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Abstract. Let G be a finitely generated group and G = G0 ⊇
G1 ⊇ G2 ⊇ · · · a descending chain of finite index normal subgroups

of G. Given a fieldK, we consider the sequence b1(Gi;K)
[G:Gi]

of normalized

first Betti numbers of Gi with coefficients in K, which we call a K-

approximation for b
(2)
1 (G), the first L2-Betti number of G. In this

paper we address the questions of when Q-approximation and Fp-
approximation have a limit, when these limits coincide, when they
are independent of the sequence (Gi) and how they are related to

b
(2)
1 (G). In particular, we prove the inequality limi→∞

b1(Gi;Fp)
[G:Gi]

≥
b
(2)
1 (G) under the assumptions that ∩Gi = {1} and each G/Gi is a
finite p-group.
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1. Introduction

1.1. Q-approximation for the first L2-Betti number. Let G be a
finitely generated group. Given a field K, we let b1(G;K) = dimK(H1(G;K))
be the first Betti number of G with coefficients in K and b1(G) = b1(G;Q)

where Q denotes the field of rational numbers. Denote by b
(2)
1 (G) the first L2-

Betti number of G. Assuming that G is finitely presented and residually finite,

by Lück Approximation Theorem (see [13]), b
(2)
1 (G) can be approximated by

normalized rational first Betti numbers of finite index subgroups of G:
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Theorem 1.1 (Lück approximation theorem). Let G be a finitely presented
residually finite group and G = G0 ⊇ G1 ⊇ . . . a descending chain of finite
index normal subgroups of G, with ∩i∈NGi = {1}. Then

(1.2) b
(2)
1 (G) = lim

i→∞

b1(Gi)

[G : Gi]
.

In the sequel we will occasionally refer to a descending chain (Gi) of finite
index normal subgroups of G as a finite index normal chain in G and to the

associated sequence
(

b1(Gi)
[G:Gi]

)

i
as Q-approximation.

If we drop the assumption that G is finitely presented, but still require that

∩i∈NGi = {1}, one still has inequality b
(2)
1 (G) ≥ lim supi→∞

b1(Gi)
[G:Gi]

by [16,

Theorem 1.1], but equality need not hold [16, Theorem 1.2]. The latter is proved

in [16] by constructing an example where b
(2)
1 (G) > 0, but lim supi→∞

b1(Gi)
[G:Gi]

=

0 for any chain (Gi) as above. In Section 5 we will describe a variation of this

construction showing that the Q-approximation
(

b1(Gi)
[G:Gi]

)

i
may not even have

a limit:

Theorem 1.3. There exists a finitely generated residually finite group G and a
descending chain (Gi)i∈N of finite index normal subgroups of G, with ∩i∈NGi =

{1}, such that limi→∞
b1(Gi)
[G:Gi]

does not exist.

Another sequence we shall be interested in is Fp-approximation, that

is,
(

b1(Gi;Fp)
[G:Gi]

)

i
, where Fp is the finite field of prime order p. This sequence is

particularly important under the additional assumption that (Gi) is a p-chain,
that is, each Gi has p-power index (equivalently, G/Gi is a finite p-group). In

this case,
(

b1(Gi;Fp)
[G:Gi]

)

i
is monotone decreasing and therefore has a limit, often

called p-gradient or mod p homology gradient (see, e.g., [11]).
Since obviously b1(H) ≤ b1(H ;Fp) for any group H , one always has inequality

(1.4) lim sup
i→∞

b1(Gi)

[G : Gi]
≤ lim sup

i→∞

b1(Gi;Fp)

[G : Gi]
,

and it is natural to ask for sufficient conditions under which equality holds. Of
particular interest is the case when G is finitely presented and ∩i∈NGi = {1}
when Q-approximation does have a limit by Theorem 1.1.

Question 1.5 (Q-approximation and Fp-approximation). For which finitely
presented groups G and finite index normal chains (Gi) with ∩i∈NGi = {1} do
we have equality

lim
i→∞

b1(Gi)

[G : Gi]
= lim

i→∞

b1(Gi;Fp)

[G : Gi]
?

If G is not finitely presented, the above equality need not hold even if we
require that (Gi) is a p-chain. Indeed, as proved in [18] and independently in

[20], there exists a p-torsion residually-p group G with limi→∞
b1(Gi;Fp)
[G:Gi]

> 0
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for any p-chain (Gi) in G (and since G is residually-p, we can choose a p-
chain with ∩Gi = {1}). Since b1(H) = 0 for any torsion group H , we have

limi→∞
b1(Gi)
[G:Gi]

= 0 for such group G.

In Section 4 we give an example showing that the answer to Question 1.5 would
also become negative if we drop the assumption ∩i∈NGi = {1}, even if G is
finitely presented and (Gi) is a p-chain which has infinitely many distinct terms.

1.2. Comparing Fp-approximation and first L2-Betti number. Since
both Fp-approximation and the first L2-Betti number provide upper bounds
for Q-approximation, it is natural to ask how the former two quantities are
related to each other. We address this question in the case of p-chains.

Theorem 1.6. Let p be a prime number. Let G be a finitely generated group
and G = G0 ⊇ G1 ⊇ G2 ⊇ · · · a descending chain of normal subgroups of G of
p-power index. Then

(1) The sequence
(

b1(Gi;Fp)
[G:Gi]

)

i
is monotone decreasing and therefore con-

verges;
(2) Assume that

⋂
i∈NGi = {1}. Then

b
(2)
1

(
G) ≤ lim

i→∞

b1(Gi;Fp)

[G : Gi]
.

We note that for finitely presented groups Theorem 1.6(2) is a straightforward
consequence of Theorem 1.1.
We provide two different proofs of Theorem 1.6. First, Theorem 1.6 is a special
case of Theorem 2.2, which will be proved in Section 2. An alternative proof
of Theorem 1.6 given in Section 3 will be based on Theorem 3.1. The latter
may be of independent interest and has another important corollary, which
can be considered as an extension of Theorem 1.1 to groups which are finitely
presented, but not necessarily residually finite. Here is a slightly simplified
version of Theorem 3.1.

