invariant closed subscheme of X and S a dis-
criminantal stratum in Ad−1(X)Q. If Hi

V

(
X,O(D)

)
= 0 for some i and for all

integral divisors D ∈ S, then also Hi
V

(
X,O(D)

)
= 0 for all D ∈ AS.

Proof. Without loss of generality we can assume that dimS > 0. Consider
some nonempty P Ic for some I ⊂ [n]. Then for any such I, we can choose some

multiple of kD such that P Ikc contains a lattice point. But if Hi
V

(
X,O(D)

)
= 0,

then also Hi
V

(
X,O(kD)

)
= 0, hence Hi−1(∆̂I , ∆̂V,I ; k) = 0. Now, any divisor

D′ ∈ AS which does not map to S, is contained in FC for all C ∈ FS and
therefore for any I which is in the signature for D′ but not for D, the equations
li(m) < −c′i for i ∈ I and li(m) ≥ −c′i for i /∈ I cannot have any integral
solution.

We apply Theorem 4.13 to Anef :

Theorem 4.14 (Arithmetic version of Kawamata-Viehweg vanishing): Let X
be a complete toric variety. Then Hi

(
X,O(D)

)
= 0 for all i > 0 and all

D ∈ Anef.
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Proof. We know that the assertion is true if D is nef. Therefore we can apply
Theorem 4.13 to the maximal strata S1, . . . , Sk of nef(X). Therefore the as-
sertion is true for D ∈ ⋂i=1k ASi. To prove the theorem, we have to get rid of
the FC, where HC intersects the relative interior of a face of nef(X). Let C be
such a circuit and R the face. Without loss of generality, dimR > 0. Then we
can choose elements D′ in R at an arbitrary distance from HC, i.e. such that
the polytope PC

c becomes arbitrarily big and finally contains a lattice point.

Now, if we move outside nef(X), but stay inside Anef , the lattice points of PC
c

cannot acquire any cohomology and the assertion follows.

One can imagine an analog of the set AS in Ad−1(X)Q as the intersection of
shifted half spaces ⋂

C∈FS

(
−
∑

i∈C+

Di +HC

)
.

The main difference here is that one would picture the proper facets of this
convex polyhedral set as “smooth”, whereas the proper “walls” of AS have
“ripples”, which arise both from the fact that the groups AC may have torsion,
and that we use Frobenius conditions to determine the augmentations of our
half spaces.
In general, the set FS is highly redundant when it comes to determine S, which
implies that above intersection does not yield a cone but rather a polyhedron,
whose recession cone corresponds to S. In the integral situation we do not
quite have a recession cone, but a similar property holds:

Proposition 4.15: Let V ⊂ X be a closed invariant subscheme and S =
{S1, . . . , Sk} a collection of discriminantal stata different from zero. Then for
any nonzero face of its discriminantal hull S there exists the class of an integral
divisor D′ ∈ S such that the intersection of the half line D+ rD′ for 0 ≤ r ∈ Q
with AS contains infinitely many classes of integral divisors.

Proof. Let R ⊂ S be any face of S, then the vector space spanned by R is
given by an intersection

⋂
C with C∈K HC for a certain subset K ⊂ FS . We

assume that K is maximal with this property. The intersection
⋂

C∈K FC is
invariant with respect to translations along certain (though not necessarily all)
D′ ∈ R. This implies that the line (or any half line, respectively), generated
by D′ intersects

⋂
C∈K FC in infinitely many points. As K is maximal, there is

no other C ∈ FC parallel to R and the assertion follows.

The property of Proposition 4.15 is necessary for elements in AS , but not
sufficient. This leads to the following definition:

Definition 4.16: Let S = {S1, . . . , Sk} be a collection of discriminantal strata
and D ∈ Ad−1(X) such that the property of Proposition 4.15 holds. If D is
not contained in AS , then we call D AS-residual. We call D 0-residual if it is
in the complement of A0 =

⋂
C∈C(L) FC.
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In the next subsections we will consider several special cases of interest for
cohomology vanishing, which are not directly related to Kawamata-Viehweg
vanishing theorems. In subsection 4.3 we will consider global cohomology van-
ishing for divisors in the inverse nef cone. In subsection 4.4 we will present a
more explicit determination of this type of cohomology vanishing for toric sur-
faces. Finally, in subsection 4.5, we will give a geometric criterion for determing
maximally Cohen-Macaulay modules.

4.3 Nonstandard Cohomology Vanishing

In this subsection we want to give a qualitative description of cohomology
vanishing which is related to divisors which are inverse to nef divisors of Iitaka
dimension 0 < κ(D) < d. We show the following theorem:

Theorem 4.17: Let X be a complete d-dimensional toric variety. Then
Hi
(
X,O(D)

)
= 0 for every i and all D which are contained in some A−F ,

where F is a face of nef(X) which contains nef divisors of Iitaka dimension
0 < κ(D) < d. If A−F is nonempty, then it contains infinitely many divisor
classes.

Proof. Recall that such a divisor, as a Q-divisor, is contained in the intersec-
tion

⋂
C∈fib(D)HC and therefore it is in the intersection of the nef cone with

the boundary of the effective cone of X by Proposition 3.17. Denote this in-
tersection by F . Then we claim that Hi

(
X,O(D′)

)
= 0 for all D′ ∈ A−F . By

Corollary 3.28 we know that Hi
(
X,O(E)

)
= 0 for 0 ≤ i < d for any divisor

E in the interior of the inverse nef cone. This implies that Hi
(
X,O(E)

)
= 0

for any E ∈ A−nef and hence Hi
(
X,O(D′)

)
= 0 for any D′ ∈ A−F , because

A−F ⊂ A−nef . The latter assertion follows from the fact that the assumption
on the Iitaka dimension implies that the face F has positive dimension.

Note that criterion is not very strong, as it is not clear in general whether the
set A−F is nonempty. However, this is the case in a few interesting cases, in
particular for toric surfaces, as we will see in the next subsection. The following
remark shows that our condition indeed is rather weak in general:

Remark 4.18: The inverse of any big and nef divisor D with the property
that PD does not contain any lattice point in its interior has the property that
Hi
(
X,O(D)

)
= 0 for all i. This follows directly from the standard fact in toric

geometry that the Euler characteristics χ(−D) counts the inner lattice points
of the lattice polytope PD.

4.4 The case of complete toric surfaces.

Let X be a complete toric surface. We assume that the li are cyclically ordered.
We consider the integers [n] as system of representatives for Z/nZ, i.e. for some
i ∈ [n] and k ∈ Z, the sum i+ k denotes the unique element in [n] modulo n.
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Proposition 4.19: Let X be a complete toric surface. Then nef(X) = S,
where S is a single stratum of maximal dimension of the discriminantal ar-
rangement.

Proof. X is simplicial and projective and therefore nef(X) is a cone of maximal
dimension in A1(X)Q. We show that no hyperplane HC intersects the interior
of nef(X). By Proposition 3.17 we can at once exclude fibrational circuits.
This leaves us with non-fibrational circuits C with cardinality three, having
orientation C with |C+| = 2. Assume that D is contained in the interior of
H−C. Then there exists m ∈ MQ such that C+ ⊂ sD(m), which implies that
the hyperplane H

c
i for {i} = C− does not intersect PD, and thus D cannot be

nef. It follows that nef(X) ⊂ HC.

Now assume there exist p, q ∈ [n] such that lq = −lp, i.e. lp and lq represent
a one-dimensional fibrational circuit of L. Then for any nef divisors D which
is contained in Hp,q, the associated polytope PD is one-dimensional. The only
possible variation for PD is its length in terms of lattice units. So we can
conclude that nef(X) ∩Hp,q is a one-dimensional face of nef(X).

Definition 4.20: Let X be a complete toric surface and C = {p, q} such that
lp = −lq. Then we denote Sp,q the relative interior of −nef(X)∩HC . Moreover,
we denote Ap,q the arithmetic core of Sp,q.

Our aim in this subsection is to prove the following:

Theorem 4.21: Let X be a complete toric surface. Then there are only finitely
many divisors D with Hi

(
X,O(D)

)
= 0 for all i > 0 which are not contained

in Anef∪
⋃

Ap,q, where the union ranges over all pairs {p, q} such that lp = −lq.
We will prove this theorem in several steps. First we show that the interiors
of the CI such that H0(∆̂I ; k) 6= 0 cover all of A1(X)Q except nef(X) and
−nef(X).

Proposition 4.22: Let D =
∑

i∈[n] ciDi be a Weil divisor which is not con-

tained in nef(X) or −nef(X), then the corresponding arrangement H
c
i in MQ

has a two-dimensional chamber P Ic such that complex ∆̂I has at least two com-
ponents.

Proof. Recall that nef(X) =
⋂
HC, where the intersection runs over all oriented

circuits which are associated to extremal curves of X . As the statement is well-
known for the case where X is either a 1-circuit toric variety or a Hirzebruch
surface, we can assume without loss of generality, that the extremal curves
belong to blow-downs, i.e. the associated oriented circuits are of the form
C+ = {i − 1, i + 1}, C− = {i} for any i ∈ [n]. Now assume that D is in the
interior of HC for such an oriented circuit C. Then there exists a bounded
chamber P Ic in MQ such that C− = C ∩ sc(m). In order for ∆̂sc(m) to be
acyclic, it is necessary that sc(m) ∩ ([n] \ C) = ∅. Let {j, k, l} =: D ⊂ [n]
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represent any other circuit such that D+ = {j, l} for some orientation D of D.
The hyperplane arrangement given by the three hyperplanes H

c
j , H

c
k, H

c
l has

six unbounded regions, whose signatures contain any subset of {j, k, l} except
{j, l} and {k}. In the cases j = i−2, k = i−1, l = 1 or j = i, k = i+1, l = i+2,
P Ic must be contained in the region with signature {i}. In every other case P Ic
must be contained in the region with signature ∅. In the case, say, {j, k, l} =
{i − 2, i − 1, i}, the hyperplane H

c
i−2 should not cross the bounded chamber

related to the subarrangement given by the hyperplanesH
c
i−1, H

c
i , H

c
i+1, as else

we obtain a chamber whose signature contains {i− 1, i+1}, but not {i− 2, i}.
Then the associated subcomplex of ∆̂ can never be acyclic. This implies that,
if D is in the interior of HC, then D ∈ HD, where either D = {i − 2, i − 1, i}
or D = {i, i + 1, i + 2}. By iterating for every extremal (i.e. every invariant)
curve, we conclude that D ∈ ⋂i∈[n]HC = nef(X). Analogously, we conclude

for D ∈ H−C that D ∈ −nef(X), and the statement follows.

Let {p, q} ⊂ [n] such that lp = −lq. Then these two primitive vectors span a 1-
dimensional subvector space of NQ, which naturally separates the set [n]\{p, q}
into two subsets.

Definition 4.23: Let {p, q} ⊂ [n] such that lp = −lq. Then we denote
A1
p,q, A

2
p,q ⊂ [n] the two subsets of [n] \ {p, q} separated by the line spanned by

lp, lq.

For some fibrational circuit {p, q}, the closure Sp,q is a one-dimensional cone
in A1(X)Q which has a unique primitive vector:

Definition 4.24: Consider{p, q} as before. Then the closure Sp,q is a one-
dimensional cone with primitive lattice vector Dp,q :=

∑
i∈A1

p,q
li(m)Di, where

m ∈M the unique primitive vector on the ray in MQ with lp(m) = lq(m) = 0
and li(m) < 0 for i ∈ A1

p,q.

Proposition 4.25: Let X be a complete toric surface. Then every Ap,q-
residual divisor on X is either contained in Anef, or in some Ap,q, or is Anef-
residual.

Proof. For any nef divisor D ∈ −Sp,q, the polytope PD is a line segment such
that all H

c
i intersect this line segment in one of its two end points, depending

on whether i ∈ A1
p,q or i ∈ A2

p,q. This implies that the line spanned by Sp,q is
the intersection of all HC , where C ⊂ A1

p,q ∪ {p, q} or C ⊂ A2
p,q ∪ {p, q}. Let D

be Ap,q-residual and assume that Hi
(
X,O(D + rDp,q)

)
= 0 for all i and for

infinitely many r. We first show that D ∈ F{p,q}, i.e. that cp+ cq = −1 for any
torus invariant representative D =

∑
i∈[n] ciDi. Assume that cp + cq > −1.

Then there exists m ∈ M such that p, q /∈ sc(m). By adding sufficiently high
multiples of Dp,q such that D + rDp,q =

∑
c′iDi, we can even find such an

m such that A1 ∪ A2 ⊂ sc
′

(m), hence H1
(
X,O(D + rDp,q)

)
6= 0 for large r

and thus D is not Ap,q-residual. If cp + cq < −1, there is an m ∈ M with
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{p, q} ⊂ sc(m), and by the same argument, we get H2
(
X,O(D + rDp,q)

)
6= 0

for large r. Hence cp + cq = −1, i.e. D ∈ F{p,q}. This implies that for every
m ∈ M either p ∈ sc(m) and q /∈ sc(m), or q ∈ sc(m) and p /∈ sc(m). Now
assume that D /∈ FC for some C = {i, j, k} ⊂ A1 ∪ {p, q} such that C+ = {i, k}
for some orientation. Then there exists some m ∈ M with {i, k} ⊂ sc(m) or
{j} ⊂ sc(m). In the first case, as before we can simply add some multiple
of Dp,q such that i ∈ sc

′

(m) and i ∈ A2, hence sc
′

(m) contains at least two
−-intervals. In the second case, we have either p /∈ sc(m) or q /∈ s(m), thus at
least two −-intervals, too. Hence D ∈ Ap,q and the assertion follows.

Proposition 4.26: Let X be a complete toric surface. Then X has only a
finite number of Anef-residual divisors.

Proof. We can assume without loss of generality that X is not P2 nor a Hirze-
bruch surface. Assume there is D ∈ A1(X) which is not contained in FC for
some circuit C = {i − 1, i, i + 1} corresponding to an extremal curve on X .
Then there exists a chamber in the corresponding arrangement whose signa-
ture contains {i− 1, i+ 1}. To have this signature to correspond to an acyclic
subcomplex of ∆̂, the rest of the signature must contain [n] \ C. Now assume
we have some integral vector DC ∈ HC , then we can add a multiple of DC to
D such that D is parallel translated to nef(X). In this process necessarily at
least one hyperplane passes the critical chamber and thus creates cohomology.

Now, D might be outside of FD for some D ∈ C(L) not corresponding to
an extremal curve. If the underlying circuit is not fibrational, then D being
outside FD implies FC for some extremal circuit C. If D is fibrational and
D = {p, q}, then we argue as in Proposition 4.25 that D has cohomology. If
D is fibrational of cardinality three, the corresponding hypersurface HD is not
parallel to any nonzero face of nef(X) and there might be a finite number of
divisors lying outside FD but in the intersection of all FC, where C corresponds
to an extremal curve.

Proposition 4.27: Let X be a complete toric surface. Then X has only a
finite number of 0-residual divisors.

Proof. Let us consider some vector partition function VP(L, I) : OI −→ N,
for I such that CI does not contain a nonzero subvector space. Let D =∑

i∈[n] ciDi ∈ Ω(L, I) and let PD the polytope in MQ such that m ∈ MQ is in

PD iff li(m) < −ci for i ∈ I and li(m) ≥ −ci for i ∈ [n] \ I. For any J ⊂ [n] we
denote PD,J the polytope defined by the same inequalities, but only for i ∈ J .
Clearly, PD ⊂ PD,J . Let J ⊂ [n] be maximal with respect to the property that
PD,J does not contain any lattice points. If J 6= [n], then we can freely move
the hyperplanes given by li(m) = −ci for i ∈ [n] \ I such that PD,J remains
constant and thus lattice point free. This is equivalent to say that there exists
a nonzero D′ ∈ ⋂C∈C(LJ)HC and for every such D′ the polytope PD+jD′ does
not contain any lattice point for any j ∈ Q>0.
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Now assume that J = [n]. This implies that the defining inequalities of PD
are irredundant and thus there exists a unique maximal chamber in CI which
contains D (if I = ∅ this would be the nef cone by 4.19) and thus the com-
binatorial type of PD is fixed. Now, clearly, the number of polygons of shape
PD with parallel faces given by integral linear inequalities and which do not
contain a lattice point is finite.
By applying this to all (and in fact finitely many) cones OI such that CI does
not contain a nontrivial subvector space of AQ, we see that there are only
finitely many divisors D which are not contained in Anef or Ap,q.

Proof of theorem 4.21. By 4.22, nef(X) and the Sp,q are indeed the only rele-
vant strata, which by 4.25 and 4.26 admit only finitely many residual elements.
Hence, we are left with the 0-residuals, of which exist only finitely many by
4.27.

Example 4.28: Figure 1 shows the cohomology free divisors on the Hirzebruch
surface F3 which is given by four rays, say l1 = (1, 0), l2 = (0, 1), l3 = (−1, 3),
l4 = (0,−1) with respect to some choice of coordinates for N . In Pic(F3) ∼= Z2

there are two cones such that H1
(
X,O(D)

)
6= 0 for every D which is contained

in one of these cones. Moreover, there is one cone such that H2
(
X,O(D)

)
6= 0

for every D; its tip is sitting at KF3 . The nef cone is indicated by the dashed
lines.

2

H

H
H

1

1

Figure 1: Cohomology free divisors on F3.

The picture shows the divisors contained in Anef as black dots. The white dots
indicate the divisors in A2,4. There is one 0-residual divisor indicated by the
grey dot.
The classification of smooth complete toric surfaces implies that every such
surface which is not P2, has a fibrational circuit of rank one. Thus the theorem
implies that on every such surface there exist families of line bundles with
vanishing cohomology along the inverse nef cone. For a given toric surface X ,
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these families can be explicitly computed by checking for every C ⊂ A1 ∪{p, q}
and every C ⊂ A2 ∪ {p, q}, respectively, whether the inequalities

ci + li(m)

{
≥ 0 for i ∈ C+

< 0 for i ∈ C−,
ci + li(m)

{
≥ 0 for i ∈ −C+

< 0 for i ∈ −C−

have solutions m ∈M for at least one of the two orientations C, −C of C. This
requires to deal with

(|A1|+2
3

)
+
(|A2|+2

3

)
, i.e. of order ∼ n3, linear inequalities.

We can reduce this number to order ∼ n2 as a corollary from our considerations
above:

Corollary 4.29: Let C ∈ Ai for i = 1 or i = 2. Then there exist {i, j} ⊂ C
such that F{p,q} ∩ FC ⊃ F{p,q} ∩ F{i,j,p} ∩ F{i,j,q}.

Proof. Assume first that there exists m ∈M which for the orientation C of C =
{i1, i2, i3} with C+ = {i1, i3} which fulfills the inequalities lik(m) + cik ≥ 0 for
k = 1, 3 and li2(m)+ci2 < 0. This implies that H1

(
X,O(D)

)
6= 0, independent

of the configuration of the other hyperplanes, as long as cp + cq = −1. It is
easy to see that we can choose i, j ∈ C such that {i, j, p} and {i, j, q} form
circuits. We can choose one of those such that m is contained in the triangle,
fulfilling the respective inequalities, and which is not fibrational. For the inverse
orientation −C, we can the same way replace one of the elements of C by one
of p, q. By adding a suitable positive multiple of Dp,q, we can rearrange the
hyperplanes such that H1

(
X,O(D + rDp,q)

)
6= 0.

One should read the corollary the way that for any pair i, j in A1 or in A2,
one has only to check whether a given divisor fulfills certain inequalities for
triples {i, j, q} and {i, j, p}. It seems that it is not possible to reduce further
the number of equations in general. However, there is a criterion which gives
a good reduction of cases for practical purposes:

Corollary 4.30: Let X be a smooth and complete toric surface and D =∑
i∈[n] ciDi ∈ Ap,q, then for every i ∈ A1 ∪ A2, we have:

ci−1 + ci+1 − aici ∈ [−1, ai − 1],

where the ai are the self-intersection numbers of the Di.

Proof. The circuit C = {i − 1, i, i+ 1} comes with the integral relation li−1 +
li+1 + aili = 0. So the Frobenius problem for these circuits is trivial and we
have only to consider the offset part.

The following example shows that these equalities are necessary, but not suffi-
cient in general:

Example 4.31: We choose some coordinates on N ∼= Z2 and consider the
complete toric surface defined by 8 rays l1 = (0,−1), l2 = (1,−2), l3 = (1,−1),
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l4 = (1, 0), l5 = (1, 1), l6 = (1, 2), l7 = (0, 1), l8 = (−1, 0). Then any divisor
D = c1D1 + · · · + c8D8 with c = (−1, 1, 1, 0, 0, 1, 0,−k) for some k ≫ 0 has
nontrivial H1, though it fulfills the conditions of corollary 4.30.

An interesting and more restricting case is the additional requirement that
also Hi

(
X,O(−D)

)
= 0 for all i > 0. One may compare the following with the

classification of bundles of type B in [HP06].

Corollary 4.32: Let X be a smooth and complete toric surface and D ∈ Ap,q
such that Hi

(
X,O(D)

)
= Hi

(
X,O(−D)

)
= 0 for all i > 0. Then for every

i ∈ A1 ∪ A2, we have:

ci−1 + ci+1 − aici ∈
{
{±1, 0} if ai < −1
{−1, 0} if ai = −1,

where the ai are the self-intersection numbers of the Di.

Proof. For −D, we have cp + cq = 1. Assume that there exists a circuit circuit
C with orientation C and C+ = {i, j} and C− = {k}, and morover, some lattice
pointm such that sc(m)∩C = C−. Then we get s−c(−m)∩C = C+. this implies
that H1

(
X,O(−D)

)
6= 0. This implies the restriction ci−1 + ci+1 − aici ∈

[−1,min{1, ai − 1}].

Note that example 4.31 also fulfills these more restrictive conditions.

4.5 Maximal Cohen-Macaulay Modules of Rank One

The classification of maximal Cohen-Macaulay modules can sometimes be re-
lated to resolution of singularities, the most famous example for this being the
McKay correspondence in the case of certain surface singularities ([GSV83],
[AV85], see also [EK85]). In the toric case, in general one cannot expect to ar-
rive at such a nice picture, as there does not exist a canonical way to construct
resolutions. However, there is a natural set of preferred partial resolutions,
which is parameterized by the secondary fan.
Let X be a d-dimensional affine toric variety whose associated convex polyhe-
dral cone σ has dimension d. Denote x ∈ X torus fixed point. For any Weil
divisor D on X , the sheaf OX(D) is MCM if and only if Hi

x

(
X,OX(D)

)
for all

i < d. It was shown in [BG03] (see also [BG02]) that there exists only a finite
number of such modules.
Now let X̃ be a toric variety given by some triangulation of σ. The natural
map π : X̃ −→ X is a partial resolution of the singularities of X which is
an isomorphism in codimension two and has at most quotient singularities. In
particular, the map of fans is induced by the identity onN and, in turn, induces
a bijection on the set of torus invariant Weil divisors. This bijection induces
a natural isomorphism π−1 : Ad−1(X) −→ Ad−1(X̃) which can be represented
by the identity morphism on the invariant divisor group Zn. This allows us to
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identify a torus invariant divisor D on X with its strict transform π−1D on X̃ .
Moreover, there are the natural isomorphisms

π∗OX̃(π−1D) ∼= OX(D) and OX̃(π−1D) ∼=
(
π∗OX(D)

)
ˇ̌ .

Our aim is to compare local cohomology and global cohomology, i.e.
Hi
x

(
X,OX(D)

)
and Hi

(
X̃,OX̃(D)

)
.

Probably the easiest class of cones σ which one can consider is where the
primitive vectors l1, . . . , ln form a circuit C = [n]. Associated to this data are
two small resolutions of singularities π : P(α, ξ) −→ X and π′ : P(−α, ξ)) −→ X
which are induced by triangulations ∆C and ∆−C, respectively.
Now, the question whether O(D) is a maximal Cohen-Macaulay sheaf can be
decided directly on Y or, equivalently, on the resolutions:

Theorem 4.33: Let X be an affine toric variety whose associated cone σ is
spanned by a circuit C and denote P(α, ξ) and P(−α, ξ) the two canonical
small toric resolution of singularities. Then the sheaf O(D) is maximal Cohen-
Macaulay if and only if Riπ∗O(π−1D) = Riπ′∗O((π′)−1D) = 0 for all i > 0.

Proof. This toric variety corresponds to the toric subvariety of Y which is the
complement of its unique fixed point, which we denote y. We have to show
that Hi

y

(
Y,O(D)

)
= 0 for all i < d. By Corollary 2.2, we have

Hi
y

(
Y,O(D)

)
m

= Hi−2(σ̂y,m; k)

for every m ∈M , where σ̂y denotes the simplicial model for the fan associated
to Y \ {y}. Denote τ and τ ′ the cones corresponding to the minimal orbits
of P(α, ξ) and P(−α, ξ), respectively. We observe that (∆̂C)V (τ) = (∆̂C)V (τ ′)

both coincide with the subfan of σ generated by its facets. It follows that
the simplicial complexes relevant for computing the isotypical decomposition
of Hi

y

(
Y,O(D)

)
coincide with the simplicial complexes relevant for comput-

ing the Hi
V

(
P(α, ξ),O(π−1D)

)
and Hi

V ′

(
P(−α, ξ),O((π′)−1D)

)
, respectively,

where V, V ′ denote the exceptional sets of the morphisms π and π′, respectively.
By Proposition 4.4 the corresponding cohomologies vanish for i < d iff D ∈
FC ∩F−C. Now we observe that Γ

(
Y,Riπ∗O(π−1D)

)
= Hi

(
P(α, ξ),O(π−1D)

)

and Γ
(
Y,Riπ′∗O((π′)−1D)

)
= Hi

(
P(−α, ξ),O((π′)−1D)

)
. By Proposition 4.3,

both cohomologies vanish for i > 0 iff D ∈ FC ∩ F−C.

Remark 4.34: The relation between maximal Cohen-Macaulay modules and
the diophantine Frobenius problem has also been discussed in [Sta96]. See
[Yos90] for a discussion of MCM-finiteness of toric 1-circuit varieties.

More generally, we have the following easy statement about general (i.e. non-
regular) triangulations:

Theorem 4.35: Let X be an affine toric variety of dimension d and D ∈
Ad−1(X). If D is 0-essential, then Riπ∗OX̃(π∗D) = 0 for every triangulation

π : X̃ −→ X.
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Proof. If D is 0-essential, then it is contained in the intersection of all FC ,
where C ∈ C(L), thus it represents a cohomology-free divisor.

Note that the statement does hold for any triangulation and not only for regular
triangulations. We have a refined statement for affine toric varieties whose
associated cone σ has simplicial facets:

Theorem 4.36: Let X be a d-dimensional affine toric variety whose associated
cone σ has simplicial facets and let D ∈ Ad−1(X). If Riπ∗OX̃(π∗D) = 0 for

every regular triangulation π : X̃ −→ X then OX(D) is MCM. For d = 3 the
converse is also true.

Proof. Recall that Hi
x

(
X,O(D)

)
m

= Hi−2(σ̂V,m; k) for some m ∈ M and
D ∈ A. We are going to show that for every subset I ( [n] there exists a
regular triangulation ∆̃ of σ such that the simplicial complexes σ̂V,I and ∆̃I

coincide. This implies that if Hi
x

(
X,OX(D)

)
m
6= 0 for some m ∈M , then also

Hi+1
(
X̃,OX̃(D)

)
m
6= 0, i.e. if OX(D) is not MCM, then Hi

(
X̃,OX̃(D)

)
6= 0

for some i > 0.
For given I ⊂ [n] we get such a triangulation as follows. Let i ∈ [n] \ I and
consider the dual cone σ̌. Denote ρi := Q≥0li and recall that ρ̌i is a halfspace
which contains σ̌ and which defines a facet of σ̌ given by ρ⊥ ∩ σ̌. Now we move
ρ̌i to m+ ρ̌, where li(m) > 0. So we obtain a new polytope P := σ̌ ∩ (m+ ρ̌).
As ρ⊥ is not parallel to any face of σ̌, the hyperplane m+ ρ⊥ intersects every
face of σ̌. This way the inner normal fan of P is a triangulation ∆̃ of σ which
has the property that every maximal cone is spanned by ρi and some facet of
σ. This implies ∆̃I = σ̂V,I and the first assertion follows.
For d = 3, a sheaf O(D) is MCM iff H2

x

(
X,O(D)

)
= 0, i.e. H0(σV,m; k) = 0

for every m ∈ M . The latter is only possible if σV,m represents an interval

on S1. To compare this with H2
(
X̃,O(D)

)
for some regular triangulation X̃ ,

we must show that H1(∆̃m; k) = 0 for the corresponding complex ∆̃m. To
see this, we consider some cross-section σ ∩ H , where H ⊂ N ⊗Z R is some
hyperplane which intersects σ nontrivially and is not parallel to any of its
faces. Then this cross-section can be considered as a planar polygon and σV,m
as some connected sequence of faces of this polygon. Now with respect to the
triangulation ∆̃ of this polygon, we can consider two vertices p, q ∈ σV,m which
are connected by a line belonging to the triangulation and going through the
interior of the polygon. We assume that p and q have maximal distance in σV,m
with this property. Then it is easy to see that the triangulation of σ induces a
triangulation of the convex hull of the line segments connecting p and q. Then
∆̃m is just the union of this convex hulls with respect all such pairs p, q and the
remaining line segments and thus has trivial topology. HenceH2

x

(
X,O(D)

)
= 0

implies H2
(
X̃,O(D)

)
= 0 for every triangulation ∆̃ of σ.

Example 4.37: Consider the 3-dimensional cone spanned over the primitive
vectors l1 = (1, 0, 1), l2 = (0, 1, 1), l3 = (−1, 0, 1), l4 = (−1,−1, 1), l5 =
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(1,−1, 1). The corresponding toric variety X is Gorenstein and its divisor class
group is torsion free. For A2(X) ∼= Z2 we choose the basis D1+D2+D5, D5. In
this basis, the Gale duals of the li areD1 = (−1,−1),D2 = (2, 0), D3 = (−3, 1),
D4 = (2,−1), D5 = (0, 1). Figure 2 shows the set of MCM modules in
A2(X) which are indicated by circles which are supposed to sit on the lattice
A2(X) ∼= Z2. The picture also indicates the cones CI with vertices −eI , where
I ∈ {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 5}, {2, 4, 5}}.

Note that the picture has a reflection symmetry, due to the fact that X is
Gorenstein. Altogether, there are 19 MCM modules of rank one, all of which
are 0-essential. For C = {l1, l3, l4, l5}, the group A2(X)C ∼= Z ⊕ Z/2Z has tor-
sion. The two white circles indicate modules are contained in the Q-hyperplanes
D1 + D4 + HC and D2 + D3 + D5 + HC , respectively, but not in the sets
D1+D4+ZC and D2+D3+D5+ZC, respectively. Some of the OI are not sat-
urated; however, every divisor which is contained in some (−eI +CI)∩Ω(L, I)
is also contained in some OI′ \ Ω(L, I ′) for some other I ′ 6= I. So for this
example, the Frobenius arrangement gives a full description of MCM modules
of rank one.

g

g

g

g
4

3

1

g 2

5

Figure 2: The 19 MCM modules of example 4.37.

Example 4.38: To give a counterexample to the reverse direction of theorem
4.36 for d > 3, we consider the four-dimensional cone spanned over the primitive
vectors l1 = (0,−1,−1, 1), l2 = (−1, 0, 1, 1), l3 = (0, 1, 0, 1), l4 = (−1, 0, 0, 1),
l5 = (−1,−1, 0, 1), l6 = (1, 0, 0, 1). The corresponding variety X has 31 MCM
modules of rank one which are shown in figure 3. Here, with basis D1 and
D6, we have D1 = (1, 0), D2 = (1, 0), D3 = (−1,−2), D4 = (3, 1), D5 =
(−2,−2), D6 = (0, 1). There are six cohomology cones corresponding to I ∈{
{1, 2}, {3, 5}, {4, 6}, {1, 2, 3, 5}, {1, 2, 4, 6}, {3, 4, 5, 6}

}
.

The example features two modules which are not 0-essential, indicated by
the grey dots sitting on the boundary of the cones −eI + CI , where I ∈
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 gg 4 1

g 6

g 5

g 3

, g 2

Figure 3: The 31 MCM modules of example 4.38.

{
{4, 6}, {1, 2, 3, 5}

}
. The white dots denote MCM divisors D,−D such that

there exists a triangulation of the cone of X such that on the associated vari-
ety X̃ we have Hi

(
X̃,O(±D)

)
6= 0 for some i > 0. Namely, we consider the

triangulation which is given by the maximal cones spanned by {l1, l2, l4, l5},
{l1, l2, l4, l6}, {l1, l2, l5, l6}, {l1, l3, l4, l6}, {l2, l3, l4, l6}. Figure 4.38 indicates
the two-dimensional faces of this triangulation via a three-dimensional cross-
section of the cone.

5

l
1

l

l

3

6

l

l
2

l
4

Figure 4: The triangulation for X̃ in example 4.38.

We find that we have six cohomology cones corresponding to I ∈
{
{1, 2}, {3, 5},

{1, 2, 3}, {4, 5, 6}, {1, 2, 3, 5}, {3, 4, 5, 6}
}
. In particular, we have non-vanishing

H1 for the points −D1 −D2 −D3 and for −D4 −D5 −D6, which correspond
to D and −D.
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Abstract. An algebraic zip datum is a tuple Z = (G,P,Q, ϕ) con-
sisting of a reductive group G together with parabolic subgroups P
and Q and an isogeny ϕ : P/RuP → Q/RuQ. We study the action
of the group EZ :=

{
(p, q) ∈ P×Q

∣∣ ϕ(πP (p)) = πQ(q)
}
on G given

by ((p, q), g) 7→ pgq−1. We define certain smooth EZ -invariant sub-
varieties of G, show that they define a stratification of G. We deter-
mine their dimensions and their closures and give a description of the
stabilizers of the EZ -action on G. We also generalize all results to
non-connected groups.

We show that for special choices of Z the algebraic quotient stack
[EZ\G] is isomorphic to [G\Z] or to [G\Z ′], where Z is a G-variety
studied by Lusztig and He in the theory of character sheaves on spher-
ical compactifications of G and where Z ′ has been defined by Moonen
and the second author in their classification of F -zips. In these cases
the EZ-invariant subvarieties correspond to the so-called “G-stable
pieces” of Z defined by Lusztig (resp. the G-orbits of Z ′).

2010 Mathematics Subject Classification: 14L30 (20G15, 20F55,
20G40)
Keywords and Phrases: Generalized G-stable pieces, zip data, F -zips

1 Introduction

1.1 Background

Let G be a connected reductive linear algebraic group over an algebraically
closed field k. Then G ×G acts on G via simultaneous left and right transla-
tion ((g1, g2), g) 7→ g1gg

−1
2 . In a series of papers, Lusztig ([Lus1], [Lus2]), He
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([He2], [He1], [He3]), and Springer ([Spr3]) studied a certain spherical G ×G-
equivariant smooth compactification Ḡ of G. For G semi-simple adjoint this
is the so-called wonderful compactification from [DCP]. In general the G×G-
orbits ZI ⊂ Ḡ are in natural bijection to the subsets I of the set of simple
reflections in the Weyl group of G. Lusztig and He defined and studied so-
called G-stable pieces in ZI , which are certain subvarieties that are invariant
under the diagonally embedded subgroup G ⊂ G × G. These G-stable pieces
play an important role in their study of character sheaves on Ḡ. Lusztig and
He also consider non-connected groups, corresponding to twisted group ac-
tions. Other generalizations of these varieties have been considered by Lu and
Yakimow ([LY2]). A further motivation to study G-stable pieces comes from
Poisson geometry: It was proved by Evens and Lu ([EL]), that for certain
Poisson structure, each G-orbit on ZI is a Poisson submanifold.

In [MW] Moonen and the second author studied the De Rham cohomology
H•DR(X/k) of a smooth proper scheme X with degenerating Hodge spectral
sequence over an algebraically closed field k of positive characteristic. They
showed that H•DR(X/k) carries the structure of a so-called F -zip, namely: it is
a finite-dimensional k-vector space together with two filtrations (the “Hodge”
and the “conjugate” filtration) and a Frobenius linear isomorphism between
the associated graded vector spaces (the “Cartier isomorphism”). They showed
that the isomorphism classes of F -zips of fixed dimension n and with fixed type
of Hodge filtration are in natural bijection with the orbits under G := GLn,k of
a variant Z ′I of theG×G-orbit ZI studied by Lusztig. They studied the varieties
Z ′I for arbitrary reductive groups G and determined the G-orbits in them as
analogues of the G-stable pieces in ZI . By specializing G to classical groups
they deduce from this a classification of F -zips with additional structure, e.g.,
with a non-degenerate symmetric or alternating form. They also consider non-
connected groups. Moreover, the automorphism group of an F -zip is isomorphic
to the stabilizer in G of any corresponding point in Z ′I .
When X varies in a smooth family over a base S, its relative De Rham coho-
mology forms a family of F -zips over S. The set of points of S where the F -zip
lies in a given isomorphism class is a natural generalization of an Ekedahl-Oort
stratum in the Siegel moduli space. Information about the closure of such a
stratum corresponds to information about how the isomorphism class of an
F -zip can vary in a family, and that in turn is equivalent to determining which
G-orbits in Z ′I are contained in the closure of a given G-orbit.

In each of these cases one is interested in the classification of the G-stable
pieces, the description of their closures, and the stabilizers of points in G. In
this article we give a uniform approach to these questions that generalizes all
the above situations.

1.2 Main results

The central definition in this article is the following:
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Definition 1.1. A connected algebraic zip datum is a tuple Z = (G,P,Q, ϕ)
consisting of a connected reductive linear algebraic group G over k together
with parabolic subgroups P and Q and an isogeny ϕ : P/RuP → Q/RuQ. The
group

EZ :=
{
(p, q) ∈ P×Q

∣∣ ϕ(πP (p)) = πQ(q)
}

is called the zip group associated to Z. It acts on G through the map
((p, q), g) 7→ pgq−1. The union of the EZ -orbits of all elements of a subset
X ⊂ G is denoted by oZ(X).

Fix such data Z = (G,P,Q, ϕ). To apply the machinery of Weyl groups to Z we
choose a Borel subgroup B of G, a maximal torus T of B, and an element g of G
such that B ⊂ Q, gB ⊂ P , ϕ

(
πP (

gB)
)
= πQ(B), and ϕ

(
πP (

gT )
)
= πQ(T ). Let

W denote the Weyl group of G with respect to T , and S ⊂W the set of simple
reflections corresponding to B. Let I ⊂ S be the type of the parabolic P and
WI ⊂ W its Weyl group. Let IW be the set of all w ∈ W that have minimal
length in their coset WIw. To each w ∈ IW we associate the EZ -invariant
subset

Gw = oZ(gBẇB) (1.2)

and prove (Theorems 5.10, 5.11 and 5.14):

Theorem 1.3. The EZ -invariant subsets Gw form a pairwise disjoint decom-
position of G into locally closed smooth subvarieties. The dimension of Gw is
dimP + ℓ(w).

Next the isogeny ϕ induces an isomorphism of Coxeter system ψ : (WI , I)
∼→

(WJ , J) (see (3.11) for its precise definition), where WJ ⊂ W and J ⊂ S are
the Weyl group and the type of the parablic subgroup Q. Let ≤ denote the
Bruhat order on W . We prove (Theorem 6.2):

Theorem 1.4. The closure of Gw is the union of Gw
′

for all w′ ∈ IW such
that there exists y ∈WI with yw′ψ(y)−1 ≤ w.
We call Z orbitally finite if the number of EZ -orbits in G is finite. We give
a necessary and sufficient criterion for this to happen (Proposition 7.1). In
particular it happens when the differential of ϕ at 1 vanishes, for instance if ϕ
is a Frobenius isogeny (Proposition 7.3). We prove (Theorem 7.5):

Theorem 1.5. If Z is orbitally finite, then each Gw is a single EZ -orbit, and
so the set {gẇ | w ∈ IW} is a set of representatives for the EZ -orbits in G.

One can also consider the EZ -orbit of gẇ for any element w ∈ W instead
of just those in IW . It is then natural to ask when two such orbits lie in
the same EZ -invariant piece Gw. (For orbitally finite Z this is equivalent
to asking when the orbits are equal.) We give an explicit description of this
equivalence relation on W that depends only on the subgroup WI and the
homomorphism ψ (Theorem 9.17). We prove that all equivalence classes have
the same cardinality #WI , although they are in general no cosets ofWI and we
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do not know a simple combinatorial description for them. It is intriguing that
we obtain analogous results for an abstract zip datum based on an arbitrary
finitely generated Coxeter group (Theorem 9.11) or even an arbitrary abstract
group (Theorem 9.6) in place of W .
Other results include information on point stabilizers and infinitesimal stabiliz-
ers (Section 8), the generalization of the main results to non-connected groups
(Section 10), a dual parametrization by a set W J in place of IW (Section 11)
and the relation with the varieties ZI studied by Lusztig and He and their
generalizations Z ′I (Section 12).

1.3 Applications

Let us explain why this theory of algebraic zip data is a generalization of the
situations described in Subsection 1.1. In Section 12 we consider a connected
reductive algebraic group G over k, an isogeny ϕ : G→ G, a subset I of the set
of simple reflections associated to G, and an element x in the Weyl group of
G satisfying certain technical conditions. To such data we associate a certain
algebraic variety XI,ϕ,x with an action of G, a certain connected algebraic zip
datum Z with underlying group G, and morphisms

G
λ←− G×G ρ−→ XI,ϕ,x (1.6)

In Theorem 12.8 we show that there is a closure preserving bijection between
the EZ -invariant subsets of A ⊂ G and the G-invariant subsets of B ⊂ XI,ϕ,x

given by λ−1(A) = ρ−1(B). We also prove that the stabilizer in EZ of g ∈ G
is isomorphic to the stabilizer in G of any point of the G-orbits in XI,ϕ,x

corresponding to the orbit of g. These results can also be phrased in the
language of algebraic stacks, see Theorem 12.7.

In the special case ϕ = idG the above XI,ϕ,x is the variety ZI defined by
Lusztig. In Theorem 12.19 we verify that the subsetsGw ⊂ G correspond to the
G-stable pieces defined by him. Thus Theorem 1.4 translates to a description
of the closure relation between these G-stable pieces, which had been proved
before by He [He2].

If char(k) is positive and ϕ is the Frobenius isogeny associated to a model of
G over a finite field, the above XI,ϕ,x is the variety Z ′I defined by Moonen
and the second author. In this case the zip datum Z is orbitally finite, and so
we obtain the main classification result for the G-orbits in Z ′I from [MW], the
closure relation between these G-orbits, and the description of the stabilizers in
G of points in Z ′I . In this case the closure relation had been determined in the
unpublished note [Wed], the ideas of which are reused in the present article.
Meanwhile Viehmann [Vie] has given a different proof of the closure relation in
this case using the theory of loop groups. For those cases which pertain to the
study of modulo p reductions of F -crystals with additional structure that show
up in the study of special fibers of good integral models of Shimura varieties of
Hodge type Moonen ([Moo]) and, more generally, Vasiu ([Vas]) have obtained
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similar classification results. In these cases Vasiu (loc. cit.) has also shown
that the connected component of the stabilizers are unipotent.

For G = GLn (resp. a classical group) we therefore obtain a new proof of the
classification of F -zips (resp. of F -zips with additional structure) from [MW].
We can also deduce how F -zips (possibly with additional structure) behave
in families, and can describe their automorphism groups as the stabilizers in
EZ of the corresponding points of G. This is applied in [VW] to the study of
Ekedahl-Oort strata for Shimura varieties of PEL type.

1.4 Contents of the paper

In Section 2 we collect some results on algebraic groups and Coxeter systems
that are used in the sequel. Algebraic zip data Z are defined in Section 3,
where we also establish basic properties of the triple (B, T, g), called a frame
of Z.
Section 4 is based on the observation that every EZ -orbit is contained in the
double coset PgẋQ for some x ∈ W and meets the subset gẋM , where M is
a Levi subgroup of Q. In it we define another zip datum Zẋ with underlying
reductive group M and establish a number of results relating the EZ -orbits in
PgẋQ to the EZẋ -orbits in M . This is the main induction step used in most
of our results.

In Section 5 we give different descriptions of the EZ -invariant subsets Gw for
w ∈ IW and prove Theorem 1.3. In Section 6 we determine the closure of
Gw and prove Theorem 1.4. Orbitally finite zip data are studied in Section 7,
proving Theorem 1.5. Section 8 contains some results on point stabilizers and
infinitesmial stabilizers. Abstract zip data are defined and studied in Section 9.
In Section 10 our main results are generalized to algebraic zip data based on
non-connected groups.

In Section 11 we discuss a dual parametrization of the subsets Gw by a subset
W J of W in place of IW . Finally, in Section 12 we prove the results described
in Subsection 1.3 above.

The paper is based on parts of the unpublished note [Wed] by the second author
and the master thesis [Zie] by the third author, but goes beyond both.

After the referee pointed out to us the references [LY1] and [He3], we became
aware that there Lu, Yakimov and He study a class of group actions which
contains ours when ϕ is an isomorphism. In this case, Theorems 1.3 and 1.4
were already proven in [loc. cit]. Also, many of the ideas we have used to study
the decomposition of G into EZ -stable pieces are already present there.

Acknowledgements. We thank the referee for pointing out some references.
The second author was partially supported by the SPP 1388 “Representation
theory” of the DFG.
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2 Preliminaries on algebraic groups and Coxeter groups

Throughout, the inner automorphism associated to an element h of a group G
will be denoted int(h) : G→ G, g 7→ hg := hgh−1. Similarly, for any subset
X ⊂ G we set hX := hXh−1.

2.1 General facts about linear algebraic groups

Throughout, we use the language of algebraic varieties over a fixed algebraically
closed field k. By an algebraic group G we always mean a linear algebraic group
over k. We let RuG denote the unipotent radical of the identity component
of G and πG : G։ G/RuG the canonical projection. An isogeny between two
connected algebraic groups is a surjective homomorphism with finite kernel.
Consider an algebraic group G, an algebraic subgroup H of G, and a quasi-
projective variety X with a left action of H . Then we denote by G ×H X the
quotient of G×X under the left action of H defined by h · (g, x) = (gh−1, h ·x),
which exists by [Ser], Section 3.2. The action ofG onG×X by left multplication
on the first factor induces a left action of G on G×H X . This is the pushout
of X with respect to the inclusion H →֒ G.

Lemma 2.1. For G, H, and X as above, the morphism X → G ×H X which
sends x ∈ X to the class of (1, x) induces a closure-preserving bijection between
the H-invariant subsets of X and the G-invariant subsets of G×HX. If Y ⊂ X
is an H-invariant subvariety of X, then the corresponding G-invariant subset
of G×H X is the subvariety G×H Y of G×H X.

Proof. The morphism in question is the composite of the inclusion i : X →
G×X , x 7→ (1, x) and the projection pr : G×X → G×HX . Let (g, h) ∈ G×H
act on G × X from the left by (g′, x) 7→ (gg′h−1, h · x). Then the G × H-
invariant subsets of G×X are the sets of the form G×A for H-invariant subsets
A ⊂ X . Therefore i induces a closure-preserving bijection between the H-
invariant subsets of X and the G×H-invariant subsets of G×X . Furthermore,
since G×H X carries the quotient topology with respect to pr, the morphism
pr induces a closure-preserving bijection between the G×H-invariant subsets
of G×X and the G-invariant of G×HX . Altogether this proves the claim.

Lemma 2.2 (see [Slo], Lemma 3.7.4). Let G be an algebraic group with an
algebraic subgroup H. Let X be a variety with a left action of G. Let f : X →
G/H be a G-equivariant morphism, and let Y ⊂ X be the fiber f−1(H). Then
Y is stabilized by H, and the map G×H Y → X sending the equivalence class
of (g, y) to g · y defines an isomorphism of G-varieties.

Lemma 2.3. Let G be an algebraic group acting on an algebraic variety Z and
let P ⊂ G be an algebraic subgroup such that G/P is proper. Then for any
P -invariant subvariety Y ⊂ Z one has

G · Y = G · Y .
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Proof. Clearly we have

G · Y ⊂ G · Y ⊂ G · Y
and therefore it suffices to show that G·Y is closed in Z. The action π : G×Z →
Z of G on Z induces a morphism π̄ : G×P Z → Z which can be written as the
composition

G×P Z ∼−→ G/P × Z −→ Z.

Here the first morphism is the isomorphism given by [g, z] 7→ (gP, g · z) and
the second morphism is the projection. As G/P is proper, we deduce that the
morphism π̄ is closed. Now Y is P -invariant and therefore G×P Y is defined,
and it is a closed subscheme of G×P Z. Therefore π̄(G×P Y ) = G ·Y is closed
in Z.

The following statements concern images under twisted conjugation:

Theorem 2.4 (Lang-Steinberg, see [Ste], Theorem 10.1). Let G be a connected
algebraic group and ϕ : G → G an isogeny with only a finite number of fixed
points. Then the morphism G→ G, g 7→ gϕ(g)−1 is surjective.

Proposition 2.5. Let G be a connected reductive algebraic group with a Borel
subgroup B and a maximal torus T ⊂ B. Let ϕ : G → G be an isogeny with
ϕ(B) = B. In (b) also assume that ϕ(T ) = T .

(a) The morphism G×B → G, (g, b) 7→ gbϕ(g)−1 is surjective.

(b) The morphism G× T → G, (g, t) 7→ gtϕ(g)−1 has dense image.

If G is simply connected semisimple and ϕ is an automorphism of G, (b) has
been shown by Springer ([Spr2] Lemma 4).

Proof. For (a) see [Ste], Lemma 7.3. Part (b) and its proof are a slight modi-
fication of this. Equivalently we may show that for some t0 ∈ T , the image of
the morphism α̃ : G × T → G, (g, t) 7→ gtt0ϕ(g)

−1t−10 is dense. For this it will
suffice to show that the differential of α̃ at 1 is surjective. This differential is
the linear map

Lie(G)× Lie(T )→ Lie(G)

(X,Y ) 7→ X + Y − Lie(ϕt0)(X),

where ϕt0 := int(t0) ◦ ϕ. This linear map has image

Lie(T ) + (1− Lie(ϕt0 )) Lie(G).

Let B− be the Borel subgroup opposite to B with respect to T . Since ϕ(B) = B
and ϕ(T ) = T , the differential of ϕt0 at 1 preserves Lie(RuB) and Lie(RuB−).
If we find a t0 such that Lie(ϕt0) has no fixed points on Lie(RuB) and
Lie(RuB−) we will be done.
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Let Φ be the set of roots of G with respect to T . For each α ∈ Φ, let xα
be a basis vector of Lie(Uα), where Uα is the unipotent root subgroup of G
associated to α. As the isogeny ϕ sends T to itself, it induces a bijection
ϕ̃ : Φ → Φ such that ϕ(Uα) = Uϕ̃(α). For each α ∈ Φ there exists a c(α) ∈ k
such that Lie(ϕ)(xα) = c(α)xϕ̃(α). This implies Lie(ϕt0)(xα) = α(t0)c(α)xϕ̃(α).
Since ϕt0 fixes RuB and RuB−, its differential permutes Φ+ and Φ−, where
Φ+ (resp. Φ−) is the set of roots that are positive (resp. negative) with respect
to B. Hence Lie(ϕt0 ) can only have a fixed point in Lie(RuB) or Lie(RuB−) if
there exists a cycle (α1, · · · , αn) of the permutation ϕ̃ in Φ+ or Φ− such that

n∏

i=1

αi(t0)c(αi) = 1.

This shows that for t0 in some non-empty open subset of T , the differential
Lie(ϕt0) has no fixed points on Lie(RuB) and Lie(RuB−).

2.2 Coset Representatives in Coxeter Groups

Here we collect some facts about Coxeter groups and root systems which we
shall need in the sequel. Let W be a Coxeter group and S its generating set
of simple reflections. Let ℓ denote the length function on W ; thus ℓ(w) is the
smallest integer n > 0 such that w = s1 · · · sn for suitable si ∈ S. Any such
product with ℓ(w) = n is called a reduced expression for w.
Let I be a subset of S. We denote by WI the subgroup of W generated by I,
which is a Coxeter group with set of simple reflections I. Also, we denote byW I

(respectively IW ) the set of elements w ofW which have minimal length in their
coset wWI (respectively WIw). Then every w ∈ W can be written uniquely
as w = wI · wI = w̃I · Iw with wI , w̃I ∈ WI and wI ∈ W I and Iw ∈ IW .
Moreover, these decompositions satisfy ℓ(w) = ℓ(wI) + ℓ(wI) = ℓ(w̃I) + ℓ(Iw)
(see [DDPW], Proposition 4.16). In particular, W I and IW are systems of
representatives for the quotients W/WI and WI\W , respectively. The fact
that ℓ(w) = ℓ(w−1) for all w ∈ W implies that W I = (IW )−1.
Furthermore, if J is a second subset of S, we let IW J denote the set of x ∈ W
which have minimal length in the double cosetWIxWJ . Then

IW J = IW∩W J ,
and it is a system of representatives for WI\W/WJ (see [DDPW] (4.3.2)).
In the next propositions we take an element x ∈ IW J , consider the conjugate

subset x
−1

I ⊂ W , and abbreviate Ix := J ∩ x−1

I ⊂ J . Then IxWJ is the set of
elements wJ of WJ which have minimal length in their coset WIxwJ . Likewise
W I∩ xJ
I is the set of elements wI ofWI which have minimal length in their coset

wIWI∩ xJ .

Proposition 2.6 (Kilmoyer, [DDPW], Proposition 4.17). For x ∈ IW J we
have

WI ∩ xWJ =WI∩ xJ and WJ ∩ x
−1

WI =W
J∩ x−1

I
=WIx .
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Proposition 2.7 (Howlett, [DDPW], Proposition 4.18). For any x ∈ IW J ,
every element w of the double coset WIxWJ is uniquely expressible in the form
w = wIxwJ with wI ∈ WI and wJ ∈ IxWJ . Moreover, this decomposition
satisfies

ℓ(w) = ℓ(wIxwJ ) = ℓ(wI) + ℓ(x) + ℓ(wJ).

Proposition 2.8. The set IW is the set of all xwJ for x ∈ IW J and wJ ∈
IxWJ .

Proof. Take x ∈ IW J and wJ ∈ IxWJ . Then for any wI ∈ IW , Proposition 2.7
applied to the product wIxwJ implies that ℓ(wIxwJ ) = ℓ(wI)+ ℓ(x)+ ℓ(wJ) ≥
ℓ(x) + ℓ(wJ) = ℓ(xwJ ). This proves that xwJ ∈ IW . Conversely take w ∈ IW
and let w = wIxwJ be its decomposition from Proposition 2.7. Then by the
first part of the proof we have xwJ ∈ IW . Since WIw = WIxwJ , this implies
that w = xwJ .

Proposition 2.9. The set W J is the set of all wIx for x ∈ IW J and wI ∈
W I∩ xJ
I .

Proof. Apply Proposition 2.8 with I and J interchanged and invert all elements
of W J .

Next we recall the Bruhat order on W , which we denote by ≤ and <. This
natural partial order is characterized by the following property: For x,w ∈ W
we have x ≤ w if and only if for some (or, equivalently, any) reduced expression
w = s1 · · · sn as a product of simple reflections si ∈ S, one gets a reduced
expression for x by removing certain si from this product. More information
about the Bruhat order can be found in [BB], Chapter 2.
Using this order, the set IW can be described as

IW = {w ∈ W | w < sw for all s ∈ I} (2.10)

(see [BB], Definition 2.4.2 and Corollary 2.4.5).
Assume in addition that W is the Weyl group of a root system Φ, with S
corresponding to a basis of Φ. Denote the set of positive roots with respect to
the given basis by Φ+ and the set of negative roots by Φ−. For I ⊂ S, let ΦI
be the root system spanned by the basis elements corresponding to I, and set
Φ±I := ΦI ∩ Φ±. Then by [Car], Proposition 2.3.3 we have

W I = {w ∈ W | wΦ+
I ⊂ Φ+} = {w ∈W | wΦ−I ⊂ Φ−}. (2.11)

Also, by [Car], Proposition 2.2.7, the length of any w ∈W is

ℓ(w) = #{α ∈ Φ+ | wα ∈ Φ−}. (2.12)

Lemma 2.13. Let w ∈ IW and write w = xwJ with x ∈ IW J and wJ ∈ WJ .
Then

ℓ(x) = #{α ∈ Φ+ r ΦJ | wα ∈ Φ− r ΦI}.
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Proof. First note that α ∈ Φ+ and wα ∈ Φ− already imply wα /∈ ΦI , because
otherwise we would have α ∈ w−1Φ−I , which by (2.11) is contained in Φ−

because w−1 ∈W I . Thus the right hand side of the claim is #{α ∈ Φ+ rΦJ |
wα ∈ Φ−}. Secondly, if α ∈ Φ+

J , using again (2.11) and x ∈ W J we find that
wα ∈ Φ− if and only if wJα ∈ Φ−J . Thus with (2.12) we obtain

#{α ∈ Φ+ r ΦJ | wα ∈ Φ−} = #{α ∈ Φ+ | wα ∈ Φ−} −#{α ∈ Φ+
J | wJα ∈ Φ−J }

= ℓ(w)− ℓ(wJ) = ℓ(x).

2.3 Reductive groups, Weyl groups, and parabolics

Let G be a connected reductive algebraic group, let B be a Borel subgroup of
G, and let T be a maximal torus of B. Let Φ(G, T ) denote the root system
of G with respect to T , let W (G, T ) := NormG(T )/T denote the associated
Weyl group, and let S(G,B, T ) ⊂W (G, T ) denote the set of simple reflections
defined by B. Then W (G, T ) is a Coxeter group with respect to the subset
S(G,B, T ).
A priori this data depends on the pair (B, T ). However, any other such
pair (B′, T ′) is obtained on conjugating (B, T ) by some element g ∈ G
which is unique up to right multiplication by T . Thus conjugation by g
induces isomorphisms Φ(G, T )

∼→ Φ(G, T ′) and W (G, T )
∼→ W (G, T ′) and

S(G,B, T )
∼→ S(G,B′, T ′) that are independent of g. Moreover, the isomor-

phisms associated to any three such pairs are compatible with each other. Thus
Φ := Φ(G, T ) and W :=W (G, T ) and S := S(G,B, T ) for any choice of (B, T )
can be viewed as instances of ‘the’ root system and ‘the’ Weyl group and ‘the’
set of simple reflections of G, in the sense that up to unique isomorphisms
they depend only on G. It then also makes sense to say that the result of a
construction (as in Subsection 5.2 below) depending on an element of W is
independent of (B, T ).
For any w ∈ W (G, T ) we fix a representative ẇ ∈ NormG(T ). By choosing
representatives attached to a Chevalley system (see [DG] Exp. XXIII, §6) for
all w1, w2 ∈W with ℓ(w1w2) = ℓ(w1) + ℓ(w2) we obtain

ẇ1ẇ2 = (w1w2)˙. (2.14)

In particular the identity element 1 ∈W is represented by the identity element
1 ∈ G.
A parabolic subgroup of G that contains B is called a standard parabolic of G.
Any standard parabolic possesses a unique Levi decomposition P = RuP ⋊ L
with T ⊂ L. Any such L is called a standard Levi subgroup of G, and the
set I of simple reflections in the Weyl group of L is called the type of L or
of P . In this way there is a unique standard parabolic PI of type I for every
subset I ⊂ S, and vice versa. The type of a general parabolic P is by definition
the type of the unique standard parabolic conjugate to P ; it is independent of
(B, T ) in the above sense. Any conjugate of a standard Levi subgroup of G is
called a Levi subgroup of G.
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For any subset I ⊂ S let ParI denote the set of all parabolics of G of type I.
Then there is a natural bijection G/PI

∼→ ParI , gPI 7→ gPI . For any two
subsets I, J ⊂ S we let G act by simultaneous conjugation on ParI ×ParJ . As
a consequence of the Bruhat decomposition (see [Spr1] 8.4.6 (3)), the G-orbit
of any pair (P,Q) ∈ ParI ×ParJ contains a unique pair of the form (PI ,

ẋPJ )
with x ∈ IW J . This element x is called the relative position of P and Q and
is denoted by relpos(P,Q).
We will also use several standard facts about intersections of parabolics and/or
Levi subgroups, for instance (see [Car], Proposition 2.8.9):

Proposition 2.15. Let L be a Levi subgroup of G and T a maximal torus of L.
Let P be a parabolic subgroup of G containing T and P = RuP ⋊H its Levi
decomposition with T ⊂ H. Then L ∩ P is a parabolic subgroup of L with Levi
decomposition

L ∩ P = (L ∩RuP )⋊ (L ∩H).

If P is a Borel subgroup of G, then L ∩ P is a Borel subgroup of L.

3 Connected algebraic zip data

We now define the central technical notions of this article.

Definition 3.1. A connected algebraic zip datum is a tuple Z = (G,P,Q, ϕ)
consisting of a connected reductive group G with parabolic subgroups P and
Q and an isogeny ϕ : P/RuP → Q/RuQ. The group

EZ :=
{
(p, q) ∈ P×Q

∣∣ ϕ(πP (p)) = πQ(q)
}

(3.2)

is called the zip group associated to Z. It acts on G by restriction of the left
action

(P×Q)×G→ G,
(
(p, q), g

)
7→ pgq−1. (3.3)

For any subset X ⊂ G we denote the union of the EZ -orbits of all elements of
X by

oZ(X). (3.4)

Note that if X is a constructible subset of G, then so is oZ(X).
Throughout the following sections we fix a connected algebraic zip datum Z =
(G,P,Q, ϕ). We also abbreviate U := RuP and V := RuQ, so that ϕ is an
isogeny P/U → Q/V . Our aim is to study the orbit structure of the action
of EZ on G.

Example 3.5. For dimension reasons we have P = G if and only if Q = G. In
that case the action of EZ = graph(ϕ) is equivalent to the action of G on itself
by twisted conjugation (h, g) 7→ hgϕ(h)−1.

In order to work with Z it is convenient to fix the following data.
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Definition 3.6. A frame of Z is a tuple (B, T, g) consisting of a Borel sub-
group B of G, a maximal torus T of B, and an element g ∈ G, such that

(a) B ⊂ Q,

(b) gB ⊂ P ,

(c) ϕ
(
πP (

gB)
)
= πQ(B), and

(d) ϕ
(
πP (

gT )
)
= πQ(T ).

Proposition 3.7. Every connected algebraic zip datum possesses a frame.

Proof. Choose a Borel subgroup B of Q and a maximal torus T of B. Let
T̄ ′ ⊂ B̄′ ⊂ P/U denote the respective identity components of ϕ−1(πQ(T )) ⊂
ϕ−1(πQ(B)) ⊂ P/U . Then B̄′ is a Borel subgroup of P/U , and T̄ ′ is a maximal
torus of B̄′. Thus we have B̄′ = πP (B

′) for a Borel subgroup B′ of P , and
T̄ ′ = πP (T

′) for some maximal torus T ′ of B′. Finally take g ∈ G such that
B′ = gB and T ′ = gT . Then (B, T, g) is a frame of Z.

Proposition 3.8. Let (B, T, g) be a frame of Z. Then every frame of Z has
the form (qB, qT, pgtq−1) for (p, q) ∈ EZ and t ∈ T , and every tuple of this
form is a frame of Z.
Proof. Let (B′, T ′, g′) be another frame of Z. Since all Borel subgroups of Q
are conjugate, we have B′ = qB for some element q ∈ Q. Since all maximal
tori of B′ are conjugate, after multiplying q on the left by an element of B′

we may in addition assume that T ′ = qT . Similarly we can find an element

p ∈ P such that
g′
B′ = pgB and

g′
T ′ = pgT . Combining these equations with

the defining properties of frames we find that

ϕ(πP (p))
πQ(B) =

ϕ(πP (p))
ϕ
(
πP (

gB)
)

= ϕ
(
πP (

pgB)
)

= ϕ
(
πP (

g′
B′)
)

=

= πQ(B
′) = πQ(

qB) = πQ(q)πQ(B),

and similarly ϕ(πP (p))πQ(T ) =
πQ(q)πQ(T ). Thus ϕ(πP (p)) = πQ(q) · πQ(t′) for

some element t′ ∈ T . Since we may still replace q by qt′ without changing the
above equations, we may without loss of generality assume that ϕ(πP (p)) =
πQ(q), so that (p, q) ∈ EZ . On the other hand, the above equations imply

that B = g−1p−1g′qB and T = g−1p−1g′qT , so that t := g−1p−1g′q ∈ T and
hence g′ = pgtq−1. This proves the first assertion. The second involves a
straightforward calculation that is left to the conscientious reader.

Throughout the following sections we fix a frame (B, T, g) of Z. It determines
unique Levi components gT ⊂ L ⊂ P and T ⊂ M ⊂ Q. Via the isomorphisms
L
∼→ P/U and M

∼→ Q/V we can then identify ϕ with an isogeny ϕ : L→M .
The zip group then becomes

EZ =
{
(uℓ, vϕ(ℓ))

∣∣ u ∈ U, v ∈ V, ℓ ∈ L
}

(3.9)
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and acts on G by ((uℓ, vϕ(ℓ)), g) 7→ uℓgϕ(ℓ)−1v−1. Moreover, conditions 3.6
(c) and (d) are then equivalent to

ϕ(gB ∩ L) = B ∩M, and ϕ(gT ) = T, (3.10)

which are a Borel subgroup and a maximal torus of M , respectively.
Let Φ be the root system, W the Weyl group, and S ⊂ W the set of simple

reflections of G with respect to (B, T ). Let I ⊂ S be the type of g
−1

P and J ⊂ S
the type of Q. Then M has root system ΦJ , Weyl groupWJ , and set of simple

reflections J ⊂ WJ . Similarly g−1

L has root system ΦI , Weyl group WI , and
set of simple reflections I ⊂ WI , and the inner automorphism int(g) identifies
these with the corresponding objects associated to L. Moreover, the equations
(3.10) imply that ϕ ◦ int(g) induces an isomorphism of Coxeter systems

ψ : (WI , I)
∼→ (WJ , J). (3.11)

Recall that Φ, W , and S can be viewed as independent of the chosen frame, as
explained in Subsection 2.3.

Proposition 3.11. The subsets I, J and the isomorphism ψ are independent
of the frame.

Proof. Consider another frame (qB, qT, pgtq−1) with (p, q) ∈ EZ and t ∈ T , as
in Proposition 3.8. Then we have a commutative diagram

(g
−1

L,B, T )

int(qt−1) ≀
��

int(g)

∼
// (L, gB, gT )

int(p) ≀
��

ϕ // (M,B, T )

int(q) ≀
��

(qg
−1

L, qB, qT )
int(pgtq−1)

∼
// (pL, pgB, pgT )

ϕ // (qM, qB, qT ),

whose upper row contains the data inducing ψ for the old frame and whose
lower row is the analogue for the new frame. Since the vertical arrows are
inner automorphisms, they induce the identity on the abstract Coxeter system
(W,S) of G as explained in Subsection 2.3. Everything follows from this.

4 Induction step

We keep the notations of the preceding section. Since g
−1

P and Q are parabolic
subgroups containing the same Borel B, by Bruhat (see [Spr1] 8.4.6 (3)) we
have a disjoint decomposition

G =
∐

x∈ IWJ

g−1

P ẋQ.

Left translation by g turns this into a disjoint decomposition

G =
∐

x∈ IWJ

PgẋQ. (4.1)
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Here each component PgẋQ is an irreducible locally closed subvariety of G
that is invariant under the action of EZ . In this section we fix an element
x ∈ IW J and establish a bijection between the EZ -orbits in PgẋQ and the
orbits of another zip datum constructed from Z and ẋ. This will allow us to
prove facts about the orbits inductively. The base case of the induction occurs
when the decomposition possesses just one piece, i.e., when P = Q = G.

Lemma 4.2. The stabilizer of gẋQ ⊂ PgẋQ in EZ is the subgroup

EZ,ẋ :=
{
(p, q) ∈ EZ

∣∣ p ∈ P ∩ gẋQ
}
,

and the action of EZ induces an EZ -equivariant isomorphism

EZ ×EZ,ẋ gẋQ
∼−→ PgẋQ, [((p, q), h)] 7→ phq−1.

Proof. The action (3.3) of (p, q) ∈ EZ on PgẋQ induces the action on the quo-
tient PgẋQ/Q by left multiplication with p. From (3.2) we see that the latter
action is transitive, and the stabilizer of the point gẋQ is EZ,ẋ; hence there
is an EZ -equivariant isomorphism PgẋQ/Q ∼= EZ/EZ,ẋ. Thus everything fol-
lows by applying Lemma 2.2 to the projection morphism PgẋQ։ PgẋQ/Q ∼=
EZ/EZ,ẋ.

Construction 4.3. Consider the following subgroups of the connected reduc-
tive algebraic group M (which are independent of the representative ẋ of x):

Px :=M ∩ ẋ−1g−1

P , Qx := ϕ(L ∩ gẋQ),

Ux :=M ∩ ẋ−1g−1

U , Vx := ϕ(L ∩ gẋV ),

Lx :=M ∩ ẋ−1g−1

L, Mx := ϕ(L ∩ gẋM).

Proposition 2.15 shows that Px is a parabolic with unipotent radical Ux and
Levi component Lx, and that Qx is a parabolic with unipotent radical Vx and
Levi component Mx. Moreover, ϕ ◦ int(gẋ) induces an isogeny ϕẋ : Lx →Mx,
or equivalently Px/Ux → Qx/Vx. Thus we obtain a connected algebraic zip
datum Zẋ := (M,Px, Qx, ϕẋ). By (3.9) its zip group is

EZẋ =
{
(u′ℓ′, v′ϕẋ(ℓ

′))
∣∣ u′ ∈ Ux, v′ ∈ Vx, ℓ′ ∈ Lx

}
. (4.4)

Lemma 4.5. There is a surjective homomorphism

EZ,ẋ ։ EZẋ , (p, q) 7→ (m,ϕ(ℓ)),

where p = uℓ for u ∈ U and ℓ ∈ L, and ẋ−1g−1

p = vm for v ∈ V and m ∈M .

Proof. For ease of notation abbreviate h := gẋ, so that hT = gT ⊂ L and

therefore T ⊂ h−1

L ⊂ h−1

P . Thus h−1

P and Q are parabolics of G with T -

invariant Levi decompositions h
−1

P = h−1

U ⋊ h−1

L and Q = V ⋊M . It follows
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(see [Car] Thm. 2.8.7) that any element of h
−1

P ∩Q can be written as a product
abu′ℓ′ with unique

a ∈ h−1

U ∩ V , u′ ∈ h−1

U ∩M = Ux,

b ∈ h−1

L ∩ V , ℓ′ ∈ h−1

L ∩M = Lx.

Consider (p, q) ∈ EZ,ẋ with p = uℓ and h−1

p = vm as in the lemma. Then

we can write the element h
−1

p = abu′ℓ′ ∈ h−1

P ∩ Q in the indicated fashion.
Comparing the different factorizations yields the equations v = ab, m = u′ℓ′,
u = h(abu′b−1), and ℓ = h(bℓ′). Thus ϕ(ℓ) = ϕ(hb)ϕ(hℓ′) = v′ϕẋ(ℓ′) with
v′ := ϕ(hb) ∈ ϕ(L ∩ hV ) = Vx. In view of (4.4) it follows that (m,ϕ(ℓ)) =
(u′ℓ′, v′ϕẋ(ℓ′)) lies in EZẋ , and so the map in question is well-defined. Since
m and ℓ are obtained from p by projection to Levi components, the map is a
homomorphism. Conversely, every element of EZẋ can be obtained in this way
from some element p ∈ P ∩ hQ. By (3.9) we can then also find q ∈ Q with
(p, q) ∈ EZ,ẋ. Thus the map is surjective, and we are done.

Lemma 4.6. The surjective morphism

π : gẋQ։M, gẋm̃ṽ 7→ m̃

for m̃ ∈M and ṽ ∈ V is equivariant under the group EZ,ẋ, which acts on gẋQ
as in Lemma 4.2 and on M through the homomorphism from Lemma 4.5.

Proof. Take (p, q) ∈ EZ,ẋ with p = uℓ and ẋ−1g−1

p = vm as in Lemma 4.5.
Then (3.9) implies that q = v1ϕ(ℓ) for some v1 ∈ V . Thus the action of (p, q)
sends gẋm̃ṽ ∈ gẋQ to the element

pgẋ · m̃ṽ · q−1 = gẋvm · m̃ṽ · ϕ(ℓ)−1v−11 = gẋ ·mm̃ϕ(ℓ)−1 ·
(
an element of V

)
.

The morphism π maps this element to mm̃ϕ(ℓ)−1 ∈ M . But this is also
the image of m̃ = π(gẋm̃ṽ) under the action of (m,ϕ(ℓ)) ∈ EZẋ . Thus the
morphism is equivariant.

Proposition 4.7. There is a closure-preserving bijection between EZẋ-
invariant subsets Y ⊂ M and EZ -invariant subsets X ⊂ PgẋQ, defined by
Y = M ∩ ẋ−1g−1X and X = oZ(gẋY ). Moreover, Y is a subvariety if and
only if X is one, and in that case X ∼= EZ ×EZ,ẋ π−1(Y ).

Proof. From (3.2) and (3.3) we see that the subgroup V ∼= {(1, v) | v ∈ V } ⊂
EZ,ẋ acts by right translation on gẋQ. Thus every EZ,ẋ-invariant subset of
gẋQ is a union of cosets of V and therefore of the form Z = gẋY V = π−1(Y )
for a subset Y ⊂M , which moreover satisfies Y =M ∩ ẋ−1g−1Z. By Lemmas
4.5 and 4.6 this defines a bijection between EZẋ-invariant subsets Y ⊂M and
EZ,ẋ-invariant subsets Z ⊂ gẋQ. On the other hand, Lemmas 2.1 and 4.2 yield
a bijection between EZ,ẋ-invariant subsets Z ⊂ gẋQ and EZ -invariant subsets
X ⊂ PgẋQ that is characterized by Z = gẋQ∩X and X = oZ(Z). Together we
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obtain the desired bijection with Y =M ∩ ẋ−1g−1(gẋQ∩X) =M ∩ ẋ−1g−1X
and X = oZ(gẋY V ) = oZ(gẋY ).
The equations Z = π−1(Y ) and Y = M ∩ ẋ−1g−1Z imply that the bijection
between Y and Z preserves closures and maps subvarieties to subvarieties. The
corresponding facts for the bijection between Z and X follow from Lemma 2.1,
which also implies the last statement.

Proposition 4.8. If X and Y in Proposition 4.7 are subvarieties, then

dimX = dimY + dimP − dimPx + ℓ(x).

Proof. By the definition of EZ,ẋ we have

dimEZ−dimEZ,ẋ = dimP−dim(P∩gẋQ) = dimP−dimPx−dim(P∩gẋV ).

With the last statement of Proposition 4.7 this implies that

dimX = dimY + dim V + dimP − dimPx − dim(P ∩ gẋV ).

From the decomposition of V into root subgroups it follows that dimV −
dim(P ∩ gẋV ) = dimV − dim(V ∩ ẋ−1g−1

P ) is the cardinality of the set

{α ∈ Φ+ r ΦJ | xα ∈ Φ− r ΦI}.

By Lemma 2.13 for wJ = 1 this cardinality is ℓ(x).

Lemma 4.9. For any subset Y ⊂M we have oZ(gẋ oZẋ(Y )) = oZ(gẋY ).

Proof. It suffices to show that gẋ oZẋ(Y ) ⊂ oZ(gẋY ), which follows from a
straightforward calculation that is left to the reader. Alternatively the formula
can be deduced from the formal properties stated in Proposition 4.7.

We can also give an inductive description of the stabilizers of points in PgẋQ.
However, this does not give the scheme-theoretic stabilizers, which may in fact
be non-reduced. Likewise, the following lemma does not describe the scheme-
theoretic kernel:

Lemma 4.10. The kernel of the homomorphism from Lemma 4.5 is (U∩gẋV )×
V .

Proof. Let p = uℓ and ẋ−1g−1

p = vm be as in Lemma 4.5. Then (p, q) is in the
kernel if and only if m = 1 and ϕ(ℓ) = 1. The first equation is equivalent to
p = gẋv ∈ gẋV , which implies that ℓ is unipotent. Being in the kernel of the
isogeny ϕ is then equivalent to ℓ = 1. Thus the second equation is equivalent
to p ∈ U , and the two together are equivalent to p ∈ U ∩ gẋV . By (3.9) we
then have q ∈ V , and so we are done.

Proposition 4.11. For any m ∈M there is a short exact sequence

1 −→ U ∩ gẋV −→ StabEZ (gẋm)
4.5−→ StabEZẋ

(m) −→ 1.
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Proof. The second half of Lemma 4.2 and Lemma 4.6 imply that we have an
equality, respectively a homomorphism

StabEZ (gẋm) = StabEZ,ẋ(gẋm)
4.5−→ StabEZẋ

(m).

This homomorphism is surjective, because the subgroup V ∼= {(1, v) | v ∈ V }
contained in the kernel of the surjection EZ,ẋ ։ EZẋ acts transitively on the
fibers of π. By Lemma 4.10 the kernel is the stabilizer of gẋm in the group
(U ∩ gẋV ) × V acting by left and right translation. This stabilizer consists of

(u, (gẋm)−1

u) for all u ∈ U ∩ gẋV , and we are done.

Finally, the assumption x ∈ IW J allows us to construct a frame of Zẋ:
Proposition 4.12. The tuple (M∩B, T, 1) is a frame of Zẋ, and the associated
Levi components of Px and Qx are Lx and Mx, respectively.

Proof. First, the assumptions T ⊂M and gẋT = gT ⊂ L imply that T ⊂M ∩
ẋ−1g−1

L, the latter being Lx by Construction 4.3. Together with the equation
ϕ(gT ) = T from (3.10) they also imply that T = ϕ(gẋT ) ⊂ ϕ(L ∩ gẋM), the
latter beingMx by Construction 4.3. This proves the statement about the Levi
components. We can also directly deduce that ϕẋ(T ) = ϕ(gẋT ) = T .
Next, as T is a common maximal torus of M and B, Proposition 2.15 implies
that M ∩B is a Borel subgroup of M . Recall that M has the root system ΦJ ,
so that M ∩B corresponds to the subset Φ+

J = ΦJ ∩Φ+. For the same reasons

M ∩ ẋ−1

B is a Borel subgroup of M corresponding to the subset ΦJ ∩ x−1Φ+.
But with (2.11) the assumption x ∈ IW J ⊂ W J implies that xΦ+

J ⊂ Φ+, and
hence Φ+

J ⊂ ΦJ ∩ x−1Φ+. Since both subsets correspond to Borel subgroups,

they must then coincide, and therefore M ∩B =M ∩ ẋ−1

B. With the inclusion
gB ⊂ P from (3.6) we deduce that

M ∩B = M ∩ ẋ−1

B ⊂ M ∩ ẋ−1g−1

P
4.3
= Px.

In the same way one shows that L∩ gB = L∩ gẋB, which together with B ⊂ Q
implies that

M ∩B (3.10)
= ϕ(L ∩ gB) = ϕ(L ∩ gẋB) ⊂ ϕ(L ∩ gẋQ)

4.3
= Qx.

The equation M ∩B = ϕ(L ∩ gẋB) and Construction 4.3 also imply that

ϕẋ
(
(M ∩B) ∩ Lx

)
= ϕ

(
gẋM ∩ gẋB ∩ L

)
⊂

⊂ ϕ
(
L ∩ gẋM

)
∩ ϕ
(
L ∩ gẋB

)
= (M ∩B) ∩Mx.

As both sides of this inclusion are Borel subgroups of Mx, they must be equal.
Thus (M ∩B, T, 1) satisfies Definition 3.6 in the variant (3.10), as desired.

Recall that M has the Weyl groupWJ with the set of simple reflections J , and
that ψ : WI

∼→WJ is the isomorphism induced by ϕ ◦ int(g).
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Proposition 4.13. (a) The type of the parabolic Px of M is Ix := J ∩ x−1

I.

(b) The type of the parabolic Qx of M is Jx := ψ(I ∩ xJ).

(c) The isomomorphism ψx : WIx
∼→ WJx induced by ϕẋ is the restriction of

ψ ◦ int(x).

Proof. Proposition 2.6 implies that Lx = M ∩ ẋ−1g−1

L has the Weyl group

WJ ∩ x−1

WI = WIx , which shows (a). Likewise Mx = ϕ(L ∩ gẋM) has the
Weyl group ψ(WI ∩ xWJ) = WJx , which implies (b). Finally, (c) follows from
ϕẋ = ϕ ◦ int(gẋ).

5 Decomposition of G

In this section we construct a natural decomposition of G into finitely many
EZ -invariant subvarieties Gw.

5.1 The Levi subgroup Hw

Fix an element w ∈ IW . Note that we can compare any subgroupH of ẇ
−1g−1

L
with its image ϕ◦int(gẇ)(H) inM , because both are subgroups ofG. Moreover,
the collection of all such H satisfying ϕ ◦ int(gẇ)(H) = H possesses a unique
largest element, namely the subgroup generated by all such subgroups.

Definition 5.1. We let Hw denote the unique largest subgroup of ẇ
−1g−1

L
satisfying ϕ ◦ int(gẇ)(Hw) = Hw. We let ϕẇ : Hw → Hw denote the isogeny
induced by ϕ ◦ int(gẇ), and let Hw act on itself from the left by the twisted
conjugation (h, h′) 7→ hh′ϕẇ(h)−1.

Remark 5.2. Since ϕ ◦ int(gẇ)(T ) = ϕ(gT ) = T by (3.10), the defining prop-
erty of Hw implies that T ⊂ Hw. Thus Hw does not depend on the choice
of representative ẇ of w, justifying the notation Hw. Also, in the case that
w = x ∈ IW J observe that the ϕẇ defined here is the restriction to Hw of
the isogeny ϕẋ from Construction 4.3. Using the same notation for both is
therefore only mildly abusive.

Example 5.3. In the case P = Q = G from Example 3.5 we have M = L = G
and I = J = ψ(J) = S and hence IW = {1} and H1 = G.

To analyze Hw in the general case we apply the induction step from Section 4.
Let w = xwJ be the decomposition from Proposition 2.8 with x ∈ IW J and

wJ ∈ IxWJ for Ix = J ∩ x−1

I. Since WJ is the Weyl group of M , and Ix is
the type of the parabolic Px ⊂ M by Proposition 4.13 (a), we can also apply
Definition 5.1 to the pair (Zẋ, wJ ) in place of (Z, w).

Lemma 5.4. The subgroup Hw and the isogeny ϕẇ associated to (Z, w) in
Definition 5.1 are equal to those associated to (Zẋ, wJ ).
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Proof. Since ẇJ ∈M = ϕ(L), Definition 5.1 and Construction 4.3 imply that

Hw ⊂ M ∩ ẇ−1
J ẋ−1g−1

L =
ẇ−1
J
(
M ∩ ẋ−1g−1

L
)

= ẇ−1
J Lx

and that ϕẋ ◦ int(ẇJ )(Hw) = ϕ ◦ int(gẇ)(Hw) = Hw. Since Hw is the largest

subgroup of ẇ
−1g−1

L with this property, it is also the largest in ẇ−1
J Lx.

Remark 5.5. The preceding lemma implies that Hw and ϕẇ also remain the
same if we repeat the induction step with (Zẋ, wJ ) in place of (Z, w), and so
on. When the process becomes stationary, we have reached a pair consisting of
a zip datum as in Example 5.3 and the Weyl group element 1, whose underlying
connected reductive group and isogeny are Hw and ϕẇ. This induction process
is the idea underlying many proofs throughout this section.

Proposition 5.6. The subgroup Hw is the standard Levi subgroup of G con-

taining T whose set of simple reflections is the unique largest subset Kw of w
−1

I
satisfying ψ ◦ int(w)(Kw) = Kw.

Proof. For any subset K of w
−1

I the equality ψ ◦ int(w)(K) = K makes sense,
because both sides are subsets of W . The collection of all such K satisfying
that equality possesses a unique largest element Kw, namely the union of all
of them. Then Kw = ψ ◦ int(w)(Kw) ⊂ ψ(I) = J ⊂ S, and so Kw consists of
simple reflections.

Let H denote the standard Levi subgroup of G containing T with the set of

simple reflections Kw. Then the isogeny ϕ ◦ int(gẇ) : ẇ−1g−1

L → M sends
T to itself by Remark 5.2, and the associated isomorphism of Weyl groups

ψ ◦ int(w) : w−1

WI →WJ sends Kw to itself by construction. Together this
implies that ϕ ◦ int(gẇ)(H) = H and hence H ⊂ Hw.

We now prove the equality Hw = H by induction on dimG. In the base case
M = G we have I = J = S and w = 1 and thus K1 = S and H = G,
while H1 = G by Example 5.3; hence we are done. Otherwise write w = xwJ
as above. Then Lemma 5.4 and the induction hypothesis show that Hw is a

Levi subgroup of M containing T with a set of simple reflections K ⊂ w−1
J Ix

satisfying ψx ◦ int(wJ )(K) = K. But w−1
J Ix =

w−1
J (J ∩ x−1

I) ⊂ w−1

I and
ψx ◦ int(wJ ) is the restriction of ψ ◦ int(x) ◦ int(wJ ) = ψ ◦ int(w). By the
maximality of Kw we thus have K ⊂ Kw and therefore Hw ⊂ H . Together
with the earlier inequality H ⊂ Hw we deduce that Hw = H , as desired.

5.2 First description of Gw

Definition 5.7. For any w ∈ IW we set Gw := oZ(gẇHw).

Proposition 5.8. The set Gw does not depend on the representative ẇ of w
or the frame.
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Proof. The independence of ẇ follows from the inclusion T ⊂ Hw. For the
rest note first that by Propositions 3.11 and 5.6 the set Kw is independent
of the frame. Consider another frame (qB, qT, pgtq−1) for (p, q) ∈ EZ and
t ∈ T , as in Proposition 3.8. Recall from Subsection 2.3 that the isomorphism
W (G, T )

∼→ W (G, qT ) is induced by int(q) : NormG(T )
∼→ NormG(

qT ). It
follows that w ∈ IW as an element of the abstract Weyl group of G is repre-
sented by qẇq−1 ∈ NormG(

qT ), and with Proposition 5.6 it follows that the
Levi subgroup associated to w and the new frame is qHw. Thus the right hand
side in Definition 5.7 associated to the new frame is

oZ
(
(pgtq−1)(qẇq−1) qHw

)
= oZ

(
pgtẇHwq

−1) = oZ
(
gtẇHw

)
= oZ

(
gẇHw

)
,

where the second equation follows from (p, q) ∈ EZ and the third from ẇ−1tẇ ∈
T ⊂ Hw. Thus G

w is independent of the frame.

In Example 5.3 we have H1 = G and hence G1 = G. Otherwise recall from
Proposition 4.12 that Zẋ has the frame (M ∩ B, T, 1). Thus by Lemma 5.4,
the subset associated to (Zẋ, wJ) by Definition 5.7 is MwJ := oZẋ(ẇJHw).

Lemma 5.9. Under the bijection of Proposition 4.7, the subset MwJ ⊂ M
corresponds to the subset Gw ⊂ PgẋQ. In particular Gw = oZ(gẋMwJ ). Also,
there is a bijection between the EZẋ-orbits X

′ ⊂ MwJ and the EZ -orbits X ⊂
Gw, defined by X = oZ(gẋX ′).

Proof. Using, in this order, the definition of Gw, the equation (2.14), Lemma
4.9, and the definition of MwJ we find that

Gw = oZ(gẇHw) = oZ(gẋẇJHw) = oZ(gẋ oZẋ(ẇJHw)) = oZ(gẋM
wJ ).

The other assertions follow from Proposition 4.7.

5.3 Main properties of Gw

Theorem 5.10. The Gw for all w ∈ IW form a disjoint decomposition of G.

Proof. We show this by induction on dimG. In the base case M = G we have
IW = {1} and H1 = G = G1 by Example 5.3; hence the theorem is trivially
true. Otherwise take an element x ∈ IW J . By the induction hypothesis
applied to the zip datum EZẋ the subsets MwJ for wJ ∈ IxWJ form a disjoint
decomposition of M . Thus by Proposition 4.7 and Lemma 5.9, the subsets
GxwJ for wJ ∈ IxWJ form a disjoint decomposition of PgẋQ. Combining this
with the Bruhat decomposition (4.1) it follows that the subsets GxwJ for all x
and wJ form a disjoint decomposition of G. But by Proposition 2.8 these are
precisely the subsets Gw for w ∈ IW , as desired.

Theorem 5.11. For any w ∈ IW the subset Gw is a nonsingular subvariety of
G of dimension dimP + ℓ(w).
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Proof. Again we proceed by induction on dimG. If M = G, there is only one
piece G1 = G = P associated to w = 1, and the assertion is clear. Otherwise
write w = xwJ as in Proposition 2.8. By the induction hypothesis the subset
MwJ is a nonsingular subvariety of M of dimension dimPx + ℓ(wJ). Thus
by Propositions 4.7 and 4.8 and Lemma 5.9 the subset Gw is a nonsingular
subvariety of dimension

[
dimPx + ℓ(wJ )

]
+ dimP − dimPx + ℓ(x) = dimP + ℓ(x) + ℓ(wJ ).

By Proposition 2.7 the last expression is equal to dimP + ℓ(w), as desired.

Theorem 5.12. For any w ∈ IW , there is a bijection between the Hw-orbits
Y ⊂ Hw and the EZ -orbits X ⊂ Gw, defined by X = oZ(gẇY ) and satisfying

codim(X ⊂Gw) = codim(Y ⊂Hw).

Proof. If M = G, we have w = 1 and G = G1 = H1, and EZ ∼= G acts on itself
by the twisted conjugation (h, h′) 7→ h ·h′ ·ϕ(h)−1. Thus the EZ -orbits X ⊂ G
are precisely the cosets gY for H1-orbits Y according to Definition 5.1, which
finishes that case.
If M 6= G write w = xwJ as in Proposition 2.8. Then Zẋ has the frame
(M ∩B, T, 1) by Proposition 4.12, and so by Lemma 5.4 and the induction hy-
pothesis there is a bijection between the Hw-orbits Y ⊂ Hw and the EZẋ-orbits
X ′ ⊂ MwJ , defined by X ′ = oZẋ(ẇJY ) and satisfying codim(X ′⊂MwJ ) =
codim(Y ⊂Hw). By Proposition 4.7 and Lemma 5.9 there is a bijection be-
tween these X ′ and the EZ -orbits X ⊂ Gw, defined by X = oZ(gẋX ′). More-
over, since pushout and flat pullback preserve codimensions, the last statement
in Proposition 4.7 implies that

codim(X ⊂Gw) = codim
(
oZ(gẋX

′)⊂ oZ(gẋM
wJ )
)
= codim(X ′⊂MwJ ).

Finally, since ẇ = ẋẇJ by (2.14), Lemma 4.9 shows that X =
oZ(gẋ oZẋ(ẇJY )) = oZ(gẋẇJY ) = oZ(gẇY ), finishing the induction step.

5.4 Other descriptions of Gw

Lemma 5.13. For any element g′ ∈ G we have

oZ(gBg
′B) = oZ(gg

′B) = oZ(gBg
′).

Proof. Take any element b ∈ B. Then the condition 3.6 (b) implies that p :=
gbg−1 ∈ P , and so there exists q ∈ Q such that (p, q) ∈ EZ . By the condition
3.6 (c) we then have q ∈ B. It follows that gbg′B = pgg′Bq−1 ⊂ oZ(gg′B).
Since b was arbitrary, this shows that gBg′B ⊂ oZ(gg′B), whence the first
equality. A similar argument proves the second equality.

Theorem 5.14. For any w ∈ IW we have

Gw = oZ(gẇHw) = oZ(gẇ(Hw ∩B)) = oZ(gẇB) = oZ(gBẇ) = oZ(gBẇB).
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Proof. The first equation is Definition 5.7 of Gw, and the last two equations
are cases of Lemma 5.13. The remaining two equations are proved by induction
on dimG. In the base case M = G we have w = 1 and H1 = G; hence the
second term is oZ(gG) = G, and the third and fourth terms are both equal to
oZ(gB). By Proposition 2.5 applied to the isogeny ϕ◦ int(g) the latter is equal
to G, as desired.
In the case M 6= G write w = xwJ as in Proposition 2.8. Then Zẋ has the
frame (M∩B, T, 1) by Proposition 4.12, and so by Lemma 5.4 and the induction
hypothesis we have

oZẋ(ẇJHw) = oZẋ(ẇJ (Hw ∩B)) = oZẋ(ẇJ (M ∩B)).

Using Lemma 4.9 this implies that

oZ(gẋẇJHw) = oZ(gẋẇJ (Hw ∩B)) = oZ(gẋẇJ (M ∩B)).

By (2.14) we may replace ẋẇJ by ẇ in these equations. Moreover, (3.3) and
(3.9) show that gẇB = gẇ(M ∩ B)V ⊂ oZ(gẇ(M ∩ B)) and so oZ(gẇB) =
oZ(gẇ(M ∩B)). Thus both equations follow.

Example 5.15. If P is a Borel subgroup, then so is Q, and we have IW =W .
The last equation in Theorem 5.14 then implies that Gw = gBẇB for all
w ∈W .

For a further equivalent description of Gw see Subsection 11.1.

6 Closure relation

In this section, we determine the closure of Gw in G for any w ∈ IW . To
formulate a precise result recall that ≤ denotes the Bruhat order on W .

Definition 6.1. For w, w′ ∈ IW we write w′ 4 w if and only if there exists
y ∈WI such that yw′ψ(y)−1 ≤ w.

Theorem 6.2. For any w ∈ IW we have

Gw =
∐

w′∈IW
w′4w

Gw
′

.

A direct consequence of this is:

Corollary 6.3. The relation 4 is a partial order on IW .

Remark 6.4. The relation 4 has been introduced by He in [He2] for a some-
what more special class of isomorphisms ψ : WI

∼→ WJ . He gives a direct
combinatorial proof that 4 is a partial order (Proposition 3.13 of loc. cit.),
which can be adapted to our more general setting (see [Wed], Section 4).
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The rest of this section is devoted to proving Theorem 6.2. We will exploit
the fact that the closure relation for the Bruhat decomposition of G is known.
Namely, for any w ∈ W we have by [Spr1], Proposition 8.5.5:

BẇB =
∐

w′∈W
w′≤w

Bẇ′B. (6.5)

Lemma 6.6. For any w ∈ W we have

oZ(gBẇB) =
⋃

w′∈W
w′≤w

oZ(gẇ
′B).

Proof. Let BZ ⊂ EZ denote the subgroup of all elements (uℓ, vϕ(ℓ)) with
u ∈ U , v ∈ V , and ℓ ∈ L ∩ gB. Then EZ/BZ ∼= L/(L ∩ gB) is proper, and
gBẇB ⊂ G is a BZ -invariant subvariety. Thus Lemma 2.3 and (6.5) imply
that

oZ(gBẇB) = oZ
(
gBẇB

)
=
⋃

w′≤w
oZ(gBẇ

′B).

The desired equality then follows from Lemma 5.13.

Lemma 6.7. For any w, v ∈W and b ∈ B there exists u ∈ W such that u ≤ v
and ẇbv̇ ∈ Bẇu̇B.

Proof. We prove the statement by induction on ℓ(v). If v = 1, we may take
u = 1. For the induction step write v = v′s for some simple reflection s such
that ℓ(v′) = ℓ(v) − 1. By the induction hypothesis there exists u′ ≤ v′ such
that ẇbv̇′ ∈ Bẇu̇′B. Hence ẇbv̇ ∈ Bẇu̇′Bṡ ⊂ Bẇu̇′ṡB ∪ Bẇu̇′B, so either
u = u′s or u = u′ will have the required property.

Lemma 6.8. For any z ∈ W and w ∈ IW and v ∈ WI such that z ≤ wψ(v),
there exists y ∈ WI such that yzψ(y)−1 ≤ vw.
Proof. Choose reduced expressions for w and v as products of simple reflections.
Since ψ(I) = J , this also yields a reduced expression for ψ(v). Together this
yields an expression for wψ(v) as a product of simple reflections, which is not
necessarily reduced. However, by [BB], Theorem 2.2.2 a reduced expression for
wψ(v) can be obtained from the given one by possibly deleting some factors.
By the definition of the Bruhat order, the assumption z ≤ wψ(v) means that
a reduced expression for z is obtained from this by deleting further factors, if
any. Let y′ denote the product of all factors remaining from w. Since all factors
in the reduced expression for v lie in I, the product of all factors remaining
from ψ(v) is equal to ψ(y) for some y ∈ WI . By construction we then have
z = y′ψ(y), and so yzψ(y)−1 = yy′. But the assumptions on w and v imply
that ℓ(vw) = ℓ(v)+ℓ(w); hence the product of the given reduced expressions for
v and w is a reduced expression for vw. By construction yy′ is obtained from
that product by possibly deleting some factors, so we deduce that yy′ ≤ vw,
as desired.
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Lemma 6.9. For any w ∈ IW and w′ ∈ W and b, b′ ∈ B such that oZ(gẇb) =
oZ(gẇ′b′) there exists y ∈WI such that ywψ(y)−1 ≤ w′.

Proof. We proceed by induction on dimG. In the base case M = G we have
w = 1 and may take y = 1. So assume that M 6= G. Write w = xwJ as in
Proposition 2.8 with x ∈ IW J and wJ ∈ IxWJ . From oZ(gẇb) = oZ(gẇ′b′)
we deduce that PgẋQ = PgẇQ = Pgẇ′Q, which in view of (4.1) implies
that w′ ∈ WIxWJ . Write w′ = v′xw′J for v′ ∈ WI and w′J ∈ IxWJ , as in
Proposition 2.7.
Recall that ϕ(gv̇′g−1) ∈ NormM (T ) is a representative of ψ(v′) ∈ WJ . Thus
by Lemma 6.7, there exists u ∈ W such that u ≤ ψ(v′) and ẋẇ′Jb′ϕ(gv̇′g−1) ∈
Bẋẇ′J u̇B. The first condition implies that u ∈ WJ , the Weyl group of M . The
action of EZ and the second condition imply

oZ(gẇ
′b′) = oZ(gv̇

′ẋẇ′Jb
′) = oZ

(
gẋẇ′Jb

′ϕ(gv̇′g−1)
)
⊂ oZ(gBẋẇ

′
J u̇B).

Here the last term is equal to oZ(gẋẇ′J u̇B) by Lemma 5.13. Thus there exists
b′′ ∈ B such that

oZ(gẋẇJb) = oZ(gẇb) = oZ(gẇ
′b′) = oZ(gẋẇ

′
J u̇b
′′).

By the action of EZ we may and do assume that b, b′′ ∈M ∩B. Then ẇJb and
ẇ′J u̇b

′′ lie in M , and so Proposition 4.7 implies that oZẋ(ẇJb) = oZẋ(ẇ
′
J u̇b
′′).

By the induction hypothesis there therefore exists yx ∈ WIx such that

yxwJψx(yx)
−1 ≤ w′Ju.

Now we work our way back up. Since both sides of the last relation lie in WJ ,
and since x ∈W J , we deduce that

z := xyxwJψx(yx)
−1 ≤ xw′Ju.

Recall that u ≤ ψ(v′), which implies that u = ψ(u′) for some u′ ∈WI satisfying
u′ ≤ v′. Also, note that xw′J ∈ IW by Proposition 2.8. Thus by Lemma 6.8
there exists y′ ∈WI such that

y′zψ(y′)−1 ≤ u′xw′J .

As u′ and v′ lie in WI , and xw
′
J ∈ IW , we deduce that

y′zψ(y′)−1 ≤ u′xw′J ≤ v′xw′J = w′.

Finally, since ψx = ψ ◦ int(x), we have

y′zψ(y′)−1 = y′xyxwJψ(xyxx
−1)−1ψ(y′)−1 =

= (y′xyxx
−1)xwJψ(y

′xyxx
−1)−1 = ywψ(y)−1

with y := y′xyxx−1 ∈ WI . Thus ywψ(y)
−1 ≤ w′, as desired.
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Lemma 6.10. For any w ∈ IW , the set oZ(gẇT ) is dense in Gw.

Proof. Theorem 5.12 implies that oZ(gẇT ) = oZ(gẇY ), where Y ⊂ Hw is the
orbit of T under twisted conjugation by Hw. But Proposition 2.5 (b) asserts
that Y is dense in Hw. Thus oZ(gẇY ) is dense in oZ( gẇY ) = oZ(gẇHw) =
Gw, as desired.

Proof of Theorem 6.2. Consider w′ ∈ IW such that Gw
′ ∩ Gw 6= ∅. Then by

Theorem 5.14 and Lemma 6.6 there exist b, b′ ∈ B and w′′ ∈W such that w′′ ≤
w and oZ(gw′b) = oZ(gw′′b′). Lemma 6.9 then implies that yw′ψ(y)−1 ≤ w′′

for some y ∈ WI . Together it follows that yw
′ψ(y)−1 ≤ w, and hence w′ 4 w,

proving “⊂”.
To prove “⊃” consider w′ ∈ IW with w′ 4 w. By definition there exists y ∈WI

such that w′′ := yw′ψ(y)−1 ≤ w. Lemma 6.6 and Theorem 5.14 then show that
oZ(gẇ′′T ) ⊂ Gw. Therefore

oZ(gẇ
′T ) = oZ

(
gẏẇ′Tϕ(gẏg−1)−1

)
=

= oZ
(
gẏẇ′ϕ(gẏg−1)−1T

)
= oZ(gẇ

′′T ) ⊂ Gw.

With Lemma 6.10 for oZ(gẇ′T ) we conclude that Gw
′ ⊂ Gw, as desired.

7 Orbitally finite zip data

Proposition 7.1. The following assertions are equivalent:

(a) For any w ∈ IW , the number of fixed points of the endomorphism ϕẇ =
ϕ ◦ int(gẇ) of Hw from Definition 5.1 is finite.

(b) For any w ∈ IW the EZ -invariant subvariety Gw is a single orbit un-
der EZ .

(c) The number of orbits of EZ on G is finite.

Proof. If (a) holds, the Lang-Steinberg Theorem 2.4 shows that the orbit of
1 ∈ Hw under twisted conjugation is all of Hw, and by Theorem 5.12 this
implies (b). The implication (b)⇒(c) is trivial. So assume (c). Then again by
Theorem 5.12, the number of orbits in Hw under twisted conjugation by ϕẇ
is finite for any w ∈ IW . In particular there exists an open orbit; let h be an
element thereof. Then for dimension reasons its stabilizer is finite. But

StabHw (h) =
{
h′ ∈ Hw

∣∣ h′hϕẇ(h′)−1 = h
}

=
{
h′ ∈ Hw

∣∣ h′ = hϕẇ(h
′)h−1

}

is also the set of fixed points of the endomorphism int(h)◦ϕẇ of Hw. Thus the
Lang-Steinberg Theorem 2.4 implies that {h′hϕẇ(h′)−1h−1 | h′ ∈ Hw} = Hw.
After right multiplication by h this shows that the orbit of h is all of Hw. We
may thus repeat the argument with the identity element in place of h, and
deduce that the set of fixed points of ϕẇ on Hw is finite, proving (a).
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Definition 7.2. We call Z orbitally finite if the conditions in Proposition 7.1
are met.

Proposition 7.3. If the differential of ϕ at 1 vanishes, then Z is orbitally
finite.

Proof. If the differential of ϕ vanishes, then so does the differential of ϕẇ =
ϕ ◦ int(gẇ)|Hw for any w ∈ IW . Let Hf

w denote the fixed point locus of ϕẇ,
which is a closed algebraic subgroup. Then the restriction ϕẇ|Hf

w is the identity
and its differential is zero. This is possible only when dimHf

w = 0, that is, when
Hf
w is finite.

Remark 7.4. In particular Proposition 7.3 applies when the base field has
characteristic p > 0 and the isogeny ϕ is a relative Frobenius L→ L(pr) ∼=M .

Since gẇ ∈ Gw by Definition 5.7, we can now rephrase condition 7.1 (b) and
Theorems 5.10, 5.11, and 6.2 as follows:

Theorem 7.5. Assume that Z is orbitally finite. Then:

(a) For any w ∈ IW we have Gw = oZ(gẇ).

(b) The elements gẇ for w ∈ IW form a set of representatives for the EZ -
orbits in G.

(c) For any w ∈ IW the orbit oZ(gẇ) has dimension dimP + ℓ(w).

(d) For any w ∈ IW the closure of oZ(gẇ) is the union of oZ(gẇ′) for all
w′ ∈ IW with w′ 4 w.

8 Point stabilizers

In this section we study the stabilizer in EZ of an arbitrary element g′ ∈ G.
Take w ∈ IW such that g′ ∈ Gw. Then Theorem 5.12 shows that g′ is conjugate
to gẇh for some h ∈ Hw. Thus it suffices to consider the stabilizer of gẇh.
Recall from Definition 5.1 that Hw acts on itself by twisted conjugation with
the isogeny ϕẇ, which is defined as the restriction of ϕ ◦ int(gẇ).

Theorem 8.1. For any w ∈ IW and h ∈ Hw the stabilizer StabEZ (gẇh) is the
semi-direct product of a connected unipotent normal subgroup with the subgroup

{(
int(gẇ)(h′), ϕ(int(gẇ)(h′))

) ∣∣ h′ ∈ StabHw(h)
}
. (8.2)

Proof. For any h′ ∈ Hw we have int(gẇ)(h′) · gẇh · ϕ(int(gẇ)(h′))−1 = gẇh
if and only if h′hϕ(int(gẇ)(h′))−1 = h if and only if h′ ∈ StabHw (h). This
implies that (8.2) is a subgroup of StabEZ (gẇh).
For the rest we proceed by induction on dimG. If M = G, we have w = 1 and
ẇ = 1 and G = H1, and (g′, ϕ(g′)) ∈ EZ acts on G by the twisted conjugation
g′′ 7→ g′g′′ϕ(g′)−1. Under left translation by g this corresponds to the action
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of Hw on itself, so that StabEZ (gẇh) is precisely the subgroup (8.2) and the
normal subgroup is trivial.
If M 6= G write w = xwJ as in Proposition 2.8. Then ẇ = ẋẇJ and Zẋ
has the frame (M ∩ B, T, 1), and Proposition 4.11 shows that StabEZ (gẇh)
is an extension of StabEZẋ

(ẇJh) by a connected unipotent normal subgroup.
Moreover, by the induction hypothesis StabEZẋ

(ẇJh) is the semi-direct product
of a connected unipotent normal subgroup with the subgroup

{(
int(ẇJ )(h

′), ϕẋ(int(ẇJ )(h
′))
) ∣∣ h′ ∈ StabHw (h)

}
. (8.3)

Furthermore a direct calculation shows that the projection in Proposition 4.11
sends the subgroup (8.2) isomorphically to the subgroup (8.3). Since any exten-
sion of connected unipotent groups is again connected unipotent, the theorem
follows.

Remark 8.4. For the stabilizer, a similar result was obtained by Evens and
Lu ([EL] Theorem 3.13).

If the differential of ϕ at 1 vanishes, we can also describe the infinitesimal
stabilizer in the Lie algebra. Since in that case the zip datum is orbitally finite
by Proposition 7.3, it suffices to consider the stabilizer of gẇ.

Theorem 8.5. Assume that the differential of ϕ at 1 vanishes. For any w ∈ IW
let w = xwJ be the decomposition from Proposition 2.8. Then the infinitesimal
stabilizer of gẇ in the Lie algebra of EZ has dimension dimV − ℓ(x).

Proof. Since dϕ = 0, we have LieEZ = LieP × LieV ⊂ Lie(P ×Q). Thus an
arbitrary tangent vector of EZ at 1 has the form (1+dp, 1+dv) for dp ∈ LieP
and dv ∈ LieV , viewed as infinitesimal elements of P and V in Leibniz’s sense.
That element stabilizes gẇ if and only if (1+dp)gẇ(1+dv)−1 = gẇ. This
condition is equivalent to dp ·gẇ−gẇ ·dv = 0, or again to dp = Adgẇ(dv). The

dimension is therefore dim(LieP ∩Adgẇ(LieV )) = dim(Lie g
−1

P ∩Lie ẇV ). As

both g−1

P and ẇV are normalized by T , the dimension is just the number of
root spaces in the last intersection. This number is

#
[
(Φ+ ∪ ΦI) ∩ w(Φ+ r ΦJ)

]
= #

{
α ∈ Φ+ r ΦJ

∣∣ wα ∈ Φ+ ∪ ΦI
}

= dim V −#
{
α ∈ Φ+ r ΦJ

∣∣ wα ∈ Φ− r ΦI
}
.

By Lemma 2.13 it is therefore dimV − ℓ(x), as desired.

Remark 8.6. The dimension in Theorem 8.5 depends only on the first factor of
w = xwJ and thus only on the Bruhat cell PgẇQ. Since that Bruhat cell is an
irreducible variety and in general composed of more than one EZ -orbit, these
orbits have different dimensions. Thus the corresponding point stabilizers in
EZ have different dimension, while the dimension of their Lie algebra stabilizer
is constant. Therefore the scheme-theoretic stabilizer of gẇ is in general not
reduced.
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9 Abstract zip data

By Theorem 5.10 the subsets Gw for all w ∈ IW form a disjoint decomposition
of G satisfying gẇ ∈ Gw. It is natural to ask which other elements of the form
gẇ′ for w′ ∈ W are contained in a given Gw. When Z is orbitally finite,
by Theorem 7.5 this question is equivalent to asking which elements gẇ′ for
w′ ∈ W lie in the same EZ -orbit. This problem turns out to depend only on
the groups WI ⊂ W and the homomorphism ψ and can therefore be studied
abstractly. We return to this situation at the end of this section.

9.1 Abstract groups

Definition 9.1. An abstract zip datum is a tuple A = (Γ,∆, ψ) consisting of
a group Γ, a subgroup ∆, and a homomorphism ψ : ∆→ Γ.

Fix such an abstract zip datum A. For any γ ∈ Γ, the collection of subgroups

E of γ
−1

∆ satisfying ψ ◦ int(γ)(E) = E possesses a unique largest element,
namely the subgroup generated by all such subgroups.

Definition 9.2. For any γ ∈ Γ we let Eγ denote the unique largest subgroup

of γ
−1

∆ satisfying ψ ◦ int(γ)(Eγ) = Eγ .

Lemma 9.3. For any γ ∈ Γ and δ ∈ ∆ and ε ∈ Eγ , we have Eδγεψ(δ)−1 =
ψ(δ)Eγ.

Proof. Abbreviate γ′ := δγεψ(δ)−1. Then the calculation ψ
( γ′

(ψ(δ)Eγ)
)
=

ψ( δγεEγ) =
ψ(δ)

ψ( γEγ) = ψ(δ)Eγ and the definition of Eγ′ imply that
ψ(δ)Eγ ⊂ Eγ′ . In particular, ε′ := ψ(δ)ε−1 is an element of Eγ′ . Since
γ = δ′γ′ε′ψ(δ′)−1 with δ′ := δ−1 ∈ ∆, a calculation like the first shows that
ψ(δ′)Eγ′ ⊂ Eγ . Together it follows that Eγ′ = ψ(δ)Eγ , as desired.

Definition 9.4. For any γ, γ′ ∈ Γ we write γ′ ∼ γ if and only if there exist
δ ∈ ∆ and ε ∈ Eγ such that γ′ = δγεψ(δ)−1. For any γ ∈ Γ we abbreviate
oA(γ) := {γ′ ∈ Γ | γ′ ∼ γ}.

Lemma 9.5. This is an equivalence relation.

Proof. Reflexivity is clear, and symmetry was shown already in the proof of
Lemma 9.3. To prove transitivity, suppose that γ′ = δγεψ(δ)−1 for δ ∈ ∆ and

ε ∈ Eγ and γ′′ = δ′γ′ε′ψ(δ′)−1 for δ′ ∈ ∆ and ε′ ∈ Eγ′ . Then ψ(δ)−1

ε′ ∈ Eγ
by Lemma 9.3, and so γ′′ = δ′δγεψ(δ)−1ε′ψ(δ′)−1 = δ′′γε′′ψ(δ′′)−1 for δ′′ :=
δ′δ ∈ ∆ and ε′′ := ε ψ(δ)

−1

ε′ ∈ Eγ , as desired.

Theorem 9.6. If ∆ is finite, each equivalence class in Γ has cardinality #∆
and the number of equivalence classes is [Γ : ∆].

Documenta Mathematica 16 (2011) 253–300



Algebraic Zip Data 281

Proof. Take any γ ∈ Γ; then the group Eγ ⊂ γ−1

∆ is finite, too. Consider
the surjective map ∆× Eγ ։ oA(γ), (δ, ε) 7→ δγεψ(δ)−1. Two elements (δ, ε),
(δ′, ε′) ∈ ∆× Eγ lie in the same fiber if and only if δγεψ(δ)−1 = δ′γε′ψ(δ′)−1

if and only if εψ(δ−1δ′) = γ−1(δ−1δ′)γε′. With ε′′ := γ−1(δ−1δ′)γ ∈ γ−1

∆ this
is equivalent to εψ( γε′′) = ε′′ε′. Since ε, ε′ ∈ Eγ , this equation implies that
the subgroup generated by Eγ and ε′′ is mapped onto itself under ψ ◦ int(γ).
By maximality it is therefore equal to Eγ , and so ε′′ ∈ Eγ . Together we find
that the elements in the same fiber as (δ, ε) are precisely the elements (δ′, ε′)
with δ′ = δ γε′′ and ε′ = (ε′′)−1εψ( γε′′) for some ε′′ ∈ Eγ . Thus each fiber
has cardinality #Eγ , and so the image has cardinality #∆, proving the first
assertion. The second assertion is a direct consequence of the first.

We can also perform an induction step as in Section 4 for abstract zip data,
obtaining analogues of Lemma 5.4 and Proposition 4.7. For this fix an element
ξ ∈ Γ, say in a set of representatives for the double quotient ∆\Γ/ψ(∆). Then
Definitions 9.2 and 9.4 imply that the equivalence class of any γ ∈ ∆ξψ(∆) is
again contained in ∆ξψ(∆).

Construction 9.7. Set Γξ := ψ(∆) and ∆ξ := ψ(∆)∩ξ−1

∆, and let ψξ : ∆ξ →
Γξ denote the restriction of ψ ◦ int(ξ). This defines a new, possibly smaller,
abstract zip datum

Aξ := (Γξ,∆ξ, ψξ).

Lemma 9.8. For any γ ∈ Γξ, the group Eξγ associated by Definition 9.2 to the
pair (A, ξγ) is equal to the group associated to the pair (Aξ, γ).

Proof. Since γ ∈ Γξ = ψ(∆), Definition 9.2 implies that

Eξγ ⊂ ψ(∆) ∩ γ−1ξ−1

∆ =
γ−1(

ψ(∆) ∩ ξ−1

∆
)

= γ−1

∆ξ

and that Eξγ = ψ ◦ int(ξγ)(Eξγ) = ψξ ◦ int(γ)(Eξγ). Since Eξγ is the largest

subgroup of γ
−1ξ−1

∆ with this property, it is also the largest in γ−1

∆ξ.

Proposition 9.9. There is a bijection between Aξ-equivalence classes in Γξ
and A-equivalence classes in ∆ξψ(∆), defined by oAξ(γ) 7→ oA(ξγ) and
oAξ(γ) = Γξ ∩ ξ−1oA(ξγ).

Proof. Take any γ, γ′ ∈ Γξ. Then γ′ ∈ ξ−1oA(ξγ) if and only if ξγ′ =

δξγεψ(δ)−1 for some δ ∈ ∆ and ε ∈ Eξγ . Writing δ = ξδ′ this is equiva-

lent to γ′ = δ′γεψ( ξδ′)−1 for δ′ ∈ ξ−1

∆ and ε ∈ Eξγ . In this equation γ and γ′

and ψ(
ξ
δ′) lie in Γξ = ψ(∆) by assumption, and so does ε ∈ Eξγ ⊂ ψ(∆) by

Definition 9.2. Thus the equation requires that δ′ lies in ψ(∆), and so a fortiori

in ψ(∆) ∩ ξ−1

∆ = ∆ξ. In view of Lemma 9.8 the condition is thus equivalent
to γ′ ∈ oAξ(γ), proving the equation at the end of the proposition.
That equation implies that the map oAξ(γ) 7→ oA(ξγ) from Aξ-equivalence
classes in Γξ to A-equivalence classes in ∆ξψ(∆) is well-defined and injective.
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But any element of ∆ξψ(∆) has the form δξγ for δ ∈ ∆ and γ ∈ Γξ and is
therefore equivalent to ξγψ(δ) ∈ ξΓξ. Thus the map is also surjective, and we
are done.

9.2 Coxeter groups

Definition 9.10. Let W be a Coxeter group with a finite set of simple reflec-
tions S. Let ψ : WI

∼→ WJ ⊂ W be an isomorphism of Coxeter groups with
ψ(I) = J for subsets I, J ⊂ S. Then A := (W,WI , ψ) is an abstract zip datum
that we call of Coxeter type.

Fix such an abstract zip datum of Coxeter type A. Recall that IW J is a set of
representatives for the double quotientWI\W/WJ . We will apply the induction

step from Proposition 9.9 to x ∈ IW J . As in Proposition 4.13 set Ix := J∩x−1

I
and Jx := ψ(I ∩ xJ), which are both subsets of J . Then WJ = ψ(WI), and

WIx = ψ(WI) ∩ x−1

WI by Proposition 2.6, and ψx := ψ ◦ int(x) induces an
isomorphism ψx : WIx

∼→ WJx such that ψx(Ix) = Jx. Thus the new abstract
zip datum from Construction 9.7 is Ax := (WJ ,WIx , ψx) and hence again of
Coxeter type. Using this we obtain the following analogue of Theorem 5.10,
which also has been previously proved by He ([He3] Corollary 2.6).

Theorem 9.11. For A of Coxeter type IW is a set of representatives for the
equivalence classes in W .

Proof. We prove this by induction on #S. If I = S, we have WI = WJ = W
and so Ew =W for every w ∈ W . Then there is exactly one equivalence class,
represented by the unique element of IW = {1}, and the assertion holds.
Otherwise we have #I < #S. Take any x ∈ IW J . Then by the induction
hypothesis IxWJ is a set of representatives for the Ax-equivalence classes inWJ .
Thus Proposition 9.9 implies that x IxWJ is a set of representatives for the A-
equivalence classes in WIxWJ . Varying x, Proposition 2.8 implies that IW is
a set of representatives for the equivalence classes in W , as desired.

For use in Section 11 we include the following results.

Lemma 9.12. (a) For any w ∈ IW there exists y ∈ WI such that w′ :=
ywψ(y)−1 ∈W J .

(b) The element w′ in (a) is independent of y.

Proof. For (a) we use induction on #S. If I = S, we have IW = {1} and
w = 1, and so y = 1 does the job. Otherwise #I < #S. Write w = xwJ
as in Proposition 2.8 with x ∈ IW J and wJ ∈ IxWJ . Then by the induction
hypothesis applied to Ax there exists y′ ∈WIx such that

w′J := y′wJψx(y
′)−1 ∈ W Jx

J = W
ψ(I∩ xJ)
ψ(I) = ψ

(
W I∩ xJ
I

)
.
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Setting y := ψ−1(y′wJ ) ∈ WI and using the definition of ψx we deduce that

w′ := ywψ(y)−1 = ψ−1(y′wJ) · xwJ · (y′wJ )−1
= ψ−1(y′wJ) · xy′−1x−1 · x
= ψ−1

(
y′wJψx(y

′)−1
)
· x

= ψ−1(w′J ) · x ∈ W I∩ xJ
I · x.

By Proposition 2.9 the right hand side is contained in W J , showing (a).
To prove (b) consider another element y′ ∈ WI such that w′′ := y′wψ(y′)−1 ∈
W J . Then with ỹ := ψ(y′y−1) ∈ WJ we have w′′ = y′y−1w′ψ(y)ψ(y′)−1 =
ψ−1(ỹ)w′ỹ−1 and hence w′′−1 = ỹw′−1ψ−1(ỹ)−1. Now observe that on re-
placing (I, J, ψ) by (J, I, ψ−1) we obtain another abstract zip datum A′ :=
(W,WJ , ψ

−1) dual to A. The last equality then shows that w′′−1 and w′−1

are equivalent according to Definition 9.4 for A′. Since these elements also
lie in JW , Theorem 9.11 applied to A′ shows that they are equal. Therefore
w′′ = w′, as desired.

Proposition 9.13. There exists a unique bijection σ : IW → W J with the
property that for any w ∈ IW there exists y ∈WI such that σ(w) = ywψ(y)−1.

Proof. The existence of a unique map σ : IW → W J with the stated property
is equivalent to Lemma 9.12. By applying the same lemma to the abstract zip
datum A′ := (W,WJ , ψ

−1) in place of A we find that for any w′ ∈ JW there
exists y′ ∈ WJ such that w := y′w′ψ−1(y′)−1 ∈ W I , and the element w is
independent of y′. After replacing (w′, w) by (w′−1, w−1) this means that for
any w′ ∈ W J there exists y′ ∈ WJ such that w := ψ−1(y′)w′y′−1 ∈ IW , and
the element w is independent of y′. But with y := ψ−1(y′)−1 ∈ WI the last
equation is equivalent to w′ = ywψ(y)−1, and so for any w′ ∈W J there exists
a unique w ∈ IW with w′ = σ(w). In other words the map is bijective, as
desired.

Proposition 9.14. The bijection in Proposition 9.13 satisfies ℓ(w) = ℓ(σ(w))
for all w ∈ IW .

Proof. Write the defining relation in the form yw = σ(w)ψ(y). Here y ∈ WI

and w ∈ IW imply that ℓ(yw) = ℓ(y) + ℓ(w), and similarly σ(w) ∈ W J and
ψ(y) ∈ WJ imply that ℓ(σ(w)ψ(y)) = ℓ(σ(w)) + ℓ(ψ(y)). Moreover, since
ψ sends simple reflections to simple reflections, it satisfies ℓ(ψ(y)) = ℓ(y).
Together it follows that ℓ(w) = ℓ(σ(w)).

Lemma 9.15. Let σ : IW → W J be the bijection from Proposition 9.13. For any
x ∈ IW J let σx :

IxWJ →W Jx
J denote the bijection obtained by applying Propo-

sition 9.13 to Ax. Then for all wJ ∈ IxWJ we have σ(xwJ ) = ψ−1(σx(wJ )) ·x.

Proof. The proof of Lemma 9.12 (a) shows that σ(w) = w′ = ψ−1(w′J )·x where
w′J = σx(wJ ), as desired.
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Remark 9.16. Propositions 9.13 and 9.14 can also be deduced from more
general results of He ([He3] Proposition 4.3).

9.3 Back to algebraic groups

Now we return to the situation and the notations of the preceding sections.
Clearly the connected algebraic zip datum Z gives rise to an abstract zip datum
of Coxeter type A := (W,WI , ψ), which by Proposition 3.11 is independent
of the frame, up to unique isomorphism. Theorem 5.10 implies that for any
w′ ∈ W the element gẇ′ lies in Gw for a unique w ∈ IW .

Theorem 9.17. For any w′ ∈ W and w ∈ IW we have gẇ′ ∈ Gw if and only
if w′ ∼ w with respect to A.

Proof. We prove this by induction on #S. If J = S, there is exactly one Gw

for w = 1 and exactly one A-equivalence class in W , so the assertion holds.
Otherwise we have #J < #S. Write w = xwJ with x ∈ IW J and wJ ∈ IxWJ ,
as in Proposition 2.8. Then by (4.1) and Lemma 5.9 the condition gẇ′ ∈ Gw
requires that w′ ∈ WIxWJ , and so does the condition w′ ∼ w by the remarks
in Subsection 9.2. It therefore suffices to consider w′ = yxw′J with y ∈WI and
w′J ∈ IxWJ , as in Proposition 2.7. But then w′ ∼ xw′Jψ(y) with respect to A,
and gẇ′ = gẏẋẇ′J is in the same EZ -orbit as gẋẇ′Jϕ(

g ẏ). After replacing w′

by xw′Jψ(y) we may thus assume that w′ = xw′J for some w′J ∈ WJ . Then
Proposition 4.7 and Lemma 5.9 show that gẇ′ ∈ Gw if and only if ẇ′J ∈MwJ .
By the induction hypothesis this is equivalent to w′J ∼ wJ with respect to Ax.
By Proposition 9.9 this in turn is equivalent to w′ ∼ w with respect to A, as
desired.

Combining Theorems 7.5 and 9.17 we deduce:

Corollary 9.18. If Z is orbitally finite, then for any w, w′ ∈ W the elements
gẇ and gẇ′ lie in the same EZ -orbit if and only if w ∼ w′ with respect to A.

