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1 Introduction

1.1 Motivation and heuristic discussion

In this article, we study the global Cauchy problem for the semi-relativistic
Schrödinger-Poisson system in R

n, n ≥ 1, for a wide class of nonlocal inter-
actions, both in the attractive and repulsive cases. This system is relevant to
the description of many-body semi-relativistic quantum particles in the mean-
field limit. We consider a system of N semi-relativistic quantum particles in
R

n, n ≥ 1 with long-range two-body interactions g 1
N

∑
1≤i<j≤N

1
|xi−xj|γ

, with

0 < γ ≤ 1 if n ≥ 2, and 0 < γ < 1 if n = 1, and with g ∈ R. In the mean-field
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limit, one can formally show that the density matrix that describes the mixed
state of the system satisfies the Hartree-von Neumann equation

{
i∂tρ(t) = [Hm + wγ ⋆ n(t), ρ(t)], x ∈ R

n, n ≥ 1, t ≥ 0

Hm =
√
m2 −∆−m, wγ = g 1

|x|γ , n(t, x) = ρ(t, x, x), ρ(0) = ρ0
,

(1.1)
where ∆ stands for the n-dimensional Laplacian, ⋆ stands for convolution in
R

n, and m ≥ 0 is the mass.1 Since ρ0 is a positive, self-adjoint trace-class
operator acting on L2(Rn), its kernel can be decomposed with respect to an
orthonormal basis of L2(Rn),

ρ0(x, y) =
∑

k∈N

λkψk(x)ψk(y) (1.2)

where {ψk}k∈N denotes an orthonormal basis of L2(Rn). Furthermore,

λ := {λk}k∈N ∈ l1 , λk ≥ 0 ,
∑

k

λk = 1.

We will show that there exists a one-parameter family of complete orthonormal
bases of L2(Rn), {ψk(t)}k∈N, for t ∈ R+, such that the kernel of the solution
ρ(t) to (1.1) can be represented as

ρ(t, x, y) =
∑

k∈N

λkψk(t, x)ψk(t, y). (1.3)

Substituting (1.3) in (1.1), the one-parameter family of orthonormal vectors
{ψk(t)}k∈N is seen to satisfy the semi-relativistic Schrödinger-Poisson system

i
∂ψk

∂t
= Hmψk + V ψk, k ∈ N (1.4)

V [Ψ] = wγ ⋆ n[Ψ], Ψ := {ψk}∞k=1, (1.5)

n[Ψ(x, t)] =
∞∑

k=1

λk|ψk|2 . (1.6)

The purpose of this note is to show global well-posedness of (1.4) in a suit-
able Banach space (to be specified below), and to study the asymptotics of
the solution as the mass m tends to ∞, which we compare to solutions to
the non-relativistic Schrödinger-Poisson system, see [11]. The semi-relativistic
Schrödinger-Poisson system of equations in a finite domain of R3 and with re-
pulsive Coulomb interactions has been studied recently in [1, 2]. Here, we gener-
alize the result of [1] in several ways. First, the problem is studied in R

n, n ≥ 1.

1The rigorous derivation of the semi-relativistic Hartree-von Neumann equation is a topic
of future work, see [3, 4] for a derivation of this system of equations in the non-relativistic
case.
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Second, we consider a wide class of nonlocal interactions in both the attractive
and repulsive cases, and which includes the repulsive Coulomb case in three
spatial dimensions. Third, in the infinite mass limit m→ ∞, we prove that so-
lutions to the semi-relativistic, and to the non-relativistic Schrödinger-Poisson
systems become indistinguishable; the latter has been studied extensively, see
for example [5, 8] and references therein. In the special case when the initial
density matrix is a pure state ρ0 = |ψ0〉〈ψ0|, the Schrödinger-Poisson system
becomes a single Hartree equation

i∂tψ = (
√
m2 −∆−m)ψ + (wγ ⋆ |ψ|2)ψ, ψ(0) = ψ0.

