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1. Introduction

K-theory was originally discovered by Grothendieck in the late 50-s. Thanks to
works by Atiyah, Hirzebruch, Adams K-theory was firmly entrenched in topol-
ogy in the 60-s. Along with topological K-theory mathematicians developed
algebraic K-theory. After Atiyah-Singer’s index theorem for elliptic operators
K-theory penetrated into analysis and gave rise to operator K-theory.
The development of operator K-theory in the 70-s took place in a close contact
with the theory of extensions of C∗-algebras and prompted the creation of a
new technical apparatus, the Kasparov K-theory [24]. The Kasparov bifunctor
KK∗(A,B) combines Grothendieck’sK-theoryK∗(B) and its dual (contravari-
ant) theory K∗(A). The existence of the product KK∗(A,D)⊗KK∗(D,B)→
KK∗(A,B) makes the bifunctor into a very strong and flexible tool.
One way of constructing an algebraic counterpart of the bifunctor KK∗(A,B)
with a similar biproduct and similar universal properties is to define a trian-
gulated category whose objects are algebras. In [8] the author constructed
various bivariant K-theories of algebras, but he did not study their universal
properties. Motivated by ideas and work of J. Cuntz on bivariant K-theory of
locally convex algebras [4, 5, 6], universal algebraic bivariant K-theories were
constructed by Cortiñas–Thom in [3].
Developing ideas of [8] further, the author introduces and studies in [9] universal
bivariant homology theories of algebras associated with various classes F of
fibrations on an “admissible category of k-algebras” ℜ. The methods used by
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the author to construct D(ℜ,F) are very different from those used by Cortiñas–
Thom [3] to construct kk. However they coincide in the appropriate stable
case. In a certain sense [9] uses the same approach as in constructing E-
theory of C∗-algebras [18]. We start with a datum of an admissible category
of algebras ℜ and a class F of fibrations on it and then construct a universal
algebraic bivariant K-theory j : ℜ → D(ℜ,F) out of the datum (ℜ,F) by
inverting certain arrows which we call weak equivalences. The categoryD(ℜ,F)
is naturally triangulated. The most important cases in practice are the class
of k-linear split surjections F = Fspl or the class F = Fsurj of all surjective
homomorphisms.
If F = Fspl (respectively F = Fsurj) then j : ℜ → D(ℜ,F) is called the unstable
algebraic Kasparov K-theory (respectively unstable algebraic E-theory) of ℜ.
It should be emphasized that [9] does not consider any matrix-invariance in
general. This is caused by the fact that many interesting admissible categories
of algebras deserving to be considered separately like that of all commutative
ones are not closed under matrices.
If we want to have matrix invariance, then [9] introduces matrices into the
game and gets universal algebraic, excisive, homotopy invariant and “Morita
invariant” (respectively “M∞-invariant”) K-theories j : ℜ → Dmor(ℜ,F) (re-
spectively j : ℜ → Dst(ℜ,F)). The triangulated category Dmor(ℜ,F) (respec-
tively Dst(ℜ,F)) is constructed out of D(ℜ,F) just by “inverting matrices”
MnA, n > 0, A ∈ ℜ (respectively by inverting the natural arrows A → M∞A
with M∞A = ∪nMnA). We call Dmor(ℜ,Fspl) and Dmor(ℜ,Fsurj) (respec-
tively Dst(ℜ,Fspl) and Dst(ℜ,Fsurj)) the Morita stable algebraic KK- and
E-theories (respectively the stable algebraic KK- and E-theories). A version
of the Cortiñas–Thom theorem [3] says that there is a natural isomorphism of
Z-graded abelian groups (see [9])

Dst(ℜ,F)∗(k,A) ∼= KH∗(A),

where KH∗(A) is the Z-graded abelian group consisting of the homotopy K-
theory groups in the sense of Weibel [31].
One of the aims of this paper is to represent unstable, Morita stable and stable
algebraic Kasparov K-theories. Here we deal only with the class of k-linear
split surjections F = Fspl. We introduce the “unstable, Morita stable and stable
algebraic Kasparov K-theory spectra” K⋆(A,B) of k-algebras A,B ∈ ℜ where
⋆ ∈ {unst,mor, st} and ℜ is an appropriate admissible category of algebras. It
should be emphasized that the spectra do not use any realizations of categories
and are defined by means of algebra homomorphisms only. This makes our
constructions rather combinatorial.

Theorem (Excision Theorem A for spectra). Let ⋆ ∈ {unst,mor, st}. The
assignment B 7→ K⋆(A,B) determines a functor

K
⋆(A, ?) : ℜ → (Spectra)
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which is homotopy invariant and excisive in the sense that for every F-extension
F → B → C the sequence

K
⋆(A,F )→ K

⋆(A,B)→ K
⋆(A,C)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → K
⋆
i+1(A,C)→ K

⋆
i (A,F )→ K

⋆
i (A,B)→ K

⋆
i (A,C)→ · · ·

for any i ∈ Z.

We also have the following

Theorem (Excision Theorem B for spectra). Let ⋆ ∈ {unst,mor, st}. The
assignment B 7→ K⋆(B,D) determines a functor

K
⋆(?, D) : ℜop → (Spectra),

which is excisive in the sense that for every F-extension F → B → C the
sequence

K
⋆(C,D)→ K

⋆(B,D)→ K
⋆(F,D)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → K
⋆
i+1(F,D)→ K

⋆
i (C,D)→ K

⋆
i (B,D)→ K

⋆
i (F,D)→ · · ·

for any i ∈ Z.

The following result gives the desired representability.

Theorem (Comparison). Let ⋆ ∈ {unst,mor, st}. Then for any algebras
A,B ∈ ℜ there is an isomorphism of Z-graded abelian groups

K
⋆
∗(A,B) ∼= D⋆(ℜ,F)∗(A,B) =

⊕

n∈Z

D⋆(ℜ,F)(A,Ω
nB),

functorial both in A and in B.

The Cortiñas–Thom theorem [3, 8.2.1] and the Comparison Theorem above
imply that the spectrum Kst(k,−) represents KH . Namely, we have the fol-
lowing

Theorem. For any A ∈ ℜ there is a natural isomorphism of Z-graded abelian
groups

K
st
∗ (k,A) ∼= KH∗(A).

The preceding theorem is an analog of the same result of KK-theory saying
that there is a natural isomorphism KK∗(C, A) ∼= K∗(A) for any C∗-algebra
A.
It is important to mention that another aim of the present paper together
with [10] is to develop the theory of “K-motives of algebras”, for which Excision
Theorems A-B as well as the Comparison Theorem are of great utility. This
theory shares lots of common properties with K-motives and bivariant K-
theory of algebraic varieties, introduced and studied by the author and Panin
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in [11, 12] in order to solve some problems in [13] for motivic spectral sequence.
In fact, K-motives of algebras are a kind of a connecting language between
Kasparov K-theory of C∗-algebras and K-motives of algebraic varieties (hence
the choice of the title of this paper and that of [10]).
Throughout the paper k is a fixed commutative ring with unit and Algk is the
category of non-unital k-algebras and non-unital k-homomorphisms.

Organization of the paper. In Section 2 we fix some notation and terminology.
We study simplicial algebras and simplicial sets of algebra homomorphisms
associated with simplicial algebras there. In Section 3 we discuss extensions
of algebras and classifying maps. It is thanks to simplicial algebras and some
elementary facts of their extensions that Excision Theorem A is possible to
prove. Then comes Section 4 in which Excision Theorem A is proved. We
also formulate Excision Theorem B in this section but its proof requires an
additional material. The spectrum Kunst(A,B) is introduced and studied in
Section 5. In Section 6 we present necessary facts about model categories and
Bousfield localization. This material is needed to prove Excision Theorem B.
In Section 7 we study relations between simplicial and polynomial homotopies.
As an application Comparison Theorem A is proved in the section. Compari-
son Theorem B is proved in Section 8. It says that the Hom-sets of D(ℜ,F) are
represented by stable homotopy groups of spectra Kunst(A,B)-s. The spectra
Kst,Kmor are introduced and studied in Section 9. We also prove there Com-
parison Theorems for Dst(ℜ,F), Dmor(ℜ,F) and construct an isomorphism
between stable groups Kst

∗ (k,A) of an algebra A and its homotopy K-theory
groups.

Acknowledgement. The author was supported by EPSRC grant
EP/H021566/1. He would like to thank an anonymous referee for helpful
suggestions concerning the material of the paper.

2. Preliminaries

2.1. Algebraic homotopy. Following Gersten [14] a category of k-algebras
without unit ℜ is admissible if it is a full subcategory of Algk and

(1) R in ℜ, I a (two-sided) ideal of R then I and R/I are in ℜ;
(2) if R is in ℜ, then so is R[x], the polynomial algebra in one variable;
(3) given a cartesian square

D
ρ //

σ

��

A

f

��
B

g // C

in Algk with A,B,C in ℜ, then D is in ℜ.

One may abbreviate 1, 2, and 3 by saying that ℜ is closed under operations of
taking ideals, homomorphic images, polynomial extensions in a finite number

Documenta Mathematica 19 (2014) 1207–1269



Algebraic Kasparov K-theory. I 1211

of variables, and fibre products. For instance, the category of commutative
k-algebras CAlgk is admissible.
Observe that every k-module M can be regarded as a non-unital k-algebra
with trivial multiplication: m1 ·m2 = 0 for all m1,m2 ∈M . Then Mod k is an
admissible category of commutative k-algebras.
If R is an algebra then the polynomial algebra R[x] admits two homomorphisms
onto R

R[x]
∂0
x //

∂1
x

// R

where ∂i
x|R = 1R, ∂i

x(x) = i, i = 0, 1. Of course, ∂1
x(x) = 1 has to be

understood in the sense that Σrnx
n 7→ Σrn.

Definition. Two homomorphisms f0, f1 : S → R are elementary homotopic,
written f0 ∼ f1, if there exists a homomorphism

f : S → R[x]

such that ∂0
xf = f0 and ∂1

xf = f1. A map f : S → R is called an elementary
homotopy equivalence if there is a map g : R → S such that fg and gf are
elementary homotopic to idR and idS respectively.

For example, let A be a N-graded algebra, then the inclusion A0 → A is
an elementary homotopy equivalence. The homotopy inverse is given by the
projection A→ A0. Indeed, the map A→ A[x] sending a homogeneous element
an ∈ An to ant

n is a homotopy between the composite A → A0 → A and the
identity idA.
The relation “elementary homotopic” is reflexive and symmetric [14, p. 62].
One may take the transitive closure of this relation to get an equivalence rela-
tion (denoted by the symbol “≃”). The set of equivalence classes of morphisms
R→ S is written [R,S]. This equivalence relation will also be called polynomial
or algebraic homotopy.

Lemma 2.1 (Gersten [15]). Given morphisms in Algk

R
f // S

g
((

g′

66 T
h // U

such that g ≃ g′, then gf ≃ g′f and hg ≃ hg′.

Thus homotopy behaves well with respect to composition and we have category
Hotalg, the homotopy category of k-algebras, whose objects are k-algebras and
such that Hotalg(R,S) = [R,S]. The homotopy category of an admissible
category of algebras ℜ will be denoted by H(ℜ). Call a homomorphism s : A→
B an I-weak equivalence if its image in H(ℜ) is an isomorphism. Observe that
I-weak equivalences are those homomorphisms which have homotopy inverses.
The diagram in Algk

A
f
→ B

g
→ C
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is a short exact sequence if f is injective (≡ Ker f = 0), g is surjective, and
the image of f is equal to the kernel of g. Thus f is a monomorphism and
f = ker g.

Definition. An algebra R is contractible if 0 ∼ 1; that is, if there is a homo-
morphism f : R→ R[x] such that ∂0

xf = 0 and ∂1
xf = 1R.

For example, every square zero algebra A ∈ Algk is contractible by means of
the homotopy A→ A[x], a ∈ A 7→ ax ∈ A[x]. In other words, every k-module,
regarded as a k-algebra with trivial multiplication, is contractible.
Following Karoubi and Villamayor [23] we define ER, the path algebra on R,

as the kernel of ∂0
x : R[x] → R, so ER → R[x]

∂0
x→ R is a short exact sequence

in Algk. Also ∂1
x : R[x]→ R induces a surjection

∂1
x : ER→ R

and we define the loop algebra ΩR of R to be its kernel, so we have a short
exact sequence in Algk

ΩR→ ER
∂1
x→ R.

We call it the loop extension of R. Clearly, ΩR is the intersection of the kernels
of ∂0

x and ∂1
x. By [14, 3.3] ER is contractible for any algebra R.

2.2. Simplicial algebras. Let Ord denote the category of finite nonempty
ordered sets and order-preserving maps, and for each n > 0 we introduce the
object [n] = {0 < 1 < · · · < n} of Ord. We let ∆n = HomOrd(−, [n]), so
that |∆n| is the standard n-simplex. In what follows the category of non-unital
simplicial k-algebras will be denoted by SimAlgk.
Given a simplicial set X and a simplicial algebra A•, we denote by A•(X) the
simplicial algebra Map(X,A•) : [n] 7→ HomS(X × ∆n, A•). We note that all
simplicial algebras are fibrant simplicial sets. If A• is contractible as a simplicial
set, then the fact that S is a simplicial category and thus satisfies axiom M7
for simplicial model categories (see [19, section 9.1.5]) implies that A•(X) is
contractible.
In what follows a unital simplicial k-algebra A• is an object of SimAlgk such
that all structure maps are unital algebra homomorphisms.

Proposition 2.2. Suppose A• is a unital simplicial k-algebra. Then the fol-
lowing statements are equivalent:

(1) A• is contractible as a simplicial set;
(2) A• is connected;
(3) there is an element t ∈ A1 such that ∂0(t) = 0 and ∂1(t) = 1.

Furthermore, if one of the equivalent assumptions is satisfied then every sim-
plicial ideal I• ⊂ A• is contractible.

Proof. (1)⇒ (2), (2)⇒ (3) are obvious.
(3) ⇒ (1). One can construct a homotopy f : ∆1 × A• → A• from 0 to
1 by defining, for n > 0, the map fn : ∆1

n × An → An with the formula
fn(α, a) = (α∗(t)) · a. The same contraction applies to I•. �
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The main example of a simplicial algebra we shall work with is defined as

A∆ : [n] 7→ A∆n

:= A[t0, . . . , tn]/〈1−
∑

i

ti〉 (∼= A[t1, . . . , tn]),

where A ∈ Algk. Given a map α : [m]→ [n] in Ord, the map α∗ : A∆n

→ A∆m

is defined by α∗(tj) =
∑

α(i)=j ti. Observe that A∆ ∼= A⊗ k∆.

Note that the face maps ∂0;1 : A∆1

→ A∆0

are isomorphic to ∂0;1
t : A[t] → A

in the sense that the diagram

A[t]
∂ε
t //

t7→t0

��

A

��
A∆1 ∂ε // A∆0

is commutative and the vertical maps are isomorpisms. Let A+ := A ⊕ k as a
group and

(a, n)(b,m) = (ab +ma+ nb, nm).

Then A+ is a unital k-algebra containing A as an ideal. The simplicial algebra
(A+)∆ has the element t = t0 in dimension 1, which satisfies ∂0(t) = 0 and
∂1(t) = 1. Thus, t is an edge which connects 1 to 0, making (A+)∆ a unital
connected simplicial algebra. By Proposition 2.2 (A+)∆ is contractible as a
simplicial set. It follows that the same is true for A∆.
There is a mapping space functor Hom•

Algk
: (Algk)

op ×Algk → S, given by

(A,B) 7→ ([n] 7→ HomAlgk
(A,B∆n

)).

For every A ∈ Algk, the functor Hom
•
Algk

(?, A) : (Algk)
op → S has a left adjoint

A? : S→ (Algk)
op. If X ∈ S,

AX = lim
∆n→X

A∆n

.

Observe that

AX = HomS(X,A∆).

We have

HomAlgk
(A,BX) = HomS(X,Hom•

Algk
(A,B)).

As above, for any simplicial algebra A• the functor HomAlgk
(?, A•) :

(Algk)
op → S has a left adjoint A•〈?〉 = HomS(?, A•) : S → (Algk)

op. We
have

HomAlgk(B,A•〈X〉) = HomS(X,HomAlgk(B,A•)).

Note that if A• = A∆ then A∆〈X〉 = AX .
Let S• be the category of pointed simplicial sets. For (K, ⋆) ∈ S•, put

A•〈K, ⋆〉 := HomS•((K, ⋆), A•) = ker(HomS(K,A•)→ HomS(⋆,A•))

= ker(A•〈K〉 → A•).
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Proposition 2.3 (Cortiñas–Thom [3]). Let K be a finite simplicial set, ⋆ a
vertex of K, and A a k-algebra. Then kK and k(K,⋆) are free k-modules, and
there are natural isomorphisms

A⊗k k
K

∼=
→ AK A⊗k k

(K,⋆) ∼=
→ A(K,⋆).

Proof. This is a consequence of [3, 3.1.3]: A ⊗k kK ∼= A ⊗k (k ⊗Z ZK) ∼=
A⊗Z Z

K ∼= AK . �

2.3. Subdivision. To give an explicit fibrant replacement of the simplicial
set HomAlgk

(A,B•) with B• a simplicial algebra, we should first define ind-
algebras. In this paragraph we shall adhere to [3].
If C is a category, we write ind−C for the category of ind-objects of C. It has
as objects the directed diagrams in C. An object in ind−C is described by
a filtering partially ordered set (I,6) and a functor X : I → C. The set of
homomorphisms from (X, I) to (Y, J) is

limi∈I colimj∈J HomC(Xi, Yj).

We shall identify objects of C with constant ind-objects, so that we shall view C
as a subcategory of ind−C. The category of ind-algebras over k will be denoted
by Algindk .

