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Abstract. We study the structure of the p-jet spaces of the p-typical
Witt rings of the p-adics. We also study the p-jets of the comonad
map. These data can be viewed as an arithmetic analogue, for the
ring Z, of the Lie groupoid of the line and hence as an infinitesimal
version of the Galois group of Q over “F1”.
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1. Introduction

1.1. Motivation. This paper is the second in a series of papers where we
investigate p-jet spaces (in the sense of [6]) of finite flat schemes/algebras. The
understanding of such p-jet spaces seems to hold the key to a number of central
questions about arithmetic differential equations [7]. This paper is logically
independent of its predecessor [8]. In [8] we dealt with the case of p-divisible
groups; in the present paper we investigate the case of algebras of Witt vectors
of finite length. Another example of a class of finite algebras whose p-jet spaces
are arithmetically significant is that of Hecke algebras; we hope to undertake
the study of this example in a subsequent work.
The present paper is partly motivated by the quest for “absolute geometries”
(the so-called “geometries over the field with one element, F1”); cf. [12] for an
overview of various approaches and some history. In particular, according to
Borger’s approach [3], the geometry over F1 should correspond to λ-geometry
(i.e. algebraic geometry in which all rings appearing come equipped with a
structure of λ-ring in the sense of Grothendieck). For the case of one prime
p the “p-adic completion” of λ-geometry is the δ-geometry developed by the
author [6, 7], where δ is a p-derivation (morally a “Fermat quotient operator”).
Now Borger established in [3] an elegant categorical framework which predicts
what actual objects should correspond to the basic hypothetical constructions
over F1. According to his framework the hypothetical tensor product Z⊗F1 Z
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(which was one of the first objects sought in the quest for F1) should correspond
to the big Witt ring W(Z) of the integers. Then the hypothetical groupoid
structure on Z⊗F1Z should correspond to the commonad structure ∆ : W(Z) →
W(W(Z)). The main interest in Z ⊗F1 Z comes from the fact that this tensor
product should be viewed as an arithmetic analog of a surface X × X where
X is a curve (algebraic, analytic, C∞). With this analogy in mind one is
immediately tempted to ask for an arithmetic analogue of the Lie groupoid of
X , in the sense of Lie and Cartan, and more recently Malgrange [11]. (Recall
that, roughly speaking, a point of the Lie groupoid of X is by definition a pair
of points of X together with a formal isomorphism between the germs of X
at these two points.) Since the Lie groupoid of X is the infinitesimal version
of an automorphism group we should view any arithmetic analogue of the Lie
groupoid of X as an infinitesimal version of the “Galois group of Q/F1”. Now
the Lie groupoid of X is an open set in the inverse limit, as n → ∞, of the
manifolds Jn(X ×X/X) of “n-jets of formal sections, at various points, of the
second projection X ×X → X”. Since the arithmetic analogue of the second
projection X ×X → X is the structure morphism Spec W(Z) → Spec Z, one
candidate for an arithmetic analogue of the Lie groupoid of X could be the jet
spaces (in the sense of [4]) of the Witt ring W(Z) over Z. We will not recall
the definition of these jet spaces here (because we don’t need it) but let us
note that they are constructed using derivations and knowing them essentially
boils down (in this easy case) to knowing the Kähler differentials ΩW(Z)/Z. By
the way, the module of Kähler differentials ΩW(Z)/Z is also the starting point
for the construction of the deRham-Witt complex of Z [9]. However using
Kähler differentials (equivalently usual derivations) arguably looks like “going
arithmetic only half way”. What we propose in this paper is to “go arithmetic
all the way” and consider p-jet spaces (in the sense of [6]) of Witt rings rather
than usual jet spaces (in the sense of [4]) of the same Witt rings. The former
are an arithmetic analogue of the latter in which usual derivations are replaced
by p-derivations.
A few adjustments are in order. First since p-jet spaces are “local at p” we
replace the big Witt ring functor W( ) by the p-typical Witt functor W ( ).
Also we replace Z by Zp or, more generally, by the Witt ring R = W (k) on a
perfect field k of characteristic p. Finally since W (R) is not of finite type over
R we replace W (R) by its truncations Wm(R) (where we use the labeling in
[1], so Wm(R) = Rm+1 as sets.) So after all what we are going to study are
the p-jet algebras Jn(Wm(R)) and the p-jet maps

Jn(∆) : Jn(Wm+m′(R)) → Jn(Wm(Wm′(R)))

induced by the comonad maps ∆ : Wm+m′(R) → Wm(Wm′(R)); cf. the review
of Jn and Wm in the next subsection. Since Wm(R) and Wm(Wm′(R)) are
finite flat R-algebras our investigation here is part of the more general effort to
study p-jets Jn(C) of finite flat R-algebras C; the case when Spec C is a finite
flat p-group scheme was addressed in [8].
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1.2. Main concepts and results. For R = W (k) the Witt ring on a perfect
field k of characteristic p 6= 2, 3 we let φ = W (Frob) be the automorphism of
R defined by the p-power Frobenius Frob of k. (The main examples we have
in mind are the ring of p-adic integers Zp = W (Fp) and the completion of the

maximum unramified extension of Zp, Ẑur
p = W (Fa

p); here Fa
p is the algebraic

closure of Fp.) Let x, x′, x′′, ..., x(n), ... be families of variables x = (xα)α∈Ω,
x′ = (x′

α)α∈Ω, etc., indexed by the same set Ω, and let φ : R[x, x′, x′′, ...] →
R[x, x′, x′′, ...] be the unique endomorphism extending φ on R and satisfying

φ(x
(r)
α ) = (x

(r)
α )p + px

(r+1)
α for r ≥ 0. Following [6] we define the map of

sets (referred to as a p-derivation) δ : R[x, x′, x′′, ...] → R[x, x′, x′′, ...] by the
formula

δF =
φ(F )− F p

p
.

Then for any R-algebra C = R[x]/(f), where f is a family of polynomials, we
define the p-jet algebras of C:

Jn(C) =
R[x, x′, ..., x(n)]

(f, δf, ..., δnf)
, J∞(C) =

R[x, x′, x′′, ...]

(f, δf, δ2f, ...)
.

Note that each Jn+1(C) has a natural structure of Jn(C)-algebra and we have
naturally induced set theoretic maps δ : Jn(C) → Jn+1(C) and δ : J∞(C) →
J∞(C). Note also that φ on R[x, x′, x′′, ...] induces ring homomorphisms φ :
Jn(C) → Jn+1(C) and φ : J∞(C) → J∞(C). (For C of finite type over
R we also defined in [6] the p-jet spaces of Spec C as the formal schemes
Jn(Spec C) := Spf (Jn(C))̂ where ˆ means p-adic completion; these spaces
are very useful when one further looks at non-affine schemes but here we will
not need to take this step.)
We need one more piece of terminology. First, for any ring B and element
b ∈ B we let B = B/pB and we let b ∈ B be the image of b. Assume now
the finitely generated R-algebra C comes equipped with an R-algebra homo-
morphism C → R which we refer to as an augmentation. Then there is a
unique lift of the augmentation to an R-algebra homomorphism J∞(C) → R
that commutes with δ. Composing the latter with the natural homomorphism
Jn(C) → J∞(C) and reducing mod p we get an induced homomorphism

Jn(C) → k. Let Pn be the kernel of the latter. Consider the ring Jn(C)
′

defined (up to isomorphism) by asking that Spec Jn(C)
′
be the connected

component of Spec Jn(C) that contains the prime ideal Pn; we refer to Jn(C)
′

as the identity component of Jn(C). If Jn(C)
′′
is “the” ring such that

Spec Jn(C)
′′
≃ (Spec Jn(C))\(Spec Jn(C)

′
)

then we call Jn(C)
′′

the complement of the identity component of Jn(C).
Clearly

Jn(C) ≃ Jn(C)
′
× Jn(C)

′′
.
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Let now C be the Witt ring Wm(R), m ≥ 1. Recall that Wm(R) is the set
Rm+1 equipped with the unique ring structure which makes the ghost map w :

Rm+1 → Rm+1, wi(a0, ..., am) = ap
i

0 +pap
i−1

1 + ...+piai, a ring homomorphism.
Let vi = (0, ..., 0, 1, 0, ..., 0) ∈ Wm(R), (1 preceded by i zeroes, i = 1, ...,m), set
π = 1 − δv1 ∈ J1(Wm(R)), and let Ωm = {1, ...,m}. As usual we denote by(
Jn(Wm(R))

)
π
the ring of fractions of Jn(Wm(R)) with denominators powers

of π. The ring Wm(R) comes with a natural augmentation Wm(R) → R
given by the first projection. So we may consider the identity component of
Jn(Wm(R)). The following gives a compete description of this component and

also shows this component is
(
Jn(Wm(R))

)
π
:

Theorem 1.1. For n ≥ 2 the image of πp in Jn(Wm(R)) is idempotent and
we have an isomorphism

(
Jn(Wm(R))

)
π
≃

k[x
(r)
i ; i ∈ Ωm; 0 ≤ r ≤ n]

(xixj , (x
(r)
i )p; i, j ∈ Ωm, 1 ≤ r ≤ n− 1)

sending each δrvi into the class of the variable x
(r)
i .

