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Abstract. Let L = ∆ + Z for a C1 vector field Z on a com-
plete Riemannian manifold possibly with a boundary. A number of
transportation-cost inequalities on the path space for the (reflecting)
L-diffusion process are proved to be equivalent to the curvature con-
dition Ric−∇Z ≥ −K and the convexity of the boundary (if exists).
These inequalities are new even for manifolds without boundary, and
are partly extended to non-convex manifolds by using a conformal
change of metric which makes the boundary from non-convex to con-
vex.
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1 Introduction

In 1996 Talagrand [13] found that the L2-Wasserstein distance to the standard
Guassian measure can be dominated by the square root of twice relative en-
tropy. This inequality is called (Talagrand) transportation-cost inequality, and
has been extended to distributions on finite- and infinite-dimensional spaces.
In particular, this inequality was established on the path space of diffusion
processes with respect to several different distances (i.e. cost functions): see
e.g. [7] for the study on the Wiener space with the Cameron-Martin distance,
[17, 5] on the path space of diffusions with the L2-distance, [18] on the Rie-
mannian path space with intrinsic distance induced by the Malliavin gradient
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operator, and [6, 27] on the path space of diffusions with the uniform distance.
The main purpose of this paper is to investigate the Talagrand inequality on
the path space of reflecting diffusion process, for which both the curvature and
the second fundamental form of the boundary will take important roles.

LetM be a connected complete Riemannian manifold possibly with a boundary
∂M . Let L = ∆+Z for a C1 vector field Z on M . Let Xt be the (reflecting if
∂M 6= ∅) diffusion process generated by L with initial distribution µ ∈ P(M),
where P(M) is the set of all probability measures on M . Assume that Xt is
non-explosive, which is the case if ∂M is convex and the curvature condition

Ric−∇Z ≥ −K (1.1)

holds for some constant K ∈ R. In this case, for any T > 0, the distribution
ΠTµ of X[0,T ] := {Xt : t ∈ [0, T ]} is a probability measure on the (free) path
space

MT := C([0, T ];M).

When µ = δo, the Dirac measure at point o ∈M , we simply denote ΠTδo = ΠTo .

For any nonnegative measurable function F on MT such that ΠTµ (F ) = 1, one
has

µTF (dx) := ΠTx (F )µ(dx) ∈ P(M). (1.2)

Let ρ be the Riemannian distance on M ; i.e. for x, y ∈M,ρ(x, y) is the length
of the shortest curve on M linking x and y. Then MT is a Polish space under
the uniform distance

ρ∞(γ, η) = sup
t∈[0,T ]

ρ(γt, ηt), γ, η ∈MT .

Let W2,ρ∞ be the L2-Wasserstein distance (or L2-transportation cost) induced
by ρ∞. In general, for any p ≥ 1 and for two probability measures Π1,Π2 on
MT ,

Wp,ρ∞(Π1,Π2) := inf
π∈C (Π1,Π2)

{
∫

MT×MT

ρ∞(γ, η)pπ(dγ, dη)

}1/p

is the Lp-Warsserstein distance (or Lp-transportation cost) of Π1 and Π2 in-
duced by the uniform norm, where C (Π1,Π2) is the set of all couplings for Π1

and Π2.

Before moving on, let us recall the Talagrand transportation-cost inequality es-
tablished in [6] on the path space over Riemannian manifolds without boundary.
Let ∂M = ∅ and ρo = ρ(o, ·). If

|Z| ≤ ψ ◦ ρo (1.3)
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holds for some positive function ψ such that
∫∞

0
1

ψ(s)ds = ∞, then (see [6,

Theorem 1.1])

W2,ρ∞(FΠTo ,Π
T
o )

2 ≤ 2

K
(e2KT − 1)ΠTo (F logF ), F ≥ 0,ΠTo (F ) = 1. (1.4)

According to [12, 4, 18], the log-Sobolev inequality for a smooth elliptic dif-
fusion implies the Talagrand transportation-cost inequality with the intrinsic
distance. So, (1.4) was proved in [6] by using a known damped log-Sobolev
inequality on the path space and finite-dimensional approximations. To ensure
the smoothness of the approximating diffusions, one needs the boundedness of
curvature. To get rid of this condition, a sequence of new metric approximating
the original one were constructed in [6], which satisfy (1.1) and have bounded
curvatures. In this way (1.4) was established without using curvature upper
bounds. But to realize this approximation argument, the technical condition
(1.3) with

∫∞

0
1

ψ(s)ds = ∞ was adopted.

In this paper we adopt a different argument developed in [27] for diffusions on
Rd by using the martingale representation theorem and Girsanov transforma-
tions, so that this technical condition was avoided. Furthermore, we present
a number of cost inequalities which are equivalent to the convexity of ∂M (if
exists) and the curvature condition (1.1).
When ∂M 6= ∅, let N be the inward unit normal vector field of ∂M . Then the
second fundamental form of ∂M is defined by

I(U, V ) = −〈∇UN, V 〉, U, V ∈ T∂M,

where T∂M is the tangent space of ∂M. If I ≥ 0, i.e. I(U,U) ≥ 0 for all
U ∈ T∂M , we call M (or ∂M) convex.

Theorem 1.1. Let PT (o, ·) be the distribution of XT with X0 = o, and let

PT be the corresponding semigroup. The following statements are equivalent to

each other:

(1) ∂M is either convex or empty, and (1.1) holds.

(2) For any T > 0, µ ∈ P(M) and nonnegative F with ΠTµ (F ) = 1,

W2,ρ∞(FΠTµ ,Π
T
µT
F
)2 ≤ 2

K
(e2KT − 1)ΠTµ (F logF )

holds, where µTF ∈ P(M) is fixed by (1.2).

(3) (1.4) holds for any o ∈M and T > 0.

(4) For any o ∈M and T > 0,

W2,ρ

(

PT (o, ·), fPT (o, ·)
)2 ≤ 2

K
(e2KT − 1)PT (f log f)(o),

f ≥ 0, PT f(o) = 1.
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(5) For any T > 0, µ, ν ∈ P(M), and p ≥ 1,

Wp,ρ∞(ΠTµ ,Π
T
ν ) ≤ eKTWp,ρ(µ, ν),

where Wp,ρ is the Lp-Wasserstein distance for probability measures on M
induced by ρ.

(6) For any x, y ∈M and T > 0,

W2,ρ

(

PT (x, ·), PT (y, ·)
)

≤ eKTρ(x, y).

(7) For any T > 0, µ ∈ P(M), and F ≥ 0 with ΠTµ (F ) = 1,

W2,ρ∞(FΠTµ ,Π
T
µ ) ≤

{ 2

K
(e2KT − 1)ΠTµ (F logF )

}1/2

+ eKTW2,ρ(µ
T
F , µ).

(8) For any µ ∈ P(M) and C ≥ 0 such that

W2,ρ(fµ, µ)
2 ≤ Cµ(f log f), f ≥ 0, µ(f) = 1,

there holds

W2,ρ∞(FΠTµ ,Π
T
µ )

2 ≤
(

√

2

K
(e2KT − 1) + eKT

√
C

)2

ΠTµ (F logF ),

F ≥ 0,ΠTµ (F ) = 1.

