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Abstract. Let G be a group and let KH be homotopy algebraic
K-theory. We prove that if G satisfies the rational KH isomorphism
conjecture for the group algebra L1[G] with coefficients in the algebra
of trace-class operators in Hilbert space, then it also satisfies the K-
theoretic Novikov conjecture for the group algebra over the integers,
and the rational injectivity part of the Farrell-Jones conjecture with
coefficients in any number field.
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1 Introduction

Let G be a group, Fin the family of its finite subgroups, and E(G,Fin) the
classifying space. Let L1 be the algebra of trace-class operators in an infinite
dimensional, separable Hilbert space over the complex numbers. Consider the
rational assembly map in homotopy algebraic K-theory

HG
p (E(G,Fin),KH(L1))⊗Q→ KHp(L

1[G]) ⊗Q. (1)

The rational KH-isomorphism conjecture ([1, Conjecture 7.3]) predicts that
(1) is an isomorphism; it follows from a theorem of Yu ([14], [4]) that it is
always injective. In the current article we prove the following.
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Theorem 2. Assume that (1) is surjective. Let n ≡ p+ 1 mod 2. Then:

i) The rational assembly map for the trivial family

HG
n (E(G, {1}),K(Z))⊗Q→ Kn(Z[G]) ⊗Q (3)

is injective.

ii) For every number field F , the rational assembly map

HG
n (E(G,Fin),K(F ))⊗Q→ Kn(F [G])⊗ Q (4)

is injective.

We remark that the K-theory Novikov conjecture asserts that part i) of the
theorem above holds for all G, and that part ii) is equivalent to the rational
injectivity part of the K-theory Farrell-Jones conjecture for number fields ([11,
Conjectures 51 and 58 and Proposition 70]).
The idea of the proof of Theorem 2 is to use an algebraic, equivariant version of
Karoubi’s multiplicative K-theory. The latter theory assigns groups MKn(A)
(n ≥ 1) to any unital Banach algebra A, which fit into a long exact sequence

HCtop
n−1(A)→MKn(A)→ Ktop

n (A)
Schtop

n→ HCtop
n−2(A).

Here HCtop is the cyclic homology of the completed cyclic module Ctop
n (A) =

A⊗̂ . . . ⊗̂A (n + 1 factors), chtop is the Connes-Karoubi Chern character with
values in its periodic cyclic homology HP top

∗ (A), and S is the periodicity op-
erator. Karoubi introduced a multiplicative Chern character

µn : Kn(A)→MKn(A). (5)

In particular if O is the ring of integers in a number field F one can consider
the composite

Kn(O)→ Kn(C)
hom(F,C) →MKn(C)

hom(F,C). (6)

By comparing this map with the Borel regulator, Karoubi showed in [7] that
(6) is rationally injective. It follows that

Kn(Z)→MKn(C) (7)

is rationally injective. In the current paper we assign, to every unital C-algebra
A, groups κn(A) (n ∈ Z) which fit into a long exact sequence

HCn−1(A/C)→ κn(A)→ KHn(L
1 ⊗C A)

TrSchn→ HCn−2(A/C).

Here HC(/C) is algebraic cyclic homology of C-algebras, ch is the algebraic
Connes-Karoubi Chern character and Tr is induced by the operator trace. We
also introduce a character

τn : Kn(A)→ κn(A) (n ∈ Z). (8)
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If A is a finite dimensional Banach algebra and n ≥ 1 then κn(A) = MKn(A)
and (5) identifies with (8) (Proposition 20). Both κ and τ have equivariant
versions, so that if X is a G-space and A is a C-algebra, we have an assembly
map

HG
n (X,κ(A))→ κn(A[G]).