Indeed by the theorem Spec
(
Jn(Wm(R))

)
π
is connected (indeed irreducible)

and contains Pn hence
(
Jn(Wm(R))

)
π
is isomorphic to the identity component

of Jn(Wm(R)). By the way, since (1 − π)p = 1 − πp is also idempotent in

Jn(Wm(R)) it follows that
(
Jn(Wm(R))

)
1−π

is isomorphic to the complement

of the identity component of Jn(Wm(R)).
Next let C be one of the iterated Witt rings Wm(Wm′(R)), m,m′ ≥ 1, (cf. the
next section for more details). Set

vi,i′ = (0, ..., 0, vi′ , 0, ..., 0) ∈ Wm(Wm′(R)),

with vi′ ∈ Wm′(R) preceded by i zeroes in Wm′(R) and set

Π = (1− δv1,0)(1 − δv0,1) ∈ J1(Wm(Wm′(R))),

Ωm,m′ = ({0, ...,m} × {0, ...,m′})\{(0, 0)}.

There is a natural augmentation of Wm(Wm′(R)) given by composing the two
obvious first projections. Then we have the following complete description for
the identity component of Jn(Wm(Wm′(R))).

Theorem 1.2. For n ≥ 2 the image of Πp in Jn(Wm(Wm′(R))) is idempotent
and we have an isomorphism

(

Jn(Wm(Wm′(R)))
)

Π
≃

k[x
(r)

i,i′
; (i, i′) ∈ Ωm,m′ ; 0 ≤ r ≤ n]

(xi,i′xj,j′ , (x
(r)
i,i′)

p; (i, i′), (j, j′) ∈ Ωm,m′ , 1 ≤ r ≤ n− 1)

sending each δrvi,i′ into the class of the variable x
(r)

i,i′ .
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Again the theorem shows that
(
Jn(Wm(Wm′(R)))

)
Π

and
(
Jn(Wm(Wm′(R)))

)
1−Π

are isomorphic to the identity component, respectively to the complement of
the identity component, of Jn(Wm(Wm′(R))).
Finally we have the following complete description of the reduction mod p of
the map induced by the comonad map:

Theorem 1.3. The map

J∞(∆) : J∞(Wm+m′(R))π → J∞(Wm(Wm′(R)))Π

sends x
(r)
i′′ into the class of

∑

i+i′=i′′

xi,i′ , if r = 0

and into the class of

δr−1

( ∑

i+i′=i′′

x′
i,i′

)
, if r ≥ 1.

Remark 1.4. The above results give a complete description of the identity com-
ponents of our objects. On the other hand one can ask for a description of the
complements of the identity components. Take for instance Jn(Wm(R)). This
is not a group object so the components different from the identity component
cannot be expected to necessarily “look like” the identity component. And this
is indeed what happens (in spite of the comonad structure floating around):

the complement
(
Jn(Wm(R))

)
1−π

of the identity component looks quite differ-

ently (more degenerate) than the identity component
(
Jn(Wm(R))

)
π
. Indeed

the identity component is a polynomial ring in m variables over a local Artin
ring (cf. Theorem 1.1) and hence has Krull dimension m; by contrast, for the
complement of the identity component, we have:

Theorem 1.5. For n ≥ 3 and m ≥ 2 the ring
(
Jn(Wm(R))

)
1−π

has Krull

dimension ≥ 2m− 1.

Remark 1.6. The simplicity modulo p of all these p-jet rings and maps may
be deceptive. The structure of these objects in characteristic zero is actually
extremely complicated and, as in [8], the whole point of this paper is to manage
the complexity of the situation in such a way that, eventually, mod p, the
situation becomes transparent. On a conceptual level the results of this paper
are best understood as an attempt to unravel the “differential geometry” of
the “automorphisms of Z over F1”; cf. the beginning of our Introduction. The
objects introduced and studied in the present paper could then be viewed as
an “infinitesimal” replacement (at p) for the elusive absolute Galois group of
Q over F1.
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976 Alexandru Buium

1.3. Plan of the paper. In Section 2 we review (and give some complements
to) the basic theory of Witt vectors. Section 3 is devoted to computing Jn(C)
for certain finite flat R-algebras C whose structure constants satisfy some sim-
ple divisibility/vanishing axioms. These axioms are in particular satisfied in
the cases C = Wm(R) and C = Wm(Wm′ (R)). Using this we derive, in Section
4, the main results of this note, stated above.

1.4. Acknowledgment. This material is based upon work supported by the
National Science Foundation under Grant No. 0852591, and by IHES, Bures
sur Yvette, and MPI, Bonn. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the author and do not
necessarily reflect the views of the National Science Foundation, IHES, or MPI.
Also the author is indebted to James Borger for explaining some of his insights
(and also some technical points) about Witt vectors.

2. Witt rings

In this section we review some basic facts about the rings of Witt vectors
which we are going to need in the sequel. For most proofs we refer to [9] and
[1]. However, for the convenience of the reader, we will provide proofs for the
facts for which we could not find an explicit reference. Note that the labeling
of Witt rings in [9] and [1] are different (Wm in [9] is Wm−1 in [1]); we follow
here the labeling in [1].
Fix a prime p and m a non-negative integer or ∞. For any ring A we may
consider the ghost maps wi : A

m+1 → A, 0 ≤ i ≤ m, i < ∞,

wi(a0, ..., am) = ap
i

0 + pap
i−1

1 + ...+ piai.

Then there is a unique functor Wm from the category of rings to itself such
that, for any ring A, we have that Wm(A) = Am+1 as sets and the ghost map
w = (w0, ..., wm) : Wm(A) = Am+1 → Am+1 is a ring homomorphism where
the target Am+1 is given the product ring structure. We use the convention
∞ + 1 = ∞ − 1 = ∞ and we write W (A) = W∞(A). The ghost map w :
Wm(A) → Am+1 is an integral ring homomorphism and has a nilpotent kernel
if 0 ≤ m < ∞; it is injective if A is p-torsion free and 0 ≤ m ≤ ∞. The
rings Wm(A) are called the (p-typical) rings of Witt vectors of length m + 1.
There are natural additive maps, functorial in A, called Verschiebung maps
V : Wm−1(A) → Wm(A) defined by

V (a0, a1, a2, ...) = (0, a0, a1, a2, ...).

Also there are unique ring homomorphisms, functorial in A, called Frobenius
maps, F : Wm(A) → Wm−1(A), such that w ◦F = Fw ◦w where Fw : Am+1 →
Am is the shift

Fw(b0, b1, b2, ...) = (b1, b2, ...).

(If pA = 0 and m = ∞ we have F = W (Frob) where Frob : A → A is the p-
power Frobenius.) For m < ∞ one has also ring homomorphisms ρ : Wm(A) →
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Wm−1(A) defined by

ρ(a0, a1, ..., am) = (a0, a1, ..., am−1).

Finally one has the multiplicative map, called the Teichmüller map, [ ] = [ ]m :
A → Wm(A),

[a] = (a, 0, 0, ...).

These maps are related by the following identities:
1) F (V (u)) = pu,
2) uV (u′) = V (F (u)u′),
3) F ([a]) = [ap],
4) If pA = 0 then V (F (u)) = pu.
It is also convenient to introduce the maps V i

m = V i ◦ [ ]m−i : A → Wm(A),
0 ≤ i ≤ m < ∞. Then V i

m(a) = (0, ..., 0, a, 0, ..., 0) where a is preceded by i
zeroes. We have the identities:

(2.1) V i
m(a) · V j

m(b) = pi · V j
m(ap

j−i

b), 0 ≤ i ≤ j ≤ m,

(2.2) w(V i
m(a)) = (0, ..., 0, pia, piap, piap

2

, ...).

Also, for any N ∈ Z we have the following formula for the Teichmüller map [9]:

[N ]m =
m∑

t=0

ct(N)V t
m(1)

where c0(N) = N and

ct(N) =
Npt

−Npt−1

pt
, t ≥ 1.

