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Abstract. We continue our investigation of the connected compo-
nents of the moduli space of surfaces of general type containing the
Burniat surfaces, correcting a mistake in part II. We define the family
of extended Burniat surfaces with K2

S = 4, resp. 3, and prove that
they are a deformation of the family of nodal Burniat surfaces with
K2

S = 4, resp. 3. We show that the extended Burniat surfaces to-
gether with the nodal Burniat surfaces with K2

S = 4 form a connected
component of the moduli space. We prove that the extended Burniat
surfaces together with the nodal Burniat surfaces withK2

S = 3 form an
irreducible open set in the moduli space. Finally we point out an inter-
esting pathology of the moduli space of surfaces of general type given
together with a group of automorphisms G. In fact, we show that
for the minimal model S of a nodal Burniat surface (G = (Z/2Z)2)
we have Def(S,G) 6= Def(S), whereas for the canonical model X it
holds Def(X,G) = Def(X). All deformations of S have a G-action,
but there are different deformation types for the pairs (S,G) of the
minimal models S together with the G-action, while the pairs (X,G)
have a unique deformation type.
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Introduction

In the present article we continue our investigation, begun in [BC09b] and
[BC10], of the connected components of the moduli space (of minimal surfaces
S of general type) which contain the Burniat surfaces. We also correct an error
in [BC10].
Recall that Burniat surfaces have K2

S = 6 − m, m = 0, . . . , 4, and the case
m = 2 bifurcates in the subcases: the one of non-nodal Burniat surfaces, and
the one of nodal Burniat surfaces. For m = 3 Burniat surfaces are three-nodal
(this means that their canonical model has three nodes).
The main goals that we achieve in this paper are the following:

(1) We define the family of extended Burniat surfaces for K2
S = 3, resp. 4,

and prove that they are a deformation of the family of nodal Burniat
surfaces with K2

S = 3, resp. 4.
(2) We show that the extended Burniat surfaces with K2

S = 4, together
with the nodal Burniat surfaces with K2

S = 4, form a set NEB4 which
is a connected component of the moduli space: thereby we correct
Theorem 1.1 of [BC10] and simultaneously we answer a question posed
on page 562 of [BC10]. 1

(3) We show that the extended Burniat surfaces with K2
S = 3, together

with the nodal Burniat surfaces with K2
S = 3 form an irreducible open

setNEB3 of the moduli space, whose closureNEB3 consists of bidouble
covers of normal cubic surfaces in P3 and is shown in Section 7 to be
strictly larger than NEB3.

(4) We point out a truly interesting pathology of the moduli space of va-
rieties with a group G of automorphisms, which is the reason of our
mistake mentioned above (Murphy’s law applies then, but in a different
way than foreseen).

For nodal Burniat surfaces S, we have a group G ∼= (Z/2Z)2 of auto-
morphisms, which is also the group of automorphisms of the canonical
model X . But whereas Def(X) = Def(X,G), i.e., all deformations of
X carry along a deformation of the G-action, Def(S) 6= Def(S,G): thus
even if all deformations of S have a G-action, the local moduli space
Def(S,G) for the pairs yields a proper subvariety in the smooth germ
Def(S).

We refer to [BC09b] and [BC10] for more details concerning investigation of
the connected components of the moduli space containing the Burniat surfaces
with K2

S = 6, 5, 4, 2, which is fully achieved thanks to the results of the present
article.
What remains to be done in order to finish the investigation of Burniat surfaces
is to decide, in the case K2

S = 3 of tertiary Burniat surfaces, whether the irre-
ducible component mentioned above is also a connected component, describing
in detail all the surfaces which are in the closure and their local deformations.

1Namely, the integer m ≥ 2 in Theorem 1.1 is indeed = +∞, and the local moduli space

of nodal Burniat surfaces is smooth.
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The description of the closure of the irreducible component of the moduli space
given by the extended nodal Burniat surfaces with K2

S = 3 has been carried
out by Y. Chen in his Ph. D. thesis (cf. [Ch12]).
In [BC10] we proved that 3 of the 4 irreducible families of Burniat surfaces
with K2

S ≥ 4, i.e., of primary and secondary Burniat surfaces, are a connected
component of the moduli space of surfaces of general type.
In this paper we consider only nodal Burniat surfaces with K2

S = 4, 3, showing
that a general deformation of a nodal Burniat surface with K2

S = 4, resp. with
K2

S = 3, is an extended Burniat surface, still a bidouble cover (through the
bicanonical map) of a normal Del Pezzo surface of degree 4 with one ordinary
double point, resp. of a cubic surface with three nodes.
The main results of the present paper are the following:

Theorem 0.1. 1) The subset NEB4 of the moduli space of canonical surfaces of
general type M

can
1,4 given by the union of the open set corresponding to extended

Burniat surfaces with K2
S = 4 with the irreducible closed set parametrizing nodal

Burniat surfaces with K2
S = 4 is a three dimensional irreducible connected

component, normal and unirational.
Moreover the base of the Kuranishi family of deformations of any such a min-
imal model S is smooth.
2) The subset NEB3 of the moduli space of canonical surfaces of general type
M

can
1,3 corresponding to extended and nodal Burniat surfaces with K2

S = 3 is an
irreducible open set, normal, unirational of dimension 4.
Moreover the base of the Kuranishi family of deformations of any such a min-
imal model S is smooth.

A very surprising and new phenomenon occurs for nodal surfaces, confirming
Vakil’s ‘Murphy’s law’ philosophy ([Va06]).
To explain what happens for the moduli spaces of extended and nodal Burniat
surfaces, let us recall again an old result due to Burns and Wahl (cf. [BW74]).
Let S be a minimal surface of general type and let X be its canonical model.
Denote by Def(S), resp. Def(X), the base of the Kuranishi family of S, resp.
of X .
Their result explains the relation between Def(S) and Def(X).

Theorem (Burns-Wahl).
Assume that KS is not ample and let p : S → X be the canonical morphism.
Denote by LX the space of local deformations of the singularities of X and by
LS the space of deformations of a neighbourhood of the exceptional curves of p.
Then Def(S) is realized as the fibre product associated to the Cartesian diagram

Def(S)

��

// LS
∼= Cν ,

λ

��

Def(X) // LX
∼= Cν ,
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1092 I. Bauer and F. Catanese

where ν is the number of rational (−2)-curves in S, and λ is a Galois covering
with Galois group W := ⊕r

i=1Wi, the direct sum of the Weyl groups Wi of the
singular points of X.

An immediate consequence is the following

Corollary (Burns-Wahl).
1) ψ : Def(S) → Def(X) is a finite morphism, in particular, ψ is surjective.
2) If Def(X) → LX is not surjective (i.e., the singularities of X cannot be
smoothened independently by deformations of X), then Def(S) is singular.

Assume now that we have 1 6= G ≤ Aut(S) = Aut(X).
Then we can consider the space Def(S,G) of local deformations of S together
with the G-action (by [Cat88] this is the space of G-invariant local deformations
of S), and similarly consider the space Def(X,G) of local deformations of X
and its G-action; we have then a natural map Def(S,G) → Def(X,G).
We indeed show here that, unlike the case for the corresponding morphism of
local deformation spaces of the surfaces, this map needs not to be surjective;
and, as far as we know, the following result gives the first global example of
such a phenomenon.

Theorem 0.2. The deformations of nodal Burniat surfaces with K2
S =

4, 3 to extended Burniat surfaces with K2
S = 4, 3 yield examples where

Def(S, (Z/2Z)2) → Def(X, (Z/2Z)2) is not surjective.
Moreover, Def(S, (Z/2Z)2) ( Def(S), whereas for the canonical model we have:
Def(X, (Z/2Z)2) = Def(X).
The moduli space of pairs, of an extended (or nodal) Burniat surface with K2

S =
4, 3 and a (Z/2Z)2-action, is disconnected; but its image in the moduli space is
a connected open set.

The above phenomenon can already be seen locally around a node, as it will be
explained in Section 2. Our results show that the local pathology does indeed
globalize.

Our paper is organized as follows: in Section 1 we give the definition of extended
Burniat surfaces and describe the respective branch loci of the bidouble covers
yielding nodal Burniat surfaces, respectively extended Burniat surfaces.
In the second chapter we analyse bidouble covers of a nodal surface singularity,
explaining the phenomenon of Theorem 0.2 locally.
In the third section we show that nodal Burniat surfaces with K2

S = 4, 3 deform
to extended Burniat surfaces with K2

S = 4, 3.
Section 4 is instead devoted to the calculation of H1(S,ΘS) for nodal and
extended Burniat surfaces, and its eigenspaces for the G = (Z/2Z)2 action.
In the course of doing this we need to amend a small mistake in [BC10] Lemma
2.10; this is done in an appendix, where we actually generalize this lemma
substantially in order to make it appropriate for our present purposes and also
applicable in other situations.
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In the end we succeed to prove that the subset NEB4 of the moduli space of
canonical surfaces of general type M

can
1,4 corresponding to nodal and extended

Burniat surfaces with K2
S = 4 is an irreducible open set, normal, unirational of

dimension 3 (similarly we show that the subset NEB3 of the moduli space of
canonical surfaces of general type M

can
1,3 corresponding to nodal and extended

Burniat surfaces with K2
S = 3 is an irreducible open set, normal, unirational

of dimension 4).
Section 5 is dedicated to the study of one-parameter limits of extended Burniat
surfaces with K2

S = 4, showing that the subset of the moduli space of canonical
surfaces of general type M

can
1,4 corresponding to nodal and extended Burniat

surfaces with K2
S = 4 is closed.

In Section 6 we give examples of other surfaces which lie in the closure of the
family of extended Burniat surfaces with K2

S = 3.
In another appendix we give an alternative proof of three of the four assertions
of Proposition 4.1, by other methods which could be of independent interest.

1. Definition of extended and nodal Burniat surfaces

Burniat surfaces are minimal surfaces of general type with K2 = 6, 5, 4, 3, 2 and
pg = 0, which were constructed in [Bu66] as minimal resolutions of singular
bidouble covers (that is, Galois covers with group (Z/2Z)2) of the projective
plane branched on 9 lines.
We refer the reader to [BC10] for their construction, and we shall adhere to
the notation introduced there.

Let P1, P2, P3 ∈ P2 be three non-collinear points (which we assume to be the
points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1)), and let P4, . . . , P3+m, m = 2, 3,
be further (distinct) points not lying on the sides of the triangle with vertices
P1, P2, P3.
We make the further assumptions:

• for m = 2, the points P1, P4, P5 are collinear, while,
• for m = 3, we assume moreover that also P2, P4, P6 and P3, P5, P6 are
collinear (in particular, no four points are collinear); we may also use
the notation P ′

1 := P6, P
′
2 := P5, P

′
3 := P4, so that Pi, P

′
i+1, P

′
i+2 are

collinear, where we use the convention i ∈ {1, 2, 3} mod 3.

Let’s denote by Ỹ := P̂2(P1, P2, . . . , P3+m) the weak Del Pezzo surface of degree
6−m, obtained blowing up P2 in the points P1, P2, . . . , P3+m.

Saying that Ỹ is a weak Del Pezzo surface means that the anticanonical divisor
−KỸ is nef and big; in our case it is not ample, because of the existence of
(-2)-curves, i.e. curves Ni

∼= P1, with Ni ·KỸ = 0: for m = 3 Ni is the strict
transform of the line passing through Pi, P

′
i+1, P

′
i+2.

Contracting the (-2)-curves Ni we obtain a normal singular Del Pezzo surface
Y ′ with −KY ′ very ample.
We denote by L the divisor on Ỹ which is the total transform of a general line
in P2, by Ei the exceptional curve lying over Pi, by E

′
i the exceptional curve

Documenta Mathematica 18 (2013) 1089–1136



1094 I. Bauer and F. Catanese

lying over P ′
i (hence E′

i = E7−i) and by Di,1 the strict transform of the line
yi−1 = 0, side of the triangle joining the points Pi, P[i+1]; that is, the unique
effective divisor in |L − Ei − E[i+1]|, where [i + 1] represents the residue class
of i+ 1 mod 3, an element of {1, 2, 3}.
Form = 2 we have only one (-2)-curveN1, such that {N1} = |L−E1−E4−E5|,
while for m = 3 we also have the curves N2, N3 such that {N2} = |L − E2 −
E4 − E6|, {N3} = |L− E3 − E5 − E6|.
Therefore the anticanonical image of Ỹ is a normal surface Y ′ ⊂ P6−m of
degree 6 −m, whose singularities are one node ν1 (an A1 singularity) in the
case m = 2, and three nodes ν1, ν2, ν3 in the case m = 3 (the (-2)-curve Ni is
the total transform of the point νi).
In order to improve readability we separate the definitions for m = 2 and
m = 3.

1.1. Nodal and extended Burniat surfaces with K2
S = 4.

Definition 1.1. 1) Define the Burniat divisors for m = 2 as follows:

D1 ∈ |L− E1|+ |L− E1 − E2|+ |L− E1 − E4 − E5|+ E3,

i.e., D1 = D1,1+N1+C1+E3, where C1 ∈ |L−E1| is assumed to be irreducible,
whereas D2, D3 are divisors such that

{D2} = |L− E2 − E3|+ |L− E2 − E4|+ |L− E2 − E5|+ E1,

{D3} = |L− E3 − E1|+ |L− E3 − E4|+ |L− E3 − E5|+ E2.

b

bb

b

b

P3

P5

P4

P2P1

2) The extended Burniat divisors for m = 2 are given as follows:

∆1 ∈ |L− E1|+ |L− E1 − E2|+ E3,

i.e., ∆1 = D1,1 + C1 + E3, where C1 ∈ |L − E1| is assumed to be irreducible,
and
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∆2 ∈ |L− E2 − E4|+ |L− E2 − E5|+ |2L− E2 − E3 − E4 − E5|,

where we assume the divisor Γ2 ∈ |2L− E2 − E3 − E4 − E5| to be irreducible;
and ∆3 is the divisor such that

{∆3} = (|L−E3−E4|+ |L−E3−E5|)+(|L−E3−E1|+E2)+ |L−E1−E4−E5|

=: ∆3,1 +∆3,2 +N1.

b

b

b

b

b

P3

P5

P4

P2
P1

3) Define Li := 1
2 (D[i−1] + D[i+1]) and observe that it is an integral divisor;

define also Λ1 := L1 +N1 and Λj := Lj for j = 2, 3.

