
Documenta Math. 1177

Torelli Theorem for the

Deligne–Hitchin Moduli Space, II

Indranil Biswas, Tomás L. Gómez, and Norbert Hoffmann1
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Abstract. Let X and X ′ be compact Riemann surfaces of genus
at least three. Let G and G′ be nontrivial connected semisimple lin-
ear algebraic groups over C. If some components Md

DH(X,G) and

Md′

DH(X
′, G′) of the associated Deligne–Hitchin moduli spaces are bi-

holomorphic, then X ′ is isomorphic to X or to the conjugate Riemann
surface X.
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1. Introduction

Let X be a compact connected Riemann surface of genus g ≥ 3. Let X denote
the conjugate Riemann surface; by definition, it consists of the real manifold
underlying X and the almost complex structure JX := −JX . Let G be a
nontrivial connected semisimple linear algebraic group over C. The topological
types of holomorphic principal G–bundles E over X correspond to elements
of π1(G). Let Md

Higgs(X,G) denote the moduli space of semistable Higgs G–

bundles (E, θ) over X with E of topological type d ∈ π1(G).
The Deligne–Hitchin moduli space [Si3] is a complex analytic spaceMd

DH(X,G)
associated to X , G and d. It is the twistor space for the hyper-Kähler structure
on Md

Higgs(X,G); see [Hi2, §9]. Deligne [De] has constructed it together with
a surjective holomorphic map

Md
DH(X,G) −։ CP1 = C ∪ {∞}.
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The inverse image of C ⊆ CP1 is the moduli spaceMd
Hod(X,G) of holomorphic

principal G–bundles over X endowed with a λ–connection. In particular, every
fiber over C∗ ⊂ CP1 is isomorphic to the moduli space of holomorphic G–
connections over X . The fiber over 0 ∈ CP1 is Md

Higgs(X,G), and the fiber

over ∞ ∈ CP1 isM−d
Higgs(X,G).

In this paper, we study the dependence of these moduli spaces on X . Our
main result, Theorem 5.3, states that the complex analytic spaceMd

DH(X,G)

determines the unordered pair {X,X} up to isomorphism. We also prove that
Md

Higgs(X,G) andMd
Hod(X,G) each determine X up to isomorphism; see The-

orem 5.1 and Theorem 5.2.
The key technical result is Proposition 3.1, which says the following: Let Z be
an irreducible component of the fixed point locus for the natural C∗–action on
a moduli spaceMd

Higgs(X,G) of Higgs G–bundles. Then,

dimZ ≤ (g − 1) · dimC G,

with equality holding only if Z is the moduli spaceMd(X,G) of holomorphic
principal G-bundles of topological type d over X .
In [BGHL], the case of G = SL(r,C) was considered.
If g = 2 and G = SL(2,C), then the above theorems are no longer valid. So
we have assumed that g ≥ 3.

2. Some moduli spaces associated to a compact Riemann surface

Let X be a compact connected Riemann surface of genus g ≥ 3. Let G be a
nontrivial connected semisimple linear algebraic group defined over C, with Lie
algebra g.

2.1. Principal G–bundles. We consider holomorphic principal G–bundles E
over X . Recall that the topological type of E is given by an element d ∈ π1(G)
[Ra]; this is a finite abelian group. The adjoint vector bundle of E is the
holomorphic vector bundle

ad(E) := E ×G g

over X , using the adjoint action of G on g. E is called stable (respectively,
semistable) if

(1) degree(ad(EP )) < 0 (respectively, ≤ 0)

for every maximal parabolic subgroup P $ G and every holomorphic reduction
of structure group EP of E to P ; here ad(EP ) ⊂ ad(E) is the adjoint vector
bundle of EP .
LetMd(X,G) denote the moduli space of semistable holomorphic principal G–
bundles E over X of topological type d ∈ π1(G). It is known thatMd(X,G) is
an irreducible normal projective variety of dimension (g − 1) · dimC G over C.

