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Abstract. We study Lie algebroids in positive characteristic and moduli
spaces of their modules. In particular, we show a Langton’s type theorem
for the corresponding moduli spaces. We relate Langton’s construction to
Simpson’s construction of gr-semistable Griffiths transverse filtration. We
use it to prove a recent conjecture of Lan-Sheng-Zuo that semistable systems
of Hodge sheaves on liftable varieties in positive characteristic are strongly
semistable.
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Introduction

In this paper we give a general approach to relative moduli spaces of modules over Lie
algebroids. As a special case one recovers Simpson’s “non-abelian Hodge filtration”
moduli space (see [Si4] and [Si5]). This allows to consider Higgs sheaves and sheaves
with integrable connections at the same time as objects corresponding to different
fibers of the relative moduli space of modules over a deformation of a Lie algebroid
over an affine line.
A large part of the paper is devoted to generalizing various facts concerning vector
bundles with connections to modules over Lie algebroids. Inparticular, we introduce
restricted Lie algebroids, which generalize Ekedahl’s 1-foliations [Ek]. In positive
characteristic we define ap-curvature for modules over restricted Lie algebroids. This
leads to a deformation of the morphism given byp-curvature on the moduli space of

1Author’s work was partially supported by Polish National Science Centre (NCN) contract number
2012/07/B/ST1/03343.

Documenta Mathematica 19 (2014) 509–540



510 Adrian Langer

modules to the Hitchin morphism corresponding to the trivial Lie algebroid structure.
In the special case of bundles with connections on curves this deformation was already
studied by Y. Laszlo and Ch. Pauly [LP].
We prove Langton’s type theorem for the moduli spaces of modules over Lie alge-
broids. We compare it via Rees’ construction with Simpson’sinductive construction
of gr-semistable Griffiths transverse filtration (see [Si5]), concluding that the latter
must finish.
This leads to the main application of our results. Namely, weobtain a canonical
gr-semistable Griffiths transverse filtration on a module over a Lie algebroid. This im-
plies a recent conjecture of Lan-Sheng-Zuo that semistablesystems of Hodge sheaves
on liftable varieties in positive characteristic are strongly semistable.
The rank 2 case of this conjecture was proven in [LSZ], the rank 3 case in [Li]. Re-
cently, independently of the author Lan, Sheng, Yang and Zuo[LSYZ] also proved the
Lan-Sheng-Zuo conjecture using a similar approach. However, they give a different
proof that Simpson’s inductive construction must finish. They also obtain a slightly
weaker result proving their conjecture only for an algebraic closure of a finite field.

The results of this paper are used in [La3] to prove Bogomolov’s type inequality for
Higgs sheaves on varieties liftable modulop2.

0.1 Notation

If X is a scheme andE is a quasi-coherentOX-module then we setE∗ =
H omOX (E,OX) andV(E) = Spec(S•E).
Let S be a scheme of characteristicp (i.e., OS is anFp-algebra). ByF r

S : S→ S we
denote ther-th absolute Frobenius morphismof S which corresponds to thepr -th
power mapping onOS. If X is anS-scheme, we denote byX(1/S) the fiber product of
X andS over the (1-st) absolute Frobenius morphism ofS. The absolute Frobenius
morphism ofX induces therelative Frobenius morphism FX/S : X→ X(1/S).

Let X be a projective scheme over some algebraically closed fieldk. Let OX(1) be
an ample line bundle onX. For any coherent sheafE on X we define itsHilbert
polynomialby P(E)(n) = χ(X,E(n)) for n∈ Z. If d is the dimension of the support
of E then we can write

P(E)(n) =
r(E)nd

d!
+ lower order terms inn.

The (rational) numberr = r(E) is called thegeneralized rankof E (note that ifX is
not integral then the generalized rank of a sheaf depends on the polarization). The
quotientp(E) = P(E)

r(E) is called thenormalized Hilbert polynomialof E.

In caseX is a variety then for a torsion free sheafE the generalized rankr(E) is a
product of the degree ofX with respect toOX(1) and of the usual rank.
If X is normal andE is a rankr torsion free sheaf onX then we define theslopeµ(E)
of E as the quotient of the degree of detE = (

∧r E)∗∗ with respect toOX(1) by the
rank r. In some cases we consider generalized slopes defined with respect to a fixed
1-cycle class, coming from a collection of nef divisors onX.
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Let us recall thatE is slope semistableif for every subsheafE′ ⊂ E we haveµ(E′)≤
µ(E).

1 Moduli spaces of modules over sheaves of rings of differential

operators

In this section we recall some definitions and the theorem on existence of moduli
spaces of modules over sheaves of rings of differential operators. This combines the
results of Simpson [Si2] with the results of [La1] and [La2].
Let S be a locally noetherian scheme and letf : X → S be a scheme of finite type
overS. A sheaf of (associative and unital)OS-algebrasA on X is a sheafA onX of
(possibly non-commutative) rings ofOX-bimodules such that the image off−1OS→
A is contained in the center ofA .
Let us recall after [Si2] that asheaf of rings of differential operators on X over Sis a
sheafΛ of OS-algebras onX, with a filtrationΛ0 ⊂ Λ1 ⊂ ... by subsheaves of abelian
subgroups satisfying the following properties:

1. Λ =
⋃∞

i=0 Λi andΛi ·Λ j ⊂ Λi+ j ,

2. the image ofOX → Λ is equal toΛ0,

3. the left and rightOX-module structures on Gri(Λ) := Λi/Λi−1 coincide and the
OX-modules Gri(Λ) are coherent,

4. the sheaf of gradedOX-algebras Gr(Λ) :=
⊕∞

i=0Gri(Λ) is generated in degree
1, i.e., the canonical graded morphism from the tensorOX-algebraT•Gr1(Λ)
of Gr1(Λ) to Gr(Λ) is surjective.

Note that in positive characteristic, the sheaf of rings of crystalline differential opera-
tors (see [BMR] or Subsection 2.2) is a sheaf of rings of differential operators, but the
sheaf of rings of usual differential operators is not as it almost never is generated in
degree 1.

Assume thatS is a scheme of finite type over a universally Japanese ringR. Let
f : X→ S be a projective morphism ofR-schemes of finite type with geometrically
connected fibers and letOX(1) be an f -very ample line bundle. LetΛ be a sheaf of
rings of differential operators onX overS.
A Λ-moduleis a sheaf of (left)Λ-modules onX which is quasi-coherent with respect
to the inducedOX-module structure.
Let T → S be a morphism ofR-schemes withT locally noetherian overS. Let us
setXT = X×ST and letp be the projection ofXT ontoX. ThenΛT = OXT ⊗p−1OX

p−1Λ has a natural structure of a sheaf of rings of differential operators onXT overT.
Moreover, ifE is aΛ-module onX then the pull backET = p∗E has a natural structure
of a ΛT -module.
Note that ifE is aΛ-module andE′ ⊂ E is a quasi-coherentOX-submodule such that
Λ1 ·E′⊂E′ thenE′ has a unique structure ofΛ-module compatible with theΛ-module
structure onE (i.e., such thatE′ is aΛ-submodule ofE).
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Let Y be a projective scheme over an algebraically closed fieldk (with fixed polar-
ization) and letΛY be a sheaf of rings of differential operators onY. Let E be a
ΛY-module which is coherent as anOY-module. E is calledGieseker (semi)stable
if it is of pure dimension as anOY-module (i.e., all its associated points have the
same dimension) and for anyΛY-submoduleF ⊂ E we have inequalityp(F)< p(E)
(p(F)≤ p(E), respectively) of normalized Hilbert polynomials.
Every Gieseker semistableΛY-moduleE has a filtration 0=E0⊂E1⊂ ...⊂Em=E by
ΛY-submodules such that the associated graded⊕m

i=0Ei/Ei−1 is aGieseker polystable
ΛY-module (i.e., it is a direct sum of Gieseker stableΛY-modules with the same nor-
malized Hilbert polynomial). Such a filtration is called aJordan–Ḧolder filtration of
this ΛY-module.

Now let us go back to the relative situation, i.e.,Λ onX overS(overR).
A family of Gieseker semistableΛ-modules on the fibres of pT : XT = X ×ST →
T is a ΛT -moduleE on XT which is T-flat (as anOXT -module) and such that for
every geometric pointt of T the restriction ofE to the fibreXt is pure and Gieseker
semistable as aΛt -module.
We introduce an equivalence relation∼ on such families by saying thatE ∼ E′ if and
only if there exists an invertibleOT -moduleL such thatE′ ≃ E⊗ p∗TL.
Let us define the moduli functor

MΛ(X/S,P) : (Sch/S)o→ Sets

from the category of locally noetherian schemes overSto the category of sets by

MΛ(X/S,P)(T) =







∼ equivalence classes of families of Gieseker

semistableΛ-modules on the fibres ofXT → T,

which have Hilbert polynomialP.







.

Then we have the following theorem summing up the results of Simpson and the
author (see [Si2, Theorem 4.7], [La1, Theorem 0.2] and [La2,Theorem 4.1]).

THEOREM 1.1. Let us fix a polynomial P. Then there exists a quasi-projective S-
scheme MΛ(X/S,P) of finite type over S and a natural transformation of functors

ϕ : MΛ(X/S,P)→ HomS(·,M
Λ(X/S,P)),

which uniformly corepresents the functor MΛ(X/S,P).
For every geometric point s∈ S the induced mapϕ(s) is a bijection. Moreover, there
is an open scheme MΛ,s(X/S,P)⊂MΛ(X/S,P) that universally corepresents the sub-
functor of families of geometrically Gieseker stableΛ-modules.

In general, for every locally noetherianS-schemeT we have a well defined morphism
MΛ(X/S,P)×ST → MΛT (XT/T,P) which is a bijection of sets ifT is a geometric
point ofS.
Let us recall that a schemeMΛ(X/S,P) uniformly corepresents MΛ(X/S,P) if for
every flat base changeT → S the fiber productMΛ(X/S,P)×ST corepresents the
fiber product functor HomS(·,T)×HomS(·,S) MΛ(X/S,P).
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2 Lie algebroids

2.1 Lie algebroids and de Rham complexes

Let f : X→ Sbe a morphism of schemes. Asheaf ofOS-Lie algebras on Xis a pair
(L, [·, ·]L) consisting of a (left)OX-moduleL (which is an f−1OS-bimodule) with a
morphism off−1OS-modules[·, ·]L : L⊗ f−1OS

L→ L, which is alternating and which
satisfies the Jacobi identity. A homomorphism of sheaves ofOS-Lie algebras onX is
anOX-linear morphismL→ L′ which preserves the Lie bracket. As usual forx∈ L(U)
we define adx : L(U)→ L(U) by (adx)(y) = [x,y]L.

