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Abstract. This paper discusses some examples showing that the crys-
talline cohomology of even very mildly singular projectivevarieties tends
to be quite large. In particular, any singular projective variety with at worst
ordinary double points has infinitely generated crystalline cohomology in
at least two cohomological degrees. These calculations rely critically on
comparisons between crystalline and derived de Rham cohomology.
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Fix an algebraically closed fieldk of characteristicp > 0 with ring of Witt vectorsW .
Crystalline cohomology is aW -valued cohomology theory for varieties overk (see
[Gro68, Ber74]). It is exceptionally well behaved on propersmoothk-varieties: the
W -valued theory is finite dimensional [BO78], and the correspondingW [1/p]-valued
theory is a Weil cohomology theory [KM74] robust enough to support ap-adic proof
of the Weil conjectures [Ked06] (in conjunction with rigid cohomology to deal with
open or singular varieties).
Somewhat unfortunately, crystalline cohomology is often large and somewhat un-
wieldy outside the world of proper smooth varieties. For example, the crystalline
cohomology of a smooth affine variety of dimension> 0 is always infinitely gener-
ated as aW -module by the Cartier isomorphism (see Remark 2.4). Even worse, it
is not a topological invariant: Berthelot and Ogus showed [BO83, Appendix (A.2)]
that the0th crystalline cohomology group of a fat point inA2 has torsion (see also
Example 3.4). In this paper, we give more examples of such unexpected behaviour:

Theorem. LetX be a proper lcik-variety. Then the crystalline cohomology ofX
is infinitely generated if any of the following conditions issatisfied:

(1) X has at least one isolated toric singularity, such as a node ona curve.
(2) X has at least one conical singularity of low degree, such as anordinary

double point of any dimension.
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The statement above is informal, and we refer the reader to the body of this paper —
see examples 3.5, 3.6, 3.12, and 3.13 — for precise formulations. In contrast to the
Berthelot-Ogus example, our examples are reduced and lci. We do not know if these
calculations are indicative of deeper structure; see Question 0.1 below.
Our approach to the above calculation relies on Illusie’s derived de Rham cohomol-
ogy [Ill72]. This theory, which in hindsight belongs to derived algebraic geometry,
is a refinement of classical de Rham cohomology that works better for singular va-
rieties; the difference, roughly, is the replacement of thecotangent sheaf with the
cotangent complex. Theorems from [Bha12] show: (a) derivedde Rham cohomol-
ogy agrees with crystalline cohomology for lci varieties, and (b) derived de Rham
cohomology is computed by a “conjugate” spectral sequence whoseE2-terms come
from coherentcohomology on the Frobenius twist. These results transfer calculations
from crystalline cohomology to coherent cohomology, whereit is much easier to lo-
calise calculations at the singularities (see the proof of Proposition 3.1). As a bonus,
this method yields a natural (infinite) increasing bounded below exhaustive filtration
with finite-dimensional graded pieces on the crystalline cohomology ofanylci proper
variety.
We conclude by asking if finiteness properties of crystalline cohomology characterize
smooth varieties (somewhat analogously to Quillen’s conjecture [Avr99]):

Question 0.1. Do there existanysingular properk-varieties with finite dimensional
crystalline cohomology overk? Do there existanysingular finite typek-algebrasA
whose crystalline cohomology relative tok is finitely generated over the Frobenius
twist A(1) ⊂ A?

We do not know what to expect, and simply note here that derived de Rham theory
(see§1) shows that the sought-after examples cannot simultaneously be lci and admit
lifts to W2 compatible with Frobenius.

Organisation of this paper. In §1, we review the relevant results from derived
de Rham cohomology together with the necessary categoricalbackground. Next, we
study (wedge powers of) the cotangent complex of some complete intersections in§2.
This analysis is used in§3.1 to provide examples of some singular projective varieties
(such as nodal curves, or lci toric varieties) whose crystalline cohomology is always
infinitely generated; all these examples admit local lifts to W2 where Frobenius also
lifts. Examples which are not obviously liftable (such as ordinary double points in
high dimensions) are discussed in§3.2.

Notation. Let k andW be as above, and setW2 = W/p2. For ak-schemeX , let
X(1) denote the Frobenius-twist ofX ; we identify the étale topology onX andX(1).
We useHn

crys(X/k) andHn
crys(X/W ) to denote Berthelot’s crystalline cohomology

groups relative tok andW respectively. All sheaves are considered with respect to
the Zariski topology (unless otherwise specified), and all tensor products are derived.
We say thatX lifts to W2 compatibly with Frobenius if there exists a flatW2-scheme
X lifting X , and a mapX → X lifting the Frobenius map onX and lying over the
canonical Frobenius lift onW2. For fixed integersa ≤ b ∈ Z, we say that a complex
K over some abelian category has amplitude in[a, b] if Hi(K) = 0 for i /∈ [a, b] ⊂ Z.
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A complexK of abelian groups is connected (resp. simply connected) ifHi(K) = 0
for i > 0 (resp. fori ≥ 0). An infinitely generated module over a ring is one that is
not finitely generated. All gradings are indexed byZ unless otherwise specified. If
A is a graded ring, thenA(−j) is the gradedA-module defined byA(−j)i = Ai−j ;
we setM(−j) := M ⊗A A(−j) for any gradedA-complexM . We use∆ for the
category of simplices, andCh(A) for the category of chain complexes over an abelian
categoryA.

