
Documenta Math. 395

On Zagier’s Conjecture for

Base Changes of Elliptic Curves

François Brunault

Received: June 15, 2012

Revised: December 21, 2012

Communicated by Stephen Lichtenbaum

Abstract. Let E be an elliptic curve over Q, and let F be a fi-
nite abelian extension of Q. Using Beilinson’s theorem on a suitable
modular curve, we prove a weak version of Zagier’s conjecture for
L(EF ,2), where EF is the base change of E to F .

2010 Mathematics Subject Classification: 11G40, 11G55, 19F27
Keywords and Phrases: Elliptic curves, L-functions, elliptic diloga-
rithm, Zagier’s conjecture, regulators, Beilinson’s conjecture

Introduction

Zagier conjectured in [19] very deep relations between special values of zeta
functions at integers, special values of polylogarithms at algebraic arguments
and K-theory. While the original conjectures concerned the Dedekind zeta
function of a number field and Artin L-functions, theoretical and numerical
results by many authors suggested an extension of these conjectures to elliptic
curves (see [20] for an historical account). A precise formulation for elliptic
curves over number fields was given by Wildeshaus in [17]. The conjecture on
L(E,2), where E is an elliptic curve over Q, was proved by Goncharov and
Levin in [11]. In this article, we prove an analogue of Goncharov and Levin’s
result for the base change of E to an arbitrary abelian number field.
Let E be an elliptic curve defined over Q. Let F ⊂ Q be a finite abelian
extension of Q, and let EF be the base change of E to F . The L-function

L(EF , s) admits a factorization ∏χ∈Ĝ L(E⊗χ, s), where Ĝ is the group of Q
×
-

valued characters of G = Gal(F /Q). Each factor L(E ⊗ χ, s) has an analytic
continuation to C with a simple zero at s = 0. The functional equation relates
L(EF ,2) with the leading term of L(EF , s) at s = 0.
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396 F. Brunault

Let DE (resp. JE) be the Bloch elliptic dilogarithm (resp. its “imaginary”
cousin) on E(C) ≅ C/(Z + τZ) (see §2-3 for the definitions). These functions
induce linear maps on the free abelian group Z[E(C)], and thus on Z[E(Q)]
after fixing an embedding ι ∶ Q ↪ C. Let Z[E(Q)]GF denote the subgroup of
divisors fixed by GF ∶= Gal(Q/F ). It carries a natural action of G. The main
theorem of this article can be stated as follows.

Theorem 1. There exists a divisor ℓ ∈ Z[E(Q)]GF such that for every char-
acter χ ∈ Ĝ, the following identity holds

L′(E ⊗ χ,0) ∼Q×
⎧⎪⎪⎨⎪⎪⎩

1
π ∑σ∈G χ(σ)DE(ℓσ) if χ is even,

1
πI(τ) ∑σ∈G χ(σ)JE(ℓσ) if χ is odd.

(1)

Using the Dedekind-Frobenius formula for group determinants, we deduce from
Theorem 1 the following result. Let us denote the elements of G by σ1, . . . , σd
(resp. σ1, σ1, . . . , σd/2, σd/2) if F is real (resp. complex), with d = [F ∶Q].
Corollary (Weak version of Zagier’s conjecture for L(EF ,2)).
Let ℓ ∈ Z[E(Q)]GF be a divisor satisfying the identities (1) of Theorem 1. For

any i, define ℓi = ℓσ−1i . If F is real, then we have

L(EF ,2) ∼Q× πd ⋅ det(DE(ℓσj

i ))1≤i,j≤d. (2)

If F is complex, then we have

L(EF ,2) ∼Q× πd

I(τ)d/2 ⋅ det(DE(ℓσj

i ))1≤i,j≤d/2 ⋅ det(JE(ℓσj

i ))1≤i,j≤d/2. (3)

Remarks. 1. Wildeshaus’s formulation of the conjecture [17, Conjecture,
Part 2, p. 366] uses Kronecker double series instead of DE and JE .
The link between these objects is classical (see the proof of Prop. 6).
We have chosen to formulate our results in terms of DE and JE because
these functions are easier to compute numerically and make apparent the
distinction according to the parity of χ.

2. Because of the definition of ℓi, the determinant appearing in (2) is a
group determinant, indexed by G. In fact, the eigenvalues of the matrix(DE(ℓσj

i )) are precisely the sums ∑σ∈G χ(σ)DE(ℓσ) appearing in Theo-
rem 1. This is an algebraic counterpart of the factorization of the L-value
of EF as a product of twisted L-values.

3. The divisor ℓ produced by Theorem 1 satisfies Goncharov and Levin’s
conditions [11, (2)-(4)]. Following [20], let AE/F ⊂ Z[E(Q)]GF be the
group of divisors satisfying these conditions. The strong version of Za-
gier’s conjecture predicts that if F is real (resp. complex), then for any
divisors ℓ1, . . . , ℓd ∈ AE/F (resp. ℓ1, . . . , ℓd/2 ∈ AE/F ), the right-hand side
of (2) (resp. (3)) is a rational multiple of L(EF ,2) (possibly equal to
zero). As in the case F = Q, this strong conjecture is beyond the reach
of current technology.

Documenta Mathematica 18 (2013) 395–412
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In order to prove Theorem 1, we prove a weak version of Beilinson’s conjecture
for the special value L(d)(EF ,0) (see §3 for the definition of the objects involved
in the following theorem).

