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Abstract. We prove that the rational number |n/m| is an in-
variant of the group von Neumann algebra of the Baumslag-Solitar
group BS(n,m). More precisely, if L(BS(n,m)) is isomorphic with
L(BS(n′,m′)), then |n′/m′| = |n/m|±1. We obtain this result by as-
sociating to abelian, but not maximal abelian, subalgebras of a II1
factor, an equivalence relation that can be of type III. In particular,
we associate to L(BS(n,m)) a canonical equivalence relation of type
III|n/m|.
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1. Introduction and statement of the main result

Some of the deepest open problems in functional analysis center around the
classification of group von Neumann algebras L(G) associated with certain
natural families of countable groups G. In the case of the free groups, this
becomes the famous free group factor problem asking whether L(Fn) ∼= L(Fm)
when n,m ≥ 2 and n 6= m. For property (T) groups with infinite conjugacy
classes (icc), this leads to Connes’s rigidity conjecture ([Co80]) asserting that
an isomorphism L(G) ∼= L(Λ) between the property (T) factors entails an
isomorphism G ∼= Λ of the groups.
As a consequence of Connes’s uniqueness theorem of injective II1 factors
([Co75]), the group von Neumann algebra L(G) of an amenable icc group G is
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isomorphic with the unique hyperfinite II1 factor R. In the nonamenable case,
many nonisomorphic groups G are known to have nonisomorphic group von
Neumann algebras L(G). Nevertheless, concerning the classification of group
von Neumann algebras of natural families of groups, e.g. lattices in simple Lie
groups, little is known. A notable exception however is [CH88] where it is shown
that for n 6= m, lattices in Sp(n, 1), respectively Sp(m, 1), have nonisomorphic
group von Neumann algebras.
Since 2001, Popa has been developing a new arsenal of techniques to study II1
factors, called deformation/rigidity theory. This theory has provided several
classes G of groups such that an isomorphism L(G) ∼= L(Λ) with both G,Λ ∈ G
entails the isomorphism G ∼= Λ. By [Po04], this holds in particular when G is
the class of wreath product groups of the form (Z/2Z)≀Γ with Γ an icc property
(T) group.
In [IPV10], the first W∗-superrigidity theorems for group von Neumann alge-
bras were discovered, yielding icc groups G such that an isomorphism L(G) ∼=
L(Λ) with Λ an arbitrary countable group, implies that G ∼= Λ. The groups
G discovered in [IPV10] are generalized wreath products of a special form. In
[BV12], it was then shown that one can actually take G = (Z/2Z)(Γ) ⋊ (Γ×Γ)
with Γ ranging over a large family of nonamenable groups including the free
groups Fn, n ≥ 2.
In this article, we apply Popa’s deformation/rigidity theory to partially classify
the group von Neumann algebras of the Baumslag-Solitar groups BS(n,m).
Recall that for all n,m ∈ Z−{0}, this group is defined as the group generated
by a and b subject to the relation banb−1 = am. So,

BS(n,m) := 〈a, b | banb−1 = am〉 .

The Baumslag-Solitar groups were introduced in [BS62] as the first examples
of finitely presented non-Hopfian groups. Ever since, they have been used
as examples and counterexamples for numerous group theoretic phenomena.
Therefore, it is a natural problem to classify the group von Neumann algebras
L(BS(n,m)).
Whenever |n| = 1 or |m| = 1, the group BS(n,m) is solvable, hence amenable.
So we always assume that |n| ≥ 2 and |m| ≥ 2. In that case, BS(n,m) contains a
copy of the free group F2 and hence, is nonamenable. In [Mo91], the Baumslag-
Solitar groups were classified up to isomorphism: BS(n,m) ∼= BS(n′,m′) if and
only if {n,m} = {εn′, εm′} for some ε ∈ {−1, 1}. So, up to isomorphism, we
only consider 2 ≤ n ≤ |m|. Finally by [St05, Exemple 2.4], the group BS(n,m)
is icc if and only if |n| 6= |m|. Therefore, we always assume that 2 ≤ n < |m|.
Using Popa’s deformation/rigidity theory and in particular his spectral gap
rigidity ([Po06]) and the work on amalgamated free products ([IPP05]), several
structural properties of the II1 factors M = L(BS(n,m)) were proven. In
particular, it was shown in [Fi10] that M is not solid, that M is prime and
that M has no Cartan subalgebra. More generally, it is proven in [Fi10] that
any amenable regular von Neumann subalgebra ofM must have a nonamenable
relative commutant.
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Our main result is the following partial classification theorem for the Baumslag-
Solitar group von Neumann algebras L(BS(n,m)). Whenever M is a II1 factor
and t > 0, we denote by M t the amplification of M . Up to unitary conjugacy,
M t is defined as p(Mn(C)⊗M)p where p is a projection satisfying (Tr⊗τ)(p) =
t. The II1 factors M and N are called stably isomorphic if there exists a t > 0
such that M ∼= N t.

Theorem A. Let n,m, n′,m′ ∈ Z such that 2 ≤ n < |m| and 2 ≤ n′ < |m′|. If

L(BS(n,m)) is stably isomorphic with L(BS(n′,m′)), then n
|m| =

n′

|m′| .

