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Abstract. Let E/Q be an elliptic curve. We investigate the de-
nominator of the modular symbols attached to E. We show that one
can change the curve in its isogeny class to make these denominators
coprime to any given odd prime of semi-stable reduction. This has
applications to the integrality of Kato’s Euler system and the main
conjecture in Iwasawa theory for elliptic curves.
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1 Introduction

Let E/Q be an elliptic curve. Integrating a Néron differential ωE against all
elements in H1

(

E(C),Z
)

, we obtain the Néron lattice LE of E in C. For any

r ∈ Q, define λ(r) = 2πi
∫ r

∞
f(τ)dτ where f is the newform associated to the

isogeny class of E. A theorem by Manin [12] and Drinfeld [7] shows that the
values λ(r) are commensurable with LE . In other words, if Ω+

E and Ω−

E are
the minimal absolute values of non-zero elements in LE on the real and the
imaginary axis respectively, then

λ(r) = 2πi

∫ r

∞

f(τ)dτ = [r]+E · Ω+
E + [r]−E · Ω−

E · i

for two rational numbers [r]±E , which we will call the modular symbols of E.

1The author was supported by the EPSRC grant EP/G022003/1
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The first aim of this paper is to improve on the bound for the denominator
of [r]±E given by the Theorem of Manin and Drinfeld. It is not true in general
that [r]±E is an integer for all r. The only odd primes that can divide these
denominators are those which divide the degree of an isogeny E → E′ defined
over Q. Even by allowing to change the curve in the isogeny class, we can not
always achieve that the modular symbols are integers; for instance 3 will be a
denominator of [r]±E for some r ∈ Q for all E of conductor 27. However the
following theorem says that we may get rid of all odd primes p such that p2

does not divides the conductor N of E.

Theorem 1. Let E/Q be an elliptic curve. Then there exists an elliptic curve
E•, which is isogenous to E over Q, such that [r]±E•

is a p-integer for all r ∈ Q
and for all odd primes p for which E has semi-stable reduction.

As stated here one could take E• to be one of the curves in the isogeny class
with maximal Néron lattice. However it is a consequence of Theorem 4, which is
more precise and says that there is a curve E• whose Néron lattice is contained
in the lattice of all values of λ(r) with index not divisible by any odd prime of
semi-stable reduction.
As a direct consequence of this Theorem 1, one deduces that the algebraic part
of the special values of the twisted L-series L(E•, χ, s) at s = 1 are p-adic
integers for all Dirichlet characters χ and all odd semi-stable primes p. See
Corollary 7.
The second part of this paper is devoted to another application of this theorem.
Let p be an odd prime of semi-stable reduction. Kato has constructed in [10]
an Euler system for the isogeny class of E. See Section 3 for details of the
definitions. There are two sets of p-adic “zeta-elements”: First, a set of integral
zeta elements denoted by c,dzm(α) in the Galois cohomology of a lattice Tf
canonically associated to f which provides upper bounds for Selmer groups.
Secondly, a set of zeta elements denoted by zγ which are linked to the p-adic
L-functions. The latter are not known to be integral with respect to Tf . We
will show in Proposition 8 that Tf is equal to the Tate module TpE• of the
curve E• in Theorem 1.
Let Kn be the n-th layer in the cyclotomic Zp-extension of Q. Let z ∈
lim←−nH

1(Kn, TpE•) ⊗ Qp be the zeta element that is sent to the p-adic L-
function for E• via the Coleman map.

Theorem 2. If the reduction is good at p, then z belongs to the integral Iwasawa
cohomology lim←−nH

1(Kn, TpE•).

This is Theorem 13 in the text. Actually, the proof gives a more precise result.
The global Iwasawa cohomology group H

1(TpE) with restricted ramification
turns out to be very often, but not always, a free module of rank 1 over the
Iwasawa algebra of the Zp-extension. If it is free for E = E• then the integrality
of z is easily deduced; otherwise one can show that H1(TpE•) is at worst equal
to the maximal ideal in the Iwasawa algebra and the integrality above follows
then from the interpolation property of the p-adic L-function Lp(E).
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Another consequence of Theorem 1 concerns the main conjecture in Iwasawa
theory for elliptic curves. We formulate it here for the full cyclotomic Z×

p -
extension.

Theorem 3. Let E be an elliptic curve and p an odd prime of semi-stable
reduction. Assume that E[p] is reducible as a Galois module over Q. Then
the characteristic series of the dual of the Selmer group over the cyclotomic
extension Q

(

ζp∞
)

divides the ideal generated by the p-adic L-function Lp(E)

in the Iwasawa algebra Λ = Zp
[[

Gal(Q(ζp∞)/Q)
]]

.

Note that our assumptions in the theorem imply that the reduction of E at
p is ordinary in the sense that E has either good ordinary or multiplicative
reduction, because E[p] is irreducible when E has supersingular reduction, see
Proposition 12 in [22]. In the case when E has split multiplicative reduction,
we can strengthen our theorem, see Theorem 16.
This theorem was proven by Kato in [10] in the case that the reduction is ordi-
nary and the representation on the Tate module was surjective. The method of
proof follows and generalises the incomplete proof in [30], where unfortunately
the integrality issue had been overlooked.
For most good ordinary primes p for which E[p] is irreducible the full main
conjecture, asserting the equality rather than the divisibility in the above the-
orem, is now known thanks to the work of Skinner and Urban [25]. However
their proof of the converse divisibility does not seem to extend easily to the
reducible case.
Nonetheless, the above theorem has applications to the conjecture of Birch and
Swinnerton-Dyer and to the explicit computations of Tate-Shafarevich groups
as in [26]. The theorem also implies that all p-adic L-functions for elliptic
curves at odd primes p of semi-stable ordinary reductions are integral elements
in the Iwasawa algebra. See Corollary 18.

