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Abstract. Let k be a field of characteristic zero. For a linear alge-
braic group G over k acting on a scheme X , we define the equivariant
algebraic cobordism of X and establish its basic properties. We ex-
plicitly describe the relation of equivariant cobordism with equivariant
Chow groups, K-groups and complex cobordism.

We show that the rational equivariant cobordism of aG-scheme can be
expressed as the Weyl group invariants of the equivariant cobordism
for the action of a maximal torus of G. As applications, we show that
the rational algebraic cobordism of the classifying space of a complex
linear algebraic group is isomorphic to its complex cobordism.
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1. Introduction

Let k be a field of characteristic zero. Based on the construction of the motivic
algebraic cobordism spectrumMGL by Voevodsky, Levine and Morel [31] gave
a geometric construction of the algebraic cobordism and showed that this is a
universal oriented Borel-Moore homology theory in the category of varieties
over the field k. Their definition was extended by Deshpande [9] in the equi-
variant set-up that led to the notion of the equivariant cobordism of smooth
varieties acted upon by linear algebraic groups. This in particular allowed one
to define the algebraic cobordism of the classifying spaces analogous to their
complex cobordism.
Apart from its many applications in the equivariant set up which are parallel
to the ones in the non-equivariant world, an equivariant cohomology theory
often leads to the description of the corresponding non-equivariant cohomology
by mixing the geometry of the variety with the representation theory of the
underlying groups.
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Our aim in this first part of a series of papers is to develop the theory of
equivariant cobordism in the category of all k-schemes with action of a linear
algebraic group. We establish the fundamental properties of this theory and
give applications. In the second part [20] of this series, we shall give many
important applications of the results of this paper. Some further applications
of the results of this paper to the computation of the non-equivariant cobordism
rings appear in [21], [24] and [15]. We now describe some of the main results
in of this paper.
Let G be a linear algebraic group over k. In this paper, a scheme will mean
a quasi-projective k-scheme and all G-actions will be assumed to be linear.
If X is a smooth scheme with a G-action, Deshpande defined the equivariant
cobordism ΩG∗ (X) using the coniveau filtration on the Levine-Morel cobordism
of certain smooth mixed spaces. This was based on the construction of the
Chow groups of classifying spaces in [39] and the equivariant Chow groups in
[10].
Using a niveau filtration on the algebraic cobordism, which is based on the
analogous filtration on any Borel-Moore homology theory as described in [2,
Section 3], we define the equivariant algebraic cobordism of any k-scheme with
G-action in Section 4. This is defined by taking a projective limit over the
quotients of the Levine-Morel cobordism of certain mixed spaces by various
levels of the niveau filtration. In order to make sense of this construction, one
needs to prove various properties of the above niveau filtration which is done in
Section 3. These equivariant cobordism groups coincide with the one in [9] for
smooth schemes. We also show in Section 5 how one can recover the formula
for the cobordism group of certain classifying spaces directly from the above
definition, by choosing suitable models for the underlying mixed spaces.
In Section 5, we establish the basic properties such as functoriality, homotopy
invariance, exterior product, projection formula and existence of Chern classes
for equivariant vector bundles in Theorem 5.2. Although we do not have the
equivariant version of the localization sequence for the algebraic cobordism, we
shall show that the restriction map induced by a G-equivariant open immersion
is indeed surjective.
In Section 7, we show how the equivariant cobordism is related to other
equivariant cohomology theories such as equivariant Chow groups, equivari-
ant K-groups and equivariant complex cobordism. Using some properties of
the niveau filtration and known relation between the non-equivariant cobor-
dism and Chow groups, we deduce an explicit formula (cf. Proposition 7.2)
which relates the equivariant cobordism and the equivariant Chow groups of
k-schemes. Using this and the main results of [17], we give a formula in Theo-
rem 7.4 which relates the equivariant cobordism with the equivariant K-theory
of smooth schemes. We also construct a natural transformation from the alge-
braic to the equivariant version of the complex cobordism for schemes over the
field of complex numbers.
Our next main result of this paper is Theorem 8.6, where we show that for a
connected linear algebraic group G acting on a scheme X , there is a canonical
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isomorphism ΩG∗ (X)
∼=
−→

(
ΩT∗ (X)

)W
with rational coefficients, where T is a

split maximal torus of a Levi subgroup of G with Weyl group W . This is
mainly achieved by the Morita isomorphism of Proposition 5.4 and a detour to
the motivic cobordism MGL and its extension MGL′ to singular schemes by
Levine [28]. The use ofMGL′-theory in our context is motivated by the recent
comparison result of Levine [29] which shows that the Levine-Morel cobordism
theory is a piece of the more general MGL′-theory.
As an easy consequence of Proposition 7.2, we recover Totaro’s cycle class map
(cf. [39])

CH∗(BG)→MU∗(BG) ⊗L Z→ H∗(BG,Z)

for a complex linear algebraic group G. It is conjectured that this map is an
isomorphism of rings. This conjecture has been shown to be true by Totaro
for some classical groups such as BGLn, On, Sp2n and SO2n+1. Although, we
can not say anything about this conjecture here, we do show as a consequence
of Theorem 8.6 that the map CH∗(BG) → MU∗(BG) ⊗L Z is indeed an iso-
morphism of rings with the rational coefficients (see Theorem 8.9 for the full
statement). We do this by first showing that there is a natural ring homomor-
phism Ω∗(BG) → MU∗(BG) (with integer coefficients) which lifts Totaro’s
map. We then show that this map is in fact an isomorphism with rational
coefficients using Theorem 8.6.
We now make a remark on our definition and the notation for the equivariant
cobordism groups. In many of the topology texts, the cobordism rings of
classifying spaces are expressed as rings which are complete. For example,
one often writes MU∗(CP∞) as the formal power series L[[t]] instead of the
graded power series ring. This does not allow one to write an expression of
the cobordism in each degree. Since our interest is to give an expression of
the cobordism groups in each component, we shall express the equivariant
cobordism of a smooth scheme as a graded ring. This notation has been used
earlier by other authors in the topological context (see [25, Section 2], [27]).
We refer the reader to Subsection 6.1 for more about the comparison between
the two notations.
We end this introduction with the following comment. One of the initial mo-
tivations for this article was to find a definition of the equivariant algebraic
cobordism which has all the expected properties of an equivariant cohomol-
ogy theory and which is simultaneously, simple enough to compute. Although
much of this objective is achieved, the equivariant cobordism as considered here
has two drawbacks. The first one is that there is not always a natural map
from the algebraic to the complex equivariant cobordism for complex varieties
with group action (cf. Proposition 7.5). A more serious problem is the lack of
the localization sequence (cf. Proposition 5.3). One way to take care of these
two problems is to consider Voevodsky’s motivic cobordism MGL from the
equivariant point of view. It turns out that although this approach does have
certain advantages, it becomes computationally much harder. So the challenge
is to study and analyze the situations when these two approaches yield the
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same answer so that one can use either of the two, depending on what one
would like to prove. These questions will be studied in further detail in [23].

2. Recollection of algebraic cobordism

In this section, we briefly recall the definition of algebraic cobordism of
Levine-Morel. We also recall the other definition of this object as given
by Levine-Pandharipande. Since we shall be concerned with the study of
schemes with group actions and the associated quotient schemes, and since
such quotients often require the original scheme to be quasi-projective, we
shall assume throughout this paper that all schemes over k are quasi-projective.

Notations. We shall denote the category of quasi-projective k-schemes by Vk.
By a scheme, we shall mean an object of Vk. The category of smooth quasi-
projective schemes will be denoted by VSk . If G is a linear algebraic group over
k, we shall denote the category of quasi-projective k-schemes with a G-action
and G-equivariant maps by VG. The associated category of smooth G-schemes
will be denoted by VSG. All G-actions in this paper will be assumed to be linear.
Recall that this means that all G-schemes are assumed to admit G-equivariant
ample line bundles. This assumption is always satisfied for normal schemes (cf.
[36, Theorem 2.5], [37, 5.7]).

2.1. Algebraic cobordism. Before we define the algebraic cobordism, we
recall the Lazard ring L. It is a polynomial ring over Z on infinite but countably
many variables and is given by the quotient of the polynomial ring Z[Aij |(i, j) ∈
N2] by the relations, which uniquely define the universal formal group law FL

of rank one on L. This formal group law is given by the power series

FL(u, v) = u+ v +
∑

i,j≥1

aiju
ivj ,

where aij is the equivalence class of Aij in the ring L. The Lazard ring is
graded by setting the degree of aij to be 1 − i − j. In particular, one has
L0 = Z,L−1 = Za11 and Li = 0 for i ≥ 1, that is, L is non-positively graded.
We shall write L∗ for the graded ring such that L∗,i = L−i for i ∈ Z. We now
define the algebraic cobordism of Levine and Morel [31].
Let X be an equi-dimensional k-scheme. A cobordism cycle over X is a family

α = [Y
f
−→ X,L1, · · · , Lr], where Y is a smooth scheme, the map f is projective,

and Li’s are line bundles on Y . Here, one allows the set of line bundles to
be empty. The degree of such a cobordism cycle is defined to be deg(α) =
dimk(Y )− r and its codimension is defined to be dim(X)−deg(α). Let Z∗(X)
be the free abelian group generated by the cobordism cycles of the above type.
Note that this group is graded by the codimension of the cycles. In particular,

for j ∈ Z, Zj(X) is the free abelian group on cobordism cycles α = [Y
f
−→

X,L1, · · · , Lr], where Y is smooth and irreducible and codimension of α is j.
We impose several relations on Z∗(X) in order to define the algebraic cobordism
group. The first among these is the so called dimension axiom: let R∗

dim(X) be
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the graded subgroup of Z∗(X) generated by the cobordism cycles α = [Y
f
−→

X,L1, · · · , Lr] such that dimkY < r. Let

Z∗
dim(X) =

Z∗(X)

R∗
dim(X)

.

For a line bundle L on X and cobordism cycle α as above, we define the Chern

class operator on Z∗
dim(X) by letting c1(L)(α) = [Y

f
−→ X,L1, · · · , Lr, f

∗(L)].
Next, we impose the so called section axiom. Let R∗

sec(X) be the graded
subgroup of Z∗

dim(X) generated by cobordism cycles of the form [Y → X,L]−

[Z → X ], where Y
s
−→ L is a section of the line bundle L on Y which is

transverse to the zero-section, and Z →֒ Y is the closed subvariety of Y defined
by the zeros of s. The transversality of s ensures that Z is a smooth variety.
In particular, [Z → X ] is a well-defined cobordism cycle on X . Define

Ω∗(X) =
Z∗

dim(X)

R∗
sec(X)

.

The assignment X 7→ Ω∗(X) is called the pre-cobordism theory.
Finally, we impose the formal group law on the cobordism using the follow-
ing relation. For X as above, let R∗

FGL(X) ⊂ L⊗ZΩ
∗(X) be the graded L-

submodule generated by elements of the form

{FL (c1(L), c1(M)) (x) − c1(L⊗M)(x)|x ∈ Ω∗(X), L,M ∈ Pic(X)} .

We define the algebraic cobordism group of X by

(2.1) Ω∗(X) =
L⊗ZΩ

∗(X)

R∗
FGL(X)

.

If X is not necessarily equi-dimensional, we define Z∗(X) to be same as
Z∗(X) except that Z∗(X) is now graded by the degree of the cobordism
cycles. In particular, Zi(X) is the free abelian group on cobordism cycles

[Y
f
−→ X,L1, · · · , Lr] such that f is projective and Y is smooth and irreducible

such that dim(Y ) − r = i. One then defines Ω∗(X) to be the quotient of
L∗ ⊗Z Ω∗(X) in the same way as above. Note that for X equi-dimensional of
dimension d and i ∈ Z, one has Ωi(X) ∼= Ωd−i(X).
Observe that Ω∗(X) is a graded L-module such that Ωj(X) = 0 for j > dim(X)
and Ωj(X) can be non-zero for any given −∞ < j ≤ dim(X). Similarly, Ω∗(X)
is a graded L∗-module which has no component in the negative degrees and it
can be non-zero in arbitrarily large positive degree.
The following is the main result of Levine and Morel from which most of their
other results on algebraic cobordism are deduced. We refer to loc. cit. for
more properties.