Remark 1.2. 1) Observe that (D1 +D2 +D3) ∈ |− 3KỸ | is a reduced normal
crossing divisor.
2) Similarly, (∆1 + ∆2 + ∆3) ∈ | − 3KỸ + N1| is a reduced normal crossing
divisor.
3) On the normal Del Pezzo surface Y ′

• D1 yields a conic plus two lines, and ∆1 does the same (indeed D1 =
∆1 +N1 and N1 is the ‘nodal’ exceptional curve)

• D2 yields four lines, ∆2 yields a conic plus two lines (indeed ∆2 ≡
D2 +N1)

• D3 yields four lines, the same does ∆3 (indeed ∆3 = D3 +N1).

In particular, if the conic corresponding to ∆2 specializes to contain the line
corresponding to E1, we obtain then D2 subtracting the divisor N1 ≡ L−E1−
E4 − E5.
Finally, the four lines of ∆3 divide into two groups, i.e., we can write ∆3 =
∆3,1 + ∆3,2 + N1 so that, setting Γ1 := C1 and writing ∆i = Γi + ∆′

i, for
i = 1, 2, then

(∗) : ∆′
i +∆3,i ≡ −KỸ
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(∗∗) : Γ1 + Γ2 ≡ −KỸ .

4) The divisorsDi enjoy the property (cf. [BC10]) that there are divisor classes
Li such that D[i−1] +D[i+1] ≡ 2Li.
Hence, in particular, ∆[i−1]+∆[i+1] ≡ 2Λi, where, Λ1 := L1+N1 and Λj := Lj

for j = 2, 3.
5) Assume now that the conic corresponding to Γ2 becomes reducible: if the
conic passes through P1, then necessarily Γ2 splits as N1 +E1 + |L−E2 −E3|,
hence the conic is the union of two lines. If the conic is the union of two lines
in another fashion, then necessarily either |L− E2 − E5| or |L − E2 − E4| is a
component of Γ2, hence ∆2 is not reduced.

We can now consider (cf. [Cat84b], [Cat99]) the associated bidouble covers

S → Ỹ with branching divisors the Burniat divisors, respectively the extended
Burniat divisors.

Definition 1.3. A secondary nodal Burniat surface is a bidouble cover S → Ỹ
with branch divisors three Burniat divisors for m = 2.
S is then a minimal surface of general type with pg(S) = q(S) = 0, K2

S =
6−m = 4 (cf. [BC10]).
If we let the three branch divisors be extended Burniat divisors, then we obtain a
non minimal surface S̃ whose minimal model S is called a secondary extended
Burniat surface.

1.2. Nodal and extended Burniat surfaces with K2
S = 3.

Definition 1.4. 1) The Burniat divisors for m = 3 are defined to be the
divisors D1, D2, D3 such that

Di := Di,1 +Ni + E[i−1] + |L− Ei − E′
i|.

More in detail,

{D1} = |L− E1 − E2|+ |L− E1 − E4 − E5|+ |L− E1 − E6|+ E3,

{D2} = |L− E2 − E3|+ |L− E2 − E4 − E6|+ |L− E2 − E5|+ E1,

{D3} = |L− E3 − E1|+ |L− E3 − E5 − E6|+ |L− E3 − E4|+ E2.
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b

bb

b

b

b

P3

P5

P4

P2P1

P6

2) The strictly extended Burniat divisors for m = 3 are defined as follows:

∆i := |L− Ei − E′
i|+N[i+1] + Γi,

where we assume Γi ∈ |2L−Ei−E[i+1]−E
′
i−E

′
[i+1]| to be the strict transform

of an irreducible conic.
More in detail,

∆1 ∈ |L− E1 − E6|+ |2L− E1 − E2 − E5 − E6|+ |L− E2 − E4 − E6|,

∆2 ∈ |L− E2 − E5|+ |2L− E2 − E3 − E4 − E5|+ |L− E3 − E5 − E6|,

∆3 ∈ |L− E3 − E4|+ |2L− E1 − E3 − E4 − E6|+ |L− E1 − E4 − E5|.
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b b

b

b

b

b

P3
P5

P4

P2P1

P6

3) Define Li := 1
2 (D[i−1] + D[i+1]) and observe that it is an integral divisor;

define also Λi := Li +Ni.

Remark 1.5. 1) Observe that (D1 +D2 +D3) ∈ |− 3KỸ | is a reduced normal
crossing divisor.
2) Similarly, (∆1 +∆2 +∆3) ∈ | − 3KỸ +

∑

Ni| is a reduced normal crossing
divisor.
3) On the normal Del Pezzo surface Y ′, for m = 3,
∆j yields a conic and one line, Dj yields three lines (indeed ∆j ≡ Dj −Nj +
Nj−1 +Nj+1).
In particular, if the conic corresponding to ∆j specializes to contain the line
corresponding to E[j−1] (here as before [j−1] ∈ Z/3Z), we obtain D2 subtract-
ing the divisor Nj−1 +Nj+1 and adding the divisor Nj.
4) The divisorsDi enjoy the property (cf. [BC10]) that there are divisor classes
Li such that D[i−1] +D[i+1] ≡ 2Li.
Hence, in particular, ∆[i−1] + ∆[i+1] ≡ 2Λi, recalling that, for m = 3, Λi :=
Li +Ni.
5) Assume that one or more of these conics become reducible. E.g., assume that
the conic corresponding to Γ2 becomes reducible, and observe that this will be
the case if the conic passes through P1 or P6. We disregard this degeneration
if the corresponding divisor ∆2 will be non reduced. The only possibility left
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over is that Γ2 splits as before, N1 + E1 + |L − E2 − E3|. This degeneration
will be considered admissible. This motivates the following definition:

Definition 1.6. Assume m = 3 and that one or two of these conics Γj become
reducible in the admissible way Γj = Nj−1 +Ej−1 + |L−Ej −Ej+1| (here, as
usual, j ∈ Z/3Z).
In this case we define the (not strictly) extended Burniat divisors by subtracting
to Γj the nodal divisor Nj−1 it contains. Moreover, we replace

• ∆j+1 by (∆j+1 −Nj−1), and
• ∆j−1 by (∆j−1 +Nj−1).

For the convenience of the reader we have drawn the non strictly extended
Burniat divisors in the case, where only Γ2 degenerates.

b

b

b

b

b

b

P3
P5

P4

P2P1

P6

Remark 1.7. If all three conics Γj become reducible in the admissible way
and we define in the same way as in the previous definition the three divisors
by subtracting to Γj the nodal divisor Nj−1 it contains, by subtracting again
the nodal divisor Nj−1 from ∆j+1 and adding it to ∆j−1, we get the Burniat
divisors from Definition 1.4.

We can now consider (cf. [Cat84b], [Cat99]) the associated bidouble covers

S → Ỹ with branching divisors the Burniat divisors, respectively the extended
Burniat divisors.
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Definition 1.8. A tertiary (three-)nodal Burniat surface S is a bidouble cover

S → Ỹ with branch divisors three Burniat divisors for m = 3.
S is then a minimal surface of general type with pg(S) = q(S) = 0, K2

S =
6−m = 3 (cf. [BC10]).
If we let the three branch divisors be extended Burniat divisors (i.e., either
strictly extended or non strictly extended!), then we obtain a non minimal sur-

face S̃ whose minimal model S is called a tertiary extended Burniat surface.

Remark 1.9. 1) In the nodal Burniat case the surface S does not have an ample
canonical divisor KS , due to the existence of (-2)-curves, which are exactly the

inverse images of the (-2)-curves Ni ⊂ Ỹ .
For this reason we call the above Burniat surfaces of nodal type. We denote
their canonical model by X , and observe that X is a finite bidouble cover of
the normal Del Pezzo surface Y ′.
If m = 2, then X has precisely one node (an A1-singularity, corresponding
to the contraction of the (-2)-curve) as singularity. While, for m = 3, the
canonical model X has exactly three nodes as singularities.
2) In the extended Burniat case S̃ is not minimal. In the strictly extended
Burniat case the inverse image of each Ni splits as the union of two disjoint (-
1)-curves. S has ample canonical divisor (hence S = X) exactly in the strictly
extended case.
3) In all cases, the morphism X → Y ′ is exactly the bicanonical map of X (see
[BC10]).
4) Nodal Burniat surfaces are parametrized by a family with smooth base of
dimension 2 for m = 2, of dimension 1 for m = 3.
Strictly extended Burniat surfaces are parametrized by a family with smooth
base of dimension 3 for m = 2, of dimension 4 for m = 3.

The key feature is that, both for nodal Burniat surfaces, and for extended
Burniat surfaces, the canonical model X is a finite bidouble cover of a singular
Del Pezzo surface Y ′, which has one node in the case m = 2, and three nodes
for m = 3 (in this case Y ′ is a cubic surface in P3).
In this case the direct image p∗(OX) splits as a direct sum of four reflexive
character sheaves of generic rank 1.
In the next section we shall describe how the covering behaves in the neigh-
bourhood of a node in the two respective cases, and how these local coverings
deform to each other (the Burniat case deforms to the extended Burniat case).

2. Local calculations around the nodes

In this section we consider finite bidouble covers of a node which are of Du
Val type, i.e., yielding singularities which are at worst RDP ’s (rational double
points).
We obtain a classification which is a subset of the one made in [Cat87], classi-
fying quotients of RDP’s by actions of Z/2Z or of G = (Z/2Z)2.
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We only need to look at Table 2, page 90, and Table 3, page 93, ibidem, to
see which quotients of a rational double point by an involution, or by a pair of
commuting involutions, yield an A1 singularity, i.e., a node.
There are six cases for such coverings of Du Val type of a node Y , which in
local holomorphic coordinates is given by

xy − z2 = 0.

In order to be more informative in our description, we denote by Ỹ the reso-
lution of Y , which is the total space of a line bundle on N ∼= P1 of degree −2
(hence N2 = −2). Denoting the bidouble cover of Y by X , we shall obtain,

through the normalization of the fibre product, a finite bidouble cover of Ỹ ,
for which we shall give the three corresponding branch divisors.
In the case where X is not irreducible, we shall describe a connected component
X ′ of X .

(1) X ′ = Y (the covering is étale).
(2) X ′ = C2, X has two components and the covering morphism is given

by

(u, v) 7→ (x = u2, y = v2, z = uv).

The branch divisor on Ỹ is just the (-2)-curve N .
(3) X ′ = {w4 = xy}, X has two components and the covering morphism

is given by

(x, y, w) 7→ (x, y, z = w2).

The branch divisor on Ỹ consists of the (-2)-curve N plus two fibres;

the double cover of Ỹ has two nodes and resolving them we get the
minimal resolution of the A3 singularity X ′.

(4) X = {w2 = uv} and the covering morphism is given by

(u, v) 7→ (x = u2, y = v2, z = w2).

The three intermediate Z/2Z covers are the two double covers (2), (3)
described above, plus the intermediate cover (here a := uw, b := vw)

{(x, y, z, a, b)| Rank

(

x, a, z, b
a, z, b, y

)

= 1},

which is the cone over a rational normal quartic (set x = t40, a =
t30t1, z = t20t

2
1, z = t0t

3
1, z = t41).

The branch divisors on Ỹ are two: the (-2)-curve N and the divisor
D formed by two fibres. The three intermediate double covers depend
on the choice of the branch locus: N , respectively N +D, respectively
D.

(5) X ′ = {z2 = (w2+yk+1)·y},X has two components having a singularity
of type Dk+3, and the covering morphism is given by

(y, z, w) 7→ (x = w2 + yk+1, y, z).
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The branch divisor on Ỹ is the total transform of the divisor C := {x =
yk+1, z2 = yk+2} which is irreducible with a cusp for k odd, else it is
reducible with a k

2 -tacnode for k even.
In particular, N is part of the branch locus.

(6) X = {w2 = (u − vk+1)(u + vk+1)} = {w2 = u2 − v2k+2} and the
covering morphism is given by

(u, v, w) 7→ (x = u2, y = v2, z = uv).

X is a singularity of type A2k+1 and, in order to treat a new case, we
make the assumption k ≥ 1.

The three intermediate Z/2Z covers are the smooth double cover (2),
the double cover (5) {w2 = x − yk+1}, and a third singularity which
we omit to describe.

The branch divisors on Ỹ are two: the (-2)-curve N and the the
total transform of the divisor C above.

The three intermediate covers depend on the choice of the branch
locus: N , or N + C′, or C′, where C′ is the strict transform of C.

Letting p : X → Y be the finite bidouble cover, the direct image sheaf p∗OX

splits as

OY ⊕ (
⊕

i=1,2,3

Li),

where in the first case the reflexive sheaves Li are locally free.
To describe the other cases we use the reflexive sheaf F generated by u, v as
OY -module, with relations

yu− zv = 0, zu− xv = 0.

We get

(2) X ′ = C2, (u, v) 7→ (x = u2, y = v2, z = uv),

p∗OX = (OY ⊕F)⊕2

(3) X ′ = {w4 = xy}, (x, y, w) 7→ (x, y, z = w2)

p∗OX = (OY ⊕OY )
⊕2

(4) X = {w2 = uv} , (u, v) 7→ (x = u2, y = v2, z = w2)

p∗OX = (OY ⊕F)⊕2,

with generators 1, {u, v}, w, {a = wu, b = vw}.
(5) X ′ = {w2 = x− yk+1}, (y, z, w) 7→ (x = w2 + yk+1, y, z),

p∗OX = (OY ⊕OY )
⊕2.

