
Documenta Math. 1465

Stability of the Tangent Bundle of the

Wonderful Compactification of an Adjoint Group

Indranil Biswas and S. Senthamarai Kannan

Received: April 3, 2013

Communicated by Thomas Peternell

Abstract. Let G be a complex linear algebraic group which is simple
of adjoint type. Let G be the wonderful compactification of G. We
prove that the tangent bundle of G is stable with respect to every
polarization on G.
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1. Introduction

De Concini and Procesi constructed compactifications of complex simple groups
of adjoint type, which are known as wonderful compactifications. These com-
pactifications have turned out to be very useful objects. Our aim here is to
investigate equivariant vector bundles on a wonderful compactification. One
of the key concepts associated to a vector bundle on a projective variety is the
notion of stability introduced by Mumford.
We prove the following (see Theorem 4.1):

Theorem 1.1. Let G be the wonderful compactification of a complex simple

group G of adjoint type. Take any polarization L on G. Then the tangent

bundle of G is stable with respect to L.

Theorem 1.1 is proved using a result proved here on equivariant vector bundles
over G which we will now explain.

Take G as in Theorem 1.1. Let G̃ be the universal cover of G. The action of
G×G on G produces an action of G̃× G̃ on G. A holomorphic vector bundle

on G is called equivariant if it is equipped with a lift of the action of G̃ × G̃;
see Definition 2.1 for the details. Let e0 ∈ G be the identity element. The

group G̃ is the connected component, containing the identity element, of the

isotropy group of e0 for the action of G̃× G̃ on G. If (E , γ) is an equivariant
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vector bundle on G, then the action γ of G̃× G̃ on E produces an action of G̃
on the fiber Ee0 .
We prove the following (see Proposition 3.3):

Proposition 1.2. Let (E , γ) be an equivariant vector bundle of rank r on G

such that the action of G̃ on Ee0 is irreducible. Then either E is stable or there

is a holomorphic line bundle ξ on G such that E is holomorphically isomorphic

to ξ⊕r.

We show that the tangent bundle TG is not isomorphic to ξ⊕d, where ξ is
some holomorphic line bundle on G, and d = dimC G. In view of this result,
Theorem 1.1 follows from Proposition 1.2.
A stable vector bundle admits an irreducible Einstein–Hermitian connection.
It would be very interesting to be able to describe the Einstein–Hermitian
structure of the tangent bundle of G.
In [Ka], Kato has carried out a detailed investigation of the equivariant bundles
on partial compactifications of reductive groups.

2. Equivariant vector bundles on G

Let G be a connected linear algebraic group defined over C such that the Lie
algebra of G is simple and the center of G is trivial. In other words, G is simple
of adjoint type. The group G×G acts on G: the action of any (g1 , g2) ∈ G×G

is the map y 7−→ g1yg
−1
2 . Let G be the wonderful compactification of G [DP].

A key property of the wonderful compactification of G is that the above action
of G×G on G extends to an action of G×G on G. Let

(2.1) π : G̃ −→ G

be the universal cover. Using the projection π in (2.1), the above mentioned

action of G×G on G produces an action of G̃× G̃ on G

(2.2) β : G̃× G̃ −→ Aut0(G) ,

where Aut0(G) is the connected component, containing the identity element,
of the group of automorphisms of the variety G.

Definition 2.1. An equivariant vector bundle on G is a pair (E , γ), where E

is a holomorphic vector bundle on G and

γ : G̃× G̃× E −→ E

is a holomorphic action of G̃×G̃ on the total space of E, such that the following
two conditions hold:

(1) the projection of E to G intertwines the actions of G̃× G̃ on E and G,
and

(2) the action of G̃× G̃ on E preserves the linear structure of the fibers of
E.
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Note that the first condition in Definition 2.1 implies that the action of any

g ∈ G̃×G̃ sends a fiber Ex to the fiber Eβ(g)(x), where β is the homomorphism
in (2.2). The second condition in Definition 2.1 implies that the self-map of E
defined by v 7−→ γ(g , v) is a holomorphic isomorphism of the vector bundle
E with the pullback β(g−1)∗E. Therefore, if (E , γ) is an equivariant vector

bundle on G, then for every g ∈ G̃ × G̃, the pulled back holomorphic vector
bundle β(g)∗E is holomorphically isomorphic to E. The following proposition
is a converse statement of it.