Acknowledgements. I thank Johan de Jong, Davesh Maulik, and Mircea Mustaţǎ
for inspiring conversations. In particular, Example 3.5 was discovered in conversation
with de Jong and Maulik, and was the genesis of this paper. Both Pierre Berthelot
and Arthur Ogus had also independently calculated a variantof this example (unpub-
lished), and I thank them for their prompt response to email inquiries. I am further
grateful to the anonymous referee for references and comments.

1. REVIEW OF DERIVED DERHAM THEORY

In this section, we summarise some structure results in derived de Rham theory that
will be relevant in the sequel. We begin by recalling in§1.1 some standard techniques
for working with filtrations in the derived category; this provides the language neces-
sary for the work in [Bha12] reviewed in§1.2.

1.1. Some homological algebra. In the sequel, we will discuss filtrations on
objects of the derived category. To do so in a homotopy-coherent manner, we use the
following model structure:

Construction 1.1. Fix a small categoryI, a Grothendieck abelian categoryB, and
setA = Fun(I,B). We endowCh(B) with the model structure of [Lur11, Proposi-
tion 1.3.5.3]: the cofibrations are termwise monomorphisms, while weak equivalences
are quasi-isomorphisms. The categoryFun(I,Ch(B)) = Ch(Fun(I,B)) = Ch(A)
inherits a projective model structure by [Lur09, Proposition A.2.8.2] where the fibra-
tions and weak equivalences are defined termwise. By [Lur09,Proposition A.2.8.7],
the pullbackD(B) → D(A) induced by the constant mapI → {1} has a left Quillen
adjointD(A) → D(B) that we call a “homotopy-colimit overI”. In fact, exactly
the same reasoning shows: given a mapφ : I → J of small categories, the pull-
back φ∗ : D(Fun(J,B)) → D(Fun(I,B)) induced by composition withφ has
a left Quillen adjointφ! : D(Fun(I,B)) → D(Fun(J,B)) if Ch(Fun(I,B)) and
Ch(Fun(J,B)) are given the projective model structures as above; we oftenrefer to
φ! as a “homotopy-colimit along fibres ofφ.” The most relevant examples ofφ for us
are: the projections∆opp → {1}, ∆opp ×N → N andN → {1}.

Using Construction 1.1, we can talk about increasing filtrations on objects of derived
categories.

Construction 1.2. Let B be a Grothendieck abelian category, and letA :=
Fun(N,B), whereN is the category associated to the posetN with respect to the
usual ordering. There is a homotopy-colimit functorF : D(A) → D(B) which
is left Quillen adjoint to the pullbackD(B) → D(A) induced by the constant map

Documenta Mathematica 19 (2014) 673–687



676 Bhargav Bhatt

N → {1}; we informally refer to an objectK ∈ D(A) as an increasing (orN-
indexed) exhaustive filtration on the objectF (K) ∈ D(B). There are also restriction
functors[n]∗ : D(A) → D(B) for eachn ∈ N, and maps[n]∗ → [m]∗ for n ≤ m
coherently compatible with composition. For eachn ∈ N, the cone construction de-
fines a functorgrn : D(A) → D(B) and an exact triangle[n − 1]∗ → [n]∗ → grn
of functorsD(A) → D(B); for a filtered objectK ∈ D(B), we often usegrn(K)
to denotegrn applied to the specified lift ofK to D(A). A mapK1 → K2 in D(A)
is an equivalence if and only if[n]∗K1 → [n]∗K2 is so for alln ∈ N if and only if
grn(K1) → grn(K2) is so for alln ∈ N. Given a cochain complexK overB, the
associationn 7→ τ≤nK defines an object ofD(A) lifting the image ofK ∈ D(B)
underF .

Remark 1.3. The “cone construction” used in Construction 1.2 to definegrn needs
clarification: there is no functorFun([0 → 1], D(B)) → D(B) which incarnates the
chain-level construction of the cone. However, the same constructiondoesdefine a
functorD(Fun([0 → 1],B)) → D(B), which suffices for the above application (as
there are restriction functorsD(A) → D(Fun([0 → 1],B)) for each map[0 → 1] →
N in N).

1.2. The derived de Rham complex and the conjugate filtration.

We first recall the definition:

Construction 1.4. For a morphismf : X → S of schemes, following [Ill72,
§VIII.2], the derived de Rham complexdRX/S ∈ Ch(Modf−1OS

) is defined as
the homotopy-colimit over∆opp of the simplicial cochain complexΩ∗

P•/f−1OS
∈

Fun(∆opp,Ch(Modf−1OS
)), whereP• is a simplicial freef−1OS-algebra resolu-

tion of OX . When S is an Fp-scheme, the de Rham differential is linear over
the pth-powers, sodRX/S can be viewed as an object ofCh(ModO

X(1)
), where

X(1) = X ×S,Frob S is the (derived) Frobenius-twist ofX (which is the usual one if
f is flat).