In that sense, our analysis generalizes the results of [10, 7] to the effective
dynamics of a mixed state of a semi-relativistic system.
The organization of this paper is as follows. In Subsection 1.3 we state our
main results. We prove local and global well-posedness in Section 2. Finally,
in Section 3, we discuss the asymptotic behavior of the solutions as the mass
tends to infinity. For the benefit of a general reader, we recall some useful
results about fractional integration and fractional Leibniz rule in Appendix A.

1.2 Notation

• A . B means that there exists a positive constant C independent mass
m such that A ≤ C B.

• Lp stands for the standard Lebesgue space. Furthermore, Lp
IB =

Lp(I;B). 〈·, ·〉L2 denotes the L2(Rn) inner product. We will often use
the abbreviated notation Lp

T for Lp

[0,T ], in the situation where [0, T ] de-

notes a time interval.

• l1 = {{al}l∈N|
∑

l≥1 |al| <∞}.

• W s,p = (−∆ + 1)−
s
2Lp, the standard (complex) Sobolev space. When

p = 2, W s,2 = Hs. Ḣs denotes the homogeneous Sobolev space with
norm ‖ψ‖Ḣs = (〈ψ, (−∆)sψ〉L2)

1

2 .

• For fixed λ ∈ l1, λk ≥ 0, and for sequences of functions Φ := {φk}k∈N

and Ψ := {ψk}k∈N, we define the inner product

〈Φ,Ψ〉L2 :=
∑

k≥1

λk〈φk, ψk〉L2 ,

which induces the norm

‖Φ‖L2 = (
∑

k≥1

λk‖φk‖2L2)
1

2 .

The corresponding Hilbert space is L2.
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• For fixed λ ∈ l1, λk ≥ 0,

Hs = {Ψ = {ψk}k∈N| ψk ∈ Hs,
∑

k≥1

λk‖ψk‖2Hs <∞}

is a Banach space with norm ‖Ψ‖Hs = (
∑

k≥1 λk‖ψk‖2Hs)
1

2 .

• For fixed λ ∈ l1, λk ≥ 0,

Ḣs = {Ψ = {ψk}k∈N| ψk ∈ Ḣs,
∑

k≥1

λk‖ψk‖2Ḣs <∞}

is a Banach space with norm ‖Ψ‖Ḣs = (
∑

k≥1 λk‖ψk‖2Ḣs
)

1

2 .

1.3 Statement of main results

For s > 0, we define the state space for the Schrödinger-Poisson system by

Ss :=

{(Ψ, λ)| Ψ = {ψk}k=1 ∈ Hs is a complete orthonormal system in L2(Rn),

λ = {λk}k∈N ∈ l1, λk ≥ 0}.

The following is our first main result about the global Cauchy problem.

Theorem 1.1. Consider the system of equations (1.4)-(1.6), with m ≥ 0, with
0 < γ ≤ 1 if n ≥ 2, and 0 < γ < 1 if n = 1. Suppose that (Ψ(0), λ) ∈ Ss, s ≥
1/2. If g ≥ 0, or g < 0 with ‖Ψ(0)‖L2 small enough, then there is a unique
mild solution (Ψ, λ) ∈ C([0,∞],Ss).

Remark 1.2. λ is time-independent, and hence the evolution can be thought
as that of Ψ ∈ Hs.

Remark 1.3. Local well-posedness requires less regularity, in particular, s ≥
γ/2, see Proposition 2.2 in Section 2.1. On the other hand, in order to enhance
local to global well-posedness, energy conservation is used, and consequently,
s ≥ 1

2 is assumed to ensure finiteness of the energy.

Remark 1.4. It follows from the proof of local well-posedness (Proposition 2.2
in Section 2.1) that there exists a positive time T independent of m ≥ 0 such
that ‖Ψ‖L∞

T
Hs ≤ C‖Ψ(0)‖Hs , s ≥ γ/2, where C > 0 is independent of m.