Theorem 1.7. Let G be a finitely presented group, and let K be the kernel of
the canonical map from G to its profinite completion or pro-p completion for
some prime p. Let (Gi) be a descending chain of finite index normal subgroups
of G such that ∩i∈NGi = K (note that such a chain always exists). Then

b
(2)
1 (G/K) = lim

i→∞

b1(Gi)

[G : Gi]
.

1.3. Connection with rank gradient. LetG be a finitely generated group.
In the sequel we denote by d(G) the minimal number of generators, sometimes
also called the rank of G. Let (Gi)i∈N be a descending chain of finite index
normal subgroups of G. The rank gradient of G (with respect to (Gi)), denoted
by RG(G; (Gi)), is defined by

RG(G; (Gi)) = lim
i→∞

d(Gi)− 1

[G : Gi]
.(1.8)
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The above limit always exists since for any finite index subgroup H of G one

has d(H)−1
[G:H] ≤ d(G) − 1 by the Schreier index formula.

Rank gradient was originally introduced by Lackenby [10] as a tool for studying
3-manifold groups, but is also interesting from a purely group-theoretic point
of view (see, e.g., [1, 2, 18, 20]).
Provided that G is infinite and

⋂
i∈NGi = {1}, the following inequalities are

known to hold:

(1.9) RG(G; (Gi)) ≥ cost(G)− 1 ≥ b
(2)
1 (G).

The first inequality was proved by Abért and Nikolov [2, Theorem 1], and the
second one is due to Gaboriau [8, Corollaire 3.16, 3.23] (see [7, 8, 9] for the
definition and some key results about cost).
It is not known if either inequality in (1.9) can be strict. In particular, the
following question is open.

Question 1.10. Let G be an infinite finitely generated residually finite group
and (Gi) a descending chain of finite index normal subgroups of G with
∩i∈NGi = {1}. Is it always true that

RG(G; (Gi)) = b
(2)
1 (G)?

Theorem 1.6 provides a potentially new approach for answering Question 1.10
in the negative, as explained below.
In view of the obvious inequality d(H) ≥ b1(H ;K) for any group H and any

field K, one always has RG(G; (Gi)) ≥ lim supi→∞
b1(Gi;K)
[G:Gi]

.

Question 1.11. For which infinite finitely generated groups G, finite index
normal chains (Gi)i∈N with

⋂
i∈NGi = {1} and fields K, do we have

(1.12) RG(G; (Gi)) = lim sup
i→∞

b1(Gi;K)

[G : Gi]
?

Remark 1.13. Since for a group H , the first Betti number b1(H ;K) depends
only on the characteristic of K, one can assume that K = Q or K = Fp for
some p. The same remark applies to Question 1.14 below.

Note that if K = Q, equality (1.12) does not hold in general – if it did, The-
orem 1.3 would have implied the existence of a group G and a finite index

normal chain (Gi) in G for which the sequence
(

d(Gi)−1
[G:Gi]

)

i
has no limit, which

is impossible since this sequence is monotone decreasing. If one can find a
group G for which (1.12) fails with K = Fp and (Gi) a p-chain, then in view
of Theorem 1.6 such group G would answer Question 1.10 in the negative.
The answer to Question 1.11 would become negative if we drop the assumption
∩Gi = {1} even if G is finitely presented and (Gi) is a p-chain (with infinitely
many distinct terms), as we will see in Section 4.
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1.4. Independence of the chain. So far we discussed the dependence of

the quantity lim supi→∞
b1(Gi;K)
[G:Gi]

on the field K, but perhaps an even more

important question is when it is independent of the chain. Again it is reasonable
to require that

⋂
i∈NGi = {1} since without this restriction the answer would

be negative already for very nice groups like F × Z, where F is a non-abelian

free group. Note that independence of lim supi→∞
b1(Gi;K)
[G:Gi]

of the chain (Gi)

as above automatically implies that limi→∞
b1(Gi;K)
[G:Gi]

must exist.

Question 1.14. For which finitely generated residually finite groups G and

fields K does the limit limi→∞
b1(Gi;K)
[G:Gi]

exist for all finite index normal chains

(Gi)i∈N with
⋂

i∈NGi = {1} and is independent of the choice of the chain (Gi)?

The answer to Question 1.14 is known to be positive if K = Q and either G is
finitely presented (by Theorem 1.1) or G is a limit of left orderable amenable
groups in the space of marked group presentations, in which case equality
(1.2) holds by [19, Corollary 1.5]. Question 1.14 remains open if G is finitely
presented and K = Fp. If G is arbitrary, the answer may be negative for any
K – this follows directly from Theorem 1.3 if K = Q and from its stronger
version Theorem 5.1 if K = Fp. In the latter case, however, it is natural to
impose the additional assumption that (Gi) is a p-chain, which does not hold
in our examples.
Essentially the only case when answer to Question 1.14 is known to be positive
for all fields is when G contains a normal infinite amenable subgroup (e.g., if
G itself is infinite amenable). In this case, RG(G; (Gi)) = 0 for all finite index
normal chains (Gi) with trivial intersection, as proved by Lackenby [10, Theo-
rem 1.2] when G is finitely presented and by Abért and Nikolov [2, Theorem 3]

in general. This, of course, implies that in such groups limi→∞
b1(Gi;K)
[G:Gi]

= 0

for any such chain (Gi) and hence the answer to Questions 1.11 and 1.14 is
positive.
Finally, we comment on the status of a more general version of Question 1.14:

Question 1.15. For which residually finite groups G, fields K, finite index
normal chains (Gi) with

⋂
i∈NGi = {1}, free G-CW -complexes X of finite

type and natural numbers n, does the limit limi→∞
bn(Gi\X;K))

[G:Gi]
exist and is

independent of the chain?