Note that Theorem A formally resembles, but is independent of, the results in
[Ki11] on orbit equivalence relations of essentially free ergodic probability mea-
sure preserving actions of Baumslag-Solitar groups, especially [Ki11, Proposi-
tion B.2 and Theorem 1.2]. It would be very interesting to find a framework
that unifies both types of results.
We prove our Theorem A by associating a canonical equivalence relation to
L(BS(n,m)) and proving that it is of type IIIn/|m|. More precisely, assume
that (M, τ) is a von Neumann algebra with separable predual, equipped with
a faithful normal tracial state. Whenever A ⊂ M is an abelian von Neumann
subalgebra, the normalizer

NM (A) := {u ∈ U(M) | uAu∗ = A}

induces a group of trace preserving automorphisms of A. Writing A =
L∞(X,µ) with µ being induced by τ|A, the corresponding orbit equivalence
relation is a countable probability measure preserving (pmp) equivalence rela-
tion on (X,µ).
More generally, we can consider the set of partial isometries

{u ∈M | u∗u and uu∗ are projections in A′ ∩M and uAu∗ = Auu∗ } . (1)

Every such partial isometry induces a partial automorphism of A and hence a
partial automorphism of (X,µ). We denote by R(A ⊂ M) the equivalence re-
lation generated by all these partial automorphisms. When A ⊂M is maximal
abelian, i.e. A′ ∩M = A, then R(A ⊂ M) coincides with the orbit equiva-
lence relation induced by the normalizer NM (A). In particular, in that case
the equivalence relation R(A ⊂M) preserves the probability measure µ.
If however A ⊂ M is not maximal abelian, the partial automorphisms of A
induced by the partial isometries in the set (1) need not be trace preserving.
So in general, R(A ⊂M) can be an equivalence relation of type III.
Our main technical result is Theorem 3.3 below, roughly saying the following. If
A,B ⊂M are abelian subalgebras such that Z(A′∩M) = A and Z(B′∩M) =
B, and if there exist intertwining bimodules A ≺ B and B ≺ A (in the sense
of Popa, see [Po03] and Theorem 2.3 below), then the equivalence relations
R(A ⊂ M) and R(B ⊂ M) must be stably isomorphic. In particular, their
types must be the same.
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In Section 4, we apply this toM = L(BS(n,m)) and A equal to the abelian von
Neumann subalgebra generated by the unitary ua. We prove that R(A ⊂ M)
is the unique hyperfinite ergodic equivalence relation of type IIIn/|m|.

The proof of Theorem A can then be outlined as follows. First we note that
the von Neumann algebra A′ ∩M is nonamenable. Conversely if Q ⊂ M is a
nonamenable subalgebra, it was proven in [CH08], using spectral gap rigid-
ity ([Po06]) and the structure theory of amalgamated free product factors
([IPP05]), that Q′ ∩ M ≺ A. So, up to intertwining-by-bimodules, the po-
sition of A inside M is “canonical”. Therefore a stable isomorphism between
L(BS(n,m)) and L(BS(n′,m′)) will preserve, up to intertwining-by-bimodules,
these canonical abelian subalgebras. Hence their associated equivalence rela-
tions are stably isomorphic and, in particular, have the same type. This gives
us the equality n/|m| = n′/|m′|.

2. Preliminaries

We denote by (M, τ) a von Neumann algebra equipped with a faithful normal
tracial state τ . We always assume thatM has a separable predual. If B is a von
Neumann subalgebra of (M, τ), we denote by EB the unique trace preserving
conditional expectation of M onto B.

Whenever x ∈ M is a normal element, we denote by supp(x) its support, i.e.
the smallest projection p ∈M that satisfies xp = x (or equivalently, px = x).

Let R be a countable nonsingular (i.e. measure class preserving) equivalence re-
lation on a standard probability space (X,µ). We denote by [[R]] the full pseu-
dogroup of R, i.e. the pseudogroup of all partial nonsingular automorphisms ϕ
of X such that the graph of ϕ is contained in R. We denote the domain of ϕ
by dom(ϕ) and its range by ran(ϕ). We denote by [x] the equivalence class of
x ∈ X .

Assume that also R′ is a countable nonsingular equivalence relation on the
standard probability space (X ′, µ′). The equivalence relations R and R′ are
called

• isomorphic, if there exists a nonsingular isomorphism ∆ : X → X ′ such
that ∆([x]) = [∆(x)] for almost every x ∈ X ;

• stably isomorphic, if there exist Borel subsets Z ⊂ X and Z ′ ⊂ X ′ that
meet almost every orbit and a nonsingular isomorphism ∆ : Z → Z ′ such
that ∆([x] ∩ Z) = [∆(x)] ∩ Z ′ for almost every x ∈ Z.

2.1. HNN extensions and Baumslag-Solitar groups

Let G be a group, H < G a subgroup and θ : H → G an injective group
homomorphism. The HNN extension HNN(G,H, θ) is defined as the group
generated by G and an additional element t subject to the relation θ(h) = tht−1

for all h ∈ H . So,

HNN(G,H, θ) = 〈G, t | θ(h) = tht−1 for all h ∈ H〉 .
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Elements of HNN(G,H, θ) can be canonically written as “reduced words” using
as letters the elements of G and the letters t±1. More precisely, we have the
following lemma.

Lemma 2.1 (Britton’s lemma, [Br63]). Consider the expression g =
g0t

n1g1t
n2 · · · tnkgk with k ≥ 0, g0, gk ∈ G, g1, . . . , gk−1 ∈ G − {e} and

n1, . . . , nk ∈ Z − {0}. We call this expression reduced if the following two
conditions hold:

• for every i ∈ {1, . . . , k − 1} with ni > 0 and ni+1 < 0, we have gi 6∈ H,

• for every i ∈ {1, . . . , k−1} with ni < 0 and ni+1 > 0, we have gi 6∈ θ(H).