If A = (A, I), B = (B, J) ∈ Algindk we put

[A,B] = limi colimj HomH(Algk)
(Ai, Bj).

Note that there is a natural map HomAlgind
k

(A,B) → [A,B]. Two homomor-

phisms f, g : A→ B in Algindk are called homotopic if they have the same image
in [A,B].
Write sd : S→ S for the simplicial subdivision functor (see [16, Ch. III.§4]). It
comes with a natural transformation h : sd → idS, which is usually called the
last vertex map. We have an inverse system

sd•K : sd0 K sd1K
hKoo sd2K

hsdKoo . . ..
hsd2 Koo

We may regard sd• K as a pro-simplicial set, that is, as an ind-object in Sop.
The ind-extension of the functor A•〈?〉 : Sop → Algk with A• a simplicial
algebra maps sd• K to

A•〈sd
• K〉 = {A•〈sd

n K〉 | n ∈ Z>0}.

If we fix K, we obtain a functor (?)〈sd• K〉 : SimAlgk → Algindk , which extends

to (?)〈sd• K〉 : SimAlgindk → Algindk in the usual manner explained above. In the
special case when A• = A∆, A ∈ Algk, the ind-algebra A∆〈sd• K〉 is denoted

by Asd• K .
Let A ∈ Algk, B• ∈ SimAlgindk . The space of the preceding paragraph extends
to ind-algebras by

HomAlgind
k

(A,B•) := ([n] 7→ HomAlgind
k

(A,Bn)).
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Let K be a finite simplicial set and B• ∈ SimAlgindk . Denote by B•(K) the
simplicial ind-algebra ([n, ℓ] 7→ B•〈sd

n(K ×∆ℓ)〉) = {(ExnB•)
K | n > 0}. If

K = ∗ we write B• for B•(∗).
Similar to [3, 3.2.2] one can prove that there is a natural isomorphism

HomS(K,HomAlgind
k

(A,B•)) ∼= HomAlgind
k

(A,B•〈sd
• K〉),

where A ∈ Algk, B• ∈ SimAlgindk and K is a finite simplicial set. Notice that
the formula holds even at the ind-level, before taking colimit.

Theorem 2.4 (Cortiñas–Thom). Let A ∈ Algk, B• ∈ SimAlgindk . Then

HomAlgind
k

(A,B•) = Ex∞ HomAlgind
k

(A,B•).

In particular, HomAlgind
k

(A,B•) is fibrant.

Proof. The proof is like that of [3, 3.2.3]. �

Proposition 2.5. Let K be a finite simplicial set, A ∈ Algk and (B•, J) ∈

SimAlgindk . Then

HomAlgind
k

(A,B•(K)) = (Ex∞ HomAlgind
k

(A,B•))
K .

In particular, the left hand side is fibrant.

Proof. The proof is like that of [3, 3.2.3].

HomS(∆
ℓ,HomAlgind

k
(A,B•(K)))

= colim(j,n)∈J×Z>0
HomAlgk

(A,B•,j〈sd
n(K ×∆ℓ)〉)

= colimn∈Z>0
colimj∈J HomS(sd

n(K ×∆ℓ),HomAlgk(A,B•,j))

= colimn∈Z>0
HomS(sd

n(K ×∆ℓ), colimj∈J HomAlgk(A,B•,j))

= colimn∈Z>0
HomS(K ×∆ℓ, Exn colimj∈J HomAlgk

(A,B•,j))

=HomS(K ×∆ℓ, Ex∞ HomAlgind
k

(A,B•)).

�

Corollary 2.6. Let A ∈ Algk and let K,L be finite simplicial sets, then

HomAlgind
k

(A,B•(K))L = HomAlgind
k

(A,B•(K × L)).

Denote by B•(I) and B•(Ω) the simplicial ind-algebras B•(∆
1) and

ker(B•(I)
(d0,d1)
−−−−→ B•) respectively. We define inductively B•(I

n) :=

(B•(I
n−1))I , B•(Ω

n) := (B•(Ω
n−1))(Ω). Clearly, B•(I

n) = B•(∆
1×

n
· · · ×∆1)

and B•(Ω
n) is a simplicial ideal of B•(I

n) that consists in each degree ℓ of

simplicial maps F : ∆1×
n
· · · ×∆1×∆ℓ → B• such that F |

∂(∆1×
n
···×∆1)×∆ℓ

= 0.

Corollary 2.7. Let A ∈ Algk, then

HomAlgind
k

(A,B•(Ω
n)) = Ωn(HomAlgind

k
(A,B•)),

where HomAlgind
k

(A,B•) is based at zero.
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Proof. This is a consequence of Theorem 2.4, Proposition 2.5 and Corollary 2.6.
�

3. Extensions and Classifying Maps

Throughout, we assume fixed an underlying category U , which is a full subcat-
egory of Mod k. In what follows we denote by F the class of k-split surjective
algebra homomorphisms. We shall also refer to F as fibrations.

Definition. An admissible category of algebras ℜ is said to be T -closed if we
have a faithful forgetful functor F : ℜ → U (i.e. F is the restriction to ℜ of the

forgetful functor from Algk to k-modules) and a left adjoint functor T̃ : U → ℜ.

Notice that the counit map ηA : T (A) := T̃F (A)→ A, A ∈ ℜ, is a fibration.
We denote by ℜind the category of ind-objects for an admissible category of
algebras ℜ. If ℜ is T -closed then TA, A ∈ ℜind, is defined in a natural way.

Throughout this section ℜ is supposed to be T -closed.

Lemma 3.1. For every A ∈ ℜ the algebra TA is contractible, i.e. there is a
polynomial contraction τ : TA→ TA[x] such that ∂0

xτ = 0, ∂1
xτ = 1. Moreover,

the contraction is functorial in A.

Proof. Consider a map u : FTA → FTA[x] sending an element b ∈ FTA to

bx ∈ FTA[x]. If X ∈ ObU then we denote the unit map X → FT̃X by iX .
The desired contraction τ is uniquely determined by the map u ◦ iFA : FA→
FTA[x]. By using elementary properties of adjoint functors, one can show that
∂0
xτ = 0, ∂1

xτ = 1. �

Examples. (1) Let ℜ = Algk. Given an algebra A, consider the algebraic
tensor algebra

TA = A⊕A⊗A⊕A⊗3

⊕ · · ·

with the usual product given by concatenation of tensors. In Cuntz’s treatment
of bivariant K-theory [4, 5, 6], tensor algebras play a prominent role.
There is a canonical k-linear map A → TA mapping A into the first direct
summand. Every k-linear map s : A → B into an algebra B induces a homo-
morphism γs : TA→ B defined by

γs(x1 ⊗ · · · ⊗ xn) = s(x1)s(x2) · · · s(xn).

ℜ is plainly T -closed.
(2) If ℜ = CAlgk then

T (A) = Sym(A) = ⊕n>1S
nA, SnA = A⊗n/〈a1⊗· · ·⊗an−aσ(1)⊗· · ·⊗aσ(n)〉, σ ∈ Σn,

the symmetric algebra of A, and ℜ is T -closed.

We shall say that a sequence in ℜ

0→ C → B → A→ 0
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is an F -split extension or just an (F-)extension if it is split exact in the category
of k-modules. We have the natural extension of algebras

0 −→ JA
ιA−→ TA

ηA
−→ A −→ 0.

Here JA is defined as Ker ηA. Clearly, JA is functorial in A. This extension is
universal in the sense that given any extension

0→ C → B
α
→ A→ 0

with α in F, there exists a commutative diagram of extensions as follows.

C // B
α // A

J(A)

ξ

OO

ιA // T (A)

OO

ηA // A

idA

OO

Furthermore, ξ is unique up to elementary homotopy [3, 4.4.1] in the sense
that if β, γ : A → B are two splittings to α then ξβ corresponding to β is
elementary homotopic to ξγ corresponding to γ. Because of this, we shall
abuse notation and refer to any such morphism ξ as the classifying map of
the extension whenever we work with maps up to homotopy. The elementary
homotopy H(β, γ) : J(A) → C[x] is explicitly constructed as follows. Let
α̃ : B[x]→ A[x],

∑
bix

i 7→ α(bi)x
i, be the natural lift of α. Consider a k-linear

map

u : A→ B[x], a 7→ β(a)(1 − x) + γ(a)x.

It is extended to an algebra homomorphism ū : T (A) → B[x]. One has a
commutative diagram of algebras

C[x] // B[x]
α̃ // A[x]

J(A)

H(β,γ)

OO

ιA // T (A)

ū

OO

ηA // A

ι

OO
,

where ι is the natural inclusion. It follows that H(β, γ) is an elementary ho-
motopy between ξβ and ξγ .
If we want to specify a particular choice of ξ corresponding to a splitting β
then we sometimes denote ξ by ξβ indicating the splitting.
Also, if

C //

f

��

B
α //

h

��

A

g

��
C′ // B′ α′

// A′
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is a commutative diagram of extensions, then there is a diagram

J(A)

J(g)

��

ξβ // C

f

��
J(A′)

ξβ′

// C′

of classifying maps, which is commutative up to elementary homotopy (see [3,
4.4.2]).
The elementary homotopy can be constructed as follows. Let α̃′ : B′[x] →
A′[x],

∑
b′ix

i 7→ α′(b′i)x
i, be the natural lift of α′. Consider a k-linear map

v : A→ B′[x], a 7→ hβ(a)(1 − x) + β′g(a)x.

It is extended to a ring homomorphism v̄ : T (A)→ B[x]. One has a commuta-
tive diagram of algebras

C′[x] // B′[x]
α̃′

// A′[x]

J(A)

G(β,β′)

OO

// T (A)

v̄

OO

ηA // A

ι′g

OO
,

where ι′ : A′ → A′[x] is the natural inclusion. It follows that G(β, β′) is an
elementary homotopy between fξβ and ξβ′J(g).
Let C be a small category and let ℜC (respectively UC) denote the category of C-
diagrams in ℜ (respectively in U). Then we can lift the functors F : ℜ → U and

T̃ : U → ℜ to C-diagrams. We shall denote the functors by the same letters. So

we have a faithful forgetful functor F : ℜC → UC and a functor T̃ : UC → ℜC ,

which is left adjoint to F . The counit map ηA : T (A) := T̃F (A)→ A, A ∈ ℜC ,
is a levelwise fibration.

Definition. We shall say that a sequence of C-diagrams in ℜ

0→ C → B
α
→ A→ 0

is a F -split extension or just an (F-)extension if it is split exact in the abelian
category (Mod k)C of C-diagrams of k-modules.

We have a natural extension of C-diagrams in ℜ

0 −→ JA
ιA−→ TA

ηA
−→ A −→ 0.

Here JA is defined as Ker ηA. Clearly, JA is functorial in A.

Lemma 3.2. Given any extension 0 → C → B → A → 0 of C-diagrams in ℜ,
there exists a commutative diagram of extensions as follows.

C // B
α // A

J(A)

ξ

OO

ιA // T (A)

OO

ηA // A

idA

OO
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Furthermore, ξ is unique up to a natural elementary homotopy H(β, γ) : JA→
C[x], where β, γ are two splittings of α.

Proof. The proof is like that for algebras (see above). �

Lemma 3.3. Let

C //

f

��

B
α //

h

��

A

g

��
C′ // B′ α′

// A′

be a commutative diagram of F -split extensions of C-diagrams with splittings
β : A→ B, β′ : A′ → B′. Then there is a diagram of classifying maps

J(A)

J(g)

��

ξβ // C

f

��
J(A′)

ξβ′

// C′

which is commutative up to a natural elementary homotopy G(β, β′) : JA →
C′[x].

Proof. The proof is like that for algebras (see above). �

Lemma 3.4. Let

A //

f

��

B
u //

h

��

C

g

��
A′ // B′ u′

// C′

be a commutative diagram of F -split extensions of C-diagrams with splittings
(v, v′) : (C,C′) → (B,B′) being such that (v, v′) is a splitting to (u, u′) in the
category of arrows Ar(UC), i.e. hv = v′g. Then the diagram of classifying
maps

J(C)

J(g)

��

ξv // A

f

��
J(C′)

ξv′ // A′

is commutative.

Proof. If we regard h and g as {0 → 1} × C-diagrams and (u, u′) as a map
from h to g, then the commutative diagram of lemma is the classifying map
corresponding to the splitting (v, v′) of {0→ 1} × C-diagrams. �
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4. The Excision Theorems

Throughout this section ℜ is assumed to be T -closed. Recall that k∆ is a

contractible unital simplicial object in ℜ and t := t0 ∈ k∆
1

is a 1-simplex with
∂0(t) = 0, ∂1(t) = 1. Given an algebra B, the ind-algebra B

∆ is defined as

[m, ℓ] 7→ HomS(sd
m ∆ℓ, B∆) = Bsdm ∆ℓ

.

If B = k then B∆ will be denoted by k∆. B∆ can be regarded as a k∆-module,
i.e. there is a simplicial map, induced by multiplication,

B∆ × k∆ → B∆.

Similarly, B∆ can be regarded as a k∆-ind-module.
Given two algebras A,B ∈ ℜ and n > 0, consider the simplicial set

HomAlgind
k

(JnA,B∆(Ωn)) ∼= HomAlgind
k

(JnA,B ⊗k k
∆(Ωn)).

It follows from Proposition 2.5 and Corollary 2.7 that it is fibrant. B∆(Ωn) is
a simplicial ideal of the simplicial ind-algebra

B
∆(In) = ([m, ℓ] 7→ HomS(sd

m(∆1×
n
· · · ×∆1 ×∆ℓ)→ B∆)).

There is a commutative diagram of simplicial ind-algebras

PB∆(Ωn) // //
��

��

(B∆(Ωn))I
��

��

d0 // // B∆(Ωn)
��

��
PB∆(In) // // B∆(In+1)

d0 // // B∆(In)

with vertical arrows inclusions and the right lower map d0 applies to the last
coordinate.
We claim that the natural simplicial map d1 : PB∆(Ωn) → B∆(Ωn) has a
natural k-linear splitting. In fact, the splitting is induced by a natural k-linear
splitting υ for d1 : PB∆(In) → B∆(In). Let t ∈ Pk∆(In)0 stand for the
composite map

sdm(∆1×
n+1
· · · ×∆1)

pr
−→ sdm ∆1 → ∆1 t

→ k∆,

where pr is the projection onto the (n + 1)th direct factor ∆1. The element
t can be regarded as a 1-simplex of the unital ind-algebra k∆(In) such that

∂0(t) = 0 and ∂1(t) = 1. Let ı : B∆(In)→ (B∆(In))∆
1

be the natural inclusion.

Multiplication with t determines a k-linear map B∆(In+1)
t·
−→ PB∆(In). Now

the desired k-linear splitting is defined as

υ := t · ı.

Consider a sequence of simplicial sets
(1)

HomAlgind
k

(A,B∆)
ς
−→ HomAlgind

k
(JA,B∆(Ω))

ς
−→ HomAlgind

k
(J2A,B∆(Ω2))

ς
−→ · · ·
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Each map ς is defined by means of the classifying map ξυ corresponding to the k-
linear splitting υ. More precisely, if we consider B∆(Ωn) as a (Z>0×∆)-diagram
in ℜ, then there is a commutative diagram of extensions for (Z>0×∆)-diagrams

JB∆(Ωn)

ξυ

��

// TB∆(Ωn) //

��

B∆(Ωn)

B∆(Ωn+1) // PB∆(Ωn)
d1 // B∆(Ωn)

For every element f ∈ HomAlgind
k

(JnA,B∆(Ωn)) one sets:

ς(f) := ξυ ◦ J(f) ∈ HomAlgind
k

(Jn+1A,B∆(Ωn+1)).

Now consider an F-extension in ℜ

F
i
−→ B

f
−→ C.

For any n > 0 one constructs a cartesian square of simplicial ind-algebras

Pf (Ω
n)

pr

��

pr // P (C∆(Ωn))

d1

��
B
∆(Ωn)

f // C∆(Ωn).

We observe that the path space P (Pf (Ω
n)) of Pf (Ω

n) is the fibre product of
the diagram

PB
∆(Ωn)

P (f)
−−−→ PC

∆(Ωn)
Pd1←−− P (PC

∆(Ωn)).

Denote by P̃ (Pf (Ω
n)) the fibre product of the diagram

PB
∆(Ωn)

P (f)
−−−→ PC

∆(Ωn)
d
PC

∆(Ωn)
1←−−−−−− P (PC

∆(Ωn)).

Given a simplicial set X , let

sw : X∆1×∆1

→ X∆1×∆1

be the automorphism swapping the two coordinates of ∆1×∆1. IfX = C∆(Ωn)
then sw induces an automorphism

sw : P (PC
∆(Ωn))→ P (PC

∆(Ωn)),

denoted by the same letter. Notice that

Pd1 = d1 ◦ sw .

Moreover, the commutative diagram

PB∆(Ωn)
P (f) // PC∆(Ωn) P (PC∆(Ωn))

Pd1oo

sw

��
PB∆(Ωn)

P (f) // PC∆(Ωn) P (PC∆(Ωn))
d1oo
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yields an isomorphism of simplicial sets

P (Pf (Ω
n)) ∼= P̃ (Pf (Ω

n)).

The natural simplicial map

∂ := (d1, Pd1) : P̃ (Pf (Ω
n))→ Pf (Ω

n)

has a natural k-linear splitting τ : Pf (Ω
n)→ P̃ (Pf (Ω

n)) defined as τ = (υ, Pυ).
So one can define a sequence of simplicial sets

HomAlgind
k

(A,Pf )
ϑ
−→ HomAlgind

k
(JA, Pf (Ω))

ϑ
−→ · · ·

with each map ϑ defined by means of the classifying map ξτ corresponding to
the k-linear splitting τ .
There is a natural map of simplicial ind-algebras for any n > 0

ι : F∆(Ωn)→ Pf (Ω
n).