Acknowledgements
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2 The lattice of all modular symbols

Let E be an elliptic curve defined over Q. In what follows p will always stand
be an odd prime and we suppose that E does not have additive reduction at p.
The only case for which the integrality of Kato’s Euler system may not hold
is when E admits an isogeny of degree p defined over Q; so we may just as
well assume that we are in this “reducible” case. All conclusions in this section
and in the rest of the paper are still valid without this assumption, however
they are not our original work but rather well-known results. Denote by N the
conductor of E.
In the isogeny class of E there are two interesting elliptic curves. The first
is the optimal curve E0 with respect to the modular parametrisation from
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the modular curve X0(N), which is also often called the strong Weil curve.
The second is the optimal curve E1 with respect to the parametrisation from
X1(N). The definition of optimality is given in [28], for instance the map
H1

(

X0(N)(C),Z
)

→ H1

(

E0(C),Z
)

is surjective. Another interesting curve is
the so-called minimal curve (see [28]), which is conjecturally equal to E1, but
we will not make use of it in this article. Recall that a cyclic isogeny A → A′

defined over Q is étale (this is a slight abuse of notation, we should say more
precisely that it extends to an étale isogeny on the Néron models over Z) if the
pull-back of a Néron differential of A′ yields a Néron differential of A.
Let f be the newform of level N corresponding to the isogeny class of E. We
write ωf = 2πif(τ)dτ = f(q)dq/q for the corresponding differential form on
the modular curve X1(N). For any curve A in the isogeny class of E, we define
the Néron lattice LA to be the image of

∫

ωA : H1

(

A(C),Z
)

→ C

where ωA is a choice of a Néron differential. We denote by L0 and L1 the
lattices LE0

and LE1
respectively. Then Lf is defined to be the lattice of all

∫

γ ωf where γ varies in H1

(

X1(N),Z
)

. Finally, we define

L̂f =

{
∫

γ

ωf

∣

∣

∣

∣

γ ∈ H1

(

X1(N)(C), {cusps},Z
)

}

.

obtained by integrating ωf along all paths between cusps in X1(N). This is
the lattice of all modular symbols attached to f . By the Theorem of Manin–
Drinfeld L̂f is a lattice with L̂f ⊂ Lf Q. In fact, we know that all the
lattices above are commensurable and we view them now as Z-modules inside
V = L1 ⊗Q.

Theorem 4. Let E/Q be an elliptic curve. Then there exists an elliptic curve
E•/Q in the isogeny class of E whose lattice L• = LE•

satisfies L• ⊗ Zp =

L̂f⊗Zp inside V ⊗Qp for all odd primes p at which E has semi-stable reduction.
Moreover the cyclic isogeny from E1 to E• is étale.

Alternatively, we could also say that the index of L• ⊂ L̂f is coprime to
any odd prime of semi-stable reduction. We should also emphasise that the
statement does not hold in general for primes p of additive reduction or for
p = 2. Counter-examples for these will be provided later. The proof will
require some intermediate lemmas.

Lemma 5. Let A/Q be an elliptic curve and let p be an odd prime. Suppose P
is a point of exact order p in A, defined over an abelian extension of Q which
is unramified at p. Then the isogeny with kernel generated by P is defined over
Q.

Proof. Let G be the Galois group of Q
(

A[p]
)

over Q. Let H be the subgroup
corresponding to the field of definitionQ(P ) of P . ThenH is a normal subgroup
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of G with abelian quotient. In any basis of A[p] with P as the first element,
the group H is contained in ( 1 ∗

0 ∗
) when we view G as a subgroup of GL2(Fp).

Let S = G∩SL2(Fp) be the kernel of the determinant G→ F×
p . Hence H ∩S is

contained in the subgroup of matrices of the form ( 1 ∗
0 1 ). So we have two cases to

distinguish. EitherH∩S is equal to the cyclic group of order p of all matrices of
this form or it is trivial. But note first that the Weil pairing implies that Q(µp)
is contained in Q

(

A[p]
)

. So G/S is isomorphic to F×
p via the determinant.

Since Q(P ) is unramified at p, it must be linearly disjoint from Q(µp). For our
groups, this means that HS = G. Hence H/(H ∩ S) = G/S = F×

p .
Case 1: H ∩ S is equal to the cyclic group of order p generated by ( 1 1

0 1 ).
The above then implies that H is equal to the subgroup of all matrices ( 1 ∗

0 ∗ ).
Now G is contained in the normaliser of this group H inside GL2(Fp), which is
easily seen to be equal to the Borel subgroup of matrices of the form ( ∗ ∗

0 ∗ ). In
particular, the subgroup generated by P is fixed by G.
Case 2: H intersects S trivially. Then Q

(

A[P ]
)

is the composition of Q(µp)
and Q(P ). Hence G is the abelian group H × S. Note that H is now a cyclic
group of order p − 1. Let h be a non-trivial element of H ⊂

{

( 1 ∗
0 ∗

)
}

. It
has two eigenvalues, one equal to 1 and the other λ must be different than
1 as otherwise h would belong to S. Let Q ∈ A[p] be an eigenvector for h
with eigenvalue λ and use the basis {P,Q} for A[p]. For H to be an abelian
subgroup of

{

( 1 ∗
0 ∗

)
}

containing the element h = ( 1 0
0 λ ), it is necessary that H

is contained in the diagonal matrices. Therefore H is the group of all matrices
of the form ( 1 0

0 ∗
).

We know that S has to commute with H . It is easy to see that this implies
that S is contained in the group of matrices of the form ( a 0

0 1/a ). It follows that
G is contained in the diagonal matrices. Once again the isogeny defined by P
is fixed by G.

If A is an elliptic curve defined over Q, we know by [2] that there is a non-
constant morphism of curves ϕA : X0(N) → A defined over Q. We normalise
it by requiring that it is of minimal degree and that the cusp ∞ maps to
O ∈ A(Q). It is well-defined up to composition with an automorphism of A.
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Lemma 6. Let A/Q be an elliptic curve and let p be an odd prime such that A
has semi-stable reduction at p. Let r ∈ Q represent a cusp on X0(N) such that
the image ϕA(r) in A(Q̄) has order divisible by p. Let P ∈ A(Q̄) be a multiple
of ϕA(r) which has exact order p. Then the isogeny with kernel generated by P
is étale and defined over Q.

Proof. Let D be the greatest common divisor of the denominator of r and N .
Next, let d be the greatest common divisor of D and N

D . So by definition d is
only divisible by primes of additive reduction and hence it is coprime to p. By
the description of the Galois-action on cusps of X0(N) given in Theorem 1.3.1.
in [27],we see that the cusp r on X0(N), and hence its image in A(Q̄), are
defined over the cyclotomic field K = Q(ζd). The previous Lemma 5 proves
that the isogeny generated by P is defined over Q. Since the kernel acquires a
point over an extension which is unramified at p, it has to be étale.