The following theorem summarises the relevant results from[Bha12] about this con-
struction:

Theorem 1.5. LetX be ak-scheme. Then:

(1) The complexdRX/k ∈ Ch(ModO
X(1)

) comes equipped with a canonical

increasing bounded below separated exhaustive filtrationFilconj• called the
conjugatefiltration. The graded pieces are computed by

Cartieri : gr
conj
i (dRX/k) ≃ ∧iLX(1)/k[−i].

In particular, if X is lci, thenFilconji (dRX/k) is a perfectOX(1) -complex for
all i.

(2) The formation ofdRX/k and the conjugate filtration commutes withétale
localisation onX(1).

(3) There exists a canonical morphism

RΓ(X(1), dRX/k) → RΓcrys(X/k,O)
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that is an isomorphism whenX is an lcik-scheme.
(4) If there is a lift ofX to W2 together with a compatible lift of Frobenius, then

the conjugate filtration is split, i.e., there is an isomorphism

⊕i≥0 ∧
i LX(1)/k[−i] ≃ dRX/k

whose restriction to theith summand on the left splitsCartieri.

Remark 1.6. Theorem 1.5 can be regarded as an analogue of the results of Cartier
(as explained in [DI87], say) and Berthelot [Ber74] to the singular case. In particular,
whenX is quasi-compact, quasi-separated and lci, parts (1) and (3) of Theorem 1.5
together with the end of Remark 1.7 yield a “conjugate” spectral sequence

Ep,q
2 : Hp(X(1),∧qLX(1)/k) ⇒ Hp+q

crys (X/k).

In the sequel, instead of using this spectral sequence, we will directly use the filtration
ondRX/k and the associated exact triangles; this simplifies bookkeeping of indices.

Remark 1.7. We explain the interpretation of Theorem 1.5 using the language of
§1.1. LetB = Mod(OX(1)), and letA = Fun(N,B). The construction of the derived
de Rham complexdRX/k ∈ D(B) naturally lifts to an objectE ∈ D(A) underF : if
P• → OX is the canonical freek-algebra resolution ofOX , thenΩ∗

P•/k
⊗

P
(1)
•

OX(1)

defines an object ofD(Fun(∆opp ×N,B)) via (m,n) 7→
(

τ≤nΩ
∗
Pm/k

)

⊗
P

(1)
m

OX(1) ,
and its homotopy-colimit over∆opp (i.e., its pushforward alongD(Fun(∆opp ×
N,B)) → D(Fun(N,B))) defines the desired objectE ∈ D(A). This construc-
tion satisfies[n]∗E ≃ Filconjn (dRX/k), sogrn(E) ≃ grconjn (dRX/k) for all n ∈ N.
This lift E ∈ D(A) of dRX/k ∈ D(B) is implicit in any discussion of the con-
jugate filtration ondRX/k in this paper (as in Theorem 1.5 (1), for example). In
the sequel, we abuse notation to letdRX/k also denoteE ∈ D(A). WhenX is
quasi-compact and quasi-separated, cohomology commutes with filtered colimits,
soRΓ(X(1), dRX/k) ≃ colimn RΓ(X

(1),Filconjn (dRX/k)). In particular, when re-
stricted to proper varieties, derived de Rham cohomology can be written as a filtered
colimit of (complexes of) finite dimensional vector spacesfunctorially in X .

2. SOME FACTS ABOUT LOCAL COMPLETE INTERSECTIONS

In order to apply Theorem 1.5 to compute crystalline cohomology, we need good con-
trol on (wedge powers of) the cotangent complex of an lci singularity. The following
lemma collects most of the results we will use in§3.1.

Lemma 2.1. Let (A,m) be an essentially finitely presented localk-algebra with an
isolated lci singularity at{m}. LetN = dimk(m/m2) be the embedding dimension.
Then:

(1) ∧nLA/k is a perfect complex for alln. For n ≥ N , ∧nLA/k can be rep-
resented by a complex of finite freeA-modules lying between cohomological
degrees−n and−n+N with differentials that are0 modulom.

(2) For anyn ≥ N , the complex∧nLA/k has finite length cohomology groups.
(3) For anyn > N , the groupH−n+N (∧nLA/k) is non-zero.
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(4) For any n > N , there exists an integer0 < i ≤ N such that
H−n+N−i(∧nLA/k) is non-zero.

(5) If dim(A) > 0 andn > N , thenH−n(∧nLA/k) = 0, so the integeri in (4)
is strictly less thanN .

Proof. Choose a polynomial algebraP = k[x1, . . . , xN ] and a mapP → A such
thatΩ1

P/k ⊗P A → Ω1
A/k is surjective. By comparing dimensions, the induced map

Ω1
P/k ⊗P A ⊗A A/m → Ω1

A/k ⊗A A/m is an isomorphism. Now consider the exact
triangle

LA/P [−1] → Ω1
P/k ⊗P A → LA/k.

The lci assumption onA and the choice ofP ensure thatLA/P [−1] is a freeA-module
of some rankr. SinceSpec(A) is singular atm, we must haver > 0. The previous
triangle then induces a (non-canonical) equivalence

(

A⊕r T
→ A⊕N

)

≃ LA/k.

