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Ursula Hamenstädt, Bonn ursula@math.uni-bonn.de
Lars Hesselholt, Cambridge, MA (MIT) larsh@larsh@math.nagoya-u.ac.jp
Max Karoubi, Paris karoubi@math.jussieu.fr
Stephen Lichtenbaum Stephen Lichtenbaum@brown.edu
Alfred K. Louis, Saarbrücken louis@num.uni-sb.de
Eckhard Meinrenken, Toronto mein@math.toronto.edu
Alexander S. Merkurjev, Los Angeles merkurev@math.ucla.edu
Anil Nerode, Ithaca anil@math.cornell.edu
Thomas Peternell, Bayreuth Thomas.Peternell@uni-bayreuth.de
Takeshi Saito, Tokyo t-saito@ms.u-tokyo.ac.jp
Peter Schneider, Münster pschnei@math.uni-muenster.de
Stefan Schwede, Bonn schwede@math.uni-bonn.de
Heinz Siedentop, München (LMU) h.s@lmu.de
Wolfgang Soergel, Freiburg soergel@mathematik.uni-freiburg.de

ISSN 1431-0635 (Print), ISSN 1431-0643 (Internet)

SPARC
Leading Edge

Documenta Mathematica is a Leading Edge Partner of SPARC,
the Scholarly Publishing and Academic Resource Coalition of the As-
sociation of Research Libraries (ARL), Washington DC, USA.

Address of Technical Managing Editor: Ulf Rehmann, Fakultät für Mathematik, Universität
Bielefeld, Postfach 100131, D-33501 Bielefeld, Copyright c© 2014 for Layout: Ulf Rehmann.
Typesetting in TEX.



Documenta Mathematica
Band 19, 2014

Yuval Z. Flicker
Eisenstein Series and the Trace Formula
for GL(2) over a Function Field 1–62

Giuseppe De Nittis and Max Lein
The Perturbed Maxwell Operator
as Pseudodifferential Operator 63–101

Li Chen, Jinhuan Wang
Exact Criterion for Global Existence and
Blow Up to a Degenerate Keller-Segel System 103–120
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Eisenstein Series and the Trace Formula

for GL(2) over a Function Field

Yuval Z. Flicker
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Abstract. We write out and prove the trace formula for a convolu-
tion operator on the space of cusp forms on GL(2) over the function
field F of a smooth projective absolutely irreducible curve over a finite
field. The proof – which follows Drinfeld – is complete and all terms
in the formula are explicitly computed. The structure of the homo-
geneous space GL(2, F )\GL(2,A) is studied in section 2 by means
of locally free sheaves of OX -modules. Section 3 deals with the reg-
ularization and computation of the geometric terms, over conjugacy
classes. Section 4 develops the theory of intertwining operators and
Eisenstein Series, and the trace formula is proven in section 5.

2010 Mathematics Subject Classification: Primary 11F70, 11F72; Sec-
ondary 22E35, 22E55, 11G20, 11R39, 11R52, 11R58, 14H30, 11S37
Keywords and Phrases: Eisenstein series, intertwining operators,
trace formula, automorphic representations, GL(2), function fields,
orbital integrals

1 Introduction and statement of the Trace Formula

1.1 Introduction

The (non-invariant) trace formula for GL(2) over a number field was stated
and its proof sketched in chapter 15 of the influential book of Jacquet and
Langlands [JL70] of 1970. It was used there for comparison of automorphic
representations of the multiplicative group of a quaternion algebra, with auto-
morphic representations of GL(2).
Drinfeld used the trace formula for GL(2) over a function field F to prove
Langlands’ conjecture for GL(2, F ), and to count in [D81] the number of two
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2 Yuval Z. Flicker

dimensional irreducible representations of the fundamental group of a smooth
projective geometrically irreducible curve X over a finite field. To check the
statement of the trace formula of [JL70] in the function field case, Drinfeld gave
a detailed (but unpublished) proof. It differs from the one sketched in [JL70].

It is this proof of Drinfeld which is given in this paper.

The main reason why this proof is still interesting is the elementary and un-
conventional treatment of Eisenstein series (see subsections 4.7-4.8 below), and
the computation of traces in the spirit of Tate [T68], see subsection 5.2. In
both cases it is based on a “baby model” (see Proposition 4.31, Corollary 4.32,
Lemma 5.11), which cries out for generalization.

Let us describe the contents of this article.

The trace formula itself is stated in subsection 1.2 with a few comments. More
comments, including informal ones, are given in section 3.

Section 2 contains a dictionary between the language of adèles and the lan-
guage of vector bundles on the smooth projective curve X corresponding to
F . In particular, the set of rank n vector bundles on X is identified with
GL(n, F )\GL(n,A)/GL(n,OA), where OA ⊂ A is the ring of integral adèles.
This dictionary goes back to A. Weil [W38], although in an older language. It
underlies Drinfeld’s Geometric Langlands program [BD].

The terms which appear in the geometric part of the trace formula – orbital in-
tegrals and weighted orbital integrals – are estimated and regularized in section
3.

In section 4 intertwining operators, Eisenstein series, and L-functions are in-
troduced. The rationality of the intertwining operator M(µ1, µ2, t) and the
functional equation M2 = 1 are first proven using local computations: nor-
malization of the intertwining operators by L-functions and ε-factors, and the
functional equation of the L-functions.

In subsections 4.7-4.8 these facts are proven using an alternative, global ap-
proach. The ideas might go back to Selberg. But technically the exposition is
quite different and more elementary: in the case of function fields the analytic
problems disappear.

The trace formula is proven in section 5. The logarithmic derivative of the
intertwining operator appears as a result of a computation of the trace of some
operator in a power series space, see Lemma 5.11. This computation is probably
related to Tate’s article [T68].

Here are some questions.

1. Could the methods of subsections 4.7-4.8 and section 5 be extended to
prove the functional equation for Eisenstein series, and the trace formula, for
an arbitrary reductive group over a function field?

2. Is there a modification of the technique from subsections 4.7-4.8 that would
work in the case of number fields, e.g., for GL(2,Q)? One could try to replace
the space of formal power series used in subsections 4.7-4.8 by some space of
holomorphic functions.

3. What is the precise relationship between Lemma 5.11 and Tate’s [T68]?
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Eisenstein Series and the Trace Formula . . . 3

4. What is the relationship between the approach to Eisenstein series of subsec-
tions 4.7-4.8, and the classical approaches: that of Selberg-Langlands-Arthur,
and that of scattering theory (see [FP72] or [LP76])?

This author’s initial motivation to write out Drinfeld’s expression and proof of
the trace formula for GL(2) over a function field stems from his search for higher
rank analogues of Drinfeld’s formula [D81]. This led us to count with Deligne
[DF13] the number of rank n (≥ 2) local systems with principal unipotent
local monodromy at least at two places. There we use the trace formula in the
compact quotient case, and the transfer of automorphic representations from a
compact form to GL(n). This explains the condition: “at least at two places”.
The case of [D81] is rank n = 2, no monodromy. To complete the study
of [D81] and of [DF13] in rank two one has to consider the case of principal
unipotent local monodromy at a single place. This is done in [F], using the
explicit computations of the trace formula for GL(2) over a function field of
the present work. This was our initial motivation to write out this formula.
Drinfeld’s proof in the case of rank two, no ramification, is also given in [F].
Of course there are numerous expositions of the trace formula of [JL70], e.g.
[GJ79], geared to explain the lifting application of [JL70], mainly in the number
field case. But none computes explicitly (and accurately, cf. [D81]) all the terms
which appear in the trace formula. The latter is precisely what is needed for the
counting applications of [D81] and [F]. An attempt at a complete exposition
of the computations for GL(2) in the number field case is at [AFOO].
Of course the trace formula of [JL70] was generalized to the higher rank case
by Arthur, see e.g. [A05], in the number field case, and by Lafforgue, see e.g.
[Lf97], in the function field case. But the important applications of these works
did not require explicit evaluation of all the terms which appear in the trace
formula, so our results are not included in those of [Lf97], even in the case of
GL(2) considered here.
In the number field case, the Remark on p. 112 of [A05] states: “As a matter
of fact, it is only in the case of GL(2) that the general coefficients have been
evaluated. It would be very interesting to understand them better in other
examples, although this does not seem to be necessary for presently conceived
applications of the trace formula”. Indeed the applications of [D81], [DF13],
[F] – counting rather than comparing – are of different nature than those of
[JL70], [A05], [Lf97], where most terms can be erased a-priori in the comparison
so they need not be computed.
To repeat what is explained above, we also think the approach of subsections
4.7-4.8 and section 5 is original, substantially different from the currently known
methods (which are developed in [A05], [Lf97]), interesting and warrants further
development.
I am deeply grateful to V. Drinfeld for making available to me his unpublished
notes, for teaching me lots of mathematics in the process, and for his per-
mission to publish this paper; to A. Beilinson for telling me at IHES about
Drinfeld’s notes; to the referee for the very careful reading. The author was
a Schonbrunn visiting Professor at the Hebrew University, Jerusalem. Work
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4 Yuval Z. Flicker

partially supported by a grant (#267097) from the Simons Foundation.

1.2 Statement of the Trace Formula

Let us write the trace formula for GL(2) over a function field F of a smooth
projective geometrically connected curve X over a finite field Fq, and a test
function f in C∞

c (GL(2,A)) (subscript c for “compactly supported”, super-
script ∞ for “locally constant”, A denotes the ring of adèles of F ).
Let r0 be the representation of GL(2,A) by right translation on the space
A0,α of cusp forms on αZ · GL(2, F )\GL(2,A), and r0(f) =

∫
f(g)r0(g)dg

(g ∈ GL(2,A)) the convolution operator; dg = ⊗vdgv is a Haar measure. Here
α is a fixed idèle of degree 1, whose components are almost all equal to 1.
A cusp form is a function φ : GL(2, F )\GL(2,A)→ E (E is a fixed algebraically
closed subfield of C) which is invariant on the right by some open compact
subgroup of GL(2,A), and

∫
N(F )\N(A)

φ(nx)dn = 0 for all x in GL(2,A). Here
N denotes the unipotent upper triangular subgroup of GL(2). We also write A
for the diagonal subgroup, and A′ = A−Z where Z is the center of GL(2). By
a well known result of G. Harder, when F is a function field (but not a number
field) a cusp form is compactly supported modulo Z(A).

Theorem 1.1. For any f ∈ C∞
c (GL(2,A)) we have tr r0(f) =

∑
1≤i≤8 Si(f).

The terms are:

S1(f) =
∣∣αZ ·GL(2, F )\GL(2,A)

∣∣ ∑

γ∈αZ·F×

f(γ).

S2(f) =
∑

F2

S2,F2(f),

S2,F2(f) = |AutF F2|−1
∑

γ∈αZ(F2−F )

∫

GL(2,A)/αZ·F×

2

f(xγx−1)dx.

Here F2 ranges over the set of isomorphism classes of quadratic extensions of
the field F . For each F2 we fix an embedding F2 →֒ M(2, F ) into the ring of
2× 2 matrices over F .

S3(f) =
∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)v(x)dx.

Any x ∈ GL(2,A) can be written in the form ank, a ∈ A(A), k ∈ GL(2, OA),
n = ( 1 b0 1 ), b is determined uniquely by x up to b 7→ ub+ w, u ∈ O×

A , w ∈ OA.
Put v(x) =

∑
v logq(max(1, |bv|v)).

S4(f) =
∑

a∈F×αZ

θ̃a,f (1), θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t

−1)),

θa,f (t) =

∫

F×αZN(F )\GL(2,A)

f
(
x−1 ( a a0 a )x

)
tht

+(x)dx,
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Eisenstein Series and the Trace Formula . . . 5

ht+ : GL(2,A)→ Z is defined by ht+ (( a c0 b ) k) = deg a− deg b (k ∈ GL(2, OA);
a, b ∈ A×; c ∈ A).

S5(f) =
−1
4πi

∑

µ1,µ2

∮

|z|=1

tr I(µ1νz, µ2νz−1 , f)
m′(µ1/µ2, z)

m(µ1/µ2, z)
2zdz.

Here m(µ, z) = L(µ, z)/L(µ, z/q). The µ1, µ2 range over the set of characters
of A×/F× · αZ, νz(x) = zdeg(x). Also I(µ1, µ2) is the space of right locally
constant functions φ on GL(2,A) with

φ (( a c0 b )x) = |a/b|1/2µ1(a)µ2(b)φ(x) (x ∈ GL(2,A); a, b ∈ A×; c ∈ A).

It is a GL(2,A)-module by right translation, and tr I(µ1νz , µ2νz−1 , f) is the
trace of the indicated convolution operator.

S6(f) =
−1
4πi

∑

µ1,µ2

∮

|z|=1

tr[I(µ1νz , µ2νz−1 , f) ·R(µ1, µ2, z)
−1 d

dz
R(µ1, µ2, z)]dz.

Notations are as in S5(f), and R(µ1, µ2, z) : I(µ1νz , µ2νz−1)→ I(µ2νz−1 , µ1νz)
is an operator, rational in z, defined as a product ⊗vR(µ1v, µ2v, zv), zv =
zdeg(v). The product is well defined as the local operator maps the function in
the source whose restriction to GL(2, Ov) is 1 to such function in the target.
Further, R(µ1v, µ2v, z) is defined to be

[L(µ1v/µ2v, z
2/qv)/L(µ1v/µ2v, z

2)]M(µ1v, µ2v, z).

The operator M(µ1v, µ2v, z) =M(µ1vνz, µ2vνz−1) is defined first by an integral

φ 7→
∫
φ
((

0 −1
1 0

) (
1 y
0 1

)
x
)
dy if |(µ1v/µ2v)(πππv)z

2| < 1,

then by analytic continuation, as it is a rational function in z. The operators
I(µ1νz, µ2νz−1 , f) and R(µ1, µ2, z) are considered as operators on

I0(µ1, µ2) = {φ ∈ C∞(GL(2, OA)); φ ((
a c
0 b )x) = µ1(a)µ2(b)φ(x);

x ∈ GL(2, OA), a, b ∈ O×
A ; c ∈ OA}.

S7(f) =
1

4

∑

µ

tr I(µ, µ, f), S8(f) = −
∑

µ

∫

GL(2,A)

f(x)µ(det x)dx.

Both sums range over all characters µ of A×/F× · α2Z. The sum of S8 is over
all automorphic one dimensional representations (µ◦det) of αZ\GL(2,A). The
integral there represents the trace of the convolution operator associated with f .

The terms S1(f) and S2(f) are finite by Proposition 3.5, 3.6, 3.9. The argument
used in the proof of Proposition 3.9 shows that for any γ ∈ αZ(A(F ) − Z(F ))
the function x 7→ f(x−1γx) on A(A)\GL(2,A) has compact support, hence the
integral in S3(f) converges.

Documenta Mathematica 19 (2014) 1–62



6 Yuval Z. Flicker

By Proposition 3.11 the function θa,f (t) is rational and may have at t = 1 a

pole of order at most 1, for each a ∈ A×. Hence θ̃a,f (t) is regular at t = 1.
From Proposition 3.5 it follows that the sums in S3(f) and S4(f) are finite, so
these terms are well defined.
For any f = ⊗fv in C∞

c (GL(2,A)), the operator I(µ1, µ2, f) is zero unless µi
are unramified at each v where fv is GL(2, Ov) biinvariant. This implies that
the sums in Si(f) (5 ≤ i ≤ 8) are finite, for a given f . To see that S5(f) and
S6(f) are well defined, note that the rational functions m(µ, t), R(µ1, µ2, t),
R(µ1, µ2, t)

−1 are regular on |t| = 1 for all characters µ, µ1, µ2 of A×/F× ·αZ.
For m(µ, t) this follows from Proposition 4.11, for R and R−1 from Corollary
4.28.
The distributions [linear forms on C∞

c (GL(2,A))] f 7→ tr r0(f), Si(f) (i =
1, 2, 5, 7, 8) are invariant, namely take the same value at f and fh(x) =
f(h−1xh), h ∈ GL(2,A). For i = 3, 4, 6 we have Si(f

h) = Si(f) if h ∈
GL(2, OA), but Si is not invariant.
If f ∈ C∞

c (GL(2,A)) takes values in Q then tr r0(f) ∈ Q, since the representa-
tion r0 is defined over Q. For i = 1, 2, 3, 4, 8 it is clear that Si(f) ∈ Q. For i = 7
the integrand contains the factor µ(ab)|a/b|1/2 which involves

√
q. However the

sum includes with µ also µε, ε(α) = −1, and so the sum of the terms indexed
by µ and µε can be written as an integral over the domain where |a/b| is in
q2Z.
To see that S5(f) is rational, we put a(µ1, µ2) =

1
2πi

∮
|t|=1

f(µ1, µ2, t)dt where

f(µ1, µ2, t) = tr I(µ1νt, µ2νt−1 , f) · d
dt

lnm(µ1/µ2, t
2),

and claim that for any σ ∈ Gal(Q/Q) one has σ(a(µ1, µ2)) = a(σµ1,
σµ2). Note

that Gal(Q/Q) acts on the group of characters on A×/F× · αZ as they are all
Q-valued. Now a(µ1, µ2) is the sum of the residues of f(µ1, µ2, t) at the points
of the unit disc. We have that σ(f(µ1, µ2, t)) = f(σµ1,

σµ2, ε(σ) · σt) with
ε(σ) = σ(

√
q)/
√
q. However, if f(µ1, µ2, t) has a pole at t = t0 and |t0| < 1,

then by Proposition 4.11, |σ(t0)| < 1 for any σ ∈ Gal(Q/Q). Hence S5(f) ∈ Q.
To see that S6(f) ∈ Q one proceeds similarly, using the results of Corollary
4.28 on the poles of R(µ1, µ2, t) and R(µ1, µ2, t)

−1.

2 Locally free sheaves of OX-modules

2.1 Stable bundles

Let X be a smooth geometrically connected projective curve over Fq (we take
minimal q). Denote by OX the structure sheaf of X . Denote by Bunn the set of
isomorphism classes of rank n locally free sheaves ofOX -modules. By a (vector)
bundle we mean here simply a locally free sheaf. In particular, Bun1 = PicX .
The Picard group PicX of invertible, or rank 1, locally free sheaves L of OX -
modules, is naturally isomorphic to the group of classes D of (Weil) divisors
D =

∑
v nvv (nv ∈ Z, v ∈ |X |). Here |X | is the set of closed points of X ,

Documenta Mathematica 19 (2014) 1–62



Eisenstein Series and the Trace Formula . . . 7

and the divisors D, D′ lie in the same class (are linearly equivalent) if their
difference is the (principal) divisor (f) =

∑
v ordv(f)v where f is a nonzero

rational function on X and ordv(f) is the order of f at v ∈ |X | (ordv(f) > 0 if
v is a zero, ordv(f) < 0 if v is a pole, ordv(f) = 0 otherwise). If L,M ∈ PicX
correspond to the divisors D, D′ then L⊗M corresponds to D +D′.

There is a degree map deg on PicX : deg(
∑

v nvv) =
∑

v nv deg(v) defines
deg(L) = deg(D), where deg(v) = [kv : Fq]. Here kv is the residue field of the
function field F = Fq(X) of X over Fq at v; assume Fq is algebraically closed
in F . We write Fv for the completion of F at v,Ov for its ring of integers. The
cardinality of the residue field kv = Fqv at v is denoted by qv, thus qv = qdeg(v).
We also write deg(D) for deg(D), as the degree of a principal divisor is 0; recall
that D denotes the class of D.

Denote by χ(L) = dimFq H
0(X,L)− dimFq H

1(X,L) the Euler-Poincaré char-
acteristic of L ∈ PicX . Here Hi(X,L) are finite dimensional vector spaces
over Fq. Then χ(OX) = 1− g where g = dimFq H

1(X,OX) is named the genus
of X . The Riemann-Roch theorem asserts that χ(L) − deg(L) = χ(OX) is
independent of L ∈ PicX .

Define the degree of a locally free sheaf E of OX -modules of rank n to be
deg E = χ(E) − nχ(OX). The determinant of E is det E =

∧n E ∈ PicX . We
have deg E = deg det E . This gives an alternative definition of the degree. A
proof of this equality is as follows. If E is a line bundle, then there is nothing
to prove. In the general case, use the fact that both deg E and deg det E are
additive (if E ′ ⊂ E is a subbundle, then deg E = deg E ′+deg(E/E ′) and similarly
for deg det E), and that each vector bundle has a flag, Ei, such that Ei/Ei−1 are
line bundles.

The height of a rank two locally free sheaf E of OX -modules is the integer
ht(E) = maxL(2 degL− deg E), L ranges over all invertible subsheaves of E .

Proposition 2.1. We have −2g ≤ ht(E) <∞.

Proof. Let L be an invertible subsheaf of E . From the Riemann-Roch theorem
χ(L) = degL + 1 − g we obtain dimFq H

0(X,L) ≥ degL + 1 − g, whence
degL ≤ dimFq H

0(X,L) + g − 1 ≤ dimFq H
0(X, E) + g − 1, so ht(E) is finite.

Let L be an invertible subsheaf of E of maximal degree. LetM be an invertible
sheaf with degM = degL + 1. Then Hom(M, E) = 0. Also, by Riemann-
Roch for the rank 2 sheaf E , dimFq Hom(M, E) = dimFq H

0(X,M−1E) ≥
deg(M−1E) + 2 − 2g = deg E − 2 degM + 2 − 2g = deg E − 2 degL − 2g,
so 2 degL − deg E ≥ −2g.

A rank two locally free sheaf E of OX -modules is called stable if ht(E) < 0
and semistable if ht(E) ≤ 0. In general, the slope µ(E) of a locally free sheaf
E over an algebraic curve is defined to be deg E/ rk E , and E is called stable if
µ(F) < µ(E) for all proper nonzero subbundles F of E (semistable if ≤). A
locally free sheaf E of rank two is called almost stable if ht(E) < 2g − 1, and
very unstable if ht(E) ≥ 2g − 1. If g = 0, every E is very unstable.
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8 Yuval Z. Flicker

Remark 1. A very unstable vector bundle E of rank 2 splits into the direct
sum of two line bundles. We give here a relatively elementary treatment. An
extension can be found in the work of Harder and Narasimhan. If E is very
unstable, L is an invertible subsheaf of E of maximal degree, and M = E/L,
thenM is invertible and Ext(M,L) = H1(X,M−1L) is 0 since

degM−1L = degL− degM = 2degL − deg E = ht E ≥ 2g − 1.

Indeed, by Serre dualityH1(X,M−1L) = H0(X,L−1Mω) where ω denotes the
canonical bundle. But degL−1Mω ≤ 2g− 2− (2g− 1) < 0, and H0(X,F) = 0
for an invertible sheaf F with negative degree.

Proposition 2.2. The number of isomorphism classes of almost stable rank
two locally free sheaves E of OX-modules with a fixed degree is finite.

Proof. The height of an almost stable sheaf lies in [−2g, 2g − 2]. Hence it
suffices to show the finiteness for E with a fixed degree n and height h. Every
such sheaf lies in an exact sequence 0 → L → E → M → 0, where L and
M are invertible sheaves and 2 degL − deg E = h. Then degL = (n + h)/2,
degM = (n − h)/2. Since the degrees of L and M are fixed, there are only
finitely many possibilities for L andM (set of cardinality of the Fq-points on
the abelian variety Pic0(X)). With L andM fixed there are only finitely many
choices for E as Ext(L,M) is finite.

The group PicX acts on Bun2 : (L ∈ PicX, E ∈ Bun2) 7→ L ⊗ E . As

deg(L ⊗ E) = 2 deg(L) + deg(E),

the set of almost stable sheaves is invariant under this action. In a PicX-orbit
we may choose E to have deg(E) in {0, 1}. Hence we deduce

Corollary 2.3. The number of PicX-orbits on the set of isomorphism classes
of almost stable rank two locally free sheaves of OX-modules is finite.

2.2 Bundles and lattices

Let E be a rank n locally free sheaf of OX -modules. Denote by Eη the fiber
(= stalk) of E over the generic point η of X . Let E(v) be the stalk of E at the
closed point v ∈ |X |. Let O(v) be the local ring of X at v. Then Eη is an
n-dimensional vector space over F , and E(v) is an O(v)-lattice in Eη, namely a
rank n free O(v)-submodule of Eη.
A set M of O(v)-lattices M(v) in a finite dimensional vector space V over F , v
ranges over the set |X | of closed points in X , is called adelic if there exists a
basis {e1, . . . , en} in V such that M(v) = O(v)e1 + · · ·+O(v)en for almost all v
in |X |. “Almost all” means “with at most finitely many exceptions”. If M is
adelic then it is adelic with respect to any basis {e1, . . . , en} of V .
The set of stalks {E(v); v ∈ |X |} of a locally free sheaf E of OX -modules is
adelic. Conversely, an adelic set of lattices M = {M(v); v ∈ |X |} in a finite
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dimensional vector space V over F is the set of stalks of the locally free sheaf
E of OX -modules defined by

H0(U, E) = {s ∈ V ; ∀v ∈ U, s ∈M(v)}

for any open subset U of X . Obtained is an equivalence of the category of finite
rank locally free sheaves ofOX -modules, with the category of finite dimensional
vector spaces over F with adelic sets of O(v)-lattices.

Let Ov be the completion of O(v). The completion of F at v is denoted Fv.
Let V be a finite dimensional vector space over F . Put Vv = V ⊗F Fv. There
is a natural bijection between the set of O(v)-lattices in V , and Ov-lattices in
Vv: an O(v)-lattice M ⊂ V corresponds to the lattice M ⊗O(v)

Ov in Vv; an
Ov-lattice N ⊂ Vv corresponds to the O(v)-lattice N ∩ V .

The category C whose objects are finite dimensional F -vector spaces V with
adelic sets {Mv; v ∈ |X |} of Ov-lattices Mv in Vv is equivalent to the category
of finite rank locally free sheaves of OX -modules E , by E 7→ (Eη, {Ev}), where
Eη is the generic fiber of E and Ev is the completion of the stalk of E at the
closed point v ∈ |X |.
Let Rn be the set of isomorphism classes of pairs (E , i) where E is a rank n
locally free sheaf of OX -modules, and i is an isomorphism from the generic
fiber of E to Fn. The pairs (E , i) and (E ′, i′) are isomorphic if there is an
isomorphism E→̃E ′ which induces a commutative diagram when restricted to
the generic fiber with sides i and i′ and the identity Fn → Fn. The group
GL(n, F ) acts on Rn by g : (E , i) 7→ (E , g ◦ i). Then GL(n, F )\Rn = Bunn is
the set of isomorphism classes of rank n locally free sheaves of OX -modules.

The set Rn is the set of adelic collections of Ov-latticesMv ⊂ Fnv , v ∈ |X |. The
group GL(n, Fv) acts transitively on the set of Ov-lattices in F

n
v . The stabilizer

of the standard lattice Onv in Fnv is GL(n,Ov). Thus the set of Ov-lattices in
Fnv is GL(n, Fv)/GL(n,Ov), and Rn is GL(n,A)/GL(n,OA), where A is the
ring of adèles in F and OA =

∏
v∈|X|Ov. Thus

Bunn = GL(n, F )\GL(n,A)/GL(n,OA).

The elements of GL(n,A)/GL(n,OA) are called matrix divisors, and the ele-
ments of GL(n, F )\GL(n,A)/GL(n,OA) classes of matrix divisors. For n = 1,
the identification of GL(n, F )\GL(n,A)/GL(n,OA) with Bunn is the identifi-
cation of classes of divisors with invertible sheaves.

The group GL(n,A) can be identified with the set of triples

(E , iη : Eη ∼→ Fn, (iv : Ev ∼→ Onv )).

Given a rank n locally free sheaf E , an isomorphism iη : Eη ∼→ Fn, and for each

closed point v in |X | an isomorphism iv : Ev ∼→ Onv of the completion Ev of the
stalk E(v) at v with Onv , let us define the corresponding g = (gv) in GL(n,A).
Each gv has to be an automorphism Fnv → Fnv , with gv(O

n
v ) = Onv for almost
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all v. Construct gv as the composition iv ◦ i−1
η :

Fnv = Fn ⊗F Fv
iη
∼← Eη ⊗F Fv = EFv = Ev ⊗Ov Fv

iv
∼→ Onv ⊗Ov Fv = Fnv .

Note that since E is locally free, for almost all v the map gv = iv ◦ i−1
η takes

Onv ⊂ Fnv to Ev ⊂ Eη⊗FFv via i−1
η , and then to Onv via iv. To show that the map

{(E , iη, (iv))} → GL(n,A) is bijective one shows that GL(n,A) acts on the set
of triples, simply transitively. Viewing the trivial locally free sheaf as OnA (space
of columns), g(E , iη, (iv)) is defined to be (gE , iη, (iv◦g−1

v )), where iv◦g−1
v maps

the stalk gvEv of gE at v to Onv . The set of pairs {(E , iη)} then corresponds to
GL(n,A)/GL(n,OA), the set of pairs {(E , (iv))} to GL(n, F )\GL(n,A), and
the set {E} to GL(n, F )\GL(n,A)/GL(n,OA).
To an idèle a = (πππ−nv

v uv; v ∈ |X |), where πππv denotes a generator of the maximal
ideal in the ring Ov of integers in Fv, uv ∈ O×

v and nv ∈ Z, we associate the
divisor D =

∑
v nvv, and the degree

deg(a) = deg(D) =
∑

v

nv deg(v), deg(v) = [Fv : Fq],

where Fv is the residue field of F at v, a finite field of qv = qdeg(v) elements.
For g ∈ GL(2,A) write deg g for deg det g. Recall that OA =

∏
v Ov (v ∈ |X |).

For t ∈ C× we write
νt(a) = t− deg(a) =

∏

v

t−nv
v

where tv = tdeg(v). Then νq−1 (a) =
∏
v q

nv
v = |a| is equal to ν(a) = qdeg(a).

Also νt(πππv) = tv, νq−1(πππv) = |πππv|.
Let L andM be invertible sheaves. Fix isomorphisms iL, iM of their generic
fibers with F . Each of (L, iL) and (M, iM) defines an element of A×/O×

A ,
namely a divisor on X . Choose representatives a, b in A×, for example

∑
v nvv

is represented by (πππ−nv
v ). Given an exact sequence 0 → L → E → M → 0 of

locally free sheaves, choose an isomorphism ϕ between the generic fiber of E and
F 2 so that the induced exact sequence of generic fibers 0→ F → F 2 → F → 0
is standard

(
x 7→ ( x0 ) , (

x
y ) 7→ y

)
. The isomorphism ϕ is defined uniquely up

to left multiplication by an automorphism of F 2 of the form ( 1 t0 1 ), t ∈ F .
The pair (E , ϕ) determines an element of GL(2,A)/GL(2, OA), of the form
u = ( 1 z0 1 ) (

a 0
0 b ), with z in A. Since u is defined up to right multiplication by

an element of GL(2, O), z is uniquely defined up to addition of an element of
a
bOA. Replacing ϕ by ( 1 t0 1 )ϕ with t ∈ F replaces z by z + t. Thus we get a
bijection

Ext(M,L)→ A/(F +
a

b
OA).

This is an isomorphism of Fq-vector spaces.
In summary, if the invertible sheaves L and M correspond to idèles a and
b, then Ext(M,L) ≃ A/(F + a

bOA), and the map Ext(M,L) → Bun2 which
associates to the exact sequence 0 → L → E → M → 0 its middle term,
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coincides with the map A/(F + a
bOA) ≃ H1(X,M−1L), see [S97], II. 5. The

isomorphism A/(F + a
bOA)

∼→ Ext(M,L) is H1(X,M−1L)→̃Ext(M,L).

2.3 The space GL(2, F )\GL(2,A)

Proposition 2.4. Given a ∈ A×, deg a ≥ 2g − 1, then aOA + F = A.

Proof. If L is an invertible sheaf on X associated with a, then A/(F + aOA) =
H1(X,L). By Serre dualityH1(X,L) ≃ H0(X,L−1ω), where ω is the canonical
bundle of degree 2g − 2. Then deg(L−1ω) ≤ (2g − 2) − (2g − 1) = −1 < 0,
hence H0(X,L−1ω) = {0}.

Define a function

ht+ : GL(2,A)→ Z by ht+ (( a c0 b ) k) = deg a− deg b

for all a, b ∈ A×, c ∈ A, k ∈ GL(2, OA). It is clearly a well defined function on
B(F )\GL(2,A). For x ∈ GL(2,A), put

ht(x) = max
γ∈GL(2,F )

ht+(γx).

On GL(2, F )\GL(2,A) it is well defined.

Proposition 2.5. For any x ∈ GL(2,A) we have −2g ≤ ht(x) <∞.

Proof. This follows from Proposition 2.1 as if E is a rank two locally free sheaf
of OX -modules associated to the image of x in GL(2, F )\GL(2,A)/GL(2, OA),
then ht(x) = ht(E).

Put HB = {x ∈ B(F )\GL(2,A); ht+(x) > 0} and

H = {x ∈ GL(2, F )\GL(2,A); ht(x) > 0}.

Proposition 2.6. (1) The restriction p to HB of the natural projection p′ :
B(F )\GL(2,A)→ GL(2, F )\GL(2,A) is a homeomorphism HB → H.
(2) The set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n} is compact modulo the center
Z(A) of GL(2,A) for every integer n.

Proof. (1) The map p is clearly onto. To show that p is injective it suffices to
show for any x in GL(2,A), γ ∈ GL(2, F ), that ht+(x) > 0 and ht+(γx) > 0
implies γ ∈ B(F ). This is a typical application of the Harder-Narasimhan
filtration. In simple, explicit terms, this follows from

Lemma 2.7. If g ∈ GL(2, F )−B(F ) then ht+(x) + ht+(gx) ≤ 0.

Proof. Write g as g1wg2 with g1, g2 in B(F ), w = ( 0 1
1 0 ). Put x′ = g2x.

Then ht+(x) = ht+(x′), ht+(gx) = ht+(wx′). Thus we need to show that
ht+(x′) + ht+(wx′) ≤ 0. Suppose x′ =

( a1 c1
0 b1

)
k1, wx

′ =
( a2 c2

0 b2

)
k2 with
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12 Yuval Z. Flicker

k1, k2 ∈ GL(2, OA). Put k2k
−1
1 =

(
α β
γ δ

)
. Then

( a2 c2
0 b2

) ( α β
γ δ

)
= w

( a1 c1
0 b1

)
=

(
0 b1
a1 c1

)
. Hence b2γ = a1. Thus deg a1 ≤ deg b2 (as deg γ ≤ 0, since γ ∈ OA).

But deg a2b2 = deg a1b1. Hence deg a2 ≤ deg b1. Then ht+(x′) + ht+(wx′) =
deg a1 − deg b1 + deg a2 − deg b2 ≤ 0.

Now the natural projection p′ : B(F )\GL(2,A)→ GL(2, F )\GL(2,A) is open
and HB is an open subset of B(F )\GL(2,A). Hence the bijection p = p′|HB :
HB → H is open. Since it is also continuous, p is a homeomorphism.

(2) The image of the set S = {x ∈ B(F )\GL(2,A);−2g ≤ ht+(x) ≤ n} in
GL(2, F )\GL(2,A) under p′ contains the set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤
n}. So it suffices to show that S is compact mod Z(A). Choose a compact C
in A× with

CF× = {t ∈ A×;−2g ≤ deg t ≤ n}.
Choose an idèle d with deg d ≥ 2g − 1. Put

Y =
{
( 1 c0 1 ) (

a 0
0 b ) k; k ∈ GL(2, OA), a, b ∈ A×,

a

b
∈ C, c ∈ dOA

}
.

Lemma 2.8. The map Y → S is surjective.

Proof. Let x ∈ GL(2,A),−2g ≤ ht+(x) ≤ n. We need to show that x can
be written as hy with y ∈ Y and h ∈ B(F ). Write x as ( r s0 t )K with k ∈
GL(2, OA), r, t ∈ A×, s ∈ A. It remains to show that ( r s0 t ) can be expressed as( α γ
0 β

)
( 1 c0 1 ) (

a 0
0 b ) with a, b ∈ A×, ab ∈ C, c ∈ dOA, α, β ∈ F×, γ ∈ F . Thus we

need to show the existence of a, b, c, α, β, γ such that
(*) aα = r, βb = t, a, b ∈ A×, α, β ∈ F×, a

b ∈ C,
(**) b(αc+ γ) = s, c ∈ dOA, γ ∈ F.
By definition of x, deg r − deg t lies in [−2g, n], so the existence of a, b, α, β
satisfying (*) follows from the definition of C. The existence of c ∈ dOA and
γ ∈ F satisfying αc+ γ = s/b follows from: cOA +F = A if deg c ≥ 2g− 1.

Since Y is compact mod Z(A), so is S, and (2) follows. �

In summary, the homogeneous space GL(2, F )\GL(2,A) is the union of the
compact mod Z(A) set {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ 0}, and the set
H = {x ∈ GL(2, F )\GL(2,A); ht(x) > 0}, whose structure is simpler. The set
HB, hence also the sets H and GL(2, F )\GL(2,A), are noncompact modulo
Z(A). Indeed the function ht+ takes arbitrary large values.
The image of H in Bun2 = GL(2, F )\GL(2,A)/GL(2, OA) is the set of non-
semistable locally free sheaves.
The set GL(2, F )\GL(2,A)/GL(2, OA) is analogous to the set

SL(2,Z)\ SL(2,R)/ SO(2) = SL(2,Z)\h,

where h = {z ∈ C; Im z > 0}, the upper half plane, is isomorphic to
SL(2,R)/ SO(2), by

g 7→ g(i) = (ai + b)/(ci+ d).
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The set B(F )\GL(2,A)/GL(2, OA) is analogous to N\h where N is the group
of transformations z 7→ z+n (n ∈ Z) on h. The function ht+ is analogous to the
function z 7→ ln Im z on N\h. The statement −2g ≤ ht(x) <∞ corresponds to
the statement that the natural map from the half plane {z ∈ C; Im z ≥

√
3/2}

to SL(2,Z)\h is onto. The statement that p : HB → H is homeomorphism
corresponds to the statement that the map N\{z ∈ C; Im z > 1} → SL(2,Z)\h
is injective, and the compactness of {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ n}
corresponds to the statement that the complement in SL(2,Z)\h of the image
of the half plane {z ∈ C; Im z > h} is compact.

2.4 ℓ-groups

An ℓ-space is a Hausdorff topological space such that each of its points has a
fundamental system of open compact neighborhoods.
We shall consider on ℓ-spaces only measures for which every open compact
subset is measurable, and its volume is a rational number. If dx is such a
measure on an ℓ-space Y , and f is a locally constant compactly supported
function on Y with values in a field E of characteristic zero, then

∫
Y f(x)dx

reduces to a finite sum, and it is well defined.
On topological groups we consider only left- or right-invariant measures.
An ℓ-group is a topological group with an ℓ-space structure.

Proposition 2.9. Let G be an ℓ-group. Then (1) there exists a fundamen-
tal system of neighborhoods of the identity in G consisting of open compact
subgroups;
(2) there exists a left Haar measure on G such that the volume of each open
compact set is a rational number.

Proof. (1) Let U be a neighborhood of the identity in G. We shall show that U
contains an open compact subgroup. Since G is ℓ-space, we may assume that U
is open and compact. Put V = {x ∈ G;xU ⊂ U}. Then V = ∩u∈UUu−1, hence
it is compact. Now for each v in V and u in U , by continuity of multiplication
m there exists an open subsetWu containing v, and Uu in U containing u, such
that m(Wu, Uu) ⊂ U . As U is compact and U = ∪u∈UUu, there are finitely
many u1, . . . , un in U with U = ∪1≤i≤nUui . Then W = ∩1≤i≤nWui is open
in V and it contains v. Thus V is an open neighborhood of the identity, and
V · V = V . Then V ∩ V −1 is an open compact subgroup in U .
(2) Fix some left Haar measure on G. Denote the volume of an open compact
subgroup U by |U |. For two such groups, U1 and U2 we have

|U1|
|U2|

=
|U1|

|U1 ∩ U2|
/
|U2|

|U1 ∩ U2|
=

[U1 : U1 ∩ U2]

[U2 : U1 ∩ U2]
∈ Q.

Consequently the Haar measure on G can be chosen to assign rational volume
to every open compact subgroup of G. But then the volume of every open
compact subset K in G is rational, since as in (1) for such K there is a compact
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open subgroup U of G with KU ⊂ K, and then |K| = [K : U ]|U | is rational,
where K is a disjoint union of [K : U ] translates of U .

Fix an ℓ-groupG and a left Haar measure onG such that the volume of any open
compact set is a rational number. Fix a field E of characteristic zero. The E-
vector space HG of compactly supported locally constant functions f : G→ E
is an algebra under the convolultion (f1 ∗ f2)(g) =

∫
G f1(h)f2(h

−1g)dh. For an
open compact subgroup U in G the set of U -biinvariant functions in HG is a
subalgebra HU

G , called the Hecke algebra of (G,U). Although HG has no unit
(unless G is discrete, when the δ-function is in HG), H

U
G does: it is δU : G→ Q,

the characteristic function of U divided by |U |.
A representation π of the group G on a vector space V is called smooth if
the stabilizer of any vector of V is open, and admissible if it is smooth and
for any open subgroup U of G the space V U of U -fixed vectors in V is finite
dimensional.
If π is a smooth representation of an ℓ-group G on a vector space V over E, for
each f ∈ HG define the operator π(f) : V → V by π(f)v =

∫
G f(g)π(g)vdg.

This integral reduces to a finite sum since π is smooth, and π(f1 ∗ f2) =
π(f1) ◦ π(f2). Then V is naturally an HG-module, and for any open compact
subgroup U of G, the space V U is a unital module over HU

G .

Proposition 2.10. (1) A smooth G-module V 6= {0} is irreducible iff for
every open compact subgroup U of G either V U = 0 or V U is an irreducible
HU
G -module.

(2) Given an open compact subgroup U of G and an irreducible unital HU
G -

module M , there exists a smooth irreducible G-module V such that V U is iso-
morphic to M as an HU

G -module, and V is determined by this property up to
isomorphism.

For a proof see [BZ76], 2.10. See [BZ76], 2.11 for
Schur’s Lemma. Let π be an irreducible admissible representation of G in a
vector space V over an algebraically closed field E. Then any nonzero G-module
morphism (intertwining operator) V → V is a scalar.

Proposition 2.11. Let π be an irreducible admissible representation of G in
a vector space V over an algebraically closed field E. For any field extension
E′ of E, the representation of G in V ⊗E E′ is also irreducible.

Proof. By Proposition 2.10, the statement reduces to a similar statement for
finite dimensional algebras, since π is assumed to be admissible.

Let E be a subfield of C invariant with respect to complex conjugation. A
representation of G on a vector space V over E is unitary if there is a G-
invariant scalar product on V (thus a bilinear function (·, ·) : V × V → E with
(v, w) = (w, v) and (v, v) = 0 iff v = 0, and (gv, gw) = (v, w) for all v, w in V
and g in G).
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Note that we do not require V to be complete with respect to the scalar product,
even in the case E = C. If E is algebraically closed and the representation of
G in E is irreducible and admissible, then the G-invariant inner product on V
is unique up to a scalar multiple, if it exists.

Proposition 2.12. Let π be an admissible unitary representation of G in the
E-space V . Fix a G-invariant scalar product on V . Let L be an invariant
subspace of V , and L⊥ its orthogonal complement. Then V = L⊕ L⊥.

Proof. Given x ∈ V , we need to express it as x1 + x2 with x1 ∈ L and x2 ∈
L⊥. Since π is smooth there exists a compact open subgroup U of G with
x ∈ V U . Since π is admissible, dimE V

U is finite. Thus x = x1 + x2 for
some x1 ∈ LU , x2 ∈ V U , x2 orthogonal to LU . It remains to show that x2 is
orthogonal to the entire space L. Let δU be the unit in HU

G . Then π(δU ) is the
orthogonal projector V 7→ V U . Hence for every y in L, (x2, y) = (π(δU )x2, y) =
(x2, π(δU )y) = 0 since π(δU )y ∈ LU .
It follows that every admissible unitary representation of G is a direct sum
of irreducible representations. This sum is not necessarily finite. However,
given an open compact subgroup U of G, only finitely many summands contain
nonzero U -invariant vectors.

2.5 Automorphic forms

Let E be an algebraically closed field of characteristic zero. An automorphic
form is a smooth function φ : GL(2, F )\GL(2,A) → E, where by smooth we
mean that there is an open subgroup Uφ of GL(2,A) such that φ(xu) = φ(x)
for all u ∈ Uφ and x ∈ GL(2,A). A cusp form is an automorphic form φ with∫
A/F φ ((

1 z
0 1 )x) dz = 0 for all x ∈ GL(2,A).

Since φ is right locally constant (= smooth) and A/F is compact, the integral
here is well defined and reduces to a finite sum.
Let AE0 be the space of cusp forms φ : GL(2, F )\GL(2,A) → E. The group
GL(2,A) acts on AE0 by right translation: (r(h)φ)(g) = φ(gh). By a character
of an ℓ-group G with values in E we mean a locally constant homomorphism
χ : G→ E×. If E ⊂ C such χ is called a unitary character if |χ(g)| = 1 for all
g in G.
Denote by AE0 (χ) the space of φ ∈ AE0 with φ(ax) = χ(a)φ(x), a ∈ A× (identi-
fied with the center of GL(2,A)), x ∈ GL(2, F )\GL(2,A). The space AE0 (χ) is
invariant under the GL(2,A)-action.
Let π be an irreducible representation of GL(2,A) over E. By Schur’s lemma,
there is a character χ : A× → E× such that for every a in A×, π(a) is multipli-
cation by χ(a). This χ is called the central character of π.
If V ⊂ AE0 is an irreducible admissible representation π of GL(2,A) and χ is
the central character of V , then V ⊂ AE0 (χ). Since the center of GL(2, F ) acts
trivially on AE0 , χ is trivial on F×. Thus every irreducible admissible π ⊂ AE0
lies in AE0 (χ), where χ is the central character of π, which is a character of
A×/F×. The following is known also e.g. for GL(n).
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Proposition 2.13. Fix an open subgroup U of GL(2,A). There exists a com-
pact mod Z(A) subset K of GL(2, F )\GL(2,A) such that the support of any
U -invariant cusp form is contained in K.

Proof. We first show that there is an integer n such that given z ∈ A and
x ∈ GL(2,A) with ht+(x) ≥ n, there exist u ∈ U and β ∈ F with ( 1 z

0 1 )x =(
1 β
0 1

)
xu.

To see this, fix an effective divisor −D =
∑
v∈|X| nvv on X , put d = (πππnv

v )

and let JD = dOA be the corresponding ideal in OA. The groups Γ(D) = {γ ∈
GL(2, OA); γ ≡ I mod JD} make a basis of neighborhoods of the identity in
GL(2,A). Thus we may assume in this proof that U = Γ(D). In this case
we shall show that n = 2g − 1 − deg(d). Indeed, fix z ∈ A and x = ( a c0 b ) k
with k ∈ GL(2, OA) and ht+(x) = deg a − deg b ≥ 2g − 1 − deg(d) (note:
deg(d) = − degD =

∑
v nv deg v). Then ad

b OA + F = A and z = ad
b t + β

for some β ∈ F and t ∈ OA. Put u = k−1 ( 1 td0 1 ) k. Then u ∈ Γ(D) and
( 1 z0 1 ) x =

(
1 β
0 1

)
xu.

We claim the proposition holds with K = {x ∈ GL(2, F )\GL(2,A); ht(x) <
n}. This K is compact modulo Z(A). Let φ be a U -invariant cusp form,
x ∈ GL(2,A), ht(x) ≥ n. We shall show that φ(x) = 0. Replacing x by
γx for suitable γ ∈ GL(2, F ), we assume that ht+(x) ≥ n. By our choice of
n, φ (( 1 z0 1 ) x) = φ(x) for all z in A. Since φ is a cusp form, φ(x) = 0.

Corollary 2.14. The representation of GL(2,A) in AE0 (χ) is admissible.

Proposition 2.15. Let E′ be an extension of E, and χ : A×/F× → E× a
character. Then AE

′

0 (χ) = AE0 (χ)⊗E E′.

Proof. The space AE0 (χ) ⊗E E′ consists of the functions φ in AE
′

0 (χ) whose
values span a finite dimensional space over E, since φ ∈ AE0 (χ) takes finite
number of values times the set Γ of values of χ. But every φ in AE

′

0 (χ) has this
property, since the set of its values lies in finitely many cosets of Γ.

Given a representation π of GL(2,A) over E and a character ω : A× → E×,
write ωπ or πω or ω⊗π or π⊗ω for the representation (πω)(x) = ω(detx)π(x)
in the space of π.

Proposition 2.16. For any characters χ, ω : A×/F× → E×, we have
AE0 (χ)⊗ ω = AE0 (χω

2).

Proof. We need to construct an invertible linear map L : AE0 (χ) → AE0 (χω
2)

such that for every φ ∈ AE0 (χ) and h ∈ GL(2,A) we have r(h)L(φ) =
ω(deth)L(r(h)φ), where (r(h)φ)(x) = φ(xh).
Such L is (Lφ)(x) = φ(x)ω(det x).

Proposition 2.17. Given a character χ : A×/F× → E× there exists a char-
acter ω : A×/F× → E× such that χ(x)ω(x)2 is a root of unity for every x in
A×/F×.
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Proof. Fix α ∈ A×/F× with degα = 1. Such α exists since in the finite field
extension F/Fq(t), where t ∈ F is transcendental over Fq, there are always
primes which split completely. Fix c in the algebraically closed field E with
c2 = χ(α). Define ω : A×/F× → E× by ω(x) = c− deg(x), put χ1(x) =
χ(x)ω2(x), put αZ = {αn;n ∈ Z}. Then χ1 is a character of the profinite
group A×/F× · αZ, hence the values of χ1 are roots of 1.

Proposition 2.18. Let E be a subfield of C invariant under complex conjuga-
tion, χ an E×-valued unitary character of A×/F×. Then the representation of
GL(2,A) in AE0 (χ) is unitary.

Proof. The function x 7→ φ1(x)φ2(x) on GL(2, F )\GL(2,A), where φ1,
φ2 ∈ AE0 (χ), is invariant under Z(A) and is compactly supported as a
function on PGL(2, F )\PGL(2,A). Let dx be an invariant measure on
PGL(2, F )\PGL(2,A). It exists since PGL(2, F ) is a discrete subgroup of
PGL(2,A), a group with a two-sided invariant measure. Then

(φ1, φ2) =

∫
φ1(x)φ2(x)dx (x ∈ PGL(2, F )\PGL(2,A))

is an invariant scalar product on AE0 (χ).

Corollary 2.19. The representation of GL(2,A) in AE0 (χ) is a direct sum of
irreducible subrepresentations.

Note that we may assume that all values of χ are roots of unity, and that
E = Q.
The multiplicity one theorem asserts that in AE0 (χ) any irreducible representa-
tion of GL(2,A) occurs with multiplicity one.
An irreducible representation of GL(2,A) over an algebraically closed field E
is called cuspidal if it is isomorphic to a subrepresentation of AE0 .

2.6 Factorizability

Irreducible admissible representations of GL(2,A) are factorizable, as we pro-
ceed to show. Let E denote an algebraically closed subfield of C. An irre-
ducible representation of GL(2, Fv) in an E-space V is unramified if V contains
a nonzero GL(2, Ov)-invariant vector.

Proposition 2.20. The space of GL(2, Ov)-invariant vectors V
GL(2,Ov) in an

unramified representation (π, V ) of GL(2, Fv) is one dimensional.

Proof. Denote by Hv = Cc(GL(2, Ov)\GL(2, Fv)/GL(2, Ov)) the Hecke con-
volution algebra of compactly supported GL(2, Ov)-biinvariant E-valued func-
tions on GL(2, Fv). We claim it is a commutative algebra. Indeed, for any
f ∈ Hv, the function

tf(x) = f(tx), where tx is the transpose of x, is also inHv.
Since t(xy) = tytx, we have t(f1 ∗ f2) = tf2 ∗ tf1 for all f1, f2 ∈ Hv. By Cartan
decomposition every GL(2, Ov)-double coset in GL(2, Fv) contains a diagonal
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matrix. Hence tf = f for all f ∈ Hv, and f1∗f2 = t(f1∗f2) = tf2∗ tf1 = f2∗f1
for all f1, f2 ∈ Hv. If V is unramified, V GL(2,Ov) is a nonzero irreducible Hv-
module. But Hv is commutative, so dimE V

GL(2,Ov) is 1.

Given an irreducible admissible representation πv of GL(2, Fv) in a space Vv
for every closed point v ∈ |X | such that πv is unramified for all v ∈ S, S ⊂ |X |
finite, construct a representation π = ⊗πv of GL(2,A) as follows. For each

v ∈ |X | − S choose a nonzero vector ξ0v ∈ V GL(2,Ov)
v . For any finite set S′ ⊃ S

of closed points of X put VS′ = ⊗v∈S′Vv. If S′′ ⊃ S′ ⊃ S, define an inclusion
VS′ →֒ VS′′ by x 7→ (⊗v∈S′′−S′ξ0v) ⊗ x. Put V = lim

→

S′⊃S

VS′ . It is the span of

the vectors ⊗v∈|X|ξv, ξv = ξ0v for almost all v, and ξv ∈ Vv for all v ∈ |X |.
Then V is a GL(2,A)-module in a natural way; denote by π the corresponding
representation of GL(2,A). The vectors ξ0v are determined uniquely up to a
scalar multiple, hence π is uniquely determined by the πv for all v ∈ |X |.
Reducing to irreducible finite dimensional representations of tensor products
of algebras, we have

Proposition 2.21. Given an irreducible admissible representation πv of
GL(2, Fv) for every v in |X | which is unramified for almost all v, π = ⊗vπv is
an irreducible admissible representation of GL(2,A). Every irreducible admis-
sible representation π of GL(2,A) equals ⊗vπv for some irreducible admissible
representations πv of GL(2, Fv) which are almost all unramified. The represen-
tations πv are determined by π uniquely up to isomorphism.

3 Looking for a trace formula

3.1 Trace formula in the compact case

Let X be an ℓ-space. Denote by C∞(X) the space of E-valued locally constant
(= smooth) functions on X . Here E is a fixed algebraically closed subfield of C.
Let C∞

c (X) be the space of smooth compactly supported E-valued functions on
X . Let r be an admissible representation of an ℓ-group G in an E-space V . Fix
a Haar measure dx on G. Given f ∈ C∞

c (G), define r(f) =
∫
G f(x)r(x)dx, an

endomorphism of V . Since f is C∞, that is smooth, it is right invariant under
an open subgroup U of G. Then Im r(f) ⊂ V U , so Im r(f) is finite dimensional,
and the trace tr r(f) is well defined. Let r be now the representation of G on
C∞(Γ\G) by right translation, where Γ is a discrete cocompact subgroup of G.
Since r is admissible, tr r(f) is defined.

Proposition 3.1. Let G be an ℓ-group. Let Γ be a discrete cocompact sugroup
of G. Then G has a two sided invariant measure and Γ\G has a G-invariant
measure.

Proof. Since (see [BZ76]) Γ\G admits a measure which when translated by x
in G is multiplied by ∆(x), where ∆ is the modulus of G, we have |Γ\G| =
∆(x)|Γ\G|, thus ∆ = 1.
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Proposition 3.2. Let X be an ℓ-space, dx a measure on X, K ∈ C∞
c (X×X).

Define a linear endomorphism A of C∞(X) by (Aφ)(y) =
∫
X K(x, y)φ(x)dx.

Then the image of A is finite dimensional and trA =
∫
X
K(x, x)dx.

Proof. We may assume that K(x, y) is of the form ϕ(x)ψ(y), as such functions
span C∞

c (X ×X). In this case the claim is clear.

Proposition 3.3. Let G be an ℓ-group, Γ a discrete cocompact subgroup, r the
representation of G in C∞(Γ\G) by right translation, dx a Haar measure on
G, f ∈ C∞

c (G), S a set of representatives of the conjugacy classes in Γ, ZΓ(γ)
the centralizer of γ in Γ. Then tr r(f) =

∑
γ∈S

∫
G/ZΓ(γ)

f(xγx−1)dx.

Proof. We first show that for each γ ∈ Γ the function x 7→ f(xγx−1) on
G/ZΓ(γ) is compactly supported, and that there are at most finitely many
γ ∈ S for which x 7→ f(xγx−1) is not identically zero. For this, fix a compact
subset K in G with KΓ = G. Given x ∈ G there are k ∈ K, δ ∈ Γ, with
x = kδ. Fix γ ∈ Γ. If f(xγx−1) 6= 0 then kδγδ−1k−1 lies in suppf , thus
δγδ−1 ∈ Kf = K·suppf ·K. Since Kf is compact Kf ∩ Γ is finite, and there
are only finite number of possibilities for δγδ−1. Hence there are only a finite
number of possibilities δ1, . . . , δn for δ modulo ZΓ(γ). Then f(xγx−1) 6= 0
implies that x ∈ K ′ZΓ(γ), where K

′ = ∪1≤i≤nKδi is compact. If f(xγx−1) 6=
0, the conjugacy class of γ in Γ intersects the finite set Kf ∩Γ. The number of
such classes is finite. Thus the sum is finite and the integrals converge.
Now given φ in C∞(Γ\G), for any y in G we have

(r(f)φ)(y) =

∫

G

f(x)φ(yx)dx =

∫

G

f(y−1x)φ(x)dx =

∫

Γ\G

Kf(x, y)φ(x)dx

where Kf (x, y) =
∑

γ∈Γ f(y
−1γx). Then

tr r(f) =

∫

Γ\G

Kf (x, x)dx =

∫

Γ\G

∑

γ∈Γ

f(x−1γx)dx

=

∫

Γ\G

∑

γ∈S

∑

δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx =
∑

γ∈S

∫

Γ\G

∑

δ∈ZΓ(γ)\Γ

f(x−1δ−1γδx)dx

=
∑

γ∈S

∫

ZΓ(γ)\G

f(x−1γx)dx.

3.2 Case of GL(2), oversimplified

Let now AE0 denote the space of E-valued cusp forms on GL(2, F )\GL(2,A).
The right-shifts representation of GL(2,A) on AE0 is not admissible since the
center Z(A) of GL(2,A) is not compact. Fix a degree-one idèle α and put
αZ = {αn;n ∈ Z}. It is a cyclic subgroup of A×, and we view A× as the
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center of GL(2,A). Denote by AE0,α the space of cusp forms in AE0 invariant

under α, and by r0 the representation of GL(2,A) on AE0,α by right translation.

Since A×/F×αZ is compact and every U -invariant cusp form – where U is an
open subgroup of GL(2,A) – is supported on some compact modulo Z(A) set
K ⊂ GL(2, F )\GL(2,A), the representation r0 is admissible. Hence tr r0(f) is
defined for every f ∈ C∞

c (GL(2,A)).
Put Ac,α = C∞

c (αZ · GL(2, F )\GL(2,A)). Fix f ∈ C∞
c (GL(2,A)). Let r be

the right representation of GL(2,A) on Ac,α. We proceed to compute tr r(f)
as if the space αZ ·GL(2, F )\GL(2,A) were compact, to see what needs to be
corrected. This space is not compact and r is not admissible, so that in fact
tr r(f) makes no sense.
For any ringR define A(R) = {diag(a, b); a, b ∈ R×}, A′(R) = {diag(a, b); a, b ∈
R×, a 6= b}, N(R) = {( 1 a0 1 ) ; a ∈ R}. Let Q be the set of quadratic extensions
of the field F . For each L ∈ Q choose an embedding L →֒M(2, F ); it exists and
is unique up to an automorphism of M(2, F ); all automorphisms of M(2, F )
are inner. Given γ ∈ αZ · GL(2, F ), denote by Z(γ) the centralizer of γ in
αZ GL(2, F ).

Proposition 3.4. Every conjugacy class of αZ · GL(2, F ) intersects precisely
one of : F× · αZ; a ( 1 1

0 1 ), a ∈ F× · αZ; αZ · A′(F ); αZ · (L× − F×) for some
L ∈ Q. In the first two cases the number of intersection points is 1, in the
3rd case 2, in the 4th case: the number of automorphisms of L over F . The
centralizers Z(γ) are αZ ·GL(2, F ), αZF×N(F ), αZ ·A(F ), αZL×, respectively.

Immitating the trace formula in the compact case, one may expect

tr r(f) = S1(f) +
∑

L∈Q

S2,L(f) + S3(f) + S4(f)

with
S1(f) = |αZ ·GL(2, F )\GL(2,A)|,

S2,L(f) = |AutF (L)|−1
∑

γ∈αZ·(L×−F×)

∫

αZ·L×\GL(2,A)

f(x−1γx)dx,

S3(f) =
1

2

∑

γ∈αZA′(F )

∫

αZA(F )\GL(2,A)

f(x−1γx)dx,

S4(f) =
∑

a∈αZ·F×

∫

αZF×N(F )\GL(2,A)

f(x−1a ( 1 1
0 1 )x)dx.

The left side of this wrong trace formula is divergent. So is S3(f), since the
homogeneous space A(A)/αZ ·A(F ) is not compact. We shall show that S1(f)
and

∑
L∈Q S2,L(f) converge, and although S4(f) diverges, we shall show in

which way it does.

Proposition 3.5. Given f ∈ C∞
c (GL(2,A)), the number of conjugacy classes

of γ ∈ αZ ·GL(2, F ) with x ∈ GL(2,A) and f(xγx−1) 6= 0 is finite.
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Proof. The sets K1 = {tr h;h ∈ suppf} ⊂ A, K2 = {deth;h ∈ suppf} ⊂
A× are compact. It suffices to show that the set {γ ∈ αZ · GL(2, F ); tr γ ∈
K1, det γ ∈ K2} is a union of finitely many conjugacy classes. Put γ = αnx for
some x ∈ GL(2, F ). Then 2n = deg γ, so n lies in a finite set. Fix n. Then
tr x ∈ α−nK1, detx ∈ α−2nK2. But the sets F ∩ α−nK1 and F× ∩ α−2nK2

are finite. Hence the trace and determinant of x can take only finitely many
values. As the number of conjugacy classes of elements in GL(2, F ) with fixed
trace and determinant is at most two, we are done.

3.3 Central elements

Proposition 3.6. The volume |GL(2, F ) · αZ\GL(2,A)| is finite.

Proof. This volume is equal to (below x ∈ αZ GL(2, F )\GL(2,A)/GL(2, OA))

∑
x |αZ GL(2, F ) ∩ xGL(2, OA)x

−1\xGL(2, OA)|
= |GL(2, OA)|

∑
x |αZ GL(2, F ) ∩ xGL(2, OA)x

−1|−1.

For x in GL(2,A)/GL(2, OA), let E = xO2
A be the associated rank 2 locally free

sheaf on X . Then Aut(E) consists of the g ∈ GL(2,A) which map (E =)xO2
A

to xO2
A and the generic fiber F 2 to itself, thus Aut E is

GL(2, F ) ∩ xGL(2, OA)x
−1 = αZ GL(2, F ) ∩ xGL(2, OA)x

−1.

We then need to show the convergence of

∑

E∈Bun2 /J

|Aut E|−1,

J being the image of αZ under the natural homomorphism A× → PicX . The
number of J-orbits on the set of stable rank two locally free sheaves on X is
finite, so it remains to show that the sum of |Aut E|−1 over the set Bunun2 of
J-orbits of unstable rank two locally free sheaves on X is convergent.

Lemma 3.7. (1) A rank two locally free sheaf E on X is very unstable (ht(E) ≥
2g−1) iff E ≃ L⊕M where L,M are invertible sheaves with degL−degM≥
2g − 1.
(2) If L,M ∈ PicX and degL− degM≥ max(2g − 1, 1) then

|Aut(L ⊕M)| = (q − 1)2qdegL−degM+1−g.

(3) If L ⊕M ≃ L′ ⊕M′ with degL > degM, degL′ > degM′ then L ≃
L′,M≃M′.

Proof. (1) If L is an invertible sheaf of E of maximal degree and M = E/L,
then M is invertible, and Ext(M,L) = H1(X,M−1L) is 0 (by Serre duality)
as

degM−1L = degL − degM = 2degL− deg E = ht(E) ≥ 2g − 1.
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The exact sequence

0→ Hom(M,L)→ Aut(L ⊕M)→ AutL ×AutM→ 0

implies (2) since Hom(M,L) = H0(X,M−1L) and H1(X,M−1L) = {0}, so
the Riemann-Roch theorem implies that dimH0(X,M−1L) = deg(M−1L) +
1−g. If the invertible sheaf L corrsponds to aOA, then AutL consists of g ∈ A×

which map the generic fiber F onto itself (thus g ∈ F×) and map aOA onto
itself (thus g ∈ O×

A ). Then AutL = F× ∩O×
A = F×

q has cardinality q − 1.

For (3), put E = L ⊕ M ∼→ L′ ⊕M′. Since degL > (deg E)/2 > degM′,
we have Hom(L,M′) = {0}. Hence the image of L under the isomorphism
L ⊕M ∼→ L′ ⊕M′ lies in L′. Hence L ≃ L′ andM≃ E/L ≃ E/L′ ≃M′.

Assume g ≥ 1, so that 2g − 1 ≥ 1 (the case g = 0 is similar). The lemma
implies

∑

E∈Bunun
2 /J

|Aut E|−1 = (q − 1)−2|Pic0(X)|
∑

n≥2g−1

qg−1−n <∞.

Corollary 3.8. If the Haar measure on GL(2,A) is normalized so that
|GL(2, OA)| is a rational number, then |αZ ·GL(2, F )\GL(2,A)| ∈ Q.

This follows from the proof of the last proposition.

3.4 Elliptic elements

Proposition 3.9. Let L be a quadratic extension of F, γ ∈ αZ · (L× − F×) ⊂
GL(2,A), and f ∈ C∞

c (GL(2,A)). Then the function x 7→ f(xγx−1) on
GL(2,A)/αZ · L× has compact support.

Proof. We need to show that the map x 7→ xγx−1 on GL(2,A)/αZ ·L× is proper
(the preimage of a compact is compact). Since (L⊗F A)×/αZ ·L× is compact,
it suffices to show that the map ψ(x) = xγx−1, ψ : GL(2,A)/A×

L → GL(2,A),
is proper (AL = L⊗F A is the ring of adèles of L).

Lemma 3.10. Let F be a local field in this lemma. Suppose γ ∈ M(2, F )
is regular, i.e. the subalgebra E = F [γ] generated by γ is a field or is F × F .
Then the map ψ : GL(2, F )/E× → GL(2, F ), x 7→ xγx−1, is proper. Moreover,
if γ ∈ GL(2, O) and the ring O[γ] is integrally closed, then ψ−1(GL(2, O)) =
GL(2, O)/E× ∩GL(2, O).

Proof. The conjugacy class C of γ is a closed subset of GL(2, F ), since γ is
regular. So it suffices to show that ψ maps GL(2, F )/E× homeomorphically
onto C. It is clear that ψ is continuous, injective and Imψ = C. It remains to
show that the map ψ′ : GL(2, F )→ C, x 7→ xγx−1, is open. For this, it suffices
to show that C is the set of F -points of a smooth variety C over F , and that ψ′
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is smooth, that is its differential is everywhere onto. Since C is a homogeneous
space under a connected group G is suffices to show that the tangent map dψ′

of ψ′ at the identity is onto. When verifying these properties of C and ψ′, we
may replace F with an extension, thus we may assume that γ is of the form
diag(a, b) with a 6= b, or ( a 1

0 a ) (if E is nonseparable over F ). To compute the
tangent map dψ′ : Lie G → Tγ(C) of ψ′(x) = xγx−1 near the identity x = 1,
let Y be in Lie G, and put x = 1+ ǫY , where ǫ2 = 0. Then x−1 = 1− ǫY and
ψ′(x) = (1 + ǫY )γ(1 − ǫY ) = 1 + ǫ(Y γ − γY ), so dψ′(Y ) = Y γ − γY is onto
the tangent space Tγ(C) of C at γ, and ψ is proper.
If x ∈ GL(2, F ) and xγx−1 ∈ GL(2, O), put M = x−1O2. Then γM ⊂ M . In
addition, γ ∈ GL(2, O), so γO2 ⊂ O2. ThusM and O2 are O[γ]-submodules in
F 2. Both modules are of finite type. As F 2 is a rank one free E = F [γ]-module,
and we assume that O[γ] is integrally closed, namely it is the ring of integers in
E = F [γ], both M and O2 are rank one torsion free over the discrete valuation
ring O[γ] (being rank two over O). Hence there exists a ∈ E× with M = aO2.
Thus xaO2 = O2, that is xa ∈ GL(2, O).

Now for γ as in the proposition, for almost all closed points in X the component
of α at v is 1, γ ∈ GL(2, Ov), and the ring Ov[γ] is integrally closed. This and
the lemma imply the proposition. �

3.5 Regularization of the unipotent terms

To study the integral which occurs in S4(f), we regularize it as

θa,f(t) =

∫

αZ·F×N(F )\GL(2,F )

f(ax−1 ( 1 1
0 1 )x)t

ht+(x)dx.

Proposition 3.11. (1) For every f ∈ C∞
c (GL(2,A)) and a ∈ A×, the integral

θa,f (t) converges as an element of C((t)), and ζF (q
−1t)−1θa,f (t) ∈ C[t, t−1],

where ζF (t) =
∏
v∈|X|(1 − tv)−1, tv = tdeg v.

(2) If f is the characteristic function of GL(2, OA) in GL(2,A), then

θ1,f (t) = |GL(2, OA)| · (q − 1)−1qg−1 · |Pic0(X)|ζF (q−1t).

Proof. (1) It suffices to consider f(x) =
∏
v fv(xv), x = (xv) ∈ GL(2,A), where

fv ∈ C∞
c (GL(2, Fv)) for all v ∈ |X | and fv is the characteristic function f0

v of
GL(2, Ov) at almost all v, since such functions span C∞

c (GL(2,A)). Normalize
the measures on F×

v and Fv so that |O×
v | = 1 = |Ov|. Denote by valv(xv) the

valuation of xv ∈ F×
v , normalized by valv(πππv) = 1. Define a function

h+v : GL(2, Fv)→ Z by h+v ((
a b
0 c ) k) = valv(a)− valv(c), k ∈ GL(2, Ov).

Then h+v is well-defined and ht+(x) =
∑
v∈|X| h

+
v (xv) deg(v). We have

θa,f (t) = |A×/αZ · F×| · |A/F |
∏

v

θav ,fv (tv)
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where

θav,fv (tv) =

∫

F×
v N(Fv)\GL(2,Fv)

fv(avx
−1 ( 1 1

0 1 )x)t
h+
v (x) deg vdx

and tv = tdeg(v). To compute it, note that pn,v = diag(πππnv , 1) (n ∈ Z) make a
set of representatives of the two sided coset space

F×
v N(Fv)\GL(2, Fv)/GL(2, Ov).

Then

θav,fv (tv) =
∑

n∈Z

tnv

∫

F×
v N(Fv)∩p

−1
n,v GL(2,Ov)pn,v\p

−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑

n∈Z

tnv |F×
v N(Fv) ∩ p−1

n,vGL(2, Ov)pn,v|−1

∫

p−1
n,v GL(2,Ov)

fv(avx
−1 ( 1 1

0 1 )x)dx

=
∑

n∈Z

q−nv tnv

∫

GL(2,Ov)

fv(avypn,v ( 1 1
0 1 ) p

−1
n,vy

−1)dy =
∑

n∈Z

τn(fv)q
−n
v tnv ,

where τn(fv) =
∫
GL(2,Ov)

fv(avy
(
1 πππn

v
0 1

)
y−1)dy is 0 if n << 0 and τn(fv) =

fv(av) for n >> 0.
If av ∈ O×

v and fv is the characteristic function of GL(2, Ov), then τn(fv) =
|GL(2, Ov)| for n ≥ 0 and un,v = 0 for n < 0, so

θav ,fv(tv) = |GL(2, Ov)|(1− tv/qv)−1.

(2) It remains to compute (note that |O×
A | = 1 and |OA| = 1) :

|A×N(A)/αZF×N(F )| = (|A×/αZF×|/|O×
A |)(|A/F |/|OA|).

The exact sequence 1→ F×
q → O×

A → A×/αZF× → PicX/αZ(= Pic0(X))→ 1

implies that the first factor on the right is |Pic0(X)|/(q−1). The exact sequence

0→ Fq → OA → A/F → H1(X,OX)→ 0

implies that the second factor on the right is qg−1.

4 Intertwining operators and Eisenstein series

4.1 Intertwining operators

Let E be an algebraically closed field of characteristic zero, and v ∈ |X | a
closed point of X . Denote by |a|v the absolute value of a ∈ F×

v normal-
ized by |πππv| = q−1

v . It is an E×-valued character of F×
v . Fix a square root√

q = q1/2 of q in E. If E ⊂ C we choose q1/2 > 0. For E-valued characters
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µ1, µ2 of F×
v denote by I(µ1, µ2) both the space of right locally constant func-

tions φ : GL(2, Fv) → E with φ(
(
a1 b
0 a2

)
x) = |a1/a2|1/2v µ1(a1)µ2(a2)φ(x) (x ∈

GL(2, Fv); a1, a2 ∈ F×
v ; b ∈ Fv), and the action of the group GL(2, Fv) by right

translation on I(µ1, µ2). The induced representation I(µ1, µ2) is admissible
by the Iwasawa decomposition G = BK. It is unitarizable when µ1, µ2 are

unitary. It is possible to work with I(| · |1/2v µ1, | · |1/2v µ2), in whose definition

the factor |a1/a2|1/2v µ1(a1)µ2(a2) becomes |a1|vµ1(a1)µ2(a2), but later we shall

need to multiply back by | · |−1/2
v . The following is a standard basic result.

Proposition 4.1. If µ1/µ2 6= | · |v, | · |−1
v , then the representations of GL(2, Fv)

in I(µ1, µ2) and I(µ2, µ1) are irreducible and isomorphic. If µ1/µ2 = | · |v or
| · |−1

v then I(µ1, µ2) contains a unique proper invariant subspace I ′(µ1, µ2) and
there is a GL(2, Fv)-isomorphism I ′(µ1, µ2) ≃ I(µ2, µ1)/I

′(µ2, µ1). If µ2/µ1 =

| · |v, the subspace I ′(µ1| · |−1/2
v , µ1| · |1/2v ) is one dimensional; x ∈ GL(2, Fv)

acts on I ′(µ1| · |−1/2
v , µ1| · |1/2v ) via multiplication by µ1(x). The subspace

I ′(µ2| · |1/2v , µ2| · |−1/2
v ) is denoted by St(µ2) = St(µ2| · |1/2v , µ2| · |−1/2

v ).

It is isomorphic to I(µ2| · |−1/2
v , µ2| · |1/2v )/I ′(µ2| · |−1/2

v , µ2| · |1/2v ). It consists of

φ ∈ I(µ2| · |1/2v , µ2| · |−1/2
v ) with

∫

GL(2,Ov)

µ2(det x)
−1φ(x)dx = 0.

If I(µ1, µ2) ≃ I(µ′
1, µ

′
2) then {µ1, µ2} = {µ′

1, µ
′
2}, the representations I(µ1, µ2)

(µ1/µ2 6= | · |v or | · |−1
v ) and St(µ′

2) are infinite dimensional and inequivalent,
and St(µ1) ≃ St(µ2) implies µ1 = µ2.

We proceed to describe the operator intertwining I(µ1, µ2) and I(µ2, µ1).

Proposition 4.2. If |µ1(πππv)/µ2(πππv)| < 1 the integral

(Mφ)(x) =

∫

Fv

φ(
(
0 −1
1 0

) (
1 y
0 1

)
x)dy

converges for each φ ∈ I(µ1, µ2) and x ∈ GL(2, Fv), and Mφ ∈ I(µ2, µ1).

Proof. As
(
0 −1
1 0

) (
1 y
0 1

)
=
(
y−1 −1
0 y

)(
1 0
y−1 1

)
, the integrand is

µ2(y)µ1(y)
−1|y|−1

v φ
((

1 0
y−1 1

)
x
)
,

which is 0 if |y|v is small, and µ2(y)µ1(y)
−1|y|−1

v φ(x) if |y|v is big enough. For
sufficiently large n then the part of the integral over |y|v ≥ qnv is bounded by
φ(x) times

∫

|y|v≥qnv

|µ2(y)/µ1(y)| · |y|−1
v dy = |O×

v |
∑

k≥n

|µ1(πππv)/µ2(πππv)|k <∞.
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It is clear that (Mφ)(( 1 c
0 1 )x) = (Mφ)(x) (c ∈ Fv) and (Mφ)(( a 0

0 b )x) equals

∫

Fv

φ(( b 0
0 a )

(
0 −1
1 0

) (
1 yb/a
0 1

)
x)dy = µ1(b)µ2(a)

∣∣∣∣
b

a

∣∣∣∣
1/2

v

∣∣∣a
b

∣∣∣
v
(Mφ)(x).

We obtained, if |µ1(πππv)/µ2(πππv)| < 1, a GL(2, Fv)-equivariant map

M =M(µ1, µ2) : I(µ1, µ2)→ I(µ2, µ1).

Let νt be the unramified character of F×
v with νt(πππv) = t. Put M(µ1, µ2, t) =

M(µ1νt, µ2νt−1). It converges for any µ1, µ2, provided t ∈ C is small enough
in absolute value. To define M(µ1, µ2) as the value at t = 1 of the analytic
continuation ofM(µ1, µ2, t), we need these operators to be defined on the same
space, which we will take to be

I0(µ1, µ2) = {φ ∈ C∞(GL(2, Ov));φ(
(
a1 b
0 a2

)
x) = µ1(a1)µ2(a2)φ(x),

a1, a2 ∈ O×
v , b ∈ Ov, x ∈ GL(2, Ov)}.

By the Iwasawa decomposition G = BK, the restriction map I(µ1νt, µ2νt−1)
→ I0(µ1, µ2) is bijective for any t. Identifying these spaces, the operator
M(µ1, µ2, t) becomes a map I0(µ1, µ2)→ I0(µ2, µ1).
Write L(µ, t) for (1 − µ(πππv)t)−1 if µ is unramified, and L(µ, t) = 1 if µ is a
ramified character of F×

v .

Proposition 4.3. The operator valued function M(µ1, µ2, t) is rational in t ∈
C×. In fact the function t 7→ L(µ1/µ2, t

2)−1(M(µ1, µ2, t)φ)(x) is a polynomial
in t for all φ ∈ I0(µ1, µ2), x ∈ GL(2, Ov). If µ1, µ2 are unramified and the
restrictions of φ ∈ I(µ1νt, µ2νt−1) and ψ ∈ I(µ2νt−1 , µ1νt) to GL(2, Ov) are 1,

then M(µ1, µ2, t)φ = L(µ1/µ2,t
2)

L(µ1/µ2,q
−1
v t2)

ψ.

Proof. Put φt = M(µ1, µ2, t)φ and a1 =
∫
|y|v≤1 φ(

(
0 −1
1 y

)
x)dy where x ∈

GL(2, Ov). Then

φt(x) = a1 +

∫

|y|v>1

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2φ

((
1 0
y−1 1

)
x
)
dy.

We shall show that this is the Taylor series of a rational function.

If n is large enough, φ
((

1 0
y−1 1

)
x
)

= φ(x) for |y|v ≥ qnv . Then φt(x) =

a1 + a2(t) + a3(t) with

a2(t) =

∫

1<|y|v<qnv

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2φ

((
1 0
y−1 1

)
x
)
dy,

a3(t) = φ(x)

∫

|y|v≥qnv

µ2(y)µ1(y)
−1|y|vνt(y)−2dy.
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Clearly a2(t) is a polynomial in t (since νt(πππ
−1
v )−1 = t) and a3(t) =

ct2nL(µ1/µ2, t
2).

If µ1, µ2 are unramified and x ∈ GL(2, Ov), a1 = 1 and the expression for φt(x)
is

φt(x) = 1 +

∫

|y|v>1

µ2(y)µ1(y)
−1|y|−1

v νt(y)
−2dy

= 1− (1− q−1
v )

∑

k≥1

(µ1(πππv)/µ2(πππv))
kt2k

= 1 +
(1− q−1

v )(µ1(πππv)/µ2(πππv))t
2

1− (µ1(πππv)/µ2(πππv))t2
=

L(µ1/µ2, t
2)

L(µ1/µ2, q
−1
v t2)

.

The operator M(µ1, µ2, t) : I(µ1νt, µ2νt−1) → I(µ2νt−1 , µ1νt) intertwines the
GL(2, Fv)-modules for every t where it is defined. It can be regarded as
a rational function of t (in fact, of t2) with values in the set of operators
I0(µ1, µ2)→ I0(µ2, µ1). Indeed,

M(µ1, µ2, t) =M(µ1νt, µ2νt−1) =M(µ1νt2 , µ2).

Define

R(µ1, µ2, t) =
L(µ1/µ2, q

−1
v t2)

L(µ1/µ2, t2)
M(µ1, µ2, t).

Corollary 4.4. Suppose µ1 and µ2 are unramified and ϕ ∈ I(µ1νt, µ2νt−1),
ψ ∈ I(µ2νt−1 , µ1νt) are the functions whose restrictions to GL(2, Ov) are one,
then R(µ1, µ2, t)ϕ = ψ. �

Given characters µ1, µ2 of A×, write I(µ1, µ2) for the space of right locally
constant functions φ on GL(2,A) which satisfy

φ
((

a1 b
0 a2

)
x
)
= µ1(a1)µ2(a2)|a1/a2|1/2φ(x). Put ν(a) = qdeg(a).

Then I(µ1, µ2) is the restricted tensor product of the spaces I(µ1v, µ2v) where
µiv is the component of µi at v (the restriction of µi to F×

v →֒ A×); it is
spanned by ⊗vφv with φv ∈ I(µ1v, µ2v) for all v and φv|GL(2, Ov) = 1 for
almost all v, where µiv|O×

v = 1, i.e. µiv are unramified. Define the character
νt of A× by νt(a) = tdeg(a). Then the restriction of νt to F×

v is νtv , the
unramified character of F×

v with νtv (πππv) = tv(= tdeg(v)). As in the local case,
we identify the spaces I(µ1νt, µ2νt−1) with I0(µ1, µ2) for all t. The operator
R(µ1, µ2, t) from I(µ1νt, µ2νt−1) to I(µ2νt−1 , µ1νt) defined by R(µ1, µ2, t) =
⊗vR(µ1v, µ2v, tv) is rational in t. On any element in I(µ1νt, µ2νt−1) at most
finitely many components R(µ1v, µ2v, tv) do not act as the identity. Also write
m(µ, t) for L(µ, t)/L(µ, t/q).
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4.2 Eisenstein series

Write Aα = C∞(αZ ·GL(2, F )\GL(2,A)),

Ac,α = C∞
c (αZ ·GL(2, F )\GL(2,A)), Y = A(F )N(A)\GL(2,A)

and Yα = Y/αZ. Normalize the Haar measure on N(A) ≃ A by |N(A)/N(F )| =
|A/F | = 1. The Haar measure on N(A) is invariant with respect to conjugation
by the elements of A(F ) by the product formula. So it extends to a two-sided
invariant measure on the space αZ · A(F )N(A). This, and the two-sided Haar
measure on GL(2,A) induce an invariant measure on Yα.
Let ϕ and ψ be locally constant functions on Yα, at least one of which is com-
pactly supported. Put (ϕ, ψ) =

∫
Yα
ϕ(x)ψ(x)dx. On αZ ·GL(2, F )\GL(2,A) a

scalar product is similarly defined. Define the map E∗ : Aα → C∞(Yα) by

φ 7→ φN , φN (x) =

∫

N(F )\N(A)

φ(nx)dn, x ∈ GL(2,A).

Note that N(F )\N(A) is compact, so the integral converges. Note that kerE∗

is the space A0,α of cusp forms invariant under α. For any f ∈ C∞
c (Yα) define

a function Ef on αZ ·GL(2, F )\GL(2,A) by

(Ef)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

f(γx), x ∈ GL(2,A).

Proposition 4.5. The sum defining (Ef)(x) converges. For f ∈ C∞
c (Yα) and

φ ∈ Aα we have (Ef, φ) = (f, E∗φ).

Proof. Consider the diagram

Yα
r← αZ ·A(F )N(F )\GL(2,A) s→ αZ ·GL(2, F )\GL(2,A).

Since N(F )\N(A) is compact, the map r is proper. Hence the natural embed-
ding r∗ maps C∞

c (Yα) to C
∞
c (αZ · A(F )N(F )\GL(2,A)). Given

ψ ∈ C∞
c (αZA(F )N(F )\GL(2,A)),

define a function s∗ψ on αZ GL(2, F )\GL(2,A) by

(s∗ψ)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

ψ(γx), x ∈ GL(2,A).

The sum is finite since ψ is compactly supported, and

s∗ψ ∈ C∞
c (αZ GL(2, F )\GL(2,A)).

The sum which defines (Ef)(x) converges since E = s∗r
∗.

Now define E∗ = r∗s
∗, where s∗ is the natural embedding, and

r∗ : C∞(αZA(F )N(F )\GL(2,A))→ C∞(Yα)

is defined by (r∗h)(x) =
∫
N(F )\N(A) h(nx)dn, x ∈ GL(2,A). Since (r∗, r∗) and

(s∗, s
∗) are adjoint pairs, so is (E = s∗r

∗, E∗ = r∗s
∗).
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The image AE,α of the Eisenstein map E = s∗r
∗ : C∞

c (Yα)→ Ac,α is called the
Eisenstein part of Ac,α. The maps E and E∗ intertwine the GL(2,A)-action;
AE,α is an invariant subspace of Ac,α.

Proposition 4.6. The space Ac,α is an orthogonal direct sum of the space A0,α

of cusp forms and of AE,α.

Proof. Cusp forms are compactly supported. Since A0,α = kerE∗ and AE,α =
imE, we have A0,α ⊥ AE,α. Given a compact open subgroup U in GL(2,A),
put AUα for the space of U -invariant functions in Aα, and

AUc,α = Ac,α ∩ AUα , AU0,α = A0,α ∩ AUα , AUE,α = AE,α ∩ AUα .

It remains to show that AU0,α+A
U
E,α = AUc,α. If not there exists a nonzero linear

form ℓ : AUc,α → C which is zero on AU0,α+A
U
E,α. There exists f ∈ AUα such that

ℓ(φ) = (φ, f) for every φ ∈ AUc,α. For any U -invariant function ψ ∈ C∞
c (Yα) we

have (ψ,E∗f) = (Eψ, f) = ℓ(Eψ) = 0. Hence E∗f = 0, thus f ∈ AU0,α. This

however is impossible since f is orthogonal to the space AU0,α of U -invariant
cusp forms.

Given φ ∈ C∞
c (Yα) and x ∈ GL(2,A), put (Mφ)(x) =

∫
N(A) φ(

(
0 −1
1 0

)
nx)dn.

The integral converges, by

Proposition 4.7. The map N(A) → Yα, n 7→ αZA(F )N(A)
(
0 −1
1 0

)
nx, is

proper.

Proof. It suffices to consider the case of x = 1. The function

ht+ : Yα → Z, ( a c0 b ) k 7→ deg a− deg b,

is continuous. Thus it suffices to show that the map ϕ(a) = ht+(
(
0 −1
1 0

)
( 1 a0 1 )),

ϕ : A→ Z, is proper. But
(
0 −1
1 0

) (
1 av
0 1

)
is in GL(2, Ov) if |av|v ≤ 1; otherwise

it is =
(
a−1
v −1
0 av

)(
1 0
a−1
v 1

)
. If a = (av), then ϕ(a) = −2

∑
v max(0, logq |av|v),

as logq |av|v = − valv(av) deg(v). Hence ϕ is proper.

By definition, x 7→ (Mφ)(x) is invariant under left translation by N(A), and
also by αZ ·A(F ). Indeed,

(Mφ)(( a 0
0 b ) x) =

∫

A

φ(
(
0 −1
1 0

)
n ( a 0

0 b )x)dy =
∣∣∣a
b

∣∣∣
∫

N(Z)

φ(( b 0
0 a )

(
0 −1
1 0

)
nx)dn

and |a/b| = qdeg(a/b). Thus M maps C∞
c (Yα) to C

∞(Yα).

Proposition 4.8. Denote by I the natural embedding of C∞
c (Yα) in C

∞(Yα).
Then

E∗E = I +M.
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Proof. By the Bruhat decomposition, an element of GL(2, F ) which is not in
A(F )N(F ) has a unique decomposition n1a

(
0 −1
1 0

)
n2 with ni ∈ N(F ), a ∈

A(F ). Thus, for any φ ∈ C∞
c (Yα), x ∈ GL(2,A), we have

(Eφ)(x) =
∑

γ∈A(F )N(F )\GL(2,F )

φ(γx) = φ(x) +
∑

ν∈N(F )

φ(
(
0 −1
1 0

)
νx).

Hence

(E∗Eφ)(x) = |N(A)/N(F )|φ(x) +
∫

N(F )\N(A)

∑

ν∈N(F )

φ(
(
0 −1
1 0

)
νnx)dn

= φ(x) +

∫

N(A)

φ(
(
0 −1
1 0

)
nx)dn = φ(x) + (Mφ)(x).

Proposition 4.9. Let µ1, µ2 be characters of A×/F×. If t is sufficiently small,
for all φ ∈ I(µ1νt, µ2νt−1) and x ∈ GL(2,A), the integral (M(µ1, µ2, t)φ)(x) =∫
N(A) φ(

(
0 −1
1 0

)
nx)dn converges and defines a function in I(µ2νt−1 , µ1νt).

Moreover, M(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t).

Proof. Recall that |a| = qdeg(a) and that I(µ1, µ2) consists of the φ in
C∞(GL(2,A)) with

φ(
(
a1 0
0 a2

)
x) = |a1/a2|1/2µ1(a1)µ2(a2)φ(x),

while νt(a) = tdeg a. We put tv = tdeg(v). We may assume that φ(x) =∏
v φv(xv) with φv ∈ I(µ1vνtv , µ2vνt−1

v
). For almost all v, the restriction

of φv to GL(2, Ov) is 1. We may replace φv, µi, t by their complex ab-
solute values to assume t > 0 and φv, µi take real nonnegative values.
Then (M(µ1, µ2, t)φ)(x) = c

∏
v τv, with τv =

∫
N(Fv)

φv(
(
0 −1
1 0

)
nxv)dn =∫

Fv
φv(
(
0 −1
1 z

)
xv)dz. The measure dnv onN(Fv) is normalized by |N(Ov)| = 1,

and c = |N(A)/N(F )| in the measure ⊗vdnv on N(A).
We saw that for small enough t the integral which defines τv converges for all v.
For almost all v we have τv = L(µ1v/µ2v, t

2
v)/L(µ1v/µ2v, q

−1
v t2v), so the product∏

v τv converges for small t. NowM(µ1, µ2, t) = c
∏
vM(µ1v, µ2v, tv). Each fac-

tor here is
L(µ1v/µ2v ,t

2
v)

L(µ1v/µ2v ,q
−1
v t2v)

R(µ1v, µ2v, tv). Put R(µ1, µ2, t) = ⊗vR(µ1v, µ2v, tv),

and m(µ, t) = L(µ,t)
L(q−1t,µ) , where L(µ, t) =

∏
v L(µv, tv). Note that c is

|O| = q1−g, using 0→ Fq → O → A/F → H1(X,OX)→ 0.

It follows (since L(µ, t) is a rational function of t) that after identifying the
spaces I(µ1νt, µ2νt−1) for all t, the operator

M(µ1, µ2, t) : I(µ1νt, µ2νt−1)→ I(µ2νt−1 , µ1νt)

(defined for small t) depends on t rationally. Hence M(µ1, µ2, t) is defined for
almost all t, and it commutes with the action of GL(2,A).
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4.3 L-functions

Let us review the theory of L-functions for GL(2). Let E be an algebraically
closed field of characteristic zero. The valuation valv(a) of a ∈ F×

v is the largest
integer n with a ∈ πππnvOv. For any character ψ : Fv → E×, ψ 6= 1, let r(ψ)
be the largest n such that ψ(πππ−n

v Ov) = 1. Normalize the Haar measure on
Fv by |Ov| = 1. The conductor of a character χ : F×

v → E× is n = 0 if
χ(O×

v ) = 1, i.e., χ is unramified; otherwise it is the smallest n ≥ 1 such that
χ(1 + πππnvOv) = 1. Given χ, put L(t, χ) = (1 − χ(πππv)t)−1 if χ is unramified,
L(t, χ) = 1 is χ is ramified. Given ψ 6= 1, put

Γ(χ, ψ, t) =

∫

F×
v

χ(x)−1ψ(x)t− valv(x)dx, ψ : Fv → E×.

This Γ(χ, ψ, t) is a formal power series in t which contains positive and negative
powers of t. Tate’s thesis (see [Lg94], VII, section 3-4) establishes

Proposition 4.10. The formal series Γ(χ, ψ, t) has finitely many positive pow-
ers of t. It is a rational function of t, namely a Laurent series of a ratio-

nal function of t at t = ∞. Put ε(χ, ψ, t) = L(χ,t)Γ(χ,ψ,t)

L(χ−1,q−1
v t−1)

. It has the form

c(χ, ψ)tn(χ,ψ). If r(ψ) = 0 then n(χ, ψ) is the conductor of χ. If in addi-
tion χ is unramified then ε(χ, ψ, t) is 1. If a ∈ F×

v , ψa(x) = ψ(ax), then
ε(χ, ψa, t) = χ(a)(qvt)

valv(a)ε(χ, ψ, t).

Note that L and ε are usually considered, in the case where E = C, as functions
of s, where t = q−sv , rather than of t. The Haar measure on Fv is usually

normalized by |Ov| = q
−r(ψ)/2
v , as this measure is self-dual with respect to the

pairing Fv×Fv → E×, (x, y) 7→ ψ(xy). This choice of measure is not convenient
if E 6= C since E has no distinguished square root of q.
Given a character χ of A×, denote its restriction to F×

v by χv. The restriction
to Fv of a character ψ of A is denoted ψv. For a closed point v of X , we write
deg(v) for the dimension of the residue field at v over Fq, and qv = qdeg(v).
Given a character χ : A×/F× → E×, put L(χ, t) =

∏
v L(χv, tv), where tv =

tdeg(v); the product converges in E[[t]]. Let ψ : A/F → E× be a character 6= 1.
Then ε(χ, t) = q1−g

∏
v ε(χv, ψv, tv) converges as almost all factors are 1, and

ε(χ, t) is independent of ψ by Proposition 4.10.

Proposition 4.11. For any character χ : A×/F× → E× the formal series
L(χ, t) is rational in t, and L(χ, t) = ε(χ, t)L(χ−1, q−1t−1). If the restriction
of χ to the group of x ∈ A×/F× with deg(x) = 0 is nontrivial, then L(χ, t)
is a polynomial. If the restriction is trivial, χ is given by χ(x) = udeg(x), and
then L(χ, t) has precisely two poles: t = u−1 and t = q−1u−1, both poles are
simple. If χ : A×/F× → C× is a unitary character (|χ(x)| = 1 for all x) then
the zeroes of L(χ, t) lie in the doughnut {t ∈ C; q−1 < |t| < 1}.

The proof of this is also in [Lg94], Chapter VII, sections 7-8. The following is
due to [W45].
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Theorem 4.12. (A. Weil). For any unitary character χ : A×/F× → C×, all
zeroes of L(χ, t) lie on the circle |t| = q−1/2.

Given a character ψ : A/F → E×, ψ 6= 1, let W (ψ) be the space of locally
constant functions φ : GL(2, Fv) → E with φ(( 1 z0 1 ) x) = ψ(z)φ(x) for all
z ∈ Fv, x ∈ GL(2, Fv). The group GL(2, Fv) acts onW (ψ) by right translation.
Fix a Haar measure d×x on F×

v . For any φ ∈W (ψ) put

Λφ(t) =

∫
φ(( a 0

0 1 ))(qvt)
valv(a)d×a, Λ̃φ(t) =

∫
φ(( 0 1

a 0 ))(qvt)
valv(a)d×a.

Both Λφ(t) and Λ̃π(t) are formal power series in t, containing positive and
negative powers of t.
Let π be an irreducible admissible representation of GL(2, Fv) over E. Then
π(( a 0

0 a )) is the operator of multiplication by a scalar η(a) ∈ E×. The character
η : F×

v → E× is called the central character of π.

Proposition 4.13. Let π be an irreducible admissible infinite dimensional rep-
resentation over E of GL(2, Fv). Let η be the central character of π. (1) There
exists a unique GL(2, Fv)-invariant subspace W (π, ψ) of W (ψ) equivalent to
π. (2) If φ ∈ W (π, ψ) then Λφ(t) is the Laurent series at t = 0 of a rational

function, and Λ̃φ(t) is the Laurent series at t = ∞ of a rational function. (3)
There exists a nonzero polynomial P ∈ E[t] such that for any φ ∈ W (π, ψ) we
have P (t)Λφ(t) ∈ E[t, t−1]. There exists φ ∈ W (π, ψ) with Λφ(t) 6= 0. (4) The

quotient Λ̃φ(t)/Λφ(t) of rational functions in t does not depend on the choice of
φ in W (π, ψ) with Λφ(t) 6= 0. (5) The lowest degree polynomial P ∈ E[t] which

satisfies (3) and P (0) = 1 is independent of ψ. (6) Put Γ(π, ψ, t) = Λ̃φ(t)/Λφ(t)

and ε(π, ψ, t) = Γ(π,ψ,t)L(π,t)

L(π⊗η−1,q−2
v t−1)

where L(π, t) = P (t)−1 with P of (5). Then

ε(π, ψ, t) has the form c(π, ψ)tn(π,ψ), c(π, ψ) in E× and n(π, ψ) in Z. (7) If
ψa(x) is ψ(ax) for a ∈ F×

v , then ε(π, ψa, t) = η(a)(qvt)
2 valv(a)ε(π, ψ, t).

This is [JL70], Theorem 2.18. Our L and ε relate to those LJL, εJL of Jacquet-
Langlands by LJL(π, s) = L(π, tv), tv = q−sv , εJL(π, ψ, s) = ε(π, ψ, tv). Note
that the proof of [JL70], which claims that Λφ(t) is a Laurent series of a mero-
morphic function in C − {0}, shows that Λφ(t) is rational. In general, the
meromorpic functions of s over p-adic and global function fields are rational
functions of qs. Every smooth finite dimensional irreducible representation of
GL(2, Fv) is one dimensional, of the form x 7→ χ(det x), where χ : F×

v → E×

is a character ([JL70], Proposition 2.7).

Proposition 4.14. Let π, π′ be irreducible admissible infinite dimensional
representations of GL(2, Fv) with equal central characters. If there is a char-
acter ψ : Fv → E× such that for every character ω : F×

v → E× we have
Γ(πω, ψ, t) = Γ(π′ω, ψ, t), then π ≃ π′.

For a proof see [JL70], Corollary 2.19.
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The conductor of an irreducible admissible infinite dimensional representation
π of GL(2, Fv) is the integer n(π, ψ), with ψ normalized by r(ψ) = 0. It is
well defined, as from (7) above, the integer n(π, ψ) of (6) is not changed if ψ is
replaced by ψa : x 7→ ψ(ax).

Proposition 4.15. The conductor of π is the least integer n such that the
representation space of π contains a nonzero vector invariant under the group
Hn = {

(
a b
c d

)
∈ GL(2, Ov); c ∈ πππnvOv, d ∈ 1 + πππnvOv}. For this n, dimE πππ

Hn =
1.

For a proof see Casselman, Math. Ann. 201 (1973), 301-314.

Proposition 4.16. Let π be an irreducible admissible infinite dimensional rep-
resentation, with central character η, of GL(2, Fv). Let ψ : Fv → E× be a non-
trivial character. Then there exists an integer mπ such that if χ : F×

v → E× is
any character with conductor > mπ, then L(πχ, t) = 1 and

ε(πχ, ψ, t) = ε(χ, ψ, t)ε(χη, ψ, qvt)q
−r(ψ)
v .

For a proof see [JL70], Proposition 3.8. See [JL70], Proposition 3.5, 3.6, for a
proof of:

Proposition 4.17. Let µ1, µ2 be characters of F×
v , and ψ 6= 1 a character of

Fv. If µ1/µ2 6= | · |±1
v then L(I(µ1, µ2), t) = L(µ1, t)L(µ2, t) and

ε(I(µ1, µ2), ψ, t) = ε(µ1, ψ, t)ε(µ2, ψ, t)q
−r(ψ)
v .

If µ2/µ1 = | · |v, then

L(St(µ1| · |−1/2
v , µ1| · |1/2v ), t) = L(µ1| · |1/2v , t),

ε(St(µ1| · |−1/2
v , µ1| · |1/2v ), ψ, t) =

L(µ−1
1 , t−1)

L(µ1, t)
ε(µ1, ψ, t)ε(µ1| · |v, ψ, t)q−r(ψ)v .

If π is a cuspidal representation of GL(2, Fv) then L(π, t) is 1.

Recall that an irreducible admissible infinite dimensional representation π of
GL(2, Fv) on a vector space V is called unramified if its space V K of K =
GL(2, Ov)-fixed vectors is nonzero. In this case V K is one dimensional, and
π = I(µ1, µ2) with unramified µ1, µ2 and µ1/µ2 6= | · |±1.

Corollary 4.18. Let π be an unramified irreducible admissible infinite di-
mensional representation of GL(2, Fv) and ψ 6= 1 with r(ψ) = 0. Then
ε(π, ψ, t) = 1.

Proof. Here π = I(µ1, µ2) with unramified µ1, µ2, so the claim follows from the
last proposition and Tate’s Thesis.
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Let π be an admissible irreducible representation of GL(2,A) whose local com-
ponents are all infinite dimensional. Put L(π, t) =

∏
v L(πv, tv), tv = tdeg(v);

the infinite product converges in E[[t]]. For any character ψ : A/F → E×, ψ 6=
1, put ε(π, ψ, t) =

∏
v ε(πv, ψv, tv); almost all factors here are 1. From (7)

it follows that if the central character of π is trivial on F×, then ε(π, ψ, t) is
independent of the choice of ψ : A/F → E×. We denote it in this case by
ε(π, t).
Theorems 11.1, 11.3 of [JL70] assert:

Theorem 4.19. Let π be an irreducible admissible representation of GL(2,A)
over E. Denote by η : A× → E× its central character. Then π is cuspidal iff
(1) η is trivial on F×; (2) all local components of π are infinite dimensional; (3)
for any character ω : A×/F× → E×, the formal series L(πω, t) is a polynomial
in t, and (4) L(πω, t) = ε(πω, t)L(πη−1ω−1, q−2t−1).

Note that (4) makes sense due to (3). In [JL70], (3) is formulated as stating
that the product

∏
v L(πvωv, tv) converges absolutely for sufficiently small t,

and its value has an analytic continuation to a holomorphic function in C−{0}.
But the argument of [JL70] can be modified to lead to (3) in our case of E which
is not C, over a function field F . Note that (4) is not

∏
v Γ(πvωv, ψv, tv) = 1;

indeed the product here does not converge.

Proposition 4.20. If π, π′ are cuspidal representations of GL(2,A) and πv ≃
π′
v for almost all v, then π ≃ π′.

Proof. Let S be a finite set of closed points of X with πv ≃ π′
v at v 6∈ S.

Let η, η′ be the central characters of π, π′, and ηv, η
′
v their components at

v (restrictions to F×
v ). By our assumption, η′v = ηv for all v 6∈ S. But the

groups F×
v , v 6∈ S, generate a dense subgroup of A×/F×. Hence η′ = η. By

the Theorem 4.19, of [JL70], above, fixing a character ψ : A/F → E×, ψ 6= 1,
for any character ω : A×/F× → E× one has

∏

v

L(πvωv, tv) =
∏

v

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ),

∏

v

L(π′
vωv, tv) =

∏

v

ε(π′
vωv, ψv, tv)L(π

′
vη

′
v
−1ω−1

v , q−2
v t−1

v ).

Since πv ≃ π′
v at all v 6∈ S, we conclude

∏

v∈S

Γ(πvωv, ψv, tv) =
∏

v∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v )

L(πvωv, tv)

=
∏

v∈S

ε(π′
vωv, ψv, tv)L(π

′
vη

′
v
−1ω−1

v , q−2
v t−1

v )

L(π′
vωv, tv)

=
∏

v∈S

Γ(π′
vωv, ψv, tv).