Let Fcyc be the family of finite cyclic subgroups. We show in Proposition 30
that the map

HG
n (E(G,Fcyc), κ(C))→ HG

n (E(G,Fin), κ(C))

is an isomorphism, and compute HG
n (E(G,Fcyc), κ(C)) ⊗ Q in terms of the

finite cyclic subgroups of G. We use this and the rational injectivity of (7) to
show, in Proposition 44, that the map

HG
n (E(G, {1}),K(Z))→ HG

n (E(G,Fin),K(C))
τ
→ HG

n (E(G,Fin), κ(C)) (9)

is rationally injective. It is well-known [11, Proposition 76] that the map

HG
n (E(G,Fcyc),K(R))⊗Q→ HG

n (E(G,Fin),K(R))⊗Q

is an isomorphism for every unital ring R. In particular, we may substitute
Fcyc for Fin in (4). We use this together with Proposition 30 and the rational
injectivity of

Kn(F )→ Kn(C)
hom(F,C) →MKn(C)

hom(F,C)

(see Remark 24), to show in Proposition 48 that if m ≥ 1, Cycm is the family
of cyclic subgroups whose order divides m, and ζm is a primitive m-root of 1,
then the composite

HG
n (E(G, Cycm),K(F ))⊗Q //

++

HG
n (E(G, Cycm),K(C))hom(F (ζm),C) ⊗Q

τ

��
HG

n (E(G,Fcyc), κ(C))hom(F (ζm),C) ⊗Q

(10)
is injective. Since the map colimm E(G, Cycm)→ E(G,Fcyc) is an equivalence,
it follows that if the rational assembly map

HG
n (E(G,Fcyc), κ(C))⊗Q→ κn(C[G])⊗Q (11)

is injective then so are both (3) and (4). We show in Corollary 41 that if (1) is
surjective, then (11) is injective for n ≡ p+ 1 mod 2. This proves Theorem 2.
The rest of this paper is organized as follows. In Section 2 we define κn(A)
and the map τn : Kn(A) → κn(A). By definition, if n ≤ 0, then κn(A) =
KHn(A⊗CL

1) and τn is the identity map (16). We show in Proposition 20 that
if n ≥ 1 and A is a finite dimensional Banach algebra, then κn(A) = MKn(A)
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and τn = µn. Karoubi’s regulators and his injectivity results are recalled in
Theorem 23. We use Karoubi’s theorem to prove, in Lemma 26, that if F is a
number field, C a cyclic group of order m, n a multiple of m, and ζn a primitive
n-root of 1, then the composite

K∗(F [C])→ K∗(F (ζn)[C])→

K∗(C[C])hom(F (ζn),C) µ
→MK∗(C[C])hom(F (ζn),C)

is rationally injective. The main result of Section 3 is Proposition 30, which
computes HG

n (E(G,Fcyc), κ(C)) ⊗ Q in terms of group homology and of the
groups κ∗(C[C]) for C ∈ Fcyc. The resulting formula is similar to existing
formulas for equivariant K and cyclic homology, which are used in its proof
([3], [9], [10], [11],[12]). In Section 4 we show that the rational κ(C)-assembly
map is injective whenever the rational KH(L1)-assembly map is surjective
(Corollary 41). For this we use the fact that for every m ≥ 1, the assembly
map

HG
∗ (E(G, Cycm), HC(C/C))→ HC∗(C[G])

has a natural left inverse πm, which makes the following diagram commute

HG
∗ (E(G, Cycm),KH(L1))⊗Q //

TrSch

��

KH∗(L
1[G])⊗Q

TrSch

��
HG

∗−2(E(G, Cycm), HC(C/C)) HC∗−2(C[G]).
πmoo

Hence for every n we have an inclusion

TrSch(HG
n+1(E(G, Cycm),KH(L1))⊗Q) ⊂ πmTrSch(KHn+1(L

1[G])⊗Q).
(12)

We show in Proposition 39 that the rational assembly map

HG
n (E(G, Cycm), κ(C))⊗Q→ κn(C[G])⊗Q

is injective if and only if the inclusion (12) is an equality. Corollary 41 is
immediate from this. Section 5 is concerned with proving that (9) and (10)
are injective (Propositions 44 and 48). Finally in Section 6 we show that if the
identity holds in (12) for m = 1 then (3) is injective (Theorem 51) and that if
it holds for m, then

HG
n (E(G, Cycm),K(F ))⊗Q→ Kn(F [G])⊗Q

is injective for every number field F (Theorem 52).

