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and the validity of the 2-adic Main Conjecture in Iwasawa theory
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1 Introduction

One of the most fascinating discoveries in Arithmetic Algebraic Geometry is
the still mysterious relationship between certain algebraic and analytic data
attached to a given arithmetic object. Classical examples include the Conjec-
ture of Birch and Swinnerton-Dyer, which conjecturally relates the order of
vanishing of the L-function attached to an elliptic curve at 1 to the rank of the
algebraically definedMordell-Weil group of the curve, andDirichlets Analytic
Class Number Formula, which gives a precise algebraic interpretation of the
residue of the zeta-function of a number field at 1. This last connection has
been generalised to yield interpretations of special values of zeta-functions at
arbitrary negative integers in terms of algebraic K-theory and motivic coho-
mology. One of the main tool to understand the deep relations between alge-
braic and analytic objects is Iwasawa Theory. In this theory a precise formu-
lation of such a relationship is called the Main Conjecture. We first recall the
formulation of the Main Conjecture in Iwasawa theory in the classical form:

Let p be a prime number, let F be a totally real number field, and let ψ be
a 1-dimensional p-adic Artin character for F with Fψ totally real, where Fψ
denotes the fixed field of the kernel of ψ. Let F∞ denote the cyclotomic Zp-
extension of F . We recall Greenberg’s terminology about the different types
of the characters ψ: ψ is of type S, if Fψ ∩ F∞ = F , and ψ is of type W, if
Fψ ⊆ F∞. Let Oψ denote the ring obtained by adjoining all ψ-values to the
ring Zp. Let Fψ,∞ be the cyclotomic Zp-extension of Fψ with Galois group Γ
over Fψ . Throughout we fix a topological generator γ of Γ. We denote by S a
finite set of primes of F containing the set Sp of primes above p and the set of
the infinite primes, and by Sf the set of finite primes in S. Deligne and Ribet
[8] and independently Cassou-Noguès [4] showed the existence of a p-adic L-
function for the character ψ, which is continuous for s ∈ Zp \ {1}, and even at
s = 1, if ψ is not trivial. This satisfies the following interpolation property for
any integer n ≥ 1:

Lp(1 − n, ψ) = L(1− n, ψω−n)
∏

p∈Sp

(1− ψω−n(p)Nm(p)1−n).

Here L(1−n, ψω−n) is the usual Artin L-function with respect to the character
ψω−n, where ω : F (µ2p) → Z×

p is the Teichmüller character. Let Hψ ∈ Oψ [T ]
be defined as ψ(γ)(T + 1) − 1 if ψ is of type W, and 1 otherwise. Deligne and
Ribet showed that there exists a power series Gψ,S(T ) ∈ Oψ[[T ]] so that

LSp (1− s, ψ) =
Gψ,S(κ(γ)

s − 1)

Hψ(κ(γ)s − 1)
, (1.1)
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where LSp (1 − s, ψ) denotes the p-adic L-function with Euler factors removed
at the primes in S, and κ is the restriction of the cyclotomic character to Γ. By
the Weierstrass Preparation Theorem (cf. §7.1 in [16]) we have the following
decomposition:

Gψ,S(T ) = πµ(Gψ,S)g∗ψ,S(T )uψ,S(T ),

where g∗ψ,S(T ) is a distinguished polynomial in Oψ [T ], and uψ,S(T ) is a unit
power series in Oψ[[T ]]. This power series represents the analytic object in the
Main Conjecture.

For the cyclotomic Zp-extension Fψ,∞ of Fψ letMS
ψ,∞ be the maximal abelian

pro-p-extension of Fψ,∞, which is unramified outside the primes in S, with
Galois group XS∞ := Gal(MS

ψ,∞/Fψ,∞). The pro-p-groupXS∞ is equipped with
a (torsion) Oψ [[Γ]]-module structure, as well as a Gal(Fψ/F )-action given by
inner automorphisms. Serre showed that the completed group ring Oψ [[Γ]]
can be identified with the one variable power series Oψ[[T ]], by mapping γ −
1 to T . By the Structure Theorem of Iwasawa theory (cf. §13.2 in [46]) for
Oψ[[T ]]-modules, the ψ-eigenspace

XS,ψ∞ :=
{

x ∈ XS∞ ⊗Zp Oψ |σ(x) = ψ(σ)x for all σ ∈ Gal(Fψ/F )
}

of XS∞ is pseudo-isomorphic, as an Oψ[[T ]]-module, to a unique Oψ[[T ]]-
module of the form

m
⊕

i=1

Oψ[[T ]]/pi
ni

for m ≥ 1 and ni ≥ 1. Here pi is the ideal generated by either a fixed uni-
formizer π ∈ Oψ or a monic irreducible polynomial inOψ [T ]. We call the ideal
∏m
i=1 pi

ni the characteristic ideal. By the Weierstrass Preparation Theorem (cf.
§7.1 in [16]) we can choose a unique generator for the characteristic ideal of
the following form

Fψ,S(T ) = πµ(Fψ,S)f∗
ψ,S(T ),

where f∗
ψ,S(T ) is a distinguished polynomial in Oψ[T ]. The polynomial

Fψ,S(T ) is called the characteristic polynomial of XS,ψ∞ . The classical Main
Conjecture in Iwasawa theory is formulated as follows: If the character ψ is of
type S, then

f∗
ψ,S(T ) = g∗ψ,S(T ).

This was proved by Wiles in [47] for any totally real number field F and an
odd prime p. He also proved the conjecture for the prime 2 and the character
ψ provided Fψ is an abelian extension of Q. He also showed the equality of
the µ-invariants µ(Fψ,S) = µ(Gψ,S) for odd primes p and characters ψ. For
odd primes p, both invariants µ(Fψ,S) and µ(Gψ,S) are known to be zero in
the case Fψ/Q is abelian (cf. [10]), and are conjectured to be zero in general.

The Oψ [[T ]]-torsion module XS,ψ∞ is of projective dimension at most one
and has a principal Fitting ideal generated by the characteristic polynomial
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Fψ,S(T ) (see for instance Lemma 2.4 in [32]). Therefore another formulation
of the Main Conjecture for odd primes reads as follows: If the character ψ is
of type S, then

FittOψ[[T ]](X
S,ψ
∞ ) = (Gψ,S(T )).

To obtain a similar formulation of the Main Conjecture in terms of ideals for

the prime 2, we replace X∞ by Xf∞, where Xf∞ := X
Sf
∞ is the Galois group of

the abelian pro-p-extension of Fψ,∞ unramified outside the primes in Sf , over
Fψ,∞. For an odd prime p the twoOψ[[T ]]-modules are the same, since infinite
primes are unramified in p-extensions for p odd. However, for p = 2 the two
modules are related by Lemma 5.9, which shows that they may differ in their
µ-invariants. If we assume that Xf∞ has trivial µ-invariant, then the analogous
formulation of the Main Conjecture in terms of ideals for the prime 2 reads as
follows:

FittOψ[[T ]](X
f,ψ
∞ ) = (G∗

ψ,S(T )), (1.2)

where G∗
ψ,S(T ) = g∗ψ,S(T )uψ,S(T ). We note that for odd primes p this version

is the same as before provided the µ-invariant of Xf∞ vanishes.

As we see, for any characterψ of an abelian extensionE/F of totally real num-
ber fields, the Main Conjecture gives an equality of ideals over the power se-
ries ring Oψ [[T ]] in the form (1.2) under the assumption that the µ-invariant is
vanishing. If we denote byG the Galois group of E/F , then theG-equivariant
formulation over the Iwasawa algebra Zp[G][[T ]] is the so-called Equivariant
Main Conjecture in Iwasawa theory. Ritter and Weiss formulated such a con-
jecture in [35] for any odd prime p, and proved it under the assumption of
the vanishing of a certain Iwasawa µ-invariant. To explain this, we need the
following set-up:

Let E/F be an abelian extension of totally real number fields with Galois
group G, and let E∞ be the cyclotomic Zp-extension of E. Let S be a finite
set of primes of F containing the primes which ramify in E∞, and infinite
primes, and let Sf be the set of finite primes of S as before. Let MS

∞ denote
the maximal abelian pro-p-extension of E∞, unramified outside the primes in
S, and let X∞ := XS∞ = Gal(MS

∞/E∞). We denote by G∞ the Galois group
of E∞/F , by H the Galois group of E∞/F∞, and by A the completed group
ring Zp[[G∞]]. In this article the assumption µ = 0 refers to the following
assumption:

µ = 0 : The µ-invariant of Xf∞ := X
Sf
∞ is zero, i.e. the Zp-module

Xf∞ is finitely generated.
(1.3)

We note that Xf∞ maps by Galois restriction to the Galois group

Gal(M
Sf
ψ,∞/Fψ,∞), where M

Sf
ψ,∞ is the maximal abelian pro-p-extension of

Fψ,∞ unramified outside the primes in Sf , with a finite cokernel for any

character ψ of G. Here the cokernel is Gal(E∞ ∩ M
Sf
ψ,∞/Fψ,∞) which is a
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quotient of a subgroup of H , and whence finite. As a result the assumption

µ = 0 implies that the µ-invariant of Gal(M
Sf
ψ,∞/Fψ,∞) is zero, and therefore

the µ-invariant of Xf,ψ∞ vanishes for any (even) character ψ of G.