Again, if K has characteristic zero, the answer is always yes and the limit can

be identified with the n-th L2-Betti number b
(2)
n (X ;N (G)) (see [13] or [14,

Theorem 13.3 (2) on page 454], which is a generalization of Theorem 1.1). If
K has positive characteristic, the answer is yes if G is virtually torsion-free
elementary amenable, in which case the limit can be identified with the Ore
dimension of Hn(X ;K) (see [12, Theorem 5.3]); the answer is also yes for any
finitely generated amenable group G – this follows from [1, Theorem 17] or [12,
Theorem 2.1] – and the limit can be described using Elek dimension function
(see [5]). There are examples for G = Z of finite G-CW -complexes X where
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the limits limi→∞
bn(Gi\X;K))

[G:Gi]
are different for K = Q and K = Fp (but X is

not EG), see [12, Example 6.2].

1.5. Acknowledgments. The authors want to thank the American Insti-
tute of Mathematics for its hospitality during their stay at the Workshop “L2-
invariants and their relatives for finitely generated groups” organized by Miklós
Abért, Mark Sapir, and Dimitri Shlyakhtenko in September 2011, where some
of the ideas of this paper were developed. The authors are very grateful to
Denis Osin for proposing several improvements in Section 4 and other useful
discussions. The first author is very grateful to Andrei Jaikin-Zapirain for
many helpful discussions related to the subject of this paper, sending his un-
published work “On p-gradient of finitely presented groups” and suggesting a
stronger version of Theorem 3.1(2).

2. The first L2-Betti number and approximation in prime

characteristic

If G is a group and X a G-CW -complex, we denote by

b(2)n (X ;N (G)) = dimN (G)

(
Hn(N (G) ⊗ZG C∗(X))

)
(2.1)

its n-th L2-Betti number. Here C∗(X) is the cellular ZG-chain complex of X ,
N (G) is the group von Neumann algebra and dimN (G) is the dimension function
for (algebraic) N (G)-modules in the sense of [14, Theorem 6.7 on page 239].

Notice that b
(2)
1 (G) = b

(2)
1 (EG;N (G)).

The goal of this section is to prove the following theorem which generalizes
Theorem 1.6:

Theorem 2.2 (The first L2-Betti number and Fp-approximation). Let p be
a prime number. Let G be a finitely generated group and (Gi) a descending
chain of normal subgroups of p-power index in G. Let K =

⋂
i∈NGi. Then the

sequence
(

b1(Gi;Fp)
[G:Gi]

)

i
is monotone decreasing, the limit limi→∞

b1(Gi;Fp)
[G:Gi]

exists

and satisfies

b
(2)
1

(
K\EG;N (G/K)

)
≤ lim

i→∞

b1(Gi;Fp)

[G : Gi]
.

For its proof we will need the following lemma, which is proved in [3,
Lemma 4.1], although it was probably well known before.

Lemma 2.3. Let p be a prime and m,n positive integers. Let H be a finite
p-group. Consider an FpH-map α : FpH

m → FpH
n. Define the Fp-map

α = idFp
⊗FpHα : F

m
p = Fp ⊗FpH FpH

m → Fn
p = Fp ⊗FpH FpH

n,

where we consider Fp as FpH-module by the trivial H-action. Then

dimFp
(im(α)) ≥ |H | · dimFp

(im(α)).

Notice that the assertion of Lemma 2.3 is not true if we do not require that H
is a p-group or if we replace Fp by a field of characteristic not equal to p.
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Proof of Theorem 2.2. Since G is finitely generated, there is a CW -model for
BG with one 0-cell and a finite number, let us say s, of 1-cells. Let EG→ BG
be the universal covering. Put X = K\EG and Q = G/K. Then X is a free
Q-CW -complex with finite 1-skeleton. Its cellular ZQ-chain complex C∗(X)
looks like

· · · → C2(X) =

r⊕

j=1

ZQ
c2−→ C1(X) =

s⊕

j=1

ZQ
c1−→ C0(X) = ZQ

where r is a finite number or infinity.
For m = 0, 1, 2, . . . we define a ZQ-submodule of C2(X) by C2(X)|m =⊕max{m,r}

j=1 ZQ. Denote by c2|m : C2(X)|m → C1(X) the restriction of c2 to

C2(X)|m.
Consider a ZQ-map f : M → N . Denote by f (2) : M (2) → N (2) the N (Q)-
homomorphism idN (G)⊗ZQf : N (Q)⊗ZQM → N (Q)⊗ZQN . Put Qi = Gi/K.
Let f [i] : M [i] → N [i] be the Q-homomorphism idQ ⊗f : Q ⊗Z[Qi] M →
Q ⊗Z[Qi] N . Denote by f [i, p] : M [i, p] → N [i, p] the Fp-homomorphism

idFp
⊗Z[Qi]f : Fp ⊗Z[Qi] M → Fp ⊗Z[Qi] N . If M =

⊕t

j=1 ZQ, then M (2) =⊕t

j=1 N (Q), M [i] =
⊕t

j=1 Z[Q/Qi] and M [i, p] =
⊕t

j=1 Fp[Q/Qi].
Note that

b1(Qi\X ;Fp) = b1(Gi\EG;Fp) = b1(BGi;Fp) = b1(Gi;Fp).

Since all dimension functions are additive (see [14, Theorem 6.7 on page 239]),
we conclude

b
(2)
1

(
X ;N (Q)

)
= s− 1− dimN (Q)

(
im(c

(2)
2 )

)
;(2.4)

b1
(
Gi;Fp)

[Q : Qi]
= s− 1− dimFp

(
im(c2[i, p])

)

[Q : Qi]
;(2.5)

dimN (Q)

(
im(c2|(2)m )

)
= m− dimN (Q)

(
ker(c2|(2)m )

)
;(2.6)

dimQ

(
im(c2|m[i])

)

[Q : Qi]
= m− dimQ

(
ker(c2|m[i])

)

[Q : Qi]
;(2.7)

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
= m− dimFp

(
ker(c2|m[i, p])

)

[Q : Qi]
.(2.8)

There is an isomorphism of Fp-chain complexes Fp ⊗Fp[Qi+1\Qi] C∗(X)[(i +

1), p]
∼=−→ C∗(X)[i, p], where the Qi+1\Qi-operation on C∗(X)[i+1] comes from

the identification C∗(X)[i+1] = Fp⊗Fp[Qi+1]C∗(X) = Fp[Qi+1\Q]⊗FpQC∗(X).
This is compatible with the passage from C2(X) to C2(X)|m. Hence c2|m[i, p]
can be identified with idFp

⊗Fp[Qi+1\Qi]c2|m[(i+1), p]. Since Qi+1\Qi is a finite
p-group, Lemma 2.3 implies

dimFp

(
im(c2|m[(i + 1), p])

)
≥ [Qi : Qi+1] · dimFp

(
im(c2|m[i, p])

)
.