(6) X = {w2 = u2 − v2k+2}, (u, v, w) 7→ (x = u2, y = v2, z = uv)

p∗OX = (OY ⊕F)⊕2.
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Remark 2.1. Cases 1, 3 and 5 are the case where we have a flat bidouble cover,
i.e., p∗OX is locally free. In cases 2, 4 and 6 we have non-flat bidouble covers,
but with the same character sheaves. We shall soon show how case 4 deforms
to case 2.

Proposition 2.2. In case 2) X = Spec((OY ⊕ F) ⊕ (OY ⊕ F)), where the
two addenda are orthogonal, and the algebra structure is determined by the
nondegenerate pairing F × F → OY .
In case 4) X = Spec((OY ⊕ F) ⊕ w(OY ⊕ F)), and the algebra structure
is determined by the nondegenerate pairing F × F → OY , together with the
assignment w2 = z.

We omit the simple proof.
Case 4) deforms now to case 2) by changing the assignmentw2 = z to w2 = z+t,
t 6= 0, so that w becomes then a local unit at the origin.
We can relate the resulting picture with the local semiuniversal deformation of
a node.

Proposition 2.3. Let t ∈ C, and consider the action of G := (Z/2Z)2 on
C3 generated by σ1(u, v, w) = (u, v,−w), σ2(u, v, w) = (−u,−v, w). Then the
hypersurfaces Xt = {(u, v, w)|w2 = uv + t} are G-invariant, and the quotient
Xt/G is the hypersurface

Yt = Y0 = {(x, y, z)|z2 = xy},

which has a nodal singularity at the point x = y = z = 0.
Xt → Yt is a bidouble covering of type 2 for t 6= 0, and of type 4 for t = 0. We
get in this way a flat family of (non flat) bidouble covers.

Proof. The invariants for the action of G on C3 × C are:

x := u2, y := v2, z := uv, s := w2, t.

Hence the family X of the hypersurfaces Xt is the inverse image of the family
of hypersurfaces s = z + t on the product

Y ′ × C2 = {x, y, z, s, t)|xy = z2}.

Hence the quotient of Xt is isomorphic to Y ′.
The rest was already explained before. �

Remark 2.4. i) The simplest way to view Xt is to see C2 as a double cover of
Y ′ branched only at the origin, and then Xt as a family of double covers of C2

branched on the curve uv + t = 0, which acquires a double point for t = 0.
ii) The involution σ3(u, v, w) = (−u,−v,−w) has only the origin as fixed point,
which lies on X0. Whereas σ3 acts freely on Xt, for t 6= 0.
Fix(σ1) = {w = 0}, and {w = 0} ∩Xt = {uv + t = w = 0}.
Finally, Fix(σ2) = {u = v = 0}, and {u = v = 0} ∩Xt = {u = v = 0, w2 = t},
which consists of two points for t 6= 0, one for t = 0.
The corresponding branch loci are the origin, for t = 0, the divisor z = 0, and
the point x = y = z − t = 0.
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iii) If we pull back the bidouble cover Xt to Ỹ , and we normalize it, we can see
that

• D3 is, for t = 0, the nodal curve N , and is the empty divisor for t 6= 0;
• D1 is, for t 6= 0, the inverse image of the curve z+t = 0; while, for t = 0,

it is only its strict transform, i.e. the divisor D considered previously,
made up of two fibres;

• D2 is an empty divisor for t = 0, and the nodal curve N for t 6= 0.

Remark 2.5. Part iii) of the previous remark shows that, as t → 0, one
subtracts the nodal divisor N to D2, and adds it to D3; while for D1, it
specializes to D +N , and then we subtract N .
This is precisely the algorithm which applies when passing from extended Bur-
niat to Burniat divisors.

The really interesting part of the story comes now: the family Xt admits a
simultaneous resolution only after that we perform a base change t = τ2 and
the equation of Xt becomes

Xτ = {w2 − τ2 = uv}.

Definition 2.6. Let X → T ′ be the family where

X = {(u, v, w, τ)|w2 − τ2 = uv}

and T ′ is the affine line with coordinate τ .
Define S ⊂ X × P1 to be one of the small resolutions of X, and S ′ to be the
other one, namely:

S : {(u, v, w, τ)(ξ) ∈ X× P1|
w − τ

u
=

v

w + τ
= ξ}

S ′ : {(u, v, w, τ)(η) ∈ X× P1|
w + τ

u
=

v

w − τ
= η}.

Let G be the group G ∼= (Z/2Z)2 acting on X trivially on the variable τ , and
else as in Proposition 2.3. Let further σ4 act by σ4(u, v, w, τ) = (u, v, w,−τ),
let G′ ∼= (Z/2Z)3 be the group generated by G and σ4, and let H ∼= (Z/2Z)2 be
the subgroup {Id, σ2, σ1σ4, σ3σ4}.

The following is a rephrasing and a generalization of a discovery of Atiyah in
our context: we omit the simple proof. For more details and a discussion of how
these examples fit into the general theory of moduli spaces, see the ‘working
guide’ written by the second author in [Cat11].

Lemma 2.7. The biregular action of G′ on X lifts only to a birational action
on S, respectively S ′. The subgroup H acts on S, respectively S ′, as a group of
biregular automorphisms.
The elements of G′ \H = {σ1, σ3, σ4, σ2σ4} yield isomorphisms between S and
S ′.
The group G acts on the punctured family S \ S0, in particular it acts on each
fibre Sτ .
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Since σ4 acts trivially on S0, the group G
′ acts on S0 through its direct summand

G.
The biregular actions of G on S \ S0 and on S0 do not patch together to a
biregular action on S, in particular σ1 and σ3 yield birational maps which are
not biregular: they are called Atiyah flops (cf. [At58]).

3. Nodal Burniat surfaces deform to extended Burniat surfaces

In this section we will show that

• the canonical models X of nodal Burniat surfaces with K2
X = 4,

together with the extended Burniat surfaces with K2
X = 4 are

parametrized by a family with smooth connected base of dimension
3, which maps to the moduli space via a finite morphism;

• the canonical models X of nodal Burniat surfaces with K2
X = 3,

together with the extended Burniat surfaces with K2
X = 3 are

parametrized by a family with smooth connected base of respective
dimension 4, which maps to the moduli space via a finite morphism.

We shall treat first the easier case

3.1. (Extended) Burniat surfaces with K2 = 4.

Proposition 3.1. There exists a family, with connected smooth 3-dimensional
base

B ⊂ {(P5, C1,Γ2)|C1 ∈ |L− E1|,Γ2 ∈ |2L− E2 − E3 − E4 − E5|}

parametrizing a flat family of canonical models, including exactly all the nodal
Burniat surfaces and the extended Burniat surfaces with K2

X = 4. The family
maps to the moduli space via a quasi-finite morphism.
Here, P1, P2, P3, P4 are the standard projective basis in P2, the point P5 belongs
to the line P1P4 and, in the blow up of the plane in the given five points Pj , j =
1, . . . , 5, C1,Γ2 are as in Definition 1.1 (C1 is irreducible and either Γ2 is
irreducible, or splits as N1 + E1 + |L− E2 − E3|).

Proof. Recall that in this case D1+D3 = ∆1+∆3, and that N1 is a connected
component of the above divisor D1 +D3 = ∆1 +∆3.
We can therefore construct a family of double covers

W̃b → Ỹ

such that the inverse image of N1 is a (-1)-curve. Blowing down this (-1)-
curve we get a family of finite double covers W ′

b → Y ′, which are nodal and
equisingular.
Consider the pull back of the divisors ∆2 in the case where Γ2 is irreducible,
and of the divisors D2 in the case where Γ2 is reducible.
Since ∆2 ≡ D2+N1, and the divisorN1 becomes trivial onW ′

b, since it contracts
to a smooth point, it follows that all these divisors are linearly equivalent, and
we have a family of divisors on the family W ′

b
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We consider then the family of double covers Xb → W ′
b branched on these

divisors, and on the nodes of W ′
b.

Finally, assume that two surfaces S1, S2 in the above family are isomorphic,
equivalently that their canonical models X1, X2 are isomorphic. Then this
isomorphism would yield an isomorphism of the bicanonical morphisms of each
Xj , hence we would have isomorphisms of the image normal Del Pezzo surfaces
Y ′
1 , Y

′
2 , sending the respective triple of branch curves for X1 to the ones for

X2.
Y ′
j has exactly one node and contains exactly 12 lines (cf. Proposition 3.7

of [BC10]. Y ′
j is obtained blowing down the (−2) curve N1 and conversely,

blowing up the singular point of Y ′
j and five disjoint (−1)-curves we obtain an

isomorphism with the plane. Since these (−1)-curves correspond exactly to the
lines in Y ′

j , we have only a finite number of such birational contractions to the
plane, and each of them determines a triple of branch curves, and five points
in the plane.
Therefore the number of surfaces S2 in the family which are isomorphic to S1

is finite.
�

3.2. (Extended) Burniat surfaces with K2 = 3. We argue similarly, but
it may be useful to make right away a simple geometrical observation.
Let P1, P2, P3, P4 be the standard projective basis in P2, and consider a line L′

with P3 ∈ L′, different from te coordinate lines: then the line configuration of
a ternary Burniat surface is completely determined by the line L′, since then

P5 := L′ ∩ P1P4, P6 := L′ ∩ P2P4.

Proposition 3.2. There exists a family, with connected smooth 4-dimensional
base

T ⊂ {(L′,Γ1,Γ2,Γ3)}

where L′ is as above and Γ1,Γ2,Γ3 are as in Definitions 1.4 and 1.6, parametriz-
ing a flat family of canonical models, including exactly all the nodal Burniat
surfaces and the extended Burniat surfaces with K2

X = 3. The family maps to
the moduli space via a quasi-finite morphism.

Proof. Given a triple (Γ1,Γ2,Γ3), according to the reducibility of each Γi, there
corresponds either a Burniat divisor, or an extended Burniat divisor. We take
the corresponding bidouble cover of Ỹ , hence we construct four families of
smooth surfaces, which are not necessarily minimal. We take now the corre-
sponding canonical models, which are finite bidouble covers of the normal Del
Pezzo surface Y ′.
Observe that, given p′ : S̃ → Ỹ , and π : Ỹ → Y ′,

X = Spec(π∗(p
′)∗OS̃) = Spec(OY ′

⊕

(⊕3
i=1Fi)).

Now the reflexive sheaves Fi correspond to Weil divisors on Y ′, and they are
independent of t ∈ T by virtue of 4) of remark 1.5.
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The multiplication maps correspond to a family of Weil divisors on Y ′: whence
we get a flat family on Y ′ \ Sing(Y ′). Locally around the nodes the structure
of the deformation is as described in the previous section, therefore the family
is flat everywhere.
The assertion that for a given surface S1 in the family parametrized by T the
number of surfaces S2 in the family which isomorphic to S1 is finite follows as
in the case K2 = 4, using that the three nodal cubic surface Y ′ contains only
a finite number of lines.

�

Observe that proof given for the case K2 = 3 works also in the case K2 = 4.

4. Local deformations of the extended Burniat surfaces

The aim of this section is to calculate the dimension of H1(S,ΘS) for

• nodal Burniat surfaces with K2
S = 4,

• extended Burniat surfaces with K2
S = 4,

• nodal Burniat surfaces with K2
S = 3,

• extended Burniat surfaces with K2
S = 3.

The main results of this paragraph are the following (note that we use the
notation introduced in Section 1:

Proposition 4.1. 1) Assume that S is a nodal Burniat surface with K2
S = 4

(m = 2). Then the dimension of the vector space

H0(Ω1
Ỹ
(log(Di))(KỸ + Li)) = H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2))

is 1 for i = 3, else it is 0.
2) Consider instead extended Burniat divisors for m = 2, and the corresponding
vector spaces

H0(Ω1
Ỹ
(log(∆i))(KỸ + Λi)).

Then their dimensions are the same as in the Burniat case, namely, 1 for i = 3,
else 0.
3) Assume that S is a Burniat surface with K2

S = 3 (m=3).
Then each vector space

H0(Ω1
Ỹ
(log(Di))(KỸ + Li)) = H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2))

is equal to 0.
4) In the case of (strictly or not strictly) extended Burniat divisors for m = 3
we have ∀i:

H0(Ω1
Ỹ
(log(∆i))(KỸ + Λi)) = 0.

The proof of Proposition 4.1 is to be found in the second appendix.
Using Proposition 4.1 we can explicitly determine the several G-character
spaces of Hi(S,ΘS) and their dimensions (here G = (Z/2Z)2 = {1, g1, g2, g3})
. In the following, given a G-space V , we denote by V i, for i ∈ 1, 2, 3, the
eigenspace corresponding to the character whose kernel consists of {1, gi}.
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Proposition 4.2. 1) Let S be the minimal model of a Burniat surface.
Then the dimensions of the eigenspaces of the cohomology groups of the tangent
sheaf ΘS (for the natural (Z/2Z)2-action) are as follows.

(1) K2 = 4 of nodal type:
h1(S,ΘS)

inv = 2, h2(S,ΘS)
inv = 0,

h1(S,ΘS)
3 = 1 = h2(S,ΘS)

3,
hj(S,ΘS)

i = 0, for i ∈ {1, 2}, ∀j;
(2) K2 = 3:

h1(S,ΘS)
inv = 1, h2(S,ΘS)

inv = 0,
h1(S,ΘS)

i = 1, h2(S,ΘS)
i = 0, for i ∈ {1, 2, 3}.

2) Let S be a minimal model of an extended Burniat surface with K2
S = 4.

Then the dimensions of the eigenspaces of the cohomology groups of the tangent
sheaf ΘS (for the natural (Z/2Z)2-action) are as follows.

• h1(S,ΘS)
inv = 3, h2(S,ΘS)

inv = 0,
• h1(S,ΘS)

i = 0 = h2(S,ΘS)
i, for i ∈ {1, 2},

• h1(S,ΘS)
3 = 1 = h2(S,ΘS)

3.