10 Non-connected algebraic zip data

In this section we generalize the main results of Sections 5 and 6 to non-
connected groups. Throughout we denote a not necessarily connected linear
algebraic group by Ĝ, its identity component by G, and its finite group of
connected components by π0(Ĝ) := Ĝ/G; and similarly for other letters of the
alphabet. Note that the unipotent radical RuG is a normal subgroup of Ĝ.
Any homomorphism ϕ̂ : Ĝ→ Ĥ restricts to a homomorphism ϕ : G→ H .

Definition 10.1. An algebraic zip datum is a tuple Ẑ = (Ĝ, P̂ , Q̂, ϕ̂) consisting
of a linear algebraic group Ĝ with subgroups P̂ and Q̂ and a homomorphism
ϕ̂ : P̂ /RuP → Q̂/RuQ, such that Z := (G,P,Q, ϕ) is a connected algebraic
zip datum. The zip group EẐ ⊂ P̂ × Q̂, its action on Ĝ, and the orbit oẐ(X)

of a subset X ⊂ Ĝ are defined in exact analogy to (3.2), (3.3), and (3.4).
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Throughout this section we fix an algebraic zip datum Ẑ = (Ĝ, P̂ , Q̂, ϕ̂) with
associated connected algebraic zip datum Z = (G,P,Q, ϕ). We fix a frame
(B, T, g) of Z and use the other pertaining notations from Sections 3 through 5.
We also define

Ŵ := NormĜ(T )/T and Ω := (NormĜ(B) ∩ NormĜ(T ))/T,

so that Ω ∼= π0(Ĝ) and Ŵ = W ⋊ Ω. For each ω ∈ Ω we fix a representative
ω̇ ∈ NormĜ(B) ∩NormĜ(T ), and for ŵ = wω ∈ Ŵ with w ∈ W and ω ∈ Ω we

set ˙̂w := ẇω̇ ∈ NormĜ(T ).
Note that by definition EZ is the identity component of EẐ . Thus to study

the EẐ-orbits in Ĝ, we first study the orbits under EZ and then the action of
EẐ/EZ on them.

Lemma 10.2. For any ω ∈ Ω the conjugate connected algebraic zip datum

ω̇Z := (G,P, ω̇Q, int(ω̇) ◦ ϕ)

has zip group E ω̇Z = {(p, ω̇q) | (p, q) ∈ EZ} and frame (B, T, g), and the
isomorphism of varieties G→ Gω̇, g′ 7→ g′ω̇ induces a bijection from the E ω̇Z -
orbits in G to the EZ -orbits in Gω̇.

Proof. Direct calculation.

Lemma 10.3. The subsets oZ(gB ˙̂wB) for all ŵ ∈ IWΩ form a disjoint decom-
position of Ĝ.

Proof. Take any ω ∈ Ω. Then by Theorems 5.10 and 5.14 the subsets
o ω̇Z(gBẇB) for all w ∈ IW form a disjoint decomposition of G. Thus by
Lemma 10.2 the subsets oZ(gBẇBω̇) for all w ∈ IW form a disjoint decompo-
sition of Gω̇. Since ω̇ ∈ NormĜ(B) by assumption, the latter subset is equal
to oZ(gBẇω̇B). By varying ω the proposition follows.

Next define L̂ := NormP̂ (L) and M̂ := NormQ̂(M), so that P̂ = U ⋊ L̂ and

Q̂ = V ⋊ M̂ , and ϕ̂ can be identified with a homomorphism L̂→ M̂ . Set

ŴI := Normg−1
L̂
(T )/T , ΩI := (Normg−1

L̂
(B) ∩ Normg−1

L̂
(T ))/T ,

ŴJ := NormM̂ (T )/T , ΩJ := (NormM̂ (B) ∩ NormM̂ (T ))/T .

These groups are subgroups of Ŵ and satisfy

ŴI =WI ⋊ ΩI , ΩI ∼= π0(L̂) ∼= π0(P̂ ),

ŴJ =WJ ⋊ ΩJ , ΩJ ∼= π0(M̂) ∼= π0(Q̂).

Also ϕ̂◦ int(g) induces a homomorphism ψ̂ : ŴI → ŴJ extending ψ : WI →WJ

and sending ΩI to ΩJ . Moreover, the elements (gω̇, ϕ̂(gω̇)) for all ω ∈ ΩI are
representatives of the connected components of EẐ .
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Lemma 10.4. (a) The map (υ, ŵ) 7→ υŵψ̂(υ)−1 defines a left action of ΩI
on IWΩ.

(b) Take any υ ∈ ΩI and ŵ ∈ IWΩ and abbreviate ŵ′ := υŵψ̂(υ)−1 ∈ IWΩ.
Then the element (gυ̇, ϕ̂(gυ̇)) ∈ EẐ sends oZ(gB ˙̂wB) to oZ(gB ˙̂w′B).

Proof. Conjugation by ΩI preserves the set of simple reflections I and thus
the subset IW ⊂W . In (a) we therefore have υŵψ̂(υ)−1 = υŵ · υψ̂(υ)−1 ∈
IWΩ · Ω = IWΩ, as desired. In (b) the elements υ̇ and ϕ̂(gυ̇) normalize B;
hence the image is

gυ̇ · oZ(gB ˙̂wB) · ϕ̂(gυ̇)−1 = oZ
(
gυ̇gB ˙̂wBϕ̂(gυ̇)−1

)
= oZ

(
gBυ̇ ˙̂wϕ̂(gυ̇)−1B

)
.

As υ̇ ˙̂wϕ̂(gυ̇)−1 differs from ˙̂w′ by an element of T , this proves (b).

For any ŵ ∈ IWΩ we now define

Ĝŵ := oẐ(gB
˙̂wB), (10.5)

which is independent of the representative ˙̂w. Lemma 10.4 implies that Ĝŵ is
the union of oZ(gB ˙̂w′B) for all ŵ′ in the ΩI -orbit of ŵ under the action in
10.4 (a). Thus Ĝŵ depends only on ŵ modulo ΩI , and with Lemma 10.3 we
conclude:

Theorem 10.6. The subsets Ĝŵ for all ŵ ∈ IWΩ modulo the action of ΩI
from 10.4 (a) form a disjoint decomposition of Ĝ.

To describe the closure relation between the subsets Ĝŵ we define analogues of
the Bruhat order ≤ on Ŵ =WΩ and of the relation 4 from Definition 6.1 on
IWΩ:

Definition 10.7. For ŵ = wω and ŵ′ = w′ω′ with w, w′ ∈ W and ω, ω′ ∈ Ω
we write ŵ′ ≤ ŵ if and only if w′ ≤ w and ω′ = ω.

Definition 10.8. For ŵ, ŵ′ ∈ IWΩ we write ŵ′ 4 ŵ if and only if there exists
ŷ ∈ ŴI such that ŷŵ′ψ̂(ŷ)−1 ≤ ŵ.
Theorem 10.9. For any ŵ ∈ IWΩ we have

Ĝŵ =
⋃

ŵ′∈IWΩ
ŵ′4ŵ

Ĝŵ
′

.

Proof. Write ŵ = wω with w ∈ IW and ω ∈ Ω. Then the conjugate zip datum
ω̇Z has the isogeny int(ω̇) ◦ϕ : L→ ω̇M and hence the induced isomorphism of
Weyl groups int(ω) ◦ ψ : WI

∼→ ωWJ =WωJ . Thus Theorems 5.14 and 6.2 and
Definition 6.1 imply that

oω̇Z(gBẇB) =
⋃

w′

oω̇Z(gBẇ
′B),
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where the union ranges over all w′ ∈ IW such that yw′ ωψ(y)−1 ≤ w for
some y ∈ WI . Note that this inequality is equivalent to yw′ωψ(y)−1 ≤ wω by
Definition 10.7. Thus with Lemma 10.2 we deduce that

oZ(gB ˙̂wB) = oZ(gBẇω̇B) =
⋃

w′

oZ(gBẇ
′ω̇B) =

⋃

ŵ′

oZ(gB ˙̂w′B),

where the last union ranges over all ŵ′ ∈ IWΩ such that yŵ′ψ(y)−1 ≤ ŵ for
some y ∈ WI . By taking the union of conjugates of this under (gυ̇, ϕ̂(gυ̇)) ∈
EẐ for all υ ∈ ΩI we obtain the closure of Ĝŵ. By Lemma 10.4 the right

hand side then yields the union of oZ(gB ˙̂w′′B) for all ŵ′′ = υŵ′ψ̂(υ)−1 with
yŵ′ψ(y)−1 ≤ ŵ for some υ ∈ ΩI and y ∈ WI . But here ŷ := yυ−1 runs through
the group WIΩI = ŴI and the inequality is equivalent to

ŷŵ′′ψ̂(ŷ)−1 = yυ−1ŵ′ψ̂(υ)ψ(y)−1 ≤ ŵ.

By Definition 10.8 these ŵ′′ are precisely the elements of IWΩ satisfying ŵ′′ 4
ŵ.

Finally, let us call Ẑ orbitally finite if the conjugates ω̇Z are orbitally finite for
all ω ∈ Ω. This holds in particular when the differential of ϕ̂ at 1 vanishes,
because then we can apply Proposition 7.3 to ω̇Z. Combining Theorem 7.5
with the remarks leading up to Theorem 10.6 we deduce:

Theorem 10.10. Assume that Ẑ is orbitally finite. Then:

(a) For any ŵ ∈ IWΩ we have Ĝŵ = oẐ(g
˙̂w).

(b) If ŵ ∈ IWΩ runs through a system of representatives for the action of
ΩI from 10.4 (a), then g ˙̂w runs through a set of representatives for the
EẐ -orbits in Ĝ.

11 Dual parametrization

The decomposition of G from Theorem 5.10 is parametrized in a natural way
by elements of IW . In this section we translate that parametrization into an
equally natural parametrization by elements ofW J , which was used by Lusztig
and He (see Section 12). We also carry out the corresponding translation in
the non-connected case.

11.1 The connected case

For any w ∈W J we set
Gw := oZ

(
gBẇB

)
. (11.1)

Note that this does not depend on the representative ẇ of w and conforms to
Definition 5.7 by Theorem 5.14. In Proposition 9.13 we have already established
a natural bijection σ : IW →W J .
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Theorem 11.2. For any w ∈ IW we have Gw = Gσ(w).

Proof. If I = J = S, we have IW = W J = {1} and so w = σ(w) = 1;
hence the assertion holds trivially. Otherwise #I < #S. Write w = xwJ as
in Proposition 2.8 with x ∈ IW J and wJ ∈ IxWJ , and let σx :

IxWJ → W Jx
J

denote the bijection obtained by applying Proposition 9.13 to Ax. Then Zẋ has
the frame (M ∩ B, T, 1) by Proposition 4.12, and so the induction hypothesis
implies that

MwJ = Mσx(wJ ) = oZẋ
(
(M ∩B)σ̇x(wJ )(M ∩B)

)
.

By Lemma 5.13 this is equal to oZẋ((M ∩ B)σ̇x(wJ )), and so by Lemmas 5.9
and 4.9 we have

Gw = oZ(gẋM
wJ ) = oZ

(
gẋ oZẋ((M∩B)σ̇x(wJ ))

)
= oZ

(
gẋ(M∩B)σ̇x(wJ )

)
.

Recall from Lemma 9.15 that σ(w) = wIx with wI := ψ−1(σx(wJ )) ∈ WI . It
follows that σx(wJ ) = ψ(wI) and therefore σ̇x(wJ ) ∈ T · ϕ(gẇI) and σ̇(w) ∈
T · ẇI ẋ. Since T ⊂M ∩B, using the action (3.3) of EZ we deduce that

Gw = oZ
(
gẋ(M ∩B)ϕ(gẇI)

)
= oZ

(
gẇI ẋ(M ∩B)

)
= oZ

(
gσ̇(w)(M ∩B)

)
.

Using (3.3) and (3.9) for the action of V , respectively Lemma 5.13, we conclude
that

Gw = oZ
(
gσ̇(w)B

)
= oZ

(
gBσ̇(w)B

)
= Gσ(w),

as desired.

Theorem 11.3. The Gw for all w ∈ W J form a disjoint decomposition of G
by nonsingular subvarieties of dimension dimP + ℓ(w).

Proof. Combine Theorems 5.10, 5.11, 11.2 and Proposition 9.14.

Next, in analogy to Definition 6.1 we define:

Definition 11.4. For w, w′ ∈ W J we write w′ 4 w if and only if there exists
y ∈WI such that yw′ψ(y)−1 ≤ w.

Theorem 11.5. For any w ∈W J we have

Gw =
∐

w′∈WJ

w′4w

Gw
′

.

Proof. By combining Theorems 11.2 and 6.2 we already know that Gw is the
disjoint union of Gw

′

for certain w′ ∈W J ; it only remains to determine which.
First consider w′ ∈ W J with Gw

′ ⊂ Gw. Then gẇ′ ∈ Gw, and so by Lemma
6.6 there exist b ∈ B and w′′ ∈ W such that w′′ ≤ w and oZ(gẇ′) = oZ(gẇ′′b).
Set w̃′ := σ−1(w′) ∈ IW and take y ∈ WI satisfying w′ = yw̃′ψ(y)−1. Then
ẇ′ = ẏ ˙̃w′tϕ(g ẏ)−1 for some t ∈ T , and thus oZ(gw′) = oZ(gw̃′t). Therefore
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oZ(gw̃′t) = oZ(gw′′b), and so Lemma 6.9 implies that y′w̃′ψ(y′)−1 ≤ w′′ for
some y′ ∈ WI . Together it follows that

(y′y−1)w′ψ(y′y−1)−1 = y′w̃′ψ(y′)−1 ≤ w′′ ≤ w

and hence w′ 4 w, proving “⊂”.
Conversely consider w′ ∈ W J with w′ 4 w, and take y ∈ WI such that w′′ :=
yw′ψ(y)−1≤ w. Lemma 6.6 then shows that oZ(gẇ′′T ) ⊂ Gw. Therefore

oZ(gẇ
′T ) = oZ

(
gẏẇ′Tϕ(gẏg−1)−1

)
=

= oZ
(
gẏẇ′ϕ(gẏg−1)−1T

)
= oZ(gẇ

′′T ) ⊂ Gw.

Since also oZ(gẇ′T ) ⊂ Gw
′

, this with the preliminary remark on Gw shows
that Gw

′ ⊂ Gw, proving “⊃”.

Remark 11.6. In Definitions 5.7 and 11.1 we have introduced the subsets
Gw := oZ

(
gBẇB

)
only for w ∈ IW ∪ W J , not for arbitrary w ∈ W . Our

results do not say anything directly about the latter. Note that in case ϕ is
an isomorphism their closures have been determined in [LY1] Theorem 5.2 and
[He3] Proposition 5.8.

11.2 The non-connected case

Now we return to the notations from Section 10. We begin with an analogue
of Proposition 9.13:

Proposition 11.7. There exists a unique bijection σ̂ : IWΩ → ΩW J with
the property that for any ŵ ∈ IWΩ there exists y ∈ WI such that σ̂(ŵ) =
yŵψ(y)−1.

Proof. The equation requires that σ̂(ŵ) ∈ Ŵ lie in the same W -coset as ŵ.
Thus for any fixed ω ∈ Ω, we need a unique bijection IWω → ωW J send-
ing wω to an element of the form ywωψ(y)−1 for some y ∈ WI . Multiply-
ing both elements on the right by ω−1 this amounts to a unique bijection
IW → ωW Jω−1 = W

ωJ sending w to an element of the form ywωψ(y)−1ω−1

for some y ∈ WI . But int(ω) ◦ ψ : WI → ωWJω
−1 = WωJ is precisely the iso-

morphism associated to the conjugate connected algebraic zip datum ω̇Z from
Lemma 10.2. Thus a unique bijection with that property exists by Proposition
9.13 applied to ω̇Z.

For any ŵ ∈ ΩW J we now define

Ĝŵ := oẐ(gB
˙̂wB). (11.8)

Again this does not depend on the representative ˙̂w of ŵ and conforms to
Definition (10.5).

Theorem 11.9. For any ŵ ∈ IWΩ we have Ĝŵ = Ĝσ̂(ŵ).
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Proof. Write ŵ = wω with w ∈ IW and ω ∈ Ω. In the proof of Proposition
11.7 we have seen that σ̂(ŵ) = w′ω, where w′ ∈ W ωJ is the image of w under
the isomorphism given by Proposition 9.13 applied to ω̇Z. Thus by Theorem
11.2 we have o ω̇Z(gBẇB) = o ω̇Z(gBẇ

′B) inside G. On multiplying on the
right by ω̇ and applying Lemma 10.2 to both sides we deduce that

oZ(gB ˙̂wB) = oZ(gBẇBω̇) = oZ(gBẇ
′Bω̇) = oZ(gB ˙̂σ(ŵ)B).

The desired equality follows from this by applying oẐ .

Lemma 11.10. (a) The map (υ, ŵ) 7→ υŵψ̂(υ)−1 defines a left action of ΩI
on ΩW J .

(b) The bijection σ̂ : IWΩ→ ΩW J from Proposition 11.7 is ΩI-equivariant.

Proof. Take υ ∈ ΩI and ŵ ∈ ΩW J . To prove (a) observe that conjugation

by ψ̂(υ) ∈ ΩJ preserves the set of simple reflections J and thus the subset

W J ⊂W . We therefore have υŵψ̂(υ)−1 = υψ̂(υ)−1 · ψ̂(υ)ŵ ∈ Ω ·ΩW J = ΩW J ,
as desired. In (b) write σ̂(ŵ) = yŵψ(y)−1 with y ∈WI . Then

υσ̂(ŵ)ψ̂(υ)−1 = (υyυ−1)(υŵψ̂(υ)−1)ψ̂(υyυ−1)−1 = σ̂
(
υŵψ̂(υ)−1),

because the left hand side is in ΩW I and υyυ−1 ∈WI . This proves (b).

Theorem 11.11. The subsets Ĝŵ for all ŵ ∈ ΩW J modulo the action of ΩI
from 11.10 (a) form a disjoint decomposition of Ĝ.

Proof. Combine Theorems 10.6 and 11.9 with Lemma 11.10.

Definition 11.12. For ŵ, ŵ′ ∈ ΩW J we write ŵ′ 4 ŵ if and only if there
exists ŷ ∈ ŴI such that ŷŵ′ψ̂(ŷ)−1 ≤ ŵ.

Theorem 11.13. For any ŵ ∈ ΩW J we have

Ĝŵ =
⋃

ŵ′∈ΩWJ

ŵ′4ŵ

Ĝŵ
′

.

Proof. Write ŵ = wω with ω ∈ Ω and w ∈ W
ωJ . Applying Theorem 11.5

to the conjugate zip datum ω̇Z shows that o ω̇Z(gBẇB) is the union of the
subsets o ω̇Z(gBẇ

′B) for all w′ ∈ W
ωJ such that yw′ωψ(y)−1ω−1 ≤ w for

some y ∈ WI . On multiplying on the right by ω̇ and applying Lemma 10.2

to everything we deduce that oZ(gB ˙̂wB) = oZ(gBẇBω̇) is the union of the
subsets oZ(gBẇ′Bω̇) = oZ(gBẇ′ω̇B) for the same elements w′. Writing ŵ′ =
w′ω this is equal to the union of the subsets oZ(gB ˙̂w′B) for all ŵ′ ∈ ΩW J

such that yŵ′ψ(y)−1 ≤ w for some y ∈ WI . The theorem follows from this by
applying oẐ .
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12 Generalization of certain varieties of Lusztig

In this section we consider a certain type of algebraic variety with an action of
a reductive group G whose orbit structure is closely related to the structure of
the EZ -orbits in G for an algebraic zip datum Z. Special cases of such varieties
have been defined by Lusztig ([Lus2]) and by Moonen and the second author
in [MW].

12.1 The coset variety of an algebraic zip datum

Remark 12.1. To keep notations simple, we restrict ourselves to connected
zip data, although everything in this section directly extends to non-connected
ones by putting ˆ in the appropriate places.

In this section we use only the definition of algebraic zip data and the action
of the associated zip group from Section 3, but none of the other theory or
notations from the preceding sections, not even the concept of a frame. Fix a
connected algebraic zip datum Z = (G,P,Q, ϕ). Recall that EZ is a subgroup
of P × Q and hence of G × G. We also consider the image of G under the
diagonal embedding ∆: G →֒ G ×G, g 7→ (g, g). We are interested in the left
quotient ∆(G)\(G×G) and the right quotient (G×G)/EZ .
The first is isomorphic to G via the projection morphism

λ : G×G→ G, (g, h) 7→ g−1h. (12.2)

Turn the right action of EZ on G×G into a left action by letting (p, q) ∈ EZ act
by right translation with (p, q)−1. Then with EZ acting onG as in the definition
of algebraic zip data, a direct calculation shows that λ is EZ -equivariant.
To describe the second quotient recall that ϕ is a homomorphism P/U → Q/V ,
where U and V denote the unipotent radicals of P and Q. Consider a left P -
coset X ⊂ G and a left Q-coset Y ⊂ G. Then X/U is a right torsor over
P/U , and Y/V is a right torsor over Q/V . By a P/U -equivariant morphism
Φ: X/U → Y/V we mean a morphism satisfying Φ(x̄p̄) = Φ(x̄)ϕ

(
p̄) for all

x̄ ∈ X/U and p̄ ∈ P/U .

Definition 12.3. The coset space of Z is the set CZ of all triples (X,Y,Φ)
consisting of a left P -cosetX ⊂ G, a left Q-coset Y ⊂ G, and a P/U -equivariant
morphism Φ: X/U → Y/V .

For any X , Y as above and any (g, h) ∈ G×G, left multiplication by g induces
an isomorphism ℓg : X/U

∼→ gX/U , and left multiplication by h induces an

isomorphism ℓh : Y/V
∼→ hY/V . Therefore (X,Y,Φ) 7→

(
gX, hY, ℓh ◦ Φ ◦ ℓ−1g

)

defines a left action of G×G on CZ . By applying this action to the canonical
base point (P,Q, ϕ) ∈ CZ we obtain a morphism

ρ : G×G→ CZ , (g, h) 7→
(
gP, hQ, ℓh ◦ ϕ ◦ ℓ−1g

)
. (12.4)

Clearly this morphism is equivariant under the left action of G×G and hence
under the subgroup ∆(G).
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Lemma 12.5. There is a unique structure of algebraic variety on CZ such that
ρ identifies CZ with the quotient variety (G×G)/EZ .

Proof. The action of G×G is obviously transitive on the set of all pairs (X,Y ).
Moreover, any P/U -equivariant morphism of right torsors P/U → Q/V has the
form p̄ 7→ πQ(q)ϕ(p̄) = ℓq ◦ϕ(p̄) for some q ∈ Q. Thus the subgroup 1×Q acts
transitively on the set of all triples of the form (P,Q,Φ). Together it follows
that the action of G×G on CZ is transitive.
On the other hand (g, h) lies in the stabilizer of (P,Q, ϕ) if and only if g ∈ P
and h ∈ Q and ℓh ◦ ϕ ◦ ℓ−1g = ϕ. But under the first two of these conditions,
we have for all p̄ ∈ P/U

ℓh ◦ ϕ ◦ ℓ−1g (p̄) = πQ(h)ϕ
(
πP (g)

−1p̄
)
= πQ(h)ϕ

(
πP (g)

)−1
ϕ(p̄),

and so the third condition is equivalent to ϕ
(
πP (g)

)
= πQ(h). Together this

means precisely that (g, h) ∈ EZ , which is therefore the stabilizer of (P,Q, ϕ).
It follows that ρ induces a bijection (G × G)/EZ ∼→ CZ . Since the quotient
variety exists by [Ser], Section 3.2, this yields the unique structure of algebraic
variety on CZ .

Following Lemma 12.5 we call CZ also the coset variety of Z. Recall from [Ser]
Prop. 2.5.3 that the quotient of an algebraic group by an algebraic subgroup is
always a torsor. To summarize we have therefore constructed morphisms with
the following properties:

EZ -equivariant

∆(G)-torsor





G×G
λ

����
��

��
�

ρ

��=
==

==
==

G CZ





∆(G)-equivariant

EZ -torsor
(12.6)

Recall that the actions of ∆(G) and EZ on G×G commute and thus combine
to an action of ∆(G)× EZ . Therefore (12.6) directly implies:

Theorem 12.7. There are natural isomorphisms of algebraic stacks

[EZ\G]
[
(∆(G) × EZ)\(G×G)

][λ]

∼
oo [ρ]

∼
// [∆(G)\CZ ].

Even without stacks, we can deduce:

Theorem 12.8. (a) There is a closure-preserving bijection between EZ -
invariant subsets A ⊂ G and ∆(G)-invariant subsets B ⊂ CZ , defined by
A = λ(ρ−1(B)) and B = ρ(λ−1(A)).

(b) The subset A in (a) is a subvariety, resp. a nonsingular subvariety, if and
only if B is one. In that case we also have dimA = dimB.
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(c) In particular (a) induces a bijection between EZ -orbits in G and ∆(G)-
orbits in CZ .

(d) For any g ∈ G and (X,Y,Φ) ∈ CZ whose orbits correspond, there is an
isomorphism

StabEZ (g)
∼= Stab∆(G)((X,Y,Φ)).

Proof. By (12.6) any ∆(G) × EZ -invariant subset of G × G must be simul-
taneously of the form λ−1(A) for an EZ -invariant subset A ⊂ G and of the
form ρ−1(B) for a ∆(G)-invariant subset B ⊂ CZ . Then A = λ(ρ−1(B)) and
B = ρ(λ−1(A)), giving the bijection in (a). The bijection preserves closures
because λ and ρ are smooth. This proves (a), the first sentence in (b), and the
special case (c). In (b) it also proves that dimA+dimG = dimB+dimEZ . But
dimG = 2dimU + dimL = 2dimV + dimM and dimL = dimM imply that
dimU = dimV , and thus using (3.9) that dimEZ = dimU +dimL+dimV =
dimG. Therefore dimA = dimB, proving the rest of (b).
In (c) by assumption there exists a point x ∈ G×G such that λ(x) lies in the
EZ -orbit of g and ρ(x) lies in the ∆(G)-orbit of (X,Y,Φ). Thus after replacing
x by a suitable translate under ∆(G)× EZ we may assume that λ(x) = g and
ρ(x) = (X,Y,Φ). Then the fact that λ and ρ are torsors implies that the two
projection morphisms

StabEZ (g) Stab∆(G)×EZ
(x)oo // Stab∆(G)((X,Y,Φ))

are isomorphisms, proving (c). (The isomorphism may depend on the choice
of x.)

With Theorem 12.8 we can translate many results about the EZ -action on G
from the preceding sections to the ∆(G)-action on CZ , in particular Theorems
5.10, 5.11, 6.2, 7.5, 8.1, and their counterparts from Sections 10 and 11.

12.2 Algebraic zip data associated to an isogeny of G

In this subsection we consider algebraic zip data whose isogeny extends to
an isogeny on all of G. (Not every connected algebraic zip datum has that
property, for instance, if L and M have root system A1 associated to long
and short roots, respectively, and the square of the ratio of the root lengths is
different from the characteristic of k.)
Fix a connected reductive algebraic group G over k and an isogeny ϕ : G →
G. Choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B, and let
W be the corresponding Weyl group of G and S its set of simple reflections.
Choose an element γ ∈ G such that ϕ(γB) = B and ϕ(γT ) = T . Then ϕ ◦
int(γ) : NormG(T )→ NormG(T ) induces an isomorphism of Coxeter systems

ϕ̄ : (W,S)
∼→ (W,S).

For any subset I ⊂ S recall from Subsection 2.3 that PI denotes the standard
parabolic of type I. Thus the choices imply that ϕ(γPI) = Pϕ̄(I). We denote
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the unipotent radicals of arbitrary parabolics P , Q, P ′, Q′ by U , V , U ′, V ′,
respectively.
Let Ĝ be a linear algebraic group over k having identity component G, and
let G1 be an arbitrary connected component of Ĝ. Choose an element g1 ∈
NormG1(B)∩NormG1(T ). Then int(g1) induces an automorphism of G that we
use to twist ϕ. Let δ : (W,S)→ (W,S) be the isomorphism of Coxeter systems
induced by int(g1). Then for any subset I ⊂ S we have g1PI = Pδ(I).

Fix subsets I, J ⊂ S and an element x ∈ JW δϕ̄(I) with J =
x
δϕ̄(I). Set

y := (δϕ̄)−1(x) ∈W .

Lemma 12.9. (a) xΦδϕ̄(I) = ΦJ .

(b) xΦ+
δϕ̄(I) = Φ+

J .

Proof. Part (a) follows from J =
x
δϕ̄(I). By (2.11) the fact that x ∈ JW δϕ̄(I) ⊂

W δϕ̄(I) implies xΦ+
δϕ̄(I) ⊂ Φ+. Together with (a) this implies (b).

Construction 12.10. Set Q := PJ and P := γẏPI and let L be the Levi
component of P containing γẏT . Then g1ϕ(P ) = ẋ(g1ϕ(γPI)) = ẋPδϕ̄(I) and
Q = PJ have relative position x. Set M := g1ϕ(L); this is a Levi component
of

g1ϕ(P ) containing g1ϕ(γẏT ) = g1ϕ(γT ) = g1T = T . Since the root system
of M is xΦδϕ̄(I), Lemma 12.9 shows that it is also the Levi component of
Q containing T . Let g1 ϕ̃ : P/U → Q/V denote the isogeny corresponding to
int(g1) ◦ ϕ |L : L → M . Then we obtain a connected algebraic zip datum
Z := (G,P,Q, g1 ϕ̃).

Lemma 12.11. The triple (B, T, γẏ) is a frame of Z, and the Levi components
determined by it are M ⊂ Q and L ⊂ P .
Proof. The statements about M and L follow from the inclusions T ⊂M and
γẏT ⊂ L. They also imply that the isogeny L → M corresponding to g1 ϕ̃ is
simply the restriction of int(g1) ◦ ϕ. Conditions (a) and (b) in Definition 3.6
assert that B ⊂ Q and γẏB ⊂ P , which hold by the construction of Q and P .
Condition (d) translates to g1ϕ

(
γẏT

)
= T , which was already shown in 12.10.

To prove (c) note first that by Lemma 12.9 we have xΦ+
γϕ̄(I) = Φ+

J and therefore
ẋB∩M = B∩M . The definition of y implies that g1ϕ(γẏγ−1) ∈ ẋT and hence

g1ϕ
(
γẏB

)
=

g1ϕ(γẏγ−1)·g1ϕ
(
γB
)
=

g1ϕ(γẏγ−1)B = ẋB.

From this we can deduce that

g1ϕ
(
γẏB ∩ L

)
= g1ϕ

(
γẏB

)
∩ g1ϕ(L) = ẋB ∩M = B ∩M,

proving the remaining condition (c).

The automorphism ψ defined in (3.11) for the algebraic zip datum Z is given
by

ψ := δ ◦ ϕ̄ ◦ int(y) = int(x) ◦ δ ◦ ϕ̄ : (WI , I)
∼→ (WJ , J) (12.7)
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Definition 12.12. Let XI,ϕ,x be the set of all triples (P ′, Q′, [g′]) consisting
of parabolic subgroups P ′, Q′ of G of type I, J and a double coset [g′] :=
V ′g′ϕ(U ′) ⊂ G1 of an element g′ ∈ G1 such that

relpos(Q′,
g′
ϕ(P ′)) = x.

One readily verifies that the condition on the relative position depends only
on [g′], and that

(
(g, h), (P ′, Q′, [g′])

)
7→
(g
P ′, hQ′, [hg′ϕ(g)−1]

)
defines a left

action of G × G on XI,ϕ,x. We also have a standard base point (P,Q, [g1]) ∈
XI,ϕ,x. One can use the definition of XI,ϕ,x to endow it with the structure of an
algebraic variety over k, but in the interest of brevity we define that structure
using the following isomorphism:

Proposition 12.13. There is a natural G×G-equivariant isomorphism

CZ
∼−→ XI,ϕ,x,

(
gP, hQ, ℓh ◦ g1 ϕ̃ ◦ ℓ−1g

)
7→
(
gP, hQ, [hg1ϕ(g)

−1]
)
.

Proof. In view of Lemma 12.5 the assertion is equivalent to saying that the
action of G ×G on XI,ϕ,x is transitive and the stabilizer of (P,Q, [g1]) is EZ .
The transitivity follows directly from the definition of the action. For the
stabilizer note that

(
gP, hQ, [hg1ϕ(g)

−1]
)
= (P,Q, [g1]) if and only if g ∈ P

and h ∈ Q and V hg1ϕ(g)
−1ϕ(U) = V g1ϕ(U). Write g = uℓ for u ∈ U , ℓ ∈ L

and h = vm for v ∈ V , m ∈ M . Then the last condition is equivalent to
V mg1ϕ(ℓ)

−1ϕ(U) = V g1ϕ(U), or again to m · g1ϕ(ℓ)−1 ∈ V · g1ϕ(U) ∩M . But
for any element v′ · g1ϕ(u′) = m′ ∈ V · g1ϕ(U)∩M we have g1ϕ(u′) = v′−1m′ ∈
g1ϕ(U)∩ VM , and since M is also a Levi component of g1ϕ(P ), it follows that
g1ϕ(U) ∩ VM = g1ϕ(U) ∩ V and hence m′ = 1. The last condition is therefore
equivalent to m = g1ϕ(ℓ). Together this shows that the stabilizer is EZ , as
desired.

Lemma 12.14. For any w ∈ IW ∪ W J the subset Gw ⊂ G corresponds via
Theorem 12.8 (a) and Proposition 12.13 to the subset

Xw
I,ϕ,x :=

{(
gPI ,

gẇPJ , [gẇẋg1bϕ(γg
−1)]

) ∣∣ g ∈ G, b ∈ B
}
⊂ XI,ϕ,x,

which is a nonsingular variety of dimension dimP + ℓ(w).

Proof. Since (B, T, γẏ) is a frame of Z by Lemma 12.11, Theorem 5.14 for
w ∈ IW , respectively (11.1) and Lemma 5.13 for w ∈ W J , show that Gw =
oZ(γẏBẇ). In other words Gw is the union of the EZ -orbits of γẏbẇ for all
b ∈ B. But by (12.2) and (12.4) we have

λ
(
(γẏb)−1, ẇ

)
= γẏbẇ, and

ρ
(
(γẏb)−1, ẇ

)
=
(
(γẏb)−1P, ẇQ, ℓẇ ◦ ϕ ◦ ℓ−1(γẏb)−1

)
,

and so the EZ -orbit of the former corresponds to the ∆(G)-orbit of the latter
under the correspondence from Theorem 12.8. Moreover, under the isomor-
phism from Proposition 12.13 the latter corresponds to the triple

(
(γẏb)−1

P , ẇQ, [ẇg1ϕ((γẏb)
−1)−1]

)
.
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The definitions of P and Q show that (γẏb)−1

P = b−1

PI = PI and ẇQ = ẇPJ .
The definition of y means that g1ϕ(γẏγ−1) = ẋt for some t ∈ T ; hence

ẇg1ϕ((γẏb)
−1)−1 = ẇg1ϕ(γẏb) =

= ẇ · ẋt · g1 · ϕ(γbγ−1) · ϕ(γ) = ẇ · ẋ · g1 · g
−1
1 t ϕ(γbγ−1) · ϕ(γ).

Since ϕ(γB) = B, the factor b′ := g−1
1 t ϕ(γbγ−1) runs through B while b runs

through B. Thus altogether it follows that Gw corresponds to the union of the
∆(G)-orbits of the triples

(
PI ,

ẇPJ , [ẇẋg1b
′ϕ(γ)]

)

for all b′ ∈ B. This union is just the set Xw
I,ϕ,x in the lemma. The rest follows

from Theorems 5.11, 11.3, and 12.8.

Combining this with Theorems 5.10 and 6.2 and 12.8 we conclude:

Theorem 12.15. (a) The Xw
I,ϕ,x for all w ∈ IW form a disjoint decomposi-

tion of XI,ϕ,x by nonsingular subvarieties of dimension dimP + ℓ(w).

(b) For any w ∈ IW we have

Xw
I,ϕ,x =

∐

w′∈IW
w′4w

Xw′

I,ϕ,x.

Analogously, using Theorems 11.3 and 11.5 and 12.8 we obtain:

Theorem 12.16. (a) The Xw
I,ϕ,x for all W J form a disjoint decomposition

of XI,ϕ,x by nonsingular subvarieties of dimension dimP + ℓ(w).

(b) For any w ∈W J we have

Xw
I,ϕ,x =

∐

w′∈WJ

w′4w

Xw′

I,ϕ,x.

12.3 Frobenius

Keeping the notations of the preceding subsection, we now assume that k has
positive characteristic and that ϕ : G → G is the Frobenius isogeny coming
from a model G0 of G over a finite subfield Fq ⊂ k of cardinality q. Then G0 is
quasi-split; hence we may, and do, assume that B and T come from subgroups
of G0 defined over Fq and therefore satisfy ϕ(B) = B and ϕ(T ) = T . We can
thus take γ := 1.
In this case, our varieties XI,ϕ,x coincide with the varieties ZI used in [MW]
to study F -zips with additional structures. The isogeny g1 ϕ̃ in the connected
algebraic zip datum Z then has vanishing differential; hence Z is orbitally finite
by Proposition 7.3. Thus by Theorem 7.5 each Gw is a single EZ -orbit, and so
by Theorem 12.8 and Theorem 12.15 we deduce:
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Theorem 12.17. (a) If ϕ is the Frobenius isogeny associated to a model of G
over a finite field, each Xw

I,ϕ,x in Theorem 12.15 is a single ∆(G)-orbit.
In particular the set

{
(PI ,

ẇPJ , [ẇẋg1])
∣∣ w ∈ IW

}

is a system of representatives for the action of ∆(G) on XI,ϕ,x.

(b) For any w ∈ IW , the closure of the orbit of (PI ,
ẇPJ , [ẇẋg1]) is the union

of the orbits of (PI ,
ẇ′

PJ , [ẇ
′ẋg1]) for those w′ ∈ IW satisfying w′ 4 w.

Theorem 12.17 (a) was proved in [MW], Theorem 3 and (b) answers the ques-
tion of the closure relation that was left open there.

12.4 Lusztig’s varieties

Now we apply the results of Subsection 12.2 to the special case ϕ = id. In
this case we can choose γ := 1 and obtain ϕ̄ = id. Then our varieties XI,ϕ,x

coincide with the varieties ZI,x,δ defined and studied by Lusztig in [Lus2].
There he defines a decomposition of XI,ϕ,x into a certain family of ∆(G)-
invariant subvarieties. In [He2], He shows how to parametrize this family by
the set W δ(I). We will denote the piece corresponding to w ∈ W δ(I) in this
parametrization by X̃w

I,ϕ,x. (In [He2], He denotes XI,ϕ,x by Z̃I,x,δ and X̃w
I,ϕ,x

by Z̃wI,x,δ.) We will show that this decomposition is the same as ours from
Theorem 12.16 up to a different parametrization.

Lemma 12.18. The map w 7→ wx induces a bijection W J ∼−→W δ(I).

Proof. Take any w ∈ W J . Using Lemma 12.9 and (2.11) we get wxΦ+
δ(I) =

wΦ+
J ⊂ Φ+. By (2.11) this shows that wx ∈W δ(I). A similar argument shows

that wx−1 ∈ W J for any w ∈ W δ(I), which finishes the proof.

Theorem 12.19. For any w ∈W J we have Xw
I,ϕ,x = X̃wx

I,ϕ,x.

Proof. The statement makes sense by Lemma 12.18. Let w ∈ W J and w′ :=
wx ∈ W δ(I). In [He2], Proposition 1.7, He shows that

X̃w′

I,ϕ,x = ∆(G) ·
{
(PI ,

bẇ′ẋ−1

PJ , [bẇ
′g1b

′])
∣∣ b, b′ ∈ B

}
.

(In [He2], it is assumed that G is semi-simple and adjoint. But this assumption
is not needed for the proof of Proposition 1.7 in [loc. cit.].) By acting on such

a point (PI ,
bẇ′ẋ−1

PJ , [bẇ
′g1b′]) with ∆(b−1) and using w = w′x−1 we get

X̃w′

I,ϕ,x = ∆(G) ·
{
(PI ,

ẇPJ , [ẇẋg1b
′])
∣∣ b′ ∈ B

}
.

Since γ = 1, comparison with Lemma 12.14 proves the claim.

From Theorem 12.16 we can now deduce the closure relation between the
X̃w
I,ϕ,x:
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Theorem 12.20. For any w ∈W δ(I) we have

X̃w
I,ϕ,x =

∐

w′∈W δ(I)

w′x−14wx−1

X̃w′

I,ϕ,x.

In the special case x = 1 this result is due to He (see [He2], Proposition 4.6).
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Abstract. In a previous article, we introduced notions of finiteness
obstruction, Euler characteristic, and L2-Euler characteristic for wide
classes of categories. In this sequel, we prove the compatibility of
those notions with homotopy colimits of I-indexed categories where
I is any small category admitting a finite I-CW -model for its I-
classifying space. Special cases of our Homotopy Colimit Formula
include formulas for products, homotopy pushouts, homotopy orbits,
and transport groupoids. We also apply our formulas to Haefliger
complexes of groups, which extend Bass–Serre graphs of groups to
higher dimensions. In particular, we obtain necessary conditions for
developability of a finite complex of groups from an action of a finite
group on a finite category without loops.
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0. Introduction and Statement of Results

In our previous paper [16], we presented a unified conceptual framework for
Euler characteristics of categories in terms of finiteness obstructions and pro-
jective class groups. Many excellent properties of our invariants stem from
the homological origins of our approach: the theory of modules over categories
and the dimension theory of modules over von Neumann algebras provide us
with an array of tools and techniques. In the present paper, we additionally
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draw upon the homotopy theory of diagrams to prove the compatibility of our
invariants with homotopy colimits.
If C : I → CAT is a diagram of categories (or more generally a pseudo functor
into the 2-category of small categories), then our invariants of the homotopy
colimit can be computed in terms of the invariants of the vertex categories C(i).
In particular, our Homotopy Colimit Formula, Theorem 4.1, states

(0.1) χ
(
hocolimI C;R

)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(C(iλ);R)

under certain hypotheses. The set Λn indexes the I-n-cells of a finite I-
CW -model EI for the I-classifying space of I, that is, we have a functor
EI : Iop → SPACES which is inductively built by gluing finitely many cells of
the form morI(−, iλ) × Dn for λ ∈ Λn, and moreover EI(i) ≃ ∗ for all ob-
jects i of I. Similar formulas hold for the finiteness obstruction, the functorial
Euler characteristic, the functorial L2-Euler characteristic, and the L2-Euler
characteristic.
Motivation for such a formula is provided by the classical Inclusion-Exclusion
Principle: if A, B, and A ∩B are finite simplicial complexes, then one has

χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).

However, one cannot expect the Euler characteristic to be compatible with
pushouts, even in the simplest cases. The pushout in CAT of the discrete
categories

{∗} ← {y, z} → {∗′}
is a point, but χ(point) 6= 1+1−2. On the other hand, their homotopy pushout
in CAT is the category whose objects and nontrivial morphisms are pictured
below.

y //

��

∗′

∗ zoo

OO

The classifying space of this category has the homotopy type of S1, so that

χ(homotopy pushout) = χ({∗}) + χ({∗′})− χ({y, z})
is true. In fact, the formula for homotopy pushouts is a special case of (0.1):
the category I = {1 ← 0 → 2} admits a finite model with Λ0 = {1, 2} and
Λ1 = {0}, as constructed in Example 2.6. See Example 5.4 for the homotopy
pushout formulas of the other invariants.
The Homotopy Colimit Formula in Theorem 4.1 has many applications beyond
homotopy pushouts. Other special cases are formulas for Euler characteris-
tics of products, homotopy orbits, and transport groupoids. Our formulas also
have ramifications for the developability of Haefliger’s complexes of groups in
geometric group theory. If a group G acts on an Mκ-polyhedral complex by
isometries preserving cell structure, and if each g ∈ G fixes each cell pointwise
that g fixes setwise, then the quotient space is also an Mκ-polyhedral complex,
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see Bridson–Haefliger [11, page 534]. Let us call the quotient Mκ-polyhedral
complex Q. To each face σ of Q, one can assign the stabilizer Gσ of a chosen
representative cell σ. This assignment, along with the various conjugated in-
clusions of groups obtained from face inclusions, is called the complex of groups
associated to the group action. It is a pseudo functor from the poset of faces of
Q into groups. In the finite case, the Euler characteristic and L2-Euler char-
acteristic of the homotopy colimit can be computed in terms of the original
complex and the order of the group. We prove this in Theorem 8.30. Homo-
topy colimits of complexes of groups play a special role in Haefliger’s theory,
see the discussion after Definition 8.9.
In Section 1, we review the notions and results from [16] that we need in this
sequel. Explanations of the finiteness obstruction, the functorial Euler char-
acteristic, the Euler characteristic, the functorial L2-Euler characteristic, the
L2-Euler characteristic, and the necessary theorems are all contained in Sec-
tion 1 in order to make the present paper self-contained. Section 2 is dedicated
to an assumption in the Homotopy Colimit Formula, namely the requirement
that a finite I-CW -model exists for the I-classifying space of I. We recall
the notion of I-CW -complex, present various examples, and prove that finite
models are preserved under equivalences of categories. Homotopy colimits of
diagrams of categories are recalled in Section 3. The homotopy colimit con-
struction in CAT is the same as the Grothendieck construction, or the category
of elements. Thomason proved that the homotopy colimit construction has the
expected properties. We prove our main theorem, the Homotopy Colimit For-
mula, in Section 4, work out various examples in Section 5, and derive the
generalized Inclusion-Exclusion Principle in Section 6. We review the groupoid
cardinality of Baez–Dolan and the Euler characteristic of Leinster in Section 7,
and compare our Homotopy Colimit Formula with Leinster’s compatibility with
Grothendieck fibrations in terms of weightings. We apply our results to Hae-
fliger complexes of groups in Section 8 to prove Theorems 8.30 and 8.35, which
express Euler characteristics of complexes of groups associated to group actions
in terms of the initial data.
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1. The Finiteness Obstruction and Euler Characteristics

We quickly recall the main definitions and results needed from our first paper
[16] in order to make this article as self-contained as possible. See [16] for
proofs and more detail.
Throughout this paper, let Γ be a category and R an associative, commutative
ring with identity. The first ingredient we need is the theory of modules over
categories developed by Lück [23], and recalled in [16]. An RΓ-module is a
contravariant functor from Γ into the category of left R-modules. For example,
if Γ is a group G viewed as a one-object category, then an RΓ-module is the
same as a right module over the group ring RG. An RΓ-module P is projective
if it is projective in the usual sense of homological algebra, that is, for every
surjective RΓ-morphism p : M → N and every RΓ-morphism f : P → N there
exists an RΓ-morphism f : P → M such that p ◦ f = f . An RΓ-module M
is finitely generated if there is a surjective RΓ-morphism B(C) → M from an
RΓ-module B(C) that is free on a collection C of sets indexed by ob(Γ) such
that

∐
x∈ob(Γ) Cx is finite. Explicitly, the free RΓ-module on the ob(Γ)-set C is

(1.1) B(C) :=
⊕

x∈ob(Γ)

⊕

Cx

RmorΓ(?, x).

A contravariant RΓ-module may be tensored with a covariant RΓ-module to
obtain an R-module: ifM : Γop → R-MOD andN : Γ→ R-MOD are functors,
then the tensor product M ⊗RΓ N is the quotient of the R-module

⊕

x∈ob(Γ)
M(x)⊗R N(x)
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by the R-submodule generated by elements of the form

(M(f)m)⊗ n−m⊗ (N(f)n)

where f : x→ y is a morphism in Γ, m ∈M(y), and n ∈ N(x).
Finite projective resolutions of the constant RΓ-module R play a special role
in our theory of Euler characteristic for categories. A resolution P∗ of an
RΓ-module M is said to be finite projective if it has finite length and each
Pn is finitely generated and projective. We say that a category Γ is of type
(FPR) if the constant RΓ-module R : Γop → R-MOD with value R admits
a finite projective resolution. Categories in which every endomorphism is an
isomorphism, the so-called EI-categories, provide important examples. Finite
EI-categories in which | aut(x)| is invertible in R for each object x are of type
(FPR). Further examples of categories of type (FPR) include categories Γ
which admit a finite Γ-CW -model for the classifying Γ-space EΓ (see Section
2 and Examples 2.4, 2.5, 2.6, and 2.7). In fact, such categories Γ are even of
type (FFR): the cellular chains on a finite Γ-CW -model for EΓ provide a finite
free resolution of R. In general, if a category is of type (FFZ), then it is of type
(FFR) for any associative, commutative ring R with identity.
A home for the finiteness obstruction of a category Γ is provided by the pro-
jective class group K0(RΓ). The generators of this abelian group are the iso-
morphism classes of finitely generated projective RΓ-modules and the rela-
tions are given by expressions [P0] − [P1] + [P2] = 0 for every exact sequence
0→ P0 → P1 → P2 → 0 of finitely generated projective RΓ-modules.

Definition 1.2 (Finiteness obstruction of a category). Let Γ be a category of
type (FPR) and P∗ a finite projective resolution of the constant RΓ-module R.
The finiteness obstruction of Γ with coefficients in R is

o(Γ;R) :=
∑

n≥0
(−1)n · [Pn] ∈ K0(RΓ).

We also use the notation [R], or simply [R], to denote the finiteness obstruction
o(Γ;R). The finiteness obstruction, when it exists, does not depend on the
choice P∗ of finite projective resolution of R.

The finiteness obstruction is compatible with most everything one could hope
for. If F : Γ1 → Γ2 is a right adjoint, and Γ1 is of type (FPR), then Γ2 is of
type (FPR) and F∗o(Γ1;R) = o(Γ2;R) (here the group homomorphism F∗ is
induced by induction with F ). Since an equivalence of categories is a right
adjoint (and also a left adjoint), a particular instance of the previous sentence
is: if F : Γ1 → Γ2 is an equivalence of categories, then Γ1 is of type (FPR) if
and only if Γ2 is, and in this case F∗o(Γ1;R) = o(Γ2;R). The finiteness ob-
struction is also compatible with finite coproducts of categories, finite products
of categories, restriction along admissable functors, and homotopy colimits, as
we prove in Theorem 4.1. If G is a finitely presented group of type (FPZ), then

Wall’s finiteness obstruction o(BG) is the same as o(Ĝ;Z), which is the finite-

ness obstruction of G viewed as a one-object category Ĝ with morphisms G.
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The finiteness obstruction in Definition 1.2 is a special case of the finiteness ob-
struction of a finitely dominated RΓ-chain complex C, denoted o(C) ∈ K0(RΓ).

The image of o(C) in the reduced K-theory K̃0(RΓ) vanishes if and only if C
is RΓ-homotopy equivalent to a finite free RΓ-chain complex, see [23, Chapter
11].
We will occasionally work with directly finite categories. A category is called
directly finite if for any two objects x and y and morphisms u : x → y and
v : y → x the implication vu = idx =⇒ uv = idy holds. If Γ1 and Γ2 are
equivalent categories, then Γ1 is directly finite if and only if Γ2 is directly finite.
Examples of directly finite categories include groupoids, and more generally EI-
categories.
A key result in the theory of modules over an EI-category is Lück’s splitting of
the projective class group of Γ into the projective class groups of the automor-
phism groups autΓ(x), one ach isomorphism class of objects. We next recall
the relevant maps and notation. For x ∈ ob(Γ), we denote R autΓ(x) by R[x]
for simplicity. The splitting functor at x ∈ ob(Γ)

Sx : MOD-RΓ→MOD-R[x],(1.3)

maps an RΓ-module M to the quotient of the R-module M(x) by
the R-submodule generated by all images of R-module homomorphisms
M(u) : M(y) → M(x) induced by all non-invertible morphisms u : x → y in
Γ. The right R[x]-module structure on M(x) induces a right R[x]-module
structure on SxM . Note that SxM is an R[x]-module, not an RΓ-module.
The functor Sx respects direct sums, sends epimorphisms to epimorphisms,
and sends free modules to free modules. If Γ is directly finite, then Sx also
preserves finitely generated and projective. The extension functor at x ∈ ob(Γ)

Ex : MOD-R[x]→MOD-RΓ(1.4)

maps an R[x]-module N to the RΓ-module N ⊗R[x] RmorΓ(?, x). The func-
tor Ex respects direct sums, sends epimorphisms to epimorphisms, sends free
modules to free modules, and preserves finitely generated and projective. If
Γ is directly finite, and P is a projective R[x]-module, then there is a natural
isomorphism P ∼= SxExP compatible with direct sums.

Theorem 1.5 (Splitting of K0(RΓ) for EI-categories, Theorem 10.34 on
page 196 of Lück [23]). If Γ is an EI-category, then the group homomorphisms

K0(RΓ)
S //

E
oo SplitK0(RΓ) :=

⊕

x∈iso(Γ)
K0(R autΓ(x))

defined by

S[P ] = {[SxP ] | x ∈ iso(Γ)}
and

E{[Qx] | x ∈ iso(Γ)} =
∑

x∈iso(Γ)
[ExQx],
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are isomorphisms and inverse to one another. They are covariantly natural
with respect to functors between EI-categories.

Remark 1.6. If Γ is not an EI-category, then the splitting homomorphism
S : K0(RΓ) → SplitK0(RΓ) may not be an isomorphism. However, S is co-
variantly natural with respect to functors between directly finite categories, see
[16, Lemma 3.15].

The splitting functors Sx allow us to define the notion of RΓ-rank rkRΓ for
finitely generated RΓ-modules, which in turn allows the definition of the func-
torial Euler characteristic, as we explain next. We assume a fixed notion of a
rank rkR(N) ∈ Z for finitely generated R-modules N such that rkR(R) = 1
and rkR(N1) = rkR(N0) + rkR(N2) for any sequence 0→ N0 → N1 → N2 → 0
of finitely generated R-modules. If R is a commutative principal ideal domain,
we use rkR(N) := dimF (F ⊗RN), where F is the quotient field of R. Let U(Γ)
be the free abelian group on the set of isomorphism classes of objects in Γ, that
is U(Γ) := Z iso(Γ). The augmentation homomorphism ǫ : U(Γ) → Z adds up
the components of an element of U(Γ).

Definition 1.7 (Rank of a finitely generated RΓ-module). If M is a finitely
generated RΓ-module M , then its RΓ-rank is

rkRΓ(M) :=
{
rkR(SxM ⊗R[x] R) | x ∈ iso(Γ)

}
∈ U(Γ).

Definition 1.8 (The (functorial) Euler characteristic of a category). Suppose
that Γ is of type (FPR). The functorial Euler characteristic of Γ with coeffi-
cients in R is the image of the finiteness obstruction o(Γ;R) ∈ K0(RΓ) under
the homomorphism rkRΓ : K0(RΓ)→ U(Γ), that is

χf (Γ;R) := rkRΓ o(Γ;R) =




∑

n≥0
(−1)n rkR(SxPn ⊗R[x] R) | x ∈ iso(Γ)





∈ U(Γ),

where P∗ is any finite projective RΓ-resolution of the constant RΓ-module R.
The Euler characteristic of Γ with coefficients in R is the sum of the components
of the functorial Euler characteristic, that is,

χ(Γ;R) := ǫ(χf (Γ;R)) =
∑

x∈iso(Γ)

∑

n≥0
(−1)n rkR(SxPn ⊗R[x] R).

For example, if G is a finite groupoid, then χf (G) ∈ U(G) is (1, 1, . . . , 1), and
χ(G) counts the isomorphism classes of objects, or equivalently the connected
components, of G.
Theorem 1.9 (Theorem 4.20 of Fiore–Lück–Sauer [16]). Let R be a Noetherian
ring and Γ a directly finite category of type (FPR). Then the Euler character-
istic and topological Euler characteristic of Γ agree. That is, Hn(BΓ;R) is a
finitely generated R-module for every n ≥ 0, there exists a natural number d
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with Hn(BΓ;R) = 0 for all n > d, and

χ(Γ;R) = χ(BΓ;R) =
∑

n≥0
(−1)n · rkR(Hn(BΓ;R)) ∈ Z.

Here χ(Γ;R) is defined in Definition 1.8 and BΓ denotes the geometric real-
ization of the nerve of Γ.

The functorial Euler characteristic and Euler characteristic have many desirable
properties. They are invariant under equivalence of categories and are compat-
ible with finite products and finite coproducts. As we prove in Theorem 4.1,
they are also compatible with homotopy colimits.
The L2-Euler characteristic, which is in some sense the better invariant, can be

defined similarly by taking R = C and using the L2-rank rk
(2)
Γ rather than the

RΓ-rank. For this we need group von Neumann algebras and their dimension
theory from Lück [24] and [25], as recalled in our first paper [16] for the purpose
of Euler characteristics. If G is a group, its group von Neumann algebra

N (G) = B(l2(G))G

is the algebra of bounded operators on l2(G) that are equivariant with respect
to the right G-action. If G is finite, N (G) is the group ring CG. In any case,
the group ring CG embeds as a subring of N (G) by sending g ∈ G to the
isometric G-equivariant operator l2(G) → l2(G) given by left multiplication
with g. In particular, we can view N (G) as a CG-N (G)-bimodule and tensor
CG-modules on the right with N (G). If G is the automorphism group of an
object in Γ, then we write N (x) for N

(
autΓ(x)

)
.

The von Neumann dimension, dimN (G), is a function that assigns to every
right N (G)-module M a non-negative real number of ∞. It is the unique
such function which satisfies Hattori-Stallings rank, additivity, cofinality, and
continuity. If G is a finite group, then N (G) = CG and we get for a CG-module
M the von Neumann dimension

dimN (G)(M) =
1

|G| · dimC(M),

where dimC is the dimension ofM viewed as a complex vector space. A category
Γ is said to be of type (L2) if for one (and hence every) projective CΓ-resolution
P∗ of the constant CΓ-module C we have

∑

x∈iso(Γ)

∑

n≥0
dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
<∞.

Note that the projective resolution P∗ of C is not required to be of finite
length, nor finitely generated. Examples of categories of type (L2) include
finite EI-categories, in particular finite posets and finite groupoids. Infinite
categories can also be of type (L2), for example any (small) groupoid with
finite automorphism groups such that

(1.10)
∑

x∈iso(G)

1

| autG(x)|
<∞
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holds is of type (L2). The condition of type (L2) is weaker than (FPC), since
any directly finite category of type (FPC) is also of type (L2).

Definition 1.11 (The (functorial) L2-Euler characteristic of a category). Sup-
pose that Γ is of type (L2). Define

U (1)(Γ) :=





∑

x∈iso(Γ)
rx · x

∣∣∣∣ rx ∈ R,
∑

x∈iso(Γ)
|rx| <∞



 ⊆

∏

x̄∈iso(Γ)
R.

The functorial L2-Euler characteristic of Γ is

χ
(2)
f (Γ) :=




∑

n≥0
(−1)n dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
| x̄ ∈ iso(Γ)



 ∈ U

(1)(Γ),

where P∗ is any projective CΓ-resolution of the constant CΓ-module C. The
L2-Euler characteristic of Γ is the sum over x̄ ∈ iso(Γ) of the components of
the functorial Euler characteristic, that is,

χ(2)(Γ) :=
∑

x∈iso(Γ)

∑

n≥0
(−1)n dimN (x)Hn

(
SxP∗ ⊗C[x] N (x)

)
.

If G is a groupoid such that (1.10) holds, then the functorial L2-Euler char-

acteristic χ
(2)
f (G) ∈ ∏x∈iso(G) R has at x ∈ iso(G) the value 1/| autG(x)|. The

L2-Euler characteristic is

(1.12) χ(2)(G) =
∑

x∈iso(G)

1

| autG(x)|
.

See Lemma 7.5 for an explicit formula for χ(2)(Γ) in the case of a finite, skeletal
EI-category Γ in which the left autΓ(y)-action on morΓ(x, y) is free for every
two objects x, y ∈ ob(Γ).

Definition 1.13 (L2-rank of a finitely generated CΓ-module). Let M be a
finitely generated CΓ-module M . Its L2-rank is

rk
(2)
Γ (M) :=

{
dimN (x)(SxM ⊗C[x] N (x)) | x̄ ∈ iso(Γ)

}
∈ U(Γ)⊗Z R =

⊕

iso(Γ)

R.

Theorem 1.14 (Relating the finiteness obstruction and the L2-Euler charac-
teristic, Theorem 5.22 of Fiore–Lück–Sauer [16]). Suppose that Γ is a directly
finite category of type (FPC). Then Γ is of type (L2) and the image of the
finiteness obstruction o(Γ;C) (see Definition 1.2) under the homomorphism

rk
(2)
Γ : K0(CΓ)→ U(Γ)⊗Z R =

⊕

x∈iso(Γ)
R

is the functorial L2-Euler characteristic χ
(2)
f (Γ).

The L2-Euler characteristic agrees with the groupoid cardinality of Baez–Dolan
[4] and the Euler characteristic of Leinster [21] in certain cases, see Lemma 7.5
and Section 7. In particular, the Baez–Dolan groupoid cardinality of a groupoid
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satisfying (1.10) is (1.12). However, the Baez–Dolan groupoid cardinality and
Leinster’s Euler characteristic χL(Γ) only depend on the underlying graph of
Γ, whereas our invariants truly depend on the category structure. For instance,
χL is 1

2 for both the two-element monoid (Z/2,×) and the two-element group

(Z/2,+), whereas χ(2) is 1 respectively 1
2 . The distinction can already be

seen on the level of the finiteness obstructions. The Euler characteristic χ(−)
and topological Euler characteristic χ(B−) can also distinguish categories with
the same underlying directed graph as in the following example. For S =
{1, 2, 3, 4}, G1 = 〈(1234)〉, G2 = 〈(12), (34)〉, and k = 1, 2, let Γk be the
EI-category with objects x and y and mor(x, y) := S, mor(x, x) := {idx},
mor(y, y) := Gk, and mor(y, x) = ∅. Composition in Γk is the composition in
Gk and the left Gk-action on S, that is, Γk is the EI-category associated to
the respective Gk-{1}-biset S as in Subsection 6.4 of Fiore–Lück–Sauer [16].
Then Γ1 and Γ2 have the same underlying directed graph but χ(Γ1;Q) =
χ(BΓ1;Q) = 1 and χ(Γ2;Q) = χ(BΓ2;Q) = 0 by Theorem 6.23 (iii) of Fiore–
Lück–Sauer [16]. An infinite example of categories with the same underlying
graph but different Euler characteristics is provided by the groups Z and Z∗Z,
each of which admits a finite Γ-CW -model for its respective Γ-classifying space.

The categories Ẑ and Ẑ ∗ Z have the same underlying directed graph, but we

have χ(2)(Ẑ) = 0 6= χ(2)(Ẑ ∗ Z), and similarly for χ. Typically, the Euler
characteristic of a category Γfree free on a directed graph (V,E) is the same as
the Euler characteristic of the directed graph (V,E). For the topological Euler
characteristic this is clearly true, since BΓfree is homotopy equivalent to the
topological realization |(V,E)|. If Γfree is directly finite and R is Noetherian,
then we also have χ(Γfree) = χ(|(V,E)|) by Theorem 1.9. For example for the

directed graph with one vertex and one arrow we have χ(N̂) = 0 = χ(S1).
The functorial L2-Euler characteristic and the L2-Euler characteristic have
many desirable properties. They are invariant under equivalence of categories
and are compatible with finite products, finite coproducts, and isofibrations and
coverings between finite groupoids. We prove in Theorem 4.1 the compatibility
with homotopy colimits. In the case of a group G, the L2-Euler characteristic

of Ĝ coincides with the classical L2-Euler characteristic of G, which is 1/|G|
when G is finite. The L2-Euler characteristic is also closely related to the
geometry and topology of the classifying space for proper G-actions, namely
the functorial L2-Euler characteristic of the proper orbit category Or(G) is
equal to the equivariant Euler characteristic of the classifying space EG for
proper G-actions, whenever EG admits a finite G-CW -model.
The question arises: what are sufficient conditions for the Euler characteristic
and L2-Euler characteristic to coincide with the Euler characteristic of the
classifying space? This is answered in the following Theorem.

Theorem 1.15 (Invariants agree for directly finite and type (FFZ), Theo-
rem 5.25 of Fiore–Lück–Sauer [16]). Suppose Γ is directly finite and of type
(FFZ). Then the functorial L2-Euler characteristic of Definition 1.11 coincides
with the functorial Euler characteristic of Definition 1.8 for any associative,
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commutative ring R with identity

χ
(2)
f (Γ) = χf (Γ;R) ∈ U(Γ) ⊆ U (1)(Γ),

and thus χ(2)(Γ) = χ(Γ;R) in Definition 1.11 and Definition 1.8.
If R is additionally Noetherian, then

(1.16) χ(BΓ;R) = χ(Γ;R) = χ(2)(Γ).

Moreover, if Γ is merely of type (FFC) rather than (FFZ), then equation (1.16)
holds for any Noetherian ring R containing C.

Any category Γ which admits a finite Γ-CW -model in the sense of Section 2 is
of type (FFR) for any ring R, by an application of the cellular R-chain functor.
Thus, Theorem 1.15 applies to any directly finite category Γ which admits a
finite Γ-CW -model. For example, finite categories without loops are directly
finite and admit finite models (Lemma 8.4 and Theorem 8.5), so equation (1.16)
holds for instance for {j ⇉ k}, {k← j → ℓ}, and finite posets. The monoid N
and group Z, viewed as one-object categories N̂ and Ẑ, are also directly finite
and admit finite models (see Example 2.8), so we have

0 = χ(S1;R) = χ(BN̂;R) = χ(N̂;R) = χ(2)(N̂)

and

0 = χ(S1;R) = χ(BẐ;R) = χ(Ẑ;R) = χ(2)(Ẑ)

(BN̂ → BẐ ≃ S1 is a homotopy equivalence by Quillen’s Theorem A, see

Rabrenović [35, Proposition 10]). The equations χ(N̂;R) = 0 = χ(2)(N̂) and

χ(Ẑ;R) = 0 = χ(2)(Ẑ) also follow from Example 5.3, since the finite models for

N̂ and Ẑ in Example 2.8 each have one I-0-cell and one I-1-cell.
We may use Theorem 1.15 to obtain an explicit formula for Euler characteristics
of finite categories without loops as follows. Let Γ be a finite category without
loops, and choose a skeleton Γ′. Let cn(Γ′) denote the number of paths

i0 → i1 → i2 → · · · → in

of n-many non-identity morphisms in Γ′. Then cn(Γ′) is the number of n-cells
in the CW -complex BΓ′, and we have

(1.17) χ(Γ;R) = χ(2)(Γ) = χ(BΓ;R) = χ(BΓ′;R) =
∑

n≥0
(−1)ncn(Γ′).

See [21, Corollary 1.5] for a different derivation of this formula for Leinster’s
Euler characteristic χL(Γ) in the case Γ was already skeletal. See also Exam-
ples 5.3 and 8.7 where skeletality of I is not required.

Remark 1.18 (Homotopy Invariance). If F : Γ1 → Γ2 is a functor such that
BF is a homotopy equivalence, and both Γ1 and Γ2 are of type (FPR), and if

χ(Γ1;R) = χ(BΓ1;R) and χ(Γ2;R) = χ(BΓ2;R),

then clearly χ(Γ1;R) = χ(Γ2;R). However, it is possible for two categories
to be homotopy equivalent, one of which is (FPR) and the other is not, so
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that one has a notion of Euler characteristic and the other does not. In Sec-
tion 10 of Fiore–Lück–Sauer [16] such an example is discussed.

2. Spaces over a Category

An important hypothesis in our Homotopy Colimit Formula involves the idea
of a space over a category, see Davis–Lück [14]. Namely, we assume that the
indexing category I for the diagram C of categories admits a finite I-CW -model
for its I-classifying space. Essentially this means it is possible to functorially
assign a contractible CW -complex EI(i) to each i ∈ ob(I), and moreover,
these local CW -complexes are constructed globally by gluing I-n-cells of the
form morI(−, iλ)×Dn onto the already globally constructed (n− 1)-skeleton
EIn. The Homotopy Colimit Formula then expresses the invariants of the
homotopy colimit of C in terms of the invariants of the categories C(iλ) at the
base objects iλ for EI.
The gluing described above takes place in the more general category of I-spaces.
A (contravariant) I-space is a contravariant functor from I to the category
SPACES of (compactly generated) topological spaces. As usual, we will always
work in the category of compactly generated spaces (see Steenrod [39]). A map
between I-spaces is a natural transformation. Given an object i ∈ ob(I), we
obtain an I-space morI(?, i) which assigns to an object j the discrete space
morI(j, i).
The next definition is taken from Davis–Lück [14, Definition 3.2], where an
I-CW -complex is called a free I-CW -complex and we will omit the word free
here. The more general notion of I-CW -complex was defined by Dror Far-
joun [15, 1.16 and 2.1]. See also Piacenza [34].

Definition 2.1 (I-CW -complex). A (contravariant) I-CW -complex X is a
contravariant I-space X together with a filtration

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ . . . ⊂ X =
⋃

n≥0
Xn

such that X = colimn→∞Xn and for any n ≥ 0 the n-skeleton Xn is obtained
from the (n−1)-skeletonXn−1 by attaching I-n-cells, i.e., there exists a pushout
of I-spaces of the form

∐
λ∈Λn morI(−, iλ)× Sn−1 −−−−→ Xn−1y

y
∐
λ∈Λn morI(−, iλ)×Dn −−−−→ Xn

where the vertical maps are inclusions, Λn is an index set, and the iλ-s are
objects of I. In particular, X0 =

∐
λ∈Λ0

morI(−, iλ).
We refer to the inclusion functor morI(−, iλ)×(Dn−Sn−1)→ X as an I-n-cell
based at iλ.
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An I-CW -complex has dimension ≤ n ifX = Xn. We callX finite dimensional
if there exists an integer n with X = Xn. It is called finite if it is finite
dimensional and Λn is finite for every n ≥ 0.
The definition of a covariant I-CW -complex is analogous.

Definition 2.2 (Classifying I-space). A model for the classifying I-space EI
is an I-CW -complex EI such that EI(i) is contractible for all objects i.

The universal property of EI is that for any I-CW -complex X there is up
to homotopy precisely one map of I-spaces from X to EI. In particular two
models for EI are I-homotopy equivalent (see Davis–Lück [14, Theorem 3.4]).
A model for the usual classifying space BI is given by EI ⊗I {•} (see [14,
Definition 3.10]), where {•} is the constant covariant I-space with value the
one point space and ⊗I denotes the tensor product of a contravariant and a
covariant I-space as follows (see [14, Definition 1.4]).

Definition 2.3 (Tensor product of a contravariant and a covariant I-space).
Let X be a contravariant I-space and Y a covariant I-space. The tensor
product of X and Y is

X ⊗I Y =

(∐

i∈I
X(i)× Y (i)

)
/ ∼

where (X(φ)(x), y) ∼ (x, Y (φ)y) for all morphisms φ : i → j in I and points
x ∈ X(j) and y ∈ Y (i).

We present some examples of classifying I-spaces for various categories I.
Example 2.4. If I has a terminal object t, then a finite model for the classifying
I-space EI is simply morI(−, t).
Example 2.5. Let I = {j ⇉ k} be the category consisting of two objects
and a single pair of parallel arrows between them. All other morphisms are
identity morphisms. We obtain a finite model X for the classifying I-space EI
as follows. The I-CW -space X has a single I-0-cell based at k and a single
I-1-cell based at j. The gluing map morI(−, j)× S0 → morI(−, k) is induced
by the two parallel arrows j ⇉ k. Then X(j) = D1 ≃ ∗ and X(k) = ∗.
Example 2.6. Let I = {k ← j → ℓ} be the category with objects j, k
and ℓ, and precisely one morphism from j to k and one morphism from j
to ℓ. All other morphisms are identity morphisms. A finite model for EI
is given by the I-CW -complex with precisely two I-0-cells morI(?, k) and
morI(?, ℓ) and precisely one I-1-cell morI(?, j) × D1 whose attaching map
morI(?, j)×S0 → morI(?, k)∐morI(?, ℓ) is the disjoint union of the canonical
maps morI(?, j) → morI(?, k) and morI(?, j) → morI(?, ℓ). The value of this
1-dimensional I-CW -complex at the objects k and ℓ is a point and at the object
j is D1. Hence it is a finite model for EI.
Example 2.7. Let I be the category with objects the non-empty subsets of
[q] = {0, 1, . . . , q} and a unique arrow J → K if and only if K ⊆ J . In
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other words I is the opposite of the poset of non-empty subsets of [q]. Then
I admits a finite I-CW -model X for the classifying I-space EI as follows.
The functor X : Iop → SPACES assigns to L the space |∆[L]|, which is the
geometric realization of the simplicial set which maps [m] to the set of weakly
order preserving maps [m] → L. The space |∆[L]| is homeomorphic to the
standard simplex with card(L) vertices. The n-skeleton Xn of X sends each
L to the n-skeleton of |∆[L]|. The I-cells of X are attached globally in the
following way. The 0-skeleton is

X0 =
∐

J⊆[q],|J|=1

morI(−, J).

For n ≤ q, we construct Xn out of Xn−1 as the pushout
∐
J morI(−, J)× |∂∆[n]| //

��

Xn−1

��∐
J morI(−, J)× |∆[n]| // Xn.

The disjoint unions are over all J ⊆ [q] with |J | = n+ 1. The J-component of
the gluing map is induced by the (n− 1)-face inclusion

|∆[K]| // ∂|∆[J ]| ∼= ∂|∆[n]|
for all K ⊆ J with |K| = n. Clearly X is a finite I-CW -complex. For each
object L of I, we have X(L) = |∆[L]| ≃ ∗, so that X is a finite model for EI.
Example 2.8. Infinite categories may also admit finite models. Let I = N̂
be the monoid of natural numbers N viewed as a one-object category. A fi-

nite model X for the N̂-classifying space has X0(∗) = mor
N̂
(∗, ∗) = N and

X1(∗) = [0,∞). This model has a single N̂-0-cell mor
N̂
(−, ∗) and a single N̂-

1-cell mor
N̂
(−, ∗)×D1. The gluing map N× S0 → N sends (n,−1) and (n, 1)

to n and n+ 1 respectively. Similarly, the group of integers Z viewed as a one

object category admits a finite model Y with one Ẑ-0-cell and one Ẑ-1-cell, so
that Y0(∗) = Z and Y1(∗) = R.

Remark 2.9. Suppose a category I admits a finite I-CW -model for EI. Then
the cellular R-chains of a finite model provide a finite free resolution of the
constant RI-module R, so I is of type (FFR). If I is additionally directly finite
and R is Noetherian, then χ(BI;R) = χ(I;R) = χ(2)(I) by Theorem 1.15.

Remark 2.10 (Bar construction of classifying I-space). There exists a func-
torial construction EbarI of EI by a kind of bar construction. Namely, the
contravariant functor EbarI : I → SPACES sends an object i to the space
Bbar(i ↓ I), which is the geometric realization of the nerve of the category
of objects under i (see Davis–Lück [14, page 230] and also Bousfield–Kan [10,
page 327]). An equivalent definition of the bar construction in terms of the
tensor product in Definition 2.3 is

(2.11) EbarI = {∗} ⊗I Bbar(? ↓ I ↓??),
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from which we prove that EbarI is an I-CW -complex. The I × Iop-space
Bbar(? ↓ I ↓??) is an I × Iop-CW -complex (see [14, page 228]). For each path

i0 → i1 → i2 → · · · → in

of n-many non-identity morphisms in I, Bbar(? ↓ I ↓??) has an n-cell based
at (i0, in), that is a cell of the form morI(?, i0) ×morI(in, ??) ×Dn. By [14,
Lemma 3.19 (2)], the tensor product EbarI in (2.11) is an I-CW -complex: an
(m + n)-cell based at i is an n-cell of Bbar(? ↓ I ↓??) based at (i, j) and an
m-cell of the CW -complex ∗(j) (see [14, page 229]). More explicitly, for each
path of n-many non-identity morphisms

(2.12) i0 → i1 → i2 → · · · → in

the I-CW -complex EbarI has an n-cell based at i0.
Though the bar construction is in general not a finite I-CW -complex, it is in
certain cases. For example, if I has only finitely many morphisms, no nontrivial
isomorphisms, and no nontrivial endomorphisms, then there are only finitely
many paths as in (2.12), and hence only finitely many I-cells in EbarI.
The bar construction is also compatible with induction. Given a functor α : I →
D, we obtain a map of D-spaces

Ebarα : α∗E
barI → EbarD,

where α∗ denotes induction with the functor α (see [14, Definition 1.8]). If
T : α → β is a natural transformation of functors I → D, we obtain for any
I-space X a natural transformation T∗ : α∗X → β∗X which comes from the
map of I-D-spaces morD(??, α(?)) → morD(??, β(?)) sending g : ?? → α(?) to
T (?) ◦ g : ??→ β(?).

Lemma 2.13 (Invariance of finite models under equivalence of categories). Sup-
pose I and J are equivalent categories. Then I admits a finite I-CW -model
for EI if and only if J admits a finite J -CW -model for EJ . More precisely,
if F : I → J is an equivalence of categories and Y is a finite J -CW -model for
EJ , then the restriction resF Y is a finite I-CW -model for EI.
Proof. For any functor F : I → J , we have an adjunction

indF : I-SPACES⇄ J -SPACES : resF

defined by

indF (X) := X(?)⊗I morJ
(
??, F (?)

)
resF (Y ) := Y ◦ F (?).

The I-space resF (Y ) is naturally homeomorphic to Y (?) ⊗J morJ
(
F (??), ?

)
.

But since we are assuming F is an equivalence of categories, it is a left adjoint
in an adjoint equivalence (F,G), and we have natural homeomorphisms of I-
spaces

resF (Y ) ∼= Y (?)⊗J morJ
(
F (??), ?

)

∼= Y (?)⊗J morJ
(
??, G(?)

)

∼= indG(Y ).
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Since indG is a left adjoint, so is resF , and resF therefore preserves pushouts.
Note also

resF morJ (?, j) = morJ
(
F (?), j

) ∼= morI
(
?, G(j)

)
.

If Y is a finite J -CW -model for EJ with n-skeleton
∐
λ∈Λn morJ (−, jλ)× Sn−1 −−−−→ Yn−1y

y
∐
λ∈Λn morJ (−, jλ)×Dn −−−−→ Yn,

then X := resF Y is a finite I-CW -complex with n-skeleton
∐
λ∈Λn morI

(
−, G(jλ)

)
× Sn−1 −−−−→ Xn−1y

y
∐
λ∈Λn morI

(
−, G(jλ)

)
×Dn −−−−→ Xn.

Clearly, resF Y is contractible at each object i, since resF Y (i) = Y (F (i)) ≃
∗. �

3. Homotopy Colimits of Categories

Definition 3.1 (Homotopy colimit for categories). Let C : I → CAT be a
covariant functor from some (small) index category I to the category of small
categories. Its homotopy colimit

hocolimI C
is the following category. Objects are pairs (i, c), where i ∈ ob(I) and c ∈
ob
(
C(i)

)
. A morphism from (i, c) to (j, d) is a pair (u, f), where u : i → j is a

morphism in I and f : C(u)(c)→ d is a morphism in C(j). The composition of
the morphisms (u, f) : (i, c)→ (j, d) and (v, g) : (j, d)→ (k, e) is the morphism

(v, g) ◦ (u, f) = (v ◦ u, g ◦ C(v)(f)) : (i, c)→ (k, e).

The identity of (i, c) is given by (idi, idc).
This homotopy colimit construction for functors is often called theGrothendieck
construction or the category of elements.

In which sense is hocolimI C a homotopy colimit? First, recall from [20] that
the nerve functor induces an equivalence of categories Ho CAT → Ho SSET ,
where Ho CAT denotes the localization of CAT with respect to nerve weak
equivalences and Ho SSET denotes the localization of SSET with respect to the
usual weak equivalences. In [40], Thomason proved that hocolimI C in CAT

corresponds to the Bousfield–Kan construction in SSET under this equivalence
of categories. Consequently, hocolimI C has a universal property in the form
of a bijection

(3.2) Ho CAT(hocolimI C,Γ) ∼= Ho CAT
I(C,Γ),
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for any category Γ. Here Γ indicates the I-diagram that is constant Γ. In [41],
Thomason proved that CAT admits a cofibrantly generated model structure
in which the weak equivalences are the nerve weak equivalences, so that the
associated projective model structure on CAT

I exists. The model-theoretic
construction of a homotopy colimit of the I-diagram C in CAT as a colimit of
a cofibrant replacement of C in the projective model structure therefore works.
This model-theoretic construction also has the universal property in (3.2), so
is isomorphic to hocolimI C in Ho CAT , i.e. weakly equivalent to hocolimI C
in CAT .1 A direct proof that hocolimI C satisfies the universal property (3.2)
is in Grothendieck’s letter [17], see the article of Maltsiniotis [32, Section 3.1].

Remark 3.3. If C is merely a pseudo functor, then it of course still has a
homotopy colimit. A pseudo functor C : I → CAT is like an ordinary func-
tor, but only preserves composition and unit up to specified coherent natural
isomorphisms Cv,u : C(v) ◦ C(u) ⇒ C(v ◦ u) and Ci : 1C(i) ⇒ C(idi). Moreover,
Cv,u is required to be natural in v and u. The objects and morphisms of the
homotopy colimit hocolimI C are defined as in the strict case of Definition 3.1.
The composition in hocolimI C is defined by the modified rule

(v, g) ◦ (u, f) = (v ◦ u, g ◦ (C(v)(f)) ◦ C−1v,u(c))

while the identity of the object (i, c) is given by

(idi, C−1i (c)).

The homotopy colimit of a pseudo functor C : I → CAT is an ordinary 1-
category with strictly associative and strictly unital composition.

Remark 3.4. For a fixed category I, the homotopy colimit construction
hocolimI − is a strict 2-functor from the strict 2-category of pseudo functors
I → CAT , pseudo natural transformations, and modifications into the strict
2-category CAT .

Example 3.5 (Homotopy colimit of a constant functor). If C : I → CAT is a
constant functor, say constantly a category also called C, then hocolimI C =
I × C.

Example 3.6 (Homotopy colimit for I with a terminal object). Suppose I
has a terminal object t and C : I → CAT is a strict covariant functor. Then
hocolimI C is homotopy equivalent to C(t) as follows. This is analogous to the
familiar fact that C(t) is a colimit of C. The components of the universal cocone

(3.7) π : C ⇒ ∆C(t)

1We thank George Maltsiniotis for clarifying these points about homotopy colimits in
CAT .
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are C(i→ t). Applying hocolimI − to (3.7) and composing with the projection
gives us a functor F

hocolimI C
hocolimI π

//

F

**I × C(t) prC(t)

// C(t)

(i, c)
� // C(i→ t)(c).

The functor G : C(t) → hocolimI C, G(c) = (t, c) is a homotopy inverse, since
F ◦G = idC(t) and we have a natural transformation idhocolimI C ⇒ G ◦F with
components

(i→ t, idC(i→t)) : (i, c) // (t, C(i→ t)c).

Let H denote the homotopy colimit of the I-diagram of categories C. We
now construct an I-diagram of H-spaces EH with the property that its tensor
product with EI is H-homotopy equivalent to a classifying H-space for H.
This I-diagram of H-spaces EH will play an important role in the inductive
proof of the Homotopy Colimit Formula Theorem 4.1.

Construction 3.8 (Construction of EH). Let C : I → CAT be a strict co-
variant functor, and abbreviate H = hocolimI C. Define a functor

EH : I → H-SPACES(3.9)

as follows. Given an object i ∈ I, we have the functor

α(i) : C(i)→ H(3.10)

sending an object c to the object (i, c) and a morphism f : c → d to the mor-
phism (idi, f). We define

EH(i) = α(i)∗E
bar
(
C(i)

)
.

Consider a morphism u : i → j in I. It induces a natural transformation
T (u) : α(i) → α(j) ◦ C(u) from the functor α(i) : C(i) → H to the functor
α(j) ◦ C(u) : C(i)→ H by assigning to an object c in C(i) the morphism

(u, idC(u)(c)) : α(i)(c) = (i, c)→ α(j) ◦ C(u)(c) = (j, C(u)(c)).
From Remark 2.10 we obtain a map of H-spaces

T (u)∗ : α(i)∗E
bar
(
C(i)

)
→ α(j)∗C(u)∗Ebar

(
C(i)

)

and a map of C(j)-spaces
Ebar

(
C(u)

)
: C(u)∗Ebar

(
C(i)

)
→ Ebar

(
C(j)

)
.

Finally, for the morphism u in I, we define EH(u) : EH(i) → EH(j) by the
composite of the two maps below.

α(i)∗E
bar
(
C(i)

) T (u)∗−−−−→ α(j)∗C(u)∗Ebar
(
C(i)

)

α(j)∗C(u)∗Ebar
(
C(i)

) α(j)∗(E
bar
(
C(u)
)

−−−−−−−−−−−→ α(j)∗E
bar
(
C(j)

)
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Define the homotopy colimit of the covariant functor EH of (3.9) to be the
contravariant H-space

hocolimI E
H := (i, c) 7→ EI ⊗I

(
EH(i, c)

)
.(3.11)

Lemma 3.12. Consider any model EI for the classifying I-space of the cate-
gory I. Then the contravariant H-space EI ⊗I EH of (3.11) is H-homotopy
equivalent to the classifying H-space EH of the category H := hocolimI C.
Proof. We first show that for any object (i, c) in H the space EI ⊗I

(
EH(i, c)

)

is contractible. The covariant functor EH(i, c) : I → SPACES sends an object
j to

α(j)∗
(
EbarC(j)

)
(i, c)

= α(j)∗
(
EbarC(j)

)
(?)⊗H morH

(
(i, c), ?)

)

=
(
EbarC(j)

)
(?)⊗C(j) morH

(
(i, c), (j, ?)

)

=
(
EbarC(j)

)
(?)⊗C(j)


 ∐

u∈morI(i,j)

morC(j)
(
C(u)(c), ?

)



=
∐

u∈morI(i,j)

(
EbarC(j)

)
(?) ⊗C(j) morC(j)

(
C(u)(c), ?

)

=
∐

u∈morI(i,j)

(
EbarC(j)

) (
C(u)(c)

)
.

Since
(
EbarC(j)

) (
C(u)(c)

)
is contractible, the projection

∐

u∈morI(i,j)

(
EbarC(j)

) (
C(u)(c)

)
→ morI(i, j)

is a homotopy equivalence. Hence the collection of these projections for j ∈
ob(I) induces a map of I-spaces

pr : EH(i, c)→ morI(i, ?)

whose evaluation at each object j in ob(I) is a homotopy equivalence. We
conclude from Davis–Lück [14, Theorem 3.11] that

EI ⊗I pr : EI ⊗I EH(i, c) ≃−→ EI ⊗I morI(i, ?).

is a homotopy equivalence. Since EI⊗ImorI(i, ?) = EI(i) is contractible, this
implies that for any object (i, c) inH the space EI⊗I

(
EH(i, c)

)
is contractible,

as we initially claimed.
It remains to show that EI ⊗I EH has the H-homotopy type of an H-CW -
complex. It is actually an H-CW -complex. The following argument, that
EI ⊗I EH has the homotopy type of an H-CW -complex, will be used again
later.2

2This is a well-known standard argument, which we present only so that the reader easily
sees that it works in the setting of H-spaces.

Documenta Mathematica 16 (2011) 301–354



320 Thomas M. Fiore, Wolfgang Lück, and Roman Sauer

We have a filtration of EI
∅ = EI−1 ⊆ EI0 ⊆ EI1 ⊆ . . . ⊆ EIn ⊆ . . . ⊆ EI =

⋃

n≥0
EIn

such that

EI = colimn→∞ EIn
and for every n ≥ 0 there exists a pushout of I-spaces

∐
λ∈Λn morI(−, iλ)× Sn−1 −−−−→ EIn−1y

y
∐
λ∈Λn morI(−, iλ)×Dn −−−−→ EIn.

(3.13)

Since −⊗I Z has a right adjoint [14, Lemma 1.9] we get

EI ⊗I EH = colimn→∞ EIn ⊗I EH

as a colimit of H-spaces. After an application of −⊗I EH to (3.13), we obtain
pushouts of H-spaces

∐
λ∈Λn E

H(iλ)× Sn−1
fn−1−−−−→ EIn−1 ⊗I EHy

y
∐
λ∈Λn E

H(iλ)×Dn −−−−→ EIn ⊗I EH
(3.14)

where the left vertical arrow and hence the right vertical arrow are cofibra-
tions of H-spaces. By induction we may assume that EIn−1 ⊗I EH has the
homotopy type of an H-CW -complex. Since the vertical maps are cofibra-
tions, by replacing it with a homotopy equivalent H-CW -complex we do not
change the homotopy type of the pushout (the usual proof for spaces goes
through for H-spaces). Hence we may assume that EIn−1 ⊗I EH is a H-CW -
complex. We may also assume that fn−1 is cellular: since the vertical maps
are cofibrations, by replacing fn−1 by a homotopic cellular map, which exists
by Davis–Lück [14, cf. Theorem 3.7], we also do not change the homotopy type
of the pushout. See Selick [38, Theorem 7.1.8] for a proof of this statement for
spaces which translates verbatim to the setting of H-spaces. If fn−1 is cellular,
diagram (3.14) is a cellular pushout. Hence we completed the induction step,
showing that EIn ⊗I EH has the homotopy type of an H-CW -complex.
It remains to show that EI⊗IEH has the homotopy type of a H-CW -complex:
choose H-CW -complexes Zn and H-homotopy equivalences gn : Zn → EIn⊗I
EH. By iteratively replacing Zn by the mapping cylinder of

Zn−1
gn−1−−−→ EIn−1 ⊗I EH → EIn ⊗I EH ḡn−→ Zn,

where ḡn is a homotopy inverse of gn, one finds a new sequence of homotopy
equivalences g′n : Zn → EIn ⊗I EH (with the modified H-CW -complexes Zn)
such that g′n|Zn−1 = g′n−1. �
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4. Homotopy Colimit Formula for Finiteness Obstructions and
Euler Characteristics

In this section we prove the main theorem of this paper: the Homotopy Colimit
Formula. It expresses the finiteness obstruction, the Euler characteristic, and
the L2-Euler characteristic of the homotopy colimit of a diagram in CAT in
terms of the respective invariants for the diagram entries at the base objects
for cells in a finite model for the I-classifying space of I. Analogous formulas
for the functorial counterparts of the Euler characteristic and L2-Euler char-
acteristic are included. The Homotopy Colimit Formula is initially stated and
proved for strict functors C : I → CAT , but we prove that it also holds for
pseudo functors D : I → CAT in Corollary 4.2. The full generality of pseudo
functors is needed for the applications to complexes of groups in Section 8.

4.1. Homotopy Colimit Formula.

Theorem 4.1 (Homotopy Colimit Formula). Let I be a small category such
that there exists a finite I-CW -model for its classifying I-space. Fix such
a finite I-CW -model EI. Denote by Λn the finite set of n-cells λ =
morI(?, iλ) ×Dn of EI. Let C : I → CAT be a covariant functor. Abbreviate
H = hocolimI C. Then:

(i) If I is directly finite, and C(i) is directly finite for every object i ∈
ob(I), then the category H is directly finite;

(ii) If I is an EI-category, C(i) is an EI-category for every object i ∈
ob(I), and for every automorphism u : i

∼=−→ i the map iso(C(i)) →
iso(C(i)), x 7→ C(u)(x) is the identity, then the category H is an EI-
category;

(iii) If for every object i the category C(i) is of type (FPR), then the category
hocolimI C is of type (FPR);

(iv) If for every object i the category C(i) is of type (FFR), then the category
hocolimI C is of type (FFR);

(v) If for every object i the category C(i) is of type (FPR), then we obtain
for the finiteness obstruction

o(H;R) =
∑

n≥0
(−1)n ·

∑

λ∈Λn
α(iλ)∗(o(C(iλ);R)),

where α(iλ)∗ : K0(RC(iλ)) → K0(RH) is the homomorphism induced
by the canonical functor α(iλ) : C(iλ)→ H defined in (3.10);

(vi) Suppose that I is directly finite and C(i) is directly finite for every
object i ∈ ob(I). If for every object i the category C(i) is additionally
of type (FPR) then we obtain for the functorial Euler characteristic

χf (H;R) =
∑

n≥0
(−1)n ·

∑

λ∈Λn
α(iλ)∗(χf (C(iλ);R)),

where α(iλ)∗ : U(C(iλ))→ U(H) is the homomorphism induced by the
canonical functor α(iλ) : C(iλ) → H defined in (3.10). Summing up,
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we also have

χ
(
H;R

)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(C(iλ);R).

If R is Noetherian, in addition to the direct finiteness and (FPR)
hypotheses, we obtain for the Euler characteristics of the classifying
spaces

χ
(
BH;R

)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(BC(iλ);R);

(vii) Suppose that I is directly finite and C(i) is directly finite for every
object i ∈ ob(I). If for every object i the category C(i) is additionally
of type (L2), then H is of type (L2) and we obtain for the functorial
L2-Euler characteristic

χ
(2)
f (H) =

∑

n≥0
(−1)n ·

∑

λ∈Λn
α(iλ)∗

(
χ
(2)
f (C(iλ))

)
,

where α(iλ)∗ : U (1)(C(iλ)) → U (1)(H) is the homomorphism induced
by the canonical functor α(iλ) : C(iλ) → H defined in (3.10), and we
obtain for the L2-Euler characteristic

χ(2)(H) =
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(2)(C(iλ)).

Proof. (i) Consider morphisms (u, f) : (i, c) → (j, d) and (v, g) : (j, d) → (i, c)
in H with (v, g) ◦ (u, f) = id(i,c). This implies vu = idi and g ◦ C(v)(f) = idc.
Since I and C(i) are by assumption directly finite, we conclude uv = idj and
C(v)(f) ◦ g = idC(v)(d). Hence

(u, f) ◦ (v, g) =
(
uv, f ◦ C(u)(g)

)
=
(
uv, C(uv)(f) ◦ C(u)(g)

)

=
(
uv, C(u)(C(v)(f) ◦ g)

)
=
(
uv, C(u)(idC(v)(d))

)

=
(
idj , idC(u)

(
C(v)(d)

)) = (idj , idd).

(ii) Consider an endomorphism (u, f) : (i, c) → (i, c) in H. Since I is an EI-

category, u : i → i is an automorphism. Since C(u)(c) = c by assumption, we

can choose an isomorphism g : c
∼=−→ C(u)(c). Hence fg is an endomorphism

in C(i). Since C(i) is an EI-category, and g is an isomorphism, f is also an
isomorphism. Since u and f are isomorphisms, (u, f) is an isomorphism.

(iii) and (v). We say that an RH-chain complex C∗ is of type (FPR) if it admits
a finite projective approximation, i.e., there is a finite length chain complex P∗
of finitely generated, projective RH-modules together with an RH-chain map
f∗ : P∗ → C∗ such that Hn(f∗(i, c)) is bijective for all n ≥ 0 and (i, c) ∈ ob(H).
If C∗ is of type (FPR), define its finiteness obstruction

o(C∗) :=
∑

n≥0
(−1)n · [Pn] ∈ K0(RH)
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for any choice P∗ of finite projective approximation. This is independent of the
choice of P∗ and the basic properties of it were studied by Lück [23, Chapter 11].
If 0[R] is the RH-chain complex concentrated in dimension zero and given there
by the constant RH-module R, then H is of type (FPR) if and only if 0[R] is
of type (FPR) and in this case

o(H;R) = o(0[R]) ∈ K0(RH).
Consider a finite I-CW -complex X . We want to show by induction over the
dimension of X that the RH-chain complex C∗(X ⊗I EH) is of type (FPR)
and satisfies

o
(
C∗(X ⊗I EH)

)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
α(iλ)∗(o(C(iλ);R)),

where Λn denotes the set of n-cells of X and iλ is the object at which the n-cell
λ = morI(?, iλ)×Dn of X is based.
The induction beginning, where X is the empty set, is obviously true. The
induction step is done as follows. Let d be the dimension of X . Then Xd is
obtained from Xd−1 by a pushout of I-spaces

∐
λ∈Λd morC(−, iλ)× Sd−1 //

��

Xd−1

��∐
λ∈Λd morC(−, iλ)×Dd // X = Xd.

Applying − ⊗I EH to it yields, because EH(i) = α(i)∗Ebar
(
C(i)

)
, a pushout

of H-spaces with a cofibration as left vertical arrow

∐
λ∈Λd α(iλ)∗E

bar
(
C(iλ)

)
× Sd−1

��

// Xd−1 ⊗I EH

��∐
λ∈Λd α(iλ)∗E

bar
(
C(iλ)

)
×Dd // X ⊗I EH.

In the sequel we can assume without loss of generality that Xd−1 ⊗I EH and
X ⊗I EH are H-CW -complexes and the diagram above is a pushout of H-
CW -complexes, since this can be arranged by replacing them by homotopy
equivalent H-CW -complexes (see the proof of Lemma 3.12). We obtain an
exact sequence of RH-chain complexes

0→ C∗(Xd−1 ⊗I EH)→ C∗(X ⊗I EH)→
⊕

λ∈Λd
ΣdC∗

(
α(iλ)∗E

barC(iλ)
)
→ 0.

Consider λ ∈ Λd. Since C(iλ) is of type (FPR), we can find a finite projective
RC(iλ)-chain complex P∗ whose homology is concentrated in dimension zero
and given there by the constantRC(iλ)-module R. Since C∗(EbarC(iλ)) is a pro-
jective RC(iλ)-chain complex with the same homology, there is an RC(iλ)-chain
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homotopy equivalence f∗ : P∗
≃−→ C∗

(
EbarC(iλ)

)
(see Lück [23, Lemma 11.3 on

page 213] and

o(C(iλ);R) = o(P∗) =
∑

n≥0
(−1)n · [Pn] ∈ K0(RC(iλ)).

Obviously

α(iλ)∗f∗ : α(iλ)∗P∗
≃−→ α(iλ)∗C∗

(
Ebar

(
C(iλ)

))
= C∗

(
α(iλ)∗E

barC(iλ)
)

is an RH-chain homotopy equivalence. Hence C∗(α(iλ)∗EbarC(iλ)) and, by the
induction hypothesis, C∗(Xd−1⊗IEH) are RH-chain complexes of type (FPR).
We conclude from Lück [23, Lemma 11.3 on page 213] that C∗(X ⊗I EH) is of
type (FPR) and

o
(
C∗(X ⊗I EH)

)
= o
(
C∗(Xd−1 ⊗I EH)

)
+
∑

λ∈Λd
o
(
Σdα(iλ)∗C∗(E

barC(iλ))
)
.

This implies together with the induction hypothesis applied to Xd−1

o
(
C∗(X ⊗I EH)

)

=

d−1∑

n=0

(−1)n ·
∑

λ∈Λn
α(iλ)∗(o(C(iλ);R)) +

∑

λ∈Λd
(−1)d · α(iλ)∗(o(C(iλ);R))

=

d∑

n=0

(−1)n ·
∑

λ∈Λn
α(iλ)∗(o(C(iλ);R)).

This finishes the induction step.
Assertions (iii) and (v) follow by taking X = EI.
(iv) This proof is analogous to that of assertion (iii).

(vi) By (i) and (iii), the category H is directly finite and of type (FPR). Then
an application of rkRH to the formula for o(H;R) in (v) yields the formula for
χf (H;R) in (vi) by the naturality of rkR− with respect to the functors α(iλ)
between directly finite categories, see Fiore–Lück–Sauer [16, Lemma 4.9].
An application of the augmentation homomorphism ǫ : U(H) → Z to the for-
mula for χf (H;R) yields the formula for χ(H;R). We also use the naturality
of the augmentation homomorphism, that is, the commutativity of diagram
(4.5) in [16] for F = α(iλ).
If R is additionally Noetherian, then Theorem 1.9 applies, and the Euler charac-
teristics of the categories agree with the Euler characteristics of the classifying
spaces.

(vii) The proofs for the functorial L2-Euler characteristic and the L2-Euler
characteristic are somewhat more complicated since the property (L2) is more
general than (FPR), and the L2-Euler characteristic comes from the finiteness
obstruction only in the case (FPR). The proofs are variations of the proofs for
assertions (iii) and (v). Instead of using Lück [23, Lemma 11.3 on page 213],
we now use the basic properties of L2-Euler characteristics for chain complexes
of modules over group von Neumann algebras [16, Lemma 5.7]. For example,
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we use [16, Lemma 5.7 (iv)], which says for any injective group homomorphism
i : H → G and N (H)-chain complex C∗, we have χ(2)(C∗) = χ(2)(indi∗ C∗),
provided the sum of the L2-Betti numbers of C∗ is finite. The injectivity hy-
pothesis is easily verified: for every object i ∈ ob(I) and object x ∈ C(i) the
functor α(i) : C(i) → H clearly induces an injection autC(i)(x) → autH(i, x).
This finishes the proof of Theorem 4.1. �

Corollary 4.2. Theorem 4.1 on homotopy colimits holds for pseudo functors
D : I → CAT .

Proof. We first remark that the pseudo functor D : I → CAT is equivalent
to a strict functor C : I → CAT in the following sense. As usual, we denote
by Hom(I,CAT ) the strict 2-category of pseudo functors I → CAT , pseudo
natural transformations between them, and modifications. The pseudo functor
D is equivalent to a strict functor C as objects of the 2-category Hom(I,CAT).
For example, we may take C to be the strict functor

i 7→ morHom(I,CAT)(I(i,−),D).
The equivalence between C andD in Hom(I,CAT ) has two useful consequences.
Since

hocolimI : Hom(I,CAT )→ CAT

is a strict 2-functor, it sends any equivalence between C and D to an equiv-
alence in CAT between the categories hocolimI C and hocolimI D. Another
consequence of the equivalence between C and D is that for every i ∈ I, the
categories C(i) and D(i) are equivalent. With these observations we reduce
Corollary 4.2 to Theorem 4.1.

(i) Suppose D(i) is directly finite for every i ∈ ob(I) and I is directly finite.
Since direct finiteness is preserved under equivalence of categories by Fiore–
Lück–Sauer [16, Lemma 3.2], and C(i) is equivalent to D(i), we see that C(i) is
directly finite for every i ∈ ob(I). Hence hocolimI C is directly finite by The-
orem 4.1 (i). Since hocolimI D is equivalent to hocolimI C, it is also directly
finite, again by [16, Lemma 3.2].

(ii) Suppose that I is an EI-category,D(i) is an EI-category for every i ∈ ob(I),
and for every automorphism u : i

∼=−→ i the map iso(D(i)) → iso(D(i)), y 7→
D(u)(y) is the identity. Since EI is preserved under equivalence of categories
[16, Lemma 3.11], and C(i) is equivalent to D(i), we see D(i) is an EI-category.
We claim that for each automorphism u, the functor C(u) also induces the
identity on isomorphism classes of objects of C(i). Let φ : D → C be a pseudo
equivalence, that is, an equivalence in the 2-category Hom(I,CAT ). For x ∈
C(i), there is a y ∈ D(i) and an isomorphism x ∼= φi(y). We have isomorphisms

C(u)(x) ∼= C(u)φi(y) ∼= φiD(u)(y) ∼= φi(y) ∼= x,

and C(u) induces the identity on isomorphism classes of objects of C(i). Then
hocolimI C is an EI-category by Theorem 4.1 (ii), and so is hocolimI D, again
by [16, Lemma 3.11].
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(iii) and (iv) similarly follow from Theorem 4.1 (iii) and (iv), since property
(FPR), property (FFR), and the finiteness obstruction are all invariant under
equivalence of categories [16, Theorem 2.8].

(v) Suppose D(i) is of type (FPR) for every i ∈ ob(I). Then every C(i) is also of
type (FPR), since property (FPR) is invariant under equivalence of categories
[16, Theorem 2.8]. As in (3.10), we have for each i ∈ I the functor

αD(i) : D(i)→ hocolimI D
which sends an object d to the object (i, d) and a morphism g : d → d′ to the
morphism (idi, g ◦ D−1i (d)). From a pseudo equivalence ψ : C → D we obtain a
strictly commutative diagram

(4.3) C(i)
ψi

��

αC(i)
// hocolimI C

hocolimI ψ

��

D(i)
αD(i)

// hocolimI D

for each i ∈ ob(I). Since the finiteness obstruction is invariant under equiv-
alence of categories [16, Theorem 2.8], we may use Theorem 4.1 (v) for C to
obtain

o(hocolimI D;R) = (hocolimI ψ)∗(o(hocolimI C;R))

= (hocolimI ψ)∗


∑

n≥0
(−1)n ·

∑

λ∈Λn
αC(iλ)∗(o(C(iλ);R))




=
∑

n≥0
(−1)n ·

∑

λ∈Λn
(hocolimI ψ)∗ ◦ αC(iλ)∗(o(C(iλ);R))

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
αD(iλ)∗ ◦ (ψiλ)∗(o(C(iλ);R))

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
αD(iλ)∗(o(D(iλ);R)).

(vi) follows from (i), (iii), and (v) in the same way that Theorem 4.1 (vi) follows
from Theorem 4.1 (ii), (iii), and (v).

(vii) Suppose that I is directly finite and D(i) is directly finite for every object
i ∈ ob(I). Suppose also for every object i ∈ I the category D(i) is of type (L2).
By the proof of Corollary 4.2 (i) above, the values of the strict functor C are
directly finite categories. If Γ1 and Γ2 are equivalent categories, then Γ1 is both
directly finite and of type (L2) if and only if Γ2 is both directly finite and of
type (L2) [16, Lemma 5.15 (i)]. Since each D(i) is directly finite, of type (L2),
and equivalent to C(i), we see that each C(i) is also directly finite and of type
(L2). So we may now apply Theorem 4.1 (i) and (vii) to C and conclude that
hocolimI C is directly finite and of type (L2). Again using the preservation of
the direct finiteness and (L2) under equivalence [16, Lemma 5.15 (i)], and the
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equivalence of hocolimI C with hocolimI D, we see hocolimI D is both directly
finite and of type (L2).

To prove the formulas for χ
(2)
f and χ(2), we use [16, Lemma 5.15 (ii)], which

says: if F : Γ1 → Γ2 is an equivalence of categories, and both Γ1 and Γ2 are

both directly finite and of type (L2), then U (1)(F )χ
(2)
f (Γ1) = χ

(2)
f (Γ2) and

χ(2)(Γ1) = χ(2)(Γ2). We apply this to the equivalences ψi and hocolimI ψ, and
use the commutativity of diagram (4.3). For readability, we write (hocolimI ψ)∗
for U(hocolimI ψ) and α(iλ)∗ for U (1)(α(iλ)), et cetera.

χ
(2)
f (hocolimI D) = (hocolimI ψ)∗χ

(2)
f (hocolimI C)

= (hocolimI ψ)∗
∑

n≥0
(−1)n ·

∑

λ∈Λn
α(iλ)∗

(
χ
(2)
f (C(iλ))

)

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
(hocolimI ψ)∗ ◦ αC(iλ)∗

(
χ
(2)
f (C(iλ))

)

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
αD(iλ)∗ ◦ (ψiλ)∗

(
χ
(2)
f (C(iλ))

)

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
αD(iλ)∗

(
χ
(2)
f (D(iλ))

)
.

The formula for χ(2) follows by summing up the components of the functorial
L2-Euler characteristics. �

4.2. The Case of an Indexing Category of Type (FPR). The Homo-
topy Colimit Formula of Theorem 4.1 can be extended to the case, where I
is of type (FPR) and not necessarily of type (FFR) as follows (recall that the
existence of a finite I-CW -model for EI implies I is of type (FFR), since cel-
lular chains then provide a finite free resolution of R. ). The evaluation of the
covariant functor

EH : I → H-SPACES

of (3.9) at every object i ∈ I is an H-CW -complex. Composing it with the
cellular chain complex functor yields a covariant functor

C∗(E
H) : I → RH-CHCOM

whose evaluation at every object in I is a free RH-chain complexes. Since by
assumption C(i) is of type (FPR), C∗(EH)(i) is RH-chain homotopy equiv-
alent to a finite projective RH-chain complex for every object i ∈ I. Since
RmorI(?, i)⊗RI C∗(EH) is RH-isomorphic to C∗(EH), we conclude for every
finitely generated projective RΓ-module P that P ⊗RI C∗(EH) is RH-chain
homotopy equivalent to finite projective RH-chain complex and in particular
possesses a finiteness obstruction o

(
P ⊗RI C∗(EH

)
∈ K0(RH) (see Lück [23,

Theorem 11.2 on page 212]). Because of Lück [23, Theorem 11.2 on page 212]
we obtain a homomorphism

αC : K0(RI)→ K0(RH), [P ] 7→ o
(
P ⊗RI C∗(EH)

)
.
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The chain complex version of the proof of Lemma 3.12 shows that the RH-chain
complex C∗(I)⊗RI C∗(EH) is a projective RH-resolution of the constant RΓ-
module R. Choose a finite projective RI-chain complex P∗ and an RI-chain
homotopy equivalence f∗ : P∗

≃−→ C∗(I). Then f∗ ⊗RI id : P∗ ⊗RI C∗(EH) →
C∗(I)⊗RIC∗(EH) is an RΓ-chain homotopy equivalence ofRΓ-chain complexes
and P∗ ⊗RI C∗(EH) is is RH-chain homotopy equivalent to finite projective
RH-chain complex by Lück [23, Theorem 11.2 on page 212]. This implies

o(Γ;R) = o
(
P∗ ⊗RI C∗(EH)

)
.

We conclude from [23, Theorem 11.2 on page 212]

o
(
P∗ ⊗RI C∗(EH)

)
=
∑

n≥p
(−1)n · o

(
Pn ⊗RI C∗(EH)

)

Since o(I;R) is ∑n≥p(−1)n · [Pn], this implies

Theorem 4.4 (The Homotopy Colimit Formula for an indexing category of
type (FPR)). We obtain under the conditions above

αC
(
o(I;R)

)
= o(H;R).

Remark 4.5. See Section 7 for a comparison with Leinster’s Euler character-
istic and his results.

5. Examples of the Homotopy Colimit Formula

We now present several examples of the Homotopy Colimit Formula Theo-
rem 4.1. These include the cases: I with a terminal object, the constant func-
tor, the trivial functor, homotopy pushouts, homotopy orbits, and the transport
groupoid. For the transport groupoid in the finite case, see also Example 8.33.

Example 5.1 (Homotopy Colimit Formula for I with a terminal object). Sup-
pose that I has a terminal object t and C : I → CAT is a functor. Then
morI(−, t) is a finite I-CW model for EI. If every category C(i) is of
type (FPR), then o(H;R) = α(t)∗(o(C(t);R). If I and C additionally sat-
isfy the hypotheses of Theorem 4.1 (vi), then χf (H;R) = χf (C(t);R) and
χ(H;R) = χ(C(t);R), as we anticipated in Example 3.6. Similar statements

hold for χ
(2)
f and χ(2) in the L2 case.

Example 5.2 (Homotopy Colimit Formula for a constant functor). Consider
the situation of Theorem 4.1 in the special case where the covariant functor
C : I → CAT is constant C ∈ CAT . Suppose that I admits a finite I-CW -model
for EI. Then we may draw various conclusions about the homotopy colimit
H = I × C. If I and C are of type (FPR), then so is I × C. If I and C are of
type (FFR), then so is I × C. The statements in Theorem 4.1 provide us with

formulas in terms of C for o(I × C;R), χf (I × C;R), χ(I × C;R), χ(2)
f (I × C),

and χ(2)(I × C). We recall that the invariants o, χf , χ, χ
(2)
f , and χ(2) are

multiplicative, see Fiore–Lück–Sauer [16, Theorems 2.17, 4.22, and 5.17].
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Example 5.3 (Homotopy Colimit Formula for the trivial functor). Consider
the situation of Theorem 4.1 in the special case where the covariant functor
C : I → CAT is constantly the terminal category, which consists of a single
object and its identity morphism. Then hocolimI C agrees with I, as we see
from Example 3.5. Obviously C(i) is of type (FFR), its finiteness obstruction
is [R] ∈ K0(R) = K0(RC(i)) and both its Euler characteristic and L2-Euler
characteristic equals 1. We obtain from Theorem 4.1

o(I;R) =
∑

n≥0(−1)n ·
∑
λ∈Λn [RmorI(?, iλ)] ∈ K0(RI);

χf (I;R) =
∑

n≥0(−1)n ·
∑
λ∈Λn iλ ∈ U(Γ);

χ(I;R) =
∑

n≥0(−1)n · |Λn| ∈ Z;

χ
(2)
f (I) =

∑
n≥0(−1)n ·

∑
λ∈Λn iλ ∈ U (1)(I);

χ(2)(I) =
∑

n≥0(−1)n · |Λn| ∈ R.

Example 5.4 (Homotopy pushout formula). Let I be the category with objects
j, k and ℓ such that there is precisely one morphism from j to k and from j to
ℓ and all other morphisms are identity morphisms.

I = { k j
g

oo h // ℓ }

By Example 2.6, the category I admits a finite model for the classifying I-space
EI.
A covariant functor C : I → CAT is the same as specifying three categories C(j),
C(k) and C(ℓ) and two functors C(g) : C(j)→ C(k) and C(h) : C(j)→ C(ℓ). Let
H = hocolimI C be the homotopy colimit. Let α(i) : C(i)→ H be the canonical
functor for i = j, k, ℓ. Then we obtain a square of functors which commutes up
to natural transformations

C(j) C(g)
//

C(h)
��

α(j)

""EE
EE

EE
EE

E
C(k)

α(k)

��

C(ℓ)
α(ℓ)

// H.

It induces diagrams which do not commute in general

K0(RC(j))
C(g)∗

//

C(h)∗
��

α(j)∗

''NNNNNNNNNNN
K0(RC(k))

α(k)∗

��

K0(RC(ℓ))
α(ℓ)∗

// K0(H)

and
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U(C(j)) C(g)∗
//

C(h)∗
��

α(j)∗

&&MMMMMMMMMM
U(RC(k))

α(k)∗

��

U(RC(ℓ))
α(ℓ)∗

// U(H).

Suppose that C(i) is of type (FPR) for i = j, k, ℓ. We conclude from Theo-
rem 4.1 (iii) that H is of type (FPR) and

o(H;R) = α(k)∗
(
o(C(k);R)) + α(ℓ)∗

(
o(C(ℓ);R))− α(j)∗

(
o(C(j;R))

∈ K0(RH);
χf (H;R) = α(k)∗

(
χf (C(k);R)

)
+ α(ℓ)∗

(
χf (C(ℓ);R)

)
− α(j)∗

(
χf (C(j);R)

)

∈ U(H);
χ(H;R) = χ(C(k);R) + χ(C(ℓ);R)− χ(C(j);R)

∈ Z;

χ
(2)
f (H) = α(k)∗

(
χ
(2)
f (C(k)

)
+ α(ℓ)∗

(
χ
(2)
f (C(ℓ))

)
− α(j)∗

(
χ
(2)
f (C(j))

)

∈ U (1)(H);

χ(2)(H) = χ(2)(C(k)) + χ(2)(C(ℓ))− χ(2)(C(j))
∈ R.

Example 5.5 (Homotopy orbit formula). Suppose that a group G acts on a

category C from the left. This can be viewed as a covariant functor Ĝ→ CAT

whose source is the groupoid Ĝ with one object and G as its automorphism
group. Let H = hocolimĜ C be its homotopy colimit, also called the homotopy
orbit. Notice that H and C have the same set of objects.
Suppose there is a finite model for BG of the group G, or equivalently, a finite

model for the Ĝ-classifying space EĜ of the category Ĝ. Let χ(BG) ∈ Z be its
Euler characteristic. Let α : C → H be the canonical inclusion. Suppose that
C is of type (FPR). Then we conclude from Theorem 4.1 (iii) that H is of type
(FPR) and we have

o(H;R) = χ(BG) · α∗
(
o(C;R)

)
∈ K0(RH);

χf (H;R) = χ(BG) · α∗
(
χf (C;R)

)
∈ U(H);

χ(H;R) = χ(BG) · χ(C;R) ∈ Z;

χ
(2)
f (H;R) = χ(BG) · α∗

(
χ
(2)
f (C;R)

)
∈ U (1)(H);

χ(2)(H;R) = χ(BG) · χ(2)(C;R) ∈ R.

Example 5.6 (Transport groupoid). Let G be a group and let S be a left
G-set. Its transport groupoid GG(S) has S as its set of objects. The set of
morphisms from s1 to s2 is {g ∈ G | gs1 = s2}. The composition is given by
the multiplication in G. Denote by S the category whose set of objects is S
and which has no morphisms besides the identity morphisms. The group G
acts from the left on S. One easily checks that GG(S) is the homotopy orbit of
S defined in Example 5.5.
Recall from Fiore–Lück–Sauer [16, Lemma 6.15 (iv)]: if Γ is a quasi-finite EI-
category and for any morphism f : x → y in Γ, the order of the finite group
{g ∈ aut(x) | f ◦ g = f} is invertible in R, then Γ is of type (FPR) if and only
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if iso(Γ) is finite and for every object x ∈ ob(Γ) the trivial R[x]-module R is of
type (FPR). Thus, category S is of type (FPR) if and only if S is finite. Suppose
that S is of type (FPR) and there is a finite model for BG. Obviously o(S;R)
is given in K0(RS) = ⊕SK0(R) by the collection {[R] ∈ K0(R) | s ∈ S}.
Suppose for simplicity that G acts transitively on S. Fix an element s ∈ S. Let
Gs be its isotropy group. Since S is finite, Gs is a subgroup of G of finite index,
namely [G : Gs] = |S|. The transport groupoid GG(S) is connected and the
automorphism group of s is Gs. Hence evaluation at s induces an isomorphism

ev : K0(RGG(S))
∼=−→ K0(R[Gs]).

The composition

K0(RS)
α∗−−→ K0(RGG(S))

∼=−→ K0(R[Gs])

sends o(S;R) to |S| · [RGs], where α : S → GG(S) is the obvious inclusion.
Hence Example 5.5 implies

ev
(
o(GG(S);R)

)
= χ(BG) · |S| · [RGS ] ∈ K0(RGs).

Since BG has a finite model, BGs as a finite covering of BG has a finite model.
The cellular RGs-chain complex of EGs yields a finite free resolution of the
trivial RGs-module R. This implies

ev
(
o(GG(S);R)

)
= χ(BGs) · [RGs] ∈ K0(RGs).

Hence we obtain the equality in K0(RGs)

χ(BGs) · [RGs] = χ(BG) · |S| · [RGS ] = χ(BG) · [G : Gs] · [RGs].
This is equivalent to the equality of integers

χ(BGs) = χ(BG) · [G : Gs].

This equation is compatible with the well-know fact that for a d-sheeted cov-
ering X → X of a finite CW -complex X the total space X is again a finite
CW -complex and we have χ(X) = d · χ(X).
For the transport groupoid in the finite case, see also Example 8.33.

6. Combinatorial Illustrations of the Homotopy Colimit Formula

The classical Inclusion-Exclusion Principle follows from the Homotopy Colimit
Formula Theorem 4.1. We can also easily calculate the cardinality of a coequal-
izer in SETS in certain cases. These are different proofs of Examples 3.4.d and
3.4.b of Leinster’s paper [21].

Example 6.1 (Inclusion-Exclusion Principle). Let X be a set and S0, . . . , Sq
finite subsets of X . Then

|S0 ∪ S1 ∪ · · · ∪ Sq| =
∑

∅6=J⊆[q]
(−1)|J|−1 ·

∣∣∣∣∣∣
⋂

j∈J
Sj

∣∣∣∣∣∣
.
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Proof. Let I be the category in Example 2.7 and consider the finite I-CW -
model for its classifying I-space constructed there. We define a functor C :
I → SETS by C(J) := ⋂j∈J Sj . The functor

hocolimI C // colimI C = S0 ∪ S1 ∪ · · · ∪ Sq
is an equivalence of categories, since it is surjective on objects and fully faithful.
We have

|S0 ∪ S1 ∪ · · · ∪ Sq| = χ(S0 ∪ S1 ∪ · · · ∪ Sq)
= χ(hocolimI C)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(C(iλ))

=
∑

n≥0
(−1)n ·

∑

J⊆[q] and |J|=n+1

χ(C(J))

=
∑

n≥0
(−1)n


 ∑

J⊆[q] and |J|=n+1

∣∣∣∣∣∣
⋂

j∈J
Sj

∣∣∣∣∣∣




=
∑

∅6=J⊆[q]


(−1)|J|−1

∣∣∣∣∣∣
⋂

j∈J
Sj

∣∣∣∣∣∣


 .

�

Example 6.2 (Cardinality of a Coequalizer). Let I be the category

a
f

//

g
// b

and C : I → SETS a functor such that:

(i) the maps Cf and Cg are injective,
(ii) the images of the maps Cf and Cg are disjoint, and
(iii) the sets Ca and Cb are finite.

Then the coequalizer colim C has cardinality |Cb| − |Ca|.
Proof. The assumptions that Cf and Cg are injective and have disjoint images
imply that the functor

hocolimI C // colimI C
is fully faithful. Clearly it is also surjective on objects, and hence an equivalence
of categories. The category I has a finite I-CW -model for its classifying I-
space, constructed explicitly in Example 2.5. By Theorem 4.1, we have

χ(colimI C) = χ(hocolimI C)
=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(C(iλ))

= χ(Cb)− χ(Ca)
= |Cb| − |Ca|.
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�

7. Comparison with Results of Baez–Dolan and Leinster

We recall Baez–Dolan’s groupoid cardinality [4] and Leinster’s Euler character-
istic for certain finite categories [21], compare our Homotopy Colimit Formula
with his result on compatibility with Grothendieck fibrations, prove an ana-
logue for indexing categories I that admit finite I-CW -models for their classi-
fying I-spaces, and finally mention a Homotopy Colimit Formula for Leinster’s
invariant in a restricted case.

7.1. Review of Leinster’s Euler Characteristic. Let Γ be a category
with finitely many objects and finitely many morphisms. A weighting on Γ is
a function q• : ob(Γ)→ Q such that for all objects x ∈ ob(Γ), we have

∑

y∈ob(Γ)
|morΓ(x, y)| · qy = 1.

A coweighting q• on Γ is a weighting on Γop. If a finite category admits both
a weighting q• and a coweighting q•, then

∑
y∈ob(Γ) q

y =
∑

x∈ob(Γ) qx. For

a discusion of which matrices have the form (|morΓ(x, y)|)x,y∈ob(Γ) for some

finite category Γ, see Allouch [2] and [3].
As proved in [16], free resolutions of the constant RΓ-module R give rise to
weightings on Γ.

Theorem 7.1 (Weighting from a free resolution, Theorem 7.6 of
Fiore–Lück–Sauer [16]). Let Γ be a finite category. Suppose that the con-
stant RΓ-module R admits a finite free resolution P∗. If Pn is free on the finite
ob(Γ)-set Cn, that is

(7.2) Pn = B(Cn) =
⊕

y∈ob(Γ)

⊕

Cyn

RmorΓ(?, y),

then the function q• : ob(Γ)→ Q defined by

qy :=
∑

n≥0
(−1)n · |Cyn|

is a weighting on Γ.

Corollary 7.3 (Construction of a weighting from a finite I-CW -model for the
classifying I-space, Corollary 7.8 of Fiore–Lück–Sauer [16]). Let I be a finite
category. Suppose that I admits a finite I-CW -model X for the classifying
I-space. Then the function q• : ob(I)→ Q defined by

qy :=
∑

n≥0
(−1)n(number of n-cells of X based at y)

is a weighting on I.
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As explained in Section 7.5 of [16], we use this Corollary to obtain several of
Leinster’s weightings in [21] from I-CW -models for I-classifying spaces. If I
has a terminal object, then we obtain from the finite model in Example 2.4
the weighting which is 1 on the terminal object and 0 otherwise. The category
I = {j ⇉ k} in Example 2.5 has weighting (qj , qk) = (−1, 1). The category
I = {k ← j → ℓ} in Example 2.6 has weighting (qj , qk, qℓ) = (−1, 1, 1). Lastly,
the category in Example 2.7 has weighting qJ := (−1)|J|−1.
Weightings and coweightings play a key role in Leinster’s notion of Euler char-
acteristic. See also Berger–Leinster [9].

Definition 7.4 (Definition 2.2 of Leinster [21]). A finite category Γ has an
Euler characteristic in the sense of Leinster if it admits both a weighting and
a coweighting. In this case, its Euler characteristic in the sense of Leinster is
defined as

χL(Γ) :=
∑

y∈ob(Γ)
qy =

∑

x∈ob(Γ)
qx

for any choice of weighting q• or coweighting q•.

The Euler characteristic of Leinster agrees with the groupoid cardinality of
Baez–Dolan [4] in the case of a finite groupoid G, namely they are both

∑

x∈iso(G)

1

| autG(x)|
.

The Euler characteristic of Leinster agrees with our L2-Euler characteristic in
some cases, as in the following Lemma.

