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1. Introduction

Let Λ be a finite-dimensional associative algebra. Fundamental objects of study
in the representation theory of Λ are the projective modules, the simple mod-
ules and the category of all (finite-dimensional) Λ-modules. Various structural
concepts have been introduced that include one of these classes of objects as
particular instances. In this article, four such concepts are related by explicit
bijections. Moreover, these bijections are shown to commute with the basic
operation of mutation and to preserve partial orders.
These four concepts may be based on two different general points of view, ei-
ther considering particular generators of categories ((1) and (2)) or considering
structures on categories that identify particular subcategories ((3) and (4)):

(1) Focussing on objects that generate categories, the theory of Morita
equivalences has been extended to tilting or derived equivalences. In
this way, projective generators are examples of tilting modules, which
have been generalised further to silting objects (which are allowed to
have negative self-extensions).

(2) Another, and different, natural choice of ‘generators’ of a module cate-
gory is the set of simple modules (up to isomorphism). In the context
of derived or stable equivalences, this set is included in the concept of
simple-minded system or simple-minded collection.

(3) Starting with a triangulated category and looking for particular sub-
categories, t-structures have been defined so as to provide abelian cate-
gories as their hearts. The finite-dimensional Λ-modules form the heart
of some t-structure in the bounded derived category Db(modΛ).

(4) Choosing as triangulated category the homotopy category Kb(projΛ),
one considers co-t-structures. The additive category projΛ occurs as
the co-heart of some co-t-structure in Kb(projΛ).

The first main result of this article is:

Theorem (6.1). Let Λ be a finite-dimensional algebra over a field K. There
are one-to-one correspondences between

(1) equivalence classes of silting objects in Kb(projΛ),
(2) equivalence classes of simple-minded collections in Db(modΛ),
(3) bounded t-structures of Db(modΛ) with length heart,
(4) bounded co-t-structures of Kb(projΛ).

Here two sets of objects in a category are equivalent if they additively generate
the same subcategory.

A common feature of all four concepts it that they allow for comparisons,
often by equivalences. In particular, each of the four structures to be related
comes with a basic operation, called mutation, which produces a new such
structure from a given one. Moreover, on each of the four structures there is a
partial order. All the bijections in Theorem 6.1 enjoy the following naturality
properties:
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Theorem (7.12). Each of the bijections between the four structures (1), (2),
(3) and (4) commutes with the respective operation of mutation.

Theorem (7.13). Each of the bijections between the four structures (1), (2),
(3) and (4) preserves the respective partial orders.

The four concepts are crucial in representation theory, geometry and topology.
They are also closely related to fundamental concepts in cluster theory such as
clusters ([20]), c-matrices and g-matrices ([21, 40]) and cluster-tilting objects
([7]). We refer to the survey paper [16] for more details. A concrete example
to be given at the end of the article demonstrates one practical use of these
bijections and their properties.
Finally we give some remarks on the literature. For path algebras of Dynkin
quivers, Keller and Vossieck [33] have already given a bijection between
bounded t-structures and silting objects. The bijection between silting ob-
jects and t-structures with length heart has been established by Keller and
Nicolás [32] for homologically smooth non-positive dg algebras, by Assem,
Souto Salorio and Trepode [5] and by Vitória [46], who are focussing on piece-
wise hereditary algebras. An unbounded version of this bijection has been
studied by Aihara and Iyama [1]. The bijection between simple-minded collec-
tions and bounded t-structures has been established implicitely in Al-Nofayee’s
work [3] and explicitely for homologically smooth non-positive dg algebras in
Keller and Nicolás’ work [32] and for finite-dimensional algebras in our preprint
[37], which has been partly incorporated into the present article, and partially
in the work [44] of Rickard and Rouquier. For hereditary algebras, Buan, Reiten
and Thomas [17] studied the bijections between silting objects, simple-minded
collections (=Hom≤0-configurations in their setting) and bounded t-structures.
The correspondence between silting objects and co-t-structures appears implic-
itly on various levels of generality in the work of Aihara and Iyama [1] and of
Bondarko [12] and explicitly in full generality in the work of Mendoza, Sáenz,
Santiago and Souto Salorio [39] and of Keller and Nicolás [31]. For homologi-
cally smooth non-positive dg algebras, all the bijections are due to Keller and
Nicolás [31]. The intersection of our results with those of Keller and Nicolás is
the case of finite-dimensional algebras of finite global dimension.

Acknowledgement. The authors would like to thank Paul Balmer, Mark Blume,
Martin Kalck, Henning Krause, Qunhua Liu, Yuya Mizuno, David Pauksztello,
Pierre-Guy Plamondon, David Ploog, Jorge Vitória and Jie Xiao for inspiring
discussions and helpful remarks. The second-named author gratefully acknowl-
edges financial support from Max-Planck-Institut für Mathematik in Bonn and
from DFG program SPP 1388 (YA297/1-1). He is deeply grateful to Bernhard
Keller for valuable conversations on derived categories of dg algebras.

2. Notations and preliminaries

2.1. Notations. Throughout, K will be a field. All algebras, modules, vector
spaces and categories are over the base field K, and D = HomK(?,K) denotes
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the K-dual. By abuse of notation, we will denote by Σ the suspension functors
of all the triangulated categories.
For a category C, we denote by HomC(X,Y ) the morphism space from X to
Y , where X and Y are two objects of C. We will omit the subscript and write
Hom(X,Y ) when it does not cause confusion. For S a set of objects or a
subcategory of C, call

⊥S = {X ∈ C | Hom(X,S) = 0 for all S ∈ S}
and

S⊥ = {X ∈ C | Hom(S,X) = 0 for all S ∈ S}
the left and right perpendicular category of S, respectively.
Let C be an additive category and S a set of objects or a subcategory of
C. Let Add(S) and add(S), respectively, denote the smallest full subcategory
of C containing all objects of S and stable for taking direct summands and
coproducts respectively taking finite coproducts. The category add(S) will be
called the additive closure of S. If further C is abelian or triangulated, the
extension closure of S is the smallest subcategory of C containing S and stable
under taking extensions. Assume that C is triangulated and let thick(S) denote
the smallest triangulated subcategory of C containing objects in S and stable
under taking direct summands. We say that S is a set of generators of C, or
that C is generated by S, when C = thick(S).

2.2. Derived categories. For a finite-dimensional algebra Λ, let ModΛ (re-
spectively, modΛ, projΛ, injΛ) denote the category of right Λ-modules (respec-
tively, finite-dimensional right Λ-modules, finite-dimensional projective, injec-
tive right Λ-modules), let Kb(projΛ) (respectively, Kb(injΛ)) denote the ho-
motopy category of bounded complexes of projΛ (respectively, injΛ) and let
D(ModΛ) (respectively, Db(modΛ), D−(modΛ)) denote the derived category
of ModΛ (respectively, bounded derived category of modΛ, bounded above de-
rived category of modΛ). All these categories are triangulated with suspension
functor the shift functor. We view D−(modΛ) and Db(modΛ) as triangulated
subcategories of D(ModΛ).
The categoriesmodΛ, Db(modΛ) and Kb(projΛ) are Krull–Schmidt categories.
An object M of modΛ (respectively, Db(modΛ), Kb(projΛ)) is said to be basic
if every indecomposable direct summand of M has multiplicity 1. The finite-
dimensional algebra Λ is said to be basic if the free module of rank 1 is basic
in modΛ (equivalently, in Db(modΛ) or Kb(projΛ)).
For a differential graded(=dg) algebraA, let C(A) denote the category of (right)
dg modules over A and K(A) the homotopy category. Let D(A) denote the
derived category of dg A-modules, i.e. the triangle quotient of K(A) by acyclic
dg A-modules, cf. [29, 30], and let Dfd(A) denote its full subcategory of dg
A-modules whose total cohomology is finite-dimensional. The category C(A) is
abelian and the other three categories are triangulated with suspension functor
the shift functor of complexes. Let per(A) = thick(AA), i.e. the triangulated
subcategory of D(A) generated by the free dg A-module of rank 1.
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For two dg A-modules M and N , let HomA(M ,N ) denote the complex whose
degree n component consists of those A-linear maps from M to N which are
homogeneous of degree n, and whose differential takes a homogeneous map f
of degree n to dN ◦ f − (−1)nf ◦ dM . Then

HomK(A)(M,N) = H0HomA(M ,N ).(2.1)

A dg A-module M is said to be K-projective if HomA(M ,N ) is acyclic when
N is an acyclic dg A-module. For example, AA, the free dg A-module of rank
1 is K-projective, because HomA(A,N ) = N . Dually, one defines K-injective
dg modules, and D(AA) is K-injective. For two dg A-modules M and N such
that M is K-projective or N is K-injective, we have

HomD(A)(M,N) = HomK(A)(M,N).(2.2)

Let A and B be two dg algebras. Then a triangle equivalence between D(A) and
D(B) restricts to a triangle equivalence between per(A) and per(B) and also to
a triangle equivalence between Dfd(A) and Dfd(B). If A is a finite-dimensional
algebra viewed as a dg algebra concentrated in degree 0, then D(A) is exactly
D(ModA), Dfd(A) is Db(modA), per(A) is triangle equivalent to Kb(projA),
and thick(D(AA)) is triangle equivalent to Kb(injA).

2.3. The Nakayama functor. Let Λ be a finite-dimensional algebra. The
Nakayama functor νmodΛ is defined as νmodΛ =? ⊗Λ D(ΛΛ), and the inverse
Nakayama functor ν−1

modΛ is its right adjoint ν−1
modΛ = HomΛ(D(ΛΛ), ?). They

restrict to quasi-inverse equivalences between projΛ and injΛ.
The derived functors of νmodΛ and ν−1

modΛ, denoted by ν and ν−1, restrict to

quasi-inverse triangle equivalences between Kb(projΛ) and Kb(injΛ). When
Λ is self-injective, they restrict to quasi-inverse triangle auto-equivalences of
Db(modΛ).
The Auslander–Reiten formula forM inKb(projΛ) andN in D(ModΛ) (cf. [23,
Chapter 1, Section 4.6]) provides an isomorphism

DHom(M,N) ∼= Hom(N, νM),

which is natural in M and N . When Kb(projΛ) coincides with Kb(injΛ) (that
is, when Λ is Gorenstein), it has Auslander–Reiten triangles and the Auslander–
Reiten translation is τ = ν ◦ Σ−1.

3. The four concepts

In this section we introduce silting objects, simple-minded collections, t-
structures and co-t-structure. Let C be a triangulated category with suspension
functor Σ.

3.1. Silting objects. A subcategory M of C is called a silting subcate-
gory [33, 1] if it is stable for taking direct summands and generates C (i.e.
C = thick(M)) and if Hom(M,ΣmN) = 0 for m > 0 and M,N ∈ M.
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Theorem 3.1. ([1, Theorem 2.27]) Assume that C is Krull–Schmidt and has a
silting subcategory M. Then the Grothendieck group of C is free and its rank
is equal to the cardinality of the set of isomorphism classes of indecomposable
objects of M.