The mapT must be0 modulom asA⊕N → LA/k induces an isomorphism onH0

after reduction modulom, so the above presentation yields an identification

LA/k ⊗A k ≃
(

k⊕r[1]
)

⊕ k⊕N .

Computing wedge powers gives

(*) ∧n (LA/k)⊗A k ≃ ⊕N
a=0

(

∧a (k⊕N )⊗ Γn−a(k⊕r)
)

[n− a],

whereΓ∗ is the divided-power functor; here we use that∧n(V [1]) = Γn(V )[n] for a
flat k-moduleV over a ringk (see [Qui70,§7]). We now show the desired claims:

(1) The perfectness of∧nLA/k follows from the perfectness ofLA/k. The de-
sired representative complex can be constructed as a Koszulcomplex on the
mapT above (see the proof of Lemma 2.5 (4) below); all differentials will be
0 modulom by functoriality sinceT is so.

(2) We must show that
(

∧n LA/k

)

p
= 0 for anyp ∈ Spec(A) − {m} andn ≥

N . The functor∧nL−/k commutes with localisation, so we must show that
∧nLAp/k = 0 for p andn as before, but this is clear:Ap is the localisation of
smoothk-algebra of dimension≤ dim(A) < N for any suchp.

(3) By (1), H−n+N(∧nLA/k) = 0 if and only if ∧nLA/k has amplitude in
[−n,−n+N−1]. However, in the latter situation, the complex∧nLA/k⊗Ak
would have no cohomology in degree−n+N , contradicting formula (*); note
thatr ≥ 1 by the assumption thatSpec(A) is singular atm.

(4) Assume the assertion of the claim is false. Then (3) showsthat∧nLA/k is
concentrated in a single degree, so∧nLA/k ≃ M [−n + N ] for some fi-
nite lengthA-moduleM . By (1), M has finite projective dimension. The
Auslander-Buschbaum formula and the fact thatA is Cohen-Macaulay then
show that the projective dimension ofM is actuallydim(A). Hence,M ⊗A k
has at mostdim(A) + 1 non-zero cohomology groups. On the other hand,
formula (*) shows that∧nLA/k ⊗A k hasN +1 distinct cohomology groups.
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Hence,N ≤ dim(A), which contradicts the assumption thatSpec(A) is sin-
gular atm.

(5) SetM := H−n(∧nLA/k), and assumeM 6= 0. ThenM has finite length by
(2), and occurs as the kernel of a map of freeA-modules by (1). Non-zero fi-
nite lengthR-modules cannot be found inside freeR-modules for anyS1-ring
R of positive dimension, which is a contradiction since complete intersections
areS1. �

Remark 2.2. The assumptiondim(A) > 0 is necessary in Lemma 2.1 (5). For
example, setA = k[ǫ]/(ǫp). ThenN = dimk(m/m2) = 1, andLA/k ≃ A[1] ⊕ A.
Applying∧n for n > 0, we get

∧n(LA/k) ≃ Γn(A)[n]⊕ Γn−1(A)[n − 1],

which certainly has non-zero cohomology in degree−n.

Using Lemma 2.1, we can show that the crystalline cohomologyof an isolated lci
singularity is infinitely generated in a very strong sense:

Corollary 2.3. Let (A,m) be as in Lemma 2.1. Assume thatA admits a lift toW2

compatible with Frobenius. Then

(1) Hi
crys(Spec(A)/k) ≃ ⊕j≥0H

0(Spec(A)(1),∧jLA(1)/k[i− j]) for all i.

(2) HN
crys(Spec(A)/k) is infinitely generated as anA(1)-module.

Proof. Note thatH∗
crys(Spec(A)/k) is an A(1)-module since any divided-power

thickening ofA is anA(1)-algebra.

(1) This follows from Theorem 1.5 (4) and the vanishing of higher quasi-coherent
sheaf cohomology on affines.

(2) This follows from Lemma 2.1 (3). �

Remark 2.4. Let us explain the phrase “strong sense” appearing before Corol-
lary 2.3. If A is an essentially smoothk-algebra, thenH∗

crys(Spec(A)/k) is in-
finitely generated overk, but not overA(1): the Cartier isomorphism shows that
Hi

crys(Spec(A)/k) ≃ Ωi
A(1)/k

, which is a finite (and even locally free)A(1)-module.
It is this latter finiteness that also breaks down in the singular setting of Corollary 2.3.

We also record a more precise result on the wedge powers of thecotangent complex
for the special case of the co-ordinate ring of a smooth hypersurface; this will be used
in §3.2.

Lemma 2.5. LetA be the localisation at0 of k[x0, . . . , xN ]/(f), wheref is a homo-
geneous degreed polynomial defining a smooth hypersurface inP

N . Assumep ∤ d.
Then

(1) A is graded.
(2) The quotientM = A/( ∂f

∂x0
, . . . , ∂f

∂xN
) is a finite length gradedA-module

whose non-zero weightsj are contained in the interval0 ≤ j ≤ (d− 2)(N +
1).

