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Abstract. We study the moduli spaces which classify smooth sur-
faces along with a complex line bundle. There are homological sta-
bility and Madsen–Weiss type results for these spaces (mostly due to
Cohen and Madsen), and we discuss the cohomological calculations
which may be deduced from them. We then relate these spaces to
(a generalisation of) Kawazumi’s extended mapping class groups, and
hence deduce cohomological information about these.

Finally, we relate these results to complex algebraic geometry. We
construct a holomorphic stack classifying families of Riemann surfaces
equipped with a fibrewise holomorphic line bundle, which is a gerbe
over the universal Picard variety, and compute its holomorphic Picard
group.
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1 Introduction

Let Σn
g,r be a connected oriented smooth surface of genus g with r boundary

components and P := {p1, . . . , pn} be n distinct marked points in the interior.
Let Dn

g,r the group of orientation preserving diffeomorphisms of Σn
g,r which

fix the set ∂Σn
g,r ∪ P pointwise and let Γn

g,r := π0D
n
g,r be the mapping class

group. We assume that g ≥ 2, so that by a theorem of Earle and Eells [11]
D

n
g,r has contractible components and the natural map on classifying spaces

BDn
g,r → BΓn

g,r is a homotopy equivalence.
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Let map∂(Σ
n
g,r, BC×) denote the space of continuous maps Σn

g,r → BC× which
send ∂Σn

g,r∪P to the basepoint of BC×. We write map∂(Σ
n
g,r, BC×)(k) for the

path component consisting of those maps of degree k. The principal object of
study in this paper is the moduli space of surfaces of genus g with r boundary
components, n marked points and a complex line bundle, originally introduced
by Cohen and Madsen [7]:

Sn
g,r := map∂(Σ

n
g,r , BC×)×Dn

g,r
ED

n
g,r .

Being a Borel construction, this space fits into a defining fibration sequence

map∂(Σ
n
g,r, BC×) −→ Sn

g,r −→ BD
n
g,r. (1.1)

The space Sn
g,r carries a tautological surface bundle

En
g,r := (Σn

g,r ×map∂(Σ
n
g,r , BC×))×Dn

g,r
ED

n
g,r ,

and we denote the bundle projection by π : En
g,r → Sn

g,r, the vertical tangent
bundle by Tv, and the n canonical sections by s1, ..., sn. The evaluation map
Σn

g,r ×map∂(Σ
n
g,r, BC×) → BC× is D

n
g,r-invariant, so gives a map L : En

g,r →
BC×. We use the letter L also for the complex line bundle this map induces,
and note that it is trivialised over the boundary and marked points in each
fibre.
The space Sn

g,r splits into path components Sn
g,r(k) corresponding to the maps

of degree k, and the total space En
g,r has an analogous decomposition. The term

“moduli space” is justified by the following observation.

Proposition 1.1. Let X be any paracompact Hausdorff space. Homotopy
classes of maps X → Sn

g,r(k) are in bijection with isomorphism classes of tu-
ples (E, π, s, L, η), where π : E → X is an oriented smooth surface bundle of
genus g with r boundary components and the boundary bundle is trivialised;
s = (s1, . . . , sn) are pairwise disjoint cross-sections in the interior; L → E is a
line bundle; η is a trivialisation of L over ∂E ∪ s1(X)∪ . . . ∪ sn(X), such that
with respect to this trivialisation, L has fibrewise degree k.

Definition 1.2. For each k we choose a degree k map L0 ∈
map∂(Σ

n
g,r, BC×)(k). The extended mapping class group Γ̃n

g,r(k) is the
fundamental group of the space Sn

g,r(k), based at L0,

Γ̃n
g,r(k) := π1(S

n
g,r(k), L0).

When k = 0 we make the canonical choice of L0, which is the constant map
to the basepoint. In this case the extended mapping class group also has an
algebraic description. If we let Hn

g,r denote the Γn
g,r-module H1(Σn

g,r , ∂Σ
n
g,r ∪

P ;Z), there is an isomorphism

Γ̃n
g,r(0)

∼= Hn
g,r ⋊ Γn

g,r.
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If (r, n, k) = (1, 0, 0) this definition agrees with that of Kawazumi [20], however
we warn the reader that our definition is different from Kawazumi’s for other
values of (r, n).

For both Sn
g,r(k) and Γ̃n

g,r(k) we adopt the convention of omitting r or n from
the notation when they are zero.

1.1 Topological results

The first part of this paper (Sections 2 and 3) is devoted to the study of the

cohomology of the group Γ̃g,r(k). We will see in Proposition 2.1 that as long
as r+n > 0 the space Sn

g,r(k) is aspherical, so there is a homotopy equivalence

BΓ̃n
g,r(k) ≃ Sn

g,r(k),

and the cohomology of the space Sn
g,r(k) translates to the group cohomology

of Γ̃n
g,r(k). The relation between Sg(k) and BΓ̃g(k) turns out to be much more

subtle.
Due to the moduli-theoretic interpretation of Sn

g,r(k), the methods of the ho-
motopy theory of moduli spaces apply and yield a great amount of information
about these spaces, and hence about BΓ̃n

g,r(k) for r+n > 0. Comparison with

Sg(k) will also be essential for the study of BΓ̃g(k).

Theorem A.

(i) (Independence of k) There are homotopy equivalences

Sn
g,r(k) ≃ Sn

g,r(k + 1) for r > 0

S1
g (k) ≃ S1

g (k + 1)

Sg(k) ≃ Sg(k + 2g − 2).

(ii) (Harer type stability) Consider the “stabilisation maps”

α(g) : Sn
g,r+1(k) −→ Sn

g+1,r(k)

β(g) : Sn
g,r(k) −→ Sn

g,r+1(k)

γ(g) : Sn
g,r(k) −→ Sn

g,r−1(k)

given by gluing in a pair of pants along the legs, along the waist, or gluing
in a disc (and extending the map to BC× trivially over the glued-in part
in each case). Then the induced maps in homology H∗(α(g)), H∗(β(g)),
H∗(γ(g)) are isomorphisms if 3∗ ≤ 2g − 3, 3∗ ≤ 2g − 1, 3∗ ≤ 2g − 1,
respectively.

(iii) (Splitting) The map Sn
g,r(k) → Sg,r(k) × (BC×)n given by the tangent

spaces at the marked points is a homology isomorphism in degrees 3∗ ≤
2g − 1.
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(iv) (Madsen–Weiss type theorem) Let MTSO(2) be the Madsen–Tillmann–
Weiss spectrum. There is a map αg,r : Sg,r(k) → Ω∞

0 (MTSO(2)∧BC×
+),

which is a homology equivalence in degrees 3∗ ≤ 2g − 3.

We shall say “stable range” for the range of degrees in which a given homology
group is independent of g.
Most of this theorem has been proved elsewhere. A complete proof of homo-
logical stability as formulated in (ii) was given by the second named author
[34], but the result has a longer prehistory. For r > 0, it was first proved by
Cohen–Madsen [7], but with the weaker stable range 2∗ > g. The range of
stability was improved by Boldsen [4], again as long as r > 0. The proof of
stability for closing the last boundary in [7] is incorrect and has been partially
repaired by those authors in [8], as long as rational coefficients are employed.
In the references we have cited only the case n = 0 is covered, but in Section
2.3 we show how to derive the case n > 0. The homological splitting of (iii)
is a straightforward adaption of an argument by Bödigheimer and Tillmann
[5], and we briefly sketch it in Section 2.3. Part (iv) is a generalisation of the
Madsen–Weiss theorem [25] due to Cohen–Madsen [7] (though one needs the
result of [34] to deal with the case r = 0), and we recall this result in Section
2.4. We prove (i) in Section 2.2.

Remark 1.3. Parts (ii) and (iii) show that H∗(S
n
g (k))

∼= H∗(S
n
g (k + 1)) in the

stable range. However, in general Sg(k) 6≃ Sg(k+1). This can be deduced from
Theorem E, which computes the group cohomology of the fundamental groups
of these spaces and we see they differ in general.

The space Ω∞
0 (MTSO(2)∧BC×

+) can be understood by the usual methods of
algebraic topology. We defer its definition to Section 2.4, where we will also
construct certain cohomology classes

κi,j ∈ H2i+2j(Ω∞
0 (MTSO(2) ∧BC×

+);Z).

Under the map αg,r : Sg,r(k) → Ω∞
0 (MTSO(2) ∧ BC×

+) the class κi,j pulls
back to

π!(e(Tv)
i+1c1(L)

j) ∈ H2i+2j(Sn
g,r(k);Z),

where π : Eg,r(k) → Sg,r(k) is the tautological surface bundle, Tv is the vertical
tangent bundle and L is the complex line bundle we described earlier. For
simplicity we denote this class by κi,j too. The class κi,0 may be defined on
BDg,r , and here it coincides with the Mumford–Morita–Miller class usually
denoted κi.

Theorem B. There is an isomorphism

H∗(Ω∞
0 (MTSO(2) ∧BC×

+);Q) ∼= Q[κi,j | i+ j > 0, j ≥ 0, i ≥ −1].

Therefore when r > 0, for degrees 3∗ ≤ 2g − 3 there are isomorphisms

H∗(BΓ̃g,r(k);Q) ∼= H∗(Sg,r(k);Q) ∼= Q[κi,j | i+ j > 0, j ≥ 0, i ≥ −1]. (1.2)
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We are also able to make low-dimensional integral calculations. The Hodge
class λ ∈ H2(Sg;Z) may be defined as c1(π

K
! (T ∗

v )), the first Chern class of
the push-forward in complex K-theory of the vertical cotangent bundle of the
tautological surface bundle, and it is known to satisfy the relation 12λ = κ1.
Just as for the κi,j , the class λ is induced from a class on Ω∞(MTSO(2)∧BC×

+)
which we also denote λ.

Theorem C. The groups

H1(Ω∞
0 (MTSO(2) ∧BC×

+);Z) and H3(Ω∞
0 (MTSO(2) ∧BC×

+);Z)

are trivial. The group H2(Ω∞
0 (MTSO(2) ∧ BC×

+);Z) is free abelian of rank
three, with free basis the Hodge class λ, κ0,1 and ζ := 1

2 (κ0,1 − κ−1,2).

As long as g ≥ 6, this gives a description of the integral cohomology of Sg,r(k)
up to degree 3.
We now turn to the case r = n = 0. The main obstacle in studying the
cohomology of BΓ̃g(k) is that the stabilisation map BΓ̃g,1(k) → BΓ̃g(k) is
not a homology isomorphism in a range of degrees. However the failure of
homological stability is entirely down to the failure of stability on the third
cohomology. Before we state the key result, let us introduce some language.