Proof of Theorem 4. The lattice L̂f is the set of all values of integrating ωf =
2πif(τ)dτ as τ runs along a geodesic from one cusp r1 ∈ Q to another r2 ∈ Q

inside the upper half plane. So it is also the set of all
∫

γ ωf as γ varies in

H1

(

X0(N), {cusps},Z
)

. We are allowed to switch here from X1(N) to X0(N)
and to identify ωf on both of them as the pullback of ωf underX1(N)→ X0(N)
is again ωf because it is determined by the q-expansion of f .
The Manin constant c0 for the optimal curveE0 is an integer such that ϕ∗

0(ω0) =
c0 · ωf , where ϕ0 : X0(N) → E0 is the modular parametrisation of minimal
degree and ω0 is a Néron differential on E0. One can choose ϕ0 and ω0 in such
a way as to make c0 > 0. It is known that c0 is coprime to any odd prime for
which E has semi-stable reduction. For this and more on the Manin constant
we refer to [1]. From the description of optimality above, we can deduce that

c0 ·Lf = L0 and hence that c0 · L̂f ⊃ L0.
To start, we set A to be the optimal curve E0. We shall successively re-
place A by one of its quotients by an étale kernel until we reach E•. Pick
an odd semi-stable prime that divides the index iA of LA in c0 · L̂f . The
modular parametrisation ϕA : X0(N) → A factors through E0. The quotient
(

c0L̂f

)

/LA is generated by the images ϕA(r) ∈ A(C) ∼= C/LA of all cusps r in
X0(N). So we find a cusp r whose image in A(Q̄) has order divisible by p. We
can now apply Lemma 6, which gives us an étale isogeny A→ A′ such that the
index of LA′ in c0L̂f is now iA′ = iA/p. We replace now A by A′ and repeat
the procedure until the index iA is coprime to all odd semi-stable primes. By
the above mentioned property of c0, we now have LA ⊗ Zp = L̂f ⊗ Zp for all
odd semi-stable primes
By construction, A is now an étale quotient of E0. We consider the isogeny
E1 → E0 → A. The cyclic isogeny E1 → E0 has a constant kernel and hence
it is étale over Z[ 12 ], as explained in Remark 1.8 in [29]. If it is étale over Z,
we can set E• = A and we are done. Otherwise, there is an isogeny E0 → E′

0

whose degree is a power of 2 such that the cyclic isogeny from E1 to E′
0 is étale.

Since the degree of E0 → A is odd by construction, there is an isogeny A→ E•
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of the same degree as E0 → E′
0 such that E1 → E• is étale.

For any A in the isogeny class of E, we write Ω+
A for the smallest positive real

element of LA and Ω−

A for the smallest absolute value of a purely imaginary
element in LA. For any r ∈ Q, the modular symbols [r]± ∈ Q attached to A
are defined by

[r]+ =
1

Ω+
A

Re

(
∫ ∞

r

ωf

)

and [r]− =
1

Ω−

A

Im

(
∫ ∞

r

ωf

)

.

Then our theorem tells us that [r]± will have denominator coprime to any
odd semi-stable prime for the curve E•. In particular, it is obvious from the
construction (see [14]) of the p-adic L-function by modular symbols that it will
be an integral power series in Zp[[T ]] for ordinary primes p. However this also
follows from Proposition 3.7 in [9] and the fact that E1 → E• is étale.
A reformulation of the theorem is the following integrality statement.

Corollary 7. Let E be an elliptic curve over Q and p an odd prime for which
E has semi-stable reduction. Then there is a curve E• which is isogenous to E
over Q such that for all Dirichlet characters χ we have

G(χ) · L(E•, χ, 1)

Ω+
E•

∈ Zp[χ] if χ(−1) = 1 or

G(χ) · L(E•, χ, 1)

iΩ−

E•

∈ Zp[χ] if χ(−1) = −1

where Zp[χ] is the ring of integers in the extension of Qp generated by the values
of χ and G(χ) stands for the Gauss sum.

Proof. This follows from the formula of Birch, see formula (8.6) in [14]:

L(E,χ, 1) =
1

G(χ)

∑

a mod m

χ(a)

(
∫ ∞

a/m

ωf

)

where m is the conductor of χ.

2.1 The semi-stable case

Let E/Q be an elliptic curve with semi-stable reduction at all primes. Hence
N is square-free. So d in the proof of Lemma 6 is equal to 1 for all cusps and
hence they are all defined over Q. By Mazur’s Theorem [13], we may obtain

E• satisfying L̂f ⊗ Z[ 12 ] = L• ⊗ Z[ 12 ] by taking the quotient of E0 only by at
most a p-torsion point defined over Q for some p = 3, 5 or 7. In particular,
if E0(Q)[3 · 5 · 7] = {O}, then E• = E0. If instead, there is a rational torsion
point of odd order, then we might have to take the isogeny with kernel E0(Q)[p].
Nonetheless the curve labelled 66c1 in [5] shows that in some examples we can
have E• = E0 even when E0 has a rational 5-torsion point.
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2.2 Examples

We can present here a few examples; in all of them we know that c0 = 1.
Throughout, we use the notations from Cremona’s tables [5]. First, for the
class 11a and p = 5, we find that E1 =11a3, E0 =11a1, and E• =11a2 and the
étale isogenies E1 → E0 → E• are all of degree 5. To justify this, one has to
note that L(f, 1) = 1

5Ω
+
E0

and so [0]+ = 1
5 for E0. Hence the lattice L̂f has

index at least 5 in L0.

For the class 17a, the curve E0 =17a1 has Mordell-Weil group E(Q) = Z/4Z.
The optimal curve E1 corresponds to a sublattice of index 4 in L0 and it is the
minimal curve 17a4. It is easy to compute the modular symbols for f . Since
L(f, 1) = 1

4Ω
+
0 , we find that L̂f has index at least 4 in L0. In fact, L̂f is the

lattice 1
2L17a3. This shows that the above lemma is not valid for p = 2.

In the class 91b, we find that E0 and E1 are equal to 91b1, which has 3-torsion
points over Q. It turns out that E•, which is equal to 91b2, has a 3-torsion
point as well. So it is not true in general that E•(Q) has no p-torsion even
when it is different from E0.

Now to elliptic curves, which are not semi-stable. The class 98a is the twist of
14a by −7. This time the lattice L̂f is equal to the lattice of 98a5, which has
the same real period as E0, but the imaginary period is divided by 9. Both E0

and E• have only a 2-torsion point defined over Q. The two cyclic isogenies of
degree 3 acquire a rational point in the kernel only over Q(

√
−7).

For the curves 27a, which admit complex multiplication, we find that L̂f =
1
3L0. The same happens for 54a. However in both cases E does not have
semi-stable reduction at p = 3. This shows that the lemma and theorem can
not be extended to primes p with additive reduction.

3 Kato’s Euler system

Let E/Q be an elliptic curve and p an odd prime. Suppose E has semi-stable
reduction at p. Since we are mainly interested in the case when E[p] is reducible,
we may assume that the reduction at E is ordinary.

We now follow the notations and definitions in [10]. As before f is the newform
of weight 2 and level N associated to the isogeny class of E. Define the Qp-

vector space VQp
(f) as the largest quotient of H1

ét

(

Y1(N),Qp
)

on which the
Hecke operators act by multiplication with the coefficients of f . Further the
image of H1

ét

(

Y1(N),Zp
)

in VQp
(f) is a Gal

(

Q̄/Q
)

-stable lattice, denoted by
VZp

(f).