An object M of C is called a silting object if addM is a silting subcategory
of C. This notion was introduced by Keller and Vossieck in [33] to study t-
structures on the bounded derived category of representations over a Dynkin
quiver. Recently it has also been studied by Wei [47] (who uses the terminology
semi-tilting complexes) from the perspective of classical tilting theory. A tilting
object is a silting object M such that Hom(M,ΣmM) = 0 for m < 0. For an
algebra Λ, a tilting object in Kb(projΛ) is called a tilting complex in the liter-
ature. For example, the free module of rank 1 is a tilting object in Kb(projΛ).
Assume that Λ is finite-dimensional. Theorem 3.1 implies that (a) any silting
subcategory of Kb(projΛ) is the additive closure of a silting object, and (b)
any two basic silting objects have the same number of indecomposable direct
summands. We will rederive (b) as a corollary of the existence of a certain
derived equivalence (Corollary 5.1).

3.2. Simple-minded collections.

Definition 3.2. A collection X1, . . . , Xr of objects of C is said to be simple-
minded (cohomologically Schurian in [3]) if the following conditions hold for
i, j = 1, . . . , r

· Hom(Xi,Σ
mXj) = 0, ∀ m < 0,

· End(Xi) is a division algebra and Hom(Xi, Xj) vanishes for i 6= j,
· X1, . . . , Xr generate C (i.e. C = thick(X1, . . . , Xr)).

Simple-minded collections are variants of simple-minded systems in [36] and
were first studied by Rickard [43] in the context of derived equivalences of
symmetric algebras. For a finite-dimensional algebra Λ, a complete collection
of pairwise non-isomorphic simple modules is a simple-minded collection in
Db(modΛ). A natural question is: do any two simple-minded collections have
the same collection of endomorphism algebras?

3.3. t-structures. A t-structure on C ([8]) is a pair (C≤0, C≥0) of strict (that
is, closed under isomorphisms) and full subcategories of C such that

· ΣC≤0 ⊆ C≤0 and Σ−1C≥0 ⊆ C≥0;
· Hom(M,Σ−1N) = 0 for M ∈ C≤0 and N ∈ C≥0,
· for each M ∈ C there is a triangle M ′ → M → M ′′ → ΣM ′ in C with
M ′ ∈ C≤0 and M ′′ ∈ Σ−1C≥0.

The two subcategories C≤0 and C≥0 are often called the aisle and the co-aisle of
the t-structure respectively. The heart C≤0 ∩ C≥0 is always abelian. Moreover,
Hom(M,ΣmN) vanishes for any two objects M and N in the heart and for any
m < 0. The t-structure (C≤0, C≥0) is said to be bounded if

⋃

n∈Z

ΣnC≤0 = C =
⋃

n∈Z

ΣnC≥0.
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A bounded t-structure is one of the two ingredients of a Bridgeland stability
condition [15]. A typical example of a t-structure is the pair (D≤0,D≥0) for the
derived category D(ModΛ) of an (ordinary) algebra Λ, where D≤0 consists of
complexes with vanishing cohomologies in positive degrees, and D≥0 consists
of complexes with vanishing cohomologies in negative degrees. This t-structure
restricts to a bounded t-structure of Db(modΛ) whose heart is modΛ, which is
a length category, i.e. every object in it has finite length. The following lemma
is well-known.

Lemma 3.3. Let (C≤0, C≥0) be a bounded t-structure on C with heart A.

(a) The embedding A → C induces an isomorphism K0(A) → K0(C) of
Grothendieck groups.

(b) C≤0 respectively C≥0 is the extension closure of ΣmA for m ≥ 0 respec-
tively for m ≤ 0.

(c) C = thick(A).

Assume further A is a length category with simple objects {Si | i ∈ I}.
(d) C≤0 respectively C≥0 is the extension closure of Σm{Si | i ∈ I} for

m ≥ 0 respectively for m ≤ 0.
(e) C = thick(Si, i ∈ I).
(f) If I is finite, then {Si | i ∈ I} is a simple-minded collection.

3.4. Co-t-structures. According to [41], a co-t-structure on C (or weight
structure in [12]) is a pair (C≥0, C≤0) of strict and full subcategories of C such
that

· both C≥0 and C≤0 are additive and closed under taking direct sum-
mands,

· Σ−1C≥0 ⊆ C≥0 and ΣC≤0 ⊆ C≤0;
· Hom(M,ΣN) = 0 for M ∈ C≥0 and N ∈ C≤0,
· for each M ∈ C there is a triangle M ′ → M → M ′′ → ΣM ′ in C with
M ′ ∈ C≥0 and M ′′ ∈ ΣC≤0.

The co-heart is defined as the intersection C≥0 ∩ C≤0. This is usually not an
abelian category. For any two objects M and N in the co-heart, the morphism
space Hom(M,ΣmN) vanishes for any m > 0. The co-t-structure (C≤0, C≥0) is
said to be bounded [12] if

⋃

n∈Z

ΣnC≤0 = C =
⋃

n∈Z

ΣnC≥0.

A bounded co-t-structure is one of the two ingredients of a Jørgensen–
Pauksztello costability condition [27]. A typical example of a co-t-structure
is the pair (K≥0,K≤0) for the homotopy category Kb(projΛ) of a finite-
dimensional algebra Λ, where K≥0 consists of complexes which are homotopy
equivalent to a complex bounded below at 0, and K≤0 consists of complexes
which are homotopy equivalent to a complex bounded above at 0. The co-heart
of this co-t-structure is projΛ.
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Lemma 3.4. ([39, Theorem 4.10 (a)]) Let (C≥0, C≤0) be a bounded co-t-structure
on C with co-heart A. Then A is a silting subcategory of C.

Proof. For the convenience of the reader we give a proof. It suffices to show that
C = thick(A). Let M be an object of C. Since the co-t-structure is bounded,
there are integers m ≥ n such that M ∈ ΣmC≥0 ∩ ΣnC≤0. Up to suspension
and cosuspension we may assume that m = 0. If n = 0, then M ∈ A. Suppose
n < 0. There exists a triangle

M ′ // M // M ′′ // ΣM ′

with M ′ ∈ Σ−1C≥0 and M ′′ ∈ C≤0. In fact, M ′′ ∈ A, see [12, Proposition
1.3.3.6]. Moreover, ΣM ′ ∈ Σn+1C≤0 due to the triangle

M ′′ // ΣM ′ // ΣM // ΣM ′′

since both M ′′ and ΣM belong to Σn+1C≤0 and C≤0 is extension closed (see [12,
Proposition 1.3.3.3]). So ΣM ′ ∈ C≥0 ∪ Σn+1C≤0. We finish the proof by
induction on n.

√

Proposition 3.5. ([1, Proposition 2.22], [12, (proof of) Theorem 4.3.2], [39,
Theorem 5.5] and [31]) Let A be a silting subcategory of C. Let C≤0 respectively
C≥0 be the extension closure of ΣmA for m ≥ 0 respectively for m ≤ 0. Then
(C≥0, C≤0) is a bounded co-t-structure on C with co-heart A.

4. Finite-dimensional non-positive dg algebras

In this section we study derived categories of non-positive dg algebras, i.e. dg
algebras A =

⊕

i∈Z
Ai with Ai = 0 for i > 0, especially finite-dimensional non-

positive dg algebras, i.e. , non-positive dg algebras which, as vector spaces, are
finite-dimensional. These results will be used in Sections 5.1 and 5.4.

Non-positive dg algebras are closely related to silting objects. A triangulated
category is said to be algebraic if it is triangle equivalent to the stable category
of a Frobenius category.

Lemma 4.1. (a) Let A be a non-positive dg algebra. The free dg A-module
of rank 1 is a silting object of per(A).

(b) Let C be an algebraic triangulated category with split idempotents and
let M ∈ C be a silting object. Then there is a non-positive dg algebra A
together with a triangle equivalence per(A)

∼→ C which takes A to M .

Proof. (a) This is because Homper(A)(A,Σ
iA) = Hi(A) vanishes for i > 0.

(b) By [30, Theorem 3.8 b)] (which is a ‘classically generated’ version of [29,
Theorem 4.3]), there is a dg algebra A′ together with a triangle equivalence

per(A′)
∼→ C. In particular, there are isomorphisms Homper(A′)(A

′,ΣiA′) ∼=
HomC(M,ΣiM) for all i ∈ Z. Since M is a silting object, A′ has vanishing
cohomologies in positive degrees. Therefore, if A = τ≤0A

′ is the standard

Documenta Mathematica 19 (2014) 403–438



Silting Objects, Simple-Minded Collections, . . . 411

truncation at position 0, then the embedding A →֒ A′ is a quasi-isomorphism.
It follows that there is a composite triangle equivalence

per(A)
∼ // per(A′)

∼ // C

which takes A to M .
√

In the sequel of this section we assume that A is a finite-dimensional non-
positive dg algebra. The 0-th cohomology Ā = H0(A) of A is a finite-
dimensional K-algebra. Let Mod Ā and mod Ā denote the category of (right)
modules over Ā and its subcategory consisting of those finite-dimensional mod-
ules. Let π : A → Ā be the canonical projection. We view Mod Ā as a subcat-
egory of C(A) via π.
The total cohomology H∗(A) of A is a finite-dimensional graded algebra with
multiplication induced from the multiplication of A. Let M be a dg A-module.
Then the total cohomology H∗(M) carries a graded H∗(A)-module structure,
and hence a graded Ā = H0(A)-module structure. In particular, a stalk dg
A-module concentrated in degree 0 is an Ā-module.

4.1. The standard t-structure. We follow [22, 4, 34], where the dg algebra
is not necessarily finite-dimensional.

Let M = . . . → M i−1 di−1

→ M i di

→ M i+1 → . . . be a dg A-module. Consider the
standard truncation functors τ≤0 and τ>0:

τ≤0M =

τ>0M =

. . . // M−2 d−2
// M−1 d−1

// kerd0 // 0 // 0 // 0 // . . .

. . . // 0 // 0 // M0/kerd0
d0

// M1 d1
// M2 d2

// M3 // . . .

Since A is non-positive, τ≤0M is a dg A-submodule of M and τ>0M is the
corresponding quotient dg A-module. Hence there is a distinguished triangle
in D(A)

τ≤0M → M → τ>0M → Στ≤0M.

These two functors define a t-structure (D≤0,D≥0) on D(A), where D≤0 is the
subcategory of D(A) consisting of dg A-modules with vanishing cohomology
in positive degrees, and D≥0 is the subcategory of D(A) consisting of dg A-
modules with vanishing cohomology in negative degrees.
By the definition of the t-structure (D≤0,D≥0), the heart H = D≤0 ∩ D≥0

consists of those dg A-modules whose cohomology is concentrated in degree 0.
Thus the functor H0 induces an equivalence

H0 : H −→ Mod Ā.