Theorem 2.1. The functor X 7→ Ω∗(X) is the universal Borel-Moore homology
on the category Vk. In other words, it is universal among the homology theories
on Vk which have functorial push-forward for projective morphism, pull-back for
smooth morphism (any morphism of smooth schemes), Chern classes for line
bundles, and which satisfy Projective bundle formula, homotopy invariance,
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the above dimension, section and formal group law axioms. Moreover, for a
k-scheme X and closed subscheme Z of X with open complement U , there is a
localization exact sequence

Ω∗(Z)→ Ω∗(X)→ Ω∗(U)→ 0.

It was also shown in loc. cit. that the natural composite map

Φ : L→ L⊗Z Ω∗(k) ։ Ω∗(k)

a 7→ [a]

is an isomorphism of commutative graded rings.
As an immediate corollary of Theorem 2.1, we see that for a smooth k-scheme
X and an embedding σ : k → C, there is a natural morphism of graded rings

(2.2) ΦtopX : Ω∗(X)→MU2∗(Xσ(C)),

where MU∗(Xσ(C)) is the complex cobordism ring of the complex manifold
Xσ(C) given by the complex points of X ×k C. This map is an isomorphism
for X = Spec(k). In particular, there are isomorphisms of graded rings

(2.3) L
∼=
−→ Ω∗(k)

∼=
−→MU2∗ ∼=

−→MU∗,

where MU∗ is the complex cobordism ring of a point. As a corollary, we see
that for any field extension k →֒ K, the natural map Ω∗(k) → Ω∗(K) is an
isomorphism.

2.2. Cobordism via double point degeneration. To enforce the formal
group law on the algebraic cobordism in order to make it an oriented cohomol-
ogy theory on the category of smooth varieties, Levine and Morel artificially
imposed this condition by tensoring their pre-cobordism theory with the Lazard
ring. Although they were able to show that the resulting map Z∗(X)→ Ω∗(X)
is still surjective, they were unable to describe the explicit geometric relations
in Z∗(X) that define Ω∗(X). This was subsequently accomplished by Levine-
Pandharipande [32]. We conclude our introduction to the algebraic cobordism
by briefly discussing the construction of Levine-Pandharipande. For n ≥ 1, let
�
n denote the space (P1

k − {1})
n
.

Definition 2.2. A morphism Y
π
−→ �

1 is called a double point degeneration,
if Y is a smooth scheme and π−1(0) is scheme-theoretically given as the union
A ∪ B, where A and B are smooth divisors on Y which intersect transversely.
The intersection D = A ∩ B is called the double point locus of π. Here, A, B
and D are allowed to be disconnected or, even empty.

For a double point degeneration as above, notice that the scheme D is also
smooth and OD(A+B) is trivial. In particular, one sees that NA/D⊗DNB/D ∼=
OD. This is turn implies that the projective bundles P(OD ⊕NA/D)→ D and
P(OD ⊕ NB/D) → D are isomorphic, where NA/D and NB/D are the normal
bundles of D in A and B respectively. Let P(π)→ D denote any of these two
projective bundles.
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Let X be a k-scheme and let Y
f
−→ X × �

1 be a projective morphism from a
smooth scheme Y . Assume that the composite map π : Y → X ×�

1 → �
1 is

a double point degeneration such that Y∞ = π−1(∞) is smooth. We define the
cobordism cycle on X associated to the morphism f to be the cycle

(2.4) C(f) = [Y∞ → X ]− [A→ X ]− [B → X ] + [P(π)→ X ].

LetM∗(X) be the free abelian group on the isomorphism classes of the mor-

phisms [Y
f
−→ X ], where Y is smooth and irreducible and f is projective. Then

M∗(X) is a graded abelian group, where the grading is by the dimension of Y .
Let R∗(X) be the subgroup ofM∗(X) generated by all cobordism cycles C(f),
where C(f) is as in (2.4). Note that R∗(X) is a graded subgroup ofM∗(X).
Define

(2.5) ω∗(X) =
M∗(X)

R∗(X)
.

Theorem 2.3 ([32]). There is a canonical isomorphism

(2.6) ω∗(X)
∼=
−→ Ω∗(X)

of oriented Borel-Moore homology theories on V.

3. Niveau filtration on algebraic cobordism

In this section, we introduce the niveau filtration on the algebraic cobordism
which plays an important role in the definition of the equivariant algebraic
cobordism. Our main result here is a refined localization sequence for the
cobordism which preserves the niveau filtration. This new localization sequence
will have interesting consequences in the study of the equivariant cobordism.
Let X be a k-scheme of dimension d. For j ∈ Z, let Zj be the set of all closed
subschemes Z ⊂ X such that dimk(Z) ≤ j (we assume dim(∅) = −∞). The
set Zj is then ordered by the inclusion. For i ≥ 0, we define

Ωi(Zj) = lim
−→
Z∈Zj

Ωi(Z) and put

Ω∗(Zj) =
⊕

i≥0

Ωi(Zj).

It is immediate that Ω∗(Zj) is a graded L∗-module and there is a graded L∗-
linear map Ω∗(Zj)→ Ω∗(X).
Following [2, Section 3], we let Zj/Zj−1 denote the ordered set of pairs (Z,Z ′) ∈
Zj × Zj−1 such that Z ′ ⊂ Z with the ordering

(Z,Z ′) ≥ (Z1, Z
′
1) if Z1 ⊆ Z and Z ′

1 ⊆ Z
′.

If (Z,Z ′) ≥ (Z1, Z
′
1), then the functoriality of the push-forward maps and the

localization sequence yield a map Ωi(Z1−Z ′
1)→ Ωi(Z−Z ′) (cf. (3.1)). We let

Ωi (Zj/Zj−1(X)) := lim−→
(Z,Z′)∈Zj/Zj−1

Ωi(Z − Z
′).
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Lemma 3.1. For f : X ′ → X projective, the push-forward map Ω∗(X
′)

f∗
−→

Ω∗(X) induces a push-forward map Ω∗ (Zj/Zj−1(X
′))→ Ω∗ (Zj/Zj−1(X)).

Proof. Let (Z,Z ′) ∈ Zj/Zj−1(X
′). Then (W,W ′) = (Im(Z), Im(Z ′)) ∈

Zj/Zj−1(X). It suffices now to show that f∗ induces a natural map Ω∗(Z −
Z ′)→ Ω∗(W −W ′). However, this follows directly from the localization exact
sequences

(3.1) Ω∗(Z
′) //

f∗

��

Ω∗(Z) //

f∗

��

Ω∗(Z − Z ′) //

��

0

Ω∗(W
′) // Ω∗(W ) // Ω∗(W −W ′) // 0

and the fact that the square on the left is commutative. �

For x ∈ Zj , let

(3.2) ˜Ω∗(k(x)) = lim
−→

U⊆{x}

Ω∗(U),

where the limit is taken over all non-empty open subsets of {x}. Taking the
limit over the localization sequences

Ω∗(Z
′)→ Ω∗(Z)→ Ω∗(Z − Z

′)→ 0

for (Z,Z ′) ∈ Zj/Zj−1, one now gets an exact sequence

(3.3) Ω∗(Zj−1)→ Ω∗(Zj)→
⊕

x∈(Zj−Zj−1)

˜Ω∗(k(x))→ 0.

Definition 3.2. We define FjΩ∗(X) to be the image of the natural L∗-linear
map Ω∗(Zj)→ Ω∗(X). In other words, FjΩ∗(X) is the image of all Ω∗(W )→
Ω∗(X), where W → X is a projective map such that dim(Image(W )) ≤ j.
Using the localization sequence, this is same as saying that FjΩ∗(X) is the set
of all elements s ∈ Ω∗(X) such that i∗(s) = 0 for some open subset i : U →֒ X ,
whose complement has dimension at most j.

One checks at once that there is a canonical niveau filtration

(3.4) 0 = F−1Ω∗(X) ⊆ F0Ω∗(X) ⊆ · · · ⊆ Fd−1Ω∗(X) ⊆ FdΩ∗(X) = Ω∗(X).

Lemma 3.3. If f : X ′ → X is a projective morphism, then f∗ (FjΩ∗(X
′)) ⊆

FjΩ∗(X). If g : X ′ → X is a smooth morphism of relative dimension r, then
g∗ (FjΩ∗(X)) ⊆ Fj+rΩ∗(X

′).

Proof. The first assertion is obvious from the definition. In fact, the push-
forward map preserves the niveau filtration at the level of the free abelian
groups of cobordism cycles. The second assertion also follows immediately
using the fact that for a cobordism cycle [Y → X ], one has g∗ ([Y → X ]) =
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[Y ×X X ′ → X ′]. This in turn implies that g∗ ◦ f∗ = f ′
∗ ◦ g

′∗ for a Cartesian
square

W ′
f ′

//

g′

��

X ′

g

��

W
f

// X

such that f is projective and g is smooth. �

Proposition 3.4. Let X be a k-scheme and let Z be a closed subscheme of X
with the complement U . Then for every j ≥ dim(Z), there is an exact sequence

Ω∗(Z)→ FjΩ∗(X)→ FjΩ∗(U)→ 0.

Proof. Since j ≥ dim(Z), we see that the image of the map Ω∗(Z) → Ω∗(X)
lies in FjΩ∗(X). Using the localization sequence of the algebraic cobordism
(cf. Theorem 2.1), we only need to show that the map FjΩ∗(X) → FjΩ∗(U)
is surjective.

Let FjZ∗(X) be the free abelian group on cobordism cycles [Y
f
−→ X ] such that

Y is irreducible and dim(f(Y )) ≤ j. Note that f(Y ) is a closed and irreducible
subscheme of X since Y is irreducible and f is projective. It is then clear that
FjZ∗(X) ⊂ Z∗(X) and FjZ∗(X) ։ FjΩ∗(X).

Let [Y
f
−→ U ] be a cobordism cycle on U such that Y is smooth and irreducible,

f is projective and dim(f(Y )) ≤ j. We have a factorization Y →֒ Pnk ×U → U

where the first inclusion is a closed immersion. Let Y denote a resolution of

singularities of the closure of Y in Pnk × X and let Y
f̄
−→ X be the projection

map. It is then easy to verify that [Y
f̄
−→ X ] is a cobordism cycle on X which

restricts to [Y
f
−→ U ] in Ω∗(U) and dim(f̄(Y )) = dim(f(Y )) ≤ j. This proves

the required surjection. �

Theorem 3.5. Let X be a k-scheme and let Z be a closed subscheme of X with
the complement U . Then for every j ∈ Z, there is an exact sequence

(3.5)
Ω∗(Z)

FjΩ∗(Z)
→

Ω∗(X)

FjΩ∗(X)
→

Ω∗(U)

FjΩ∗(U)
→ 0.

Proof. Let f : U → X and g : Z → X be the inclusion maps. The surjectivity
of the second map in (3.5) follows from the localization sequence of algebraic
cobordism (cf. Theorem 2.1). It suffices thus to show that

(3.6) f∗(−1) (FjΩ∗(U)) ⊆ Image (Ω∗(Z)⊕ FjΩ∗(X)→ Ω∗(X))

in order to prove the theorem.
So let α ∈ Ω∗(X) be such that β = f∗(α) ∈ FjΩ∗(U). We can find a closed
subscheme q : W →֒ U of dimension at most j and a cobordism cycle β′ ∈

Ω∗(W ) such that β = q∗(β
′). Let Y be the closure of W in X and let W

f ′

−→

Y
p
−→ X be the open and the closed immersions.
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Using Theorem 2.1 (the localization sequence), we can find α′ ∈ Ω∗(Y ) such
that β′ = f ′∗(α′). We conclude from this that f∗ (α− p∗(α′)) = 0 in Ω∗(U).
Using Theorem 2.1 (the localization sequence) again, we see that α = g∗(γ) +
p∗(α

′) for some γ ∈ Ω∗(Z). Since dim(Y ) = dim(W ) ≤ j, it also follows that
p∗(α

′) ∈ FjΩ∗(X). This proves (3.6) and hence the theorem. �

The following is an immediate consequence of Theorem 3.5.

Corollary 3.6. Let X be a k-scheme. Then for any j ≥ 0 and any closed
subscheme Z ⊂ X of dimension at most j, the natural map Ω∗(X)→ Ω∗(X−Z)
induces an isomorphism

Ω∗(X)

FjΩ∗(X)

∼=
−→

Ω∗(X − Z)

FjΩ∗(X − Z)
.

Lemma 3.7. For a k-scheme X and i ≥ 0, the natural map Ωi(X)→ CHi(X)
has the factorization

Ωi(X)→
Ωi(X)

Fi−1Ωi(X)
→ CHi(X).