Proposition 8. We have an equality of Gal
(

Q̄/Q
)

-stable lattices VZp
(f)(1) =

TpE• inside VQp
(f)(1).

Proof. We consider first the version with coefficients in Z rather than in Zp as
in 6.3 of [10]. We define VQ(f) as the maximal quotient of H1

(

Y1(N)(C),Q
)

and VZ(f) as the image of H1
(

Y1(N)(C),Z
)

inside VQ(f). By Poincaré duality,
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we have
H1

(

Y1(N)(C),Z
) ∼= H1

(

X1(N)(C), {cusps},Z
)

as in 4.7 in [10]. Now let ϕ1 : X1(N) → E1 be the optimal modular
parametrisation. The optimality implies that ϕ1 induces a surjective map from
H1

(

X1(C),Z
)

to H1

(

E1(C),Z
)

. Hence we may identify VQ(f) via ϕ1 with

H1

(

E1(C),Q
)

. Under this identification, the lattice VZ(f) is mapped to the

image of the relative homology H1

(

X1(N)(C), {cusps},Z). It contains the lat-

tice H1

(

E1(C),Z
)

. Through the map integrating against the Néron differential

ω1 of E1, the lattice VZ(f) is brought to c1L̂f containing L1 where c1 is the
Manin constant of ϕ1, i.e. the integer such that ϕ∗

1(ω1) = c1ωf . Since c1 is a
p-adic unit by Proposition 3.3 in [9], our Theorem 4 shows that

VZ(f)⊗Zp = H1

(

E•(C),Z
)

⊗Zp inside VQ(f)⊗Qp = H1

(

E1(C),Q
)

⊗Qp.

Following 8.3 in [10], we can identify VZp
(f) with VZ(f) ⊗ Zp through the

comparison of Betti and étale cohomology. We identify again VQp
(f) with

H1
ét

(

E1,Qp
)

through ϕ1 and we obtain that

VZp
(f) = H1

ét

(

E•,Zp
) ∼= TpE•(−1) containing H1

ét

(

E1,Zp
) ∼= TpE1(−1)

at least as Zp-lattices inside VQp
(f). But the Galois action is the same on both

VZp
(f) and Tp(E•)(−1).

From now on we will denote this lattice in our Galois representation simply
by T = VZp

(f)(1) = TpE•. Kato constructs in 8.1 in [10] two sets of p-adic
zeta-elements in the Galois cohomology of T . First, let a and A > 1 be two
integers. Then there is an element

c,dzm(
a
A ) = c,dz

(p)
m

(

f, 1, 1, a(A), primes(pA)
)

∈ H1
ét

(

Z[ 1p , ζm], T
)

for all integers m > 1 and integers c, d coprime to 6pA. They are linked to the
modular symbol obtained from the path from a

A to ∞ in the upper half plane.
Also, ζm is a primitive m-th root of unity.
Secondly, for any α ∈ SL2(Z), there are elements

c,dzm(α) = c,dz
(p)
m

(

f, 1, 1, α, primes(pN)
)

∈ H1
ét

(

Z[ 1p , ζm], T
)

for any integer m > 1 and integers c ≡ d ≡ 1 (mod N) coprime to 6pN . They
are linked to the image under α of the path from 0 to ∞ in the upper half
plane.
The advantage of these integral elements (with respect to our lattice T ) is that
they form an Euler system (13.3 in [10]). Namely by fixing α, c and d as above,
the elements

(

c,dzm(α)
)

m
form an Euler system.

Out of the above elements for m being a power of p, Kato builds the zeta-
elements that are linked to the p-adic L-functions. We denote by

Λ = Zp

[[

Gal
(

Q(ζp∞)/Q
)

]]

= lim←−
n

Zp

[

Gal
(

Q(ζpn)/Q
)

]
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the Iwasawa algebra of the cyclotomic Z×
p -extension of Q. Then we have the

following finitely generated Λ-module

H
1(T ) := lim←−

n

H1
ét

(

Z[ζpn ,
1
p ], T

)

= lim←−
n

H1
(

GΣ(Q(ζpn)), T
)

,

where Σ is any set of primes containing the infinite places and those dividing
pN and GΣ(K) is the Galois group of the maximal extension of K which is
unramified outside Σ. See Section 3.4.1 in [17] for the independence on Σ. For
each γ ∈ T , there is a

zγ = z(p)γ ∈ H
1(T )⊗Qp = lim←−

n

H1
ét

(

Z[ 1p , ζpn ], T
)

⊗Qp .

In fact, they are defined in 13.9 in [10] as elements in the larger H
1(T ) ⊗Λ

Frac(Λ) as they are quotients of elements of the form c,dzm(α) by certain ele-
ments µ(c, d) in Λ. However Kato shows in 13.12 that they belong to the much
smaller H1(T )⊗ Qp by comparing them with elements of the form c,dzpn(

a
A).

See also appendix A in [6] for more information about the division by µ(c, d).

3.1 Criteria for the Iwasawa cohomology to be free over the

Iwasawa algebra

The Λ-module H1(T ) is torsion-free of rank 1 as shown in Theorem 12.4 in [10].
If E[p] is irreducible, then Theorem 12.4.(3) shows that H1(T ) is free. In this
section we gather further cases in which we can prove that H

1(T ) is free or
otherwise determine how far we are off from being free. When it is free one
deduces that zγ integral for all γ ∈ T . We will later turn back to this question
in Section 3.3

Lemma 9. Let p be an odd prime of semi-stable reduction. If the X0-optimal
curve E0 has no rational p-torsion point, but the degree of the cyclic isogeny
from E0 to E• is divisible by p, then H

1(T ) is free of rank 1 over Λ.

This lemma is essentially about curves that are not semi-stable. It applies to
all twists of a semi-stable curve by a square-free D 6= ±p. This follows from the
fact that for semi-stable curves a result by Serre [24, Proposition 1] and [22,
Proposition 21] shows that E[p] is an extension of Z/pZ by µ[p] or an extension
of µ[p] by Z/pZ.
Conversely, if E0 has a point of order p > 2 defined over Q, then it has semi-
stable reduction at all places, except for p = 3 when we could have fibres of
type IV or IV∗.