Proposition 4.1. For any n > 0 there is a homomorphism of simplicial ind-
algebras α : J(Pf (Ω

n))→ F∆(Ωn+1) such that in the diagram

J(F∆(Ωn))
ξυ //

J(ι)

��

F
∆(Ωn+1)

ι

��
J(Pf (Ω

n))
ξτ //

α

88pppppppppp
Pf (Ω

n+1)

αJ(ι) = ξυ, ξτJ(ι) = ιξυ, and ια is elementary homotopic to ξτ .

Proof. We want to construct a commutative diagram of extensions as follows.

(2) F∆(Ωn+1) //

id

��

P (F∆(Ωn))
dF
1 //

χ

��

F∆(Ωn)

ι

��
F
∆(Ωn+1) //

ι

��

P (B∆(Ωn))
π //

θ

��

Pf (Ω
n)

id

��
Pf (Ω

n+1) // P̃Pf (Ω
n)

∂ // Pf (Ω
n)

Here π is a natural map induced by (d1 : P (B∆(Ωn)) → B∆(Ωn), P (f)). A
splitting ν to π is constructed as follows.
Let g : C → B, j : B → F be k-linear splittings to f : B → C and i : F → B
respectively. So fg = 1C , ji = 1F and ij + gf = 1B. Then the simplicial map

ij : B∆(Ωn)→ B
∆(Ωn)
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is k-linear. We define ν as the composite map

Pf (Ω
n)

��

��
B∆(Ωn)× P (C∆(Ωn))

(υij,P (g)) // P (B∆(Ωn))× P (B∆(Ωn))

+

��
P (B∆(Ωn)).

We have to define the map θ. For this we construct a map of simplicial sets

λ : ∆1 ×∆1 → ∆1.

We regard the simplicial set ∆1 as the nerve of the category {0→ 1}. Then λ
is obtained from the functor between categories

{0→ 1} × {0→ 1} → {0→ 1}, (0, 1), (1, 0), (1, 1) 7→ 1, (0, 0) 7→ 0.

The induced map λ∗ : B∆(Ωn)∆
1

→ B∆(Ωn)∆
1×∆1

induces a map of path
spaces λ∗ : PB∆(Ωn) → P (PB∆(Ωn)). The desired map θ is defined by the
map (1P (B∆(Ωn)), fλ

∗). Our commutative diagram is constructed.
Consider the following diagrams of classifying maps

J(F∆(Ωn))

J(ι)

��

ξυ // F∆(Ωn+1)

id

��

J(Pf (Ω
n))

α //

id

��

F∆(Ωn+1)

ι

��
J(Pf (Ω

n))
α // F∆(Ωn+1) J(Pf (Ω

n))
ξτ // Pf (Ω

n+1)

Since χυ = νι then the left square is commutative by Lemma 3.4, because
(dF1 , π) yield a map of {0→ 1}×C-diagrams split by (υ, ν). Also ξτJ(ι) = ιξυ ,
because (dF1 , ∂) yield a map of {0→ 1}×C-diagrams split by (υ, τ). The right
square is commutative up to elementary homotopy by Lemma 3.3. �

Definition. Given two k-algebras A,B ∈ ℜ, the unstable algebraic Kasparov
K-theory space of (A,B) is the space K(ℜ)(A,B) defined as the (fibrant) space

colimn HomAlgind
k

(JnA,B∆(Ωn)).

Its homotopy groups will be denoted by Kn(ℜ)(A,B), n > 0. In what follows we
shall often write K(A,B) to denote the same space omitting ℜ from notation.

Remark. The space K(ℜ)(A,B) only depends on the endofunctor T : ℜ → ℜ.
If A,B belong to another admissible category of algebras ℜ′ with the same
endofunctor T , then K(ℜ)(A,B) equals K(ℜ′)(A,B).

We call a functor F from ℜ to simplicial sets or spectra homotopy invariant
if for every B ∈ ℜ the natural map B → B[x] induces a weak equivalence
F(B) ≃ F(B[x]).
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Lemma 4.2. (1) For any n > 0 the simplicial functor B 7→
HomAlgind

k
(A,B∆(Ωn)) is homotopy invariant. In particular, the simplicial

functor K(A, ?) is homotopy invariant.
(2) Given a F-fibration f : B → C, let f [x] : B[x] → C[x] be the fibration∑

bix
i 7→

∑
f(bi)x

i. Then Pf [x](Ω
n) = Pf (Ω

n)[x] and the natural map of
simplicial sets

(3) HomAlgind
k

(A,Pf (Ω
n))→ HomAlgind

k
(A,Pf [x](Ω

n))

is a homotopy equivalence for any n > 0 and A ∈ ℜ.

Proof. (1). By Theorem 2.4 HomAlgind
k

(A,B∆) = Ex∞(HomAlgk(A,B
∆)). It is

homotopy invariant by [8, 3.1]. For any n > 0 and A ∈ ℜ there is a commutative
diagram of fibre sequences

(A,B∆(Ωn+1)) //

��

(A,PB∆(Ωn)) //

��

(A,B∆(Ωn))

��
(A,B[x]∆(Ωn+1)) // (A,PB[x]∆(Ωn)) // (A,B[x]∆(Ωn)).

By induction, if the right arrow is a weak equivalence, then so is the left one
because the spaces in the middle are contractible.
(2). The fact that Pf [x](Ω

n) = Pf (Ω
n)[x] is straightforward. The map (3) is

the fibre product map corresponding to the commutative diagram

(A,B∆(Ωn)) //

��

(A,C∆(Ωn))

��

(A,PC
∆(Ωn))oo

��
(A,B[x]∆(Ωn)) // (A,C[x]∆(Ωn)) (A,PC[x]∆(Ωn)).oo

The left and the middle vertical arrows are weak equivalences by the first
assertion. The right vertical arrow is a weak equivalence, because it is a map
between contractible spaces. Since the right horizontal maps are fibrations, we
conclude that the desired map is a weak equivalence. �

We are now in a position to prove the following result.

Excision Theorem A. For any algebra A ∈ ℜ and any F-extension in ℜ

F
i
−→ B

f
−→ C

the induced sequence of spaces

K(A,F ) −→ K(A,B) −→ K(A,C)

is a homotopy fibre sequence.

Proof. We have constructed above a sequence of simplicial sets

HomAlgind
k

(A,Pf )
ϑ
−→ HomAlgind

k
(JA, Pf (Ω))

ϑ
−→ · · ·
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with each map ϑ defined by means of the classifying map ξτ corresponding
to the k-linear splitting τ . Let X denote its colimit. One has a homotopy
cartesian square

X //

pr

��

PK(A,C) ≃ ∗

d1

��
K(A,B)

f // K(A,C).

By Proposition 4.1 for any n > 0 there is a diagram

HomAlgind
k

(JnA,F∆(Ωn))
ς //

ι

��

HomAlgind
k

(Jn+1A,F∆(Ωn+1))

ι

��
HomAlgind

k
(JnA,Pf (Ω

n)) ϑ //

a

44hhhhhhhhhhhhhhhhh
HomAlgind

k
(Jn+1A,Pf (Ω

n+1))

with ς(u) = ξυ ◦ J(u), ϑ(v) = ξτ ◦ J(v), a(v) = α ◦ J(v). Proposition 4.1 also
implies that aι = ς , ις = ϑι and that there exists a map

H : HomAlgind
k

(JnA,Pf (Ω
n))→ HomAlgind

k
(Jn+1A,Pf (Ω

n+1)[x])

such that ∂0
xH = ιa and ∂1

xH = ϑ.
One has a commutative diagram

(Jn+1A,Pf (Ω
n+1))

diag //

i

��

(Jn+1A,Pf (Ω
n+1))× (Jn+1A,Pf (Ω

n+1))

(Jn+1A,Pf (Ω
n+1)[x]).

(∂0
x,∂

1
x)

33gggggggggggggggggggg

By Lemma 4.2(2) i is a weak equivalence. So HomAlgind
k

(Jn+1A,Pf (Ω
n+1)[x]) is

a path object of HomAlgind
k

(Jn+1A,Pf (Ω
n+1)) in S. Since all spaces in question

are fibrant, we conclude that ιa is simplicially homotopic to ϑ, and hence
πs(ιa) = πs(ϑ), s > 0. Therefore the induced homomorphisms

πs(ι) : Ks(A,F )→ πs(X ), s > 0,

are isomorphisms, and hence ι : K(A,F )→ X is a weak equivalence.
Since the vertical arrows in the commutative diagram

PK(A,F ) // K(A,C)

X

ggOOOOO pr // K(A,B)

ggOOOO

∗ //

OO

K(A,C)

K(A,F )

ggOOOOOO ι

OO

i
// K(A,B)

ggOOOO

are weak equivalences and the upper square is homotopy cartesian, then so is
the lower one (see [19, 13.3.13]). Thus,

K(A,F ) −→ K(A,B) −→ K(A,C)

Documenta Mathematica 19 (2014) 1207–1269



1226 Grigory Garkusha

is a homotopy fibre sequence. The theorem is proved. �

Corollary 4.3. For any algebras A,B ∈ ℜ the space ΩK(A,B) is naturally
homotopy equivalent to K(A,ΩB).

Proof. Consider the extension

ΩB −→ EB
∂1
x−→ B

which gives rise to a homotopy fibre sequence

K(A,ΩB)→ K(A,EB)→ K(A,B)

by Excision Theorem A. Our assertion will follow once we prove that K(A,EB)
is contractible.
Since EB is contractible, then there is an algebraic homotopy h : EB → EB[x]
contracting EB. There is also a commutative diagram

HomAlgind
k

(JnA,EB(Ωn)) diag //

i

��

HomAlgind
k

(JnA,EB(Ωn))× HomAlgind
k

(JnA,EB(Ωn))

HomAlgind
k

(JnA,EB[x](Ωn)).

(∂0
x,∂1

x)

22ffffffffffffffffffffff

By Lemma 4.2(1) i is a weak equivalence. We see that
HomAlgind

k
(JnA,EB[x](Ωn)) is a path object of HomAlgind

k
(JnA,EB(Ωn))

in S, and hence the induced map

h∗ : HomAlgind
k

(JnA,EB(Ωn))→ HomAlgind
k

(JnA,EB[x](Ωn))

is such that ∂1
xh∗ = id is homotopic to ∂0

xh∗ = const. Thus
HomAlgind

k
(JnA,EB(Ωn)) is contractible, and hence so is K(A,EB). �

We have proved that the simplicial functor K(A,B) is excisive in the second
argument. It turns out that it is also excisive in the first argument.

Excision Theorem B. For any algebra D ∈ ℜ and any F-extension in ℜ

F
i
−→ B

f
−→ C

the induced sequence of spaces

K(C,D) −→ K(B,D) −→ K(F,D)

is a homotopy fibre sequence.

The proof of this theorem requires some machinery. We shall use recent tech-
niques and results from homotopical algebra (both stable and unstable). The
proof is on page 1242.
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5. The spectrum Kunst(A,B)

Throughout this section ℜ is assumed to be T -closed.

Theorem 5.1. Let A,B ∈ ℜ; then there is a natural isomorphism of simplicial
sets

K(A,B) ∼= ΩK(JA,B).

In particular, K(A,B) is an infinite loop space with K(A,B) simplicially iso-
morphic to ΩnK(JnA,B).

Proof. For any n ∈ N there is a commutative diagram

PB∆(Ωn)

d
1,B∆(Ωn)

��

// // PPB∆(Ωn−1)

d
1,PB∆(Ωn−1)

��

Pd1 // // PB∆(Ωn−1)

d
1,B∆(Ωn−1)

��
B∆(Ωn) // // PB∆(Ωn−1)

d1

// // B∆(Ωn−1).

The definition of the natural splitting υ to the lower right arrow is naturally
lifted to a natural splitting ν := Pυ for the upper right arrow in such a way
that d1 ◦ν = υ ◦d1. It follows from Lemma 3.4 that the corresponding diagram
of the classifying maps

JPB∆(Ωn−1)
ξν //

J(d1)

��

PB∆(Ωn)

d1

��
JB∆(Ωn−1)

ξυ // B∆(Ωn)

is commutative. There is also a commutative diagram with exact rows for every
n > 1

B∆(Ωn+1)
��

sw

��

// j // PB∆(Ωn)
d1 // // B∆(Ωn)

B∆(Ωn+1)
��

j

��

// sw ◦j // PB∆(Ωn)

sw ◦Pi

��

d1 // // B∆(Ωn)
��
i

��
PB

∆(Ωn) // // PPB
∆(Ωn−1)

Pd1

// // PB
∆(Ωn−1).
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with i, j natural inclusions and sw permuting the last two coordinates. One
has a commutative diagram of classifying maps

JB∆(Ωn)
ξυ // B∆(Ωn+1)

sw

��
JB∆(Ωn)

J(i)

��

sw ◦ξυ // B∆(Ωn+1)

j

��
JPB∆(Ωn−1)

ξν // PB∆(Ωn)

Observe that each simplicial map

HomAlgind
k

(JnA,PB
∆(Ωn−1))

Pς
−−→ HomAlgind

k
(Jn+1A,PB

∆(Ωn))

agrees with the map defined like ς but using ξν . To see this, it is enough
to consider the following commutative diagram with exact rows and obvious
splittings:

J(PB
∆)

��

// // T (PB
∆)

��

η
PB∆ // // PB∆

P (JB∆)

��

// // P (TB∆)

��

P (η
B∆

)
// // PB∆

P (B∆(Ω)) // // PPB∆
Pd1

// // PB∆

Therefore all squares of the diagram

ΩK(JA,B) : · · ·
sw ◦ς // (JnA,B∆(Ωn))

��

sw ◦ς // (Jn+1A,B∆(Ωn+1))

��

sw ◦ς // · · ·

PK(JA,B) : · · ·
Pς // (JnA,PB∆(Ωn−1))

d1

��

Pς // (Jn+1A,PB∆(Ωn))

d1

��

Pς // · · ·

K(JA,B) : · · ·
ς // (JnA,B∆(Ωn−1))

ς // (Jn+1A,B∆(Ωn))
ς // · · ·

are commutative. The desired isomorphism K(A,B) ∼= ΩK(JA,B) is encoded
by the following commutative diagram:

(A,B∆)

ς

��

ς // (JA,B∆(Ω))

ς

��

ς // (J2A,B∆(Ω2))

ς

��

ς // · · ·

(JA,B∆(Ω))
ς // (J2A,B∆(Ω2))

(21)

��

ς // (J3A,B∆(Ω3))

(321)

��

ς // · · ·

(JA,B∆(Ω))
sw ◦ς // (J2A,B∆(Ω2))

sw ◦ς // (J3A,B∆(Ω3))
sw ◦ς// · · ·
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The colimit of the upper sequence is K(A,B) and the colimit of the lower one
is ΩK(JA,B). The cycle (n · · · 21) ∈ Σn permutes coordinates of B∆(Ωn). �

Corollary 5.2. For any algebras A,B ∈ ℜ the space K(A,B) is naturally
homotopy equivalent to K(JA,ΩB).

Proof. This follows from the preceding theorem and Corollary 4.3. �

Definition. Given two k-algebras A,B ∈ ℜ, the unstable algebraic Kasparov
KK-theory spectrum of (A,B) consists of the sequence of spaces

K(A,B),K(JA,B),K(J2A,B), . . .

together with isomorphisms K(JnA,B) ∼= ΩK(Jn+1A,B) constructed in The-
orem 5.1. It forms an Ω-spectrum which we also denote by Kunst(A,B). Its
homotopy groups will be denoted by Kunst

n (A,B), n ∈ Z. We sometimes write
K(A,B) instead of Kunst(A,B), dropping “unst” from notation.
Observe that Kn(A,B) ∼= Kn(A,B) for any n > 0 and Kn(A,B) ∼=
K0(J

−nA,B) for any n < 0.

Theorem 5.3. The assignment B 7→ K(A,B) determines a functor

K(A, ?) : ℜ → (Spectra)

which is homotopy invariant and excisive in the sense that for every F-extension
F → B → C the sequence

K(A,F )→ K(A,B)→ K(A,C)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → Ki+1(A,C)→ Ki(A,F )→ Ki(A,B)→ Ki(A,C)→ · · ·

for any i ∈ Z.

Proof. This follows from Excision Theorem A. �

We also have the following

Theorem 5.4. The assignment B 7→ K(B,D) determines a functor

K(?, D) : ℜop → (Spectra),

which is excisive in the sense that for every F-extension F → B → C the
sequence

K(C,D)→ K(B,D)→ K(F,D)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → Ki+1(F,D)→ Ki(C,D)→ Ki(B,D)→ Ki(F,D)→ · · ·

for any i ∈ Z.

Proof. We postpone the proof till subsection 6.6. �
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The reader may have observed that we do not involve any matrices in the
definition of K(A,B) as any sort of algebraic K-theory does. This is one of
important differences with usual views on algebraic K-theory. The author is
motivated by the fact that many interesting admissible categories of algebras
deserving to be considered like that of all commutative ones are not closed
under matrices.

6. Homotopy theory of algebras

Let ℜ be a small admissible category of rings. In order to prove Excision
Theorem B, we have to use results from homotopy theory of rings. First, we

introduce a model category UℜI,J
• of pointed simplicial functors from ℜ to

S•. This model category is a reminiscence of Morel–Voevodsky [25] motivic
model category of pointed motivic spaces. Second, we define a model category

of S1-spectra Sp(ℜ) associated with UℜI,J
• . A typical fibrant spectrum of

Sp(ℜ) is Kunst(A,−), A ∈ ℜ. The strategy of proving Excision Theorem B is
first to prove a kind of Excision Theorem B for the spectra Kunst(A,−) (see
Theorem 6.6) and then use standard facts from homotopical algebra to show
the original Excision Theorem B on the level of spaces. We mostly adhere
to [8].