Let TOS(L) =
⊕

n≥0

n
︷ ︸︸ ︷

L⊗ f−1OS
...⊗ f−1OS

L be the tensor algebra ofL over f−1OS (it is a
non-commutativef−1OS-algebra). Let us recall that theuniversal enveloping algebra
UOS(L) of a Lie algebra sheaf(L, [·, ·]L) is defined as the quotient ofTOS(L) by the
two-sided ideal generated byx⊗ y− y⊗ x− [x,y]L for all local sectionsx,y∈ L.
The most important example of a sheaf ofOS-Lie algebras onX is the relative tangent
sheafTX/S=DerOS(OX ,OX) with a natural bracket given by[D1,D2] =D1D2−D2D1

for localOS-derivationsD1, D2 of OX .

Definition 2.1. An OS-Lie algebroid on Xis a triple(L, [·, ·]L,α) consisting of a
sheaf ofOS-Lie algebras(L, [·, ·]L) onX and a homomorphismα : L→ TX/S, x→ αx,
of sheaves ofOS-Lie algebras onX, which satisfies the following Leibniz rule

[x, f y]L = αx( f )y+ f [x,y]L

for all local sectionsf ∈OX andx,y∈ L (in the formula we treatαx as anOS-derivation
of OX). We say thatL is smoothif it is coherent and locally free as anOX-module.L
is quasi-smoothif it is coherent and torsion free as anOX-module.

The mapα in the above definition is usually calledthe anchor. A Lie algebroid is a
sheaf of Lie-Rinehart algebras (see [Ri]). It is also a special case of the more general
notion of a Lie algebra in a topos defined by Illusie (see [Il, Chapitre VIII, Definition
1.1.5]).
A homomorphism ofOS-Lie algebroids LandL′ on X is a homomorphismL→ L′ of
sheaves ofOS-Lie algebras onX which commutes with the anchors.
Note that anOS-Lie algebroid onX with the zero anchor map corresponds to a sheaf
of OX-Lie algebras.

Definition 2.2. A de Rham complex on X over Sis a pair(
∧•M,d•M) consisting

of the exterior algebra
∧•M :=

∧•
OX

M of anOX-moduleM and anOS-anti-derivation
d•M :

∧•M →
∧•M of degree 1 (i.e.,d•M(x∧ y) = (d•Mx)∧ y+ (−1) jx∧ d•My for all

local sectionsx∈
∧ j M andy∈

∧•M) such that(d•M)2 = 0. We say that(
∧•M,d•M) is

smoothif M is coherent and locally free.

A de Rham complex is a special case of a sheaf of graded-commutative differen-
tial graded algebras. A special case of a de Rham complex is the de Rham com-
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plex (Ω•X/S,d
•
X/S), which is the unique de Rham complex extending the canoni-

cal OS-derivationdX/S : OX → ΩX/S (uniqueness follows becauseΩX/S is gener-
ated bydX/SOX as a leftOX-module). By the universal property ofdX/S we have
DerOS(OX,M)≃HomOX (ΩX/S,M) and hence for every de Rham complex(

∧•M,d•M)
we have a unique morphism of de Rham complexes(Ω•X/S,d

•
X/S)→ (

∧•M,d•M). This
morphism induces a well defined map on the hypercohomology groups:

H i
DR(X/S) :=H•(Ω•X/S)→H•(

∧•
M).

To everyOS-Lie algebroid(L, [·, ·]L,α) on X we can associate a de Rham complex
(
∧•M,d•M) onX overSfor M = L∗. This is done by the following well known formula

generalizing the usual exterior differential:

(dMm)(l1, ..., lk+1) = ∑k+1
i=1 (−1)i+1αl i (m(l1, ..., l̂ i , ..., lk+1))

+ ∑1≤i< j≤k+1(−1)i+ jm([l i , l j ]L, l1, ..., l̂ i , ..., l̂ j , ..., lk+1)

for m∈
∧k M andl1, ..., lk+1 ∈ L. This gives a functor from the category of Lie alge-

broids to the category of de Rham complexes.
On the other hand, to every de Rham complex(

∧•M,d•M) on X over S we can as-
sociate a Lie algebroid structure onL = M∗. The anchorL → TX/S = (ΩX/S)

∗ is
obtained as the transpose of theOX-homomorphismΩX/S→M corresponding to the
OS-derivationdM : OX → M. The bracket onL can be read off the above formula
definingdM : M→

∧2M. This provides a functor in the opposite direction: from the
category of de Rham complexes to the category of Lie algebroids. These functors are
quasi-inverse on subcategories of smooth objects.

If L is a smoothOS-Lie algebroid onX then the corresponding de Rham complex is
denoted by(Ω•L,d•L). In this case we set

H i
DR(L) :=Hi(Ω•L,d•L).

We have the following standard spectral sequence associated to the de Rham complex
of L:

Ei j
1 = H j(X/S,Ωi

L)⇒H i+ j
DR (L).

2.2 Universal enveloping algebra of differential operators

Definition 2.3. A sheaf ofOS-Poisson algebras on Xis a pair(A ,{·, ·}) consist-
ing of a sheafA of commutative, associative and unitalOX-algebras with a Poisson
bracket{·, ·} such that(A ,{·, ·}) is a sheaf ofOS-Lie algebras onX satisfying the
Leibniz rule

{x,y ·z}= {x,y} ·z+ y · {x,z}

for all x,y,z∈A .
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Let Λ be a sheaf of rings of differential operators onX over S such thatΛ0 = OX .
Let us assume thatΛ is almost commutative, i.e., the associated graded Gr(Λ) is a
sheaf of commutativeOX-algebras. Then Gr(Λ) has a natural structure of a sheaf of
OS-Poisson algebras onX with the Poisson bracket given by

{[x], [y]} :=
(
xy− yx modΛi+ j−2

)
∈Gri+ j−1(Λ),

where[x] ∈ Gri(Λ) is the class ofx∈ Λi and[y] ∈ Gr j(Λ) is the class ofy∈ Λ j . The
Poisson bracket induces anOS-Lie algebroid structure on Gr1(Λ). The Lie bracket on
Gr1(Λ) is equal to the Poisson bracket and the anchor mapα : Gr1(Λ)→ TX/S is given
by sending[x] to theOS-derivationy→ {[x],y}, y∈OX = Gr0(Λ).
On the other hand, ifL is anOS-Lie algebroid onX then we can associate toL a
sheaf of rings of differential operators onX overS in the following way. We define an
OS-Lie algebra structure oñL = OX⊕L by setting

[ f + x,g+ y]L̃ = αx(g)−αy( f )+ [x,y]L

for all local sectionsf ,g ∈ OX andx,y∈ L. Let UOS(L̃) be the universal enveloping
algebra ofL̃ and letŨOS(L̃) be the sheaf of subalgebras (without unit!) generated by
the image of the canonical mapiL̃ : L̃→UOS(L̃) (note that in general this map need not
be injective). We defineΛL as the quotient ofŨOS(L̃) by the two-sided ideal generated
by all elements of the formiL̃( f )iL̃(x)− iL̃( f x) for all f ∈ OX andx∈ L̃. Let ΛL, j be
the leftOX-submodule ofΛL generated by products of at mostj elements of the image
of L in ΛL. This defines a filtration ofΛL equipping it with structure of sheaf of rings
of differential operators (since the canonical graded morphismS•Gr1(ΛL)→Gr(ΛL)
is surjective, the constructedΛL is almost commutative). We callΛL the universal
enveloping algebra of differential operators associated to L.
By the Poincare-Birkhoff-Witt theorem, if the Lie algebroid L is smooth thenL→
Gr1(ΛL) is an isomorphism and the canonical epimorphismS•L→Gr(ΛL) is an iso-
morphism of sheaves of gradedOX-algebras (see [Ri, Theorem 3.1]). This implies
that if L is quasi-smooth then the canonical mapL→ ΛL is injective.
If L = TX/S and the anchor map is identity, thenΛL is denoted byDX/S and it is called
the sheaf of crystalline differential operators(see [BMR]). In [BO] the authors call
it the sheaf of PD differential operators. In the characteristic zero case the sheafΛL

and the correspondence between Lie algebroids and sheaves of rings of differential
operators was studied by Simpson in [Si2, Theorem 2.11] withsubsequent corrections
by Tortella in [To, Theorem 4.4].

We can also consider twisted versions of sheaves of rings of differential operators
associated to a Lie algebroid (see [BB] and [To]).
Let Λ be an almost commutative sheaf of rings of differential operators onX over
S such thatΛ0 = OX . ThenΛ1 has anOS-Lie algebra structure onX given by the
usual Lie bracket[·, ·] coming fromΛ and the anchor map given by sendingx ∈ Λ1

to f → [x, f ]. ThenΛ1→Gr1(Λ) is a homomorphism ofOS-Lie algebras with kernel
being the sheafOX (with a trivial OS-Lie algebroid structure).
The following definition is motivated by [BB, Definition 2.1.3]:
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Definition 2.4. A generalizedOS-Picard Lie algebroidonX is anOS-Lie algebroid
L̃ equipped with a section 1L̃ of L̃ inducing an exact sequence ofOS-Lie algebroids

0→OX → L̃→ L→ 0,

whereOX is taken with the trivialOS-Lie algebroid structure.

To any generalizedOS-Picard Lie algebroid̃L we can associate an almost commuta-
tive sheaf of rings of differential operatorsΛ̃L̃ on X overS such thatΛ̃L̃,0 = OX and
Λ̃L̃,1 = L̃. Λ̃L̃ is constructed as a quotient of the universal enveloping algebra of dif-
ferential operatorsΛL̃ by the two-sided ideal generated by 1L̃−1. As in [BB, Lemma
2.1.4], this defines a fully faithful functor from the category of generalized Picard
Lie algebroids to the category of almost commutative sheaves of rings of differential
operators.
The analogous construction can be also found in [To], where the author constructs̃ΛL̃
by gluing local pieces.

3 Modules over Lie algebroids

3.1 Modules with generalized connections

Let X be anS-scheme. LetM be a coherentOX-module with anOS-derivationdM :
OX → M. A dM-connectionon a coherentOX-moduleE is anOS-linear morphism
∇ : E→ E⊗OX M satisfying the following Leibniz rule

∇( f e) = f ∇(e)+e⊗dM( f )

for all local sectionsf ∈ OX ande∈ E.
Note that notion ofdM-connection depends on the choice of derivationdM and not
only the sheafM. For example ifM = ΩX/S then the standard derivationdX/S leads
to a sheaf with a usual connection whereas the zero derivation leads to a Higgs sheaf
(but without any integrability condition).

