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Abstract. We study moduli spaces of flat connections on sur-
faces with boundary, with boundary conditions given by Lagrangian
Lie subalgebras. The resulting symplectic manifolds are closely re-
lated with Poisson-Lie groups and their algebraic structure (such as
symplectic groupoid structure) gets a geometrical explanation via 3-
dimensional cobordisms. We give a formula for the symplectic form
in terms of holonomies, based on a central extension of the gauge
group by closed 2-forms. This construction is finally used for a cer-
tain extension of the Morita equivalence of quantum tori to the world
of Poisson-Lie groups.
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1 Introduction

Let g be a Lie algebra with an invariant inner product 〈·, ·〉 (of any signature).
It gives rise to two interesting types of symplectic manifolds. The first type
are moduli spaces of flat g-connections on oriented surfaces. The second type
are symplectic manifolds connected with Poisson-Lie groups such as the Lu-
Weinstein double symplectic groupoid [9] (the symplectic groupoid integrating
a Poisson-Lie group) corresponding to a Manin triple

h1, h2 ⊂ g.

We shall notice that these ”Poisson-Lie type” symplectic manifolds are, in fact,
themselves moduli spaces of flat connections, if we allow surfaces with bound-
ary and impose boundary conditions on the flat connections. To get the Lu-
Weinstein double groupoid, the surface is a square, with boundary conditions
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as on the picture:

h1

h1

h2 h2

We shall provide formulas for symplectic forms using holonomies of the flat
connections, in the spirit of Alekseev-Malkin-Meinrenken [1]. The basic idea is
that the symplectic form can be interpreted as the integral over the surface of
the curvature of a certain connection. The integral is then readily computed in
terms of parallel transport. Moreover we shall describe how 3dim bodies give
rise to Lagrangian submanifolds; for example, this picture gives one of the two
products in Lu-Weinstein double groupoid:

This is a symplectic version of Chern-Simons TQFT in the sense of D. Freed
[5], with appropriate boundary conditions.

The motivation for this work was to give a symplectic description of Morita
equivalence of quantum tori, and moreover, to extend this Morita equivalence
from Abelian T-duality to Poisson-Lie T-duality [7] (though just on the sym-
plectic level, without performing geometrical quantization). This is done in the
final section.
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2 Colored surfaces and moduli spaces

Let G be a connected Lie group and 〈, 〉 an Ad-invariant inner product (of any
signature) on its Lie algebra g.

We shall consider compact oriented surfaces Σ with corners (i.e. locally looking
like (R≥0)

2). We shall assume that none of the components of Σ is closed and
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Moduli Spaces and Morita Equivalence 609

that on each component of ∂Σ there is at least one corner.1 The boundary of
Σ is thus split by the corners into a finite number of arcs.
For each arc a we choose a Lie subalgebra ha ⊂ g which is Lagrangian w.r.t. 〈, 〉
(i.e. h⊥a = ha). Let Ha ⊂ G be the corresponding connected Lie subgroup. We
demand for every corner x of Σ that if a and b are the arcs meeting at x then
ha ∩ hb = 0. We shall call such a Σ (together with the choice of subalgebras) a
colored surface.

For every colored surface Σ we define a symplectic manifoldMΣ. Let us give
three equivalent definitions of the manifoldMΣ; its symplectic form is defined
in Section 3.

2.1 MΣ via cuts of Σ

Let us first describeMΣ in a way which depends on a choice of certain cuts of
Σ.
We keep cutting Σ along paths connecting corners until we get a polygon. For
every side s of the polygon we choose an element gs ∈ G such that:

1. if s is an arc of the boundary of Σ then gs ∈ Hs

2. if s and s′ are the two sides which are the result of a cut then gs′ = g−1
s

3. the product of all gs’s along the boundary of the polygon (in their natural
cyclic order) is equal to 1.

An assignment s 7→ gs satisfying these properties is, by definition, a point in
MΣ.

r1

r2

b1

b2
v

g g−1

b1 g b2 v r2 g
−1r1 = 1

1We impose these assumptions only for simplicity reasons, as they imply that the moduli
spaces defined below are non-singular.
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MΣ can thus be described as the preimage of 1 under a map

∏

a

Ha ×G#cuts → G. (1)

The map is a submersion and thusMΣ is a manifold.