2 The character τ : K(A)→ κ(A)

2.1 Definition of τ

Let A be a C-algebra and k ⊂ C a subfield. Write C(A/k) for Connes’ cyclic
module and HH(A/k), HC(A/k), HN(A/k) and HP (A/k) for the associated
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Hochschild, cyclic, negative cyclic and periodic cyclic chain complexes. When
k = Q we omit it from our notation; thus for example, HH(A) = HH(A/Q).
As usual, we write S, B and I for the maps appearing in Connes’ SBI sequence.
To simplify notation we shall make no distinction between a chain complex
and the spectrum the Dold-Kan corresponce associates to it. We write KH for
Weibel’s homotopy algebraic K-theory and Knil for the fiber of the comparison
map K → KH . We have a map of fibration sequences [2, §11.3]

Knil(A) //

ν

��

K(A) //

��

KH(A)

ch

��
HC(A)[−1]

B
// HN(A)

I
// HP (A).

Here ch is the Connes-Karoubi character. Write B for the algebra of bounded
operators in an infinite dimensional, separable Hilbert space, and L1 ⊳ B for
the ideal of trace class operators. Recall from [6] that HP satisfies excision;
in particular, the canonical map HP (L1 ⊗C A)→ HP (B ⊗C A : L1 ⊗C A) is a
quasi-isomorphism. We shall abuse notation and write Sch for the map that
makes the following diagram commute

KH(L1 ⊗C A)[+1]

Sch

��

ch // HP (L1 ⊗C A)[+1]

≀

��
HC(B ⊗C A : L1 ⊗C A)[−1] HP (B ⊗C A : L1 ⊗C A)[+1].

S
oo

(13)

By [5, Theorems 6.5.3 and 7.1.1], the map ν : Knil(B ⊗C A : L1 ⊗C A) →
HC(B ⊗C A : L1 ⊗C A)[−1] is an equivalence, and thus the map Sch fits into
a fibration sequence

KH(L1 ⊗C A)[+1]
Sch
−→ HC(B ⊗C A : L1 ⊗C A)[−1]→ K(B ⊗C A : L1 ⊗C A).

On the other hand the operator trace Tr : L1 → C induces a map of cyclic
modules

Tr : C(B ⊗C A : L1 ⊗C A)→ C(A/C) (14)

Tr(b0 ⊗ a0 ⊗ · · · ⊗ bn ⊗ an) = Tr(b0 · · · bn)a0 ⊗ · · · ⊗ an.

Note that Tr is defined on b0 · · · bn since at least one of the bi is in L1. In
particular Tr induces a chain map

Tr : HC(B ⊗C A : L1 ⊗C A)→ HC(A/C). (15)

We define κ(A) as the homotopy cofiber of the composite of (15) and the map
Sch of (13)

κ(A) := hocofi(KH(L1 ⊗C A)[+1]
TrSch
−→ HC(A/C)[−1]).
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Thus because, by definition, cyclic homology vanishes in negative degrees, we
have

κn(A) = KHn(L
1 ⊗C A) (n ≤ 0). (16)

By construction, there is an induced map K(B⊗C A : L1 ⊗C A)→ κ(A) which
fits into a commutative diagram

KH(L1 ⊗C A)[+1]

Sch

��

KH(L1 ⊗C A)[+1]

��
HC(B ⊗C A : L1 ⊗C A)[−1]

��

// HC(A/C)[−1]

��
K(B ⊗C A : L1 ⊗C A) // κ(A).

(17)

A choice of a rank one projection p gives a map A→ L1 ⊗C A, a 7→ p⊗ a, and
therefore a map K(A)→ K(B ⊗C A : L1 ⊗C A). We shall be interested in the
composite

τ : K(A)→ K(B ⊗C A : L1 ⊗C A)→ κ(A). (18)

2.2 Comparison with Karoubi’s multiplicative Chern character

Suppose now that A is a unital Banach algebra. Let ∆diff
• A = C∞(∆•,A)

be the simplicial algebra of A-valued C∞-functions on the standard simplices.
Write KV diff(A) for the diagonal of the bisimplicial space [n] 7→ BGL(∆diff

n A).
We have

Ktop
n (A) = πnKV diff(A) (n ≥ 1).