The pro-p group X∞ has a (torsion) A-module structure, whose projective di-
mension is not necessarily at most one. However to formulate an Equivariant
Main Conjecture, similar to the classical Main Conjecture, one needs a finitely
generated A-torsion module of projective dimension at most one. Let d∞ be a
non-zero divisor of the augmentation ideal ∆G∞ of A, let c∞ be an invertible
element of the total ring of fraction of A so that d∞ = c∞((γ − 1)e + (1 − e)),
where e is the idempotent attached to the trivial character of H . We denote
by L the fixed field of E/F under the action of the p-Sylow subgroup of G,
by G the Galois group of the maximal algebraic extension ΩSL of L unramified
outside the primes in S, over F , and by H the Galois group of ΩSL/E∞. There
is a commutative diagram of A-modules

0 0
↓ ↓
A = A

↓ Ψ ↓ ψ
0 → X∞ → Y∞ → ∆G∞ → 0

|| ↓ ↓
0 → X∞ → Z∞ → z∞ → 0

↓ ↓
0 0,

where ψ maps 1 to d∞, Ψ maps 1 to a pre-image y∞ of d∞, and Y∞ =
H0(H,∆G). Here ∆G denotes the augmentation ideal of Zp[[G]]. We will see
that this definition of Y∞ is the same as the definition of Ritter-Weiss in [35].
The A-torsion module Z∞ in the diagram above, whose projective dimension
is at most one, shows up as the algebraic object in the Equivariant Main Con-
jecture of Ritter-Weiss. We note that the construction of Z∞ depends on the
choice of d∞. Before stating the algebraic object we remark that there exists a
subgroup Γ ≤ G∞, topologically generated by γ, so that G∞ = H × Γ for the
abelian group G∞. The analytic object is defined as follows:

GS :=
∑

ψ∈Ĥ

Gψ,S(γ − 1) · eψ ∈
1

|H |
O[H ][[Γ]],

where eψ is the idempotent attached to the character ψ ofH , i.e.

eψ :=
1

| H |

∑

σ∈G

ψ(σ)σ−1.

One version of the Equivariant Main Conjecture of Ritter-Weiss [35] for odd
primes is as follows (cf. [28], §2, (CPE2)):

FittA(Z∞) = (c∞GS),
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which was verified under the assumption of the vanishing of the µ-invariant
of X∞, i.e. assuming that X∞ is a finitely generated Zp-module. It is worth
mentioning that they have generalized and proved their Equivariant Main
Conjecture in the non-commutative case, still assuming the vanishing of the
µ-invariant of a certain Iwasawa module (see [36]). In [15], Greither and
Popescu have recently formulated and proved an Equivariant Main Conjec-
ture in Iwasawa theory in the abelian case in terms of the Tate module of
a certain Iwasawa-theoretic abstract 1-motive again under the assumptions
µ = 0 and p odd. More recently, Nickel [29] showed that this formulation is
equivalent to the formulation of Ritter-Weiss.

We now describe our Equivariant Main Conjecture for an arbitrary prime p.
For an abelian extension E/F , by applying the algebraic construction of the
Equivariant Main Conjecture of Ritter-Weiss to the set Sf of finite primes in
S, we construct the A-torsion module Zf∞, which is of projective dimension at
most one. We show that it satisfies the following exact sequence:

0→ Zp → (A/d∞A)# → α(Zf∞)→ α(Xf∞)→ 0,

in which
pdA((A/d∞A)#) ≤ 1 and pdA(α(Z

f
∞)) ≤ 1.

Here α is the adjoint functor in Iwasawa theory with the contravariant action
andM#, for any A-moduleM , denotes the same underlying module but with
g acting as g−1 for any g ∈ G∞. The Equivariant Main Conjecture is then
formulated as follows (cf. Conjecture 4.1):

FittA(Z
f
∞) = (c∞G

∗
S),

where

G∗
S :=

∑

ψ∈Ĥ

G∗
ψ,S(γ − 1) · eψ ∈

1

|H |
O[H ][[Γ]].

Here we recall thatG∗
ψ,S(T ) = g∗ψ,S(T )uψ,S(T ). In Section 4, we prove that this

conjecture follows from the classical Main Conjecture under the assumption
µ = 0 by taking advantage of the idea of determinantal ideals used byGreither
and Popescu [15].

In the last sectionwe show that the Coates-Sinnott Conjecture follows from the
Equivariant Main Conjecture assuming µ = 0 (cf. Theorem 5.10). After some
fundamental work of Coates-Sinnott in [6] and more recent results by Ritter-
Weiss, Nguyen Quang Do, Burns-Greither, Greither-Popescu et al. the Coates-
Sinnott Conjecture is completely known up to powers of 2, assuming µ = 0.
However, the 2-primary information was neglected more or less completely
due to various technical problems. For example, there was no formulation of
an EquivariantMain Conjecture in Iwasawa theory for the prime 2 at the time.
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The Coates-Sinnott Conjecture is a generalization of the classical Stickelberger
Theorem, which provides elements annihilating the class group of a cyclo-
tomic field, using special values of analytic functions. To make it more precise,
let E/F be an abelian extension with Galois group G, and let S be a finite set
of primes in F containing the primes ramified in E and the infinite primes.
Let

ΘSE/F (s) :=
∑

χ∈Ĝ

LSE/F (s, χ
−1) · eχ ∈ C[G]

be the S-incomplete equivariant L-function, where eχ is the idempotent at-
tached to any character χ of G. Deligne and Ribet [8] and independently
Cassou-Noguès [4] proved that

AnnZ[G](H
0(E,Q/Z(n))) ·ΘSE/F (1 − n) ⊂ Z[G]

for any integer n ≥ 1. Stickelberger’s Theorem shows that the following ana-
lytic object is in the annihilator ideal of the class group Cl(OE) of the field E
in the case F = Q:

AnnZ[G](H
0(E,Q/Z(1))) ·ΘSE/F (0) ⊆ AnnZ[G](Cl(OE)).

This setup has been generalized in two directions: First of all one looks
at an arbitrary relative abelian extension E/F of number fields. Here the
analogue of Stickelberger’s theorem (Brumer’s Conjecture) is still not com-
pletely known. In a different direction one replaces the class group by al-
gebraic K-groups or motivic cohomology groups and studies annihilators of
these groups as Galois modules for relative abelian extensions. In [6], Coates
and Sinnott formulated the relevant conjecture in terms of higher Quillen K-
groups as

AnnZ[G](H
0(E,Q/Z(n))) ·ΘSE/F (1− n) ⊆ AnnZ[G](K2n−2(OE))

for any integer n ≥ 2. As a result of the recent work of Voevodsky in [45] the
relation between algebraicK-theory, étale cohomology for all prime numbers
and motivic cohomology is known. This yields the motivic formulation of the
Coates-Sinnott Conjecture, which implies the K-theoretic version. Moreover,
it enables us to study each p-primary part of the conjecture separately for any
prime number p as follows:

AnnZp[G](H
0(E,Qp/Zp(n))) ·Θ

S
E/F (1− n) ⊆ AnnZp[G](H

2
ét(O

′
E ,Zp(n)))

for any integer n ≥ 2, where H2
ét(O

′
E ,Zp(n)) = lim

←−m
H2
ét(O

′
E , µ

⊗n
pm ) and

H∗
ét(O

′
E , µ

⊗n
pm ) refers to the étale cohomology of the scheme Spec(OE [1/p])

with values in the étale sheaf µ⊗n
pm . In the last section we complete the proof of

the Coates-Sinnott Conjecture under the assumption µ = 0 by proving it for
the prime 2.
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2 Algebraic Construction

Let E/F be a finite abelian extension of totally real number fields with Galois
group G, and let p be an arbitrary prime. Let E∞ (resp. F∞) be the cyclotomic
Zp-extension of E (resp. F ). We denote the multiplicative group Gal(E∞/E)
(resp. Gal(F∞/F )) by ΓE (resp. ΓF ). Let H denote the Galois group of the
finite abelian extension E∞/F∞. We denote by G∞ := Gal(E∞/F ) the Galois
group of the abelian extension E∞/F . We let S denote a finite set of primes of
F which ramify in E∞, and the infinite primes. In particular S contains the
set Sp of the primes above p. The set of finite primes in S is also denoted by
Sf . We use the same notations for the set of primes above the primes in S and
Sf , respectively, in any intermediate field of E∞/F . Since ΓF is topologically
generated by one element, the exact sequence

0→ H → G∞ ⇆ ΓF → 0 (2.1)

splits. We denote by Γ ≤ G∞ the image of ΓF , so that G∞ ≃ H × Γ, and
by Λ the completed group ring Zp[[Γ]]. Let E

′ be the fixed field of E∞ under
the action of the closed subgroup Γ. Then E′ ∩ F∞ = F , E∞ = E′ · F∞,
Gal(E′/F ) ≃ H and E∞/E

′ is also a cyclotomic Zp-extension.

LetMS
∞ andM

Sf
∞ be the maximal abelian pro-p-extensions of E∞ unramified

outside the primes in S and Sf , respectively. We recall that X∞ = XS∞ and

Xf∞ := X
Sf
∞ denote the Galois group of the extensionsMS

∞/E∞ andM
Sf
∞ /E∞,

respectively. SinceE is totally real, the Λ-module X∞ is a torsion module with
no non-trivial finite submodule by Propositions 10.3.22 and 10.2.25 in [31].
The Λ-module Xf∞, which is a quotient of X∞, is also torsion and has no non-
trivial finite submodule (cf. [38], §6.4). Finally, we set A := Zp[[G∞]] and we
freely use the identification

A ≃ Zp[H ][[T ]], (2.2)

which is given by mapping the topological generator γ of Γ to 1 + T .