M 7→ H0(M)

See also [26, Theorem 1.3]. The t-structure (D≤0,D≥0) on D(A) restricts to a
bounded t-structure on Dfd(A) with heart equivalent to mod Ā.
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4.2. Morita reduction. Let d be the differential of A. Then d(A0) = 0.
Let e be an idempotent of A. For degree reasons, e must belong to A0, and
the graded subspace eA of A is a dg submodule: d(ea) = d(e)a + ed(a) =
ed(a). Therefore for each decomposition 1 = e1 + . . . + en of the unity into a
sum of primitive orthogonal idempotents, there is a direct sum decomposition
A = e1A ⊕ . . .⊕ enA of A into indecomposable dg A-modules. Moreover, if e
and e′ are two idempotents of A such that eA ∼= e′A as ordinary modules over
the ordinary algebra A, then this isomorphism is also an isomorphism of dg
modules. Indeed, there are two elements of A such that fg = e and gf = e′.
Again for degree reasons, f and g belong to A0. So they induce isomorphisms
of dg A-modules: eA → e′A, a 7→ ga and e′A → eA, a 7→ fa. It follows that
the above decomposition of A into a direct sum of indecomposable dg modules
is essentially unique. Namely, if 1 = e′1 + . . .+ e′n is another decomposition of
the unity into a sum of primitive orthogonal idempotents, then m = n and up
to reordering, e1A ∼= e′1A, . . ., enA

∼= e′nA.

4.3. The perfect derived category. Since A is finite-dimensional (and
thus has finite-dimensional total cohomology), per(A) is a triangulated subcat-
egory of Dfd(A).
We assume, as we may, that A is basic. Let 1 = e1+. . .+en be a decomposition
of 1 in A into a sum of primitive orthogonal idempotents. Since d(x) = λ1ei1 +
. . . + λseis implies that d(eijx) = λjeij , the intersection of the space spanned
by e1, . . . , en with the image of the differential d has a basis consisting of some
ei’s, say er+1, . . . , en. So, er+1A, . . . , enA are homotopic to zero.
We say that a dg A-module M is strictly perfect if its underlying graded module

is of the form
⊕N

j=1 Rj , where Rj belongs to add(ΣtjA) for some tj with t1 <
t2 < . . . < tN , and if its differential is of the form dint + δ, where dint is
the direct sum of the differential of the Rj ’s, and δ, as a degree 1 map from
⊕N

j=1 Rj to itself, is a strictly upper triangular matrix whose entries are in
A. It is minimal if in addition no shifted copy of er+1A, . . . , enA belongs to
add(R1, . . . , Rj), and the entries of δ are in the radical of A, cf. [42, Section
2.8]. Strictly perfect dg modules are K-projective. If A is an ordinary algebra,
then strictly perfect dg modules are precisely bounded complexes of finitely
generated projective modules.

Lemma 4.2. Let M be a dg A-module belonging to per(A). Then M is quasi-
isomorphic to a minimal strictly perfect dg A-module.

Proof. Bearing in mind that e1A, . . . , erA have local endomorphism algebras
and er+1A, . . . , enA are homotopic to zero, we prove the assertion as in [42,
Lemma 2.14].

√

4.4. Simple modules. Assume that A is basic. According to the preceding
subsection, we may assume that there is a decomposition 1 = e1 + . . . + er +
er+1+ . . .+en of the unity of A into a sum of primitive orthogonal idempotents
such that 1 = ē1 + . . .+ ēr is a decomposition of 1 in Ā into a sum of primitive
orthogonal idempotents.
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Let S1, . . . , Sr be a complete set of pairwise non-isomorphic simple Ā-modules
and let R1, . . . , Rr be their endomorphism algebras. Then

HomA(eiA,Sj) =

{

Rj
Rj if i = j,

0 otherwise.

Therefore, by (2.1) and (2.2),

HomD(A)(eiA,Σ
mSj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

Moreover, {e1A, . . . , erA} and {S1, . . . , Sr} characterise each other by this
property. On the one hand, if M is a dg A-module such that for some in-
teger 1 ≤ j ≤ r

HomD(A)(eiA,Σ
mM) =

{

Rj
Rj if i = j and m = 0,

0 otherwise,

then M is isomorphic in D(A) to Sj . On the other hand, let M be an object
of per(A) such that for some integer 1 ≤ i ≤ r

HomD(A)(M,ΣmSj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

Then by replacing M by its minimal perfect resolution (Lemma 4.2), we see
that M is isomorphic in D(A) to eiA.
Further, recall from Section 4.1 that Dfd(A) admits a standard t-structure
whose heart is equivalent to mod Ā. This implies that the simple modules
S1, . . . , Sr form a simple-minded collection in Dfd(A).

4.5. The Nakayama functor. For a complex M of K-vector spaces, we
define its dual as D(M) = HomK(M,K), where K in the second argument is
considered as a complex concentrated in degree 0. One checks that D defines
a duality between finite-dimensional dg A-modules and finite-dimensional dg
Aop-modules.
Let e be an idempotent of A and M a dg A-module. Then there is a canonical
isomorphism

HomA(eA,M) ∼= Me.

If in addition each component of M is finite-dimensional , there are canonical
isomorphisms

HomA(eA,M) ∼= Me ∼= DHomA(M,D(Ae)).

Let C(A) denote the category of dg A-modules. The Nakayama functor ν :
C(A) → C(A) is defined by ν(M) = DHomA(M,A) [29, Section 10]. There are
canonical isomorphisms

DHomA(M ,N ) ∼= HomA(N , νM )
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for any strictly perfect dg A-module M and any dg A-module N . Then
ν(eA) = D(Ae) for an idempotent e of A, and the functor ν induces a tri-
angle equivalences between the subcategories per(A) and thick(D(A)) of D(A)
with quasi-inverse given by ν−1(M) = HomA(D(A),M). Moreover, we have
the Auslander–Reiten formula

DHom(M,N) ∼= Hom(N, νM),

which is natural in M ∈ per(A) and N ∈ D(A).
Let e1, . . . , er, S1, . . . , Sr and R1, . . . , Rr be as in the preceding subsection.
Then

HomA(Sj ,D(Aei)) ∼= DHomA(eiA, Sj ) =

{

(Rj)Rj
if i = j,

0 otherwise.

Therefore, by (2.1) and (2.2),

HomD(A)(Sj ,Σ
mD(Aei)) =

{

(Rj)Rj
if i = j and m = 0,

0 otherwise.

Moreover, {D(Ae1), . . . ,D(Aer)} and {S1, . . . , Sr} characterise each other in
D(A) by this property. This follows from the arguments in the preceding
subsection by applying the functors ν and ν−1.

4.6. The standard co-t-structure. Let P≤0 (respectively, P≥0) be the
smallest full subcategory of per(A) containing {ΣmA | m ≥ 0} (respectively,
{ΣmA | m ≤ 0}) and closed under taking extensions and direct summands.
The following lemma is a special case of Proposition 3.5. For the convenience
of the reader we include a proof.

Lemma 4.3. The pair (P≥0,P≤0) is a co-t-structure on per(A). Moreover, its
co-heart is add(AA).

Proof. Since Hom(A,ΣmA) = 0 for m ≥ 0, it follows that Hom(X,ΣY ) = 0
for M ∈ P≥0 and N ∈ P≤0. It remains to show that any object M in
per(A) fits into a triangle whose outer terms belong to P≥0 and P≤0, respec-
tively. By Lemma 4.2, we may assume that M is minimal perfect. Write

M = (
⊕N

j=1 Rj , dint + δ) as in Section 4.3. Let N ′ ∈ {1, . . . , N} be the unique

integer such that tN ′ ≥ 0 but tN ′+1 < 0. LetM ′ be the graded module
⊕N ′

j=1 Rj

endowed with the differential restricted from dint+δ. Because dint+δ is upper
triangular, M ′ is a dg submodule of M . Clearly M ′ belongs to P≥0 and the
quotient M ′′ = M/M ′ belongs to ΣP≤0. Thus we obtain the desired triangle

M ′ // M // M ′′ // ΣM ′

with M ′ in P≥0 and M ′′ in ΣP≤0.
√
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5. The maps

Let Λ be a finite-dimensional basic K-algebra. This section is devoted to defin-
ing the maps in the following diagram.

bounded co-t-structures on
K

b(projΛ)
equivalence classes of silt-
ing objects in K

b(projΛ)

equivalence classes of
simple-minded collections
in D

b(modΛ)

bounded t-structures on
D

b(modΛ) with length
heart

✲
✛

φ41

φ14

✲
✛

φ32

φ23

❄

φ34

❄

✻
φ12 φ21

❅
❅
❅❅❘

φ31

5.1. Silting objects induce derived equivalences. LetM be a basic silt-
ing object of the categoryKb(projΛ). By definition, M is a bounded complex of
finitely generated projective Λ-modules such that HomKb(projΛ)(M,ΣmM) van-
ishes for all m > 0. By Lemma 4.1, there is a non-positive dg algebra whose
perfect derived category is triangle equivalent to Kb(projΛ). This equivalence
sends the free dg module of rank 1 to M . Below we explicitly construct such a
dg algebra.
Consider HomΛ(M ,M ). Recall that the degree n component of HomΛ(M ,M )
consists of those Λ-linear maps from M to itself which are homogeneous of
degree n. The differential of HomΛ(M ,M ) takes a homogeneous map f of
degree n to d ◦ f − (−1)nf ◦ d, where d is the differential of M . This dif-
ferential and the composition of maps makes HomΛ(M ,M ) into a dg al-
gebra. Therefore HomΛ(M ,M ) is a finite-dimensional dg algebra. More-
over, Hm(HomΛ(M ,M )) = HomD(Λ)(M ,ΣmM ) for any integer m, by (2.1)
and (2.2). Because M is a silting object, HomΛ(M ,M ) has cohomology

concentrated in non-positive degrees. Take the truncated dg algebra Γ̃ =
τ≤0HomΛ(M ,M ), where τ≤0 is the standard truncation at position 0. Then

the embedding Γ̃ → HomΛ(M ,M ) is a quasi-isomorphism of dg algebras, and

hence Γ̃ is a finite-dimensional non-positive dg algebra. Therefore, the derived
category D(Γ̃) carries a natural t-structure (D≤0,D≥0) with heart D≤0 ∩ D≥0

equivalent to ModΓ, where Γ = H0(Γ̃) = EndD(A)(M). This t-structure re-

stricts to a t-structure on Dfd(Γ̃), denoted by (D≤0
fd ,D

≥0
fd ), whose heart is

equivalent to modΓ. Moreover, there is a standard co-t-structure (P≥0,P≤0)

on per(Γ̃), see Section 4.
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The object M has a natural dg Γ̃-Λ-bimodule structure. Moreover, since it
generates Kb(projΛ), it follows from [29, Lemma 6.1 (a)] that there are triangle
equivalences

F =?
L
⊗Γ̃ M : D(Γ̃)

∼ // D(Λ) D(ModΛ)

Dfd(Γ̃)
?�

OO

∼ // Dfd(Λ)
?�

OO

Db(modΛ)
?�

OO

per(Γ̃)
?�

OO

∼ // per(Λ)
?�

OO

Kb(projΛ)
?�

OO

These equivalences take Γ̃ to M . The following special case of Theorem 3.1 is
a consequence.