Consider the fiber F(A) = hofiber(BGL+(A)→ KV diff(A)). We have a homo-
topy fibration

ΩBGL+(A)→ ΩKV diff(A)→ F(A). (19)

Let ⊗̂ be the projective tensor product of Banach spaces and let Ctop(A) be
the cyclic module with Ctop(A)n = A⊗̂ . . . ⊗̂A (n+1 factors). Write HCtop(A)
and HP top(A) for the cyclic and periodic cyclic complexes of Ctop(A). In [8]
(see also [7, §7]), Max Karoubi constructs a map chrel : F(A)→ HCtop(A)[−1]
and defines his multiplicative K-groups as the homotopy groups

MKn(A) = πn(hofiber(KV diff(A)→ HCtop(A)[−2])) (n ≥ 1).

He further defines the multiplicative Chern character as the induced map µn :
Kn(A)→MKn(A) (n ≥ 1).

Proposition 20. Let A be a unital Banach algebra, and let n ≥ 1. Then
there is a natural map κn(A) → MKn(A) which makes the following diagram
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commute

Kn(A)
τn //

µn %%L
L

L
L

L
L

L
L

L
L

κn(A)

��
MKn(A).

If furthermore A is finite dimensional, then κn(A) → MKn(A) is an isomor-
phism.

Proof. Consider the simplicial ring

∆•A : [n] 7→ ∆nA = A[t0, . . . , tn]/〈1−
n
∑

i=0

ti〉.

Let KV (A) be the diagonal of the bisimplicial set BGL(∆•A). We have a
homotopy commutative diagram

KV (L1 ⊗C A) //

��

HC(B ⊗C A : L1 ⊗C A)[−2]

��

Tr // HC(A/C)[−2]

��
KV diff(L1⊗̂A) // HCtop(B⊗̂A : L1⊗̂A)[−2]

Tr // HCtop(A)[−2]

KV diff(A)

OO

// HCtop(A)[−2]

OO jjjjjjjjjjjjjjjj

jjjjjjjjjjjjjjjj

(21)

By [5, Lemma 3.2.1 and Theorem 6.5.3(ii)] and [13, Proposition 1.5] (or [2,
Proposition 5.2.3]), the natural map

KVn(L
1 ⊗C A)→ KHn(L

1 ⊗C A)

is an isomorphism for n ≥ 1. It follows from this that for n ≥ 1, the group
κn(A) is isomorphic to πn of the fiber of the composite of the first row of
diagram (21). On the other hand, by Karoubi’s density theorem, the map
KV diff(A) → KV diff(L1⊗̂A) is an equivalence; inverting it and taking fibers
and homotopy groups, we get a natural map κn(A) → MKn(A) (n ≥ 1).
The commutativity of the diagram of the proposition is clear. If now A is
finite dimensional, then A⊗̂V = A⊗C V for any locally convex vector space V .
Hence the map HC(A/C) → HCtop(A) is the identity map. Furthermore, by
[5, Theorem 3.2.1], the map KV (L1⊗CA)→ KV diff(L1⊗̂A) is an equivalence.
It follows that κn(A)→MKn(A) is an isomorphism for all n ≥ 1, finishing the
proof.

Example 22. We have

κn(C) =







C∗ n ≥ 1, odd.
Z n ≤ 0, even.
0 otherwise.
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2.3 Regulators

In view of Proposition 20 above we may substitute τ for µ in the theorem
below.

Theorem 23. [7, Théorème 7.20] Let O be the ring of integers in a number
field F . Write F ⊗R ∼= Rr1 ⊕Cr2; put r = r1+ r2. Then the inclusion O ⊂ Cr

followed by the the map µn : Kn(C)
r → MKn(C)

r induces a monomorphism
Kn(O)⊗Q→MKn(C)

r ⊗Q (n ≥ 1).

Remark 24. It follows from classical results of Quillen that the map Kn(O)→
Kn(F ) is a rational isomorphism for n ≥ 2. Thus Kn(F ) → MKn(C)

r is
rationally injective for n ≥ 2. Moreover, K1(F ) → MK1(C)

r is injective too,
since the map τ1 : K1(C) → MK1(C) is the identity of C∗. Observe that the
isomorphism F ⊗ R ∼= Rr1 ⊕ Cr2 of Theorem 23 is not canonical; it implies
choosing r2 nonreal embeddings F → C out of the total 2r2, so that no two of
them differ by complex conjugation. On the other hand the map

ι : F → Chom(F,C), ι(x)σ = σ(x)

is canonical. Moreover, the composite

regn(F ) : Kn(F )→ Kn(C)
hom(F,C) →MKn(C)

hom(F,C) (25)

is still a rational monomorphism. Indeed the map of the theorem is obtained
by composing (25) with a projection MKn(C)

hom(F,C) →MKn(C)
r.