Lemma 7.5 (Lemma 7.3 of Fiore–Lück–Sauer [16]). Let Γ be a finite EI-category
which is skeletal, i.e., if two objects are isomorphic, then they are equal. Sup-
pose that the left autΓ(y)-action on morΓ(x, y) is free for every two objects
x, y ∈ ob(Γ).
Then Γ is of type (FPC) and of type (L2), and has an Euler characteristic
in the sense of Leinster. Furthermore, the L2-Euler characteristic χ(2)(Γ) of
Definition 1.11 coincides with Leinster’s Euler characteristic χL(Γ) of Defini-
tion 7.4:

χ(2)(Γ) = χL(Γ).

Moreover, these are both equal to

∑

l≥0
(−1)l ·

∑

x0,xl∈ob(Γ)

∑ 1

| aut(xl)| · | aut(xl−1)| · · · · · | aut(x0)|
,

where the inner sum is over all paths x0 → x1 → · · · → xl from x0 to xl such
that x0, . . . , xl are all distinct [16, Example 6.33].

This concludes the review of Leinster’s and Baez–Dolan’s invariants and how
they relate to our L2-Euler characteristic. Next we turn to a comparison of
homotopy colimit results.
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7.2. Comparison with Leinster’s Proposition 2.8. Leinster’s result on
homotopy colimits, rephrased in our notation to make the comparison more
apparent, is below.

Theorem 7.6 (Proposition 2.8 of Leinster [21]). Let I be a category with finitely
many objects and finitely many morphisms, and C : I → CAT a pseudo functor.
Assume that hocolimI C has finitely many objects and finitely many morphisms.
Let q• be a weighting on I and suppose that hocolimI C and all C(i) have Euler
characteristics. Then

χL(hocolimI C) =
∑

i∈ob(I)
qiχL(C(i)).

For example, if I = {k ← j → ℓ}, then I admits the weighting (qj , qk, qℓ) =
(−1, 1, 1) as discussed above. If C : I → CAT is a pseudo functor, and the
homotopy pushout has finitely many objects and finitely many morphisms, and
hocolimI C and all C(i) have Euler characteristics, then Leinster’s result says
that the homotopy pushout has the Euler characteristic χL(C(k))+χL(C(ℓ))−
χL(C(j)).
Leinster’s Proposition 2.8 tells us how the Euler characteristic is compatible
with Grothendieck fibrations. We can remove the hypothesis of finite from
that Proposition, at the expense of requiring a finite model, as in the following
theorem for our invariants.

Theorem 7.7. Let I be a finite category. Suppose that I admits a finite I-
CW -model X for the classifying I-space of I. Let q• : ob(I) → Q be the
I-Euler characteristic of X, namely

qi :=
∑

n≥0
(−1)n(number of n-cells of X based at i).

Let C : I → CAT be a functor such that for every object i the category C(i) is
of type (FPR). Suppose that I is directly finite and C(i) is directly finite for all
i ∈ ob(I). Then

χ(hocolimI C;R) =
∑

i∈ob(I)
qiχ(C(i);R).

If each C(i) is of type (L2) rather than (FPR), we have

χ(2)(hocolimI C) =
∑

i∈ob(I)
qiχ(2)(C(i)).
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Proof. By Theorem 4.1 (vi), we have

χ(hocolimI C;R) =
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(C(iλ);R)

=
∑

n≥0
(−1)n ·

∑

i∈ob(I)
(number of n-cells of X at i)χ(C(i);R)

=
∑

i∈ob(I)

∑

n≥0
(−1)n(number of n-cells of X at i)χ(C(i);R)

=
∑

i∈ob(I)
qiχ(C(i);R).

The statement for χ(2) is proved similarly from Theorem 4.1 (vii). �

Remark 7.8. Whenever χ(colimI C;R) = χ(hocolimI C;R), Theorem 4.1 and
Theorem 7.7 can be used to calculate the Euler characteristic of a colimit.
Indeed, the hypotheses of Examples 6.1 and 6.2 guaranteed the equivalence
of the colimit and the homotopy colimit, and this equivalence was a crucial
ingredient in those proofs. For example, under Leinster’s hypothesis of familial
representability on C, each connected component of hocolimI C has an initial
object, so

χ(hocolimI C;R) = χ(colimI C;R)
(recall that colimI C is the set of connected components of hocolimI C whenever
C takes values in SETS). This is the role of familial representability in his
Examples 3.4.

As a corollary to our Homotopy Colimit Formula for the L2-Euler characteristic,
we have a Homotopy Colimit Formula for Leinster’s Euler characteristic when
they agree.

Corollary 7.9 (Homotopy Colimit Formula for Leinster’s Euler characteris-
tic). Let I be a skeletal, finite, EI-category such that the left autI(y)-action
on morI(x, y) is free for every two objects x, y ∈ ob(I). Assume there exists
a finite I-CW -model for the I-classifying space of I. Let C : I → CAT be a
covariant functor such that for each i ∈ ob(I), the category C(i) is a skeletal,
finite, EI and the left autC(i)(d)-action on morC(i)(c, d) is free for every two ob-
jects c, d ∈ ob(C(i)). Assume for every object i ∈ ob(I), for each automorphism

u : i→ i in I, and each x ∈ iso(C(i)) we have C(u)(x) = x.
Then H := hocolimi∈I C is again a skeletal, finite, EI-category such that
the left autH(h)-action on morH(g, h) is free for every two objects g, h ∈
ob(hocolimi∈I C), and

χL(H) =
∑

n≥0
(−1)n ·

∑

λ∈Λn
χL(C(iλ);R).

Proof. The category H is an EI-category by Theorem 4.1 (ii). Skeletal-
ity and finiteness of H follow directly from the skeletality and finiteness of
I and C(i), and the definition of H. The hypotheses on C(i) imply that
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χ(2)(C(i)) = χL(C(i)) by Theorem 7.5, and similarly χ(2)(H) = χL(H). Fi-
nally, Theorem 4.1 (vii), which is the Homotopy Colimit Formula for the L2-
Euler characteristic χ(2), implies the formula is also true for Leinster’s Euler
characteristic χL in the special situation of the Corollary. �

8. Scwols and Complexes of Groups

As an illustration of the Homotopy Colimit Formula, we consider Euler char-
acteristics of small categories without loops (scwols) and complexes of groups
in the sense of Haefliger [18], [19] and Bridson–Haefliger [11]. One-dimensional
complexes of groups are the classical Bass–Serre graphs of groups [37]. For
finite scwols, the Euler characteristic, L2-Euler characteristic, and Euler char-
acteristic of the classifying space all coincide, essentially because finite scwols
admit finite models for their classifying spaces. The Euler characteristic of a
finite scwol is particularly easy to find: one simply chooses a skeleton, counts
the paths of non-identity morphisms of length n, and then computes the alter-
nating sum of these numbers.
Scwols and complexes of groups are combinatorial models for polyhedral com-
plexes and group actions on them. The poset of faces of a polyhedral complex
is a scwol. Suppose a group G acts on an Mκ-polyhedral complex by isome-
tries preserving cell structure, and suppose each group element g ∈ G fixes
each cell pointwise that g fixes setwise. In this case, the quotient is also an
Mκ-polyhedral complex, say Q, and we obtain a pseudo functor from its scwol
of faces into groups. Namely, to a face σ of Q, one associates the stabilizer Gσ
for a selected representative σ of σ. Inclusions of subfaces of Q then correspond
to inclusions of stabilizer subgroups up to conjugation. This pseudo functor is
the complex of groups associated to the group action.
However, it is sometimes easier to work directly with the combinatorial model
rather than with the original Mκ-polyhedral complex, and consider instead
appropriate group actions on the associated scwol, as in Definition 8.11. Then
the quotient category of a scwol is again a scwol, and the associated pseudo
functor on the quotient scwol is called the complex of groups associated to the
group action. Any group-valued pseudo functor on a scwol that arises in this
way is called developable.
Our main results in this section concern the Euler characteristics of homo-
topy colimits of complexes of groups associated to group actions in the sense
of Definition 8.11. Theorem 8.30, concludes that the Euler characteristic and
L2-Euler characteristic of the homotopy colimit are χ(X/G) and χ(2)(X )/|G|
respectively, G and X are finite. These formulas provide necessary conditions
for developability. That is, if F is a pseudo functor from a scwol Y to groups,
one may ask if there are a scwol X and a group G such that Y is isomorphic
to X/G and F is the associated complex of groups. To obtain conditions on
χ(X ), χ(2)(X ), and |G|, one forms the homotopy colimit of F , calculates its
Euler characteristic and L2-Euler characteristic, and then compares with the
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formulas of Theorem 8.30. A simple case is illustrated in Example 8.31. An-
other application of the formulas is the computation of the Euler characteristic
and L2-Euler characteristic for the transport groupoid of a finite left G-set,
as in Example 8.33. We finish with Theorem 8.35, which extends Haefliger’s
formula for the Euler characteristic of the classifying space of the homotopy
colimit of a complex of groups in terms of Euler characteristics of lower links
and groups.
One novel aspect of our approach is that we do not require scwols to be skeletal.
We prove in Theorem 8.24 that any scwol with a G-action in the sense of
Definition 8.11 can be replaced by a skeletal scwol with a G-action, and this
process preserves quotients, stabilizers, complexes of groups, and homotopy
colimits. Moreover, if the initial G-action was free on the object set, then so is
the G-action on the object set of the skeletal replacement.
We begin by recalling the notions in Chapter III.C of Bridson–Haefliger [11],
rephrased in the conceptual framework of 2-category theory.

Notation 8.1 (2-Category of groups). We denote by GROUPS the 2-category
of groups. Objects are groups and morphisms are group homomorphisms. The
2-cells are given by conjugation: a 2-cell (g, a)

H

a

!!

a′

== G(g,a)

��

is an element g ∈ G such that ga(h)g−1 = a′(h) for all h ∈ H . The vertical
composition is (g2, a2)⊙ (g1, a1) = (g2g1, a1) and the horizontal composition of

H

a

!!

a′

== G(g,a)

��

b

!!

b′

==K(k,b)

��

is (kb(g), ba).

Definition 8.2 (Scwol). A scwol3 is a small category without loops, that is,
a small category in which every endomorphism is trivial.

Example 8.3. The categories {j ⇉ k} and I = {k ← j → ℓ} of Examples 2.5
and 2.6 are scwols. Every partially ordered set is a scwol, for example, the set of
simplices of a simplicial complex, ordered by the face relation, is a scwol. The
poset of non-empty subsets of [q], and its opposite category in Example 2.7,
are scwols. The opposite category of a scwol is also a scwol.

3Bridson–Haefliger additionally require scwols to be skeletal [11, page 574]. However, we
do not require scwols to be skeletal, since we prove in Theorem 8.24 that general statements
about scwols can be reduced to the skeletal case.
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Lemma 8.4. Every scwol is an EI-category and consequently also directly finite.

Proof. Every endomorphism in a scwol is trivial, and therefore an auto-
morphism, so every scwol is an EI-category. By Fiore–Lück–Sauer [16,
Lemma 3.13], every EI-category is also directly finite.
For a direct proof of direct finiteness: if u : x→ y and v : y → x are morphisms
in a scwol, then vu and uv are automorphisms, and hence both vu = idx and
uv = idy hold automatically. �

Theorem 8.5 (Finite scwols admit finite models). Suppose I is a finite scwol.
Then I admits a finite I-CW -model for its I-classifying space in the sense of
Definition 2.2.

Proof. By Lemma 2.13, we may assume that I is skeletal.
Since I has only finitely many morphisms, no nontrivial isomorphisms, and no
nontrivial endomorphisms, there are only finitely many paths of non-identity
morphisms. Thus the bar construction of EbarI Remark 2.10 has only finitely
many I-cells. �

Corollary 8.6. Any finite scwol I is of types (FFR) and (FPR) for every
associative, commutative ring R with identity. Moreover, any finite scwol is
also of type (L2).

Proof. The cellular R-chains of the finite model in Theorem 8.5 provide a finite,
free resolution of the constant module R. By Theorem 1.14, any directly finite
category of type (FPC) is of type (L

2). Scwols are directly finite by Lemma 8.4.
�

Example 8.7 (Invariants coincide for finite scwols). Let I be any finite scwol.
Then by Corollary 8.6 it is of type (FFR) for any associative, commutative ring
with identity, and by Theorems 1.9 and 1.15, we have

χ(I;R) = χ(BI;R) = χ(2)(I).
If Γ is any skeleton of I, then by (1.17),

(8.8) χ(Γ;R) =
∑

n≥0
(−1)ncn(Γ),

where cn(Γ) is the number of paths of n-many non-identity morphisms in Γ.
But by Fiore–Lück–Sauer [16, Theorem 2.8 and Corollary 4.19], type (FFR) and
the Euler characteristic are invariant under equivalence of categories between
directly finite categories, so χ(I;R) = χ(Γ;R) and all three invariants χ(I;R),
χ(BI;R), χ(2)(I) are given by (8.8).

We now arrive at the main notion of this section: a complex of groups. We will
apply our Homotopy Colimit Formula to complexes of groups.

Definition 8.9 (Complex of groups). Let Y be a scwol. A complex of groups
over Y is a pseudo functor F : Y → GROUPS such that F (a) is injective for
every morphism a in Y. For each object σ of Y, the group F (σ) is called the
local group at σ.
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In 2.5 and 2.4 of [18] and [19] respectively, Haefliger denotes by CG(X) the
homotopy colimit of a complex of groups G(X) : C(X)→ GROUPS. Bridson–
Haefliger use the notation CG(Y) in [11, III.C.2.8]. The fundamental group of
a complex of groups G(X) in the sense of [11, Definition 3.5 on p. 548] equals
the fundamental group of the geometric realization of CG(X) [11, Appendix
A.12 on p. 578 and Remark A.14 on p. 579]. Categories which are homotopy
colimits of complexes of groups are characterized by Haefliger on page 283 of
[19]. From the homotopy colimit CG(X), Haefliger reconstructs the category
C(X) and the complex of groups G(X) up to a coboundary on pages 282-
283 of [19]. Every aspherical realization [19, Definition 3.3.4] of G(X) has the
homotopy type of the geometric realization of the homotopy colimit, denoted
BG(X) [19, page 296]. The homotopy colimit also plays a role in the homology
and cohomology of complexes of groups [19, Section 4]; a left G(X)-module is
a functor CG(X)→ ABELIAN-GROUPS.
We return to our recollection of complexes of groups and examples that arise
from group actions.

Definition 8.10 (Morphism from a complex of groups to a group). A mor-
phism from a complex of groups F to a group G is a pseudo natural transfor-
mation F ⇒ ∆G, where ∆G indicates the constant 2-functor Y → GROUPS

with value G.

A typical example of a complex of groups equipped with a morphism to a group
G arises from an action of a group G on a scwol, as we now explain.

Definition 8.11 (Group action on a scwol, 1.11 of Bridson–Haefliger [11]). An
action of a group G on a scwol X is a group homomorphism from G into the
group of strictly invertible functors X → X such that

(i) For every nontrivial morphism a of X and every g ∈ G, we have
gs(a) 6= t(a),

(ii) For every nontrivial morphism a of X and every g ∈ G, if gs(a) = s(a),
then ga = a.

Example 8.12. The group G = Z2 acts in the sense of Definition 8.11 on the
scwol X pictured below.

x
h //

g

��

z

y x′
g′

oo

h′

OO

The group Z2 permutes respectively x and x′, g and g′, and h and h′. The
objects y and z are fixed. This action of Z2 on X is a combinatorial model for
a reflection action on S1.

Example 8.13. Consider the scwol X pictured below. The groupG = {±1}⋉Z
acts on X in the sense of Definition 8.11 where−1·m := −m and n·m := m+2n.

· · · // −2 −1 //oo 0 1 //oo 2 · · ·oo
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This action of {±1}⋉ Z on X is a combinatorial model for the reflection and
translation action on R.

Lemma 8.14 (Consequences of group action conditions). If a group G acts on
a scwol X in the sense of Definition 8.11, then the following statements hold.

(i) If σ is an object of X and g, h ∈ G, then gσ ∼= hσ implies gσ = hσ.
(ii) If a is a morphism in X and g, h ∈ G, then gs(a) = hs(a) implies

ga = ha.
(iii) If σ ∼= τ , then the stabilizers Gσ and Gτ are equal.

Proof. For statement (i), gσ ∼= hσ implies σ ∼= (g−1h)σ, so σ = (g−1h)σ by
Definition 8.11 part (i), and gσ = hσ.
For statement (ii), gs(a) = hs(a) implies (h−1g)s(a) = s(a) and (h−1g)a = a
by Definition 8.11 part (ii), and finally ga = ha.
For statement (iii), suppose σ ∼= τ and gσ = σ. We have

τ ∼= σ = gσ ∼= gτ.

Then τ = gτ by (i), and Gσ ⊆ Gτ . The proof is symmetric, so we also have
Gτ ⊆ Gσ. �

Definition 8.15 (Quotient of a scwol by a group action). If a scwol X is
equipped with a G-action as above, then the quotient scwol X/G has objects
and morphisms

ob(X/G) := (ob(X ))/G
mor(X/G) := (mor(X ))/G.

Composition and identities are induced by those of X .
Remark 8.16 (III.C.1.13 of Bridson–Haefliger [11]). The projection functor
p : X → X/G induces a bijection

(8.17) {a ∈ mor(X )|sa = x} // {b ∈ mor(X/G)|sb = p(x)}
for each x ∈ X . If G/X is connected and the action of G on ob(X ) is free, then
p is a covering of scwols. That is, in addition to the bijection (8.17), p induces
a bijection

(8.18) {a ∈ mor(X )|ta = x} // {b ∈ mor(X/G)|tb = p(x)}
for each x ∈ X .
Lemma 8.19 (Quotients of skeletal scwols are skeletal). If X is a skeletal scwol,
and a group G acts on X in the sense of Definition 8.11, then the quotient scwol
X/G is also skeletal.

Proof. Suppose σ is isomorphic to τ in X/G. We show σ is actually equal to

τ . If a : σ → τ is an isomorphism with inverse b, then there are lifts a : σ → τ
and b : τ → σ′ in X , and an element g ∈ G such that g(ba) = idσ. Since g fixes
the source of ba, the group element g fixes also ba, so ba = idσ and σ′ = σ.
Since ab is an endomorphism of τ , it is therefore idτ . By the skeletality of X ,
we have σ = τ , and also σ = τ . �
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Lemma 8.20 (Quotient of path set is set of paths in quotient). Suppose X is a
scwol equipped with an action of a group G in the sense of Definition 8.11. Let
Λn(X ) respectively Λn(X/G) denote the set of paths of n-many non-identity
composable morphisms in X respectively X/G. Give Λn(X ) the induced G-
action. Then the function

Λn(X )→ Λn(X/G)
(a1, . . . , an) 7→ (a1, . . . , an)

induces a bijection Λn(X )/G→ Λn(X/G).
Proof. Remark 8.16 implies that a path (a1, . . . , an) in X consists entirely of
non-identity morphisms if and only if the projection (a1, . . . , an) in X/G con-
sists entirely of non-identity morphisms, so from now on we work only with
non-identity morphisms. Note

(g1a1, g2a2, . . . , gnan) = (g1a1, g1a2, . . . , g1an)

by Definition 8.11 (ii). For injectivity, we have (a1, . . . , an) = (b1, . . . , bn) if
and only if for some gi ∈ G

(g1a1, g2a2, . . . , gnan) = (b1, . . . , bn),

which happens if and only if for some g ∈ G
(ga1, ga2, . . . , gan) = (b1, . . . , bn),

(take g = g1). For the surjectivity, we can lift any path (a1, . . . , an) by first
lifting a1 to a1, then a2 to a2, and so on using Remark 8.16. �

Definition 8.21 (Complex of groups from a group action on a scwol, 2.9 of
Bridson–Haefliger [11]). Let G be a group and X a scwol upon which G acts
in the sense of Definition 8.11. Let p : X → X/G denote the quotient map.
Haefliger and Bridson–Haefliger define a pseudo functor F : X/G→ GROUPS

as follows. In the procedure choices are made, but different choices lead to
isomorphic complexes of groups. For each object σ of X/G, choose an object σ
of X such that p(σ) = σ (our overline convention is the opposite of that in [11]).
Then F (σ) is defined to be Gσ, the isotropy group of σ under the G-action.
If a : σ → τ is a morphism in X/G, then there exists a unique morphism a in
X such that p(a) = a and sa = σ, as in (8.17). For a we choose an element
ha ∈ G such that ha · ta is the object τ of X chosen above so that p(τ) = τ .
An injective group homomorphism F (a) : Gσ → Gτ is defined by

F (a)(g) := hagh
−1
a .

Suppose a and b are composable morphisms of X/G. We define a 2-cell in
GROUPS

Fb,a : F (b) ◦ F (a)⇒ F (b ◦ a)
to be (hbah

−1
a h−1

b
, F (b) ◦ F (a)) as in Notation 8.1.

The pseudo functor F : X/G → GROUPS is called the complex of groups as-
sociated to the group action of G on the scwol X . This complex of groups
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comes equipped with a morphism to the group G, that is, a pseudo natural
transformation F ⇒ ∆G. The inclusion of each isotropy group F (σ) = Gσ into
G provides the components of the pseudo natural transformation.

Example 8.22. The quotient scwols for the actions in Examples 8.12 and 8.13
are both {k← j → ℓ}, and the associated complexes of groups are both

Z2 {0}oo // Z2.

Remark 8.23. If a group G acts on a scwol in the sense of Definition 8.11, each
object stabilizer is finite, and the quotient scwol is finite, then the associated
complex of groups F : X/G → GROUPS satisfies all of the hypotheses of the
Homotopy Colimit Formula in Theorem 4.1 (vii) and in Corollary 4.2 (vii). If,
in addition, R is a ring such that the order |H | of each object stabilizer H ⊂ G
is invertible in R, then F : X/G→ GROUPS also satisfies all of the hypotheses
of the Homotopy Colimit Formula in Theorem 4.1 (vi) and in Corollary 4.2 (vi).
See Examples 8.12, 8.13, and 8.22.

Even without finiteness assumptions, it is possible to replace scwols with skele-
tal scwols and preserve much of the accompanying structure, as Theorem 8.24
explains.

Theorem 8.24 (Reduction to skeletal case). Let G be a group acting on a
scwol X in the sense of Definition 8.11. Let Γ be any skeleton of X , i : Γ→ X
the inclusion, and r : X → Γ a functor equipped with a natural isomorphism
ir ∼= idX , and satisfying ri = idΓ. Then there is a G-action on the scwol Γ in
the sense of Definition 8.11 such that following hold.

(i) The functor r is G-equivariant.
(ii) The induced functor r on quotient categories is an equivalence of cat-

egories compatible with the quotient maps, that is, the diagram below
commutes.

(8.25) X r //

pX

��

Γ

pΓ

��

X/G
r

// Γ/G

(iii) The inclusion i : Γ→ X preserves stabilizers, that is Giγ = Gγ for all
γ ∈ ob(Γ). Note that the inclusion may not be G-equivariant.

(iv) Choices can be made in the definitions of FX and FΓ (the complexes
of groups associated to the G-actions on X and Γ in Definition 8.21),
so that the diagram below strictly commutes.

(8.26) X/G r //

FX

%%KKKKK
KKK

KK
Γ/G

FΓ

yyttttttttt

GROUPS
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(v) The functor (r, id) is an equivalence of categories

(r, id) : hocolimX/G FX // hocolimΓ/G F
Γ.

(vi) If G acts freely on ob(X ), then G acts freely on ob(Γ).

Proof. To define the group action, let Aut(X ) and Aut(Γ) denote the strictly
invertible endofunctors on X and Γ respectively, and consider the monoid ho-
momorphism

(8.27) ϕ : Aut(X )→ End(Γ), F 7→ r ◦ F ◦ i.
This is strictly multiplicatively because the natural isomorphism of functors

r ◦G ◦ F ◦ i = r ◦G ◦ idX ◦F ◦ i
∼= (r ◦G ◦ i) ◦ (r ◦ F ◦ i),

and skeletality of Γ imply ϕ(GF ) agrees with ϕ(G)ϕ(F ) on objects of Γ, so
each component ϕ(GF )(γ) ∼= ϕ(G)ϕ(F )(γ) is an endomorphism in the scwol
Γ, and is therefore trivial. By naturality, ϕ(GF ) and ϕ(G)ϕ(F ) agree on mor-
phisms also. Consequently, ϕ takes values in Aut(Γ) and is a homomorphism
ϕ : Aut(X )→ Aut(Γ).
We define a G-action on Γ as the composite of the action G → Aut(X ) with
ϕ in (8.27). We indicate the action of g on Γ by ϕ(g)γ and the action of g on
X by gx. For simplicity, we suppress i from the notation when indicating the
G-action in X on objects and morphisms of Γ, so for example, if a is morphism
in Γ, then gs(a) actually means gis(a) throughout.
To verify Definition 8.11 (i) for Γ, suppose a is a nontrivial morphism in Γ
and ϕ(g)s(a) = t(a), that is rgs(a) = t(a). Then gs(a) ∼= t(a) in X , but
gs(a) 6= t(a) (for if gs(a) = t(a), then a must be trivial by Definition 8.11 (i)
for X ). Let b : t(a) → gs(a) be an isomorphism in X and consider the com-
posite ba : s(a) → t(a) → gs(a). Then gs(ba) = gs(a) = t(ba), so ba must
be trivial by Definition 8.11 (i) for X . Consequently a = b−1 is a nontrivial
isomorphism in Γ, and we have a contradiction to either skeletality or the no
loops requirement. Thus ϕ(g)s(a) 6= t(a), and Definition 8.11 (i) holds for
Γ. The verification of Definition 8.11 (ii) is shorter: if a is a nontrivial mor-
phism in Γ and ϕ(g)s(a) = s(a), that is rgs(a) = s(a), then gs(a) ∼= s(a), and
gs(a) = s(a) by Lemma 8.14 (i) for X . Finally, ga = a by Definition 8.11 (ii)
for X , rga = a as a is in Γ, and ϕ(g)a = a. The action of G on Γ satisfies
Definition 8.11 and we may form the quotient scwol Γ/G as in Defition 8.15,
which is skeletal by Lemma 8.19.

(i) For the G-equivariance of r, let f : x→ y be a morphism in X and consider
the naturality diagram.

rgirx
rgirf=ϕ(g)r(f)

//

∼=
��

rgiry

∼=
��

rgx
rgf

// rgy
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The vertical morphisms must be identities by skeletality of Γ and the no loops
condition, so ϕ(g)r(f) = r(gf). Equivariance on objects then follows by taking
f = idx.

(ii) Diagram (8.25) commutes by definition of r. The functor r is surjective
on objects because pΓr and pX are. The functor r is fully faithful since the
equivariant bijection r(x, y) : morX (x, y)→ morΓ(r(x), r(y)) induces the equi-
variant bijection r(pXx, pX y).

(iii) Let γ ∈ ob(Γ), and suppose giγ = iγ. Then

ϕ(g)γ
def
= r(giγ)

= r(iγ)

= γ

and Giγ ⊆ Gγ . Now suppose ϕ(g)γ = γ. Then r(giγ) = γ by definition, and
giγ ∼= iγ in X , which says g · iγ = iγ by Lemma 8.14 (i), and Gγ ⊆ Giγ .
(iv) We claim that choices can be made in the definitions of the associated
complexes of groups FX and FΓ (see Definition 8.21) so that diagram (8.26)
strictly commutes. First choose a skeleton Q of the quotient X/G, define FX
on object in the skeleton Q, and then extend to all objects in X/G. For every
q ∈ ob(Q), select a q ∈ ob(X ) such that pX (q) = q and define FX (q) =
Gq. We remain with the choice of the selected preimage q of q throughout.
If σ ∈ ob(X/G) and a : q ∼= σ is an isomorphism in X/G, then also define
FX (σ) = Gq. This is allowed, since a : q ∼= σ implies existence of morphisms
a : q → gσσ and b : σ → gqq in X , and the composite

q a // gσσ
gσb

// gσgqq

is trivial by Definition 8.11 (i). The opposite composite is also trivial, as it is
a loop, and we have q ∼= gσσ in X . Then by Lemma 8.14 (iii), Gq = Ggσσ and
we may define FX (σ) = Gq because pX (gσσ) = σ. In particular, the selected
preimage of σ in X is gσσ and we select ha = eG for a : q ∼= σ in Definition 8.21,
so FX (a) = idGq . We remark that the isomorphism a is the only morphism
q → σ because there are no loops in X/G, so the element gσσ is uniquely
defined as the target of the unique morphism a with source q and pX -image a.
We next define FΓ on objects of Γ/G using the equivalence r and the definition
of FX on objects of Q. For q ∈ ob(Q), we also define FΓ(r(q)) = Gq. This is

allowed: for r(q) = r(q) we choose r(q) as the selected preimage in ob(Γ), and
ir(q) ∼= q in X , so Gr(q) = Gir(q) = Gq by (iii) and Lemma 8.14 (iii). Every

γ ∈ ob(Γ/G) is of the form r(q) for a unique q ∈ Q, so FΓ is now defined on
all objects of Γ/G, and we have FΓ ◦ r = FX on all objects of X/G.
We must now define FX and FΓ on morphisms so that FΓ ◦ r = FX for
morphisms also. The idea is to first define FX on morphisms in the skeleton
Q, then extend to all of X/G, and then define FΓ on morphisms of Γ/G. If
a : q1 → q2 is a morphism in Q, then there is a unique morphism a in X with
source q1 and pX (a) = a. Select any ha such that hata = q2. Then we define
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an injective group homomorphism F (a) : Gq1 → Gq2 by

F (a)(g) := hagh
−1
a .

If b : σ1 → σ2 is any morphism in X/G, then there exists a unique a in Q and
a unique commutative diagram with vertical isomorphisms as below.

q1
a //

∼=
��

q2

∼=
��

σ1
b

// σ2

Then we choose hb to be ha, and we consequently have F (a) = F (b). If
c : r(q1) → r(q2) is a morphism in Γ/G, then there is a unique a : q1 → q2 in
Q with r(a) = c and we choose hc to be ha. Manifestly, we have FΓ ◦ r = FX .
The coherences of FX and FΓ are also compatible, since they are determined
by the ha’s.

(v) From (ii) we know r is a surjective-on-objects equivalence of categories and
from (iv) we have FX = FΓ ◦ r. From this, one sees

(r, id) : hocolimX/G FX = hocolimX/G FΓ ◦ r // hocolimΓ/G F
Γ

is an equivalence of categories.

(vi) If the action of G on ob(X ) is free, then for each γ ∈ ob(Γ), the group
Gγ = Giγ (see (iii)) is trivial, and G acts freely on ob(Γ). �

Remark 8.28. In Theorem 8.24, it is even possible to select a skeleton so that
the inclusion is G-equivariant, though we will not need this. See Section 9.

In [16, Theorems 5.30 and 5.37], we proved the compatibility of the L2-Euler
characteristic with coverings and isofibrations of finite connected groupoids.
Theorem 8.29 is an analogue for scwols (see Remark 8.16).

Theorem 8.29 (Compatibility with free actions on finite scwols). Let G be a
finite group acting on a finite scwol X . If G acts freely on ob(X ), then

χ(X/G;R) = χ(X ;R)
|G| and χ(2)(X/G) = χ(2)(X )

|G| .

Recall χ(−;R) and χ(2)(−) agree for finite scwols by Example 8.7.

Proof. By Theorem 8.24 (i), (ii), and (vi), we may assume X is skeletal.
A consequence of Definition 8.11 (ii) (independent of skeletality) is that an
element g ∈ G fixes a path a = (a1, . . . , an) in X if and only if g fixes sa1, so
Gsa1 = Ga. Then G acts freely on Λn(X ), since it acts freely on ob(X ).
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The scwol X/G is skeletal by Lemma 8.19, and by Example 8.7 and Lemma 8.20
we have

χ(2)(X/G) =
∑

n≥0
(−1)ncn(X/G)

=
∑

n≥0
(−1)n|Λn(X/G)|

=
∑

n≥0
(−1)n|Λn(X )/G|

=
∑

n≥0
(−1)n |Λn(X )||G|

=
1

|G|
∑

n≥0
(−1)n|Λn(X )|

=
1

|G|
∑

n≥0
(−1)ncn(X )

=
χ(2)(X )
|G| .

�

A complex of groups is called developable if it is isomorphic to a complex of
groups associated to a group action. A classical theorem of Bass–Serre says that
every complex of groups on a scwol with maximal path length 1 is developable.
The following gives a necessary condition of developability of a complex of
groups from a scwol and group of specified Euler characteristics.

Theorem 8.30 (Euler characteristics of associated complexes of groups). Let
G be a finite group that acts on a finite scwol X in the sense of Definition 8.11.
Let F : X/G→ GROUPS be the associated complex of groups. Then

χ(2)(hocolimX/G F ) =
χ(2)(X )
|G| =

χ(X ;C)
|G| =

χ(BX ;C)
|G| .

If R is a ring such that the orders of subgroups H ⊂ G are invertible in R, then
we also have

χ(hocolimX/G F ;R) = χ(X/G;R).
Proof. By Theorem 8.24 (i), (ii), (iv), and (v), we may assume X is skeletal.
Then X/G is also skeletal by Lemma 8.19.
Let Λn(X ) respectively Λn(X/G) denote the set of paths of n-many non-
identity composable morphisms in X respectively X/G. Then by Lemma 8.20,
the sets Λn(X )/G and Λn(X/G) are in bijective correspondence.
We will also use the fact that an element g ∈ G fixes a path a = (a1, . . . , an)
in X if and only if g fixes sa1, so Gsa1 = Ga. This is a consequence of Defini-
tion 8.11 (ii).
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By Theorem 8.5, EbarX and Ebar(X/G) are finite models for the skeletal scwols
X and X/G, and the n-cells are indexed by Λn(X ) and Λn(X/G), respectively.
For each path (a1, . . . , an) in X , there is an n-cell in EbarX based at sa1. A
similar statement holds for X/G and Ebar(X/G).
Now we may apply the Homotopy Colimit Formula to the associated complex
of groups F : X/G→ GROUPS by Remark 8.23. For the Euler characteristic,
we have

χ(hocolimX/G F ;R) =
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X/G)

χ(F (sa1);R)




=
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X/G)

1




=
∑

n≥0
(−1)n|Λn(X/G)|

=
∑

n≥0
(−1)ncn(X/G)

= χ(X/G;R).
For the L2-Euler characteristic on the other hand, we have

χ(2)(hocolimX/G F ) =
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X/G)

χ(2)(F (sa1))




=
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X/G)

1

|Gsa1 |




=
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X )/G

1

|Ga|




=
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X )/G

|orbit(a)|
|G|




=
1

|G|
∑

n≥0
(−1)n ·


 ∑

a∈Λn(X )/G

|orbit(a)|




=
1

|G|
∑

n≥0
(−1)n|Λn(X )|

=
1

|G|
∑

n≥0
(−1)ncn(X )

=
χ(2)(X )
|G| .
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�

Example 8.31. By the classical theorem of Bass–Serre, any injective group
homomorphism

(8.32) G0 → G1

is a developable complex of groups. The L2-Euler characteristic of the homo-
topy colimit of (8.32) is 1/|G1| by Example 5.1. Theorem 8.30 then says we
must have

|G|
|G1|

= χ(2)(X ) = χ(BX ;C)

if (8.32) is to be developable from a scwol X by an action of G in the sense
of Definition 8.11. Thus (8.32) is not developable from any scwol X whose
geometric realization has Euler characteristic 0, such as {j ⇉ k}. Nor can
(8.32) be developed from any scwol X with χ(BX ;C) negative. The integer |G|
must also be divisible by |G1|, since χ(BX ;C) is always an integer. Moreover,
the Euler characteristic of X must be less than or equal to |G|. This trivial
example illustrates how one can find necessary conditions on X and G if a given
complex of groups is to be developable from X and G.

Example 8.33 (Euler characteristics of transport groupoid in finite case). Let
X be a finite set and G a finite group acting on X . Let R be a ring such
that the orders of subgroups of G are invertible in R. Considering X as a
scwol, we clearly have an action in the sense of Definition 8.11. The associated
complex of groups F : X/G→ GROUPS assigns to orbit(σ) the stabilizer Gσ.
The homotopy colimit hocolimX/G F is equivalent to the transport groupoid

GG(X) of Example 5.6, so

χ
(
GG(X);R

)
= χ(hocolimX/G F ;R) = χ(X/G;R) = |X/G|.

For the L2-Euler characteristic, on the other hand, we have

χ(2)
(
GG(X)

)
= χ(2)(hocolimX/G F ) =

χ(2)(X)

|G| =
|X |
|G| ,

a formula obtained by Baez–Dolan [4].

We also generalize the following formula of Haefliger for the Euler characteristic
of the homotopy colimit of a (not necessarily developable) complex of groups.

Theorem 8.34 (Corollary 3.5.3 of Haefliger [19]). Let G(X) be a complex of
groups over a finite ordered simplicial cell complex X. Assume that each Gσ
is the fundamental group of a finite aspherical cell complex. Then BG(X) has
the homotopy type of a finite complex and its Euler-Poincaré characteristic is
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given by4

χ(BG(X)) =
∑

σ∈ob(C(X))

(1− χ(Lkσ))χ(Gσ).

The terms in Haefliger’s theorem have the following meanings. An ordered
simplicial cell complex X is by definition the nerve of a skeletal scwol, denoted
C(X). The notation BG(X) signifies the geometric realization of the nerve
of the homotopy colimit of the pseudo functor G(X) : C(X) → GROUPS. An
aspherical cell complex is one for which all homotopy groups beyond the funda-
mental group vanish. The lower link Lkσ of the object σ is the full subcategory
of the scwol σ ↓ C(X) on all objects except 1σ.

Theorem 8.35 (Extension of Corollary 3.5.3 of Haefliger [19]). Let I be a finite
skeletal scwol and F : I → GROUPS a complex of groups such that for each
object i of I, the group F (i) is of type (FFZ). Then

χ(B hocolimI F ) =
∑

i∈ob(I)
(1− χ(BLki))χ(BF (i)),

where B indicates geometric realization composed with the nerve functor.

Proof. All hypotheses of Theorem 4.1(vi) are satisfied. The skeletal scwol I
is directly finite by Lemma 8.4 and admits a finite I-CW -model for its I-
classifying space by Theorem 8.5. Each group C(i) is automatically directly
finite, and assumed to be of type (FFZ). The bar construction model EbarI
in Remark 2.10 has an n-cell based at i for each path of n-many non-identity
morphisms in I

i→ i1 → i2 → · · · → in.

Each such path in I corresponds uniquely to a path of (n−1)-many non-identity
morphisms in the scwol Lki beginning at the object i→ i1. Thus

1− χ(BLki) = 1−
∑

m≥0
(−1)mcm(Lki)

= 1−
∑

m≥0
(−1)mcard{(m+ 1)-paths in I beginning at i}

= 1−
∑

n≥1
(−1)n−1card{n-paths in I beginning at i}

= 1 +
∑

n≥1
(−1)ncard{n-paths in I beginning at i}

=
∑

n≥0
(−1)ncard{n-paths in I beginning at i}.

4Haefliger’s original formula has, instead of the lower link Lσ, the upper link Lσ, which is
the full subcategory of the scwol C(X) ↓ σ on all objects except 1σ . However, this is merely
a typo, for if we use the upper link Lkσ and consider the example C(X) = {k ← j → ℓ} with
pseudo functor G(X)(ℓ) := Z and G(X)(j) := G(X)(k) := {0}, then χ(BG(X)) = χ(S1) = 0
but

∑
(1− χ(Lkσ))χ(Gσ) = 1.
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Then by Theorem 4.1 (i), Theorem 4.1 (iv), Theorem 1.15, and Theo-
rem 4.1 (vi), we have

χ(B hocolimI F ) = χ(hocolimI F )

=
∑

n≥0
(−1)n ·

∑

λ∈Λn
χ(F (iλ))

=
∑

i∈ob(I)

(
1− χ(BLki)

)
· χ(F (i))

=
∑

i∈ob(I)

(
1− χ(BLki)

)
· χ(BF (i)).

�

Remark 8.36. The assumptions in our Theorem 8.35 on the groups F (i) are
related to the assumptions in Theorem 8.34 on the groups Gσ in that any
finitely presentable group of type (FFZ) admits a finite model for its classifying
space.

9. Appendix

Let G be a group acting on a scwol X in the sense of Definition 8.11. In
connection with Theorem 8.24, we remark that it is possible to choose a skeleton
Γ0 of X , aG-equivariant functor r : X → Γ0, and a natural isomorphism η : ir ∼=
idX so that

• the inclusion i0 : Γ0 → X is G-equivariant,
• ri0 = idΓ0 , and
• for every object x ∈ ob(X ) and each g ∈ G, we have ηgx = gηx.

To prove this, we first choose the object set of Γ0 via an equivariant section
of the projection π : ob(X ) → iso(X ), which assigns to each object of X its
isomorphism class of objects. Let Θ denote the set of G-orbits of iso(X ). For
each G-orbit θ ∈ Θ, we use the axiom of choice to select an element xθ ∈ θ. For
each θ, select then a π-preimage s(xθ) := xθ of xθ. On the orbit of each xθ we
define the section s by s(gxθ) := gxθ. This is well defined, for if g1xθ = g2xθ,
then g1xθ ∼= g2xθ, and g1xθ = g2xθ by Lemma 8.14 (i). Define the skeleton Γ0

to be the full subcategory of X on the objects in the image of the equivariant
section s : iso(X )→ ob(X ).
For each xθ, and each x ∈ xθ, choose an isomorphism ηx : xθ → x. For gx, we
define ηgx as gηx. Next, we define a functor r : X → Γ0 on objects x ∈ ob(X )
by r(x) := sπ(x) and on morphisms f : x → y by r(f) := ηy ◦ f ◦ η−1x . Then
η is clearly a natural isomorphism, the inclusion i0 : Γ0 → X is G-equivariant,
and ri0 = idΓ0 .
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positive donnée. arXiv:0806.0060v1 [math.CT], 2008.

Documenta Mathematica 16 (2011) 301–354



352 Thomas M. Fiore, Wolfgang Lück, and Roman Sauer

[3] S. Allouch. On the existence of a category with a given matrix.
arXiv:1007.2884v1 [math.CT], 2010.

[4] J. Baez and J. Dolan. From finite sets to Feynman diagrams. In Mathemat-
ics Unlimited - 2001 and Beyond, vol. 1, eds. Björn Engquist and Wilfried
Schmid, Springer, Berlin, 2001, pp. 29-50.

[5] A. Bartels and W. Lück. The Borel conjecture for hyperbolic and CAT(0)-
groups. Preprintreihe SFB 478 — Geometrische Strukturen in der Mathe-
matik, Münster, arXiv:0901.0442v1 [math.GT], 2009.

[6] A. Bartels, W. Lück, and H. Reich. The K-theoretic Farrell-Jones conjec-
ture for hyperbolic groups. Invent. Math., 172(1):29–70, 2008.

[7] A. Bartels, W. Lück, and H. Reich. On the Farrell-Jones Conjecture and
its applications. Journal of Topology, 1:57–86, 2008.

[8] P. Baum, A. Connes, and N. Higson. Classifying space for proper actions
and K-theory of group C∗-algebras. In C∗-algebras: 1943–1993 (San An-
tonio, TX, 1993), pages 240–291. Amer. Math. Soc., Providence, RI, 1994.

[9] C. Berger and T. Leinster. The Euler characteristic of a category as the
sum of a divergent series. Homology, Homotopy Appl., 10(1):41–51, 2008.

[10] A. K. Bousfield and D. M. Kan. Homotopy limits, completions and local-
izations. Springer-Verlag, Berlin, 1972. Lecture Notes in Mathematics, Vol.
304.

[11] M. R. Bridson and A. Haefliger. Metric spaces of non-positive curvature.
Springer-Verlag, Berlin, 1999. Die Grundlehren der mathematischen Wis-
senschaften, Band 319.

[12] K. S. Brown. Cohomology of groups, volume 87 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, 1982.

[13] J. Cheeger and M. Gromov. L2-cohomology and group cohomology. Topol-
ogy, 25(2):189–215, 1986.

[14] J. F. Davis and W. Lück. Spaces over a category and assembly maps in
isomorphism conjectures in K- and L-theory. K-Theory, 15(3):201–252,
1998.

[15] E. Dror Farjoun. Homotopy and homology of diagrams of spaces. Algebraic
topology, Proc. Workshop, Seattle/Wash. 1985, Lect. Notes Math. 1286,
93-134 (1987).

[16] T. M. Fiore, W. Lück, and R. Sauer. Finiteness obstructions and Euler
characteristics of categories. arXiv, 2010. Accepted to Advances in Mathe-
matics.

[17] A. Grothendieck. Pursuing Stacks. 1983.
[18] A. Haefliger. Complexes of groups and orbihedra. Group theory from a

geometrical viewpoint (Trieste, 1990), 504–540, World Sci. Publ., River
Edge, NJ, 1991.

[19] A. Haefliger. Extension of complexes of groups. Ann. Inst. Fourier (Greno-
ble), 42(1-2):275–311, 1992.

[20] L. Illusie. Complexe cotangent et déformations. II. Springer-Verlag,
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Abstract.

Soient S une surface de Kato intermédiaire, D le diviseur formé des

courbes rationnelles de S, S̃ le revêtement universel de S et ‹D la

préimage de D dans S̃. On donne deux résultats concernant la sur-

face S̃ \ ‹D, à savoir qu’elle est de Stein (ce qui était connu dans le
cas où S est une surface d’Enoki ou d’Inoue-Hirzebruch) et on donne
une condition nécessaire et suffisante pour que son fibré tangent ho-
lomorphe soit holomorphiquement trivialisable.

2010 Mathematics Subject Classification: 32E10, 32E30, 32J15,
32M25.
Keywords and Phrases: Variétés de Stein, surfaces de Kato.

1. Introduction

Les surfaces de la classe VII de Kodaira sont les surfaces complexes compactes
dont le premier nombre de Betti vaut 1 ; on appelle surface de la classe VII0 une
surface de la classe VII qui est minimale. Le cas de ces surfaces dont le second
nombre de Betti b2 est nul est entièrement compris, il s’agit nécessairement
d’une surface de Hopf ou d’une surface d’Inoue et le cas b2 > 0 est toujours
étudié actuellement ; il a été conjecturé qu’elles contiennent toutes une coquille
sphérique globale. La preuve de ce résultat terminerait la classification des
surfaces complexes compactes.
Les surfaces à coquille sphérique globale, qui nous intéressent ici, peuvent être
obtenues selon un procédé dû à Kato (voir [11]), que l’on rappelle dans la
section suivante. Ces surfaces se divisent en trois classes, les surfaces d’Enoki,
d’Inoue-Hirzebruch et enfin les surfaces intermédiaires.

∗. Je tiens à remercier le referee pour ses remarques très importantes. Le financement
de cette recherche est assuré par la Région Provence-Alpes-Côte d’Azur dans le cadre d’une
bourse doctorale régionale.
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Étant donnés une surface minimale S à coquille sphérique globale,D le diviseur

maximal de S formé des b2(S) courbes rationnelles de S et ̟ : S̃ → S le

revêtement universel de S, nous allons démontrer que S̃ \ ‹D (où ‹D = ̟−1(D))
est une variété de Stein. Ce résultat était déjà connu pour les surfaces d’En-
oki et d’Inoue-Hirzebruch ; nous allons le montrer dans le cas des surfaces
intermédiaires. Dans la dernière partie et toujours dans le cas des surfaces
intermédiaires, on donne une condition pour que le fibré tangent holomorphe

de la variété S̃ \‹D soit holomorphiquement trivialisable, à savoir que la surface
S soit d’indice 1.

2. Préliminaires

On dit qu’une surface compacte S contient une coquille sphérique globale
s’il existe une application qui envoie biholomorphiquement un voisinage de la
sphère S3 ⊂ C2 \ {0} dans S et telle que le complémentaire dans S de l’image
de la sphère par cette application soit connexe.
Toute surface contenant une coquille sphérique globale peut être obtenue de la
façon suivante : étant données une succession finie d’éclatements π1, ..., πn de la
boule unité B de C2 au-dessus de 0 et π := π1 ◦ · · · ◦ πn : Bπ → B la composée
de ces éclatements, ainsi qu’une application σ : B → Bπ biholomorphe sur un
voisinage de B, on recolle les deux bords de Ann(π, σ) := Bπ \ σ(B) à l’aide
de l’application σ ◦ π :

La surface obtenue possède un groupe fondamental isomorphe à Z et son second
nombre de Betti est égal à n (voir [2]). Il s’agit d’une construction due à Kato
[11]. Dans la suite, on appellera surface de Kato une surface complexe compacte
minimale contenant une coquille sphérique globale, dont le second nombre de
Betti est non nul.
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Dans [2], Dloussky étudie le germe contractant d’application holomorphe
ϕ = π ◦ σ : B → B associé à la construction précédente. Ce germe détermine à
isomorphisme près la surface étudiée (proposition 3.16 loc. cit.).

Soit S une surface de Kato ; on note D le diviseur maximal de S formé des

b2(S) courbes de S, S̃ le revêtement universel de S et ‹D la préimage de D dans

S̃.
Suivant les notations de [2], on obtient la surface S̃ en recollant une infinité
d’anneaux Ai (i ∈ Z) isomorphes à Ann(π, σ), en identifiant le bord pseudo-
concave de Ai au bord pseudo-convexe de Ai+1 via l’application σ◦π. La surface
S̃ possède deux bouts, notés 0 et∞, le bout 0 possédant une base de voisinages
ouverts strictement pseudo-convexes (les

⋃
i>j Ai pour j ∈ Z) et le second une

base de voisinages strictement pseudo-concaves (les
⋃
i6j Ai pour j ∈ Z). Enfin

on définit un automorphisme G de S̃ en posant G(zi) := zi+1 où zi et zi+1 sont
les images dans Ai et Ai+1 respectivement d’un même point z ∈ Ann(π, σ).

Fixons une courbe compacte C de S̃ avec C ⊂ A0. On note (ŜC , pC) l’effon-

drement de S̃ sur la courbe C, c’est-à-dire la donnée d’une surface ŜC n’ayant

qu’un bout, d’une application holomorphe pC de S̃ dans ŜC , biholomorphe sur

un voisinage du bout ∞ dans S̃ sur un voisinage du bout de ŜC , telles que
“C = pC(C) soit une courbe d’auto-intersection −1.
La proposition 3.4 de [2] nous assure l’existence d’une telle application pC pour

toute courbe compacte C de S̃, et d’un point 0̂C ∈ “C tel que pC soit également

biholomorphe entre S̃ \ p−1C (0̂C) et ŜC \ {0̂C}.
De plus, la restriction de pC au complémentaire de ‹D est un biholomorphisme

entre S̃ \ ‹D et ŜC \ pC(‹D). Enfin, il existe une application holomorphe FC de

ŜC \ {0̂C} dans lui-même, contractante en 0̂C , conjuguée à ϕ et biholomorphe

sur ŜC \ pC(‹D).
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3. La variété S̃ \ ‹D est de Stein

Les surfaces de Kato se divisent en trois classes : les surfaces d’Enoki, d’Inoue-
Hirzebruch et enfin les surfaces intermédiaires (voir [5]).

Dans le cas des surfaces d’Inoue-Hirzebruch et celles d’Enoki, le fait que S̃ \ ‹D
soit de Stein est déjà connu : pour une surface d’Inoue-Hirzebruch, la variété

S̃ \ ‹D est un domaine de Reinhardt holomorphiquement convexe (voir [13],

proposition 2.2) tandis que pour une surface d’Enoki, on a S̃ \ ‹D ∼= C∗×C qui
sont bien dans chaque cas des variétés de Stein. Il reste donc à étudier le cas
des surfaces intermédiaires.

Favre a donné dans [7] des formes normales pour les germes contractants d’ap-
plications holomorphes et on peut en particulier donner la forme du germe
associé à une surface intermédiaire, à savoir qu’une telle surface est associée au
germe ϕ de (C2, 0)→ (C2, 0) donné par

(1) (z, ζ) 7→ (λζsz + P (ζ) + c sk
k−1

ζ
sk
k−1 , ζk)

où λ ∈ C∗, k, s ∈ N avec k > 1 et s > 0, et P (ζ) = cjζ
j + ... + csζ

s avec les

conditions suivantes : 0 < j < k, j 6 s, cj = 1, c sk
k−1

= 0 quand sk
k−1 6∈ Z ou

λ 6= 1 et enfin pgcd{k,m | cm 6= 0} = 1. On trouve dans [12] une condition
pour que deux tels germes soient conjugués (et déterminent donc deux surfaces
isomorphes).

L’objectif de cette section est de démontrer, dans le cas de surfaces in-
termédiaires, le

Théorème 3.1. La surface S̃ \ ‹D est de Stein.

Dans un premier temps (section 3.1), on montre qu’il est suffisant de se ramener
à la situation du théorème 3.2 énoncé ci-dessous. Pour cela, nous allons écrire
notre surface comme réunion croissante d’ouverts et nous verrons que seule une
hypothèse manque a priori pour pouvoir effectivement appliquer ce théorème,
à savoir que chaque paire constituée de deux tels ouverts consécutifs est de
Runge. C’est dans la section 3.2 qu’on prouve que cette hypothèse est bien
vérifiée.

3.1. Réduction du problème. Reprenons les notations précédentes et
donnons-nous un germe de la forme (1). On regarde la surface intermédiaire

S associée et on choisit une courbe C de S̃ donnée par la proposition 3.16 de
[2] ; quitte à renuméroter les Ai on suppose que C ⊂ A0. Notre objectif est de

prouver que la variété ŜC \pC(‹D) est de Stein, en utilisant le théorème suivant
(voir [10], théorème 10 p. 215) :

Théorème 3.2. Soient X un espace analytique complexe et (Xi)i∈N une suite
croissante de sous-espaces de X qui soient de Stein. Supposons que X =

⋃
Xi

et que chaque paire (Xi+1, Xi) est de Runge, i.e. l’ensemble O(Xi)|Xi+1 des
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restrictions à Xi des applications holomorphes sur Xi+1 est dense dans O(Xi).
Alors X est de Stein.

Notons :
- Âi := pC(Ai) pour tout i ∈ Z et
- Ai := pC(

⋃
j>iAj) pour i 6 0,

de sorte qu’on a Ai ⊂ Ai−1 et ŜC \ pC(‹D) =
⋃

i60

Ai \ pC(‹D).

Chaque Ai \ pC(‹D) est strictement pseudo-convexe, donc de Stein. De plus, on

a FC(Âi) = Âi+1 pour i 6 −1, car le diagramme

S̃
G //

pC
��

S̃

pC
��

ŜC FC
// ŜC

est commutatif (c.f. [2], proposition 3.9). Ainsi, on a

(2) FC(Ai−1 \ pC(‹D)) = Ai \ pC(‹D)

Supposons établi le fait que la paire (A0\pC(‹D), FC(A0\pC(‹D))) est de Runge.

Alors la paire (A−1 \ pC(‹D),A0 \ pC(‹D)) est automatiquement de Runge par

l’égalité (2) ci-dessus, et par récurrence chaque paire (Ai−1\pC(‹D),Ai\pC(‹D))
est de Runge. Nous sommes alors en mesure d’appliquer le théorème 3.2 qui

nous dit que la réunion des Ai \ pC(‹D) est de Stein.

Le problème est donc ramené à montrer que le couple (A0 \ pC(‹D), FC(A0 \
pC(‹D))) est de Runge.

Remarque 3.3. L’ensemble A0 \ pC(‹D) est biholomorphe à une boule ouverte
centrée en 0 privée d’une droite complexe. En effet, on peut écrire ϕ = π ◦σ où
π est une succession d’éclatements de la boule au-dessus de 0 ∈ C2, σ : B →
π−1(B) est une application définie sur un voisinage de B et biholomorphe sur
son image, et ϕ est de la forme normale (1). Par le choix de la courbe C, la

proposition 3.16 p. 33 de [2] nous donne l’isomorphismeA0\pC(‹D) ∼= B\ϕ−1(0)
et en utilisant la forme de ϕ, on voit que ϕ−1(0) = {ζ = 0}.

Finalement, démontrer que (A0 \pC(‹D), FC(A0 \pC(‹D))) est de Runge revient
à prouver que c’est le cas de la paire (B \ {ζ = 0}, ϕ(B \ {ζ = 0})) pour une
boule B ⊂ C2 centrée en 0 (en notant (z, ζ) les coordonnées de C2). C’est
l’objet de la section suivante.

3.2. La paire (B \ {ζ = 0}, ϕ(B \ {ζ = 0})) est de Runge. Etant donné un
germe ϕ de la forme (1), introduisons en premier lieu quelques notations :
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1. Remarquons tout d’abord que chaque point de C×∆∗ possède exactement
k antécédents par ϕ, où ∆∗ est le disque unité ouvert de C privé de 0. Notons
g l’automorphisme de C×∆∗ suivant :

g : (z, ζ) 7→
Å
ε−sz +

P (ζ)− P (εζ)
λεsζs

, εζ

ã

où ε est une racine primitive k-ième de l’unité, de sorte que ϕ ◦ g = ϕ. Pour
tout ℓ ∈ Z, on a

gℓ(z, ζ) =

Ç
(εℓ)−sz +

P (ζ) − P (εℓζ)
λ(εℓ)sζs

, εℓζ

å

et gZ ∼= Z/kZ. L’automorphisme g permute les antécédents d’un même point
de l’application ϕ.

2. On notera également q(z, ζ) le polynôme z
k−1∏

ℓ=1

aℓ(z, ζ)ζ
nℓ où aℓ(z, ζ) est la

première composante de gℓ(z, ζ) et nℓ = s −min{n|cn(1 − (εℓ)n) 6= 0}, qui
est bien défini et positif ou nul vu la dernière hypothèse sur les coefficients de
P , à savoir pgcd{k,m | cm 6= 0} = 1. Le polynôme q(z, ζ) est en particulier
de la forme q(z, ζ) = z(c+ ǫ(z, ζ)) où ǫ(z, ζ) −−−−−→

(z,ζ)→(0,0)
0 et c 6= 0.

3. Pour η > 0, on note Uη l’ouvert {(z, ζ) ∈ C2 | |q(z, ζ)| < η}. Soient a, b et c
trois réels strictement positifs, on définit les ensembles

Ka,b := {(z, ζ) ∈ C2 | |z|2 + |ζ|2 6 a2, |ζ| > b} = B(0, a) ∩ {|ζ| > b}
et

La,b,c := D(0, a)× Ab,c

(où Ab,c est l’anneau ouvert centré en 0 de rayons b < c). Enfin, on pose

Ka,b :=
k−1⋃

ℓ=0

gℓ(Ka,b)

et

La,b,c :=
k−1⋃

ℓ=0

gℓ(La,b,c).

Remarque 3.4. Pour a, b et c assez petits, les compacts gℓ(La,b,c) (resp.
gℓ(Ka,b)) sont disjoints deux à deux : ceci est une conséquence du fait que
la fonction ϕ est localement injective autour de l’origine de C2, ce qui est
démontré, par exemple, dans [5], section 5. En particulier, les ensembles La,b,c
et Ka,b possèdent chacun k composantes connexes.
D’autre part, on a Ka′,b′ ⊂ La,b,c pour b′ > b et a′ 6 min{a, c}, ce qui entrâıne
notamment Ka′,b′ ⊂ La,b,c.

Enfin, pour η > 0 fixé, il existe Aη > 0 tel que pour tous réels t et δ avec
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0 < t < δ < Aη, on ait Lδ,t,δ ⊂ Uη : en calculant |q(z, ζ)| pour (z, ζ) ∈ Lδ,t,δ on
voit qu’il suffit de choisir δ assez petit pour avoir

(3) |δ|
k−1∏

ℓ=1

(|δnℓ+1|+ 2(|cs−nℓ |+ |cs−nℓ+1|δ + ...+ |cs|δnℓ)/λ) < η.

On appelle Vη,δ l’ensemble Uη ∩ {|ζ| 6 δ}.

Proposition 3.5. Pour δ > 0 assez petit et pour tout ε1 ∈]0, δ[, le compact
Kδ,ε1 est holomorphiquement convexe.

Preuve : En premier lieu, remarquons que l’enveloppe holomorphiquement
convexe de Vη,δ est l’adhérence V η,δ de cet ensemble. On note :

- K̂δ,ε1 l’enveloppe holomorphiquement convexe de Kδ,ε1 ,
- K̂ℓδ,ε1 (resp. V ℓη,δ) la composante connexe de K̂δ,ε1 (resp. V η,δ) qui contient

gℓ(Kδ,ε1), pour ℓ ∈ {0, ..., k − 1}.

Étape 1 : Montrons tout d’abord que pour η et δ assez petits et pour tout
ε1 < δ, on a V 0

η,δ ∩ Kδ,ε1 = Kδ,ε1 , autrement dit que la composante connexe

de V η,δ qui contient Kδ,ε1 ne rencontre aucune autre composante de Kδ,ε1 .

Soient δ > ε1 > 0. Pour ℓ ∈ {1, ..., k − 1}, on a

gℓ(Kδ,ε1) ⊂ gℓ(Lδ,ε1,δ) = {(z, ζ) ∈ C2 | |ak−ℓ(z, ζ)| 6 δ, |ζ| ∈ [ε1, δ]}.

En particulier, pour (z, ζ) ∈ gℓ(Lδ,ε1,δ), on a z =
P (εk−ℓζ) − P (ζ)

λζs
+ w où

|w| 6 δ. En développant, cette égalité devient

z = λ−1ζ−nℓ
(
cs−nℓ((ε

−ℓ)s−nℓ − 1)+ cs−nℓ+1((ε
−ℓ)s−nℓ+1 − 1)ζ + ...

...+ cs((ε
−ℓ)s − 1)ζnℓ

)
+ w.
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Autrement dit, z est de la forme

λ−1ζ−nℓ((cs−nℓ((ε
−ℓ)s−nℓ − 1) + ζRℓ(ζ, w))

où Rℓ est un polynôme et par définition de nℓ, le terme cs−nℓ((ε
−ℓ)s−nℓ − 1)

est non nul.

Grâce à cette dernière expression de z, on voit que lorsque nℓ > 0, pour
n’importe quelle constante C > 0 et lorsque δ est assez petit, tout élément
(z, ζ) ∈ gℓ(Lδ,ε1,δ) vérifie |z| > C.
Dans le cas où nℓ = 0 (donc cs 6= 0), on a |z| = |λ−1(cs((ε−ℓ)s − 1)) + w| est
supérieur à une constante non nulle pour δ assez petit.

Posons alors α := 1
2min

ℓ
{|cs((εℓ)s − 1)| | ℓs 6≡ 0[k]} si cs 6= 0 et α := 1 sinon.

Par ce qui précède, il existe une constante A > 0 telle que pour tous δ < A et
ε1 < δ on ait, pour chaque ℓ ∈ {1, ..., k−1} et tout élément (z, ζ) de gℓ(Lδ,ε1,δ),
l’inégalité

(4) |z| > α.
Fixons désormais η > 0 vérifiant les deux conditions suivantes :
1. 2η/|c| < α (où c 6= 0 est le facteur de z dans le développement limité de q
en (0, 0), à savoir q(z, ζ) = z(c+ ǫ(z, ζ))), et

2. |c+ ǫ(z, ζ)| > |c|/2 pour tout (z, ζ) ∈ D(0, 3η/|c|)× D(0, 3η/|c|).

Choisissons maintenant δ < min{A,Aη, 2η/|c|} et ε1 ∈]0, δ[. Alors on a
Lδ,ε1,δ ⊂ Uη (remarque 3.4) et l’inégalité (4) ci-dessus est vérifiée.

Pour tout |z| 6 δ et |ζ| ∈ [ε1, δ] on a (z, ζ) ∈ Kδ,ε1 ⊂ V
0

η,δ. Soit maintenant

ℓ ∈ {1, ..., k − 1} et (z, ζ) un point de gℓ(K), on a |z| > α et ceci entrâıne que
(z, ζ) 6∈ V 0

η,δ.

En effet, supposons le contraire : la projection de V 0
η,δ sur la première coor-

donnée étant connexe, et comme δ < 2η/|c| < α, il devrait exister un élément
(z′, ζ′) ∈ V 0

η,δ avec |z′| = 2η/|c|, ce qui est impossible puisque dans ce cas

|q(z′, ζ′)| > 2η

|c| (|c|/2) = η.

Ainsi, la composante connexe V 0
η,δ de V η,δ qui contient Kδ,ε1 ne rencontre

aucune autre composante de Kδ,ε1 , ce qu’il fallait démontrer.

À partir de maintenant, on omet les indices δ, ε1.

Étape 2 : Montrons à présent que K̂0 = K. Par l’étape 1, et comme K̂0 ⊂ V 0,

on sait que K̂0 ne rencontre pas d’autre composante de K que l’ensemble K
lui-même.
Soit (z0, ζ0) ∈ K̂0 \ K. On suppose que |ζ0| > ε1 (sinon (z0, ζ0) 6∈ K̂), donc
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nécessairement |z0|2 + |ζ0|2 > δ2. Comme la boule fermée B := B(0, δ) est
holomorphiquement convexe dans C2, il existe une fonction h holomorphe sur
C2 telle que |h(z0, ζ0)| > ‖h‖B. Notons respectivement m0 et mB les quantités

|h(z0, ζ0)| et ‖h‖B, ainsi que mK̂ la quantité ‖h‖K̂, qui est finie puisque K̂ est
compact.

Considérons la fonction χK̂0 définie sur K̂ valant 1 sur K̂0 (en particulier sur

K) et 0 sur K̂ \ K̂0 (en particulier sur gℓ(K) pour ℓ 6≡ 0[k]).

Le théorème 6’ p. 213 de [10] nous dit que la fonction χK̂0 est limite uniforme

sur K̂ de fonctions holomorphes sur C × ∆∗. Soit donc f une fonction holo-

morphe vérifiant ‖f − χK̂0‖K̂ < ε′ avec ε′ < min

®
m0

mK̂ +m0
,
m0 −mB

m0 +mB

´
et

appelons F l’application (z, ζ) 7→ h(z, ζ)f(z, ζ).

Pour (zℓ, ζℓ) ∈ gℓ(K) (avec ℓ ∈ {1, ..., k − 1}), on a l’inégalité

|F (zℓ, ζℓ)| 6 ‖F − hχK̂0‖K̂ + |h(zℓ, ζℓ)χK̂0(zℓ, ζℓ)|.
Le second terme du membre de droite est nul ; quant au premier, il est majoré
par mK̂ε

′. De plus, on a |F (z0, ζ0)| = m0|f(z0, ζ0)| > m0(1− ε′) d’une part, et

pour tout (z, ζ) ∈ K on a

|F (z, ζ)| 6 |h(z, ζ)
Ä
f(z, ζ)− χK̂0(z, ζ)

ä
|+ |h(z, ζ)χK̂0(z, ζ)|

donc |F (z, ζ)| 6 mBε
′ + mB d’autre part. Le choix de ε′ nous assure que

max{mK̂ε
′,mB(ε

′ + 1)} < m0(1 − ε′). Autrement dit, nous avons montré que

(z0, ζ0) 6∈ K̂, d’où une contradiction. Ainsi, on a bien établi que K̂0 = K.

Étape 3 : Il nous reste à conclure. Remarquons que l’enveloppe holomorphe

convexe K̂ de K est également stable par g et supposons qu’il existe ℓ0 ∈
{1, ..., k − 1} et un point (zℓ0 , ζℓ0) ∈ K̂ℓ0 \ gℓ0(K). Alors on a les inclusions
suivantes :

K ⊂ g−ℓ0(K̂ℓ0) ⊂ K̂0,

la dernière inclusion provenant du fait que la continuité de g entrâıne la

connexité de g−ℓ0(K̂ℓ0). On a donc g−ℓ0(zℓ0 , ζℓ0) ∈ K̂0 = K, d’où une contra-
diction.

Finalement, on a établi que

k−1⋃

ℓ=0

K̂ℓ = K. Comme K est une réunion de com-

posantes connexes de K̂, c’est un sous-ensemble ouvert et fermé de K̂, donc
holomorphiquement convexe par le corollaire 8 p. 214 de [10]. �

Notons O(C×∆∗) l’algèbre des fonctions holomorphes sur C×∆∗ et ϕ∗(O(C×
∆∗)) l’algèbre des éléments de O(C×∆∗) invariants par le groupe gZ. Si A est
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une algèbre de fonctions holomorphes, on note K̂A l’enveloppe de K par rapport

à l’algèbre A. On a montré que K̂O(C×∆∗) = K.

Corollaire 3.6. On a K̂ϕ∗(O(C×∆∗)) = K.

Preuve : En effet, pour x 6∈ K, on a :

(5) ⁄�(gZ.x) ∪K
O(C×∆∗)

= (gZ.x) ∪ K.
Ceci découle du fait que si p 6∈ K, pour q 6∈ {p} ∪ K, il existe f1 ∈ O(C ×
∆∗) telle que ‖f1‖K < f1(q). Après avoir éventuellement multiplié f1 par une
constante, on peut supposer que f1(q) = 1. Comme p 6= q, il existe également
une fonction f2 ∈ O(C ×∆∗) qui vérifie f2(p) = 0, f2(q) 6= 0 et ‖f2‖K 6 1/2 ;
quitte à remplacer f1 par des puissances d’elle-même, on peut supposer que
‖f1‖K 6 |f2(q)| et dans ce cas on a ‖f1f2‖K∪{p} < |f1(q)f2(q)|. Ainsi, on a

◊�{p} ∪ KO(C×∆∗)

= {p} ∪ K ; par conséquent, en ajoutant un nombre fini de
points à K l’ensemble obtenu reste holomorphiquement convexe, et on a bien
l’égalité (5).
On considère alors la fonction f qui vaut 1 sur gZ.x et 0 sur K, qui est holo-
morphe sur (gZ.x)∪K. Alors (théorème 6’ p. 213 de [10]) il existe une fonction
h ∈ O(C ×∆∗) telle que ‖f − h‖ < 1/2.

En définissant la fonction holomorphe H :=
1

k

k−1∑

j=0

(h ◦ gj), il sort que l’on a

|H(x) − 1| < 1/2

tandis que pour tout y ∈ K, on a |H(y)| < 1/2, donc x 6∈ K̂ϕ∗(O(C×∆∗)). �

Corollaire 3.7. Soit δ un réel positif donné par la proposition 3.5. Alors, la
paire

(B(0, δ) \ {ζ = 0}, ϕ(B(0, δ) \ {ζ = 0}))
est de Runge.

Preuve : On se donne un compact A de ϕ(B(0, δ) \ {ζ = 0}), il est inclus
dans un certain ϕ(Kδ−1/p,1/q) (pour p et q assez grands et avec δ > 1/p+1/q).
L’enveloppe de A par rapport à l’algèbre des fonctions holomorphes sur
B(0, δ) \ {ζ = 0} est incluse dans ϕ(Kδ−1/p,1/q) par le corollaire 3.6, donc
compacte. Ainsi ϕ(B(0, δ) \ {ζ = 0}) est holomorphiquement convexe par
rapport aux fonctions holomorphes de B(0, δ) \ {ζ = 0}, ce qui nous donne la
conclusion ([10], corollaire 9 p. 214). �

3.3. Une généralisation. Soit ϕ un germe de (C3, 0) dans (C3, 0) donné par

(6) (z, ζ, ξ) 7→ (λζrξsz + P (ζ, ξ), ζk, ξℓ)
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où λ ∈ C∗, k, ℓ, r, s ∈ N avec k, ℓ > 1, pgcd(k, ℓ) = 1 et r, s > 0, et

P (ζ, ξ) =
r∑

i1=j1

s∑

i2=j2

ci1,i2ζ
i1ξi2

avec les conditions suivantes : 0 < j1 < k, 0 < j2 < ℓ, j1 6 r, j2 6 s et
cj1,j2 6= 0.

Nous ajoutons une hypothèse supplémentaire, à savoir que pour tout ε ∈ Uk
(racines k-ièmes de l’unité) et τ ∈ Uℓ avec ετ 6= 1 †, il existe des entiers n et m
et un polynôme Q avec Q(0, 0) 6= 0, tels que l’on ait l’égalité :

(7) P (ζ, ξ)− P (εζ, τξ) = ζnξmQ(ζ, ξ).

Donnons quelques classes d’exemples de polynômes vérifiant cette dernière
condition :

1. P (ζ, ξ) =

min(r,s)∑

p=1

apζ
pξp avec ou bien pgcd{k, p | ap 6= 0} = 1, ou bien

pgcd{ℓ, p | ap 6= 0} = 1,

2. P (ζ, ξ) = ζs
′
r∑

p=1

apξ
p avec pgcd{ℓ, p | ap 6= 0} = 1 et 1 6 s′ 6 s,

3. P de la forme précédente, mais en intervertissant les rôles de ζ et ξ.

Etant données εk et τℓ deux racines primitives k-ième et ℓ-ième de l’unité
respectivement, notons g l’automorphisme de C× (∆∗)2 qui à (z, ζ, ξ) associe

(ε−rk τ−sℓ z +
P (ζ, ξ) − P (εkζ, τℓξ)

λεrkτ
s
ℓ ζ
rξs︸ ︷︷ ︸

ak,l(z, ζ, ξ)

, εkζ, τℓξ),

et X l’ensemble B(0, 1) \ {ζξ = 0}. La condition (7) permet d’adapter le rai-
sonnement de la preuve de la proposition 3.5 et de ses deux corollaires dans
cette situation, en posant cette fois-ci

q(z, ζ, ξ) = z
k−1∏

i=1

ℓ−1∏

j=1

ak,ℓ(z, ζ, ξ)ζ
nkξmℓ .

Ainsi la paire (X,ϕ(X)) est de Runge. On obtient alors une variété de Stein
en recollant une infinité dénombrable de copies de X \ ϕ(X) grâce à l’appli-
cation ϕ. Il est possible de généraliser cette dernière construction en prenant
un germe de (Cn+1, 0) dans lui-même, défini cette fois par (z, ζ1, ..., ζn) 7→
(λζs11 ...ζsnn z + P (ζ1, ..., ζn), ζ

k1
1 , ..., ζknn ) avec des conditions directement ana-

logues à celles données ci-dessus.

†. Comme k et ℓ sont premiers entre eux, ceci revient à dire que ε et τ ne sont pas
simultanément égaux à 1.
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4. Invariants

Revenons à présent à notre situation de départ. On note désormaisX la variété

S̃ \ ‹D. Etant donné un groupe G, on appelle espace K(G, 1) tout espace topo-
logique connexe dont le groupe fondamental est isomorphe à G et qui possède
un revêtement universel contractile.

Exemple 4.1. Le cercle unité S1 est un espace K(Z, 1).

Remarquons tout d’abord que la variété X est un espace K(Z[ 1k ], 1). En effet,

π1(X) ∼= Z[ 1k ] et son revêtement universel C×H (c.f. [3] et [8]) est contractile.
Le théorème I de [6] (pp. 482-483) nous dit alors que les groupes de cohomologie
de X sont isomorphes à ceux du groupe Z[ 1k ], c’est-à-dire que pour tout n ∈ N
et pour tout groupe G, on a un isomorphisme entre Hn(X,G) et Hn(Z[ 1k ], G).
De plus, on sait (loc. cit. pp. 488-489) que le groupe H2(Z[ 1k ], G) est isomorphe

au groupe des extensions centrales de Z[ 1k ] par G. Une extension centrale est
la donnée d’une extension de groupe

0→ G
i→ E

p→ Z[ 1k ]→ 0

où E est un groupe avec i(G) ⊂ Z(E), le centre de E.

Nous sommes maintenant en mesure de prouver la

Proposition 4.2. Le groupe H2(X,C) est trivial.

Preuve : Par ce qui précède, il suffit de montrer qu’une extension centrale E
de Z[ 1k ] par C est nécessairement triviale, i.e. isomorphe au produit cartésien

C× Z[ 1k ]. Soit donc E une telle extension :

0→ C
i→ E

p→ Z[ 1k ]→ 0.

Montrons que E est abélien. Soient x, y ∈ E et a ∈ N tels que p(x) et p(y)
appartiennent tous deux à 1

kaZ := { nka , n ∈ Z} qui est un sous-groupe de Z[ 1k ]
isomorphe à Z.
L’extension E induit une extension F := p−1( 1

kaZ) de 1
kaZ par C, donc une

extension de Z par C :

0→ C
i′→ F

p′→ Z→ 0

Il existe une section s : Z → F (on choisit s(1) ∈ p′−1(1) et on pose s(n) =
ns(1) pour n ∈ Z) donc F est produit semi-direct de Z par C, donné par
σ ∈ Hom(Z,Aut(C)). L’extension F étant elle aussi centrale, σ ≡ 1 est l’unique
possibilité, i.e. F est abélien (il est isomorphe à C×Z) donc x et y commutent.
Ainsi, E est abélien.
Il existe des sections s : Z[ 1k ] 7→ E. Pour construire l’une d’elles, fixons

x0 ∈ p−1(1). Comme Z[ 1k ]
∼= E/i(C), il existe x′1 ∈ p−1(1/k) tel que

kx′1 = x0 + i(w) avec w ∈ C. On pose alors x1 := x′1 − i(w/k) et on
a kx1 = x0 ; on définit ainsi par récurrence les xi ∈ p−1(1/ki) vérifiant
kxi+1 = xi, et notre section est donnée par s(n/ka) = nxa pour n ∈ Z et
a ∈ N. L’existence d’une telle section nous dit que E est isomorphe au produit
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semi-direct C ⋊ Z[ 1k ] donné par σ ∈ Hom(Z[ 1k ],Aut(C)). Le groupe E étant

abélien, on a nécessairement σ ≡ 1, i.e. E est isomorphe au produit C×Z[ 1k ]. �

Étant donnés une surface intermédiaire S et son germe associé sous la forme
normale (1), on définit l’indice de S comme le plus petit entier m tel que k− 1
divise ms (voir [12]).
Il existe un feuilletage holomorphe F sur X défini par la 1-forme holomorphe

ω =
dζ

ζ
, qui ne s’annule nulle part (c.f. [4]). De façon équivalente, les feuilles de

ce feuilletage sont les ensembles {ζ = const.}. Dans le cas où S est d’indice 1,
i.e. lorsque k−1 divise s, il existe un champ de vecteurs tangent à ce feuilletage
qui ne s’annule nulle part, autrement dit on a le

Lemme 4.3. Lorsque la surface S est d’indice 1, le fibré tangent au feuilletage
TF est holomorphiquement trivialisable.

Preuve : Pour prouver cela, nous montrons qu’il suffit de considérer le champ

de vecteurs V sur X induit par le champ de vecteurs ‹V = ζ
s
k−1 ∂

∂z sur C×∆∗,
tangent au feuilletage de C×∆∗ défini par ω.

En effet, d’une part on remarque que X est le quotient de C × ∆∗ par G où
G ∼= Z[ 1k ]/Z est le groupe formé des automorphismes de C × ∆∗ de la forme

gℓkn(z, ζ) = (zε
−ℓskn−1

k−1

kn +

n−1∑

i=0

λn−i−1ζsk
i+1 kn−i−1−1

k−1 (P (ζk
i

)−ε−ℓsk
i+1 kn−i−1−1

k−1

kn P ((εℓknζ)
ki ))

λn(εℓknζ)
s k
n−1
k−1

, εℓknζ)

pour n ∈ N, ℓ ∈ {0, ..., kn − 1} et avec εkn = e
2iπ
kn . Ceci provient du fait que

X est le quotient de C × Hg par le groupe {γnγℓ1γ−n | n, ℓ ∈ Z} ∼= Z[ 1k ]
où Hg = {w ∈ C | ℜ(w) < 0}, γ(z, w) = (λzesw + P (ew), kw) et
γ1(z, w) = (z, w + 2iπ) (voir [4], proposition 2.3 et section 4). On considère
alors le quotient par le sous-groupe {γnγknℓ1 γ−n | n, ℓ ∈ Z} ∼= Z ce qui nous
donne bien X = (C×∆∗)/G.

D’autre part, un champ de vecteurs ‹V défini sur C ×∆∗ induit un champ de
vecteurs tangent à X lorsqu’il est invariant par le groupe G, i.e. s’il vérifie :

(8) D(gℓkn)z,ζ(
‹V (z, ζ)) = ‹V (gℓkn(z, ζ)).

Cette condition est bien vérifiée par ‹V puisque l’on a l’égalité ε
−ℓs kn−1

k−1

kn ζ
s
k−1 =

(εℓknζ)
s

k−1 . Comme ω(‹V ) = 0, on a bien montré que V ∈ H0(X,TF). �

Remarque 4.4. On peut montrer qu’un champ de vecteurs sur X de la forme
f(z, ζ) ∂∂z (où f est une holomorphe ne s’annulant nulle part) existe bien si et
seulement si la surface S est d’indice 1, autrement dit on a une équivalence
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dans le lemme précédent. C’est une conséquence de la condition (8) et le rai-
sonnement est analogue à celui qui sera fait dans le lemme 4.7.

La trivialité du fibré TF entraine celle du fibré tangent TX , ce que nous voyons
à présent.

Lemme 4.5. Lorsque le fibré TF est holomorphiquement trivialisable, le fibré
tangent holomorphe TX de X l’est aussi.

Preuve : Étant donné que nous avons une section holomorphe globale
V de TF , il nous suffit d’exhiber un deuxième champ de vecteurs global,
linéairement indépendant de V en chaque point. Par définition, on peut
trouver un recouvrement de X par des ouverts Ui et sur chacun d’eux un
champ de vecteurs Wi qui soit linéairement indépendant de V sur Ui. Quitte
à remplacer Wi par Wi/ω(Wi) on peut supposer que ω(Wi) ≡ 1 sur Ui, de
sorte que ω(Wi,j) = 0 sur Ui,j := Ui ∩ Uj , où l’on a posé Wi,j :=Wi −Wj . La
famille (Wi,j) forme donc un cocyle de H1(X,TF) qui est aussi un cobord par
le théorème B de Cartan. Ainsi il existe un champ de vecteurs Zi sur chaque

Ui tel que Zi − Zj = Wi,j . Posons ‹Yi := Wi − Zi, de sorte que ‹Yi = ‹Yj sur

Ui,j , i.e. les ‹Yi se recollent en une section holomorphe globale de TX . Nous

avons deux champs de vecteurs V et ‹Y vérifiant ω(V ) ≡ 0 et ω(‹Y ) ≡ 1, ce
qui nous assure qu’ils sont linéairement indépendants en chaque point de la
variété étudiée. �

Nous voulons à présent établir un lien entre le fait que S soit d’indice 1 et la
trivialité du fibré canonique de X .
On considère la suite exacte courte 0 → Z → C → C∗ → 0 de faisceaux,
qui donne lieu à la suite exacte longue de cohomologie · · · → H1(X,Z) →
H1(X,C) → H1(X,C∗) → H2(X,Z) → H2(X,C) → · · · . Toujours d’après le
théorème I de [6], on a les isomorphismes

H1(X,Z) ∼= Hom(Z
[
1
k

]
,Z) = 0,

H1(X,C∗) ∼= Hom(Z
[
1
k

]
,C∗) = C∗

et
H1(X,C) ∼= Hom(Z

[
1
k

]
,C) ∼= C.

D’autre part le groupe H2(X,C) est trivial, d’où l’on tire finalement la suite
exacte courte

0→ H1(X,C)
e2iπ·

→ H1(X,C∗)
c→ H2(X,Z)→ 0.

Définition 4.6. On dira qu’un élément ρ de H1(X,C∗) admet un logarithme

lorsqu’il existe un morphisme ρ′ de Z[ 1k ] dans C tel que e2iπρ
′

= ρ.

Ainsi, l’image par c d’un élément ρ ∈ H1(X,C∗) est triviale dans H2(X,Z) si
et seulement si ρ admet un logarithme ρ′.

Lemme 4.7. Si le fibré canonique de X est holomorphiquement trivialisable,
alors la surface S est d’indice 1.
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Preuve : Le fibré canonique de X est le fibré des 2-formes holomorphes sur X ;
raisonnons par l’absurde et supposons qu’il est holomorphiquement trivialisable
et que la surface S n’est pas d’indice 1. Alors il existe une 2-forme holomorphe
globale sur X qui ne s’annule nulle part. Une telle forme provient d’une 2-forme
holomorphe sur le revêtement C×∆∗ de X donnée par f(z, ζ)dz∧dζ (où f est
une fonction holomorphe sur C×∆∗ qui ne s’annule nulle part) qui soit stable
par le groupe G = {gαkn | n ∈ N, α ∈ {0, ..., kn − 1}}, i.e. vérifie l’équation

(gαkn)
∗(f(z, ζ)dz ∧ dζ) = f(z, ζ)dz ∧ dζ

(pour tout n ∈ N et α ∈ {0, ..., kn − 1}). Ceci donne la condition suivante sur
la fonction f :

(9) e2iπ
α
kn

(s k
n−1
k−1 −1)f(z, ζ) = f(gαkn(z, ζ)).

Considérons l’homomorphisme de groupes

ρ : Z[ 1k ] −→ S1.
α
kn 7−→ e2iπ

α
kn

(s k
n−1
k−1 −1)

Il induit un fibré plat Lρ au-dessus de X , qui est holomorphiquement triviali-
sable si et seulement si ρ admet un logarithme, puisque H1(X,O∗) ∼= H2(X,Z)
car X est de Stein. Étant donné que la fonction f vérifie la condition (9) ci-
dessus, elle définit une section holomorphe du fibré plat Lρ au-dessus de X .
Ainsi pour pouvoir aboutir à une contradiction, il nous reste à voir que ρ
n’admet pas de logarithme (et donc qu’une telle fonction f n’existe pas).

Remarquons tout d’abord que l’application σ : α
kn 7→ e2iπ

−α
kn

( s
k−1+1) est un

homomorphisme de Z[ 1k ] dans S
1 qui admet un logarithme. Ainsi, ρ admet un

logarithme si et seulement si l’homomorphisme ϕ := ρ/σ : α
kn 7→ e2iπ

αs
k−1 admet

un logarithme.
Soit m l’indice de la surface S. Comme k − 1 n’est pas un diviseur de s, le
noyau de ϕ est précisément mZ[ 1k ] et cet homomorphisme n’admet donc pas

de logarithme. En effet, si un tel morphisme ρ′ existait, sa restriction à mZ[ 1k ]
serait un homomorphisme à valeurs dans Z, nécessairement trivial. On aurait
alors m.ρ

(
1
kn

)
= 0, i.e. ρ

(
1
kn

)
= 0 pour tout n ∈ N. �

Remarque 4.8. Le groupe H2(X,Z) n’est pas trivial ; il contient des éléments
de torsion et des éléments qui ne sont pas d’ordre fini. Le morphisme ρ de la
preuve du lemme 4.7 fournit un exemple d’élément de torsion, puisqu’on peut
voir que ρk−1 admet un logarithme. Pour ce qui est des éléments qui ne sont
pas d’ordre fini, donnons-en un exemple. Considérons le groupe Z[ 16 ]. On a

un isomorphisme de groupes ϕ : Z[ 16 ]/Z[
1
2 ]
∼= Z[ 13 ]/Z et une injection i de ce

groupe (le 3-groupe de Prüfer) dans S1. Alors on peut voir que ρ := i ◦ ϕ n’est
pas d’ordre fini dans H2(X,Z). Ainsi, le groupe H2(X,Z) possède des éléments
d’ordre infini dont l’image est nulle dans H2(X,Q), ceci est conséquence du fait
que le groupe H1(X,Z) ∼= Z[ 1k ] n’est pas finiment engendré (voir [1], théorème
4 p. 144).
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Remarque 4.9. On a en fait une équivalence dans le lemme précédent. Lorsque

la surface S est d’indice 1, on considère la forme ζ−(
s

k−1+1)dz∧dζ, qui trivialise
le fibré canonique.

Les trois lemmes précédents ont en particulier comme conséquence la

Proposition 4.10. Soient S une surface intermédiaire et X = S̃ \‹D. Les trois
assertions suivantes sont équivalentes :
1. La surface S est d’indice 1,
2. Le fibré tangent au feuilletage TF de X est holomorphiquement trivialisable,
3. Le fibré tangent holomorphe TX de X est holomorphiquement trivialisable.

Preuve : Vu les lemmes 4.3 et 4.5, il suffit de montrer que la troisième
assertion entraine la première. C’est une conséquence du lemme 4.7, car si S
n’est pas d’indice 1, le fibré canonique de X n’est pas holomorphiquement
trivialisable. Dans ce cas, le fibré cotangent de X et donc le fibré tangent TX
ne le sont pas non plus. �

Remarque 4.11. Le problème suivant demeure non résolu actuellement
(voir [9]) : une variété de Stein de dimension n dont le fibré tangent holomorphe
est holomorphiquement trivialisable est-elle nécessairement un domaine de Rie-
mann au-dessus de Cn ? Nous ne connaissons pas la réponse pour les surfaces
de Stein que l’on vient de considérer.
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Introduction

For any Coxeter system (W,S), Moussong constructed a certain piecewise Eu-
clidean complexMW on whichW acts properly and cocompactly by isometries
[Mou88]. This complex is complete, contractible, has nonpositive curvature and
the Cayley graph CW of W (with respect to S) is isomorphic to the 1-skeleton
of MW . A wall in M is the fixed-point set of a reflection in W. It turns out
that the walls are totally geodesic subspaces inMW and each wall dividesMW

into two path components. The set of all walls defines a wall tessellation ofM.
The set of all tiles (=chambers) of this tessellation together with an appropriate
adjacency relation is isomorphic to the Cayley graph CW . We shall prove that
geodesics in MW can be uniformly approximated by geodesic galleries of the
wall tessellation (= geodesic paths in CW ) (Theorem 3.3.2). This approxima-
tion result allows us to prove that for any ”generic” element w ∈ W of infinite
order there is a conjugate v which is straight i.e., ℓ(vn) = nℓ(v) for all n ∈ N,
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where ℓ(v) is the word length on W (Theorem 4.1.5). There is a constant
c = c(W ), such that for any w ∈ W of infinite order there is a conjugate v of
wc, which is straight (Theorem 4.1.6). The restriction of the word metric on
W to any free abelian subgroup A is Hausdorff equivalent to a regular norm
on A (Theorem 4.3.2).
Acknowledgment. I would like to thank Mathematisches Institut der Heinrich-
Heine-Universitat for the hospitality during 1999. Thanks to H. Abels, B.
Brink, M. Davis, M. Gromov, F. Grunewald, R. Howlett and E. B. Vinberg for
their help. This research was supported by a DFG grant Gr 627–11 grant and
by SFB 343, SFB 701 of the DFG at the University of Bielefeld.

1 Preliminaries on Moussong complexes

To any Coxeter system (W,S) one can canonically associate the Moussong
complexM =MW , which is a piecewise Euclidean complex with W as the set
of vertices. Their cells are Euclidean polyhedra, which are the convex hulls of
sets, naturally bijected with the spherical cosets ofW . In particular, the 1-cells
ofM are in bijective correspondence with the sets {w,ws}, where w ∈ W and
s ∈ S. Hence the 1-skeleton of M is nothing but a modified Cayley graph of
W with respect to S ( the modification consists in identifying an edge w

s→ ws

with its inverse ws
s→ w). W acts cellularly and isometrically on MW and

this induces the standard W -action on the Cayley graph of W . In the next
subsections we carry out in detail the construction ofMW following the thesis
of D. Krammer [Kra94].

1.1 Coxeter groups

A Coxeter system is a pair (W,S) where W is a group and where S is a finite
set of involutions in W such that W has the following presentation:

〈s : s ∈ S|(ss′)mss′ = 1 when mss′ <∞〉,

where mss′ ∈ {1, 2, 3, . . . ,∞} is the order of ss′, and mss′ = 1 if and only
if s = s′. We refer to W itself as a Coxeter group when the presentation is
understood. The number of elements of S is called its rank. The Coxeter
system (W,S) is called spherical if W has finite order. A subgroup of W is
called special if it is generated by a subset of S. For each T ⊆ S, WT denotes
the special subgroup generated by T . Any conjugate of such a subgroup will
be called parabolic. A remarkable feature of Coxeter systems is that for any
subset T ⊆ S the pair (WT , T ) is a Coxeter system in its right and moreover
a presentation of WT is defined by the numbers mtt′ , t, t

′ ∈ T . If (WS , S) is a
Coxeter system of finite rank then we write VS for the real vector space with
a basis of elements (es) for s ∈ S. Put a symmetric bilinear form B on VS by
requiring:

B(es, es′) = − cos(π/mss′).
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(This expression is interpreted to be −1 in case m(s, s′) = ∞.) Evidently
B(es, es) = 1, while B(es, es′) ≤ 0 if s 6= s′. Since es is non-isotropic, the sub-
spaceHs = e⊥s orthogonal to es is complementary to the line Res. Associated to
s ∈ S is an automorphism as of B acting as the reflection v 7→ v− 2(v, es)es in
the hyperplane e⊥s . The result by Tits asserts that the correspondence s 7→ as
extends to a faithful representation of W as a group of automorphisms of the
form B. (cf. [Bou], Ch.V, s.4).

1.2 Trading Coxeter cells

The Coxeter group W is finite if and only if the form B(es, es′) is positive
definite. We call a set J ⊆ S spherical if WJ is finite or, equivalently, the
restriction of the form B to the subspace VJ =

∑
j∈J R ej is positive definite.

Let J ⊆ S be spherical. Since VJ is non-degenerate, there exists a unique basis
{fJj |j ∈ J} of VJ dual to {ej : j ∈ J} with respect to B. A space VJ that comes
equipped with a positive definite inner product B|VJ will be denoted by EJ
and called the Euclidean space associated to J . Define the Coxeter cell XJ to be
the convex hull of the WJ -orbit:

XJ = Ch(WJxJ )

where
xJ =

∑

j∈J
fJj ∈ EJ .

For convenience we define W∅ = {1} and X∅ = {0}– the origin of EJ . More
generally, for any spherical K and any J ⊆ K we consider the faces of the
polyhedron XK = Ch(WKxK) of the form

XJK = Ch(WJxK).

We do not exclude the case J = ∅, where X∅K = {xK}. We call the extremal
points of the cell XJ the vertices.
For spherical J ⊆ S, let pJ : VS → EJ denote the orthogonal projection. It is
well defined since the quadratic form on EJ is non-degenerate.

Lemma 1.2.1 ([Kra94], B.2.2.) The dimension of the cell XJ equals the cardi-
nality of J . For spherical subsets J ⊆ K of S we have pJxK = xJ . Moreover,
pJ |XJK : XJK → XJ is a WJ−equivariant isometry of cells. The nonempty
faces of XK are precisely those of the form wXJK (J ⊆ K,w ∈ WK). In
particular, the vertex set of XJ is precisely WJxJ .

Example 1.2.2 1) If J = {j} then fJj = ej and XJ = Ch(ej ,−ej) is a line
segment. 2) Let J = {s, s′} be spherical, so w = ss′ has finite order mss′ .
Set Vs,s′ = Res + Res′ . The restriction of B to Vs,s′ is positive definite and
both s and s′ act as orthogonal reflections in the lines Rfs,Rfs′ respectively.
Since B(es, es′) = − cos(π/mss′) = cos(π − (π/mss′ )), the angle between the
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rays R+es and R+es′ is equal to π − (π/mss′), forcing the angle between the
reflecting lines Rfs,Rfs′ to be equal π/mss′ . The vectors fs, fs′ are of the same
length, lie in the cone R+es + R+es′ ; moreover, fs + fs′ is a bisectrix between
the reflecting lines Rfs,Rfs′ hence the convex hull of the orbit WJ (fs + fs′) is
a regular 2mss′−gon.

es

es′ fs′

fs

fs′ + fs

Figure 1: The cell XJ for J = {s, s′},mss′ = 3.

1.3 Gluing the Moussong complex

Now we build the Moussong complex of W =WS as follows. Take the union

U =
⋃
{(w,XJ ) : w ∈ W,J ⊆ S spherical}.

Introduce an equivalence relation R on U , generated by the following gluing
relations:

1. (wu, x) ∼ (w, u−1x), whenever w ∈W,u ∈WJ , x ∈ XJ ,

2. The cells (w,XK), (w,XL) are glued along the face (w,XJ ), J = K ∩ L,
which is embedded into each of them (by the map pJ) as (w,XJK) and
(w,XJL) respectively .

The quotient space of U modulo R is called the Moussong complex of W and
is denoted byMW . The group W acts on U by u(w, x) = (uw, x). This action
respects the relation R and hence induces a cellular action of W onMW . With
some abuse in notation we will denote the natural image of (1, XJ) in M by
XJ , so any cell in M is of the form wXJ for some w ∈ W,J ⊆ S. We call J
the type of the cell wXJ . There is a distinguished vertex x0 = X∅ inM. Note
that xJ = x0 for any spherical J (by condition (2)).
It can be shown that the inclusion maps of the cells are injective, see [Kra94].
The canonical metric in each cell allows to measure the lengths of finite polyg-
onal paths in M. The path metric d on M is defined by setting the distance
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between x, y ∈ M to be the infimum of the lengths of polygonal paths joining
x to y.
We summarize the main properties ofM in the following theorem.

Theorem 1.3.1 ([Kra94],[Mou88]) Relative to the path metric M is a con-
tractible, complete, proper CAT(0) space. The Coxeter group W acts on M
cellularly and this action is isometric, proper and cocompact. This action is
simply transitive on the set of verticesM(0) ofM, in particularM(0) coincides
with Wx0.

For the convenience of the reader we repeat the relevant definitions. A geodesic,
or geodesic segment, in a metric space (X, d) is a subset isometric to a closed
interval of real numbers. Similarly, a loop S1 → X is a closed geodesic if it
is an isometric embedding. ( Here S1 denotes the standard circle equipped
with its arc metric, possibly rescaled so that its length can be arbitrary). We
say that X is a geodesic metric space if any two points of X can be connected
by a geodesic. We denote by [x, y] any geodesic joining x and y. We will
always parameterize [x, y] by t 7→ pt(0 ≤ t ≤ 1), where d(x, pt) = td(x, y)
for all t. Given three points x, y, z in X , the triangle inequality implies that
there is a comparison triangle in the Euclidean plane R2, whose vertices x, y, z
have the same pairwise distances as x, y, z. Given a geodesic [x, y] and a point
p = pt ∈ [x, y], there is a corresponding point p = pt on the line segment [x, y]
in R2. A geodesic metric space X is called a CAT(0) space if for any x, y in X
there is a geodesic [x, y] with the following property: For all p ∈ [x, y] and all
z ∈ X , we have

d(z, p) ≤ dR2(z, p),

with z and p as above. Let X be a CAT(0) space. Then there is a unique
geodesic segment joining each pair of points x, y ∈ X and this geodesic segment
varies continuously with its endpoints. Every local geodesic in X is a geodesic.
For the proof see [BH99], Chapter II.1 , Prop. 1.4.

Examples 1.3.2 IfW is a finite Coxeter group of rank n thenMW is isometric
to an n-dimensional convex polyhedron. If, for example, W is the dihedral
group of order 2m, then M is a regular 2m-gon with the usual W -action. If
W is an affine Coxeter group of rank n thenMW is a tessellation of the n− 1-
dimensional Euclidean space E. This tessellation is dual to the tessellation,
given by the structure of a Coxeter complex on E. Let, for example, W be an
affine Coxeter group generated by the reflections s1, s2, s3 in the sides of an
equilateral triangle C in the Euclidean plane. ThenMW is the tessellation of
the plane by hexagons, dual to the tessellation consisting of the images of C
under W . If W is a product of n ≥ 2 copies of Z/2 (that is mss′ = ∞ for
s 6= s′), thenMW is an infinite n-regular tree with edges of length 2. �

Lemma 1.3.3 Any cell of a CAT (0) piecewise Euclidean complex X is isomet-
rically embedded into X. In view of uniqueness of geodesics this is equivalent
to the convexity of a cell.
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Proof.We have to show is that for any two points a, b of a cell C the Euclidean
arc α in C between them is a global geodesic. We may assume that C is of
minimal dimension. For any two points x and y in the interior of α the closed
subarc β ⊂ α between x and y lies in the interior of C. Clearly there is an
ǫ > 0, such that for any cell C′, having C as a face, the distance from β to the
set ∂C′ − C is ≥ ǫ. Let us cover β by intervals of radius ǫ/2. Each such an
interval is geodesic. Indeed, a geodesic γ connecting the points of the interval
can not cross ∂C, hence it lies in the union U of cells, having C as a face. For
any cell C′, having C as a face, γ can not cross ∂C′ − C since it has to pass a
distance at least ǫ. Hence it lies in only one such C′ and thus coincides with
the interval. It follows from the considerations above that β is a local geodesic,
and therefore a global geodesic since X is CAT(0).
Now let γ be a path in X joining a to b. For any positive ǫ < dC(a, b)/2 we
may choose points x and y in the interior of α such that d(a, x) = ǫ = d(y, b)
A path from x to y obtained by traveling along α to a then along γ to b has
length length(γ)+ 2ǫ, while a geodesic from x to y has length dC(a, b)− 2ǫ, so
dC(a, b) ≤ length(γ)+ 4ǫ. Since this is true for any sufficiently small ǫ > 0, we
conclude that dC(a, b) ≤ length(γ), and so α is a geodesic from a to b. �

1.4 The action of reflections on cells

We refer to the notation of §1.3.
Lemma 1.4.1 An element w ∈W leaves the cell uXK invariant if and only if
u−1wu ∈ WK . In the latter case w acts on the XK-coordinate of ux ∈ uXK as
the element u−1wu ∈WK .

Proof. Indeed, the cell uXK is uniquely determined by its set of vertices
uWKx0 and it is w-invariant if and only if uWK is w-invariant under left
translation. The latter happens if and only if wuWK = uWk ⇔ u−1wu ∈WK .
The second assertion follows from the equality w(ux) = u(u−1wux). �

Lemma 1.4.2 (An ”overcell” of invariant cell is invariant too.) If C ⊆ C′ are
cells and wC = C for some w ∈W, then wC′ = C′.

Proof. Writing C = uXJ with w ∈ W,J ⊆ S we can represent C′ in the form
C′ = uXK , J ⊆ K. By Lemma 1.4.1 wC = C implies u−1wu ∈ WJ and thus
u−1wu ∈ WK . Again by the same lemma wC′ = C′. �

Definition 1.4.3 Let (W ;S) be a Coxeter system. A reflection in W is an
element that is conjugate in W to an element of S.

Lemma 1.4.4 For any cell C of M and any reflection w ∈ W either C ∩ wC
is empty or else w acts as a reflection on C.

Proof. Suppose that the cell C ∩wC is nonempty. Then it is invariant under
the action of w. Since it is a face of C, by Lemma 1.4.2 we conclude that
wC = C. Now by Lemma 1.4.1 w ∈W acts as a reflection on C. �
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1.5 Angles and geodesics in M
The notion of angle in an arbitrary piecewise Euclidean complex can be defined
in terms of the link distance, see e.g. [BB97]. Namely, let X be a piecewise
Euclidean complex, x ∈ X and let A be a Euclidean cell of X containing x. The
link lkxA of is the set of unit tangent vectors ξ at x such that a nontrivial line
segment with the initial direction ξ is contained in A. We define the link lkxX
by lkxX = ∪A∋xlkxA, where the union is taken over all closed cells containing
x.
Recall that the CAT(0)– condition for X is equivalent to the following (see e.g.
[BB97]):

1. X is 1-connected and

2. The length of any geodesic loop in the link of any vertex of X is greater
or equal to 2π.

A path α : [a, b]→ X is geodesic if it is an isometric embedding: d(α(s), α(t)) =
|s− t|, for any s, t ∈ [a, b]. Similarly, a loop α : S1 → X is a closed geodesic if it
is an isometric embedding. Here S1 denotes the standard circle equipped with
its arc metric (possibly rescaled so that its length can be arbitrary). Angles
in lkxA induce a natural length metric dx on lkxS, which turns lkxS into a
piecewise spherical complex. For ξ, η ∈ lkxX define ∠(ξ, η) = min(dx(ξ, η), π).
Now any two segments σ1, σ2 in X with the same endpoint x have the natural
projection image in lkxX and we define ∠x(σ1, σ2) to be the angle between
these two projections.
We will use the following criterion of geodesicity:

Lemma 1.5.1 ([BB97]) Let X be a piecewise Euclidean CAT(0)-complex. If
each of the segments σ1, σ2 is contained in a cell and σ1 ∩σ2 = {x}, where x is
an endpoint of each of the segments, then the union σ1 ∪ σ2 is geodesic if and
only if ∠x(σ1, σ2) = π.

An m- chain from x to y is an (m+ 1)-tuple T = (x0, x1, . . . , xm) of points in
X such that x = x0, y = xm and each consecutive pair of points is contained
in a cell. Every m-chain determines a polygonal path in X , given by the
concatenation of the line segments [xi, xi+1], i = 0, ..., i = m. An m-taut chain
from x to y is an m-chain such that

1. there is no triple of consecutive points contained in a cell and

2. (2) the union of two subsequent segments is geodesic in the union of cells,
containing these segments.

(The union is equipped with its path metric). Note that if a chain is taut then
only its first and last entries lie in the interior of a top dimensional simplex
of X . The result of M. Bridson asserts that if X is a piecewise Euclidean
complex then X with its path metric is a geodesic space and the geodesics are
the paths determined by taut chains [BH99, Theorem. 7.21].
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2 Walls in the Moussong complex

The notion of wall in the Moussong complex (as well as in the Coxeter com-
plex) can be defined as the fixed-point set of reflection from the underlying
Coxeter group. On the other hand they can be defined as the equivalence
classes of ”midplanes” (which are the fixed-point sets of stabilizers of cells).
Both points of view are useful. Note that in contrast to the situation with
Coxeter complexes, the walls in the Moussong complex are not subcomplexes.

2.1 Midplanes and blocks in cells

Let (WJ , J) be a finite Coxeter group and VJ the Euclidean vector space on
which WJ acts. We summarize here the basic properties of a Coxeter complex
of W = WJ . For more about them see [Hum90] or [Bro96]. We define a re-
flection in WJ to be a conjugate of element of J. The reflecting hyperplanes
Hw of reflection w ∈ WJ cut VJ into polyhedral pieces, which turn out to be
cones over simplices. In this way one obtains a simplicial complex C = C(W )
which triangulates the unit sphere in VJ . This is called the Coxeter complex
associated with WJ . The group WJ acts simplicially on C and this action is
simply transitive on the set of maximal simplices (=chambers). Moreover the
closure of any chamber C is a fundamental domain of the action of W on C,
i.e., each x ∈ V is conjugated under W to one and only one point in C. Two
chambers are adjacent if they have a common codimension one face. For any
two adjacent chambers there is a unique reflection in WJ interchanging these
two chambers.
A similar picture we have for the Coxeter cell XJ . By a midplane in XJ we mean
the intersection Hw ∩XJ , where w ∈ WJ is a reflection and Hw its reflecting
hyperplane. We denote this midplane by M(J,w). By equivariance we define
the notion of a midplane in any cell ofMW . Each midplaneM defines a unique
cell inMW , the cell of least dimension inMW which contains M , and we will
denote this by C(M).

Lemma 2.1.1 Every cell XJ contains an open neighborhood of the origin of VJ .
In particular midplanes in XJ have dimension |J | − 1 and there is one-to-one
correspondence between reflecting hyperplanes and midplanes.

Proof. Note first that the ray R+xJ lies in the interior of the chamber C =
{x ∈ VJ : B(x, es) > 0 ∀s ∈ S}. Hence in each chamber wC,w ∈ WJ there
is a vertex wxJ of XJ . Now suppose that XJ does not contain the origin in
the interior, then there is a hyperplane H through the origin such that XJ is
contained in one of the closed half-spaces defined by H, say in H+. This implies
that each chamber has an interior point, lying in H+. Take an arbitrary closed
chamber D. If D lies entirely in H+ then −D lies in the opposite half-space
H− and hence there is no interior point in it belonging H+ – contradiction. If
D does not lie entirely in H+ then H separates some codimension one face F
of D from the remaining vertex x of D. Let D′ be the chamber, adjacent to
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D in a face F , then D′ lies entirely either in H+ or in H− and the previous
argument works. �

Definitions 2.1.2 It follows from Lemma 2.1.1 that the midplanes M(J,w)
also cut XJ into (relatively open) polyhedral pieces of dimension |J | – blocks.
Two blocks are adjacent if they have a common codimension one face. There
is a canonical one-to-one correspondence between blocks in XJ , chambers of
the Coxeter complex C(WJ) and vertices of XJ . This correspondence clearly
preserves the adjacency relation. Each block contains a unique vertex of XJ

since a closed block B is a fundamental domain of the action of W on XJ , i.e.,
each x ∈ XJ is conjugated under W to one and only one point in B. The group
WJ acts on the set of blocks and this action is simply transitive. For a block
B the intersection of the closed block B with a midplane is called by internal
face of B.

xJ

BJ

midplanes

block

XJ

Figure 2: The cell XJ for J = {s, s′}, mss′ = 3 divided into blocks by midplanes.

Lemma 2.1.3 The only faces of a cell XK having nonempty intersection with
midplane M(K, s), s ∈ S are those wXJK with w−1sw ∈ WJ . In particular
M(K, s) contains no vertices of XK .More generally a face of XK has nonempty
intersection with midplane M(K,usu−1), s ∈ S, u ∈ W iff it is of the form
uwXJK with w−1sw ∈WJ .

Proof. If w−1sw ∈ WJ then swWJ = wWJ , that is s leaves the vertex set of
wXJK invariant and hence it leaves invariant the cell itself and has a nonempty
fixed-point set in this cell. Conversely if M(K, s) ∩ wXJK is nonempty then
there a face F of the cell wXJK such thatM(K, s)∩F contains an interior point
of F . But then s leaves F invariant hence by Lemma 1.4.2 it also leaves any
”overcell” invariant in particular wXJK and this implies that w−1sw ∈ WJ .
To deduce the second statement from the first, one need only to note that
M(K,wsw−1) ∩ wXJK = w(M(K, s) ∩XJK). �
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Lemma 2.1.4 If w ∈ WJ leaves invariant some midplane M in XJ then it
fixes this midplane pointwise.

Proof. Indeed, w leaves invariant the ambient face C and we can apply Lemma
1.4.1. �

Lemma 2.1.1 For any cell XK the following hold:

1. The intersection of a midplane of XK with any of its face is again a
midplane.

2. Any midplane of any face of XK is an intersection with this face of a
precisely one midplane of XK .

Proof. 1) We may assume that a given midplane M is of the form M(K, s)
and the face of XK is XJK , J ⊆ K. Since s belongs to WJ , it leaves XJK

invariant and its fixed-point set Xs
JK bijects onto the fixed-point set Xs

J by a
WJ−equivariant isometry pJ |XJK : XJK → XJ . The general assertion follows
by equivariance.
2) We may assume that the face is of the form XJK for J ⊆ K. Let MJK be
a midplane of XJK , then by definition MJK = (pJ |XJK)−1(M(J,w)) for some
w ∈ WJ . Hence, by WJ–equivariance, w is identical on MJK thus MJK =
M(K,w) ∩ XJK . Furthermore, w ∈ J by Lemma 2.1.3. Hence the segment
σ = [wxJ , xJ ] is an edge of the face XJK , flipped by w. The intersection
MJK ∩σ = {m} is a midpoint of σ and MJK is orthogonal to σ. Now if M any
midplane with the same intersection with XJK as MK , then the reflection in
M flips the edge σ and hence this edge is orthogonal to M and thus M =MK .
�

Lemma 2.1.5 1)For every x ∈ M(K, s) ∩ XJK there is a nondegenerate seg-
ment of the form [y, sy], y ∈ XJK with x as a midpoint. 2) The segment [y, sy]
is orthogonal to midplane M(K, s). 3) For any midplane M in XK there is an
edge of XK , intersected by M in the midpoint.

Proof. 1) SinceM(K, s)∩XJK is nonempty, it follows from Lemma 2.1.3 that
s ∈ J. Let

U = {u ∈ WJ ;xk and uxK are on the same side of M(K, s).}
Clearly WJ = U ∪ sU, U ∩ sU = ∅ and the sets UxK , sUxK lie entirely on the
different sides of the midplane M(K, s). Since XJK = Ch(WJxK), we have

x =
∑

u∈U
(λuuxK + µusuxK),

where
∑

u∈U (λu+µu) = 1 and all coefficients are nonnegative. Since x is fixed
by s, applying s to both parts of the equality above we get

x =
∑

u∈U
(µuuxK + λusuxK),
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We conclude from these two equalities that x = 1/2(y + sy), where y =∑
u∈U (λu + µu)ux ∈ XJK .

2) The segment [y, sy] is orthogonal toM(K, s) since it is flipped by an orthog-
onal transformation s.
3) If M =M(K, s), then the edge [sxK , xK ] of XK is intersected by M in the
midpoint. �

We will call the segment [y, sy] from the lemma above to be a perpendicular to
M(K, s) in the point x.

Lemma 2.1.6 Let x ∈M(K, s), z ∈ XK , x 6= z and let [y, sy] be a perpendicular
to M(K, s) in the point x. Then either [x, z] ⊂ M(K, s) or one of the angles
∠x([x, z], [x, y]), ∠x([x, z], [x, y]) is strictly less than π/2.

Proof. It follows from the fact that the tangent space in x is orthogonal sum
of a the tangent space of M(K, s) and a tangent space of the segment [y, sy].
�

2.2 Walls as equivalence classes of midplanes

We assume that M =MW is the Moussong complex of a Coxeter group W .
The following definition mimics the definition of a hyperplane in a cube complex
given in [NR98].

Definitions 2.2.1 For midplanes M1 and M2 of the cells C1 = C(M1) and
C2 = C(M2) respectively we write M1 ∼ M2 if M1 ∩M2 is again a midplane
(and then of course it is a midplane of C1 ∩C2). The transitive closure of this
symmetric relation is an equivalence relation, and the union of all midplanes in
an equivalence class is called a wall in M. Clearly the equivalences above are
generated by those of the form M1 ∼M2, C1 ≤ C2 or C2 ≤ C1. Thus to prove
some property P for midplanes of a wall H it is enough to prove this property
for some midplane in H and then show that the validity of P is preserved under
equivalences just mentioned. If M is a midpoint of a 1-cell(=edge) inM then
the wall spanned by M will be called a dual wall of e and denoted by H(e). We
denote by HM the union of midplanes in the equivalence class of a midplane
M.

It follows immediately from Lemma 2.1.5 that

Lemma 2.2.2 Any wall H of M has the form H(e) for some edge e.

ClearlyW acts on the set of midplanes, preserving the equivalence relation and
hence acts on the set of walls. For any wall H we denote by H̃ the complex
obtained from the disjoint union of midplanes inH by gluing any two midplanes
in H along their common submidplane inM (if such one exists). One can easily
see that H̃ is nonpositively curved, i. e. satisfies the link condition. Namely,
the link of any cell C ofM is isometric to the product C × [−π, π].
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Lemma 2.2.3 Let p : H̃ →M be the natural map which sends each midplane
in H̃ to its image inM. Then p is an isometry of H̃ onto H. As a consequence
of the above walls are convex in M.

Proof. It is similar to the proof of lemma 2.6 in [NR98]. Clearly, p is an
isometry on each midplane. By result of M. Gromov ([Gro87], Section 4) it
is enough to show that p is a local isometry, that is if x ∈ H̃, then there is a
neighborhood U of x such that p|U is an isometry. Clearly p bijects the star
St(x) onto the union U of all midplanes, containing p(x). This union is the
fixed-point set of some reflection from W ( see Lemmas 1.4.1, 1.4.2, 1.4.4).
Hence U is convex, and p maps St(x) isometrically onto U. �

Lemma 2.2.4 Each wall inMW is the fixed-point set of a precisely one reflec-
tion in W . Conversely, the fixed-point set of a reflection in W is a wall.

Proof. Let HM be the wall, spanned by a midplane M of the cell C. From
the description of cells and that of the action of W we know that M is the
fixed point set of a reflection from the stabilizer SC of C in W. We will show
that HM coincides with the fixed-point set Hw of w.

Any reflection w fixing a midplane M pointwise fixes also HM pointwise,
i.e., HM ⊆ Hw. We have to show that the claimed property is invariant under
equivalence relation of midplanes, see §2.2.1. If M1 ∼ M2 are midplanes in
C1 = C(M1), C2 = C(M2) respectively, C1 ≤ C2, and w fixes M1 then w leaves
C1 invariant, hence by Lemma 1.4.2 it leaves C2 invariant and by Lemma 2.1.1
it leaves M2 invariant and finally by Lemma 2.1.4 it fixes M2 pointwise. In
case M1 ∼ M2, C1 ≥ C2, and w fixes M1 pointwise it is clear that w fixes M2

pointwise.
Every wall H is the fixed-point set of a unique reflection in W. Write H as

the dual wall H = H(e) of some edge e of M. If there were two reflections
w,w′ with the same reflection wall H then their difference w−1w′ would fix e
pointwise. But W acts simply transitively on the vertices ofM hence w = w′.
Now any w ∈ W fixing at least one cell pointwise is an identity. Indeed the
set of cells fixing by w pointwise is nonempty and containing with each cell C
every its ”overcell” C′ ⊃ C because by Lemma 1.4.2 wC′ = C′ and since the
stabilizer of C′ acts fixed point free on the cell we conclude that w = 1.
Hw coincides with HM . Suppose, to the contrary, that there is a w-fixed

point x outside HM . Take any y ∈ HM , then w fixes the endpoints x, y of
the geodesic [x, y] hence, by uniqueness, it fixes the whole geodesic. Shortening
[x, y] if necessary we may assume that [x, y) is outsideHM . Take z ∈ [x, y], z 6= y
such that the open segment (z, y) is contained entirely in the interior of some
cell C. Since w fixes (z, y), it leaves C invariant. As far as y ∈ HM ∩ C, the
point y is contained in some midplane M ′ ⊂ HM of C. Because w fixes M ′

and the segment (z, y), lying entirely outside HM , we conclude that w fixes C
pointwise - contradiction.
For the converse, let w be a reflection in W. Note first that Hw contains at

least one midplane. Indeed, since any reflection inW is conjugate to some s, s ∈
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S, we may assume that w = s. Take J = {s}, then the cell XJ = Ch(xJ , sxJ )
is a segment on which s acts as a reflection thereby fixing its midpoint M .
We conclude that Hw contains HM for some midplane M . Therefore, as was
proved above, Hw coincides with HM . �

Lemma 2.2.5 The edge path in M(1) is geodesic if and only if it crosses each
wall at most once.

Proof. If an edge path p = e1e2 · · · ek crosses a wallH twice, say distinct edges
ei, ej , i < j cross H, then we delete the subpath ei · · · ej and instead insert the
path w(ei+1 · · · ej−1), where w is the reflection in the wallH. The resulting path
is strictly shorter than p but connects the same vertices. Conversely, suppose
that an edge path p from x to y crosses each wall at most once. Let HH be the
set of all walls crossing by p. Since x and y are at the different sides of each
wall from HH , we conclude that any path from x to y should cross than that
of p. �

Any wall in the Moussong complex is ”totally geodesic” in the following sense

Lemma 2.2.6 Any geodesic inM having nondegenerate piece in a wall H, lies
entirely in H.

Proof. Suppose the lemma is false, then there are nondegenerate segments
σ1 = [x, x1], σ2 = [x, x2], cells C1, C2, and midplanes M1,M2 of C1, C2 respec-
tively such that
1) M1 ∼M2,
2) x ∈M1 ∩M2,
3) σ1 ⊂M1, x2 ∈ C2 −M2,
4) σ1 ∪ σ2 is geodesic.
It follows from Lemma 2.1.5 that there is a reflection w ∈ W and a seg-
ment [y, wy] with x as a midpoint and orthogonal to both M1 and M2. Write
σ = [x, y], σ′ = [x,wy]. Since, by 3), x2 ∈ (C2 −M2), it follows from Lemma
2.1.6 that one of the angles ∠x(σ2, σ), ∠x(σ2, σ

′) is strictly less than π/2 and
∠x(σ1, σ

′) = ∠x(σ2, σ) = π/2. Hence the angle between the segments σ1, σ2 in
the point x is strictly less than π, thus σ1 ∪σ2 can not be geodesic by criterion
of Lemma 1.5.1.

2.3 Separation properties

Lemma 2.3.1 Every wall in M separates M into exactly two connected com-
ponents.

Proof. First, we claim that H separatesM into at least two components. We
know from Lemma 2.2.2 that H = H(e) – the dual wall of some edge e = [x, y].
We will show that x, y belong to different connectedness components. Suppose,
to the contrary, that x, y are in the same connectedness component. Then
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there is a closed edge path α inM(1) crossing H only once. (Clearly any edge
either intersects H in a midpoint or does not intersects H at all.) SinceM is
contractible this path can be contracted to a constant path by a sequence of
combinatorial contractions in cells. By Lemma 2.1.1 any cell C either has an
empty intersection with HM or HM ∩ C is a midplane of C. This implies that
each combinatorial contraction of the edge path in the cell does not change the
number of intersections with HM modulo 2. Since this number is 0 for the final
constant path, it cannot be 1 for the initial path.

To prove that the H cuts outM into exactly two components, we proceed as
in [NR98], lemma 2.3 (preprint version.) Notice first that H is 2-sided, that is
there exists a neighborhood ofH inM which is homeomorphicH×I, I = [0, 1].
Indeed, by Lemma 2.1.5, in each cell there is a neighborhood which is fibered
as M × I: the fibrations can be chosen to agree on face maps so this induces
an I-bundle structure on some neighborhood N over H .

Since H itself is CAT(0) it is contractible so the bundle is trivial. It follows
that N has two disjoint components, {−1/2}×H and {1/2}×H . Any point in
the complement of H can be joined to one of these boundary components by a
path in the complement of H , and therefore X −H has exactly 2 components
as required. �

Lemma 2.3.1 For any wall H both components of the complementM−H are
convex.

Proof. Suppose that x1, x2 lie on the same side of H, say H+. We claim that
[x1, x2] lies entirely in H+. Suppose the contrary, then by Lemma 2.2.6 the
intersection [x1, x2] ∩ H consists of precisely one point, say x. Similar to the
proof of Lemma 2.2.6 there are segments σ1 ⊂ [x, x1], σ2 ⊂ [x, x2], cells C1, C2,
and midplanes M1,M2 of C1, C2 respectively such that

1) M1,M2 ⊂ H,
2) x ∈ σ1 ∩ σ2,
3) σ1 ⊂ C1, σ2 ⊂ C2,

4) σ1 ∪ σ2 is geodesic.

5) The interiors of σ1, σ2 are contained entirely in H+.

Then it follows from Lemma 2.1.5 that there exists a reflection w ∈ W and a
segment [y, wy] such that the segment has x as a midpoint and is orthogonal to
both M1 and M2. By interchanging the roles of y and wy if necessary we may
assume that y ∈ H+. Denote σ = [x, y], σ′ = [x,wy]. It follows from Lemma
2.1.6 that the angles ∠x(σ2, σ), ∠x(σ2, σ

′) are both strictly less than π/2. But
a small nonzero move of x along σ would strictly shorten the length of σ1 ∪ σ2
contradicting the assumption 4) above. �
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3 Chambers and galleries

3.1 Chambers

Since the complexM is locally finite and there are only finite number of mid-
planes in each cell, we conclude that the set of all walls H in M is locally
finite, in the sense that every point ofM has a neighborhood which meets only
finitely many H ∈ H.

Definition 3.1.1 By Lemma 2.3.1 the walls H ∈ H yield a partition of M
into open convex sets, which are the connected components of the complement
M− (∪HH). We call these sets chambers.

To distinguish chambers from cells, we will denote them by letter D, possibly
with indices, dashes, etc.

Lemma 3.1.2 For any two distinct chambers D(x), D(y), x, y ∈ M(0) there is
a wall H separating them.

Proof. Consider a geodesic edge path p = e1e2 · · · ek from x to y, then by
Lemma 2.2.5 H(e1) separates x from y and hence separates D(x) from D(y).
�

Lemma 3.1.3 Each chamber contains precisely one vertex of M.

Proof. Since W acts simply transitively on the set of vertices ofM and each
vertex is contained in some chamber we deduce that each chamber contains at
least one vertex. Now, if x, y are distinct vertices in a chamber C, we connect
them by a geodesic path p in M(1). Then by criterion of geodesicity any wall
crossed by p separates x from y, contradicting the definition of chamber. �

In view of this lemma we will write D(x) for the chamber containing the vertex
x ofM.

Definitions 3.1.4 Recall from §2.1.2 that midplanes of any cell C inM yield
a partition of C into convex (open) blocks. (Blocks are open in C, not inM.) A
maximal block is a block in a maximal cell. Two maximal blocks are adjacent if
they are contained in the same maximal cell and share a codimension one face.
Two chambers D,D′ are adjacent if there are maximal blocks B ⊂ D,B′ ⊂ D′
which are adjacent. A wall H is a wall of a chamber D if there is a maximal
cell C such that H ∩C contains a codimension one face F of a maximal block
B of D.

Lemma 3.1.5 1) Every chamber is uniquely determined by any of its maximal
blocks. 2) Every chamber is a union of maximal blocks, and it contains at most
one maximal block from each maximal cell.
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Proof. 1) Indeed, the interior of a maximal block is open in M and does
not intersect any wall, consequently there is only one chamber containing this
block.
2) Since M is a union of maximal cells, any chamber is a union of maximal
blocks. Take a chamber D, then

D = ∪{D ∩ C : C is a maximal Moussong cell }.