Corollary 5.1. The number of indecomposable direct summands of M equals
the rank of the Grothendieck group of Kb(projΛ). In particular, any two basic
silting objects of Kb(projΛ) have the same number of indecomposable direct
summands.

Proof. The number of indecomposable direct summands of M equals the rank
of the Grothendieck group of modΓ, which equals the rank of the Grothendieck
group of Dfd(Γ̃) ∼= Db(modΛ) since modΓ is the heart of a bounded t-structure
(Lemma 3.3).

√

Write M = M1 ⊕ . . .⊕Mr with Mi indecomposable. Suppose that X1, . . . , Xr

are objects in Db(modΛ) such that their endomorphism algebras R1, . . . , Rr

are division algebras and that the following formula holds for i, j = 1, . . . , r
and m ∈ Z

Hom(Mi,Σ
mXj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

Then up to isomorphism, the objects X1, . . . , Xr are sent by the derived equiv-

alence ?
L
⊗Γ̃ M to a complete set of pairwise non-isomorphic simple Γ-modules,

see Section 4.4.

Lemma 5.2. (a) Let X ′
1, . . . , X

′
r be objects of Db(modΛ) such that the fol-

lowing formula holds for 1 ≤ i, j ≤ r and m ∈ Z

Hom(Mi,Σ
mX ′

j) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

Then Xi
∼= X ′

i for any i = 1, . . . , r.
(b) Let M ′

1, . . . ,M
′
r be objects of Kb(projΛ) such that the following formula

holds for 1 ≤ i, j ≤ r and m ∈ Z

Hom(M ′
i ,Σ

mXj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.
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Then Mi
∼= M ′

i for any i = 1, . . . , r.

Proof. This follows from the corresponding result in D(Γ̃), see Section 4.4.
√

5.2. From co-t-structures to silting objects. Let (C≥0, C≤0) be a
bounded co-t-structure of Kb(projΛ). By Lemma 3.4, the co-heart A =
C≥0 ∩ C≤0 is a silting subcategory of Kb(projΛ). Since Λ is a silting object
of Kb(projΛ), it follows from Theorem 3.1 that A has an additive generator,
say M , i.e. A = add(M). Then M is a silting object in Kb(projΛ). Define

φ14(C≥0, C≤0) = M.

5.3. From t-structures to simple-minded collections. Let (C≤0, C≥0)
be a bounded t-structure of Db(modΛ) with length heart A. Boundedness
implies that the Grothendieck group of A is isomorphic to the Grothendieck
group of Db(modΛ), which is free, say, of rank r. Therefore, A has precisely
r isomorphism classes of simple objects, say X1, . . . , Xr. By Lemma 3.3 (f),
X1, . . . , Xr is a simple-minded collection in Db(modΛ). Define

φ23(C≤0, C≥0) = {X1, . . . , Xr}.

5.4. From silting objects to simple-minded collections, t-
structures and co-t-structures. Let M be a silting object of Kb(projΛ).
Define full subcategories of C

C≤0 = {N ∈ Db(modΛ) | Hom(M,ΣmN) = 0, ∀ m > 0},
C≥0 = {N ∈ Db(modΛ) | Hom(M,ΣmN) = 0, ∀ m < 0},
C≤0 = the additive closure of the extension closure

of ΣmM , m ≥ 0 in Kb(projΛ),

C≥0 = the additive closure of the extension closure

of ΣmM , m ≤ 0 in Kb(projΛ).

Lemma 5.3. (a) The pair (C≤0, C≥0) is a bounded t-structure on
Db(modΛ) whose heart is equivalent to modΓ for Γ = End(M).
Write M = M1 ⊕ . . . ⊕ Mr and let X1, . . . , Xr be the corresponding
simple objects of the heart with endomorphism algebras R1, . . . , Rr

respectively. Then the following formula holds for 1 ≤ i, j ≤ r and
m ∈ Z

Hom(Mi,Σ
mXj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

(b) The pair (C≥0, C≤0) is a bounded co-t-structure on Kb(projΛ) whose
co-heart is add(M).

The first statement of part (a) is proved by Keller and Vossieck [33] in the
case when Λ is the path algebra of a Dynkin quiver and by Assem, Souto and
Trepode [5] in the case when Λ is hereditary.
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Proof. Let Γ̃ be the truncated dg endomorphism algebra of M , see Section 5.1.
Then per(Γ̃) has a standard bounded co-t-structure (P≥0,P≤0) and Dfd(Γ̃)

has a standard bounded t-structure (D≤0
fd ,D

≥0
fd ) with heart equivalent to modΓ.

One checks that the triangle equivalence ?
L
⊗Γ̃M takes (P≥0,P≤0) to (C≥0, C≤0)

and it takes (D≤0
fd ,D

≥0
fd ) to (C≤0, C≥0).

√

Define

φ31(M) = (C≤0, C≥0),

φ41(M) = (C≥0, C≤0),

φ21(M) = {X1, . . . , Xr}.

5.5. From simple-minded collections to t-structures. Let X1, . . . , Xr

be a simple-minded collection of Db(modΛ). Let C≤0 (respectively, C≥0) be
the extension closure of {ΣmXi | i = 1, . . . , r,m ≥ 0} (respectively, {ΣmXi |
i = 1, . . . , r,m ≤ 0}) in Db(modΛ).

Proposition 5.4. The pair (C≤0, C≥0) is a bounded t-structure on Db(modΛ).
Moreover, the heart of this t-structure is a length category with simple objects
X1, . . . , Xr. The same results hold true with Db(modΛ) replaced by a Hom-
finite Krull–Schmidt triangulated category C.
Proof. The first two statements are [3, Corollary 3 and Proposition 4]. The
proof there still works if we replace Db(modΛ) by C. √

Define

φ32(X1, . . . , Xr) = (C≤0, C≥0).

Later we will show that the heart of this t-structure always is equivalent to
the category of finite-dimensional modules over a finite-dimensional algebra
(Corollary 6.2). This was proved by Al-Nofayee for self-injective algebras Λ,
see [3, Theorem 7].

Corollary 5.5. Any two simple-minded collections in Db(modΛ) have the
same cardinality.

Proof. By Proposition 5.4, the cardinality of a simple-minded collection equals
the rank of the Grothendieck group of Db(modΛ). The assertion follows.

√

5.6. From simple-minded collections to silting objects. Let
X1, . . . , Xr be a simple-minded collection in Db(modΛ). We will construct a
silting object ν−1T of Kb(projΛ) following a method of Rickard [43]. Then we
define

φ12(X1, . . . , Xr) = ν−1T.

The same construction is studied by Keller and Nicolás [32] in the context
of positive dg algebras. In the case of Λ being hereditary, Buan, Reiten and
Thomas [17] give an elegant construction of ν−1(T ) using the Braid group
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action on exceptional sequences. Unfortunately, their construction cannot be
generalised.

Let R1, . . . , Rr be the endomorphism algebras of X1, . . . , Xr, respectively.

Set X
(0)
i = Xi. Suppose X

(n−1)
i is constructed. For i, j = 1, . . . , r and m < 0,

let B(j,m, i) be a basis of Hom(ΣmXj , X
(n−1)
i ) over Rj . Put

Z
(n−1)
i =

⊕

m<0

⊕

j

⊕

B(j,m,i)

ΣmXj

and let α
(n−1)
i : Z

(n−1)
i → X

(n−1)
i be the map whose component corresponding

to f ∈ B(j,m, i) is exactly f .

Let X
(n)
i be a cone of α

(n−1)
i and form the corresponding triangle

Z
(n−1)
i

α
(n−1)
i // X(n−1)

i

β
(n−1)
i // X(n)

i
// ΣZ(n−1)

i .

Inductively, a sequence of morphisms in D(ModΛ) is constructed:

X
(0)
i

β
(0)
i // X(1)

i
// . . . // X(n−1)

i

β
(n−1)
i // X(n)

i
// . . . .

Let Ti be the homotopy colimit of this sequence. That is, up to isomorphism,
Ti is defined by the following triangle

⊕

n≥0 X
(n)
i

id−β // ⊕
n≥0 X

(n)
i

// Ti
// Σ

⊕

n≥0 X
(n)
i .

Here β = (βmn) is the square matrix with rows and columns labeled by non-

negative integers and with entries βmn = β
(n)
i if n+ 1 = m and 0 otherwise.

These properties of Ti’s were proved by Rickard in [43] for symmetric algebras Λ
over algebraically closed fields. Rickard remarked that they hold for arbitrary
fields, see [43, Section 8]. In fact, his proofs verbatim carry over to general
finite-dimensional algebras.

Lemma 5.6. (a) ([43, Lemma 5.4]) For 1 ≤ i, j ≤ r, and m ∈ Z,

Hom(Xj ,Σ
mTi) =

{

(Rj)Rj
if i = j and m = 0,

0 otherwise.

(b) ([43, Lemma 5.5]) For each 1 ≤ i ≤ r, Ti is quasi-isomorphic to a
bounded complex of finitely generated injective Λ-modules.

(c) ([43, Lemma 5.8]) Let C be an object of D−(modΛ). If
Hom(C,ΣmTi) = 0 for all m ∈ Z and all 1 ≤ i ≤ r, then C = 0.

From now on we assume that Ti is a bounded complex of finitely generated
injective Λ-modules. Recall from Section 2.3 that the Nakayama functor ν
and the inverse Nakayama functor ν−1 are quasi-inverse triangle equivalences
between Kb(projΛ) and Kb(injΛ) The following is a consequence of Lemma 5.6
and the Auslander–Reiten formula.
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Lemma 5.7. (a) For 1 ≤ i, j ≤ r, and m ∈ Z,

Hom(ν−1Ti,Σ
mXj) =

{

Rj
Rj if i = j and m = 0,

0 otherwise.

(b) For each 1 ≤ i ≤ r, ν−1Ti is a bounded complex of finitely generated
projective Λ-modules.

(c) Let C be an object of D−(modΛ). If Hom(ν−1Ti,Σ
mC) = 0 for all

m ∈ Z and all 1 ≤ i ≤ r, then C = 0.

Put T =
⊕r

i=1 Ti and ν−1T =
⊕r

i=1 ν
−1Ti.

Lemma 5.8. We have Hom(ν−1T,ΣmT ) = 0 for m < 0. Equivalently,
Hom(ν−1T,Σmν−1T ) = Hom(T,ΣmT ) = 0 for m > 0.

Proof. Same as the proof of [43, Lemma 5.7], with the Ti in the first entry of
Hom there replaced by ν−1Ti.