Remark 2.1. For an odd prime p, infinite primes of F are unramified in a pro-p-

extension. HenceMS
∞ andM

Sf
∞ coincide and therefore, X∞ = Xf∞ for odd primes.
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The following diagram illustrates the situation:

M
Sf
∞Xf

∞

rr
rr

rr

E∞

ΓE Γ

�
�
�
�
�
�
�
�
�
�

H

G∞

F∞

ΓF

�
�
�
�
�
�
�
�
�
�

E

G

E′

H

F

We recall that the Main Conjecture in Iwasawa theory for a character ψ of
G can be written in the form (1.2), assuming µ = 0. Here the Fitting ideal
of the (finitely generated) Oψ[[T ]]-torsion module Xf,ψ is principal, because
it has projective dimension at most one, and is generated by the p-adic L-
function associated to ψ. Hence to formulate an Equivariant Main Conjecture
we construct an appropriate (finitely generated) A-torsion module of projec-
tive dimension at most one. The resulting Fitting ideal is then principal, and
conjecturally generated by an equivariant p-adic L-function. This was done
by Ritter-Weiss for odd primes in [35]. The strategy of this part is as follows:
Since the A-torsion module Xf∞ is not necessarily of projective dimension at
most one, we first construct an A-module Yf∞ of projective dimension at most
one. Since this module is not necessarily A-torsion, we pass to a quotient
Zf∞ of Yf∞, which is then shown to be a (finitely generated) A-torsion module
of projective dimension at most one, whose principal Fitting ideal is conjec-
turally generated by an equivariant L-function.

Let P be the p-Sylow subgroup of G and let L be the fixed field of E under

the action of P with Galois groupQ over F . Let Ω
Sf
L be the maximal algebraic

pro-p-extension of L, which is unramified outside the primes in Sf . We denote

byH the Galois group of Ω
Sf
L over E∞, and by G the Galois group of Ω

Sf
L over

F . The finitely generated group G has a presentation of the form G ≃ F/W ,
where F is an appropriate free profinite group of rank d and W is a relation
subgroup of F of rank r. For a certain relation subgroupR of F we then have
an isomorphism G∞ ≃ F/R. The following diagram illustrates the situation:

Ω
Sf
LH

ss
ss

s

G

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

E∞ΓE

ss
ss

s

G∞















E
P

L
Q

F
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We apply Proposition 5.6.7 in [31] (see also Lemma 4.3 in [17]) to the profinite
groups in the commutative diagram

1 1
↓ ↓
W = W
↓ ↓

1 → R → F → G∞ → 1
↓ ↓ ||

1 → H → G → G∞ → 1
↓ ↓
1 1,

and obtain a commutative diagram:

0 0
↓ ↓

0 → H2(H,Zp) → H0(H,W
ab) → Rab(p) → Xf∞ → 0

|| || ↓ ↓
0 → H2(H,Zp) → H0(H,W

ab) → Ad → Yf∞ → 0
↓ ↓

∆G∞ = ∆G∞

↓ ↓
0 0,

(2.3)
where ∆G∞ denotes the augmentation ideal of A. Here Yf∞ := H0(H,∆G)
and∆G and∆G∞ denote the augmentation ideals of G and G∞, respectively.

Remark 2.2. The same construction leads to a similar diagram for an arbitrary

intermediate field of Ω
Sf
L /L.

Since the cyclotomic Zp-extension E∞/E satisfies the weak Leopoldt Conjec-
ture by Proposition 10.3.25 in [31], the group H2(H,Zp) in diagram (2.3) van-
ishes (cf. Proposition 10.3.22 in [31]). Moreover we have the following propo-
sition:

Proposition 2.3. The A-moduleH0(H,W
ab) is projective.

Proof. Since |Q| is prime to p, we have the equality of cohomological dimen-
sions

cdp(G) = cdp(Gal(Ω
Sf
L /L)).

The p-cohomological dimension of the pro-p group Gal(Ω
Sf
L /L) is at most 2

by Proposition 8.3.17 in [31] for odd primes p (note that infinite primes are
unramified in any p-extension for p odd), and by Theorem 1 in [38] for p = 2,
i.e.

cdp(G) ≤ 2

for any prime p. Now Proposition 5.6.7 in [31] completes the proof.
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An Equivariant Main Conjecture 759

Let χ be a Cp-valued character of the group Q, let

eχ :=
1

| Q |

∑

σ∈Q

χ(σ)σ−1

be the idempotent ofQ attached to the character χ, and let Aχ := Oχ[[G∞(p)]],
where Oχ is the ring obtained by adjoining all character values of χ to Zp.
Since G∞(p) ≃ P × Γ is a pro-p group, Aχ is a local ring and therefore,
eχH0(H,W

ab) is a free Aχ-module of rank rχ:

eχH0(H,W
ab) ≃ Arχχ . (2.4)

Now by applying eχ to the exact sequence in the second row of diagram (2.3)
we obtain:

0→ Arχχ → Adχ → eχY
f
∞ → 0.

From the last column of diagram (2.3) we have

0→ eχX
f
∞ → eχY

f
∞ → Aχ → eχZp → 0.

This implies that eχY
f
∞ has rank one and as a result rχ = d−1 for any character

χ. Now by taking the direct sum over all characters of Q in equality (2.4) we
obtain:

H0(H,W
ab) ≃ Ar

for r = d− 1. Therefore, diagram (2.3) can be rewritten as

0 0
↓ ↓

0 → Ar
f
→ Rab(p) → Xf∞ → 0

|| ↓ ↓

0 → Ar
f
→ Ar+1 → Yf∞ → 0

↓ ↓
∆G∞ = ∆G∞

↓ ↓
0 0.

(2.5)

So far we have constructed the module Yf∞, which fits into the exact sequence

0→ Xf∞ → Y
f
∞ → ∆G∞ → 0. (2.6)

The second row in diagram (2.5) implies that the A-module Yf∞ is of projective
dimension at most one. To replace it by a torsion A-module we now take a
quotient of Yf∞ by a certain submodule as follows:

Let d∞ ∈ ∆G∞ be a non-zero divisor in the augmentation ideal of A and let
c∞ be an invertible element in Q(A) such that

d∞ = c∞((γ − 1)e+ (1− e)), (2.7)
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where γ is the fixed (topological) generator of Γ ≤ G∞ and e = 1
|H|

∑

h∈H h is

the idempotent of Qp[H ] attached to the trivial character of H . Here we note
that γ−1 and 1−e generate∆G∞⊗Qp, and that γ−1 and 1−e can be written
in the form (2.7) as follows:

γ − 1 = (e+ (γ − 1)(1− e))((γ − 1)e+ (1− e)),

1− e = (1− e)((γ − 1)e+ (1 − e)).

Let y∞ be a pre-image of d∞ in Yf∞ in diagram (2.5). We have the following
diagram:

0 0
↓ ↓
A = A

↓ Φ ↓ φ
0 → Xf∞ → Yf∞ → ∆G∞ → 0

|| ↓ ↓
0 → Xf∞ → Zf∞ → zf∞ → 0

↓ ↓
0 0,

(2.8)

where Φ and φ are defined by mapping 1 ∈ A to y∞ and to d∞, respectively,
and Zf∞ and zf∞ are the quotients of Yf∞ and ∆G∞ by the images of Φ and
φ, respectively. We note that the vertical maps are injective since d∞ ∈ A is a
non-zero divisor. By a diagram chase in the diagram

A = A

↓ φ ↓ φ
0 → ∆G∞ → A → Zp → 0,

we obtain:

Lemma 2.4. The sequence

0→ zf∞ → A/d∞A→ Zp → 0 (2.9)

is exact, where the middle term is of projective dimension one and

FittA(A/d∞A) = (d∞).

By using the middle column of diagram (2.8) and the first row of diagram (2.5)
we also obtain the commutative diagram

0 0 0
↓ ↓ ↓

0 → Ar → Ar+1 → A → 0
↓ ↓ Ψ ↓ φ

0 → Rab(p) → Ar+1 → ∆G∞ → 0
↓ ↓ ↓

0 → Xf∞ → Zf∞ → zf∞ → 0
↓ ↓ ↓
0 0 0,

(2.10)
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which implies the following proposition:

Proposition 2.5. Zf∞ is a finitely generated A-torsion module of projective dimen-
sion at most one:

pdA(Z
f
∞) ≤ 1.

3 Analytic Construction

Again let E/F be an abelian extension of totally real fields, let S be a finite set
of primes in F containing the primes above p, the primes ramified inE and the
infinite primes, and let Sf denote the set of finite primes in S. As before, we
denote by E∞ and F∞ the cyclotomic Zp-extensions of E and F , respectively,
by H the Galois group of E∞/F∞, and by G∞ ≃ H × Γ the Galois group of
E∞/F . We define equivariant versions of Gψ,S and Hψ as follows (cf. [34],
Proposition 5.4): For a character ψ of G∞, let Gψ,S(T ), Hψ(T ) ∈ Oψ [[T ]] be the
power series defined in (1.1). Let

GS :=
∑

ψ∈Ĥ

Gψ,S(γ − 1) · eψ ∈
1

|H |
O[H ][[Γ]]

HS :=
∑

ψ∈Ĥ

Hψ(γ − 1) · eψ ∈
1

|H |
O[H ][[Γ]]

(3.1)

be the equivariant versions of Gψ,S and Hψ . For any character χ of G∞, they
satisfy the following:

χ(GS) = Gχ,S(0) , χ(HS) = Hχ(0).