Proof. We claim that under our hypothesis, the Mordell-Weil group E•

(

Q(ζp)
)

contains no p-torsion points. Let φ : A → A′ be a cyclic isogeny of degree p
in the isogeny E0 → E• and assume by induction that A has no torsion point
defined over Q. From the proof of Theorem 4, we know that A[φ] acquires
rational points over Q(ζd) with d | N as in the proof of Lemma 6. In particular
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p does not divide d and so A[φ] will not contain a rational point defined over

Q(ζp); neither will A′[φ̂] as it is its Cartier dual. This means that the semi-
simplification of A[p] is the sum of two distinct characters with conductor
divisible by a prime different from p. Hence A and A′ both have no p-torsion
point defined over Q(ζp).
One way to prove the lemma is by adapting Kato’s argument at the end of
13.8. The argument works as long as the twisted Fp(r) does not appear in E[p]
as a Galois sub-module. Instead we give a second proof here.
Let Γ = Gal

(

Q(ζp∞)/Q(ζp)
)

. Using the Tate spectral sequence [15, Theorem

2.1.11] we see that H1(T )Γ injects into H1
(

GΣ(Q(ζp)), T
)

via the corestriction
map. Now the torsion subgroup of the latter is equal to the torsion subgroup of
lim←−E

(

Q(ζp)
)

/pn, which is trivial if E
(

Q(ζp)
)

has no p-torsion. Hence H
1(T )Γ

is a free Zp-module.
Choose an injection ι : H1(T )→ Λ with finite cokernel F . We deduce an exact
sequence

0 //FΓ //H1(T )Γ //ΛΓ
//FΓ

//0

Since H
1(T )Γ is torsion-free, we obtain that FΓ = 0. Since F is finite, FΓ is of

the same size. But by Nakayama’s Lemma FΓ = 0 implies that F = 0. Hence
H

1(T ) is Λ-free.

We refine our analysis of H1(T ) now a bit for the remaining cases. Any Λ-
module M comes equipped with an action by the group ∆ = Gal

(

Q(ζp)/Q
)

and we split M up into the eigenspaces M =
⊕p−2

i=0 Mi where ∆ acts on Mi =
M(−i)∆ by the i-th power of the Teichmüller character. Now Mi is a Λ(Γ) =
Zp[[Γ]]-module.

Lemma 10. Let φ : E → E′ be an isogeny whose kernel has a point of order p
defined over Q. Then H

1(TpE)i and H
1(TpE

′)i are free of rank 1 over Λ(Γ)
for all 1 < i 6 p − 2. Furthermore H

1(TpE)1 and H
1(TpE

′)0 are also free of
rank 1. The remaining H

1(TpE)0 and H
1(TpE

′)1 are either free of rank 1 or
there is an injection into Λ(Γ) with image equal to the maximal ideal.

Proof. We have two short exact sequence

0 // TpE
φ // TpE′ // Z/pZ // 0

0 µpoo TpEoo TpE
′

φ̂

oo 0oo

which induces two exact sequences

0 // H1(TpE)
φ // H1(TpE

′) // H1
(

Z/pZ
)

H
1(µp) H

1(TpE)oo H
1(TpE

′)
φ̂

oo 0.oo

(*)
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Here the last terms are the projective limits as n tends to infinity of the
groupsH1

(

GΣ(Q(ζpn)),Z/pZ
)

and ofH1
(

GΣ(Q(ζpn)), µ[p]
)

respectively. Since
p = 3, 5 or 7, the class group of Q(ζpn) has no p-torsion and hence
H1(GΣ(Q(ζpn)), µ[p]) is the quotient of the global Σ-units by its p-th powers.
Lemma 4.3.4 and Proposition 4.5.3 in [4] show that H1(µ[p]) = Fp(1) ⊕ Λ+/p
as a Λ = Zp[∆][[Γ]]-module, where Λ+ the part of Λ fixed by complex conju-
gation. Also we have H

1(Z/pZ) = H
1(µ[p])(−1) = Fp ⊕ Λ−/p. Because the

composition of φ and φ̂ is the multiplication by p, the cokernels of the end
maps of the two exact sequences (*) above have to be finite because H

1(TpE)
and H

1(TpE
′) are known to be torsion-free Λ-modules of rank 1.

If i is not 0 or 1, then the argument in the proof of Lemma 9 applies to show
that H

1(TpE)i and H
1(TpE

′)i are both free since the p-torsion subgroup of
E
(

Q(ζp)
)

and E′
(

Q(ζp)
)

have trivial i-th eigenspace under the action of ∆.
Let now i = 0 and set A = H

1(TpE)0 and B = H
1(TpE

′)0. In the case i = 1,
we would just swap the roles of A and B. The exact sequences (*) show that

φ : A→ B has finite cokernel of size at most p and that φ̂ : B → A has cokernel
in Λ(Γ)/p ∼= Fp[[Γ]]. Choose an injection ι : B → Λ(Γ) with finite cokernel F .
We now view B via ι and A via φ ◦ ι as ideals in Λ(Γ) of finite index. The map

φ̂ : B → A becomes the multiplication by p.
Let I be the kernel of the map Λ(Γ)→ Zp sending all elements of Γ to 1. Then
we obtain the exact sequence

0 //FΓ //A/IA //Λ/I //F/IF //0.

Again if A/IA = AΓ is Zp-free, then A is Λ(Γ)-free and since A→ B has finite
cokernel, then B has to be free, too. Assume therefore that A/IA is not free.
We know that A/IA injects into H1

(

GΣ(Q), TpE
)

whose torsion part is the
p-primary part of E(Q). Hence it is at most of order p. We conclude that FΓ

and FΓ are both of order p under our assumption. Hence A/IA ∼= Z/pZ ⊕ Zp
and we can take p+ IA to be the generator of the free part. Let a ∈ A be such
that a + IA is a generator of the torsion part. It must lie in I but not in IA.
By Nakayama’s Lemma p and a generate the ideal A. Consider now the exact
sequence

0 //pΛ(Γ)/pB //A/pB //A/pΛ(Γ) //0

where the middle term is a finite index sub-Λ(Γ)-module of Λ(Γ)/p. But a such
does not have any finite non-zero sub-modules. Hence pΛ(Γ) = pB shows that
B is Λ(Γ)-free of rank 1. Since the smaller ideal A has index p it has no choice
but to be the maximal ideal of Λ(Γ).