3.2 Generalized Higgs sheaves

Assume that(
∧•M,d•M) is a de Rham complex and letE be a coherentOX-module.

Then adM-connection∇ : E→ E⊗M can be extended to a morphism∇i : E⊗OX
∧iM→ E⊗OX

∧i+1M by setting

∇i(e⊗ω) = e⊗dMω +(−1)i∇(e)∧ω ,

wheree∈ E and ω ∈
∧iM are local sections. As usually one can check that the

curvature K= ∇1 ◦∇ is OX-linear and∇i+1 ◦∇i(e⊗ω) = K(e)∧ω . We say that
(E,∇) is integrableif the curvatureK = 0. If (E,∇) is integrable then the sequence

0→ E
∇
→E⊗M

∇1→E⊗
∧2

M→ ...

Documenta Mathematica 19 (2014) 509–540



Semistable Modules over Lie . . . 517

becomes a complex. The hypercohomology groups of this complex are denoted by
H i

DR(X,E) :=Hi(E⊗
∧•M,∇).

Let
∧•M be the de Rham complex corresponding to the exteriorOS-algebra ofM

with zero anti-derivationdM. Then a coherentOX-module with an integrabledM-
connectionθ : E→ E⊗OX M is called anM-Higgs sheaf. The corresponding homo-
morphismθ is OX-linear and it is called anM-Higgs field(or just a Higgs field). A
system of M-Hodge sheavesis anM-Higgs sheaf(E,θ ) with decompositionE=

⊕
E j

such thatθ : E j → E j−1⊗M. ForM = ΩX/S we recover the usual notions of a Higgs
sheaf and a system of Hodge sheaves.

To be consistent with notation in the characteristic zero case, the hypercohomology
groupsHi(E⊗

∧•M,θ ) of the complex associated to anM-Higgs sheaf are denoted
by H i

Dol(X,E). The following lemma can be proven in the same way as [Si1, Lemma
2.5]:

LEMMA 3.1. Let X be a smooth d-dimensional projective variety over an al-
gebraically closed field k and let(E,θ ) be an M-Higgs sheaf. Then we have
χDol(X,E) = rkE · χDol(X,OX). Moreover, if E is locally free then we have a per-
fect pairing

H i
Dol(X,E)⊗H2d−i

Dol (X,E∗)→ k

induced by Serre’s duality.

3.3 Modules over Lie algebroids and coHiggs sheaves

LetL be anOS-Lie algebroid onX and letE be anOX-module. Let us recall that a (left)
ΛL-module structure onE is the same as anL-module structure, i.e., a homomorphism
∇ : L→ E ndOSE of sheaves ofOS-Lie algebras onX (in particular,∇ is OX-linear)
satisfying Leibniz’s rule

∇(x)( f e) = αx( f )e+∇( f x)(e)

for all local sectionsf ∈ OX , x∈ L ande∈ E. One can also look atL-modulesE as
modulesE over the sheaf ofOS-Lie algebras̃L = OX⊕L on X defined in Subsection
2.2, which satisfy equality( f y)e= f (ye) for all local sectionsf ∈ OX, y ∈ L′ and
e∈ E.
Proof of the following easy lemma is left to the reader:

LEMMA 3.2. Let L be a smoothOS-Lie algebroid L and let(
∧•ΩL,d•ΩL

) be the as-
sociated de Rham complex. Then we have an equivalence of categories between the
category of L-modules and coherentOX-modules with integrable dΩL -connection.

Let L be a coherentOX-module. Let us provide it with the trivialOS-Lie algebroid
structure, i.e., we take zero bracket and zero anchor map. Inthis case we say thatL is
a trivial Lie algebroid. For a trivial Lie algebroid the corresponding sheaf of rings of
differential operatorsΛL is equal to the (commutative) symmetricOX-algebraS•(L).
In this casean L-coHiggs sheafis a (left)ΛL-module, coherent as anOX-module. IfL
is smooth then giving anL-coHiggs sheaf is equivalent to giving anΩL-Higgs sheaf.
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If L is smooth thenV(L)→ X is a vector bundle and we can take its projective com-
pletion π : Y = P(L⊕OX)→ X. The divisor at infinityD = Y−V(L) is canoni-
cally isomorphic toP(L). OnY we have the tautological relatively ample line bundle
OP(L⊕OX)(1). If OX(1) is anS-ample polarization onX then for sufficiently largen
the line bundleA = OP(L⊕OX)(1)⊗π∗(OX(n)) is alsoS-ample.
By definition anyL-coHiggs sheaf gives rise to a coherentOV(L)-module. The follow-
ing lemma describes image of the corresponding functor (cf.[Si3, Lemma 6.8 and
Corollary 6.9]):

LEMMA 3.3. We have an equivalence of categories between L-coHiggs sheaves and
coherent sheaves on Y, whose support does not intersect D. Under this equivalence
pure sheaves correspond to pure sheaves of the same dimension and the notions of
(semi)-stability are the same when considered with respectto polarizationsOX(1) on
X andA on Y.

This lemma suggests another construction of the moduli space ML
Dol(X/S,P) =

MΛL(X/S,P) of Gieseker semistableL-coHiggs sheaves (with fixed Hilbert poly-
nomial P) on X/S using construction of the moduli spaceM(Y/S,P) of Gieseker
semistable sheaves of pure dimensionn = dim(X/S) on Y/S (with Hilbert polyno-
mial P). Namely,M(Y/S,P) is constructed as a GIT quotientR//G, whereR is some
parameter space andG is a reductive group acting onR. ThenML

Dol(X/S,P) can be
constructed as the quotientR′//G, whereR′ is theG-invariant subscheme ofR corre-
sponding to subsheaves whose support does not intersectD.

3.4 Modules on varieties over fields

In this subsection we take asSthe spectrum of an algebraically closed fieldk. We also
assume thatX is normal and projective with fixed polarizationOX(1).
We say that a sheaf with anM-connection(E,∇) is slope semistableif E is torsion free
as anOX-module and if for anyOX-submoduleE′ ⊂ E such that∇(E′) ⊂ E′⊗OX M
we have

µ(E′)≤ µ(E).

We say that(E,∇) is slope stableif we have stronger inequalityµ(E′) < µ(E) for
every properOX-submoduleE′ ⊂ E preserved by∇ and such that rkE′ < rkE. In
much the same way we can introduce notions of slope (semi)stability for M-Higgs
sheaves and systems ofM-Hodge sheaves. In each case to define (semi)stability we
use only subobjects in the corresponding category.

Let us fix a smoothk-Lie algebroidL on X. We have a natural action ofGm on ΩL-
Higgs sheaves given by sending(E,θ ) to (E, tθ ) for t ∈Gm. The following lemma is a
simple generalization of the well known fact in case of usualHiggs bundles (see, e.g.,
[Si1, Lemma 4.1]) but we include proof for completeness. Theassertion in the positive
characteristic case is slightly different to that of [Si1, Lemma 4.1]. The difference
comes from the fact that fork= F̄p everyt ∈ k∗ is a root of unity.

LEMMA 3.4. A rank r torsion freeΩL-Higgs sheaf(E,θ ) is a fixed point of theGm-
action if and only if it has a structure of system ofΩL-Hodge sheaves.
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Proof. Taking reflexivization we can assume thatE is reflexive. By assumption for
everyt ∈Gm there exists an isomorphism ofOX-modulesf : E→ E (depending ont)
such thatf θ = tθ f . On the subsetU whereE is locally free, the coefficients of the
characteristic polynomial off define sections ofOX . SinceX is normal and projective
we haveOX(U) = OX(X) = k, so they are constant. Hence we can decomposeE into
eigensubsheavesE =

⊕
Eλ , whereEλ = ker( f − λ )r for λ ∈ k∗ (eigenvalue 0 does

not occur asf is an isomorphism). Since( f − tλ )rθ = trθ ( f −λ )r , the Higgs fieldθ
mapsEλ to Etλ . If we taket such thatt j 6= 1 for j = 0, ..., r then for every eigenvalueλ
the elementsλ , tλ , ..., trλ are pairwise distinct. So there existsj0 such thatt j0λ is an
eigenvalue butt j0−1λ is not an eigenvalue. ThenEi =

⊕

j0≤ j≤i Et j λ defines a system
of ΩL-Hodge sheaves which is a direct summand of(E,θ ). So we can complete the
proof by induction on the rankr of E.

COROLLARY 3.5. A system ofΩL-Hodge sheaves(E,θ ) is slope (or Gieseker)
semistable if and only if it is slope (respectively, Gieseker) semistable as anΩL-Higgs
sheaf.

Proof. It is sufficient to prove that the maximal destabilizingΩL-Higgs subsheaf of a
system ofΩL-Hodge sheaves(E,θ ) is a system ofΩL-Hodge sheaves. This follows
from the above lemma and the fact that the maximal destabilizing ΩL-Higgs subsheaf
is unique so it is preserved by the naturalGm-action.

3.5 Hitchin’s morphism for moduli spaces of L-coHiggs sheaves

Let G be a quasi-coherentOS-module. Consider the functor which to anS-schemeT
associates HomOT (GT ,OT). It is representable by theS-schemeV(G). In particular,
for π : T = V(G)→ Swe get the tautological homomorphism

λG ∈HomOV(G)
(π∗G,OV(G)) = HomOS(G,π∗OV(G)) = HomOS−alg(S

•G,S•G)

corresponding to the identity onS•G.
If G is a locally free sheaf of finite rank thenV(G)→ S is a vector bundle with sheaf
of sections isomorphic toG∗.

The following lemma was explained to the author by C. Simpson:

LEMMA 3.6. Let f : X→ S be a flat projective morphism of noetherian schemes and
let G be a locally free sheaf on X. Then the functor H0(X/S,G) which to an S-scheme
h : T→ S associates H0(XT/T,GT) is representable by an S-scheme.

Proof. Since certain twist ofG∗ by a relatively very ample line bundle is relatively
globally generated, we can embedG as a subbundle into a direct sumK1 of relatively
very ample line bundles. Then we can again embed the quotientK1/G into K2 with
K2 a direct sum of relatively very ample bundles. Then for anyS-schemeT we have
an exact sequence

0→ H0(X/S,G)(T)→H0(X/S,K1)(T)→ H0(X/S,K2)(T).
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But we can assume that all the higher direct images ofK1 vanish and then by
the Grauert’s theoremH0(X/S,K1) is representable by the bundleV( f∗K1) → S.
Similarly, H0(X/S,K1) is representable by the bundleV( f∗K2) → S. Therefore
H0(X/S,G) is represented by the kernel of the map between bundles. Thisis a vector
subscheme ofV( f∗K1)→ S.