3) Let S be the minimal model of an extended Burniat surface with K2
S = 3.

Then the dimensions of the eigenspaces of the cohomology groups of the tangent
sheaf ΘS (for the natural (Z/2Z)2-action) are as follows:

(1) strictly extended case:
h1(S,ΘS)

inv = 4, h2(S,ΘS)
inv = 0,

hj(S,ΘS)
i = 0, for i ∈ {1, 2, 3};

(2) case where exactly one conic, w.l.o.g. the conic Γ1,because of symmetry,
degenerates to two lines:

h1(S,ΘS)
inv = 3, h2(S,ΘS)

inv = 0,
h1(S,ΘS)

i = 0 = h2(S,ΘS)
i, for i ∈ {1, 3},

h1(S,ΘS)
2 = 1, h2(S,ΘS)

2 = 0;
(3) case where exactly two conics, w.l.o.g. Γ1, Γ2, degenerate to two lines

each:
h1(S,ΘS)

inv = 2, h2(S,ΘS)
inv = 0,

h1(S,ΘS)
1 = 0 = h2(S,ΘS)

1,
h1(S,ΘS)

i = 1, h2(S,ΘS)
i = 0, for i ∈ {1, 3}.

For the reader’s convenience the above dimensions can also be found in Table 1.
We begin with an easy but useful observation

Lemma 4.3. Assume that N is a connected component of a smooth divisor
D ⊂ Y , where Y is a smooth projective surface.
Moreover, let M be a divisor on Y . Then

H0(Ω1
Y (log(D −N))(N +M)) = H0(Ω1

Y (log(D))(M))

provided (KY + 2N +M) ·N < 0.

Proof. The cokernel of Ω1
Y (log(D))(M) → Ω1

Y (log(D − N))(N +M) is sup-
ported on N and equal to Ω1

N (N +M) = ON (KY + 2N +M).
�
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The lemma will be applied several times in the case where N ∼= P1 and N2 < 0.
Another useful lemma which will be crucial in some calculation is the following

Lemma 4.4. Assume that we have three linearly independent linear forms on
P2, l1 := x1, l2 := x2, l3 := x3. Then

(1) H0(Ω1
P2(2)) has as basis the three 1-forms, for j < i,

ηji := xjdxi − xidxj = −ηij .

(2) H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(1)) has as basis the six 1-forms

ωij :=
xjdxi − xidxj

xi
.

(3) H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)) has as basis the three 1-forms ηji,

for j < i, plus the six 1-forms xjωij and the three 1-forms
x1ω23, x2ω31, x3ω12.

Proof. 1) is well known and follows from the Euler sequence.
2) Take the chart xi 6= 0 ⇔ xi = 1: then in this chart ωij := −dxj is a regular
1-form.
In the chart xj = 1 we have ωij := dxi

xi

, while in the chart xh = 1 we have

ωij := xj
dxi

xi
− dxj .

Hence ωij has logarithmic poles on xi = 0, and the coefficient of the logarithmic
term vanishes for xi = xj = 0, and is equal to 1 in xi = xh = 0.
The above observation shows the linear independence of the above 6 forms.
Moreover, ωij is an eigenvector with character λ for the C∗-action xi 7→ λxi,
hence ωij ∈ H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(1)).
It suffices to show that this space has vector dimension equal to 6.
This follows however from the exact sequence

0 → Ω1
P2(1) → Ω1

P2(dlog l1, dlog l2, dlog l3)(1) → ⊕3
i=1Oli(1) → 0

and the vanishing of Hj(Ω1
P2(1)) for j = 0, 1.

3) Observe that ωij =
1
xi

ηji, so that xiωij = ηji = −ηij = xjωji.
Moreover, if h 6= i, j, xhωij − xjωih = ηjh, so that the products xrωij generate
a subspace of dimension at most 12.
By the exact sequence

0 → Ω1
P2(2) → Ω1

P2(dlog l1, dlog l2, dlog l3)(2) → ⊕3
i=1Oli(2) → 0

and since H1(Ω1
P2(2)) = 0, h0(Oli(2)) = 3 we infer that the dimension is indeed

12.
Since H0(Oli(2)) is generated by H0(OP2(1))⊗C H

0(Oli(1)) we conclude that
the twelve 1-forms are a basis. �

Lemma 4.5. Assume that we have two linearly independent linear forms on P2,
l1 := x1, l2 := x2.
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(1) H0(Ω1
P2(dlog l1, dlog l2)(1)) has as basis the 4 forms

ωij :=
xjdxi − xidxj

xi
, 1 ≤ i, j ≤ 3, i 6= 3.

(2) H0(Ω1
P2(dlog l1, dlog l2)(2)) has as basis the 3 forms ηji, for j < i, plus

the 6 forms x2ω12, x1ω21, x3ω13, x3ω23, x2ω12, x1ω23.

Proof. Follows from Lemma 4.4 observing that H0(Ω1
P2(dlog l1, dlog l2)(i)) is a

subspace of H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(i)). The above two sets of vectors

are linearly independent and the dimensions are 4, resp. 9. �

Corollary 4.6. 1) Let ω ∈ H0(Ω1
P2(dlog l1, dlog l2)(1)).

Then there are complex numbers aij such that:

ω = a12ω12 + a21ω21 + a13ω13 + a23ω23 =
dx1
x1

(a12x2 − a21x1 + a13x3)+

+
dx2
x2

(−a12x2 + a21x1 + a23x3) + dx3(−a13 − a23).

2) Let ω ∈ H0(Ω1
P2(dlog l1, dlog l2)(2)): then we can write

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a121x1ω21 + a313x3ω13+

+ a323x3ω23 + a213x2ω13 + a123x1ω23 =

=
dx1
x1

(−a12x1x2 − a13x3x1 + a212x
2
2 − a121x

2
1 + a313x

2
3 + a213x2x3)+

+
dx2
x2

(a12x1x2 − a23x3x2 − a212x
2
2 + a121x

2
1 + a323x

2
3 + a123x1x3)+

+ dx3(a13x1 + a23x2 − a313x3 − a323x3 − a213x2 − a123x1).

3) Any ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(1)) can be written as:

ω = a12ω12 + a13ω13 + a23ω23 + a21ω21 + a31ω31 + a32ω32 =

=
dx1
x1

(a12x2 − a21x1 + a13x3 − a31x1)+

+
dx2
x2

(−a12x2 + a21x1 + a23x3 − a32x2)+

+
dx3
x3

(−a13x3 + a31x1 + a32x2 − a23x3).

4) Any ω ∈ H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)) can be written as:

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a313x3ω13 + a323x3ω23+

+ a121x1ω21+ a131x1ω31+ a232x2ω32+ a123x1ω23+ a231x2ω31+ a312x3ω12 =
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=
dx1
x1

(−a12x1x2 − a13x3x1 + a212x
2
2 + a313x

2
3−

− a121x
2
1 − a131x

2
1 − a231x2x1 + a312x3x2)+

+
dx2
x2

(a12x1x2 − a23x3x2 − a212x
2
2 + a121x

2
1 + a323x

2
3+

+ a123x1x3 − a232x
2
2 − a312x3x2)+

+
dx3
x3

(a13x1x3 + a23x2x3 − a313x
2
3 − a323x

2
3 + a131x

2
1+

+ a232x
2
2 − a123x1x3 + a231x1x2).

Proof. This is an easy verification. �

Now we have prepared everything for the proof of Proposition 4.1. Since the
proof is long and technical we prefer to put it in a separate section (cf. Appendix
8).

Proof of Proposition 4.2. For the invariant part, the calculation goes exactly
as the proof of Lemma 2.9. of [BC10], using that hi(ΘS̃)

inv = hi(ΘS)
inv.

For the other character spaces, we use the same argument as in Lemma 2.12.
in [BC10] to calculate χ(Ω1

Ỹ
(logDi)(KỸ +Li)) (resp. χ(Ω1

Ỹ
(log∆i)(KỸ +Λi))

for extended Burniat surfaces).
We first observe that

χ(Ω1
Ỹ
(logDi)(KỸ + Li)) = χ(Ω1

Ỹ
(KỸ + Li)) + χ(ODi

(KỸ + Li)),

(and analogously for χ(Ω1
Ỹ
(log∆i)(KỸ + Λi)) for extended Burniat surfaces).

Moreover, note that with the same calculation as in Lemma 2.12. of [BC10],
we see that χ(Ω1

Ỹ
(KỸ + Li)) = K2

Ỹ
− 12.

Each Di (resp. ∆i) consists of ki irreducible connected components, each of
them being a smooth rational curve. Write Di = Di,1 + . . .+Di,ki

as disjoint
union of smooth rational curves and let nj := Di,j · (KỸ + Li). Then

χ(ODi
(logDi)(KỸ + Li)) =

ki
∑

j=1

max(0, nj + 1).

Therefore

χ(Ω1
Ỹ
(logDi)(KỸ + Li)) = K2

Ỹ
− 12 +

ki
∑

j=1

max(0, nj + 1).

We summarize the calculations in the following table (note that we write χi

for χ(Ω1
Ỹ
(logDi)(KỸ + Li))). The values for h2(ΘS̃)

i have been calculated in

prop. 4.1. The notation: extended case (2), resp. (3), refers to Proposition
4.2.
Moreover, we use Lemma 9.22 of [Cat88] to compare h1(ΘS̃) and h1(ΘS): it
asserts that for a single blow up of a point P

π∗ΘS̃ = mPΘS , R1π∗ΘS̃ = 0.
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Table 1.

K2
S i (n1, . . . , nki

) χi h2(ΘS̃)
i h1(ΘS̃)

i h2(ΘS)
i h1(ΘS)

i

0 −2 0 2 0 2
4 1 (1, 1, 1, 1) 0 0 0 0 0

n.B. 2 (1, 1, 1, 1) 0 0 0 0 0
3 (1, 1, 1, 1) 0 1 1 1 1
0 −3 0 3 0 3

4 1 (1, 1, 1) −2 0 2 0 0
ext. 2 (1, 1, 1) −2 0 2 0 0

3 (1, 1, 1, 0, 1) 1 1 0 1 0
0 −1 0 1 0 1

3 1 (1, 1, 1, 1) −1 0 1 0 1
B. 2 (1, 1, 1, 1) −1 0 1 0 1

3 (1, 1, 1, 1) −1 0 1 0 1

0 −4 0 4 0 4
3 1, 2, 3 (1, 1, 0) −4 0 4 0 0

str.ext.

0 −3 0 3 0 3
3 1 (1, 1, 0, 1) −2 0 2 0 0

ext. (2) 2 (1, 1) −5 0 5 0 1
3 (1, 1, 0, 1) −2 0 2 0 0

0 −2 0 2 0 2
3 1 (1, 1, 1, 1, 0) 0 0 0 0 0

ext. (3). 2 (1, 1, 1) −3 0 3 0 1
3 (1, 1, 1) −3 0 3 0 1

�

From the above calculations and from Propositions 3.1, 3.2 follow all the state-
ments of our first main theorem, with the exception of the statement thatNEB4

is a connected component. It follows that NEB4 is open, while the statement
that NEB4 is closed will be shown in the forthcoming section.

Theorem 0.1 1) The subset NEB4 of the moduli space of canonical surfaces of
general type M

can
1,4 given by the union of the open set corresponding to extended

Burniat surfaces with K2
S = 4 with the irreducible closed set parametrizing nodal

Burniat surfaces with K2
S = 4 is an irreducible connected component, normal,

unirational of dimension 3.
Moreover the base of the Kuranishi family of deformations of such a minimal
model S is smooth.
2) The subset NEB3 of the moduli space of canonical surfaces of general type
M

can
1,3 corresponding to extended and nodal Burniat surfaces with K2

S = 3 is
an irreducible open set, normal, unirational of dimension 4.
Moreover the base of the Kuranishi family of S is smooth.
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Proof. We show here the smoothness of the base B of the Kuranishi family.
This follows, in the caseK2 = 4, from the fact that we have shown (Proposition
3.1) the existence of a family with smooth three dimensional base B mapping
to the moduli space, hence also to the base B of the Kuranishi family, in a
quasi-finite way. Since the tangent dimension of B is also equal to three, it
follows that the dimension of B is exactly three, and that B is smooth.
The argument in the case K2 = 3 is identical, using Proposition 3.2.

�

We are also almost done with the proof of our second main theorem

Theorem 0.2 The deformations of nodal Burniat surfaces with K2
S =

4, 3 to extended Burniat surfaces with K2
S = 4, 3 yield examples where

Def(S, (Z/2Z)2) → Def(X, (Z/2Z)2) is not surjective.
Moreover, Def(S, (Z/2Z)2) ( Def(S), whereas for the canonical model we have:
Def(X, (Z/2Z)2) = Def(X).
The moduli space of pairs, of an extended (or nodal) Burniat surface with K2

S =
4, 3 and a (Z/2Z)2-action, is disconnected; but its image in the moduli space is
a connected open set.

Proof. By Propositions 3.1 and 3.2 we have two families with smooth connected
rational base of dimension 3, resp. 4, parametrizing all the canonical models
X of the surfaces in NEB4, resp. NEB3.
In the previous Theorem 0.1 we showed that the base of the Kuranishi family
of S is smooth, hence base change of these families yield the Kuranishi family
of S.
The above families of canonical models X yield the Kuranishi family of X , e.g.,
by the Theorem of Burns and Wahl.
Propositions 3.1 and 3.2, exhibiting all the canonical models as bidouble cov-
ers of normal Del Pezzo surfaces, immediately show that Def(X, (Z/2Z)2) =
Def(X).
Let now S be a nodal Burniat surface.
Since, by (7.1), page 23, of [Cat88] Def(S, (Z/2Z)2) ( Def(S) is the intersection
with H1(ΘS)

0, which is the smooth subvariety corresponding to the nodal
Burniat surfaces, we obtain that Def(S, (Z/2Z)2) ( Def(S).
On the other hand, for instance in the case K2

S = 4, we explicitly see that
NEB4 is the union of two families of bidouble covers, the family of nodal
Burniat surfaces, respectively the family of extended Burniat surfaces: hence
the moduli space of pairs (S, (Z/2Z)2) has exactly two connected components.

