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Abstract. This is a correction to [BP 11] E. Bayer–Fluckiger, R.
Parimala, Galois algebras, Hasse principle and induction–restriction
methods, Documenta Math. 16 (2011), 677–707.

Theorem 3.5 of [BP 11] is not correct as stated, and should be replaced by

Theorem. Let V be a k[G]–module that is a finite dimensional k–vector space,
and let E = End(V ). Let RE be the radical of E, and set E = E/RE. Suppose

that all the orthogonal components of E are split, and let (V, q), (V, q′) be two

G–forms. Then q ≃G q′ over k if and only if q ≃G q′ over all the completions

of k.

This is proved in [BPN 13], Theorem 2.1. Note however that very few changes
are needed in [BP 11]. Indeed, Theorem 3.5 and its proof are correct when
k[G] is semi–simple, and this is the only case that is used in the sequel of [BP
11].
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