If A is p-torsion free so is Wm(A). Now if A is p-torsion free and φ : A → A
is a ring homomorphism lifting the p-power Frobenius on A/pA then there is a
unique ring homomorphism λφ : A → Wm(A) such that wi(λφ(a)) = φi(a) for
all i; if in addition A/pA is perfect then λφ induces an isomorphismA/pm+1A ≃
Wm(A/pA).

Lemma 2.1. Let A be a p-torsion free ring equipped with a ring automorphism
φ : A → A lifting the p-power Frobenius on A/pA. Let 0 ≤ m < ∞ and
view Wm(A) as an A-algebra via the homomorphism λφ : A → Wm(A). Set
vi = V i

m(1), 0 ≤ i ≤ m. Then {vi; 0 ≤ i ≤ m} is an A-basis for Wm(A) and
vivj = pivj for i ≤ j.

Proof. The case A = Zp is in [1]. The general case is similar but for convenience
we recall the argument. If w : Wm(A) → Am+1, by (2.2) and by the injectiv-
ity of φ, we have that w(vi) are A-linearly independent in Am+1 (the latter
viewed as an A-algebra via (1, φ, ..., φm) : A → Am+1). Hence vi are A-linearly
independent. To check that vi span Wm(A) we proceed by induction on m.
For m = 0 this is clear. Assume spanning holds for m − 1. The kernel of the
map Wm(A) → Wm−1(A) is V m

m (A) = {(0, ..., 0, a); a ∈ A}. By induction the
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images of v0, ..., vm−1 in Wm−1(A) generate Wm−1(A) so it is enough to show
that vm generates V m

m (A) as an A-module. This follows from the equality

λφ(a) · vm = (0, ..., 0, φm(a)),

plus the fact that φ is surjective. The last assertion of the Lemma follows from
(2.1). �

Lemma 2.2. With notation as in Lemma 2.1 the Frobenius map F : Wm(A) →
Wm−1(A) is the unique φ-linear map with F (vi) = p · ρ(vi−1), 1 ≤ i ≤ m,
v0 = 1.

Proof. The equalities F (vi) = p · ρ(vi−1) follow from the identity FV = p · id.
We are left to prove that F ◦λφ = λφ ◦φ : A → Wm−1(A). It is enough to show
that w ◦ F ◦ λφ = w ◦ λφ ◦ φ. This follows from the following computation:

w ◦ F ◦ λφ = Fw ◦ w ◦ λφ

= Fw ◦ (1, φ, ..., φm)
= (φ, ..., φm)
= (1, ..., φm−1) ◦ φ
= w ◦ λφ ◦ φ.

�

Lemma 2.3. Let A be Noetherian a p-torsion free ring equipped with a ring
automorphism φ : A → A lifting the p-power Frobenius on A/pA. Let u :
A → B be a p-torsion free A-algebra, let 0 ≤ m < ∞, and view Wm(B) as

an A-algebra via the homomorphism A
λφ

−→ Wm(A)
Wm(u)
−→ Wm(B). If B is

a finitely generated A-algebra (respectively a finite A-module) then Wm(B) is
also a finitely generated A-algebra (respectively a finite A-module).

Proof. The ghost map w : Wm(B) → Bm+1 is injective and integral. Now ifB is
a finitely generated A-algebra (respectively a finite A-module) then so is Bm+1

(with the A-algebra structure given by (1, φ, ..., φm) : A → Am+1 → Bm+1),
because φ is bijective. In the finite case, by Noetherianity Wm(B) is a finite
A-algebra. In the finitely generated case it follows that Bm+1 is finite over
Wm(B) and hence, by the Artin-Tate lemma Wm(B) is a finitely generated
A-algebra. �

Next we discuss iterated Witt vectors. One proves (cf. e.g. [9]) that F :
W (A) → W (A) lifts the p-power Frobenius on W (A)/pW (A). So for A p-
torsion free, since W (A) is also p-torsion free, we have at our disposal a ring
homomorphism ∆ = λF : W (A) → W (W (A)) which composed with any ghost
map wi : W (W (A)) → W (A) equals the i-th iterate F i. Then one trivially
checks that the composition

W (A)
∆
−→ W (W (A))

w
−→ W (A)∞

w∞

−→ (A∞)∞

equals the composition

W (A)
w

−→ A∞ ∆w

−→ (A∞)∞,
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where, if we write the elements of (A∞)∞ as

((a00, a01, a02, ...), (a10, a11, a12, ...), (a20, a21, a22, ...), ...) =









a00 a01 a02 ...

a10 a11 a12 ...

a20 a21 a22 ...

... ... ... ...









then

(2.3) ∆w(a0, a1, a2, ...) =




a0 a1 a2 ...
a1 a2 a3 ...
a2 a3 a4 ...
... ... ... ...


 .

Using this plus the injectivity of the map w one immediately checks that if
ai = 0 for i ≤ m + m′ then ∆(a0, a1, a2, ...) is in the kernel of W (W (A)) →
Wm(Wm′(A)). So we have induced ring homomorphisms

∆(m,m′) : Wm+m′(A) → Wm(Wm′(A)).

These homomorphisms (and ∆) were constructed for A p-torsion free but, as
usual, one extends this construction uniquely to all rings in a functorial manner.
Also one immediately checks (composing with ghost maps) that the following
diagram is commutative:

(2.4)
W (A)

∆
−→ W (W (A))

F ↓ ↓ F

W (A)
∆
−→ W (W (A))

Lemma 2.4. Let R = W (k) be the Witt ring on a perfect field of characteristic
p and φ : R → R the Frobenius. Let 0 ≤ m,m′ < ∞. Then:
1) Wm(Wm′(R)) is a finite R-algebra, where the structure morphism is given

by R
λφ

−→ Wm(R)
Wm(λφ)
−→ Wm(Wm′(R)).

2) If Wm+m′(R) is viewed as an R-algebra via λφ : R → Wm+m′(R) then the
morphism ∆(m,m′) : Wm+m′(R) → Wm(Wm′(R)) is an R-algebra homomor-
phism.

Proof. The first assertion follows from Lemma 2.3. The second assertion follows
from the “coassociativity” property in [9], p 15. �

Lemma 2.5. For any a ∈ A, s ∈ Z+, and 0 ≤ i ≤ m < ∞ we have the following
formula in Wm(A):

V i
m(psa) =

m−i∑

t=0

ct(p
s)V i+t

m (ap
t

).
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Proof.

V i
m(psa) = V i([psa]m−i)

= V i([ps]m−i[a]m−i)

= V i(
∑m−i

t=0 ct(p
s)V t

m−i(1)V
0
m−i(a))

=
∑m−i

t=0 ct(p
s)V i(V t

m−i(1)V
0
m−i(a)))

=
∑m−i

t=0 ct(p
s)V i(V t

m−i(a
pt

))

=
∑m−i

t=0 ct(p
s)V i+t([ap

t

]m−i−t)

=
∑m−i

t=0 ct(p
s)V i+t

m (ap
t

).

�

Lemma 2.6. Let R = W (k), k a perfect field of characteristic p ≥ 5, φ : R → R
the lift of Frobenius on R, u : R → A a p-torsion free finite R-algebra (e.g.
A = Wm′(R) for some 0 ≤ m′ < ∞), let 0 ≤ m < ∞, and Wm(A) be viewed as

an R-algebra via R
λφ

−→ Wm(R)
Wm(u)
−→ Wm(A). Moreover let a ∈ A, a2 = pνa

(e.g. a = V i′

m′(1), in which case ν = i′). Then for any s ≥ 0 and 0 ≤ i ≤ m we
have

V i
m(psa) ∈ psV i

m(a) + ps+1
m−i−1∑

t=0

R · V i+t+1
m (a).

(For i = m the sum in the right hand side is, by definition, zero.)

Proof. For 0 ≤ i ≤ m onsider the R-modules

M i
m =

∑m−i
t=0

∑
r≥0R · V i+t(pra) ⊂ Wm(A)

N i
m =

∑m−i
t=0 R · V i+t(a) ⊂ M i

m.