�

5. One parameter limits of extended Burniat surfaces with
K2

S = 4

In this section we shall prove the following:
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Theorem 5.1. The family of extended Burniat surfaces with K2
S = 4 yields,

together with the family of nodal Burniat surfaces with K2
S = 4, a closed subset

NEB4 of the moduli space.

This will be accomplished through the study of limits of one parameter fam-
ilies of such extended Burniat surfaces: we shall indeed show that only nodal
Burniat surfaces (or extended Burniat surfaces) occur.
Let Y ′ be a normal Q- Gorenstein surface and denote the dualizing sheaf of Y ′

by ωY ′ .
Then there is a minimal natural number m such that ω⊗m

Y ′ is an invertible sheaf
and it makes sense to define ωY ′ to be ample, respectively anti-ample; Y ′ is
Gorenstein iff m = 1.
We recall the following result which was shown in [BC10].

Proposition 5.2. Let T be a smooth affine curve, t0 ∈ T , and let f : X → T
be a flat family of canonical surfaces. Suppose that Xt is the canonical model of
a Burniat surface with 4 ≤ K2

Xt
for t 6= t0 ∈ T . Then there is a biregular action

of G := (Z/2Z)2 on X yielding a one parameter family of finite (Z/2Z)2-covers

X

f
��

@@
@@

@@
@

// Y

����
��

��
�

T ,

(i.e., Xt → Yt is a finite (Z/2Z)2-cover), such that Yt is a Gorenstein Del
Pezzo surface for each t ∈ T .

Observe that the above result remains true if we replace “Burniat surface” by
“extended Burniat surface”.
This implies immediately the following:

Corollary 5.3. Consider a one parameter family of bidouble covers X → Y
as in prop. 5.2. Then the branch locus of Xt0 → Yt0 is the limit of the branch
locus of Xt → Yt, and it is reduced.

Note that the limit of a line on the del Pezzo surfaces Yt is a line on the del
Pezzo surface Yt0 , and, as a consequence of the above assertion,
two lines in the branch locus in Yt cannot tend to the same line in Yt0 .

Remark 5.4. Let X be the canonical model of an extended or nodal Burniat
surface with K2

X = 4. Recall that X is smooth for a general member of the
family of extended Burniat surfaces, whereas X has one ordinary node if X is
the canonical model of a nodal Burniat surface with K2 = 4.
In the extended case the branch locus consists of the union of 3 hyperplane
sections, containing 8 lines, 2 conics and the node. In the nodal Burniat case
one of the conics degenerates to two lines, hence the branch locus consists
instead of 10 lines and one conic.

The first step towards proving Theorem 5.1 is the following:
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Proposition 5.5. Consider a one parameter family of bidouble covers X → Y
as in prop. 5.2 except that Xt is an extended Burniat surface with K2

Xt
= 4 for

t 6= 0.
Then Y0 is a normal Del Pezzo surface with exactly one node as singularity.

Lemma 5.6. A normal singular Del Pezzo surface with K2
Y0

= 4 containing at
least 8 lines has as singularities either

(1) one node, and then it contains 12 lines, or
(2) two nodes, and then it contains 9 lines, or
(3) an A2 singularity, and then it contains 8 lines, 4 of which pass through

the singular point.

Proof. The assertion is a generalization of Proposition 3.6 of [BC10], page 581,
see especially the proof in the appendix ibidem, pages 585-587.
We blow up r = 5 points in the plane.
By [BC10], p.586, we have that the loss of number of lines when one has a
chain of k infinitely near points is bounded by

(k− 1)(r− (k− 1)) +
1

2
(k+1)(k− 2) = (k− 1)(5− (k− 1)) +

1

2
(k+1)(k− 2).

Since a smooth Del Pezzo surface of degree four has 16 lines, k ≥ 4 implies
that the number of lines is less than or equal to 16− 11 = 5.
If there is a chain with k = 3, the same estimate gives a loss of 8, and we
cannot then have other (-2)-curves, else the number would be strictly smaller
than 16− 8 = 8.
In this case we get an A2 singularity and 8 lines.
In fact, in the chosen plane model we have 5 points lying on an irreducible
conic C, of which P2 infinitely near to P1, and P3 infinitely near to P2. The
lines are given by

E3, E4, E5, |L− E1 − E4|, |L− E1 − E5|, |L− E1 − E2|, |L− E4 − E5|, C
′,

where C′ is the strict transform of C.
In this case the 4 lines passing through the singular point are

E3, |L− E1 − E4|, |L− E1 − E5|, |L− E1 − E2|.

In the case where there is no chain of three infinitely near points by a standard
Cremona transformation as in [BC10], ibidem, we may reduce to the case where
there are no infinitely near points and then we have
that the weak Del Pezzo surface is Ŷ0 := P̂2(P1, . . . , P5), where P1, P2, P3 and
P1, P4, P5 are collinear.
Then Ŷ0 contains nine lines. In fact, the set of lines of Ŷ0 is:

L := {E1, . . . , E5, L− E2 − E4, L− E2 − E5, L− E3 − E4, L− E3 − E5}.

�

Proof of prop. 5.5. Since the branch locus of Xt → Yt contains eight lines for
t 6= 0, also the branch locus of X0 → Y0 contains eight lines.
We want to show that cases (2) and (3) of the previous lemma cannot occur.
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We start by eliminating case (3).
Here, the A2 singularity must be a limit of the node of Yt, hence the bidouble
cover is branched at the singular point.
The bidouble cover is a RDP, hence, looking at table 2, page 90 of [Cat87], and
table 3, page 93 ibidem, we see that the branch locus is analytically isomorphic
to

• an ordinary cusp {y = 0 = z2+ x3 = 0} for E6 = {z2+ x3 + t4 = 0} →
A2 = {z2 + x3 + y2 = 0},

• two lines {x = 0 = z2 + y2 = 0} for A5 = {z2 + w6 + y2 = 0} → A2 =
{z2 + x3 + y2 = 0},

• two lines {x = 0 = z2 + y2 = 0} for the composition of A2 → A5

(ramified only at the singular point) with the previous A5 = {z2 +
w6 + y2 = 0} → A2 = {z2 + x3 + y2 = 0}.

We observe however that by our previous arguments the branch locus contains
the 8 lines, 4 of which pass through the A2 singularity, contradicting the above
local description of the branch locus.
Assume now by contradiction that we have case (2), i.e., Y0 has two nodes.
Then

Claim 5.7. E1 is not a component of the total branch locus ∆ of X̂0 → Ŷ0 ,
i.e.,

E2, . . . , E5, L− E2 − E4, L− E2 − E5, L− E3 − E4, L− E3 − E5

are exactly the 8 lines contained in ∆.

Proof of the claim. Assume that E1 is contained in the total branch locus ∆
of the bidouble cover X̂0 → Ŷ0. Then ∆ contains three lines intersecting one
of the two (−2) curves. But a bidouble cover of a node branched in at least
three lines does not give a rational double point, as shown by the classification
recalled in Section 2. A contradiction. �

Since for each node ν1, ν2 there are two lines in the total branch divisor passing
through νi, it follows by the classification given in Section 2, that N1, N2 ≤ ∆
and that (∆−Ni)Ni = 2.

Denote by π : Ŷ0 → Y ′ be the desingularization map.
Then π∗(∆) ≡ −3KY ′ , whence

∆ ≡ −3K
Ŷ0

+ n1N1 + n2N2.

Then 2 = (∆−Ni)Ni = (ni − 1)N2
i = 2(1− ni) ⇔ ni = 0.

We conclude that

∆ ≡ −3K
Ŷ0
.

Observe that

−3K
Ŷ0

−
∑

l∈L\{E1}

l −N1 −N2 ≡ 3L− E1 − E2 − . . .− E5.
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Since no other component of ∆ can intersect the (−2)-curves, we see immedi-
ately that the remaining two components of ∆ are:

L− E1, 2L− E2 − E3 − E4 − E5.

We write now

∆1 = λ1L− E1 − a2E2 − a3E3 − a4E4 − a5E5,

∆2 = λ2L− E1 − b2E2 − b3E3 − b4E4 − b5E5,

∆3 = λ3L− E1 − c2E2 − c3E3 − c4E4 − c5E5.

Here we have used that, since E1 is not a component of ∆ and since ∆i +∆j

has to be divisible by two, the only possibility is

E1 · (∆1,∆2,∆3) = (1, 1, 1).

Note that, since λ1 +λ2 +λ3 = 9 (and again since ∆i +∆j is divisible by two)
we have:

(λ1, λ2, λ3) ∈ {(3, 3, 3), (1, 3, 5), (1, 1, 7)}.

Moreover, since the branch divisor is reduced, for each i it happens that, among
the three numbers ai, bi, ci, there cannot be two which are negative, and if one
such a number is negative, then it is = −1; hence the only possibilities are:
{ai, bi, ci} = {1, 1, 1} or {−1, 1, 3}, for i ∈ {2, . . . , 5}.

(λ1, λ2, λ3) = (3, 3, 3) : then we get for the character sheaves:

L1 = O(3L− E1 −
b2 + c2

2
E2 −

b3 + c3
2

E3 −
b4 + c4

2
E4 −

b5 + c5
2

E5),

L2 = O(3L− E1 −
a2 + c2

2
E2 −

a3 + c3
2

E3 −
a4 + c4

2
E4 −

a5 + c5
2

E5),

L3 = O(3L− E1 −
a2 + b2

2
E2 −

a3 + b3
2

E3 −
a4 + b4

2
E4 −

a5 + b5
2

E5).

Note that (ai, bi, ci) = (1, 1, 1) for all i ∈ {2, . . . , 5} implies that pg(X0) 6= 0,
whence w.l.o.g.

(a2, b2, c2) = (−1, 1, 3).

Then E2 ≤ ∆1, and by the local calculations in Section 2 this implies that
also E3 ≤ ∆1 (since the two lines of the branch locus intersecting a (−2)-curve
belong to the same ∆i). Therefore

(a3, b3, c3) ∈ {(−1, ∗, ∗), (1, 1, 1)}.

Again using pg(X0) = 0, we conclude (looking at L3) that (up to exchanging
P4 with P5)

(a4, b4, c4) ∈ {(3, 1,−1), (1, 3,−1)},

and again this implies that

(a5, b5, c5) ∈ {(∗, ∗,−1), (1, 1, 1)}.

But in all of these cases we have
ai + ci

2
∈ {0, 1} ∀ ∈ {2, . . . , 5},
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contradicting pg = 0.

(λ1, λ2, λ3) = (1, 3, 5) : here we have

L1 = O(4L− E1 −
b2 + c2

2
E2 −

b3 + c3
2

E3 −
b4 + c4

2
E4 −

b5 + c5
2

E5),

L2 = O(3L− E1 −
a2 + c2

2
E2 −

a3 + c3
2

E3 −
a4 + c4

2
E4 −

a5 + c5
2

E5),

L3 = O(2L− E1 −
a2 + b2

2
E2 −

a3 + b3
2

E3 −
a4 + b4

2
E4 −

a5 + b5
2

E5).

Again, pg = 0 implies that there is an i ∈ {2, . . . , 5} such that ai+ci
2 = 2.

W.l.o.g. we can assume that a2+c2
2 = 2. Therefore

(a2, b2, c2) ∈ {(3,−1, 1), (1,−1, 3)},

whence

(a3, b3, c3) ∈ {(3,−1, 1), (1,−1, 3), (1, 1, 1)}.

Then b2+c2
2 , b3+c3

2 ≤ 1 and b4+c4
2 , b5+c5

2 ≤ 2, which implies that O(L − E2 −
E4) ⊂ O(K

Ŷ0
)⊗ L1, contradicting pg(X0) = 0.

(λ1, λ2, λ3) = (1, 1, 7) : this case can be excluded since

4 = ∆3 · (−KŶ0
) = 3λ3 − 1−

5
∑

i=2

ci ⇒ 12 ≥
5
∑

i=2

ci = 16,

a contradiction.
This proves the proposition. �

Consider a one parameter family of bidouble covers X → Y as in prop. 5.5.
Then Y ′ := Y0 is a normal Del Pezzo surface with exactly one node.
Let Ỹ be the blow up of Y ′ in the node and denote the exceptional (−2)-curve

of Ỹ over the node by A.
The following result concludes the proof of Theorem 5.1.

Proposition 5.8. For the limit of a one parameter family of extended Burniat
surfaces with K2

S = 4 we have:

(1) if A does not intersect ∆−A, then X0 is an extended Burniat surface
with K2

S = 4 ;
(2) if A intersects ∆−A, then X0 is a nodal Burniat surface with K2

S = 4
.

Proof. We can assume that Ỹ = P̂2(P1, . . . , P5), and w.l.o.g. P1, P4, P5

collinear, i.e., A ≡ L− E1 − E4 − E5.
Recall that we have shown that in both cases A is contained in the branch
locus, hence the two alternatives are that A is a connected component of the
branch locus, or not.
1) In the first case, argueing as in Proposition 5.5, we get that the total branch
locus is ∆ ≡ −3KỸ +A.
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It is easy to see that Ỹ contains exactly 8 lines l1, . . . , l8 which do not intersect
A. Then these 8 lines have to be contained in ∆.
Then ∆ − A −

∑8
i=1 li ≡ 3L −

∑

Ei, which has to split into two Del Pezzo

conics, which then have to be L − E1 and 2L −
∑5

i=2Ei. Hence we get an
extended Burniat surface.
2) Here L− E1 − E4 − E5 ≡ A ≤ ∆ ≡ −KỸ .