Since η = η′, it follows from Proposition 4.16 that for each v ∈ S there exists
mv > 0 such that if χ : F×

v → E× is any character whose conductor is ≥ mv,

Documenta Mathematica 19 (2014) 1–62



Eisenstein Series and the Trace Formula . . . 35

then Γ(πvχ, ψv, t) = Γ(π′
vχ, ψv, t). Fix v ∈ S and a character χ of F×

v . By
Proposition 4.14, it suffices to show Γ(πvχ, ψv, t) = Γ(π′

vχ, ψv, t). For this, it
suffices to choose a character ω : A×/F× → E× in the last displayed equation
with ωv = χ and such that for each u ∈ S − {v}, the conductor of ωu is
bigger than mu. But the group H = F×

v

∏
u∈S−{v}O

×
u maps isomorphically

and homeomorphically onto its image in A×/F×. Hence any character of H
extends to a character of A×/F×.

Proposition 4.21. Let η be a character of A×/F×, S a finite set of closed
points of X,ψ 6= 1 a character of A/F with r(ψu) = 0 for all u in S. Suppose
that for any closed point v ∈ |X | − S, πv is an irreducible admissible infinite
dimensional representation of GL(2, Fv) with central character ηv such that al-
most all πv are unramified, there is no pair µ1, µ2 of characters of A×/F× with
πv = π(µ1v, µ2v) for almost all v ∈ |X |−S, and for any character ω of A×/F×

which is unramified at all points of S, the formal series
∏
v 6∈S L(πvωv, tv) and∏

v 6∈S L(πvη
−1
v ω−1

v , tv) are polynomials, and there exists a number c ∈ E× and
integers nu > 0 (u ∈ S) such that

∏

v 6∈S

L(πvωv, tv) = c
∏

u∈S

(ω(πππu)tu)
nu

∏

v 6∈S

ε(πvωv, ψv, tv)L(πvη
−1
v ω−1

v , q−2
v t−1

v ).

Then there exists a cuspidal representation π of GL(2,A) with central character
η such that for every v ∈ |X | − S the local component of π at v is πv.

A proof is in [JL70], Theorem 11, Corollary 11.6, proof of Theorem 12.2.
The representation π is unique by Proposition 4.20.

4.4 Intertwining again

We can now return to the study of the intertwining operators.

Proposition 4.22. Let µ1, µ2 be characters of F×
v . Let ψ 6= 1 be a character

of Fv. Then

R(µ1, µ2, t)R(µ2, µ1, t
−1) = ε

(
µ1

µ2
, ψ, q−1

v t2
)
ε

(
µ2

µ1
, ψ, q−1

v t−2

)
.

Proof. By the transformation formula for the ε-factors, the right hand side
does not depend on ψ. We then choose ψ with kerψ ⊃ Ov and kerψ 6⊃ πππ−1

v Ov.
We can rewrite the asserted equality as

M(µ1, µ2, t)M(µ2, µ1, t
−1) = Γ

(
µ2

µ1
, ψ, q−1

v t2
)
Γ

(
µ2

µ1
, ψ, q−1

v t−2

)
.

The restriction map I(µ1, µ2)→ I(µ1/µ2), where

I(µ) = {f ∈ C∞(SL(2, Fv)); f
((

a b
0 1/a

)
x
)
= µ(a)|a|vf(x)},
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is an isomorphism (µ : F×
v → E× is a character). The group SL(2, Fv) acts

transitively on F 2
v − {(0, 0)} on the right. The stabilizer of the vector (0, 1) is

N(Fv). Then N(Fv)\ SL(2, Fv) can be identified with F 2
v −{(0, 0)} by

(
a b
c d

)
7→

(c, d) ∈ F 2
v − {(0, 0)}. Using this we identify I(µ) with

V (µ) = {f ∈ C∞(F 2
v − {(0, 0)});

f(ax) = µ(a)−1|a|−1
v f(x), a ∈ F×

v , x ∈ F 2
v − {(0, 0)}},

so I(µ1, µ2) with V (µ1/µ2). The operator M(µ1, µ2, t) corresponds to the
operator M(µ1/µ2, t

2) where

M(µ, s) : V (µνs)→ V (µ−1νs−1), (M(µ, s)f)(x) =

∫

{y;x∧y=1}

f(y)dy.

Here ∧ denotes the symplectic form (a, b)∧(c, d) = ad−bc on F 2
v . The measure

on the line ℓx = {y ∈ F 2
v ;x ∧ y = 1} is transferred from the Haar measure on

Fv via the map Fv → ℓx given by a 7→ y0 + ax where y0 is a fixed point on ℓx.
So we need to show:

M(µ, s)M(µ−1, s−1) = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1).

For sufficiently small s ∈ C× define operators As : C∞
c (F 2

v ) → V (µνs) and
Bs : C

∞
c (F 2

v )→ V (µ−1νs) by

(Asf)(x) =

∫

Fv

f(ax)µ(a)νs(a)da, (Bsf)(x) =

∫

Fv

f(ax)µ(a)−1νs(a)da.

Restriction defines an isomorphism V (µνs)→ V0(µ), where

V0(µ) = {f ∈ C∞(O2
v − {(0, 0)});

f(ax) = µ(a)−1f(x), x ∈ O2
v − {(0, 0)}, a ∈ O×

v },

so we can identify the spaces V (µνs) as s varies.
The operators As and Bs, defined above for small s, depend rationally on s.
Hence they can be extended to all s.
Consider the Fourier transform

F : C∞
c (F 2

v )→ C∞
c (F 2

v ), (Ff)(y) =

∫

F 2
v

f(x)ψ(x ∧ y)dx.

Lemma 4.23. We have M(µ, s)As = Γ(µ−1, ψ, q−1
v s−1)Bs−1F ,

M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)AsF.

Proof. Given f ∈ C∞
c (F 2

v ), x ∈ F 2
v − {(0, 0)}, we first show

Γ(µ−1, ψ, q−1
v s−1)(Bs−1Ff)(x) = (M(µ, s)Asf)(x).
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The operators F , As, Bs commute with the action of SL(2, Fv). This action is
transitive on F 2

v − {(0, 0)}, so we may assume x = (0, 1). We compute

(Bs−1Ff)((0, 1)) =

∫

Fv

(Ff)((0, a))µ(a)−1νs−1(a)da,

(Ff)((0, a)) =

∫

F 2
v

f(y, z)ψ(ya)dydz = ϕ̂(−a),

ϕ̂(a) =

∫
ϕ(y)ψ(−ya)dy, ϕ(y) =

∫
f(y, z)dz.

Tate’s functional equation (see [L], VII, section 3-4) is

Γ(µ−1, ψ, q−1
v s−1)

∫
ϕ̂(a)µ−1(a)νs−1(a)da =

∫
ϕ(y)µ(y)νs(y)

dy

|y| .

(Formally this can be deduced from the definition of the Γ-function and the
inversion formula ϕ(y) =

∫
ϕ̂(a)ψ(ay)da. However the left side converges for

large |s|, while the right for small |s|, so one has to show both sides are rational
in s).
We conclude that the left side of the equation to be shown is

∫
ϕ(y)µ(−y)νs(y)|y|−1dy =

∫ ∫
f(y, z)µ(−y)νs(y)|y|−1dydz

while the right side is (recall: x = (0, 1), so (0, 1) ∧ (y, z) = −y)
∫
(Asf)(−1, z)dz =

∫ ∫
f(−y, yz)µ(y)νs(y)dydz.

The proof of the second identity of the lemma is similar. �

The inverse Fourier transform coincides with F since the form (x, y) 7→ x ∧ y
in the definition of F is skew-symmetric. Hence F 2 = 1, and it follows from
the Lemma that

M(µ, s)M(µ−1, s−1)Bs−1 = Γ(µ, ψ, q−1
v s)Γ(µ−1, ψ, q−1

v s−1)Bs−1 .

However, the operator Bs−1 is onto for those s where it is defined (even its
restriction to C∞

c (F 2
v −{(0, 0)}) is onto), as V (µνs) is irreducible, so the propo-

sition follows.

Proposition 4.24. For any characters µ1, µ2 of A×/F× we have

M(µ1, µ2, t)M(µ2, µ1, t
−1) = 1.

Proof. From Proposition 4.21, M(µ1, µ2, t)M(µ2, µ2, t
−1) is equal to

q2−2gm(µ1/µ2, t
2)m(µ2/µ1, t

−2)R(µ1, µ2, t)R(µ2, µ1, t
−1),
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while Proposition 4.22 implies, for any character ψ 6= 1 of A/F , that

R(µ1, µ2, t)R(µ2, µ1, t
−1)

is ∏

v

[ε(µ1v/µ2v, ψv, q
−1
v t2v)ε(µ2v/µ1v, ψv, q

−1
v t−2

v )]

= q2g−2ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2).

As ε(χ, t) = q1−g
∏
v ε(χv, ψv, tv) satisfies the functional equation L(χ, t) =

ε(χ, t)L(χ−1, q−1t−1), we have that

ε(µ1/µ2, q
−1t2)ε(µ2/µ1, q

−1t−2)m(µ1/µ2, t
2)m(µ2/µ1, t

−2),

which is equal to

ε(µ1/µ2, q
−1t2)L(µ2/µ1, t

2)

L(µ1/µ2, q−1t2)
· ε(µ1/µ2, q

−1t−2)L(µ1/µ2, t
2)

L(µ2/µ1, q−1t−2)

is equal to 1.

4.5 M2 = 1 via Mellin transform

We shall next study the relationship between M : C∞
c (Yα) → C∞(Yα) and

M(µ1, µ2, t) : I(µ1ν
t, µ2ν

−t) → I(µ2ν
−t, µ1ν

t), and conclude that M2 = 1.
Both are defined by the same integral formula. Here µ1, µ2 are characters of
A×/F× · αZ. Put

η(( a 0
0 b )) = µ1(a)µ2(b)|a/b|1/2νt(a/b), η : A(A)/A(F ) · αZ → E×.

It is a character. Recall that Yα = αZN(A)A(F )\GL(2,A) and (Mf)(x) =∫
N(A)

f(
(
0 −1
1 0

)
nx)dn. Suppose that f ∈ C∞

c (Yα), and t ∈ E×. Define a

function T (f, µ1, µ2, t) : GL(2,A)→ C by

(T (f, µ1, µ2, t))(x) =

∫

αZA(F )\A(A)

f(a−1x)η(a)d×a.

Then T (f, µ1, µ2, t) ∈ I(µ1νt, µ2ν−t) is called the Mellin transform of f . The
notation T can be used also when f ∈ C∞(Yα) is not compactly supported,
whenever the integral converges.

Proposition 4.25. For ϕ ∈ C∞
c (Yα), characters µ1, µ2 : A×/F× · αZ →

E× and large enough t ∈ C×, the integral defining T converges, and
T (Mϕ,µ1, µ2, t) =M(µ2, µ1, t

−1)T (ϕ, µ2, µ1, t
−1).

Proof. By definition,

(T (f, µ1, µ2, t))(x) =

∫∫
f(( a 0

0 b )
−1
x)µ1(a)µ2(b)|a/b|1/2νt(a/b)d×ad×b.
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Put f = Mϕ, so f(( a 0
0 b )

−1
x) = |b/a|

∫
N(A)

ϕ(( b 0
0 a )

−1 ( 0 −1
1 0

)
nx)dn. Hence

(T (f, µ1, µ2, t))(x) equals

∫ ∫ ∫
ϕ(( b 0

0 a )
−1 ( 0 −1

1 0

)
nx)µ1(a)µ2(b)|b/a|1/2νt(a/b)d×ad×bdn

=

∫

N(A)

(T (ϕ, µ2, µ1, t
−1))(

(
0 −1
1 0

)
nx)dn

= (M(µ2, µ1, t
−1)T (ϕ, µ2, µ1, t

−1))(x).

If t is large enough, the integral which defines M(µ2, µ1, t
−1) converges, and so

is the integral which defines T (f, µ1, µ2, t), which justifies the computation.

Proposition 4.26. If ϕ ∈ C∞
c (Yα) then Mϕ ∈ C∞(Yα). If Mϕ ∈ C∞

c (Yα)
then M2ϕ = ϕ.

Proof. Put f = Mϕ and h = Mf = M2ϕ (h is defined if f ∈ C∞
c (Yα)). By

Proposition 4.25,

T (h, µ1, µ2, t) =M(µ2, µ1, t
−1)T (f, µ2, µ1, t

−1),

T (f, µ2, µ1, t
−1) =M(µ1, µ2, t)T (ϕ, µ1, µ2, t).

The first equation holds only for large enough t, and the second only for small
enough t. However, both sides of the second equality depend rationally on t (for
the left side, this is true since f =Mϕ is compactly supported), hence it holds
for all t in C×. Hence for large enough t, by Proposition 4.24 T (h, µ1, µ2, t) =
T (ϕ, µ1, µ2, t) for all µ1, µ2. This implies h = ϕ.

4.6 Poles, zeroes and values of R and M

Recall that νt(x) = tdeg(x) is a character of A×/F× with νt(πππv) = tv (= tdeg(v)),
and locally we write νt for the unramified character of F×

v with νt(πππv) = t.
Let µ1, µ2 be characters of F×

v . Recall:

R(µ1, µ2, t) =
L(µ1/µ2, q

−1
v t2)

L(µ1/µ2, t2)
M(µ1, µ2, t).

Proposition 4.27. (1) The function R(µ1, µ2, t) is regular at t = 0.
It has a pole at τ ∈ C× iff µ2ντ−1/µ1ντ = ν (with ν(πππv) = q−1

v ). This pole has
order 1.
The function R(µ1, µ2, t)

−1 has a pole at τ ∈ C× iff µ1ντ/µ2ντ−1 = ν. This
pole has order 1.
(2) Suppose R(µ1, µ2, t)

−1 has a pole at τ ∈ C×. Then the function
R(µ1, µ2, t) is regular at t = τ . Put L = limt→τ (t − τ)R(µ1, µ2, t)

−1 and
Q = R(µ1, µ2, τ). The operators Q : I(µ1ντ , µ2ντ−1) → I(µ2ντ−1 , µ1ντ ) and
L : I(µ2ντ−1, µ1ντ ) → I(µ1ντ , µ2ντ−1) intertwine the GL(2, Fv)-action. The
representations of GL(2, Fv) in the spaces kerQ, cokerQ, imL are isomorphic
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to the square integrable St(µ1ντ , µ2ντ−1). The representations of GL(2, Fv)
in the spaces kerL, cokerL, imQ are isomorphic to the one dimensional
x 7→ µ2(x)(νντ−1 )(x) = µ1(x)ντ (x).
(3) The statement (2) remains true with R(µ1, µ2, t) replaced by R(µ1, µ2, t)

−1.

Proof. From the first part of the proof of Proposition 4.3 it follows that

M(µ1, µ2, t)/L(µ1/µ2, t
2) = R(µ1, µ2, t)/L(µ1/µ2, q

−1
v t2)

is regular. So R(µ1, µ2, t) could have a pole at t ∈ C× only if L(µ1/µ2, q
−1
v t2)

is ∞, that is µ2ντ−1/µ1ντ = ν (recall: ν(x) = |x|), and the order of the pole is
at most 1.
A similar statement holds for R(µ1, µ2, t)

−1 = c(µ1, µ2)t
n(µ1,µ2)R(µ2, µ1, t

−1).
(The last equality follows from Proposition 4.22. In fact n(µ1, µ2) = 0,
but we do not need this.) Namely R(µ1, µ2, t)

−1 has a pole at τ ∈ C× iff
µ1ντ/µ2ντ−1 = ν. This pole has order 1.
Suppose µ1ντ/µ2ντ−1 = ν. Then µ2ντ−1/µ1ντ 6= ν so that R(µ1, µ2, t)

−1 is
regular at t = τ . With L, Q defined as in the proposition, it is clear they
commute with the GL(2, Fv)-action. If L = 0 then Q = R(µ1, µ2, τ) has no
pole, in fact it is an isomorphism. If Q = 0 then L would be an isomorphism,
as the operator limt→τ R(µ1, µ2, t)/(t− τ) would be the inverse of L. However,
the representations of GL(2, Fv) in I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) are
not equivalent, hence L 6= 0, Q 6= 0. As L 6= 0, the function R(µ1, µ2, t)

−1

does have a pole at t = τ . From the description of the invariant subspaces
of I(µ1ντ , µ2ντ−1) and I(µ2ντ−1 , µ1ντ ) the claims in the proposition on the
description of the action of GL(2, Fv) follow. The regularity of R(µ1, µ2, t) at
t = 0 follows from that of L(µ1/µ2, q

−1
v t2)−1R(µ1, µ2, t).

In conclusion, the representation of GL(2, Fv) in I(µ1νt, µ2νt−1) is reducible
iff R(µ1, µ2, t) or R(µ1, µ2, t)

−1 has a pole at t = τ . These last operators are
regular at t ∈ C× if µ1/µ2 is ramified. If µ1/µ2 is unramified and (µ1/µ2)(πππv) =
a, then the poles of R(µ1, µ2, t) are at ±

√
qv/a, and those of R(µ1, µ2, t)

−1 are

at ±
√
a/qv.

Corollary 4.28. Let µ1, µ2 be characters of A×/F× · αZ. If R(µ1, µ2, t) has
a pole at t = τ ∈ C×, then |τ | = √q. If R(µ1, µ2, t)

−1 has a pole at t = τ ∈ C×

then |τ | = q−1/2.

Indeed, a character of A×/F× which takes the value 1 at α is unitary, thus
|a| = 1.

Proposition 4.29. Let µ1, µ2 be characters of A×/F× · αZ and τ ∈ C×,
|τ | ≤ 1. If M(µ1, µ2, t) has a pole at t = τ then µ1 = µ2 and τ = ±q−1/2.
If µ1 = µ2 is denoted µ and τ = ±q−1/2 then M(µ, µ, t) has an order 1 pole
at τ . The image of the operator C = limt→τ (t − τ)M(µ, µ, t) in this case is
one dimensional and is spanned by the function f(x) = µ(det x)ντ (detx) in
I(µντ−1 , µντ ). Further, M(µ1, µ2, t) is regular at t = 0.
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Proof. Recall thatM(µ1, µ2, t) = q1−gm(µ1/µ2, t
2)R(µ1, µ2, t) wherem(µ, t) =

L(µ, t)/L(µ, t/q). Let τ ∈ C×, |τ | ≤ 1. By Corollary 4.28, the function
R(µ1, µ2, t) is regular at τ . By Proposition 4.11, the function m(µ1/µ2, t

2)
is not regular at τ only if µ1 = µ2 and τ = ±q−1/2. In these cases it has a
simple pole. HenceM(µ1, µ2, t) is regular at t = τ (0 < |τ | ≤ 1) unless µ1 = µ2

and τ = ±q−1/2 where the order of the pole is at most 1. When µ1 = µ2 = µ
and τ = ±q−1/2, the operator C = limt→τ (t− τ)M(µ, µ, t) is a scalar multiple
of R(µ, µ, t) = ⊗vR(µv, µv, τv), τv = τdeg(v).
From (1) in Proposition 4.27, the function R(µv, µv, τv)

−1 has a pole at t = τ
(tv = τv). Its statement (2) implies that the image ofR(µv, µv, τv) is one dimen-
sional and GL(2, Fv) acts on it via the character x 7→ µv(detx)ντ (detx)

deg v.
This implies the proposition, except the final claim, which follows from the
regularily of R(µ1, µ2, t) at t = 0, and that of m(µ1/µ2, t

2) at t = 0.

Let µ1, µ2 be characters of A×/F×. The operator M(µ1, µ2, t) maps
I(µ1νt, µ2νt−1) into the space I(µ2νt−1 , µ1νt), which in general is different from
I(µ1νt, µ2νt−1). However, when µ1 = µ2 = µ and t = ±1, then M(µ1, µ2, t)
maps I(µ1νt, µ2νt−1) to itself; M(µ, µ, t) is regular at t = ±1. The representa-
tion of GL(2,A) in I(µντ , µντ−1), τ = ±1, is irreducible, and hence M(µ, µ, τ)
is a scalar operator. Moreover, from Proposition 4.26, M(µ, µ, τ)2 = 1 at
τ = ±1.
Proposition 4.30. If µ is a character of A×/F× and τ = ±1, then
M(µ, µ, τ) = −1.
Proof. In view of the relation between M and R, it suffices to verify that

lim
t→1

L(1, t)

L(1, t/q)
= −qg−1 and R(µ, µ, τ) = 1.

In fact, for any character ω of F×
v , R(ω, ω, τ) is 1 at τ = ±1. Indeed, sup-

pose first ω is unramified. Then there exists a function f in I(ωντ , ωντ ) whose
restriction to GL(2, Ov) is 1. By the normalization of the intertwining op-
erator (Proposition 4.3(2)), R(ω, ω, τ)f = f . However, the representation of
GL(2, Fv) on I(ωντ , ωντ ) is irreducible, so R(ω, ω, τ) = 1 if ω is unramified.
The general case reduces to the case where ω is unramified, or even ω = 1, by
the commutativity of the diagram

I(ωντ ,ωντ )
R(ω,ω,τ)

−→ I(ωντ ,ωντ )
↑ ↑

I(ντ ,ντ )⊗ω
R(1,1,τ)
−→ I(ντ ,ντ )⊗ω

To compute the limit of the ratio of L-functions, we use the functional equation
L(1, t/q) = ε(1, t/q)L(1, t−1). Then

lim
t→1

L(1, t)/L(1, t/q) = ε(1, 1/q)−1 lim
t→1

L(1, t)/L(1, t−1).

By the definition of the global ε-function and its properties (Proposition 6.1,
6.3), ε(1, 1/q) = q1−g. Since L(1, t) has a pole of order one at t = 1, by
L’Hôpital rule limt→1 L(1, t)/L(1, t

−1) is −1.
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4.7 Global Eisenstein approach

These proofs of M2 = 1 and rationality of M(µ1, µ2, t) are based on local
computations (normalization of the intertwining operators by L-functions and
ε-factors), and the functional equation of the L-function. The following alter-
native proof of these results is based on properties of the Eisenstein map.

The alternative approach of this subsection, the following subsection 4.8, and
the computation of traces in subsection 5.2 are motivated by Tate [T68]. They
are the newest part of this paper, which – as noted in the introduction – cries
out for generalization from our context of GL(2), and for further study.

We shall use the maps ht+ : Yα → Z and ht : αZ GL(2, F )\GL(2,A) → Z.
Both maps are proper. However, ht+ is onto while the image of ht con-
tains the positive integers but only finitely many negatives. So in some sense
Yα is less compact than αZ GL(2, F )\GL(2,A), so the map E : C∞

c (Yα) →
C∞
c (αZ GL(2, F )\GL(2,A)) should have a big kernel. For ϕ in kerE we have

(1 +M)ϕ = E∗Eϕ = 0. Hence M2ϕ = ϕ. Unlike M , the operator M2 com-
mutes with the action of A(A) on C∞

c (Yα) by left translation. Hence M2ϕ = ϕ
not only for ϕ ∈ kerE but also for ϕ in the span of A(A)-translates of ϕ in
kerE. The number of such linear combinations is already sufficiently large to
imply M2 = 1. We now turn to rigorous proofs.

Proposition 4.31. Let M : C[z, z−1]n → C((z))n be a C-linear map with
M(zu) = z−1M(u) for all u ∈ C[z, z−1]n. Let I denote the natural embedding
C[z, z−1]n →֒ C((z))n. Put B = I + M . Suppose there is some k ∈ Z for
which the vector space (ImB)/B(zkC[z−1]n) is finite dimensional. Then there
is some

P (z) ∈ GL(n,C(z)) ⊂ GL(n,C((z)))

with P (z−1) = P (z)−1 and (Mu)(z) = P (z)u(z−1) for all u(z) ∈ C[z, z−1]n.

Proof. Denote by ei the column in Cn with nonzero entry only at the ith
row, where it is 1. From M(

∑
i(
∑
j cijz

j)ei) =
∑

i(
∑

j cijz
−j)Mei, we see

that (Mu)(z) = P (z)u(z−1) where P (z) is the n × n matrix with columns
Me1, . . . ,Men whose entries are in C((z)). If u is in the kernel of B = I +M ,
then P (z)u(z−1) = −u(z). Since ImB = ∪m≥1B(zmC[z−1]n) and there is
some k ≥ 0 such that B(zkC[z−1]n) has finite codimension in ImB, there is
some ℓ with B(zℓC[z−1]n) = ImB. Then kerB + zℓC[z−1]n = C[z, z−1]n. For
each i (1 ≤ i ≤ n), zℓ+1ei ∈ kerB + zℓC[z−1]n. Hence there is a matrix W ∈
M(n,C[z, z−1]) whose columnes are in kerB andW−zℓ+1 Id ∈ zℓM(n,C[z−1]),
where Id is the identity matrix. But then W ∈ GL(n,C(z)), and since the
columns of W are in kerB, we have P (z)W (z−1) = −W (z). Then P (z) =
−W (z)W (z−1)−1, and P (z−1) = −W (z−1)W (z)−1 = P (z)−1.

Corollary 4.32. A C-linear map M : C[z, z−1] → C[z, z−1] which satisfies
the conditions of Proposition 4.31 has M2 = Id.
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Recall that Yα = αZA(F )N(A)\GL(2,A). Write C∞
+ (Yα) for the space of the

E-valued functions f on Yα with (1) f(x) = 0 if ht+(x) is large enough, and (2)
f is invariant under right translation by some open subgroup U of GL(2,A).
Note that C∞

c (Yα) ⊂ C∞
+ (Yα) ⊂ C∞(Yα).

Proposition 4.33. The image of C∞
c (Yα) under M lies in C∞

+ (Yα).

Proof. For f ∈ C∞
c (Yα) there exists an integerm such that f(x) = 0 if ht+(x) <

−m. We shall show that for such f , (Mf)(x) =
∫
N(A) f

((
0 −1
1 0

)
nx
)
dx is zero

if ht+(x) > m. It suffices to show then that for x ∈ GL(2,A) with ht+(x) > m,
and any n ∈ N(A), we have ht+

((
0 −1
1 0

)
nx
)
< −m. But by Lemma 2.7 we

have

ht+(x) + ht+
((

0 −1
1 0

)
nx
)
= ht+(nx) + ht+

((
0 −1
1 0

)
nx
)
≤ 0.

Proposition 4.34. Let U be an open subgroup of GL(2, O). For every integer
m ≥ 1 define

WU
m = {ϕ ∈ C∞

c (Yα)
U ; ϕ(x) = 0 if ht+(x) < m},

Y Um = {ϕ ∈ C∞
c (αZ ·GL(2, F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}.

Then E(WU
m) = Y Um for large enough m.

Proof. Put

ZUm = {ϕ ∈ C∞
c (αZ ·A(F )N(F )\GL(2,A))U ; ϕ(x) = 0 if ht+(x) < m}.

Recall that

E = s∗r
∗, s∗(x) =

∑

γ

ψ(γx), γ ∈ A(F )N(F )\GL(2, F ).

It is clear that s∗(Z
U
m) = Y Um . It suffices to show that r∗(WU

m) = ZUm for
sufficiently large m. In fact, we showed, as the first claim in the proof of
Proposition 2.13, that for an open subgroup U of GL(2,A), that there is an
integer m with the property that if z ∈ A, x ∈ GL(2,A), ht+(x) ≥ m, then
there is u ∈ U , β ∈ F , with ( 1 z0 1 )x =

(
1 β
0 1

)
xu. In other words, if x ∈ GL(2,A)

and ht+(x) is large enough, then N(A)x ⊂ N(F )xU .

We shall now give a different proof of Proposition 4.26.

Proposition 4.35. If ϕ ∈ C∞
c (Yα) and Mϕ ∈ C∞

c (Yα) then M
2ϕ = ϕ.
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Proof. Let us introduce a structure of C[z, z−1]-module on C∞(Yα) by

(zf)(x) =
1√
q
f (( α 0

0 1 )x) , f ∈ C∞(Yα), x ∈ GL(2,A).

From

(Mφ) (( a 0
0 b )x) =

∣∣∣a
b

∣∣∣
∫

N(A)

φ
(
( b 0
0 a )

(
0 −1
1 0

)
nx
)
dn

it follows that M(zf) = z−1M(f); recall that |α| = q, and f is invariant under
α. This is the reason for introducing the factor

√
q. Let U be an open subgroup

of GL(2, O). Put

WU
c = C∞

c (Yα)
U , WU

+ = C∞
+ (Yα)

U .

Both are C[z, z−1]-submodules in C∞(Yα). Denote by WU
0 the set of functions

f ∈ C∞(Yα)
U such that f(x) = 0 if ht+(x) 6= 0. Then the natural map

WU
0 ⊗C C[z, z−1] → WU

c is an isomorphism. In the same way we have a
canonical isomorphism WU

0 ⊗C C((z))→WU
+ . The operator

M :Wc = C∞
c (Yα)→W+ = C∞

+ (Yα)

maps WU
c into WU

+ . Hence it defines a map

M :WU
0 ⊗C C[z, z−1]→WU

0 ⊗C C((z))

satisfying the first condition of Proposition 4.31.
It remains to check the second condition of that Proposition. The space WU

m

can be identified with WU
0 ⊗C z

−mC[z−1], and then the operator B = I +
M is just E∗E. Thus it suffices to show that for some m ∈ Z, the space
E∗E(WU

c )/E∗E(WU
m) is finite dimensional. Since E(WU

m) = Y Um for large m,
and {x ∈ GL(2, F )\GL(2,A); ht(x) ≤ m} is compact mod Z(A), it follows
that the subspace

E(WU
m) ⊂ C∞

c (αZ GL(2, F )\GL(2,A))U

has finite codimension. Thus M satisfies both conditions of Proposition 4.31,
and our claim follows from Corollary 4.32.

To use Proposition 4.31 to give another proof of the rationality ofM(µ1, µ2, t),
we take a different view of the Mellin transform and the relationship between
the operators M and M(µ1, µ2, t). Let Ic(µ1νz−1 , µ2νz) be the space of locally
constant functions f : GL(2,A)→ C[z, z−1] with

f (( a c0 b )x) = µ1(a)µ2(b)νz(b/a)|a/b|1/2f(x).

Let I+(µ1νz−1 , µ2νz) be

Ic(µ1νz−1 , µ2νz)⊗C[z,z−1] C((z)).
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The group αZ ⊂ GL(2,A) acts trivially on these Ic and I+. We put

Ic = ⊕Ic(µ1νz−1 , µ2νz), I+ = ⊕I+(µ1νz−1 , µ2νz),

where the sums range over all characters µ1, µ2 of A×/F× · αZ.

Proposition 4.36. There exists an isomorphism of C((z))-modules I+
∼→

C∞
+ (Yα) which is GL(2,A)-equivariant and maps Ic to C∞

c (Yα).

Proof. Define a map F : I+ → C∞
+ (Yα) by mapping

ϕ = {ϕµ1,µ2} ∈ I+, ϕµ1,µ2 ∈ Ic(µ1νz−1 , µ2νz),

to

(Fϕ)(x) = constant term of the formal series
∑

µ1,µ2

ϕµ1,µ2(x) ∈ C((z)),

for any x ∈ GL(2,A). The map F is well defined, commutes with the actions
of C((z)) and GL(2,A). The inverse of F exists, as follows. If ψ ∈ C∞

+ (Yα)
then F−1(ψ) = {ϕµ1,µ2} with ϕµ1,µ2 ∈ I+(µ1νz−1 , µ2νz) given by

ϕµ1,µ2(x) =

∫

A(A)/αZ·A(F )

ψ(h−1x)η(h)dh,

where

η : A(A)→ C((z))×, η(diag(a, b)) = µ1(a)µ2(b)νz(a/b).

The last integral converges in the field C((z)). A base of the topology is given
by znC[[z]], n > 0. The map F maps Ic to C

∞
c (Yα).

Put I0 = ⊕µ1,µ2I0(µ1, µ2), with

I0(µ1, µ2) = {f ∈ C∞(GL(2, O)); f (( a c0 b )x) = µ1(a)µ2(b)f(x)}.

Denote by M(z) the map I0 → I0 which takes I0(µ1, µ2) to I0(µ2, µ1) via
M(µ1, µ2, z). We use the isomorphism F to identify the spaces I+ and C∞

+ (Yα),
as well as Ic and C

∞
c (Yα). The natural isomorphism

Ic(µ1νz−1 , µ2νz)
∼→ I0(µ1, µ2)⊗C C[z, z−1]

and

I+(µ1νz−1 , µ2νz)
∼→ I0(µ1, µ2)⊗C C((z))

permit us to identify Ic and I0 ⊗C C[z, z−1] as well as I+ and I0 ⊗C C((z)).
Thus the map M : C∞

c (Yα)→ C∞
+ (Yα) induces an operator

M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).
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Proposition 4.37. Regard the elements of I0 ⊗C C[z, z−1] as functions of z
with values in I0 and the elements of I0 ⊗C C((z)) as formal series in z with
coefficients in I0. Then for any u ∈ I0 ⊗C C[z, z−1] one has (M0u)(z) =
M(z)u(z−1), M(z) is viewed as a formal series in z.

Proof. Write ι for the automorphism of C[z, z−1] which maps z to z−1. Given
a function f : GL(2,A) → C((z)), denote by f0 the function GL(2,A) → C
such that f0(x) is the constant term of f(x).
Define an operator

M ′′ : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)) by (M ′′u)(z) =M(z)u(z−1).

We claim that M0 = M ′′. Consider M ′′ as a map Ic → I+. We have to
show that for every f ∈ Ic, we have FM ′′f = MFf , for the isomorphism
F : I+

∼→ C∞
+ (Yα). As Ic is the sum over µ1, µ2 of Ic(µ1νz−1 , µ2νz), it suffices

to consider f in one of these summands.
For x ∈ GL(2,A), we have (M ′′f)(x) =

∫
N(A)

ιf
((

0 −1
1 0

)
nx
)
dn. Then

(FM ′′f)(x) = (M ′′f)0(x) =

∫

N(A)

f0
((

0 −1
1 0

)
nx
)
dn

(MFf)(x) =

∫

N(A)

Ff
((

0 −1
1 0

)
nx
)
dn =

∫

N(A)

f0
((

0 −1
1 0

)
nx
)
dn

are equal, as required.

4.8 A second proof of the rationality of M(µ1, µ2, t) and of the
functional equation M(µ1, µ2, t)M(µ2, µ1, t

−1) = 1

Let U , WU , A be as in the proof of Proposition 4.35. Then WU =
⊕µ1,µ2W

U
µ1,µ2

, where WU
µ1,µ2

is the space of functions f ∈WU with

f (( a 0
0 b )x) = µ1(a)

−1µ2(b)
−1f(x)

whenever deg(a) = deg(b) = 0. The natural maps I0(µ2, µ1)
U ∼→WU

µ1,µ2
permit

one to identify WU and the space IU0 . The map

M :WU ⊗C C[z, z−1]→WU ⊗C C((z))

is induced by the operator

M0 : I0 ⊗C C[z, z−1]→ I0 ⊗C C((z)).

The proof of Proposition 4.35 implies that the operator M satisfies the con-
ditions of Proposition 4.31. Then M is given by a formula of the form
(Mu)(z) = P (z)u(z−1), where P (z) is an automorphism of V which depends
on z rationally, and P (z−1) = P (z)−1. From Proposition 4.37 it follows that
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P (z) is just the restriction ofM(z) to IU0 ⊗CC[z, z−1]. The group U may be ar-
bitrarily small. Hence M(z) is a rational function of z, and M(z)M(z−1) = 1.
Hence for any characters µ1, µ2, of αZ · F×\A×, the operator M(µ1, µ2, z)
depends rationally on z, and

M(µ1, µ2, z)M(µ1, µ2, z
−1) = 1.

The same is true for any characters µ1, µ2 of A×/F×, which are not necessarily
trivial at α. To see this, it suffices to use the identities M(µ1νt, µ2νt, z) =
M(µ1, µ2, z) and M(µ1νt, µ2νt−1 , z) =M(µ1, µ2, tz). �

5 Proof of the trace formula

5.1 The geometric part

Our aim is to compute the trace tr r0(f), where f ∈ C∞
c (GL(2,A)) and r0 is

the representation of GL(2,A) by right translation on the space A0,α of cusp
forms invariant under α. Recall that the space Ac,α of α-invariant automorphic
forms is equal to the direct sum of A0,α and AE,α = Im(E : C∞

c (Yα)→ Ac,α).
The corresponding representations of GL(2,A) are denoted by r and rE . Had
r been admissible, we would have had tr r0(f) = tr r(f) − tr rE(f), and the
computation of tr r0(f) would have reduced to that of tr r(f) and tr rE(f).
But r and rE are not admissible, so tr r(f) and tr rE(f) make no sense.
Suppose f is right invariant under the open subgroup U of GL(2, O). Denote
by AU0 , A

U
c , A

U
E the spaces of U -invariant vectors in A0,α, Ac,α, AE,α. Since

Im r0(f) ⊂ AU0 , we have tr r0(f) = tr rU0 (f), where r
U
0 (f) is the restriction of

r0(f) to A
U
0 .

Denote by χm the characteristic function of the set

{x ∈ αZ ·GL(2, F )\GL(2,A); ht(x) < m}, m > 0.

Denote by θm the operator of multiplication by χm on Ac,α.

Proposition 5.1. (1) For any m > 0, dim θm(AUc ) <∞.
(2) If m >> 1 then (a) θm acts as the identity on AU0 , and (b) θm(AUE) ⊂ AUE.

Proof. (1) The support of χm is compact mod Z(A), the quotient by the open U
is then finite. (2a) AU0 is finite dimensional, consisting of compactly supported
forms. (2b) By (2a), (1− θm)AUE = (1− θm)AUc . This lies in AUE as U -invariant
cusp forms are uniformly compactly supported. Hence θm(AUE) ⊂ AUE .

Denote by rU (f) and rUE(f) the restrictions of r(f) to A
U
c and AUE . For m such

that θm(AUE) ⊂ AUE , denote the restriction of θm to AUE again by θm. Then for
m >> 1,

tr r0(f) = tr rU0 (f) = tr(θmr
U (f))− tr(θmr

U
E (f)) = tr(θmr(f))− tr(θmr

U
E(f)).

We then proceed to compute tr(θmr(f)) and tr(θmr
U
E(f)).
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Proposition 5.2. There exist cf ∈ E and αm ∈ E with limn→∞ αm = 0, and

tr(θmr(f)) =
∑

1≤i≤4

Si(f) + cf (m−
1

2
) + αm.

Proof. The map θmr(f) : Ac,α → Ac,α is an integral operator with kernel
χm(y)Kf (x, y), where Kf (x, y) =

∑
γ∈αZ·GL(2,F ) f(x

−1γy). Then

tr(θmr(f)) =

∫

αZ·GL(2,F )\GL(2,A)

χm(x)Kf (x, x)dx.

Lemma 5.3. There exists mf > 0 such that if x ∈ GL(2,A), γ ∈ αZ GL(2, F ),
ht+(x) > mf , f(x

−1γx) 6= 0, then γ ∈ αZA(F )N(F ).

Proof. We have γx = xy, y in supp(f). Since ht+(x) + ht+(δx) ≤ 0 for δ ∈
GL(2, F )−B(F ), we have that ht+(x) > 0. If in addition we had ht+(xy) > 0,
we would conclude that γ ∈ αZB(F ). The number mf = −min{ht+(z); z ∈
GL(2, O) · supp(f)} then has the property that ht+(x) > mf , y ∈ supp(f),
implies ht+(xy) = ht+(x) + ht+(ky) > 0, where x = bk and ky = b′k′ so that
xy = bb′k (b, b′ ∈ B(A); k, k′ ∈ GL(2,A)).

Denote by ξm the characteristic function of the set {x ∈ GL(2,A); ht+(x) ≥
m}, by A′(F ) the set of nonscalar diagonal matrices, and by Ell the set of
elliptic matrices in GL(2, F ), namely those whose eigenvalues are not in F .
Put w = ( 0 1

1 0 ).

Lemma 5.4. If m is big enough, then χm(y)Kf (x, x) is the sum of

T1,m(x) = χm(x)
∑

γ∈αZ·F×

f(γ), T2,m(x) =
∑

γ∈αZ·Ell

f(x−1γx),

T3,m(x) =
1

2

∑

γ∈αZ·A′(F )

∑

δ∈A(F )\GL(2,F )

f(x−1δ−1γδx) · (1− ξm(δx)− ξm(wδx)),

T4,m(x) =
∑

a∈αZ·F×

∑

δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx) · (1 − ξm(δx)).

Proof. T1,m(x) is the contribution of the elements γ ∈ αZ·F× in χm(x)Kf (x, x).
We claim that the contribution of the elements γ ∈ αZ · Ell in χm(x)Kf (x, x)
is T2,m(x). To show this, we need to see that if x ∈ GL(2,A), γ ∈ αZ · Ell
and Φ(x−1γx) 6= 0, then ht+(x) < m. Indeed, if ht(x) ≥ m then there is
some δ ∈ GL(2, F ) with ht+(δx) ≥ m. Lemma 5.3 then implies that δγδ−1 ∈
αZA(F )N(F ), contradicting γ ∈ αZ · Ell.
Denote by T ′

3,m(x) the contribution into χm(x)Kf (x, x) of the elements γ of

the form αjγ, j ∈ Z, γ ∈ GL(2, F ) with distinct eigenvalues in F . By T ′
4,m(x)
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we denote the contribution of the elements αjγ, j ∈ Z, γ ∈ GL(2, F ), γ /∈ F×

but the eigenvalues of γ are equal. We have

T ′
3,m(x) =

1

2
χm(x)

∑

γ∈αZ·A′(F )

∑

δ∈A(F )\GL(2,F )

f(x−1δ−1γδx).

The factor 1
2 appears since diag(b, a) is conjugate to diag(a, b). To show that

T ′
3,m(x) = T3,m(x) it suffices to show that when f(x−1δ−1γδx) 6= 0,

χm(x) = 1− ξm(δx)− ξm(wδx),

namely if ht(x) ≥ m then either ht+(δx) ≥ m or ht+(wδx) ≥ m. So if
ht(x) ≥ m, then there is some η ∈ GL(2, F ) with ht+(ηx) ≥ m. By Lemma
5.3, ηδ−1γδη−1 ∈ αZA(F )N(F ), but this implies that ηδ−1 ∈ A(F )N(F )
or ηδ−1w ∈ A(F )N(F ). Correspondingly, ht+(δx) = ht+(ηx) ≥ m or
ht+(wδx) = ht+(ηx) ≥ m, but both inequalities cannot hold simultaneously if
m > 0.
Now

T ′
4,m(x) = χm(x)

∑

a∈αZ·F×

∑

δ∈F×N(F )\GL(2,F )

f(x−1δ−1 ( a a0 a ) δx).

To show that this equals T4,m(x) we need to check that when

f(x−1δ−1 ( a a0 a ) δx) 6= 0

and ht(x) ≥ m, then ht+(δx) ≥ m. Suppose then that ht+(ηx) ≥ m for
η ∈ GL(2, F ). Then by Lemma 5.3 we have

ηδ−1 ( a a0 a ) δη
−1 ∈ αZA(F )N(F ).

Hence ηδ−1 ∈ A(F )N(F ), so that ht+(δx) = ht+(ηx) ≥ m.

We conclude that tr θmr(f) =
∑

1≤i≤4 ti,m with

ti,m =

∫

αZ·GL(2,F )\GL(2,A)

Ti,m(x)dx.

To prove the proposition it suffices to show that ti,m = Si(f)+ ci(2m−1)+βm
for all i (1 ≤ i ≤ 4), where ci does not depend on m and limβm = 0. It is clear
that t1,m → S1(f) as m → ∞. As T2,m(x) is independent of m, t2,m = S2(f).
Now

t3,m =
1

2

∑

γ∈αZ·A′(F )

∫

αZ(A(F )\GL(2,A)

f(x−1γx)(1− ξm(x)− ξm(wx))dx

=
1

2

∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)s(x)dx
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where

s(x) =

∫

αZA(F )\A(A)

[1− ξm(yx)− ξm(wyx)]dy

= vol{y ∈ αZA(F )\A(A); ht+(yx) < n, ht+(wyx) < n}.
Note that for y ∈ A(A), ht+(yx) = ht+(y)+ht+(x) and ht+(wyx) = ht+(wx)−
ht+(y). Hence

s(x) = |{y ∈ A(A)/αZ · A(F ); ht+(wx) −m < ht+(y) < m− ht+(x)}|.

This is the number of integers between ht+(wx) − m and m − ht+(x). So
s(x) = 2m− 1− ht+(x)− ht+(wx).

Lemma 5.5. We have ht+(x) + ht+(wx) = −2r(x), where if x = a
(
1 y
0 1

)
k,

a ∈ A(A), k ∈ GL(2, O) and y ∈ A, we put r(x) =
∑

vmax(0, logq |yv|v).

Proof. Note that y is determined up to a change y 7→ by + c, b ∈ O×, c ∈ O,
so r(x) is well defined. The asserted relation does not change if x is replaced
by axk, a ∈ A(A), k ∈ GL(2, O), so we may assume x =

(
1 y
0 1

)
∈ N(A).

Then ht+(x) = 0, and ( 0 1
1 0 )

(
1 y
0 1

)
=
(

− 1
y 1

0 y

)(
1 0
1
y 1

)
implies that ht+(wx) =

−2r(x).

Lemma 5.5 implies that

t3,m = S3(f) + (m− 1

2
)

∑

γ∈αZ·A′(F )

∫

A(A)\GL(2,A)

f(x−1γx)dx.

Next

t4,m =
∑

a∈αZ·F×

∫

αZF×N(F )\GL(2,A)

f
(
x−1 ( a a0 a )x

)
(1− ξm(x))dx

=
∑

a∈αZ·F×

∫

{x∈αZF×N(F )\GL(2,A); ht+(x)<m}

f
(
x−1 ( a a0 a )x

)
dx.

Recall that θa,f(t) =
∫
αZF×N(F )\GL(2,A)

f
(
x−1 ( a a0 a ) x

)
tht

+(x)dx is a Laurent

series at t = 0 of a rational function of t with ζF (q
−1t)−1θa,f (t) ∈ C[t, t−1].

Suppose θa,f(t) =
∑

k uk(a)t
k. Then t4,m =

∑
a∈αZ·F×

∑
k<m uk(a). Since

ζF (q
−1t) has a simple pole at t = 1, we have that θa,f (t) =

ρ(a)
1−t + θa,f(t), with

θa,f (t) without poles on 0 < |t| ≤ 1. Then

θ̃a,f (t) =
1

2
(θa,f (t) + θa,f (t

−1)) =
1

2
(θa,f (t) + θa,f (t

−1)) +
1

2
ρ(a),

θ̃a,f (1) = θa,f (1) +
1

2
ρ(a) =

1

2
ρ(a) +

∑

k

(uk(a)− ρ(a))
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= lim
m→∞

[
∑

k<m

uk(a)− (m− 1

2
)ρ(a)].

Then

t4,m =
∑

a∈αZ·F×

θ̃a,f(1) + (m− 1

2
)ρ(a) + βm, βm → 0 as m→∞,

and S4(f) =
∑
a∈αZ·F× θ̃a,f (1). Proposition 5.2 follows. �

Note that βm is 0 for sufficiently large m, as will be seen below.

5.2 The Eisenstein contribution

Next we turn to computing tr(θmr
U
E(f)) for large m. Put WU

c = C∞
c (Yα)

U ,
WU
M = (1 +M)WU

c .

Proposition 5.6. The operator E∗ maps AUE isomorphically onto WU
M .

Proof. As AUE = E(WU
c ) and E∗E = 1+M , it suffices to show that kerE∗E =

kerE. For ϕ ∈ kerE∗E we have (Eϕ,Eϕ) = (E∗Eϕ,ϕ) = 0, hence Eϕ =
0.

Definition 1. Denote byWU
m the space of f inWU

c with f(x) = 0 if ht+(x) <
m. Denote by ξm also the operator WU

m → WU
m of multiplication by the

characteristic function of the set {x ∈ Yα; ht+(x) ≥ m}. [If m > 0 then ξm is
a left inverse to the operator 1 +M :WU

m →WU
M . Indeed, if f is in WU

m , then
(Mf)(x) = 0 already when ht+(x) > −m since ht+(wnx)+ht+(nx) < 0 implies
ht+(wnx) < m and so f(wnx) = 0.] Hence πm = (1 +M)ξm : WU

M → WU
M

satisfies πmπm = πm, for m > 0. Put πm = 1− πm.

Proposition 5.7. For sufficiently large m, E∗ intertwines θm with πm, thus
πmE

∗ = E∗θm, namely the diagram

AU
E

E∗

→ WU
M

θm↓ ↓πm

AU
E

E∗

→ WU
M

is commutative.

Proof. Suppose f ∈ AUE and (1− θm)f = 0. Then f(x) = 0 for x with ht(x) ≥
m. As ξm(x) 6= 0 only on x with ht+(x) ≥ m, we have 0 = (1 +M)ξmE

∗f =
(1 − πm)E∗f , the last equality as 1 − πm = πm = (1 +M)ξm. For such f we
have E∗θmf = E∗f and πmE

∗f = E∗f .
If f ∈ AUE and θmf = 0, then by Proposition 4.34 there is ϕ ∈ WU

m with
f = Eϕ. Then

πmE
∗f = πmE

∗Eϕ = πm(1 +M)ϕ = πm(1 +M)ξmϕ = πmπ
mϕ = 0,

hence E∗θmf = πmE
∗f for such f .

Any f ∈ AUE can be written as f = f1 + f2, f1 = (1 − θm)f , f2 = θmf , thus
θmf1 = 0 and (1 − θm)f2 = 0.
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Definition 2. Recall that Yα = αZA(F )N(A)\GL(2,A). Denote by σc, σ+,
σM the representations of GL(2,A) in the spaces

Wc = C∞
c (Yα), W+ = C∞

+ (Yα), WM = (1 +M)C∞
c (Yα).

Consider σc(f), σ+(f), σM (f) as operators in the spaces WU
c , WU

+ , WU
M .

Corollary 5.8. We have tr(θm · rUE(f)) = tr(πm · σM (f)).

Proof. The operator E∗ yields an isomorphism of AUE = E(WU
c ) with WU

M

intertwining θm with πm.

In the proof of Proposition 4.35 we introduced a structure of C[z, z−1]-module
on WU

c and WU
+ , as well as isomorphisms WU

c ≃ WU
0 ⊗C C[z, z−1] and WU

+ ≃
WU

0 ⊗C C((z)), where WU
0 = {f ∈ WU

c ; f(x) = 0 if ht+(x) 6= 0}. Under these
isomorphisms, the operator M :WU

c →WU
+ corresponds to the operator

M :WU
0 ⊗C C[z, z−1]→ WU

0 ⊗C C((z)),

which satisfies the conditions of Proposition 4.31, hence has the form

(Mu)(z) = P (z)u(z−1) for u ∈WU
0 ⊗C C[z, z−1]

which is viewed as a function of z with values in WU
0 . Here P (z) is a rational

function in z with values in AutWU
0 , and P (z−1) = P (z)−1.

Now σc(f) is an endomorphism of WU
c as a C[z, z−1]-module. The correspond-

ing endomorphism of the module WU
0 ⊗C C[z, z−1] is determined by a function

B(z) in End(WU
0 ) ⊗C C[z, z−1]. The endomorphism of WU

0 ⊗C C((z)) corre-
sponding to the operator σ+(f) is determined by the same function B(z). The
relation

Mσc(f) = σ+(f)M becomes P (z)B(z−1)u(z−1) = B(z)P (z)u(z−1)

for any u ∈WU
0 ⊗C C[z, z−1], thus B(z−1) = P (z)−1B(z)P (z).

Definition 3. Under the isomorphism WU
+ ≃ WU

0 ⊗C C((z)), the subspace
WU
M = (1 +M)WU

c is mapped onto the subspace L consisting of all rational
functions of the form u(z) + P (z)u(z−1), with u ∈ WU

0 ⊗C C[z, z−1]. Put

Lm = L ∩ (WU
0 ⊗C z

−m+1C[[z]]).

Denote by Lm the set of rational functions of the form

u(z) + P (z)u(z−1) with u ∈ WU
0 ⊗C z

−mC[z−1].

For sufficiently large m we have L = Lm⊕Lm. Under the isomorphismWU
M

∼→
L, the operator πm : WU

M → WU
M corresponds to the idempotent operator

L → L with kernel Lm and image Lm. This projection will also be denoted
by πm. Thus tr(πmσM (f)) = tr(πmB), where B : L → L is the operator of
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multiplication by B(z). On the left, πm is an operator on WU
M , on the right,

on L.
Fix Q1, Q2 ∈ M(k,C[z, z−1]), k ≥ 1, such that detQi 6= 0. Suppose the func-
tion Q2(z)

−1Q1(z) is regular at z =∞, thus Q1(z) ∈ Q2(z)M(k,C[[z−1]]), and
the function Q1(z)

−1Q2(z) is regular at z = 0, thus Q2(z) ∈ Q1(z)M(k,C[[z]]).
Put R = C[z, z−1]k. For m ≥ 1, put

Rm = R ∩ z1−mQ1(z)C[[z]]k ∩ zm−1Q2(z)C[[z−1]]k.

Also put
Rm− = z−mQ1(z)C[z−1]k Rm+ = zmQ2(z)C[z]k.

Then dimRm is finite.

Proposition 5.9. We have R = Rm− ⊕Rm ⊕Rm+ ,

Rm ⊕Rm+ = R ∩ z1−mQ1(z)C[[z]]k

and
Rm ⊕Rm− = R ∩ zm−1Q2(z)C[[z−1]]k.

Proof. The natural map ϕ : Rm− → X− = C((z))k/z1−mQ1(z)C[[z]]k is an
isomorphism (note that C((z))/z1−mC[[z]] ≃ z−mC[z−1] andQ1(z) is invertible
in GL(k,C((z))). The natural map

ψ : Rm+ → X+ = C((z−1))k/zm−1Q2(z)C[[z−1]]k

is then too. The natural map f : R/Rm → X−⊕X+ is injective (by definition
of Rm as the intersection of R and the denominators of X−, X+) and the
composition of the natural map Rm+ ⊕Rm− → R/Rm with f is ϕ⊕ ψ.

Definition 4. (1) Denote by prm : R→ R the projection with kernel Rm+⊕Rm−
and image Rm. (2) If A(z) is a matrix in M(k,C[z, z−1]), denote by A[z] also
the corresponding automorphism of R = C[z, z−1]k. Denote by A0 the constant
term of A(z).

Proposition 5.10. The trace tr(prm ·A[z]) is equal to

(2m−1) trA0−resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz−resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Proof. Define a projection prm+ : R→ R with image Rm+ and kernel Rm− +Rm,
and a projection prm− : R → R with image Rm− and kernel Rm+ + Rm. Analo-
gously to the decomposition R = Rm− ⊕Rm ⊕Rm+ , consider the decomposition

R = z−mC[z−1]k ⊕ (z1−mC[z]k ∩ zm−1C[z−1]k)⊕ zmC[z]k,

namely the case where Q1 = 1 = Q2. Denote the associated projections by pm− ,
pm, pm+ . Since the space z−mC[z−1]k/Rm− ∩ z−mC[z−1]k is finite dimensional,
the operator prm+ −pm+ has finite rank, and the operator prm− −pm− has finite
rank since zmC[z]k/Rm+ ∩ zmC[z]k is finite dimensional.
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Lemma 5.11. We have

tr(prm− ·A[z]− pm− · A[z]) =resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz,

as well as

tr(prm+ ·A[z]− pm+ · A[z]) = resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Proof. Denote by Prm− : C((z))k → C((z))k the projection with image
z−mQ1(z)C[z−1]k and kernel z1−mQ1(z)C[[z]]k. Denote by Pm− : C((z))k →
C((z))k the projection with image z−mC[z−1]k and kernel z1−mC[[z]]k (thus
the case of Q1 = 1). Denote by A((z)) the endomorphism of C((z))k which is
defined by multiplication by A(z). Then Prm− = Q1((z)) · Pm− ·Q1((z))

−1. Now

Im(Prm− ·A((z))− Pm− ·A((z))) ⊂ C[z, z−1]k,

and the restriction of the operator

Prm− ·A((z))− Pm− ·A((z)) to C[z, z−1]k (⊂ C((z))k)

is equal to prm− ·A[z]− pm− · A[z]. Hence

tr(prm− ·A[z]− pm− · A[z]) = tr(Prm− · A((z))− Pm− · A((z)))

= tr(Q1((z)) · Pm− ·Q1((z))
−1 ·A((z))− Pm− ·A((z)))

= tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z)) · C((z))), C(z) = Q1(z)
−1A(z).

As trA(z)Q′
1(z)Q1(z)

−1 = trC(z)Q′
1(z), to prove the first claim of the lemma

it suffices to show that

tr(Q1((z)) · Pm− · C((z))− Pm− ·Q1((z))C((z))) = resz=0 trC(z)Q
′
1(z)dz

for any Q1(z) ∈ M(k,C[z, z−1]), C(z) ∈ M(k,C((z))). By linearity, it suffices
to show this when the matrices Q1(z) and C(z) have a single nonzero entry.
Thus we may assume k = 1, and that Q1(z) = zb. Thus we need to verify that
for any formal power series c(z) =

∑
d cdz

d in C((z)), we have

tr[(((zb)) · Pm− − Pm− · ((zb)))c((z))] = bc−b,

where the operations here are in C((z)). The left side is equal to

tr[(((zb)) · Pm− · ((z−b))− Pm− ) · ((zb))c((z))] = tr[(Pm−b
− − Pm− ) · ((zb))c((z))]

= tr




c−b c−b+1 ... c−1
c−b−1 c−b ... c−2

...
... ...

...
c1−2b c2−2b ... c−b


 = bc−b.

The second claim of the lemma is similarly proven.
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As prm−pm = (1− prm− − prm+ )− (1 − pm− − pm+ ) = (pm− − prm− ) + (pm+ − prm+ ),
Lemma 5.11 implies that tr(prm ·A[z]− pm ·A[z])

= − resz=0 tr[A(z)Q
′
1(z)Q1(z)

−1dz]− resz=∞ tr[A(z)Q′
2(z)A2(z)

−1dz].

Since tr(pm · A[z]) = (2m− 1) trA0, the proposition follows. �

Proposition 5.12. Let ι : C[z, z−1]k → C[z, z−1]k be the involution (ιu)(z) =
u(z−1). For sufficiently large m we have 2 tr(ι ·prm ·A[z]) = trA(1)+trA(−1).
Proof. Write A(z) =

∑
k Akz

k, Ak ∈ M(k,C). Then tr(ι · pm · A[z]) =∑
|i|<m trA2i. If m is big enough the right side here is equal to 1

2 (trA(1) +

trA(−1)). It remains to show that tr(ι · prm ·A[z]) = tr(ι · pm · A[z]) for large
enough m. As prm−pm = pm+ − prm+ +(pm− − prm− ), it suffices to show that for
large enough m

tr(ι · (pm+ − prm+ ) · A[z]) = 0 = tr(ι · (pm− − prm− ) ·A[z]).

Note that prm+ = [zm] pr0+[z
−m] and pm+ = [zm]p0+[z

−m], where as usual [zm]
here means the operator of multiplication by zm. The operators prm+ and pm+
were defined only for m > 0, but the definition extends to m = 0 so that the
two relations above hold. Now

tr(ι · (pm+ − prm+ ) · A[z]) = tr(ι · [zm](p0+ − pr0+)[z
−m] ·A[z])

= tr([z−m]ι · (p0+ − pr0+)[z
−m] ·A[z]) = tr(ι · (p0+ − pr0+)[z

−m] ·A[z][z−m])
= tr(ι · (p0+ − pr0+)[z

−2m] ·A[z]).
Recall that dimV is finite, where V = im[ι(p0+−pr0+)]. If m is big enough then

[z−2m] · A[z]V ⊂ z−1C[z−1]k ∩ z−1Q2(z)C[[z−1]]k ⊂ ker p0+ ∩ ker pr0+ .

Hence tr(ι · (p0+− pr0+)[z
−2m] ·A[z]) is zero. Hence tr(ι(pm+ − prm+ )A[z]) is zero.

The proof of tr(ι(pm− − prm− )A[z]) = 0 for large m is analogous.

Definition 5. Fix P ∈ GL(k,C(z)) such that P (z) is regular at z = 0 and
P (z)−1 is regular at z =∞. Put S = C[z, z−1]k + P · C[z, z−1]k,

Sm = S ∩ z1−mC[[z]]k ∩ zm−1P ·C[[z]]k, Sm = z−mC[z−1]k + zmP ·C[z]k.

Fix B inM(k,C[z, z−1]) such that P−1BP lies inM(k,C[z, z−1]). Then BS ⊂
S. We denote by [B] or B[z] the operator S → S of multiplication by B(z).

Proposition 5.13. We have S = Sm ⊕ Sm. Denote by psm : S → S the
projection with image Sm and kernel Sm. Then

tr(psm ·[B]) = (2m− 1) trB0

− resz=∞ tr[B(z)P ′(z)P (z)−1]dz + tr([B]; S/C[z, z−1]k).

Here B0 is the constant term of B = B(z), and tr([B];S/C[z, z−1]k) denotes the
trace of the endomorphism of S/C[z, z−1]k induced by multiplication by B(z).
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Proof. The space S is a k-dimensional free C[z, z−1]-submodule of C(z)k. Hence
there exists a matrixD in GL(k,C(z)) such that S = D·C[z, z−1]k. Since S con-
tains C[z, z−1]k, D−1 lies in M(k,C[z, z−1]). Since S contains P ·C[z, z−1]k we
deduce that D−1P ∈M(k,C[z, z−1]). Put Q1 = D−1, Q2 = D−1P . The func-
tion Q1(z)

−1Q2(z) = P (z) is regular at z = 0. The function Q2(z)
−1Q1(z) is

regular at z =∞. Under the isomorphism S→̃C[z, z−1]k, u 7→ D−1u, the sub-
spaces Sm and Sm correspond to the subspaces Rm and Rm of Proposition 5.9.
The multiplication [B] : S → S corresponds to [A] : C[z, z−1]k → C[z, z−1]k,
A = D−1BD. Then Proposition 5.10 implies the first part of the proposition,
as well as the equality

tr(psm ·B[z]) = (2m− 1) trA0 − resz=0 trA(z)Q
′
1(z)Q1(z)

−1dz

− resz=∞ trA(z)Q′
2(z)Q2(z)

−1dz.

Here A0 is the constant term of A(z). We have

tr(AQ′
1Q

−1
1 ) = − tr(D−1BD′) = − tr(BD′D−1),

tr(AQ′
2Q

−1
2 ) = − tr(D−1BP ′P−1D−D−1BD′) = tr(BP ′P−1)− tr(BD′D−1).

As A = D−1BD, we have trA = trB, and trA0 = trB0. Hence

tr(psm ·B[z]) = (2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz

+resz=0 trB(z)D′(z)D(z)−1dz + resz=∞ trB(z)D′(z)D(z)−1dz

+(2m− 1) trB0 − resz=∞ trB(z)P ′(z)P (z)−1dz

−
∑

ζ∈C×

resz=ζ trB(z)D′(z)D(z)−1dz.

Lemma 5.14. Suppose T ∈ GL(k,C((z))), C ∈ M(k,C[[z]]) and T−1CT ∈
M(k,C[[z]]). Then resz=0 trC(z)T

′(z)T (z)−1 = a−b, where a denotes the trace
of the operator multiplication by C in the space (C[[z]]k + TC[[z]]k)/TC[[z]]k,
while b denotes the trace of multiplication by C in the space

(C[[z]]k + TC[[z]]k)/C[[z]]k.

Proof. Both sides of the asserted equality do not change if (T,C) is replaced
by (UTV,UCU−1) where U, V ∈ GL(k,C[[z]]). We may then assume that
T is a diagonal matrix, hence that k = 1. When k = 1 both sides of the
asserted relation are simply mC(0), where m is the multiplicity of zero of T (z)
at z = 0.

It follows from the lemma that − resz=ζ tr(B(z)D′(z)D(z)−1)dz is just the
trace of the operator of multiplication by B(z) on the ζ component of the
module S/C[z, z−1]k. This, and the equality just before the lemma, implies the
proposition. �
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Suppose we have P (z−1) = P (z)−1. Replace the assumption P (z)−1B(z)P (z)
∈M(k,C[z, z−1]) in Proposition 5.13 with the stronger assumption

P (z)−1B(z)P (z) = B(z−1).

Recall that L is the space of all rational functions of the form u(z)+P (z)u(z−1)
with u ∈ C[z, z−1]m. In view of the stronger assumption, L is invariant under
multiplication by B.

Definition 6. Denote by BL the operator of multiplication by B on L. Put
Lm = L∩ z1−mC[[z]]k. Denote by Lm the set of rational functions of the form
u(z) + P (z)u(z−1) with u(z) ∈ z−mC[z−1]k.

Proposition 5.15. The space Lm is finite dimensional, and L = Lm ⊕ Lm.
Denote by πm : L→ L the projection with image Lm and kernel Lm. Suppose
the function P (z) is regular at z = ±1. Then for large enough m we have that
tr(πmBL) equals

(m− 1

2
) trB0 −

1

2
resz=∞ tr(B(z)P ′(z)P (z)−1)dz

+
c

2
+

1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z), and c is the trace of the operator of
multiplication by B(z) in the space (C[z, z−1]k + P (z)C[z, z−1]k)/C[z, z−1]k.

Proof. Let S, Sm, Sm, psm, B be as in Proposition 5.13. From P (z−1) =
P (z)−1 it follows that if u ∈ S then ũ, given by ũ(z) = P (z)u(z−1), is also in
S. Define τ : S → S by τ(u) = ũ. Then τ2 = 1, L = {u ∈ S; τ(u) = u},
Lm = Sm ∩ L, Lm = Sm ∩ L, and

tr(πmBL) =
1

2
tr(psm ·B[z]) +

1

2
tr(τ · psm ·B[z]).

The finite dimensionality of Sm and Proposition 5.13 then imply that the space
Lm is finite dimensional, and L = Lm ⊕ Lm. To deduce the last claim of the
proposition from Proposition 5.13, it remains to show that

tr(τ · psm ·[B]) =
1

2
(tr(B(1)P (1)) + tr(B(−1)P (−1)))

for large enough m.
Let D, Q1, Q2 be as in Proposition 5.13. Then under the isomorphism
S→̃C[z, z−1]k, u 7→ D−1u, the operator psm : S → S translates into the
operator prm (of Proposition 5.9), and multiplication by B : S → S translates
into multiplication by

A = D−1BD, C[z, z−1]k → C[z, z−1]k.
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The map τ : S → S translates into

[C]ι : C[z, z−1]k → C[z, z−1]k, (ιu)(z) = u(z−1), C(z) = D(z)−1P (z)D(z−1).

Hence

tr(τ · psm ·B[z]) = tr(C[z]ι · prm ·A[z]) = tr(ιprmA[z]C[z]),

which – by Proposition 5.9 – is

1

2
(trA(1)C(1) + trA(−1)C(−1)) = 1

2
tr(B(1)P (1) + trB(−1)P (−1));

note that D(z) is regular at z = ±1, since so is P (z).

If F ∈ M(k,C) and Y ⊂ Ck is an F -invariant subspace, write tr(F, Y ) for the
trace of F on Y .

Proposition 5.16. Fix P (z) ∈ GL(k,C(z)) with P (z−1) = P (z)−1. Suppose
that the function P (z) is regular on |z| = 1 and at z = 0, and that it has order
1 at all its poles ζ1, . . . , ζs inside {z ∈ C; 0 < |z| < 1}. Denote by Yi the image
of the operator limz→ζi(z − ζi)P (z) acting on Ck. Fix B(z) ∈ M(k,C[z, z−1])
and suppose B1(z) = P (z)−1B(z)P (z) ∈M(k,C[z, z−1]). Then

tr(psm ·[B]) = (2m− 1) trB0 +
1

2πi

∫

|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s

tr(B(ζi) +B1(ζ
−1
i ), Yi),

with B0 being the constant term of B(z).
If in addition B1(z) = B(z−1) then

tr(πmBL) = (m− 1

2
) trB0 +

1

4πi

∫

|z|=1

trB(z)P ′(z)P (z)−1dz

+
∑

1≤i≤s

tr(B(ζi), Yi) +
1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Note that the subspace Yi of Ck is invariant under B(ζi) and B1(ζ
−1
i ).

Proof. In view of Propositions 5.13 and 5.15 it suffices to verify that

1

2πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz +
∑

1≤i≤s

tr(B(ζi) +B1(ζ
−1
i ), Yi)

= tr([B], S/C[z, z−1]k)− resz=∞ trB(z)P ′(z)P (z)−1dz,

where
S = C[z, z−1]k + P (z)C[z, z−1]k.
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For any ζ 6= 0 in C denote by Mζ and Nζ the ζ-components of the C[z, z−1]-
modules S/C[z, z−1]k and S/P (z)C[z, z−1]k, respectively. From Cauchy’s for-
mula and Lemma 5.14, it follows that

1

2πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz =
∑

1<|ζ|<∞

tr([B],Mζ)

−
∑

1<|ζ|<∞

tr([B], Nζ)− resz=∞ tr(B(z)P ′(z)P (z)−1)dz.

On the other hand, tr([B], S/C[z, z−1]k) =
∑
ζ∈C× tr([B],Mζ). Hence the re-

quired identity follows from

∑

0<|ζ|<1

tr([B],Mζ) =
∑

1≤i≤s

tr(B(ζi), Yi),

∑

1<|ζ|<∞

tr([B], Nζ) =
∑

1≤i≤s

tr(B1(ζ
−1
i ), Yi).

If P (z) is regular at ζ then Mζ = 0. At each ζi, P (z) has a pole of order
one. Hence there exists isomorphisms Mζi→̃Yi which translate the operator
[B] :Mζi →Mζi to the operator of multiplication by B(ζi) on Yi. This implies
the first identity.
For the second identity, for any ζ ∈ C×, denote by N ζ the ζ-component
of the module (C[z, z−1]k +P (z)−1C[z, z−1]k)/C[z, z−1]k. Multiplication by
P (z)−1 induces an isomorphism Nζ→̃Nζ . Under this isomorphism, multiplica-
tion by B : Nζ → Nζ translates into multiplication by B1 : N ζ → N ζ , hence
tr([B], Nζ) = tr([B1], N ζ). From P (z)−1 = P (z−1) we deduce that N ζ = 0 if
P (z) is regular at z = ζ−1, and that tr([B1], N ζ−1

i
) = tr(B1(ζ

−1
i ), Yi). This

implies the second identity, hence the proposition.

5.3 Spectral terms

To deduce the trace formula from Proposition 5.16, we use properties of the
function M(µ1, µ2, t).
Recall that we have the projection πm : L→ L with kernel Lm and image Lm,
and BL denotes the operator of multiplication by B(z) on L. The operator P (z)
is the restriction to the subspace of U -invariant vectors of the operator M on
the space I0 = ⊕I0(µ1, µ2) (µ1, µ2 range over the characters of A×/F× · αZ),
which maps I0(µ1, µ2) to I0(µ2, µ1) via M(µ1, µ2, z).

Proposition 5.17. There exists af ∈ C such that for sufficiently large m,

tr(πmBL) = (m− 1

2
)af −

∑

5≤i≤8

Si(f).
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Proof. By Proposition 4.29 the function P (z) has two poles in the domain
|z| ≤ 1, namely at z = ±q−1/2, each of order 1. We have P (z−1) = P (z)−1 and
P (z)−1B(z)P (z) = B(z−1). Hence the final claim of Proposition 5.16 applies
and implies that for large enough m,

tr(πm[B]) = (m− 1

2
) trB0+

1

4πi

∮

|z|=1

trB(z)P ′(z)P (z)−1dz+tr(B(q−1/2), Y+)

+ tr(B(−q−1/2), Y−) +
1

4
[tr(B(1)P (1)) + tr(B(−1)P (−1))].

Here B0 is the constant term of B(z) and the image of the operator
limz→±q−1/2 (z∓q−1/2)P (z) is denoted by Y±. The proposition follows once we
show that

∮

|z|=1

trB(z)P ′(z)P (z)−1dz = −4πi(S5(f) + S6(f)), (1)

tr(B(q−1/2), Y+) + tr(B(−q−1/2), Y−) = −S8(f), (2)

tr(B(1)P (1)) + tr(B(−1)P (−1)) = −4S7(f). (3)

Denote by r(z) the representation of GL(2,A) by right translation in I(z) =
⊗µ1,µ2I(µ1νz−1 , µ2νz). Here µ1, µ2 are characters of A×/F× ·αZ. Let r(z, f) be
the convolution operator defined by r(z) and the compactly supported function
f in C∞

c (GL(2,A)). Identify, as usual, I(z) to the space I0, and consider r(z, f)
as an operator in I0. From Proposition 4.36, B(z) coincides with the restriction
of r(z, f) to IU0 . Also, P (z) coincides with the restriction ofM(z) to IU0 . Hence
the integral on the left of (1) equals

∮

|z|=1

tr r(z, f)M ′(z)M(z)−1dz

=
∑

µ1,µ2

∮

|z|=1

tr I(µ2νz−1 , µ1νz, f)M
′(µ1, µ2, z)M(µ1, µ2, z)

−1dz

=
∑

µ1,µ2

∮

|z|=1

trM(µ1, µ2, z)
−1I(µ2νz−1 , µ1νz, f)M

′(µ1, µ2, z)dz

=
∑

µ1,µ2

∮

|z|=1

tr I(µ1νz, µ2νz−1 , f)M(µ1, µ2, z)
−1M ′(µ1, µ2, z)dz.

Then (1) follows from Proposition 4.9.
For (2), it follows from Proposition 4.29 that Y+ = LU , with L = ⊕Lµ, Lµ ⊂
I(µ, µ) being generated by the function x 7→ µ(x). The operator r(q−1/2, f)
acts in Lµ as the operator of multiplication by

∫
GL(2,A) f(x)µ(det x)dx. Hence

tr(B(q−1/2), Y+) = tr(r(q−1/2, f), L) =
∑

µ

∫

GL(2,A)

f(x)µ(det x)dx,
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where µ ranges over the set of characters of A×/F× · αZ. Similarly

tr(B(q−1/2), Y−) = tr(r(−q−1/2, f), L)

=
∑

µ

∫

GL(2,A)

f(x)µ(det x)ν−1(detx)dx.

Every character of A× which is trivial on F× · α2Z is either trivial on F× · αZ

or its product with ν−1 is, so (2) follows.

For (3) note that

trB(1)P (1) = tr r(1, f)M(1) =
∑

µ

tr I(µ, µ, f)M(µ, µ, 1) = −
∑

µ

tr I(µ, µ, f)

by Proposition 4.30. Similarly trB(−1)P (−1) = −∑µ tr I(µν−1, µν−1, f).

This completes the proof of the trace formula.
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Petersson, Astérisque 243 (1997), ii+329 pp.

[Lg94] S. Lang, Algebraic Number Theory, GTM 110, Springer Verlag, second
edition, 1994.

[LP76] P.D. Lax, R.S. Phillips, Scattering theory for automorphic functions,
Annals of Math. Studies, 87, Princeton Univ. Press, Princeton, N.J.,
1976.

[S97] J.-P. Serre, Algebraic groups and class fields, GTM 117, Springer Ver-
lag, 1997.

[T68] J. Tate, Residues of differentials on curves, Ann. Sci. École Norm.
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Abstract. As a first step to deriving effective dynamics and ray op-
tics, we prove that the perturbed periodic Maxwell operator in d = 3
can be seen as a pseudodifferential operator. This necessitates a better
understanding of the periodic Maxwell operator M0. In particular,
we characterize the behavior of M0 and the physical initial states at
small crystal momenta k and small frequencies. Among other things,
we prove that generically the band spectrum is symmetric with re-
spect to inversions at k = 0 and that there are exactly 4 ground state
bands with approximately linear dispersion near k = 0.
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1 Introduction

Photonic crystals are to the transport of light (electromagnetic waves) what
crystalline solids are to the transport of electrons [JJWM08]. Progress
in the manufacturing techniques have allowed physicists to engineer pho-
tonic crystals with specific properties – which in turn has stimulated even
more theoretical studies. One topic which has seen relatively little at-
tention, though, is the derivation of effective dynamics in perturbed pho-
tonic crystals for states from a narrow range of intermediate frequencies
(e. g. [OMN06, RH08, APR12, EG13]). Mathematically rigorous results are
even more scarce: apart from [MP96] concerning only the unperturbed case, the
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only rigorous work covering second -order perturbations is by Allaire, Palom-
baro and Rauch [APR12]. Hence, the correct form of the subleading-order
terms has not yet been established – rigorously or non-rigorously.

This paucity of results motivated the two authors to apply a perturbation
scheme developed by Panati, Spohn and Teufel [PST03b, PST03a], space-
adiabatic perturbation theory, to derive effective dynamics and ray optics equa-
tions for adiabatically perturbed Maxwell operators. Among other things, we
settle the important question about the correct form of the next-to-leading
order terms in the ray optics equations; these terms are necessary to explain
topological effects in photonic crystals. The current paper is a preliminary, but
necessary step to implement space-adiabatic perturbation theory [DL13]: we
establish that the Maxwell operator can be seen as a semiclassical pseudodiffer-
ential operator (ΨDO) with band structure defined over the cotangent bundle
over the Brillouin torus.

This is not just the content of an innocent lemma, it turns out there are quite a
few technical and conceptual hurdles to overcome. To mention but one, we need
a better understanding of the band structure of the periodic Maxwell operator.
Despite the body of work on periodic Maxwell operators (see e. g. [Kuc01] for
a review), proofs of rather fundamental results are either scattered throughout
the literature or, in some cases, seem to have not been published at all.

Before we expound on this point in more detail, let us recall the L2-theory of
electromagnetism first established in [BS87]. The two dynamical equations

∂tE = +ε−1∇x ×H, ∂tH = −µ−1∇x × E, (1)

can be recast as a time-dependent Schrödinger equation

i∂tΨ = MwΨ (2)

where Ψ = (E,H) consists of the electric field E = (E1, E2, E3) and the mag-
netic field H = (H1, H2, H3), and

Mw :=

(
0 +i ε−1∇×

x

−iµ−1∇×
x 0

)
(3)

is the Maxwell operator. Here we used ∇×
x as shorthand for the curl (cf. Ap-

pendix A). The second set of Maxwell equation which imposes the absence of
sources,

∇x · εE = 0, ∇x · µH = 0, (4)

enter as a constraint on the initial conditions for equation (2) or, equivalently,
one can restrict the domain to the physical states of Mw (see Section 2.1). We
shall always make the following assumptions on the material weights w = (ε, µ):
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Assumption 1.1 (Material weights) Assume ε, µ ∈ L∞
(
R3,MatC(3)

)
are

hermitian-matrix-valued functions which are bounded away from 0 and +∞,
i. e. 0 < c idR3 ≤ ε, µ ≤ C idR3 for some 0 < c ≤ C <∞. We say the material
weights (ε, µ) are real iff their entries are all real-valued functions.

These assumptions are rather natural in the setting we are interested in: First
of all, asking for boundedness of ε and µ only instead of continuity is necessary
to include the most common cases, because many photonic crystals are made
by alternating two different materials, e. g. a dielectric and air, in a periodic
fashion. The selfadjointness of the multiplication operator defined by the elec-
tric permittivity tensor ε∗ = ε and the magnetic permeability tensor µ∗ = µ
ensure that the medium neither absorbs nor amplifies electromagnetic waves.
The positivity of ε and µ excludes the case of metamaterials with negative re-
fraction indices (see e. g. [SPV+00]); moreover, combined with the boundedness
away from 0 and +∞, it implies that ε−1 and µ−1 exist as bounded operators
which again satisfy Assumption 1.1. Lastly, our assumptions also include the
interesting case of gyrotropic photonic crystals where the offdiagonal entries of
ε = ε∗ and µ = µ∗ are complex-valued functions.

Under these assumptions, we can proceed with a rigorous definition of the
Maxwell operator (3): it can be conveniently factored into

Mw =W Rot . (5)

where the first term is the bounded operator involving the weights

W (x̂) :=

(
ε−1(x̂) 0

0 µ−1(x̂)

)
(6)

and the free Maxwell operator

Rot :=

(
0 +i∇×

x

−i∇×
x 0

)
=

(
0 +i curl

−i curl 0

)
. (7)

Rot equipped with the domain D := D(Rot) ⊂ L2(R3,C6) is selfadjoint (see
Appendix A for a precise characterization of D). For reasons that will be clear
in the following, we refer to (5) as the physical representation of the Maxwell
operator. From the representation (5) one gets two immediate consequences:
first, D(Mw) = D since W is bounded and second, Mw is not self-adjoint
on L2(R3,C6). In order to cure the lack of selfadjointness one introduces the
weighted scalar product

〈
Ψ,Φ

〉
w
:=
〈
Ψ,W−1Φ

〉
L2(R3,C6)

=
〈
W−1Ψ,Φ

〉
L2(R3,C6)

. (8)

on the Banach space L2(R3,C6), and we will denote this Hilbert space with Hw.
Then, one can show that the Maxwell operator Mw is self-adjoint on D ⊂ Hw
(cf. Theorem 2.1). Only with respect to the correctly weighted scalar product,
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the evolutionary semigroup e−itMw is unitary – which physically corresponds
to conservation of field energy E

(
E(t),H(t)

)
= E(E,H),

E(E,H) =
1

2

∫

R3

dxE(x) · ε(x)E(x) +
1

2

∫

R3

dxH(x) · µ(x)H(x)

=
1

2

∥∥(E,H)
∥∥2
w
.

Periodic Maxwell operators describe photonic crystals; here, the material
weights ε and µ are periodic with respect to some lattice Γ. As the analog
of periodic Schrödinger operators, one can use Bloch-Floquet theory to ana-
lyze the properties of Mw (cf. Section 3). Hence, many properties of photonic
crystals mimic those of crystalline solids (both physically and mathematically).
However, the rapidly increasing interest for photonic crystals resides in the fact
that, as they are artificially created by patterning several materials, they can
be engineered to have certain desired properties. To name one example, one of
the early successes was to design a photonic semiconductor with a band gap in
the frequency spectrum [JJ00, JJWM08]. Such a “semiconductor for light” is
of great interest to the quantum optics community (e. g. [Yab93]).
Since perfectly periodic media are only a mathematical abstraction, one is led to
study more realistic models of photonic crystals. One well-explored possibility
is to include effects of disorder by interpreting ε and µ as random variables
and leads to the “Anderson localization of light” (see e. g. [Joh91, FK96b,
FK97] and references therein). We will concern ourselves with another class
of perturbations where the perfectly periodic weights ε and µ are modulated
slowly,

ελ(x) :=
ε(x)

τε(λx)2
, µλ(x) :=

µ(x)

τµ(λx)2
. (9)

The perturbation parameter λ ≪ 1 quantifies the separation of spatial scales
on which (ε, µ) and the scalar modulation functions (τε, τµ) vary. The latter
are assumed to verify the following

Assumption 1.2 (Modulation functions) Suppose τε, τµ ∈ C∞b (R3) are
bounded away from 0 and +∞ as well as τε(0) = 1 and τµ(0) = 1.

To shorten the notation, we define Mλ := M(ελ,µλ) and Hλ := H(ελ,µλ).

As mentioned in the very beginning our goal is to rigorously derive both, the
effective “quantum-like” and “semiclassical” dynamics for perturbed Maxwell
operators Mλ in the adiabatic limit λ≪ 1 [DL13]. Apart from ray optics, we
will derive effective light dynamics e−itMeff which approximate the full light
dynamics e−itMλ for initial states supported in a narrow range of frequencies,

∥∥∥
(
e−itMλ − e−itMeff

)
ΠΠΠλ

∥∥∥
Hλ

= O(λ∞) . (10)
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ΠΠΠλ is the projection on the superadiabatic subspace associated with a nar-
row range of frequencies and, up to a unitary transformation, the effective
operator Meff can be constructed order-by-order in λ as the Weyl quantization
Opλ(Meff) of a semiclassical symbol; in case additional assumptions are placed
on the frequency bands, the leading-order terms are given by

Meff(r, k) =
∑

n∈I

τε(r) τµ(r)ωn(k) |χn〉〈χn|+O(λ) .

Here, the ωn are the Bloch frequency band functions and χn denotes a fixed
orthonormal basis in the reference space [DL13, Theorem 3.1]. As usual one
can also prove that the subleading-order terms ofMeff(r, k) contain geometric
quantities such as the Berry connection.
Similarly, the superadiabatic projection ΠΠΠλ is also constructed on the level of
symbols in terms ofMMMλ, the symbol of the Maxwell operator, and hence, prov-
ing that the Maxwell operator is a ΨDO associated to a semiclassical symbol
is the first order of business.

Theorem 1.3 Suppose Assumptions 3.1 on the material weights (ε, µ) and 1.2
on the modulation functions (τε, τµ) are satisfied. Then the Maxwell operator
(in Zak representation) MZ

λ = Opλ(MMMλ) is the pseudodifferential operator
associated to

MMMλ(r, k) =

(
τ2ε (r) 0
0 τ2µ(r)

)
M0(k)+

+ λW

(
0 −i τε(r)

(
∇rτε

)×
(r)

+i τµ(r)
(
∇rτµ

)×
(r) 0

)
(11)

where

M0(k) :=W Rot(k)

:=

(
ε−1(ŷ) 0

0 µ−1(ŷ)

) (
0 −(−i∇y + k)×

+(−i∇y + k)× 0

)

is the periodic Maxwell operator acting on the fiber at k defined in terms of
the weight operator W and the free Maxwell operator Rot(k). The function
MMMλ ∈ AS1

1,eq

(
B
(
d, L2(T3,C6)

))
is an equivariant semiclassical operator-valued

symbol in the sense of Definition 4.1.

For the precise definitions and the proof, we refer to Section 4.

Despite the similarities to the case of the Bloch electron [PST03a], applying
space-adiabatic perturbation theory to photonic crystals required us to solve
numerous technical and conceptual problems. In addition to defining pseudo-
differential operators on weighted L2-spaces, one other major difficulty is to
make O(λn) estimates in norm, because the norm also depends on λ (see
e. g. equation (10)). Such estimates are crucial when one wants to make sense
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of perturbation expansions of operators. This conceptual problem is solved by
introducing a λ-independent auxiliary representation (cf. Section 2.2).

However, the biggest obstacle to control the symbol MMMλ is to gain a better
understanding of the periodic Maxwell operator M0(k) and its band structure.
In particular, pseudodifferential theory requires us to understand the pointwise
behavior of M0(k) and associated objects. Even though k 7→M0(k) is linear
and defined on a k-independent domain, and thus trivially analytic, the split-
ting of the fiber Hilbert space h0 = J0(k)⊕⊥G0(k) into physical and unphysical
states is not even continuous at k = 0. Here, h0 is defined as the Banach space
L2(T3,C6) equipped with a scalar product analogous to (8), and elements of
J0(k) satisfy the source-free condition on the fiber space. We characterize how
this discontinuity enters into the band structure of M0(k), and show that it is
connected to the ground state bands, i. e. those frequency bands which go to 0
linearly as k → 0. The precise band structure of MZ

0 =
∫ ⊕

B
dkM0(k) is studied

in great detail in Section 3.3 where the following result is proven:

Theorem 1.4 (The band picture of MZ
0 ) Suppose ε and µ satisfy As-

sumption 3.1.

(i) For each n ∈ Z, the band functions R3 ∋ k 7→ ωn(k) are continuous,
analytic away from band crossings and Γ∗-periodic.

(ii) If the weights (ε, µ) are real, then for all n ∈ Z, there exists j ∈ Z such
that ωn(k) = −ωj(−k) holds for all k ∈ R3.

(iii) MZ
0 has 4 ground state bands indexed by the set Igs which are character-

ized as follows:

(1) ωn(k) = 0 ⇔ n ∈ Igs and k = 0.

(2) ωn(k) = ±cn(k) |k|+ o(|k|) holds for n ∈ Igs where the cn(k) are the
positive eigenvalues of the matrix (36) for the unit vector k := k

|k| .

The content of Theorem 1.4 is sketched in Figure 1. Among other things,
we prove that the ground state bands of the Maxwell operator always have a
doubly degenerate conical intersection at k = 0 and ω = 0.

The remainder of the paper is dedicated to explaining and proving Theorem 1.3
and Theorem 1.4: In Section 2, we give some basic facts on the Maxwell opera-
tor. Section 3 is devoted to the study of the properties of the periodic operator
MZ

0 with a particular attention to the analysis of the band picture. Finally, in
Section 4 where discuss pseudodifferential theory on weighted Hilbert spaces
and finish the proof of Theorem 1.3. For the benefit of the reader, we have
included some auxiliary results in Appendix A.

Before we proceed, let us collect some conventions and introduce notation used
throughout the remainder of the paper.
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Figure 1: A sketch of a typical band spectrum ofM0(k)|J0(k). The 2+2 ground
state bands with linear dispersion around k = 0 are blue. Positive frequency
bands are drawn using solid lines while the lines for the symmetrically-related
negative frequency bands are in the same color, but dashed.

1.1 Notation and remarks

The Maxwell operator is naturally defined on weighted L2-spaces Hw where
the scalar product is weighted by the tensors w = (ε, µ) according to the
prescription (8). We will use capital greek letters such as Ψ and Φ to denote
elements of Hw and small greek letters with the appropriate index to indicate
they are the electric (first three) or the magnetic (last three) component1 , for
instance Ψ = (ψE , ψH) and Φ = (φE , φH). Componentwise the scalar product
(8) reads

〈
Ψ,Φ

〉
w
:=

∫

R3

dx ψE(x) · ε(x)φE(x) +
∫

R3

dxψH(x) · µ(x)φH (x) . (12)

Let us point out that with this convention the complex conjugation is implicit
in the scalar product like a · b :=∑N

j=1 aj bj on CN . Equation (12) leads to the
natural (orthogonal) splitting

Hw := L2
ε(R

3,C3)⊕⊥ L
2
µ(R

3,C3) ,

1Note that even though physical electromagnetic fields are real-valued, we assume Ψ ∈ Hw

takes values in the complex vector space C6, and hence our distinction in notation to the
physical fields (E,H). It turns out to be crucial in the analysis of photonic crystals to admit
complex solutions.
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where L2
ε(R

3,C3) is the Banach space L2(R3,C3) with the scalar product
twisted by the tensor ε and similarly for µ.
Even though the Hilbert space structure of Hw depends crucially on the weights
w = (ε, µ), the Assumption 1.1 implies the equivalence of the norm ‖·‖w with
the usual L2(R3,C6)-norm ‖·‖. This means that Hw agrees with the usual
L2(R3,C6) as Banach spaces. For many arguments in this paper, only the
Banach space structure of Hw is important, and thus, whenever convenient, we
will use the canonical identification of Hw ≃ L2(R3,C6). In particular, any
closed operator T on Hw can also be seen as a closed operator on L2(R3,C6)
which we denote with the same symbol. We will use the same notation for
weighted L2-spaces over T3: for instance, the Hilbert space

h0 := L2
ε(T

3,C3)⊕⊥ L
2
µ(T

3,C3)

is defined as the Banach space L2(T3,C6) equipped with a scalar product anal-
ogous to equation (12).
Let us turn to conventions regarding operators: Suppose A : D0(A) ⊆ B1 −→
B2 is a possibly unbounded linear operator between the Banach spaces B1 and
B2 defined on the dense domain D0(A). The operator A is called closable if
and only if for every {ψn} ⊂ D0(A) such that ψn → 0, then also Aψn → 0. The
closure of the operator A (still denoted with the same symbol) is the extension

of A to D(A) := D0(A)
‖·‖A with respect to the graph norm

‖ψ‖A :=
√
‖ψ‖2B1

+ ‖Aψ‖2B2
. (13)

When D0(A) = D(A), the operator A is said to be closed. A core C of a closed
operator is any subset of D(A) which is dense with respect to ‖·‖A. Given
any closed operator A : B1 −→ B2 between Banach spaces, the kernel (or null
space) and range of A are defined as

kerA :=
{
ψ ∈ B1 | Aψ = 0

}
⊂ D(A) ⊆B1,

ran0A :=
{
Aψ | ψ ∈ D(A)

}
⊆ B2

While kerA is automatically a closed subspace of B1, in general ran0A is not.

For this reason, we need to introduce its closure ranA := ran0A
‖·‖B2 .

Other properties, most notably selfadjointness, crucially depend on the scalar
product. Whenever the Hilbert structure of Hw is important, we will make this
explicit either in the text or in notation. To give one example, we distinguish
between the direct sum J⊕G and the orthogonal sum J⊕⊥G of vector spaces.
We found it convenient to use the shorthand v×ψ := v × ψ to associate the
antisymmetric matrix

v× =




0 −v3 +v2
+v3 0 −v1
−v2 +v1 0


 (14)

to any vectorial quantity v = (v1, v2, v3).

Documenta Mathematica 19 (2014) 63–101



The Perturbed Maxwell Operator . . . 71

1.2 Acknowledgements

The authors thank L. Esposito for sparking the interest in this topic. The
foundation of this article was laid during the trimester program “Mathemat-
ical challenges of materials science and condensed matter physics”, and the
authors thank the Hausdorff Research Institute for Mathematics for providing
a stimulating research environment. Moreover, G. D. gratefully acknowledges
support by the Alexander von Humboldt Foundation and GNFM, “progetto
giovani 2012”. M. L. is supported by Deutscher Akademischer Austauschdi-
enst. The authors also appreciate the useful comments and references provided
by C. Sparber and the two referees.

2 The perturbed Maxwell operator

We will use this section to recall standard facts on the Maxwell operator [BS87,
Kuc01] and introduce the main definitions and notions. This initial part is
completed by a compendium of classical results in vector field analysis sketched
in Appendix A.

2.1 General properties of the Maxwell operator

In order to identify the domain D(Mw) explicitly we start with the free case
Mw=(1,1) = Rot which is reviewed in detail in Appendix A.5. Assumption 1.1
on w = (ε, µ) implies that Hw ≃ L2(R3,C6) agree as Banach spaces and that
W defines a bounded operator with bounded inverse. Moreover, Rot|C∞

c
is a

densely defined operators on Hw and Rot is its unique closed extension defined
on the domain D := D(Rot) (cf. eq. (59)). Since, the graph norms ‖·‖Mw

and
‖·‖Rot are equivalent, this immediately implies

D(Mw) = D =
(
kerDiv ∩H1(R3,C6)

)
⊕ ranGrad, (15)

because Mw|C∞
c

=W Rot|C∞
c

is closable and its unique closure is the product
of the bounded operator W and (Rot,D).
The weighted scalar products (8) also implies Mw is not only closed but also
symmetric, and thus, selfadjoint: for all Ψ,Φ ∈ D, we have

〈
Ψ,MwΦ

〉
w
=
〈
Ψ,W−1W RotΦ

〉
L2(R3,C6)

=
〈
RotΨ,Φ

〉
L2(R3,C6)

=
〈
W−1W RotΨ,Φ

〉
L2(R3,C6)

=
〈
MwΨ,Φ

〉
w
.

The weights in the scalar products imply that the Helmholtz-Hodge-Weyl-Leray
decomposition of the domain (15) is no longer orthogonal with respect to 〈· , ·〉w.
However, Theorem A.1 readily generalizes to the case with weights and yields
an orthogonal splitting

Hw = Jw ⊕⊥ G (16)
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where we identify the physical (or transversal) subspace

Jw = ker
(
DivW−1

)
=
{
Ψ ∈ Hw | Div

(
W−1Ψ

)
= 0
}
=W J (17)

and the unphysical (or longitudinal) subspace

G = ranGrad =
{
Ψ = Gradϕ ∈ Hw | ϕ ∈ L2

loc(R
3,C2)

}
= kerRot. (18)

We also call G the space of zero modes, because G = kerRot coincides with
kerMw asW has a bounded inverse. From the first equation of (8) we conclude
that Jw = G⊥w is the 〈· , ·〉w-orthogonal complement to G. We will denote the
orthogonal projections onto Jw and G with Pw and Qw. For later reference,
we summarize these facts into a

Theorem 2.1 ([BS87]) Suppose Assumption 1.1 on ε and µ is satisfied.

(i) The Maxwell operator Mw equipped with the (ε, µ)-independent domain

D =
(
D ∩H1(R3,C6)

)
⊕ ranGrad =

(
kerDiv ∩H1(R3,C6)

)
⊕G

defines a selfadjoint operator on Hw, and H
1(R3,C6) and C∞c (R3,C6) are

cores.

(ii) The Maxwell operator Mw = Mw|Jw⊕⊥0|G is block diagonal with respect
to the (ε, µ)-dependent orthogonal decomposition of Hw = Jw ⊕⊥ G. In
this decomposition, the domain splits into

D =
(
D ∩ Jw

)
⊕⊥ G .

(iii) The restrictions of Mw to Jw or G again define selfadjoint operators,
and thus, the dynamics e−itMw leave Jw and G invariant.

With the exception of the explicit computation of the domain, all of this is
contained in [BS87, Lemma 2.2].
We have mentioned the significance of admitting complex vector fields in the
introduction (cf. Footnote 1), and the question arises whether we can construct
solutions by evolving Ψ ∈ Hw in time and then taking real and imaginary
part of Ψ(t) = e−itMwΨ. This question will be crucial as to why usually one
needs to consider “counter-propagating waves” whose frequencies ±ω differ by
a sign. So let (CΨ)(x) := Ψ(x), Ψ ∈ L2(R3,CN), be component-wise complex
conjugation; for simplicity, we shall always use the same symbol independently
of N ∈ N. If ε and µ are real, then the weights commute with C, and

(
CMwCΨ

)E
= C

(
+i ε−1(x̂)∇×

x

)
CψH = −i ε−1(x̂)∇x × ψH

as well as an analogous computation for the other component of MwΨ imply

CMw C = −Mw . (19)

Consequently, the spectra for Maxwell operators with real weights are symmet-
ric with respect to reflections at 0; the same holds for all spectral components.
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Theorem 2.2 Suppose Assumption 1.1 on the weights ε and µ is satisfied,
and assume in addition that they are real. Then equation (19) holds and thus
the spectra σ(Mw) = −σ(Mw) and σ♯(Mw) = −σ♯(Mw), ♯ = pp, ac, sc, are
symmetric with respect to reflections about the origin 0 ∈ R.

In case ε and µ have non-trivial complex offdiagonal entries, the weights no
longer commute with complex conjugation, and (19) as well as the above the-
orem do not hold.

Remark 2.3 Symmetries of type (19), i. e. anti-unitary operators which map
Mw onto −Mw, are known in the physics literature as particle-hole symmetries
or PH symmetries for short [AZ97, SRFL08]. However, as many physicists and
mathematicians consider the second-order equation ∂2tΨ = −M2

wΨ because
it is block-diagonal, the PH symmetry for Mw is replaced by a time-reversal
symmetry for the second-order equation. Ordinary Schrödinger operators H =
−∆x + V on the other hand possess time-reversal symmetry, C H C = H .
Discrete symmetries which square to ±id have been classified systematically
for topological insulators (cf. Table II in [SRFL08]); the presence of the PH
symmetry means that Mw is in symmetry class D (provided there are no other
symmetries). According to general results on the topological classification of
band insulators (aka periodic operators), one expects that D-type operators in
dimension d = 2 admit protected states parametrized by Z-valued topological
invariants (cf. Table I in [SRFL08]). This suggests there is an analog of the
quantum Hall effect in 2-dimensional photonic crystals [RH08]. In contrast,
for topological invariants to exist in d = 3, additional symmetries appear to
be necessary (e. g. ε = µ or ε and µ have a common center of inversion); the
presence of PH symmetry alone seems to prevent the formation of topologically
protected states. Certainly, a direct proof for the Maxwell operator establishing
the existence (d = 2) or absence (d = 3) of topological invariants would be an
interesting avenue to explore.

2.2 Slow modulation of the Maxwell operator

One of the key differences between Maxwell and Schrödinger operators is that
perturbations are multiplicative rather than additive. Given material weights ε
and µ (which verify Assumption 1.1), we define their slow modulations (ελ, µλ)
to be of the form (9). Assumption 1.2 for the modulation functions (τε, τµ) en-
sures that also (ελ, µλ) satisfy Assumption 1.1 because they are again bounded
away from 0 and +∞.
We denote the λ-dependence of the weights with w(λ) = (ελ, µλ) and define
shorthand notation for the λ-dependent family of Hilbert spaces, projections
and Maxwell operators by setting

Hλ := Hw(λ) , Jλ := Jw(λ) (spaces)

Mλ := Mw(λ) , Pλ := Pw(λ) , Qλ := Qw(λ) (operators) .

Similarly, we will denote the scalar product and norm of Hλ by 〈· , ·〉λ and ‖·‖λ.
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To compare these operators for different values of λ, we will represent them on
a common, λ-independent Hilbert space: the scaling operator

S(λx̂) : Hλ −→ H0, S(λx̂) =

(
τ−1
ε (λx̂) 0

0 τ−1
µ (λx̂)

)
, (20)

is a unitary since it is surjective and preserves scalar products. The Maxwell
operator in this new representation can be calculated explicitly: for instance,
the upper-right matrix element of Mλ transforms to

τ−1
ε (λx̂)

(
−τ2ε (λx̂) ε−1(x̂) (−i∇x)×

)
τµ(λx̂) =

= −τε(λx̂) τµ(λx̂)
(
ε−1(x̂) (−i∇x)× + λ ε−1(x̂)

(
−i∇x ln τµ

)×
(λx̂)

)
,

and if we introduce the functions τ(λx) := τε(λx) τµ(λx) and

Υ(λx) :=

(
0 +i

(
∇x ln τµ

)×
(λx)

−i
(
∇x ln τε

)×
(λx) 0

)
,

we can write the Maxwell operator as

Mλ := S(λx̂)Mλ S(λx̂)
−1 =M0 + λM1

= τ(λx̂)M0 + λ τ(λx̂)W Υ(λx̂) . (21)

As a product of bounded multiplication operators, M1 is an element of B(H0).
The regularity of τε and τµ also ensures the domain is preserved.

Lemma 2.4 S(λx̂) maps D bijectively onto itself.

This means all of the operators,M0, Mλ andMλ, have the same λ-independent
domainD and cores (e. g.H1(R3,C6)) – even though the splitting of the domain
into physical and unphysical subspaces depends on λ. We denote the invariant
subspaces

Jλ := S(λx̂)Jλ , Gλ := S(λx̂)G

of Mλ with regular letters instead of bold letters, and in the same vein, the
corresponding projections are

Pλ := S(λx̂)Pλ S(λx̂)
−1 , Qλ := S(λx̂)Qλ S(λx̂)

−1 .

For λ = 0, the λ-independent representation coincides with the physical rep-
resentation since S(λx̂)|λ=0 = idH0 reduces to the identity by Assumption 1.2,
and we have J0 = J0 and G0 = G for the subspaces, as well as P0 = P0 and
Q0 = Q0 for the corresponding projections.
The unitarity of S(λx̂) and Theorem 2.1 imply H0 = Jλ⊕⊥Gλ is a λ-dependent
decomposition of H0 into 〈· , ·〉0-orthogonal subspaces which are invariant under
the dynamics e−itMλ .
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3 Properties of the periodic Maxwell operator

Photonic crystals are materials where the unperturbed material weights (ε, µ)
are periodic with respect to a lattice

Γ := spanZ{e1, e2, e3} ∼= Z3 ,

and henceforth, we shall always make the following

Assumption 3.1 (Photonic crystal) Suppose that ε and µ are Γ-periodic
and satisfy Assumption 1.1.

The lattice periodicity suggests we borrow the language of crystalline solids
[GP03]: we can decompose vectors x = y + γ in real space R3 ∼= W × Γ into
a component y which lies in the so-called Wigner–Seitz cell W and a lattice
vector γ ∈ Γ. Whenever convenient we will identify this fundamental cell W
with the 3-dimensional torus T3.
Given a lattice Γ, then there is a canonical way to decompose momentum
space R3 ∼= B×Γ∗: here, the dual lattice Γ∗ = spanZ{e∗1, e∗2, e∗3} is generated by
the family of vectors which are defined through the relations ej · e∗n = 2π δjn,
j, n = 1, 2, 3. The standard choice of fundamental cell

B :=
{∑3

j=1αj e
∗
j ∈ R3

∣∣ α1, α2, α3 ∈ [−1/2,+1/2)
}

is called (first) Brillouin zone, and elements k ∈ B are known as crystal mo-
mentum.