Proof. By Theorem 2.3, Ω∗(X) is generated by the cobordism cycles [Y → X ],
where Y is smooth and f is projective. It follows from the definition of the
niveau filtration that FjΩ∗(X) is generated by the cobordism cycles of the form

i∗ ([Y → Z]), where Z
φ
→֒ X is a closed subscheme of X of dimension at most j.

Since Ω∗ → CH∗ is a natural transformation of oriented Borel-Moore homology
theories, we get a commutative diagram

Ωi(Z) //

φ∗

��

CHi(Z)

φ∗

��

Ωi(X) // CHi(X).

The lemma now follows from the fact that CHi(Z) = 0 if j ≤ i− 1. �

Lemma 3.8. For any s ∈ FjΩ∗(X), there are elements ai ∈ L∗ and si ∈
Ω≤j(X) such that s =

∑
i aisi.

Proof. It is a simple variant of the generalized degree formula [30, Theorem 4.7].
We can assume that s is a homogeneous element of Ω∗(X). We have seen in the
proof of Proposition 3.4 that FjZ∗(X) a free abelian subgroup of Z∗(X) such

that FjZ∗(X) ։ FjΩ∗(X). We can thus assume that s = [Y
f
−→ X ], where Y

is smooth and irreducible and f is projective such that dim(f(Y )) ≤ j.
Let ι : f(Y ) = W →֒ X denote the inclusion of the closed subset and let
U be the complement of W in X . Then the image of s dies in Ω∗(U) un-
der the restriction map. It follows from the localization sequence of the alge-
braic cobordism (cf. Theorem 2.1) and [30, Theorem 4.7] that we can write

s = ι∗

(
a[W̃ →W ] +

∑
i ai[Z̃i → Zi]

)
, where W̃ →W is a resolution of singu-

larities of W , Z̃i → Zi is a resolution of singularities of a closed subscheme Zi
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of W of dimension strictly less than that of W and a, ai ∈ L∗. It follows from
this expression that s =

∑
i aisi such that si ∈ Ω≤j(X) and ai ∈ L∗ �

Proposition 3.9. Let E
f
−→ X be a vector bundle of rank r. Then the pull-back

map f∗ : Ω∗(X)→ Ω∗(E) induces an isomorphism

FjΩ∗(X)
∼=
−→ Fj+rΩ∗(E)

for all j ∈ Z. In particular, F<rΩ∗(E) = 0.

Remark 3.10. The reader should be warned that the map f∗ shifts the degree
of the grading by r.

Proof. Using Lemma 3.8, this can be proved in the same way as [9, Lemma 3.3],
where a similar result is proven for smooth varieties and coniveau filtration. We
sketch the proof in the singular case.
The homotopy invariance of the algebraic cobordism tells us that the natural

map Ω∗(X)
f∗

−→ Ω∗(E) is an isomorphism. So we only need to show that this
map is surjective at each level of the niveau filtration. So let e ∈ Fj+rΩ∗(E).
We can assume that e ∈ Ωi(E) is a homogeneous element.
By Lemma 3.8, we can write e =

∑
p apsp, where each sp is a homogeneous

element of Ω≤j+r(E) and ap ∈ L∗. Since f∗ is an isomorphism of graded
abelian groups which shifts the degree by r, we can write sp = f∗(xp) such
that xp ∈ Ω≤j(X). Letting x =

∑
p apxp, we see that x ∈ FjΩ∗(X) and

s = f∗(x). This proves the proposition. �

4. Equivariant algebraic cobordism

In this text, G will denote a linear algebraic group of dimension g over k. All
representations of G will be finite dimensional. The definition of equivariant
cobordism needs one to consider certain kind of mixed spaces which in general
may not be a scheme even if the original space is a scheme. The following well
known (cf. [10, Proposition 23]) lemma shows that this problem does not occur
in our context and all the mixed spaces in this paper are schemes with ample
line bundles.

Lemma 4.1. Let H be a linear algebraic group acting freely and linearly on a
k-scheme U such that the quotient U/H exists as a quasi-projective variety. Let

X be a k-scheme with a linear action of H. Then the mixed quotient X
H
× U

exists for the diagonal action of H on X×U and is quasi-projective. Moreover,
this quotient is smooth if both U and X are so. In particular, if H is a closed
subgroup of a linear algebraic group G and X is a k-scheme with a linear action

of H, then the quotient G
H
× X is a quasi-projective scheme.

Proof. It is already shown in [10, Proposition 23] using [12, Proposition 7.1]

that the quotientX
H
× U is a scheme. Moreover, as U/H is quasi-projective, [12,

Proposition 7.1] in fact shows that X
H
× U is also quasi-projective. The similar

Documenta Mathematica 17 (2012) 95–134



106 Amalendu Krishna

conclusion about G
H
× X follows from the first case by taking U = G and by

observing that G/H is a smooth quasi-projective scheme (cf. [3, Theorem 6.8]).

The assertion about the smoothness is clear sinceX×U → X
H
× U is a principal

H-bundle. �

For any integer j ≥ 0, let Vj be an l-dimensional representation of G and
let Uj be a G-invariant open subset of Vj such that the codimension of the
complement (Vj −Uj) in Vj is at least j and G acts freely on Uj such that the
quotient Uj/G is a quasi-projective scheme. Such a pair (Vj , Uj) will be called
a good pair for the G-action corresponding to j (cf. [17, Section 2]). It is easy
to see that a good pair always exists (cf. [10, Lemma 9]). Let XG denote the

mixed quotient X
G
× Uj of the product X × Uj by the diagonal action of G,

which is free.
Let X be a k-scheme of dimension d with a G-action. Fix j ≥ 0 and let (Vj , Uj)
be an l-dimensional good pair corresponding to j. For i ∈ Z, set

(4.1) ΩGi (X)j =

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) .

Lemma 4.2. For a fixed j ≥ 0, the group ΩGi (X)j is independent (in a canonical

way) of the choice of the good pair (Vj , Uj).

Proof. Let (Vj , Uj) and (V ′
j , U

′
j) be two good pairs of dimensions and l and

l′ respectively corresponding to j. Using the results of Section 3, one can
follow the proof of the similar result for the equivariant Chow groups in [10,
Proposition 1] to construct a canonical isomorphism

αvv′ :

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) ∼=
−→

Ωi+l′−g

(
X

G
× U ′

j

)

Fd+l′−g−jΩi+l′−g

(
X

G
× U ′

j

)

as follows.
We let V = Vj ⊕V ′

j and U = (Uj ⊕V ′
j )∪ (Vj ⊕U

′
j). Let G act diagonally on V .

Then it is easy to see that the complement of the open subset X
G
× (Uj ⊕ V ′

j )

in X
G
× U has dimension at most d+ l+ l′− g− j. Hence by Corollary 3.6, the

map
(4.2)

Ωi+l+l′−g

(
X

G
× U

)

Fd+l+l′−g−jΩi+l+l′−g

(
X

G
× U

) ι∗v−→

Ωi+l+l′−g

(
X

G
× (Uj ⊕ V ′

j )

)

Fd+l+l′−g−jΩi+l+l′−g

(
X

G
× (Uj ⊕ V ′

j )

)
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is an isomorphism. On the other hand, the map X
G
× (Uj ⊕ V ′

j )
φv
−→ X

G
× Uj is

a vector bundle of rank l′ and hence by Proposition 3.9, the map
(4.3)

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) φ∗

v−→

Ωi+l+l′−g

(
X

G
× (Uj ⊕ V ′

j )

)

Fd+l+l′−g−jΩi+l+l′−g

(
X

G
× (Uj ⊕ V ′

j )

)

is also an isomorphism. Combining the above two isomorphisms, we get the
canonical isomorphism

(ι∗v)
−1 ◦ φ∗v :

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) ∼=−→

Ωi+l+l′−g

(
X

G
× U

)

Fd+l+l′−g−jΩi+l+l′−g

(
X

G
× U

) .

In the same way, we also get an isomorphism

(φ∗v′ )
−1 ◦ ι∗v′ :

Ωi+l+l′−g

(
X

G
× U

)

Fd+l+l′−g−jΩi+l+l′−g

(
X

G
× U

) ∼=
−→

∼=
−→

Ωi+l′−g

(
X

G
× U ′

j

)

Fd+l′−g−jΩi+l′−g

(
X

G
× U ′

j

) .

The composite αvv′ = ((φ∗v′ )
−1 ◦ ι∗v′) ◦ ((ι

∗
v)

−1 ◦ φ∗v) is the desired canonical
isomorphism (see the proof of [39, Theorem 1.1]). �

Lemma 4.3. For j′ ≥ j ≥ 0, there is a natural surjective map ΩGi (X)j′ ։

ΩGi (X)j.

Proof. Choose a good pair (Vj′ , Uj′ ) for j
′. Then it is clearly a good pair for j

too. Moreover, there is a natural surjection

Ωi+l−g

(
X

G
× Uj′

)

Fd+l−g−j′Ωi+l−g

(
X

G
× Uj′

) ։

Ωi+l−g

(
X

G
× Uj′

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj′

) .

On the other hand, the left and the right terms are ΩGi (X)j′ and ΩGi (X)j
respectively by Lemma 4.2. �

Definition 4.4. Let X be a k-scheme of dimension d with a G-action. For
any i ∈ Z, we define the equivariant algebraic cobordism of X to be

ΩGi (X) = lim
←−
j

ΩGi (X)j .
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The reader should note from the above definition that unlike the ordinary
cobordism, the equivariant algebraic cobordism ΩGi (X) can be non-zero for
any i ∈ Z. We set

ΩG∗ (X) =
⊕

i∈Z

ΩGi (X).

If X is an equi-dimensional k-scheme with G-action, we let ΩiG(X) = ΩGd−i(X)

and Ω∗
G(X) = ⊕

i∈Z
ΩiG(X). We shall denote the equivariant cobordism Ω∗

G(k)

of the ground field by S(G). This is also called the algebraic cobordism of the
classifying space of G and often written as Ω∗(BG).

Remark 4.5. If G is the trivial group, we can take the good pair (Vj , Vj) for
every j where Vj is any l-dimensional k-vector space. In that case, we get

Ωi+l(X
G
× Vj) ∼= Ωi+l(X×Vj) which is isomorphic to Ωi(X) by the homotopy

invariance of the non-equivariant cobordism. Moreover, Fd+l−jΩi+l(X ×Vj) is
isomorphic to Fd−jΩi(X) by Proposition 3.9 and this last term is zero for all
large j. In particular, we see from (4.1) and the definition of the equivariant

cobordism that there is a canonical isomorphism ΩG∗ (X)
∼=
−→ Ω∗(X).

Remark 4.6. Let X be a G-scheme and let H be a closed normal subgroup of
G with quotient W . If (Vj , Uj) is a good pair for the G-action for any j ≥ 0,

thenW naturally acts on the mixed quotient Xj = X
H
× Uj and hence it acts on

Ω∗(Xj). Since W acts on Xj by automorphisms, it keeps the niveau filtration
invariant. In particular, it acts on ΩH∗ (X)j . It is clear that if (V

′
j , U

′
j) is another

good pair, then the isomorphisms in (4.2) and (4.3) areW -equivariant. In other
words, the W -action on Ω∗(Xj) does not depend on the choice of good pairs.
Furthermore, for j′ ≥ j, we can choose a good pair for j′ and that makes the
maps in the inverse system {Ω∗(Xj)}j≥0 W -equivariant. We conclude that W
acts on the equivariant cobordism ΩH∗ (X). One example of such a situation is
where H is a maximal torus in a linear algebraic group and G is its normalizer.
The quotient W is then the Weyl group. In that case, ΩH∗ (X) becomes a
Z[W ]-module.

Remark 4.7. It is easy to check from the above definition of the niveau fil-
tration that if X is a smooth and irreducible k-scheme of dimension d, then
FjΩi(X) = F d−jΩd−i(X), where F •Ω∗(X) is the coniveau filtration used in
[9]. Furthermore, one also checks in this case that if G acts on X , then

(4.4) ΩiG(X) = lim
←−
j

Ωi
(
X

G
× Uj

)

F jΩi
(
X

G
× Uj

) ,

where (Vj , Uj) is a good pair corresponding to any j ≥ 0. Thus the above
definition 4.4 of the equivariant cobordism coincides with that of [9] for smooth
schemes.
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Remark 4.8. As is evident from the above definition (see Example 6.6), the
equivariant cobordism ΩGi (X) can not in general be computed in terms of
the algebraic cobordism of one single mixed space. This makes these groups
more complicated to compute than the equivariant Chow groups, which can
be computed in terms of a single mixed space. This also motivates one to ask
if the equivariant cobordism can be defined in such a way that they can be
calculated using one single mixed space in a given degree. It follows however
from Lemmas 4.2 and 4.3 that for a given i and j, each component of the
projective system

{
ΩGi (X)j

}
j≥0

can be computed using a single mixed space.