Documenta Mathematica 18 (2013) 1177–1189



Deligne–Hitchin Moduli Space, II 1179

2.2. Higgs G–bundles. The holomorphic cotangent bundle of X will be de-
noted by KX .
A Higgs G–bundle over X is a pair (E, θ) consisting of a holomorphic principal
G–bundle E over X and a holomorphic section

θ ∈ H0(X, ad(E)⊗KX),

the so-called Higgs field [Hi1, Si1]. The pair (E, θ) is called stable (respec-
tively, semistable) if the inequality (1) holds for every holomorphic reduction
of structure group EP of E to a maximal parabolic subgroup P $ G such that
θ ∈ H0(X, ad(EP )⊗KX).
Let Md

Higgs(X,G) denote the moduli space of semistable Higgs G–bundles

(E, θ) over X such that E is of topological type d ∈ π1(G). It is known
that Md

Higgs(X,G) is an irreducible normal quasiprojective variety of dimen-

sion 2(g− 1) ·dimC G over C [Si2]. We regardMd(X,G) as a closed subvariety
ofMd

Higgs(X,G) by means of the embedding

Md(X,G) −֒→ Md
Higgs(X,G) , E 7−→ (E, 0) .

There is a natural algebraic symplectic structure on Md
Higgs(X,G); see [Hi1,

BR].

2.3. Representations of the surface group in G. Fix a base point x0 ∈
X . The fundamental group of X admits a standard presentation

π1(X, x0) ∼= 〈a1, . . . , ag, b1, . . . , bg|

g
∏

i=1

aibia
−1
i b−1

i = 1〉

which we choose in such a way that it is compatible with the orientation of
X . We identify the fundamental group of G with the kernel of the universal
covering G̃ −։ G. The type d ∈ π1(G) of a homomorphism ρ : π1(X, x0) −→ G
is defined by

d :=

g
∏

i=1

αiβiα
−1
i β−1

i ∈ π1(G) ⊂ G̃

for any choice of lifts αi, βi ∈ G̃ of ρ(ai), ρ(bi) ∈ G. This is also the topo-
logical type of the principal G–bundle Eρ over X given by ρ. The space

Homd(π1(X, x0), G) of all homomorphisms ρ : π1(X, x0) −→ G of type
d ∈ π1(G) is an irreducible affine variety over C, and G acts on it by con-
jugation. The GIT quotient

Md
Rep(X,G) := Homd(π1(X, x0), G)//G

doesn’t depend on x0. It is an affine variety of dimension 2(g − 1) · dimC G
over C, which carries a natural symplectic form [AB, Go]. Its points repre-
sent equivalence classes of completely reducible homomorphisms ρ. There is a
natural bijective map

Md
Rep(X,G) −→Md

Higgs(X,G)

Documenta Mathematica 18 (2013) 1177–1189



1180 Indranil Biswas, Tomás L. Gómez, and Norbert Hoffmann

given by a variant of the Kobayashi–Hitchin correspondence [Si1]. This bijec-
tive map is not holomorphic.

2.4. Holomorphic G–connections. Let p : E −→ X be a holomorphic
principal G–bundle. Because the vertical tangent space at every point of the
total space E is canonically isomorphic to g, there is a natural exact sequence

0 −→ E × g −→ TE
dp
−→ p∗TX −→ 0

of G-equivariant holomorphic vector bundles over E. Taking the G-invariant
direct image under p, it follows that the Atiyah bundle for E

At(E) := p∗(TE)G ⊂ p∗(TE)

sits in a natural exact sequence of holomorphic vector bundles

(2) 0 −→ ad(E) −→ At(E)
dp
−→ TX −→ 0

over X . This exact sequence is called the Atiyah sequence. A holomorphic

connection on E is a splitting of the Atiyah sequence, or in other words a
holomorphic homomorphism