Also set M i
m = N i

m = 0 for i > m. Since Wm(A) is a finite R-algebra the
modules M i

m and N i
m are finitely generated. By Lemma 2.5, for s ≥ 1 we have

V i
m(psa) =

∑m−i
t=0 ct(p

s)V i+t
m (apt)

= psV i
m(a) +

∑m−i
t=1 ct(p

s)V i+t
m (p(p

t−1)νa)

= psV i
m(a) +

∑m−i
t=1

∑m−i−t
r=0 ct(p

s)cr(p
(pt−1)ν)V i+t+r

m (apr )

= psV i
m(a) +

∑m−i
t=1

∑m−i−t
r=0 ct(p

s)cr(p
(pt−1)ν)V i+t+r

m (p(p
r−1)νa)

∈ psV i
m(a) + ps+1M i+1

m ,
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because for p ≥ 5, s ≥ 1, t ≥ 1, ν ≥ 1, r ≥ 0 we have ps−1|ct(p
s) and

p2|cr(p
(pt−1)ν). In particular

M i
m ⊂ N i

m + pM i
m

⊂ N i
m + p(N i

m + pM i
m) = N i

m + p2M i
m

⊂ N i
m + p2(N i

m + pM i
m) = N i

m + p3M i
m, etc.

Hence

N i
m ⊂ M i

m ⊂

∞⋂

r=1

(N i
m + prM i

m) = N i
m,

because M i
m is a finitely generated R-module and hence N i

m is p-adically sep-
arated. So M i

m = N i
m. So for all s ≥ 0 we have

V i
m(psa) ∈ psV i

m(a) + ps+1N i+1
m ,

which is what we had to prove. �

Lemma 2.7. Let R = W (k), k a perfect field of characteristic p. For 0 ≤ i ≤
m < ∞ and 0 ≤ i′ ≤ m′ < ∞ set

(2.5) vi,i′ = V i
m(V i′

m′(1)) ∈ Wm(Wm′(R)).

Then the family {vi,i′} is R-linearly independent in Wm(Wm′(R)) where the
latter is viewed as an R-algebra via the map

R
λφ

−→ Wm(R)
Wm(λφ)
−→ Wm(Wm′(R))

Proof. First it is trivial to check that the composition

(2.6) R
λφ

−→ W (R)
W (λφ)
−→ W (W (R))

w
→ W (R)∞

w∞

−→ (R∞)∞

is given by

a 7→




a φ(a) φ2(a) ...
φ(a) φ2(a) φ3(a)
φ2(a) φ3(a) φ4(a) ...
... ... ... ...


 .

Next note that the images of w∞(w(vi,i′ )) in (Rm′+1)m+1 are R-linearly in-

dependent (where (Rm′+1)m+1 is an R-algebra via the map (2.6)); indeed the
matrix

(2.7) w∞(w(vi,i′ )) =




0 ... 0 0 0 ...
... ... ... ... ... ...
0 ... 0 0 0 ...

0 ... 0 pi+i′ pi+i′ ...

0 ... 0 pi+i′p pi+i′p ...

0 ... 0 pi+i′p2

pi+i′p2

...
... ... ... ... ... ...
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with the first i rows and i′ columns zero. The assertion of the Lemma now
follows. �

Lemma 2.8. Let R = W (k), k a perfect field of characteristic p ≥ 5. For
0 ≤ i ≤ m < ∞ and 0 ≤ i′ ≤ m′ < ∞ let vi,i′ be as in ( 2.5). Then for
0 ≤ i ≤ j ≤ m, i′, j′ ∈ {0, ...,m′}, and 1 ≤ t ≤ m − j there exist unique
elements cii′jj′t ∈ R such that the following equalities hold in Wm(Wm′(R)):

vi,i′ · vj,j′ =











pi+i′pj−i

vj,j′ + pi+i′pj−i+1 ∑m−j
t=1 cii′jj′t · vj+t,j′ , i′ ≤ j′

pi+i′(pj−i−1)+j′vj,i′ + pi+i′(pj−i−1)+j′+1 ∑m−j
t=1 cii′jj′t · vj+t,i′ , i′ ≥ j′

Proof. Uniqueness of the c’s follows from Lemma 2.7. Let us prove the existence
of the c’s. We have

vi,i′ · vj,j′ = piV j
m(V i′

m′(1)p
j−i

V j′

m′(1))

= piV j
m(p(p

j−i−1)i′V i′

m′(1)V
j′

m′(1)).

The latter equals piV j
m(pi

′pj−i

V j′

m′(1)) if i′ ≤ j′ and piV j
m(pi

′(pj−i−1)+j′V i′

m′(1))
if i′ ≥ j′. We conclude by Lemma 2.6. �

Lemma 2.9. Let R = W (k), k a perfect field of characteristic p ≥ 5, let
m,m′ < ∞, and view Wm(Wm′ (R) as an R-algebra via the homomorphism
Wm(λφ) ◦ λφ : R → Wm(R) → Wm(Wm′(R)). Then {vi,i′ ; 0 ≤ i ≤ m, 0 ≤ i′ ≤
m′} is an R-basis for Wm(Wm′ (R)).

Proof. Linear independence was proved in Lemma 2.7. To prove generation we
fix m′, set A = Wm′(R), and proceed by induction on m. The case m = 0 is
Lemma 2.1. For the induction step we need to show that the kernel of the map
Wm(A) → Wm−1(A) (which equals V m(A) = {(0, ..., 0, a); a ∈ A}) is generated
as an R-module by vm,j′ . By Lemma 2.1 the R-module A is generated by the
vj′ ’s and note that vm,j′ = V m(vj′ ). So to conclude it is enough to show
that the map V m : Aφm → V m(A) is an isomorphism of R-modules where

Aφm is A viewed as an R-module via the map R
φm

−→ R
λφ

→ A. The map
V m : Aφm → V m(A) is clearly a bijection. So we are reduced to check that
V m : Aφm → Wm(A) is an R-module homomorphism. It is enough to check
that the composition w ◦ V m : Aφm → Wm(A) → Am+1 (which by the way is
given by a 7→ (0, ..., 0, pma)), is an R-module homomorphism where Am+1 is
an R-algebra via the map (λφ)

m+1 ◦ (1, φ, ..., φm) : R → Rm+1 → Am+1. This
is however trivial to check. �

Lemma 2.10. With notation as in Lemmas 2.1 and 2.9 the comultiplication
∆ = ∆(m,m′) : Wm+m′(R) → Wm(Wm′(R)) is given by

(2.8) ∆vi′′ =
∑

i,i′

ai,i′,i′′vi,i′ , 0 ≤ i′′ ≤ m+m′,

where ai,i′,i′′ ∈ Z. Moreover we have the following relations:
1) ai,i′,i′′ = 0 for i+ i′ < i′′,
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2) ai,i′,i′′ = 1 for i+ i′ = i′′,
3) ai,0,i′′ = 0 for i > i′′,
4) ai,i′,i′′ = 0 for i′ > i′′,
5) ai,i′,i′′ ∈ pZ for i+ i′ > i′′,
6) For i+ i′ ≥ i′′ + 1, and i, i′ ≥ 1,

(2.9) ai,i′,i′′ = −

i−1∑

j=i′′−i′

aj,i′,i′′p
j+i′pi−j−i−i′ .

Note that the relations above allow one to recurrently determine all the coeffi-
cients ai,i′,i′′ .

Proof of Lemma 2.10. LetK = Frac(R) and letM(i′′) be the linear subspace of

the space of all (m+1)×(m′+1)-matrices (Km′+1)m+1 consisting of all matrices
(ri,i′ ) with ri,i′ = 0 for i + i′ < i′′. Since the elements w∞(w(vi,i′ )) ∈ M(i′′)
for i + i′ ≥ i′′ and since these elements are K-linearly independent it follows
that these elements form a basis of M(i′′). By (2.2) and (2.3) we have that

w∞(w(∆(vi′′ ))) =




0 ... 0 0 pi
′′

pi
′′

...

0 ... 0 pi
′′

pi
′′

pi
′′

...

0 ... pi
′′

pi
′′

pi
′′

pi
′′

...
... ... ... ... ... ... ...




with i′′ zeros on the first line. So w∞(w(∆(vi′′ ))) belongs to M(i′′), hence
we get an equality as in (2.8) with ai,i′,i′′ ∈ K and relation 1) holding. Since
vi,i′ form a basis of Wm(Wm′ (R)) we get that ai,i′,i′′ ∈ R. Picking out the
(i, i′)-entry in (2.8) and using (2.7) we get the relation

(2.10) pi
′′

=
∑

j+j′≥i′′,j≤i,j′≤i′

aj,j′,i′′p
j+j′pi−j

.