If the above expression for g is reduced, then g 6= e in the group HNN(G,H, θ),
unless k = 0 and g0 = e. In particular, the natural homomorphism of G to
HNN(G,H, θ) is injective.

Recall from the introduction that the Baumslag-Solitar group BS(n,m) is de-
fined for all n,m ∈ Z− {0} as

BS(n,m) := 〈a, b | banb−1 = am〉 .

It is one of the easiest examples of an HNN extension. We also recall from the
introduction that the BS(n,m) with 2 ≤ n < |m| form a complete list of all
nonamenable icc Baumslag-Solitar groups up to isomorphism. Since we only
want to consider the case where L(BS(n,m)) is a nonamenable II1 factor, we
always assume that 2 ≤ n < |m|.

2.2. Hilbert bimodules and intertwining-by-bimodules

If M and N are tracial von Neumann algebras, then a left M -module is a
Hilbert space H endowed with a normal ∗-homomorphism π : M → B(H). A
right N -module is a left Nop-module. An M -N -bimodule is a Hilbert space
H endowed with commuting normal ∗-homomorphisms π : M → B(H) and
ϕ : Nop → B(H). For x ∈ M, y ∈ N and ξ ∈ H, we write xξy instead of
π(x)ϕ(yop)(ξ). We denote an M -N -bimodule H by MHN. We call an M -N -
bimodule bifinite if it is finitely generated both as a left HilbertM -module and
a right Hilbert N -module.

Let A and B be abelian von Neumann algebras. We denote by PIso(A,B)
the set of all partial isomorphisms from A to B, i.e. isomorphisms α : Aq →
Bp, where q ∈ A and p ∈ B are projections. We write PAut(A) instead
of PIso(A,A). Note that to every α ∈ PIso(A,B) we can associate an A-
B-bimodule AH(α)B given by H(α) = L2(Bp) and aξb = α(aq) ξ bp. The
composition of two partial isomorphisms is defined as follows: if α ∈ PIso(B,C)
and β ∈ PIso(A,B) are given by α : Bp→ Cr and β : Aq → Bp′ for projections
q ∈ A, p, p′ ∈ B and r ∈ C, then the composition α ◦ β ∈ PIso(A,C) is defined
by x 7→ α(β(x)) for all x ∈ Aqβ−1(pp′).
The following is a well known result.
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Lemma 2.2. Let A and B be abelian von Neumann algebras. Then every bifinite
A-B-bimodule AHB is isomorphic to a direct sum of bimodules of the form

AH(α)B with α ∈ PIso(A,B).

We finally recall Popa’s intertwining-by-bimodules theorem.

Theorem 2.3 ([Po03, Theorem 2.1 and Corollary 2.3]). Let (M, τ) be a tracial
von Neumann algebra and let A,B ⊂ M be possibly nonunital von Neumann
subalgebras. Denote their respective units by 1A and 1B. The following three
conditions are equivalent:

1. 1AL
2(M)1B admits a nonzero A-B-subbimodule that is finitely generated

as a right B-module.

2. There exist nonzero projections p ∈ A, q ∈ B, a normal unital ∗-
homomorphism ψ : pAp → qBq and a nonzero partial isometry v ∈ pMq
such that av = vψ(a) for all a ∈ pAp.

3. There is no sequence of unitaries un ∈ U(A) satisfying ||EB(xuny
∗)||2 →

0 for all x, y ∈ 1BM1A.

If one of these equivalent conditions holds, we write A ≺M B.

2.3. Quasi-regularity

Let (M, τ) be a tracial von Neumann algebra and N ⊂ M a von Neumann
subalgebra. We denote by QNM (N) the quasi-normalizer of N inside M , i.e.
the unital ∗-algebra defined by

{
a ∈M

∣∣∣ ∃b1, . . . , bk ∈M, ∃d1, . . . , dr ∈M

such that Na ⊂
k∑

i=1

biN and aN ⊂
r∑

j=1

Ndj

}
.

We call N ⊂M quasi-regular if QNM (N)′′ =M .
If A,B ⊂M are abelian von Neumann subalgebras, we define QM (A,B) as

QM (A,B) := {v ∈M | vv∗ ∈ A′ ∩M , v∗v ∈ B′ ∩M and Av = vB} .

Whenever v ∈ QM (A,B), we define qv = supp(EA(vv
∗)) and pv =

supp(EB(v
∗v)), and we denote by αv : Aqv → Bpv the unique ∗-isomorphism

satisfying av = vαv(a) for all a ∈ Aqv.
Note that the set QM (A,B) can be {0}. In Lemma 2.4, we will see that
QM (A,B) 6= {0} if and only if there exists a bifinite A-B-subbimodule AHB of

AL
2(M)B.

We denote QM (A,A) by QM (A).

Lemma 2.4. Let (M, τ) be a tracial von Neumann algebra and A,B ⊂ M
abelian von Neumann subalgebras. Then the following statements hold.
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1. If α ∈ PIso(A,B) and if θ : AH(α)B → AL
2(M)B is an A-B-bimodular

isometry, then there exists a partial isometry v ∈ QM (A,B) such that
α = αv and such that

θ(H(α)) ⊂ v(B′ ∩M)
||·||2

⊂ span||·||2 QM (A,B) .

2. Every bifinite A-B-subbimodule AHB of AL
2(M)B is contained in

span||·||2 QM (A,B).