√

It follows from Lemma 5.7 (c) that ν−1T generates Kb(projΛ). Combining this
with Lemma 5.8 implies

Proposition 5.9. ν−1T is a silting object of Kb(projΛ).

Rickard’s construction was originally motivated by constructing tilting com-
plexes over symmetric algebras which yield certain derived equivalences, see
[43, Theorem 5.1]. His work was later generalised by Al-Nofayee to self-injective
algebras, see [2, Theorem 4].

5.7. From co-t-structures to t-structures. Let (C≥0, C≤0) be a bounded
co-t-structure of Kb(projΛ). Let

C≤0 = {N ∈ Db(modΛ) | Hom(M,N) = 0, ∀ M ∈ Σ−1C≥0}
C≥0 = {N ∈ Db(modΛ) | Hom(M,N) = 0, ∀ M ∈ ΣC≤0}.

Lemma 5.10. The pair (C≤0, C≥0) is a bounded t-structure on Db(modΛ) with
length heart.

Proof. Because (C≤0, C≥0) = φ31 ◦ φ14(C≥0, C≤0).
√

By definition (C≤0, C≥0) is right orthogonal to the given co-t-structure in the
sense of Bondarko [11, Definition 2.5.1]. Define

φ34(C≥0, C≤0) = (C≤0, C≥0).

If Λ has finite global dimension, then Kb(projΛ) is identified with Db(modΛ).
As a consequence, C≤0 = C≤0 and C≥0 = νC≥0. Thus the t-structure (C≤0, C≥0)
is right adjacent to the given co-t-structure (C≥0, C≤0) in the sense of Bon-
darko [12, Definition 4.4.1].
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5.8. Some remarks. Some of the maps φij are defined in more general setups:

– φ14 and φ41 are defined for all triangulated categories, with silt-
ing objects replaced by silting subcategories, by Proposition 3.5 and
Lemma 3.4, see also [12, 31, 39].

– φ23 is defined for all triangulated categories, with simple-minded col-
lections allowed to contain infinitely many objects (Lemma 3.3).

– φ32 is defined for all algebraic triangulated categories (see [32]) and for
Hom-finite Krull–Schmidt triangulated categories (see Proposition 5.4).

– φ21 and φ31 are defined for all algebraic triangulated categories (replac-
ing Kb(projΛ)), with Db(modΛ) replaced by a suitable triangulated
category; then we may follow the arguments in Sections 4.1 and 5.4.

– φ34 is defined for all algebraic triangulated categories (replacing
Kb(projΛ)), with Db(modΛ) replaced by a suitable triangulated cate-
gory. Then we may follow the argument in Section 5.7.

– φ12 is defined for finite-dimensional non-positive dg algebras, since
these dg algebras behave like finite-dimensional algebras from the per-
spective of derived categories. Similarly, φ12 is defined for homologi-
cally smooth non-positive dg algebras, see [31].

6. The correspondences are bijections

Let Λ be a finite-dimensional K-algebra. In the preceding section we defined
the maps φij . In this section we will show that they are bijections. See [5, 46]
for related work, focussing on piecewise hereditary algebras.

Theorem 6.1. The φij ’s defined in Section 5 are bijective. In particular, there
are one-to-one correspondences between

(1) equivalence classes of silting objects in Kb(projΛ),
(2) equivalence classes of simple-minded collections in Db(modΛ),
(3) bounded t-structures on Db(modΛ) with length heart,
(4) bounded co-t-structures on Kb(projΛ).

There is an immediate consequence:

Corollary 6.2. Let A be the heart of a bounded t-structure on Db(modΛ).
If A is a length category, then A is equivalent to modΓ for some finite-
dimensional algebra Γ.

Proof. By Theorem 6.1, such a t-structure is of the form φ31(M) for some silting
object M of Kb(projΛ). The result then follows from Lemma 5.3 (a).

√

The proof of the theorem is divided into several lemmas, which are consequences
of the material collected in the previous sections.

Lemma 6.3. The maps φ14 and φ41 are inverse to each other.

Proof. Let M be a basic silting object. The definitions of φ14 and φ41 and
Lemma 5.3 (b) imply that φ14 ◦ φ41(M) ∼= M .
Let (C≥0, C≤0) be a bounded co-t-structure on Kb(projΛ). It follows from
Lemma 3.4 that φ41 ◦ φ14(C≥0, C≤0) = (C≥0, C≤0).

√
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Recall from Section 5.8 that φ14 and φ41 are defined in full generality.
Lemma 6.3 holds in full generality as well, see [39, Corollary 5.8] and [31].

Lemma 6.4. The maps φ21 and φ12 are inverse to each other.

Proof. This follows from the Hom-duality: Lemma 5.7 (a), Lemma 5.3 (a) and
Lemma 5.2.

√

Lemma 6.5. The maps φ23 and φ32 are inverse to each other.

Proof. Let X1, . . . , Xr be a simple-minded collection in Db(modΛ). It follows
from Proposition 5.4 that φ23 ◦ φ32(X1, . . . , Xr) = {X1, . . . , Xr}.
Let (C≤0, C≥0) be a bounded t-structure on Db(modΛ) with length heart. It
follows from Lemma 3.3 that φ32 ◦ φ23(C≤0, C≥0) = (C≤0, C≥0).

√

Lemma 6.6. For a triple i, j, k such that φij , φjk and φik are defined, there is
the equality φij ◦ φjk = φik. In particular, φ31 and φ34 are bijective.

Proof. In view of the preceding three lemmas, it suffices to prove φ23◦φ31 = φ21

and φ31 ◦ φ14 = φ34, which is clear from the definitions.
√

7. Mutations and partial orders

In this section we introduce mutations and partial orders on the four concepts
in Section 3, and we show that the maps defined in Section 5 commute with
mutations and preserve the partial orders.
Let C be a Hom-finite Krull–Schmidt triangulated category with suspension
functor Σ.

7.1. Silting objects. We follow [1, 18] to define silting mutation. Let M be
a silting object in C. We assume that M is basic and M = M1 ⊕ . . .⊕Mr is a
decomposition into indecomposable objects. Let i = 1, . . . , r. The left mutation
of M at the direct summand Mi is the object µ+

i (M) = M ′
i ⊕

⊕

j 6=i Mj where

M ′
i is the cone of the minimal left add(

⊕

j 6=i Mj)-approximation of Mi

Mi
// E.

Similarly one can define the right mutation µ−
i (M).

Theorem 7.1. ([1, Theorem 2.31 and Proposition 2.33]) The objects µ+
i (M)

and µ−
i (M) are silting objects. Moreover, µ+

i ◦ µ−
i (M) ∼= M ∼= µ−

i ◦ µ+
i (M).

Let siltC be the set of isomorphism classes of basic tilting objects of C. The
silting quiver of C has the elements in siltC as vertices. For P, P ′ ∈ siltC, there
are arrows from P to P ′ if and only if P ′ is obtained from P by a left mutation,
in which case there is precisely one arrow. See [1, Section 2.6].
For P, P ′ ∈ siltC, define P ≥ P ′ if Hom(P,ΣmP ′) = 0 for anym > 0. According
to [1, Theorem 2.11], ≥ is a partial order on silt C.
Theorem 7.2. ([1, Theorem 2.35]) The Hasse diagram of (siltC,≥) is the
silting quiver of C.
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Next we define (a generalisation of) the Brenner–Butler tilting module for
a finite-dimensional algebra, and show that it is a left mutation of the free
module of rank 1. The corresponding right mutation is the Okuyama–Rickard
complex, see [1, Section 2.7]. Let Λ be a finite-dimensional basic algebra and
1 = e1 + . . . + en be a decomposition of the unity into the sum of primitive
idempotents and Λ = P1 ⊕ . . . ⊕ Pn the corresponding decomposition of the
free module of rank 1. Fix i = 1, . . . , n and let Si be the corresponding simple
module and let S+

i = D(Λ/Λ(1− ei)Λ). Assume that

· S+
i is not injective,

· the projective dimension of τ−1
modΛS

+
i is at most 1.

Definition 7.3. Define the BB tilting module with respect to i by

T = τ−1
modΛS

+
i ⊕

⊕

j 6=i

Pj .

We call it the APR tilting module if Λ/Λ(1− ei)Λ is projective as a Λ-module.

When Λ/Λ(1− ei)Λ is a division algebra (i.e. there are no loops in the quiver
of Λ at the vertex i), this specialises to the ‘classical’ BB tilting module [13]
and APR tilting module [6]. The following proposition generalises [1, Theorem
2.53].

Proposition 7.4. (a) T is isomorphic to the left mutation µ+
i (Λ) of Λ.

(b) T is a tilting Λ-module of projective dimension at most 1.

Proof. We modify the proof in [1]. Take a minimal injective copresentation of
S+
i :

0 // S+
i

// D(eiΛ)
f // I.

Since Ext1Λ(Si, S
+
i ) = Ext1Λ/Λ(1−ei)Λ(Si, S

+
i ) = 0, it follows that the injective

module I belongs to addD((1 − ei)Λ). Applying the inverse Nakayama functor
ν−1
modΛ yields an exact sequence

Pi

ν−1
mod Λf

// ν−1
modΛI

// τ−1
modΛS

+
i

// 0.

Moreover, ν−1
modΛf is a minimal left approximation of Pi in add(Pj , j 6= i).

Since the projective dimension of τ−1
modΛS

+
i is at most 1, it follows that ν−1

modΛf
is injective. This completes the proof for (a).
(b) follows from [1, Theorem 2.32].

√

7.2. Simple-minded collections. Let X1, . . . , Xr be a simple-minded col-
lection in C and fix i = 1, . . . , r. Let Xi denote the extension closure of Xi in C.
Assume that for any j the object Σ−1Xj admits a minimal left approximation
gj : Σ

−1Xj → Xij in Xi.

Definition 7.5. The left mutation µ+
i (X1, . . . , Xr) of X1, . . . , Xr at Xi is a

new collection X ′
1, . . . , X

′
r such that X ′

i = ΣXi and X ′
j (j 6= i) is the cone of
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the above left approximation

Σ−1Xj

gj // Xij .

Similarly one defines the right mutation µ−
i (X1, . . . , Xr).

This generalises Kontsevich–Soibelman’s mutation of spherical collections [38,
Section 8.1] and appeared in [35] in the case of derived categories of acyclic
quivers.

Proposition 7.6. (a) µ+
i ◦ µ−

i (X1, . . . , Xr) ∼= (X1, . . . , Xr) ∼= µ−
i ◦

µ+
i (X1, . . . , Xr).

(b) Assume that
· for any j 6= i the object Σ−1Xj admits a minimal left approxima-
tion gj : Σ

−1Xj → Xij in Xi,
· the induced map Hom(gj, Xi) : Hom(Xij , Xi) → Hom(Σ−1Xj , Xi)
is injective,

· the induced map Hom(gj ,ΣXi) : Hom(Xij ,ΣXi) →
Hom(Σ−1Xj ,ΣXi) is injective.

Then the collection µ+
i (X1, . . . , Xr) is simple-minded.