6.1. The category of simplicial functors Uℜ. We shall use the model
category Uℜ of covariant functors from ℜ to simplicial sets (and not contravari-
ant functors as usual). We do not worry about set theoretic issues here, because
we assume ℜ to be small. We shall consider both the injective and projective
model structures on Uℜ and refer to Dugger [7] for further details. Both model
structures are Quillen equivalent. These are proper, simplicial, cellular model
category structures with weak equivalences and cofibrations (respectively fi-
brations) being defined objectwise, and fibrations (respectively cofibrations)
being those maps having the right (respectively left) lifting property with re-
spect to trivial cofibrations (respectively trivial fibrations). The fully faithful
contravariant functor

r : ℜ → Uℜ, A 7−→ Homℜ(A,−),

where rA(B) = Homℜ(A,B) is to be thought of as the constant simplicial set
for any B ∈ ℜ.
In the injective model structure on Uℜ, cofibrations are the injective maps.
This model structure enjoys the following properties (see Dugger [7, p. 21]):

⋄ every object is cofibrant;
⋄ being fibrant implies being objectwise fibrant, but is stronger (there
are additional diagramatic conditions involving maps being fibrations,
etc.);
⋄ any object which is constant in the simplicial direction is fibrant.

If F ∈ Uℜ then Uℜ(rA×∆n, F ) = Fn(A) (isomorphism of sets). Hence, if we
look at simplicial mapping spaces we find

Map(rA, F ) = F (A)
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(isomorphism of simplicial sets). This is a kind of “simplicial Yoneda Lemma”.
In the projective model structure on Uℜ, fibrations are defined sectionwise.
The class of projective cofibrations is generated by the set

IUℜ ≡ {rA× (∂∆n ⊂ ∆n)}n>0

indexed by A ∈ ℜ. Likewise, the class of acyclic projective cofibrations is
generated by

JUℜ ≡ {rA× (Λk
n ⊂ ∆n)}n>0

06k6n.

The projective model structure on Uℜ enjoys the following properties:

⋄ every projective cofibration is an injective map (but not vice versa);
⋄ if A ∈ ℜ and K is a simplicial set, then rA×K is a projective cofibrant
simplicial functor. In particular, rA is projective cofibrant for every
algebra A ∈ ℜ;
⋄ rA is projective fibrant for every algebra A ∈ ℜ.

6.2. Bousfield localization. Recall from [19] that ifM is a model category
and S a set of maps between cofibrant objects, one can produce a new model
structure on M in which the maps S are weak equivalences. The new model
structure is called the Bousfield localization or just localization of the old one.
Since all model categories we shall consider are simplicial one can use the
simplicial mapping object instead of the homotopy function complex for the
localization theory ofM.

Definition. LetM be a simplicial model category and let S be a set of maps
between cofibrant objects.

(1) An S-local object ofM is a fibrant object X such that for every map
A → B in S, the induced map of Map(B,X) → Map(A,X) is a weak
equivalence of simplicial sets.

(2) An S-local equivalence is a map A → B such that Map(B,X) →
Map(A,X) is a weak equivalence for every S-local object X .

In words, the S-local objects are the ones which see every map in S as if it
were a weak equivalence. The S-local equivalences are those maps which are
seen as weak equivalences by every S-local object.

Theorem 6.1 (Hirschhorn [19]). LetM be a cellular, simplicial model category
and let S be a set of maps between cofibrant objects. Then there exists a model
category M/S whose underlying category is that of M in which

(1) the weak equivalences are the S-local equivalences;
(2) the cofibrations in M/S are the same as those in M;
(3) the fibrations are the maps having the right-lifting-property with respect

to cofibrations which are also S-local equivalences.

Left Quillen functors from M/S to D are in one to one correspondence with
left Quillen functors Φ :M → D such that Φ(f) is a weak equivalence for all
f ∈ S. In addition, the fibrant objects of M are precisely the S-local objects,
and this new model structure is again cellular and simplicial.
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The model categoryM/S whose existence is guaranteed by the above theorem
is called the S-localization ofM. The underlying category is the same as that
ofM, but there are more trivial cofibrations (and hence fewer fibrations).
Note that the identity maps yield a Quillen pair M ⇄ M/S, where the left
Quillen functor is the map id :M→M/S.

6.3. The model category UℜI . Let I = {i = iA : r(A[t])→ r(A) | A ∈ ℜ},
where each iA is induced by the natural homomorphism i : A→ A[t]. Consider
the injective model structure on Uℜ. We shall refer to the I-local equivalences
as (injective) I-weak equivalences. The resulting model category Uℜ/I will
be denoted by UℜI and its homotopy category is denoted by HoI(ℜ). Notice
that any homotopy invariant functor F : ℜ → Sets is an I-local object in Uℜ
(hence fibrant in UℜI).
Let F be a functor from ℜ to simplicial sets. There is a singular functor
Sing∗(F ) which is defined at each algebra R as the diagonal of the bisimplicial
set F (R∆). Thus Sing∗(F ) is also a functor from ℜ to simplicial sets. If we
consider R as a constant simplicial algebra, then the natural map R → R∆

yields a natural transformation F → Sing∗(F ). It is an I-trivial cofibration
by [8, 3.8].
If we consider the projective model structure on Uℜ, then we shall refer to the
I-local equivalences (respectively fibrations in the I-localized model structure)
as projective I-weak equivalences (respectively I-projective fibrations). The
resulting model category Uℜ/I will be denoted by UℜI . It is shown similar
to [26, 3.49] that the classes of injective and projective I-weak equivalences
coincide. Hence the identity functor on Uℜ is a Quillen equivalence between
UℜI and UℜI .
The model category UℜI satisfies some finiteness conditions.

Definition ([21]). An object A of a model categoryM is finitely presentable
if the set-valued Hom-functor HomM(A,−) commutes with all colimits of se-
quences X0 → X1 → X2 → · · · . A cofibrantly generated model category with
generating sets of cofibrations I and trivial cofibrations J is called finitely
generated if the domains and codomains of I and J are finitely presentable,
and almost finitely generated if the domains and codomains of I are finitely
presentable and there exists a set of trivial cofibrations J ′ with finitely pre-
sentable domains and codomains such that a map with fibrant codomain is a
fibration if and only if it has the right lifting property with respect to J ′.

Using the simplicial mapping cylinder in Uℜ (it is the usual one from simplicial
sets applied objectwise), we may factor the morphism

r(A[t]) // rA

into a projective cofibration composed with a simplicial homotopy equivalence
in Uℜ

(4) r(A[t]) // cyl
(
r(A[t])→ rA

)
// rA.
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Observe that the maps in (4) are I-weak equivalences.
Let JUℜI denote the set of maps

r(A[t]) ×∆n
⊔

r(A[t])×∂∆n

cyl
(
r(A[t])→ rA

)
× ∂∆n → cyl

(
r(A[t])→ rA

)
×∆n

indexed by n > 0 and A ∈ ℜ.
Let Λ be a set of generating trivial cofibrations for the injective model structure
on Uℜ. Using [19, 4.2.4] a simplicial functor X is I-local in the injective
(respectively projective) model structure if and only if it has the right lifting
property with respect to Λ∪JUℜI (respectively JUℜ∪JUℜI ). It follows from [21,
4.2] that UℜI is almost finitely generated, because domains and codomains of
JUℜ ∪ JUℜI are finitely presentable.

6.4. The model category UℜJ . Let us introduce the class of excisive func-
tors on ℜ. They look like flasque presheaves on a site defined by a cd-structure
in the sense of Voevodsky [30, section 3].

Definition. Let ℜ be an admissible category of algebras. A simplicial functor
X ∈ Uℜ is called excisive with respect to F if X (0) is contractible and for any
cartesian square in ℜ

D //

��

A

��
B

f // C

with f a fibration (call such squares distinguished) the square of simplicial sets

X (D) //

��

X (A)

��
X (B) // X (C)

is a homotopy pullback square. It immediately follows from the definition
that every pointed excisive object takes F-extensions in ℜ to homotopy fibre
sequences of simplicial sets.

Consider the injective model structure on Uℜ. Let α denote a distinguished
square in ℜ

D //

��

A

��
B // C

and denote the pushout of the diagram

rC //

��

rA

rB
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by P (α). Notice that the diagram obtained is homotopy pushout. There is a
natural map P (α) → rD, and both objects are cofibrant. In the case of the
degenerate square this map has to be understood as the map from the initial
object ∅ to r0.
We can localize Uℜ at the family of maps

J = {P (α)→ rD | α is a distinguished square}.

The corresponding J-localization will be denoted by UℜJ . The weak equiv-
alences (trivial cofibrations) of UℜJ will be referred to as (injective) J-weak
equivalences ((injective) J-trivial cofibrations).
It follows that the square “r(α)”

rC //

��

rA

��
rB // rD

with α a distinguished square is a homotopy pushout square in UℜJ . A sim-
plicial functor X in Uℜ is J-local if and only if it is fibrant and excisive [8,
4.3].
We are also interested in constructing sets of generating acyclic cofibrations for
model structures. Let us apply the simplicial mapping cylinder construction
cyl to distinguished squares and form the pushouts:

rC //

��

cyl(rC → rA)

��

// rA

��
rB // cyl(rC → rA)

⊔
rC rB // rD

Note that rC → cyl(rC → rA) is both an injective and a projective cofibration
between (projective) cofibrant simplicial functors. Thus s(α) ≡ cyl(rC →
rA)

⊔
rC rB is (projective) cofibrant [20, 1.11.1]. For the same reasons, applying

the simplicial mapping cylinder to s(α) → rD and setting t(α) ≡ cyl
(
s(α) →

rD
)
we get a projective cofibration

cyl(α) : s(α) // t(α).

Let J
cyl(α)
Uℜ consists of maps

s(α)×∆n
⊔

s(α)×∂∆n t(α) × ∂∆n // t(α)×∆n.

It is directly verified that a simplicial functor X is J-local if and only if it

has the right lifting property with respect to Λ ∪ J
cyl(α)
Uℜ , where Λ is a set of

generating trivial cofibrations for the injective model structure on Uℜ.
If one localizes the projective model structure on Uℜ with respect to the set of
projective cofibrations {cyl(α)}α, the resulting model category shall be denoted
by UℜJ . The weak equivalences (trivial cofibrations) of UℜJ will be referred to
as projective J-weak equivalences (projective J-trivial cofibrations). As above,
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X is fibrant in UℜJ if and only if it has the right lifting property with respect

to JUℜ∪J
cyl(α)
Uℜ . Since both domains and codomains in JUℜ∪J

cyl(α)
Uℜ are finitely

presentable then UℜJ is almost finitely generated by [21, 4.2].
It can be shown similar to [26, 3.49] that the classes of injective and projective
J-weak equivalences coincide. Hence the identity functor on Uℜ is a Quillen
equivalence between UℜJ and UℜJ .

6.5. The model category UℜI,J .

Definition. A simplicial functor X ∈ Uℜ is called quasi-fibrant with respect
to F if it is homotopy invariant and excisive. For instance, if ℜ is T -closed and
A ∈ ℜ then the simplicial functor K(A, ?) is quasi-fibrant by Lemma 4.2 and
Excision Theorem A.
Consider the injective model structure on Uℜ. The model category UℜI,J is,
by definition, the Bousfield localization of Uℜ with respect to I ∪ J . Equiva-
lently, UℜI,J is the Bousfield localization of Uℜ with respect to {cyl(r(A[t])→
rA)}∪{cyl(α)}, where A runs over the objects from ℜ and α runs over the dis-
tinguished squares. The weak equivalences (trivial cofibrations) of UℜI,J will
be referred to as (injective) (I, J)-weak equivalences ((injective) (I, J)-trivial
cofibrations). By [8, 4.5] a simplicial functor X ∈ Uℜ is (I, J)-local if and only
if it is fibrant, homotopy invariant and excisive.

Definition. Following [8] a homomorphism A → B in ℜ is said to be an
F-quasi-isomorphism or just a quasi-isomorphism if the map rB → rA is an
(I, J)-weak equivalence.

Consider now the projective model structure on Uℜ. The model categoryUℜI,J

is, by definition, the Bousfield localization of Uℜ with respect to {cyl(r(A[t])→
rA)} ∪ {cyl(α)}, where A runs over the objects from ℜ and α runs over the
distinguished squares. The weak equivalences (trivial cofibrations) of UℜI,J

will be referred to as projective (I, J)-weak equivalences (projective (I, J)-
trivial cofibrations). Similar to [8, 4.5] a simplicial functor X ∈ Uℜ is fibrant
in UℜI,J if and only if it is projective fibrant, homotopy invariant and excisive
or, equivalently, it has the right lifting property with respect to JUℜ ∪ JUℜI

∪

J
cyl(α)
Uℜ . Since both domains and codomains in JUℜ ∪JUℜI

∪J
cyl(α)
Uℜ are finitely

presentable then UℜI,J is almost finitely generated by [21, 4.2].
It can be shown similar to [26, 3.49] that the classes of injective and projective
(I, J)-weak equivalences coincide. Hence the identity functor on Uℜ is a Quillen
equivalence between UℜI,J and UℜI,J .
It is straightforward to show that the results for the model structures on Uℜ
have analogs for the category Uℜ• of pointed simplicial functors (see [8]). In
order to prove Excision Theorem B, we have to consider a model category of

spectra for UℜI,J
• .

6.6. The category of spectra. In this section we assume ℜ to be small
and T -closed. We use here ideas and work of Hovey [21], Jardine [22] and
Schwede [28].
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Definition. The category Sp(ℜ) of spectra consists of sequences E ≡ (En)n>0

of pointed simplicial functors equipped with structure maps σE
n : ΣEn → En+1

where Σ = S1 ∧ − is the suspension functor. A map f : E → F of spectra
consists of compatible maps fn : En → Fn of pointed simplicial functors in the
sense that the diagrams

ΣEn

Σfn

��

σE

n // En+1

fn+1

��
ΣFn

σF

n // Fn+1

commute for all n > 0.

Example. The main spectrum we shall work with is as follows. Let A ∈ ℜ
and let R(A) be the spectrum which is defined at every B ∈ ℜ as the sequence
of spaces pointed at zero

HomAlgind
k

(A,B∆),HomAlgind
k

(JA,B∆),HomAlgind
k

(J2A,B∆), . . .

By Theorem 2.4 each R(A)n(B) is a fibrant simplicial set and by Corollary 2.7

ΩkR(A)n(B) = HomAlgind
k

(JnA,B∆(Ωk)).

Each structure map σn : ΣR(A)n →R(A)n+1 is defined at B as adjoint to the
map ς : HomAlgind

k
(JnA,B∆)→ HomAlgind

k
(Jn+1A,B∆(Ω)) constructed in (1).

A map f : E → F is a level weak equivalence (respectively fibration) if fn : En →
Fn is a (I, J)-weak equivalence (respectively projective (I, J)-fibration). And
f is a projective cofibration if f0 and the maps

En+1

⊔
ΣEn

ΣFn
// Fn+1

are cofibrations in UℜI,J
• for all n > 0. By [21, 22, 28] we have:

Proposition 6.2. The level weak equivalences, projective cofibrations and level
fibrations furnish a simplicial and left proper model structure on Sp(ℜ). We
call this the projective model structure.

The Bousfield–Friedlander category of spectra [1] will be denoted by Sp. There
is a functor

Sp→ Sp(ℜ)

that takes a spectrum of pointed simplicial sets E to the constant spectrum
A ∈ ℜ 7→ E(A) = E . For any algebra D ∈ ℜ there is also a functor

UD : Sp(ℜ)→ Sp, X 7→ X (D).

Given a spectrum E ∈ Sp and a pointed simplicial functor K, there is a spec-
trum E ∧K with (E ∧K)n = En ∧K and having structure maps of the form

Σ(En ∧K) ∼= (ΣEn) ∧K
σn∧K
−−−−→ En+1 ∧K.
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Given D ∈ ℜ, the functor FD : Sp → Sp(ℜ), E 7→ E ∧ rD+, is left adjoint to
UD : Sp(ℜ)→ Sp. So there is an isomorphism

(5) HomSp(ℜ)(E ∧ rD+,X ) ∼= HomSp(E ,X (D)).

Our next objective is to define the stable model structure. We define the fake
suspension functor Σ : Sp(ℜ)→ Sp(ℜ) by (ΣZ)n = ΣZn and structure maps

Σ(ΣZn)
Σσn−−−→ ΣZn+1,

where σn is a structure map of Z. Note that the fake suspension functor is left
adjoint to the fake loops functor Ωℓ : Sp(ℜ)→ Sp(ℜ) defined by (ΩℓZ)n = ΩZn

and structure maps adjoint to

ΩZn
Ωσ̃n−−−→ Ω(ΩZn+1),

where σ̃n is adjoint to the structure map σn of Z.

Definition. A spectrum Z is stably fibrant if it is level fibrant and all the
adjoints σ̃Z

n : Zn → ΩZn+1 of its structure maps are (I, J)-weak equivalences.

Example. Given A ∈ ℜ, the spectrum K(A,−) consists of the sequence of
simplicial functors

K(A,−),K(JA,−),K(J2A,−), . . .

together with isomorphisms K(JnA,−) ∼= ΩK(Jn+1A,−) constructed in Theo-
rem 5.1. Lemma 4.2 and Excision Theorem A imply K(A,−) is a stably fibrant
spectrum. Note that K(A,B) is stably fibrant in Sp for every B ∈ ℜ.

The stably fibrant spectra determine the stable weak equivalences of spectra.
Stable fibrations are maps having the right lifting property with respect to all
maps which are projective cofibrations and stable weak equivalences.