3. QM (A)′′ = QNM (A)′′.

4. We have QM (A,B) 6= {0} if and only if AL
2(M)B admits a nonzero

bifinite A-B-subbimodule.

Proof. 1. Let α : Aq → Bp be an element of PIso(A,B). Define ξ := θ(p) ∈
L2(M) and let ξ = v|ξ| be its polar decomposition. For all a ∈ A, we have
aξ = ξα(a) and hence, av = vα(a). Furthermore p = supp(EB(v

∗v)) and
q = α−1(p) = supp(EA(vv

∗)). So we find that v ∈ QM (A,B) and α = αv.

Because |ξ| ∈ L2(B′∩M), we have that ξ = v|ξ| is an element of v(B′ ∩M)
||·||2

.
Since p generates AH(α)B as a right Hilbert B-module, we have proven the first

inclusion θ(H(α)) ⊂ v(B′ ∩M)
||·||2

. Since v ∈ QM (A,B), also v(B′ ∩M) ⊂
QM (A,B) and the second inclusion in statement 1 is proven as well.
2. Let AHB be a bifinite A-B-subbimodule of AL

2(M)B. By Lemma 2.2,

AHB is isomorphic to a direct sum of bimodules of the form AH(αi)B with
αi ∈ PIso(A,B). Using statement 1 of the lemma, we find that H is generated
by subspaces of span||·||2 QM (A,B). This proves statement 2.
3. By definition, we have QM (A)′′ ⊂ QNM (A)′′. On the other hand,

AL
2(QNM (A)′′)A is a direct sum of bifinite A-A-subbimodules of AL

2(M)A.
So by statement 2, we have that L2(QNM (A)′′) ⊂ span||·||2(QM (A)). There-
fore we conclude that QNM (A)′′ = QM (A)′′.
Finally, 4 is an immediate consequence of 2.

We end this subsection with the following lemma, clarifying why later, we
will consider abelian subalgebras A ⊂ M satisfying Z(A′ ∩ M) = A. Note
that since A is abelian, the condition Z(A′ ∩M) = A is equivalent with the
“bicommutant” property (A′ ∩M)′ ∩M = A. Also note that the composition
of two partial isomorphisms was defined before Lemma 2.2.

Lemma 2.5. Let (M, τ) be a tracial von Neumann algebra and A,B,C ⊂ M
abelian von Neumann subalgebras. If v ∈ QM (A,B), w ∈ QM (B,C) and
if Z(B′ ∩ M) = B, then there exists an element u ∈ QM (A,C) such that
αw ◦ αv = αu.

Proof. Choose v ∈ QM (A,B) and w ∈ QM (B,C). Note that vbw ∈ QM (A,C)
for every b ∈ B′∩M and αvbw = αw ◦αv|Aqvbw . We claim that

∨
b∈B′∩M qvbw =

α−1
v (qwpv).
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Denote α−1
v (qwpv) −

∨
b∈B′∩M qvbw by r. We need to prove that r is zero.

Since (B′ ∩ M)′ ∩ M = B, we have that for every x ∈ M , the projection
supp(EB(xx

∗)) equals the projection of L2(M) onto the closed linear span of
(B′ ∩M)xM ⊂ L2(M). Since w∗bv∗r = 0 for every b ∈ B′ ∩M , it follows
that w∗qv∗r = 0. Therefore qw is orthogonal to qv∗r. Because qv∗r = αv(r)
and αv(r) ≤ qw, it follows that αv(r) = 0. Hence r = 0 and our claim that∨
b∈B′∩M qvbw = α−1

v (qwpv) is proven.
By cutting down with appropriate projections, we find bn ∈ B′ ∩M such that
the projections qvbnw are orthogonal and sum up to α−1

v (qwpv). In particular,
the left supports, resp. right supports, of the elements vbnw are orthogonal.
So we can define u =

∑
n vbnw. It follows that u ∈ QM (A,C) and αw ◦ αv =

αu.

2.4. The type of an ergodic nonsingular countable equivalence

relation

Let R be a nonsingular ergodic countable Borel equivalence relation on a stan-
dard probability space (X,µ). Using the map π : R → X : π(x, y) = x, we
define the measure µ(1) on R given by

µ(1)(U) =

∫

X

#(U ∩ π−1(x)) dµ(x) for all Borel sets U ⊂ R .

We define R(2) := {(x, y, z) ∈ X3 | (x, y), (y, z) ∈ R}. Similarly, using the map
ρ : R(2) → X : ρ(x, y, z) = x, we define the measure µ(2) on R(2) given by

µ(2)(V ) =

∫

X

#(V ∩ ρ−1(x)) dµ(x) for all Borel sets V ⊂ R(2) .

The Radon-Nikodym 1-cocycle of R is the µ(1)-a.e. uniquely defined Borel map
ω : R → R such that

ω(ϕ(x), x) = log
(dµ ◦ ϕ

dµ
(x)

)
for all ϕ ∈ [[R]] and almost every x ∈ domϕ .

Note that ω satisfies the 1-cocycle relation ω(x, z) = ω(x, y) + ω(y, z) for µ(2)-

a.e. (x, y, z) ∈ R(2). One then defines the Maharam extension R̃ of R as the
equivalence relation on (X × R, µ× exp(−t)dt) defined by

(x, t) ∼ (y, s) if and only if (x, y) ∈ R and t− s = ω(x, y).