When ∂M is empty or convex, there exist many equivalent semigroup inequal-
ities for the curvature condition (1.1): see e.g. [3, 10] for equivalent statements
on gradient estimates, log-Sobolev/Poicaré inequalities, and isoperimetric in-
equality; [19, 22, 23] for equivalent Harnack type inequalities; and [11] for
equivalent inequalities on Wasserstein distances. The corresponding results
have been partly extended in [23, 24] to the non-convex case. Theorem 1.1 pro-
vides seven equivalent inequalities for the convexity of ∂M (if exists) and the
curvature condition (1.1), which are new even for manifolds without boundary.
We would like to mention that the log-Sobolev inequality has been established
in [26] on the path space over manifolds with convex boundary, and in a forth-
coming paper we will extend the results on intrinsic ultracontractivity derived
in [25] to non-compact manifolds with boundary.
To prove Theorem 1.1, we shall use a formula of the second fundamental form
established in [22] for compact manifolds with boundary. Since in this paper
the manifold is allowed to be non-compact, we shall reprove this formula in Sec-
tion 2 by using the reflecting diffusion process up to the exit time of a compact
domain. This formula implies the equivalence of Theorem 1.1(1) and the semi-
group log-Sobolev/Poincaré inequalities (see Theorem 2.4 below). In Section
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3 we prove Theorem 1.1 by using results in Section 2, the martingale repre-
sentation and Girsanov transformation for (reflecting) diffusions on (convex)
manifolds.
To establish transportation-cost inequalities on the path space for non-convex
manifolds, we shall adopt a conformal change of metric 〈·, ·〉′ = f−2〈·, ·〉 such
that ∂M is convex under the new metric (see [21, Lemma 2.1]). Let ∆′ be the
Laplacian induced by the new metric, we have (see [21, Lemma 2.2])

L = f−2
{

∆′ + f2Z +
d− 2

2
∇f2

}

. (1.5)

According to this fact, we will modify our arguments in Section 4 to study
the reflecting diffusion process generated by L := ψ2(∆ + Z) for a smooth
function ψ on a convex manifold, then extend Theorem 1.1 in Section 5 to the
non-convex setting.

2 Formulae for the second fundamental form and applications

When M is compact, the following formula on ∂M has been found in [22]:

lim
t→0

|∇f |2√
t

log
|∇Ptf |

(Pt|∇f |p)1/p
= − 2√

π
I(∇f,∇f), p ≥ 1, (2.1)

where f is a smooth function satisfying the Neumann boundary condition.
When M is non-compact, some technical problems appear in the original proof
when e.g. a dominated convergence is used. To fix these problems, we shall
stop the process in a compact domain, so that we shall first study the behavior
of hitting times.
Recall that the reflecting L-diffusion process can be constructed by solving the
SDE

dXt =
√
2Φt ◦ dBt + Z(Xt)dt+N(Xt)dlt, (2.2)

where Φt is the horizontal lift of Xt onto the frame bundle O(M), Bt is the
d-dimensional Brownian motion.
By the Itô formula, for any f ∈ C2(M) we have

df(Xt) =
√
2〈∇f(Xt),Φt ◦ dBt〉+ Lf(Xt)dt+Nf(Xt)dlt, (2.3)

where Nf = 〈N,∇f〉. For any R > 0, let

τR = inf{t ≥ 0 : ρ(X0, Xt) ≥ R}.

Proposition 2.1. Let R > 0 and X0 = o ∈ M be fixed. Then there exist two

constants c1, c2 > 0 such that

P(τR ≤ t) ≤ c1e
−c2/t, t > 0.
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Proof. This result is well known on manifolds without boundary (cf. [2, Lemma
2.3]), and the proof works also when ∂M is convex. As in the present case the
boundary is not necessarily convex, we shall follow [21] to make the boundary
convex under a conformal change of metric. Since

BR := {x ∈M : ρ(o, x) ≤ R}
is compact, there exists a constant σ > 0 such that I ≥ −σ holds on ∂M ∩BR.
Let f ≥ 1 be smooth such that

N log f ≥ σ on ∂M ∩BR. (2.4)

Such a function can be constructed by using the distance function ρ∂ to the
boundary ∂M . Since ρ∂ is smooth in a neighborhood of the boundary, there
exists a constant r0 > 0 such that ρ∂ is smooth on {x ∈ B2R : ρ∂(x) ≤ r0}.
Let h ∈ C∞([0,∞)) such that h′ ≥ 0, h(0) = 1, h′(0) = σ and h′(r) = 0 for
r ≥ r0. Then h ◦ ρ∂ is smooth on B2R and N log h ◦ ρ∂ |∂M∩B2R

= σ. Thus, it
suffices to take smooth f ≥ 1 such that f = h ◦ ρ∂ on BR.
By [21, Lemma 2.1] and (2.4), ∂M is convex in BR under the new metric

〈·, ·〉′ := f−2〈·, ·〉,
where 〈·, ·〉 is the original metric. Let ∆′ be the Laplacian induced by the new
metric. We have (see [21, Lemma 2.2])

L = f−2(∆′ + Z ′)

for some C1-vector field Z ′. Let ρ̃o be the Riemannian distance to o induced
by the new metric. By the Laplacian comparison theorem,

Lρ̃2o ≤ c on BR (2.5)

holds for some constant c > 0 outside the cut-locus induced by 〈·, ·〉′. Since ∂M
is convex on BR and N is still the inward normal vector under the new metric,
we have

Nρ̃o ≤ 0 on ∂M ∩BR.

Therefore, by using Kendall’s Itô formula for the distance (cf. [9] for f = 1),
(2.5) implies

dρ̃2o(Xt) ≤ 2
√
2 f−2(Xt)ρ̃o(Xt)dbt + cdt, t ≤ τR,

or equivalently,

t 7→ 2
√
2

∫ t∧τR

0

f−2(Xs)ρ̃o(Xs)dbs + c(t ∧ τR)− ρ̃20(Xt∧τR)

is an increasing process, where bt is some one-dimensional Brownian motion.
Since f−2 ≤ 1, this implies that for any δ > 0, the process
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Zs := exp

[

δ

t
ρ̃2o(Xs)−

δcs

t
− 4δ2

t2

∫ s

0

ρ̃2o(Xu)du

]

, s ≤ τR

is a super martingale. Therefore, letting C > 1 be a constant such that f ≤ C
on BR and thus, ρo ≥ ρ̃o ≥ C−1ρo holds on BR, we obtain

P(τR ≤ t) = P

(

max
s∈[0,t]

ρo(Xs∧τR) ≥ R
)

≤ P

(

R ≥ max
s∈[0,t]

ρ̃o(Xs∧τR) ≥
R

C

)

≤ P

(

max
s∈[0,t]

Zs∧τR ≥ exp
[δR2

tC2
− δc− 4δ2R2

t

])

≤ exp
[

cδ − R2

tC2
(δ − 4C2δ2)

]

, δ > 0.

The proof is then completed by taking e.g. δ = 1/(8C2).