Remark 1.5. The solution is continuous in the mass m. In particular, as
m ց 0, and for T > 0 fixed, Ψ → Ψ(0) strongly in L∞

T (Hs), s ≥ 1/2, where
Ψ(0) satisfies (1.4)-(1.6) with m = 0 and initial condition Ψ(0), see Proposition
2.6 in Sect. 2.
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The second result is about the infinite mass limit. Let Γ satisfy the nonrela-
tivistic Schrödinger-Poisson system of equations

i
∂ψk

∂t
= − 1

2m
∆ψk + V ψk, k ∈ N

V [Ψ] = wγ ⋆ n[Ψ], Ψ := {ψk}∞k=1,

n[Ψ(x, t)] =

∞∑

k=1

λk|ψk|2,

with initial condition Ψ(0) = {ψk(0)}k∈N.

Theorem 1.6. Suppose that the hypotheses of Theorem 1.1 hold. Then there
exists τ > 0 such that Ψ− Γ → 0 in L∞

τ (Hs), s ≥ γ/2, as m→ ∞.

In other words, when the mass tends to infinity, the solutions of the semi-
relativistic, and of the non-relativistic Schrödinger-Poisson systems of equations
asymptotically become indistinguishable.

Remark 1.7. The proof of Theorem 1.6 relies on local well-posedness, and this
is why the result holds for s ≥ γ/2.

2 Well-posedness

2.1 Local well-posedness

In what follows, we fix λ ∈ l1, λl ≥ 0, l ∈ N. We start by showing that the
nonlinearity V [Ψ]Ψ is locally Lipschitz.

Lemma 2.1. For Ψ,Φ ∈ Hs, s ≥ γ/2,

‖V [Ψ]Ψ− V [Φ]Φ‖Hs . (‖Ψ‖2Hs + ‖Φ‖2Hs)‖Ψ− Φ‖Hs .

Proof. The proof relies on the fractional Leibniz rule and fractional integration,
see Appendix A. From the Minkowski inequality,

‖V [Ψ]Ψ− V [Φ]Φ‖Hs . ‖(V [Ψ]− V [Φ])Ψ‖Hs + ‖V [Φ](Ψ− Φ)‖Hs (2.1)

We begin by estimating the first term on the right.

‖(V [Ψ]− V [Φ])Ψ‖Hs .
∑

k,l≥1

λkλl‖wγ ⋆ (|ψl|2 − |φl|2)ψk‖Hs

.
∑

k,l≥1

λkλl{‖wγ ⋆ (|ψl|2 − |φl|2)‖L∞‖ψk‖Hs

+ ‖wγ ⋆ (|ψl|2 − |φl|2)‖
W

s, 2n
γ
‖ψk‖

L
2n

n−γ
}

.
∑

k,l≥1

λkλl{‖ψl − φl‖
H

γ
2
(‖ψl‖

H
γ
2
+ ‖ψl‖

H
γ
2
)‖ψk‖Hs

+ ‖|ψl|2 − |φl|2‖
L

2n
2n−γ

‖ψk‖
H

γ
2
}

. (‖Ψ‖2Hs + ‖Φ‖2Hs)‖Ψ− Φ‖Hs . (2.2)
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Here, we used Minkowski inequality in the first line, fractional Leibniz rule
(Lemma A.1 in the Appendix) in the second line, Hölder’s inequality, fractional
integration (Lemma A.2) and Lemma A.3 in the third line. Similarly,

‖V [Φ](Ψ− Φ)‖Hs .
∑

k,l≥1

λkλl‖wγ ⋆ |φl|2(ψk − φk)‖Hs

.
∑

k,l≥1

λkλl{‖wγ ⋆ |φl|2‖L∞‖ψk − φk‖Hs + ‖wγ ⋆ |φl|2‖
W

s, 2n
γ
‖ψk − φk‖

L
2n

n−γ
}

.
∑

k,l≥1

λkλl{‖φl‖2
H

γ
2

‖ψk − φk‖Hs + ‖|φl|2‖
L

2n
2n−γ

‖ψk − φk‖
H

γ
2
}

. ‖Φ‖2Hs‖Ψ− Φ‖Hs . (2.3)

The claim of the lemma follows from inequalities (2.1), (2.2) and (2.3).

Using a standard contraction map argument, the generalized semi-relativistic
Schrödinger-Poisson system of equations is locally well-posed.