We conclude

dimFp

(
im(c2|m[(i + 1), p])

)

[Q : Qi+1]
≥ dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
.(2.9)
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Since im(c
(2)
2 ) =

⋃
m im(c2|(2)m ) and im(c2[i, p]) =

⋃
m im(c2|m[i, p]) and the

dimension functions are compatible with directed unions (see [14, Theorem 6.7
on page 239]), we get

dimN (Q)

(
im(c

(2)
2 )

)
= lim

m→∞
dimN (Q)

(
im(c2|(2)m )

)
;(2.10)

dimFp

(
im(c2[i, p])

)
= lim

m→∞
dimFp

(
im(c2|m[i, p])

)
.(2.11)

We conclude from [14, Theorem 13.3 (2) on page 454 and Lemma 13.4 on
page 455]

lim
i→∞

dimQ

(
ker(c2|m[i])

)

[Q : Qi]
= dimN (Q)

(
ker(c2|(2)m )

)
.

This implies together with (2.6) and (2.7)

lim
i→∞

dimQ

(
im(c2|m[i])

)

[Q : Qi]
= dimN (Q)

(
im(c2|(2)m )

)
.(2.12)

Finally, it is easy to see that

dimQ

(
im(c2|m[i])

)
≥ dimFp

(
im(c2|m[i, p])

)
.(2.13)

Putting everything together, we can now prove both assertions of Theorem 2.2.

First, for a fixed m, the sequence

(
dimFp

(
im(c2|m[i,p])

)

[Q:Qi]

)

i

is monotone increasing

by (2.9), whence the sequence

(
dimFp

(
im(c2[i,p])

)

[Q:Qi]

)

i

is also monotone increasing

by (2.11) and therefore the sequence
(

b1(Gi;Fp)
[Q:Qi]

)

i
is monotone decreasing by

(2.5). This proves the first assertion of Theorem 2.2 since clearly [Q : Qi] =
[G : Gi].

Inequality (2.9) also implies that lim
i→∞

dimFp

(
im(c2|m[i,p])

)

[Q:Qi]
≥ dimFp

(
im(c2|m[j,p])

)

[Q:Qj ]

for any fixed j and m, and so
(2.14)

lim
m→∞

lim
i→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
≥ sup

i≥0

{
lim

m→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

}
.
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Therefore,

b
(2)
1 (X ;N (Q))

(2.4)
= s− 1− dimN (Q)

(
im(c

(2)
2 )

)

(2.10)
= s− 1− lim

m→∞
dimN (Q)

(
im(c2|(2)m )

)

(2.12)
= s− 1− lim

m→∞
lim
i→∞

dimQ

(
im(c2|m[i])

)

[Q : Qi]

(2.13)

≤ s− 1− lim
m→∞

lim
i→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

(2.14)

≤ s− 1− sup
i≥0

{
lim

m→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

}

(2.11)
= s− 1− sup

i≥0

{
dimFp

(
im(c2[i, p])

)

[Q : Qi]

}

= inf
i≥0

{
s− 1− dimFp

(
im(c2[i, p])

)

[Q : Qi]

}

(2.5)
= inf

i≥0

{
b1(Gi;Fp)

[Q : Qi]

}
.

This finishes the proof of Theorem 2.2. �

3. Alternative proof of Theorem 1.6

In this section we give an alternative proof of Theorem 1.6. Namely, Theo-
rem 1.6 is an easy consequence of the following result, which may be useful in
its own right.

Theorem 3.1. Let G be a finitely presented group, let (Gi) be a descending
chain of finite index normal subgroups of G, and let K =

⋂∞
i=1Gi.

(1) The following inequalities hold:

lim
i→∞

b1(Gi/K)

[G : Gi]
≤ b

(2)
1 (G/K) ≤ b

(2)
1

(
K\EG;N (G/K)

)
= lim

n→∞

b1(Gi)

[G : Gi]
.

(2) Let C be any class of finite groups which is closed under subgroups,
extensions (and isomorphisms) and contains at least one non-trivial
group (for instance, C could be the class of all finite groups or all finite
p-groups for a fixed prime p). Assume that K is the kernel of the
canonical map from G to its pro-C completion. Then

b
(2)
1 (G/K) = lim

i→∞

b1(Gi)

[G : Gi]
.
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If in addition all groups G/Gi are in C, then
(3.2)

lim
i→∞

b1(Gi/K)

[G : Gi]
= b

(2)
1 (G/K) = b

(2)
1

(
K\EG;N (G/K)

)
= lim

i→∞

b1(Gi)

[G : Gi]
.

Proof. (1) Since G is finitely presented, there is a G-CW -model for the clas-
sifying space BG whose 2-skeleton is finite. Let EG → BG be the universal
covering. Then EG is a free G-CW -complex with finite 2-skeleton. Put

Q = G/K;

Qi = Gi/K.

Then Q = Q0 ⊇ Q1 ⊇ · · · is a descending chain of finite index normal sub-
groups of Q with

⋂∞
i=0Qi = {1} and we have for i = 0, 1, 2, . . .