3.1 The Zak transform

The lattice-periodicity of ε and µ sugests to use a Fourier basis: for any CN -
valued Schwartz function Ψ ∈ S(R3,CN ) we define the Zak transform [Zak68]
evaluated at k ∈ R3 and y ∈ R3 as

(ZΨ)(k, y) :=
∑

γ∈Γ

e−ik·(y+γ)Ψ(y + γ) . (22)

The Zak transform is a variant of the Bloch-Floquet transform with the follow-
ing periodicity properties:

(ZΨ)(k, y − γ) = (ZΨ)(k, y) γ ∈ Γ

(ZΨ)(k − γ∗, y) = e+iγ∗·y(ZΨ)(k, y) γ∗ ∈ Γ∗

In other words, ZΨ is a Γ-periodic function in y and periodic up to a phase in
k. The Schwartz functions are dense in H0, so

Z : H0 −→ L2
eq(R

3, h0) ∼= L2(B) ⊗ h0
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extends to a unitary map between H0 and the L2-space of equivariant functions
in k with values in h0 := L2

ε(T
3,C3)⊕⊥ L2

µ(T
3,C3),

L2
eq(R

3, h0) :=
{
Ψ ∈ L2

loc(R
3, h0)

∣∣ Ψ(k − γ∗) = e+iγ∗·ŷΨ(k) a. e. ∀γ∗ ∈ Γ∗
}
,

(23)

which is equipped with the scalar product

〈Ψ,Φ〉eq :=

∫

B

dk
〈
Ψ(k),Φ(k)

〉
h0

where

〈
Ψ(k),Φ(k)

〉
h0

:=

∫

T3

dy ψE(k, y) · ε(y)φE(k, y)+

+

∫

T3

dy ψH(k, y) · µ(y)φH(k, y) .

Due to the (quasi-)periodicity of Zak transformed functions, they are uniquely
determined by the values they take on B× T3.
To see how the Maxwell operator transforms when conjugating it with Z, we
compute the Zak representation of its building block operators positions x̂ and
momentum −i∇x (which are equipped with the obvious domains):

Z x̂Z−1 = i∇k (24)

Z (−i∇x)Z−1 = idL2(B) ⊗ (−i∇y) + k̂ ⊗ idh0 ≡ −i∇y + k̂ (25)

The common domains of the components i∂kj and −i∂yj + k̂j Zak transform to
L2
eq(R

3, h0) ∩H1
loc

(
R3, h0

)
and

ZH1(R3,C6) = L2
eq

(
R3, H1(T3,C6)

) ∼= L2(B) ⊗H1(T3,C6) . (26)

Note that the position operator in Zak representation does not factor, unless
we consider Γ-periodic functions ε,

Z ε(x̂)Z−1 = idL2(B) ⊗ ε(ŷ) ≡ ε(ŷ) . (27)

Operators A : D(A) −→ H0 which commute with lattice translations, e. g. op-
erators of the form (25), (27) or the periodic Maxwell operator, fiber in k,

AZ = ZAZ−1 =

∫ ⊕

B

dkA(k) ,

and the fiber operators at k ∈ R3 and k−γ∗, γ∗ ∈ Γ∗, are unitarily equivalent,

A(k − γ∗) = e+iγ∗·ŷA(k) e−iγ∗·ŷ , (28)

Operator-valued functions k 7→ A(k) which satisfy (28) are called equivariant.
It is for this reason that it suffices to consider all objects only for k ∈ B and
extend them by equivariance if necessary.
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3.2 Analytic decomposition of the fiber Hilbert space

Clearly, Q0 and P0 also commute with lattice translations, and thus, the Zak
transform yields a fiber decomposition into

QZ
0 := Z Q0Z−1 =

∫ ⊕

B

dk Q0(k) , PZ
0 := Z P0Z−1 =

∫ ⊕

B

dk P0(k) .

These fibrations also identify physical and unphysical subspaces of the fiber
Hilbert space

h0 = J0(k)⊕⊥ G0(k)

for each k ∈ B where G0(k) = ranQ0(k) and J0(k) = ranP0(k). A priori, all
we know is that this fibration is measurable in k. However, we are interested
in the analyticity properties of the fiber projections. Figotin and Kuchment
have recognized that k 7→ Q0(k) and thus also k 7→ P0(k) are not analytic at
k ∈ Γ∗ [FK96a]. The purpose of this section is to define regularized projections
k 7→ Qreg

0 (k) and k 7→ P reg
0 (k) which are analytic on all ofR3. These regularized

projections enter crucially in the proof on the existence of ground state bands
(Theorem 1.4 (iii)).

Lemma 3.2 (i) The orthogonal projections k 7→ Q0(k) and k 7→ P0(k) onto
unphysical and physical subspace are analytic on R3 \ Γ∗.

(ii) The regularized orthogonal projections k 7→ Qreg
0 (k) and k 7→ P reg

0 (k)
are analytic on all of R3. Moreover, P reg

0 (γ∗) = P0(γ
∗) and Qreg

0 (γ∗) =
Q0(γ

∗) holds for all γ∗ ∈ Γ∗.

(iii) dim
(
G0(k) ∩ J reg

0 (k)
)
= 2 for all k ∈ R3 \ Γ∗

Essentially, the idea for the definition of Qreg
0 (k) is already contained in the

proofs of Lemma 51 and Corollary 52 of [FK96a], so we will briefly sketch the
construction of Q0(k) and then proceed to define Qreg

0 (k).
Assume from now on that k ∈ B. The idea is to use the fact that G0(k) :=

ran0 Grad(k) and define an auxiliary projection Q̃0(k) = Grad(k)T (k) with
range G0(k) as the product of the operator

Grad(k) = (∇y + ik,∇y + ik) : H1(T3,C2) −→ h0.

which depends analytically on k ∈ R3 and its left-inverse T (k). Such a left-
inverse exists if and only if Grad(k) is injective, and if it exists, it is also
bounded [FK96a, p. 52] and analytic in k [ZKKP75, Theorem 4.4]. Note that
the closedness of ran0 Grad(k) = Grad(k)H1(T3,C2) for k 6= 0 follows from
the boundedness of T (k).
One can check that for k 6= 0, the operator Grad(k) is injective while for k = 0
there are zero modes,

Z(T3,C2) :=

{
y 7→

(
βE

βH

) ∣∣∣
(
βE

βH

)
∈ C2

}
= kerGrad(0) .
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Consequently, the projection Q̃0(k) = Grad(k)T (k) can only be defined in
this fashion for k 6= 0, and there is a point of non-analyticity at k = 0, because
ranGrad(0) is “smaller” by two dimensions than G0(k), k 6= 0.

Even though Q̃0(k) need not be an orthogonal projection (the proofs in [All67]
and [ZKKP75] only make reference to the Banach algebra structure), these

arguments show that G0(k) = ranQ0(k) = ran Q̃0(k) depends analytically on
k away from Γ∗. Thus, the unique orthogonal projection Q0(k) onto G0(k)
necessarily also depends analytically on k ∈ R3 \ Γ∗.
The behavior of Grad(k) at k = 0 suggests to define the regularized unphysical
space as

Greg
0 (k) := ran0 Grad(k)|H1

reg

where the closed subspace

H1
reg(T

3,C2) :=
{
ϕ = (ϕE , ϕH) ∈ H1(T3,C2)

∣∣ 〈1, ϕ♯
〉
L2(T3)

= 0, ♯ = E,H
}

= Z(T3,C2)⊥ ∩H1(T3,C2)

consists of all H1-functions orthogonal to the constant functions. Now
Grad(k)|H1

reg
is injective for all k ∈ B, and by modifying the estimates on

[FK96a, p. 52] we deduce there exists an analytic bounded left-inverse Treg(k)
for all k ∈ B. Hence, the composition

k 7→ Q̃reg
0 (k) := Grad(k)|H1

reg
Treg(k)

defines a projection onto Greg
0 (k) that depends analytically on k for all of B,

including k = 0; again, the boundedness of Treg(k) implies Greg
0 (k) is a closed

subset of h0. By the same arguments as above, the uniquely determined orthog-

onal projection Qreg
0 (k) onto Greg

0 (k) inherits the analyticity of Q̃reg
0 (k) [Kat95,

Theorem 6.35]. At k = 0, this regularized projection coincides with the usual
one, Qreg

0 (0) = Q0(0), as their ranges

Greg
0 (0) = ranGrad(0)|H1

reg
= ranGrad(0) = G0(0) (29)

are the same (this also proves that G0(0) is closed). Moreover, k 7→ Qreg
0 (k)

has a unique extension by equivariance (cf. (28)) to all of R3.
Now the analyticity of the orthogonal projection

P reg
0 (k) := idh0 −Qreg

0 (k)

onto the 〈· , ·〉h0
-orthogonal complement

J reg
0 (k) := Greg

0 (k)⊥

follows from the analyticity of k 7→ Qreg
0 (k).
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Before we prove (iii), it is instructive to juxtapose the decomposition h0 =
J0(k)⊕⊥ G0(k) with the regularized decomposition

h0 = J reg
0 (k)⊕⊥ G

reg
0 (k)

for the special case M0 = Rot, i. e. ε = 1 = µ. The difference between the
two is how the constant functions y 7→ (αE , αH) ∈ C6, are distributed amongst
them: for k 6= 0 only certain constant functions belong to J0(k),

y 7→
(
αE

αH

)
∈ J0(k) ⇐⇒ Div(k)

(
αE

αH

)
= −i

(
k · αE
k · αH

)
=

(
0
0

)
,

while for k = 0 all constant functions are elements of J0(0) and the physical
subspace “grows” by 2 dimensions at the expense of G0(0). In contrast, the
regularized physical subspace J reg

0 (k) contains all constant functions for all
values of k. We will now extend these arguments to the case of non-trivial
weights (ε, µ).

Proof (Lemma 3.2) We have already shown (i) and (ii) in the text preceding
the lemma and it remains to prove (iii). Without loss of generality, we restrict
ourselves to k ∈ B. First of all, we note that the unphysical subspace

G0(k) =

{
∑

γ∗∈Γ∗

(
βE(γ∗) (γ∗ + k)
βH(γ∗) (γ∗ + k)

)
e+iγ∗·y

∣∣∣

{∣∣β♯(γ∗) γ∗
∣∣
}
γ∗∈Γ∗

∈ ℓ2(Γ∗), ♯ = E,H

}

and the regularized unphysical subspace

Greg
0 (k) =

{
∑

γ∗∈Γ∗\{0}

(
βE(γ∗) (γ∗ + k)
βH(γ∗) (γ∗ + k)

)
e+iγ∗·y

∣∣∣

{∣∣β♯(γ∗) γ∗
∣∣
}
γ∗∈Γ∗

∈ ℓ2(Γ∗), ♯ = E,H

}
. (30)

coincide for k = 0, and we immediately deduce

dim
(
G0(0) ∩ J reg

0 (0)
)
= dim

(
G0(0) ∩ J0(0)

)
= 0 .

Hence, we assume from now on k ∈ B \ {0}. That means, we can write the in-
tersection as the regularized projection applied to a two-dimensional subspace,

G0(k) ∩ J reg
0 (k) = P reg

0 (k)

{
y 7→

(
βE k
βH k

) ∣∣∣ βE , βH ∈ C
}
.

The image is again two-dimensional: if we write any Ψ = ΨQ ⊕⊥ ΨP ∈ h0
as the sum of ΨQ ∈ Greg

0 (k) and ΨP ∈ J reg
0 (k), then in view of equation (30)
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the γ∗ = 0 Fourier coefficient of ψQ = Qreg
0 (k)Ψ necessarily has to vanish,

ψ̂Q(0) = 0. Thus, ψ̂P (0) = ψ̂(0) follows, and the map

C2 ∋
(
βE

βH

)
7→ P reg

0 (k)

(
βE k
βH k

)
∈ J reg

0 (k)

is injective. That means dim
(
G0(k) ∩ J reg

0 (k)
)
= 2 for k ∈ R3 \ Γ∗. �

3.3 Analyticity properties of the fiber Maxwell operator

The Zak transform fibers the periodic Maxwell operator in crystal momentum,

MZ
0 := ZM0Z−1 =

∫ ⊕

B

dkM0(k) . (31)

Each of the fiber operators

M0(k) =W Rot(k) =

(
0 −ε−1 (−i∇y + k)×

+µ−1 (−i∇y + k)× 0

)
,

acts on a potentially k-dependent subspace d(k) of h0, and has a splitting into
physical and unphysical part, M0(k) = M0(k)|J0(k) ⊕ 0|G0(k). In any case, the
selfadjointness of M0 on D implies the selfadjointness of each fiber operator
M0(k) on D(k). Since the domain of each fiber operator M0(k) may depend
on k, it is not obvious whether k 7→ M0(k) is analytic in k even though the
operator prescription is linear.

Proposition 3.3 (Analyticity) Suppose Assumption 3.1 on ε and µ holds.

(i) The domain of selfadjointness

d =
(
kerDiv(k) ∩H1(T3,C6)

)
⊕ ranGrad(k) (32)

of M0(k) is independent of k.

(ii) The map R3 ∋ k 7→M0(k) ∈ B(d, h0) is analytic.

Proof (i) Since H1(R3,C6) is a core for M0 (Theorem 2.1 (i)) and (26),
we know that H1(T3,C6) is a common core of M0(k) for all values of k.
Moreover, combining equations (59) and (26) with the fact that Div and
Grad also fiber in k yields the decomposition of d as a k-dependent direct
sum as given by (32).

The difference of the two fiber operators restricted to H1(T3,C6) extends
to a bounded operator on all of h0,

M0(k)|H1 −M0(k
′)|H1 =W

(
0 −(k − k′)×

+(k − k′)× 0

)

=:

3∑

j=1

(kj − k′j)Aj =: (k − k′) ·A . (33)
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Using
∥∥k ·A

∥∥
B(h0)

= |k| ‖W‖B(h0), it is straightforward to see that these

graph norms of M0(k) and M0(0) are equivalent on H1(T3,C6),

(
1 + |k| ‖W‖

)−1 ‖Ψ‖M0(0) ≤ ‖Ψ‖M0(k) ≤
(
1 + |k| ‖W‖

)
‖Ψ‖M0(0) .

The equivalence of the graph norms now implies that the domains, seen
as completions of H1(T3,C6) with respect to these graph norms, are in-
dependent of k,

d(k) = H1(T3,C6)
‖·‖

M0(k) = H1(T3,C6)
‖·‖

M0(0) = d(0) .

(ii) By (i) the domain d of each M0(k) is independent of k, and thus the
analyticity of the linear polynomial k 7→M0(k) is trivial. �

The fibration of MZ
0 can be used to extract a great deal of information on the

spectra of M0 and M0(k):

Theorem 3.4 (Spectral properties) Suppose Assumption 3.1 on ε and µ
is satisfied. Then for any k ∈ R3 the following holds true:

(i) σ
(
M0(k)|G0(k)

)
= σess

(
M0(k)|G0(k)

)
= σpp

(
M0(k)|G0(k)

)
= {0}

(ii) σ
(
M0(k)|J0(k)

)
= σdisc

(
M0(k)|J0(k)

)

(iii) σ
(
M0(k)|Jreg

0 (k)

)
= σdisc

(
M0(k)|Jreg

0 (k)

)
= σ

(
M0(k)

)

(iv) σ(M0) =
⋃

k∈B

σ
(
M0(k)

)
=
⋃

k∈R3

σ
(
M0(k)

)

(v) σ(M0) = σac(M0) ∪ σpp(M0)

Proof (i) For any ϕ ∈ C∞c (R3,C2), the vector Grad(ϕ) ∈ G0 is an element
of the unphysical subspace, and thus we have found an eigenvector to 0,

M0(k)(ZΨ)(k) =
(
ZM0Ψ

)
(k) = 0.

This means we have found a countably infinite family of eigenvectors, and
we have shown (i).

(ii) According to Lemma A.4,
(
Rot(k)|JRot(k)−z

)−1
is compact for all k ∈ R3

where JRot(k) = kerDiv(k) is the physical subspace for the free Maxwell

operator. Because we can write
(
M0(k)|J0(k) − z

)−1
as a product of

bounded operators and
(
Rot(k)|JRot(k)−z

)−1
[SEK+05, equation (4.23)],

the resolvent of M0(k)|J0(k) is also compact. Thus, the spectrum of
M0(k)|J0(k) is purely discrete.

(iii) This follows from (ii) and the observation that by Lemma 3.2 (iii), J0(k)
and J reg

0 (k) differ by an at most 2-dimensional subspace J reg
0 (k)∩G0(k).
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(iv) The proof is analogous to that of [FK96a, Corollary 57].

(v) From (iv) we know that σ(M0) can be written as the union of the spec-
tra of the fiber operators M0(k). Because these spectra σ

(
M0(k)

)
={

ωn(k)
}
n∈Z

in turn can be expressed in terms of piecewise analytic fre-

quency band functions k 7→ ωn(k), n ∈ Z (cf. Theorem 1.4 (i)), σsc(M0)
must be empty. �

Remark 3.5 (Absolute continuity of σ
(
M0|J0

)
) Unlike in the case of

periodic Schrödinger operators, it has not yet been proven that the spectrum
of M0|J0 is purely absolutely continuous. To show σ

(
M0|J0

)
= σac

(
M0|J0

)
, all

of the known proofs reduce the Maxwell operator to a possibly non-selfadjoint
Schrödinger-type operator with magnetic field, and these transformations in-
volve derivatives of ε and µ [Mor00, Sus00, KL01]. Hence, one needs additional
regularity assumptions on ε and µ; the best currently known are ε, µ ∈ C1(R3)
[KL01, Section 7.4]. This means, even though it is widely expected that the
spectrum is always purely absolutely continuous, flat bands (apart from ω ≡ 0)
currently cannot be excluded unless we make additional regularity assumptions
on ε and µ.

So far, most spectral and analytic properties mirror of MZ
0 those of periodic

Schrödinger operators, but there are two important differences: (i) M0 is not
bounded from below and (ii) in case of real weights the PH symmetry of the
spectrum (cf. Theorem 2.2) implies a symmetry for the frequency band spec-
trum (cf. Figure 1).
The first item in conjunction with the non-analyticity of J0(k) at k ∈ Γ∗

potentially complicates the labeling of frequency bands. For simplicity, we
solve this using the band picture proven in Theorem 1.4: first of all, we know
there exists an infinitely degenerate flat band ω0(k) = 0 associated to the
unphysical states (cf. Theorem 3.4 (i)). Moreover, it is easy to prove that 0
is an eigenvalue of M0(k)|J0(k) if and only if k ∈ Γ∗. Away from k ∈ Γ∗,
we repeat non-zero eigenvalues ωj(k) of M0(k) according to their multiplicity,
arrange them in non-increasing order and label positive (negative) eigenvalues
with positive (negative) integers, i. e. away from k ∈ Γ∗ we set

. . . ≤ ω−2(k) ≤ ω−1(k) < ω0(k) = 0 < ω1(k) ≤ ω2(k) ≤ . . .

Moreover, due to the analyticity of k 7→ M0(k), the eigenvalues depend on k
in a continuous fashion, and we extend this labeling by continuity to k ∈ Γ∗.
This procedure yields a family

{
k 7→ ωn(k)

}
n∈Z

of Γ∗-periodic functions.

Two types of bands are special: beside the zero mode band ω0(k) = 0 which is
due to states in G0(k), the ground state bands are those of lowest frequency in
absolute value:

Definition 3.6 (Ground state bands) We call a frequency band k 7→
ωn(k) of M

Z
0 a ground state band if and only if
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(i) lim
k→0

ωn(k) = 0 and

(ii) ωn is not identically 0 in a neighborhood of k = 0.

Moreover, we define Igs ⊂ Z to be the set of ground state band indices.

The ground state bands can be recovered from the space of zero modes

GS := kerM0(0) ∩ J0(0) .

using analytic continuation, and hence, also the use of P reg
0 (k) instead of P0(k)

even though they coincide at k = 0.

Lemma 3.7 (Ground state eigenfunctions at k = 0) Suppose Assump-
tion 3.1 holds true. Then GS = P reg

0 (0)
{
y 7→ a | a ∈ C6

}
is six-dimensional

and any of its elements can be uniquely written as

Ψa(y) :=
(
P reg
0 (0)a

)
(y) =

∑

γ∗∈Γ

Ψ̂a(γ
∗) e+iγ∗·y

for some a ∈ C6. The Fourier coefficients Ψ̂a(γ
∗) =

(
ψ̂Ea (γ

∗), ψ̂Ha (γ∗)
)
satisfy

the following relations:

Ψ̂a(0) = a ∈ C6 (34)

ψ̂♯a(γ
∗) ∝ γ∗ ∀γ∗ ∈ Γ∗ \ {0}, ♯ = E,H

Proof First of all, seeing asW is bounded with bounded inverse, kerM0(k) =
kerRot(k). A simple computation (cf. Lemma A.4) yields that any Ψ ∈
kerRot(0) is of the form

Ψ = a+ΨG

for some a ∈ C6 and ΨG ∈ Greg
0 (0) = G0(0). Applying P reg

0 (0) to both sides
yields P reg

0 (0)Ψ = Ψa and consequently, dimGS ≤ 6.

From
[
M0(k), P

reg
0 (k)

]
= 0 we deduce P reg

0 (0)
{
y 7→ a | a ∈ C6

}
⊆ GS. More-

over, in view of (30), y 7→ a ∈ C6 is an element of Greg
0 (0) = G0(0) if and only

if a = 0. Hence, a 7→ Ψa is injective and

dimP reg
0 (0)

{
y 7→ a | a ∈ C6

}
= dimGS = 6 .

Finally, P reg
0 (0)

(
Ψa − a

)
= 0 means Ψa − a ∈ Greg

0 (0), and thus using equa-

tion (30) once more, we deduce Ψ̂a(γ
∗) ∝ γ∗ and Ψ̂a(0) = a. �

We now proceed to the proof of Theorem 1.4 which establishes the frequency
band picture for periodic Maxwell operators (cf. Figure 1).
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Proof (of Theorem 1.4) (i) Since M0(k) is isospectral to its restriction
M0(k)|Jreg

0 (k), let us consider the latter. First of all, k 7→ ω0(k) = 0 is
trivially analytic, we may assume n 6= 0. Thus, the analyticity away from
band crossings follows from the purely discrete nature of the spectrum of
M0(k)|Jreg

0 (k) (Theorem 3.4 (iii)), the analyticity of k 7→M0(k) (Propo-

sition 3.3 (ii)) and k 7→ P reg
0 (k) (Lemma 3.2) combined with standard

perturbation theory in the sense of Kato [Kat95].

The Γ∗-periodicity of k 7→ ωn(k) is deduced from the equivariance of
k 7→M0(k).

(ii) Now assume in addition that ε and µ are real. For n = 0, we trivially
find ω0(k) = 0 = −ω0(−k). So from now on, suppose n ∈ Z \ {0}.
One can check that upon Zak transform, the PH operator (complex
conjugation) CZ := ZCZ−1 acts on elements of Ψ ∈ L2

eq(B, h0) as(
CZΨ

)
(k) = Ψ(−k). Combined with CZ MZ

0 = −MZ
0 C

Z which follows
from equation (19) since ε and µ are real, a straight-forward calculation
shows that if un(k) is an eigenfunction to ωn(k), then

(
CZun

)
(k) is an

eigenfunction to −ωn(−k), and we have shown (ii).

(iii) To show (1), we will prove

0 ∈ σ
(
M0(k)|J0(k)

)
⇐⇒ 0 ∈ σ

(
Rot(k)|JRot(k)

)
(35)

first where JRot(k) = kerDiv(k) is the physical subspace of the free
Maxwell operator, and since the spectrum of Rot,

σ
(
Rot(k)|JRot(k)

)
=

⋃

γ∗∈Γ∗

{
±|k + γ∗|

}
,

is known explicitly (cf. Lemma A.4), this will prove 0 ∈ σ
(
M0(k)|J0(k)

)
if

and only if k ∈ Γ∗. Hence, combined with Definition 3.6 this implies (1).

First of all, since the spectra σ
(
M0(k)|J0(k)

)
are discrete for any k ∈ B

(Theorem 3.4 (ii)), we only need to consider the existence of eigenvec-
tors. As the inverse of W is bounded, the equations M0(k)Ψ = 0 and
Rot(k)Ψ = 0 are equivalent on the domain d. We will now show that
the existence of ΨM0 ∈ J0(k) ∩ d to M0(k)ΨM0 = 0 is equivalent to the
existence of a ΨRot ∈ kerDiv(k) which satisfies Rot(k)ΨRot = 0.

Assume there exists an eigenvector ΨM0 ∈ J0(k) ∩ d. Then by the direct
decomposition of the domain D = kerDiv(k) ⊕ ranGrad(k) implies we
can uniquely write

ΨM0 = ΨRot +ΨG

as the sum of ΨRot ∈ kerDiv(k) and ΨG ∈ G0(k). Because the intersec-
tion J0(k) ∩ G0(k) = {0} is trivial, we know ΨRot 6= 0. Hence, ΨRot is
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an eigenvector of Rot(k),

Rot(k)ΨRot = Rot(k)
(
ΨM0 −ΨG

)
= 0.

The converse statement is shown analogously and we have proven (35).

Now we turn to (2): let us define N := |Igs|. By (ii), N needs to be
even. Due to (29), we may replace the physical subspace J0(0) with
its regularized version J reg

0 (0), and the six-dimensional space GS from
Lemma 3.7 can also be defined in terms of J reg

0 (0). Thus, we already
know N ≤ dimGS = 6. Moreover, since dim

(
G0(k) ∩ J reg

0 (k)
)

= 2
(Lemma 3.2 (iii)) and Q0(k)J

reg
0 (k) ⊂ G0(k), the operator M0(k)|Jreg

0 (k)

has a two-fold degenerate flat band k 7→ 0 and we conclude that in fact,
N ≤ 4.

To show N = 4 and property (2), we use standard analytic perturbation
theory in the sense of Kato around the eigenvalue 0: We have proven in
(i) that all band functions are continuous, and thus if ωn(0) = 0 there
exists a neighborhood V of k = 0 and a δ > 0 such that |ωn(k)| < δ
holds on V . Let us pick an orthonormal basis

{
Ψ1, . . . ,Ψ6

}
of GS; ac-

cording to Lemma 3.7, each of these Ψj is associated to a coefficient
a(j) =

(
aE(j), a

H
(j)

)
∈ C6, j = 1, . . . , 6 via (34). Then M0(0)Ψj = 0

and [Kat95, equation (2.40)] imply the ground state band functions
{ωn(k)}n∈Igs are approximately equal to the non-zero eigenvalues of the
k-dependent matrix

k ·A :=
(〈

Ψl, k ·AΨj
〉
h0

)
1≤l,j≤6

(36)

where k · A = M0(k) −M0(0) is explicitly given in equation (33) and

k · A :=
∑3

j=1 kj Aj involves the implicitly defined matrices Aj . For

a, b ∈ C6, we can directly compute the scalar product:

〈
Ψa, k ·AΨb

〉
h0

=

〈(
ψEa
ψHa

)
,W

(
−k × ψHb
+k × ψEb

)〉

h0

= k ·
∫

T3

dy
(
ψEa (y)× ψHb (y)− ψHa (y)× ψEb (y)

))

= k ·
(
aE × bH − aH × bE

)
(37)

=

〈(
aE

aH

)
,

(
0 −k×

+k× 0

)(
bE

bH

)〉

C6

(38)

To arrive at the last line, we plug in the ansatz (34) for the ground state
function, use the orthogonality of the plane waves with respect to the
standard scalar product on L2(T3) and exploit γ∗ × γ∗ = 0.

Now let us define the invertible 6× 6 matrix Λ :=
(
a(1) | · · · | a(6)

)
which

maps the canonical basis
{
v(1), . . . , v(6)

}
⊂ C6 onto

{
a(1), . . . , a(6)

}
. Then
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we can express the matrix elements of k · A in terms of Λ:

〈
v(j), k · Av(n)

〉
C6 :=

(
k · A

)
jn

=

〈
a(j),

(
0 −k×

+k× 0

)
a(n)

〉

C6

=

〈
v(j),Λ

∗

(
0 −k×

+k× 0

)
Λv(n)

〉

C6

(39)

In view of equation (37), the matrix elements possess an SO(3) symme-
try: if we define the action of R ∈ SO(3) on a ∈ C6 by setting Ra :=(
RaE , RaH

)
, then equation (37) in conjunction with R(v×w) = Rv×Rw,

v, w ∈ C3, yields

〈
Ψa, k ·AΨb

〉
h0

=
〈
ΨRa, (Rk) ·AΨRb

〉
h0
. (40)

Combining this symmetry with equation (38), we get

(
k ·A

)
jn

=

〈
RΛv(j),

(
0 +(Rk)×

−(Rk)× 0

)
RΛv(n)

〉

C6

=

〈
v(j),

(
Λ−1RΛ

)∗
Λ∗

(
0 +(Rk)×

−(Rk)× 0

)
Λ
(
Λ−1RΛ

)
v(n)

〉

C6

or, put more succinctly after replacing R with R−1 and k with Rk,

(Rk) ·A =
(
Λ−1R−1 Λ

)∗ (
k ·A

) (
Λ−1R−1 Λ

)
.

As the matrix Λ−1R−1Λ is invertible, we deduce

rank
(
k ·A

)
= rank

(
(Rk) ·A

)
= rank

(
λk ·A

)
(41)

holds for all R ∈ SO(3) and λ ∈ C \ {0}, i. e. the rank of the matrix k ·A
is independent of k 6= 0. In particular, it means that if 0 ∈ σ

(
k0 · A

)
for

some special k0 6= 0, then 0 is an eigenvalue of all matrices k ·A.
Now we will reduce this problem of 6 × 6 matrices to a problem of 3 ×
3 matrices: first of all, any basis

{
v(j)
}6
j=1

of C6 gives rise to a basis
{
Ψv(j)

}6
j=1

of GS. In particular, if we take
{
v(j)
}6
j=1

to be the canonical

basis of C6, we can apply the Gram-Schmidt procedure to
{
Ψv(j)

}6
j=1

and obtain a 〈· , ·〉h0
-orthonormal basis

{
Ψa(1)

}6
j=1

of GS with coefficients

a(j) =
(
aE(j), a

H
(j)

)
∈ C6. Due to the block structure of W−1 that is

also inherited by
〈
Φ,Ψ

〉
h0

=
〈
Φ,W−1Ψ

〉
L2(T3,C6)

, the fact that vH(1) =

vH(2) = vH(3) = 0 and vE(4) = vE(5) = vE(6) = 0 forces also the corresponding
coefficients of the orthonormalized vectors to be 0,

aH(1) = aH(2) = aH(3) = 0 , aE(4) = aE(5) = aE(6) = 0 .
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Moreover,
{
aE(1), a

E
(2), a

E
(3)

}
and

{
aH(4), a

H
(5), a

H
(6)

}
are two sets of linearly

independent vectors in C3 with aE(1), a
H
(4) ∝ (1, 0, 0).

Thus, using equation (37), one sees that the symmetric matrix k · A is
purely block-offdiagonal and can be written in term of three 3×3 matrices
B = (B1, B2, B3) as

k ·A =:

(
0 k ·B(

k ·B
)∗

0

)
. (42)

The block structure implies that

rank
(
k ·A

)
= rank

(
k ·B

)
+ rank

(
k ·B

)∗
= 2 rank

(
k · B

)
. (43)

Then in order to conclude that rank
(
k · A

)
= 4, we only need to show

that rank
(
k · B

)
= 2. Since the result is independent of k, we pick k0 =

(1, 0, 0) and use the basis obtained after Gram-Schmidt orthonormalizing{
Ψv(1) , . . . ,Ψv(6)

}
. Then a(1) ∝ v(1) and a(4) ∝ v(4) are non-trivial scalar

multiples of v(1) and v(4), and consequently, one obtains again from (37)

k0 · B =

(
0 0

0 k0 · B̃

)

where the 2× 2 matrix

k0 · B̃ =

(
k0 ·

(
aE(2) × aH(5)

)
k0 ·

(
aE(2) × aH(6)

)

k0 ·
(
aE(3) × aH(5)

)
k0 ·

(
aE(3) × aH(6)

)
)

has full rank, because k0 = vE(1) = vH(4) ∝ aE(1), aH(4) implies

det
(
k0 · B̃

)
=
(
k0 ·

(
aE(2) × aE(3)

)) (
k0 ·

(
aH(5) × aH(6)

))

∝ det
(
aE(1)

∣∣ aE(2)
∣∣ aE(3)

)
det
(
aH(4)

∣∣ aH(5)
∣∣ aH(6)

)
6= 0 .

Hence, piecing together rank
(
k0 · B

)
= 2 with equations (41) and (43)

yields that the degeneracy of the ground state bands is 4. �

3.4 Comparison to existing literature

Even though most of the results in this section are neither new nor surprising,
we still feel they fill a void in the literature: To the best of our knowledge,
it is the first time the most important fundamental properties of the fiber
Maxwell operator M0(k) are all proven rigorously in one place. Many of these
are scattered throughout the literature, e. g. various authors have proven the
discrete nature of the spectrum of M0(k) [FK97, Mor00, SEK+05] or have
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shown the non-analyticity of k 7→ P0(k) at k = 0 [FK96a]. Certainly there is no
dearth of literature on the subject (see also [Kuc01, JJWM08] and references
therein). However, most of these results are piecemeal: Some of them are
contained in publications which do not really focus on the periodic Maxwell
operator, but random Maxwell operators ([FK96b, FK97], for instance). Other
publications do not study M0 but rather operators associated to M2

0: since M
2
0

is block-diagonal, it suffices to study a second-order equation for either E or
B, see e. g. [FK96a, FK97]. In the two-dimensional case, this leads to a scalar
equation where the right-hand side is a second-order operator [FK96a].
Nevertheless, one result is new, namely Theorem 1.4 (iii): even though the pres-
ence of ground state bands is heuristically well-understood, we provide rather
simple and straight-forward proof. The k → 0 limit is related in spirit to the
homogenization limit where the wavelength of the electromagnetic wave is large
compared to the lattice spacing (see e. g. [Sus04, Sus05, SEK+05, BS07, APR12]
and references therein). On the one hand, many homogenization techniques
yield much farther-reaching results, most notably effective equations for the
dynamics (e. g. [BS07, Theorem 2.1]) while Theorem 1.4 (iii) only makes a
statement about the behavior of the ground state frequency bands. On the
other hand, compared to, say, [BS07, Theorem 2.1] or [SEK+05, Theorem 6.2],
computing the dispersion of the ground state bands for small k seems much
easier in our approach: given ε and µ, the problem reduces to orthonormalizing
2 × 3 vectors numerically and solving an eigenvalue problem for an explicitly
given 3 × 3 matrix |k · B| defined through (42) with one known eigenvalue
(namely 0). Moreover, a proof of the fact that there are 4 ground state bands
also appears to be new, e. g. in a recent publication this was stated as [SEK+05,
Conjecture 1]. Proving this fact, however, required a better insight into the na-
ture of the singularity of k 7→ P0(k) at k = 0 and necessitated the introduction
of a regularized projection P reg

0 .

4 MZ
λ and MZ

λ as ΨDOs

After expounding the properties of the periodic Maxwell operator, we proceed
to the proof of Theorem 1.3. The essential ingredient is a suitable interpretation
of the usual Weyl quantization rule

Opλ(f) :=
1

(2π)3

∫

R3

dr′
∫

R3

dk′ (Fσf)(r′, k′) e−i(k′·(iλ∇k)−r
′·k̂) (44)

where

(Fσf)(r′, k′) :=
1

(2π)3

∫

R3

dr′
∫

R3

dk′ e+i(k′·r−r′·k) f(r, k)

is the symplectic Fourier transform. The idea is to combine the point of view
from [Teu03, Appendix B] and [DL11, Section 2.2] with the fact that most
results of standard pseudodifferential theory depend only on the Banach struc-
ture of the spaces involved and not on the Hilbert structure.
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First of all, equation (44) defines a ΨDO for a large class of scalar [Fol89, Hö79,
Kg81, Tay81] and vector-valued functions [Luk72, Lev90]. For instance, if f is
a Hörmander symbol or order m ∈ R and type ρ ∈ [0, 1] taking values in the
Banach space (B, ‖·‖B),

f ∈ Smρ (B) :=
{
f ∈ C∞(R6,B)

∣∣ ∀α, β ∈ N3
0 : ‖f‖m,αβ <∞

}
, (45)

where the seminorms
{
‖·‖m,αβ

}
α,β∈N3

0

are defined by

‖f‖m,αβ := sup
(r,k)∈R6

(√
1 + k2

−m+|β|ρ ∥∥∂αr ∂βk f(r, k)
∥∥
B

)
,

then (44) is defined as an oscillatory integral [Hö71]. The vector-valuedness of f
usually does not create any technical difficulties, most standard results readily
extend to vector-valued symbols, e. g. Caldéron-Vaillancourt-type theorems and
the composition of Hörmander-type symbols (see e. g. [Luk72, GMS91, MS09]
and [Teu03, Appendix A]).

In our applications B = B(h1, h2) will always be some Banach space of bounded
operators between the Hilbert spaces h1 and h2 whose elements are L2-functions
on the torus, e. g. L2(T3,CN ), h0 or d. As explained in [DL11, Section 2.2.1],
when compared to the pseudodifferential calculus associated to (−iλ∇x, x̂),
equation (44) can be seen as an equivalent representation of the same underlying
Moyal algebra [GBV88a, GBV88b]. Hence, the usual formulas and results
apply, and we may use standard Hörmander classes instead of the less common
weighted Hörmander classes as in [PST03a].

4.1 Equivariant ΨDOs

The relevant Hilbert spaces, ZHλ and ZH0, coincide with L
2
eq

(
R3, L2(T3,C6)

)

as Banach spaces, and we are in the same framework as in [Teu03, Appendix B]
and [DL11, Section 2.2.2]. The building block operators are macroscopic po-

sition iλ∇k and crystal momentum k̂ whose domains are dense in L2
eq(R

3, h0)
(cf. Section 3.1).

Operators which fiber-decompose in Zak representation have the equivariance
property (28), and thus MZ

0 : L2
eq(R

3, d) −→ L2
eq(R

3, h0) defines a selfadjoint
operator between Hilbert spaces of equivariant functions, for instance. This
motivates the following

Definition 4.1 (Semiclassical symbols) Assume hj, j = 1, 2, are Hilbert
spaces consisting of functions on T3. A map f : [0, λ0) −→ Smρ,eq

(
B(h1, h2)

)
,

λ 7→ fλ, is called a semiclassical equivariant symbol of order m ∈ R and weight
ρ ∈ [0, 1], that is f ∈ ASmρ,eq

(
B(h1, h2)

)
, if and only if

(i) fλ(r, k − γ∗) = e−iγ∗·ŷ fλ(r, k) e
+iγ∗·ŷ holds ∀ (r, k) ∈ R6, γ∗ ∈ Γ∗ and
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(ii) there exists a sequence {fn}n∈N0 , fn ∈ Sm−nρ
ρ , such that for all N ∈ N0

λ−N

(
fλ −

N−1∑

n=0

λn fn

)
∈ Sm−Nρ

ρ

(
B(h1, h2)

)

holds true uniformly in λ in the sense that for any N ∈ N0 and α, β ∈ N3
0,

there exist constants CNαβ > 0 so that the estimate
∥∥∥∥∥fλ −

N−1∑

n=0

λn fn

∥∥∥∥∥
m,αβ

≤ CNαβ λN

is satisfied for all λ ∈ [0, λ0).

Since Smρ
(
B(h1, h2)

)
and Smρ,eq

(
B(h1, h2)

)
are contained in the Moyal algebra

[GBV88a, Section III], the associated ΨDOs extend from continuous maps be-
tween vector-valued Schwartz functions to continuous maps between vector-
valued tempered distributions,

Opλ
(
Smρ
(
B(h1, h2)

))
⊂ Opλ

(
Smρ,eq

(
B(h1, h2)

))

⊂ L
(
S(R3, h1),S(R3, h2)

)
∩ L

(
S ′(R3, h1),S ′(R3, h2)

)
.

Furthermore, one can easily check that equivariant ΨDOs also preserve equiv-
ariance on the level of tempered distributions: let us define translations and
multiplication with the phase e+iγ∗·ŷ on S ′(R3, hj), j = 1, 2, by duality, i. e. we
set

(
Lγ∗F, ϕ

)
S
:=
(
T, ϕ(·+ γ∗)

)
S
,

(
e−iγ∗·ŷF, ϕ

)
S
:=
(
T, e+iγ∗·ŷϕ

)
S
,

for all γ∗ ∈ Γ∗ ⊂ R3. The set of equivariant tempered distributions S ′eq(R3, hj),
j = 1, 2, is comprised of those tempered distributions which satisfy

Lγ∗F = e−iγ∗·ŷF .

Then [Teu03, Proposition B.3] states that

Opλ(f) : S ′eq(R3, h1) −→ S ′eq(R3, h2)

holds for all f ∈ Smρ,eq
(
B(h1, h2)

)
. Consequently, the inclusion L2

eq(R
3, hj) ⊂

S ′eq(R3, hj) and the standard Caldéron-Vaillancourt theorem imply [Teu03,
Proposition B.5]

Opλ
(
S0
ρ,eq

(
B(h1, h2)

))
⊂ B

(
L2
eq(R

3, h1) , L
2
eq(R

3, h2)
)
.

Similarly, the Moyal product ♯ which is implicitly defined through

Opλ(f♯g) := Opλ(f)Opλ(g)

extends as a bilinear, continuous map which respects equivariance,

♯ : Sm1
ρ,eq

(
B(h1, h2)

)
× Sm2

ρ,eq

(
B(h2, h3)

)
−→ Sm1+m2

ρ,eq

(
B(h1, h3)

)
. (46)
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4.2 Extension to weighted L2-spaces

We have seen that certain equivariant operator-valued functions define bounded
ΨDOs mapping between Hilbert spaces of equivariant L2-functions. The fact
B(h1, h2) only depends on the Banach space structure of h1 and h2 immediately
implies

B
(
ZD , ZHλ

)
= B

(
L2
eq(R

3, d) , L2
eq

(
R3, L2(T3,C6)

))
,

for instance, and hence any f ∈ S0
ρ,eq

(
B
(
L2(T3,C6)

))
uniquely defines a ΨDO

Opλ(f) : ZHλ −→ ZHλ. (47)

One only needs to be careful about taking adjoints: the adjoint operator cru-
cially depends on the scalar product (see e. g. the discussion of selfadjointness of
Mw in Section 2.1), but in our applications, properties such as selfadjointness
are checked “by hand”.

4.3 Proof of Theorem 1.3

Assumption 3.1 on the material weights ε and µ as well as Assumption 1.2
placed on the modulation functions imply Hλ and H0 coincide with L2(R3,C6)
as Banach spaces. Similarly, we have h0 = L2(T3,C6) on the level of Banach
spaces. This means, ZHλ and ZH0 agree with L2

eq

(
R3, L2(T3,C6)

)
as normed

vector spaces.
Seeing as we can write MZ

λ = S(iλ∇k)−2 MZ
0 , Theorem 1.3 follows from the

following

Lemma 4.2 Under the assumptions of Theorem 1.3, the following two opera-
tors are semiclassical pseudodifferential operators:

(i) S(iλ∇k)±1 = Opλ
(
S±1

)
where S, S−1 ∈ S0

1,eq

(
B
(
L2(T3,C6)

))

(ii) MZ
0 = Opλ

(
M0( · )

)
where M0( · ) ∈ S1

1,eq

(
B
(
d, L2(T3,C6)

))

Proof (i) The matrix S(r) is block-diagonal with respect to L2(T3,C6) ∼=
L2(T3,C3) ⊕ L2(T3,C3) and each block is proportional to the identity
in L2(T3,C3). Due to the assumption on the modulation functions, we
conclude

S ∈ C∞b
(
R3,B

(
L2(T3,C6)

))
⊂ S0

1

(
B
(
L2(T3,C6)

))
.

Equivariance is trivial, because S(iλ∇k) commutes with e−iγ∗·ŷ and hence

S(r) = e+iγ∗·ŷ S(r) e−iγ∗·ŷ

holds. Lastly, S−1 has the same properties as S since τ−1
ε and τ−1

µ also
satisfy Assumption 1.2. This concludes the proof of (i).
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(ii) By Proposition 3.3, the map k 7→ M0(k) is linear (the domain is inde-
pendent of k), and thus S1

1

(
B
(
d, L2(T3,C6)

))
. Equivariance follows from

equation (28), and thus we have shown (ii). �

Seeing as M0( · ) is linear, the asymptotic expansion of ♯ terminates after two
terms and the symbols of the Maxwell operators in the physical representation
can be computed from

MZ = Opλ
(
S−2♯M0( · )

)
=: Opλ(MMMλ).

ThatMMMλ is an element of AS1
1,eq

(
B
(
d, L2(T3,C6)

))
is implied by the compo-

sition properties of equivariant symbols (46) and the preceding Lemma. This
concludes the proof of Theorem 1.3.

Consequently, also the Maxwell operator in the auxiliary representation is a
semiclassical ΨDO,

MZ
λ = Opλ

(
S♯MMMλ♯S

−1
)
= Opλ

(
S−1♯M0( · )♯S−1

)
=: Opλ(Mλ) ,

whose semiclassical symbolMλ is in the same symbol class.

Corrolary 4.3 Under the assumptions of Theorem 1.3, the Maxwell operator
MZ
λ = Opλ(Mλ) in the rescaled representation is the semiclassical pseudodif-

ferential operator associated to

Mλ(r, k) = τ(r)M0(k)− λ τ(r)W
(

0 i
2

(
∇r ln τε/τµ

)×
(r)

i
2

(
∇r ln τε/τµ

)×
(r) 0

)

where τ(r) := τε(r) τµ(r). The function Mλ ∈ AS1
1,eq

(
B
(
d, L2(T3,C6)

))
is an

equivariant semiclassical symbol in the sense of Definition 4.1.

A The curl operator and the Rot operator

The aim of this Appendix is to clarify the meaning of the relation D(Rot) =
D(curl) ⊕ D(curl) used in Section 2.1 in order to define the domain of the
Maxwell operator. So to conclude our arguments from Section 2.1, we give a
brief overview on the theory of the operators curl := ∇×

x andRot. Many works
have been devoted to the rigorous study of curl on L2(Ω,C3) where Ω ⊆ R3

can be a bounded [YG90, ABDG98, HKT12] or unbounded domain [Pic98]
whose boundary satisfies various regularity properties. A lot of related results
are contained in standard texts on the Navier-Stokes equation [DL72, FT78,
GR86, Gal11]. In this Appendix, we enumerate some elementary results for the
special case Ω = R3. The crucial result is the so-called Helmholtz-Hodge-Weyl-
Leray decomposition which leads to a decomposition of any ψ ∈ L2(R3,C3)
into divergence and rotation-free component.
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A.1 The gradient operator

The gradient operator is initially defined on the smooth functions with compact
support by

∇x : C∞c (R3) −→ C∞c (R3,C3), ∇xϕ :=



∂x1ϕ
∂x2ϕ
∂x3ϕ


 . (48)

The operator ∇x is closable (any component ∂xj is anti-symmetric) and its
closure, still denoted with ∇x, has domain D(∇x) = H1(R3) and trivial null
space, ker∇x = {0}.

A.2 The divergence operator

The second operator of relevance, the divergence

div : C∞c (R3,C3) −→ C∞c (R3), divψ :=
3∑

j=1

∂xjψj , (49)

is also closable and its closure, still denoted with div, has domain [Tem01,
Section 1.2 and Theorem 1.1]

D(div) := C∞c (R3,C3)
‖·‖

div =
{
ψ ∈ L2(R3,C3) | divψ ∈ L2(R3)

}
.

A relevant result is the Stokes formula [Tem01, Theorem 1.2], i. e. we have

Xψ(ϕ) :=
〈
ψ,∇xϕ

〉
L2(R3,C3)

+
〈
divψ, ϕ

〉
L2(R3)

= 0

for all ψ ∈ D(div) and ϕ ∈ H1(R3). This follows mainly from the Cauchy-
Schwarz inequality

∣∣Xψ(φ)
∣∣ 6 2 ‖ψ‖div ‖φ‖∇x . The above relation shows that

div is the adjoint of −∇x and vice versa (cf. [Pic98]). In this sense D(div) can
be seen as the space of vector fields with weak divergence.

A.3 The rotor operator

Lastly, the

curl : C∞c (R3,C3) −→ C∞c (R3,C3), curlψ :=



∂x2ψ3 − ∂x3ψ2

∂x3ψ1 − ∂x1ψ3

∂x1ψ2 − ∂x2ψ1


 (50)

is essentially selfadjoint, and thus, uniquely extends to a selfadjoint operator
whose domain

D(curl) := C∞c (R3,C3)
‖·‖

curl =
{
ψ ∈ L2(R3,C3) | curlψ ∈ L2(R3,C3)

}

(51)
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is the closure of the core with respect to the graph norm. The characteriza-
tion of D(curl) by the second equality in (51) is proven in a slightly more
general context in [DL72, Chapter 7, Lemma 4.1] (cf. also [ABDG98, Defini-
tion 2.2] and [Urb01]). By showing that the deficiency indices of curl are both
0, i. e. curlψ = ±iψ has no non-trivial solutions, one deduces curl is indeed
selfadjoint (cf. [CK57, Pic98]). A very interesting fact relates the domains of
curl and div, and the space H1(R3,C3): Theorem 2.5 of [ABDG98] states

D(curl) ∩D(div) = H1(R3,C3) (52)

which follows from the identity

‖ψ‖2H1(R3,C3) = ‖ψ‖
2
L2(R3,C3) + ‖curlψ‖

2
L2(R3,C3) + ‖divψ‖

2
L2(R3) . (53)

This decomposition of the H1(R3,C3)-norm follows from integration by parts
and the identity

(
curl

)2
= ∇x div −∆x

on C∞c (R3,C3), and a simple density argument. Note that (52) implies
C∞c (R3,C3) and H1(R3,C3) are cores for both, div and curl.

A.4 The Helmholtz-Hodge-Weyl-Leray decomposition

For a more precise characterization of the domain D(curl) we need the
Helmholtz-Hodge-Weyl-Leray decomposition (see [Tem01, Chapter I, Sec-
tion 1.4], [FT78, Section 1.1] and [Gal11, Section III.1]). Let us introduce
the subspaces

Cσ :=
{
ψ ∈ C∞c (R3,C3) | divψ = 0

}
, J := Cσ

‖·‖L2(R3,C3) .

Theorem A.1 (Helmholtz-Hodge-Weyl-Leray decomposition) The
space L2(R3,C3) admits the following orthogonal decomposition

L2(R3,C3) = J⊕⊥ G (54)

where J ⊂ D(div) is defined by

J =
{
ψ ∈ L2(R3,C3) | divψ = 0

}
= kerdiv (55)

and

G :=
{
ψ ∈ L2(R3,C3) | ψ = ∇xϕ, ϕ ∈ L2

loc(R
3)
}
= ran∇x . (56)

Moreover, one has also the following characterization:

J = kerdiv = ran curl, G = ker curl = ran∇x . (57)
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Proof (Sketch) Equation (55) is proven in [Tem01, Chapter I, Theorem 1.4,
eq. (1.34)]. The inclusion J ⊂ D(div) follows from the observation that the
norms ‖·‖L2(R3,C3) and ‖·‖div coincide on Cσ.

The definition of G as gradient fields (first equality) has been shown in [Tem01,
Chapter I, Theorem 1.4, eq. (1.33) and Remark 1.5]. The closedness of G,
and thus, the second equality is discussed in the proof of [Pic98, Lemma 2.5].
(According to our choice of convention in Section 1.1, ran∇x is the closure of
ran0∇x = ∇xH1(R3), and for an example of ϕ ∈ L2

loc(R
3) \H1(R3) such that

∇xϕ ∈ L2(R3,C3) we refer to [Gal11, Note 2, pg. 156].)
The proofs of the two remaining equalities in (57) can be found in [Pic98,
Theorem 1.1].
We remark that in case of the vector fields on all of R3, the space of harmonic
vector fields HN := kerdiv∩ker curl = {0} is the trivial vector space, because
∆ψ = 0 has no non-trivial solutions on L2(R3,C3). This concludes the proof
of (54). �

Remark A.2 According to the standard nomenclature J is known as the
space of the solenoidal or transversal vector fields while G is the space
of the irrotational or longitudinal vector fields. The orthogonal projection
P : L2(R3,C3) −→ J is called Leray projection. The identification J = ran curl
implies that curl : J −→ J and this is enough for [P, curl] = 0.

Theorem A.1 has two immediate consequences: The first is the Helmholtz split-
ting, meaning each ψ ∈ L2(R3,C3) can be uniquely decomposed into a stream
field φ ∈ D(curl) and the gradient of a potential function ϕ ∈ L2

loc(R
3),

ψ = curlφ+∇xϕ,

where curlφ and ∇xϕ are mutually orthogonal. The second is the content of
the following

Corrolary A.3 (Domain of curl) The domain D(curl) of the operator
curl admits the following splitting

D(curl) =
(
J ∩D(curl)

)
⊕⊥ G

=
(
J ∩H1(R3,C3)

)
⊕⊥ G

=
(
kerdiv ∩H1(R3,C3)

)
⊕⊥ kercurl

=
(
kerdiv ∩H1(R3,C3)

)
⊕⊥ ran∇x. (58)

Proof Theorem A.1 implies D(curl) =
(
J ∩ D(curl)

)
⊕⊥ G since G ⊂

D(curl). Moreover, relation (52) and J = kerdiv lead to J ∩ D(curl) =(
J ∩D(div)

)
∩D(curl) = J ∩H1(R3,C3). �

A.5 The Rot operator

The block structure displayed in equation (7) implies Rot defines a selfadjoint
operator on D(Rot) = D(curl) ⊕⊥ D(curl) where D(curl) is the domain of
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the rotation operator curl as given in Corollary A.3. The splitting (58) of
D(curl) carries over to Rot, namely

D := D(Rot) =
(
kerDiv ∩H1(R3,C6)

)
⊕⊥ ranGrad, (59)

where Div := div ⊕ div and Grad := ∇x ⊕ ∇x consist of two copies of div
and ∇x which are defined as in Appendix A, and ranGrad is the closure of
ran0 Grad.

The splitting of the domain (59) is motivated by the orthogonal decomposition
of

L2(R3,C6) = J⊕⊥ G := kerDiv⊕⊥ ranGrad = ranRot⊕⊥ kerRot

into transversal and longitudinal vector fields provided by the Helmholtz-
Hodge-Weyl-Leray theorem (cf. Section A.4); it extends the unique splitting

Ψ = RotΦ +Gradϕ, Φ ∈ L2(R3,C6), ϕ ∈ L2
loc(R

3,C2),

from C∞c (R3,C6) to all of L2(R3,C6). Note that the vectorsRotΦ and Gradϕ
are orthogonal with respect to the scalar product 〈· , ·〉L2(R3,C6), and thus there
exist orthogonal projections P and Q onto J and G. Moreover, Remark A.2
implies C∞c (R3,C6) and H1(R3,C6) are cores of Rot.

The free Maxwell operator Rot ∼=
∫ ⊕

B
dkRot(k) is periodic with respect to

any lattice, and thus we can use the Zak transform to fiber decompose it. The
eigenvectors to any eigenvalue of Rot(k) can be explicitly constructed in terms
of plane waves.

Lemma A.4 (Band spectrum of RotZ)

(i) σ
(
Rot(k)

)
= {0} ∪

⋃

γ∗∈Γ∗

{
±|γ∗ + k|

}

(ii) There exists a k-dependent family of linearly independent vectors

{
uj± γ∗(k) | γ∗ ∈ Γ∗, j = 1, 2, 3

}

which spans all of L2(T3,C6) and has the following properties:

(1) The uj± γ∗(k) are eigenfunctions toRot(k) with eigenvalues ±|γ∗+k|
or 0 for all k ∈ R3.

(2) Away from Γ∗ ⊂ R3, all maps k 7→ uj± γ∗(k) ∈ L2(T3,C6) are locally
analytic on a small neighborhood which can be chosen to be indepen-
dent of j and γ∗.

(3) Near γ∗0 ∈ Γ∗, only those uj± γ∗(k) are locally analytic on a common
neighborhood for which γ∗ 6= −γ∗0 holds.
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Proof We begin by analyzing the original operator Rot = curl ⊗ σ2 which
can be factorized into an operator acting on L2(R3,C3) and a 2 × 2 matrix.
The Pauli matrix σ2 has eigenvalues ±1 and eigenvectors w±. curl fibers in ξ
after applying the usual Fourier transform F : L2(R3,C3) −→ L2(R3,C3),

F ∇×
x F−1 =

∫ ⊕

R3

dξ (iξ)× =:

∫ ⊕

R3

dξ curl(ξ),

and curl(ξ) = iξ× (see equation (5)) can be diagonalized explicitly: it has
eigenvalues {0,± |ξ|}. Moreover, it can be seen that the eigenvectors vj(ξ),
j = 1, 2, 3, are analytic away from ξ = 0. For ξ 6= 0, we set v1(ξ), v2(ξ) and
v3(ξ) to be the eigenvectors to +|ξ|, −|ξ| and 0, respectively. At ξ = 0 neither
the eigenvalues ± |ξ| nor the eigenvectors are analytic.
Now to the proof of the Lemma: For j = 1, 2, 3 let us set

uj± γ∗(k) := e+iγ∗·y vj(γ
∗ + k)⊗ w±

where vj(γ
∗ + k) is defined as in the preceding paragraph for ξ = γ∗ + k. The

exponential functions {e+iγ∗·y}γ∗∈Γ∗ and the {vj(ξ)⊗w±}j=1,2,3 form a basis of
L2(T3) and C3 ⊗ C2 ∼= C6, respectively, and hence, the set of all uj± γ∗ forms
a basis of L2(T3,C6). Moreover, these vectors are eigenfunctions to Rot(k)
with eigenvalues ±|γ∗ + k| (j = 1, 2) or 0 (j = 3), and thus we have shown (i),
σ
(
Rot(k)

)
= {0} ∪⋃γ∗∈Γ∗

{
±|γ∗ + k|

}
, and (ii) (1).

If k0 ∈ R3 \ Γ∗, then

|γ∗ + k| ≥ dist
(
k0,Γ

∗
)
> 0

is bounded from below which implies the eigenvectors uj± γ∗ are analytic in
some neighborhood of k0. These vectors vj(γ

∗ + k), j = 1, 2, 3, are analytic on
an open ball around k0 with radius dist

(
k0,Γ

∗
)
, proving (ii) (2).

If, on the other hand, k0 = γ∗0 ∈ Γ∗, then the basis involves the vector

uj±−γ∗
0
(γ∗0 ) = e−iγ∗

0 ·y vj(0)⊗ w±

which cannot be extended analytically to a neighborhood of k0 = γ∗0 , thus
proving (ii) (3). �
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Stokes stationnaires et les phénomènes successifs de bifurcation.
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Abstract. A degenerate Keller-Segel system with diffusion exponent
m with 2n

n+2 < m < 2 − 2
n in multi dimension is studied. An exact

criterion for global existence and blow up of solution is obtained. The

estimates on L
2n

n+2 norm of the solution play important roles in our
analysis. These estimates are closely related to the optimal constant
in the Hardy- Littlewood- Sobolev inequality. In the case of initial free
energy less than a universal constant which depends on the inverse of

total mass, there exists a constant such that if the L
2n

n+2 norm of initial
data is less than this constant, then the weak solution exists globally;

if the L
2n

n+2 norm of initial data is larger than the same constant,
then the solution must blow-up in finite time. Our result shows that
the total mass, which plays the deterministic role in two dimension
case, might not be an appropriate criterion for existence and blow up

discussion in multi-dimension, while the L
2n

n+2 norm of the initial data
and the relation between initial free energy and initial mass are more
important.
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1. Introduction

In this article, we will study a degenerate Keller-Segel system for n ≥ 3
dimension:





ρt = ∆ρm − div(ρ∇c), x ∈ Rn, t ≥ 0,

−∆c = ρ, x ∈ Rn, t ≥ 0,
ρ(x, 0) = ρ0(x), x ∈ Rn,

(1.1)

where diffusion exponent m ∈ ( 2n
n+2 , 2 − 2

n ), ρ(x, t) represents the density of

bacteria and c(x, t) represents the chemical substance concentration. Mass
conservation of the system implies ‖ρ(·, t)‖L1 = ‖ρ0(·)‖L1 =M0.

Keller-Segel system with linear diffusion was proposed by Patlak [16] and
Keller-Segel [13, 14]. It is used to describe the collective motion of cells or the
evolution of the density of bacteria. This model plays important roles in the
study of chemotaxis in mathematical biology. Since 1980, Keller-Segel system
was widely studied in the literature. From the work by Childress [7], we known
that the behavior of this model strongly depends on the space dimension, the
readers can refer to two surveys given by Horstmann [11, 12].

Recently, many mathematicians are interested in finding the criterion for
global existence and blow up of solution to Keller-Segel type systems. In par-
ticular, the 2-dimensional case has been well studied. It is well known that
8π is the critical mass of 2-dimensional Keller-Segel system [5, 10, 17]. More
precisely, if the initial mass M0 < 8π, then there exists global weak solution;
if M0 > 8π, then the solution blows up in finite time; The more delicate case
M0 = 8π was studied in [2, 4].

In dimension n ≥ 3, one has to use nonlinear diffusion to balance the
non-local aggregation effect. A natural question is to find a criterion for initial
data to separate the global existence and finite time blow up to degenerate
Keller-Segel system (1.1) with diffusion exponent m > 1.

There were two critical diffusion exponents of (1.1) which have been stud-
ied recently. One is that m∗ = 2 − 2

n , which came from the scaling invariance
of the total mass. The following results were obtained in [18, 19]. If m > m∗,
the solution exists globally for any initial data; if 1 < m ≤ m∗, both global
existence and blow-up can happen for some initial data. Later on, Blanchet-
Carrillo-Laurencot in [3] studied the degenerate system with diffusion exponent
m = m∗, a critical mass was given there. Another critical exponent of (1.1),
mc = 2n

n+2 was given in [6], which came from the conformal invariance of the

free energy. The authors in [6] showed that Lmc norm of a family of positive
stationary solution can be viewed as the criterion for the global existence and
blow up of solutions.

In this paper we are interested in finding a criterion to classify the initial
data to get either global existence or blow up of the solution. Our analysis will
work for all the diffusion exponents m such that 2n

n+2 = mc < m < m∗ = 2− 2
n .
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There are two very important quantities of system (1.1). One is the total
mass which is time independent,∫

Rn

ρ(x, t)dx =

∫

Rn

ρ0(x)dx =M0,

the other is the free energy

F(ρ) = 1

m− 1

∫

Rn

ρm(x, t)dx − 1

2

∫

Rn

ρ(x, t)c(x, t)dx,

which decays in time due to the following entropy-entropy production relation

d

dt
F(ρ(·, t)) +

∫

Rn

ρ
∣∣∣∇( m

m− 1
ρm−1 − c)

∣∣∣
2

dx = 0.

The main result of this paper is

Theorem 1.1. Assume that the initial density ρ0 ∈ L1
+(R

n) ∩ Lm(Rn) and
F(ρ0) < F∗, the following holds,

(1) If ‖ρ0‖
L

2n
n+2 (Rn)

< (s∗)
n−2

2n(m−1) , then (1.1) has a global weak solution,

i.e. for all T > 0 and some 1 < r, s ≤ 2, there is a function ρ(x, t) with

ρ ∈ L∞(0,+∞;L1
+(R

n) ∩ Lm(Rn)),

∇ρ ∈ L2(0, T ;Lr(Rn)), ∂tρ ∈ L2(0, T ;W−1,s
loc (Rn)),

such that it satisfies (1.1) in the sense of distribution.

(2) If ‖ρ0‖
L

2n
n+2 (Rn)

> (s∗)
n−2

2n(m−1) and ρ0 has finite second moment, ρ(x, t)

is a solution of (1.1), then there exists a T ∗ > 0 such that

lim
t→T∗

‖ρ(·, t)‖Lm(Rn) = +∞.(1.2)

Here F∗ and s∗ are universal constants given by

F∗ =
2− 2

n −m
(m− 1)(1− 2

n )

(2n2α(n)

C(n)

) n(m−1)
2n−2−mn

M
2n−m(n+2)
2n−2−mn

0 > 0,(1.3)

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

) n(m−1)
2n−2−mn

> 0,(1.4)

where M0 is the initial mass ‖ρ0‖L1(Rn), α(n) = πn/2

Γ(n
2 +1) is the volume of the

unit ball of Rn and C(n) is the best constant of the Hardy-Littlewood-Sobolev
inequality, see (1.9).

Remark 1.1. We remark here that under the condition F(ρ0) < F∗, L
2n

n+2 norm

of the initial data can not be (s∗)
n−2

2n(m−1) , which can be easily checked by using
the decomposition of the free energy. Thus the classification of the initial data
in Theorem 1.1 is complete.

Remark 1.2. The result does not hold for m = m∗ = 2 − 2
n , thus there is no

contradiction with the result by Blanchet et al. in [3], where a critical mass
was obtained.
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Remark 1.3. The conditions ρ0 ∈ L1
+(R

n) ∩ Lm(Rn) and ‖ρ0‖
L

2n
n+2 (Rn)

<

(s∗)
n−2

2n(m−1) for the existence result imply that the initial free energy is positive,
i.e. F(ρ0) > 0, which can be easily checked by direct computations. Conversely,
if the initial free energy is negative, i.e. F(ρ0) < 0 and ρ0 ∈ L1

+(R
n)∩Lm(Rn),

then ‖ρ0‖
L

2n
n+2 (Rn)

> (s∗)
n−2

2n(m−1) . Therefore, our result on the blow-up of so-

lutions allows more initial data than those in the work by Sugiyama. Thus the
blow up result improves her work with γ = 0. (In [18], Y. Sugiyama proved
that if the initial free energy is negative and ρ0 ∈ L1

+(R
n) ∩ Lm(Rn), then the

solution to the degenerate Keller-Segel with Bessel potential blows up in finite
time.) In fact, Theorem 1.1 gives an exact classification of the initial data so
that the solution either exists globally or blow-up in finite time. More precisely,

it is the constant (s∗)
n−2

2n(m−1) , where s∗ is stated in (1.4), which classifies the

initial data in L
2n

n+2 norm.

Remark 1.4. The exponents of M0 in (1.3) and (1.4) are both negative due to
the fact that 2n

n+2 < m < 2− 2
n . The assumption F(ρ0) < F∗ in Theorem 1.1

gives a relation between the initial mass and the initial free energy, i.e.

F(ρ0)M
m(n+2)−2n
2n−2−mn

0 <
2− 2

n −m
(m− 1)(1− 2

n )

(2n2α(n)

C(n)

) n(m−1)
2n−2−mn

.(1.5)

As a conclusion, Theorem 1.1 implies that the initial mass itself might not be an
important quantity in the existence and blow up analysis in multi-dimension.
More precisely, no matter how small the initial mass is, the solution can still

blow up in case that ‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) . No matter how large the initial

mass is, there still exists a global weak solution if ‖ρ0‖
L

2n
n+2

< (s∗)
n−2

2n(m−1) .

The similar fact that the initial mass is not a relevant quantity for blow-up
in the multi-dimensional Keller-Segel model is known in the literature, such
as in [9] where (1.1) with m = 1 was considered. Moreover, we can find
a consistent phenomenon with this result in parabolic-parabolic model, such
as in [20, 8]. In [8], the norm of ‖ρ0‖Ln

2
was used to discuss existence and

blow-up. The author in [20] studied the case with smooth bounded domain
with homogeneous Neumann boundary conditions, they obtained the existence
result for small initial data in Lq, q > n

2 and if the domain is ball, there is
always an unbounded solution developed from initial data with arbitrary small
mass.

Example 1. For given ε0 > 0 arbitrarily small, let the initial data be

ρ0(x) =

{
ε0

Kn

α(n) , |x| ≤ 1
K ,

0, |x| > 1
K ,

where K to be determined later. Then

‖ρ0‖L1 = ε0, ‖ρ0‖
L

2n
n+2

= ε0

( Kn

α(n)

)n−2
2n

and

∫

Rn

|x|2ρ0dx <∞.
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Now we can choose K large such that

‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) ,(1.6)

and

F(ρ0)M
m(n+2)−2n
2n−2−mn

0 <
2− 2

n −m
(m− 1)(1− 2

n )

(2n2α(n)

C(n)

) n(m−1)
2n−2−mn

.(1.7)

Therefore according to our result in theorem 1.1, the solution must blow up in
finite time.

We will give a detailed calculation of this example in the Appendix.
Similarly, we can find some initial data with large initial mass such that

the solution exist globally.

It should also be mentioned that the constants appeared in the main result
have close relation to the critical Hardy-Littlewood-Sobolev inequality. For
completeness, we cite this result from [15].

Proposition 1.1 (H.-L.-S. inequality). Let ρ ∈ L 2n
n+2 (Rn), then

∫ ∫

Rn×Rn

ρ(x)ρ(y)

|x− y|n−2
dxdy ≤ C(n)‖ρ‖2

L
2n

n+2
,(1.8)

where

C(n) = π(n−2)/2 1

Γ(n/2 + 1)

{
Γ(n/2)

Γ(n)

}−2/n

.(1.9)

Moreover, the equality holds if and only if ρ(x) = AUλ,x0 , for some constant A
and parameters λ > 0, x0 ∈ Rn, where

(1.10) Uλ,x0 = 2
n+2
4 n

n+2
2

(
λ

λ2 + |x− x0|2
)n+2

2

.

This family of radially symmetric functions (1.10) is also a class of stationary
solution of the degenerate system (1.1) with diffusion exponentm = mc =

2n
n+2 .

The readers are referred to [6] for the relations among stationary solution,
the Hardy-Littlewood-Sobolev inequality and conformal invariance of the free

energy. A direct scaling analysis tells us that L
2n

n+2 norm of Uλ,x0 is a universal
constant independent of the parameters λ and x0.

We can separate the free energy into two parts by using the Hardy-
Littlewood-Sobolev inequality (1.8), namely,

F(ρ) =
1

m− 1

∫

Rn

ρm(x, t)dx − C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
− 1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ(x, t)ρ(y, t)

|x− y|n−2
dxdy

=: F1(ρ) + F2(ρ).

Proposition 1.1 says that F2(ρ) ≥ 0.
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Since the first part of the free energy is concave in L
2n

n+2 norm of the
solution, it is not difficult to get a priori estimates, which shows that in the
cases of supercritical and subcritical initial data, the quantity ‖ρ‖

L
2n

n+2
can be

bounded from below or from above separately. More precisely, if the initial free
energy F(ρ0) < F∗, then the following estimates hold

(1) If ‖ρ0‖ 2n
n+2

< (s∗)
n−2

2n(m−1) , then there exists a constant µ1 < 1 such that

‖ρ(·, t)‖ 2n
n+2

< (µ1s
∗)

n−2
2n(m−1) , for all t > 0.

(2) If ‖ρ0‖ 2n
n+2

> (s∗)
n−2

2n(m−1) , then there exists a constant µ2 > 1 such that

‖ρ(·, t)‖ 2n
n+2

> (µ2s
∗)

n−2
2n(m−1) , for all t > 0.

We will give the proof of the first fact for the regularized solution in the Lemma
2.1 in section 2, and show that the second is true in Lemma 3.1 in section 3.

This paper is arranged as follows. In section 2, we will give the proof of the
global existence of weak solution. After introducing the regularized problem,

a uniform estimate for the L
2n

n+2 norm of the regularized solution by using
decomposition of the free energy is obtained. Based on this estimate, further
estimates, including the spacial and time derivatives, are derived. Then the
global existence follows from standard compactness arguments with the help
of Aubin’s lemma. In section 3, with supercritical initial data, it is shown
that any solution will blow-up in finite time by studying the time derivative of
second moment.

2. Existence of weak solution

We follow the same way on the construction of the regularized problem as
in [3, 18, 19], namely,





∂tρε = ∆[(ρε + ε)m − εm]− div((ρε + ε)∇cε), x ∈ Rn, t ≥ 0,

−∆cε = Jε ∗ ρε, x ∈ Rn, t ≥ 0,
ρ(x, 0) = ρ0ε(x), x ∈ Rn

(2.1)

for ε > 0, Jε(x) = 1
εn J(

x
ε ), J(x) = 1

α(n) (1 + |x|2)−(n+2)/2 satisfying∫

Rn

Jε(x)dx = 1. A simple computation derives

cε =
1

n(n− 2)α(n)

∫

Rn

1

(|x− y|2 + ε2)
n−2
2

ρε(y)dy.

The initial data ρ0ε is the regularization of the function ρ0, it satisfies that
there exists a positive constant δ such that for all 0 < ε < δ,

ρ0ε > 0, ρ0ε ∈ Lr(Rn), r ≥ 1, ‖ρ0ε‖L1 = ‖ρ0‖L1 =M0,
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Moreover, as ε→ 0,

if ρ0 ∈ Lp for some p > 1, then ‖ρ0ε − ρ0‖Lp → 0, as ε→ 0,
∫

Rn

|x|2ρ0εdx→
∫

Rn

|x|2ρ0dx, Fε(ρ0ε)→ F(ρ0),

where Fε(ρ0ε) is the initial regularized entropy, see (2.2).
The classical parabolic theory implies that the above regularized problem

has a global smooth non-negative solution ρε for t > 0 if the initial data is
non-negative. Notice that the solution of the regularized problem (2.1) still
conserves the mass.

We will mainly focus on the estimates of the regularized solutions in this

section. After getting L
2n

n+2 estimate with the help of the free energy, we
obtain the uniform Lp estimates by using standard method. Furthermore, the
uniform estimates for space and time derivatives will be derived carefully. With
all these uniform estimates, a standard compactness argument as in [6, 1] by
using Aubin’s lemma will give the global existence.

From now on, we will present the uniform estimates in five steps and will
skip the compactness arguments.

Step 1. Free energy of the regularized problem
The free energy on the regularized solution ρε is

(2.2) Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm)dx − 1

2

∫

Rn

ρεcεdx.

Or, the free energy has an equivalent form in the following

Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm)dx

− 1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

(|x− y|2 + ε2)
n−2
2

dxdy.(2.3)

It is easy to check that Fε(ρε) is non-increasing in time. In fact, the system
(2.1) has the gradient flow structure

(2.4) ρεt = div

(
(ρε + ε)∇

(
m

m− 1
(ρε + ε)m−1 − cε

))
.

Now by taking m
m−1

(
(ρε + ε)m−1 − εm−1

)
− cε as a test function, we have the

following entropy-entropy production relation

d

dt
Fε(ρε(·, t)) +

∫

Rn

(ρε + ε)
∣∣∣∇
(

m

m− 1
(ρε + ε)m−1 − cε

) ∣∣∣
2

dx = 0.

The monotone decreasing property of the free energy follows immediately by
the non-negativity of the entropy production.
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Next, we separate the free energy into two parts by using the Hardy-
Littlewood-Sobolev inequality (1.8), i.e.,

Fε(ρε) =
1

m− 1

∫

Rn

((ρε + ε)m − εm) dx − C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2
− 1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

(|x− y|2 + ε2)
n−2
2

dxdy

≥ 1

m− 1

∫

Rn

ρmε dx −
C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2
− 1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρε(x, t)ρε(y, t)

|x− y|n−2
dxdy

=: F1(ρε) + F2(ρε).

Proposition 1.1 shows that the second part of the free energy is non-negative,
i.e. F2(ρε) ≥ 0.

Due to m >
2n

n+ 2
, interpolation shows that

‖ρε‖
L

2n
n+2
≤ ‖ρε‖1−θL1 ‖ρε‖θLm , θ =

m(n− 2)

2n(m− 1)
.(2.5)

Thus the first part of the free energy is

F1(ρε) =
1

m− 1

∫

Rn

ρmε (x, t)dx − C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2

≥ 1

m− 1
‖ρε‖

(θ−1)m
θ

L1 ‖ρε‖
m
θ

L
2n

n+2
− C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2
(2.6)

≥ 1

m− 1
M

2n−m(n+2)
n−2

0 ‖ρε‖
2n(m−1)

n−2

L
2n

n+2
− C(n)

2(n− 2)nα(n)
‖ρε‖2

L
2n

n+2
.

According to the previous analysis, let

f(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 s− C(n)

2(n− 2)nα(n)
s

n−2
n(m−1) .

We now have a lower bound of the first part of free energy, i.e.

f
(
‖ρε‖

2n(m−1)
n−2

L
2n

n+2

)
≤ F1(ρε).

Step 2. Uniform L
2n

n+2 norm estimate of the regularized solution.
The following lemma shows that for subcritical initial data, the quantity

‖ρε‖
L

2n
n+2

can be bounded.

Lemma 2.1. If the initial free energy Fε(ρ0ε) < F∗ := f(s∗), ‖ρ0ε‖ 2n
n+2

<

(s∗)
n−2

2n(m−1) , let ρε(x, t) be a solution of problem (2.1), then there exists a con-
stant µ1 < 1 such that

‖ρε(·, t)‖ 2n
n+2

< (µ1s
∗)

n−2
2n(m−1) , for all t > 0,
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where s∗ is the maximum point of f(s):

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

) n(m−1)
2n−2−mn

.(2.7)

Proof. Notice that 1 < m < 2− 2
n implies n−2

n(m−1) > 1, we know that f(s) is a

strictly concave function in 0 < s <∞. Directly calculation shows that

f ′(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 − C(n)

2(n− 2)nα(n)

n− 2

n(m− 1)
s

2n−2−mn
n(m−1) .

As a consequence, s∗ is a unique maximum point of f(s). Therefore the im-
portant property of f is that f(s) is monotone increasing for 0 < s < s∗, while
f(s) is monotone decreasing for s > s∗.

In the case that initial free energy Fε(ρ0ε) < f(s∗), we can make it even
smaller, i.e. there is a δ < 1 such that Fε(ρ0ε) < δf(s∗).

Combining all the facts we know, including the interpolation, the Hardy-
Littlewood-Sobolev inequality and the monotonicity of free energy, we have

f
(
‖ρε‖

2n(m−1)
n−2

L
2n

n+2

)
≤ F1(ρε) ≤ Fε(ρε) ≤ Fε(ρ0ε) < δf(s∗).(2.8)

If initially ‖ρ0ε‖
2n(m−1)

n−2

L
2n

n+2
< s∗, due to the fact that f(s) is increasing in 0 < s <

s∗, there exists a µ1 < 1 such that ‖ρε‖
2n(m−1)

n−2

L
2n

n+2
< µ1s

∗. �

Step 3. Uniform Lp (1 < p < n) estimates of the regularized solution.
Under the assumption of ρ0ε ∈ Lp(Rn) with 1 < p < n, we will give the

estimate on ‖ρε‖Lp , and as a byproduct, also the uniform estimates on space

derivatives ∇ρ
m+p−1

2
ε and ∇cε.

Lemma 2.2. Assume ρ0ε ∈ L1(Rn) ∩ Lp(Rn), ‖ρ0ε‖
L

2n
n+2

< (s∗)
n−2

2n(m−1) and

Fε(ρ0ε) < F∗ := f(s∗), ρε is a smooth solution of the regularized problem
(2.1), then

‖ρε‖L∞(0,T ;Lp(Rn)∩Lp+1(0,T ;Lp+1(Rn))) ≤ C, ‖∇ρ
m+p−1

2
ε ‖L2(0,T ;L2(Rn)) ≤ C,(2.9)

moreover, for 1 < p < n, it holds

‖∇cε‖L∞(0,T ;Ls(Rn)) ≤ C, s ∈
( n

n− 1
,
np

n− p
]
.(2.10)
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Proof. Multiplying the first equation of (2.1) by pρp−1
ε with p > 1, we have

d

dt

∫

Rn

ρpεdx

= −pm(p− 1)

∫

Rn

(ρε + ε)m−1ρp−2
ε |∇ρε|2dx

+(p− 1)

∫

Rn

∇ρpε · ∇cεdx+ εp

∫

Rn

∇ρp−1
ε · ∇cεdx

≤ −pm(p− 1)

∫

Rn

ρp+m−3
ε |∇ρε|2dx+ (p− 1)

∫

Rn

ρp+1
ε dx+ pε

∫

Rn

ρpεdx

= − 4pm(p− 1)

(m+ p− 1)2

∫

Rn

|∇ρ
m+p−1

2
ε |2dx + (p− 1)

∫

Rn

ρp+1
ε + pε

∫

Rn

ρpεdx.

Now we will focus on the estimate on

∫

Rn

ρp+1
ε .

∫

Rn

ρp+1
ε =

∥∥∥ρ
m+p−1

2
ε

∥∥∥
2(p+1)
m+p−1

L
2(p+1)
m+p−1

≤ G
2(p+1)
m+p−1

∥∥∥∇ρ
m+p−1

2
ε

∥∥∥
α 2(p+1)

m+p−1

L2
·
∥∥∥ρ

m+p−1
2

ε

∥∥∥
(1−α) 2(p+1)

m+p−1

Lr
,

where G is the constant from Gagliardo-Nirenberg-Sobolev ineqality,

m+ p− 1

2
r =

2n

n+ 2
,

m+ p− 1

2(p+ 1)
=
α(n− 2)

2n
+

1− α
r

,

and

α =

m+p−1
2 (n+2

2n − 1
p+1 )

(n+2)(m+p−1)−2(n−2)
4n

.

In the next, we will use notation

ν := α
2(p+ 1)

m+ p− 1
=

2(n+ 2)(p+ 1)− 4n

(n+ 2)(m+ p− 1)− 2(n− 2)
< 2

in the case of m >
2n

n+ 2
. Thus by Young’s inequality, we get

∫

Rn

ρp+1
ε ≤ G

2(p+1)
m+p−1

∥∥∥∇ρ
m+p−1

2
ε

∥∥∥
ν

L2
‖ρε‖(1−α)(p+1)

L
2n

n+2

≤ G
2(p+1)
m+p−1

(
ǫ
∥∥∥∇ρ

m+p−1
2

ε

∥∥∥
2

L2
+ C(ǫ)‖ρε‖

2(1−α)(p+1)
2−ν

L
2n

n+2

)
.(2.11)

Now we can choose ǫ such that

(p− 1)G
2(p+1)
m+p−1 ǫ =

2pm(p− 1)

(m+ p− 1)2
.
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By using the boundedness of ‖ρε‖
L

2n
n+2

from Lemma 2.1, we have

d

dt

∫

Rn

ρpεdx +
2pm(p− 1)

(m+ p− 1)2

∫

Rn

|∇ρ
m+p−1

2
ε |2dx

≤ pε

∫

Rn

ρpεdx + C(M0, p, n).(2.12)

Gronwall’s inequality implies that ρε ∈ L∞(0, T ;Lp(Rn)). Therefore we have
the uniform estimate by integrating (2.12) in t, for any fixed T > 0,

sup
0≤t≤T

∫

Rn

ρpε(x, t)dx +
2pm(p− 1)

(m+ p− 1)2

∫ T

0

∫

Rn

|∇ρ
m+p−1

2
ε |2dxdt ≤ C(M0, p, n, T ).

Moreover combining this estimate with (2.11), it is easy to see that ρε ∈
Lp+1(0, T ;Lp+1 (Rn)). The estimate for ∇cε in (2.10) can be directly obtained
from the weak Young inequality. �

Remark 2.1. The above lemma gives a general Lp estimate. In particu-
lar, we can take p = m and get the estimate ρε ∈ L∞(0, T ;Lm(Rn)) ∩
Lm+1(0, T ;Lm+1(Rn)) which will be used later.

Remark 2.2. The fact that m > 2n
n+2 is very important in the above proof. It

makes the use of Young’s inequality successful (see (2.11)), which is impossible
in the case m = 2n

n+2 , ν = 2.

Step 4. Uniform estimates for the space derivatives
The estimate on space derivative of ρε is important in order to use Aubin’s

lemma for compactness arguments. We will use the Lp estimate when p = m.

Lemma 2.3. Assume p = m and the assumptions of Lemma 2.1 hold, then

‖∇ρε‖
L2(0,T ;L

2m
3−m (Rn))

≤ C, in the case of m <
3

2
,(2.13)

‖∇ρε‖L2(0,T ;L2(Rn)) ≤ C, in the case of m ≥ 3

2
.(2.14)

Proof. In the case of m < 3
2 , using (2.9), it holds for p = m that

‖ρε‖L∞(0,T ;Lm(Rn)) ≤ C, ‖∇ρm− 1
2

ε ‖L2(0,T ;L2(Rn)) ≤ C.(2.15)

We can use the expression

∇ρε =
2

2m− 1
ρ

3
2−m
ε ∇ρm− 1

2
ε ,

then the Hölder inequality and (2.15) imply (2.13).
In the case of m ≥ 3

2 , taking ρ
2−m
ε as test function in (1.1), we have

1

3−m
d

dt

∫

Rn

ρ3−mε dx+m(2−m)

∫

Rn

|∇ρε|2 dx

≤ 2−m
3−m

∫

Rn

ρ4−mε dx+ ε

∫

Rn

ρ3−mε dx.
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Next we only need to estimate
∫
Rn ρ

4−m
ε dx by ‖ρε‖Lm and

‖∇ρm− 1
2

ε ‖L2(0,T ;L2(Rn)). By the Gagliardo-Nirenberg-Sobolev inequality,
we have∫

Rn

ρ4−mε dx = ‖ρm−1/2
ε ‖

4−m
m−1/2

L
4−m

m−1/2

≤ C‖∇ρm−1/2
ε ‖θ

4−m
m−1/2

L2 ‖ρm−1/2
ε ‖(1−θ)

4−m
m−1/2

L
m

m−1/2

= C‖∇ρm−1/2
ε ‖θ

4−m
m−1/2

L2 ‖ρε‖(1−θ)(4−m)
Lm ,(2.16)

where 0 < θ = 2(2−m)(m−1/2)

m(4−m)(m−1/2
m −n−2

2n )
< 1. Thus it remains to show if m ≥ 3

2 and

2n
n+2 < m < 2− 2

n , it holds that

θ
4−m
m− 1/2

=
2(2−m)

m− 1
2 −

m(n−2)
2n

≤ 2.(2.17)

Actually, (2.17) is equivalent to m ≥ 5n
3n+2 , which can be obtained from the

following two facts.

• When n ≥ 6, since 2n
n+2 ≥ 5n

3n+2 , we have m > 5n
3n+2 ;

• When n < 6, since 3
2 >

5n
3n+2 , we have m > 5n

3n+2 .

Now by integrating (2.16) in time, we have
∫ T

0

∫

Rn

ρ4−mε dxdt ≤ C
(
‖ρε‖L∞(0,T ;Lm(Rn)), ‖∇ρm−1/2

ε ‖L2(0,T ;L2(Rn)), T
)
.

Therefore,

1

(3−m)

∫

Rn

ρ3−mε dx+m(2−m)

∫ T

0

∫

Rn

|∇ρε|2 dxdt

≤ 1

(3−m)
‖ρ0ε‖3−mL3−m + C ≤ C (‖ρ0ε‖Lm , ‖ρ0ε‖L1) + C,

where we have used the fact that 3−m ≤ m. So, (2.14) holds. �

Step 5. Uniform estimate for the time derivative.
This subsection will give another important fact in order to use Aubins

lemma, i.e. the estimate of the time derivative of ρε.

Lemma 2.4. Assume p = m and the assumptions of Lemma 2.1 hold, then

‖∂tρε‖L2(0,T ;W−1,s
loc (Rn)) ≤ C, s = min{ 2m

m+ 1
,

nm(m+ 1)

nm+ (n−m)(m+ 1)
} > 1.

Proof. By using the weak formulation of the equation, we know the estimate for
time derivative ∂tρε can be obtained directly from the estimates on ∇(ρε+ε)m
and (ρε + ε) · ∇cε. We will prove the following facts,

‖∇(ρε + ε)m‖
L2(0,T ;L

2m
m+1 (Rn))

≤ C,
‖(ρε + ε) · ∇cε‖

Lm+1(0,T ;L
nm(m+1)

nm+(n−m)(m+1) (Rn))
≤ C.
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In fact,

|∇(ρε + ε)m| = m|(ρε + ε)m−1| · |∇ρε|
≤ m|(ρm−1

ε + εm−1)| · |∇ρε| ≤ |∇ρmε |+mεm−1|∇ρε|.(2.18)

By writing

|∇ρmε | =
∣∣ 2m

2m− 1
ρ1/2ε ∇ρm−1/2

ε

∣∣,

the Hölder inequality and lemma 2.2, we have

∫

Rn

|∇ρmε |
2m

m+1 ≤ C
(∫

Rn

ρmε

) 1
m+1

(∫

Rn

|∇ρm−1/2
ε |2

) m
m+1

.

Therefore,

∫ T

0

‖∇ρmε ‖2
L

2m
m+1
≤
∫ T

0

‖ρε‖Lm‖∇ρm−1/2
ε ‖2L2dt ≤ C,

i.e.,

‖∇ρmε ‖L2(0,T ;L
2m

m+1 (Rn))
≤ C.(2.19)

By Lemma 2.3, since 2m
m+1 < min{2, 2m

3−m} and (2.19), we know that

∇(ρε + ε)m ∈ L2(0, T ;L
2m

m+1

loc (Rn)).

As a direct consequence of Lemma 2.2, we have

‖ρε · ∇cε‖
Lm+1(0,T ;L

nm(m+1)
nm+(n−m)(m+1) (Rn))

≤ C,(2.20)

where nm(m+1)
nm+(n−m)(m+1) > 1 due to 2n

n+2 < m < 2 − 2
n . By Lemma 2.2 with

(2.20) and noticing nm(m+1)
nm+(n−m)(m+1) ∈ ( n

n−1 ,
mn
n−m ], we get

‖(ρε + ε) · ∇cε‖
Lm+1(0,T ;L

nm(m+1)
nm+(n−m)(m+1) (Rn))

≤ C.

�

3. Blow up of the solution

In this section, we will discuss the blow-up of the solution when

‖ρ0‖
L

2n
n+2

> (s∗)
n−2

2n(m−1) and F(ρ0) < F∗ := f(s∗). Before we prove the result

of blow-up, we need to give a key lemma that shows in the cases of subcritical
initial data, the quantity ‖ρ‖

L
2n

n+2
can be bounded from below.

Documenta Mathematica 19 (2014) 103–120



116 Li Chen, Jinhuan Wang

3.1. Lower bound of ‖ρ‖
L

2n
n+2

.

Similar to the decomposition of free energy of the regularized problem, we can
separate the free energy into two parts by using the Hardy-Littlewood-Sobolev
inequality (1.8)

F(ρ) =
1

m− 1

∫

Rn

ρm(x, t)dx − C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2

+
C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
− 1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ(x, t)ρ(y, t)

|x− y|n−2
dxdy

=: F1(ρ) + F2(ρ).

Proposition 1.1 says that that F2(ρ) ≥ 0.

Due to m >
2n

n+ 2
, interpolation tells us

‖ρ‖
L

2n
n+2
≤ ‖ρ‖1−θL1 ‖ρ‖θLm , θ =

m(n− 2)

2n(m− 1)
.

Thus the first part of the free energy is

F1(ρ) ≥
1

m− 1
M

2n−m(n+2)
n−2

0 ‖ρ‖
2n(m−1)

n−2

L
2n

n+2
− C(n)

2(n− 2)nα(n)
‖ρ‖2

L
2n

n+2
.

According to the previous analysis, let

f(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 s− C(n)

2(n− 2)nα(n)
s

n−2
n(m−1) .

We now have a lower bound of the first part of free energy, i.e. f
(
‖ρ‖

2n(m−1)
n−2

L
2n

n+2

)
≤

F1(ρ).

Lemma 3.1. If the initial free energy F(ρ0) < F∗ := f(s∗) and ‖ρ0‖
L

2n
n+2

>

(s∗)
n−2

2n(m−1) , let ρ(x, t) be a solution of problem (1.1), then there exists a con-
stant µ2 > 1 such that

‖ρ(·, t)‖ 2n
n+2

> (µ2s
∗)

n−2
2n(m−1) , for all t > 0,

where s∗ is the maximum point of f(s):

s∗ =
(2n2α(n)M

2n−m(n+2)
n−2

0

C(n)

) n(m−1)
2n−2−mn

.

Proof. Notice that 1 < m < 2− 2
n implies n−2

n(m−1) > 1, we know that f(s) is a

strictly concave function in 0 < s <∞. Directly calculation shows that

f ′(s) =
1

m− 1
M

2n−m(n+2)
n−2

0 − C(n)

2(n− 2)nα(n)

n− 2

n(m− 1)
s

2n−2−mn
n(m−1) .

As a consequence, s∗ is a unique maximum point of f(s). Therefore the im-
portant property of f is that f(s) is monotone increasing for 0 < s < s∗, while
f(s) is monotone decreasing for s > s∗.
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In the case that initial free energy F(ρ0) < f(s∗), we can make it even
smaller, i.e. there is a δ < 1 such that F(ρ0) < δf(s∗).

Combining all the facts we know, including the interpolation, the Hardy-
Littlewood-Sobolev inequality and the monotonicity of free energy, we have

f
(
‖ρ‖

2n(m−1)
n−2

L
2n

n+2

)
≤ F1(ρ) ≤ F(ρ) ≤ F(ρ0) < δf(s∗).

If initially ‖ρ0‖
2n(m−1)

n−2

L
2n

n+2
> s∗, due to the fact that f(s) is increasing in s > s∗,

there exists a µ2 > 1 such that ‖ρ‖
2n(m−1)

n−2

L
2n

n+2
> µ2s

∗. �

3.2. Time derivative of second moment.
In this subsection, we will focus on studying the time evolution of the second
moment. The following lemma is obtained from Lemma 3.1.

Lemma 3.2. If F(ρ0) < F∗ := f(s∗) and ‖ρ0‖ 2n
n+2

> (s∗)
n−2

2n(m−1) , ρ is a solution

of (1.1), then

dm2(t)

dt
< 0.(3.1)

Proof. By direct calculation, we have

dm2(t)

dt
=
(
2n− 2(n− 2)

m− 1

)∫

Rn

ρmdx+ 2(n− 2)F(ρ).

The restriction on m < 2 − 2
n gives that 2n − 2(n−2)

m−1 < 0. Then by using the
interpolation inequality, the decreasing properties of free energy and Lemma
3.1 with µ2 > 1, we have

dm2(t)

dt
≤
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 ‖ρ‖
m
θ

L
2n

n+2
+ 2(n− 2)F(ρ0)

<
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 µ2s
∗ + 2(n− 2)f(s∗)

=
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 (µ2 − 1)s∗ +
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 s∗

+2(n− 2)
( 1

m− 1
M

(θ−1)m
θ

0 s∗ − C(n)

2(n− 2)nα(n)
(s∗)

2θ
m

)

=
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 (µ2 − 1)s∗ + 2nM
(θ−1)m

θ
0 s∗ − C(n)

nα(n)
(s∗)

2θ
m

=
(
2n− 2(n− 2)

m− 1

)
M

(θ−1)m
θ

0 (µ2 − 1)s∗ < 0.

where the last second equation follows from the definition of s∗. �
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3.3. The proof on the blow-up result in Theorem 1.1.
From Lemma 3.2, we know that there exists a finite time T such that

lim
t→T

m2(t) = 0.

The relation between the second moment and Lm norm of ρ can be ob-
tained by using Hölder’s inequality, ∀R > 0, we have

∫

Rn

ρ(x)dx ≤
∫

BR

ρ(x)dx +

∫

Bc
R

ρ(x)dx ≤ CRn(m−1)/m‖ρ‖Lm +
1

R2
m2(t).

Now by choosing R = ( m2(t)
C‖ρ‖Lm

)
m

(m−1)n+2m , we have

‖ρ‖L1 ≤ C‖ρ‖
2m

(m−1)n+2m

Lm m2(t)
n(m−1)

(m−1)n+2m .

Consequently, there exists T ∗ ≤ T such that limt→T∗ ‖ρ‖Lm =∞.

Appendix

In Example 1, we gave an initial data of the system with small mass and
showed that the solution must blow up in finite time according to the main
result of this paper. Here in this appendix, we will give a detailed calculation
for the quantities appeared in Example 1 to make sure that the assumptions
in theorem 1.1 satisfied.

For given ε0 > 0 small, let the initial data be

ρ0(x) =

{
ε0

Kn

α(n) , |x| ≤ 1
K ,

0, |x| > 1
K ,

(3.2)

where α(n) is the volume of n dimensional unit ball, and K will be determined
later.

First of all, since ‖ρ0‖
L

2n
n+2

= ε0

(
Kn

α(n)

)n−2
2n

, to prove (1.6), i.e. ‖ρ0‖
L

2n
n+2

>

(s∗)
n−2

2n(m−1) , it is necessary to show

ε
1+ m(n+2)−2n

2(2n−2−mn)

0 K
n−2
2 > (α(n))

n−2
2n

(2n2α(n)

C(n)

) n−2
2(2n−2−mn)

.(3.3)

Notice that n > 2, there exists a constant K1 > 0 such that for all K > K1,
the formula (3.3) is true.
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The corresponding initial free energy is

F(ρ0) =
1

m− 1

∫

Rn

ρm0 dx−
1

2(n− 2)nα(n)

∫ ∫

Rn×Rn

ρ0(x)ρ0(y)

|x− y|n−2
dxdy

=
1

m− 1

∫

|x|≤ 1
K

εm0
( Kn

α(n)

)m
dx−

1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(
ε0

Kn

α(n)

)2

|x− y|n−2
dxdy

≤
εm0

m− 1
Kn(m−1)(α(n))1−m −

1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(
ε0

Kn

α(n)

)2

(|x|+ |y|)n−2
dxdy

≤
εm0

m− 1
Kn(m−1)(α(n))1−m −

1

2(n− 2)nα(n)

∫

|x|≤ 1
K

∫

|y|≤ 1
K

(
ε0

Kn

α(n)

)2

( 2
K
)n−2

dxdy

=
εm0

m− 1
Kn(m−1)(α(n))1−m −

22−n

2(n− 2)nα(n)
ε20K

n−2.

To show that (1.7) is true, it is necessary to show that

ε
m+m(n+2)−2n

2n−2−mn

0 Kn(m−1)(α(n))1−m <
(m− 1)22−n

2(n− 2)nα(n)
ε
2+m(n+2)−2n

2n−2−mn

0 Kn−2

+
2− 2

n −m
1− 2

n

(2n2α(n)

C(n)

) n(m−1)
2n−2−mn

.(3.4)

Notice that m < 2− 2
n implies n(m− 1) < n− 2. Thus there exists a constant

K2 > 0 such that when K > K2, (3.4) holds.
Hence taking K0 = max{K1,K2}, we know that when K > K0, the initial

data satisfies blow-up condition in Theorem 1.1.
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Abstract. Vorst and Dayton-Weibel proved that Kn-regularity im-
plies Kn−1-regularity. In this article we generalize this result from
(commutative) rings to differential graded categories and from alge-
braic K-theory to any functor which is Morita invariant, continuous,
and localizing. Moreover, we show that regularity is preserved un-
der taking desuspensions, fibers of morphisms, direct factors, and
arbitrary direct sums. As an application, we prove that the above
implication also holds for schemes. Along the way, we extend Bass’
fundamental theorem to this broader setting and establish a Nisnevich
descent result which is of independent interest.
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1

1. Introduction

Let n ∈ Z. Following Bass [1, §XII], a (commutative) ring R is called Kn-
regular if Kn(R) ≃ Kn(R[t1, . . . , tm]) for all m ≥ 1. The following implication

(1.1) R is Kn-regular⇒ R is Kn−1-regular

was proved by Vorst [29, Cor. 2.1] for n ≥ 1 and latter by Dayton-Weibel [9,
Cor. 4.4] for n ≤ 0. It is then natural to ask the following:

Question: Does implication (1.1) holds more generally ?

1The author was partially supported by the NEC Award-2742738 and by the Portuguese
Foundation for Science and Technology through PEst-OE/MAT/UI0297/2011 (CMA)
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Statement of results. A differential graded (=dg) category A, over a base
commutative ring k, is a category enriched over complexes of k-modules; see
§2. Every (dg) k-algebra A gives naturally rise to a dg category A with a single
object and (dg) k-algebra of endomorphisms A. Another source of examples
is provided by k-schemes since, as explained in [7, Example 5.5], the derived
category of perfect complexes of every quasi-compact separated k-scheme X
admits a canonical dg enhancement perf(X).
A functor E : dgcat→M defined on the category of (small) dg categories and
with values in a stable Quillen model category (see [12, §7][18]) is called:

(i) Morita invariant if it sends Morita equivalences (see §2) to weak equiv-
alences;

(ii) Continuous if it preserves filtered (homotopy) colimits;
(iii) Localizing if it sends short exact sequences of dg categories (see [13,

§4.6]) to distinguished triangles

0→ A→ B → C → 0 7→ E(A)→ E(B)→ E(C) ∂→ ΣE(A)
in the triangulated homotopy category Ho(M).

Thanks to the work of Thomason-Trobaugh, Schlichting, Keller, Blumberg-
Mandell and others (see [3, 15, 16, 20, 22, 28]), examples of functors satisfy-
ing the above conditions (i)-(iii) include (nonconnective) algebraic K-theory
(K), Hochschild homology, cyclic homology (and its variants), topological
Hochschild homology, etc. As proved in loc. cit., when applied to A (resp.
to perf(X)) these functors reduce to the classical invariants of (dg) k-algebras
(resp. of k-schemes). Making use of the language of Grothendieck deriva-
tors, the universal functor with respect to the above conditions (i)-(iii) was
constructed in [21, §10]
(1.2) U : dgcat→ Mot ;

in loc. cit. U was denoted by Ul and Mot by Mloc
dg . Any other functor E :

dgcat → M satisfying the above conditions (i)-(iii) factors through U via a
triangulated functor E : Ho(Mot) → Ho(M); see Proposition 2.1. Because of
this universal property, which is reminiscent frommotives, Ho(Mot) is called the
triangulated category of noncommutative motives; consult the survey article
[24]. Moreover, as proved in [6, Thm. 7.6][21, Thm. 15.10], U(k) is a compact
object and for every dg category A we have the isomorphisms

HomHo(Mot)(Σ
nU(k), U(A)) ≃ Kn(A) n ∈ Z .(1.3)

Given a dg category A, an integer n, a functor E : dgcat→M, and an object
b ∈ Ho(M), let us write Ebn(A) for the abelian group HomHo(M)(Σ

nb, E(A)).
For instance, when A = A, E = U and b = U(k), Ebn(A) identifies, thanks to
(1.3), with the nth algebraic K-theory group Kn(A) of A. Following Bass, a
dg category A is called Ebn-regular if Ebn(A) ≃ Ebn(A[t1, . . . , tm]) for all m ≥
1, where A[t1, . . . , tm] := A ⊗ k[t1, . . . , tm]. Our main result, which answers
affirmatively the above question, is the following:
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Theorem 1.4. Let A be a dg category, n an integer, E : dgcat→M a functor
satisfying the above conditions (i)-(iii), and b a compact object of Ho(M).
Under these notations and assumptions, the following implication holds:

(1.5) A is Ebn-regular⇒ A is Ebn−1-regular .

Note that Theorem 1.4 uncovers in a direct and elegant way the three key
conceptual properties (= Morita invariance, continuity, and localization) that
underlie Vorst and Dayton-Weibel’s implication (1.1). Along its proof, we have
generalized Bass’ fundamental theorem and introduced a Nisnevich descent
result; see Theorems 3.1 and 4.2. These results are of independent interest.
The above implication (1.5) shows us that regularity is preserved when n is
replaced by n− 1. The same holds in the following five cases:

Theorem 1.6. Let A, n, E, b be as in Theorem 1.4.

(i) Given an integer i > 0, we have: A is Ebn-regular⇒A is EΣ−ib
n -regular.

(ii) Given a distinguished triangle c→ c′ → c′′ → Σc of compact objects in
Ho(M), we have:

(1.7) A is Ec
′

n -regular and E
c′′

n -regular ⇒ A is Ecn-regular .

(iii) Given a direct factor d of b, we have: A is Ebn-regular ⇒ A is Edn-
regular.

(iv) Given a family of objects {ci}i∈I in Ho(M), we have: A is Ecin -regular

for every i ∈ I ⇒ A is E⊕i∈Ici
n -regular.

(v) Consider the k-algebra Γ of those N× N-matrices M which satisfy the
following two conditions: (1) the set {Mij | i, j ∈ N} is finite; (2) there
exists a natural number nM such that each row and column has at
most nM non-zero entries. Let σ be the quotient of Γ by the two-sided
ideal consisting of those matrices with finitely many non-zero entries.
Under these notations, we have: A is Ebn-regular ⇒ σ(A) := A⊗ σ is
Ebn+1-regular.

In items (iii)-(iv) the assumptions of Theorem 1.4 are not necessary.