Proposition 2.2. Consider the system of equations (1.4)-(1.6), with m ≥ 0,
0 < γ ≤ 1 if n ≥ 2, and 0 < γ < 1 if n = 1. Suppose that (Ψ(0), λ) ∈
Ss, s ≥ γ/2. Then there exists a positive time T such that the unique solution
Ψ ∈ C([0, T ];Hs). Furthermore, there exists a maximal time τ∗ ∈ (0,∞] such
that limtրτ∗ ‖Ψ(t)‖Hs = ∞.

Proof. Given ρ, T > 0, consider the Banach space

Bs
T,ρ = {Ψ ∈ L∞

T (Hs) : ‖Ψ‖L∞

T
Hs ≤ ρ}.

Let U (m) = e−itHm , the unitary operator generated by the semi-relativistic
Hamiltonian Hm =

√
−∆+m2 −m. We define the mapping N by

N (Ψ)(t) = U (m)(t)Ψ(0)− i

∫ t

0

U (m)(t− t′)V [Ψ(t′)]Ψ(t′)dt′,

which is the solution given by the Duhamel formula. First we show that N is
a mapping from Bs

T,ρ into itself.

‖N (Ψ)‖L∞

T
Hs ≤ ‖Ψ(0)‖Hs + T ‖V [Ψ]Ψ‖L∞

T
Hs

≤ ‖Ψ(0)‖Hs + T
∑

k,l≥1

λkλl‖wγ ⋆ |ψl|2ψk‖L∞

T
Hs

≤ ‖Ψ(0)‖Hs + T
∑

k,l≥1

λkλl{‖wγ ⋆ (|ψl|2)‖L∞

T
L∞‖ψk‖L∞

T
Hs+

+ ‖wγ ⋆ (|ψl|2)‖
L∞

T W
s, 2n

γ
‖ψk‖

L∞

T L
2n

n−γ
},

where we have used fractional Leibniz rule (Lemma A.1) in the last inequality.
It follows from fractional integration (Lemma A.2) and Sobolev embedding
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H
γ
2 →֒ L

2n
n−γ that

‖N (Ψ)‖L∞

T
Hs ≤ ‖Ψ(0)‖Hs + T

∑

k,l≥1

λkλl{‖ψl‖2
L∞

T H
γ
2

‖ψk‖L∞

T
Hs+

+ ‖ψl‖2
L∞

T L
2n

n−γ
‖ψk‖L∞

T
Hs}

≤ ‖Ψ(0)‖Hs + T
∑

k,l≥1

λkλl{‖ψl‖2
L∞

T
H

γ
2

‖ψk‖L∞

T
Hs}

≤ ‖Ψ(0)‖Hs + T (
∑

l≥1

λl{‖ψl‖2
L∞

T
H

γ
2

)(
∑

k≥1

λk‖ψk‖2L∞

T
Hs)

1

2

≤ ‖Ψ(0)‖Hs + T ‖Ψ‖2
L∞

T
H

γ
2

‖Ψ‖L∞

T
Hs ,

where we have used the fact that λk ≥ 1 and
∑

k≥1 λk = 1 before the last
inequality.
Since s ≥ γ

2 , and since by assumption, Ψ ∈ Bs
T,ρ, we can choose T and ρ such

that

‖Ψ(0)‖Hs ≤ ρ

2
, T ρ2 <

1

2
,

it follows from the last inequality and the Duhamel formula that

‖Ψ‖L∞

T
Hs ≤ 2‖Ψ(0)‖Hs ≤ ρ.

Second, since the nonlinearity is locally Lipschitz (Lemma 2.1), N is a contrac-
tion map for sufficiently small T.

‖N (Ψ)−N (Φ)‖L∞

T
Hs ≤ T ‖V [Ψ]Ψ− V [Φ]Φ‖L∞

T
Hs

. Tρ2‖Ψ− Φ‖L∞

T
Hs .

Local well-posedness follows from a standard contraction mapping argument,
see for example, [6].

It follows from local well-posedness that for every k ∈ N, ‖ψk‖L2 is conserved.