D : TX −→ At(E)

such that dp ◦D = idTX [At]. It always exists if E is semistable [AzBi, p. 342,
Theorem 4.1], [BG, p. 20, Theorem 1.1]. The curvature of D is a holomorphic
2–form with values in ad(E), so D is automatically flat.
A holomorphic G–connection is a pair (E,D) where E is a holomorphic prin-
cipal G–bundle over X , and D is a holomorphic connection on E. Such a pair
is automatically semistable, because the degree of a flat vector bundle is zero.
Let Md

conn(X,G) denote the moduli space of holomorphic G–connections
(E,D) over X such that E is of topological type d ∈ π1(G). It is known
thatMd

conn(X,G) is an irreducible quasiprojective variety of dimension 2(g −
1) · dimC G over C.
Sending each holomorphic G–connection to its monodromy defines a map

(3) Md
conn(X,G) −→Md

Rep(X,G)

which is biholomorphic, but not algebraic; it is called Riemann–Hilbert corre-
spondence. The inverse map sends a homomorphism ρ : π1(X, x0) −→ G to
the associated principal G–bundle Eρ, endowed with the induced holomorphic
connection Dρ.

2.5. λ–connections. Let p : E −→ X be a holomorphic principal G–bundle.
For any λ ∈ C, a λ–connection on E is a holomorphic homomorphism of vector
bundles

D : TX −→ At(E)

such that dp ◦D = λ · idTX for the epimorphism dp in the Atiyah sequence (2).
Therefore, a 0–connection is a Higgs field, and a 1–connection is a holomorphic
connection.
If D is a λ–connection on E with λ 6= 0, then λ−1D is a holomorphic connection
on E. In particular, the pair (E,D) is automatically semistable in this case.

Documenta Mathematica 18 (2013) 1177–1189



Deligne–Hitchin Moduli Space, II 1181

LetMd
Hod(X,G) denote the moduli space of triples (λ,E,D), where λ ∈ C, E

is a holomorphic principal G–bundle over X of topological type d ∈ π1(G), and
D is a semistable λ–connection on E; see [Si2]. There is a canonical algebraic
map

(4) pr = prX :Md
Hod(X,G) −։ C, (λ,E,D) 7−→ λ.

Its fibers over λ = 0 and λ = 1 are Md
Higgs(X,G) and Md

conn(X,G), respec-

tively. The Riemann–Hilbert correspondence (3) allows to define a holomorphic
open embedding

j = jX : C∗ ×Md
Rep(X,G) −֒→Md

Hod(X,G), (λ, ρ) 7−→ (λ,Eρ, λDρ)

with image pr−1(C∗). This map commutes with the projections onto C∗.

2.6. The Deligne–Hitchin moduli space. The compact Riemann surface
X provides an underlying real C∞ manifold XR, and an almost complex struc-
ture JX : TXR −→ TXR. Since any almost complex structure in real dimension
two is integrable,

X := (XR,−JX)

is a compact Riemann surface as well. It has the opposite orientation, so

(5) Md
Rep(X,G) =M−d

Rep(X,G).

The Deligne–Hitchin moduli space Md
DH(X,G) is the complex analytic space

obtained by gluing Md
Hod(X,G) and M−d

Hod(X,G) along their common open
subspace

Md
Hod(X,G)

jX
←−֓ C∗ ×Md

Rep(X,G) ∼= C∗ ×M−d
Rep(X,G)

j
X

−֒→M−d
Hod(X,G)

where the isomorphism in the middle sends (λ, ρ) to (1/λ, ρ); see [Si3, De]. The

projections prX onMd
Hod(X,G) and 1/prX onM−d

Hod(X,G) patch together to
a holomorphic map

Md
DH(X,G) −։ CP1 = C ∪ {∞}.

Its fiber over any λ ∈ C∗ is biholomorphic to the representation space (5),

whereas its fibers over λ = 0 and λ =∞ areMd
Higgs(X,G) andM−d

Higgs(X,G),
respectively.