Definition. A map f : E → F of spectra is a stable weak equivalence if for
every stably fibrant Z taking a cofibrant replacement Qf : QE → QF of f
in the level projective model structure on Sp(ℜ) yields a weak equivalence of
pointed simplicial sets

MapSp(ℜ)(Qf,Z) : MapSp(ℜ)(QF ,Z) // MapSp(ℜ)(QE ,Z).

By specializing the collection of results in [21, 28] to our setting we have:

Theorem 6.3. The classes of stable weak equivalences and projective cofibra-
tions define a simplicial and left proper model structure on Sp(ℜ).

If we define the stable model category structure on ordinary spectra Sp similar
to Sp(ℜ), then by [21, 3.5] it coincides with the stable model structure of
Bousfield–Friedlander [1].
Define the shift functors t : Sp(ℜ) −→ Sp(ℜ) and s : Sp(ℜ) −→ Sp(ℜ) by
(sX )n = Xn+1 and (tX )n = Xn−1, (tX )0 = pt, with the evident structure
maps. Note that t is left adjoint to s.
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Definition. Define Θ : Sp(ℜ) → Sp(ℜ) to be the functor s ◦ Ωℓ, where s is
the shift functor. Then we have a natural map ιX : X → ΘX , and we define

Θ∞X = colim(X
ιX−→ ΘX

ΘιX−−−→ Θ2X
Θ2ιX−−−→ · · ·

Θn−1ιX−−−−−→ ΘnX
ΘnιX−−−→ · · · ).

Let jX : X → Θ∞X denote the obvious natural transformation. It is a stable
equivalence by [21, 4.11]. We call Θ∞X the stabilization of X .

Example. Given A ∈ ℜ, there is a natural map of spectra

κ : R(A)→ K(A,−).

One has a commutative diagram

R(A)
j //

κ

��

Θ∞R(A)

Θ∞
κ

��
K(A,−)

j // Θ∞
K(A,−).

The upper horizontal map is a stable equivalence, the lower and right arrows
are isomorphisms. Therefore the natural map of spectra κ : R(A) → K(A,−)
is a stable equivalence. In fact for any algebra B ∈ ℜ the map

κB : R(A)(B)→ K(A,B)

is a stable equivalence of ordinary spectra.

By [21, 4.6] we get the following result because Ω(−) preserves sequential col-

imits and the model category UℜI,J
• is almost finitely generated.

Lemma 6.4. The stabilization of every level fibrant spectrum is stably fibrant.

Lemma 6.5. For any D ∈ ℜ the adjoint functors FD : Sp ⇄ Sp(ℜ) : UD form a
Quillen adjunction between the stable model category of Bousfield–Friedlander
spectra Sp and the stable model category Sp(ℜ).

Proof. Clearly, FD preserves stable cofibrations. To show that FD preserves
stable trivial cofibrations, it is enough to observe that UD preserves stable
fibrant spectra (see the proof of [21, 3.5]) and use (5). �

We are now in a position to prove the main result of this section.

Theorem 6.6. Suppose F  B ։ C is an F-extension in ℜ. Then the
commutative square of spectra

K(C,−) //

��

K(B,−)

��
pt // K(F,−)
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is homotopy pushout and homotopy pullback in Sp(ℜ). Moreover, if D ∈ ℜ
then the square of ordinary spectra

K(C,D) //

��

K(B,D)

��
pt // K(F,D)

is homotopy pushout and homotopy pullback.

Proof. Given a distinguished square α

D //

��

A

��
B // C

in ℜ, the square rα+

rC+
//

��

rA+

��
rB+

// rD+

is homotopy pushout in UℜI,J
• .

We claim that there is a J-weak equivalence of pointed simplicial functors
rA+ → rA for any algebra A ∈ ℜ. The object rA is a cofibre product of the
diagram

pt← r0+ → rA+,

in which the right arrow is an injective cofibration. It follows that for every
pointed fibrant object X in UℜJ,• the sequence of simplicial sets

MapUℜ•
(rA,X )→ X (A)→ X (0)

is a homotopy fibre sequence with X (0) contractible. Hence the left arrow
is a weak equivalence of simplicial sets, and so the map of pointed simplicial
functors rA+ → rA is a J-weak equivalence. Using [19, 13.5.9] the square rα
with α as above

rC //

��

rA

��
rB // rD

is homotopy pushout in UℜI,J
• .

Given an algebra A ∈ ℜ and n > 0, there is an I-weak equivalence of simplicial
functors pointed at zero iJnA : r(JnA)→ Sing(r(JnA)). By Theorem 2.4

R(A)n = Ex∞ ◦ Sing(r(JnA)).

Since the map

ξυ : JA→ ΩA,
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which is functorial in A, is a quasi-isomorphism, then the square

(6) r(JnC) //

��

r(JnB)

��
pt // r(JnF )

is weakly equivalent to the homotopy pushout square in UℜI,J
•

r(ΩnC) //

��

r(ΩnB)

��
pt // r(ΩnF )

By [19, 13.5.9] square (6) is then homotopy pushout in UℜI,J
• . Also, [19, 13.5.9]

implies that

Sing(r(JnC)) //

��

Sing(r(JnB))

��
pt // Sing(r(JnF ))

is homotopy pushout in UℜI,J
• , and hence so is

R(C)n //

��

R(B)n

��
pt // R(F )n.

We see that the square of spectra

(7) R(C)
u //

��

R(B)

��
pt // R(F )

is level pushout. We can find a projective cofibration of spectra ι : R(C)→ X
and a level weak equivalence s : X → R(B) such that u = sι. Consider a
pushout square

R(C)
ι //

��

X

��
pt // Y.

It is homotopy pushout in the projective model structure of spectra, and

hence it is levelwise homotopy pushout in UℜI,J
• . Therefore the induced map

Y → R(F ) is a level weak equivalence, and so (7) is homotopy pushout in the
projective model structure of spectra by [19, 13.5.9].
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Since the vertical arrows in the commutative diagram

pt // K(F,−)

K(C,−)

ggOOOOO
// K(B,−)

ggOOOO

pt //

OO

R(F )

OO

R(C)

ggOOOOOO

OO

// R(B)

ggOOOO
κ

OO

are stable weak equivalences and the lower square is homotopy pushout in the
stable model structure of spectra, then so is the upper square by [19, 13.5.9].
By [21, 3.9; 10.3] Sp(ℜ) is a stable model category with respect to the stable
model structure, and therefore the square of the theorem is also homotopy
pullback by [20, 7.1.12].
It follows from Lemma 6.5 that the square of simplicial spectra

K(C,D) //

��

K(B,D)

��
pt // K(F,D)

is homotopy pullback for all D ∈ ℜ. It is also homotopy pushout in the stable
model category of Bousfield–Friedlander spectra by [20, 7.1.12], because this
model structure is stable. �

It is also useful to have the following

Theorem 6.7. Suppose u : A → B is a quasi-isomorphism in ℜ. Then the
induced map of spectra

u∗ : K(B,−)→ K(A,−)

is a stable equivalence in Sp(ℜ). In particular, the map of spaces

u∗ : K(B,C)→ K(A,C)

is a weak equivalence for all C ∈ ℜ.

Proof. Consider the square in Uℜ•

rB
u∗

//

��

rA

��
R(B)0

u∗

// R(A)0.

The upper arrow is an (I, J)-weak equivalence, the vertical maps are I-weak
equivalences. Therefore the lower arrow is an (I, J)-weak equivalence.
Since the endofunctor J : ℜ → ℜ respects quasi-isomorphisms, then

u∗ : R(B)→R(A)
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is a level weak equivalence of spectra. Consider the square in Sp(ℜ)

R(B)
u∗

//

κ

��

R(A)

κ

��
K(B,−)

u∗

// K(A,−).

The upper arrow is a level weak equivalence, the vertical maps are stable weak
equivalences. Therefore the lower arrow is a stable weak equivalence.

The map K(B,−)
u∗

−→ K(A,−) is a weak equivalence in the projective model
structure on Sp(ℜ), because both spectra are stably fibrant and levelwise fi-

brant in UℜI,J
• . It follows that the map of spaces

u∗ : K(B,C)→ K(A,C)

is a weak equivalence for all C ∈ ℜ. �

We can now prove Excision Theorem B.

Proof of Excision Theorem B. Let ℜ be an arbitrary admissible T -closed cat-
egory of k-algebras. We have to prove that the square of spaces

K(C,D) //

��

K(B,D)

��
pt // K(F,D)

is homotopy pullback for any extension F  B ։ C in ℜ and any algebra
D ∈ ℜ.
A subtle difference with what we have defined for spectra is that we do not as-
sume ℜ to be small. So to apply Theorem 6.6 one has to find a small admissible
T -closed category of k-algebras ℜ′ containing F,B,C,D.
We can inductively construct such a category as follows. Let ℜ′

0 be the full
subcategory of ℜ such that Obℜ′

0 = {F,B,C,D}. If the full subcategory ℜ′
n

of ℜ, n > 0, is constructed we define ℜ′
n+1 by adding the following algebras to

ℜ′
n:

⊲ all ideals and quotient algebras of algebras from ℜ′
n;

⊲ all algebras which are pullbacks for diagrams

A→ E ← L

with A,E,L ∈ ℜ′
n;

⊲ all polynomial algebras in one variable A[x] with A ∈ ℜ′
n;

⊲ all algebras TA with A ∈ ℜ′
n.

Then we set ℜ′ =
⋃

nℜ
′
n. Clearly ℜ

′ is a small admissible T -closed category of
algebras containing F,B,C,D. It remains to apply Theorem 6.6. �

We can now also prove Theorem 5.4.
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Proof of Theorem 5.4. Let ℜ be an arbitrary admissible T -closed category of
k-algebras. We have to prove that the square of spectra

K(C,D) //

��

K(B,D)

��
pt // K(F,D)

is homotopy pullback for any extension F  B ։ C in ℜ and any algebra
D ∈ ℜ.
To apply Theorem 6.6 one has to find a small admissible T -closed category
of k-algebras ℜ′ containing F,B,C,D. Such a category is constructed in the
proof of Excision Theorem B. �

Corollary 6.8. Let ℜ be an admissible T -closed category of k-algebras. Then
for every A,B ∈ ℜ the spectrum K(JA,B) has homotopy type of ΣK(A,B).

Proof. We have an extension JA  TA ։ A in which TA is contractible by
Lemma 3.1. Hence K(TA,B) ≃ ∗ by Theorem 6.7 (as above one can choose a
small admissible T -closed category of algebras such that all considered algebras
belong to it). Now our assertion follows from Excision Theorem B. �

7. Comparison Theorem A

In this section we prove a couple of technical (but important!) results giving
a relation between simplicial and polynomial homotopy for algebra homomor-
phisms. As an application, we prove Comparison Theorem A. Throughout ℜ
is supposed to be T -closed.

7.1. Categories of fibrant objects.

Definition. Let A be a category with finite products and a final object e.
Assume that A has two distinguished classes of maps, called weak equivalences
and fibrations. A map is called a trivial fibration if it is both a weak equivalence
and a fibration. We define a path space for an object B to be an object BI

together with maps

B
s
−→ BI (d0,d1)

−−−−→ B ×B,

where s is a weak equivalence, (d0, d1) is a fibration, and the composite is the
diagonal map.
Following Brown [2], we call A a category of fibrant objects or a Brown category
if the following axioms are satisfied.
(A) Let f and g be maps such that gf is defined. If two of f , g, gf are weak
equivalences then so is the third. Any isomorphism is a weak equivalence.
(B) The composite of two fibrations is a fibration. Any isomorphism is a
fibration.
(C) Given a diagram

A
u
−→ C

v
←− B,
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with v a fibration (respectively a trivial fibration), the pullback A×C B exists
and the map A×C B → A is a fibration (respectively a trivial fibration).
(D) For any object B in A there exists at least one path space BI (not neces-
sarily functorial in B).
(E) For any object B the map B → e is a fibration.

7.2. The Hauptlemma. Every map u in ℜ can be factored u = pi, where
p ∈ F is a fibration and i is an I-weak equivalence. Indeed, let A′ be the the
fibre product of the diagram

A
u
−→ B

∂0
x←− B[x].

Then the map i : A→ A′, a 7−→ (a, u(a)), is split and obviously an elementary
homotopy equivalence. Hence it is an I-weak equivalence. We define p : A′ → B
as composition of the projection A′ → B[x] and ∂1

x. We call a homomorphism
an I-trivial fibration if it is both a fibration and an I-weak equivalence. We

denote by In, n > 0, the simplicial set ∆1×
n
· · · ×∆1 and by δ0, δ1 : In → In+1

the maps 1In × d0, 1In × d1 whose images are In × {1}, In × {0} respectively.
Let Wmin be the minimal class of weak equivalences containing the homomor-
phisms A→ A[t], A ∈ ℜ, such that the triple (ℜ,F,Wmin) is a Brown category.
We should mention that every excisive, homotopy invariant simplicial functor
X : ℜ → SSets gives rise to a class of weak equivalences W containing the
homomorphisms A → A[t], A ∈ ℜ, such that the triple (ℜ,F,W) is a Brown
category (see [8]). Precisely, W consists of those homomorphisms f for which
X (f) is a weak equivalence of simplicial sets.
We shall denote by BS

n

, n > 0, the ind-algebra

BS
n

0 → BS
n

1 → BS
n

2 → · · ·

consisting of the 0-simplices of the simplicial ind-algebra B(Ωn). So we have
for any k > 0:

BS
n

k = Ker(Bsdk In

→ Bsdk(∂In)).

One also sets
B̃S

n

k = Ker(Bsdk In+1

→ Bsdk(∂In×I)).

Hauptlemma. Let A,B ∈ ℜ then for any m,n > 0 we have:

(1) If f : A → Bsdm ∆n+1

is a homomorphism, then the homomorphism
∂if is algebraically homotopic to ∂jf with i, j 6 n+ 1.

(2) If f : A → Bsdm In+1

(respectively f : A → B̃S
n

m ) is a homomorphism,
then d0f, d1f : A→ Bsdm In

(respectively d0f, d1f : A→ BS
n

m ) are al-

gebraically homotopic, where d0, d1 : Bsdm In+1

→ Bsdm In

are induced
by δ0, δ1.

(3) If f0, f1 : A → Bsdm In

(respectively f0, f1 : A → BS
n

m ) are two al-
gebraically homotopic homomorphisms by means of a map h : A →

(Bsdm In

)sd
k ∆1

(respectively h : A → (BS
n

m )sd
k ∆1

), then there are a
homomorphism g : A′ → A, which is obtained by pulling back an I-
trivial fibration along h, and hence g ∈ Wmin, and a homomorphism
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H : A′ → Bsdm In+1

(respectively H : A′ → B̃S
n

m ) such that d0H = f0g
and d1H = f1g.

The Hauptlemma essentially says that the condition for homomorphisms of
being simplicially homotopic implies that of being polynomially homotopic.
The converse is true up to multiplication with some maps from Wmin.

Proof. (1). Given i < j define a homomorphism ϕi,j : B[t0, . . . , tn+1]→ B∆n

[x]
as

(8) ϕi,j(tk) =





tk, k < i
xti, k = i

xtk + (1− x)tk−1, i < k < j
(1− x)tj−1, k = j

tk−1, k > j

It takes 1 −
∑n+1

i=0 ti to zero, and hence one obtains a homomorphism ϕi,j :

B∆n+1

→ B∆n

[x]. We define ϕj,i(f)(t0, . . . , tn, x) = ϕi,j(f)(t0, . . . , tn, 1− x) if

j > i. It follows that for any h ∈ B∆n+1

ϕi,j(h)(t0, . . . , tn, x) =

{
∂ih, x = 0,

∂jh, x = 1.

We see that ∂iα is elementary homotopic to ∂jα for any α : A → B∆n+1

.
If there is no likelihood of confusion we shall denote this homotopy by ϕi,j

omitting α.

Now consider the algebra Bsdk ∆n+1

, k > 1. By definition, it is the fiber prod-

uct over B∆n

of ((n + 2)!)k copies of B∆n+1

. Let α : A → Bsdk ∆n+1

be a
homomorphism of algebras. A polynomial homotopy from ∂jα to ∂iα can be
arranged as follows. We pick up the barycenter of ∂jα and pull it towards the
barycenter of α. This operation consists of finitely many polynomial homo-
topies. Next we pull the vertex i towards the vertex j. Again we have finitely
many elementary polynomial homotopies. Finally, we pull the barycenter of
α towards the barycenter of ∂iα, resulting the desired polynomial homotopy.
Each step of the polynomial homotopy is determined by homotopies of the form
ϕi,i+1 or ϕi+1,i.
In order to give a formal description of the algorithm, it is enough to do this for

the identity homomorphism of Bsdk ∆n+1

without loss of generality. Recall that
sdk ∆n+1 is the nerve |sdk∆n+1| of a poset sdk∆n+1. We shall also regard the
poset as a category. By the length of a path in sdk∆n+1 between two vertices
we mean the maximal number of (non-identity) arrows connecting them. Note
that the largest (respectively smallest) possible length equals n+1 (respectively

0). We can think about Bsdk ∆n+1

in the following terms:

⋄ the poset sdk∆n+1;

⋄ to every path π of length k > 0 in sdk∆n+1, a polynomial in fπ ∈ B∆k

is attached;
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⋄ if fπ, fπ′ are two polynomials attached to paths π, π′ in sdk∆n+1 having
a non-trivial common subpath π′′, then restriction of fπ, fπ′ to π′′ by
means of face operators of B∆ equals fπ′′ .

The desired algorithm of an algebraic homotopy from ∂jα to ∂iα consists of
the following steps (we shall sometimes regard ∂jα, ∂iα as posets uniquely
associated to them):

Step 0: The poset A0 := ∂jα, the vertex w0 := i, and the poset (sdk∆n+1)0 :=
sdk∆n+1.