Lemma 2.3. Suppose that the hypotheses of Proposition 2.2 hold. Then
‖ψk(t)‖L2 = ‖ψk(0)‖L2 , t ∈ [0, τ∗).

Proof. Multiplying (1.4) by ψk and integrating over space yields

i

2
∂t‖ψl‖2 = 〈ψl, Hmψl〉+ 〈ψl, V [Ψ]ψl〉.

Taking the imaginary part of both sides of the equation yields ∂t‖ψl‖2 = 0.

The energy functional associated with the semi-relativistic Schrödinger-Poisson
system is

E(Ψ) =
1

2
〈Ψ, HmΨ〉L2 +

1

4
〈Ψ, V [Ψ]Ψ〉L2 .

Formally, conservation of energy follows from multiplying (1.4) by λl∂tψk, in-
tegrating over space, and summing over k ≥ 1. To make the argument precise,
we need a regularization procedure.
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Lemma 2.4. Suppose that the hypotheses of Proposition 2.2 hold. Then
E(Ψ(t)) = E(Ψ(0)), t ∈ [0, τ∗), is satisfied for solutions Ψ ∈ C([0, τ∗),Hs)
with s ≥ 1

2 .

Proof. Let
Jǫ = (ǫHm + 1)−1, ǫ > 0,

act on the sequence of embedding spaces

· · · H 3

2 →֒ H 1

2 →֒ H−1

2 →֒ H−3

2 · · ·

It follows from fractional calculus that

(i) Jǫ is a bounded operator from Hs to Hs+1,

(ii) ‖JǫΨ‖Hs ≤ ‖Ψ‖Hs , and

(iii) JǫΨ → Ψ strongly in Hs as ǫ→ 0.

Now,

E(JǫΨ(t2))− E(JǫΨ(t1)) =

∫ t2

t1

∂tE(JǫΨ(t)) dt

= Re
{∫ t2

t1

−i〈HmJǫΨ(t), HmJǫΨ(t)〉L2+

+ 〈HmJǫΨ(t),JǫV [Ψ(t)]Ψ(t)〉L2+

+ 〈JǫV [JǫΨ(t)]JǫΨ(t), HmJǫΨ(t)〉L2+

+ 〈JǫV [JǫΨ(t)]JǫΨ(t),JǫV [Ψ(t)]Ψ(t)〉L2

}
.

The first term is trivially zero, since HmJǫ = JǫHm. Let

gǫ(t) = Re{〈HmJǫΨ(t),JǫV [Ψ(t)]Ψ(t)〉L2+

+ 〈JǫV [JǫΨ(t)]JǫΨ(t), HmJǫΨ(t)〉L2+

+ 〈JǫV [JǫΨ(t)]JǫΨ(t),JǫV [Ψ(t)]Ψ(t)〉L2}.

Then

E(JǫΨ(t2)) − E(JǫΨ(t1)) =

∫ t2

t1

gǫ(t)dt.

It follows from the above properties (i)-(iii) of Jǫ that limǫ→0 gǫ(t) = 0. Fur-
thermore,

gǫ(t) ≤ ‖V [Ψ(t)]Ψ(t)‖L2‖HmΨ(t)‖L2 + ‖V [Ψ(t)]Ψ(t)‖2L2 . (2.4)

Using Lemma A.3, we have

‖V [Ψ]Ψ‖L2 .
∑

k,l≥1

λkλl‖ψl‖2
Ḣ

γ
2

‖ψk‖L2 .
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The Gagliardo-Nirenberg inequality,

‖ψl‖
Ḣ

γ
2
. ‖ψl‖γ

Ḣ
1

2

‖ψl‖1−γ
L2 ,

together with conservation of charge (Lemma 2.3), yields

‖V [Ψ]Ψ‖L2 .
∑

l≥1

λl‖ψl‖2γ
Ḣ

1

2

. (
∑

l≥1

λl‖ψl‖2
Ḣ

1

2

)γ

. ‖Ψ‖2γ
H

1

2

,

where we have used in the second inequality the fact that
∑

l≥1 λl = 1, λl ≥ 0,
and f(x) = xγ , 0 < γ < 1, is concave (equality when γ = 1 is trivially
satisfied). Substituting back in (2.4) yields

gǫ(t) . ‖Ψ‖2γ+1

H
1

2

+ ‖Ψ‖4γ
H

1

2

,

which is finite for t < τ∗. By the Dominated Convergence Theorem,

E(Ψ(t2))− E(Ψ(t1)) =

∫ t2

t1

lim
ǫ→0

gǫ(t)dt = 0 ,

as claimed.