Roughly speaking, item (v) shows us that the converse of implication (1.5) also
holds as long as on the right-hand-side one tensors A with σ. Let us denote by
〈Σnb|♮,⊕ the smallest subcategory of Ho(M) which contains the object Σnb and
which is stable under taking desuspensions, fibers of morphisms, direct factors,
and arbitrary direct sums. Thanks to the above items (i)-(iv) we have:

A is Ebn-regular⇒ A is Ecn-regular ∀ c ∈ 〈Σnb|♮,⊕ .(1.8)

Moreover, in the particular case where A is Ebn-regular for every n ∈ Z one
can replace 〈Σnb|♮,⊕ in the above implication (1.8) by the smallest thick local-
izing (=stable under arbitrary direct sums) triangulated subcategory 〈b〉♮,⊕ of
Ho(M) which contains b. When E = U and b = U(k), (1.8) reduces to

A is Kn-regular⇒ A is U cn-regular ∀ c ∈ 〈ΣnU(k)|♮,⊕(1.9)
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and that in the particular case where A is Kn-regular for every n ∈ Z (e.g.
A = A with A a noetherian regular k-algebra) one can replace 〈ΣnU(k)|♮,⊕
by the triangulated category 〈U(k)〉♮,⊕. Here is one example of the above
implication (1.9):

Proposition 1.10. Consider the following distinguished triangle in Ho(Mot)

fib(l) −→ U(k)
·l−→ U(k) −→ Σfib(l) ,

where l ≥ 2 is an integer and ·l stands for the l-fold multiple of the identity

morphism. Under these notations, U
fib(l)
n (A) identifies with Browder-Karoubi

[5] mod-l algebraic K-theory Kn(A;Z/l). Consequently, the above implication
(1.9) with c := fib(l) reduces to: A is Kn-regular ⇒ A is Kn(−;Z/l)-regular.
Remark 1.11. In the particular case where A is a k-algebraA such that 1/l ∈ A,
Weibel proved in [30, 31, 32] that A is Kn(−;Z/l)-regular for every n ∈ Z.

Intuitively speaking, Proposition 1.10 shows us that mod-l algebraic K-theory
is the simplest replacement of algebraic K-theory (using fibers of morphisms)
for which regularity is preserved. Many other replacements, preserving reg-
ularity, can be obtained by combining the above implication (1.9) with the
description (1.3) of the Hom-sets of the category of noncommutative motives.
Following Bass, a (quasi-compact separated) k-scheme X is called Kn-regular
if Kn(X) ≃ Kn(X × Am) for all m ≥ 1, where A1 stands for the affine line.
As mentioned above, all the invariants of X can be recovered from its derived
dg category of perfect complexes perf(X). Hence, let us define Ebn(X) to be
the abelian group Ebn(perf(X)) and call a k-scheme X Ebn-regular if Ebn(X) ≃
Ebn(X × Am) for all m ≥ 1. Making use of Theorems 1.4 and 1.6 and of
Proposition 1.10 one then obtains the following result:

Theorem 1.12. Let X be a quasi-compact separated k-scheme, n an integer,
E : dgcat→M a functor satisfying the above conditions (i)-(iii), and b a com-
pact object of Ho(M). Under these notations and assumptions, the following
implications hold:

X is Ebn-regular⇒ X is Ebn−1-regular(1.13)

X is Ebn-regular⇒ X is Ecn-regular ∀ c ∈ 〈Σnb|♮,⊕(1.14)

X is Kn(−;Z/lν)-regular⇒ X is Kn−1(−;Z/lν)-regular ,(1.15)

where in (1.15) lν is a prime power; see Thomason-Trobaugh [28, §9.3].
Remark 1.16. As in the above Remark 1.11, Weibel proved that in the par-
ticular case where 1/l ∈ OX the k-scheme X is Kn(−;Z/lν)-regular for every
n ∈ Z.

When E = U and b = U(k), (1.13) reduces toKn-regularity⇒Kn−1-regularity.
Chuck Weibel kindly informed the author that this latter implication was
proved (in a totally different way) by Cortiñas-Haesemeyer-Walker-Weibel [8,
Cor. 4.4] in the particular case where k is a field of characteristic zero. To the
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best of the author’s knowledge all the remaining cases (with k an arbitrary
commutative ring) are new in the literature. On the other hand, (1.14) reduces
to the implication

X is Kn-regular⇒ X is U cn-regular ∀ c ∈ 〈ΣnU(k)|♮,⊕ .
Moreover, in the particular case where X is Kn-regular for every n ∈ Z (e.g. X
a regular k-scheme) one can replace 〈ΣnU(k)|♮,⊕ by the triangulated category
〈U(k)〉♮,⊕. Finally, to the best of the author’s knowledge, implication (1.15) is
also new in the literature.

Remark 1.17. Theorem 1.4 admits a “cohomological” analogue. Given a dg
category A, an integer n, a functor E : dgcat→M, and an object b ∈ Ho(M),
let us write E−n

b (A) for the abelian group HomHo(M)(E(A),Σnb). The dg

categoryA is called E−n
b -regular if E−n

b (A) ≃ E−n
b (A[t1, . . . , tm]) for allm ≥ 1.

Under these notations, the following implication

(1.18) A is E−n
b -regular⇒ A is E−n+1

b -regular

holds for every functor E which satisfies the above conditions (i)-(iii). More-
over, and in contrast with implication (1.5), it is not necessary to assume that
b is a compact object of Ho(M). The proof of (1.18) is similar to the proof of
(1.5). First replace NEbn(A) by the cokernel CE−n

b (A) of the group homomor-
phism

E−n
b (id⊗(t = 0)) : E−n

b (A) −→ E−n
b (A[t]) ,

then replace (5.2) by the group isomorphism limCE−n
b (B[x]) ≃

CE−n
b (B[x, x−1]), and finally use the new key fact that the contravariant

functor HomHo(M)(−,Σnb) sends colimits to limits.
Theorem 1.12 also admits a “cohomological” analogue. In items (i)-(iv) replace
E?
n by E−n

? and in item (v) replace the above implication by: A is E−n
b -regular

⇒ σ(A) is E−n−1
b -regular. As a consequence we obtain:

A is E−n
b -regular⇒ A is E−n

c -regular ∀ c ∈ 〈Σnb|♮,⊕ .
In the particular case where A is E−n

b -regular for every n ∈ Z we can further-
more replace 〈Σnb|♮,⊕ by the thick localizing triangulated category 〈b〉♮,⊕.
Acknowledgments: The author is very grateful to Denis-Charles Cisinski,
Lars Hesselholt and Chuck Weibel for useful e-mail exchanges, as well as to the
anonymous referee for all his comments that greatly allowed the improvement
of the article.

2. Preliminaries

Dg categories. Let k be a base commutative ring and C(k) the category of
complexes of k-modules. A differential graded (=dg) category A is a category
enriched over C(k) (morphism sets A(x, y) are complexes) in such a way that
composition fulfills the Leibniz rule: d(f ◦ g) = d(f) ◦ g + (−1)deg(f)f ◦ d(g).
A dg functor A → B is a functor enriched over C(k); consult Keller’s ICM
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survey [13]. In what follows we will write dgcat for the category of (small) dg
categories and dg functors.
A dg functor A → B is called a Morita equivalence if the restriction functor
induces an equivalence D(B) ∼→ D(A) on derived categories; see [13, §3]. The
localization of dgcat with respect to the class of Morita equivalences will be
denoted by Ho(dgcat). Note that every Morita invariant functor E : dgcat →
M descends uniquely to Ho(dgcat).
The tensor product of k-algebras extends naturally to dg categories, giving rise
to a symmetric monoidal structure −⊗− on dgcat with ⊗-unit the dg category
k. As explained in [13, §4.2], this tensor product descends to a derived tensor
product−⊗L− on Ho(dgcat). Finally, recall that a dg categoryA is called k-flat
if for any two objects x and y the functor A(x, y)⊗− : C(k)→ C(k) preserves
quasi-isomorphisms. In this particular case the derived tensor product A⊗L B
agrees with the classical one A⊗ B.

Schemes. Throughout this article all schemes will be quasi-compact and sepa-
rated. By a k-schemeX we mean a schemeX over spec(k). Given a dg category
A and a k-schemeX , we will often write A⊗LX instead of A⊗Lperf(X). When
X = spec(C) is affine we will furthermore replace A⊗L spec(C) by A⊗L C.

Noncommutative motives.

Proposition 2.1. Given a functor E : dgcat → M which satisfies the above
conditions (i)-(iii), there exists a triangulated functor E : Ho(Mot) → Ho(M)
such that E ◦ U = E.

Proof. The category dgcat carries a (cofibrantly generated) Quillen model
category whose weak equivalences are precisely the Morita equivalences; see
[26, Thm. 5.3]. Hence, it gives rise to a well-defined Grothendieck deriva-
tor HO(dgcat); consult [7, Appendix A] for the notion of derivator. Since by
hypothesisM is stable and the functor E satisfies conditions (i)-(iii), we then
obtain a well-defined localizing invariant of dg categories HO(E) : HO(dgcat)→
HO(M) in the sense of [21, Notation 15.5]. Thanks to the universal property
of [21, Thm. 10.5] this localizing invariant of dg categories factors (uniquely)
through HO(Mot) via an homotopy colimit preserving morphism of derivators
HO(Mot) → HO(M). By passing to the underlying homotopy categories of
this latter morphism of derivators we hence obtain the searched triangulated
functor E : Ho(Mot)→ Ho(M) which verifies E ◦ U = E. �

3. Nisnevich descent

In this section we prove the following Nisnevich descent result, which is of
independent interest. Its Corollary 3.4 will play a key role in the next section.
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Theorem 3.1. (Nisnevich descent) Consider the following (distinguished)
square of k-schemes

(3.2) U ×X V

��

// V

p

��
U

j
// X ,

where j is an open immersion and p is an étale morphism inducing an iso-
morphism of reduced k-schemes p−1(X − U)red ≃ (X − U)red. Then, given a
dg category A and a Morita invariant localizing functor E : dgcat → M, one
obtains a homotopy (co)cartesian square

(3.3) E(A⊗L X)
E(id⊗Lj∗) //

E(id⊗Lp∗)
��

�

E(A⊗L U)

��
E(A⊗L V ) // E(A⊗L (U ×X V ))

in the homotopy category Ho(M); see [19, Def. 1.4.1].

Proof. Consider the following commutative diagram in Ho(dgcat)

0 // perf(X)Z

∼
��

// perf(X)

p∗

��

j∗ // perf(U)

��

// 0

0 // perf(V )Z′ // perf(V ) // perf(U ×X V ) // 0 ,

where Z (resp. Z ′) is the closed set X − U (resp. p−1(X − U)) and perf(X)Z
(resp. perf(V )Z′ ) the dg category of those perfect complexes of OX -modules
(resp. of OV -modules) that are supported on Z (resp. on Z ′). As explained
by Thomason-Trobaugh in [28, §5], both rows are short exact sequences of
dg categories; see also [13, §4.6]. Furthermore, as proved in [28, Thm. 2.6.3],

the induced dg functor perf(X)Z
∼→ perf(V )Z′ is a Morita equivalence and

hence an isomorphism in Ho(dgcat). Following Drinfeld [10, Prop. 1.6.3], the
functor A⊗L − : Ho(dgcat)→ Ho(dgcat) preserves short exact sequences of dg
categories. As a consequence, we obtain the commutative diagram in Ho(dgcat)

0 // A⊗L perf(X)Z

∼
��

// A⊗L perf(X)

id⊗Lp∗

��

id⊗Lj∗ // A⊗L perf(U)

��

// 0

0 // A⊗L perf(V )Z′
// A⊗L perf(V ) // A⊗L perf(U ×X V ) // 0 ,

where both rows are short exact sequences of dg categories. Recall that by
hypothesis E sends (in a functorial way) short exact sequences of dg categories
to distinguished triangles. Consequently, by applying E to the preceding com-
mutative diagram we obtain the following morphism between distinguished
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triangles:

E(A⊗L perf(X)Z) //

∼

��

E(A⊗L X)

E(id⊗Lp∗)
��

E(id⊗Lj∗)// E(A⊗L U)

��

∂ // ΣE(A⊗L perf(X)Z)

∼

��
E(A⊗L perf(V )Z′) // E(A⊗L V ) // E(A⊗L (U ×X V ))

∂
// ΣE(A⊗L perf(V )Z′).

Since the outer left and right vertical maps are isomorphisms we conclude
that the middle square (which agrees with the above square (3.3)) is homotopy
(co)cartesian. This achieves the proof. �

Corollary 3.4. (Mayer-Vietoris for open covers) Let X be a k-scheme which
is covered by two Zariski open subschemes U, V ⊂ X. Then, given a dg category
A and a Morita invariant localizing functor E : dgcat → M, one obtains a
Mayer-Vietoris triangle

E(A⊗LX)→ E(A⊗L U)⊕E(A⊗L V )
±→ E(A⊗L (U ∩ V ))

∂→ ΣE(A⊗LX) .

Proof. This follows from the fact that when the morphism p in the square (3.2)
is an open immersion, U ×X V identifies with U ∩ V ; recall also from [19,
§1.4] that every homotopy (co)cartesian square has an associated distinguished
“Mayer-Vietoris” triangle. �

4. Generalized fundamental theorem

The following theorem was proved by Bass [1, §XII-§7-8] for n ≤ 0 and by
Quillen [11] for n ≥ 1.

Theorem 4.1. (Bass’ fundamental theorem) Let R be a ring and n an integer.
Then, we have the following exact sequence of abelian groups

0→ Kn(R)
∆→ Kn(R[x]) ⊕Kn(R[1/x])

±→ Kn(R[x, 1/x])
∂n→ Kn−1(R)→ 0 .

In this section we generalize it as follows:

Theorem 4.2. (Generalized fundamental theorem) Let A be a dg category, n
an integer, E : dgcat → M a Morita invariant localizing functor, and b and
object ofM. Then, we have the following exact sequence of abelian groups
(4.3)

0→ Ebn(A)
∆→ Ebn(A[x]) ⊕ Ebn(A[1/x])

±→ Ebn(A[x, 1/x])
∂n→ Ebn−1(A)→ 0 .

Remark 4.4. A version of (4.3) for k-schemes can be found in Remark 8.6.

Proof. Let P1 be the projective line over spec(k) and i : spec(k[x]) ⊂ P1 and
j : spec(k[1/x]) ⊂ P1 its standard Zariski open cover. Since spec(k[x]) ∩
spec(k[1/x]) = spec(k[x, 1/x]), one obtains from Corollary 3.4 the following
distinguished triangle
(4.5)

E(A⊗LP1)
(E(id⊗Li∗),E(id⊗Lj∗))

−→ E(A[x])⊕E(A[1/x])
±
→ E(A[x, 1/x])

∂
→ ΣE(A⊗LP1).

Note that since k[x], k[1/x] and k[x, 1/x] are all k-flat algebras, the derived
tensor product agrees with the classical one. Let us now study the object
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E(A ⊗L P1). As explained by Thomason in [27, §2.5-2.7], we have two fully
faithful dg functors

ι0 : perf(pt)→ perf(P1) Opt 7→ OP1(0)

ι−1 : perf(pt)→ perf(P1) Opt 7→ OP1(−1) .
Moreover, ι−1 induces a Morita equivalence between perf(pt) and Drinfeld’s dg
quotient perf(P1)/ι0(perf(pt)) (see [13, §4.4]). Following [21, §13], we obtain
then a well-defined split short exact sequence of dg categories

(4.6) 0 // perf(pt)
ι0

// perf(P1) s
//

rrr
perf(pt)

ι−1rr
// 0 ,

where r is the right adjoint of ι0, r◦ι0 = id, ι−1 is right adjoint of s, and ι−1◦s =
id. As explained in the proof of Theorem 3.1, the functor A⊗L− : Ho(dgcat)→
Ho(dgcat) preserves split short exact sequences of dg categories. Moreover,
every localizing functor sends split short exact sequences to split distinguished
triangles, i.e. to direct sums in Ho(M). Therefore, by first applying A⊗L− to
(4.6) and then the functor E we obtain the following isomorphism

(4.7) (E(id⊗Lι0), E(id⊗Lι−1)) : E(A⊗ k)⊕ E(A⊗ k) ∼−→ E(A⊗L P1) .

Recall that the line bundles OP1(0) and OP1(−1) become isomorphic when
restricted to spec(k[x]) and spec(k[1/x]). Hence, we have the commutative
diagrams

perf(pt)
ι0 --

ι−1

11 perf(P1)
i∗ // perf(spec(k[x]))

perf(pt)
ι0 --

ι−1

11 perf(P1)
j∗ // perf(spec(k[1/x]))

and consequently we obtain the equalities:

E(id⊗Li∗) ◦ E(id⊗Lι0) = E(id⊗Li∗) ◦ E(id⊗Lι−1)(4.8)

E(id⊗Lj∗) ◦ E(id⊗Lι0) = E(id⊗Lj∗) ◦ E(id⊗Lι−1) .(4.9)

Now, apply Lemma 4.11 to isomorphism (4.7) and then compose the result
with (E(id⊗Li∗), E(id⊗Lj∗)). Thanks to (4.8)-(4.9), we obtain a morphism

(4.10) Ψ : E(A⊗ k)⊕ E(A ⊗ k) −→ E(A[x]) ⊕ E(A[1/x])
which is zero on the second component and

(
E(id⊗i∗) ◦ E(id⊗ι0), E(id⊗j∗) ◦ E(id⊗ι0)

)

on the first component; note once again that since k, k[x] and k[1/x] are k-flat
the derived tensor product agrees with the classical one. Making use of (4.10),
the above distinguished triangle (4.5) identifies with

E(A) ⊕ E(A) Ψ→ E(A[x]) ⊕ E(A[1/x]) ±→ E(A[x, 1/x]) ∂→ ΣE(A)⊕ ΣE(A) .
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By applying to it the functor HomHo(M)(Σ
nb,−) we obtain then a long exact

sequence

· · · → Eb
n(A) ⊕Eb

n(A)
Ψn // Eb

n(A[x]) ⊕Eb
n(A[1/x])

± // Eb
n(A[x, 1/x]) −−−−

∂n→ Eb
n−1(A)⊕ Eb

n−1(A)
Ψn−1// Eb

n−1(A[x]) ⊕Eb
n−1(A[1/x])

± // Eb
n−1(A[x, 1/x])→ · · ·

As explained above, Ψn is zero when restricted to the second component. More-
over, since the inclusions k ⊂ k[x] and k ⊂ k[1/x] admits canonical retractions,
Ψn is injective when restricted to the first component. This implies that the
image of ∂n is precisely the second component of the direct sum. As a con-
sequence, the above long exact sequence breaks up into the exact sequences
(4.3). This achieves the proof. �

Lemma 4.11. If (f, g) : A⊕A ∼→ B is an isomorphism in an additive category,

then (f, f − g) : A⊕A ∼→ B is also an isomorphism.

Proof. Since (f, g) is an isomorphism, there exist maps i, h : B → A such that
fi+ gh = id, if = id, hf = 0, ig = 0, and hg = id. Using these equalities one
observes that (i+ h,−h) : B ∼→ A⊕A is the inverse of (f, f − g). �

Notation 4.12. Given a dg category A, let us denote by NEbn(A) the kernel of
the surjective group homomorphism

(4.13) Ebn(id⊗(t = 0)) : Ebn(A[t]) −→ Ebn(A) .
Note that the inclusion k ⊂ k[t] gives rise to a direct sum decomposition
Ebn(A[t]) ≃ NEbn(A) ⊕ Ebn(A). Note also that by induction on m, A is Ebn-
regular if and only if NEbn(A[t1, . . . , tm]) = 0 for all m ≥ 0.

Corollary 4.14. Under the notations and assumptions of Theorem 4.2, we
have the following exact sequence of abelian groups

0→ NEb
n(A)

∆
→ NEb

n(A[x])⊕NEb
n(A[1/x])

±
→ NEb

n(A[x, 1/x])
∂n→ NEb

n−1(A)→ 0 .

Proof. This follows automatically from the naturality of (4.3). �

5. Proof of Theorem 1.4

Consider the following “substitution” k-algebra homomorphism

k[x][t] −→ k[x][t] p(x, t) 7→ p(x, xt) .(5.1)

Given a dg category B, let us denote by colimNEbn(B[x]) the direct limit of
the following diagram of abelian groups

NEbn(B[x])
NEb

n(id⊗(5.1))−→ NEbn(B[x])
NEb

n(id⊗(5.1))−→ NEbn(B[x])
NEb

n(id⊗(5.1))−→ · · ·
We start by proving that we have a group isomorphism

(5.2) colimNEbn(B[x]) ≃ NEbn(B[x, x−1]) .
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Consider first the commutative diagram

(5.3) k[x][t]

(t=0)
��

(5.1) // k[x][t]

(t=0)
��

(5.1) // k[x][t]

(t=0)
��

(5.1) // · · ·

k[x] k[x] k[x] · · ·

Note that the colimit of the lower row is k[x] while the colimit of the upper row
is the k-algebra R := k[x] + tk[x, 1/x][t] ⊂ k[x, 1/x][t]. By first tensoring (5.3)
with B and then applying the functor Ebn we obtain the commutative diagram
(5.4)

NEbn(B[x])
NEb

n(id⊗(5.1))//

��

NEbn(B[x])
NEb

n(id⊗(5.1))//

��

NEbn(B[x])
NEb

n(id⊗(5.1))//

��

· · ·

Ebn(B[x][t])
Eb

n(id⊗(5.1)) //

(4.13)
��

Ebn(B[x][t])
Eb

n(id⊗(5.1)) //

(4.13)
��

Ebn(B[x][t])
Eb

n(id⊗(5.1)) //

(4.13)
��

· · ·

Ebn(B[x]) Ebn(B[x]) Ebn(B[x]) · · ·

Recall from Notation (4.12) that each column is a (split) short exact sequence
of abelian groups. The colimit of the lower row is clearly Ebn(B[x]). Since
the functors B ⊗ − : dgcat → dgcat and E : dgcat → M preserve filtered
(homotopy) colimits and b is a compact object of Ho(M), the colimit of the
middle row identifies with Ebn(B ⊗R). Hence, from diagram (5.4) one obtains
the isomorphism

(5.5) colimNEbn(B[x]) ≃ Ker
(
Ebn(B ⊗R)

(4.13)−→ Ebn(B[x])
)
.

Now, consider the k-algebras R and k[x] endowed with the sets of left de-
nominators S1 := {xn}n≥0 ⊂ R and S2 := {xn}n≥0 ⊂ k[x]. The k-algebra
homomorphism

R = k[x] + tk[x, 1/x][t] −→ k[x] t 7→ 0(5.6)

identifies S1 with S2 and moreover induces a quasi-isomorphism

0 // R

(5.6)
��

// R[S−1
1 ] = k[x, 1/x][t]

(5.6)
��

// 0

0 // k[x] // k[x][S−1
2 ] = k[x, 1/x] // 0 .

As a consequence, since R and k[x] are clearly k-flat algebras, conditions a)
and b) of [14, §4.2] are satisfied. In loc. cit. Keller also assumes that the base
ring k is coherent and of finite dimensional global dimension. However, these
extra assumptions are only used to prove the localization theorem for model
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categories; see [14, §5-6]. We obtain then a commutative diagram in Ho(dgcat)

(5.7) 0 // A1

∼
��

// perf(R)

��

// perf(k[x, x−1][t])

��

// 0

0 // A2 // perf(k[x]) // perf(k[x, x−1]) // 0 ,

where moreover each row is a short exact sequence of dg categories and the left
vertical map is a quasi-isomorphism (and hence a Morita equivalence) of dg
k-algebras; consult [14, §4.3] for further details. By first tensoring (5.7) with
B and then applying the functor E we obtain (as in the proof of Theorem 3.1)
a homotopy (co)cartesian square

(5.8) E(B ⊗R)

��

//

�

E(B[x, 1/x][t])

��
E(B[x]) // E(B[x, 1/x]) .

Note that since R, k[x], k[x, 1/x], and k[x, 1/x][t] are all k-flat algebras, the
derived tensor product agrees with the classical one. Note also that the natural
inclusions k[x] ⊂ R and k[x, 1/x] ⊂ k[x, 1/x][t] give rise to sections of the
vertical maps. As a consequence, since (5.8) is homotopy (co)cartesian, we
obtain an induced isomorphism

Ker
(
Ebn(B ⊗R)

(4.13)→ Ebn(B[x])
) ∼−→ Ker

(
Ebn(B[x, 1/x][t])

(4.13)→ Ebn(B[x, 1/x])
)
.

Since the right-hand-side is by definition NEbn(B[x, 1/x]) the searched isomor-
phism (5.2) follows now from isomorphism (5.5).
We are now ready to conclude the proof. As explained in Notation 4.12, a
dg category A is Ebn-regular if and only if NEbn(A[t1, . . . , tm]) = 0 for any all
m ≥ 0. Since A is Ebn-regular we hence have NEbn(A[t1, . . . , tm]) = 0 for all
m ≥ 0. Using isomorphism (5.2) (with B = A[t1, . . . tm−1]) we conclude that

colimNEbn(A[t1, . . . , tm−1][x]) ≃ NEbn(A[t1, . . . , tm−1][x, 1/x]) = 0 .

The exact sequence of Corollary 4.14 (with A = A[t1, . . . , tm−1]) implies that
NEbn−1(A[t1, . . . , tm−1]) = 0. Since this holds for every m ≥ 0, we conclude

finally that A is Ebn−1-regular. This concludes the proof of Theorem 1.4.

6. Proof of Theorem 1.6

Item (i) follows from the combination of implication (1.5) with the equalities

EΣ−ib
n (A) := HomHo(M)(Σ

n(Σ−ib), E(A)) = HomHo(M)(Σ
n−ib, E(A)) =: Eb

n−i(A) .

In what concerns item (ii), note that by applying the bifunctor
HomHo(M)(−,−) to the sequence

Σn−1c′ → Σn−1c′′ → Σnc→ Σnc′ → Σnc′′
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in the first variable and to the morphism E(A) → E(A[t1, . . . , tm]) in the
second variable, one obtains the following commutative diagram

Ec
′′

n (A)

��

// Ec
′′

n (A[t1, . . . , tm])

��
Ec

′

n (A)

��

// Ec
′

n (A[t1, . . . , tm])

��
Ecn(A)

��

// Ecn(A[t1, . . . , tm])

��
Ec

′′

n−1(A)

��

// Ec
′′

n−1(A[t1, . . . , tm])

��
Ec

′

n−1(A) // Ec
′

n−1(A[t1, . . . , tm]) ,

where each column is exact. Since by hypothesis A is Ec
′

n -regular and Ec
′′

n -
regular the two top horizontal morphisms are isomorphisms. Using implication
(1.5) we conclude that the two bottom horizontal morphisms are also isomor-
phisms. Using the 5-lemma one then concludes that the horizontal middle
morphism is an isomorphism. This implies that A is Ecn-regular.
Let us now prove item (iii). Since by hypothesis d is a direct factor of b, there
exist morphisms d→ b and b→ d such that the composition d→ b→ d equals
the identity of d. This data gives naturally rise to the following commutative
diagram

(6.1) Edn(A)

��

// Ebn(A)

��

// Edn(A)

��
Edn(A[t1, . . . , tm]) // Ebn(A[t1, . . . , tm]) // Edn(A[t1, . . . , tm]) ,

where both horizontal compositions are the identity. By assumption, A is Ebn-
regular and so the vertical middle morphism in (6.1) is an isomorphism. From
the commutativity of (6.1) and the fact that isomorphisms are stable under
retractions, one concludes that the vertical left-hand-side (or right-hand-side)
morphism is also an isomorphism. This implies that A is Edn-regular.
Item (iv) follow from the combination of implication (1.5) with the equalities

E⊕i∈Ici
n (A) := Hom(Σn(⊕i∈Ici), E(A)) =

∏

i∈I

Hom(Σnci, E(A)) =:
∏

i∈I

Ecin (A) ,

where we have removed the subscripts of Hom in order to simplify the expo-
sition. Let us now prove item (v). As explained in [23, Thm. 1.2], we have a

canonical isomorphism U(σ(A)) ∼→ ΣU(A) in Ho(Mot); in loc. cit. σ(A) was
denoted by Σ(A) and U by U loc

dg . Hence, by applying the triangulated functor

E of Proposition 2.1 to the square below (6.6) (with B := A[t1, . . . , tm]), one
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obtains the square

(6.2) E(σ(A))

��

∼ // ΣE(A)

��
E(σ(A[t1, . . . , tm])) ∼

// ΣE(A[t1, . . . , tm])

in the homotopy category Ho(M). Since by construction σ(A[t1, . . . , tm]) and
σ(A)[t1, . . . , tm] are canonically isomorphic, (6.2) gives rise to the following
commutative diagram
(6.3)

HomHo(M)(Σ
n+1b, E(σ(A)))

��

∼ // HomHo(M)(Σ
n+1b,ΣE(A))

��
HomHo(M)(Σ

n+1b, E(σ(A)[t1, . . . , tm])) ∼
// HomHo(M)(Σ

nb,ΣE(A[t1, . . . , tm])) .

Moreover, using the fact that Σ−1(−) is an autoequivalence of Ho(M), we
have
(6.4)

HomHo(M)(Σ
n+1b,ΣE(A))

��

∼

Σ−1(−) // HomHo(M)(Σ
nb, E(A))

��
HomHo(M)(Σ

n+1b,ΣE(A[t1, . . . , tm]))
∼

Σ−1(−)

// HomHo(M)(Σ
nb, E(A[t1, . . . , tm])) .

Now, recall that by hypothesis A is Ebn-regular. Hence, the vertical right-
hand-side morphism in (6.4) is an isomorphism. Consequently, by combining
(6.3)-(6.4), we conclude that the vertical left-hand-side morphism in (6.3), i.e.
Ebn+1(σ(A)) → Ebn+1(σ(A)[t1, . . . , tm]) is an isomorphism. This implies that

σ(A) is Ebn+1-regular and so the proof is finished.

Lemma 6.5. Given a dg functor F : A → B, we have a commutative diagram

(6.6) U(σ(A))
U(σ(F ))

��

∼ // ΣU(A)
ΣU(F )

��
U(σ(B)) ∼

// ΣU(B)

in the homotopy category Ho(Mot).

Proof. Thanks to [23, Prop. 4.9], we have the diagram in Ho(dgcat)

(6.7) 0 // A⊗ k
F⊗id

��

// A⊗ Γ

F⊗id

��

// A⊗ σ
F⊗id

��

// 0

0 // B ⊗ k // B ⊗ Γ // B ⊗ σ // 0 ,

where both rows are short exact sequences of dg categories. Consequently, by
applying the functor U to (6.7) we obtain the following morphism between

Documenta Mathematica 19 (2014) 121–139



En-Regularity Implies En−1-Regularity 135

distinguished triangles:

(6.8) U(A)
U(F )

��

// U(A⊗ Γ)

��

// U(σ(A))
U(σ(F ))

��

∂ // ΣE(A)
ΣU(F )

��
U(B) // U(B ⊗ Γ) // U(σ(B))

∂
// ΣE(B) .

As explained in [23, §6], U(A ⊗ Γ) and U(B ⊗ Γ) are isomorphic to zero in
Ho(Mot). Hence, the connecting morphisms ∂ are isomorphisms and so the
searched commutative square (6.6) is the right-hand-side square in (6.8). This
achieves the proof. �

7. Proof of Proposition 1.10

Consider the following distinguished triangle in Ho(Mot)

U(k)
·l−→ U(k) −→ U(k)/l −→ ΣU(k) .

As proved in [25, Prop. 2.12], one has the following isomorphisms

HomHo(Mot)(Σ
n(U(k)/l), U(A)) ≃ Kn+1(A;Z/l) n ∈ Z .

In loc. cit. the author worked with k = Z and with the additive version of
Mot where localization is replaced by additivity; however, the arguments are
exactly the same. The proof follows now from the fact that U(k)/l ≃ Σfib(l)

and from the definition U
fib(l)
n (A) := HomHo(Mot)(Σ

nfib(l), U(A)).

8. Proof of Theorem 1.12

Since by hypothesis X is Ebn-regular the isomorphism Ebn(X) ≃ Ebn(X × Am)
holds for all m ≥ 1. By applying Proposition 8.2 below to X and to the k-flat
k-scheme Y = Am we obtain moreover the following isomorphisms

(8.1) Ebn(X × Am)
(8.3)≃ Ebn(perf(X)⊗ perf(Am)) ≃ Ebn(perf(X)[t1, . . . , tm]) .

Note that since Am = spec(k[t1, . . . , tm]) is an affine k-flat algebra the derived
tensor product agrees with the classical one. By combining (8.1) with the
isomorphism Ebn(X) ≃ Ebn(X × Am) we conclude then that the dg category
perf(X) is Ebn-regular. By Theorem 1.4 it is also Ebn−1-regular. Hence, using
again the above isomorphisms (8.1) (with n replaced by n− 1) one concludes
that the isomorphism Ebn−1(X) ≃ Ebn−1(X × Am) holds for all m ≥ 1, i.e.

that X is Ebn−1-regular. This proves implication (1.13). Implication (1.14)
follows automatically from the combination of the above isomorphism (8.1)
with implication (1.8). Finally, implication (1.15) follows from the combination
of Proposition 1.10 with implication (1.13) and with [25, Example 2.13]. This
achieves the proof.

Proposition 8.2. Let X and Y be two quasi-compact separated k-schemes with
Y k-flat, n an integer, E : dgcat → M a Morita invariant localizing functor,
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and b an object of M. Under these notations and assumptions, we have a
canonical isomorphism

(8.3) Ebn(−⊠L −) : Ebn(perf(X)⊗L perf(Y ))
∼−→ Ebn(perf(X × Y )) .

Proof. The proof will consist on showing that the canonical maps

(8.4) E(−⊠L −)Z,W : E(perf(Z)⊗L perf(W )) −→ E(perf(Z ×W )) ,

parametrized by the pairs (Z,W ) of quasi-compact separated k-schemes with
W k-flat, are isomorphisms. The above isomorphism (8.3) will follow then from
(8.4) (with Z := X and W := Y ) by applying the functor HomHo(M)(Σ

nb,−).
Let us denote by Sch the category of quasi-compact separated k-schemes and
by Schflat the full subcategory of k-flat schemes. Note that we have two well-
defined contravariant bifunctors

E(perf(−)⊗L perf(−)) E(perf(−×−))
from Sch × Schflat to Ho(M). Moreover, the above canonical maps (8.4) give
rise to a natural transformation of bifunctors

(8.5) E(perf(−)⊗L perf(−))⇒ E(perf(−×−)) .
Our goal is then to show that (8.5) is an isomorphism when evaluated at any
pair (Z,W ) ∈ Sch× Schflat. Let us start by fixing W . Thanks to Theorem 3.1
(applied to A = perf(W )) one observes that the functor E(perf(−)⊗Lperf(W ))
satisfies Nisnevich descent and hence by Corollary 3.4 Zariski descent. In what
concerns E(perf(−×W )) note first that by applying the functor −×W to (3.2)
one still obtains a (distinguished) square of k-schemes. Therefore, Theorem 3.1
(applied to A = k) allows us to conclude that E(perf(− ×W )) satisfies also
Nisnevich descent.
Now, by the reduction principle of Bondal and Van den Bergh (see [4,
Prop. 3.3.1]) the above natural transformation (8.5) is an isomorphism when
evaluated at the pairs (Z,W ), with W fixed, if and only if it is an isomorphism
when evaluated at the pairs (spec(C),W ), with C a commutative k-algebra.
By fixing Z and making the same argument one concludes also from the re-
duction principle that (8.5) is an isomorphism when evaluated at the pairs
(Z,W ), with Z fixed, if and only if it is an isomorphism when evaluated at
the pairs (Z, spec(D)), with D a k-flat commutative k-algebra. In conclusion
it suffices to show that (8.5) is an isomorphism when evaluated at the pairs
(spec(C), spec(D)). Note that in this particular case we have the following
canonical Morita equivalences

perf(spec(C)) ≃ C perf(spec(D)) ≃ D perf(spec(C)× spec(D)) ≃ C ⊗D .

Moreover, since the k-algebra D is k-flat, the derived tensor product C ⊗L D
agrees with the classical one C ⊗D. By applying the functor E to this latter
isomorphism one obtains the evaluation E(C ⊗L D) ≃ E(C ⊗D) of the above
natural transformation (8.5) at the pair (spec(C), spec(D)). This concludes
the proof of Proposition 8.2. �
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Remark 8.6. Given a quasi-compact separated k-scheme X , let

X [x] := X × A1 X [1/x] := X × spec(k[1/x]) X [x, 1/x] := X × spec(k[x, 1/x]) .

Making use of Proposition 8.2 and the k-flatness of k[x], k[1/x] and k[x, 1/x],
one observes that Theorem 4.2 applied to A = perf(X) reduces to the following
exact sequence of abelian groups

0→ Ebn(X)
∆→ Ebn(X [x])⊕ Ebn(X [1/x])

±→ Ebn(X [x, 1/x])
∂n→ Ebn−1(X)→ 0 .
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Abstract. We compute the trace of an endomorphism in equivariant
bivariant K-theory for a compact group G in several ways: geometri-
cally using geometric correspondences, algebraically using localisation,
and as a Hattori–Stallings trace. This results in an equivariant ver-
sion of the classical Lefschetz fixed-point theorem, which applies to
arbitrary equivariant correspondences, not just maps.
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1 Introduction

Here we continue a series of articles by the last two authors about Euler char-
acteristics and Lefschetz invariants in equivariant bivariant K-theory. These
invariants were introduced in [11, 13–16]. The goal is to compute Lefschetz
invariants explicitly in a way that generalises the Lefschetz–Hopf fixed-point
formula.
Let X be a smooth compact manifold and f : X → X a self-map with simple
isolated fixed points. The Lefschetz–Hopf fixed-point formula identifies

1supported by a National Science and Engineering Research Council of Canada Discovery
Grant

2supported by the Volkswagen Foundation (Georgian–German non-commutative part-
nership) and the German Research Foundation (Deutsche Forschungsgemeinschaft (DFG))
through the Institutional Strategy of the University of Göttingen.

Documenta Mathematica 19 (2014) 141–193



142 Ivo Dell’Ambrogio, Heath Emerson, and Ralf Meyer

1. the sum over the fixed points of f , where each fixed point contributes ±1
depending on its index;

2. the supertrace of the Q-linear, grading-preserving map on K∗(X) ⊗ Q
induced by f .

It makes no difference in (2) whether we use rational cohomology or K-theory
because the Chern character is an isomorphism between them.
We will generalise this result in two ways. First, we allow a compact group G to
act on X and get elements of the representation ring R(G) instead of numbers.
Secondly, we replace self-maps by self-correspondences in the sense of [15]. Sec-
tions 2 and 3 generalise the invariants (1) and (2) respectively to this setting.
The invariant of Section 2 is local and geometric and generalises (1) above; the
formulas in Sections 3 and 4 are global and homological and generalise (2) (in
two different ways.) The equality of the geometric and homological invariants
is our generalisation of the Lefschetz fixed-point theorem.
A first step is to interpret the invariants (1) or (2) in a category-theoretic way
in terms of the trace of an endomorphism of a dualisable object in a symmetric
monoidal category.
Let C be a symmetric monoidal category with tensor product ⊗ and tensor
unit 1. An object A of C is called dualisable if there is an object A∗, called its
dual, and a natural isomorphism

C(A⊗B,C) ∼= C(B,A∗ ⊗ C)

for all objects B and C of C. Such duality isomorphisms exist if and only if
there are two morphisms η : 1 → A ⊗ A∗ and ε : A∗ ⊗ A → 1, called unit and
counit of the duality, that satisfy two appropriate conditions. Let f : A → A
be an endomorphism in C. Then the trace of f is the composite endomorphism

1
η
−→ A⊗A∗ sym

−−→ A∗ ⊗A
idA∗ ⊗f
−−−−−→ A∗ ⊗A

ε
−→ 1,

where sym denotes the symmetry (or braiding) isomorphism. In this article we
also call the trace the Lefschetz index of the morphism. This is justified by the
following example.
Let C be the Kasparov category KK with its usual tensor product structure,
A = C(X) for a smooth compact manifold X , and f̂ ∈ KK0(A,A) for some
morphism. We may construct a dual A∗ from the tangent bundle or the stable
normal bundle of X . In the case of a smooth self-map of X , and assuming a
certain transversality condition, the trace of the morphism f̂ induced by the
self-map equals the invariant (1), that is, equals the number of fixed-points of
the map, counted with appropriate signs. This is checked by direct computation
in Kasparov theory, see [13] for more general results.
This paper springs in part from the reference [13]. A similar invariant to
the Lefschetz index was introduced there, called the Lefschetz class (of the
morphism). The Lefschetz class for an equivariant Kasparov endomorphism
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of X was defined as an equivariant K-homology class for X . The Lefschetz
index, that is, the categorical trace, discussed above, is the Atiyah–Singer index
of the Lefschetz class of [13].
The main goal of this article is to give a global, homological formula for the
Lefschetz index generalising the invariant (2) for a non-equivariant self-map.
The formulation and proof of our homological formula works best for Hodgkin
Lie groups. A more complicated form applies to all compact groups. The
article [13] also provides two formulas for the equivariant Lefschetz class whose
equality generalises that of the invariants (1) and (2), but the methods there
are completely different.
The other main contribution of this article is to compute the geometric expres-

sion for the Lefschetz index in the category k̂k
G
of geometric correspondences

introduced in [15]. This simplifies the computation in Kasparov’s analytic the-
ory in [13] and also gives a more general result, since we can work with general
smooth correspondences rather than just maps. Furthermore, using an idea of
Baum and Block in [4], we give a recipe for composing two smooth equivari-
ant correspondences under a weakening of the usual transversality assumption
(of [6]). This technique is important for computing the Lefschetz index in the
case of continuous group actions, where transversality is sometimes difficult to
achieve, and in particular, aids in describing equivariant Euler characteristics
in our framework.
Section 2 contains our geometric formula for the Lefschetz index of an equiv-
ariant self-correspondence. Why is there a nice geometric formula for the Lef-
schetz index of a self-map in Kasparov theory? A good explanation is that
Connes and Skandalis [6] describe KK-theory for commutative C∗-algebras ge-
ometrically, including the Kasparov product; furthermore, the unit and counit
of the KK-duality for smooth manifolds have a simple form in this geomet-
ric variant of KK. An equivariant version of the theory in [6] is developed
in [15]. In Section 2, we also recall some basic results about the geometric
KK-theory introduced in [15]. If X is a smooth compact G-manifold for a
compact group G, then KKG∗ (C(X),C(X)) is isomorphic to the geometrically

defined group k̂k
G

∗ (X,X). Its elements are smooth correspondences

X
b
←− (M, ξ)

f
−→ X (1.1)

consisting of a smooth G-map b, a KG-oriented smooth G-map f , and ξ ∈
K∗
G(M). Theorem 2.18 computes the categorical trace, or Lefschetz index, of

such a correspondence under suitable assumptions on b and f .
Assume first that X has no boundary and that b and f are transverse; equiv-
alently, for all m ∈ M with f(m) = b(m) the linear map Db −Df : TmM →
Tf(m)X is surjective. Then

Q := {m ∈M | b(m) = f(m)} (1.2)

is naturally a KG-oriented smooth manifold. We show that the Lefschetz index
is the G-index of the Dirac operator on Q twisted by ξ|Q ∈ K∗

G(Q) (Theo-
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rem 2.18). More generally, suppose that the coincidence space Q as defined
above is merely assumed to be a smooth submanifold of M , and that x ∈ TX
and Df(ξ) = Db(ξ) implies that ξ ∈ TQ. Then we say that f and b inter-

sect smoothly. For example, the identity correspondence, where f and b are
the identity maps on X , does not satisfy the above transversality hypothesis,
but f and b clearly intersect smoothly. In the case of a smooth intersection,
the cokernels of the map Df − Db form a vector bundle on Q which we call
the excess intersection bundle η. This bundle measures the failure of transver-
sality of f and b. Let η be KG-oriented. Then TQ also inherits a canonical
KG-orientation. The restriction of the Thom class of η to the zero section gives
a class e(η) ∈ K∗

G(Q).
Then Theorem 2.18 asserts that the Lefschetz index of the correspondence (1.1)
with smoothly intersecting f and b is the index of the Dirac operator on the
coincidence manifold Q twisted by ξ⊗e(η). This is the main result of Section 2.
In Section 3 we generalise the global homological formula involved in the clas-
sical Lefschetz fixed-point theorem, to the equivalent situation. This involves
completely different ideas. The basic idea to use Künneth and Universal Coef-
ficient theorems for such a formula already appears in [9]. In the equivariant
case, these theorems become much more complicated, however. The new idea
that we need here is to first localise KKG and compute the Lefschetz index in
the localisation.
In the introduction, we only state our result in the simpler case of a Hodgkin
Lie group G. Then R(G) is an integral domain and thus embeds into its
field of fractions F . For any G-C∗-algebra A, KG∗ (A) is a Z/2-graded R(G)-
module. Thus KG∗ (A;F ) := KG∗ (A) ⊗R(G) F becomes a Z/2-graded F -vector
space. Assume that A is dualisable and belongs to the bootstrap class in KKG.
Then KG∗ (A;F ) is finite-dimensional, so that the map on KG∗ (A;F ) induced
by an endomorphism ϕ ∈ KKG0 (A,A) has a well-defined (super)trace in F .
Theorem 3.4 asserts that this supertrace belongs to R(G) ⊆ F and is equal to
the Lefschetz index of ϕ. In particular, this applies if A = C(X) for a compact
G-manifold.
The results of Sections 2 and 3 together thus prove the following:

Theorem 1.1. Let G be a Hodgkin Lie group, let F be the field of fractions

of R(G). Let X be a closed G-manifold. Let X
b
←− (M, ξ)

f
−→ X be a smooth

G-equivariant correspondence from X to X with ξ ∈ KdimM−dimX
G (X); it rep-

resents a class ϕ ∈ k̂k
G

0 (X,X). Assume that b and f intersect smoothly with

KG-oriented excess intersection bundle η. Equip Q := {m ∈M | b(m) = f(m)}
with its induced KG-orientation.

Then the R(G)-valued index of the Dirac operator on Q twisted by ξ|Q⊗e(η) is

equal to the supertrace of the F -linear map on K∗
G(X)⊗R(G) F induced by ϕ.

If G is a connected Lie group, then there is a finite covering Ĝ ։ G that
is a Hodgkin Lie group. We may turn G-actions into Ĝ-actions using the

projection map, and get a symmetric monoidal functor KKG → KKĜ. Since
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the map R(G)→ R(Ĝ) is clearly injective, we may compute the Lefschetz index
of ϕ ∈ KKG0 (A,A) by computing instead the Lefschetz index of the image of ϕ

in KKĜ0 (A,A). By the result mentioned above, this uses the induced map on

KĜ∗ (A) ⊗R(Ĝ) F̂ , where F̂ is the field of fractions of R(Ĝ). Thus we get a
satisfactory trace formula for all connected Lie groups. But the result may be
quite different from the trace of the induced map on KG∗ (A)⊗R(G) F .

If G is not connected, then the total ring of fractions ofG is a product of finitely
many fields. Its factors correspond to conjugacy classes of Cartan subgroups
in G. Each Cartan subgroup H ⊆ G corresponds to a minimal prime ideal pH
in R(G). The quotient R(G)/pH is an integral domain and embeds into a
field of fractions FH . We show that the map R(G) → FH maps the Lefschetz
index of ϕ to the supertrace of KH∗ (ϕ;FH) (Theorem 3.23). It is crucial to use
H-equivariant K-theory here. The very simple counterexample 3.7 shows that
there may be two elements ϕ1, ϕ2 ∈ KKG0 (A,A) with different Lefschetz index
but inducing the same map on KG∗ (A).

Thus the generalisation of Theorem 1.1 to disconnected G identifies the image
of the index of the Dirac operator onQ twisted by ξ|Q⊗e(η) under the canonical
map R(G)→ FH with the supertrace of the FH -linear map on K∗

G(X)⊗R(G)FH
induced by ϕ, for each Cartan subgroup H .

The trace formulas in Section 3 require the algebra A on which we compute the
trace to be dualisable and to belong to an appropriate bootstrap class, namely,
the class of all G-C∗-algebras that are KKG-equivalent to a type I G-C∗-algebra.
This is strictly larger than the class of G-C∗-algebras that are KKG-equivalent
to a commutative one, already if G is the circle group (see [10]). We describe
the bootstrap class as being generated by so-called elementary G-C∗-algebras
in Section 3.1. This list of generators is rather long, but for the purpose of
the trace computations, we may localise KKG at the multiplicatively closed
subset of non-zero divisors in R(G). The image of the bootstrap class in this
localisation has a very simple structure, which is described in Section 3.2. The
homological formula for the Lefschetz index follows easily from this description
of the localised bootstrap category.

In Section 4, we give a variant of the global homological formula for the trace
for a Hodgkin Lie group G. Given a commutative ring R and an R-module M
with a projective resolution of finite type, we may define a Hattori–Stallings
trace for endomorphisms of M by lifting the endomorphism to a finite type
projective resolution and using the standard trace for endomorphisms of finitely
generated projective resolutions. This defines the trace of the R(G)-module
homomorphism KG∗ (ϕ) : KG∗ (A) → KG∗ (A) in R(G) without passing through a
field of fractions.

2 Lefschetz indices in geometric bivariant K-theory

The category k̂k
G
introduced in [15] provides a geometric analogue of Kasparov

theory. We first recall some basic facts about this category and duality in
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bivariant K-theory from [14–16] and then compute Lefschetz indices in it as
intersection products. Later we are going to compare this with other formulas
for Lefschetz indices. We also prove an excess intersection formula to compute
the composition of geometric correspondences under a weaker assumption than
transversality. This formula goes back to Baum and Block [4].
All results in this section extend to the case where G is a proper Lie groupoid
with enough G-vector bundles in the sense of [14, Definition 3.1] because the
theory in [14–16] is already developed in this generality. For the sake of con-
creteness, we limit our treatment here to compact Lie groups acting on smooth
manifolds.
The results in this section work both for real and complex K-theory. For
concreteness, we assume in our notation that we are dealing with the complex
case. In the real case, K must be replaced by KO throughout. In particular,
KG-orientations (that is, G-equivariant Spin

c-structures) must be replaced by
KOG-orientations (that is, G-equivariant Spin structures). In some examples,

we use the isomorphisms k̂k
G

2n(pt, pt) = R(G) and k̂k
G

2n+1(pt, pt) = 0 for all
n ∈ Z. Here R(G) denotes the representation ring of G. Of course, this is true
only in complex K-theory.

2.1 Geometric bivariant K-theory

Like Kasparov theory, geometric bivariant K-theory yields a category k̂k
G
. Its

objects are (Hausdorff) locally compact G-spaces; arrows from X to Y are
geometric correspondences from X to Y in the sense of [15, Definition 2.3].
These consist of

• M : a G-space;

• b: a G-map (that is, a continuous G-equivariant map) b : M → X ;

• ξ: a G-equivariant K-theory class on M with X-compact support (where
we view M as a space over X via the map b); we write ξ ∈ RK∗

G,X(M);

• f : a KG-oriented normally non-singular G-map f : M → Y .

Equivariant K-theory with X-compact support and equivariant vector bundles
are defined in [12, Definitions 2.5 and 2.6]. If b is a proper map, in particular
if M is compact, then RK∗

G,X(M) is the ordinary G-equivariant (compactly
supported) K-theory K∗

G(M) of M .
A KG-oriented normally non-singular map from M to Y consists of

• V : a KG-oriented G-vector bundle on M ,

• E: a KG-oriented finite-dimensional linear G-representation, giving rise
to a trivial KG-oriented G-vector bundle Y × E on Y ,

• f̂ : a G-equivariant homeomorphism from the total space of V to an open
subset in the total space of Y × E, f̂ : V →֒ Y × E.
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We will not distinguish between a vector bundle and its total space in our
notation.

A normally non-singular map f = (V,E, f̂) has an underlying map

M ֌ V
f̂
−֒→ Y × E ։ Y,

where the first map is the zero section of the vector bundle V and the third
map is the coordinate projection. This map is called its “trace” in [14], but we
avoid this name here because we use “trace” in a different sense. The degree

of f is d = dim V − dimE. A wrong-way element f! ∈ KKGd (C0(M),C0(Y ))
induced by f is defined in [14, Section 5.3]).
Our geometric correspondences are variants of those introduced by Alain
Connes and Georges Skandalis in [6]. The changes in the definition avoid
technical problems with the usual definition in the equivariant case.

The (Z/2-graded) geometric KK-group k̂k
G

∗ (X,Y ) is defined as the quotient
of the set of geometric correspondences from X to Y by an appropriate equiv-
alence relation, generated by bordism, Thom modification, and equivalence
of normally non-singular maps. Bordism includes homotopies for the maps b
and f by [15, Lemma 2.12]. We will use this several times below. The Thom
modification allows to replace the space M by the total space of a KG-oriented
vector bundle onM . In particular, we could take the KG-oriented vector bundle
from the normally non-singular map f . This results in an equivalent normally
non-singular map where f : M → Y is a special submersion, that is, an open
embedding followed by a coordinate projection Y × E ։ Y for some linear
G-representation E. Correspondences with this property are called special.

The composition in k̂k
G
is defined as an intersection product (see Section 2.2)

if the map f : M → Y is such a special submersion. This turns k̂k
G

into
a category; the identity map on X is the correspondence with f = b = idX
and ξ = 1. The product of G-spaces provides a symmetric monoidal structure

in k̂k
G
(see [15, Theorem 2.27]).

There is an additive, grading-preserving, symmetric monoidal functor

k̂k
G

∗ (X,Y )→ KKG∗ (C0(X),C0(Y )).

This is an isomorphism if X is normally non-singular by [15, Corollary 4.3],
that is, if there is a normally non-singular map X → pt. This means that there
is a G-vector bundle V over X whose total space is G-equivariantly homeo-
morphic to an open G-invariant subset of some linear G-space. In particular,
by Mostow’s Embedding Theorem smooth G-manifolds of finite orbit type are
normally non-singular (see [14, Theorem 3.22]).

Stable KG-orientations play an important technical role in our trace formulas
and should therefore be treated with care. A KG-orientation on a G-vector
bundle V is, by definition, a G-equivariant complex spinor bundle for V . (This
is equivalent to a reduction of the structure group to Spinc.) Given such
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KG-orientations on V1 and V2, we get an induced KG-orientation on V1 ⊕ V2;
conversely, KG-orientations on V1 ⊕ V2 and V1 induce one on V2.
Let ξ ∈ RK0

G(M) be represented by the formal difference [V1] − [V2] of two
G-vector bundles. A stable KG-orientation on ξ means that we are given an-
other G-vector bundle V3 and KG-orientations on both V1 ⊕ V3 and V2 ⊕ V3.
Since ξ = [V1 ⊕ V3]− [V2 ⊕ V3], this implies that ξ is a formal difference of two
KG-oriented G-vector bundles. Conversely, assume that ξ = [W1]− [W2] with
two KG-oriented G-vector bundles; then there are G-vector bundles V3 and W3

such that Vi ⊕ V3
∼= Wi ⊕W3 for i = 1, 2; since W3 is a direct summand in

a KG-oriented G-vector bundle, we may enlarge V3 and W3 so that W3 itself
is KG-oriented. Then Vi ⊕ V3

∼= Wi ⊕W3 for i = 1, 2 inherit KG-orientations.
Roughly speaking, stably KG-oriented K-theory classes are equivalent to formal
differences of KG-oriented G-vector bundles.
A KG-orientation on a normally non-singular map f = (V,E, f̂) from M to Y
means that both V and E are KG-oriented. Since “lifting” allows us to re-
place E by E ⊕ E′ and V by V ⊕ (M × E′), we may assume without loss of
generality that E is already KG-oriented. Thus a KG-orientation on f becomes
equivalent to one on V . But the chosen KG-orientation on E remains part of
the data: changing it changes the KG-orientation on f . By [14, Lemma 5.13],
all essential information is contained in a KG-orientation on the formal differ-
ence [V ]− [M ×E] ∈ RK0

G(M), which we call the stable normal bundle of the
normally non-singular map f . If [V ]−[M×E] is KG-oriented, then we may find
a G-vector bundle V3 such that V ⊕V3 and (M×E)⊕V3 are KG-oriented. Since
(M ×E)⊕V3 is a direct summand in a KG-oriented trivial G-vector bundle, we
may assume without loss of generality that V3 itself is trivial, V3 =M×E′, and
that already E ⊕ E′ is KG-oriented. Lifting f along E′ then gives a normally
non-singular map (V ⊕ (M ×E′), E ⊕E′, f̂ × idE′), where both V ⊕ (M ×E′)
and E ⊕ E′ are KG-oriented. Thus a KG-orientation on f is equivalent to a
stable KG-orientation on the stable normal bundle of f .

Lemma 2.1. If f = (V,E, f̂) is a smooth normally non-singular map with

underlying map f̄ : M → Y , then its stable normal bundle is equal to f̄∗[TY ]−
[TM ] ∈ RK0

G(M).

Proof. The tangent bundles of the total spaces of V and Y ×E are TM⊕V and
TY ⊕ E, respectively. Since f̂ is an open embedding, f̂∗(TY ⊕ E) ∼= TM ⊕ V .
This implies f̄∗(TY )⊕ (M ×E) ∼= TM ⊕ V . Thus [V ]− [M × E] = f̄∗[TY ]−
[TM ].

This lemma also shows that the stable normal bundle of f and hence the
orientability assumption depend only on the equivalence class of f .
Another equivalent way to describe stable KG-orientations is the following. Sup-
pose we are already given a G-vector bundle V on Y such that TY ⊕ V is
KG-oriented. Then a stable KG-orientation on f is equivalent to one on

[f̄∗V ⊕ TM ] = f̄∗[TY ⊕ V ]− (f̄∗[TY ]− [TM ]),
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which is equivalent to a KG-orientation on f̄∗V ⊕ TM in the usual sense.
If X and Y are smooth G-manifolds (without boundary), we may require the

maps b and f̂ and the vector bundles V and E to be smooth. This leads to

a smooth variant of k̂k
G
. This variant is isomorphic to the one defined above

by [15, Theorem 4.8] provided X is of finite orbit type and hence normally
non-singular.
Working in the smooth setting has two advantages.
First, assumingM to be of finite orbit type, [14, Theorem 3.22] shows that any
smooth G-map f : M → Y lifts to a smooth normally non-singular map that is
unique up to equivalence. Thus we may replace normally non-singular maps by
smooth maps in the usual sense in the definition of a geometric correspondence.
Moreover, Nf = f∗[TY ] − [TM ], so f is KG-oriented if and only if there are
KG-oriented G-vector bundles V1 and V2 overM with f∗[TY ]⊕V1

∼= TM ⊕V2

(compare [14, Corollary 5.15]).
Secondly, in the smooth setting there is a particularly elegant way of composing
correspondences when they satisfy a suitable transversality condition, see [15,
Corollary 2.39]. This description of the composition is due to Connes and
Skandalis [6].

2.2 Composition of geometric correspondences

By [15, Theorem 2.38], a smooth normally non-singular map lifting f : M1 → Y
and a smooth map b : M2 → Y are transverse if

Dm1
f(Tm1

M1) +Dm2
b(Tm2

M2) = TyY

for all m1 ∈M1, m2 ∈M2 with y := f(m1) = b(m2). Equivalently, the map

Df −Db : pr∗
1(TM1)⊕ pr∗

2(TM2)→ (f ◦ pr1)
∗(TY )

is surjective; this is a bundle map of vector bundles over

M1 ×Y M2 := {(m1,m2) | f(m1) = b(m2)},

where pr1 : M1×Y M2 →M1 and pr2 : M1×Y M2 →M2 denote the restrictions
to M1×Y M2 of the coordinate projections. (We shall always use this notation
for restrictions of coordinate projections.)
A commuting square diagram of smooth manifolds is called Cartesian if it is
isomorphic (as a diagram) to a square

M1 ×Y M2 M2

M1 Y

pr
2

pr
1 f

b

where f and b are transverse smooth maps in the sense above; then M1×Y M2

is again a smooth manifold and pr1 and pr2 are smooth maps.
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The tangent bundles of these four manifolds are related by an exact sequence

0→ T(M1 ×Y M2)
(Dpr

1
,Dpr

2
)

−−−−−−−−→ pr∗
1(TM1)⊕ pr∗

2(TM2)

Df−Db
−−−−−→ (f ◦ pr1)

∗TY → 0. (2.1)

That is, T(M1 ×Y M2) is the sub-bundle of pr∗
1(TM1) ⊕ pr∗

2(TM2) consisting
of those vectors (m1, ξ,m2, η) ∈ TM1 ⊕ TM2 (where f(m1) = b(m2)) with
Dm1

f(ξ) = Dm2
b(η). We may denote this bundle briefly by TM1 ⊕TY TM2.

Furthermore, from (2.1),

T(M1 ×Y M2)− pr∗
2(TM2) = pr∗

1(TM1 − f
∗(TY )) (2.2)

as stable G-vector bundles. Thus a stable KG-orientation for TM1 − f∗(TY )
may be pulled back to one for T(M1 ×Y M2) − pr∗

2(TM2). More succinctly, a
KG-orientation for the map f induces one for pr2.

Now consider two composable smooth correspondences

M1 M2

X Y Z,

b1
f
1 b2

f
2 (2.3)

with K-theory classes ξ1 ∈ RKG∗,X(M1) and ξ2 ∈ RKG∗,Y (M2). We assume that
the pair of smooth maps (f1, b2) is transverse. Then there is an essentially
unique commuting diagram

M1 ×Y M2

M1 M2

X Y Z,

pr1
pr

2

b1
f

1 b2
f
2

(2.4)

where the square is Cartesian. We briefly call such a diagram an intersection

diagram for the two given correspondences.

By the discussion above, the map pr2 inherits a KG-orientation from f1, so
that the map f := f2 ◦ pr2 is also KG-oriented. Let M := M1 ×Y M2 and
b := b1 ◦ pr1. The product ξ := pr∗

1(ξ1) ⊗ pr∗
2(ξ2) belongs to RKG∗,X(M), that

is, it has X-compact support with respect to the map b : M → X . Thus we
get a G-equivariant correspondence (M, b, f, ξ) from X to Y . The assertion of
[15, Corollary 2.39] – following [6] – is that this represents the composition of
the two given correspondences. It is called their intersection product.
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Example 2.2. Consider the diagonal embedding δ : X → X ×X and the graph
embedding f̄ : X → X × X , x 7→ (x, f(x)), for a smooth map f : X → X .
These two maps are transverse if and only if f has simple fixed points. If this
is the case, then the intersection space is the set of fixed points of f . If, say,
f = idX , then δ and f̄ are not transverse.

To define the composition also in the non-transverse case, a Thom modifica-
tion is used in [15] to achieve transversality (see [15, Theorem 2.32]). Take two

composable (smooth) correspondences as in (2.3), and let f1 = (V1, E1, f̂1) as
a normally non-singular map. By a Thom modification, the geometric corre-

spondence X
b1←− (M1, ξ)

f1

−→ Y is equivalent to

X
b1◦πV1←−−−− (V1, τV1

⊗ π∗
V1
ξ)

πE1
◦f̂1

−−−−−→ Y, (2.5)

where πV1
: V1 → M1 and πE1

: Y × E → Y are the bundle projections, and
τV1
∈ RK∗

G,M1
(V1) is the Thom class of V1. We write ⊗ for the multiplication

of K-theory classes. The support of such a product is the intersection of the
supports of the factors. Hence the support of τV1

⊗π∗
V1
ξ is an X-compact subset

of V1.
The forward map V1 → Y in (2.5) is a special submersion and, in particular, a
submersion. As such it is transverse to any other map b2 : M2 → Y . Hence after
the Thom modification we may compute the composition of correspondences
as an intersection product of the correspondence (2.5) with the correspondence

Y
b2←−M2

f2

−→ Y . This yields

X
b1◦πV1

◦pr
1

←−−−−−−−
(
V1 ×Y M2, pr

∗
V1
(τV1
⊗ π∗

V1
(ξ))

) f2◦pr
2−−−−→ Z, (2.6)

where

V1 ×Y M2 := {(x, v,m2) ∈ V1 ×M2 | (πE1
◦ f̂1)(x, v) = b2(m2)}

and pr1 : V1 ×Y M2 → V1 and pr2 : V1 ×Y M2 → M2 are the coordinate pro-
jections. The intersection space V1 ×Y M2 is a smooth manifold with tangent
bundle

TV1 ⊕TY TM2 := pr∗
1(TV1)⊕(πE1

◦f̂1)∗(TY ) pr
∗
2(TM2),

and the map pr2 is a submersion with fibres tangent to E1. Thus it is
KG-oriented.
This recipe to define the composition product for all geometric correspondences
is introduced in [15]. It is shown there that it is equivalent to the intersection
product if f1 and b2 are transverse. But the space V1 ×Y M2 has high dimen-
sion, making it inefficient to compute with this formula. And we are usually
given only the underlying map f1 : M1 → Y , not its factorisation as a normally
non-singular map – and the latter is difficult to compute. We will weaken
the transversality requirement in Section 2.5. The more general condition still
applies, say, if f1 = b2. This is particularly useful for computing Euler charac-
teristics.
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2.3 Duality and the Lefschetz index

Duality plays a crucial role in [15] in order to compare the geometric and
analytic models of equivariant Kasparov theory. Duality is also used in [16,
Definition 4.26] to construct a Lefschetz map

L : KKG∗
(
C(X),C(X)

)
→ KKG∗ (C(X),C), (2.7)

for a compact smooth G-manifold X . We may compose L with the index map
KKG∗ (C(X),C) → KKG∗ (C,C) ∼= R(G) to get a Lefschetz index L-ind(f) ∈
R(G) for any f ∈ KKG∗

(
C(X),C(X)

)
. This is the invariant we will be studying

in this paper.
This Lefschetz map L is a special case of a very general construction. Let C
be a symmetric monoidal category. Let A be a dualisable object of C with a
dual A∗. Let η : 1→ A⊗A∗ and ε : A∗ ⊗A→ 1 be the unit and counit of the
duality. Being unit and counit of a duality means that they satisfy the zigzag
equations: the composition

A
η⊗idA
−−−−→ A⊗A∗ ⊗A

idA⊗ε
−−−−→ A (2.8)

is equal to the identity idA : A→ A, and similarly for the composition

A∗ idA∗ ⊗η
−−−−−→ A∗ ⊗A⊗A∗ ε⊗idA∗

−−−−−→ A∗. (2.9)

If C is Z-graded, then we may allow dualities to shift degrees. Then some signs
are necessary in the zigzag equations, see [16, Theorem 5.5].
Given a multiplication map m : A⊗A→ A, we define the Lefschetz map

L : C(A,A)→ C(A,1)

by sending an endomorphism f : A→ A to the composite morphism

A ∼= A⊗1
idA⊗η
−−−−→ A⊗A⊗A∗ m⊗idA∗

−−−−−→ A⊗A∗ f⊗idA∗

−−−−−→ A⊗A∗ sym

−−→ A∗⊗A
ε
−→ 1.

This depends only on m and f , not on the choices of the dual, unit and counit.
For f = idA we get the higher Euler characteristic of A in C(A,1).
While the geometric computations below give the Lefschetz map as defined
above, the global homological computations in Sections 3 and 4 only apply to
the following coarser invariant:

Definition 2.3. The Lefschetz index L-ind(f) (or trace tr(f)) of an endomor-
phism f : A→ A is the composite

1
η
−→ A⊗A∗ sym

−−→ A∗ ⊗A
idA∗ ⊗f
−−−−−→ A∗ ⊗A

ε
−→ 1, (2.10)

where sym denotes the symmetry isomorphism. The Lefschetz index of idA is
called the Euler characteristic of A.
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If A is a unital algebra object in C with multiplication m : A⊗A→ A and unit
u : 1 → A, then L-ind(f) = L(f) ◦ u. In particular, the Euler characteristic is
the composite of the higher Euler characteristic with u.

In this section, we work in C = k̂k
G

for a compact group G with 1 = pt and
⊗ = ×. In Section 3, we work in the related analytic category C = KKG with
1 = C and the usual tensor product.
We will show below that any compact smooth G-manifold X is dualisable in

k̂k
G
. The multiplication m : X × X → X and unit u : pt → X are given by

the geometric correspondences

X ×X
∆
←− X

idX−−→
=

X, pt← X
idX−−→
=

X

with ∆(x) = (x, x); these induce the multiplication ∗-homomorphism

m : C(X ×X) ∼= C(X)⊗ C(X)→ C(X)

and the embedding C→ C(X) of constant functions. Composing with u corre-
sponds to taking the index of a K-homology class.

Remark 2.4. In [11, 13, 16] Lefschetz maps are also studied for non-compact
spaces X , equipped with group actions of possibly non-compact groups. A

non-compact G-manifold X is usually not dualisable in k̂k
G
, and even if it

were, the Lefschetz map that we would get from this duality would not be the
one studied in [11, 13, 16].

2.4 Duality for smooth compact manifolds

We are going to show that compact smooth G-manifolds are dualisable in the

equivariant correspondence theory k̂k
G
. This was already proved in [15], but

since we need to know the unit and counit to compute Lefschetz indices, we
recall the proof in detail. It is of some interest to treat duality for smooth man-
ifolds with boundary because any finite CW-complex is homotopy equivalent
to a manifold with boundary.
In case X has a boundary ∂X , let X̊ := X \ ∂X denote its interior and
let ι : X̊ → X denote the inclusion map. The boundary ∂X ⊆ X ad-
mits a G-equivariant collar, that is, the embedding ∂X → X extends to a
G-equivariant diffeomorphism from ∂X × [0, 1) onto an open neighbourhood
of ∂X in X (see also [16, Lemma 7.6] for this standard result). This collar
neighbourhood together with a smooth map [0, 1)→ (0, 1) that is the identity
near 1 provides a smooth G-equivariant map ρ : X → X̊ that is inverse to ι up
to smooth G-homotopy. Furthermore, we may assume that ρ is a diffeomor-
phism onto its image.
If X has no boundary, then X̊ = X , ι = id, and ρ = id.
The results about smooth normally non-singular maps in [14] extend to smooth
manifolds with boundary if we add suitable assumptions about the behaviour
near the boundary. We mention one result of this type and a counterexample.
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Proposition 2.5. Let X and Y be smooth G-manifolds with X of finite orbit

type and let f : X → Y be a smooth map with f(∂X) ⊆ ∂Y and f transverse

to ∂Y . Then f lifts to a normally non-singular map, and any two such normally

non-singular liftings of f are equivalent.

Proof. Since X has finite orbit type, we may smoothly embed X into a finite-
dimensional linear G-representation E. Our assumptions ensure that the re-
sulting map X → Y × E is a smooth embedding between G-manifolds with
boundary in the sense of [14, Definition 3.17] and hence has a tubular neigh-
bourhood by [14, Theorem 3.18]. This provides a normally non-singular map
X → Y lifting f . The uniqueness up to equivalence is proved as in the proof
of [14, Theorem 4.36].

Example 2.6. The inclusion map {0} → [0, 1) is a smooth map between man-
ifolds with boundary, but it does not lift to a smooth normally non-singular
map.

Let X be a smooth compact G-manifold. Since X has finite orbit type, it em-
beds into some linearG-representationE. We may choose thisG-representation
to be KG-oriented and even-dimensional by a further stabilisation. Let
NX ։ X be the normal bundle for such an embedding X → E. Thus
TX ⊕ NX ∼= X × E is G-equivariantly isomorphic to a KG-oriented trivial
G-vector bundle.

Theorem 2.7. Let X be a smooth compact G-manifold, possibly with boundary.

Then X is dualisable in k̂k
G

∗ with dual NX̊, and the unit and counit for the

duality are the geometric correspondences

pt← X
(id,ζρ)
−−−−→ X ×NX̊, NX̊ ×X

(id,ιπ)
←−−−− NX̊ → pt,

where ζ : X̊ → NX̊ is the zero section, ρ : X → X̊ is some G-equivariant collar

retraction, π : NX̊ → X̊ is the bundle projection, and ι : X̊ → X the identical

inclusion. The K-theory classes on the space in the middle are the trivial rank-

one vector bundles for both correspondences.

Proof. First we must check that the purported unit and counit above are indeed
geometric correspondences; this contains describing the KG-orientations on the
forward maps, which is part of the data of the geometric correspondences.

The maps X → pt and NX̊ → NX̊ ×X above are proper. Hence there is no
support restriction for the K-theory class on the middle space, and the trivial
rank-one vector bundle is allowed.

By the Tubular Neighbourhood Theorem, the normal bundle NX̊ of the embed-
ding X̊ → E is diffeomorphic to an open subset of E. This gives a canonical
isomorphism between the tangent bundle of NX̊ and E. We choose this iso-
morphism and the given KG-orientation on the linear G-representation E to
KG-orient NX̊ and thus the projection NX̊ → pt. With this KG-orientation,
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the counit NX̊ ×X
(id,ιπ)
←−−−− NX̊ → pt is a G-equivariant geometric correspon-

dence – even a special one in the sense of [15].

We identify the tangent bundle of X × NX̊ with TX × TX̊ ⊕ NX̊ in the
obvious way. The normal bundle of the embedding (id, ζρ) : X → X × NX̊
is isomorphic to the quotient of TX ⊕ ρ∗(TX̊) ⊕ ρ∗(NX̊) by the relation
(ξ,Dρ(ξ), 0) ∼ 0 for ξ ∈ TX . We identify this with TX ⊕ NX ∼= X × E
by (ξ1, ξ2, η) 7→ (Dρ−1(ξ2) − ξ1, Dρ

−1(η)) for ξ1 ∈ TxX , ξ2 ∈ Tρ(x)X ,

η ∈ ρ∗(NX̊)x = Nρ(x)X . With this KG-orientation on (id, ζρ), the unit above
is a G-equivariant geometric correspondence. A boundary of X , if present,
causes no problems here. The same goes for the computations below: although
the results in [15] are formulated for smooth manifolds without boundary, they
continue to hold in the cases we need.

We establish the duality isomorphism by checking the zigzag equations as in
[16, Theorem 5.5]. This amounts to composing geometric correspondences.
In the case at hand, the correspondences we want to compose are transverse,
so that they may be composed by intersections as in Section 2.2. Actually,
we are dealing with manifolds with boundary, but the argument goes through
nevertheless. We write down the diagrams together with the relevant Cartesian
square.

The intersection diagram for the first zigzag equation is

X

X ×X X ×NX̊

X X ×NX̊ ×X X.

(id
, ιρ

) (id, ζρ)

pr 2

(id, ζρ) × id id × (id
, ιπ

)
pr

1

(2.11)

The square is Cartesian because (x, y, z, (w, ν)) ∈ X3 ×NX̊ satisfies

(x, (ρ(x), 0), y) = (z, (w, ν), w)

if and only if y = ρ(x), z = x, w = ρ(x), and ν = 0 for some x ∈ X . The
KG-orientation on the map (id, ζρ) described above is chosen such that the
composite map f := pr1 ◦ (id, ζρ) = id carries the standard KG-orientation.
The map b := pr2 ◦ (id, ιρ) = ιρ is properly homotopic to the identity map.
Hence the composition above gives the identity map on X as required.
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The intersection diagram for the second zigzag equation is

NX̊

NX̊ ×X NX̊ ×NX̊

NX̊ NX̊ ×X ×NX̊ NX̊

(id
, ιπ

) (id, ζρπ)

pr 1

id × (id, ζρ) (id
, ιπ

) × id pr
2

(2.12)
because ((x, ν), y, (w, µ), (z, κ)) ∈ NX̊ ×X × (NX̊)2 satisfy

((x, ν), y, (ρ(y), 0)) = ((w, µ), w, (z, κ))

if and only if (w, µ) = (x, ν), y = x, z = ρ(x), κ = 0 for some (x, ν) ∈ NX̊.

The map (id, ζρπ) is smoothly homotopic to the diagonal embedding δ : NX̊ →
NX̊ × NX̊. Replacing (id, ζρπ) by δ gives an equivalent geometric correspon-
dence. The KG-orientation on the normal bundle of (id, ζρπ) that comes with
the composition product is transformed by this homotopy to the KG-orientation
on the normal bundle of the diagonal embedding that we get by identifying the
latter with the pull-back of E by mapping

(ξ1, η1, ξ2, η2) ∈ T(x,ζ,x,ζ)(NX̊×NX̊) ∼= TxX̊⊕NxX̊ ×TxX̊ ×NxX̊ ∼= Ex×Ex

to (ξ2 − ξ1, η2 − η1) ∈ Ex. Since E has even dimension, changing this to
(ξ1 − ξ2, η1 − η2) does not change the KG-orientation. Hence the induced
KG-orientation on the fibres of Dpr2 is the same one that we used to KG-orient
pr2. The induced KG-orientation on pr2 ◦ δ = id is the standard one. Thus the
composition in (2.12) is the identity on NX̊ .

Corollary 2.8. Let X be a compact smooth G-manifold and let Y be any

locally compact G-space. Then every element of k̂k
G

∗ (X,Y ) is represented by

a geometric correspondence of the form

X
ι◦π◦pr

1←−−−−− NX̊ × Y
pr

2−−→ Y, ξ ∈ K∗
G(NX̊ × Y ),

and two such correspondences for ξ1, ξ2 ∈ K∗
G(NX̊ × Y ) give the same element

of k̂k
G

∗ (X,Y ) if and only if ξ1 = ξ2. Here pr1 : NX̊×Y → NX̊ and pr2 : NX̊×
Y → Y are the coordinate projections and ι ◦ π : NX̊ → X̊ ⊆ X is as above.

Proof. Duality provides a canonical isomorphism

K∗
G(NX̊ × Y ) ∼= k̂k

G

∗ (pt,NX̊ × Y ) ∼= k̂k
G

∗ (X,Y ).
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It maps ξ ∈ K∗
G(NX̊ × Y ) to the composition of correspondences described by

the following intersection diagram:

NX̊ × Y

X ×NX̊ × Y NX̊ × Y

X X ×NX̊ × Y Y,

(ιπ
, id

) × id
id

pr1
id

(ιπ
, id

) × id
pr

2

with the K-theory class ξ on NX̊×Y . Hence it involves the maps ιπ : NX̊×Y →
X and pr2 : NX̊ × Y → Y .

If X is, in addition, KG-oriented, then the Thom isomorphism provides an

isomorphism NX̊ ∼= X̊ in k̂k
G

∗ (which has odd parity if the dimension of X is
odd). A variant of Corollary 2.8 yields a duality isomorphism

K
∗+dim(X)
G (X̊ × Y ) ∼= k̂k

G

∗ (X,Y ),

which maps ξ ∈ K∗
G(X̊ × Y ) to the geometric correspondence

X
ι◦pr

1←−−− X̊ × Y
pr

2−−→ Y, ξ ∈ K∗
G(X̊ × Y ).

Hence any element of k̂k
G

∗ (X,Y ) is represented by a correspondence of this
form.
If X is KG-oriented and has no boundary, this becomes

X
pr

1←−− X × Y
pr

2−−→ Y, ξ ∈ K∗
G(X × Y ).

These standard forms for correspondences are less useful than one may hope
at first because their intersection products are no longer in this standard form.

2.5 More on composition of geometric correspondences

With our geometric formulas for the unit and counit of the duality, we could
now compute Lefschetz indices geometrically, assuming the necessary intersec-
tions are transverse. While this works well, say, for self-maps with regular non-
degenerate fixed points, it fails badly for the identity correspondence, whose
Lefschetz index is the Euler characteristic. Building on work of Baum and
Block [4], we now describe the composition as a modified intersection prod-
uct under a much weaker assumption than transversality that still covers the
computation of Euler characteristics.

Definition 2.9. We say that the smooth maps f1 : M1 → Y and b2 : M2 → Y
intersect smoothly if

M :=M1 ×Y M2

Documenta Mathematica 19 (2014) 141–193



158 Ivo Dell’Ambrogio, Heath Emerson, and Ralf Meyer

is a smooth submanifold of M1 × M2 and any (ξ1, ξ2) ∈ TM1 × TM2 with
Df1(ξ1) = Db2(ξ2) ∈ TY is tangent to M .
If f1 and b2 intersect smoothly, then we define the excess intersection bun-

dle η(f1, b2) on M as the cokernel of the vector bundle map

(Df1,−Db2) : pr
∗
1(TM1)⊕ pr∗

2(TM2)→ f∗(TY ), (2.13)

where f := f1 ◦ pr1 = b2 ◦ pr2 : M → Y .
If the maps f1 and b2 are G-equivariant with respect to a compact group G,
then the excess intersection bundle is a G-vector bundle.
We call the square

M M2

M1 Y

pr
2

pr
1 f1

b2

η-Cartesian if f1 and b2 intersect smoothly with excess intersection bundle η.

If M is a smooth submanifold of M1 ×M2, then TM ⊆ T(M1 ×M2); and if
(ξ1, ξ2) ∈ T(M1 ×M2) is tangent to M , then Df1(ξ1) = Db2(ξ2) in TY . These
pairs (ξ1, ξ2) form a subspace of T(M1 ×M2)|M = pr∗

1TM1 ⊕ pr∗
2TM2, which

in general need not be a vector bundle, that is, its rank need not be locally
constant. The smooth intersection assumption forces it to be a subbundle: the
kernel of the map in (2.13). Hence the excess intersection bundle is a vector
bundle over M , and there is the following exact sequence of vector bundles
over M :

0→ TM → pr∗
1(TM1)⊕ pr∗

2(TM2)
(Df1,−Db2)
−−−−−−−−→ (f1 ◦ pr1)

∗(TY )→ η → 0.
(2.14)

Example 2.10. Let M1 = M2 = X and let f1 = b2 = i : X → Y be an
injective immersion. Then M1 ×Y M2

∼= X is the diagonal in M1 ×M2 = X2,
which is a smooth submanifold. Furthermore, if (ξ1, ξ2) ∈ TM1 × TM2 satisfy
Df1(ξ1) = Db2(ξ2), then ξ1 = ξ2 because Di : TM → TY is assumed injective.
Hence M1 andM2 intersect smoothly, and the excess intersection bundle is the
normal bundle of the immersion i.

Example 2.11. Let M1 and M2 be two circles embedded in Y = R2. The four
possible configurations are illustrated in Figure 1.

1. The circles meet in two points. Then M = {p1, p2} and the intersection
is transverse.

2. The two circles are disjoint. Then M = ∅ and the intersection is trans-
verse.

3. The two circles are identical. Then M = M1 = M2. The intersection
is not transverse, but smooth by Example 2.10; the excess intersection
bundle is the normal bundle of the circle, which is trivial of rank 1.
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p1

p2

M1 =M2 p

Figure 1: Four possible configurations of two circles in the plane

4. The two circles touch in one point. Then M := M1 ×Y M2 = {p}, so
that the tangent bundle of M is zero-dimensional. But TpM1 ∩TpM2 is
one-dimensional because TpM1 = TpM2. Hence the embeddings do not

intersect smoothly.

Remark 2.12. The maps f : M1 → Y and b : M2 → Y intersect smoothly if and
only if f × b : M1 ×M2 → Y × Y and the diagonal embedding Y → Y × Y
intersect smoothly; both pairs of maps have the same excess intersection bundle.
Thus we may always normalise intersections to the case where one map is a
diagonal embedding and thus an embedding.

Example 2.13. Let η be a KG-oriented vector bundle over X . Let M1 =M2 =
X , Y = η, and let f1 = b2 = ζ : Y → η be the zero section of η. This is
a special case of Example 2.10. The maps f1 and b2 intersect smoothly with
excess intersection bundle η.
In this example it is easy to compose the geometric correspondences X = X →
η and η ← X = X . A Thom modification of the first one along the KG-oriented
vector bundle η gives the special correspondence

X ← (η, τη) = η,

where τη ∈ RK∗
G,X(η) is the Thom class of η. The intersection product of this

with η ← X = X is X = (X, ζ∗(τη)) = X , that is, it is the class in k̂k
G

∗ (X,X)
of ζ∗(τη) ∈ RK∗

G(X). This K-theory class is the restriction of τη to the zero
section of η. By the construction of the Thom class, it is the K-theory class of
the spinor bundle of η.

Definition 2.14. Let η be a KG-oriented G-vector bundle over a G-space X .
Let ζ : X → η be the zero section and let τη ∈ RK∗

G,X(η) be the Thom class.
The Euler class of η is ζ∗(τη), the restriction of τη to the zero section.

By definition, the Euler class is the composition of the correspondences pt ←
X → η and η ← X = X involving the zero section ζ : X → η in both cases.

Example 2.15. Assume that there is a G-equivariant section s : X → η of η
with isolated simple zeros; that is, s and ζ are transverse. The linear homotopy
connects s to the zero section and hence gives an equivalent correspondence
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η
s
←− X = X . Since s and ζ are transverse by assumption, the composition

is X ← Z → X , where Z is the zero set of s and the maps Z → X are the
inclusion map, suitably KG-oriented.

Example 2.16. Let M1 = S1, M2 = S2, Y = R3, b2 : M2 → R3 be the standard
embedding of the 2-sphere in R3, and let f1 : M1 →M2 → R3 be the embedding
corresponding to the equator of the circle. ThenM1×YM2 =M1×M2

M2 =M1,
embedded diagonally into M1 × M1 ⊂ M1 × M2. This is a case of smooth
intersection. The excess intersection bundle is the restriction to the equator
of the normal bundle of the embedding b2. This is isomorphic to the rank-one
trivial bundle on S2. Hence the Euler class e(η) is zero in this case.

Theorem 2.17. Let

X
b1←− (M1, ξ1)

f1

−→ Y
b2←− (M2, ξ2)

f2

−→ Z (2.15)

be a pair of G-equivariant correspondences as in (2.3). Assume that b2 and f1

intersect smoothly and with a KG-oriented excess intersection bundle η. Then

the composition of (2.15) is represented by the G-equivariant correspondence

X
b1◦pr

1←−−−−
(
M1 ×Y M2, e(η)⊗ pr∗

1(ξ1)⊗ pr∗
2(ξ2)

) f2◦pr
2−−−−→ Z, (2.16)

where e(η) is the Euler class and the projection pr2 : M1 ×Y M2 → M2 car-

ries the KG-orientation induced by the KG-orientations on f1 and η (explained

below).

In the above situation of smooth intersection, we call the diagram (2.4) an
η-intersection diagram. It still computes the composition, but we need the Eu-
ler class of the excess intersection bundle η to compensate the lack of transver-
sality.
We describe the canonical KG-orientation of pr2 : M1 ×Y M2 → M2. The
excess intersection bundle η is defined so as to give an exact sequence of vector
bundles (2.14). From this it follows that

[η] = (f1 ◦ pr1)
∗[TY ] + TM − pr∗

1[TM1]− pr∗
2[TM2].

On the other hand, the stable normal bundleNpr2 of pr2 is equal to pr∗
2[TM2]−

[TM ]. Hence

[η] = pr∗
1

(
f∗

1 [TY ]− [TM1]
)
−Npr2.

A KG-orientation on f1 means a stable KG-orientation on Nf1 = f∗
1 [TY ] −

[TM1]. If such an orientation is given, it pulls back to one on pr∗
1

(
f∗

1 [TY ] −

[TM1]
)
, and then (stable) KG-orientations on [η] and on Npr2 are in 1-to-1-

correspondence. In particular, a KG-orientation on the bundle η induces one
on the normal bundle of pr2. This induced KG-orientation on pr2 is used
in (2.16). ([14, Lemma 5.13] justifies working with KG-orientations on stable
normal bundles.)
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Proof of Theorem 2.17. Lift f1 to a G-equivariant smooth normally non-
singular map (V1, E1, f̂1). The composition of (2.15) is defined in [15, Section
2.5] as the intersection product

X
b1◦πV1

◦prV1←−−−−−−−− V1 ×Y M2
f2◦pr

2−−−−→ Z (2.17)

with K-theory datum pr∗
V1
(τV1

) ⊗ π∗
V1
(ξ1)⊗ pr∗

2(ξ2) ∈ RK∗
G,X(V1 ×Y M2). We

define the manifold V1×YM2 using the (transverse) maps πE1
◦ f̂1 : V1 → Y and

b2 : M2 → Y . We must compare this with the correspondence in the statement
of the theorem.
We have a commuting square of embeddings of smooth manifolds

M1 ×Y M2 M1 ×M2

V1 ×Y M2 V1 ×M2

ι0

ζ0
ι1

ζ1
(2.18)

where the vertical maps are induced by the zero sectionM1 → V1 and the hori-
zontal ones are the obvious inclusion maps. The map ζ0 is a smooth embedding
because the other three maps in the square are so.
LetNι0 and ν := Nζ0 denote the normal bundles of the maps ι0 and ζ0 in (2.18).
The normal bundle of ι1 is isomorphic to the pull-back of TY because V1 → Y
is submersive. Since M1 ×M2 → V1 ×M2 is the zero section of the pull back
of the vector bundle V1 to M1 ×M2, the normal bundle of ζ1 is isomorphic
to pr∗

1(V1). Recall that M :=M1 ×Y M2. We get a diagram of vector bundles
over M :

0 0 0

0 TM T(M1 ×M2)|M Nι0 0

0 T(V1 ×Y M2)|M T(V1 ×M2)|M f∗(TY ) 0

0 ν pr∗
1(V1) η 0

0 0 0

Dζ0 Dζ1

Dι0

Dι1

The first two rows and the first two columns are exact by definition or by our
description of the normal bundles of ζ1 and ι1. The third row is exact with
the excess intersection bundle η by (2.14). Hence the dotted arrow exists and
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makes the third row exact. Since extensions of G-vector bundles always split,
we get

ν ⊕ η ∼= pr∗
1(V1).

Since η and V1 are KG-oriented, the bundle ν inherits a KG-orientation.
We apply Thom modification with the KG-oriented G-vector bundle ν to the
correspondence in (2.16). This gives the geometric correspondence

X
b1◦pr

1
◦πν

←−−−−−− ν
f2◦pr

2
◦πν

−−−−−−→ Z (2.19)

with K-theory datum

ξ := τν ⊗ π
∗
ν

(
e(η)⊗ pr∗

1(ξ1)⊗ pr∗
2(ξ2)

)
∈ RK∗

G,X(ν).

The Tubular Neighbourhood Theorem gives a G-equivariant open embedding
ζ̂0 : ν → V1 ×Y M2 onto some G-invariant open neighbourhood of M (see [14,
Theorem 3.18]).
We may find an open G-invariant neighbourhood U of the zero section in V1

such that U ×Y M2 ⊆ V1 ×Y M2 is contained in the image of ζ̂0 and relatively
M -compact. We may choose the Thom class τV1

∈ KdimV1

G (V1) to be supported
in U . Hence we may assume that pr∗

1(τV1
), the pull-back of τV1

along the
coordinate projection pr∗

1 : V1 ×Y M2 → V1, is supported inside a relatively

M -compact subset of ζ̂0(ν).
Then [15, Example 2.14] provides a bordism between the cycle in (2.17) and

X
b1◦πV1

◦pr
1
◦ζ̂0

←−−−−−−−−− ν
f2◦pr

2
◦ζ̂0

−−−−−−→ Z, (2.20)

with K-theory class pr∗
1(τV1

)⊗ ζ̂∗
0pr

∗
1π

∗
V1
(ξ1)⊗ ζ̂∗

0pr
∗
2(ξ2).

Let st : ν → ν be the scalar multiplication by t ∈ [0, 1]. Composition with st is
a G-equivariant homotopy

πV1
pr1ζ̂0 ∼ pr1πν : ν →M1, pr2ζ̂0 ∼ pr2πν : ν →M2.

Hence s∗
t (ζ̂

∗
0pr

∗
1π

∗
V1
(ξ1)⊗ ζ̂∗

0pr
∗
2(ξ2)) is a G-equivariant homotopy

ζ̂∗
0pr

∗
1π

∗
V1
(ξ1)⊗ ζ̂

∗
0pr

∗
2(ξ2) ∼ π

∗
ν

(
pr∗

1(ξ1)⊗ pr∗
2(ξ2)

)
.

When we tensor with pr∗
1(τV1

), this homotopy has X-compact support because
the support of pr∗

1(τV1
) is relatively M -compact.

This gives a homotopy of geometric correspondences between (2.17) and the
variant of (2.19) with K-theory datum

pr∗
1(τV1

)⊗ π∗
νpr

∗
1(ξ1)⊗ π

∗
νpr

∗
2(ξ2);

the relative M -compactness of the support of pr∗
V1
(τV1

) ensures that the homo-
topy of KG-cycles implicit here has X-compact support. (We use [15, Lemma
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2.12] here, but the statement of the lemma is unclear about the necessary com-
patibility between the homotopy and the support of ξ.)
The K-theory class pr∗

1(τV1
) in this formula is the restriction of the Thom class

for the vector bundle pr∗
1(V1) over M to ν. Since pr∗

1(V1) ∼= ν ⊕ η and the
Thom isomorphism for a direct sum bundle is the composition of the Thom
isomorphisms for the factors, the Thom class of pr∗

1(V1) is pr
∗
1(τV1

) = τν ⊗ τη.
Restricting this to the subbundle ν gives τν ⊗ π∗

ν(e(η)). Hence the K-theory
classes that come from (2.17) and (2.19) are equal. This finishes the proof.

2.6 The geometric Lefschetz index formula

In this section we compute Lefschetz indices in the symmetric monoidal cate-

gory k̂k
G
for smooth G-manifolds with boundary. Our computation is geomet-

ric and uses the intersection theory of equivariant correspondences discussed in
Sections 2.2 and 2.5.
Let X be a smooth compact G-manifold, possibly with boundary. Let X̊ be
its interior. Let

X
b
←−M

f
−→ X, ξ ∈ RK∗

G,X(M) (2.21)

be a KG-oriented smooth geometric correspondence from X to itself, with M
of finite orbit type to ensure that f : M → X lifts to an essentially unique
normally non-singular map. Since X is compact, RK∗

G,X(M) = K∗
G(M) is the

usual K-theory with compact support. The KG-orientation for (2.21) means a
KG-orientation on the stable normal bundle of f . This is equivalent to giving a
G-vector bundle V over X and KG-orientations on TM ⊕ f∗(V ) and TX ⊕ V .
If X has a boundary, then the requirements for a smooth correspondence are
that M be a smooth manifold with boundary of finite orbit type, such that
f(∂M) ⊆ ∂X and f is transverse to ∂X . This ensures that f has an essentially
unique lift to a normally non-singular map from M to X by Proposition 2.5.
Recall the map ρ : X → X̊, which is shrinking the collar around ∂X .

Theorem 2.18. Let α ∈ k̂k
G

i (X,X) be represented by a KG-oriented smooth

geometric correspondence as in (2.21). Assume that (ρb, f) : M → X ×X and

the diagonal embedding X → X × X intersect smoothly with a KG-oriented

excess intersection bundle η. Then Qρb,f := {m ∈ M | ρb(m) = f(m)} is

a smooth manifold without boundary. For a certain canonical KG-orientation

on Qρb,f , L(α) ∈ k̂k
G

i (X, pt) is represented by the geometric correspondence

X ← Qρb,f → pt with K-theory class ξ|Qρb,f
⊗ e(η) on Qρb,f ; here the map

Qρb,f → X is given by m 7→ ρb(m) = f(m).

The Lefschetz index of α in k̂k
G

i (pt, pt) is represented by the geometric corre-

spondence pt← Qρb,f → pt with KG-theory class ξ|Qρb,f
⊗ e(η) on Qρb,f .

The Lefschetz index of α is the index of the Dirac operator on Qρb,f with coef-

ficients in ξ|Qρb,f
⊗ e(η).

Proof. We abbreviate Q := Qρb,f throughout the proof. We have Q ⊆ M̊

because ρb(M) ⊆ ρ(X) ⊆ X̊ and f(∂M) ⊆ ∂X . The intersection M̊ ×X̊×X̊ X̊
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Qρb,f

M

X ×X M ×NX̊ NX̊

X X ×X ×NX̊ X ×NX̊ ∼= NX̊ ×X pt

j

ζfj

∆
b

(id, ζρb)

p
r 1

id
×

(id
,
ζ
ρ
) (∆

b)
×

id
f

×
id

(i
d
,
ιπ

)

Figure 2: The intersection diagram for the computation of L(α) in the proof
of Theorem 2.18. Here j : Qρb,f → M denotes the inclusion map; ζ the zero

section X → NX or X̊ → NX̊ ; π : NX̊ → X̊ the bundle projection; ι : X̊ → X
the inclusion; ∆: X → X ×X the diagonal embedding; pr1 : X ×X → X the
projection onto the first factor.

is Q and hence a smooth submanifold of M̊ .
We compute L(α) using the dual of X constructed in Theorem 2.7. This
involves a G-vector bundle NX such that TX⊕NX ∼= X×E for a KG-oriented
G-vector space E.
With the unit and counit from Theorem 2.7, L(α) becomes the composition
of the three geometric correspondences in the bottom zigzag in Figure 2; here
we already composed α with the multiplication correspondence, which simply
composes b with ∆.
We first consider the small left square. Computing its intersection space naively
gives M , which is a manifold with boundary. We would hope that this square
is Cartesian. But X ×X is only a manifold with corners if X has a boundary,
and we we did not discuss smooth correspondences in this generality. Hence
we check directly that the composition of the correspondences from X to X ×
X ×NX̊ and on to M ×NX̊ is represented by X ←M →M ×NX̊ .
The manifold NX̊ is an open subset of E by construction. Hence the map

id× (id, ζρb) : X ×X → X ×X ×NX̊

extends to an open embedding

ψ : X×X×E → X×X×NX̊, (x1, x2, e) 7→
(
x1, x2, ζρ(x2)+hx2

(‖e‖2) ·e
)
,

where hx2
: R+ → R+ is a diffeomorphism onto a bounded interval [0, t) de-

pending smoothly and G-invariantly on x2, such that the t-ball in E around
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ζρ(x2) ∈ NX̊ is contained in NX̊.
The map ψ gives a special correspondence

X
pr

1
◦πE

←−−−−− X ×X × E
ψ
−→ X ×X ×NX̊

with K-theory class the pull-back of the Thom class of E. This is equivalent
to the given correspondence from X to X × X × NX̊ because of a Thom
modification for the trivial vector bundle E and a homotopy. In particular, the
KG-orientation of id× (id, ζρ) that is implicit here is the one that we get from
the KG-orientation in the proof of Theorem 2.7.
For a special correspondence, the intersection always gives the composition
product. Here we get the space

{
(x1, x2, e,m, y, µ) ∈ X ×X × E ×M ×NX̊

∣∣
(x1, x2, ζρ(x2) + hx2

(‖e‖2) · e)) = (b(m), b(m), y, µ)
}
.

That is, x1 = x2 = b(m), (y, µ) = ρb(m) + hb(m)(‖e‖
2) · e). Since m ∈ M and

e ∈ E may be arbitrary and determine the other variables, we may identify
this space with M × E.
In the same way, we may replace

X
b
←−M

(id,ζρb)
−−−−−→M ×NX̊ (2.22)

by an equivalent special correspondence with space M ×E in the middle. This
gives exactly the composition computed above. Hence (2.22) also represents
the composition of the correspondences from X to M ×NX̊ in Figure 2.
Composing further with f × id simply composes KG-oriented normally non-
singular maps. Since we are now in the world of manifolds with boundary, we
may identify smooth maps and smooth normally non-singular maps. The large
right square contains the G-maps

(f, ζρb) = (f × id) ◦ (id, ζρb) : M → X ×NX̊,

(ιπ, id) : NX̊ → X ×NX̊.

The pull-back contains those (m,x, µ) ∈ M × NX̊ with (f(m), ρb(x), 0) =
(x, x, µ) in X × NX̊. This is equivalent to x = f(m) = ρb(m) and µ = 0, so
that the pull-back is Q. Since all vectors tangent to the fibres of NX̊ are in
the image of D(ιπ, id), the intersection is smooth and the excess intersection
bundle is the same bundle η as for (f, ρb) : M̊ → X̊ × X̊ and δ : X̊ → X̊ × X̊.
Hence the right square is η-Cartesian.
Theorem 2.17 shows that L(α) is represented by a correspondence of the form

X
bj
←− Q → pt, with a suitable class in K∗

G(Q) and a suitable KG-orientation
on the map Q → pt or, equivalently, the manifold Q. Here we may replace bj
by the properly homotopic map ρbj = fj. It remains to describe the K-theory
and orientation data.
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First, the given K-theory class ξ onM is pulled back to ξ⊗1 onM×NX̊ when
we take the exterior product with NX̊ . In the intersection product, this is
pulled back to M along (id, ζρb), giving ξ again, and then to Q along j, giving
the restriction of ξ to Q ⊆ M . The unit and counit have 1 as its K-theory
datum. Thus the Lefschetz index has ξ|Q ⊗ e(η) ∈ K∗

G(Q) as its K-theory
datum by Theorem 2.17.
The given KG-orientations on E, f and η induce KG-orientations on all maps
in Figure 2 that point to the right. This is the KG-orientation on the map
Q → pt that we need. We describe it in greater detail after the proof of the
theorem.
The KG-orientation on the map Q→ pt is equivalent to a G-equivariant Spinc-
structure on Q. The isomorphism

k̂k
G

∗ (pt, pt)→ k̂k
G

∗ (C(pt),C(pt))

described in [15, Theorem 4.2] maps the geometric correspondence just de-
scribed to the index of the Dirac operator on Q for the chosen Spinc-structure
twisted by ξ|Q ⊗ e(η). This gives the last assertion of the theorem.

Since the KG-orientation on Qρb,f is necessary for computations, we describe
it more explicitly now. We still use the notation from the previous proof.
We are given KG-orientations on E, f and η. The KG-orientation on f is
equivalent to one on the G-vector bundle TM ⊕ f∗(NX) over M because

TX ⊕NX ∼= X × E

is a KG-oriented G-vector bundle on X .
We already discussed during the proof of the theorem that id × (id, ζρ) and
(id, ζρ) are normally non-singular embeddings with normal bundle E; this gives
the correct KG-orientation for these maps as well.
A KG-orientation on the map (f, ζρb) : M → X × NX̊ is equivalent to one
for TM ⊕ f∗(NX) because the bundle T(X × NX̊) ⊕ pr∗

1(NX) over X × NX̊
is isomorphic to the trivial bundle with fibre E ⊕ E and (f, ζρb)∗pr∗

1(NX) =
f∗(NX). We are already given such a KG-orientation from the KG-orientation
of f .

Lemma 2.19. The given KG-orientation on TM ⊕ f∗(NX) is also the one that

we get by inducing KG-orientations on (id, ζρb) from (id, ζρ) and on f × id
from f and then composing.

Proof. The KG-orientation of f induces one for f × id, which is equivalent to
a KG-orientation for

T(M ×NX̊)⊕ (fpr1)
∗(NX) ∼=

(
TM ⊕ f∗(NX)

)
× (NX̊ × E).

This KG-orientation is exactly the direct sum orientation from TM ⊕ f∗(NX)
and E; no sign appears in changing the order because E has even dimension.
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The map h = (id, ζρ) is a smooth embedding with normal bundle E. Hence we
get an extension of vector bundles

TM ⊕ f∗(NX) ֌ h∗
(
T(M ×NX̊)⊕ (fpr1)

∗(NX)
)
։ E.

The given KG-orientations on TM ⊕ f∗(NX) and E induce one on the vector
bundle in the middle. This is the same one as the pull-back of the one con-
structed above. This means that the KG-orientation on TM⊕f∗(NX) induced
by h is the given one.

Equation (2.14) provides the following exact sequence of vector bundles over Q:

0→ TQ
Dj,D(ζfj)
−−−−−−−→ j∗(TM)⊕ (ζfj)∗T(NX̊)

D(f,ζρb),−D(ιπ,id)
−−−−−−−−−−−−→ (f, ζρb)∗T(X ×NX̊)→ η → 0.

Since −D(ιπ, id) is injective, we may divide out T(NX̊) and its image to get
the simpler short exact sequence

0→ TQ
Dj
−−→ j∗TM

Df−D(ρb)
−−−−−−−→ f∗TX → η → 0.

Then we add the identity map on j∗f∗(NX) to get

0→ TQ
(Dj,0)
−−−−→ j∗(TM ⊕ f∗NX)

(Df−D(ρb),id)
−−−−−−−−−−→ f∗(TX ⊕NX)→ η → 0.

(2.23)
In the last long exact sequence, the vector bundles j∗(TM ⊕ f∗NX), f∗(TX⊕
NX) ∼= Q×E and η carry KG-orientations. These together induce one on TQ.
This is the KG-orientation that appears in Theorem 2.18.
Of course, the resulting geometric cycle should not depend on the auxiliary
choice of a KG-orientation on η. Indeed, if we change it, then we change both
e(η) and the KG-orientation on TQ, and these changes cancel each other.
We now consider some examples of Theorem 2.18.