We recall that for any character ψ of G one has

Gψ,S(T ) = πµ(Gψ,S) · g∗ψ,S(T ) · uψ,S(T )

by the Weierstrass Preparation Theorem, where π is a fixed uniformizer in
Oψ, g

∗
ψ,S(T ) ∈ Oψ [T ] is a distinguished polynomial, and uψ,S(T ) ∈ Oψ[[T ]] is

a unit. The modified equivariant L-function G∗
S is now defined as follows:

G∗
S :=

∑

ψ∈Ĥ

G∗
ψ,S(γ − 1) · eψ ∈

1

|H |
O[H ][[Γ]], (3.2)

where G∗
ψ,S(T ) = g∗ψ,S(T )uψ,S(T ). The following lemma relates GS and G∗

S ,
assuming µ = 0 (cf. (1.3)):

Lemma 3.1. Under the assumption µ = 0 we have the following equalities:

1. GS = G∗
S for any odd prime p.
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2. GS = 2r1(F )G∗
S for p = 2.

Proof. Part 1 follows from the result of Wiles [47] that µ(Gψ,S) is the same as
the Iwasawa µ-invariant of Xf,ψ∞ for all odd primes p. Part 2 follows from the
fact that πµ(Gψ,S) = 2r1(F ) under the assumption µ = 0, where π ∈ Oψ is a
uniformizer, for any character ψ of G (see [12], pages 82 and 87).

We note that Lemma 3.1 holds unconditionally for abelian extensions E of Q,
since in this case µ = 0 (cf. [10]).

To prove the next lemma we briefly review the definition of a p-adic pseudo-
measure on a certain Galois group and its relation to the p-adic L-function.
For more properties one can consult [39]. For a commutative profinite group
G, λS ∈ Q(Zp[[G]]) is called a pseudo-measure on G if (g−1)λS is a measure, i.e.
(g − 1)λS ∈ Zp[[G]], for any g ∈ G, where Q(Zp[[G]]) denotes the quotient ring
of Zp[[G]]. Let X denote the Galois group of the maximal abelian extension
of F unramified outside the primes in Sf , over F . By a theorem of Deligne
and Ribet there is a unique pseudo-measure on X denoted by λS ∈ Q(Zp[[X]]),
which satisfies the following relation for any finite order character χ of X:

Lp,S(1 − s, χ) =< χκs, λS > .

For the definition of this inner product see [39]. Equivalently, if we let ε : X→
Zp be the locally constant function defined by ε(g) = 1 if g has image 1 in
H = Gal(E∞/F∞), and zero otherwise, then

ζSp (εh, 1− n) =< εhρ
n, λS > .

Here ρ is the cyclotomic character, εh is the locally constant function satisfying
εh(x) = ε(hx) and ζSp (εh, s) is the S-incomplete p-adic partial zeta function
associated to εh. The image of λS under the natural surjection π : X ։ G∞ is
a p-adic pseudo-measure on G∞ which is denoted by θS ∈ Q(A). So if γ̂ ∈ X

denotes a pre-image of γ ∈ G∞ under the surjection above, then

ZS := π((γ̂ − 1)λS) ∈ A.

In fact θS = (γ− 1)−1ZS ∈ Q(A). With notations as above we have the follow-
ing lemma:

Lemma 3.2. Let d∞ be a non-zero divisor in the augmentation ideal ∆G∞, and let
c∞ be an invertible element in Q(A) so that d∞ = c∞((γ − 1)e+ (1− e)) ∈ ∆G∞,
where e is the idempotent associated to the trivial character of H . Then

c∞GS = d∞θS ∈ A

Proof. A calculation in Proposition 12 in [35], which works for any character χ
ofG∞ satisfying χ(γ) = 1 and for any prime p,provides the following equality:

Gχ,S(T )

T<χ,1>
=

∑

h∈H

χ(h)
ZS(h, T )

T

Documenta Mathematica 18 (2013) 749–783



An Equivariant Main Conjecture 763

Here ZS(h, T ) is given by the relation ZS =
∑

h∈H ZS(h, γ − 1)h ∈ A. As a
result,

GS/HS =
∑

χ∈Ĥ

Gχ,S(T )

T<χ,1>
eχ = θS ,

for any prime p. SinceHS = (γ−1)e+(1−e), we obtain c∞GS = d∞θS . Hence,
for the p-adic pseudo-measure θS on G∞, we have c∞GS = d∞θS ∈ A.

Let Ẽ = E(ζ2p) be the field obtained by adjoining a primitive 2p-th root of

unity ζ2p to E, and let Ẽ∞ := E∞(ζ2p) = E(µp∞) be the Zp-cyclotomic exten-

sion of Ẽ, where µp∞ is the group of all p-power roots of unity. We denote by

G̃∞ the Galois group of Ẽ∞/F . Since Ẽ∞ contains all p-power roots of unity,
we have the cyclotomic character

ρ : G̃∞ → Z∗
p = Aut(µp∞)

of G̃∞. We extend the definitions of a Tate twisted module and an inverse
module to the following:

• Let tn be the unique continuous isomorphism of O-algebras

tn : O[[G̃∞]]→ O[[G̃∞]], (3.3)

which satisfies tn(g) = ρ(g)n · g for all g ∈ G̃∞ and n ∈ Z. For aO[[G̃∞]]-
module M let the Tate twisted module M(n) be the same underlying

group M with a new O[[G̃∞]]-action given by σ ∗n m := tn(σ)m for

σ ∈ O[[G̃∞]] andm ∈M . For even n, we note that it is enough to replace

Ẽ∞ by its maximal real subfield Ẽ+
∞ to have the isomorphisms tn.

• Let ι be the unique continuous isomorphism of O-algebras

ι : O[[G∞]]→ O[[G∞]], (3.4)

which satisfies ι(g) = g−1 for all g ∈ G∞. For a O[[G∞]]-module M , let
the inverse module M# be the same underlying group M with a new
O[[G∞]]-action given by σ ∗m := ι(σ)m for σ ∈ O[[G∞]] and m ∈ M .
In the following we mean by the ideal generated by m#, for any m ∈
O[[G∞]], the inverse ideal (m)# of (m).

Lemma 3.3. Assume that E is the maximal real subfield of Ẽ = E(ζ2p) where ζ2p
is a primitive 2p-th root of unity. For all even n we have:

(ι ◦ tn)(GS) =
∑

ψ∈Ĥ

Gψ−1ωn,S(u
n(γ)−1 − 1) · eψ,

(ι ◦ tn)(HS) =
∑

ψ∈Ĥ

Hψ−1ωn,S(u
n(γ)−1 − 1) · eψ,

where u = κ(γ).
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Proof. Under the assumptions of the lemma we first note that E∞ is the maxi-
mal real subfield of the fieldE∞(ζ2p)which contains all p-power roots of unity.
So the actions of tn on GS and HS are defined for all even n. Now it suffices
to observe that (ι ◦ tn)(γ − 1) = unγ−1 − 1 and (ι ◦ tn)(eψ) = eψ−1ωn .

This lemma yields the following equality:

(π ◦ ι ◦ tn)GS/HS =
∑

χ∈Ĝ

Gχ−1ωn,S(u
n − 1)

Hχ−1ωn,S(un − 1)
· eχ,

where π : A → Zp[G] is the projection mapping γ − 1 to zero, and u = κ(γ).
Therefore, we obtain:

Corollary 3.4. If we assume that E is the maximal real subfield of Ẽ = E(ζ2p)
where ζ2p is a primitive 2p-th root of unity, and that n is even, then

(π ◦ ι ◦ tn)GS/HS = ΘSE/F (1− n)

Remark 3.5. We note that in the non-dyadic L-functions we have defined, the set
S can be replaced by Sf , since infinite primes have no influence on the definitions.

4 An Equivariant Main Conjecture in Iwasawa Theory

We recall that for the abelian extension E/F of totally real number fields, E∞

(resp. F∞) is the cyclotomic Zp-extension of E (resp. F ), H = Gal(E∞/F∞),
and G∞ = Gal(E∞/F ), which is abelian and hence of the form G∞ = H × Γ
for Γ ≃ Zp. We also recall that d∞ = c∞((γ − 1)e + (1 − e)) is a non-zero
divisor in the augmentation ideal of A = Zp[[G∞]] so that A/d∞A is a finitely
generated Zp-free module, e.g. d∞ = γ − 1.

Conjecture 4.1. (The Equivariant Main Conjecture). With notations as above,
we have the following equality of ideals in A:

FittA(Z
f
∞) = (c∞G

∗
S)

Remark 4.2. For any odd prime p, the formulation of the Equivariant Main
Conjecture 4.1 is equivalent to the formulation of Ritter-Weiss in [35] (cf. [28],
§2, (CPE2)). We note that Ritter-Weiss use the translation functor to define Y∞,
which equals to Y∞ = ∆G

∆(G,H)∆G . Here ∆(G,H) = ker(Zp[[G]] ։ Zp[[G∞]]),

which is the same as (∆H)Zp[[G]] (cf. for example page 275 in [31]). As a result,
Y∞ = ∆G

∆H∆G = H0(H,∆G), which is the same as the definition used in this article.

Under the assumption µ = 0 we prove that Conjecture 4.1 follows from the
classical Main Conjecture in Iwasawa theory [47]. For some technical reasons,
we need to apply the contravariant functors Ei(−) := ExtiA(−,A) to Z

f
∞, for

i = 0, 1. We will see that E1(Zf∞) is a finitely generated A-torsion module
of projective dimension at most one, whose Fitting ideal is generated by the
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modified equivariantL-function. First, we recall the definition and some basic
properties of Fitting ideals (see [30] for more properties).

For a commutative ringRwith identity, the Fitting idealFittR(M) of a finitely
presented R-moduleM is defined as follows: Given a presentation ofM as

Ra
h
→ Rb →M → 0,

let A be the matrix associated to the map h. The (initial) Fitting ideal ofM is
defined to be the ideal of R generated by all b-minors of A if a ≥ b, and (0)
otherwise. Here are some properties:

1. FittR(M) is a finitely generated ideal of R satisfying

(AnnR(M))b ⊆ FittR(M) ⊆ AnnR(M),

where AnnR(M) is the annihilator ideal ofM and b is an integer so that
M can be generated by b elements as a R-module.