Here is an example for which H
1(TpE)0 is not free. The semi-stable isogeny

class 11a contains three curves

E1 = 11a3
φ //E0 = 11a1

ψ //E• = 11a2

where the direction of the arrow is the isogeny with kernel Z/pZ with p = 5.
While E1 and E0 have rational 5-torsion points, the Mordell-Weil group of E•
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over Q is trivial. Hence by the proof of Lemma 9, we see that H
1(TpE•)0 is

Λ(Γ)-free. This lemma does not apply to E0, however Lemma 10 does and
shows that H1(TpE0)0 is also Λ(Γ)-free. We will now show that H1(TpE1)0 is
not free.
For this we continue the first exact sequence in (*) as follows

H
1(TpE1)0

φ //H1(TpE0)0 //Fp //H2(TpE1)0
φ2 //H2(TpE0)0

where H2(·) stands for the projective limit of H2
(

GΣ(Q(ζpn)), ·). Our aim is to

show that φ2 is injective. Let Zv,i be the projective limit ofH2
(

Qv(ζpn), TpEi
)

0
as n→∞ and consider the localisation maps

0 // Y1 //

��

H
2(TpE1)0 //

φ2

��

⊕

v∈Σ Zv,1 //

��
0 // Y0 // H2(TpE0)0 //

⊕

v∈Σ Zv,0
//

By global duality the kernels Y1 and Y0 are fine Selmer groups which we will
properly define in Section 4; for our purpose here it is sufficient to say that
they are both trivial in our example. To show that φ2 is injective it is sufficient
to show that φ : Zv,1 → Zv,0 is injective for all v ∈ Σ = {5, 11}. Local duality
shows that Zv,i is dual to the p-primary part of the group of points of Ei over
Qv(ζp∞)∆. Hence we want to show that for all v ∈ {5, 11} the map

φ̂ : E0

(

Qv(ζp∞)∆
)

[p∞]→ E1

(

Qv(ζp∞)∆
)

[p∞]

is surjective. First for v = 11 where both curves have split multiplicative
reduction; however the Tamagawa number for E0 is 5 while it is 1 for E1. We
conclude that the p-primary part of E

(

Q11(ζ5∞)
)

is isomorphic to Qp/Zp for

E = E0 and it is equal to Qp/Zp⊕Z/pZ for E = E1. The map φ̂ is easily seen
to be surjective by looking at the 5-torsion points over Q11.
Next for v = 5, where the reduction is good ordinary. Here the p-primary parts
of both groups of local points are equal to Z/5Z. This follows from the fact that
the formal group of these curves have torsion group isomorphic to µp∞ which
has no ∆-fixed points and from the existence of the rational 5-torsion points
over Q5.
This ends the proof that H1(TpE1)0 is not free but equal to the maximal ideal
as shown in Lemma 10. Note that the same argument won’t work for ψ, because
ψ̂ is not surjective locally on the p-primary part neither at v = 5 nor at v = 11.

3.2 Link to the p-adic L-function

For any extension K/Qp, we write H1
f (K,T ) for the Bloch-Kato group of local

conditions. The quotient groupH1
s (K,T ) = H1(K,T )/H1

f (K,T ) is in fact dual
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to E•(K) ⊗ Qp/Zp by local Tate duality. We set H
1
s(T ) to be the projective

limit of H1
s

(

Qp(ζpn), T
)

, which is a Λ-module of rank 1.
Perrin-Riou has constructed a Coleman map Col : H1

s(T ) → Λ. Proposition
17.11 in [10] shows that the Coleman map Col : H1

s(T ) → Λ is injective and
has finite cokernel if the reduction of E at p is good. The same proof also
applies when the reduction is non-split multiplicative. Instead in the case when
E has split multiplicative reduction, then Theorem 4.1 in [11] proves that the
Coleman map Col: H1

s(T ) → Λ is injective and has image with finite index
inside I = ker

(

1 : Λ → Zp
)

where the map 1 sends all elements of the Galois

group Gal
(

Q(ζp∞)/Q
)

to 1. Extend Col to an injective map Col : H1
s(T )⊗Qp →

Λ⊗Qp.
Choose γ ∈ T such that γ = γ+ + γ− with γ± being Zp-generators of the
subspaces T± on which the complex conjugation acts by ±1. We now apply
Theorem 16.6 in [10] with this “good choice” of γ and with the “good choice”
of the Néron differential ω = ωE•

in the terminology of 17.5. Consider the zeta
element z = zγ ∈ H

1(T )⊗Qp. The theorem yields

Col
(

loc(z)
)

= Lp(E•) ∈ Λ,

where loc : H1(T ) ⊗ Qp → H
1
s(T ) ⊗ Qp is the localisation followed by the

quotient map.
Let ZT = Z(f, T ) be the Λ-module generated by zγ in H

1(T )⊗ Qp and let Z
be the Λ-submodule of H1(T ) generated by all

(

c,dzpn(α)
)

n
and

(

c,dzpn(
a
A )

)

n
where c, d, a, A and α run over all permitted choices in the construction of
these integral elements. Then Theorem 12.6 in [10] states that Z is contained
in ZT with finite index. Here it is crucial that we work with exactly the lattice
T = VZp

(f)(1). Kato allows himself the flexibility of twists by the cyclotomic
character and works with VZp

(f)(r); we only need r = 1 here.
Since H

1(T ) is Λ-torsion-free, there is an injective Λ-morphism ι : H1(T )→ Λ
with finite cokernel. The linear extension ιQ : H

1(T )⊗Qp → Λ⊗Qp sends ZT
to a sub-Λ-module J . This J contains the integral ideal ι(Z) ⊂ Λ with finite
index. Hence J itself is an integral ideal in Λ. Write λ = ιQ(z) ∈ J .
Lemma 11. For any k > 0 such that pkZT ⊂ Z, the index of pkz in H

1(T ),
defined as

I = indΛ(p
k
z) =

{

ψ
(

pkz
)

∣

∣

∣
ψ ∈ HomΛ(H

1(T ),Λ)
}

,

satisfies Ip = λΛp for all height one prime ideals p of Λ that do not contain p.

Proof. Let p 6∋ p be prime ideal of Λ of height 1. Because ι has finite cokernel,
we have H

1(T )p = Λp via ι. Hence

Ip =
{

ψ
(

pkz
)

∣

∣

∣
ψ ∈ HomΛp

(H1(T )p,Λp)
}

=
{

ψ̃
(

ι(pkz)
)

∣

∣

∣
ψ̃ ∈ HomΛp

(Λp,Λp)
}

= ι(pkz)Λp = pkλΛp = λΛp.
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because p does not belong to p.

3.3 Integrality of zγ

Recall first how Kato deduces the integrality of his second set of zeta-elements
in the case E[p] is irreducible.

Lemma 12. If H1(T ) is free over Λ then zγ ∈ H
1(T ) for all γ ∈ T .

Proof. This is 13.14 in [10]: For every prime ideal p of height 1 in Λ, we have
(ZT )p ⊂ H

1(T )p since Z has finite index in ZT . Hence ZT ⊂ H
1(T ).

We will concentrate here on one case that interests us most. Let z0 be the core-
striction of z from H

1(T ) to H
1(T )0, which is the limit lim←−nH

1
(

GΣ(Kn), T
)

as Kn increases in the cyclotomic Zp-extension of Q.

Theorem 13. Let E/Q be an elliptic curve and p an odd prime at which E
has good reduction. Then z0 belongs to H

1(T )0.