Step 1: Suppose we have found a subposet Aℓ, ℓ > 0, such that the vertices
of the subposet ∂jα ∩ ∂iα are in Aℓ, Aℓ is isomorphic to A0 by an
isomorphism of posets leaving the vertices of ∂jα ∩ ∂iα unchanged,
and Aℓ has a unique vertex wℓ on the edge between vertices i and
j. If Aℓ = (sdk∆n+1)ℓ = ∂iα, in which case wℓ = j, we stop the
process. Otherwise, we can find a vertex v ∈ Aℓ \ (∂jα ∩ ∂iα), a
subposet Aℓ+1 having the same vertices as Aℓ except a unique vertex
v′ ∈ Aℓ+1 \ (∂jα∩∂iα), and a path v → v′ or a path v′ → v of length 1.

Having chosen Aℓ+1, we set (sdk∆n+1)ℓ+1 = (sdk∆n+1)ℓ \ {v}. Notice
that wℓ+1 ∈ Aℓ+1 is either v′ or wℓ.

Step 2: If we have a path v′ → v from Step 1, then there are a unique i ∈

{0, 1, . . . , n} and a polynomial homotopy Hℓ : Bsdk∆n+1

→ Bsdk∆n

[x]
such that:

– ∂0
xHℓ equals the homomorphism Bsdk∆n+1

→ B|Aℓ|, induced by
the inclusion Aℓ →֒ sdk∆n+1, and ∂1

xHℓ equals the homomorphism

Bsdk∆n+1

→ B|Aℓ+1|;
– Hℓ factors as

Bsdk∆n+1

→ B|Eℓ| hℓ−→ Bsdk∆n

[x],

where Eℓ is the subposet of (sd
k∆n+1)ℓ whose vertices are those of

Aℓ ∪Aℓ+1 and the left homomorphism is induced by the inclusion
Eℓ →֒ sdk∆n+1;

– hℓ is a fibre product of homomorphisms of the form i : B∆n

→֒

B∆n

[x] or ϕi,i+1 : B∆n+1

→ B∆n

[x].
If we have a path v → v′ of Step 1, then Hℓ has the same properties as
above except that hℓ is a fibre product of homomorphisms of the form

i : B∆n

→֒ B∆n

[x] or ϕi+1,i : B
∆n+1

→ B∆n

[x].
Step 3: Apply Step 1 to the pair (Aℓ+1, (sd

k∆n+1)ℓ+1).

The algorithm stops in finitely many steps. The desired polynomial homotopy
is given by the collection {Hℓ}ℓ. The homotopy pulls the barycenter of ∂jα
towards the barycenter of α. Also it pulls the vertex i towards j by means of
{wℓ}ℓ. Let us illustrate the algorithm by considering for simplicity the algebra
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Bsd1 ∆2

, which is glued out of six polynomials in B∆2

.

{01}

1

{12}

{012}

{02} 20

v2

��












��4
44

44
44

b

����?
??

?
c

����
��

u1

//
v1

oo

u2

EE������������

OO

YY333333333333
a

77ooooooooooo

d
ggOOOOOOOOOOO

⇒ 1

{12}

{012}

{02} 20

��4
44

44
44

�� ����
��

// oo

OO

YY333333333333

77ooooooooooo

ggOOOOOOOOOOO

⇒

{12}

{012}

{02} 20

����
��

// oo

OO

YY333333333333

77ooooooooooo

ggOOOOOOOOOOO

⇒ {012}

{02} 20 // oo

OO77ooooooooooo

ggOOOOOOOOOOO

⇒

{02} 20 // oo

The picture depicts each poset (sd1∆2)ℓ. It also says that

∂2α = (0
u2−→ {01}

v2←− 1)
H0∼ (0

a
−→ {012}

b
←− 1, w1 = 1, v′ = {012})

H1∼ (0
a
−→ {012}

c
←− {12}, w2 = v′ = {12})

H2∼ (0
a
−→ {012}

d
←− 2, w3 = v′ = 2)

H3∼ (0
u1−→ {02}

v1←− 2, w4 = 2, v′ = {02}) = ∂1α

and {h0 = (ϕ2,1, ϕ2,1), E0 = 〈0, {01}, 1, {012}〉}, {h1 = (i, ϕ1,0), E1 =
〈0, {012}, 1, {12}〉}, {h2 = (i, ϕ1,2), E2 = 〈0, {012}, {12}, 2〉}, {h3 =
(ϕ1,2, ϕ1,2), E2 = 〈0, {012}, {02}, 2〉}.

Another example is for the algebraBsd1 ∆3

, which is glued out of 24 polynomials

in B∆3

. Consider a tetrahedron labeled with 0, 1, 2, 3

3

0

''NNNNNNNNNNNNN

@@�������
// 2

ggNNNNNNNNNNNNN

1

@@�������

WW.
.
.
.
.
.
.
.
.
.
.
.
.
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The polynomial homotopy from ∂2α to ∂3α is encoded by the following data
of the algorithm:

⋄ v = {013} and v′ = {0123};
⋄ v = {13} and v′ = {123};
⋄ v = {03} and v′ = {023};
⋄ v = 3 and v′ = {23};
⋄ v = {23} and v′ = 2;
⋄ v = {123} and v′ = {12};
⋄ v = {023} and v′ = {02}
⋄ finally, v = {0123} and v′ = {012}.

(2). Note that this assertion follows from the particular case when f is the
identity map of its codomain. Nevertheless we shall prove the original state-
ment. The cube In+1 is glued out of (n+ 1)! simplices of dimension n+ 1. Its
vertices can be labeled with (n+ 1)-tuples of numbers which equal either zero

or one. The number of vertices equals 2n+1. A homomorphism α : A→ BIn+1

is glued out of (n + 1)! homomorphisms αi : A → B∆n+1

. The set of vertices
Vd0α of the face d0α consists of those (n+1)-tuples whose last coordinate equals
1, and the set of vertices Vd1α of the face d1α consists of those (n + 1)-tuples
whose last coordinate equals 0. The desired algebraic homotopy from d0α to
d1α is constructed in the following way. We first construct an algebraic ho-
motopy H0 from f0 := d0α to a homomorphism f1 : A → BIn

. The set of
vertices V1 for f1 equals (Vd0α \ {00 . . .01}) ∪ {00 . . .0}. In other words, we
pull {00 . . .01} towards {00 . . .0}. The number of (n+1)-simplices having ver-
tices from Vd0α ∪ {00 . . .0} equals n!. Let S be the set of such simplices. If

αi : A→ B∆n+1

is in S, then the result is an algebraic homotopy ϕ0,1 defined
in (1) from ∂0αi to ∂1αi. The homotopy H0 at each αi, i 6 n!, is ϕ0,1. Next

one constructs an algebraic homotopy H1 from f1 to f2 : A → BIn

. The set
of vertices V2 of f2 equals (V1 \ {10 . . .01})∪ {10 . . .0}. In other word, we pull
{10 . . .01} towards {10 . . .0}. The homotopy H1 at each simplex is either ϕ1,2

or id. One repeats this procedure 2n times. The last step is to pull (11 . . . 11)
towards (11 . . . 10) resulting a polynomial homotopy H2n−1 which is ϕn,n+1

at each simplex. Clearly, if there are boundary conditions as in (2) then the
algebraic homotopy behaves on the boundary in a consistent way.

In the case α : A → Bsdm In+1

, m > 0, the desired polynomial homotopy is
constructed in a similar way (we should also use the algorithm of (1)).
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Let us illustrate the algorithm by considering for simplicity the case α : A →
BI3

. Such a map is glued out of six homomorphisms αi : A→ B∆3

, i = 1, . . . , 6.

111

011

55lllllllllllllll
101

bbEEEEEEEE

001

JJ

bbEEEEEEEE

55lllllllllllllll

110

OO

010

55

EE

OO

100

OO

bb

TT

000

KK

EE

OO

HH

bbEEEEEEEE

TT)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

55lllllllllllllll

The desired algebraic homotopy from d0α to d1α is arranged as follows.
We first pull (001) towards (000) resulting a polynomial homotopy H0 from
d0α, which is labeled by {(001), (101), (011), (111)}, to the square labeled
by {(000), (101), (011), (111)}. This step is a result of the algebraic homo-
topy ϕ0,1 described in (1) corresponding to two glued tetrahedra having ver-
tices {(000), (001), (011), (111)} and {(000), (001), (101), (111)} respectively. So
H0 = (ϕ0,1, ϕ0,1). Next we pull (101) towards (100) resulting a polyno-
mial homotopy H1 from the square labeled by {(000), (101), (011), (111)} to
the square labeled by {(000), (100), (011), (111)}. So H1 = (ϕ1,2, id). The
next step is to pull (011) towards (010) resulting a polynomial homotopy H2

from the square labeled by {(000), (100), (011), (111)} to the square labeled by
{(000), (100), (010), (111)}. So H2 = (id, ϕ1,2). And finally one pulls (111)
towards (110) resulting a polynomial homotopy H3 from the square labeled by
{(000), (100), (010), (111)} to the square labeled by {(000), (100), (010), (110)}.
In this case H3 = (ϕ2,3, ϕ2,3).
(3) We first want to prove the following statement.

Hauptsublemma. Bsdm In+1

(respectively B̃S
n

m ) is a path space for Bsdm In

(respectively BS
n

m ) in the Brown category (ℜ,F,Wmin).

Proof. By (2) the maps

d0, d1 : Bsdm In+1

→ Bsdm In

are algebraically homotopic, hence equal in the category H(ℜ).
The map

(d0, d1) : B
sdm In+1

−→ Bsdm In

×Bsdm In
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is a k-linear split homomorphism, hence a fibration. A splitting is defined as

(b1, b2) ∈ Bsdm In

×Bsdm In

7→ ı(b1) · (1 − t) + ı(b2) · t ∈ Bsdm In+1

,

where t ∈ ksd
m In+1

is defined on page 1220 and ı : B∆(In) → (B∆(In))∆
1

is
the natural inclusion. There is a commutative diagram

Bsdm In

s &&LLLLLLLLLL

diag // Bsdm In

×Bsdm In

Bsdm In+1

,

(d0,d1)

66mmmmmmmmmmmm

where s is induced by projection of In+1 onto In which forgets the last coor-

dinate. To show that Bsdm In+1

is a path space, we shall check that s is an
I-weak equivalence. We have that d0s = id. We want to check that sd0 is
algebraically homotopic to id.
In the proof of Proposition 4.1 we have constructed a simplicial map

λ : I2 → I.

It induces a simplicial homotopy between sd0 and id

λ∗ : Bsdm In+1

→ Bsdm In+2

.

By (2) these are algebraically homotopic. We conclude that s, d0 are I-weak

equivalences, and hence so is d1. The statement for B̃S
n

m is verified in a similar
way. �

The algebra B′ := (Bsdm In

)sd
k ∆1

is another path object of Bsdm In

, and so
there is a commutative diagram

Bsdm In

s′ ##HHHHHHHH

diag // Bsdm In

×Bsdm In

B′,

(d′

0,d
′

1)

77oooooooooooo

where s is an I-weak equivalence and (d′0, d
′
1) is a fibration. Let X be the fibre

product for

Bsdm In+1
(d0,d1) // Bsdm In

×Bsdm In

B′.
(d′

0,d
′

1)oo

Then (s, s′) induces a unique map q : Bsdm In

→ X such that pr1 ◦ q = s and
pr2 ◦ q = s′. We can factor q as

Bsdm In s′′

−→ B′′ p
−→ X,

where s′′ is an I-weak equivalence and p is a fibration. It follows that u := pr2◦p
and v := pr1 ◦ p are I-trivial fibrations, because vs′′ = s, us′′ = s′. It follows
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that there is a commutative diagram

Bsdm In

s′′ $$HHHHHHHH

diag // Bsdm In

×Bsdm In

B′′

(d′′

0 ,d
′′

1 )

77oooooooooooo

with (d′′0 , d
′′
1 ) := (d0, d1) ◦ v = (d′0, d

′
1) ◦ u, and so the algebra B′′ is a path

object of Bsdm In

.
Now let us consider a commutative diagram

A′ h′

//

g

��

B′′

u

��

v //
Bsdm In+1

(d0,d1)

��
A

h
// B′

(d′

0,d
′

1)

// Bsdm In

×Bsdm In

with the left square cartesian. The desired homomorphism H : A′ → Bsdm In+1

is then defined as vh′. The homomorphism H : A′ → B̃S
n

m is constructed in a
similar way. �

The proof of the Hauptlemma also applies to showing that for any homomor-

phism h : A → Bsdm ∆1×∆n

the induced maps d0h, d1h : A → Bsdm ∆n

are
algebraically homotopic. If m = 0 then the homotopy is constructed in n steps
similar to that described above for cubes In (each step is obtained by applying
the polynomial homotopy ϕi,j).
We can use the homotopy to describe explicitly a polynomial contraction of an
algebra B∆n

to B. Precisely, consider the maps s : B → B∆n

, δ : B∆n

→ B
induced by the unique map [n] → [0] and the map [0] → [n] taking 0 to n.
Then δs = 1B and sδ is polynomially homotopic to the identity map of B∆n

.
The homotopy is constructed by lifting the simplicial homotopy that contracts
∆n to its last vertex. This simplicial homotopy is given by a simplicial map

∆1 ×∆n h
−→ ∆n

that takes (v : [m] → [1], u : [m] → [n]) to ū : [m] → [n], where ū is defined as
the composite

[m]
(u,v)
−−−→ [n]× [1]

w
−→ [n]

and where w(j, 0) = j and w(j, 1) = n.
We have a homomorphism

h∗ : B∆n

→ B∆1×∆n

which is induced by h. Then d0h
∗ = 1 is polynomially homotopic to d1h

∗ = sδ.
If a homomorphism f : A′ → A is homotopic to g : A′ → A by means of a
homomorphism h : A′ → A[x] then J(f) is homotopic to J(g). Indeed, consider
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a commutative diagram of algebras

JA′ //

J(h)

��

TA′

T (h)

��

// A′

h

��
J(A[x]) //

γ

��

T (A[x])

��

// A[x]

(JA)[x]

∂0;1
x

��

// (TA)[x]

∂0;1
x

��

// A[x]

∂0;1
x

��
JA // TA // A.

Then γ ◦ J(h) yields the required homotopy between J(f) and J(g).
Let A,B ∈ ℜ and n > 0. Part (i) of the Hauptlemma implies that there is a
map

π0(HomAlgind
k

(JnA,B(Ωn)))→ [JnA,BS
n

]

which is consistent with the colimit maps

ς : HomAlgind
k

(JnA,B(Ωn))→ HomAlgind
k

(Jn+1A,B(Ωn+1))

defined by (1) and σ : [JnA,BS
n

] → [Jn+1A,BS
n+1

] which is defined like ς .
So we get a map

Γ : K0(A,B)→ colimn[J
nA,BS

n

].

Comparison Theorem A. The map Γ : K0(A,B)→ colimn[J
nA,BS

n

] is an
isomorphism.

Proof. It is obvious that

π0(HomAlgind
k

(JnA,B(Ωn)))→ [JnA,BS
n

]

is surjective for each n > 0, and hence so is Γ. Suppose f0, f1 : JnA → BS
n

are polynomially homotopic by means of h. By the Hauptlemma there are a
homomorphism g : A′ → JnA, which is a fibre product of an I-trivial fibration

along h, and hence g ∈Wmin, and a homomorphism H : A′ → B̃S
n

such that
d0H = f0g and d1H = f1g. Similar to the proof of Excision Theorem B one
can construct a small admissible category of algebras ℜ′ such that it contains
all algebras {A′, JnA,Bsdm In

}m,n we work with and such that g is a quasi-
isomorphism of ℜ′.
By Theorem 6.7 the induced map of graded abelian groups

g∗ : K∗(ℜ
′)(JnA,B)→ K∗(ℜ

′)(A′, B)

is an isomorphism. We have that g∗ takes f0, f1 ∈ Kn(ℜ′)(JnA,B) to the same
element in Kn(ℜ′)(A′, B), and so f0 = f1. We see that Γ is also injective, hence
it is an isomorphism. �
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Corollary 7.1. The homotopy groups of K(A,B) are computed as follows:

Km(A,B) ∼=

{
colimn[J

nA, (ΩmB)S
n

], m > 0
colimn[J

−m+nA,BS
n

], m < 0

Proof. This follows from Corollary 4.3 and the preceding theorem. �

8. Comparison Theorem B

In this section ℜ is supposed to be T -closed. Let W be a class of weak equiv-
alences containing homomorphisms A → A[t], A ∈ ℜ, such that the triple
(ℜ,F,W) is a Brown category.

Definition. The left derived category D−(ℜ,F,W) of ℜ with respect to (F,W)
is the category obtained from ℜ by inverting the weak equivalences.

By [9] the family of weak equivalences in the category Hℜ admits a calculus
of right fractions. The left derived category D−(ℜ,F,W) (possibly “large”)
is obtained from Hℜ by inverting the weak equivalences. The left derived
category D−(ℜ,F,W) is left triangulated (see [8, 9] for details) with Ω a loop
functor on it.
There is a general method of stabilizing Ω (see Heller [17]) and producing a
triangulated (possibly “large”) category D(ℜ,F,W) from the left triangulated
structure on D−(ℜ,F,W).
An object of D(ℜ,F,W) is a pair (A,m) with A ∈ D−(ℜ,F,W) and m ∈ Z.
If m,n ∈ Z then we consider the directed set Im,n = {k ∈ Z | m,n 6 k}. The
morphisms between (A,m) and (B, n) ∈ D(ℜ,F,W) are defined by

D(ℜ,F,W)[(A,m), (B, n)] := colimk∈Im,n
D−(ℜ,F,W)(Ωk−m(A),Ωk−n(B)).