Note that µ× exp(−t)dt is an infinite invariant measure for R̃. Denote the von

Neumann algebra of all R̃-invariant functions in L∞(X ×R) by L∞(X ×R)R̃.
Since R was assumed to be ergodic, one can easily check that the action of R

on L∞(X × R)R̃ given by translation of the second variable, is also ergodic.
Depending on how this action of R looks like, we define as follows the type of
R.

• I or II, if the action is conjugate with R y R ;
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• IIIλ (0 < λ < 1), if the action is conjugate with R y R/Z log(λ) ;

• III1, if the action is on one point ;

• III0, if the action is properly ergodic, i.e. is ergodic and has orbits of
measure zero.

Remark 2.6. Denote by L(R) the von Neumann algebra associated with R.
Denote by ϕ the normal semifinite faithful state on L(R) that is induced by
µ. Finally denote by (σϕt )t∈R its modular automorphism group. There is a

canonical identification L(R̃) ∼= L(R) ⋊σϕ R. Under this identification, the

dual action of R on L(R) ⋊σϕ R corresponds to the action of R on L(R̃) that

we defined above. Also, the center of L(R)⋊σϕ R corresponds to L∞(X×R)R̃.
Altogether it follows that the type of the equivalence relation R coincides with
the type of the factor L(R).

Lemma 2.7. Let R be a nonsingular ergodic countable Borel equivalence relation
on the standard probability space (X,µ). Denote by ω its Radon-Nikodym 1-
cocycle. If the essential image Im(ω) of ω equals log(λ)Z for some 0 < λ < 1
and if the kernel Ker(ω) of ω is an ergodic equivalence relation, then R is of
type IIIλ.

Proof. Since Ker(ω) is an ergodic equivalence relation on (X,µ), we have

L∞(X × R)R̃ ⊂ L∞(X × R)Ker(ω) = 1⊗ L∞(R) .

For a given F ∈ L∞(R), we have that 1 ⊗ F is R̃-invariant if and only if F is
invariant under translation by the essential image of ω. So,

L∞(X × R)R̃ = 1⊗ L∞(R/ log(λ)Z) .

3. Equivalence relations associated to subalgebras that are

abelian, but not maximal abelian

Throughout this section, we fix a tracial von Neumann algebra (M, τ) with
separable predual. We also fix an abelian von Neumann subalgebra A ⊂ M
satisfying Z(A′ ∩M) = A. Choose a standard probability space (X,µ) such
that A = L∞(X,µ). For every nonsingular partial automorphism ϕ of (X,µ),
we denote by αϕ the corresponding partial automorphism of A.
We first prove that QM (A) induces a nonsingular countable Borel equivalence
relation R(A ⊂M) on (X,µ). For this, we introduce the notation

G(A ⊂M) := {αv | v ∈ QM (A)} . (2)

Proposition 3.1. There exists a nonsingular countable Borel equivalence re-
lation R on (X,µ) with the following property: a nonsingular partial automor-
phism ϕ of X satisfies αϕ ∈ G(A ⊂ M) if and only if (x, ϕ(x)) ∈ R for a.e.
x ∈ dom(ϕ).
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Moreover, R is essentially unique: if a nonsingular countable Borel equivalence
relation R′ on (X,µ) satisfies the same property, then there exists a Borel subset
X0 ⊂ X with µ(X −X0) = 0 and R|X0

= R′
|X0

.

We denote R(A ⊂M) := R. The equivalence relation R(A ⊂M) is ergodic if
and only if QNM (A)′′ is a factor.

Before proving Proposition 3.1, we introduce some terminology and a lemma.
To every α ∈ PAut(A) are associated the support projections qα, pα ∈ A such
that α : Aqα → Apα is a ∗-isomorphism. Assume that α ∈ PAut(A) and
F ⊂ PAut(A). We say that α is a gluing of elements in F , if there exists a
sequence of elements αn ∈ F and projections qn ∈ A such that qα =

∑
n qn

and such that qn ≤ qαn
and α|Aqn = αn|Aqn for all n.

Lemma 3.2. Let J ⊂ QM (A) and v ∈ QM (A) such that v ∈ span||·||2J . Then
αv is a gluing of elements in {αw | w ∈ J }.

Proof. By a standard maximality argument, it suffices to prove that for every
nonzero projection q ∈ Aqv, there exists a nonzero subprojection q0 ∈ Aq and
a w ∈ J such that q0 ≤ qw and αv|Aq0 = αw |Aq0 .
So fix a nonzero projection q ∈ Aqv. It follows that qEA(vv

∗) 6= 0. Since
v ∈ span||·||2J , we can pick a w ∈ J such that qEA(vw

∗) 6= 0. Define q1 :=
supp(EA(vw

∗)) and note that q1 ∈ qvAqw = Aqvqw. Also note that qq1 6= 0.
For all a ∈ A, we have

α−1
v (apv) vw

∗ = v aw∗ = vw∗ α−1
w (apw) .

Applying the conditional expectation onto A and using that A is abelian, we
find that

α−1
v (apv) q1 = α−1

w (apw) q1 for all a ∈ A .

This means that αv |Aq1 = αw |Aq1 . We put q0 := qq1. We already showed that
q0 6= 0. Since q0 ≤ q1, we have that αv |Aq0 = αw |Aq0 .