In other words z0 is integral with respect to the Tate module of E•.

Proof. First, we may apply the idea of the proof in Lemma 9, to conclude
that H = H

1(T )0 is free over Λ(Γ) if E•(Q) has no p-torsion point. If so the
previous lemma shows that z0 lies in H.
Assume now that E• admits a rational p-torsion point. Let φ : E• → E′ be
the isogeny whose kernel contains the rational p-torsion points. We apply
Lemma 10 to see that either H is free or it injects into Λ(Γ) with index p. As
the former case is done with the previous lemma, we assume that we are in the
latter. We know already that the Coleman map Col0 : H → Λ(Γ) is injective
with finite cokernel. Now, since H is isomorphic to the maximal ideal, the
image of Col0 has to be equal to the maximal ideal of Λ(Γ). Therefore if z0 is
not integral, the image Col0

(

loc(z0)
)

= Lp(E•)0 ∈ Λ0 = Λ(Γ) must be a unit.
However the interpolation property of the p-adic L-function tells us that

1

(

Lp(E•)0
)

=
(

1− α−1
)2 · [0]+E•

where α is the unit root of the characteristic polynomial of Frobenius and the
map 1 : Λ(Γ)→ Zp sends all elements of Γ to 1. Since we have a p-torsion point
on the reduction of E• to Fp, the valuation of 1−α−1 is 1. By construction of E•

the modular symbol [0]+E•

is a p-adic integer. Therefore the p-adic L-function
cannot be a unit. Hence z0 is integral.

4 The fine Selmer group

Let E be an elliptic curve with a p-isogeny for an odd prime p. In this section,
we do not need any condition on the type of reduction at p. We define the fine2

2This group is sometimes called the “strict” or “restricted” Selmer group.
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Selmer group R
(

E/Q(ζpn)
)

as the kernel of the localisation map

H1
(

GΣ

(

Q(ζpn)
)

, E[p∞]
)

//
⊕

v∈Σ

H1
(

Qv(ζpn), E[p∞]
)

where the sum runs over all places v in Q(ζpn) above those in Σ. It is indepen-
dent of the choice of the finite set Σ as long as it contains p and all the places
of bad reduction. By global duality it is dual to the kernel

H2
(

GΣ

(

Q(ζpn)
)

, TpE
)

// ⊕
v∈ΣH

2
(

Qv(ζpn), TpE
)

.

The Pontryagin dual of the direct limit of the groups R(E/Q(ζpn)) will be
denoted by Y (E); it is a finitely generated Λ-module. Theorem 13.4.1 in [10]
proves that Y (E) is Λ-torsion.

Lemma 14. Let E be an elliptic curve and p an odd prime such that E admits
an isogeny of degree p defined over Q. Then the fine Selmer group Y (E) is a
finitely generated Zp-module.

Proof. Let φ : E → E′ be an isogeny with cyclic kernel E[φ] of order p defined
over Q. The extension F of Q fixed by the kernel of ρφ : GΣ

(

Q
)

→ Aut
(

E[φ]
)

is a cyclic extension of degree dividing p − 1. Let G be the Galois group
of K = F (ζp) over Q(ζp). Over the abelian field K, the curve admits a p-
torsion point. We can therefore apply Corollary 3.6 in [3] (a consequence
of the Theorem of Ferrero-Washington) to the dual Y (E/K∞) of the Selmer
group over the cyclotomic Zp-extension K∞ = K(ζp∞) of K. This proves
that Y (E/K∞) is a finitely generated Zp-module. Then we have the following
diagram

0 // ̂Y (E/K∞)
∆ // H1

(

GΣ(K∞), E[p∞]
)∆

0 // Ŷ (E) //

OO

H1
(

GΣ(Q(ζp∞)), E[p∞]
)

OO

H1
(

G,E(K∞)[p∞]
)

OO

and since the group G is of order prime to p, the kernel on the right is trivial.
We deduce that the left hand side is injective, too, and hence that the dual
map Y (E/K∞) → Y (E) is surjective. Therefore Y (E) is a finitely generated
Zp-module.

For any torsion Λ-module M , we define the characteristic series charΛ(M) as
the product of the ideals plp where lp = lengthΛp

(Mp) as p runs through all
primes of height 1 in Λ.
Recall that we have defined λ = ιQ(z) as an element in J ⊂ Λ just before
Lemma 11.
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Proposition 15. Suppose E does not have additive reduction at p. Then the
characteristic series charΛ

(

Y (E)
)

divides λΛ.

Proof. We will first prove this proposition in the case E is the curve E• in
Theorem 4. With a sufficiently large choice of k, the element pk ·z ∈ Z∩H1(T )
extends to an Euler system for T as in [21]. Since the representation ρp is not
surjective, the Euler system argument gives us only a divisibility of the form

charΛ
(

Y (E)
)

divides J · indΛ
(

pkz)

for some ideal J of Λ which is a product of primes containing p, see Theorem
2.3.4 in [21] or Theorem 13.4 in [10]. By Lemma 11, we know that indΛ

(

pkz
)

=
J ′λΛ for some ideal J ′ which is a product of primes containing p. The previous
lemma shows that charΛ(Y (E)) is not divisible by any prime ideal containing
p, so the proposition follows for E•.
Now an isogeny E → E• can only change the µ-invariants of the dual of the
fine Selmer groups, i.e. only by ideals containing p, but the previous lemma
shows that they are zero for all curves in the isogeny class.

5 The first divisibility in the main conjecture

Let E be an elliptic curve defined Q such that E[p] is reducible for some odd
prime of semi-stable reduction. Recall that this implies that the reduction of
E at p can not be good supersingular. The Selmer group E over Q(ζpn) is
defined as usual as the elements in H1

(

GΣ(Q(ζpn)), E[p∞]
)

that are locally in
the image of the points. It fits into the exact sequence

0 //R
(

E/Q(ζpn)
)

// Sel
(

E/Q(ζpn)
)

//H1
(

Qp(ζpn), E[p∞]
)

.

We denote the dual of the limit of the Selmer group by X(E); it is a finitely
generated Λ-module. If the reduction is good ordinary, Theorem 17.4 in [10]
shows that X(E) is Λ-torsion. The same conclusion holds in general in our
situation; see [11] for the split multiplicative case.

Theorem 16. Let E/Q be an elliptic curve and let p > 2 be a prime. Suppose
that E has semi-stable reduction at p and that E[p] is reducible as a GQ-module.
Then charΛ

(

X(E)
)

divides the ideal generated by Lp(E). If the reduction of

E is split multiplicative at p, then I · charΛ
(

X(E)
)

divides the ideal generated
by Lp(E), where I is the kernel of the homomorphism Λ → Zp that sends all
elements of Gal

(

Q(ζp∞)/Q
)

to 1.