2. IfM ։M ′ is a surjective map of finitely presented R-modules, then

FittR(M) ⊆ FittR(M
′).

3. If 0 → M ′ → M → M ′′ → 0 is an exact sequence of finitely presented
R-modules, then

FittR(M
′) · FittR(M

′′) ⊆ FittR(M).

Moreover, we have equality if the exact sequence splits, i.e.

FittR(M
′ ⊕M ′′) = FittR(M

′) · FittR(M
′′).

4. IfM ≃ R/a is a cyclic module, then

FittR(M) = AnnR(M) = a.

More generally, if we apply the previous property to a direct sum of n
cyclic R-modules

M ≃ R/a1 ⊕R/a2 ⊕ · · · ⊕R/an,

then we obtain
FittR(M) = a1a2 · · · an.

5. LetM be a finite R-module for a group ring R of a finite abelian group
with coefficients in Zp. IfM is cyclic as a Zp-module, then

FittR(M
∗) = AnnR(M

∗) ≃ AnnR(M) = FittR(M),

whereM∗ = Hom(M,Qp/Zp) is the Pontryagin dual equipped with the
covariant action.
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We recall that# denotes the inverse action defined in (3.4). In the next lemma
we list some general properties of Ei(M) for an A-moduleM . For a proof see
propositions 5.4.17, 5.5.6 and corollary 5.5.7 in [31], or [17].

Lemma 4.3. LetM be an A-module, let α(M) denote the adjoint ofM with the con-
travariant action, and letM∨ = HomZp(M,Zp) be the dual with the contravariant
G∞-action. Then

1. Ei(M) = ExtiΛ(M,Λ) as Λ-modules for any A-moduleM and i ≥ 0,

2. E1(M)# ≃ α(M) as Λ-modules, providedM is a finitely generated Λ-torsion
module,

3. E1(M)# ≃M∨ as Λ-modules, providedM is a Λ-torsion module with trivial
µ-invariant, i.e. M is a finitely generated Zp-module.

We list some results obtained by applying the contravariant functors Ei(−)
for i = 1, 2, to some of the exact sequences arising from diagram (2.8). We first
remark that E0(−) = HomA(−,A) is a left exact functor, and that Ei(A) = 0
for i ≥ 1, since pdA(A) = 0 (cf. Proposition 5.2.11 in [31]).

Lemma 4.4. The A-module E1(Zf∞)# is of projective dimension at most one, and

FittA(E
1(Zf∞)#) = FittA(Z

f
∞)#.

Proof. This lemma is a consequence of Proposition 2 in [13] and Lemma 4.3.
We give here a direct proof, since we need some of the methods in the proof
of Lemma 4.5 below: We first apply Ei(−) to the last column of diagram (2.8).
We observe that HomA(z

f
∞,A) is the set of all morphisms in HomA(∆G∞,A),

whose restriction to d∞A vanishes. This observation and the choice of d∞ ∈
∆G∞ as a non-zero divisor imply that E0(zf∞) = 0. By part 1 of Lemma
4.3 E0(Xf∞) is also trivial for the Λ-torsion module Xf∞. Hence by applying
the contravariant functor Ei(−) to the last row of diagram (2.8), we obtain
E0(Zf∞) = 0. On the other hand Ei(A) is trivial for i ≥ 1 as we mentioned
before. Therefore, applying Ei(−) to the middle column of diagram (2.10)
leads to the exact sequence

0→ E0(A)r+1 E
0(Ψ)
→ E0(A)r+1 → E1(Zf∞)→ 0.

Here E0(Ψ) is the transpose of Ψ. We now apply “#” to the exact sequence
above to obtain:

0→ Ar+1 E
0(Ψ)#

→ Ar+1 → E1(Zf∞)# → 0,

which shows that the projective dimension of the A-module E1(Zf∞)# is at
most one. To complete the proof it is enough to note that the Fitting ideal
of the A-module E1(Zf∞)# is given by the determinant of E0(Ψ)#, whereas
the Fitting ideal of Zf∞ is given by the determinant of the map Ψ defined in
diagram (2.10).

Documenta Mathematica 18 (2013) 749–783



An Equivariant Main Conjecture 767

Lemma 4.5. We have the following exact sequence of finitely generated A-torsion
modules:

0→ Zp → (A/d∞A)# → E1(zf∞)# → 0.

Proof. We saw in the proof of Lemma 4.4 that E0(zf∞) is trivial. As a conse-
quence of Proposition 5.2.11 in [31] we obtain that E2(Zp) is trivial as well,
since the projective dimension of the Λ-module Zp is one. By applying Ei(−)
to the exact sequence (2.9) we therefore obtain the exact sequence

0→ E1(Zp)→ E1(A/d∞A)→ E1(zf∞)→ 0.

By part 2 of Lemma 4.3 together with the fact that an elementary module
is isomorphic to the inverse module of its adjoint (cf. 1.3 in [16]) we have
E1(Zp)

# ≃ Zp, where Zp has the trivial G∞-action. We also have the isomor-
phism E1(A/d∞A)# ≃ (A/d∞A)#, since pdA(A) = 0. Therefore, by applying
“#” to the exact sequence above, we obtain:

0→ Zp → (A/d∞A)# → E1(zf∞)# → 0.

Lemma 4.6. We have the following exact sequence of finitely generated A-torsion
modules:

0→ E1(zf∞)→ E1(Zf∞)→ E1(Xf∞)→ 0.

Proof. First we observe that E2(zf∞) is trivial by applying Ei(−) to the exact
sequence (2.9) and by noting that the projective dimensions of Zp and A/d∞A

are both one. Now we apply Ei(−) to the last row of diagram (2.8) to obtain
the exact sequence above. We note that the surjectivity of the last map in the
diagram follows from the observation that E2(zf∞) = 0, and that the injectiv-
ity of the first map in the diagram is a consequence of the observation that
E0(Xf∞) = 0 in the proof of lemma (4.4).

We combine Lemmas 4.5 and 4.6 to obtain the following theorem:

Theorem 4.7. We have the following exact sequence of finitely generated A-torsion
modules:

0→ Zp → (A/d∞A)# → E1(Zf∞)# → E1(Xf∞)# → 0,

in which

pdA((A/d∞A)#) ≤ 1 and pdA(E
1(Zf∞)#) ≤ 1.

The Λ-module E1(Xf∞)# is isomorphic to the adjoint of Xf∞ by part 2 of
Lemma 4.3 and so it is a finitely generated Zp-free module under the assump-
tion µ = 0. Therefore we obtain from Theorem 4.7 the first statement in the
following proposition:
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Proposition 4.8. Let d∞ ∈ ∆G∞ be a non-zero divisor so thatA/d∞A is a finitely
generated Zp-free module. Then, under the assumption µ = 0, the sequence

0→ Zp → (A/d∞A)# → E1(Zf∞)# → E1(Xf∞)# → 0

is an exact sequence of finitely generated Zp-free modules. Moreover, if we consider
this sequence as an exact sequence of Zp[H ]-modules, then under the assumptions of
µ = 0 we have

pdZp[H]((A/d∞A)#) = 0 and pdZp[H](E
1(Zf∞)#) = 0.

Proof. We only need to prove the second part. We first remark that A/d∞A

and E1(Zf∞) are both H-cohomologically trivial by Proposition 2.2 in [32],
since their projective dimensions are at most one as A-modules. By a classical
theorem of Nakayama pdZp[H](M) = 0 if and only if M is Zp-free and H-
cohomologically trivial (p-adic version of Theorem 8 in [40], Chapter IX, §5).
Therefore, both modules are of projective dimension zero as Zp[H ]-modules.

To finish the proof that the Equivariant Main Conjecture follows from the
classical Main Conjecture under the assumption µ = 0, we first review the
definition of the determinantal ideal, which plays a role similar to that of the
characteristic ideal for some Λ-moduleswith an extra group action: For a com-
mutative ring Rwith identity, a finitely generated projective R-module P and
f ∈ EndR(P ), the determinant of f is defined as

detR(f | P ) := detR(f ⊕ idQ | P ⊕Q),

where Q is a complement of P , i.e. P ⊕ Q is free. One can check that the
definition is independent of Q by using Schanuel’s lemma. By the same strat-
egy, since P⊗RR[X ] is a finitely generated projectiveR[X ]-module, the monic
polynomial detR(X − f | P ) ∈ R[X ] is defined to be

detR(X − f | P ) := detR[X](idP ⊗X − f ⊗ 1 | P ⊗R R[X ])

for any projective R-module P . One can see that these definitions are well-
behaved under base-change, i.e.

detR(f | P ) = detR′(f ⊗ idR′ | P ⊗R′)

detR(X − f | P ) = detR′(X − (f ⊗ idR′) | P ⊗R′),
(4.1)

where R′ is any commutative R-algebra. We have the following general
proposition:

Proposition 4.9. ([15], Proposition 7.2). Let R be a commutative, semi-local,
compact topological ring and let Γ be a pro-cyclic group with topological generator γ.
LetM be a topologicalR[[Γ]]-module, which is projective and finitely generated as an
R-module. Let

F (X) := detR(X −mγ |M),
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where mγ is the R[[Γ]]-module automorphism of M given by multiplication by γ.
Then the following holds:

1. M is finitely presented as an R[[Γ]]-module. If we let F (γ) be the image of
F (X) via theR-algebra morphismR[X ]→ R[[Γ]] sendingX to γ, we have an
equality of R[[Γ]]-ideals

FittR[[Γ]](M) = (F (γ)).

2. If we view M∨
R = HomR(M,R) as a topological R[[Γ]]-module with the co-

variant Γ-action, then

FittR[[Γ]](M) = FittR[[Γ]](M
∨
R).