Proposition 2.2. Let X0 = o ∈ ∂M . Then for any R > 0,

lim sup
t→0

1

t

∣

∣Elt∧τR − 2
√

t/π
∣

∣ <∞.

Proof. Repeating the proof of [22, Lemma 2.2] by using t∧ τR in place of t, we
obtain

El2t∧τR ≤ ct, t ∈ [0, 1] (2.6)

for some constant c > 0. Let r0 > 0 be such that ρ∂ is smooth on {ρ∂ ≤ r0}∩BR.
Let

τ = inf{t ≥ 0 : ρ∂(Xt) ≥ r0}.
By the Itô formula we have

dρ∂(Xt) =
√
2 dbt + Lρ∂(Xt)dt+ dlt, t ≤ τ ∧ τR, (2.7)

where, as before, bt is some one-dimensional Brownian motion. By the proof
of [22, Theorem 2.1] using τ ∧ τR in place of τ , we have, instead of (2.4) in [22],

E
(

ρ∂(Xt∧τ∧τR)−
√
2 |b̃t∧τ∧τR|

)2 ≤ c1t
2, t ∈ [0, 1] (2.8)

for some constant c1 > 0, where b̃t is some one-dimensional Brownian motion.
Due to (2.7),

∣

∣Elt∧τ∧τR − Eρ∂(Xt∧τ∧τR)
∣

∣ ≤ c2t

holds for some constant c2 > 0. Combining this with (2.8) we arrive at

∣

∣Elt∧τ∧τR −
√
2E|b̃t∧τ∧τR |

∣

∣ ≤ c3t, t ∈ [0, 1]
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for some constant c3 > 0. Since E|b̃t| =
√

2t/π and E|b̃t|2 = t, this and (2.6)
imply

∣

∣

∣
Elt∧τR − 2

√
t√
π

∣

∣

∣
=

∣

∣Elt∧τR −
√
2E|b̃t|

∣

∣

≤ c3t+ E1{t≥τ∧τR}(lt∧τR +
√
2 |b̃t|)

≤ c3t+ c4
√

tP(t ≥ τ ∧ τR), t ∈ [0, 1].

(2.9)

Moreover, noting that

P(τ ∧ τR ≤ t, τR > τ) ≤ P

(

max
s∈[0,t]

ρ∂(Xs∧τ∧τR) ≥ r0

)

,

by using τ ∧ τR to replace τ in the proof of [22, Proposition A.2], we conclude
that

P(τ ∧ τR ≤ t, τR > τ) ≤ c5 exp[−r20/(16t)], t > 0

holds for some constant c5 > 0. Combining this with Proposition 2.1, we obtain

P(t ≥ τ ∧ τR) ≤ c6e
−c7/t, t > 0

for some constants c6, c7 > 0. Therefore, the proof is completed by (2.9).

Theorem 2.3. Let f ∈ C∞(M) with Nf |∂M = 0.
(1) For any p ≥ 1 and R > 0,

lim
t→0

|∇f |2√
t

log
(E|∇f |p(Xt∧τR)|)1/p

|∇f | =
2√
π
I(∇f,∇f) (2.10)

holds at points on ∂M such that |∇f | > 0.
(2) Assume that for any g ∈ C1

0 (M) the function |∇P·g| is bounded on [0, 1]×
M . If moreover f has a compact support, then (2.1) holds points on ∂M such

that |∇f | > 0.

Proof. (2.10) follows immediately from the proof of [22, Theorem 1.2] by using
Proposition 2.2 in place of [22, Theorem 2.1], and using t ∧ τR in place of t.
Next, let f ∈ C∞

0 (M). By the assumption of (2) and that Lf ∈ C1
0 (M),

|∇P·Lf | is bounded on [0, 1]×M . So, the proof of [22, (3.1)] implies that

lim
t→0

|∇f |2√
t

log
|∇Ptf |

(Pt|∇f |p)1/p
= − lim

t→0

|∇f |2√
t

log
(Pt|∇f |p)1/p

|∇f | . (2.11)

Since by Proposition 2.1, there exist two constant c1, c2 > 0 such that

∣

∣Pt|∇f |p − E|∇f |p(Xt∧τR)
∣

∣ ≤ ‖∇f‖p∞P(t > τR) ≤ c1e
−c2/t, t > 0,

we conclude that (2.1) follows from (2.11) and (2.10).
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As an application of (2.10), the following result provides equivalent semigroup
log-Sobolev/Poincaré inequalities for Theorem 1.1(1).

Theorem 2.4. Each of the following statements is equivalent to Theorem

1.1(1):

(9) For any T > 0 and f ∈ Cb(M),

PT f
2 log f2 ≤ (PT f

2) logPT f
2 +

e2KT − 1

2K
PT |∇f |2.

(10) For any T > 0 and f ∈ Cb(M),

PT f
2 ≤ (PT f)

2 +
e2KT − 1

K
PT |∇f |2.

Proof. According to e.g. [16, Lemma 3.1], which holds also for the non-
symmetric case, Theorem 1.1(1) implies the semigroup log-Sobolev inequality
(9). It is well known that the log-Sobolev inequality implies the Poincaré in-
equality. So, (10) follows from (9). Hence, it remains to show that (10) implies
Theorem 1.1(1). Below we shall prove the convexity of ∂M and the curvature
condition (1.1) respectively.
(a) Let ∂M 6= ∅. For any o ∈ ∂M and non-trivial U ∈ To∂M , we aim to show
that I(U,U) ≥ 0. Let f ∈ C∞

b (M) such that Nf |∂M = 0 and ∇f(o) = U. Let
X0 = o and

τ1 = inf{t ≥ 0 : ρ(o,Xt) ≥ 1}.
Since f and f2 satisfies the Neumann boundary condition, we have

Ef(Xt∧τ1) = f(o) + E

∫ t∧τ1

0

Lf(Xs)ds,

Ef2(Xt∧τ1) = f2(o) + 2E

∫ t∧τ1

0

(fLf)(Xs)ds+ 2E

∫ t∧τ1

0

|∇f |2(Xs)ds.

So,

Ef2(Xt∧τ1)− {Ef(Xt∧τ1)}2 = 2E

∫ t∧τ1

0

{f(Xs)− f(X0)}Lf(Xs)ds

−
(

E

∫ t∧τ1

0

Lf(Xs)ds

)2

+ 2E

∫ t∧τ1

0

|∇f |2(Xs)ds.

(2.12)

Since Lf is bounded on B1 := {x : ρ(o, x) ≤ 1}, we have

(

E

∫ t∧τ1

0

Lf(Xs)ds

)2

≤ ct2 (2.13)
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for some c > 0. Moreover, due to Proposition 2.1,

P(τ1 ≤ t) ≤ c1e
−c2/t, t > 0 (2.14)

holds for some constants c1, c2 > 0. Thus,

∣

∣Ptf
2(o)− (Ptf)

2(o)−
(

Ef2(Xt∧τ1)− {Ef(Xt∧τ1)}2
)∣

∣ = o(t2),

E

∫ t∧τ1

0

|∇f |2(Xs)ds = t|∇f(o)|2 +
∫ t

0

E
{

|∇f |2(Xs∧τ1)− |∇f(o)|2
}

ds+ o(t2),

(2.15)

where and in what follows, o(s) stands for a function of s > 0 such that
lims→0 o(s)/s = 0.
Similarly, applying the Itô formula to {f(Xs)− f(o)}Lf(Xs), we obtain (note
that Nf |∂M = 0)

E

∫ t∧τ1

0

{f(Xs)− f(o)}Lf(Xs)ds

= o(t2) +

∫ t

0

E
[

(f(Xs∧τ1)− f(o))Lf(Xs∧τ1)
]

ds

= o(t2) + E

∫ t

0

ds

∫ s∧τ1

0

L{(f − f(o))Lf}(Xr)dr

+ E

∫ t

0

ds

∫ s∧τ1

0

{(f − f(o))NLf}(Xr)dlr.