4.1. Change of groups. If H ⊂ G is a closed subgroup of dimension h, then
any l-dimensional good pair (Vj , Uj) for G-action is also a good pair for the

induced H-action. Moreover, for any X ∈ VG of dimension d, X
H
× Uj → X

G
×

Uj is an étale locally trivial G/H-fibration and hence a smooth map (cf. [3,
Theorem 6.8]) of relative dimension g − h. This induces the inverse system of
pull-back maps

ΩGi (X)j =

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) → h

→

Ωi+l−h

(
X

H
× Uj

)

Fd+l−h−jΩi+l−h

(
X

H
× Uj

) = ΩHi (X)j

and hence a natural restriction map

(4.5) rGH,X : ΩG∗ (X)→ ΩH∗ (X).

Taking H = {1} and using Remark 4.5, we get the forgetful map

(4.6) rGX : ΩG∗ (X)→ Ω∗(X)

from the equivariant to the non-equivariant cobordism. Since rGH,X is obtained
as a pull-back under the smooth map, it commutes with any projective push-
forward and smooth pull-back (cf. Theorem 5.2). We remark here that al-
though the definition of rGH,X uses a good pair, it is easy to see as in Lemma 4.2
that it is independent of the choice of such good pairs.

4.2. Fundamental class of cobordism cycles. Let X ∈ VG and let

Y
f
−→ X be a morphism in VG such that Y is smooth of dimension d and f is pro-

jective. For any j ≥ 0 and any l-dimensional good pair (Vj , Uj), [YG
fG
−−→ XG]

is an ordinary cobordism cycle of dimension d+ l− g by Lemma 5.1 and hence
defines an element αj ∈ ΩGd (X)j . Moreover, it is evident that the image of

αj′ is αj for j′ ≥ j. Hence we get a unique element α ∈ ΩGd (X), called the

G-equivariant fundamental class of the cobordism cycle [Y
f
−→ X ]. We also see
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from this more generally that if [Y
f
−→ X,L1, · · · , Lr] is as above with each Li

a G-equivariant line bundle on Y , then this defines a unique class in ΩGd−r(X).
It is interesting question to ask under what conditions on the group G, the
equivariant cobordism group ΩG∗ (X) is generated by the fundamental classes
of G-equivariant cobordism cycles on X . It turns out that this question indeed
has a positive answer if G is a split torus by [20, Theorem 4.11].

5. Some properties of equivariant cobordism

In this section, we establish some basic properties of equivariant algebraic
cobordism that are analogous to the non-equivariant case. We begin with the
following elementary result. This will be used in the sequel for the morphisms
between mixed quotients.

Lemma 5.1. Let f : X → Y be a projective G-equivariant map in VG with free
G-actions such that Y/G is quasi-projective. Then X/G ∈ Vk and the induced
map f : X/G→ Y/G of quotients is projective.

Proof. It follows from our assumption and [12, Proposition 7.1] that X/G exists
and that f : X ′ = X/G → Y/G = Y ′ is a morphism in Vk. Furthermore, the
square

X //

f

��

X ′

f

��

Y // Y ′

is Cartesian. Since both the horizontal maps are the principal G-bundles, they
are smooth and surjective. Since proper maps have smooth descent (in fact fpqc
descent), we see that f : X ′ → Y ′ is proper. Since these schemes are quasi-
projective, we leave it as an exercise to show that f is also quasi-projective and
hence must be projective. �

Theorem 5.2. The equivariant algebraic cobordism satisfies the following prop-
erties.
(i) Functoriality : The assignment X 7→ ΩG∗ (X) is covariant for projective
maps and contravariant for smooth maps in VG. It is also contravariant for
l.c.i. morphisms in VG. Moreover, for a fiber diagram

X ′
g′

//

f ′

��

X

f

��

Y ′
g

// Y

in VG with f projective and g smooth, one has g∗ ◦ f∗ = f ′
∗ ◦ g

′∗ : ΩG∗ (X) →
ΩG∗ (Y

′).
(ii) Homotopy : If f : E → X is a G-equivariant vector bundle, then f∗ :

ΩG∗ (X)
∼=
−→ ΩG∗ (E).
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(iii) Chern classes : For any G-equivariant vector bundle E
f
−→ X of rank

r, there are equivariant Chern class operators cGm(E) : ΩG∗ (X) → ΩG∗−m(X)

for 0 ≤ m ≤ r with cG0 (E) = 1. These Chern classes have same functoriality
properties as in the non-equivariant case. Moreover, they satisfy the Whitney
sum formula.

(iv) Free action : If G acts freely on X with quotient Y , then ΩG∗ (X)
∼=
−→

Ω∗(Y ).
(v) Exterior Product : There is a natural product map

ΩGi (X)⊗Z ΩGi′ (X
′)→ ΩGi+i′(X ×X

′).

In particular, ΩG∗ (k) is a graded algebra and ΩG∗ (X) is a graded ΩG∗ (k)-module
for every X ∈ VG.
(vi) Projection formula : For a projective map f : X ′ → X in VSG, one has
for x ∈ ΩG∗ (X) and x′ ∈ ΩG∗ (X

′), the formula : f∗ (x
′ · f∗(x)) = f∗(x

′) · x.

Proof. Assume that the dimensions of X and Y are m and n respectively and
let d = m−n be the relative dimension of a projective G-equivariant morphism
f : X → Y . For a fixed j ≥ 0, let (Vj , Uj) be an l-dimensional good pair for j.

Since f is projective, Lemma 5.1 implies that f : XG → YG is projective and
hence by Theorem 2.1 and Lemma 3.3, there is a push-forward map

Ωi+l−g(XG)

Fm+l−g−jΩi+l−g(XG)
→

Ωi+l−g(YG)

Fm+l−g−jΩi+l−g(YG)
=

Ωi+l−g(YG)

Fn+l−g−(j−d)Ωi+l−g(YG)
.

In particular, we get a compatible system of maps

ΩGi (X)j+d → ΩGi (Y )j .

Taking the inverse limits, one gets the desired push-forward map ΩGi (X)
f∗
−→

ΩGi (Y ).

If f is smooth of relative dimension d, then f : XG → YG is also smooth of
same relative dimension. Hence, we get a compatible system of pull-back maps

ΩGi (Y )j
f
−→

∗

ΩGi+d(X)
j
. Taking the inverse limit, we get the desired pull-back

map of the equivariant algebraic cobordism groups. If f is a l.c.i. morphism
of G-schemes, the same proof applies using the existence of similar map in the
non-equivariant case. The required commutativity of the pull-back and push-
forward maps follows exactly in the same way from the corresponding result
for the non-equivariant cobordism groups.

To prove the homotopy property, let E
f
−→ X be a G-equivariant vector bun-

dle of rank r. For any j ≥ 0, let (Vj , Uj) be a good pair for j. Then the
map of mixed quotients EG → XG is a vector bundle of rank r (cf. [10,
Lemma 1]). Hence by Proposition 3.9, the pull-back map ΩGi (X)j → ΩGi+r(E)

j

is an isomorphism. If j′ ≥ j, then we can choose a common good pair
for both j and j′. Hence, we have a pull-back map of the inverse systems
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{ΩGi (X)j} → {ΩGi+r(E)
j
} which is an isomorphism at each level. Hence

f∗ : ΩGi (X)→ ΩGi+r(E) is an isomorphism.
To define the Chern classes of an equivariant vector bundle E of rank r, we
choose an l-dimensional good pair (Vj , Uj) and consider the vector bundle
EG → XG as above and let cGm,j : Ωi+l−g(XG) → Ωi+l−g−m(XG) be the

non-equivariant Chern class as in [31, 4.1.7]. For a closed subscheme Z
ι
→֒XG,

the projection formula for the non-equivariant cobordism

(5.1) cGm,j(EG) ◦ ι∗ = ι∗ ◦
(
cGm,j (ι

∗(EG))
)

implies that cGm,j(EG) descends to maps cGm,j : Ω
G
i (X)j → ΩGi−m(X)

j
.

One shows as in Lemma 4.2 that this is independent of the choice of the good
pairs. Furthermore, choosing a common good pair for j′ ≥ j, we see that cGm,j
actually defines a map of the inverse systems. Taking the inverse limit, we get
the Chern classes cGm(E) : ΩGi (X) → ΩGi−m(X) for 0 ≤ m ≤ r with cG0 (E) =
1. The functoriality and the Whitney sum formula for the equivariant Chern
classes are easily proved along the above lines using the analogous properties
of the non-equivariant Chern classes.
The statement about the free action follows from [9, Lemma 7.2] and Re-
mark 4.5.
We now show the existence of the exterior product of the equivariant cobor-
dism which requires some work. Let d and d′ be the dimensions of X and X ′

respectively. We first define maps

(5.2) ΩGi (X)j ⊗ ΩGi′ (X
′)j → ΩGi+i′ (X ×X

′)
j

for j ≥ 0.

Let (Vj , Uj) be an l-dimensional good pair for j and let α = [Y
f
−→ XG] and α

′ =

[Y ′ f ′

−→ X ′
G] be the cobordism cycles on XG and X ′

G respectively. Using the
fact that X×Uj → XG and X ′×Uj → X ′

G are principal G-bundles, we get the

unique cobordism cycles [Ỹ → X ×Uj] and [Ỹ ′ → X ′×Uj] whose G-quotients

are the above chosen cycles. We define α ⋆ α′ = [Ỹ
G
× Ỹ ′ → (X ×X ′)G]. Note

that (Vj × Vj , Uj × Uj) is a good pair for j of dimension 2l and (X ×X ′)G is
the quotient of X ×X ′ × Uj × Uj for the free diagonal action of G and α ⋆ α′

is a well defined cobordism cycle by Lemma 5.1.

Suppose now that W
p
−→ XG × �

1 is a projective morphism from a smooth
scheme W such that the composite map π : W → XG × �

1 → �
1 is a double

point degeneration with W∞ = π−1(∞) smooth. Letting G act trivially on �
1,

this gives a unique G-equivariant double point degeneration W̃
p̃
−→ X×Uj×�

1

of G-schemes. This implies in particular that W̃ × Ỹ ′ p̃×f̃ ′

−−−→ X×X ′×Uj×Uj×
�

1 is also a G-equivariant double point degeneration whose quotient for the

free G-action gives a double point degeneration W̃
G
× Ỹ ′ q

−→ (X ×X ′)G × �
1.

Moreover, it is easy to see from this that C(p)⋆α′ = C(q) (cf. (2.4)). Reversing

Documenta Mathematica 17 (2012) 95–134



Equivariant Cobordism of Schemes 113

the roles of X and X ′ and using (2.4) and Theorem 2.3, we get the maps

Ωi+l−g(XG)⊗ Ωi′+l−g(X
′
G)→ Ωi+i′−2l−g ((X ×X

′)G) .

It is also clear from the definition of α ⋆ α′ and the niveau filtration that

{Fd+l−g−jΩi+l−g(XG)⊗ Ωi′+l−g(X
′
G)}+

+ {Ωi+l−g(XG)⊗ Fd′+l−g−jΩi′+l−g(X
′
G)} →

→ Fd+d′+2l−g−jΩi+i′−2l−g−j ((X ×X
′)G) .

This defines the maps as in (5.2). One can now show as in Lemma 4.2 that
these maps are independent of the choice of the good pairs. We get the desired
exterior product as the composite map

ΩGi (X)⊗Z ΩGi′ (X
′) = lim

←−
j

ΩGi (X)j ⊗Z lim
←−
j

ΩGi′ (X
′)j

→ lim
←−
j

(
ΩGi (X)j ⊗Z ΩGi′ (X

′)j

)
(5.3)

→ lim
←−
j

ΩGi+i′ (X ×X
′)
j
= ΩGi+i′ (X ×X

′).(5.4)

Finally forX smooth, we get the product structure on Ω∗
G(X) via the composite

Ω∗
G(X) ⊗Z Ω∗

G(X) → Ω∗
G(X × X)

∆∗

X−−→ Ω∗
G(X). The projection formula can

now be proven by using the non-equivariant version of such a formula (cf. [31,
5.1.4]) at each level of the projective system {ΩiG(X)j} and then taking the

inverse limit. �

We now turn our attention to the question of the localization sequence in
equivariant cobordism. In the topological context, Buhstaber-Miscenko [6, 7]
defined the topological K-theory of an infinite CW -complex as the projective
limit of the K-theory of finite skeleta. They suggested that this theory might
not have the Gysin exact sequence. In [26], Landweber showed that such a
phenomenon for the K-theory is also reflected in the complex cobordism. This
makes us believe that one should not expect the full localization sequence for the
equivariant algebraic cobordism considered here. On the positive side however,
we can prove the following weaker result.