3. Fixed points of the natural C∗–action

The group C∗ acts algebraically on the moduli space Md
Higgs(X,G), via the

formula

(6) t · (E, θ) := (E, tθ).

The fixed point locus Md
Higgs(X,G)C

∗

contains the closed subvariety

Md(X,G).
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Proposition 3.1. Let Z be an irreducible component ofMd
Higgs(X,G)C

∗

. Then

one has

dimZ ≤ (g − 1) · dimC G,

with equality holding only for Z =Md(X,G).

Proof. Let (E, θ) be a stable Higgs G–bundle overX . Its infinitesimal deforma-
tions are, according to [BR, Theorem 2.3], governed by the complex of vector
bundles

(7) C0 := ad(E)
ad(θ)
−−−→ ad(E) ⊗KX =: C1

over X . Since (E, θ) is stable, it has no infinitesimal automorphisms, so

H0(X,C•) = 0 .

The Killing form on g induces isomorphisms g∗ ∼= g and ad(E)∗ ∼= ad(E).
Hence the vector bundle ad(E) has degree 0. Serre duality allows us to conclude

H2(X,C•) = 0 .

Using all this, the Riemann–Roch formula yields

(8) dimH1(X,C•) = 2(g − 1) · dimC G .

From now on, we assume that the point (E, θ) is fixed by C∗, and we also
assume θ 6= 0. Then (E, θ) ∼= (E, tθ) for all t ∈ C∗, so the sequence of complex
algebraic groups

1 −→ Aut(E, θ) −→ Aut(E,Cθ) −→ Aut(Cθ) = C∗ −→ 1

is exact. Because (E, θ) is stable, Aut(E, θ) is finite. Consequently, the identity
component of Aut(E,Cθ) is isomorphic to C∗. This provides an embedding

C∗ −֒→ Aut(E) , t 7−→ ϕt ,

and an integer w 6= 0 with ϕt(θ) = tw · θ for all t ∈ C∗. We may assume that
w ≥ 1.
Choose a point e0 ∈ E. Then there is a unique group homomorphism

ι : C∗ −→ G

such that ϕt(e0) = e0 · ι(t) for all t ∈ C∗. The conjugacy class of ι doesn’t
depend on e0, since the space of conjugacy classes Hom(C∗, G)/G is discrete.
The subset

EH := {e ∈ E : ϕt(e) = e · ι(t) for all t ∈ C∗}

of E is a holomorphic reduction of structure group to the centralizer H of ι(C∗)
in G. Let

(9) g =
⊕

n∈Z

gn

denote the eigenspace decomposition given by the adjoint action of C∗ on g via
ι.
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Let N ∈ Z be maximal with gN 6= 0. Let P ⊂ G be the parabolic subgroup
with

Lie(P ) =
⊕

n≥0

gn ⊂ g .

Since H ⊂ G has Lie algebra g0, it is a Levi subgroup in P . Choose subgroups

ι(C∗) ⊆ T ⊆ B ⊆ P ⊂ G

such that T is a maximal torus in H ⊂ G and B is a Borel subgroup in G. Let

αj : T −→ C∗ and α∨
j : C∗ −→ T

be the resulting simple roots and coroots of G. We denote by 〈 , 〉 the natural
pairing between characters and cocharacters of T . Let αj be a simple root of G
with 〈αj , ι〉 > 0, and let β be a root of G with 〈β, ι〉 = N . Then the elementary
reflection

sj(β) = β − 〈β, α∨
j 〉αj

is a root of G, so 〈sj(β), ι〉 ≤ N ; this implies that 〈β, α∨
j 〉 ≥ 0. The sum of all

such roots β with 〈β, ι〉 = N is the restriction χ|T of the determinant

(10) χ : P −→ Aut(gN )
det
−−→ C∗

of the adjoint action of P on gN . Hence we conclude 〈χ|T , α
∨
j 〉 ≥ 0 for all simple

roots αj with 〈αj , ι〉 > 0. This means that the character χ of P is dominant.
The decomposition (9) of g induces a vector bundle decomposition

ad(E) =
⊕

n∈Z

EH ×
H gn .