We will also need the following well-known lemma:

LEMMA 3.7. Let f : X → S be a flat family of irreducible d-dimensional schemes
satisfying Serre’s condition(S2). Let E be an S-flat coherentOX-module such that
E⊗k(s) is pure of dimension d for every point s∈ S. Then there exists a relatively big
open subset j: U ⊂ X such that E∗∗→ j∗(E|U) is an isomorphism.

Consider a flat projective morphismf : X → S of noetherian schemes. LetL be a
smoothOS-Lie algebroid onX and let us recall thatΩL = L∗. Consider the functor
which to anS-schemeh : T → Sassociates

r⊕

i=1

H0(XT/T,SiΩL,T).

By Lemma 3.6 this functor is representable by anS-schemeVL(X/S, r)→ S.
Let us also assume thatX/S is a family ofd-dimensional varieties satisfying Serre’s
condition(S2). If T is anS-scheme thenXT/T is also a flat family ofd-dimensional
varieties satisfying Serre’s condition(S2).
Assume thatL is a trivial OS-Lie algebroid and consider a family(E,θ : E→ E⊗
ΩL,T) of L-coHiggs sheaves of pure dimensiond= dim(X/S) on the fibres ofXT→T.
Then there exists an open subsetU ⊂ XT such thatE is locally free onU and the
intersection ofU with any fiber ofXT → T has a complement of codimension at least
2. Let us consider

∧iθ |U :
∧i(E|U)→

∧i(E|U ⊗OU ΩL,T |U). We have a well defined
surjection

∧i(E|U ⊗OU ΩL,T |U )→
∧iE|U ⊗OU SiΩL,T |U , given by

(e1⊗λ1)∧ ...∧ (ei⊗λi)→ (e1∧ ...∧ei)⊗ (λ1...λi),

wheree1, ...,ei ∈ E andλ1, ...,λi ∈ΩL,T . So we get a morphism of sheaves

OU → E ndOX (
∧i

E)|U ⊗OU SiΩL,T |U
(−1)i Tr⊗id
−→ SiΩL,T |U

The corresponding sectionσi(θ |U) ∈ H0(U,SiΩL,T |U ) is just an evaluation of thei-
th elementary symmetric polynomial onθ |U . By Lemma 3.7 this section extends
uniquely to sectionσi(θ ) ∈ H0(XT/T,SiΩL,T). In this way we can define aT-point
σ(E,θ ) = (σ1(θ ), ...,σr(θ )) of VL(X/S, r).
Let P be a polynomial of degreed= dim(X/S) corresponding to (some) rankr torsion
free sheaves on the fibres ofX → S. Consider the moduli spaceML

Dol(X/S,P) of
Gieseker semistableL-coHiggs sheaves with Hilbert polynomialP. Then the above
construction defines a morphism of functors inducing the corresponding morphism
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of coarse moduli spacesHL : ML
Dol(X/S,P)→ VL(X/S, r). This morphism is called

Hitchin’s morphism.
There is also a stack theoretic version of Hitchin’s morphism. The moduli stack of
L-coHiggs sheaves is defined as a lax functor between 2-categories by

M L
Dol(X/S,P) : (Sch/S) → (groupoids)

T → M (T),

whereM (T) is the category whose objects areT-flat families of pured-dimensional
L-coHiggs sheaves with Hilbert polynomialP on the fibres ofXT → T, and whose
morphisms are isomorphisms of coherent sheaves. ThenM L

Dol(X/S,P) is an alge-
braic stack for the fppf topology on(Sch/S). As above we can construct Hitchin’s
morphismM L

Dol(X/S,P)→ VL(X/S, r). By abuse of notation, we also denote this
morphism byHL.

As in the usual Higgs bundle and characteristic zero case, one can construct the
total spectral schemeWL(X/S, r) ⊂ V(L)×SVL(X/S, r), which is finite and flat
over X×SVL(X/S, r). This subscheme has the property that for any family(E,θ :
E → E⊗ΩL,T) of L-coHiggs sheaves of pure dimensiond on the fibres ofXT →
T, the corresponding coherent sheaf onV(LT) is set-theoretically supported on
WL(X/S, r)×VL(X/S,r) T. This can be seen as follows. Letx be a geometric point ofX
at whichE is locally free. ThenS•L⊗k(x) acts onV = E⊗k(x) via θ (x). Let us recall
that over an algebraically closed field any finitely dimensional vector space which is
irreducible with respect to a set of commuting linear maps has dimension 1. Therefore
V has a filtration 0=V0⊂V1⊂ ...⊂Vr =V with quotientsV i =Vi/Vi−1 of dimension
1 overk(x) and such thatθ (x) acts onV i as multiplication byλi ∈ (L⊗ k(x))∗. It is
clear from our definition thatτ ∈ L⊗k(x) acts onV via θτ := θ (x)T(τ) in such a way
that in the characteristic polynomial

det(t · I −θτ) = tr +σ1(θτ )t
r−1+ ...+σr(θτ )

we haveσi(θτ ) = (−1)i ∑1≤ j1<...< j i≤r λ j1...λ j i . This and the Cayley–Hamilton the-
orem show that the coherent sheaf onV(LT) corresponding to(E,θ ) has a scheme-
theoretic support contained inWL(X/S, r)×VL(X/S,r) T and it coincides with it set-
theoretically.

Note that in the curve case there exists a different interpretation of Higgs bundles
using cameral covers. Such an approach allows to deal with general reductive groups
(see [DG] for the characteristic zero case). In positive characteristic the analogous
construction requires some restrictions on the characteristic of the base field.

The following theorem can be proven in a similar way as the usual characteristic zero
version [Si3, Theorem 6.11]. It also follows from Langton’stype Theorem 5.3.

THEOREM 3.8. Hitchin’s morphism HL : ML
Dol(X/S,P)→VL(X/S, r) is proper.
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3.6 Deformation of a Lie algebroid over an affine line.

Let R be a commutative ring with unity. Letf : X→ Sbe a morphism ofR-schemes.
Let A1

R = SpecR[t] and letp1 : X×RA1
R→ X be the projection onto the first factor.

Let us consider anOS-Lie algebroidL on X and the morphismf × id : X×RA1
R→

S×RA1
R of R-schemes. We can define anOS×RA1

R
-Lie algebroidLR on X×RA1

R by

takingLR := p∗1L with Lie bracket given by[·, ·]LR := p∗1[·, ·]L⊗ t and the anchor map
given byαR := p∗1α⊗ t.
The universal enveloping algebra of differential operatorsΛR

L := ΛLR associated toLR

can be constructed as a subsheaf ofp∗1ΛL generated by sections of the form∑t iλi ,
whereλi are local sections ofΛL,i .
If R= k is a field ands∈ A1(k)−{0} then the restricted sheafΛR

L |X×{s} is naturally
isomorphic toΛL. The sheafΛR

L|X×{0} is naturally isomorphic to the associated graded
sheaf of algebras GrΛL. This gives a deformation ofΛL to its associated graded sheaf
of algebras (or a quantization of the commutative algebra GrΛL).

Let T be anS-scheme and let us fixλ ∈ H0(T/R,OT). Let E be a coherentOXT -
module and letpX and pT be the projections ofX×ST ontoX andT, respectively.
Let (M,dM) be a coherentOX-module with anOS-derivation.
Then we setM̃ = p∗XM anddM̃ = p∗XdM · p∗Tλ . A dM̃-connection onE is called a
λ -dM-connection. This generalizes the usual notion ofλ -connection.
For the constant sectionλ = 0∈ H0(T/R,OT) an integrableλ -dM-connection is just
an M-Higgs field. Similarly, forλ = 1 ∈ H0(T/R,OT) we recover the notion of a
dM-connection.

Assume thatL is a smoothOS-Lie algebroid onX. Let us fix a morphism ofR-
schemesT → S×RA1

R and letλ ∈ H0(T/R,OT) be the section corresponding to the
composition ofT → S×RA1

R with the canonical projectionS×RA1
R→ A1

R. Since
T ×S×RA1

R
X ×RA1

R = XT , an LR-module structure on a coherentOXT -moduleE is

equivalent to giving an integrableλ -dΩL-connection.

4 Lie algebroids in positive characteristic

4.1 Sheaves of restricted Lie algebras

Let R be a commutative ring (with unity) of characteristicp and letL be a LieR-
algebra. We define the universal Lie polynomialssj by the formula

sj (x1,x2) =−
1
j ∑

σ
adxσ(1)...adxσ(p−1)(x2)

in which we sum over allσ : {1, ..., p−1}→ {1,2} taking j times value 1.
Let A be an associativeR-algebra. Forx∈ A we define ad(x) : A→ A by the formula
(ad(x))(y) = xy− yx for y∈ A. Then we have the following well known Jacobson’s
formulas:

ad(xp) = ad(x)p
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(x+ y)p = xp+ yp+ ∑
0< j<p

sj (x,y).

Let X be a scheme over a schemeSof characteristicp> 0. A sheaf of restrictedOS-
Lie algebras on Xis a sheaf ofOS-Lie algebras(L, [·, ·]) on X equipped with ap-th
power operationL→ L, x→ x[p], which satisfies the following conditions:

1. ( f x)[p] = f px[p] for all local sectionsf ∈ OS andx∈ L,

2. ad(x[p]) = (ad(x))p for x∈ L,

3. (x+ y)[p] = x[p]+ y[p]+∑0< j<psj(x,y) for all x,y∈ L.

A homomorphism of sheaves of restrictedOS-Lie algebrasϕ : L→ L′ on X is such a
homomorphism of sheaves ofOS-Lie algebras onX thatϕ(x[p]) = ϕ(x)[p] for all x∈ L.

Let A be a sheaf of associativeOS-algebras onX. It has a natural structure of a
sheaf of restrictedOS-Lie algebras onX with bracket[x,y] = xy− yx andp-th power
operationx[p] = xp for local sectionsx,y∈A .
Now let L be a sheaf of restrictedOS-Lie algebras onX. For any homomorphism
ϕ : L → A of sheaves ofOS-Lie algebras onX we can defineψ : L → A by
ψ(x) = (ϕ(x))p−ϕ(x[p]) for x∈ L. The mapψ measures how far isϕ from being a
homomorphism of sheaves of restrictedOS-Lie algebras onX.

LEMMA 4.1. The mapψ : L→A is additive and its image commutes with the image
of ϕ . In particular, [ψ(L),ψ(L)] = 0.