Theorem 2. There exists a subspace PE/F ⊂ H2
M/Z(EF ,Q(2)) such that

RE/F ∶= regE/F (PE/F ) is a Q-structure of H1(EF (C),R)− and

det(RE/F ) = L(d)(EF ,0) ⋅ det(H1(EF (C),Q)−). (4)

We prove Theorem 2 by using Beilinson’s theorem on a suitable modular curve.
More precisely, we make use of a result of Schappacher and Scholl [15] on
the (non geometrically connected) modular curve X1(N)F , where N is the
conductor of E. We therefore need to work in the adelic setting. We establish
a divisibility statement in the Hecke algebra of X1(N)F in order to get the
desired result for EF .

The methods used in this article are of inexplicit nature and do not give rise,
in general, to explicit divisors. However, Theorem 1 and its corollary can be
made explicit in the particular case of the elliptic curve E = X1(11) and the
maximal real subfield F = Q(ζ11)+ inside the cyclotomic field Q(ζ11). In fact,
we may take for ℓ a divisor on the cuspidal subgroup of E. The tools for proving
this are Kato’s explicit version of Beilinson’s theorem for the modular curve
X1(N)Q(ζm), the work of the author [3], as well as a technique used by Mellit
[13] to get new relations between values of the elliptic dilogarithm. We hope
to give soon an expanded account of this example.

The organization of the article is as follows. In §1, we recall well-known facts
about L(EF , s). In §2 and §3, we recall the definition of the regulator map
and we compute it for EF (Prop. 9). In §4, we explain the adelic setting for
modular curves. In §5, we prove the divisibility we need in the Hecke algebra
(Prop. 16). Finally, we give in §6 the proofs of the main results. We conclude
with some remarks and a conjecture in the case F /Q is not abelian.

Acknowledgements. I would like to thank Anton Mellit for the very in-
spiring discussions which led to the discovery of the example alluded to above,
which in turn motivated all the results presented here.

1 The L-function of the base change

By the Kronecker-Weber theorem, we have F ⊂Q(ζm) for some m ≥ 1, so that
G is a quotient of (Z/mZ)× and Ĝ can be identified with a subgroup of the
Dirichlet characters modulo m.

Let f = ∑n≥1 anqn ∈ S2(Γ0(N)) be the newform associated to E. For any
χ ∈ Ĝ, define L(E ⊗ χ, s) ∶= L(f ⊗ χ, s), where f ⊗ χ is the unique newform of
weight 2 whose p-th Fourier coefficient is apχ(p) for every prime p ∤ Nm. The
L-function of EF has the following description.
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Proposition 3. The following identity holds :

L(EF , s) = ∏
χ∈Ĝ

L(f ⊗ χ, s). (5)

Proof. Let ρ = (ρℓ)ℓ be the compatible system of 2-dimensional ℓ-adic rep-
resentations of GQ attached to f by Deligne [5]. By modularity L(EF , s) =
L(ρ∣GF

, s). Using Artin’s formalism for L-functions, we have

L(ρ∣GF
, s) = L(IndGQ

GF
(ρ∣GF

), s). (6)

If 1GF
denotes the trivial representation of GF , we have

Ind
GQ

GF
(ρ∣GF

) = IndGQ

GF
(1GF

⊗ResGF

GQ
ρ)

≅ IndGQ

GF
(1GF

)⊗ ρ (7)

≅ ⊕
χ∈Ĝ

ρ⊗ χ.

(Here we chose embeddings Q ↪ Qℓ.) Finally, since an irreducible ℓ-adic rep-
resentation of GQ is determined by the traces of all but finitely many Frobe-
nius elements, the compatible system associated to f ⊗ χ is ρ ⊗ χ, so that
L(ρ⊗ χ, s) = L(f ⊗ χ, s) for any χ ∈ Ĝ.
Proposition 4. We have L(EF ,2) ∼Q× π2dL(d)(EF ,0), where L(d)(EF ,0)
denotes the d-th derivative at s = 0.
Proof. Since each L(f ⊗ χ, s) has a simple zero at s = 0, we get

L(d)(EF ,0)
d!

= ∏
χ∈Ĝ

L′(f ⊗ χ,0), (8)

Let Nf⊗χ be the level of the newform f ⊗ χ. Putting Λ(f ⊗ χ, s) =
N
s/2
f⊗χ(2π)−sΓ(s)L(f ⊗ χ, s), we have [7, §5]

Λ(f ⊗ χ, s) = −wf⊗χΛ(f ⊗ χ,2 − s) (s ∈ C) (9)

where wf⊗χ is the pseudo-eigenvalue of f ⊗χ with respect to the Atkin-Lehner
involution of level Nf⊗χ. Note that (9) implies wf⊗χwf⊗χ = 1. Letting w =
∏χ∈Ĝwf⊗χ, we have

w2 = ∏
χ∈Ĝ

wf⊗χwf⊗χ = 1 (10)

so that w = ±1. Moreover Λ(f ⊗ χ,0) = L′(f ⊗ χ,0) and Λ(f ⊗ χ,2) =(Nf⊗χ/4π2)L(f ⊗ χ,2). Taking the product over χ ∈ Ĝ yields the result.
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Zagier’s Conjecture for Base Changes 399

2 The regulator map on Riemann surfaces

In this section, we recall the definition of the regulator map on compact Rie-
mann surfaces [8, §1], and its computation in the case of elliptic curves.
Let X be a compact connected Riemann surface, and M(X) be its field of
meromorphic functions. For any f, g ∈M(X)×, consider the 1-form

η(f, g) ∶= log ∣f ∣ ⋅ darg(g) − log ∣g∣ ⋅ darg(f). (11)