Lemma 26. Let F be a number field, C a cyclic group of order m, n a multiple
of m and ζn a primitive n-th root of 1. Then the composite map

K∗(F [C])→ K∗(F (ζn)[C])
ι
→

K∗(C[C])hom(F (ζn),C) µ
→MK∗(C[C])hom(F (ζn),C)

is rationally injective.

Proof. Let Gm = Gal(F (ζm)/F ); if M is a Gm-module, write MGm for the
fixed points. By [9, Lemma 8.4], the map F [C] → F (ζm)[C] induces an iso-
morphism K∗(F [C])⊗Q→ K∗(F (ζm)[C])Gm ⊗Q. In particular, K∗(F [C])→
K∗(F (ζm)[C]) is rationally injective. Now if σ : F (ζm)→ E is a field homomor-
phism, then K∗(E[C]) = K∗(E)m, and the map K∗(F (ζm)[C]) → K∗(E[C])
decomposes into a direct sum of m copies of the map K∗(F (ζm)) → K∗(E).
In particular this applies when E ∈ {F (ζn),C}. In view of Theorem 23 and
Remark 24, it follows that both K∗(F (ζm)[C])→MK∗(C[C])hom(F (ζm),C) and
K∗(F (ζn)[C])→MK∗(C[C])hom(F (ζn),C) are rationally injective. Summing up,
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we have a commutative diagram

K∗(F [C])

��
K∗(F (ζm)[C]) //

��

MK∗(C[C])hom(F (ζm),C)

��
K∗(F (ζn)[C]) // MK∗(C[C])hom(F (ζn),C)

We have shown that the first vertical map on the left and the two horizontal
maps are rationally injective. Since the vertical map on the right is injective,
we conclude that the composite of the left column followed by the bottom
horizontal arrow is a rational monomorphism, finishing the proof.

3 Rational computation of equivariant κ-homology

Let G be a group and let OrG be its orbit category. For G/H ∈ OrG, let
G(G/H) = GG(G/H) be the transport groupoid. It follows from [4, §3] that
the diagram (17) can be promoted to a commutative diagram of OrG-spectra
whose columns are homotopy fibrations

KH(L1
⊗C A[G(G/H)])[+1]

Sch

��

TrSch

++XXXXXXXXXXXXXXXXXXXXXX

HC(B ⊗C A[G(G/H)] : L1
⊗C A[G(G/H)])[−1] //

��

HC(A[G(G/H)]/C)[−1]

��
K(B ⊗C A[G(G/H)] : L1

⊗C A[G(G/H)]) // κ(A[G(G/H)]).

If now X is any G-simplicial set, then taking G-equivariant homology yields a
diagram whose columns are again homotopy fibrations

HG(X,KH(L1 ⊗C A))[+1]

Sch

��

HG(X,KH(L1 ⊗C A))[+1]

��
HG(X,HC(B ⊗C A : L1 ⊗C A))[−1]

Tr //

��

HG(X,HC(A/C))[−1]

��
HG(X,K(B ⊗C A : L1 ⊗C A)) // HG(X,κ(A)).

(27)

Hence

HG(X,κ(A)) = hocofi(HG(X,KH(L1 ⊗C A))[+1]→ HG(X,HC(A/C))[−1]).
(28)
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Similarly, a choice of rank one projection induces a map of OrG-spectra

K(A[G(G/H)])→ K(B ⊗C A[G(G/H)] : L1 ⊗C A[G(G/H)]).

Taking equivariant homology we obtain a map

HG(X,K(A))→ HG(X,K(B ⊗C A : L1 ⊗C A)).