[G : Gi] = [Q : Qi].(3.3)

The quotient X = K\EG is a free Q-CW -complex whose 2-skeleton is finite.
Let X2 be the 2-skeleton of X . Since the first L2-Betti number and the first
Betti number depend only on the 2-skeleton, from [13, Theorem 0.1] applied
to the G-covering X2 → X2/G (we do not need X2 to be simply connected) or
directly from [14, Theorem 13.3 on page 454], we obtain

b
(2)
1 (X ;N (Q)) = lim

i→∞

b1(Qi\X)

[Q : Qi]
.(3.4)

Let f : X → EQ be the classifying map. Since EQ is simply connected, this
map is 1-connected. This implies by [14, Theorem 6.54 (1a) on page 265]

b
(2)
1 (X ;N (Q)) ≥ b

(2)
1 (EQ;N (Q)).(3.5)

The group Q is finitely generated (but not necessarily finitely presented), so by
[16, Theorem 1.1] we have

lim
i→∞

b1(Qi)

[Q : Qi]
≤ b

(2)
1 (Q).(3.6)

Notice that b
(2)
1 (Q) = b

(2)
1 (EQ;N (Q)) by definition and we obviously have

Qi\X = Gi\EG = BGi and hence b1(Qi\X) = b1(Gi). Combining
(3.3), (3.4), (3.5), and (3.6), we get

lim
i→∞

b1(Qi)

[Q : Qi]
≤ b

(2)
1 (Q) ≤ b

(2)
1 (X ;N (Q)) = lim

i→∞

b1(Qi\X)

[Q : Qi]
= lim

i→∞

b1(Gi)

[G : Gi]
.

This finishes the proof of assertion (1).

(2) First observe that since b
(2)
1

(
K\EG;N (G/K)

)
= lim

i→∞

b1(Gi)
[G:Gi]

by (1), the

limit lim
i→∞

b1(Gi)
[G:Gi]

is the same for all finite index normal chains (Gi) with

∩i∈NGi = K.By definition of K, there exists at least one such chain with
G/Gi ∈ C for all i (e.g., we can let (Gi) be a base of neighborhoods of 1 for the
pro-C topology on G), so it suffices to prove (3.2). Thus, from now on we will
assume that G/Gi ∈ C for i ∈ N.
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For a finitely generated group H we denote by H ′ the kernel of the composite
of canonical projections H → H1(H) → H1(H)/ tors(H1(H)), so that H/H ′ is
a free abelian group of rank b1(H).
As in the proof of (1), we put Qi = Gi/K for i ∈ N. It is sufficient to prove
that that K ⊆ G′

i for i ∈ N. Indeed, this would imply that Qi/Q
′
i
∼= Gi/G

′
i,

whence b1(Qi) = b1(Gi) and therefore limi→∞
b1(Qi)
[G:Gi]

= limi→∞
b1(Gi)
[G:Gi]

, which

proves (2) in view of (1).

Fix i ∈ N and let H = Gi. Since C contains at least one non-trivial finite group
and is closed under subgroups, it contains a finite cyclic group, say of order

k. Since C is closed under extensions, it contains (Z/kmZ)
b
for all m, b ∈ N.

Setting b = b1(H), we get that H/H ′Hkm ∈ C for all m ∈ N, and since C
is closed under extensions, we obtain G/H ′Hkm ∈ C. By definition, K is
the intersection of all normal subgroups L of G with G/L ∈ C. Therefore,
K ⊆ ⋂

m∈N

H ′Hkm

= H ′. �

Second proof of Theorem 1.6.
(1) This is a direct consequence of the following well-known fact: if H is a nor-
mal subgroup of p-power index in G, then b1(H ;Fp)−1 ≤ [G : H ](b1(G;Fp)−1)
(see, e.g., [11, Proposition 3.7]).

(2) Choose an epimorphism π : F → G, where F is a finitely generated free
group. Fix n ∈ N, let Fn = π−1(Gn) and H = [Fn, Fn]F

p
n . Then H is a finite

index subgroup of F , so we can choose a presentation (X,R) of G associated
with π such that R = R1 ⊔R2, where R1 is finite and R2 ⊆ H .

Consider the finitely presented group G̃ = 〈X | R1〉. We have natural epi-

morphisms φ : G̃ → G and ψ : F → G̃, with φψ = π. If we let G̃i = φ−1(Gi)

and K̃ =
⋂∞

i=1 G̃i, then G̃/K̃ ∼= G. Thus, applying Theorem 3.1 (1) to the

group G̃ and its subgroups (G̃i), we get b
(2)
1 (G) ≤ limi→∞

b1(G̃i)

[G̃:G̃i]
. Clearly,

limi→∞
b1(G̃i)

[G̃:G̃i]
≤ limi→∞

b1(G̃i;Fp)

[G̃:G̃i]
, and by assertion (1),

lim
i→∞

b1(G̃i;Fp)

[G̃ : G̃i]
≤ b1(G̃n;Fp)

[G̃ : G̃n]
=
b1(G̃n;Fp)

[G : Gn]
.

Since G ∼= G̃/〈〈ψ(R2)〉〉 and by construction ψ(R2) ⊆ ψ(H) = [G̃n, G̃n]G̃
p
n,

we have kerφ ⊆ [G̃n, G̃n]G̃
p
n, and therefore b1(G̃n;Fp) = b1(φ(G̃n);Fp) =

b1(Gn;Fp).

Combining these inequalities, we get b
(2)
1 (G) ≤ b1(Gn;Fp)

[G:Gn]
. Since n is arbitrary,

the proof is complete. �

4. A counterexample with non-trivial intersection

In this section we show that the answer to Questions 1.5 and 1.11 could be
negative for a finitely presented groupG and a strictly descending chain (Gi)i∈N
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of normal subgroups of p-power index if the intersection ∩i∈NGi is non-trivial
(see inequalities (4.2) below).
We start with a finitely generated groupH (which will be specified later) and let
G = H ∗Z. Choose a strictly increasing sequence of positive integers n1, n2, . . .
with ni | ni+1 for each i, and let Gi ⊆ G be the preimage of ni · Z under
the natural projection pr : G = Z ∗ H → Z. Then (Gi)i∈N is a descending
chain of normal subgroups of G with

⋂
i≥1Gi = ker(pr). Let BGi → BG be

the covering of BG associated to Gi ⊆ G. Then BGi is homeomorphic to

S1 ∨
(∨ni

j=1 BH
)
. We have

Gi
∼= π1(BGi) ∼= π1



S1 ∨




ni∨

j=1

BH







 ∼= Z ∗ (∗ni

j=1H).