2.6.1 Self-maps transverse to the identity map

Let X be a compact G-manifold with boundary and let b : X → X be a smooth
G-map that is transverse to the identity map. Thus b has only finitely many
isolated fixed points and 1−Dxb : TxX → TxX is invertible for all fixed points x
of b. We turn b into a geometric correspondence α from X to itself by taking
M = X , f = id (with standard KG-orientation) and ξ = 1.
Since b has only finitely many fixed points, we may choose the collar neigh-
bourhood so small that all fixed points that do not lie on ∂X lie outside the
collar neighbourhood, and such that the fixed points of ρb are precisely the
fixed points of b not on the boundary of X . Hence ρb = b near all fixed points.
Then ρb is also transverse to the diagonal map and Theorem 2.18 applies. The
intersection space in Theorem 2.18 is

Q = Qρb,id = {x ∈ X | ρb(x) = x} = {x ∈ X̊ | b(x) = x},
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the set of fixed points of b in X̊. The K-theory class on Q is 1 because ξ = 1 and
the intersection is transverse. More precisely, the bundle η is zero-dimensional,
and we may give it a trivial KG-orientation for which e(η) = 1.

Although Q is discrete, the KG-orientation of the map Q → pt is important
extra information: it provides the signs that appear in the familiar Lefschetz
fixed-point formula. Equation (2.23) simplifies to

0→ TQ→ (TX ⊕NX)|Q
(id−Db,id)
−−−−−−−→ (TX ⊕NX)|Q → 0.

We left out η because it is zero-dimensional and carries the trivial
KG-orientation to ensure that e(η) = 1. The bundle TQ is also zero-
dimensional. But a zero-dimensional bundle has non-trivial KG-orientations.
The Clifford algebra bundle of a zero-dimensional bundle is the trivial, triv-
ially graded one-dimensional bundle spanned by the unit section. Thus an
irreducible Clifford module (spinor bundle) for it is the same as a Z/2-graded
G-equivariant complex line bundle.

Let S be the spinor bundle associated to the given KG-orientation on TX ⊕
NX ∼= E. The exact sequence (2.23) says that the KG-orientation of Q is the
Z/2-gradedG-equivariant complex line bundle ℓ such that (id−Db)∗(S|Q)⊗ℓ ∼=
S|Q as Clifford modules. This uniquely determines ℓ. Thus ℓ measures
whether Db changes orientation or not. This is exactly the sign of the
G-equivariant vector bundle automorphism 1−Db on TX |Q, which is studied
in detail in [13]. In particular, it is shown in [13] that ℓ is the complexification
of a Z/2-graded G-equivariant real line bundle. The Z/2-grading gives one sign
for each G-orbit in Q, namely, the index of id−Dbx. In addition, the sign gives
a real character Gx → {−1,+1} for each orbit, where Gx denotes the stabiliser
of a point in the orbit.

Twisting the KG-orientation by a line bundle over Q has the same effect as
taking the trivial KG-orientation and putting this line bundle on Q. Thus L(α)
is represented by the geometric correspondence

X ← (Q, sign(1 −Db|Q))→ pt

with the trivial KG-orientation on the map Q→ pt.

The Lefschetz index of α is the index of the Dirac operator onQ with coefficients
in the line bundle sign(1−Db)|Q; this is simply the Z/2-gradedG-representation
on the space of sections of sign(1−Db)|Q, which is a certain finite-dimensional
Z/2-graded, real G-representation.
If the group G is trivial, then the Lefschetz index is a number and sign(1−Db)
is the family of sign(1 − Dxb) ∈ {±1} for x ∈ Q. If X is connected, then all
maps X ← pt give the same element in k̂k. Thus L(α) is L-ind(α) times the
point evaluation class [X ← pt = pt], and L-ind(α) is the sum of the indices of
all fixed points of b in X̊ .
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2.6.2 Euler characteristics

Now let ξ ∈ K∗
G(X) and consider the correspondence with M = X , b = f = id,

and the above class ξ. We want to compute the Lefschetz index of the geometric
correspondence α associated to ξ. In particular, for ξ = 1 we get the Lefschetz

index of the identity element in k̂k
G

0 (X,X), which is the Euler characteristic
of X .
We only compute the Lefschetz index of ξ ∈ K∗

G(X) forX with trivial boundary.
Then the map ρ in Theorem 2.18 is the identity map, and idX intersects itself
smoothly. The intersection space is Q = X , embedded diagonally into X ×X .
The excess intersection bundle η is TX . To apply Theorem 2.18, we also
assume that X is KG-oriented. Then L(α) is represented by the geometric
correspondence

X
idX←−− (X, ξ ⊗ e(TX))→ pt.

Here e(TX) and the map X → pt both use the same KG-orientation on X .
The Lefschetz index of α is represented by

pt← (X, ξ ⊗ e(TX))→ pt.

By Theorem 2.18, this is the index of the Dirac operator of X with coefficients
in ξ ⊗ e(TX).
Twisting the Dirac operator by e(TX) gives the de Rham operator: this is the
operator d+ d∗ on differential forms with usual Z/2-grading, so that its index
is the Euler characteristic of X . Thus (the analytic version of) L(α) is the
class in KKG0 (C(X),C) of the de Rham operator with coefficients in ξ. This
was proved already in [11] by computations in Kasparov’s analytic KK-theory.
Now we have a purely geometric proof of this fact, at least if X is KG-oriented.
Theorem 2.18 no longer works forX without KG-orientation because there is no
KG-orientation on the excess intersection bundle. A way around this restriction
would be to use twisted K-theory throughout. We shall not pursue this here,
however.
We can now clarify the relationship between the Euler class e(TX) ∈

K
dim(X)
G (X) and the higher Euler characteristic EulX ∈ KKG0 (C(X),C) intro-

duced already in [11]. Since we assume X KG-oriented and without boundary,

there is a duality isomorphism K
dim(X)
G (X) ∼= KG0 (X) = KKG0 (C(X),C). This

duality isomorphism maps e(TX) to EulX .

2.6.3 Self-maps without transversality

Let X be a compact G-manifold and let b : X → X be a smooth G-map. We
want to compute the Lefschetz map on the geometric correspondence

X
b
←− X

idX−−→ X

with KG-theory class 1 on X .
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If b is transverse to the identity map, then this is done already in Section 2.6.1.
The case b = idX is done already in Section 2.6.2. Now we assume that b
and idX intersect smoothly. We also assume that b has no fixed points on the
boundary; then we may choose the collar neighbourhood of ∂X to contain no
fixed points of b, so that ρ(x) = x in a neighbourhood of the fixed point subset
of b. Furthermore, all fixed points of ρb are already fixed points of b.
That b and idX intersect smoothly and away from ∂X means that

Q := {x ∈ X | b(x) = x} = {x ∈ X | ρb(x) = x}

is a smooth submanifold of X̊ and that there is an exact sequence of G-vector
bundles over Q:

0→ TQ→ TX |Q
1−D(ρb)
−−−−−→ TX |Q → η → 0,

where η is the excess intersection bundle.

Remark 2.20. The maps b and idX always intersect smoothly if b : X → X
is isometric with respect to a Riemannian metric on X ; the reason is that
if Db fixes a vector (x, ξ) at a fixed point of b, then b fixes the entire geodesic
through x in direction ξ.

The vector bundles TQ and η are the kernel and cokernel of the vector bundle
endomorphism 1 −D(ρb) on TX |Q. Since both are vector bundles, 1−D(ρb)
has locally constant rank. We may split

TX |Q ∼= ker(id−D(ρb))⊕ im(id−D(ρb)) = TQ⊕ im(id−D(ρb)),

TX |Q ∼= coker(id−D(ρb))⊕ coim(id−D(ρb)) = η ⊕ coim(id−D(ρb)).

Since im(ϕ) ∼= coim(ϕ) for any vector bundle homomorphism, it follows that η
and TQ are stably isomorphic as G-vector bundles. Thus KG-orientations on
one of them translate to KG-orientations on the other.

Remark 2.21. Given two stably isomorphic vector bundles, there is always a
vector bundle endomorphism with these two as kernel and cokernel. Hence we
cannot expect η and TQ to be isomorphic.

Corollary 2.22. Let X be a compact G-manifold. Let b : X → X be a smooth

G-map without fixed points on ∂X, such that b and idX intersect smoothly.

Let the fixed point submanifold Q of b be KG-oriented, and equip the excess

intersection bundle with the induced KG-orientation. Then the Lefschetz index

of the geometric correspondence

X
b
←− X

idX−−→ X

with KG-theory class 1 on X is the index of the Dirac operator on Q twisted

by e(η).

The Lefschetz map sends the correspondence above to

X
bj
←− Q→ pt

with K-theory class e(η) on Q.
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2.6.4 Trace computation for standard correspondences

By Corollary 2.8, any element of k̂k
G

∗ (X,X) is represented by a correspondence
of the form

X
ι◦π◦pr

1←−−−−− NX̊ ×X
pr

2−−→ X

for a unique ξ ∈ K∗
G(NX̊ ×X). We may view this as a standard form for an

element in k̂k
G

∗ (X,X).
The map (ρ◦ι◦π◦pr1, pr2) = (ρ◦π)×id : NX̊×X → X×X is a submersion and
hence transverse to the diagonal. Thus Theorem 2.18 applies. The space Qρb,f
is the graph of ρπ : NX̊ → X . Thus the Lefschetz map gives the geometric
correspondence

X ← NX̊ → pt, ξ|NX̊ ∈ K∗
G(NX̊),

where we embed NX̊ → NX̊ × X via (id, ρπ) and use the canonical

KG-orientation on NX̊. The Lefschetz index in k̂k
G

∗ (pt, pt) ∼= K∗
G(pt) is com-

puted analytically as the G-equivariant index of the Dirac operator on NX̊
twisted by ξ|NX̊ .

2.6.5 Trace computation for another standard form

Assume now that X has no boundary and is KG-oriented. As we remarked at

the end of Section 2.4, any element of k̂k
G

∗ (X,X) is represented by a corre-
spondence

X
pr

1←−− X ×X
pr

2−−→ X, ξ ∈ K∗
G(X ×X).

The same computation as in Section 2.6.4 shows that the Lefschetz map sends
this to

X = X → pt, ξ|X ∈ K∗
G(X),

where ξ|X is for the diagonal embedding X → X ×X . Analytically, this is the
KG-homology class of the Dirac operator on X with coefficients ξ|X .

2.6.6 Homogeneous correspondences

We call a self-correspondence X
b
←− M

f
−→ X homogeneous if X and M are

homogeneous G-spaces. That is, X := G/H and M := G/L for closed sub-
groups H,L ⊆ G. Then there are elements tb, tf ∈ G with b(gL) := gtbH ,
f(gL) := gtfH ; we need L ⊆ tbHt

−1
b ∩ tfHt

−1
f for this to be well-defined.

Since G/L ∼= G/t−1
f Ltf by gL 7→ gLtf , any homogeneous correspondence is

isomorphic to one with tf = 1, so that L ⊆ H . We assume this from now on
and abbreviate t = tb.
Since M and X are compact, the relevant K-theory group RK∗

G,X(M) for a
homogeneous correspondence is just K∗

G(M). The induction isomorphism gives
RK∗

G,X(M) = K∗
G(G/L)

∼= K∗
L(pt).

A KG-orientation for f : G/L → G/H is equivalent to a KH -orientation for
the projection map H/L → pt because f is obtained from this H-map by
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induction. Thus we must assume a KH -orientation on H/L. Equivalently, the
representation of L on T1L(H/L) factors through Spinc. This tangent space is
the quotient h/l, where h and l denote the Lie algebras of H and L, respectively.
Let L′ := H ∩ tHt−1. Then L ⊆ L′ and both maps f, b : G/L → G/H factor
through the quotient map p : G/L→ G/L′. The geometric correspondence

G/H
b
←− G/L

f
−→ G/H, ξ ∈ K∗

G(G/L)

is equivalent to the geometric correspondence

G/H
b′

←− G/L′ f ′

−→ G/H, ξ′ ∈ K∗
G(G/L

′)

with ξ′ := p!(ξ) and b′(gL′) = gtH and f ′(gL′) = gH . (To construct the
equivalence, we first need a normally non-singular map lifting p; then we apply
vector bundle modifications on the domain and target of p to replace p by an
open embedding; finally, for an open embedding we may construct a bordism
as in [15, Example 2.14].)
Thus we may further normalise a homogeneous geometric self-correspondence
to one with L = H ∩ tHt−1.
Now we compute the Lefschetz map for a such a normalised homogeneous self-
correspondence.
First let t /∈ H . Then the image of the map (f, b) : G/L → G/H × G/H
does not intersect the diagonal. Hence (f, b) is transverse to the diagonal and
the coincidence space Qb,f is empty. Thus the Lefschetz map vanishes on a
homogeneous correspondence with t /∈ H by Theorem 2.18.
Now let t ∈ H . Then b = f : G/L→ G/H is the canonical projection map. Our
normalisation condition yields L = H and b = f = id in this case; that is, our ge-

ometric correspondence is the class in k̂k
G

∗ (G/H,G/H) of some ξ ∈ K∗
G(G/H).

Thus we have a special case of the Euler characteristic computation in Sec-
tion 2.6.2. The Lefschetz map gives the class of the geometric correspondence

G/H
id
←−

=
(G/H, e(TG/H)⊗ ξ)→ pt,

provided G/H is KG-oriented. The Lefschetz index is the index of the de Rham
operator with coefficients in ξ.
When we identify K∗

G(G/H) ∼= K∗
H(pt), the Lefschetz index becomes a map

K∗
H(pt)→ K∗

G(pt).

In complex K-theory, this is a map R(H)→ R(G). Graeme Segal studied this
map in [28, Section 2], where it was denoted by i!.
For instance, assume G to be connected and let H = L be its maximal torus.
Let t ∈ W := NGH/H , the Weyl group of G. Assume that we are working
with complex K-theory, so that K∗

G(G/H) ∼= K∗
H(pt) ∼= R(H). The Weyl

group W acts on G/H by right translations; these are G-equivariant maps.
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Taking the correspondences X
w−1

←−−− X = X , this gives a representation W →

k̂k
G

0 (G/H,G/H). We also map R(H) ∼= K0
G(G/H)→ k̂k

G

0 (G/H,G/H) using
the correspondences X = (X, ξ) = X . These representations of W and R(H)
are a covariant pair of representations with respect to the canonical action ofW
on R(H) induced by the automorphisms h 7→ whw−1 of H for w ∈ W . Hence
we map

R(H)⋊W → k̂k
G

0 (G/H,G/H).

The Lefschetz index R(H) ⋊W → R(G) maps a · t 7→ 0 for t ∈ W \ {1} and
a · 1 7→ indG Λa, where Λa means the de Rham operator on G/H twisted by a.

2.7 Fixed points submanifolds for torus actions

As another application of our excess intersection formula, we reprove a result
that is used in a recent article by Block and Higson [5] to reformulate the Weyl
Character Formula in KK-theory.
Block and Higson also develop a more geometric framework for equivariant
KK-theory for a compact group. For two locally compact G-spaces X and Y ,
they identify KKG∗ (X,Y ) with the group of continuous natural transformations
ΦZ : K∗

G(X × Z) → K∗
G(Y × Z) for all compact G-spaces Z; here continuity

means that each ΦZ is a K∗
G(Z)-module homomorphism. The Kasparov prod-

uct then becomes the composition of natural transformations. This reduces
Kasparov’s equivariant KK-theory to equivariant K-theory.

The theory k̂k
G

does more: it contains the knowledge that all such natural
transformations come from geometric correspondences, when geometric corre-
spondences give the same natural transformation, and how to compose geomet-
ric correspondences. Thus we get a more concrete KK-theory.

Theorem 2.23. Let T be a compact torus and let X be a smooth, KT -oriented

T -manifold with boundary. Let e(TX) ∈ K0
T (X) be the Euler class of X for the

chosen KT -orientation. Let F ⊆ X be the fixed-point subset of the T -action

on X and let j : F → X be the inclusion map. Then F is again a smooth

K-oriented manifold with boundary, with trivial T -action, so that the inclusion

map j is KT -oriented. Let e(TF ) ∈ K0(F ) ⊆ K0
T (F ) be the Euler class of F .

The two geometric correspondences

X
idX←−− (X, e(TX))

idX−−→ X,

X
j
←− (F, e(TF ))

j
−→ X

represent the same element in k̂k
T

0 (X,X).

This is a generalisation of [5, Lemma 3.1]. We allow Spinc-manifolds instead
of complex manifolds. For a Spinc-structure coming from a complex structure,
the Euler class is [Λ∗T∗X ] ∈ K0

T (X), which appears in [5]. The following proof

is a translation of the proof in [5] into the category k̂k
G
.
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Proof. The first geometric correspondence above, involving the Euler class ofX ,
is represented by the composition of geometric correspondences

X
idX←−−
=

X
ζ
−→ TX

ζ
←− X

idX−−→
=

X

by Example 2.13; here ζ denotes the zero section, which is KT -oriented using
the given KT -orientation on the T -vector bundle TX .
Choose a generic element ξ in the Lie algebra of T , that is, the one-parameter
group exp(sξ), s ∈ R, is dense in T . Let αt : X → X denote the action of
t ∈ T on X . The action of T maps ξ to a vector field αξ : X → TX . There is
a homotopy of geometric correspondences

X
idX←−−
=

X
αsξ
−−→ TX

ζ
←− X

idX−−→
=

X

for s ∈ [0, 1]. For t = 0 we get the composition above, involving e(TX). We
claim that for s = 1, the two correspondences intersect smoothly and that the
intersection product is the second geometric correspondence in the theorem,
involving F and its Euler class.
First we show that the fixed-point submanifold F is a closed submanifold.
Equip X with a T -invariant Riemannian metric. Let x ∈ F , that is, αt(x) = x
for all t ∈ T . Split TxX into

V = {v ∈ TxX | Dαt(x, v) = (x, v) for all t ∈ T }

and its orthogonal complement V ⊥. Since the metric is T -invariant,

αt(exp(x, v)) = exp(Dαt(x, v))

for all v ∈ TxX . Since the exponential mapping restricts to a diffeomorphism
between a neighbourhood of 0 in TxX and a neighbourhood of x in X , we have
exp(x, v) ∈ F if v ∈ V , and the converse holds for v in a suitable neighbourhood
of 0. Thus we get a closed submanifold chart for F near x with TxF = V .
Hence F is a closed submanifold with

TF = {(x, v) ∈ TX | Dαt(x, v) = (x, v) for all t ∈ T }.

Since ξ is generic, αξ(x) = 0 in TxX if and only if x ∈ F . Thus F is the
coincidence space of the pair of maps ζ, αξ : X → TX . Let x ∈ F and let
v1, v2 ∈ TxX satisfy Dζ(x, v1) = Dαξ(x, v2). Then v1 = v2 by taking the hori-
zontal components; and the vertical component of Dαξ(x, v2) vanishes, which
means that Dαexp(sξ)(x, v2) = (x, v2) for all s ∈ R. Hence v2 ∈ TxF . This
proves that ζ and αξ intersect smoothly. The excess intersection bundle is the
cokernel ofDαexp(sξ)−id; since the action of T is by isometries, Dαexp(sξ)−id is
normal in each fibre, so that its image and kernel are orthogonal complements.
Hence the cokernel is canonically isomorphic to the kernel of Dαexp(sξ) − id.
Thus the excess intersection bundle is canonically isomorphic to TF .

Hence Theorem 2.17 gives the geometric correspondenceX
j
←− (F, e(TF ))

j
−→ X

as the composition, as desired.
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3 The homological Lefschetz index of a Kasparov morphism

The example in Section 2.6.1 shows in what sense the geometric Lefschetz
index computations in Section 2 generalise the local fixed-point formula for the
Lefschetz index of a self-map. Now we turn to generalisations of the global
homological formula for the Lefschetz index.
The classical Lefschetz fixed-point formula for a self-map f : X → X contains
the (super)trace of the map on the cohomology of X with rational coefficients
induced by f . We take rational coefficients in order to get vector spaces over a
field, where there is a good notion of trace for endomorphisms. By the Chern
character, we may as well take K∗(X) ⊗ Q instead of rational cohomology. It
is checked in [9] that the Lefschetz index of f ∈ KK0(A,A) for a dualisable
C∗-algebra A in the bootstrap class is equal to the supertrace of the map on
K∗(A)⊗Q induced by f .
We are going to generalise this result to the equivariant situation for a compact
Lie group G. We assume that we are working with complex C∗-algebras, so

that k̂k
G

∗ (pt, pt) = KKG∗ (C,C) vanishes in odd degrees and is the represen-
tation ring R(G) in even degrees. Our methods do not apply to the torsion
invariants in KKGd (R,R) for d 6= 0 in the real case because we (implicitly) tensor
everything with Q to simplify the Lefschetz index.

Furthermore, we work in KKG instead of k̂k
G

in this section because the cat-

egory KKG is triangulated, unlike k̂k
G
. We explain in Remark 3.11 why k̂k

G

is not triangulated; the triangulated structure on KKG is introduced in [21].
Let S ⊆ R(G) be the set of all elements that are not zero divisors. This is a
saturated, multiplicatively closed subset; even more, it is the largest multiplica-
tively closed subset for which the canonical map R(G)→ S−1 R(G) to the ring
of fractions is injective (see [1, Exercise 9 on p. 44]). The localisation S−1 R(G)
is also called the total ring of fractions of R(G).
Since KKG is symmetric monoidal with unit 1 = C and R(G) = KKG0 (C,C),
the category KKG is R(G)-linear. Hence we may localise it at S as in [17]. The
resulting category T := S−1KKG has the same objects as KKG and arrows

T∗(A,B) := S−1KKG∗ (A,B) = S−1 R(G)⊗R(G) KKG∗ (A,B).

The category T is S−1 R(G)-linear. There is an obvious functor ♮ : KKG → T .
If A is a separable G-C∗-algebra, then

T∗(C, A) = S−1KKG∗ (C, A) ∼= S−1 R(G)⊗R(G) K
G
∗ (A),

where we use the usual R(G)-module structure on KG∗ (A)
∼= KKG∗ (C, A).

There is a unique symmetric monoidal structure on T for which ♮ is a strict
symmetric monoidal functor: simply extend the exterior tensor product on
KKG S−1 R(G)-linearly. Hence if A is dualisable in KKG, then its image in T
is dualisable as well, and

♮(tr f) = tr(♮f) for all f ∈ KKG∗ (A,A).
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The crucial point for us is that ♮ tr(f) = tr(♮f) uniquely determines tr f because
the map

R(G) ∼= KKG0 (1,1)
♮
−→ T0(1,1) ∼= S−1 R(G)

is injective. Thus it suffices to compute Lefschetz indices in T . This may be
easier because T has more isomorphisms and thus fewer isomorphism classes of
objects. Furthermore, the endomorphism ring of the unit T∗(1,1) = S−1 R(G)
has a rather simple structure:

Lemma 3.1. The ring S−1 R(G) is a product of finitely many fields.

Proof. Let G/AdG be the space of conjugacy classes in G and let C(G/AdG)
be the algebra of continuous functions on G/AdG. Taking characters provides
a ring homomorphism χ : R(G) → C(G/AdG), which is well-known to be in-
jective. Hence R(G) is torsion-free as an Abelian group and has no nilpotent
elements. Since G is a compact Lie group, R(G) is a finitely generated com-
mutative ring by [28, Corollary 3.3]. Thus R(G) is Noetherian and reduced.
This implies that its total ring of fractions is a finite product of fields (see
[18, Exercise 6.5]).

The fields in this product decomposition correspond bijectively to minimal
prime ideals in R(G). By [28, Proposition 3.7.iii], these correspond bijectively
to cyclic subgroups of G/G0, where G0 denotes the connected component of
the identity element. In particular, S−1 R(G) is a field if and only if G is
connected.

Example 3.2. Let G be a connected compact Lie group. Let T be a maximal
torus in G and let W be the Weyl group, W := NG(T )/T . Highest weight
theory provides an isomorphism R(G) ∼= R(T )W . Here R(T ) is a ring of integral
Laurent polynomials in r variables, where r is the rank of T . Since elements
of N≥1 are not zero divisors in R(G), the total ring of fractions of R(G) is
equal to the total ring of fractions of R(G) ⊗ Q. The latter is the Q-algebra
of W -invariant elements in Q[x1, . . . , xr, (x1 · · ·xr)−1]. This is the algebra of
polynomial functions on the algebraic Q-variety (Q×)r, and the W -invariants
give the algebra of polynomials on the quotient variety (Q×)r/W . This variety
is connected, so that the total ring of fractions S−1 R(G) in this case is the
field of rational functions on the algebraic Q-variety (Q×)r/W .

Now we can define an equivariant analogue of the trace of the map on K∗(A)⊗Q
induced by f ∈ KK0(A,A):

Definition 3.3. Let S−1 R(G) =
∏n
i=1 Fi with fields Fi. A module over

S−1 R(G) is a product
∏n
i=1 Vi, where each Vi is an Fi-vector space. In partic-

ular, if A is a G-C∗-algebra, then T∗(C, A) = S−1KG∗ (A) =
∏n
i=1 K

G
∗,i(A) for

certain Z/2-graded Fi-vector spaces K
G
∗,i(A). An endomorphism f ∈ T0(A,A)

induces grading-preserving endomorphisms KG∗,i(f) : K
G
∗,i(A)→ KG∗,i(A).
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If the vector spaces KG∗,i(A) are all finite-dimensional, then the (super)trace of

KG∗,i(f) is defined to be trKG0,i(f)− trKG1,i(f) ∈ Fi, and

trS−1KG∗ (f) := (trKG∗,i(f))
n
i=1 ∈

n∏

i=1

Fi = S−1 R(G).

We will see below that dualisability for objects in appropriate bootstrap classes
already implies that KG∗ (A) is a finitely generated R(G)-module, and then each
KG∗,i(A) must be a finite-dimensional Fi-vector space.

Theorem 3.4. Let A belong to the thick subcategory of KKG generated by C
and let f ∈ KKG0 (A,A). Then A is dualisable in KKG, so that tr f is defined,

and

♮(tr f) = trS−1KG∗ (f) ∈ S−1 R(G).

Thick subcategories are defined in [26, Definition 2.1.6]. The thick subcategory
generated by C is, of course, the smallest thick subcategory that contains the
object C. We denote the thick subcategory generated by a set A of objects or
a single object by 〈A〉.
As we remarked above, ♮(tr f) uniquely determines tr f ∈ R(G) because the
canonical embedding ♮ : R(G)→ S−1 R(G) is injective.
We will prove Theorem 3.4 in Section 3.3.
How restrictive is the assumption thatX should belong to the thick subcategory
of KKG generated by C? The answer depends on the group G.
We consider the two extreme cases: Hodgkin Lie groups and finite groups.
A Hodgkin Lie group is, by definition, a connected Lie group with simply
connected fundamental group; they are the groups to which the Universal Co-
efficient Theorem and the Künneth Theorem in [27] apply.

Theorem 3.5. Let G be a compact connected Lie group with torsion-free funda-

mental group. Then a G-C∗-algebra A belongs to the thick subcategory generated

by C if and only if

• A, without the G-action, belongs to the bootstrap category in KK, and

• A is dualisable.

We postpone the proof of this theorem until after the proof of Proposition 3.13,
which generalises part of this theorem to arbitrary compact Lie groups.
The first condition in Theorem 3.5 is automatic for commutative C∗-algebras
because the non-equivariant bootstrap category is the class of all separable
C∗-algebras that are KK-equivalent to a commutative separable C∗-algebra.
Hence Theorem 3.5 verifies the assumptions needed for Theorem 3.4 if A =
C0(X) and C0(X) is dualisable in KKG; the latter is necessary for the Lefschetz
index to be defined, anyway.
In particular, let X be a compact smooth G-manifold with boundary, for a

Hodgkin Lie group G. Then X is dualisable in k̂k
G

by Theorem 2.7, and
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hence C(X) is dualisable in KKG because the functor k̂k
G
→ KKG is sym-

metric monoidal. Furthermore, k̂k
G

∗ (X,X) ∼= KKG∗ (C(X),C(X)) in this case,
so that any endomorphism f ∈ KKG0 (C(X),C(X)) comes from some self-

correspondence in k̂k
G

0 (X,X). We get the following generalisation of the Lef-
schetz fixed-point formula:

Corollary 3.6. Let G be a Hodgkin Lie group, X a smooth compact

G-manifold, possibly with boundary, and f ∈ k̂k
G

0 (X,X). Then tr(f) ∈
R(G) ⊆ S−1 R(G) is equal to the supertrace of S−1K∗

G(f), acting on the

S−1 R(G)-vector space S−1K∗
G(X).

Notice that S−1 R(G) for a Hodgkin Lie group is a field, not just a product of
fields.
In particular, Corollary 3.6 for the trivial group gives the Lefschetz index for-
mula in [9].
Whereas Theorem 3.4 yields quite satisfactory results for Hodgkin Lie groups,
its scope for a finite group G is quite limited:

Example 3.7. For G = Z/2 there is a locally compact G-space X with
K∗
G(X) = 0 but K∗(X) 6= 0. Equivalently, KKG∗ (C,C0(X)) = 0 and

KKG∗ (C(G),C0(X)) 6= 0. This shows that C(G) does not belong to 〈C〉.
Worse, the Lefschetz index formula in Theorem 3.4 is false for endomorphisms

of C(G). We have k̂k
G

∗ (G,G)
∼= Z[G], spanned by the classes of the translation

maps G→ G, x 7→ x ·g, for g ∈ G, and these are homogeneous correspondences
as in Section 2.6.6.
Translation by g = 1 is the identity map, and its Lefschetz index is the class of
the regular representation of G in R(G). For g 6= 1, the Lefschetz index is zero
because the fixed point subset is empty. However, K∗

G(G) = K∗(pt) = Z[0]
and all translation maps induce the identity map on K∗

G(G). Thus the induced
map on K∗

G(G) is not enough information to compute the Lefschetz index of

an endomorphism of G in k̂k
G
.

3.1 The equivariant bootstrap category

A reasonable Lefschetz index formula should apply at least to KKG-endo-
morphisms of C(X) for all smooth compact G-manifolds and thus, in particular,
for finite G-sets X . Example 3.7 shows that Theorem 3.4 fails on such a larger
category. This leads us to improve the Lefschetz index formula. First we discuss
the class of G-C∗-algebras where we expect it to hold.
We are going to describe an equivariant analogue of the bootstrap class in KKG.
Our class is larger than the class of C∗-algebras that are KKG-equivalent to a
commutative C∗-algebra. The latter subcategory is too small because it is not
thick. The thick (or localising) subcategory of KKG generated by commutative
C∗-algebras is a better choice, but such a definition is not very intrinsic. We
will choose an even larger subcategory of KKG because it is not more difficult
to treat and has a nicer characterisation.
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The category KKG only has countable coproducts because we need C∗-algebras
to be separable. Hence the standard notions of compact objects and localising
subcategories have to be modified so that they only involve countable coprod-
ucts. As in [7, Definition 2.1], we speak of compactℵ1

objects, localisingℵ1

subcategories, and compactlyℵ1
generated subcategories.

Definition 3.8. Call a G-C∗-algebra A elementary if it is of the form
IndGH MnC = C(G,MnC)H for some closed subgroup H ⊆ G and some action
of H on MnC by automorphisms; the superscript H means the fixed points for
the diagonal action of H .

Definition 3.9. Let BG ⊆ KKG be the localisingℵ1
subcategory generated by

all elementary G-C∗-algebras. We call BG the G-equivariant bootstrap category.

An action of H on MnC comes from a projective representation of H on Cn.
Such a projective representation is a representation of an extension of H by the
circle group. The extension is classified by a cohomology class in H2(H,U(1)).
Two actions on MnC are H-equivariantly Morita equivalent if and only if they
belong to the same class in H2(H,U(1)). The G-C∗-algebras IndGH MnC for
actions of H on MnC with different cohomology classes need not be KKG-
equivalent.

Theorem 3.10. A G-C∗-algebra belongs to the localisingℵ1
subcategory gener-

ated by the elementary G-C∗-algebras if and only if it is KKG-equivalent to a

G-action on a type I C∗-algebra.

Proof. It is already shown in [27, Theorem 2.8] that all G-actions on type I
C∗-algebras belong to the localisingℵ1

subcategory generated by the elemen-
tary G-C∗-algebras. By definition, localisingℵ1

subcategories are closed under
KKG-equivalence. Elementary G-C∗-algebras are type I C∗-algebras, even con-
tinuous trace C∗-algebras. To finish the proof we must show that the G-C∗-
algebras that are KKG-equivalent to type I G-C∗-algebras form a localisingℵ1

subcategory of KKG.
Let T1 ⊆ KKG be the full subcategory of type I, separable G-C∗-algebras.
If A ∈ T1, then C0(R, A) ∈ T1, so that T1 is closed under suspension and
desuspension. Let A,B ∈ T1 and f ∈ KKG0 (A,B). We have KKG0 (A,B) ∼=
KKG1 (A,C0(R, B)), and cycles for the latter group correspond to (equivariantly)
semisplit extensions of G-C∗-algebras

C0(R, B)⊗K֌ D ։ A

with K := K(L2(G×N)). Since B and A are type I, so are C0(R, B)⊗K and D
because the property of being type I is inherited by extensions. The semisplit
extension above provides an exact triangle isomorphic to

B[−1]→ D → A
f
−→ B.

Thus there is an exact triangle containing f with all three entries in T1. Fur-
thermore, countable direct sums of type I C∗-algebras are again type I. This
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implies that the G-C∗-algebras KKG-equivalent to one in T1 form a localisingℵ1

subcategory of KKG.

Remark 3.11. In the non-equivariant case, any C∗-algebra in the bootstrap class
is KK-equivalent to a commutative one. This criterion fails already for G =
U(1), as shown by a counterexample in [10]. Since the bootstrap class is the
smallest localising subcategory containing C, it follows that the commutative

C∗-algebras do not form a localising subcategory. Thus k̂k
G
is not triangulated:

it lacks cones for some maps.
In this case, the equivariant bootstrap class is already generated by C and
contains all U(1)-actions on C∗-algebras in the non-equivariant bootstrap cat-
egory. It is shown in [10] that the U(1)-equivariant K-theory of a suitable
Cuntz–Krieger algebra with its natural gauge action cannot arise from any
U(1)-action on a locally compact space.

Corollary 3.12. The restriction and induction functors KKG → KKH and

KKH → KKG for a closed subgroup H in a compact Lie group G restrict to

functors between the bootstrap classes in KKG and KKH .

Proof. Restriction does not change the underlying C∗-algebra and thus pre-
serves the property of being type I. Induction maps elementary H-C∗-algebras
to elementary G-C∗-algebras, is triangulated, and commutes with direct sums.
Hence it maps BH to BG.

Proposition 3.13. An object of BG is compactℵ1
if and only if it is dualisable,

if and only if it belongs to the thick subcategory of BG (or of KKG) generated

by the elementary G-C∗-algebras.

Proof. The tensor unit C is compactℵ1
because KKG∗ (C, A) ∼= KG∗ (A) ∼= K∗(G⋉

A) is countable for all G-C∗-algebras A, and the functors A 7→ G⋉ A and K∗

are well-known to commute with coproducts. Furthermore, the tensor product
in KKG commutes with coproducts in both variables.
Using this, we show that dualisable objects of BG are compactℵ1

. If A is
dualisable with dual A∗, then KKG(A,B) ∼= KKG(C, A∗ ⊗ B), and since C is
compactℵ1

and ⊗ commutes with countable direct sums, it follows that A is
compactℵ1

.
It follows from [8, Corollary 2.2] that elementary G-C∗-algebras are dualisable
and hence compactℵ1

. A compact group has only at most countably many
compact subgroups by Lemma 3.14 below; and any of them has at most finitely
many projective representations. Hence the set of elementary G-C∗-algebras
is at most countable. Therefore, BG is compactlyℵ1

generated in the sense
of [7, Definition 2.1]. By [7, Corollary 2.4] an object of BG is compactℵ1

if
and only if it belongs to the thick subcategory generated by the elementary
G-C∗-algebras.
The Brown Representability Theorem [7, Corollary 2.2] shows that for every
compactℵ1

object A of BG there is a functor Hom(A, ␣) from BG to BG such
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that
KKG(A⊗B,D) ∼= KKG(B,Hom(A,D))

for all B,D in BG. Using exactness properties of the internal Hom functor in
the first variable, we then show that the class of dualisable objects in BG is
thick (see [7, Section 2.3]). Thus all objects of the thick subcategory generated
by the elementary G-C∗-algebras are dualisable.

The following lemma is well-known, see [25].

Lemma 3.14. A compact Lie group has at most countably many conjugacy

classes of closed subgroups.

Proof. Let H be a closed subgroup of a compact Lie group G. By the Mostow
Embedding Theorem, G/H embeds into a linear representation of G, that
is, H is a stabiliser of a point in some linear representation of G. Up to
isomorphism, there are only countably many linear representations of G. Each
linear representation has finite orbit type, that is, it admits only finitely many
different conjugacy classes of stabilisers. Hence there are altogether at most
countably many conjugacy classes of closed subgroups in G.

Proof of Theorem 3.5. Let G be a Hodgkin Lie group. The main result of [23]
says that A belongs to the localising subcategory of KKG generated by C if and
only if A⋊G belongs to the non-equivariant bootstrap category (this is special
for Hodgkin Lie groups). Since this covers all elementary G-C∗-algebras, we
conclude that the localising subcategory generated by C contains BG and is,
therefore, equal to BG.
The same argument as in the proof of Proposition 3.13 shows that the following
are equivalent for an object A of BG:

• A is dualisable;

• A is compactℵ1
;

• A belongs to the thick subcategory generated by C.

This finishes the proof of Theorem 3.5.

So far we always used the bootstrap class, which is the domain where a Univer-
sal Coefficient Theorem holds. The next proposition is a side remark showing
that we may also use the domain where a Künneth formula holds.

Definition 3.15. An object A ∈ KKG satisfies the Künneth formula if KG∗ (A⊗
B) = 0 for all B that satisfy KG∗ (C⊗B) = 0 for all elementary G-C∗-algebras C.

By results of [20, 24], the assumption in Definition 3.15 is necessary and suffi-
cient for a certain natural spectral sequence that computes KG∗ (A ⊗ B) from
KKG∗ (C,A) and KKG∗ (C,B) for elementary C to converge for all B; we have
no need to describe this spectral sequence.
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Proposition 3.16. Let A ∈ KKG be dualisable with dual A∗. If A or A∗

satisfies a Künneth formula, then both A and A∗ belong to BG, and vice versa.

Proof. Since BG is generated by the elementaryG-C∗-algebras, KKG∗ (C,B) = 0
for all elementary G-C∗-algebras C if and only if KKG∗ (C,B) = 0 for all C ∈
BG. Any elementary G-C∗-algebra C is dualisable with a dual in BG. Hence
KG∗ (C ⊗ B) ∼= KKG∗ (C∗, B) = 0 for elementary C if KKG∗ (C′, B) = 0 for all
elementary G-C∗-algebras C′; conversely KKG∗ (C,B) ∼= KG∗ (C∗ ⊗ B) = 0 for
elementary C if KG∗ (C′ ⊗ B) = 0 for all elementary G-C∗-algebras C′. Let us
denote the class of G-C∗-algebras with these equivalent properties BG,⊥.
It follows from [20, Theorem 3.16] that (BG,BG,⊥) is a complementary pair
of localising subcategories. In particular, if KKG∗ (A,B) = 0 for all B ∈ BG,⊥,
then A ∈ BG.
Now assume, say, that A satisfies a Künneth formula. Then KKG∗ (A∗, B) ∼=
KG∗ (A⊗B) = 0 for all B ∈ BG,⊥. Thus A∗ ∈ BG. Then KG∗ (A∗⊗B) = 0 for all
B ∈ BG,⊥ because the class of C with KG∗ (C⊗B) = 0 is localising and contains
all elementary C if B ∈ BG,⊥. As above, this implies (A∗)∗ = A ∈ BG.

The proof of Theorem 3.5 above used that, for a Hodgkin Lie group, BG is
already generated by C. For more general groups, we also expect that fewer
generators suffice to generate BG. But we only need and only prove a result
about topologically cyclic groups here.
A locally compact group G is called topologically cyclic if there is an element
g ∈ G that generates a dense subgroup of G. A topologically cyclic group
is necessarily Abelian. We are interested in topologically cyclic, compact Lie
groups here. A compact Lie group is topologically cyclic if and only if it is
isomorphic to Tr × F for some r ≥ 0 and some finite cyclic group F (possibly
the trivial group), where T = R/Z ∼= U(1). Here we use that any extension
Tr ֌ E ։ F for a finite cyclic group F splits. This also implies that any
projective representation of a finite cyclic groups is a representation.

Theorem 3.17. Let G be a topologically cyclic, compact Lie group. Then

the bootstrap class BG ⊆ KKG is already generated by the finitely many G-

C∗-algebras C(G/H) for all open subgroups H ⊆ G.

Furthermore, an object of BG is compactℵ1
if and only if it is dualisable if

and only if it belongs to the thick subcategory generated by C(G/H) for open

subgroups H ⊆ G.

Proof. The second statement about compactℵ1
objects in BG follows from the

first one and [7, Corollary 2.4], compare the proof of Proposition 3.13. Thus
it suffices to prove that the objects C(G/H) for open subgroups already gener-
ate BG. For this, we use an isomorphism G ∼= Tr ×F for some r ≥ 0 and some
finite cyclic subgroup F .
Let us first consider the special case r = 0, that is, G is a finite cyclic group. In
this case, any subgroup of G is open and again cyclic. We observed above that
cyclic groups have no non-trivial projective representations. Thus any elemen-
tary G-C∗-algebra is Morita equivalent to C(G/H) for some open subgroup H
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in G. Hence the assertion of the theorem is just the definition of BG in this
case.
If F is trivial, then the assertion follows from Theorem 3.5. Now we consider
the general case where both F and Tr are non-trivial.
The Pontryagin dual Ĝ of G is isomorphic to the discrete group Zr × F . If A
is a G-C∗-algebra, then G ⋉ A carries a canonical action of Ĝ called the dual
action. Similarly, Ĝ ⋉ A for a Ĝ-C∗-algebra A carries a canonical dual action

of G. This provides functors KKG → KKĜ and KKĜ → KKG. Baaj–Skandalis
duality says that they are inverse to each other up to natural equivalence (see
[2, Section 6]). Since both functors are triangulated, this is an equivalence of
triangulated categories.

If A is type I, then so is G ⋉ A. Hence all objects in BĜ ⊆ KKĜ are KKĜ-
equivalent to a Ĝ-action on a type I C∗-algebra by Theorem 3.10.
The group Ĝ is Abelian and hence satisfies a very strong form of the Baum–
Connes conjecture: it has a dual Dirac morphism and γ = 1 in the sense of
[22, Definition 8.1]. From this it follows that any Ĝ-C∗-algebra A belongs to the

localising subcategory of KKĜ that is generated by IndĜ
Ĥ
A for finite subgroups

Ĥ ⊆ Ĝ (this is shown as in the proof of [22, Theorem 9.3]).
The finite subgroups in Zr× F̂ are exactly the subgroups of F̂ , of course. Since
we have induction in stages, we may assume Ĥ = F̂ . Thus the subcategory of

type I Ĝ-C∗-algebras is already generated by IndĜ
F̂
A for type I F̂ -C∗-algebrasA.

Since F̂ is a finite cyclic group, the discussion above shows that the category of
type I F̂ -C∗-algebras A is already generated by C0(F̂ /Ĥ) for subgroups Ĥ ⊆ F̂ .

Thus BĜ is generated by the Ĝ-C∗-algebras IndĜ
F̂
C0(F̂ /Ĥ) ∼= C0(Ĝ/Ĥ). The

finite subgroups Ĥ ⊆ Ĝ are exactly the orthogonal complements of (finite-
index) open subgroups H ⊆ G.
Now G ⋉ C0(G/H) is Morita equivalent to C∗(H) ∼= C0(Ĝ/Ĥ) for any open
subgroup H ⊆ G, where Ĥ ⊆ Ĝ denotes the orthogonal complement of H in Ĝ.
The dual action on C0(Ĝ/Ĥ) comes from the translation action of Ĝ. Thus
the G- and Ĝ-C∗-algebras C0(G/H) and C0(Ĝ/Ĥ) correspond to each other
via Baaj–Skandalis duality. We conclude that the G-C∗-algebras C0(G/H) for
open subgroups H ⊆ G generate BG.

Let G be topologically cyclic, say, G ∼= Tr × Z/k for some r ≥ 0, k ≥ 1. Then
open subgroups of G correspond to subgroups of Z/k and thus to divisors d
of k. The representation ring of G is

R(G) ∼= R(Tr)⊗ R(Z/k) ∼= Z[x1, . . . , xr, (x1 · · ·xr)
−1]⊗ Z[t]/(tk − 1). (3.1)

Let
tk − 1 =

∏

d|k

Φd(t)

be the decomposition into cyclotomic polynomials. Each factor Φd generates a
minimal prime ideal of R(G), and these are all minimal prime ideals of R(G).
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The localisation at (Φd) gives the field Q(θd)(x1, . . . , xr) of rational functions
in r variables over the cyclotomic field Q(θd), and the product of these locali-
sations is the total ring of fractions of R(G),

S−1 R(G) =
∏

d|k

Q(θd)(x1, . . . , xr).

(Compare Lemma 3.1.)

Lemma 3.18. Let H ( G be a proper open subgroup. The canonical map

R(G)→ KKG0 (C(G/H),C(G/H))

from the exterior product in KKG factors through the restriction map R(G)→
R(H). The image of C(G/H) in the localisation of KKG at the prime ideal (Φk)
vanishes.

Proof. The exterior product of the identity map on C(G/H) and ξ ∈ R(G) ∼=
KKG0 (C,C) is given by the geometric correspondence G/H = G/H = G/H
with the class p∗(ξ) ∈ K0

G(G/H), where p : G/H → pt is the constant map.
Now identify K0

G(G/H) ∼= K0
H(pt) ∼= R(H) and p∗ with the restricton map

R(G)→ R(H) to get the first statement.
We have H ∼= Tr × Z/d embedded via (x, j) 7→ (x, jk/d) into G ∼= Tr × Z/k.
If H 6= G, then d 6= k. The restriction map R(G) → R(H) annihilates the
polynomial (tk − 1)/Φk =

∏
d|k,d 6=k Φd. This polynomial does not belong to

the prime ideal (Φk) and hence becomes invertible in the localisation of R(G)
at (Φk). Since an invertible endomorphism can only be zero on the zero object,
C(G/H) becomes zero in the localisation of KKG at (Φk).

3.2 Localisation of the bootstrap class

Proposition 3.19. Let G ∼= Tr × Z/k be topologically cyclic. Let BGd be the

thick subcategory of dualisable objects in the bootstrap class BG ⊆ KKG. Any

object in the localisation of BGd at the prime ideal (Φk) in R(G) is isomorphic

to a finite direct sum of suspensions of C.

Proof. By Theorem 3.17 an object of BG is dualisable if and only if it belongs
to the thick subcategory generated by C(G/H) for open subgroups H ⊆ G.
Lemma 3.18 shows that all of them except C = C(G/G) become zero when we
localise at (Φk). Hence the image of BGd in the localisation is contained in the
thick subcategory generated by C. We must show that the objects isomorphic
to a direct sum of suspensions of C already form a thick subcategory in the
localisation of KKG at (Φk).
The graded endomorphism ring of C in this localisation is

KKG∗ (C,C)⊗R(G) R(G)(Φk)
∼= Q(θk)(x1, . . . , xr)[β, β

−1]
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with β of degree two generating Bott periodicity. It is crucial that KKG∗ (C,C) ∼=
F [β, β−1] for a field F := Q(θk)(x1, . . . , xr). The following argument only uses
this fact.

We map a finite direct sum A =
⊕

i∈I C[εi] of suspensions of C to the
Z/2-graded F -vector spaces V (A) with basis I and generators of degree εi.
For two such direct sums, KKG0 (A,B) is isomorphic to the space of grading-
preserving F -linear maps V (A)→ V (B) because this clearly holds for a single
summand.
Now let f ∈ KKG0 (A,B) and consider the associated linear map V (f) : V (A)→
V (B). Choose a basis for the kernel of V (f) of homogeneous elements and
extend it to a homogeneous basis for V (A), and extend the resulting basis for
the image of V (f) to a homogeneous basis of V (B). This provides isomorphisms
V (A) ∼= V0 ⊕ V1, V (B) ∼= W1 ⊕ W2 such that f |V0

= 0, f(V1) = W1 and
f |V1

: V1 → W1 is an isomorphism. The chosen bases describe how to lift
the Z/2-graded vector spaces Vi and Wi to direct sums of suspensions of C.
Thus the map f is equivalent to a direct sum of three maps f0 ⊕ f1 ⊕ f2 with
f0 : A0 → 0 mapping to the zero object, f1 invertible, and f2 : 0 → B2 with
domain the zero object. The mapping cone of f0 is the suspension of A0, the
cone of f2 is B2, and the cone of f1 is zero. Hence the cone is again a direct
sum of suspensions of C. Furthermore, any idempotent endomorphism has a
range object.

Thus the direct sums of suspensions of C already form an idempotent complete
triangulated category. As a consequence, any object in the thick subcategory
generated by C is isomorphic to a direct sum of copies of C.

Proposition 3.20. Let G be a Hodgkin Lie group. Let BGd be the thick subcat-

egory of dualisable objects in the bootstrap class BG ⊆ KKG. Any object in the

localisation of BGd at S is isomorphic to a finite direct sum of suspensions of C.

Proof. Theorem 3.5 shows that BGd is the thick subcategory of KKG generated
by C. The localisation F := S−1 R(G) is a field because G is connected, and
the graded endomorphism ring of C in the localisation of KKG at S is F [β, β−1]
with β the generator of Bott periodicity. Now the argument is finished as in
the proof of Proposition 3.19.

Remark 3.21. The localisations above use the groups KKG(A,B) ⊗R(G)

S−1 R(G) for some multiplicatively closed subset S ⊆ End(1) = R(G), fol-
lowing [17]. A drawback of this localisation is that the canonical functor
KKG → S−1KKG does not commute with (countable) coproducts. This is
why Propositions 3.19 and 3.20 are formulated only for BGd and not for all
of BG.
Another way to localise BG at S is described in [7, Theorem 2.33]. Both local-
isations agree on BGd by [7, Theorem 2.33.h]. The construction in [7] has the

advantage that the canonical functor from KKG to this localisation commutes
with smallℵ1

(that is, countable) coproducts. Hence analogues of Propositions
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3.19 and 3.20 hold for the whole bootstrap category BG, with smallℵ1
coprod-

ucts of suspensions of C instead of finite direct sums of suspensions of C.

3.3 The Lefschetz index computation using localisation

Now we have all the tools available to formulate and prove a Lefschetz index
formula for general compact Lie groups. We first prove Theorem 3.4, which
deals with endomorphisms of objects in the thick subcategory generated by C.
Then we formulate and prove the general Lefschetz index formula.

Proof of Theorem 3.4. Since A belongs to the thick subcategory generated
by C, it is dualisable in KKG by Proposition 3.13. Hence tr(f) ∈ R(G) is
defined for f ∈ KKG0 (A,A).
The image of tr(f) in S−1 R(G) is the Lefschetz index of the image of f in the
localisation of KKG at S. The localisation S−1 R(G) is a product of fields. It is
more convenient to compute each component separately. This means that we
localise at larger multiplicatively closed subsets S̄ such that S̄−1 R(G) is one
of the factors of S−1 R(G). In this localisation, the endomorphisms of C form
a field again, not a product of fields. If our trace formula holds for all these
localisations, it also holds for S−1 R(G).
Since the endomorphisms of C form a field, the same argument as in the proof of
Proposition 3.19 show that, in this localisation, A is isomorphic to a finite sum
of copies of suspensions of C. Write A ∼=

⊕n
i=1 Ai with Ai

∼= C[εi] in S−1KKG

for some εi ∈ Z/2. Then f becomes a matrix (fij) with fij ∈ S−1KKG0 (Aj , Ai).
The dual ofAi ∼= C[εi] isA∗

i
∼= C[εi] ∼= Ai, and the unit and counit of adjunction

C ⇆ C[εi] ⊗ C[εi] are the canonical isomorphism and its inverse with sign
(−1)εi , respectively; the sign is necessary because the exterior product is graded

commutative. Hence the dual of A is isomorphic to A, with unit and counit

C ⇆ A⊗A ∼=

n⊕

i,j=1

Ai ⊗Aj

the sum of the canonical isomorphisms C ⇆ Ai ⊕ Ai, up to signs, and the
zero maps C ⇆ Ai ⊕ Aj for i 6= j. Thus the Lefschetz index of f is the

sum
∑n

i=1(−1)
εifii[εi] as an element in S−1KKG0 (C,C). This is exactly the

supertrace of f acting on S−1KG∗ (A) ∼=
⊕n

i=1 S
−1 R(G)[εi].

Let G be a general compact Lie group. Let CG denote the set of conjugacy
classes of Cartan subgroups of G in the sense of [28, Definition 1.1]. Such
subgroups correspond bijectively to conjugacy classes of cyclic subgroups in
the finite group G/G0, where G0 denotes the connected component of the
identity element in G. Thus CG is a non-empty, finite set, and it has a single
element if and only if G is connected.
The support of a prime ideal p in R(G) is defind in [28] as the smallest sub-
group H such that p comes from a prime ideal in R(H) via the restriction
map R(G)→ R(H). Given any Cartan subgroup H , there is a unique minimal
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prime ideal with support H , and this gives a bijection between CG and the set
of minimal prime ideals in R(G) (see [28, Proposition 3.7]).
More precisely, if H ⊆ G is a Cartan subgroup, then H is topologically cyclic
and hence H ∼= Tr × Z/k for some r ≥ 0, k ≥ 1. We described a prime
ideal (Φk) in R(H) before Lemma 3.18, and its preimage in R(G) is a minimal
prime ideal pH in R(G).
The total ring of fractions S−1 R(G) is a product of fields by Lemma 3.1. We
can make this more explicit:

S−1 R(G) ∼=
∏

H∈CG

F (R(G)/pH),

where F (␣) denotes the field of fractions for an integral domain.

Definition 3.22. Let A be dualisable in BG ⊆ KKG, let ϕ ∈ KKG0 (A,A),
and let H ∈ CG. Let F := F (R(G)/pH) and let KH(A) := KH∗ (A) ⊗R(H)

F , considered as a Z/2-graded F -vector space. Let KH(ϕ) be the grading-
preserving F -linear endomorphism of KH(A) induced by ϕ.

Theorem 3.23. Let A be dualisable in BG ⊆ KKG, let ϕ ∈ KKG0 (A,A), and let

H ∈ CG. Then the image of tr(ϕ) in F (R(G)/pH) is the supertrace of KH(ϕ).

Proof. The map R(G) → F (R(G)/pH) factors through the restriction homo-
morphism R(G)→ R(H) because pH is supported in H . Restricting the group
action to H maps the bootstrap category in KKG into the bootstrap category
in KKH by Corollary 3.12, and commutes with taking Lefschetz indices be-
cause restriction is a tensor functor. Hence we may replace G by H and take
ϕ ∈ KKH0 (A,A) throughout.
Since H is topologically cyclic, Proposition 3.19 applies. It shows that in the
localisation of KKH at pH , any dualisable object in BG becomes isomorphic to
a finite direct sum of suspensions of C. Now the argument continues as in the
proof of Theorem 3.4 above.

4 Hattori–Stallings traces

Before we found the above approach through localisation, we developed a dif-
ferent trace formula where, in the case of a Hodgkin Lie group, the trace is
identified with the Hattori–Stallings trace of the R(G)-module map KG∗ (f)
on KG∗ (A). We briefly sketch this alternative formula here, although the lo-
calisation approach above seems much more useful for computations. The
Hattori–Stallings trace has the advantage that it obviously belongs to R(G).
We work in the general setting of a tensor triangulated category (T ,⊗,1). We
assume that T satisfies additivity of traces, that is:

Assumption 4.1. Let A → B → C → A[1] be an exact triangle in T and

assume that A and B are dualisable. Assume also that the left square in the
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following diagram

A B C A[1]

A B C A[1]

fA fB fC fA[1]

commutes. Then C is dualisable and there is an arrow fC : C → C such that

the whole diagram commutes and tr(fC)− tr(fB) + tr(fA) = 0.

Additivity of traces holds in the bootstrap category BG ⊆ KKG. The quickest
way to check this is the localisation formula for the trace in Theorem 3.23. It
shows that BG satisfies even more: tr(fC)− tr(fB) + tr(fA) = 0 holds for any

arrow fC that makes the diagram commute.
There are several more direct ways to verify additivity of traces, but all require
significant work which we do not want to get into here. The axioms worked out
by J. Peter May in [19] are lengthy and therefore rather unpleasant to check
by hand. In a previous manuscript we embedded the localising subcategory
of KKG generated by C into a category of module spectra. Since additivity
is known for categories of module spectra, this implies the required additivity
result at least for this smaller subcategory. Another way would be to show that
additivity of traces follows from the derivator axioms and to embed KKG into
a triangulated derivator.
In the following, we will just assume additivity of traces and use it to compute
the trace. Let

R := T∗(1,1) =
⊕

n∈Z

Tn(1,1)

be the graded endomorphism ring of the tensor unit. It is graded-commutative
provided T satisfies some very basic compatibility axioms; see [29] for details.
If A is any object of T , then M(A) := T∗(1, A) =

⊕
n∈Z Tn(1, A) is an

R-module in a canonical way, and an endomorphism f ∈ Tn(A,A) yields a
degree-n endomorphism M(f) of M(A). We will prove in Theorem 4.2 below
that, under some assumptions, the trace of f equals the Hattori–Stallings trace
of M(f) and, in particular, depends only on M(f).
Before we can state our theorem, we must define the Hattori–Stallings trace
for endomorphisms of graded modules over graded rings. This is well-known
for ungraded rings (see [3]). The grading causes some notational overhead.
Let R be a (unital) graded-commutative graded ring. A finitely generated free
R-module is a direct sum of copies of R[n], where R[n] denotes R with degree
shifted by n, that is R[n]i = Rn+i. Let F : P → P be a module endomorphism
of such a free module, let us assume that F is homogeneous of degree d. We
use an isomorphism

P ∼=

r⊕

i=1

R[ni] (4.1)
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to rewrite F as a matrix (fij)1≤i,j≤r , where fij : R[nj ] → R[ni] are R-module
homomorphisms of degree d. The entry fij is given by right multiplication by
some element of R of degree ni − nj + d. The (super)trace trF is defined as

trF :=

r∑

i=1

(−1)ni tr fii;

this is an element of R of degree d.
It is straightforward to check that trF is well-defined, that is, independent
of the choice of the isomorphism in (4.1). Here we use that the degree-zero
part of R is central in R (otherwise, we still get a well-defined element in the
commutator quotient Rd/[Rd, R0]). Furthermore, if we shift the grading on P
by n, then the trace is multiplied by the sign (−1)n – it is a supertrace.
If P is a finitely generated projective graded R-module, then P ⊕Q is finitely
generated and free for some Q, and for an endomorphism F of P we let

trF := tr(F ⊕ 0: P ⊕Q→ P ⊕Q).

This does not depend on the choice of Q.
A finite projective resolution of a graded R-module M is a resolution

· · · → Pℓ
dℓ−→ Pℓ−1

dℓ−1

−−−→ · · ·
d1−→ P0

d0−→M (4.2)

of finite length by finitely generated projective graded R-modules Pj . We

assume that the maps dj have degree one (or at least odd degree). Assume
that M has such a resolution and let f : M →M be a module homomorphism.
Lift f to a chain map fj : Pj → Pj , j = 0, . . . , ℓ. We define the Hattori–Stallings

trace of f as

tr(f) =

ℓ∑

j=0

tr(fj).

It may be shown that this trace does not depend on the choice of resolution.
It is important for this that we choose dj of degree one. Since shifting the
degree by one alters the sign of the trace of an endomorphism, the sum in the
definition of the trace becomes an alternating sum when we change conventions
to have even-degree boundary maps dj . Still the trace changes sign when we
shift the degree of M .

Theorem 4.2. Let F ∈ T (A,A) be an endomorphism of some object A of T .

Assume that A belongs to the localising subcategory of T generated by 1. If the

graded R-module M(A) := T∗(1, A) has a finite projective resolution, then A
is dualisable in T and the trace of F is equal to the Hattori–Stallings trace of

the induced module endomorphism T∗(1, f) of M(A).

Proof. Our main tool is the phantom tower over A, which is constructed in [20].
We recall some details of this construction.
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Let M⊥ be the functor from finitely generated projective R-modules to T de-
fined by the adjointness property T (M⊥(P ), B) ∼= T (P,M(B)) for all B ∈ T .
The functor M⊥ maps the free rank-one module R to 1, is additive, and com-
mutes with suspensions; this determines M⊥ on objects. Since R = T∗(1,1),
T∗(M

⊥(P1),M
⊥(P2)) is isomorphic (as a graded Abelian group) to the space

of R-module homomorphisms P1 → P2. Furthermore, we have canonical iso-
morphisms M

(
M⊥(P )

)
∼= P for all finitely generated projective R-modules P .

By assumption, M(A) has a finite projective resolution as in (4.2). Using M⊥,
we lift it to a chain complex in T , with entries P̂j := M⊥(Pj) and boundary

maps d̂j := M⊥(dj) for j ≥ 1. The map d̂0 : P̂0 → A is the pre-image of d0

under the adjointness isomorphism T (M⊥(P ), B) ∼= T (P,M(B)). We get back

the resolution of modules by applying M to the chain complex (P̂j , d̂j).
Next, it is shown in [20] that we may embed this chain complex into a diagram

A = N0 N1 N2 N3 · · ·

P̂0 P̂1 P̂2 P̂3 · · ·

ι1
0

ι2
1

ι3
2

ε0 ε1 ε2

d̂0 = π0

π1 π2 π3

d̂1 d̂2 d̂3

(4.3)

where the wriggly lines are maps of degree one; the triangles involving d̂j com-
mute; and the other triangles are exact. This diagram is called the phantom

tower in [20].
Since P̂j = 0 for j > ℓ, the maps ιj+1

j are invertible for j > ℓ. Furthermore,

a crucial property of the phantom tower is that these maps ιj+1
j are phantom

maps, that is, they induce the zero map on T∗(1, ␣). Together, these facts imply
that M(Nj) = 0 for j > ℓ. Since we assumed 1 to be a generator of T , this
further implies Nj = 0 for j > ℓ. Therefore, A ∈ 〈1〉, so that A is dualisable
as claimed.
Next we recursively extend the endomorphism F of A = N0 to an endomor-
phism of the phantom tower. We start with F0 = F : N0 → N0. Assume
Fj : Nj → Nj has been constructed. As in [20], we may then lift Fj to a map

F̂j : P̂j → P̂j such that the square

P̂j Nj

P̂j Nj

πj

F̂j

πj

Fj

commutes. Now we apply additivity of traces (Assumption 4.1) to construct
an endomorphism Fj+1 : Nj+1 → Nj+1 such that (F̂j , Fj , Fj+1) is a triangle

morphism and tr(Fj) = tr(F̂j) + tr(Fj+1). Then we repeat the recursion step
with Fj+1 and thus construct a sequence of maps Fj . We get

tr(F ) = tr(F0) = tr(F̂0) + tr(F1) = · · · = tr(F̂0) + · · ·+ tr(F̂ℓ) + tr(Fℓ+1).
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Since Nℓ+1 = 0, we may leave out the last term.
Finally, it remains to observe that the trace of F̂j as an endomorphism of P̂j
agrees with the trace of the induced map on the projective module Pj . Since
both traces are additive with respect to direct sums of maps, the case of general
finitely generated projective modules reduces first to free modules and then to
free modules of rank one. Both traces change by a sign if we suspend or
desuspend once, hence we reduce to the case of endomorphisms of 1, which is
trivial. Hence the computation above does indeed yield the Hattori–Stallings
trace of M(A) as asserted.

Remark 4.3. Note that if a module has a finite projective resolution, then it
must be finitely generated. Conversely, if the graded ring R is coherent and
regular, then any finitely generated module has a finite projective resolution.
(Regular means that every finitely generated module has a finite length pro-
jective resolution; coherent means that every finitely generated homogeneous
ideal is finitely presented – for instance, this holds if R is (graded) Noetherian;
coherence implies that any finitely generated graded module has a resolution
by finitely generated projectives.)
Moreover, if R is coherent then the finitely presented R-modules form an
abelian category, and this implies (by an easy induction on the triangular length
of A) that for every A ∈ 〈1〉 = (〈1〉loc)d the module M(A) is finitely presented
and thus a fortiori finitely generated. If R is also regular, each such M(A) has
a finite projective resolution.
In conclusion: if R is regular and coherent, an object A ∈ 〈1〉loc is dualisable
if and only if the graded R-module M(A) has a finite projective resolution.
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1 Introduction

A sums-of-squares formula of type [r, s, n] over a field F of characteristic 6= 2
(with strictly positive integers r, s and n) is a formula

( r∑

i=1

x2i

)
·
( s∑

i=1

y2i

)
=
( n∑

i=1

z2i

)
∈ F [x1, . . . , xr, y1, . . . , ys] (1)

where zi = zi(X,Y ) for each i ∈ {1, . . . , n} is a bilinear form in X and Y (with
coefficients in F ), i.e. zi ∈ F [x1, . . . , xr, y1, . . . , ys] is homogeneous of degree 2
and F -linear in X and Y . Here, X = (x1, . . . , xr) and Y = (y1, . . . , ys) are coor-

dinate systems. To be specific, zi =
∑

k,j c
(i)
kj xkyj for c

(i)
kj ∈ F . An old problem

of Adolf Hurwitz concerns the existence of sums-of-squares formulas. Historical
remarks can be found in [18] and [20]. For any m ∈ Z>0, we let ϕ(m) denote
the cardinality of the set {l ∈ Z : 0 < l ≤ m and l ≡ 0, 1, 2 or 4 (mod 8)}. The
aim of this paper is to introduce the following result.

Theorem 1.1. If a sums-of-squares formula of type [r, s, n] exists over a field
F of characteristic 6= 2, then 2ϕ(s−1)−i+1 divides

(
n
i

)
for n− r < i ≤ ϕ(s− 1).
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The proof of Theorem 1.1 over R was provided by [2] and [21]. It involves com-
putations of topologicalKO-theory of real projective spaces and γi-operations.
The statement of Theorem 1.1 over R can be extended to any field of charac-
teristic 0 by an algebraic remark of T.Y. Lam and K.Y. Lam, cf. Theorem 3.3
[18]. By using algebraic K-theory, D. Dugger and D. Isaksen prove a similar
result over an arbitrary field of characteristic 6= 2, where ϕ(s− 1) in the above
theorem is replaced by ⌊ s−1

2 ⌋, cf. Theorem 1.1 [7]. They actually conjectured
the above statement. Since ϕ(s − 1) ≥ ⌊ s−1

2 ⌋, our main theorem generalizes
theirs. One may wish to look at the following table.

n 1 2 3 4 5 6 7 8 9 · · ·
ϕ(n) 1 2 2 3 3 3 3 4 5 · · ·
⌊n2 ⌋ 0 1 1 2 2 3 3 4 4 · · ·

Example 1.1. Consider the triplet [15, 10, 16] which does not exist over F by
the above theorem. Neither Hopf’s condition [8] nor the weaker condition in [7]
can give the non-existence of [15, 10, 16].

Remark 1.1. The necessary condition of our main theorem does not imply the
existence of [r, s, n]. To illustrate, [3, 5, 5] does not exist over the field F by the
Hurwitz-Radon theorem. However, it satisfies the necessary condition.

Remark 1.2. The algebraic K-theory analog (cf. Theorem 1.1 [7]) of our main
theorem works even if the assumption ‘if a sums-of-squares formula of type
[r, s, n] exists over F ’ is replaced by ‘if a nonsingular bilinear map of size [r, s, n]
exists over F ’. The statement with the latter assumption is ‘stronger’. However,
this is not the case under our proof, since we will use the sums-of-squares
identity (1).

Remark 1.3. The triplet [r, s, n] is independent of the base fields whenever
r ≤ 4 and whenever s ≥ n − 2 (cf. Corollary 14.21 [20]), so that the main
theorem is true. There is a bold conjecture which states that the existence of
[r, s, n] is independent of the base field F (of characteristic 6= 2), cf. Conjecture
3.8 [18] or Conjecture 14.22 [20]. Our main theorem and Dugger-Isaksen’s Hopf
condition (cf. [8]) suggest this conjecture to some extent. However, as Shapiro
points out in Chapter 14 [20], there is indeed very little evidence to support
this conjecture.

In [22], it is shown that the Grothendieck-Witt group of a complex cellular
variety is isomorphic to the KO-theory of its set of C-rational points with
analytic topology. The set of C-rational points of a deleted quadric is homotopy
equivalent to the real projective space of the same dimension, cf. Lemma 6.3
[15]. Moreover, the computation of topological KO-theory of a real projective
space is well-known, cf. Theorem 7.4 [1]. We therefore have motivations to work
on the Grothendieck-Witt group of a deleted quadric and on the γi-operations.
The proof of our main theorem requires the computation of Grothendieck-Witt
group of a deleted quadric which will be explored in Section 3.
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2 Terminology, notation and remark

Let (E , ∗, η) be a Z[ 12 ]-linear exact category with duality. For i ∈ Z, Walter’s
Grothendieck-Witt groups GW i(E , ∗, η) are defined in Section 4.3 [16]. The
triplet (Vect(X), Hom( ,L), can) (notation in Example 2.3 [16]) is an exact
category with duality. If X is any Z[ 12 ]-scheme, then we define

GW i(X,L) := GW i(Vect(X), Hom( ,L), can).

By the symbolsGW i(X), we mean the groupsGW i(X,O). Note thatGW 0(X)
is just Knebusch’s L(X) which is defined in [14]. The notation in [3] is used
for the Witt theory. For KO-theory and comparison maps, we refer to [22].

Definition 2.1. Let T be a scheme. For us, a smooth T -variety X is called
T -cellular if it has a filtration by closed subvarieties

X = Z0 ⊃ Z1 ⊃ · · · ⊃ ZN = ∅

such that Zk−1 − Zk ∼= Ank

T for each k.

In this paper, the following notations are introduced for convenience:

F — a field of characteristic 6= 2;
K — an algebraically closed field of characteristic 6= 2;
V — the ring of Witt vectors over K;
L — the field of fractions of V ;
XF — the base-change scheme X ×Z[ 12 ]

F for any Z[ 12 ]-scheme X;

S — the polynomial ring F [y1, . . . , ys];
Ps−1 — the scheme Proj Z[ 12 ][y1, . . . , ys];
qs — the quadratic polynomial qs(y) = y21 + . . .+ y2s ;
V+(qs) — the closed subscheme of Ps−1 defined by qs;
D+(qs) — the open subscheme Ps−1 − V+(qs) of Ps−1;
ξ — the line bundle O(−1) of Ps−1

F restricted to D+(qs)F ;
R — the ring of elements of total degrees 0 in Sqs ;
P — the R-module of elements of total degrees −1 in Sqs ;
Qn — the Z[ 12 ]-scheme defined by∑n/2

i=0 xiyi = 0 in Pn+1, if n > 0 is even;∑(n−1)/2
i=0 xiyi + c2 = 0 in Pn+1, if n > 0 is odd;

DQn+1 — the open subscheme Pn+1 −Qn of Pn+1.

Remark 2.1. (i) Let E be a field containing
√
−1 and of characteristic 6= 2.

Note that (Qs−2)E is isomorphic to the projective variety V+(qs)E , cf. Lemma
2.2 [8]. This map induces an isomorphism iE : (DQs−1)E → D+(qs)E .
(ii) Observe that V is a complete DVR with the quotient field K, cf. Chapter
II [17]. Also, note that the fraction field L of V has characteristic 0, cf. loc. cit..
(iii) The scheme D+(qs)F is affine over the base field F , since D+(qs)F and
Spec R are isomorphic, cf. the proof of Proposition 2.2 [7].
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3 Proof of Theorem 1.1

Lemma 3.1. If a sums-of-squares formula of type [r, s, n] exists over F , then
there exist a non-degenerate bilinear form σ : ξ × ξ → O on D+(qs)F and a
bilinear space ζ on D+(qs)F of rank n− r such that

r[ξ, σ] + [ζ] = n ∈ GW 0(D+(qs)F )

where n is the trivial bilinear space of the rank n.

Proof. The K-theory analog has been proved, cf. Proposition 2.2 [7]. It is
clear that the group GW 0(D+(qs)F ) is isomorphic to GW0(R) by Remark 2.1
(iii). If the equation (1) exits, we are able to construct a graded S-module
homomorphism (S(−1))r → Sn by f = (f1, . . . , fr) 7→ (z1(f, Y ), . . . , zn(f, Y ))
where Y = (y1, . . . , ys) is the coordinate system introduced in Section 1. This
map induces a homomorphism α : P r → Rn of R-modules by localizing it at qs.

The isomorphism P ⊗RP → R, f⊗g 7→ (fg) ·qs gives a non-degenerate bilinear
form σ : P × P → R. Let 〈−,−〉Rn be the unit bilinear form over Rn. Let
f = (f1, . . . , fr), g = (g1, . . . , gr) ∈ P r. We claim that 〈α(f), α(g)〉Rn equals∑r

i=1 σ(fi, gi). It is enough to show that 〈α(f), α(f)〉Rn =
∑r

i=1 σ(fi, fi). Note
that 〈α(f), α(f)〉Rn = z1(f, Y )2+. . .+zn(f, Y )2. By the existence of the triplet
[r, s, n], we obtain z1(f, Y )2+. . .+zn(f, Y )2 = (f2

1+. . .+f
2
r )qs =

∑r
i=1 σ(fi, fi).

Note that (P r,
∑r
i=1 σ) is non-degenerate. It follows that α is injective and

(P r,
∑r

i=1 σ) can be viewed as a non-degenerate subspace of (Rn, 〈−,−〉Rn)
via α. Define ζ to be its orthogonal complement (P r)⊥ with the unit form
〈−,−〉Rn restricting to (P r)⊥. By a basic fact of quadratic form theory, ζ is
non-degenerate and ζ⊥(P r,∑r

i=1 σ)
∼= (Rn, 〈−,−〉Rn).

Theorem 3.1. Let ν denote the element [ξ, σ]− 1 in the ring GW 0(D+(qs)K).
Then, the ring GW 0(D+(qs)K) is isomorphic to

Z[ν]/(ν2 + 2ν, 2ϕ(s−1)ν)

where ϕ(s− 1) is the number defined in Section 1. Therefore, for any rational
point ς : Spec K → D+(qs)K , the reduced Grothendieck-Witt ring

G̃W
0
(D+(qs)K) := ker

(
ς∗ : GW 0(D+(qs)K)→ GW 0(Spec K) ∼= Z

)

is isomorphic to Z/2ϕ(s−1).

Theorem 3.1 will be proved in the next section.

Proof of Theorem 1.1. It is enough to show this theorem over the algebraic
closure F̄ of F . Indeed, if [r, s, n] exists over F , then it also exists over F̄ . In
order to apply the standard trick (cf. the proof of Theorem 1.3 [7]), we have to
take care of γi-operations on GW 0(D+(qs)F̄ ). To be specific, this standard trick
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can not be applied without the list of three properties (cf. Properties (i)-(iii) in
loc. cit.) of γi-operations and their generating power series γt = 1+

∑
i>0 γ

iti on
GW 0(D+(qs)F̄ ). Due to the lack of reference, we will develop γi-operations on
K(Bil(X)) and prove these three properties (see Appendix A). It is enough for
our purpose becauseGW 0(X) is justK(Bil(X)) if X is affine (see Remark A.1),
and the scheme D+(qs)F̄ is affine by Remark 2.1 (iii). Hence, together with
Lemma 3.1, we are allowed to apply the standard trick. One checks that details
are the same as in the proof of Theorem 1.3 [7] by replacing K-theory analogs
with GW -theory and ⌊ s−1

2 ⌋ with ϕ(s− 1). Combining with a reformulation of
powers of 2 dividing correspondent binomial coefficients (cf. Section 1.2 [7]),
we are done.

4 Proof of Theorem 3.1

4.1 Rigidity and Hermitian K-theory of cellular varieties

By Remark 2.1 (ii), there is always an inclusion map Q → L where Q (resp.
L) is the algebraic closure of Q (resp. L). Consider the following diagram (2).

K ←−−−−− V −−−−−→ L W i(K)
βi

←−−−−−
∼=

W i(V )
αi

−−−−−→
∼=

W i(L)
x ∼=

xχi

C ←−−−−− Q W i(C)
∼=

←−−−−−
ηi

W i(Q)

(2)

On the right-hand side of the diagram (2), the maps of Witt groups are all
induced by the correspondent ring maps of the left-hand side for a fixed i ∈ Z.
All these Witt groups are trivial if i 6≡ 0 (mod 4), cf. Theorem 5.6 [5]. Note
that β0 is an isomorphism by Satz 3.3 [13]. It is also clear that W 0(K) is
isomorphic to Z/2 and that all the maps on the right-hand side of the diagram
(2) preserve multiplicative identities for i = 0. Since Witt groups are four
periodicity in shifting, we obtain

Lemma 4.1. The map ηi ◦ (χi)−1 ◦ αi ◦ (βi)−1 yields an isomorphism from
W i(K) to W i(C). Moreover, by Karoubi induction (cf. Section 3 [6]), the left-
hand side of the digram (2) gives an isomorphism GW i(K) → GW i(C) of
Grothendieck-Witt groups. �

Lemma 4.2. Let X be a smooth Z[ 12 ]-cellular variety. Let f : A→ B be a map
of regular local rings of finite Krull dimensions with 1/2. Suppose that the map
W i(A) → W i(B) induced by f is an isomorphism for each i, then f gives an
isomorphism of Witt groups (resp. Grothendieck-Witt groups)

W i(XA,LA)→W i(XB,LB) (resp. GW i(XA,LA)→ GW i(XB,LB))

for each i and any line bundle L over X.
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Proof. We may use W i(X,L)∗ to simplify the notation W i(X∗,L∗). We wish
to prove the Witt theory case by induction on cells. Firstly, note that the
pullback maps W i(A)→W i(AnA) and W

i(B)→W i(AnB) are isomorphisms by
homotopy invariance, cf. Theorem 3.1 [4]. It follows that

W i(AnA) ∼=W i(AnB).

Let X = Z0 ⊃ Z1 ⊃ · · · ⊃ ZN = ∅ be the filtration such that

Zk−1 − Zk ∼= Ank =: Ck.

In general, the closed subvarieties Zk may not be smooth. However, let Uk
be the open subvariety X − Zk for each 0 ≤ k ≤ N . Every Uk is smooth
in X . There is another filtration X = UN ⊃ UN−1 ⊃ · · · ⊃ U0 = ∅ with
Uk − Uk−1 = Zk−1 − Zk ∼= Ck closed in Uk of codimension dk. Consider the
following commutative diagram of localization sequences.

W i−1(Uk−1)A−→W i
Ck

(Uk,L)A−→W i(Uk,L)A−→W i(Uk−1)A−→W i+1
Ck

(Uk,L)A
y

y
y

y
y

W i−1(Uk−1)B−→W i
Ck

(Uk,L)B−→W i(Uk,L)B−→W i(Uk−1)B−→W i+1
Ck

(Uk,L)B

Here, W i
Ck

(Uk,L) means the L-twisted ith-Witt group of Uk with supports on
Ck. Note that any line bundle over (Ck)A is trivial, since

Pic(AnA) ∼= Pic(A) = 0 (A is regular local and so it is a UFD).

By the dévissage theorem (cf. [10]), we deduce that

W i
Ck

(Uk,L)A ∼=W i
Ck

(Uk,L)B for all i.

Moreover, by induction hypothesis,

W i(Uk−1)A ∼=W i(Uk−1)B for all i.

Applying the 5-lemma, one sees that the middle vertical map is an isomorphism.
Since the K-theory analog of this theorem is also true by induction on cells,
the GW -theory cases follow by Karoubi induction, cf. Section 3 [6].

Corollary 4.1. The Witt group (resp. the Grothendieck-Witt group)

W i(X,L)K (resp. GW i(X,L)K)

is isomorphic to

W i(X,L)C (resp. GW i(X,L)C)
for each i and any line bundle L over X.
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4.2 Comparison maps and rank one bilinear spaces

If X is a smooth variety over C, we let X(C) be the set of C-rational points of
X with analytic topology. One can define comparison maps (cf. Section 2 [22])

k0 : K0(X) → K0(X(C))
gw0 : GW 0(X) → KO0(X(C))
w0 : W 0(X) → KO

K

0
(X(C))

(3)

where KO
K

0
(X(C)) means the cokernel of the realification map from K0(X) to

KO0(X(C)). Let GW 0
top(X(C)) be the Grothendieck-Witt group of complex

bilinear spaces over X(C). The map gw0 consists of the composition of the
following two maps

f : GW 0(X)→ GW 0
top(X(C)) g : GW 0

top(X(C))→ KO0(X(C))

where the map f takes a class [M,φ] on X to the class [M(C), φ(C)] on X(C).
The map g sends a class [N, ǫ] on X(C) to the class represented by the under-
lying real vector bundle R(N, ǫ) such that R(N, ǫ)⊗R C = N and that ǫ|R(N,ǫ)

is real and positive definite, cf. Lemma 1.3 [22]. Let Q(X) (resp. Qtop(X))
denote the group of isometry (resp. isomorphism) classes of rank one bilinear
spaces (resp. rank one complex bilinear spaces) over X (resp. X(C)) with the
group law defined by the tensor product. There are maps of sets

Q(X)→ GW 0(X), [L, φ] 7→ [L, φ] Qtop(X(C))→ GW 0
top(X(C)), [L, ǫ] 7→ [L, ǫ].

Let PicR(X(C)) be the group of isomorphism classes of rank one real vector
bundles over X(C).

Lemma 4.3. The following diagram is commutative

GW 0(X)
f

−−−−−→ GW 0
top(X(C))

g
−−−−−→ KO0(X(C))

x u

x v

x

Q(X)
f̃

−−−−−→ Qtop(X(C))
g̃

−−−−−→ PicR(X(C))

where f̃([L, φ]) (resp. g̃([L, ǫ])) is defined as [L(C), φ(C)] (resp. [R(L, ǫ)]).

Proof. The square on the left-hand side is obviously commutative. It remains
to show that the right-hand side square is commutative. Check that the map g̃
is well-defined. Note that, for each couple of complex bilinear spaces (L

′

, ǫ
′

) and
(L, ǫ) on X(C), if R(L

′

, ǫ
′

) is isomorphic to R(L, ǫ), then (L
′

, ǫ
′

) is isometric
to (L, ǫ). Besides, the map g̃ has image in PicR(X(C)). To see this, suppose
g̃([L, ǫ]) = [R(L, ǫ)] is not in PicR(X(C)) for some [L, ǫ] ∈ Qtop(X(C)). It
follows thatX(C) has a point with an open neighborhood U such thatR(L, ǫ)|U
is isomorphic to U×Rn with n 6= 1. Then, L|U is isomorphic to U×Cn (n 6= 1),
since R(L, ǫ)⊗RC ∼= L. This contradicts the assumption that the bundle L has
rank one. Then, it is clear that g ◦ u = v ◦ g̃.
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4.3 Comparison maps and cellular varieties

Let H(C) (resp. SH(C)) be the unstable A1-homotopy category (resp. the
stable A1-homotopy category) over C. Let H•(C) be the pointed version of
H(C). There are objects in H•(C):

S1
s − the constant sheaf represented by ∆1/∂∆1 pointed canonically;
S1
t − the sheaf represented by A1 − {0} pointed by 1;
T − the sheaf represented by the projective line P1 pointed by ∞.

Set Sp,q = (S1
s )

∧(p−q) ∧ (S1
t )

∧q with p ≥ q ≥ 0. Then, S2,1 and T are A1-
weakly equivalent. See Section 3.2 [9] for details and Section 1.4 [22] for dis-
cussion. One may take these objects to SH(C). The category SH(C) is trian-
gulated with translation functor S1,0 ∧−. Set K̃Op,q(X ) := [Σ∞X , Sp,q ∧KO]
and KOp,q(X) := [Σ∞X+, S

p,q ∧ KO] where X ∈ H•(C) and X ∈ H(C).
The object KO ∈ SH(C) is the geometric model of Hermitian K-theory
in the A1-homotopy theory defined by Schlichting and Tripathi (See Sec-
tion 1.5 [22]). Moreover, there are isomorphisms GW q(X) ∼= KO2q,q(X) and
W q(X) ∼= KO2q−1,q−1(X). One defines comparison maps (cf. Section 2 [22])

k̃p,q
h (X ) : K̃O

p,q
(X ) → K̃O

p
(X (C))

kp,q
h (X) : KOp,q(X) → KOp(X(C)).

In particular, when X is a complex smooth variety, we have

gwq = k2q,q
h : GW q(X) → KO2q(X(C))

wq+1 = k2q+1,q
h : W q+1(X) → KO2q+1(X(C)).

Theorem 4.1. Let X be a complex smooth cellular variety. Assume further that
Z is cellular and closed in X, and let U := X − Z. Then, the map k2q,qh (U) is

an isomorphism and the map k2q+1,q
h (U) is injective.

Proof. When Z = ∅, this theorem is a special case of Theorem 2.6 [22]. We
slightly modify the proof of Theorem 2.6 [22] to show this theorem by induction
on cells. Let Z = ZN ⊃ ZN−1 ⊃ · · · ⊃ Z0 = ∅ be the filtration such that

Zk+1 − Zk ∼= Ank =: Ck.

Set Uk := X − Zk for each 0 ≤ k ≤ N . Note that there is another filtration
X = U0 ⊃ U1 ⊃ · · · ⊃ UN = U with Uk−Uk+1 = Zk+1−Zk ∼= Ck closed in Uk.
Then, the normal bundle NUk/Ck

of Uk in Ck is trivial. Hence, Thom(NUk/Ck
)

and S2d,d are A1-weakly equivalent, where d is the codimension of Ck in Uk,
cf. Proposition 2.17 (page 112) [9]. We can therefore deduce the commutative
ladder diagram in Figure 1 (page 486) [22]. Assume by induction, the theorem
is true for Uk, and we want to prove it for Uk+1. It is known that k̃2q,qh (S2d,d)

and k̃2q+1,q
h (S2d,d) are isomorphisms and that k̃2q+2,q

h (S2d,d) is injective, cf. the
proof of Theorem 2.6 [22]. The results follow by the 5-lemma.
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4.4 Grothendieck-Witt group of a deleted quadric

In this subsection, we simply write X = D+(qs), Q = Qs−2 and DQ = DQs−1.
Note that Q is smooth and closed in Ps−1 of codimension 1. The normal bundle
N of Q in Ps−1 is isomorphic to OQ(2).

Theorem 4.2. The comparison map gwq : GW q(DQC) → KO2q(DQ(C)) is
an isomorphism for each q ∈ Z.

Proof. This theorem is a consequence of Theorem 4.1.

Lemma 4.4. The group GW 0(DQC) is isomorphic to GW 0(DQK).

Proof. Applying Corollary 4.1 and the dévissage theorem, we observe that the
vertical maps of W and GW -groups in the following commutative diagram are
all isomorphisms

GW 0
QK

(Ps−1
K )−→GW 0(Ps−1

K )−→GW 0(DQK)−→W 1
QK

(Ps−1
K )−→W 1(Ps−1

K )
y

y Ω

y
y

y

GW 0
QC

(Ps−1
C

)−→GW 0(Ps−1
C

)−→GW 0(DQC)−→W 1
QC

(Ps−1
C

)−→W 1(Ps−1
C

)

where all vertical maps are induced from the left-hand side of the diagram (2)
(use the 5-lemma to see the middle map Ω is an isomorphism).

Recall the isomorphism of varieties iK : DQK → XK in Remark 2.1 (i). Note
that iC : DQC → XC gives a homeomorphism i(C) : DQ(C)→ X(C) by taking
C-rational points. Besides, let υ : RP s−1 → X(C) be the natural embedding.
The space RP s−1 is a deformation retract of the space X(C) in the category
of real spaces, cf. Lemma 6.3 [15]. These maps that induce isomorphisms in
KO-theory or GW -theory are described in the diagram (4).

Hermitian K-theory Topological KO-theory

GW 0(DQC)
Ω ↑

GW 0(XK)
i∗K−→ GW 0(DQK)

gw0

−→ KO0(DQ(C))
↓ i∗

(C)

KO0(X(C)) υ∗

−→ KO0(RP s−1)

(4)

Proof of Theorem 3.1. Let ξtop denote the tautological line bundle over RP s−1.
Recall that there is an isomorphism of rings

KO0(RP s−1) ∼= Z[νtop]/(ν2top + 2νtop, 2
ϕ(s−1)νtop)

where νtop represents the class [ξtop]−1, cf. Section 7 [1] or Chapter IV [12]. Note
that PicR(RP s−1) is isomorphic to Z/2. Let ϑ : GW 0(XK)→ KO0(RP s−1) be
the composition of maps in the diagram (4). We have known ϑ is an isomor-
phism. Therefore, to prove Theorem 3.1, we only need to show ϑ(ν) = νtop. To
achieve this, we give the following lemma.
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Lemma 4.5. The group Q(XK) (cf. Section 4.2) is isomorphic to Z/2.

Proof. There is an exact sequence (cf. Chapter IV.1 (page 229) [14])

1 −→ O(XK)∗/O(XK)2∗ −→ Q(XK)
F
−→ 2Pic(XK) −→ 1

where 2Pic(XK) means the subgroup of elements of order ≤ 2 in Pic(XK) and
where F is the forgetful map. Note that 2Pic(XK) ∼= Z/2, cf. [19]. In addition,
observe that O(XK)∗ ∼= R∗ = K∗ and that the group K∗/K2∗ is trivial. It
follows that the forgetful map F is an isomorphism. In fact, it sends the non-
trivial element [ξ, σ] (in Lemma 3.1) to the non-trivial element [ξ].

Proof of Theorem 3.1 (Continued). In light of Lemma 4.3, there is a map

ϑ̃ : Q(XK)→ PicR(RP s−1)

(obtained in an obvious way) such that the following diagram is commutative

GW 0(XK)
ϑ

−−−−−→ KO0(RP s−1)

i

x j

x

Z/2 ∼= Q(XK)
ϑ̃

−−−−−→ PicR(RP s−1)∼=Z/2.

The map i is injective (Note that [ξ] and 1 are distinct elements in K0(XK) by
its computation in Proposition 2.4 [7]). The map j is injective by the compu-
tation of KO0(RP s−1). Then, we see that ϑ̃ is bijective and must send [ξ, σ] to
[ξtop]. Therefore, ϑ([ξ, σ]) = [ξtop], so that ϑ(ν) = νtop.

A Operations on the Grothendieck-Witt group

The γi-operations on GW 0 of an affine scheme are analogous to those on the
topological KO-theory which have been explained in Section 1 and 2 in [2].
For readers’ convenience, details have been added.

Let Bil(X) be the set of isometry classes of bilinear spaces over a scheme
X . The orthogonal sum and the tensor product of bilinear spaces over the
scheme X make Bil(X) a semi-ring with a zero and a multiplicative identity.
Then, by taking the associated Grothendieck ring K(Bil(X)), we have a
homomorphism of the underlying semi-rings

ι : Bil(X)→ K(Bil(X))

satisfying the universal property (see Chapter I.4 (page 137) [14] for details).

Remark A.1. For an affine scheme X , the ring GW 0(X) is identified with
K(Bil(X)), cf. Chapter I.4 Proposition 1 (page 138) [14].
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Definition A.1 (Chapter IV.3 (page 235) [14]). Let (F , φ) be a bilinear space
over a scheme X . Let i be a strictly positive integer. The i-th exterior power
of (F , φ), denoted by Λi(F , φ), is the symmetric bilinear space (ΛiF ,Λiφ) over
X , where ΛiF is the i-th exterior power of the locally free sheaf F and where

Λiφ : ΛiF ×X ΛiF → OX
is a morphism of sheaves consisting of a symmetric bilinear form

Λiφ(U) : ΛiF(U)× ΛiF(U)→ OX(U)

defined by

Λiφ(U)(x1 ∧ · · · ∧ xi, y1 ∧ · · · ∧ yi) = det([φ(U)(xj , yk)]i×i)

for each open subscheme U of X . The exterior power Λ0(F , φ) for every bilinear
space (F , φ) (over X) is defined as 1 = (O, id).
Lemma A.1. Let (F , φ), (G, ψ) be bilinear spaces over X. Then, we have that

(a) Λ1(F , φ) = (F , φ);
(b) Λk((F , φ) ⊕ (G, ψ)) ∼=

⊕
r+s=k Λ

r(F , φ)⊗ Λs(G, ψ);
(c) If (F , φ) is of constant rank Θ ≥ 1, Λi(F , φ) = 0 whenever i ≥ Θ.

Proof. (a) and (c) are clear. For (b), it is enough to show that the canonical
isomorphism of locally free sheaves

̺ :
⊕

r+s=k

ΛrF ⊗ ΛsG → Λk(F ⊕ G)

respects the symmetric bilinear forms. This may be checked locally. Let U be
an affine open subset of the scheme X . One may choose elements

x(t) = x1,t ∧ · · · ∧ xr,t ∈ ΛrF(U) and y(t) = y1,t ∧ · · · ∧ ys,t ∈ ΛsG(U)

for t ∈ {1, 2}. Let ai,j := φ(U)(xi,1, xj,2) and bk,l := ψ(U)(yk,1, yl,2). We have
matrices A = [ai,j ]r×r and B = [bk,l]s×s. On the one hand, we get that

Λrφ(U)⊗ Λsψ(U)(x(1) ⊗ y(1), x(2) ⊗ y(2)) = det(A)× det(B). (5)

On the other hand, set

u(t) := ̺(U)(x(t) ⊗ y(t)) ∈ Λr+s(F(U)⊕ G(U))

for t ∈ {1, 2}. Consider the elements

(xj,t, 0), (0, yk,t) ∈ F(U)⊕ G(U)

for 1 ≤ j ≤ r, 1 ≤ k ≤ s and t ∈ {1, 2}. It is clear that

u(t) = (x1,t, 0) ∧ · · · ∧ (xr,t, 0) ∧ (0, y1,t) ∧ · · · ∧ (0, ys,t)
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for t ∈ {1, 2}. Then, we deduce that

Λr+s(φ(U) ⊕ ψ(U))(u(1), u(2)) = det

(
A 0
0 B

)
(6)

Note (5) = (6). The result follows.

Let A(X) denote the group 1 + tK(Bil(X))[[t]] of formal power series with
constant term 1 (under multiplication). Consider a map

Λt : Bil(X)→ A(X), [F , φ] 7→ 1 +
∑

i≥1

Λi([F , φ])ti.

If I : (F , φ)→ (G, ψ) is an isometry of bilinear spaces, so is the natural map

ΛiI : Λi(F , φ)→ Λi(G, ψ).

Then, the map Λt is well-defined. Furthermore, Lemma A.1 (b) implies that
Λt is a homomorphism of the underlying monoids. By the universal property
of K-theory, we can lift Λt to a homomorphism of groups

λt : K(Bil(X))→ A(X)

such that λt ◦ ι = Λt. Taking coefficients of λt, we get operators (not homo-
morphisms in general)

λi : K(Bil(X))→ K(Bil(X)).

Set γt = λt/(1−t) and write γt = 1 +
∑

i≥1 γ
iti. Again, we obtain operators

γi : K(Bil(X))→ K(Bil(X)).

Explicitly, we deduce

∑

i≥0

γiti =
∑

i≥0

λiti(1− t)−i = 1 +
∑

i≥1

(
∑

i≥s≥1

λs
(
i− 1

s− 1

)
)ti.

Hence, the γi are certain Z-linear combinations of the λs. By definition, the
map γt is a homomorphism of groups. Hence, for all x, y ∈ K(Bil(X)), we have

Corollary A.1. (a) γt(x+ y) = γt(x)γt(y);

(b) γt([η]− 1) = 1 + t([η]− 1) where η is a bilinear space of rank 1 over X;

(c) If (F , φ) ∈ Bil(X) is of constant rank Θ ≥ 1, γi((F , φ) −Θ) = 0 if i ≥ Θ.

Proof. (a) is proved. For (b), we deduce

γt([η] − 1) =
γt([η])

γt(1)
=
λt/(1−t)([η])

λt/(1−t)(1)
=

1 + [η]t/(1− t)
(1− t)−1

= 1 + t([η]− 1).

For (c), see the proof of Lemma 2.1 [2].
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from I. Mirković and K. Vilonen [16] over a separably closed field.
Over a not necessarily separably closed field, I obtain a canonical
construction of the Galois form of the full L-group.
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1 Introduction

Connected reductive groups over separably closed fields are classified by their
root data. These come in pairs: to every root datum, there is associated its dual
root datum and vice versa. Hence, to every connected reductive group G, there
is associated its dual group Ĝ. Following Drinfeld’s geometric interpretation of
Langlands’ philosophy, Mirković and Vilonen [16] show that the representation
theory of Ĝ is encoded in the geometry of an ind-scheme canonically associated
to G as follows.
Let G be a connected reductive group over an arbitrary field F . The loop
group LG is the fpqc-sheaf associated with group functor on the category of
F -algebras

LG : R 7−→ G(R((t))).

The positive loop group L+G is the fpqc-sheaf associated with the group functor

L+G : R 7−→ G(R[[t]]).

Then L+G ⊂ LG is a subgroup functor, and the fpqc-quotient GrG = LG/L+G
is called the affine Grassmannian. It is representable by an ind-projective ind-
scheme (= inductive limit of projective schemes). Now fix a prime ℓ 6= char(F ),
and consider the category PL+G(GrG) of L+G-equivariant ℓ-adic perverse
sheaves on GrG. This is a Q̄ℓ-linear abelian category.
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210 T. Richarz

First assume that F is separably closed. Then the simple objects in PL+G(GrG)
are as follows. Fix T ⊂ B ⊂ G a maximal torus contained in a Borel. For every
cocharacter µ, denote by

Oµ def
= L+G · tµ

the reduced L+G-orbit closure of tµ ∈ T (F ((t))) inside GrG. Then Oµ is a
projective variety over F . Let ICµ be the intersection complex of Oµ. The
simple objects of PL+G(GrG) are the ICµ’s where µ ranges over the set of
dominant cocharactersX∨

+. Furthermore, the category PL+G(GrG) is equipped
with an inner product: to every A1,A2 ∈ PL+G(GrG), there is associated a
perverse sheaf A1 ⋆A2 ∈ PL+G(GrG) called the convolution product of A1 and
A2 (cf. §3 below). Denote by

ω(-)
def
=
⊕

i∈Z

RiΓ(GrG, -) : PL+G(GrG) −→ VecQ̄ℓ

the global cohomology functor with values in the category of finite dimensional
Q̄ℓ-vector spaces. Fix a pinning of G, and let Ĝ be the Langlands dual group
over Q̄ℓ, i.e. the reductive group over Q̄ℓ whose root datum is dual to the root
datum of G. Let T̂ be the dual torus, i.e. the Q̄ℓ-torus with X∗(T̂ ) = X∗(T ).

Theorem 1.1. (i) The pair (PL+G(GrG), ⋆) admits a unique symmetric
monoidal structure such that the functor ω is symmetric monoidal.

(ii) The functor ω is a faithful exact tensor functor, and induces via the Tan-
nakian formalism an equivalence of tensor categories

(PL+G(GrG), ⋆)
≃−→ (RepQ̄ℓ

(Ĝ),⊗)
A 7−→ ω(A),

which is uniquely determined up to inner automorphisms by T̂ by the property
that ω(ICµ) is the irreducible representation of highest weight µ.

In the case F = C, this reduces to the theorem of Mirković and Vilonen [16]
for coefficient fields of characteristic 0. The drawback of our method is the
restriction to Q̄ℓ-coefficients. Mirkovic and Vilonen are able to establish a
geometric Satake equivalence with coefficients in any Noetherian ring of finite
global dimension (in the analytic topology). I give a proof of the theorem over
any separably closed field F using ℓ-adic perverse sheaves. My proof is different
from the one of Mirković and Vilonen. It proceeds in two main steps as follows.
In the first step I show that the pair (PL+G(GrG), ⋆) is a symmetric monoidal
category. This relies on the Beilinson-Drinfeld Grassmannians [2] and the
comparison of the convolution product with the fusion product via Beilinson’s
construction of the nearby cycles functor. Here the fact that the convolution
of two perverse sheaves is perverse is deduced from the fact that nearby cycles
preserve perversity. The method is based on ideas of Gaitsgory [7] which were
extended by Reich [19]. The constructions in this first step are essentially
known, my purpose was to give a coherent account of these results.
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The second step is the identification of the group of tensor automorphisms
Aut⋆(ω) with the reductive group Ĝ. I use a theorem of Kazhdan, Larsen
and Varshavsky [10] which states that the root datum of a split reductive
group can be reconstructed from the Grothendieck semiring of its algebraic
representations. The reconstruction of the root datum relies on the PRV-
conjecture proven by Kumar [11]. I prove the following geometric analogue of
the PRV-conjecture.

Theorem 1.2 (Geometric analogue of the PRV-Conjecture). Denote by W =
W (G, T ) the Weyl group. Let µ1, . . . , µn ∈ X∨

+ be dominant coweights. Then,
for every λ ∈ X∨

+ of the form λ = ν1 + . . .+ νk with νi ∈ Wµi for i = 1, . . . , k,
the perverse sheaf ICλ appears as a direct summand in the convolution product
ICµ1 ⋆ . . . ⋆ ICµn .

Using this theorem and the method in [10], I show that the Grothendieck
semirings of PL+G(GrG) and RepQ̄ℓ

(Ĝ) are isomorphic. Hence, the root data

of Aut⋆(ω) and Ĝ are the same. This shows that Aut⋆(ω) ≃ Ĝ uniquely up to
inner automorphisms by T̂ .
If F is not neccessarily separably closed, we are able to apply Galois descent
to reconstruct the full L-group. Fix a separable closure F̄ of F , and denote by
Γ = Gal(F̄ /F ) the absolute Galois group. Let LG = Ĝ(Q̄ℓ)⋊ Γ be the Galois
form of the full L-group with respect to some pinning.

Theorem 1.3. The functor A 7→ ω(AF̄ ) induces an equivalence of abelian
tensor categories

(PL+G(GrG), ⋆) ≃ (RepcQ̄ℓ
(LG),⊗),

where RepcQ̄ℓ
(LG) is the full subcategory of the category of finite dimensional

continuous ℓ-adic representations of LG such that the restriction to Ĝ(Q̄ℓ) is
algebraic.

Theorem 1.3 may be seen as an extension of Theorem A.12 in my joint work
with Zhu [20]. In [loc. cit.] we consider the category RepQ̄ℓ

(LG) of alge-

braic representations of LG regarded as a pro-algebraic group over Q̄ℓ. Then
RepQ̄ℓ

(LG) is a full subcategory of Repc
Q̄ℓ
(LG), and we identify the correspond-

ing subcategory of PL+G(GrG) explicitly.
My method of proof here is similiar to the method used in [20]. Besides some
general Tannakian formalism, the key ingredient is the identification of the Γ-
action on Ĝ obtained via the geometric Satake equivalence over F̄ . It differs
from the usual action by a twist with the cyclotomic character, cf. Proposition
6.6 below.
The structure of the paper is as follows. In §2 we introduce the Satake cate-
gory PL+G(GrG). Appendix A supplements the definition of PL+G(GrG) and
explains some basic facts on perverse sheaves on ind-schemes as used in the
paper. In §3-§4 we clarify the tensor structure of the tuple (PL+G(GrG), ⋆),
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and show that it is neutralized Tannakian with fiber functor ω. Section 5 is
devoted to the identification of the dual group. This section is supplemented by
Appendix B on the reconstruction of root data from the Grothendieck semiring
of algebraic representations. The reader who is just interested in the case of
an algebraically closed ground field may assume F to be algebraically closed
throughout §2-§5. The last section §6 is concerned with Galois descent and the
reconstruction of the full L-group.

Acknowledgement 1. First of all I thank my advisor M. Rapoport for his
steady encouragement and advice during the process of writing. I am grateful
to the stimulating working atmosphere in Bonn and for the funding by the
Max-Planck society.

2 The Satake Category

Let G a connected reductive group over any field F . The loop group LG is the
fpqc-sheaf associated with the group functor on the category of F -algebras

LG : R 7−→ G(R((t))).

The positive loop group L+G is the fpqc-sheaf associated with the group functor

L+G : R 7−→ G(R[[t]]).