Relations 2) follows immediately. Relation 3) follows by induction. To prove
relation 6) subtract the equality (2.10) with i′ replaced by i′ − 1 from the

equality (2.10) and divide by pi+i′ . Relation 4) for i = 0 follows by induction
from (2.10). Relation 4) for arbitrary i follows by induction from 6). Relations
1), 2), and 6) imply relation 5) by induction. By 1), 2), and 5) we have
ai,i′,i′′ ∈ Z for all i, i′, i′′. �

Remark 2.11. It is easy to see directly from the definitions that for any Zp-
algebra C we have an isomorphism of Qp-algebras

Jn(C) ⊗Zp
Qp ≃ (C ⊗Zp

Qp)
⊗(n+1)

which for any c ∈ C sends cφ
s

:= φs(c) into 1 ⊗ ... ⊗ 1 ⊗ c ⊗ 1 ⊗ ... ⊗ 1 (c
on position s with positions labled from 0 to n). Hence we have Qp-algebra
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isomorphisms

(2.11)

Jn(Wm(Zp))⊗Zp
Qp ≃ (Wm(Zp)⊗Qp)

⊗(n+1)

≃ (
∏m+1

Qp)
⊗(n+1)

≃
∏(m+1)n+1

Qp

where
∏N

means N -fold product in the category of rings. If we set v0 = 1 and

vm+1 = 0 then the isomorphism Wm(Zp) ⊗ Qp ≃
∏m+1

Qp is defined by the
family of orthogonal idempotents

vj
pj

−
vj+1

pj+1
∈ Wm(Zp)⊗Qp, 0 ≤ j ≤ m.

Hence the isomorphism (2.11) is defined by the family of orthogonal idempo-
tents

(2.12)

n∏

s=0

(
vjs
pjs

−
vjs+1

pjs+1

)φs

∈ Jn(Wm(Zp))⊗Zp
Qp, j0, ..., jn ∈ {0, ...,m}.

In particular the whole complexity of Jn(Wm(Zp)) disappears after tensoriza-
tion with Qp and hence it is an “integral” phenomenon. On the other hand,
by the above, the Zp-algebra

Jn(Wm(Zp))/torsion

is a free Zp-module of rank (m + 1)n+1 that retains most (but not all) of the
complexity of Jn(Wm(Zp)). For instance if one considers the surjection

(2.13) Jn(Wm(Zp)) → Jn(Wm(Zp))/torsion

then the target of this surjection is an Fp-vector space of dimension (m+1)n+1

whereas the source of this surjection is, by Theorem 1.1, an infinite dimensional
Fp-vector space; in fact this source, Jn(Wm(Zp)), is a product of two algebras:

the identity component of Jn(Wm(Zp)) and the complement of the identity
component. By Theorem 1.1, the identity component is a polynomial algebra
in

δnv1, ..., δ
nvm ∈ Jn(Wm(Zp))

over an Artin local subring of Jn(Wm(Zp)) whose dimension as an Fp-vector
space is 2pn−1mn. Indeed one can take as an Fp-vector space basis for this
Artin ring the elements

(2.14) ve0j0 (δvj1 )
e1 ...(δn−1vjn−1)

en−1 ∈ Jn(Wm(Zp)),

e0 ∈ {0, 1}, e1, ..., en−1 ∈ {0, ..., p− 1}.

It is interesting to compare the two families (2.12) and (2.14).
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Remark 2.12. We end by discussing the link between p-jets and Witt vectors.
The discussion that follows will be helpful to set up notation for later and to put
things into the right perspective. However, the adjunction properties that will
be explained below have, by themselves, very little impact on the unraveling
of the structure of p-jet spaces.
The following concept was introduced independently by Joyal [10] and the
author [6]. A p-derivation from a ring A into an A-algebra B is a map of sets
δ : A → B such that the map A → W1(B), a 7→ (a, δa) is a ring homomorphism.
(Here we identify a with a·1B.) A δ-ring is a ringA equipped with a p-derivation
A → A. The category of δ-rings is the category whose objects are the δ-rings
and whose morphisms are the ring homomorphisms that commute with δ. By
definition a p-derivation δ : A → B satisfies

δ(x+ y) = δx+ δy + Cp(x, y)
δ(xy) = xpδy + ypδx+ pδxδy,

where Cp is the polynomial:

Cp(X,Y ) = p−1(Xp + Y p − (X + Y )p) ∈ Z[X,Y ].

If δ is as above then φ : A → B, φ(x) = xp + pδx, is a ring homomorphism.
Note that δ(xy) = xpδy + φ(y)δx = ypδx+ φ(x)δy. Also δ and φ commute. If
A is p-torsion free then δ is, of course, uniquely determined by φ; also

(2.15) δ(x1 + ...+ xm) = δx1 + ...+ δxm + Cmp(x1, ..., xm),

where

Cmp(X1, ..., Xm) := p−1(

m∑

i=1

Xp
i − (

m∑

i=1

Xi)
p) ∈ Z[X1, ..., Xm].

Note that for any ring A the ring W (A) has a structure of δ-ring which func-

torial in A; it is given by the composition W (A)
∆
−→ W (W (A)) → W1(W (A)).

According to a result of Joyal [10] (which will not be needed in the sequel) for
any ring A and any δ-ring B we have

Homrings(B
!, A) ≃ Homδ−rings(B,W (A)),

where ! is the forgetful functor from δ-rings to rings. More generally if R is
a δ-ring by a δ-ring over R we shall mean a δ-ring equipped with a δ-ring
homomorphism from R into it. Similarly a ring over R will mean an R-algebra.
Then the above adjunction property implies that for any δ-ring B over R and
any ring A over R,

Homrings/R(B
!, A) ≃ Homδ−rings/R(B,W (A)),

whereW (A) is an R-algebra via R → W (R) → W (A). Let now R = W (k) with
k a perfect field of characteristic p. Recall that for any R-algebra we defined
in the Introduction R-algebras Jn(C) and J∞(C). The set theoretic maps
δ : Jn(C) → Jn+1(C) and δ : J∞(C) → J∞(C) constructed in the Introduction
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are then p-derivations and we have the following adjunction property: for any
δ-ring D over R and any ring C over R we have

Homrings/R(C,D
!) ≃ Homδ−rings/R(J

∞(C), D).

Putting together the two adjunction properties above we get

Homrings/R(J
∞(C)!, A) ≃ Homδ−rings/R(J

∞(C),W (A)) ≃ Homrings/R(C,W (A)!)

for any rings A and C over R.
It is sometimes useful to use a universality property that is more refined than
that of J∞. To that purpose let us define a prolongation sequence to be a
sequence

B0 ϕ0
−→ B1 ϕ1

−→ B2 ϕ2
−→ ...

of ring homomorphisms which is equipped with p-derivations

B0 δ
−→ B1 δ

−→ B2 δ
−→ ...

such that ϕn ◦ δ = δ ◦ϕn−1 for all n. We denote by B∗ a prolongation sequence
as above. A morphism of prolongation sequences B∗ = (Bn) and C∗ = (Cn) is
by definition a sequence of morphisms Bn → Cn that commute, in the obvious
sense, with the ϕs and the δs. Clearly, for any ring C, J∗(C) := (Jn(C)) is
naturally a prolongation sequence. Moreover, for any prolongation sequence
D∗ = (Dn) and any ring C we have

Homrings(C,D
0) ≃ Homprol.seq.(J

∗(C), D∗).

Finally consider the prolongation sequence R∗ = (Rn) where all Rn are
R = W (k), k a perfect field of characteristic p, and all ϕ are the identity.
By a prolongation sequence over R we understand a morphism of prolongation
sequences R∗ → B∗; we have a natural notion of morphism of prolongation
sequences over R∗. Clearly, for any ring C over R, J∗(C) := (Jn(C)) is natu-
rally a prolongation sequence over R. Moreover, for any prolongation sequence
D∗ = (Dn) over R and any ring C over R we have

Homrings/R(C,D
0) ≃ Homprol.seq./R(J

∗(C), D∗).

Note that for any ring A over R the morphisms ∆ : Wm(A) → W1(Wm−1(A))
induce p-derivations δ : Wm(A) → Wm−1(A) which, for each N , fit into a
prolongation sequence

WN (A)
δ
→ WN−1(A)

δ
→ ...

δ
→ W0(A) = A → 0 → 0 → ...