Definition 1.4. A fibre sequence consist of a connected pointed space (B, b),

maps F
f
→ E

p
→ B and a nullhomotopy H : p ◦ f ≃ cb from the composition

to the constant map to b. This determines a map F → hofibb(p) which we
require to be a weak equivalence. We will often drop the nullhomotopy from
the notation.

Define
Ξ : BC× −⊗L0−→ map(Σg, BC×)(k) −→ Sg(k),

which is a map that classifies the data (BC× ×Σg, pr1, pr
∗
1γ⊗pr∗2L0), where γ

denotes the universal line bundle over BC×.

Theorem D.

(i) For g ≥ 3, there exist fibre sequences

BC× Ξ
−→ Sg(k)

Π
−→ BΓ̃g(k)

Sg(k)
Π

−→ BΓ̃g(k)
θ

−→ K(Z, 3)

(i.e. there exist nullhomotopies of Π◦Ξ and θ◦Π yielding fibre sequences).

(ii) There is a map from BΓ̃g,1(k) to the homotopy fibre of the map θ which
induces an isomorphism in integral homology in degrees 3∗ ≤ 2g − 1.

It turns out that the cohomology of Γ̃g(k) behaves in a fairly systematic way in
a certain range of degrees, but the systematic way in which it behaves in turn
depends on k. The following are our main results on the cohomology of Γ̃g(k).
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Theorem E. Suppose g ≥ 6. The group H1(BΓ̃g(k);Z) is trivial, and the

group H2(BΓ̃g(k);Z) is free abelian of rank two and injects into H2(Sg(k);Z).
A free basis for it may be taken to be the Hodge class λ and an element η that
maps to

1

gcd(2g − 2, g + k − 1)
(kκ0,1 + (g − 1)κ−1,2)

in H2(Sg(k);Z). The group H3(BΓ̃g(k);Z) is Z/ gcd(2g−2, 1−g−k) generated

by the class θ ∈ H3(BΓ̃g(k);Z) = [BΓ̃g(k),K(Z, 3)] of Theorem D.

We are also able to give a complete description of the rational cohomology
algebra in the stable range, where the dependence on g and k is less vividly
seen.

Theorem F. The rational cohomology H∗(BΓ̃g(k);Q) injects into

H∗(Sg(k);Q) in all degrees. There exist classes νi,j ∈ H2i+2j(BΓ̃g(k);Q)
defined for i ≥ −1 and j ≥ 0, such that the algebra homomorphism

Q[νi,j | i ≥ −1, j ≥ 0, i+ j > 0; (i, j) 6= (0, 1)] −→ H∗(BΓ̃g(k);Q)

is an isomorphism in degrees 3∗ ≤ 2g − 3. Moreover, the image of νi,j in
H∗(Sg(k);Q) is equal to κi,j modulo the ideal (κ0,1), and νi,0 = κi.

Remark 1.5. Using different methods, Kawazumi [20, 21, 22] obtained the iso-
morphism (1.2) when r = 1 and k = 0. Looijenga [24] was able to determine

the structure of H∗(BΓ̃g(k);Q) as a module over H∗(BΓg;Q), but not the
algebra structure.

Next, we study the group extension

0 −→ Hn
g,r −→ Γ̃n

g,r(k) −→ Γn
g,r −→ 1 (1.3)

obtained by taking the fundamental groups of the spaces in the defining fibra-
tion (1.1). The Γn

g,r-modules Hn
g,r = H1(Σn

g,r, ∂Σ
n
g,r ∪ P ;Z) form a coefficient

system in the sense of [7] or [4]. We denote this coefficient system simply by H
and its rationalisation by HQ, thereby explaining notation such as H∗(Γn

g,r;H).

Theorem G. The rational Leray–Hochschild–Serre spectral sequence of the
extension (1.3) degenerates at E2 in the stable range. If r+n ≤ 1 it degenerates
in all degrees. The associated graded algebra in the stable range is
⊕

p,q

Hp(Γn
g,r;∧

qHQ) ∼= Q[e1, , ..., en, κ1, . . .]⊗Q[xi,j | i+ j > 0, j > 0, i ≥ −1],

if r + n > 0, and
⊕

p,q

Hp(Γg;∧
qHQ) ∼= Q[κ1, . . .]⊗Q[xi,j | i+ j > 0, j > 0, i ≥ −1, (i, j) 6= (0, 1)],

if r + n = 0. In both cases, ei has bidegree (p, q) = (2, 0), κi has bidegree
(p, q) = (2i, 0) and xi,j has bidegree (p, q) = (2i+ j, j).
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The proof of this theorem is via the work of Kawazumi [20, 21, 22], who has

studied in depth the rational cohomology of Γ̃g,1. He has defined certain classes
mi,j ∈ H2i+j−2(Γg,1,∧

jH) which are permanent cycles in the spectral sequence

Ep,q
2 = Hp(Γg,1;∧

qHQ) =⇒ Hp+q(Γ̃g,1;Q)

and detect classes m̃i,j ∈ H2i+2j−2(Γ̃g,1;Z) he has also defined. He then shows
that the mi,j generate E∗,∗

2 in the stable range, so the spectral sequence col-
lapses. If r = 1 and n = 0, Theorem G follows immediately from the more
technical statement that Kawazumi’s m̃i,j agree with our κi−1,j . This is some-
what surprising, as the m̃i,j are defined using an explicit group cocycle which
depends crucially on the surface having boundary, whereas κi−1,j may be de-
fined for closed surfaces. The other cases with r + n > 0 are derived using
homological stability.

1.2 Relation to complex geometry

The homotopy types BDg, Sg(k) and BΓ̃g(k) bear a close relationship to the
geometry of Riemann surfaces, and the preceding purely topological results can
be used to obtain more geometrical results. In order to formulate these results,
we have to employ the language of stacks. We adopt the convention of writing
stacks as Abc and their associated homotopy types as Abc.
Let Mg be the moduli stack of genus g Riemann surfaces, defined on the site
Top of topological spaces (with the ordinary topology of open covers). El-
ements of Mg(X) or, equivalently, maps X → Mg, correspond to families of
genus g Riemann surfaces π : E → X . It is well-known, by Teichmüller theory,
that Mg

∼= Tg//Γg, the orbifold quotient of Teichmüller space by Γg. Moreover,
the homotopy type of Mg is just BDg.
Denote by Holg the stack over Top which classifies families of Riemann surfaces
of genus g, E → X , equipped with a fibrewise holomorphic line bundle L → E.
It splits into components Holkg , where k is the fibrewise degree of L. Recall that
for an individual Riemann surface S, the Picard variety Pic(S) is the complex
Lie group of isomorphism classes of holomorphic line bundles on S. It splits
into components Pick(S) parametrising isomorphism classes of degree k line
bundles. There is a (noncanonical) isomorphism Pic(S) ∼= Z × Pic0(S) and
Pic0(S) is a complex g-dimensional torus. If π : E → X is a family of genus
g Riemann surfaces, there is a family Pic(E/X) → X of complex manifolds
whose fibre over x ∈ X is just the Picard variety Pic(Ex) of Ex := π−1(x).
Denote by Picg the stack over Top which classifies families of Riemann sur-
faces of genus g, E → X , equipped with a section s : X → Pic(E/X) of the
associated bundle of Picard varieties. Again, Picg splits into components Pickg ,
indexed by the fibrewise degree of the line bundle on the total space. Both
stacks have a natural map to Mg that just remembers the underlying Riemann

surface. Furthermore, there is a map Φk
g : Holkg → Pic

k
g that takes a complex

line bundle to its isomorphism class.
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In Theorem 4.5 we show that Φk
g is a gerbe with band C×. As a consequence,

after taking homotopy types we get a fibre sequence

BC× −→ Holkg
φk
g

−→ Pickg .

In Theorem 4.6 we show that there are equivalences Holkg ≃ Sg(k) and Pickg ≃

BΓ̃g(k) under which this fibre sequences corresponds to that of Theorem D.
Thus the cohomological results of the last section also give information about
the cohomology of Holkg and Pickg , and of the effect on cohomology of the map

Φk
g .

Another property of the stacks Holkg and Pickg is that they are local quotient
stacks (this is the class of stacks which are closest to spaces in the sense that the
homotopy type of the stacks reflects geometric properties such as the classifi-
cation of line bundles and gerbes). Therefore, we are able to prove an analogue
of a result of Mestrano–Ramanan on the existence of Poincaré line bundles.

It is a well-known—but fairly deep—result that the moduli stack Mg is even a

holomorphic stack. This will easily imply that Holkg and Pickg are holomorphic
(local quotient) stacks, so that concepts from holomorphic geometry translate.
In particular, the notion of a holomorphic line bundle on these stacks is mean-
ingful. We show that for both these stacks, the holomorphic Picard group is
isomorphic to the topological one. The resulting computation of the Picard
group of Pickg is not new: it is due to Kouvidakis [23] and we recover his result,
although we give a different description of the generators. We also discuss the
relationship between our results and related results in algebraic geometry, in
particular those of Melo and Viviani [28].
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2 The spaces of surfaces with line bundles

2.1 Homotopy type

Recall from the introduction the definition of Sn
g,r , the tautological surface

bundle π : En
g,r → Sn

g,r , its sections s1, ..., sn, the vertical tangent bundle Tv

and the complex line bundle L → En
g,r trivialised along the boundary and at

the marked points.
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Proposition 2.1. Let g ≥ 2.

(i) If r + n > 0, then Sn
g,r(k) is aspherical, and so BΓ̃n

g,r(k) ≃ Sn
g,r(k).

(ii) If r = n = 0, then πi(Sg(k)) = 0 for i 6= 1, 2 and π2(Sg(k)) = Z.

Proof. We look at the long exact sequence of the defining fibration sequence

map∂(Σ
n
g,r, BC×) −→ Sn

g,r −→ BD
n
g,r.

If r + n > 0, then map∂(Σ
n
g,r, BC×)(k) is an Eilenberg–MacLane space of

type BHn
g,r. This is immediate and proves the first part. Because BC× is an

abelian topological group so is map(Σg, BC×), and hence map(Σg, BC×)(k) is
a product of Eilenberg–MacLane spaces, namely BHg × BC× (however, this
product decomposition is not natural, which is responsible for many of the
subtleties of that case). The second part follows.