2.2 MΣ as a space of groupoid morphisms

Let us now describeMΣ without using cuts. Let X ⊂ Σ be the set of corners
of Σ and let Π1(Σ, X) be the fundamental groupoid of Σ (the set of objects of
Π1(Σ, X) is X and morphisms are homotopy classes of paths between corners).
Every arc of the boundary can be seen as a morphism in Π1(Σ, X). Then

MΣ = {F : Π1(Σ, X)→ G; F (a) ∈ Ha for every arc a}.

2.3 MΣ as a moduli space of flat connections

Finally, let us describeMΣ as a moduli space of flat connections. Let π : P → Σ
be a principal G-bundle. For every arc a we choose a reduction of P |a to
Ha ⊂ G, i.e. a submanifold Pa ⊂ π−1(a) which is a principal Ha-bundle over
a. For every corner x ∈ Σ we choose a point px ∈ Pa ∩ Pb where a and b are
the arcs meeting at x. Let us call π : P → Σ with its additional structure a
colored G-bundle over Σ.
Let us consider connections on P which restrict to connections (i.e. to ha-valued
1-forms) on every Pa; we shall call such a connection a colored connection. MΣ

can then be described the moduli space of colored flat connections on colored
G-bundles over Σ.
The groupoid morphism Π1(Σ, X)→ G corresponding to a colored flat connec-
tion is given by parallel transport (the fiber of P over any corner x is trivialized
by the choice of the point px). In the opposite direction, if F : Π1(Σ, X)→ G
satisfies F (a) ∈ Ha for every arc a then the corresponding flat coloredG-bundle
is construced as follows. Let p : Σ̂→ Σ be a universal cover of Σ with a chosen
corner y0 ∈ Σ̂ and let x0 = p(y0). Let P̃ = Σ̂×G→ Σ̂ be the trivial G-bundle,
with the trivial flat connection. By restriction of F we have a homomorphism
π1(Σ, x0) → G and we define the flat G-bundle P → Σ as P = P̃ /G. The
reduction of P̃ over a corner y ∈ Σ̂ is (y, F ([p ◦ γy0y])), where γy0y is a path
(unique up to homotopy) from y0 to y. These reductions then extend uniquely
to a coloring of P̃ , and the coloring descends to a coloring of P . It is clear that
every flat colored G-bundle P → Σ arises in this way, as the flat connection on
p∗P can be used to trivialize it.
Notice that MΣ is the disjoint union over the isomorphism classes of colored
G-bundles of the moduli spaces with fixed colored G-bundle class.
If P is the trivial G-bundle P = Σ × G and its coloring is also trivial (i.e.
Pa = a ×Ha, px = (x, 1)) then a colored connection can be described as a 1-
form A ∈ Ω1(Σ)⊗g such that the restriction of A to any arc a is in Ω1(a)⊗ha.
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Moduli Spaces and Morita Equivalence 611

The space of these flat connections modulo the gauge transformations (by maps
g : Σ → G such that g(x) = 1 for every corner x and g(a) ⊂ Ha for every arc
a) is a connected component ofMΣ.

3 Symplectic form in terms of holonomies

3.1 Symplectic form on moduli spaces of flat connections

Let P → Σ be a colored G-bundle. Colored connections on P form an affine
space Acol(P ) modeled on Ω1

col(Σ,AdP ), where Ωcol(Σ,AdP ) ⊂ Ω(Σ,AdP ) is
the space of forms that restrict to Ω(a,AdPa

) on every arc a ⊂ ∂Σ.
If A is a flat colored connection on P then the covariant differential dA makes
Ωcol(Σ,AdP ) to a complex and we have a natural isomorphism

T[P,A]MΣ
∼= H1(Ωcol(Σ,AdP ), dA),

where [P,A] ∈MΣ denotes the isomorphism class of (P,A). The antisymmetric
pairing

ω([α], [β]) =

∫

Σ

〈α ∧ β〉

on T[P,A]MΣ (α, β ∈ Ω1
col(Σ,AdP )) is non-degenerate by Poincaré–Verdier du-

ality.
The moduli spaceMΣ becomes in this way a symplectic manifold. To see that
ω is smooth and closed (we already checked that it is non-degenerate), let us
choose an open subset U ⊂MΣ which admits a smooth family of colored flat
connections φ : U → Acol(P ), φ : x 7→ Ax, such that [P,Ax] = x. Then

ω = φ∗ωA (2)

where ωA ∈ Ω2(Acol(P )) is the constant (hence closed) 2-form

ωA(α, β) =

∫

Σ

〈α ∧ β〉

on the affine space Acol(P ); ω is therefore closed. The symplectic form ω is
a straightforward generalization of the symplectic form of Atiyah-Bott [2] and
Goldman [6] who considered closed surfaces.