Since for any groupsA and B we have A∗B/[A∗B,A∗B] ∼= A/[A,A]⊕B/[B,B]
and d(A∗B) = d(A)+d(B) by Grushko-Neumann theorem (see [4, Corollary 2
in Section 8.5 on page 227], we conclude

H1(Gi;K) = K ⊕
ni⊕

j=1

H1(H ;K);

H1(Gi) = Z⊕
ni⊕

j=1

H1(H);

d(Gi) = 1 + ni · d(H);

lim
i→∞

b1(Gi;K)

ni

= b1(H ;K);

lim
i→∞

d(H1(Gi))

ni

= d(H1(H));

RG(G; (Gi)i≥1) = d(H).

Now let p 6= q be distinct primes and H = Z/pZ ∗ Z/qZ ∗ Z/qZ. Clearly we
have

(4.1) b1(H) = 0, b1(H ;Fp) = 1, d(H1(H)) = 2, d(H) = 3.

Hence we obtain

(4.2) lim
i→∞

b1(Gi)

[G : Gi]
< lim

i→∞

b1(Gi;Fp)

[G : Gi]
< lim

i→∞

d(H1(Gi))

[G : Gi]
< RG(G; (Gi)i≥1).

Using a different H we can produce an example of this type where G has a
very strong finiteness property, namely, G has finite 2-dimensional BG. The
construction below is due to Denis Osin and is simpler and more explicit than
the original version of our example.
Again, let p 6= q be two primes. Consider the group

H = 〈x, y, z | xp = u, yq = v, zq = w〉,
where u, v, w are words from the commutator subgroup of the free group F
with basis x, y, z such that the presentation of H satisfies the C′(1/6) small
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cancellation condition. Such words are easy to find explicitly. Note that G =
H ∗ Z is a torsion-free C′(1/6) group, hence it has a finite 2-dimensional BG.
Since u, v, w ∈ [F, F ], we have b1(H) = 0, b1(H ;Fp) = 1, d(H1(H)) = 2.
Further it follows from [6, Corollary 2] that the exponential growth rate of H
can be made arbitrarily close to 2 · 3 − 1 = 5, the exponential growth rate
of the free group of rank 3, by taking sufficiently long words u, v, w. As the
exponential growth rate of an m-generated group is bounded from above by
2m− 1, we obtain d(H) = 3 whenever u, v, w are sufficiently long. (For details
about the exponential growth rate we refer to [6].)
By using a more elaborated construction from [21], one can make such a group
G the fundamental group of a compact 2-dimensional CAT (−1) CW -complex.
Other examples of this type can be found in [3] and [15].

5. Q-approximation without limit

In this section we prove the following theorem, which trivially implies Theo-
rem 1.3.

Theorem 5.1. Let d ≥ 2 be a positive integer, let p be a prime and let ε be a
real number satisfying 0 < ε < 1. Then there exist a group G with d generators
and a descending chain G = G0 ⊇ G1 ⊇ G2 . . . of normal subgroups of G of
p-power index with

⋂∞
i=1Gi = {1} with the following properties:

(i) lim infi→∞
b1(G2i)
[G:G2i]

≥ d− 1− ε;

(ii) limi→∞
b1(G2i−1)
[G:G2i−1]

= 0.

Moreover, if q is a prime different from p, we can replace (ii) by a stronger
condition (ii)’:

(ii’) limi→∞
b1(G2i−1;Fq)
[G:G2i−1]

= 0.

Note that the last assertion of Theorem 5.1 shows that the answer to Ques-
tion 1.14 can be negative when char(K) = q > 0 if we do not require that (Gi)
is a q-chain.

5.1. Preliminaries. Throughout this section p will be a fixed prime number.
Given a finitely generated group G, we will denote by Gp̂ the pro-p completion
of G and by G(p) the image of G in Gp̂ (which is isomorphic to the quotient of
G by the intersection of normal subgroups of p-power index). Given a set X ,
by F (X) we denote the free group on X .
Let F be a free group and w ∈ F a non-identity element. Given n ∈ N, denote
by n

√
w the unique element of F whose nth power is equal to w (if such element

exists). Define ep(w,F ) to be the largest natural number e with the property
that pe

√
w exists in F .

Lemma 5.2. Let (X,R) be a presentation of a group G with X finite, F = F (X)
and π : F → G the natural projection. Let H be a normal subgroup of p-power
index in G, and let FH = π−1(H). Then H = FH/〈〈RH〉〉 where RH contains

[G:H]

pep(r,F )−ep(r,FH ) F -conjugates of r for each r ∈ R and no other elements.
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Proof. Very similar results are proved in both [18] and [20], but for complete-

ness we give a proof. For each r ∈ R, write r = w(r)p
ep (r,F )

, and choose a
right transversal T = T (r) for 〈w(r)〉FH in F . Then, since w(r) commutes
with r, by [17, Lemma 2.3] we have 〈r〉F = 〈{t−1rt : t ∈ T }〉FH . Hence
〈{t−1rt : r ∈ R, t ∈ T (R)}〉FH = 〈R〉F = kerπ = ker(FH → H), and so it

suffices to prove that |T (r)| = [G:H]

pep(r,F )−ep(r,FH ) .

We have

|T (r)| = [F : 〈w(r)〉FH ] =
[F : FH ]

[〈w(r)〉FH : FH ]
=

[G : H ]

[〈w(r)〉 : 〈w(r)〉 ∩ FH ]

Finally note that [〈w(r)〉 : 〈w(r)〉 ∩ FH ] is equal to pk for some k (as it divides

[F : FH ] = pn), so 〈w(r)〉 ∩ FH = 〈w(r)pk 〉. But then from definition of

ep(r, FH) we easily conclude that ((w(r)p
k

)p
ep(r,FH )

= r = w(r)p
ep(r,F )

. Hence

k = ep(r, F )− ep(r, FH) and |T (r)| = [G:H]

pep(r,F )−ep(r,FH ) , as desired. �

The following definition was introduced by Schlage-Puchta in [20].

Definition 5.3. Given a group presentation by generators and relators (X,R),
where X is finite, its p-deficiency defp(X,R) ∈ R ∪ {−∞} is defined by

defp(X,R) = |X | − 1−
∑

r∈R

1

pep(r,F (X))
.