(3) TheA-linear Koszul complexK := KA({
∂f
∂xi

}) of the sequence of partials is
equivalent toM ⊕M(−d)[1] as a gradedA-complex.
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(4) For n > N , we have an equivalence of gradedA-complexes

∧nLA/k[−n] ≃ M
(

(N+1)(d−1)−nd
)

[−N−1]⊕M
(

(N+1)(d−1)−nd−d
)

[−N ].

(5) Assume thatN andd satisfyN(d−2) < d+2. Fix j andn withN < j < n.
Then all gradedk-linear maps

∧nLA/k[−n] → ∧jLA/k[−j][1]

are nullhomotopic as gradedk-linear maps.

Proof. Let S = k[x0, . . . , xN ] denote the polynomial ring. We note first the assump-
tion p ∤ d implies (by the Euler relation) thatf lies in the idealJ(f) ⊂ S generated by
the sequence{ ∂f

∂xi
} of partials. Sincef defines a smooth hypersurface, the preceding

sequence cuts out a zero-dimensional scheme inS, and hence must be a regular se-
quence by Auslander-Buschbaum. In particular, each∂f

∂xi
is non-zero of degreed− 1.

We now prove the claims:

(1) This is clear.
(2) Sincef ∈ J(f), the quotientM is identified withS/J(f), so the claim

follows from [Voi07, Corollary 6.20].
(3) Consider theS-linear Koszul complexL := KS({

∂f
∂xi

}) of the sequence
of partials. Since the partials span a regular sequence inS, we have an
equivalenceL ≃ S/J(f) ≃ A/J(f) ≃ M of gradedS-modules. Now
the complexK is simply L ⊗S A ≃ M ⊗S A. SinceM is already an
A-module, we get an identificationK ≃ M ⊗A (A ⊗S A) as gradedA-
modules, where the right hand side is given theA-module structure from

the last factor. The resolution
(

S(−d)
f
→ S

)

≃ A then shows that

K ≃ M ⊗A

(

A(−d)
0
→ A

)

≃ M ⊕M(−d)[1].

(4) SetL = (f)/(f2), E = Ω1
S/k ⊗S A, andc : L → E to be the map defined

by differentiation. Then the two-term complex defined byc is identified with
LA/k. Taking wedge powers forn > N then shows (see [KS04, Corollary
1.2.7], for example) that the complex

(**) Γn(L)⊗A∧
0(E) → Γn−1(L)⊗A∧

1(E) → · · · → Γn−(N+1)(L)⊗A∧
N+1(E)

computes∧nLA/k[−n]; here the term on the left is placed in degree0. Ex-
plicitly, the differential

Γi(L)⊗A ∧k(E) → Γi−1(L)⊗ ∧k+1(E)

is given by

γi(f)⊗ ω 7→ γi−1(f)⊗
(

c(f) ∧ ω
)

= (−1)k · γi−1(f)⊗
(

ω ∧ df
)

.

In particular, if we trivialiseΓi(L) using γi(f), then this differential is
identified with left-multiplication bydf in the exterior algebra∧∗(E). We
leave it to the reader to check that the complex (**) above is isomorphic to
K
(

(N + 1)(d− 1)− nd
)

[−N − 1]; the rest follows from (3).
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(5) LetM ′ = M
(

(N + 1)(d− 1)
)

[−N − 1]. ThenM ′ is, up to a shift, a graded
A-module whose weights lie in an interval size of(d− 2)(N +1) by (2). By
(4), we have

∧nLA/k[−n] ≃ M ′(−nd)⊕M ′(−nd− d)[1]

and

∧jLA/k[−j][1] ≃ M ′(−jd)[1]⊕M ′(−jd− d)[2].

Thus, we must check that all gradedk-linear mapsM ′(−nd−d) → M ′(−jd)
are nullhomotopic. Twisting, it suffices to showM ′ andM ′((n+1− j)d) do
not share a weight. If they did, then(n + 1 − j)d ≤ (d − 2)(N + 1). Since
j < n, this implies2d ≤ (d − 2)(N + 1), i.e.,d + 2 ≤ N(d − 2), which
contradicts the assumption. �

Remark 2.6. The assumptionN(d − 2) < d + 2 in Lemma 2.5 (5) is satisfied in
exactly the following cases:N ≥ 5 with d = 2, N = 3, 4 with d ≤ 3, N = 2 with
d ≤ 5, andN = 1 with anyd ≥ 1. In particular, an ordinary double point of any
dimension satisfies the assumptions of Lemma 2.5 in any odd characteristic. We also
remark that in this case (i.e., whend = 2), the proof of Lemma 2.5 (5) shows that the
space of gradedk-linear maps∧nLA/k[−n] → ∧jLA/k[−j][1] is simply connected.

Remark 2.7. Lemma 2.5 (5) only refers to space of gradedk-linear maps
∧nLA/k[−n] → ∧jLA/k[−j][1], and not the space of such gradedA-linear maps. In
particular, it can happen that a gradedA-linear map∧nLA/k[−n] → ∧jLA/k[−j][1]
is nullhomotopic as a gradedk-linear map, but not as anA-linear map.

Theorem 1.5 will be used to control on the modp crystalline cohomology of an lci
k-scheme. To lift these results toW , we will use the following base change isomor-
phism; see [BdJ11] for more details.