(c) Assume that
· for any j 6= i the object Xj admits a minimal right approximation

g−j : Σ−1X−
ij → Xj in Σ−1Xi,

· the induced map Hom(Xi,Σg
−
j ) : Hom(Xi, X

−
ij ) → Hom(Xi,ΣXj)

is injective,
· the induced map Hom(Xi,Σ

2g−j , ) : Hom(Xi,ΣX
−
ij ) →

Hom(Xi,Σ
2Xj) is injective.

Then the collection µ−
i (X1, . . . , Xr) is simple-minded.

Proof. (a) Because in the triangle

Σ−1Xj

gj // Xij

g−

j // X ′
j

// Xj

gj is a minimal left approximation of Σ−1Xj in Xi if and only if g−j is a minimal

right approximation of Xj in Xi = Σ−1(ΣXi).
(b) and (c) The proof uses long exact Hom sequences induced from the defining
triangles of the X ′

j . We leave it to the reader.
√

Remark 7.7. In the course of the proof of Proposition 7.6 (b) and (c), one
notices that the collection of endomorphism algebras of the mutated simple-
minded collection is the same as that of the given simple-minded collection.

If Hom(Xi,ΣXi) = 0, then Xi = add(Xi). In this case, all six assumptions in
Proposition 7.6 (b) and (c) are satisfied.

Lemma 7.8. Let Λ be a finite-dimensional algebra and let X1, . . . , Xr be a
simple-minded collection in Db(modΛ). Let i = 1, . . . , r. Then the left muta-
tion µ+

i (X1, . . . , Xr) and the right mutation µ−
i (X1, . . . , Xr) are again simple-

minded collections.
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Proof. We will show that the three assumptions in Proposition 7.6 (b) are
satisfied, so the left-mutated collection µ+

i (X1, . . . , Xr) is a simple-minded col-
lection. The case for µ−

i (X1, . . . , Xr) is similar.
By Proposition 5.4, X1, . . . , Xr are the simple objects in the heart of a bounded
t-structure onDb(modΛ). Moreover, by Corollary 6.2, the heart is equivalent to
modΓ for some finite-dimensional algebra Γ. We identify modΓ with the heart
via this equivalence. In this way we consider X1, . . . , Xr as simple Γ-modules.
By [8, Section 3.1], there is a triangle functor

real : Db(modΓ) → Db(modΛ)

such that

– restricted to modΓ, real is the identity;
– for M,N ∈ modΓ, the induced map

Ext1Γ(M,N) = HomDb(modΓ)(M,ΣN) → HomDb(modΛ)(M,ΣN)

is bijective;
– for M,N ∈ modΓ, the induced map

Ext
2
Γ(M,N) = HomDb(modΓ)(M,Σ2N) → HomDb(modΛ)(M,Σ2N)

is injective.

For j = 1, . . . , r, there is a short exact sequence

0 // ΩXj // Pj // Xj // 0,

where Pj is the projective cover of Xj and ΩXj is the first syzygy of Xj. Let
Xi be the extension closure of Xi in modΓ (by the second property of real listed
in the preceding paragraph, this is the same as the extension closure of Xi in
Db(modΛ)) and let Xij denote the maximal quotient of ΩXj belonging to Xi.
There is the following push-out diagram

0 // ΩXj

��

// Pj

��

// Xj // 0

ξ : 0 // Xij // X ′
j

// Xj // 0

(a) Suppose we are given an object Y of Xi and a short exact sequence

η : 0 // Y // Z // Xj // 0.

Then there is a commutative diagram

0 // ΩXj

��

// Pj

��

// Xj // 0

η : 0 // Y // Z // Xj // 0.

Because Xij is the maximal quotient of ΩXj belonging to Xi, this morphism
of short exact sequences factors through ξ. In other words, the morphism
gj : Xj → ΣXij corresponding to ξ is a minimal left ΣXi-approximation.
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(b) The dimension of the space HomDb(modΛ)(ΣXij ,ΣXi) ∼= HomΓ(Xij , Xi)
over End(Xi) equals the number of indecomposable direct summands

of top(Xij), which clearly equals the dimension of Ext1Γ(Xj , Xi) ∼=
HomDb(modΛ)(Xj ,ΣXi) over End(Xi). Therefore the induced map

Hom(gj ,ΣXi) : HomDb(modΛ)(ΣXij ,ΣXi) −→ HomDb(modΛ)(Xj ,ΣXi)

is injective since by (a) it is surjective.
(c) First observe that the following diagram is commutative

HomDb(modΛ)(ΣXij ,Σ2Xi)
HomΛ(gj ,Σ

2Xi) // HomDb(modΛ)(Xj ,Σ2Xi)

HomDb(modΓ)(ΣXij ,Σ
2Xi)

real

OO

HomΓ(gj ,Σ
2Xi) // HomDb(modΓ)(Xj ,Σ

2Xi)

real

OO

The left vertical map is a bijection and the right vertical map is injective, so
to prove the injectivity of HomΛ(gj ,Σ

2Xi) it suffices to prove the injectivity of
HomΓ(gj ,Σ

2Xi). Writing

HomDb(modΓ)(ΣXij ,Σ
2Xi) = Ext

1
Γ(Xij , Xi) = HomΓ(ΩXij , Xi)

and

HomDb(modΓ)(Xj ,Σ
2Xi) = Ext2Γ(Xj , Xi) = Ext1Γ(ΩXj , Xi) = HomΓ(Ω

2Xj , Xi),

we see that HomΓ(gj ,Σ
2Xi) is HomΓ(α,Xi), where α is defined by the following

commutative diagram

0 // Ω2Xj
//

α

��

P 0 //

β

��

ΩXj //

γ

��

0

0 // ΩXij // Q0 // Xij // 0,

Here, P 0 and Q0 are projective covers of ΩXj and Xij , respectively, and γ is
the canonical quotient map. As the map γ is surjective, the map β is a split
epimorphism. By the snake lemma, there is an exact sequence

ker(γ) // cok(α) // 0.

Since Xij is the maximal quotient of ΩXj in Xi, it follows that
HomΓ(ker(γ), Xi) = 0, and hence HomΓ(cok(α), Xi) = 0. Therefore
HomΓ(α,Xi) is injective.

√

For two simple-minded collections {X1, . . . , Xr} and {X ′
1, . . . , X

′
r} of C, define

{X1, . . . , Xr} ≥ {X ′
1, . . . , X

′
r}

if Hom(X ′
i,Σ

mXj) = 0 for any m < 0 and any i, j = 1, . . . , r.

Proposition 7.9. The relation ≥ defined above is a partial order on the set of
equivalence classes of simple-minded collections of C.
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Proof. The reflexivity is clear by the definition of a simple-minded collec-
tion. Next we show the antisymmetry and transitivity. Let {X1, . . . , Xr} and
{X ′

1, . . . , X
′
r} be two simple-minded collections of C and let (C≤0, C≥0) and

(C′≤0, C′≥0) be the corresponding t-structures given in Proposition 5.4 (the
general case). Then

{X1, . . . , Xr} ≥ {X ′
1, . . . , X

′
r}

⇔ Hom(X ′
i,Σ

mXj) = 0 for any m < 0 and i, j = 1, . . . , r

⇔ Hom(Σm′

X ′
i,Σ

mXj) = 0 for any m < 0, m′ ≥ 0

and i, j = 1, . . . , r

⇔ C′≤0 ⊥ Σ−1C≤0

⇔ C′≤0 ⊆ C≤0.

(a) If {X1, . . . , Xr} ≥ {X ′
1, . . . , X

′
r} and {X ′

1, . . . , X
′
r} ≥ {X1, . . . , Xr}, then

(C≤0, C≥0) = (C′≤0, C′≥0). In particular, the two t-structures have the same
heart. Therefore, both {X1, . . . , Xr} and {X ′

1, . . . , X
′
r} are complete sets of

pairwise non-isomorphic simple objects of the same abelian category, and hence
they are equivalent.
(b) Let {X ′′

1 , . . . , X
′′
r } be a third simple-minded collection of C, with corre-

sponding t-structure (C′′≤0, C′′≥0). Suppose {X1, . . . , Xr} ≥ {X ′
1, . . . , X

′
r} and

{X ′
1, . . . , X

′
r} ≥ {X ′′

1 , . . . , X
′′
r }. Then C′′≤0 ⊆ C′≤0 ⊆ C≤0. Consequently,

{X1, . . . , Xr} ≥ {X ′′
1 , . . . , X

′′
r }.

√

7.3. t-structures. Let (C≤0, C≥0) be a bounded t-structure of C such that
the heart A is a length category which has only finitely many simple objects
S1, . . . , Sr up to isomorphism. Then {S1, . . . , Sr} is a simple-minded collection.
Let F = Si be the extension closure of Si in A and let T = ⊥Si be the left
perpendicular category of Si in A. It is easy to show that (T ,F) is a torsion
pair of A. Define the left mutation µ+

i (C≤0, C≥0) = (C′≤0, C′≥0) by

C′≤0 = {M ∈ C | Hm(M) = 0 for m > 0 and H0(M) ∈ T },
C′≥0 = {M ∈ C | Hm(M) = 0 for m < −1 and H−1(M) ∈ F}.

Similarly one defines the right mutation µ−
i (C≤0, C≥0). These mutations pro-

vide an effective method to compute the space of Bridgeland’s stability condi-
tions on C by gluing different charts, see [14, 48].

Proposition 7.10. The pairs µ+
i (C≤0, C≥0) and µ−

i (C≤0, C≥0) are bounded t-
structures of C. The heart of µ+

i (C≤0, C≥0) has a torsion pair (ΣF , T ) and
the heart of µ−

i (C≤0, C≥0) has a torsion pair (S⊥
i ,Σ−1Si). Moreover, µ+

i ◦
µ−
i (C≤0, C≥0) = (C≤0, C≥0) = µ−

i ◦ µ+
i (C≤0, C≥0).

Proof. This follows from [24, Proposition 2.1, Corollary 2.2] and [14, Proposi-
tion 2.5].

√
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In general the heart of the mutation of a bounded t-structure with length heart
is not necessarily a length category. For an example, let Q be the quiver

1:: 2oo

and consider the bounded derived category C = Db(nil. repQ) of finite-
dimensional nilpotent representations of Q. Let S1 and S2 be the one-
dimensional nilpotent representations associated to the two vertices. Let
F = S1 be the extension closure of S1 and T = ⊥F = {M ∈ nil. repQ |
top(M) ∈ add(S2)}. Then the heart A′ of the left mutation at 1 of the stan-
dard t-structure has a torsion pair (ΣF , T ). Due to nil. repQ being hereditary,
there are no extensions of ΣF by T , and hence any indecomposable object of
A′ belongs to either T or ΣF . Suppose that A′ is a length category. Then A′

has two isomorphism classes of simple modules, which respectively belong to
T and ΣF , say S′

2 ∈ T and S′
1 ∈ ΣF . For n ∈ N define an indecomposable

object Mn in T as

kJn(0) 99 k,
(0,...,0,1)troo

where Jn(0) is the (upper triangular) Jordan block of size n and with eigenvalue
0. There are no morphisms from S′

1 to Mn for any n. Suppose that the Loewy
length of S′

2 in A is l. Then for n > l, any morphism from S′
2 to Mn factors

through radn−lMn which lies in F , and hence the morphism has to be zero.
Therefore Mn (n > l), considered as an object in A′, does not have finite
length, a contradiction.