Proof. Let us take sectionsx,y∈ L(U) for some open subsetU ⊂X. From Jacobson’s
formula inA we have

(ϕ(x+ y))p = ϕ(x)p+ϕ(y)p+ ∑
0< j<p

sj (ϕ(x),ϕ(y))

On the other hand, from definition of a sheaf of restricted Liealgebras we have

ϕ((x+ y)[p]) = ϕ(x[p])+ϕ(y[p])+ ∑
0< j<p

sj(ϕ(x),ϕ(y)),

so subtracting these equalities we get additivity ofψ .
Now we need to prove that[ψ(x),ϕ(y)] = 0. But we have

[ϕ(x)p,ϕ(y)] = ad(ϕ(x)p)(ϕ(y)) = (adϕ(x))p(ϕ(y))

and

[ϕ(x[p]),ϕ(y)] = ϕ([x[p],y]) = ϕ(ad(x[p])(y)) = ϕ(ad(x)p(y)) = (adϕ(x))p(ϕ(y)),

so subtracting yields the required equality.
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The restricted universal enveloping algebraU [p]
OS

(L) of a sheaf of restrictedOS-Lie
algebrasL on X is the quotient of the universal enveloping algebraUOS(L) by the
two-sided ideal generated by all elements of the formxp−x[p] for local sectionsx∈ L.

If S= X andL is locally free as anOX-module thenL is contained inU [p]
OX

(L). More-

over, ifx1, ...,xr are local generators ofL as anOX-module thenxi1
1 ...x

ir
r with 0≤ i j < p

for all j, form a local basis ofU [p]
OX

(L) as anOX-module. In particular,U [p]
OX

(L) is lo-

cally free of rankprkL. In this case for any sheafA of associative algebras onX and
any homomorphismϕ : L→A of sheaves of Lie algebras onX, the mapψ : L→A
is F∗X-linear, i.e.,ψ( f x) = f pψ(x) for all f ∈ OX andx ∈ L (this follows from the
first condition in the definition of a sheaf of restricted Lie algebras). So by adjunction
ψ induces anOX-linear mapF∗XL→ A that by abuse of notation is also denoted by

ψ . Then the restricted universal enveloping algebraU
[p]

OX
(L) has the following uni-

versal property. For any sheafA of associativeOX-algebras and any homomorphism
ϕ : L→A of sheaves ofOX-Lie algebras withψ : L→A equal to zero, there exists a

unique homomorphism̃ϕ : U
[p]

OX
(L)→A of sheaves of associativeOX-algebras such

thatϕ : L→A is the composition of the natural mapL→U
[p]

OX
(L) with ϕ̃ .

4.2 Restricted Lie algebroids

Note that the relative tangent sheafTX/S has a natural structure of a sheaf of re-
strictedOS-Lie algebras onX in which the p-th power operation onOS-derivation
D : OX→OX is defined as the derivation acting on functions as thep-th power differ-
ential operatorDp. In fact,TX/S with the usual Lie bracket and thisp-th power oper-
ation is a sheaf of restrictedOS-Lie subalgebras of the associative algebraE ndOSOX

taken with the natural structure of a sheaf of restrictedOS-Lie algebras onX. This
motivates the following definition:

Definition 4.2. A restrictedOS-Lie algebroidon X is a quadruple(L, [·, ·], ·[p],α)
consisting of a sheaf of restrictedOS-Lie algebras(L, [·, ·], ·[p]) on X and a homo-
morphism of sheaves of restrictedOS-Lie algebrasα : L→ TX/S on X satisfying the
Leibniz rule and the following formula:

( f x)[p] = f px[p]+α p−1
f x ( f )x

for all f ∈OX andx∈ L.

As in the non-restricted case we can define atrivial restricted Lie algebroidas a trivial
Lie algebroid with the zerop-th power operation.TX/S with the usual Lie bracket and
p-th power operation will be called thestandard restrictedOS-Lie algebroid on X.
The last condition in the definition requires certain compatibility of the p-th power
operation onL with the anchor map andOX-module structure ofL. It can be explained
by the fact that, as expected, a restrictedOS-Lie algebroid onX with the zero anchor
map is a sheaf of restrictedOX-Lie algebras. In fact, the formula in the definition
comes from the following Hochschild’s identity:
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LEMMA 4.3. (see [Ho, Lemma 1])Let A be an associativeFp-algebra and R⊂ A a
commutative subalgebra. If for an element x∈ A we have(adx)(R) ⊂ R then for any
element r∈ R we have

(rx)p = r pxp+(ad(rx))p−1(r)x.

A similar formula can be found as [Ka1, Proposition 5.3] (although with a sign error
as pointed out by A. Ogus in [Og]).

The following criterion allows us to check when a submodule of a restricted Lie alge-
broid is a restricted Lie subalgebroid. It generalizes wellknown Ekedahl’s criterion
allowing to check when a submodule of the tangent bundle defines a 1-foliation (see
[Ek, Lemma 4.2]).

LEMMA 4.4. 1. Let L′ be anOX-submodule of anOS-Lie algebroid L on X. Then
the Lie bracket on L induces anOX-linear map

∧2
L′→ L/L′

sending x∧y to the class of[x,y]. If this map is the zero map then L′ is anOS-Lie
subalgebroid of L.

2. If L′ is anOS-Lie subalgebroid of a restrictedOS-Lie algebroid L then the p-th
power map induces anOX-linear morphism F∗XL′ → L/L′. If this map is the
zero map then L′ is a restrictedOS-Lie subalgebroid of L.

Proof. Let us takef ∈ OX andx,y∈ L′. The first part follows from the equality

[x, f y] = f [x,y]+αx( f )y≡ f [x,y] modL′.

To prove the second part note that

(x+ y)[p] = x[p]+ y[p]+ ∑
0< j<p

sj (x,y)≡ x[p]+ y[p] modL′,

sincesj(x,y) ∈ L′, as thesj are Lie polynomials. ThereforeF∗XL′→ L/L′ is additive.
Hence to prove that it isOX-linear it is sufficient to note that

( f x)[p] = f px[p]+α p−1
f x ( f )x≡ f px[p] modL′.

Let us consider the following commutative diagram

V(L)(1/X)

&&MMMMMMMMMMM

= // V(F∗X/SL′)

π
��

F̃X/S
// V(L′) //

π ′

��

V(L)

��

X
FX

::

FX/S
// X′ // X

in whichL′ is the pull back ofL via X′→ X.
The following lemma is an analogue of [BMR, Lemma 1.3.2]:
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LEMMA 4.5. Let L be a restrictedOS-Lie algebroid on X. Then the map ı: L→ ΛL

sending x∈ L to ı(x) := xp− x[p] ∈ ΛL is F∗X-linear and its image is contained in the
center Z(ΛL) of ΛL. In particular, if L smooth then ı extends to anOX′ -linear inclusion
S•L′ →֒ FX/S,∗Z(ΛL).

Proof. Lemma 4.3 proves that thep-th power operation satisfiesαx[p] = (αx)
p and

( f x)[p]− f px[p] = ( f x)p− f pxp in ΛL for all f ∈ OX andx∈ L. Henceı is F∗X -linear.
Lemma 4.1 implies that its image is contained inZ(ΛL).
For any f ∈ OX andx ∈ L we havex f p− f px = αx( f p) = 0 in ΛL, asαx is anOS-
derivation. ThereforeOX′ ⊂ FX/S,∗Z(ΛL) which together with the first part proves the
required assertion.

Note that the above lemma shows thatΛL contains a commutative subalgebra
S•(F∗X/SL′), soΛL defines a quasi-coherent sheafΛ̃L onV(F∗XL).

Let Λ[p]
L be the quotient ofΛL by the two-sided ideal generated byı(x) for x∈ L. We

call it therestricted universal enveloping algebra of differential operators of L.

LEMMA 4.6. Let L be smooth of rank m. TheñΛL is a locally freeOV(L)-module of
rank pm.

Proof. The canonical embeddingj : L→ ΛL induces an embedding̃j : L→ Λ[p]
L . Let

us take an open subsetU ⊂ X such thatL(U) is a freeOX(U)-module with generators

x1, ...,xm. The kernel ofΛL(U)→ Λ[p]
L (U) is generated by elementsı(x1), ..., ı(xm)

which are in the center ofΛL(U). But ı(xi) ≡ xp
i modΛL,p−1, so by the Poincare-

Birkhoff-Witt theoremΛ[p]
L has local generators̃j(x1)

i1... j̃(xm)
im for 0≤ i l < p. Hence

j(x1)
i1... j(xm)

im for 0≤ i l < p locally generateΛL as anS•(F∗XL)-module andΛ̃L is
locally free of rankpm.

Lemma 4.5 shows that ifL is smooth thenı induces anOX′ -linear mapL′→ FX/S,∗ΛL

and a homomorphism of sheaves ofOX′ -algebras

S•(L′)→ FX/S,∗(Z(ΛL))⊂ Λ′L := FX/S,∗ΛL.

In particular, it makesΛ′L into a quasi-coherent sheaf ofS•(L′)-modules. This sheaf
defines onV(L′) a quasi-coherent sheaf ofOV(L′)-algebras̃Λ′L. Note that by construc-
tion

π ′∗Λ̃
′
L = FX/S,∗ΛL = FX/S,∗π∗Λ̃L = π ′∗F̃X/S,∗Λ̃L,

so we have
Λ̃′L = F̃X/S,∗Λ̃L.

By an explicit computation as in Lemma 4.6 one can prove the following theorem:

THEOREM 4.7. Assume that X/S is smooth of relative dimension d and L is smooth
of rank m. TheñΛ′L is a locally freeOV(L′)-module of rank pm+d.
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By [BMR] in the special case whenL = TX/S is the standardOS-Lie algebroid onX,
the sheaf̃Λ′L is a sheaf of AzumayaOV(L′)-algebras. In this case we have a canonical
splitting

F̃∗X/SΛ̃′L ≃ E ndOV(F∗
X/S

L′)
Λ̃L.

4.3 Relation with groupoid schemes

This subsection contains a quick tour on relation between Lie algebroids and groupoid
schemes of height≤ 1. This is analogous to the well-known relation between re-
stricted Lie algebras and group schemes of height≤ 1.