The intersection D ∩ C is a union of maximal blocks because D ∩ C is an
intersection of open half-cells in M . Next, if D contains two maximal blocks
B1, B2 from one cell, then there is a midplane M separating B1 from B2 and
the ambient wall H also separates B1 from B2 contradicting the definition of
D. �

Lemma 3.1.6 Let B,B′ be maximal adjacent blocks and let D,D′ be corre-
sponding ambient chambers. Let H be a wall separating B from B′. Then H is
the only wall that separates D from D′.

Proof. Let C be a maximal cell containing B,B′, then B,B′ are adjacent in
this cell and clearly there is only one midplane separating them. But the wall
is uniquely determined by any of its midplanes, whence the lemma. �

Lemma 3.1.7 Let D,D′ be chambers such that their closures D,D′ have a
nonempty intersection. Let H be a wall, separating D from D′. Then H
contains the intersection D ∩D′.

Proof. Suppose, to the contrary, that there is b ∈ D∩D′ which is not contained
in H . Since H is closed a small neighborhood of b does not intersect H . But
this neighborhood contains points both from D and D′, which thus belong to
one halfspace of H , contradicting the separation hypothesis. �

Lemma 3.1.8 Two distinct chambers D(x), D(y) (x, y ∈ M(0)) are adjacent
if and only if the vertices x, y are adjacent in M(1). For any two adjacent
chambers there is a reflection in W , permuting these chambers and fixing the
intersection of their closures pointwise.

Proof. The lemma is about Coxeter cell, thus it follows from the description
of its structure as a Coxeter complex. �

Definition 3.1.9 The base chamber D0 ofM is the chamber, containing the
base vertex x0 ofM. For each s from the generating set S of W, we denote by
H−s those open halfspace of the wall Hs, which contains the base vertex x0.

Lemma 3.1.10 D0 = ∩{Hs
− : s ∈ S}.
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Proof. Since D = ∩{Hs
− : s ∈ S} contains x0, it contains also D0. Let BJ be

a block of a maximal cell XJ , containing xJ = x0. Then BJ ⊂ D0 – indeed it
follows from the description of the chambers in the Coxeter complex that BJ
is bounded by the hyperplanes Hs = e⊥s , s ∈ J. Suppose now that D strictly
contains D0 and let x ∈ D −D0. Since D is convex, the whole segment [x, x0]
lies in D. Let T = (x0, x1, . . . , xm) be a taut chain from x0 to xm = x. The
first piece [x0, x1] lies entirely in some maximal cell of the form XK and we
know that the block BK = D0 ∩ XK is the maximal block in XK and it is
bounded by the hyperplanes H−s , s ∈ K.
If x1 is a vertex of XK , then it is separated by some Hs, s ∈ K from x0. If x1
is not a vertex of XK , then x1 is the boundary point of XK and hence it is
contained in the interior of some face F of XK . If F contains x0, then all three
points x0, x1, x2 lie in some cell contradicting to the choice. Hence F does not
contain x0 and thus the open interval (x0, x1) lies entirely in the interior of XJ

and hence crosses some wall Hs, s ∈ J – contradiction. �

3.2 Galleries

Definitions 3.2.1 A gallery is a sequence of chambers Γ = D1D2 · · ·Dk such
that any two consecutive ones are adjacent.

Recall that the chambers are in one-to-one correspondence with the vertices
ofM and chambers are adjacent if and only if the correspondent vertices are
adjacent in the 1-skeleton of M. It follows immediately that the following
lemma is true.

Lemma 3.2.2 1) Any two chambers D,D′ can be connected by a gallery of
length d(D,D′). 2) A gallery is geodesic if and only if and only if it does not
cross any wall more than once. 3) Given s1, . . . , sd ∈ S, there is a gallery of the
form D0(s1D0)(s1s2D0) · · · (s1s2 · · · sdD0). Conversely, any gallery starting at
C has this form. 4) The action of W is simply transitive on the set of chambers.

�

Lemma 3.2.3 There is a constant c(M) such that for any two distinct cham-
bers D,D′ with nonempty intersection D ∩ D′, there is a geodesic gallery
Γ = D0D1 · · ·Dk from D0 = D to Dk = D′ whose length k does not exceed
c(M).

Proof. Let H0 be the set of walls separating D from D′. In view of Lemma
3.2.2, it is enough to bound the cardinality of H0. According to Lemma 3.1.7
each H ∈ H0 contains D ∩ D′. Let x ∈ D ∩ D′. Clearly the number of cells
containing x is uniformly bounded and for each such a cell C the number of
midplanes in C containing x is also uniformly bounded. Since a wall is uniquely
determined by any of its midplanes, this proves the lemma. �
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3.3 Approximation property

Definition 3.3.1 Let (X,G) be a pair consisting of a geodesic metric space
X and a graph G embedded into X . We say that (X,G) satisfies the approx-
imation property if X-geodesics between the vertices of G can be uniformly
approximated by geodesics in G. This means that there is a constant δ such
that for any X-geodesic αX between the vertices of G there is a G-geodesic
αG between the same vertices such that both αX and αG lie entirely in the
δ-neighborhoods of each other. We will express this by saying that αX , αG are
δ-close to each other.

Of particular interest is the case when G is the embedded Cayley graph of a
group acting on X.

Theorem 3.3.2 Let (W,S) be a Coxeter group and let M be its Moussong
complex. Embed the Cayley graph CW as an orbit Wx0 for a point x0 in a
base chamber D0 of M. Then the pair (MW , CW ) satisfies the approximation
property.

Proof. Let σ = [a, b] be a nondegenerate segment inM and Hσ be the set of
walls having a nonempty intersection with the interior (a, b). Since the family
of all walls is locally finite and the walls are totally geodesic, we have a partition

Hσ = H′σ ∪H1 ∪H2 ∪ · · · ∪ Hn,

where the walls from H′σ contain σ and the walls from Hi cross σ precisely in
the point ai, i = 1, · · · , n, and a = a0 < a1 < · · · < an < an+1 = b.
Now we define a gallery Γ along the geodesic σ = [a, b] as the gallery

Γ = D1Γ1D2Γ2D3 · · ·DnΓnDn+1

such that
1) Di ∩ [a, b] = [ai−1, ai] (i = 1, 2 . . . , n+ 1),
2) Each spherical piece DiΓiDi+1 is a geodesic gallery and the lengths of spher-
ical pieces are bounded from above by the constant c(M) from Lemma 3.2.3,
3) Each spherical piece DiΓiDi+1, i = 1, . . . , n crosses the walls only from the
set H′σ ∪Hi.

Lemma 3.3.3 For any geodesic σ = [a, b] inM there is a geodesic gallery along
σ.

Proof of the lemma. By construction of the sequence {ai}, for each
i = 1, . . . , n + 1 there is a chamber Di such that Di ∩ [a, b] = [ai−1, ai]. The
corresponding sequence of chambers D1, D2, . . . Dn, D1 = D,Dn = D′ is the
first approximation to the required gallery. In general, this sequence is not a
gallery, since two consecutive chambers are not necessarily adjacent. For each
1 ≤ i ≤ n, the intersection of neighbors Di ∩Di+1 contains the point ai.
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Application of Lemmas 3.1.7, 3.2.3 enables us to inscribe a spherical geodesic
subgallery of bounded length between these neighbors and get a gallery

Γ = D1Γ1D2Γ2 · · ·Dn−1Γn−1Dn

such that the spherical pieces DiΓiDi+1 are geodesic galleries of uniformly
bounded length satisfying condition 3) from the definition above. We will show
that Γ can be modified to a geodesic gallery along [a, b]. If Γ is not geodesic
then by Lemma 3.2.2 it crosses some wall H at least twice. Clearly H ∈ H′σ
i.e., H contains σ. Then there are indices i+1 < j and subgalleries Γ1,Γ2 each
of length 1 such that
a) Γ1,Γ2 belong to i-th and j−th spherical piece respectively,
b) Γ1,Γ2 cross H and moreover there are no crossing subgalleries in between.
Let Γ1 = DD′,Γ2 = D′′D′′′. In particular the chambers D and D′′′ lie on the
same side of H , say H−, and the subgallery Γ′ of Γ, joining D′ with D′′ lies on
the opposite side, say H+.
Let w ∈ W be the reflection in the wall H . If we modify Γ by applying w
to the portion Γ̃, we obtain the gallery from D to D′′′ that is strictly shorter
than DΓ′D′′′. Replacing DΓ′D′′′ by w(Γ̃) we get the gallery Γ′ that is strictly
shorter than Γ but still is the gallery along σ. Repeating the previous process
will construct a geodesic gallery along σ. This proves Lemma 3.3.3.
The theorem now follows easily from Lemma 3.3.3. Namely, given two chambers
D,D′ we take the points d, d′ inside them and build a geodesic gallery Γ =
D1 · · ·Dn along [d, d′]. Γ not necessarily joins D to D′ but the intersections
D∩D1, D′∩Dn are nonempty, so we can join D toD1 and D

′ toD2 respectively
by the galleries of uniformly bounded length thereby getting the gallery joining
D to D′ and that is δ(M)−close to σ for some universal constant δ(M). �

D1

D2

D3

D4

D
D′

D5

D6

D7

D8

Figure 3: Gallery along geodesic. The spherical piece is D4DD
′D5.

4 Word length on abelian subgroups of a Coxeter group

4.1 Straightness

Definition 4.1.1 Let G be a group with a fixed word metric x 7→ ℓ(x). We
say that an element x 6= 0 is straight if ℓ(vn) = nℓ(v) for all natural n.
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Remark 4.1.2 Straight elements have been studied for Coxeter groups in
[Kra94] and for small cancellation groups in [Kap97] (in the last paper they are
called periodically geodesic.

Example 4.1.3 (An element that is not straight.) LetW be an affine Coxeter
group generated by reflections s1, s2, s3 in the sides of an equilateral triangle
C of a Euclidean plane. Let L1, L2, L3 be the corresponding reflecting lines of
this triangle. It is easily seen that there is nontrivial translation u ∈W with an
axis L1. We assert that nor s1u neither any of it conjugates v = ws1uw

−1 are
straight. Indeed, the length |ws1uw−1| is the length of a geodesic gallery Γ from
C to ws1uw

−1C. Any such a gallery intersects the line wL1. The concatenation
Γ(vΓ) is a gallery from C to v2C of length 2|ws1uw−1|. But Γ(vΓ) can not be
geodesic, since it intersects wL1 twice. Hence |v2| < 2|v|. �

Definition 4.1.4 Let M be the Moussong complex of a Coxeter group W .
Recall that M is a proper complete CAT(0) space and W acts properly and
cocompactly onM by isometries. In particular, any element w ∈W of infinite
order acts as an axial isometry i.e., there is a geodesic axis Aw inM, isometrical
to R, on which w acts as a nonzero translation [Bal95]. We say that w is generic
if Aw intersects any wall in at most one point. In view of Lemma 2.2.6, this
is equivalent to saying that no nondegenerate segment of Aw is contained in a
wall.

Theorem 4.1.5 Let (W,S) be a Coxeter system of finite type. For any generic
element w of W of infinite order there is a conjugate v which is straight, that
is ℓ(vn) = nℓ(v) for all n ∈ N, where ℓ(v) is a word length in generators S.

Proof. We make use of the action of W on the Moussong complexM. Since
the family of all walls is locally finite, there is a point a on the axis Aw such
that a does not belong to any wall of M. Every point wia(i ∈ Z) also does
not belong to any wall of M. Let H be the set of walls crossed by the seg-
ment [a, wa] and let a < a1 < a2 < · · · < ak < wa be the crossing points,
so that H is a disjoint union H = H1 ∪ · · · ∪ Hk of subsets Hi crossing
[a, wa] in ai, i = 1, 2, . . . , k. There are the chambers D1, D2, · · · , Dk such that
D1 ∩ [a, wa] = [a, a1], Di ∩ [a, wa] = [ai−1, ai](i = 1, 2, . . . , k). Inscribe into
the sequence D1, D2, · · · , Dk(wD1) subgalleries Γ1, . . . ,Γk, so that the concate-
nation Γ = D1Γ1D2 · · ·Γk−1DkΓk(wD1) is a gallery, crossing only the walls
from H and crossing each wall precisely once. In particular this gallery is
geodesic. Let Γ0 = D1Γ1D2 · · ·Γk−1DkΓk. Translating by w and concatenat-
ing, we get a gallery Γ̃ = Γ0(wΓ0))(w

2Γ0) · · · (wn−1Γ0)w
nD1. The walls that it

crosses are precisely those from the union H ∪ wH ∪ w2H ∪ · · · ∪ wn−1H, and
each wall is crossed precisely once. Hence the gallery Γ̃ is geodesic. Now let
D1 = uD0, u ∈W, where D0 is the base chamber. Being a geodesic path in the
Cayley graph, the gallery Γ̃ joins the vertex u to the vertex wnu = u(u−1wnu).
Hence its length nℓ(Γ0) equals the word length of the element u−1wnu ∈ W.
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We conclude that for v = u−1wu the equality |vn| = n|v| holds for all n ∈ N.
�

Theorem 4.1.6 Let (W,S) be a Coxeter group of finite type. There is a con-
stant c = c(W ) such that for any element w of W of infinite order there is a
conjugate v of wc which is straight.

Proof. Let w ∈ W be of infinite order and let Aw be an axis of w. Let
Hu = Hu(Au) denote the set of walls in the Moussong complexMW , containing
Au. It is easy to see that the cardinality of Hw is bounded by a constant
depending only on W and we take c = c(W ) to be the number

2× l.c.m.× (card{Hw : w ∈ W is of infinite order }).

Clearly Aw is an axis of wc as well. Furthermore, wc leaves invariant each
wall H ∈ Hw ; moreover, it leaves invariant each of the two components of
MW −H,H ∈ Hw. It follows that for any chamber D, a geodesic gallery from
D to wcD does not cross a wall H from Hw. Indeed, otherwise D and wcD
would lie in different components ofMW −H implying that wc interchanges
these components, contradicting the property above. Take a chamber D such
that D ∩ Aw is a nondegenerate segment and fix a point a in the interior of
this segment. Let H denote the set of walls H that are crossed by the segment
[a, wca] but do not contain it. Clearly any H ∈ H separates D from wcD. And
conversely, if H separates, then the points a, wca lie in different components of
MW −H implying that H crosses the segment [a, wca] in precisely one point.
Let Γ be a geodesic gallery from D to wcD then the walls that it crosses
are precisely those from H, and each wall H ∈ H is crossed by Γ precisely
once. Iterating we obtain a gallery Γ̃ = Γ(wΓ))(w2Γ) · · · (wn−1Γ)wnD(n ∈ N)
of the length nℓ(Γ). This gallery crosses the walls only from (disjoint) union
H ∪ wcH ∪ w2cH ∪ · · · ∪ w(n−1)cH, each precisely once. Hence the gallery Γ̃
is geodesic. Now let D = uD0, u ∈ W, where D0 is the base chamber. Being
a geodesic path in the Cayley graph, the gallery Γ̃ joins the vertex u to the
vertex wncu = u(u−1wncu). Hence its length nℓ(Γ) equals the word length of
the element u−1wncu ∈ W. We conclude that for v = u−1wcu the equality
|vn| = n|v| holds for all n ∈ N. �

For elements which are not necessarily generic we have the following

Lemma 4.1.7 Let (W,S) be a Coxeter group of finite type and let w ∈ W be
an element of infinite order. Fix an axis Aw of w in the Moussong complex
MW . There is a chamber D such that for all n ∈ Z

d(D,wnD) = n d(D,wD) − n card (wZ\Hw) + cn,

where |cn| is bounded by a constant depending only on W and Hw is the set
of all walls H in MW , containing Aw and such that H separates wiD from
wi+1D for some i ∈ Z.
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Proof. We follow the proof of Theorem 4.1.5. Take a chamber D, such D∩Aw
is a nondegenerate segment. Let H be the set of walls, separating D from
wD and do not containing Aw. By total geodesicity, any H ∈ H crosses Aw
precisely in one point. Let Γ be a geodesic gallery from D to wD then it crosses
all H ∈ H, each precisely once, and some of the walls from Hw. Iterating we
get the gallery Γ̃ = Γ(wΓ))(w2Γ) · · · (wn−1Γ)wnD. This gallery crosses the
walls from (disjoint) union H∪wH∪w2H∪ · · · ∪wn−1H, each precisely once.
Also, it crosses some walls from Hw. Note that, whenever Γ̃ crosses H ∈ Hw, it
crosses it periodically with a period rH = card wZH. Hence, the integer part
[n/rH ] is the number of times the gallery Γ̃ crosses each H ′ ∈ wZH. Hence it
crosses the walls from the orbit wZH approximately n times, up to a universal
constant. Hence, the number d(D,wnD) of walls, separating D from wnD,
equals n d(D,wD)−n card (wZ\Hw)+ cn, where cn is uniformly bounded. �

Theorem 4.1.8 If, under conditions of Lemma 4.1.7, D = uD0, u ∈W, where
D0 is the base chamber, then d(D,wD) is the word length of the conjugate
v = u−1wu ∈W and we get the following formula

ℓ(vn) = nℓ(v)− card (wZ\HW ) + cn.

From this we get the following formula for a translation length ||w|| of w:

||w|| def= lim
n→∞

ℓ(wn)

n
= lim
n→∞

ℓ(vn)

n
= ℓ(v)− card(wZ\Hw).

In particular, translation length of any element of W is rational (even integral).

Remark 4.1.9 The formula for translation length is similar to the one given
in [Kra94], where it follows from the classification of roots. It seems unknown
whether translation length is rational in an arbitrary ”semihyperbolic group”.

4.2 Norms and Burago’s inequality

Let A be a normed abelian group, so A is equipped with a function ℓ : A → R
satisfying (1) ℓ(a−1) = ℓ(a), (2) ℓ(ab) ≤ ℓ(a) + ℓ(b), and (3) ℓ(a) ≥ 0 with
ℓ(a) = 0 iff a = 1, for a, b ∈ A. If (3) is replaced by (3’) ℓ(a) ≥ 0 for a ∈ A, we
call A a pseudonormed abelian group. Two pseudonorms ℓ and ℓ′ on the abelian
group A are called Hausdorff equivalent if there is a constant k > 0 so that
|ℓ(a)− ℓ′(a)| ≤ k for all a ∈ A. The (pseudo)norm ℓ on the abelian group A is
called regular if ℓ(an) = nℓ(a) for all a ∈ A and all positive natural numbers n.
Let ℓ be a norm on the abelian group A. We define the regularization Rℓ of ℓ
by

Rℓ(a) = lim
n→∞

ℓ(an)

n
.

By [PS78], p. 23, Exercise 99, this limit always exists, and it is an exercise to
see that Rℓ is a regular pseudonorm.
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Lemma 4.2.1 The norm ℓ on the abelian group A is regular iff Rℓ = ℓ.

Proof. If ℓ is regular, then clearly Rℓ = ℓ. Conversely, if ℓ(an) < nℓ(a) for
some positive number n and some a ∈ A, then

Rℓ(a) = lim
m→∞

ℓ(amn)

mn
≤ ℓ(an)

n
< ℓ(a),

thus the lemma. �

In general positivity of Rℓ fails, so it is possible that Rℓ(a) = 0 but a 6=
0. Also it may easily happen that Rℓ is not Hausdorff equivalent to ℓ. We
give a criterion for positivity and Hausdorff equivalence in terms of Burago’s
inequality [Gro93].

Definition 4.2.2 We say that a norm ℓ on an abelian group A satisfies the
Burago’s inequality if there exists a constant c = c(A) > 0 such that

ℓ(a2) ≥ 2ℓ(a)− c for all a ∈ A.

The norm is discrete if for all n ∈ N the ball Bn = {x ∈ A : ℓ(x) ≤ n} is
finite. For example any word metric, corresponding to a finite generating set,
is discrete.

Lemma 4.2.3 If a discrete norm ℓ on a torsionfree abelian group A satisfies
Burago’s inequality then its regularization Rℓ is a norm also and, furthermore,
Rℓ is Hausdorff equivalent to ℓ.

Proof. By induction from Burago’s inequality we deduce that ℓ(a2
n

) ≥
2nℓ(a)− (2n − 1)c, for all a ∈ A, n ∈ N. This implies that

ℓ(a) ≥ Rℓ(a) = lim
m→∞

ℓ(a2
m

)

2m
≥ ℓ(a)− c

for all a ∈ A. Thus the regularization Rℓ is Hausdorff equivalent to ℓ. As any
regularization, this pseudonorm is regular. It remains to prove that Rℓ is a
norm on A, i.e., it does not vanish on nonzero a ∈ A. If a ∈ A is such that
ℓ(a) ≥ 1 + c, then

Rℓ(a) = lim
m→∞

ℓ(a2
m

)

2m
≥ ℓ(a)− c ≥ 1.

Now suppose a ∈ A is arbitrary nonzero, then by the discreteness assumption
ℓ(an) ≥ 1+c for sufficiently large n, and since Rℓ is regular, Rℓ(a) = 1

nRℓ(a
n) >

0. �
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4.3 Approximation and Burago’s inequality

Lemma 4.3.1 Let Γ be a finitely generated group of isometries of a proper
CAT(0) space X, acting cocompactly and properly on X. Suppose that x0 ∈ X
has a trivial stabilizer so that the Cayley graph C of Γ can be considered as
embedded into X via the orbit map g 7→ gx0(g ∈ Γ). Suppose that the pair
(X,Γx0) satisfies the approximation property. Then the restriction of the word
length ℓ on Γ to any finitely generated free abelian subgroup A satisfies the
Burago’s inequality.

Proof. By assumption there is a δ > 0 such that for any g ∈ Γ the X-geodesic
αX from x0 to gx0 and some C–geodesic αC from x0 to gx0 are δ–close to
each other. By the flat torus theorem [Bow95], [Bri95] there is a Euclidean
subspace F in X on which A acts by translation. Fix the point y0 ∈ F and let
a be an arbitrary nontrivial element in A. We will show that ax0 is contained
in a c-neighborhood of αC for a suitable c > 0. Clearly dX(a2x0, a

2y0) =
dX(x0, y0). Parameterize the segments [x0, a

2x0], [y0, a
2y0] by the segment [0, 1]

proportionally to arc length. It follows from the convexity of X–metric that
the corresponding points on the segments are distance at most dX(x0, y0) from
each other. Let u be the point on [x0, a

2x0] corresponding to the point ay0.
By assumption u is distance at most δ from some point v on αC . Hence we
have bounded the X-distance from ax0 ∈ C to v ∈ C. (This key observation
is illustrated in Figure 4). Since the Cayley graph C is quasiisometric to X
this bounds the Cayley graph distance also. Thus, there is a constant c =
c(Γ, X) > 0 such that dC(ax0, v) ≤ c.We have ℓ(a2) = dC(x0, v)+dC(v, a2x0) ≥
(dC(x0, ax0) − c) + (dC(ax0, a2x0) − c) = (ℓ(a) − c) + (ℓ(a) − c) = 2ℓ(a) − 2c,
that is the Burago’s inequality. �

ax0

αC

αX

a2x0

ay0

v

a2y0

u

F

x0

y0

Figure 4: Lemma 4.3.1

Theorem 4.3.2 Let (W,S) be a Coxeter group and let ℓ be the word length in
generators S. Then the restriction of ℓ to any free abelian subgroup A of W is
Hausdorff equivalent to a regular norm on A.

Proof. Consider the pair (MW , CW ) where the Cayley graph CW is embedded
into the Moussong complex as an orbit Wx0. By Theorem 3.3.2 (MW , CW )
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satisfies the approximation property. Therefore by Lemma 4.3.1 the restriction
of the word length ℓ on W to any finitely generated free abelian subgroup
A satisfies the Burago’s inequality. Finally, by Lemma 4.2.3 ℓ is Hausdorff
equivalent to its regularization Rℓ and thus Rℓ is the required norm on A.

�

I am grateful to Herbert Abels for asking the question that leads to the theorem
above.
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Abstract. We show that there exists a fine moduli space for torsion-
free sheaves on a projective surface which have a “good framing" on
a big and nef divisor. This moduli space is a quasi-projective scheme.
This is accomplished by showing that such framed sheaves may be
considered as stable pairs in the sense of Huybrechts and Lehn. We
characterize the obstruction to the smoothness of the moduli space
and discuss some examples on rational surfaces.
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1. Introduction

There has been recently some interest in the moduli spaces of framed sheaves.
One reason is that they are often smooth and provide desingularizations of the
moduli spaces of ideal instantons, which in turn are singular [17, 19, 18]. For
this reason, their equivariant cohomology under suitable toric actions is relevant
to the computation of partition functions, and more generally expectation val-
ues of quantum observables in topological quantum field theory [20, 2, 19, 6, 3].
On the other hand, these moduli spaces can be regarded as higher-rank gen-
eralizations of Hilbert schemes of points, and as such they have interesting
connections with integrable systems [12, 1], representation theory [26], etc.

While it is widely assumed that such moduli spaces exist and are well behaved,
an explicit analysis, showing that they are quasi-projective schemes and are
fine moduli spaces, is missing in the literature. In the present paper we provide
such a construction for the case of framed sheaves on smooth projective surfaces
under some mild conditions. We show that if D is a big and nef curve in a
smooth projective surface X , there is a fine quasi-projective moduli space for

1This research was partly supported by prin “Geometria delle varietà algebriche” and by

the European Science Foundation Programme Misgam.
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sheaves that have a “good framing” on D (Theorem 3.1). The point here is
that the sheaves under consideration are not assumed a priori to be semistable,
and the basic idea is to show that there exists a stability condition making all
of them stable, so that our moduli space is an open subscheme of the moduli
space of stable pairs in the sense of Huybrechts and Lehn [8, 9].

In the papers [21, 22] T. Nevins constructed a scheme structure for these moduli
spaces, however we obtain a stronger result, showing that these schemes are
quasi-projective, and in particular are separated and of finite type. Moreover
we compute the obstruction to the smoothness of these moduli spaces (Theorem
4.3). In fact, the tangent space is well known, but we provide a more precise
description of the obstruction space than the one given by Lehn [14]. We show
that it lies in the kernel of the trace map, thus extending a previous result of
Lübke [15] to the non-locally free case.

In some cases there is another way to give the moduli spaces M(r, c, n) a struc-
ture of algebraic variety, namely, by using ADHM data. This was done for
vector bundles on P2 by Donaldson [5], while (always in the locally free case)
the case of the blowup of P2 at a point is studied in A. King’s thesis [13], and
P2 blown-up at an arbitrary number of points was analyzed by Buchdahl [4].
The general case (i.e., including torsion-free sheaves) is studied by C. Rava for
Hirzebruch surfaces [24] and A.A. Henni for multiple blowups of P2 at distinct
points [7]. The equivalence between the two approaches follows from the fact
that in both cases one has fine moduli spaces. On the ADHM side, this is
shown by constructing a universal monad on the moduli space [23, 7, 25].

In the final section we discuss some examples, i.e. framed bundles on Hirzebruch
surfaces with “minimal invariants", and rank 2 framed bundles on the blowup
of P2 at one point.

In the present article, all the schemes we consider are separated and are of
finite type over C, and “a variety” is a reduced irreducible scheme of finite type
over C. A “sheaf” is always coherent, the term “(semi)stable” always means
“µ-(semi)stable”, and the prefix µ- will be omitted. Framed sheaves are always
assumed to be torsion-free.

2. Framed sheaves

Let us characterize the objects that we shall study.

Definition 2.1. Let X be a scheme over C, D ⊂ X an effective Weil divisor,
and ED a sheaf on D. We say that a sheaf E on X is (D, ED)-framable if E
is torsion-free and there is an epimorphism E → ED of OX-modules inducing
an isomorphism E|D ∼→ ED. An isomorphism φ : E|D ∼→ ED will be called a
(D, ED)-framing of E. A framed sheaf is a pair (E , φ) consisting of a (D, ED)-
framable sheaf E and a framing φ. Two framed sheaves (E , φ) and (E ′, φ′) are
isomorphic if there is an isomorphism f : E → E ′ and a nonzero constant λ ∈ C
such that φ′ ◦ f|D = λφ.
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Let us remark that our notion of framing is the same as the one used in
[14, 22, 21], but is more restrictive than that of [8], where a framing is any
homomorphism α : E → ED of OX -modules, not necessarily factoring through
an isomorphism E|D ∼→ ED. To distinguish between the two definitions, we will
call such a pair (E , α) a framed pair, whilst the term framed sheaf will refer to
the notion introduced in Definition 2.1

Our strategy to show that framed sheaves on a projective variety make up
“good” moduli spaces will consist in proving that, under some conditions, the
framed sheaves (E , φ) are stable according to a notion of stability introduced
by Huybrechts and Lehn [8, 9]. The definition of stability for framed pairs
depends on the choice of a polarization H on X and a positive real number δ
(in our notation, δ is the leading coefficient of the polynomial δ in the definition
of (semi)stability in [8]).

Definition 2.2 ([8, 9]). A framed pair (E , α) on an n-dimensional projective
variety X, consisting of a torsion-free sheaf E and its framing α : E → ED, is
said to be (H, δ)-stable, if for any subsheaf G ⊂ E with 0 < rkG ≤ rk E, the
following inequalities hold:

(1)
c1(G) ·Hn−1

rk(G) <
c1(E) ·Hn−1 − δ

rk(E) when G is contained in kerα;

(2)
c1(G) ·Hn−1 − δ

rk(G) <
c1(E) ·Hn−1 − δ

rk(E) otherwise.

Remark, that according to this definition, any rank-1 framed sheaf is (H, δ)-
stable for any ample H and any 0 ≤ δ < degD.

For any sheaf F on X , PHF denotes the Hilbert polynomial PHF (k) = χ(F ⊗
OX(kH)). For a non-torsion sheaf F on X , µH denotes the slope of F :
µH(F) = c1(F)·Hn−1

rkF .

Theorem 2.3 ([8, 9]). Let X be a smooth projective variety, H an ample divisor
on X and δ a positive real number. Let D ⊂ X be an effective divisor, and ED a
sheaf on D. Then there exists a fine moduli space M = MH

X(P ) of (H, δ)-stable
(D, ED)-framed sheaves (E , φ) with fixed Hilbert polynomial P = PHE , and this
moduli space is a quasi-projective scheme.

Since we are using slope stability, and a more restrictive definition of framing
with respect to that of [8, 9], our moduli space MH

X(P ) is actually an open
subscheme of the moduli space constructed by Huybrechts and Lehn.

Another general result on framed sheaves we shall need is a boundedness theo-
rem due to M. Lehn. Given X,D, ED as above, a setM of (D, ED)-framed pairs
(E , φ) is bounded if there exists a scheme of finite type S over C together with
a family (G,φ) of (D, ED)-framed pairs over S such that for any (E , φ) ∈ M,
there exist s ∈ S and an isomorphism (Gs,φ|D×s) ≃ (E , φ).
Definition 2.4. Let X be a smooth projective variety. An effective divisor
D on X is called a good framing divisor if we can write D =

∑
niDi, where
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Di are prime divisors and ni > 0, and there exists a nef and big divisor of
the form

∑
aiDi with ai ≥ 0. For a sheaf ED on D, we shall say that ED is

a good framing sheaf, if it is locally free and there exists a real number A0,
0 ≤ A0 < 1

rD
2 · Hn−2, such that for any locally free subsheaf F ⊂ ED of

constant positive rank, 1
rkF deg c1(F) ≤ 1

rk ED deg c1(ED) +A0.

Theorem 2.5. Let X be a smooth projective variety of dimension n ≥ 2, H
an ample divisor on X, D ⊂ X an effective divisor, and ED a vector bundle
on D. Assume that D is a good framing divisor. Then for every polynomial P
with coefficients in Q, the set of torsion-free sheaves E on X that satisfy the
conditions PHE = P and E|D ≃ ED is bounded.

This is proved in [14], Theorem 3.2.4, for locally free sheaves, but the proof
goes through also in the torsion-free case, provided that ED is locally free, as
we are assuming.

3. Quasi-projective moduli spaces

Using the notions introduced in the previous section, we now can state the
main existence result for quasi-projective moduli spaces:

Theorem 3.1. Let X be a smooth projective surface, D ⊂ X a big and nef
curve, and ED a good framing sheaf on D. Then for any c ∈ H∗(X,Q), there
exists an ample divisor H on X and a real number δ > 0 such that all the
(D, ED)-framed sheaves E on X with Chern character ch(E) = c are (H, δ)-
stable, so that there exists a quasi-projective scheme MX(c) which is a fine
moduli space for these framed sheaves.

Proof. Let us fix an ample divisor C on X . Set OX(k) = OX(kC) and E(k) =
E⊗OX(k) for any sheaf E onX and for any k ∈ Z. Recall that the Castelnuovo-
Mumford regularity ρ(E) of a sheaf E on X is the minimal integer m such that
hi(X, E(m − i)) = 0 for all i > 0. According to Lehn’s Theorem (Theorem
2.5), the family M of all the sheaves E on X with ch(E) = c and E|D ≃ ED is
bounded. Hence ρ(E) is uniformly bounded over all E ∈ M. By Grothendieck’s
Lemma (Lemma 1.7.9 in [10]), there exists A1 ≥ 0, depending only on ED, c
and C, such that µC(F) ≤ µC(E) + A1 for all E ∈ M and for all nonzero
subsheaves F ⊂ E .
For n > 0, denote by Hn the ample divisor C + nD. We shall verify that there
exists a positive integer n such that the range of positive real numbers δ, for
which all the framed sheaves E fromM are (Hn, δ)-stable, is nonempty.

Let F ⊂ E , 0 < r′ = rkF ≤ r = rk E . Assume first that F 6⊂ ker
(
E → E|D

)
.

Then we may only consider the case r′ < r, and the (Hn, δ)-stability condition
for E reads:

(1) µHn(F) < µHn(E) +
(
1

r′
− 1

r

)
δ.
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Saturating F , we make µHn(F) bigger, so we may assume that F is a saturated
subsheaf of E , and hence that it is locally free. Then F|D ⊂ E|D and we have:

(2) µHn(F) = n

r′
deg c1(F|D) + µC(F) ≤ µHn(E) + nA0 +A1.

Thus we see that (2) implies (1) whenever

(3)
rr′

r − r′ (nA0 +A1) < δ.

Assume now that F is a saturated, and hence a locally free subsheaf of ker
(
E →

E|D
)
≃ E(−D). Then the (Hn, δ)-stability condition for E is

(4) µHn(F) < µHn(E)− 1

r
δ,

and the inclusion F(D) ⊂ E yields:

(5) µHn(F) < µHn(E)−HnD+nA0+A1 = µHn(E)− (D2−A0)n+A1−DC.

We see that (5) implies (4) whenever

(6) δ < r[(D2 −A0)n−A1 +DC].

The inequalities (3), (6) for all r′ = 1, . . . , r − 1 have a nonempty interval of
common solutions δ if

n > max

{
rA1 − CD
D2 − rA0

, 0

}
.

�

Remark 3.2. Grothedieck’s Lemma is stated in [10] in terms of the so called µ̂
slope. However, for torsion-free sheaves, the µ̂ slope and the usual slope differ
by constants depending only on (X,OX(1)), see Definition 1.6.8 in [10] and the
following remark. △

Note that up to isomorphism, the quasi-projective structure making MX(c)
a fine moduli space is unique, which follows from the existence of a universal
family of framed sheaves over it.

If D is a smooth and irreducible curve and D2 > 0, then our definition of a
good framing sheaf with A0 = 0 is just the definition of semistability. The
following is thus an immediate consequence of the theorem:

Corollary 3.3. Let X be a smooth projective surface, D ⊂ X a smooth,
irreducible, big and nef curve, and ED a semistable vector bundle on D. Then
for any c ∈ H∗(X,Q), there exists a quasi-projective scheme MX(c) which is a
fine moduli space of (D, ED)-framed sheaves on X with Chern character c.
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4. Infinitesimal study

Let X be a smooth projective variety, D an effective divisor on X , ED a vector
bundle on D. We shall consider sheaves E on X framed to ED on D. We recall
the notion of a simplifying framing bundle introduced by Lehn.

Definition 4.1. ED is simplifying if for any two vector bundles E, E ′ on X
such that E|D ≃ E ′|D ≃ ED, the group H0(X,Hom(E , E ′)(−D)) vanishes.

An easy sufficient condition for ED to be simplifying is H0(D, End(ED) ⊗
OX(−kD)|D) = 0 for all k > 0.

Lehn [14] proved that if D is good and ED is simplifying, there exists a fine
moduli space M of (D, ED)-framed vector bundles on X in the category of sep-
arated algebraic spaces. Lübke [15] proved a similar result: if X is a compact
complex manifold, D a smooth hypersurface (not necessarily “good”) and if
ED is simplifying, then the moduli space M of (D, ED)-framed vector bundles
exists as a Hausdorff complex space. In both cases the tangent space T[E]M
at a point representing the isomorphism class of a framed bundle E is natu-
rally identified with H1(X, End(E)(−D)), and the moduli space is smooth at
[E ] if H2(X, End(E)(−D)) = 0. Lübke gives a more precise statement about
smoothness: [E ] is a smooth point of M if H2(X, End0(E)(−D)) = 0, where
End0 denotes the traceless endomorphisms. Huybrechts and Lehn in [9] define
the tangent space and give a smoothness criterion for the moduli space of stable
pairs that are more general objects than our framed sheaves. In this section,
we adapt Lübke’s criterion to our moduli space MX(c), parametrizing not only
vector bundles, but also some non-locally-free sheaves. When we work with
stable framed sheaves, we do not need the assumption that ED is simplifying.

We shall use the notions of the trace map and traceless exts, see Definition
10.1.4 from [10]. Assuming X is a smooth algebraic variety, F any (coherent)
sheaf on it, and N a locally free sheaf (of finite rank), the trace map is defined

(7) tr : Exti(F ,F ⊗N )→ Hi(X,N ) , i ∈ Z,

and the traceless part of the ext-group, denoted by Exti(F ,F ⊗ N )0, is the
kernel of this map.

We shall need the following property of the trace:

Lemma 4.2. Let 0 −→ F α−→ G β−→ E −→ 0 be an exact triple of sheaves and N
a locally free sheaf. Then there are two long exact sequences of ext-functors
giving rise to the natural maps

µi : Ext
i(F , E ⊗ N )→ Exti+1(E , E ⊗ N ) ,

τi : Ext
i(F , E ⊗ N )→ Exti+1(F ,F ⊗N ) ,

and we have tr ◦ µi = (−1)itr ◦ τi as maps Exti(F , E ⊗ N )→ Hi+1(X,N ).

Proof. This is a particular case of the graded commutativity of the trace with
respect to cup-products on Homs in the the derived category (see Section
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V.3.8 in [11]): if ξ ∈ Hom(F , E ⊗ N [i]), η ∈ Hom(E ,F [j]), then tr (ξ ◦ η) =
(−1)ijtr ((η ⊗ idN ) ◦ ξ). This should be applied to ξ ∈ Hom(F , E ⊗ N [i])
and η = ∂ ∈ Hom(E ,F [1]), where ∂ is the connecting homomorphism in the
distinguished triangle associated to the given exact triple:

E [−1] −∂−−→ F α−→ G β−→ E ∂−→ F [1].
�

Theorem 4.3. Let X be a smooth projective surface, D ⊂ X an effective
divisor, ED a locally free sheaf on D, and c ∈ H∗(X,Q) the Chern character of
a (D, ED)-framed sheaf E on X. Assume that there exists an ample divisor H
on X and a positive real number δ such that E is (H, δ)-stable, and denote by
MX(c) the moduli space of (D, ED)-framed sheaves on X with Chern character
c which are (H, δ)-stable. Then the tangent space to MX(c) is given by

T[E]MX(c) = Ext1(E , E ⊗ OX(−D)),

and MX(c) is smooth at [E ] if the traceless ext-group

Ext2(E , E ⊗ OX(−D))0 = ker
[
tr : Ext2(E , E ⊗ OX(−D))→ H2(X,O(−D))

]

vanishes.

Proof. We prove this result by a combination of arguments of Huybrechts-Lehn
and Mukai, so we just give a sketch, referring to [9, 16] for details. As in Section
4.iv) of [9], the smoothness of M = MX(c) follows from the T 1-lifting property
for the complex E → ED.

Let An = k[t]/(tn+1), Xn = X × SpecAn, Dn = D × SpecAn, EDn = ED ⊠
An, and let En αn−−→ EDn be an An-flat lifting of E → ED to Xn. Then the
infinitesimal deformations of αn over k[ǫ]/(ǫ2) are classified by the hyper-ext
Ext1(En, En αn−−→ EDn), and one says that the T 1-lifting property is verified for
E → ED if all the natural maps

T 1
n : Ext1(En, En αn−−→ EDn)→ Ext1(En−1, En−1

αn−1−−−→ EDn−1)

are surjective whenever (En, αn) ≡ (En−1, αn−1) mod (tn). In loc. cit., the
authors remark that there is an obstruction map ob on the target of T 1

n which
embeds the cokernel of T 1

n into Ext2(E , E → ED), so that if the latter vanishes,
the T 1-lifting property holds.

In our case, E is locally free alongD, so the complex E → ED is quasi-isomorphic
to E(−D) and Exti(E , E → ED) = Exti(E , E(−D)). It remains to prove that
the image of ob is contained in the traceless part of Ext2(E , E(−D)). This is
done by a modification of Mukai’s proof in the non-framed case.

First we assume that E is locally free. Then the elements of
Ext1(En−1, En−1(−Dn−1)) can be given by Čech 1-cocycles with values in
End(En−1)(−Dn−1) for some open covering of X , and the image of such
a 1-cocycle (aij) under the obstruction map Ext1(En−1, En−1(−Dn−1)) →
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Ext2(E , E(−D)) is a Čech 2-cocycle (cijk) with values in End(E)(−D). A di-
rect calculation shows that (tr cijk) is a Čech 2-cocycle with values in OX(−D)
which is the obstruction to the lifting of the infinitesimal deformation of the
framed line bundle det En−1 from An−1 to An. As we know that the mod-
uli space of line bundles, whether framed or not, is smooth, this obstruction
vanishes, so the cocycle (tr cijk) is cohomologous to 0.

Now consider the case when E is not locally free. Replacing E , ED by their twists
E(n), ED(n) for some n > 0, we may assume that Hi(X, E) = Hi(X, E(−D)) =
0 for i = 1, 2 and that E is generated by global sections. Then we get the exact
triple of framed sheaves

0→ (G, γ)→ (H0(X, E)⊗OX , β)→ (E , α)→ 0,

where G is locally free (at this point it is essential that dimX = 2 and X is
smooth). Then we verify the T 1-lifting property for the exact triples

0→ (Gn, γn)→ (ONXn , βn)→ (En, αn)→ 0.

The infinitesimal deformations of such exact triples are classified by
Hom(Gn, En(−Dn)), and the obstructions lie in Ext1(G, E(−D)). We have
two connecting homomorphisms µ1 : Ext1(G, E(−D)) → Ext2(E , E(−D)) and
τ1 : Ext1(G, E(−D)) → Ext2(G,G(−D)). Our hypotheses on E imply that: 1)
every infinitesimal deformation of (En, αn) lifts to that of the triple, and 2) µ1

is an isomorphism, that is, the infinitesimal deformation of En is unobstructed
if and only if that of the triple is. By Lemma 4.2, tr (µ1(ξ)) = −tr (τ1(ξ)) in
H2(X,OX(−D)). As in 1.10 of [16], τ1(ξ) is the obstruction ob(Gn−1, γn−1)
to lifting (Gn−1, γn−1) from An−1 to An. As Gn−1 is locally free, we can use
the Čech cocycles as above and see that tr (τ1(ξ)) ∈ H2(X,OX(−D)) is the
obstruction to lifting (detGn−1, det γn−1), hence it is zero and we are done. �

The following Corollary describes a situation where the moduli space MX(c)
is smooth (hence, every connected component is a smooth quasi-projective
variety).

Corollary 4.4. In addition to the hypothesis of Theorem 4.3, let us assume
that D is irreducible, that (KX +D) ·D < 0, and choose the framing bundle to
be trivial. Then the moduli space MX(c) is smooth.

This happens for instance when X is a Hirzebruch surface, or the blowup of
P2 at a number of distinct points, taking for D the inverse image of a generic
line in P2 via the birational morphism X → P2. In this case one can also
compute the dimension of the moduli space, obtaining dimMX(c) = 2rn, with
r = rk(E) and

c2(E)−
r − 1

2r
c1(E)2 = n̟,

where ̟ is the fundamental class of X . When X is the p-th Hirzebruch surface
Fp we shall denote this moduli space by Mp(r, k, n) if c1(E) = kC, where C is
the unique curve in Fp having negative self-intersection.
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The next example shows that the moduli space may be nonsingular even if the
group Ext2(E , E ⊗ OX(−D)) does not vanish.

Example 4.5. For r = 1 the moduli space M(1, 0, n) is isomorphic to the Hilbert
schemeX [n]

0 parametrizing length n 0-cycles inX0 = X\D. Of course this space
is a smooth quasi-projective variety of dimension 2n. Indeed in this case the
trace morphism Ext2(E , E ⊗ OX(−D))→ H2(X,O(−D)) is an isomorphism.

5. Examples

5.1. Bundles with small invariants on Hirzebruch surfaces. Let X
be the p-th Hirzebruch surface Fp, and normalize the Chern character by twist-
ing by powers of the line bundle OFp(C) so that 0 ≤ k ≤ r − 1. It has been
shown in [3] that the moduli space Mp(r, k, n) is nonempty if and only if the
bound

n ≥ N =
pk

2r
(r − k)

is satisfied. The moduli spaces Mp(r, k,N) can be explicitly characterized:
Mp(r, k,N) is a rank k(r−k)(p−1) vector bundle on the GrassmannianG(k, r)
of k-planes in Cr [25]; in particular, M1(r, k,N) ≃ G(k, r), and M2(r, k,N) is
isomorphic to the tangent bundle of G(k, r). This is consistent with instanton
counting, which shows that the spaces Mp(r, k,N) have the same Betti numbers
as G(k, r) [3].

5.2. Rank 2 vector bundles on F1. We study in some detail the moduli
spaces M1(2, k, n). As [27] and [28] show, the non-locally free case turns out
to be very complicated as soon as the value of n exceeds the rank. So we
consider only locally free sheaves. To simplify notation we call this moduli
space M̂(k, n), where n denotes now the second Chern class. We normalize k
so that it will assume only the values 0 and −1. Moreover we shall denote by
M(n) the moduli space of rank 2 bundles on P2, with second Chern class n,
that are framed on the “line at infinity” ℓ∞ ⊂ P2 (which we identify with the
image of D via the blow-down morphism π : F1 → P2).

Let us start with the case k = −1. We introduce a stratification on M̂(−1, n)
according to the splitting type of the bundles it parametrizes on the exceptional
line E ⊂ F1

M̂(−1, n) = Z0(−1, n) ⊃ Z1(−1, n) ⊃ Z2(−1, n) ⊃ . . .
defined as follows: if Z0

k(−1, n) = Zk(−1, n) \ Zk+1(−1, n) then

Z0
k(−1, n) = {E ∈ M̂(−1, n) | E|E ≃ OE(−k)⊕OE(k + 1)} .

Proposition 5.1. There is a map

F1 : M̂(−1, n)→
n∐

k=0

M(n− k)
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which restricted to the subset Z0
k(−1, n) yields a morphism

Z0
k(−1, n)→M(n− k)

whose fibre is an open set in Hom(σ∗E|E ,OE(k))/C∗ ≃ P2k+1, made by k-linear
forms that have no common zeroes on the exceptional line.

Proof. We start by considering Z0
0 (−1, n). The morphism Z0

0 (−1, n)→ M(n)
is given by E1 7→ E = (π∗E)∗∗. The fibre of this morphism includes a P1. To
show that this is indeed a P1-fibration we need to check that E1 has no other
deformations than those coming from the choice of a point in M(n) and a point
in this P1. This follows from the equalities

dimExt1(E1, E1(−E)) = dimExt1(E , E(−ℓ∞) + 1

Ext2(E1, E1(−E)) = 0

Note that this result is compatible with the isomorphism M1(r, k,N) ≃ G(k, r)
mentioned in Section 5.1.

In general, if E1 ∈ Z0
k(−1, n) with k ≥ 1, so that E1|E ≃ OE(k+1)⊕OE(−k), the

direct image π∗(E1(kE)) is locally free. This defines the morphism Z0
k(−1, n)→

M(n− k). �

We consider now the case k = 0. One has Z0
0 (0, n) ≃ M(n). We study the

other strata by reducing to the odd case. If E1 ∈ Z0
k(0, n), there is a unique

surjection α : E1 → OE(−k); let F be the kernel. Restricting 0 → F → E1 →
OE(−k)→ 0 we get an exact sequence

0→ OE(1− k)→ F|E → OE(k)→ 0

so that

F|E ≃ OE(a+ 1)⊕OE(−a) with − k ≤ a ≤ k − 1.

A detailed analysis shows that a = k − 1. As a result we have:

Proposition 5.2. For all k ≥ 1 there is a morphism

Z0
k(0, n)→M(n− 2k + 1)

whose fibres have dimension 2k − 1.
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1.3. Réalisation des motifs géométriques . . . . . . . . . . . . . . 422

2. Modules de cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
2.1. Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
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Introduction. —

Théorie de Voevodsky. — Dans sa théorie des complexes motiviques sur un
corps parfait k, V. Voevodsky introduit le concept central de faisceau Nis-
nevich invariant par homotopie avec transferts, que nous appellerons simple-
ment faisceau homotopique. Rappelons qu’un faisceau homotopique F est un
préfaisceau de groupes abéliens sur la catégorie des k-schémas algébriques lisses,
fonctoriel par rapport aux correspondances finies à homotopie près, qui est un
faisceau pour la topologie de Nisnevich. Un exemple central d’un tel faisceau
est donné par le préfaisceau Gm qui à un schéma lisse X associe le groupe des
sections globales inversibles sur X . La catégorie des faisceaux homotopiques,
notée iciHI(k), a de bonnes propriétés que l’on peut résumer essentiellement en
disant que c’est une catégorie abélienne de Grothendieck, monöıdale symétrique
fermée.
Un des points centraux de la théorie est la démonstration par Voevodsky que
tout faisceau homotopique F admet une résolution de Gersten(2). Un cas

(2)Les complexes du type (G), ci-dessous, ont été introduits par Grothendieck sous le nom
résolution de Cousin, remplaçant la théorie des faisceaux homotopiques par celle des fais-
ceaux cohérents. Grâce à la suite spectrale associée à la filtration par coniveau d’après
Grothendieck, ils ont été réintroduits un peu plus tard dans le contexte des théories coho-
mologiques, par Brown et Gersten en K-théorie et finallement par Bloch et Ogus dans une
version axiomatique. Notons que ces derniers auteurs parlent plutôt de “arithmetic reso-

lution” et il semble que le terme de résolution de Gersten se soit imposé par la suite. La
fonctorialité de la résolution de Gersten par rapport à un morphisme de schémas lisses a été
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particulier de ce résultat est le fait que pour tout schéma lisse X , le groupe
abélien F (X) admet une résolution par un complexe de la forme:

(G) C∗(X, F̂∗) :
⊕

x∈X(0)

F̂ (κ(x))→ . . .
⊕

x′∈X(n)

F̂−n(κ(x
′))→ . . .

Suivant Voevodsky, F−n = HomHI(k)(G
⊗n
m , F ). On a noté X(n) l’ensemble des

points de codimension n de X . Pour un entier r ≥ 0 et un point x de X ,
F̂r(κ(x)) désigne la fibre du faisceau homotopique Fr au point Nisnevich qui
correspond au corps résiduel κ(x), vu comme un corps de fonctions.
Un corollaire de cette résolution de Gersten est que les faisceaux homotopiques
sont essentiellement déterminés par leurs fibres en un corps de fonctions. La
question centrale de cet article est de savoir jusqu’à quel point ils le sont.

Théorie de Rost. — Pour définir un complexe de Gersten, du type (G), on
remarque qu’il faut essentiellement se donner un groupe abélien pour chaque
corps résiduel d’un point de X . M. Rost axiomatise cette situation en in-
troduisant les modules de cycles. Un module de cycles est un foncteur φ de
la catégorie des corps de fonctions au-dessus de k vers les groupes abéliens
gradués, muni d’une fonctorialité étendue qui permet de définir un complexe
C∗(X,φ) du type (G). Pour avoir une idée de cette fonctorialité, le lecteur peut
se référer aux propriétés de la K-théorie de Milnor – mais aussi à la théorie des
modules galoisiens. Rost note l’analogie entre ce complexe et le groupe des
cycles de X – comme l’avaient fait Bloch et Quillen avant lui – et utilise le
traitement de la théorie de l’intersection par Fulton pour montrer que la co-
homologie du complexe, notée A∗(X,φ), est naturelle en X par rapport aux
morphismes de schémas lisses.

Une comparaison. — Répondant à la question finale du premier paragraphe,
nous comparons la théorie de Rost et celle de Voevodsky. D’une manière vague,
notre résultat principal affirme que l’association F 7→ F̂∗ définit un foncteur
pleinement fidèle des faisceaux homotopiques dans les modules de cycles, avec
pour quasi-inverse à gauche le foncteur φ 7→ A0(., φ).
Pour être plus précis dans la formulation de ce résultat, on est conduit à élargir
la catégorie des faisceaux homotopiques. On définit un module homotopique
F∗ comme un faisceau homotopique Z-gradué muni d’isomorphismes ǫn :
Fn → (Fn+1)−1. La catégorie obtenue, notée HI∗(k), est encore abélienne
de Grothendieck, symétrique monöıdale fermée. De plus, elle contient comme
sous-catégorie pleine la catégorie HI(k) – si F est un faisceau homotopique,
le module homotopique associé a pour valeur G⊗nm ⊗ F (resp. F−n) en degré
n ≥ 0 (resp. n < 0).

Dès lors, on peut montrer que le système F̂∗ des fibres d’un module homo-
topique F∗ en un corps de fonctions définit un module de cycles. De plus, pour

traitée dans le cas de la K-théorie par H. Gillet (voir [Gil85]) puis étendue dans le cas des
modules de cycles par M. Rost.

Documenta Mathematica 16 (2011) 411–455



414 F. Déglise

tout module de cycles φ, le groupe A0(X,φ), dépendant fonctoriellement d’un
schéma lisse X , définit un module homotopique.

Théorème (cf. 3.7). — Les deux associations décrites ci-dessus définissent des
fonteurs quasi-inverses l’un de l’autre.

La résolution de Gersten obtenue par Voevodsky est maintenant équivalente
au résultat suivant:

Corollaire (cf. 3.12). — Si F∗ est un module homotopique et X un schéma

lisse, Hn(X,F∗) = An(X, F̂∗).(3)

Notons que ce corollaire est étendu au cas singulier à la fin de l’article (Propo-
sition 6.10). Cette extension nécessite d’interpréter le théorème 3.7 en termes
motiviques.

L’interprétation motivique. — Rappelons qu’un complexe motivique suivant
Voevodsky est un complexe(4) de faisceaux Nisnevich avec transferts dont les
faisceaux de cohomologie sont des faisceaux homotopiques. La catégorie des
complexes motiviques DM eff(k) porte ainsi naturellement une t-structure au
sens de Beilinson, Bernstein et Deligne dont le coeur est la catégorie HI(k).
La catégorie DM eff(k) est triangulée monöıdale symétrique fermée. Elle
contient comme sous catégorie pleine la catégorie des motifs purs modulo
équivalence rationnelle définie par Grothendieck. C’est ainsi une catégorie “ef-
fective ”, dans le sens où le motif de Tate 1(1) n’a pas de ⊗-inverse. Suivant
l’approche initiale de Grothendieck, on est conduit à introduire une version non
effective des complexes motiviques ; c’est ce qui est fait par D.C. Cisinski et
l’auteur dans [CD09b]. Il est naturel dans le contexte des complexes motiviques
de remplacer la construction habituelle pour inverser 1(1) par l’approche des
topologues pour définir la catégorie homotopique stable. La catégorie DM(k),
dont les objets seront appelés les spectres motiviques, est ainsi construite à par-
tir du formalisme des spectres et des catégories de modèles. C’est la catégorie
monöıdale homotopique(5) universelle munie d’un foncteur dérivé monöıdal

Σ∞ : DM eff(k)→ DM(k)

admettant un adjoint à droite Ω∞ et telle que l’objet Σ∞ 1(1) est ⊗-inversible.
Notons que dans le cadre des complexes motiviques, le foncteur Σ∞ est pleine-
ment fidèle d’après le théorème de simplification de Voevodsky [Voe02].
Dans cet article, nous montrons que l’on peut étendre la définition de la t-
structure homotopique à la catégorie DM(k), de telle manière que le fonc-
teur Ω∞ est t-exact. Le coeur de la t-structure homotopique sur DM(k) est

(3)L’identification obtenue ici est naturelle, non seulement par rapport au pullback (lemme
3.3), mais aussi par rapport aux correspondances finies (proposition 3.10) et par rapport au
pushout par un morphisme projectif (proposition 3.16).
(4)Originellement, ces complexes sont supposés bornés supérieurement. Nous abandonnons

cette hypothèse dans tout l’article suivant [CD09b].
(5)c’est-à-dire la catégorie homotopique associée à une catégorie de modèles monöıdale.
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la catégorie HI∗(k) des modules homotopiques, qui est donc canoniquement
identifiée à la catégorie des modules de cycles d’après le théorème 3.7 déjà cité.
Ceci nous permet de donner une interprétation frappante du module de cycles
F̂∗ associé à un module homotopique F∗, à travers la notion de motifs génériques
de [Dég08b].(6) Le motif générique associé à un corps de fonctions E est le pro-

motif défini par tous les modèles lisses de E. On considère la catégorieDM
(0)
gm(k)

formée par tous les twists de motifs génériques par 1(n)[n] = 1{n} pour n ∈ Z.
Alors, F̂∗ est simplement la restriction du foncteur représenté par F∗ dans

DM(k) à la catégorie DM
(0)
gm(k). La catégorie DM

(0)
gm(k) est une catégorie de

“points ” pour les spectres motiviques, et la fonctorialité des modules de cycles
est interprétée en termes de morphismes de spécialisations entre ces points.
De ce point de vue, les modules homotopiques correspondent à des systèmes

locaux où le groupöıde fondamental est remplacé par la catégorie DM
(0)
gm(k).

L’interprétation motivique nous sert finalement à introduire une condition de
finitude (définition 6.6) sur les modules de cycles qui implique que leur gradu-
ation naturelle est bornée inférieurement (Corollaire 6.8) – comme c’est le cas
de la plupart des modules de cycles définis par des moyens géométriques.

Plan du travail. — L’article est divisé en deux parties, l’une consacée au
théorème principal 3.7 et l’autre à sa signification en termes de la théorie mo-
tivique de Voevodsky.
La première partie est faite de trois sections. Dans la section 1, on rap-
pelle les propriétés principales des faisceaux homotopiques, et on introduit la
catégorie des module homotopiques. Dans la section 2, on rappelle brièvement
la théorie des modules de cycle de M. Rost et on établit quelques résultats
supplémentaires utiles dans cet article. La section 3 et consacrée à la preuve
du théorème central 3.7 cité précédemment. De plus, on établit plusieurs pro-
priétés concernant la fonctorialité de l’identification 3.12 citée ci-dessus.
La deuxième partie est aussi constituée de trois sections. La section 4 contient
des rappels concernant la théorie des complexes motiviques de Voevodsky ainsi
que la version stable qu’on a introduite avec Cisinski dans [CD09b]. La section
5 est consacrée à la définition de la t-structure homotopique et à l’identification
de son coeur avec les modules homotopiques. La section 6 est consacrée aux
applications du point de vue motivique: construction de modules de cycles
(section 6.1), borne inférieure (section 6.2) et extension du corollaire 3.12 au
cas singulier (section 6.3).

Mise en perspective. — Ce travail a été utilisé récemment par B. Kahn dans
[Kah10] pour étendre un théorème de Merkurjev. Kahn démontre par exemple
que le théorème de Merkurjev est conséquence de notre théorème 3.7 (voir
remarque 6.2).
Nous avons aussi utilisé les résultats de cet article dans deux travaux
indépendants:

(6)Cette notion a aussi été introduite par A.Beilinson dans [Bei02].
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– F. Morel a introduit une t-structure homotopique sur la catégorie homo-
topique stable des schémas, analogue à celle qu’on définit sur DM(k).
Il a conjecturé une relation très précise entre le coeur de sa t-structure,
noté Π∗(k), et les modules homotopiques (avec transferts) considérés ici:
la catégorie HI∗(k) est une sous-catégorie pleine de Π∗(k), formée des
objets sur lesquels l’application de Hopf agit trivialement. On démontre
cette conjecture à partir des résultats de cet article dans [Dég10].

– On approfondit aussi la relation entre modules homotopiques et résolution
de Gersten en montrant que la suite spectrale du coniveau associée à la
cohomologie représentée par un spectre motivique E s’identifie canon-
iquement à la suite spectrale d’hyper-cohomologie à coefficients dans E
associée à la t-structure homotopique (voir [Dég09, sec. 6]). Ce théorème
prolonge un résultat de Bloch-Ogus (cf. [BO74, 6.4]).

Remerciements. — Mes remerciements vont en premier lieu à F. Morel qui
a dirigé ma thèse, dans laquelle le résultat central de cet article a été établi.
L’influence de ses idées est partout dans ce texte. Je remercie aussi A. Suslin
et A. Merkurjev qui ont été les rapporteurs de cette thèse et dont les rapports
m’ont beaucoup aidés dans la rédaction présente, ainsi que D.C. Cisinski pour
sa relecture et son intérêt pour mon mémoire de thèse. Enfin, je remercie
J. Ayoub, A. Beilinson, J.B. Bost, B. Kahn, J. Riou, C. Soulé et J. Wildeshaus
pour leur intérêt et des discussions autour du sujet de cet article.

Notations. — On fixe un corps parfait k. Tous les schémas considérés sont
des k-schémas séparés. Nous dirons qu’un schéma X est lisse si il est lisse de
type fini sur k. La catégorie des schémas lisses est notée Lk.
Nous disons qu’un schéma X est essentiellement de type fini s’il est localement
isomorphe au spectre d’une k-algèbre qui est une localisation d’une k-algèbre
de type fini.
On appelle corps de fonctions toute extension de corps E/k de degré de tran-
scendance fini. Un corps de fonctions valué est un couple (E, v) où E est un
corps de fonctions et v est une valuation sur E dont l’anneau des entiers est
essentiellement de type fini sur k.
Un modèle de E/k est un k-schéma lisse connexe X muni d’un k-isomorphisme
entre son corps des fonctions et E. On définit le pro-schéma des modèles de
E :

(E) = ” lim←− ”
A⊂E

Spec(A)

où A parcourt l’ensemble ordonné filtrant des sous-k-algèbres de type fini de E
dont le corps des fractions est E.
Voici une liste des catégories principales utilisées dans ce texte:

– DM eff
gm (k) (resp. DMgm(k)) désigne la catégorie des motifs géométriques

effectifs (resp. non nécessairement effectifs).
– DM eff(k) désigne la catégorie des complexes motiviques (que l’on ne

suppose pas nécessairement bornés inférieurement).
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– DM(k) désigne la catégorie des spectres motiviques, version non effective
de DM eff(k).

– HI(k) (resp. HI∗(k)) désigne la catégorie des faisceaux (resp. mod-
ules) homotopiques. C’est le coeur de la t-structure homotopique sur
DM eff(k) (resp. DM(k)).

– MCycl(k) désigne la catégorie des modules de cycles.

PARTIE I

MODULES HOMOTOPIQUES ET MODULES DE CYCLES

1. Modules homotopiques

1.1. Rappels sur les faisceaux avec transferts. — Dans cette partie
préliminaire, on rappelle la théorie de Voevodsky des faisceaux avec trans-
ferts et des faisceaux homotopiques. Nous nous référons à [Dég07] pour les
détails.(7)

1.1. — Soient X et Y des schémas lisses. Rappelons qu’une correspondance
finie de X vers Y est un cycle de X×Y dont le support est fini équidimensionel
sur X . La formule habituelle permet de définir un produit de composition
pour les correspondances finies qui donne lieu à une catégorie additive L cor

k

(cf. [Dég07, 4.1.19]). On obtient un foncteur γ : Lk → L cor
k , égal à l’identité

sur les objets, en associant à tout morphisme le cycle associé à son graphe.
La catégorie L cor

k est enfin monöıdale symétrique. Le produit tensoriel sur les
objets est donné par le produit cartésien des schémas lisses; sur les morphismes,
il est induit par le produit extérieur des cycles (cf. [Dég07, 4.1.23]).

1.2. — Un faisceau avec transferts est un foncteur F : (L cor
k )op → A b additif

contravariant tel que F ◦ γ est un faisceau Nisnevich. On note Shtr(k) la
catégorie des faisceaux avec transferts munis des transformations naturelles.
Cette catégorie est abélienne de Grothendieck (cf. [Dég07, 4.2.8]). Une famille
génératrice est donnée par les faisceaux représentables par un schéma lisse X :

Ztr(X) : Y 7→ c(Y,X).

Il existe un unique produit tensoriel symétrique⊗tr sur Shtr(k) telle que le fonc-
teur Ztr est monöıdal symétrique. La catégorie Shtr(k) est de plus monöıdale
symétrique fermée (cf. [Dég07, 4.2.14]).

Définition 1.3. — Un faisceau homotopique est un faisceau avec transferts F
invariant par homotopie : pour tout schéma lisse X , le morphisme induit par
la projection canonique F (X)→ F (A1

X) est un isomorphisme.

(7)Cette référence contient une relecture des preuves originales de Voevodsky ainsi que
quelques compléments qui nous seront utiles.
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On note HI(k) la sous-catégorie pleine de Shtr(k) formée des faisceaux homo-
topiques. Le foncteur d’oubli évident O : HI(k) → Shtr(k) admet un adjoint
à gauche h0 : Shtr(k) → HI(k), h0(F ) étant défini comme le faisceau associé
au préfaisceau

(1.3.a) X 7→ coKer
(
F (A1

X)
s∗0−s∗1−−−−→ F (X)

)

avec s0 (resp. s1) la section nulle (resp. unité) de A1
X/X (cf. [Dég07, 4.4.4,

4.4.15]). D’après loc. cit., le foncteur O est exact. La catégorie HI(k) est
donc une sous-catégorie épaisse de Shtr(k). En particulier, c’est une catégorie
abélienne de Grothendieck dont une famille génératrice est donnée par les fais-
ceaux de la forme h0(X) := h0(Ztr(X)). On vérifie aisément que le foncteur
O commute de plus à toutes les limites projectives ce qui implique que HI(k)
admet des limites projectives.

1.4. — Pour un corps de fonctions E, on définit la fibre de F en E comme la
limite inductive de l’application de F au pro-schéma (E) :

F̂ (E) = lim−→
A⊂E

F (Spec(A))

Les foncteurs F 7→ F̂ (E) forment une famille conservative de foncteurs fibres(8)

de HI(k) (cf. [Dég07, 4.4.7]).

Remarque 1.5. — Ce dernier résultat repose sur la propriété très intéressante
des faisceaux homotopiques suivante:

Proposition 1.6. — Pour toute immersion ouverte dense j : U → X dans un
schéma lisse, le morphisme induit

j∗ : h0(U)→ h0(X)

est un épimorphisme dans HI(k).

Cette proposition est une conséquence du corollaire 4.3.22 de [Dég07]: il existe

un recouvrement ouvert W
π−→ X et une correspondance finie α :W → U telle

que le diagramme suivant est commutatif à homotopie près

W
α

xxrrrrr
π��

U j // X.

On peut la reformuler en disant que pour tout faisceau homotopique F , le
morphisme F (X)→ F (U) induit par j est un monomorphisme. On déduit de
ce dernier résultat que pour tout schéma lisse connexe X de corps des fontions
E, le morphisme canonique F (X)→ F̂ (E) est un monomorphisme.

1.7. — Dans une catégorie abélienne de Grothendieck A , une classe de flèches
W est dite localisante si :

(i) W est stable par limite inductive.

(8)i.e. exacts commutant aux limites inductives.
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(ii) Soit f et g des flèches composables de A . Si deux des constituants de
(f, g, gf) appartiennent à W , le troisième appartient à W .

Si S est un classe de flèches essentiellement petite, on peut parler de la classe
de flèches localisante engendrée par S.
Lemme 1.8. — Il existe un unique produit tensoriel symétrique ⊗Htr sur HI(k)
tel que le fonteur h0 est monöıdal symétrique.

Démonstration. — D’après ce qui précède, HI(k) s’identifie à la localisation
de la catégorie Shtr(k) par rapport à la classe de flèches localisante engendrée
par les morphismes Ztr(A1

X) → Ztr(X) pour un schéma lisse X arbitraire.
Ainsi, pour tout schéma lisse X ,W⊗tr Ztr(X) ⊂ W . Donc le produit tensoriel
⊗tr satisfait la propriété de localisation par rapport à W ce qui démontre le
lemme.

La catégorie HI(k) munie du produit tensoriel ⊗Htr obtenu dans le lemme
précédent est monöıdale symétrique fermée. Ce produit tensoriel est caractérisé
par la relation h0(X)⊗Htr h0(Y ) = h0(X × Y ) déduite du lemme précédent.

Définition 1.9. — Soit s : {1} → Gm l’immersion du point unité. On appelle
sphère de Tate le conoyau de h0(s) dans la catégorie HI(k). On la note S1

t .
Pour tout entier n ≥ 0, on note Snt la puissance tensorielle n-ième de S1

t dans
la catégorie monöıdale HI(k).

D’après l’invariance par homotopie, on obtient encore une suite exacte courte
scindée dans HI(k) :

0→ S1
t → h0(Gm)

j∗−→ h0(A
1
k)→ 0.

où j est l’immersion ouverte évidente.

1.10. — Soit n ≥ 0 un entier et E/k un corps de fonction. Pour un groupe
abélien M , on note Tn(M) la puissance tensorielle n-ième de M pour ⊗Z.
En utilisant le morphisme canonique Gm → h0(Gm) et la définition du produit
tensoriel ⊗Htr, on obtient un morphisme canonique:

λnE : Tn(E
×)→ Ŝnt (E).

Notons encore

πn : Tn(E
×)→ KM

n (E)

l’épimorphisme canonique à valeur dans le n-ème groupe de K-théorie de Mil-
nor de E. On utilisera de manière centrale le résultat suivant dû à Suslin et
Voevodsky (voir [SV00, th. 3.4]):

Théorème 1.11 (Suslin-Voevodsky). — Avec les notations qui précèdent, le
morphisme λnE se factorise de manière unique par πn et induit un isomor-
phisme:

KM
n (E)→ Ŝnt (E).

On déduit de ce théorème le lemme suivant:
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Lemme 1.12. — L’automorphisme ǫ de permutation des facteurs sur S2
t =

S1
t ⊗Htr S1

t est égal à −1.

Démonstration. — Compte tenu de la proposition 1.6, il suffit de montrer que

pour tout corps de fonctions E/k, ǫ agit par −1 sur la fibre Ŝ2
t (E).

D’après le théorème précédent, la flèche canonique:

λ2E : E× ⊗Z E
× → Ŝ2

t (E)

est un épimorphisme. De plus, pour tout couple (a, b) d’unités de E, la relation
suivante λ2E(b, a) = −λ2E(a, b) est vérifiée, d’après la relation analogue bien
connue dans KM

2 (E). On conclut du fait que ǫ.λ2E(a, b) = λ2E(b, a).

1.13. — Pour un entier n ≥ 0 et un faisceau homotopique F , on pose F−n =
HomHI(k)(S

n
t , F ). Par définition, pour tout schéma lisse X ,

F−1(X) = F (Gm ×X)/F (X).

Le foncteur ?−n est le n-ième itéré du fonteur ?−1. Ainsi la proposition 3.4.3
de [Dég08b] entraine :

Lemme 1.14. — L’endofoncteur HI(k)→ HI(k), F 7→ F−n est exact.

Le résultat suivant est un corollaire du théorème de simplification de Voevodsky
[Voe02].

Proposition 1.15. — L’endofoncteur HI(k) → HI(k), F 7→ Snt ⊗Htr F est
pleinement fidèle.

Démonstration. — Il suffit de considérer le cas n = 1. La preuve anticipe

la suite de l’exposé puisqu’elle utilise la catégorie DM eff
− (k) des complexes

motiviques de Voevodsky définie dans [Voe02]. Le théorème central de loc.

cit. affirme que le twist de Tate est pleinement fidèle dans DM eff
− (k). Il

en résulte que le morphisme canonique F → HomDMeff
− (k)(Z

tr(1)[1], F (1)[1])

est un isomorphisme. D’après [Dég08b, 3.4.4], le membre de droite est égal à
H0(F (1)[1])−1. Or par définition, H0(F (1)[1]) = S1

t ⊗Htr F et la transformation
naturelle correspondante F → (S1

t ⊗Htr F )−1 est l’application d’adjonction.

1.2. Définition. —

1.16. — On note Z−HI(k) la catégorie des faisceaux homotopiques Z-gradués.
Pour un tel faisceau F∗ et un entier n ∈ Z, on note F∗{n} le faisceau gradué
dont la composante en degré i est Fi+n. Si F est un faisceau homotopique,
on note encore F{n} le faisceau gradué concentré en degré −n égal à F . La
catégorie Z−HI(k) est abélienne de Grothendieck avec pour générateurs la
famille (h0(X){i}) indexée par les schémas lisses X et les entiers i ∈ Z.
Cette catégorie est monöıdale symétrique :

(
F∗ ⊗̂Htr

G∗
)
n
= ⊕p+q=nFp⊗HtrGq.

Documenta Mathematica 16 (2011) 411–455



Modules Homotopiques 421

Pour la symétrie, on adopte la convention donnée par la règle de Koszul :

⊕p+q=nFp⊗HtrGq

∑
(−1)pq.ǫpq−−−−−−−−→ ⊕p+q=nGq ⊗Htr Fp

où ǫpq désigne l’isomorphisme de symétrie pour la structure monöıdale des
faisceaux homotopiques.
On note S∗t le monöıde libre dans Z−HI(k) engendré par le faisceau S1

t placé
en degré 1. Il est égal en degré n à Snt . Compte tenu de la règle de Koszul
ci-dessus et du lemme 1.12, c’est un monöıde commutatif dans Z−HI(k). On
note S∗t −mod la catégorie des modules sur S∗t . C’est une catégorie abélienne
monöıdale de Grothendieck avec pour générateurs (S∗t ⊗Htr h0(X){i}) pour X
un schéma lisse et i ∈ Z. Comme S∗t est un monöıde libre, se donner un
S∗t -module

τ : S∗t ⊗̂
Htr

F∗ → F∗

revient à se donner une suite de morphismes

S1
t ⊗Htr Fn

τn−→ Fn+1

appelés morphismes de suspension.

Définition 1.17. — Un module homotopique est un S∗t -module (F∗, τ) tel que
le morphisme adjoint à τn

ǫn : Fn → HomHI(k)(S
1
t , Fn+1) = (Fn+1)−1

est un isomorphisme. On note HI∗(k) la sous-catégorie de S∗t−mod formée des
modules homotopiques.

Il revient au même de se donner la suite de morphismes (τn)n∈N ou la suite
de d’isomorphismes (ǫn)n∈N pour définir une structure de module homotopique
sur un faisceau homotopique gradué F∗. Par la suite, la notation (F∗, ǫ∗) pour
un module homotopique fera toujours référence aux isomorphismes ǫn.

1.18. — Compte tenu du lemme 1.14, le foncteur d’oubli HI∗(k)→ S∗t −mod
est exact et conservatif. Il admet de plus un adjoint à gauche L définit pour
tout faisceau homotopique F et tout entier i ∈ Z par la formule

L
(
S∗t ⊗Htr F{i}

)
n
=

{
Sn+it ⊗Htr F si n+ i ≥ 0

Fn+i si n+ i ≤ 0

en adoptant la notation de 1.13. Le fait que L prend ses valeurs dans les
faisceaux homotopiques résulte de 1.15. On pose plus simplement σ∞ F{i} =
L
(
S∗t ⊗Htr F{i}

)
. La catégorie HI∗(k) est donc une sous-catégorie abélienne

de S∗t −mod, avec pour générateurs la famille

(1.18.a) h0,∗(X) = σ∞ h0(X){i}
pour un schéma lisse X et un entier i ∈ Z – le symbole ∗ correspond à la
graduation naturelle de module homotopique.
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Si (F∗, ǫ∗) est un module homotopique, on pose ω∞ F∗ = F0. On obtient ainsi
un couple de foncteurs adjoints

(1.18.b) σ∞ : HI(k)⇆ HI∗(k) : ω
∞

tels que σ∞ est pleinement fidèle (prop. 1.15) et ω∞ est exact (lemme 1.14).
Ainsi, pour tout schéma lisse X , tout module homotopique F∗ et tout (n, i) ∈
Z2,

(1.18.c) HomHI∗(k)(h0,∗(X), F∗{i}[n]) = Hn
Nis(X ;Fi).

Lemme 1.19. — Il existe sur HI∗(k) une unique structure monöıdale
symétrique telle que le foncteur L est monöıdal symétrique.

Démonstration. — Compte tenu de ce qui précède, le foncteur L est un fonc-
teur de localisation: pour tout schéma lisse X et tout entier n ∈ Z, on ob-
tient par définition (S∗t ⊗Htr h0(X){n})−n+1 = S1

t ⊗Htr h0(X). Par adjonction,
l’identité de S1

t ⊗Htr h0(X) induit donc un morphisme de S∗t -modules

S∗t ⊗Htr(S1
t ⊗Htr h0(X){n− 1})→ S∗t ⊗Htr h0(X){n}.

Utilisant à nouveau le jeu des adjonctions introduites ci-dessus, HI∗(k) est la
localisation de S∗t−mod par rapport à la classe de flèches localisanteW (cf. 1.7)
engendrée par les morphismes précédents. Pour tout couple (Y,m), Y schéma

lisse, m ∈ Z, il est évident que W ⊗̂Htr
(S∗t ⊗Htr h0(Y ){m}) ⊂ W . Ainsi, ⊗̂Htr

vérifie la propriété de localisation par rapport à W ce qui conclut.

La catégorie HI∗(k) est donc monöıdale symétrique fermée avec pour neutre
le module homotopique S∗t . Le foncteur σ∞ est de plus monöıdal symétrique.
Enfin, l’objet σ∞ S1

t est inversible pour le produit tensoriel avec pour inverse
σ∞ Ztr{−1}.
Remarque 1.20. — La catégorie HI∗(k) est la catégorie monöıdale abélienne
de Grothendieck universelle pour les propriétés qui viennent d’être énoncées.
La construction donnée ici est parfaitement analogue à la construction de la
catégorie des spectres en topologie algébrique, comme le suggère nos notations
– en particulier pour le faisceau S1

t qui joue le rôle de la sphère topologique.
La construction ici est facilitée parce que nous sommes dans un cadre abélien
et que la sphère S1

t est anti-commutative. Le théorème de simplification 1.15
rend la construction du foncteur L plus facile mais n’est pas indispensable.

1.3. Réalisation des motifs géométriques. — Rappelons que la
catégorie des motifs géométriques effectifs DM eff

gm (k) définie par Voevodsky

est l’enveloppe pseudo-abélienne de la localisation de la catégorie Kb(L cor
k )

des complexes de L cor
k à équivalence d’homotopie près par la sous-catégorie

triangulée épaisse engendrée par les complexes suivants :

1. . . . 0→ U ∩ V → U ⊕ V → X → 0 . . .
pour un recouvrement ouvert U ∪ V d’un schéma lisse X .

2. . . . 0→ A1
X → X → 0 . . .

induit par la projection canonique pour un schéma lisse X .
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Rappelons que cette catégorie est triangulée monöıdale symétrique. Pour un
schéma lisse X , on note simplement M(X) le complexe concentré en degré 0
égal à X vu dans DM eff

gm (k).

Pour tout complexe borné C de L cor
k , on note Ztr(C) le complexe de fais-

ceau avec transferts évident. Pour un faisceau homotopique F , posons
ϕF (C) = HomD(Shtr(k))(Z

tr(C), F ). Rappelons que pour un schéma lisse X ,
HomD(Shtr(k))(Ztr(X)[−n], F ) = Hn

Nis(X ;F ) (cf. [Voe00b, 3.1.9]); la coho-
mologie Nisnevich de F est de plus invariante par homotopie (cf. [Voe00a,
5.6]). On en déduit que le foncteur ϕF ainsi défini se factorise et induit un
foncteur cohomologique encore noté ϕF : DM eff

gm (k)op → A b.

On définit le motif de Tate suspendu(9) Z{1} comme le complexe

. . .→ Spec(k)→ Gm → 0 . . .

oùGm est placé en degré 0, vu dansDM eff
gm (k). Avec une convention légèrement

différente de celle de Voevodsky, adpatée à nos besoins, on définit la catégorie
des motifs géométriques DMgm(k) comme la catégorie monöıdale symétrique
universelle obtenue en inversant Z{1} pour le produit tensoriel. Un objet de
DMgm(k) est un couple (C, n) où C est un complexe de L cor

k et n un entier,
noté suggestivement C{n}. Les morphismes sont définis par la formule

HomDMgm(k)(C{n}, D{m}) = lim−→
r≥−n,−m

HomDM eff
gm (k)(C{r + n}, D{r + n}).

Cette catégorie est de manière évidente équivalente à la catégorie définie dans
[Voe00b] obtenue en inversant le motif de Tate Z(1) = Z{1}[−1]. Elle est donc
triangulée monöıdale symétrique.
Considérons maintenant un module homotopique (F∗, ǫ∗). Pour tout motif
géométrique C{n}, on pose

ϕ(C{n}) = lim−→
r≥−n

HomD(Shtr(k))(Z
tr(C){r + n}, Fr)

où les morphismes de transitions sont

Hom(Ztr(C){r + n}, Fr) ǫr∗−−→Hom(Ztr(C){r + n}, (Fr+1)−1)

= Hom(Ztr(C){r + n+ 1}, Fr+1),

les morphismes étant considérés dans la catégorie D(Shtr(k)). Comme dans
le cas des motifs effectifs, ceci induit un foncteur de réalisation cohomologique
associé à (F∗, ǫ∗) :

ϕ : DMgm(k)
op → A b

Notons que ce foncteur est naturellement gradué ϕn(Ztr(C){r}) =
ϕ(Ztr(C){r−n}) de sorte que, d’après le théorème de simplification 1.15, pour
tout schéma lisse X , ϕn(Ztr(X)) = Fn(X)

Remarque 1.21. — On déduit du théorème de simplification 1.15 la relation
suivante: ϕ(M(X){n}) = F−n(X).

(9)En effet, Z{1} = Z(1)[1].
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2. Modules de cycles

Dans cette section, on rappelle la théorie de Rost des modules de cycles exposée
dans [Ros96] ainsi que les compléments que nous lui avons apportés dans
[Dég08a]. L’étude de la fonctorialité de la suite exacte longue de localisation
à l’aide d’un morphisme de Gysin raffiné est nouvelle (cf. proposition 2.6).

2.1. Rappels. — Un pré-module de cycles φ (cf. [Ros96, (1.1)]) est la donnée
pour tout corps de fonctions E d’un groupe abélien Z-gradué φ(E) satisfaisant
à la fonctorialité suivante :

(D1) Pour toute extension de corps f : E → L, on se donne un morphisme
appelé restriction f∗ : φ(E)→ φ(L) de degré 0.

(D2) Pour toute extension finie de corps f : E → L, on se donne un morphisme
appelé norme f∗ : φ(L)→ φ(E) de degré 0.

(D3) Pour tout élément σ ∈ KM
r (E) du r-ième groupe de K-théorie de Milnor

de E, on se donne un morphisme γσ : φ(E)→ φ(E) de degré r.
(D4) Pour tout corps de fonctions valué (E, v), on se donne un morphisme

appelé résidu ∂v : φ(E)→ φ(κ(v))) de degré −1.
Considérant ces données, on introduit fréquemment un cinquième type de mor-
phisme, associé à un corps de fonctions valué (E, v) et à une uniformisante π
de v, de degré 0, sπv = ∂v ◦ γπ, appelé spécialisation.
Ces données sont soumises à un ensemble de relations (cf. [Ros96, (1.1)]). On
peut se faire une idée de ces relations en considérant le foncteur de K-théorie
de Milnor qui est l’exemple le plus simple de pré-module de cycles.
Considérons un schéma X essentiellement de type fini sur k. Soit x, y deux
points de X . Soit Z l’adhérence réduite de x dans X , Z̃ sa normalisation et f :
Z̃ → Z le morphisme canonique. Supposons que y est un point de codimension

1 dans Z et notons Z̃
(0)
y l’ensemble des points génériques de f−1(y). Tout point

z ∈ Z̃(0)
y correspond alors à une valuation vz sur κ(x) de corps résiduel κ(z).

On note encore ϕz : κ(y) → κ(z) le morphisme induit par f . On définit un
morphisme ∂xy : φ(κ(x))→ φ(κ(y)) par la formule suivante :

∂xy =

{∑
z∈Z̃(0)

y
ϕ∗z ◦ ∂vz si y ∈ Z(1),

0 sinon.

Considérons ensuite le groupe abélien :

Cp(X ;φ) =
⊕

x∈X(p)

φ(κ(x)).

On dit que le pré-module de cycles φ est un module de cycles (cf. [Ros96,
(2.1)]) si pour tout schéma essentiellement de type fini X ,

(FD) Le morphisme

dpX,φ :
∑

x∈X(p),y∈X(p+1)

∂xy : Cp(X ;φ)→ Cp+1(X ;φ)

est bien définit.
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(C) La suite

. . .→ Cp(X ;φ)
dpX,φ−−−→ Cp+1(X ;φ)→ . . .

est un complexe.

Les modules de cycles forment de manière évidente une catégorie que l’on note
MCycl(k).
On introduit une graduation sur le complexe de la propriété (C) :

Cp(X ;φ)n =
⊕

x∈X(p)

Mn−p(κ(x)).

On note Ap(X ;φ)n le p-ième groupe de cohomologie de ce complexe, appelé
parfois groupe de Chow à coefficients dans φ.
Pour un schéma lisse X de corps des fonctions E, le groupe A0(X ;φ)n est donc
le noyau de l’application bien définie

φn(E)

∑
x∈X(1) ∂x−−−−−−−−→ φn−1(κ(x))

où ∂x désigne le morphisme résidu associé à la valuation sur E correspondant
au point x.

2.2. Fonctorialité. —

2.1. — Le complexe gradué C∗(X ;φ)∗ est contravariant en X par rapport
aux morphismes plats (cf. [Ros96, (3.4)]). Il est covariant par rapport aux
morphismes propres équidimensionnels (cf. [Ros96, (3.5)]).

2.2. — Dans [Dég06, 3.18], nous avons prolongé le travail original de Rost
et nous avons associé à tout morphisme f : Y → X localement d’intersection
complète ([Dég06, 3.12]) tel que Y est lissifiable ([Dég06, 3.13]) unmorphisme
de Gysin

f∗ : C∗(X ;φ)→ C∗(Y ;φ)

qui est un composé d’un morphisme de complexes et de l’inverse formel d’un
morphisme de complexe qui est un quasi-isomorphisme (plus précisément, il
s’agit de l’inverse formel d’un morphisme p∗ pour p la projection d’un fibré
vectoriel). Pour désigner une telle flèche formelle, on utilise la notation abrégée
f∗ : X•−→ Y .(10)

Ce morphisme de Gysin f∗ satisfait les propriétés suivantes :

1. Lorsque f est de plus plat, f∗ coincide avec le pullback plat évoqué plus
haut.

2. Si g : Z → Y est un morphisme localement d’intersection complète avec
Z lissifiable, (fg)∗ = g∗f∗.

(10)Les flèches de ce type sont bien définies dans la catégorie dérivée des groupes abéliens et
induisent en particulier un morphisme sur les groupes de cohomologie.
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Dans le cas où f est une immersion fermée régulière, l’hypothèse que Y est lissi-
fiable est inutile ; le morphisme f∗ est défini en utilisant la déformation au cône
normal, suivant l’idée originale de Rost (cf. [Dég06, 3.3]). On utilisera par
ailleurs le résultat suivant dû à Rost ([Ros96, (12.4)]) qui décrit partiellement
ce morphisme de Gysin :

Proposition 2.3. — Soit X un schéma intègre de corps des fonctions E, et
i : Z → X l’immersion fermée d’un diviseur principal régulier irréductible
paramétré par π ∈ OX(X). Soit v la valuation de E correspondant au diviseur
Z. Alors, le morphisme i∗ : A0(X ;φ) → A0(Z;φ) est la restriction de sπv :
φ(E)→ φ(κ(v)).

2.4. — A tout carré cartésien

Y ′
j //

g �� ∆

X ′
f��

Y
i

// X

tel que i est une immersion fermée régulière, on associe un morphisme de Gysin
raffiné ∆∗ : X ′•−→ Y ′. Ce morphisme ∆∗ vérifie les propriétés suivantes :

1. Si j est régulière et le morphisme des cônes normaux NY ′(X ′) →
g−1NY (X) est un isomorphisme, ∆∗ = j∗.

2. Si f est propre, i∗f∗ = g∗∆∗.

De plus, si l’immersion canonique CY ′(X ′)→ g−1NY (X) du cône de j dans le
fibré normal de i est de codimension pure égale à e, le morphisme ∆∗ est de
degré cohomologique e.

2.5. — Pour tout couple de schémas lisses (X,Y ) et pour toute correspondance
finie α ∈ c(X,Y ), on définit un morphisme α∗ : Y •−→ X (cf. [Dég06, 6.9]).
On peut décrire ce dernier comme suit. Supposons que α est la classe d’un
sous-schéma fermé irréductible Z de X × Y . Considèrons les morphismes:

X
p← Z

i−→ Z ×X × Y q−→ Y

où p et q désignent les projections canoniques et i le graphe de l’immersion
fermée Z → X × Y . Alors,

(2.5.a) α∗ = p∗i
∗q∗

où i∗ désigne le morphisme de Gysin de l’immersion fermée régulière i, q∗ le
pullback plat et p∗ le pushout fini.
La propriété (βα)∗ = α∗β∗ est démontrée dans [Dég06, 6.5].

2.3. Suite exacte de localisation. — La suite exacte de localisation n’est
pas étudiée (ni rappelée) dans [Dég06]. Nous la rappelons maintenant suivant
[Ros96] et démontrons un résultat supplémentaire concernant sa fonctorialité.
Pour une immersion fermée i : Z → X purement de codimension c, d’immersion
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ouverte complémentaire j : U → X , on obtient en utilisant la fonctorialité
rappelée ci-dessus une suite exacte courte scindée de complexes

(2.5.b) 0→ Cp−c(Z;φ)n−c
i∗−→ Cp(X ;φ)n

j∗−→ Cp(U ;φ)n → 0.

On en déduit une suite exacte longue de localisation
(2.5.c)

. . .→ Ap−c(Z;φ)n−c
i∗−→ Ap(X ;φ)n

j∗−→ Ap(U ;φ)n
∂UZ−→ Ap−c+1(Z;φ)n−c → . . .

où le morphisme ∂UZ est définit au niveau des complexes par la formule∑
x∈U(p),z∈Z(p−c+1) ∂xz .

Cette suite est naturelle par rapport au pushout propre et au pullback plat.
La proposition suivante est nouvelle :

Proposition 2.6. — Considérons un carré cartésien

T
ι′ //

k �� ∆

Z
i��

Y ι
// X

tel que ι est une immersion fermée régulière. Supposons que i (resp. k) est
une immersion fermée d’immersion ouverte complémentaire j : U → X (resp.
l : V → X). Notons h : V → U le morphisme induit par ι. Supposons enfin que
i (resp. k) est de codimension pure égale à c (resp. d). Alors, le diagramme
suivant est commutatif :

. . . // Ap−c(Z;φ)n−c
i∗ //

∆∗��

Ap(X ;φ)n
j∗ //

ι∗��

Ap(U ;φ)n
∂UZ //

h∗
��

Ap−c+1(Z;φ)n−c //

∆∗��

. . .

. . . // Ap−d(T ;φ)n−d
k∗ // Ap(Y ;φ)n

l∗ // Ap(V ;φ)n
∂VT // Ap−d+1(T ;φ)n−d // . . .

Remarque 2.7. — 1. On peut généraliser la proposition précédente au cas
des morphismes de Gysin raffinés comme dans la proposition 4.5 de
[Dég06]. Nous laissons au lecteur le soin de formuler cette généralisation.

2. Alors que l’hypothèse sur la codimension pure de i est naturelle, celle sur
k ne l’est pas, en particulier dans un cas non transverse. Elle ne nous sert
qu’à exprimer les degrés cohomologiques de tous les morphismes et peut
aisément être supprimée si on accepte des morphismes non homogènes
par rapport au degré cohomologique.

Démonstration. — Il suffit de reprendre la preuve de la proposition 4.5 de loc.
cit. dans le cas du diagramme commutatif :

T //

��0
00

00
00 k

''PPPPPPPP Z
i

((QQQQQQQQ

��1
11

11
11

1

Y //

}}
}}}
}

X

{{
{{{
{

Y ι
// X.
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On obtient ainsi un diagramme commutatif(11), avec les notations analogues
de loc. cit.

Z •
σ′

//
•

i∗
��

(1)

CTZ •
ν′
∗ //

•
k′′∗��

(2)

k∗NYX

k′∗ ��
(3)

T•
k∗

��

•
p∗Too

X • σ
//

•
j∗

��
(1′)

NYX•
l′∗��

(2′)

NYX

l′∗ ��
(3′)

Y•p∗oo
•
l∗

��
U • σU

// NUV NUV U•
p∗U

oo

Les carrés (1), (2), (3) sont commutatifs d’après loc. cit. et les carrés (1’), (2’),
(3’) le sont pour des raisons triviales. Les flèches •−→ qui apparaissent dans
ce diagramme sont bien des morphismes de complexes et induisent donc des
morphismes de suite exacte longue de localisation. Il suffit alors d’appliquer
le fait que les morphismes p∗, p∗T et p∗U sont des quasi-isomorphismes pour
conclure.

Corollaire 2.8. — Considérons un carré cartésien

T
g //

k �� ∆

Z
i��

Y
f

// X

de schémas lisses tels que i (resp. k) est une immersion fermée de codimension
pure égale à c, d’immersion ouverte complémentaire j : U → X (resp. l : V →
X). Notons h : V → U le morphisme induit par f . Alors, le diagramme
suivant est commutatif :

. . . // Ap−c(Z;φ)n−c
i∗ //

g∗��

Ap(X ;φ)n
j∗ //

f∗

��

Ap(U ;φ)n
∂UZ //

h∗
��

Ap−c+1(Z;φ)n−c //

g∗��

. . .

. . . // Ap−c(T ;φ)n−c
k∗ // Ap(Y ;φ)n

l∗ // Ap(V ;φ)n
∂VT // Ap−c+1(T ;φ)n−c // . . .

Remarque 2.9. — Dans l’article [Dég08b], une paire fermée est un couple
(X,Z) tel que X est un schéma lisse et Z un sous-schéma fermé. On dit
que (X,Z) est lisse (resp. de codimension n) si Z est lisse (resp. purement de
codimension n dans X).
Si i : Z → X est l’immersion fermée associée, un morphisme de paires fermées
(f, g) est un carré commutatif

T
g //

k ��
Z
i��

Y
f

// X

qui est topologiquement cartésien. On dit que (f, g) est cartésien (resp. trans-
verse) quand le carré est cartésien (resp. et le morphisme induit sur les cônes

(11)Il y a une faute de frappe dans le diagramme commutatif de loc. cit. Il faut lire t∗NZX
au lieu de NY X.
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normaux CTY → g−1CZX est un isomorphisme). (12)

Le corollaire précédent montre que la suite de localisation associée à un module
de cycles φ et une paire fermée (X,Z) est naturelle par rapport aux morphismes
transverses.

2.4. Module homotopique associé. —

2.10. — Considérons un module de cycles φ. D’après 2.5, A0(.;φ)∗ définit
un préfaisceau gradué avec transferts. D’après [Dég06, 6.9], c’est un faisceau

homotopique gradué. On le note Fφ∗ et on lui définit une structure de module
homotopique comme suit:
Soit X un schéma lisse. On considère le début de la suite exacte longue de
localisation (2.5.c) associée à la section nulle X → A1

X :

0→ Fφn (A
1
X)

j∗X−−→ Fφn (Gm ×X)
∂X0−−→ Fφn−1(X)→ . . .

On peut décrire le morphisme ∂X0 si X est connexe de corps des fonctions E
comme étant induit par le morphisme

∂E0 : φn(E(t))→ φn−1(E)

associé à la valuation standard de E(t).
Soit s1 : X → Gm ×X la section unité. Rappelons que (Fφn )−1(X) = Ker(s∗1).
Or par invariance par homotopie de Fφn , le morphisme canonique Ker(s∗1) →
coKer(j∗) est un isomorphisme. Ainsi, le morphisme ∂X0 induit un morphisme

ǫn,X : (Fφn )−1(X)→ Fφn−1(X).

On vérifie que la suite de localisation précédente est compatible aux transferts
en X , comme cela résulte de la description des transferts rappelée en 2.5 et du
corollaire 2.8. Ainsi, ǫn définit un morphisme de faisceaux homotopiques. Pour
tout corps de fonctions E, A1(A1

E ;φ) = 0 (cf. [Ros96, (2.2)(H)]). Donc la fibre
de ǫn en E est un isomorphisme ce qui implique que c’est un isomorphisme de
faisceaux homotopiques d’après 1.4.

Ainsi, (Fφ∗ , ǫ−1∗ ) définit un module homotopique qui dépend fonctoriellement
de φ.

3. Equivalence de catégories

3.1. Transformée générique. — Considérons un couple (E, n) formé d’un
corps de fonctions E et d’un entier relatif n. Rappelons que l’on a associé dans
[Dég08b, 3.3.1] au couple (E, n) un motif générique

M(E){n} = ” lim←− ”
A⊂E

M(Spec(A)){n}

(12)Lorsque (X,Z) est lisse de codimension n le fait que le morphisme (f, g) est transverse
entrâıne que (Y, T ) est lisse de codimension n (k est régulier).
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dans la catégorie des pro-objets de DMgm(k). On note DM
(0)
gm(k) la catégorie

des motifs génériques.

3.1. — Considérons un module homotopique (F∗, ǫ∗) ainsi que le foncteur de
réalisation ϕ : DMgm(k)

op → A b qui lui est associé dans la section 1.3. On
note ϕ̂ le prolongement évident de ϕ à la catégorie des pro-objets. Il résulte de

[Dég08b, 6.2.1] que la restriction de ϕ̂ à la catégorie DM
(0)
gm(k) est un module

de cycles, que l’on note F̂∗ et que l’on appelle la transformée générique de F∗.
Rappelons brièvement certaines parties de la construction de [Dég08b]. No-

tons d’abord que pour tout motif génériqueM(E){n}, ϕ̂(M(E){n}) = F̂−n(E)

n’est autre que la fibre de F−n en E (cf. 1.4). La transformée F̂∗ s’interprète
donc comme le système des fibres de F∗. Ce sont les morphismes de
spécialisation entre ces fibres qui donnent la structure de pré-module de cycles :

(D1) Fonctorialité évidente de F∗.
(D2) ([Dég08b, 5.2]) Pour une extension finie L/E, on trouve des modèles

respectifs X et Y de E et L ainsi qu’un morphisme fini surjectif f : Y →
X dont l’extension induite des corps de fonctions est isomorphe à L/E.
Le graphe de f vu comme cycle de X×Y définit une correspondance finie
de X vers Y notée tf – la transposée de f . On en déduit un morphisme
(tf)∗ : F∗(X) → F∗(Y ). On montre que ce morphisme est compatible à
la restriction à un ouvert de X et il induit donc la fonctorialité attendue.

(D3) ([Dég08b, 5.3]) Soit E un corps de fonctions et x ∈ E× une unité.
Considérons un modèle X de E munit d’une section inversible X → Gm
qui correspond à x. Considérons l’immersion fermée sx : X → Gm ×X
induite par cette section. On en déduit un morphisme

γx : Fn−1(X)
ǫn−1−−−→ (Fn)−1(X)

ν−→ Fn(Gm ×X)
s∗x−→ Fn(X)

où ν est l’inclusion canonique. Ce morphisme est compatible à la restric-
tion suivant un ouvert de X et induit la donnée D3 pour F̂∗.

(D4) ([Dég08b, 5.4]) Soit (E, v) un corps de fonctions valué. On peut trouver
un schéma lisseX munit d’un point x de codimension 1 tel que l’adhérence
réduite Z de x dans X est lisse et l’anneau local OX,x est isomorphe à
l’anneau des entiers de v. On pose U = X − Z, j : U → X l’immersion
ouverte évidente. Rappelons que le motif MZ(X) de la paire (X,Z) est
définie comme l’objet de DM eff

gm (k) représenté par le complexe concentré
en degré 0 et −1 avec pour seule différentielle non nulle le morphisme j.
Ce motif s’inscrit naturellement dans le triangle distingué

MZ(X)[−1]
∂′
X,Z−−−→M(U)

j∗−→M(X)
+1−−→

On a définit dans [Dég08b, sec. 2.2.5] un isomorphisme de pureté

pX,Z :MZ(X)→M(Z)(1)[2].
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On en déduit un morphisme

∂X,Z : Fn(U) = ϕn(M(U))
ϕn(∂

′
X,Z )

−−−−−−→ ϕn(MZ(X)[−1])
(ϕn(p

−1
X,Z )

−−−−−−−→ ϕn(M(Z){1}) = (Fn)−1(Z)
ǫ−1
n−−→ Fn−1(Z),

ayant posé ϕn(M) = ϕ(M{−n}) pour un motifM. Le morphisme résidu

du module de cycles F̂∗ est donné par la limite inductive des morphismes
∂U,Z∩U suivant les voisinages ouverts U de x dans X .

3.2. Résolution de Gersten: fonctorialité I. —

3.2. — Considérons un module de cycles φ et Fφ le module homotopique qui
lui est associé dans le paragraphe 2.10 – jusqu’au paragraphe 3.5, on n’indique
pas la graduation pour alléger les notations. D’après [Ros96, 6.5], on dispose
pour tout schéma lisse X et tout entier p ∈ Z d’un isomorphisme canonique
Ap(X ;φ) = Hp

Zar(X ;Fφ).
On rappelle la construction de cet isomorphisme tout en le généralisant au cas
de la topologie Nisnevich. Soit X un schéma lisse et XNis le petit site Nisnevich
associé. Les morphismes de XNis étant étales, on obtient, en utilisant la foncto-
rialité rappelée dans 2.1, un préfaisceau de complexes de groupes abéliens sur
XNis:

C∗X(φ) : V/X 7→ C∗(V ;φ).

On vérifie que c’est un faisceau Nisnevich (voir [Dég08b], preuve de 6.10). On
pose de plus:

FφX = H0(C∗X(φ)).

Ainsi, FφX est la restriction du faisceau Fφ, défini sur le site Nisnevich Lk, au
petit site XNis. D’après [Ros96, 6.1], le morphisme évident

(3.2.a) FφX → C∗X(φ)

est un quasi-isomorphisme.(13) Il induit donc un isomorphisme

Hp
Nis(X ;FφX)→ Hp

Nis(X ;C∗X(φ)).

Notons par ailleurs que le complexe C∗X(φ) vérifie la propriété de Brown-
Gersten au sens de [CD09a, 1.1.9] (voir à nouveau [Dég08b], preuve de 6.10).
D’après la démonstration de [CD09a, 1.1.10], on en déduit que le morphisme
canonique

Hp(C∗(X ;φ))→ Hp
Nis(X ;C∗X(φ))

est un isomorphisme. Ces deux isomorphismes définissent comme annoncé :

(3.2.b) ρX : Ap(X ;φ) = Hp(C∗(X ;φ))
∼−−→ Hp

Nis(X ;FφX) ≃ Hp
Nis(X ;Fφ).

Lemme 3.3. — L’isomorphisme ρX construit ci-dessus est naturel en X par
rapport aux morphismes de schémas.

(13)Le complexe de faisceaux C∗
X(φ) est la résolution de Gersten du faisceau Fφ

X . C’est en

fait la version Nisnevich de la résolution de Cousin au sens de [Har66].
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Démonstration. — Notons que, du fait que FφX est la restriction d’un faisceau
Fφ sur Lk, pour tout morphisme f : Y → X de schémas lisses, on obtient une
transformation naturelle canonique:

FφX → f∗F
φ
Y

qui induit dans la catégorie dérivée:

τf : FφX → Rf∗F
φ
Y .

La preuve consiste à relever cette transformation naturelle au niveau de la
résolution C∗X(φ).
On considère d’abord le cas où f est plat. Suivant le paragraphe 2.1, on dispose
d’un morphisme de complexes

f∗ : C∗(X ;φ)→ C∗(Y ;φ)

qui est naturel en X par rapport aux morphismes étales. La transformation na-
turelle sur XNis correspondante définit un morphisme dans la catégorie dérivée
des faisceaux abéliens sur XNis:

(3.3.a) ηf : C∗X(φ)→ f∗C
∗
Y (φ)) = Rf∗C

∗
Y (φ).

(La dernière identification résulte du fait que C∗Y (φ) vérifie la propriété de
Brown-Gersten.) Par définition de la structure de faisceau sur Fφ, le dia-
gramme suivant est commutatif:

FφX

��

τf // Rf∗F
φ
Y

��
C∗X(φ)

ηf // Rf∗C∗Y (φ).

On en déduit la naturalité de ρ par rapport aux morphismes plats. Remarquons
au passage que si f est la projection d’un fibré vectoriel, ηf est un quasi-
isomorphisme.
Il reste à considérer le cas d’une immersion fermée f = i : Z → X entre schémas
lisses. Notons N le fibré normal associé à i. La spécialisation au fibré normal
définie par Rost (cf. [Ros96, sec. 11]) est un morphisme de complexes

σZX : C∗(X ;φ)→ C∗(N ;φ)

qui est de plus naturel en X par rapport aux morphismes étales (cf. [Dég06,
2.2]). Notons ν le morphisme composé

N
p−→ Z

i−→ X.

On en déduit dans la catégorie dérivée un morphisme canonique

σi : C
∗
X(φ)→ Rν∗C

∗
N (φ).

Puisque le morphisme ηp est un quasi-isomorphisme, on obtient alors un mor-
phisme canonique dans la catégorie dérivée

(3.3.b) ηi : C
∗
X(φ)→ Ri∗C

∗
Z(φ).
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Rappelons enfin que, par définition du pullback sur Fφ, le diagramme suivant
est commutatif:

Fφ(X)
i∗ //

��

Fφ(Z)

��
C∗(X ;φ)

σZ(X) // C∗(N ;φ) C∗(Z;φ).
p∗oo

On en déduit que le diagramme suivant est commutatif:

FφX

��

τi // Ri∗F
φ
Z

��
C∗X(φ)

ηi // Ri∗C∗Z(φ)

ce qui conclut.

Remarque 3.4. — 1. On généralisera ce lemme au cas des correspondances
finies dans la proposition 3.10.

2. Les constructions (3.3.a) et (3.3.b) de la preuve précédente permettent
d’associer à tout morphisme de schémas f : Y → X un diagramme com-
mutatif dans la catégorie dérivée des faisceaux sur XNis:

FφX

��

τf // Rf∗F
φ
Y

��
C∗X(φ)

ηf // Rf∗C∗Y (φ),

en considérant la factorisation de f par son morphisme graphe qui est une
immersion régulière. On peut montrer par ailleurs que ηf est compatible
à la composition des morphismes.

3.5. — On reprend les notations du paragraphe 3.2 Considérons par ailleurs le
foncteur de réalisation

ϕ : DMgm(k)
op → A b

associé au module homotopique Fφ suivant la section 1.3. L’isomorphisme ρX
correspond par définition à un isomorphisme:

Ap(X,φ)n → ϕn(M(X)[−p]).
Considérons de plus une immersion fermée i : Z → X entre schémas lisses
et j : U → X l’immersion ouverte du complémentaire. Supposons que i est
de codimension pure égale à c. On déduit de la suite exacte de localisation
(2.5.b) une unique flèche pointillée qui fait commuter le diagramme de com-
plexes suivant (on utilise à nouveau le fait que C∗X(φ) vérifie la propriété de
Brown-Gersten):

0 // C∗(Z, φ)n−c[−c]
i∗ //

(1)
���
�
�

C∗(X,φ)n
j∗ //

��

C∗(U, φ)n //

��

0

0 // RΓZ(X,C∗X(φ))n // RΓ(X,C∗X(φ))n
j∗ // RΓ(U,C∗X(φ))n // 0.
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La flèche (1) est un quasi-isomorphisme, puisqu’il en est de même des deux
autres flèches verticales. Considérons le motif MZ(X) associé à la paire fermée
(X,Z) – cf. 3.1, (D4). En utilisant l’isomorphisme (1) et l’identification canon-
ique Hp

Z(X ;Fφ)n = ϕn(MZ(X)[−p]), on obtient un diagramme commutatif:

Ap−1(U, φ)n
∂UZ //

ρU
��

Ap−c(Z, φ)n−c
i∗ //

ρ′X,Z
��

Ap(X,φ)n

ρX
��

ϕn(M(U)[−p]) // ϕn(MZ(X)[−p]) // ϕn(M(X)[−p])

dans lequel les flèches verticales sont des isomorphismes. Le morphisme ρ′X,Z
est de plus naturel en (X,Z) par rapport aux morphismes transverses (définis
en 2.9). Cela résulte en effet du corollaire 2.8, ou plus précisément du dia-
gramme commutatif apparaissant dans la démonstration de 2.6, en utilisant
d’une part l’unicité de la flèche pointillée (1) et d’autre part la description de
la fonctorialité dérivée de C∗X(φ) établie ci-dessus – i.e. les transformations
naturelles τf et τi.
Comme conséquence de cette construction, on obtient le lemme clé suivant:

Lemme 3.6. — Reprenons les notations qui précèdent. Considérons le triangle
de Gysin ( cf. [Voe00b, 3.5.4]) associé à (X,Z):

M(U)→M(X)
i∗−→M(Z)(c)[2c]

∂X,Z−−−→M(U)[1].

Alors, le diagramme suivant est commutatif:

Ap−1(U, φ)n
∂UZ //

ρU

��

Ap−c(Z, φ)n−c
i∗ //

ρZ��

Ap(X,φ)n

ρX

��

ϕn−c(M(Z)[c− p])

ϕn(M(U)[−p]) ϕn(∂X,Z ) // ϕn(M(Z)(c)[2c− p]) ϕn(i
∗) // ϕn(M(X)[−p]).

Démonstration. — On utilise la construction du triangle de Gysin effectuée
dans [Dég08b]. Considérons l’isomorphisme de pureté définit dans [Dég08b,
sec. 2.2.5]

pX,Z :MZ(X)→M(Z)(c)[2c].

D’après ce qui précède, l’isomorphisme composé

ρX,Z : Ap−c(Z, φ)n−c
ρ′X,Z−−−→ ϕn(MZ(X)[−p])
ϕ(pX,Z)−−−−−→ ϕn(M(Z)(c)[2c− p]) = ϕn−c(M(Z)[c− p])
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s’inscrit dans le diagramme commutatif:

Ap−1(U, φ)n
∂UZ //

ρU

��

Ap−c(Z, φ)n−c
i∗ //

ρX,Z
��

Ap(X,φ)n

ρX

��

ϕn−c(M(Z)[c− p])

ϕn(M(U)[−p]) ϕn(∂X,Z )// ϕn(M(Z)(c)[2c− p]) ϕn(i
∗) // ϕn(M(X)[−p]).

Il s’agit de voir que ρX,Z = ρZ . Notons que d’après ce qui précède, le mor-
phisme ρX,Z−ρZ est naturel en (X,Z) par rapport aux morphisme transverses
(définis en 2.9). Soit PZX la complétion projective du fibré normal de Z dans
X . Considérons l’éclatement BZ(A1

X) de Z × {0} dans X , ainsi que le dia-
gramme de déformation classique qui lui est associé

(X,Z)
(d,i1)−−−→ (BZ(A

1
X),A1

Z)
(d′,i0)←−−−− (PZX,Z).

Les carrés correspondants à (d, i1) et (d′, i0) sont transverses. On est donc
réduit au cas où (X,Z) = (PZX,Z). Dans ce cas, l’immersion fermée i admet
une rétraction et le morphisme ρX,Z (resp. ρZ) est déterminé de manière unique
par ρX .

3.3. Théorème et démonstration. —

Théorème 3.7. — Les foncteurs

HI∗(k) ⇆ MCycl(k)

F∗ 7→ F̂∗
Fφ∗ ←[ φ

sont des équivalences de catégories quasi-inverses l’une de l’autre.

Démonstration. — Il s’agit de construire les deux isomorphismes naturels qui
réalisent l’équivalence.

Premier isomorphisme : Considérons un module de cycles φ, Fφ∗ le module
homotopique associé. Par définition, pour tout corps de fonctions E, il existe
une flèche canonique

aE : F̂φn (E) = lim−→
A⊂E

A0(Spec(A);φ)n → φn(E).

C’est trivialement un isomorphisme et il reste à montrer que a définit un mor-
phisme de modules de cycles. La compatibilité à (D1) est évidente. La compat-
ibilité à (D2) résulte du fait que pour un morphisme fini surjectif f : Y → X ,
le morphisme A0(tf ;φ) est le pushout f∗ propre (cf. [Dég08b, 6.6]).

Compatibilité à (D3) : On reprend les notations du point (D3) de 3.1 pour le

module homotopique Fφ∗ et pour une unité x ∈ E×. On considère la flèche
canonique

a′E : F̂φn (Gm × (E)) = lim−→
A⊂E

A0
(
Spec(A[t, t−1]);φ

)
n
−→ φn(E(t)).
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Pour tout E-point y de Spec(E[t]), on note vy la valuation de E(t) correspon-
dante, d’uniformisante t− y. D’après la proposition 2.3, le diagramme suivant
est commutatif :

F̂φn (Gm × (E))
s∗x //

a′E ��

F̂φn (E)
aE��

φn(E(t))
st−xvx // φn(E).

Par définition du morphisme structural ǫ∗ de Fφ∗ (cf. 2.10), le morphisme

ν′ : F̂φn−1(E)
ǫn−1−−−→ (F̂φn )−1(E)

ν−→ F̄φn (Gm × (E)) est la section de la suite
exacte courte

0→ F̂φn (E)
p∗−→ F̂φn (Gm × (E))

∂−→ F̂φn−1(E)→ 0

qui correspond à la rétraction s∗1 de p∗, pour s1 : (E) → Gm × (E) la section
unité de la projection p : Gm × (E) → (E). En particulier, ν′ est caractérisé
par les propriétés ∂ν′ = 1 et s∗1ν

′ = 0.
Notons ϕ : E → E(t) l’inclusion canonique. On peut vérifier en utilisant les
relations des pré-modules de cycles les formules suivantes :

(1) ∀ρ ∈ φn(E), ∂v0({t}.ϕ∗(ρ)) = ρ.

(2) ∀y ∈ E×, ∀ρ ∈ φn(E), ∂vy ({t}.ϕ∗(ρ)) = 0.

(3) ∀y ∈ E×, ∀ρ ∈ φn(E), st−yvy ({t− y}.ϕ∗(ρ)) = {y}.ρ.
D’après (2), l’application φn(E)→ φn(E(t)), ρ 7→ {t}.ϕ∗(ρ) induit une unique
flèche pointillée rendant le diagramme suivant commutatif :

F̂φn (E) //___

aE ��

F̂φn (Gm × (E))

a′E��
φn(E(t))

{t}.ϕ∗ // φn(E).

D’après la relation (1) et la relation (3) avec y = 1, cette flèche pointillée
satisfait les deux propriétés caractérisant ν′. On déduit donc de la relation (3)
avec y = x que ν′ ◦ s∗x(ρ) = {x}.ρ ce qui prouve la relation attendue.

Compatibilité à (D4) : Considérons les notations du point (D4) dans 3.1. La
compatibilité au résidu est alors une conséquence directe du lemme 3.6 appliqué,
pour tout voisinage ouvert U de x dans X , à l’immersion fermée i : Z ∩U → U
dans le cas c = 1, p = 1.
Deuxième isomorphisme : Considérons un module homotopique (F∗, ǫ∗). Pour
tout schéma lisse X , en considérant la limite inductive des morphismes de
restriction F (X) → F (U) pour les ouverts U de X , on obtient une flèche

F∗(X)→ C0(X ; F̂∗) qui induit par définition des différentielles un morphisme

bX : F∗(X)→ A0(X ; F̂∗) homogène de degré 0.
Le point clé est de montrer que cette flèche est naturelle par rapport aux cor-
respondances finies. Soit α ∈ c(X,Y ) une correspondance finie entre schémas
lisses, que l’on peut supposer connexes. Rappelons que pour tout ouvert dense
j : U → X , le morphisme j∗ : A0(X ; F̂∗) → A0(U ; F̂∗) est injectif d’après la
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suite exacte de localisation (2.5.c). Ainsi, on peut remplacer α par α ◦ j et
X par U . Par additivité, on se ramène encore au cas où α est la classe d’un
sous-schéma fermé intègre Z de X × Y , fini et dominant sur X . Dès lors,
α ◦ j = [Z ×X U ]. Donc puisque k est parfait, quitte à réduire X , on peut
supposer que Z est lisse sur k. Rappelons que d’après 2.5, α∗ = p∗i∗q∗ pour
les morphismes évidents suivants

X
p← Z

i−→ Z ×X × Y q−→ Y.

On est donc ramené à vérifier la naturalité dans les trois cas suivants :
Premier cas : Si α = q est un morphisme plat, la compatibilité résulte alors de
la définition du pullback plat sur A0(.; F̂∗) est de la définition de D1.
Deuxième cas : Si α = tp, p : Z → X morphisme fini surjectif entre schémas
lisses. Ce cas résulte de la définition du pushout propre sur A0 et de la définition
de D2.
Troisième cas : Supposons α = i, pour i : Z → X immersion fermée régulière
entre schémas lisses. Comme on l’a déjà vu, l’assertion est locale en X . On se
réduit donc en factorisant i au cas de codimension 1. On peut aussi supposer
que Z est un diviseur principal paramétré par π ∈ OX(U), pour U = X − Z.
D’après la proposition 2.3, on est ramené à montrer que le diagramme suivant
est commutatif :

F∗(X)

��

i∗ // F∗(Z)

��
F̂∗(κ(X))

sπv // F̂∗(κ(Z)).

Tenant compte de la naturalité du morphisme structural ǫ∗ du module homo-
topique F∗, on se ramène à la commutativité du diagramme :

ϕ(M(X){1})
j∗ ��

i∗ // ϕ(M(Z){1})

ϕ(M(U){1}) ν // ϕ(M(Gm × U))
γ∗
π // ϕ(M(U))

∂X,Z // ϕ(M(Z){1})

où ν est l’inclusion canonique, γπ est induit par π : U → Gm et ∂X,Z =

∂′X,Z ◦p−1X,Z avec les notations de 3.1(D4) est le morphisme résidu au niveau des

motifs. Or la commutativité de ce diagramme résulte exactement de [Dég08b,
2.6.5].

Le morphisme b : F∗ → A0(.; F̂∗) est donc un morphisme de faisceaux avec
transferts. Or, il est évident que le morphisme induit sur les fibres en un
corps de fontions quelconque est un isomorphisme. Il en résulte (cf. 1.4) que
b est un isomorphisme. Enfin, on établit facilement la compatibilité de b avec
les morphismes structuraux des modules homotopiques F∗ et A0(.; F̂∗) compte
tenu de la construction 2.10 – on utilise simplement la fonctorialité de b par
rapport à jX : Gm ×X → A1

X et s1 : X → Gm ×X .

3.8. — Le théorème précédent montre que la catégorie des modules de cycles
est monöıdale symétrique avec pour élément neutre le foncteur de K-théorie de

Documenta Mathematica 16 (2011) 411–455



438 F. Déglise

Milnor. Le produit tensoriel est de plus compatible au foncteur de décalage de
la graduation des modules de cycles – i.e. le foncteur noté {±1} dans HI∗(k).
A tout schéma lisse X , on associe un module de cycles

ĥ0,∗(X) = (h0,∗(X))∧.

D’après le théorème précédent, la famille de modules de cycles (ĥ0,∗(X){n})
pour un schéma lisse X et un entier n ∈ Z est génératrice dans la catégorie
abélienne MCycl(k).
Notons que ces générateurs caractérisent le produit tensoriel des modules de
cycles:

ĥ0,∗(X){n} ⊗ ĥ0,∗(Y ){m} = ĥ0,∗(X × Y ){n+m}.
On peut enfin donner une formule explicite pour calculer ces modules de cycles.
Considérons pour tous schémas lisses X et Y le groupe

π(Y,X) = coKer
(
c(A1

Y , X)
s∗0−s∗1−−−−→ c(Y,X)

)
.

Notons que ce groupe s’étend de manière évidente aux schémas réguliers essen-
tiellement de type fini sur k et que l’on dipose d’un théorème de commutation
aux limites projectives de schémas pour ces groupes étendus (cf. [Dég07,
4.1.24]). Par ailleurs, si E est un corps de fonctions, et X un schéma projectif
lisse, π(Spec(E), X) = CH0(XE), groupe de Chow des 0-cycles de X étendu à
E.
On déduit de tout cela les calculs suivants: pour tout corps de fonctions E et
tout schéma projectif lisse X ,

ĥ0,0(X).E = CH0(XE).

De plus, pour tout entier n > 0,

ĥ0,n(X).E = coKer
(
⊕ni=0 CH0(G

n−1
m ×XE)→ CH0(G

n
m ×XE)

)

ĥ0,−n(X).E = Ker
(
π(Gnm,E , X)→ ⊕ni=0π(G

n−1
m,E , X)

)

où les flèches sont induites par les injections évidentes Gim × {1} × Gn−1−im →
Gnm.

3.4. Résolution de Gersten: fonctorialité II. —

3.9. — Dans ce paragraphe, on complète les résultats du paragraphe 3.2. On
fixe un module de cycles φ et on note Fφ le module homotopique qui lui est
associé. On peut étendre la construction de loc. cit. au cas d’un k-schéma de
type fini X : on associe à ce schéma un complexe de faisceaux sur XNis:

C∗X(φ) : V/X 7→ C∗(V ;φ)

et un faisceau FφX = H0(CφX). Le complexe C∗X(φ) vérifie encore la propriété
de Brown-Gersten mais par contre, le morphisme canonique:

FφX → C∗X(φ)

n’est plus nécessairement un isomorphisme. Cette construction nous sert à
montrer le résultat suivant:
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Proposition 3.10. — Considérons les notations ci-dessus. Alors,
l’isomorphisme ρX : Ap(X,φ) → Hp(X ;Fφ) pour un schéma lisse X ( cf.
(3.2.b)) est naturel par rapport aux correspondances finies.

Démonstration. — La preuve reprend le principe de la preuve du lemme 3.3.
Soit f : Y → X un morphisme plat ou une immersion fermée régulière en-
tre schémas de type fini. Il est clair que les constructions de loc. cit. se
généralisent et permettent de définir un morphisme canonique ηf qui s’insère
dans un diagramme commutatif de la catégorie dérivée des faisceaux abéliens
sur XNis:

FφX

��

τf // Rf∗F
φ
Y

��
C∗X(φ)

ηf // Rf∗C∗Y (φ).

Par ailleurs, si p : Z → X est un morphisme fini, il induit (cf. 2.1) un mor-
phisme de complexes

p∗ : C
∗(Z;φ)→ C∗(X ;φ)

qui est naturel en X par rapport aux morphismes étales (cf. [Ros96, (4.1)]).
On en déduit un morphisme canonique trp : p∗C∗Z(φ) → C∗X(φ) qui induit un
diagramme commutatif dans la catégorie dérivée (p∗ est exact):

Rp∗(F
φ
Z )

��

tr0p // FφX

��
Rp∗C∗Z(φ)

trp // C∗X(φ).

Revenons à la preuve de la proposition. Il suffit de montrer la naturalité de
ρX pour une correspondance finie α ∈ c(X,Y ) telle que α est la classe d’un
sous-schéma fermé intègre Z de X×Y . Suivant le paragraphe 2.4, on considère
les morphismes:

X
p←− Z i−→ ZXY

q−→ Y.

D’après loc. cit., α∗ = p∗i∗q∗. Appliquant les constructions qui précèdent,
on obtient un diagramme commutatif dans la catégorie dérivée des groupes
abéliens:

Hp(Y ;FφY )
(τq)∗ //

��

Hp(ZXY ;FφY )
(τi)∗ //

��

Hp(Z;FφZ )

��

(tr0p)∗ // Hp(X ;FφX)

��
Hp(Y ;C∗Y (φ))

(ηq)∗// Hp(ZXY ;C∗Z(φ))
(ηi)∗ // Hp(Z;C∗Z(φ))

(trp)∗// Hp(X ;C∗X(φ))

On vérifie que la composée des flèches de la première ligne coincide avec α∗ et
cela permet de conclure.
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3.11. — Soit F∗ un module homotopique, φ = F̂∗ sa transformée générique.