Global well-posedness in Hs, for s ≥ 1
2 , follows from conservation of charge and

energy.

Proposition 2.5. Suppose that the hypotheses of Proposition 2.2 hold. Then,
if g > 0 or g < 0 with ‖Ψ(0)‖L2 small enough, and for s ≥ 1

2 ,

‖Ψ(t)‖Hs ≤ C‖Ψ(0)‖Hseα(E(Ψ(0))+‖Ψ(0)‖δ

L2)t,

where C,α and δ are positive constants that are independent of m ≥ 0.

Proof. We start by bounding ‖Ψ(t)‖
Ḣ

γ
2
from above, uniformly in time.

〈Ψ, V [Ψ]Ψ〉L2 =
∑

l≥1

λl〈ψl, V [Ψ]ψl〉

≤ ‖V [Ψ]‖L∞‖Ψ‖2L2

. (
∑

k≥1

λk‖ψk‖2
Ḣ

γ
2

)‖Ψ‖2L2

. (
∑

k≥1

λk‖ψk‖2γ
Ḣ

1

2

)‖Ψ‖2L2

. (
∑

k≥1

λk‖ψk‖2
Ḣ

1

2

)γ‖Ψ‖2L2

. ‖Ψ‖γ
H

1

2

‖Ψ‖2L2 .
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Here, we used Hölder’s inequality in the second line, Lemma A.3 in the third
line, the Gagliardo-Nirenberg inequality and conservation of charge in the
fourth line, and

∑
k≥1 λk = 1, λk ≥ 0, the fact that xγ , 0 < γ < 1, is

concave in the fifth line (equality when γ = 1 is trivially satisfied). Together
with conservation of energy (Lemma 2.4), this implies that for g > 0 or g < 0
with ‖Ψ(0)‖L2 small enough,

‖Ψ‖
Ḣ

γ
2
≤ α

(
E(Ψ(t)) + ‖Ψ(0)‖δL2

)
, (2.5)

where α and δ are constants independent of the mass m ≥ 0. Now, it follows
from the Duhamel formula that

‖Ψ(t)‖Hs ≤ ‖Ψ(0)‖Hs +

∫ t

0

‖Ψ(t′)‖2
Ḣ

γ
2

‖Ψ(t′)‖Hs dt′

≤ ‖Ψ(0)‖Hs + α
(
E(Ψ(t)) + ‖Ψ(0)‖δL2

) ∫ t

0

‖Ψ(t′)‖Hs dt′,

where we used Hölder’s and Minkowski inequalities in the first line, and (2.5)
in the second line. By Gronwall’s lemma,

‖Ψ(t)‖Hs ≤ ‖Ψ(0)‖Hseα(E(Ψ(0))+‖Ψ(0)‖δ

L2)t

follows.

Proof of Theorem 1.1. It follows from Propositions 2.2 and 2.5 that τ∗ = ∞,
i.e., the generalized semi-relativistic Schrödinger-Poisson system of equations
is globally well-posed.

We now prove the claim of Remark 1.5 about the asymptotic behaviour of the
system as the mass tends to zero.

Proposition 2.6. Consider the system of equations (1.4)-(1.6) with initial
condition (λ,Ψ(0)). Let Ψ(0) denote the solution of the initial value problem
with mass m = 0, and fix T > 0. Under the hypotheses of Proposition 2.5,
Ψ → Ψ(0) strongly in L∞

T (Hs), s ≥ 1/2, as m→ 0.