2.2 Independence of the degree

The homotopy equivalences of part (i) of Theorem A are given by tensoring
the line bundle with a fixed line bundle, provided by Proposition 2.2 below.

Proposition 2.2. Let En
g,r → BDn

g,r be the universal surface bundle, with
sections s1, . . . sn. Then there is a line bundle L → En

g,r with fibrewise degree
k and such that both L|∂En

g,r
and s∗iL are trivial in each of the following cases:

(i) r > 0, n arbitrary and k = 1.

(ii) r = 0, n = k = 1.

(iii) r = 0, n = 0, k = 2− 2g.

This proposition can be restated by saying that the map Sn
g,r(k) → BDn

g,r has
a section in the listed cases.

Proof. The third case is clear, since we can take the vertical tangent bundle Tv

(the condition n = 0 is necessary as we might be unable to trivialise Tv over
the cross-sections in the case n > 0).
In the first case, the boundary bundle is trivialised and so the bundle may
be assumed to contain a trivialised collar. Inside the collar, there exists an
embedded BΓn

g,r × D2 → En
g,r over BΓn

g,r which does not meet the boundary
or the marked points. The standard collapse construction defines a map h :
En

g,r → BΓn
g,r × D2/∂D2 of fibrewise degree 1. Let H → D2/∂D2 be the Hopf

bundle and pick a trivialisation over the point ∂D2 and one over the origin of
D2. The bundle L := h∗H , together with the induced trivialisations, does the
job in the first case.
For second case, let U → BΓ1

g be the closed unit disc bundle in the line bundle
s∗T , where T is the vertical tangent bundle, and ∂U be the unit sphere bundle.
There exists a tubular neighborhood, i.e. a fibrewise embedding U → E1

g that
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maps the zero section to s. The collapse construction, performed fibrewise,
yields a fibrewise map E1

g → U/∂U of fibrewise degree 1. Consider the rotation
action of U(1) on S2 (considered as the Riemann sphere), fixing the points 0,∞,
and the S2-bundle p : F := EU(1) ×U(1) S

2 → BU(1). There is a bundle map
U/∂U → F , covering the map ǫ from (2.1). The composition with the collapse
is a fibre-preserving map h : E1

g → F .
The Hopf bundle on S2 admits a U(1)-action that turns it into an equivariant
line bundle, therefore inducing a line bundle H ′ → EU(1)×U(1) S

2 of fibrewise
degree 1. Let t : BC× → EU(1)×U(1) S

2 be the section at 0. Then the bundle
H := p∗t∗(H ′)∗ ⊗ H ′ has fibrewise degree 1 and is trivialised over the zero
section. To finish the proof, let L := h∗

1H .

2.3 Homological stability and its consequences

As we stated in the introduction, proofs of Theorem A (ii) for n = 0 have
appeared in several places [7, 8, 4, 34] with various stability ranges. An explicit
reference for the version we are using is [34, §1.4].
Now we derive the case n > 0 from the case n = 0. There is a map

ǫi : S
n
g,r −→ BC×, (2.1)

defined as the classifying map of the line bundle s∗iTv → Sn
g,r (in other words,

ǫi takes the tangent space at the i-th marked point). The homotopy fibre of
ǫi classifies families of surfaces as classified by Sn

g,r but with a framing of Tv

at the i-th marked point: this is homotopy equivalent to Sn−1
g,r+1. Taking all ǫi

together, we obtain a fibre sequence

Sg,r+n −→ Sn
g,r

ǫ
−→ (BC×)n; (2.2)

analogous to that used by Bödigheimer and Tillmann in [5, eq. (3.2)]. Consider
the commutative diagram

Sg,r+n
//

��

Sn
g,r

ǫ //

��

(BC×)n

Sh,s+n
// Sn

h,s
ǫ // (BC×)n,

whose rows are the fibre sequences (2.2) and whose left and middle vertical maps
are suitable stabilisation maps. Comparing the Leray–Serre spectral sequences
of the two fibre sequences shows homological stability in the case n > 0. The
sequence (2.2) can also be used to prove Theorem A (iii), using an argument
from [5]. Consider the commutative diagram

Sg,r+n
//

��

Sn
g,r

//

��

(BC×)n

Sg,r
// Sg,r × (BC×)n // (BC×)n.
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The bottom sequence is the product sequence, the left vertical map is a compo-
sition of stabilisation maps γ(g), and the middle vertical map is the product of
ǫ with the forgetful map. Comparing the Leray–Serre spectral sequences of the
two fibre sequences establishes that the middle map is a homology isomorphism
in degrees 3∗ ≤ 2g − 1.

2.4 Madsen–Weiss type theorem

Consider the vector bundle

γ⊥
2,n −→ Gr+2 (R

n)

given by the orthogonal complement of the tautological bundle, and write Mn

for its Thom space. The stabilisation maps Gr+2 (R
n) → Gr+2 (R

n+1) pull back
γ⊥
2,n+1 to ǫ1 ⊕ γ⊥

2,n and so give maps of Thom spaces ΣMn → Mn+1. Thus the
collection {Mn}n≥0 forms a spectrum in the sense of stable homotopy theory,
which is denoted MTSO(2). Similarly, we define a spectrum MTSO(2)∧BC×

+

having as its n-th space the smash product Mn ∧BC×
+.

Homotopy groups of spectra are very hard to compute in general, but in low
degrees, the homotopy groups of MTSO(2) ∧ BC×

+ may be calculated using
the Atiyah–Hirzebruch spectral sequence and the known homotopy groups of
MTSO(2) up to degree 3, which have, for example, been computed by the first
named author in [12]. The result is displayed in the table below.

i −2 −1 0 1 2 3

πi(MTSO(2)) Z 0 Z 0 Z Z/24
πi(MTSO(2) ∧BC×

+) Z 0 Z2 0 Z3 –

Table 1: Some stable homotopy groups.

The infinite loop space Ω∞(MTSO(2) ∧ BC×
+) associated to this spectrum is

defined to be the colimit

Ω∞(MTSO(2) ∧BC×
+) := colim n→∞Ωn(Mn ∧BC×

+),

and the homotopy groups of this space coincide with those of the spectrum in
non-negative degrees. From the table we see that Ω∞(MTSO(2)∧BC×

+) has π0

in bijection with Z2. We denote by Ω∞
0 (MTSO(2)∧BC×

+) the path-component
of the basepoint.
Cohen and Madsen [7, 8] have defined a comparison map

αg,k : Sg,r(k) −→ Ω∞
0 (MTSO(2) ∧BC×

+)

using Pontrjagin–Thom theory, and shown that it is an integral homology iso-
morphism in the stable range. Given homology stability, this may also be
deduced from the general machines [15, 16] for proving Madsen–Weiss type
theorems.
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Let us now describe how the classes κi,j are defined on the space
Ω∞(MTSO(2) ∧BC×

+). Under the composition

H̃∗+2(BSO(2)×BC×) ∼= H∗(MTSO(2)∧BC×
+)

σ∗−→ H∗(Ω∞
0 MTSO(2)∧BC×

+)

of the Thom isomorphism in spectrum cohomology with the cohomology sus-
pension1, the class ei+1 ⊗ cj1 maps to a class we define to be

κi,j ∈ H2i+2j(Ω∞
0 MTSO(2) ∧BC×

+;Z).

The description of push-forwards in terms of Pontrjagin–Thom theory shows
that these classes pull back under αg,k to the classes

π!(e(Tv)
i+1c1(L)

j) ∈ H2i+2j(Sg,r(k);Z),

as in the introduction.

2.5 Cohomology of the infinite loop space

The rational cohomology of an infinite loop space has a very restricted struc-
ture, and is easily deduced from the rational cohomology of the associated
spectrum. In turn, the cohomology of a Thom spectrum over a classifying
space can be expressed by means of characteristic classes.

Proof of Theorem B. It is well known that the rational cohomology of the zero
component infinite loop space Ω∞

0 X is given by the free graded-commutative
algebra on the vector space τ∗>0H

∗(X;Q) of positive degree elements in spec-
trum cohomology. (For a proof, note that any rational spectrum splits into a
sum of suspensions of HQ, and the claim is true for ΣnHQ by direct calcula-
tion.)
The rational spectrum cohomology of MTSO(2) ∧BC× in positive degrees is
the vector space

Q〈u−2 · e
i+1 ∧ cj1 | i+ j > 0, j ≥ 0, i ≥ −1〉

where u−2 ∈ H−2(MTSO(2);Q) denotes the Thom class. The element u−2 ·
ei+1∧cj1 under the cohomology suspension gives the element κi,j on the infinite
loop space.

To prove Theorem C, we first identify H2(Ω∞
0 (MTSO(2) ∧ BC×

+);Z) as an
abstract group.

Lemma 2.3. There are isomorphisms

Hi(Ω∞
0 (MTSO(2) ∧BC×

+);Z) =

{
0 i = 1, 3;

Z3 i = 2.

1For any spectrum X = {Xn}, the evaluation maps ΣnΩnXn → Xn induce maps on
cohomology H∗+n(Xn) → H∗(ΩnXn), which after taking limits over n gives σ∗ : H∗(X) →
H∗(Ω∞

X).
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Proof. By Theorem B we know the statement is true modulo torsion. Thus we
must show there is no torsion in cohomology in degrees ∗ ≤ 3, or equivalently
that there is no torsion in homology in degrees ∗ ≤ 2.
By the isomorphisms listed in Table 1, Ω∞

0 (MTSO(2) ∧ BC×
+) is simply-

connected, so in particular H1 is zero and hence torsion free. Furthermore

π2(MTSO(2) ∧BC×
+)

∼= H2(Ω
∞
0 (MTSO(2) ∧BC×

+);Z)

by Hurewicz’ theorem, and hence we see that the second homology is free
abelian of rank three.