For two bounded t-structures (C≤0, C≥0) and (C′≤0, C′≥0) on C, define
(C≤0, C≥0) ≥ (C′≤0, C′≥0)

if C≤0 ⊇ C′≤0. This defines a partial order on the set of bounded t-structures
on C.

7.4. Co-t-structures. Let (C≥0, C≤0) be a bounded co-t-structure of C. As-
sume that the co-heart admits a basic additive generator M = M1 ⊕ . . .⊕Mr

with Mi indecomposable. Then M is a silting object of C. Let i = 1, . . . , r.
Define C′

≤0 as the additive closure of the extension closure of ΣmMj , j 6= i, and

Σm+1Mi for m ≥ 0 and define C′
≥0 as the left perpendicular category of ΣC′

≤0.

The left mutation µ+
i (C≥0, C≤0) is defined as the pair (C′

≥0, C′
≤0). Similarly one

defines the right mutation µ−
i (C≥0, C≤0).

Proposition 7.11. The pairs µ+
i (C≥0, C≤0) and µ−

i (C≥0, C≤0) are bounded
co-t-structures on C. Moreover, µ+

i ◦ µ−
i (C≥0, C≤0) = (C≥0, C≤0) = µ−

i ◦
µ+
i (C≥0, C≤0).

Proof. This can be proved directly. Here we alternatively make use of the re-
sults in Sections 3.1 and 7.1. Recall from Theorem 7.1 that there is a mutated
silting object µ+

i (M). It is straightforward to check, using the defining tri-
angle for µ+

i (M), that µ+
i (C≥0, C≤0) is the bounded co-t-structure associated
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to µ+
i (M) as defined in Proposition 3.5, and similarly for µ−

i . The second
statement follows from Theorem 7.1.

√

For two bounded co-t-structures (C≥0, C≤0) and (C′
≥0, C′

≤0) on C, define

(C≥0, C≤0) ≥ (C′
≥0, C′

≤0)

if C≤0 ⊇ C′
≤0. This defines a partial order on the set of bounded co-t-structures

on C.

7.5. The bijections commute with mutations. Let Λ a finite-dimensional
algebra over K.

Theorem 7.12. The φij ’s defined in Section 5 commute with the left and right
mutations defined in previous subsections.

A priori it it not known that the heart of the mutation of a bounded t-structure
with length heart is again a length category. So the theorem becomes well-
stated only when the proof has been finished.

Proof. In view of Lemma 6.6, Theorem 7.1, and Propositions 7.6, 7.10 and 7.11,
it suffices to prove that φ41, φ31 and φ23 commute with the corresponding left
mutations.
(a) φ41 commutes with µ+

i : this was already shown in the proof of Proposi-
tion 7.11.
(b) φ31 commutes with µ+

i : Let M = M1⊕ . . .⊕Mr be a silting object with Mi

indecomposable and (C≤0, C≥0) = φ31(M). We want to show µ+
i (C≤0, C≥0) =

φ31(µ
+
i (M)).

Let Γ̃ be the truncated dg endomorphism algebra of M as in Section 5.1. Then

there is a triangle equivalence F =?
L
⊗Γ̃ M : Dfd(Γ̃) → Db(modΛ), which takes

Γ̃ toM and takes the standard t-structure (D≤0,D≥0) on Dfd(Γ̃) to (C≤0, C≥0).
There is a decomposition 1 = e1+ . . .+er, where e1, . . . , er are (not necessarily

primitive) idempotents of Γ̃ such that F takes ejΓ̃ to Mj for 1 ≤ j ≤ r.

Let Γ = H0(Γ̃) and π : Γ̃ → Γ be the canonical projection. By abuse of
notation, write e1 = π(e1), . . . , er = π(er). Then e1Γ, . . . , erΓ are indecom-
posable projective Γ-modules. Let S1, . . . , Sr be the corresponding simple
modules. Recall that the heart of the t-structure (D≤0,D≥0) is modΓ. Let
F = add(Si) ⊆ modΓ and T = ⊥Si. Define D′≤0 (respectively, D′≥0) to be
the extension closure of ΣD≤0 and T (respectively, of ΣF and D≥0). Then
F (D′≤0,D′≥0) = µ+

i (C≤0, C≥0).

The left mutation of Γ̃ at eiΓ̃ is µ+
i (Γ̃) = Qi ⊕

⊕

j 6=i ejΓ̃, where Qi is defined
by the triangle

eiΓ̃
f // E // P ′

i
// ΣeiΓ̃ ,(7.1)
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where f is a minimal left add(
⊕

j 6=i ejΓ̃)-approximation. Then F (µ+
i (Γ̃)) =

µ+
i (M). Define

D′′≤0 = {N ∈ Dfd(Γ̃) | Hom(µ+
i (Γ̃),Σ

mN) = 0, ∀m > 0},
D′′≥0 = {N ∈ Dfd(Γ̃) | Hom(µ+

i (Γ̃),Σ
mN) = 0, ∀m < 0}.

Thus showing µ+
i (C≤0, C≥0) = φ31(µ

+
i (M)) is equivalent to showing the equal-

ity (D′≤0,D′≥0) = (D′′≤0,D′′≥0), equivalently, the inclusions D′≤0 ⊆ D′′≤0 and
D′≥0 ⊆ D′′≥0. It suffices to prove T ⊆ D′′≤0, ΣD≤0 ⊆ D′′≤0, ΣF ⊆ D′′≥0 and
D≥0 ⊆ D′′≥0. We only show the first inclusion, the other three are easy.
Let T ∈ T . To show T ∈ D′′≤0, it suffices to show Hom(Qi,ΣT ) = 0. Applying
Hom(?, T ) to the triangle (7.1), we obtain a long exact sequence

Hom(E, T )
f∗

// Hom(eiΓ̃,ΣT ) // Hom(Qi,ΣT ) // Hom(E,ΣT ) = 0 .

We claim that f∗ is surjective. Then the desired result follows. Consider the
commutative diagram

Hom(eiΓ, T )
π∗

i // Hom(eiΓ̃, T )

Hom(H0(E), T )
π∗

E //

H0(f)∗

OO

Hom(E, T ),

f∗

OO
(7.2)

where πi : eiΓ̃ → eiΓ and πE : E → H0(E) are the canonical projections. Let
C = ker(πi). Then there is a triangle

C // eiΓ̃
πi // eiΓ // ΣC .

Note that C belongs to ΣD≤0, which implies that Hom(C, T ) = 0 =
Hom(ΣC, T ). It follows that the map π∗

i is bijective. Similarly, the map π∗
E

is also bijective. Thus it suffices to show the surjectivity of H0(f)∗. Now let
PT be a projective cover of T in modΓ. Then PT belongs to add(

⊕

j 6=i ejΓ)

because T ∈ T = ⊥Si. It follows that any morphism eiΓ → T factors through
PT , and hence factors through H0(f) : eiΓ → H0(E), since H0(f) is a mini-

mal left add(
⊕

j 6=i ejΓ)-approximation (for H0|add(Γ̃) : add(Γ̃) → add(Γ) is an

equivalence). This shows that H0(f)∗ is surjective, completing the proof of the
claim.
(c) φ23 commutes with µ+

i : Let (C≤0, C≥0) be a bounded t-structure on
Db(modΛ) with length heart. Let {X1, . . . , Xr} = φ23(C≤0, C≥0). The
mutated simple-minded collection µ+

i (X1, . . . , Xr) is contained in the heart
of the mutated t-structure µ+

i (C≤0, C≥0). Consequently, the aisle and co-
aisle of φ32 ◦ µ+

i (X1, . . . , Xr) are respectively contained in the aisle and co-
aisle of µ+

i (C≤0, C≥0), and hence φ32 ◦ µ+
i (X1, . . . , Xr) = µ+

i (C≤0, C≥0), i.e.
φ23 ◦ µ+

i (C≤0, C≥0) = µ+
i ◦ φ23(C≤0, C≥0).

√
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7.6. The bijections are isomorphisms of partially ordered sets. Let
Λ be a finite-dimensional algebra over K.

Theorem 7.13. The φij’s defined in Section 5 are isomorphisms of partially
ordered sets with respect to the partial orders defined in previous subsections.

Proof. In view of Theorem 6.1 and Lemma 6.6, it suffices to show that f(x) ≥
f(y) if and only if x ≥ y for f = φ41, φ32 and φ34.
(a) For φ41 the desired result follows from [1, Proposition 2.14].
(b) For φ32 the desired result is included in the proof of Proposition 7.9.
(c) Let (C≥0, C≤0) and (C′

≥0, C′
≤0) be two bounded co-t-structures on C and

let (C≤0, C≥0) and (C′≤0, C′≥0) be their respective images under φ34. Then by
definition

C≤0 = {M ∈ Db(modΛ) | Hom(N,M) = 0 ∀N ∈ Σ−1C≥0},
C′≤0 = {M ∈ Db(modΛ) | Hom(N,M) = 0 ∀N ∈ Σ−1C′

≥0}.

Here, C≤0 ⊇ C′≤0 if and only if C≥0 ⊇ C′
≥0, and hence by definition (C≤0, C≥0) ≥

(C′≤0, C′≥0) if and only if (C≥0, C≤0) ≥ (C′
≥0, C′

≤0).
√

8. A concrete example

Let Λ be the finite-dimensional K-algebra given by the quiver

1
α //

2
β

oo

with relation αβ = 0. This algebra has many manifestations: It is, possibly
up to Morita equivalence, the Auslander algebra of k[x]/x2, the Schur algebra
S(2, 2) (charK = 2) and the principal block of the category O for sl2(C) (K =
C). In this section we will compute the derived Picard group for Λ and classify
all silting objects/simple-minded collections in Db(modΛ). As a consequence of
this classification and a result of Woolf [48, Theorem 3.1], the space of stability
conditions on Db(modΛ) is exactly C2.