Proposition 5.3. Let X be a G-scheme of dimension d and let f : U →֒ X be a
G-invariant open subscheme. Then the restriction map f∗ : ΩG∗ (X)→ ΩG∗ (U)
is surjective.

Proof. Let Z be the complement of U in X with the reduced induced closed
subscheme structure and let g : Z →֒ X be the inclusion map.
We fix integers i ∈ Z and j ≥ 0 and choose a good pair (Vj , Uj) of dimension l
for j. Then we see that Z is a G-invariant closed subscheme of X and ZG ⊆ XG

is a closed subscheme with the complement UG. Hence by applying Theorem 3.5
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at the appropriate levels of the niveau filtration and taking the quotients, we
get an exact sequence

Ωi+l−g(ZG)

Fd+l−g−jΩi+l−g(ZG)
→

Ωi+l−g(XG)

Fd+l−g−jΩi+l−g(XG)
→

Ωi+l−g(UG)

Fd+l−g−jΩi+l−g(UG)
→ 0.

If d′ = dim(Z), then Fd′+l−g−jΩi+l−g(ZG) ⊆ Fd+l−g−jΩi+l−g(ZG) and hence
by Lemma 4.2, we get an exact sequence of inverse systems

(5.5) ΩGi (Z)j
φi
j

−→ ΩGi (X)j → ΩGi (U)j → 0.

Setting M i
j and N i

j to be the kernel and the image of the map φij respec-
tively, (5.5) can be split into the short exact sequences of inverse systems

(5.6) 0→M i
j → ΩGi (Z)j → N i

j → 0;

(5.7) 0→ N i
j → ΩGi (X)j → ΩGi (U)j → 0.

It follows from Lemma 4.3 that {ΩGi (Z)j}j≥0 is an inverse system of surjective

maps and hence so is {N i
j}j≥0. In particular, it satisfies the Mittag-Leffler

(ML) condition. As a consequence, we get an exact sequence of inverse limits

lim
←−
j

N i
j → ΩGi (X)→ ΩGi (U)→ 0

and this proves the proposition. �

Proposition 5.4 (Morita Isomorphism). Let H ⊂ G be a closed subgroup and
let X ∈ VH . Then there is a canonical isomorphism

(5.8) ΩG∗

(
G

H
× X

)
∼=
−→ ΩH∗ (X).

Proof. Define an action of H ×G on G×X by

(h, g) · (g′, x) =
(
gg′h−1, hx

)
,

and an action of H ×G on X by (h, g) · x = hx. Then the projection map G×

X
p
−→ X is (H ×G)-equivariant which is a G-torsor. Hence by [9, Lemma 7.2],

the natural map ΩH∗ (X)
p∗

−→ ΩH×G
∗ (G ×X) is an isomorphism. On the other

hand, the projection map G × X → G
H
× X is (H ×G)-equivariant which is

an H-torsor. Hence we get an isomorphism ΩG∗

(
G

H
× X

)
∼=
−→ ΩH×G

∗ (G×X).

The proposition follows by combining these two isomorphisms. �

6. Computations

Let X be a k-scheme of dimension d with a G-action. We have seen above that

unlike the situation of Chow groups, the cobordism group Ωi+l−g

(
X

G
× Uj

)

is not independent of the choice of the l-dimensional good pair (Vj , Uj) even if
j is large enough. This anomaly is rectified by considering the quotients of the
cobordism groups of the good pairs by the niveau filtration. Our main result
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in this section is to show that if we suitably choose a sequence of good pairs
{(Vj , Uj)}j≥0, then the above equivariant cobordism group can be computed

without taking quotients by the niveau filtration. This reduction is often very
helpful in computing the equivariant cobordism groups.

Theorem 6.1. Let {(Vj , Uj)}j≥0 be a sequence of lj-dimensional good pairs

such that
(i) Vj+1 = Vj ⊕Wj as representations of G with dim(Wj) > 0 and
(ii) Uj ⊕Wj ( Uj+1 as G-invariant open subsets.
(iii) codimVj+1 (Vj+1 \ Uj+1) > codimVj

(Vj \ Uj).
Then for any scheme X as above and any i ∈ Z, we have

lim
←−
j

Ωi+lj−g

(
X

G
× Uj

)
∼=
−→ ΩGi (X).

Moreover, such a sequence {(Vj , Uj)}j≥0 of good pairs always exists.

Proof. Let {(Vj , Uj)}j≥0 be a sequence of good pairs as in the theorem. We

have natural maps

Ωi+lj+1−g

(
X

G
× Uj+1

)
։(6.1)

։ Ωi+lj+1−g

(
X

G
× (Uj ⊕Wj)

)
∼=
←− Ωi+lj−g

(
X

G
× Uj

)
,

where the first map is the restriction to an open subset and the second is the
pull-back via a vector bundle. Taking the quotients by the niveau filtrations,
we get natural maps (cf. proof of Lemma 4.2)
(6.2)

Ωi+lj+1−g

(
X

G

×Uj+1

)

Fd+lj+1−g−j−1Ωi+lj+1−g

(
X

G
×Uj+1

) //

Ωi+lj+1−g

(
X

G

×(Uj⊕Wj)

)

Fd+lj+1−g−j−1Ωi+lj+1−g

(
X

G
×(Uj⊕Wj)

)

Ωi+lj−g

(
X

G

×Uj

)

Fd+lj−g−jΩi+lj−g

(
X

G
×Uj

)
Ωi+lj−g

(
X

G

×Uj

)

Fd+lj−g−j−1Ωi+lj−g

(
X

G
×Uj

)

∼=

OO

oooo

where the right vertical arrow is an isomorphism by Proposition 3.9. Setting

Xj = X
G
× Uj, we get natural maps

(6.3) Ωi+lj+1−g (Xj+1)
νj+1
j

//

����

Ωi+lj−g (Xj)

����

Ωi+lj+1−g(Xj+1)

Fd+lj+1−g−j−1Ωi+lj+1−g(Xj+1)
//

Ωi+lj−g(Xj)

Fd+lj−g−jΩi+lj−g(Xj)
.
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Since (Vj , Uj) is a good pair for each j, we see that
Ωi+lj−g(Xj)

Fd+lj−g−jΩi+lj−g(Xj)
∼=

ΩGi (X)j . Hence, we only have to show that the map

(6.4) lim
←−
j

Ωi+lj−g (Xj)→ lim
←−
j

Ωi+lj−g (Xj)

Fd+lj−g−jΩi+lj−g (Xj)

is an isomorphism in order to prove the theorem.
To prove (6.4), we only need to show that for any given j ≥ 0, the map

Ωi+lj′−g (Xj′)
νj′

j

−−→ Ωi+lj−g (Xj) factors through

(6.5)
Ωi+lj′−g (Xj′)

Fd+lj′−g−j′Ωi+lj′−g (Xj′)
→ Ωi+lj−g (Xj) for all j′ ≫ j.

However, it follows from (6.2) that νj
′

j induces the map

Ωi+lj′−g (Xj′)

Fd+lj′−g−j′Ωi+lj′−g (Xj′)
→

Ωi+lj−g (Xj)

Fd+lj−g−j′Ωi+lj−g (Xj)
.

On the other hand Fd+lj−g−j′Ωi+lj−g (Xj) vanishes for j′ ≫ j. This
proves (6.5) and hence (6.4).
Finally, it follows easily from the proof of Lemma 4.2 (see also [39, Remark 1.4])
that a sequence of good pairs as in Theorem 6.1 always exists. �

As a simple corollary of Theorem 6.1, we get the following localization sequence
for the equivariant cobordism in a special case.

Corollary 6.2. Let X be a G-scheme and let Z ⊆ X be a G-invariant closed
subscheme with the complement U . Assume that there is a G-equivariant pro-
jective morphism p : X → Y whose restriction to Z is an isomorphism. Then
there is a short exact sequence

(6.6) 0→ ΩG∗ (Z)→ ΩG∗ (X)→ ΩG∗ (U)→ 0.

Proof. Let {(Vj , Uj)}j≥0 be a sequence of good pairs as in Theorem 6.1. The
localization sequence for the ordinary algebraic cobordism yields for any i ∈ Z,
an exact sequence of inverse systems

(6.7) Ωi+lj−g

(
Z

G
× Uj

)
→ Ωi+lj−g

(
X

G
× Uj

)
→ Ωi+lj−g

(
U

G
× Uj

)
→ 0.

It follows from Lemma 5.1 that there are projective morphisms Z
G
× Uj

fj
−→

X
G
× Uj

pj
−→ Y

G
× Uj such that pj ◦ fj is an isomorphism. This implies that the

map pj∗ ◦ fj∗ is an isomorphism. In other words, (6.8) is in fact a short exact
sequence of inverse systems
(6.8)

0→ Ωi+lj−g

(
Z

G
× Uj

)
→ Ωi+lj−g

(
X

G
× Uj

)
→ Ωi+lj−g

(
U

G
× Uj

)
→ 0.
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We have moreover seen in (6.1) that {Ωi+lj−g(Z
G
× Uj)}j≥0 is an inverse system

of surjective maps. It follows that (6.8) remains short exact after taking limit,
which proves (6.6). �

Another consequence of Theorem 6.1 is that for a linear algebraic group G
acting on a scheme X of dimension d, the forgetful map rGX : ΩG∗ (X)→ Ω∗(X)
(cf. (4.6)) can be easily shown to be analogous to the one used in [10, Subsec-
tion 2.2] for the Chow groups. This interpretation of the forgetful map has some
interesting applications in the computation of the non-equivariant cobordism
using the equivariant techniques (cf. [20], [21]).
So let {(Vj , Uj)}j≥0 be a sequence of good pairs as in Theorem 6.1. We choose
a k-rational point x ∈ U0 and let xj be its image in Uj/G under the natural

map U0 → U0/G → Uj/G. Setting Xj = X
G
× Uj , this yields a commutative

diagram

(6.9) X × Uj
pj

//

πj

��

Xj
φj

//

ψj

��

Xj+1

ψj+1

��

Uj // Uj/G // Uj+1/G

such that the left square is Cartesian and

(6.10) X ∼= π−1
j (x)

∼=
−→ ψ−1

j (xj)
∼=
−→ ψ−1

j+1(xj+1).

Let νj : ψ−1
j (xj) →֒ Xj be the closed embedding. Notice that since Uj/G is

smooth and ψj is flat, it follows that νj is a regular closed embedding (hence an
l.c.i. morphism). Using the identification in (6.10), we get maps ν∗j : Ω∗(Xj)→
Ω∗(X) such that ν∗j ◦ φ

∗
j = ν∗j+1. Taking the limit over j ≥ 0, this yields for

any i ∈ Z, a restriction map

(6.11) r̃GX : ΩGi (X) = lim
←−
j≥0

ΩGi (X)j → Ωi(X).

Corollary 6.3. The maps rGX , r̃
G
X : ΩGi (X)→ Ωi(X) coincide.

Proof. Using the construction of the map rGX in (4.6) and the diagram (6.9), it
suffices to show that for any i ∈ Z, the natural maps

Ωi(X)

Fd−jΩi(X)
←

Ωi (X × Vj)

Fd+lj−jΩi (X × Vj)
→

Ωi (X × Uj)

Fd+lj−jΩi (X × Uj)

are isomorphisms for all j ≫ 0. Here, the first map is the restriction induced
by the section corresponding to the rational point xj ∈ Uj/G, and the second
map is the restriction to an open subset. The existence of the first map follows
from Proposition 3.9. The assertion that these two maps are isomorphisms
follows immediately from Corollary 3.6 and Proposition 3.9. �

Remark 6.4. It follows from Corollary 6.3 that the map r̃GX does not depend
on the choice of the k-rational point x ∈ U0.
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6.1. Graded vs. completed cobordism rings. Another consequence of
Theorem 6.1 is that it allows us to explain the relation between the graded
(or noncomplete) and the nongraded (or complete) versions of the equivariant
cobordism rings of smooth G-schemes. If {(Vj , Uj)}j≥0 is a sequence of lj-

dimensional good pairs as in Theorem 6.1, then it can be easily checked from
the proof of this theorem that the expression

(6.12) Ω̂∗
G(X) = lim

←−
j

Ω∗

(
X

G
× Uj

)

is well-defined and there is a natural map ιX : Ω∗
G(X)→ Ω̂∗

G(X).