Then L+G ⊂ LG is a subgroup functor, and the fpqc-quotient GrG = LG/L+G
is called the affine Grassmannian (associated to G over F ).

Lemma 2.1. The affine Grassmannian GrG is representable by an ind-projective
strict ind-scheme over F . It represents the functor which assigns to every F -
algebra R the set of isomorphism classes of pairs (F , β), where F is a G-torsor
over Spec(R[[t]]) and β a trivialization of F [ 1t ] over Spec(R((t))).

We postpone the proof of Lemma 2.1 to Section 3.1 below. For every i ≥ 0, let
Gi denote i-th jet group, given for any F -algebra R by Gi : R 7→ G(R[t]/ti+1).
Then Gi is representable by a smooth connected affine group scheme over F
and, as fpqc-sheaves,

L+G ≃ lim←−
i

Gi.

In particular, if G is non trivial, then L+G is not of finite type over F . The
positive loop group L+G operates on GrG and, for every orbit O, the L+G-
action factors through Gi for some i. Let O denote the reduced closure of O
in GrG, a projective L+G-stable subvariety. This presents the reduced locus as
the direct limit of L+G-stable subvarieties

(GrG)red = lim−→
O

O,

where the transition maps are closed immersions.
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Fix a prime ℓ 6= char(F ), and denote by Qℓ the field of ℓ-adic numbers with
algebraic closure Q̄ℓ. For any separated scheme T of finite type over F , we
consider the bounded derived category Db

c(T, Q̄ℓ) of constructible ℓ-adic com-
plexes on T , and its abelian full subcategory P (T ) of ℓ-adic perverse sheaves.
If H is a connected smooth affine group scheme acting on T , then let PH(T ) be
the abelian subcategory of P (T ) of H-equivariant objects with H-equivariant
morphisms. We refer to Appendix A for an explanation of these concepts.
The category of ℓ-adic perverse sheaves P (GrG) on the affine Grassmannian is
the direct limit

P (GrG)
def
= lim−→

O

P (O),

which is well-defined, since all transition maps are closed immersions, cf. Ap-
pendix A.

Definition 2.2. The Satake category is the category of L+G-equivariant ℓ-adic
perverse sheaves on the affine Grassmannian GrG

PL+G(GrG)
def
= lim−→

O

PL+G(O),

where O ranges over the L+G-orbits.

The Satake category PL+G(GrG) is an abelian Q̄ℓ-linear category, cf. Appendix
A.

3 The Convolution Product

We are going to equip the category PL+G(GrG) with a tensor structure. Let

- ⋆ - : P (GrG)× PL+G(GrG) −→ Db
c(GrG, Q̄ℓ)

be the convolution product with values in the derived category. We recall its
definition [17, §2]. Consider the following diagram of ind-schemes

GrG ×GrG
p←− LG×GrG

q−→ LG×L+G GrG
m−→ GrG. (3.1)

Here p (resp. q) is a right L+G-torsor with respect to the L+G-action on the
left factor (resp. the diagonal action).The LG-action on GrG factors through
q, giving rise to the morphism m.
For perverse sheaves A1,A2 on GrG, their box product A1 ⊠A2 is a perverse
sheaf on GrG×GrG. If A2 is L+G-equivariant, then there is a unique perverse
sheaf A1⊠̃A2 on LG×L+G GrG such that there is an isomorphism equivariant
for the diagonal L+G-action1

p∗(A1 ⊠A2) ≃ q∗(A1⊠̃A2).

Then the convolution is defined as A1 ⋆A2
def
= m∗(A1⊠̃A2).

1Though LG is not of ind-finite type, we use Lemma 3.20 below to define A1⊠̃A2.
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Theorem 3.1. (i) For perverse sheaves A1,A2 on GrG with A2 being L+G-
equivariant, their convolution A1 ⋆A2 is a perverse sheaf. If A1 is also L+G-
equivariant, then A1 ⋆A2 is L+G-equivariant.

(ii) Let F̄ be a separable closure of F . The convolution product is a bifunctor

- ⋆ - : PL+G(GrG)× PL+G(GrG) −→ PL+G(GrG),

and (PL+G(GrG), ⋆) has a unique structure of a symmetric monoidal category
such that the cohomology functor with values in finite dimensional Q̄ℓ-vector
spaces ⊕

i∈Z

RiΓ(GrG,F̄ , (-)F̄ ) : PL+G(GrG) −→ VecQ̄ℓ

is symmetric monoidal.

Part (i) is due to Lusztig [12] and Gaitsgory [7]. Part (ii) is based on meth-
ods due to Reich [19]. Both parts of Theorem 3.1 are proved simultaneously
in Subsection 3.3 below using universally locally acyclic perverse sheaves (cf.
Subsection 3.2 below) and a global version of diagram (3.1) which we introduce
in the next subsection.

3.1 Beilinson-Drinfeld Grassmannians

Let X a smooth geometrically connected curve over F . For any F -algebra R,
let XR = X × Spec(R). Denote by Σ the moduli space of relative effective
Cartier divisors on X , i.e. the fppf-sheaf associated with the functor on the
category of F -algebras

R 7−→ {D ⊂ XR relative effective Cartier divisor}.

Lemma 3.2. The fppf -sheaf Σ is represented by the disjoint union of fppf-
quotients

∐
n≥1X

n/Sn, where the symmetric group Sn acts on Xn by permut-
ing its coordinates.

2

Definition 3.3. The Beilinson-Drinfeld Grassmannian (associated to G and
X) is the functor Gr = GrG,X on the category of F -algebras which assings to
every R the set of isomorphism classes of triples (D,F , β) with





D ∈ Σ(R) a relative effective Cartier divisor;

F a G-torsor on XR;

β : F|XR\D
≃→ F0|XR\D a trivialisation,

where F0 denotes the trivial G-torsor. The projection Gr → Σ, (D,F , β) 7→ D
is a morphism of functors.

Documenta Mathematica 19 (2014) 209–246



Geometric Satake 215

Lemma 3.4. The Beilinson-Drinfeld Grassmannian Gr = GrG,X associated to
a reductive group G and a smooth curve X is representable by an ind-proper
strict ind-scheme over Σ.

Proof. This is proven in [7, Appendix A.5.]. We sketch the argument. If
G = GLn, consider the functor Gr(m) parametrizing

J ⊂ OnXR
(−m ·D)/OnXR

(m ·D),

where J is a coherent OXR-submodule such that OXR(−m ·D)/J is flat over R.
By the theory of Hilbert schemes, the functor Gr(m) is representable by a proper
scheme over Σ. For m1 < m2, there are closed immersions Gr(m1) →֒ Gr(m2).
Then as fpqc-sheaves

lim−→
m

Gr(m)
≃−→ Gr.

For general reductive G, choose an embedding G →֒ GLn. Then the fppf-
quotient GLn/G is affine, and the natural morphism GrG → GrGLn

is a closed
immersion. The ind-scheme structure of GrG does not depend on the choosen
embedding G →֒ GLn. This proves the lemma.

Now we define a global version of the loop group. For every D ∈ Σ(R), the
formal completion of XR along D is a formal affine scheme. We denote by
ÔX,D its underlying R-algebra. Let D̂ = Spec(ÔX,D) be the associated affine

scheme over R. Then D is a closed subscheme of D̂, and we set D̂o = D̂\D.
The global loop group is the fpqc-sheaf associated with the group functor on
the category of F -algebras

LG : R 7→ {(s,D) | D ∈ Σ(R), s ∈ G(D̂o)}.

The global positive loop group is the fpqc-sheaf associated with the group func-
tor

L+G : R 7→ {(s,D) | D ∈ Σ(R), s ∈ G(D̂)}.
Then L+G ⊂ LG is a subgroup functor over Σ.

Lemma 3.5. (i) The global loop group LG is representable by an ind-group
scheme over Σ. It represents the functor on the category of F -algebras which
assigns to every R the set of isomorphism classes of quadruples (D,F , β, σ),
where D ∈ Σ(R), F is a G-torsor on XR, β : F ≃→ F0 is a trivialisation over

XR\D and σ : F0
≃→ F|D̂ is a trivialisation over D̂.

(ii) The global positive loop group L+G is representable by an affine group
scheme over Σ with geometrically connected fibers.

(iii) The projection LG→ GrG, (D,F , β, σ)→ (D,F , β) is a right L+G-torsor,
and induces an isomorphism of fpqc-sheaves over Σ

LG/L+G ≃−→ GrG.
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Proof. We reduce to the case that X is affine. Note that fppf-locally on R
every D ∈ Σ(R) is of the form V (f). Then the moduli description in (i) follows
from the descent lemma of Beauville-Laszlo [1] (cf. [14, Proposition 3.8]). The
ind-representability follows from part (ii) and (iii). This proves (i).
For any D ∈ Σ(R) denote by D(i) its i-th infinitesimal neighbourhood in XR.
ThenD(i) is finite overR, and the Weil restriction ResD(i)/R(G) is representable
by a smooth affine group scheme with geometrically connected fibers. For
i ≤ j, there are affine transition maps ResD(j)/R(G) → ResD(i)/R(G) with
geometrically connected fibers. Hence, lim←−iResD(i)/R(G) is an affine scheme,
and the canonical map

L+G×Σ,D Spec(R) −→ lim←−
i

ResD(i)/R(G)

is an isomorphism of fpqc-sheaves. This proves (ii).
To prove (iii), the crucial point is that after a faithfully flat extension R→ R′

a G-torsor F on D̂ admits a global section. Indeed, F admits a R′-section
which extends to D̂R′ by smoothness and Grothendieck’s algebraization theo-
rem. This finishes (iii).

Remark 3.6. The connection with the affine Grassmannian GrG is as follows.
Lemma 3.2 identifies X with a connected component of Σ. Choose a point
x ∈ X(F ) considered as an element Dx ∈ Σ(F ). Then D̂x ≃ Spec(F [[t]]),
where t is a local parameter of X in x. Under this identification, there are
isomorphisms of fpqc-sheaves

LGx ≃ LG
L+Gx ≃ L+G

GrG,x ≃ GrG.

Using the theory of Hilbert schemes, the proof of Lemma 3.4 also implies that
GrGLn

, and hence GrG is ind-projective. This proves Lemma 2.1 above.

By Lemma 3.5 (iii), the global positive loop groop L+G acts on Gr from the
left. For D ∈ Σ(R) and (D,F , β) ∈ GrG(R), denote the action by

((g,D), (F , β,D)) 7−→ (gF , gβ,D).

Corollary 3.7. The L+G-orbits on Gr are of finite type and smooth over Σ.

Proof. Let D ∈ Σ(R). It is enough to prove that the action of

L+G×Σ,D Spec(R) ≃ lim←−
i

ResD(i)/R(G)

on Gr ×Σ,D Spec(R) factors over ResD(i)/R(G) for some i >> 0. Choose a
faithful representation ρ : G → GLn, and consider the corresponding closed
immersion GrG → GrGLn

. This reduces us to the case G = GLn. In this case,
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the Gr(m)’s (cf. proof of Lemma 3.4) are L+GLn stable, and it is easy to see
that the action on Gr(m) factors through ResD(2m)/R(GLn). This proves the
corollary.

Now we globalize the convolution morphism m from diagram (3.1) above. The
moduli space Σ of relative effective Cartier divisors has a natural monoid struc-
ture

- ∪ - : Σ× Σ −→ Σ

(D1, D2) 7−→ D1 ∪D2.

The key definition is the following.

Definition 3.8. For k ≥ 1, the k-fold convolution Grassmannian G̃rk is the
functor on the category of F -algebras which associates to every R the set of
isomorphism classes of tuples ((Di,Fi, βi)i=1,...,k) with





Di ∈ Σ(R) relative effective Cartier divisors, i = 1, . . . , k;

Fi are G-torsors on XR;

βi : Fi|XR\Di

≃→ Fi−1|XR\Di
isomorphisms, i = 1, . . . , k,

where F0 is the trivial G-torsor. The projection G̃rk → Σk,
((Di,Fi, βi)i=1,...,k) 7→ ((Di)i=1,...,k) is a morphism of functors.

Lemma 3.9. For k ≥ 1, the k-fold convolution Grassmannian G̃rk is repre-
sentable by a strict ind-scheme which is ind-proper over Σk.

Proof. The lemma follows by induction on k. If k = 1, then G̃rk = Gr. For
k > 1, consider the projection

p : G̃rk −→ G̃rk−1 × Σ

((Di,Fi, βi)i=1,...,k) 7−→ ((Di,Fi, βi)i=1,...,k−1, Dk).

Then the fiber over a R-point ((Di,Fi, βi)i=1,...,k−1, Dk) is

p−1(((Di,Fi, βi)i=1,...,k−1, Dk)) ≃ Fk−1 ×G (Gr ×XR Dk),

which is ind-proper. This proves the lemma.

For k ≥ 1, there is the k-fold global convolution morphism

mk : G̃rk −→ Gr
((Di,Fi, βi)i=1,...,k) 7−→ (D,Fk, β1|XR\D ◦ . . . ◦ βk|XR\D),

where D = D1 ∪ . . . ∪Dk. This yields a commutative diagram of ind-schemes

G̃rk Gr

Σk Σ,

mk

∪
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i.e., regarding G̃rk as a Σ-scheme via Σk → Σ, (Di)i 7→ ∪iDi, the morphismmk

is a morphism of Σ-ind-schemes. The global positive loop group L+G acts on
G̃rk over Σ as follows: let (Di,Fi, βi)i ∈ G̃rk(R) and g ∈ G(D̂) with D = ∪iDi.
Then the action is defined as

((g,D), (Di,Fi, βi)i) 7−→ (Di, gFi, gβig−1)i.

Corollary 3.10. The morphism mk : G̃rk → Gr is a L+G-equivariant mor-
phism of ind-proper strict ind-schemes over Σ.

Proof. The L+G-equivariance is immediate from the definition of the action.

Note that Σk
∪→ Σ is finite, and hence G̃rk is an ind-proper strict ind-scheme

over Σ. This proves the corollary.

Now we explain the global analogue of the L+G-torsors p and q from (3.1). For
k ≥ 1, let L̃Gk be the functor on the category of F -algebras which associates to
every R the set of isomorphism classes of tuples ((Di,Fi, βi)i=1,...,k, (σi)i=2,...,k)
with





Di ∈ Σ(R), i = 1, . . . , k;

Fi are G-torsors on XR;

βi : Fi|XR\Di

≃→ F0|XR\Di
trivialisations, i = 1, . . . , k;

σi : F0|D̂i

≃→ Fi−1|D̂i
, i = 2, . . . , k,

where F0 is the trivial G-torsor. There are two natural projections over Σk.
Let

L+Gk−1
Σ = Σk ×Σk−1 L+Gk−1.

The first projection is given by

pk : L̃Gk −→ Grk
((Di,Fi, βi)i=1,...,k, (σi)i=2,...,k) 7−→ ((Di,Fi, βi)i=1,...,k).

Then pk is a right L+Gk−1
Σ -torsor for the action on the σi’s. The second

projection is given by

qk : L̃Gk −→ G̃rk
((Di,Fi, βi)i=1,...,k, (σi)i=2,...,k) 7−→ ((Di,F ′

i , β
′
i)i=1,...,k),

where F ′
1 = F1 and for i ≥ 2, the G-torsor F ′

i is defined successively by gluing
Fi|XR\Di

to F ′
i−1|D̂i

along σi|D̂o
i
◦ βi|D̂o

i
. Then qk is a right L+Gk−1

Σ -torsor for

the action given by

(((Di,Fi, βi)i≥1, (σi)i≥2),(D1, (Di, gi)i≥2)) 7−→
((D1,F1, β1), (Di, g

−1
i Fi, g−1

i βi)i≥2, (σigi)i≥2).

In the following, we consider ind-schemes over Σk as ind-schemes over Σ via
Σk → Σ.
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Definition 3.11. For every k ≥ 1, the k-fold global convolution diagram is the
diagram of ind-schemes over Σ

Grk pk←− L̃Gk qk−→ G̃rk mk−→ Gr.

Remark 3.12. Fix x ∈ X(F ), and choose a local coordinate t at x. Taking the
fiber over diag({x}) ∈ Xk(F ) in the k-fold global convolution diagram, then

GrkG ←− LGk−1 ×GrG −→ LG×L+G . . .×L+G GrG︸ ︷︷ ︸
k-times

−→ GrG.

For k = 2, we recover diagram (3.1).

3.2 Universal Local Acyclicity

The notion of universal local acyclicity (ULA) is used in Reich’s thesis [19], cf.
also the paper [3] by Braverman and Gaitsgory. We recall the definition. Let S
be a smooth geometrically connected scheme over F , and f : T → S a separated
morphism of finite type. For complexesAT ∈ Db

c(T, Q̄ℓ), AS ∈ Db
c(S, Q̄ℓ), there

is a natural morphism

AT ⊗ f∗AS −→ (AT
!
⊗ f !AS)[2 dim(S)], (3.2)

where A
!
⊗ B def

= D(DA ⊗ DB) for A,B ∈ Db
c(T, Q̄ℓ). The morphism (3.2) is

constructed as follows. Let Γf : T → T × S be the graph of f . The projection
formula gives a map

Γf,!(Γ
∗
f (AT ⊠AS)⊗ Γ!

f Q̄ℓ) ≃ (AT ⊠AS)⊗ Γf,!Γ
!
f Q̄ℓ −→ AT ⊠AS ,

and by adjunction a map Γ∗
f (AT ⊠AS)⊗ Γ!

f Q̄ℓ → Γ!
f (AT ⊠AS). Note that

Γ∗
f (AT ⊠AS) ≃ AT ⊗ f∗AS and Γ!

f (AT ⊠AS) ≃ AT
!
⊗ f !AS ,

using D(AT⊠AS) ≃ DAT⊠DAS . Since S is smooth, Γf is a regular embedding,
and thus Γ!

fQ̄ℓ ≃ Q̄ℓ[−2 dim(S)]. This gives after shifting by [2 dim(S)] the map
(3.2).

Definition 3.13. (i) A complex AT ∈ Db
c(T, Q̄ℓ) is called locally acyclic with

respect to f (f-LA) if (3.2) is an isomorphism for all AS ∈ Db
c(S, Q̄ℓ).

(ii) A complex AT ∈ Db
c(T, Q̄ℓ) is called universally locally acyclic with respect

to f (f -ULA) if f∗
S′AT is fS′-LA for all fS′ = f ×S S′ with S′ → S smooth, S′

geometrically connected.

Remark 3.14. (i) If f is smooth, then the trivial complex AT = Q̄ℓ is f -ULA.
(ii) If S = Spec(F ) is a point, then every complex AT ∈ Db

c(T, Q̄ℓ) is f -ULA.
(iii) The ULA property is local in the smooth topology on T .
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Lemma 3.15. Let g : T → T ′ be a proper morphism of S-schemes of finite type.
For every ULA complex AT ∈ Db

c(T, Q̄ℓ), the push forward g∗AT is ULA.

Proof. For any morphism of finite type g : T → T ′ and any two complexes AT ,
AT ′ , we have the projection formulas

g!(AT ⊗g∗AT ′ ) ≃ g!AT ⊗AT ′ and g∗(AT
!
⊗ g!AT ′) ≃ g∗AT

!
⊗ AT ′ .

If g is proper, then g∗ = g!, and the lemma follows from an application of the
projection formulas and proper base change.

Theorem 3.16 ([19]). Let D ⊂ S be a smooth Cartier divisor, and consider a
cartesian diagram of morphisms of finite type

E T U

D S S\D.

i

f

j

Let A be a f -ULA complex on T such that A|U is perverse. Then:
(i) There is a functorial isomorphism

i∗[−1]A ≃ i![1]A,

and both complexes i∗[−1]A, i![1]A are perverse. Furthermore, the complex A
is perverse and is the middle perverse extension A ≃ j!∗(A|U ).
(ii) The complex i∗[−1]A is f |E-ULA.

2

Remark 3.17. The proof of Theorem 3.16 uses Beilinson’s construction of the
unipotent part of the tame nearby cycles as follows. Suppose the Cartier divisor
D is principal, this gives a morphism ϕ : S → A1

F such that ϕ−1({0}) = S\D.
Let g = ϕ ◦ f be the composition. Fix a separable closure F̄ of F . In SGA
VII, Deligne constructs the nearby cycles functor ψ = ψg : P (U) → P (EF̄ ).
Let ψtame be the tame nearby cycles, i.e. the invariants under the pro-p-part
of π1(Gm,F̄ , 1). Fix a topological generator T of the maximal prime-p-quotient
of π1(Gm,F̄ , 1). Then T acts on ψtame, and there is an exact triangle

ψtame
T−1−→ ψtame −→ i∗j∗

+1−→

Under the action of T − 1 the nearby cycles decompose as ψtame ≃ ψu
tame ⊕

ψnu
tame, where T − 1 acts nilpotently on ψu

tame and invertibly on ψun
tame. Let N :

ψtame → ψtame(−1) be the logarithm of T , i.e. the unique nilpotent operator
N such that T = exp(T̄N) where T̄ is the image of T under π1(Gm,F̄ , 1) ։
Zℓ(1). Then for any a ≥ 0, Beilinson constructs a local system La on Gm
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together with a nilpotent operator Na such that for AU ∈ P (U) and a ≥ 0
with Na+1(ψu

tame(AU )) = 0 there is an isomorphism

(ψu
tame(AU ), N) ≃ (i∗[−1]j!∗(AU ⊗ g∗La)F̄ , 1⊗Na).

Set Ψu
g(AU )

def
= lima→∞ i∗[−1]j!∗(AU ⊗ g∗La). Then Ψu

g : P (U) → P (E) is
a functor, and we obtain that N acts trivially on ψu

tame(AU ) if and only if
Ψu
g(AU ) = i∗[−1]j!∗(AU ). In this case, Ψug is also defined for non-principal

Cartier divisors by the formula Ψug = i∗[−1] ◦ j!∗.
In the situation of Theorem 3.16 above Reich shows that the unipotent mon-
odromy along E is trivial, and consequently

i∗[−1]A ≃ Ψug ◦ j∗(A) ≃ i![1]A.

.

Corollary 3.18 ([19]). Let A be a perverse sheaf on S whose support contains
an open subset of S. Then the following are equivalent:
(i) The perverse sheaf A is ULA with respect to the identity id : S → S.
(ii) The complex A[− dim(S)] is a locally constant system, i.e. a lisse sheaf.

2

We use the universal local acyclicity to show the perversity of certain complexes
on the Beilinson-Drinfeld Grassmannian. For every finite index set I, there is
the quotient map XI → Σ onto a connected component of Σ. Set

GrI def
= Gr ×Σ X

I .

If I = {∗} has cardinality 1, we write GrX = GrI .
Remark 3.19. Let X = A1

F with global coordinate t. Then Ga acts on X via
translations. We construct a Ga-action on Gr as follows. For every x ∈ Ga(R),
let ax be the associated automorphism of XR. If D ∈ Σ(R), then we get an
isomorphism a−x : axD → D. Let (D,F , β) ∈ GrG(R). Then the Ga-action on
GrG → Σ is given as

(D,F , β) 7−→ (a∗−xF , a∗−xβ, axD).

Let Ga act diagonally on XI , then the structure morphism GrI → XI is Ga-
equivariant. If |I| = 1, then by the transitivity of the Ga-action on X , we
get GrX = GrG × X . Let p : GrX → GrG be the projection. Then for every
perverse sheaf A on GrG, the complex p∗[1]A is a ULA perverse sheaf on GrX
by Remark 3.14 (ii) and the smoothness of p.

Now fix a finite index set I of cardinality k ≥ 1. Consider the base change
along XI → Σ of the k-fold convolution diagram from Definition 3.11,

∏

i∈I

GrX,i pI←− L̃GI qI−→ G̃rI mI−→ GrI . (3.3)
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Now choose a total order I = {1, . . . , k}, and set Io = I\{1}. Then pI (resp.
qI) is a L+GoI -torsor, where L+GoI = XI ×XIo L+GIo .
Let L+GX = L+G ×Σ X , and denote by PL+GX

(GrX )ULA the category of
L+GX -equivariant ULA perverse sheaves on GrX . For any i ∈ I, let AX,i ∈
P (GrX)ULA such that AX,i are L+GX -equivariant for i ≥ 2. We have the∏
i≥2 L+GX,i-equivariant ULA perverse sheaf ⊠i∈IAX,i on

∏
i∈I GrX,i.

Lemma 3.20. There is a unique ULA perverse sheaf ⊠̃i∈IAX,i on G̃rI such that
there is a qI-equivariant isomorphism2

q∗I (⊠̃i∈IAX,i) ≃ p∗I(⊠i∈IAX,i),

where qI-equivariant means with respect to the action on the L+GoI -torsor
qI : L̃GI → G̃rI . If AX,1 is also L+GX -equivariant, then ⊠̃i∈IAX,i is L+GI-
equivariant

Remark 3.21. The ind-scheme L̃GI is not of ind-finite type. We explain how
the pullback functors p∗I , q

∗
I should be understood. Let Y1, . . . , Yk be L+G-

equivariant closed subschemes of GrX containing the supports of A1, . . . ,Ak .
Choose N >> 0 such that the action of L+GX on each Y1, . . . , Yk factors over
the smooth affine group scheme HN = ResD(N)/X(G), where D(N) is the N -th
infinitesimal neighbourhoud of the universal Cartier divisor D over X . Let
KN = ker(L+GX → HN ), and Y = Y1 × . . . Yk. Then the left KN -action on
each Yi is trivial, and hence the restriction of the pI -action resp. qI -action on
p−1
I (Y ) to

∏
i≥2KN agree. Let hN : p−1

I (Y )→ YN be the resulting
∏
i≥2KN -

torsor. By Lemma A.4 below, we get a factorization

p−1
I (Y )

Y YN qI(p
−1
I (Y )),

pI
hN

qI

pI,N qI,N

where pI,N , qI,N are
∏
i≥2HN -torsors. In particular, YN is a separated scheme

of finite type, and we can replace p∗I (resp. q∗I ) by p
∗
I,N (resp. q∗I,N ).

Proof of Lemma 3.20. We use the notation from Remark 3.21 above. The
sheaf p∗I;N (⊠i∈IAX,i) is

∏
i≥2HN -equivariant for the qI,N -action. Using de-

scent along smooth torsors (cf. Lemma A.2 below), we get the perverse

sheaf ⊠̃i∈IAX,i, which is ULA. Indeed, p∗I;N(⊠i∈IAX,i) is ULA, and the
ULA property is local in the smooth topology. Since the diagram (3.3) is

L+GI -equivariant, the sheaf ⊠̃i∈IAX,i is L+GI -equivariant, if AX,1 is L+GX -
equivariant. This proves the lemma.

2See Remark 3.21 below.
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Let UI be the open locus of pairwise distinct coordinates in XI . There is a
cartesian diagram

GrI (GrIX )|UI

XI UI .

jI

Proposition 3.22. The complex mI,∗(⊠̃i∈IAX,i) is a ULA perverse sheaf on
GrI , and there is a unique isomorphism of perverse sheaves

mI,∗(⊠̃i∈IAX,i) ≃ jI,!∗(⊠i∈IAX,i|UI ),

which is L+GI-equivariant, if AX,1 is L+GX-equivariant.

Proof. The sheaf ⊠̃i∈IAX,i is by Lemma 3.20 a ULA perverse sheaf on G̃rI .
Now the restriction of the global convolution morphism mI to the support of
⊠̃i∈IAX,i is a proper morphism, and hence mI,∗(⊠̃i∈IAX,i) is a ULA complex

by Lemma 3.15. Then mI,∗(⊠̃i∈IAX,i) ≃ j!∗((⊠i∈IAX,i)|UI ), as follows from
Theorem 3.16 (i) and the formula u!∗ ◦ v!∗ ≃ (u ◦ v)!∗ for open immersions

V
v→֒ U

u→֒ T , because mI |UI is an isomorphism. In particular, mI,∗(⊠̃i∈IAX,i)
is perverse. Since mI is L+GI -equivariant, it follows from proper base change
that mI,∗(⊠̃i∈IAX,i) is L+GI -equivariant, if AX,1 is L+GX -equivariant. This
proves the proposition.

3.3 The Symmetric Monoidal Structure

First we equip PL+GX
(GrX )ULA with a symmetric monoidal structure B which

allows us later to define a symmetric monoidal structure with respect to the
usual convolution (3.1) of L+G-equivariant perverse sheaves on GrG.
Fix I, and let UI be the open locus of pairwise distinct coordinates in XI .
Then the diagram

GrX GrI (GrIX)|UI

X XI UI .

iI

diag

jI

(3.4)

is cartesian.

Definition 3.23. Fix some total order on I. For every tuple (AX,i)i∈I with
AX,i ∈ P (GrX)ULA for i ∈ I, the I-fold fusion product Bi∈IAX,i is the complex

Bi∈IAX,i def
= i∗I [−k + 1]jI,!∗((⊠i∈IAX,i)|UI ) ∈ Db

c(GrX , Q̄ℓ),

where k = |I|.
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Now let π : I → J be a surjection of finite index sets. For j ∈ J , let Ij = π−1(j),
and denote by Uπ the open locus inXI such that the Ij-coordinates are pairwise
distinct from the Ij′ -coordinates for j 6= j′. Then the diagram

GrJ GrI (
∏
j GrIj )|Uπ

XJ XI Uπ,

iπ jπ

(3.5)

is cartesian. The following theorem combined with Proposition 3.22 is the key
to the symmetric monoidal structure:

Theorem 3.24. Let I be a finite index set, and let AX,i ∈ PL+GX
(GrX)ULA for

i ∈ I. Let π : I → J be a surjection of finite index sets, and set kπ = |I| − |J |.
(i) As complexes

i∗π[−kπ]jI,!∗((⊠i∈IAX,i)|UI ) ≃ i!π[kπ ]jI,!∗((⊠i∈IAX,i)|UI ),

and both are L+GJ -equivariant ULA perverse sheaves on GrJ . Hence,
Bi∈IAX,i ∈ PL+GX

(GrX )ULA.
(ii) There is an associativity and a commutativity constraint for the fusion
product such that there is a canonical isomorphism

Bi∈IAX,i ≃ Bj∈J (Bi∈IjAX,i),

where Ij = π−1(j) for j ∈ J . In particular, (PL+GX
(GrX)ULA,B) is symmetric

monoidal.

Proof. Factor π as a chain of surjective maps I = I1 → I2 → . . . → Ikπ = J
with |Ii+1| = |Ii|+ 1, and consider the corresponding chain of smooth Cartier
divisors

XJ = XIkπ −→ . . . −→ XI2 −→ XI1 = XI .

By Proposition 3.22, the complex jI,!∗((⊠i∈IAX,i)|UI ) is ULA. Then part (i)
follows inductively from Theorem 3.16 (i) and (ii). This shows (i).
Let τ : I → I be a bijection. Then τ acts on XI by permutation of coordinates,
and diagram (3.4) becomes equivariant for this action. Then

τ∗jI,!∗((⊠i∈IAX,i)|UI ) ≃ jI,!∗((⊠i∈IAX,τ−1(i))|UI ).

Since the action on diag(X) ⊂ XI is trivial, we obtain

i∗IjI,!∗((⊠i∈IAX,i)|UI ) ≃ i∗Iτ
∗jI,!∗((⊠i∈IAX,i)|UI )

≃ i∗IjI,!∗((⊠i∈IAX,τ−1(i))|UI ),

and hence Bi∈IAX,i ≃ Bi∈IAX,τ−1(i). It remains to give the isomorphism
defining the symmetric monoidal structure. Since jI = jπ ◦

∏
j jIj , diagram

(3.5) gives

(jI,!∗((⊠i∈IAX,i)|UI ))|Uπ ≃ ⊠j∈J jIj ,!∗((⊠i∈IjAX,i)|UIj
).
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Applying (iπ|Uπ)
∗[kπ] and using that Uπ ∩XJ = UJ , we obtain

(i∗π[kπ]jI,!∗((⊠i∈IAX,i)|UI ))|UJ ≃ ⊠j∈J(Bi∈IjAX,i).

But by (i), the perverse sheaf i∗π[kπ]jI,!∗((⊠i∈IAX,i)|UI ) is ULA, thus

i∗π[kπ]jI,!∗((⊠i∈IAX,i)|UI ) ≃ jJ,!∗((⊠j∈J (Bi∈IjAX,i))|UJ ),

and restriction along the diagonal in XJ gives the isomorphism Bi∈IAX,i ≃
Bj∈J (Bi∈IjAX,i). This proves (ii).

Example 3.25. Let G = {e} be the trivial group. Then GrX = X . Let Loc(X)
be the category of ℓ-adic local systems on X . Using Corollary 3.18, we obtain
an equivalence of symmetric monoidal categories

H0 ◦ [−1] : (P (X)ULA,B)
≃−→ (Loc(X),⊗),

where Loc(X) is endowed with the usual symmetric monoidal structure with
respect to the tensor product ⊗.

Corollary 3.26. Let Db
c(X, Q̄ℓ)

ULA be the category of ULA complexes on X.
Denote by f : GrX → X the structure morphism. Then the functor

f∗[−1] : (P (GrX)ULA,B) −→ (Db
c(X, Q̄ℓ),⊗)

is symmetric monoidal.

Proof. If AX ∈ P (GrX )ULA, then f∗AX ∈ Db
c(X, Q̄ℓ)

ULA by Lemma 3.15 and
the ind-properness of f . Now apply f∗ to the isomorphism in Theorem 3.24 (ii)
defining the symmetric monoidal structure on P (GrX)ULA. Then by proper base
change and going backwards through the arguments in the proof of Theorem
3.24 (ii), we get that f∗[−1] is symmetric monoidal.

Corollary 3.27. Let X = A1
F . Let p : GrX → GrG be the projection, cf.

Remark 3.19.
(i) The functor

p∗[1] : PL+G(GrG) −→ PL+GX
(GrX)ULA

embeds PL+G(GrG) as a full subcategory and is an equivalence of categories
with the subcategory of Ga-equivariant objects in PL+GX

(GrX)ULA.
(ii) For every I and Ai ∈ PL+G(GrG), i ∈ I, there is a canonical L+GX-
equivariant isomorphism

p∗[1](⋆i∈IAi) ≃ Bi∈I(p
∗[1]Ai),

where the product is taken with respect to some total order on I.

Documenta Mathematica 19 (2014) 209–246



226 T. Richarz

Proof. Under the simply transitive action of Ga on X , the isomorphism
GrX ≃ GrG × X is compatible with the action of L+G under the zero sec-
tion L+G →֒ L+GX . By Lemma 3.19, the complex p∗[1]A is a ULA perverse
sheaf on GrX . It is obvious that the functor p∗[1] is fully faithful. Denote
by i0 : GrG → GrX the zero section. If AX on GrX is Ga-equivariant, then
AX ≃ p∗[1]i∗0[−1]AX . This proves (i).
By Remark 3.12, the fiber over diag({0}) ∈ XI(F ) of (3.3) is the usual convo-
lution diagram (3.1). Hence, by proper base change,

i∗0[−1](Bi∈Ip∗[1]Ai) ≃ ⋆i∈I i
∗
0[−1]p∗[1]Ai ≃ ⋆i∈IAi.

Since Bi∈Ip
∗[1]Ai is Ga-equivariant, this proves (ii).

Now we are prepared for the proof of Theorem 3.1.

Proof of Theorem 3.1. Let X = A1
F . For every A1,A2 ∈ P (GrG) with A2 be-

ing L+G-equivariant, we have to prove that A1 ⋆A2 ∈ P (GrG). By Theorem
3.24 (i), the B-convolution is perverse. Then the perversity of A1 ⋆A2 follows
from Corollary 3.27 (ii). Again by Corollary 3.27 (ii), the convolution A1 ⋆A2

is L+G-equivariant, if A1 is L+G-equivariant. This proves (i).
We have to equip (PL+G(GrG), ⋆) with a symmetric monoidal structure.
By Corollary 3.27, the tuple (PL+G(GrG), ⋆) is a full subcategory of
(PL+GX

(GrX)ULA,B), and the latter is symmetric monoidal by Theorem 3.24
(ii), hence so is (PL+G(GrG), ⋆). Since taking cohomology is only graded com-
mutative, we need to modify the commutativity constraint of (PL+G(GrG), ⋆)
by a sign as follows. Let F̄ be a separable closure of F . The L+GF̄ -orbits
in one connected component of GrG,F̄ are all either even or odd dimensional.
Because the Galois action on GrG,F̄ commutes with the L+GF̄ -action, the
connected components of GrG are divided into those of even or odd parity.
Consider the corresponding Z/2-grading on PL+G(GrG) given by the parity of
the connected components of GrG. Then we equip (PL+G(GrG), ⋆) with the su-
per commutativity constraint with respect to this Z/2-grading, i.e. if A (resp.
B) is an L+G-equivariant perverse sheaf supported on a connected component
XA (resp. XB) of GrG, then the modified commutativity constraint differs by
the sign (−1)p(XA)p(XB), where p(X) ∈ Z/2 denotes the parity of a connected
component X of GrG.
Now consider the global cohomology functor

ω(-) =
⊕

i∈Z

RiΓ(GrG,F̄ , (-)F̄ ) : PL+G(GrG) −→ VecQ̄ℓ
.

Let f : GrX → X be the structure morphism. Then the diagram

PL+GX,F̄
(GrX,F̄ )ULA Db

c(XF̄ , Q̄ℓ)

PL+G(GrG) VecQ̄ℓ

f∗[−1]

p∗[1] ◦ (-)F̄
ω

⊕i∈ZHi ◦ i∗0
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is commutative up to natural isomorphism. Now if A is a perverse sheaf sup-
ported on a connected component X of GrG, then by a theorem of Lusztig [12,
Theorem 11c],

RiΓ(GrG,F̄ ,AF̄ ) = 0, i 6≡ p(X) (mod 2),

where p(X) ∈ Z/2 denotes the parity of X . Hence, Corollary 3.26 shows that
ω is symmetric monoidal with respect to the super commutativity constraint
on PL+G(GrG). To prove uniqueness of the symmetric monoidal structure, it is
enough to prove that ω is faithful, which follows from Lemma 4.4 below. This
proves (ii).

4 The Tannakian Structure

In this section we assume that F = F̄ is separably closed. Let X∨
+ be a set of

representatives of the L+G-orbits on GrG. For µ ∈ X∨
+ we denote by Oµ the

corresponding L+G-orbit, and byOµ its reduced closure with open embeddding
jµ : Oµ →֒ Oµ. We equip X∨

+ with the partial order defined as follows: for

every λ, µ ∈ X∨
+, we define λ ≤ µ if and only if Oλ ⊂ Oµ.

Proposition 4.1. The category PL+G(GrG) is semisimple with simple objects
the intersection complexes

ICµ = jµ!∗Q̄ℓ[dim(Oµ)], for µ ∈ X∨
+.

In particular, if pjµ∗ (resp. pjµ! ) denotes the perverse push forward (resp. per-
verse extension by zero), then jµ!∗ ≃ pjµ! ≃ pjµ∗ .

Proof. For any µ ∈ X∨
+, the étale fundamental group πét

1 (Oµ) is trivial. Indeed,
since Oµ\Oµ is of codimension at least 2 in Oµ, Grothendieck’s purity theorem
implies that πét

1 (Oµ) = πét
1 (Oµ). The latter group is trivial by [SGA1, XI.1

Corollaire 1.2], because Oλ is normal (cf. [6]), projective and rational. This
shows the claim.
Since by [17, Lemme 2.3] the stabilizers of the L+G-action are connected, any
L+G-equivariant irreducible local system supported on Oµ is isomorphic to the
constant sheaf Q̄ℓ. Hence, the simple objects in PL+G(GrG) are the intersection
complexes ICµ for µ ∈ X∨

+.
To show semisimplicity of the Satake category, it is enough to prove

Ext1P (GrG)(ICλ, ICµ) = HomDb
c(GrG)(ICλ, ICµ[1])

!
= 0.

We distinguish several cases:

Case (i): λ = µ.

Let Oµ j→ Oµ i← Oµ\Oµ, and consider the exact sequence of abelian groups

Hom(ICµ, i!i
!ICµ[1]) −→ Hom(ICµ, ICµ[1]) −→ Hom(ICµ, j∗j

∗ICµ[1]) (4.1)
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associated to the distinguished triangle i!i
!ICµ → ICµ → j∗j

∗ICµ. We show
that the outer groups in (4.1) are trivial. Indeed, the last group is trivial, since
j∗ICµ = Q̄ℓ[dim(Oµ)] gives

Hom(ICµ, j∗j
∗ICµ[1]) = Hom(j∗ICµ, j

∗ICµ[1]) = Ext1(Q̄ℓ, Q̄ℓ).

And Ext1(Q̄ℓ, Q̄ℓ) = H1
ét(Oµ, Q̄ℓ) = 0, because Oµ is simply connected. To

show that the first group

Hom(ICµ, i!i
!ICµ[1]) = Hom(i∗ICµ, i

!ICµ[1])

is trivial, note that i∗ICµ lives in perverse degrees ≤ −1 because the 0th per-
verse cohomology vanishes, since ICµ is a middle perverse extension along j.
Hence, the Verdier dual D(i∗ICµ)[1] = i!ICµ[1] lives in perverse degrees ≥ 0.
This proves case (i).

Case (ii): λ 6= µ and either λ ≤ µ or µ ≤ λ.
If λ ≤ µ, let i : Oλ →֒ Oµ be the closed embedding. Then

Hom(i∗ICλ, ICµ[1]) = Hom(ICλ, i
!ICµ[1]),

and this vanishes, since i!ICµ[1] lives in perverse degrees ≥ 1 or equivalently,
the Verdier dual D(i!ICµ) = i∗ICµ lives in perverse degrees ≤ −2. Indeed,
by a theorem of Lusztig [12, Theorem 11c], i∗ICµ is concentrated in even per-
verse degrees, and the 0th perverse cohomology vanishes, since ICµ is a middle
perverse extension. If µ ≤ λ, let i : Oµ →֒ Oλ the closed embedding. Then

Hom(ICλ, i∗ICµ[1]) = Hom(i∗ICλ, ICµ[1])

vanishes, since i∗ICλ lives in perverse degrees ≤ −2 as before. This proves case
(ii).

Case (iii): λ 6≤ µ and µ 6≤ λ.
We may assume that λ and µ are contained in the same connected component
of GrG. Choose some ν ∈ X∨

+ with λ, µ ≤ ν. Consider the cartesian diagram

Oλ ×Oν
Oµ Oµ

Oλ Oν .

ι1

i1

ι2 i2

Then adjunction gives

Hom(i1,∗ICλ, i2,∗ICµ[1]) = Hom(i∗2i1,∗ICλ, ICµ[1]), (4.2)

and i∗2i1,∗ICλ ≃ ι1,∗ι
∗
2ICλ by proper base change. Hence (4.2) equals

Hom(ι∗2ICλ, ι
!
1ICµ[1]) which vanishes. This proves case (iii), hence the propo-

sition.
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The affine group scheme L+Gm acts on GrG as follows. For x ∈ L+Gm(R),
denote by vx the automorphism of Spec(R[[t]]) induced by multiplication with
x. If F is a G-torsor over Spec(R[[t]]), we denote by v∗xF the pullback of F
along vx. Let (F , β) ∈ GrG(R). Then the action of L+Gm on GrG is given by

(F , β) 7−→ (v∗x−1F , v∗x−1β),

and is called the Virasoro action.
Note that every L+G-orbit in GrG is stable under L+Gm. The semidirect
product L+G⋊L+Gm acts on GrG, and the action on each orbit factors through
a smooth connected affine group scheme. Hence, we may consider the category
PL+G⋊L+Gm

(GrG) of L
+G⋊ L+Gm-equivariant perverse sheaves on GrG.

Corollary 4.2. The forgetful functor

PL+G⋊L+Gm
(GrG) −→ PL+G(GrG)

is an equivalence of categories. In particular, the category PL+G(GrG) does not
depend on the choice of the parameter t.

Proof. By Proposition 4.1 above, every L+G-equivariant perverse sheaf is a
direct sum of intersection complexes, and these are L+Gm-equivariant.

Remark 4.3. If X = A1
F is the base curve, then the global affine Grassmannian

GrX splits as GrX ≃ GrG ×X . Corollary 4.2 shows that we can work over an
arbitrary curveX as follows. Let X be the functor on the category of F -algebras
R parametrizing tuples (x, s) with

{
x ∈ X(R) is a point;

s is a continuous isomorphism of R-modules ÔXR,x
≃→ R[[t]],

where ÔXR,x is the completion of the R-module OXR,x along the maximal
ideal mx at x. The affine group scheme L+Gm operates from left on X by
(g, (x, s)) 7→ (x, gs). The projection p : X → X ,(x, s) 7→ x gives X the structure

of a L+Gm-torsor. Then GrX ≃ GrG×L
+GmX , and we get a diagram of L+Gm-

torsors

GrG ×X

GrG ×X GrX .

p q

For any A ∈ PL+G(GrG), the perverse sheaf A⊠ Q̄ℓ[1] on GrG ×X is L+Gm-
equivariant by Corollary 4.2. Hence, p∗(A ⊠ Q̄ℓ[1]) descends along q to a

perverse sheaf A⊠̃Q̄ℓ[1] on GrX .

We are going to define a fiber functor on PL+G(GrG). Denote by

ω(-) =
⊕

i∈Z

RiΓ(GrG, -) : PL+G(GrG) → VecQ̄ℓ
(4.3)
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the cohomology functor with values in the category of finite dimensional Q̄ℓ-
vector spaces.

Lemma 4.4. The functor ω : PL+G(GrG)→ VecQ̄ℓ
is additive, exact and faith-

ful.

Proof. Additivity is immediate. Exactness follows from Proposition 4.1, since
every exact sequence splits, and ω is additive. To show faithfulness, it is enough,
again by Proposition 4.1, to show that the intersection cohomology of the Schu-
bert varieties is non-zero. Indeed, we claim that the intersection cohomology
of any projective variety T is non-zero. Embedding T into projective space
and projecting down on hyperplanes, we obtain a generically finite morphism
π : T → Pn. Using the decomposition theorem, we see that the intersection
complex of Pn appears as a direct summand in π∗ICT . Hence, the intersection
cohomology of T is non-zero. This proves the lemma.

Corollary 4.5. The tuple (PL+G(GrG), ⋆) is a neutralized Tannakian category
with fiber functor ω : PL+G(GrG)→ VecQ̄ℓ

.

Proof. We check the criterion in [5, Prop. 1.20]:
The category (PL+G(GrG), ⋆) is abelian Q̄ℓ-linear (cf. Appendix A below) and
by Theorem 3.1 (ii) above symmetric monoidal. To prove that ω is a fiber func-
tor, we must show that ω is an additive exact faithful tensor functor. Lemma
4.4 shows that ω is additive exact and faithful, and Theorem 3.1 (ii) shows that
ω is symmetric monoidal.
It remains to show that (PL+G(GrG), ⋆) has a unit object and that any one
dimensional object has an inverse. The unit object is the constant sheaf
IC0 = Q̄ℓ concentrated in the base point e0. We have End(IC0) = Q̄ℓ, and
dim(ω(IC0)) = 1. Now, let A ∈ PL+G(GrG) with dim(ω(A)) = 1. Then A is
supported on a L+G-invariant closed point z0 ∈ GrG. There exists z in the
center of LG such that z · z0 = e0 is the basepoint. If z′0 = z · e0, then the
intersection cohomology complex A′ supported on z′0 satisfies A ⋆ A′ = IC0.
This shows the corollary.

5 The Geometric Satake Equivalence

In this section we assume that F = F̄ is separably closed. Denote by
H = Aut⋆(ω) the affine Q̄ℓ-group scheme of tensor automorphisms defined
by Corollary 4.5.

Theorem 5.1. The group scheme H is a connected reductive group over Q̄ℓ
which is dual to G in the sense of Langlands, i.e. if we denote by Ĝ the
Langlands dual group with respect to some pinning of G, then there exists an
isomorphism H ≃ Ĝ determined uniquely up to inner automorphisms.

We fix some notation. Let T be a maximal split torus of G and B a Borel
subgroup containing T with unipotent radical U . We denote by 〈-, -〉 the natural
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pairing between X = Hom(T,Gm) and X∨ = Hom(Gm, T ). Let R ⊂ X
be the root system associated to (G, T ), and R+ be the set of positive roots
corresponding to B. Let R∨ ⊂ X∨ the dual root system with the bijection
R→ R∨, α 7→ α∨. Denote by R∨

+ the set of positive coroots. Let W the Weyl
group of (G, T ). Consider the half sum of all positive roots

ρ =
1

2

∑

α∈R+

α.

Let Q∨ (resp. Q∨
+) the subgroup (resp. submonoid) of X∨ generated by R∨

(resp. R∨
+). We denote by

X∨
+ = {µ ∈ X∨ | 〈α, µ〉 ≥ 0, ∀α ∈ R+}

the cone of dominant cocharacters with the partial order on X∨ defined as
follows: λ ≤ µ if and only if µ− λ ∈ Q∨

+.
Note that (X∨

+,≤) identifies with the partially ordered set of orbit representa-
tives in Section 4 as follows: for every µ ∈ X∨

+, let t
µ the corresponding element

in LT (F ), and denote by e0 ∈ GrG the base point. Then µ 7→ tµ · e0 gives the
bijection of partial ordered sets, i.e. the orbit closures satisfy

Oµ =
∐

λ≤µ

Oλ, (Cartan stratification)

where Oλ denotes the L+G-orbit of tλ · e0 (cf. [17, §2]).
For every ν ∈ X∨, consider the LU -orbit Sν = LU · tνe0 inside GrG (cf. [17,
§3]). Then Sν is a locally closed ind-subscheme of GrG, and for every µ ∈ X∨

+,
there is a locally closed stratification

Oµ =
∐

ν∈X∨

Sν ∩ Oµ. (Iwasawa stratification)

For µ ∈ X∨
+, let

Ω(µ)
def
= {ν ∈ X∨ | wν ≤ µ, ∀w ∈ W}.

Proposition 5.2. For every ν ∈ X∨ and µ ∈ X∨
+ the stratum Sν ∩ Oµ is

non-empty if and only if ν ∈ Ω(µ), and in this case it is pure of dimension
〈ρ, µ+ ν〉.
Proof. The schemes G, B, T and all the associated data are already defined
over a finitely generated Z-algebra. By generic flatness, we reduce to the case
where F = Fq is a finite field. The proposition is proven in [8, Proof of Lemma
2.17.4], which relies on [17, Theorem 3.1].

For every sequence µ• = (µ1, . . . , µk) of dominant cocharacters, consider the
projective variety over F

Oµ•

def
= p−1(Oµ1)×L

+G . . .×L+G p−1(Oµk−1
)×L+G Oµk

,
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inside LG×L+G . . .×L+GGrG, where p : LG→ GrG denotes the quotient map.
The quotient exists, by the ind-properness of GrG and Lemma A.4 below.
Now let |µ•| = µ1 + . . .+ µk. Then the restriction mµ•

= m|Oµ•
of the k-fold

convolution morphism factors as

mµ•
: Oµ•

−→ O|µ•|,

and is an isomorphism over O|µ•| ⊂ O|µ•|.

Corollary 5.3. For every λ ∈ X∨
+ with λ ≤ |µ•| and x ∈ Oλ(F ), one has

dim(m−1
µ•

(x)) ≤ 〈ρ, |µ•| − λ〉,

i.e. the convolution morphism is semismall.

Proof. The proof of [17, Lemme 9.3] carries over word by word, and we obtain
that dim(m−1

µ•
(Oλ)) ≤ 〈ρ, |µ•| + λ〉. Since mµ•

is L+G-equivariant and
dim(Oλ) = 〈2ρ, λ〉, the corollary follows.

The convolution ICµ1 ⋆ . . . ⋆ ICµn is a L+G-equivariant perverse sheaf, and by
Proposition 4.1, we can write

ICµ1 ⋆ . . . ⋆ ICµn ≃
⊕

λ≤|µ•|

V λµ•
⊗ ICλ, (5.1)

where V λµ•
are finite dimensional Q̄ℓ-vector spaces.

Lemma 5.4. For every λ ∈ X∨
+ with λ ≤ |µ•| and x ∈ Oλ(F ), the vector space

V λµ•
has a canonical basis indexed by the irreducible components of m−1

µ•
(x) of

exact dimension 〈ρ, |µ•| − λ〉.

Proof. We follow the argument in Haines [9]. We claim that ICµ•
=

ICµ1⊠̃ . . . ⊠̃ ICµk
is the intersection complex on Oµ•

. Indeed, this can be
checked locally in the smooth topology, and then easily follows from the
definitions. Hence, the left hand side of (5.1) is equal to mµ•,∗(ICµ•

). If
d = − dim(Oλ), then taking the d-th stalk cohomology at x in (5.1) gives by
proper base change

RdΓ(m−1
µ•

(x), ICµ•
) ≃ V λµ•

.

Since mµ•
: Oµ•

→ O|µ•| is semismall, the cohomology RdΓ(m−1
µ•

(x), ICµ•
)

admits by [9, Lemma 3.2] a canonical basis indexed by the top dimensional
irreducible components. This proves the lemma.

In the following, we consider Oµ•
as a closed projective subvariety of

Oµ1 ×Oµ1+µ2 × . . .×Oµ1+...+µk
,

via (g1, . . . , gk) 7→ (g1, g1g2, . . . , g1 . . . gk). The lemma below is the geometric
analogue of the PRV-conjecture.
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Lemma 5.5. For every λ ∈ X∨
+ of the form λ = ν1 + . . . + νk with νi ∈

Wµi for i = 1, . . . , k, the perverse sheaf ICλ appears as a direct summand in
ICµ1 ⋆ . . . ⋆ ICµk

.

Proof. Let ν = w(ν2+ . . .+νk) be the unique dominant element in theW -orbit
of ν2 + . . . + νk. Then λ = ν1 + w−1ν. Hence, by induction, we may assume
k = 2. By Lemma 5.4, it is enough to show that there exists x ∈ Oλ(F ) such
that m−1

µ•
(x) is of exact dimension 〈ρ, |µ•| − λ〉.

Let w ∈ W such that wν1 is dominant, and consider wλ = wν1 + wν2. We
denote by Swν• ∩ Oµ•

the intersection inside Oµ1 ×Oµ1+µ2

Swν• ∩ Oµ•

def
= (Swν1 × Swν1+wν2) ∩ Oµ•

.

The convolution is then given by projection on the second factor. By [17,
Lemme 9.1], we have a canonical isomorphism

Swν• ∩ Oµ•
≃ (Swν1 ∩Oµ1)× (Swν2 ∩ Oµ2).

Let y = (y1, y2) in (Swν• ∩ Oµ•
)(F ). Since for i = 1, 2 the elements wνi are

conjugate under W to µi, there exist by [17, Lemme 5.2] elements u1, u2 ∈
L+U(F ) such that

y1 = u1t
wν1 · e0

y2 = u1t
wν1u2t

wν2 · e0.

The dominance of wν1 implies twν1u2t
−wν1 ∈ L+U(F ), and hence Y = Swν• ∩

Oµ•
maps under the convolution morphism onto an open dense subset Y ′ in

Swλ∩Oλ. Denote by h = mµ•
|Y the restriction to Y . Both Y , Y ′ are irreducible

schemes (their reduced loci are isomorphic to affine space), thus by generic
flatness, there exists x ∈ Y ′(F ) such that

dim(h−1(x)) = dim(Y )−dim(Y ′) = 〈ρ, |µ•|+wλ〉− 〈ρ, λ+wλ〉 = 〈ρ, |µ•|−λ〉.

In particular, dim(m−1
µ•

(x)) ≥ 〈ρ, |µ•| − λ〉, and hence equality by Corollary
5.3.

For the proof of Theorem 5.1, we introduce a weaker partial order � on X∨
+

defined as follows: λ � µ if and only if µ−λ ∈ R+Q
∨
+. Then λ ≤ µ if and only

if λ � µ and their images in X∨/Q∨ coincide (cf. Lemma B.2 below).

Proof of Theorem 5.1. We proceed in several steps:

(1) The affine group scheme H is of finite type over Q̄ℓ.

By [5, Proposition 2.20 (b)] this is equivalent to the existence of a tensor gen-
erator in PL+G(GrG). Now there exist µ1, . . . , µk ∈ X∨

+ which generate X∨
+ as

semigroups. Then ICµ1 ⊕ . . .⊕ ICµk
is a tensor generator.

(2) The affine group scheme H is connected reductive.
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For every µ ∈ X∨
+ and k ∈ N, the sheaf ICkµ is a direct summand of IC⋆kµ ,

hence the scheme H is connected by [5, Corollary 2.22]. By [5, Proposition
2.23], the connected algebraic group H is reductive if and only if PL+G(GrG)
is semisimple, and this is true by Proposition 4.1.

(3) The root datum of H is dual to the root datum of G.

Let (X ′, R′,∆′, X ′∨, R′∨,∆′∨) the based root datum of H constructed in The-
orem B.1 below. By Lemma B.5 below it is enough to show that we have an
isomorphism of partially ordered semigroups

(X∨
+,≤)

≃−→ (X ′
+,≤′). (5.2)

By Proposition 4.1, the map X∨
+ → X ′

+, µ 7→ [ICµ], where [ICµ] is the class of
ICµ in K+

0 PL+G(GrG) is a bijection of sets.

For every λ, µ ∈ X∨
+, we claim that λ � µ if and only if [ICλ] �′ [ICµ]. Assume

λ � µ, and choose a finite subset F ⊂ X∨
+ satisfying Proposition B.3 (iii). Let

A = ⊕ν∈F ICν , and suppose ICχ is a direct summand of IC⋆kλ for some k ∈ N.
In particular, χ ≤ kλ and so χ ∈ WF +

∑k
i=1Wµ. By Lemma 5.5, the sheaf

ICχ is a direct summand of IC⋆kµ ⋆A, which means [ICλ] �′ [ICµ]. Conversely,
assume [ICλ] �′ [ICµ]. Using Proposition B.3 (iv) below, this translates, by
looking at the support, into the following condition: there exists ν ∈ X∨

+ such

that Okλ ⊂ Okµ+ν holds for infinitely many k ∈ N. Equivalently, kλ ≤ kµ+ ν
for infinitely many k ∈ N which implies λ � µ.
For every λ, µ ∈ X∨

+, we claim that [ICλ] + [ICµ] = [ICλ+µ] in X ′
+: by the

proof of Theorem B.1 below, [ICλ] + [ICµ] is the class of the maximal element
appearing in ICλ ⋆ ICµ. Since the partial orders �, �′ agree, this is [ICλ+µ].

It remains to show that the partial orders ≤,≤′ agree. The identification X∨
+ =

X ′
+ prolongs to X∨ = X ′. We claim that Q∨

+ = Q′
+ under this identification

and hence Q∨ = Q′, which is enough by Lemma B.2 below. Let α∨ ∈ Q∨
+ a

simple coroot, and choose some µ ∈ X∨
+ with 〈α, µ〉 = 2. Then µ + sα(µ) =

2µ − α∨ is dominant, and hence IC2µ−α∨ appears by Lemma 5.5 as a direct
summand in IC⋆2µ . By Lemma B.4 this means α∨ ∈ Q′

+, and thus Q∨
+ ⊂ Q′

+.
Conversely, assume α′ ∈ Q′

+ has the property that there exists µ ∈ X ′
+ with

2µ − α′ ∈ X ′
+ and IC2µ−α′ appears as a direct summand in IC⋆2µ . Note that

every element in Q′
+ is a sum of these elements. Then 2µ−α′ ≤ 2µ, and hence

α′ ∈ Q∨
+. This shows Q

′
+ ⊂ Q∨

+ and finishes the proof of (5.2).

6 Galois Descent

Let F be any field, and G a connected reductive group defined over F . Fix
a separable closure F̄ , and let ΓF = Gal(F̄ /F ) be the absolute Galois group.
Let RepQ̄ℓ

(ΓF ) be the category of finite dimensional continuous ℓ-adic Galois
representations. For any object defined over F , we denote by a subscript (-)F̄
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its base change to F̄ . Consider the functor

Ω : PL+G(GrG) −→ RepQ̄ℓ
(ΓF )

A 7−→
⊕

i∈Z

RiΓ(GrG,F̄ ,AF̄ ).

There are canonical isomorphisms of fpqc-sheaves (LG)F̄ ≃ LGF̄ , (L
+G)F̄ ≃

L+GF̄ and GrG,F̄ ≃ GrGF̄
. Hence, Ω ≃ ω ◦ (-)F̄ , cf. (4.3).

The absolute Galois group ΓF operates on the Tannakian category
PL+GF̄

(GrGF̄
) by tensor equivalences compatible with the fiber functor

ω. Hence, we may form the semidirect product LG = Aut⋆(ω)(Q̄ℓ) ⋊ ΓF
considered as a topological group as follows. The group Aut⋆(ω)(Q̄ℓ) is
equipped with the ℓ-adic topology, the Galois ΓF group with the profinite
topology and LG with the product topology. Note that ΓF acts continuously
on Aut⋆(ω)(Q̄ℓ) by Proposition 6.6 below. Let RepcQ̄ℓ

(LG) be the full subcat-
egory of the category finite dimensional continuous ℓ-adic representations of
LG such that the restriction to Aut⋆(ω)(Q̄ℓ) is algebraic.

Theorem 6.1. The functor Ω is an equivalence of abelian tensor categories

Ω : PL+G(GrG) −→ RepcQ̄ℓ
(LG)

A 7−→ Ω(A).

The proof of Theorem 6.1 proceeds in several steps.

Lemma 6.2. Let H be an affine group scheme over a field k. Let Repk(H) be the
category of algebraic representations of H, and let Repk(H(k)) be the category
of finite dimensional representations of the abstract group H(k). Assume that
H is reduced and that H(k) ⊂ H is dense. Then the functor

Ψ : Repk(H) −→ Repk(H(k))

ρ 7−→ ρ(k)

is a fully faithful embedding.

2

We recall some facts on the Tannakian formalism from [20]. Let (C,⊗) be a
neutralized Tannakian category over a field k with fiber functor v. We define
a monoidal category Aut⊗(C, v) as follows. Objects are pairs (σ, α), where
σ : C → C is a tensor automorphism and α : v ◦σ→ v is a natural isomorphism
of tensor functors. Morphisms between (σ, α) and (σ′, α′) are natural tensor
isomorphisms between σ and σ′ that are compatible with α, α′ in an obvious
way. The monoidal structure is given by compositions. Since v is faithful,
Aut⊗(C, v) is equivalent to a set, and in fact is a group.
Let H = Aut⊗C (v), the Tannakian group defined by (C, v). There is a canonical
action of Aut⊗(C, v) on H by automorphisms as follows. Let (σ, α) be in

Documenta Mathematica 19 (2014) 209–246



236 T. Richarz

Aut⊗(C, v) . Let R be a k-algebra, and let h : vR → vR be a R-point of H .
Then (σ, α) · h is the following composition

vR
α−1

−→ vR ◦ σ h◦id−→ vR ◦ σ α−→ vR.

Let Γ be an abstract group. Then an action of Γ on (C, v) is by definition a
group homomorphism act : Γ→ Aut⊗(C, v).
Assume that Γ acts on (C, v). Then we define CΓ, the category of Γ-equivariant
objects in C as follows. Objects are (X, {cγ}γ∈Γ), where X is an object in
C and cγ : actγ(X) ≃ X is an isomorphism, satisfying the natural cocycle
condition, i.e. cγ′γ = cγ′ ◦actγ′(cγ). The morphisms between (X, {cγ}γ∈Γ) and
(X ′, {c′γ}γ∈Γ) are morphisms between X and X ′, compatible with cγ , c

′
γ in an

obvious way.

Lemma 6.3. Let Γ be a group acting on (C, v).
(i) The category CΓ is an abelian tensor category.

(ii) Assume that H is reduced and that k is algebraically closed. The functor v
is an equivalence of abelian tensor categories

CΓ ≃ Repok(H(k)⋊ Γ)

where Repok(H(k) ⋊ Γ) is the full subcategory of finite dimensional represen-
tations of the abstract group H(k) ⋊ Γ such that the restriction to H(k) is
algebraic.

Remark 6.4. In fact, the category CΓ is neutralized Tannakian with fiber
functor v. If Γ is finite, then Aut⊗CΓ(v) ≃ H ⋊ Γ. However, if Γ is not finite,

then Aut⊗CΓ(v) is in general not H⋊Γ, where the latter is regarded as an affine
group scheme.

Proof of Lemma 6.3. The monoidal structure on CΓ is defined as

(X, {cγ}γ∈Γ)⊗ (X ′, {c′γ}γ∈Γ) = (X ′′, {c′′γ}γ∈Γ),

where X ′′ = X ⊗X ′ and c′′γ : actγ(X
′′)→ X ′′ is the composition

actγ(X ⊗X ′) ≃ actγ(X)⊗ actγ(X
′)
cγ⊗c

′
γ−→ X ⊗X ′.

This gives CΓ the structure of an abelian tensor category.
Now assume that H is reduced and that k is algebraically closed. It is enough
to show that as tensor categories

Ψ : Repk(H)Γ
≃−→ Repok(H(k)⋊ Γ)

compatible with the forgetful functors. Let ((V, ρ), {cγ}γ∈Γ) ∈ Repk(H)Γ.
Then we define (V, ρΓ) ∈ Repok(H(k)⋊ Γ) by

(h, γ) 7−→ ρ(h) ◦ αh(V ) ◦ v ◦ c−1
γ ∈ GL(V ),
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where αh : v ◦σh ≃ v is induced by the action of Γ as above. Using the cocycle
relation, one checks that this is indeed a representation. By Lemma 6.2, the
natural map

HomH(ρ, ρ′) −→ HomH(k)(ρ(k), ρ
′(k))

is bijective. Taking Γ-invariants shows that the functor Ψ is fully faithful.
Essential surjectivity is obvious.

Now we specialize to the case (C,⊗) = (PL+GF̄
(GrG,F̄ ), ⋆) with fiber functor

v = ω. Then the absolute Galois group Γ = ΓF̄ acts on this Tannakian category
(cf. Appendix A.1).

Proof of Theorem 6.1. The functor Ω is fully faithful.

Let PL+GF̄
(GrG,F̄ )

Γ,c be the full subcategory of PL+GF̄
(GrG,F̄ )

Γ consisting of
perverse sheaves together with a continuous descent datum (cf. Appendix A.1).
By Lemma A.6, the functor A 7→ AF̄ is an equivalence of abelian categories
PL+G(GrG) ≃ PL+GF̄

(GrG,F̄ )
Γ,c. Hence, we get a commutative diagram

PL+GF̄
(GrG,F̄ )

Γ Repo
Q̄ℓ
(LG)

PL+G(GrG) RepcQ̄ℓ
(LG),

ω

Ω

A 7→ AF̄

where ω is an equivalence of categories by Lemma 6.3 (ii), and where the ver-
tical arrows are fully faithful. Hence, Ω is fully faithful.

The functor Ω is essentially surjective.

Let ρ be in RepcQ̄ℓ
(LG). Without loss of generality, we assume that ρ is in-

decomposable. Let H = Aut∗(ω). By Proposition 4.1, the restriction ρ|H is
semisimple. Denote by A the set of isotypic components of ρ|H . Then ΓF op-
erates transitively on A, and for every a ∈ A its stabilizer in ΓF is the absolute
Galois group ΓE for some finite separable extension E/F . By Galois descent
along finite extensions, we may assume that E = F , and hence that ρ|H has
only one isotypic component. Let ρ0 be the simple representation occuring
in ρ|H . Then HomH(ρ0, ρ) is a continuous Γ-representation, and the natural
morphism

ρ0 ⊗HomH(ρ0, ρ) −→ ρ

given by v ⊗ f 7→ f(v) is an isomorphism of LG-representations. Let ICX
be the simple perverse sheaf on GrG,F̄ with ω(ICX) ≃ ρ0. Since ρ has only
one isotypic component, the support X = supp(ICX) is Γ-invariant, and hence
defined over F . Denote by V the local system on Spec(F ) given by the Γ-
representation HomH(ρ0, ρ). Then ICX ⊗ V is an object in PL+G(GrG) such
that Ω(ICX ⊗ V ) ≃ ρ0 ⊗HomH(ρ0, ρ). This proves the theorem.

The proof of Theorem 6.1 also shows the following fact.
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Corollary 6.5. Let A ∈ PL+G(GrG) indecomposable. Let {Xi}i∈I be the
set of irreducible components of supp(AF̄ ). Denote by E the minimal finite
separable extension of F such that Xi is defined over E for all i ∈ I. Then as
perverse sheaves on GrE

AE ≃
⊕

i∈I

ICXi ⊗ Vi,

where Vi are indecomposable local systems on Spec(E).

2

We briefly explain the connection to the full L-group. For more details see [20].
Let Ĝ be the reductive group over Q̄ℓ dual to GF̄ in the sense of Langlands, i.e.
the root datum of Ĝ is dual to the root datum of GF̄ . There are two natural
actions of ΓF on Ĝ as follows. Up to the choice of a pinning (Ĝ, B̂, T̂ , X̂) of Ĝ,
we have an action actalg via

actalg : ΓF → Out(GF̄ ) ≃ Out(Ĝ) ≃ Aut(Ĝ, B̂, T̂ , X̂) ⊂ Aut(Ĝ), (6.1)

where Out(-) denotes the outer automorphisms. On the other hand, we have
an action actgeo : ΓF̄ → Aut(Ĝ) via the Tannakian equivalence from Theorem
5.1. The relation between actgeo and actalg is as follows.
Let cycl : ΓF → Z×

ℓ be the cyclotomic character of ΓF defined by the action

of ΓF on the ℓ∞-roots of unity of F̄ . Let Ĝad be the adjoint group of Ĝ. Let
ρ be the half sum of positive coroots of Ĝ, which gives rise to a one-parameter
group ρ : Gm → Ĝad. We define a map

χ : ΓF
cycl−→ Z×

ℓ

ρ−→ Ĝad(Q̄ℓ),

which gives a map Adχ : ΓF → Aut(Ĝ) to the inner automorphism of Ĝ.

Proposition 6.6 ([20] Proposition A.4). For all γ ∈ ΓF ,

actgeo(γ) = actalg(γ) ◦Adχ(γ).

2

Remark 6.7. Proposition 6.6 shows that actgeo only depends on the quasi-split
form of G, since the same is true for actalg. In particular, the Satake category
PL+G(GrG) only depends on the quasi-split form of G whereas the ind-scheme
GrG does depend on G.

Let LGalg = Ĝ(Q̄ℓ)⋊actalgΓF be the full L-group. Set LGgeo = Ĝ(Q̄ℓ)⋊actgeoΓF .

Corollary 6.8 ([20] Corollary A.5). The map (g, γ) 7→ (Adχ(γ−1)(g), γ) gives

an isomorphism LGalg ≃→ LGgeo.

2

Combining Corollary 6.8 with Theorem 6.1, we obtain the following corollary.
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Corollary 6.9. There is an equivalence of abelian tensor categories

PL+G(GrG) ≃ RepcQ̄ℓ
(LGalg),

where RepcQ̄ℓ
(LGalg) denotes the full subcategory of the category of finite di-

mensional continuous ℓ-adic representations of LGalg such that the restriction
to Ĝ(Q̄ℓ) is algebraic.

2

A Perverse Sheaves

For the construction of the category of ℓ-adic perverse sheaves, we refer to
the work of Y. Laszlo and M. Olsson [13]. In this appendix we explain our
conventions on perverse sheaves on ind-schemes.
Let F be an arbitrary field. Fix a prime ℓ 6= char(F ), and denote by Qℓ the
field of ℓ-adic numbers with algebraic closure Q̄ℓ. For any separated scheme
T of finite type over F , we consider the bounded derived category Db

c(T, Q̄ℓ)
of constructible ℓ-adic sheaves on T . Let P (T ) be the abelian Q̄ℓ-linear full
subcategory of ℓ-adic perverse sheaves, i.e. the heart of the perverse t-structure
on the triangulated category Db

c(T, Q̄ℓ).
Now let (T )i∈I be an inductive system of separated schemes of finite type over
F with closed immersions as transition morphisms. A fpqc-sheaf T on the
category of F -algebras is called a strict ind-scheme of ind-finite type over F if
there is an isomorphism of fpqc-sheaves T ≃ lim−→i

Ti, for some system (T )i∈I
as above. The inductive system (T )i∈I is called an ind-presentation of T .
For i ≤ j, push forward gives transition morphisms Db

c(Ti, Q̄ℓ) → Db
c(Tj , Q̄ℓ)

which restrict to P (Ti)→ P (Tj), because push forward along closed immersions
is t-exact.

Definition A.1. Let T be a strict ind-scheme of ind-finite type over F , and
(Ti)i∈I be an ind-presentation.
(i) The bounded derived category of constructible ℓ-adic complexes Db

c(T , Q̄ℓ)
on T is the inductive limit

Db
c(T , Q̄ℓ)

def
= lim−→

i

Db
c(Ti, Q̄ℓ).

(ii) The category of ℓ-adic perverse sheaves P (T ) on T is the inductive limit

P (T ) def
= lim−→

i

P (Ti).

The definition is independent of the chosen ind-presentation of T . The cat-
egory Db

c(T , Q̄ℓ) inherits a triangulation and a perverse t-structure from the
Db
c(Ti, Q̄ℓ)’s. The heart with respect to the perverse t-structure is the abelian

Q̄ℓ-linear full subcategory P (T ).
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If f : T → S is a morphism of strict ind-schemes of ind-finite type over F ,
we have the Grothendieck operations f∗, f!, f

∗, f !, and the usual constructions
carry over after the choice of ind-presentations.

In Section 3.3 we work with equivariant objects in the category of perverse
sheaves. The context is as follows. Let f : T → S be a morphism of separated
schemes of finite type, and let H be a smooth affine group scheme over S with
geometrically connected fibers acting on f : T → S. Then a perverse sheaf A
on T is called H-equivariant if there is an isomorphism in the derived category

θ : a∗A ≃ p∗A, (A.1)

where a : H×ST → T (resp. p : H×ST → T ) is the action (resp. projection on
the second factor). A few remarks are in order: if the isomorphism (A.1) exists,
then it can be rigidified such that e∗T θ is the identity, where eT : T → H ×S T
is the identity section. A rigidified isomorphism θ automatically satisfies the
cocycle relation due to the fact that H has geometrically connected fibers.

The subcategory PH(T ) of P (T ) of H-equivariant objects together with H-
equivariant morphisms is called the category of H-equivariant perverse sheaves
on T .

Lemma A.2 ([13] Remark 5.5). Consider the stack quotient H\T , an Artin
stack of finite type over S. Let p : T → H\T be the quotient map of relative
dimension d = dim(T/S). Then the pull back functor

p∗[d] : P (H\T ) −→ PH(T ),

is an equivalence of categories. In particular, PH(T ) is abelian and Q̄ℓ-linear.

2

Now let T be a strict ind-scheme of ind-finite type, and f : T → S a morphism
to a separated scheme of finite type. Fix an ind-presentation (Ti)i∈I of T . Let
(Hi)i∈I be an inverse system of smooth affine group scheme with geometrically
connected fibers. Let H = lim←−iHi be the inverse limit, an affine group scheme
over S, because the transition morphism are affine. Assume that H acts on
f : T → S such that the action restricts to the inductive system (f |Ti)i∈I .
Assume that the H-action factors through Hi on f |Ti for every i ∈ I.

Definition A.3. Let f : T → S, (Ti)i∈I and H as above. The category PH(T )
of H-equivariant perverse sheaves on T is the inductive limit

PH(T ) def
= lim−→

i

PHi(Ti).

It follows from Lemma A.2 that the category PH(T ) is an abelian Q̄ℓ-linear
category. The following lemma is used throughout the text.
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Lemma A.4. Let T → S be a H-torsor, and let Y be a S-scheme with H-action.
Assume that the action of H on Y factors over Hi for i >> 0. Then there is a
canonical isomorphism of fpqc-sheaves

T ×H Y
≃−→ T (i) ×Hi Y,

where T (i) = T ×H Hi.

2

Remark A.5. In particular, if T (i) ×Hi Y is representable of finite type, then
is T ×H Y is representable of finite type.

A.1 Galois Descent of Perverse Sheaves

Fix a separable closure F̄ of F . Let Γ = Gal(F̄ /F ) be the absolute Galois
group. For any complex of sheaves A on T , we denote by AF̄ its base change
to TF̄ = T ⊗ F̄ . We define the category of perverse sheaves with continuous Γ-
descent datum P (TF̄ )

Γ,c as follows. The objects are pairs (A, {cγ}γ∈Γ), where
A ∈ P (TF̄ ) and {cγ}γ∈Γ is a family of isomorphisms

cγ : γ∗A ≃−→ A,

satisfying the cocycle condition cγ′γ = cγ′ ◦ γ′∗(cγ) such that the datum is
continuous in the following sense. For every i ∈ Z and every locally closed
subscheme S ⊂ T such that the standard cohomology sheaf Hi(A)|S is a local
system, and for every U → S étale, with U separated quasi-compact, the
induced ℓ-adic Galois representation on the UF̄ -sections

Γ −→ GL(Hi(A)(UF̄ )),

is continuous. The morphisms in P (TF̄ )
Γ,c are morphisms in P (TF̄ ) compat-

ible with the cγ ’s. For every A ∈ P (T ), its pullback AF̄ admits a canonical
continuous descent datum. Hence, we get a functor

Φ : P (T ) −→ P (TF̄ )
Γ,c

A 7−→ AF̄ .

Lemma A.6 (SGA 7, XIII, 1.1). The functor Φ is an equivalence of categories.

2

B Reconstruction of Root Data

Let G a split connected reductive group over an arbitrary field k. Denote
by RepG the Tannakian category of algebraic representations of G. If k
is algebraically closed of characteristic 0, then D. Kazhdan, M. Larsen and
Y. Varshavsky [10, Corollary 2.5] show how to reconstruct the root datum
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of G from the Grothendieck semiring K+
0 [G] = K+

0 RepG. In fact, their
construction works over arbitrary fields. This relies on the conjecture of
Parthasarathy, Ranga-Rao and Varadarajan (PRV-conjecture) proven by S.
Kumar [11] (char(k) = 0) and O. Mathieu [15] (char(k) > 0).

Theorem B.1. The root datum of G can be reconstructed from the
Grothendieck semiring K+

0 [G].

This means, if H is another split connected reductive group over k, and if
ϕ : K+

0 [H ]→ K+
0 [G] is an isomorphism of Grothendieck semirings, then there

exists an isomorphism of group schemes φ : H → G determined uniquely up to
inner automorphism such that φ = K+

0 [ϕ].
Let T be a maximal split torus of G and B a Borel subgroup containing T .
We denote by 〈-, -〉 the natural pairing between X = Hom(T,Gm) and X∨ =
Hom(Gm, T ). Let R ⊂ X be the root system associated to (G, T ), and R+

be the set of positive roots corresponding to B. Let R∨ ⊂ X∨ the dual root
system with the bijection R→ R∨, α 7→ α∨. Denote by R∨

+ the set of positive
coroots. Let W the Weyl group of (G, T ). Consider the half sum of all positive
roots

ρ =
1

2

∑

α∈R+

α.

Let Q (resp. Q+) the subgroup (resp. submonoid) of X generated by R (resp.
R+). We denote by

X+ = {µ ∈ X | 〈µ, α〉 ≥ 0, ∀α ∈ R∨
+}

the cone of dominant characters.
We consider partial orders ≤ and � on X defined as follows. For λ, µ ∈ X ,
we define λ ≤ µ if and only if µ− λ ∈ Q+, and we define λ � µ if and only if
µ−λ =

∑
α∈∆ xαα with xα ∈ R≥0. The latter order is weaker than the former

order in the sense that λ ≤ µ implies λ � µ, but in general not conversely.

Lemma B.2 ([18]). For every λ, µ ∈ X+, then λ ≤ µ if and only if λ � µ and
the images of λ, µ in X/Q agree.

Let
Dom�µ = {ν ∈ X+ | ν � µ}.

For a finite subset F of the euclidean vector space E = X ⊗ R, we denote by
Conv(F ) its convex hull.

Proposition B.3. For λ, µ ∈ X+, the following conditions are equivalent:

(i) λ � µ
(ii) Conv(Wλ) ⊂ Conv(Wµ)

(iii) There exists a finite subset F ⊂ X+ such that for all k ∈ N:

Dom�kλ ⊂ WF +
k∑

i=1

Wµ
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(iv) There exists a representation U such that for every k ∈ N, every irreducible
subquotient of V ⊗k

λ is a subquotient of V ⊗k
µ ⊗ U .

Proof. The equivalence of (i) and (ii) is well-known. The implication (ii)⇒(iii)
follows from [10, Lemma 2.4]. Assume (iii), we show that (iv) holds: let U =
⊕ν∈FVν , and suppose Vχ is a irreducible subquotient of V ⊗k

λ , in particular

χ ≤ kλ. By (iii), χ has the form wν +
∑k
i=1 wiµ with w,w1, . . . , wk ∈ W and

ν ∈ F . Using the PRV-conjecture [4, Theorem 4.3.2], we conclude that Vχ
is a subquotient of V ⊗k

µ ⊗ Vν , hence also of V ⊗k
µ ⊗ U . This shows (iv). The

implication (iv)⇒(i) is shown in [10, Proposition 2.2].

For µ ∈ X+, let vµ be the corresponding element in K+
0 [G]. Let Q+ ⊂ X be

the semigroup generated by the set

{α ∈ X | ∃µ ∈ X+ : 2µ− α ∈ X+ and v2µ − v2µ−α ∈ K+
0 [G]}.

Lemma B.4. There is an equality of semigroups Q+ = Q+.

Proof. It is obvious that Q+ ⊂ Q+, and we show that Q+ contains the simple
roots. Let α be a simple root, and choose some µ ∈ X such that 〈µ, α∨〉 = 2.
Then 2µ−α paired with any simple root is positive, and hence µ+sα(µ) = 2µ−α
is dominant. By the PRV -conjecture [4, Theorem 4.3.2], the representation
V2µ−α appears as an irreducible subquotient in V ⊗2

µ , i.e. v2µ − v2µ−α ∈ K+
0 [G].

The proof of Theorem B.1 goes along the lines of [10, Corollary 2.5].

Proof of Theorem B.1. By Lemma B.5 below it is enough to construct the par-
tially ordered semigroup (X+,≤) of dominant weights.
The underlying set of dominant weights X+ is the set of irreducible objects in
K+

0 [G]. Then the partial order � on X+ is characterized by Proposition B.3
as follows: for λ, µ ∈ X+, one has λ � µ if and only if there exists a u ∈ K+

0 [G]
such that for all k ∈ N and ν ∈ X+,

vkλ − vν ∈ K+
0 [G] =⇒ vkµ · u− vν ∈ K+

0 [G].

The semigroup structure on X+ is given by: for λ, µ ∈ X+, one has ν = λ+µ if
and only if ν is the unique dominant weight which is maximal (w.r.t. �) with
the property that vλ · vµ − vν ∈ K+

0 [G].
Now X is the group completion of X+, and by Lemma B.4 we can reconstruct
Q+ ⊂ X . Then Q is the group completion of Q+, and by Lemma B.2 we can
reconstruct ≤. This shows that the root datum of G can be reconstructed from
K+

0 [G].
Now if H is another split connected reductive group over k, and ϕ : K+

0 [H ]→
K+

0 [G] an isomorphism of Grothedieck semirings, then the argument above
shows that there is an isomorphism of partially ordered semigroups

(XH
+ ,≤H) −→ (XG

+ ,≤G) (B.1)
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inducing ϕ on Grothendieck semirings. By Lemma B.5 below, the morphism
B.1 prolongs to an isomorphism of the associated based root data. Hence, there
exists an isomorphism of group schemes φ : H → G inducing the isomorphism
of based root data. In particular, ϕ = K+

0 [φ], and such an isomorphism φ
is uniquely determined up to inner automorphism. This finishes the proof of
Theorem B.1.

Lemma B.5. Let B = (X,R,∆, X∨, R∨,∆∨) any based root datum. De-
note by (X+,≤) the partially ordered semigroup of dominant weights. Then
the root datum B can be reconstructed from (X+,≤), i.e. if B′ =
(X ′, R′,∆′, X ′∨, R′∨,∆′∨) is another based root datum with associated domi-
nant weights (X ′

+,≤′), then any ismorphism (X,≤) → (X ′,≤′) of partially
ordered semigroups prolongs to an isomorphism B → B′ of based root data.

Proof. The weight lattice X is the group completion of X+, a finite free Z-
module. The dominance order ≤ extends uniquely to X , also denoted ≤. Then
X∨ = HomZ(X,Z) is the coweight lattice, and the natural pairing X×X∨ → Z
identifies with 〈-, -〉. The reconstruction of the roots and coroots proceeds in
several steps:

(1) The set of simple roots ∆ ⊂ X :
A weight α ∈ X\{0} is in ∆ if and only if 0 ≤ α, and α is minimal with this
property.

(2) The set of simple coroots ∆∨ ⊂ X∨:
An element of X∨ is uniquely determined by its value on X+. Fix α ∈ ∆ with
corresponding simple coroot α∨. Then for any µ ∈ X+, the value 〈µ, α∨〉 is the
unique number m ∈ N such that 2µ −mα is dominant, but 2µ − (m + 1)α is
not. Indeed, we have

〈2µ−mα,α∨〉 ≥ 0 ⇔ 〈µ, α∨〉 ≥ m,

and, for every other simple coroot β∨ 6= α∨ and every n ∈ N,

〈2µ− nα, β∨〉 = 2〈µ, β∨〉 − n〈α, β∨〉 ≥ 2〈µ, β∨〉 ≥ 0,

since 〈α, β∨〉 ≤ 0. Hence, 〈2µ− (m+ 1)α, α∨〉 < 0 and so m = 〈µ, α∨〉.
(3) The sets of roots R and coroots R∨:
The Weyl group W ⊂ AutZ(X) is the finite subgroup generated by the re-
flections sα,α∨ associated to the pair (α, α∨) ∈ ∆ × ∆∨. Then R = W · ∆,
i.e., the roots are given by the translates of the simple roots under W . Since
AutZ(X

∨) = AutZ(X)op, the Weyl group W acts on X∨ and R∨ = W · ∆∨.
This proves the lemma.
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Casselman-Shalika géométrique, J. Algebraic Geom. 10 (2001), no. 3, 515-
547.

[18] M. Rapoport: A guide to the reduction modulo p of Shimura varieties,
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Abstract. This paper treats certain lattices in ternary quadratic
spaces, which are obtained from the data of a non-zero element and a
maximal lattice in a quaternary space. Each class in the genus of such
a lattice with respect to the special orthogonal group corresponds to
an isomorphism class in the genus of an order associated with the
lattice in a quaternion algebra. Using this result together with the
principle of Shimura, we show that the number of classes of the prim-
itive solutions of a quadratic Diophantine equation in four variables
coincides with the type number of the order under suitable conditions
on the given element. We illustrate this result by explicit examples.
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Introduction

Let (V, ϕ) be a nondegenerate quadratic space of dimension 4 over a number
field F , that is, V is a four-dimensional vector space over F and ϕ is a non-
degenerate symmetric F -bilinear form on V . For an element h of V such that
ϕ[h](= ϕ(h, h)) 6= 0, we put

W = (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}

and consider a quadratic space (W, ψ) of dimension 3 over F with the restriction
ψ of ϕ to W . In this paper the special orthogonal group SOψ of ψ is regarded
as the subgroup {γ ∈ SOϕ | hγ = h} of the orthogonal group SOϕ of ϕ. The
orthogonal group Oψ of ψ is also identified with Oϕ in a similar manner. For
a maximal lattice L in (V, ϕ) we put

L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b}, D(L) = {α ∈ OϕA | Lα = L},
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where q = ϕ[h], b = ϕ(h, L), and the subscript A means adelization. Since
L[q, b] is stable under Γ·(L) = Oϕ ∩D(L), the set L[q, b]/Γ·(L) is meaningful
in an obvious way.
In the sense of Shimura [9, Introduction I], L[q, b] is the set of primitive so-
lutions of the equation ϕ[x] = q. Our interest in this paper is basically the
set

L[q, b]/Γ·(L)

consisting of the classes of such solutions. By the principle of [9, Theorem
11.6], each class of solutions of Li[q, b] modulo Γ·(Li) for i ∈ J corresponds to

a class of Oψ relative to an open subgroup OψA ∩ D(L) in OψA. Here {Li}i∈J
is a set of representatives for the Oϕ-classes in the Oϕ-genus of L for which
Li[q, b] 6= ∅ (see also (4.1) below).
Now we consider the lattice L ∩ W in (W, ψ) and the even Clifford algebra
A+(W ) of ψ, which is a quaternion algebra over F since the dimension of W
is 3. Let A(N) be the order generated by g and N in the Clifford algebra of ψ,
and put A+(N) = A+(W ) ∩ A(N) for an integral lattice N in (W, ψ). Here g
is the ring of all integers of F and the terms integral and maximal are given in
§1.1. To L∩W we can associate an order O in A+(W ), containing A+(L∩W ),
whose discriminant is given by (3.22) below. The purpose of this paper is to
define such an order O, to give a bijection of the SOψ-classes in the SOψ-genus
of L ∩W onto the isomorphism classes in the genus of O, and to prove

∑

i∈J

# {Li[q, b]/Γ·(Li)} = t(O) (0.1)

through the above principle under suitable conditions on h ∈ L[q, b], where the
genus of O is defined by the set {α−1Oα | α ∈ A+(W )×A} and t(O) is the type
number of O.
To obtain the order O, we proceed in a similar manner to [10, §4.6] under mild
conditions on h ∈ L[q, b] (Proposition 3.3 (3)). As for the bijection, given a
lattice N in the genus of L ∩W , put N = (L ∩W )τ(α) with α ∈ A+(W )×A.

Here τ is a surjective homomorphism of G+(W )A onto SOψA and G+(W ) is
the even Clifford group of ψ, which is given by A+(W )×. Then our bijection
is defined by N 7−→ α−1Oα (Theorem 3.4 (2)). This result mainly relies on a
description of L∩W in A+(W ) by means of A+(L∩W ) (cf. [4, Theorem 2.1]).

Now in Proposition 4.3, we shall prove that OψεD(L∩W ) = Oψε(OψA ∩D(L))

for every ε ∈ OψA under several assumptions on h ∈ L[q, b]. Because W is odd-
dimensional, the class number of the genus of L∩W with respect to Oψ equals
that with respect to SOψ. Hence by virtue of the principle mentioned above,
the number

∑
i∈J # {Li[q, b]/Γ·(Li)} is equal to the number of SOψ-classes in

the SOψ-genus of L ∩W . Our main result (0.1) follows from this fact and the
above bijection.
It should be noted that the genus of O is determined by the discriminant if O
has squarefree discriminant, for instance, ifO is maximal. When the quaternion
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algebra is totally definite, there are formulas for computing the type number of
such an order; see Peters [5, Satz 14] or Pizer [6, Theorem A and Theorem B],
etc.. In Section 5 we will take up totally-positive definite forms ϕ and employ
their numerical tables [5, Tabelle 2] and [6, Table 1] for type numbers. It
seems that there are few numerical examples for the type number of the genus
of an order whose discriminant is not squarefree and for the class number of
the genus of a lattice which is neither maximal nor unimodular with respect to
a definite form. Here we assume that h satisfies the conditions in Proposition
4.3. Then (0.1) contains the case of non-maximal (and often non-unimodular)
L ∩W , more clearly, the case that O has at most one higher-power prime pe

(e > 1) in its discriminant, where p is a prime ideal of F (see also (4.10) below).

To see the existence of such an element h, as an application of Proposition 4.3,
let Br,∞ be a definite quaternion algebra over Q ramified exactly at a prime
number r and take a prime number d prime to r so that d ≡ 1 (mod 4). In
Theorem 5.1 we shall show:
For every odd prime number p prime to dr and 0 ≤ n ∈ Z, except when n
is odd and p remains prime in Q(

√
d), there exists a maximal lattice L in

(V, ϕ) over Q of invariants {4, Q(
√
d), Br,∞, 4} (see (1.5) for the definitions)

such that L[dpn, 2−1dZ] 6= ∅. And moreover, formula (0.1) is valid for h ∈
L[dpn, 2−1dZ] with an order O in Br,∞ of discriminant rpnZ.
For example, let us take (V, ϕ) of invariants {4, Q(

√
29), B2,∞, 4}. By [9, The-

orem 12.14 (vi)] the number of Oϕ-classes in the Oϕ-genus of maximal lattices
in (V, ϕ) equals the number #{Λ[29, Z]/Γ·(Λ)}, where Λ is a maximal lattice
in a five-dimensional quadratic space overQ with respect to the quadratic form
defined by the sum of five squares. In [9, §12.15], #{Λ[29, Z]/Γ·(Λ)} was de-
termined, and it is 3. Hence the genus of maximal lattices in (V, ϕ) consists
of three Oϕ-classes. For details, see the last part of Section 4.1 in the text.
We can also see the representatives {L1, L2, L3} of such classes by means of a
bijection in Lemma 4.1 applied to the set Λ[29, Z]. Then we have the following
numerical table:

p N1(29p) N2(29p) N3(29p) t(2, p) c(29p)

1 2 0 0 1 1

5 0 2 0 1 1

7 0 0 2 1 1

13 0 2 2 2 2

23 0 0 6 1 1

53 0 10 6 3 3

59 24 8 6 3 3

Here we put Ni(29p) = #Li[29p, 2
−1 · 29Z], t(2, p) = t(O) with an order O
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in B2,∞ of discriminant 2pZ, and c(29p) =
∑3

i=1 #{Li[29p, 2−1 ·29Z]/Γ·(Li)};
we quoted the type number t(2, p) in [6, Table 1]. Therefore we have

#
{
Li[29 · 59, 2−1 · 29Z]/Γ·(Li)

}
= 1 for i = 1, 2, 3,

for instance. It is noted that #Γ(L1) = 48, #Γ(L2) = 8, and #Γ(L3) = 6,
where Γ(Li) = SOϕ∩D(Li). In Section 5.3 we shall give a few numerical tables
for r = 2 and d = 5, 13, 17, 29 including the above cases. As a special case of
Theorem 5.1 we have Corollary 5.2, which states that for any d as in Theorem
5.1 only one Oϕ-class in the genus satisfies L[d, 2−1dZ] 6= ∅ with a lattice L
in the class and then (0.1) precisely gives #{L[d, 2−1dZ]/Γ·(L)} = 1, provided
the type number of Br,∞ is 1.
The existence of a maximal lattice in Theorem 5.1 can be shown in a similar
way to [3, Proposition 4.3] by means of two explicit formulas concerning
#L[dpn, 2−1dZ] and #L[dpn, 2−1Z]. Those formulas will be given in (5.2) and
(5.3) without detailed proofs because of the length of the paper. The author
hopes to prove it in a subsequent paper.

Acknowledgements. I sincerely wish to thank Professor Koji Doi for his
encouragement and for giving a remark on the discriminant of O in (0.1). I
am also thankful to Dr. Takashi Yoshinaga for supporting the computation
of #Li[dp
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determination of Λ[d, Z]/Γ(Λ) in Section 5.3 in November 2010. I would
like to express my deep gratitude to the anonymous referee, who carefully
read the manuscript and guided me to the connection of the classes of max-
imal lattices in a four-dimensional quadratic space with the sum of five squares.

Notation. We denote by Z, Q, and R the ring of rational integers, the field of
rational numbers, and the field of real numbers, respectively.
If R is an associative ring with identity element and if M is an R-module,
then we write R× for the group of all invertible elements of R and Mm

n the
R-module of m× n-matrices with entries in M . We set R×2 = {a2 | a ∈ R×}.
For a finite set X , we denote by #X the number of elements in X . We set
[a] = Max{n ∈ Z | n ≤ a}.
Let V be a vector space over a field F of characteristic 0, and GL(V ) the group
of all F -linear automorphisms of V . We let GL(V ) act on V on the right.
Let F be an algebraic number field and g the ring of all algebraic integers in F .
For a fractional ideal of F we often call it a g-ideal. Let a, h, and r be the sets
of archimedean primes, nonarchimedean primes, and real archimedean primes
of F , respectively. We denote by Fv the completion of F at v ∈ a ∪ h, and
by FA and F×

A the adele ring and the idele group of F , respectively. We often
identify v with the prime ideal of F corresponding to v ∈ h, and write xv for
the image of x under the embedding of F into R over Q at v ∈ r. For v ∈ h

we denote by gv, pv, and πv the maximal order, the prime ideal, and a prime
element of Fv, respectively. If K is a quadratic extension of F , we denote by
DK/F the relative discriminant of K over F , and put Kv = K⊗F Fv for v ∈ h.
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By a g-lattice, or simply a lattice L in a vector space V over a number field
or nonarchimedean local field F , we mean a finitely generated g-submodule in
V containing a basis of V . By an order in a quaternion algebra B over F we
mean a subring of B containing g that is a g-lattice in B. For a symmetric
F -bilinear form ϕ on V and two subspaces X and Y of V , we denote by X⊕Y
the direct sum of X and Y if ϕ(x, y) = 0 for every x ∈ X and y ∈ Y ; then
we also denote by ϕ|X the restriction of ϕ to X . When X is an object defined
over a number field F , we often denote by Xv the localization at a prime v if
it is meaningful. For given local objects Xv in the text with v ∈ a ∪ h, we put
Xa =

∏
v∈aXv and Xh =

∏
v∈hXv.

1 Preliminaries for quadratic forms

1.1 Quadratic spaces and Clifford algebras

Let F be an algebraic number field or its completion at a prime. Throughout
the paper we often call the former a global field and the latter a local field when
it is nonarchimedean. Let (V, ϕ) be a quadratic space over F , that is, V is a
vector space over F and ϕ is a symmetric F -bilinear form on V . In this paper
we consider only a nondegenerate form ϕ. We put ϕ[x] = ϕ(x, x) for x ∈ V .
We define the orthogonal group and the special orthogonal group of ϕ by

Oϕ(V ) = Oϕ = {γ ∈ GL(V ) | ϕ(xγ, yγ) = ϕ(x, y)},
SOϕ(V ) = SOϕ = {γ ∈ Oϕ(V ) | det(γ) = 1}.

We denote by A(ϕ) = A(V ) the Clifford algebra of ϕ and by A+(ϕ) = A+(V )
the even Clifford algebra of ϕ. For x ∈ A(V ) we mean x∗ the image of x under
the canonical involution of A(V ). We define the even Clifford group G+(V ) of
(V, ϕ) by

G+(V ) = {α ∈ A+(V )× | α−1V α = V }. (1.1)

We denote by τ a homomorphism defined as follows:

τ : G+(V ) −→ SOϕ(V ) via xτ(α) = α−1xα for x ∈ V . (1.2)

This is surjective and the kernel is F×; see [9, Theorem 3.6], for example.
For a g-lattice L in V we put

L̃ = L˜= {x ∈ V | 2ϕ(x, L) ⊂ g}. (1.3)

We call L integral with respect to ϕ if ϕ[L] ⊂ g. We note that L ⊂ L̃ if L is
integral. By a g-maximal, or simply a maximal, lattice L with respect to ϕ, we
understand a g-lattice L in V which is maximal among g-lattices on which the
values ϕ[x] are contained in g. For an integral lattice L in V with respect to
ϕ, we denote by A(L) the subring of A(V ) generated by g and L. We also put

A+(L) = A+(V ) ∩A(L). (1.4)
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Then A(L) (resp. A+(L)) is an order in A(V ) (resp. A+(V )) (cf. [9, §8.2]).

For a global field F and v ∈ a ∪ h, we put Vv = V ⊗F Fv and denote by
ϕv the Fv-bilinear extension of ϕ to Vv; we then put (V, ϕ)v = (Vv, ϕv). For
v ∈ h and a gv-maximal lattice Lv in Vv, (V, ϕ)v has a Witt decomposition
as follows (cf. [9, Lemma 6.5]): Vv = Zv ⊕

∑rv
i=1(Fvei + Fvfi) and Lv =

Nv +
∑rv
i=1(gvei + gvfi) with some elements ei and fi (i = 1, · · · , rv) such

that ϕv(ei, ej) = ϕv(fi, fj) = 0 and 2ϕv(ei, fj) = 1 or 0 according as i = j
or i 6= j. Here Zv = {z ∈ Vv | ϕv(z, ei) = ϕv(z, fi) = 0 for every i}, on which
ϕv is anisotropic; Nv = {x ∈ Zv | ϕv[x] ∈ gv}, which is a unique gv-maximal
lattice in Zv with respect to ϕv. The dimension tv of Zv is uniquely determined
by ϕv and 0 ≤ tv ≤ 4 for v ∈ h (cf. [9, Theorem 7.6 (ii)]). We call Zv a core
subspace of (V, ϕ)v and tv the core dimension of (V, ϕ) at v. For convenience,
we also call a subspace Uv of Vv anisotropic if ϕv is so on Uv.

For g-lattices L and M in V over a global or local field F , we denote by [L/M ]
a g-ideal of F generated over g by det(α) of all F -linear automorphisms α of V
such that Lα ⊂M . If F is a global field, then [L/M ] =

∏
v∈h[Lv/Mv] with the

localization [L/M ]v = [Lv/Mv] at each v. Following [11, §6.1], in both global

and local F , we call [L̃/L] the discriminant ideal of (V, ϕ) if L is a g-maximal
lattice in V with respect to ϕ. This is independent of the choice of L. If F is
a local field, the discriminant ideal of ϕ coincides with that of a core subspace
of ϕ.

By the invariants of (V, ϕ) over a number field F , we understand a set of data

{n, F (
√
δ), Q(ϕ), {sv(ϕ)}v∈r}, (1.5)

where n is the dimension of V , F (
√
δ) is the discriminant field of ϕ with

δ = (−1)n(n−1)/2 det(ϕ), Q(ϕ) is the characteristic quaternion algebra of ϕ, and
sv(ϕ) is the index of ϕ at v ∈ r. For these definitions, the reader is referred to
[11, §1.1, 3.1, and 4.1] (cf. also [4, (1.6)]). By virtue of [11, Theorem 4.2], the
isomorphism class of (V, ϕ) is determined by {n, F (

√
δ), Q(ϕ), {sv(ϕ)}v∈r}

and vice versa.

The characteristic algebra Q(ϕv) is also defined for ϕv at v ∈ a ∪ h (cf. [11,
§3.1]). By [11, Lemma 3.3] the isomorphism class of (V, ϕ)v is determined by
{n, Fv(

√
δ), Q(ϕv)} if v ∈ h. As for v ∈ a, it is determined by {n, sv(ϕ)} if

v ∈ r, and by the dimension n if v 6∈ r. If v ∈ r, then Q(ϕv) is given by [11,
(4.2a) and (4.2b)], for example. If v 6∈ r, then Q(ϕv) =M2(C), where C is the
field of complex numbers.

Let SOϕ(V )A (resp. Oϕ(V )A) be the adelization of SOϕ(V ) (resp. Oϕ(V )) in
the usual sense (cf. [9, §9.6]). For α ∈ SOϕ(V )A and a g-lattice L in V , we
denote by Lα the g-lattice in V whose localization at each v ∈ h is given by
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Lvαv. We put

C(L) = {α ∈ SOϕ(V )A | Lα = L}, C(Lv) = SOϕv (Vv) ∩ C(L), (v ∈ h)

Γ(L) = SOϕ(V ) ∩ C(L).

Then the map α 7−→ Lα−1 gives a bijection of SOϕ\SOϕA/C(L) onto {Lα | α ∈
SOϕA}/SOϕ. We call {Lα | α ∈ SOϕA} the SOϕ-genus of L, {Lγ | γ ∈ SOϕ}
the SOϕ-class of L, and #{SOϕ\SOϕA/C(L)} the class number of SOϕ relative
to C(L) or the class number of the genus of L with respect to SOϕ. It is known
that all g-maximal lattices in V with respect to ϕ form a single SOϕ-genus.
Let A+(V )×A (resp. G+(V )A) be the adelization of A+(V )× (resp. G+(V )). We
can extend τ of (1.2) to a homomorphism of G+(V )A onto SOϕA. We denote
it by the same symbol τ (cf. [9, §9.10]).
For a g-lattice L in V , q ∈ F , and a g-ideal b of F , we put

L[q] = {x ∈ L | ϕ[x] = q}, L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b}.

Here ϕ(x, L) = {ϕ(x, y) | y ∈ L}, which becomes a g-ideal of F . Suppose
F is a nonarchimedean local field. Let V have dimension n > 2 and L be
a g-maximal lattice in V with respect to ϕ. Then [9, Theorem 10.5] due to
Shimura shows that

L[q, b] = hC(L), (1.6)

provided h ∈ L[q, b] (cf. also [12, Theorem 1.3]).