Next we determine a Z-basis ofH2(Ω∞
0 (MTSO(2)∧BC×

+))
∼= Z3, which begins

with naming elements. We describe the elements on the moduli space Sg(k)
as Chern classes of certain index bundles of Cauchy–Riemann operators. A
standard exercise in index theory will then show that the classes are indeed
induced from Ω∞(MTSO(2) ∧ BC×

+) (this exercise has been solved in the
section on “universal operators” in [13]). We do this in order to deal with more
concrete objects and also to facilitate computations.
Recall that H2(BΓg;Z) ∼= Z has a generator λ, the Hodge class, that satisfies
12λ = κ1. To define the next element, we need a divisibility result, based on
the Grothendieck–Riemann–Roch theorem. Recall the universal surface bundle
π : Eg(k) → Sg(k) with vertical tangent bundle Tv and universal line bundle
L → E . Consider the Dolbeault operator ∂T⊗r⊗L⊗s on the tensor product
bundle of r copies of the vertical tangent bundle and s copies of L. The Chern
character of its index bundle is, by Grothendieck–Riemann–Roch:

ch(Ind(∂T⊗rL⊗s)) = π!(Td(x)e
rc1(Tv)esc1(L))

and the degree 2 part is

(6r2 + 6r + 1)λ+ 1
2s

2(κ0,1 + κ−1,2) + (rs + 1
2 (s− s2))κ0,1. (2.3)

The first and third summand are integral, hence so is the middle summand. In
other words, we have proved:

Proposition 2.4. The class κ0,1 − κ−1,2 ∈ H2(Sg,r(k);Z) is divisible by 2.

Thus we may define

ζ := 1
2 (κ0,1 − κ−1,2) ∈ H2(Sg,r(k);Z),

as this group is torsion-free and hence κ0,1 − κ−1,2 is uniquely divisible.

Proof of Theorem C. It is enough to give a map H2(Ω∞
0 (MTSO(2) ∧

BC×
+);Z) → Z3 that maps the tuple B := (λ, κ0,1, ζ) to a basis. To achieve

this, we construct three examples of surface bundles equipped with complex
line bundles. The genus and the degree of the line bundle are irrelevant for
this purpose. Here are the examples:
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Example 2.5. For g in the stable range, we consider the universal surface
bundle on BΓg, together with the trivial line bundle on it. We know that
H2(BΓg;Z) ∼= Z〈λ〉, and it is clear that B evaluates to (1, 0, 0).

Example 2.6. Consider the trivial surface bundle π : BC××Σg → BC×, with
complex line bundle given by π∗γ. Because this surface bundle is trivial, we
have κ1 = 0, hence λ = 0. Moreover, κ0,1 is χ(Σg) times a generator. Finally,
κ−1,2 is zero. If we put g = 2, we obtain that B is mapped to (0, 2, 1).

Example 2.7. Let H1 be the Hirzebruch surface (we use the notation of [9]). It
is an S2-bundle over S2, which is not spin and has κ1 = 0 (since the signature
of the total space is 0). A basis for H2(H1;Z) is given by the fundamental
class u of the fibre and the image v of the section S2 → H1 at ∞. Let (x, y)
be the Poincaré dual basis to (u, v). Using the intersection matrix given in
[9], it is not hard to see that the Euler class of the vertical tangent bundle is
e = 2x + y. Let L → H1 be the line bundle with Chern class y. Again using
the intersection matrix, we compute κ0,1 = −1 and κ−1,2 = −1. Thus B is
mapped to (0,−1, 0).

3 Cohomology of the extended mapping class groups

3.1 Proof of Theorems D, E and F

The results of the previous section give the stable cohomology of all the ex-
tended mapping class groups Γ̃n

g,r, except for the case (r, n) = (0, 0), which is
the most interesting of all. Theorem D is the key result about the extended
mapping class groups in the case (r, n) = (0, 0).

Proof of Theorem D. All four spaces in the sequences are connected. By defi-
nition the map

Π : Sg(k) −→ BΓ̃g(k)

induces an isomorphism on fundamental groups. Therefore, by Proposition 2.1,
the homotopy fibre of Π is a K(Z, 2).

The mapping space map(BC×, BΓ̃g(k)) is connected (because the source is
simply-connected and the target is aspherical). So the map Π ◦ Ξ : BC× →

BΓ̃g(k) is nullhomotopic. The choice of a nullhomotopy defines a map F :
BC× → hofib∗(Π). To prove that Π and Ξ form a fibre sequence, it suffices to
prove that F induces an isomorphism on π2. But hofib∗(Π) → Sg(k) induces
an isomorphism on π2, so it is enough to prove that Ξ induces an isomorphism

on π2. However, Ξ is defined as BC× −⊗L0→ map(Σg, BC×)(k) → Sg(k) and
both maps are π2-isomorphisms. Thus Ξ and Π form a fibre sequence.

From now on we replace Π by a fibration and we will show that Γ̃g(k) acts
trivially on the cohomology of the fibre, using that g ≥ 3. By Theorem A
(iv) and Theorem C, we have the calculation H1(Sg(k);Z) = 0 for g ≥ 3. The
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Leray–Serre spectral sequence for the map Π implies thatH1(BΓ̃g(k);Z/2) = 0,

and so Γ̃g(k) can only act trivially on H2(BC×;Z) = Z.
Consequently, the generator of H2(BC×;Z) gives an element in the E2-page of
the Leray–Serre spectral sequence of the map Π, which transgresses to a class
θ ∈ H3(BΓ̃g(k);Z). This corresponds to a homotopy class of map θ : BΓ̃g(k) →
K(Z, 3). Standard obstruction theory provides a homotopy cartesian square

Sg(k)

��

// PK(Z, 3) ≃ ∗

��
BΓ̃g(k)

θ // K(Z, 3)

(the left-hand vertical map is the path-fibration of K(Z, 3)), which identifies
Sg(k) with the homotopy fibre of θ.
To establish the second part of Theorem D, recall that the stabilization map
Sg,1(k) → Sg(k) is a homology isomorphism in degrees 3∗ ≤ 2g−1 by Theorem
A (ii). Together with Proposition 2.1, this completes the proof.

We now prepare to prove Theorem E. Recall the fibre sequence

BC× Ξ
−→ Sg(k)

Π
−→ BΓ̃g(k) (3.1)

from Theorem D. Because Π (when replaced by a fibration) is principal, it is
simple and so the E2-term of the Leray–Serre spectral sequence takes the form

Ep,q
2 = Hp(BΓ̃g;H

q(BC×)) ∼=

{
Hp(BΓ̃g;Z) q = 0 (mod 2)

0 q = 1 (mod 2).

The first task will be to compute the edge homomorphism of the spectral
sequence, i.e. the map Ξ∗ : H∗(Sg(k)) → H∗(BC×). We have described this
map geometrically: for L0 → Σg the fixed degree k line bundle, this map
classifies the trivial surface bundle BC× × Σg → BC×, together with the line
bundle L = pr∗1γ ⊗ pr∗2L0.
For this surface bundle and line bundle we immediately compute

e(Tv) = (2 − 2g) · 1⊗ u

c1(L) = c1(γ)⊗ 1 + 1⊗ k · u,

where u ∈ H2(Σg;Z) is the Poincaré dual to a point, from which it is easy to
compute the classes κi,j .

Lemma 3.1. The classes κi,j with i > 0 map to zero, κ0,j maps to (2−2g)·c1(γ)
j

and κ−1,j maps to j · k · c1(γ)
j−1.

In particular, λ goes to zero, ζ goes to (1−g−k)·c1(γ) and κ0,1 to (2−2g)·c1(γ).
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Figure 1: E2 page of the Serre spectral sequence for (3.1).

Proof of Theorem E. We study the Leray–Serre spectral sequence in cohomol-
ogy for the fibre sequence (3.1), which has E2 page as shown in Figure 1 and
which converges to zero in total degrees 1 and 3 by Lemma 2.3. From this we
deduce that H1(BΓ̃g(k)) = 0 and we get an exact sequence

0 −→ H2(BΓ̃g(k))
Π∗

−→ H2(Sg(k))
Ξ∗

−→ H2(BC×)
d3−→ H3(BΓ̃g(k)) −→ 0.

By Lemma 3.1, the index of the image of the edge homomorphism in H2(BC×)
is gcd(2− 2g, 1− g− k). The kernel of the edge homomorphism is free of rank
2, and by elementary algebra it is generated by λ and η.

We now prepare to prove Theorem F, where we describe H∗(BΓ̃g(k);Q) in
the stable range. We must begin with the definition of the classes νi,j . Let
BΓ1

g → BΓg be the universal surface bundle. There is a homotopy commutative
diagram

BC× ι // Eg(k)

π

��

f // BΓ̃1
g(k)

p

��

// BΓ1
g

��
BC× ǫ // Sg(k)

Π // BΓ̃g(k) // BΓg.

The two squares on the right are cartesian and π and p are surface bundles.
The maps ι and ǫ are the inclusions of the respective homotopy fibres. The first
two maps of the bottom sequence form a fibre sequence by Theorem D. Recall
that Eg = map(Σ1

g, BC×) ×D1
g
ED1

g . Evaluation at the basepoint of Σ1
g is a

D1
g -equivariant map map(Σ1

g, BC×) → BC× and so defines a map Eg → BC×,
which is a left homotopy inverse to ι.

As ι has a left homotopy inverse, there is a short exact sequence

0 −→ H2(Γ̃1
g(k);Q)

f∗

−→ H2(Eg(k);Q)
ι∗

−→ H2(BC×;Q) −→ 0.
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The rational cohomology class c1(L) −
1

2−2gπ
∗κ0,1 maps to 0 ∈ H2(BC×;Q)

by Lemma 3.1, and thus there exists a unique v ∈ H2(S1
g (k);Q) with f∗v =

c1(L)−
1

2−2gπ
∗κ0,1. Let e(Tv) ∈ H2(S1

g (k);Z) be the Euler class of the vertical
tangent bundle of p, and define

νi,j := p!(e(Tv)
i+1vj) ∈ H2i+2j(BΓ̃g(k);Q).

We compute

Π∗νi,j = π!(e(Tv)
i+1(c1(L)−

1
χ
π∗κ0,1)

j)

=
∑

p+q=j

(
j

p

)
(− 1

χ
)qπ!(e(Tv)

i+1c1(L)
pπ∗(κq

0,1))

=
∑

p+q=j

(
j

p

)
(− 1

χ
)qκi,pκ

q
0,1,

bearing in mind that the degree zero classes are κ−1,1 = k, κ0,0 = 2− 2g.

Proof of Theorem F. To see that Π∗ is rationally injective, we use the fibre se-
quence (3.1) and the fact from Theorem E that the element θ ∈ H3(BΓ̃g(k);Z)
which classifies this fibre sequence is torsion. This implies that the rational
Leray–Serre spectral sequence collapses, so that Π∗ is rationally injective.