Observe that Ỹ contains exactly 4 lines intersecting A: E1, E4, E5, L−E2−E3.
By our local calculations in Section 2 two of these four lines are components of
the total branch divisor and the two other not.
W.l.o.g. we can assume E1, L−E2−E3 ≤ ∆. Since E4 and E5 are not contained
in the branch divisor, we see (writing ∆i as in the proof of Proposition 5.5)
that(a4, b4, c4) = (a5, b5, c5) = (1, 1, 1).
Now it is straightforward that (λ1, λ2, λ3) = (3, 3, 3) (use the same argument
as in the proof of prop. 5.5 to exclude the cases (1, 3, 5) and (1, 1, 7)).
Since pg = 0, we have (up to a permutation of {1,2,3})

b1 + c1
2

=
a2 + c2

2
=
a3 + b3

2
= 2.

W.l.o.g. we can assume (a1, b1, c1) = (−1, 1, 3); then E1, L− E2 − E3 ≤ ∆1.
Therefore

(a2, b2, c2) ∈ {(3,−1, 1), (1,−1, 3)}

and

(a3, b3, c3) ∈ {(3, 1,−1), (1, 3,−1)}.

But only (a2, b2, c2) = (3,−1, 1) and (a3, b3, c3) = (1, 3,−1) is possible (since a
cubic cannot have two triple points, i.e., this would contradict the effectivity
of ∆i for some i).
Therefore we get a nodal Burniat surface. �

6. Nodal and extended Burniat surfaces do not form a closed
set for K2

S = 3

We are going to exhibit surfaces which are in the closure of the family of nodal
and extended Burniat surfaces, but for which the image of the bicanonical map
is a normal cubic with other singularities than 3 nodes.
In our first example we exhibit a 3 -dimensional family with a 4-nodal cubic as
image.
Consider a specialization of the 6 points P1, . . . , P6 in P2 so that P1, P2, P3

become collinear, and, more precisely, the point P2 moves in the line joining
P4 and P6 till it reaches the line joining P1 and P3.
Then P1, . . . , P6 are the vertices of a complete quadrilateral with sides
N1, N2, N3, N4: here we identify N4 to the (-2) curve N4 ≡ L − E1 − E2 − E3

on the weak Del Pezzo Ỹ of degree 3 obtained blowing up the 6 points. Our
notation for N1, N2, N3 remains the same, and Ỹ is the minimal resolution of
the 4-nodal cubic surface Y ′ := Σ.
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We consider exactly the same divisors as the strictly extended Burniat divisors
in 4) of Definition 1.4. We obtain a three dimensional family of bidouble covers
X of Σ, with total branch locus consisting of 9 connected components, namely:

N1, N2, N3; Γ1,Γ2,Γ3; G1, G2, G3.

G1, G2, G3 correspond to the three diagonals of the quadrilateral, and are the
3 lines of Σ not passing through the nodes, whereas Γ1,Γ2,Γ3 are conics as in
Definition 1.4. The canonical models X have therefore 4 nodes lying over the
node of Σ corresponding to N4.
We have therefore proven:

Proposition 6.1. The closure of the (4-dimensional) open set corresponding
to nodal and extended Burniat surfaces with K2

X = 3 contains a 3-dimensional
family of canonical models which are bidouble covers of a 4-nodal cubic surface
Σ.
Each such surface X has 4 nodes, lying over one fixed node of Σ, and where
the bicanonical map Φ2 : X → Σ is unramified.

In our second example we obtain a 3-dimensional family of bidouble covers of
a cubic surface Y ′ with a singularity of type D4.
We give this example using the different planar realization which was indeed
the way we found our first description of the deformation of nodal Burniat
surfaces with K2

S = 3 to extended Burniat surfaces.
To do this, we relabel the 6 points in the plane as follows:

P ′
3 := P4, P

′
2 := P5, P

′
1 := P6.

We have therefore irreducible rational curves

Di,1 := L− Ei − Ei+1, Di,2 := Ni = L− Ei − E′
i+1 − E′

i+2,

Di,3 := Gi = L− Ei − E′
i

on the weak Del Pezzo Ŷ of degree 3.
Blowing down the 3 (-1) curves Di,1 (i = 1, 2, 3) first, and then the strict
transform of the 3 (-2) curves Di,2 ( i = 1, 2, 3) we obtain another copy of the
projective plane where one has blown up three points Qi (i = 1, 2, 3) and three
points Q′

i (i = 1, 2, 3), where Q′
i is infinitely near to Qi.

We denote by slight abuse of notation by Qi the full transform of the point Qi,
namely, the divisor Di,1 + Di−1,2, and by Q′

i the full transform of the point
Q′

i,namely, the divisor Di,1.
The pull back of the system of lines in the new P2 is, by the Hurwitz formula,
the linear system

L := 4L− 2
∑

i

Ei −
∑

i

E′
i.

And the curve Di,3 is linearly equivalent to

Di,3 ≡ L− 2Di+1,1 −Di,2 = L −Qi+1 −Q′
i+1.
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Hence Di−1,2 = Qi − Q′
i, and we can write the branch loci for the extended

Burniat surfaces as:

∆i ∈ Di,3 +Di+1,2 + |Di,3 +Di+1,3| = Di,3 + |Qi−1 −Q′
i−1|+ |Di,3 +Di+1,3| =

= |L −Qi+1 −Q′
i+1|+ |Qi−1 −Q′

i−1|+ |2L−Qi+1 −Q′
i+1 −Qi−1 −Q′

i−1| =

= |L −Qi+1 −Q′
i+1|+Ni−1 + |2L −Qi+1 −Q′

i+1 −Qi−1 −Q′
i−1|.

Now, we simply let the three points Q1, Q2, Q3 become collinear, but we let
the tangent directions Q′

i remain general.
The blow up of the plane in the 6 points possesses now 4 (-2) curves, the three
curves N1, N2, N3 and the strict transform N of the line through Q1, Q2, Q3.
Since N intersects each Ni and these are disjoint, the corresponding normal
Del Pezzo surface Y ′ has a singularity of type D4.
Letting the branch divisor be as before (namely, take pull backs of general
conics in |2L−Qi+1 −Q′

i+1 −Qi−1 −Q′
i−1|), we obtain

Proposition 6.2. The closure of the (4-dimensional) open set corresponding
to nodal and extended Burniat surfaces with K2

X = 3 contains a 3-dimensional
family of canonical models which are bidouble covers of a normal cubic surface
Y ′ with a singularity of type D4.
The branch locus on Y ′ has the singular point as an isolated point, and the
local covering is determined by the epimorphism D4 → (Z/2Z)2 = (D4)

ab of
the local fundamental group of the singularity to its abelianization.

Proof. The inverse image of the (-2) curves in the bidouble cover are: the
inverse image N ′ of N , which is a (-8) curve, and, for each Ni, there is a pair
of (-1) curves meeting N ′. After contracting the 6 (-1) curves we obtain a (-2)
curves.

�

7. Appendix 1: a corrigendum to Burniat surfaces II

Parts 1), 2) and 3 ) of the following lemma were contained in Lemma 2.10 of
[BC10], while 4) corrects a wrongly stated assertion of 2) of loc. cit.
We also amend the proof for the correct assertions.

Lemma 7.1. Consider a finite set of distinct linear forms

lα := y − cαx, α ∈ A

vanishing at the origin in C2.
Let p : Z → C2 be the blow up of the origin, let Dα be the strict transform of
the line Lα := {lα = 0}, and let E be the exceptional divisor.
Let Ω1

C2((dlog lα)α∈A) be the sheaf of rational 1-forms η generated by Ω1
C2

and by the differential forms d log lα as an OC2-module and define similarly
Ω1

Z((logDα)α∈A). Then:
1) p∗Ω

1
Z(logE)(−E) = Ω1

C2 ,
2) p∗Ω

1
Z(logE, (logDα)α∈A) = Ω1

C2((dlog lα)α∈A),
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3) p∗Ω
1
Z((logDα)α∈A) =

{η ∈ Ω1
C2((dlog lα)α∈A)|η =

∑

α gα dlog lα + ω, ω ∈ Ω1
C2 ,
∑

α gα(0) = 0}.
4) p∗Ω

1
Z((logDα)α∈A)(E) ⊃ Ω1

C2((dlog lα)α∈A) and

dimC[p∗Ω
1
Z((logDα)α∈A)(E)/Ω1

C2((dlog lα)α∈A)] = d− 2

is supported at the origin, where d := |A|. More precisely, we have an exact
sequence

0 → Ω1
C2 → p∗Ω

1
Z((logDα)α∈A)(E) →

d
⊕

α=1

ODα
(0) → C2

0 → 0.

5)
Assume w.l.o.g. c1 = 0 in the following formulae: then
p∗Ω

1
Z(logD1)(−E) ⊂ Ω1

C2(dlog l1) is the subsheaf of forms

{ω = αdx+ β
dy

y
|β(0) = 0,

∂β

∂y
(0) = 0,

∂β

∂x
(0) + α(0) = 0}.

6) p∗Ω
1
Z(−E) = m0Ω

1
C2 , where m0 is the maximal ideal of the origin 0 in the

sheaf OC2 .
7) p∗Ω

1
Z(logD1, logD2)(−E) ⊂ Ω1

C2(dlog l1, dlog l2) is the subsheaf of forms

{ω = α
dx

x
+ β

dy

y
|α(0) = 0, β(0) = 0,

∂(α+ β)

∂x
(0) = 0,

∂(α+ β)

∂y
(0) = 0}.

Proof. We show 2), 3), 4), 5) and 7).
Observe that

p∗Ω
1
Z((logDα)α∈A)(mE)

consists of rational differential 1-forms ω which, when restricted to C2 \ {0},
yield sections of Ω1

C2((dlog lα)α∈A).
Therefore, in particular, ω

∏

α∈A lα is a regular holomorphic 1-form on C2.
Hence ω, modulo holomorphic 1-forms, can be written as

ω =
f

∏

α∈A lα
dx+

g
∏

α∈A lα
dy,

where f, g are Weierstrass pseudopolynomials of degree in y strictly less than
d := card(A).
Since dy = dlα + cαdx, the condition that ω restricted to C2 \ {0} yields a
section of Ω1

C2((dlog lα)α∈A) implies that lα|(f + cαg).
Whence lα divides fx+ yg, and we conclude, since

∏

α∈A lα is a pseudo poly-
nomial of degree d, that

fx+ yg = c(x)
∏

α∈A

lα.

This allows us to write, modulo holomorphic 1-forms,

ω =
g(dy − y

x
dx)

∏

α∈A lα
+
c

x
dx,
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where now c ∈ C.
Let us pull back ω to Z, using local coordinates (x, t) such that y = xt, and
where we make the assumption cα 6= 0, ∀α.

p∗ω =
x−dg(x, xt)(xdt)
∏

α∈A(t− cα)
+
c

x
dx.

The pull back form has logarithmic poles along E = {x = 0} iff g(x, y) has
multiplicity at least d − 1 at the origin, and poles of order at most one along
E iff g(x, y) has multiplicity at least d− 2 at the origin.
Observe that the d polynomials Pβ :=

∏

α∈A,α6=β lα are linearly independent
and homogeneous of degree d − 1, hence they generate the vector space of
homogeneous polynomials of degree d − 1, hence they generate the ideal of
holomorphic functions vanishing at the origin of multiplicity at least d− 1.
Hence g(x, y) has multiplicity at least d− 1 iff we can write

g =
∑

α∈A

gαPα.

And since g is a pseudo polynomial of degree ≤ d−1, the gα’s are just functions
of x.
In this case we can write

ω =
c

x
dx+

∑

α∈A

gα
lα

(dy −
y

x
dx) =

1

x

(

cdx+
∑

α∈A

gα
lα

(xdy − ydx)

)

.

=
1

x

(

cdx+
∑

α∈A

gα
lα

(xdlα + xcαdx− ydx)

)

=
∑

α∈A

gα
lα
dlα+

1

x
dx

(

c−
∑

α∈A

gα

)

.

The above form ω does not have poles on the line x = 0 if and only if c =
(
∑

α∈A gα(0)).
Observing that the strict transform of the line x = 0 is not among the divisors
Dα, we establish claim (2), while (3) follows since c = 0 iff there are no poles
along E.
The very first assertion of (4) follows by (2), so let’s proceed to verify the other
assertions.
Assume now that p∗ω has poles of order 1 along E; equivalently, assume that
g(x, y) has multiplicity at least d− 2 at the origin. Since we already dealt with
the case where this multiplicity is at least d− 1, we may assume that g(x, y) is
homogeneous of degree d− 2, and that c = 0.
Argueing as before, the space of homogeneous polynomials of degree d− 2 has
as basis the d− 1 polynomials (β = 1, . . . , d− 1)

Qβ :=
∏

α∈A,α6=β,α6=d

lα.

Whence g =
∑

α∈A,α6=d gαQα, where gα ∈ C, and we may write:
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ω =

d−1
∑

α=1

gα
lαld

(dy −
y

x
dx).

Since we want no poles on the line x = 0, we must have

d−1
∑

α=1

gαy

y2
= 0 ⇔

d−1
∑

α=1

gα = 0.

Under this condition we may then write

ω =

d−1
∑

α=1

gα
lαld

(dlα),

which has logarithmic poles along lα = 0.
Logarithmic poles along ld = 0 follow by writing

ω =

d−1
∑

α=1

gα
lαld

(dld) +

d−1
∑

α=1

gα(cd − cα)

lαld
dx,

and observing that
∑d−1

α=1
gα(cd−cα)
y−cαx

vanishes for ld = 0 since on {ld = 0} we

have y = cdx.
Applying the residue sequence, we see that each such form ω has as residue on
Dα a function with a single pole at most at the origin O, and with coefficient

of 1
x
respectively equal to rd :=

∑d−1
α=1

gα
(cd−cα) in the case of Dd, and rα :=

− gα
(cd−cα) in the case of Dα.