This is a prolongation sequence over R because of the φ-linearity of F :
Wm(R) → Wm−1(R) and hence of F : Wm(A) → Wm−1(A); cf. Lemma 2.2.
So by the universality property for prolongation sequences we have a natural
(compatible) family of R-homomorphisms:

(2.16) s : Jn(WN (A)) → WN−n(A)

for 0 ≤ n ≤ N . Note that for any R-algebra A the p-derivation δ : Wm(A) →
Wm−1(A) sends vi into

(2.17) δvi = ρ(vi−1)− pi(p−1)−1ρ(vi)
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for i = 1, ...,m, where v0 = 1. Indeed it is enough to show this for A = R
in which case this follows from Lemmas 2.1 and 2.2. Finally note that by
the commutativity of (2.4) if m′ is fixed and m varies the morphisms ∆ :
Wm+m′(R) → Wm(Wm′ (R)) fit into a morphism of prolongation sequences.
This induces commutative diagrams

(2.18)
Jn(Wm+m′(R))

Jn(∆)
−→ Jn(Wm(Wm′(R)))

s ↓ ↓ s

Wm+m′−n(R)
∆
−→ Wm−n(Wm′(R))

Remark 2.13. If the upper row of the diagram 2.18, for m,m′, n variable, is
viewed as the “Lie groupoid of the integers” (i.e. an arithmetic analogue, for
the integers, of the Lie groupoid of the line) then one is tempted to view the
bottom row of the above diagram as an analogue of a “subgroupoid” of that
“Lie groupoid”. However this candidate for a “subgroupoid” is contained in
the “complement of the identity component” of the “Lie groupoid of integers”;
cf. Remark 4.7.

3. p-jets and p-triangular bases

Let R be any ring, and let C be a commutative unital R-algebra, equipped
with an R-algebra homomorphism C → R. Let C+ be the kernel of this
homomorphism and assume C+ is a free R-module of finite rank. Let {vα;α ∈
Ω} be an R-basis of C+ where Ω is a finite set equipped with a total order ≤.
Write

vα · vβ =
∑

γ∈Ω

cαβγvγ

for α ≤ β, where cαβγ ∈ R. Let x be a collection of variables xα indexed by
α ∈ Ω and

Qαβ = xαxβ −
∑

γ∈Ω

cαβγxγ ∈ R[x].

Lemma 3.1. The R-algebra map

R[x]/(Qαβ;α ≤ β) → C

sending xα 7→ vα is an isomorphism.

Proof. Indeed the source is generated as an R-module by 1 and the classes of
xα so the algebra map above is injective (because 1 and the vα’s are linearly
independent) and surjective (because 1 and the vα’s generate C). �

Definition 3.2. Let C and C+ be as above and let p be a prime. Let us say
that vα is a p-triangular basis of C+ if for all α ≤ β and all γ the structure
constants cαβγ satisfy the following conditions:
1) cαβγ = 0 for γ < α;
2) cαβγ ≡ 0 mod p2 for γ 6= β;
3) cαββ ≡ pǫαβ mod p2 where ǫαβ ∈ {0, 1}.
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For the rest of this section, we assume that C+ possesses a p-triangular basis
vα, α ∈ Ω. We also assume R = W (k) for k a perfect field of characteristic
p ≥ 3.
Let A = R{x} = R[x, x′, x′′, ...] and An = R[x, x′, ..., x(n)]. We start by recall-
ing some filtrations from [8]. Let

A{n} = An + pAn+1 + p2An+2 + ... ⊂ A.

Also let

I = (x, x′, x′′, ...) ⊂ A.

Consider the ideal I [p] ⊂ A generated by all elements of the form pf and fp

where f ∈ I; equivalently I [p] ⊂ A is the ideal generated by all elements of the

form px
(j)
α and (x

(j)
α )p where α ∈ Ω, j ≥ 0. It is trivial to check (cf. [8]) that

(3.1) δ(A{n}) ⊂ A{n+1}, φ(A{n}) ⊂ A{n}, δ(I [p]) ⊂ I [p].

(3.2) δ(pi+1A{n}) ⊂ piA{n}, δ(pi+1I) ⊂ piI.

For any set S let us denote by [S] an arbitrary element of S. In particular for
our algebra C and the V -basis vα of C+,

Qαβ = xαxβ − pǫαβxβ + p2[A0 ∩ I]

and Qαβ depends only on the variables xγ with γ ≥ α.

Finally let Q(n) ⊂ An be the ideal generated by

{δrQαβ;α ≤ β, 0 ≤ r ≤ n}.

Note that if F,G ∈ An and F ≡ Gmod Q
(n−1)An then δF ≡ δGmod Q

(n)An+1.
Here is our main computation in characteristic zero.

Theorem 3.3. Assume C+ has a p-triangular basis and let Qαβ and Q
(n) ⊂ An

be as above. Then for n ≥ 1 and α ≤ β we have the congruences

δnQαβ ≡ Fαβn mod Q
(n−1)An

in the ring An where

Fαβn =







































px′
αx

′
β − pǫαβx

′
β + p[A{0}

∩ I ], n = 1

(x′
α)

pφ(x′
β) + (x′

β)
pφ(x′

α)− (x′
αx

′
β)

p
− ǫαβφ(x

′
β) + [A{0}

∩ I [p]], n = 2

(x′
α)

pn−1

φ(x
(n−1)
β ) + (x′

β)
pn−1

φ(x
(n−1)
α )− ǫαβφ(x

(n−1)
β )

+[A{n−2}
∩ I [p]], n ≥ 3,

and Fαβn only depends on the variables indexed by γ ≥ α.
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Proof. Note that xs
α ≡ p2[I] mod Q

(0) for s ≥ 3. We get the following congru-
ences mod Q

(0)A1:

δQαβ = δ(xαxβ)− δ(ǫαβpxβ) + δ(p2[A{0} ∩ I]) + p[A{0} ∩ I]

= xp
αx

′
β + xp

βx
′
α + px′

αx
′
β − ǫαβx

p
βδp− ǫαβpx

′
β + p[A{0} ∩ I]

≡ p2[A{1} ∩ I] + px′
αx

′
β − pǫαβx

′
β + p[A{0} ∩ I]

= px′
αx

′
β − pǫαβx

′
β + p[A{0} ∩ I].

Using the fact that δp ≡ 1 mod p we get the following congruences mod Q
(1)A2:

δ2Qαβ ≡ δ(px′
αx

′
β)− δ(pǫαβx

′
β) + δ(p[A{0}

∩ I ])

+C3p(px
′
αx

′
β,−pǫαβx

′
β, [A

{0}
∩ I [p]])

≡ (x′
αx

′
β)

p(δp) + pδ(x′
αx

′
β)− δ(pǫαβ)(x

′
β)

p
− pǫαβx

′′
β + [A{0}

∩ I [p]]

≡ (x′
αx

′
β)

p + p((x′
α)

px′′
β + (x′

β)
px′′

α + p[A2
∩ I ])

−ǫαβφ(x
′
β) + [A{0}

∩ I [p]]

= (x′
α)

pφ(x′
β) + (x′

β)
pφ(x′

α)− (x′
αx

′
β)

p
− ǫαβφ(x

′
β) + [A{0}

∩ I [p]].

Using the fact that the 5 terms above are in A{1} ∩ I [p], the fact that φδ = δφ,
and the fact that δ((x′

i)
p), δ((x′

i)
p(x′

j)
p) ∈ pA2 ∩ I [p] ⊂ A{1} ∩ I [p] we get the

following congruence mod Q
(2)A3:

δ3Qαβ ≡ δ((x′
α)

pφ(x′
β)) + δ((x′

β)
pφ(x′

α))− δ((x′
αx

′
β)

p)

−δ(ǫαβφ(x
′
β)) + δ([A{0}

∩ I [p]]) + C5p([A
{1}

∩ I [p]], ..., [A{1}
∩ I [p]])

≡ δ((x′
α)

pφ(x′
β)) + δ((x′

β)
pφ(x′

α))− δ(ǫαβφ(x
′
β)) + [A{1}

∩ I [p]]

≡ (x′
α)

p2δ(φ(x′
β)) + φ2(x′

β)δ((x
′
α)

p) + (x′
β)

p2δ(φ(x′
α))

+φ2(x′
α)δ((x

′
β)

p)− ǫαβδ(φ(x
′
β)) + [A{1}

∩ I [p]]

≡ (x′
α)

p2φ(x′′
β) + (x′

β)
p2φ(x′′

α)− ǫαβφ(x
′′
β) + [A{1}

∩ I [p]].

Finally using the same kind of computation as for δ3Qαβ one proves by induc-

tion on n that for n ≥ 3 we have the following congruence mod Q
(n−1)An:

δnQαβ ≡ (x′
α)

pn−1

φ(x
(n−1)
β )+(x′

β)
pn−1

φ(x(n−1)
α )−ǫαβφ(x

(n−1)
β )+[A{n−2}∩I [p]].