The p-deficiency of a finitely generated group G is the supremum of the set
{defp(X,R)} where (X,R) ranges over all presentations of G.

The main motivation for introducing p-deficiency in [20] was to construct a
finitely generated p-torsion group with positive rank gradient. Indeed, it is
clear that there exist p-torsion groups with positive p-deficiency, and in [20] it
is proved that a group with positive p-deficiency has positive rank gradient (in
fact, positive p-gradient). This is one of the results indicating that groups of
positive p-deficiency behave similarly to groups of deficiency greater than 1 (all
of which trivially have positive p-deficiency for any p).
Lemma 5.5 below shows that a finitely presented group G of positive p-
deficiency actually contains a normal subgroup of p-power index with defi-
ciency greater than 1, provided that the presentation of G yielding positive
p-deficiency is finite and satisfies certain technical condition.

Definition 5.4. A presentation (X,R) of a group G will be called p-regular
if for any r ∈ R such that p

√
r exists in F (X), the image of p

√
r in G(p) is

non-trivial. This is equivalent to saying that if we write each r ∈ R as r = vp
e

,
where v is not a pth power in F (X), then the image of v in G(p) has order p

e.

Lemma 5.5. Let (X,R) be a finite p-regular presentation of a group G. Then

there exists a normal subgroup of p-power index H of G with def(H)−1
[G:H] ≥

defp(X,R).
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Proof. Let F = F (X). Let r1, . . . , rm be the elements of R and let si = p
√
ri,

whenever it is defined in F (X).
Let π : F → G(p) be the natural projection. Since the presentation (X,R) is
p-regular, π(si) is non-trivial whenever si is defined, and since the group G(p) is
residually-p, there exists a normal subgroup H ′ of G(p) of p-power index which
contains none of the elements π(si).
Let FH = π−1(H ′). By construction, si 6∈ FH , but ri ∈ FH , and therefore
ep(ri, FH) = 0 for each i. Let H be the image of FH in G. Then by Lemma 5.2,

H has a presentation with d(FH) generators and
∑m

i=1
[G:H]

pep(ri,F ) relators. Since

d(FH)− 1 = (|X | − 1)[F : FH ] = (|X | − 1)[G : H ] by the Schreier formula, we
get

def(H)− 1 ≥ [G : H ] ·
(
|X | − 1−

m∑

i=1

p−ep(ri,F )

)
= [G : H ] · defp(X,R).

�

Lemma 5.6. Let (X,R) be a finite p-regular presentation, and let G = 〈X |R〉.
Let f ∈ F (X) be such that the image of f in the pro-p completion of G has
infinite order. Then there exists N ∈ N such that for all n ≥ N the presentation
(X,R ∪ {fpn}) is p-regular.
Proof. Let r1, . . . , rm be the elements of R. By assumption there is a normal
subgroup of p-power index H of G such that p

√
ri does not vanish in G/H

(whenever p
√
ri exists in F (X)). Let π : F (X) → G be the natural projection,

and choose N ∈ N satisfying π(fpN

) ∈ H .
Let n ≥ N , let g = π(f), and let G′ = G/〈〈gpn〉〉 = 〈X |R ∪ {fpn}〉. We claim
that the presentation (X,R ∪ {fpn}) is p-regular. We need to check that

(i) each p
√
ri does not vanish in G′

p̂

(ii) fpn−1

does not vanish in G′
p̂

The kernel of the natural map G → G′
p̂ is contained in H since gp

n ∈ H

and G/H is a finite p-group. Since π( p
√
ri) 6∈ H , this implies (i). Further,

an element x 6= 1 of a pro-p group cannot lie in the closed normal subgroup
generated by xp. Hence if ĝ is the image of g (also the image of f) in Gp̂, then

ĝp
n−1

does not lie in the closed normal subgroup of Gp̂ generated by ĝp
n

, call
this subgroup C. Finally, by definition of G′, there is a canonical isomorphism
from Gp̂/C to G′

p̂, which maps the image of f in Gp̂/C to the image of f in

G′
p̂. Thus, we verified (ii). �

Corollary 5.7. Let (X,R) be a finite p-regular presentation, and let G =
〈X | R〉. Let H ⊆ K be normal subgroups of F (X) of p-power index, and
let δ > 0 be a real number. Then there exists a finite set R′ ⊂ [K,K] with∑
r∈R′

p−ep(r,F (X)) < δ such that

(1) the presentation (X,R ∪R′) is p-regular;
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(2) if G′ = 〈X | R ∪ R′〉 and H ′ is the image of H in G′, then b1(H
′) ≤

d(K).

Moreover, if q is a prime different from p, we can require that b1(H
′;Fq) ≤

d(K).

Proof. If b1(H ;Fq) ≤ d(K), we can choose R′ = ∅. Hence we can assume
without loss of generality that b1(H ;Fq) > d(K). Clearly, it suffices to
prove a weaker statement, where inequality b1(H

′;Fq) ≤ d(K) is replaced by
b1(H

′;Fq) < b1(H ;Fq). The assertion of Corollary 5.7 then follows by repeated
applications with δ replaced by δ/(b1(H,Fq)− d(K)).
Let Y be any free generating set for H . Obviously K/[K,K] is a free abelian
group of rank d(K). Any (finite) matrix over the integers can be transformed
by elementary row and column operations to a diagonal matrix. Hence by
applying elementary transformations to Y , we can arrange that Y is a disjoint
union Y1 ⊔ Y2 where |Y1| ≤ d(K) and Y2 ⊆ [K,K].
Let L = 〈Y2〉, the subgroup generated by Y2. Since b1(H ;Fq) > d(K), there
exists f ∈ Y2 whose image in H/[H,H ]Hq ∼= H1(H,Fq) is non-trivial. Now

apply Lemma 5.6 to this f , choose n such that 1
pn < δ and let R′ = {fpn}.