In other words, the sum of the ‘double’ residues is 0, and the other condition
∑d−1

α=1 gα = 0 can be also written down as
∑d

α=1 cαrα = 0.
To show 5), observe that

p∗Ω
1
Z(logD1)(−E) ⊂ p∗Ω

1
Z(logD1) ⊂ Ω1

C2(dlog l1).

Take coordinates x, y such that l1 = y, and write ω = αdx + β dy
y
.

We just pull back ω on the blow up Z in the chart where we have y = tx, and
impose that it lies in the span of

x
dt

t
, xdx.

We have

ω = α(x, tx)dx + β(x, tx)(
dt

t
+
dx

x
)

and we must clearly have β(0) = 0.
Then β(x, tx)dt

t
is a multiple of xdt

t
, and it suffices to require that α(x, tx) +

1
x
β(x, tx) be divisible by x.

Writing β(x, y) = β1x+ β2y + . . . , our condition boils down to the divisibility
by x of

α(0) + β1 + β2t⇔ β2 = 0, α(0) + β1 = 0.
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Finally, let us show 7). Write

ω = α
dx

x
+ β

dy

y

and pull back to the blow up in the chart where y = tx: we get

(α+ β)
dx

x
+ β

dt

t
,

which must be divisible by x, hence in particular β(0) = 0. Looking at the
other chart we get symmetrically α(0) = 0.
Now, α + β must vanish of order two, in order that its pull back be divisible
by x2.

�

8. Appendix 2: Proof of Proposition 4.1

Proof of Proposition 4.1. We can prove 1) and 2) simultaneously for i = 1.
Observe that D1 = ∆1 + N1, that Λ1 = L1 + N1, and apply Lemma 4.3
(observing that (KỸ +2N1+(E1−E3))N1 = −4+1 < 0) in order to conclude
that

H0(Ω1
Ỹ
(log(∆1))(E1 − E3 +N1)) ∼= H0(Ω1

Ỹ
(log(D1))(E1 − E3)).

Moreover we observe that, again by Lemma 4.3,

H0(Ω1
Ỹ
(log(D1))(E1 − E3)) = H0(Ω1

Ỹ
(log(D1 − (L− E1)))(L − E3)).

Let f : Ỹ → P2 be the blow down of E1, . . . , E5. Then f∗(D1− (L−E1)) splits
as the sum of two lines l1, l2 in P2 intersecting in P1.
W.l.o.g. we can assume that P1 = (0 : 0 : 1), P2 = (0 : 1 : 0), P4 = (1 : 0 : 0)
and P5 = (1 : 0 : λ), with λ 6= 0.
Applying Proposition 7.1 several times for each blow down we get that

H0(Ω1
Ỹ
(log(D1−(L−E1)))(L−E3)) = H0(f∗Ω

1
Ỹ
(log(D1−(L−E1)))(L−E3))

is the subspace V1 ofH
0(Ω1

P2(dlog l1, dlog l2)(1)) consisting of sections satisfying
several linear conditions.
We write these conditions using the basis provided by Lemma 4.5 and its corol-
lary, in order to show that V1 = 0. By prop. 7.1, 3) we get for P1:

a13 + a23 = 0;

for P2, P4 and P5 the three equations

a12 = a21 = a21 + λa23 = 0.

This shows that V1 = 0.
We continue with the proof of 1).
For i = 2, again by Lemma 4.3 we have to calculate

V2 = H0(Ω1
Ỹ
(log(L − E2 − E5), log(L− E2 − E4))(L − E3)),

which after blowing down E1, . . . , E5 corresponds to a subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
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W.l.o.g. we can assume that P2 = (0 : 0 : 1), P5 = (0 : 1 : 0), P4 = (1 : 0 : 0)
and P3 = (1 : 1 : 1).
By prop. 7.1, 3), we get for P2,P4, P5 the three linear equations:

a13 + a23 = 0, a21 = 0, a12 = 0.

We evaluate ω in P3, and get (using the above equalities)

ω(P3) = a13dx1 + a23dx2,

whence by Proposition 7.1, 6) a13 = a23 = 0 and therefore we have verified
that V2 = 0.
For i = 3, using Lemma 4.3, we have to calculate:

V3 := H0(Ω1
Ỹ
(log(L− E3 − E4), log(L− E3 − E5))(L − E1)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
W.l.o.g. we can assume that P3 = (0 : 0 : 1), P4 = (0 : 1 : 0), P5 = (1 : 0 : 0),
P1 = (1 : 1 : 0).
By prop. 7.1, 3), we get for P3,P4, P5 the three linear equations:

a13 + a23 = 0, a12 = 0, a21 = 0.

Setting the evaluation of ω in P1 equal to zero is easily seen to give no new
conditions, hence V3 ∼= C.
Let’s proceed to prove 2) for i = 2, 3.
For i = 2, 3, by 4) of remark 1.5,

H0(Ω1
Ỹ
(log∆i)(KỸ + Λi)) = H0(Ω1

Ỹ
(log∆i)(Ei − Ei+2)).

For i = 2, using again Lemma 4.3, observing that

(KỸ + 2Γ2 + (E2 − E1))Γ2 < 0,

we see that we have to calculate

V2 := H0(Ω1
Ỹ
(log(L−E2 −E4), log(L−E2 −E5))(2L−E1 −E3 −E4 −E5)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(2)).
W.l.o.g. we can assume that P2 = (0 : 0 : 1), P4 = (0 : 1 : 0), P5 = (1 : 0 : 0),
P3 = (1 : 1 : 1), and then P1 = (1 : λ : 0), where λ 6= 0, 1.
Using cor. 4.6, we get by prop. 7.1, 3) for P2 the linear equation

a313 + a323 = 0.

By prop. 7.1, 5) the conditions for P4 are

a212 = 0, a12 = 0, a23 = 0;

whereas the conditions for P5 are

a121 = 0, a12 = 0, a13 = 0.

Imposing that ω vanishes in P3, we get

ω(P3) = dx1(a313 + 2a213 + a123) + dx2(a323 + 2a123 + a213) = 0.
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The above conditions yield:

a123 = a313 = −a213 = −a323.

Finally, imposing that ω vanishes in P1 we obtain:

ω(P1) = −dx3(λa213 + a123) = 0,

whence (λ − 1)a213 = 0. Since λ 6= 0, 1 this implies a213 = 0, and we have
shown that V2 = 0.
We are left with the case i = 3. Using repeatedly Lemma 4.3 and Proposition
7.1, we see that we have to calculate

V3 := H0(Ω1
Ỹ
(log∆3)(E3 − E2)) =

= H0(Ω1
Ỹ
(log(L − E1 − E3), log(L− E1 − E4 − E5))(2L − E3 − E4 − E5)).

After blowing down E1, . . . , E5, we can assume w.l.o.g. that P1 = (0 : 0 : 1),
P4 = (0 : 1 : 0), P3 = (1 : 0 : 0), P5 = (0 : 1 : 1), and V3 becomes a linear
subspace of H0(Ω1

P2(dlog l1, dlog l2)(2)).
Using cor. 4.6, we get by prop. 7.1, 3) for P1 the linear equation

a313 + a323 = 0.

By prop. 7.1, 5) the conditions for P4 are

a212 = 0, a12 = 0, a23 = 0;

whereas the conditions for P3 are

a121 = 0, a12 = 0, a13 = 0.

For P5, we get instead (again by prop. 7.1, 5)), the two linear equations (the
third is trivial):

a213 + a313 = 0, 2a313 = 0.

This implies that a313 = a213 = a323 = 0, but a123 is arbitrary. This shows
that V3 ∼= C.
Thus 2) is proven.
To prove 3), by symmetry, we may assume without loss of generality that i = 1.
We have to calculate V1 := H0(Ω1

Ỹ
(log(D1)(E1 −E3)), which by Lemma 4.3 is

equal to

H0(Ω1
Ỹ
(log(L− E1 − E2), log(L − E1 − E4 − E5))(L − E6)),

which, after blowing down E1, . . . , E5, becomes a linear subspace of
H0(Ω1

P2(dlog l1, dlog l2)(1)).
W.l.o.g. we can assume that P1 = (0 : 0 : 1), P5 = (0 : 1 : 0), P2 = (1 : 0 : 0),
P4 = (0 : 1 : 1). Since P2, P4, P6 are collinear, P6 = (1 : µ : µ), where µ 6= 0.
By prop. 7.1, 3), we get for P1,P2, P4 and P5 the linear equations:

a13 + a23 = 0, a21 = 0, a12 + a13 = 0, a12 = 0.

This already shows that V1 = 0.
Thus 3) is proven.
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Let us treat the subcase of 4) where we have strictly extended Burniat divisors:
the situation is here symmetric in the indices i, hence it suffices to show the
vanishing of

H0(Ω1
Ỹ
(log(∆1))(KỸ + Λ1)).

Recall that we have the decomposition in irreducible connected components
∆1 = G1 + Γ1 +N2, where G1 is the del Pezzo line G1 ≡ L− E1 − E6.
By Lemma 4.3 we get:

H0(Ω1
Ỹ
(log(∆1))(KỸ + Λ1)) = H0(Ω1

Ỹ
(log(∆1 +N1))(E1 − E3)),

since (KỸ + 2N1 + (E1 − E3))N1 < 0. Using again Lemma 4.3 we see that

H0(Ω1
Ỹ
(log(∆1 +N1))(E1 − E3)) =

= H0(Ω1
Ỹ
(log(∆1 +N1 − Γ1))((E1 − E3) + Γ1)) =

= H0(Ω1
Ỹ
(log(G1 +N1 +N2))(2L − E2 − E3 − E5 − E6)),

because (KỸ + 2Γ1 + (E1 − E3))Γ1 < 0.

Let f : Ỹ → P2 be the blow down of E1, . . . , E6. Then f∗(G1+N1+N2) splits as
the sum of three lines l1, l2, l3 in P2 forming a triangle. W.l.o.g. we can assume
that P6 = (1 : 0 : 0), P1 = (0 : 1 : 0), P4 = (0 : 0 : 1) and P3 = (1 : 1 : 1). Then
P5 = (0 : 1 : 1), whereas P2 is collinear with P6, P4, whence P2 = (1 : 0 : λ),
with λ 6= 0, 1.
Then

H0(Ω1
Ỹ
(log(G1 +N1 +N2))(2L− E2 − E3 − E5 − E6)) =

H0(f∗Ω
1
Ỹ
(log(G1 +N1 +N2))(2L − E2 − E3 − E5 − E6))

is a subspace of

H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(2)),

where li = xi, whence P1, P4, P5 ∈ {l1 = 0}, P6, P4, P2 ∈ {l2 = 0}, P1, P6 ∈
{l3 = 0}, consisting of sections satisfying fourteen linear conditions described
in Proposition 7.1.
We explicitly write these conditions using Lemma 4.4 and Lemma 4.6 in order
to show that this subspace must be trivial.
Let ω ∈ H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(2)) and we write ω in the basis of
Lemma 4.4:

ω = a12η12 + a13η13 + a23η23 + a212x2ω12 + a313x3ω13 + a323x3ω23+

+ a121x1ω21 + a131x1ω31 + a232x2ω32 + a123x1ω23 + a231x2ω31 + a312x3ω12.

Then by prop. 7.1, 3) the condition for P1 = (0 : 1 : 0) is

(1) a212 + a232 = 0.

The same argument shows that the linear condition for P4 = (0 : 0 : 1) is

(2) a313 + a323 = 0.
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Next we work out the conditions for P5, P2 using prop. 7.1, 5). For P5 :=
(0 : 1 : 1) we work in the chart x3 = 1 and write ω locally around (0, 1) as
α(x1, x2)dx2 + β(x1, x2)

dx1

x1

. Then we get (using Lemma 4.6):

(3) β(0, 1) = a212 + a313 + a312 = 0;

(4)
∂β

∂x1
(0, 1) = −a12 − a13 − a231 = 0;

(5)
∂β

∂x2
(0, 1) + α(0, 1) = −a23 + 2a212 + a323 = 0.

The same argument for P2 = (1 : 0 : λ) (working in the chart x1 = 1 and writing
ω locally around (0, λ) as α(x2, x3)dx3+β(x2, x3)

dx2

x2

) gives the following three

linear equations (λ 6= 0, 1):

(6) β(0, λ) = a323λ
2 + a121 + a123λ = 0;

(7)
∂β

∂x2
(0, λ) = a12 − λa23 − λa312 = 0;

(8)
∂β

∂x3
(0, λ) + α(0, λ) = a13 +

1

λ
a131 + λa323 − λa313 =

= a13 +
1

λ
a131 + 2λa323 = 0.

There are four linear conditions coming from P6 = (1 : 0 : 0), given in prop.
7.1, 7). We work in the chart x1 = 1 and write ω = α(x2, x3)

dx2

x2

+β(x2, x3)
dx3

x3

.
Then we get:

(9) α(0, 0) = a121 = 0;

(10) β(0, 0) = a131 = 0;

(11)
∂(α+ β)

∂x2
(0, 0) = a12 + a231 = 0;

(12)
∂(α+ β)

∂x3
(0, 0) = a13 = 0.

From equation (11) we get: a12 = −a231.
Since a13 = a131 = 0, equation (8) implies a323 = 0, whence by (2) also
a313 = 0. Moreover, by (6), we get a123 = 0.
We write finally the conditions coming from P3 = (1 : 1 : 1) (using again that
certain coefficients are zero).
We evaluate ω in P3 and work in the affine chart x2 = 1 to obtain

(13) ω(P3) = (−a12 + a212 − a231 + a312)dx1+

(a23 + a232 + a231)dx3 = 0.
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Since:
ω(P3) = (a212 + a312)dx1 + ((a23 + a232 + a231)dx3

we get the last two linear equations:

(14) a231 + a23 + a232 = 0;

(15) a212 + a312 = 0.

These immediately imply that

a312 = a232 = −a212.

By (14) a23 = −a232 − a231, and using (5), we see that a23 = 2a212.
Again by (14) we get then that a212 = −a231. Therefore, we have:

a212 = −a231 = −a312 = −a232 =
a23
2
.