Proof of Proposition 3.1. We say that a subpseudogroup G ⊂ PAut(A) is of
countable type if there exists a countable subset J ⊂ G such that every α ∈ G
is a gluing of elements in J . To prove the first part of the proposition, we must
show that G(A ⊂M) is a subpseudogroup of countable type of PAut(A). From
Lemma 2.5, it follows that G(A ⊂M) is indeed a subpseudogroup. SinceM has
a separable predual, we can choose a countable ‖·‖2-dense subset J ⊂ QM (A).
By Lemma 3.2, every α ∈ G(A ⊂ M) is a gluing of elements in {αw | w ∈ J }.
Hence G(A ⊂ M) is of countable type. So the first part of the proposition is
proven and we can essentially uniquely define the nonsingular countable Borel
equivalence relation R on (X,µ).
Since A′ ∩M ⊂ QNM (A)′′ and since we assumed that (A′ ∩M)′ ∩M = A, the
center of QNM (A)′′ is a subalgebra ofA. By Lemma 2.4.3, we have QNM (A)′′ =
QM (A)′′. Therefore,

Z(QNM (A)′′) = {a ∈ A | av = va for all v ∈ QM (A)} .
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The right hand side equals AR, the subalgebra of R-invariant functions in A.
So R is ergodic if and only if QNM (A)′′ is a factor.

For our application, the following theorem is crucial. It says that R(A ⊂ M)
remains the same, up to stable isomorphism, if we replace A by an abelian
subalgebra B that has a mutual intertwining bimodule into A.

Theorem 3.3. Let M be a II1 factor with separable predual. Let A,B ⊂ M
be abelian, quasi-regular von Neumann subalgebras satisfying Z(A′ ∩M) = A
and Z(B′ ∩M) = B. If A ≺M B and B ≺M A, then the equivalence relations
R(A ⊂M) and R(B ⊂M) are stably isomorphic.

Proof. Since A,B are quasi-regular and sinceA ≺M B as well asB ≺M A, there
exists a nonzero bifinite A-B-subbimodule of L2(M). So by Lemma 2.4.4, there
exists a nonzero element v ∈ QM (A,B) with corresponding αv ∈ PAut(A,B).
Using the notation in (2) and using Lemma 2.5, we find that

αv ◦ β ◦ α−1
v ∈ G(B ⊂M) for all β ∈ G(A ⊂M) and

α−1
v ◦ γ ◦ αv ∈ G(A ⊂M) for all γ ∈ G(B ⊂M) .

So αv implements a stable isomorphism between R(A ⊂ M) and R(B ⊂ M).

The following lemma will allow us to easily compute R(A ⊂ M) in concrete
examples.

Lemma 3.4. Let (M, τ) be a tracial von Neumann algebra and A ⊂ M an
abelian von Neumann subalgebra satisfying Z(A′ ∩M) = A. Let F ⊂ M be a
subset such that

• M = (F ∪ F∗ ∪ (A′ ∩M))′′,

• as an A-A-bimodule, span||·||2AFA is isomorphic to a direct sum of bi-
modules of the form AH(αn)A with αn ∈ PAut(A).

Choose nonsingular partial automorphisms ϕn of (X,µ) such that αn = αϕn

for all n. Up to measure zero, R(A ⊂ M) is generated by the graphs of the
partial automorphisms ϕn.

Proof. We again use the notation (2). By Lemma 2.4.1, we find vn ∈ QM (A)
such that αn = αvn and

span||·||2AFA ⊂ span||·||2{vn(A
′ ∩M) | n ∈ N} . (3)

In particular, we have αn ∈ G(A ⊂ M). Choose nonsingular partial automor-
phisms ϕn of (X,µ) such that αn = αϕn

for all n.
Denote by R the smallest (up to measure zero) equivalence relation on (X,µ)
that contains the graphs of all the partial automorphisms ϕn. By the previous
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paragraph, we know that R is a subequivalence relation of R(A ⊂M). Denote
by J the set of all products of elements in

{vn | n ∈ N} ∪ {v∗n | n ∈ N} ∪ (A′ ∩M) .

By construction, the graph of every αw, w ∈ J , belongs to R. Combining our
assumption that M = (F ∪ F∗ ∪ (A′ ∩M))′′ with (3), it follows that spanJ
is ‖ · ‖2-dense in L2(M). By Lemma 3.2, every α ∈ G(A ⊂ M) is a gluing of
elements in {αw | w ∈ J }. So the graph of every α ∈ G(A ⊂M) belongs to R
a.e. Hence R equals R(A ⊂M) almost everywhere.

We finally note in the following proposition that every nonsingular countable
Borel equivalence relation R arises as R(A ⊂M).

Proposition 3.5. Let R be a nonsingular countable Borel equivalence relation.
Then there exists a quasi-regular inclusion of an abelian von Neumann algebra
A in a tracial von Neumann algebra (M, τ) satisfying Z(A′∩M) = A and such
that R ∼= R(A ⊂M).

Proof. Let R be a nonsingular countable Borel equivalence relation on a stan-
dard probability space (X,µ). Denote by (P,Tr) the unique hyperfinite II∞
factor and choose a trace-scaling action (αt)t∈R of R on P . This means that
Tr ◦αt = e−tTr. The corresponding action of R on L2(P ) will also be denoted
by (αt). We denote by ω : R → R the Radon-Nikodym 1-cocycle of R (see
Section 2.4).
In the same way as with the Maharam extension of a nonsingular group action,
the equivalence relationR admits a natural trace preserving action on L∞(X)⊗
P . We denote by (M,Tr) the crossed product. For completeness, we recall the
construction of (M,Tr). To every ϕ ∈ [[R]], we associate the operator Wϕ on
L2(R, L2(P )) given by

(Wϕξ)(x, y) =

{
αω(x,ϕ−1(x))(ξ(ϕ

−1(x), y)) if x ∈ dom(ϕ−1) ,

0 otherwise,

for every ξ ∈ L2(R, L2(P )). One checks thatWϕWψ =Wϕ◦ψ andW ∗
ϕ =Wϕ−1 .