Considérons l’isomorphisme b : F∗ → Fφ∗ qui lui est associé d’après le théorème
3.7. Compte tenu de l’isomorphisme (3.2.b), on en déduit un isomorphisme

(3.11.a) ǫX : Hn
Nis(X ;F∗)

b∗−→ Hn
Nis(X ;Fφ∗ )

ρ−1
X−−→ An(X ; F̂∗).

La proposition précédente a comme corollaire immédiat:

Corollaire 3.12. — Avec les notations ci-dessus, ǫX est un isomorphisme na-
turel en X par rapport aux correspondances finies.

3.13. — Considérons le module homotopique S∗t . D’après le théorème de

Suslin-Voevodsky rappelé en 1.11, pour tout corps de fonctions E, Ŝ∗t (E) ≃
KM
∗ (E). Cet isomorphisme est de plus compatible aux structures de module

de cycles. Pour la norme, cela résulte de [SV00, 3.4.1]. Pour le résidu associé
à un corps de fontions valué (E, v), on se réduit à montrer que ∂v(π) = 1 pour

le module de cycle Ŝ∗t , ce qui résulte de [Dég07, 2.6.5].
On en déduit l’isomorphisme de Bloch(14) pour tout schéma lisse X :

ǫBX : Hn
Nis(X ;Snt )→ An(X ;KM

∗ )n = CHn(X).

On a obtenu ci-dessus que cet isomorphisme est compatible aux transferts.
Rappelons que pour tout module de cycles φ, il existe un accouplement de
modules de cycles KM

∗ × φ → φ au sens de [Ros96, 1.2]. Il induit d’après
[Ros96, par. 14] un accouplement

CHn(X)⊗Am(X ;φ)r → Am+n(X ;φ)r+n.

Considérant un module homotopique F∗, on dispose d’un (iso)morphisme de
modules homotopiques S∗t ⊗ F∗ → F∗. Pour un schéma lisse X , de diagonale
δ : X → X ×X , on en déduit un accouplement

Hn(X ;S∗t )n ⊗Hm(X ;F∗)r → Hm+n(X ;F∗)r+n

définit en associant à deux morphismes a : h0,∗(X) → S∗t {n}[n] et b :
h0,∗(X)→ F∗{r}[m] la composée

h0,∗(X)
δ∗−→ h0,∗(X)⊗h0,∗(X)

a⊗b−−→ S∗t ⊗F∗{n+r}[n+m]
∼−→ F∗{n+r}[n+m].

Nous laissons au lecteur le soin de vérifier la compatibilité suivante :

Lemme 3.14. — Avec les notations introduites ci-dessus, le diagramme suivant
est commutatif :

Hn(X ;S∗t )n ⊗Hm(X ;F∗)r //

ǫBX⊗ǫX ��

Hn+m(X ;F∗)n+r

ǫX
��

CHn(X)⊗Am(X ; F̂∗)r // Am+n(X ; F̂∗)n+r

(14)En effet, d’après l’isomorphisme que l’on vient d’expliciter, le faisceau gradué S∗
t est le

faisceau de K-théorie de Milnor non ramifié.

Documenta Mathematica 16 (2011) 411–455



Modules Homotopiques 441

Ainsi, l’isomorphisme ǫBX est compatible au produit, et l’isomorphisme ǫX est
compatible aux structures de module décrites ci-dessus.

3.15. — Notons ϕ : DMgm(k)
op → A b le foncteur de réalisation associé à F∗

(cf. section 1.3). D’après la proposition précédente, le foncteur ϕ prolonge

le foncteur A∗(.; F̂∗). Ainsi, on a étendu canoniquement la cohomologie à co-
efficients dans un module de cycles quelconque en un foncteur de réalisation
triangulé de DMgm(k). Nous notons encore

ǫX : ϕ(M(X){−r}[−n])→ An(X ; F̂∗)r

l’isomorphisme qui se déduit par construction de l’isomorphisme (3.11.a).
Soit f : Y → X un morphisme projectif entre schémas lisses, de dimension
relative constante d. Dans [Dég08a, 2.7], on a construit f∗ : M(X)(d)[2d] →
M(Y ), morphisme de Gysin associé à f dans DMgm(k).

Proposition 3.16. — Considérons les notations introduites ci-dessus. Alors, le
carré suivant est commutatif :

ϕ
(
M(X){d− r}[d− n]

) ϕ(f∗) //

ǫX ��

ϕ
(
M(Y ){−r}[−n]

)

ǫY��
An−d(X ; F̂∗)r−d

f∗ // An(Y ; F̂∗)r

Démonstration. — Dans cette preuve, on utilisera particulièrement le lemme
suivant :

Lemme 3.17. — Soit X un schéma lisse et E/X un fibré vectoriel de rang n.
Soit p : P → X le fibré projectif associé, et λ le fibré inversible canonique sur
P tel que λ ⊂ p−1(E). On note c = c1(λ) ∈ CH1(X) la première classe de
Chern de λ.
Alors, le morphisme suivant est un isomorphisme :

⊕n
i=0A

∗(X ; F̂∗) → A∗(P ; F̂∗)
xi 7→ p∗(xi).ci.

en utilisant la structure de CH∗(X)-module (ici notée à droite) de A∗(X ; F̂∗)
rappelée en 3.13.

Pour obtenir ce lemme, il suffit d’appliquer le théorème du fibré projectif dans
DMgm(k) (cf. [Voe00b, 2.5.1]) et de regarder son image par ϕ compte tenu
du lemme 3.14.
Soit E un fibré vectoriel sur X et P sa complétion projective. On déduit de ce
lemme le cas où f = p. En effet, d’après la formule de projection

p∗(p
∗(xi).c

i) = xi.p∗(c
i)

pour les groupes de Chow à coefficients (cf. [Dég06, 5.9]), on déduit que p∗
est la projection évidente à travers le théorème du fibré projectif. L’analogue
de ce calcul pour ϕ(p∗) résulte des définitions de [Dég08a].
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Compte tenu de la définition du morphisme de Gysin et du cas que l’on vient
de traiter, nous sommes ramenés au cas où f = i : Z → X est une immersion
fermée, que l’on peut supposer de codimension pure égale à c. Ce cas est alors
une conséquence directe du lemme 3.6.

PARTIE II

MOTIFS MIXTES TRIANGULÉS

4. Rappels

Dans cette section, on rappelle la théorie de Voevodsky des complexes mo-
tiviques et l’extension qu’on lui a donnée avec D.C. Cisinski suivant les lignes
de Morel et Voevodsky.

4.1. Catégorie effective. —

4.1. — La catégorie Shtr(k) (cf. paragraphe 1.2) est abélienne de
Grothendieck. On note TA1 la sous-catégorie triangulée localisante de la
catégorie dérivée D(Shtr(k)) engendrée par les complexes de la forme:

· · · → Ztr(A1
X)→ Ztr(X)→ 0 · · ·

Définition 4.2 (Voevodsky). — On définit la catégorie des motifs effectifs
comme le quotient de Verdier:

DM eff(k) = D(Shtr(k))/TA1 .

Suivant les idées de la théorie de l’homotopie des schémas de Morel et Vo-
evodsky, on peut décrire cette catégorie grâce à la notion de localisation de
Bousfield. Le concept central dans cette théorie est le suivant:

Définition 4.3. — 1. Soit C un complexe de faisceaux avec transferts.
On dit que C est A1-local si pour tout schéma lisse X et tout entier
n ∈ Z, le morphisme suivant, induit par la projection canonique, est un
isomorphisme:

Hn
Nis(X,C)→ Hn

Nis(A
1
X , C).

On dit que C est Nis-fibrant si pour tout schéma lisse X et tout entier
n ∈ Z, le morphisme canonique suivant est un isomorphisme:

Hn(C(X))→ Hn
Nis(X,C).

On dit que C est A1-fibrant si il est A1-local et Nis-fibrant.
2. Soit f : C → D un morphisme de C(Shtr(k)).

On dit que f est une A1-équivalence si pour tout complexe A1-local L, le
morphisme induit

HomD(Shtr(k))(D,L)→ HomD(Shtr(k))(C,L)
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est un isomorphisme.
On dit que f est une A1-fibration si c’est un épimorphisme dans
C(Shtr(k)) et son noyau est A1-fibrant.

La proposition suivante (voir [CD09b, ex. 3.3, 4.12]) donne une bonne struc-
ture homotopique à la catégorie DM eff(k).

Proposition 4.4. — 1. La catégorie C(Shtr(k)) avec pour équivalences
faibles les quasi-isomorphismes et pour fibrations les épimorphismes
dont le noyau est Nis-fibrant est une catégorie de modèles symétrique
monöıdale dont la catégorie homotopique associée est D(Shtr(k)).

2. La localisation de Bousfield de la catégorie de modèles précédente par
rapport à la classe d’objets TA1 est encore une catégorie de modèles
symétrique monöıdale avec pour équivalences faibles les A1-équivalences
et pour fibrations les A1-fibrations.

On déduit de cette proposition que le morphisme de projection canonique

LA1 : D(Shtr(k))→ DM eff(k)

est monöıdal et admet un adjoint à droite O : DM eff(k)→ D(Shtr(k)) pleine-
ment fidèle. L’image essentielle de ce dernier est formée des complexes A1-
locaux. Par la suite, on identifie DM eff(k) à cette image essentielle. En
particulier, pour tout complexe C, LA1(C) est A1-local.
On notera simplement ⊗ le produit tensoriel sur DM eff(k) et 1 l’unité pour
⊗.

Remarque 4.5. — Cette description des objets de DM eff(k) comme complexes
A1-locaux n’a rien d’original. Elle est essentiellement due à Voevodsky suivant
son article fondateur [Voe00a] (voir aussi le théorème 5.1 ci-dessous).
Rappelons au passage que d’après [Voe00a, 3.2.6], le foncteur canonique

(4.5.a) DM eff
gm (k)→ DM eff(k)

est pleinement fidèle. Notons de plus que son image essentielle est égale à la
sous-catégorie pleine formée des objets compacts de DM eff(k) (cf. [CD09b,
ex. 5.5]).

4.2. Catégorie non effective. —

4.6. — Soit T le conoyau du morphisme Ztr(k)
s∗−→ Ztr(Gm) induit par la

section unité. Utilisant la notation de la section 1.3, on définit le complexe mo-
tivique de Tate suspendu dans DM eff(k) par la formule: 1{1} := LA1(T ).(15)

Dans l’énoncé qui suit, nous dirons qu’une catégorie estmonöıdale homotopique
si c’est un quotient de Verdier d’une catégorie dérivée munie d’un produit
tensoriel dérivé. La proposition qui suit est bien connue (cf. [Hov01] pour

(15)Rappelons à nouveau qu’avec la notation habituelle 1{1} = 1(1)[1]. Le twist 1{1} ap-
parâıt plus naturel pour notre propos c’est pourquoi on adopte cette notation ici.
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l’aspect catégorie de modèles pure et [CD09b, 7.15] pour l’aspect catégorie
dérivée):

Proposition 4.7. — Il existe une unique catégorie monöıdale homotopique
DM(k) munie d’une adjonction de catégories homotopiques

(4.7.a) Σ∞ : DM eff(k)⇆ DM(k) : Ω∞

vérifiant

1. Σ∞ est monöıdal,
2. Σ∞ LA1(T ) est inversible pour le produit tensoriel sur DM(k),

et qui soit universelle (initiale) pour ces propriétés.

On note encore ⊗ le produit tensoriel sur DM(k) et 1 l’objet unité. Pour tout
entier n ∈ Z, on note 1{n} la puissance tensorielle n-ième de l’objet inversible1{1} dans DM(k) ; pour tout spectre motiviqueK, on poseK{n} := K⊗1{n}.
4.8. — Rappelons que la construction de DM(k) reprend celle de la catégorie
d’homotopie stable de la topologie algébrique. On utilise ici la version classique
(i.e. non symétrique) des spectres qui sera plus commode pour notre propos.(16)

On définit un spectre motivique comme une famille (En, σn)n∈N telle que En
est un complexe de faisceaux avec transferts et σn : T ⊗trEn → En+1 un mor-
phisme de faisceaux avec transferts dit de suspension. On notera simplement
E pour le spectre (En, σn)n∈N.
On dit que E est un Ω-spectre si pour tout n ∈ N, le complexe de faisceaux
avec transferts En est A1-fibrant et le morphisme adjoint à σn:

(4.8.a) τn : En → Hom(T,En+1)

est un quasi-isomorphisme (voir [Hov01, 3.1]).
Un morphisme f de spectres motiviques est un morphisme de complexes
gradués compatible avec les morphismes de suspensions. On dit que f est
une équivalence stable (resp. quasi-isomorphisme) si pour tout Ω-spectre E,
Hom(f, E) est un isomorphisme (resp. f est un quasi-isomorphisme degré par
degré). La catégorie DM(k) est la localisation de la catégorie des spectres
motiviques par rapport aux équivalences stables (voir [Hov01, 3.4]).

Exemple 4.9. — Soit X un schéma lisse. On peut donner la description suiv-
ante du spectre associé au complexe A1-local LA1Ztr(X) par le foncteur Σ∞:

(
Σ∞ LA1(Ztr(X))

)
n
:= LA1

(
T⊗

tr,n⊗tr Ztr(X)
)
,

les morphismes de suspensions étant donnés par les applications évidentes.
On déduit de plus du théorème de simplification de Voevodsky [Voe00a], que
Σ∞ LA1(Ztr(X)) est un Ω-spectre. Par la suite, on le notera simplementM(X).

(16)Dans [CD09b], on utilise les spectres symétriques pour définir DM(k) et sa structure
monöıdale symétrique. L’équivalence de cette définition avec celle présentée ici résulte de
[Hov01, 9.1, 9.3].
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Remarque 4.10. — Nous utiliserons par la suite les points techniques suivants
concernant les spectres motiviques(17):

1. Si E et E′ sont des Ω-spectres, un morphisme f : E → E′ est une
équivalence faible si et seulement si c’est un quasi-isomorphisme. De
plus, la catégorie DM(k) s’identifie à la localisation de la catégorie des
Ω-spectres par rapport aux quasi-isomorphismes.

2. Un triangle entre Ω-spectres

E′ → E → E′′ → E[1]

est distingué dans DM(k) si et seulement si pour tout entier n ≥ 0, le
triangle correspondant

E′n → En → E′′n → En[1]

est distingué dans DM eff(k). Ce dernier triangle est en particulier dis-
tingué dans D(Shtr(k)).

3. Si E est un Ω-spectre et n ∈ Z un entier, Ω∞
(
E{n}

)
= En.

Remarque 4.11. — D’après la propriété universelle de DM(k), le foncteur
(4.5.a) s’étend de manière unique en un foncteur:

(4.11.a) DMgm(k)→ DM(k).

On démontre dans [CD07] – à la suite de la définition 10.1.4 – que ce foncteur
est pleinement fidèle avec pour image essentielle la sous-catégorie formée des
objets compacts.

5. t-structure homotopique

Notre référence pour les t-structures est [BBD82, sec. 1.3].

5.1. Cas effectif. — Le théorème suivant est une reformulation du résultat
central de la théorie des complexes motiviques (cf. [Voe00b, 3.1.12]):

Théorème 5.1 (Voevodsky). — Soit C un complexe de faisceaux avec trans-
ferts. Les conditions suivantes sont équivalentes :

(i) C est A1-local.
(ii) Pour tout entier n ∈ Z, Hn(C) est A1-local.
(iii) Pour tout entier n ∈ Z, Hn(C) est invariant par homotopie.

Démonstration. — L’équivalence de (i) et (ii) résulte de la suite spectrale
d’hypercohomologie Nisnevich. L’implication (ii) ⇒ (iii) est évidente et sa
réciproque résulte du théorème de Voevodsky loc. cit.

(17)Ces assertions résultent de [Hov01, 3.4] ; plus précisément du fait que les Ω-spectres
sont les objets fibrants pour la structure de catégorie de modèles stable sur la catégorie des
spectres motiviques.
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Rappelons que la catégorie D(Shtr(k)) porte naturellement une t-structure (cf.
[BBD82, 1.3.2]): un complexe C est positif (resp. négatif) si pour tout i < 0
(resp. i > 0) le faisceau de cohomologie Hi(C) est nul.

Corollaire 5.2. — Il existe une unique t-structure sur DM eff(k) telle que le
foncteur O : DM eff(k)→ D(Shtr(k)) est t-exact(18).
Le foncteur canonique:

DM eff(k)→ HI(k), C 7→ H0(C)

induit une équivalence de catégories entre HI(k) et le coeur de DM eff(k) pour
cette t-structure.

Suivant Voevodsky, on appelle cette t-structure sur DM eff(k) la t-structure
homotopique.
Considérons les notations qui suivent la définition 1.3. Si F est un faisceau avec
transferts, on obtient l’identification: H0(LA1F ) = h0(F ).

(19) En particulier,
pour tout schéma lisse X :

(5.2.a) H0
(
LA1Ztr(X)

)
= h0(X).

Rappelons au passage le calcul du motif de Tate (voir [SV00, 3.2]):

(5.2.b) 1{1} := LA1(T ) = S1
t .

5.2. Cas non effectif. — Notons que le Hom interne des complexes de
faisceaux avec transferts se dérive à droite pour la structure de catégorie de
modèles du point 2 de la proposition 4.4. On le note RA1 Hom. Le théorème
suivant nous sera essentiel. C’est un corollaire de la théorie de Voevodsky: il
résulte de [Voe00a, 4.34].

Théorème 5.3. — L’endofoncteur de DM eff(k) défini par la formule

K 7→ RA1 Hom(S1
t ,K)

est t-exact et sa restriction au coeur de DM eff(k), identifié avec HI(k), coin-
cide avec le foncteur F 7→ F−1 défini au paragraphe 1.13.

5.4. — Considérons un Ω-spectre E = (En, σn) au sens du paragraphe 4.8.
Fixons un entier n ≥ 0. On associe à E un faisceau homotopique par la formule:

H0
n(E) = H0(En).

Considérons l’isomorphisme (4.8.a). Notons que, puisque T est cofibrant et
En+1 est A1-fibrant pour la structure de catégorie de modèles du point (2) de
4.4, on obtient:

Hom(T,En+1) = RA1 Hom(T,En+1) = RA1 Hom(S1
t , En+1)

(18)i.e. il respecte les objets positifs ainsi que les objets négatifs.
(19)En effet, h0(F ) est A1-local d’après le théorème précédent et le morphisme canonique
F → h0(F ) est une A1-équivalence faible (voir aussi [Voe00b, 3.2.3]).
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D’après le théorème précédent, le morphisme H0(τn) induit donc un isomor-
phisme:

ǫn : H0
n(E)→

(
H0
n+1(E)

)
−1

Si l’on pose H0
−n(E) :=

(
H0(E0)

)
−n, on a définit ainsi un module homotopique

(cf. définition 1.17) que l’on note H0
∗(E).

On a construit ainsi un foncteur H0
∗ sur les Ω-spectres. Puisqu’il respecte

manifestement les quasi-isomorphismes, il induit, d’après le premier point de
la remarque 4.10, un unique foncteur:

H0
∗ : DM(k)→ HI∗(k).

Pour tout entier m ∈ Z, on pose: Hm∗ (E) = H0
∗(E[m]).

Lemme 5.5. — Considérons les notations introduites ci-dessus.

1. Le foncteur H0
∗ : DM(k) → HI∗(k) est un foncteur cohomologique qui

commute aux sommes quelconques.
2. La famille de foncteurs (Hm∗ )m∈Z est conservative.

Démonstration. — Le point 1 résulte des propriétés analogues du foncteur H0 :
DM eff(k)→ HI(k), du deuxième point de la remarque 4.10, et du lemme 1.14.
Concernant le point 2, d’après la remarque 4.10(1), on se ramène à montrer
que pour un morphisme f : E → E′ entre Ω-spectres, les conditions suivantes
sont équivalentes:

(i) f est un quasi-isomorphisme (au sens du paragraphe 4.8).
(ii) pour tout m ∈ Z, Hm∗ (f) est un isomorphisme de modules homotopiques.

Par définition du foncteur Hm0 , cette équivalence résulte du corollaire 5.2 et du
lemme 1.14.

On dit qu’un spectre motivique est positif (resp. négatif ) si pour tout n < 0
(resp. n > 0), Hn∗ (E) = 0. Soit τ≤0 le foncteur de troncation négative pour
la t-structure homotopique sur DM eff(k). On vérifie en utilisant à nouveau le
théorème 5.3 que l’application de τ≤0 degré par degré à un Ω-spectre E définit
un |Omega-spectre négatif τ≤0E et un morphisme canonique:

τ≤0E → E.

Proposition 5.6. — La catégorie DM(k), munie de la notion d’objets négatifs
et positifs introduite ci-dessus, est une t-structure dont le foncteur de troncation
négatif est le foncteur τ≤0 introduit ci-dessus et dont le foncteur cohomologique

associé est le foncteur H0
∗.

On appelle cette t-structure la t-structure homotopique sur DM(k).

5.7. — Notons les propriétés caractéristiques suivantes de cette t-structure:
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1. Le diagramme suivant est commutatif:

DM(k)
H0

∗ //

Ω∞
��

HI∗(k)

ω∞

��
DM eff(k)

H0

// HI(k)

avec la notation de (1.18.b) pour ω∞. En particulier, Ω∞ est t-exact.
2. Pour tout objet E de DM(k) et tout entier n ∈ Z,

H0
∗
(
E{n}

)
= H0

∗(E){n}
en utilisant la notation du paragraphe 1.16 pour le membre de droite.
Ainsi, le produit tensoriel par 1{1} est t-exact.

3. Pour tout schéma lisse X ,

H0
∗
(
M(X)

)
= h0,∗(X)

avec la notation de l’exemple 4.9 (resp. (1.18.a)) à gauche (resp. à droite).

La première assertion résulte du troisième point de la remarque 4.10. La
deuxième assertion se déduit du cas n = −1 qui résulte lui-même de la
définition. La troisième résulte de la remarque 4.9 et de (5.2.a).

Notons finalement qu’un objet E de DM(k) est positif si et seulement si pour
tout schéma lisse X et tout couple d’entiers (n, i) ∈ Z× N∗,

HomDM(k)

(
M(X){n}[i], E

)
= 0.

On en déduit aisément la proposition suivante:

Proposition 5.8. — Le produit tensoriel sur DM(k) est t-exact à droite ( i.e.
préserve les objets négatifs).

5.3. Coeur homotopique. — Notons H0
∗(DM(k)) le coeur de DM(k) pour

la t-structure homotopique de la proposition 5.6. Notons le corollaire suivant
de la proposition 5.8:

Corollaire 5.9. — Le produit tensoriel sur DM(k) induit une structure
monöıdale symétrique sur H0

∗(DM(k)) dont l’objet unité est H0
∗(1) et le

produit tensoriel est défini par la formule:

(5.9.a) E⊗̄E′ := H0
∗(E ⊗ E′).

Ce corollaire résulte plus précisément du lemme suivant laissé au lecteur(20):

Lemme 5.10. — Soit T une catégorie triangulée monöıdale munie d’une t-
structure telle que le produit tensoriel est t-exact à droite.
Alors, pour tous objets K et L négatifs de T ,

H0(K ⊗ L) ≃ H0
(
H0(K)⊗ L

)
.

(20)On fera attention toutefois que ce lemme est faux sans bornes sur K et L.
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L’identification du coeur de la t-structure homotopique sur DM(k) est main-
tenant aisée:

Théorème 5.11. — Le foncteur H0
∗ induit une équivalence de catégories

abéliennes monöıdales:

H0
∗(DM(k))→ HI∗(k) ≃MCycl(k),

l’équivalence de droite étant celle du théorème 3.7.

Démonstration. — Tout module homotopique définit évidemment un Ω-
spectre au sens du paragraphe 4.8. On vérifie facilement que cela défini un
quasi-inverse au foncteur de l’énoncé.
Concernant les structures monöıdales, on note tout d’abord que H0

∗(1) = KM
∗

compte tenu du théorème 1.11 et du point 2 du paragraphe 5.7. D’après la
formule (5.9.a), et les points 2 et 3 du paragraphe loc. cit., pour tous schémas
lisses X , Y et tout couple d’entiers (n,m) ∈ Z2, on obtient:

h0,∗(X){n}⊗̄h0,∗(Y ){m} = H0
∗(Σ
∞M(X){n})⊗̄H0

∗(Σ
∞M(X){n})

= H0
∗(Σ
∞M(X × Y ){n+m}) = h0,∗(X × Y ){n+m}.

Cela conclut d’après le lemme 1.19.

Remarque 5.12. — Reprenons les notations de la section 3.1. Utilisant le fonc-
teur pleinement fidèle (4.11.a), on définit un foncteur:

DM (0)
gm(k)→ pro−DM(k)

H0
∗−−−→ pro−HI∗(k).

On vérifie que ce foncteur est pleinement fidèle.(21)

Il en résulte que la catégorie des motifs génériques est la sous-catégorie pleine
de la catégorie abélienne pro−HI∗(k), formée des pro-objets de la forme
H0
∗(M(L){n}) pour un corps de fonctions L/k et un entier n ∈ Z. Ces pro-

objets correspondent à des foncteurs fibres de la catégorie HI∗(k) (i.e. exacts,
commutant aux sommes infinies). Cette interprétation des motifs génériques
est donc très proche de la notion de points d’un topos. La transformée générique
d’un module homotopique F∗ est finalement donnée par la restriction de F∗ à
cette catégorie de points.(22)

6. Applications et compléments

6.1. Construction de modules de cycles. —

(21)Par le théorème de simplification de Voevodsky [Voe02], on se ramène au cas effectif

qui est démontré dans [Dég08b, 3.4.7].
(22)Dans un topos arbitraire, il est très rare que la restriction d’un faisceau à une famille
conservative de points donnée définisse une équivalence de catégories.
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6.1. — Pour un objet M de DM(k), on note Ĥ0
∗(M) la transformée générique

(par. 3.1) du module homotopique H0
∗(M) (par. 5.4). Cette construction nous

permet de construire des modules de cycles intéressants.
Ainsi, pour tout schéma algébrique X , on peut définir suivant [Voe00b] un

complexe motivique C*
sing Z

tr(X) – qui coincide avec le complexe motivique
M(X) lorsque X est lisse. Pour tout entier i ≥ 0, on pose donc:

(6.1.a) ĥi,∗(X) := H−i∗
(
Σ∞C*

sing Z
tr(X)

)
.

Pour tout corps de fonctions L, le gradué de degré 0 de ce module de cycles est
donné par l’homologie de Suslin de X :

ĥi,0(X).L = Hsing
i (XL/L)

avec les notations de [SV96].(23)

Si X est projectif lisse de dimension pure d, le motif M(X) = Σ∞C*
sing Z

tr(X)

dans DM(k) est fortement dualisable avec pour dual fort M(X)(−d)[−2d].(24)
Il en résulte que pour tout corps de fonctions L,

(6.1.b) ĥi,n(X).L = H2d+i+n,d+n
M (XL),

où Hs,t
M(XL) désigne la cohomologie motivique de X étendue à L en degré s et

twist t.

Remarque 6.2. — Supposons k de caractéristique 0. Comme remarqué par
B. Kahn dans [Kah10], on obtient un théorème de Merkurjev (cf. [Mer08,
Th. 2.10]) comme corollaire du théorème 3.7. En effet, pour X propre et lisse,

on peut identifier le module de cycles ĥi,∗(X) introduit ici avec le module de
cycles KX construit par Merkurjev. On renvoie le lecteur à [Kah10] pour

d’autres utilisations des modules de cycles ĥ0,∗(X).

6.2. Modules de cycles constructibles. — On introduit l’hypothèse
suivante sur le corps k:

(Mk) Pour tout corps de fonctions E/k, il existe un k-schéma projectif lisse
dont le corps des fonctions est k-isomorphe à E.

Cette hypothèse est évidemment une conséquence de la résolution des singu-
larités au sens classique pour k.

(23)Si X est lisse ou si l’on admet la résolution des singularités pour k, on peut montrer que

pour tout couple (i, n) ∈ Z× N, le groupe ĥi,n(X).L est le conoyau de la flèche

n⊕

i=1

Hsing
i

(
Gn−1

m ×XL/L
)
→ Hsing

i

(
Gn

m ×XL/L
)

induite par la somme des inclusions Gn−1
m → Gn

m de la forme Id×s1×Id où s1 est la section
unité.
(24)C’est une conséquence de [Voe00b, chap. 5, 2.1.4] et de la dualité dans les motifs de
Chow. On obtient une démonstration plus directe à l’aide du morphisme de Gysin suivant

[Dég08a, 2.16].
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Le résultat suivant est bien connu(25):

Proposition 6.3. — Soit d un entier et P≤d la sous-catégorie triangulée de
DM(k) engendrée par les motifs de schémas projectifs lisses de dimension
inférieure à d.
Soit X un schéma lisse de dimension inférieure à d.

(i) Si (Mk) est vérifiée, M(X) appartient à P≤d.
(ii) Le motif rationel M(X)⊗Q appartient à P≤d ⊗Q.

On en déduit le résultat suivant:

Proposition 6.4. — Soit X un schéma lisse de dimension d et (n, i) ∈ Z2 un
couple d’entiers.

(i) Si X est projectif lisse, ĥi,−n(X) = 0 si n > d.

(ii) Si (Mk) est vérifiée, ĥi,−n(X) = 0 si n > d.

(iii) Dans tous les cas, ĥi,−n(X)⊗Q = 0 si n > d.

Démonstration. — Le point (i) est un corollaire de la formule (6.1.b) et du
théorème de simplification de Voevodsky car ce dernier affirme qu’il n’y a pas
de cohomologie motivique en poids strictement négatif.
Soit C≤d la sous-catégorie pleine de DM(k) formée des motifsM tel que pour
tout corps de fonctions E et tout couple (n, i) ∈ Z2, n > d,

HomDM(k)(M(E),M{−n}[−i]) = 0.

Cette catégorie est une sous-catégorie triangulée. D’après (i), elle contient les
motifs M(P ) pour P projectif lisse de dimension inférieure à d. La proposition
précédente permet donc de conclure.

Remarque 6.5. — Considérons un schéma algébrique X de dimension d.
Sous l’hypothèse de résolution des singularités, on peut trouver un hyper-
recouvrement p : X → X pour la topologie cdh tel que pour tout entier n ≥ 0,
Xn est projectif lisse de dimension inférieure à d. Utilisant les techniques de
[Voe00a], on peut montrer que le morphisme induit Ztr(X )→ Ztr(X) est un
isomorphisme dans DM eff(k). Le point (ii) de la proposition ci-dessus est dès
lors valable sans hypothèse de lissité sur X .
Notons que d’après le théorème de De Jong, on peut toujours trouver un hyper-
recouvrement p comme ci-dessus pour la h-topologie. D’après [CD07, 10.4.4,
15.1.2], le morphisme p∗ :M(X )→M(X) est un isomorphisme dans DM(k)⊗
Q. Le point (iii) est donc valable sans hypothèse de lissité.

Définition 6.6. — Nous dirons qu’un module homotopique (resp. module de
cycles) est constructible s’il appartient à la sous-catégorie épaisse(26) de HI∗(k)
(resp. MCycl(k)) engendrée par les objets σ∞ hi(X){n} (resp. ĥi(X){n})
pour un schéma lisse X et un couple d’entiers (n, i) ∈ Z2.

(25)On obtient une preuve très élégante en utilisant un argument dû à J. Riou facilement
adapté de la preuve de [Rio05, th. 1.4].
(26)i.e. stable par noyau, conoyau, extension, sous-objet et quotient.
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Remarque 6.7. — 1. Grâce à la t-structure homotopique, on peut considérer
une autre condition de finitude sur les modules homotopiques. Un module
homotopique F∗ est dit fortement constructible s’il est de la forme H0

∗(E)
pour un motif géométrique E.(27) Dans ce cas, F∗ est constructible dans
le sens précédent mais la réciproque n’est pas claire.

2. Les modules homotopiques constructibles ne jouissent pas des propriétés
de finitude de leur analogue l-adique. Ainsi, il y a lieu de considérer par-
allèlement la notion plus forte de module homotopique de type fini(28):
F∗ est de type fini s’il existe un épimorphisme σ∞ h0(X)→ F∗. Ces sub-
tilités interviennent car le foncteur H0 ne préserve pas la propriété d’être
géométrique (i.e. compact) – contrairement à son analogue l-adique, le
foncteur cohomologique associé à la t-structure canonique, qui préserve
la constructibilité.

3. Dans le prolongement de la remarque précédente, notons qu’il est proba-
ble que la plupart des modules homotopiques constructibles ne soient pas
fortement dualisables. La seule exception que l’on connaisse à cette règle
est le cas d’un k-schéma étale X et du module homotopique σ∞ h0(X).
Ce dernier est fortement dualisable dans HI∗(k) (ou même dans HI(k))
et il est son propre dual fort.

Corollaire 6.8. — La graduation d’un module de cycles constructible M est
bornée inférieurement dès que l’une des deux propriétés suivantes est réalisée:

– La propriété (Mk) est satisfaite.
– M est sans torsion.

6.3. Homologie de Borel-Moore. —

6.9. — Pour la proposition qui suit, on suppose l’existence pour tout schéma
algébrique X d’un motif à support compact M c(X) dans DM(k) satisfaisant
les propriétés suivantes:

(C1) M c(X) est covariant par rapport aux immersion fermées et contravariant
par rapport aux immersions ouvertes.

(C2) Si i : Z → X est une immersion fermée et j : U → X l’immersion ouverte
complémentaire, il existe un triangle distingué canonique:

M c(Z)
i∗−→M c(X)

j∗−→M c(U)
+1−−→

(C3) Si X est lisse de dimension pure d, M(X) est fortement dualisable avec
pour dual fortM c(X){−d}[−d]. De plus, la contravariance deM c(X) par
rapport aux immersions ouvertes correspond par dualité à la covariance
naturelle de M(X).

(27)De même, un module de cycles est fortement constructible si le module homotopique
associé l’est.
(28)Cette notion, introduite dans la thèse de l’auteur [Dég02], a été étudiée
indépendamment par J. Ayoub dans l’appendice de [HK06].
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Si k vérifie la résolution des singularités, Voevodsky a obtenu cette construction
dans [Voe00b, par. 4].
Soit φ un module de cycles. Rappelons la numérotation homologique du com-
plexe des cycles à coefficients dans φ (cf. [Ros96, §5]): pour (n, s) ∈ Z2, et un
schéma algébrique X ,

Cn(X ;φ)s =
⊕

x∈X(n)

φs+n(κ(x))

où X(n) désigne l’ensemble des points de dimension n de X .

Proposition 6.10. — Soit φ un module de cycles et F∗ le module homotopique
associé (théorème 3.7).
Alors, utilisant l’hypothèse et les notations qui précèdent, pour tout schéma
lissifiable(29) X et tout couple (n, s) ∈ Z2,

Ai(X,φ)s ≃ HomDM(k)(1[i],M c(X)⊗ F∗{s}).

Démonstration. — La catégorie DM(k) est naturellement munie d’un Hom
enrichi en complexes (en tant que localisation d’une catégorie dérivée). On
introduit les complexes suivants, gradués par rapport à s ∈ Z:

C∗(X)s = C∗(X ;φ)s,

D∗(X)s = RHom(1,M c(X)⊗ F∗{s}).
Supposons tout d’abord que X est lisse de dimension pure d. On obtient alors
un quasi-isomorphisme canonique:

ǫX : D∗(X)s = RHom(1,M c(X)⊗ F∗{s})
(1)≃ RHom(M(X), F∗{s+ d}[d]) ≃ RΓ(X,Fs+d)[d]

(2)≃ C∗(X,φ)s+d[d] = C∗(X,φ)s.

L’isomorphisme (1) résulte de la propriété (C3) ci-dessus et l’isomorphisme (2)
est induit par (3.2.a). Cet isomorphisme est naturel en X par rapport aux
immersions ouvertes.
Dans le cas général, on peut supposer que X est connexe. Puisque il est lissifi-
able, il existe un schéma lisse Y , qu’on peut supposer connexe, et une immersion
fermée i : X → Y . Soit j : U → Y l’immersion ouverte complémentaire. Util-
isant la propriété (C2) et la suite (2.5.c), on obtient une flèche pointillée dans
D(A b) formant un morphisme de triangles distingués:

D∗(X) //

ǫX

���
�
�

D∗(Y ) //

ǫY

��

D∗(U)
+1 //

ǫU

��
C∗(X) // C∗(Y ) // C∗(U)

+1 //

(6.10.a)

(29)i.e. il existe une immersion fermée de X dans un schéma lisse
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Alors, ǫX est un quasi-isomorphisme compatible à la graduation. Il induit
l’isomorphisme attendu.

Remarque 6.11. — Rappelons que suivant [Voe00b, par. 4], M c(X) est co-
variant par rapport aux morphismes propres et contravariant par rapport aux
morphismes plats équidimensionnels. On peut montrer que l’isomorphisme de
la proposition précédente est canonique, contravariant par rapport aux mor-
phismes plats équidimensionnels et covariant par rapport aux morphismes pro-
pres, en utilisant les techniques des sections 3.2 et 3.4.
En caratéristique 0, on pourrait aussi utiliser la méthode de descente par hyper-
enveloppes de [GS96] pour obtenir la proposition précédente, remplaçant le
choix d’une lissification par celui d’un hyper-recouvrement cdh – on exploite la
fonctorialité covariante de C∗(X) et D∗(X). Ceci permet de se débarrasser de
l’hypothèse: X lissifiable.
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Université Paris 13
99 avenue Jean-Baptiste Clément
93430 Villetaneuse
France

Documenta Mathematica 16 (2011) 411–455



456

Documenta Mathematica 16 (2011)



Documenta Math. 457

The Additivity Theorem in Algebraic K-Theory

Daniel R. Grayson

Received: April 20, 2011

Communicated by Max Karoubi

Abstract. The additivity theorem in algebraic K-theory, due to
Quillen and Waldhausen, is a basic tool. In this paper we present
a new proof, which proceeds by constructing an explicit homotopy
combinatorially.

2010 Mathematics Subject Classification: 19D99
Keywords and Phrases: additivity, algebraic K-theory

Introduction

In this paper1, we present a new proof of the additivity theorem of Quillen [7,
§3, Theorem 2] and Waldhausen [8, 1.3.2(4)]. See also [6] and [5]. Previous
proofs used Theorem A or Theorem B of Quillen [7], but this one proceeds by
constructing an explicit combinatorial homotopy, which is made possible by
suitably subdividing one of the spaces involved.
This research was partially supported by the National Science Foundation un-
der grant NSF DMS 08-10948. I thank Mona Merling for valuable remarks that
helped me improve the exposition substantially.

1. The additivity theorem

Let Ord denote the category of finite nonempty ordered sets. We regard a
simplicial object in a category C as a functor Ordop → C. For A ∈ Ord let
∆A denote the simplicial set it represents. For each n ∈ N let [n] denote the
ordered set {0 < 1 < · · · < n} ∈ Ord, and let ∆n denote the simplicial set it
represents. Let ∆A

top denote the corresponding topological simplex, consisting
of the functions p : A → [0, 1] that sum to 1; for A = [n] we may also write
p = (p0, . . . , pn).
If X is a simplicial set, we let [A, x, p] denote the point of the geometric real-
ization |X | corresponding to A ∈ Ord, x ∈ X(A), and p ∈ ∆A

top.
For objects A and B in Ord, let A ∗B ∈ Ord denote their concatenation; it is
the disjoint union, with the ordering extended so the elements of A are smaller

1Permanent ID of this document: 822f09c4645830c51423e431c01cd592; Date: 2011.04.18.

Documenta Mathematica 16 (2011) 457–464



458 Daniel R. Grayson

than the elements of B. We make that precise by setting A ∗B := ({0} ×
A) ∪ ({1} × B), so (0, a) and (1, b) denote typical elements, and the ordering
is lexicographic. We do the analogous thing with multiple concatenation, e.g.,
A ∗B ∗C := ({0}×A)∪ ({1}×B)∪ ({2}×C). Given functions p : A→ R and
q : B → R, we let p ∗ q : A ∗ B → R be the function defined by (0, a) 7→ p(a)
and (1, b) 7→ q(b). An embedding ∆A

top ×∆B
top → ∆A∗B

top is defined by (p, q) 7→
(p/2) ∗ (q/2).
The reason for using Ord in this paper, instead of its full subcategory whose
objects are the ordered sets [n], is that it is closed under the concatenation
operation (A,B) 7→ A ∗B and under various other constructions used later
in the paper. Since the two categories are equivalent, nothing essential is
changed. Since Ord is not a small category, to make the definition of geometric
realization of a simplicial set work, one should either replace Ord by a small
subcategory containing each [n] and closed under the constructions used in this
paper, or one should interpret the point [A, x, p] introduced above as the point
[[n], θ∗x, pθ] where θ : [n]→ A is the unique isomorphism of its form.
For a simplicial object X , its two-fold edge-wise subdivision sub2X (see [3, §4],
[2], and [1]) is the simplicial object defined by A 7→ X(A ∗A). For a simplicial

set X , there is a natural homeomorphism Ψ : |sub2X|
∼=−→ |X | (defined in [3,

§4]). It can be defined on each simplex as the affine map that sends each vertex
of |sub2X| to the midpoint of the corresponding (possibly degenerate) edge of
|X |. More precisely, it sends a point [A, x, p] ∈ |sub2X| to [A ∗ A, x, (p/2) ∗
(p/2)] ∈ |X |.
The edges of |sub2X| that map onto the two parts of each edge of |X | are
oriented in the same direction. There is another edge-wise subdivision where
the edges are oriented in opposite directions, defined by A 7→ X(A ∗Aop).
Subdivision into more parts can be accomplished by adding additional factors
of A or Aop. Our use of sub2X in this paper, rather than one of the other
available subdivisions, was based on rough sketches in low dimension of the
homotopy Θ produced in Lemma 7 below.
Let C be a category. Let Ar C denote the category of arrows in C. If f is an
arrow of C, let [f ] denote the corresponding object of Ar C.
As defined in [8, 1.1 and 1.2] a category with cofibrations and weak equivalences
consists of a categoryN equipped with a subcategory coN of cofibrations and a
subcategory wN of weak equivalences satisfying five axioms, not repeated here.
Its K-theory space is denoted by KN or KwN , and is defined as the loop
space Ω|wS.N |, where wS.N is defined in [8, (1.3)] as follows. Given A ∈ Ord,
we regard it as a category in the usual way, and we let Exact(ArA,N ) denote
the category of functors N : ArA → N that are exact in the sense that (1)
N [a→ a] = ∗ for all a ∈ A, and (2) the sequence

N [a→ b] N [a→ c]։ N [b→ c]

is a cofibration sequence, for all a ≤ b ≤ c in A. (In the presence of condition
(1), condition (2) is equivalent to
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N [a→ b]
��

��

// N [b→ b]
��

��
N [a→ c] // N [b→ c]

being a pushout square.) Then S.N is the simplicial category that is defined
on objects by sending A ∈ Ord to Exact(ArA,N ), and is defined on arrows
in the natural way. Since N is equipped with a category of weak equivalences
wN , so is the exact category Exact(ArA,N ), as Waldhausen proves, yielding
a simplicial category denoted wS.N .
Now suppose F and G are exact functors M → N between categories with
cofibrations and weak equivalences. Choose a coproduct operation on N satis-
fying the identities N ∨ ∗ = N and ∗ ∨N = N . We define a map Φ = ΦF,G :
sub2S.M→ S.N by (ΦM)[a→ b] := FM [(0, a)→ (0, b)]∨GM [(1, a)→ (1, b)];
here we have A ∈ Ord, an exact functor M : Ar(A ∗A) →M regarded as an
element of (sub2S.M)(A), and an arrow a → b in A. One extends the defini-
tion of ΦM from objects to arrows by naturality and checks that it is exact
(using the identity (ΦM)[a→ a] = ∗∨ ∗ = ∗ and exactness of the coproduct of
two cofibration sequences), so Φ is well defined. The idea is that each edge of
S.M gets subdivided into two parts, and we apply F to the first part and G to
the second. (The same thing works for two homomorphisms between abelian
groups, with S. replaced by the nerve of the group.) Let sub2wS.M denote the
simplicial category obtained by applying edge-wise subdivision in the simplicial
direction. The functor Φ preserves weak equivalences, because F , G, and sum
do, yielding a map Φ : sub2wS.M→ wS.N of simplicial categories.
The following definition comes from the text above [8, Proposition 1.3.2].

Definition 1. A sequence F  G։ H :M→ N of exact functors between
categories with cofibrations and weak equivalences is a cofibration sequence
if: (1) for all M ∈ M the sequence F (M)  G(M) ։ H(M) is a cofibra-
tion sequence of M; and (2) for any cofibration M ′  M in M the map
G(M ′) ∪F (M ′) F (M) G(M) is a cofibration in N .

Given a cofibration sequence F  G ։ H as in the definition above, the
additivity theorem (Theorem 8 below) states that F ∨H and G yield homotopic
maps wS.M→ wS.N . We will prove it by showing first that G and ΦH,F yield
homotopic maps, and then composing two such homotopies. To construct this
homotopy we need a new triangulation of the cylinder [0, 1] × |wS.M| that
agrees with that of |wS.M| at one end and with that of |sub2wS.M| at the
other end. Geometrically, it’s sort of clear that such a thing should exist, for
another description of the triangulation on |sub2X| for a simplicial set X , or
rather of its bisimplicial variant, is that it comes by intersecting the simplices
of |∆1 ×X| ∼= |∆1|× |X | with {p}× |X |, where p denotes the midpoint of |∆1|.
The new triangulation (called IX in Definition 4 below), or rather a bisimplicial
variant of it, arises by intersecting the simplices of |∆2 ×X| ∼= |∆2| × |X | with
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ℓ × |X |, where ℓ is the line segment in |∆2| joining the first vertex with the
midpoint of the opposite edge. However, we ignore that interpretation and give
a direct construction, as follows.

Definition 2. Given objects A and B of Ord, define A ⋉ B ∈ Ord to be
A × B equipped with the lexicographic ordering, where (a, b) ≤ (a′, b′) if and
only if (1) a < a′, or (2) a = a′ and b ≤ b′. (The notation is chosen to suggest
that the projection A⋉B → A is an order preserving map, but the projection
A⋉B → B is, in general, not.)

Definition 3. Given maps A
σ−→ C

ϕ←− B in Ord, define ϕ−1(σ) ∈ Ord to be
the ordered subset {(a, b) | σa = ϕb} ⊆ A ⋉ B. (The notation is chosen as a
reminder that when σ is injective, then projection to the second factor gives an

isomorphism ϕ−1(σ)
∼=−→ ϕ−1(σ(A)) ⊆ B. On the other hand, if σ is the map

[n]→ [0], then ϕ−1(σ) = B ∗ . . . ∗B, the concatenation of n+ 1 copies of B.)

Definition 4. Let s : [2] → [1] be the map in Ord defined by s(0) = 0,
s(1) = 1, and s(2) = 1. For a simplicial set X we define a simplicial set IX
on objects by setting IX(A) := {(ϕ, x) | ϕ : A → [1], x ∈ X(ϕ−1(s))} for
A ∈ Ord; its definition on arrows arises from naturality. We point out that
ϕ−1(s) = ϕ−1{0} ∗ϕ−1{1} ∗ϕ−1{1}, so ϕ−1(s) ∼= A if ϕ = 0, and ϕ−1(s) ∼=
A ∗A if ϕ = 1. Consequently, the simplicial subset of IX defined by the
equation ϕ = 0 is isomorphic to X , and the simplicial subset of IX defined by
the equation ϕ = 1 is isomorphic to sub2X . We regard those isomorphisms as
identifications.

Definition 5. We define a map Ψ : |IX| → |∆1| × |X | as follows. The first
component |IX | → |∆1| arises from the simplicial map IX → ∆1 defined by
(ϕ, x) 7→ ϕ, and thus it sends a point [A, (ϕ, x), p] to the point [A,ϕ, p]. The
second component |IX | → |X | is the unique map, affine on each simplex, whose
behavior on vertices (each of which has either ϕ = 0 or ϕ = 1) is that it sends
those with ϕ = 0 to the corresponding vertex of |X | and those with ϕ = 1
to the midpoint of the corresponding (possibly degenerate) edge of |X |. More
precisely, the map sends a point [A, (ϕ, x), p] ∈ |IX| to [ϕ−1(s), x, ϕ ⋄ p] ∈ |X |,
where ϕ ⋄ p ∈ ∆

ϕ−1(s)
top is defined by (0, a) 7→ p(a) for a ∈ ϕ−1(0), and by

(1, a) 7→ p(a)/2 and (2, a) 7→ p(a)/2 for a ∈ ϕ−1(1). (Writing p′ for the
restriction of p to ϕ−1(0) and p′′ for the restriction of p to ϕ−1(1), we see that
ϕ ⋄ p = p′ ∗ (p′′/2) ∗ (p′′/2).)
Lemma 6. For a simplicial set X, the map Ψ : |IX| → |∆1| × |X | is a homeo-
morphism.

Proof. By commutativity with colimits, we may assume X = ∆n. The sim-
plicial set IX has only a finite number of nondegenerate simplices, so the source
and target of Ψ are compact Hausdorff spaces, and thus it is enough to show
that Ψ is a bijection.
To show surjectivity, consider a point ([[1], β, q], [[t], x, r]) in |∆1|×|X |, with r in
the interior of ∆t

top. Let k = q(0). We may assume that the partial sums sj :=
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∑j−1
i=0 ri, for j = 0, . . . , t+1, include k, for if not, then picking j so that sj < k <

sj+1, we may construct r′ = (r0, . . . , rj−1, k−sj , sj+1−k, rj+1, . . . , rt) ∈ ∆t+1
top ;

its partial sums are those of r, together with k, and there is a surjective map
f : [t + 1] → [t] that collapses r′ to r. Letting x′ = f∗(x) = x ◦ f be the
corresponding degeneracy of x, we have [[t], x, r] = [[t + 1], x′, r′]. Similarly,
we may assume that each number w with k ≤ w ≤ k + (1 − k)/2 is a partial
sum of r if and only if w + (1 − k)/2 is. Pick b with sb = k and c with
sb+c = k + (1 − k)/2. Then, due to the symmetry of the partial sums, rb+i =
rb+c+i if 0 ≤ i < c, and b + 2c = t + 1. In more detail, one deduces the
equality as follows: one has rb+i = sb+i+1 − sb+i, in which sb+i+1 and sb+i
are adjacent partial sums between k and k + (1− k)/2, so by symmetry of the
partial sums, sb+i+1 + (1 − k)/2 = sb+c+i+1 and sb+i + (1 − k)/2 = sb+c+i,

hence rb+c+i = sb+c+i+1 − sb+c+i = sb+i+1 − sb+i = rb+i. Now let p ∈ ∆b+c−1
top

be defined by p = (r0, . . . , rb−1, 2rb, . . . , 2rb+c−1), and let ϕ : [b + c − 1] → [1]
be defined by ϕ(i) = 0 for 0 ≤ i < b and ϕ(i) = 1 for b ≤ i < b + c.
Then ([[1], β, q], [[t], x, r]) = Ψ([[b + c − 1], (ϕ, x′), p]), where x′ ∈ X(ϕ−1(s))
corresponds to x ∈ X([t]) via the unique isomorphism ϕ−1(s) ∼= [t].
To show injectivity, consider a point [A, (ϕ, x), p] ∈ |IX | where (ϕ, x) is non-
degenerate and p is an interior point of ∆A

top. Observe that x is a function

ϕ−1(s)→ [n], and that ϕ ⋄ p is an interior point of its simplex. The determin-
istic procedure described in the previous paragraph recovers A, ϕ, x, and p, up
to isomorphism, from the unique nondegenerate interior representatives of the
two components of Ψ([A, (ϕ, x), p]), showing injectivity. �

Lemma 7. Let F  G ։ H : M → N be a cofibration sequence of exact
functors between categories with cofibrations and weak equivalences. There is a
map Θ : IwS.M→ wS.N such that Θ agrees with G on the simplicial subset of
IwS.M where ϕ = 0 and with ΦH,F on the simplicial subset of IwS.M where
ϕ = 1.

Proof. The construction will be natural in the direction of the nerve of the
weak equivalences, so we don’t explicitly mention the weak equivalences in the

rest of the proof. For each object [M ′
f−→M ] of ArM we choose a value in N

for

P [f ] := colim




F (M ′)
F (f) //

��

��

F (M)

G(M ′)



.

The colimit exists because the vertical map in the diagram is a cofibration, and,
in the case where f is a cofibration, is the same as the pushout referred to in
part (2) of definition 1. We may ensure P [f ] = ∗ ifM ′ =M = ∗. Having made
those choices, one defines P on maps in ArM to get a functor P : ArM→N .
Recall from [8, Lemma 1.1.1] that the full subcategory F1N of ArN , consisting
of the arrows of N that are cofibrations, is a category with cofibrations, where

Documenta Mathematica 16 (2011) 457–464



462 Daniel R. Grayson

a cofibration [A B] [A′  B′] is an arrow having the property that both
A  A′ and A ∪A′ B  B′ are cofibrations; the latter part of the condition
ensures that cofibrations are stable under pushout. It follows that P sends each
(horizontal) cofibration sequence

L′ // //

f

��

M ′ // //

g

��

N ′

h

��
L // // M // // N

of (vertical) maps (in which the rows are cofibration sequences of M) to a
cofibration sequence P [f ]  P [g] ։ P [h] of N . The point is that, according
to definition 1, the left vertical map in the pushout diagram

[FL′ FM ′] //
��

��

[FL FM ]
��

��
[GL′ GM ′] // [P [f ] P [g]]

is a cofibration in F1N , that the upper horizontal map is an arrow in F1N , and
thus that the pushout [P [f ] P [g]] lies in F1N and is therefore a cofibration.
One also sees, using the gluing lemma [8, 1.2: Weq 2], that P sends each
(horizontal) weak equivalence

L′
∼ //

f

��

M ′

g

��
L

∼ // M

of (vertical) maps (in which the horizontal maps are weak equivalences ofM)

to a weak equivalence P [f ]
∼−→ P [g] in wN .

We say that P is an exact functor, in the sense that it preserves cofibration
sequences and weak equivalences, as proved above.
We point out two special cases.

(A) if f = 1 is an identity map (or an isomorphism), then there is a natural
isomorphism P [f ] ∼= G(M ′)

(B) if f = 0 is a map that factors through ∗, then there is a natural
isomorphism P [f ] ∼= F (M) ∨H(M ′)

Thus, in a precise sense, P includes G and F ∨H as special cases, allowing it
to play the lead role in the construction of Θ, which somehow deforms f = 1
to f = 0 continuously. (This basic idea was also used in [4, (10.3) and (10.4)]
to prove a different sort of additivity theorem.)
We define Θ : IwS.M → wS.N as follows. Given A ∈ Ord and (ϕ,M) ∈
(IwS.M)(A), we define Θ(ϕ,M) ∈ (wS.N )(A) as follows. Recall from defi-
nition 4 that ϕ is a map A → [1], that s is a certain map s : [2] → [1], and
that M ∈ (wS.M)(ϕ−1(s)). Introduce maps d ≤ e : [1] → [2] defined by
d(0) = e(0) = 0, d(1) = 1, and e(1) = 2; they are the sections of s, and thus,
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for any a ∈ A, we have (dϕa, a) ∈ ϕ−1(s) and (eϕa, a) ∈ ϕ−1(s). Our task is
to define an exact functor Θ(ϕ,M) : ArA→ N , so given an object [a→ b] in
ArA, we define an object of N as follows, introducing the label f for future
reference.

(Θ(ϕ,M))[a→ b] := P [M [(dϕa, a)→ (dϕb, b)]
f−→M [(eϕa, a)→ (eϕb, b)]]

We extend the definition of Θ(ϕ,M) to arrows by naturality and by pointing
out that the construction preserves weak equivalences. Exactness of Θ(ϕ,M)
follows from exactness of M and of P , completing the definition of Θ.
The rest of the statement follows from the following two special cases, which
result from the previous ones.

(A) if ϕa = ϕb = 0 then f = 1 is an identity map, and thus there is a
natural isomorphism

(Θ(ϕ,M))[a→ b] ∼= GM [(0, a)→ (0, b)]

(B) if ϕa = ϕb = 1, then (dϕb, b) = (1, b) < (2, a) = (eϕa, a), which implies
that f = 0 (because it factors through the object M [(1, b)→ (1, b)] =
∗), and thus that there is a natural isomorphism

(Θ(ϕ,M))[a→ b] ∼= HM [(1, a)→ (1, b)] ∨ FM [(2, a)→ (2, b)]

�

Theorem 8 (Additivity, [8, 1.3.2(4)]). Let F  G ։ H be a cofibration
sequence of exact functors M → N between categories with cofibrations and
weak equivalences. Then F ∨H and G induce homotopic maps KM→ KN .

Proof. Combining lemma 7 and lemma 6 we see that G and ΦH,F induce
homotopic maps |wS.M| → |wS.N|. There is a cofibration sequence F 
F ∨H ։ H , so F ∨H and ΦH,F also induce homotopic maps. Composing the
two homotopies (after reversing one of them) yields the result. �

Remark 9. Waldhausen’s Additivity Theorem provides four equivalent formu-
lations of the result, so it is sufficient to prove only the fourth of them, as we do
here. Quillen’s version [7, §3, Theorem 2] of the additivity theorem was stated
for the Q-construction as a homotopy equivalence (s, q) : QE → QM× QM,
where M is an exact category, and E is the exact category of short exact se-
quences E = (0 → sE → tE → qE → 0) in M. Here s, q : E → M are the
exact functors that extract sE and qE from the exact sequence E. Quillen’s
formulation is analogous to Waldhausen’s first formulation [8, 1.3.2(1)] and is
implied by it.
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Introduction

The purpose of this paper is to demonstrate that the Grothendieck-Witt and
Witt groups of complex projective homogeneous varieties can be computed in
a purely topological way. That is, we show in Theorem 2.5 how to identify
them with the topological KO-groups of these varieties, and we illustrate this
with a series of known and new examples.
Our theorem holds more generally for any smooth complex cellular variety. By
this we mean a smooth complex variety X with a filtration by closed subvari-
eties ∅ = Z0 ⊂ Z1 ⊂ Z2 · · · ⊂ ZN = X such that the complement of Zk in Zk+1

is an open “cell” isomorphic to Ank for some nk. Let us put our result into
perspective. It is well-known that for such cellular X we have an isomorphism

K0(X)
∼=−→ K0(X(C))

between the algebraic K-group ofX and the complex K-group of the underlying
topological space X(C). In fact, both sides are easy to compute: they decom-
pose as direct sums of the K-groups of the cells, each of which is isomorphic
to Z. Such decompositions are characteristic of oriented cohomology theories.
Witt groups, however, are strictly non-oriented, and this makes computations
much harder. It is true that the Witt groups of complex varieties decompose
into copies of Z/2, the Witt group of C, but even in the cellular case there is
no general understanding of how many copies to expect.
Nonetheless, we can prove our theorem by an induction over the number of cells
of X . The main issue is to define the map from Witt groups to the relevant
KO-groups in such a way that it respects various exact sequences. The basic
idea is clear: the Witt group W0(X) classifies vector bundles equipped with
non-degenerate symmetric forms, and in topology symmetric complex vector
bundles are in one-to-one correspondence with real vector bundles, classified
by KO0(X). More precisely, we have two natural maps:

GW0(X)→ KO0(X(C))

W0(X)→ KO0(X(C))
K0(X(C))

Here, GW0(X) is the Grothendieck-Witt group of X , and in the second line
K0(X) is mapped to KO0(X) by sending a complex vector bundle to the un-
derlying real bundle. It is possible to extend these maps to shifted groups and
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groups with support in a concrete and “elementary” way, as was done in [Zib09].
The method advocated here is to rely instead on a result in A1-homotopy the-
ory: the representability of hermitian K-theory by a spectrum whose complex
realization is the usual topological KO-spectrum. Currently, our only reference
is a draft paper of Morel [Mor06], but the result is well-known to the experts
and a full published account will undoubtedly become available in due course.
In the unstable homotopy category at least, the statement is immediate from
Schlichting and Tripathi’s recent description of a geometric representing space
for hermitian K-theory (see Section 1.5).

The structure of the paper is as follows: In the first section we assemble the
basic definitions, reviewing some representability results along the way before
finally stating in 1.9 the results in A1-homotopy theory that we ultimately take
as our starting point. Our main result, Theorem 2.5, is stated and proved
in the second section. Section 3 reviews mostly well-known facts about the
Atiyah-Hirzebruch spectral sequence, on which the computations of examples
in the final section rely.

1 Preliminaries

1.1 Witt groups and hermitian K-theory

From a modern point of view, the theory of Witt groups represents a K-
theoretic approach to the study of quadratic forms. We briefly run through
some of the basic definitions.

Recall that the algebraic K-group K0(X) of a scheme X can be defined as the
free abelian group on isomorphism classes of vector bundles over X modulo the
following relation: for any short exact sequence of vector bundles

0→ E → F → G → 0

over X we have [F ] = [E ] + [G] in K0(X). In particular, as far as K0(X) is
concerned, we may pretend that all exact sequences of vector bundles over X
split.

Now let (E , ǫ) be a symmetric vector bundle, by which we mean a vector bundle
E equipped with a non-degenerate symmetric bilinear form ǫ. We may view ǫ as
an isomorphism from E to its dual bundle E∨, in which case its symmetry may
be expressed by saying that ǫ and ǫ∨ agree under the canonical identification of
the double-dual (E∨)∨ with E . Two symmetric vector bundles (E , ǫ) and (F , φ)
are isometric if there is an isomorphism of vector bundles i : E → F compatible
with the symmetries, i. e. such that i∨φi = ǫ. The orthogonal sum of two
symmetric bundles has the obvious definition (E , ǫ) ⊥ (F , φ) := (E ⊕ F , ǫ⊕ φ).
Any vector bundle E gives rise to a symmetric bundle H(E) := (E ⊕E∨, ( 0 1

1 0 )),
the hyperbolic bundle associated with E . These hyperbolic bundles are the
simplest members of a wider class of so-called metabolic bundles: symmetric
bundles (M, µ) which contain a subbundle j : L →M of half their own rank
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on which µ vanishes. In other words, (M, µ) is metabolic if it fits into a short
exact sequence of the form

0→ L j−→M j∨µ−→ L∨ → 0

The subbundle L is then called a Lagrangian of M. If the sequence splits,
(M, µ) is isometric to H(L), at least in any characteristic other than two. This
motivates the definition of the Grothendieck-Witt group.

Definition 1.1 ([Wal03a,Sch10a]). The Grothendieck-Witt group GW0(X) of
a scheme X is the free abelian group on isometry classes of symmetric vector
bundles over X modulo the following two relations:

• [(E , ǫ) ⊥ (G, γ)] = [(E , ǫ)] + [(G, γ)]

• [(M,µ)] = [H(L)] for any metabolic bundle (M,µ) with Lagrangian L

The Witt group W0(X) is defined similarly, except that the second relation
reads [(M,µ)] = 0. Equivalently, we may define W0(X) by the exact sequence

K0(X)
H−→ GW0(X) −→W0(X)→ 0

Shifted Witt groups. The groups above can be defined more generally in
the context of exact or triangulated categories with dualities. The previous
definitions are then recovered by considering the category of vector bundles
over X or its bounded derived category. However, the abstract point of view
allows for greater flexibility. In particular, a number of useful variants of Witt
groups can be introduced by passing to related categories or dualities. For
example, if we take a line bundle L over X and replace the usual duality
E∨ := Hom(E ,OX) on vector bundles by Hom(−,L) we obtain “twisted” Witt
groups W0(X ;L). On the bounded derived category, we can consider dualities
that involve shifting complexes, leading to the definition of “shifted” Witt
groups Wi(X). This approach, pioneered by Paul Balmer in [Bal00, Bal01a],
elevates the theory of Witt groups into the realm of cohomology theories. We
illustrate the meaning and significance of these remarks with a few of the key
properties of the theory, concentrating on the case when X is a smooth scheme
over a field of characteristic not equal to two. The interested but unacquainted
reader may prefer to consult [Bal01b] or [Bal05].

• For any line bundle L over X and any integer i, we have a Witt group

Wi(X ;L)

This is the ith Witt group of X “with coefficients in L”, or “twisted by
L”. When L is trivial it is frequently dropped from the notation.

Documenta Mathematica 16 (2011) 465–511



Witt Groups of Complex Cellular Varieties 469

• The Witt groups are four-periodic in i and “two-periodic in L” in the
sense that, for any i and any line bundles L and M over X , we have
canonical isomorphisms

Wi(X ;L) ∼= Wi+4(X ;L)
Wi(X ;L) ∼= Wi(X ;L⊗M⊗2)

• More generally, for any closed subset Z of X we have Witt groups “with
support on Z”, written Wi

Z(X ;L). For Z = X these agree with Wi(X ;L).

• We have long exact “localization sequences” relating the Witt groups ofX
and X−Z, which can be arranged as 12-term exact loops by periodicity.

Balmer’s approach already works on the level of Grothendieck-Witt groups, as
shown in [Wal03a]. In this context, the localization sequences take the form

GWi
Z(X)→ GWi(X)→ GWi(X − Z)→

Wi+1
Z (X)→Wi+1(X)→Wi+1(X − Z)→Wi+2

Z (X)→ · · ·
(1)

continuing to the right with shifted Witt groups of X , and similarly for ar-
bitrary twists L [Wal03a, Theorem 2.4]. However, if one wishes to continue
the sequences to the left, one has to revert to the methods of higher algebraic
K-theory.

Hermitian K-theory. Recall that the higher algebraic K-groups of a
scheme X can be defined as the homotopy groups of a topological space K(X)
associated with X . If one replaces K(X) by an appropriate spectrum one can
similarly define groups Kn(X) in all degrees n ∈ Z. On a smooth scheme X ,
however, the groups in negative degrees vanish.
An analogous construction of hermitian K-theory is developed in [Sch10b].
Given a scheme X and a line bundle L over X , Schlichting constructs a family
of spectra GWi(X ;L) from which hermitian K-groups can be defined as

GWi
n(X ;L) := πn(GWi(X ;L))

In degree n = 0, one recovers Balmer and Walter’s Grothendieck-Witt groups,
and the Witt groups appear as hermitian K-groups in negative degrees. To be
precise, for any smooth scheme X over a field of characteristic not equal to two
one has the following natural identifications:

GWi
0(X ;L) ∼= GWi(X ;L) (2)

GWi
n(X ;L) ∼= Wi−n(X ;L) for n < 0 (3)

For affine varieties, the identifications of Witt groups may be found in [Hor05]:
see Proposition A.4 and Corollary A.5. For a general smooth scheme X , we can
pass to a vector bundle torsor T overX such that T is affine [Jou73, Lemma 1.5;
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Hor05, Lemma 2.1].1 Both Balmer’s Witt groups and Schlichting’s hermi-
tian K-groups are homotopy invariant in the sense that the groups of T may
naturally be identified with those of X . This is proved for Witt groups in
[Gil03, Corollary 4.2] and may be deduced for hermitian K-theory from the
Mayer-Vietoris sequences established in [Sch10b, Theorem 1]. The identifica-
tions also hold more generally for hermitian K-groups with support GWi

n,Z(X)
[Sch]. They will be used implicitly throughout.

For completeness, we mention how the 4-periodic notation used here translates
into the traditional notation in terms of KO- and U-theory, as used for example
in [Hor05]. Namely, we have

GWi
n(X) =





KOn(X) for i ≡ 0 mod 4

Un(X) for i ≡ −1
−KOn(X) for i ≡ −2
−Un(X) for i ≡ −3

(This notation will not be used elsewhere in this paper.)

1.2 KO-theory

We now turn to the corresponding theories in topology. To ensure that the
definitions given here are consistent with the literature, we restrict our attention
to finite-dimensional CW complexes.2 Since we are ultimately only interested
in topological spaces that arise as complex varieties, this is not a problem.
The definitions of K0 and GW0 given above applied to complex vector bundles
over a finite-dimensional CW complex X yield its complex and real topological
K-groups K0(X) and KO0(X). Since short exact sequences of vector bundles
over X always split, the definitions may even be simplified:

Definition 1.2. For a finite-dimensional CW complex X , the complex K-
group K0(X) is the free abelian group on isomorphism classes of complex vector
bundles over X modulo the relation [E⊕G] = [E ]+[G]. Likewise, the KO-group
KO0(X) is the free abelian group on isometry classes of symmetric complex
vector bundles over X modulo the relation [(E , ǫ) ⊥ (G, γ)] = [(E , ǫ)] + [(G, γ)].

There is a more common description of KO0(X) as the K-group of real vector
bundles. The equivalence with the definition given here can be traced back
to the fact that the orthogonal group O(n) is a maximal compact subgroup
of both GLn(R) and On(C), but also seen very concretely along the following
lines. We say that a complex bilinear form ǫ on a real vector bundle F is real
if ǫ : F ⊗ F → C factors through R.

1This step is known as Jouanolou’s trick.
2The key property we need is that any vector bundle over a finite-dimensional CW complex

has a stable inverse. See the proof of Theorem 1.5.
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Lemma 1.3. Let (E , ǫ) be a symmetric complex vector bundle. There exists a
unique real subbundle ℜ(E , ǫ) ⊂ E such that ℜ(E , ǫ)⊗RC = E and such that the
restriction of ǫ to ℜ(E , ǫ) is real and positive definite. Concretely, a fibre of
ℜ(E , ǫ) is given by the real span of any orthonormal basis of the corresponding
fibre of E.

Corollary 1.4. For any CW complex X, the monoid of isomorphism classes
of real vector bundles over X is isomorphic to the monoid of isometry classes
of symmetric complex vector bundles over X (with respect to the operations ⊕
and ⊥, respectively).

Proof of Lemma 1.3. In the case of a vector bundle over a point we may assume
without loss of generality that

(E , ǫ) =
(
Cr,

(
1 0. . .
0 1

))

Clearly, the subspace Rr ⊂ Cr has the required properties. Uniqueness follows
from elementary linear algebra. If (E , ǫ) is an arbitrary symmetric complex
vector bundle over a space X , then any point of X has some neighbourhood
over which (E , ǫ) can be trivialized in the form above. We know how to define
ℜ(E , ǫ) over each such neighbourhood, and by uniqueness these local bundles
can be glued together.

Proof of Corollary 1.4. A map in one direction is given by sending a symmetric
complex vector bundle (E , ǫ) to ℜ(E , ǫ). Conversely, with any real vector bundle
E over X we may associate a symmetric complex vector bundle (E ⊗R C, σC),
where σC is the C-linear extension of some inner product σ on E . Since σ is
defined uniquely up to isometry, so is (E ⊗R C, σC). See [MH73, Chapter V,
§ 2] for a proof that avoids the uniqueness part of the preceding lemma.

Representing topological K-groups. A standard construction of the
cohomology theories associated with K0 and KO0 is based on the fact that these
functors are representable in the homotopy category H of topological spaces.
The starting point is the homotopy classification of vector bundles: Let us write
Grr,n for the Grassmannian Gr(r,Cr+n) of complex r-bundles in Cr+n, and let
Grr be the union of Grr,n ⊂ Grr,n+1 ⊂ · · · under the obvious inclusions. Denote
by Ur,n and Ur the universal r-bundles over these spaces. For any connected
paracompact Hausdorff space X we have a one-to-one correspondence between
the set Vectr(X) of isomorphism classes of rank r complex vector bundles
over X and homotopy classes of maps from X to Grr: a homotopy class [f ]
in H(X,Grr) corresponds to the pullback of Ur along f [Hus94, Chapter 3,
Theorem 7.2].

To describe K0(X), we need to pass to Gr, the union of the Grr under the
embeddings Grr →֒ Grr+1 that send a complex r-plane W to C⊕W .
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Theorem 1.5. For finite-dimensional CW complexes X we have natural iso-
morphisms

K0(X) ∼= H(X,Z×Gr) (4)

such that, for X = Grr,n, the class [Ur,n]+ (d− r)[C] in K0(Grr,n) corresponds
to the inclusion Grr,n →֒ {d} ×Grr,n →֒ Z×Gr.

Proof. The theorem is of course well-known, see for example [Ada95, page 204].
To deduce it from the homotopy classification of vector bundles, we note first
that any CW complex is paracompact and Hausdorff [Hat09, Proposition 1.20].
Moreover, we may assume that X is connected. The product Z × Gr can be
viewed as the colimit of the inductive system

∐

d≥0
{d} ×Grd →֒

∐

d≥−1
{d} ×Grd+1 →֒

∐

d≥−2
{d} ×Grd+2 →֒ · · · ⊂ Z×Gr

Any continuous map from X to Z×Gr factors though one of the components
colimn({d}×Grn). By cellular approximation, it is in fact homotopic to a map
that factors through {d} ×Grn for some n. Thus,

H(X,Z×Gr) ∼=
∐

d∈Z
colimnVectn(X)

where the colimit is taken over the maps Vectn(X) → Vectn+1(X) sending a
vector bundle E to C ⊕ E . We define a map from the coproduct to K0(X) by
sending a vector bundle E in the dth component to the class [E ]+(d−rankE)[C]
in K0(X). To see that this is a bijection, we use the fact that every vector
bundle E over a finite-dimensional CW complex has a stable inverse: a vector
bundle E⊥ over X such that E ⊕ E⊥ is a trivial bundle [Hus94, Chapter 3,
Proposition 5.8].

If we replace the complex Grassmannians by real Grassmannians RGrr,n, we
obtain the analogous statement that KO0 can be represented by Z × RGr.
Equivalently, but more in the spirit of Definition 1.2, we could work with the
following spaces:

Definition 1.6. Let (V, ν) be a symmetric complex vector space, and let
Gr(r, V ) be the Grassmannian of complex k-planes in V . The “non-degenerate
Grassmannian”

Grnd(r, (V, ν))

is the open subspace of Gr(r, V ) given by r-planes T for which the restriction
ν|T is non-degenerate.

Complexification induces an inclusion of RGr(k,ℜ(V, ν)) into Grnd(r, (V, ν)),
which, by Lemma 1.7 below, is a homotopy equivalence. So let Grndr,n abbre-

viate Grnd(r,Hr+n), where H is the hyperbolic plane (C2, ( 0 1
1 0 )), and let Und

r,n

denote the restriction of the universal bundle over Gr(r,C2r+2n) to Grndr,n. Then
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colimits Grndr and Grnd can be defined in the same way as for the usual Grass-
mannians, and, for finite-dimensional CW complexes X , we obtain natural
isomorphisms

KO0(X) ∼= H(X,Z×Grnd) (5)

Here, for even (d−r), the inclusion Grndr,n →֒ {d}×Grndr,n →֒ Z×Grnd corresponds

to the class of [Und
r,n] +

d−r
2 [H] in GW0(Grndr,n).

Lemma 1.7. For any symmetric complex vector space (V, ν), the following in-
clusion is a homotopy equivalence:

RGr(k,ℜ(V, ν)) j→֒ Grnd(k, (V, ν))

U 7→ U ⊗R C

Proof. Consider the projection π : V = ℜ(V, ν)⊕ iℜ(V, ν)։ ℜ(V, ν). We de-
fine a retract r of j by sending a complex k-plane T ∈ Grnd(k, (V, ν)) to
π(ℜ(T, ν|T )) ⊂ ℜ(V, ν). This is indeed a linear subspace of real dimension
k: since ν is positive definite on ℜ(T, ν|T ) but negative definite on iℜ(V, ν),
the intersection ℜ(T, ν|T ) ∩ iℜ(V, ν) is trivial.
More generally, we can define a family of endomorphisms of V parametrized
by t ∈ [0, 1] by

πt : ℜ(V, ν)⊕ iℜ(V, ν)։ ℜ(V, ν) ⊕ iℜ(V, ν)
(x, y) 7→ (x, ty)

This family interpolates between the identity π1 and the projection π0, which
we can identify with π. We claim that

πt(ℜ(T, ν|T )) ⊂ V

is a real linear subspace of dimension k on which ν is real and positive definite.
The claim concerning the dimension has already been verified in the case t = 0
and follows for non-zero t from the fact that πt is an isomorphism. Now take
a non-zero vector v ∈ πt(ℜ(T, ν|T )) and write it as v = x + tiy, where x, y ∈
ℜ(V, ν) and x + iy ∈ ℜ(T, ν|T ). Since ν(x, x), ν(y, y) and ν(x + iy, x + iy)
are all real we deduce that ν(x, y) = 0; it follows that ν(v, v) is real as well.
Moreover, since ν(x + iy, x + iy) is positive we have ν(x, x) > ν(y, y), so that
ν(v, v) > (1− t2)ν(y, y). In particular, ν(v, v) > 0 for all t ∈ [0, 1], as claimed.
It follows that T 7→ πt(ℜ(T, ν|T )) ⊗R C defines a homotopy from j ◦ r to the
identity on Grnd(k, (V, ν)).

K-spectra and cohomology theories. The infinite Grassmannian Gr
can be identified with the classifying space BU of the infinite unitary group.
Consequently, K0 can be represented by Z × BU, which by Bott periodicity
is equivalent to its own two-fold loopspace Ω2(Z × BU). This can be used to
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construct a 2-periodic Ω-spectrum Ktop in the stable homotopy category SH
whose even terms are all given by Z× BU. Similarly, RGr is equivalent to the
classifying space BO of the infinite orthogonal group, and Bott periodicity in
this case says that Z × BO is equivalent to Ω8(Z × BO). Thus, one obtains
a spectrum KOtop in SH which is 8-periodic. The associated cohomology
theories are given by

Ki(X) := SH(Σ∞(X+), S
i ∧Ktop)

KOi(X) := SH(Σ∞(X+), S
i ∧KOtop)

where X+ denotes the union of X and a disjoint base point, and Σ∞ is the
functor assigning to a pointed space its suspension spectrum. We refer the
reader to [Ada95, III.2] for background and details.
For convenience and later reference, we include here the values of the theories
on a point. Since we are in fact dealing with multiplicative theories, these can
be summarized in the form of coefficient rings:

K∗(point) = Z
[
g, g−1

]
(6)

KO∗(point) = Z
[
η, α, λ, λ−1

]/
(2η, η3, ηα, α2 − 4λ) (7)

where g is of degree−2 and η, α and λ have degrees−1, −4 and−8, respectively
[Bot69, pages 66–743].

1.3 Comparison

Now suppose X is a smooth complex variety. We write X(C) for the set of
complex points of X equipped with the analytic topology. If E is a vector
bundle over X then E(C) has the structure of a complex vector bundle over
X(C), so that we obtain natural maps

K0(X)→K0(X(C)) (8)

GW0(X)→KO0(X(C)) (9)

and an induced map

W0(X)→KO0(X(C))

K0(X(C))
(10)

We now wish to extend these maps to be defined on GWi(X) and Wi(X)
for arbitrary i, and also on groups with support and twisted groups. Let us
comment on some “elementary” constructions that are possible before outlining
the approach that we will ultimately follow here.

3The multiplicative relations among the generators are given on page 74, but unfortunately
the relation ηα = 0 is missing. This omission seems to have pervaded much of the literature,
and I am indebted to Ian Grojnowski for pointing out the same mistake in an earlier version
of this paper. Of course, the relation follows from the fact that KO−5(point) = 0.
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Firstly, one way to extend the maps to the groups GWi(X) and Wi(X) is to
use the multiplicative structure of the theories together with Walter’s results on
projective bundles [Wal03b]. Namely, for any variety X one has isomorphisms

GWi(X × P1) ∼= GWi(X)⊕GWi−1(X)

KO2i(X(C)× S2) ∼= KO2i(X(C))⊕KO2i−2(X(C))

This allows an inductive definition of comparison maps, at least for all neg-
ative i. Basic properties of these maps, for example compatibility with the
periodicities of Grothendieck-Witt and KO-groups, can be checked by direct
calculations.
It is less clear how to obtain maps on Witt groups with restricted supports.
One possibility, pursued in [Zib09], is to work on the level of complexes of vector
bundles and adapt a construction of classes in relative K-groups described in
[Seg68] to the case of KO-theory. However, it remains unclear to the author
how to see in this approach that the resulting maps are compatible with the
boundary morphisms in localization sequences.
Theorem 2.5 below could in fact be proved without knowing that the compari-
son maps respect the boundary morphisms in localization sequences in general.
However, A1-homotopy theory provides an alternative construction of a com-
parison map for which this property immediately follows from the construction,
and which in any case is so compellingly elegant that it would be difficult to
argue in favour of any other approach.

1.4 A1-homotopy theory

Theorem 1.5 describing K0 in terms of homotopy classes of maps to Grassman-
nians has an analogue in algebraic geometry, in the context of A1-homotopy
theory. Developed mainly by Morel and Voevodsky, the theory provides a gen-
eral framework for a homotopy theory of schemes emulating the situation for
topological spaces. The authoritative reference is [MV99]; closely related texts
by the same authors are [Voe98], [Mor99] and [Mor04]. See [DLØ+07] for a
textbook introduction and [Dug01] for an enlightening perspective on one of
the main ideas.
We summarize the main points relevant for us in just a few sentences. The
category Smk of smooth schemes over a field k can be embedded into some
larger category of “spaces” Spck which is closed under small limits and colimits,
and which can be equipped with a model structure. The A1-homotopy category
H(k) over k is the homotopy category associated with this model category.
In fact, there are several possible choices for Spck and many possible model
structures yielding the same homotopy category H(k). One possibility is to
consider the category of simplicial presheaves over Smk, or the category of
simplicial sheaves with respect to the Nisnevich topology. Both categories
contain Smk as full subcategories via the Yoneda embedding, and they also
contain simplicial sets viewed as constant (pre)sheaves. One may thus apply
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a general recipe for equipping the category of simplicial (pre)sheaves over a
site with a model structure (see [Jar87]). In a crucial last step, one forces the
affine line A1 to become contractible by localizing with respect to the set of all
projections A1 ×X ։ X .

As in topology, we also have a pointed version H•(k) of H(k). Remarkably,
these categories contain several distinct “circles”: the simplicial circle S1, the
“Tate circle” Gm = A1 − 0 (pointed at 1) and the projective line P1 (pointed
at ∞). These are related by the intriguing formula P1 = S1 ∧Gm. A common
notational convention which we will follow is to define

Sp,q := (S1)∧(p−q) ∧G∧qm

for any p ≥ q. In particular, we then have S1 = S1,0, Gm = S1,1 and P1 = S2,1.
One can take the theory one step further by passing to the stable homotopy cat-
egory SH(k), a triangulated category in which the suspension functors Sp,q ∧ −
become invertible. This category is usually constructed using P1-spectra. The
triangulated shift functor is given by suspension with the simplicial sphere S1,0.

Finally and crucially, the analogy with topology can be made precise: when
we take our ground field k to be the complex numbers, or more general any
subfield of C, we have a complex realization functor

H(k)→ H (11)

that sends a smooth scheme X to its set of complex points X(C) equipped
with the analytic topology. There is also a pointed realization functor and,
moreover, a triangulated functor of the stable homotopy categories

SH(k)→ SH (12)

which takes Σ∞(X+) to Σ∞(X(C)+) for any smooth scheme X [Rio06, Théo-
rème I.123; Rio07a, Théorème 5.26].

1.5 Representing algebraic and hermitian K-theory

Grassmannians of r-planes in kn+r can be constructed as smooth projective
varieties over any field k. Viewing them as objects in Spck, we can form
their colimits Grr and Gr in the same way as in topology. The following
analogue of Theorem 1.5 is established in [MV99, § 4]; see Théorème III.3 and
Assertion III.4 in [Rio06].

Theorem 1.8. For smooth schemes X over k we have natural isomorphisms

K0(X) ∼= H(k)(X,Z×Gr) (13)

such that the inclusion of Grr,n →֒ {d} × Grr,n →֒ Z × Gr corresponds to the
class [Ur,n] + (d− r)[O] in K0(Grr,n).

Documenta Mathematica 16 (2011) 465–511



Witt Groups of Complex Cellular Varieties 477

An analogous result for hermitian K-theory has recently been obtained by
Schlichting and Tripathi4: Let Grndr,n denote the “non-degenerate Grassman-

nians” defined as open subvarieties of Grr,r+2n as above, and let Grndr and

Grnd be the respective colimits. Then for smooth schemes over k we have
natural isomorphisms

GW0(X) ∼= H(k)(X,Z×Grnd) (14)

It follows from the construction that, when (d − r) is even, the inclusion of
Grndr,n →֒ {d}×Grndr,n →֒ Z×Grnd corresponds to the class of [Und

r,n] +
d−r
2 [H] in

GW0(Grndr,n), where Und
r,n is the universal symmetric bundle over Grndr,n.

The fact that hermitian K-theory is representable in H(k) has been known for
longer, see [Hor05]. One of the advantages of having a geometric description
of a representing space, however, is that one can easily see what its complex
realization is. In particular, this gives us an alternative way to define the
comparison maps. For any smooth complex scheme X we have the following
commutative squares, in which the left vertical arrows are the comparison maps
(8) and (9), the right vertical arrows are induced by the complex realization
functor (11).

K0(X) ∼=

��

H(C)(X,Z×Gr)

��

K0(X(C))∼=H(X(C),Z×Gr)

GW0(X) ∼=

��

H(C)(X,Z×Grnd)

��

KO0(X(C))∼=H(X(C),Z×Grnd)

Some of the results quoted here are in fact known in a much greater generality.
Firstly, higher algebraic and hermitian K-groups of X are obtained by passing
to suspensions of X in (13) and (14). Even better, algebraic and hermitian
K-theory are representable in the stable A1-homotopy category SH(k). Let
us make the statement a little more precise by fixing some notation. Given a
spectrum E in SH(k), we obtain a bigraded reduced cohomology theory Ẽ∗,∗

on H•(k) and a corresponding unreduced theory E∗,∗ on H(k) by setting

Ẽp,q(X ) := SH(k)(Σ∞X , Sp,q ∧ E) for X ∈ H•(k)
Ep,q(X) := Ẽp,q(X+) for X ∈ H(k)

A spectrum K representing algebraic K-theory was first constructed in [Voe98,
§ 6.2]; see [Rio06] or [Rio07b] for some further discussion. It is (2,1)-periodic,
meaning that in SH(k) we have an isomorphism

S2,1 ∧K
∼=→ K

4Talk “Geometric representation of hermitian K-theory in A1-homotopy theory” at the
Workshop “Geometric Aspects of Motivic Homotopy Theory”, 6.–10. September 2010 at the
Hausdorff Center for Mathematics, Bonn
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Thus, the bigrading of the corresponding cohomology theory Kp,q is slightly
artificial. The identification with the usual notation for algebraic K-theory is
given by

Kp,q(X) = K2q−p(X) (15)

For hermitian K-theory we have an (8,4)-periodic spectrum KO, and the cor-
responding cohomology groups KOp,q are honestly bigraded. The translation
into the notation used for hermitian K-groups in Section 1.1 is given by

KOp,q(X) = GWq
2q−p(X) (16)

We will refer to the number 2q − p as the degree of the group KOp,q(X).
The relation with Balmer’s Witt groups obtained by combining (16) and (2) is
illustrated by the following table:

KOp,q p = 0 1 2 3 4 5 6 7

q = 0 GW0 W1 W2 W3 W0 W1 W2 W3

q = 1 GW1
2 GW1

1 GW1 W2 W3 W0 W1 W2

q = 2 GW2
4 GW2

3 GW2
2 GW2

1 GW2 W3 W0 W1

q = 3 GW3
6 GW3

5 GW3
4 GW3

3 GW3
2 GW3

1 GW3 W0

As for the representing spaces in the unstable homotopy category, it is known
that the complex realizations of KO and K represent real and complex topo-
logical K-theory. This is well-documented in the latter case, see for example
[Rio06, Proposition VI.12]. For KO, our references are slightly thin. Since the
emphasis in this article is on showing how such a result in A1-homotopy theory
can be used for some concrete computations, we will at this point succumb to
an “axiomatic” approach — the key statements we will be using are as follows:

Standing assumptions 1.9. There exist spectra K and KO in SH(C) repre-
senting algebraic K-theory and hermitian K-theory in the sense described above,
such that:

(a) The complex realization functor (12) takes K to Ktop and KO to KOtop.

(b) We have an exact triangle in SH(C) of the form

KO ∧ S1,1 η→ KO→ K→ S1,0 ∧ . . . (17)

which corresponds to the usual triangle in SH.

These results are announced in [Mor06]. Independent constructions of spec-
tra representing hermitian K-theory can be found in [Hor05] and in a recent
preprint of Panin and Walter [PW10].
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2 The comparison maps

It follows immediately from 1.9 that complex realization induces comparison
maps

k̃p,q : K̃p,q(X )→ K̃p(X (C))
k̃p,qh : K̃Op,q(X )→ K̃Op(X (C))

and hence comparison maps kp,q and kp,qh on K- and hermitian K-groups. In
particular, in degrees 0 and −1 we have maps

k0,0 : K0(X)→ K0(X(C))

gwq := k2q,qh : GWq(X)→ KO2q(X(C))

wq := k2q−1,q−1h : Wq(X)→ KO2q−1(X(C))

for any smooth complex scheme X . Some good properties of these maps follow
directly from the construction:

• They commute with pullbacks along morphisms of smooth schemes.

• They are compatible with suspension isomorphisms.

• They are compatible with the periodicity isomorphisms, so we can identify
kp,qh with kp+8,q+4

h (and hence wq with wq+4 and gwq with gwq+4).

It is also clear that they are compatible with long exact sequences arising from
exact triangles in SH(C). This will be particularly useful in the following two
cases.

Localization sequences. Given a smooth closed subscheme Z of a smooth
scheme X , we have an exact triangle

Σ∞(X − Z)+ → Σ∞X+ → Σ∞
(

X
X−Z

)
→ S1,0 ∧ . . .

in SH(C). It induces long exact “localization sequences” for cohomology the-
ories. For example, for hermitian K-theory we obtain sequences of the form

· · · → K̃Op,q
(

X
X−Z

)
→ KOp,q(X)→ KOp,q(X − Z)→ K̃Op+1,q

(
X

X−Z

)
→ . . .

(18)
The comparison maps commute with all maps appearing in this sequence and
the corresponding sequence of topological KO-groups.
The space X/(X − Z) depends only on the normal bundle N of Z in X . To
make this precise, we introduce the Thom space of a vector bundle E over
an arbitrary smooth scheme Z, defined as the homotopy quotient of E by the
complement of the zero section:

ThomZ(E) := E
/
(E − Z)
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Using a geometric construction known as deformation to the normal bun-
dle, Morel and Voevodsky show in Theorem 2.23 of [MV99, Chapter 3] that
X/(X − Z) is canonically isomorphic to ThomZ(N ) in the unstable pointed
A1-homotopy category. Thus, sequence (18) can be rewritten in the following
form:

. . .→ K̃Op,q(ThomZ N )→ KOp,q(X)→ KOp,q(X − Z)→
K̃Op+1,q(ThomZ N )→ KOp+1,q(X)→ KOp+1,q(X − Z)→ . . .

Karoubi/Bott sequences. The KO- and K-groups of a topological space
X fit into a long exact sequence known as the Bott sequence [Bot69, pages 75
and 1125; BG10, 4.I.B]. It has the form

. . .→ KO2i−1X → KO2i−2X → K0X → KO2iX → KO2i−1X → K1X

→ KO2i+1X → KO2iX → K0X → KO2i+2X → KO2i+1X → . . .

(19)

The maps from KO- to K-groups are essentially given by complexification (or,
depending on our choice of description of KO-groups, by forgetting the sym-
metric structure of a complex symmetric bundle), and the maps from K- to
KO-groups are given by sending a complex vector bundle to its underlying real
bundle (or to the associated hyperbolic bundle). The maps between KO-groups
are given by multiplication with the generator η of KO−1(point) (see (7)).
This long exact sequence is induced by the triangle described in 1.9. The se-
quence arising from the corresponding triangle (17) in the stable A1-homotopy
category is known as the Karoubi sequence. The comparison maps induce a
commutative ladder diagram that allows us to compare the two. Near degree
zero, this takes the following form:

. . . // KO2i−1,iX //

��

GWi−1X //

��

K0X //

��

GWiX //

��

WiX //

��

0 //

��

. . .

. . . // KO2i−1X // KO2i−2X // K0X // KO2iX // KO2i−1X // K1X // . . .
(20)

As a consequence, the comparison maps wi factor as

Wi(X)→ KO2i(X)

K0(X)
→ KO2i−1(X)

For cellular varieties, or more generally for spaces for which the odd topological
K-groups vanish, the second map in this factorization is an isomorphism.

5Unfortunately, there are misprints on both pages. In particular, the central group in the
diagram on page 112 should be K0.
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Groups with restricted support. Comparing the localization sequences
(1) and (18), we see that the groups K̃Op,q( X

X−Z ) play the role of hermitian
K-groups of X supported on Z. This should be viewed as part of any repre-
sentability statement, see for example [PW10, Theorem 6.5]. Alternatively, a
formal identification of the groups in degrees zero and below using only the
minimal assumptions we have stated could be achieved as follows:

Lemma 2.1. Let Z be a smooth closed subvariety of a smooth quasi-projective
variety X. We have the following isomorphisms:

K̃O2q,q( X
X−Z )

∼= GWq
Z(X)

K̃Op,q( X
X−Z )

∼= Wp−q
Z (X) for 2q − p < 0

Proof. Consider Z = Z × {0} as a subvariety of X ×A1. Its open complement
(X × A1) − Z contains X = X × {1} as a retract. Thus, the projection from
X×A1 onto X induces a splitting of the localization sequences associated with
(X × A1 − Z) →֒ X × A1, and we have

GWi+1
Z (X × A1) ∼= coker

(
GWi+1

1 (X × A1) →֒ GWi+1
1 (X × A1 − Z)

)

K̃O2i+2,i+1( X×A1

X×A1−Z
) ∼= coker

(
KO2i+1,i+1(X × A1) →֒ KO2i+1,i+1(X × A1 − Z)

)

By (16), we can identify the groups appearing on the right, so we obtain an
induced isomorphism of the cokernels. The quotient X × A1/(X × A1 − Z)
can be identified with the suspension of X/(X − Z) by S2,1, so we have an
isomorphism

K̃O2i+2,i+1( X×A1

X×A1−Z )
∼= K̃O2i,i( X

X−Z )

On the other hand, we have analogous isomorphisms

GWi+1
Z (X × A1) ∼= GWi

Z(X)

for Grothendieck-Witt and Witt groups. For Witt groups, this is a special case
of Theorem 2.5 in [Nen07], the case when Z = X being Theorem 8.2 in [BG05].
The corresponding isomorphisms of Grothendieck-Witt groups may be deduced
via Karoubi induction. The proof in lower degrees is analogous.

2.1 Twisting by line bundles

As described in Section 1.1, there is a natural notion of Witt groups twisted by
line bundles. In the homotopy theoretic approach, such a twist can be encoded
by passing to the Thom space of the bundle.

Definition 2.2. For a vector bundle E of constant rank r over a smooth scheme
X , we define the hermitian K-groups of X with coefficients in E by

KOp,q(X ; E) := K̃Op+2r,q+r(Thom E)
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Likewise, for any complex vector bundle of rank r over a topological space X ,
we define

KOp(X ; E) := K̃Op+2r(Thom E)

When E is a trivial bundle, its Thom space is just a suspension of X , so that
KOp,q(X ; E) and KOp,q(X) agree.

Lemma 2.3. For any vector bundle E over a smooth quasi-projective variety
X, we have isomorphisms

KO2q,q(X ; E) ∼= GWq(X ; det E)
KOp,q(X ; E) ∼= Wp−q(X ; det E) for 2q − p < 0

Proof. This follows from Lemma 2.1 and Nenashev’s Thom isomorphisms for
Witt groups: for any vector bundle E of rank r there is a canonical Thom
class in Wr

X(E) which induces an isomorphism Wi(X ; det E) ∼= Wi+r
X (E) by

multiplication [Nen07, Theorem 2.5]. This Thom class actually comes from a
class in GWr

X(E), and, as in the proof of Lemma 2.1, we can deduce that it
induces an analogous isomorphism on Grothendieck-Witt groups via Karoubi
induction.

Remark. The isomorphisms of Lemmas 2.1 and 2.3 are constructed here in a
rather ad hoc fashion, and we have taken little care in recording their precise
form. Whenever we give an argument concerning the comparison maps on
“twisted groups” in the following, we do all constructions on the level of rep-
resentable groups of Thom spaces. The identifications with the usual twisted
groups are only needed to identify the final output of concrete calculations as
in Section 4.

It follows similarly from Thom isomorphisms in topology that the groups
KO(X ; E) only depend on the determinant line bundle of E :

Lemma 2.4. For complex vector bundles E and F on a topological space X
with identical first Chern class modulo 2, we have

KOp(X ; E) ∼= KOp(X ;F)

Proof. A complex vector bundle E whose first Chern class vanishes modulo
2 has a spin structure and is therefore oriented with respect to KO-theory
[ABS64, § 12]. That is, we have a Thom isomorphism

KOpX
∼=−→ K̃Op+2r(Thom E)

Now suppose c1(E) ≡ c1(F) mod 2. We may view E ⊕ E ⊕ F both as a vector
bundle over E and as a vector bundle over F , and by assumption it is oriented
with respect to KO-theory in both cases. Thus, both groups in the lemma can
be identified with KOp(X ; E ⊕ E ⊕ F).
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Remark 2.1. In general the identifications of Lemma 2.4 are non-canonical.
Given a spin structure on a real vector bundle, the constructions in [ABS64] do
yield a canonical Thom class, but there may be several different spin structures
on the same bundle. Still, canonical identifications exist in many cases. For
example, there is a canonical spin structure on the square of any complex line
bundle, yielding canonical identifications

KOp(X ;L) ∼= KOp(X ;L⊗M⊗2)

for any two complex line bundles L andM over X . Moreover, as different spin
structures on a spin bundle over X are classified by the singular cohomology
group H1(X ;Z/2), all spin structures arising in the context of complex cellular
varieties below will be unique.

2.2 The comparison for cellular varieties

Theorem 2.5. For a smooth cellular complex variety X, the following com-
parison maps are isomorphisms:

K0(X)
∼=−→ K0(X(C))

gwq : GWq(X)
∼=−→ KO2q(X(C))

wq : Wq(X)
∼=−→ KO2q−1(X(C))

This remains true for twisted groups (see Section 2.1).

As indicated in the introduction, the first isomorphism is well-known and al-
most self-evident, given that both K0(X) and K0(X(C)) are free abelian of
rank equal to the number of cells of X . In particular, both the algebraic group
K0(C) and the topological K-group K0(point) are isomorphic to the integers,
generated by the trivial line bundle, and the comparison map is the obvious
isomorphism.
Let us begin the proof of the theorem by also considering the other two maps
first in the case when X is just a point Spec(C). We can easily see that the
corresponding groups are isomorphic by direct comparison:

KOp,q(C) p = 0 1 2 3 4 5 6 7

q = 0 ZZZ 0 0 0 Z/2 0 0 0
q = 1 . . . . . . 0 0 0 Z/2 0 0
q = 2 . . . . . . . . . . . . ZZZ 0 Z/2 0
q = 3 . . . . . . . . . . . . . . . . . . ZZZ/2 ZZZ/2

KOp(point) ZZZ 0 0 0 ZZZ 0 ZZZ/2 ZZZ/2

Table 1: (Grothendieck-)Witt and KO-groups of a point.
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To see that the isomorphisms are given by our comparison maps, we can use
the comparison of the Karoubi and Bott sequences. First, setting i = 0 in Dia-
gram (20), we see that gw0 and w0 are isomorphisms on a point. As W0(C) is
the only non-trivial Witt group of a point, it follows that wq is an isomorphism
on a point in general, so that we have

. . . // GWq−1 //

gwq−1

��

K0
//

∼=
��

GWq //

gwq

��

Wq //

∼=
��

0 //

��

. . .

. . . // KO2q−2 // K0 // KO2q // KO2q−1 // 0 // . . .

Given the periodicity of the Grothendieck-Witt groups, repeated applications
of the Five Lemma now show that gwq is an isomorphism on a point for all
values of q. (This strategy of proof is known as “Karoubi induction”.)

We now treat the hermitian case in general. The case of algebraic/complex K-
theory could be dealt with similarly, or deduced from the hermitian case using
triangle (17). It will be helpful to consider not only the maps gwq = k2q,qh and

wq+1 = k2q+1,q
h in degrees 0 and −1, respectively, but also the maps k2q−1,qh

in degree 1 and the maps k2q+2,q
h in degree −2. We will prove the following

extended statement:

Theorem 2.6. For a smooth cellular variety X, the hermitian comparison
maps in degrees 1, 0, −1 and −2 have the properties indicated:

KO2q−1,q(X)։ KO2q−1(X(C))

KO2q,q(X)
∼=→ KO2q(X(C))

KO2q+1,q(X)
∼=→ KO2q+1(X(C))

KO2q+2,q(X) KO2q+2(X(C))

The analogous statements for twisted groups are also true.

Remark 2.2. The map in degree 1 is not an isomorphism even whenX is a point.
For example, it is known that KO−1,0(C) = Z/2 (see [Kar05, Example 18]),
from which we may deduce via the Karoubi sequence that KO1,1(C) ∼= C∗. In
particular, KO1,1(C) cannot be isomorphic to KO1(point) = 0.
The map in degree −2 can be identified with the inclusion of the 2-torsion
subgroup of KO2q+2(X(C)) into KO2q+2(X(C)) for any cellular variety X .
This follows from the theorem and the description of the KO-groups of cellular
varieties given in Lemma 3.1.
In degrees less than −2, the comparison map is necessarily zero. The problem is
that while η : Wp−q(X)→Wp−q(X) is an isomorphism in all negative degrees,
the topological η is nilpotent (η3 = 0).

The proof of Theorem 2.6 will proceed by induction over the number of cells of
X and occupy the remainder of this section. To begin the induction, we need

Documenta Mathematica 16 (2011) 465–511



Witt Groups of Complex Cellular Varieties 485

to consider the case of only one cell, which immediately reduces to the case of
a point by homotopy invariance. In this case, degrees 0 and −1 have already
been dealt with above. In degrees 1 and −2, on the other hand, most of the
statements are trivial, and we only need to look at a few particular cases, which
we postpone to the end of the proof.

Spheres. Assuming the theorem to be true for a point, the compatibility of
the comparison maps with suspensions immediately shows that the theorem
is also true for the reduced cohomology of the spheres (P1)∧d = S2d,d. To be
precise, the following maps in degrees 1, 0, −1 and −2 have the properties
indicated:

K̃O2q−1,q(S2d,d)։ K̃O2q−1(S2d)

K̃O2q,q(S2d,d)
∼=→ K̃O2q(S2d)

K̃O2q+1,q(S2d,d)
∼=→ K̃O2q+1(S2d)

K̃O2q+2,q(S2d,d) K̃O2q+2(S2d)

Cellular varieties. Now let X be a smooth cellular variety. By defini-
tion, X has a filtration by closed subvarieties ∅ = Z0 ⊂ Z1 ⊂ Z2 · · · ⊂ ZN = X
such that the open complement of Zk in Zk+1 is isomorphic to Ank for some
nk. In general, the subvarieties Zk will not be smooth. Their complements
Uk := X − Zk in X , however, are always smooth as they are open in X . So
we obtain an alternative filtration X = U0 ⊃ U1 ⊃ U2 · · · ⊃ UN = ∅ of X by
smooth open subvarieties Uk. Each Uk contains a closed cell Ck ∼= Ank with
open complement Uk+1.

Our inductive hypothesis is that we have already proved the theorem for Uk+1,
and we now want to prove it for Uk. We can use the following exact triangle
in SH(C):

Σ∞(Uk+1)+ → Σ∞(Uk)+ → Σ∞Thom(NCk\Uk)→ S1,0 ∧ . . .

As Ck is a cell, the Quillen-Suslin theorem tells us that the normal bundle
NCk\Uk of Ck in Uk has to be trivial. Thus, Thom(NCk\Uk) is A1-weakly

equivalent to S2d,d, where d is the codimension of Ck in Uk. Figure 1 displays
the comparison between the long exact cohomology sequences induced by this
triangle. The inductive step is completed by applying the Five Lemma to each
dotted map in the diagram.
The twisted case. To obtain the theorem in the case of coefficients in a
vector bundle E over X , we replace the exact triangle above by the triangle

Σ∞ Thom(E|Uk+1
) → Σ∞ Thom(E|Uk) → Σ∞ Thom(E|Ck ⊕NCk\Uk) → S1,0 ∧ . . .

The existence of this exact triangle is shown in the next lemma. The Thom
space on the right is again just a sphere, so we can proceed as in the untwisted
case.
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��

···

��

K̃O2q−1,q(S2d,d)

��

// // K̃O2q−1(S2d)

��

KO2q−1,q(Uk)

��

k2q−1,q
h //____ KO2q−1(Uk)

��

KO2q−1,q(Uk+1)

��

// // KO2q−1(Uk+1)

��

K̃O2q,q(S2d,d)

��

∼= // K̃O2q(S2d)

��

KO2q,q(Uk)

��

k2q,qh //_____ KO2q(Uk)

��

KO2q,q(Uk+1)

��

∼= // KO2q(Uk+1)

��

K̃O2q+1,q(S2d,d)

��

∼= // K̃O2q+1(S2d)

��

KO2q+1,q(Uk)

��

k2q+1,q
h //____ KO2q+1(Uk)

��

KO2q+1,q(Uk+1)

��

∼= // KO2q+1(Uk+1)

��

K̃O2q+2,q(S2d,d)

��

// // K̃O2q+2(S2d)

��

KO2q+2,q(Uk)

��

k2q+2,q
h //____ KO2q+2(Uk)

��

KO2q+2,q(Uk+1)

��

// // KO2q+2(Uk+1)

��···

Figure 1: The inductive step.
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Lemma 2.7. Given a smooth subvariety Z of a smooth variety X with comple-
ment U , and given any vector bundle E over X, we have an exact triangle

Σ∞Thom(E|U )→ Σ∞ThomE → Σ∞Thom(E|Z ⊕NZ\X)→ S1,0 ∧ . . .

Proof. From the Thom isomorphism theorem we know that the Thom space of
a vector bundle over a smooth base is A1-weakly equivalent to the quotient of
the vector bundle by the complement of the zero section. Consider the closed
embeddings U →֒ (E−Z), X →֒ E and Z →֒ E . Computing the normal bundles,
we obtain

(E − Z)/(E −X) ∼= ThomU (E|U )
E/(E −X) ∼= ThomX E
E/(E − Z) ∼= ThomZ(E|Z ⊕NZ\X)

The claim follows by passing to the stable homotopy category and applying the
octahedral axiom to the composition of the embeddings (E −X) ⊆(E − Z) ⊆ E .

Remaining details concerning a point. To finish the proof of Theo-
rem 2.6, we now return to the maps of degrees 1 and −2 in the case of a point,
which we skipped above. First, let us deal with degree 1. The odd KO-groups
of a point are all trivial except for KO−1, so k2q−1,qh is trivially a surjection un-

less q ≡ 0 mod 4. In that case, surjectivity of k−1,0h is clear from the following
diagram:

. . . // KO−1,0 //

k−1,0
h

��

GW−1 //

∼=
��

K0
//

∼=
��

. . .

. . . // KO−1 //

=

KO−2 // K0 // . . .

. . . // KO−1,0 // //

k−1,0
h

��

Z/2
0 //

∼=
��

Z //

∼=
��

. . .

. . . // Z/2
∼= // Z/2

0 // Z // . . .

Lastly, we consider what happens in degree −2. Again, three out of four cases
are trivial as KO2q+2,q = Wq+2 is zero unless q ≡ 2 mod 4. For the non-trivial
case, consider the map η appearing in triangle (17). As the negative algebraic
K-groups of C are zero, η yields automorphisms of Wp−q in negative degrees. In
topology, the corresponding maps are given by multiplication with a generator
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η of KO−1, and η2 generates KO−2. So the commutative square

W0 ∼= //

∼=
��

W0

k0,−2
h

��

KO−1
η

∼=
// KO−2

shows that k0,−2h is an injection (in fact, an isomorphism), as claimed. This
completes the proof of Theorem 2.6.

Remark 2.3. We indicate briefly how Theorem 2.5 can alternatively be obtained
by working only with the maps in degrees 0 and −1 that can be defined by
more elementary means. The basic strategy — comparing the localization
sequences arising from the inclusion of a closed cell Ck into the union of “higher”
cells Uk — still works. But we cannot deduce that the comparison maps are
isomorphisms on Uk from the fact that they are isomorphisms on Uk+1 because
the parts of the sequences that we can actually compare are now too short.
We can, however, still deduce that the maps in degree 0 with domains the
Grothendieck-Witt groups of Uk are surjective, and that the maps in degree
−1 with domains the Witt groups of Uk are injective. The inductive step can
then be completed with the help of the Bott/Karoubi sequences. This argument
works even without assuming that the comparison maps are compatible with
the boundary maps in localization sequences in general: in the relevant cases
the cohomology groups involved are so simple that this property can be checked
by hand.

3 The Atiyah-Hirzebruch spectral sequence

We now aim to prepare the ground for the discussion of the KO-theory of some
examples in the next section. The main computational tool will be the Atiyah-
Hirzebruch spectral sequence, which in topology exists for any generalized co-
homology theory and any finite-dimensional CW complex X [Ada95, III.7;
Koc96, Theorem 4.2.7]. For KO-theory, it has the form

Ep,q2 = Hp(X ; KOq(point))⇒ KOp+q(X)

with differential dr of bidegree (r,−r + 1). The E2-page is thus concentrated
in the half-plane p ≥ 0 and 8-periodic in q: we have the integral cohomology
of X in rows q ≡ 0 and q ≡ −4 mod 8, its cohomology with Z/2-coefficients
in rows q ≡ −1 and q ≡ −2, and all other rows are zero. The differential d2 is
given by Sq2 ◦π2 and Sq2 on rows q ≡ 0 and q ≡ −1, respectively, where

Sq2 : H∗(X ;Z/2)→ H∗+2(X ;Z/2)

is the second Steenrod square and π2 is mod-2 reduction [Fuj67, 1.3].
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The spectral sequence is multiplicative [Koc96, Proposition 4.2.9]. That is, the
multiplication on the E2-page induced by the cup product on singular cohomol-
ogy and the ring structure of KO∗(point) (see (7)) descends to a multiplication
on all subsequent pages, such that the multiplication on the E∞-page is com-
patible with the multiplication on KO∗(X). In particular, each page is a module
over KO∗(point). The differentials of the spectral sequence are derivations, i. e.
they satisfy a Leibniz rule.

3.1 The Atiyah-Hirzebruch spectral sequence for cellular vari-
eties

For cellular varieties, or more generally for CW complexes with only even-
dimensional cells, the spectral sequence becomes simple enough to make some
general deductions. We summarize some lemmas of Hoggar and Kono and
Hara.

Lemma 3.1. [Hog69, 2.1 and 2.2] Let X be a CW complex with only even-
dimensional cells. Then:

• The ranks of the free parts of KO0X and KO4X are equal to the number
t0 of cells of X of dimension a multiple of 4.

• The ranks of the free parts of KO2X and KO6X are equal to the number
t1 of cells of X of dimension 2 modulo 4.

• The groups of odd degrees are two-torsion, i. e. KO2i−1X = (Z/2)si for
some si.

• KO2iX is isomorphic to the direct sum of its free part and KO2i+1X.

Table 3 in Section 4.1 summarizes these statements.

Proof. The cohomology of X is free on generators given by the cells and con-
centrated in even degrees. The first two statements thus follow easily from the
Atiyah-Hirzebruch spectral sequence for KO-theory (e. g. after tensoring with
Q). On the other hand, we see from the Atiyah-Hirzebruch spectral sequence
for complex K-theory that K0(X) is a free abelian group on the cells while
K1(X) is zero. The last two statements thus become consequences of the Bott
sequence (19).

The free part of KO∗ is thus very simple. In good cases, the spectral se-
quence also provides a nice description of the 2-torsion. To see this, note that
Sq2 Sq2 = Sq3 Sq1 must vanish when the cohomology of X with Z/2-coefficients
is concentrated in even degrees. So we can view (H∗(X ;Z/2), Sq2) as a differ-
ential graded algebra over Z/2. To lighten the notation, we will write

H∗(X, Sq2) := H∗(H∗(X ;Z/2), Sq2)
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for the cohomology of this algebra. We keep the same grading as before, so
that it is concentrated in even degrees. The row q ≡ −1 on the E3-page is
given by H∗(X, Sq2) · η, where η is the generator of KO−1(point). Since it is
the only row that contributes to KO∗ in odd degrees, we arrive at the following
lemma, which will be central to our computations.

Lemma 3.2. Let X be as above. If the Atiyah-Hirzebruch spectral sequence of
KO∗(X) degenerates on the E3-page, then

KO2i−1(X) ∼=
⊕

k

H2i+8k(X, Sq2)

In all the examples we consider below, the spectral sequence does indeed degen-
erate at this stage. However, showing that it does can be tricky. One step in the
right direction is the following observation of Kono and Hara [KH91, Proposi-
tion 1].

Lemma 3.3. Let X be as above. If the differentials d3, d4, . . ., dr−1 are trivial
and dr is non-trivial, then r ≡ 2 mod 8. In other words, the first non-trivial
differential after d2 can only appear on a page Er with page number r ≡ 2
mod 8.
Such a differential is non-zero only on rows q ≡ 0 and q ≡ −1 mod 8. If it
is non-zero on some x in row q ≡ 0, then it is also non-zero on ηx in row
q ≡ −1. Conversely, if it is non-zero on some y in row q ≡ −1, there exists
some x in row q ≡ 0 such that y = xη and dr is non-zero on x.

Proof. We see from the spectral sequence of a point that drη = 0 for all dif-
ferentials. Thus, multiplication by η gives a map of bidegree (0,−1) on the
spectral sequence that commutes with the differentials. On the E2-page this
map is mod-2 reduction from row q ≡ 0 to row q ≡ −1 and the identity between
rows q ≡ −1 and q ≡ −2. It follows that on the E3-page multiplication by η
induces a surjection from row q ≡ 0 to row q ≡ −1 and an injection of row
q ≡ −1 into row q ≡ −2. This implies all statements above.

We derive a corollary that we will use to deduce that the spectral sequence
collapses for certain Thom spaces:

Corollary 3.4. Suppose we have a continuous map p : X → T of CW com-
plexes with only even-dimensional cells. Suppose further that the Atiyah-
Hirzebruch spectral sequence for KO∗(X) collapses on the E3-page, and that
p∗ induces an injection in row q ≡ −1:

p∗ : H∗(T, Sq2) →֒ H∗(X, Sq2)

Then the spectral sequence for KO∗(T ) also collapses at this stage.

Proof. Write dr for the first non-trivial higher differential, so r ≡ 2 mod 8.
Then, for any element x in row q ≡ 0, we have p∗(drx) = drp

∗(x) = 0 since the
spectral sequence for X collapses. From our assumption on p∗ we can deduce
that drx = 0. By the preceding lemma, this is all we need to show.
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3.2 The Atiyah-Hirzebruch spectral sequence for Thom spaces

In order to compute twisted KO-groups, we need to apply the Atiyah-
Hirzebruch spectral sequence of KO-theory to Thom spaces. So let X be a
finite-dimensional CW complex, and let π : E → X be a vector bundle of con-
stant rank over X . Though we will be mainly interested in the case when E
is complex, we may more generally assume here that E is any real vector bun-
dle which is oriented. Then the Thom isomorphism for singular cohomology
tells us that the reduced cohomology of the Thom space Thom E is additively
isomorphic to the cohomology of X itself, apart from a shift in degrees by
r := rankR E . The isomorphism is given by multiplication with a Thom class θ
in H̃r(ThomE ;Z):

H∗(X ;Z)
∼=−→ H̃∗+r(Thom E ;Z)

x 7→ π∗(x) · θ
Similarly, the reduction of θ modulo two induces an isomorphism of the re-
spective singular cohomology groups with Z/2-coefficients. Thus, apart from
a shift of columns, the entries on the E2-page of the spectral sequence for
K̃O∗(Thom E) are identical to those on the E2-page for KO∗(X). However, the
differentials may differ.

Lemma 3.5. Let E π→ X be a complex vector bundle of constant rank over a
topological space X, with Thom class θ as above. The second Steenrod square
on H̃∗(Thom E ;Z/2) is given by “ Sq2 + c1(E)”, where c1(E) is the first Chern
class of E modulo two. That is,

Sq2(π∗x · θ) = π∗
(
Sq2(x) + c1(E)x

)
· θ

for any x ∈ H∗(X ;Z/2). More generally, if E is a real oriented vector bundle,
the second Steenrod square on the cohomology of its Thom space is given by
“ Sq2 + w2(E)”, where w2 is the second Stiefel-Whitney class of E.

Proof. This is a special case of an identity of Thom, which he in fact used to
define Stiefel-Whitney classes:

Sqi(π∗x · θ) = π∗
(
Sqi(x) + wi(E)x

)
· θ

See [MS74, page 91].

When X is a CW complex with cells only in even dimensions, the operation
Sq2+c1 can be viewed as a differential onH∗(X ;Z/2) for any c1 in H2(X ;Z/2).
Extending our previous notation, we denote the cohomology with respect to
this differential by

H∗(X, Sq2 + c1) := H∗(H∗(X ;Z/2), Sq2 + c1) (21)
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Corollary 3.6 (of Lemmas 3.2 and 3.5). If the Atiyah-Hirzebruch spectral

sequence of K̃O∗(Thom E) degenerates on the E3-page, then

KO2i−1(X ; E) ∼=
⊕

k

H2i+8k(X, Sq2 + c1E)

It is true more generally that the differentials in the spectral sequence for
K̃O∗(Thom E) depend only on the second Stiefel-Whitney class of E . This
follows from the observation that the Atiyah-Hirzebruch spectral sequence is
compatible with Thom isomorphisms, as is made more precise by the next
lemma:
Fix a vector bundle E of constant rank r over a finite-dimensional CW complex
X . Suppose E is oriented with respect to ordinary cohomology and let θ ∈
H̃∗(Thom E ;Z) be a Thom class.

Lemma 3.7. If E is oriented with respect to KO∗, then θ survives to the E∞-
page of the Atiyah-Hirzebruch spectral sequence computing K̃O∗(Thom E), and
the Thom isomorphism for H∗ extends to an isomorphism of spectral sequences.
That is, for each page right multiplication with the class of θ in Ẽr,0s (Thom E)
gives an isomorphism of E∗,∗s (X)-modules

E∗,∗s (X)
·θ−→∼= Ẽ∗+r,∗s (Thom E)

Moreover, any lift of θ ∈ Ẽr,0∞ (Thom E) to K̃Or(Thom E) defines a Thom class
of E with respect to KO∗. The isomorphism of the E∞-pages of the spectral
sequences is induced by the Thom isomorphism given by multiplication with any
such class.

Proof. We may assume without loss of generality that X is connected. Fix
a point x on X . The inclusion of the fibre over x into E induces a map
ix : S

r →֒ Thom E . By assumption, the pullback i∗x on ordinary cohomology

maps θ to a generator of H̃r(Sr), and the pullback on K̃O∗ gives a surjection

K̃O∗(Thom E)
i∗x
։ K̃Or(Sr)

Consider the pullback along ix on the E∞-pages of the spectral sequences
for Sr and ThomE . Since we can identify Ẽr,0∞ (Thom E) with a quotient of

K̃Or(Thom E) and Ẽr,0∞ (Sr) with K̃Or(Sr), we must have a surjection

i∗x : Ẽ
r,0
∞ (Thom E)։ Ẽr,0∞ (Sr)

On the other hand, the behaviour of i∗x on Ẽr,0∞ is determined by its behaviour

on H̃r, whence we can only have such a surjection if θ survives to the Ẽ∞-
page of ThomE . Thus, all differentials vanish on θ, and if multiplication by θ
induces an isomorphism from E∗,∗s (X) to Ẽ∗+r,∗s on page s, it also induces an
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isomorphism on the next page. Lastly, consider any lift of θ to an element Θ
of K̃Or(Thom E). It is clear by construction that right multiplication with Θ

gives an isomorphism from E∞(X) to Ẽ∞(ThomE), and thus it also gives an

isomorphism from KO∗(X) to K̃O∗(Thom E). Thus, Θ is a Thom class for E
with respect to KO∗.

Lemma 3.7 allows the following strengthening of Lemma 2.4:

Corollary 3.8. For complex vector bundles E and F over X with identical
first Chern class modulo 2, the spectral sequences computing K̃O∗(Thom E) and
K̃O∗(ThomF) can be identified up to a possible shift of columns when E and
F have different ranks.

4 Examples

We now turn to the study of projective homogeneous varieties, that is, varieties
of the form G/P for some complex simple linear algebraic group G with a
parabolic subgroup P . Any such variety has a cell decomposition [BGG73,
Proposition 5.1], so that our comparison theorem applies. As far as we are
only interested in the topology of G/P , we may alternatively view it as a
homogeneous space for the compact real Lie group Gc corresponding to G:

Proposition 4.1. Let P be a parabolic subgroup of a simple complex algebraic
group G. Then we have a diffeomorphism

G
/
P ∼= Gc

/
K

where K is a compact subgroup of maximal rank in a maximal compact subgroup
Gc of G. More precisely, K is a maximal compact subgroup of a Levi subgroup
of P .

Proof. The Iwasawa decomposition for G viewed as a real Lie group implies
that we have a diffeomorphism G ∼= Gc ·P [GOV94, Ch. 6, Prop. 1.7], inducing
a diffeomorphism of quotients as claimed for K = Gc ∩ P . Since Gc →֒ G is a
homotopy equivalence, so is the inclusion Gc ∩ P →֒ P . On the other hand, if
L is a Levi subgroup of P then P = U ⋊ L, where U is unipotent and hence
contractible. So the inclusion L →֒ P is also a homotopy equivalence. It follows
that any maximal compact subgroup Lc of L is also maximal compact in P ,
and conversely that any maximal compact subgroup of P will be contained as
a maximal compact subgroup in some Levi subgroup of P . We may therefore
assume that K ⊂ Lc ⊂ L ⊂ P and conclude that K →֒ Lc is a homotopy
equivalence. Since both groups are compact, it follows that in fact K ∼= Lc.

The KO-theory of homogeneous varieties has been studied intensively. In par-
ticular, the papers [KH91] and [KH92] of Kono and Hara provide complete
computations of the (untwisted) KO-theory of all compact irreducible hermi-
tian symmetric spaces, which we list in Table 2. For the convenience of the
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G
/
P G Diagram of P Gc

/
K

Grassmannians
(AIII)

Grm,n SLm+n ◦ · · · ◦ • ◦ · · · ◦
1 n n+m–1

U(m+ n)

U(m)× U(n)

Maximal
symplectic
Grassmannians
(CI)

Xn Sp2n ◦ ◦ · · · ◦ ◦ < • Sp(n)
/
U(n)

Projective
quadrics of
dimension
n ≥ 3 (BDI)

Qn SOn+2 • ◦ · · · ◦ > ◦ (n odd)

◦
• ◦ · · · ◦

{{
CC (n even)

◦

SO(n+ 2)

SO(n)× SO(2)

Spinor
varieties (DIII)

Sn SO2n

◦
◦ ◦ · · · ◦

{{
CC
•

SO(2n)
/
U(n)

Exceptional
hermitian
symmetric
spaces:

EIII E6 ◦

◦ ◦ ◦ ◦ •

Ec
6

Spin(10) · S1

(Spin(10)∩S1=Z/4)

EVII E7 ◦

◦ ◦ ◦ ◦ ◦ •

Ec
7

Ec
6 · S1

(Ec6∩S1=Z/3)

Table 2: List of irreducible compact hermitian symmetric spaces. The symbols
AIII, CI, . . . refer to E. Cartan’s classification. In the description of Grm,n we
use U(m+ n) instead of Gc = SU(m+ n).

reader, we indicate how each of these arises as a quotient of a simple complex
algebraic group G by a parabolic subgroup P , describing the latter in terms
of marked nodes on the Dynkin diagram of G as in [FH91, § 23.3]. The last
column gives an alternative description of each space as a quotient of a compact
real Lie group.

On the following pages, we will run through this list of examples and, in each
case, extend Kono and Hara’s computations to include KO-groups twisted by
a line bundle. Since each of these spaces is a “Grassmannian” in the sense that
the parabolic subgroup P in G is maximal, its Picard group is free abelian on
a single generator. Thus, there is exactly one non-trivial twist that we need to
consider. In most cases, we — reassuringly — recover results for Witt groups
that are already known. In a few other cases, we consider our results new.

The untwisted KO-theory of complete flag varieties is also known in all three
classical cases thanks to Kishimoto, Kono and Ohsita. We do not reproduce
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their result here but instead refer the reader directly to [KKO04]. By a recent
result of Calmès and Fasel, all Witt groups with non-trivial twists vanish for
these varieties [CF11].