For any f ∈ M(X)/{0,1}, the differential form η(f,1 − f) is exact on
X/f−1({0,1,∞}). More precisely η(f,1− f) = d(D ○ f), where D is the Bloch-
Wigner dilogarithm function [18]. Let K2(M(X)) be the Milnor K2-group
associated toM(X). The regulator map on X is the unique linear map

regX ∶K2(M(X))→H1(X,R) (12)

such that for any f, g ∈M(X)× and any holomorphic 1-form ω on X , we have

∫
X
regX{f, g} ∧ ω = 1

2π
∫
X
η(f, g) ∧ ω. (13)

The map regX is well-defined by exactness of η(f,1 − f) and Stokes’ theorem.
The construction of regX easily extends to the case where X is compact but
not connected. Indeed, put M(X) ∶= ∏ri=1M(Xi) where X1, . . . ,Xr are the
connected components of X . Then K2(M(X)) ≅ ⊕iK2(M(Xi)) as well as
H1(X,R) ≅ ⊕iH1(Xi,R), and we define regX to be the direct sum of the
maps regXi

for 1 ≤ i ≤ r.
Let us recall the classical computation of the regulator map on a complex torus
[1, §4]. Let Eτ ∶= C/(Z + τZ) with τ ∈ C, I(τ) > 0. The map z ↦ exp(2iπz)
induces an isomorphism Eτ ≅ C×/qZ, where q ∶= exp(2iπτ). Let Dq ∶ Eτ → R

be the Bloch elliptic dilogarithm, defined by Dq([x]) = ∑∞n=−∞D(xqn) for any
x ∈C×. We will also use the function Jq ∶ Eτ →R, which is defined as follows.
Let J ∶C× →R be the function defined by J(x) = log ∣x∣ ⋅ log ∣1−x∣ if x ≠ 1, and
J(1) = 0. Following [18], we put

Jq([x]) = ∞∑
n=0

J(xqn) − ∞∑
n=1

J(x−1qn) + 1

3
log2 ∣q∣ ⋅B3( log ∣x∣

log ∣q∣ ) (x ∈C×) (14)

where B3 = X3
−

3
2
X2
+
X
2

is the third Bernoulli polynomial. The function Jq
is well-defined since J(x) + J( 1

x
) = log2 ∣x∣ and B3(X + 1) − B3(X) = 3X2.

Both functions Dq and Jq extend to linear maps Z[Eτ ] → R, by setting
Dq(∑i ni[Pi]) ∶= ∑i niDq(Pi) and similarly for Jq.

Definition 5. For any f, g ∈M(Eτ)× with divisors div(f) = ∑imi[Pi] and
div(g) = ∑j nj[Qj], the divisor β(f, g) ∈ Z[Eτ ] is defined by

β(f, g) =∑
i,j

minj[Pi −Qj]. (15)
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The following classical result expresses the regulator map on Eτ in terms of Dq

and Jq.

Proposition 6. For any f, g ∈M(Eτ )×, we have

∫
Eτ

η(f, g) ∧ dz = (Dq − iJq)(β(f, g)). (16)

Proof. We have ∫Eτ
η(f, g) ∧ dz = −I(τ)2

π
K2,1,τ(β(f, g)) by [1, §4.3] and [6,

(6.2)], whereK2,1,τ is the linear extension of the following Eisenstein-Kronecker
series on Eτ :

K2,1,τ(z) ∶= ∑
λ∈Z+τZ
λ≠0

exp( 2iπ
τ−τ
(zλ − zλ))
λ2λ

(z ∈C/(Z + τZ)). (17)

The result now follows from the formula −I(τ)2

π
K2,1,τ =Dq − iJq, for which we

refer to [2, Thm 10.2.1] and [18, §2, p. 616].

3 The regulator map on the base change

Let X be a connected (but not necessarily geometrically connected) smooth
projective curve over Q. Its function field Q(X) embeds into M(X(C)), so
we get a natural map K2(Q(X))→K2(M(X(C))). Let c denote the complex
conjugation on X(C). For any f, g ∈ Q(X)×, we have c∗η(f, g) = −η(f, g), so
that (12) induces a map

K2(Q(X))→H1(X(C),R)−, (18)

where (⋅)− denotes the (−1)-eigenspace of c∗.
Let K2(X) be the Quillen algebraic K2-group associated to X . Recall that

the motivic cohomology group H2
M(X,Q(2)) ∶= K(2)2 (X) is defined as the

second Adams eigenspace of K2(X) ⊗Q. The exact localization sequence in
K-theory yields a canonical injective map K2(X)⊗Q↪K2(Q(X))⊗Q which

is compatible with the Adams operations, so that in factK
(2)
2 (X) =K2(X)⊗Q.

The integral subspace H2
M/Z(X,Q(2)) ⊂H2

M(X,Q(2)) is the image of the map

K2(X)⊗Q→K2(X)⊗Q for any proper regular model X/Z of X (see [16] for
a definition in a more general setting). Tensoring (18) with Q and restricting
to the integral subspace gives the Beilinson regulator map on X :

regX ∶H
2
M/Z(X,Q(2))→H1(X(C),R)−. (19)

Note that the real vector space H1(X(C),R)− admits the natural Q-structure
HX ∶=H1(X(C),Q)−.
Any finite morphism ϕ ∶ X → Y between smooth projective curves over Q

induces maps ϕ∗ ∶K2(Y )→K2(X) and ϕ∗ ∶K2(X)→K2(Y ), the latter being
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defined by K2(X) ≅Ð→ K ′2(X) ϕ∗Ð→ K ′2(Y ) ≅←Ð K2(Y ). It is known that ϕ∗ ⊗Q

and ϕ∗ ⊗Q preserve the integral subspaces [16, Thm 1.1.6(i)]. Moreover, the
Beilinson regulator maps associated to X and Y are compatible with ϕ∗ and
ϕ∗ (this can be seen at the level of Riemann surfaces).
Let us return to our elliptic curve E. Fix an isomorphism E(C) ≅ Eτ which
is compatible with complex conjugation, and let q = exp(2iπτ). Let DE and
JE be the real-valued functions on E(C) induced by Dq and Jq respectively1.
The space H1(E(C),Q)± is generated by the 1-form η±, with