Morphisms of D(ℜ,F,W) are composed in the obvious fashion. We define the
loop automorphism on D(ℜ,F,W) by Ω(A,m) := (A,m−1). There is a natural
functor S : D−(ℜ,F,W)→ D(ℜ,F,W) defined by A 7−→ (A, 0).
D(ℜ,F,W) is an additive category [8, 9]. We define a triangulation T r(ℜ,F,W)
of the pair (D(ℜ,F,W),Ω) as follows. A sequence

Ω(A, l)→ (C, n)→ (B,m)→ (A, l)

belongs to T r(ℜ,F,W) if there is an even integer k and a left triangle
of representatives Ω(Ωk−l(A)) → Ωk−n(C) → Ωk−m(B) → Ωk−l(A) in
D−(ℜ,F,W). Then the functor S takes left triangles in D−(ℜ,F,W) to trian-
gles in D(ℜ,F,W). By [8, 9] T r(ℜ,F,W) is a triangulation of D(ℜ,F,W) in
the classical sense of Verdier [29].
Let E be the class of all F-extensions of k-algebras

(9) (E) : A→ B → C.

Definition. Following Cortiñas–Thom [3] a (F-)excisive homology theory on
ℜ with values in a triangulated category (T ,Ω) consists of a functorX : ℜ → T ,
together with a collection {∂E : E ∈ E} of maps ∂X

E = ∂E ∈ T (ΩX(C), X(A)).
The maps ∂E are to satisfy the following requirements.
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(1) For all E ∈ E as above,

ΩX(C)
∂E // X(A)

X(f) // X(B)
X(g) // X(C)

is a distinguished triangle in T .

(2) If

(E) : A
f //

α

��

B
g //

β

��

C

γ

��
(E′) : A′

f ′

// B′
g′

// C′

is a map of extensions, then the following diagram commutes

ΩX(C)

ΩX(γ)

��

∂E // X(A)

X(α)

��
ΩX(C′)

∂E′

// X(A).

We say that the functor X : ℜ → T is homotopy invariant if it maps homotopic
homomomorphisms to equal maps, or equivalently, if for every A ∈ Algk, X
maps the inclusion A ⊂ A[t] to an isomorphism.

Denote byW△ the class of homomorphisms f such thatX(f) is an isomorphism
for any excisive, homotopy invariant homology theory X : ℜ → T . We shall
refer to the maps from W△ as stable weak equivalences. The triple (ℜ,F,W△)
is a Brown category. In what follows we shall write D−(ℜ,F) and D(ℜ,F)
to denote D−(ℜ,F,W△) and D(ℜ,F,W△) respectively, dropping W△ from
notation.
In this section we prove the following theorem.

Comparison Theorem B. For any algebras A,B ∈ ℜ there is an isomorphism
of Z-graded abelian groups

K∗(A,B) ∼= D(ℜ,F)∗(A,B) =
⊕

n∈Z

D(ℜ,F)(A,ΩnB),

functorial both in A and in B.

The graded isomorphism consists of a zig-zag of isomorphisms each of which is
constructed below.

Corollary 8.1. D(ℜ,F) is a category with small Hom-sets.

Definition. Let ℜ be a small T -closed admissible category of algebras. A
homomorphism A→ B in ℜ is said to be a stable F-quasi-isomorphism or just
a stable quasi-isomorphism if the map ΩnA→ ΩnB is a quasi-isomorphism for
some n > 0. The class of quasi-isomorphisms will be denoted by Wqis. By [8]
the triple (ℜ,F,Wqis) is a Brown category.
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Consider the ind-algebra (BS
n

,Z>0) with each BS
n

k , k ∈ Z>0, being

ker(Bsdk In

→ B∂(sdk In)), that is BS
n

is the underlying ind-algebra of 0-
simplices of B(Ωn). We shall denote by BSn

the algebra BS
n

0 . Notice that

BS1

= ΩB. There is a sequence of maps

HomAlgk
(B,B)

ς
→ HomAlgk

(JB,BS
1

k )
ς
→ HomAlgk(J

2B,BS
2

k )
ς
→ · · ·

One sets 1n,kB := ςn(1B).
Recall that Wmin is the least collection of weak equivalences containing A →
A[x], A ∈ ℜ, such that the triple (ℜ,F,Wmin) is a Brown category.

Lemma 8.2. Let ℜ be a T -closed admissible category of algebras and B ∈ ℜ.
Then for any n > 0 all morphisms of the sequence

BS
n

0 → BS
n

1 → BS
n

2 → · · ·

belong to Wmin.

Proof. Recall that the simplicial ind-algebra PB∆(Ωn) is indexed over Z>0

and defined as ker((B∆(Ωn))I
d0−→ B∆(Ωn)). The proof of the Hauptsublemma

shows that on the level of 0-simplices d0 is an I-trivial fibration. Its kernel
consists of 0-simplices of PB∆(Ωn) and whose underlying sequence of algebras
is denoted by

PBS
n

0 → PBS
n

1 → PBS
n

2 → · · ·

For each algebra of the sequence PBS
n

k one has (0→ PBS
n

k ) ∈Wmin, because
it is the kernel of an I-trivial fibration.
The assertion is obvious for n = 0. We have a commutative diagram of exten-
sions for all n > 1, k > 0

BS
n

k

��

// PBS
n−1

k

��

// BS
n−1

k

��
BS

n

k+1
// PBS

n−1

k+1
// BS

n−1

k+1

with the right and the middle arrows belonging to Wmin by induction, hence
so is the left one. �

Lemma 8.3. Let ℜ be a T -closed admissible category of algebras and B ∈ ℜ.
Then each 1n,kB , n, k > 0, belongs to Wmin.

Proof. We fix k. The identity map 1B = 10,kB belongs to Wmin. The map 11,kB is

the classifying map ξυ : JB → BS
1

k , which is in Wmin. Suppose 1n−1,k
B , n > 1,

belongs to Wmin. Then 1n,kB = ξυJ(1
n−1,k
B ), where ξυ : J(BS

n−1

k )→ BS
n

k is in

Wmin. Since J respects maps from Wmin, then 1n,kB is in Wmin. �

Lemma 8.4. The following conditions are equivalent for a homomorphism f :
A→ B in ℜ:

(1) f is a stable quasi-isomorphism;
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(2) Jn(f) : JnA→ JnB is a quasi-isomorphism for some n > 0;
(3) for any k > 0 there is a n > 0 such that fS

n

: AS
n

k → BS
n

k is a
quasi-isomorphism.

Proof. (1)⇔ (2). Consider a commutative diagram of extensions

JA //

ρA

��

TA //

��

A

ΩA // EA // A,

where TA,EA are contractible. It follows that ρA is a quasi-isomorphism. It
is plainly functorial in A. Since J respects quasi-isomorphisms, it follows that
there is a commutative diagram for any n > 1

JnA //

Jn(f)

��

ΩnA

Ωn(f)

��
JnB // ΩnB,

in which the horizontal maps are quasi-isomorphisms. We see that Ωn(f) is a
quasi-isomorphism if and only if Jn(f) is.
(2)⇔ (3). There is a commutative diagram of extensions for all n > 1, k > 0

J(AS
n−1

k )

��

// T (AS
n−1

k )

��

// AS
n−1

k

AS
n

k
// PAS

n−1

k
// AS

n−1

k

in which the right and the middle arrows are quasi-isomorphisms, hence so is
the left one. The middle arrow is actually quasi-isomorphic to zero. Since J
respects quasi-isomorphisms, we get a chain of quasi-isomorphisms

JnA→ Jn−1(AS
1

k )→ · · · → J(AS
n−1

k )→ AS
n

k ,

functorial in A. It follows that there is a commutative diagram for any n > 1

JnA //

Jn(f)

��

AS
n

k

fS
n

��
JnB // BS

n

k ,

in which the horizontal maps are quasi-isomorphisms. We see that fS
n

k is a
quasi-isomorphism if and only if Jn(f) is. �

We call a homomorphism f : A→ B in a T -closed category ℜ a K-equivalence
if the induced map K(C,A)→ K(C,B) is a weak equivalence of spaces.

Proposition 8.5. Let ℜ be a small T -closed admissible category of algebras.
A homomorphism t : A→ B in ℜ is a stable quasi-isomorphism if and only if
it is a K-equivalence.
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Proof. Suppose t : A → B is a stable quasi-isomorphism. Then Ωn(t) is a
quasi-isomorphism for some n > 0, and hence a K-equivalence. For any algebra
C ∈ ℜ the induced map

K(JnC,ΩnA)→ K(JnC,ΩnB)

is a weak equivalence of spaces. By Corollaries 4.3 and 5.2 the map

ΩnK(JnC,A)→ ΩnK(JnC,B)

is a weak equivalence, hence so is the map

t∗ : K(C,A)→ K(C,B).

Thus t is a K-equivalence.
Suppose now t : A→ B is a K-equivalence. Then the induced map

K(B,A)→ K(B,B)

is a homotopy equivalence of spaces. There are k, n > 0, a map e : JnB → AS
n

k ,
and a sequence of maps

JnB
e
−→ AS

n

k
tS

n

−−→ BS
n

k

such that tS
n

e is simplicially homotopic to 1n,kB . By the Hauptlemma tS
n

e is

polynomially homotopic to 1n,kB . By Lemma 8.3 1n,kB is a quasi-isomorphism. It
follows that e is a right unit in the category D−(ℜ,F,Wqis). For every m > 0
one has

(10) ςm(tS
n

e) = p ◦ Jm(tS
n

) ◦ Jm(e) ≃ 1n+m,k
B ,

where p is a quasi-isomorphism. By Lemma 8.3 1n+m,k
B is a quasi-isomorphism.

It follows that Jm(e) is a right unit in D−(ℜ,F,Wqis).

We claim that tS
n

is a K-equivalence. By assumption tS
0

= t is a K-

equivalence. Suppose tS
n−1

is a K-equivalence for n > 1. There is a com-
mutative diagram of extensions

AS
n

k

tS
n

��

// PAS
n−1

k

��

// AS
n−1

k

tS
n−1

��
BS

n

k
// PBS

n−1

k
// BS

n−1

k ,

in which the right and the middle arrows are K-equivalences by induction,
hence so is the left one. The middle arrow is actually quasi-isomorphic to zero.
We see that tS

n

e is a K-equivalence. The two out of three property implies e
is a K-equivalence. Therefore the induced map

e∗ : K(JnA, JnB)→ K(JnA,AS
n

k )

is a homotopy equivalence of spaces. Let q = e−1
∗ (1n,kA ) : Jn+mA→ (JnB)S

m

l ;

then eS
m

q is simplicially homotopic to ςm(1n,kA ). By the Hauptlemma eS
m

q is

polynomially homotopic to ςm(1n,kA ). It follows from Lemma 8.3 that ςm(1n,kA )

is a quasi-isomorphism. We see that eS
m

is a left unit in D−(ℜ,F,Wqis). The
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proof of Lemma 8.4 shows that Jm(e) is quasi-isomorphic to eS
m

. Thus Jm(e)
is a left unit in D−(ℜ,F,Wqis).
By above Jm(e) is also a right unit in D−(ℜ,F,Wqis), and so is an isomorphism
in D−(ℜ,F,Wqis). Since the canonical functor ℜ → D−(ℜ,F,Wqis) has the
property that a homomorphism of algebras is a quasi-isomorphism if and only
if its image in D−(ℜ,F,Wqis) is an isomorphism, we see that Jm(e) is a quasi-
isomorphism.

By (10) Jm(tS
n

) is a quasi-isomorphism, because so are p, 1n+m,k
B and Jm(e).

Since J preserves quasi-isomorphisms, the proof of Lemma 8.4 shows that there
is a commutative diagram

Jn+mA //

Jn+m(t)

��

Jm(AS
n

k )

Jm(tS
n
)

��
Jn+mB // Jm(BS

n

k ),

in which the horizontal maps are quasi-isomorphisms. We see that Jn+m(t) is a
quasi-isomorphism, because so is Jm(tS

n

). So t is a stable quasi-isomorphism
by Lemma 8.4 as required. �

The next result is an improvement of Theorem 6.7. It will also be useful when
proving Comparison Theorem B.

Theorem 8.6. Suppose ℜ is an admissible T -closed category of algebras and
u : A→ B is a K-equivalence in ℜ. Then the induced map

u∗ : K(B,D)→ K(A,D)

is a weak equivalence of spectra for any D ∈ ℜ.

Proof. Similar to the proof of Excision Theorem B one can construct a small ad-
missible T -closed full subcategory of algebras ℜ′ such that it contains A,B,D.
By assumption u is a K-equivalence in ℜ′, hence Jn(u) is a quasi-isomorphism
of ℜ′ for some n > 0 by the preceding proposition and Lemma 8.4.
By Theorem 6.7 the induced map of spectra

(Jn(u))∗ : K(ℜ′)(JnB,D)→ K(ℜ′)(JnA,D)

is a weak equivalence. Corollary 6.8 now implies the claim. �

Lemma 8.7. Suppose ℜ is an admissible T -closed category of algebras. Then
every stable weak equivalence in ℜ is a K-equivalence.

Proof. Using Theorem 5.3 for every A ∈ ℜ the map

K(A,−) : ℜ → Ho(Sp)

with Ho(Sp) the homotopy category of spectra yields an excisive, homotopy
invariant homology theory. Therefore it takes stable weak equivalence to iso-
morphisms in Ho(Sp). �
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Given an ind-algebra (B, J) ∈ ℜind and A ∈ ℜ, we set

D−(ℜ,F)(A,B) = colimj∈J D−(ℜ,F)(A,Bj).

Using the fact that J respects polynomial homotopy and stable weak equiva-

lences, we can extend the map ς : HomAlgind
k

(A,BS
n

)→ HomAlgind
k

(JA,BS
n+1

)

to a functor

σ : D−(ℜ,F)(A,BS
n

)→ D−(ℜ,F)(JA,BS
n+1

).

The functor σ takes a map

A′

s

��~~
~~

~~
~

f

""D
DD

DD
DD

D

A BS
n

in D−(ℜ,F)(A,BS
n

), where s ∈W△, to the map

JA′

J(s)

}}zz
zz

zz
zz ς(f)

$$HHHHHHHH

JA BS
n+1

.

Since J respects weak equivalences and homotopy, it follows that σ is well-
defined.
The map Γ : K0(A,B)→ colimn[J

nA,BS
n

] is an isomorphism by Comparison
Theorem A. There is a natural map

Γ1 : colimn[J
nA,BS

n

]→ colimn D
−(ℜ,F)(JnA,BS

n

).

Lemma 8.8. Γ1 is an isomorphism, functorial in A and B.

Proof. Suppose maps f0, f1 : JnA → BS
n

are such that Γ1(f0) = Γ1(f1).
Using the Hauptlemma, we may choose n big enough to find a stable weak
equivalence t : A′ → JnA such that f0t is simplicially homotopic to f1t. By
Lemma 8.7 t is a K-equivalence of ℜ. By Theorem 8.6 the induced map of
graded abelian groups

t∗ : K∗(J
nA,B)→ K∗(A

′, B)

is an isomorphism. We have that t∗ takes f0, f1 ∈ Kn(J
nA,B) to the same

element in Kn(A
′, B), and so f0 = f1. We see that Γ1 is injective.

Consider a map

A′

s

}}zz
zz

zz
zz f

""DD
DD

DD
DD

JnA BS
n

with s ∈ W△. By Lemma 8.7 s is a K-equivalence of ℜ. By Theorem 8.6 the
induced map of abelian groups

s∗ : Kn(J
nA,B)→ Kn(A

′, B)

Documenta Mathematica 19 (2014) 1207–1269



1260 Grigory Garkusha

is an isomorphism. Then there are a m > 0, a morphism g : Jn+mA→ BS
n+m

such that ςm(f) is simplicially homotopic to g◦Jm(s) : JmA′ → BS
n+m

. By the
Hauptlemma these are polynomially homotopic. It follows that Γ1(g) = fs−1,
and so Γ1 is also surjective. �

Lemma 8.9. The natural map

Γ2 : colimn D
−(ℜ,F)(JnA,BSn

)→ colimn D
−(ℜ,F)(JnA,BS

n

)

is an isomorphism, functorial in A and B.

Proof. It follows from Lemma 8.2 that

D−(ℜ,F)(JnA,BSn

)→ D−(ℜ,F)(JnA,BS
n

)

is bijective for all n > 0. Therefore Γ2 is an isomorphism. �

Consider a commutative diagram of algebras

BSn //
PBSn−1 //

BSn−1

J(BSn−1

)

ρn−1

��

ξn−1

OO

// T (BSn−1

)

��

OO

//
BSn−1

ΩBSn−1 // E(BSn−1

) //
BSn−1

The middle arrows are stably weak equivalent to zero and ρn−1, ξn−1 are stable
weak equivalences, functorial in B. Since Ω respects stable weak equivalences,
one obtains a functorial zig-zag of stable weak equivalences of length 2n

B
S

n ξn−1

←−−− J(BS
n−1

)
ρn−1

−−−→ ΩBS
n−1 Ωξn−2

←−−−− · · ·
Ωn−1ξ0

←−−−−− Ωn−1
JB

Ωn−1ρ0

−−−−−→ Ωn
B.

The zig-zag yields an isomorphism δn : BSn

→ ΩnB in D−(ℜ,F).
Let us define a map

Γ3 : colimn D
−(ℜ,F)(JnA,BSn

)→ colimn D
−(ℜ,F)(JnA,ΩnB)

by taking

A′

s

}}zz
zz

zz
zz f

!!DD
DD

DD
DD

JnA BSn

to δnfs−1. We have to verify that Γ3 is consistent with colimit maps,
where a colimit map on the right hand side un : D−(ℜ,F)(JnA,ΩnB) →
D−(ℜ,F)(Jn+1A,Ωn+1B) takes

A′

s

||yy
yy

yy
yy f

""EE
EE

EE
EE

JnA ΩnB
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to ρ0ΩnBJ(f)(J(s))
−1. Let

vn : D−(ℜ,F)(JnA,BSn

)→ D−(ℜ,F)(Jn+1A,BSn+1

)

be a colimit map on the left. So we have to check that Γ3(vn(fs
−1)) =

un(Γ3(fs
−1)).