Composing this map with the bottom arrow in diagram (27) we obtain an
equivariant character

τ : HG(X,K(A))→ HG(X,κ(A)). (29)

In what follows we shall be interested in several families of finite subgroups
of a given group. We write Fin and Fcyc for the family of finite subgroups
and the subfamily of those finite subgroups that are cyclic. If m ≥ 1 we write
Cycm for the family of those cyclic subgroups whose order divides m. If G is
a group and F a family of subgroups, we write E(G,F) for the corresponding
classifying space. If H ⊂ G is a subgroup in the family F , we write (H) for
the conjugacy class of H and

(F) = {(H) : H ∈ F}

for the set of all conjugacy classes of subgroups of G in the family F . If G is a
group and C ⊂ G is a cyclic subgroup, we write NGC for its normalizer, ZGC
for its centralizer, and put

WGC = NGC/ZGC.

If C ⊂ G is a finite cyclic group, and A(C) is its Burnside ring, then there is a
canonical isomorphism A(C) ⊗ Q ∼= QFinC . We write θC ∈ A(C) ⊗ Q for the
element corresponding to the characteristic function χC ∈ QFinC .

Proposition 30. Let G be a group. Then the map HG
∗ (E(G,Fcyc), κ(C)) →

HG
∗ (E(G,Fin), κ(C)) is an isomorphism and

HG
n (E(G,Fcyc), κ(C)) ⊗Q =

⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WGC] θC · κq(C[C]) ⊗Q (31)

Proof. IfH is a finite subgroup, then the equivalenceKH(L1)
∼
−→ Ktop(L1)

∼
←

Ktop(C) induces an equivalence KH(L1[G(G/H)])
∼
→ Ktop(C∗(G(G/H))).

Hence if X is a (G,Fin)-complex, we have an equivalence

HG(X,KH(L1))
∼
−→ HG(X,Ktop(C)). (32)

Thus the map

HG(E(G,Fcyc),KH(L1))→ HG(E(G,Fin),KH(L1))
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is a weak equivalence because

HG(E(G,Fcyc),Ktop(C))→ HG(E(G,Fin),Ktop(C))

is ([11, Proposition 69]). Similarly,

HG(E(G,Fcyc), HC(C/C))→ HG(E(G,Fin), HC(C/C))

is an equivalence (see [12, §9] or [3, §7]). From (28) and what we have just
proved, it follows that HG(E(G,Fcyc), κ(C)) → HG(E(G,Fin), κ(C)) is an
equivalence. This shows the first assertion of the proposition. From (32),
[10, Theorem 0.7] and [11, Theorem 172], we get

HG
n (E(G,Fcyc),KH(L1))⊗Q =

⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WGC] θC ·K
top
q (C[C])⊗Q.

Next write conf (G) for the conjugacy classes of elements of G of finite order,
and Gen(C) for the set of all generators of C ∈ Fcyc. By using [12, Lemma
7.4] and the argument of the proof of [4, Proposition 2.2.1] we obtain

HG
n (E(G,Fcyc), HC(C/C)) =

=
⊕

p+q=n

⊕

(g)∈conf (G)

Hp(ZG(〈g〉),Q)⊗HCq(C/C)

=
⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WG(C)] map(Gen(C), HCq(C/C))

=
⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WG(C)] θC ·HCq(C[C]/C)

It follows from the proof of Proposition 20 that under the isomorphism (32) and
the identity HG

∗ (−, HC(C/C)) = HG
∗ (−, HCtop(C)) the map TrSch identifies

with TrSchtop. Hence, by naturality, the map

(TrSch)n : HG
n+1(E(G,Fcyc),KH(L1))→ HG

n−1(E(G,Fcyc), HC(C/C))

is induced by the maps

TrSchtop
q : Ktop

q+1(C[C])→ HCtop
q−1(C[C]) = HCq−1(C[C]/C).

The computation of HG
n (E(G,Fin), κ(C))⊗Q is now immediate from this.

Remark 33. We have an equivalence of (G,Fcyc)-spaces

colim
m
E(G, Cycm)

∼=
−→ E(G,Fcyc)
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where the colimit is taken with respect to the partial order of divisibility. Hence
for every OrG-spectrum E,

HG
∗ (E(G,Fcyc), E) = colim

m
HG

∗ (E(G, Cycm), E).