η+ = dz + dz and η− = dz − dz
τ − τ

. (20)

Lemma 7. Let f, g ∈C(E)× and ℓ = β(f, g). We have

regE(C){f, g} = − 1

2π
(DE(ℓ) ⋅ η− + JE(ℓ)

2I(τ) ⋅ η+). (21)

Proof. Put regE(C){f, g} = a+η+ + a−η− with a+, a− ∈ R. Taking the wedge
product with dz and integrating over E(C) yields

∫
E(C)

regE(C){f, g} ∧ dz = −a− + 2iI(τ)a+. (22)

Using (13) with Prop. 6 and identifying the real and imaginary parts gives the
lemma.

Let Σ be the set of embedding of F into C. We consider EF = E ×SpecQ SpecF
as a scheme over SpecQ, so that EF (C) is the disjoint union of d copies of
E(C). In particular

H1(EF (C),R) ≅ ⊕
ψ∈Σ

H1(E(C),R) (23)

and H1(EF (C),Q) decomposes accordingly. The group G acts from the right
on EF . This induces a left action of G on H1(EF (C),Q). For any character
χ ∈ Ĝ, consider the idempotent

eχ ∶= 1

∣G∣ ∑σ∈Gχ(σ) ⋅ [σ] ∈Q[G]. (24)

It acts on H1(EF (C),Q ⊗ R). For any ψ ∈ Σ, let η±(ψ) be the 1-form η±

sitting in the ψ-component of (23). Note that the embedding ι ∶ Q ↪ C

induces a distinguished element ι ∈ Σ. Define

ηχ =
⎧⎪⎪⎨⎪⎪⎩
eχ(η−(ι)) if χ is even,

eχ(η+(ι)) if χ is odd.
(25)

1The lattice Z+τZ is uniquely determined by E, and q is a well-defined real number such
that 0 < ∣q∣ < 1. But the pair (DE , JE) is defined only up to sign (choosing an isomorphism
E(C) ≅ Eτ amounts to specifying an orientation of E(R)).
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Lemma 8. If c ∶ EF (C) → EF (C) is the map induced by complex conjugation
on SpecC, then c∗ηχ = −ηχ.
Proof. For any ψ ∈ Σ, we have c∗η±(ψ) = ±η±(ψ). It follows that

c∗ηχ = 1

∣G∣ ∑σ∈Gχ(σ)c
∗(σ ⋅ η−χ(−1)(ι))

= −χ(−1)∣G∣ ∑
σ∈G

χ(σ)(σ ⋅ η−χ(−1)(ι)).
Since χ(−1)χ(σ) = χ(σ), we get the result.

The map β induces a linear map F (E)×⊗F (E)× → Z[E(Q)]GF , which we still
denote by β. The following proposition computes explicitly the regulator map
associated to EF .

Proposition 9. Let γ ∈ F (E)× ⊗ F (E)× and ℓ = β(γ). For any χ ∈ Ĝ, we
have eχ regE/F ([γ]) = µχ(ℓ) ⋅ ηχ, where µχ(ℓ) ∈Q⊗R is given by

µχ(ℓ) =
⎧⎪⎪⎨⎪⎪⎩
−

1
2π ∑σ∈G χ(σ)⊗DE(ℓσ) if χ is even,

−
1

4πI(τ) ∑σ∈G χ(σ)⊗ JE(ℓσ) if χ is odd.
(26)

Proof. Put r = regE/F ([γ]). By Lemma 7, the ψ-component of r is

rψ = − 1

2π
(DE(ψ(ℓ)) ⋅ η−(ψ) + JE(ψ(ℓ))

2I(τ) ⋅ η+(ψ)). (27)

Since eχ(r) and ηχ belong to the same G-eigenspace, it suffices to compare
their ι-components. By definition, we have (ηχ)ι = 1

∣G∣
ηχ(−1). Moreover

eχ(r)ι = 1

∣G∣ ∑σ∈Gχ(σ)⊗ (σ ⋅ r)ι =
1

∣G∣ ∑σ∈Gχ(σ)⊗ rι○σ (28)

= − 1

2π∣G∣ ∑σ∈Gχ(σ)⊗ (DE(ℓσ) ⋅ η− + JE(ℓσ)
2I(τ) ⋅ η+). (29)

But DE(P) = DE(P ) and JE(P ) = −JE(P ) for any P ∈ E(C), so that the
terms involving JE (resp. DE) cancel out if χ is even (resp. odd).

4 Modular curves in the adelic setting

Let Af be the ring of finite adèles of Q. For any compact open subgroup
K ⊂ GL2(Af), there is an associated smooth projective modular curve MK

over Q. For example X(N) =MK(N) and X1(N) =MK1(N), where

K(N) = ker(GL2(Ẑ)→ GL2(Z/NZ)) (30)

K1(N) = {g ∈ GL2(Ẑ); g ≡ (∗ ∗

0 1
) (mod N)}. (31)
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The Riemann surface MK(C) can be identified with the compactification of
GL2(Q)/(h± ×GL2(Af))/K. The set of connected components of MK(C) is
in bijection with Ẑ×/det(K). For any g ∈ GL2(Af), we have an isomorphism

g ∶ MK
≅Ð→ Mg−1Kg over Q, which is given on the complex points by (τ, h) ↦(τ, hg). For any compact open subgroups K ′ ⊂K of GL2(Af), we have a finite

morphism πK′,K ∶MK′ →MK .
The Hecke algebraHK is the space of functionsK/GL2(Af)/K →Q with finite
support, equipped with the convolution product [4]. It acts on H1(MK(C),Q)
and Ω1(MK)⊗Q. Let TK = TMK

be the image ofHK in End
Q
(Ω1(MK)⊗Q).