Since C∗ acts with weight w on the Higgs field θ by construction, we have

(11) θ ∈ H0
(

X, (EH ×
H gw)⊗KX

)

.

In particular, θ ∈ H0(X, ad(EP )⊗KX) for the reduction EP := EH ×
H P ⊆ E

of the structure group to P . The Higgs version of the stability criterion [Ra,
Lemma 2.1] yields

degree(EH ×
H gN ) ≤ 0

since P acts on det(gN ) via the dominant character χ in (10). Now Riemann–
Roch implies the following:

(12) dimH1(X,EH ×
H gN ) ≥ (g − 1) · dimC gN > 0 .

The complex C• in (7) is, due to (11), the direct sum of its subcomplexes C•
n

given by

C0
n := EH ×

H gn
ad(θ)
−−−→ (EH ×

H gn+w)⊗KX =: C1
n .

Thus the hypercohomology of C• decomposes as well; in particular, we have

H1(X,C•) =
⊕

n∈Z

H1(X,C•
n) .

In the last nonzero summand C•
N , we have C1

N = 0 and hence

dimH1(X,C•
N ) = dimH1(X,EH ×

H gN) > 0
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due to (12). Since g∗n
∼= g−n via the Killing form on g, Serre duality yields in

particular
dimH1(X,C•

0 ) = dimH1(X,C•
−w).

Taken together, the last three formulas and the equation (8) imply that

dimH1(X,C•
0 ) <

1

2
dimH1(X,C•) = (g − 1) · dimC G .

But H1(X,C•
0 ) parameterizes infinitesimal deformations of pairs (EH , θ) con-

sisting of a principalH–bundle EH and a section θ as in (11); see [BR, Theorem
2.3]. This proves that

dimZ < (g − 1) · dimC G

for every irreducible component Z of the fixed point locusMd
Higgs(X,G)C

∗

such

that Z contains stable Higgs G–bundles (E, θ) with θ 6= 0.
The non-stable points in Md

Higgs(X,G) correspond to polystable Higgs G–

bundles (E, θ). Polystability means that E admits a reduction of structure
group EL to a Levi subgroup L $ G of a parabolic subgroup in G such that θ
is a section of the subbundle

ad(EL)⊗KX ⊂ ad(E)⊗KX

and the pair (EL, θ) is stable. Let C ⊆ L be the identity component of the
center, and let c ⊆ l be their Lie algebras. Then EL/C := EL/C is a principal
(L/C)–bundle over X , and

ad(EL) ∼= (c ⊗OX)⊕ ad(EL/C)

since l = c⊕ [l, l], where the subalgebra [l, l] ⊆ l is also the Lie algebra of L/C.
We have

dimC G− dimC L ≥ 2 dimC C

because maximal Levi subgroups in G have 1-dimensional center and at least
one pair of opposite roots less than G; the other Levi subgroups can be reached
by iterating this.
Now suppose that C∗ fixes the point (E, θ). Then (EL, θ) ∼= (EL, tθ) for all
t ∈ C∗. But the action of Aut(EL) on the direct summand c ⊗OX of ad(EL)
is trivial, since the adjoint action of L on c is trivial. So θ lives in the other
summand of ad(EL), meaning

θ ∈ H0
(

X, ad(EL/C)⊗KX

)

.

The Higgs (L/C)–bundle (EL/C , θ) is still stable and fixed by C∗; we have
already proved that the locus of such has dimension ≤ (g − 1) · dimC(L/C).
The abelian variety M0(X,C) acts simply transitively on lifts of EL/C to a
principal L–bundle EL, so these lifts form a family of dimension g · dimCC.
Hence the pairs (EL, θ) in question have at most

(g − 1) · dimC(L/C) + g · dimC C < (g − 1) · dimC G

moduli. This implies that dimZ < (g−1) ·dimC G for each non-stable compo-
nent Z of the fixed point locus, since there are only finitely many possibilities
for L up to conjugation. �
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The algebraic C∗–action (6) onMd
Higgs(X,G) extends naturally to an algebraic

C∗–action onMd
Hod(X,G), which is given by the formula

(13) t · (λ,E,D) := (tλ, E, tD).