Moreover it is clear from the proof of Proposition 30 that for every m the map

HG
∗ (E(G, Cycm), κ(C))⊗Q→ HG

∗ (E(G,Fcyc), κ(C))⊗Q

is the inclusion

⊕

p+q=n

⊕

(C)∈(Cycm)

Hp(ZGC,Q)⊗Q[WGC] θC · κq(C[C])⊗Q →֒

⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WGC] θC · κq(C[C])⊗Q.

4 Conditions equivalent to the rational injectivity of the κ as-

sembly map

Let G be a group. As shown in the proof of Proposition (30), we have a direct
sum decomposition

HG
n (E(G,Fcyc), HC(C/C)) =

⊕

p+q=n

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WG(C)] θC ·HCq(C[C]/C).

By the same proof, for each p, q we have

⊕

(C)∈(Fcyc)

Hp(ZGC,Q)⊗Q[WG(C)] θC ·HCq(C[C]/C) =

⊕

(g)∈conf (G)

Hp(ZG〈g〉,Q)⊗HCq(C/C). (34)

On the other hand we also have a decomposition

HCn(C[G]/C) =
⊕

(g)∈con(G)

HC(g)
n (C[G]/C).

The assembly map identifies

HG
n (E(G,Fcyc), HC(C/C)) =

⊕

(g)∈conf (G)

HC(g)
n (C[G]/C).

Thus there is a projection

πFcyc
n : HCn(C[G]/C)→ HG

n (E(G,Fcyc), HC(C/C))
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which is left inverse to the asembly map. By composing the map

TrSch : KHn+1(L
1[G])→ HCn−1(C[G]/C)

with the projection above, we obtain a map

πFcyc
n−1 TrSch : KHn+1(L

1[G])⊗Q→ HG
n−1(E(G,Fcyc), HC(C/C)). (35)

Next, if m ≥ 1 then

HG
n (E(G, Cycm), HC(C/C)) =

⊕

(g)∈conf (G),gm=1

HC(g)
n (C[G]/C).

Thus we also have a map

πCycm
n−1 TrSch : KHn+1(L

1[G])⊗Q→ HG
n−1(E(G, Cycm), HC(C/C)). (36)

In the following proposition we use the following notation. We write

HG
n (E(G, Cycm), κ(C)⊗Q)+ :=

⊕

p+q=n,q≥1

⊕

(C)∈(Cycm)

Hp(ZGC,Q)⊗Q[WGC] θC · κq(C[C]) ⊗Q (37)

and

HG
n (E(G, Cycm), κ(C)⊗Q)− :=

⊕

p+q=n,q≤0

⊕

(C)∈(Cycm)

Hp(ZGC,Q)⊗Q[WGC] θC · κq(C[C]) ⊗Q. (38)

Note that, by Proposition 30, HG
n (E(G, Cycm), κ(C)) ⊗ Q is the direct sum of

(37) and (38).

Proposition 39. Let G be a group, n ∈ Z and m ≥ 1. The following are
equivalent.

i) The rational assembly map

HG
n (E(G, Cycm), κ(C))⊗Q→ κn(C[G])⊗Q (40)

is injective.

ii) The restriction of the rational assembly map to the summand (37) is injec-
tive.

iii) The image of the map (36) coincides with the image of

TrSch : HG
n+1(E(G, Cycm),KH(L1))⊗Q→ HG

n−1(E(G, Cycm), HC(C/C)).
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Proof. It is clear that i) implies ii). Assume that ii) holds and consider the
following commutative diagram with exact columns:

HG
n+1(E(G, Cycm),KH(L1))⊗Q

TrSch

��

// KHn+1(L
1[G])⊗Q

��(36)tthhhhhhhhhhhhhhhhhh

HG
n−1(E(G, Cycm), HC(C/C)) //

��

HCn−1(C[G])

��
HG

n (E(G, Cycm), κ(C))⊗Q

��

// κn(C[G])⊗Q

��
HG

n (E(G, Cycm),KH(L1))⊗Q // KHn(L
1[G])⊗Q.