Proposition 2.2. Let E be a holomorphic vector bundle on G such that for

every g ∈ G̃ × G̃, the pulled back holomorphic vector bundle β(g)∗E is holo-

morphically isomorphic to E. Then there is a holomorphic action γ of G̃ × G̃

on E such that the pair (E , γ) is an equivariant vector bundle on G.

Proof. Let Aut(E) denote the group of holomorphic automorphisms of the
vector bundle E over the identity map of G. This set Aut(E) is the Zariski
open subset of the affine space H0(G, E⊗E∨) defined by the locus of invertible
endomorphisms of E. Therefore, Aut(E) is a connected complex algebraic
group.

Let Ãut(E) denote the set of all pairs of the form (g , f), where g ∈ G̃× G̃ and

f : β(g−1)∗E −→ E

is a holomorphic isomorphism of vector bundles. This set Ãut(E) has a tauto-
logical structure of a group

(g2 , f2) · (g1 , f1) = (g2g1 , f2 ◦ f1) .

We will show that it is a connected complex algebraic group.

Let p1 : G̃× G̃×G −→ G be the projection to the last factor. Let

β̂ : G̃× G̃×G −→ G

be the algebraic morphism defined by (g , y) 7−→ β(g−1)(y), where g ∈ G̃× G̃

and y ∈ G. Let

q : G̃× G̃×G −→ G̃× G̃

be the projection to the first two factors. Now consider the direct image

E := q∗((p
∗

1E)⊗ (β̂∗E)∨) −→ G̃× G̃ .

It is locally free. The set Ãut(E) is a Zariski open subset of the total space

of the algebraic vector bundle E . Therefore, Ãut(E) is a connected complex
algebraic group.

The Lie algebra of G will be denoted by g. The Lie algebra of Ãut(E) will be
denoted by A(E). We have a short exact sequence of groups

(2.3) e −→ Aut(E) −→ Ãut(E)
ρ

−→ G̃× G̃ −→ e ,

where ρ sends any (g , f) to g. Let

(2.4) ρ′ : A(E) −→ g⊕ g
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be the homomorphism of Lie algebras corresponding to ρ in (2.3). Since g⊕ g

is semisimple, there is a homomorphism of Lie algebras

τ : g⊕ g −→ A(E)

such that

(2.5) ρ′ ◦ τ = Idg⊕g

[Bo, p. 91, Corollaire 3]. Fix such a homomorphism τ satisfying (2.5). Since the

group G̃×G̃ is simply connected, there is a unique holomorphic homomorphism

τ̃ : G̃× G̃ −→ Ãut(E)

such that the corresponding homomorphism of Lie algebras coincides with τ .
From (2.5) it follows immediately that ρ ◦ τ̃ = Id

G̃×G̃
.

We now note that τ̃ defines an action of G̃ × G̃ on E. The pair (E , τ̃) is an
equivariant vector bundle. �

3. Irreducible representations and stability

Fix a very ample class L ∈ NS(G), where NS(G) is the Néron–Severi group of
G. The degree of a torsionfree coherent sheaf F on G is defined to be

degree(F ) := (c1(F ) ∪ c1(L)
d−1) ∩ [G] ∈ Z ,

where d = dimC G. If rank(F ) ≥ 1, then

µ(F ) :=
degree(F )

rank(F )
∈ Q

is called the slope of F .
A holomorphic vector bundle F overG is called stable (respectively, semistable)
if for every nonzero coherent subsheaf F ′ ⊂ F with rank(F ′) < rank(F ), the
inequality