For a quaternion algebra B over F , we put 2β(x, y) = xyι + yxι for x, y ∈
B with the main involution ι of B. For an order o in B it is known that
[õ/o] = d(o)2 with an integral ideal d(o) of F . Here õ is defined by (1.3) with
β. The ideal d(o) is called the discriminant of o. If F is a number field and o
is a maximal order, then d(o) is the product of all prime ideals ramified in B,
which is called the discriminant of B and denoted by DB. We set

T (o) = {α ∈ B×
A | αo = oα}, T (ov) = B×

v ∩ T (o) (v ∈ a ∪ h),

Γ∗(o) = B× ∩ T (o),

where B×
A is the adelization of B×, Bv = B ⊗F Fv, and ov = o ⊗g gv. The

number #{T (o)\B×
A/B

×} is called the type number of o. Let U = B×
a

∏
v∈h o×v

in B×
A. Then the number of U \B×

A/B
× is called the class number of o.

Here we introduce two symbols below, which will be used throughout the paper.
Let F be a nonarchimedean local field and p the prime ideal of F . For b ∈ F×

we set

(F (
√
b)/p) =





1 if F (
√
b) = F ,

−1 if F (
√
b) is an unramified quadratic extension of F ,

0 if F (
√
b) is a ramified quadratic extension of F .
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For a quaternion algebra B over F we set

χ(B) =

{
1 if B ∼=M2(F ),

−1 if B is a division algebra.

1.2 Ternary quadratic spaces

We recall some basic facts on 3-dimensional quadratic spaces (W, ψ) over a
number field or its completion F . The characteristic algebra Q(ψ) is given by
A+(W ) by definition. The core dimension sv of (W, ψ) at v ∈ h is determined
by

sv =

{
1 if Q(ψv) =M2(Fv),

3 if Q(ψv) is a division algebra.
(1.7)

This can be seen from [11, §3.2] and the proof of [11, Lemma 3.3].
There are isomorphisms of (W, ψ) onto (A+(W )◦, dν◦) with d ∈ F×. Here
A+(W )◦ = {x ∈ A+(W ) | x∗ = −x}, ν[x] = xx∗ for x ∈ A+(W ), and ν◦ is
the restriction of ν to A+(W )◦. Let us explain such isomorphisms, following
[9, §7.3].
Take an orthogonal basis {k1, k2, k3} of W with respect to ψ, namely, an F -
basis {ki} of W such that ψ(ki, kj) = 0 for i 6= j. Under the identification
of W with the corresponding subspace in the Clifford algebra A(W ), put ξ =
k1k2k3 ∈ A(W )×; then F + Fξ is the center of A(W ). We see that A+(W ) =
F+Fk1k2+Fk1k3+Fk2k3 andWξ = Fk1k2+Fk1k3+Fk2k3. By [9, Theorem
2.8 (ii)], A+(W ) is a quaternion algebra over F ; the main involution coincides
with the canonical involution ∗ restricted to A+(W ). Then the mapping x 7−→
xξ gives an F -linear isomorphism of W onto A+(W )◦ such that (xξ)(xξ)∗ =
ξξ∗ψ[x] for x ∈W . Putting ν[y] = yy∗ for y ∈ A+(W ), we have an isomorphism

(W, ψ) ∼= (A+(W )◦, (ξξ∗)−1ν◦) via x 7−→ xξ. (1.8)

We note that ξξ∗ ∈ det(ψ)F×2, since ξξ∗ = ψ[k1]ψ[k2]ψ[k3] ∈ F×.
Let G+(W ) be the even Clifford group of (W, ψ) as in (1.1) and τ the homomor-
phism defined in (1.2). By the definition of A+(W )◦, α−1A+(W )◦α = A+(W )◦

for α ∈ A+(W )×. Hence we have G+(W ) = A+(W )×. Moreover, under the
isomorphism (1.8) we can understand that

xτ(α) = α−1xξαξ−1

for x ∈W and α ∈ A+(W )×.
Now, the pair (A+(W ), ν) can be viewed as a quaternary quadratic space
over F . We note that ν(x, y) = 2−1TrA+(W )/F (xy

∗) for x, y ∈ A+(W ).
For an integral lattice N in W with respect to ψ, we consider the order
A+(N) in A+(W ) defined by (1.4). Its discriminant d(A+(N)) is given by
[A+(N )̃ /A+(N)] = d(A+(N))2, where A+(N )̃ is defined by (1.3) with ν. By
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[4, Lemma 1.1], d(A+(N)) = 2−1[Ñ/N ]. It is noted that if the order A+(N) is
maximal in A+(W ) for an integral lattice N in (W, ψ), then N is g-maximal
with respect to ψ. The converse is not true; namely, in general, A+(N) is not
maximal even if N is a maximal lattice.

2 Orthogonal complements in quaternary spaces

2.1 Invariants and discriminant ideals

Let (V, ϕ) be a 4-dimensional quadratic space over a number field F . The
characteristic algebra Q(ϕ) is determined by A(ϕ) ∼= M2(Q(ϕ)) by definition.
Set B = Q(ϕ) and K = F (

√
δ) with δ = det(ϕ). The core dimension tv of

(V, ϕ) at v ∈ h is determined by

tv =





0 if Fv(
√
δ) = Fv and Q(ϕv) =M2(Fv),

4 if Fv(
√
δ) = Fv and Q(ϕv) is a division algebra,

2 if Fv(
√
δ) 6= Fv.

(2.1)

This can be seen from [11, §3.2] and the proof of [11, Lemma 3.3].
For h ∈ V such that ϕ[h] = q 6= 0 we put

W = (Fh)⊥ = {x ∈ V | ϕ(x, h) = 0}. (2.2)

Then (W, ψ) is a nondegenerate ternary quadratic space over F with the re-
striction ψ of ϕ to W and (V, ϕ) = (W, ψ) ⊕ (Fh, ϕ|Fh). The invariants of
(W, ψ) are given by {3, F (√−δq), Q(ψ), {sv(ψ)}v∈r}, which are independent
of the choice of h so that ϕ[h] = q. The characteristic algebra Q(ψ) = A+(W )
is determined by the local algebras Q(ψv) for all primes v of F . Then by [2,
Theorem 1.1 (1)], Q(ψv) =M2(Fv) holds exactly in the following cases:

δ ∈ F×2
v and v ∤ DB,

δ 6∈ F×2
v , v ∤ DB, and q ∈ κv[K×

v ],

δ 6∈ F×2
v , v | DB, and q 6∈ κv[K×

v ],

v ∈ r, qv > 0, and sv(ϕ) = 0, 2,

v ∈ r, qv < 0, and sv(ϕ) = 0, −2,
v ∈ a such that v 6∈ r,

where κv is the norm form of Kv. It should be noted that

M2(Q(ϕ)) ∼= Q(ψ)⊗F {K, q}, (2.3)

where F is a number field or its completion and {K, q} is the quaternion algebra
over F defined in [4, (1.12)] if K 6= F ; we set {K, q} = M2(F ) if K = F (see
also [9, §1.10]). This (2.3) can be seen from [11, Theorem 7.4 (i)]. The index
at v ∈ r is given by sv(ψ) = sv(ϕ)−1 if qv > 0 and sv(ψ) = sv(ϕ)+1 if qv < 0.
The core dimension of (W, ψ) at v ∈ h is determined by (1.7).
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The Clifford algebra A(W ) can be viewed as a subalgebra of A(V ) with
the restriction ψ. Then A+(W ) = {x ∈ A+(V ) | xh = hx} and
G+(W ) = {α ∈ G+(V ) | αh = hα} by [9, Lemma 3.16]. The canonical
involution of A(W ) coincides with ∗ of A(V ) restricted to A(W ). In particular,
such an involution ∗ gives the main involution of the quaternion algebra
A+(W ).

Let L and M be g-maximal lattices in V and W with respect to ϕ and ψ,
respectively. The discriminant ideals of ϕ and ψ are given as follows:

[L̃/L] = DK/F e
2, (2.4)

[M̃/M ] = 2a−1D2
Q(ψ) ∩ 2a, (2.5)

where e is the product of all the prime ideals which are ramified in B and which
do not ramify in K; we understand DK/F = g if K = F ; we put δqg = ab2

with a squarefree integral ideal a and a g-ideal b of F . These (2.4) and (2.5)
can be obtained by applying [11, Theorem 6.2] to (V, ϕ) and the complement
(W, ψ).
The intersection L ∩W is an integral g-lattice in W with respect to ψ. It can
be seen that [(L ∩W )̃ /L ∩W ] = [M/L ∩W ]2[M̃/M ] and [M/L ∩W ] is an
integral ideal, which is independent of the choice of M ; see [2, Lemma 2.2 (6)].
Moreover there is a g-ideal b(q) of F such that

[M/L ∩W ] = b(q)(2ϕ(h, L))−1 (2.6)

by [2, Theorem 4.2]. We note that 2ϕ(h, L) must contain b(q) and that
2ϕ(h, L) ⊂ g if h ∈ L. The ideal b(q) is determined by

2q[L̃/L] = b(q)2[M̃/M ] (2.7)

(cf. [2, (4.1)]). Combining these, we obtain [(L ∩ W )̃ /L ∩ W ] =

2q[L̃/L](2ϕ(h, L))−2. Now to L∩W we associate the order A+(L∩W ) defined
by (1.4). Its discriminant is given by

d(A+(L ∩W )) = 2−1[(L ∩W )̃ /L ∩W ] = q[L̃/L](2ϕ(h, L))−2. (2.8)

It is noted that the discriminant of A+(W ) divides q[L̃/L](2ϕ(h, L))−2. We
also note that if d(A+(L ∩W )) is squarefree, then 2ϕ(h, L) must be b(q) in
(2.6), that is, L ∩W is maximal in W .

For our later use, let us state a weak Witt decomposition of the local space
(V, ϕ)v whose core dimension tv is 0 or 2. We fix a nonarchimedean prime v
of F and drop the subscript v. Let L be a g-maximal lattice in V with respect
to ϕ. We first note that ϕ is isotropic as t is 0 or 2. Let K be the discriminant
algebra of ϕ defined by K = F × F if t = 0 and by K = F (

√
det(ϕ)) if t = 2;

also let κ be the norm form defined by 2κ(x, y) = κ[x + y] − κ[x] − κ[y] and
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κ[(a, b)] = ab for x, y, (a, b) ∈ K if t = 0, and by 2κ(x, y) = xyρ + xρy for
x, y ∈ K with a nontrivial automorphism ρ of K over F if t = 2. Because K
is embeddable in A+(V ), we identify K with the image of it. Then there is a
weak Witt decomposition as follows (cf. [4, (1.19) and (1.20)]):

V = Kg ⊕ (Fe+ Ff), L = rg + (ge + gf),

(Kg, ϕ) ∼= (K, cκ) via xg 7−→ x (2.9)

with some elements e and f of V such that ϕ[e] = ϕ[f ] = 0 and 2ϕ(e, f) = 1,
and g ∈ V such that g2 = c ∈ F×. Here r = g× g if t = 0 and r is the maximal
order of K if t = 2. We may assume that c = 1 if t = 0, c ∈ g× if (K/p) = −1
and χ(Q(ϕ)) = +1, c ∈ πg× if (K/p) = −1 and χ(Q(ϕ)) = −1, and c ∈ g× if
(K/p) = 0. We also note that A+(Kg) = K and xg = gx∗ for x ∈ K, where
(a, b)∗ = (b, a) for (a, b) ∈ K if t = 0 and the involution ∗ gives a nontrivial
automorphism of K over F if t = 2.

2.2 The genus of L ∩W
Let (V, ϕ) be a quaternary quadratic space over a number field F and (W, ψ)
as in §2.1 with a fixed element h of V such that ϕ[h] 6= 0.

Lemma 2.1. Let L be a g-maximal lattice in V with respect to ϕ. Then A+(L∩
W ) = A+(L) ∩ A+(W ) for every h ∈ V such that ϕ[h] 6= 0. The discriminant
of A+(L ∩W ) is given by (2.8).

This follows from the similar result [4, Lemma 3.2] on local orders A+(Lv∩Wv)
by localization. We next restate [4, Corollary 2.2] which is a conclusion from
the main result of [4]:

Theorem 2.2. Let (V, ϕ) be a quaternary quadratic space over a number field F
and L a g-maximal lattice in V with respect to ϕ. For h ∈ V such that ϕ[h] 6= 0
put W = (Fh)⊥ and let ψ be the restriction of ϕ to W . Put o = A+(L ∩W ).
Then C(L ∩W ) = τ(T (o)) and Γ(L ∩W ) = τ(Γ∗(o)) hold. Consequently, the
map N 7−→ A+(N) gives a bijection of the SOψ(W )-classes in the SOψ(W )-
genus of L ∩W onto the conjugacy classes in the genus of o which is the set
{α−1oα | α ∈ A+(W )×A}.

3 An order associated with L ∩W

3.1 The local case

We first recall some general notation and results, following [9, §8 Part I]. For
a quadratic space (V, ϕ) over a local field F , take a g-maximal lattice L in V
with respect to ϕ. We define a subgroup JV of G+(V ) by

JV = {α ∈ G+(V ) | τ(α) ∈ C(L), αα∗ ∈ g×}. (3.1)
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Put EV = G1(V ) ∩ JV , where G1(V ) = {α ∈ G+(V ) | αα∗ = 1} is the spin
group of ϕ. If the dimension of V is even more than 2, then by virtue of [9,
Theorem 8.9] specialized to this case,

[C(L) : τ(JV )] =

{
1 if t = 0, or t = 2, (K/p) = −1, and Q(ϕ) =M2(F ),

2 otherwise,

(3.2)

where t is the core dimension of (V, ϕ) and K = F (
√
δ) is the discriminant

field of ϕ. If the dimension of V is odd more than 1, then by [9, Theorem 8.9]
and [12, Theorem 1.8 (ii)],

[C(L) : τ(JV )] =

{
1 if t = 1 and δ ∈ g×F×2,

2 otherwise.
(3.3)

Let (V, ϕ) be a quaternary quadratic space over F . For h ∈ V such that
ϕ[h] = q 6= 0, put W = (Fh)⊥ and let ψ be the restriction of ϕ to W . Let
K = F (

√
δ) be the discriminant field of ϕ. Also let L and M be g-maximal

lattices in V and W with respect to ϕ and ψ, respectively. We define JV in
G+(V ) by (3.1) with L and JW in G+(W ) with M . Let S+

V (resp. S+
W ) be the

order in A+(V ) (resp. A+(W )) generated by EV and A+(L) (resp. by EW and
A+(M)) except the case where t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1 (resp.
where t = 0 and q ∈ πg×F×2, or t = 2, δq ∈ πg×F×2, and Q(ϕ) =M2(F )); in
which cases we put

S+
V = A+(V ) ∩ SV if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1, (3.4)

S+
W = A+(W ) ∩ SW if

{
t = 0 and q ∈ πg×F×2,

t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ),
(3.5)

where SV (resp. SW ) is a unique maximal order in A(V ) (resp. A(W )) contain-
ing EV and A(L) (resp. EW and A(M)) given by [9, Theorem 8.6 (i)]. By [9,
Theorem 8.6 (ii)] these S+

V and S+
W are maximal orders except in cases (3.4)

and (3.5). It should be noted that we can prove this fact in a similar way to
the proof of [9, Theorem 8.6 (ii)] even for the case which does not satisfy the
assumption [9, (8.1)]. For the same reason we also see that SW = A(M) in
case (3.5). In all cases,

JV = G+(V ) ∩ (S+
V )

×, (3.6)

JW = G+(W ) ∩ (S+
W )× = (S+

W )×. (3.7)

In fact, [9, Proposition 8.8 (ii)] together with G+(W ) = A+(W )× implies (3.7)
except in case (3.5). As for (3.5), there is an order in A(W ) containing JW and
M by [9, Lemma 8.4 (ii)]. In view of the uniqueness of SW and EW ⊂ JW , SW
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contains JW and M , and hence [9, Proposition 8.8 (i)] is applicable to the case
(3.5). This proves (3.7). Similarly we have (3.6).
Now, A+(W ) = {x ∈ A+(V ) | xh = hx} and G+(W ) = {α ∈ G+(V ) | αh =
hα} as mentioned in §2.1. It can be seen that

G+(W ) ∩ JV = (A+(W ) ∩ S+
V )

×. (3.8)

Thus G+(W ) ∩ JV is the unit group of an order A+(W ) ∩ S+
V in A+(W ).

Lemma 3.1. In the above setting the following assertions hold:

(1) [S+
W /A

+(M)] is given by





p if t = 4 and q ∈ g×F×2,

or t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1,
g otherwise.

(3.9)

Here S+
W may or may not be maximal when t = 0 and q ∈ πg×F×2 or

when t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ).

(2) Assume that q ∈ g×F×2 if t = 2, K/F is unramified, and Q(ϕ) is a
division algebra. Then [A+(W ) ∩ S+

V /A
+(L ∩W )] is given by





p if t = 4 and q ∈ g×F×2,

or t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,
g otherwise.

(3.10)

Proof. Let s be the core dimension of (W, ψ). In view of (1.7), (2.3), and (2.1),
we observe that

s = 1 and δq ∈ πg×F×2 ⇐⇒
{
t = 0 and q ∈ πg×F×2,

t = 2, δq ∈ πg×F×2, and Q(ψ) =M2(F ),

(3.11)

s = 3 and δq ∈ g×F×2 ⇐⇒
{
t = 4 and q ∈ g×F×2,

t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1.
(3.12)

Then we can verify that

S+
V = A+(L) if

{
t = 0,

t = 2 except the case (K/p) = −1 and χ(Q(ϕ)) = −1,
(3.13)

S+
W = A+(M)⇐⇒

{
s = 1,

s = 3 and δq ∈ πg×F×2.
(3.14)
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In fact, if s = 1 and δq ∈ πg×F×2, then the ‘if’-part of (3.14) follows from
(3.11), (3.5), and SW = A(M). If s = 3 and δq ∈ πg×F×2, then S+

W = A+(M)
because the discriminant of A+(M) is p. If s = 3 and δq ∈ g×F×2, then since
S+
W is a maximal order in the division algebra A+(W ), it has discriminant p.

Note that the discriminant of A+(M) is p2. Hence S+
W 6= A+(M). Further,

observing A+(M) ⊂ S+
W ⊂ (S+

W )˜⊂ A+(M)˜and applying [2, Lemma 2.2 (3)]
with the norm form ν of A+(W ), we have [S+

W /A
+(M)] = p. The remaining

parts follow from [9, Theorem 8.6 (vi)].
From (3.14) and (3.12) we see that

S+
W 6= A+(M)⇐⇒

{
t = 4 and q ∈ g×F×2,

t = 2, δq ∈ g×F×2, and χ(Q(ψ)) = −1.

In this case [S+
W /A

+(M)] = p, which proves (1).
To prove (2), it is sufficient to observe the two cases that t = 4 or that t = 2,
(K/p) = −1, and χ(Q(ϕ)) = −1 by (3.13) and Lemma 2.1.
If t = 4 and q ∈ πg×F×2, then A+(L ∩W ) ⊂ A+(W ) ∩ S+

V ⊂ S+
W = A+(M).

Thus A+(W ) ∩ S+
V = A+(L ∩W ) because L ∩W is maximal.

Suppose that t = 4 and q ∈ g×F×2. Then A+(L ∩ W ) has discriminant p2

and by Lemma 2.1, A+(L ∩W ) ⊂ A+(W ) ∩ S+
V ⊂ S+

W in the division algebra
A+(W ). We employ the setting and notation in the case where q0 ∈ g× and
(K1/p) = 0 in [4, §4.4]. In [4, (3.31)] observing (g2g3)(g2g3)

∗ ∈ π2g×, we set

O = g+ gg1g2 + gg1g3 + gπ−1g2g3. (3.15)

This is an order in A+(W ) which contains but does not coincide with A+(L ∩
W ). Hence O is a unique maximal order S+

W in A+(W ). Now in the present
setting, (V, ϕ) = (B, β) and L is a unique maximal order o in B = Q(ϕ) with
the norm form β. To see the order S+

V in A+(V ), we here recall an F -linear
mapping p defined in [9, §7.4 (B)]:

p : V −→M2(B) via p(x) =


 0 x

xι 0


 ,

where ι is the main involution of B. Then A+(V ) and S+
V are given by

A+(V ) =






x 0

0 y


 | x, y ∈ B



 , S+

V =






x 0

0 y


 | x, y ∈ o



 .

Under the identification of V with p(V ) and of W with p(W ), A+(L∩W ) and
S+
W are given by [4, (3.31)] and (3.15), respectively. Then we see that

π−1g2g3 =
1

π


 0 g2

gι2 0




 0 g3

gι3 0


 =


π

−1g2g
ι
3 0

0 π−1gι2g3


 ,

β[π−1g2g
ι
3] = π−2 · πac · π2−2(κ−k)(1− c) ∈ g×.
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Thus both π−1g2g
ι
3 and π−1gι2g3 belong to o, so that π−1g2g3 ∈ S+

V . Therefore
S+
V contains S+

W , which implies that A+(W ) ∩ S+
V is the maximal order S+

W .
For the other cases S+

W can be observed in a similar manner; we have then

S+
W =





g+ g1Bω + g1B(vω) + gπ−1ω(vω) if (K1/p) = −1 and p ∤ 2,
g+ g1Bω + g1B(uω) + gπ−1ω(uω) if (K1/p) = −1 and p | 2,
g+ g

√
sω + g

√
s(vω) + gπ−1ω(vω) if (K1/p) = 1.

Here the notation is the same as in each case of [4, §3.4]. ConsequentlyA+(W )∩
S+
V = S+

W in each case. This settles the case where t = 4 and q ∈ g×F×2.
Suppose that t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. In this case S+

V is defined
by (3.4) with the maximal order SV in A(V ). Let q ∈ π2ℓg× with ℓ ∈ Z. Then
b(q) = pℓ as was seen in the case of q 6∈ ϕ[Kg] in [4, §3.2] with g2 ∈ πg× in
(2.9). Since A+(W ) is a division algebra, S+

W is a unique maximal order in
A+(W ) of discriminant p. We have by (2.8),

A+(L ∩W ) ⊂ A+(W ) ∩ SV ⊂ S+
W ,

p2ℓ+2(2ϕ(h, L))−2 ⊂ d(A+(W ) ∩ SV ) ⊂ p. (3.16)

Now put 2ϕ(h, L) = pm, which satisfies m ≤ ℓ. We observe that qπ−me +
πmf ∈ L[q, 2−1pm] = hC(L) by (1.6) with the same notation as in the proof
of [4, Lemma 3.1]. Then identifying W with that in [4, (3.1)] and employing
the isomorphism Ψ of A(V ) in the proof of [4, Lemma 3.1], we can find the
structure of A+(W ) ∩ SV as follows:

Ψ(A+(W ) ∩ SV ) = r+ π−mrη, (3.17)

where r = g[ξ] is the maximal order of K and η is given by [4, (3.3)]. From
this together with [4, (3.4)] we have [A+(W ) ∩ SV /A+(L ∩W )] = [r/f] = p,
where f = g + g2gξ. To see (3.17), we recall by [9, Theorem 8.6 (iii)] that
Ψ(SV ) = M2(Q), where Q = r + rg is a maximal order in the division algebra
Q(ϕ) = A(Kg) = K +Kg. Then (3.17) can be seen from this and [4, (3.2)].
This completes the proof.

Lemma 3.2. Let the notation be the same as in Lemma 3.1 with h and L. Then
the following assertions hold:

(1) Define an order O in A+(W ) by

O =





S+
W if t = 4,

A+(W ) ∩ SV if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,
A+(L ∩W ) otherwise.

(3.18)

Then G+(W ) ∩ JV = O×.
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(2) Assume that q = ϕ[h] ∈ g×F×2 and 2ϕ(h, L) = b(q) if t = 2, K/F is
unramified, and Q(ϕ) is a division algebra. Let O be the order defined by
(3.18). Then O is a unique order in A+(W ), containing A+(L ∩W ), of
discriminant




p if t = 4,

or t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1,
q[L̃/L](2ϕ(h, L))−2 otherwise.

(3.19)

In particular, O is a unique maximal order in the division algebra A+(W )
when t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. Moreover, if L ∩W ⊂M ,
then O ⊂ S+

W .

Proof. To prove (1), let O be the order given by (3.18). From Lemma 3.1 it
can be seen that O = A+(W )∩S+

V . Thus we have G
+(W )∩JV = O× by (3.8),

which proves (1).
To prove (2), by Lemma 3.1 (2) we see that A+(W ) ∩ S+

V 6= A+(L∩W ) if and
only if t = 4 and q ∈ g×F×2 or if t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1. If
t = 4 and q ∈ g×F×2, then A+(W ) ∩ S+

V = S+
W as seen in the proof of Lemma

3.1 (2). If t = 2, (K/p) = −1, and χ(Q(ϕ)) = −1, then, by our assumption,
q ∈ π2ℓg× and 2ϕ(h, L) = b(q) = pℓ with ℓ ∈ Z. Thus applying (3.16) to
m = ℓ, we have p2 ⊂ d(A+(W )∩SV ) ⊂ p. Because A+(W )∩SV 6= A+(L∩W ),
A+(W ) ∩ SV must be maximal in A+(W ). Consequently, if O 6= A+(L ∩W ),
it is a maximal order which is uniquely determined by discriminant p. As for
the case of O = A+(L ∩W ), the discriminant is given by (2.8). Summing up
these, we have the uniqueness of O. To prove the last assertion, suppose that
L ∩W ⊂ M . Then A+(L ∩W ) ⊂ A+(M) ⊂ S+

W , which shows O ⊂ S+
W when

O = A+(L∩W ). If O 6= A+(L∩W ), then O is maximal in A+(W ). Since S+
W

is also maximal, we have O = S+
W . Hence O ⊂ S+

W holds if L ∩W ⊂M . This
proves (2).

3.2 The global case

Let (V, ϕ) and (W, ψ) be the quadratic spaces over a number field F in the
setting of §2.2 with an element h of V such that ϕ[h] = q ∈ F×. Let L and M
be g-maximal lattices in V and W with respect to ϕ and ψ, respectively. Put

JV = G+(V )a
∏

v∈h

JVv , JW = G+(W )a
∏

v∈h

JWv , (3.20)

where JVv and JWv are given in §3.1. We have an order S+
W in A+(W ) deter-

mined by S+
Wv

for all v ∈ h, where S+
Wv

is the order in A+(Wv) given in §3.1;
notice that S+

Wv
= A+(Mv) for almost all v.

Let us here insert a remark on the order in A+(W ) given in [12, Lemma 5.3
(ii)]. By applying that lemma to M , we have an order O0 containing A+(M).
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Then [(O0)v/A
+(Mv)] is the same ideal as in (3.9) for each v ∈ h. This can be

seen in the proof of [12, Lemma 5.3 (ii)]. Hence the order O0 coincides with
S+
W in the present situation.

Proposition 3.3. Let the notation be the same as above with h ∈ V and
L. Also let K = F (

√
δ) be the discriminant field of ϕ. Then the following

assertions hold:

(1) Let O be the order in A+(W ) whose localization at v ∈ h is the local order
defined by (3.18). Then

G+(W )A ∩ JV = A+(W )×a O
×
h . (3.21)

(2) T (A+(M)) = T (S+
W ) and JW = A+(W )×a (S

+
W )×h . Moreover JW ⊂

T (A+(M)) and G+(W )A ∩ JV ⊂ T (A+(L ∩W )).

(3) Assume that q = ϕ[h] ∈ g×v F
×2
v and 2ϕ(h, L)v = b(q)v for every v ∈ h

such that tv = 2, Kv/Fv is unramified, and Q(ϕ)v is a division algebra.
Let O be the order given in (1). Then O is a unique order in A+(W ),
containing A+(L ∩W ), of discriminant

q[L̃/L](2ϕ(h, L))−2f−1. (3.22)

Here f is the product of all the prime ideals p of F such that tp = 4 and
q ∈ g×p F

×2
p , or that tp = 2, Kp/Fp is unramified, and Q(ϕ)p is a division

algebra.

(4) Under the assumptions of (3) suppose L ∩W ⊂ M . Then O ⊂ S+
W and

G+(W )A ∩ JV ⊂ JW .

Proof. To prove (1), we see that

G+(W )A ∩ JV =

= G+(W )A ∩ (G+(V )a
∏

v∈h

(JV )v) = G+(W )a
∏

v∈h

(G+(W )v ∩ (JV )v).

Since G+(W )v ∩ (JV )v = O×
v by Lemma 3.2 (1), we have (3.21).

From (3.14), (S+
W )v is generated by G1(W )v and A+(M)v if δ ∈ g×F×2

v and
χ(Q(ψ)v) = −1, and (S+

W )v = A+(M)v otherwise v ∈ h. Since

α−1G1(W )vα = G1(W )v for every α ∈ A+(W )×v ,

we have T (A+(M)) ⊂ T (S+
W ). Conversely, for α ∈ A+(W )×A

α−1S+
Wα = S+

W =⇒Mτ(α) =M =⇒ α−1A+(M)α = A+(M).

This is because C(M) = τ(T (S+
W )) by [12, Lemma 5.4]. Thus T (A+(M)) =

T (S+
W ). Let x be an element of JW . Since τ(x) ∈ τ(JW ) ⊂ C(M), together
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with C(M) = τ(T (A+(M))), there is an element y of T (A+(M)) such that
τ(x) = τ(y). Hence x = ay with some a ∈ F×

A . As F×
A ⊂ T (A+(M)), we

have JW ⊂ T (A+(M)). Similarly let x ∈ G+(W )A ∩ JV . Since τ(x) ∈ SOψA ∩
τ(JV ) ⊂ C(L∩W ), together with C(L∩W ) = τ(T (A+(L∩W ))) by Theorem
2.2, there is an element y of T (A+(L ∩W )) such that τ(x) = τ(y). From this,
noticing F×

A ⊂ T (A+(L∩W )), we have G+(W )A ∩JV ⊂ T (A+(L∩W )). This
proves (2).
To prove (3), we take the order O of (1). Since Lemma 3.2 (2) is applicable
to Ov for each v ∈ h under the assumption of (3), Ov contains A+(L ∩W )v
and has the discriminant given by (3.19). Also when Ov 6= A+(L ∩ W )v,
[Ov/A

+(L ∩W )v] = pv by Lemma 3.1 (2). Thus by applying [2, Lemma 2.2
(3)] to O and A+(L ∩W ) with the norm form ν of A+(W ), we have

[Õ/O] = [A+(L ∩W ) /̃A+(L ∩W )][O/A+(L ∩W )]−2

= (q[L̃/L](2ϕ(h, L))−2)2
∏

p|f

p−2,

where f is the ideal in the statement of (3). This gives (3.22). Now, let O′

be an order in A+(W ), containing A+(L∩W ), whose discriminant is given by
(3.22). Then the localization O′

v at v ∈ h contains A+(L ∩W )v and has the
discriminant of (3.19). By Lemma 3.2 (2), O′

v = Ov for every v. Hence we
have O′ = O, which shows the uniqueness of O.
Keeping the assumptions of (3), let L ∩W ⊂ M . Then applying Lemma 3.2
(2) with localization, we have O ⊂ S+

W . Thus G+(W )A ∩ JV ⊂ JW by (3.8)
and (3.7). This proves (4).

Theorem 3.4. Let the notation and assumption be the same as in Proposition
3.3 (3) and O the order in A+(W ) given in that proposition. Then the following
assertions hold:

(1) C(L ∩W ) = τ(T (O)) and Γ(L ∩W ) = τ(Γ∗(O)).

(2) The map (L ∩ W )τ(α) 7−→ α−1Oα gives a bijection of the SOψ(W )-
classes in the SOψ(W )-genus of L∩W onto the conjugacy classes in the
genus of O which is the set {α−1Oα | α ∈ A+(W )×A}.

(3) The type number of O equals the type number of A+(L ∩W ) and conse-
quently is equal to the class number of the genus of L∩W with respect to
SOψ(W ).

Proof. In view of Lemma 3.1, Ov 6= A+(L ∩ W )v if and only if tv = 4 and
q ∈ g×v F

×2
v or if tv = 2, (K/v) = −1, and χ(Q(ϕ)v) = −1 for v ∈ h. Since

Lemma 3.2 (2) is applicable in our assumption, Ov is a unique maximal order in
the division algebra A+(W )v in both cases. Furthermore, (L∩W )v is a unique
maximal lattice in the anisotropic space (W, ψ)v becuase 2ϕ(h, L)v = b(q)v.
Thus it can be found that

α−1Oα = O⇐⇒ α−1A+(L ∩W )α = A+(L ∩W )
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for α ∈ A+(W )×A. This combined with Theorem 2.2 proves (1).
To prove (2), let N be an arbitrary g-lattice in the genus of L ∩W . Since N
is integral we have the order A+(N) in A+(W ). Taking α ∈ A+(W )×A so that
N = (L∩W )τ(α), we can put O(N) = α−1Oα in A+(W ). In fact, if N = (L∩
W )τ(α′) with some α′ ∈ A+(W )×A, then (L ∩W )τ(α(α′)−1) = L ∩W , whence
α(α′)−1 belongs to T (A+(L ∩W )) = T (O) by (1). This shows (α′)−1Oα′ =
α−1Oα, namely, O(N) is independent of the choice of α. Moreover this is a

unique order of discriminant q[L̃/L](2ϕ(h, L))−2f−1 containing A+(N), where
f is the ideal in (3.22). Indeed, since O contains A+(L ∩ W ) and has the
discriminant given by (3.22), the order O(N) contains A+(N) and has the
same discriminant. The uniqueness of O(N) can be reduced to that of O.
Our assertion (2) can be verified by using this fact and (1). Assertion (3) is a
consequence from (2). This completes the proof.

4 Quadratic Diophantine equations in four variables

4.1 Quadratic Diophantine equations

Let (V, ϕ) be a quadratic space of dimension n over a number field F and L a
g-lattice in V . We recall that

L[q, b] = {x ∈ V | ϕ[x] = q, ϕ(x, L) = b},

and this set is stable under Γ(L).
For h ∈ V such that ϕ[h] = q 6= 0 we set (W, ψ) as in (2.2). Assume that L is
g-maximal with respect to ϕ and n > 2. Then

∑

i∈I

# {Li[q, b]/Γ(Li)} = #
{
SOψ \ SOψA/(SOψA ∩C(L))

}
, (4.1)

where b = ϕ(h, L), {Li}i∈I is a set of representatives for the SOϕ-classes in the
SOϕ-genus of L for which Li[q, b] 6= ∅, and SOψ is regarded as the subgroup
{γ ∈ SOϕ | hγ = h} of SOϕ. This is a consequence from the main theorem
of quadratic Diophantine equations due to Shimura [9, Theorem 11.6] (cf. also
[12, Theorem 2.2 and (2.7)]). For a g-lattice N in V we put

D(N) = {α ∈ Oϕ(V )A | Nα = N}, Γ·(N) = Oϕ(V ) ∩D(N)

as denoted in the Introduction. Then formula (4.1) is valid for
(Oϕ, Oψ, D(L), Γ·(Li), J) in place of (SOϕ, SOψ , C(L), Γ(Li), I) by [9,
Theorem 11.6 (iii) and (v)], where {Li}i∈J is a set of representatives for the
Oϕ-classes in the Oϕ-genus of L for which Li[q, b] 6= ∅ and Oψ is regarded
as the subgroup {γ ∈ Oϕ | hγ = h} of Oϕ. We note that the Oϕ-genus of L
coincides with the SOϕ-genus of L and that the class number of Oϕ relative
to D(L) equals the class number of SOϕ relative to C(L) when n is odd; see
[9, Lemma 9.23 (i)], for example.
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Now we pay attention to the following; if the number of the right-hand side of
(4.1) coincides with #{SOψ \SOψA/C(L∩W )}, then the left-hand side of (4.1)
is given by the class number of the genus of L∩W . Concerning this, there is a
result [9, Proposition 11.13] for odd-dimensional spaces and also its analogue
[2, Proposition 4.4] for even-dimensional spaces whose discriminant fields are
the base fields. In Proposition 4.3 below we shall prove another analogue of [9,
Proposition 11.13] to quaternary case.
As for the representatives of classes in the genus of L ∩W , by virtue of the
principle in [9, Theorem 11.6 (i)], we have the following:

Lemma 4.1. Let the notation be as above. Fix an element h of L[q, b] (q 6= 0)
and set (W, ψ) as in (2.2). Then the map

kΓ(Li) 7−→ (Li ∩ (Fk)⊥)γ−1SOψ

defines a well-defined surjection of the union of the sets Li[q, b]/Γ(Li) for i ∈ I
onto the SOψ-classes in the SOψ-genus of L ∩ W with γ ∈ SOϕ such that
k = hγ for k ∈ Li[q, b] and i ∈ I. In particular, if SOψε(SOψA ∩ C(L)) =

SOψεC(L ∩ W ) for every ε ∈ SOψA, then the map is bijective. More-
over the assertions are true for (Oψ , J, Γ·(Li), D(L), D(L ∩W )) in place of
(SOψ , I, Γ(Li), C(L), C(L ∩W )).

Proof. For k ∈ Li[q, b] with i ∈ I there is γ ∈ SOϕ such that k = hγ as
ϕ[k] = ϕ[h] by [9, Lemma 1.5 (ii)]. We set L = Liαi with αi ∈ SOϕA. We may
assume that (αi)v = 1 for v ∈ a. Since h, k(αi)v ∈ Lv[q, bv] for v ∈ h, by
(1.6), h = k(αi)vαv with some αv ∈ C(Lv) for each v. Putting αv = γ−1

v

for v ∈ a, we have α ∈ C(L) whose component is αv for every prime v.
Then by [9, Theorem 11.6 (i)] the map k 7−→ γαiα induces a well-defined

bijection of
⋃
i∈I Li[q, b]/Γ(Li) onto SOψ \ SOψA/(SOψA ∩ C(L)). Obviously

γαiα 7−→ (L ∩W )(γαiα)
−1 gives a surjection of SOψ \ SOψA/(SO

ψ
A ∩ C(L))

onto the SOψ-classes in the genus of L ∩ W . On the other hand, we can
consider a g-lattice Li ∩ (Fk)⊥ in the complement (Fk)⊥, which is isomorphic
to (Li∩(Fk)⊥)γ−1 inW under γ−1. Then by localization (L∩W )v(γαiα)

−1
v =

{Lv(αi)−1
v ∩ (Fvh)

⊥(αiα)
−1
v }γ−1 = (Li ∩ (Fk)⊥)vγ

−1 for every v ∈ h. This
determines (L ∩W )(γαiα)

−1 = (Li ∩ (Fk)⊥)γ−1. We have thus the desired
surjection. Clearly this map is bijective under the assumption in the statement.
The assertions for Oϕ can be handled in a similar way.

Here we apply Lemma 4.1 to the quadratic form defined by the sum of five
squares; the result will be used in Section 5.3.
Let X = Q1

5 and define Φ by Φ[x] = x · tx for x ∈ X . The pair (X, Φ) defines a
quadratic space overQ whose invariants are {5, Q, B2,∞, 5}. These invariants
can be determined by [11, (Q.5)] because of (X, Φ) ∼= (B2,∞, β)⊕ (Qe, Φ|Qe)
with some e ∈ X so that Φ[e] = 1, where β is the norm form of B2,∞. Let Λ
be a Z-maximal lattice in (X, Φ). It is known that #{OΦ \ OΦ

A/D(Λ)} = 1;
see [9, §12.12], for example. By [9, Lemma 12.13 (i)], Λ[d, Z] 6= ∅ for every
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squarefree positive integer d. Fixing k0 ∈ Λ[d, Z], we put V = (Qk0)
⊥ and

L = Λ ∩ V . Then by [9, Theorem 12.14 (ii)], L is a Z-maximal lattice in
V with respect to the restriction ϕ of Φ to V . By virtue of (4.1) for OΦ,
#{Λ[d, Z]/Γ·(Λ)} = #{Oϕ\OϕA/(O

ϕ
A∩D(Λ))} holds. Suppose that d is an odd

prime number. Then [9, Proposition 11.13 (iii)] is applicable to k0 ∈ Λ[d, Z].
We have thus

Oϕε(OϕA ∩D(Λ)) = OϕεD(L) (4.2)

for every ε ∈ OϕA. Therefore #{Λ[d, Z]/Γ·(Λ)} equals the number of Oϕ-
classes in the Oϕ-genus of Z-maximal lattices in (V, ϕ). This result can be
found in [9, Theorem 12.14 (vi)]; the class number of SOϕ relative to C(L)
equals #{Λ[d, Z]/Γ(Λ)} by the same theorem. Moreover (V, ϕ) has invariants
{4, Q(

√
d), B2,∞, 4}, which can be seen by applying [2, Theorem 1.1 (2)] to

(X, Φ) and d.

In view of (4.2), by Lemma 4.1 we have a bijection

kΓ·(Λ) 7−→ (Λ ∩ (Qk)⊥)γ−1Oϕ (4.3)

of Λ[d, Z]/Γ·(Λ) onto the Oϕ-classes in the genus of L with some γ ∈ OΦ so
that k = k0γ for every odd prime number d. A method of determining the
set Λ[d, Z]/Γ·(Λ) is explained in [9, §12.15]. In that explanation the case of
d = 29 is treated and the result #{Λ[29, Z]/Γ·(Λ)} = 3 is obtained with explicit
representatives for Λ[29, Z]/Γ·(Λ). Hence the class number of Oϕ relative to
D(L) is equal to 3, as mentioned in the Introduction. In Section 5.3 we shall
list the representatives for Λ[d, Z]/Γ·(Λ) and the corresponding lattices under
the map (4.3) for d = 5, 13, 17, and 29.

4.2 Results for quaternary spaces

To apply our results in the previous section to quadratic Diophantine equations,
let us assume n = 4 in the setting of §4.1 and take an element h of L[q, b].
Under suitable conditions on q and b, we have an orderO defined in Proposition
3.3 (3). The order satisfies inequalities

t(O) ≤ #{SOψ \ SOψA/(SO
ψ
A ∩ C(L))} ≤ c(O). (4.4)

Here t(O) (resp. c(O)) is the type number (resp. the class number) of O. To
show (4.4), we observe that

SOψA ∩ τ(JV ) ⊂ SOψA ∩ C(L) ⊂ C(L ∩W ).

Since the kernel of τ is F×
A , the class number of O is more than #{SOψ \

SOψA/(SO
ψ
A ∩ τ(JV ))} by (3.21). Further by Theorem 3.4 the type number of

O equals #{SOψ \ SOψA/C(L ∩W )}. This proves (4.4).
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Corollary 4.2. Let the notation and assumption be as in Proposition 3.3 (3)
and O the order in A+(W ) defined in that proposition with an element h of
L[q, b]. Also let I (resp. J) be a set of representatives α for SOϕ \ SOϕA/C(L)
(resp. Oϕ\OϕA/D(L)) for which Lα−1[q, b] 6= ∅. Then the following inequalities
hold:

t(O) ≤
∑

α∈J

#
{
Lα−1[q, b]/Γ·(Lα−1)

}
≤

≤
∑

α∈I

#
{
Lα−1[q, b]/Γ(Lα−1)

}
≤ c(O).

Moreover, assume that 2ϕ(h, L)v contains p
[ν/2]
v with qgv = pνv for every v ∈ h

such that tv = 2 and Kv/Fv is ramified. Then the formula in [10, (1.9)] is
applicable to h and it can be given as follows:

∑

y

#
{
Lτ(y)−1[q, b]/τ(G+(V ) ∩ yJV y−1)

}
= c(O). (4.5)

Here y runs over a set of all representatives for G+(V )\G+(V )A/JV such that
G+(W )A ∩G+(V )yJV 6= ∅.

Proof. To prove the first assertion, we recall that #{SOψ \SOψA/C(L∩W )} =
#{Oψ \ OψA/D(L ∩ W )}, because W is odd-dimensional. Since OψA ∩ D(L)
is contained in D(L ∩ W ), by formula (4.1) for Oϕ, we have the first in-
equality. Here we may assume that {Lα−1}α∈J ⊂ {Lα−1}α∈I . Clearly
#
{
Lα−1[q, b]/Γ·(Lα−1)

}
≤ #

{
Lα−1[q, b]/Γ(Lα−1)

}
for every α ∈ J . Then

the desired inequalities follow from these and (4.4) combined with (4.1).

To prove (4.5), put q = q0π
2ℓ
v and 2ϕ(h, L)v = pmv with q0 ∈ g×v ∪ πvg×v and

ℓ, m ∈ Z for v ∈ h. In order to apply [10, (1.9)], we have to verify that
hC(L) = hτ(JV ) in VA = V ⊗F FA. In view of (3.2) it is sufficient to observe
the local cases where (i) tv = 4, (ii) tv = 2 and (K/v) = 0, (iii) tv = 2,
(K/v) = −1, and χ(Q(ϕ)v) = −1. Our argument is basically the same as in
[10, §4.3], and so we give only an outline of the proof to avoid a repetition of
the same argument. Put Cv = C(Lv) and Jv = JVv .

(i) Through an isomomorphism of Q(ϕ)v onto A+(W )v we have hCv = hτ(Jv)
in the same way as in §4.3 (i) of [10]. We note that Cv = SOϕv and C(Lv∩Wv) =
SOψv .

(ii) Assume that 2ϕ(h, L)v ⊃ pℓv. In a Witt decomposition of ϕ in (2.9) with
g2 ∈ g×v , take the same element ωv ∈ K×

v = G+(Kvg) as in §4.3 (ii) of [10].
We take kv = qπ−m

v e + πmv f ; then kvτ(ωv) = kv. In a similar manner to [10,
§4.3 (ii)] we have τ(ωv) ∈ Cv and ωv 6∈ Jv, from which it follows that kvCv =
kvτ(Jv). Since, by our assumption, kv ∈ Lv[q, 2−1pmv ], we have kv ∈ hCv by
(1.6). Thus the criterion [10, (1.10)] is applicable to kv; we have hCv = hτ(Jv).

(iii) In a Witt decomposition of ϕ in (2.9) with g2 ∈ πvg
×
v , we take ωv =
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g(qπ−m
v e−πmv f) ∈ A+(Vv)

× and kv = qπ−m
v e+πmv f . Then it can be seen that

ν(ωv) = ωvω
∗
v = −qg2 ∈ πvqg×v , kvτ(ωv) = kv,

Lvτ(ωv) = rvg + gvq
−1π2m

v f + gvqπ
−2m
v e.

Because m = ℓ by the assumption on (iii), we have ν(ωv) ∈ π2ℓ+1
v g×v and

Lvτ(ωv) = Lv. Hence kvCv = kvτ(Jv) by the same way as in §4.3 (iii) of [10].
Since kv ∈ Lv[q, 2−1pℓv] = hCv, by [10, (1.10)], we have hCv = hτ(Jv).
Accordingly hC(L) = hτ(JV ) holds. Therefore [10, (1.9)] is applicable and the
formula is given by

∑

y

#
{
Lτ(y)−1[q, b]/τ(G+(V ) ∩ yJV y−1)

}

= #
{
G+(W ) \G+(W )A/(G

+(W )A ∩ JV )
}
, (4.6)

where y runs over all representatives for G+(V ) \ G+(V )A/JV for which
G+(W )A∩G+(V )yJV 6= ∅. Since G+(W )A∩JV = A+(W )×a O

×
h by Proposition

3.3 (3), (4.6) equals the class number of O. Thus we obtain (4.5).

Let v be a prime of F in case (i), (ii), or (iii) of the proof of Corollary 4.2. As
can be seen in the proof, there is an element ωv of G

+(Vv) such that hτ(ωv) = h,
Lvτ(ωv) = Lv, and ωv 6∈ JVv . This together with (3.2) shows that

[SOψv ∩ C(Lv) : SOψv ∩ τ(JVv )] = [C(Lv) : τ(JVv )] (4.7)

for every v ∈ h under the two assumptions that 2ϕ(h, L)v ⊃ p
[ν/2]
v if (K/v) = 0

and that ν ∈ 2Z and 2ϕ(h, L)v = b(q)v if (K/v) = −1 and χ(Q(ϕ)v) = −1.
Here K is the discriminant field of ϕ and qgv = pνv. In the same assumptions
we also see that

SOψv ∩ τ(JVv ) = τ(O×
v ). (4.8)

These facts (4.7) and (4.8) are often useful in the application to quadratic
Diophantine equations with four variables.

As for formula (4.1) for Oϕ, we can state the following proposition:

Proposition 4.3. Let (V, ϕ) be a quadratic space of dimension 4 over a number
field F and K = F (

√
δ) the discriminant field of ϕ. For an element h of V

such that ϕ[h] = q 6= 0 put W = (Fh)⊥ and let ψ be the restriction of ϕ to W .
Identify Oψ(W ) with {γ ∈ Oϕ(V ) | hγ = h}. Let L be a g-maximal lattice in
V with respect to ϕ. Also let f1 be the product of all primes v ∈ h such that
2ϕ(h, L)v 6= b(q)v. Suppose that for v ∈ h,

(1) v ∤ 2 and ϕ(h, L)2v = qgv if (K/v) = 0 and χ(Q(ψ)v) = −1.

(2) qgv is a square ideal of Fv if (K/v) = −1 and χ(Q(ϕ)v) = −1.
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(3) f1 consists of the primes v such that tv = 0 or that v ∤ 2, (K/v) = −1,
χ(Q(ϕ)v) = +1, and qgv is a square ideal of Fv.

Here tv is the core dimension of ϕ at v. Let λ be the number of prime factors
of f1f2, where f2 is the product of all primes v ∈ h such that v ∤ f1, tv 6= 4,

(K/v) 6= 0, and qgv is not a square ideal of Fv. Then [D(L∩W ) : OψA∩D(L)] =

[C(L ∩W ) : SOψA ∩ C(L)] = 2λ. Moreover, if λ ≤ 1, then OψεD(L ∩W ) =

Oψε(OψA ∩D(L)) for every ε ∈ OψA.

Before stating the proof, we note a simple fact. Let G(V ) be the Clifford group
of ϕ. Then the homomorphism τ of (1.2) gives a surjection of G(V ) onto
Oϕ(V ), because V is even-dimensional.

Proof. In view of assumptions (2) and (3), we can take the order O in Propo-
sition 3.3 (3). Put qgv = pνvv with νv ∈ Z for v ∈ h. We note that v | f2 if and
only if tv = 0, v ∤ f1, and νv is odd, or if (K/v) = −1, v ∤ f1, and νv is odd.

Suppose v ∤ f1f2. Then (L ∩W )v is maximal in (W, ψ)v. If tv = 0, then ψv is
isotropic and δqgv is square, which is because νv must be even by v ∤ f2. Since
C(Lv) = τ(JVv ) by (3.2), we have SOψv ∩ C(Lv) = τ(O×

v ) by (4.8). Clearly
Ov = A+(L ∩W )v by calculating the discriminant. Note that C(Lv ∩Wv) =
τ(A+(Lv ∩Wv)

×) by [12, Lemma 5.4]. Hence we have C(Lv ∩Wv) = SOψv ∩
C(Lv). If tv = 4, then D(Lv) = Oϕv and C(Lv) = SOϕv . Also D(Lv∩Wv) = Oψv
and C(Lv ∩Wv) = SOψv as ψv is anisotropic. Hence we have D(Lv ∩Wv) =
Oψv ∩D(Lv) and C(Lv ∩Wv) = SOψv ∩C(Lv). Assume tv = 2 and (K/v) = −1.
Then δqgv must be square. If Q(ϕ)v = M2(Fv), then ψv is isotropic. In the
same way as in the case tv = 0 we see that C(Lv∩Wv) = SOψv ∩C(Lv). If Q(ϕ)v
is a division algebra, then ψv is anisotropic and A+(W )v is a division algebra.
Notice that C(Lv ∩Wv) = τ(A+(W )×v ) as Lv ∩Wv is maximal. Our order Ov

has discriminant pv by (3.22), whence it is maximal in A+(W )v. Observe that
A+(W )×v = F×

v (O×
v ∪ O×

v ω) with some ω ∈ A+(W )×v so that ω2 is a prime
element of Fv. Since SOψv ∩ τ(JVv ) = τ(O×

v ) by (4.8), we have [C(Lv ∩Wv) :
SOψv ∩ τ(JVv )] = 2. In view of (4.7) together with [C(Lv) : τ(JVv )] = 2 by
(3.2), SOψv ∩ C(Lv) must coincide with C(Lv ∩Wv). Assume (K/v) = 0. If
Q(ψ)v = M2(Fv), we take a Witt decomposition of ϕv in (2.9) with g ∈ Vv so
that g2 ∈ g×v . Then rvg is a maximal lattice in the core subspace (Kvg, ϕv).
Our assumption Q(ψ)v = M2(Fv) implies that there is an element k of Kvg
such that ϕv[k] = q = ϕ[h]. Since the lattice rvg ∩ (Fvk)

⊥ is maximal in the
complement (Fvk)

⊥ in Kvg as (Kvg, ϕv) is anisotropic, we have 2ϕv(k, rvg) =
b(q)v = 2ϕ(h, L)v. Thus [9, Proposition 11.12 (iv) and (v)] are applicable to
h. We have C(Lv ∩ Wv) = SOψv ∩ C(Lv) and D(Lv ∩ Wv) = Oψv ∩ D(Lv).
Similarly for the case where Q(ψ)v is a division algebra, under the assumption
(1), we have C(Lv ∩Wv) = SOψv ∩ C(Lv) and D(Lv ∩Wv) = Oψv ∩D(Lv).

Suppose v | f1. By assumption (3) such a prime satisfies either (i) tv = 0 or (ii)
v ∤ 2, (K/v) = −1, Q(ϕ)v =M2(Fv), and νv is even. In both cases (i) and (ii),
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Ov = A+(L ∩W )v and SOψv ∩ C(Lv) = τ(O×
v ). Moreover, we can prove that

T (Ov) = F×
v (O×

v ∪O×
v η) (4.9)

with some element η of A+(W )×v such that ηO×
v = O×

v η and ηη∗gv = gv
or ηη∗gv = pv according as νv is even or odd. This can be handled in a
similar way to the proof of [3, Theorem 3.1] for Case (i) and to [3, §3.4] for
Case (ii). (We will determine the index [A+(Mv)

× : A+(Lv ∩ Wv)
×] in a

subsequent paper, which may be used in the proof of (4.9).) We have therefore
[C(Lv ∩Wv) : τ(O

×
v )] = 2.

Suppose v | f2. Then (L∩W )v is maximal and Ov = A+(L∩W )v. If tv = 0, we
have SOψv ∩C(Lv) = τ(O×

v ). Since qgv is not square, by (3.5) and (3.7), JWv =
A+(Lv ∩Wv)

×. Hence [C(Lv ∩Wv) : τ(O×
v )] = 2 by (3.3). If (K/v) = −1,

then Q(ϕ)v must be M2(Fv) under the assumption (2) as νv is odd. Applying
(3.2) and (4.8), we have SOψv ∩C(Lv) = τ(O×

v ). Hence by the same way as in
the case tv = 0, [C(Lv ∩Wv) : τ(O

×
v )] = 2.

To prove [D(Lv ∩ Wv) : Oψv ∩ D(Lv)] = [C(Lv ∩ Wv) : SOψv ∩ C(Lv)], we
shall show that [Oψv ∩ D(Lv) : SOψv ∩ C(Lv)] = 2 because [D(Lv ∩ Wv) :
C(Lv ∩Wv)] = 2 by [9, Lemma 6.8]. It is sufficient to investigate the following
cases; (a) tv = 0, (b) (K/v) = −1 and χ(Q(ϕ)v) = +1, (c) (K/v) = −1 and
χ(Q(ϕ)v) = −1. In cases (a) and (b) we can verify the desired fact by the same

technique as in the proof of [9, Proposition 11.12 (v)]; see the case L̃ = L and
t 6= 1 in that proof. As for case (c), we first note νv ∈ 2Z by our assumption
(2); put ℓ = νv/2. Since (L ∩W )v must be maximal under assumption (3),
2ϕ(h, L)v = b(q)v = pℓv by (2.6) and (2.7). Now we take our setting and
notation to be those in Case (iii) of the proof of Corollary 4.2. By (1.6),
hα = kv with some α ∈ C(Lv). Under such an α we may identify h, (W, ψ)v,
and (L ∩W )v with kv, Kvg ⊕ Fv(qπ−ℓ

v e − πℓvf), and rvg + p−ℓv (qπ−ℓ
v e − πℓvf),

respectively. Looking at the lattice rvg in the subspace (Kvg, ϕv) of (V, ϕ)v,
we can find γ0 ∈ O(Kvg) such that det(γ0) = −1 and (rvg)γ0 = rvg by [9,
Lemma 6.8]. Extend γ0 to an element γ of GL(Vv) by setting γ to be the
identity map on (Kvg)

⊥. Then γ ∈ Oϕv , hγ = h, det(γ) = −1, and Lvγ = Lv.
This shows [Oψv ∩ D(Lv) : SO

ψ
v ∩ C(Lv)] = 2. Summing up all these results,

we obtain the first assertion.
To prove the second assertion, we borrow the idea of the proof of [9, Proposition
11.13 (ii)]. When there is no prime v dividing f1f2, we have D(L ∩ W ) =

OψA ∩D(L), and so our assertion is obvious. Hereafter we assume λ = 1. For

ε ∈ OψA put Λ = Lε−1, which is a g-maximal lattice in (V, ϕ). We consider
τ(h) of Oψ . Put a = ϕ[h](2ϕ(h, L))−2. Let c ∈ F×

A so that 2cϕ(h, L) = g;
then 2ϕv(cvh, Λv) = gv and ϕv[cvh]gv = ϕv[cvh]ϕv(2cvh, Λv)

−2 = av for every
v ∈ h.
Suppose av = gv. Then ϕv[cvh] ∈ g×v and 2ϕv(cvh, Λv) = gv. Hence cvh
belongs to Λv and also it is invertible in the order A(Λ)v. Since this order
contains Λv by definition, A(Λ)v ∩ Vv = Λv by [9, Lemma 8.4 (iii)]. Thus we
have Λvτ(h) = h−1A(Λ)vh ∩ Vv = Λv.
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Let v ∤ f1f2. If tv = 0 or (K/v) = −1, then qgv = b(q)2v as νv is even.
We have av = gv, whence Λvτ(h) = Λv. If tv = 4, then Λv is a unique
maximal lattice in the anisotropic space (V, ϕ)v. Hence Λvτ(h) = Λv. If
(K/v) = 0 and Q(ψ)v =M2(Fv), we take a Witt decomposition of ϕv as in the
same case of the proof of the first assertion with Λv in place of Lv. Because
2ϕv(h, Λv) = 2ϕ(h, L)v = b(q)v, by the same manner as in that proof, we can
find α ∈ C(Λv) so that hα = k with some k ∈ Kvg. Then τ(h) = ατ(k)α−1 by
[9, Lemma 3.8 (ii)]. We see that

Λvτ(h) = {(rvg)τ(k) + gveτ(k) + gvfτ(k)}α−1 = Λv.

If (K/v) = 0 and Q(ψ)v is a division algebra, then av = gv by assumption (1),
which leads Λvτ(h) = Λv.
Let v | f1f2. We take a weak Witt decomposition of ϕv as in (2.9) with Λv in
place of Lv. Put qv = ϕv[cvh] and k = qve+ f . We see that av = [M/L∩W ]2v
if v | f1 and νv ∈ 2Z, av = [M/L ∩W ]2vpv if tv = 0 and νv 6∈ 2Z, and av = pv
if v | f2 and (K/v) = −1, where M is a maximal lattice in (W, ψ). Since
qv ∈ av, it belongs to gv. Hence we have k ∈ Λv[qv, 2

−1gv]. By (1.6) there
is α ∈ C(Λv) so that (cvh)α = k. Moreover τ(k) = α−1τ(h)α by [9, Lemma
3.8 (ii)]. Then α gives an isomorphism of Wv onto W ′ = (Fvk)

⊥ such that
(Λv ∩Wv)α = Λv ∩W ′. Observe that Λv ∩W ′ = rvg+ gv(qve− f). Employing
[9, Lemma 3.10], we can find that

(Λv ∩W ′)τ(k) = {−x− a(qve− f) | x ∈ rvg, a ∈ gv} = Λv ∩W ′,

Λvτ(k) = {−x+ qvae+ q−1
v bf | x ∈ rvg, a, b ∈ gv} 6= Λv,

because qv ∈ av ⊂ pv as seen above. Thus we have (Λv∩Wv)τ(h) = Λv∩Wv but
Λvτ(h) 6= Λv. To sum up, τ(h) is an element of Oψ such that (Λ ∩W )τ(h) =
Λ ∩W and Λτ(h) 6= Λ.

Now, observe D(Λ∩W ) = εD(L∩W )ε−1 and OψA∩D(Λ) = ε(OψA∩D(L))ε−1.

Since [D(L∩W ) : OψA∩D(L)] = 2 by λ = 1, we have [D(Λ∩W ) : OψA∩D(Λ)] =
2. By our result on τ(h) we obtain

D(Λ ∩W ) = (OψA ∩D(Λ)) ∪ τ(h)(OψA ∩D(Λ)).

Then our assertion follows from this and τ(h) ∈ Oψ.

As a consequence, assuming that h ∈ L[q, b] satisfies all the assumptions with
λ ≤ 1 in Proposition 4.3, by formula (4.1) for Oϕ together with Proposition
4.3 and Theorem 3.4 (3), we obtain

∑

α∈J

#
{
Lα−1[q, b]/Γ·(Lα−1)

}
= t(O), (4.10)

where J is a set of representatives α for Oϕ\OϕA/D(L) for which Lα−1[q, b] 6= ∅
and O is the order in A+(W ) defined in Proposition 3.3 (3) with h. It should
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be remarked that the discriminant of O has at most one higher-power prime
pe (e > 1) if h satisfies λ ≤ 1. Note that formula (4.5) permits several such
primes in the discriminant of O if h satisfies the assumptions of Corollary 4.2.
For example, the reader is referred to our notes after the proof of [3, Proposition
4.3], in which O has discriminant 2 ·52g2Z for a squarefree odd positive integer
g prime to 5.

5 Applications and numerical examples

5.1 Applications to {4, Q(
√
d), Br,∞, 4}

Theorem 5.1. Let Br,∞ be a definite quaternion algebra over Q ramified only
at a prime number r. Take a quadratic space (V, ϕ) over Q whose invariants
are {4, Q(

√
d), Br,∞, 4} with a prime number d prime to r such that d ≡ 1

(mod 4). Then for every odd prime number p prime to dr and 0 ≤ n ∈ Z there
exist Z-maximal lattices L and L′ in (V, ϕ) such that

L[dpn, 2−1dZ] 6= ∅, L′[dpn, 2−1Z] 6= ∅, (5.1)

except when n 6∈ 2Z and
(
d
p

)
= −1. Moreover the following formulas are valid:

∑

α∈I

#Lα−1[dpn, 2−1dZ]

[Γ(Lα−1) : 1]
=
r − 1

24
·
{
1 if n = 0,

pn−1
(
p+

(
d
p

))
if n ≥ 1,

(5.2)

∑

α∈I

#L′α−1[dpn, 2−1Z]

[Γ(L′α−1) : 1]
=

(r − 1)(d2 − 1)

48
·
{
1 if n = 0,

pn−1
(
p+

(
d
p

))
if n ≥ 1,

(5.3)
∑

α∈J

#
{
Lα−1[dpn, 2−1dZ]/Γ·(Lα−1)

}
= t(O). (5.4)

Here
(
d
p

)
is the quadratic residue symbol, I (resp. J) is a complete set of

representatives for SOϕ \ SOϕA/C(L) (resp. Oϕ \ OϕA/D(L)), O is an order
in the algebra A+(W ), which is isomorphic to Br,∞, of discriminant rpnZ
containing A+(L ∩W ), and W = (Qh)⊥ with h ∈ L[dpn, 2−1dZ].

It is noted that Lα−1[dpn, 2−1dZ] or L′α−1[dpn, 2−1Z] may be empty for some
α ∈ I or some α ∈ J .

Proof. First of all, under the assumption that L[dpn, 2−1dZ] 6= ∅ and
L′[dpn, 2−1Z] 6= ∅ with some maximal L and L′ in V , we can derive for-
mulas (5.2) and (5.3). We should mention that the proof will be given in a
subsequent paper and that these formulas will be used in the present proof to
show (5.1).
By [8, Proposition 1.8], for any positive integer q there is a Z-maximal lattice
L in (V, ϕ) such that L[q] 6= ∅. Let h ∈ L[dpn] with 0 ≤ n ∈ Z and take
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the complement (W, ψ) as in (2.2). Since d ≡ 1 (mod 4) and
(
d
p

)
= 1 if n

is odd, the quaternion algebra {Q(
√
d), dpn} is M2(Q). Hence Q(ψ) = Br,∞

by (2.3) and so the invariants of ψ are {3, Q(
√−pn), Br,∞, 3}. We have then

b(dpn) = dpℓ with ℓ = [n/2]. Noticing b(dpn) ⊂ 2ϕ(h, L) ⊂ Z as noted in §2.1,
we see that

L[dpn] =

ℓ⋃

i=0

{L[dpn, 2−1dpiZ] ∪ L[dpn, 2−1piZ]}. (5.5)

Applying the explicit formula of [8, Theorem 1.5 (II)] to L[dpn], we can derive
that

∑

α∈I

#Lα−1[dpn]

[Γ(Lα−1) : 1]
=

(r − 1)
(
d2 +

(
d
p

)n)

48

2ℓ∑

i=0

(
d

p

)n+i
pi. (5.6)

We here recall our assumption that
(
d
p

)
= 1 if n is odd. We put

R[q] =
∑

α∈I

#Lα−1[q]

#Γ(Lα−1)
, R[q, b] =

∑

α∈I

#Lα−1[q, b]

#Γ(Lα−1)
(5.7)

for q ∈ Z and a Z-ideal b of Q.

Suppose n = 2ℓ with 0 ≤ ℓ ∈ Z. We shall prove (5.1) by induction on ℓ. If ℓ = 0,
then b(d) = dZ and L[d] = L[d, 2−1dZ]∪L[d, 2−1Z] by (5.5). Because L[d] 6= ∅,
either L[d, 2−1dZ] or L[d, 2−1Z] must be nonempty. If L[d, 2−1dZ] 6= ∅, then
formula (5.2) is valid as mentioned above. Combining this with (5.6), we have
R[d, 2−1Z] = R[d]−R[d, 2−1dZ] = 48−1(r−1)(d2−1). This implies that there
is some α ∈ SOϕA so that Lα−1[d, 2−1Z] 6= ∅. Conversely, if L[d, 2−1Z] 6= ∅, we
have R[d, 2−1dZ] = 24−1(r − 1) in the same way, whence Lα−1[d, 2−1dZ] 6= ∅
with some α ∈ SOϕA. As a consequence we can find maximal lattices L and L′

in (V, ϕ) such that L[d, 2−1dZ] 6= ∅ and L′[d, 2−1Z] 6= ∅. This settles the case
ℓ = 0. Suppose ℓ > 0. In view of (5.5) we have

R[dpn] =
ℓ∑

i=0

{
R[dpn, 2−1dpiZ] +R[dpn, 2−1piZ]

}
. (5.8)

Observe that the mapping x 7−→ xpi gives a bijection of Lα−1[dp2(ℓ−i), 2−1dZ]
onto Lα−1[dpn, 2−1dpiZ] for i 6= 0 and α ∈ SOϕA for which
Lα−1[dpn, 2−1dpiZ] 6= ∅. Similarly Lα−1[dp2(ℓ−i), 2−1Z] is mapped onto
Lα−1[dpn, 2−1piZ] under the above bijection if i 6= 0 and Lα−1[dpn, 2−1piZ] 6=
∅. By our induction, (5.2) and (5.3) for 2(ℓ − i) in place of n are valid for
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i 6= 0. Thus we see that

R[dpn, 2−1dZ] +R[dpn, 2−1Z]

= R[dpn]−
ℓ∑

i=0

{
R[dp2(ℓ−i), 2−1dZ] +R[dp2(ℓ−i), 2−1Z]

}

=
(r − 1)(d2 + 1)

48
· p2ℓ−1

(
p+

(
d

p

))
. (5.9)

This shows that either L1[dp
n, 2−1dZ] or L1[dp

n, 2−1Z] is not empty with
some maximal lattice L1 in V . Now, if L1[dp

n, 2−1dZ] 6= ∅, then formula
(5.2) is valid. Combining these results with (5.9), we have R[dpn, 2−1Z] 6= 0,
which implies that L1α

−1[dpn, 2−1Z] 6= ∅ with some α ∈ SOϕA. Conversely,
if L1[dp

n, 2−1Z] 6= ∅, we have L1α
−1[dpn, 2−1dZ] 6= ∅ with α ∈ SOϕA by the

same way. Consequently we have maximal lattices L1 and L′
1 in (V, ϕ) such

that L1[dp
n, 2−1dZ] 6= ∅ and L′

1[dp
n, 2−1Z] 6= ∅. This completes our induction

on ℓ = n/2.
The case of odd n can be proved similarly, which together with the case of even
n shows (5.1) for every integer n ≥ 0. At the same time we obtain formulas
(5.2) and (5.3).
As for (5.4), observe first that the conditions of (1) and (2) in Proposition 4.3 are
satisfied for h ∈ L[dpn, 2−1dZ] because r, d, and p are distinct prime numbers.
Further (L∩W )v is not maximal if and only if v = p as b(dpn) = dpℓZ, except
when ℓ = [n/2] = 0, that is, when n = 0 or 1. Then we easily see that condition
(3) of that proposition is satisfied; for instance, if p remains prime in Q(

√
d),

then n must be even by our assumption, and so p satisfies (3). The ideal f2 of
Proposition 4.3 in the present situation is Z, except when n = 1. If n = 0 or
1, then L∩W is maximal. Also f2 = Z or pZ according as n = 0 or 1. To sum
up, Proposition 4.3 is applicable to h ∈ L[dpn, 2−1dZ] for every 0 ≤ n ∈ Z.
Hence (5.4) follows from (4.10).

We note that when n 6∈ 2Z and
(
d
p

)
= −1 in Theorem 5.1, L[dpn, 2−1dZ] = ∅

for any maximal lattice L and L′[dpn, 2−1Z] 6= ∅ with some maximal lattice L′

in (V, ϕ).
Formulas (5.2) and (5.3) can be derived by means of the mass formula due to
Shimura [9, (13.18)], combined with a result in a subsequent paper as mentioned
in the proof of Theorem 5.1.
It should be remarked about (5.4) that the type number of O is not determined
by discriminant, but by the genus of O. (In other words, by Theorem 3.4
(2), the ideal [(L ∩ W )̃ /L ∩ W ] does not determine the genus of L ∩ W .)
However, if L∩W is maximal, that is, if O has squarefree discriminant, t(O) is
determined by the discriminant. In fact, O is maximal or an order of squarefree
discriminant rpZ according as n = 0 or 1. By a result due to Eichler [1, Satz
3], any order O′ of discriminant rpZ belongs to the genus of O in the sense that
O′ = y−1Oy with some y ∈ A+(W )×A. The similar fact is true for maximal
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orders, which have discriminant rZ. Accordingly in either case n = 0 or 1
the discriminant rpnZ certainly determines the genus of O. Moreover the
discriminant does not depend on d. In view of these together with (5.4), we
can conclude

Corollary 5.2. Let the notation be as in Theorem 5.1. Then for n = 0 or
1 the number of the left-hand side of (5.4) is independent of the choice of d.
Especially, if the type number of orders in Br,∞ of discriminant rpnZ is 1,

for any prime number d prime to rpn such that d ≡ 1 (mod 4) and
(
d
p

)n
= 1

there exists only one Oϕ-class in the genus of maximal lattices in (V, ϕ) of
{4, Q(

√
d), Br,∞, 4} such that L1[dp

n, 2−1dZ] 6= ∅ and

L1[dp
n, 2−1dZ] = hΓ·(L1)

with a lattice L1 in the class and h ∈ L1[dp
n, 2−1dZ].

In Table 1 of Section 5.3 below we shall see a few numerical examples for r = 2
and n = 0 supporting this fact.

5.2 Examples for real quadratic fields

Let V be a totally definite quaternion algebra over F of discriminant g and ϕ
its norm form, where F is a totally real field of even degree. Taking a nonzero
element h of V and a g-maximal lattice L in (V, ϕ), we have the complement
(W, ψ) of Fh and the lattice L∩W . We see that A+(W ) is isomorphic to the
present V as quaternion algebras. Our order O is then A+(L ∩W ) and has
discriminant qb−2 with q = ϕ[h] and b = 2ϕ(h, L). Let c(O) denote the class
number of O as before.

Proposition 5.3. In the above setting with h ∈ L[q, 2−1b] assume that F has
class number 1. Then there exists an order O of discriminant qb−2 in V such
that

∑
i∈I #

{
Li[q, 2

−1b]/Γ(Li)
}
= c(O), where {Li}i∈I is a set of representa-

tives for the SOϕ-classes in the SOϕ-genus of L for which Li[q, 2
−1b] 6= ∅.

We first note by [8, Proposition 1.8] that, for every totally positive integer
q of F , there is a g-maximal lattice L in (V, ϕ) such that L[q] = {x ∈ L |
ϕ[x] = q} 6= ∅. Moreover if qg is squarefree, then L[q] = L[q, 2−1g] because of
b(q) = g.

Proof. Clearly formula (4.5) is applicable to h ∈ L[q, 2−1b]. Since C(L) =
τ(JV ) and F has class number 1, τ of (1.2) gives a bijection of G+(V ) \
G+(V )A/JV onto SOϕ \ SOϕA/C(L). Furthermore we have τ(G+(V ) ∩
yJV y

−1) = Γ(Lτ(y)−1) for every y ∈ G+(V )A. The assertion follows from
these combined with (4.5).

For example, take (V, ϕ) as in Proposition 5.3 over F = Q(
√
d) with d = 5, 13,

or 101. It is known that #{SOϕ \ SOϕA/C(L)} = 1 when d = 5, 13. As noted
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above, there is a maximal lattice L in (V, ϕ) such that L[q] = L[q, 2−1g] 6= ∅
for a given totally-positive squarefree integer q of F . Applying Proposition
5.3 to h ∈ L[q], we have an order O in V of discriminant qg. Now suppose
q ∈ g×. Then O is maximal as d(O) = g. Its class number is 1 if d = 5, 13
and is 5 if d = 101. These results can be found in [5, Tabelle 2] due to
Peters. Therefore by the same proposition, #{L[q, 2−1g]/Γ(L)} = 1 if d =
5, 13 and

∑
i∈I #{Li[q, 2−1g]/Γ(Li)} = 5 if d = 101, where {Li}i∈I is a set of

representatives of the SOϕ-classes in the genus of L for which Li[q, 2
−1g] 6= ∅.

We mention that there is a previous result [10, Theorem 1.11] concerning the
application of [10, Theorem 1.6] to the norm forms of definite quaternion alge-
bras over Q.

5.3 Numerical tables for {4, Q(
√
d), B2,∞, 4}

Let d be a prime number such that d ≡ 1 (mod 4). We take a quadratic
space (V, ϕ) over Q of invariants {4, Q(

√
d), B2,∞, 4} and a complete set

{Li}i∈J of representatives for the Oϕ-classes in the Oϕ-genus of maximal
lattices in (V, ϕ). By (5.4) the number

∑
i∈J #

{
Li[dp

n, 2−1dZ]/Γ·(Li)
}

is
given by the type number t(O) of some order O in B2,∞ of discriminant
2pnZ for an odd prime number p prime to d and 0 ≤ n ∈ Z, where we

assume
(
d
p

)
= 1 if n is odd and remark that Li[dp

n, 2−1dZ] may be empty

for some i ∈ J . We put c(dpn) =
∑
i∈J #

{
Li[dp

n, 2−1dZ]/Γ·(Li)
}

for
convenience. We restrict ourselves to the case n = 0 or 1. In this section
we shall not only give the numbers c(dpn) by quoting t(O), but also present
#Li[dp

n, 2−1dZ] for i ∈ J by taking {Li}i∈J in the case of d = 5, 13, 17, or 29.

To obtain {Li}i∈J for these primes d, we proceed according to the viewpoint
explained at the last part of §4.1. Let (X, Φ) be as in that section. We set

Λ = Ze1 + Ze2 + Ze3 + Zg + Ze5,

where {ei} is the standard basis of Q1
5 and g = 2−1(e1 + e2 + e3 + e4). Then

Λ is a Z-maximal lattice in (X, Φ). By (4.3) we have a bijection

kiΓ
·(Λ) 7−→ (Λ ∩ (Qki)

⊥)γ−1
i Oϕ

of Λ[d, Z]/Γ·(Λ) onto the Oϕ-classes in the Oϕ-genus of maximal lattices in
(V, ϕ) with some γi ∈ OΦ so that ki = k0γ for i ∈ J , where {ki}i∈J is a
complete set of representatives for Λ[d, Z]/Γ·(Λ) and k0 is an arbitrarily fixed
element of Λ[d, Z]; we put V = (Qk0)

⊥ and ϕ = Φ|V . Hence the desired
representatives {Li}i∈J can be obtained from explicit elements ki for i ∈ J
by taking (Λ ∩ (Qki)

⊥)γ−1
i as Li. A method of determining Λ[d, Z]/Γ·(Λ) is

explained in [9, §12.15]; in which {ki}i∈J was found for the case of d = 29.
We employ that method for our purpose. Once such a set {ki}i∈J is obtained,
using the lattice Λ∩ (Qki)⊥, we can compute the number #Li[dp

n, 2−1dZ] for
every i ∈ J .
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Here is a list of the representatives ki for Λ[d, Z]/Γ
·(Λ) and the corresponding

lattices Λ ∩ (Qki)
⊥ for i ∈ J and d = 5, 13, 17, 29:

(1) d = 5.

k1 = 2e1 + e5.

Λ ∩ (Qk1)
⊥ = Ze2 + Ze3 + Ze4 + Z(g − e5).

(2) d = 13.

k1 = 2e1 + 3e5, k2 = 2(e2 + e3 + e4) + e5.

Λ ∩ (Qk1)
⊥ = Z(e2 + e3 + e4) + Ze2 + Ze3 + Z(3g − e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Z(e2 − 2e5) + Z(e3 − 2e5) + Z(g − 3e5).

(3) d = 17.

k1 = 4e4 + e5, k2 = 2(e3 + e4) + 3e5.

Λ ∩ (Qk1)
⊥ = Ze1 + Ze2 + Ze3 + Z(g − 2e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Ze2 + Z(3e3 − 2e5) + Z(g − e3).

(4) d = 29.

k1 = 2e4 + 5e5, k2 = 2(e3 + 2e4) + 3e5,

k3 = 2(e1 + e2 + e3 + 2e4) + e5.

Λ ∩ (Qk1)
⊥ = Ze1 + Ze2 + Ze3 + Z(5g − e5),

Λ ∩ (Qk2)
⊥ = Ze1 + Ze2 + Z(3e3 − 2e5) + Z(g − e5),

Λ ∩ (Qk3)
⊥ = Z(e1 − 2e5) + Z(e2 − 2e5) +

+Z(e3 − 2e5) + Z(g − 5e5).

Here we note that the case d = 5 can be seen from [10, §4.4, (4.12c)]. It can
also be verified that these ki for i ∈ J form a complete set of representatives
for Λ[d, Z]/Γ(Λ) for d = 5, 13, 17, 29. Since [9, Proposition 11.13 (ii)] is
also applicable to k0 ∈ Λ[d, Z], by Lemma 4.1, {Li}i∈J gives a complete set
of representatives for the SOϕ-classes in the SOϕ-genus of maximal lattices in
(V, ϕ).
We can further determine [Γ(Li) : 1] for i ∈ J . In fact, by Theorem 5.1 we have
an explicit formula (5.2) for R[dpn, 2−1dZ] with the notation of (5.7); then
#Γ(Li) is computable in an elementary way by using this formula combined
with the numerical data of #Li[dp

n, 2−1dZ] in our tables. For example,
if d = 29, then we have three maximal lattices {L1, L2, L3} given above.
Looking at Table 1 for d = 29 and at Table 3 for d = 29, p = 5 and 7, we have
2 · #Γ(L1)

−1 = 24−1, 2 · #Γ(L2)
−1 = 4−1, and 2 ·#Γ(L3)

−1 = 3−1 by (5.2).
From these we get #Γ(L1) = 48, #Γ(L2) = 8, and #Γ(L3) = 6. Moreover the
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mass of the genus with respect to SOϕ is 5/16, which indeed coincides with
the mass derived from the exact formula of [7, Theorem 5.8]. Similarly for
d = 5, 13, 17, we have #Γ(L1) = 48 if d = 5; #Γ(L1) = 48 and #Γ(L2) = 12
if d = 13; #Γ(L1) = #Γ(L2) = 48 if d = 17.

In the numerical tables below, we put Ni(dp
n) = #Li[dp

n, 2−1dZ] and de-
note by t(2, pn) (resp. c(2, pn)) the type number (resp. the class number)
of O in B2,∞ of discriminant 2pnZ. We quote t(2, pn) and c(2, pn) from
[6, Table 1] due to Pizer. It is noted by Corollary 4.2 that the number∑

i∈J #
{
Li[dp

n, 2−1dZ]/Γ(Li)
}
coincides with c(2, pn) if t(2, pn) = c(2, pn).

d N1(d) N2(d) N3(d) t(2, 1) c(2, 1) c(d)

5 2 ∗ ∗ 1 1 1

13 2 0 ∗ 1 1 1

17 2 0 ∗ 1 1 1

29 2 0 0 1 1 1

Table 1: c(d) for d = 5, 13, 17, 29

Let us verify our numerical results for c(dp) in a straightforward way by using
the lattices listed above. As an example, we take up the case of d = 13 and
p = 23. We begin with the 5-dimensional space (X, Φ) and Λ as above. Put
k1 = 2e1 + 3e5 and k2 = 2(e2 + e3 + e4) + e5. In our list with d = 13, k1
and k2 form a complete set of representatives for Λ[13, Z]/Γ·(Λ) (and it is true
for Γ(Λ) in place of Γ·(Λ)). Set V = (Qk2)

⊥ and let ϕ be the restriction of
Φ to V . Then (V, ϕ) has invariants {4, Q(

√
13), B2,∞, 4} and L2 = Λ ∩ V is

Z-maximal in (V, ϕ). Since {e1, e2− 2e5, e3 − 2e5, g− 3e5} is a Z-basis of L2,
representing ϕ by this basis, we may put V = Q1

4,

ϕ =




1 0 0 1/2

0 5 4 13/2

0 4 5 13/2

1/2 13/2 13/2 10



,

and L2 = Z1
4. Under this identification, Γ

·(L2) is the subgroup {γ ∈ GL4(Z) |
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d p N1(dp) N2(dp) t(2, p) c(2, p) c(dp)

5 11 24 ∗ 1 1 1

5 19 40 ∗ 2 3 2

5 29 60 ∗ 2 3 2

5 31 64 ∗ 2 4 2

5 41 84 ∗ 3 4 3

5 59 120 ∗ 3 5 3

5 61 124 ∗ 4 7 4

5 71 144 ∗ 2 6 2

5 79 160 ∗ 3 8 3

5 89 180 ∗ 5 8 5

5 101 204 ∗ 5 9 5

13 3 0 2 1 1 1

13 17 12 6 2 2 2

13 23 0 12 1 2 1

13 29 12 12 2 3 2

13 43 16 18 3 5 3

13 53 12 24 3 5 3

13 61 12 28 4 7 4

13 79 48 28 3 8 3

13 101 60 36 5 9 5

Table 2: c(dp) for d = 5, 13
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d p N1(dp) N2(dp) N3(dp) t(2, p) c(2, p) c(dp)

17 13 16 12 ∗ 2 3 2

17 19 16 24 ∗ 2 3 2

17 43 40 48 ∗ 3 5 3

17 47 48 48 ∗ 2 4 2

17 53 60 48 ∗ 3 5 3

17 59 72 48 ∗ 3 5 3

17 67 64 72 ∗ 4 7 4

17 83 72 96 ∗ 4 7 4

17 89 96 84 ∗ 5 8 5

17 101 96 108 ∗ 5 9 5

29 5 0 2 0 1 1 1

29 7 0 0 2 1 2 1

29 13 0 2 2 2 3 2

29 23 0 0 6 1 2 1

29 53 0 10 6 3 5 3

29 59 24 8 6 3 5 3

29 67 24 8 8 4 7 4

29 71 0 8 12 2 6 2

29 83 24 16 6 4 7 4

29 103 16 16 12 5 10 5

Table 3: c(dp) for d = 17, 29
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γϕ · tγ = ϕ} of GL4(Z). Then L2[13p
n, 2−1 · 13Z] is given by

L2[13p
n, 2−1 · 13Z] = {[x1 x2 x3 x4] ∈ Z1

4 |
x21 + 5x22 + 5x23 + 10x24 + x1x4 + 8x2x3 + 13x2x4 + 13x3x4 = 13pn,

(2x1 + x4)Z+ (10x2 + 8x3 + 13x4)Z+ (8x2 + 10x3 + 13x4)Z

+(x1 + 13x2 + 13x3 + 20x4)Z = 13Z}.
Now for p = 23 and n = 1 we have all solutions in L2[13 · 23, 2−1 · 13Z]:

[±5 ∓ 13 ∓ 13 ± 16], [±8 0 ∓ 13 ± 10], [±8 ∓ 13 0 ± 10],

[±18 0 ± 13 ∓ 10], [±18 ± 13 0 ∓ 10], [±21 ± 13 ± 13 ∓ 16].

We put

γ1 =




1 0 0 0

0 0 −1 0

0 −1 0 0

1 0 0 −1



, γ2 =




1 0 0 0

0 −1 0 0

1 1 1 −2

1 0 0 −1



, γ3 =




1 0 0 0

0 −1 0 0

0 0 −1 0

1 0 0 −1



.

These matrices belong to Γ·(L2). Consider the subgroup U of Γ·(L2) generated
by γ1, γ2, γ3, and −14, where 14 is the identity matrix of size 4. Put x =
[5 − 13 − 13 16]. Then it can be seen that xU contains all elements of
L2[13 · 23, 2−1 · 13Z]. Thus we have L2[13 · 23, 2−1 · 13Z] = xΓ·(L2).
Similarly for k1, we can consider a Z-lattice Λ ∩ (Qk1)

⊥. Denoting by ϕ1 the
restriction of Φ to (Qk1)

⊥, we may put (Qk1)
⊥ = Q1

4,

ϕ1 =




3 1 1 9/2

1 1 0 3/2

1 0 1 3/2

9/2 3/2 3/2 10



,

Λ ∩ (Qk1)
⊥ = Z1

4, and Γ·(Λ ∩ (Qk1)
⊥) = {γ ∈ GL4(Z) | γϕ1 · tγ = ϕ1} under

the identification with respect to a Z-basis {e2+ e3+ e4, e2, e3, 3g− e5} of Λ∩
(Qk1)

⊥. Let L1 be the lattice in (V, ϕ) corresponding to Λ∩(Qk1)⊥ under some
isomorphism of (V, ϕ) onto ((Qk1)

⊥, ϕ1). Then the number #L1[13p
n, 2−1 ·

13Z] is equal to

#{[x1 x2 x3 x4] ∈ Z1
4 |

3x21 + x22 + x23 + 10x24 + 2x1x2 + 2x1x3 + 9x1x4 + 3x2x4 + 3x3x4 = 13pn,

(6x1 + 2x2 + 2x3 + 9x4)Z + (2x1 + 2x2 + 3x4)Z+ (2x1 + 2x3 + 3x4)Z

+(9x1 + 3x2 + 3x3 + 20x4)Z = 13Z}.
For p = 23 and n = 1 there is no elements of (Λ ∩ (Qk1)

⊥)[13 · 23, 2−1 · 13Z].
Hence #L1[13 · 23, 2−1 · 13Z] = 0. Because L1 and L2 are not in the same Oϕ-
class as k1Γ

·(Λ) 6= k2Γ
·(Λ), we have therefore c(13 · 23) = #{L2[13 · 23, 2−1 ·
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13Z]/Γ·(L2)} = 1. This coincides with our result in the case of d = 13 and
p = 23 in Table 2.
We note that #U = 24, Γ·(L2) = U , and Γ(L2) is generated by γ1, γ2, −14;
furthermore we have xΓ(L2) = L2[13 ·23, 2−1 ·13Z], that is, #{L2[13 ·23, 2−1 ·
13Z]/Γ(L2)} = 1. As for Λ∩(Qk1)⊥, four elements δ1, · · · , δ4 and−14 generate
Γ·(Λ ∩ (Qk1)

⊥) and then Γ(Λ ∩ (Qk1)
⊥) is generated by δ1δ2, δ2δ3, δ4, −14,

where

δ1 =




1 0 0 0

0 1 0 0

0 0 1 0

3 0 0 −1



, δ2 =




1 0 0 0

0 1 0 0

1 −1 −1 0

0 0 0 1



,

δ3 =




1 0 0 0

1 −1 −1 0

0 0 1 0

0 0 0 1



, δ4 =




1 −2 0 0

1 −1 −1 0

0 0 1 0

0 −3 0 1



.

We shall show one more example for d = 13 and p = 79 obtained in the same
manner:

#
{
L1[13 · 79, 2−1 · 13Z]/Γ·(L1)

}
= 1, #

{
L2[13 · 79, 2−1 · 13Z]/Γ·(L2)

}
= 2,

#
{
L1[13 · 79, 2−1 · 13Z]/Γ(L1)

}
= 1, #

{
L2[13 · 79, 2−1 · 13Z]/Γ(L2)

}
= 3.

Here L′
1[13 ·79, 2−1 ·13Z], with L′

1 = Λ∩ (Qk1)⊥ ∼= L1, consists of 48 solutions

[±10 ∓ 39 ∓ 26 ± 2], · · · , [±29 ∓ 13 ∓ 13 ∓ 2]

and L2[13 · 79, 2−1 · 13Z] of 28 solutions

[±3 ± 13 ± 39 ∓ 32], · · · , [±36 ± 39 ± 26 ∓ 46].

Accordingly
∑2

i=1 #{Li[13 ·79, 2−1 ·13Z]/Γ(Li)} is a quantity that differs from
both the type number and the class number of O.
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Abstract. Thomas-decomposition of a polynomial systems and
the resulting counting polynomials are applied to the theory of linear
codes, hyperplane arrangements, and vector matroids to reinterpret
known polynomials such as characteristic polynomials and weight enu-
merator, to introduce a new polynomial counting the matrices defin-
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1 Introduction

This paper is concerned with two topics: Recognizing known polynomial
invariants in the theory of codes, hyperplane arrangements, and matroids such
as characteristic polynomials, weight enumerators etc. as counting polynomials
and finding a further example of counting polynomials, cf. [Ple 09a], [Ple 09b],
in this area. Secondly, on the background of this, analysing the structure
of the lattice of flats of a matroid by means of the Tutte-polynomial or
rather the rank generating polynomial by singling out a special class of flats
which we call essential. Though we started with linear codes and hyperplane
arrangements, we realized that matroids yield a more appropriate language for
our investigation.
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The basic ideas of counting polynomials, which are based on the Thomas
decomposition for systems of polynomial equations and inequations into
disjoint simple systems, cf, [Tho 37], [Ple 09a], [BGLR 11], are briefly de-
scribed in Section 2, in particular the relevant case of this paper, where the
splitting behaviour of the polynomials in the resulting simple systems allows
an enumeration of the possibly infinitely many solutions. In this case, the
resulting counting polynomial yields the number of solutions of the system in
the following cases: For a finite ground field K the number of solutions over
any finite extension field E of K are obtained by substituting the number
|E| for the indeterminate. For a global field K as ground field the number
of solutions over the residue class field F of the valuation ring for almost
all discrete valuations of K are found upon substituting the order |F | of the
residue class field into the counting polynomial, e. g. K = Q with the finite
prime fields Fp being the most common example. At the beginning of Section
2, the construction of counting polynomials is summarized as a finitely additive
measure defined on the set of solution sets of polynomial systems (of equations
and inequations) and taking values in the polynomial ring Z[u], where u is an
indeterminate standing in some sense for the order of the field, even if it is
infinite. In this way, for instance, the characteristic polynomial of a hyperplane
arrangement gets a less formal and more algebraic-combinatorial meaning in
the case of infinite fields, since it is simply the measure of the complement of
the arrangement. Also, the critical theorem by Crapo and Rota, cf. [CrR 70]
gets an interpretation in the case of infinite fields, so does the (comprehensive)
weight enumerator of a linear code which Greene constructed from the
Tutte-polynomial, cf. [Gre 76]. Whereas these examples deal with linear
inequations, the final example, i. e. the counting polynomial of the set of rank
r matrices of degree k × n requires slightly more background preparation.

Section 3 applies these ideas to introduce the matrix counter of a matroid
which counts the “number” of matrices yielding the given matroid. If this is
possible, the matroid is called polynomially countable. In this case, the matrix
counter is shown to factorize into three factors: Firstly gl(k, u), where k is
the rank of the matroid and gl(k, u) := (uk − 1)(uk − u) · · · (uk − uk−1) is the
counting polynomial of the general linear group GL(n, ·). Secondly a factor
(u − 1)n−l, where n is the number of elements of the underlying set of the
matroid and l is the number of connected components of the matroid. Finally,
a factor called orbit counter. If the orbit counter is 1, the matroid seems to
be particularly interesting from a geometrical combinatorial point of view. We
call the matroid rigid in this case, note however that it is the simplest case
from the point of view of the matrix counter. Some examples are discussed
such as root systems of type An and Bn and the extended Golay code over
F2 of length 24. On the other extreme is the matrix counter of the uniform
matroid. Indeed, it would be a challenge to find which uniform matroids are
polynomially countable.
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Section 4 is a suggestion to reconstruct the lattice of flats out of the rank
generating polynomial. The converse direction is well understood, cf. Example
2.4. The rank generating polynomial of a matroid M is defined as a sum over
all subsets of the underlying set E of the matroid. By putting together all
subsets with the same flat as closure, this sum gets a lot more structured. But
then one can also put together all those flats whose complements in E have
the same closure with respect to the dual M∗ of the original matroid. This
common closure has again an M -flat as complement in E, which we call an
essential flat. As a result of this the generating polynomial of M becomes a
sum over the essential flats only. The summand corresponding to an essential
flat X is the product of a polynomial in the first variable x depending only on
the minor M/X of M and a polynomial in the second variable y depending
only on the restiction M |X . This can be used to discover all the essential flats
from the rank generating polynomial as described in Remark 4.11. The theory
and two examples, the first being the Golay-code of length 24 are discussed
in Section 4.

The final Section 5 discusses matroids of rank 3. The counting polynomials
are computed for all matroids on up to seven points, and some examples on
8 points are given to demonstrate new phenomena. The tables of this section
depend on heavy computer calculations with the program [BLH 13] to compute
the Thomas decomposition of a polynomial system of equations and inequa-
tions. Various interesting issues come up, such as two nonisomorphic matroids
with the same rank generating polynomial but different counting polynomials,
different behaviours in different characteristics, factorization properties of the
orbit counter, non-split examples where the matrix counter is not defined, etc.

We are grateful to the referees to point out very helpful, relevant comments
and literature.

2 Counting Polynomials

We first collect the facts from [Ple 09a] and [Ple 09b] relevant for this paper.
Let K be a field with algebraic closure K. Consider subsets of K

n
of the

form Np := {a ∈ K
n|p(a) = 0} with p ∈ K[x1, . . . , xn], i. e. hypersurfaces

defined over K. Denote by L(K,n) the set of subsets of K
n

obtained by
taking finite intersections, unions, and complements of the Np for various such
p ∈ K[x1, . . . , xn] iteratively. Clearly, if

πn : K
n → K

n−1
: (a1, . . . , an) 7→ (a1, . . . , an−1)

denotes the projection (in case n > 1), then πn(S) ∈ L(K,n − 1) for any
S ∈ L(K,n). Moreover λS(b) := {a ∈ K|(b, a) ∈ S} ∈ L(K, 1) for each
b ∈ πn(S).
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Proposition 2.1. Let K be a field of characteristic zero. For every n ∈ N
there is a unique map

c = cn : L(K,n)→ Z[u] : S 7→ c(S) = c(S, u)

(where c(S, u) is called the counting polynomial of S) with the following prop-
erties:
1.) For finite sets S ∈ L(K,n), one has c(S, u) = |S|, the number of elements
in S.
2.) For any k-dimensional affine subspace N of K

n
defined over K one has

c(N, u) = uk.
3.) For any S, T ∈ L(Kn), one has c(S, u)+ c(T, u) = c(S ∩T, u)+ c(S ∪T, u),
in particular, c(Kn − S, u) = un − c(S, u).
4.) In case n > 1, for any S ∈ L(K,n) where c1(λS(b), u) ∈ Z[u] is independent
of b ∈ πn(S) one has

cn(S, u) = cn−1(πn(S), u) · c1(λS(b), u)

The proof is based on a finite decomposition of the systems of equations
and inequations into certain triangular systems called simple, which were
introduced by J. M. Thomas, cf. [Tho 37]. Various algorithmic refinements
of this decomposition algorithm and an implementation are discussed in
[BGLR 11]. It is work in progress extending [LMW 10] to show that the
above result also holds for fields K of positive characteristic. The cases
relevant for this paper, the so called split systems, were discussed in [Ple 09b]
and require no assumptions on the characteristic of K. In any case, the im-
plementation in [BLH 13] has worked successfully for all examples of this paper.

Though the counting polynomial in general only says something about the
set of solutions over the algebraic closure, for the present investigation we
want to use the counting polynomials to count the number of solutions over
finite fields. This is not always possible. Namely, if one specifies the free
variables in the equations of a triangular system to lie in a fixed field, the
resulting univariate polynomials in general do not split over this field. However,
if we have split simple systems, i. e. if the polynomials of the simple systems
factorize into degree-one-polynomials in their leading variable, cf. [Ple 09b], it
becomes possible. To cover as many cases as possible we go beyond [Ple 09b]
and distinguish three cases:

Definition 2.2. Let S ∈ L(K,n) for some field K.
1.) S is called uniformly enumerable if S can be decomposed into dis-
joint split simple systems, in the sense of [Ple 09b], where the variables of
K[x1, . . . , xn] are taken in the same order for all simple systems.
2.) S is called enumerable if S can be decomposed into disjoint sys-
tems Si ∈ L(K,n), such that for every i there exists a split simple system
Ti ∈ L(K,n) and a bijection Ti → Si defined by some rational function over
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K.
3.) S is called polynomially countable if S is the union of finitely many
systems Si ∈ L(K,n), i ∈ I such that at least one of ∩i∈JSi or the complement
K
n − ∩i∈JSi is enumerable for each subset J of I.

Clearly, uniformly enumerable sets are enumerable and enumerable ones are
polynomially countable. The notion of polynomial countability becomes espe-
cially interesting if K is finite. In case K is a global field, S ∈ L(K,n) defines
a set SL ∈ L(L, n) for all but finitely many finite residue class fields L corre-
sponding to a non Archimedian valuation of K. In case S satisfies one of the
three properties above, so does SL in all but finitely many residue class fields
L.

Proposition 2.3. Let S ∈ L(K,n) be a polynomially countable system over a
field K.
1.) In case K is finite there is a unique polynomial c(S, u) ∈ Z[u] satisfying

|S ∩ Ln| = c(S, |L|)

for all finite field extension (L/K).
2.) In case K is a global field, there is a unique polynomial c(S, u) ∈ Z[u]
satisfying

|SL ∩ Ln| = c(S, |L|)
for all but finitely many residue class fields L defined by valuations of K.
In both cases, we call c(S, u) the faithful counting polynomial of S.

Proof. The uniqueness of the faithful counting polynomial is in both cases clear,
since infinitely many values of it are specified. We come to the existence. In
the uniformly enumerable case one simply takes the counting polynomial, cf.
[Ple 09b], and in the enumerable case the sum of the counting polynomials of
the split simple systems Ti. The general case of polynomially countable systems
is reduced to the enumerable case via the inclusion exclusion principle.

Note that the faithful counting polynomial is independent of the ordering of the
variables or more generally of the choice of the coordinates (over the ground
field K). Whether a faithful counting polynomial is uniquely defined for more
general fields is interesting but not relevant for the applications in the present
paper. To demonstrate the difference between counting polynomial and faithful
counting polynomial, look at S := Np for p := x2 − y ∈ Q[x, y]. Taking the
variables in the order y < x yields 2(u− 1) + 1 as counting polynomial, which
is not faithful, whereas the order x < y yields the faithful counting polynomial
u.
The simplest case of a polynomially countable system is one given by linear
(degree one) equations and inequations. In fact such a system is uniformly
enumerable, but usually one obtains the faithful counting polynomial by the
inclusion exclusion principle, since the computation of Thomas-decomposition
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becomes rather expensive once a certain number of inequations is involved. We
remark that, in this case, no assumptions on the field K are necessary and the
counting polynomials are independent of the choice of the coordinate system.
Here are some examples.

Example 2.4. 1.) Characteristic polynomial of a central hyperplane arrange-
ment.
Let V be a K-vector space of dimension k and ϕi ∈ V ∗ − {0} for i = 1, . . . , n
be linear forms on V . Then the counting polynomial c(S, u) of the system
ϕi(x) 6= 0 for i = 1, . . . n is called the characteristic polynomial of the hyper-
plane arrangement of the ker(ϕi). In case K is finite it counts the number of
elements in V − ∪iker(ϕi) in a faithful way as explained above, i. e. it also
counts the corresponding number of elements for any finite extension field of
K. It clearly is monic of degree k and the coefficient of uk−1 is the negative of
the number of different hyperplanes ker(ϕi), cf. [CrR 70], [OrT 92],[Ath 96].
For a recent survey on the interplay of linear codes, hyperplane arrangements,
and matroids cf. e. g. [Sta 07].
2.) (Comprehensive or) Support weight enumerator of a code.
Let A ∈ Kk×n a matrix of rank k and let V be the K-vector space spanned by
the rows of A. We want to count the vectors of V (and the scalar extensions
of V ) having exactly j components zero for j = 0, . . . , n. To this aim let ϕi be
the projection of the row space of A corresponding to the i-th column. For each
subset I of n let SI ∈ L(K, k) be the system defined by ϕj(v) = 0 for j ∈ I and
ϕj(v) 6= 0 for j 6∈ I. Then the (comprehensive) weight enumerator

ωA(u, x, y) :=
∑

I⊆n

c(SI , u)x
|I|yn−|I|

gives exactly the weight enumerator for any finite extension field L of K, in case
K is finite, if one substitutes |L| for u. (Note however, this weight enumerator
also makes sense if K is not finite, even beyond Proposition 2.3.) Note also, the
I ⊆ n with c(SI , u) 6= 0 are just the flats of the matroid induced by the matrix
A, cf. 3.1 below. In a splendid piece of work, it was shown in [Gre 76] how
this weight enumerator could be obtained from the Tutte polynomial TA(x, y)
as follows:

ωA(u, x, y) = (1− u)kun−kTA
(
1 + (u− 1)x

1− x ,
1

x

)
,

cf also [Bri 02]. Conversely, the Tutte-polynomial is determined by the sup-
port weight enumerator, cf. [Jur 12] and [JuP 13], where also the most recent
account is given on these results, as well as on the connections between ma-
troids, codes, and hyperplane arrangements. (All these results do not depend
on the finiteness of K, as assumed in the original papers.)

More general systems described by polynomials of degree one in each variable
still have some chance to be enumerable or at least polynomially countable.
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For instance the n× n-determinant det yields the faithful system det(xij) 6= 0
with polynomial

gl(n, u) := (un − 1)(un − u) · · · (un − un−1)

well known from the order of the general linear group over a finite field.
The group theoretic counting of orbits can be used to find faithful counting
polynomials. Here is an example from determinantal varieties, where we set
gl(0, u) := 1:

Proposition 2.5. The set of k × n-matrices of rank r defined over a field K
is uniformly enumerable. Its (faithful) counting polynomial is given by

gl(k, u)gl(n, u)

gl(r, u)gl(k − r, u)gl(n− r, u)u(k−r)r+(n−r)r

Proof. It follows from Theorem 2.8 of [Ple 09b] that the system is uniformly
enumerable over any field. Therefore one has a faithful counting polynomial.
We compute it by viewing the set as the orbit of the matrix

(
Ir Or×(n−r)

O(k−r)×r O(k−r)×(n−r)

)

under the group GL(k,K)×GL(n,K) acting on Kk×n via

(GL(k,K)×GL(n,K))×Kk×n → Kk×n : ((g, h),m) 7→ gmh−1.