Remark 3.1. The symplectic manifold (MΣ, ω) is best described as the sym-
plectic reduction of (Acol(P ), ωA) by the group of the automorphisms of P
preserving the coloring. Making this statement precise is, however, rather
technical. Here I present the formal part of the story, ignoring the problems
with infinite-dimensional manifolds:
To simplify notations, let us discuss the case when the coloredG-bundle P → Σ
is trivial. Let us recall how symplectic forms appear on moduli spaces of flat
connections.
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The group of smooth maps Σ→ G acts affinely on Ω1(Σ) ⊗ g by gauge trans-
formations (g : Σ→ G, α ∈ Ω1(Σ)⊗ g)

g · α = g−1dg + g−1αg

and this action preserves ωA.
The infinitesimal action of a t : Σ→ g is generated by the Hamiltonian

Ht(α) =

∫

Σ

〈t, F 〉+
∫

∂Σ

〈t, α〉 (3)

where F = dα+α2 is the curvature of the g-connection α; the Poisson bracket
of two such Hamiltonians is

{Ht1 , Ht2} = H[t1,t2] + c(t1, t2)

where

c(t1, t2) =

∫

∂Σ

〈t1, dt2〉. (4)

Notice that the cocycle (4) vanishes on the Lie algebra

{t : Σ→ g; t(a) ⊂ ha for every arc a}

of infinitesimal gauge transformations preserving the coloring. The moment
map (3) is 0 at α ∈ Ω1(Σ)⊗ g iff

α is flat and α|a ∈ Ω1(a)⊗ ha for every arc a.

The symplectic reduction is thus the part of the moduli spaceMΣ coming from
the trivial colored G-bundle.

3.2 Central extension by closed 2-forms

Let M be a manifold and let Ω2
cl(M) denote the space of closed 2-forms on M .

Let us recall that the Lie algebra g(M) of smooth maps M → g has a central
extension g̃(M) by Ω2

cl(M): as a vector space,

g̃(M) = g(M)⊕ Ω2
cl(M),

and the bracket is

[(t1, ω1), (t2, ω2)] = ([t1, t2], 〈dt1 ∧ dt2〉). (5)

The corresponding group G̃(M), a central extension of G(M) (the group of
smooth maps M → G) by Ω2

cl(M), can be described as follows: its elements
are pairs

(g, ω), g : M → G, ω ∈ Ω2(M), dω =
1

2
g∗η (6)
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Moduli Spaces and Morita Equivalence 613

where the invariant 3-form η on G is given by

η(u, v, w) = 〈[u, v], w〉.

The product in the group is

(g1, ω1)(g2, ω2) = (g1g2, ω1 + ω2 +
1

2
〈g−1

1 dg1 ∧ dg2 g
−1
2 〉) (7)

and the inverse

(g, ω)−1 = (g−1,−ω). (8)

Finally, let us also introduce an auxiliary group G̃big(M) ⊃ G̃(M):

G̃big(M) = G(M)× Ω2(M), (9)

with the product and inverse given by the same formulas (7), (8). The map

G̃big(M)→ Ω3
cl(M), (g, ω) 7→ dω − 1

2
g∗η

is a group morphism and G̃(M) is its kernel.

3.3 Symplectic form in terms of holonomies

Let us cut Σ until we get a polygon (as in Section 2). For each side s of the
polygon we have a map γs :MΣ → G (the holonomy along the side).

Theorem 3.1. The symplectic form ω onMΣ is given by

(1, ω) =
∏

s

(γs, 0)

where the product is taken in the group G̃big(MΣ) (see Equation (7)) and the
sides of the polygon are taken in their natural (cyclic) order.

The idea of the proof is that ω is the integral of the curvature of a g̃(MΣ)-valued
connection on Σ, and hence can be expressed in terms of the holonomies gs’s.
The proof is in Section 3.6. The formula for ω is a generalization of a similar
formula of Alekseev-Malkin-Meinrenken [1] for the case of closed surfaces.