Proof. Proposition 2.5 implies that, given T > 0, there exists finite ρ > 0 such
that

sup
m∈[0,1]

‖Ψ‖L∞

T
Hs < ρ. (2.6)

We now compare the norm of the difference of Ψ(t) and Ψ(0)(t), t ∈ [0, T ]. It
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follows from the Duhamel formula that

‖Ψ(t)−Ψ(0)(t)‖Hs . ‖
(
U (m)(t)− U (0)(t)

)
Ψ(0)‖Hs+

+

∫ t

0

{‖V [Ψ(t′)]Ψ(t′)− V [Ψ(0)(t′)]Ψ(0)(t′)‖Hs+

+ ‖
(
U (m)(t′)− U (0)(t′)

)
V [Ψ(0)(t′)]Ψ(0)(t′)‖Hs}dt′

. mT ‖Ψ(0)‖Hs +

∫ t

0

‖V [Ψ(t′)]Ψ(t′)− V [Ψ(0)(t′)]Ψ(0)(t′)‖Hs dt′

+
mT 2

2
‖V [Ψ(0)]Ψ(0)‖L∞

T
Hs ,

where we used Minkowski inequality in the first inequality and Hölder’s in-
equality in the second. We also used 0 ≤

√
−∆+m2 −m ≤ m.

It follows from the fact that the nonlinearity is locally Lipschitz (Lemma 2.1)
and (2.6) that

‖V [Ψ(t′)]Ψ(t′)− V [Ψ(0)(t′)]Ψ(0)(t′)‖Hs . ρ2‖Ψ(t′)−Ψ(0)(t′)‖Hs ,

‖V [Ψ(0)]Ψ(0)‖L∞

T
Hs . ρ3.

Hence

‖Ψ(t)−Ψ(0)(t)‖Hs . mρT +mρ3T + ρ2
∫ t

0

‖Ψ(t′)−Ψ(0)(t′)‖Hs dt′.

By Gronwall’s lemma, Ψ → Ψ(0) strongly in L∞
T (Hs) as m→ 0.

3 Asymptotic behaviour of solutions as mass tends to infinity

In this section, we discuss the asymptotics of the solution as the mass m tends
to infinity.

Proof of Theorem 1.6. Recall that from the proof of local well-posedness in
Section 2.1, there exists T > 0 independent of m such that ‖Ψ‖L∞

T
Hs ≤

C‖Ψ(0)‖Hs , s ≥ γ/2, where C is independent of m. Similarly, one can show
that there exists T ′ > 0 independent of m such that ‖Γ‖L∞

T′
Hs ≤ C‖Ψ(0)‖Hs ,

where C is independent of m. Let τ = min(T, T ′). Let Γ̃ = {γ̃k}k∈N satisfy the
system of equations

{
i∂tΓ̃ = V [Γ̃]Γ̃,

V [Γ̃] = wγ ⋆ n[Γ̃], n[Γ̃] =
∑∞

k=1 λk|γ̃k|2,

with initial condition Γ̃(0) = Ψ(0). Alternatively, Γ̃ satisfies the integral equa-
tion

Γ̃(t) = Ψ(0)− i

∫ t

0

V [Γ̃(t′)]Γ̃(t′)dt′.
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Uniqueness of the solution follows from the fact that the nonlinearity is locally
Lipschitz (Lemma 2.1). We are going to compare Ψ to Γ̃, and then Γ̃ to Γ.

‖Ψ(t)− Γ̃(t)‖Hs ≤ ‖
(
U (m)(t)− 1

)
Ψ(0)‖Hs+ (3.1)

+

∫ t

0

‖
(
U (m)(t− t′)− 1

)
V [Γ̃(t′)]Γ̃(t′)‖Hsdt′+ (3.2)

+

∫ t

0

‖V [Ψ(t′)]Ψ(t′)− V [Γ̃(t′)]Γ̃(t′)‖Hsdt′. (3.3)

To estimate the first term on the right-hand-side, we apply the Fourier trans-
form and use Parseval’s Theorem,