Let us recall that agroupoid is a small category in which every morphism is an iso-
morphism. LetX andR be S-schemes. AnS-groupoid scheme Gis a quintuple of
S-mapss, t : R→ X (“source and target objects”),c : R×(s,t) R→ R (“composition”),
e: X→R (“identity map”) andi : R→R (“inverse map”) such that for everyS-scheme
T the quintuples(T), t(T), c(T), e(T) andi(T) defines in a functorial way a groupoid
with morphismsR(T) and objectsX(T).
For anS-groupoid schemeG we denote byJ the kernel ofs∗OR→ OX . We say
that G is infinitesimalif s is an affine homeomorphism andJ is a nilpotent ideal.
An infinitesimalS-groupoid scheme is ofheight≤ 1 if (s, t) : R→ X×SX factors
through the first Frobenius neighbourhood of the diagonal (i.e., throughX×X(1/S) X).
An S-groupoid scheme is calledfinite (flat) if s is finite (respectively, flat).
If X is smooth over a perfect fieldk then restrictedk-Lie subalgebrasL of the standard
k-Lie algebroidTX/k such thatTX/k/L is locally free are in bijection with finite flat
height 1 morphismsX→Y (see [Ek, Proposition 2.4]). Note that a sheaf of restricted
k-Lie subalgebras ofTX/k is automatically a restrictedk-Lie subalgebroid ofTX/k. So
the following proposition generalizes the above fact (and it corrects [Ek, Proposition
2.3]):

PROPOSITION 4.8. Let X/S be a smooth morphism. Assume that for every point
x∈ X the set t(s−1(x)) is contained in an affine open subset of X. Then there exists
an equivalence of categories between the category of finite flat S-groupoid schemes of
height≤ 1 with X/S as a scheme of objects and with locally free “conormal sheaf”
J /J 2 and the category of smooth restrictedOS-Lie algebroids on X/S.

Proof. We sketch the proof leaving details to the reader.
If G is a finite, flat, infinitesimalS-groupoid scheme then we defineL as the Lie algebra
of this groupoid, i.e., the dual ofJ /J 2. It has a natural structure of a sheaf of
restrictedOS-Lie algebras. SinceG has height≤ 1, L is equipped with the anchor
map.
In the other direction, to a smooth restrictedOS-Lie algebroidL onX/Swe associate

Λ[p]
L which comes with a canonical homomorphism ofOS-algebrasΛ[p]

L → Λ[p]
TX/S

. But

Λ[p]
TX/S

is anOS-subalgebra of the sheaf of rings of “true” differential operators and the

“morphisms”R of the groupoid scheme can be defined as the spectrum of the dual of

Λ[p]
L .
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4.4 Modules over restricted Lie algebroids

If E is a module over a restrictedOS-Lie algebroidL then∇ : L→ E ndOSE leads to a
morphism

ψ : L→ E ndOSE

defined by sendingx to (∇(x))p−∇(x[p]) for x∈ L.
Let us setα0

x ( f ) = f and(∇(x))0(e) = e. Using Leibniz’ rule one can easily see that

(∇(x))m( f e) =
m

∑
i=0

(
m
i

)

α i
x( f )(∇(x))m−i (e)

for any sectionsf ∈ OX(U), x∈ L(U) ande∈ E(U) and any open subsetU ⊂ X. In
particular, we have

(∇(x))p( f e) = α p
x ( f )e+ f (∇(x))p(e).

Since
∇(x[p])( f e) = αx[p]( f )e+ f ∇(x[p])(e)

andαx[p] = α p
x we see that for anyx ∈ L the imageψ(x) is OX-linear. So we can

considerψ as the mappingψ : L→ E ndOX E. This mapping is called thep-curvature
morphismof the L-moduleE. The following lemma generalizes [Ka1, Proposition
5.2]:

LEMMA 4.9. The p-curvature morphismψ : L→ E ndOX E is F∗X-linear and its image
commutes with the image of∇ in E ndOSE.

Proof. By Lemma 4.1 we know thatψ is additive and its image commutes with the
image of∇. So it is sufficient to check that

ψ( f x) = f pψ(x)

for all local sectionsf ∈OX andx∈ L. Applying Hochschild’s identity to elementsf
and∇(x) in E ndOSE we obtain

(∇( f x))p = f p∇(x)p+(ad( f ∇(x)))p−1( f )∇(x) = f p∇(x)p+α p−1
f x ( f )∇(x).

From the definition of a restrictedOS-Lie algebroid andOX-linearity of ∇ : L →
E ndOSE we have

∇(( f x)[p]) = f p∇(x[p])+α p−1
f x ( f )∇(x).

Subtracting these equalities we get the required identity.

By the above lemmaψ defines anOX-linear mapL→ FX,∗E ndOX E and hence the
adjointOX-linear map

ψL : F∗XL→ E ndOX E,

which will also be called thep-curvature morphism. Note thatψL makesE into an
F∗XL-coHiggs sheaf (integrability of theF∗XL-coHiggs field follows from the lemma).
Another way of seeing it is that ifE is a ΛL-module then by Lemma 4.5 it has a
structure ofS•(F∗XL)-module given by thep-curvatureψL.
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Example4.10. Let L be a smooth trivial restrictedOS-Lie algebroid onX. Then
giving anL-module is equivalent to givingS•L-module structure onE. In this case the
p-curvature morphismψL : F∗XL→ E ndOX E is obtained by composing the canonical
inclusionF∗XL→ SpL with the action mapSpL→ E ndOX E.

Example4.11. Let X be a smoothS-scheme and let us fixλ ∈H0(OS). Let us denote
by Tλ

X/S the restrictedOS-Lie algebroid structure onTX/S with Lie bracket[·, ·]Tλ
X/S

=

λ · [·, ·]TX/S
, anchor mapα given by multiplication byλ and thep-th power operation

given by

x[p]
Tλ

X/S

= λ p−1 ·x[p]TX/S

for x∈ TX/S. The apparently strange formula for thep-th power operation comes from
the requirement

α(x[p]
Tλ

X/S

) = λ ·x[p]
Tλ

X/S

= (α(x))[p] = λ p ·x[p].

Giving aTλ
X/S-module is equivalent to giving a coherentOX-moduleE with an inte-

grableλ -connection∇ : E→ E⊗OX ΩX/S. In this case the above definedp-curvature

of the Tλ
X/S-module gives a more conceptual approach to thep-curvature of anOX-

module withλ -connection(E,∇) defined in [LP, Definition 3.1].

Remark4.12. If ∇1 and∇2 are twoL-module structures onE thenϕ = ∇1−∇2 : L→
E ndOSE is OX-linear and its image lies inE ndOX E. In particular, if thep-curvatures

ψL(∇1) andψL(∇2) are equal thenϕ is zero on the kernel ofΛL→ Λ[p]
L and hence it

induces the homomorphismΛ[p]
L → E ndOX E of OX-algebras.

Definition 4.13. We say that thep-curvature of(E,∇) is nilpotent of level less than
l if (E,∇) satisfies one of the following equivalent conditions:

1. There exists a filtrationMm = 0⊂Mm−1 ⊂ ... ⊂M0 = (E,∇) of lengthm≤ l
such that the associated gradedL-module hasp-curvature 0.

2. For any open subsetU ⊂ X and any collection{x1, ...,xl} of sections ofL(U)
we haveψL(x1)...ψL(xl ) = 0.

We say that hep-curvature of(E,∇) is nilpotent of level lif it is nilpotent of level less
than(l +1) but not nilpotent of level less thanl (for l = 0 we require simply that the
p-curvature is nilpotent of level less than 1).

4.5 Deformation of Hitchin’s morphism for restricted Lie alge-

broids

This subsection contains a partial generalization of the results of Laszlo and Pauly
[LP] to higher dimensions. Note that in general, the direct analogue of their [LP,
Proposition 3.2] is not expected to be true.
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Let S be a noetherian scheme of characteristicp and letX→ S be a flat, projective
family of d-dimensional varieties satisfying Serre’s condition(S2). Let L be a smooth
restrictedOS-Lie algebroid onX. Let us fix a polynomialP and a relatively ample line
bundle onX/S. We define the moduli stack as a lax functor between 2-categories by

M L(X/S,P) : (Sch/S) → (groupoids)
T → M (T),

whereM (T) is the category whose objects areT-flat families of pured-dimensional
L-modules with Hilbert polynomialP on the fibres ofXT → T, and whose morphisms
are isomorphisms of coherent sheaves. One can prove thatM L(X/S,P) is an algebraic
stack for the fppf topology on(Sch/S). If M is a coherentOX-module considered as
an OS-Lie algebroid onX with the trivial structure, then the corresponding moduli
stack is denoted byM M

Dol(X/S,P).
The p-curvature defines a morphism of stacks

ΨL : M L(X/S,P) → M
F∗XL
Dol (X/S,P)

(E,∇) → (E,ψ(∇)).

Let us consider the deformationLR of L over an affine lineA1 overFp (see Subsection
3.6). For simplicity of notation, in the following we skip writing Fp. LR has a natural
structure of a smooth restrictedOS×A1-Lie algebroid onX×A1 with the p-th power

operation given by·[p]
LR = p∗1

(

·
[p]
L

)

⊗ t p−1. We can treatLR as a family of restricted

OS-Lie algebroids onX parameterized byA1. For example, ifX/S is smooth and we
fix λ ∈ H0(OS) = Hom(S,A1) then forL = TX/S with the standard restrictedOS-Lie

algebroid structure, the pull-back ofLR along(idS,λ ) : S→ S×A1 givesTλ
X/S from

Example 4.11.
We have a commutative diagram

M LR
(X×A1/S×A1,P)

ΨLR
//
M

F∗
X×A1 LR

Dol (X×A1/S×A1,P)

HF∗
X×A1 LR

// V
F∗

X×A1 LR

(X×A1/S×A1,r)

M L
Dol(X/S,P)

HL //

OO

VL(X/S,r) // VF∗X L(X/S,r),

OO

where the vertical arrows are induced by the base change via the zero section 0 :S→
S×A1 andVL(X/S, r)→ VF∗XL(X/S, r) is the canonical morphism induced by the
absolute Frobenius onX. Roughly speaking, this diagram says that thep-curvature
morphismΨL deforms to thep-th power of the Hitchin morphism.

Let N il pL(X/S,P) be the substack ofM L(X/S,P) of L-modules with nilpotentp-
curvature. By definitionΨ̃ mapsN il pL(X/S,P) into {0}×A1 = A1 and the corre-
sponding map will be still denoted bỹΨ. The stacksM L(X/S,P) andN il pL(X/S,P)
contain open substacksM L,ss(X/S,P) and N il pL,ss(X/S,P) parametrizing slope
semi-stable objects (openness of semistability is a standard exercise left to the reader).
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By boundedness theorem (see [La1]) these substacks are of finite type. Theo-
rem 5.1 implies that the morphisms̃Ψss : M LR,ss(X/S,P)→ VF∗XL(X/S, r)×A1 and
N il pL,ss(X/S,P)→A1 are universally closed.