3. If we view M∨ = HomZp(M,Zp) as a topological R[[Γ]]-module with the
covariant Γ-action, where R = Zp[G] and G is a finite abelian group, then

FittR[[Γ]](M) = FittR[[Γ]](M
∨).

By using Proposition 4.9 for the ring R = Zp[H ] and the finitely generated
R-modules M = E1(Zf∞)# and M = (A/d∞A)#, which are projective by
Proposition 4.8, we obtain:

Lemma 4.10. Ifmγ denotes the R[[Γ]]-module automorphism ofM given by multi-
plication by γ, then

FittA(E
1(Zf∞)#) = (detZp[H]((T + 1)−mγ | E

1(Zf∞)#)),

F ittA((A/d∞A)#) = (detZp[H]((T + 1)−mγ | (A/d∞A)#)).

Let O be the ring of integers obtained by adjoining all character values of the
characters ofH to Zp, let π be a fixed uniformizer inO and letQ(O) denote the
field of fractions ofO. We considerO andQ(O) asA-modules with trivialG∞-
action. We note that for the idempotent e attached to the trivial character ofH
we haveHS(T ) = T · e+ (1− e) using the identification (2.2) (see (3.1) for the
definition of HS(T )). Therefore, using Lemma 4.10 we obtain the following
lemma:

Lemma 4.11. We have the following equalities of ideals in Q(O)[H ][[Γ]]:

(HS(T )) = (detQ(O)[H]((T + 1)−mγ | Q(O))),

(d#∞) = (detQ(O)[H]((T + 1)−mγ | (Q(O)[H ][[Γ]]/d∞)#)).

Remark 4.12. Any character χ of H can be extended to a Q(O)[X ]-algebra homo-
morphism, for a variable X , and to a Q(O)⊗O O[[Γ]]-algebra homomorphism

χ : Q(O)[H ][X ]→ Q(O)[X ],

χ : Q(O)⊗O O[[G∞]]→ Q(O)⊗O O[[Γ]],

which maps h→ χ(h) for h ∈ H .

Documenta Mathematica 18 (2013) 749–783



770 Reza Taleb

Lemma 4.13. We have the following equality of ideals in O[[Γ]] under the assump-
tion µ = 0:

(detQ(O)((T + 1)−mγ | eψ(X
f
∞ ⊗Zp Q(O))))#

= (detQ(O)((T + 1)−mγ | eψ(E
1(Xf∞)# ⊗Zp Q(O))))).

Proof. Since the R := Oψ[[Γ]]-torsion module M1 := eψ(X
f
∞ ⊗Zp Q(O)) is of

projective dimension at most one (cf. for example Lemma 2.4 in [32]), the R-
torsion moduleM2 := eψ(E

1(Xf∞)#⊗Zp Q(O)) is also of projective dimension
at most one. Hence by the first part of Proposition 4.9 it is enough to show
that FittR(M1)

# = FittR(M2). But this is a direct consequence of the second
part of Lemma 4.3 and Proposition 2 in [13].

At this point we use the classical Main Conjecture in Iwasawa theory [47], i.e.
the equality of fractional ideals

(G∗
ψ,S(T )) = (detQ(O)((T + 1)−mγ | eψ(X

f
∞ ⊗Zp Q(O))))

in Q(O)[[T ]] for any character ψ of H (see equality (1.2) and part 1 of Propo-
sition 4.9). Here we note that the assumption µ = 0 implies the vanishing of
the µ-invariants of Xf,ψ∞ for all (even) characters ψ ofH . Hence, using Lemma
4.13, we obtain the following equality of fractional ideals in Q(O)[[T ]]:

(ψ(G∗
S(T )

#)) = (G∗
ψ,S(T )

#)

= (detQ(O)((T + 1)−mγ | eψ(E
1(Xf∞)# ⊗Zp Q(O))))

= (ψ(detQ(O[H])((T + 1)−mγ | E
1(Xf∞)# ⊗Zp Q(O)))).

Consequently the exact sequence

0→ Zp → (A/d∞A)# → E1(Zf∞)# → E1(Xf∞)# → 0

in Theorem 4.7, and Lemma 4.10 together with the base-change property of
determinants (cf. (4.1)) imply the following equality of ideals in O[[T ]]:

ψ((c∞G
∗
S(T ))

#) = (ψ(detQ(O[H])((T +1)−mγ | E
1(Zf∞)#⊗ZpQ(O)))). (4.2)

Before completing the proof we recall that the µ-invariant µ(F ) of a power
series F ∈ O[[T ]] is the largest exponent µ ≥ 0 such that f ∈ (πµ)O[[T ]]. For
F ∈ A we define the µ-invariant of F to be zero if µ(χ(F )) = 0 for any p-adic
valued character χ of H .

Let F := detZp[H]((T + 1) −mγ | E
1(Zf∞)#) and G := (c∞G

∗
S(T ))

# in A (cf.
Lemma 3.2). Then

• µ(F ) = 0, since the determinantal polynomial F ∈ Zp[H ][[T ]] of the
projective Zp[H ]-module E1(Zf∞)# (cf. Proposition 4.8) is monic.
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• µ(G) = 0, since for any p-adic character ψ of the group H , we have

µ(ψ(G∗
S)) = µ(g∗ψ,S · uψ,S) = 0 , µ(ψ(HS)) = 0 , µ(ψ(d∞)) = 0.

Here we note that the determinantal polynomials of the field Q(O) and
the projective Zp[H ]-module (A/d∞A)# (cf. Proposition 4.8), which are
generated by HS and d#∞, respectively (cf. Lemma 4.11), are monic.

• (ψ(F )) = (ψ(G)), using equality (4.2).

In the terminology of [2],R := Zp[H ] is admissible for the abelian groupH , i.e.
R is a finite product of strictly admissible rings Ri, which means that each Ri
is separated and complete in the rad(Ri)-adic topology and also Ri/rad(Ri)
is a skew field. Since the µ-invariants of F,G ∈ R[[T ]] are both zero, Propo-
sition 2.1 in [2] as an equivariant Weierstrass Preparation Theorem implies
the existence of unique distinguished polynomials f∗, g∗ ∈ R[T ] and units
u, v ∈ (R[[T ]])× such that

F = u · f∗ and G = v · g∗.

We apply a p-adic characterψ ofH to both sides, and note thatψ(f∗) andψ(g∗)
are both distinguished polynomials inO[T ], and that ψ(u), ψ(v) ∈ O[[T ]]× are
units. Hence the equality (ψ(F )) = (ψ(G)) together with the uniqueness of
the Weierstrass decomposition yields

ψ(f∗) = ψ(g∗)

for any p-adic character ψ of H . Therefore, f∗ = g∗ and F = uv−1G. The
equality (F ) = (G) now implies the following:

(ι(c∞G
∗
S)) = (detZp[H]((T + 1)−mγ | E

1(Zf∞)#))

= FittA(E
1(Zf∞)#) by Lemma 4.10

= FittA(Z
f
∞)# by Lemma 4.4.

(4.3)

Consequently, the equality

FittA(Z
f
∞) = (c∞G

∗
S)

holds, and this completes the proof of the Equivariant Main Conjecture 4.1
under the assumptions of the classical Main Conjecture and of µ = 0.

Theorem 4.14. The Equivariant Main Conjecture 4.1 follows from the classical
Main Conjecture in Iwasawa theory under the assumption µ = 0.

Remark 4.15. For any odd prime p, or for the prime 2 if F is an absolutely abelian
number field, the classical Main Conjecture holds, and hence the Equivariant Main
Conjecture 4.1 is verified under the assumption µ = 0.
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We recall that the assumption µ = 0 holds for any absolute abelian number
field E, i.e. for any number field E whose Galois group over Q is abelian, by
the result of Ferrero and Washington in [10]. Hence

Corollary 4.16. If E is an absolute abelian number field, the Equivariant Main
Conjecture 4.1 holds unconditionally.

5 The Coates-Sinnott Conjecture as an application

Let E/F be an abelian extension of number fields with Galois group G, let
n ≥ 2 be an integer, and let p be an arbitrary prime. Let S be a finite set of
primes in F containing the primes above p, the primes ramified in E and the
infinite primes, and let Sf denote the set of all finite primes in S. Let

ΘSE/F (s) =
∑

χ∈Ĝ

LSE/F (s, χ
−1) · eχ

be the G-equivariant S-incomplete L-function associated to E/F . We recall
that for an integer n ≥ 1 by a result of Siegel [41]

ΘSE/F (1 − n) ∈ Q[G],

and furthermore, by Deligne and Ribet [8] or by Cassou-Noguès [4]

AnnZ[G](H
0(E,Q/Z(n))) ·ΘSE/F (1− n) ⊂ Z[G].

For n ≥ 1 the n-th higher Stickelberger ideal is defined as follows:

StickSE/F (n) := AnnZ[G](H
0(E,Q/Z(n))) ·ΘSE/F (1 − n) ⊂ Z[G].

Remark 5.1. The classical theorem of Stickelberger states that

StickSE/Q(1) ⊆ AnnZ[G](Cl(OE),

whereCl(OE) denotes the class group ofOE . Brumer conjectured that the same holds
for any abelian extension E/F of number fields.

The original formulation of the Coates-Sinnott Conjecture is as follows:

Conjecture 5.2. (The Coates-Sinnott Conjecture, K-theoretic version). Let E/F
be an abelian Galois extension of number fields with Galois group G, and let n ≥ 2.
Then

StickSE/F (n) ⊆ AnnZ[G](K2n−2(OE)).