We certainly have an algebra homomorphism

Q[νi,j | i ≥ −1, j ≥ 0, i+ j > 0; (i, j) 6= (0, 1)] −→ H∗(BΓ̃g(k);Q) (3.2)

and by the calculation above Π∗νi,j ≡ κi,j mod (κ0,1), so the algebra Q[νi,j |
i ≥ −1, j ≥ 0, i + j > 0; (i, j) 6= (0, 1)] maps injectively into H∗(Sg(k);Q)
in the stable range, and so (3.2) is injective too. Counting dimensions and
using the collapse of the Leray–Serre spectral sequence above shows (3.2) is
also surjective in the stable range.

Remark 3.2. The computation above shows that ν0,1 = 0 and ν−1,2 =
1

g−1 gcd(2g − 2, g − 1 + k)η.

3.2 Structure of the extended mapping class groups

From the results proved so far and some facts on the cohomology of the map-
ping class groups, we can illuminate the structure of the extended mapping
class groups. If we write Hn

g,r := H1(Σn
g,r, ∂Σ

n
g,r ∪P ;Z), then there is a homo-

topy equivalence map∂(Σ
n
g,r, BC×)(k) ≃ BHn

g,r as long as r + n > 0, and so
extensions

0 −→ Hn
g,r −→ Γ̃n

g,r(k) −→ Γn
g,r −→ 1. (3.3)
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If (r, n) = (0, 0) there is a square of isomorphisms

π1(map(Σg, BC×)(k), L0)

Hurewicz

��

π1(map(Σg, BC×)(0), ∗) ∼= Hg

Hurewicz

��

−⊗L0oo

H1(map(Σg, BC×)(k);Z) H1(map(Σg, BC×)(0);Z)
−⊗L0oo

(3.4)

and so we still have the sequence (3.3).

Lemma 3.3. The action of Γn
g,r on Hn

g,r in the extension (3.3) is the usual one.

Proof. Let γ ∈ Dn
g,r be a diffeomorphism. It acts on map∂(Σ

n
g,r, BC×)(k) by

precomposition, which does not typically fix the point L0. Instead, we have the
equation γ∗ ◦ (−⊗L0) = (−⊗γ∗L0)◦γ

∗. As γ has degree 1, γ∗L0 is homotopic
to L0, and so the action of γ on H1(map(Σg, BC×)(k);Z) corresponds to the
usual action on Hg under the isomorphism of (3.4).

We ask when the extension (3.3) is split, i.e. admits a homomorphic section.
For all values of r, n, k in which Proposition 2.2 applies, there is a splitting,
showing triviality in these cases. For (r, n) = (0, 0), the following proposition
shows that this result is sharp (in the stable range).

Proposition 3.4. Let g ≥ 6 and n = r = 0. Then the extension (3.3) splits if
and only if k ≡ 0 (mod 2g − 2).

Proof. Let σ be a splitting, giving a map σ : BΓg → BΓ̃g(k). If g ≥ 6, then it is
known that H3(BΓg;Z) = 0 and so σ∗θ = 0. Therefore σ lifts to a cross-section
τ : BΓg → Sg(k) by elementary obstruction theory. This means that there is
a line bundle on the universal surface bundle Eg → BΓg of fibrewise degree k.
But Bödigheimer and Tillmann have shown [5] that the fibrewise degree of a
line bundle on Eg is divisible by the Euler number 2− 2g.

Remark 3.5. Morita [31] has proved that H2(Γg;Hg) ∼= Z/(2 − 2g). One can
show that the map Z → H2(Γg;Hg) that sends k to the isomorphism class of

the extension Hg → Γ̃g(k) → Γg is a surjective homomorphism.

3.3 Proof of Theorem G

The rational Leray–Serre spectral sequence of the fibre sequence

BHn
g,r −→ BΓ̃n

g,r(k) −→ BΓn
g,r (3.5)

has the form

Ep,q
2 = Hp(BΓn

g,r;∧
q(Hn

g,r ⊗Q)) =⇒ Hp+q(BΓ̃n
g,r ;Q), (3.6)

where the action of Γn
g,r is given by the usual action on the cohomology of Σn

g,r.
The proof that this collapses begins with the case (r, n) = (0, 0), where we need
the following result.
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Proposition 3.6. (Deligne [10, Proposition 2.1]) Let f : X → Y be a fi-
bration, F be a local coefficient system of Q-vector spaces on X, m ∈ N

and u ∈ H2(X ;Q) be given. Denote Xy := f−1(y) and suppose that for
each y ∈ Y and each i ≥ 0, the multiplication by (ui)|Xy

induces an iso-
morphism Hm−i(Xy;F|Xy

) → Hm+i(Xy;F|Xy
) (the “Lefschetz condition for

(X, f,F , u,m)”). Then the Leray–Serre spectral sequence Ep,q
2 ⇒ Hp+q(X ;F)

for f collapses at the E2-stage.

To apply this criterion, let ω ∈ H2(BHg) be the symplectic class. It is easy
to see that multiplication by ωk induces an isomorphism Hg−k(BHg;Q) →
Hg+k(BHg;Q). The next lemma therefore shows that (3.5) satisfies the Lef-
schetz condition for the constant coefficient system Q, m = g and the class
η ∈ H2(BΓ̃g(k)) from Theorem E.

Lemma 3.7. The restriction of η ∈ H2(BΓ̃g(k)) to BHg is a non-trivial mul-
tiple of ω.

Proof. As the Γg-invariant part of H2(BHg;Z) = ∧2Hg is the subspace
spanned by the symplectic form ω, the restriction of η is certainly some multi-
ple of ω. By a theorem of Morita [30, Proposition 4.1], H1(Γg;Hg) = 0. Thus
from the spectral sequence (3.6) we find an exact sequence

0 −→ H2(Γg;Q) −→ H2(Γ̃g(k);Q) −→ H2(Hg;Q)Γg
d3−→ · · · .

As η and κ1,0 are linearly-independent, the image of η is non-trivial.

Remark 3.8. In fact, one may calculate that the restriction of η is
2−2g

gcd(2−2g,g+k−1) · ω.

This shows that the spectral sequence (3.6) collapses if r = n = 0.

Proof of the collapse of (3.6) for r + n = 1 or r > 1 and n = 0. If g : Z → X
is a map, then the Lefschetz condition for a fibration X → Y implies the
Lefschetz condition for the pullback fibration g∗X → Z. Because the two
squares

BΓ̃g,1(k) //

��

BΓ̃1
g(k)

//

��

BΓ̃g(k)

��
BΓg,1 // BΓ1

g
// BΓg

are cartesian, this observation shows the collapse of the spectral sequence for
r + n = 1.
Now we use homological stability to extend this result to the cases n = 0
and r ≥ 1, so we only obtain the collapsing in the stable range. We use the
homological stability theorem of Boldsen [4] for the mapping class group with
twisted coefficients. The coefficient system ∧jHQ has degree j and so the map

H2i+j(Γg,r;∧
jHQ) −→ H2i+j(Γg,1;∧

jHQ)
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is an isomorphism for 2i+ j ≤ ⌊ 2g
3 ⌋ − j. Hence the map of spectral sequences

corresponding to Γ̃g,1(k) → Γ̃g,r(k) is an isomorphism in the stable range on

E2, and hence the spectral sequence for Γ̃g,r(k) also collapses.

Computation of the associated graded algebras for n = 0, r > 0. The case r =
1, k = 0 has been proved by Kawazumi [20, 21, 22]. He defined certain coho-
mology classes [20]

m̃i,j ∈ H2i+2j−2(Γ̃g,1(0);Z),

in the framework of group cohomology, as pushforwards π!(e
i · ω̃j) where the

element e ∈ H2(Γ1
g,1,Γg,1 ×Z;Z) is the group level analogue of the Euler class

of the vertical tangent bundle, and ω̃ ∈ H2(Γ̃1
g,1, Γ̃g,1 × Z;Z) is represented by

a cocycle he defines manually. He does not phrase it in this way, but it is the
Euler class of the relative central extension

Z // H1(Σ
1
g,1)⋊ Γ1

g,1
// H1(Σg,1)⋊ Γ1

g,1

Z // (H1(Σ
1
g,1)⋊ Γg,1)× Z //

OO

Γ̃g,1(0)× Z

OO

(3.7)

The homomorphism ρ : Γg,1 ×Z → Γ1
g,1 implicit in the diagram is obtained by

gluing in an annulus with a Dehn twist, see [20, p. 140]. Here H1(Σ
1
g,1) denotes

the homology of the surface with the marked points removed. The top sequence
arises from the short exact sequence 0 → Z → H1(Σ

1
g,1) → H1(Σg,1) → 0 of

Γ1
g,1-modules. The bottom sequence is induced from the top one via ρ and

it is split via the Γg,1-equivariant inclusion H1(Σg,1) → H1(Σ
1
g,1) obtained by

boundary connected sum with a punctured disc.
Diagram (3.7) has a topological interpretation. Recall the U(1)-principal bun-
dle S1

g,1 → Eg,1 (that is, the frame bundle of the universal line bundle) and
recall also that over the boundary Sg,1 × S1 this bundle is trivialised. The
diagram

S1 // S1
g,1

// Eg,1

S1 // ∂Eg,1 × S1

OO

// ∂Eg,1

OO

BΓ̃g,1(0)× S1

consisting of aspherical spaces induces the diagram (3.7) on fundamental
groups. Therefore ω̃ coincides with the Chern class c1(L). Thus we have
proved:

Proposition 3.9. There is an equality m̃i,j = κi−1,j ∈ H∗(Γ̃g,1(0);Z).

We say that the natural filtration of the cohomology of Γ̃n
g,r is the Leray fil-

tration coming from the fibre sequence (3.5). Kawazumi shows that the class
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m̃i+1,j ∈ H∗(BΓ̃g,1) is detected in the Leray–Serre spectral sequence (3.6) by
a certain class

mi+1,j ∈ H2i+j(Γg,1;∧
jH)

which he constructs. Equivalently, we may say that κi,j = m̃i+1,j has natural
filtration precisely j. In [22, Theorem 3.2] he then shows that rationally the
associated graded algebra to the natural filtration is

Gr(H∗(Γ̃g,1(0);Q)) = H∗(Γg,1;Q)⊗Q[mi+1,j | j > 0],

which proves Theorem G in this case. On the other hand, by Theorem A (i),

there is an equivalence BΓ̃g,1(k) ≃ BΓ̃g,1(0) so this proves the result for all k.
Furthermore, homological stability for twisted coefficients extends this to all
r > 0 by the comparison maps BΓ̃g,r(k) → BΓ̃g,1(k).