(2.16)

Noting that

f(Xr)− f(o) =
√
2

∫ r

0

〈∇f(Xu),Φu ◦ dBu〉+
∫ r

0

Lf(Xu)du, u ≤ τ1,

and that

E sup
r∈[0,t]

(
∫ r

0

〈∇f(Xu),Φu ◦ dBu〉
)2

≤ c2t, t ∈ [0, 1]

holds for some constant c2 > 0, we obtain from (2.16) and (2.6) that

∣

∣

∣

∣

E

∫ t∧τ1

0

{f(Xs)− f(o)}Lf(Xs)ds

∣

∣

∣

∣

≤ c3t
2, t ∈ [0, 1] (2.17)

holds for some constant c3 > 0. Finally, by Theorem 2.3(1), we have

E|∇f |2(Xt∧τ1) = |∇f |2(o) + 4
√
t√
π
I(∇f,∇f)(o) + o(t1/2) (2.18)
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for small t > 0. Combining this with (2.12), (2.13), (2.15) and (2.17), and
noting that U = ∇f(o), we conclude that

Ptf
2(o)− (Ptf)

2(o) = 2t|∇f(o)|2 + 16t3/2

3
√
π

I(U,U) + o(t3/2). (2.19)

Finally, (2.18) and (2.14) imply that

e2Kt − 1

K
Pt|∇f |2(o) = 2t|∇f(o)|2 + 8t3/2√

π
I(U,U) + o(t3/2).

Since 16
3 < 8, combining this with (10) and (2.19) we conclude that I(U,U) ≥ 0.

(b) Let X0 = o ∈M \∂M , we aim to show that Ric−∇Z ≥ −K holds on ToM.
Let R > 0 such that BR ∩ ∂M = ∅. Since lt increases only when Xt ∈ ∂M ,
lt = 0 for t ≤ τR. Hence, due to Proposition 2.1, for any f ∈ C∞

b (M),

Ptf
2(o)− (Ptf)

2(o) = o(t2) + Ef2(Xt∧τR)−
(

Ef(Xt∧τR)
)2

= o(t2) +

∫ t

0

{

ELf2(Xs∧τR)− 2f(o)ELf(Xs∧τR)
}

ds−
(
∫ t

0

ELf(Xs∧τR)ds

)2

.

(2.20)

By the continuity of s 7→ Lf(Xs∧τR), we have

(
∫ t

0

ELf(Xs∧τR)ds

)2

= (Lf)2(o)t2 + o(t2). (2.21)

Similarly, it is easy to see that

ELf2(Xs∧τR)− 2f(o)ELf(Xs∧τR)

= Lf2(o)− 2f(o)Lf(o) + s
{

LLf2 − 2fLLf
}

(o) + o(s)

= 2|∇f |2(o) + 2s{L|∇f |2(o) + (Lf)2(o) + 2〈∇f,∇Lf〉(o)}+ o(s).

Combining this with (2.20) and (2.21) we obtain

Ptf
2(o)−(Ptf)

2(o) = 2t|∇f |2(o)+t2(L|∇f |2+2〈∇f,∇Lf〉}(o)+o(t2). (2.22)

Finally, by Proposition 2.1 and noting that ls = 0 for s ≤ τR, we have

Pt|∇f |2(o) = o(t2) + E|∇f |2(Xt∧τR) = |∇f |2(o) + tL|∇f |2(o) + o(t).

Combining this with (10) and (2.22), we conclude that

1

2
L|∇f |2(o)− 〈∇f,∇Lf〉(o) ≥ −K|∇f |(o), f ∈ C∞

b (M).

This completes the proof by the Bochner-Weitzenböck formula.
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3 Proof of Theorem 1.1

By taking µ = δo, we have µTF = ΠTo (F )δo = δo. So, (3) follows from each
of (2), (7) and (8). Next, (4) follows from (3) by taking F (X[0,T ]) = f(XT ),
and (5) implies (6) by taking p = 2 and µ = δx, ν = δy. Moreover, it is clear
that (8) follows from (7) while (7) is implied by (2) and (5). So, it suffices to
prove that (1) ⇒ (3) ⇒ (2), (4) ⇒ (1) ⇒ (6) ⇒ (5) and (6) ⇒ (1), where “ ⇒”
stands for “implies”.
(a) (1) ⇒ (3). We shall only consider the case where ∂M is non-empty and
convex. For the case without boundary, the following argument works well by
taking lt = 0 and N = 0. The idea of the proof comes from [27], where elliptic
diffusions on Rd were concerned. Let Bt be the d-dimensional Brownian motion
on the naturally filtered probability space (Ω,Ft,P). Let {Xt : t ≥ 0} solve
(2.2) with X0 = o.
Next, let F be a positive bounded measurable function onMT such that inf F >
0 and ΠTo (F ) = 1. Then

mt := EP(F (X[0,T ])|Ft) and Lt :=

∫ t

0

dms

ms
, t ∈ [0, T ]

are square-integrable Ft-martingales under P, where EP is the expectation
taken for the probability measure P. Obviously, we have

mt = eLt−
1

2
〈L〉t , t ∈ [0, T ]. (3.1)

Since Ft is the natural filtration of Bt, by the martingale representation theo-
rem (cf. [8, Theorem 6.6]), there exists a unique Ft-predictable process βt on
Rd such that

Lt =

∫ t

0

〈βs, dBs〉, t ∈ [0, T ]. (3.2)

Let dQ = F (X[0,T ])dP. Since EPF (X[0,T ]) = ΠTµ (F ) = 1, Q is a probability
measure on Ω. Due to (3.1) and (3.2) we have

F (X[0,T ]) = mT = e
∫
T

0
〈βs,dBs〉−

1

2

∫
T

0
‖βs‖

2ds.

Moreover, by the Girsanov theorem,

B̃t := Bt −
∫ t

0

βsds, t ∈ [0, T ] (3.3)

is a d-dimensional Brownian motion under the probability measure Q.
Let Yt solve the SDE

dYt =
√
2PXt,YtΦt ◦ dB̃t + Z(Yt)dt+N(Yt)dl̃t, Y0 = o, (3.4)

where PXt,Yt is the parallel displacement along the minimal geodesic from Xt

to Yt and l̃t is the local time of Yt on ∂M . As explained in e.g. [1, Section
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3], we may assume that the minimal geodesic is unique so that Px,y is smooth

in x, y ∈ M . Since, under Q, B̃t is a d-dimensional Brownian motion, the
distribution of Y[0,T ] is Π

T
o .