8.1. Indecomposable objects. Let P1 and P2 be the indecomposable pro-
jective Λ-modules corresponding to the vertices 1 and 2. Then up to isomor-
phism and up to shift an indecomposable object in Db(modΛ) belongs to one
of the following four families (see for example [19, 9])

· P1(n) = P1 → P1 → . . . → P1 → P1, n ≥ 1,
· R(n) = P1 → P1 → . . . → P1 → P1 → P2, n ≥ 0,
· L(n) = P2 → P1 → P1 → . . . → P1 → P1, n ≥ 0,
· B(n) = P2 → P1 → P1 → . . . → P1 → P1 → P2, n ≥ 1,

where the homomorphisms are the unique non-isomorphisms, n is the number
of occurrences of P1 and the rightmost components have been put in degree 0.
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8.2. The Auslander–Reiten quiver. The Auslander–Reiten quiver of
Db(modΛ) consists of three components: two ZA∞ components and one ZA∞

∞

component (see [10, 28])
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The abelian category modΛ has five indecomposable objects up to isomor-
phism: the two simple modules S1 and S2, their projective covers P1 and P2

and their injective envelopes I1 = P1 and I2. They are marked on the above
Auslander–Reiten quiver.
The left ZA∞ component consists of shifts of P1(n), n ≥ 1. The Auslander–
Reiten translation τ takes P1(n) to Σ−1P1(n). It is straightforward to check
that P1 is a 0-spherical object of Db(modΛ) in the sense of Seidel and
Thomas [45]. The additive closure of this component is the triangulated sub-
category generated by P1. This component will be referred to as the 0-spherical
component.
The ZA∞

∞ component consists of shifts ofR(n) and L(n), n ≥ 0. Note that S1 =
L(1), P2 = R(0) = L(0) and I2 = L(2). The Auslander–Reiten translation
τ takes R(n) (n ≥ 2) to ΣR(n − 2), takes R(1) to L(1) and takes L(n) to
Σ−1L(n+ 2).
The right ZA∞ component consists of shifts of B(n), n ≥ 1. The Auslander–
Reiten translation takes B(n) to ΣB(n). The simple module S2 = B(1) is a
2-spherical object of Db(modΛ) and the additive closure of this component is
the triangulated subcategory generated by S2. This component will be referred
to as the 2-spherical component.

8.3. The derived Picard group. Let E be a spherical object of a triangu-
lated category C in the sense of Seidel and Thomas [45]. Then the twist functor
ΦE defined by

ΦE(M) = Cone(
⊕

m∈Z

Hom(ΣmE,M)⊗ ΣmE
ev−→ M),

where ev is the evaluation map, is an auto-equivalence of C by [45, Proposition
2.10].
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Recall from the preceding subsection that P1 is a 0-spherical object and S2 is
a 2-spherical object of Db(modΛ). Thus the associated twist functors ΦP1 and
ΦS2 are two auto-equivalences of Db(modΛ).

Lemma 8.1. For M in Db(modΛ) there are isomorphisms ΦS2(M) ∼= ΦP1 ◦
Σ−1(M) and Φ2

P1
(M) ∼= ν−1 ◦ Σ2(M). Moreover, if M is indecomposable and

belongs to the ZA∞
∞ component, there exists a unique pair of integers (n, n′)

such that M ∼= Φn
P1

◦ Φn′

S2
(P2).

Proof. Observe that ΦP1(S1) ∼= ΣP2, ΦP1(P1) ∼= ΣP1, ΦP1(S2) ∼= S2 and
ΦS2(S1) ∼= P2, ΦS2(P1) ∼= P1, ΦS2(S2) ∼= Σ−1S2. Since auto-equivalences
preserve the shape of the Auslander–Reiten quiver, the statements follow.

√

Remark 8.2. Inspecting the action of ΦP1 and ΦS2 on maps shows that the
isomorphism Φ2

P1
(M) ∼= ν−1 ◦ Σ2(M) is functorial, while ΦS2(M) ∼= ΦP1 ◦

Σ−1(M) is not.

Let AutDb(modΛ) denote the group of algebraic auto-equivalences of
Db(modΛ), i.e. those which admits a dg lift. By [29, Lemma 6.4], such
an auto-equivalence is naturally isomorphic to the derived tensor functor of a
complex of bimodules.

Lemma 8.3. AutDb(modΛ) is isomorphic to Z2 ×K×.

Proof. Let F ∈ AutDb(modΛ). Since F preserves the Auslander–Reiten
quiver, the object F (P2) is in the ZA∞

∞ component. Thus there is a pair

of integers (nF , n
′
F ) such that F (P2) ∼= ΦnF

P2
◦Φn′

F

S2
(P2). This allows us to define

a map

f : AutDb(modΛ) //
Z
2

F
� // (nF , n

′
F ).

This map is clearly a surjective group homomorphism. Moreover, the group
homomorphism

Z2 // AutDb(modΛ)

(n, n′)
� // Φn

P2
◦ Φn′

S2

is a retraction of f . Therefore AutDb(modΛ) ∼= Z2 × ker(f).
Let F ∈ ker(f). Then F (P2) ∼= P2. This forces F (P1) ∼= P1, and hence F
is induced from an outer automorphism of Λ which fixes the two primitive
idempotents e1 and e2. Thus ker(f) ∼= K×, finishing the proof.

√

8.4. Morphism spaces. We first compute the morphism spaces between the
two ZA∞ components.

Lemma 8.4. (a) For n ≥ 2, Hom(P1(n),Σ
mP1(n)) does not vanish for

some m > 0 and for some m < 0. For n = 1, Hom(P1,Σ
mP1) is

isomorphic to K[x]/x2 for m = 0 and vanishes for m 6= 0.
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(b) For n ≥ 2, Hom(B(n),ΣmB(n)) does not vanish for some m > 0 and
for some m < 0. For n = 1, Hom(S2,Σ

mS2) is K for m = 0, 2 and
vanishes for m 6= 0, 2.

Proof. Direct computation, or apply some general result (e.g. [25, Section 2])
to the triangulated categories generated by P1 and S2.

√

Next we compute the morphism spaces between P2 and the objects on the ZA∞
∞

component.

Lemma 8.5. Let n ≥ 0.

(a) Hom(P2,Σ
mR(n)) is K if −n ≤ m ≤ 0 and is 0 otherwise.

(a’) Hom(R(n),ΣmP2) is K if 2 ≤ m ≤ n or if n = 0,m = 0 and is 0
otherwise.

(b) Hom(P2,Σ
mL(n)) is K if 2 − n ≤ m ≤ 0 or if n = 0,m = 0 and is 0

otherwise.
(b’) Hom(L(n),ΣmP2) is K if 0 ≤ m ≤ n and is 0 otherwise.

Proof. (a) and (b) Because Hom(P2,M) = H0(M)e2.
(a’) and (b’) are obtained from (a) and (b) by applying the Auslander–Reiten
formula DHom(M,N) ∼= Hom(N, τΣM).

√

8.5. Silting objects and simple-minded collections. Now we are ready
to classify the silting objects and simple-minded collections in Db(modΛ).

Proposition 8.6. Up to isomorphism, any basic silting object of Db(modΛ)
belongs to one of the following two families

· Φn
P1

◦Φn′

S2
(P1 ⊕ P2), n, n

′ ∈ Z, the corresponding simple-minded collec-

tion is Φn
P1

◦ Φn′

S2
{S1, S2},

· Φn
P1

◦ Φn′

S2
(ΣmS1 ⊕ P2), n, n′ ∈ Z and m ≤ −1, the corresponding

simple-minded collection is Φn
P1

◦ Φn′

S2
{ΣmS1, I2}.

Proof. Let N be an indecomposable direct summand of a silting object. By
Lemma 8.4, N does not belong to the 2-spherical component, and N belongs
to the 0-spherical component if and only if N is a shift of P1. Moreover, a basic
silting object can have at most one shift of P1 as a direct summand. It follows
that a silting object has at least one indecomposable direct summand from the
ZA∞

∞ component.
LetM = M1⊕M2 be a silting object withM1 andM2 indecomposable. Assume
that M1 belongs to the ZA∞

∞ component. Up to an auto-equivalence of the

form Φn
P1

◦ Φn′

S2
, we may assume that M1 = P2. Then, if M2 belongs to

the 0-spherical component it has to be P1. Thus we assume that M2 also
belongs to the ZA∞

∞ component. Then it follows from Lemma 8.5 that M2 is
isomorphic to ΣmS1 for somem ≤ −1 or to ΣmR(1) for somem ≥ 0. Observing
P2 ⊕ ΣmR(1) = Φ−m−1

P1
◦ Φm

S2
(P2 ⊕ Σ−m−1S1) for m ≥ 0 finishes the proof for

the silting-object part.
That the simple-minded collection corresponding to a silting object is the de-
sired one follows from the Hom-duality they satisfy.

√
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8.6. The silting quiver. Recall from [1] that the silting quiver has as vertices
the isomorphism classes of basic silting objects and there is an arrow from M
to M ′ if M ′ can be obtained from M by a left mutation.
The vertex set of the silting quiver of Db(modΛ) is {(n, n′,m) | n, n′ ∈ Z,m ∈
Z≤0}, where (n, n′, 0) represents the silting object Φn

P1
◦ Φn′

S2
(P1 ⊕ P2) and

(n, n′,m) (m ≤ −1) represents the silting object Φn
P1

◦ Φn′

S2
(ΣmS1 ⊕ P2). It is

straightforward to show that from each vertex (n, n′,m) there are precisely two
outgoing arrows whose targets are respectively

· (n, n′ − 1,m) and (n+ 1, n′,m− 1) if m = 0,
· (n+ 1, n′ − 1,m− 1) and (n, n′,m+ 1) if m ≤ −1.

8.7. Hearts and the space of stability conditions.

Lemma 8.7. The heart of any t-structure on Db(modΛ) is a length category.

Proof. Let A be the heart of a t-structure on Db(modΛ). We will show that
A has only finitely many isomorphism classes of indecomposable objects. Such
an abelian category must be a length category.
Due to vanishing of negative extensions, it follows from Lemma 8.4 that A
contains at most one indecomposable object from the 0-spherical component
respectively the 2-spherical component.
Suppose that A contains an indecomposable object from the ZA∞

∞ compo-
nent. Without loss of generality we may assume that it is P2. It follows from
Lemma 8.5 that for n ≥ 3 and m ∈ Z either Hom(P2,Σ

m′

ΣmR(n)) 6= 0 for

some m′ < 0 or Hom(ΣmR(n),Σm′

P2) 6= 0 for some m′ < 0. Similarly for
L(n). Therefore an indecomposable object M belongs to the heart only if it is
isomorphic to one of ΣmP2, Σ

mR(1), ΣmR(2), ΣmL(1) and ΣmL(2), m ∈ Z.
But at most one shift of a nonzero object can belong to a heart. So A contains
at most 7 indecomposable objects up to isomorphism.

√

In view of Lemma 8.7, the result in the preceding subsection shows that all
bounded t-structures on Db(modΛ) are related to each other by a sequence of
left or/and right mutations. In particular, this implies that the t-structures
Woolf considered in [48, Section 3.1] are already all bounded t-structures on
Db(modΛ). Therefore we have

Corollary 8.8. (a) The Bridgeland space of stability conditions on
Db(modΛ) is C2.

(b) An abelian category is the heart of some bounded t-structure on
Db(modΛ) if and only if it is equivalent to modΓ for Γ = Λ or
Γ = K( · // · ) or Γ = K ⊕K.
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1982 (French).
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