Proof of collapsing and associated graded algebra for n > 0 and r ≥ 0. As in
Section 2.3 we have a fibre sequence

BΓg,r+n −→ BΓn
g,r

e1×···×en−→ BC× × · · · ×BC×

and as long as r > 0 the composition BΓg,r+n → BΓn
g,r → BΓg,r induces a

cohomology isomorphism with coefficients in ∧jHQ in a stable range. Thus

H∗(Γg,r;∧
jHQ)[e1, ..., en] −→ H∗(Γn

g,r;∧
jHQ)

is an isomorphism in a stable range. The same argument with the fibre sequence

BΓ̃g,r+n(k) −→ BΓ̃n
g,r(k)

e1×···×en−→ BC× × · · · ×BC×

shows that H∗(Γ̃g,r(k);Q)[e1, ..., en] → H∗(Γ̃n
g,r(k);Q) is also an isomorphism

in the stable range, and by counting dimensions we see that the spectral se-
quence for Γ̃n

g,r(k) must collapse.
This leaves the case r = 0, n > 0. We consider the fibre sequence

BΓn−1
g,1 −→ BΓn

g

e1−→ BC×

which gives a spectral sequence

Ê∗,∗
2 := H∗(Γn−1

g,1 ;∧qHQ)[e1] =⇒ H∗(Γn
g ;∧

qHQ).

The output of this spectral sequence is the input of the spectral sequence

Ep,q
2 := Hp(Γn

g ;∧
qHQ) =⇒ Hp+q(Γ̃n

g (k);Q)

which we want to show collapses. In the stable range

H∗(Γ̃n
g (k);Q) ∼= Q[e1, ..., en, κ1, κ2, ...]⊗Q[κi,j | i+ j > 0, j > 0, i ≥ −1]
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and

⊕

p,q

Hp(Γn−1
g,1 ;∧qHQ) ∼= Q[e2, ..., en, κ1, κ2, ...]⊗Q[xi,j | i+ j > 0, j > 0, i ≥ −1]

and hence by counting dimensions we see that both spectral sequences must
collapse. From the collapse of the first spectral sequence we find that the
associated graded is as claimed.

The case (r, n) = (0, 0). The last part of Theorem G to be proved is the claim

about the associated graded to the natural filtration of H∗(Γ̃g(k);Q).

For this we consider the fibre sequences

Σg −→ BΓ1
g

p
−→ BΓg Σg −→ BΓ̃1

g(k)
p̃

−→ BΓ̃g(k).

The first one satisfies the assumptions of Theorem 3.6 for any rational coeffi-
cient system that is induced from BΓg, by taking u to be the Euler class of
the vertical tangent bundle. The second sequence is the pullback of the first.
Therefore the spectral sequence for BΓ1

g → BΓg with coefficients in ∧rHQ:

Ep,q
2 = Hp(BΓg;H

q(Σg)⊗ ∧rHQ) =⇒ Hp+q(BΓ1
g;∧

rHQ)

collapses at the E2-stage and

p∗ : H∗(Γg;∧
qHQ) −→ H∗(Γ1

g;∧
qHQ)

is injective. Hence the natural filtration on H∗(Γ̃g(k);Q) and the filtration
induced by the injection p̃∗ agree, and the claimed description of the associated
graded follows from Theorem F.

4 Relation to complex algebraic geometry

4.1 Definitions and results

We first summarise our results, and will give proofs below. We assume that
the reader is familiar with the basic vocabulary of the language of topological
stacks. If not, they are advised to read [18], [32] and the relevant parts of [14].

Definition 4.1. Let Holg denote the following stack, defined on the site Top.
An object of Holg(X), X ∈ Top, is a triple (E, π, L), consisting of a family of
genus g Riemann surfaces π : E → X and a fibrewise holomorphic line bundle
L → E. An isomorphism (E,L) → (E′, L′) is an isomorphism of families
f : E → E′ and an isomorphism h : L → f∗L′ of holomorphic line bundles.
We denote by Hol

k
g ⊂ Holg the open and closed substack consisting of those

bundles having fibrewise degree k.
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There is an obvious forgetful map Holg → Mg, which just remembers the un-
derlying family of Riemann surfaces.
The definition of the Picard stack Picg is a little more involved. Let π : E → X
be a family of genus g Riemann surfaces, that is, an element of Mg(X). We
define the associated Picard bundle Pic(E/X) → X as follows. Let O denote
the sheaf of continuous, fibrewise holomorphic functions on E, and O× the
subsheaf of nowhere zero functions. The exponential sequence of sheaves Z →
O → O× gives an exact sequence of sheaves on X ,

0 −→ R1π∗Z −→ R1π∗O −→ R1π∗O
× −→ R2π∗Z −→ 0.

This is because the sequence 0 → π∗Z → π∗O → π∗O
× → 0 is isomorphic to

0 → Z → C → C× → 0 and hence exact. Moreover, R2π∗O = 0. These are all
sheaves of continuous sections of certain bundles of groups on X ,

0 −→ [H1(Fx;Z)] −→ [H1(Fx;O)] −→ Pic(E/X) −→ Z×X −→ 0

where [H1(Fx;F)] is the bundle of fibrewise first cohomologies with coefficients
in the sheaf F , and Pic(E/X) is a bundle of abelian groups isomorphic to
Z × T2g. The fibre of Pic(E/X) over x ∈ X is the Picard group Pic(π−1(x)).
The group π1(X) acts trivially on the set of path components, and we denote
by Pick(E/X) the degree k component.

Definition 4.2. Let Picg denote the following stack, defined on the site Top.
An object of Picg(X) is a family of Riemann surfaces π : E → X and a section
s : B → Pic(E/X). An isomorphism (E, s) → (E′, s′) is an isomorphism of
families f : E → E′ such that f∗(s′) = s. We denote by Pickg ⊂ Picg the
open and closed substack consisting of those pairs (E, s) where s takes values
in Pick(E) ⊂ Pic(E).

Definition 4.3. Let Φk
g : Holkg → Pickg be the morphism that sends a fibrewise

holomorphic line bundle to its isomorphism class.

Let X be a space and β : X → Pickg be a map, which is a family of Riemann

surfaces π : E → X and a section s : X → Pick(E/X). We can ask whether
there exists a (fibrewise) holomorphic line bundle L → E such that for each
x ∈ X , the isomorphism class of the line bundle L|Ex

is s(x). Such a line
bundle will be called topological Poincaré line bundle for β. It is plain to see
that topological Poincaré line bundles for β are the same as lifts X → Hol

k
g of β

along Φk
g . This observation can be used to generalise the notion of a Poincaré

line bundle to stacks, as follows: a Poincaré line bundle for a map X → Pickg is

a lift to Holkg .

Remark 4.4. In the classical literature, the notion “Poincaré line bundle” is
used slightly differently. Namely, for a single Riemann surface S, one asks for
a line bundle L → Pick(S)× S, such that for each ℓ ∈ Pick(S), the restriction
L|{ℓ}×S is in the isomorphism class ℓ. More generally, for a family E → X , one

asks for a holomorphic line bundle L → E ×X Pick(E/X) with that property.
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Theorem 4.5. Let β : X → Pickg be given. Then the following properties hold:

(i) Each x ∈ X has an open neighborhood U such that the restriction β|U
admits a Poincaré line bundle.

(ii) If Li, i = 0, 1 are two Poincaré line bundles, then each x ∈ X has a
neighborhood U , such that (L0)|U ∼= (L1)|U .

(iii) If L is a Poincaré line bundle, then the group of automorphisms of L is
isomorphic to map(X,C×).

More technically, the map Φk
g is a gerbe with band C×.

In fact, the three statements in Theorem 4.5 are precisely the gerbe axioms [6,
§V.2 ], translated to the present context. Probably Theorem 4.5 is a special
case of a statement that is well-known among algebraic geometers who are also
fond of stacks, though we were unable to find a complete proof in the literature.
The proof below applies only to line bundles on curves of genus g ≥ 2.
A map of stacks X → Y of stacks is a universal weak equivalence if for each
space Z and each map Z → Y, the induced map X×Y Z → Z is a weak equiva-
lence of topological spaces. A homotopy type of the stack X is a universal weak
equivalence X → X with source a space X . Each topological stack admits a
homotopy type, and two homotopy types are unique up to homotopy equiva-
lence. See Noohi [32] for these notions (he writes “classifying space” instead of
“homotopy type”). We say shortly “the homotopy type of the stack X is X”
if there exists a space X ′, a weak equivalence X ′ ≃ X and a universal weak
equivalence X ′ → X.

Theorem 4.6. The homotopy type of the stack Holkg is Sg(k), the homotopy

type of Pickg is BΓ̃g(k), and under these equivalences the gerbe Φk
g corresponds

to Π.

If Y → X is a gerbe with band C×, the map X → Y on homotopy types
has homotopy fibre a K(Z, 2) at every point, and the associated fibration is
principal (c.f. [33]).
Isomorphism classes of line bundles on a stack are in bijection with the sheaf
cohomology group H1(X;C×). Similarly, isomorphism classes of gerbes with
band C× are in bijection with the sheaf cohomology group H2(X;C×). The
connecting homomorphism Hi(X;C×) → Hi+1(X;Z) may fail to be an isomor-
phism on a general stack. However, if X is a local quotient stack (see [18] or [14]
for this notion), the connecting homomorphism is an isomorphism. The reason
is that the sheaf of continuous functions on a local quotient stack is acyclic.
This is well-known, but we do not know a reference and include a proof as
Lemma 4.19.
The image of the isomorphism class of a gerbe G on X in H3(X;Z) is called
Dixmier–Douady class. So on a local quotient stack, gerbes are classified by
their Dixmier–Douady class. Finally, the Dixmier–Douady class of G agrees
with the characteristic class of the induced principal fibration.
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Proposition 4.7. Both Holg and Picg are local quotient stacks.

Together with the observation that a gerbe is trivial once there exists a section,
we obtain a corollary, using Theorem E.

Corollary 4.8. There exists a Poincaré line bundle for the identity map on
Pickg if and only if gcd(2g − 2, 1− g − k) = 1.

This is a precise topological analogue with the result by Mestrano and Ramanan
[27] that takes place in the holomorphic category. The proof of Proposition
4.7 will show the stronger result that both stacks are even holomorphic local
quotient stacks. On a holomorphic stack X, we can talk about holomorphic
line bundles. Let Pichol(X) be the group of isomorphism classes of holomorphic
line bundles. There is a comparison map Pichol(X) → Pictop(X), which we will
show to be an isomorphism in Theorem 4.17. This theorem, combined with
the purely topological Theorem E and Lemma 3.7, gives another proof of the
main result of Kouvidakis’ paper [23].