Lemma 2.8. LetX be a finite type lcik-scheme. Then theW -complexRΓcrys(X/W )
has finite amplitude, and there is a base change isomorphism

RΓcrys(X/W )⊗W k ≃ RΓcrys(X/k).

Proof. By a Mayer-Vietoris argument, we immediately reduce to the case whereX =
Spec(A) is affine. In this case, letD be thep-adic completion of the divided power
envelope of a surjectionP → A from a finite type polynomialW -algebraP . Then
RΓcrys(X/W ) is computed by

Ω∗
P/W ⊗P D.

Since this complex has finite amplitude, the first claim is proven. Next, ifP0 = P/p,
andD0 is the divided power envelope ofP0 → A, thenRΓcrys(X/k) is computed by

Ω∗
P0/k

⊗P0 D0.

The claim now follows from the well-known fact thatD isW -flat (sinceA is lci), and
D ⊗W k ≃ D0 (see [BBM82, Lemma 2.3.3] for a proof). �
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3. EXAMPLES

We come to the main topic of this paper: examples of singular proper lcik-varieties
with large crystalline cohomology. In§3.1, using lifts of Frobenius, we show that cer-
tain singular proper varieties (such as nodal curves, or singular lci toric varieties) have
infinitely generated crystalline cohomology. In§3.2, we show that a single ordinary
double point (or worse) on an lci proper variety forces crystalline cohomology to be
infinitely generated.

3.1. Frobenius-liftable examples. We start with a general proposition which
informally says: a proper lcik-variety has large crystalline cohomology if it contains
an isolated singular point whose étale local ring lifts toW2 compatibly with Frobenius.
Note that lcik-algebras always lift toW2, so this is really a condition on Frobenius.

Proposition 3.1. LetX be proper lcik-scheme. Assume:

(1) There is a closed pointx ∈ X that is an isolated singular point (but there
could be other singularities onX).

(2) There is a lift toW2 of the Frobenius endomorphism of the henselian ring
Oh

X,x.

SetN = dimk(mx/m
2
x). Then there exists an integer0 < i ≤ N such that:

(1) HN
crys(X/k) is infinitely generated overk.

(2) HN−i
crys (X/k) is infinitely generated overk.

(3) At least one ofHN+1
crys (X/W )[p] andHN

crys(X/W )/p is infinitely generated
overk.

(4) At least one ofHN+1−i
crys (X/W )[p] andHN−i

crys (X/W )/p is infinitely gener-
ated overk.

If dim(OX,x) > 0, then the integeri above can be chosen to be strictly less thanN .

Proof. The desired integeri will be found in the proof of (2) below.

(1) Consider the exact triangle

FilconjN (dRX/k) → dRX/k → Q

in the category ofOX(1) -complexes, whereQ is defined as the homotopy-
cokernel. Theorem 1.5 (1) and the lci assumption onX show that
FilconjN (dRX/k) is a perfect complex onX(1), soHi(X(1),FilconjN (dRX/k))
is a finite dimensional vector space for alli by properness. By Theorem 1.5
(3), to show thatHN

crys(X/k) is infinitely generated, it suffices to show that
HN(X(1),Q) is an infinite dimensionalk vector space. First, we show:

Claim 3.2. The natural mapRΓ(X,Q) → Qx is a projection onto a sum-
mand ask-complexes.

Proof of Claim. Let j : U → X be an affine open neighbourhood ofx such
thatU has an isolated singularity atx, and letj′ : V = X − {x} ⊂ X . By
Theorem 1.5 (2),Q|U∩V ≃ 0 sinceU ∩ V is k-smooth. Hence, the Mayer-
Vietoris sequence for the cover{U, V } of X and the complexQ degenerates
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to show
RΓ(X,Q) ≃ RΓ(U,Q)⊕ RΓ(V,Q).

It now suffices to show thatRΓ(U,Q) ≃ Qx. By Theorem 1.5 (1),Q|U ad-
mits an increasing bounded below separated exhaustive filtration with graded
pieces∧nLU/k[−k] for n > N . Since cohomology commutes with fil-
tered colimits (asU is affine),RΓ(U,Q) also inherits such a filtration with
graded pieces computed byRΓ(U,∧nLU(1)/k[−k]) for n > N . Applying the
same analysis toQx reduces us to checking thatRΓ(U,∧nLU(1)/k[−n]) ≃

∧nL
O

(1)
X,x

/k
[−n] for n > N . But this is clear: forn > N , ∧nLU(1)/k[−n]

is a perfect complex onU (1) that is supported only atx and has stalk
∧nL

O
(1)
X,x

/k
[−n]. �

To compute the stalkQx, defineQ′ via the exact triangle

FilconjN (dROh
X,x

/k) → dROh
X,x

/k → Q
′.

ThenQx = Q
′ by Theorem 1.5 (2), the finite length property ofQx, and

the fact thatOh
X,x ⊗OX,x

M ≃ M for any finite lengthOX,x-moduleM .
Moreover,Q′ can be computed using the Frobenius lifting assumption and
Theorem 1.5 (4):

Qx ≃ Q
′ ≃ ⊕∞

n=N+1 ∧
n L

O
(1),h
X,x

/k
[−n].