On the other hand, by (2.2) and (3.3), we have

dXt =
√
2Φt ◦ dB̃t + Z(Xt) +

√
2Φtβtdt+N(Xt)dlt. (3.5)

Since for any bounded measurable function G on MT

EQG(X[0,T ]) = EP(FG)(X[0,T ]) = ΠTo (FG),

we conclude that under Q the distribution ofX[0,T ] coincides with FΠ
T
µ . There-

fore,

W2,ρ∞(FΠTo ,Π
T
o )

2 ≤ EQρ∞(X[0,T ], Y[0,T ])
2 = EQ max

t∈[0,T ]
ρ(Xt, Yt)

2. (3.6)

By the convexity of ∂M we have

〈N(x),∇ρ(y, ·)(x)〉 = 〈N(x),∇ρ(·, y)(x)〉 ≤ 0, x ∈ ∂M.

Combining this with the Itô formula for (Xt, Yt) given by (3.4) and (3.5), we
obtain from (1.1) that

dρ(Xt, Yt) ≤ Kρ(Xt, Yt)dt+
√
2 〈Φtβt,∇ρ(·, Yt)(Xt)〉dt

≤
(

Kρ(Xt, Yt) +
√
2 ‖βt‖

)

dt,

see e.g. [15, Lemmas 2.1 and 2.2]. Since we are using the coupling by par-
allel displacement instead of the mirror reflection, the martingale part here
disappears (cf. Theorem 2 and (2.5) in [9]). Since X0 = Y0, this implies

ρ(Xt, Yt)
2 ≤ e2Kt

(√
2

∫ t

0

e−Ks‖βs‖ ds
)2

≤ e2Kt − 1

K

∫ t

0

‖βs‖2ds, t ∈ [0, T ].

Therefore,

EQ max
t∈[0,T ]

ρ(Xt, Yt)
2 ≤ e2KT − 1

K

∫ T

0

EQ‖βs‖2ds. (3.7)

It is clear that

EQ‖βs‖2 = EP

(

mT ‖βs‖2
)

= EP

(

‖βs‖2EP(mT |Fs)
)

= EP

(

ms‖βs‖2
)

, s ∈ [0, T ].
(3.8)

Finally, since (3.1) and (3.2) yield
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d〈m〉t = m2
td〈L〉t = m2

t‖βt‖2dt,
we have

dmt logmt = (1 + logmt)dmt +
d〈m〉t
2mt

= (1 + logmt)dmt +
mt

2
‖βt‖2dt.

As mt is a P-martingale, combining this with (3.8) we obtain

∫ T

0

EQ‖βs‖2ds = 2EPF (X[0,T ]) logF (X[0,T ]). (3.9)

Therefore, (1.4) follows from (3.6), (3.7) and (3.9).
(b) (3) ⇒ (2). By (3), for each x ∈M , there exists

πx ∈ C

( F

ΠTx (F )
ΠTx ,Π

T
x

)

such that

∫

MT×MT

ρ∞(γ, η)2πx(dγ, dη) ≤
2

K
(e2KT −1)ΠTx

( F

ΠTx (F )
log

F

ΠTx (F )

)

. (3.10)

If x 7→ πx(G) is measurable for bounded continuous functions G on MT ×MT ,
then

π :=

∫

M

πxµ
T
F (dx) ∈ C (FΠTµ ,Π

T
µT
F
)

is well defined and by (3.10)

∫

MT×MT

ρ2∞dπ ≤ 2

K
(e2KT − 1)

∫

M

ΠTx

(

F log
F

ΠTx (F )

)

µ(dx)

≤ 2

K
(e2KT − 1)ΠTµ (F logF ).

This implies the inequality in (2).
To confirm the measurability of x 7→ πx, we first consider discrete µ, i.e. µ =
∑∞

n=1 εnδxn for some {xn} ⊂M and εn ≥ 0 with
∑∞

n=1 εn = 1. In this case

πx =
∞
∑

n=1

1{x=xn}πxn , µ-a.e.

which is measurable in x and π =
∑∞
n=1 µ

T
F ({xn})πxn . Hence, the inequality

in (2) holds. Then, for general µ, the desired inequality can be derived by
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approximating µ with discrete distributions in a standard way, see (b) in the
proof of [6, Theorem 4.1].

(c) (4) ⇒ (1). According to [12, Section 7] (see also [4, Section 4.1]), by first
applying the transportation-cost inequality in (3) to 1 − ε + εf in place of f ,
then letting ε→ 0, we obtain the Poincaré inequality

PT f
2 ≤ e2KT − 1

K
PT |∇f |2 + (PT f)

2, f ∈ C1
b (M), T > 0. (3.11)

Thus, the proof is finished by Theorem 2.4.

(d) (1) ⇒ (6). Let Xt solve (2.2) with X0 = x and Yt solve

dYt =
√
2PXt,YtΦt ◦ dBt + Z(Yt)dt−N(Yt)dl̃t, Y0 = y, (3.12)

where l̃t is the local time of Yt on ∂M . Since ∂M is convex and (1.1) holds, as
explained in (a), we have

dρ(Xt, Yt) ≤ Kρ(Xt, Yt)dt.

Thus, ρ∞(X·, Y·) ≤ eKTρ(x, y). This implies (6).

(e) (6) ⇒ (5). By (6), for any x, y ∈ M , there exists πx,y ∈ C (ΠTx ,Π
T
y ) such

that

∫

MT×MT

ρp∞dπx,y ≤ eKTρ(x, y)p.

As explained in (b), we assume that µ and ν are discrete, so that for any
π0 ∈ (µ, ν), πx,y has a π0-version measurable in (x, y). Thus,

π :=

∫

M×M

πx,yπ
0(dx, dy) ∈ C (ΠTµ ,Π

T
ν )

satisfies

∫

MT×MT

ρp∞dπ ≤ eKT
∫

M×M

ρ(x, y)pπ0(dx, dy).

This implies the desired inequality in (5).

(f) (6) ⇒ (1). Let T > 0 be fixed. For any x, y ∈ M , let πx,y ∈
C (PT (x, ·), PT (y, ·)) be the optimal coupling for W2,ρ, i.e.

W2,ρ(PT (x, ·), PT (y, ·))2 =

∫

M×M

ρ2dπx,y. (3.13)
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Then for any f ∈ C2
b (M), (6) implies

|PT f(x)− PT f(y)|
ρ(x, y)

≤
∫

M×M

|f(z1)− f(z2)|
ρ(z1, z2)

· ρ(z1, z2)
ρ(x, y)

πx,y(dz1, dz2)

≤ W2,ρ(PT (x, ·), PT (y, ·))
ρ(x, y)

{
∫

M×M

(f(z1)− f(z2))
2

ρ(z1, z2)2
πx,y(dz1, dz2)

}1/2

≤ eKT
{
∫

M×M

(f(z1)− f(z2))
2

ρ(z1, z2)2
πx,y(dz1, dz2)

}1/2

.