µ(F ′) < µ(F ) (respectively, µ(F ′) ≤ µ(F ))

holds. A holomorphic vector bundle on G is called polystable if it is a direct
sum of stable vector bundles of same slope.
Let

e0 ∈ G ⊂ G

be the identity element. Let Isoe0 ⊂ G̃× G̃ be the isotropy subgroup of e0 for

the action of G̃ × G̃ on G. The connected component of Isoe0 containing the

identity element is G̃.
If (E , γ) is an equivariant vector bundle on G, then γ gives an action of Isoe0
on the fiber Ee0 . In particular, we get an action of G̃ on Ee0 .

Lemma 3.1. Let (E , γ) be an equivariant vector bundle on G such that the above

action of G̃ on Ee0 is irreducible. Then the vector bundle E is polystable.
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Proof. Let

(3.1) E1 ⊂ · · · ⊂ En = E

be the Harder–Narasimhan filtration of E [HL, p. 16, Theorem 1.3.4]. Since

G̃× G̃ is connected, the action of G̃× G̃ on G preserves the Néron–Severi class

L. Therefore, the filtration in (3.1) is preserved by the action of G̃× G̃ on E.
Note that (E1)e0 6= 0 because in that case E1|G = 0 by the equivariance of E,
which in turn implies that E1 = 0. Now, from the irreducibility of the action of

G̃ on Ee0 we conclude that (E1)e0 = Ee0 . In particular, rank(E1) = rank(E).
This implies that E1 = E. Hence E is semistable.
Let

F ⊂ E

be the unique maximal polystable subsheaf of the semistable vector bundle E

[HL, p. 23, Theorem 1.5.9]. From the uniqueness of F and the connectivity of

G̃ × G̃ we conclude that F is preserved by the action of G̃ × G̃ on E. Just as

done above, using the irreducibility of the action of G̃ on Ee0 we conclude that
Fe0 = Ee0 . Hence F = E, implying that E is polystable. �

The following lemma is well-known.

Lemma 3.2. Let V1 and V2 be two finite dimensional irreducible complex G̃–

modules such that both V1 and V2 are nontrivial. Then the G̃–module V1 ⊗ V2

is not irreducible.

Lemma 3.2 is a very special case of the PRV conjecture, [PRV], which is now
proved. We also note that Lemma 3.2 is an immediate consequence of [Ra, p.
683, Theorem 1]. Since (V1 ⊗ V2) ⊗ (V1 ⊗ V2)

∗ = End(V1) ⊗ End(V2), and

End(Vi) contains C⊕g, the G̃–module End(V1)⊗End(V2) contains C⊕(g⊗g),
and hence contains C⊕2 as g⊗ g contains C. So V1 ⊗ V2 is not irreducible.

Proposition 3.3. Let (E , γ) be an equivariant vector bundle of rank r on G

such that the action of G̃ on Ee0 is irreducible. Then either E is stable or there

is a holomorphic line bundle ξ on G such that E is holomorphically isomorphic

to ξ⊕r.

Proof. From Lemma 3.1 we know that E is polystable. Therefore, there are
distinct stable vector bundles F1 , · · · , Fℓ and positive integers n1 , · · · , nℓ, such
that µ(Fi) = µ(E) for every i and

(3.2) E =

ℓ⊕

i=1

F⊕ni

i .

We emphasize that Fi 6= Fj if i 6= j. The vector bundles F1 , · · · , Fℓ are
uniquely determined by E up to a permutation of {1 , · · · , ℓ} [At, p. 315,
Theorem 2].
Fix a holomorphic isomorphism between the two vector bundles in the two
sides of (3.2). Take Fi and Fj with i 6= j. Since they are nonisomorphic stable
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vector bundles of same slope, we have

H0(G, Fj ⊗ F∨

i ) = 0 = H0(G, Fi ⊗ F∨

j ) .