The choice of f ensures that b1(H
′;Fq) < b1(H ;Fq), so R

′ has the required
properties. �

5.2. Proof of Theorem 5.1. To simplify the notations, we will give a proof
of the main part of Theorem 5.1. The last part of Theorem 5.1 is proved in
the same way by using the last assertion of Corollary 5.7.
We start by giving an outline of the construction. Let F = F (X) be a free
group of rank d = |X |. Below we shall define a descending chain F = F0 ⊇
F1 ⊇ . . . of normal subgroups of F of p-power index and a sequence of finite
subsets R1, R2, . . . of F . Let R =

⋃∞
i=1 Rn. For each n ∈ Z≥0 we let G(n) =

F/〈〈⋃n

i=1Ri〉〉, G(∞) = lim−→G(i) = F/〈〈R〉〉 and let G be the image of G(∞)

in its pro-p completion. Denote by G(n)i, G(∞)i and Gi the canonical image
of Fi in G(n), G(∞) and G, respectively. We will show that the group G and
its subgroups (Gi) satisfy the conclusion of Theorem 5.1.
Fix a sequence of positive real numbers (δn) which converges to zero and a
descending chain (Φn) of normal subgroups of p-power index in F which form
a base of neighborhoods of 1 for the pro-p topology. The subgroups Fn and
relator sets Rn will be constructed inductively so that the following properties
hold:

(i) For n ≥ 0 we have

b1(G(n)2n)

[G(n) : G(n)2n]
> d− 1− ε;

(ii) For n ≥ 1 we have

b1(G(n)2n−1)

[G(n) : G(n)2n−1]
< δn;

(iii) Rn is contained in [F2n−2, F2n−2] for n ≥ 1;
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(iv) F2n ⊆ Φn for n ≥ 1;
(v) defp(X,∪n

i=1Ri) > d− 1− ε for n ≥ 1;
(vi) The presentation (X,∪n

i=1Ri) is p-regular for n ≥ 1.

We first explain why properties (i)-(vi) will imply that the group G and its
subgroups (Gn) have the desired properties. Each Gn is normal of p-power
index in G since Fn is normal of p-power index in F . Condition (iv) implies
that (Gn) is a base of neighborhoods of 1 for the pro-p topology on G, and
since G is residually-p by construction, we have

⋂∞
n=1Gn = {1}.

Condition (iii) implies that [G(n) : G(n)i] = [G(∞) : G(∞)i] and b1(G(n)i) =
b1(G(∞)i) for i ≤ 2n. Since G(∞)i is normal of p-power index in G(∞), the
group G(∞)/[G(∞)i, G(∞)i] is residually-p, so both the index and the first
Betti number of G(∞)i do not change under passage to the image in the pro-p
completion of G(∞): [G : Gi] = [G(∞) : G(∞)i] and b1(Gi) = b1(G(∞)i). In
view of these equalities, conditions (i) and (ii) yield the corresponding condi-
tions in Theorem 5.1.
We now describe the construction of the sets Rn and subgroups Fn. The base
case n = 0 is obvious: we set F0 = F and G(0) = F , and the only condition
we require for n = 0 (condition (i)) clearly holds.
Suppose now that N ∈ N and we constructed subsets (Ri)

N
i=1 and subgroups

(Fi)
2N
i=1 such that (i)-(vi) hold for all n ≤ N .

Let F2N+1 = [F2N , F2N ]F pe

2N where e is specified below. Then F2N+1 is a
normal subgroup of p-power index in F and F2N ⊇ F2N+1 ⊃ [F2N , F2N ]. Since
b1(G(N)2N ) > 0 by (i) for n = N and hence

pe ≤
∣∣H1(G(N)2N )/pe ·H1(G(N)2N )

∣∣

=
∣∣G(N)2N/[G(N)2N , G(N)2N ]G(N)p

e

2N

∣∣
= |G(N)2N/G(N)2N+1|
= [G(N)2N : G(N)2N+1]

≤ [G(N) : G(N)2N+1],

so we can arrange
d(F2N )

[G(N) : G(N)2N+1]
< δN+1

by choosing e large enough.
Now applying Corollary 5.7 with H = F2N+1, K = F2N and
δ = defp(X,∪N

i=1Ri) − (d − 1 − ε), we get that there is a finite subset

RN+1 ⊆ [F2N , F2N ] such that the presentation (X,∪N+1
i=1 Ri) is p-regular

and defp(X,∪N+1
i=1 Ri) > d − 1 − ε. Hence conditions (iii),(v),(vi) hold for

n = N + 1. The subgroup H ′ in the notations of Corollary 5.7 is equal to
G(N + 1)2N+1, so b1(G(N + 1)2N+1) ≤ d(F2N ). Since condition (iii) implies
[G(N + 1) : G(N + 1)2N+1] = [G(N) : G(N)2N+1], we conclude

b1(G(N + 1)2N+1)

[G(N + 1) : G(N + 1)2N+1]
≤ d(F2N )

[G(N) : G(N)2N+1]
< δN+1.

Thus we have shown that conditions (ii),(iii),(v),(vi) hold for n = N + 1.
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It remains to construct F2N+2 and to verify (i) and (iv) for n = N + 1. We

apply Lemma 5.5 to G(N + 1) = 〈X | ∪N+1
i=1 Ri〉 and obtain using (v) a normal

subgroup H of G(N + 1) of p-power index satisfying

def(H)− 1

[G(N + 1) : H ]
> d− 1− ε.

Let F2N+2 ⊆ F2N+1∩ΦN+1 be the intersection of the preimage of H under the
projection pN+1 : FN+1 → G(N + 1) with F2N+1 ∩ ΦN+1. Obviously (iv) for
holds n = N + 1. Then G(N + 1)2N+2 is a subgroup of H of finite index. The
quantity def(·)− 1 is supermultiplicative, i.e., if L is a finite index subgroup of
H , then def(L)− 1 ≥ [H : L] · (def(H)− 1), see for instance [18, Lemma 2.2].
Hence we conclude

def(G(N + 1)2N+2)− 1

[G(N + 1) : G(N + 1)2N+2)]
≥ def(H)− 1

[G(N + 1) : H ]
> d− 1− ε.

Since b1(G(N+1)2N+2) ≥ def(G(N+1)2N+2), condition (i) holds for n = N+1.
This finishes the proof of Theorem 5.1.
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