As a consequence of thework of Voevodsky (cf. [45]) the Quillen-Lichtenbaum
Conjecture holds, i.e. for all odd primes p the étale Chern characters defined
by Soulé [42]

ch
(p)
i,n : K2n−i(OF )⊗ Zp → Hi

ét(O
′
F ,Zp(n))
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are isomorphisms for i = 1, 2, and all n ≥ 2. Here O′
F = OF [1/p]. The

surjectivity of the Chern characters was proved by Soulé for even n (see [42])
and by Dwyer and Friedlander in general (see [7]).

For the prime 2 the situation is in general different. The deviation between
K2n−i(OF ) ⊗ Z2 and Hi

ét(O
′
F ,Z2(n)) has been determined by Rognes and

Weibel [37]. In [21] it was suggested to replace the K-groups K2n−2(OF )
by the motivic cohomology groups H2

M(E,Z(n)), because the latter groups
have the advantage that their p-parts are isomorphic toH2

ét(O
′
E ,Zp(n)) for all

primes p ([19], Theorem 2.4). This leads to the following motivic version of
the Coates-Sinnott Conjecture:

Conjecture 5.3. (The Coates-Sinnott Conjecture, motivic version). Let E/F be
an abelian Galois extension of number fields with Galois group G, and let n ≥ 2.
Then

StickSE/F (n) ⊆ AnnZ[G](H
2
M(E,Z(n))).

The explicit results of Rognes-Weibel show that the motivic version implies
theK-theoretic version. Moreover, the validity of the motivic version is equiv-
alent to the validity of the following p-adic version for all primes p:

Conjecture 5.4. (The Coates-Sinnott Conjecture, p-adic version). Let E/F be an
abelian Galois extension of number fields with Galois groupG, let p be prime, and let
n ≥ 2. Then

AnnZp[G](H
0(E,Qp/Zp(n))) ·Θ

S
E/F (1− n) ⊆ AnnZp[G](H

2
ét(O

′
E ,Zp(n))).

We remark that by the functional equation of L-functions (see for example [1])
LE/F (s, χ) vanishes at negative integers 1 − n for n ≥ 2, unless F is a totally
real number field and χ(−1) = (−1)n. Therefore only the following cases are
of interest:

• E is a totally real number field and n ≥ 2 is even.

• E is a totally complex number field, F is totally real and n ≥ 2 is odd.

We will consider the first case, namely that E/F is an abeian extension of
totally real fields with Galois group G, and that n ≥ 2 is even. We show that
in this case the p-adic version of the Coates-Sinnott Conjecture follows from
the Equivariant Main Conjecture for all primes p assuming µ = 0. For odd
primes this has been done by Nguyen Quang Do [28] and independently by
Greither-Popescu [15] (see also [2] for a slightly weaker result).

We first assume without loss of generality for the proof of the Coates-Sinnott
Conjecture that E is the maximal real subfield of E(ζ2p) (this assumption clearly
holds for p = 2, and for odd primes p one can see for instance Lemma 6.14
in [15]). Here ζ2p is a primitive 2p-th root of unity. We recall the set up from
Section 2: Let E∞ (resp. F∞) be the cyclotomic Zp-extension of E (resp. F )
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with Galois group ΓE (resp. ΓF ) over E (resp. over F ). We denote by G∞

the Galois group of E∞/F , by H the Galois group of E∞/F∞, and by Γ =
< γ > the image of ΓF under the splitting map in (2.1). The following diagram
illustrates the situation:

E∞

ΓE

















H

G∞

F∞

ΓF
















E

G

F

SinceG∞ is abelian,G∞ = H×Γ and the completed group ring A = Zp[[G∞]]
is identified with Zp[H ][[T ]] under the identification (2.2). We let d∞ ∈ ∆G∞

be a non-zero divisor so that A/d∞A is a finitely generated Zp-free module,
e.g. d∞ = γ − 1. By Theorem 4.7 we obtain an exact sequence of finitely
generated A-torsion modules

0→ Zp → (A/d∞A)# → E1(Zf∞)# → E1(Xf∞)# → 0 (5.1)

in which the middle terms are of projective dimensions at most one. Using the
equalities in (4.3) we also have

FittA((A/d∞A)#(n)) = ((ι ◦ tn)(d∞))

FittA(E
1(Zf∞)#(n)) = ((ι ◦ tn)(c∞G

∗
S)).

(5.2)

We note that the sequence (5.1) is also an exact sequence of finitely generated
Λ-modules, where Λ = Zp[[Γ]]. Moreover, the exact sequence (5.1) is an exact
sequence of finitely generated Zp-free modules since we have assumed µ = 0.

Lemma 5.5. Let G
Sf
E be the Galois group of the maximal algebraic pro-p-extension

of E unramified outside the primes above Sf , over E. Under the assumption that E
is the maximal real subfield of E(ζ2p), we have the following:

1. H0(E,Qp/Zp(n)) ≃ Zp(n)ΓE for n ≥ 2

2. H2(G
Sf
E ,Zp(n)) ≃ (E1(Xf∞)#(n))ΓE for even n ≥ 2 (under the hypothesis

µ = 0)

Proof. 1. It is enough to take the ΓE-invariants and ΓE-coinvariants of the
exact sequence 0 → Zp(n) → Qp(n) → Qp(n)/Zp(n) → 0 to get a 6 term
exact sequence in which Qp(n)ΓE = Qp(n)

ΓE = 0 for n ≥ 2. We note that
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H0(E,Qp/Zp(n)) = Qp/Zp(n)
ΓE .

2. Let E∞ be the cyclotomic Zp-extension of E, with Galois group ΓE . As be-

fore we denote byΩ
Sf
E the maximal algebraic pro-p-extension ofE unramified

outside the primes above Sf . We have the following isomorphisms:

E1(Xf∞)#(n)ΓE ≃ Hom(Xf∞,Zp)(n)ΓE By part 3 in Lemma 4.3

≃ Hom(Xf∞(−n),Zp)ΓE

≃ Hom(Xf∞(−n)ΓE ,Qp/Zp) By Lemma 5.18 in [14]

≃ Hom(Xf∞,Qp/Zp(n))
ΓE

≃ Hom(Gal(Ω
Sf
E /E∞),Qp/Zp(n))

ΓE .

If we assume that

Hom(Xf∞,Qp/Zp(n)) ≃ H
1(Gal(Ω

Sf
E /E∞),Qp/Zp(n)), (5.3)

then - using the fact that cdp(ΓE) = 1 - we can continue the isomorphisms
above as follows:

H1(Gal(Ω
Sf
E /E∞),Qp/Zp(n))

ΓE ≃ H1(Gal(Ω
Sf
E /E),Qp/Zp(n))

≃ H2(G
Sf
E ,Zp(n)),

where the last isomorphism follows from the finiteness of the groups

H1(G
Sf
E ,Qp/Zp(n)) and H2(G

Sf
E ,Zp(n)) for even n and the totally real field

E (cf. Corollary 2.5 in [20] and Proposition 2.3 in [44]).

Hence, to complete the proof it is enough to show that the claim (5.3) is true.
Clearly

Hom(Xf∞,Qp/Zp(n)) ≃ Hom(Gal(Ω
Sf
E /E∞),Qp/Zp(n))

since Xf∞ is the abelianization ofGal(Ω
Sf
E /E∞). Nowwe notice that the Galois

group Gal(Ω
Sf
E /E∞) acts trivially on Qp/Zp(n), since n is even, and therefore

Hom(Gal(Ω
Sf
E /E∞),Qp/Zp(n)) ≃ H

1(Gal(Ω
Sf
E /E∞),Qp/Zp(n))

At this point we recall the following lemma from Iwasawa theory (See Lemma
6.3 in [5], where a special case is proved, or [31], Chapter V, §3, Ex. 3):

Lemma 5.6. LetM be anO[[Γ]]-torsion module, whereO is a finite extension of Zp,
and let F (T ) be the characteristic polynomial ofM . The following are equivalent:

1. MΓ is finite.
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2. MΓ is finite.

3. F (0) 6= 0

If these conditions hold, then

|MΓ|

|MΓ|
= |F (0)|v = p−f ·v(F (0)),

where v is the normalized valuation, i.e. v(π) = 1 for a uniformizer π ∈ O, and f is
the residue degree of π over p.

As a consequence of Lemma 5.5 we see that (E1(Xf∞)#(n))ΓE and Zp(n)ΓE
are both finite and so by Lemma 5.6 (E1(Xf∞)#(n))ΓE and Zp(n)

ΓE are both
trivial for even n ≥ 2. We note that both Zp(n) and E1(Xf∞)#(n) have no
non-trivial finite Λ-submodules. For E1(Xf∞)#(n) this follows from the fact
that by Lemma 4.3 E1(Xf∞)# is isomorphic to the adjoint of Xf∞ and as such
it does not have any non-trivial finite Λ-submodules (see [16], Section 1.3).
Moreover, ((A/d∞A)#(n))ΓE = 0, since for n ≥ 2 we have κ(γ)n 6= 1. There-
fore, ((A/d∞A)#(n))ΓE is again finite by Lemma 5.6. As a result the ΓE-
coinvariants of E1(Zf∞)#(n) are also finite and similarly (E1(Zf∞)#(n))ΓE =
0, for any even n ≥ 2. Hence by taking the ΓE-coinvariants of the exact se-
quence (5.1) we obtain the following exact sequence of finite Zp[G]-modules
for any even n ≥ 2:

0→ H0(E,Qp/Zp(n))→ ((A/d∞A)#(n))ΓE →

(E1(Zf∞)#(n))ΓE → H2(G
Sf
E ,Zp(n))→ 0,

(5.4)

where the two middle Zp[G]-modules are of projective dimension at most one
as a consequence of the last part of Theorem 4.7 and the facts that Zp[G∞]ΓE =
0 and Zp[G∞]ΓE = Zp[G]. Furthermore, following the equalities in (5.2), we
have

FittZp[G](((A/d∞A)#(n))ΓE ) = ((π ◦ ι ◦ tn)(d∞)),

F ittZp[G]((E
1(Zf∞)#(n))ΓE ) = ((π ◦ ι ◦ tn)(c∞G

∗
S),

where π : A→ Zp[G] is the projection mapping γ − 1 to 0.