3.4 Integral of curvature

Let

C → K̃ → K

be a central extension of Lie groups. Let P̃ → D be a principal K̃-bundle over
a disk D and let P → D be the corresponding K-bundle, P = P̃ /C. Suppose
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that A is a flat connection on P and Ã is a (non-flat) connection on P̃ lifting
A. The curvature F̃ of Ã is a c-valued 2-form on D and its integral is

C ∋ exp

∫

D

F̃ = hol∂D Ã. (10)

The proof of this simple claim is obvious: trivialize P̃ → D (and hence P → D)
in such a way that the connection A on P = D × K becomes trivial. Such
a trivialization can be achieved e.g. by by the parallel transport of Ã along
straight lines starting at the center of the disc D. Formula (10) then becomes
Stokes theorem.
We shall use (10) for the central extension

Ω2
cl(M)→ G̃(M)→ G(M).

The disk will be the result of cutting Σ and M will run over certain open
subsets ofMΣ.

3.5 Symplectic form as integral of curvature

Let Σ be a colored surface. Let U ⊂MΣ be an open subset, P → Σ a colored
G-bundle and Ax a smooth family of colored flat connections on P parametrized
by x ∈ U , such that the class of (P,Ax) is x. MΣ can be covered by such open
subsets U .
Using the inclusion G→ G̃(U), g 7→ (g, 0), we lift P to a principal G̃(U)-bundle
P̃U → Σ. Similarly, the inclusion G→ G(U) lifts P to a principal G(U)-bundle
PU → Σ and PU = P̃U/Ω

2
closed(U).

The family Ax can be seen as a flat connection A on PU , and Ã = (A, 0) as
a (non-flat) connection on P̃U . The curvature F̃ of Ã is a Ω2

cl(U)-valued 2-

form on Σ, and the integral of F̃ is (using (2) and (5)) the symplectic form on
U ⊂MΣ:

ω =

∫

Σ

F̃ . (11)

Remark 3.2. To speak properly about principal G(U)- and G̃(U) bundles, we
should understand in what sense G(U) and G̃(U) are Lie groups. However, we
don’t need to do it. A principal G(U)-bundle ober Σ is given by an open cover
{Vα} of Σ and by a cocycle Vα ∩ Vβ → G(U), i.e. by a cocycle of smooth maps
(Vα ∩ Vβ) × U → G. In our case the maps are constant on U . A connection
on such a bundle is given by 1-forms Aα ∈ Ω1(Vα, g(U)), compatible on the
overlaps Vα ∩ Vβ . A 1-form Aα ∈ Ω1(Vα, g(U)) is by definition a family of
1-forms in Ω1(Vα, g), smoothly parametrized by U . That is how the family Ax

is seen as a flat connection A on PU . Notice also that since P can be trivialized
when we cut Σ to a dics, P (U) and P̃ (U) are also trivialized.
Let us also remark that we are not constructing G(MΣ)- and G̃(MΣ)-bundles
over Σ. Formula (11) gives the symplectic form only on our open subsets
U ⊂MΣ, but these open subsets coverMΣ.
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Moduli Spaces and Morita Equivalence 615

3.6 Symplectic form in terms of holonomies (proof)

Proof of Theorem 3.1. It follows immediately from (11) and (10). We cut Σ
to a polygon. If s ⊂ ∂Σ then (γs, 0) is the holonomy of Ã along s (since hs is
isotropic and thus the cocycle in (5) vanishes). If s comes from a cut then the
holonomy of Ã along s is (γs, β) for some 2-form β. However, the holonomy
along the other side coming from the same cut is its inverse; we can thus replace
β with 0 and the product of holonomies will not change. This proves Theorem
3.1 for open U ⊂ MΣ satisfying the condition of Section 3.5, and since they
coverMΣ, it proves it for entireMΣ

3.7 Examples

Example 3.1. Let Σ be a square colored by a Manin triple r, b ⊂ g:

r

r

b b

Let us denote the holonomies as on the picture, i.e.

MΣ = {(r1, r2, b1, b2) ∈ R ×R×B ×B; r1b1 = b2r2} :

r1

r2

b2 b1

In G̃(MΣ) we have (r1, 0)(b1, 0) = (r1b1, 〈r−1
1 dr1 ∧ db1b

−1
1 〉/2) and

(b2, 0)(r2, 0) = (b2r2, 〈b−1
2 db2 ∧ dr2r

−1
2 〉/2). The symplectic form on MΣ

is thus

ω =
1

2
〈r−1

1 dr1 ∧ db1b
−1
1 〉 −

1

2
〈b−1

2 db2 ∧ dr2r
−1
2 〉.