(3.14)

Noting that f ∈ C2
b (M) implies

|f(z1)− f(z2)|2 ≤ ρ(z1, z2)
2|∇f |2(z1) + cρ(z1, z2)

3

for some constant c > 0, by (6) and (3.13) we obtain

∫

M×M

(f(z1)− f(z2))
2

ρ(z1, z2)2
πx,y(dz1, dz2) ≤ PT |∇f |2(x) + ceKTρ(x, y).

Therefore, letting y → x in (3.14) we arrive at

|∇PT f(x)| ≤ eKT (PT |∇f |2(x))1/2.
By a standard argument of Bakry and Emery, this implies the Poincaré in-
equality (3.11). Thus, (1) holds according to Theorem 2.4.

4 The case with a diffusion coefficient

Let ψ > 0 be a smooth function on M , and let ΠTµ,ψ be the distribution of

the (reflecting if ∂M 6= ∅) diffusion process generated by Lψ := ψ2(∆ + Z) on
time interval [0, T ] with initial distribution µ, and let ΠTx,ψ = ΠTδx,ψ for x ∈M .

Moreover, for F ≥ 0 with ΠTµ,ψ(F ) = 0, let

µTF,ψ(dx) = ΠTx,ψ(F )µ(dx).

Theorem 4.1. Assume that ∂M is either empty or convex and let (1.1) hold.

Let ψ ∈ C∞
b (M) be strictly positive. Let

Kψ = K+‖ψ‖2∞ + 2‖Z‖∞‖∇ψ‖∞‖ψ‖∞ + (d− 1)‖∇ψ‖2∞.
Then

W2,ρ∞(FΠTµ,ψ ,Π
T
µT
F,ψ

,ψ)
2 ≤ 2C(T, ψ)ΠTµ,ψ(F logF ),

µ ∈ P(M), F ≥ 0, ΠTµ,ψ(F ) = 1
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holds for

C(T, ψ) := inf
R>0

{

(1+R−1)‖ψ‖2∞
e2KψT − 1

Kψ
exp

[

2(1+R)‖∇ψ‖2∞
e2KψT − 1

Kψ

]}

.

Proof. As explained in (a) of the proof of Theorem 1.1, we shall only consider
the case that ∂M is non-empty and convex. According to the proof of “(3) ⇒
(2)”, it suffices to prove for µ = δo, o ∈ M . In this case the desired inequality
reduces to

W2,ρ∞(FΠTo,ψ ,Π
T
o,ψ) ≤ 2C(T, ψ)ΠTo,ψ(F logF ), F ≥ 0,ΠTo,ψ(F ) = 1. (4.1)

Since the diffusion coefficient is non-constant, it is convenient to adopt the
Itô differential dI for the Girsanov transformation. So, the reflecting diffusion
process generated by Lψ := ψ2(∆ + Z) can be constructed by solving the Itô
SDE

dIXt =
√
2ψ(Xt)ΦtdBt + ψ2(Xt)Z(Xt)dt+N(Xt)dlt, (4.2)

where X0 = o and Bt is the d-dimensional Brownian motion with natural
filtration Ft. Let βt,Q and B̃t be fixed in the proof of Theorem 1.1. Then

dIXt =
√
2ψ(Xt)ΦtdB̃t +

{

ψ2(Xt)Z(Xt) +
√
2ψ(Xt)Φtβt

}

dt+N(Xt)dlt.
(4.3)

Let Yt solve

dIYt =
√
2ψ(Yt)PXt,YtΦtdB̃t + ψ2(Yt)Z(Yt)dt+N(Yt)dl̃t, Y0 = o, (4.4)

where l̃t is the local time of Yt on ∂M . As in (a) of the proof of Theorem 1.1,
under Q, the distributions of Y[0,T ] and X[0,T ] are Π

T
o,ψ and FΠTo,ψ respectively.

So,

W2,ρ∞(FΠTo,ψ,Π
T
o,ψ)

2 ≤ EQ max
t∈[0,T ]

ρ(Xt, Yt)
2. (4.5)

Noting that due to the convexity of ∂M

〈N(x),∇ρ(y, ·)(x)〉 = 〈N(x),∇ρ(·, y)(x)〉 ≤ 0, x ∈ ∂M,
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by (4.3), (4.4) and the Itô formula, we obtain

dρ(Xt, Yt) ≤
√
2
{

ψ(Xt)〈∇ρ(·, Yt)(Xt),ΦtdB̃t〉
+ ψ(Yt)〈∇ρ(Xt, ·)(Yt), PXt,YtΦtdB̃t〉

}

+
{

d−1
∑

i=1

U2
i ρ(Xt, Yt) + 〈ψ(Xt)

2Z(Xt) +
√
2ψ(Xt)Φtβt,∇ρ(·, Yt)(Xt)〉

+ ψ(Yt)
2〈Z(Yt),∇ρ(Xt, ·)(Yt)〉

}

dt,

(4.6)

where {Ui}d−1
i=1 are vector fields on M ×M such that ∇Ui(Xt, Yt) = 0 and

Ui(Xt, Yt) = ψ(Xt)Vi + ψ(Yt)PXt,YtVi, 1 ≤ i ≤ d− 1

for {Vi}di=1 an OBN of TXtM with Vd = ∇ρ(·, Yt)(Xt).

In order to calculate U2
i ρ(Xt, Yt), we adopt the second variational formula for

the distance. Let ρt = ρ(Xt, Yt) and let {Ji}d−1
i=1 be Jacobi fields along the

minimal geodesic γ : [0, ρt] →M from Xt to Yt such that Ji(0) = ψ(Xt)Vi and
Ji(ρt) = ψ(Yt)PXt,YtVi, 1 ≤ i ≤ d − 1. Note that the existence of γ is ensured
by the convexity of ∂M . Then, by the second variational formula and noting
that ∇Ui(Xt, Yt) = 0, we have

I :=
d−1
∑

i=1

U2
i ρ(Xt, Yt) =

d−1
∑

i=1

∫ ρt

0

{

|∇γ̇Ji|2 − 〈R(γ̇, Ji)Ji, γ̇〉
}

(s)ds, (4.7)

where R is the curvature tensor. Let

J̃i(s) =
( s

ρt
ψ(Yt) +

ρt − s

ρt
ψ(Xt)

)

Pγ(0),γ(s)Vi, 1 ≤ i ≤ d− 1.

We have J̃i(0) = Ji(0) and J̃i(ρt) = Ji(ρt), 1 ≤ i ≤ i− 1. By the index lemma,

I ≤
d−1
∑

i=1

∫ ρt

0

{

|∇γ̇ J̃i|2 − 〈R(γ̇, J̃i)J̃i, γ̇〉
}

(s)ds

≤ (d− 1)‖∇ψ‖2∞ρt −
1

ρ2t

∫ ρt

0

{

sψ(Yt) + (ρt − s)ψ(Xt)
}2

Ric
(

γ̇(s), γ̇(s)
)

ds.