4.2 The gerbe of holomorphic maps

Here we prove Theorem 4.5, which begins with a trivial observation:

Lemma 4.9. Tensor multiplication with the cotangent bundle induces a com-
mutative diagram

Holkg
//

Φk
g

��

Holk+2g−2
g

Φk+2g−2
g

��
Pickg

// Pick+2g−2
g

whose horizontal arrows are isomorphisms.

Therefore, it is enough to prove Theorem 4.5 for large values of k. In the sequel,
we assume that k > 2g− 2. The third part of Theorem 4.5 is obvious, because
the automorphism group of a holomorphic line bundle on a compact Riemann
surface is C×. The other two parts are in the lemmata below.

Lemma 4.10. The map Φk
g : Holkg → Pickg admits local sections.

Proof. Let X be a space, x ∈ X and β : X → Pickg be a map, giving a family

of Riemann surfaces E → X and a section s : X → Pick(E/X). We use a
classical construction from the geometry of algebraic curves. The fibrewise k-
fold symmetric product is denoted by Symk(E/X) → X . It is well-known and
not hard to see that this is a fibre bundle with smooth complex manifolds as
fibres. Recall the classical divisor–line-bundle correspondence [17, p. 129 ff.].
This construction yields a fibre-preserving map η : Symk(E/X) → Pick(E/X).
As long as k ≥ g, η is surjective (the Jacobi inversion theorem; because any line
bundle of degree k then has a nontrivial holomorphic section). It is a classical
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result that for k > 2g − 2, η is a submersion with fibres isomorphic to CP
k−g.

More precisely, Mattuck [26] has shown that for an individual Riemann surface
S, the map Symk(S) → Pick(S) is a projective bundle (the structural group
is PGlk+1−g(C)). It follows that η : Symk(E/X) → Pick(E/X) is a proper
surjective submersion. In particular, η has local sections and by passing to a
smaller X we can pick a lift of s; denoted by t : X → Symk(E/X); this is a
section of the bundle Symk(E/X) → X .
Given a divisor D on a Riemann surface S, the classical construction gives an
actual line bundle (and not merely an isomorphism class) when one specifies
local holomorphic functions on S that define D, i.e. have the same zeroes (with
mutliplicity). Observe that such local functions can be picked continuously
when the divisor varies continuously. This argument shows that after passage
to an even smaller X , we can find a line bundle L → E whose restriction to Ey

corresponds to the divisor t(y), for all y ∈ X . This L is the desired Poincaré
line bundle.

Lemma 4.11. Let β : X → Pic
k
g and let Li → E, i = 0, 1, be two Poincaré

line bundles for β. Then each x ∈ X has a neighborhood U such that (L0)|U ∼=
(L0)|U .

Proof. Consider the line bundle H := Hom(L0, L1) → E. It has fibrewise
degree 0, and the hypothesis states that for each b ∈ B, the bundle H |Eb

is
trivial. Now look at the fibrewise Cauchy–Riemann operator for H . As the
kernels all have dimension 1, they form a line bundle on B by basic Fredholm
theory. By passing to a neighborhood U of a given b ∈ B, we can pick a nowhere
zero section of the kernel bundle. This is nothing else than an isomorphism
L0|U ∼= L1|U .

Remark 4.12. One can show a stronger statement. Namely, the fibre bundle η :
Symk(E/B) → Pick(E/B) with fibre CPk−g has structure group PGlk−g+1(C)
(if k > 2g − 2). There exists a cartesian diagram:

Holkg
//

��

∗//Glk−g+1(C)

��
Pickg

// ∗//PGlk−g+1(C).

The lower horizontal map classifies the bundle η and the upper horizon-
tal map classifies the vector bundle on Holkg whose fibre at (C,L) is the
space of holomorphic sections of L. We do not make use of this result,
but leave a remark. The Dixmier–Douady class of the gerbe Φk

g is an el-

ement of H3(Pickg ;Z)
∼= H3(Pickg ;Z), and under the homotopy equivalence

Pickg ≃ BΓ̃g(k) it corresponds to the generator θ ∈ H3(BΓ̃g(k);Z). Since
the order of the gerbe ∗//Glk−g+1(C) → ∗//PGlk−g+1(C) is k − g + 1, this can
be used to give another proof that gcd(k − g + 1, 2g − 2)θ = 0.
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Proof of Proposition 4.7. An atlas for Pickg is given as follows. Let π : Eg → Tg
be the universal family of Riemann surfaces on Teichmüller space. The total
space of Pic(Eg/Tg) is a complex manifold of dimension 4g− 3. There is a map
µ : Pic(Eg) → Picg that fits into a cartesian diagram

Pic(Eg) //

��

Picg

��
Tg // Mg.

Therefore µ is an atlas, and so Picg is a Deligne–Mumford stack. The corre-

sponding result for Holkg follows from this and [18, Corollary 6.3].

4.3 Proof of Theorem 4.6

We will use the basic notions of homotopy theory for stacks as developed in [14]
or [32]. The homotopy equivalence goes via a zig-zag, and we have to introduce
an intermediate stack for this purpose.

Definition 4.13. Let Cxg denote the following stack, defined on the site Top.
An object of Cxg(Y ) consists of an oriented smooth surface bundle π : E → Y
with genus g fibres, and a complex line bundle L → E. An isomorphism
(E,L) → (E′, L′) is an isomorphism of surface bundles f : E → E′ and an
isomorphism h : L → f∗L′ of complex line bundles. We denote by Cxkg ⊂ Cxg
the open and closed substack consisting of those bundles having fibrewise degree
k.

There is a diagram

Holg //

��

Cxg

��

Sg
oo

}}zz
z
z
z
z
z
z

Mg
// ∗//Dg

where the left horizontal maps forget the holomorphic structure and the right
horizontal one is given by taking the induced bundle. The vertical morphisms
forget the line bundle data. It is clear that the diagram commutes (up to
2-isomorphism).

Lemma 4.14. The map Sg → Cxg is a universal weak equivalence.

Proof. Since by definition

Sg = EDg ×Dg
map(Σg, BC×),

we can rewrite the map Sg → Cxg as the composition

EDg ×Dg
map(Σg, BC×) −→ map(Σg, BC×)//Dg −→ Cxg. (4.1)
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The first map is a universal weak equivalence by general stack-theoretic prin-
ciples, namely [14, Proposition 2.5]. To analyze the second map, consider a

space X and a map X → Cxg, representing L → E
π
→ X , where π : E → X is

a surface bundle and L → E a complex line bundle.
Look at the auxiliary space S of pairs (x, f), where x ∈ X and f : L|π−1(x) →
π−1(x)×C∞ is a bundle monomorphism. The topology on S is the unique one
such that the projection S → X is a locally trivial fibre bundle and such that
the preimage of x has the compact-open topology. The fibre over x is the space
of bundle monomorphisms L|π−1(x) → π−1(x) × C∞, which is contractible. It
is a routine verification to identify the fibre product X×Cxg map(Σg;BC×)//Dg

with S. Thus the second map in (4.1) has local sections and it is a universal
weak equivalence. This finishes the proof

Lemma 4.15. The map Holg → Cxg is a universal weak equivalence.

Proof. The map Holg → Cxg can be factored into three maps

Holg
φ1
−→ H̃olg

φ2
−→ qHolg

φ3
−→ Cxg,

each of which is a homotopy equivalence. The stack qHolg parametrises families
of Riemann surfaces together with complex line bundles, and the map φ3 is the
forgetful map. It is a universal weak equivalence because the diagram

qHolg

��

// Cxg

��
Mg

// ∗//Dg

is a fibre square and the bottom map is a universal weak equivalence by Te-
ichmüller thory.

Now we define the stack H̃olg. A map X → H̃olg is an element L → E →
X of qHolg(X), together with a family of fibrewise differential operators D :
Γ(E;L) → Γ(E; Λ0,1

v ⊗ L) such that

D(fs) = ∂f ⊗ s+ fD(s) (4.2)

for each s ∈ Γ(E;L) and f ∈ C∞(E), where differentiation is understood to
be in the fibrewise sense. The map φ2 forgets the differential operator. The
condition (4.2) is convex, which implies that each smooth line bundle admits
such an operator and that the space of these operators is convex. Therefore φ2

is a universal weak equivalence.
The map φ1 associates to each holomorphic line bundle the Cauchy–Riemann
operator on that line bundle. We claim that φ1 is an isomorphism of stacks.
This amounts to showing that a holomorphic structure on a line bundle is
determined by its Cauchy–Riemann operator (which is a tautology) and that
any family of operators satisfying (4.2) induces the structure of a holomorphic
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line bundle on L, i.e. there exist locally nonzero solutions of Ds = 0. The
argument we give is due to Atiyah and Bott [2, p. 555] (they consider the
case of higher-dimensional vector bundles, which is more complicated, but for
a fixed Riemann surface, which is easier).

Let (L → E
p
→ X,D) be an element of H̃olg(X). For x ∈ X and y ∈ p−1(x), we

can pick a neighborhood U of x and a map α : U ×D → E over X which is an
open embedding, fibrewise holomorphic and satisfies α(x, 0) = y; furthermore
we require L to be trivial over U × D. We wish to find a section s of L over
α(U ×D) that is nowhere zero and satisfies Ds = 0 over U ×D 1

2
. To this end,

pick a fibrewise smooth section s0 of L over α(U × D) and look for a function
f that satisfies D(efs0) = 0. So we have to solve the PDE

0 = e−fD(efs0) = ∂f ⊗ s0 +Ds0.

Write Ds0 = −β ⊗ s0 for a (0, 1)-form β; this reduces the problem to the
equation

∂(f) = β.

Since all that matters is a local section on U × D 1
2
, we can multiply β with

a cut-off function and thus assume that β has compact support. Now we
pick a fibrewise holomorphic embedding U × D → U × CP

1 and a bundle
map from the trivial bundle on U × D into the tautological line bundle on
U×CP1. By Riemann–Roch, the Cauchy–Riemann operator on the tautological
line bundle (it has degree −1) is invertible. Hence its inverse is continuous as
well. Therefore we can find a continuous solution of ∂f = β over U × D. The
arguments given so far amount to the construction of an inverse map to φ1 and
thus the proof is complete.

Now we will show how to compare Pickg with BΓ̃g(k). The first observation

is that the homotopy type Pickg is aspherical, as the map Pickg → Mg is repre-
sentable and a torus bundle, and the homotopy type ofMg is BΓg, so aspherical.