This symplectic manifold (MΣ, ω) is the Lu-Weinstein double symplectic
groupoid [9] corresponding to the triple R,B ⊂ G. This fact was already
noticed by the author in [12]. A similar interpretation of the Lu-Weinstein
double groupoid was found by P. Boalch in [3] using irregular connections.

In one of the groupoid structures, the space of objects is B and a point in
MΣ is an arrow from b2 to b1; in the other groupoid structure, the roles of R
and B are exchanged. The groupoid products are given by concatenation of
squares (either horizontal or vertical); they will be explained more properly in
the following section.
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Example 3.2. Let now Σ be a square colored as follows:

r

v

b b

r

v

b2 b1

The symplectic form is

ω =
1

2
〈r−1dr ∧ db1b

−1
1 〉 −

1

2
〈b−1

2 db2 ∧ dv v−1〉.

The symplectic manifold (MΣ, ω) is again a well-known object: it is the
symplectic groupoid integrating the homogeneous Poisson space given by
R,B, V ⊂ G via Drinfeld’s classification [4]. This symplectic groupoid was
discovered by Jiang-Hua Lu [8].

Example 3.3. Now let Σ be a triangle.

r

vb

r

vb

In this case
MΣ = {(r, b, v) ∈ R×B × V ; rbv = 1}.

The symplectic form is

ω =
1

2
〈v−1dv ∧ db b−1〉.

This symplectic manifold is, up to covering, the big symplectic leaf in the
homogeneous Poisson space given by R,B, V ⊂ G. It will play a role when we
discuss Morita equivalence.

Example 3.4. Finally, let us discuss the simplest Σ that requires a cut.

rb rb r1b1 r2b2

g

MΣ = {(r1, r2, b1, b2, g) ∈ R2 ×B2 ×G; r1b1g = g r2b2}
(1, ω) = (r1, 0)(b1, 0)(g, 0) ((g, 0)(r2, 0)(b2, 0))

−1

The symplectic manifold (MΣ, ω) is the double symplectic groupoid integrating
the Drinfeld double given by the tripleR,B ⊂ G, i.e. the Lu-Weinstein groupoid
of the triple R×B,Gdiag ⊂ G×G.
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Moduli Spaces and Morita Equivalence 617

4 Painted bodies and Lagrangian submanifolds

In this section we shall discuss how cobordisms of painted surfaces give rise to
Lagrangian submanifolds in the moduli spaces. These Lagrangian submanifolds
will turn the moduli spaces into interesting algebraic objects, such as (double)
groupoids, modules, etc. The Lagrangian submanifold will consist of those flat
connection on the surface that can be extended to flat connections on the 3dim
manifold (cobordism). This construction is a straightforward generalization
of the symplectic Chern-Simons theory of D. Freed [5], who considered closed
surfaces.

4.1 Painted bodies

Let us consider a compact oriented 3dim manifold with corners (i.e. locally
looking as (R≥0)

3). Its boundary is divided to vertices (corners), edges and
faces. For some of the faces we choose a Lagrangian Lie subalgebra of g (we
shall call such a face painted). We shall require the following. Whenever two
faces meet along an edge then at least one of them is painted, and if both
are painted, then the two subalgebras are transverse. At each vertex should
meet two painted and one unpainted face. Finally, the unpainted part of the
boundary should be a colored surface, i.e. each of its components should have
boundary and on each of the boundary circles there should be a corner. We
shall call such a manifold a painted body. The unpainted part of the boundary
of a body X will be denoted ΣX .

4.2 Flat connections on a painted body

Let X be a painted body. We shall consider principal G-bundles P → X with
a reduction to Ha over every painted face a and with a section over every edge
between painted faces. We then consider flat connections compatible with the
reductions. Let LX ⊂MΣX

denote the set of equivalence classes of flat colored
connections on ΣX that are extensible to X . We shall call LX smooth if it is
a submanifold and moreover it can be locally lifted to a smooth family of flat
connections on X .

Theorem 4.1. If LX ⊂MΣX
is smooth, it is a Lagrangian submanifold.