4.1 Notation

Topologically, a cellular variety is a CW complex with cells only in even (real)
dimensions. For such a CW complex X the KO-groups can be written in the
form displayed in Table 3 below. This was shown in Section 3.1 in the case
when the twist L is trivial, and the general case follows: if X is a CW complex
with only even-dimensional cells, so is the Thom space of any complex vector
bundle over X [MS74, Lemma 18.1].
In the following examples, results on KO∗ will be displayed by listing the values
of the ti and si. Since the ti are just given by counting cells, and since the
numbers of odd- and even-dimensional cells of a Thom space ThomXE only
depend on X and the rank of E , the ti are in fact independent of L. The si,
on the other hand, certainly will depend on the twist, and we will sometimes
acknowledge this by writing si(L).

KO6(X ;L) = Zt1 ⊕ (Z/2)s0 = GW3(X ;L)
KO7(X ;L) = (Z/2)s0 = W0(X ;L)
KO0(X ;L) = Zt0 ⊕ (Z/2)s1 = GW0(X ;L)
KO1(X ;L) = (Z/2)s1 = W1(X ;L)
KO2(X ;L) = Zt1 ⊕ (Z/2)s2 = GW1(X ;L)
KO3(X ;L) = (Z/2)s2 = W2(X ;L)
KO4(X ;L) = Zt0 ⊕ (Z/2)s3 = GW2(X ;L)
KO5(X ;L) = (Z/2)s3 = W3(X ;L)

Table 3: Notational conventions in the examples. Only the si depend on L.

4.2 Projective spaces

Complex projective spaces are perhaps the simplest examples for which Theo-
rem 2.5 asserts something non-trivial, so we describe the results here separately
before turning to complex Grassmannians in general. The computations of the
Witt groups of projective spaces were certainly landmark events in the history
of the theory. In 1980, Arason was able to show that the Witt group W0(Pn)
of Pn over a field k agrees with the Witt group of k [Ara80]. The shifted Witt
groups of projective spaces, and more generally of arbitrary projective bundles,
were first computed by Walter in [Wal03b]. Quite recently, Nenashev deduced
the same results via different methods [Nen09].
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In the topological world, complete computations of KOi(CPn) were first pub-
lished in a 1967 paper by Fujii [Fuj67]. It is not difficult to deduce the
values of the twisted groups KOi(CPn;O(1)) from these: the Thom space
Thom(OCPn(1)) can be identified with CPn+1, so

KOi(CPn;O(1)) = K̃Oi+2(Thom(O(1)))
= K̃Oi+2(CPn+1)

Alternatively, we could do all required computations directly following the
methods outlined in Section 3. The result, in any case, is displayed in Ta-
ble 4, coinciding with the known results for the (Grothendieck-)Witt groups.

KO∗(CPn;L) L ≡ O L ≡ O(1)
t0 t1 s0 s1 s2 s3 s0 s1 s2 s3

n ≡ 0 mod 4 (n/2) + 1 n/2 1 0 0 0 1 0 0 0
n ≡ 1 (n+ 1)/2 (n+ 1)/2 1 1 0 0 0 0 0 0
n ≡ 2 (n/2) + 1 n/2 1 0 0 0 0 0 1 0
n ≡ 3 (n+ 1)/2 (n+ 1)/2 1 0 0 1 0 0 0 0

Table 4: KO-groups of projective spaces

4.3 Grassmannians

We now consider the Grassmannians Grm,n of complex m-planes in Cm+n.
Again both the Witt groups and the untwisted KO-groups are already known:
the latter by Kono and Hara [KH91], the former by the work of Balmer and
Calmès [BC08]. A detailed comparison of the two sets of results in the untwisted
case has been carried out by Yagita [Yag09]. We provide here an alternative
topological computation of the twisted groups.
Balmer and Calmès state their result by describing an additive basis of the
total Witt group of Grm,n in terms of certain “even Young diagrams”. This is
probably the most elegant approach, but needs some space to explain. We will
stick instead to the tabular exposition used in the other examples. Let O(1)
be a generator of Pic(Grm,n), say the dual of the determinant line bundle of
the universal m-bundle over Grm,n. The result is displayed in Table 5.
Our computation is based on the following geometric observation. Let Um,n
and U⊥m,n be the universal m-bundle and the orthogonal n-bundle on Grm,n,

so that U ⊕ U⊥ = O⊕(m+n). We have various natural inclusions between the
Grassmannians of different dimensions, of which we fix two:

Grm,n−1 →֒ Grm,n via the inclusion of the first m+ n− 1 coordinates into
Cm+n

Grm−1,n →֒ Grm,n by sending an (m− 1)-plane Λ to the m-plane Λ⊕〈em+n〉,
where e1, e2, . . . , em+n are the canonical basis vectors of Cm+n
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KO∗(Grm,n;L) L ≡ O L ≡ O(1)
t0 t1 s0 s1 s2 s3 s0 s1 s2 s3

m and n odd s.t.
m ≡ n

a

2

a

2
b b 0 0 0 0 0 0

m and n odd s.t.
m 6≡ n

a

2

a

2
b 0 0 b 0 0 0 0





m ≡ n ≡ 0

m ≡ 0 and n odd

n ≡ 0 and m odd

a+ b

2

a− b

2
b 0 0 0 b 0 0 0





m ≡ n ≡ 2

m ≡ 2 and n odd

n ≡ 2 and m odd

a+ b

2

a− b

2
b 0 0 0 0 0 b 0

m ≡ 0 and n ≡ 2
a+ b

2

a− b

2
b 0 0 0 b1 0 b2 0

m ≡ 2 and n ≡ 0
a+ b

2

a− b

2
b 0 0 0 b2 0 b1 0

All equivalences (≡) are modulo 4. For the values of a and b = b1 + b2, put
k := ⌊m/2⌋ and l := ⌊n/2⌋. Then

a :=
(

m+n

m

)
b :=

(
k+l

k

)
b1 :=

(
k+l−1

k

)
b2 :=

(
k+l−1

k−1

)

Table 5: KO-groups of Grassmannians

Lemma 4.2. The normal bundle of Grm,n−1 in Grm,n is the dual U∨m,n−1 of
the universal m-bundle. Similarly, the normal bundle of Grm−1,n in Grm,n
is given by U⊥m−1,n. In both cases, the embeddings of the subspaces extend
to embeddings of their normal bundles, such that one subspace is the closed
complement of the normal bundle of the other.

This gives us two cofibration sequences of pointed spaces:

Grm−1,n+
i→֒ Grm,n+

p
։ Thom(U∨m,n−1) (22)

Grm,n−1+
i→֒ Grm,n+

p
։ Thom(U⊥m−1,n) (23)

These sequences are the key to relating the untwisted KO-groups to the twisted
ones. Following the notation in [KH91], we write Am,n for the cohomology of
Grm,n with Z/2-coefficients, denoting by ai and bi the Chern classes of U and
U⊥, respectively, and by a and b the total Chern classes 1 + a1 + · · ·+ am and
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1 + b1 + · · ·+ bn:

Am,n =
Z/2 [a1, a2, . . . , am, b1, b2, . . . bn]

a · b = 1

We write d for the differential given by the second Steenrod square Sq2, and
d′ for Sq2 + a1. To describe the cohomology of Am,n with respect to these
differentials, it is convenient to introduce the algebra

Bk,l =
Z/2

[
a22, a

2
4, . . . , a

2
2k, b

2
2, b

2
4, . . . , b

2
2l

]

(1 + a22 + · · ·+ a22k)(1 + b22 + · · ·+ b22l) = 1

Note that this subquotient of A2k,2l is isomorphic to Ak,l up to a “dilatation”
in grading. Proposition 2 in [KH91] tells us that

H∗(Am,n, d) =




Bk,l if (m,n) = (2k, 2l), (2k + 1, 2l) or

(2k, 2l+ 1)

Bk,l ⊕Bk,l · ambn−1 if (m,n) = (2k + 1, 2l+ 1)

Here, the algebra structure in the case where both m and n are odd is deter-
mined by (ambn−1)2 = 0.

Lemma 4.3. The cohomology of Am,n with respect to the twisted differential
d′ is as follows:

H∗(Am,n, d
′) =





Bk,l−1 · am ⊕Bk−1,l · bn if (m,n) = (2k, 2l)

Bk,l · am if (m,n) = (2k, 2l+ 1)

Bk,l · bn if (m,n) = (2k + 1, 2l)

0 if (m,n) = (2k + 1, 2l+ 1)

Proof. Let us shift the dimensions in the cofibration sequences (22) and (23)
in such a way that we have the Thom spaces of U∨m,n and U⊥m,n on the right.
Since the cohomologies of the spaces involved are concentrated in even degrees,
the associated long exact sequence of cohomology groups falls apart into short
exact sequences. Reassembling these, we obtain two short exact sequences of
differential (Am,n+1, d)- and (Am+1,n, d)-modules, respectively:

0→ (Am,n, d
′) · θ∨ p∗−→(Am,n+1, d)

i∗−→ (Am−1,n+1, d)→ 0 (24)

0→ (Am,n, d
′) · θ⊥ p∗−→(Am+1,n, d)

i∗−→ (Am+1,n−1, d)→ 0 (25)

Here, θ∨ and θ⊥ are the respective Thom classes of U∨m,n and U⊥m,n. The map
i∗ in the first row is the obvious quotient map annihilating am. Its kernel, the
image of Am,n under multiplication by am, is generated as an Am,n+1-module
by its unique element in degree 2m, and thus we must have p∗(θ∨) = am.
Likewise, in the second row we have p∗(θ⊥) = bn.

Documenta Mathematica 16 (2011) 465–511



Witt Groups of Complex Cellular Varieties 499

The lemma can be deduced from here case by case. For example, when both
m and n are even, i∗ maps H∗(Am,n+1, d) = Bk,l to the first summand of
H∗(Am−1,n+1, d) = Bk−1,l ⊕Bk−1,l · am−1bn by annihilating a2m. We know by
comparison with the short exact sequences for the Am,n that the kernel of this
map is Bk,l−1 mapping to Bk,l under multiplication by a2m. Thus, we obtain a
short exact sequence

0→ Bk−1,l · am−1bn ∂−→ H∗(Am,n, d
′) · θ∨ p∗−→ Bk,l−1 · a2m → 0 (26)

For the Steenrod square Sq2 of the top Chern class am of U , we have Sq2(am) =
a1am. This can be checked, for example, by expressing am as the product of
the Chern roots of U . Consequently, d′(am) = 0. Together with the fact
that H∗(Am,n, d′) is a module over H∗(Am,n+1, d), this shows that we can
define a splitting of p∗ by sending a2m to amθ

∨. Thus, H∗(Am,n, d′) contains
Bk,l−1 · am as a direct summand. If instead of working with sequence (24)
we work with sequence (25), we see that H∗(Am,n, d′) also contains a direct
summand Bk−1,l · bn. These two summands intersect trivially, and a dimension
count shows that together they encompass all of H∗(Am,n, d′). Alternatively,
one may check explicitly that the boundary map ∂ above sends am−1bn to bnθ.
The other cases are simpler.

Lemma 4.4. The Atiyah-Hirzebruch spectral sequence for K̃O∗(ThomU∨m,n) col-
lapses at the E3-page.

Proof. By Proposition 4 of [KH91] we know that the spectral sequence for
KO∗(Grm,n) collapses as this stage, for any m and n. Now, if both m and n
are even, we have

(Bk,l−1 · am ⊕Bk−1,l · bn) · θ
in the (−1)st row of the E3-pages of the spectral sequences for ThomU∨ and
ThomU⊥, where θ = θ∨ or θ⊥, respectively. In the case of U∨ we see from (26)
that p∗ maps the second summand injectively to the E3-page of the spectral
sequence for KO∗(Grm,n+1). Similarly, in the case of U⊥, the first summand
is mapped injectively to the E3-page of KO∗(Grm+1,n). Since the spectral
sequences for ThomU∨ and ThomU⊥ can be identified via Corollary 3.8, we
can argue as in Corollary 3.4 to see that they must collapse at this stage. Again,
the cases when at least one of m, n is odd are similar but simpler.

We may now apply Corollary 3.6. The entries of Table 5 that do not appear in
[KH91], i. e. those of the last four columns, follow from Lemma 4.3 by noting
that Bk,l is concentrated in degrees 8i and of dimension dimBk,l = dimAk,l =(
k+l
k

)
.

4.4 Maximal symplectic Grassmannians

The Grassmannian of isotropic n-planes in C2n with respect to a non-
degenerate skew-symmetric bilinear form is given by Xn = Sp(n)/U(n). The
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universal bundle U on the usual Grassmannian Gr(n, 2n) restricts to the univer-
sal bundle on Xn, and so does the orthogonal complement bundle U⊥. We will
continue to denote these restrictions by the same letters. Thus, U ⊕U⊥ ∼= C2n

on Xn, and the fibres of U are orthogonal to those of U⊥ with respect to the
standard hermitian metric on C2n. The determinant line bundles of U and U⊥
give dual generators O(1) and O(−1) of the Picard group of Xn.

Theorem 4.5. The additive structure of KO∗(Xn;L) is as follows:

t0 t1 si(O) si(O(1))
n even 2n−1 2n−1 ρ(n2 , i) ρ(n2 , i− n)
n odd 2n−1 2n−1 ρ(n+1

2 , i) 0

Here, for any i ∈ Z/4 we write ρ(n, i) for the dimension of the i-graded piece
of a Z/4-graded exterior algebra ΛZ/2(g1, g2, . . . , gn) on n homogeneous gener-
ators g1, g2, . . . , gn of degree 1, i. e.

ρ(n, i) =
∑

d≡i
mod 4

(
n

d

)

A table of the values of ρ(n, i) can be found in [KH92, Proposition 4.1].

It turns out to be convenient to work with the vector bundle U⊥ ⊕O for the
computation of the twisted groups KO∗(Xn;O(1)). Namely, we have the fol-
lowing analogue of Lemma 4.2.

Lemma 4.6. There is an open embedding of the bundle U⊥ ⊕O over the sym-
plectic Grassmannian Xn into the symplectic Grassmannian Xn+1 whose closed
complement is again isomorphic to Xn.

Proof. To fix notation, let e1, e2 be the first two canonical basis vectors of
C2n+2, and embed C2n into C2n+2 via the remaining coordinates. Assuming
Xn is defined in terms of a skew-symmetric form Q2n, define Xn+1 with respect
to the form

Q2n+2 :=




0 1 0
−1 0 0
0 0 Q2n




Then we have embeddings i1 and i2 of Xn into Xn+1 sending an n-plane Λ ⊂
C2n to e1 ⊕ Λ or e2 ⊕ Λ in C2n+2, respectively.
We extend i1 to an embedding of U⊥ ⊕ O by sending an n-plane Λ ∈ Xn

together with a vector v in Λ⊥ ⊂ C2n and a complex scalar z to the graph
ΓΛ,v,z ⊂ C2n+2 of the linear map

(
z Q2n(−, v)
v 0

)
: 〈e1〉 ⊕ Λ→ 〈e2〉 ⊕ Λ⊥
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To avoid confusion, we emphasize that v is orthogonal to Λ with respect to a
hermitian metric on C2n. The value of Q2n(−, v), on the other hand, may well
be non-zero on Λ. Consider the above embedding of U⊥⊕O together with the
embedding i2:

U⊥ ⊕O −֒−→ Xn+1 Xn←−−֓
i2

(Λ, v, z) 7→ ΓΛ,v,z

〈e2〉 ⊕ Λ Λ←[

To see that the two embeddings are complementary, take an arbitrary (n+1)-
plane W in Xn+1. If e2 ∈W then we can consider a basis

e2,
( a1

0
v1

)
, . . . ,

( an
0
vn

)

ofW , and the fact that Q2n+2 vanishes onW implies that all ai are zero. Thus
W can be identified with i2(〈v1, . . . , vn〉).
If, on the other hand, e2 is not contained in W then we must have a vector of
the form t(1, z′, v′) in W , for some z′ ∈ C and v′ ∈ C2n. Extend this vector to
a basis of W of the form ( 1

z′

v′

)
,
(

0
b1
v1

)
, . . . ,

(
0
bn
vn

)

and let Λ := 〈v1, . . . , vn〉. The condition that Q2n+2 vanishes on W implies
that Q vanishes on Λ and that bi = Q2n(vi, v

′) for each i. In particular, Λ is n-
dimensional. Moreover, we can replace the first vector of our basis by a vector
t(1, z, v) with v ∈ Λ⊥, by subtracting appropriate multiples of the remaining
basis vectors. Since Q vanishes on Λ we have Q2n(vi, v

′) = Q2n(vi, v) and our
new basis has the form (

1
z
v

)
,
(

0
Q(v1,v)
v1

)
, . . . ,

(
0

Q(vn,v)
vn

)

This shows that W = ΓΛ,v,z.

Corollary 4.7. We have a cofibration sequence

Xn+
i→֒ Xn+1+

p
։ ThomXn(U⊥ ⊕O)

The associated long exact cohomology sequence splits into a short exact se-
quence of H∗(Xn+1)-modules since all cohomology here is concentrated in even
degrees:

0→ H̃∗(ThomXn(U⊥ ⊕O))
p∗→ H∗(Xn+1)

i∗→ H∗(Xn)→ 0 (27)

Lemma 4.8. Let ci denote the ith Chern classes of U over Xn. We have

H∗(Xn, Sq
2) =

{
Λ(a1, a5, a9, . . . , a4m−3) if n = 2m

Λ(a1, a5, a9, . . . , a4m−3, a4m+1) if n = 2m+ 1

H∗(Xn, Sq
2 + c1) =

{
Λ(a1, a5, . . . , a4m−3) · c2m if n = 2m

0 if n is odd
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for certain generators ai of degree 2i.

Proof. Consider the short exact sequence (27). The mod-2 cohomology of Xn

is an exterior algebra on the Chern classes ci of U ,

H∗(Xn;Z/2) = Λ(c1, c2, . . . , cn)

and i∗ is given by sending cn+1 to zero. Thus, p∗ is the unique morphism of
H∗(Xn+1;Z/2)-modules that sends the Thom class θ of U⊥ ⊕O to cn+1.
This short exact sequence induces a long exact sequence of cohomology groups
with respect to the Steenrod square Sq2. The algebra H∗(Xn, Sq

2) was com-
puted in [KH92, 2–2], with the result displayed above, so we already know
two thirds of this sequence. Explicitly, we have a4i+1 = c2ic2i+1,

6 so i∗ is the
obvious surjection sending ai to ai (or to zero). Thus, the long exact sequence
once again splits.
If n = 2m we obtain a short exact sequence

0→ H∗(X2m, Sq
2+c1) ·θ p∗→ Λ(a1, . . . , a4m−3, a4m+1)

i∗→ Λ(a1, . . . , a4m−3)→ 0

We see that H∗(X2m, Sq
2 + c1) · θ is isomorphic to Λ(a1, . . . , a4m−3) · a4m+1

as a Λ(a1, . . . , a4m+1)-module. It is thus generated by a single element, which
is the unique element of degree 8m + 2. Since p∗(c2mθ) = a4m+1, the class of
c2mθ is the element we are looking for, and the result displayed above follows.
If, on the other hand, n is odd, then i∗ is an isomorphism and H∗(Xn, Sq

2 + c1)
must be trivial.

We see from the proof that p∗ induces an injection of H∗(Xn, Sq
2 + c1) · θ

into H∗(Xn, Sq
2). Since we already know from [KH92, Theorem 2.1] that

the Atiyah-Hirzebruch spectral sequence for KO∗(Xn) collapses, we can apply

Corollary 3.4 to deduce that the spectral sequence for K̃O∗(ThomXn(U⊥ ⊕O))
collapses at the E3-page as well. This completes the proof of Theorem 4.5.

4.5 Quadrics

We next consider smooth complex quadrics Qn in Pn+1. As far as we are aware,
the first complete results on (shifted) Witt groups of split quadrics were due
to Walter: they are mentioned together with the results for projective bundles
in [Wal03a] as the main applications of that paper. Unfortunately, they seem
to have remained unpublished. Partial results are also included in Yagita’s
preprint [Yag04], see Corollary 8.3. More recently, Nenashev obtained almost
complete results by considering the localization sequences arising from the in-
clusion of a linear subspace of maximal dimension [Nen09]. Calmès informs me
that the geometric description of the boundary map given in [BC09] can be
used to show that these localization sequences split in general, yielding a com-
plete computation. The calculation described here is completely independent
of these results.

6In [KH92] the generators are written as c2ic′2i+1 with c′2i+1 = c2i+1 + c1c2i.
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KO∗(Qn;L) L ≡ O L ≡ O(1)
t0 t1 s0 s1 s2 s3 s0 s1 s2 s3

n ≡ 0 mod 8 (n/2) + 2 n/2 2 0 0 0 2 0 0 0
n ≡ 1 (n+ 1)/2 (n+ 1)/2 1 1 0 0 1 1 0 0
n ≡ 2 (n/2) + 1 (n/2) + 1 1 2 1 0 0 0 0 0
n ≡ 3 (n+ 1)/2 (n+ 1)/2 1 1 0 0 0 0 1 1

n ≡ 4 (n/2) + 2 n/2 2 0 0 0 0 0 2 0
n ≡ 5 (n+ 1)/2 (n+ 1)/2 1 0 0 1 0 1 1 0
n ≡ 6 (n/2) + 1 (n/2) + 1 1 0 1 2 0 0 0 0
n ≡ 7 (n+ 1)/2 (n+ 1)/2 1 0 0 1 1 0 0 1

Table 6: KO-groups of projective quadrics (n ≥ 3)

For n ≥ 3 the Picard group of Qn is free abelian on a single generator given
by the restriction of the universal line bundle O(1) over Pn+1. We will use the
same notation O(1) for this restriction.

Theorem 4.9. The KO-theory of a smooth complex quadric Qn of dimension
n ≥ 3 is as described in Table 6.

Untwisted KO-groups. Before turning to KO∗(Qn;O(1)) we review the
initial steps in the computation of the untwisted KO-groups. The integral
cohomology of Qn is well-known:
If n is even, write n = 2m. We have a class x in H2(Qn) given by a hyperplane
section, and two classes a and b in Hn(Qn) represented by linear subspaces of
Q of maximal dimension. These three classes generate the cohomology multi-
plicatively, modulo the relations

xm = a+ b xm+1 = 2ax

ab =

{
0 if n ≡ 0

axm if n ≡ 2
a2 = b2 =

{
axm if n ≡ 0 mod 4

0 if n ≡ 2 mod 4

Additive generators can thus be given as follows:

d 0 2 4 . . . n− 2 n n+ 2 n+ 4 . . . 2n

Hd(Qn) 1 x x2 . . . xm−1 a, b ax ax2 . . . axm

If n is odd, write n = 2m + 1. Then similarly multiplicative generators are
given by the class of a hyperplane section x in H2(Qn) and the class of a linear
subspace a in Hn+1(Qn) modulo the relations xm+1 = 2a and a2 = 0.

d 0 2 4 . . . n− 1 n+ 1 n+ 3 n+ 5 . . . 2n

Hd(Qn) 1 x x2 . . . xm a ax ax2 . . . axm
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The action of the Steenrod square on H∗(Qn;Z/2) is also well-known; see for
example [Ish92, Theorem 1.4 and Corollary 1.5] or [EKM08, § 78]:

Sq2(x) = x2

Sq2(a) =

{
ax if n ≡ 0 or 3 mod 4

0 if n ≡ 1 or 2

Sq2(b) = Sq2(a) (for even n)

As before, we write H∗(Qn, Sq2) for the cohomology of H∗(Qn;Z/2) with re-
spect to the differential Sq2.

Lemma 4.10. Write n = 2m or n = 2m+1 as above. The following table gives
a complete list of the additive generators of H∗(Qn, Sq2).

d 0 . . . n− 1 n n+ 1 . . . 2n

Hd(Qn, Sq2) 1 axm if n ≡ 0 mod 4
1 a if n ≡ 1
1 a, b ab if n ≡ 2
1 xm if n ≡ 3

The results of Kono and Hara on KO∗(Q) follow from here provided there are
no non-trivial higher differentials in the Atiyah-Hirzebruch spectral sequence.
This is fairly clear in all cases except for the case n ≡ 2 mod 4. In that case,
the class a + b = xm can be pulled back from Qn+1, and therefore all higher
differentials must vanish on a + b. But one has to work harder to see that all
higher differentials vanish on a (or b). Kono and Hara proceed by relating the
KO-theory of Qn to that of the spinor variety Sn

2
+1 discussed in Section 4.6.

Twisted KO-groups. We now compute KO∗(Qn;O(1)).
Let θ ∈ H2(ThomQnO(1)) be the Thom class of O(1), so that multiplication
by θ maps the cohomology of Qn isomorphically to the reduced cohomology of
ThomQnO(1). The Steenrod square on H̃∗(ThomQnO(1);Z/2) is determined
by Lemma 3.5: for any y ∈ H∗(Qn;Z/2) we have Sq2(y · θ) = (Sq2 y + xy) · θ.
We thus arrive at

Lemma 4.11. The following table gives a complete list of the additive generators
of H̃∗(ThomQnO(1), Sq2).

d . . . n+ 1 n+ 2 n+ 3 . . . 2n+ 2

H̃d(. . . ) aθ, bθ if n ≡ 0 mod 4
xmθ axmθ if n ≡ 1

if n ≡ 2
aθ axmθ if n ≡ 3
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We claim that all higher differentials in the Atiyah-Hirzebruch spectral sequence
for K̃O∗(ThomQnO(1)) vanish. For even n this is clear. But for n = 8k + 1
the differential d8k+2 might a priori take xmθ to axmθ, and for n = 8k+ 3 the
differential d8k+2 might take aθ to axmθ.
We therefore need some geometric considerations. Namely, the Thom space
ThomQnO(1) can be identified with the projective cone over Qn embedded in
Pn+2. This projective cone can be realized as the intersection of a smooth
quadric Qn+2 ⊂ Pn+3 with its projective tangent space at the vertex of the
cone [Har92, p. 283]. Thus, we can consider the following inclusions:

Qn
j→֒ ThomQnO(1)

i→֒ Qn+2

The composition is the inclusion of the intersection of Qn+2 with two transver-
sal hyperplanes.

Lemma 4.12. All higher differentials ( dk with k > 2) in the Atiyah-Hirzebruch
spectral sequence for KO∗(ThomQnO(1)) vanish.

Proof. We need only consider the cases when n is odd. Write n = 2m+ 1.
When n ≡ 1 mod 4 we claim that i∗ maps xm+1 in Hn+1(Qn+2, Sq2) to
xmθ in Hn+1(ThomQnO(1), Sq2). Indeed, j∗i∗ maps the class of the hy-
perplane section x in H2(Qn+2) to the class of the hyperplane section x in
H2(Qn). So i∗x in H2(ThomQnO(1)) must be non-zero, hence equal to θ mod-
ulo 2. It follows that i∗(xm+1) = θm+1. Since θ2 = Sq2(θ) = xθ, we have
θm+1 = xmθ, proving the claim. As we already know that all higher differen-
tials vanish on H∗(Qn+2, Sq2), we may now deduce that they also vanish on
H∗(ThomQnO(1), Sq2).
When n ≡ 3 mod 4 we claim that i∗ maps a in Hn+3(Qn+2, Sq2) to aθ in
Hn+3(ThomQnO(1), Sq2). Indeed, a represents a linear subspace of codimen-
sion m + 2 in Qn+2 and is thus mapped to the class of a linear subspace of
the same codimension in Qn: j∗i∗(a) = ax in Hn+3(Qn). Thus, i∗(a) is non-
zero in Hn+3(ThomQnO(1)), equal to aθ modulo 2. Again, this implies that
all higher differentials vanish on H∗(ThomQnO(1), Sq2) since they vanish on
H∗(Qn+2, Sq2).

The additive structure of KO∗(Qn;O(1)) thus follows directly from the re-

sult for Hd(Qn, Sq2 + x) = H̃d+2(ThomQnO(1)) displayed in Lemma 4.11 via
Corollary 3.6.

4.6 Spinor varieties

Let GrSO(n,N) be the Grassmannian of n-planes in CN isotropic with respect
to a fixed non-degenerate symmetric bilinear form, or, equivalently, the Fano
variety of projective (n − 1)-planes contained in the quadric QN−2. For each
N > 2n, this is an irreducible homogeneous variety. In particular, for N = 2n+
1 we obtain the spinor variety Sn+1 = GrSO(n, 2n+1). The variety GrSO(n, 2n)
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falls apart into two connected components, both of which are isomorphic to
Sn. This is reflected by the fact that we can equivalently identify Sn with
SO(2n− 1)/U(n− 1) or SO(2n)/U(n).
As for all Grassmannians, the Picard group of Sn is isomorphic to Z; we fix a
line bundle S which generates it. The KO-theory twisted by S vanishes:

Theorem 4.13. For all n ≥ 2 the additive structure of KO∗(Sn;L) is as
follows:

t0 t1 si(O) si(S)
n ≡ 2 mod 4 2n−2 2n−2 ρ(n2 , 1− i) 0

otherwise 2n−2 2n−2 ρ(⌊n2 ⌋,−i) 0

Here, the values ρ(n, i) are defined as in Theorem 4.5.

Proof. The cohomology of Sn with Z/2-coefficients has simple generators e2,
e4, . . . , e2n−2, i. e. it is additively generated by products of distinct elements of
this list. Its multiplicative structure is determined by the rule e22i = e4i, and the
second Steenrod square is given by Sq2(e2i) = ie2i+2 [Ish92, Proposition 1.1].
In both formulae it is of course understood that e2j = 0 for j ≥ n. What we
need to show is that for all n ≥ 2 we have

H∗(Sn, Sq
2 + e2) = 0

Let us abbreviate H∗(Sn, Sq
2 + e2) to (Hn, d

′). We claim that we have the
following short exact sequence of differential Z/2-modules:

0→ (Hn, d
′)
·e2n→ (Hn+1, d

′)→ (Hn, d
′)→ 0 (28)

This can be checked by a direct calculation. Alternatively, it can be deduced
from the geometric considerations below. Namely, it follows from the cofi-
bration sequence of Corollary 4.15 that we have such an exact sequence of
Z/2-modules with maps respecting the differentials given by Sq2 on all three
modules. Since they also commute with multiplication by e2, they likewise
respect the differential d′ = Sq2 + e2.
The long exact cohomology sequence associated with (28) allows us to argue
by induction: if H∗(Hn, d

′) = 0 then also H∗(Hn+1, d
′) = 0. Since we can see

by hand that H∗(H2, d
′) = 0, this completes the proof.

We close with a geometric interpretation of the exact sequence (28), via an
analogue of Lemmas 4.2 and 4.6. Let us write U for the universal bundle over
Sn, i. e. for the restriction of the universal bundle over Gr(n − 1, 2n − 1) to
Sn, and U⊥ for the restriction of the orthogonal complement bundle, so that
U ⊕U⊥ is the trivial (2n− 1)-bundle over Sn. As in Section 4.4, we emphasize
that under these conventions the fibres of U and U⊥ are perpendicular with
respect to a hermitian metric on C2n−1 — they are not orthogonal with respect
to the chosen symmetric form.
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Lemma 4.14. The spinor variety Sn embeds into the spinor variety Sn+1 with
normal bundle U⊥ such that the embedding extends to an embedding of this
bundle. The closed complement of U⊥ in Sn+1 is again isomorphic to Sn.

Corollary 4.15. We have a cofibration sequence

Sn+
i→֒ Sn+1+

p
։ ThomSn U⊥

Note however that, unlike in the symplectic case, the first Chern classes of U
and U⊥ pull back to twice a generator of the Picard group of Sn. For example,
the embedding of S2 into Gr(1, 3) can be identified with the embedding of the
one-dimensional smooth quadric into the projective plane, of degree 2, and the
higher dimensional cases can be reduced to this example. Thus, c1(U) and
c1(U⊥) are trivial in Pic(Sn)/2.

proof of Lemma 4.14. The proof is similar to the proof of Lemma 4.6. Let e1, e2
be the first two canonical basis vectors of C2n+1, and let C2n−1 be embedded
into C2n+1 via the remaining coordinates. Let Sn be defined in terms of a
symmetric form Q on C2n−1, and define Sn+1 in terms of

Q2n+1 :=



0 1 0
1 0 0
0 0 Q




Let i1 and i2 be the embeddings of Sn into Sn+1 sending an (n − 1)-plane
Λ ⊂ C2n−1 to e1 ⊕ Λ or e2 ⊕ Λ in C2n+1, respectively. Given an (n− 1)-plane
Λ ∈ Sn together with a vector v in Λ⊥ ⊂ C2n−1, consider the linear map

(
− 1

2Q(v, v) −Q(−, v)
v 0

)
: 〈e1〉 ⊕ Λ→ 〈e2〉 ⊕ Λ⊥

Sending (Λ, v) to the graph of this function defines an open embedding of U⊥
whose closed complement is the image of i2.

4.7 Exceptional hermitian symmetric spaces

Lastly, we turn to the exceptional hermitian symmetric spaces EIII and EVII.
We write O(1) for a generator of the Picard group in both cases.

Theorem 4.16. The KO-groups of the exceptional hermitian symmetric spaces
EIII and EVII are as follows:

L ≡ O L ≡ O(1)
t0 t1 s0 s1 s2 s3 s0 s1 s2 s3

KO∗(EIII;L) 15 12 3 0 0 0 3 0 0 0
KO∗(EVII;L) 28 28 1 3 3 1 0 0 0 0
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Proof. The untwisted KO-groups have been computed in [KH92], the main
difficulty as always being to prove that the Atiyah-Hirzebruch spectral sequence
collapses. For the twisted groups, however, there are no problems. We quote
from § 3 of said paper that the cohomologies of the spaces in question can be
written as

H∗(EIII;Z/2) = Z/2
[
t, u
]/

(u2t, u3 + t12)

H∗(EVII;Z/2) = Z/2
[
t, v, w

]/
(t14, v2, w2)

with t of degree 2 in both cases, and u, v and w of degrees 8, 10 and 18,
respectively. The Steenrod squares are determined by Sq2 u = ut and Sq2 v =
Sq2 w = 0. Thus, we find

H∗(EIII, Sq2 + t) = Z/2 · u⊕ Z/2 · u2 ⊕ Z/2 · u3

H∗(EVII, Sq2 + t) = 0

By Lemma 3.3 the Atiyah-Hirzebruch spectral sequence for EIII must collapse.
This gives the result displayed above.
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Section 1. Introduction

Let (P,OP (1)) be a smooth projective variety of dimension n over an alge-
braically closed field k. The Chow variety Cd,d′(P ) parameterizes algebraic
cycles on P . In particular, there is a bijection between Cd,d′(P )(k) and the set
of effective algebraic cycles on P of dimension d and degree d′. (We suppress
the degree since it plays no role.) Let a and b be nonnegative integers such
that a + b + 1 = n. The product Ca(P ) × Cb(P ) parameterizes pairs (A,B)
of an a-dimensional cycle A and a b-dimensional cycle B. Since a + b is less
than n, one expects a generic A and B to be disjoint. But one expects that
the incidence locus I parameterizing incident pairs is a codimension 1 closed
subvariety in Ca(P )× Cb(P ).
For k the field of complex numbers, Mazur [14] constructed a Weil divisor
supported on the incidence locus as follows. Consider the diagram of schemes:

P × Ca(P )× Cb(P )
∆ //

pr23

��

P × P × Ca(P )× Cb(P )

Ca(P )× Cb(P )
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Let Ua, Ub denote the universal cycles on P × Ca(P ), P × Cb(P ) respectively
(these exist in characteristic zero). Since ∆ is a local complete intersection
morphism, there is a refined Gysin homomorphism∆!, as constructed in [7, 6.2].
Using standard operations in intersection theory, one has pr23∗∆

!(Ua ⊠ Ub), a
cycle of codimension 1 on Ca(P )×Cb(P ). The main question of [14] is whether
pr23∗∆

!(Ua⊠Ub) is a Cartier divisor. The main result of this paper is a positive
answer to Mazur’s question.

Theorem 1.1. Let U ⊂ Ca(P ) × Cb(P ) denote the locus of disjoint cycles,
i.e., the complement of the incidence locus I . Let U ′ ⊂ U denote the union
of products Ca × Cb of irreducible components Ca ⊂ Ca(P ), Cb ⊂ Cb(P ) over
which the universal cycles intersect properly.

• There is a Cartier divisor D on U which is supported on U − U .
• The restriction of D to U ′ is an effective Cartier divisor.
• Let T be the spectrum of a discrete valuation ring R ⊃ k, with generic

point η. Let g : T → U ⊂ Ca(P )×Cb(P ) be a morphism corresponding
to cycles Z,W on P × T , and such that g(η) ∈ U . Let sD denote the
canonical section of the line bundle OU (D). Then we have

ord g∗(sD) = deg(Z ·W ) ∈ Z,

where Z ·W ∈ A0(P × T ) is the class constructed in [7, 20.2].

Remark 1.2. Our methods will suggest there is a line bundle on the whole of
the product Ca(P )×Cb(P ), but it does not seem reasonable to expect a Cartier
divisor beyond the locus U . On the locus U ′, the operation ∆! is defined on
the cycle level, and all of the coefficients appearing in pr23∗∆

!(Ua ⊠ Ub) are

positive. On the locus U − U ′, negative coefficients may appear.

Techniques. Our approach to Mazur’s question, initiated in [20], is to de-
fine the incidence line bundle L on a product of Hilbert schemes mapping to
the corresponding Chow varieties, and then show L is the pullback of a line
bundle M on the Chow varieties. Our L will be equipped with a canonical
nonvanishing rational section on the locus of disjoint subschemes, and we will
show this section is induced by a trivialization of M on U . Briefly, L is the
determinant of a perfect complex formed from the universal flat families. Then
we form a proper hypercovering of U along the Hilbert-Chow morphism, and a
descent datum for L on this hypercovering. This amounts to an identification
φ between two pullbacks of L, satisfying a cocycle condition.

At first we define the descent datum φ over a normal base provided the incidence
has the expected dimension (5.18); this boils down to the Serre Tor-formula for
intersection multiplicities and basic properties of the determinant functor (ad-
ditivity on short exact sequences). To extend the descent datum over families
with more complicated incidence structure, we establish some moving lemmas
to produce local trivializations (5.13, 5.14), then apply Grothendieck-Riemann-
Roch to show these local sections glue (5.17, 5.32). A useful tool is the following
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result, which characterizes functions on a seminormal scheme (4.3; see also Def-
inition 4.2): a Noetherian ring A is seminormal if and only if every pointwise
function on SpecA which varies algebraically along (complete) DVRs is induced
by an element of A.

As for the effectiveness of (L, φ), i.e., that L is induced by a line bundle on
the Chow varieties, an outgrowth of 4.3 is a criterion for effective descent
(4.6) applicable to our Hilbert-Chow hypercovering: the bundle L descends to
M ∈ Pic(U) if it can be trivialized locally on U , compatibly with the descent
datum φ. The compatible local trivializations are built into the definition of
the descent datum.

Motivation. In the classical construction, the Chow variety Cd,d′(Pn) is real-
ized as a closed subvariety of the scheme of Cartier divisors of the Grassmannian
G of (n−d−1)-planes: to a d-dimensional cycle Z on Pn we associate the codi-
mension one set of (n−d−1)-planes in Pn which intersect Z. Thus the natural
ample line bundle on G ×CDiv(G ) simultaneously shows the projectivity of the
Chow variety, and endows the incidence locus (in Cd,d′(Pn)× G , a special case
of the I considered above) with the structure of an effective Cartier divisor.
This generalizes to the case Cd(Pn)×Cn−d−1(Pn) using the ruled join; see [17].

This direct geometric construction does not extend to general smooth projective
P . However, the Hilbert scheme (the moduli space for closed subschemes of
P ) and the Hilbert-Chow morphism H → C suggest another approach. The
pullback of the line bundle associated to the incidence divisor via H (Pn)×G →
C (Pn)× G is the determinant of a perfect complex formed from the universal
flat families (see the end of Section 3), and the determinant construction can be
defined for any smooth projective P . Thus one is naturally led to wonder, for
a general pair of Hilbert schemes parameterizing subschemes of dimension a, b
as above, whether the determinant line bundle descends to the corresponding
product of Chow varieties. The direct geometric construction for P = Pn and
the determinant formula are in fact compatible; see the end of Section 3.

Further motivation comes from the case of zero-cycles and divisors, where the
Hilbert-Chow morphism admits a reasonably explicit description. The equality
of the families of zero-cycles associated to two families of zero-dimensional
subschemes has a natural expression in terms of determinants; and similarly
two families of codimension one subschemes determine the same family of cycles
if the determinants of their structure sheaves agree. For a detailed study of
the determinant bundle in the case of zero-cycles and divisors, in particular the
descent to the Chow varieties, see [20].

Contents. In Section 2 we recall background material on determinant func-
tors and K-theory. In Section 3 we discuss the relevant properties of the Chow
variety and the Hilbert-Chow morphism, and define the incidence line bun-
dle and the Hilbert-Chow hypercovering along which the incidence bundle de-
scends. In Section 4 we explain the role of seminormality both in defining the
descent datum and demonstrating its effectiveness. In Section 5 we construct
the descent datum and show it is effective.
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Other work. In [24] Wang proved that a certain multiple of the incidence
divisor, namely (n−1)!(pr23∗∆!(Ua⊠Ub)), is Cartier by using the Archimedean
height pairing on algebraic cycles (over C). (See the references in [24] for
history of the height pairing.) Given disjoint cycles A,B on P as above, one
has the pairing 〈A,B〉 :=

∫
A[GB] defined by integrating a normalized Green’s

current for B over A. Wang views 〈A,B〉 as a function on the open set U in
Ca(P )×Cb(P ) consisting of disjoint cycles, and by studying the behavior of the
function as the cycles collide, obtains [24, Thm. 1.1.2] a metrized line bundle L
on U and a rational section s that is regular and nowhere zero on U , such that

log ||s(A,B)||2 = (dim(P ) − 1)!〈A,B〉. Using relative fundamental classes in
Deligne cohomology (and again over C), Barlet and Kaddar [4] constructed an
incidence Cartier divisor in the analytic setting under the assumption that the
incidence is generically finite over the parameter space. It would be interesting
to “go back” from the Chow varieties to the height pairing.

Conventions. We use the definition of the Chow variety from [13]. In char-
acteristic 0, there is a functor of effective algebraic cycles (of dimension d and
degree d′) defined on the category of seminormal k-schemes; and this functor
is represented by a seminormal, projective k-scheme Cd,d′(P ) [13, I.3.21]. In
characteristic p > 0, there are several plausible notions of a family of effective
algebraic cycles, stemming from the ambiguity of the field of definition of a cy-
cle [13, I.4.11]. In this case we work with the seminormal, projective k-scheme
Cd,d′(P ) constructed in [13, I.4.13]. This coarsely represents at least two rea-
sonable functors of effective algebraic cycles. Since we rely on the method of
“seminormal descent,” our methods do not apply to other definitions of Chow
varieties (e.g., those of Barlet [3], Angéniol [1], and Rydh [21]) when those
constructions yield Chow varieties/schemes which are not seminormal.
All schemes considered in this paper are locally Noetherian. A variety over a
field k is an integral separated scheme of finite type over k.

Acknowledgments. This paper is derived from and improves upon the au-
thor’s PhD thesis. The author thanks his thesis advisor Aise Johan de Jong.
This work was completed while the author was a wissenschaftlicher Mitarbeiter
at the Universität Duisburg-Essen.

Section 2. Determinant functors and K-groups

A determinant functor assigns an invertible sheaf to each perfect complex. We
discuss this notion following [12]. Then we quickly review some background
material on K-groups.

Notation 2.1. Let X be a scheme. Let D(X) denote the derived category
of the abelian category Mod(X) of OX -modules. Denote by D+(X), respec-
tively D−(X), the full subcategory of D(X) whose objects are complexes of
OX -modules which are bounded below, respectively bounded above. Denote
by Db(X) the full subcategory whose objects are complexes which are both
bounded below and bounded above.
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We denote by D(q)coh(X) the full triangulated subcategory of D(X) consist-
ing of pseudo-(quasi)coherent complexes, and by D∗(q)coh(X) the correspond-

ing bounded category for ∗ = +,−, b [10, 1.4 p.38, 2.1 p.85]. We denote by
Parf(X) ⊂ Db(X) the full triangulated subcategory consisting of perfect com-
plexes [9, Exp. I Def. 4.7 p.44].
Let Parf-is(X) denote the category whose objects are perfect complexes on X ,
with morphisms isomorphisms in D(X). Let Pic(X) denote the category whose
objects are invertible sheaves on X , and whose morphisms are isomorphisms.
This is a Picard category in the sense of [2, Exp. XVIII Def. 1.4.2].

Determinants. The main result of [12, Thm. 2] is that there exists up to
canonical isomorphism a unique determinant functor detX : Parf-is(X) →
Pic(X) extending the usual determinant (top exterior power) of a locally free
sheaf. Indeed the idea is to locally replace a perfect complex by a bounded
complex of locally free sheaves, and take the signed tensor product of the usual
determinants of the locally free terms. Then one shows this patches to give

a global invertible sheaf. For every true triangle of complexes 0 → F1
α−→

F2
β−→ F3 → 0 in Parf-is(X), we require an isomorphism iX(α, β) : det(F1) ⊗

det(F3)
∼−→ det(F2), and the isomorphisms i (extending the obvious i for short

exact sequences of locally free sheaves) are required to be compatible with
isomorphisms of triangles, and more generally triangles of triangles. Associated
to morphisms of schemes we have base change isomorphisms interchanging
the determinant with pullback, and these are required to be compatible with
composition of morphisms of schemes.

Remark 2.2. When X is reduced, i extends to the class of distinguished tri-
angles, is functorial over isomorphisms (in D(X)) of distinguished triangles,
and is compatible with distinguished triangles of distinguished triangles [12,
Prop. 7].

Associated Cartier divisors. If F ∈ Parf(X) is acyclic at every x ∈ X
of depth 0, then [12, Ch.II] constructs a Cartier divisor Div(F) on X and a
canonical isomorphism OX(Div(F)) ∼= detX(F) extending the trivialization
OX,x ∼= detx F at x ∈ X of depth 0. The formation of this divisor and isomor-
phism is additive on short exact sequences [12, Thm.3(ii)], and is compatible
with base change f : X ′ → X such that Lf∗(F) is acyclic at every x′ ∈ X ′
of depth 0 [12, Thm.3(v)]. Furthermore, in case X is normal and x ∈ X is a

point of depth 1, the coefficient of {x} in the Weil divisor associated to Div(F)
is the alternating sum of the lengths (at x) of the cohomology sheaves, i.e.,∑

i (−1)
i
ℓx(Hi(F)). This construction is also studied in [6, Sect. 3] and [15,

Ch. 5 Sect. 3].

We mention two further properties implicit in [12, Thm.3]. If the complex F is
acyclic, then Div(F) = 0 and the canonical isomorphism OX(Div(F)) = OX ∼=
detX(F) is the trivialization of the determinant of an acyclic complex [12,
Lemma 2]. Finally, the construction is determined by the quasi-isomorphism
class of the perfect complex F : since all filtration levels and subquotients
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appearing in the canonical filtration (“good truncation”) of F are generically

acyclic so long as F is, the additivity implies Div(F) =∑i (−1)
iDiv(Hi(F)).

K-groups. Let X be a variety. Then K0(X) is the Grothendieck group of X ,
generated by coherent sheaves on X with relations for short exact sequences
of sheaves; K0(X) is the Grothendieck group of vector bundles. When X is
regular, we have an isomorphism K0(X) ∼= K0(X). We have also the Chern
character ch : K0(X) → A∗(X), where A∗(X) is the Chow group of cycles on
X , graded by dimension. We note F ∈ Parf(X) determines a class in K0(X)
since for any abelian category A (e.g., Coh(X)), K0(A ) ∼= K0(D

b(A )); the
latter group is generated by objects of the triangulated category Db(A ) with
relations for distinguished triangles.

The group K0(X) has a topological filtration: the subgroup Fk(K0(X)) is gen-
erated by those F ∈ Coh(X) such that dim(Supp(F)) ≤ k. For a proper mor-
phism of schemes f : X → T we obtain a homomorphism f∗ : K0(X)→ K0(T )
sending (the class of) a coherent sheaf to the alternating sum of (the classes
of) its higher direct image sheaves. This preserves the topological filtration. If
T is a point and F ∈ Coh(X), then χ(F) = ch(f∗(F)).

Section 3. The Hilbert-Chow morphism and the incidence divisor

In this section we define the Chow variety, the Hilbert-Chow morphism, and
construct our proper hypercovering. Then we define the incidence line bundle
on the product of Hilbert schemes.

We recall an application of the characterization of seminormal schemes [19,
5.1], where it is shown that properties (1)-(5) below characterize the Chow
variety. For properties (6) and (7) we refer to [13].

Definition-Theorem 3.1 (Existence of the Chow variety). Let P be a smooth
projective variety over a field k. The Chow variety Cd,d′ of P is a k-scheme
with the following properties:

(1) It is projective over k.
(2) It is seminormal.
(3) For every point w ∈ Cd,d′ there exist purely inseparable field extensions

κ(w) ⊂ Li and cycles Zi on PLi such that:
(a) Zi and Zj are essentially equivalent [13, I.3.8]: they agree as cycles

over the perfection κ(w)perf of κ(w);
(b) the intersection of the fields Li is κ(w), which is the Chow field (field

of definition of the Chow form in any projective embedding of P ) of
any of the Zi [13, I.3.24.1]; and

(c) for any cycle Z on PM defined over a subfield k ⊂ M ⊂ κ(w)perf

which agrees with the Zi over κ(w)
perf (equivalently, agrees with one

Zi), we have κ(w) ⊂M (the Chow field is the intersection of all fields
of definition of the cycle).

(4) Points w of Cd,d′ are in bijective correspondence with systems (k ⊂
κ(w), {κ(w) ⊂ Li, Zi}i∈I) up to an obvious equivalence relation.
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(5) For any DVR R ⊃ k and any cycle Z on PR of relative dimension d and
degree d′ in the generic fiber, we obtain a morphism g : SpecR → Cd,d′

such that the generic fiber Zη and the special fiber Zs agree with the systems
of cycles of the previous property at g(η) and g(s).

(6) For any numerical polynomial q of degree d and with leading coefficient
d′/(d!), we obtain a morphism (the Hilbert-Chow morphism)

FC : (H q)snred → Cd,d′

by taking the fundamental cycle of the components of maximal relative di-
mension (= d)[13, I.6.3.1]. A finite number of (H q)

sn
red’s surject onto Cd,d′.

(7) Let η ∈ Cd,d′ be a generic point. Then either dim{η} = 0 or there exists a
cycle Zη on Pη defined over κ(η). In particular, if k is perfect then there
exists a Zη for every generic point η of Cd,d′ [13, I.4.14].

Construction 3.2. Let P be a smooth projective variety, and r ∈ Z≥0. Let
H ′
r denote the Hilbert scheme of r-dimensional subschemes of P . Let Hr

denote the seminormalization of the (closed) subscheme of H ′
r consisting of

subschemes Z such that Z has pure r-dimensional support (this is different
from the notion of a pure sheaf: Z may have embedded components of smaller
dimension so long as they are set-theoretically contained in the top-dimensional
components). We have the product of the Hilbert-Chow morphisms (3.1) π :
Y0 = Ha ×Hb → Ca × Cb =: C. Because seminormalization is a functor, we
may form a proper hypercovering π• : Y• → C augmented towards C whose
i-th term Yi is the seminormalization of Y0 ×C . . . ×C Y0 (i + 1 factors), with
the (seminormalizations of the) canonical morphisms.

Remarks 3.3. (3.3.1) We explain property (7) in more detail. For any positive-
dimensional component of Cd,d′ , its generic point corresponds to a cycle all of
whose coefficients are 1, i.e., a subscheme [13, 1.4.14]. Hence we can find a
(component of some) (H q)

sn
red admitting a birational morphism to that com-

ponent.
(3.3.2) Over a field of characteristic zero, the seminormality of the Chow
variety and [19, 4.1] imply OC = π•∗(OX•) for a proper hypercovering X•
augmented towards C . In characteristic p > 0, we have the characterization
of the residue fields on the Chow variety as the intersection of all fields of
definition [13, I.4.5]. So by [19, 4.1 Corrigendum], we have OC = π•∗(OX•) for
a proper hypercovering such that X0 = H sn

red.
In more detail and in the language of [19, 4.1], we explain how to construct
(locally) a pointwise function on C from a pointwise function on H sn

red which
belongs to π•∗(OX•). So suppose z ∈ C (Pk) corresponds via a morphism
Specκ(z) → C (Pk) to the cycle Z on Pκ(z). Consider an algebraically closed

field K containing κ(z) and the cycle associated to the base change ZK . Then

by [13, I.4.5], the residue field κ(z) is characterized as the intersection in K of
all fields of definition of Z, i.e., the intersection of all Ei such that k ⊂ Ei ⊂ K
and there exists a subscheme Yi ⊂ PEi whose associated cycle agrees with ZK
upon base change. Consider fields E0, E1 satisfying these conditions. Then
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we have morphisms SpecEi → H with the property that the compositions
SpecK → SpecEi → H → C are the same. Thus we have a commutative
diagram:

SpecK //

�� ��

(H ×C H )
sn
red

p0

��
p1

��
SpecE0, SpecE1

// H

(The morphism from SpecK factors through the seminormalization.) Consid-
ering a ∈ π•∗(OX•) as a pointwise function, we obtain elements ai ∈ Ei. The
preceding diagram shows a0 = a1 in K, therefore a0 ∈ E0 ∩ E1. By the same
argument we find a0 ∈ E0 ∩ Ei for all i, therefore a0 ∈ κ(z). Thus we made
an element in the residue field κ(z). It varies algebraically along DVRs by [19,
4.1].
(3.3.3) If X = Y ∪Z is a reducible scheme with irreducible components Y, Z,
then the field of definition of Y is contained in the field of definition of X . Also,
a scheme and its seminormalization have the same residue fields. Hence to cut
out the residue fields on C , it is enough to consider the subscheme Hr →֒H ′

r

defined in 3.2. So we have OC = π•∗(OX•) for a proper hypercovering such
that X0 = Hr.

We record the (presumably known) fact that the Hilbert-Chow morphism is
compatible with products.

Lemma 3.4. If P, P ′ are smooth projective varieties over a field k, then the
following diagram commutes. (We suppose p has leading coefficient d′/(d!) and
deg(p) = d; and q has leading coefficient e′/(e!) and deg(q) = e.)

(H p(P ))
sn
red × (H q(P ′))snred

//

FC×FC
��

(H pq(P × P ′))snred
FC

��
Cd,d′(P )× Ce,e′ (P

′) // Cd+e,d′e′(P × P ′)

Proof. We describe the map in the top row: if Z →֒ P × T, Z ′ →֒ P ′ × T
constitute a T -point of (H p(P ))

sn
red × (H q(P ′))snred, then the scheme theoretic

intersection pr∗13Z ∩ pr∗23Z ′ in P × P ′ × T is a T -point of (H pq(P × P ′))snred.
A top-dimensional component in the product scheme is induced by a pair of
top-dimensional components; and length multiplies, so the coefficients in the
product cycle are the products of the coefficients of the factors. �

The main goal of this paper is to construct a Cartier divisor supported on the
incidence locus. Now we define an invertible sheaf (the “incidence bundle”) on
a product of Hilbert schemes, and show the incidence bundle is pulled back
from the product of Chow varieties in the case P = Pn.
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Construction 3.5. Let B be a base scheme, and P a smooth projective B-
scheme. Let H 1,H 2 denote the Hilbert schemes corresponding to numerical
polynomials q1, q2, and set H 1,2 := H 1 ×B H 2.
Over each H i we have a universal flat family, a closed subscheme of P ×BH i.
Denote by Ui its pullback to P ×B H 1,2. Standard facts about the behavior
of perfect complexes under certain operations (stability under tensor product;
pullback; and pushfoward via a proper morphism of finite Tor-dimension; and
the perfectness of a coherent sheaf on the source of a smooth morphism which is

flat over the target) imply Rpr23∗(OU1⊗LOU2) is a perfect complex on H 1,2.
For details on the necessary facts about perfect complexes, see section 2 of [20].
The incidence bundle L is defined to be its determinant:

L := detH 1,2Rpr23∗(OU1⊗LOU2).

In fact we will be interested in this construction only on the locus Y0 defined

earlier in this section. Furthermore, since the complex Rpr23∗(OU1⊗LOU2)
is acyclic over the locus U0 of disjoint pairs of subschemes, this construction
determines a Cartier divisor on the closure of the locus of disjoint pairs of
subschemes (the Hilbert scheme analogue of the locus U defined in 1.1). See
[20, 2.5].
As motivation for pursuing the determinant formula (mentioned in the Intro-
duction), we make contact with the classical construction of the Chow variety
of P = Pn. As explained in the Introduction, the construction of the Chow
variety endows the incidence locus I →֒ Cd(Pn) × G with the structure of
a Cartier divisor. Let FCPn : H (Pn) → C (Pn) denote the Hilbert-Chow
morphism (and its product with G ). In the special case of Construction 3.5
with P = Pn and H 2 = G , it follows from [5, Thms. 1.2, 1.4] that there is a
canonical isomorphism L ∼= FCPn

∗O(I ) of invertible sheaves on H ×G . This
isomorphism is canonical in the following sense. Over the locus U0 of disjoint
subschemes, there is a canonical trivialization L|U0

∼= OU0 . This rational sec-
tion is the pullback via FCPn of the canonical trivialization of O(I ) on the
complement of I .

Section 4. Seminormal schemes and descent criteria

In this section we explain the role of seminormality both in defining the descent
datum and demonstrating its effectiveness.

Definition 4.1 ([8]). A ring A is a Mori ring if it is reduced and its integral
closure Aν (in its total quotient ring Q) is finite over it; if A is a Mori ring,
Asn denotes its seminormalization, the largest subring A ⊂ Asn ⊂ Aν such
that SpecAsn → SpecA is bijective and all maps on residue fields are isomor-
phisms. The seminormalization is described elementwise in [23, 1.1]. We say
A is seminormal if A = Asn (so we only define seminormality for Mori rings).
A locally Noetherian scheme X is Mori if and only if it has an affine cover by
Noetherian Mori rings [8, Def. 3.1].
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Definition 4.2. Let A be a ring, and let S = {fy ∈ κ(y)|y ∈ SpecA} be a
collection of elements, one in each residue field. Then we say S is a point-
wise function on SpecA. We say the pointwise function S varies algebraically
along (complete) DVRs if it has the following property: for every specializa-
tion p1 ⊂ p2 in A and every (complete) discrete valuation ring R covering that
specialization via a ring homomorphism g : A→ R, there exists a (necessarily)

unique fR ∈ R such that gp1
(fp1

) = fR (in K) and gp2
(fp2

) = fR (in k0).

The main result of [19, 2.2, 2.6] is the following.

Theorem 4.3. Let A be a seminormal (in particular, Mori) ring which is
Noetherian. Let {fy ∈ κ(y)|y ∈ SpecA} be a pointwise function on SpecA
which varies algebraically along (complete) DVRs. Then there exists a unique
f ∈ A whose image in κ(y) is fy for all y ∈ SpecA.

This simplifies greatly the problem of defining a descent datum for a line bundle
on a seminormal scheme, as seen in the following corollary.

Corollary 4.4. Let X be a seminormal locally Noetherian (in particular,
Mori) scheme, and let L,M ∈ Pic(X). Then an isomorphism L ∼= M is
equivalent to an “identification of fibers varying algebraically along DVRs,”
that is:

for any field or (complete) DVR R, any SpecR
f−→ X, an iden-

tification βf : f∗L ∼= f∗M compatible with restriction to the

closed and generic points: if s
i−→ SpecR, η

j−→ SpecR denote
the inclusions, then βfi = i∗βf and βfj = j∗βf .

Proof. Fix an open cover X = ∪i SpecSi with Si a seminormal (Noetherian
and Mori) ring which trivializes both L andM , and fix trivializations ϕi : Li :=
L|SpecSi ∼= OSpecSi , ψi : Mi := M |SpecSi ∼= OSpecSi . Then defining L ∼= M is
equivalent to identifying Γ(SpecSi, Li) ∼= Γ(SpecSi,Mi) as Si-modules (for all
i), compatibly with restrictions. Then considering the diagram:

Γ(Li)
∼= //

ϕi

��

Γ(Mi)

ψi

��
Si // Si

and its pullbacks to spectra of fields and DVRs, we see that relative to the
fixed ϕi, ψi, a family βf as in the statement is equivalent to an invertible
pointwise function on each Si varying algebraically along DVRs. By Theorem
4.3 this is equivalent to a family of elements fi ∈ Si× = IsomSi(Si, Si). The
fi thus obtained agree on overlaps by the uniqueness statement in Theorem
4.3. Then using the above diagram again we see that relative to the fixed
trivializations, the family fi is equivalent to a family of isomorphisms Γ(Li) ∼=
Γ(Mi) compatible with restrictions. �

We will need the following general fact later.
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Lemma 4.5. Let X be a seminormal k-scheme and Y →֒ X a closed subscheme.
Suppose every y ∈ Y admits a generization to a point in X − Y , i.e., that Y
does not contain any generic points of X. Let S be a pointwise function on X
which varies algebraically along DVRs covering specializations within X − Y ,
and along those from X − Y to Y . Then S varies algebraically along DVRs.

Proof. This follows readily from the techniques used in [19]. We may assume
X is affine. Let ν : Xν → X denote the normalization. Then our pointwise
function S determines a pointwise function on Xν which is constant along the
fibers of ν. The normalization is birational, so identifies generic points of Xν

with those of X . Hence as a pointwise function on Xν, S varies algebraically
along specializations of the form η  x, with η generic. This is enough to
conclude S is induced by an element of Γ(Xν ,OXν ) (see [19, 2.4]). But then
because S is constant along the fibers of ν, this element comes from Γ(X,OX)
and a fortiori varies algebraically along all DVRs. �

As for the effectiveness of a descent datum, we recall the following result from
[20]. Let π• : X• → X be a proper hypercovering augmented towards a scheme
X . We denote by (L, φ) an element of Pic(X•), i.e., L is an element of Pic(X0)

and φ : p0
∗L ∼−→ p1

∗L is an isomorphism on X1 satisfying the cocycle condition
on X2. As in [20, 3.3], we say (L, φ) ∈ Pic(X•) is Zariski locally effective if
for every x ∈ X , there exists an open U ⊂ X containing x and a trivialization
Tx : L|π0

−1(U)
∼−→ Oπ0

−1(U) compatible with φ in the sense that the diagram

p0
∗(L|π0

−1(U))
p0

∗T //

φ

��

O(p0)
−1(π0

−1(U))

=

��
p1
∗(L|π0

−1(U))
p1

∗T // O(p1)
−1(π0

−1(U))

commutes.

Proposition 4.6. [20, 3.4] Let X be a scheme, and let π• : X• → X be a
proper hypercovering augmented towards X which satisfies OX = π•∗(OX•).
Then:

• π•∗ : Pic(X)→ Pic(X•) is injective; and
• the image of π•∗ consists of those (L, φ) that are Zariski locally effec-

tive.

Remark 4.7. The Proposition applies when X is seminormal and X• satisfies
any of the conditions in [19, 4.1 Corrigendum], for example the proper hyper-
covering π• : Y• → C defined in 3.2.

Section 5. Definition of the descent datum

In this section we prove the main result, in the following form. Having estab-
lished this result, we will consider the refinements and further properties stated
in 1.1.
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Theorem 5.1 (5.36, 5.37). With the notation as in 3.2, let Ur →֒ P × Hr

denote the (pullback of the) universal flat family. Using 3.5 we may form the
determinant line bundle L on Y0. Now base change everything to U ⊂ C, the
closure of the locus of disjoint cycles. Then the following hold.

• The sheaf L lifts to an invertible sheaf on Y•, i.e., there is an iso-
morphism φ : p0

∗L ∼= p1
∗L on Y1 satisfying the cocycle condition on

Y2.
• The descent datum φ is effective: there is a unique M ∈ Pic(U) such

that (π∗M, can) ∼= (L, φ).
Subsection 5.1. Notation and preliminary reductions.

Definition 5.2. Let P be a smooth projective k-variety of dimension n. A
Hilbert datum for P over T consists of the following:

(1) a seminormal k-scheme T ;
(2) Z →֒ PT := P ×k T a T -flat closed subscheme of relative dimension a,

such that the support of Z has pure dimension a in every fiber; and
(3) W →֒ PT a T -flat closed subscheme of relative dimension b, such that

the support of W has pure dimension b in every fiber;

such that a + b + 1 ≤ n; and every point t ∈ T admits a generization to
the locus of disjoint subschemes. Thus a Hilbert datum (Z,W ) is simply a
morphism T → Ha ×Hb such that the image of every generic point of T lies
in a component of Ha ×Hb with at least one pair of disjoint subschemes.
Typically we will make some construction from (Z,W ) and then show the
construction only depends on [Z], [W ], the cycles underlying Z and W . There-
fore we make the following definition. A Hilbert-Chow datum for P over T
is a pair of Hilbert data (Z,W ), (Z ′,W ′) for P over T such that [Z] = [Z ′]
and [W ] = [W ′]. Since the supports of Z,W are assumed pure-dimensional,
we have also Supp(Z) = Supp(Z ′) and Supp(W ) = Supp(W ′). Thus a
Hilbert-Chow datum (Z,Z ′,W,W ′) for P over T is nothing more than a mor-
phism T → (Ha ×Hb ×Ca×Cb Ha ×Hb)

sn such that (after projecting to either
Ha ×Hb factor) every generic point of T lands in a pair of irreducible compo-
nents with at least one pair of disjoint subschemes.
Because we work on the subscheme Hr of the Hilbert scheme, disjointness of
subschemes on Ha×Hb corresponds exactly to disjointness of their associated
cycles on Ca × Cb. In general, two subschemes could have disjoint associated
cycles but lower-dimensional components which coincide. So in the notation
above we have Z ∩W = ∅ if and only if Z ′ ∩W = ∅.
Note that given a morphism S → T of seminormal k-schemes and a Hilbert-
Chow datum for P over T , by pullback we obtain a Hilbert-Chow datum for
P over S.

Notation 5.3. The structure morphism PT → T will be called π.

For F ,G ∈ Parf(PT ), we set fT (F ,G) := detT Rπ∗(F⊗LG) ∈ Pic(T ).

If α is a b-dimensional cycle on PT with α =
∑
aiWi, we put fT (OZ , α) :=

⊗i(fT (OZ ,OWi)
⊗ai). In general we use the notation [−] to denote the cycle
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associated to a subscheme or coherent sheaf: this means the top-dimensional
components and their geometric multiplicities, even if, for example, b < n −
a− 1. (In fact we used this in the preceding definition.)

If T is affine and equal to SpecR, we may write fR for fT .

We will use the subscripts (−)0 and (−)η to denote the base change of some
object to closed and generic fibers, respectively.

By the incidence Z ∩ W , we mean the underlying reduced algebraic subset
Supp(Z) ∩ Supp(W ). Stated properties of Z ∩ W will depend only on the
underlying supports Supp(Z), Supp(W ).

Goal. For every Hilbert-Chow datum, we aim to construct an isomorphism

φZ,Z
′,W,W ′

T : fT (OZ ,OW ) ∼= fT (OZ′ ,OW ′) varying functorially in T , in such
a way that the resulting descent datum {φT } is Zariski locally effective. The
essential case is b = n− a− 1.

Proposition 5.4 (reduction to fields and DVRs). To define an isomorphism
φT : fT (OZ ,OW ) ∼= fT (OZ′ ,OW ′) for each Hilbert-Chow datum, for all smooth
projective P , so that for each P , the collection {φT }

(1) is compatible with base change S → T ; and
(2) satisfies the cocycle condition;

it is sufficient to define an isomorphism φT for each Hilbert-Chow datum with
T the spectrum of a field or complete DVR, compatible with base change among
fields and complete DVRs, and satisfying the cocycle condition on fields.

Proof. This is a consequence of 4.4. �

Proposition 5.5 (reduction to the diagonal). To define an isomorphism φT :
fT (OZ ,OW ) ∼= fT (OZ′ ,OW ′) for each Hilbert-Chow datum, for all smooth
projective P , so that for each P , the collection {φT }:

(1) is compatible with base change S → T ;
(2) satisfies the cocycle condition; and
(3) is Zariski locally effective;

it is sufficient to define an isomorphism φT for each Hilbert-Chow datum with
W = W ′, for all P , so that for each P , the collection {φT } has the stated
properties.

Proof. On P ×P ×T , let O∆ denote the structure sheaf of the diagonal (×T ),
i.e., the image of the closed immersion P × T ∆×1T−−−−→ P × P × T . Given T -
flat closed subschemes Z,W →֒ P × T , we let Z ×W →֒ P × P × T denote
the scheme-theoretic intersection pr∗13Z ∩ pr∗23W . Then there is a canonical
isomorphism of line bundles on T : fT (OZ ,OW ;P ) ∼= fT (OZ×W ,O∆;P × P ).
Then the proposition follows from the fact that the Hilbert-Chow morphism is
compatible with products (3.4). �

Remark 5.6. We may even assume W is constant, i.e., there is a k-subscheme
Wk such thatW =Wk×kT ; and we may assumeWk is integral (even smooth).
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Notation 5.7. When W and W ′ are omitted from the notations, this means
W =W ′.

We start with some easy cases of our goal.

Lemma 5.8. Let (Z,W ) be a Hilbert datum over any base T such that Z∩W =
∅. Then there is a canonical trivialization ϕZT : fT (OZ ,OW ) ∼= OT which is
compatible with base change.

Proof. The hypothesis implies OZ⊗LOW , hence also Rπ∗(OZ⊗LOW ), is
acyclic. The pullback via S → T is also acyclic, and the trivialization of
the determinant of an acyclic complex is compatible with base change. �

Remark 5.9. The canonical isomorphism ϕ of the lemma has an additivity
property in each variable. For example, if F1 → F2 → F3 →+1 is a distin-
guished triangle in Parf(PT ) such that Supp(Fi) ∩W = ∅ for all i, then the
isomorphism fT (F1,OW )⊗fT (F3,OW ) ∼= fT (F2,OW ) induced by the triangle

corresponds, via the identifications ϕFiT , to multiplication OT ⊗OT → OT .
Corollary 5.10. Among Hilbert-Chow data satisfying Z ∩W = Z ′ ∩W = ∅,
there exists a collection of isomorphisms φZ,Z

′

T : fT (OZ ,OW ) ∼= fT (OZ′ ,OW )
which is compatible with base change and satisfies the cocycle condition.

Proof. We define φZ,Z
′ ;W

T := (ϕZ
′

T )
−1 ◦ϕZT : fT (OZ ,OW ) ∼= fT (OZ′ ,OW ) to be

the composition of the canonical trivializations. This is compatible with base
change because each ϕZT is. We check the cocycle condition:

φZ
′,Z′′;W

T ◦φZ,Z
′;W

T = ((ϕZ
′′

T )
−1◦ϕZ′

T )◦((ϕZ′

T )
−1◦ϕZT ) = (ϕZ

′′

T )
−1◦ϕZT = φZ,Z

′′ ;W
T .

�

From now on we keep the collection {φT } whose existence is asserted in 5.10.
The idea is to gradually extend it to a collection over Hilbert-Chow data with
increasingly complicated incidence structure, until we have covered the whole
moduli space. Note that an isomorphism of line bundles on a reduced (e.g.,
seminormal) scheme is determined by its restriction to generic points (i.e.,
points of depth 0). Since our base T is always reduced, when we have defined
an isomorphism φ for a more general class of Hilbert-Chow data, to check
agreement with previously defined isomorphisms it suffices to check agreement
on generic points.

Lemma 5.11. Let (Z,W ) be a Hilbert datum over T , and suppose that (Z ∩
W )η = ∅ for all generic points η ∈ T . (This holds, for example, whenever Z
and W intersect properly on PT .) Then there exists a Cartier divisor DZ,W on
T and a canonical isomorphism ϕZT : fT (OZ ,OW ) ∼= OT (DZ,W ) characterized

by agreeing with the trivialization ϕ
Zη
η for every generic point η ∈ T . When

Z ∩W = ∅, DZ,W = 0 and ϕZT is the canonical trivialization. The formation
of the divisor DZ,W and the isomorphism ϕZT are compatible with base change
S → T preserving the generic disjointness.

Documenta Mathematica 16 (2011) 513–543



The Hilbert-Chow Morphism and the Incidence Divisor 527

Furthermore, the formation of DZ,W is additive in each variable: if F1 →
F2 → F3 →+1 is a distinguished triangle in Parf(PT ) such that (Supp(Fi) ∩
W )η = ∅ for all generic points η ∈ T , all i; then DF1,W +DF3,W = DF2,W ;

and the triangle induces, upon application of ϕFiT , the canonical isomorphism
OT (DF1,W ) ⊗ OT (DF3,W ) ∼= OT (DF2,W ). Similarly we have an additivity
property in the variable W .

Proof. To see the generic disjointness is satisfied when Z andW intersect prop-
erly, note that Z (resp.W ) has codimension ≥ b+1 (resp. ≥ a+1) in PT , hence
Z ∩W has codimension ≥ a+ b + 2 in PT . Therefore dim(Z ∩W ) < dim(T ),

so the support of OZ⊗LOW cannot dominate any component of T . The hy-
pothesis on the incidence means the construction of [12, Ch.II] applies. The
compatibility with base change is a consequence of [12, Thm.3(v)]; and the
additivity is inherited from [12, Thm.3(ii)]. �

Remark 5.12. Our essential task is to show that given a Hilbert-Chow datum
(Z,Z ′,W ), we have DZ,W = DZ′,W .

Subsection 5.2. Moving lemmas.

Proposition 5.13. Let (Z,W ) be a Hilbert datum over T the spectrum of a
local ring, with W =Wk ×k T for a b-dimensional k-scheme Wk, and suppose
(Z ∩ W )η = ∅ for every generic point η ∈ T . Then there exist subvarieties
B1, . . . , Bn ⊂ P of dimension b+ 1, Mi ∈ Pic(Bi), and short exact sequences:

0→Mi
si0−→ OBi → Qi0 → 0

0→Mi
si∞−−→ OBi → Qi∞ → 0

such that:

(1) (Z ∩ Supp(Qi∗))η = ∅ for all i, all generic η; and
(2) the b-dimensional cycle [W ] +

∑
i([Q

i
0]− [Qi∞]) is disjoint from Z.

Proof. We let Z0 denote the cycle over the closed fiber of T . By Chow’s moving
lemma [16, Thm.], we can find a cycle α rationally equivalent to [Wk] and
satisfying α ∩ Z0 = ∅; hence also α ∩ Z = ∅ on PT . This shows we can achieve
the second property; the issue is to show we can move W in such a way that
the first property is satisfied.
Suppose we have a closed immersion P →֒ P2n+1. Then every step in moving a
cycle involves essentially two choices: a linear space L ∼= Pn →֒ P2n+1, disjoint
from P , from which projection induces a finite morphism πL : P → Pn; and
an element g ∈ PGL(n+1). The excess intersection e(Z0, π

∗
LπL∗[W ]− [W ]) is

smaller than e(Z0, [W ]) for generic L; and π∗L(g ·πL∗W ) is disjoint from Z0 for
generic g.
If (Z ∩W )η = ∅ for all generic points η ∈ T , then for generic choices of L, g, we
have (Z ∩ π∗L(g · πL∗[W ]))η = (Z ∩ π∗L(πL∗[W ]))η = ∅. The Q∗s are supported
in subsets of the form π∗L(g · πL∗W ) and π∗L(πL∗W ), hence the result. �
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We need a slight variation for subvarieties W as in 5.13 of dimension strictly
smaller than n− a− 1; eventually we need that such subvarieties do not con-
tribute to DZ,W .

Proposition 5.14. Let (Z,W ) be a Hilbert datum over T a base of dimension
≤ 1, with W = Wk ×k T for a k-scheme Wk, and suppose (Z ∩W )η = ∅ for
every generic point η ∈ T .
Suppose further that dim(Wk) = b ≤ n − a − 2. Then there exist subvarieties
B1, . . . , Bn ⊂ P of dimension b+ 1, Mi ∈ Pic(Bi), and short exact sequences:

0→Mi
si0−→ OBi → Qi0 → 0

0→Mi
si∞−−→ OBi → Qi∞ → 0

such that:

(1) (Z ∩Bi)η = ∅ for all i, all generic η; and
(2) the b-dimensional cycle [W ] +

∑
i([Q

i
0]− [Qi∞]) is disjoint from Z.

Remark 5.15. The first condition in the conclusion implies (Z∩Supp(Qi∗))η = ∅
for all i, all generic η.

Proof. Again we are intersecting a finite number of open conditions. Without
loss of generality we may assume Wk is an integral subscheme of dimension
n − a − 2. Let pr1(Z) →֒ P denote the “sweep” of the family Z (with the
reduced structure); this is a subscheme of dimension ≤ a+ 1.
Now pr1(Z) and Wk are not expected to meet, and we have an open dense
U ⊂ T such that pr1(ZU ) ∩ Wk = ∅. For a generic finite morphism
π : P → Pn (as in the proof of 5.13) we have, possibly after shrinking U , that
π(pr1(ZU )) ∩ π(Wk) = ∅; and that the pair (Z, π∗π∗(Wk) −Wk) has smaller
excess intersection than does (Z,Wk). Now we move π∗(Wk) along a general
smooth (affine) rational curve C →֒ PGL(n + 1). Let Y →֒ Pn × C note the
total space of the resulting family,
Write Y =

∑
miYi, and let Yi

fl →֒ Pn × P1 denote the flat limit of the family

Yi →֒ Pn × C. Then Y fl :=
∑
miYi

fl is the unique way to complete Y to a
family of cycles over P1. Let pr1(Y

fl) →֒ Pn be the sweep; this is a subscheme
of dimension n − a − 1. Choose some t ∈ T such that Zt ∩Wk = ∅. For a
general choice of C, since dim(Zt) + dim(Y fl) = a+ (n− a− 1) < n, we will
have π(pr1(Zt)) ∩ Y fl = ∅. Hence the disjointness holds on an open dense
of T . This process can be iterated until we have a cycle α ∼ Wk such that
pr1(Z) ∩ α = ∅.
The subvarieties Bi →֒ P lie in subsets of the form π−1(Y fl). (This follows
from the proof that flat pullback preserves rational equivalence [7, 1.7].) Since
a general Y fl used in one step of the moving process is disjoint from a general
member of the family Z, this holds after pullback by π as well. �

Subsection 5.3. Grothendieck-Riemann-Roch.

Lemma 5.16. Let T be the spectrum of a field, and suppose F ,G ∈ Parf(PT )

satisfy dim(Supp(F)) + dim(Supp(G)) < n = dim(P ). Then χ(F⊗LG) = 0.
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Proof. Since Fa(K0(P )) is generated by [OV ], V ⊂ P a subvariety of dimension
≤ a [7, Ex. 15.1.5], we may assume F ,G are structure sheaves of subvarieties
of dimensions a, b respectively, with a+ b < n.

Now since P is smooth, any coherent sheaf has a finite length resolution by
finite rank locally free sheaves, so we may apply [7, 18.3.1 (c)] to the closed
immersion i : V → P with β = OV . This gives, in the Chow group A∗(P ):

i∗(ch(OV ) ∩ Td(V )) = ch(i∗OV ) ∩ Td(P ).

As ch(OV ) = 1 and Td(V ) = [V ] + rV with rV ∈ A<a(V ), the left hand side
lies in A≤a(P ).

Since P is smooth, Ap(P )∩Aq(P ) ⊂ Aq−p(P ) by [7, 8.3 (b)]. As Td(P ) = [P ]+
rP with rP ∈ A<n(P ), by equating terms in each degree, we find ch(i∗OV ) ∈
A≥n−a(P ).

By Grothendieck-Riemann-Roch (for the smooth P , as in [7, 15.2.1]) and the

action of ch on ⊗, χ(F⊗LG) =
∫
P
ch(F)·ch(G)·TdP . Here · means intersection

product of cycle classes. The first possible nonzero term in ch(F) · ch(G) would
come from chn−a(F) · chn−b(G), but this term is zero for degree reasons. �

Proposition 5.17. Let T be the spectrum of a field, and Z →֒ PT an a-
dimensional subscheme. Let M,N ∈ Coh(PT ) be invertible sheaves on some
subvariety of PT of dimension ≤ n− a, and suppose we have exact sequences:

0→M
s−→ N → Qs → 0

0→M
t−→ N → Qt → 0

such that Z ∩ Supp(Qs) = Z ∩ Supp(Qt) = ∅.
Then the unique aZ ∈ Γ(T,O∗T ) making the following diagram commute:

fT (OZ , Qs)
ϕZT //

via s

��

OT

aZ

��

(fT (OZ ,M))
−1 ⊗ fT (OZ , N)

fT (OZ , Qt)

via t

OO

ϕZT // OT
depends only on [Z], i.e., aZ = aZ′ if [Z] = [Z ′].

Proof. To prove the claim it is equivalent to show that the difference between
f(1⊗ s), f(1⊗ t) : fT (OZ ,M) ∼= fT (OZ , N) depends only on [Z].
Step 1. By taking a filtration of OZ such that the graded pieces are isomorphic
to (twists of) structure sheaves of subvarieties, and using the additivity of the
determinant on filtrations, we are reduced to showing that if F ∈ Coh(PT ) with
Supp(F) ⊂ Supp(Z) and dim(Supp(F)) ≤ a − 1, the induced isomorphisms
f(1 ⊗ s), f(1 ⊗ t) : f(F ,M) ∼= f(F , N) are equal. (Such a filtration exists by
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[11, I.7.4].) The subquotients of the filtration of OZ depend on the filtration
chosen, but the top-dimensional components always appear with their correct
multiplicities, i.e., the cycle [Z] can be extracted from the filtration.
Step 2. Let QU denote the cokernel of the universal OP -homomorphism
M → N ; note QU is flat over HomOP (M,N) \ 0 since a morphism between in-
vertible sheaves is either injective or zero, hence the Euler characteristic of every

cokernel is χ(M) − χ(N). We consider the line bundle detRπ∗(p∗1(F)⊗LQU )
on HomOP (M,N) \ 0. Its fiber over s ∈ HomOP (M,N) is precisely f(F , Qs).
Since Qs = Qλs for λ ∈ Γ(T,O∗T ), we consider detRπ∗(p∗1(F)⊗LQU ) as a line
bundle on the projective space P(HomOP (M,N) \ 0).
We claim this line bundle is trivial. To prove this it suffices to show it is trivial
along a line P1 ∼= L →֒ P(HomOP (M,N) \ 0). For this purpose Grothendieck-
Riemann-Roch (i.e., ignoring torsion) is adequate. More precisely, we consider
the GRR diagram:

K0(P × L)

Rπ∗

��

ch(−)·Td(P )·Td(L) // A∗(P × L)Q
π∗

��
K0(L)

ch(−)·Td(L) //

det

��

A∗(L)Q

Pic(L)

c1

44hhhhhhhhhhhhhhhhhhhhhh

We have dim(Supp(p∗1(F))) ≤ a, dim(Supp(QU )) ≤ n − a, and dim(P × L) =
n + 1. Hence ch(p∗1(F)) · ch(QU ) = 0 in A∗(P × L)Q for degree reasons

(as in the proof of 5.16), so p∗1(F)⊗LQU ∈ K0(P × L) maps to 0 in the

top row. Hence c1(detRπ∗(p∗1(F)⊗LQU )) is a torsion class, and therefore

detRπ∗(p∗1(F)⊗LQU ) is trivial.
Step 3. For s ∈ HomOP (M,N) \ 0, consider the induced identification
f(s) : f(F , Qs) ⊗ f(F ,M) ∼= f(F , N). Since f(F , Qs) is canonically triv-
ial, i.e., the trivialization induced by Supp(F)∩Supp(Qs) = ∅ extends over all
HomOP (M,N) \ 0, we consider f(s) as an isomorphism f(F ,M) ∼= f(F , N).

Since χ(F⊗LM) = χ(F⊗LN) = 0 by 5.16, we have f(s) = f(λs) for
λ ∈ Γ(T,O∗T ). Therefore we have a commutative diagram:

Hom(M,N) \ 0

��

s7→f(s) // Isom(f(F ,M), f(F , N))

P(Hom(M,N) \ 0)

44iiiiiiiiiiiiiiii

But there are no nonconstant functions on P(Hom(M,N) \ 0), hence f(s) =
f(t) : f(F ,M) ∼= f(F , N).

�
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Subsection 5.4. Further properties of DZ,W . Assuming the base and
incidence are optimal, we can already prove the following important property
of DZ,W .

Proposition 5.18. Let (Z,Z ′,W ) be a Hilbert-Chow datum over a normal
base T , and suppose the incidence Z ∩W satisfies:

(1) (Z ∩W )η = ∅ for all generic points η ∈ T ; and
(2) Z ∩W is finite over all points of depth 1 in T .

Then the Cartier divisors DZ,W , DZ′,W are equal.

Proof. Since the smooth locus of T contains all points of depth 1, and the
formation of DZ,W is compatible with the inclusion T sm ⊂ T , we may assume
T is smooth. For T regular there is a canonical isomorphism [12, Prop. 8]:

fT (OZ ,OW ) ∼= ⊗p,q(detTRqπ∗(Hp(OZ⊗LOW )))
(−1)p+q

.

To calculate the coefficient of a depth 1 point t ∈ T in DZ,W , we may replace

T with the spectrum of the DVR OT,t. Then the support of Hp(OZ⊗LOW )
is finite over T (indeed, over t), so in the displayed expression only the terms
with q = 0 can contribute.
By [12, Thm.3(vi)], the multiplicity of a depth one point is determined by the

sum
∑

i (−1)
i
ℓt(Hi(Rπ∗(OZ⊗LOW ))). This last sum is equal to

∑

i

(−1)iℓt(π∗Hi(OZ⊗LOW )) = (deg π)(
∑

p,t′→t
(−1)pℓt′(Hp(OZ⊗LOW ))),

hence it suffices to show γ(OZ) :=
∑

p,t′→t (−1)
p
ℓt′(Hp(OZ⊗LOW )) depends

only the underlying cycle [Z]. We remark that if Z and W are integral and
b = n − a − 1, then the contribution of a point t′ (lying over t) to γ(OZ) is
exactly Serre’s Tor-formula for the intersection index of Z and W at t′ [22,
V.C.Thm.1(b)].
Without loss of generality we assumeW is integral and dim(W ) = b = n−a−1;
we will see in the proof all sums are 0 if b < n−a−1. Given an exact sequence
0 → F1 → F2 → F3 → 0 of coherent sheaves on PT with support of relative
dimension ≤ a and satisfying the incidence hypothesis with respect to W , by
the long exact cohomology sequence we obtain γ(F1)+γ(F3) = γ(F2). It then
follows γ is additive on filtrations.
Write [Z] =

∑
i aiZi. Again by [11, I.7.4], the sheaf OZ admits a filtration

whose subquotients are invertible sheaves Li on subvarieties contained in Z;
and each top-dimensional component Zi appears exactly ai times. Since every
Li is some tensor power of a very ample class on PT , we may assume there is
either an injective map OZi → Li or an injective map Li → OZi . Therefore
γ(OZ) =

∑
i γ(Li) =

∑
i aiγ(OZi) modulo summands of the form γ(F) where

F is a sheaf on PT whose support over the generic point of T has dimension
≤ a − 1. So it suffices to show γ vanishes on sheaves of this type. Again we
may assume F is isomorphic to the structure sheaf of a subvariety Y →֒ Z in
PT . Note that dimY ≤ a, else, being contained in Z, Y would dominate T and
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have all fibers of dimension ≥ a; and then Y would contribute to the cycle [Z]
of Z.
There are two cases to consider: if Y ∩W = ∅, then γ(F) = 0 since F⊗LOW
is acyclic. If Y ∩W 6= ∅, then the intersection Y ∩W is improper, and the
Tor-formula vanishes at components of improper intersection (due to Serre in
the equal characteristic case [22, V.C.Thm.1(a)]). �

Remarks 5.19. (5.19.1) The proof shows the relation between the incidence
line bundle and Serre’s Tor-formula for intersection multiplicities; and also that
our construction agrees with Mazur’s at least on the normalization of the locus
U ′. Thus the essential tasks are to extend the divisor through the locus where
the expected incidence condition (the hypothesis in 5.18) fails, and to remove
the assumption of normality.
(5.19.2) The assumption (C2) of [4] is that the incidence is generically finite
over, and nowhere dense in, its image in the base S. These assumptions imply
the map S → Ca(P )× Cn−a−1(P ) factors through U ′.
(5.19.3) Considering the GRR diagram as in the proof of 5.17 with L replaced
by a general regular base T , one sees that the first Chern class of the incidence
line bundle fT (OZ ,OW ) modulo torsion depends only on the underlying cy-
cles [Z], [W ], independent of any assumption of properness of intersection. By
contrast in 5.18 we have the result integrally.
(5.19.4) We may write D[Z],W in the case we have a Hilbert datum as in 5.18,
e.g., with proper intersection over a regular base T .

Corollary 5.20. Among Hilbert-Chow data:

(1) over normal bases T ; and
(2) such that Z,W (and hence Z ′,W ) are generically disjoint and have

finite incidence over points of depth 1 in T ;

there exists a collection of isomorphisms φZ,Z
′

T : fT (OZ ,OW ) ∼= fT (OZ′ ,OW )
which:

(1) is compatible with base change preserving the incidence condition (2);
(2) satisfies the cocycle condition; and
(3) agrees with the collection on disjoint families defined in 5.10.

Proof. We define φZ,Z
′

T := (ϕZ
′

T )
−1 ◦ ϕZT : fT (OZ ,OW ) ∼= OT (D[Z],W ) ∼=

fT (OZ′ ,OW ). �

Construction-Notation 5.21. We continue with the Cartier divisor
DZ,W →֒ T associated to a Hilbert datum (5.11). For Z →֒ PT a T -flat family
of a-dimensional subschemes of P and s ∈ Z≥0, let Coh≤s;ZT (P ) denote the
abelian category of coherent sheaves G on P such that dim(Supp(G)) ≤ s and
(Z ∩ Supp(G))η = ∅ for all generic points η ∈ T . For G ∈ Coh≤n−a−1;ZT (P ),
we obtain a Cartier divisor DZ,G →֒ T and a canonical isomorphism
fT (OZ ,G) ∼= OT (DZ,G).
We denote by Ks;Z

0 (P ) the K0-group of the abelian category Coh≤s;ZT (P ): we
take the free abelian group on sheaves in Coh≤s;ZT (P ), then impose relations
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from short exact sequences whose terms all lie in Coh≤s;ZT (P ). Let CDiv(T )
denote the group of Cartier divisors on T .

We summarize some elementary properties of this construction in the following
proposition.

Proposition 5.22. (1) The map DZ,− : Coh≤n−a−1;ZT (P ) → CDiv(T )

defined by G 7→ DZ,G descends to a homomorphism Kn−a−1;Z
0 (P ) →

CDiv(T ) (which we also denote by DZ,−).
(2) If f : S → T is a morphism and G ∈ Coh≤s;ZS (P ), then f∗(DZ,G) =

DZ,G as divisors on S.
(3) If G ∈ Coh≤n−a−1;ZT (P ) satisfies Z ∩ G = ∅, then DZ,G = 0.
(4) If G ∈ Coh≤0;ZT (P ) and the divisorial part of the family Z →֒ PT is

trivial (i.e., a ≤ dim(P )− 2), then DZ,G = 0.

Proof. The first three properties follow immediately from the additivity, com-
patibility with base change, and compatibility with the trivialization of an
acyclic complex, of the associated divisor construction discussed in Section 2.
To prove the last property, by the first property we may assume G is the struc-
ture sheaf of a zero-dimensional subvariety W →֒ P . (If k = k, this is just a
single closed point, but we give an argument here valid for any T -flat family
W →֒ PT of zero-dimensional subschemes, such that W is integral.)
By [20, 5.3] there is a canonical isomorphism:

detTRπ∗(OZ⊗LG) ∼= (detTπ∗G)rk(OZ)−1 ⊗ detT (π∗(detPT (OZ)|W )).

Since the divisorial part of OZ was assumed to be empty, the line bundle
detPT (OZ) is canonically trivial; and rk(OZ) − 1 = −1. Therefore the right
hand side is canonically trivial, so DZ,G = 0. �

Remark 5.23. In case a = dim(P ) − 1, we refer to [20]. The reduction to the
diagonal shows we may assume dim(P ) = 1 or a ≤ dim(P ) − 2; but to the
extent we rely on (4) in 5.22, we must understand the case of zero-cycles and
divisors.

Proposition 5.24. Suppose T has dimension ≤ 1 and G ∈ Coh≤n−a−2;ZT (P ).
Then DZ,G = 0.

Remark 5.25. The condition DZ,G = 0 is equivalent to the canonical trivializa-

tion (induced by the generic acyclicity of Rπ∗(OZ⊗LG)) extending over all of
T .

Proof. We may also assume G is the structure sheaf of a subvariety W →֒ P of
dimension b ≤ n− a− 2, as these sheaves generate the K0-group.
Since DZ,G = 0 for dim(Supp(G)) ≤ 0 (again by 5.22), it suffices to prove the
following claim: if DZ,G = 0 for all G ∈ Coh≤b−1;Z(P ), and 1 ≤ b ≤ n− a− 2,
then DZ,G = 0 for all G ∈ Coh≤b;Z(P ).
We prove this claim: by 5.14 there are short exact sequences:

0→Mi
si0−→ OBi → Qi0 → 0
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0→Mi
si∞−−→ OBi → Qi∞ → 0

in Coh≤n−a−1;ZT (P ), such that the b-dimensional cycle W +
∑

i([Q
i
0]− [Qi∞])

is disjoint from Z.
If [Q] =

∑
j ajWj , then we write DZ,[Q] :=

∑
j ajDZ,Wj . The short exact

sequences give
∑

iDZ,Qi0
=
∑

iDZ,Qi∞
in Kn−a−1;Z

0 (P ). Furthermore the dif-

ference Qi∗ − [Qi∗] lies in Fb−1(K0(P )).
But then

DZ,W = DZ,W +
∑
i(DZ,Qi0

−DZ,Qi∞
) from the SES

= DZ,W +
∑

i(DZ,[Qi0]
− DZ,[Qi∞]) since we assumed DZ,− vanishes on

Fb−1(K0(P ))

= DZ,W+
∑
i([Q

i
0]−[Qi∞]) = 0 by the disjointness from Z. �

Corollary 5.26. Suppose T is normal and G ∈ Coh≤n−a−2;ZT (P ). Then
DZ,G = 0.

Proof. For t ∈ T of depth 1, the formation of DZ,G is compatible with the
morphism gt : SpecOT,t → T . By 5.24, we have g∗t (DZ,G) = 0 for all such
t. Since DZ,G is determined its restriction to points of depth 1, the result
follows. �

Proposition 5.27. Suppose T is seminormal and G ∈ Coh≤n−a−2;ZT (P ).
Then DZ,G = 0.

Proof. The formation of the divisor DZ,G is compatible with the (finite, bi-
rational) normalization morphism ν : T ν → T . By the previous result we
know local equations for ν∗(DZ,G) are units. We need to show these units are
constant along the fibers of ν. Suppose t ∈ T has branches b1, . . . , br in T ν .
For each bi there exists a DVR Ri and a morphism gi : SpecRi → T such
that: Ri has residue field κ(t), and gi covers a generization of t to the locus
of subschemes disjoint from Supp(G). Denote by S the union of the SpecRis
glued along Specκ(t). Then we have a morphism g : S → T , and by 5.24 we
conclude g∗(DZ,G) = 0. The corresponding trivialization fS(OZ ,G) ∼= OS is
our candidate for extending the trivialization through t.
Let Exc(ν) →֒ T denote the locus over which ν is not an isomorphism, and let
IG →֒ T denote the locus of subschemes Z such that Z ∩ Supp(G) 6= ∅. Set
U := T − (Exc(ν) ∩ IG). Then we have a trivialization ϕU : fU (OZ ,G) ∼= OU ,
and this extends to ϕTν : fTν (OZ ,G) ∼= OTν . For t 6∈ U , we constructed in
the previous paragraph the isomorphism tS : fS(OZ ,G) ∼= OS , which we may
restrict to t. Together these define a pointwise trivialization fT (OZ ,G) ∼= OT ,
i.e., a nonzero element in every fiber of the line bundle fT (OZ ,G). We form
the cartesian diagram:

Sν
gν //

ν|S
��

T ν

ν

��
S

g // T
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Since the formation of DZ,G is compatible with all of the morphisms ap-
pearing in this diagram, we obtain (ν|S)∗(tS) = (gν)

∗
(ϕTν ). It then follows

ϕTν is constant along the fibers of ν, hence it descends to a trivialization
ϕT : fT (OZ ,G) ∼= OT . �

Corollary 5.28. Suppose T is seminormal and G ∈ Coh≤n−a−1;ZT (P ). Then
DZ,G = DZ,[G].

Remark 5.29. For T smooth and G ∈ Coh≤n−a−2;ZT (P ), one can deduce the
line bundle fT (OZ ,G) is trivial as follows. The filtration of the K0(X)-group
by dimension of support is compatible with multiplication, if X is a smooth
quasi-projective scheme over a field [9, Exp.0 Ch.2 Sect.4 Thm.2.12 Cor.1].
From OZ ∈ Fa+dimT (K0(PT )) and G ∈ Fn−a−2+dimT (K0(PT )) it follows that

OZ⊗LG ∈ FdimT−2(K0(PT )). Therefore Rπ∗(OZ⊗LG) ∈ FdimT−2(K0(T )),
and hence fT (OZ ,G) ∼= OT .
For a general base T , this reasoning is valid rationally, hence we can conclude
fT (OZ ,G) is a torsion line bundle.
Since the dimension filtration’s compatibility with multiplication can be viewed
as a consequence of the moving lemma, in some sense we have given this proof.
Because we need to keep track of the trivialization and not just the abstract
invertible sheaf, we work with Cartier divisors rather than line bundles.

Corollary 5.30. Let (Z,W ) be a Hilbert datum over any base T such that
(Z ∩ W )η = ∅ for every generic point η ∈ T . Suppose further that W =
Wk ×k T for a k-scheme Wk with [Wk] =

∑
i aiWi. Then there is a canonical

isomorphism fT (OZ ,OW ) ∼= ⊗i(fT (OZ ,OWi))
⊗ai .

Subsection 5.5. Application to the incidence line bundle.

Construction 5.31. The facts 5.13 and 5.30 produce a construction; in the
description we suppress the base T and we use f(−) := f(OZ ,−) as before,
since the first factor is constant. We use the identification of 5.30: f(OW ) ∼=
⊗i(f(OWi ))

⊗ai =: f([OW ]). (In our situation W is a Cartier divisor on a
(b + 1)−dimensional subvariety B →֒ P with [W ] =

∑
i aiWi.)

Now given (Z,W );Bi,Mi, s
i
0,∞ as in 5.13, let f(s∗) : f(M) ⊗ f(Q∗) ∼= f(OB)

denote the isomorphism induced by the short exact sequence. We set

α := [W ] +
∑

i

([Qi0]− [Qi∞])

to be the moved b-dimensional cycle. Then we have a canonical isomorphism
f([OW ])⊗ (⊗if([Qi0])) = f(α)⊗ (⊗if([Qi∞])).

Let βZW,α : f([OW ]) ∼= f(α) be the unique isomorphism making the following
diagram commute:

f([OW ])⊗ (⊗i(f([Qi0])⊗ f(Mi)))

1⊗(⊗if(si0))
��

= // f(α)⊗ (⊗i(f([Qi∞])⊗ f(Mi)))

1⊗(⊗if(si∞))

��
f([OW ])⊗ (⊗if(OBi))

βZW,α⊗1 // f(α)⊗ (⊗if(OBi))
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In the top row, we tensored the canonical isomorphism with the identity on
the f(Mi) factors.

This construction extends the collection {φT } to spectra of local rings T .

Proposition 5.32. Let (Z,Z ′,W ) be a Hilbert-Chow datum over T the spec-
trum of a local ring with W =Wk×kT , and suppose (Z∩W )η = (Z ′∩W )η = ∅
for all generic points η ∈ T . Suppose subvarieties B1, . . . , Bn ⊂ P and short
exact sequences as in 5.13 have been chosen. Then the isomorphism:

(ϕZ
′ ;α ◦ βZ′

W,α)
−1 ◦ (ϕZ;α ◦ βZW,α) : fT (OZ ,OW ) ∼=

∼= fT (OZ , α) ∼= OT ∼= fT (OZ′ , α) ∼= fT (OZ′ ,OW )

is independent of the choice of move: given another collection of data

(B̂i, M̂i, ŝi0,∞) producing a b-dimensional cycle α̂ (also disjoint from Z), we
have:

(ϕZ
′;α ◦ βZ′

W,α)
−1 ◦ (ϕZ;α ◦ βZW,α) = (ϕZ

′ ;α̂ ◦ βZ′

W,α̂)
−1 ◦ (ϕZ;α̂ ◦ βZW,α̂).

Furthermore (ϕZ
′ ;α ◦ βZ′

W,α)
−1 ◦ (ϕZ;α ◦ βZW,α) agrees with the canonical iden-

tifications at every generic η ∈ T . If in addition T is the spectrum of a reg-
ular local ring and the incidence Z ∩W satisfies the hypotheses of 5.20, then

φZ,Z
′

T = (ϕZ
′;α ◦ βZ′

W,α)
−1 ◦ (ϕZ;α ◦ βZW,α).

Proof. We claim any choice of moving data produces the canonical isomor-
phism over the generic points of T . Now 5.17 shows the choice of short exact
sequences affects the map ϕZ;α

η ◦ (βZW,α)η : fη(OZ ,OW ) ∼= fη(OZ , α) ∼= Oη
by a constant depending only on [Z], and this is exactly canceled by the map
back to fT (OZ′ ,OW ). In other words, since aZ = aZ′ , the following diagram
commutes.

fη(OZ ,OW )

(βZW,α)η
��

ϕZ;W
η //

φZ,Z
′

η

((
OT,η = //

aZ

��

OT,η
aZ′

��

fη(OZ′ ,OW )

(βZ
′

W,α)η
��

ϕZ
′;W

ηoo

fη(OZ , α)
ϕZ;α
η

// OT,η =
// OT,η fη(OZ′ , α)

ϕZ
′;α

η

oo

From this our claims follow: two choices of moving data produce isomorphisms
which agree at the generic points of T , hence they agree; and the isomorphism

φZ,Z
′

T for T regular is characterized by agreeing with the composition of the
canonical trivializations over the generic points of T . �

Corollary 5.33. Among Hilbert-Chow data over bases T satisfying:

(1) T is either regular, or local; and
(2) all generic points of T correspond to disjoint subschemes;
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there exists a collection of isomorphisms {φT } which:
(1) is compatible with base change preserving generic disjointness;
(2) satisfies the cocycle condition; and
(3) extends the collection of 5.20.

Proof. To see our construction commutes with base change preserving generic
disjointness, note that moves valid over T (i.e., producing βW,α) pullback via
S → T to suitable moves on S. The cocycle condition (an equality of two
isomorphisms of line bundles on a reduced scheme) holds at the generic points,
hence it holds everywhere. �

The previous corollary provides us an isomorphism fs(OZ ,OW ) ∼= fs(OZ′ ,OW )
for a Hilbert-Chow datum over s the spectrum of a field corresponding to a
point in the incidence locus, namely the restriction of the isomorphism over
the local ring, possibly followed by a field extension. In the next proposition
we observe this is compatible with specializations from the locus of disjoint
subschemes into the incidence locus.

Proposition 5.34. Let (Z,Z ′,W ) be a Hilbert-Chow datum over s the spec-
trum of a field κ(s) corresponding to a point of incidence, i.e., Z∩W,Z ′∩W 6=
∅. Let (ZT , Z

′
T ,W ) be a Hilbert-Chow datum over T the spectrum of a DVR

covering a generization from s to the locus of disjoint subschemes, and with
T0 = s. Then the isomorphism

fs(OZ ,OW )
can−−→ fT (OZT ,OW )×T s

(φ
ZT ,Z

′
T

T )×T s−−−−−−−−−→ fT (OZ′
T
,OW )×T s can←−− fs(OZ′ ,OW )

is equal to the isomorphism induced by φR := φSpecR, where (R,m,K = R/m)
is the (seminormal) local ring of the image of s on (Ha ×Ca Ha)

sn. In other
words, the previously displayed isomorphism is equal to (−) ⊗K κ(s) of the
following isomorphism:

fK(OZ ,OW )
can−−→ fR(OZR ,OW )⊗R K

(φ
ZR,Z

′
R

R )⊗RK−−−−−−−−−−→ fR(OZ′
R
,OW )⊗R K can←−− fK(OZ′ ,OW ).

In particular, if we generize to the locus of disjoint subschemes and then re-
strict, the resulting isomorphism at s is independent of the choice of generiza-
tion.

Proof. Since the collection {φT } is compatible with base change preserving
generic disjointness, we may replace R by R/I for some ideal I ⊂ R such that
R/I is a local domain whose generic point SpecL is the image of the generic
point of T . Therefore we have commutative squares:
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L // κ(η)

R

OO

��

// Γ(T,OT )

OO

��
K // κ(s)

To show φR×RT = φT , it suffices to show they agree at η, i.e., that (φR×RT )×T
η = φT×T η. But this is equivalent to (φL)×Lη = φη, which is a consequence of
the compatibility with base change on pairs of disjoint subschemes (5.10). �

Corollary 5.35. Among Hilbert-Chow data satisfying at least one of the fol-
lowing conditions:

(1) the conditions of 5.33;
(2) the base T is a field;

there exists a collection of isomorphisms {φT } which:
(1) satisfies the cocycle condition;
(2) extends the collection of 5.33 (so is compatible with base change pre-

serving generic disjointness); and
(3) is compatible with specialization from the locus of disjoint subschemes

to the incidence locus.

Proof. The compatibility with specialization is built into the construction. The
new feature to check is the cocycle condition on field points mapping to the
incidence locus. But if the cocycle condition holds after generization and the
covering isomorphism is compatible with base change, then the collection must
also satisfy the cocycle condition at new (field) points. �

We augment 5.35 to include specializations fully within the incidence locus,
hence we have the first part of 5.1.

Theorem 5.36. Among Hilbert-Chow data satisfying at least one of the follow-
ing conditions:

(1) the conditions of 5.33;
(2) the base T is a field;
(3) the base T is a DVR;

there exists a collection of isomorphisms {φT } which:
(1) satisfies the cocycle condition;
(2) extends the collection of 5.35 (so is compatible with base change pre-

serving generic disjointness); and
(3) is compatible with arbitrary specialization.

Therefore, in the notation of 5.1, the incidence bundle L ∈ Pic(Y0) lifts to an
element (L, φ) ∈ Pic(Y•).
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Proof. This follows from the general lemma 4.5, the preceding result 5.35, and
the hypothesis that T is seminormal. �

Now we conclude the proof of 5.1.

Theorem 5.37 (Zariski local effectiveness). The element (L, φ = {φT }) of 5.36
is Zariski locally effective: for any cycle (z,W ) ∈ U ⊂ Ca × Cb there exists an
open subscheme V ⊂ U containing (z,W ) and an isomorphism t : L|π−1

0 (V )
∼=

Oπ−1
0 (V ) which is compatible with φ. Therefore, the incidence bundle L descends

to U .

Proof. This structure is built into the definition of the descent datum φ = {φT }.
By 5.5 we may assume W is fixed. Suppose z and W are disjoint. Then W is
disjoint from all cycles in a neighborhood V of z, and also from all subschemes
in V0 := π−10 (V ) ⊂ Ha. We let ZV0 →֒ P × V0 denote the corresponding

family. On V0 we use the canonical trivialization ϕ
ZV0
V0

: fV0(OZV0 ,OW ) :=

detV0(Rπ∗(OZV0⊗LOW )) ∼= OV0 induced by the acyclicity of OZV0⊗LOW .
Then by our definition of φ on disjoint subschemes, the following diagram
commutes:

fV0(OZV0 ,OW )

φZ,Z
′

V0
��

ϕ
ZV0
V0 // OV0

=

��
fV0(OZ′

V0
,OW )

ϕ
Z′
V0

V0 // OV0

For a pair (z,W ) in the incidence locus, choose a collection of short exact
sequences as in 5.13 movingW to a rationally equivalent α such that z∩α = ∅.
Then also z′ ∩ α = ∅ for z′ in a neighborhood V ∋ z, and α is disjoint from
all subschemes parameterized by V0 := π−10 (V ). Then we define t to be the

trivialization induced by the move, then the acyclicity of OZV0⊗LOWi (for all

Wi ∈ Supp(α)):

t : fV0(OZV0 ,OW ) ∼= fV0(OZV0 , α)
ϕ
ZV0
V0−−−→ OV0 .

This is compatible with φ by 5.32. Zariski local effectiveness implies effective-
ness by 3.1 and 4.6. �

Remark 5.38. In [18] we proved 1.1 for pairs of 1-dimensional cycles on a

threefold P (the case n = 3, a = b = 1) by constructing isomorphisms ϕZ,WT :
fT (OZ ,OW ) ∼= fT ([Z], [W ]) for all Hilbert data (Z,W ) for P over spectra of
fields and complete DVRs T . (We use the evident extension of the “determinant
of a cycle” notation from 5.3 when both variables are cycles.) Thus we obtained
for all Hilbert-Chow data (Z,W ), (Z ′,W ′) over spectra of fields and DVRs a
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system of isomorphisms φZ,Z
′;W,W ′

T := (ϕZ
′,W ′

T )
−1
◦ ϕZ,WT : fT (OZ ,OW ) ∼=

fT (OZ′ ,OW ′).
We explain the strategy used in [18] to construct the ϕ isomorphisms. Consider
first the case where T is the spectrum of a field, and write [Z] =

∑
niZi. Then

OZ ,OZi ∈ F1(K0(PT )) and the difference OZ −
∑
niOZi lies in F0(K0(PT )).

Since the determinant is additive on filtrations, to define ϕZ,WT it is enough
to trivialize in a sufficiently canonical way the determinant fT (OZ ,OW ) when
at least one of Z,W is zero-dimensional. To achieve this we used the explicit
form of the isomorphism in [20, 5.3]. For T the spectrum of a DVR, one has
also to trivialize the determinant fT (OZ ,OW ) when at least one of Z,W is
supported in the closed fiber. For this we used an exact sequence given by a
uniformizer. To summarize, as far as the incidence bundle is concerned, [20,
5.3] trivializes canonically the difference between the Hilbert scheme and the
Chow variety. Thus what was lacking in [18] was a generalization of [20, 5.3]
to higher dimensions.
To obtain the functoriality of the resulting collection {φT } in [18], we deduced
from the construction of the ϕ isomorphisms a natural list of properties (es-
sentially: being additive on triangles, and agreeing with prescribed normaliza-
tions on structure sheaves of subvarieties) sufficient to characterize them, then
checked the properties were stable under base change. This method worked on
all of C ×C , not just the locus U . By contrast, our approach here is to restrict
to the locus U and compare with the canonical trivialization on the locus U
of disjoint cycles. As for the effectiveness of the descent datum, both in [18]
and in the present work the verification of the Zariski local effectiveness of the
collection {φT } employs Grothendieck-Riemann-Roch to analyze the effect on
ϕ of a choice of “moving collection” of short exact sequences.
As a final point of contrast, in [18] we made use of the product structure of
the Hilbert-Chow proper hypercovering and showed, using [20, 3.12], that the
incidence bundle could be descended to the product of a Hilbert scheme and
a Chow variety. Then we showed the descended bundle inherited a Zariski
locally effective descent datum of its own. In other words, we wrote π =
(FC × Id) ◦ (Id×FC) : H ×H → C ×C and descended along (FC × Id) and
(Id×FC) separately.

Subsection 5.6. Conclusion of the proof of 1.1. Finally we verify the
properties stated in 1.1.

Descent of rational section. To see we have actually constructed a
Cartier divisor in U ⊂ Ca × Cb supported on the incidence locus, consider
the diagram whose vertical arrows are the restriction maps:

Pic(U)

��

// Pic(Y•)

��
Pic(U) // Pic((π−1(U))•)
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The arrow in the bottom row is injective by 4.6. On the locus of disjoint
subschemes, the isomorphism constructed in 5.8, ϕ : L|U0

∼= OU0 , is an iso-
morphism of pairs L|(π−1(U))•

= (L|U0 , φ|U0×UU0)
∼= (OU0 , id). Hence by the

injectivity of the bottom row, the trivialization ϕ descends to U ⊂ U .
Restriction to U ′ is effective. To check that the restriction D|U ′ is
effective, we may replace U ′ with its normalization U ′ν . Then we may replace
U ′ν with the local ring of some depth 1 point t on U ′ν . By the assumption
that the universal cycles intersect properly, over a given component C ⊂ U ′,
the incidence has dimension dim(C) − 1. This is preserved by the finite base
change U ′ν → U ′.
Suppose first the incidence is generically finite onto its image. Then 5.18 ap-
plies, and the coefficient of t in D|U ′ν is a sum of intersection multiplicities of
properly intersecting components (weighted with positive coefficients). If the
incidence dominates t, this coefficient is positive by [22, V.C.Thm.1(b)]; in any
case the coefficient is nonnegative.
If the incidence has generic positive dimension over its image, then its image
must have dimension ≤ dim(C)−2. Hence in this case the associated coefficient
is 0.

Intersection multiplicity. On the Chow varieties we have the incidence
bundle M and its rational section over the locus of disjoint cycles, giving
the Cartier divisor D →֒ U . This pulls back via the Hilbert-Chow morphism
π : Y0 → U to the determinant line bundle L and its rational section over
the locus of disjoint subschemes. Our goal is to relate the order of vanishing
of a local defining equation of D, to intersection numbers. So let sD be the
canonical (rational) section of the line bundle OU (D).

If g : T → U is a morphism from the spectrum of a discrete valuation ring
R ⊃ k (corresponding to cycles Z,W ), there exists a discrete valuation ring
R′ which is finite over R, and such that the composition g′ : T ′ := SpecR′ →
T → U factors through Y0. (Note that if we start with a specialization from
a generic point of U , we can find a component of the Hilbert scheme so that
no generic extension is necessary.) If ord g′∗(sD) = deg(ZT ′ ·WT ′), it follows
that ord g∗(sD) = deg(Z ·W ). Thus we may assume our specialization factors

through the Hilbert scheme, corresponding to subschemes Z̃, W̃ such that [Z̃] =

Z and [W̃ ] = W . Now we assume disjointness over the generic point η ∈ T ,
i.e., g(η) ∈ U . Let t ∈ T denote the closed point.
First we have:

ordT (sD) = ordT (sπ∗D) =
∑

p

(−1)pℓt(Hp(Rπ∗(OZ̃⊗LOW̃ )))

since each Hp(Rπ∗(OZ̃⊗LOW̃ )) is a torsion T -module, and by [12, Thm.3(v)].
Since the scheme PT is smooth, the filtration of the K0-groups by dimension

is compatible with multiplication, thus OZ̃⊗LOW̃ and Rπ∗(OZ̃⊗LOW̃ ) are

classes of dimension zero. Then
∑

p (−1)
p
ℓt(Hp(Rπ∗(OZ̃⊗LOW̃ ))) is equal to

Documenta Mathematica 16 (2011) 513–543



542 Joseph Ross

the degree of the K0-classes OZ̃⊗LOW̃ and Rπ∗(OZ̃⊗LOW̃ ). Note also the
refined class Z ·W is of the expected dimension, i.e., Z ·W ∈ A0(PT ).

We have OZ̃⊗LOW̃ =
∑
i (−1)

i
[TorPTi (OZ̃ ,OW̃ )] ∈ K0(PT ). The degree of

this class is computed by [7, 20.4]: it is simply the degree of the refined class
Z ·W ∈ A0(PT ), since the terms of dimension < 0 necessarily vanish.

References
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Assume G is a semi–simple Chevalley group, so G(Zp) ⊂ G(Qp) is a maximal
compact subgroup. Both the p–adic representation theory of G(Qp) and non–
commutative Iwasawa theory involve the Iwasawa algebra of G(Zp) or suitable
congruence subgroups. It seems to have been assumed that explicit descrip-
tions, by generators and relations, of these algebras were inaccessible. However,
it is a general principle that natural objects coming from semi–simple (split)
groups have explicit presentations. Famous examples are Serre’s presentation of
the semi–simple algebras and Steinberg’s presentation of the Chevalley groups
[7, 8]. In this paper we will give a presentation for the Iwasawa algebra of the
subgroup of level 1 in SL(2,Zp) (p 6= 2).

I thank M. Duflo and, once more, J.–P. Serre for useful discussions. Thanks are
also due to P. Schneider for reading a first draft and suggesting several correc-
tions, and to the referee for his careful work which eliminated an embarrassing
mistake.
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546 Laurent Clozel

1

Let G = SL(2) and let G be the subgroup of level 1 in G(Zp) :

G = {g ∈ SL(2,Zp) : g ≡ 1[p]} .

We assume p > 2, so G has no p–torsion. It has a triangular decomposition

G = N− T N+

where N− =

(
1 0
∗ 1

)
, N+ =

(
1 ∗
0 1

)
(entries ∗ in pZp) and T =

(
∗ 0
0 ∗

)

(entries in 1 + pZp). We identify N−, N+ with Zp by ∗ = px (x ∈ Zp).
Similarly T ∼= Zp by

x 7−→
(
(1 + p)x

(1 + p)−x

)
(x ∈ Zp) .

We consider the Iwasawa algebra ΛG of Zp–valued measures (or distributions,
in the sense of [9]), on G, which we will denote by D(G,Zp). The triangular
decomposition ofG, as an analytic manifold, yields a decomposition ofD(G,Zp)
as a topological Zp–module :

(1.1) D(G,Zp) = D(N−,Zp)⊗̂D(T,Zp)⊗̂D(N+,Zp) ,

the factors of (1.1) being the spaces of distributions on the factors of G. If f
is a function on G and U , V , W distributions on N−, T , N+,

(1.2) < U ⊗ V ⊗W, f >:=< U ⊗ V ⊗W, f(uhn) >

where u ∈ N−, h ∈ T , n ∈ N+ and f is therefore seen as a function on
N− × T × N+. The natural definition of the completed tensor product is
equivalent to the explicit description of D(G,Zp) reviewed below.

The algebra ΛZp = D(Zp, Zp) is identified with the ring of power series Zp[[T ]]
by Iwasawa’s theorem. For µ ∈ ΛZp , the associated series is given by the
Fourier–Amice transform

µ̂(t) =

∫

Zp

(1 + t)xdµ(x) (t ∈ Zp, |t| < 1) .

In particular, δ(x) being the Dirac measure at x :

δ̂(1) = 1 + T ,

so T = δ̂(1)− δ̂(0) .
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Presentation of an Iwasawa Algebra . . . 547

In each factor of the decomposition (1.1), we therefore have the Dirac
measures :

µ− = δ(

(
1
p 1

)
) , µ̂− = 1 + Y ∈ D(N−,Zp) ∼=

∼= Zp[[Y ]]

µ+ = δ(

(
1 p

1

)
) , µ̂+ = 1 +X ∈ D(N+,Zp) ∼=

∼= Zp[[X ]]

µ0 = δ(

(
(1 + p)

(1 + p)−1

)
) , µ̂0 = 1 +H ∈ D(T,Zp) ∼=

∼= Zp[[H ]]

For each factor, U = N−, T or N+ of G, D(U,Zp) is naturally sent to D(G,Zp),
by integrating a function f ∈ C(G,Zp) against µ ∈ D(U,Zp) on the U–factor.
This map is compatible with the convolution product. We therefore write,
unambiguously, Y n, Xn, Hn (n ≥ 0) in D(G,Zp). A distribution λ in this
space can then be written uniquely

(1.3) λ =
∑

n

λn Y
n1 Hn2 Xn3 (n ∈ N3)

with λn ∈ Zp. This is the meaning of the completed tensor product (1.1). The
expansion is convergent in D(G,Zp). Of course the product Y n1Hn2Xn3 :=
Y n1⊗Hn2⊗Xn3 is defined as above. This easily follows from Mahler’s theorem
in several variables (cf. Lazard [4, Théorème 1.2.4]).
It immediately follows from formula (1.2) that the distributions Y , H , X ∈
D(G,Zp) multiply in the obvious fashion when the variables are taken in the
“natural order”, i.e.

Y ⊗H = Y ∗H
Y ⊗X = Y ∗X
H ⊗X = H ∗X ,

the convolution product being taken on G. We will simply write, consistent
with previous notation :

(1.4) Y H = Y ∗H , Y X = Y ∗X , HX = H ∗X .

To determine the product structure in D(G,Zp) is to understand first the prod-
uct of monomials in a different order.
Consider first the product HY . It suffices to compute, in G, the product
µ0µ− = δ(h0)δ(u0), say. We compute h0u0h

−1
0 .

Since (
t

t−1

)(
1
x 1

)(
t−1

t

)
=

(
1

t−2x 1

)
,
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548 Laurent Clozel

we have h0u0h
−1
0 = u

(1+p)−2

0 if we write the group N− multiplicatively. The
equation

µ0µ− = δ(h0u0h
−1
0 )δ(h0) ,

and the fact that D(N−,Zp) ∼= Zp[[Y ]] is a homomorphism, show that

(1.5) (1 +H)(1 + Y ) = (1 + Y )q(1 +H)

where we have set

(1.6) q = (1 + p)−2 ≡ 1 [p] .

Similarly considerXH . Let n0 be the generator ofN
+. Now δ(n0)δ(h0) reduces

to h−10 n0h0. Again

(
t−1

t

)(
1 x

1

)(
t

t−1

)
=

(
1 t−2x

1

)
,

so h−10 n0h0 = n
(1+p)−2

0 = nq0, whence

(1.7) (1 +X)(1 +H) = (1 +H)(1 +X)q .

Finally, to express XY we have to decompose

n0u0 =

(
1 p

1

)(
1
p 1

)
=

(
1 + p2 p
p 1

)
.

Since (
1
a 1

)(
t

t−1

)(
1 b

1

)
=

(
t tb
ta abt+ t−1

)
,

we see that
p = ta = tb

with
1 + p2 = t = (1 + p)P , P ∈ Zp .

This yields, since t0 = 1+ p is the parameter of h0 :

(1.8) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q

with

(1.9) Q = (1 + p2)−1 ≡ 1[p2] , P =
log(1 + p2)

log(1 + p)
.

For p > 2, we have

log(1 + p) = p− p2

2 + p3

3 · · · = p(1 +O(p))

log(1 + p2) = p2(1 +O(p2))
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whence

(1.10) P = p(1 +O(p)) .

Note that we have simply written HY for H ∗ Y , etc. . . This will cause no
confusion if we remember that a product such as HY , for variables not in
the natural order, is not given by the ostensible product of monomials in the
expression (1.3).
To summarize, we have :

Proposition 1.1. Set Q = (1 + p2)−1 , q = (1 + p)−2, P = log(1+p2)
log(1+p) . Then

the elements X, Y , H of D(G,Zp) verify the relations

(a) (1 +H)(1 + Y ) = (1 + Y )q(1 +H)

(b) (1 +X)(1 +H) = (1 +H)(1 +X)q

(c) (1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q.

Consider now the universal, non–commutative p–adic algebra in the variables
Y , H , X : thus

A = Zp{{Y,H,X}}
is composed of all the non–commutative series

(1.11) f =
∑

n≥0

∑

i

aix
i

where the coefficients ai ∈ Zp and, for all n ≥ 0, i runs over all maps
{1, 2, . . . n} −→ {1, 2, 3} ; we set x1 = Y , x2 = H , x3 = X and xi =

xi(1) · · ·xi(n). The topology on A is the product topology on
∏
n
ZI(n)p where

I(n) is the set of maps (≡ of non–commutative monomials of degree n). The
algebra A has a maximal ideal MA generated by (p, x1, x2, x3) and a prime
ideal PA generated by (x1, x2, x3). Its topology is given by the powers ofMA.
The non–commutative polynomial algebra

A = Zp{Y,H,X}

is a dense subalgebra of A.
Let R be the closed two–sided ideal generated in A by the relations (a, b, c).
Our main result is

Theorem 1.2. The Iwasawa algebra ΛG is naturally isomorphic to A/R.
The proof will in fact rely on the corresponding result with coefficients in
Fp. So let ΩG = ΛG

⊗
Zp

Fp be the Iwasawa algebra with finite coefficients,

A = Fp{{Y,H,X}} the algebra of non–commutative series with coefficients in
Fp, with its natural linearly compact topology, given by its maximal idealMA.
Let R be the image of R in A.
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550 Laurent Clozel

Lemma 1.3. R is the closed two–sided ideal generated in A by the image of the
relations (a, b, c).