Thus, to prove thatHN (X(1),Q) is infinitely generated, it suffices to show
thatHN(Qx) is infinitely generated. This follows from the formula above
and Lemma 2.1 (3).

(2) By combining the proof of (1) with Lemma 2.1 (4) and the pigeonhole prin-
ciple, one immediately finds an integer0 < i ≤ N such thatHN−i

crys (X/k) is
infinitely generated overk. Lemma 2.1 (5) shows that we can choose such an
i with i < N if dim(OX,x) > 0.

(3) The base change isomorphism from Lemma 2.8 gives a short exact sequence

0 → HN
crys(X/W )/p → HN

crys(X/k) → HN+1
crys (X/W )[p] → 0,

so the claim follows from (1).
(4) The same argument as (3) works using (2) instead of (1). �

We need the following elementary result on Frobenius liftings:

Lemma 3.3. LetA be ak-algebra that admits a lift toW2 together with a compatible
lift of Frobenius. Then the same is true for any ind-étaleA-algebraB (such as the
henselisationA at a point).

Proof. This follows by deformation theory sinceLB/A = 0 for B as above. �

Specialising Proposition 3.1 leads to the promised examples.

Example 3.4. Let X = Spec(k[x]/xn) for somen > 1. ThenH1
crys(X/k),

H0
crys(X/k), H1

crys(X/W )/p, andH1
crys(X/W )[p] are all infinitely generated. To
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see this, note first that Proposition 3.1 applies directly sinceX is a proper lcik-
scheme with a lift of Frobenius toW2. Moreover, sinceX can be realised as a sub-
scheme ofA1, the only non-zero cohomology groups areH1

crys andH0
crys (overW ,

as well as overk). The rest follows directly from Proposition 3.1 once we know that
H0

crys(X/W ) = W . For this, note thatH0
crys(X/W ) is the kernel of the differen-

tial dR : R → R · dx, whereR = ̂W [x]〈xn〉 is the pd-envelope of the evident
closed immersionX →֒ Spec(W [x]). We may viewR as the set of power series
f =

∑

i aix
i ∈ KJxK (whereK = W [ 1p ]) such thatai · [i/e]! ∈ W for all i. In

particular,R is a subring ofKJxK, so the kernel ofdR is just the constant power series
(asK has characteristic0), which showsH0

crys(X/W ) = W as desired.

Example 3.5. Let X be a proper nodalk-curve with at least one node. Then
H1

crys(X/k) andH2
crys(X/k) are infinitely generated. Moreover,H2

crys(X/W )/p,
and at least one ofH1

crys(X/W )/p andH2
crys(X/W )[p], are infinitely generated.

Most of these claims follow directly from Proposition 3.1: anodal curve is always
lci, and the henselian local ring at a node onX is isomorphic to the henselisa-
tion of k[x, y]/(xy) at the origin, which is a one-dimensional local ring that ad-
mits a lift toW2 compatible with Frobenius by Lemma 3.3. It remains to show that
H3

crys(X/W )[p] is finitely generated. As pointed out by de Jong, the strongerstate-
mentH3

crys(X/W ) = 0 is true. Ifu : (X/W )crys → XZar is the natural map (i.e.,
u∗(F)(U ⊂ X) = Γ((U/W )crys,F|U )), thenRiu∗OX/W,crys is non-zero only for
0 ≤ i ≤ 2, andR2u∗OX/W,crys is supported only at the nodes1. The rest follows from
the Leray spectral sequence asXZar has cohomological dimension1.

Example 3.6. LetX be a proper lcik-scheme. Assume thatx ∈ X(k) is an isolated
singular point (but there could be other singularities onX) such thatOh

X,x is toric of
embedding dimensionN . ThenHN

crys(X/k) is infinitely generated, and at least one of
HN

crys(X/W ) andHN+1
crys (X/W )[p] is infinitely generated overW . This follows from

Proposition 3.1 and Lemma 3.3 since toric rings lift toW2 compatibly with Frobenius
(use multiplication byp on the defining monoid). Some specific examples are: any
proper toric variety with isolated lci singularities, or any proper singulark-scheme of
dimension≤ 3 with at worst ordinary double points.

Example 3.7. Let (E, e) be an ordinary elliptic curve overk, and letX be a proper
lci k-surface with a singularity atx ∈ X(k) isomorphic to the one on the affine cone
overE ⊂ P

2
k embedded viaO(3[e]); for example, we could takeX to be the projective

cone onE ⊂ P
2
k. ThenH3

crys(X/k) and one ofH2
crys(X/k) or H1

crys(X/k) are
infinitely generated overk. This can be proven using Proposition 3.1 and the theory
of Serre-Tate canonical lifts. Since we prove a more generaland shaper result in
Example 3.13, we leave details of this argument to the reader.

3.2. Conical examples. Our goal here is to show that the presence of an ordinary
double point forces crystalline cohomology to be infinitelygenerated. In fact, more

1Proof sketch: Replace the Zariski topology with the Nisnevich topology in the foundations of crys-
talline cohomology, and then use that every nodal curve is Nisnevich locally planar. This observation yields
a three-term de Rham complex computing the stalks ofRi

u∗OX/W,crys.
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generally, we show the same for any proper lci variety that has a singularity isomorphic
to the cone on a low degree smooth hypersurface. We start withanad hocdefinition.