Proof. We shall prove that the formal tangent spaces to LX are Lagrangian in
the tangent spaces ofMΣX

. If LX is smooth then these formal tangent spaces
are the actual tangent spaces.
Let P be a painted G-bundle over X , AdP → X the vector bundle associated
to the adjoint representation of G on g, and let

Ωcol(X,AdP ) ⊂ Ω(X,AdP )

be the space of AdP -valued differential forms that take values in the corre-
sponding subalgebra of g when restricted to a painted face of X . Let A be a
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flat colored connection; then dA makes Ωcol(X,AdP ) into a complex. Let us
denote this complex ΩA(X) and its cohomology HA(X).
Let P ′ = P |ΣX

and A′ = A|ΣX
. Let us consider the short exact sequence

0→ ΩA,0(X)→ ΩA(X)→ ΩA′(ΣX)→ 0

(where ΩA,0(X) are the forms vanishing at ΣX) and the following piece of the
resulting long exact sequence:

H1
A(X)→ H1

A′(ΣX)→ H2
A,0(X). (12)

We have
H1

A′(ΣX) = T[P ′,A′]MΣX
,

and the image of the first arrow is the formal T[P ′,A′]LX .
By Poincaré duality the dual of (12) is obtained just by reversing the arrows:

H2
A,0(X)← H1

A′(ΣX)← H1
A(X)

(in particular, the identification of H1
A′(ΣX) with its dual is via the symplectic

form). As a consequence, the image of the first arrow in (12) is a Lagrangian
subspace.

In all the examples that we consider below, LX is easily seen to be smooth.

4.3 Examples

As we noticed above, Lu-Weinstein’s double symplectic groupoid corresponding
to a Manin triple B,R ⊂ G is the moduli space for the surface

r

r

b b

The graph of one of the products in this double groupoid is LX where X is

In other words, the product is given by gluing squares along the adjacent sides
on the picture

r

r

b b

r

r

b
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Moduli Spaces and Morita Equivalence 619

The other product is obtained when we exchange the colors.
The moduli space of

r

bb

v

is a symplectic groupoid via the gluing

r

v

b b

r

v

b

It is a symplectic groupoid integrating the Poisson B-homogeneous space cor-
responding to the quadruple R,B, V ⊂ G. It is also a module of

r

r

b b

via the gluing

r

v

b b

r

b b

Similar pictures can be drawn for the double symplectic groupoid integrating
the Drinfeld double and also for its R-matrix in the sense of Weinstein and Xu;
see [12] for details.

5 Morita equivalence of quantum tori and beyond

This last section is a bit speculative. On the other hand, it describes the
motivation for the constructions described above, so it is included anyway.

5.1 Morita equivalence of quantum tori

Recall that two algebras A and B are said to be Morita equivalent if their
categories of modules are linearly equivalent. Equivalently, there exist a A ⊗

Documenta Mathematica 17 (2012) 607–625



620 Pavol Ševera

Bop-module M and a B⊗Aop module N such that M⊗BN ∼= A andN⊗AM ∼=
B.

Let θij = −θji, 1 ≤ i, j ≤ n, be a skew-symmetric matrix with real elements.
We suppose that the graph of the corresponding linear map R

n → R
n intersects

Z
2n ⊂ R

2n only in 0 ∈ Z
2n. To the matrix θ we associate the algebra T

n
θ (a

quantum torus) generated by elements ui (1 ≤ i ≤ n) and their inverses,
modulo relations uiuj = exp(2π

√
−1θij)ujui. A famous result of Rieffel and

Schwarz [10] says that the algebra T
n
θ is Morita equivalent to T

n
θ−1 .2

The quantum torus T
n
θ can be seen as a quantization of the n-dimensional

torus Tn with the constant Poisson structure given by θ. The following natural
questions are due to A. Schwarz and A. Weinstein (motivated by an extension
of T -duality [11] to Poisson-Lie T -duality [7]).

1. Is there a generalization of Morita equivalence when T
n is replaced by a

quantum group H and T
n
θ by a torsor of H?

2. Is there a symplectic/Poisson version of Morita equivalence for tori with
constant Poisson structure? Can it be extended to Poisson-Lie groups,
giving a symplectic/Poisson analog of Question 1?

We shall give an answer to Question 2. It will provide a conjectural answer to
Question 1.