Now we take advantage of the following Proposition due to Burns-Greither,
which relates the Fitting ideals of the modules of a 4-term exact sequence un-
der some assumptions:

Proposition 5.7. ([2], Lemma 5) Let R := Zp[G], for a finite abelian groupG and
a prime number p. Assume that we have an exact sequence of finite R-modules

0→ A→ P → P ′ → A′ → 0.
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Further, assume that pdZp[G]P ≤ 1 and pdZp[G]P
′ ≤ 1. Then, we have

FittR(A
∗) · FittR(P

′) = FittR(A
′) · FittR(P ),

where the Pontryagin dual A∗ := Hom(A,Qp/Zp) is endowed with the covariant
G-action.

Applying Proposition 5.7 to the exact sequence (5.4) of finite Zp[G]-modules
yields the following equality:

FittZp[G](H
0(E,Qp/Zp(n))

∗)FittZp[G]((E
1(Zf∞)#(n))ΓE )

= FittZp[G]((A/d∞A)#(n)ΓE )FittZp[G](H
2(G

Sf
E ,Zp(n))).

Property 5 of Fitting ideals (section 4) shows that the Fitting ideal of
H0(E,Qp/Zp(n))

∗ is the same as the annihilator ideal of H0(E,Qp/Zp(n)).
This, together with (5.2), yields the following equality of fractional ideals in
Zp[G]:

FittZp[G](H
2(G

Sf
E ,Zp(n)))

= AnnZp[G](H
0(E,Qp/Zp(n)))((π ◦ ι ◦ tn)(c∞/d∞ ·G

∗
S)).

Finally we have d∞/c∞ = (γ − 1)e + (1 − e), which can be identified by (2.2)
with Te+ 1− e = HS(T ), and obtain the following theorem:

Theorem 5.8. We have the following equality of ideals of Zp[G]:

FittZp[G](H
2(G

Sf
E ,Zp(n))) = AnnZp[G](H

0(E,Qp/Zp(n)))((π ◦ ι ◦ tn)(
G∗
S

HS
)).

Now let p be an odd prime. In this case we have an equality of the Galois

groups GSE and G
Sf
E , as we noticed before. Furthermore, by Lemma 3.1 we

haveG∗
S = GS under the assumption µ = 0. On the other hand for odd primes

p, since E is the maximal real subfield ofE(ζ2p), we have (π◦ι◦tn)(GS/HS) =
ΘSE/F (1 − n) for any even n by Corollary 3.4. Therefore from Theorem 5.8 we

obtain

FittZp[G](H
2
ét(O

S
E ,Zp(n))) = AnnZp[G](H

0(E,Qp/Zp(n))) ·Θ
S
E/F (n).

This implies the p-adic version of the Coates-Sinnott Conjecture for odd
primes. Here we note that H2

ét(O
′
E ,Zp(n)) ⊆ H

2
ét(O

S
E ,Zp(n)).

For p = 2, we use the following lemma:

Lemma 5.9. Let E/F be an abelian extension of totally real fields with Galois group
G, and let n ≥ 2 be an integer. Let r1(F ) = [F : Q]. Then we have the following
exact sequence of A-modules for A = Λ[H ]:

0→ (A/2A)r1(F ) → XS∞ → Xf∞ → 0.
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Proof. We have the following commutative diagram by class field theory (cf.
[18]) for the finite sets S and Sf of primes in F :

DE  ÛSE →
∏

v∈S

∏

w|v Êw → Gal(MS
E/H

S
E) → 0

↓ ↓ ↓ ↓

D′
E  Û

Sf
E →

∏

v∈Sf

∏

w|v Êw → Gal(M
Sf
E /H

Sf
E ) → 0,

whereDE andD′
E are the kernels of the correspondingmaps and are bounded

by the Leopoldt defect δE , Û
S
E (resp. Û

Sf
E ) is the p-adification of the S-unit

(resp. Sf -unit) group of the ring of integers of E, Êw is the p-adic completion

of the local field Ew, M
S
E (resp. M

Sf
E ) is the maximal abelian pro-p-extension

of E unramified outside the primes in S (resp. in Sf ), and HS
E (resp. H

Sf
E )

is the Hilbert S-class (Sf -class) field of E. Here the Sf -unit group means the

group of the totally real S-units. Since Êw is isomorphic to Z/2Z for a real
prime w, and G acts transitively on the set

{Êw | w : infinite primes of E lying above v}

for any infinite prime v of F , we obtain the following exact sequence of Λ[H ]-
modules:

0→ DE → D′
E →

∏

w∈S\Sf

Z[G]/2→ Gal(MS
E/M

Sf
E )→ 0,

where
∏

w∈S\Sf
Z[G]/2 ≃ (Z[G]/2)r1(F ). Since the real primes are unramified

in E∞/E, we can write the exact sequence above for the unique intermediate
fields En of E∞/E with Gn := Gal(En/E) ≃ Z/2nZ for all n ≥ 0, as follows:

0→ DEn → D′
En → (Z/2Z[Gn])

r1(F ) → Gal(MS
En/M

Sf
En

)→ 0.

Now the claim is that we have the isomorphism

lim
←−

(Z/2Z[Gn])
r1(F ) ≃ (A/2A)r1(F )

for A = Λ[H ]. Since Λ/2Λ ≃ lim
←−

Z/2Z[T ]/T 2n, it suffices to show for a fixed

real prime v of F that the inverse limits of {
∏

vn|v
Z/2Z} and {Z/2Z[T ]/T 2n}

are isomorphic. For this we inductively define an isomorphism

fn :
∏

vn|v

Z/2Z→ Z/2Z[T ]/T 2n

compatible with the norm maps as follow: Let f0 be the identity and assume
we have defined the isomorphisms fm compatible with the norm maps for all
m ≤ n. Let vn+1 and v

′
n+1 be the extensions of vn to Fn+1. We define

fn+1 :
∏

vn+1

Z/2Z ·
∏

v′
n+1

Z/2Z→ Z/2Z[T ]/T 2n+1
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as follows:

fn+1(a1, · · · , a2n , b1, · · · , b2n) = fn(a1+b1, · · · , a2n+b2n)+T
2nfn(a1, · · · , a2n).

Now we have the commutative diagram

∏

vn|v
Z/2Z

fn
→ Z/2Z[T ]/T 2n

↓ ↓
∏

vn+1|v
Z/2Z

fn+1

→ Z/2Z[T ]/T 2n+1

for any n ≥ 0, and hence

lim
←−
n

∏

vn|v

Z/2Z ≃ Λ/2Λ.

This completes the proof of the claim. Now the exact sequence

0→ Gal(MS
E/M

Sf
E )→ XS∞ → Xf∞ → 0

yields an exact sequence

(A/2A)r1(F ) → XS∞ → Xf∞ → 0.

We note that under the assumption of the weak Leopoldt Conjecture for
E∞/E the cokernels of DEn → D′

En
, for all n ≥ 0, are finite elementary 2-

groups of order bounded independent of n (see for example [31], Chapter X,
§3). Finally, since Λ/2Λ has no non-trivial finite submodules, we obtain the
following exact sequence of Λ[H ]-modules:

0→ (A/2A)r1(F ) → XS∞ → Xf∞ → 0.

We now take ΓE-coinvariants and then the Pontryagin dual of the exact se-
quence of Lemma 5.9. The same calculation as in the proof of the second part
of Lemma 5.5 leads to the exact sequence

0→ H2(G
Sf
E ,Z2(n))→ H2(GSE ,Z2(n))→ (Z/2Z[G])r1(F )(n)

of Z2[G]-modules. This yields

2r1(F )AnnZ2[G](H
2(G

Sf
E ,Z2(n))) ⊆ AnnZ2[G](H

2(GSE ,Z2(n))).

Consequently by Theorem 5.8 we obtain

2r1(F )AnnZp[G](H
0(E,Qp/Zp(n)))((π ◦ ι ◦ tn)(

G∗
S

HS
))

⊆ AnnZ2[G](H
2
ét(O

S
E ,Z2(n))).
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Under the assumption µ = 0, we have GS = 2r1(F ) · G∗
S for the prime 2 (cf.

Lemma 3.1). Consequently ΘSE/F (1 − n) = 2r1(F )((π ◦ ι ◦ tn)(
G∗

S

HS
)) (cf. 3.4) for

any even integer n ≥ 2 and as a result,

AnnZ2[G](H
0(E,Q2/Z2(n))) ·Θ

S
E(1 − n) ⊆ AnnZ2[G](H

2
ét(O

S
E ,Z2(n))).

Finally, we note that H2
ét(O

′
E ,Z2(n)) ⊆ H2

ét(O
S
E ,Z2(n)). Hence, the 2-adic

version of the Coates-Sinnott Conjecture 5.4 holds. This finishes the proof of
the following result:

Theorem 5.10. Let E/F be an abelian extension of totally real number fields with
Galois group G, and let n ≥ 2 be an even integer. Then the motivic version - and
therefore the original version - of the Coates-Sinnott Conjecture holds under the as-
sumptions that µ = 0 and that the 2-primary part of the classical Main Conjecture in
Iwasawa theory is valid.

We note that both assumptions are true if E is abelian over Q, and therefore
we obtain the following unconditional result:

Corollary 5.11. Let E be a totally real absolute abelian field. For an abelian
extension E/F with Galois group G and even n ≥ 2, the Coates-Sinnott Conjecture
5.3 holds.
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