(4.8)
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Moreover,

ψ(Xt)
2〈Z(Xt),∇ρ(·, Yt)(Xt)〉+ ψ(Yt)

2〈Z(Yt),∇ρ(Xt, ·)(Yt)〉

=
1

ρ2t

∫ ρt

0

d

ds

{

(

sψ(Yt) + (ρt − s)ψ(Xt)
)2〈Z(γ(s)), γ̇(s)〉

}

ds

=
1

ρ2t

∫ ρt

0

(

sψ(Yt) + (ρt − s)ψ(Xt)
)2〈(∇γ̇Z) ◦ γ, γ̇〉(s)ds

+
2

ρ2t

∫ ρt

0

〈Z ◦ γ, γ̇〉(s)(ψ(Yt)− ψ(Xt))
(

sψ(Yt) + (ρt − s)ψ(Xt)
)

ds.

≤ 1

ρ2t

∫ ρt

0

(

sψ(Yt) + (ρt − s)ψ(Xt)
)2〈(∇γ̇Z) ◦ γ, γ̇〉(s)ds

+ 2‖Z‖∞‖ψ‖∞‖∇ψ‖∞ρt.

(4.9)

Finally, we have

〈∇ρ(Xt, ·)(Yt), PXt,YtΦtdB̃t〉 = 〈PYt,Xt∇ρ(Xt, ·)(Yt),ΦtdB̃t〉 =
= −〈∇ρ(·, Yt)(Xt),ΦtdB̃t〉.

Combining this with (4.6), (4.7), (4.8) and (4.9), we arrive at

dρ(Xt, Yt) ≤
√
2 (ψ(Xt)− ψ(Yt))〈∇ρ(·, Yt)(Xt),ΦtdB̃t〉

+Kψρ(Xt, Yt)dt+
√
2 ‖ψ‖∞‖βt‖dt.

Then

Mt :=
√
2

∫ t

0

e−Kψs(ψ(Xs)− ψ(Ys))〈∇ρ(·, Ys)(Xs),ΦsdB̃s〉

is a Q-martingale such that

ρ(Xt, Yt) ≤ eKψtMt +
√
2 eKψt

∫ t

0

e−Kψs‖ψ‖∞‖βs‖ds, t ∈ [0, T ]. (4.10)

So, by the Doob inequality we obtain
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ht := EQ max
s∈[0,t]

ρ(Xs, Ys)
2

≤ (1 +R)e2KψtEQ max
s∈[0,t]

M2
s ds

+ 2‖ψ‖2∞(1 +R−1)e2KψtEQ

(
∫ t

0

e−Kψs‖βs‖ds
)2

≤ 4(1 +R)e2Kψt EQM
2
t + (1 +R−1)‖ψ‖2∞

e2Kψt − 1

Kψ

∫ t

0

EQ‖βs‖2ds

≤ 4(1 +R)‖∇ψ‖2∞e2Kψt
∫ t

0

e−2Kψshsds

+ (1 +R−1)‖ψ‖2∞
e2KψT − 1

Kψ

∫ t

0

EQ‖βs‖2ds

for any R > 0. Since e−2Kψs is decreasing in s while hs is increasing in s, by
the FKG inequality we have

∫ t

0

e−2Kψshsds ≤
(

1

t

∫ t

0

e−2Ksds

)
∫ t

0

hsds =
1− e−2Kψt

2Kψt

∫ t

0

hsds.

Therefore,

ht ≤ 2(1 +R)‖∇ψ‖2
∞

e2KψT − 1

KψT

∫ t

0

hsds+ (1 +R
−1)‖ψ‖2

∞

e2KψT − 1

Kψ

∫ t

0

EQ‖βs‖
2ds

holds for t ∈ [0, T ]. Since h0 = 0, this implies that

EQ max
t∈[0,T ]

ρ(Xt, Yt)
2 = hT

≤ (1 +R−1)‖ψ‖2∞
e2KψT − 1

Kψ
exp

[

2(1 +R)‖∇ψ‖2∞
e2KψT − 1

Kψ

]

∫ T

0

EQ‖βs‖2ds.

Combining this with the (4.5) and (3.9), we complete the proof.

Theorem 4.2. In the situation of Theorem 4.1,

W2,ρ∞(ΠTµ,ψ ,Π
T
ν,ψ) ≤ 2e(Kψ+‖∇ψ‖2

∞
)TW2,ρ(µ, ν), µ, ν ∈ P(M), T > 0.

Proof. As explained in the proof of “(6) ⇒ (5)”, we only consider µ = δx and
ν = δy. Let Xt solve (4.2) with X0 = x, and let Yt solve, instead of (4.4),

dIYt =
√
2ψ(Yt)PXt,YtΦtdB̃t + ψ2(Yt)Z(Yt)dt+N(Yt)dl̃t, Y0 = y.

Then, repeating the proof of Theorem 4.1, we have, instead of (4.10),

ρ(Xt, Yt) ≤ eKψt(Mt + ρ(x, y)), t ≥ 0 (4.11)
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for

Mt :=
√
2

∫ t

0

e−Kψs(ψ(Xs)− ψ(Ys))〈∇ρ(·, Ys)(Xs),ΦsdBs〉.

So,

Eρ(Xt, Yt)
2 ≤ e2Kψt

{

ρ(x, y)2 + 2‖∇ψ‖2∞
∫ t

0

e−2KψsEρ(Xs, Ys)
2ds

}

,

which implies

Eρ(Xt, Yt)
2 ≤ e2(Kψ+‖∇ψ‖2

∞
)tρ(x, y)2.

Combining this with (4.11) and the Doob inequality, we arrive at

W2,ρ∞(ΠTx,ψ,Π
T
y,ψ)

2 ≤ E max
t∈[0,T ]

ρ(Xt, Yt)
2 ≤ e2KψTE max

t∈[0,T ]
(Mt + ρ(x, y))2

≤ 4e2KψTE(MT + ρ(x, y))2 = 4e2KψT
(

EM2
T + ρ(x, y)2

)

= 4e2KψT
(

ρ(x, y)2 + 2‖∇ψ‖2∞
∫ T

0

e−2KψtEρ(Xt, Yt)
2dt

)

≤ 4e2(Kψ+‖∇ψ‖2

∞
)Tρ(x, y)2.

This implies the desired inequality for µ = δx and ν = δy.

5 Extensions to non-convex manifolds

As explained in the end of Section 1, combining Theorem 4.1 with a proper con-
formal change of metric, we are able to establish the following transportation-
cost inequality on a class of manifolds with non-convex boundary.

Theorem 5.1. Let ∂M 6= ∅ with I ≥ −σ for some constant σ > 0, and
let (1.1) hold for some K ∈ R. Then for any f ∈ C∞

b (M) with f ≥ 1 and

N log f |∂M ≥ σ, and for any µ ∈ P(M),

W2,ρ∞(FΠTµ ,Π
T
µT
F
)2 ≤ 2‖f‖2∞c(T, f)ΠTµ (F logF ), F ≥ 0,ΠTµ (F ) = 1

holds for

c(T, f) = inf
R>0

{

(1 +R−1)
e2κfT − 1

κf
exp

[

2(1 +R)‖∇f‖2∞
e2κfT − 1

κf

]}

,

where

κf = 5‖f‖∞‖∇f‖∞‖Z‖∞ +
{

3d− 5+ (d− 3)+
}

‖∇f‖2∞ + ‖(Kf2 − f∆f)+‖∞.