‖
(
U (m)(t)− 1

)
Ψ(0)‖2Hs

=
∑

l≥1

λl

∫

Rn

|e−it(
√

m2+|k|2−m) − 1|2(1 + |k|2)s|ψ̂l(0, k)|2dk

≤
∑

l≥1

λl{
∫

|k|≤m
1

4

|e−it(
√

m2+|k|2−m) − 1|2(1 + |k|)2s|ψ̂l(0, k)|2dk+

+

∫

|k|>m
1

4

|e−it(
√

m2+|k|2−m) − 1|2(1 + |k|)2s|ψ̂l(0, k)|2dk}

≤
∑

l≥1

λl{
∫

|k|≤m
1

4

t2|k|4
(
√
m2 + |k|2 +m)2

(1 + |k|)2s|ψ̂l(0, k)|2dk+

+ 4

∫

|k|>m
1

4

(1 + |k|)2s|ψ̂l(0, k)|2dk}

≤ τ2

4m
‖Ψ(0)‖2Hs + 4

∑

l≥1

∫

|k|>m
1

4

(1 + |k|)2s|ψ̂l(0, k)|2dk

→ 0 as m→ ∞.

Since V [Γ̃]Γ̃ ∈ Hs, it follows from the Dominated Convergence Theorem that

lim
m→∞

∫ t

0

‖
(
U (m)(t− t′)− 1

)
V [Γ̃(t′)]Γ̃(t′)‖Hsdt′ = 0.

To estimate the third term, let ρ > 0 be a constant such that

sup
m≥1

(‖Ψ‖L∞
τ Hs + ‖Γ‖L∞

τ Hs) + ‖Γ̃‖L∞
τ Hs ≤ ρ.

It follows from the fact that the nonlinearity is locally Lipschitz that

‖V [Ψ(t′)]Ψ(t′)− V [Γ̃(t′)]Γ̃(t′)‖Hs ≤ Cρ2‖Ψ(t′)− Γ̃(t′)‖Hs ,

where C is a positive constant independent of m.
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Therefore,

‖Ψ(t)− Γ̃(t)‖Hs ≤ fm + Cρ2
∫ t

0

‖Ψ(t′)− Γ̃(t′)‖Hsdt′,

where fm bounds the first two terms on the r.h.s. of (3.1). As shown above,
limm→∞ fm = 0 and C is independent ofm, so that it application of Gronwall’s
lemma yields

lim
m→∞

‖Ψ− Γ̃‖L∞
τ Hs = 0.

Similarly, one can show that

‖Γ(t)− Γ̃(t)‖Hs ≤ gm + Cρ2
∫ t

0

‖Ψ(t′)− Γ̃(t′)‖Hsdt′,

where limm→∞ gm = 0 and C is independent of m, and it follows that

lim
m→∞

‖Γ− Γ̃‖L∞
τ Hs = 0.

Since

‖Ψ− Γ‖L∞
τ Hs ≤ ‖Ψ− Γ̃‖L∞

τ Hs + ‖Γ− Γ̃‖L∞
τ Hs ,

it follows that

lim
m→∞

‖Ψ− Γ‖L∞
τ Hs = 0 ,

as desired.
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A Appendix

The following result about the fractional Leibniz rule can be found in [9].

Lemma A.1.

‖Ds(uv)‖Lp . ‖Dsu‖Lq1‖v‖Lr1 + ‖u‖Lq2‖Dsv‖Lr2 ,

where 1
p
= 1

qi
+ 1

ri
, i = 1, 2.

The second result is about inequality involving fractional integral operators,
which can be found, for example, in [12].
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Lemma A.2. Let Iα, for 0 < α < n, be the fractional integral operator

Iα(u) =

∫

Rn

|x− y|α−nu(y) dy.

Then

‖Iα(u)‖Lp . ‖u‖Lq ,
1

p
=

1

q
− α

n
.

We also recall the following useful Hardy-type inequality.

Lemma A.3. Let 0 < γ < n. Then,

sup
x∈Rn

|
∫

Rn

1

|x− y|γ |u(y)|
2dy| . ‖u‖2

Ḣ
γ
2

.
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