Let ⟨⋅, ⋅⟩ ∶H1(MK(C),R)− × (Ω1(MK)⊗R) →R (32)

be the perfect pairing induced by Poincaré duality. For any T ∈ HK , we have⟨Tη,ω⟩ = ⟨η,T ′ω⟩, where T ′ ∈ HK is defined by T ′(g) = T (g−1), so that the
action of HK on H1(MK(C),Q⊗R)− factors through TK .
Following [15, 1.1.1], let QK ⊂ K2(MK) ⊗ Q be the subspace of Beilinson
elements, and let

PK = ⋃
K′⊂K

(πK′,K)∗QK′ ⊂K2(MK)⊗Q. (33)

Schappacher and Scholl [15, 1.1.2] proved that PK ⊂ H2
M/Z(MK ,Q(2)) and

that reg
MK
(PK) is a Q-structure of H1(MK(C),R)− whose determinant

with respect to the natural Q-structure H
MK

is given by the leading term

of L(h1(MK), s) at s = 0.
In the following, we assume K =∏pKp, where Kp a compact open subgroup of
GL2(Qp). The Hecke algebra then decomposes as a restricted tensor product

HK = ⊗′pHKp
. For any prime p, let T̃ (p) ∈ HK (resp. T̃ (p, p) ∈ HK) be the

characteristic function of K (̟p 0
0 1

)K (resp. K (̟p 0
0 ̟p

)), where ̟p ∈ A×f
has component p at the place p, and 1 elsewhere. Let T (p) (resp. T (p, p)) be
the image of T̃ (p) (resp. T̃ (p, p)) in TK . When K needs to be specified, we
write T (p)K or T (p)

MK
.

For any integer M ≥ 1, we let H(M)K ⊂ HK be the subalgebra generated by the

HKp
for p ∤ M . We use the notation T

(M)
K for the corresponding subalgebra

of TK .

Lemma 10. If K(M) ⊂K then T
(M)
K is in the center of TK .

Proof. For any prime p ∤ M , we have Kp = GL2(Zp) and by Satake the map

Q[T,S,S−1]→HKp
given by T ↦ T̃ (p) and S ↦ T̃ (p, p) is an isomorphism. In

particular HKp
is contained in the center of HK , whence the result.

Let UF ⊂ Ẑ× denote the preimage of Gal(Q(ζm)/F ) ⊂ (Z/mZ)× under the
natural map Ẑ× → (Z/mZ)× (note that UF does not depend on m). For any
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compact open subgroup K ⊂ GL2(Af) with det(K) = Ẑ×, let
KF ∶= {k ∈K; det(k) ∈ UF }. (34)

Let pr ∶ A×f → Ẑ× be the projection associated to the decomposition A×f ≅
Q>0 × Ẑ

×.

Definition 11. Let γ ∶ GL2(Af) → G be the composite morphism

GL2(Af) detÐÐ→A×f
prÐ→ Ẑ× → ( Z

mZ
)× → G. (35)

Note that there is an exact sequence

1→KF →K
γ∣KÐÐ→ G→ 1. (36)

The sequence (36) induces a right action of G on MKF
, and thus a left action

of G on Ω1(MKF
). Moreover, the curve MKF

can be identified with MK ⊗ F

as a curve over Q, and we have a bijection

MKF
(C) ≅Ð→ G ×MK(C) (37)

[τ, g]↦ (γ(g), [τ, g]).
The action of G on MKF

(C) corresponds via (37) to the action by translation
on the first factor of G ×MK(C).
Now let us consider the case K = K1(N), so that MKF

≅ X1(N)F . By the
previous discussion, the image of G in EndΩ1(X1(N)F ) ⊗Q is contained in

TX1(N)⊗F . In order to ease notations, let T = T(Nm)
X1(N)⊗F

⊂ EndΩ1(X1(N)F )⊗
Q. Let T G be the subalgebra of TX1(N)⊗F generated by T and G.

Lemma 12. The algebra T G is commutative.

Proof. Note that K(Nm) ⊂K1(N)F , so T is commutative and commutes with
G by Lemma 10. Since G is abelian, the result follows.

Since Ω1(X1(N)F ) ≅ Ω1(X1(N))⊗F , we can define the base change morphism
νF ∶ EndΩ

1(X1(N)) → EndΩ1(X1(N)F ) by νF (T ) = T ⊗ idF . For any α ∈(Z/mZ)×, let σα be its image in G.