The fact that Fαβn only depends on the variables indexed by γ ≥ α follows
simply from the fact that for any pair α ≤ β we can make the computations
above in the rings with variables indexed by indices γ ≥ α. �
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Let B = B/pB for any ring B; also for b ∈ B let b ∈ B be the class of b. Set

k = R/pR. Then the ideal I [p] in A = k[x, x′, x′′, ...] is generated by the set

{(x
(r)
α )p; r ≥ 0, α ∈ Ω} and it is trivial to see that we have an equality of ideals

A{n−2} ∩ I [p] = An−2 ∩ I [p] = ((x(r)
α )p; 0 ≤ r ≤ n− 2, α ∈ Ω)

in the ring

An−2 = k[x, x′, ..., x(n−2)].

Set Fαβ0 = Qαβ . We get the following:

Corollary 3.4.

Fαβn =



















































xαxβ, n = 0

0, n = 1

(x′
αx

′
β)

p
− ǫαβ(x

′
β)

p +Gαβ2, n = 2

(x′
α)

pn−1

(x
(n−1)
β )p + (x′

β)
pn−1

(x
(n−1)
α )p − ǫαβ(x

(n−1)
β )p +Gαβn, n ≥ 3,

for α ≤ β, where

Gαβn ∈ ((x(r)
γ )p; γ ≥ α, 0 ≤ r ≤ n− 2) ⊂ k[xγ , ..., x

(n−2)
γ ; γ ≥ α].

Corollary 3.5. The ideal Q(n) ⊂ An is generated by the set

{Fαβr; α ≤ β, 0 ≤ r ≤ n}.

In particular:

Jn(C) = An/(Fαβr; α ≤ β, 0 ≤ r ≤ n),

Jn(C) = An/(Fαβr; α ≤ β, 0 ≤ r ≤ n).

Since

Q(n) ⊂ (xαxβ , (x
(r)
α )p;α, β ∈ Ω, 1 ≤ r ≤ n− 1) ⊂ An

we get

Corollary 3.6. There is a natural surjection

(3.3) Jn(C) →
An

(xαxβ , (x
(r)
α )p;α, β ∈ Ω, 1 ≤ r ≤ n− 1)

.

In some important cases the above surjection is close to an isomorphism as we
shall see next.

Definition 3.7. Assume C+ has a p-triangular basis vα, α ∈ Ω. Let

{γ ∈ Ω; ǫγγ = 1} = {γ1, ..., γN}, γ1 < ... < γN .

We say that vα is a non-degenerate p-triangular basis if min Ω = γ1 and
ǫγiγ = 1 for all i = 1, ..., N and all γi ≤ γ < γi+1. (Here and later we discard
the condition γ < γi+1 if i = N .)
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Remark 3.8. Let m be a non-negative integer. Let Ω = Ωm = {1, ...,m} be
equipped with the usual total order and consider the R-algebra C = Wm(R),
the ghost homomorphism w0 : Wm(R) → R, and its kernel Wm(R)+. Then by
Lemma 2.1 v1, ..., vm is a non-degenerate p-triangular basis of Wm(R)+; indeed
{i ∈ Ωm; ǫii = 1} = {1} and ǫ1j = 1 for j = 1, ...,m.

Remark 3.9. Let m,m′ be non-negative integers. Consider the set

Ω := Ωm,m′ = {(i, i′) ∈ Z× Z; 0 ≤ i ≤ m, 0 ≤ i′ ≤ m′}\{(0, 0)},

ordered by the lexicographic order: (i, i) ≤ (j, j′) if either i < j or i = j,
i′ ≤ j′. Consider the R-algebra Wm(Wm′ (R)) (p ≥ 5) and the composition of
ghost maps w0 ◦w0 : Wm(Wm′ (R)) → R with kernel Wm(Wm′(R))+. Consider
the R-basis v(i,i′) = vi,i′ of Wm(Wm′(R))+ where (i, i′) ∈ Ωm,m′ ; cf Lemma
2.9. Then vi,i′ is a non-degenerate p-triangular basis by Lemma 2.8; note that
for m,m′ ≥ 1

{(i, i′) ∈ Ωm,m′ ; ǫ(i,i′)(i,i′) = 1} = {(0, 1), (1, 0)}.

Going back to our general C, viewed with augmentation C → C/C+ = R, the

following is a computation of the identity component of Jn(C) in the presence
of non-degenerate p-triangular bases.
With notation as in Definition 3.7 we have

Theorem 3.10. Assume C+ has a non-degenerate p-triangular basis vα and
set

π =
N∏

i=1

(δvγi
− 1) ∈ J1(C).

Then the image of πp in J2(C) is idempotent and for all n ≥ 2 we have a
natural isomorphism

(3.4) Jn(C)π ≃
An

(xαxβ , (x
(r)
α )p;α, β ∈ Ω, 1 ≤ r ≤ n− 1)

sending the class of δrvα into the class of x
(r)
α for all r ≥ 0 and all α.

By the theorem it follows that Jn(C)π, respectively Jn(C)1−π, are isomor-
phic to the identity component, respectively to the complement of the identity
component, of Jn(C).

Proof of Theorem 3.10. Since the map (3.3) sends π into the class of the poly-

nomial Φ =
∏N

i=1(x
′
γi

− 1) (which is an invertible element) we get a surjective
map from the left hand side of (3.4) to the right hand side of (3.4). In order
to prove that the latter map is an isomorphism it is enough to show that the
inclusion of ideals(

Q(n)
)
Φ
⊂ (xαxβ , (x

(r)
α )p;α, β ∈ Ω, 1 ≤ r ≤ n− 1)Φ

in the ring (An)Φ is an equality. Clearly xαxβ ∈
(
Q(n)

)
Φ
. Next we show

that for all i = 1, ..., N , all γi ≤ γ < γi+1, and all 1 ≤ r ≤ n − 1 we have
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(x
(r)
γ )p ∈

(
Q(n)

)
Φ
. We proceed by induction on N − i ≥ 0. The proof of the

case N − i = 0 is similar to the proof of the induction step so we skip it. For
the induction step assume the assertion is true for i + 1, i + 2, ..., N , for some
index 1 ≤ i < N , and let us prove it for i. We proceed by induction on r ≥ 1.
To check the base case r = 1 note that for all γ ∈ Ωi we have

Fγiγ2 = (x′
γi

− 1)p(x′
γ)

p +Gγiγ2 ∈
(
Q(n)

)
Φ
.

Since Gγiγ2 ∈
(
Q(n)

)
Φ
we get (x′

γ)
p ∈

(
Q(n)

)
Φ
. Now let 3 ≤ s ≤ n and assume

that for all 1 ≤ r ≤ s − 2 and all γ ∈ Ωi we have (x
(r)
γ )p ∈

(
Q(n)

)
Φ
; we want

to show that (x
(s−1)
γ )p ∈

(
Q(n)

)
Φ
. Note that

Fγiγs = (x′
γi
)p

s−1

(x(s−1)
γ )p + (x′

γ)
ps−1

(x(s−1)
γi

)p − (x(s−1)
γ )p +Gγiγs ∈

(
Q(n)

)
Φ
.

Recall that Gγiγs is in the ideal generated by (x
(r)
µ )p with µ ≥ γi and 0 ≤ r ≤

s− 2. By the induction hypotheses (and the fact that xp
α ∈

(
Q(n)

)
Φ
) we have

that

(x′
γi
)p

s−1

, (x′
γ)

ps−1

, Gγiγs ∈
(
Q(n)

)
Φ
.

It follows that (x
(s−1)
γ )p ∈

(
Q(n)

)
Φ
which ends the induction on r and hence

the induction on i as well. To conclude the proof of the Theorem note that

F γiγi2 −Gγiγi2 = (x′
γi
)2p − (x′

γi
)p ∈ Q(2)

so the image of (δvγi
)p in J2(C) is idempotent hence so is the image of πp. �

Finally we need the following

Lemma 3.11. For U1, U2 ∈ I ∩ A0 and n ≥ 0 we have

δn(U1 + pU2) = δnU1 + [I [p] ∩ A{n}].

Proof. We proceed by induction on n. The case n = 0 is tautological. For the
induction step,

δn+1(U1 + pU2) = δn+1U1 + δ([I [p] ∩ A{n}])

+Cp(δ
nU1, [I

[p] ∩ A{n}])

= δn+1U1 + [I [p] ∩A{n+1}]

which ends the proof. �

Corollary 3.12. Assume the notation in Theorem 3.10 and let u1, u2 ∈ C+.
Then for any i = 0, ..., n− 1 we have

δi(u1 + pu2) = δi(u1)
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in the ring Jn(C)π. In particular for all u1, ..., us, u ∈ C+ we have

δ(

s∑

t=1

ut + pu) =

s∑

t=1

δ(ut).