In particular,

W2,ρ∞(FΠTo ,Π
T
o )

2 ≤ 2‖f‖2∞c(T, f)ΠTo (F logF ), o ∈M,F ≥ 0,ΠTo (F ) = 1.
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Proof. Let f ∈ C∞
b (M) such that f ≥ 1. Since I ≥ −σ and N log f |∂M ≥ σ,

by [21, Lemma 2.1] the boundary ∂M is convex under the new metric

〈·, ·〉′ = f−2〈·, ·〉.
Let ∆′ and ∇′ be induced by the new metric. Then (see formula (2.2) in [14])

L = f−2(∆′ + Z ′), Z ′ := f2Z +
d− 2

2
∇f2.

Let Ric′ be the Ricci curvature induced by the new metric, we have (cf. formula
(3.2) in [6])

Ric′ = Ric + (d− 2)f−1Hessf + (f−1∆f − (d− 3)|∇ log f |2)〈·, ·〉. (5.1)

Since the Levi-Civita connection induced by 〈·, ·〉′ satisfies (cf. [3, Theorem
1.59(a)])

∇′
UV = ∇UV − 〈U,∇ log f〉V − 〈V,∇ log f〉U + 〈U, V 〉∇ log f, U, V ∈ TM,

we have

〈∇′
UZ

′, U〉′ = f−2
{

〈∇UZ
′, U〉 − 〈Z ′,∇ log f〉|U |2

}

= 2〈U,∇ log f〉〈Z,U〉+ 〈∇UZ,U〉+ d− 2

2f2
Hessf2(U,U)

− 〈Z,∇ log f〉|U |2 − d− 2

2
〈∇ log f2,∇ log f〉|U |2

≤ 〈∇UZ,U〉+ 3|∇ log f | · |Z| · |U |2 + (d− 2)f−1Hessf (U,U).

Combining this with (5.1), we obtain

Ric′(U,U)− 〈∇UZ
′, U〉′

≥ Ric(U,U)− 〈∇UZ,U〉+
{

f−1∆f − (d− 3)|∇ log f | − 3|Z| · |∇ log f |
}

|U |2
≥ −K ′〈U,U〉′, U ∈ TM,

where

K ′ = sup
M

{Kf2 − f∆f + (d− 3)|∇f |2 + 3|Z|f |∇f |}. (5.2)

Noting that f ≥ 1, we have

√

〈Z ′, Z ′〉′ = f−1|f2Z + (d− 2)f∇f | ≤ ‖f‖∞‖Z‖∞ + (d− 2)‖∇f‖∞,
√

〈∇′f−1,∇′f−1〉′ = f |∇f−1| ≤ ‖∇f‖∞.
(5.3)
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Letting Kψ be defined in Theorem 4.1 for the manifold (M, 〈·, ·〉′) and L =
ψ2(∆′ + Z ′) with ψ = f−1, we deduce from f ≥ 1, (5.2) and (5.3) that

Kψ ≤ κf .

Therefore, C(T, ψ) ≤ c(T, f) and thus, Theorem 4.1 implies

W2,ρ′
∞

(FΠTµ ,Π
T
µT
F

)2 ≤ 2c(T, f)ΠTµ (F logF ), F ≥ 0,ΠTµ (F ) = 1,

where ρ′∞ is the uniform distance on MT induced by the metric 〈·, ·〉′. The
proof is completed by noting that ρ∞ ≤ ‖f‖∞ρ′∞.

Similarly, since Kψ ≤ κf and

ρ′ ≤ ρ ≤ ‖f‖∞ρ,
the following result from Theorem 4.2 by taking ψ = f−1.

Theorem 5.2. In the situation of Theorem 5.1,

W2,ρ∞(ΠTµ ,Π
T
ν ) ≤ 2‖f‖∞e(κf+‖∇f−1‖2

∞
)TW2,ρ(µ, ν), µ, ν ∈ P(M), T > 0.

As a consequence of Theorems 5.1 and 5.2, we present below an explicit
transportation-cost inequalities for a class of non-convex manifolds.

Corollary 5.3. Assume that (1.1) holds for some K ≥ 0 and the injectivity

radius i∂M of ∂M is strictly positive. Let σ ≥ 0 and γ, k,> 0 be such that

−σ ≤ I ≤ γ and SectM ≤ k. Let

0 < r ≤ min

{

i∂M ,
1√
k
arcsin

(

√
k

√

k + γ2

)}

.

(i) The transportation-cost inequality

W2,ρ∞(FΠTµ ,Π
T
µT
F
)2 ≤ (2 + rdσ)2

e2θT − 1

θ
exp

[4(e2θT − 1)

θ

]

ΠTµ (F logF )

holds for all µ ∈ P(M) and F ≥ 0 with ΠTµ (F ) = 1, where

θ = K
(

1+rdσ+
r2d2σ2

4

)

+
dσ

r

(

3d−5+(d−3)++
d2

2

)

σ2+5‖Z‖∞σ
(

1+
rdσ

2

)

.

In particular,

W2,ρ∞(FΠTo ,Π
T
o )

2 ≤ (2 + rdσ)2
e2θT − 1

θ
exp

[4(e2θT − 1)

θ

]

ΠTo (F logF )
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holds for all F ≥ 0 with ΠTµ (F ) = 1.
(ii) For any T > 0 and µ, ν ∈ P(M),

W2,ρ∞(ΠTµ ,Π
T
ν ) ≤ (2 + σrd)e(θ+σ

2)TW2,ρ(µ, ν).

Proof. Let

h(s) = cos
(
√
k s

)

− γ√
k
sin

(
√
k s

)

, s ≥ 0.

Then h is the unique solution to the equation

h′′ + kh = 0, h(0) = 1, h′(0) = −γ.
Up to an approximation argument presented in the proof of [20, Theorem 1.1],
we may apply Theorem 5.1 to

f = 1 + σϕ ◦ ρ∂M ,
where ρ∂ is the Riemannian distance to ∂M , which is smooth on {ρ∂M < i∂M},
and

α = (1− h(r))1−d
∫ r

0

(h(s)− h(r))d−1ds,

ϕ(s) =
1

α

∫ s

0

(h(t)− h(r))1−ddt

∫ r

t∧r

(h(u)− h(r))d−1du, s ≥ 0.

We have ϕ(0) = 1, 0 ≤ ϕ′ ≤ ϕ′(0) = 1. Moreover, as observed in [20, Proof of
Theorem 1.1],

α ≥ r

d
, ϕ(r) ≤ r2

2α
≤ dr

2
, ∆ϕ ◦ ρ∂M ≥ − 1

α
≥ −d

r
.

So,

‖f‖∞ ≤ 1 + σϕ(r) ≤ 1 +
rdσ

2
, ‖∇f‖∞ ≤ ϕ′(0) = σ, ∆f ≥ −σd

r
. (5.4)

Noting that (recall that K ≥ 0)

sup(Kf2) ≤ K
(

1 + rdσ +
r2d2σ2

4

)

,

from (5.4) we conclude that κf ≤ θ. So, (i) follows from (1.5) and 5.1 for R = 1,
and (ii) follows from Theorem 4.2 and (5.4).
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