Let x be an element of the kernel of the map of part i), that is of the first map
above bottom in the diagram above. Write x = x+ + x−, with x+ in (37) and
x− in (38). The image of x under the vertical map must be zero, since by Yu’s
theorem ([14], see also [4]), the bottom horizontal map is injective. By (16) and
the proof of Proposition 30, this implies that x− = 0, proving that ii) implies
i). Next assume y is an element in the image of (36) which is not in the image
of the vertical map TrSch in the diagram above. Then the image of y under
the vertical map is a nonzero element of the kernel of the next horizontal map.
Thus i) implies iii). The converse is also clear, using Yu’s theorem again.

Corollary 41. Let G be a group and let n, p ∈ Z with n ≡ p + 1 mod 2.
Assume that the map

HG
p (E(G,Fcyc),KH(L1))⊗Q→ KHp(L

1[G]) ⊗Q (42)

is surjective. Then the map (40) is injective for every m ≥ 1.

Proof. By Yu’s theorem ([14],[4]) the map (42) is always injective; under our
current assumptions, it is an isomorphism. Moreover, by [5, Theorem 6.5.3], the
groups KHp(L

1[G]) depend only on the parity of p. It follows that condition
iii) of Proposition 39 holds for every m and every n ≡ p + 1 mod 2. This
concludes the proof.

5 Rational injectivity of the equivariant regulators

Let G be a group. By composing the equivariant character (29) with the map
induced by the inclusion Z ⊂ C we obtain a map

HG
∗ (E(G, {1}),K(Z))→ HG

∗ (E(G,Fin),K(C))
τ
→ HG

∗ (E(G,Fin), κ(C)).
(43)

Proposition 44. The map (43) is rationally injective.
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Proof. We have

HG
n (E(G, {1}),K(Z))⊗Q =

⊕

p+q=n

Hp(G,Q)⊗Kq(Z)⊗Q. (45)

By Theorem 23, the regulators Kq(Z)→ Kq(C)→ κq(C) = MKq(C) induce a
monomorphism from (45) to

⊕

p+q=n

Hp(G,Q)⊗ κq(C)⊗Q. (46)

The map (43) tensored with Q is the composite of the above monomorphism
with the inclusion of (46) as a direct summand in (31).

Let F be a number field, G a group and m ≥ 1. Let ζm be a primitive mth

root of 1. The map E(G, Cycm)→ E(G,Fcyc), together with the inclusion

F ⊂ F (ζm)
ι
→ Chom(F (ζm),C)

and the character τ : K(C)→ κ(C), induce a homomorphism

HG
∗ (E(G, Cycm),K(F ))→ HG

∗ (E(G,Fcyc), κ(C))hom(F (ζm),C). (47)

Proposition 48. The map (47) is rationally injective.

Proof. By [9, Theorem 0.3], we have

HG
n (E(G, Cycm),K(F )) =

⊕

p+q=n

⊕

(C)∈(Cycm)

Hp(ZGC,Q)⊗Q[ZGC] θC ·Kq(F [C]) ⊗Q. (49)

By Lemma 26 the maps Kq(F [C]) → κq(C[C])hom(F (ζm),C) with C ∈ Cycm
induce a rational monomorphism from (49) to

⊕

p+q=n

⊕

(C)∈(Cycm)

Hp(ZGC,Q)⊗Q[ZGC] θC · κq(C[C])hom(F (ζm),C). (50)

The map (47) tensored with Q is the composite of the above monomorphism
with the inclusion of (50) as a summand in (31).

6 Comparing conjectures and assembly maps

Theorem 51. Let G be a group. Assume that the equivalent conditions of
Proposition 39 hold for G with m = 1. Then the assembly map

HG
n (E(G, {1}),K(Z))→ Kn(Z[G])

is rationally injective. In particular this is the case whenever G satisfies the
rational KH-isomorphism conjecture with L1-coefficients.
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Proof. Immediate from Proposition 44 and Corollary 41.

Theorem 52. Let G be a group and m ≥ 1. Assume that the equivalent
conditions of Proposition 39 hold for G and m. Then for every number field
F , the assembly map

HG
n (E(G, Cycm),K(F ))→ Kn(F [G])

is rationally injective. If moreover the condition holds for all m –as is the
case, for example, if G satisfies the rational KH-isomorphism conjecture with
L1-coefficients- then G satisfies the rational injectivity part of the K-theory
isomorphism conjecture with coefficients in any number field.

Proof. Immediate from Proposition 48 and Corollary 41.
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