A point (λ,E,D) can only be fixed by this action if λ = 0, so Proposition 3.1
yields the following corollary:

Corollary 3.2. Let Z be an irreducible component of Md
Hod(X,G)C

∗

. Then

one has
dimZ ≤ (g − 1) · dimC G,

with equality only for Z =Md(X,G).

The algebraic C∗–action (13) onMd
Hod(X,G) extends naturally to a holomor-

phic C∗–action onMd
DH(X,G), which is on the other open patchM−d

Hod(X,G)
given by the formula

t · (λ,E,D) := (t−1λ,E, t−1D).

Applying Corollary 3.2 to both Md
Hod(X,G) and M−d

Hod(X,G), one immedi-
ately gets

Corollary 3.3. Let Z be an irreducible component of Md
DH(X,G)C

∗

. Then

one has

dimZ ≤ (g − 1) · dimC G,

with equality only for Z =Md(X,G) and for Z =M−d(X,G).

4. Vector fields on the moduli spaces

A stable principal G–bundle E over X is called regularly stable if the automor-
phism group Aut(E) is just the center of G. The regularly stable locus

Md,rs(X,G) ⊆Md(X,G)

is open, and coincides with the smooth locus ofMd(X,G); see [BH, Corollary
3.4].

Proposition 4.1. There are no nonzero holomorphic vector fields on

Md,rs(X,G).

Proof. This statement is contained in [Fa, p. 549, Corollary III.3]. �

Proposition 4.2. There are no nonzero holomorphic 1–forms onMd,rs(X,G).

Proof. The moduli space of Higgs G–bundles is equipped with the Hitchin map

Md
Higgs(X,G) −→

rank(G)
⊕

i=1

H0(X,K⊗ni

X )

where the ni are the degrees of generators for the algebra Sym(g∗)G; see [Hi1,
§ 4], [La]. Any sufficiently general fiber of this Hitchin map is a complex abelian
variety A (see [Do], [Fa], [DP] for the details), and

ϕ : A //___ Md,rs(X,G), (E, θ) 7−→ E,
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is a dominant rational map. This rational map ϕ is defined outside a closed
subscheme of codimension at least two; see [Fa, p. 534, Theorem II.6].
Let ω be a holomorphic 1–form onMd,rs(X,G). Then ϕ∗ω extends to a holo-
morphic 1–form on A by Hartog’s theorem. As any holomorphic 1–form on A
is closed, it follows that ω is closed. Since H1(Md,rs(X,G),C) = 0 by [AB,
Ch. 10], we conclude ω = df for a holomorphic function f on Md,rs(X,G).
But any such function f is constant, so ω = 0. �

We denote by Md,rs
Higgs(X,G) ⊆ Md

Higgs(X,G) the open locus of Higgs G–

bundles (E, θ) for which E is regularly stable. The forgetful map

(14) Md,rs
Higgs(X,G) −→Md,rs(X,G), (E, θ) 7−→ E,

is an algebraic vector bundle with fibers H0(X, ad(E)⊗KX) ∼= H1(X, ad(E))∗,
so it is the cotangent bundle ofMd,rs(X,G).

Corollary 4.3. The restriction of the algebraic tangent bundle

TMd,rs
Higgs(X,G) −→Md,rs

Higgs(X,G)

to the subvariety Md,rs(X,G) ⊆ Md,rs
Higgs(X,G) has no nonzero holomorphic

sections.