The map un(Γ3(fs
−1)) is a zig-zag

Jn+1A
Js
←− JA′ Jf

−−→ JBSn Jξn−1

←−−−− J2(BSn−1

)
Jρn−1

−−−−→ JΩBSn−1 JΩξn−2

←−−−−− · · ·

JΩn−1ξ0

←−−−−−− JΩn−1JB
JΩn−1ρ0

−−−−−−→ JΩnB
ρ0
ΩnB−−−→ Ωn+1B.

The map Γ3(vn(fs
−1)) is a zig-zag

Jn+1A
Js
←− JA′ Jf

−−→ JBSn ξn

−→ BSn+1 ξn

←− JBSn ρn

−→ ΩBSn Ωξn−1

←−−−− · · ·

Ωn−1ρ1

−−−−−→ ΩnBS1 Ωnξ0

←−−− ΩnJB
Ωnρ0

−−−→ Ωn+1B.

We can cancel two ξn-s. One has therefore to check that the zig-zag

JBSn Jξn−1

←−−−− J2(BSn−1

)
Jρn−1

−−−−→ JΩBSn−1 JΩξn−2

←−−−−− · · ·

JΩn−1ξ0

←−−−−−− JΩn−1JB
JΩn−1ρ0

−−−−−−→ JΩnB
ρ0
ΩnB−−−→ Ωn+1B

equals the zig-zag

JBSn ρn

−→ ΩBSn Ωξn−1

←−−−− · · ·
Ωn−1ρ1

−−−−−→ ΩnBS1 Ωnξ0

←−−− ΩnJB
Ωnρ0

−−−→ Ωn+1B.

For this one should use the property that if g : A → B is a homomorphism
then there is a commutative diagram

(11) J(A)

J(g)

��

ρA // ΩA

Ω(g)

��

// EA //

��

A

g

��
J(B)

ρB // ΩB // EB // B.

So the desired compatibility with colimit maps determines a map of colimits.

Lemma 8.10. The map Γ3 is an isomorphism, functorial in A and B.

Proof. This follows from the fact that all δn-s are isomorphisms in D−(ℜ,F).
�

Consider a sequence of stable weak equivalences

JnA
ρ
−→ ΩJn−1A

Ωρ
−−→ Ω2Jn−2A

Ω2ρ
−−→ · · ·

Ωn−1ρ
−−−−→ ΩnA,

which is functorial in A. Denote its composition by γn.
Let us define a map

Γ4 : colimn D
−(ℜ,F)(JnA,ΩnB)→ colimn D

−(ℜ,F)(ΩnA,ΩnB)
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by taking

A′

s

||yy
yy

yy
yy f

""EE
EE

EE
EE

JnA ΩnB

to fs−1γ−1
n . We have to verify that Γ4 is consistent with colimit maps,

where a colimit map on the right hand side wn : D−(ℜ,F)(ΩnA,ΩnB) →
D−(ℜ,F)(Ωn+1A,Ωn+1B) takes

A′

s

||yy
yy

yy
yy f

""EE
EE

EE
EE

ΩnA ΩnB

to Ω(f)(Ω(s))−1. So we have to check that Γ4(un(fs
−1)) = wn(Γ4(fs

−1)).
The map Γ4(un(fs

−1)) equals the zig-zag from Ωn+1A to Ωn+1B

Ωn+1B
ρ
←− JΩnB

Jf
←−− JA′ Js

−→ Jn+1A
ρ
−→ ΩJnA

Ωρ
−−→

Ω2Jn−1A
Ω2ρ
−−→ · · ·

Ωnρ
−−−→ Ωn+1A.

In turn, the map wn(Γ4(fs
−1)) equals the zig-zag from Ωn+1A to Ωn+1B

Ωn+1B
Ωf
←−− ΩA′ Ωs

−−→ ΩJnA
Ωρ
−−→ Ω2Jn−1A

Ω2ρ
−−→

Ω3Jn−2A
Ω3ρ
−−→ · · ·

Ωnρ
−−−→ Ωn+1A.

The desired compatibility would be checked if we showed that the zig-zag

(12) ΩJnA
ρ
←− Jn+1A

Js
←− JA′ Jf

−−→ JΩnB
ρ
−→ Ωn+1B

equals the zig-zag

ΩJnA
Ωs
←−− ΩA′ Ωf

−−→ Ωn+1B.

For this we use commutative diagram (11) to show that ρJnA ◦ Js = Ωs ◦ ρA′

and ρΩnB ◦ Jf = Ωf ◦ ρA′ . We see that (12) equals Ωf ◦ ρA′ ◦ ρ−1
A′ ◦ (Ωs)−1 =

Ωf ◦ (Ωs)−1 in D−(ℜ,F) and the desired compatibility follows.

Lemma 8.11. The map Γ4 is an isomorphism, functorial in A and B.

Proof. This follows from the fact that all γn-s are isomorphisms in D−(ℜ,F).
�

Proof of Comparison Theorem B. Using Comparison Theorem A, Lemmas 8.8,
8.9, 8.10, 8.11, the isomorphism of abelian groups

K0(A,B) ∼= D(ℜ,F)(A,B)

is defined as Γ4Γ3Γ
−1
2 Γ1. Using Corollary 7.1, we get that

Kn>0(A,B) ∼= D(ℜ,F)(A,Ωn>0B)

and
Kn<0(A,B) ∼= D(ℜ,F)(J−nA,B).
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It remains to observe that D(ℜ,F)(J−nA,B) ∼= D(ℜ,F)(A,ΩnB) for all nega-
tive n. �

Corollary 8.12. Let ℜ be T -closed. Then the classes of stable weak equiva-
lences and K-equivalences coincide.

Corollary 8.13. Let ℜ′ be a full admissible T -closed subcategory of an ad-
missible T -closed category of algebras ℜ. Then the natural functor

D(ℜ′,F)→ D(ℜ,F)

is full and faithful.

Proof. This follows from Comparison Theorem B. �

We want to introduce the class of unstable weak equivalences on ℜ. Recall that
Wmin is the minimal class of weak equivalences containing the homomorphisms
A→ A[t], A ∈ ℜ, such that the triple (ℜ,F,Wmin) is a Brown category. We do
not know whether the canonical functor ℜ → D−(ℜ,F,Wmin) has the property
that f ∈ Wmin if and only if its image in D−(ℜ,F,Wmin) is an isomorphism.
For this reason we give the following

Definition. Let ℜ be T -closed. A homomorphism of algebras f : A → B,
A,B ∈ ℜ, is called an unstable weak equivalence if its image in D−(ℜ,F,Wmin)
is an isomorphism. The class of unstable weak equivalences will be denoted by
Wunst.

By construction, D−(ℜ,F,Wmin) = ℜ[W
−1
min] and Wmin ⊆ Wunst. Using uni-

versal properties of localization, one obtains that D−(ℜ,F,Wmin) = ℜ[W
−1
unst].

We can now apply results of the section to prove the following

Theorem 8.14. Let ℜ be T -closed. Then

(13) W△ = {f ∈Mor(ℜ) | Ωn(f) ∈Wunst for some n > 0}.

Proof. By minimality of Wmin the functor

K(A,−) : ℜ → Spectra

takes the maps from Wmin (hence the maps from Wunst) to weak equivalences
for all A ∈ ℜ. Corollary 8.12 implies the right hand side of (13) is contained
in W△.
The proof of Proposition 8.5 can literally be repeated forWunst to show that for
every stable weak equivalence f there is n > 0 such that Ωn(f) is in Wunst. �

We can now make a table showing similarity of spaces and non-unital algebras.
It is a sort of a dictionary for both categories. Precisely, one has:
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Spaces Top Algebras ℜ
Fibrations Fibrations F

Loop spaces ΩX Algebras ΩA = (x2 − x)A[x]
Homotopies X → Y I Polynomial homotopies A→ B[x]

Unstable weak equivalences Unstable weak equivalences Wunst

Unstable homotopy category The category D−(ℜ,F,Wunst)
Stable weak equivalences Stable weak equivalences W△

Stable homotopy category of spectra The category D(ℜ,F)

To conclude the section, we should mention that Comparison Theorem B im-
plies representability of the Hom-set D(ℜ,F)(A,B), A,B ∈ ℜ, by the spectrum
K(A,B). By [9] the natural functor j : ℜ → D(ℜ,F) is the universal excisive,
homotopy invariant homology theory in the sense that any other such a theory
X : ℜ → T uniquely factors through j.

9. Morita stable and stable bivariant K-theories

In this section we introduce matrices into the game. We start with preparations.
If A is an algebra and n 6 m are positive integers, then there is a natural
inclusion ιn,m : MnA→MmA of rings, sending MnA into the upper left corner
of MmA. We write M∞A = ∪nMnA. Let ΓA, A ∈ Algk, be the algebra of
N× N-matrices which satisfy the following two properties.

(i) The set {aij | i, j ∈ N} is finite.
(ii) There exists a natural number N ∈ N such that each row and each

column has at most N nonzero entries.

M∞A ⊂ ΓA is an ideal. We put

ΣA = ΓA/M∞A.

We note that ΓA, ΣA are the cone and suspension rings of A considered by
Karoubi and Villamayor in [23, p. 269], where a different but equivalent defi-
nition is given. By [3] there are natural ring isomorphisms

ΓA ∼= Γk ⊗A, ΣA ∼= Σk ⊗A.

We call the short exact sequence

M∞A  ΓA ։ ΣA

the cone extension. By [3] ΓA ։ ΣA ∈ Fspl.
Throughout this section we assume that ℜ is a T -closed admissible category of
k-algebras with k,MnA,ΓA ∈ ℜ, n > 1, for all A ∈ ℜ. Then M∞A,ΣA ∈ ℜ for
any A ∈ ℜ and M∞(f) ∈ F for any f ∈ F. Note that M∞A ∼= A⊗M∞(k) ∈ ℜ
for any A ∈ ℜ. It follows from Proposition 2.3 that for any finite simplicial set
L, there are natural isomorphisms

M∞A⊗ kL ∼= (M∞A)L ∼= A⊗ (M∞k)L.
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Given an algebra A, one has a natural homomorphism ι : A → M∞(k) ⊗ A ∼=
M∞(A) and an infinite sequence of maps

A
ι
−→M∞(k)⊗A

ι
−→M∞(k)⊗M∞(k)⊗A −→ · · · −→M⊗n

∞ (k)⊗A −→ · · ·

Definition. (1) The stable algebraic Kasparov K-theory space of two algebras
A,B ∈ ℜ is the space

Kst(A,B) = colimnK(A,M∞k⊗n ⊗ B).

Its homotopy groups will be denoted by Kst
n (A,B), n > 0.

(2) TheMorita stable algebraic Kasparov K-theory space of two algebrasA,B ∈
ℜ is the space

Kmor(A,B) = colim(K(A,B)→ K(A,M2k ⊗B)→ K(A,M3k ⊗B)→ · · · ).

Its homotopy groups will be denoted by Kmor
n (A,B), n > 0.

(3) A functor X : ℜ → S/(Spectra) is M∞-invariant (respectively Morita
invariant) if X(A) → X(M∞A) (respectively each X(A) → X(MnA), n > 0)
is a weak equivalence.
(4) An excisive, homotopy invariant homology theory X : ℜ → T is M∞-
invariant (respectively Morita invariant) if X(A) → X(M∞A) (respectively
each X(A)→ X(MnA), n > 0) is an isomorphism.

Lemma 9.1. The functor Kst(A,−) (respectively Kmor(A,−)) is M∞-invariant
(respectively Morita invariant) for all A ∈ ℜ.

Proof. Straightforward. �

Theorem 9.2 (Excision). For any algebra A ∈ ℜ and any F-extension in ℜ

F
i
−→ B

f
−→ C

the induced sequences of spaces

K⋆(A,F ) −→ K⋆(A,B) −→ K⋆(A,C)

and

K⋆(C,A) −→ K⋆(B,A) −→ K⋆(F,A)

are homotopy fibre sequences, where ⋆ ∈ {st,mor}.

Proof. This follows from Excision Theorems A, B and some elementary prop-
erties of simplicial sets. �

Definition. (1) Given two k-algebras A,B ∈ ℜ and ⋆ ∈ {st,mor}, the se-
quence of spaces

K⋆(A,B),K⋆(JA,B),K⋆(J2A,B), . . .

together with isomorphisms K⋆(JnA,B) ∼= ΩK⋆(Jn+1A,B) constructed in
Theorem 5.1 forms an Ω-spectrum which we also denote by K⋆(A,B). Its ho-
motopy groups will be denoted by K

⋆
n(A,B), n ∈ Z. Observe that K⋆

n(A,B) ∼=
K⋆

n(A,B) for any n > 0 and K⋆
n(A,B) ∼= K⋆

0(J
−nA,B) for any n < 0.
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(2) The stable algebraic Kasparov K-theory spectrum of (A,B) (respec-
tively Morita stable algebraic Kasparov K-theory spectrum) is the Ω-spectrum
Kst(A,B) (respectively Kmor(A,B)).

Theorem 9.3. Let ⋆ ∈ {st,mor}. The assignment B 7→ K⋆(A,B) determines
a functor

K
⋆(A, ?) : ℜ → (Spectra)

which is homotopy invariant and excisive in the sense that for every F-extension
F → B → C the sequence

K
⋆(A,F )→ K

⋆(A,B)→ K
⋆(A,C)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → K
⋆
i+1(A,C)→ K

⋆
i (A,F )→ K

⋆
i (A,B)→ K

⋆
i (A,C)→ · · ·

for any i ∈ Z.

Proof. This follows from Theorem 9.2. �

We also have the following

Theorem 9.4. Let ⋆ ∈ {st,mor}. The assignment B 7→ K⋆(B,D) determines
a functor

K
⋆(?, D) : ℜop → (Spectra),

which is excisive in the sense that for every F-extension F → B → C the
sequence

K
⋆(C,D)→ K

⋆(B,D)→ K
⋆(F,D)

is a homotopy fibration of spectra. In particular, there is a long exact sequence
of abelian groups

· · · → K
⋆
i+1(F,D)→ K

⋆
i (C,D)→ K

⋆
i (B,D)→ K

⋆
i (F,D)→ · · ·

for any i ∈ Z.

Proof. This follows from Theorem 9.2. �

Theorem 9.5 (Comparison). There are natural isomorphisms

Kst
0 (A,B)→ colimm,n[J

nA,M∞(k)⊗m ⊗BS
n

]

and

Kmor
0 (A,B)→ colimm,n[J

nA,Mm(k)⊗BS
n

],

functorial in A and B.

Proof. This follows from Comparison Theorem A. �
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Corollary 9.6. (1) The homotopy groups of Kst(A,B) are computed as fol-
lows:

K
st
i (A,B) ∼=

{
colimm,n[J

nA, (ΩiM∞(k)⊗m ⊗B)S
n

], i > 0
colimm,n[J

−i+nA,M∞(k)⊗m ⊗BS
n

], i < 0

(2) The homotopy groups of Kmor(A,B) are computed as follows:

K
mor
i (A,B) ∼=

{
colimm,n[J

nA, (ΩiMm(B))S
n

], i > 0
colimm,n[J

−i+nA,Mm(B)S
n

], i < 0

Proof. This follows from Corollary 4.3 and the preceding theorem. �

We denote by D−
st(ℜ,F) the category whose objects are those of ℜ and whose

maps between A,B ∈ ℜ are defined as

colimn D
−(ℜ,F)(A,M∞(k)⊗n(B)).

Similarly, denote by D−
mor(ℜ,F) the category whose objects are those of ℜ and

whose maps between A,B ∈ ℜ are defined as

colimn D
−(ℜ,F)(A,Mn(B)).

It follows from [9] thatD−
st(ℜ,F) andD−

mor(ℜ,F) are naturally left triangulated.
Similar to the definition of D(ℜ,F) we can stabilize the loop endofunctor Ω to
get new categories Dmor(ℜ,F) and Dst(ℜ,F) which are in fact triangulated.

Theorem 9.7 ([9]). The functor ℜ → Dst(ℜ,F) (respectively ℜ → Dmor(ℜ,F))
is the universal F-excisive, homotopy invariant, M∞-invariant (respectively
Morita invariant) homology theory on ℜ.

The next result says that the Hom-sets Dst(ℜ,F)(A,B) (Dmor(ℜ,F)(A,B)),
A,B ∈ ℜ, can be represented as homotopy groups of spectra K

st(ℜ,F)(A,B)
(Kmor(A,B)).

Theorem 9.8 (Comparison). Let ⋆ ∈ {st,mor}. Then for any algebras A,B ∈
ℜ there is an isomorphism of Z-graded abelian groups

K
⋆
∗(A,B) ∼= D⋆(ℜ,F)∗(A,B) =

⊕

n∈Z

D⋆(ℜ,F)(A,Ω
nB),

functorial both in A and in B.

Proof. This follows from Comparison Theorem B. �

Theorem 9.9 (Cortiñas–Thom). There is a natural isomorphism of Z-graded
abelian groups

Dst(ℜ,F)∗(k,A) ∼= KH∗(A),

where KH∗(A) is the Z-graded abelian group consisting of the homotopy K-
theory groups in the sense of Weibel [31].

Proof. See [9]. �

We end up the paper by proving the following
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Theorem 9.10. For any A ∈ ℜ there is a natural isomorphism of Z-graded
abelian groups

K
st
∗ (k,A) ∼= KH∗(A).

Proof. This follows from Theorems 9.8 and 9.9. �

The preceding theorem is an analog of the same result of KK-theory saying
that there is a natural isomorphism KK∗(C, A) ∼= K(A) for any C∗-algebra A.
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