Consequently, for every i ∈ {1 , · · · , ℓ}, there is a unique subbundle of E which

is isomorphic to F⊕ni

i . Using this it follows that for any g ∈ G̃× G̃, and any
j ∈ {1 , · · · , ℓ}, there is a k ∈ {1 , · · · , ℓ} such that the action of g on E takes

the subbundle F
⊕nj

j to F⊕nk

k . Since G̃× G̃ is connected, this implies that the

action γ of G̃× G̃ on E preserves the subbundle F⊕ni

i for every i ∈ {1 , · · · , ℓ}.

Now from the irreducibility of the action of G̃ on Ee0 we conclude that ℓ = 1.
We will denote F1 and n1 by F and n respectively. So

(3.3) F = F⊕n .

Since for every g ∈ G̃ × G̃, the pulled back holomorphic vector bundle
β(g)∗(F⊕n) is holomorphically isomorphic to F⊕n, using [At, p. 315, The-
orem 2] and the fact that F is indecomposable (recall that F is stable), we
conclude that the pulled back holomorphic vector bundle β(g)∗F is holomor-

phically isomorphic to F for every g ∈ G̃ × G̃. Therefore, from Proposition

2.2 we know that there is an action δ of G̃ × G̃ on F such that (F , δ) is an
equivariant vector bundle on G.

The actions γ and δ together define an action of G̃× G̃ on the vector bundle

Hom(F ,E) = E ⊗ F∨ .

This action of G̃× G̃ on Hom(F ,E) produces an action of G̃× G̃ on the vector
space H0(G, Hom(F ,E)).
In view of (3.3), we have a canonical isomorphism

(3.4) E = F ⊗C H0(G, Hom(F ,E)) .

This isomorphism sends any (v , σ) ∈ (Fx , H
0(G, Hom(F ,E))) to the eval-

uation σx(v) ∈ Ex. The isomorphism in (3.4) is G̃ × G̃–equivariant. Since

the action of G̃ on Ee0 is irreducible, from Lemma 3.2 we conclude that either
rank(F ) = 1 or

dimH0(G, Hom(F ,E)) = 1 .

If dimH0(G, Hom(F ,E)) = 1, then from (3.4) and the fact that F is stable
it follows immediately that E is stable. If rank(F ) = 1, then from (3.4) it
follows that

E = F⊕r ,

where r = rank(E). �

Remark 3.4. Let V be any irreducible G–module. Consider the trivial right

action of G̃ on V as well as the left action of G̃ on V given by the combination of
the action of G on V and the projection in (2.1). Therefore, we get the diagonal

action of G̃× G̃ on the trivial vector bundle G× V over G. Consequently, the
trivial vector bundle G×V gets the structure on an equivariant vector bundle.
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We note that the action of G̃ ⊂ Isoe0 on the fiber of G × V over the point e0
is irreducible because the G–module V is irreducible.

4. The tangent bundle

Theorem 4.1. Let L ∈ NS(G) be any ample class. The tangent bundle of G

is stable with respect to L.

Proof. Since G is simple, the adjoint action of G̃ on the Lie algebra g of G
is irreducible. In view of Proposition 3.3, it suffices to show that the tangent
bundle TG is not of the form ξ⊕d, where ξ is a holomorphic line bundle on G

and d = dimC G.
Assume that

(4.1) TG = ξ⊕d ,

where ξ is a holomorphic line bundle on G.
Since the variety G is unirational (cf. [Gi, p. 4, Theorem 3.1]), the com-
pactification G is also unirational. Hence G is simply connected [Se, p. 483,
Proposition 1]. As TG holomorphically splits into a direct sum of line bundles
(see (4.1)) and G is simply connected, it follows that

G = (CP1)d

[BPT, p. 242, Theorem 1.2]. But the tangent bundle of (CP1)d is not of
the form ξ⊕d (see (4.1)); although the tangent bundle of (CP1)d is a direct
sum of line bundles, the line bundles in its decomposition are not isomorphic.
Therefore, TG is not of the form ξ⊕d. This completes the proof. �
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