Furthermore, the surjectivity of the map Ω∗

(
X

G
× Uj+1

)
→ Ω∗

(
X

G
× Uj

)

(cf. (6.1)) implies that ιX identifies Ω̂∗
G(X) as the completion of Ω∗

G(X) with
respect to the linear topology given by the decreasing filtration

F jΩ∗
G(X) = Ker

(
Ω∗
G(X) ։ Ω∗

(
X

G
× Uj

))
.

6.2. Formal group law in equivariant cobordism. Let G be a linear al-
gebraic group over k acting on a scheme X of dimension d. We have seen before
that the equivariant line bundles on X give rise to the equivariant Chern class
operators on ΩG∗ (X). Below, we write down an expression for the equivariant
Chern class of the tensor product of two such line bundles.
Let {(Vj , Uj)}j≥0 be a sequence of lj-dimensional good pairs as in Theorem 6.1.

Letting Xj = X
G
× Uj , we see that for every j ≥ 0, Ω∗ (Xj) =

⊕
i∈Z

Ωi+lj−g(Xj)

is an L-module and for j′ ≥ j, there is a natural surjection Ω∗ (Xj′) ։ Ω∗ (Xj)
of L-modules.
Given G-equivariant line bundles L,M on X , we get line bundles Lj,Mj on

Xj , where Lj = L
G
× Uj for j ≥ 0. The formal group law of the non-equivariant

cobordism yields

c1 ((L ⊗M)j) =

= c1 (Lj ⊗Mj) = c1(Lj) + c1(Mj) +
∑

i,i′≥1

ai,i′ (c1(Lj))
i ◦ (c1(Mj))

i′
.

Note that if (xj) ∈ ΩGi (X), then the evaluation of the operator cG1 (L)(xj) at
any level j ≥ 0 is a finite sum above.
Taking the limit over j ≥ 0 and noting that the sum (and the product) in the
equivariant cobordism groups are obtained by taking the limit of the sums (and
the products) at each level of the inverse system, we get the same formal group
law for the equivariant Chern classes:

(6.13) cG1 (L⊗M) = cG1 (L) + cG1 (M) +
∑

i,i′≥1

ai,i′
(
cG1 (L)

)i
◦
(
cG1 (M)

)i′
.
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Note that the coefficients ai,i′ are homogeneous elements of L and can be
considered as elements of S(G) under the natural inclusion of graded rings
L →֒ S(G) . One should also observe that unlike the case of ordinary cobordism,
the evaluation of the above sum on any given equivariant cobordism cycle may
no longer be finite. In other words, the equivariant Chern classes are not in
general locally nilpotent.

6.3. Cobordism ring of classifying spaces. Let R be a Noetherian ring
and let A = ⊕

j∈Z
Aj be a Z-graded R-algebra with R ⊆ A0. Recall that the

graded power series ring S(n) = ⊕
i∈Z
Si is a graded ring such that Si is the set

of formal power series of the form f(t) =
∑

m(t)∈C

am(t)m(t) such that am(t) is

a homogeneous element of A of degree |am(t)|and |am(t)| + |m(t)| = i. Here,
C is the set of all monomials in t = (t1, · · · , tn) and |m(t)| = i1 + · · · + in if

m(t) = ti11 · · · t
in
n . We call |m(t)| to be the degree of the monomial m(t).

We shall write the above graded power series ring as A[[t]]gr to distinguish

it from the usual formal power series ring A[[t]]. Notice that if A is only
non-negatively graded, then S(n) is nothing but the standard polynomial ring
A[t1, · · · , tn] overA. It is also easy to see that S

(n) is indeed a graded ring which
is a subring of the formal power series ring A[[t1, · · · , tn]]. The following result
summarizes some basic properties of these rings. The proof is straightforward
and is left as an exercise.

Lemma 6.5. (i) There are inclusions of rings A[t1, · · · , tn] ⊂ S(n) ⊂
A[[t1, · · · , tn]], where the first is an inclusion of graded rings.
(ii) These inclusions are analytic isomorphisms with respect to the t-adic topol-
ogy. In particular, the induced maps of the associated graded rings

A[t1, · · · , tn]→ Gr(t)S
n → Gr(t)A[[t1, · · · , tn]]

are isomorphisms.

(iii) S(n−1)[[tn]]gr
∼=−→ S(n).

(iv) S(n)

(ti1 ,··· ,tir )

∼=
−→ S(n−r) for any n ≥ r ≥ 1, where S(0) = A.

(v) The sequence {t1, · · · , tn} is a regular sequence in S(n).
(vi) If A = R[x1, x2, · · · ] is a polynomial ring with |xi| < 0 and lim

i→∞
|xi| = −∞,

then S(n)
∼=
−→ lim
←−
i

R[x1, · · · , xi][[t]]gr.

Examples 6.6. In the following examples, we compute Ω∗(BG) = Ω∗
G(k) for

some classical groups G over k. These computations follow directly from the
definition of equivariant cobordism and suitable choices of good pairs.
We first consider the case when G = Gm is the multiplicative group. For
any j ≥ 1, we choose the good pair (Vj , Uj), where Vj is the j-dimensional
representation of Gm with all weights −1 and Uj is the complement of the

origin. We see then that Uj/Gm ∼= Pj−1
k . Let ζ be the class of c1(O(−1))(1) ∈

Ω1(Pj−1
k ). The projective bundle formula for the ordinary algebraic cobordism
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implies that (ΩiG)j =
⊕

0≤p≤j−1

Li−pζp. Taking the inverse limit over j ≥ 1, we

find from this that for i ∈ Z,

ΩiGm
(k) =

∏

p≥0

Li−pζp.

It particular, if x =
n∑
j=1

xij is a sum of homogeneous elements of Ω∗(BGm),

then we get a natural map

(6.14) Ω∗(BGm)→ L[[t]]gr

x =
(
xi1 =

∏
ai1p ζ

p, · · · , xin =
∏

ainp ζ
p
)
7→
∑

p≥0


 ∑

1≤j≤n

aijp


 tp,

which is an isomorphism of graded L-algebras. Observe that ̂Ω∗(BGm)
(cf. (6.12)) is the formal power series ring L[[t]].
For a general split torus T of rank n, we choose a basis {χ1, · · · , χn} of the

character group T̂ . This is equivalent to a decomposition T = T1 × · · · × Tn
with each Ti isomorphic to Gm and χi is a generator of T̂i. Let Lχ be the
one-dimensional representation of T , where T acts via χ. For any j ≥ 1, we

take the good pair (Vj , Uj) such that Vj =
n∏
i=1

L⊕j
χi

, Uj =
n∏
i=1

(
L⊕j
χi
\ {0}

)
and

T acts on Vj by (t1, · · · , tn)(x1, · · · , xn) = (χ1(t1)(x1), · · · , χn(tn)(xn)). It is

then easy to see that Uj/T ∼= X1 × · · · ×Xn with each Xi isomorphic to Pj−1
k .

Moreover, the T -line bundle Lχi
gives the line bundle Lχi

Ti

×
(
L⊕j
χi
\ {0}

)
→ Xi

which is O(±1). Letting ζi be the first Chern class of this line bundle, the
projective bundle formula for the non-equivariant cobordism shows that

ΩiT (k) =
∏

p1,··· ,pn≥0

L
i−(

n∑
i=1

pi)
ζp11 · · · ζ

pn
n ,

which is isomorphic to the set of formal power series in {ζ1, · · · , ζn} of degree
i with coefficients in L. It particular, one concludes as in the rank one case
above that

Proposition 6.7. Let {χ1, · · · , χn} be a chosen basis of the character group
of a split torus T of rank n. The assignment ti 7→ cT1 (Lχi

) yields a graded
L-algebra isomorphism

L[[t1, · · · , tn]]gr → Ω∗(BT ).

For G = GLn, we can take a good pair for j to be (Vj , Uj), where Vj is the
vector space of n× p matrices with p > n with GLn acting by left multiplica-
tion, and Uj is the open subset of matrices of maximal rank. Then the mixed
quotient is the Grassmannian Gr(n, p). We can now calculate the cobordism
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ring of Gr(n, p) using the projective bundle formula (by standard stratifica-
tion technique) and then we can use the similar calculations as above to get a
natural isomorphism

(6.15) Ω∗(BGLn)→ L[[γ1, · · · , γn]]gr

of graded L-algebras, where γi’s are the elementary symmetric polynomials in
t1, · · · , tn that occur in (6.14).
Another way to obtain the isomorphism (6.15) is to observe that the Weyl
group of GLn is the permutation group Sn and tGLn

= 1, where tG denotes
the torsion index of a connected reductive group G. It follows from [15, The-
orem 3.7] that we can assume the base field to be the field of complex num-
bers. Subsequently, it follows from [15, Proposition 4.8] that the natural map

Ω∗(BGLn) → (Ω∗(BT ))Sn = L[[γ1, · · · , γn]]gr is an isomorphism. Using the

same argument, on obtains an isomorphism Ω∗(BSLn)
∼=
−→ L[[γ2, · · · , γn]]gr.

Remark 6.8. The cobordism rings of BGLn and BSLn have also been written
down by Deshpande in [9, Section 4]. His expressions depend on the assumption
that these groups are isomorphic to the complex cobordism. As the reader will
find in Subsection 7.3, there may not in general exist a map from the algebraic
to the complex equivariant cobordism although such a map does exist for a
classifying space BG (cf. Corollary 7.7). Moreover, it is not clear when such a
map is an isomorphism. We refer the reader to [15, Theorem 3.7] for a result
in this direction.

7. Comparison with other equivariant cohomology theories

In this paper, we fix the following notation for the tensor product while deal-
ing with inverse systems of modules over a commutative ring. Let A be a
commutative ring with unit and let {Ln} and {Mn} be two inverse systems
of A-modules with inverse limits L and M respectively. Following [38], one
defines the topological tensor product of L and M by

(7.1) L⊗̂AM := lim
←−
n

(Ln⊗AMn).

In particular, if D is an integral domain with quotient field F and if
{An} is an inverse system of D-modules with inverse limit A, one has

A⊗̂DF = lim←−
n

(An⊗DF ). The examples Ẑ(p) = lim←−
n

Z/pn and Z[[x]] ⊗Z Q →

lim
←−
n

Z[x]
(xn)⊗ZQ = Q[[x]] show that the map A ⊗D F → A⊗̂DF is in general nei-

ther injective nor surjective. We shall denote A⊗̂DF in the sequel by AF to
simplify the notations.
If R is a Z-graded ring and if M and N are two R-graded modules, then recall
that M ⊗R N is also a graded R-module given by the quotient of M ⊗R0 N
by the graded submodule generated by the homogeneous elements of the type
ax ⊗ y − x⊗ ay where a, x and y are the homogeneous elements of R, M and
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N respectively. If all the graded pieces Mi and Ni are the limits of inverse sys-
tems {Mλ

i } and {N
λ
i } of R0-modules, we define the graded topological tensor

product as M⊗̂RN =
⊕
i∈Z

(
M⊗̂RN

)
i
, where

(7.2)
(
M⊗̂RN

)
i
= lim
←−
λ


 ⊕

j+j′=i

Mλ
j ⊗R0 N

λ
j′

(ax⊗ y − x⊗ ay)


 .

Notice that this reduces to the ordinary tensor product of graded R-modules
if the underlying inverse systems are trivial.

7.1. Comparison with equivariant Chow groups. Let X be a k-scheme
of dimension d with a G-action. It was shown by Levine and Morel [31] that
there is a natural map Ω∗(X) → CH∗(X) of graded abelian groups which is
a ring homomorphism if X is smooth. Moreover, this map induces a graded
isomorphism

(7.3) Ω∗(X)⊗L Z
∼=
−→ CH∗(X).

Recall from [39] and [10] that the equivariant Chow groups of X are defined

as CHGi (X) = CHi+l−g

(
X

G
× U

)
, where (V, U) is an l-dimensional good pair

corresponding to d− i+1. It is known that CHGi (X) is well-defined and can be

non-zero for any −∞ < i ≤ d. We set CHG∗ (X) =
⊕
i

CHGi (X). If X is equi-

dimensional, we let CHiG(X) = CHGd−i(X) and set CH∗
G(X) =

⊕
i≥0

CHiG(X).