We represent L∞(X)⊗ P = L∞(X,P ) on L2(R, L2(P )) by

(Fξ)(x, y) = F (x)ξ(x, y) for all ξ ∈ L2(R, L2(P )) and F ∈ L∞(X,P ) .

Note that the partial isometries Wϕ, ϕ ∈ [[R]], normalize L∞(X,P ) and that

(W ∗
ϕFWϕ)(x) =

{
αω(x,ϕ(x))(F (ϕ(x))) if x ∈ domϕ

0 otherwise.

Define M as the von Neumann algebra generated by L∞(X,P ) and the partial
isometries Wϕ, ϕ ∈ [[R]]. Denoting by ∆ ⊂ R the diagonal subset, the orthog-
onal projection onto L2(∆, L2(P )) implements a normal faithful conditional
expectation E : M → L∞(X)⊗ P satisfying

E(Wϕ) = χ{x|ϕ(x)=x} ⊗ 1 for all ϕ ∈ [[R]] .
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The formula Tr := (µ⊗Tr)◦E defines a normal semifinite faithful trace on M.
Fix a nonzero projection q ∈ P with Tr(q) = 1. Define the projection p ∈
L∞(X) ⊗ P given by p = 1 ⊗ q. Write A := L∞(X)p and M := pMp.
Then A is a quasi-regular abelian von Neumann subalgebra of M and the
restriction of Tr toM gives a normal faithful tracial state τ onM . The relative
commutant L∞(X)′ ∩ M equals L∞(X) ⊗ P . Since P is a factor, it follows
that Z(A′ ∩M) = A.
We finally prove that R ∼= R(A ⊂ M). Write R =

⋃
k graph(ϕk), with ϕk ∈

[R]. Then ϕk induces an automorphism of L∞(X) and hence of A = L∞(X)p
that we denote by βk ∈ Aut(A). Since P is a II∞ factor and q ∈ P is a finite
projection, we can choose partial isometries wn ∈ P such that

∑
n w

∗
nwn = 1

and wnw
∗
n = q for all n. Define the elements

vn,k := (1⊗ wn)Wϕk
p .

All vn,k belong to QM (A) and αvn,k
equals the restriction of βk to Apn,k for

projections pn,k ∈ A. Since the sum of all w∗
nwn equals 1, we also have that∨

n pn,k = p. Therefore the graphs of the partial automorphisms αvn,k
generate

an equivalence relation that is isomorphic with R. To conclude the proof, we
put F := {vn,k | n, k ∈ N} and observe that M = (F ∪ F∗ ∪ (A′ ∩M))′′. By
Lemma 3.4, the equivalence relation R(A ⊂ M) is generated by the graphs of
the partial automorphisms αvn,k

.

4. Proof of Theorem A

Throughout this section, we assume that n and m are integers satisfying 2 ≤
n < |m|. As explained in the introduction, the corresponding groups BS(n,m)
form a complete list of the nonamenable icc Baumslag-Solitar groups up to
isomorphism.
Throughout this section, we write M = L(BS(n,m)) and A = {ua, u∗a}

′′. We
start with the following observation.

Proposition 4.1. We have that A ⊂ M is a quasi-regular abelian von Neu-
mann subalgebra satisfying Z(A′∩M) = A. Moreover, A′∩M has no amenable
direct summand.

Proof. It is clear that A ⊂ M is a quasi-regular abelian von Neumann subal-
gebra, because the element a ∈ BS(n,m) generates an almost normal abelian
subgroup of BS(n,m) : for every g ∈ BS(n,m), the group gaZg−1 ∩ aZ has
finite index in aZ.
To prove that Z(A′ ∩M) = A, we define the finite index subalgebra A0 :=
{una , u

−n
a }′′ of A. We will first prove that Z(A′

0 ∩M) = A0. Afterwards we will
show that this implies that Z(A′ ∩M) = A.
Define G := 〈aZ, b−1aZb〉 ⊂ BS(n,m). Then L(G) is a subalgebra of A′

0 ∩M .
So Z(A′

0 ∩ M) ⊂ L(G)′ ∩ M . Using Lemma 2.1, one can easily see that
{gγg−1 | g ∈ G} is an infinite set for every γ ∈ BS(n,m) − anZ. Therefore
L(G)′ ∩ M ⊂ A0. This shows that Z(A′

0 ∩ M) ⊂ A0. Since the converse
inclusion is obvious, we find that A0 = Z(A′

0 ∩M).
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Since A0 ⊂ A has finite index, there exist orthogonal projections pj ∈ A such
that Apj = A0pj and

∑
j pj = 1. But then

Z(A′ ∩M)pj = Z((A′ ∩M)pj) = Z((Apj)
′ ∩ pjMpj)

= Z((A0pj)
′ ∩ pjMpj) = Z(pj(A

′
0 ∩M)pj)

= Z(A′
0 ∩M)pj = A0pj ⊂ A

Therefore Z(A′ ∩ M) ⊂ A. The converse inclusion being obvious, we have
proven that A = Z(A′ ∩M).
Using Lemma 2.1, it follows that G is an amalgamated free product of two
copies of Z over a copy of Z embedded as nZ andmZ respectively. In particular,
G is nonamenable and L(G) has no amenable direct summand. Since L(G) ⊂
A′

0 ∩M , it follows that A′
0 ∩M has no amenable direct summand either. As

above, we have that
(A′ ∩M)pj = pj(A

′
0 ∩M)pj

for all j. Hence A′ ∩M has no amenable direct summand.