Lemma 4.16. After taking homotopy types, the map Φk
g : Holkg → Pickg is a first

Postnikov approximation.

Proof. As the homotopy type of Pickg is aspherical, it is enough to show that

the map Φk
g induces an isomorphism on fundamental groups of homotopy types

at all basepoints. By [33, Example 4.4 and Theorem 5.2], there is an exact
sequence

· · ·πn(BC×, ∗) −→ πn(Hol
k
g , x) −→ πn(Pic

k
g , φ

k
g(x)) −→ πn−1(BC×, ∗) · · ·

on homotopy groups. As BC× is simply connected, the claim follows.
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We have the diagram of solid arrows

Sg(k)
≃ //

Π

��

Cxkg Holkg
≃oo

Φk
g

��

BΓ̃g(k) // Pickg

By taking associated homotopy types, and using obstruction theory, there exists
a dotted map (on homotopy types) which is a weak equivalence. Composing
with Pickg → Pickg , we obtain the map in the statement of

4.4 Holomorphic versus topological Picard groups

Theorem 4.17. For both stacks Pickg and Holkg , the comparison map c1 :
Pichol(−) → H2(− ;Z) is an isomorphism.

Proof of surjectivity. We know that H2(Holkg ;Z)
∼= Z3 generated by λ, κ0,1

and ζ, by Theorem A (ii), Theorem C, and Theorem 4.6. The index bundles of
the Cauchy–Riemann operators on powers of the tangent bundle and the line
bundle are holomorphic vector bundles, and in equation (2.3) we computed
their first Chern classes.
To realise λ as a first Chern class, put r = s = 0. To realise λ + ζ, put
(r, s) = (0, 1). Finally, s = r = 1 yields 13λ + ζ + κ0,1, which completes the

proof for X = Holkg . The result for Pickg follows from this and Lemma 4.18
below.

Lemma 4.18. Let X and Y be holomorphic local quotient stacks and X → Y a
C×-gerbe. If the comparison map Pichol(X) → Pictop(X) is surjective, then so
is Pichol(Y) → Pictop(Y).

Proof. Any line bundle (holomorphic or topological) L → X has an action of
C× coming from the gerbe structure. As usual, z ∈ C× acts by multiplication
with zw for a uniquely determined w ∈ Z, called the weight of L. It is not
difficult to see that w : Pictop(X) → Z is a homomorphism and coincides with
the edge homomorphism H2(X ;Z) → H2(BC×;Z) derived from the Leray–
Serre spectral sequence. Moreover, a line bundle L → X descends to a line
bundle on Y if and only if w(L) = 0. Therefore we get a diagram with exact
rows:

Pichol(Y) //

��

Pichol(X)
w //

����

Z

0 // Pictop(Y) // Pictop(X)
w // Z.

The bottom sequence is exact at the left by a look at the Leray–Serre spectral
sequence. A fragmentary version of the 5-lemma holds in this situation and
shows that the left vertical map is onto.
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Proof of injectivity. This begins with a result by Arbarello and Cornalba [1].
They showed that Pichol(M

n
g ) → H2(Mn

g ;Z) is an isomorphism for all n ≥ 0.
The long exact cohomology sequence of the exponential sequence, using that
H1(Mn

g ;Z) = 0, shows H1(Mn
g ;O) = 0 for all n ≥ 0. We use the Leray spectral

sequence for the map f : Pickg → Mg, which takes the form

Ep,q
2 := Hp(Mg;R

qf∗O) =⇒ Hp+q(Pickg ;O).

As f is a proper map with connected fibres, f∗O = O, and so E1,0
2 = 0.

Let π : M1
g → Mg denote the universal curve. There is a map i : M1

g → Pic
k
g over

Mg given by (Σ, p) 7→ (Σ,K + (k − 2g + 2) · p) where K denotes the canonical
class of Σ. It satisfies f ◦ i = π, and

i∗ : R1f∗O −→ R1π∗O

is known to be an isomorphism. We argue that H0(Mg;R
1π∗O) = 0. Oth-

erwise, there would be a nontrivial section of the holomorphic vector bundle
R1π∗O, producing a nontrivial family of sections of Pic0(M1

g/Mg), parametrised
by C. This would produce a line bundle onM1

g which has fibrewise degree 0, but
is nontrivial in some fibre, contradicting the result of Arbarello and Cornalba
just quoted. Therefore H1(Pickg ;O) = 0.

To derive that H1(Holkg ;O) = 0 as well, consider the Leray–Serre spec-

tral sequence of the gerbe Holkg → Pickg , which has the form Ep,q
2 =

Hp(Pickg ;H
q(∗//C×;O)). Since C× is reductive, this E2-term is concentrated

in the bottom row and because H0(∗//C×;O) = C, the proof is complete.

4.5 Relation to algebraic geometry

In the algebraic setting there exists a smooth algebraic stack P ickg over the mod-

uli stack of curvesMg, which is an algebraic analogue of our Holkg → Mg. There
is a natural copy of the multiplicative group Gm inside the endomorphisms of
every object of P ickg , hence it may be rigidified to a stack Pk

g which is an alge-

braic analogue of our Pickg . This new stack is smooth and Deligne–Mumford,
and the quotient map is representable. We have not proved, but expect to
be true, that the associated analytic stacks to P ickg and Pk

g are Holkg and Pickg

respectively. In any case, there is certainly an analytic map (Pk
g )

an → Pickg ,
and so we may consider the composition

Pic(Pk
g ) −→ Pichol((P

k
g )

an) −→ Pichol(Pic
k
g), (4.3)

and similarly for P ickg .
In [28], Melo and Viviani use algebro-geometric methods to study the Picard
groups of Pk

g and P ickg , and also of their compactifications. Comparing with
[28, Theorem 4.2 and Corollary 4.4], we see—by computation of both sides—
that the composition (4.3) and its analogue for P ickg are both isomorphisms.
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4.6 A technical result on local quotient stacks

Lemma 4.19. Let X be a local quotient stack. Then the sheaf CX of continuous
complex-valued functions is acyclic, and so the homomorphism c1 : Pictop(X) →
H2(X;Z) is an isomorphism.

Proof. This follows from a twofold application of the descent spectral sequence.
If X and Y are stacks, Y → X a representable surjective map and F a sheaf on
X, then there is a spectral sequence

Ep,q
1 = Hq(Yp;Fp) =⇒ Hp+q(X;F),

where Yp := Y×X Y×X . . .×X Y (p factors) and Fp is the pullback of F to Yp.
If X = X//G is a global quotient of a space by a compact Lie group, then the
descent spectral sequence is

Ep,q
2 = Hp

cts(G;Hq(X, CX)) =⇒ Hp+q(X; CX);

this is zero if q > 0 since the sheaf CX is fine. Thus the spectral sequence
collapses to the continuous group cohomology H∗

cts(G; map(X,C)), which van-
ishes in positive degrees as the group G is compact and the coefficient module
is a locally convex topological vector space with a continuous G-action. For
details of that argument, consult [3, Proposition 6.3].
If X is merely a local quotient stack, there is an open cover by substacks Xi each
of which is a global quotient stack. Since fibre products of global quotients are
global quotient stacks, the descent spectral sequence for the map

∐
i Xi → X has

Ep,q
1 = 0 for q > 0. The Ep,0-line is just the Čech complex for the open cover.

Because there exist partitions of unity in this situation, see [14, Appendix A],
this complex is acyclic.
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spectrales. Publ. IHÉS 35 (1968), 107–126.

[11] C.J. Earle, J. Eells. A fibre bundle description of Teichmueller theory. J.
Differential Geometry 3 (1969), 19–43.

[12] J. Ebert. The icosahedral group and the homotopy of the stable mapping
class group. Münster Journal of Mathematics 3, 221–232 (2010).

[13] J. Ebert. A vanishing theorem for characteristic classes of odd-dimensional
manifold bundles. To appear in Crelle’s Journal.

[14] J. Ebert, J. Giansiracusa. Pontrjagin–Thom maps and the homology of the
moduli stack of stable curves. Math. Annalen, 349 (2011), 543-575.

[15] S. Galatius, I. Madsen, U. Tillmann, M. Weiss. The homotopy type of the
cobordism category. Acta Math., 202(2): 195–239 (2009).

[16] S. Galatius, O. Randal-Williams. Monoids of moduli spaces of manifolds.
Geom. Topol., 14(3): 1243–1302 (2010).

[17] P. Griffiths, J. Harris. Principles of Algebraic Geometry. Reprint of the
1978 original. Wiley Classics Library. John Wiley and Sons, Inc., New York,
1994.

[18] J. Heinloth. Some notes on differentiable stacks. Mathematisches Institut,
Seminars, Universität Göttingen, 2004-05, p. 1-32.

[19] N. V. Ivanov. On the homology stability for Teichmüller modular groups:
closed surfaces and twisted coefficients. In Mapping class groups and moduli
spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), volume
150 of Contemp. Math., pages 149–194. Amer. Math. Soc., Providence, RI,
1993.

[20] N. Kawazumi.A generalization of the Morita–Mumford classes to extended
mapping class groups for surfaces. Invent. Math., 131(1) 137–149, 1998.

[21] N. Kawazumi. An infinitesimal approach to the stable cohomology of
the moduli of Riemann surfaces. In Topology and Teichmüller spaces
(Katinkulta, 1995), pages 79–100.

Documenta Mathematica 17 (2012) 417–450



450 Johannes Ebert and Oscar Randal-Williams

[22] N. Kawazumi. On the stable cohomology algebra of extended mapping class
groups for surfaces. In Groups of diffeomorphisms, volume 52 of Adv. Stud.
Pure Math., pages 383–400. Math. Soc. Japan, Tokyo, 2008.

[23] A. Kouvidakis. The Picard group of the universal Picard varieties over the
moduli space of curves. J. Differential Geom., 34 (3) 839–850, 1991.

[24] E. Looijenga. Stable cohomology of the mapping class group with symplectic
coefficients and of the universal Abel–Jacobi map. J. Alg. Geom., 5, 135-150,
1994.

[25] I. Madsen, M. Weiss. The stable moduli space of Riemann surfaces: Mum-
ford’s conjecture. Ann. of Math. (2) 165 no. 3, 843-941, 2007.

[26] A. Mattuck. Picard bundles. Illinois J. Math., 5, 550-564, 1961.

[27] N. Mestrano, S. Ramanan. Poincaré bundles for families of curves. J.
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