Proof. Let u1, u2 be the classes of polynomials U1, U2 ∈ I ∩A0. Then the first

assertion follows from Lemma 3.11 because, for i ≤ n−1, I [p] ∩A{i} is contained
in the denominator of the fraction in Equation 3.4. The second assertion follows
from the fact that the difference between δ(

∑s
t=1 ut) and

∑s
t=1 δ(ui) is in the

square of the ideal C+ and hence its reduction mod p s zero. �

4. Applications to p-jets of Witt rings

In this section we continue to write R = W (k) for k a perfect field of char-
acteristic p ≥ 5. In view of Remark 3.8 the results in the previous sec-
tion apply to the algebra C = Wm(R) equipped with the homomorphism
w0 : Wm(R) → R and with the non-degenerate p-triangular basis v1, ..., vm
indexed by Ωm = {1, ...,m}. For m = 1 we have:

Corollary 4.1.

Jn(W1(R)) =





k[x,x′]
(x2) , n = 1

k[x,x′,x′′]
(x2,((x′)2−x′)p) , n = 2

k[x,x′,...,x(n)]

(x2,((x′)2−x′)p,(2x′−1)pr−1(x(r−1))p+G11r ;3≤r≤n)
, n ≥ 3,

where G11r ∈ ((x(s))p; 0 ≤ s ≤ r − 2) ⊂ k[x, ..., x(r−2)]. In particular, since

2x′ − 1 is invertible in the ring k[x′]/(((x′)2 − x′)p), the ring Jn(W1(R)) is

a polynomial ring in m variables x
(n)
1 , ..., x

(n)
m over an Artin ring. This Artin

ring is a free module of rank pn−1 over the ring W1(R) = k[x]/(x2). Moreover

the ring J∞(W1(R)) is a flat integral extension of W1(R).

Set π = 1− δv1. For m ≥ 1 and n ≥ 2 we have a splitting

Jn(Wm(R)) =
(
Jn(Wm(R))

)
π
×
(
Jn(Wm(R))

)
1−π

.

For the identity component we have the following direct consequence of Theo-
rem 3.10:

Corollary 4.2. For n ≥ 2

(
Jn(Wm(R))

)
π
≃

k[x
(r)
i ; i ∈ Ωm, 0 ≤ r ≤ n]

(xixj , (x
(r)
i )p; i, j ∈ Ωm, 1 ≤ r ≤ n− 1)

.

In particular the above ring is a polynomial ring in m variables x
(n)
1 , ..., x

(n)
m

over a local Artin ring. This local Artin ring is a free module of rank pm(n−1)
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over Wm(R). Moreover the ring

(
J∞(Wm(R))

)
π
=

k[x
(r)
i ; i ∈ Ωm, r ≥ 0]

(xixj , (x
(r)
i )p; i, j ∈ Ωm, r ≥ 1)

is local and is a flat integral extension of Wm(R).

On the other hand the canonical lifts Jn(Wm(R)) → R of w1, ..., wm send
δv1 7→ δp ∈ R× so they factor through Jn(Wm(R))1−π → R. In particular

the complement of the identity component,
(
Jn(Wm(R))

)
1−π

, is non-zero.

Moreover for m ≥ 2 this ring is, in some sense, more “degenerate” than the
identity component. Indeed this ring is trivially seen to be the quotient of
(An)x′

1
by the ideal generated by the following elements:

1) xixj , 1 ≤ i ≤ j ≤ m,
2) (x′

1)
p − 1,

3) (x′
i)

p(x′
j)

p, 2 ≤ i ≤ j ≤ m,

4) (x
(r−1)
1 )p +G11r, 3 ≤ r ≤ n,

5) G1jr , 2 ≤ j ≤ m, 3 ≤ r ≤ n,

6) Gijr , 2 ≤ i ≤ j ≤ m, 3 ≤ r ≤ n.

Since the variables x
(n−1)
2 , ..., x

(n−1)
m , x

(n)
1 , ..., x

(n)
m do not appear in any of the

above generators, and since, as we saw, the ring
(
Jn(Wm(R))

)
1−π

is non-zero

we get:

Corollary 4.3. For n ≥ 3 and m ≥ 2 the ring
(
Jn(Wm(R))

)
1−π

is isomor-

phic to a polynomial ring in 2m − 1 variables x
(n−1)
2 , ..., x

(n−1)
m , x

(n)
1 , ..., x

(n)
m

over some non-zero ring.

Assume from now on p ≥ 5. In a similar way, in view of Remark 3.9, the
results in the previous section apply to the R-algebra C = Wm(Wm′(R)),
1 ≤ m,m′ < ∞, equipped with the homomorphism w0◦w0 : Wm(Wm′(R)) → R
and with the non-degenerate p-triangular basis vi,i′ indexed by Ω = Ωm,m′ in
loc. cit. In particular if Π = (1 − δv0,1)(1− δv1,0) we have a splitting

Jn(Wm(Wm′(R))) =
(
Jn(Wm(Wm′ (R)))

)
Π
×
(
Jn(Wm(Wm′(R)))

)
1−Π

.

For the identity component we have the following direct consequence of Theo-
rem 3.10:

Corollary 4.4. For n ≥ 2 we have

(
Jn(Wm(Wm′(R)))

)
Π
≃

k[x
(r)
ii′ ; (i, i

′) ∈ Ω, 0 ≤ r ≤ n]

(xii′xjj′ , (x
(r)
ii′ )

p; (i, i′), (j, j′) ∈ Ω, 1 ≤ r ≤ n− 1)
.

Next consider the comultipication R-algebra map

∆ : Wm+m′(R) → Wm(Wm′(R))
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and the induced R-algebra maps

(4.1) Jn(∆) : Jn(Wm+m′(R)) → Jn(Wm(Wm′(R))).

Lemma 4.5. For n ≥ 2 the above R-algebra map induces an R-algebra map

Jn(∆) : Jn(Wm+m′(R))π → Jn(Wm(Wm′ (R)))Π.

Proof. It is enough to show that Jn(∆) in (4.1) sends π = 1 − δv1 into an

invertible element of Jn(Wm(Wm′(R)))Π. But by Lemmas 2.10 and 3.12 we
have the following congruences mod p:

Jn(∆)(1 − δv1) = 1− δ(∆v1) ≡ 1− δv1,0 − δv0,1 ≡ Π− (δv1,0)(δv0,1)

and we conclude by the fact that the image of (δv1,0)(δv0,1) in J1(Wm(Wm′(R))
is nilpotent; cf. Corollary 4.4. �

By the identifications in Lemmas 4.2 and 4.4 we get that the R-algebra map
in Lemma 4.5 induces an R-algebra map

(4.2) J∞(∆) :
k[x

(r)
i ; i ∈ Ωm+m′ , r ≥ 0]

(xixj , (x
(r)
i )p; r ≥ 1)

→
k[x

(r)
ii′ ; (i, i

′) ∈ Ωm,m′ , r ≥ 0]

(xii′xjj′ , (x
(r)
ii′ )

p; r ≥ 1)
.

Corollary 4.6. For 1 ≤ i′′ ≤ m+m′ we have that J∞(∆) sends the class of

x
(r)
i′′ into the class of

∑

i+i′=i′′

xi,i′ , if r = 0

and into the class of

δr−1

( ∑

i+i′=i′′

x′
i,i′

)
, if r ≥ 1.

Proof. By Corollary 3.12 and Lemma 2.10 J∞(∆) sends the class of x
(r)
i′′ into

the class of

δr

( ∑

i+i′=i′′

xi,i′

)

if r ≥ 0. It is then enough to prove that

δr

( ∑

i+i′=i′′

xi,i′

)
= δr−1

( ∑

i+i′=i′′

x′
i,i′

)
+ (I2 ∩ A0)A+ I [p]

for r ≥ 1 in A = R[x, x′, x′′, ...], where I2 denotes as usual the square of the
ideal I. The later follows by induction using the fact that

δ((I2 ∩A0)A) ⊂ (I2 ∩ A0)A+ I [p].

�
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Remark 4.7. It would be interesting to have an explicit understanding of the
homomorphisms s : Jn(Wm(R)) → Wm−n(R) in (2.16), or at least of their
reduction mod p. This involves understanding the iterates of formula 4.2. Note
however that by formula 4.2 it follows that

s(π) = 1− (1− pp−2ρ(v1)) ∈ pWm−1(R).

In other words for n ≥ 2

s : Jn(Wm(R)) → Wm−n(R)

factors through the complement of the identity component !

Jn(Wm(R))1−π → Wm−n(R)

rather than through the identity component Jn(Wm(R))π; this makes the prob-
lem more subtle.
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