Lemma 13. For any prime p ∤ Nm, we have

νF (T (p)X1(N)) = T (p)X1(N)⊗F ⋅ σp ∈ T G (38)

νF (T (p, p)X1(N)) = T (p, p)X1(N)⊗F ⋅ σ
2
p ∈ T G. (39)
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Proof. Let g ∶= (̟p 0
0 1

) and K ∶=K1(N)∩g−1K1(N)g =K1(N)∩K0(p). Note
that detK = Ẑ×. Consider the following correspondence

MK

α

{{ww
ww

ww
ww

w
β

##GG
GG

GG
GG

G

X1(N) T̃ (p)X1(N)
//________ X1(N)

(40)

where α = πK,K1(N) and β = g−1 ○ πK,g−1K1(N)g = πgKg−1,K1(N) ○ g
−1. Then

T (p)X1(N) = β∗ ○ α∗ on Ω1(X1(N)). Similarly T (p)X1(N)⊗F is defined by

MKF

αF

zzuuuuuuuuu
βF

$$IIIIIIIII

X1(N)F T̃ (p)X1(N)⊗F
//________ X1(N)F

(41)

where αF is the natural projection and βF is induced by g−1. Using the iden-
tification MKF

≅ MK ⊗ F and the description (37) of the complex points,
we obtain αF = α ⊗ idF and βF = β ⊗ γ(g−1). Since γ(g) = σp−1 , we get
T (p)X1(N)⊗F = νF (T (p)X1(N)) ○ (σp)∗ and thus (38). The proof of (39) is
similar.

5 A divisibility in the Hecke algebra

In this section we define and study a projection associated to EF using the
Hecke algebra of X1(N)F .
Let ϕ ∶ X1(N) → E be a modular parametrization of the elliptic curve E, and
let ϕF ∶ X1(N)F → EF be the base change of ϕ to F . Consider the map
eF = 1

degϕF
(ϕF )∗(ϕF )∗ on Ω1(X1(N)F ).

Lemma 14. We have e2F = eF and eF ∈ T G.
Proof. The first equality follows from (ϕF )∗(ϕF )∗ = degϕF .
We have eF = νF (e) where e = 1

degϕ
ϕ∗ϕ∗ ∈ EndQΩ1(X1(N)). The image of e

is the Q-vector space generated by ωf = 2iπf(z)dz. Since f is a newform of

level N , the Atkin-Lehner-Li theory implies that e ∈ T(Nm)
X1(N)

. The result now

follows from Lemma 13.

The space Ω = limÐ→K Ω1(MK) ⊗Q has a natural GL2(Af)-action and decom-

poses as a direct sum of irreducible admissible representations Ωπ of GL2(Af).
For anyK we have ΩK = Ω1(MK)⊗Q. Let Π(K) be the set of such π satisfying
ΩKπ ≠ {0}. By [12, p. 393], we have

Ω1(MK)⊗Q = ⊕
π∈Π(K)

ΩKπ (42)
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where each ΩKπ is a simple TK -module. In particular TK is a semisimple
algebra. By Lemma 10, the algebra T is contained in the center of TK1(N)F .
Using [12, Prop 2.11], we deduce that T acts by scalar multiplication on each

Ω
K1(N)F
π , so there exists a morphism θπ ∶ T → Q such that T acts as θπ(T )

on Ω
K1(N)F
π . The multiplicity one and strong multiplicity one theorems [14]

ensure that the characters (θπ)π∈Π(K1(N)F ) are pairwise distinct.

For any χ ∈ Ĝ, let π(f ⊗ χ) be the automorphic representation of GL2(Af)
corresponding to the modular form f ⊗χ. We have π(f ⊗χ) ≅ π(f)⊗(χ○det),
where χ ∶ A×f /Q>0 → C× denotes the adèlization of χ, sending ̟p to χ(p) for
every p ∤m. Since π(f) ∈ Π(K1(N)), it follows that π(f ⊗ χ) ∈ Π(K1(N)F ).
Lemma 15. For any prime p ∤ Nm, we have

θπ(f⊗χ)(T (p)) = apχ(p) (43)

θπ(f⊗χ)(T (p, p)) = χ(p)2. (44)

Proof. We know that θπ(f)(T (p)) = ap and θπ(f)(T (p, p)) = 1. The equalities
(43) and (44) follow formally from the fact that χ ○ det is equal to χ(p) on the

double coset K1(N)F (̟p 0
0 1

)K1(N)F .

Let ef⊗χ ∶ Ω
1(X1(N)F ) ⊗Q → Ω

K1(N)F
π(f⊗χ)

be the projection induced by (42).

The multiplicity one theorems imply that ef⊗χ ∈ T .
Proposition 16. The element eχeF is divisible by ef⊗χ in T G.
Proof. Since eχ, eF and ef⊗χ are commuting projections, it suffices to prove
that the image of eχeF is contained in the image of ef⊗χ. We know that the
image of ϕ∗ ∶ Ω1(E) → Ω1(X1(N)) lies in the kernel of T (p) − ap ∈ TX1(N).
Therefore the image of ϕ∗F lies in the kernel of νF (T (p)) − ap. Using Lemma
13, it follows that in T G we have

T (p)σpeF = apeF . (45)

Applying eχ to both sides and using the identity eχσp = χ(p)eχ yields

T (p)eχeF = apχ(p)eχeF . (46)

The same argument shows that T (p, p)eχeF = χ(p)2eχeF . The proposition now
follows from Lemma 15 and the multiplicity one theorems.

Documenta Mathematica 18 (2013) 395–412



Zagier’s Conjecture for Base Changes 407

6 Proof of the main results

Recall that ϕ ∶ X1(N) → E is a modular parametrization, and that ϕF is the
base change of ϕ to F . We have a commutative diagram

K2(X1(N)F )⊗Q //

(ϕF )∗

��

H1(X1(N)F (C),R)−
(ϕF )∗

��

K2(EF )⊗Q // H1(EF (C),R)−

(47)

where the horizontal maps are the regulator maps on X1(N)F and EF .
The strategy of the proof is to use Beilinson’s theorem on X1(N)F and then
to get back to EF using the Hecke algebra.
Let PE/F = (ϕF )∗PX1(N)/F ⊂ K2(EF ) ⊗ Q. By [15, 1.1.2(iii)], we havePE/F ⊂ H2

M/Z(EF ,Q(2)). We want to prove that RE/F ∶= regE/F (PE/F ) is
a Q-structure satisfying (4). Since PX1(N)/F is stable by the Hecke algebra,
the spaces PE/F and RE/F are stable by G.