The main conjecture asserts that the element Lp(E) generates the characteristic
ideal charΛ

(

X(E)
)

.

Lemma 17. To prove Theorem 16 for E, it is sufficient to prove it for any one
curve in the isogeny class of E.
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Proof. The fact that Theorem 16 is invariant under isogenies follows from the
formula for the change of the µ-invariant under isogenies for the characteristic
series by Perrin-Riou [16, Appendice] when compared to the change of the
p-adic L-function. See in particular her Lemme on page 455.

Proof of Theorem 16. By the previous Lemma 17, we may choose E to be the
curve E• in the isogeny class. Recall from Section 3.2 that the Coleman map
Col : H1

s(T ) → Λ is injective and has image with finite index inside I in the
multiplicative case and it has a finite cokernel in the other cases. In what
follows we treat only the case when the reduction is not split multiplicative;
otherwise one has to multiply with I where appropriate.
Rohrlich [20] has shown that Lp(E) is non-zero and hence loc(z) is not torsion.
Choose a k such that pkZT ⊂ Z. Then the Λ-torsion module H1

s(T )/p
k loc(z)Λ,

which is equal to Col
(

H
1
s(T )

)

/pkLp(E) Λ, has characteristic series pkLp(E)Λ.
The characteristic series of H1(T )/pkzΛ is equal to the characteristic series
of Λ/ι(pkz)Λ and therefore equal to pkλΛ, where ιH1(T ) → Λ is an injective
Λ-morphism with finite cokernel.

By global duality (see Proposition 1.3.2 in [18]), we have the following exact
sequence

0 // H1(T ) // H1
s(T )

// X(E) // Y (E) // 0.

It induces an exact sequence of torsion Λ-modules

0 // H1(T )
pkzΛ

// H1

s(T )
pkzΛ

// X(E) // Y (E) // 0.

Using Proposition 15, we conclude that

charΛ
(

X(E)
)

= charΛ
(

Y (E)
)

·
(

pkLp(E)Λ
)

·
(

pkλΛ
)−1

divides λ · pkLp(E) · p−kλ−1Λ = Lp(E)Λ.

6 Consequences

Corollary 18. The analytic p-adic L-function Lp(E) belongs to Λ for all
elliptic curves E/Q with semi-stable ordinary reduction at p > 2.

The conclusion can certainly not be extended to the supersingular case since
the p-adic L-functions in this case will never be integral. The supersingular
case is well explained in [19] where it is shown how one can extract integral
power series.

Corollary 19. If E/Q is a semi-stable elliptic curve and p an odd prime
where E has ordinary reduction, then charΛ

(

X(E)
)

, or I charΛ
(

X(E)
)

in the
split multiplicative case, divides the ideal generated by Lp(E).

Documenta Mathematica 19 (2014) 381–402



Integrality of Modular Symbols 399

Proof. By a Theorem of Serre ([24, Proposition 1] and [22, Proposition 21]),
we know that the image of the representation ρ̄p : GQ → Aut(E[p]) is either
the whole of GL2(Fp) or it is contained in a Borel subgroup. In the latter
case the representation ρ̄p is reducible and in the first case the representation
ρp : GQ → Aut(TpE) is surjective by another result of Serre [23, Lemme 15]
unless p = 3. Finally for p = 3 we use the following lemma to exclude that ρp
is not surjective.

Unfortunately, the hypothesis in Corollary 19 that E is semi-stable can not be
dropped. For instance, there are curves E/Q such that ρ̄p has its image in the
normaliser of a non-split Cartan subgroup.

Lemma 20. Let p = 3 and suppose p2 does not divide the conductor N . If the
residual representation ρ̄ : Gal(Q̄/Q) → GL2(Fp) is surjective then the p-adic
representation ρ : Gal(Q̄/Q)→ GL2(Zp) is surjective, too.

Proof. We make use of the explicit parametrisation of all these exotic cases by
Elkies in [8]. Let E/Q be an elliptic curve such that ρ is not surjective, but ρ̄
is. Then its j-invariant satisfies

j(E) = 1728− 27A(n : m)2 B(n : m)2 C(n : m)

D(n : m)9
with

A(n : m) = n6 + 6n5m+ 4n3m3 + 12n2m4 − 18nm5 − 23m6,

B(n : m) = 7n6 + 24n5m+ 18n4m2 − 26n3m3 − 33n2m4 + 18nm5 + 28m6,

C(n : m) = 2n3 − 3n2m+ 4m3,

D(n : m) = n3 − 3nm3 −m3.

for two coprime integers n and m. Note first that the denominator D(n : m)
in j(E) is never divisible by 9, so j(E) is a 3-adic integer.
With a bit more work one can see that j(E) ≡ 2 · 33 (mod 34): If n 6≡ m
(mod 3), then A(n : m) ≡ (n−m)6 ≡ B(n : m) (mod 3), C(n : m) ≡ 2(n−m)3

and D(n : m) ≡ (n −m)3 (mod 3) gives the result. For n = m + 3k, we can
use A(n : m) ≡ B(n : m) ≡ 32 (mod 33), C(n : m) ≡ 3 (mod 32), and
D(n : m) ≡ 2 · 3 (mod 32) to conclude.
Now suppose E is given by a Weierstrass equation minimal at 3. We may
assume that it is of the form y2 = x3 + a2x

2 + a4x+ a6 with a2 ∈ {−1, 0,+1}
and a4, a6 ∈ Z. If a2 = ±1, then

j(E) = 16
−27a34 + 27a24 − 9a4 + 1

∆

where ∆ is the discriminant. However this is a contradiction with j(E) ∈ 33Z3.
Hence a2 = 0 and so

j(E) = 33 · 26 · a34
a34 + 27a26/4
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and we see that it is impossible that j(E) ≡ 2 · 33 (mod 34) unless 3 divides
a4 and the discriminant ∆ = 4a34 + 27a26. Therefore E has bad reduction at 3.
The fact that j(E) is a 3-adic integer shows that the reduction is additive.

Finally, here is the usual application to the Birch and Swinnerton-Dyer conjec-
ture.

Proposition 21. Let E be an elliptic curve over Q such that L(E, 1) 6= 0.
Let cv be the Tamagawa number of E at each finite place v and the number of
components in E(R) for v =∞. Then

#X(E/Q) divides C · L(E, 1)
Ω+
E

·
(

#E(Q)
)2

∏

v cv

where C is a rational number only divisible by 2, primes of additive reduction
or primes for which the Galois representation on E[p] is neither surjective nor
contained in a Borel subgroup.

In particular, for semi-stable curve C is a power of 2. The methods in [26] can
now be extended to the reducible case, too.
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