LetN il pL,ss
l (X/S,P) be the substack ofN il pL,ss(X/S,P) parametrizing objects with

nilpotentp-curvature of level< l . Note that it is a closed substack, since nilpotence
of level < l is a closed condition. ThereforeN il pL,ss

l (X/S,P)→ A1 is universally
closed (see [LP, Proposition 5.1] for a special case of this assertion).
Let us note that the fiber ofN il pL,ss

1 (X/S,P)→ A1 over 0 is equal to the moduli
stack of semistableL-coHiggs sheaves(E,θ ) with vanishingp-curvature (see Exam-
ple 4.10). In particular, [LP, Remark 5.1] is false.
On smooth projective curves of genusg≥ 2 the proof of [LP, Lemma 5.1] shows that
a vector bundle with aλ -connection of level less thanl can be extended to a Higgs
bundle with the Higgs fieldθ satisfyingθ l = 0. In particular, forl = 1 we get the zero
Higgs field.

So one could hope that in this case, e.g., if̃N il p
L,ss

1 (X/S,P)→ A1 is the open sub-
stack ofN il pL,ss

1 (X/S,P)→ A1, which over 0 is the moduli substack of semistable

sheaves theñN il p
L,ss

1 (X/S,P)→ A1 is also universally closed as suggested by [LP,
Remark 5.1]. However, this expectation is false. In case of asmooth projective curve
X of genusg≥ 2 there exists a semistable bundleE whose Frobenius pull backF∗XE
is not semistable. ButF∗XE carries a canonical connection∇can and (F∗XE,∇can) is
semistable. After pulling back viaXK → X, whereK = k((t)), and twisting byt,
this provides a semistable vector bundle with at-connection onXK which cannot be
extended to a semistable family onXk[[t]] so that the Higgs field at the special fibre
vanishes. Otherwise, we would get a contradiction with openness of the usual semista-
bility of vector bundles.

5 Deformations of semistable sheaves and the Lan-Sheng-Zuo

conjecture

5.1 Langton’s theorems

Let Rbe a discrete valuation ring with maximal idealmgenerated byπ ∈R. Let K be
the quotient field ofRand let us assume that the residue fieldk= R/m is algebraically
closed.
Let X→ S= SpecR be a smooth projective morphism and letL be a smoothOS-Lie
algebroid onX. Let us fix a collection(D0,D1, . . . ,Dn−1) of n relatively nef divisors
onX/Ssuch thatD0 = D1. In the following stability of sheaves on the fibers ofX→ S
is considered with respect to this fixed collection.
The following theorem generalizes well known Langton’s theorem [Lt, Theorem 2)].
We recall the proof as it is not available in the generality that we need. The notation
introduced in this proof will be also used in proof of Theorem5.5.

THEOREM 5.1. Let F be an R-flatOX-coherent L-module of relative pure dimension
n such that the LK-module FK = F ⊗R K is slope semistable. Then there exists an
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L-submodule E⊂ F such that EK = FK and Ek is a slope semistable Lk-module on Xk.

Proof. First let us note that we can assume thatFk is torsion free as anOXk-module
(this follows, e.g., from [HL, Proposition 4.4.2] or can be proven using a similar
method as below). We use without warning the fact that for anR-flat F the degrees of
FK andFk with respect to(D1, . . . ,Dn−1) coincide. This follows from the fact thatF
has a finite locally free resolution onX and intersection products are compatible with
specialization (see [SGA6, Expose X, Appendice]).
Let us setF0 := F. If F0

k is not slope semistable then we take the maximal desta-
bilizing L-submoduleB0 in F0

k and denote byF1 the kernel of the composition
F0→ F0

k → G0 := F0
k /B0. If F1

k is semistable then we get the required submodule
of F. Otherwise, we repeat the same procedure forF1. In this way we construct a
sequence ofL-modulesF = F0 ⊃ F1 ⊃ F2 ⊃ ... and the main point of the proof is to
show that this process cannot continue indefinitely.
Let us assume otherwise. First, let us note that we have shortexact sequences

0→Gn→ Fn+1
k → Bn→ 0,

whereGn = Fn
k /Bn. LetCn be the kernel of the compositionBn+1→ Fn+1

k → Bn.
If Cn = 0 thenBn+1⊂ Bn and henceµ(Bn+1)≤ µ(Bn). If Cn 6= 0 then

µ(Cn)≤ µmax(G
n)< µ(Bn),

where the first inequality comes from the fact thatCn⊂Gn and the second one follows
from the fact thatBn⊂ Fn

k is the maximal destabilizing subsheaf andGn = Fn
k /Bn.

We claim thatµ(Bn+1) < µ(Bn). If µ(Cn) ≥ µ(Bn+1) then this inequality follows
from the above inequality. Ifµ(Cn) < µ(Bn+1) then µ(Bn+1) < µ(Bn+1/Cn). But
Bn+1/Cn is isomorphic to a subsheaf ofBn andBn is semistable, so in this case we
also haveµ(Bn+1)< µ(Bn).
Therefore the sequence{µ(Bn)} is non-increasing. Butµ(Bn+1)< µ(Bn) is possible
for only finitely manyn sincer!µ(Bn) ∈ Z are bounded below byr!µ(Fk). Therefore
for all largen we haveCn = 0, i.e., we have inclusionsBn ⊃ Bn+1 ⊃ ... andGn ⊂
Gn+1 ⊂ .... For sufficiently largen these sequences consist of torsion free sheaves
with the same slope, so they must stabilize toB andG, respectively. ThenFn

k = B⊕G
for n≫ 0. SetR̂ := lim

←
R/πnR and letK̂ be the quotient field of̂R. Note thatF/Fn

is R/πn-flat and asOXk-module has a filtration with quotients isomorphic toG. Then
Q̂ := lim

←
F/Fn is a destabilizing quotient ofFK̂ . But the Harder–Narasimhan filtration

is stable under base field extension and thereforeFK is also unstable, contradicting our
assumption.

Our exposition of proof of Langton’s theorem is based on [HL]with some small
changes (one of the inequalities in proof of [HL, Theorem 2.B.1] is false and we
need to give a slightly different argument).

Note that in the above theorem we allow the case when allDi ’s are zero. In this case
we claim that there exists anL-submoduleE ⊂ F such thatEK = FK andEk is torsion
free asOXk-module (by definition slope semistable sheaves are torsionfree!).
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Let us recall that every slope semistableL-moduleE has a Jordan–Hölder filtration
E0 = 0⊂ E1 ⊂ ... ⊂ Em = E by L-submodules such that the associated graded sheaf
Gr(E) = ⊕Ei/Ei−1 is slope polystable, i.e., a direct sum of slope stable (torsion free)
L-modules of the same slope.
The following theorem is motivated by theory of moduli spaces and it generalizes [Lt,
Theorem 1)].

THEOREM 5.2. Assume that the collection(D0,D1, . . . ,Dn−1) consists of relatively
ample divisors. Let F be an R-flatOX-coherent L-module of relative pure dimension
n such that the LK-module FK = F ⊗R K is slope semistable. Let E1 and E2 be L-
submodules of F such that(E1)K = (E2)K = FK , (E1)k and(E2)k are slope semistable.
Then the reflexivizations of the associated graded slope polystable sheavesGr((E1)k)
andGr((E2)k) are isomorphic. Moreover, if at least one of(E1)k and(E2)k is slope
stable then there exists an integer n such that E1 = πnE2.

Proof. We prove only the second part, leaving proof of the first one tothe reader.
Assume that(E1)k is slope stable. Consider the discrete valuation ringOX,η , whereη
is the generic point ofXk. Multiplying E1 by some power ofπ , we can assume that
E1⊗OX OX,η ⊂E2⊗OX OX,η and the induced mapE1⊗k(η)→E2⊗k(η) is non-zero.
But E1 andE2 are torsion free soE1 ⊂ E2. Since(E1)k is slope stable the non-zero
map(E1)k→ (E2)k between slope semistable sheaves of the same slope must be an
inclusion. Since the Hilbert polynomials of(E1)k and(E2)k coincide (from flatness of
E1 andE2), it must be an isomorphism.

Let Y be a projective scheme over a fieldk and letLY be ak-Lie algebroid onY.
Let us fix an ample line bundleOY(1) on Y. Let CohLd(Y) be the full subcategory
of the category ofL-modules which are coherent asOY-modules and whose objects
are sheaves supported in dimension≤ d. Then we can consider the quotient category
CohL

d,d′(Y) := CohL
d(Y)/CohL

d′−1(Y). For any object of CohLd,d′(Y) one can define
its Hilbert polynomial which can be used to define notion of (semi)stability in this
category.

We can generalize Langton’s theorem to singular schemes at the cost of dealing with
only one ample polarization. In this case compatibility of intersection product with
specialization follows from computation of the Hilbert polynomial. One can also gen-
eralize Theorem 5.1 so that it works for other kinds of stability as defined above.
Let X → SpecR be a projective morphism with relatively ample line bundleOX(1)
and letL be a smoothOS-Lie algebroid onX. The following Langton’s type theorem
generalizes [Si4, Theorem 10.1] and [HL, Theorem 2.B.1]:

THEOREM 5.3. Let F be an R-flatOX-coherent L-module of relative dimension d.
Assume that the LK-module FK = F ⊗R K is pure of dimension d and semistable in
CohL

d,d′(XK) for some d′ < d. Then there exists an L-submodule E⊂ F such that

EK = FK and Ek is semistable inCohL
d,d′(Xk).

Proof. The proof is almost the same as the proof of [HL, Theorem 2.B.1]. However,
there are a few small problems that we meet in the proof. The first one is that we
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need to define reflexive hulls of sheaves on the special fiberXk. This can be done by
embeddingX into a fixed smoothR-scheme (e.g., use some multiple of the polarization
OX(1) to embeddX into some projective space overR).
The second problem is the same as before: one of the inequalities in proof of [HL,
Theorem 2.B.1] is false and we need to use a slightly different argument similar to the
one used in proof of Theorem 5.1. We sketch the necessary changes using the notation
of proof of [HL, Theorem 2.B.1]. IfCn 6= 0 then we only have

p(Cn)≤ pmax(G
n)< p(Bn)modQ[T]δ−1.

Hence if pd,δ (C
n) ≥ pd,δ (B

n+1) then pd,δ (B
n+1) < pd,δ (B

n). If pd,δ (C
n) <

pd,δ (B
n+1) then we havepd,δ (B

n+1)< pd,δ (B
n+1/Cn)≤ pd,δ (B

n). This proves that if
Cn 6= 0 then we always havepd,δ (B

n+1)< pd,δ (B
n) as needed in the argument.

The last problem is the use of Quot-schemes in [HL], which do not exist as projective
schemes in our situation. This can be solved as in proof of Theorem 5.1.

THEOREM 5.4. Let F be an R-flatOX-coherent L-module of relative pure dimension
d such that the LK-module FK = F⊗RK is semistable inCohL

d,d′(XK) for some d′ < d.
Let E1 and E2 be L-submodules of F such that(E1)K = (E2)K = FK , (E1)k and(E2)k

are semistable inCohL
d,d′(Xk) and at least one of them is stable. Then there exists an

integer n such that E1 = πnE2 in CohL
d,d′(XK).