Definition 3.8. A local k-algebraA is called alow degree coneif its henselisation
is isomorphic to the henselisation at the origin of the ringk[x0, . . . , xN ]/(f), where
f is a homogeneous degreed polynomial defining a smooth hypersurface inP

N such
thatN(d − 2) < d + 2. The integerd is called thedegreeof this cone; ifd = 2, we
also callA anordinary double point. A closed pointx ∈ X on a finite typek-scheme
X is calledlow degree conical singularity(respectively, anordinary double point) if
O

h
X,x is a low degree cone (respectively, an ordinary double point).

We start by showing that the conjugate spectral sequence must eventually degenerate
for low degree cones:

Proposition 3.9. LetA be low degree cone of degreed. Assumep ∤ d. Then for
n > dim(A), the extensions

grconjn (dRA/k) → Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k)[1]

occurring in the conjugate filtration are nullhomotopic when viewed ask-linear ex-
tensions. In particular, there existk-linear isomorphisms

Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k).

splitting the conjugate filtration for anyn > dim(A).

Proof. By replacingA with its henselisation and then using the étale invarianceof
cotangent complexes and Theorem 1.5 (2), we may assumeA is the localisation of
k[x0, . . . , xN ]/(f) at the origin for some homogeneous degreed polynomialf defin-
ing a smooth hypersurface inPN . In particular,A is graded. Also, by functoriality,
the conjugate filtration is compatible with the grading. Recall that the extensions in
question arise from the triangles

Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k) →

→ Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) → grconjn (dRA/k).

These triangles (and thus the corresponding extensions) are viewed as living in the
derived category of gradedk-vector spaces. By induction, we have to show the fol-
lowing: assuming a graded splitting

sn−1 : Filconjn−1(dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n−1

j=dim(A)+1gr
conj
j (dRA/k)

of the conjugate filtration, there exists a graded splitting

sn : Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k),

of the conjugate filtration compatible withsn−1. Chasing extensions, it suffices to
show: fordim(A) < j < n, all graded maps

grconjn (dRA/k) → grconjj (dRA/k)[1]

are nullhomotopic. This comes from Lemma 2.5 (5) and Theorem1.5 (1). �
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Remark 3.10. An inspection of the proof of Proposition 3.9 coupled with Remark
2.6 shows that ifA is an ordinary double point, then the isomorphism

Filconjn (dRA/k)/Fil
conj
dim(A)(dRA/k) ≃ ⊕n

j=dim(A)+1gr
conj
j (dRA/k)

is unique, up to non-unique homotopy. We do not know any applications of this
uniqueness.

Using Proposition 3.9, we can prove infiniteness of crystalline cohomology for some
cones:

Corollary 3.11. LetX be a proper lcik-scheme. Assume that there is low degree
conical singularity at a closed pointx ∈ X with degreed and embedding dimension
N . If p ∤ d, thenHN

crys(X/k) and HN−1
crys (X/k) are infinitely generatedk-vector

spaces.

Proof. We combine the proof strategy of Proposition 3.1 with Proposition 3.9. More
precisely, following the proof of Proposition 3.1 (1), it suffices to show thatQ′ is in-
finitely generated when regarded as a complex ofk-vector spaces. NowQ′ admits an
increasing bounded below separated exhaustive filtration with graded pieces given by
grconjn (dR

Oh
X,x

/k) for n > N . By Proposition 3.9, there is a (non-canonical) isomor-
phism

Q
′ ≃ ⊕n>N ∧n L

O
(1),h
X,x

/k
[−n].

The rest follows from Lemma 2.5 (4) (note that embedding dimension in loc. cit. is
N + 1, so we must shift by1). �

We can now give the promised example:

Example 3.12. Let X be any proper lci variety that contains an ordinary double
pointx ∈ X(k) of embedding dimensionN with p odd; for example, we could take
X to be the projective cone over a smooth quadric inP

N−1. ThenHN
crys(X/k) and

HN−1
crys (X/k) are infinitely generated by Corollary 3.11.

All examples given so far have rational singularities, so werecord an example that is
not even log canonical.

Example 3.13. Let X be any proper lci surface that contains a closed point
x ∈ X(k) with Oh

X,x isomorphic to the henselisation at the vertex of the cone over a
smooth curveC ⊂ P

2 of degree≤ 5. If p ≥ 7, thenH3
crys(X/k) andH2

crys(X/k) are
infinitely generated by Corollary 3.11.

Remark 3.14. We do not know whether the ordinary double point from Example
3.12 admits a lift toW2 compatible with Frobenius in arbitrary dimensions; similarly
for the cones in Example 3.13 (except for ordinary elliptic curves).

REFERENCES

[Avr99] Luchezar L. Avramov. Locally complete intersection homomorphisms and a
conjecture of Quillen on the vanishing of cotangent homology.Ann. of Math.
(2), 150(2):455–487, 1999.

Documenta Mathematica 19 (2014) 673–687



Torsion in the Crystalline Cohomology of . . . 687

[Ber74] Pierre Berthelot.Cohomologie cristalline des schémas de caractéristique
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