Notice that in this case, CHiG(X) is same as CHi
(
X

G
× U

)
, where (V, U) is

an l-dimensional good pair corresponding to i+ 1.
If we fix i ∈ Z and choose an l-dimensional good pair (Vj , Uj) corresponding
to j ≥ max(0, d − i + 1), the universality of the algebraic cobordism gives a

unique map Ωi+l−g

(
X

G
× Uj

)
→ CHi+l−g

(
X

G
× Uj

)
. By Lemma 3.7, this

map factors through

(7.4)

Ωi+l−g

(
X

G
× Uj

)

Fi+l−g−1Ωi+l−g

(
X

G
× Uj

) → CHi+l−g

(
X

G
× Uj

)
.

Since j ≥ d− i+1 by the choice, we have d+ l− g− j ≤ i+ l− g− 1 and hence
we get the map
(7.5)

ΩGi (X)j =

Ωi+l−g

(
X

G
× Uj

)

Fd+l−g−jΩi+l−g

(
X

G
× Uj

) → CHi+l−g

(
X

G
× Uj

)
= CHGi (X).
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It is easily shown using the proof of Lemma 4.2 that this map is independent
of the choice of the good pair (Vj , Uj). Taking the inverse limit over j ≥ 0,

we get a natural map ΩGi (X)→ CHGi (X) and hence a map of graded abelian
groups

(7.6) ΦX : ΩG∗ (X)→ CHG∗ (X)

which is in fact a map of graded L-modules. Notice that the right side of (7.5)
does not depend on j as long as j ≫ 0. If X is equi-dimensional, we write the
above map cohomologically as Ω∗

G(X)→ CH∗
G(X).

Example 7.1. Let T be a split torus of rank n over k. It follows from
Proposition 6.7 that Ω∗(BT ) is isomorphic to the graded power series ring
L[[t1, · · · , tn]]gr. One knows that CH∗(BT ) is isomorphic to the polynomial
ring Z[t1, · · · , tn] (cf. [10, 3.2]). And the map Φk : Ω∗(BT ) → CH∗(BT ) in
this case is the obvious map L[[t1, · · · , tn]]gr → Z[t1, · · · , tn] obtained by killing
the ideal L<0.

Proposition 7.2. The map ΦX induces an isomorphism of graded L-modules

ΦX : ΩG∗ (X)⊗̂LZ
∼=
−→ CHG∗ (X).

Proof. Let {(Vj , Uj)}j≥0 be a sequence of lj-dimensional good pairs as in The-

orem 6.1. It follows from (7.3) that for any i ∈ Z, there is a short exact
sequence
(7.7)

0→
(
L<0Ω∗(Xj) ∩Ωi+lj−g(Xj)

)
→ Ωi+lj−g(Xj)→ CHi+lj−g(Xj)→ 0.

By comparing this exact sequence for j′ ≥ j ≥ 0, using the surjection
Ωi+lj+1−g(Xj+1) → Ωi+lj−g(Xj) as in (6.1) and using the localization se-
quences for the cobordism and Chow groups, we find that the map

(
L<0Ω∗(Xj+1) ∩ Ωi+lj+1−g(Xj+1)

)
→
(
L<0Ω∗(Xj) ∩ Ωi+lj−g(Xj)

)

is surjective for each j ≥ 0. Taking the limit in (7.7) and using Theorem 6.1,
we get a short exact sequence

0→ lim
←−
j≥0

(
L<0Ω∗(Xj) ∩ Ωi+lj−g(Xj)

)
→ ΩGi (X)→ CHGi (X)→ 0.

Observe here that the inverse system {CHi+l−g(Xj)}j≥0 is eventually constant

with CHGi (X) as its limit. We now take the direct sum over i ∈ Z to get the

desired isomorphism ΩG∗ (X)⊗̂LZ
∼=
−→ CHG∗ (X). �

Let C(G) = CH∗
G(k) denote the equivariant Chow ring of the field k. The

following is the equivariant analogue of (7.3).

Corollary 7.3. For a k-scheme X with a G-action, the natural map

ΩG∗ (X)⊗S(G)C(G)→ CHG∗ (X)

is an isomorphism of C(G)-modules. This is a ring isomorphism if X is smooth.
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Proof. It is clear that the above map is a ring homomorphism if X is smooth.
So we only need to prove the first assertion. But this follows directly from the
isomorphisms ΩG∗ (X)⊗S(G)C(G) ∼= ΩG∗ (X)⊗S(G)

(
S(G)⊗̂LZ

)
∼= ΩG∗ (X)⊗̂LZ

using Proposition 7.2. �

7.2. Comparison with equivariant K-theory. It was shown by Levine
and Morel in [30, Corollary 11.11] that the universal property of the algebraic
cobordism implies that there is a canonical isomorphism of oriented cohomology
theories

(7.8) Ω∗(X)⊗L Z[β, β−1]
∼=
−→ K0(X)[β, β−1]

in the category of smooth k-schemes. This was later generalized to a complete
algebraic analogue of the Conner-Floyd isomorphism

MGL∗ ⊗L Z[β, β−1]
∼=
−→ K∗(X)[β, β−1]

between the motivic cobordism and algebraic K-theory by Panin, Pimenov
and Röndigs [33]. Since the equivariant cobordism is a Borel style cohomol-
ogy theory, one can not expect an equivariant version of the isomorphism (7.8)
even with the rational coefficients. However, we show here that the equivari-
ant Conner-Floyd isomorphism holds after we base change the above by the
completion of the representation ring of G with respect to the ideal of virtual
representations of rank zero. In fact, it can be shown easily that such a base
change is the minimal requirement. In Theorem 7.4, all cohomology groups are
considered with rational coefficients (cf. Section 8).
For a linear algebraic group G, let R(G) denote the representation ring of
G. Let I denote the ideal of of virtual representations of rank zero in R(G)

and let R̂(G) denote the associated completion of R(G). Let Ĉ(G) denote
the completion of C(G) with respect to the augmentation ideal of algebraic
cycles of positive codimensions. For a scheme X with G-action, let KG

0 (X)
denote the Grothendieck group of G-equivariant vector bundles on X . By [11,

Theorem 4.1], there is a natural ring isomorphism R̂(G)
∼=
−→ Ĉ(G) given by the

equivariant Chern character. We identify these two rings via this isomorphism.

In particular, the maps S(G) ։ C(G) → Ĉ(G) yield a ring homomorphism

S(G)→ R̂(G).

Theorem 7.4. Let X be a smooth scheme with a G-action. Then, with rational
coefficients, there is a natural isomorphism of rings

ΨX : Ω∗
G(X)⊗S(G)R̂(G)

∼=
−→ KG

0 (X)⊗R(G) R̂(G).

Proof. By [17, Theorem 1.2], there is a Chern character isomorphism

KG
0 (X) ⊗R(G) R̂(G)

∼=
−→ CH∗(X) ⊗C(G) Ĉ(G) of cohomology rings. Thus, we

only need to show that the map Ω∗
G(X)⊗S(G)Ĉ(G)→ CH∗(X)⊗C(G) Ĉ(G) is
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an isomorphism. However, we have

Ω∗
G(X)⊗S(G)Ĉ(G) ∼=

(
Ω∗
G(X)⊗S(G)C(G)

)
⊗C(G) Ĉ(G)

∼= CH∗
G(X)⊗C(G) Ĉ(G),

where the last isomorphism follows from Corollary 7.3. This finishes the proof.
�

7.3. Comparison with complex cobordism. Let G be a complex Lie group
acting on a finite CW -complex X . We define the equivariant complex cobor-

dism ring of X as

(7.9) MU∗
G(X) :=MU∗

(
X

G
× EG

)

where EG → BG is universal principal G-bundle over the classifying space
BG of G. If E′G → B′G is another such bundle, then the projection (X ×

EG×E′G)/G→ X
G
× EG is a fibration with contractible fiber. In particular,

MU∗
G(X) is well-defined. Moreover, if G acts freely on X with quotient X/G,

then the map X
G
× EG → X/G is a fibration with contractible fiber EG and

hence we get MU∗
G(X) ∼=MU∗(X/G).

For a linear algebraic group G over C acting on a C-scheme X , let H∗
G(X,A)

denote the (equivariant) cohomology of the complex analytic space X(C) with
coefficients in the ring A.

Proposition 7.5. Assume that X ∈ VSG is such that H∗
G(X,Z) is torsion-free.

Then there is a natural homomorphism of graded rings

ρGX : Ω∗
G(X)→MU2∗

G (X).

Proof. If {(Vj , Uj)} is a sequence of good pairs as in Theorem 6.1, then the
universality of the Levine-Morel cobordism gives a natural L-algebra map of
inverse systems

Ωi
(
X

G
× Uj

)
→MU2i

(
X

G
× Uj

)

which after taking limits yields the map

(7.10) ΩiG(X) = lim
←−
j≥0

Ωi
(
X

G
× Uj

)
→ lim
←−
j≥0

MU2i

(
X

G
× Uj

)
.

On the other hand, it follows from [15, Lemma 3.2] (see also [39, Theorem 2.1])
that there is a Milnor exact sequence
(7.11)

0 // lim
←−
j≥0

1 MU2i−1

(
X

G
× Uj

)
// MU2i

(
X

G
× EG

)
// lim
←−
j≥0

MU2i

(
X

G
× Uj

)
// 0.

Moreover, it follows from our assumption and [26, Corollary 1] that the
first term of this exact sequence vanishes. This yields the natural map
ρGX : ΩiG(X)→MU2i

G (X). �
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It follows from the proof of [26, Corollary 1] that the first term in (7.11) al-
ways vanishes if we work over the rationals. We can thus imitate the proof
of Proposition 7.5 to see that there is a natural map Ω∗

G(X)Q → MU2∗
G (X)Q.

Combining this with Proposition 7.2 (with rational coefficients), one concludes
the following.

Corollary 7.6. For any X ∈ VSG, there is a natural map of graded LQ-algebras

ρGX : Ω∗
G(X)Q →MU2∗

G (X)Q.

In particular, there is a natural ring homomorphism

ρGX : CH∗
G(X)Q →MU2∗

G (X)Q⊗̂LQ
Q

which factors the cycle class map CH∗
G(X)→ H2∗

G (X,Q).

Corollary 7.7. There is a natural morphism Ω∗(BG) → MU2∗(BG) of
graded L-algebras. In particular, there is a natural ring homomorphism
CH∗(BG) → MU2∗(BG)⊗̂LZ which factors the cycle class map CH∗(BG) →
H2∗(BG,Z).

Proof. The first assertion follows immediately from (7.10), (7.11) and [26, The-
orem 1] using the fact that BG is homotopy equivalent to the classifying space
of its maximal compact subgroup. The second assertion follows from the first

and Proposition 7.2 using the identification L
∼=
−→MU∗. �

Remark 7.8. The map CH∗(BG) → MU2∗(BG)⊗̂LZ has also been con-
structed by Totaro [39] by a different method.

We shall study the above realization maps in more detail in the next section.

8. Reduction of arbitrary groups to tori

The main result of this section is to show that with the rational coefficients, the
equivariant cobordism of schemes with an action of a connected linear algebraic
group can be written in terms of the Weyl group invariants of the equivariant
cobordism for the action of the maximal torus. This reduces the problems
about the equivariant cobordism to the case where the underlying group is a
torus. We draw some consequences of this for the cycle class map from the
rational Chow groups to the complex cobordism groups of classifying spaces.
We first prove some reduction results about the equivariant cobordism which
reflect the relations between the G-equivariant cobordism and the equivariant
cobordism for actions of subgroups of G. The results of this section are used
in [19] and [21] to compute the non-equivariant cobordism ring of flag varieties
and flag bundles.

Proposition 8.1. Let G be a connected reductive group over k. Let B be
a Borel subgroup of G containing a maximal torus T over k. Then for any
X ∈ VG, the restriction map

(8.1) ΩB∗ (X)
rBT,X

−−−→ ΩT∗ (X)
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is an isomorphism.

Proof. By Proposition 5.4, we only need to show that

(8.2) ΩB∗

(
B

T
× X

)
∼= ΩB∗ (X) .

By [8, XXII, 5.9.5], there exists a characteristic filtration Bu = U0 ⊇ U1 ⊇
· · · ⊇ Un = {1} of the unipotent radical Bu of B such that Ui−1/Ui is a vector
group, each Ui is normal in B and TUi = T ⋉Ui. Moreover, this filtration also
implies that for each i, the natural map B/TUi → B/TUi−1 is a torsor under
the vector bundle Ui−1/Ui × B/TUi−1 on B/TUi−1. Hence, the homotopy
invariance (cf. Theorem 5.2) gives an isomorphism

ΩB∗ (B/TUi−1 ×X)
∼=
−→ ΩB∗ (B/TUi ×X) .