Proof.– Denote by I ⊂ A the ideal generated by the relations ; let J ⊂ A be
the similar ideal. Then J is obviously the image of I in A ; we denote it by I.
Let R be the reduction of R, and consider the closure cl(I) of I in A. If
f ∈ R, we have f = lim

n
fn (fn ∈ I) for the topology given by (MN

A ). This

implies that f = lim fn for the topology given by MN
A on A, thus f ∈ cl(I).

Conversely assume f ∈ A can be written f = lim fn with fn ∈ I. Then fn is
the reduction of a series fn ∈ I ⊂ R. Since R is closed and A compact, we
may assume that fn converges to g ∈ R. Then, by definition of the topologies,
f = lim fn = g. Thus cl(I) = R, which finishes the proof.

Theorem 1.4. The Iwasawa algebra mod p, ΩG, is naturally isomorphic to
A/R.

The proof of these results will occupy § 2, 3.

2

We consider the natural map
A −→ ΛG

given by the universal property of A. Note that the topology of ΛG, as a dis-
tribution algebra, coincides with its topology when it is seen as the algebra of
distributions on the commutative group Z3

p. In particular a basis of neighbour-

hoods of 0 is given by the family of Zp–modulesMN
Λ (Λ = ΛG), where

(2.1) MN
Λ = {λ ∈ ΛG , λ =

∑

n

λnY
n1Hn2Xn3 , v(λn) + |n| ≥ N}

with the usual notation |n| = n1 + n2 + n3. For a linear monomial x = Y , H
or X , we have w(x) = 1, w being the function on Λ given by

(2.2) w(λ) = inf
n
(v(λn) + |n|) .

We will use the following deep result of Lazard :

Proposition 2.1 (Lazard). The valuation w is additive : w(λ ∗ µ) = w(λ) +
w(µ) (λ, µ ∈ ΛG).

Cf. [4, III 2.3.3]. Lazard proves, in fact, that the associated graded ring is an
enveloping algebra, thus an integral domain, and this implies the additivity. I
am indebted to the paper of Schneider and Teitelbaum [6] for a lucid exposition
of Lazard’s results.
In fact, it follows from Lazard’s results thatMN

Λ is indeed the N -th power of
the maximal ideal MΛ of ΛG. Indeed, let JN be defined by w(λ) ≥ N . It is
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easy to check that J1 =MΛ. The additivity implies thatMN
Λ is contained in

JN . Since every linear monomial belongs to the maximal ideal, the expression
(2.1) implies the converse inclusion sinceMN

Λ is closed.
Consider now the filtration of A by the powers of its maximal ideal. It is
defined by a valuation wA given by a formula similar to (2.2) : if

f =
∑

i

ai x
i ,

wA(f) = inf
i
(v(ai) + |i|)

where |i| = n is the degree of i (cf. after (1.11)). We now have the following
(“ideal” means two–sided ideal unless otherwise indicated).

Proposition 2.2. The natural map ϕ : A → ΛG extends continuously to a
surjective homomorphism A → ΛG. In fact,

ϕ(MN
A ) ⊂MN

Λ (N ≥ 0) .

Proof : The continuity is implied by the stronger property

(2.3) w(ϕ(xi)) = n = |i|

where n, as after (1.11), is the degree of the monomial. By induction on n,
this follows from Proposition 2.1. If f ∈ MN

A , we have wA(f) ≥ N and the
continuity follows from (2.3) by Zp–linearity. The surjectivity follows from the
fact that ϕ is already surjective ifA is replaced by the set of linear combinations
of well-ordered monomials (i increasing).

Corollary 2.3. There is a natural, continuous surjection

B = A/R −→ ΛG .

Corollary 2.4. There is a continuous surjection

ϕ : B = A/R −→ ΩG .

This follows from Lemma 1.3.
It follows from Abelian distribution theory that ΩG is, as a space, isomorphic
to

Fp[[Y,H,X ]]

with the compact topology. An obvious computation shows that

MN
Ω = {λ ∈ ΩG : vΩ(λ) ≥ N} ,

vΩ being the usual valuation on power series, is the image ofMN
Λ . In particular

it is an ideal ; for N = 1,MΩ is the maximal (two–sided) ideal, and (MΩ)
N ⊂

MN
Ω . (Reduce mod p the corresponding property for Λ.)
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Similarly in A, we find that the reduction mod p (image in A) ofMN
A is the

ideal of series
f =

∑

i

αi x
i (αi ∈ Fp)

such that |i| ≥ N . For N = 1 we obtain the maximal ideal in A. Furthermore
in this case too (MA)N =MN

A .

3

In this paragraph we will directly study the quotient algebra B = A/R, using
the properties of the relations (a, b, c).
Consider the natural filtration of A by the powers ofMA, which we denote by

FnA. We have FnA/Fn+1A = grnA ∼= FI(n)p where I(n) is the set of maps
{1, . . . , n} → {1, 2, 3} (§1). The filtration Fn induces a filtration on
B = A/R :

FnB = FnA+R
whence a graduation

grnB = FnA+R/Fn+1A+R
= FnA/Fn+1A+ (FnA ∩R) .

Let Sn = Sn(X,Y, Z) be the space of commutative polynomials over Fp of

degree n ; thus dimSn = (n+1)(n+2)
2 . Let Σn be the space of homogeneous

non–commutative polynomials of degree n ; thus Σn → FnA/Fn+1A, and
therefore Σn → grnB, is surjective.
Proposition 3.1. dim grnB ≤ dimSn.

In order to prove this we consider the relations defining R (or rather R).
Consider first the relation (a) :

(1 +H)(1 + Y ) = (1 + Y )q(1 +H)

with q ≡ 1 [p]. Expanding the power series gives

1 +H + Y +HY = (1 + qY +

(
q
2

)
Y 2 + · · · )(1 +H) .

We note that

(
q
2

)
=
q(q − 1)

2
≡ 0 [p]. Thus in A/R :

1 +H + Y +HY = (1 + qY )(1 +H) +R(Y )(1 +H) ,

the term R(Y ) being of degree ≥ 3, so

HY = (q − 1)Y + qY H +R1(Y,H)

= Y H +R1(Y,H)
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since q ≡ 1, R1(Y,H) of degree ≥ 3. This shows that in B = A/R :

(3.1) HY = Y H mod F 3B i.e.

HY = Y H in gr2B .
The computation for relation (b) is obviously similar, yielding in B

(3.2) XH = HX mod F 3B .

Consider now the identity (c) :

(1 +X)(1 + Y ) = (1 + Y )Q(1 +H)P (1 +X)Q .

We have Q ≡ 1 [p2], P ≡ p [p2]. Again the coefficients
Q(Q− 1)

2
of Y 2, X2

in the power series vanish mod p. ModuloM3
A, whose image is in F 3B, we

then have
(1 +X)(1 + Y ) ≡ (1 +QY )(1 +H)P (1 +QX) .

Since P ≡ p [p2] and since 2 is invertible, (1 +H)P ≡ 1 mod (p,H3). Thus

1 +X + Y +XY ≡ 1 +QX +QY +Q2Y X ( mod F 3B) ,

and since Q ≡ 1 :

(3.3) XY ≡ Y X ( mod F 3B) .

Since gr2B is generated by these three monomials and the squares Y 2, H2, X2 ,
the identities (3.1)–(3.3) show that dim gr2B ≤ 6, whence the result for n = 2.
The proposition for general n is deduced from this case. Consider an arbitrary
monomial of degree n,

xi = xi1 ...xin .

The following lemma is obvious :

Lemma 3.2. We can change xi into a well–ordered monomial xi
′

(i′ increasing)
by a sequence of transpositions xiαxiα+1 7→ xiα+1xiα .

(Consider the set of inversions {α < β : iα > iβ}. Assume iγ > iγ+1, and
replace in xi the term xiγxiγ+1 by xiγ+1xiγ . It is easy to check that the set of
inversions decreases by one element.)

We now write xi = xjxiαxiα+1x
ℓ. We will prove by induction

Lemma 3.3. In B, xi ≡ xi′ mod Fn+1B, where i′ is well–ordered.

But this is now equally obvious. Let r, s be the degrees of xj , xℓ, so n = r+s+2.
Then xj ≡ xj

′

[F r+1B], xℓ ≡ xℓ
′

[F s+1B] and xiαxiα+1 ≡ xiα+1xiα [F
3B]

; we are of course assuming iα > iα+1. Factoring the congruences gives
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xi ≡ xj
′

xiα+1xiαx
ℓ′ [Fn+1B] since the filtration Fn, image of Fn on A, ver-

ifies FnFm ⊂ Fn+m. Using induction if necessary, we obtain the Lemma,
whence Proposition 3.1.

Proof of Theorem 1.4.– The natural map ϕ : A → ΛG sendsMn
A toMn

Λ. Since
F • is on B the filtration inherited from the natural filtration on A, we see that
ϕ sends FnB to Mn

Ω. We then have a natural map grϕ : gr•B → gr•ΩG,
surjective since ϕ is so. It is an isomorphism since dim grnB ≤ dim Sn =
dim grnΩG. (The last equality follows from the considerations after Cor.2.4 ;
cf also [3, Theorem 7.24]). Therefore ϕ is isomorphic since the filtration on B
is complete. The last point follows from the fact that B = A/R where R is
closed and therefore complete for the filtration induced from that of A : see
e.g. [5, Thm 4 (5) p. 31].

Proof of Theorem 1.2.– The reduction of ϕ : A/R→ ΛG is ϕ. Recall that R is
the image of R in A. Assume f ∈ A satisfies ϕ(f) = 0. We then have f ∈ R
by Theorem 1.3, so f = r1+pf1, r1 ∈ R, f1 ∈ A. Then ϕ(f1) = 0. Inductively,
we obtain an expression f = rn + pnfn of the same type. Since pnfn → 0 in A
and R is closed, we see that f ∈ R, QED.

4

In this section, we show that the description of ΛG given in § 1 allows one
to give different proofs of some results of Ardakov and to understand them in
terms of the growth of coefficients in the Iwasawa expansion.

Ardakov’s main result in [1] is that the centre of the Iwasawa algebra reduces
to the Iwasawa algebra of the centre of G, trivial in our case. We will see that
the fact of being central is incompatible with the boundedness of the Iwasawa
coefficients.

It will be instructive to compare this behaviour with what happens for the cen-
tre of the enveloping algebra. Recall that instead of the Iwasawa distributions,
or measures, we can consider the analytic distributions (or hyperfunctions),
dual to the locally analytic functions on G (cf. Schneider–Teitelbaum [6]).
They admit an expansion (1.3), but with now

(4.1) |λn|r|n| −→ 0 ∀r < 1 , |n| = n1 + n2 + n3 .

Among these we have the Casimir operator (seen as a distribution with support
at 1)

ω = h2 + 2(xy + yx) = h2 − 2h+ 4xy

(cf. e.g. Borel [2, p. 19]) where h, x, y are the infinitesimal generators of the
groups T , N+, N−. It suffices to compute ω on a function f given by

f(utn) = (1 + Y )x1(1 +H)x2(1 +X)x3
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where u, t, n have parameters x1, x2, x3 ∈ Zp and Y , H , X belong to the disc
|w| < 1 in Cp or even Qp (such functions are dense). Now

(xyf)(1) =
d

dt

∣∣∣
0
yf(etx) =

d

dt

∣∣∣
0

d

ds

∣∣∣
0
f(esyetx)

=
d

dt

∣∣∣
0

d

ds

∣∣∣
0
f

((
1
s 1

)(
1 t

1

))

= ∂2

∂s∂t

∣∣∣
0
(1 + Y )s/p(1 +X)t/p

= 1
p2 log(1 + Y ) log(1 +X) ,

hf(1) =
d

dt

∣∣∣
0
f

(
et

e−t

)

=
1

log(1 + p)

d

dt

∣∣∣
0
f

(
(1 + p)t

(1 + p)−t

)

=
1

log(1 + p)
log(1 +H) ,

h2f(1) =
1

log2(1 + p)

d2

dp2

∣∣∣
0
f

(
(1 + p)t

(1 + p)−t

)

=
1

log2(1 + p)
[log(1 +H)] ,

Thus the Amice transform of ω is

F (Y,H,X) =

=
1

log2(1 + p)
log2(1 +H)− 2

log(1 + p)
log(1 +H) +

4

p2
log(1 + Y ) log(1 +X) .

This obviously has an expansion (4.1) – and is an element of the ring of con-
vergent series on D(1)3, D(1) ⊂ Qp being the open unit disc – but it is not an
element of ΛG.
We will see that the invariance under T suffices to impose such a logarithmic
behaviour. This leads to :

Theorem 4.1. The space of elements on ΛG invariant by conjugation under
T is equal to the Iwasawa algebra ΛT ⊂ ΛG.

Assume indeed λ ∈ ΛG is T –invariant, with Amice transform

F (Y,H,X) .

We have Y = u0−1, with h0u0h−10 = u
(1+p)−2

0 ; thus the automorphism Ad(h0)

of G sends 1 + Y to (1 + Y )(1+p)
−2

. Similarly, h0n0h
−1
0 = n

(1+p)2

0 , so 1 + X
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is sent to (1 +X)(1+p)
2

. Of course H is left invariant. If λ is T –invariant we
therefore have

(4.2) F (Y,H,X) = F (Y ′, H,X ′)

where 1 + Y ′ = (1 + Y )(1+p)
−2

, 1 +X ′ = (1 +X)(1+p)
2

. Since p 6= 2, (1 + p)2

is a topological generator of 1 + Zp. Therefore (4.2) remains true if

(4.3) 1 + Y ′ = (1 + Y )u , 1 +X ′ = (1 +X)u
−1

, u ∈ 1 + pZp .

In the following computations consider F as an element of the Lazard ring
in three variables. If we fix a value of H in Cp such that |H | < 1, say H0,
F (Y,H0, X) := F1(Y,X) becomes an Iwasawa series in the two variables, still
invariant under (4.3). Now set

(4.4) U = log(1 + Y ) , V = log(1 +X) ,

two series convergent in D(1). We have

F1(Y,X) = G1(U, V )

where G1 converges absolutely in the domain of convergence of the exponential,

i.e. for |U |, |V | < r0 = p−
1
p−1 . Moreover G1 is invariant by U 7→ uU , V 7→

u−1V , |u− 1| < p−1. This implies that

G1(U, V ) = G2(UV )

with G2(z) convergent for |z| < r20 .
Let

G2(z) =

∞∑

0

bqz
q ,

F1(Y,X) =
∑

m,n

amnY
mXn (|amn| ≤ 1) .

Then F1(Y,X) = G2(log(1 + Y ) log(1 +X)) ,

log(1 + Y ) = Y

∞∑

0

(−1)k
k + 1

Y k := Y L1(Y )

log(1 +X) = X

∞∑

0

(−1)ℓ
ℓ+ 1

Y ℓ := XL1(X)

Thus (log(1+Y ) log(1+X))q contains only terms the degree of which in Y and
X is at least q. We have of course b0 = a0, and the previous remark implies
that ∑

n≥0
a1n Y Xn +

∑

m≥0
am1Y

mX
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is identical with the sum of terms of these degrees in

b1 Y X L1(Y )L1(X) ,

i.e. with
b1 Y X (L1(Y ) + L1(X)− 1) .

Since the amn are integral, this implies that b1 = 0 as the denominators in the
log–series are not bounded.
By induction assume that b1 = · · · bN−1 = 0, so

G2 =

∞∑

N

bqz
q .

We then find that

(4.4) F1(Y,X) = bNY
NXNL1(Y )NL1(X)N

+ terms of degree > N in X and Y .

Now L1(Y ) = 1 + YM1(Y ) , say ,

L1(X) = 1 +XM1(X)

so (4.4) implies that

F1(Y,X) = bNY
NXN (1 +NYM1(Y ) +NXM1(X))

+ terms of degree > N in X and Y .

Since M1 does not have bounded denominators, we deduce that bN = 0.
Finally we have proved that F1 = b0, i.e. F (Y,H,X) ≡ b0(H) for any H ∈ Cp,
|H | < 1, This implies that F (Y,H,X) = F (H) has no terms involving X or Y ,
whence the result.

Corollary 4.2. The centre of ΛG is composed of the multiples of the Dirac
measure at 1.

For assume that λ ∈ ΛG is central, so invariant by all conjugates of T in G.
By Thm. 4.1 its support is contained in the intersection of the tori gTg−1

(g ∈ G) . This intersection is reduced to {1}.
We note that Theorem 4.1 itself follows from Ardakov’s results [1, Proposition
2.2]: a simple computation shows that the only finite orbits of T in G are the
elements of T (use the triangular decomposition).

5

This section is devoted to conjectural remarks on a formal extension of the
main result.
Consider the formulas of Proposition 1, for example
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(a) (1 +H)(1 + Y ) = (1 + Y )(1+p)
−2

(1 +H)

(c) (1 +X)(1 + Y ) = (1 + Y )(1+p
2)−1

(1 +H)
log(1+p2)
log(1+p) (1 +X)(1+p

2)−1

.

In the p–adic computation the series for, say, (1 +X)x (x ∈ Zp) converges as

an Iwasawa expansion because of the integrality of the binomial function

(
x
n

)
.

However, replace now ΛG by k[[Y,H,X ]] where k is a field of characteristic
zero. Set p = ε, another formal variable, which should however be considered
as a small parameter. The binomial coefficients, namely

(5.1)

(
(1 + ε)−2

n

)
=

(1 + ε)−2((1 + ε)−2 − 1) · · · ((1 + ε)−2 − n+ 1)

n!

and similarly (
log(1 + ε2)/ log(1 + ε)

n

)

are well–defined series in k[[ε]]. Formulas (a, b, c) therefore define the products
HY , XH and XY in k[[ε]][[Y,H,X ]]. The p–adic results do not seem to imply
that this extends to an associative product in this ring of power series. Note
that if it were so, equations (a, b, c) at ε = 0 would simply yield HY = Y H ,
XH = HX and XY = Y X . Such an extension would therefore define, quite
naturally, a formal deformation of the algebra of power series k[[Y,H,X ]] as-
sociated to the group SL(2). It would be interesting to understand this defor-
mation in group–theoretic terms (or in terms of the Lie algebra) –assuming, of
course, it exists. In this respect one should note that formulas (a, b) allow one
to define inductively the products HnY m and XnHm. However I do not see
how to define XnY m, even granting (c).
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Université Paris-Sud 11
Bât. 425
91405 Orsay CEDEX
France

Documenta Mathematica 16 (2011) 545–559



560

Documenta Mathematica 16 (2011)



Documenta Math. 561

On the Existence of Stationary Solutions for

Some Non-Fredholm Integro-Differential Equations

Vitali Vougalter, Vitaly Volpert

Received: February 4, 2011

Communicated by Heinz Siedentop

Abstract. We show the existence of stationary solutions for some
reaction-diffusion type equations in the appropriate H2 spaces using
the fixed point technique when the elliptic problem contains second
order differential operators with and without Fredholm property.

2010 Mathematics Subject Classification: 35J10, 35P30, 35K57
Keywords and Phrases: solvability conditions, non Fredholm opera-
tors, integro-differential equations, stationary solutions

1 Introduction

Let us recall that a linear operator L acting from a Banach space E into
another Banach space F satisfies the Fredholm property if its image is closed,
the dimension of its kernel and the codimension of its image are finite. As a
consequence, the equation Lu = f is solvable if and only if φi(f) = 0 for a
finite number of functionals φi from the dual space F ∗. These properties of
Fredholm operators are widely used in many methods of linear and nonlinear
analysis.
Elliptic problems in bounded domains with a sufficiently smooth boundary
satisfy the Fredholm property if the ellipticity condition, proper ellipticity and
Lopatinskii conditions are satisfied (see e.g. [1], [9], [10]). This is the main re-
sult of the theory of linear elliptic problems. In the case of unbounded domains,
these conditions may not be sufficient and the Fredholm property may not be
satisfied. For example, Laplace operator, Lu = ∆u, in Rd does not satisfy the
Fredholm property when considered in Hölder spaces, L : C2+α(Rd)→ Cα(Rd),
or in Sobolev spaces, L : H2(Rd)→ L2(Rd).
Linear elliptic problems in unbounded domains satisfy the Fredholm property
if and only if, in addition to the conditions cited above, limiting operators are
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invertible (see [11]). In some simple cases, limiting operators can be explicitly
constructed. For example, if

Lu = a(x)u′′ + b(x)u′ + c(x)u, x ∈ R,

where the coefficients of the operator have limits at infinity,

a± = lim
x→±∞

a(x), b± = lim
x→±∞

b(x), c± = lim
x→±∞

c(x),

the limiting operators are:

L±u = a±u
′′ + b±u

′ + c±u.

Since the coefficients are constant, the essential spectrum of the operator, that
is the set of complex numbers λ for which the operator L−λ does not satisfy the
Fredholm property, can be explicitly found by means of the Fourier transform:

λ±(ξ) = −a±ξ2 + b±iξ + c±, ξ ∈ R.

Invertibility of limiting operators is equivalent to the condition that the essen-
tial spectrum does not contain the origin.
In the case of general elliptic problems, the same assertions hold true. The
Fredholm property is satisfied if the essential spectrum does not contain the
origin or if the limiting operators are invertible. However, these conditions may
not be explicitly written.
In the case of non-Fredholm operators the usual solvability conditions may not
be applicable and solvability conditions are, in general, not known. There are
some classes of operators for which solvability conditions are obtained. Let us
illustrate them with the following example. Consider the equation

Lu ≡ ∆u+ au = f (1.1)

in Rd, where a is a positive constant. The operator L coincides with its lim-
iting operators. The homogeneous equation has a nonzero bounded solution.
Hence the Fredholm property is not satisfied. However, since the operator has
constant coefficients, we can apply the Fourier transform and find the solution
explicitly. Solvability conditions can be formulated as follows. If f ∈ L2(Rd)
and xf ∈ L1(Rd), then there exist a solution of this equation in H2(Rd) if and
only if (

f(x),
eipx

(2π)
d
2

)

L2(Rd)

= 0, p ∈ Sd√a a.e.

(see [19]). Here and further down Sdr denotes the sphere in Rd of radius r
centered at the origin. Thus, though the operator does not satisfy the Fredholm
property, solvability conditions are formulated in a similar way. However, this
similarity is only formal since the range of the operator is not closed.
In the case of the operator with a potential,
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Lu ≡ ∆u+ a(x)u = f,

Fourier transform is not directly applicable. Nevertheless, solvability conditions
in R3 can be obtained by a rather sophisticated application of the theory of self-
adjoint operators (see [13]). As before, solvability conditions are formulated
in terms of orthogonality to solutions of the homogeneous adjoint equation.
There are several other examples of linear elliptic operators without Fredholm
property for which solvability conditions can be obtained (see [11]-[19]).
Solvability conditions play an important role in the analysis of nonlinear elliptic
problems. In the case of non-Fredholm operators, in spite of some progress in
understanding of linear problems, there exist only few examples where nonlin-
ear non-Fredholm operators are analyzed (see [4]-[6]). In the present article we
consider another class of nonlinear equations, for which the Fredholm property
may not be satisfied:

∂u

∂t
= ∆u+ au+

∫

Ω

G(x − y)F (u(y), y)dy = 0, a ≥ 0. (1.2)

Here Ω is a domain in Rd, d = 1, 2, 3, the more physically interesting di-
mensions. In population dynamics the integro-differential equations describe
models with intra-specific competition and nonlocal consumption of resources
(see e.g. [2], [3], [7]). The linear part of the corresponding operator is the
same as in equation (1.1) above. We will use the explicit form of solvability
conditions and will study the existence of stationary solutions of the nonlinear
equation.

2 Formulation of the results

The nonlinear part of equation (1.2) will satisfy the following regularity condi-
tions.

Assumption 1. Function F (u, x) : R× Ω→ R is such that

|F (u, x)| ≤ k|u|+ h(x) for u ∈ R, x ∈ Ω (2.1)

with a constant k > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, it is a
Lipschitz continuous function, such that

|F (u1, x)− F (u2, x)| ≤ l|u1 − u2| for any u1,2 ∈ R, x ∈ Ω (2.2)

with a constant l > 0.

Clearly, the stationary solutions of (1.2), if they exist, will satisfy the nonlocal
elliptic equation

∆u+

∫

Ω

G(x − y)F (u(y), y)dy + au = 0, a ≥ 0.
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Let us introduce the auxiliary problem

−∆u− au =

∫

Ω

G(x− y)F (v(y), y)dy. (2.3)

We denote (f1(x), f2(x))L2(Ω) :=
∫
Ω f1(x)f̄2(x)dx, with a slight abuse of no-

tations when these functions are not square integrable, like for instance those
used in the one dimensional Lemma A1 of the Appendix. In the first part of
the article we study the case of Ω = Rd, such that the appropriate Sobolev
space is equipped with the norm

‖u‖2H2(Rd) := ‖u‖2L2(Rd) + ‖∆u‖2L2(Rd).

The main issue for the problem above is that the operator −∆− a : H2(Rd)→
L2(Rd), a ≥ 0 does not satisfy the Fredholm property, which is the obstacle
to solve equation (2.3). The similar situations but in linear problems, both
self- adjoint and non self-adjoint involving non Fredholm second or fourth
order differential operators or even systems of equations with non Fredholm
operators have been studied extensively in recent years (see [13]-[18]). How-
ever, we manage to show that equation (2.3) in this case defines a map
Ta : H2(Rd) → H2(Rd), a ≥ 0, which is a strict contraction under certain
technical conditions.

Theorem 1. Let Ω = Rd, G(x) : Rd → R, G(x) ∈ L1(Rd) and Assumption 1
holds.
I) When a > 0 we assume that xG(x) ∈ L1(Rd), orthogonality relations (6.4)

hold if d = 1 and (6.9) when d = 2, 3 and
√
2(2π)

d
2Na, d l < 1. Then the map

Tav = u on H2(Rd) defined by equation (2.3) has a unique fixed point va, which
is the only stationary solution of problem (1.2) in H2(Rd).
II) When a = 0 we assume that x2G(x) ∈ L1(Rd), orthogonality relations

(6.10) hold, d = 1, 2, 3 and
√
2(2π)

d
2N0, d l < 1. Then the map T0v = u on

H2(Rd) defined by equation (2.3) admits a unique fixed point v0, which is the
only stationary solution of problem (1.2) with a = 0 in H2(Rd).
In both cases I) and II) the fixed point va, a ≥ 0 is nontrivial provided the

intersection of supports of the Fourier transforms of functions suppF̂ (0, x) ∩
suppĜ is a set of nonzero Lebesgue measure in Rd.

In the second part of the work we study the analogous problem on the finite
interval with periodic boundary conditions, i.e. Ω = I := [0, 2π] and the
appropriate functional space is

H2(I) = {u(x) : I → R | u(x), u′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π)}.

Let us introduce the following auxiliary constrained subspaces

H2
0 (I) := {u ∈ H2(I) |

(
u(x),

e±in0x

√
2π

)
L2(I)

= 0}, n0 ∈ N (2.4)
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and

H2
0, 0(I) = {u ∈ H2(I) | (u(x), 1)L2(I) = 0}, (2.5)

which are Hilbert spaces as well (see e.g. Chapter 2.1 of [8]). We prove that
equation (2.3) in this situation defines a map τa, a ≥ 0 on the above mentioned
spaces which will be a strict contraction under our assumptions.

Theorem 2. Let Ω = I, G(x) : I → R, G(x) ∈ L1(I), G(0) =
G(2π), F (u, 0) = F (u, 2π) for u ∈ R and Assumption 1 holds.

I) When a > 0 and a 6= n2, n ∈ Z we assume that 2
√
πNal < 1. Then the

map τav = u on H2(I) defined by equation (2.3) has a unique fixed point va,
the only stationary solution of problem (1.2) in H2(I).

II) When a = n2
0, n0 ∈ N assume that orthogonality relations (6.17) hold and

2
√
πNn2

0
l < 1. Then the map τn2

0
v = u on H2

0 (I) defined by equation (2.3)
has a unique fixed point vn2

0
, the only stationary solution of problem (1.2) in

H2
0 (I).

III) When a = 0 assume that orthogonality relation (6.18) holds and 2
√
πN0l <

1. Then the map τ0v = u on H2
0, 0(I) defined by equation (2.3) has a unique

fixed point v0, the only stationary solution of problem (1.2) in H2
0, 0(I).

In all cases I), II) and III) the fixed point va, a ≥ 0 is nontrivial provided the
Fourier coefficients GnF (0, x)n 6= 0 for some n ∈ Z.

Remark. We use the constrained subspaces H2
0 (I) and H2

0, 0(I) in cases II)

and III) respectively, such that the operators − d2

dx2
− n2

0 : H2
0 (I)→ L2(I) and

− d2

dx2
: H2

0, 0(I)→ L2(I), which possess the Fredholm property, have empty

kernels.

We conclude the article with the studies of our problem on the product of
spaces, where one is the finite interval with periodic boundary conditions as
before and another is the whole space of dimension not exceeding two, such
that in our notations Ω = I×Rd = [0, 2π]×Rd, d = 1, 2 and x = (x1, x⊥) with
x1 ∈ I and x⊥ ∈ Rd. The appropriate Sobolev space for the problem is H2(Ω)
defined as

{u(x) : Ω→ R | u(x),∆u(x) ∈ L2(Ω),

u(0, x⊥) = u(2π, x⊥), ux1(0, x⊥) = ux1(2π, x⊥)},

where x⊥ ∈ Rd a.e. and ux1 stands for the derivative of u(x) with respect to the
first variable x1. As in the whole space case covered in Theorem 1, the operator
−∆ − a : H2(Ω) → L2(Ω), a ≥ 0 does not possess the Fredholm property.
Let us show that problem (2.3) in this context defines a map ta : H2(Ω) →
H2(Ω), a ≥ 0, a strict contraction under appropriate technical conditions.
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Theorem 3. Let Ω = I × Rd, d = 1, 2, G(x) : Ω → R, G(x) ∈
L1(Ω), G(0, x⊥) = G(2π, x⊥), F (u, 0, x⊥) = F (u, 2π, x⊥) for x⊥ ∈ Rd a.e.
and u ∈ R and Assumption 1 holds.
I) When n2

0 < a < (n0 +1)2, n0 ∈ Z+ = N∪ {0} let x⊥G(x) ∈ L1(Ω), condi-

tion (6.29) holds if dimension d = 1 and (6.30) if d = 2 and
√
2(2π)

d+1
2 Mal <

1. Then the map tav = u on H2(Ω) defined by equation (2.3) has a unique
fixed point va, the only stationary solution of problem (1.2) in H2(Ω).
II) When a = n2

0, n0 ∈ N let x2⊥G(x) ∈ L1(Ω), conditions (6.25), (6.27)
hold if dimension d = 1 and conditions (6.26), (6.27) hold if d = 2 and√
2(2π)

d+1
2 Mn2

0
l < 1. Then the map tn2

0
v = u on H2(Ω) defined by equa-

tion (2.3) has a unique fixed point vn2
0
, the only stationary solution of problem

(1.2) in H2(Ω).
III) When a = 0 let x2⊥G(x) ∈ L1(Ω), conditions (6.23) hold and√
2(2π)

d+1
2 M0l < 1. Then the map t0v = u on H2(Ω) defined by equation

(2.3) has a unique fixed point v0, the only stationary solution of problem (1.2)
in H2(Ω).
In all cases I), II) and III) the fixed point va, a ≥ 0 is nontrivial provided that
for some n ∈ Z the intersection of supports of the Fourier images of functions

suppF̂ (0, x)n ∩ suppĜn is a set of nonzero Lebesgue measure in Rd.

Remark. Note that the maps discussed above act on real valued functions due
to the assumptions on F (u, x) and G(x) involved in the nonlocal term of (2.3).

3 The Whole Space Case

Proof of Theorem 1. We present the proof of the theorem in case I) and when
a = 0 the argument will be similar. Let us first suppose that in the case
of Ω = Rd for some v ∈ H2(Rd) there exist two solutions u1,2 ∈ H2(Rd) of
problem (2.3). Then their difference w := u1 − u2 ∈ H2(Rd) will satisfy the
homogeneous problem −∆w = aw. Since the Laplacian operator acting in the
whole space does not have any nontrivial square integrable eigenfunctions, w(x)
vanishes a.e. in Rd. Let v(x) ∈ H2(Rd) be arbitrary. We apply the standard
Fourier transform to both sides of (2.3) and arrive at

û(p) = (2π)
d
2
Ĝ(p)f̂(p)

p2 − a (3.1)

with f̂(p) denoting the Fourier image of F (v(x), x). Clearly, we have the upper
bounds

|û(p)| ≤ (2π)
d
2Na, d|f̂(p)| and |p2û(p)| ≤ (2π)

d
2Na, d|f̂(p)|

with Na, d < ∞ by means of Lemma A1 of the Appendix in one dimension
and via Lemma A2 for d = 2, 3 under orthogonality relations (6.4) and (6.9)

Documenta Mathematica 16 (2011) 561–580



On the Existence of Stationary Solutions. . . 567

respectively. This enables us to estimate the norm

‖u‖2H2(Rd) = ‖û(p)‖2L2(Rd) + ‖p2û(p)‖2L2(Rd) ≤ 2(2π)dN2
a, d‖F (v(x), x)‖2L2(Rd),

which is finite by means of (2.1) of Assumption 1. Therefore, for any v(x) ∈
H2(Rd) there is a unique solution u(x) ∈ H2(Rd) of problem (2.3) with its
Fourier image given by (3.1) and the map Ta : H2(Rd) → H2(Rd) is well
defined. This enables us to choose arbitrarily v1,2(x) ∈ H2(Rd) such that their
images u1,2 = Tav1,2 ∈ H2(Rd) and estimate

|û1(p)− û2(p)| ≤ (2π)
d
2Na, d|f̂1(p)− f̂2(p)|,

|p2û1(p)− p2û2(p)| ≤ (2π)
d
2Na, d|f̂1(p)− f̂2(p)|,

where f̂1,2(p) stand for the Fourier images of F (v1,2(x), x). For the appropriate
norms of functions this yields

‖u1 − u2‖2H2(Rd) ≤ 2(2π)dN2
a, d‖F (v1(x), x) − F (v2(x), x)‖2L2(Rd).

Note that v1,2(x) ∈ H2(Rd) ⊂ L∞(Rd), d ≤ 3 by means of the Sobolev em-
bedding. Using condition (2.2) we easily arrive at

‖Tav1 − Tav2‖H2(Rd) ≤
√
2(2π)

d
2Na, dl‖v1 − v2‖H2(Rd)

with the constant in the right side of this estimate less than one by the assump-
tion of the theorem. Therefore, by means of the Fixed Point Theorem, there
exists a unique function va ∈ H2(Rd) with the property Tava = va, which is the
only stationary solution of equation (1.2) in H2(Rd). Suppose va(x) vanishes
a.e. in Rd. This will contradict to the assumption that the Fourier images of
G(x) and F (0, x) do not vanish on a set of nonzero Lebesgue measure in Rd.

4 The Problem on the Finite Interval

Proof of Theorem 2. Let us demonstrate the proof of the theorem in case
I) and when a = n2

0, n0 ∈ N or a = 0 the ideas will be similar, using the
constrained subspaces (2.4) and (2.5) respectively instead of H2(I). First we
suppose that for v ∈ H2(I) there are two solutions u1,2 ∈ H2(I) of problem
(2.3) with Ω = I. Then function w := u1−u2 ∈ H2(I) will be a solution to the
problem −w′′ = aw. But a 6= n2, n ∈ Z and therefore, it is not an eigenvalue

of the operator − d2

dx2
on L2(I) with periodic boundary conditions. Therefore,

w(x) vanishes a.e. in I. Suppose v(x) ∈ H2(I) is arbitrary. Let us apply the
Fourier transform to problem (2.3) considered on the interval I which yields

un =
√
2π

Gnfn
n2 − a , n ∈ Z (4.1)
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with fn := F (v(x), x)n. Clearly for the transform of the second derivative we
have

(−u′′)n =
√
2π
n2Gnfn
n2 − a , n ∈ Z,

which enables us to estimate

‖u‖2H2(I) =

∞∑

n=−∞
|un|2 +

∞∑

n=−∞
|n2un|2 ≤ 4πN 2

a ‖F (v(x), x)‖2L2(I) <∞

due to (2.1) of Assumption 1 and Lemma A3 of the Appendix. Hence, for an
arbitrary v(x) ∈ H2(I) there is a unique u(x) ∈ H2(I) solving equation (2.3)
with its Fourier image given by (4.1) and the map τa : H2(I)→ H2(I) in case
I) is well defined. Let us consider any v1,2 ∈ H2(I) with their images under
the map mentioned above u1,2 = τav1,2 ∈ H2(I) and arrive easily at the upper
bound

‖u1 − u2‖2H2(I) =

∞∑

n=−∞
|u1n − u2n|2 +

∞∑

n=−∞
|n2(u1n − u2n)|2 ≤

≤ 4πN 2
a ‖F (v1(x), x) − F (v2(x), x)‖2L2(I).

Obviously v1,2(x) ∈ H2(I) ⊂ L∞(I) due to the Sobolev embedding. By means
of (2.2) we easily obtain

‖τav1 − τav2‖H2(I) ≤ 2
√
πNal‖v1 − v2‖H2(I),

such that the constant in the right side of this upper bound is less than one as
assumed. Thus, the Fixed Point Theorem implies the existence and uniqueness
of a function va ∈ H2(I) satisfying τava = va, which is the only stationary
solution of problem (1.2) in H2(I). Suppose va(x) = 0 a.e. in I. Then we
obtain the contradiction to the assumption that GnF (0, x)n 6= 0 for some
n ∈ Z. Note that in the case of a 6= n2, n ∈ Z the argument does not require
any orthogonality conditions.

5 The Problem on the Product of Spaces

Proof of Theorem 3. We present the proof of the theorem for case II) since
when the parameter a vanishes or is located on the open interval between
squares of two nonnegative integers the ideas are similar. Suppose there exists
v(x) ∈ H2(Ω) which generates u1,2(x) ∈ H2(Ω) solving equation (2.3). Then
the difference w := u1 − u2 ∈ H2(Ω) will satisfy −∆w = n2

0w in our domain
Ω. By applying the partial Fourier transform to this equation we easily arrive
at −∆⊥wn(x⊥) = (n2

0 − n2)wn(x⊥). Clearly ‖w‖2L2(Ω) =
∑∞
n=−∞ ‖wn‖2L2(Rd)

such that wn(x⊥) ∈ L2(Rd), n ∈ Z. Since the transversal Laplacian operator
−∆⊥ on L2(Rd) does not have any nontrivial square integrable eigenfunctions,
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w(x) is vanishing a.e. in Ω. Let v(x) ∈ H2(Ω) be arbitrary. We apply the
Fourier transform to both sides of problem (2.3) and obtain

ûn(p) = (2π)
d+1
2

Ĝn(p)f̂n(p)

p2 + n2 − n2
0

, n ∈ Z, p ∈ Rd, d = 1, 2, (5.1)

where f̂n(p) stands for the Fourier image of F (v(x), x). Obviously,

|ûn(p)| ≤ (2π)
d+1
2 Mn2

0
|f̂n(p)| and |(p2 + n2)ûn(p)| ≤ (2π)

d+1
2 Mn2

0
|f̂n(p)|,

whereMn2
0
<∞ by means of Lemma A5 of the Appendix under the appropriate

orthogonality conditions stated in it. Thus

‖u‖2H2(Ω) =
∞∑

n=−∞

∫

Rd
|ûn(p)|2dp+

∞∑

n=−∞

∫

Rd
|(p2 + n2)ûn(p)|2dp ≤

≤ 2(2π)d+1Mn2
0

2‖F (v(x), x)‖2L2(Ω) <∞
by means of (2.1) of Assumption 1, such that for any v(x) ∈ H2(Ω) there exists
a unique u(x) ∈ H2(Ω) solving equation (2.3) with its Fourier image given by
(5.1) and the map ta : H2(Ω) → H2(Ω) in case II) of the Theorem is well
defined. Then we consider arbitrary v1,2 ∈ H2(Ω) such that their images under
the map are u1,2 = tn2

0
v1,2 ∈ H2(Ω) and obtain

‖u1 − u2‖2H2(Ω) =

=

∞∑

n=−∞

∫

Rd
|û1n(p)− û2n(p)|2dp+

∞∑

n=−∞

∫

Rd
|(p2+n2)(û1n(p)− û2n(p))|2dp ≤

≤ 2(2π)d+1Mn2
0

2‖F (v1(x), x) − F (v2(x), x)‖2L2(Ω).

Clearly v1,2 ∈ H2(Ω) ⊂ L∞(Ω) via the Sobolev embedding theorem. Using
(2.2) we easily arrive at the estimate

‖tn2
0
v1 − tn2

0
v2‖H2(Ω) ≤

√
2(2π)

d+1
2 Mn2

0
l‖v1 − v2‖H2(Ω)

with the constant in the right side of it less than one by assumption. Therefore,
the Fixed Point Theorem yields the existence and uniqueness of a function
vn2

0
∈ H2(Ω) which satisfies tn2

0
vn2

0
= vn2

0
and is the only stationary solution of

problem (1.2) in H2(Ω) in case II) of the theorem. Suppose vn2
0
(x) = 0 a.e. in

Ω. This yields the contradiction to the assumption that there exists n ∈ Z for

which suppĜn ∩ suppF̂ (0, x)n is a set of nonzero Lebesgue measure in Rd.

6 Appendix

Let G(x) be a function, G(x) : Rd → R, d ≤ 3 for which we denote its
standard Fourier transform using the hat symbol as

Ĝ(p) :=
1

(2π)
d
2

∫

Rd
G(x)e−ipxdx, p ∈ Rd
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such that

‖Ĝ(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖G‖L1(Rd) (6.1)

and G(x) =
1

(2π)
d
2

∫

Rd
Ĝ(q)eiqxdq, x ∈ Rd. Let us define the auxiliary quanti-

ties

Na, d := max
{∥∥∥ Ĝ(p)

p2 − a
∥∥∥
L∞(Rd)

,
∥∥∥p

2Ĝ(p)

p2 − a
∥∥∥
L∞(Rd)

}
(6.2)

for a > 0 and

N0, d := max
{∥∥∥ Ĝ(p)

p2

∥∥∥
L∞(Rd)

,
∥∥∥Ĝ(p)

∥∥∥
L∞(Rd)

}
(6.3)

when a = 0.

Lemma A1. Let G(x) ∈ L1(R).
a) If a > 0 and xG(x) ∈ L1(R) then Na, 1 <∞ if and only if

(
G(x),

e±i
√
ax

√
2π

)
L2(R)

= 0. (6.4)

b) If a = 0 and x2G(x) ∈ L1(R) then N0, 1 <∞ if and only if

(G(x), 1)L2(R) = 0 and (G(x), x)L2(R) = 0. (6.5)

Proof. In order to prove part a) of the lemma we write the function

Ĝ(p)

p2 − a =
Ĝ(p)

p2 − aχIδ +
Ĝ(p)

p2 − aχIδc , (6.6)

where χA here and further down stands for the characteristic function of a set
A, Ac for its complement, the set Iδ = I+δ ∪ I−δ with I+δ = {p ∈ R | √a− δ <
p <
√
a + δ}, I−δ = {p ∈ R | − √a − δ < p < −√a + δ} and 0 < δ <

√
a.

The second term in the right side of (6.6) can be easily estimated in absolute

value from above using (6.1) as
1√
2πδ2

‖G‖L1(R) <∞ and the remaining term

in the right side of (6.6) can be written as

Ĝ(p)

p2 − aχI+δ +
Ĝ(p)

p2 − aχI−δ .

We will use the expansions near the points of singularity given by

Ĝ(p) = Ĝ(
√
a) +

∫ p

√
a

dĜ(s)

ds
ds, Ĝ(p) = Ĝ(−√a) +

∫ p

−√a

dĜ(s)

ds
ds
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with
∥∥∥dĜ(p)

dp

∥∥∥
L∞(R)

≤ 1√
2π
‖xG‖L1(R) < ∞ by the assumption of the lemma.

This enables us to obtain the bound
∣∣∣∣∣

∫ p√
a
dĜ(s)
ds ds

p2 − a χI+δ

∣∣∣∣∣ ≤
C

2
√
a− δ <∞,

∣∣∣∣∣

∫ p
−√a

dĜ(s)
ds ds

p2 − a χI−δ

∣∣∣∣∣ ≤
C

2
√
a− δ <∞.

Therefore it remains to estimate

Ĝ(
√
a)

p2 − a χI+δ +
Ĝ(−√a)
p2 − a χI−δ

,

which belongs to L∞(R) if and only if Ĝ(±√a) = 0, which is equivalent to the
orthogonality relations (6.4). To estimate the second term in the right side of
(6.2) under these orthogonality relations we consider the two situations. The
first one is when |p| ≤ √a+ δ and we have the bound

∣∣∣∣∣
p2Ĝ(p)

p2 − a

∣∣∣∣∣ ≤ (
√
a+ δ)2

∥∥∥∥∥
Ĝ(p)

p2 − a

∥∥∥∥∥
L∞(R)

<∞.

In the second one |p| > √a + δ which yields
p2

p2 − a ∈ L
∞(R) and Ĝ(p) is

bounded via (6.1), which completes the proof of part a) of the lemma. Then
we turn our attention to the situation of a = 0, such that

Ĝ(p)

p2
=
Ĝ(p)

p2
χ{|p|≤1} +

Ĝ(p)

p2
χ{|p|>1}. (6.7)

The second term in the right side of the identity above can be easily estimated
as ∣∣∣∣∣

Ĝ(p)

p2
χ{|p|>1}

∣∣∣∣∣ ≤ ‖Ĝ(p)‖L∞(R) <∞ (6.8)

due to (6.1). We will make use of the representation

Ĝ(p) = Ĝ(0) + p
dĜ

dp
(0) +

∫ p

0

(∫ s

0

d2Ĝ(q)

dq2
dq
)
ds.

Obviously

∣∣∣∣∣
d2Ĝ(p)

dp2

∣∣∣∣∣ ≤
1√
2π
‖x2G(x)‖L1(R) <∞ by the assumption of the

lemma. Hence ∣∣∣∣∣

∫ p
0

( ∫ s
0
d2Ĝ(q)
dq2 dq

)
ds

p2
χ{|p|≤1}

∣∣∣∣∣ ≤
C

2
<∞

and the only expression which remains to estimate is given by[
Ĝ(0)

p2
+

dĜ
dp (0)

p

]
χ{|p|≤1}, which is contained in L∞(R) if and only if Ĝ(0) and
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dĜ

dp
(0) vanish. This is equivalent to the orthogonality relations (6.5). Note

that ‖Ĝ(p)‖L∞(R) <∞ by means of (6.1).

The proposition above can be generalized to higher dimensions in the following
statement.

Lemma A2. Let G(x) ∈ L1(Rd), d = 2, 3.
a) If a > 0 and xG(x) ∈ L1(Rd) then Na, d <∞ if and only if

(
G(x),

eipx

(2π)
d
2

)
L2(Rd)

= 0 for p ∈ Sd√a a.e. (6.9)

b) If a = 0 and x2G(x) ∈ L1(Rd) then N0, d <∞ if and only if

(G(x), 1)L2(Rd) = 0 and (G(x), xk)L2(Rd) = 0, 1 ≤ k ≤ d. (6.10)

Proof. To prove part a) of the lemma we introduce the auxiliary spherical
layer in the space of d = 2, 3 dimensions

Aδ := {p ∈ Rd | √a− δ < |p| < √a+ δ}, 0 < δ <
√
a

and write
Ĝ(p)

p2 − a =
Ĝ(p)

p2 − aχAδ +
Ĝ(p)

p2 − aχAcδ . (6.11)

For the second term in the right side of (6.11) we have the upper bound in the

absolute value as
‖Ĝ(p)‖L∞(Rd)√

aδ
<∞ due to (6.1). Let us expand

Ĝ(p) =

∫ |p|
√
a

∂Ĝ(|s|, σ)
∂|s| d|s|+ Ĝ(

√
a, σ),

where σ stands for the angle variables on the sphere. Using the elementary

inequality

∣∣∣∣∣
∂Ĝ(p)

∂|p|

∣∣∣∣∣ ≤
1

(2π)
d
2

‖xG(x)‖L1(Rd) with its right side finite by the as-

sumption of the lemma we estimate

∣∣∣∣∣

∫ |p|√
a
∂Ĝ(|s|,σ)
∂|s| d|s|

p2 − a χAσ

∣∣∣∣∣ ≤
C√
a
<∞.

The only remaining term
Ĝ(
√
a, σ)

p2 − a χAδ ∈ L∞(Rd), d = 2, 3 if and only if

Ĝ(
√
a, σ) vanishes a.e. on the sphere Sd√

a
, which is equivalent to orthogo-

nality relations (6.9). The proof of the fact that the second norm in the right

Documenta Mathematica 16 (2011) 561–580



On the Existence of Stationary Solutions. . . 573

side of (6.2) under conditions (6.9) is finite is analogous to the one presented
in Lemma A1 in one dimension. For the proof of part b) of the lemma we
apply the two and three dimensional analog of formula (6.7), such that for the
second term in its right side there is a bound analogous to (6.8). Let us use
the representation formula

Ĝ(p) = Ĝ(0) + |p| ∂Ĝ
∂|p| (0, σ) +

∫ |p|

0

(∫ s

0

∂2Ĝ(|q|, σ)
∂|q|2 d|q|

)
ds.

Apparently

∂Ĝ

∂|p| (0, σ) = −
i

(2π)
d
2

∫

Rd
G(x)|x|cosθdx, (6.12)

where θ is the angle between vectors p and x in Rd and for the second derivative

∣∣∣∣∣
∂2Ĝ(p)

∂|p|2

∣∣∣∣∣ ≤
1

(2π)
d
2

‖x2G(x)‖L1(Rd) <∞

by the assumption of the lemma. This yields

∣∣∣∣∣

∫ |p|
0

(
∫ s
0
∂2Ĝ(|q|,σ)
∂|q|2 d|q|

)
ds

p2
χ{|p|≤1}

∣∣∣∣∣ ≤
C

2
<∞,

such that the only expression remaining to estimate is given by

[
Ĝ(0)

p2
+

∂Ĝ
∂|p| (0, σ)

|p|

]
χ{|p|≤1} (6.13)

with the first derivative (6.12) containing the angular dependence. We consider
first the case of d = 2 such that p = (|p|, θp), x = (|x|, θx) ∈ R2 and the angle
between them θ = θp−θx. A straightforward computation yields that the right

side of (6.12) is given by − i

2π

√
Q2

1 +Q2
2cos(θp − α) with

Q1 :=

∫

R2

G(x)x1dx, Q2 :=

∫

R2

G(x)x2dx, tanα :=
Q2

Q1
(6.14)

and x = (x1, x2) ∈ R2 such that (6.13) is equal to

[
Ĝ(0)

p2
− i

2π

√
Q2

1 +Q2
2

cos(θp − α)
|p|

]
χ{|p|≤1}.

Note that the situation of Q1 = 0 and Q2 6= 0 corresponds to the cases of α

equal to
π

2
or −π

2
. Obviously, the expression above is contained in L∞(R2)
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if and only if the quantities Ĝ(0), Q1 and Q2 vanish, which is equivalent to
orthogonality relations (6.10) in two dimensions. In the case of d = 3 the
argument is quite similar. The coordinates of vectors

x = (x1, x2, x3) = (|x|sinθxcosϕx, |x|sinθxsinϕx, |x|cosθx) ∈ R3

and

p = (|p|sinθpcosϕp, |p|sinθpsinϕp, |p|cosθp) ∈ R3

are being used to compute cosθ =
(p, x)R3

|p||x| involved in the right side of (6.12).

Here (p, x)R3 stands for the scalar product of the vectors in three dimensions.
An easy calculation shows that when d = 3 the right side of (6.12) can be
written as

− i

(2π)
3
2

{
√
Q2

1 +Q2
2sinθpcos(ϕp − α) +Q3cosθp}

with α given by (6.14) and here Qk =
∫
R3 G(x)xkdx, k = 1, 2, 3, which are

the three dimensional generalizations of the correspondent expressions given
by (6.14) and term (6.13) will be equal to

[
Ĝ(0)

p2
− i

(2π)
3
2 |p|
{
√
Q2

1 +Q2
2sinθpcos(ϕp − α) +Q3cosθp}

]
χ{|p|≤1}

and will belong to L∞(R3) if and only if Ĝ(0) along with Qk, k = 1, 2, 3 vanish,
which is equivalent to orthogonality conditions (6.10) in three dimensions. The
second norm in the right side of (6.3) is finite under relations (6.1).

Let the function G(x) : I → R, G(0) = G(2π) and its Fourier transform on
the finite interval is given by

Gn :=

∫ 2π

0

G(x)
e−inx√

2π
dx, n ∈ Z

and G(x) =

∞∑

n=−∞
Gn

einx√
2π

. Similarly to the whole space case we define

Na := max

{∥∥∥∥∥
Gn

n2 − a

∥∥∥∥∥
l∞

,

∥∥∥∥∥
n2Gn
n2 − a

∥∥∥∥∥
l∞

}
(6.15)

for a > 0. In the situation of a = 0

N0 := max

{∥∥∥∥∥
Gn
n2

∥∥∥∥∥
l∞

,

∥∥∥∥∥Gn
∥∥∥∥∥
l∞

}
. (6.16)
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We have the following elementary statement.

Lemma A3. Let G(x) ∈ L1(I) and G(0) = G(2π).
a) If a > 0 and a 6= n2, n ∈ Z then Na <∞.
b) If a = n2

0, n0 ∈ N then Na <∞ if and only if
(
G(x),

e±in0x

√
2π

)

L2(I)

= 0. (6.17)

c) If a = 0 then N0 <∞ if and only if

(G(x), 1)L2(I) = 0. (6.18)

Proof. Clearly we have the bound

‖Gn‖l∞ ≤
1√
2π
‖G‖L1(I) <∞. (6.19)

Thus in case a) when a 6= n2, n ∈ Z the expressions under the norms in
the right side of (6.15) do not contain any singularities and the result of the
lemma is obvious. When a = n2

0 for some n0 ∈ N or a = 0 conditions (6.17)
and (6.18) respectively are necessary and sufficient for eliminating the existing
singularities by making the corresponding Fourier coefficients equal to zero:
G±n0 in case b) and G0 in case c).

Let G(x) be a function on the product of spaces studied in Theorem 3, G(x) :
Ω = I × Rd → R, d = 1, 2, G(0, x⊥) = G(2π, x⊥) for x⊥ ∈ Rd a.e. and its
Fourier transform on the product of spaces equals to

Ĝn(p) :=
1

(2π)
d+1
2

∫

Rd
dx⊥e

−ipx⊥

∫ 2π

0

G(x1, x⊥)e
−inx1dx1, p ∈ Rd, n ∈ Z

such that

‖Ĝn(p)‖L∞
n,p

:= sup{p∈Rd, n∈Z}|Ĝn(p)| ≤
1

(2π)
d+1
2

‖G‖L1(Ω) (6.20)

and G(x) =
1

(2π)
d+1
2

∞∑

n=−∞

∫

Rd
Ĝn(p)e

ipx⊥einx1dp. It is also useful to consider

the Fourier transform only in the first variable, such that

Gn(x⊥) :=
∫ 2π

0

G(x1, x⊥)
e−inx1

√
2π

dx1, n ∈ Z.

Let us introduce ξan(p) :=
Ĝn(p)

p2 + n2 − a and define

Ma := max{‖ξan(p)‖L∞
n,p
, ‖(p2 + n2)ξan(p)‖L∞

n,p
} (6.21)
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for a > 0 and

M0 := max

{∥∥∥∥∥
Ĝn(p)

p2 + n2

∥∥∥∥∥
L∞
n,p

, ‖Ĝn(p)‖L∞
n,p

}
(6.22)

when a = 0. Here the momentum vector p ∈ Rd.

Lemma A4. Let G(x) ∈ L1(Ω), x2⊥G(x) ∈ L1(Ω) and G(0, x⊥) = G(2π, x⊥)
for x⊥ ∈ Rd a.e., d = 1, 2. Then M0 <∞ if and only if

(G(x), 1)L2(Ω) = 0, (G(x), x⊥, k)L2(Ω) = 0, 1 ≤ k ≤ d, d = 1, 2. (6.23)

Proof. Let us expand

Ĝn(p)

p2 + n2
=
Ĝ0(p)

p2
χ{p∈Rd, n=0} +

Ĝn(p)

p2 + n2
χ{p∈Rd, n∈Z, n6=0}.

The second term in the right side of this identity can be estimated above in the

absolute value by means of (6.20) by
1

(2π)
d+1
2

‖G‖L1(Ω) <∞. Clearly we have

the bound on the norm

‖x2⊥Gn(x⊥)‖L1(Rd) ≤
1√
2π

∫ 2π

0

dx1

∫

Rd
dx⊥x

2
⊥|G(x)| <∞, n ∈ Z (6.24)

by the assumption of the lemma. Thus the term
Ĝ0(p)

p2
∈ L∞(Rd) if and only

if the orthogonality conditions (6.23) hold, which is guaranteed for d = 1 by
Lemma A1 and when dimension d = 2 by Lemma A2. Note that the last term
in the right side of (6.22) is bounded via (6.20).

Next we turn our attention to the situation when the parameter a is nontrivial.

Lemma A5. Let G(x) ∈ L1(Ω), x2⊥G(x) ∈ L1(Ω) and G(0, x⊥) = G(2π, x⊥)
for x⊥ ∈ Rd a.e., d = 1, 2 and a = n2

0, n0 ∈ N. Then Ma <∞ if and only if

(
G(x1, x⊥),

einx1

√
2π

e±i
√
n2
0−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ n0 − 1, d = 1, (6.25)

(
G(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
n2
0−n2

a.e., |n| ≤ n0−1, d = 2,

(6.26)(
G(x1, x⊥),

e±in0x1

√
2π

)

L2(Ω)

= 0,

(
G(x1, x⊥),

e±in0x1

√
2π

x⊥, k

)

L2(Ω)

= 0, 1 ≤ k ≤ d.

(6.27)
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Proof. We will use the representation of the function ξan(p), n ∈ Z, p ∈ Rd as
the sum

ξan(p)χ{p∈Rd, |n|>n0} + ξan(p)χ{p∈Rd, |n|<n0} +

+ξan0
(p)χ{p∈Rd, n=n0} + ξa−n0

(p)χ{p∈Rd, n=−n0}. (6.28)

Obviously |ξan(p)χ{p∈Rd, |n|>n0}| ≤ ‖Ĝn(p)‖L∞
n,p

< ∞ by means of (6.20). We
have trivial estimates on the norms for n ∈ Z

‖Gn(x⊥)‖L1(Rd) ≤
1√
2π

∫ 2π

0

dx1

∫

Rd
dx⊥|G(x1, x⊥)| <∞

and

‖x⊥Gn(x⊥)‖L1(Rd) ≤
1√
2π

∫ 2π

0

dx1

∫

Rd
dx⊥|x⊥||G(x1, x⊥)| <∞.

Note thatG(x) ∈ L1(Ω) and x2⊥G(x) ∈ L1(Ω) by the assumptions of the lemma,
which yields x⊥G(x) ∈ L1(Ω). Thus when dimension d = 1 by means of Lemma
A1 ξan(p)χ{p∈Rd, |n|<n0} ∈ L∞n,p if and only if orthogonality relations (6.25)
hold. For d = 2 the necessary and sufficient conditions for the boundedness
of the second term in (6.28) via Lemma A2 are given by (6.26). Lemmas
A1 and A2 yield that the third term in (6.28) belongs to L∞n,p if and only
if conditions (6.27) with the positive sign under the exponents are satisfied.
Clearly x2⊥Gn(x⊥) ∈ L1(Rd) due to the assumption of the lemma and estimate
(6.24). Similarly, we obtain that the necessary and sufficient conditions for the
the last term in (6.28) to be contained in L∞n,p are given by (6.27) with the
negative sign under the exponents. Then we represent (p2 + n2)ξan(p) as the
sum

(p2 + n2)ξan(p)χ{p∈Rd, n∈Z, p2+n2≤n2
0+1}+

(p2 + n2)ξan(p)χ{p∈Rd, n∈Z, p2+n2>n2
0+1}

in which the absolute value of the first term has the upper bound (n2
0 +

1)‖ξan(p)‖L∞
n,p

< ∞ under the orthogonality conditions of the lemma and of

the second one (1 + n2
0)‖Ĝn(p)‖L∞

n,p
<∞ via (6.20).

Finally, we study the case when the parameter a is located on an open interval
between the squares of two consecutive nonnegative integers.

Lemma A6. Let G(x) ∈ L1(Ω), x⊥G(x) ∈ L1(Ω) and G(0, x⊥) = G(2π, x⊥)
for x⊥ ∈ Rd a.e., d = 1, 2 and n2

0 < a < (n0 + 1)2, n0 ∈ Z+ = N ∪ {0}. Then
Ma <∞ if and only if

(
G(x1, x⊥),

einx1

√
2π

e±i
√
a−n2x⊥

√
2π

)

L2(Ω)

= 0, |n| ≤ n0, d = 1, (6.29)
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(
G(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)

L2(Ω)

= 0, p ∈ S2√
a−n2 a.e., |n| ≤ n0, d = 2.

(6.30)
Proof. Let us expand ξan(p) as the sum of two terms

ξan(p)χ{p∈Rd, n∈Z, |n|≥n0+1} + ξan(p)χ{p∈Rd, n∈Z, |n|≤n0},

such that the absolute value of the first one is bounded above by

‖Ĝn(p)‖L∞
n,p

(n0 + 1)2 − a <∞ and the second one belongs to L∞n,p if and only if or-

thogonality relations (6.29) are satisfied in one dimension by means of Lemma
A1 and if and only if conditions (6.30) are fulfilled in two dimensions via
Lemma A2. We write (p2 + n2)ξan(p) as the sum

(p2 + n2)ξan(p)χ{p∈Rd, n∈Z, p2+n2≥(n0+1)2}+

+(p2 + n2)ξan(p)χ{p∈Rd, n∈Z, p2+n2<(n0+1)2}

in which the first and the second terms can be easily bounded above in their
absolute values by the quantities finite under the conditions of the lemma,
namely

(
1 +

a

(n0 + 1)2 − a

)
‖Ĝn(p)‖L∞

n,p
and (n0 + 1)2‖ξan(p)‖L∞

n,p

respectively.

Acknowledgement. The first author thanks James Colliander for stimulat-
ing discussions.
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sans propriété de Fredholm, CRAS, 340, 9 (2005), 659–664

Documenta Mathematica 16 (2011) 561–580



On the Existence of Stationary Solutions. . . 579

[5] A. Ducrot, M. Marion and V. Volpert: Reaction-diffusion problems with
non Fredholm operators, Advances Diff. Equations , 13, 11-12 (2008), 1151–
1192

[6] A. Ducrot, M. Marion and V. Volpert: Reaction-diffusion waves (with
the Lewis number different from 1). Publibook, Paris, 2009.

[7] S. Genieys, V. Volpert, P. Auger: Pattern and waves for a model in
population dynamics with nonlocal consumption of resources, Math. Model.
Nat. Phenom. 1, 1 (2006), 63–80

[8] P.D. Hislop, I.M. Sigal: Introduction to spectral theory with applications to
Schrödinger operators. Springer, 1996
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Abstract. Let k be a field. We attach a CW-complex to any
Schurian k-category and we prove that the fundamental group of this
CW-complex is isomorphic to the intrinsic fundamental group of the
k-category. This extends previous results by J.C. Bustamante in [8].
We also prove that the Hurewicz morphism from the vector space of
abelian characters of the fundamental group to the first Hochschild-
Mitchell cohomology vector space of the category is an isomorphism.

2010 Mathematics Subject Classification: 55Q05 18D20 16E40 16W25
16W50
Keywords and Phrases: Fundamental group, linear category, Schurian
category, Hurewicz, Hochschild

1 Introduction

In this paper we consider Schurian categories, that is, small linear categories
over a field k such that each vector space of morphisms is either of dimension
one or zero.
Recall that there is no homotopy theory available for a k-algebra or, more
generally, for a k-linear category. More precisely there is neither homotopy
equivalence nor a definition of loops as in algebraic topology taking into account
the k-linear structure. As an alternative we consider an intrinsic fundamental

1This work has been supported by the projects UBACYTX212, PIP-CONICET 112-
200801-00487, PICT-2007-02182 and MATHAMSUD-NOCOMALRET. The second and
third authors are research members of CONICET (Argentina). The third author is a Regular
Associate of ICTP Associate Scheme.
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group à la Grothendieck, that we have defined in [13] and [14] using connected
gradings. In [14] we have computed this group for matrix algebrasMp(k) where
p is a prime and k is an algebraically closed field of characteristic zero, obtaining
that π1(Mp(k)) = Fp−1×Cp where Fp−1 is the free group with p−1 generators
and Cp is the cyclic group of order p, using classifications of gradings provided
in [2, 4, 23].
The intrinsic fundamental group is defined in terms of Galois coverings provided
by connected gradings. It is the automorphism group of the fibre functor over
a fixed object. In case a universal covering U exists for a k-linear category C,
its fundamental group π1(C) is isomorphic to the automorphism group of the
covering U .
It is intrinsic in the sense that it does not depend on the presentation of the
k-category by generators and relations. If a universal covering exists, then we
obtain that the fundamental groups constructed by R. Mart́ınez-Villa and J.A.
de la Peña (see [27], and [1, 6, 20]) depending on the choice of a presentation
of the category by a quiver and relations are in fact quotients of the intrinsic
π1 that we introduce. Note that those groups can vary according to different
presentations of the same k-category (see for instance [1, 10, 25]).
The definition of π1(C) is inspired in the topological case considered for instance
in R. Douady and A. Douady’s book [16]. They are closely related to the
way in which the fundamental group is viewed in algebraic geometry after
A. Grothendieck and C. Chevalley.
Note that the existence of a universal covering for a k-linear category is equiv-
alent to the existence of a universal grading, namely a connected grading such
that any other connected grading is a quotient of it.
In this paper we will prove that a Schurian category C admits a universal
covering. In fact a universal grading is obtained through the topological fun-
damental group of a CW-complex CW (C) that we attach to C. We infer that
π1(C) = π1(CW (C)). The CW-complex we define is very close to a simplicial
complex. It is a simplicial complex when C is such that if yCx 6= 0 then xCy = 0
for x 6= y (where yCx is the vector space of morphisms from x to y).
J.C. Bustamante considers in [8] k-categories with a finite number of objects
subject to the above conditions which he calls ”Schurian almost triangular” in
order to prove a similar result through the fundamental group of a presentation
as defined in [6, 21, 27]. He uses the simplicial complex from [5, 7, 28] whose
2-skeleton coincides with ours in the Schurian almost triangular context. We
do not require that the category has a finite number of objects, neither that
it admits an admissible presentation. Moreover we provide an example of a
Schurian category which has no admissible presentation and we compute its
fundamental group. Note also that we generalize the result by M. Bardzell and
E. Marcos in [3], where they prove that the fundamental group of a Schurian
basic algebra does not depend on the admissible presentation.
We thank G. Minian for interesting discussions, and in particular for pointing
out that cellular approximation enables to provide homotopy arguments from
algebraic topology using the 1-skeleton. In [8], J.C. Bustamente uses the edge
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path group instead, which requires a finite number of objects. In [9] a CW-
complex attached to a presentation of a finite number of objects category is
considered in order to compute the fundamental group of the presentation.
In case of a complete Schurian category C, that is all the vector spaces of
morphisms are one dimensional and composition of non-zero morphisms is non-
zero, the CW-complex attached to C enables to retrieve that π1(C) = 1, see
[14, Corollary 4.6].
Finally we consider the Hurewicz morphism (see [1, 12, 31]) for a Schurian
category C. We show that this morphism from the vector space of abelian
characters of π1(C) to the first Hochschild-Mitchell cohomology vector space of
C is an isomorphism.
Even though the best understood class of coverings is that of Galois cover-
ings, general non-Galois coverings have also been considered. For instance,
in [17, 30], almost Galois coverings and balanced coverings, respectively, have
been defined. The approach is different since the focus is to get results in the
representation theory of algebras, but they also use gradings, and some notions
and results may have a connection with some parts of this paper.
The authors want to thank the referee for the comments and suggestions he/she
made, which contributed to improvements in the presentation of the results.

2 Fundamental group

Recall that, given a field k, a k-category is a small category C such that each
morphism set yCx from an object x ∈ C0 to an object y ∈ C0 is a k-vector space,
the composition of morphisms is k-bilinear and the k-multiples of the identity
at each object are central in its endomorphism ring.
A grading X of a k-category C by a group ΓX is a direct sum decomposition

yCx =
⊕

s∈ΓX
Xs

yCx

for each x, y ∈ C0, where Xs
yCx is called the homogeneous component of

degree s from x to y, such that for s, t ∈ ΓX

Xt
zCy Xs

yCx ⊂ Xts
zCx.

In case f ∈ Xs
yCx and f 6= 0 we write degX f = s and we say that f is

homogeneous of degree s.
In order to define a connected grading, we consider virtual morphisms. More
precisely, each non-zero morphism f from its source s(f) = x to its target
t(f) = y gives rise to a virtual morphism (f,−1) from y to x, and we put
s(f,−1) = y and t(f,−1) = x. We consider neither zero virtual morphisms nor
composition of virtual morphisms. A non-zero usual morphism f is identified
with the virtual morphism (f, 1) with the same source and target objects as f .
A walk w in C is a sequence of virtual morphisms

(fn, ǫn), . . . , (f1, ǫ1)
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where ǫi ∈ {+1,−1}, such that the target of (fi, ǫi) is the source of (fi+1, ǫi+1).
We put s(w) = s(f1, ǫ1) and t(w) = t(fn, ǫn).
The category C is connected if for any pair of objects (x, y) there exists a
walk w from x to y.
A homogeneous virtual morphism is a virtual morphism (f, ǫ) with f
homogeneous. We put degX(f, 1) = degX(f) and degX(f,−1) = degX(f)−1.
A homogeneous walk w is a walk made of homogeneous virtual morphisms,
and its degree is the ordered product of the degrees of the virtual morphisms.
By definition the grading X is connected if for any pair of objects (x, y)
and any group element s ∈ ΓX there exists a homogeneous walk w from x to
y such that degX w = s. Hence if a connected grading exists the category is
necessarily connected. In case the category C is already connected, a grading
is connected if for a fixed pair of objects (x0, y0) there exists a homogeneous
walk from x0 to y0 of degree s for any s ∈ ΓX , see [13].
In general a linear category does not admit a universal covering. However,
in case a universal covering U exists, according to the theory developed in
[13, 14], we have that the intrinsic fundamental group π1(C) is isomorphic
to the automorphism group of the universal covering. In this paper we will
not provide the general definition of the fundamental group since we will only
consider k-categories with a universal covering.

3 CW-complex

Let C be a connected Schurian k-category, that is a small linear category over
a field k such that each vector space of morphisms is either of dimension one
or zero. We choose a non-zero morphism yex in each one-dimensional space
of morphisms yCx, where xex = xIx is the unit element of the endomorphism
algebra of x.
Observe that xey yex 6= 0 is equivalent to yex xey 6= 0, since if xey yex = λ (xIx)
with λ ∈ k∗, then yex xey 6= 0 since otherwise yex xey yex is simultaneously
zero and a non-zero multiple of yex.

Definition 3.1 The associated CW-complex CW (C) is defined as follows

• The 0-cells are given by the set of objects C0.

• Each morphism yex with x 6= y gives rise to a 1-cell still denoted yex
attached to x and y.

• If x, y and z are pairwise distinct objects such that yCx, zCy and zCx are
non-zero, and zey yex 6= 0, we add a 2-cell attached to the 1-cells yex,

zey and zex.

• If x and y are distinct objects such that yCx and xCy are non-zero, and

xey yex 6= 0 (equivalently yex xey 6= 0, as mentioned above), we add
exactly one 2-cell attached to the 1-cells yex and xey.
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Remark 3.2 Note that in case x and y are distinct objects such that yCx 6=
0 6= xCy, two 1-cells are attached to x and y.
Observe that in case x, y and z are distinct objects such that zey yex = 0, there
is no 2-cell attached, even in case zCx 6= 0.

The associated CW-complex we have just defined has no n-cells for n ≥ 3, it
coincides with its 2-skeleton. We do not need to go further since the funda-
mental group of any CW-complex coincides with the fundamental group of its
2-skeleton, see for instance [22, Chapter 2].

Example 3.3 (see [14, Corollary 4.6]) Let Dn be a complete Schurian
category with n-objects 1, . . . , n: for each pair of objects (x, y), the mor-
phism space Dnx is one dimensional with a basis element yex, where xex = xIx.
Composition is defined by zey yex = zex for any triple of objects. Note that the
direct sum algebra of morphisms for Dn is the matrix algebra Mn(k).
We assert that CW (Dn) is contractible, that is, it has the homotopy type of a
point. Note that CW (D2) is a disk. For n ≥ 3 consider the CW-subcomplex
Ln consisting of all 0-cells of Dn and a chosen 1-cell attached to i and i+1 for
i = 1, . . . , n−1 (there are no 2-cells in Ln). This CW-subcomplex is closed and
contractible. Consequently the quotient CW (Dn)/Ln has the same homotopy
type than CW (Dn), see for instance [22, p.11]. Moreover CW (Dn)/Ln has
only one 0-cell. We assert that each 1-cell not in Ln is the border of at least
one disk in CW (Dn)/Ln. Indeed, in case of the 1-cell not in Ln between j and
j + 1, for j = 1, . . . , n− 1, the 2-cell attached to the two 1-cells between j and
j + 1 becomes the required disk in the quotient. In case the 1-cell is between j
and j + k, for j = 1, . . . , n − 2 with k = 2, . . . , n − j, the 2-cells given by the
triples (j, j +1, j + 2), (j, j + 2, j + 3), . . . , (j, j + k− 1, j + k) provide a disk in
the quotient having the original 1-cell as border. Finally there are two 1-cells
attached to n and 1, both are not in Ln and can be identified since a 2-cell
is attached to them; they are the border of the disk obtained with the 2-cells
(1, 2, 3), (1, 3, 4), . . . , (1, n− 1, n).

Let w = (fn, ǫn), · · · , (f1, ǫ1) be a walk in C from x to y. The inverse walk
w−1 is the walk (f1,−ǫ1), · · · , (fn,−ǫn) from y to x. Note that in case w is a
homogeneous walk for a grading X , then

degX w
−1 = (degX w)

−1.

Let C be a connected k-category and let X be a grading of C. Let c0 be an
object of C. A set of connector walks is a set of walks u = {xuc0}x∈C0
where xuc0 goes from c0 to x, such that degX xuc0 = 1 and c0uc0 = c0 Ic0 . If the
grading is connected a set of connector walks exist.
Let C be a k-category, x an object in C and let w = (fn, ǫn), · · · , (f1, ǫ1) be
a closed walk in C from x to x. In CW (C) there is a loop counterpart to
w that we still denote w and that we call the loop described by w which
is defined as follows. This loop is obtained as the continuous map from [0, 1]
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subdivided in n intervals Ii = [ i−1n , in ], where Ii corresponds to the 1-cell defined
by the non-zero morphism fi corresponding to the virtual one (fi, ǫi) and where
w( i−1n ) = s(fi, ǫi) and w(

i
n ) = t(fi, ǫi).

Proposition 3.4 Let C be a connected Schurian k-category, let X be a con-
nected grading of C and let u be a set of connector walks for X for an object c0.
There exists a connected grading ZX,u of C by the group π1(CW (C), c0), where
c0 is considered as a base point of the CW-complex.

Proof. Let u be a set of connector walks for X and let yex be a non-zero
morphism of yCx. We define its ZX,u-degree as the homotopy class of the loop
described by the walk yu

−1
c0 , yex, xuc0 in CW (C), that is,

degZX,u yex = [yu
−1
c0 yex xuc0].

In order to prove that this defines a grading, let x, y, z be objects in C. In case

zey yex = 0 there is nothing to prove. In case zey yex 6= 0 we have that

zey yex = zλx
y
zex

with zλx
y a non-zero element in k. We have to show that the following equality

holds:
(degZX,u zey)(degZX,u yex) = degZX,u zex.

The left hand side is the following homotopy class

[zu
−1
c0 zey yuc0 ][yu

−1
c0 yex xuc0 ] = [zu

−1
c0 zey yuc0yu

−1
c0 yex xuc0]

= [zu
−1
c0 zey yex xuc0 ].

Observe that since zeyyex is a non-zero morphism in C, the CW-complex has
a 2-cell attached, which means that the path described by the walk zey, yex is
homotopic to zex. This observation provides the required result. ⋄

Lemma 3.5 Let C be a connected Schurian category with a given base object
c0, let X be a connected grading of C and let ZX,u be the grading considered
above by the group π1(CW (C), c0). Let w be a closed walk at c0 in C. Then

degZX,u w = [w] ∈ π1(CW (C), c0)

where [w] is the homotopy class of the loop described by w in CW (C).

Proof. Observe first that the degree of a pure virtual morphism (yex,−1) is
the homotopy class [yu

−1
c0 yex xuc0 ]

−1 = [xu
−1
c0 ye

−1
x yuc0 ]. Hence the connector

walks xuc0 annihilate succesively in π1(CW (C), c0), enabling us to obtain the
result (recall that c0uc0 = c0 Ic0). ⋄
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Proposition 3.6 Let C be a connected Schurian k-category and let X be a
connected grading. Then the grading ZX,u obtained in Proposition 3.4 is con-
nected.

Proof. Since C is connected, it is enough to prove that for any element [l] ∈
π1(CW (C), c0) there exists a closed walk w at c0 in C such that degZX,u w = [l].
Recall that [l] is a homotopy class, more precisely l is a continuous map

[0, 1]→ CW (C)

such that l(0) = l(1) = c0. We use cellular approximation (see for instance [22,
Theorem 4.8]) in order to obtain a homotopic cellular loop l′ such that the image
of l′ is contained in the 1-skeleton. Its image is compact. A compact set in a
CW-complex meets only finitely many cells (see for instance [22, Proposition
A.1, page 520]). We infer that l is homotopic to a loop l′ such that its image is
a closed walk w at c0 in C. The previous Lemma asserts that the ZX,u-degree
of w is precisely [l′] = [l]. ⋄

Definition 3.7 Let X and Z be gradings of a k-category C. We say that X
is a quotient of Z if there exists a surjective group map

ϕ : ΓZ → ΓX

such that for any pair of objects (x, y) we have that

Xs
yCx =

⊕

ϕ(r)=s

ZryCx.

Theorem 3.8 Let C be a connected Schurian k-category and let X be a con-
nected grading of C. Let ZX,u be the connected grading of C by π1(CW (C)), c0)
defined in the Proof of Proposition 3.4. Then X is a quotient of ZX,u through
a unique group map ϕ.

Proof. Let [l] be a homotopy class in π1(CW (C)), c0). As in the previous
proof, using cellular approximation we can assume that the image of l is a
closed walk w at c0 in C. In order to define a group morphism

ϕ : π1(CW (C)), c0)→ ΓX

we put ϕ([l]) = degX w.
In order to check that ϕ is well defined, we have to prove that degX w = degX w

′

whenever w and w′ are closed walks at c0 providing homotopic loops in CW (C).
Assume first that w and w′ only differ by a 2-cell, that is, zey, yex is part of
w, zey yex 6= 0 and w′ coincide with w except that zey, yex is replaced by zex
through the corresponding 2-cell in CW (C). Since C is Schurian we have that

zey yex is a non-zero multiple of zex. Now since X is a grading

degX(zey yex) = degX zex
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and degX w = degX w
′.

For the general case, let h be a homotopy from w to w′. Using again the result
in [22, Proposition A.1, page 520], we can assume that the compact image of h
meets a finite number of 2-cells. Consequently w and w′ only differ by a finite
number of 2-cells. By induction we obtain degX w = degX w

′.
The map is clearly a group morphism. In order to prove that ϕ is surjective,
let s ∈ ΓX . Since X is connected, there exists a closed homogeneous walk w at
c0 of X-degree s. Clearly there is a loop l with image w, hence ϕ([l]) = s.
It remains to prove that the homogeneous component of a given X-degree s is
the direct sum of the corresponding ZX,u-homogeneous components. Observe
that since C is Schurian, the direct sum decomposition is reduced to only one
component. Let yex be a morphism which has X-degree s. By definition, its
ZX,u-degree is [yu

−1
c0 yex xuc0 ] and we have to prove that ϕ[yu

−1
c0 yex xuc0 ] = s,

that is, degX(yu
−1
c0 yex xuc0) = s. The result follows since the connectors xuc0

have trivial X-degree.
Concerning uniqueness, let ϕ′ : π1(CW (C)), c0) → ΓX be a surjective group
map such that for each morphism yex we have ϕ′(degZX,u yex) = degX yex,
that is,

ϕ′
([
yu
−1
c0 yex xuc0

])
= ϕ

([
yu
−1
c0 yex xuc0

])
.

This shows that ϕ and ϕ′ coincide on loops of this form. Let now l be an
arbitrary loop. In order to prove that ϕ′([l]) = ϕ([l]), we first replace l by a
cellular approximation in such a way that l describes a walk in C. Clearly any
loop at c0 in CW (C) is homotopic to a product of loops as above and their
inverses. We infer that ϕ and ϕ′ are equal on any loop. ⋄

We will prove next that ZX,u depends neither on the choice of the set u nor on
the connected grading X . We will consider a slightly more general situation in
order to prove these facts.
First recall that a set of connector walks depends on a given grading. In case
there is no grading, a set of connector walks means a set of connector walks
for the trivial grading by the trivial group. In other words a set of connector
walks for a linear category without a given grading is just a choice of a set of
walks from a given object c0 to each object x, where the walk from c0 to itself
is c0 Ic0 .
Let C be a connected Schurian k-category with a base object c0 and let u
be a set of connector walks. By definition the grading Zu of C with group
π1(CW (C), c0) is given by degZu yex = [yu

−1
c0 yex xuc0]. Next we will prove

that given two sets of connector walks u, v, the corresponding gradings Zu and
Zv differ in a simple way that we will call conjugation.

Definition 3.9 Let X be a grading of a connected k-category C. Let a =
(ax)x∈C0 be a set of group elements of ΓX . The conjugated grading aX has
the same homogeneous components than X but the degree is changed as follows:

(aX)s yCx = Xay sa
−1
x yCx
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In order to consider morphisms between gradings, they must be understood in
the setting of Galois coverings, see [14]. More precisely any grading gives rise to
a Galois covering through a smash product construction, see [11]. The Galois
coverings obtained by smash products form a full subcategory of the category
of Galois coverings. Moreover, both categories are equivalent. Consequently
morphisms between gradings are morphisms between the corresponding smash
product Galois coverings.
Now, to each grading X of a k-category C we associate a new k-category C#X
and a functor FX : C#X → C as follows.

(C#X)0 = C0 × ΓX

(y,t)(C#X)(x,s) = Xt−1s
yCx

FX(x, s) = x

FX : (y,t)(C#X)(x,s) →֒ yCx
In particular FX is a Galois covering and any Galois covering is isomorphic to
one of this type. Note that C#X is a connected category if and only if the
grading X is connected.

Proposition 3.10 Let C be a connected k-category and X be a connected grad-
ing of C. Let a = (ax)x∈C0 be a set of group elements of ΓX and aX be the con-
jugated grading. The Galois coverings C#X and C#aX are isomorphic, more
precisely there exists a functor H : C#aX → C#X such that FXH = FaX .

Proof. Recall that (aX)syCx = Xaysa
−1
x yCx. Consequently

(y,t)(C#aX)(x,s) = (aX)t
−1s

yCx = Xayt
−1sa−1

x
yCx = (y,ta−1

y )(C#aX)(x,sa−1
x ).

This computation shows that defining H on objects by H(x, s) = (x, sa−1x ) and
by the identity on morphisms provides the required isomorphism. ⋄

Proposition 3.11 Let C be a connected Schurian k-category, c0 a base object
and X,Y two connected gradings of C. Let ZX,u and ZY,v be the connected
gradings by the group π1(CW (C), c0), associated to the sets u and v of homo-
geneous connector walks for X and Y respectively, given by the choices xuc0
and xvc0 for any x ∈ C0. Then ZY,v and ZX,u are conjugated through the set
of group elements ax = xu

−1
c0 xvc0 .

Proof. Recall that degZX,u yex = [yu
−1
c0 yex xuc0 ], then by definition

degaZX,u yex = a−1y (degZX,u yex) ax

= [yv
−1
c0 yuc0 yu

−1
c0 yex xuc0 xu

−1
c0 xvc0 ]

= degZY,v yex.

⋄
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Remark 3.12 Since all the gradings ZX,u are isomorphic, we can choose the
trivial grading by the trivial group. However we still need to choose connector
walks. Moreover we have shown that each connected grading is a unique quotient
of the grading by the group π1(CW (C), c0).

Corollary 3.13 Let C be a connected Schurian k-category, and let c0 be a
base object. Then

π1(C, c0) = π1(CW (C), c0).

Proof. From [13], we know that in case a universal covering exists, the
fundamental group of the category is its group of automorphisms. The results
we have proven show that the grading by the fundamental group of CW (C)
is a universal grading, consequently the smash product Galois covering is a
universal Galois covering with automorphism group π1(CW (C), c0). ⋄

Next we compute the intrinsic fundamental group of a k-category with an
infinite number of objects and without admissible presentation.

Example 3.14 Let C be the k-category given by the quiver:

...

��

...

a1
α1 //

β1

��

b1

OO

a0
α0 //

β0

��

b0

γ0

OO

a−1
α−1 //

��

b−1

γ−1

OO

...
...

OO

with the relations γiαiβi+1 = αi+1 for all i 6= 0 and γ0α0β1 = 0.
In CW (C) there is a 2-cell attached to each square except the 0-one. Conse-
quently π1(C) = Z.

4 Hurewicz isomorphism

Let C be a k-category. A k-derivation d with coefficients in C is a set of linear
morphisms ydx : yCx → yCx for each pair (x, y) of objects, verifying

zdx(gf) = zdy(g)f + gydx(f)
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for any f ∈ yCx and g ∈ zCy.
Let a = (ax)x∈C0 be a family of endomorphisms of each object x ∈ C0, namely
ax ∈ xCx. The inner derivation da associated to a is defined by

y(da)x(f) = ayf − fax.

The first Hochschild-Mitchell cohomology HH1(C) is the quotient of
the vector space of derivations by the subspace of inner ones (see [29] for the
general definition).

Remark 4.1 In fact HH1(C) has a Lie algebra structure, where the bracket of
derivations is given by

y[d, d
′]x = ydx yd

′
x − yd

′
x ydx.

Definition 4.2 Let X be a grading of a k-category C. The Hurewicz mor-
phism

h : Hom(ΓX , k
+)→ HH1(C)

is defined as follows. Let χ : ΓX → k+ be an abelian character and let f be a
homogeneous morphism in yCx. Then

yh(χ)x(f) = χ(degX f)f.

An arbitrary morphism is decomposed as a sum of its homogeneous components
in order to extend linearly the definition of yh(χ)x.

Remark 4.3 The set h(χ) is a derivation. This can be verified in a simple
way relying on the fact that X is a grading. Derivations of this type are called
”Eulerian derivations”, see for instance [18, 19].

The following result is immediate.

Lemma 4.4 The image of the Hurewicz morphism is an abelian Lie subalgebra
of HH1(C).

We recall that, under some assumptions, the Hurewicz morphism is injective.

Proposition 4.5 Let C be a k-category and assume the endomorphism algebra

xCx of each object x in C0 is equal to k. Let X be a connected grading of C.
Then the Hurewicz morphism is injective.

Proof. If h(χ) is an inner derivation,

t(f)h(χ)s(f)(f) = χ(degX f)f = at(f)f − fas(f)

for any homogeneous non-zero morphism f , where (ax)x∈C0 is a set of endomor-
phisms which are elements of k by hypothesis. Then χ(degX f) = at(f)−as(f).
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Now we assert that the same equality holds for any homogeneous walk w, that
is,

χ(degX w) = at(w) − as(w).

For instance let w = (g,−1), (f, 1) be a homogeneous walk where f ∈ yCx and
g ∈ yCz. Then

χ(degX w) = χ((degX g)
−1(degX f)) = −χ(degX g) + χ(degX f)

= as(g) − at(g) + at(f) − as(f)
= az − ay + ay − ax = az − ax = at(w) − as(w).

Let c0 be any fixed object of C. Since X is a connected grading, for any group
element s ∈ ΓX there exists a homogeneous walk w, closed at c0, such that
degX w = s. Consequently

χ(s)w = (ac0 − ac0)w = 0

hence χ(s) = 0 for any s ∈ ΓX . ⋄

Theorem 4.6 Let C be a connected Schurian k-category and let U be its uni-
versal grading by the fundamental group π1(CW (C), c0). The corresponding
Hurewicz morphism is an isomorphism.

Proof. The previous result insures that h is injective. In order to prove that
h is surjective, let d be a derivation. We choose a non-zero morphism yex in
each 1-dimensional space of morphisms yCx, with xex = xIx. Let c0 be a fixed
object in C. To describe the universal grading, recall that we choose a set of
connector walks, hence

degU yex = [yu
−1
c0 yex xuc0] ∈ π1(CW (C), c0).

Since yCx is one dimensional, d(yex) = yλx yex with yλx ∈ k. In order to define
an abelian character χ such that h(χ) = d, let l be a loop at c0 in CW (C). By
cellular approximation we can assume that the image of l is a closed walk w in
C. In case w is of the form yu

−1
c0 yex xuc0 we define χ[l] = yλx. Otherwise the

cellular loop w is homotopic to a product of loops of the previous type or of
their inverses, and we define χ[l] to be the corresponding sum of scalars. We
have to verify that χ is well defined. First observe that if zey yex 6= 0, the
scalars of the derivation d verify

zλx = zλy + yλx.

Indeed, zey yex = µ zex, with µ 6= 0, hence

d(zey yex) = zey d(yex) + d(zey) yex

= µ (zλy + yλx) zex.
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We deduce the result since d(µ zex) = µ zλx zex. Consider now two cellular
loops l and l′ which are homotopic by a 2-cell, meaning that a walk zey, yex is
replaced by zex. The previous computation shows that χ[l] = χ[l′]. We have
already verified that any homotopy of cellular loops decomposes as a finite
number of homotopies of the previous type, hence we deduce that χ is a well
defined map. By construction χ : π1(CW (C), c0)→ k+ is an abelian character
and clearly h(χ) = d. ⋄
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de dimension finie. Ph.D. thesis, Université Montpellier 2 (2006).
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modélisation de Montpellier I3M

UMR 5149
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Abstract. Let B(H) be the space of bounded operators on a not-
necessarily-separable Hilbert space H . Working within Bishop-style
constructive analysis, we prove that certain weak-operator continu-
ous linear functionals on B(H) are finite sums of functionals of the
form T  〈Tx, y〉. We also prove that the identification of weak-
and strong-operator continuous linear functionals on B(H) cannot be
established constructively.
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1 Introduction

Let H be a complex Hilbert space that is nontrivial (that is, contains a unit vec-
tor), B(H) the space of all bounded operators on H , and B1(H) the unit ball of
B(H). In this paper we carry out, within Bishop-style constructive mathemat-
ics (BISH),1 an investigation of weak-operator continuous linear functionals
on B(H).
Depending on the context, we use, for example, x to represent either the ele-

ment (x1, . . . , xN ) of the finite direct sum HN ≡
N⊕

n=1

H of N copies of H or else

the element (xn)n≥1 of the direct sum H∞ ≡
⊕

n≥1
H of a sequence of copies of

H . We use I to denote the identity projection on H .
The following are the topologies of interest to us here.

1That is, mathematics that uses only intuitionistic logic and is based on a suitable set- or
type-theoretic foundation [1, 2, 12]. For more on BISH see [3, 4, 8].
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⊲ The weak operator topology: the weakest topology on B(H) with
respect to which the mapping T  〈Tx, y〉 is continuous for all x, y ∈ H ;
sets of the form

{T ∈ B(H) : |〈Tx, y〉| < ε} ,

with x, y ∈ H and ε > 0, form a sub-base of weak-operator neighbour-
hoods of 0 in B(H).

⊲ The ultraweak operator topology: the weakest topology on B(H)
with respect to which the mapping T  

∑∞
n=1 〈Txn, yn〉 is continuous

for all x,y ∈ H∞; sets of the form

{
T ∈ B(H) :

∣∣∣∣∣
∞∑

n=1

〈Txn, yn〉
∣∣∣∣∣ < ε

}
,

with x,y ∈ H∞ and ε > 0, form a sub-base of ultraweak-operator neigh-
bourhoods of 0 in B(H).

These topologies are induced, respectively, by the seminorms of the form T  
|〈Tx, y〉| with x, y ∈ H , and those of the form T  |∑∞n=1 〈Txn, yn〉| with
x,y ∈ H∞.

An important theorem in classical operator algebra theory states that the
weak-operator continuous linear functionals on (any linear subspace of) B(H)

all have the form T  
∑N
n=1 〈Txn, yn〉 with x,y ∈ HN for some N ; and

the ultraweak-operator continuous linear functionals on B(H) have the form
T  

∑∞
n=1 〈Txn, yn〉, where x,y ∈ H∞. However, the classical proofs, such

as those found in [10, 11, 14], depend on applications of nonconstructive ver-
sions of the Hahn-Banach theorem, the Riesz representation theorem, and polar
decomposition.

The foregoing characterisation of ultraweak-operator continuous functionals
was derived constructively, when H is separable, in [9].2 A variant of it was
derived in [8] (Proposition 5.4.16) without the requirement of separability, and
using not the standard ultraweak operator topology but one that is classically,
though not constructively, equivalent to it. Our aim in the present work is to
provide a constructive proof of the standard classical characterisation of weak-
operator continuous linear functionals (Theorem 10) on B(H), without the
requirement of separability but with one hypothesis in addition to the classical
ones. In presenting this work, we emphasise that, in contrast to their clas-
sical counterparts, our proofs contain extractable, implementable algorithms
for the desired representation of weak-operator continuous linear functionals;
moreover, the constructive proofs themselves verify that those algorithms meet
their specifications.

2The characterisation was derived by Spitters in the case where H is separable and the
subspace is B(H) itself ([15],Theorem 5); but his proof uses Brouwer’s continuity principle
and so is intuitionistic, rather than in the style of Bishop.
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2 Preliminary Lemmas

The proof of our main theorem depends on a sequence of (at-times-complicated)
lemmas. For the first one, we remind the reader of two elementary definitions in
constructive analysis: we say that an inhabited set S—that is, one in which we
can construct an element—is finitely enumerable if there exist a positive
integer N and a mapping of {1, . . . , N} onto S; if that mapping is one-one,
then S is called finite.

Lemma 1 If u is a weak-operator continuous linear functional on B(H), then
there exist a finitely enumerable subset F of H ×H and a positive number C
such that |u(T )| ≤ C∑(x,y)∈F |〈Tx, y〉| for all T ∈ B(H).

Proof. This is an immediate consequence of Proposition 5.4.1 in [8].

We shall need some information about locally convex spaces. Let (pj)j∈J be a
family of seminorms defining the topology on a locally convex linear space V ,
and let A be a subset of V . A subset S of A is said to be located (in A) if

inf




∑

j∈F
pj(x− s) : s ∈ S





exists for each x ∈ A and each finitely enumerable subset F of J . We say
that A is totally bounded if for each finitely enumerable subset F of J
and each ε > 0, there exists a finitely enumerable subset S of A—called an ε-
approximation to S relative to (pj)j∈F—such that for each x ∈ A there

exists s ∈ S with
∑

j∈F pj(x− s) < ε.
The unit ball B1(H) is weak-operator totally bounded ([8], Proposition 5.4.15);
but, in contrast to the classical situation, it cannot be proved constructively
that B1(H) is weak-operator complete [5].

A mapping f between locally convex spaces
(
X, (pj)j∈J

)
and

(
Y, (qk)k∈K

)

is uniformly continuous on a subset S of X if for each ε > 0 and each
finitely enumerable subset G of K, there exist δ > 0 and a finitely enumer-
able subset F of J such that if x, x′ ∈ S and

∑
j∈F pj(x − x′) < δ, then∑

k∈G qk (f(x)− f(x′)) < ε.
We recall four facts about total boundedness, locatedness, and uniform conti-
nuity in a locally convex space V . The proofs are found on pages 129–130 of
[8].

⊲ If f is a uniformly continuous mapping of a totally bounded subset A of
V into a locally convex space, then f(A) is totally bounded.

⊲ If f is a uniformly continuous, real-valued mapping on a totally bounded
subset A of V , then supx∈A f(x) and infx∈A f(x) exist.

⊲ A totally bounded subset of V is located in V .
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⊲ If A ⊂ V is totally bounded and S ⊂ A is located in A, then S is totally
bounded.

We remind the reader that a bounded linear mapping T : X → Y between
normed linear spaces is normed if its norm,

‖T ‖ ≡ sup {‖Tx‖ : x ∈ X, ‖x‖ ≤ 1} ,

exists. If X is finite-dimensional, then ‖T ‖ exists; but the statement ‘Every
bounded linear functional on an infinite-dimensional Hilbert space is normed’3

is essentially nonconstructive.

Lemma 2 Every weak-operator continuous linear functional on B(H) is
normed.

Proof. This follows from observations made above, since, in view of Lemma
1, the linear functional is weak-operator uniformly continuous on the weak-
operator totally bounded set B1(H).

We note the following stronger form of Lemma 1.

Lemma 3 Let u be a weak-operator continuous linear functional on B(H).Then
there exist δ > 0, and finitely many nonzero4 elements ξ1, . . . , ξN and
ζ1, . . . , ζN of H with

∑N
n=1 ‖ξn‖

2
=
∑N

n=1 ‖ζn‖
2

= 1, such that |u(T )| ≤
δ
∑N

n=1 |〈Tξn, ζn〉| for each T ∈ B(H).

Proof. By Lemma 1, there exist a positive integer ν,C > 0, and vectors
x,y ∈ Hν such that |u(T )| ≤ C

∑ν
n=1 |〈Txn, yn〉| for all T ∈ B(H).5 For each

n ≤ ν, construct nonzero vectors x′n, y
′
n such that x′n 6= xn and y′n 6= yn. The

desired result follows from the inequality

ν∑

n=1

|〈Txn, yn〉| ≤
ν∑

n=1

|〈T (xn − x′n) , yn − y′n〉|+
ν∑

n=1

|〈Tx′n, yn − y′n〉|

+

ν∑

n=1

|〈T (xn − x′n) , y′n〉|+
ν∑

n=1

|〈Tx′n, y′n〉|

the fact that each of the vectors x′n, xn − x′n, y′n, and yn − y′n is nonzero, and
scaling to get the desired norm sums equal to 1 and then the positive δ.

The next lemma will be used in an application of the separation theorem in
the proof of Lemma 6.

3In fact, a nonzero linear functional on a normed space is normed if and only its kernel is
located ([8], Proposition 2.3.6).

4A vector in a locally convex space is nonzero if it is mapped to a positive number by
at least one seminorm.

5At this stage, it is trivial to prove Lemma 3 classically by simply deleting terms 〈Txn, yn〉
when either xn or yn is 0. With intuitionistic logic we need to work a little harder, because
we cannot generally decide whether a given vector in H is, or is not, equal to 0.
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Lemma 4 Let ζ1, . . . , ζN be elements of H with
∑N

n=1 ‖ζn‖
2
= 1. Let K be a

finite-dimensional subspace of HN , and let ‖ ‖∗ be the standard norm on the
dual space K∗ of K:

‖f‖∗ = sup {|f(x)| : x ∈ K, ‖x‖ ≤ 1} (f ∈ K∗) .

Define a mapping F of B(H) into
(
K∗, ‖ ‖∗

)
by

F (T ) (x) ≡
N∑

n=1

〈Txn, ζn〉 (x ∈ K) .

Then F is weak-operator uniformly continuous on B1(H).

Proof. Given ε > 0, let {x1, . . . ,xm} be an ε-approximation to the (compact)
unit ball of K. Writing xi = (xi,1, . . . , xi,N ), consider S, T ∈ B1(H) with

m∑

i=1

N∑

n=1

|〈(S − T )xi,n, ζn〉| < ε.

For each x in the unit ball of K, there exists i such that ‖x− xi‖ < ε. We
compute

|F (S)(x)− F (T )(x)| ≤ |F (S)(x)− F (S)(xi)|+ |F (S)(xi)− F (T )(xi)|
+ |F (T )(x)− F (T )(xi)|

≤
N∑

n=1

|〈S (xn − xi,n) , ζn〉|+
N∑

n=1

|〈(S − T )xi,n, ζn〉|

+

N∑

n=1

|〈T (xn − xi,n) , ζn〉|

≤ 2

N∑

n=1

‖xn − xi,n‖ ‖ζn‖+ ε

≤ 2 ‖x− xi‖ ‖ζ‖ + ε < 3ε.

Hence ‖F (S)− F (T )‖∗ ≤ 3ε. Since ε > 0 is arbitrary, we conclude that F is
uniformly continuous on B1(H).

In order to ensure that the unit kernel B1(H) ∩ keru of a weak-operator
continuous linear functional u on B(H) is weak-operator totally bounded, and
hence weak-operator located, we derive a generalisation of Lemma 5.4.9 of [8].

Lemma 5 Let
(
V, (pj)j∈J

)
be a locally convex space. Let V1 be a balanced,

convex, and totally bounded subset of V . Let u be a linear functional on V
that, on V1, is both uniformly continuous and nonzero. Then V1 ∩ keru is
totally bounded.
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Proof. Since u is nonzero and uniformly continuous on the totally bounded
set V1,

C = sup{|u(y)| : y ∈ V1}

exists and is positive. Choose y1 in V1 such that u(y1) > C/2. Then

y0 ≡
C

2u(y1)
y1

belongs to the balanced set V1, and u(y0) = C/2. Let ε > 0, and let F be a
finitely enumerable subset of J . Since each pj is uniformly continuous on V , it
maps the totally bounded set V1 onto a totally bounded subset of R.6 Hence
there exists b > 0 such that pj(x) ≤ b for each j ∈ F and each x ∈ V1. Using
Theorem 5.4.6 of [8], compute t with

0 < t <
Cε

C + 4b

such that

St = {y ∈ V1 : |u(y)| ≤ t}

is totally bounded. Pick a t-approximation {s1, . . . , sn} of St relative to
(pj)j∈F , and set

yk =
C

C + 2t
sk −

2

C + 2t
u(sk)y0 (1 ≤ k ≤ n).

Then yk ∈ ker(u). Since |u(sk)| ≤ t and V1 is balanced,

−u(sk)
t

y0 ∈ V1.

Thus

yk =
C

C + 2t
sk +

(
1− C

C + 2t

)(−u(sk)
t

y0

)
∈ V1.

6We use R and C for the sets of real and complex numbers, respectively.
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Now consider any element y of V1 ∩ ker(u). Since y ∈ St, there exists k such
that

∑
j∈F

pj(y − sk) < t and therefore

∑

j∈F
pj(y − yk) ≤

∑

j∈F
pj(y − sk) +

∑

j∈F
pj(sk − yk)

< t+
2

C + 2t

∑

j∈F
pj(tsk + u(sk)y0)

≤ t+ 2

C + 2t

∑

j∈F
(tpj(sk) + u(sk)pj(y0))

≤ t+ 2t

C

∑

j∈F
(pj(sk) + pj(y0))

≤ t
(
1 +

4b

C

)
< ε.

Thus {y1, . . . , yn} is a finitely enumerable ε-approximation to V1 ∩ ker(u) rela-
tive to the family (pj)j∈F of seminorms.

The next lemma, the most complicated in the paper, extracts much of the
sting from the proof of our main theorem by showing how to find finitely many
mappings of the form T  〈Tx, ζ〉 whose sum is small on the unit kernel of u.

Lemma 6 Let u be a nonzero weak-operator continuous linear functional on
B(H). Let δ be a positive number, and ξ1, . . . , ξN and ζ1, . . . , ζN nonzero ele-
ments of H, such that7

N∑

n=1

‖ξn‖2 =

N∑

n=1

‖ζn‖2 = 1,

and

|u(T )| ≤ δ
N∑

n=1

|〈Tξn, ζn〉| (T ∈ B(H)) . (1)

Then for each ε > 0, there exists a unit vector x in the subspace

K ≡ Cξ1 ×Cξ2 × · · · ×CξN

of HN , such that xn 6= 0 for 1 ≤ n ≤ N and
∣∣∣
∑N
n=1 〈Txn, ζn〉

∣∣∣ < ε for all

T ∈ B1(H) ∩ keru.

Proof. First note that since each ξn is nonzero, K is an N -dimensional
subspace of HN . Now, an application of Lemma 5 tells us that the unit kernel

7Such ξk, ζk, and δ exist, by Lemma 3.
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B1(H) ∩ keru of u is weak-operator totally bounded. For each x ∈ HN , since

the mapping T  
∑N

n=1 〈Txn, ζn〉 is weak-operator uniformly continuous on
the unit kernel, we see that

‖x‖0 = sup

{∣∣∣∣∣
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ : T ∈ B1(H) ∩ keru

}

exists. The mapping x  ‖x‖0 is a seminorm on HN satisfying ‖x‖0 ≤
‖ζ‖ ‖x‖ = ‖x‖; whence the identity mapping from (HN , ‖ ‖) to (HN , ‖ ‖0)
is uniformly continuous. Since the subset

{x ∈ K : ‖x‖ = 1}

of the finite-dimensional Banach space (K, ‖ ‖) is totally bounded, it follows
that

β ≡ inf {‖x‖0 : x ∈ K, ‖x‖ = 1} ,

exists. It will suffice to prove that β = 0. For then, given ε with 0 < ε < 1,

we can construct a unit vector x′ ∈ K such that
∣∣∣
∑N
n=1 〈Tx′n, ζn〉

∣∣∣ < ε/2

for all T ∈ B1(H) ∩ keru. Picking nonzero vectors yn ∈ Cξn such that(∑N
n=1 ‖x′n − yn‖

2
)1/2

< ε/8, we have

∣∣∣∣∣∣
1−

(
N∑

n=1

‖yn‖2
)1/2

∣∣∣∣∣∣
<
ε

8
,

so

x ≡
(

N∑

n=1

‖yn‖2
)−1/2

y

is a unit vector in Cξ1 × · · · ×CξN with each xn 6= 0. Moreover,

‖x− y‖2 =
N∑

k=1

∣∣∣∣∣∣

(
N∑

n=1

‖yn‖2
)−1/2

− 1

∣∣∣∣∣∣

2

‖yk‖2

≤
(ε
8

)2 N∑

k=1

‖yk‖2

≤ ε2

64

(
1 +

ε

8

)2
<
ε2

16
,
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so for each T ∈ B1(H) ∩ keru,

∣∣∣∣∣
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ ≤

∣∣∣∣∣
N∑

n=1

〈Tx′n, ζn〉
∣∣∣∣∣+

N∑

n=1

|〈T (xn − x′n) , ζn〉|

≤ ε

2
+

N∑

n=1

‖xn − x′n‖ ‖ζn‖

≤ ε

2
+ ‖x− x′‖ ‖ζ‖

≤ ε

2
+ ‖x− y‖+ ‖y − x′‖ < ε

2
+
ε

4
+
ε

8
< ε.

To prove that β = 0, we suppose that β > 0. Then ‖ ‖0 is a norm equivalent to
the original norm on K, so (K, ‖ ‖0) is an N -dimensional Banach space. Define
norms ‖ ‖∗ and ‖ ‖∗0 on the dual K∗ of K by

‖f‖∗ ≡ sup {|f(x)| : x ∈ K, ‖x‖ ≤ 1} ,
‖f‖∗0 ≡ sup {|f(x)| : x ∈ K, ‖x‖0 ≤ 1} .

For each T ∈ B(H) and each x ∈ K let

F (T ) (x) ≡
N∑

n=1

〈Txn, ζn〉 .

Then, by Lemma 4, F is weak-operator uniformly continuous as a mapping
of B1(H) into

(
K∗, ‖ ‖∗

)
; since the norms ‖ ‖∗ and ‖ ‖∗0 are equivalent on

the finite-dimensional dual space K∗, F is therefore weak-operator uniformly
continuous as a mapping of B1(H) into

(
K∗, ‖ ‖∗0

)
. Hence

D = F (B1(H) ∩ keru)

is a totally bounded, and therefore located, subset of
(
K∗, ‖ ‖∗0

)
. Moreover, for

each T ∈ B1(H) ∩ keru and each x ∈ K, |F (T ) (x)| ≤ ‖x‖0; so D is a subset
of the unit ball S∗0 of

(
K∗, ‖ ‖∗0

)
. We shall use the separation theorem from

functional analysis to prove that D is ‖ ‖∗0-dense in S∗0 . Consider any φ in S∗0 ,
and suppose that

0 < d = inf
{
‖φ− F (T )‖∗0 : T ∈ B1(H) ∩ keru

}
.

Now, D is bounded, convex, balanced, and located; so, by Corollary 5.2.10 of
[8], there exists a linear functional v on

(
K∗, ‖ ‖∗0

)
with norm 1 such that

v(φ) > |v(F (T ))|+ d

2
(T ∈ B1(H) ∩ keru) .
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It is a simple exercise8 to show that since
(
K∗, ‖ ‖∗0

)
is N -dimensional, there

exists y ∈ K such that ‖y‖0 = 1 and v(f) = f(y) for each f ∈ K∗. Hence

φ(y) ≥ sup {|F (T )(y)| : T ∈ B1(H) ∩ keru}+ d

2

> sup

{∣∣∣∣∣
N∑

n=1

〈Tyn, ζn〉
∣∣∣∣∣ : T ∈ B1(H) ∩ keru

}
= ‖y‖0 ,

which contradicts the fact that φ ∈ S∗0 . We conclude that d = 0 and therefore
that D is ‖ ‖∗0-dense in S∗0 .
Continuing our proof that β = 0, pick T0 ∈ B1(H) with u(T0) > 0. Replacing
u by u(T0)

−1u if necessary, we may assume that u(T0) = 1. Define a linear
functional Ψ on (K, ‖ ‖0) by setting

Ψ(x) = β

N∑

n=1

〈T0xn, ζn〉 (x ∈ K) .

Note that for x ∈ K we have

|Ψ(x)| ≤ β
N∑

n=1

‖xn‖ ‖ζn‖ ≤ β ‖x‖ ‖ζ‖ ≤ ‖x‖0.

Hence Ψ ∈ S∗0 . By the work of the previous paragraph, we can find T ∈ B1(H)∩
keru such that ‖Ψ− F (T )‖∗0 < β/2δ. In particular, since ‖ξ‖0 ≤ ‖ξ‖ = 1,

∣∣∣∣∣
N∑

n=1

〈(βT0 − T ) ξn, ζn〉
∣∣∣∣∣ <

β

2δ
. (2)

In order to apply the defining property of δ and thereby obtain a contra-
diction, we need to estimate not the sum on the left hand side of (2), but∑N

n=1 |〈(βT0 − T ) ξn, ζn〉|. To do so, we write

{n : 1 ≤ n ≤ N} = P ∪Q,

where P,Q are disjoint sets,

n ∈ P ⇒ 〈(βT0 − T ) ξn, ζn〉 6= 0, and

n ∈ Q⇒ |〈(βT0 − T ) ξn, ζn〉| <
β

2δN
.

If n ∈ P , we set

λn =
1

〈(βT0 − T ) ξn, ζn〉
|〈(βT0 − T ) ξn, ζn〉| ,

8Alternatively, we can refer to [3] (page 287, Theorem 10) or [8] (Theorem 5.4.14).

Documenta Mathematica 16 (2011) 597–617



Characterising Weak-Operator . . . 607

and if n ∈ Q, we set λn = 0; in each case, we define γn ≡ λnξn. Then
γ ≡ (γ1, . . . , γN) ∈ K and

‖γ‖20 ≤ ‖γ‖
2
=

N∑

n=1

|λn|2 ‖ξn‖2 ≤ ‖ξ‖2 = 1.

Hence ∣∣∣∣∣
N∑

n=1

〈(βT0 − T )γn, ζn〉
∣∣∣∣∣ ≤ ‖Ψ− F (T )‖

∗
0 <

β

2δ
.

Moreover,

∣∣∣∣∣
N∑

n=1

〈(βT0 − T )γn, ζn〉
∣∣∣∣∣ =

∣∣∣∣∣
∑

n∈P
〈(βT0 − T )λnξn, ζn〉

∣∣∣∣∣

=
∑

n∈P
|〈(βT0 − T ) ξn, ζn〉| ,

so

N∑

n=1

|〈(βT0 − T ) ξn, ζn〉|

=
∑

n∈P
|〈(βT0 − T ) ξn, ζn〉|+

∑

n∈Q
|〈(βT0 − T ) ξn, ζn〉|

≤
∣∣∣∣∣
N∑

n=1

〈(βT0 − T )γn, ζn〉
∣∣∣∣∣+N

(
β

2δN

)
<
β

δ

and therefore u(βT0 − T ) < β. But u(βT0 − T ) = βu(T0) − u(T ) = β, a
contradiction which ensures that β actually equals 0.

We shall apply Lemma 6 shortly; but its application requires another construc-
tion.

Lemma 7 Let N be a positive integer, let ξ1, . . . , ξN be linearly indepen-
dent vectors in H, and let ζ1, . . . , ζN be nonzero elements of H, such that∑N

n=1 ‖ξn‖
2
=
∑N

n=1 ‖ζn‖
2
= 1. Then there exists a positive number c with the

following property: for each unit vector z in the subspace

K ≡ Cξ1 × · · · ×CξN ,

there exists T ∈ B1(H) such that
∑N

n=1 〈Tzn, ζn〉 > c.

Proof. Let

m ≡ inf
{
‖ζn‖2 : 1 ≤ n ≤ N

}
> 0.
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Define a norm on the N -dimensional span V of {ξ1, . . . , ξN} by
∥∥∥∥∥
N∑

n=1

αnξn

∥∥∥∥∥
1

≡ max
1≤n≤N

|αn| .

Since V is finite-dimensional, there exists b > 0 such that ‖x‖1 ≤ b ‖x‖ for each
x ∈ V . Let z ≡ (λ1ξ1, . . . , λN ξN ) in HN satisfy ‖z‖ = 1. If |λn| < 1/

√
N for

each n, then

1 =

N∑

n=1

‖λnξn‖2 =

N∑

n=1

|λn|2 ‖ξn‖2 <
N∑

n=1

(
1√
N

)2

= 1,

which is absurd. Hence we can pick ν such that |λν | > 1/
√
2N . Define a linear

mapping T on H such that

Tξν =
λ∗ν
b |λν |

ζν , T ξn = 0 (n 6= ν) ,

and Tx = 0 whenever x is orthogonal to V . Then
∥∥∥∥∥T
(

N∑

n=1

αnξn

)∥∥∥∥∥ =
|λ∗ν |
b |λν |

|αν | ≤
1

b

∥∥∥∥∥
N∑

n=1

αnξn

∥∥∥∥∥
1

≤
∥∥∥∥∥
N∑

n=1

αnξn

∥∥∥∥∥ ,

so T ∈ B1(H). Moreover,

〈Tzn, ζn〉 =





0 if n 6= ν

1
b |λν | ‖ζν‖

2
if n = ν,

so
N∑

n=1

〈Tzn, ζn〉 =
1

b
|λν | ‖ζν‖2 >

m

b
√
2N

.

It remains to take c ≡ m/b
√
2N .

The next lemma takes the information arising from the preceding two, and
shows that when the vectors ξn in (1) are linearly independent, we can approx-
imate u by a finite sum of mappings of the form T  〈Tx, y〉, not just on its
unit kernel but on the entire unit ball of B(H). At the same time, we produce
a priori bounds on the sums of squares of the norms of the components of the
vectors x, y that appear in the terms 〈Tx, y〉 whose sum approximates u(T ).
Those bounds will be needed in the proof of our characterisation theorem.

Lemma 8 Let H be a Hilbert space, and u a nonzero weak-operator continuous
linear functional on B(H). Let δ be a positive number, ξ1, . . . , ξN linearly
independent vectors in H, and ζ1, · · · , ζN nonzero vectors in H, such that

N∑

n=1

‖ξn‖2 =
N∑

n=1

‖ζn‖2 = 1
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and (1) holds. Let c > 0 be as in Lemma 7.Then for each ε > 0, there exists
x ∈ Cξ1 × · · · ×CξN such that xn 6= 0 for each n,

‖x‖ < 2 ‖u‖
c

,

and ∣∣∣∣∣u(T )−
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ < ε

for all T ∈ B1(H).

Proof. Pick T0 ∈ B1(H) with u(T0) > 0. To begin with, take the case where
u(T0) = 1 and therefore ‖u‖ ≥ 1. Given ε > 0, set

α ≡ min {ε, 1}
2 ‖u‖ (1 + ‖u‖) .

Applying Lemma 6, we obtain nonzero vectors zn ∈ Cξn (1 ≤ n ≤ N) such

that
∑N

n=1 ‖zn‖
2
= 1 and
∣∣∣∣∣
N∑

n=1

〈Tzn, ζn〉
∣∣∣∣∣ < cα (T ∈ B1(H) ∩ keru) .

For each T ∈ B1(H), since

(1 + ‖u‖)−1 (T − u(T )T0) ∈ B1(H) ∩ keru,

we have ∣∣∣∣∣
N∑

n=1

〈(T − u(T )T0) zn, ζn〉
∣∣∣∣∣ < (1 + ‖u‖) cα.

By Lemma 7, there exists T1 ∈ B1(H) such that
∑N

n=1 〈T1zn, ζn〉 > c. We
compute

c <

N∑

n=1

〈T1zn, ζn〉

≤
∣∣∣∣∣
N∑

n=1

〈(T1 − u(T1)T0) zn, ζn〉
∣∣∣∣∣ + |u(T1)|

∣∣∣∣∣
N∑

n=1

〈T0zn, ζn〉
∣∣∣∣∣

≤ (1 + ‖u‖)cα+ ‖u‖
∣∣∣∣∣
N∑

n=1

〈T0zn, ζn〉
∣∣∣∣∣ .

Hence ∣∣∣∣∣
N∑

n=1

〈T0zn, ζn〉
∣∣∣∣∣ >

c

‖u‖ (1− (1 + ‖u‖)α)

≥ c

‖u‖

(
1− 1

2 ‖u‖

)
>

c

2 ‖u‖ ,
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since ‖u‖ ≥ 1. Setting

x ≡
(

N∑

n=1

〈T0zn, ζn〉
)−1

z,

we have 0 6= xn ∈ Cξn for each n, and

‖x‖ =
∣∣∣∣∣
N∑

n=1

〈T0zn, ζn〉
∣∣∣∣∣

−1

‖z‖ < 2 ‖u‖
c

.

Moreover, for each T ∈ B1(H),

∣∣∣∣∣u(T )−
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1

〈T0zn, ζn〉
∣∣∣∣∣

−1 ∣∣∣∣∣
N∑

n=1

〈(u(T )T0 − T ) zn, ζn〉
∣∣∣∣∣

<
2 ‖u‖
c

(1 + ‖u‖)cα ≤ ε.

We now remove the restriction that u(T0) = 1. Applying the first part of the
theorem to v ≡ u(T0)

−1u, we construct y ∈ K such that each component
yn 6= 0, ‖y‖ ≤ 2 ‖v‖ /c, and

∣∣∣∣∣v(T )−
N∑

n=1

〈Tyn, ζn〉
∣∣∣∣∣ < u(T0)

−1ε,

and we obtain the desired conclusion by taking x ≡ u(T0)y.

Lemma 9 Under the hypotheses of Lemma 8, but without the assumption that
u is nonzero, for all ε, ε′ > 0, there exists x ∈ Cξ1×· · ·×CξN such that xn 6= 0
for each n,

‖x‖ < 2 (‖u‖+ ε′)
c

,

and ∣∣∣∣∣u(T )−
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ < ε

for all T ∈ B1(H).

Proof. Either ‖u‖ > 0 and we can apply Lemma 8, or else ‖u‖ < ε/2. In the
latter event, pick x in Cξ1 × · · · ×CξN such that xn 6= 0 for each n and

‖x‖ < min

{
ε

2
,
2 (‖u‖+ ε′)

c

}
.

Then for each T ∈ B1(H) we have
∣∣∣∣∣
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ ≤

N∑

n=1

‖xn‖ ‖ζn‖ ≤ ‖x‖ ‖ζ‖ <
ε

2
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and therefore
∣∣∣∣∣u(T )−

N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ ≤ ‖u‖+

∣∣∣∣∣
N∑

n=1

〈Txn, ζn〉
∣∣∣∣∣ < ε.

3 The Characterisation Theorem

We are finally able to prove our main result, by inductively applying Lemma
9.

Theorem 10 Let H be a nontrivial Hilbert space, and u a nonzero weak-
operator continuous linear functional on B(H). Let δ be a positive number,
ξ1, . . . , ξN linearly independent vectors in H,9 and ζ1, · · · , ζN nonzero vectors
in H, such that |u(T )| ≤ δ

∑N
n=1 |〈Tξn, ζn〉| for all T ∈ B(H). Then there

exists x ∈ Cξ1 × · · · ×CξN such that

u(T ) =
N∑

n=1

〈Txn, ζn〉 (3)

for all T ∈ B(H).

Proof. Re-scaling if necessary, we may assume that ‖u‖ < 2−3. In the
notation of, and using, Lemma 9, compute x(1) in K ≡ Cξ1 × · · · ×CξN such
that10 ∥∥∥x(1)

∥∥∥ ≤ 2

c

(
‖u‖+ 2−3

)
<

1

2c
and ∣∣∣∣∣u(T )−

N∑

n=1

〈
Tx(1)n , ζn

〉∣∣∣∣∣ < 2−4 (T ∈ B1(H)) .

Suppose that for some positive integer k we have constructed vectors x(i) ∈ K
(1 ≤ i ≤ k) such that ∥∥∥x(k)

∥∥∥ < 1

2kc
, (4)

9The requirement that the vectors ξn be linearly independent is the one place where we
have a stronger hypothesis than is needed in the classical theorem. It is worth noting here
that if u(T ) has the desired form

∑N
n=1 〈Tξn, ζn〉, then classically we can find a set F of

indices n ≤ N such that (i) the set S of those ξn with n ∈ F is linearly independent and (ii)
if ξk /∈ S, then ξk is linearly dependent on S. We can then write

u(T ) =
∑

n∈F

〈Tξn, λnζn〉 ,

with each λn ∈ C. Constructively, this is not possible, since we cannot necessarily determine
whether or not ξn is linearly dependent on the vectors ξ1, . . . , ξn−1.

10In this proof we do not need the fact that, according to Lemma 9, we can arrange for
the components of the vector x(1), and of the subsequently constructed vectors x(k), to be
nonzero.
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and
∣∣∣∣∣u(T )−

N∑

n=1

〈
T
(
x(1)n + · · ·+ x(k)n

)
, ζn

〉∣∣∣∣∣ < 2−k−3 (T ∈ B1(H)) . (5)

Consider the weak-operator continuous linear functional

v : T  u(T )−
N∑

n=1

〈
T
(
x(1)n + · · ·+ x(k)n

)
, ζn

〉

on B(H). Writing
x(1)n + · · ·+ x(k)n = λnξn

and
γ ≡ max {|λ1| , . . . , |λn|} ,

for each T ∈ B(H) we have

|v(T )| ≤ |u(T )|+
N∑

n=1

∣∣∣
〈
T
(
x(1)n + · · ·+ x(k)n

)
, ζn

〉∣∣∣

≤ δ
N∑

n=1

|〈Tξn, ζn〉|+
N∑

n=1

|λn| |〈Tξn, ζn〉|

≤ (δ + γ)

N∑

n=1

|〈Tξn, ζn〉| .

We can now apply Lemma 9, to obtain

x(k+1) =
(
x
(k+1)
1 , . . . , x

(k+1)
N

)
∈ K

such that ∥∥∥x(k+1)
∥∥∥ < 2

c

(
‖ν‖+ 2−k−3

)
<

1

2k+1c

and
∣∣∣∣∣u(T )−

N∑

n=1

〈
T
(
x(1)n + · · ·+ x(k)n + x(k+1)

n

)
, ζn

〉∣∣∣∣∣

=

∣∣∣∣∣v(T )−
N∑

n=1

〈
Tx(k+1)

n , ζn

〉∣∣∣∣∣ < 2−k−4

for all T ∈ B1(H). This completes the inductive construction of a sequence(
x(k)

)
k≥1 in K such that (4) and (5) hold for each k. The series

∑∞
k=1 x

(k)

converges to a sum x in the finite-dimensional Banach space K, by comparison
with

∑∞
k=1 2

−kc−1. Letting k →∞ in (5), we obtain (3) for all T ∈ B1(H) and
hence for all T ∈ B(H).

Documenta Mathematica 16 (2011) 597–617



Characterising Weak-Operator . . . 613

For nonzero u, the proof of our theorem can be simplified at each stage of the
induction, since we can use Lemma 8 directly. If H has dimension > N , we can
then construct the classical representation of u in the general case as follows.
Either ‖u‖ > 0 and there is nothing to prove, or else ‖u‖ < δ (the same δ as in
the statement of the theorem). In the latter case, we construct a unit vector
ξN+1 orthogonal to each of the vectors ξn (1 ≤ n ≤ N), set ζN+1 = ξN+1, and
consider the weak-operator continuous linear functional

v : T  u(T ) + δ 〈TξN+1, ζN+1〉 .