5.2 H-Morita equivalence

Let H be a Hopf algebra. Let A be an associative algebra in the (monoidal)
category H-mod of left H-modules. In other words, A is an H-module and the
product A⊗A→ A is a morphism of H-modules.

Let A-modH be the category of A-modules in H-mod, i.e. the category of
vector spaces V which are modules of both A and H , such that A ⊗ V → V
is a morphism of H-modules. Let A-mod be the category of A-modules in
the category of vector spaces. We have the forgetful functor res : A-modH →
A-mod and its left adjoint ind : A-mod→ A-modH .

Let now B be an algebra in the (monoidal) category H-comod of right H-
comodules. We have the category B-modH of B-modules in H-comod and the
category B-mod. Now we have the forgetful functor cores : B-modH → B-mod
and its right adjoint coind : B-mod→ B-modH .

Definition 5.1. We shall say that A and B are H-Morita equivalent if there
are equivalences of linear categories A-mod→ B-modH and A-modH → B-mod

2it implies a Morita equivalence of T
n

θ
with T

n

A·θ
for any A ∈ SO(n, n;Z), where

SO(n, n;Z) acts on the graph of θ in R
2n, provided the transformed graph is again a graph
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such that the diagram

A-mod B-modH

A-modH B-mod

ind cores

commutes up to a natural isomorphism, or equivalently, such that

A-mod B-modH

A-modH B-mod

res coind

commutes up to a natural isomorphism.

The simplest example is when A = k is trivial (k is the base field) and B = H .
The category H-modH is called the category of Hopf modules of H . A linear
equivalence F : k-mod→ H-modH making the diagram

k-mod H-modH

H-mod H-mod

F

ind

=

cores

commutative (up to a natural isomorphism) is due to Sweedler [14]; F is given
simply by F (V ) = H ⊗ V .

Proposition 5.1. An H-Morita equivalence is equivalent to a vector space
M which is a right A-module and left B-module, satisfying the compatibility
relation b · (m · a) = (b(1) ·m) · (b(2) · a) for all a⊗m⊗ b ∈ A⊗M ⊗B, where
b 7→ b(1) ⊗ b(2) ∈ B ⊗H is the H-comodule structure of B.

Proof. If M is given then M⊗H is a B-A-bimodule via b ·(m⊗h) = (b(1) ·m)⊗
(b(2) ·h), (m⊗h) ·a = (m · (h(2) ·a))⊗h(1). It induces an H-Morita equivalence

as follows. The functor A-mod→ B-modH is given by V 7→ V ⊗A(M⊗H), and

A-modH → B-mod by W 7→
(

W ⊗A (M ⊗H)
)H

, where XH (for a H-module
X) is {x ∈ X ; (∀h ∈ H)h · x = ǫ(h)x}.
If an H-Morita equivalence is given then M = F (A)H , where F is the functor
A-mod→ B-modH .
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5.3 Conjectural answer to Question 1

Suppose again that G is a connected Lie group and its Lie algebra g has an
invariant inner product 〈, 〉. Let r, b ⊂ g be a Manin triple and let R and
B be the corresponding Poisson-Lie groups. Suppose also that v is another
Lagrangian subalgebra with the property that v ∩ r is the Lie algebra of a
closed connected subgroup Rv ⊂ R and similarly, v ∩ b is the Lie algebra of
a closed connected subgroup Bv ⊂ B. By Drinfeld’s classification of Poisson
homogeneous spaces [4] the homogeneous space R/Rv has a Poisson structure
such that the map R× (R/Rv)→ R/Rv is Poisson, and similarly for B/Bv.
Below we shall prove a symplectic version of the following loosely stated con-
jecture: If Hopf algebra H is a (suitable) quantization of the Lie bialgebra
corresponding to the Manin triple r, b ⊂ g and algebras A and B are (suitable)
quantizations of the Poisson manifolds Rv and Bv respectively, then A and B
are H-Morita equivalent.
In particular, if v = r we get A = k and B = H , i.e. Sweedler’s example of
H-Morita equivalence.
Let us notice that we prove the symplectic version of the conjecture only under
the additional assumption that v is transverse to both r and b. The general
case would require colored surfaces where we allow adjacent subalgebras to
have non-trivial intersection. The corresponding colored G-bundles would have
a reduction over the corresponding corner to the group exponentiating the
intersection. We shall treat this generalization elsewhere.