Proof. The subvariety in question is the zero section of the vector bundle (14).
Given a vector bundle V −→ M with zero section M ⊆ V , there is a natural
isomorphism

(15) (TV )|M ∼= TM ⊕ V

of vector bundles over M . In our situation, both summands have no nonzero
holomorphic sections, according to Proposition 4.1 and Proposition 4.2. �

Let Md,rs
conn(X,G) ⊆ Md

conn(X,G) denote the open locus of holomorphic G–
connections (E,D) for which E is regularly stable.

Proposition 4.4. There are no holomorphic sections for the forgetful map

(16) Md,rs
conn(X,G) −→Md,rs(X,G), (E,D) 7−→ E.

Proof. The map (16) is a holomorphic torsor under the cotangent bundle of
Md,rs(X,G). As such, it is isomorphic to the torsor of holomorphic connections
on the line bundle

L −→Md,rs(X,G)

with fibers detH1(X, ad(E)); see [Fa, p. 554, Lemma IV.4]. Since L is ample
[KNR], its first Chern class is nonzero, so L admits no global holomorphic
connections. �

LetMd,rs
Hod(X,G) ⊆Md

Hod(X,G) denote the open locus of triples (λ,E,D) for
which E is regularly stable. The forgetful maps in (14) and (16) extend to the
forgetful map

(17) Md,rs
Hod(X,G) −→Md,rs(X,G), (λ,E,D) 7−→ E,
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which is an algebraic vector bundle. It contains the cotangent bundle (14) as a
subbundle; the quotient is a line bundle, which is trivialized by the projection
pr in (4).

Corollary 4.5. The vector bundle (17) has no nonzero holomorphic sections.

Proof. Let s be a holomorphic section of the vector bundle (17). Then pr ◦ s
is a holomorphic function onMd,rs(X,G), and hence constant. This constant
vanishes because of Proposition 4.4. So pr ◦ s = 0, which implies that s = 0
using Proposition 4.2. �

Corollary 4.6. The restriction of the algebraic tangent bundle

TMd,rs
Hod(X,G) −→Md,rs

Hod(X,G)

to the subvariety Md,rs(X,G) ⊆ Md,rs
Hod(X,G) has no nonzero holomorphic

sections.

Proof. Use the decomposition (15), Proposition 4.1, and Corollary 4.5. �

5. Torelli theorems

Let X,X ′ be compact connected Riemann surfaces of genus ≥ 3. Let G,G′ be
nontrivial connected semisimple linear algebraic groups over C. Fix d ∈ π1(G)
and d′ ∈ π1(G

′).

Theorem 5.1. IfMd′

Higgs(X
′, G′) is biholomorphic toMd

Higgs(X,G), then X ′ ∼=
X.

Proof. Corollary 4.3 implies that the subvariety Md(X,G) is fixed pointwise
by every holomorphic C∗–action onMd

Higgs(X,G). All other complex analytic
subvarieties with that property have smaller dimension, due to Proposition
3.1. Thus we get a biholomorphic map from Md′

(X ′, G′) to Md(X,G) by
restriction. Using [BH], this implies that X ′ ∼= X . �

Theorem 5.2. If Md′

Hod(X
′, G′) is biholomorphic to Md

Hod(X,G), then X ′ ∼=
X.

Proof. The argument is exactly the same as in the previous proof. It suffices
to replace Corollary 4.3 by Corollary 4.6, and Proposition 3.1 by Corollary
3.2. �

Theorem 5.3. IfMd′

DH(X
′, G′) is biholomorphic toMd

DH(X,G), then X ′ ∼= X

or X ′ ∼= X.

Proof. The argument is similar. Corollary 4.6 implies that the two subvarieties
Md(X,G) andM−d(X,G) are fixed pointwise by every holomorphic C∗–action
on Md

DH(X,G). All other complex analytic subvarieties with that property
have smaller dimension, due to Corollary 3.3. Thus we get a biholomorphic
map fromMd′

(X ′, G′) to eitherMd(X,G) orM−d(X,G) by restriction. Using
[BH], this implies that either X ′ ∼= X or X ′ ∼= X. �
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