Composing these isomorphisms successively for i = 1, · · · , n, we get

ΩB∗ (X)
∼=−→ ΩB∗ (B/T ×X) .

The canonical isomorphism of B-varieties B
T
× X ∼= B/T × X and Proposi-

tion 5.4 together now prove (8.2) and hence (8.1). �

Proposition 8.2. Let H be a possibly non-reductive group over k. Let H =
L⋉Hu be the Levi decomposition of H (which exists since k is of characteristic
zero). Then the restriction map

(8.3) ΩH∗ (X)
rHL,X

−−−→ ΩL∗ (X)

is an isomorphism.

Proof. Since the ground field is of characteristic zero, the unipotent radical Hu

of H is split over k. Now the proof is exactly same as the proof of Proposi-
tion 8.1, where we just have to replace B and T by H and L respectively. �

Notation: All results in the rest of this section will be proven with the rational
coefficients. In order to simplify our notations, an abelian group A from now on
will actually mean the Q-vector space A⊗Z Q, and an inverse limit of abelian
groups will mean the limit of the associated Q-vector spaces. In particular, all
cohomology groups will be considered with the rational coefficients and ΩGi (X)
will mean

ΩGi (X) := lim←−
j

(
ΩGi (X)j ⊗Z Q

)
.

Notice that this is same as ΩGi (X)⊗̂ZQ in our earlier notation.
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8.1. The motivic cobordism theory. Before we prove our main results
of this section, we recall the theory of motivic algebraic cobordism MGL∗,∗

introduced by Voevodsky in [41]. This is a bi-graded ring cohomology theory
in the category of smooth schemes over k. Levine has recently shown in [28]
that MGL∗,∗ extends uniquely to a bi-graded oriented Borel-Moore homology
theory MGL′

∗,∗ on the category of all schemes over k. This homology theory
has exterior products, homotopy invariance, localization exact sequence and
Mayer-Vietoris among other properties (cf. [loc. cit., Section 3]). Moreover,
the universality of Levine-Morel cobordism theory implies that there is a unique
map

ϑ : Ω∗ →MGL′
2∗,∗

of oriented Borel-Moore homology theories. Our motivation for studying the
motivic cobordism theory in this text comes from the following result of Levine.

Theorem 8.3 ([29]). For any X ∈ Vk, the map ϑX is an isomorphism.

We recall from [28] that for a smooth k-scheme X , there is a Hopkins-Morel
spectral sequence

(8.4) Ep,q2 (n) = CHn−q(X, 2n− p− q)⊗ Lq ⇒MGLp+q,n(X)

which is an algebraic analogue of the Atiyah-Hirzebruch spectral sequence in
complex cobordism.
If X is possibly singular, we embed it as a closed subscheme of a smooth scheme
M . Then, the functoriality of the above spectral sequence with respect to an
open immersion yields a spectral sequence

Ep,q2 (n) = CHn−qX (M, 2n− p− q)⊗ Lq ⇒MGLp+q,nX (M)

of cohomology with support. Since the higher Chow groups and the motivic
cobordism groups of M with support in X are canonically isomorphic to the
higher Chow groups and the Borel-Moore motivic cobordism groups of X (cf.
[1], [29, Section 3]), the above spectral sequence is identified with

(8.5) E2
p,q(n) = CHn(X, p)⊗ Lq ⇒MGL′

2n+2q−p,n+q(X).

Now, suppose that a finite group G acts on X . By embedding X equivariantly
in a smooth G-scheme M , the formula

MGL′
p,q(X) := HomSH(k)

(
Σ∞
T M/(M −X),Σp

′,q′MGL
)

(where p′ = 2dim(M) − p, q′ = dim(M) − q) shows that G acts naturally on
MGL′

p,q(X). It also acts on the higher Chow groups CHp(X, q) likewise, where
we just have to replaceMGL in (8.5) by the Eilenberg-MacLane spectrum HZ.
Recall furthermore that MGL and HZ are ring spectra and the spectral se-
quence (8.4) (and hence (8.5)) is obtained by first showing that there is a
natural quotient morphism of ring spectra MGL → HZ. In particular, for
any G-scheme X , (8.5) is a spectral sequence of Z[G]-modules. The reader will
notice that the rational coefficients have not been used so far and Theorem 8.3
as well as the spectral sequence (8.5) hold integrally.
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We shall now use rational coefficients everywhere and draw some consequences
of Theorem 8.3 and (8.5). Since the functor of taking “G-invariants” is exact
on the category of Q[G]-modules, the spectral sequence (8.5) over the rationals,
yields the spectral sequence of G-invariants

(8.6) E′2
p,q(n) = (CHn(X, p))

G ⊗ Lq ⇒
(
MGL′

2n+2q−p,n+q(X)
)G
.

Recall that a connected and reductive group G over k is said to be split, if it
contains a split maximal torus T over k such that G is given by a root datum
relative to T . One knows that every connected and reductive group containing
a split maximal torus is split (cf. [8, Chapter XXII, Proposition 2.1]). In such a
case, the normalizer N of T in G and all its connected components are defined
over k and the quotient N/T is the Weyl group W of the corresponding root
datum. As an application of the spectral sequences (8.5) and (8.6), we get the
following.

Lemma 8.4. Let G be a connected reductive group with split maximal torus T
and the associated Weyl group W . Let G act freely on a scheme X. Then,

with rational coefficients, the pull-back map Ω∗(X/G) → (Ω∗(X/T ))
W (up to

a shift) is an isomorphism.

Proof. It follows from [17, Corollary 3.9] (see also [22, Corollary 8.9]) that in the

case under consideration, the natural map CH∗(X/G, p)→ (CH∗(X/T, p))
W

is
an isomorphism for all p ≥ 0. We can thus apply the spectral sequences (8.5)

and (8.6) to conclude that the mapMGL′
∗,∗(X/G)→

(
MGL′

∗,∗(X/T )
)W

is an
isomorphism. The lemma now follows from this isomorphism and Theorem 8.3.

�

Remark 8.5. The proof of Lemma 8.4 is based on the existence of the Atiyah-
Hirzebruch spectral sequence in the motivic cobordism. There is no published
proof of the existence of this spectral sequence, though it has been presented by
the authors during various seminars. We can give another proof of the above
lemma without using the spectral sequence as follows.
It was proven by Levine and Morel in [31, Theorems 4.1.28, 4.5.1] that there is
a morphism of oriented Borel-Moore homology theories Ω∗ → CH∗[t]

(t) which
is an isomorphism with rational coefficients. Here, CH∗[t] is the polynomial
module CH∗[t1, t2, · · · ] in infinitely many variables with deg(ti) = i. Recall
also that CH∗[t]

(t) is same as CH∗[t] as CH∗(k)-module.
Applying the above isomorphism to X/T and X/G and using the isomorphism

CH∗(X/G)
∼=
−→ (CH∗(X/T ))

W
(cf. [10, Proposition 9]), we immediately get

that the map Ω∗(X/G)→ (Ω∗(X/T ))
W

is an isomorphism.

Recall from Remark 4.6 that if a connected reductive group G acts on a scheme
X , then the Weyl group W acts on ΩT∗ (X) where T is a maximal torus of G.
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Theorem 8.6. 1 Let G be a connected linear algebraic group and let L be a
Levi subgroup of G with a split maximal torus T . Let W denote the Weyl group
of L with respect to T . Then for any X ∈ VG, the natural map

(8.7) ΩG∗ (X)→
(
ΩT∗ (X)

)W

is an isomorphism with rational coefficients.

Proof. By Proposition 8.2, we can assume that G = L and hence G is a con-
nected reductive group with split maximal torus T .
We choose a sequence of lj-dimensional good pairs {(Vj , Uj)} as in Theorem 6.1
for the G-action. Then, this is also a sequence of good pairs for the action of

T . Setting Xj
H = {X

H
× Uj} for any closed subgroup H ⊆ G, we see that {Xj

T}
is a sequence of W -schemes, each term of which has a free W -action. It follows
from Lemma 8.4 (or Remark 8.5) that the smooth pull-back map

(8.8) Ωi+lj−g

(
Xj
G

)
→
(
Ωi+lj−n

(
Xj
T

))W

is an isomorphism, where dim(G) = g and dim(T ) = n.

Since the action of W on the inverse system
{
Ωi+lj−n

(
Xj
T

)}
j
induces the

similar action on the inverse limit and since the inverse limit commutes with
taking the W -invariants, we get

(8.9) lim
←−
j

Ωi+lj−g

(
Xj
G

)
∼=
−→

(
lim
←−
j

Ωi+lj−n

(
Xj
T

))W
.

Since the left and the right terms are same as ΩGi (X) and
(
ΩTi (X)

)W
re-

spectively by choice of our good pairs and Theorem 6.1, we conclude that

ΩGi (X)
∼=
−→
(
ΩTi (X)

)W
. This completes the proof of the theorem. �

Corollary 8.7. Let X ∈ VG be as in Theorem 8.6. Then the restriction map

(8.10) ΩG∗ (X)Q
rGT,X

−−−→ ΩT∗ (X)Q

is a split monomorphism which is natural for the morphisms in VG. In partic-
ular, if H is any closed subgroup of G, then there is a split injective map

(8.11) ΩH∗ (X)Q
rGT,X

−−−→ ΩT∗

(
G

H
× X

)

Q

.

Proof. The first statement follows directly from Theorem 8.6, where the split-
ting is given by the trace map. The second statement follows from the first
and Proposition 5.4. �

1It has been shown recently in [15, Proposition 4.8] that the map S(G) → S(T )W is an

isomorphism over Z[t−1

G
], where tG is the torsion index of G.
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Before we apply Theorem 8.6 to study the rational cobordism rings of classifying
spaces, we need the following topological analogue, which is much simpler to
prove. Recall from (7.9) that if G is a complex Lie group and X is a finite CW -
complex with a G-action, then its equivariant complex cobordism is defined as

(8.12) MU∗
G(X) :=MU∗

(
X

G
× EG

)
.

Theorem 8.8. Let G be a complex Lie group with a maximal torus T and Weyl
group W . Then for any X as above, the natural map

(8.13) MU∗
G(X)→ (MU∗

T (X))
W

is an isomorphism with rational coefficients.

Proof. As in the proof of Theorem 8.6, we can reduce to the case when G
is reductive. It follows from the above definition of the equivariant complex
cobordism and the similar definition of the equivariant singular cohomology of
X , plus the Atiyah-Hirzebruch spectral sequence in topology that there is a
spectral sequence

(8.14) Ep,q2 = Hp
G(X,Q)⊗Q MU q ⇒MUp+qG (X).

Since the Atiyah-Hirzebruch spectral sequence degenerates rationally, we see
that the above spectral sequence degenerates too. Since one knows that

H∗
G(X) ∼= (H∗

T (X))
W

(cf. [4, Proposition 1]), the corresponding result for
the cobordism follows. �

Theorem 8.9. For a connected linear algebraic group G over C, the degree
doubling map ρG : Ω∗(BG) → MU∗(BG) (cf. Corollary 7.7) of L-algebras,
is an isomorphism with rational coefficients. In particular, the natural map of
Q-algebras

CH∗(BG)Q
ρG

−−→MU∗(BG)⊗̂LQ

is an isomorphism.

Proof. To prove the first isomorphism, we can use Theorems 8.6 and 8.8 to
reduce to the case of a torus. But this case is already known even with the
integer coefficients (cf. (6.14) and [39]). The second isomorphism follows from
the first and Proposition 7.2. �

Remark 8.10. The map ρG : CH∗(BG) → MU∗(BG)⊗̂LZ was found by To-
taro in [39] even before Levine and Morel discovered their algebraic cobordism.
It was conjectured that the map ρG should be an isomorphism with the integer
coefficients for a connected complex algebraic group G. Totaro modified this
conjecture to an expectation that ρG should be an isomorphism after localiza-
tion at a prime p such that MU∗(BG)(p) is concentrated in even degree. The
above theorem proves the isomorphism in general with the rational coefficients.
We also remark that the mapMU∗(BG)⊗̂LQ→ H∗(BG,Q) is an isomorphism
(cf. [38]). The above result then shows that the cycle class map for the clas-
sifying space is an isomorphism with the rational coefficients. One wonders if
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the techniques of this paper could be applied to the algebraic version of the
Brown-Peterson cobordism theory to prove the Totaro’s modified conjecture.
We do not know the answer yet.
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