5.4 Symplectic H-Morita equivalence

In this final section we provide a symplectic analogue of our conjectural answer
to Question 1. Vector spaces are replaced by symplectic manifolds of the form
MΣ as follows:

r

v

b bA 

b

v

r rB  

b

b

r rH  

r

v

b
M  

In other words, A is replaced by the symplectic groupoid integrating the Poisson
homogeneous space Rv, B by the symplectic groupoid integrating Bv, H by the
double symplectic groupoid integrating both R and B, and M by the moduli
space of the displayed triangle.
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Let us recall the definition of Morita equivalence of symplectic groupoids [15].
Let I denote the groupoid with two objects 0 and 1 and with a unique morphism
0 → 1. Let Γ be a Lie groupoid with a groupoid morphism Γ → I. Γ splits
naturally to 4 components: Γij (i, j ∈ {0, 1}) is the space of arrows lying over
the unique morphism i→ j. Let Xi denote the space of objects of Γ lying over
i ∈ {0, 1}.

Definition 5.2. If the maps Γ01 → X1 and Γ10 → X0 are surjective then the
groupoids Γ00 ⇒ X0 and Γ11 ⇒ X1 are said to be Morita equivalent via the
bimodules Γ01 and Γ10. If the groupoid Γ is symplectic then we have a Morita
equivalence of symplectic groupoids.

Let r, b, v ⊂ g be as above and let R,B, V ⊂ G be the corresponding groups.
Let X0 = R×B and let the arrows (r1, b1)→ (r2, b2) in Γ00 be (v, r) ∈ V ×R
such that r1b1v = b r2b2; composition of arrows is by (v, r)(v′, r′) = (vv′, rr′).
The groupoid Γ00 can be seen asMΣ for the surface

b

v

r r

b b

Γ00 ∼

which makes it to a symplectic groupoid. The groupoid composition is by
(horizontal) gluing of rectangles.

The symplectic groupoid Γ00 integrates the following Poisson structure on R×
B. We have the Poisson action B ×Bv → Bv. The forgetful functor

Poisson manifolds with a moment map to R→ Poisson b-manifolds

has a right adjoint F (see [13]), and F (Bv) = R×B is our Poisson manifold. It is
a semi-classical analog of the crossed product A⋊H , where A is a quantization
of Bv (an associative algebra) and H a quantization of the Lie bialgebra b (a
Hopf algebra). Notice that A⋊H-mod is equivalent to A-modH .

Let us suppose for simplicity that the map R×B → G, (r, b) 7→ rb, is a diffeo-
morphism. The symplectic groupoid Γ00 is Morita equivalent to the symplectic
groupoid Γ11 integrating the Poisson manifold Rv, i.e.MΣ for the surface

b

v

r rΓ11 ∼
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The bimodule Γ01 isMΣ for the surface

b

v

r

r

b

Γ01 ∼

with the bimodule structure given by gluing along the vertical sides.
This Morita equivalence of symplectic groupoids is analogous to a Morita equiv-
alence A-modH → B-mod. If we exchange r and b then we get a similar Morita
equivalence, analogous to A-mod → B-modH , and these two Morita equiva-
lences of symplectic groupoids are easily seen to form a commutative square
analogous to H-Morita equivalence of A and B. Finally, the moduli space for
the triangle

r

v

b

is analogous to the vector space M ; the A- and B-module structure of M is
given by gluing squares to the triangle along the edge of the corresponding
color.
In the case when R,B = T

n, G = R×B, all these symplectic manifolds are of
the form R

2m/Zk, with constant symplectic structure. They can be therefore
easily geometrically quantized (provided the symplectic form is integral on Z

k)
and these quantizations are compatible with the groupoid/module structures,
so we get anH-Morita equivalence. If we choose the Planck constant so that the
geometrical quantization H of the double symplectic groupoid R×B is trivial,
we get the standard proof of Morita equivalence of quantum tori [10]: In the
simplest case of 2-dimensional tori, A is given by the relation uv = e2πiθvu,
B by u′v′ = e2πi/θv′u′, and the bimodule is M = L2(R) given by (u · f)(x) =
f(x+1), (v ·f)(x) = e2πiθxf(x), (u′ ·f)(x) = f(x+1/θ), (v′ ·f)(x) = e2πixf(x).
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