We now identify the associated countable equivalence relation R(A ⊂M).

Proposition 4.2. The equivalence relation R(A ⊂M) is isomorphic with the
unique hyperfinite ergodic countable equivalence relation of type IIIn/|m|.

Proof. Let k be the greatest common divisor of n and |m|. Write n = n0k and
m = m0k. By our assumptions on n and m, we have that 1 ≤ n0 < |m0|.
Define the countable Borel equivalence relation Rn,m on the circle T given by

Rn,m :=
{
(y, z) ∈ T× T

∣∣ ∃a, b ∈ N such that a+ b > 0

and y(n
a
0
mb

0
k) = z(m

a
0
nb
0
k)
}
.

Equip T with its Lebesgue measure λ and note that Rn,m is a nonsingular
countable Borel equivalence relation on (T, λ).
Define R0 := {(y, z) ∈ T × T | ym = zn}. Note that R0 ⊂ Rn,m and that
Rn,m is the smallest equivalence relation containing R0. Define π : R0 → T :
π(y, z) = ym. Note that π is n|m|-to-1. Define the probability measure µ on
R0 given by

µ(U) =
1

n|m|

∫

T

#
(
U ∩ π−1({x})

)
dλ(x) .

For all k, l ∈ Z, we define the function Pk,l : R0 → T : Pk,l(y, z) = ykzl. A
direct computation yields a unique unitary

T : L2(R0, µ) → span||·||2AubA : Pk,l 7→ ukaubu
l
a .

We turn L2(R0, µ) into an L∞(T)-L∞(T)-bimodule by the formula

(F · ξ · F ′)(y, z) = F (y) ξ(y, z)F ′(z) .
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Under the natural identification of L∞(T) and A, the unitary T is A-A-
bimodular.
By construction AL

2(R0, µ)A is isomorphic with a direct sum of bimodules of
the form AH(αj)A where the union of the graphs of the partial automorphisms
αj equals R0 and hence generates the equivalence relation Rn,m. Applying
Lemma 3.4 to F = {ub}, we conclude that R(A ⊂ M) ∼= Rn,m up to measure
zero.
As in Section 2.4, denote by ω : Rn,m → R the Radon-Nikodym 1-cocycle.
Denote by Λ ⊂ T the subgroup given by

Λ :=
{
exp

( 2πis

(n0m0)b

) ∣∣∣ s ∈ Z, b ∈ N

}
.

For every z ∈ Λ, we denote by αz : T → T the rotation αz(y) = zy. We
have graphαz ⊂ Rn,m for all z ∈ Λ. Since all αz are measure preserving, we
actually have graphαz ⊂ Ker(ω). Since Λ ⊂ T is a dense subgroup, it follows
that Ker(ω) is an ergodic equivalence relation. In particular, Rn,m is ergodic.
A direct computation shows that ω(y, z) = log(n/|m|) for all (y, z) ∈ R0. Since
R0 generates the equivalence relation Rn,m, it follows that the essential image
of ω equals log(n/|m|)Z. Using Lemma 2.7, we conclude that Rn,m is of type
IIIn/|m|. By construction, Rn,m is amenable and hence, hyperfinite.

We are now ready to prove our main theorem.

Proof of Theorem A. Fix for i = 1, 2, integers ni,mi ∈ Z with 2 ≤ ni < |mi|.
Put Mi = L(BS(ni,mi)) and denote by Ai ⊂ Mi the abelian von Neumann
subalgebra generated by ua, where a ∈ BS(ni,mi) is the first canonical gen-
erator. Assume that M1 and M2 are stably isomorphic. We must prove that

n1

|m1|
=

n2

|m2|
. (4)

Interchanging if necessary the roles of M1 and M2, we can take a nonzero
projection p1 ∈ A1 and a ∗-isomorphism α : p1M1p1 →M2.
We claim that inside M2, we have α(A1p1) ≺ A2. From Proposition 4.1, we
know that

P := α(A1p1)
′ ∩M2 = α((A′

1 ∩M1)p1)

has no amenable direct summand. By Proposition 3.1 in [Ue07], the HNN
extension M2 can be viewed as the corner of an amalgamated free product of
tracial von Neumann algebras. Since P has no amenable direct summand, it
then follows from [CH08, Theorem 4.2] that P ′ ∩M2 ≺ A2. So our claim that
α(A1p1) ≺ A2 follows.
By symmetry, we also have the intertwining α−1(A2) ≺ A1p1 inside p1M1p1.
Applying α, we find that A2 ≺ α(A1p1) inside M2.
Having proven that insideM2 we have the intertwining relations α(A1p1) ≺ A2

and A2 ≺ α(A1p1), it follows from Theorem 3.3 that the equivalence relations
R(A1p1 ⊂ p1M1p1) and R(A2 ⊂ M2) are stably isomorphic. By construction,
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R(A1p1 ⊂ p1M1p1) is the restriction of R(A1 ⊂ M1) to the support of p1.
So we conclude that the equivalence relations R(A1 ⊂ M1) and R(A2 ⊂ M2)
are stably isomorphic. In particular, these ergodic nonsingular equivalence
relations must have the same type. Using Proposition 4.2, we find (4).
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