5.2 Semistable filtrations on sheaves with connection

Let L be a smooth Lie algebroid on a normal projective varietyX defined over an
algebraically closed fieldk. Let us consider a torsion free coherentOX-moduleE with
an integrabledΩL -connection∇ (i.e., anL-module whose underlying sheaf is coherent
and torsion free as anOX-module). We say that a filtrationE = N0⊃N1⊃ ...⊃Nm=
0 satisfiesGriffiths transversalityif ∇(Ni)⊂ Ni−1⊗OX ΩL and the quotientsNi/Ni+1

are torsion free. For every such filtration the associated graded object GrN(E) :=
⊕

i N
i/Ni+1 carries a canonicalΩL-Higgs fieldθ defined by∇. Note that(GrN(E),θ )

is a system ofL-Hodge sheaves. A convenient way of looking at this is by means
of the Rees construction. More precisely, ifN• is a Griffiths transverse filtration on
(E,∇) then we can consider the subsheaf

ξ (E,N•) := ∑t−iNi⊗OX×A1 ⊂ p∗XE

on X ×A1. By Griffiths transversality of the filtrationN• the connectiont∇ on
ξ (E,N•)|X×Gm extends to at-dΩL -connection onX×A1 (i.e., we get anLR-module on
X×A1). In the limit ast→ 0 we get exactly the above described system ofL-Hodge
sheaves(GrN(E),θ ).

In the remainder of this section to define semistability we use a fixed collection
(D0,D1, . . . ,Dn−1) of nef divisors such thatD0 = D1.
After Simpson [Si4] we say that a Griffiths transverse filtration N• on (E,∇) is slope
gr-semistableif the associatedΩL-Higgs sheaf(GrN(E),θ ) is slope semistable. A
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partial L-oper is a triple(E,∇,N•) consisting of a torsion free coherentOX-module
E with an integrabledΩL -connection∇ and a Griffiths transverse filtrationN• which
is slope gr-semistable.

THEOREM 5.5. If (E,∇) is slope semistable then there exists a canonically defined
slope gr-semistable Griffiths transverse filtration N• on (E,∇) providing it with a
partial L-oper structure. This filtration is preserved by the automorphisms of(E,∇).

Proof. Let R be a localization ofA1 at 0 and letL̃ be the smooth Lie algebroid on
XR = X×k SpecR obtained by restricting ofLR from X×k A1. Consider the trivial
filtration E = N0 ⊃ N1 = 0. It satisfies Griffiths tranversality so we can associate to
it via the Rees construction and restricting toXR, an R-flat OXR-coherentL̃-module
F0 = F (in factF = (p∗XE,π∇)).
Now suppose that we have defined anL̃-submoduleFn ⊂ F coming by restriction
from the Rees construction associated to a Griffiths transverse filtrationN•n of E. If the
associatedΩL-Higgs sheafFn

k = (GrNn(E),θn) is semistable then we get the required
filtration. Otherwise, we consider its maximal destabilizing ΩL-Higgs subsheafBn.
But (GrNn(E),θn) is a system ofΩL-Hodge sheaves, so by Corollary 3.5Bn is also
a system ofΩL-Hodge sheaves. Let us writeBn =

⊕
Bn

m, whereBn
m ⊂ GrmNn

(E) =
Nm

n /Nm+1
n . Then we can define a new Griffiths transverse filtrationN•n+1 on E by

setting

Nm
n+1 := ker

(

E→
E/Nm

n

Bn
m−1

)

.

Let Fn+1 denote the restriction toXR of the LR-module associated by the Rees con-
struction toN•n+1. We need to prove that this procedure cannot continue indefinitely.
To show it, it is sufficient to check that we follow the same procedure as the one
described in the proof of Theorem 5.3.
By constructionπFn ⊂ Fn+1 ⊂ Fn and in particularFn+1

K = Fn
K . On the other hand,

on the special fiber ofXR→ SpecR we have a short exact sequence

0→ Fn
k /Bn→ Fn+1

k = (GrNn+1(E),θn+1)→ Bn→ 0

coming from the definition of the filtrationN•n+1. This shows thatπFn is the kernel of
the compositionFn+1→ Fn+1

k → Bn. But thenFn+1 is the kernel of the composition
Fn→ Fn

k → Fn
k /Bn. Now the proof of Theorem 5.3 shows that this procedure must

finish.
Since the Harder–Narasimhan filtration is canonically defined, the above described
procedure is also canonical and the obtained filtration is preserved by the automor-
phisms of(E,∇).

In the following the canonical filtrationN• from Theorem 5.5 will be calledSimpson’s
filtration of (E,∇) and denoted byN•S. The reason is that apart from many spectacular
results due to Simpson in non-abelian Hodge theory, the construction of the filtration
described in the proof of the above theorem was done by Simpson in [Si4, Section 3]
for the usual Higgs bundles on complex projective curves. However, our proof of the
fact that the procedure stops is different.
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Theorem 5.5 generalizes [Si4, Theorem 2.5] to higher dimensions as asked for at
the end of [Si4, Section 3]. Indeed, in the characteristic zero case every vector bundle
with an integrable connection has vanishing Chern classes.In particular, any saturated
subsheaf of such a vector bundle which is preserved by the connection (is locally free
and) has vanishing Chern classes. So any vector bundle with an integrable connection
is slope semistable (with respect to an arbitrary polarization). This argument fails in
the logarithmic case which shows that the above theorem is a correct analogue in this
case.

Note that there can be many slope gr-semistable filtrations providing (E,∇) with a
partialL-oper structure. This depends on the choice of the Griffiths transverse filtration
at the beginning of our procedure (in the proof of Theorem 5.5we used the canonical
choice). In general, all the obtained filtrations are related as described by the following
corollary which follows from Theorem 5.2:

COROLLARY 5.6. If N• and M• are two slope gr-semistable Griffiths transverse filtra-
tions on(E,∇) then the reflexivizations of the associated-graded slope polystableΩL-
Higgs sheaves obtained from their Jordan–Hölder filtrations are isomorphic. In par-
ticular, if the associatedΩL-Higgs sheaf is slope stable then(E,∇) carries a unique
gr-semistable Griffiths transverse filtration.

The above corollary generalizes [Si4, Corollary 4.2]. Notethat Simpson’s proof does
not work so easily in our situation as in higher dimensions wedo not have appropriate
moduli spaces at our disposal.
Let us also note that any slope gr-semistable filtration can be refined so that the asso-
ciated gradedΩL-Higgs sheaf is slope polystable (in which case its reflexivization is
uniquely determined by(E,∇) up to an isomorphism).

As an immediate application of Theorem 5.5 we also get the following interesting
corollary:

COROLLARY 5.7. Let L be a smooth trivial Lie algebroid. Let(E,θ ) be a torsion free,
slope semistableΩL-Higgs sheaf on X. Then we can deform it to a slope semistable
system ofΩL-Hodge sheaves.

5.3 Higgs-de Rham sequences

Let k be an algebraically closed field of characteristicp > 0. Let X be a smooth
projectivek-variety of dimensionn that can be lifted to a smooth schemeX over
W2(k).
Let MICp−1(X/k) be the category ofOX-modules with an integrable connection
whose p-curvature is nilpotent of level less or equal top− 1. Similarly, let
HIGp−1(X/k) denote the category of HiggsOX′ -modules with a nilpotent Higgs sheaf
of level less or equal top−1. In this case one of the main results of Ogus and Volo-
godsky (see [OV, Theorem 2.8]) says that:

THEOREM 5.8. The Cartier operator

CX /S : MICp−1(X/k)→HIGp−1(X
′/k)

Documenta Mathematica 19 (2014) 509–540



Semistable Modules over Lie . . . 537

defines an equivalence of categories with quasi-inverse

C−1
X /S : HIGp−1(X/k)→MICp−1(X

′/k).

A small variant of the following lemma can be found in proof of[OV, Theorem 4.17]:

LEMMA 5.9. Let (E,θ ) ∈HIGp−1(X′/S). Then

[C−1
X /S (E)] = F∗X/S[E],

where [·] denotes the class of a coherentOX-module in Grothendieck’s K-group
K0(X).

As a corollary to Theorem 5.8 and Lemma 5.9 we get the following:

COROLLARY 5.10. Let (E,θ ) be a torsion free Higgs sheaf with nilpotent Higgs field
of level less than p. Then it is slope semistable if and only ifthe corresponding sheaf
with integrable connection(V,∇) :=C−1

X /S (E,θ ) is slope semistable.

Now let (E,θ ) be a rankr torsion free Higgs sheaf with nilpotent Higgs field. Let us
assume thatr ≤ p so that level of nilpotence of(E,θ ) is less thanp. Let us recall the
following definition taken from [LSZ].

Definition 5.11. A Higgs–de Rham sequenceof (E,θ ) is an infinite sequence

(V0,∇0)
GrN0

%%JJJJJJJJJ
(V1,∇1)

GrN1

""F
FF

FF
FF

FF
F

(E0,θ0) = (E,θ )

C−1
77ooooooooooo

(E1,θ1)

C−1
99ttttttttt

...

in which C−1 = C−1
X /S is the inverse Cartier transform,N•i is a Griffiths transverse

filtration of (Vi ,∇i) and(Ei+1 := GrNi (Vi),θi+1) is the associated Higgs sheaf.

The following theorem proves the conjecture of Lan-Sheng-Zuo [LSZ, Conjecture
2.8]:

THEOREM 5.12. If (E,θ ) is slope semistable then there exists a canonically defined
Higgs–de Rham sequence

(V0,∇0)
GrNS

%%JJJJJJJJJ
(V1,∇1)

GrNS

""F
FF

FF
FF

FF
F

(E0,θ0) = (E,θ )

C−1
77ooooooooooo

(E1,θ1)

C−1
99ttttttttt

...

in which each(Vi ,∇i) is slope semistable and(Ei+1,θi+1) is the slope semistable
Higgs sheaf associated to(Vi ,∇i) via Simpson’s filtration.
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Proof. The proof is by induction on indexi. Once we defined slope semistable(Ei ,θi),
we can construct(Vi ,∇i), which is slope semistable by Corollary 5.10. So by Theorem
5.5 there exists Simpson’s filtration on(Vi ,∇i) and hence we can construct a slope
semistable Higgs sheaf(Ei+1,θi+1). Since(Ei+1,θi+1) is a system of Hodge sheaves
andr ≤ p, it satisfies the nilpotence condition required to defineC−1.

In the above theorem slope semistability is defined with respect to an arbitrary fixed
collection(D1, . . . ,Dn−1) of nef divisors onX.
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