For any χ ∈ Ĝ, let Rχ = eχ(RE/F ⊗Q) and Hχ = eχ(HE/F ⊗Q). We want to
compare Rχ and Hχ. We have

ϕ∗FRχ = eχϕ∗F (RE/F ⊗Q)
= eχeF regX1(N)/F (PX1(N)/F ⊗Q). (48)

Similarly, we have
ϕ∗FHχ = eχeF (HX1(N)/F ⊗Q). (49)

We will build on the following theorem of Schappacher and Scholl. Let λχ
be the unique element of (Q ⊗R)× such that for every ψ ∶ Q ↪ C, we have
ψ(λχ) = L′(f ⊗ χψ,0) ∈ C×. By [15, 1.2.4 and 1.2.6], we have

ef⊗χ(regX1(N)/F (PX1(N)/F ⊗Q)) = λχ ⋅ ef⊗χ(HX1(N)/F ⊗Q). (50)

By Prop. 16, the equality (50) remains true when ef⊗χ is replaced by eχeF ,
so that ϕ∗FRχ = λχ ⋅ ϕ∗FHχ by (48) and (49). Since ϕ∗F is injective, we get

Rχ = λχ ⋅Hχ. Put V =H1(EF (C),R)− and Vχ = eχ(V ⊗Q) for any χ ∈ Ĝ.
Lemma 17. The R[G]-module V is free of rank 1.

Proof. By Poincaré duality V ≅ HomQ(Ω1(EF ),R), and Ω1(EF ) ≅ Ω1(E)⊗F
is free of rank 1 over Q[G] by the normal basis theorem.

We will use the following lemma from linear algebra. Recall that if B is an A-
algebra and N is a B-module, an A-structure of N is an A-submodule M ⊂ N
such that M ⊗A B

≅Ð→N .

Lemma 18. Let M be a Q[G]-submodule of V . The following conditions are
equivalent :
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(i) M is a Q-structure of the real vector space V .

(ii) For any χ ∈ Ĝ, the space Mχ ∶= eχ(M ⊗Q) is a Q-structure of the Q⊗R-
module Vχ.

Moreover, if these conditions hold, then M is free of rank 1 over Q[G].
Proof. The implication (i)⇒ (ii) follows from the isomorphisms Mχ ⊗Q

(Q⊗
R) ≅ eχ(M⊗Q⊗R) ≅ Vχ. Let us assume (ii). By Lemma 17, the Q⊗R-module
Vχ is free of rank 1, so that dim

Q
Mχ = 1. Since M ⊗Q ≅ ⊕χ∈ĜMχ, we get

dimQM = d. Moreover M ⊗Q ⊗R generates V ⊗Q over Q ⊗R, so that any
Q-basis of M is actually free over R.
Finally, if (i) holds, then M is isomorphic to the regular representation of G
by Lemma 17, so that M is free of rank 1 over Q[G].
Using Lemma 18 with the Q-structure HE/F , we see that Hχ is a Q-structure

of Vχ. By Lemma 8, the 1-form ηχ is a Q-basis of Hχ.

Proof of Theorem 2. Since Rχ = λχ ⋅ Hχ is a Q-structure of Vχ, Lemma 18
implies thatRE/F is aQ-structure of V . Moreover, the determinant ofRE/F⊗Q

with respect to HE/F ⊗Q is represented by δ ∶= ∏χ∈Ĝ λχ ∈ (Q ⊗R)×. Note

that σ(λχ) = λχσ for any σ ∈ Gal(Q/Q), so that δ lies in the image of R×

in (Q ⊗R)×. Using the natural evaluation map (Q ⊗R)× ιÐ→ C×, we get in

fact δ = ∏χ∈ĜL′(f ⊗ χ,0). Since the natural map R×/Q× → (Q ⊗R)×/Q× is

injective, we conclude that det(RE/F ) = L(d)(EF ,0) ⋅ det(HE/F ) by (8).

Proof of Theorem 1. We know from Theorem 2 that RE/F is a Q-structure of
V . Since RE/F is stable by G, it is free of rank 1 over Q[G] by Lemma 18. Let
γ ∈ PE/F such that RE/F =Q[G] ⋅regE/F (γ). Replacing γ by a suitable integer
multiple, we may assume that γ has a representative γ̃ ∈ F (E)× ⊗ F (E)×. Let
ℓ = β(γ̃). For any χ ∈ Ĝ, we have Rχ = µχ(ℓ)Hχ by Prop. 9, where µχ(ℓ) is
given by (26). It follows that µχ(ℓ)/λχ ∈ Q×. Since λχ and µχ(ℓ) belong to
Q(χ)⊗R, we have in fact µχ(ℓ)/λχ ∈ Q(χ)×. Moreover, the definitions of λχ
and µχ(ℓ) show that

τ(λχ) = λχτ and τ(µχ(ℓ)) = µχτ (ℓ) (τ ∈ Gal(Q(χ)/Q)). (51)

Lemma 19. Let (aχ)χ∈Ĝ be a family of algebraic numbers, with aχ ∈ Q(χ)×,
such that τ(aχ) = aχτ for any χ and any τ ∈ Gal(Q(χ)/Q). Then there exists

a unique a ∈Q[G]× such that for every χ ∈ Ĝ, we have χ(a) = aχ.
Proof. The canonical morphism of Q-algebras Ψ ∶Q[G]→∏χ∈ĜQ(χ) is injec-
tive and its image is contained in the subalgebraW of families (bχ)χ satisfying

τ(bχ) = bχτ for any χ and τ . Writing Ĝ as a disjoint union of Galois orbits, we

have dimQW =#Ĝ = d, so that Ψ is an isomorphism.
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Using Lemma 19 with aχ ∶= µχ(ℓ)/λχ, we get a ∈ Q[G]× such that µχ(ℓ) =
χ(a)λχ for any χ. Since µχ(aℓ) = χ(a)µχ(ℓ), replacing ℓ with a suitable integer
multiple of aℓ results in µχ(ℓ) ∼Q× λχ for any χ. Evaluating everything in C

yields (1).