By (7):
0 = a12 − λa23 − λa231 = a12 + λa231,

whence by (4) λ = 1, which gives a contradiction, or a12 = a231 = 0.
Hence the claim for strictly extended Burniat surfaces with K2

S = 3 is estab-
lished.
Next we come to the case of (non strictly) extended Burniat surfaces. Here we
have to consider two cases:

a) only one of the three conics Γi degenerates to two lines;
b) exactly two of the three conics Γi degenerate to two lines.

a) W.l.o.g. and by remark 1.5, (5) we may assume that Γ1 splits as

Γ1 ≡ (L− E1 − E2) +N3 + E3.

Then we get the extended Burniat divisors:

{D′
1} = |L− E1 − E6|+ |L− E1 − E2|+ E3 +N2,

D′
2 ∈ |L− E2 − E5|+ |2L− E2 − E3 − E4 − E5|,

D′
3 ∈ |L− E3 − E4|+ |2L− E1 − E3 − E4 − E6|+N1 +N3.

We make the assumption, for each D′
i, i = 2, 3 that the strict transform of the

conic Γi is irreducible.
Then we have

KỸ + L′
1 ≡ L− E3 − E4 − E5 ≡ KỸ + Λ1,

KỸ + L′
2 ≡ L− E1 − E4 − E6 ≡ KỸ + Λ2,

KỸ + L′
3 ≡ E3 − E2 ≡ KỸ + Λ3 −N3,

where the Λi are as for the strictly extended Burniat divisors.
Observe that D′

2 +N3 = ∆2, whence

H0(Ω1
Ỹ
(logD′

2)(KỸ + L′
2)) ⊂ H0(Ω1

Ỹ
(logD′

2)(KỸ + L′
2 +N3)) =

H0(Ω1
Ỹ
(log(D′

2 +N3))(KỸ + L′
2)) = H0(Ω1

Ỹ
(log∆2)(KỸ + Λ2)) = 0,
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where the first equality holds by Lemma 4.3 and the last holds by our previous
computations for strictly extended Burniat surfaces.
Moreover, D′

3 = ∆3 + N3, L′
3 = Λ3 − N3, whence the vanishing of

H0(Ω1
Ỹ
(logD′

3)(KỸ + L′
3)) follows again using Lemma 4.3 from the analogous

vanishing for strictly extended Burniat surfaces. It remains to prove the fol-
lowing

Claim 8.1. H0(Ω1
Ỹ
(logD′

1)(KỸ + L′
1)) = 0

Proof of the claim. By Lemma 4.3 we see that

H0(Ω1
Ỹ
(logD′

1)(KỸ + L′
1)) = H0(Ω1

Ỹ
(log(D′

1 − E3))(L − E4 − E5)).

Let f : Ỹ → P2 be the blow down of E1, . . . , E6.
Then f∗(D

′
1 − E3) splits as the sum of three lines l1, l2, l3 in P2 forming a

triangle. W.l.o.g. we can assume that P1 = (1 : 0 : 0), P2 = (0 : 1 : 0),
P6 = (0 : 0 : 1) and P5 = (1 : 1 : 1). Then P4 = (0 : 1 : 1).
We conclude that H0(Ω1

Ỹ
(log(D′

1 − E3))(L − E4 − E5)) = H0(f∗Ω
1
Ỹ
(log(D′

1 −

E3))(L − E4 − E5)) is the subspace of H0(Ω1
P2(dlog l1, dlog l2, dlog l3)(1)) con-

sisting of sections satisfying one linear condition for P1, P2, P6 each, two linear
conditions for P5 and three linear conditions for P4, described in Proposition
7.1.
We write these conditions using Lemma 4.4 in order to show that this subspace
must be trivial.
By Lemma 4.4 we write ω ∈ H0(Ω1

P2(dlog l1, dlog l2, dlog l3)(1) as

ω =
∑

i6=j

aijωij .

Then the three equations for P1, P2, P6 (cf. prop. 7.1, 3)) are

a21 + a31 = 0, a12 + a32 = 0, a13 + a23 = 0.

By prop. 7.1, 5), we get for P4 the linear equations:

a12 + a13 = 0, −a21 − a31 = 0, a23 − a32 = 0.

The above conditions already imply:

a13 = a12 = a23 = a32 = 0, a21 = −a31.

We impose the vanishing of ω in P5 = (1 : 1 : 1) working in the affine chart
x3 = 1 and obtain

ω(1 : 1 : 1) = (−a21 − a31)dx1 + (a21)dx2 = 0,

whence a21 = a31 = 0. �

b) W.l.o.g. we can assume that each of the two conics Γ1 and Γ2 degenerate
to two lines. Then we get the extended Burniat divisors:

{D′′
1} = |L− E1 − E6|+ |L− E1 − E2|+ E3 +N1 +N2,

{D′′
2} = |L− E2 − E5|+ |L− E2 − E3|+ E1,

D′′
3 ∈ |L− E3 − E4|+ |2L− E1 − E3 − E4 − E6|+N3.
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We make the assumption for D′′
3 that the strict transform of the conic Γ3

passing through P1, P3, P4, P6 is irreducible.
Then we have

KỸ + L′′
1 ≡ E1 − E3 = KỸ + L′

1 −N1, D
′′
1 = D′

1 +N1;

KỸ + L′′
2 ≡ L− E1 − E4 − E6 ≡ KỸ + L2 +N2, D

′′
2 = D2 −N2;

KỸ + L′′
3 ≡ E3 − E2 ≡ KỸ + Λ′

3, D
′′
3 = D′

3 −N3.

Therefore for i = 1, 2, 3 the vanishing of H0(Ω1
Ỹ
(logD′′

i )(KỸ +L′′
i )) can be re-

duced via Lemma 4.3 to the analogous vanishing for extended Burniat surfaces
of case a) (i = 1, 3) and to the analogous vanishing for Burniat divisors (for
i = 2), which was already proved in part 3).

�

9. Appendix 3: an alternative proof of statements 1), 2), 3) of
Proposition 4.1

In this appendix we present other methods to calculate the space of sections of
twisted logarithmic sheaves, in particular a fibration method.
Assume that we have d smooth rational curves Cα ⊂ Y contained in a smooth
algebraic surface Y , meeting with distinct tangents in a point O, a divisor Bα

on Cα of degree 0, 1 or 2, and disjoint from O, and let Z be the blow up of
Y in the point O. Denote by Dα the strict transform of Cα, and denote by
Ω1

Y ((logCα(−Bα))α∈A) the sheaf which is the inverse image, under the residue
sequence, of ⊕α∈AOCα

(−Bα).
Then by 4) of Proposition 7.1 we have an exact sequence

0 → Ω1
Y ((logCα(−Bα))α∈A) →

→ p∗Ω
1
Z((logDα(−Bα))α∈A)(E) → Cd−2

O → 0

which is exact on global sections if

h := dimCH
1(Ω1

Y ((logCα(−Bα))α∈A)) = 0.

Or, more generally, iff h = h′, where

h′ := dimCH
1(Ω1

Z((logDα(−Bα))α∈A)).

Consider the exact sequence

0 → Ω1
Y → Ω1

Y ((logCα(−Bα))α∈A) →
d
⊕

α=1

OCα
(−Bα) → 0,

and assume that H2(Ω1
Y ) = 0.

Then h = a + b, where a is the number of α’s such that Bα has degree 2,
while b is the difference of the dimensions between H1(Ω1

Y ) and the subspace
generated by the Chern classes of the Cα’s such that Bα has degree 0. If we
choose Y = P2 then h = 0 as soon as no Bα has degree 2, and some Bα has
degree 0.
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Otherwise, one can calculate h′ in a similar way. We assume for simplicity that
Y = P2. We have a similar exact sequence

0 → Ω1
Z(E) → Ω1

Z((logDα(−Bα))α∈A)(E) →
d
⊕

α=1

OCα
(O −Bα) → 0,

and since H1(OCα
(O − Bα)) = 0 by our assumption, we get that h′ is the

dimension of the cokernel of
d
⊕

α=1

H0(OCα
(O −Bα)) → H1(Ω1

Z(E)).

To calculate the last space, observe that

Ω1
Z ⊗OE = OE(−2)⊕OE(1)

whence h1(Ω1
Z(E)) = h1(Ω1

Z) + 1 = 3.
These criteria can now be used in order to prove statements 1), 2), 3) of Propo-
sition 4.1.
We can prove 1) and 2) simultaneously for i = 1.
Observe that D1 = ∆1 + N1, that Λ1 = L1 + N1, and apply Lemma 4.3 in
order to conclude that

H0(Ω1
Ỹ
(log(∆1))(E1 − E3 +N1)) ∼= H0(Ω1

Ỹ
(log(D1))(E1 − E3)).

By Lemma 7.1 we can blow down E3 and obtain H0(Ω1
Ỹ ′
(log(D′

1))(E1)). In
this case the respective degrees of the divisors Bα are 0, 1, 2 hence h = 1. We
have to decide whether h′ is 0 or 1. We contract E3, E4, E5, and we let Z be
the blow up of the plane in P1. We must calculate h0(Ω1

Z(log(Cα(−Bα)))(E1)).
Here the curves Cα are fibres of the ruling of Z, f : Z → P1. Using the exact
sequence

(∗∗) 0 → f∗Ω1
P1 → Ω1

Z → ωZ|P1 = OZ(−F − 2E1) → 0

we obtain the analogous sequence

0 → f∗OP1(1)(E1) → Ω1
Z(log(Cα)(E1) → OZ(−F − E1) → 0

to infer that

H0(f∗OP1(1)(E1)) = H0(Ω1
Z(log(Cα))(E1)).

We are imposing some vanishing on three points lying in two fibres, hence we
get the sections of H0(OZ(F + E1)) = p∗H0(OP2(1)) vanishing in the three
points P4, P5, P2, whence we conclude that this space has dimension = 0.
This argument shows 1) also for i = 2, 3.
For a nodal Burniat with m = 2 the space H0(Ω1

Ỹ
(log(Di))(Ei − Ei+2)), van-

ishes for i = 2, but it has dimension equal to 1 for i = 3, since then the three
points P4, P5, P1 are collinear.
Let’s proceed with 2).
For i = 2, 3

H0(Ω1
Ỹ
(log∆i)(KỸ + Λi)) = H0(Ω1

Ỹ
(log∆i)(Ei − Ei+2)).
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By applying again Lemma 7.1 for i = 3 we can blow down the curve E2 and the
curve E3 and apply the residue sequence to the sheaf Ω1

Ỹ ′
(log∆′

3). Since each

component is smooth and rational, we find that H0(Ω1
Ỹ ′
(log∆′

3)) = ker(C4 →

H1(Ω1
Ỹ ′
)), while H1(Ω1

Ỹ ′
(log∆′

3)) = Coker(C4 → H1(Ω1
Ỹ ′
)).

The map is given by the Chern classes of L − E1, L − E4, L − E5, L −
E1 − E4 − E5. These generate a rank 4 subspace of the 4-dimensional space
H1(Ω1

Ỹ ′
) (we are blowing up 3 points in the plane), whence h0(Ω1

Ỹ ′
(log∆′

3)) =

0, h1(Ω1
Ỹ ′
(log∆′

3)) = 0.
We conclude, by the exact cohomology sequence associated to

0 → Ω1
Ỹ ′
(log∆′

3) → f∗(Ω
1
Ỹ
(log∆3)(KỸ + Λ3)) → CP3

→ 0,

that h0(Ω1
Ỹ
(log∆3)(KỸ + Λ3)) = 1 + h0(Ω1

Ỹ ′
(log∆′

3)) = 1.

For the case i = 2 recall that ∆2 ∈ |L−E2 −E4|+ |L−E2 −E5|+ |2L−E2 −
E3 − E4 − E5| consists of three smooth connected components.
Blow down E1, E3, E4, E5 and obtain the ruled surface Z equal to the blow up
of the plane in P2. Denote by f : Z → P1 the standard fibration.
The direct image ∆′

2 := f∗∆2 decomposes as the union of two fibres F4 and F5

and a section C with C ·E2 = 1.
We have to calculate the space of global sections of

F := mP1
Ω1

Z(logF4, logF5, logC(−P3))(E2)

satisfying two linear conditions imposed by the points P4, P5.
Using the exact sequence (**) we get the exact sequence

0 → mP1
OZ(E2) → F → MP3

mP1
OZ(−F − E2 + C) → 0.

Observe that OZ(−F −E2+C) has degree 0 on each fibre and degree 1 on E2.
If D ≡ −F − E2 + C ≡ L − E2 is effective, then D is a fibre. Since no fibre
contains both P1, P3, we obtain

H0(mP3
mP1

OZ(−F − E2 + C)) = 0.

Since |E2| consists of the curve E2, which does not contain P1, we conclude
that H0(MP1

OZ(E2)) = H0(F) = 0.
To prove 3), by symmetry, we may assume without loss of generality that i = 1.
Blow down all the curves Ej excet E1, so that , as usual, we have the blow up
Z of the plane in a point (P1) and the standard fibration f : Z → P1.
By Lemma 7.1 and since E3 is a connected component of D1, the direct image
F of Ω1

Ỹ
(log(D1)(E1 −E3) is contained in Ω1

Z(log(F2 + F6 + F4,5))(E1) where
Fj denotes the unique fibre of f passing through the point Pj .
More precisely, we have an exact sequence

0 → mP2
mP4

mP5
mP6

OZ(F + E1) → F → OZ(−F − E1) → 0.

Clearly H0(OZ(−F − E1)) = 0 since F · (F + E1) = 1. On the other hand
H0(OZ(F + E1)) = H0(OP2(1)), hence the fact that the points P2, P4, P5, P6
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are not collinear implies the desired vanishing

H0(mP2
mP4

mP5
mP6

OZ(F + E1)) = 0.

Thus 3) is proven.
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