We have

|v(T )| ≤ |u(T )|+ δ |〈TξN+1, ζN+1〉| ≤ δ
N+1∑

n=1

|〈Tξn, ζn〉| .

Moreover,

|v(I)| ≥ δ ‖ξN+1‖2 − |u(I)| ≥ δ − ‖u‖ > 0,

where I is the identity operator on H ; so v is nonzero. We can therefore apply
the nonzero case to v, to produce a vector y ∈ Cξ1 × · · · ×CξN+1 such that

v(T ) =
N+1∑

n=1

〈Tyn, ζn〉 (T ∈ B(H)) .

Setting xn = yn (1 ≤ n ≤ N) and xn+1 = yN+1 − δξN+1, we obtain

u(T ) =

N+1∑

n=1

〈Txn, ζn〉

for each T ∈ B(H). Note, however, that this proof gives x in Cξ1×· · ·×CξN×
CξN+1, not, as in Theorem 10, in Cξ1 × · · · ×CξN .

As an immediate consequence of Theorem 10, the functional u therein is a linear
combination of the functionals T  〈Tξn, ζn〉 associated with the seminorms
that describe the boundedness of u:

Corollary 11 Under the hypotheses of Theorem 10, there exist complex
numbers α1, . . . , αN such that

u(T ) =

N∑

n=1

αn 〈Tξn, ζn〉

for each T ∈ B(H).
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4 Strong-operator Continuous Functionals

Next we turn briefly to the strong operator topology on B(H): the locally
convex topology generated by the seminorms T  ‖Tx‖ with x ∈ H . (That is,
the weakest topology with respect to which the mapping T  Tx is continuous
for each x ∈ H .) Clearly, a weak-operator continuous linear functional on B(H)
is strong-operator continuous. The converse holds classically, but, as we now
show by a Brouwerian example, is essentially nonconstructive.
Let (en)n≥1 be an orthonormal basis of unit vectors in an infinite-dimensional
Hilbert space, and let (an)n≥1 be a binary sequence with at most one term
equal to 1. Then for k ≥ j we have

k∑

n=j

|an 〈Te1, en〉| ≤




k∑

n=j

a2n




1/2


k∑

n=j

|〈Te1, en〉|2



1/2

≤




k∑

n=j

|〈Te1, en〉|2



1/2

.

Since
∑∞

n=1 |〈Te1, en〉|
2
converges to ‖Te1‖, we see that

∑k
n=j |an 〈Te1, en〉| →

0 as j, k →∞. Hence

u(T ) ≡
∞∑

n=1

an 〈Te1, en〉

defines a linear functional u on B(H); moreover, |u(T )| ≤ ‖Te1‖ for each T , so
(by Proposition 5.4.1 of [8]) u is strong-operator continuous. Suppose it is also
weak-operator continuous. Then, by Lemma 2, it is normed. Either ‖u‖ < 1
or ‖u‖ > 0. In the first case, if there exists (a unique) ν with aν = 1, then
u(T ) = 〈Te1, eν〉 for each T ∈ B(H). Defining T such that Te1 = eν and
Ten = 0 for all n 6= ν, we see that T ∈ B1(H) and u(T ) = 1; whence ‖u‖ = 1,
a contradiction. Thus in this case, an = 0 for all n. On the other hand, in the
case ‖u‖ > 0 we can find T such that u(T ) > 0; whence there exists n such
that an = 1. It now follows that the statement

If H is an infinite-dimensional Hilbert space, then every strong-
operator continuous linear functional on B(H) is weak-operator
continuous

implies the essentially nonconstructive principle

LPO: For each binary sequence (an)n≥1, either an = 0 for all n
or else there exists n such that an = 1

and so is itself essentially nonconstructive.
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5 Concluding Observations

The ideal constructive form of Theorem 10 would have two improvements over
the current one. First, the requirement that the vectors ξn be linearly inde-
pendent would be relaxed to have them only nonzero in Lemma 8, Lemma
9, and Theorem 10. Second, B(H) would be replaced by a suitable linear
subspace R of itself, and our theorem would apply to linear functionals that
are weak-operator continuous on R, where “suitable” probably means “having
weak-operator totally bounded unit ball R1 ≡ R∩ B1(H)”. With that notion
of suitability and with minor adaptations, Lemma 6 holds and the proof of
Lemma 8 goes through as far as the construction of the vector z ∈ K. In
fact, Theorem 10 goes through with B(H) replaced by any linear subspace R
of B(H) that has weak-operator totally bounded unit ball and satisfies the
following condition (cf. Lemma 7):

(*) Let N be a positive integer, let ξ1, . . . , ξN be linearly inde-
pendent vectors in H , and let ζ1, . . . , ζN be nonzero elements of
H , such that

∑N
n=1 ‖ξn‖

2
=
∑N

n=1 ‖ζn‖
2
= 1. Then there exists a

positive number c with the following property: for each unit vector
z in the subspace

K ≡ Cξ1 × · · · ×CξN

there exists T ∈ R1 such that
∑N

n=1 〈Tzn, ζn〉 > c.

This condition holds in the special case where N = 1, in which case, if also
R1 is weak-operator totally bounded, we obtain Theorem 1 of [6].11 However,
there seems to be no means of establishing (*) for N > 1 and a general R. So
the ideal form of our theorem remains an ideal and a challenge.
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11But the proof of the theorem in [6] is simpler and more direct than the case N = 1 of
the proof of our Theorem 10 above.
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Abstract. We classify real Kirchberg algebras using united K-
theory. Precisely, let A and B be real simple separable nuclear purely
infinite C*-algebras that satisfy the universal coefficient theorem such
that AC and BC are also simple. In the stable case, A and B are iso-
morphic if and only if KCRT(A) ∼= KCRT(B). In the unital case, A and
B are isomorphic if and only if (KCRT (A), [1A]) ∼= (KCRT(B), [1B]).
We also prove that the complexification of such a real C*-algebra is
purely infinite, resolving a question left open from [43]. Thus the real
C*-algebras classified here are exactly those real C*-algebras whose
complexification falls under the classification result of Kirchberg [26]
and Phillips [35]. As an application, we find all real forms of the
complex Cuntz algebras On for 2 ≤ n ≤ ∞.

2010 Mathematics Subject Classification: 46L35, 46L80, 19K99
Keywords and Phrases: Real C*-algebras, K-theory, classification

1. Introduction

One of the highlights of the classification theory of simple amenable C*-algebras
is the classification of purely infinite nuclear simple C*-algebras, obtained by
Kirchberg and Phillips in [26] and [35]. This classification theorem relies in
an essential way on the Universal Coefficient Theorem established by Rosen-
berg and Schochet in [40], where it was observed that “For reasons pointed out
already by Atiyah, there can be no good Künneth Theorem or Universal Co-
efficient Theorem for the KKO groups of real C*-algebras; this explains why
we deal only with complex C*-algebras”. Thus at the time of the Kirchberg
and Phillips classification, the lack of a universal coefficient theorem was the
primary barrier to extending the classification result to real C*-algebras.
However, in [8], a new invariant called united K-theory was introduced for
real C*-algebras and in [9] a universal coefficient theorem was proven for real
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C*-algebras using united K-theory. In the present paper, we take advantage of
these developments to provide a complete classification of a class of real simple
purely infinite C*-algebras in terms of united K-theory. The real C*-algebras
that are classified are exactly those real C*-algebras for which the complexi-
fication is covered by the Kirchberg and Phillips theory. As an application of
our classification we determine all the real forms of the complex Cuntz algebras
On for 1 ≤ n ≤ ∞: there are two such forms when n is odd and one when n is
even or infinite.
The overall framework of the proof will be the same as that in the paper
[35] and the underlying theory on which that paper was built. Furthermore,
many of the proofs in the development leading to the main theorems of [35]
carry over to the real case without significant change. In those cases, we will
simply refer to the established proofs in the literature without reproducing
them here. However there are many situations where the arguments in the real
case require modification and we will then provide full proofs or full discussion
of the necessary modifications.
In Section 2, we describe the invariant of united K-theory and summarize its
key properties. In Section 3 we then establish real analogues of some of the
fundamental properties of purely infinite algebras, in the course of which we
resolve a problem left hanging in [43] and [13] by showing that the complexifi-
cation of a purely infinite simple real C*-algebra is also purely infinite (using
the original definition for simple algebras). Following the complex case, as
developed in [38], we then establish (in Theorem 5.2) criteria for two unital
homomorphisms from the real Cuntz algebra OR

n (n even) to be approximately
unitarily equivalent. Modifications of the complex arguments are required to
establish some of the preliminary results: in Section 4 we modify the required
results about exponential rank, noting that the close link between self-adjoint
and skew-adjoint elements is absent in a real C*-algebra, and in Section 5 we
modify the result from [15] establishing the Rokhlin property of the Bernoulli
shift on the CAR-algebra.
Our next step is to establish real analogues of Kirchberg’s tensor product the-
orems and his embedding theorem. This is achieved in Section 6 by using the
relevant complex results and the embedding of C into M2(R). In Sections 7,
8, 9 and 10, we closely follow [35] indicating how the results achieved for the
complex case can be obtained in the real case. In particular, Section 7 contains
a key result about uniqueness of homomorphisms from OR

∞ to a real purely infi-
nite C*-algebras. Section 8 contains the theory of asymptotic morphisms in the
context of real C*-algebras and Section 9 culminates in a theorem identifying
KK-theory to a group of asymptotic unitary equivalence classes of asymptotic
morphisms as in Section 4 of [35]. To accomplish this, we make use of the ax-
iomatic characterization of KK-theory for real C*-algebras established in [12].
This development culminates in Section 10, which contains the statements and
proofs of our classification theorems, and in Section 11, which uses these re-
sults to describe the real forms of Cuntz algebras. The notation we use in these
sections closely follows that in [35].
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We will use the notation HR for a real Hilbert space; and B(HR) and KR for
the real C*-algebras of bounded and compact operators HR. For the complex
versions of these objects we will use H, B(H), and K. For a C*-algebra A, we
will write Mn(A) for the matrix algebra over A; and Mn will stand for Mn(R).
Following standard convention, we will use On for the complex Cuntz algebras
and OR

n for the real versions. The complexification of a real C*-algebra A will
be denoted by AC. We will use Φ throughout to denote the conjugate linear
automorphism of AC defined by a+ ib 7→ a− ib (for a, b ∈ A). Note that A can
be recovered from Φ as the fixed point set. Finally, a tensor product written as
A⊗B will in most cases be the C*-algebra tensor product over R, but should
be understood to be a tensor product over C if both A and B are known to
be complex C*-algebras. Recall that if A and B are real C*-algebras, then
(A⊗B)C ∼= AC ⊗BC.

2. Preliminaries on United K-Theory

United K-theory was developed in the commutative context in [14] and sub-
sequently extended to the context of real C*-algebras in [8]. United K-theory
consists of the three separate K-theory modules as well as several natural
transformations among them. In this section, we give the definition of united
K-theory and summarize the features needed in this paper. Details are in [8],
[9], [10].

Definition 2.1. Let A be a real C*-algebra. The united K-theory of A is given
by

KCRT(A) = {KO∗(A),KU∗(A),KT∗(A), r, c, ε, ζ, ψU , ψT , γ, τ} .

In this definition, KO∗(A) = K∗(A) is the standard K-theory of a real C*-
algebra, considered as a graded module over the ring K∗(R). This means in
particular that there are operations

ηO : KOn(A)→ KOn+1(A)

ξ : KOn(A)→ KOn+4(A)

βO : KOn(A)→ KOn+8(A)

corresponding to multiplication by the elements of the same name in KO∗(R).
The operation βO is the periodicity isomorphism of real K-theory.
The second item KU∗(A) = K∗(AC) is the K-theory of the complexification of
A, having period 2. It is a module over K∗(C), which is to say that that there
is an isomorphism of period 2 and the two remaining groups are independent
with no operations between them.
Finally, KT∗(A) is the period 4 self-conjugate K-theory originally defined in
the topological setting in [1]. In the non-commutative setting, it is more easily
defined as KT∗(A) = K∗(T ⊗A) in terms of the algebra T = {f ∈ C([0, 1],C) |
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f(0) = f(1)} (see [8]). Self-conjugate K-theory is a module over the ring
K∗(T ), giving operations

ηO : KTn(A)→ KTn+1(A)

ω : KTn(A)→ KTn+3(A)

βT : KTn(A)→ KTn+4(A) .

The rest of the information in united K-theory consists of operations

cn : KOn(A) −→ KUn(A) rn : KUn(A) −→ KOn(A)

εn : KOn(A) −→ KTn(A) ζn : KTn(A) −→ KUn(A)

(ψU)n : KUn(A) −→ KUn(A) (ψT )n : KTn(A) −→ KTn(A)

γn : KUn(A) −→ KTn−1(A) τn : KTn(A) −→ KOn+1(A)

among the three K-theory modules.
For example, c is induced by the natural inclusion A→ AC; r by the inclusion
AC →M2(A); and ψU by the involution Φ on AC. These operations are known
to satisfy the following relations (see Proposition 1.7 of [8]):

rc = 2 ψUβU = −βUψU ξ = rβ2
U
c

cr = 1 + ψU ψTβT = βTψT ω = βTγζ

r = τγ εβO = β2
T
ε βTετ = ετβT + ηTβT

c = ζε ζβT = β2
U
ζ εrζ = 1 + ψT

(ψU)
2 = 1 γβ2

U
= βTγ γcτ = 1− ψT

(ψT )
2 = 1 τβ2

T
= βOτ τ = −τψT

ψTε = ε γ = γψU τβTε = 0

ζγ = 0 ηO = τε εξ = 2βTε

ζ = ψUζ ηT = γβUζ ξτ = 2τβT .

United K-theory takes values in the algebraic category of CRT-modules. A
CRT-module consists of a triple (MO,MU ,MT ) of graded modules, one over
each of the rings K∗(R), K∗(C), and K∗(T ); as well as natural transformations
c, r, ε, ζ, ψU , ψT , γ, τ that satisfy the above relations.
For any real C*-algebra A, the CRT-module KCRT(A) is acyclic, which means
that the sequences

· · · −→KOn(A) ηO−−→ KOn+1(A)
c−→ KUn+1(A)

rβ−1
U−−−→ KOn−1(A) −→ · · ·

· · · −→KOn(A)
η2O−−→ KOn+2(A)

ε−→ KTn+2(A)
τβ−1
T−−−→ KOn−1(A) −→ · · ·

· · · −→KUn+1(A)
γ−→ KTn(A)

ζ−→ KUn(A)
1−ψU−−−−→ KUn(A) −→ · · ·

are exact.
The important advantage of the full united K-theory over ordinary K-theory
for a real C*-algebraA is that it yields both a Künneth formula (Theorem 4.2 of

Documenta Mathematica 16 (2011) 619–655



The Classification of Real . . . 623

[8]) and a univeral coefficient theorem (Theorem 1.1 of [9]). For later reference,
we now state two results that follow from those fundamental theorems.

Proposition 2.2. For any real C*-algebra A,

(1) KCRT(OR
2 ⊗A) = 0

(2) KCRT(OR
∞ ⊗A) ∼= KCRT(A).

Proof. By Table IV of [8], we have KCRT(OR
2 ) = 0. Then (1) follows by the

Künneth formula.
The unital inclusion R → OR

∞ induces an isomorphism on united K-theory.
This follows from Theorem 4 of [10] and the fact that the unital inclusion C→
O∞ induces an isomorphism on (complex) K-theory. Thus, Theorem 3.5 of [8]
gives KCRT(OR

∞)⊗CRT K
CRT(A) ∼= KCRT(A) and Tor(KCRT(OR

∞),KCRT(A)) = 0.
Then the isomorphism of (2) follows by the Main Theorem of [8]. �

Recall from [41] that the bootstrap class N is the smallest subcategory of
complex, separable, nuclear C*-algebras that contains the separable type I C*-
algebras; that is closed under the operations of taking inductive limits, stable
isomorphisms, and crossed products by Z and R; and that satisfies the two out
of three rule for short exact sequences (i.e. if 0 → A → B → C → 0 is exact
and two of A, B, C are in N , then the third is also in N ).

Proposition 2.3 (Corollary 4.11 of [9]). Let A and B be real separable C*-
algebras such that AC and BC are in N . Then A and B are KK-equivalent if
and only if KCRT (A) ∼= KCRT(B).

This last result is the essential preliminary result for our classification of real
purely infinite simple C*-algebras. We will also make use of Theorem 1 of [10],
which states that every countable acyclic CRT-module can be realized as the
united K-theory a real separable C*-algebra, indeed the C*-algebra can even
be taken to be simple and purely infinite.
We now describe a simpler variation of united K-theory that, by results from
[23], contains as much information as the full version of united K-theory.

Definition 2.4. Let A be a real C*-algebra. Then

KCR(A) = {KO∗(A),KU∗(A), r, c, ψU}

For any real C*-algebra, KCR(A) is an acyclic CR-module, which means that
the relations

rc = 2 ψUβU = −βUψU ξ = rβ2
U
c

cr = 1 + ψU ψ2
U
= 1 ψUc = c

are satisfied and that the sequence

· · · −→ KOn(A)
ηO−−→ KOn+1(A)

c−→ KUn+1(A)
rβ−1
U−−−→ KOn−1(A) −→ · · ·

is exact.
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Let Γ be the forgetful functor from the category CRT-modules to the category
of CR-modules. It is immediate from Theorem 4.2.1 of [23] that Γ is injective
(but not surjective) on the class of acyclic CRT-modules. Hence we have the
following result.

Proposition 2.5. Let A and B be real C*-algebras. Then KCRT(A) ∼= KCRT(B)
if and only if KCR(A) ∼= KCR(B).

Note, however, that the results of [10] do not extend to CR-modules. Not every
countable acyclic CR-module can be realized as KCR(A) for a real C*-algebra
A.

3. Preliminaries on Real Simple Purely Infinite C*-Algebras

In this section, we provide some preliminaries on simple and purely infinite
C*-algebras, including a theorem characterizing simple purely infinite real C*-
algebras in terms of their complexification. One direction of this characteriza-
tion was achieved in [43] and [13].
Let A be a real unital C*-algebra, let U(A) denote the group of unitary elements
in A, and let U0(A) denote the connected component of the identity in U(A).
Note that if u is a unitary in a real C*-algebra, then the spectrum σ(u) ⊆ T
satisfies σ(u) = σ(u) and the real C*-algebra generated by u is isomorphic
to the algebra of complex-valued continuous functions f on σ(u) that satisfy

f(z) = f(z). (If a is an element of A, then by definition the spectrum σ(a) is
found by passing to AC.)
We begin by making an explicit mention of a fairly well-known result about
real simple C*-algebras.

Definition 3.1. A real C*-algebra A is c-simple if AC is simple.

Proposition 3.2. A simple real C*-algebra A is either c-simple or is isomor-
phic to a simple complex C*-algebra.

Proof. Let I be a proper ideal in AC. Then J = A ∩ I ∩ Φ(I) = 0 and so
I ∩ Φ(I) = 0. Furthermore, I + Φ(I) = AC. It then follows that the map
x 7→ x+Φ(x) is an isomorphism from the complex C*-algebra I onto A. �

As the structure of simple complex C*-algebras is comparatively well-
understood, our primary interest lies in c-simple C*-algebras.
As in the complex case, we will use the tilde ∼ to denote the relation of Murray-
von Neumann equivalence of projections. A projection is said to be infinite if
it is Murray-von Neumann equivalent to a proper subprojection of itself. The
following definition of purely infinite is from [43]. Bearing in mind subsequent
developments, such as [27] and [28], a different definition should be made in
the non-simple case. However the focus in this paper is on simple algebras, for
which the definition below is appropriate.

Definition 3.3. Let A be a real simple C*-algebra.
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(1) A subalgebra B is a regular hereditary subalgebra of A if there is an
element x ∈ A+ such that B = xAx.

(2) A is purely infinite if every regular hereditary subalgebra of A contains
an infinite projection.

Proposition 3.4. Let A be a separable simple purely infinite real C*-algebra.
Then either A is unital or there is a real unital simple purely infinite C*-algebra
A0 such that A ∼= KR ⊗A0.

Proof. As in Section 27.5 of [2]. �

Proposition 3.5. Let A be a simple purely infinite C*-algebra and let p be a
projection in A. Then pAp and A are stably isomorphic.

Proof. In the complex case, this result follows from Corollary 2.6 of [16]. The
proof of that result and the proofs of the preliminary lemmas of Section 2 of
[16] work the same in the real case. �

For the rest of this section, fε will denote the real-valued function such that
fε(t) = 0 for t ≤ ε/2, fε(t) = 1 for t ≥ ε, and fε(t) is linear on [ε/2, ε].

Lemma 3.6. For any real C*-algebra A, the following are equivalent.

(1) For any non-zero a, b ∈ A there exist x, y ∈ A with a = xby.
(2) For any non-zero positive a, b ∈ A there exists x ∈ A with a = xbx∗.

Proof. (2)⇒ (1). Let 0 6= a, b ∈ A. As in the complex case, described in 1.4.5 of
[33], there exists u ∈ A with a = u(a∗a)1/4. Let x ∈ A with (a∗a)1/4 = xbb∗x∗

and observe that a = (ux)b(b∗x∗).
(1)⇒ (2). This uses the argument for the complex case, from Lemma 1.7 and
Proposition 1.10 of [18]. If a, b ∈ A are positive and non-zero and ε is chosen so
that fε(b) 6= 0 then a = (zz∗zk)b(zz∗zk)∗, where x, y are chosen so that a1/6 =
xfε(b)y, k ≥ 0 is chosen so that fε/2(b) = kbk and z = x(fε(b)yy

∗fε(b))1/2. �

Lemma 3.7. Let A be a real C*-algebra such that for all non-zero elements a, b
there exist x, y with a = xby. Suppose that A contains a non-zero projection
and let c be a non-zero positive element such that cAc 6= A. Then cAc contains
an infinite projection.

Proof. The argument from (vii) ⇒ (i) of Theorem 2.2 of [31] applies to the
real case to show that for any non-trivial projection p and positive element x
there is a Murray-von Neumann equivalence between p and a subprojection of
x. We will repeatedly use this fact.
In the unital case, this shows that the unit 1 is Murray-van Neumann equivalent
to a projection of cAc, which is necessarily infinite.
Now suppose that A has no unit but has a non-zero projection p. Applying the
fact above to a non-zero positive element d in (1−p)A(1−p) gives a projection
q such that p ∼ q and p ⊥ q. Now apply the fact again using the projection
p + q and the positive element p to show that p + q is infinite. Finally, apply
the same fact using the projection p + q and the positive element c to show
that p+ q is Murray-von Neumann equivalent to a projection in cAc. �
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Lemma 3.8. Let A be a real simple C*-algebra. Then the following are equiv-
alent:

(1) A is purely infinite,
(2) A is not isomorphic to R, C, or H and for each pair of non-zero ele-

ments a, b ∈ A there exist x, y ∈ A such that a = xby,
(3) A is not isomorphic to R, C, or H and for each pair of non-zero positive

elements a, b ∈ A there exists x ∈ A such that a = xbx∗.

Furthermore, if these conditions are satisfied, then for all ε > 0 the element x

in (3) can be chosen to satisfy ‖x‖ ≤ (‖a‖/‖b‖)1/2 + ε.

Proof. As the result is well-known in the complex case, we may assume by
Theorem 3.1 that A is c-simple. By Lemma 3.6, (2) and (3) are equivalent.
For (1) ⇒ (2), let a, b be non-zero elements of A, identified with e11(KR ⊗
A)e11. We are assuming AC is simple, so Theorem 2.4 of [17] applied to the
unital algebra pAp implies that K ⊗ pACp is algebraically simple. Then by
Proposition 3.5, K⊗AC is algebraically simple, whence KR⊗A is. The argument
from (ii) ⇒ (xi) of Theorem 2.2 of [31], then produces x, y ∈ KR ⊗ A with
a = xby, so a = (e11xe11)b(e11ye11).
For (2)⇒ (1), we use a simplified argument based on the proof of Theorem 1.2
of [31]. Note first that if a nonzero projection can be found in A then Lemma 3.7
gives the result. (In particular, this takes care of the unital case.) Let a, d be
non-zero positive elements of A with da = ad = a (for a positive element x
with norm 1 take a = f1/2(x) and d = f1/4(x)). Then let s, t ∈ A with d = sat

and let y = (as∗sa)1/2t. An easy argument shows that |y||y∗| = |y∗| hence
f1/2(|y|)f1/8(|y∗|) = f1/8(|y∗|). Unless f1/4(|y|) is a projection, Lemma 4.2 of

[7] gives a scaling element t ∈ A. In this case, pn = fn+ f
1/2
n tf

1/2
n + f

1/2
n t∗f1/2

n

(where fn = tn(t∗)n − tn+1(t∗)n+1 for n ≥ 2) is a projection by Theorem 3.1
of [7], .
The final condition holds as in Lemma 2.4 of [28]. �

Theorem 3.9. A real c-simple C*-algebra A is purely infinite if and only if
AC is purely infinite.

Proof. From Theorem 3.3 of [43] we know that A is purely infinite if AC is.
For the converse, suppose A is purely infinite, let ω be a free ultrafilter on N
and let Aω be the corresponding ultrapower algebra, defined in Definition 6.2.2
of [39]. Note that the proofs of Proposition 6.2.6 of [39] and the preliminary
Lemma 6.2.3 carry over directly to the real case (using Lemma 3.8). Therefore
Aω is simple and purely infinite. Suppose that D is a dimension function,
as defined in Definition I.1.2 of [5], on the complexification (Aω)C ∼= (AC)ω .
For each positive non-zero a, b in Aω there exist x, y ∈ Aω with b = xax∗

and a = yby∗ so D(a) = D(b). For any infinite projection p ∈ Aω , there
exists a projection q < p with D(p) = D(q) + D(p − q) = D(p) + D(p), so
D(a) = D(p) = 0 for each positive a ∈ Aω . Then for each positive a ∈ (Aω)C,
we have 0 ≤ D(a) ≤ D(a + Φ(a)) = 0. So there is no dimension function on
(Aω)C and therefore, by Theorem II.2.2 of [5], no 2-quasitrace. Therefore AC
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is weakly purely infinite by Theorem 4.8 of [28]. By Corollary 4.16 of [28] it is
therefore purely infinite. �

Corollary 3.10. (1) If A and B are stably isomorphic real C*-algebras,
and if A is purely infinite and c-simple then so is B.

(2) Any inductive limit of real purely infinite c-simple C*-algebras is again
purely infinite and c-simple.

(3) If A and B are purely infinite and c-simple, then so is A⊗min B.

Proof. These results follow immediately from Theorem 3.9 and the same results
in the complex case (see Proposition 4.1.8 of [39]). �

We now work toward showing that the K0 and K1 groups of a real purely
infinite algebra can be described in a similar way to the complex case. The
next two lemmas provide the required modification of Lemma 1.7 of [19].

Lemma 3.11. Let A be a real c-simple purely infinite unital C*-algebra and let
u ∈ U(A) and let λ ∈ σ(u). For any ε > 0 there exists v ∈ U(A) such that
‖u− v‖ < ε and

(1) if λ = λ∗ then v = v0 + λp where p is a non-zero projection in A and
v0 ∈ U(p⊥Ap⊥).

(2) if λ 6= λ∗ then v = v0 + λp1 + λ∗p2 where p1 and p2 are orthogonal
non-zero orthogonal projections in AC satisfying Φ(p1) = p2 and v0 ∈
U((p1 + p2)

⊥A(p1 + p2)
⊥).

Proof. First assume that λ = λ∗. Let h be a positive function on σ(u) such
that supp(h) ⊂ Nε0(λ) and h(z

∗) = h(z) for all z ∈ σ(u). Then h(u) ∈ A and

let p be a non-zero projection in h(u)Ah(u). As in the proof of Lemma 1.7
of [19], we have ‖u − (p⊥up⊥ + λp)‖ ≤ 3ε0. Then the polar decomposition of
(p⊥up⊥ + λp) yields a unitary v of the required form that, if ε0 is sufficiently
small, will satisfy ‖u− v‖ < ε.
Now assume λ 6= λ∗. Choose ε0 small enough so that Nε0(λ) ∩ Nε0(λ∗) =
∅. Let h1 be a positive function on σ(u) such that supp(h1) ⊂ Nε0(λ). By
Theorem 3.9, AC is purely infinite so there is a non-zero projection p1 in B =
h1(u)ACh1(u).
Define p2 = Φ(p1) ∈ Φ(B) and p = p1 + p2. Now Φ(h1(u)) = h2(u) where h2 is
the continuous function on σ(u) defined by h2(z) = h1(z

∗). Since supp(h2) ⊂
Nε0(λ

∗), we have h1(u)h2(u) = 0. Thus p1 and p2 are orthogonal projections
and p ∈ A.
As in Lemma 1.7 of [19], we have ‖up1 − λp1‖ ≤ ε0 and ‖up2 − λ∗p2‖ ≤ ε0
from which it follows that ‖u − (p⊥up⊥ + λp1 + λ∗p2)‖ ≤ 8ε0. The required
unitary v is obtained by taking the polar decomposition of p⊥up⊥+λp1+λ∗p2
in A. �

Lemma 3.12. Let A and u be as above. Then there is a projection p in A and
a unitary v in U(p⊥Ap⊥) such that u ∼ v + p.
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Proof. If 1 ∈ σ(u) then using Lemma 3.11, approximate u by an element of the
form v + p. If the approximation is close enough, then the two unitaries will
be in the same path component.
If λ ∈ σ(u) where λ 6= λ∗, use Lemma 3.11 to approximate u by v+λp1+λ

∗p2.
Then we can easily find a path from λp1+λ

∗p2 to p1+p2 in (p1+p2)A(p1+p2).
The only possibility left is u = −1. In that case, find two orthogonal projections
q1 and q2 and a partial isometry s such that ss∗ = q1 and s∗s = q2. Let
p = q1 + q2. The projection p can be rotated to −p within the 2 × 2 matrix
algebra generated by q1, q2 and s. Hence the unitary −1 = −(p⊥)+−p can be
connected to the unitary −(p⊥) + p. �

Proposition 3.13. Let A be a c-simple purely infinite real C*-algebra. Then

(1) K0(A) = {[p] | p is a non-zero projection in A}
(2) K1(A) = U(A)/U0(A) (for A unital).

Proof. In the complex case, these results are proven in Section 1 of [19]. The
proofs of those results as well as the proofs of the preliminary lemmas carry over
to the real case, with two modifications. The first is to the proof of Lemma 1.7
of [19], which we already addressed with the proof of Lemma 3.12 above.
Secondly, in the proof of Lemma 1.1 of [19] the author uses an element of the
form

w̃ = w + w∗ + (1− w∗w − ww∗), (where w2 = 0)

that is a unitary lying in the finite dimensional C*-algebra generated by w. In
the complex case it follows that w̃ ∈ U0(A), whereas in the real case unitary
groups of finite dimensional C*-algebras are not connected in general.
However, if instead we take w̃ = w − w∗ + (1 − w∗w − ww∗) then w̃ is in the
connected component of the identity, as it corresponds to a matrix of the form(

0 1
−1 0

)
. The proof of Lemma 1.1 of [19] can be completed without change using

this alternative w̃. �

We note that part (1) of Proposition 3.13 appeared as Proposition 11 of [10].

4. Exponential Rank

Definition 4.1. An element a in a real C*-algebra A is skew-adjoint if a∗ =
−a. The set of skew-adjoint elements is denoted by Ask.

If a is skew-adjoint, then σ(a) = −σ(a) ⊆ iR and the real unital C*-algebra
generated by a is isomorphic to

{f ∈ C(σ(a),C) | f(it)∗ = f(−it)} .
Furthermore, if a is a skew-adjoint element in a real unital C*-algebra A, then
exp(a) is a unitary in A.

Lemma 4.2. Let A and B be unital real C*-algebras.

(1) U0(A) = {
∏n
i=1 exp(ki) | ki ∈ Ask, n ∈ N}.

(2) If α : A→ B is unital and surjective, then α(U0(A)) = U0(B).
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Proof. Suppose first that u is a unitary element in A with ‖u − 1‖ < 2.
Then −1 /∈ σ(u). We define a continuous function f : T \ {0} → i(−π, π) by
f(exp(it)) = it for t ∈ (−π, π). Then f(u) is in the real C*-algebra generated
by u, is skew-adjoint, and satisfies exp(f(u)) = u.
More, generally, if u ∈ U0(A) then there exists a chain
u = u0, u1, u2, . . . , un = 1 with ‖ui−1 − ui‖ < 2 for all i ∈ {1, 2, . . . , n}.
Then applying the previous paragraph we have ui−1u∗i = exp(ki) for all i with
1 ≤ i ≤ n. Then u =

∏n
i=1 exp(ki).

Conversely, if {ki}ni=1 is any collection of skew-adjoint elements, then u(t) =∏n
i=1 exp(tki) for 0 ≤ t ≤ 1 is a continuous path of unitaries from 1A to∏n
i=1 exp(ki). This proves (1).

For (2), the inclusion α(U0(A)) ⊆ U0(B) is immediate. Let u ∈ U0(B). Then
u =

∏n
i=1 exp(ki) for some skew-adjoint elements ki ∈ B. Let li ∈ A be

elements such that α(li) = ki. We may assume that li is skew-adjoint for all i,
by replacing with 1

2 (li − l∗i ) if necessary. Then u = α (
∏n
i=1 exp(li)). �

Let E = {exp(k) | k ∈ Ask} and let En be the set of all products of at most n
elements of E . Thus U0(A) = ∪∞n=1En. The argument in the proof above also
implies that the set En+1 contains the topological closure of En so that we have
the an increasing sequence

E ⊆ E ⊆ E2 ⊆ (E)2 ⊆ · · · ⊆ (E)n ⊆ (En) ⊆ (E)n+1 ⊆ . . .
similar to that in [37], motivating the following definition.
Definition 4.3.

(1) The exponential rank of A, written cer(A), is equal to the integer n if
En is the smallest set in this sequence to be equal to U0(A) and is equal
to the symbol n + ε if En is the smallest set to be equal to U0(A). If
En 6= U0(A) for all n then cer(A) =∞.

(2) The exponential length of A, written cel(A), is equal to the smallest
number 0 < cel(A) ≤ ∞ such that every unitary u in U0(A) can be
written in the form

u = exp(k1) exp(k2) · · · exp(kn)
where ki ∈ Ask and

‖k1‖+ ‖k2‖+ · · ·+ ‖kn‖ ≤ cel(A) .

With these definitions, the proofs of Section 2 of [37] can be applied with
minimal modification to prove the following results.

Lemma 4.4. Let A be a real unital C*-algebra and let n be a positive integer.

(1) If cel(A) < nπ then cer(A) ≤ n.
(2) If cel(A) ≤ nπ then cer(A) ≤ n+ ε.

Lemma 4.5. Let A be a real unital C*-algebra. If every unitary u ∈ U0(A) can
be connected to the identity by a rectifiable path of length no more than M , then
cel(A) ≤M .
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Definition 4.6. A real C*-algebra A has real skew rank zero if the elements
of Ask with finite spectrum are dense in Ask.

In the case of a complex C*-algebra A there is a bicontinuous bijection Asa →
Ask given by multiplication by i, showing that A has skew rank zero if and only
it has real rank zero. However, in the case of real C*-algebras things are more
subtle. For example the condition of being skew-rank zero is not equivalent (in
the unital case) to the condition that the invertible elements of Ask are dense.
Indeed, all finite dimensional real C*-algebras have real skew rank zero, but
the invertibles of (Mn)sk are dense only if n is even.

Proposition 4.7. Let A be a real unital c-simple purely infinite C*-algebra
satisfying [1] ∈ 2K0(A). Then the invertibles of Ask are dense in Ask and A
has real skew rank zero.

Proof. Let A be a real purely infinite C*-algebra such that [1] ∈ 2K0(A). Let
a ∈ Ask and let ε > 0 be given. Define functions g : iR → R and f : iR → iR
by

g(it) = max{ε− |t|, 0} and f(it) =





i(t+ ε) t ≤ −ε
0 |t| < ε

i(t− ε) t ≥ ε .
Then g(a) ∈ A+ and f(a) ∈ Ask.
Since A is purely infinite, there is a projection p ∈ g(a)Ag(a) with 2[p] = [1] ∈
K0(A). Then [1− p] = [p] so there is a partial isometry s such that s∗s = 1− p
and ss∗ = p. Since f(a)g(a) = 0 we have f(a) = (1− p)f(a)(1 − p).
Let b = f(a)+ ε(s− s∗). In matrix form under the decomposition indicated by
the projection sum 1 = (1− p) + p we have

b =

(
f(a) −ε
ε 0

)

whence b is invertible. This proves the first statement.
For the second statement, again let a ∈ Ask and let ε > 0 be given. By the first
part of the theorem, we may assume that a is invertible, hence σ(a) ⊂ iR\{0}.
Write a = a1 + a2 where the elements ai ∈ AC satisfy σ(a1) ⊂ i(0,∞) and
σ(a2) ⊂ i(−∞, 0). Note also that Φ(a1) = a2.
Since AC is simple and purely infinite it has real rank zero, so there exists
b1 ∈ (AC)sk such that σ(b1) is a finite subset of iR+ and ‖a1 − b1‖ < ε/2. Let
b2 = Φ(b1) and let b = b1 + b2. Then b is a skew-adjoint element of A with
finite spectrum and ‖a− b‖ < ε. �

Lemma 4.8. Let A be a real c-simple unital C*-algebra such that [1] ∈ 2K0(A).
Let u ∈ U(A) be a unitary such that σ(u) 6= S1. Then for every ε > 0 there is
a unitary v with finite spectrum such that ‖u− v‖ < ε.

Proof. If −1 /∈ σ(u), then there is a continuous function f : σ(u) → i[−π, π]
that is a right inverse to the function it 7→ exp(it) and that satisfies f(z∗) =
f(z)∗. Then f(u) ∈ Ask can be approximated within δ by a skew adjoint
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element b with finite spectrum by Proposition 4.7. For an appropriate choice
of δ, this implies that exp(b) ∈ U(A) approximates u within ε.
Similarly, if 1 /∈ σ(u), then there is a continuous function f : σ(u) → i[−π, π]
that is a right inverse to the function it 7→ − exp(−it) and that satisfies f(z∗) =
f(z)∗.
In the general case, suppose that λ /∈ σ(u) for some λ ∈ S1. Let σ1 = {w ∈
σ(u) | Re(w) > Re(λ)} and let σ2 = {w ∈ σ(u) | Re(w) < Re(λ)}. Then
σ = σ1 ∪ σ2. Let ui = uiEu(σi), where Eu(σi) denotes the spectral projection
of u associated with the clopen subset σi of σ. Then 1 /∈ σ(u2) and −1 /∈
σ(u1). Using the results from the first two paragraphs, let vi be a unitary that
approximates ui in Eu(σi)AEu(σi) within ε. Then since u = u1 + u2 we have
that v = v1 + v2 is a unitary that approximates u within ε. �

Lemma 4.9. Let A be a real unital simple purely infinite C*-algebra let u ∈
U(A) and let {λ1, . . . , λn} be a subset of σ(u) that is closed under conjugation.
For any ε > 0 there exist v ∈ U(A) and orthogonal projections p1, . . . , pn ∈ AC

such that ‖u− v‖ < ε and v = v0 + λ1p1 + · · ·+ λnpn with v0 ∈ U((p1 + · · ·+
pn)
⊥A(p1 + · · ·+ pn)

⊥).
Furthermore, the elements

∑n
i=1 pi and

∑n
i=1 λipi are both in A.

Proof. Use the constructions of Lemma 3.11 above as in the proof of Lemma 6
of [34]. �

Lemma 4.10. Let A be a real unital C*-algebra and let u ∈ U(A). For any
ε > 0 there exists an h ∈M2(A)sk such that ‖u⊕ u∗ − exp(h)‖ < ε.

Proof. As in the proof of Corollary 5 of [34], there exists a continuous path
v(t) of unitaries in M2(A) with v(0) = 1 and v(π/2) = u ⊕ u∗ such that
−1 /∈ σ(v(t)) for 0 ≤ t < π/2. Thus we can find a t close enough to π/2 such
that ‖u⊕ u∗ − v(t)‖ < ε and v(t) = exp(h) for a skew-adjoint h. �

Lemma 4.11. Let A be a real unital c-simple purely infinite C*-algebra such
that [1] ∈ 2K0(A). Let e1, e2, e3, e4 be nonzero orthogonal projections in A that
sum to 1. Let a be a partial isometry such that a∗a = e2 and aa∗ = e3. Let
u ∈ U(e1Ae1) and v ∈ U(e2Ae2) be unitaries with σ(u) = S1. Then for all
ε > 0 there is a unitary z ∈ U(A) and a unitary w ∈ U(e4Ae4) with finite
spectrum such that

‖z∗(u + 1− e1)z − (u+ v + av∗a∗ + w)‖ < ε .

Proof. This proof closely follows that of Lemma 7 of [34]. By Lemma 4.10
there is a unitary in (e2 + e3)A(e2 + e3) that is arbitrarily close to v + av∗a∗

and that has the form exph for h ∈ Ask. This in turn can be approximated
by a unitary that has finite spectrum by Proposition 4.7. The general form of
such a unitary is

n∑

k=1

(λkqk1 + λ∗kqk2) + 1q01 + (−1)q02
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where λ∗k 6= λk, the nonzero projections qki ∈ AC satisfy Φ(qk1) = qk2 for
1 ≤ k ≤ n, and the (possibly zero) projections q0i are in A. Furthermore, the
qki are orthogonal and sum to e2 + e3. Without loss of generality, we assume
that v+ av∗a∗ has this form. With an obvious choice of coefficients λki we can
write this as

v + av∗a∗ =
n∑

k=0

2∑

i=1

λkiqki =
∑

λkiqki .

(Henceforth in this proof will use an undecorated
∑

to represent a double sum

indexed as
∑n
k=0

∑2
i=1.)

Now we replace u by a nearby element of the form given by Lemma 4.9.
Specifically, there are orthogonal projections pki ∈ e1ACe1 and, setting p =
e1 −

∑
pki ∈ A, there is a unitary u0 ∈ pAp such that

u = u0 +
∑

λkipki

(where the projection p0i = 0 if and only if q0i = 0).
For each k ∈ {1, . . . , n} let ck1 ∈ AC be a partial isometry such that c∗k1ck1 =
pk1 and ck1c

∗
k1 < pk1. Then ck2 = Φ(ck1) satisfies c

∗
k2ck2 = pk2 and ck2c

∗
k2 < pk2

and ck = ck1+ck2 ∈ A satisfies c∗kck = pk1+pk2 and ckc
∗
k < pk1+pk2. For k = 0

we obtain partial isometries c0k ∈ A such that c∗0ic0i = p0i and ckic
∗
ki < pki.

Then c = p+
∑
cki ∈ A satisfies

c∗c = e1, cc∗ = e1 −
∑

(pki − ckic∗ki), and

cuc∗ = u0 +
∑

λkickic
∗
ki .

Similarly we can find a collection of partial isometries dki with domain projec-
tion qki and range projection a subprojection of pki − c∗kicki that also satisfy
Φ(dk1) = dk2 for k 6= 0 and Φ(dki) = dki for k = 0. Then the partial isometry
d =

∑
dki ∈ A satisfies

d∗d = e2 + e3, dd∗ ≤
∑

(pki − ckic∗ki), and

d
(∑

λkiqki

)
d∗ =

∑
λkidkid

∗
ki .

Now, choose a partial isometry b such that

b∗b < e4, bb∗ =
∑

(pki − ckic∗ki − dkid∗ki)
and define

w0 =
∑

λkib
∗(pki − ckic∗ki − dkid∗ki)b .

Then z0 = b + c + d is a partial isometry with z∗0z0 = e1 + e2 + e3 + b∗b and
z0z
∗
0 = e1. So in K0(A) we have [e1] = [e1 + e2 + e3 + b∗b], which implies

[1 − e1] = [e4 − b∗b]. By Proposition 11 of [10], there is a partial isometry
z1 ∈ A such that z1z

∗
1 = 1− e1 and z∗1z1 = e4− b∗b. Then w = w0 + e4− b∗b is

a unitary with finite spectrum in e4Ae4 and z = z0 + z1 is a unitary in A that
satisfies z∗(u + 1− e1)z = u+

∑
λkiqki + w. �

Documenta Mathematica 16 (2011) 619–655



The Classification of Real . . . 633

Theorem 4.12. Let A be a real unital c-simple purely infinite C*-algebra such
that [1] ∈ 2K0(A). For every u ∈ U0(A) and every ε > 0 there is a unitary v
with finite spectum such that ‖u− v‖ < ε.

Proof. With the lemmas that we have developed, the proof is now the same
as that of the unital case of Theorem 1 and Corollary 2 of [34], except that
wherever there is an element of the form exp(ih) where h is self-adjoint, we use
exp(k) where k is skew-adjoint. �

As in the complex case, we have the following corollary concerning exponential
length.

Corollary 4.13. Let A be a real unital c-simple purely infinite C*-algebra
such that [1] ∈ 2K0(A). Then cel(A) ≤ 4.

Proof. By Theorem 4.12, every unitary u ∈ U0(A) can be approximated within
ε by a unitary v with finite spectrum. For ε sufficiently small, ‖v∗u − 1‖ < ε
implies there exists a skew-adjoint k2 such that v∗u = exp(k2) with ‖k2‖ ≤
4 − π. As v has finite spectrum, there exists a skew-adjoint k1 such that
v = exp(k1) and ‖k1‖ ≤ π. Then u = exp(k1) exp(k2) and ‖k1‖+‖k2‖ ≤ 4. �

5. Homomorphisms from OR
n

The following theorem gives the real version of the Rokhlin property of the
Bernoulli shift, established in [15] and summarized in [39]. Let M2∞ =
limk→∞M2k be the real CAR algebra and let H be the real C*-algebra of
quaternions.

Proposition 5.1. Let σ be the one-sided Bernoulli shift on M2∞ . For each
ε > 0 and for each r ∈ N there exist k ∈ N and projections e0, e1, . . . , e2r = e0 ∈
M2k such that

∑2r

j=1 ej = 1 and ‖σ(ej)−ej+1‖ < ε for all j = 0, 1, 2, . . . , 2r−1.
Proof. Let Ak =M2k and let A =M2∞ . Using the notation of Proposition 5.1.3
of [39], let S denote the unilateral shift on ℓ2(N,C), let ωk = exp(2πi/2k) for
each k ≥ 0 and, given δ > 0, let

f0 =
1√
n0

(1, 1, . . . , 1, 0, 0, . . . ) ∈ ℓ2(N,R)

be a unit vector with ‖Sf0 − f0‖ < δ and let

f1 =
1√
n1

(0, 0, . . . 0, 1,−1, 1,−1, . . . ,−1, 0, 0, . . . )

be a unit vector in ℓ2(N,R), orthogonal to f0, with ‖Sf1 + f1‖ < δ. Then, for
r ∈ N, let f2, . . . , fr ∈ ℓ2(N,C) be defined by

fj =
1
√
nj

(0, 0, . . . 0, 1, ωj, ω
2
j , . . . , ω

nj−1
j , 0, 0, . . . )

where there are sufficiently many initial zeros to make fj orthogonal to its
predecessors and where nj is chosen so that

〈fj , fj〉 = 1 + ω2
j + . . . ω

2(nj−1)
j = 0
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and ‖Sfj − ωjfj‖ < δ. If fj = gj + ihj with gj , hj ∈ ℓ2(N,R) then, from the

orthogonality of fj and fj, ‖gj‖ = ‖hj‖ = 1/
√
2.

Let a : ℓ2(N,C) → AC be the map described in [15] and [39] satisfying
the canonical anticommutation relations and observe that a maps ℓ2(N,R)
into A. Let v1 = w1 = a(f1)(a(f0) + a(f0)

∗) and, for each 2 ≤ j ≤ r

let v2j−2 = a(fj)(a(f0) + a(f0)
∗), v2j−1 = a(fj)(a(f0) + a(f0)

∗), w2j−2 =

a(
√
2gj)(a(f0) + a(f0)

∗) = (v2j−2 + v2j−1)/
√
2 and w2j−1 = a(

√
2hj)(a(f0) +

a(f0)
∗) = −i(v2j−2 − v2j−1)/

√
2. Note that {w1, w2, . . . , w2r−1} ⊂ Ak for all

sufficiently large k.
It is noted in the proof of Proposition 4.1 of [15] that the elements vi for 1 ≤
i ≤ 2r−1 satisfy the relations vivj +vjvi = 0 and viv

∗
j +v

∗
j vi = δij1. It follows

from this that the elements wi for 1 ≤ i ≤ 2r − 1 satisfy the same relations.
Therefore, using the matrix units described in the proof of Proposition 4.1 of
[15], the real C*-algebra B generated by w1, . . . , w2r−1 is isomorphic toM22r−1 .
Slightly varying the proof of Proposition 4.1 of [15], let β be the automorphism
of the complexification of B determined by β(v1) = −v1, β(v2j) = ωjv2j and
β(v2j+1) = ωjv2j+1 for each 1 ≤ j ≤ r−1. Note that β(w2j) =

1
2 (ωj+ωj)w2j+

i
2 (ωj − ωj)w2j+1 and β(w2j+1) = − i

2 (ωj − ωj)w2j +
1
2 (ωj + ωj)w2j+1, so that

β leaves the real algebra B invariant. Identifying B with M22r−1 , there is an
orthogonal matrix W implementing β. By standard linear algebra, described
for example in Section 81 of [22], W is orthogonally conjugate to an orthogonal
matrix consisting of diagonal elements ±1 and diagonal 2×2 rotation matrices,
determined by the eigenvalues of W .
As in [39], on the complexification of B, identified with M22r−1(C), β is
implemented by a diagonal unitary with entries 1, ωr, ω

2
r , . . . , ω

2r−1
r , each

repeated 2r−1 times. (The unitary arises as the tensor product of one
diagonal unitary with entries 1, ωr, ω

2
r , . . . , ω

2r−1
r and another with entries

1, ωr, ωr
2, . . . , ωr

2r−1−1.) On B ∼= M22r−1 the orthogonal matrix W imple-
menting β is therefore conjugate to an orthogonal matrix with 2 × 2 diagonal

blocks diag(1,−1), R,R2, . . . , R2r−1−1, each repeated 2r−1 times, where

R =
(

cos(π/2r−1) − sin(π/2r−1)

sin(π/2r−1) cos(π/2r−1)

)
.

The cyclic shift on M2r is implemented by the unitary

V =




0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . 1 0



,

which is orthogonally conjugate to diag
(
diag(1,−1), R,R2, . . . , R2r−1−1

)
. It

follows that the orthogonal element W implementing β on B is orthogonally
conjugate to a direct sum of 2r−1 copies of V and thus that β is conjugate
to a direct sum of 2r−1 cyclic shifts. It follows that there are 2r orthogonal
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projections e0, e1, . . . , e2r = e0 in B (each of rank 2r−1) that are cyclically
permuted by β. As in the proof of Proposition 4.1 of [15], a suitable choice
of δ at the start of the proof ensures that ‖σ(ej) − β(ej)‖ < ε for each j and
therefore the projections e0, e1, . . . , e2r = e0 have the required properties. �

Theorem 5.2. Let D be a real unital C*-algebra satisfying

(i) the canonical homomorphism U(D)/U0(D) → K1(D) is an isomor-
phism, and

(ii) cel(D) <∞.

Let n be an even integer, let φ, ψ be unital homomorphisms from OR
n to D,

let λ be the endomorphism of D defined by λ(a) =
∑n

j=1 φ(sj)aφ(sj)
∗ and

let u ∈ U(D) be defined by u =
∑n

j=1 ψ(sj)φ(sj)
∗, where s1, . . . , sn are the

canonical generators of OR
n. Then the following are equivalent:

(1) u ∈ {vλ(v)∗ | v ∈ U(D)},
(2) [u] ∈ (n− 1)K1(D)
(3) [φ] = [ψ] ∈ KK0(OR

n , D),
(4) φ and ψ are approximately unitarily equivalent.

In particular, these statements are equivalent if D is a real unital purely infinite
c-simple C*-algebra.

Proof of Theorem 5.2. The proof of the equivalence of the four statements,
assuming (i) and (ii), is similar to that of the complex case in Sections 3 and 4
of [38], modified only by the use of unitaries of the form exp(h) with h ∈ Ask
in the proof of the real version of Lemma 4.6 of [38]. We note that in the proof
of the real version of Lemma 3.7 of [38], the required result from [19] holds, as
was observed already in the proof of Proposition 3.13 above.
Suppose D is a real unital purely infinite c-simple C*-algebra. Then condition
(i) holds for D by Proposition 3.13. Since K0(OR

n) = Zn−1 and n is even, we
have [1OR

n
] ∈ 2K0(OR

n). Using the unital homomorphism φ (or ψ) we obtain

[1D] ∈ 2K0(D). Then condition (ii) holds by Corollary 4.13. �

Corollary 5.3.

(1) Let A be a real unital purely infinite c-simple C*-algebra. Any two uni-
tal homomorphisms φ, ψ : OR

2 → A are approximately unitarily equiva-
lent.

(2) Any inductive limit of the form OR
2 → OR

2 → OR
2 → . . . , with unital

connecting homomorphisms, is isomorphic to OR
2 .

(3) OR
2 ⊗OR

2
∼= OR

2 .
(4)

⊗∞
n=1OR

2
∼= OR

2 .
(5) OR

2 ⊗M2∞
∼= OR

2 .
(6) OR

2 ⊗H ∼= OR
2 .

Proof. We know that KCRT(OR
2 ) = 0 from Section 5 of [8] so the universal

coefficient theorem (Theorem 4.1 of [9]) implies that KK0(OR
2 , D) = 0. Then

part (1) follows immediately from Theorem 5.2.
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Parts (2) and (3) can be proven in the same way as in the complex case. See
Corollary 5.1.5 and Theorem 5.2.1 in [39]. Then part (4) follows from parts (2)
and (3).
There is an isomorphism OR

2
∼=M2(OR

2 ), established as in the complex case: if
s1 and s2 are generators of OR

2 satisfying the canonical relations s∗i sj = δij1OR
2

and
∑2
i=1 sis

∗
i = 1, then

S1 = ( s1 s20 0 ) and S2 =
(

0 0
s1 s2

)

satisfy the same relations and generateM2(OR
2 ). Using that isomorphism, part

(5) follows from part (2).
Finally, part (6) follows from (5) and the formula M2∞ ⊗ H ∼= M2∞ , which
follows from Theorem 10.1 of [21] or from Theorem 4.8 of [42]). �

6. Tensor Product Theorems

In this section, we reproduce for real C*-algebras some standard results regard-
ing tensor products with OR

2 and OR
∞.

Definition 6.1.

(1) A real (resp. complex) C*-algebra A is amenable if for all ε > 0 and all
finite subsets F ⊂ A, there is a finite dimensional real (resp. complex)
C*-algebra B and contractive completely positive linear maps φ : A→
B and ψ : B → A such that

‖ψ ◦ φ(a)− a‖ < ε for all a ∈ F .
(2) A real (resp. complex) C*-algebra A is nuclear if for all real (resp.

complex) C*-algebras B the algebraic tensor product A ⊗R B (resp.
A⊗C B) has a unique C*-norm.

(3) A real (resp. complex) C*-algebra A is exact if the tensor product
functor B 7→ A ⊗min B is exact. Here the tensor product is over R
(resp. C) and B can be any real (resp. complex) C*-algebra.

Lemma 6.2. Let A be a real C*-algebra. Then

(1) A is amenable if and only if AC is amenable.
(2) A is nuclear if and only if AC is nuclear.
(3) A is exact if and only if AC is exact.

Consequently, A is amenable if and only if it is nuclear; and in this case it is
also exact.

Proof. Part (1) can be found in Proposition 3 of [25] and the preceding text.
We claim that there is a one-to-one correspondence between C*-norms on the
algebraic tensor product A⊗R B and those on AC ⊗C BC. Let γ be a C*-norm
on A ⊗R B, and let A ⊗γ B be the real C*-algebra obtained by completion.
Then the complexification (A⊗γ B)C has a unique C*-norm extending that on
A⊗R B. Thus every C*-norm on the algebraic tensor product A⊗R B extends
uniquely to a C*-norm on AC ⊗C BC. Part (2) follows immediately from this
claim.
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It also follows that the restriction of the minimal C*-norm on AC⊗CBC gives the
minimal C*-norm on A⊗RB. This fact, plus the fact that the complexification
functor A 7→ AC is exact, implies (3).
The final statement then follows from the corresponding statement for complex
C*-algebras. See Theorem 6.1.3 of [39] and Theorem 6.5.2 of [32]. �

Proposition 6.3. Let A be a real separable C*-algebra A. Then A is exact if
and only if there is an injective homomorphism ι : A→ OR

2 . If A is unital then
ι can be chosen to be unital.

Proof. Suppose that A is exact. Then AC is separable and exact. Thus, by
Theorem 6.3.11 of [39], there is an injective homomorphism ιC : AC → O2

(which is unital if AC is unital). Then we can take ι to be the composition

A →֒ AC
ιC−→ O2 →֒M2(OR

2 )
∼= OR

2 .

Conversely, if there is an injective homomorphism ι : A→ OR
2 then the complex-

ification yields an injective homomorphism from AC to O2. By Theorem 6.3.11
of [39] this implies that AC is exact, hence A is exact. �

Lemma 6.4. Let A be a real purely infinite c-simple nuclear unital C*-algebra.
Then all unital endomorphisms on A ⊗ OR

2 are approximately unitarily equiv-
alent.

Proof. In the complex case, this result is found as Theorem 6.3.8 of [39]. We
will use that result to prove the real version.
By Corollary 5.3, Part (5) it suffices to show that any unital homomorphism

γ : A⊗OR
2 ⊗M2∞ → A⊗OR

2 ⊗M2∞

is approximately unitarily equivalent to the identity. We write A′ = A ⊗ OR
2

and let

αℓ,k : A
′ ⊗M2k →֒ A′ ⊗M2ℓ for k < ℓ

αk : A
′ ⊗M2k →֒ A′ ⊗M2∞

be the canonical injections. Then we use the commutative diagram

A′ //

c
��

. . . // A′ ⊗M2k
αk+1,k //

c
��

A′ ⊗M2k+1
//

c
��

. . . // A′ ⊗M2∞

c
��

A′C // . . . // (A′ ⊗M2k)C
αk+1,k // (A′ ⊗M2k+1)C // . . . // (A′ ⊗M2∞)C

By Theorem 6.3.8 of [39], there is a sequence of unitaries un ∈ (A′ ⊗M2∞)C
such that

‖unau∗n − γ(a)‖ → 0 for all a ∈ A′ ⊗M2∞ .

For each n find an integer k(n) and a unitary vn ∈ (A′ ⊗M2k(n))C such that
‖αk(n)(vn) − un‖ < 1/n. Let wn = r(vn) ∈ A′ ⊗M2k(n)+1 , where r is induced
by the realification map M2k(n) ⊗ C → M2k(n)+1 . We may assume that the
sequence {k(n)}∞n=1 is increasing.
Let a ∈ A′ ⊗M2∞ be given such that ‖a‖ = 1 and let ε > 0. Then find an
integer N large enough so that, for all n ≥ N ,
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• ‖αk(n)(vn)− un‖ < ε,
• ‖unau∗n − γ(a)‖ < ε,
• there exist an, bn ∈ A′ ⊗M2k(n) such that

‖a− αk(n)(an)‖ < ε and ‖γ(a)− αk(n)(bn)‖ < ε .

Then a calculation shows that, for all n ≥ N ,

‖vnanv∗n − bn‖ = ‖αk(n)(vn)αk(n)(an)αk(n)(vn)∗ − αk(n)(bn)‖ < 5ε.

Now for any element x ∈ A′ ⊗M2k(n) we have

αk(n)+1rc(x) = αk(n)+1αk(n)+1,k(n)(x) = αk(n)(x) .

It follows that

‖αk(n)+1(wn)aαk(n)+1(wn)
∗ − γ(a)‖

<‖αk(n)+1(wn)αk(n)(an)αk(n)+1(wn)
∗ − αk(n)(bn)‖+ 2ε

=‖αk(n)+1r(vn)αk(n)+1rc(an)αk(n)+1r(vn)
∗ − αk(n)+1rc(bn)‖ + 2ε

=‖vnc(an)v∗n − c(bn)‖+ 2ε

=‖vnanv∗n − bn‖+ 2ε < 7ε.

�

Theorem 6.5. Let A be a real C*-algebra. Then A is c-simple, separable,
unital, and nuclear if and only if A⊗OR

2
∼= OR

2

Proof. Suppose that A is c-simple, separable, unital, and nuclear. There is a
unital homomorphim γ : OR

2 → A⊗OR
2 given by x 7→ 1⊗x and there is a unital

homomorphism κ : A⊗OR
2 → OR

2 by Lemma 6.2 and Proposition 6.3. Then by
Theorem 5.2 we have κ◦γ ≈u 1OR

2
and by Lemma 6.4 we have γ ◦κ ≈u 1A⊗OR

2
.

Therefore, by (the real analog of) Corollary 2.3.4 of [39], A⊗OR
2
∼= OR

2 .
Conversely, if the isomorphism A ⊗ OR

2
∼= OR

2 holds for a real C*-algebra A,
then we have AC ⊗ O2

∼= O2 which implies by Theorem 7.1.2 of [39] that AC

is simple, separable, unital, and nuclear. Therefore A is c-simple, separable,
unital, and nuclear. �

We note that the hypothesis above requiring that A be c-simple cannot be
relaxed, as the result does not hold for A = O2 (considered as a real C*-
algebra).
Theorem 6.6.

(1) Any two unital homomorphisms φ, ψ from OR
∞ into a real, unital,

purely infinite, nuclear, c-simple C*-algebra A are approximately uni-
tarily equivalent.

(2) Let A be a real c-simple, separable, and nuclear C*-algebra. Then A is
isomorphic to A⊗OR

∞ if and only if A is purely infinite.
(3) OR

∞ ∼=
⊗∞

n=1OR
∞.

Proof. As in Section 7.2 of [39]. �
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Corollary 6.7. Let A and B be real, c-simple, separable, nuclear C*-algebras.
If A or B is purely infinite, then A⊗B is purely infinite.

Proof. From part (2) of Theorem 6.6. �

7. Homomorphisms from OR
∞

The goal of this section is to prove the following theorem, analogous to Propo-
sition 2.2.7 of [35].

Theorem 7.1. Let D be a real unital purely infinite simple C*-algebra, and let
φ, ψ : OR

∞ → D be unital homomorphisms. Then φ is asymptotically unitarily
equivalent to ψ.

The proof of Theorem 7.1 will be the same as that in [35]. However, there are
a couple of background topics that need to be addressed in the context of real
C*-algebras.
We begin with a discussion of approximately divisible real C*-algebras, follow-
ing [6]. It is sufficient to consider only separable unital C*-algebras. Also, we
skirt the general topic of completely noncommutative C*-algebras by taking
into account Definition 2.6 of [6] and the subsequent comment.

Definition 7.2. A separable unital real C*-algebraA is approximately divisible
if for all x1, x2, . . . , xn ∈ A and ε > 0, there is a unital subalgebra B isomorphic
to M2, M3, or M2 ⊕M3 such that ‖xiy − yxi‖ < ε for all i = 1, 2, . . . , n and
all y in the unit ball of B.

The following theorem is the real version of Corollary 2.1.6 of [35].

Lemma 7.3. The tensor product OR
∞ ⊗ D is approximately divisible for any

real separable unital C*-algebra D. In particular, every c-simple, separable,
nuclear, purely infinite, unital real C*-algebra is approximately divisible.

Proof. Let A = OR
∞ ⊗ D. Using the isomorphism OR

∞ ∼=
⊗∞

n=1OR
∞ of The-

orem 6.6 we obtain a sequence of mutually commuting unital homomophisms
φn : OR

∞ → A such that ‖φn(a)b − bφn(a)‖ → 0 for all a ∈ OR
∞ and all b ∈ A.

Choose a unital map γ : M2 ⊕M3 → OR
∞ and let ψn = φn ◦ γ. Then for large

enough n, the subalgebra B = ψn(M2 ⊕M3) works.
The second statement follows from part (2) of Theorem 6.6. �

Lemma 7.4. Let p and q be full projections in M∞(A) where A is a real,
separable, unital, approximately divisible C*-algebra. Then p ∼ q if and only if
[p] = [q] in K0(A).

Proof. The proof is the same as the proof of (the first part of) Proposition 3.10
in [6] in complex case. That proof relies on a progression of results from Sec-
tion 2 of [6] which can all be proven in the real case in the same way with one
minor caveat. The proof of Proposition 2.1 of [6] (which in that paper was
left to the reader) relies on the fact that a complex C*-algebra is spanned by
its unitaries. While this fact is not true in general for real C*-algebras, it can
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easily be shown to be true for finite dimensional real C*-algebras, which is the
relevant case.
The proof of Proposition 3.10 in [6] also relies on Theorem 3.1.4 of [3], which is
a ring-theoretic result stated in enough generality to apply to real C*-algebras.

�

We remark that a more direct proof of Lemma 7.4 can be achieved in the
special case (which is sufficient for our purposes) that A = OR

∞ ⊗D where D
is separable and unital. In that case, we write A =

⊗∞
i=1OR

∞ ⊗ D and let

An =
⊗n

i=1OR
∞ ⊗ D be the unital subalgebra of A consisting of the first n

factors in the tensor product. Then for each n and each k, it is easy to find
a unital subalgebra Bn ⊂ A′n ∩ A that is isomorphic to M2k ⊕M3k . Thus we
achieve the result of Corollary 2.10 of [6] without having to recheck all the
earlier material of Section 2 of [6] in the real case.

Lemma 7.5. Let D be a unital real C*-algebra and let p, q be any two full
projections in KR ⊗ OR

∞ ⊗ D. Then p is Murray-von Neumann equivalent to
a subprojection of q. Furthermore, p is homotopic to q if and only if they
represent the same class in K0(KR ⊗OR

∞ ⊗D) ∼= K0(D).

Proof. With our Lemmas 7.3 and 7.4, as well as Theorem 3.6 of [11], the proof
is the same as that of Lemma 2.1.8 of [35]. �

Proof of Theorem 7.1. With these preliminary definitions and results, the
proof is the same as the proof of Proposition 2.2.7 of [35] including all of
the lemmas and intermediate results in Sections 2.1 and 2.2 of [35]. We note
that in [35], the proofs of Propositions 2.1.9 and 2.1.10 (having to do with
exact stability of the relations defining OR

m and Em(δ)) are referred back to
the proofs of parts (1) and (2) of Lemma 1.3 of [30]. The proof given there for
part (2) produces isometries wj that live in the real algebra En(δ). Therefore

the homomorphisms φ
(m)
δ constructed in the complex case restrict to homo-

morphisms between the real algebras. The same will be true for the analogous
proof of part (1).
We also note that the proofs for the real versions of Lemmas 2.2.1 and 2.2.3 of
[35] rely on our Theorem 5.2 which is only established for n even. Hence for
real C*-algebras, we need to takem to be even in Lemma 2.2.1 and n to be even
in Lemma 2.2.3. This is however, sufficient for all subsequent arguments. �

8. Asymptotic Morphisms

We appropriate the following definition of an asymptotic morphism from Sec-
tion 25.1 of [4]. The other definitions in this section and the next are adapted
from [35].

Definition 8.1. Let A and B be real C*-algebras. An asymptotic morphism
φ from A to B is a family {φt}t∈[0,∞) of maps φt : A→ B such that

(1) the map t 7→ φt(a) is continuous for each a ∈ A, and
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(2) for all a, b ∈ A and all λ ∈ R, the following functions vanish in norm
as t→∞:
(a) φt(a+ b)− φt(a)− φt(b),
(b) φt(λa)− λφt(a),
(c) φt(ab)− φt(a)φt(b),
(d) φt(a

∗)− φt(a)∗.
We say that two asymptotic morphisms φt and ψt from A to B are equivalent
if ‖φt(a) − ψt(a)‖ vanishes as t → ∞ for all a ∈ A. We say that φt and ψt
are homotopic if there is an asymptotic morphism Φt from A to C([0, 1], B)
such that Φt(a)(0) = φt(a) and Φt(a)(1) = ψt(a) for all a ∈ A. Equivalent
asymptotic morphisms are homotopy equivalent (see Remark 25.1.2 of [4]).
We leave the easy proof of the next lemma to the reader.

Lemma 8.2. If A and B are real C*-algebras and φ is an asymptotic morphism
from A to B, then there is an asymptotic morphism φC : AC → BC defined by
(φC)t(a+ ib) = φt(a) + iφt(b).

It can be proven, then, from the same result in the complex case, that for any
asymptotic morphism φ we have lim supt→∞ ‖φt(a)‖ ≤ ‖a‖ for all a ∈ A (see
Proposition 25.1.3 of [4]). Thus, an asymptotic morphism {φt} gives rise to a
unique homomorphism

φ : A→ Cb([0,∞), B)/C0([0,∞), B)

defined in the natural way; and every such homomorphism represents an as-
ymptotic morphism, unique up to equivalence.

Lemma 8.3. Let A be separable and nuclear. Every asymptotic morphism from
A to B is equivalent to one that is completely positive and contractive. Further-
more, if φ and ψ are homopic completely positive and contractive asymptotic
morphisms from A to B, then in fact there is a homotopy from φ to ψ consisting
of completely positive and contractive asymptotic morphisms.

Proof. Let φ be an asymptotic morphism from A to B. Then by Proposi-
tion 1.1.5 of [35], the complexification φC is equivalent to an asymptotic mor-
phism ψ that is completely positive and contractive. The map α : BC → B
defined by α(a + ib) = a is completely positive and contractive. Then the re-
striction of α◦ψ to A is a completely positive, contractive asymptotic morphism
from A to B and is equivalent to φ.
The same construction can be applied to a homotopy to prove the second
statement. �

Definition 8.4. Let φ and ψ be asymptotic morphisms from A to KR ⊗ D.
We define an asymptotic morphism φ⊕ ψ, also from A to KR ⊗D, as follows.
Choose an isomorphism δ : M2(KR)→ KR and define

(φ⊕ ψ)t(a) = (δ ⊗ 1D)

(
φt(a) 0
0 ψt(a)

)
.
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Lemma 8.5. The asymptotic morphism φ ⊕ ψ is well defined up to unitary
equivalence, as well as up to homotopy.

Proof. As in the complex case every automorphism of KR is implemented by a
unitary in U(B(HR)) (the proof in, for example, Lemma V.6.1 of [20] works in
the real case). Furthermore, by [36], U(B(HR)) is path connected. (In fact, by
Theorem 3 of [29], it is contractible.) �

Definition 8.6. Let φ : A→ B be an asymptotic morphism of real C*-algebras
and let p ∈ A be a projection. A tail projection for φ(p) is a continuous path
pt of projections for t ∈ [0,∞) such that limt→∞ ‖φt(p)− pt‖ = 0.
We say that φ is full if there is a full projection p ∈ A such that φ(p) has a full
tail projection.

Definition 8.7. Let A and B be real C*-algebras. Two asymptotic morphisms
φ and ψ from A and B are asymptotically unitarily equivalent if there is a

continuous family of unitary elements ut ∈ B̃ such that limt→∞ ‖utφt(a)u∗t −
ψt(a)‖ = 0 for all a ∈ A.
With these definitions, all the results of Sections 1.2 and 1.3 of [35] hold for
real C*-algebras.

Definition 8.8. Let A and D be real C*-algebras. An asymptotic morphism
φ : A→ D has a standard factorization throughOR

∞⊗A if there is an asymptotic
morphism ψ : OR

∞ ⊗ A → D such that the asymptotic morphisms φ(a) and
ψ(1⊗ a) (both from A to D) are asymptotically unitarily equivalent.
Similarly, φ is asymptotically trivially factorizable if there is an asymptotic
morphism ψ : OR

2 ⊗ A → D such that φ(a) and ψ(1 ⊗ a) are asymptotically
unitarily equivalent.

Theorem 8.9 (Theorem 2.3.7 of [35]). Let A be a separable, nuclear, unital,
and c-simple. Let D0 be a unital C*-algebra, and let D = OR

∞ ⊗ D0. Then
two full asymptotic morphisms from A to KR ⊗D are asymptotically unitarily
equivalent if and only they are homotopic.

Proof. The proof of Theorem 2.3.7 in [35] as well as the proofs of all of the
preceeding lemmas in Section 2.3 of [35] can be proven in the real case with
the same proofs, with some extra attention paid to the issue of connectedness
of unitary groups.
In a few places Phillips uses the fact that the unitary group of O2 is connected.
It is also true that OR

2 is connected since K1(OR
2 )
∼= 0. However, on page 85

of [35], Phillips also uses the fact that the unitary group of a corner algebra
of O∞ is connected. The corresponding statement in the real case is not true
since K1(OR

∞) ∼= Z2. We will show how to adjust the proof so that it works in
the real case.
At this point in the proof we are (using Phillips’ notation) trying to find a
path of partial isometries from wn + fn+2 to vn+1 + wn+1 (these are partial
isometries from fn+1+ fn+2 to fn+2+ e). If the unitaries (wn+ fn+2)

∗(vn+1 +
wn+1) and fn+1 + fn+2 are not in the same connected component of (fn+1 +
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fn+2)OR
∞(fn+1 + fn+2), then this can be changed by by multiplying wn+1

on the right by a suitable unitary in fn+2OR
∞fn+2. Thus by re-choosing the

wn’s inductively, we can be sure that there is an appropriate path of partial
isometries at each step. �

9. Groups of Asymptotic Morphisms

Definition 9.1. Let A be a real, separable, nuclear, unital, c-simple C*-algebra
and let D be unital. We define EA(D) to be the the set of homotopy classes of
full asymptotic morphisms from A to KR ⊗OR

∞ ⊗D. That is,

EA(D) = [[A,KR ⊗OR
∞ ⊗D]]+ .

More generally, for D unital or not, we define

ẼA(D) = ker
(
EA(D

+)→ EA(R)
)
.

Proposition 9.2. Let A be real, separable, nuclear, unital, and c-simple. Then

ẼA(−) is a functor from the category of separable real C*-algebras with ho-
motopy classes of asymptotic morphisms to abelian groups, that is homotopy
invariant, stable, half exact, and split exact.

Proof. In the complex case, these results are proven in Section 3.1 of [35]. In
the real case, they are proven the same way. Note that split exactness follows
from homotopy invariance and half exactness by Corollary 3.5 of [12]. �

Lemma 9.3. Let A and B be C*-algebras (real or complex). Let φ : A→ B be
an asymptotic morphism. If p, q are projections in A with p ≤ q, then there are
tail projections pt (for φ(p)) and qt (for φ(q)) in B with pt ≤ qt for all t.

Proof. Let p̃t and qt be arbitrary tail projections corresponding to φ(p) and
φ(q), respectively (these exist as in Remark 1.2.2 of [35]). One can easily show
that

lim
t→∞

‖p̃t − qtp̃tqt‖ = 0 .

For each t, the element qtp̃tqt is a self adjoint and asymptotically idempotent
element of qtBqt. Therefore, there is a continuous path of projections pt ∈
qtBqt such that

lim
t→∞

‖qtp̃tqt − pt‖ = 0 .

The tail projections pt and qt have the desired properties. �

We note that if A and D are complex C*-algebras there are two groups one

might consider: we let ẼC
A(D) denote the functor of [35] that is based on

complex asymptotic morphisms. On the other hand, according to the notation

established in Definition 9.1, the asymptotic morphisms comprising ẼA(D) are
only required to be asymptotically linear over R (thus the complex structures
of A and D are forgotten). The following theorem relates the two groups.
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Proposition 9.4. If A is a real C*-algebra satisfying the hypotheses of Defi-
nition 9.1 and D is a complex unital C*-algebra, then there is a isomorphism

ẼA(D) ∼= ẼC
AC

(D)

which is natural with respect to complex homomorphisms.

Proof. We show that for a real unital C*-algebra A and a complex C*-algebra
B, there is a bijection

[[A,B]]+ ∼= [[AC, B]]C+

of equivalence classes of full asymptotic morphisms.
Given a complex asymptotic morphism φ from AC to B, then we let Γ(φ) be
the restriction of φ to A. If φ is full, then we claim that Γ(φ) is full. Since
φ is full, there is a full projection p ∈ AC and a full tail projection rt ∈ B
such that ‖φt(p) − rt‖ → 0. Applying Lemma 9.3 to p ≤ 1 we obtain tail
projections pt and qt for p and 1, respectively, such that pt ≤ qt for all t. Since
the tail projections pt and rt are asymptotically equal, it must be that pt are
full projections. It follows that qt are also full projections; and since they are
tail projections for the full projection 1A in A, it follows that Γ(φ) is full.
Given a real asymptotic morphism ψ from A to B, then

∆(ψ)t(a+ ib) = ψt(a) + iψt(b)

defines a complex asymptotic morphism from AC to B. Suppose that ψ is full.
Let p be a full projection in A and let qt ∈ B be a full tail projection for ψ(p).
Then clearly p is full in AC and qt is a full tail projection for ∆(ψ(p)). Hence
∆(ψ) is full.
It is immediate that ∆ is a two-sided inverse for Γ. Furthermore, in the case
that B is stable, it is easy to see that Γ preserves the semigroup operation of
Definition 8.4. Therefore, under the hypotheses of the theorem, there is an

group isomorphism ẼA(D) ∼= ẼC
AC

(D). �

Proposition 9.5. Let A be a separable, nuclear, c-simple unital, real C*-
algebra. Let B be a separable real C*-algebra. Then there is a natural iso-

mophism KK(A,B) ∼= ẼA(B).

The proof in the complex case takes place in Section 3.2 of [35]. Rather than
reconstructing all of the arguments in the real case, we give a proof that uses
results from [12] to reduce the real case to the complex case.

Proof of Proposition 9.5. Fix A satisfying the hypotheses above. Let e be a
rank one projection in KR and let ιA : A→ KR⊗OR

∞⊗A be the homomorphism

defined by ιA(a) = e ⊗ 1 ⊗ a. Let [[ιA]] be the induced element of ẼA(A).
Let [1A] ∈ KK(A,A) be the class of the identity. By Corollary 3.3 of [12],

there is a unique natural transformation α from KK(A,−) to ẼA(−) such
that α([1A]) = [[ιA]]. We will show that

α : KK(A,B)→ ẼA(B)
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is an isomorphism for all separable real C*-algebras B. By Theorem 3.9 of [12]
it suffices to show that α is an isomorphism when B is complex.
In the complex case we have the element [1AC

] ∈ KKC(AC, AC) and the homo-
morphism

(ιA)C : AC → KR ⊗OR
∞ ⊗AC

∼= K ⊗O∞ ⊗ AC .

By Theorem 3.7 of [24] there is a unique natural transformation αC from

KKC(AC,−) to ẼC
AC

(−) such that αC([1AC
]) = [[ιCA]]. A special case of The-

orem 3.2.6 of [35] shows that αC is an isomorphism for all separable complex
C*-algebras B.
Consider the following diagram for a complex C*-algebra B,

KKC(AC, B)
αC

//

ν

��

ẼC
AC

(B)

µ

��
KK(A,B)

α // ẼA(B)

where µ is the isomorphism of Proposition 9.4 above and ν is the isomorphism
of Lemma 4.3 of [9]. To complete the proof, we only need to show that the
diagram commutes. Since the homomorphism αC is characterized by the value
of αC([1AC

]) it suffices to consider the case B = AC as in the diagram

KKC(AC, AC)
αC

//

ν

��

ẼC
AC

(AC)

µ

��
KK(A,AC)

α // ẼA(AC)

and to show that αC([1AC
]) = (µ−1 ◦ α ◦ ν)([1AC

]) or, equivalently, (µ ◦
αC)([1AC

]) = (α ◦ ν)([1AC
]).

From the construction of ν in the proof of Lemma 4.3 of [9] it is apparent
that ν([1AC

]) = [cA] = (cA)∗([1A]) where cA : A → AC is the real C*-algebra
homomorphism induced by the unital inclusion c : R →֒ C. Thus

(α ◦ ν)([1AC
]) = α((cA)∗([1A])) = (cA)∗(α([1A])) = (cA)∗([[ιA]]) = [[cA]] .

On the other hand, it is apparent from the construction of µ in the proof of
Proposition 9.4 above that µ([[ιCA]]) = [[cA]]. Thus

(µ ◦ αC)([1AC
]) = µ(αC([1AC

])) = µ([[ιCA]]) = [[cA]] .

�

The following is the real version of Theorems 4.1.1 and 4.1.3 of [35].

Theorem 9.6. Let A be a real separable unital nuclear c-simple C*-algebra and
let D be a separable unital C*-algebra. Then the following groups are naturally
isomorphic, via the obvious maps.

(1) KK(A,D)
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(2) The set of asymptotic unitary equivalence classes of full homomor-
phisms from A to KR ⊗OR

∞ ⊗D.
(3) The set of homotopy classes of full homomorphisms from A to KR ⊗
OR
∞ ⊗D.

(4) The set of asymptotic unitary equivalence classes of full homomor-
phisms from KR ⊗OR

∞ ⊗A to KR ⊗OR
∞ ⊗D.

(5) The set of homotopy classes of full homomorphisms from KR⊗OR
∞⊗A

to KR ⊗OR
∞ ⊗D.

Proof. The proof of the isomorphism of (1), (2), and (3) is the same as the
proof of Theorem 4.1.1 in [35]. The proof of the isomorphism of (1), (4), and
(5) relies on Lemma 9.7 below (which is the real version of Lemma 4.1.2 of
[35]). Once that lemma is established, the proof of the isomorphism of (1), (4),
and (5) is the same as the proof of Theorem 4.1.3 of [35]. �

Lemma 9.7. Let A be separable, nuclear, unital, and c-simple; let D0 be sep-
arable and unital; and let D = OR

∞ ⊗ D0. Let t 7→ φt, for t ∈ [0,∞), be
a continuous path of full homomorphisms from KR ⊗ A to KR ⊗ D, and let
ψ : KR ⊗ A → KR ⊗ D be a full homomorphism. Assume that [φ0] = [ψ] in
KK0(A,D). Then there is an asymptotic unitary equivalence from φ to ψ that
consists of unitaries in U0((KR ⊗D)+).

The proof will be essentially the same as the proof of Lemma 4.1.2 of [35].
However, that proof has an error in the third paragraph. The element wt in-
troduced there does not seem to be a unitary as purported. Also, the order of
the product in the definition of zt seems wrong. Fortunately, there is an easy
fix and most of the proof can be left as it is. For clarity and completeness we
present the entire proof, but the only significant difference is the unitary w in
the third paragraph and following. In places where the proof does not change
(such as the entire first and second paragraphs, and most of the final para-
graph), we use exactly the same language as in [35], except for the references
to previous results in the present paper.

Proof of Lemma 9.7. Let {eij} be a system of matrix units for KR. Identify

A with the subalgebra e11 ⊗ A of KR ⊗ A. Define ψ
(0)
t and ψ(0) to be the

restrictions of φt and ψ to A. Then [φ
(0)
0 ] = [ψ(0)] in KK0(A,D). It follows

from (the equivalence of (1) and (3) of) Theorem 9.6 that φ
(0)
0 is homotopic

to ψ(0). Therefore φ
(0)
0 and ψ(0) are homotopic as asymptotic morphisms, and

Theorem 8.9 provides an asymptotic unitary equivalence t 7→ ut in U((KR ⊗
D)+) from φ(0) to ψ(0). Let c ∈ U((KR ⊗D)+) be a unitary with cψ(0)(1) =
ψ(0)(1)c = ψ(0)(1) and such that c is homotopic to u−10 . Then c commutes

with every ψ(0)(a). Replacing ut by cut, we obtain an asymptotic unitary
equivalence, which we again call t 7→ ut, from φ(0) to ψ(0) which is in U0(KR ⊗
D)+).
Define eij = eij ⊗ 1. Then in particular utφt(e11)u

∗
t → ψ(e11) as t → ∞.

Therefore there is a continuous path t→ z
(1)
t ∈ U0((KR⊗D)+) such that z

(1)
t →
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1 and z
(1)
t utφt(e11)u

∗
t (z

(1)
t )∗ = ψ(e11) for all t. We still have z

(1)
t utφt(e11 ⊗

a)u∗t (z
(1)
t )∗ → ψ(e11 ⊗ a) for a ∈ A.

For convenience, set f
(1)
ijt = z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗ and set gij = ψ(eij). For each

fixed t, the f
(1)
ijt are matrix units for KR as are the gij . Also, we have f

(1)
11t = g11.

The projections f
(1)
11t+f

(1)
22t and g11+g22 represent the same element ofK0(D) so

(using Lemma 7.4) there is a continuous path of partial isometries x
(1)
t inKR⊗D

such that x
(1)
t (x

(1)
t )∗ = 1−g11−g22 and (x

(1)
t )∗x(1)t = 1−f (1)

11t−f
(1)
22t. Set w

(1)
t =

g11+g21f
(1)
12t+x

(1)
t ∈ U((KR⊗D)+). Then one checks that w

(1)
t f

(1)
ijt (w

(1)
t )∗ = gij

for all t and for 1 ≤ i, j ≤ 2. Choose c(1) ∈ U((KR ⊗D)+) with

c(1)(g11 + g22) = (g11 + g22)c
(1) = g11 + g22

and c(1)w
(1)
1 ∈ U0((KR ⊗D)+) .

Set z(2) = c(1)w
(1)
t for t ≥ 1 and extend z

(2)
t continuously over [0, 1] through

unitaries so that z
(2)
0 = 1, retaining the property that z

(2)
t g11 = g11z

(2)
t = g11.

This gives z
(2)
t = 1 for t = 0, z

(2)
t g11 = g11z

(2)
t = g11 for all t, and

z
(2)
t z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗(z(2)t )∗ = ψ(eij)

for t ≥ 1 and 1 ≤ i, j ≤ 2.
Set p(m) =

∑m
k=1 gkk for all postive integers m. For the induction step, assume

that we have continuous paths unitaries z
(1)
t , z

(2)
t , . . . , z

(n)
t defined on [0,∞)

such that

• z(n)t = 1 for 0 ≤ t ≤ n− 2,

• z(n)t p(n−1) = p(n−1)z(n)t = p(n−1) for all t ≥ 0,

• z(n)t · · · z(1)t utφt(eij)u
∗
t (z

(1)
t )∗ · · · (z(n)t )∗ = ψ(eij) for t ≥ n− 1 and 1 ≤

i, j ≤ n.
We must construct a z

(n+1)
t with the corresponding properties. Initially, work-

ing with t ∈ [n,∞), set

f
(n)
ijt = z

(n)
t . . . z

(1)
t utφt(eij)u

∗
t (z

(1)
t )∗ . . . (z(n)t )∗

and let x
(n)
t be a continuous path of partial isometries such that x

(n)
t (x

(n)
t )∗ =

1 −∑n
k=1 gkk = 1 − p(n) and (x

(n)
t )∗x(n)t = 1 −∑n

k=1 fkkt. Set w
(n)
t = p(n) +

g(n+1) 1f
(n)
1 (n+1) t + x

(n)
t . This continuous path of unitaries satisfies w

(n)
t p(n) =

p(n)w
(n)
t = p(n) and w

(n)
t f

(n)
ijt (w

(n)
t )∗ = gij for all t ≥ n and all 1 ≤ i, j ≤ n+1.

As above, we can find a unitary c(n) such that z
(n+1)
t = c(n)w

(n)
t is in the

connected component of the identity and c(n)p(n+1) = p(n+1)c(n) = c(n). Then

extend z
(n+1)
t so that it is defined for all t ≥ 0 and z

(n+1)
t = 1 for 0 ≤ t ≤ n−1.

Check that this z(n+1) satisfies the corresponding properties listed above.
Now define

zt =
(
lim
n→∞

z
(n)
t · · · z(2)t z

(1)
t

)
ut .
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In a neighborhood of each t, all but finitely many of the z
(k)
t are equal to 1, so

this limit of products yields a continuous path of unitaries of U0((KR ⊗D)+).
Moreover, ztφt(eij)z

∗
t = ψ(eij) whenever t ≥ i, j, so that limt→∞ ztφt(eij)z

∗
t =

ψ(eij) for all i and j, while

lim
t→∞

ztφt(e11 ⊗ a)z∗t = lim
t→∞

z
(1)
t utφt(e11 ⊗ a)u∗t (z(1)t )∗ = ψ(e11 ⊗ a)

for all a ∈ A. Since the eij and e11⊗a generate KR⊗A, this shows that t 7→ zt
is an asymptotic unitary equivalence. �

10. Classification of Real Kirchberg Algebras

We now present our main classification theorems for real Kirchberg algebras,
analogous to the results of Section 4.2 of [35].

Theorem 10.1. Let A and B be unital separable nuclear purely infinite c-simple
C*-algebras.

(1) Let η be an invertible element in KK(A,B). Then there is an isomor-
phism φ : KR ⊗A→ KR ⊗B such that [φ] = η.

(2) Let η be an invertible element in KK(A,B) such that [1A]× η = [1B].
Then there is an isomorphism φ : A→ B such that [φ] = η.

Proof. As in the proofs of Theorem 4.2.1 and Corollary 4.2.2 of [35]. �

Theorem 10.2. Let A and B be unital separable nuclear purely infinite c-simple
C*-algebras that satisfy the universal coefficient theorem.

(1) The stable C*-algebras KR⊗A and KR⊗B are isomorphic if and only
if KCRT(A) and KCRT (B) are isomorphic CRT-modules.

(2) The unital C*-algebras A and B are isomorphic if and only if the in-
variants (KCRT (A), [1A]) and (KCRT (B), [1B]) are isomorphic.

(3) The stable C*-algebras KR⊗A and KR⊗B are isomorphic if and only
if KCR(A) and KCR(B) are isomorphic CR-modules.

(4) The unital C*-algebras A and B are isomorphic if and only if the in-
variants (KCR(A), [1A]) and (KCR(B), [1B ]) are isomorphic.

Proof. Parts (1) and (2) are proven as in the proof of Theorem 4.2.4 of [35],
using Proposition 2.3. Parts (3) and (4) then follow by Proposition 2.5. �

Corollary 10.3.

(1) The functor A 7→ KCRT(A) is a bijection from isomorphism classes
of real stable separable nuclear purely infinite c-simple C*-algebras
that satisfy the universal coefficient theorem to isomorphism classes
of countable acyclic CRT-modules.

(2) The functor A 7→ (KCRT (A), [1A]) is a bijection from isomorphism
classes of real unital separable nuclear purely infinite c-simple C*-
algebras that satisfy the universal coefficient theorem to isomorphism
classes of countable acyclic CRT-modules M with distinguished element
m ∈MO

0 .
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Proof. Combine Theorem 10.2 above with Theorem 1 of [10]. �

Definition 10.4.

(1) Let A be a complex C*-algebra. A real form of A is a real C*-algebra
B such that BC

∼= A.
(2) Let G∗ = (G0, G1) be a pair of groups. A real form of G∗ is an acyclic

CRT-module such that MU
∗ ∼= G∗.

(3) Let G∗ = (G0, G1, g) be a pair of groups with a distinguished ele-
ment g ∈ G0. A real form of G∗ is a pair (M,m) where M is an
acyclic CRT-module and m is a distinguished element ofMO

0 such that
(MU

0 ,M
U
1 , c(m)) ∼= (G0, G1, g).

Corollary 10.5. Let A be a complex unital separable nuclear purely infinite
simple C*-algebra satisfying the universal coefficient theorem.

(1) The functor B 7→ KCRT(B) is a bijection from isomorphism classes of
real forms of KR ⊗A to isomorphism classes of real forms of K∗(A).

(2) The functor B 7→ (KCRT(B), [1B]) is a bijection from isomorphism
classes of real forms of A to isomorphism classes of real forms of
(K∗(A), [1A]).

Proof. If B is a real form of KR ⊗ A, then B is necessarily stable separable
nuclear purely infinite and c-simple. Then KU∗(B) = K∗(BC) ∼= K∗(A), so
KCRT(B) is a real form of K∗(A). Conversely, suppose M is a real form of
K∗(A). Since K∗(A) is countable, the exact sequences of Section 2.3 of [14]
imply that M is countable. Then by Corollary 10.3, M ∼= KCRT(B) for some
real stable separable nuclear purely infinite c-simple C*-algebra satisfying the
universal coefficient theorem. Since K∗(BC) ∼= K∗(A), it follows from The-
orem 4.2.4 of [35] that BC

∼= A hence B is a real form of A. Furthermore,
Corollary 10.3 also implies that B is unique up to isomorphism.
In the unital case, suppose that B is a real form of A. As there is a isomorphism
BC
∼= A and the unit of BC is c(1B), there is an isomorphism φ : KU∗(B) →

K∗(A) such that φ∗(c([1B ])) = [1A]. Thus (KCRT (B), [1B]) is a real form of
(K∗(A), [1A]). Conversely, if (M,m) is a real form of K∗(A), then let B be
a real unital separable nuclear purely infinite c-simple C*-algebra such that
(KCRT (B), [1B]) ∼= (M,m). Again, Theorem 4.2.4 of [35], implies that B is a
real form of A. �

11. Real Forms of Cuntz Algebras

In this section, we use Corollary 10.5 to give a complete description of all real
forms of the complex Cuntz algebras On for n ∈ {2, . . . ,∞}. The natural
real form of On is the real Cuntz algebra OR

n , but we will find that there are
others when n is odd. For reference, we show in Table 1 the groups mak-
ing up KCRT(OR

n). In the case of n = ∞ this arises from the isomorphism
KCRT(R) ∼= KCRT(OR

∞) of Proposition 2.2; while for finite n, these CRT-modules
were computed in Section 5.1 of [8].
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Table 1

KCRT (OR
∞)

0 1 2 3 4 5 6 7 8

KO∗ Z Z2 Z2 0 Z 0 0 0 Z
KU∗ Z 0 Z 0 Z 0 Z 0 Z
KT∗ Z Z2 0 Z Z Z2 0 Z Z

KCRT(OR
n) for n even

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 0 0 0 Zn−1 0 0 0 Zn−1
KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1
KT∗ Zn−1 0 0 Zn−1 Zn−1 0 0 Zn−1 Zn−1

KCRT(OR
n) for n− 1 ≡ 2 (mod 4)

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 Z2 Z4 Z2 Zn−1 0 0 0 Zn−1
KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1
KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1

KCRT(OR
n) for n− 1 ≡ 0 (mod 4)

0 1 2 3 4 5 6 7 8

KO∗ Zn−1 Z2 Z2
2 Z2 Zn−1 0 0 0 Zn−1

KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1
KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1

Theorem 11.1. (1) For n even or n =∞, there is up to isomorphism only
one real form of On: the real Cuntz algebra OR

n.
(2) For n odd, there are up to isomorphism two real forms of On: the real

Cuntz algebra OR
n and an exotic real form En.

Proof. First check that for odd integers n, n ≥ 3, the groups and operations
shown in Table 2 form an acyclic CRT-module. Using Corollary 10.3 (that
is, Theorem 1 of [10]), let En be the unique real unital separable nuclear c-
simple purely infinite C*-algebra satisfying the universal coefficient theorem
with united K-theory as shown in Table 2 and such that [1En ] corresponds to
a generator of the group in the real part in degree 0.
By Corollary 10.5, the problem of classifying real forms of On (for n ∈
{2, 3, . . . ,∞}) reduces to the algebraic problem of classifying real forms of
(K∗(On), [1On ]). Suppose that (M,m) is such a real form. For n even (respec-
tively n = ∞) we will show that (M,m) is isomorphic to (KCRT(OR

n), [1OR
n
])

(respectively (KCRT(OR
∞), [1OR

∞
])). For n odd we will show that (M,m) is ei-

ther isomorphic to (KCRT(OR
n), [1OR

n
]) or to (KCRT(En), [1En ]). Furthermore, by
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Table 2. KCRT(En), for n odd and n ≥ 3.

0 1 2 3 4 5 6 7 8

KO∗ Z2(n−1) Z2 Z2 0 Z(n−1)/2 0 Z2 Z2 Z2(n−1)
KU∗ Zn−1 0 Zn−1 0 Zn−1 0 Zn−1 0 Zn−1
KT∗ Zn−1 Z2 Z2 Zn−1 Zn−1 Z2 Z2 Zn−1 Zn−1
c∗ 1 0 0 0 2 0 n−1

2 0 1
r∗ 2 0 1 0 1 0 0 0 2
ε∗ 1 1 0 0 2 0 1 n−1

2 1
ζ∗ 1 0 n−1

2 0 1 0 n−1
2 0 1

(ψU)∗ 1 0 −1 0 1 0 −1 0 1
(ψT )∗ 1 1 1 −1 1 1 1 −1 1
γ∗ 1 0 1 0 1 0 1 0 1
τ∗ 1 1 0 1 0 0 1 2 1

Proposition 2.5 it suffices to restrict our attention to the CR-module consisting
of the real and complex parts of M .
Since (M,m) is a real form of (K∗(On), [1On ]) we know that MU

0
∼= Zn−1

(respectively MU
0
∼= Z when n = ∞), MU

1 = 0, and m ∈ MO
0 . We further

suppose that c0(m) ∈MU
0 is a generator (corresponding to the class of the unit

in K0(On)).
We will compute the real part of M (and the behavior of the operations
ηO, ξ, r, c, ψU) using the long exact sequence

· · · →MO
n

ηO−−→MO
n+1

c−→MU
n+1

rβ−1
U−−−→MO

n−1 → . . .

and the CRT-relations described in Section 2.
SinceMU

k = 0 for k odd it follows that (ηO)k is injective for k odd and surjective
for k even. Furthermore, our hypothesis that c0(m) generatesMU

0 implies that
c0 is surjective, which implies that r−2 = 0 and that (ηO)−2 is injective. Thus
(ηO)−2 : MO

−2 → MO
−1 is an isomorphism and η3

O
: MO

−3 → MO
0 is injective.

Then the relations η3O = 0 and 2ηO = 0 imply that MO
−3 = 0 and that MO

−2
consists only of 2-torsion.
Suppose first that MO

−2 ∼= MO
−1 = 0. Then using the long exact sequence

above and the relation rc = 2, the rest of the groups of MO can be easily
computed; except that in the case that n is odd we encounter an extension
problem wherein MO

2 is either isomorphic to Z4 or to Z2 ⊕ Z2. In that case,
the same argument as in the computation of KCRT(OR

n) in Section 5.1 of [8]
shows that MO

2
∼= Z4 exactly when n − 1 ≡ 0 (mod 4) and MO

2
∼= Z2 ⊕ Z2

exactly when n−1 ≡ 2 (mod 4). Thus we find that the real and complex parts
of M (as well as the operations ηO ξ, r, c, ψU) are isomorphic to the real and
complex parts of KCRT(OR

n) (respectively K
CRT(OR

∞)).
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For the remaining case, suppose that MO
−2 6= 0. Since this leads to the exotic

CRT-module KCRT(En), we will include all of the details of this computation.
Since c0 is surjective, the relation ψUc = c implies that (ψU )0 = 1. Then the
relation βUψU = −ψUβU implies that ψU = 1 in degrees congruent to 0 (mod 4)
and ψU = −1 in degrees congruent to 2 (mod 4).
From MO

−3 = 0 it follows that c−2 is injective. But the only non-trivial 2-

torsion subgroup of MU
−2 is isomorphic to Z2, and that occurs only when n

is finite and odd. Thus MO
−2 ∼= MO

−1 ∼= Z2 and the complexification map
c−2 : Z2 → Zn−1 is multiplication by (n− 1)/2 (in terms of chosen generators).
The map r−4 is surjective and has kernel equal to ((n − 1)/2)Zn−1 ∼= Z2 so
MO
−4 ∼= Z(n−1)/2. The relation c−4r−4 = 1 + (ψU )−4 = 2 implies that the map

c−4 : Z(n−1)/2 → Zn−1 is multiplication by 2.
Continuing to work our way down, the fact that c−4 is injective implies that
MO
−5 = 0. The fact that the image of c−4 is 2Zn−1 implies that MO

−6 ∼= Z2 and
r−6 is surjective. The relation c−6r−6 = 1 + (ψU )−6 = 0 implies that c−6 = 0
from which we see that η−7 is an isomorphism. Thus MO

−7 ∼= Z2.

Finally, we compute MO
−8 ∼= MO

0 . The exact sequence indicates that it is an
extension of Z2 by Zn−1. We will prove that it is isomorphic to Z2(n−1). If

not, then MO
0
∼= Z2 ⊕ Zn−1 and we can arrange the direct sum decomposition

so that η−1 =
(
1
0

)
and c0 =

(
0 1
)
. Then the relation rc = 2 implies that

r0 =
(
0
2

)
. But then there is no isomorphism from MO

0 /image(r0) ∼= Z2⊕Z2 to

MO
1
∼= Z2 as required by the long exact sequence.

Thus in the case that MO
−2 6= 0 it must be that n is odd and it must be that

the real and complex parts of M are isomorphic to the real and complex parts
of KCRT(En) as in Table 2, completing the proof. �

We remark that the above result can instead be obtained using the analysis of
acyclic CRT-modules in [23]. Indeed, let M be an acyclic CRT-module such
thatMU

0 is isomorphic to Zk−1 or Z, MU
1 = 0, and c0 : M

O
0 →MU

0 is surjective
(hence (ψU)0 = 1). By Lemma 8.3.1, Proposition 8.3.2, and Theorem 8.3.3 of
[23], there are isomorphisms

hk(M) := ker(1− (ψU)k)/image(1 + (ψU)k) ∼= ηOM
O
k ⊕ ηOMO

k+4

and, furthermore, M is determined up to isomorphism by MU , ψU , and the
resulting decompositions of hk(M) for k = 0 and k = 2. Using (ψU)0 = 1 and
(ψU)2 = −1, we obtain

(h0(M), h2(M)) =





(Z2, 0) if MU
0 = Z

(0, 0) if MU
0 = Zn−1 with n even

(Z2,Z2) if MU
0 = Zn−1 with n odd.

The resulting possibilities for M are realized by the united K-theory of OR
∞

and H ⊗ OR
∞ in the first case; by that of OR

n in the second case; and by that
of OR

n , H ⊗ OR
n , En, and H ⊗ En in the third case. The assumption that c0 is

surjective reduces the possibilities to the united K-theory of OR
∞, OR

n , or En.
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Abstract. In this article we introduce a very simple an widely
applicable criterion for extending natural transformations to higher
K-theory. More precisely, we prove that every natural transformation
defined on the Grothendieck group and with values in an additive the-
ory admits a unique extension to higher K-theory. As an application,
the higher trace maps and the higher Chern characters originally con-
structed by Dennis and Karoubi, respectively, can be obtained in an
elegant, unified, and conceptual way from our general results.
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Keywords and Phrases: Higher K-theory, higher trace maps, higher
Chern characters, non-commutative motives

Introduction

In his foundational work, Grothendieck [10] introduced a very simple and el-
egant construction K0, the Grothendieck group, in order to formulate a far-
reaching generalization of the Riemann-Roch theorem. Since then, this ver-
satile construction spawned well-beyond the realm of algebraic geometry to
become one of the most important (working) tools in mathematics.
Latter, through revolutionary topological techniques, Quillen [23] extended the
Grothendieck group to a whole family of higher K-theory groups Kn, n ≥
0. However, in contrast with K0, these higher K-theory groups are rather
misterious and their computation is often out of reach. In order to capture
some of its flavour, Connes, Dennis, Karoubi, and others, constructed natural
transformations towards simpler theories E making use of a variety of highly
involved techniques; see [6, 7, 15]. Typically, the construction of a natural
transformation K0 ⇒ E0 is very simple, while its extension Kn ⇒ En to
higher K-theory is a real “tour-de-force”. For example, the trace map K0 ⇒
HH0 consists simply in taking the trace of an idempotent, while its extension

1The author was partially supported by the grant FCT-Portugal PTDC/MAT/098317/2008.
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Kn ⇒ HHn makes use of an array of tools (Hurewicz maps, group homology,
assembly maps, etc) coming from topology, algebra, representation theory, etc.
These phenomena motivate the following general questions:

Questions:Given a natural transformation K0 ⇒ E0, is it possible to extend
it to higher K-theory Kn ⇒ En ? If so, is such an extension unique ?

In this article we prove that if E verifies three very simple conditions, not only
such an extension exists, but it is moreover unique. The precisely formulation
of our results makes use of the language of Grothendieck derivators, a formalism
which allows us to state and prove precise universal properties; see Appendix A.

1. Statement of results

A differential graded (=dg) category, over a fixed commutative base ring k,
is a category enriched over cochain complexes of k-modules (morphisms sets
are such complexes) in such a way that composition fulfills the Leibniz rule :
d(f ◦ g) = (df) ◦ g + (−1)deg(f)f ◦ (dg). Dg categories extend the classical
notion of (dg) k-algebra and solve many of the technical problems inherent
to triangulated categories; see Keller’s ICM address [16]. In non-commutative
algebraic geometry in the sense of Bondal, Drinfeld, Kaledin, Kontsevich, Van
den Bergh, and others, they are considered as differential graded enhancements
of (bounded) derived categories of quasi-coherent sheaves on a hypothetic non-
commutative space; see [1, 8, 9, 14, 17, 18].
Let E : dgcat→ Spt be a functor, defined on the category of dg categories, and
with values in the category of spectra [2]. We say that E is an additive functor
if it verifies the following three conditions:

(i) filtered colimits of dg categories are mapped to filtered colimits of spec-
tra;

(ii) derived Morita equivalences (i.e. dg functors which induce an equiva-
lence on the associated derived categories; see [16, §4.6]) are mapped
to weak equivalences of spectra;

(iii) split exact sequences (i.e. sequences of dg categories which become split
exact after passage to the associated derived categories; see [24, §13])
are mapped to direct sums

0 // A // B //vv
C //vv

0 7→ E(A)⊕ E(C) ≃ E(B)
in the homotopy category of spectra.

Examples of additive functors include Hochschild homology (HH), cyclic ho-
mology (HC), and algebraic K-theory (K); see [16, §5]. Recall from [25] that
the category dgcat carries a Quillen model structure whose weak equivalences
are the derived Morita equivalences. Given an additive functor E, we obtain
then an induced morphism of derivators E : HO(dgcat)→ HO(Spt). Associated
to E, we have also the composed functors

En : dgcat
E−→ Spt

πsn−→ Ab n ≥ 0 ,
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where πsn denotes the nth stable homotopy group functor and Ab the category
of abelian groups. Our answer to the questions stated in the Introduction is:

Theorem 1.1. For any additive functor E, the natural map

(1.2) Nat(K,E)
∼→ Nat(K0, E0)

is bijective. In particular, every natural transformation φ : K0 ⇒ E0 admits a
canonical extension φn : Kn ⇒ En to all higher K-theory groups.

Intuitively speaking, Theorem 1.1 show us that all the information concern-
ing a natural transformation is encoded on the Grothendieck group. Its proof
relies in an essential way on the theory of non-commutative motives, a sub-
ject envisioned by Kontsevich [17, 19] and whose development was initiated
in [3, 4, 24, 25, 27, 28]. In the next section we illustrate the potential of this
general result by explaining how the highly involved constructions of Dennis
and Karoubi can be obtained as simple instantiations of the above theorem.
Due to its generality and simplicity, we believe that Theorem 1.1 will soon be
part of the toolkit of any mathematician whose research comes across the above
conditions (i)-(iii).

2. Applications

2.1. Higher trace maps. Recall from [16, §5.3] the construction of the
Hochschild homology complex HH(A) of a dg category A. This construction
is functorial in A and so by promoting it to spectra we obtain a well-defined
functor

(2.1) HH : dgcat −→ Spt .

As explained in loc. cit., this functor verifies conditions (i)-(iii) and hence it
is additive. Now, given a k-algebra A, recall from [20, Example 8.3.6] the
construction of the classical trace map

K0(A)→ HH0(A) = A/[A,A] .

Roughly, it is the map induced by sending an idempotent matrix to the image
of its trace (i.e. the sum of the diagonal entries) in the quocient A/[A,A]. This
construction extends naturally from k-algebras to dg categories (see [26]) giving
rise to a natural transformation

(2.2) K0 ⇒ HH0 .

Proposition 2.3. In Theorem 1.1 let E be the additive functor (2.1) and
let φ be the natural transformation (2.2). Then, for every k-algebra A, the
canonical extension φn : Kn(A)→ HHn(A) of φ agrees with the nth trace map
constructed originally by Dennis (see [20, §8.4 and §11.4]).
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660 Gonçalo Tabuada

2.2. Higher Chern characters. Recall also from [16, §5.3] the construction
of the cyclic homology complex HC(A) of a dg category A. By promoting this
construction to spectra we obtain a functor

(2.4) HC : dgcat −→ Spt

which verifies conditions (i)-(iii). Given a k-algebraA, recall from [20, Theorem
8.3.4] the construction of the Chern characters

ch0,i : K0(A) −→ HC2i(A) i ≥ 0 .

Morally, these are the non-commutative analogues of the classical Chern char-
acter with values in even dimensional de Rham cohomology. As shown in [26]
this construction extends naturally from k-algebras to dg categories giving rise
to natural transformations

K0 ⇒ HC2i i ≥ 0 .

Proposition 2.5. In Theorem 1.1 let E be the additive functor Ω2iHC (ob-
tained by composing (2.4) with the (2i)th-fold looping functor on Spt) and let
φ be the natural transformation K0 ⇒ (Ω2iHC)0 = HC2i. Then, for every k-
algebra A, the canonical extension φn : Kn(A)→ (Ω2iHC)n(A) = HCn+2i(A)
of φ agrees with the higher Chern character chn,i constructed originally by
Karoubi (see [15, §2.27-2.36]).

3. Proof of Theorem 1.1

We start by describing the natural map (1.2). As mentioned in §1, the category
dgcat carries a Quillen model structure whose weak equivalences are the derived
Morita equivalences; see [25, Theorem 5.3]. Let us write Hmo for the associated
homotopy category and l : dgcat→ Hmo for the localization functor. According
to our notation the map (1.2) sends a natural transformation Φ ∈ Nat(K,E)
to the natural transformation πs0 ◦Φ(e) ◦ l ∈ Nat(K0, E0). Pictorially, we have:

(3.1) dgcat
l // Hmo

E(e)

44

K(e)

**
⇓Φ(e) Ho(Spt)

πs0 // Ab .

The functors K,E : dgcat→ Spt are additive and so the following diagrams

dgcat

l

��

K // Spt

��

dgcat

l

��

E // Spt

��
Hmo

K(e)
// Ho(Spt) Hmo

E(e)
// Ho(Spt)

are commutative. Moreover, the 0th stable homotopy group functor πs0 descends
to the homotopy category Ho(Spt). These facts show us that the composed
horizontal functors in the above diagram (3.1) are in fact K0 and E0.
We now study the set Nat(K0, E0). Recall from [16, §5.1] the notion of additive
invariant. Intutively, it consists of a functor defined on dgcat and with values
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in an additive category which verifies conditions similar to (ii)-(iii). Since by
hypothesis E is additive, the composed functor

E0 : dgcat
l−→ Hmo

E(e)−→ Ho(Spt)
πs0−→ Ab

is an additive invariant. Hence, as proved in [26, Proposition 4.1], we have the
following natural bijection

Nat(K0, E0)
∼−→ E0(k) η 7→ η(k)([k]) .(3.2)

Some explanations are in order: k denotes the dg category naturally associated
to the base ring k, i.e. the dg category with only one object and with k as
the dg algebra of endomorphisms (concentrated in degree zero); the symbol [k]
stands for the class of k (as a module over itself) in the Grothendieck group
K0(k) = K0(k).
Let us now turn our attention to Nat(K,E). Recall from [24, §15] the notion of
additive invariant of dg categories. Roughly speaking, it consists of a morphism
of derivators defined on HO(dgcat) and with values in a triangulated derivator
which verifies conditions analogous to (i)-(iii). Since the functor E is additive,
the induced morphism of derivators

E : HO(dgcat) −→ HO(Spt)

is an additive invariant of dg categories. Following [3, Theorem 8.1] we have
then a natural bijection2

Nat(K,E)
∼−→ πs0 E(k) = E0(k) .(3.3)

A careful inspection of the proof of [3, Theorem 8.1] show us that (3.3) sends
a natural transformation Φ ∈ Nat(K,E) to the element πs0(Φ(e)(k))([k]) of the
abelian group E0(k). Note that this element is simply the image of [k] by the
abelian group homomorphism

K0(k) = πs0(K(e)(k))
πs0(Φ(e)(k))−→ πs0(E(e)(k)) = E0(k) .

We now prove that the following diagram

(3.4) Nat(K,E)
(1.2) //

(3.3) ''OOOOOOOOOOO
Nat(K0, E0)

(3.2)

��
E0(k)

commutes. Let Φ ∈ Nat(K,E). On the one hand, we observe that the composed
map (3.2) ◦ (1.2) sends Φ to the element (πs0 ◦ Φ(e) ◦ l)(k)([k]) of the abelian
group E0(k). On the other hand, the following equalities hold:

(Φ(e) ◦ l)(k) = Φ(e)(k) (πs0 ◦ Φ(e))(k) = πs0(Φ(e)(k)) .

2In [3] this bijection was established for a localizing invariant E. However, the arguments
in the additive case are completely similar.
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Therefore, we have

(πs0 ◦ Φ(e) ◦ l)(k)([k]) = πs0(Φ(e)(k))([k]) .

Finally, since the right-hand side in this latter equality coincides with the image
of Φ by the map (3.3), we conclude that (3.3) = (3.2) ◦ (1.2).
Theorem 1.1 now follows from diagram (3.4) and the fact that both maps
(3.2) and (3.3) are bijective. The canonical extension φn : Kn ⇒ En of φ :
K0 ⇒ E0 is then the composition πsn ◦ Φ(e) ◦ l, where Φ is the unique natural
transformation associated to φ under the bijection (1.2).

4. Proof of Proposition 2.3

The essence of the proof consists in describing the unique natural transfor-
mation Φ ∈ Nat(K,HH) which corresponds to (2.2) under the bijection (1.2).
Recall from [24, §15] the construction of the universal additive invariant of dg
categories

UA : HO(dgcat) −→ MotA .

Given any Quillen model categoryM we have an induced equivalence of cate-
gories

(4.1) (UA)∗ : Hom !(MotA,HO(M))
∼−→ HomA(HO(dgcat),HO(M)) ,

where the left-hand side denotes the category of homotopy colimit preserving
morphisms of derivators and the right-hand side the category of additive in-
variants of dg categories. The algebraic K-theory functor K is additive and
so the induced morphism K is an additive invariant of dg categories. Thanks
to equivalence (4.1), it factors then uniquely through UA. Recall from [24,
Theorem 15.10] that for every dg category A we have a weak equivalence of
spectra

RHom(UA(k),UA(A)) ≃ K(A) ,
where RHom(−,−) denotes the spectral enrichment of MotA (see [3, §A.3]).
Therefore, we conclude that K can be expressed as the following composition

(4.2) HO(dgcat)
UA−→ MotA

RHom(UA(k),−)−→ HO(Spt) .

The Hochschild homology functor, with values in the projective Quillen model
category C(k) of cochain complexes of k-modules (see [12, Theorem 2.3.11]),
verifies conditions (i)-(iii). Hence, it gives rise to an additive additive invariant
of dg categories which we denote by

HH : HO(dgcat) −→ HO(C(k)) .
Note that, according to our notation, HH can be expressed as the following
composition

(4.3) HO(dgcat)
HH−→ HO(C(k)) RHom(k,−)−→ HO(Spt) .
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Equivalence (4.1) provide us then the following commutative diagram

HO(dgcat)

UA
��

HH // HO(C(k))

MotA

HH

88ppppppppppp
.

By construction, the morphism HH maps UA(k) to HH(k) = k. Hence, by
making use of the above factorizations (4.2) and (4.3), we conclude that it in-
duces a natural transformation Φ ∈ Nat(K,HH). We now show that the image
of this natural transformation Φ by the map (1.2) is the natural transformation
(2.2). By taking E = HH in bijection (3.2) we obtain:

Nat(K0, HH0) ≃ HH0(k) ≃ k η 7→ η(k)([k]) .(4.4)

Under this bijection, the natural transformation (2.2) corresponds to the unit
of the base ring k; see [26, Theorem 1.3]. Hence, it suffices to show that the
same holds for the natural transformation πs0◦Φ(e)◦l associated to Φ. The class
[k] of k (as a module over itself) in the Grothendieck group K0(k) corresponds
to the identity morphism in

HomMotA(e)(UA(k),UA(k)) ≃ K0(k) ≃ K0(k) .

By functoriality, HH(e) maps this identity morphism to the identity morphism
in HomD(k)(HH(k),HH(k)). Under the natural isomorphisms

HomD(k)(HH(k),HH(k)) ≃ HomD(k)(k, k) ≃ HH0(k) ≃ k
the identity morphism corresponds to the unit of the base ring k and so we
conclude that πs0 ◦Φ(e) ◦ l agrees with (2.2). This implies that Φ is in fact the
unique natural transformation which corresponds to (2.2) under the bijection
(1.2).
Finally, let A be a k-algebra. As proved in [27, Theorem 2.8], the canonical
extension φn : Kn(A) → HHn(A) of φ (i.e. the abelian group homomorphism
(πsn ◦Φ(e) ◦ l)(A)) agrees with the nth trace map constructed by Dennis and so
the proof is finished.

5. Proof of Proposition 2.5

We prove first the particular case (i = 0). Let us start by describing the unique
natural transformation Φ ∈ Nat(K,HC) which corresponds to φ : K0 ⇒ HC0

under the bijection (1.2). Observe that HC can be expressed as the following
composition

HO(dgcat)
M

−→ HO(C(Λ))
P

−→ HO(k[u]-Comod)
U

−→ HO(C(k))
RHom(k,−)

−→ HO(Spt) .

Some explanations are in order: C(Λ) is the projective Quillen model category
of mixed complexes and M the morphism induced by the mixed complex con-
struction3 (see [4, Example 7.10]); k[u]-Comod is the Quillen model category of
k[u]-comodules (where k[u] is the Hopf algebra of polynomials in one variable

3Denoted by C in [4, Example 7.10].
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of degree 2) and P the morphism induced by the perioditization construction
(see [4, Example 7.11]); U is the morphism induced by the natural forgetful
construction. Moreover, as explained in [4, Examples 8.10 and 8.11], negative
cyclic homology and periodic cyclic homology admit the following factoriza-
tions:

(5.1) HC− : HO(dgcat)
M−→ HO(C(Λ)) RHom(k,−)−→ HO(Spt)

HP : HO(dgcat)
(P◦M)−→ HO(k[u]-Comod)

RHom(k[u],−)−→ HO(Spt) .

Therefore, since P maps k to k[u] and U maps k[u] to k, we obtain the classical
natural transformations

(5.2) HC− ⇒ HP⇒ HC

between the cyclic homology variants; see [20, §5.1]. The mixed complex mor-
phism M is an additive invariant of dg categories and so by equivalence (4.1)
it factors uniquely through UA. We obtain then a commutative diagram

HO(dgcat)
M //

UA
��

HO(C(Λ))

MotA

M

77ppppppppppp
.

By construction, the morphism M maps UA(k) to M(k) = k. Therefore, making
use of the factorizations (4.2) and (5.1), we conclude that M induces a natural
transformation Φ1 : K⇒ HC−. Its composition with (5.2) gives rise to a nat-
ural transformation which we denote by Φ ∈ Nat(K,HC). We now show that
the image of Φ by the map (1.2) is the natural transformation φ : K0 ⇒ HC0.
Recall from [26, Theorem 1.7(ii)] that φ admits the following factorization

K0
ch−

0⇒ HC−0 ⇒ HP0 ⇒ HC0 ,

where ch−0 is the negative Chern character and the other natural transforma-
tions are the ones associated to (5.2). Hence, it suffices to show that the natural
transformation πs0 ◦ Φ1(e) ◦ l, associated to Φ1 : K ⇒ HC−, agrees with ch−0 .
This fact is proved in [28, Proposition 4.2] and so we conclude that Φ is the
unique natural transformation which corresponds to φ under the bijection (1.2).
Now, let A be a k-algebra. As explained in [20, §11.4.3], Karoubi’s Chern
character chn,0(A) can be expressed as the following composition

Kn(A)
ch−
n (A)−→ HC−n (A) −→ HPn(A) −→ HCn(A) .

Note that the right-hand side maps coincide the ones associated to (5.2). There-
fore, it suffices to show that the abelian group homomorphism

(πsn ◦ Φ1(e) ◦ l)(A) : Kn(A) −→ HC−n (A)

agrees with ch−n (A). This latter fact is proved in [27, Theorem 2.8] and so the
proof of the particular case (i = 0) is finished.
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We now prove the case (i > 0). Recall from [13, §1] that for any dg category A
we have a natural periodicity map S : Ω2M(A) → M(A) in the category C(Λ)
of mixed complexes. This construction is natural in A and so by iterating it
we obtain an infinite sequence of maps

(5.3) · · · −→ Ω2iM(A) −→ · · · −→ Ω2M(A) −→M(A) .
Under the natural equivalences

RHom(k,Ω2iM(−)) ≃ Ω2iHC−

RHom(k[u],P(Ω2iM(−))) ≃ Ω2iHP

RHom(k,U(P(Ω2iM(−)))) ≃ Ω2iHC ,

the above sequence of maps (5.3) gives rise to the following commutative dia-
gram of natural transformations

(5.4) K
Φ1 +3 HC− +3 HP +3 HC

Ω2HC− +3

KS

Ω2HP

≃
KS

+3 Ω2HC

KS

...

KS

...

≃
KS

...

KS

Ω2iHC− +3

KS

Ω2iHP

≃
KS

+3 Ω2iHC

KS

...

KS

...

≃
KS

...

KS

The periodicity map S becomes invertible in periodic cyclic homology and so
the middle column in (5.4) consists of natural isomorphisms. Hence, we obtain
the classical sequence of natural transformations

HP⇒ · · · ⇒ Ω2iHC⇒ · · · ⇒ Ω2HC⇒ HC

which relates periodic cyclic homology with the even dimensional loopings of
cyclic homology; see [20, §5.1.8]. Let us then take for Φ the composed natural
transformation

K
Φ1⇒ HC− ⇒ HP⇒ Ω2iHC .

The fact that its image by the map (1.2) is the natural transformation φ :
K0 ⇒ HC2i is now an immediate consequence of the following factorization

φ : K0
ch−

0⇒ HC−0 ⇒ HP0 ⇒ HC2i ,

see [26, Theorem 1.7(ii)], and the particular case (i = 0). Similarly, the fact
that the canonical extension φn : Kn(A)→ HCn+2i(A) agrees with Karoubi’s
higher Chern character chn,i(A) follows from the following factorization

chn,i(A) : Kn(A)
ch−
n (A)−→ HC−n (A) −→ HPn(A) −→ HCn+2i(A) ,
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see [20, §11.4.3], and the particular case (i = 0). This achieves the proof.

Appendix A. Grothendieck Derivators

In order to make this article more self-contained we give a brief introduction to
Grothendieck’s theory of derivators [11]; this language can easily be acquired
by skimming through [21], [5, §1] or [3, 4, Appendix A].
Derivators originate in the problem of higher homotopies in derived categories.
Given a triangulated category T and a small category I, it essentially never
happens that the diagram category Fun(Iop, T ) remains triangulated; this al-
ready fails for the category of arrows in T . However, our triangulated category
T often appears as the homotopy category T = Ho(M) of some Quillen model
categoryM (see [22]). In this case we can consider the category Fun(Iop,M)
of diagrams in M whose homotopy category Ho(Fun(Iop,M)) is triangulated
and provides a reasonable approximation to Fun(Iop, T ). More importantly,
one can let I vary. This “nebula” of categories Ho(Fun(Iop,M)), indexed by
small categories I, and the various (adjoint) functors between them is what
Grothendieck formalized into the concept of a derivator.
A derivator consists of a strict contravariant 2-functor, from the 2-category
of small categories to the 2-category of all categories, subject to five natural
conditions. We shall not list these conditions here for it would be too long;
see [5, §1]. The essential example to keep in mind is the (triangulated) derivator
HO(M) associated to a (stable) Quillen model category M and defined for
every small category I by

HO(M)(I) := Ho(Fun(Iop,M)) .

We will write e for the 1-point category with one object and one identity
morphism. Note that HO(M)(e) is the homotopy category Ho(M). Given
Quillen model categoriesM1 andM2 and weak equivalence preserving functors
E,F :M1 →M2, we will denote by E,F : HO(M1) −→ HO(M2) the induced
morphisms of derivators and by Nat(E,F) the set of natural transformations
from E to F; see [5, §5]. Note that given Φ ∈ Nat(E,F), Φ(e) is a natural
transformation between the induced functors E(e),F(e) : Ho(M1)→ Ho(M2).
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