Proof of Corollary. Let us first recall the Dedekind-Frobenius formula for
group determinants. If a ∶ G→C is an arbitrary function, let A be the matrix(a(gh−1))g,h∈G. Then

det(A) = ∏
χ∈Ĝ

∑
g∈G

χ(g)a(g). (52)

Let ℓ ∈ Z[E(Q)]GF be a divisor satisfying the identities (1) of Theorem 1.

Assume first F is real. Put ℓi ∶= ℓσ−1i for 1 ≤ i ≤ d. Using (52) with a(σ) =
DE(ℓσ) yields

det(DE(ℓσj

i ))1≤i,j≤d ∼Q× ∏
χ∈Ĝ

πL′(E ⊗ χ,0) ∼Q× π−dL(EF ,2) (53)

where the last relation follows from (8) and Prop. 4.

Assume now F is complex. Put ℓi ∶= ℓσ−1i for 1 ≤ i ≤ d/2. We use (52) with
the function a(σ) =DE(ℓσ) + JE(ℓσ). Indexing the lines and columns of A by

σ1, σ1, . . . , σd/2, σd/2, we see that A consists of blocks of the form (x + y x − y

x − y x + y
),

where x = DE(ℓσjσ
−1
i ) and y = JE(ℓσjσ

−1
i ). Elementary operations on the lines

and columns of A thus gives

detA = 2d det(DE(ℓσj

i ))1≤i,j≤d/2 ⋅ det(JE(ℓσj

i ))1≤i,j≤d/2. (54)

On the other hand, we have

∑
σ∈G

χ(σ)a(σ) = ⎧⎪⎪⎨⎪⎪⎩
∑σ∈G χ(σ)DE(ℓσ) if χ is even,

∑σ∈G χ(σ)JE(ℓσ) if χ is odd,
(55)

so that we conclude as in the first case.

Further remarks and a conjecture

The proof of Theorem 2 relies crucially on the hypothesis that F /Q is abelian.
Since the field of constants of a modular curve is always an abelian extension
of Q, it is not possible to cover a non-abelian base change of E by a usual
modular curve. In fact, in the case F /Q is not abelian, we have no example of
a (non CM) elliptic curve E over Q for which we can prove Zagier’s conjecture
for L(EF ,2). However, Theorem 1 suggests the following conjecture for Artin-
twisted L-values. For simplicity, we restrict to the case F is totally real.
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Conjecture 20. Let E be an elliptic curve defined over Q, and let F be a finite

Galois totally real extension of Q. There exists a divisor ℓ ∈ Z[E(Q)]Gal(Q/F )

satisfying Goncharov and Levin’s conditions such that for every Artin repre-
sentation ρ ∶ Gal(F /Q)→ GLd(C), we have

L(d)(E ⊗ ρ,0) ∼Q× π−d det(∑
σ∈G

ρ(σ)DE(ℓσ)). (56)

Conversely, for every ℓ ∈ Z[E(Q)]Gal(Q/F ) satisfying Goncharov and Levin’s
conditions and for every ρ ∶ Gal(F /Q)→ GLd(C), we have

π−d det(∑
σ∈G

ρ(σ)DE(ℓσ)) ∈ L(d)(E ⊗ ρ,0) ⋅Q(trρ), (57)

where Q(trρ) is the field generated by the traces of ρ.

Note that the identities (56) and (57) are compatible with taking direct sums
of Artin representations. In fact, Conjecture 20 is a refinement of Zagier’s
conjecture for L(EF ,2), in the sense that taking the product over irreducibles
ρ with multiplicities dim(ρ) gives the conjecture for EF . Note that the analytic
continuation and the functional equation of L(E ⊗ ρ, s) are only conjectural in
general.

It would be interesting to investigate the rational factors arising in Theorem 1.
As a matter of fact, even for F =Q, we don’t know how to predict the rational
factor appearing in Zagier’s conjecture. The Bloch-Kato conjecture predicts
the exact value of L(EF ,2) (at least up to a unit in the ring of integers of F ),
but the link between both conjectures remains to be worked out. In fact, in
this setting it may be more natural to investigate the equivariant Tamagawa
number conjecture of Burns and Flach [9, Part 2, Conjecture 3], which predicts
the equivariant L-value L(FE,2) ∈ R[G]× up to a unit in an order of Q[G].
Taking norms down to Q, this predicts L(EF ,2) up to sign. The deep work of
Gealy [10] on the Bloch-Kato conjecture for modular forms, which uses Kato’s
Euler system, could be used to tackle this equivariant conjecture. Note also
that if F is abelian and real, then Theorem 1 gives a link between L(FE,2)
and the vector-valued elliptic dilogarithm D⃗E(ℓ) ∶= ∑σ∈GDE(ℓσ)[σ].
Finally, although the divisor ℓ produced by Theorem 1 is inexplicit in general, it
would be interesting to try to bound the number field generated by the support
of ℓ, as well as the heights of the points involved.
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