By computing the stabilizer, one gets exactly the denominator of the above
number with u substituted by |K| for any finite field K. Since we know that
the result must be a polynomial, we have found it via these infinitely many
values.

Note, the degree of the polynomial just derived is r(−r + n + k), which is
increasing in r for r = 0, . . . , k, so that the dimension of the so called generic
determinantal variety of k × n-matrices of rank ≤ r is equal to r(−r + n+ k),
which is well known.

3 Matrix counters

We proceed into a different direction now, by restricting the group action in
the last proof to GL(k,K)×Diag(n,K), where Diag(n,K) ≤ GL(n,K) is the
subgroup of all diagonal matrices of GL(n,K). For this action one has a finer
invariant than the rank, namely the vector matroid represented by the matrices.
We use the following notation: For n ∈ N let n := {1, 2, . . . , n} and Potk(n)
the set of all k-element subsets of n.
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Definition 3.1. Let k ≤ n. The map

µ : Kk×n → Pot(n) : A 7→ {X ∈ Pot(n) | |X | = rank(A) = rank(A|X)}

is called the matroid map, where A|X denotes the submatrix of A formed by

the columns with column indices in X. For A ∈ Kk×n of rank r, the pair
(n, µ(A)) with µ(A) ⊆ Potr(n) is called the (vector) matroid of A.

We shall usually assume that the matrix A is of rank k. An (abstract) matroid
is a pair consiting of a ground set n and a subset B of Potk(n) satisfying certain
axioms similar to the Steinitz exchange properties of bases, cf. [Oxl 11] or
[Wel 76]. If the ground set is clear, we only refer to B as the matroid. If B is
of the form µ(A) for some matrix over the field K, the matroid B is called K-
representable. It should be noted that the weight enumerator, cf. Example 2.4,
of the linear code spanned by the rows of a matrix A ∈ Kk×n only depends
on the matroid µ(A). These issues are concerned with linear equations and
inequations and therefore the counting polynomials in this context are faithful.
However, the counting polynomial defined next is defined via polynomials which
are of degree at most one in each of their variables, where it is not clear whether
or not they are faithful.

Definition 3.2. 1.) Let K be a field,

Rk,n := K[x1,1, x2,1, . . . , xk,1, x1,2, . . . , xk,2, . . . , xk,n]

and X := (xij)i∈k,j∈n ∈ Rk×nk,n denotes a k × n-matrix of indeterminates. Fi-

nally X|b := (xi,j) ∈ Rk×kk,n with i ∈ k, j ∈ b denotes the submatrix of X with
column indices in b ∈ Potk(n).
2.) For a non empty subset B of Potk(n) denote by S(B) ∈ L(K, kn) the set
of solutions over the algebraic closure K of K of the polynomial system

det(X|b) 6= 0 for b ∈ B, det(X|b) = 0 for b ∈ Potk(n)−B.

3.) In case S(B) 6= ∅ we call B uniformly enumerable, enumerable, resp.
polynomially countable (over K) if S(B) has this property. In either of
these cases the faithful counting polynomial c(S(B), u) ∈ Z[u] is called the full
matrix counter of B and denoted by c(B, u) or cB(u).

Hence B is a matroid representable over K if and only if the counting polyno-
mial of S(B) with respect to some order of the variables is not zero. Clearly in
the above definition, one might assume K to be a prime field.

Example 3.3. 1.) k := 1. Any non empty subset B of Pot1(n) is a repre-
sentable matroid. Its matrix counter is (u− 1)|B|.
2.) For k := 2 the representable matroids are given as follows: Let n =

⊎s
i=0Mi

with M0 (representing the zero columns) possibly empty, but the other Mj

(called parallel classes) nonempty and s ≥ 2. Then

B := {{a, b} | there are i, j with 0 < i < j ≤ s, a ∈Mi, b ∈Mj}
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and the full matrix counter of B is given by

cB(u) = u · (u + 1) · (u − 1)n−|M0| ·
s−2∏

i=1

(u− i),

which can easily be obtained in the same way as one computes the order (u2 −
1)(u2 − u) of the full linear group: In the critical case |Mi| = 1 for i > 0 one
has

s∏

i=1

(u2 − 1− (i− 1)(u− 1)) = (u − 1)s
s∏

i=1

(u+ 1− (i− 1)).

Note, the characteristic of the underlying field has no relevance in this partic-
ular case. However, if K is finite, one might have cB(|K|) = 0.

Here is a first property of the full matrix counter.

Proposition 3.4. Let B ⊆ Potk(n) be polynomially countable over any prime
field. Then

gl(k, u) | cB(u), i. e. cB(u) = gl(k, u) · rB(u)
for some rB(u) ∈ Z[u], which we call reduced matrix counter of B.

Proof. If K is of characteristic zero, we may assume without loss of generality
K = Q, since the equations and inequations come from determinants and
hence only involve integers. Since in the process of computing simple systems,
only finitely many denominators come up, we may choose any prime p dividing
none of these and pass to the finite field Fp and still retain the same matroid B.
Since B is polynomially countable, cB(|L|) is equal to the number of matrices
A ∈ Lk×n with µ(A) = B for any finite extension field L of Fp. Since GL(k, L)
acts semiregularly on this set of matrices, i. e. any stabilizer is trivial and all
orbits have length gl(k, |L|), one easily gets gl(k, u) | cB(u).

Often the reduced matrix counter of B ⊆ Potk(n) is the counting polynomial
of S(B) intersected with the set of those k × n-matrices for which certain k
columns form the unit matrix. Unfortunately, it is in general not true that a
split simple system with an equation of the form xi − k for some k ∈ K added
can be decomposed into split simple systems. Here is a practical sufficient
criterion for B to be polynomially countable.

Proposition 3.5. Let B ⊆ Potk(n) and choose some a ∈ B. By S(a,B) ∈
L(K, kn) we denote the set of solutions of the system

Xa = Ik, det(X|b) 6= 0 for b ∈ B, det(X|b) = 0 for b ∈ Potk(n)−B,

where Ik denotes the k×k unit matrix. If S(a,B) is polynomially countable with
faithful counting polynomial c(S(a,B), u), then B is polynomially countable
with reduced matrix counter rB(u) = c(S(a,B), u).
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Proof. Let S(a) ∈ L(K, kn) be the set of solutions of Xa = Ik, and S′(a) ∈
L(K, kn) be the set of solutions of det(Xa) 6= 0. Then

GL(k,K)× S(a)→ S′(a) : (g,A) 7→ g ·A

is a bijective birational map defined over K. Note, GL(k,K) is uniformly
enumerable by [Ple 09b], say

GL(k,K) =
⊎
Gi

with finitely many split simple systems Gi. Assume first that S(a,B) is enu-
merable, say S(a,B) =

⊎
Cj . Then above bijection restricts to a birational

bijection Gi × Cj → Gi · Cj for every pair (i, j). Since

S(B) = GL(k,K) · S(a,B) =
⊎

i,j

Gi · Cj ,

the claim follows in this case.
If S(a,B) is only polynomially enumerable, the proof is a slight modification.

Lemma 3.6. In the situation of S(a,B) above, for any given pair (i, j) ∈ k ×
(n−a) one either has xij = 0 for all X ∈ S(a,B) or xij 6= 0 for all X ∈ S(a,B).

Proof. Let k be the unique element of a such that the k-th column of X is the i-
th column of the identity matrix. Let c := (a−{k})∪{j}. Either c ∈ B, in which
case xij = ±Det(X|c) 6= 0 or c 6∈ B, in which case xij = ±Det(X|c) = 0.

Beyond the action of the general linear group GL(k,K) one can take the torus
action into account, i. e. the action of (K∗)n which results in further irre-
ducible factors of the matrix counter. Recall that a vector matroid is called
decomposable or disconnected if it is of the form π(µ(Diag(A1, A2))) for some
matrices A1 ∈ Kk′×n′

, A2 ∈ Kk′′×n′′

with k′ + k′′ = k and n′ + n′′ = n and for
some permutation π ∈ Sn.

Proposition 3.7. If in the notation of Proposition 3.5 S(a,B) is polynomially
countable, then (u−1)n−l|rB(u), where l is the number of connected components
of B. The polynomial oB(u) := (u − 1)−(n−l)rB(u) ∈ Z[u] is called the orbit
counter of B.

Proof. Since rB is obviously multiplicative in the components of B, it suffices
to assume that B is a connected matroid. Also we may assume a = k. The
group Dn := (K

∗
)n acts on S(a,B) ∈ L(K, kn) by

Dn × S(a,B)→ S(a,B) : (d,A) 7→ (d−1
i Ai,jdj)i∈k,j∈n,

where the factors d−1
i make sure that the submatrix of the first k columns

remains the unit matrix. Note, by Lemma 3.6 for any (i, j) ∈ k × n either
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Aij = 0 for all A ∈ S(a,B) or Aij 6= 0 for all A ∈ S(a,B). Call T ⊆ k× (n−k)
a rigidity frame, if
1.) |T | = n− 1,
2.) (i, j) ∈ T implies Aij 6= 0 for all A ∈ S(a,B), and
3.) π1(T ) = k, π2(T ) = n − k, where πi denotes the projection onto the i-th
component for i = 1, 2.
Since B is connected, such a rigidity frame T exists. It gives rise to the system
of equations

Ai,jdj = di (i, j) ∈ T

for the di, the solutions of which transforms A ∈ S(a,B) into a matrix of

ST (a,B) := {A ∈ S(a,B)|Ai,j = 1 for all (i, j) ∈ T }.

Since the stabilizer of any A ∈ ST (a,B) in Dn, which is isomorphic to K∗, acts
trivially on ST (a,B), it follows that ST (a,B) is a set of representatives of the
action of Dn on S(a,B). Hence we have a bijective rational function

D̃n × ST (a,B)→ S(a,B) : (d,A) 7→ (d−1
i Ai,jdj)i∈k,j∈n

defined over the ground field, where D̃n is the subgroup of all d ∈ Dn with
d1 = 1. The claim follows.

Clearly oB(u) counts the orbits of GL(k,K) × (K∗)n on S(B). If oB(u) = 1,
B is called rigid. In practice, one often proceeds by the above ideas, however
in reversed order:

Corollary 3.8. In the notation of the last proof let T ⊆ k×(n−k) be a rigidity
frame and assume that ST (a,B) is polynomially countable with faithful counting
polynomial oB(u). Then S(a,B) is polynomially countable with reduced matrix
counter (u− 1)n−l · oB(u) and B is polynomially countable with matrix counter
cB(u) = gl(k, u) · (u − 1)n−l · oB(u).

Here are some examples demonstrating how one may proceed:

Example 3.9. The root system An viewed as its matrix of positive roots in

Kn×(n+1
2 ) gives rise to the matroid µ(An) which is rigid, i. e. whose reduced

matrix counter is

(u− 1)(
n+1
2 )−1.

Proof. Let (e0, . . . , en) be a basis on an n+ 1-dimensional vector space over a
field K. Consider the set of vectors Xn := {ei − ej|0 ≤ i < j ≤ n}. As basis
we choose (e0 − ei|i = 1, . . . n). The coordinate columns of the elements of Xn

yield a matrix M with µ(M) = µ(An). For convenience we index the columns
of our matrix by the set of 2-element subsets of {0, 1, . . . , n}. In particular the
basis part of the matrix has indices {0, i} for i ∈ n. Call this set a. Now let
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A ∈ S(a, µ(An)). We look at the submatrix with column indices in Pot2(n) in
the spirit of the last proof. We may choose as rigidity frame the set

L := {(i, {i, j})|i ∈ n− 1, i < j} ∪ {(i, {1, i})|i = 2, . . . , n}.

We may assume As,t = 1 for (s, t) ∈ L. Clearly A also has zeroes in the
positions where M has zeroes. In particular the first unknown entry of A is
A3,{2,3}. The central observation is that {{1, 2}, {1, 3}, {2, 3}} is a cycle of our
matroid, i. e. the three corresponding column vectors are linearly dependent.
We know all the entries of theses three column vectors except A3,{2,3}. Hence
we know exactly what the linear dependence looks like:

A−,{1,2} −A−,{1,3} −A−,{2,3} = 0.

This determines the unkonwn entry. Similarly all the other entries can be
determined and the claim follows.

Example 3.10. The root system Bn viewed as its matrix of positive roots in
Kn×n2

gives rise to the matroid µ(Bn) whose reduced matrix counter is

(u− 1)3(u− 2) for n = 2 and (u − 1)n
2−1 for n > 2.

Proof. The case n = 2 is an easy exercise. We look at the case n = 3 from
which the general proof will be clear.

A :=




1 0 0 1 1 1 1 0 0

0 1 0 −1 1 0 0 1 1

0 0 1 0 0 −1 1 −1 1




yields µ(B3). Note columns 1,2,3,4,6,8 yield A3. The decisive linear dependence
for the rest is A−,5 − A−,6 + A−,9 = 0. Otherwise the proof is similar to the
one for An.

The case of root systems Dn for n ≥ 3 can be reduced to the previous cases
and results in the appropriate power of u − 1 for the reduced matrix counter.
Here is another source of examples for polynomially countable vector matroids.
As a third exampel we look at the Golay code.

Example 3.11. Let M ∈ F12×24
2 be the generator matrix of the extended

Golay code of length 24 over F2. The induced matroid is rigid, i. e. the orbit
counter is 1 and the reduced matrix counter (u− 1)23.

Proof. By Corollary 3.8 and Proposition 3.5, we are free to choose any basis of
µ(M). Since the automophism group M24 has exactly two orbits on the bases
of the induced matroid µ(M) ofM , cf. Example 4.12, there are essentially two
different types of matrices possible for M . In either case we may assume (after
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permuting the columns of M appropriately) that the submatrix of the first 12
columns of M is the identity matrix, i. e. M = (I12|N). In the first type of
bases each row and column of N has exactly 7 ones and 5 zeroes. Since this
type is slightly more awkward to treat, we choose the second type. Here one
has apart 11 columns with exactly 7 ones and exactly one pair of a row and a
column intersecting in a zero but otherwise consisting of ones (referred to as
cross of ones below).
Let K be a field containing F2. For any matrix A ∈ K12×24 with µ(A) = µ(M)
we may assume the same shape A = (I12|X). By Lemma 3.6, the positions with
zeroes in X are exactly the same as in N . As rigidity frame T , we choose the
set of positions in the cross of ones in N , where the position of the zero in the
crossing is replaced by some index pair (i, j) outside the cross with Nij = 1.
In X , we may also choose these 23 positions to be one and we remain with
11 · (7− 1)− 1 positions where the entry is not zero, but otherwise not known.
We start with the i-th row: We know Xij = 1. Let k be such that Xik 6= 0
and Xik is not yet known. Let l be the row index of the row of ones in the
cross. Then Xli = Xlk = 1 and the four numbers form a submatrix whose
determinant is zero, because the determinant of the corresponding submatrix
of N is zero. (Note, this submatrix can be complemented to a submatrix of 12
complete columns by choosing from among the first 12 columns of M similarly
as in the proof of Lemma 3.6.) Coming back to the submatrix of X , it has three
entries equal to 1 and determinant 0, which implies Xik = 1 for the last entry.
In this way we conclude that all the remaining non zero entries of the i-th row
of X are equal to 1. Similarly all the non zero entries of the j-th column of X
are equal to 1. With each new position proved to contain a one, by the same
argument, its complete row and column has all its non-zero entries equal to 1.
Since the matroid is obviously connected, this finally shows that all unknown
entries are equal to one.

Proposition 3.12. Let B ⊆ Potk(n) be a matroid and a ∈ B such that S(a,B)
is uniformly enumerable, enumerable, resp. polynomially countable, then so is
S(n− a,B∗) where B∗ := {n− b|b ∈ B} is the dual matroid of B. In this case,
the reduced matrix counters are equal: rB(u) = rB∗(u).

Proof. We may assume a = k. Then (Ik|A) ∈ S(a,B) if and only if
(−Atr|In−k) ∈ S(n− a,B∗). The claim follows easily.

It seems that matroids with few bases have a tendency to be polynomially
countable. In [Sko 96] a survey of the number of representations of uniform
rank 3 matroids on 7, 8, and 9 point is given, which indicates that polynomial
countability for 8 and 9 points is only given if certain univariate quadratic
polynomials split over the ground field, though the number of solutions can be
described in the other cases as well. This phenomenon in called quasisplit case
in [Ple 09b], cf. Example 5.9 1) for simpler examples. One might suspect that
sooner or later one gets examples which are not polynomially countable and
not even quasisplit. A good candidate for this might be the matroid of rank
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3 on 11 points in [Stu 93], pg. 101, where among the equations for S(a,B)
the absolutely irreducible polynomial given there turns up. In the last chapter,
rank 3 vector matroids on up to 7 points are given with their matrix counters.
There are also examples given there with the same Tutte polynomial, but
different matrix counters; on the other hand there is also an abundance of
pairs of non isomorphic matroids with the same matrix counter.

4 The rank generating polynomial

In this section, M denotes a matroid on the set E of n elements with rank
function ρ : Pot(E)→ Z≥0. The rank generating polynomial is defined as

S(M ;x, y) :=
∑

X⊆E

xρ(E)−ρ(X)y|X|−ρ(X) ∈ Z[x, y].

A good example is the rank generating polynomial

pn,k(x, y) :=

(
n

k

)
+

n−k∑

i=1

(
n

k + i

)
yi +

k∑

i=1

(
n

k − i

)
xi

of the uniform matroid of rank k, where every k-element subset of E forms a
basis ofM . The aim of this section is to reduce the summation over all subsets
of E to something more manageable. One rather simple approach is to define
the deviation polynomial

δ(M ;x, y) := pn,k(x, y)− S(M ;x, y) ∈ Z[x, y]

where k is the rank of M . For matroids with a big number of bases, δ(M ;x, y)
will have few terms and the rank generating polynomial can be easily recovered
form δ(M ;x, y). Since in both pn,k(x, y) and in S(M ;x, y) all

(
n
k−s

)
subsets of

M with k − s elements are taken into account, one has the following.

Remark 4.1. Let δ(M ;x, y) =
∑

i,j aijx
iyj, then for each s ∈ Z one has

∑

i

as+i,i = 0

A more serious attempt to analyse and understand the sum with the idea of
simplification is by grouping together the summands belonging to one flat.

Definition 4.2. 1.) The polynomial

S(M ; y) := S(M ; 0, y) ∈ Z[y]

is called the generator generating polynomial of M .
2.) For X ⊆ E let

σ(X) := {e ∈ E|ρ(X) = ρ(X ∪ {e})}
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the closure operator with respect to M and for any flat X = σ(X) call

σ−1({X}) := {Y ⊆ E|σ(Y ) = X}

flock of X. Finally

L(M) := {X ⊆ E|σ(X) = X}

the set of all flats of M .

Clearly S(M ; y) =
∑

X∈σ−1({M}) y
|X|−ρ(X). If we simply write S(X ; y) for

S(M |X ; y) for any flat X of M , where M |X denotes the restriction of M to
X , then the original definition of the rank generating polynomial becomes:

S(M ;x, y) =
∑

X∈L(M)

xρ(E)−ρ(X)S(X ; y).

To proceed further, we exhibit flats with the same generator generating poly-
nomial. Recall that a coloop of M is an element e of E occuring in each basis
of M , i. e. ρ(E − {e}) = ρ(E)− 1.

Definition 4.3. A flat X ∈ L(M) is called essential if M |X has no coloop.

One clearly has the following lemma.

Lemma 4.4. Let X ∈ L(M). Then there exists a unique essential flat Y , called
the essential flat ǫ(X) of X, such that

M |X =M |Y ⊕M |{e1} ⊕ · · · ⊕M |{er}

where e1, . . . , er are the coloops of M |X. Moreover

σ−1({Y })→ σ−1({X}) : Z 7→ Z ∪ {e1, . . . , er}

is a bijection so that

S(X ; y) = S(Y ; y).

This leads to the following definiton.

Definition 4.5. For any essential flat Y ∈ ǫ(L(M)) call ǫ−1({Y }) the cloud
of Y and

S(M,Y ;x) :=
∑

X∈ǫ−1({Y })

xρ(E)−ρ(X)

the cloud polynomial of Y .

Summarizing, we have the following.
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Proposition 4.6. Let M be a matroid without loops on the set E. Then

Pot(E) =
⊎

Y ∈ǫ(L(M))

σ−1(ǫ−1({Y }))

with a bijection

σ−1(ǫ−1({Y }))→ ǫ−1({Y })× σ−1({Y }) : Z 7→ (σ(Z), Z ∩ Y )

for every essential flat Y . In particular

S(M ;x, y) =
∑

Y ∈ǫ(L(M))

S(M,Y ;x)S(Y ; y).

Whereas the generator generating polynomial S(Y ; y) depends on Y or, more
precisely, M |Y only, the cloud polynomial S(M,Y ;x) depends on the embed-
ding of Y in M . In fact, it depends only on the minor M/Y :

Proposition 4.7. Let M be a matroid without loops on the set E and Y an
essential flat of M . Then ∅ is an essential flat of the minor M/Y and there is
a bijection between the clouds:

ǫ−1
M ({Y })→ ǫ−1

M/Y ({∅}) : X 7→ X − Y.

In particular, S(M,Y ;x) = S(M/Y, ∅;x).

Proof. ∅ is an essential flat of M/Y if and only if no element a ∈ E − Y is
dependent, i. e. ρM (Y ∪ {a}) > ρM (Y ) for all a ∈ E − Y . This however is
clear, since Y is a flat. Clearly the map X 7→ X − Y maps flats (contained in
E) with respect to M containing Y to flats (contained in E − Y ) with respect
to M/Y , where ρM/Y (X − Y ) = ρM (X)− ρM (Y ). The claim follows.

To get a better understanding, we connect the result to the passage to the dual
matroid M∗. Denote the closure operator on Pot(E) with respect to M∗ by σ∗

and the essentiality operator on L(M∗) by ǫ∗.

Lemma 4.8. Let X ⊆ E and Y := ∁X = E − X. For a ∈ E the following
statements are equivalent:
1.) a ∈ σ(X)−X.
2.) a is a coloop of M∗|Y .

Proof. Clearly 1.) is equivalent to a being a loop of the minor M/X = M.Y .
Hence 1.) holds iff a is a coloop of (M.Y )∗, which by Theorem 4.3.2 of [Wel 76]
is isomorpic to M∗|Y .

If X is an essential flat of M , we need to distinguish between ǫ−1({X}) and
ǫ↑(X) := {Z ⊆ E|X ⊆ Z,Z −X consists of coloops of M |Z}.
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Theorem 4.9. Let M be a matroid on E without loops and coloops. Let ∁ :
Pot(E)→ Pot(E) : X 7→ E −X.
1.) ∁ induces a bijection (Galois-correspondence) between ǫ(L(M)), the set of
essential flats of E with respect to M , and ǫ∗(L(M∗)), the set of essential flats
of E with respect to M∗.
2.) For an essential flat X in E with respect to M , the bijection ∁ induces a
bijection between σ−1({X}) and ǫ∗↑(E−X) and a bijection between ǫ↑(X) and
σ∗−1({E −X}).
3.) For an essential flat X in E with respect to M one has ǫ−1({X}) ⊆ ǫ↑(X),
indeed ǫ−1({X}) consists of all the flats in ǫ↑(X).

Proof. 1.) Let X ⊆ E. Then X is a flat with respect to M , if and only if
M∗|(E − X) has no coloops by Lemma 4.8. If X ⊆ E is an M -flat, then X
is an essemtial M -flat, if and only if M |X has no coloops. So X ⊆ E is an
essential flat ofM , iffM∗|(E−X) has no coloops andM |X has no coloops. By
applying the same argument in reverse, with the roles ofM |X andM∗|(E−X)
interchanged, this is again equivalent to E −X being an essential M∗-flat.
2.) Immediately from Lemma 4.8. 3.) Clear by definition.

Here are some examples and characterizations of essential flats. The proofs are
straightforward.

Remark 4.10. Let M be a matroid on the set E without loops and coloops.
1.) ∅ and E are essential flats.
2.) If a hyperplanes (of codimension 1) is an essential flat, its cloud polynomial
is x.
3.) If S(M,x, y) =

∑ρ(E)
i=0 xigi(y) and deg gi(y) > deg gi+1(y) for one i, then

M has αi essential flats of dimension ρ(E)− i consisting of deg gi(y) elements,
where αi is the leading coefficient of gi(y).
4.) If X ⊆ E is an essential flat and M |X = M |A ⊕M |B with X = A ⊎ B,
then A,B are essential flats.
5.) If S is a set of circuits of M , then σ(

⋃
X∈S X) is an essential flat of M .

Every essential flat is of this form for a suitable set S of circuits.
6.) The minimal number |S| of circuits such that E = σ(

⋃
X∈SX) may be called

the covering number of M . It measures certain aspects of the complexity of
M . For instance the uniform matroid of rank k on n elements has the covering
number 1.

The rank generating polynomial can of course be computed from the informa-
tion about the essential flats 6= E using the above results, however, we can also
get information about the lattice of flats from the rank generating polynomial.

Remark 4.11. For a polynomial p(x, y) =
∑
i,j ai,jx

iyj ∈ Z[x, y] with non
negative coefficients ai,j, call the exponent (i, j) extreme if ai,j > 0, ai+k,j =
0, ai,j+k = 0 for all k ≥ 1. Starting with the rank generating polynomial
p(x, y) =

∑
i,j ai,jx

iyj of M and an extreme exponent (i, j) one knows of the
existence of ai,j essential flats. Subtract the contribution of these essential flats
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from p(x, y) and proceed in the same way with the difference polynomials to get
the next set of essential flats.

Example 4.12. The Golay-code C of length 24 and dimension 12 over F2

gives rise to a selfdual matroid with rank generating polynomial p24,12(x, y) −
δ(C;x, y), where δ(C;x, y) is given by

(1− xy)(r(y) + 644(55xy+ 2039) + r(x))

with
r(t) := 759t4 + 12144t3 + 91080t2 + 425040t

The automorphism group is known to be the Mathieu-group M24 of order
|M24| = 21033 · 5 · 7 · 11 · 23 and by means of GAP, cf. [GAP] some relevant
orbits of M24 in Pot(24) can easily be computed towards the following results.
The essential flats fall into 6 orbits: The empty set, the circuits of length 8,
certain 10-dimensional flats of covering number 2, circuits of length 12, the
complements of the 8-circuits (the dual of which are isomorphic to the matroid
of affine 4-space over F2), and finally the full set. Here is the rank generating
polynomial split up into the corresponing sum of 6 summands, each of which
is a product of the length of the orbit, the cloud polynomial (in x), and the
generator generating polynomial (in y):

1 · (∑6
i=0

(
24
i

)
x12−i + |M24| · ( 1

720x
5 + 1

384x
4 + 1

432x
3 + 1

1440x
2)) · 1+

759 · (x5 + 16x4 + 120x3) · (y + 8)+
35420 · x2 · (y2 + 12y + 48)+

2576 · x · (y + 12)+
759 · x · (y5 + 16y4 + 120y3 + 560y2 + 1680y + 2688)+

1 · 1 · (∑7
i=0

(
24
i

)
y12−i + |M24|( 121

40320y
4 + 1

189y
3 + 11

1440y
2 + 67

7920y +
1

176 ))

Because of the presence of the 12-circuits one easily sees that the covering
number of the full matroid is 2. We list some additional information about the
orbits of M24 on the set of 12-subsets of {1, 2, . . . , 24} as an interpretation of
the coefficients of (xy)i in the rank generating polynomial above: Two orbits
of bases of lengths 1020096 and 370944, one orbit of 12-circuits of length 2576
(stabilizers isomorphic to M12), and one further orbit of length 1275120 =
759·1680, of which each element has one linear relation and has the complement
of an octave as its closure. Finally, there is one orbit of essential flats with two
relations of length 35420. Of course, the above way to write the rank generating
polynomial encodes much more information than the polynomial itself.

We finish this chapter with an example of a non selfdual matroid of rank 8
on 15 points. Its combinatorial structure is sufficiently clear so that its rank
generating polynomial as a sum of the products of its cloud and generator
generating polynomials can in principle be computed by hand using the results
of this chapter. One way to describe it is as the dual of the matroid of the
columns of p15(A15), where p15(t) is the 15-cyclotomic polynomial and A15
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is the permutation matrix of a 15-circuit or, if one prefers it, the companion
matrix of t15− 1. So the example can be considered as a cyclic code over Q. In
the actual formulation of the example, a different description is given, which
results in a permutation of the ground set, but gives a clearer picture of the
structure.

Example 4.13. Let Zk ∈ Q(k−1)×k the matrix whose first k − 1 columns form
the unit matrix and whose last column has all entries equal to −1. Note, the
matroid of the columns of Zk is a k-circuit. Choose A ∈ Q8×15 to be the
Kronecker product A := Z5⊗Z3. The associated matroid M is of rank 8 on
E := 15. Its structure is governed by the (essential) circuits given by the sets
of entries in one of the rows or colums of the matrix

κ :=




1 4 7 10 13
2 5 8 11 14
3 6 9 12 15




The automorphism group of M is the direct product S3×S5 whose action on E
is induced by the action of S3 on the rows and of S5 on the columns of κ. The
closure operator σ takes a subset X ⊆ E and obtains σ(X) as the union of X, of
the column sets of κ whose intersection with X has two elements, and of the row
sets of κ whose intersection with X has four elements. The essentiality operator
ǫ takes a flat X ⊆ E and removes all elements from X for which neither its full
row nor its full column is contained in X. In particular, the essential flats are
unions of complete rows (0, 1, or 3) and complete columns (0,1,2,3, or 5). The
notation for the S3 × S5-orbits is forced upon one: irjc meaning i ∈ Z≥0 rows
and j ∈ Z≥0 columns. With this information it is not so difficult to compute
the generator generating polynomials and the cloud polynomials except maybe
the cloud polynomial for 0r0c and the generator generating polynomial for 3r5c.
However, these con be easily obtained from Remark 4.1, once everything else is
computed. Here is the result: The first factor in each summand is the length of
the S3×S5-orbit, followed by the cloud polynomial, and finally by the generator
generating polynomial. On the right the symbol for the orbit of the essential
flat is given.

1 · 1 · (y4 + 6y3 + 24y2 + 50y + 75)(3 + y)3+ 3r5c
30 · x · (y2 + 5y + 12)(3 + y)2+ 1r3c
30 · x2 · (y2 + 6y + 13)(3 + y)+ 1r2c

10 · x2 · (3 + y)3+ 0r3c
15 · x3 · (14 + 7y + y2)+ 1r1c

10 · (x4 + 9x3 + 18x2 + 6x) · (3 + y)2+ 0r2c
3 · x4 · (5 + y)+ 1r0c

5 · (x6 + 12x5 + 54x4 + 96x3 + 54x2) · (3 + y)+ 0r1c
1 · (x8 + 15x7 + 90x6 + 270x5 + 390x4 + 210x3) · 1 0r0c

.

For completeness we add the corresponding information for the dual matroid.
The notation for the S3× S5-orbits is kept, though one has to take the comple-
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ments of the sets above.

1 · 1 · (y8 + 15y7 + 105y6 + 450y5 + 1305y4 + 2670y3 + 3870y2

+ 3780y+ 2025)+ 0r0c
5 · x · (y6 + 12y5 + 66y4 + 216y3 + 456y2 + 612y+ 432)+ 0r1c

3 · x · (y4 + 10y3 + 40y2 + 80y + 80)+ 1r0c
10 · x2 · (y4 + 9y3 + 36y2 + 78y + 81)+ 0r2c
15 · (x2 + x) · (y + 4)(y2 + 4y + 8)+ 1r1c

10 · x3 · (12 + 6y + y2)+ 0r3c
30 · (x3 + 2x2 + x) · (12 + 6y + y2)+ 1r2c
30 · (x4 + 3x3 + 3x2 + x) · (4 + y)+ 1r3c

1 · (x7 + 15x6 + 105x5 + 335x4 + 495x3 + 303x2 + 15x) · 1 3r5c

5 Vector matroids of rank 3

Call a vector matroid simple [Wel 76] if it has no circuits of length 1 or 2.
Any matroid can easily be reduced to such a one, and conversely all the other
matroids can easily be constructed from the simple matroids once their au-
tomorphism groups are known. Moreover, the matrix counters change by an
easily computed power of u − 1. In this section we compute the matrix coun-
ters for the simple matroids of rank three on n ≤ 7 points. The first aim is to
introduce a symbol for each simple matroid of rank 3, cf. [Wel 76] Section 1.11.
Our formalization of the graphical notation there has the advantage that per-
mutations of the underlying set E can be easily dealt with, i. e. automorphism
groups can almost be read off. The rank three matroids are best understood
via their nontrivial hyperplanes.

Definition 5.1. Let M be a matroid of rank 3 with underlying set E.
1.) A hyperplane of M of more than 2 elements is called nontrivial.
2.) For i ∈ E let Hy(i) denote the set of all nontrivial hyperplanes containing
i.
3.) i ∈ E is called conglomerator, if Hy(i) contains more than one element.
4.) The set of all conglomerators of M is denoted by Congl(M).
5.) i ∈ E is called lazy if it is not contained in any nontrivial hyperplane.

Example 5.2. Let M be a simple matroid of rank 3.
Let |E| = 4, then M has no conglomerators. It either consists only of lazy
elements, or has exactly one nontrivial hyperplane, which then necessarily
contains 3 elements. So either all elements are lazy or exactly one is lazy.
Let |E| = 5, then M has at most one conglomerator. In this case there are no
lazy elements and one has two nontrivials hyperplanes of length 3 having the
conglomerator in common.

Definition 5.3. Let M be a simple matroid of rank 3 on a set E. The symbol
[M ] of M is an element of the free abelian group Z[Pot(E)×{3, 4, . . . |E| − 1}]
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with Z-basis Pot(E) × {3, 4, . . . |E| − 1}, where for brevity the basis elements
are written as Xa rather than (X, a) for X ⊆ E, a ∈ {3, 4, . . . |E| − 1}. The
symbol [M ] is then defined as follows:

[M ] :=
∑

H

(H ∩Congl(M))|H|,

where the sum is taken over all nontrivial hyperplanes H. If E or the number of
elements of E are not clear from the context, we write [M ]E or [M ]|E| instead
of [M ].

Note that M can be recovered from [M ] up to the names of the elements not
contained in Congl(M).

Example 5.4. Let M be a simple matroid of rank 3 and E := n.
Let |E| = 4, then [M ] is either 0 for the uniform matroid or ∅3 for any rank 3
matroid on E with exactly one (unspecified) nontrivial hyperplane, which then
consists of 3 elements.
Let |E| = 5, then [M ] is either 0, ∅3,∅4, or 2{i}3 for some i ∈ E.
Note, the matroid on 5 elements with symbol (∅3)5 is obtained from the one
with symbol (∅3)4 on four elements by adding one lazy element.

It is clear that the symbol determines the matroid up to isomorphism. To list
all rank 3 simple matroids on n elements up to isomorphism by their symbols,
we may (and will) restrict to the symbols of matroids M with Congl(M) = a
for some a ≤ n. It remains to deal with the problem of isomorphism for these
symbols.

Example 5.5. Let n := 6. Then one has exactly 9 isomorphism classes of
simple matroids. They are represented by the symbols

0, ∅3, ∅4, 2{1}3

obtained from matroids on less than 6 elements by adding lazy elements, further
the ones with |Congl(M)| ≤ 3:

∅5, 2∅3, {1}3 + {1}4, {1, 2}3 + {1, 3}3 + {2, 3}3,

and one with |Congl(M)| = 6:

{1, 3, 4}3 + {1, 5, 6}3 + {2, 3, 6}3 + {2, 4, 5}3.

It is clear that the symbols satisfy certain obvious conditions, which we list.

Remark 5.6. Let α ∈ Z[Pot(n) × {3, 4, . . . , n − 1}] be a symbol of a rank 3
matroid. Then
1.) If Sa occurs in α, then |S| ≤ a.
2.) If Sa 6= Tb both occur in α, then |S ∩ T | ≤ 1. Also the coefficient of Sa can
be at most 1 unless |S| = 1.
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3.) Let Congl(α) denote the union of the sets in the first component of the
terms of α. Then for each i ∈ Congl(α) there occur at least two Sa, Tb in α
with i ∈ S and i ∈ T .
4.) The smallest cardinality |E| for the ground set of a matroid with symbol α
is

|Congl(α)| +
∑

Sa

(a− |S|)

where the sum is taken over all terms Sa (with multiplicities) occuring in α.
5.) The rank generating polynomial can be read off from the symbol α, more
precisely from the indices of the summands of the symbol:

pn,3(x, y)− δα(x, y) with δα(x, y) = (1− xy)
n∑

l=0

yl
∑

H∈H

( |H |
3 + l

)

where H is the set of all nontrivial hyperplanes.

Existence of vector matroids cannot a priori be read off from the symbol, but
usually has to be computed explicitly. Our main interest is to find the matrix
counters in the cases where it is possible, including the relevant information
on the fields. The following tables were computed as follows: For a given
rank 3 matroid, a basis and a rigidity frame, cf. proof of Proposition 3.7, is
fixed. This gives an ansatz for the matrix with a unit matrix and a matrix
of indeterminates as complemetary submatrices. By the choice of the rigidity
frame, certain indeterminates are substituted by 1. Each 3 × 3-minor results
in an equation or inequation, depending on whether we have dependence or a
basis in the matroid. This system is put into the AlgebraicThomas-program,
cf. [BLH 13]. For many cases a suitable order of the variables yields a faithful
counting polynomial, i. e. an orbit counter right away, including information
on the characteristics. If not all systems split, one might try a different order
of variables. If the system is too big, we use the inclusion-exclusion principle
to generate systems of equations only, which often can be used to obtain a
faithful counting polynomial of a polynomially countable set. The question of
enumerability usually remains open in these cases.

Example 5.7. For |E| = n = 6, Table 1 lists the orbit counters of the simple
matroids of rank 3 up to Sn-action sorted according to the degrees of the matrix
counters. These matroids are all indecomposable except for ∅5, which has two
compontents and the orbit counter has to be multiplied by (u − 1)4 instead of
(u − 1)5 to obtain the reduced matrix counter rB(u). Note also that 2∅3 and
2{1}3, which have the same rank generating polynomial, are distinguished by
their matrix counter. In the uniform case 0, the system ST (a,B), cf. Corol-
lary 3.8, is polynomially countable, where all characteristics 6= 2 can be treated
simultaneously, however the final faithful counting polynomial is the same for
all characteristics including 2. In all the other cases we have uniform enumer-
ability for ST (a,B), with the restriction that for ∅3 characteristic 2 has to be
treated separately, but again yields the same orbit counter. We note that for
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symbol cf. 5.3 oB(u) (orbit counter cf. 3.7) |S6-orbit|
0 (u− 2)(u− 3)(u2 − 9u+ 21) 1
∅3 (u− 2)(u− 3)(u− 4) 20
2∅3 (u− 2)2 10
2{1}3 (u− 2)(u− 3) 90
∅4 (u− 2)(u− 3) 15
{1}3 + {1}4 (u− 2) 60
{1, 2}3 + {1, 3}3 + {2, 3}3 (u− 2) 120
∅5 (u− 2)(u− 3) 6
{1, 2, 4}3 + {1, 3, 5}3+

{2, 3, 6}3 + {4, 5, 6}3 1 30

Table 1: Orbit counters for simple rank 3-matroids on 6 points, cf. Example
5.7

the uniform matroid 0 the above mentioned inclusion-exclusion count has been
applied. However, in this particular case, it can be avoided by also computing
the contribution of the non simple matroids towards the counting polynomial
for all rank 3 matrices in K3×6, cf. Proposition 2.5. After division by gl(3, u),
this is the product of the 2nd, 4-th, 5-th, and 6-th cyclotomic polynomial

(u+ 1)(u2 + 1)(u4 + u3 + u2 + u+ 1)(u2 − u+ 1)

= 10(3u− 1)(3u2 − 3u+ 1)

+ (u2 + 2u− 5)(u3 + 3u2 − 10)(u− 1)4

+ 5(u+ 3)(13u2 − 14u+ 4)(u− 1)2

+ 3(5u− 3)(u3 + 4u2 + u− 11)(u− 1)3

where the i-th summand gives the contribution
∑

B rB(u) of the matrices whose
matroid B reduces to a simple matroid on 2 + i elements for i = 1, 2, 3, 4.
Finally, the factors of the orbit polynomials can usually be given interpretations.
For instance, in the case of the uniform matroid [0]6, the factors u − 2 and
u− 3 mean that there are no representations of the matroid over a field of 2 or
three elements. For bigger fields they can be interpreted as follows: Once three
columns of the matrix are chosen to form the unit matrix and, say one column
and one row of the remaining matrix is chosen to be equal to 1 in each position
as rigidity frame, cf. proof of Proposition 3.7, choose a fixed column C among
the two other columns. The first remaining position of C can be chosen to be
a 6= 1, 0 and the second remaining position of C can be chosen to be c 6= 0, 1, a.
Independently of these choices, the matrix can be completed in (u2 − 9u + 21)
ways.

The next example treats the simple rank 3 matroids on 7 points. By Propostion
3.12 this can be turned into (almost all of) the corresponding list of orbit
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counters of rank 4 matroids on 7 points. The orbit counters for 0 in Examples
5.7 and 5.8 have already been known by different methods, cf. [Sko 96] last
section and the references there. Also the more complicated cases of rank 3
matroids on 8 and 9 points are described there, cf. also [ISS 95]. For a more
geometric approach to these problems, cf. [Sko 92] and [RoS 96].

Example 5.8. For |E| = n = 7 the matroids of rank 3 are all polynomially
countable. Table 2 lists the orbit counters of the simple matroids of rank 3
up to Sn-action sorted according to the degrees of the matrix counters. These
matroids are all indecomposable except of ∅6, which has two compontents and
the orbit counter has to be multiplied by (u − 1)5 instead of (u − 1)6 to obtain
the reduced matrix counter rB(u). In this case of 7 points for E, one often gets
different orbit counters for characteristic 2. Remarkably the orbit counters of
the same matroid (of rank 3 on 7 points) for characteristic 2 and characteristic
6= 2 differ only by a number. Therefore in Table 2 the δ2 is 1 if the characteristic
of the field is 2, otherwise it is zero. Usually, an orbit counter in characteristic
2 factors similarly to the corresponding one for the other characteristics, e. g.
for ∅3 we have

6 ·δ2+(u−5)(u−3)(u3−13u2+54u−66) = (u−4)(u−2)(u3−15u2+75u−123)

Since the matroids of rank 3 on less than 7 elements are all polynomially count-
able with polynomials independent of the characteristic of the field, the contri-
bution of the non simple matroids to the counting polynomial of 3× 7-matrices
is also independent of the characteristic, and therefore also the contribution of
all simple matroids (listed in Table 2) together, since the counting polynomial
for all 3 × 7-matrices of rank 3 is independent of the characteristic, cf. Prop-
sition 2.5. This amounts to saying that the differences of the general reduced
matrix counters to the characteristic 2 ones multiplied by the orbit lengths in
the last column of the table should add up to zero, because the multiplicities of
the factor u − 1 are the same in all relevant cases. But in fact, these product
do not only add up to zero, but (for us unexpectedly) cancel in pairs (zeroes
omitted):

[30,−210, 630,−840,−210, 210, 840,−630, 210,−30]

Concerning the individual orbit counters, the ones for 0, ∅3, 2∅3, 2{1}3 were
obtained via inclusion-exclusion, in all other bases directly so that at least the
transversal there is uniformly enumerable. In the case of the uniform matroid
0, even for the inclusion-exclusion approach to work, one had to change the
order of the coordinates for some of the simple systems, i. e. the investigated
systems were probably not uniformly enumerable, but only enumerable, resulting
in polynomially countable systems for the final result. Note, the last matroid
corresponds to the projective plane over F2.

It is known, cf. [Wel 76] pg. 306, that there are 68 simple rank 3 matroids on
8 points, all listed in the supplement of [BCH 73]. Instead of going through
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symbol cf. 5.3 oB(u) (orbit counter cf. 3.7) |S7-orbit|
0 −30 · δ2 + (u − 3)(u− 5)·

(u4 − 20u3 + 148u2 − 468u+ 498) 1
∅3 6 · δ2 + (u − 5)(u− 3)·

(u3 − 13u2 + 54u− 66) 35
2∅3 (u− 5)(u − 2)(u− 3)(u− 4) 70
213 −2 · δ2 + (u− 3)(u3 − 12u2 + 46u− 54) 315
∅4 (u− 5)(u − 2)(u− 3)(u− 4) 35
13 + 14 (u− 2)(u − 3)(u− 4) 420
123 + 133 + 233 δ2 + (u− 3)(u2 − 7u+ 11) 840
∅5 (u− 2)(u − 3)(u− 4) 21
313 2 · δ2 + (u − 3)2(u− 4), 105
∅3 + ∅4 (u− 3)(u − 2)2 35
13 + 23 + 123 (u− 4)(u − 3)(u− 2) 630
1243 + 1353+

2363 + 4563 −δ2 + (u − 3)2 210
13 + 15 (u− 2)(u − 3) 105
123 + 133 + 234 (u− 3)(u − 2) 1260
14 + 14 (u− 2)2 70
∅6 (u− 2)(u − 3)(u− 4) 7
123 + 133+

143 + 2343 −δ2 + (u − 3)2 840
233 + 453+

1243 + 1353 (u− 3)(u − 2) 1260
1244 + 1363+

2563 + 3453 (u− 2)(u − 3) 840
123 + 1353 + 1463+

2343 + 2563 δ2 + (u− 3) 630
1243 + 1353 + 1673+

2363 + 4573 (u− 2) 420
1263 + 1353 + 1473+
2373 + 2453 + 3463 −δ2 + 1 210

1263 + 1353 + 1473+
2373 + 2453 + 3463+
5673 δ2 30

Table 2: Orbit counters for simple rank 3-matroids on 7 points, cf. Example
5.8, where {i, j, k} in the symbol is abbreviated as ijk.
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all possibilities, we only give two examples demonstrating phenomena not yet
occurring in the case of |E| = 7 points.

Example 5.9. Let |E| = 8, i. e. we consider some examples of rank 3 matroids
on 8 points.
1.) The matroid B := {1, 2}3+ {1, 4}3+ {2, 3}3+ {3, 4}3 gives rise to a system
ST ({1, 2, 3}, B) for a suitable rigidity frame T , cf. proof of Proposition 3.7,
saying that all the 3× 3-minors of the matrix




1 0 0 1 1 1 0 1

0 1 0 1 x2,2 x2,3 1 1

0 0 1 1 0 x2,3 x3,4 x3,5




which do not vanish identically in the four variables are not equal to zero. The
system is too big to be treated directly so that one has to use the inclusion-
exclusion count. In doing that it turns out that at characteristic 2 one has a
different behaviour, but otherwise all simple system coming up are split, except
for one, which is only quasisplit in the sense of [Ple 09b]:

x3,5 − x2,2 = 0, x2,3 − x2,2 = 0, x3,4 − x2,2 = 0, x22,2 − x2,2 + 1 = 0,

i. e. becomes split after a suitable finite field extension. The counting polyno-
mial for the whole system is

c(u) := u4 − 16u3 + 93u2 − 231u+ 208.

Now the interpretation is slightly more complicated: If the field in question
does not contain a primitive sixth root of unity, the number of solutions
(or rather the counting polynomial for these solutions) is c(u) − 2. If it
contains a primitive sixth root of unity and the characteristic is not (2 or)
3, then it is c(u) as it stands. If the characteristic is 3, then it is clearly
c(u)− 1 = (u− 3)(u3− 13u2+54u− 69), since x22,2−x2,2 +1 has a double root
then. Finally the case of characteristic 2 has to be treated separately in the
same manner. One obtains the counting polynomial c(u)− 4, which is correct
if the ground field contains a primitive third root of unity and c(u)− 6 if not.
Of course more complicated systems which cannot be decomposed into quasisplit
systems sooner or later come in abundance.

2.) The matroid 2{1}3+{1}4 has the orbit counter oB(u) = (u−5)(u−3)(u−4)2
in every characteristic 6= 2 and in characteristi 2 it has (u − 2)(u − 4)(u2 −
10u + 27) as orbit counter, both obtainable via the inclusion exclusion count.
The difference of the two is −6u+24, which is no longer a constant like in the
matroids on 7 points.

3.) Here is a list of isomorphism classes of the rigid rank 3 matroids on 8
points:
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a) {1, 2, 4}3+{1, 3, 7}4+{1, 5, 6}3+{2, 3, 5}3+{2, 6, 7}3+{3, 4, 6}3+{4, 5, 7}3
in characteristic 2 (length of orbit under S8 is 1680).
b) {1, 2, 4}3+{1, 5, 6}3+{2, 3, 5}3+{2, 6, 7}3+{3, 4, 6}3+{4, 5, 8}3+{1, 3, 7, 8}4
in any characteristic (length of orbit under S8 is 5040).
c) {1, 2, 4}3+{1, 3, 7}3+{1, 6, 8}3+{2, 3, 8}3+{2, 5, 6}3+{3, 4, 5}3+{4, 6, 7}3+
{5, 7, 8}3 in characteristic 3.
The last matroid is not rigid in in characteristics 6= 3: In characteristic 2 one
has no solutions and in characteristics 6= 2, 3 one has 2 or 0 solutions, depend-
ing on whether x2−x+1 does or does not split over the ground field, similarly
to part 1) of this example. One is tempted to call this situation Galois-rigid,
since the Galois group acts transitively on the solutions. (Length of orbit
under S8 is 840.)
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Abstract. Let G be a finitely generated group and G = G0 ⊇
G1 ⊇ G2 ⊇ · · · a descending chain of finite index normal subgroups

of G. Given a fieldK, we consider the sequence b1(Gi;K)
[G:Gi]

of normalized

first Betti numbers of Gi with coefficients in K, which we call a K-

approximation for b
(2)
1 (G), the first L2-Betti number of G. In this

paper we address the questions of when Q-approximation and Fp-
approximation have a limit, when these limits coincide, when they
are independent of the sequence (Gi) and how they are related to

b
(2)
1 (G). In particular, we prove the inequality limi→∞

b1(Gi;Fp)
[G:Gi]

≥
b
(2)
1 (G) under the assumptions that ∩Gi = {1} and each G/Gi is a
finite p-group.

2010 Mathematics Subject Classification: Primary: 20F65; Sec-
ondary: 46Lxx
Keywords and Phrases: First L2-Betti number, approximation in
prime characteristic

1. Introduction

1.1. Q-approximation for the first L2-Betti number. Let G be a
finitely generated group. Given a field K, we let b1(G;K) = dimK(H1(G;K))
be the first Betti number of G with coefficients in K and b1(G) = b1(G;Q)

where Q denotes the field of rational numbers. Denote by b
(2)
1 (G) the first L2-

Betti number of G. Assuming that G is finitely presented and residually finite,

by Lück Approximation Theorem (see [13]), b
(2)
1 (G) can be approximated by

normalized rational first Betti numbers of finite index subgroups of G:

1The first author is supported in part by the NSF grant DMS-0901703 and the Sloan
Research Fellowship grant BR 2011-105. This paper is financially supported by the Leibniz-
Preis of the second author. We are grateful to Andrei Jaikin-Zapirain for this observation.
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Theorem 1.1 (Lück approximation theorem). Let G be a finitely presented
residually finite group and G = G0 ⊇ G1 ⊇ . . . a descending chain of finite
index normal subgroups of G, with ∩i∈NGi = {1}. Then

(1.2) b
(2)
1 (G) = lim

i→∞

b1(Gi)

[G : Gi]
.

In the sequel we will occasionally refer to a descending chain (Gi) of finite
index normal subgroups of G as a finite index normal chain in G and to the

associated sequence
(
b1(Gi)
[G:Gi]

)
i
as Q-approximation.

If we drop the assumption that G is finitely presented, but still require that

∩i∈NGi = {1}, one still has inequality b
(2)
1 (G) ≥ lim supi→∞

b1(Gi)
[G:Gi]

by [16,

Theorem 1.1], but equality need not hold [16, Theorem 1.2]. The latter is proved

in [16] by constructing an example where b
(2)
1 (G) > 0, but lim supi→∞

b1(Gi)
[G:Gi]

=

0 for any chain (Gi) as above. In Section 5 we will describe a variation of this

construction showing that the Q-approximation
(
b1(Gi)
[G:Gi]

)
i
may not even have

a limit:

Theorem 1.3. There exists a finitely generated residually finite group G and a
descending chain (Gi)i∈N of finite index normal subgroups of G, with ∩i∈NGi =

{1}, such that limi→∞
b1(Gi)
[G:Gi]

does not exist.

Another sequence we shall be interested in is Fp-approximation, that

is,
(
b1(Gi;Fp)
[G:Gi]

)
i
, where Fp is the finite field of prime order p. This sequence is

particularly important under the additional assumption that (Gi) is a p-chain,
that is, each Gi has p-power index (equivalently, G/Gi is a finite p-group). In

this case,
(
b1(Gi;Fp)
[G:Gi]

)
i
is monotone decreasing and therefore has a limit, often

called p-gradient or mod p homology gradient (see, e.g., [11]).
Since obviously b1(H) ≤ b1(H ;Fp) for any group H , one always has inequality

(1.4) lim sup
i→∞

b1(Gi)

[G : Gi]
≤ lim sup

i→∞

b1(Gi;Fp)
[G : Gi]

,

and it is natural to ask for sufficient conditions under which equality holds. Of
particular interest is the case when G is finitely presented and ∩i∈NGi = {1}
when Q-approximation does have a limit by Theorem 1.1.

Question 1.5 (Q-approximation and Fp-approximation). For which finitely
presented groups G and finite index normal chains (Gi) with ∩i∈NGi = {1} do
we have equality

lim
i→∞

b1(Gi)

[G : Gi]
= lim

i→∞

b1(Gi;Fp)
[G : Gi]

?

If G is not finitely presented, the above equality need not hold even if we
require that (Gi) is a p-chain. Indeed, as proved in [18] and independently in

[20], there exists a p-torsion residually-p group G with limi→∞
b1(Gi;Fp)
[G:Gi]

> 0
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for any p-chain (Gi) in G (and since G is residually-p, we can choose a p-
chain with ∩Gi = {1}). Since b1(H) = 0 for any torsion group H , we have

limi→∞
b1(Gi)
[G:Gi]

= 0 for such group G.

In Section 4 we give an example showing that the answer to Question 1.5 would
also become negative if we drop the assumption ∩i∈NGi = {1}, even if G is
finitely presented and (Gi) is a p-chain which has infinitely many distinct terms.

1.2. Comparing Fp-approximation and first L2-Betti number. Since
both Fp-approximation and the first L2-Betti number provide upper bounds
for Q-approximation, it is natural to ask how the former two quantities are
related to each other. We address this question in the case of p-chains.

Theorem 1.6. Let p be a prime number. Let G be a finitely generated group
and G = G0 ⊇ G1 ⊇ G2 ⊇ · · · a descending chain of normal subgroups of G of
p-power index. Then

(1) The sequence
(
b1(Gi;Fp)
[G:Gi]

)
i
is monotone decreasing and therefore con-

verges;
(2) Assume that

⋂
i∈NGi = {1}. Then

b
(2)
1

(
G) ≤ lim

i→∞

b1(Gi;Fp)
[G : Gi]

.

We note that for finitely presented groups Theorem 1.6(2) is a straightforward
consequence of Theorem 1.1.
We provide two different proofs of Theorem 1.6. First, Theorem 1.6 is a special
case of Theorem 2.2, which will be proved in Section 2. An alternative proof
of Theorem 1.6 given in Section 3 will be based on Theorem 3.1. The latter
may be of independent interest and has another important corollary, which
can be considered as an extension of Theorem 1.1 to groups which are finitely
presented, but not necessarily residually finite. Here is a slightly simplified
version of Theorem 3.1.

Theorem 1.7. Let G be a finitely presented group, and let K be the kernel of
the canonical map from G to its profinite completion or pro-p completion for
some prime p. Let (Gi) be a descending chain of finite index normal subgroups
of G such that ∩i∈NGi = K (note that such a chain always exists). Then

b
(2)
1 (G/K) = lim

i→∞

b1(Gi)

[G : Gi]
.

1.3. Connection with rank gradient. LetG be a finitely generated group.
In the sequel we denote by d(G) the minimal number of generators, sometimes
also called the rank of G. Let (Gi)i∈N be a descending chain of finite index
normal subgroups of G. The rank gradient of G (with respect to (Gi)), denoted
by RG(G; (Gi)), is defined by

RG(G; (Gi)) = lim
i→∞

d(Gi)− 1

[G : Gi]
.(1.8)
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The above limit always exists since for any finite index subgroup H of G one

has d(H)−1
[G:H] ≤ d(G) − 1 by the Schreier index formula.

Rank gradient was originally introduced by Lackenby [10] as a tool for studying
3-manifold groups, but is also interesting from a purely group-theoretic point
of view (see, e.g., [1, 2, 18, 20]).
Provided that G is infinite and

⋂
i∈NGi = {1}, the following inequalities are

known to hold:

(1.9) RG(G; (Gi)) ≥ cost(G)− 1 ≥ b(2)1 (G).

The first inequality was proved by Abért and Nikolov [2, Theorem 1], and the
second one is due to Gaboriau [8, Corollaire 3.16, 3.23] (see [7, 8, 9] for the
definition and some key results about cost).
It is not known if either inequality in (1.9) can be strict. In particular, the
following question is open.

Question 1.10. Let G be an infinite finitely generated residually finite group
and (Gi) a descending chain of finite index normal subgroups of G with
∩i∈NGi = {1}. Is it always true that

RG(G; (Gi)) = b
(2)
1 (G)?

Theorem 1.6 provides a potentially new approach for answering Question 1.10
in the negative, as explained below.
In view of the obvious inequality d(H) ≥ b1(H ;K) for any group H and any

field K, one always has RG(G; (Gi)) ≥ lim supi→∞
b1(Gi;K)
[G:Gi]

.

Question 1.11. For which infinite finitely generated groups G, finite index
normal chains (Gi)i∈N with

⋂
i∈NGi = {1} and fields K, do we have

(1.12) RG(G; (Gi)) = lim sup
i→∞

b1(Gi;K)

[G : Gi]
?

Remark 1.13. Since for a group H , the first Betti number b1(H ;K) depends
only on the characteristic of K, one can assume that K = Q or K = Fp for
some p. The same remark applies to Question 1.14 below.

Note that if K = Q, equality (1.12) does not hold in general – if it did, The-
orem 1.3 would have implied the existence of a group G and a finite index

normal chain (Gi) in G for which the sequence
(
d(Gi)−1
[G:Gi]

)
i
has no limit, which

is impossible since this sequence is monotone decreasing. If one can find a
group G for which (1.12) fails with K = Fp and (Gi) a p-chain, then in view
of Theorem 1.6 such group G would answer Question 1.10 in the negative.
The answer to Question 1.11 would become negative if we drop the assumption
∩Gi = {1} even if G is finitely presented and (Gi) is a p-chain (with infinitely
many distinct terms), as we will see in Section 4.
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1.4. Independence of the chain. So far we discussed the dependence of

the quantity lim supi→∞
b1(Gi;K)
[G:Gi]

on the field K, but perhaps an even more

important question is when it is independent of the chain. Again it is reasonable
to require that

⋂
i∈NGi = {1} since without this restriction the answer would

be negative already for very nice groups like F × Z, where F is a non-abelian

free group. Note that independence of lim supi→∞
b1(Gi;K)
[G:Gi]

of the chain (Gi)

as above automatically implies that limi→∞
b1(Gi;K)
[G:Gi]

must exist.

Question 1.14. For which finitely generated residually finite groups G and

fields K does the limit limi→∞
b1(Gi;K)
[G:Gi]

exist for all finite index normal chains

(Gi)i∈N with
⋂
i∈NGi = {1} and is independent of the choice of the chain (Gi)?

The answer to Question 1.14 is known to be positive if K = Q and either G is
finitely presented (by Theorem 1.1) or G is a limit of left orderable amenable
groups in the space of marked group presentations, in which case equality
(1.2) holds by [19, Corollary 1.5]. Question 1.14 remains open if G is finitely
presented and K = Fp. If G is arbitrary, the answer may be negative for any
K – this follows directly from Theorem 1.3 if K = Q and from its stronger
version Theorem 5.1 if K = Fp. In the latter case, however, it is natural to
impose the additional assumption that (Gi) is a p-chain, which does not hold
in our examples.
Essentially the only case when answer to Question 1.14 is known to be positive
for all fields is when G contains a normal infinite amenable subgroup (e.g., if
G itself is infinite amenable). In this case, RG(G; (Gi)) = 0 for all finite index
normal chains (Gi) with trivial intersection, as proved by Lackenby [10, Theo-
rem 1.2] when G is finitely presented and by Abért and Nikolov [2, Theorem 3]

in general. This, of course, implies that in such groups limi→∞
b1(Gi;K)
[G:Gi]

= 0

for any such chain (Gi) and hence the answer to Questions 1.11 and 1.14 is
positive.
Finally, we comment on the status of a more general version of Question 1.14:

Question 1.15. For which residually finite groups G, fields K, finite index
normal chains (Gi) with

⋂
i∈NGi = {1}, free G-CW -complexes X of finite

type and natural numbers n, does the limit limi→∞
bn(Gi\X;K))

[G:Gi]
exist and is

independent of the chain?

Again, if K has characteristic zero, the answer is always yes and the limit can

be identified with the n-th L2-Betti number b
(2)
n (X ;N (G)) (see [13] or [14,

Theorem 13.3 (2) on page 454], which is a generalization of Theorem 1.1). If
K has positive characteristic, the answer is yes if G is virtually torsion-free
elementary amenable, in which case the limit can be identified with the Ore
dimension of Hn(X ;K) (see [12, Theorem 5.3]); the answer is also yes for any
finitely generated amenable group G – this follows from [1, Theorem 17] or [12,
Theorem 2.1] – and the limit can be described using Elek dimension function
(see [5]). There are examples for G = Z of finite G-CW -complexes X where
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the limits limi→∞
bn(Gi\X;K))

[G:Gi]
are different for K = Q and K = Fp (but X is

not EG), see [12, Example 6.2].

1.5. Acknowledgments. The authors want to thank the American Insti-
tute of Mathematics for its hospitality during their stay at the Workshop “L2-
invariants and their relatives for finitely generated groups” organized by Miklós
Abért, Mark Sapir, and Dimitri Shlyakhtenko in September 2011, where some
of the ideas of this paper were developed. The authors are very grateful to
Denis Osin for proposing several improvements in Section 4 and other useful
discussions. The first author is very grateful to Andrei Jaikin-Zapirain for
many helpful discussions related to the subject of this paper, sending his un-
published work “On p-gradient of finitely presented groups” and suggesting a
stronger version of Theorem 3.1(2).

2. The first L2-Betti number and approximation in prime
characteristic

If G is a group and X a G-CW -complex, we denote by

b(2)n (X ;N (G)) = dimN (G)

(
Hn(N (G) ⊗ZG C∗(X))

)
(2.1)

its n-th L2-Betti number. Here C∗(X) is the cellular ZG-chain complex of X ,
N (G) is the group von Neumann algebra and dimN (G) is the dimension function
for (algebraic) N (G)-modules in the sense of [14, Theorem 6.7 on page 239].

Notice that b
(2)
1 (G) = b

(2)
1 (EG;N (G)).

The goal of this section is to prove the following theorem which generalizes
Theorem 1.6:

Theorem 2.2 (The first L2-Betti number and Fp-approximation). Let p be
a prime number. Let G be a finitely generated group and (Gi) a descending
chain of normal subgroups of p-power index in G. Let K =

⋂
i∈NGi. Then the

sequence
(
b1(Gi;Fp)
[G:Gi]

)
i
is monotone decreasing, the limit limi→∞

b1(Gi;Fp)
[G:Gi]

exists

and satisfies

b
(2)
1

(
K\EG;N (G/K)

)
≤ lim

i→∞

b1(Gi;Fp)
[G : Gi]

.

For its proof we will need the following lemma, which is proved in [3,
Lemma 4.1], although it was probably well known before.

Lemma 2.3. Let p be a prime and m,n positive integers. Let H be a finite
p-group. Consider an FpH-map α : FpHm → FpHn. Define the Fp-map

α = idFp ⊗FpHα : F
m
p = Fp ⊗FpH FpHm → Fnp = Fp ⊗FpH FpHn,

where we consider Fp as FpH-module by the trivial H-action. Then

dimFp(im(α)) ≥ |H | · dimFp(im(α)).

Notice that the assertion of Lemma 2.3 is not true if we do not require that H
is a p-group or if we replace Fp by a field of characteristic not equal to p.
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Proof of Theorem 2.2. Since G is finitely generated, there is a CW -model for
BG with one 0-cell and a finite number, let us say s, of 1-cells. Let EG→ BG
be the universal covering. Put X = K\EG and Q = G/K. Then X is a free
Q-CW -complex with finite 1-skeleton. Its cellular ZQ-chain complex C∗(X)
looks like

· · · → C2(X) =

r⊕

j=1

ZQ c2−→ C1(X) =

s⊕

j=1

ZQ c1−→ C0(X) = ZQ

where r is a finite number or infinity.
For m = 0, 1, 2, . . . we define a ZQ-submodule of C2(X) by C2(X)|m =⊕max{m,r}

j=1 ZQ. Denote by c2|m : C2(X)|m → C1(X) the restriction of c2 to

C2(X)|m.
Consider a ZQ-map f : M → N . Denote by f (2) : M (2) → N (2) the N (Q)-
homomorphism idN (G)⊗ZQf : N (Q)⊗ZQM → N (Q)⊗ZQN . Put Qi = Gi/K.
Let f [i] : M [i] → N [i] be the Q-homomorphism idQ⊗f : Q ⊗Z[Qi] M →
Q ⊗Z[Qi] N . Denote by f [i, p] : M [i, p] → N [i, p] the Fp-homomorphism

idFp ⊗Z[Qi]f : Fp ⊗Z[Qi] M → Fp ⊗Z[Qi] N . If M =
⊕t

j=1 ZQ, then M (2) =⊕t
j=1N (Q), M [i] =

⊕t
j=1 Z[Q/Qi] and M [i, p] =

⊕t
j=1 Fp[Q/Qi].

Note that

b1(Qi\X ;Fp) = b1(Gi\EG;Fp) = b1(BGi;Fp) = b1(Gi;Fp).

Since all dimension functions are additive (see [14, Theorem 6.7 on page 239]),
we conclude

b
(2)
1

(
X ;N (Q)

)
= s− 1− dimN (Q)

(
im(c

(2)
2 )
)
;(2.4)

b1
(
Gi;Fp)

[Q : Qi]
= s− 1− dimFp

(
im(c2[i, p])

)

[Q : Qi]
;(2.5)

dimN (Q)

(
im(c2|(2)m )

)
= m− dimN (Q)

(
ker(c2|(2)m )

)
;(2.6)

dimQ

(
im(c2|m[i])

)

[Q : Qi]
= m− dimQ

(
ker(c2|m[i])

)

[Q : Qi]
;(2.7)

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
= m− dimFp

(
ker(c2|m[i, p])

)

[Q : Qi]
.(2.8)

There is an isomorphism of Fp-chain complexes Fp ⊗Fp[Qi+1\Qi] C∗(X)[(i +

1), p]
∼=−→ C∗(X)[i, p], where the Qi+1\Qi-operation on C∗(X)[i+1] comes from

the identification C∗(X)[i+1] = Fp⊗Fp[Qi+1]C∗(X) = Fp[Qi+1\Q]⊗FpQC∗(X).
This is compatible with the passage from C2(X) to C2(X)|m. Hence c2|m[i, p]
can be identified with idFp ⊗Fp[Qi+1\Qi]c2|m[(i+1), p]. Since Qi+1\Qi is a finite
p-group, Lemma 2.3 implies

dimFp

(
im(c2|m[(i + 1), p])

)
≥ [Qi : Qi+1] · dimFp

(
im(c2|m[i, p])

)
.

We conclude

dimFp

(
im(c2|m[(i + 1), p])

)

[Q : Qi+1]
≥ dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
.(2.9)

Documenta Mathematica 19 (2014) 313–331



320 Mikhail Ershov, Wolfgang Lück

Since im(c
(2)
2 ) =

⋃
m im(c2|(2)m ) and im(c2[i, p]) =

⋃
m im(c2|m[i, p]) and the

dimension functions are compatible with directed unions (see [14, Theorem 6.7
on page 239]), we get

dimN (Q)

(
im(c

(2)
2 )
)

= lim
m→∞

dimN (Q)

(
im(c2|(2)m )

)
;(2.10)

dimFp

(
im(c2[i, p])

)
= lim

m→∞
dimFp

(
im(c2|m[i, p])

)
.(2.11)

We conclude from [14, Theorem 13.3 (2) on page 454 and Lemma 13.4 on
page 455]

lim
i→∞

dimQ

(
ker(c2|m[i])

)

[Q : Qi]
= dimN (Q)

(
ker(c2|(2)m )

)
.

This implies together with (2.6) and (2.7)

lim
i→∞

dimQ

(
im(c2|m[i])

)

[Q : Qi]
= dimN (Q)

(
im(c2|(2)m )

)
.(2.12)

Finally, it is easy to see that

dimQ

(
im(c2|m[i])

)
≥ dimFp

(
im(c2|m[i, p])

)
.(2.13)

Putting everything together, we can now prove both assertions of Theorem 2.2.

First, for a fixed m, the sequence

(
dimFp

(
im(c2|m[i,p])

)
[Q:Qi]

)

i

is monotone increasing

by (2.9), whence the sequence

(
dimFp

(
im(c2[i,p])

)
[Q:Qi]

)

i

is also monotone increasing

by (2.11) and therefore the sequence
(
b1(Gi;Fp)
[Q:Qi]

)
i
is monotone decreasing by

(2.5). This proves the first assertion of Theorem 2.2 since clearly [Q : Qi] =
[G : Gi].

Inequality (2.9) also implies that lim
i→∞

dimFp

(
im(c2|m[i,p])

)
[Q:Qi]

≥ dimFp

(
im(c2|m[j,p])

)
[Q:Qj ]

for any fixed j and m, and so
(2.14)

lim
m→∞

lim
i→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]
≥ sup

i≥0

{
lim
m→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

}
.
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Therefore,

b
(2)
1 (X ;N (Q))

(2.4)
= s− 1− dimN (Q)

(
im(c

(2)
2 )
)

(2.10)
= s− 1− lim

m→∞
dimN (Q)

(
im(c2|(2)m )

)

(2.12)
= s− 1− lim

m→∞
lim
i→∞

dimQ

(
im(c2|m[i])

)

[Q : Qi]

(2.13)

≤ s− 1− lim
m→∞

lim
i→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

(2.14)

≤ s− 1− sup
i≥0

{
lim
m→∞

dimFp

(
im(c2|m[i, p])

)

[Q : Qi]

}

(2.11)
= s− 1− sup

i≥0

{
dimFp

(
im(c2[i, p])

)

[Q : Qi]

}

= inf
i≥0

{
s− 1− dimFp

(
im(c2[i, p])

)

[Q : Qi]

}

(2.5)
= inf

i≥0

{
b1(Gi;Fp)
[Q : Qi]

}
.

This finishes the proof of Theorem 2.2. �

3. Alternative proof of Theorem 1.6

In this section we give an alternative proof of Theorem 1.6. Namely, Theo-
rem 1.6 is an easy consequence of the following result, which may be useful in
its own right.

Theorem 3.1. Let G be a finitely presented group, let (Gi) be a descending
chain of finite index normal subgroups of G, and let K =

⋂∞
i=1Gi.

(1) The following inequalities hold:

lim
i→∞

b1(Gi/K)

[G : Gi]
≤ b

(2)
1 (G/K) ≤ b

(2)
1

(
K\EG;N (G/K)

)
= lim

n→∞

b1(Gi)

[G : Gi]
.

(2) Let C be any class of finite groups which is closed under subgroups,
extensions (and isomorphisms) and contains at least one non-trivial
group (for instance, C could be the class of all finite groups or all finite
p-groups for a fixed prime p). Assume that K is the kernel of the
canonical map from G to its pro-C completion. Then

b
(2)
1 (G/K) = lim

i→∞

b1(Gi)

[G : Gi]
.
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If in addition all groups G/Gi are in C, then
(3.2)

lim
i→∞

b1(Gi/K)

[G : Gi]
= b

(2)
1 (G/K) = b

(2)
1

(
K\EG;N (G/K)

)
= lim

i→∞

b1(Gi)

[G : Gi]
.

Proof. (1) Since G is finitely presented, there is a G-CW -model for the clas-
sifying space BG whose 2-skeleton is finite. Let EG → BG be the universal
covering. Then EG is a free G-CW -complex with finite 2-skeleton. Put

Q = G/K;

Qi = Gi/K.

Then Q = Q0 ⊇ Q1 ⊇ · · · is a descending chain of finite index normal sub-
groups of Q with

⋂∞
i=0Qi = {1} and we have for i = 0, 1, 2, . . .

[G : Gi] = [Q : Qi].(3.3)

The quotient X = K\EG is a free Q-CW -complex whose 2-skeleton is finite.
Let X2 be the 2-skeleton of X . Since the first L2-Betti number and the first
Betti number depend only on the 2-skeleton, from [13, Theorem 0.1] applied
to the G-covering X2 → X2/G (we do not need X2 to be simply connected) or
directly from [14, Theorem 13.3 on page 454], we obtain

b
(2)
1 (X ;N (Q)) = lim

i→∞

b1(Qi\X)

[Q : Qi]
.(3.4)

Let f : X → EQ be the classifying map. Since EQ is simply connected, this
map is 1-connected. This implies by [14, Theorem 6.54 (1a) on page 265]

b
(2)
1 (X ;N (Q)) ≥ b

(2)
1 (EQ;N (Q)).(3.5)

The group Q is finitely generated (but not necessarily finitely presented), so by
[16, Theorem 1.1] we have

lim
i→∞

b1(Qi)

[Q : Qi]
≤ b

(2)
1 (Q).(3.6)

Notice that b
(2)
1 (Q) = b

(2)
1 (EQ;N (Q)) by definition and we obviously have

Qi\X = Gi\EG = BGi and hence b1(Qi\X) = b1(Gi). Combining
(3.3), (3.4), (3.5), and (3.6), we get

lim
i→∞

b1(Qi)

[Q : Qi]
≤ b(2)1 (Q) ≤ b(2)1 (X ;N (Q)) = lim

i→∞

b1(Qi\X)

[Q : Qi]
= lim

i→∞

b1(Gi)

[G : Gi]
.

This finishes the proof of assertion (1).

(2) First observe that since b
(2)
1

(
K\EG;N (G/K)

)
= lim

i→∞

b1(Gi)
[G:Gi]

by (1), the

limit lim
i→∞

b1(Gi)
[G:Gi]

is the same for all finite index normal chains (Gi) with

∩i∈NGi = K.By definition of K, there exists at least one such chain with
G/Gi ∈ C for all i (e.g., we can let (Gi) be a base of neighborhoods of 1 for the
pro-C topology on G), so it suffices to prove (3.2). Thus, from now on we will
assume that G/Gi ∈ C for i ∈ N.
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For a finitely generated group H we denote by H ′ the kernel of the composite
of canonical projections H → H1(H)→ H1(H)/ tors(H1(H)), so that H/H ′ is
a free abelian group of rank b1(H).
As in the proof of (1), we put Qi = Gi/K for i ∈ N. It is sufficient to prove
that that K ⊆ G′

i for i ∈ N. Indeed, this would imply that Qi/Q
′
i
∼= Gi/G

′
i,

whence b1(Qi) = b1(Gi) and therefore limi→∞
b1(Qi)
[G:Gi]

= limi→∞
b1(Gi)
[G:Gi]

, which

proves (2) in view of (1).

Fix i ∈ N and let H = Gi. Since C contains at least one non-trivial finite group
and is closed under subgroups, it contains a finite cyclic group, say of order

k. Since C is closed under extensions, it contains (Z/kmZ)b for all m, b ∈ N.
Setting b = b1(H), we get that H/H ′Hkm ∈ C for all m ∈ N, and since C
is closed under extensions, we obtain G/H ′Hkm ∈ C. By definition, K is
the intersection of all normal subgroups L of G with G/L ∈ C. Therefore,
K ⊆ ⋂

m∈N

H ′Hkm = H ′. �

Second proof of Theorem 1.6.
(1) This is a direct consequence of the following well-known fact: if H is a nor-
mal subgroup of p-power index in G, then b1(H ;Fp)−1 ≤ [G : H ](b1(G;Fp)−1)
(see, e.g., [11, Proposition 3.7]).

(2) Choose an epimorphism π : F → G, where F is a finitely generated free
group. Fix n ∈ N, let Fn = π−1(Gn) and H = [Fn, Fn]F

p
n . Then H is a finite

index subgroup of F , so we can choose a presentation (X,R) of G associated
with π such that R = R1 ⊔R2, where R1 is finite and R2 ⊆ H .

Consider the finitely presented group G̃ = 〈X | R1〉. We have natural epi-

morphisms φ : G̃ → G and ψ : F → G̃, with φψ = π. If we let G̃i = φ−1(Gi)

and K̃ =
⋂∞
i=1 G̃i, then G̃/K̃ ∼= G. Thus, applying Theorem 3.1 (1) to the

group G̃ and its subgroups (G̃i), we get b
(2)
1 (G) ≤ limi→∞

b1(G̃i)

[G̃:G̃i]
. Clearly,

limi→∞
b1(G̃i)

[G̃:G̃i]
≤ limi→∞

b1(G̃i;Fp)

[G̃:G̃i]
, and by assertion (1),

lim
i→∞

b1(G̃i;Fp)

[G̃ : G̃i]
≤ b1(G̃n;Fp)

[G̃ : G̃n]
=
b1(G̃n;Fp)
[G : Gn]

.

Since G ∼= G̃/〈〈ψ(R2)〉〉 and by construction ψ(R2) ⊆ ψ(H) = [G̃n, G̃n]G̃
p
n,

we have kerφ ⊆ [G̃n, G̃n]G̃
p
n, and therefore b1(G̃n;Fp) = b1(φ(G̃n);Fp) =

b1(Gn;Fp).
Combining these inequalities, we get b

(2)
1 (G) ≤ b1(Gn;Fp)

[G:Gn]
. Since n is arbitrary,

the proof is complete. �

4. A counterexample with non-trivial intersection

In this section we show that the answer to Questions 1.5 and 1.11 could be
negative for a finitely presented groupG and a strictly descending chain (Gi)i∈N
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of normal subgroups of p-power index if the intersection ∩i∈NGi is non-trivial
(see inequalities (4.2) below).
We start with a finitely generated groupH (which will be specified later) and let
G = H ∗Z. Choose a strictly increasing sequence of positive integers n1, n2, . . .
with ni | ni+1 for each i, and let Gi ⊆ G be the preimage of ni · Z under
the natural projection pr : G = Z ∗ H → Z. Then (Gi)i∈N is a descending
chain of normal subgroups of G with

⋂
i≥1Gi = ker(pr). Let BGi → BG be

the covering of BG associated to Gi ⊆ G. Then BGi is homeomorphic to

S1 ∨
(∨ni

j=1 BH
)
. We have

Gi ∼= π1(BGi) ∼= π1


S1 ∨




ni∨

j=1

BH




 ∼= Z ∗ (∗ni

j=1H).

Since for any groupsA and B we have A∗B/[A∗B,A∗B] ∼= A/[A,A]⊕B/[B,B]
and d(A∗B) = d(A)+d(B) by Grushko-Neumann theorem (see [4, Corollary 2
in Section 8.5 on page 227], we conclude

H1(Gi;K) = K ⊕
ni⊕

j=1

H1(H ;K);

H1(Gi) = Z⊕
ni⊕

j=1

H1(H);

d(Gi) = 1 + ni · d(H);

lim
i→∞

b1(Gi;K)

ni
= b1(H ;K);

lim
i→∞

d(H1(Gi))

ni
= d(H1(H));

RG(G; (Gi)i≥1) = d(H).

Now let p 6= q be distinct primes and H = Z/pZ ∗ Z/qZ ∗ Z/qZ. Clearly we
have

(4.1) b1(H) = 0, b1(H ;Fp) = 1, d(H1(H)) = 2, d(H) = 3.

Hence we obtain

(4.2) lim
i→∞

b1(Gi)

[G : Gi]
< lim
i→∞

b1(Gi;Fp)
[G : Gi]

< lim
i→∞

d(H1(Gi))

[G : Gi]
< RG(G; (Gi)i≥1).

Using a different H we can produce an example of this type where G has a
very strong finiteness property, namely, G has finite 2-dimensional BG. The
construction below is due to Denis Osin and is simpler and more explicit than
the original version of our example.
Again, let p 6= q be two primes. Consider the group

H = 〈x, y, z | xp = u, yq = v, zq = w〉,
where u, v, w are words from the commutator subgroup of the free group F
with basis x, y, z such that the presentation of H satisfies the C′(1/6) small
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cancellation condition. Such words are easy to find explicitly. Note that G =
H ∗ Z is a torsion-free C′(1/6) group, hence it has a finite 2-dimensional BG.
Since u, v, w ∈ [F, F ], we have b1(H) = 0, b1(H ;Fp) = 1, d(H1(H)) = 2.
Further it follows from [6, Corollary 2] that the exponential growth rate of H
can be made arbitrarily close to 2 · 3 − 1 = 5, the exponential growth rate
of the free group of rank 3, by taking sufficiently long words u, v, w. As the
exponential growth rate of an m-generated group is bounded from above by
2m− 1, we obtain d(H) = 3 whenever u, v, w are sufficiently long. (For details
about the exponential growth rate we refer to [6].)
By using a more elaborated construction from [21], one can make such a group
G the fundamental group of a compact 2-dimensional CAT (−1) CW -complex.
Other examples of this type can be found in [3] and [15].

5. Q-approximation without limit

In this section we prove the following theorem, which trivially implies Theo-
rem 1.3.

Theorem 5.1. Let d ≥ 2 be a positive integer, let p be a prime and let ε be a
real number satisfying 0 < ε < 1. Then there exist a group G with d generators
and a descending chain G = G0 ⊇ G1 ⊇ G2 . . . of normal subgroups of G of
p-power index with

⋂∞
i=1Gi = {1} with the following properties:

(i) lim infi→∞
b1(G2i)
[G:G2i]

≥ d− 1− ε;
(ii) limi→∞

b1(G2i−1)
[G:G2i−1]

= 0.

Moreover, if q is a prime different from p, we can replace (ii) by a stronger
condition (ii)’:

(ii’) limi→∞
b1(G2i−1;Fq)
[G:G2i−1]

= 0.

Note that the last assertion of Theorem 5.1 shows that the answer to Ques-
tion 1.14 can be negative when char(K) = q > 0 if we do not require that (Gi)
is a q-chain.

5.1. Preliminaries. Throughout this section p will be a fixed prime number.
Given a finitely generated group G, we will denote by Gp̂ the pro-p completion
of G and by G(p) the image of G in Gp̂ (which is isomorphic to the quotient of
G by the intersection of normal subgroups of p-power index). Given a set X ,
by F (X) we denote the free group on X .
Let F be a free group and w ∈ F a non-identity element. Given n ∈ N, denote
by n
√
w the unique element of F whose nth power is equal to w (if such element

exists). Define ep(w,F ) to be the largest natural number e with the property
that pe

√
w exists in F .

Lemma 5.2. Let (X,R) be a presentation of a group G with X finite, F = F (X)
and π : F → G the natural projection. Let H be a normal subgroup of p-power
index in G, and let FH = π−1(H). Then H = FH/〈〈RH〉〉 where RH contains

[G:H]

pep(r,F )−ep(r,FH ) F -conjugates of r for each r ∈ R and no other elements.
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Proof. Very similar results are proved in both [18] and [20], but for complete-

ness we give a proof. For each r ∈ R, write r = w(r)p
ep (r,F )

, and choose a
right transversal T = T (r) for 〈w(r)〉FH in F . Then, since w(r) commutes
with r, by [17, Lemma 2.3] we have 〈r〉F = 〈{t−1rt : t ∈ T }〉FH . Hence
〈{t−1rt : r ∈ R, t ∈ T (R)}〉FH = 〈R〉F = kerπ = ker(FH → H), and so it

suffices to prove that |T (r)| = [G:H]

pep(r,F )−ep(r,FH ) .

We have

|T (r)| = [F : 〈w(r)〉FH ] =
[F : FH ]

[〈w(r)〉FH : FH ]
=

[G : H ]

[〈w(r)〉 : 〈w(r)〉 ∩ FH ]

Finally note that [〈w(r)〉 : 〈w(r)〉 ∩ FH ] is equal to pk for some k (as it divides

[F : FH ] = pn), so 〈w(r)〉 ∩ FH = 〈w(r)pk 〉. But then from definition of

ep(r, FH) we easily conclude that ((w(r)p
k

)p
ep(r,FH )

= r = w(r)p
ep(r,F )

. Hence

k = ep(r, F )− ep(r, FH) and |T (r)| = [G:H]

pep(r,F )−ep(r,FH ) , as desired. �

The following definition was introduced by Schlage-Puchta in [20].

Definition 5.3. Given a group presentation by generators and relators (X,R),
where X is finite, its p-deficiency defp(X,R) ∈ R ∪ {−∞} is defined by

defp(X,R) = |X | − 1−
∑

r∈R

1

pep(r,F (X))
.

The p-deficiency of a finitely generated group G is the supremum of the set
{defp(X,R)} where (X,R) ranges over all presentations of G.

The main motivation for introducing p-deficiency in [20] was to construct a
finitely generated p-torsion group with positive rank gradient. Indeed, it is
clear that there exist p-torsion groups with positive p-deficiency, and in [20] it
is proved that a group with positive p-deficiency has positive rank gradient (in
fact, positive p-gradient). This is one of the results indicating that groups of
positive p-deficiency behave similarly to groups of deficiency greater than 1 (all
of which trivially have positive p-deficiency for any p).
Lemma 5.5 below shows that a finitely presented group G of positive p-
deficiency actually contains a normal subgroup of p-power index with defi-
ciency greater than 1, provided that the presentation of G yielding positive
p-deficiency is finite and satisfies certain technical condition.

Definition 5.4. A presentation (X,R) of a group G will be called p-regular
if for any r ∈ R such that p

√
r exists in F (X), the image of p

√
r in G(p) is

non-trivial. This is equivalent to saying that if we write each r ∈ R as r = vp
e

,
where v is not a pth power in F (X), then the image of v in G(p) has order p

e.

Lemma 5.5. Let (X,R) be a finite p-regular presentation of a group G. Then

there exists a normal subgroup of p-power index H of G with def(H)−1
[G:H] ≥

defp(X,R).
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Proof. Let F = F (X). Let r1, . . . , rm be the elements of R and let si = p
√
ri,

whenever it is defined in F (X).
Let π : F → G(p) be the natural projection. Since the presentation (X,R) is
p-regular, π(si) is non-trivial whenever si is defined, and since the group G(p) is
residually-p, there exists a normal subgroup H ′ of G(p) of p-power index which
contains none of the elements π(si).
Let FH = π−1(H ′). By construction, si 6∈ FH , but ri ∈ FH , and therefore
ep(ri, FH) = 0 for each i. Let H be the image of FH in G. Then by Lemma 5.2,

H has a presentation with d(FH) generators and
∑m
i=1

[G:H]

pep(ri,F ) relators. Since

d(FH)− 1 = (|X | − 1)[F : FH ] = (|X | − 1)[G : H ] by the Schreier formula, we
get

def(H)− 1 ≥ [G : H ] ·
(
|X | − 1−

m∑

i=1

p−ep(ri,F )

)
= [G : H ] · defp(X,R).

�

Lemma 5.6. Let (X,R) be a finite p-regular presentation, and let G = 〈X |R〉.
Let f ∈ F (X) be such that the image of f in the pro-p completion of G has
infinite order. Then there exists N ∈ N such that for all n ≥ N the presentation
(X,R ∪ {fpn}) is p-regular.
Proof. Let r1, . . . , rm be the elements of R. By assumption there is a normal
subgroup of p-power index H of G such that p

√
ri does not vanish in G/H

(whenever p
√
ri exists in F (X)). Let π : F (X)→ G be the natural projection,

and choose N ∈ N satisfying π(fp
N

) ∈ H .
Let n ≥ N , let g = π(f), and let G′ = G/〈〈gpn〉〉 = 〈X |R ∪ {fpn}〉. We claim
that the presentation (X,R ∪ {fpn}) is p-regular. We need to check that

(i) each p
√
ri does not vanish in G′

p̂

(ii) fp
n−1

does not vanish in G′
p̂

The kernel of the natural map G → G′
p̂ is contained in H since gp

n ∈ H

and G/H is a finite p-group. Since π( p
√
ri) 6∈ H , this implies (i). Further,

an element x 6= 1 of a pro-p group cannot lie in the closed normal subgroup
generated by xp. Hence if ĝ is the image of g (also the image of f) in Gp̂, then

ĝp
n−1

does not lie in the closed normal subgroup of Gp̂ generated by ĝp
n

, call
this subgroup C. Finally, by definition of G′, there is a canonical isomorphism
from Gp̂/C to G′

p̂, which maps the image of f in Gp̂/C to the image of f in

G′
p̂. Thus, we verified (ii). �

Corollary 5.7. Let (X,R) be a finite p-regular presentation, and let G =
〈X | R〉. Let H ⊆ K be normal subgroups of F (X) of p-power index, and
let δ > 0 be a real number. Then there exists a finite set R′ ⊂ [K,K] with∑
r∈R′

p−ep(r,F (X)) < δ such that

(1) the presentation (X,R ∪R′) is p-regular;
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(2) if G′ = 〈X | R ∪ R′〉 and H ′ is the image of H in G′, then b1(H
′) ≤

d(K).

Moreover, if q is a prime different from p, we can require that b1(H
′;Fq) ≤

d(K).

Proof. If b1(H ;Fq) ≤ d(K), we can choose R′ = ∅. Hence we can assume
without loss of generality that b1(H ;Fq) > d(K). Clearly, it suffices to
prove a weaker statement, where inequality b1(H

′;Fq) ≤ d(K) is replaced by
b1(H

′;Fq) < b1(H ;Fq). The assertion of Corollary 5.7 then follows by repeated
applications with δ replaced by δ/(b1(H,Fq)− d(K)).
Let Y be any free generating set for H . Obviously K/[K,K] is a free abelian
group of rank d(K). Any (finite) matrix over the integers can be transformed
by elementary row and column operations to a diagonal matrix. Hence by
applying elementary transformations to Y , we can arrange that Y is a disjoint
union Y1 ⊔ Y2 where |Y1| ≤ d(K) and Y2 ⊆ [K,K].
Let L = 〈Y2〉, the subgroup generated by Y2. Since b1(H ;Fq) > d(K), there
exists f ∈ Y2 whose image in H/[H,H ]Hq ∼= H1(H,Fq) is non-trivial. Now

apply Lemma 5.6 to this f , choose n such that 1
pn < δ and let R′ = {fpn}.

The choice of f ensures that b1(H
′;Fq) < b1(H ;Fq), so R′ has the required

properties. �

5.2. Proof of Theorem 5.1. To simplify the notations, we will give a proof
of the main part of Theorem 5.1. The last part of Theorem 5.1 is proved in
the same way by using the last assertion of Corollary 5.7.
We start by giving an outline of the construction. Let F = F (X) be a free
group of rank d = |X |. Below we shall define a descending chain F = F0 ⊇
F1 ⊇ . . . of normal subgroups of F of p-power index and a sequence of finite
subsets R1, R2, . . . of F . Let R =

⋃∞
i=1 Rn. For each n ∈ Z≥0 we let G(n) =

F/〈〈⋃ni=1Ri〉〉, G(∞) = lim−→G(i) = F/〈〈R〉〉 and let G be the image of G(∞)

in its pro-p completion. Denote by G(n)i, G(∞)i and Gi the canonical image
of Fi in G(n), G(∞) and G, respectively. We will show that the group G and
its subgroups (Gi) satisfy the conclusion of Theorem 5.1.
Fix a sequence of positive real numbers (δn) which converges to zero and a
descending chain (Φn) of normal subgroups of p-power index in F which form
a base of neighborhoods of 1 for the pro-p topology. The subgroups Fn and
relator sets Rn will be constructed inductively so that the following properties
hold:

(i) For n ≥ 0 we have

b1(G(n)2n)

[G(n) : G(n)2n]
> d− 1− ε;

(ii) For n ≥ 1 we have

b1(G(n)2n−1)

[G(n) : G(n)2n−1]
< δn;

(iii) Rn is contained in [F2n−2, F2n−2] for n ≥ 1;
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(iv) F2n ⊆ Φn for n ≥ 1;
(v) defp(X,∪ni=1Ri) > d− 1− ε for n ≥ 1;
(vi) The presentation (X,∪ni=1Ri) is p-regular for n ≥ 1.

We first explain why properties (i)-(vi) will imply that the group G and its
subgroups (Gn) have the desired properties. Each Gn is normal of p-power
index in G since Fn is normal of p-power index in F . Condition (iv) implies
that (Gn) is a base of neighborhoods of 1 for the pro-p topology on G, and
since G is residually-p by construction, we have

⋂∞
n=1Gn = {1}.

Condition (iii) implies that [G(n) : G(n)i] = [G(∞) : G(∞)i] and b1(G(n)i) =
b1(G(∞)i) for i ≤ 2n. Since G(∞)i is normal of p-power index in G(∞), the
group G(∞)/[G(∞)i, G(∞)i] is residually-p, so both the index and the first
Betti number of G(∞)i do not change under passage to the image in the pro-p
completion of G(∞): [G : Gi] = [G(∞) : G(∞)i] and b1(Gi) = b1(G(∞)i). In
view of these equalities, conditions (i) and (ii) yield the corresponding condi-
tions in Theorem 5.1.
We now describe the construction of the sets Rn and subgroups Fn. The base
case n = 0 is obvious: we set F0 = F and G(0) = F , and the only condition
we require for n = 0 (condition (i)) clearly holds.
Suppose now that N ∈ N and we constructed subsets (Ri)

N
i=1 and subgroups

(Fi)
2N
i=1 such that (i)-(vi) hold for all n ≤ N .

Let F2N+1 = [F2N , F2N ]F p
e

2N where e is specified below. Then F2N+1 is a
normal subgroup of p-power index in F and F2N ⊇ F2N+1 ⊃ [F2N , F2N ]. Since
b1(G(N)2N ) > 0 by (i) for n = N and hence

pe ≤
∣∣H1(G(N)2N )/pe ·H1(G(N)2N )

∣∣

=
∣∣G(N)2N/[G(N)2N , G(N)2N ]G(N)p

e

2N

∣∣
= |G(N)2N/G(N)2N+1|
= [G(N)2N : G(N)2N+1]

≤ [G(N) : G(N)2N+1],

so we can arrange
d(F2N )

[G(N) : G(N)2N+1]
< δN+1

by choosing e large enough.
Now applying Corollary 5.7 with H = F2N+1, K = F2N and
δ = defp(X,∪Ni=1Ri) − (d − 1 − ε), we get that there is a finite subset

RN+1 ⊆ [F2N , F2N ] such that the presentation (X,∪N+1
i=1 Ri) is p-regular

and defp(X,∪N+1
i=1 Ri) > d − 1 − ε. Hence conditions (iii),(v),(vi) hold for

n = N + 1. The subgroup H ′ in the notations of Corollary 5.7 is equal to
G(N + 1)2N+1, so b1(G(N + 1)2N+1) ≤ d(F2N ). Since condition (iii) implies
[G(N + 1) : G(N + 1)2N+1] = [G(N) : G(N)2N+1], we conclude

b1(G(N + 1)2N+1)

[G(N + 1) : G(N + 1)2N+1]
≤ d(F2N )

[G(N) : G(N)2N+1]
< δN+1.

Thus we have shown that conditions (ii),(iii),(v),(vi) hold for n = N + 1.
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It remains to construct F2N+2 and to verify (i) and (iv) for n = N + 1. We

apply Lemma 5.5 to G(N + 1) = 〈X | ∪N+1
i=1 Ri〉 and obtain using (v) a normal

subgroup H of G(N + 1) of p-power index satisfying

def(H)− 1

[G(N + 1) : H ]
> d− 1− ε.

Let F2N+2 ⊆ F2N+1∩ΦN+1 be the intersection of the preimage of H under the
projection pN+1 : FN+1 → G(N + 1) with F2N+1 ∩ ΦN+1. Obviously (iv) for
holds n = N + 1. Then G(N + 1)2N+2 is a subgroup of H of finite index. The
quantity def(·)− 1 is supermultiplicative, i.e., if L is a finite index subgroup of
H , then def(L)− 1 ≥ [H : L] · (def(H)− 1), see for instance [18, Lemma 2.2].
Hence we conclude

def(G(N + 1)2N+2)− 1

[G(N + 1) : G(N + 1)2N+2)]
≥ def(H)− 1

[G(N + 1) : H ]
> d− 1− ε.

Since b1(G(N+1)2N+2) ≥ def(G(N+1)2N+2), condition (i) holds for n = N+1.
This finishes the proof of Theorem 5.1.
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Abstract. For a complex or real algebraic group G, with g :=
Lie(G) , quantizations of global type are suitable Hopf algebras Fq[G]
or Uq(g) over C

[
q, q−1

]
. Any such quantization yields a structure of

Poisson group on G, and one of Lie bialgebra on g : correspondingly,
one has dual Poisson groups G∗ and a dual Lie bialgebra g∗ . In
this context, we introduce suitable notions of quantum subgroup and,
correspondingly, of quantum homogeneous space, in three versions:
weak, proper and strict (also called flat in the literature). The last
two notions only apply to those subgroups which are coisotropic, and
those homogeneous spaces which are Poisson quotients; the first one
instead has no restrictions whatsoever.

The global quantum duality principle (GQDP), as developed in [F.
Gavarini, The global quantum duality principle, Journ. für die Reine
Angew. Math. 612 (2007), 17–33.], associates with any global quan-
tization of G , or of g , a global quantization of g∗, or of G∗. In this
paper we present a similar GQDP for quantum subgroups or quan-
tum homogeneous spaces. Roughly speaking, this associates with ev-
ery quantum subgroup, resp. quantum homogeneous space, of G , a
quantum homogeneous space, resp. a quantum subgroup, of G∗ . The
construction is tailored after four parallel paths — according to the
different ways one has to algebraically describe a subgroup or a ho-
mogeneous space — and is “functorial”, in a natural sense.

Remarkably enough, the output of the constructions are always quan-
tizations of proper type. More precisely, the output is related to the
input as follows: the former is the coisotropic dual of the coisotropic
interior of the latter — a fact that extends the occurrence of Poisson
duality in the original GQDP for quantum groups. Finally, when the

Documenta Mathematica 19 (2014) 333–380



334 Nicola Ciccoli, Fabio Gavarini

input is a strict quantization then the output is strict as well — so
the special rôle of strict quantizations is respected.

We end the paper with some explicit examples of application of our
recipes.

2010 Mathematics Subject Classification: Primary 17B37, 20G42,
58B32; Secondary 81R50
Keywords and Phrases: Quantum Groups, Poisson Homogeneous
Spaces, Coisotropic Subgroups

1 Introduction

In this paper we work with quantizations of (algebraic) complex and real
groups, their subgroups and homogeneous spaces, and a special symmetry
among such quantum objects which we refer to as the “Global Quantum Du-
ality Principle”. This is just a last step in a process, which is worth recalling
in short.
In any possible sense, quantum groups are suitable deformations of some alge-
braic objects attached with algebraic groups, or Lie groups. Once and for all,
we adopt the point of view of algebraic groups: nevertheless, all our analysis
and results can be easily converted in the language of Lie groups.
The first step to deal with is describing an algebraic group G via suitable
algebraic object(s). This can be done following two main approaches, a global
one or a local one.
In the global geometry approach, one considers U(g) — the universal envelop-
ing algebra of the tangent Lie algebra g := Lie(G) — and F [G] — the algebra
of regular functions on G . Both these are Hopf algebras, and there exists a non-
degenerate pairing among them so that they are dual to each other. Clearly,
U(g) only accounts for the local data of G encoded in g , whereas F [G] instead
totally describes G : thus F [G] yields a global description of G , which is why
we speak of “global geometry” approach.
In this context, one describes (globally) a subgroup K of G — always assumed
to be Zariski closed — via the ideal in F [G] of functions vanishing on it; al-
ternatively, an infinitesimal description is given taking in U(g) the subalgebra
U(k) , where k := Lie(K) .
For a homogeneous G–space, sayM , one describes it in the form M ∼= G

/
K —

which amounts to fixing some point in M and its stabilizer subgroup K in G .
After this, a local description of M ∼= G

/
K is given by representing its left-

invariant differential operators as U(g)
/
U(g) k : therefore, we can select U(g) k

— a left ideal, left coideal in U(g) — as algebraic object to encode M ∼= G
/
K ,

at least infinitesimally. For a global description instead, obstructions might
occur. Indeed, we would like to describe M ∼= G

/
K via some algebra F [M ] ∼=

F
[
G
/
K
]
strictly related with F [G] . This varies after the nature of M ∼= G

/
K
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— hence of K — and in general might be problematic. Indeed, there exists
a most natural candidate for this job, namely the set F [G]

K
of K–invariants

of F [G] , which is a subalgebra and left coideal. The problem is that F [G]
K

permits to recover exactly G
/
K if and only if M ∼= G

/
K is a quasi-affine

variety (which is not always the case). This yields a genuine obstruction, in
the sense that this way of (globally) encoding the space M ∼= G

/
K only works

with quasi-affine G–spaces; for the other cases, we just drop this approach —
however, for a complete treatment of the case of projective G–spaces see [6].

In contrast, the approach of formal geometry is a looser one: one replaces
F [G] with a topological algebra F [[G]] = F

[[
Gf
]]

— the algebra of “regular
functions on the formal group Gf” associated with G — which can be realized
either as the suitable completion of the local ring of G at its identity or as
the (full) linear dual of U(g) . In any case, both algebraic objects taken into
account now only encode the local information of G .

In this formal geometry context, the description of (formal) subgroups and
(formal) homogeneous spaces goes essentially the same. However, in this case
no problem occurs with (formal) homogeneous space, as any one of them can

be described via a suitably defined subalgebra of invariants F
[[
Gf
]]Kf : in a

sense, “all formal homogeneous spaces are quasi-affine”. As a consequence, the
overall description one eventually achieves is entirely symmetric.

When dealing with quantizations, Poisson structures arise (as semiclassical lim-
its) on groups and Lie algebras, so that we have to do with Poisson groups and
Lie bialgebras. In turn, there exist distinguished subgroups and homogeneous
spaces — and their infinitesimal counterparts — which are “well-behaving”
with respect to these extra structures: these are coisotropic subgroups and
Poisson quotients. Moreover, the well-known Poisson duality — among Poisson
groups G and G∗ and among Lie bialgebras g and g∗ — extends to similar dual-
ities among coisotropic subgroups (of G and G∗) and among Poisson quotients
(of G and G∗ again). It is also useful to notice that each subgroup contains a
maximal coisotropic subgroup (its “coisotropic interior”), and accordingly each
homogeneous space has a naturally associated Poisson quotient.

As to the algebraic description, all properties concerning Poisson (or Lie bial-
gebra) structures on groups, Lie algebras, subgroups and homogeneous spaces
have unique characterizations in terms of the algebraic codification one adopts
for these geometrical objects. Details change a bit according to whether one
deals with global or formal geometry, but everything goes in parallel in either
context.

By (complex) “quantum group” of formal type we mean any topological Hopf
algebra H~ over the ring C[[~]] whose semiclassical limit at ~ = 0 — i.e.,
H~

/
~H~ — is of the form F

[[
Gf
]]

or U(g) for some formal group Gf or Lie

algebra g . Accordingly, one writes H~ := F~

[[
Gf
]]

or H~ := U~(g) , calling the
former a QFSHA and the latter a QUEA. If such a quantization (of either type)
exists, the formal group Gf is Poisson and g is a Lie bialgebra; accordingly, a
dual formal Poisson group G ∗

f and a dual Lie bialgebra g∗ exist too.

Documenta Mathematica 19 (2014) 333–380



336 Nicola Ciccoli, Fabio Gavarini

In this context, as formal quantizations of subgroups or homogeneous spaces
one typically considers suitable subobjects of either F~

[[
Gf
]]

or U~(g) such
that: (1) with respect to the containing formal Hopf algebra, they have the
same relation as a in the “classical” setting — such as being a one-sided ideal,
a subcoalgebra, etc.; (2) taking their specialization at ~ = 0 is the same as
restricting to them the specialization of the containing algebra (this is typi-
cally mentioned as a “flatness” property). This second requirement has a key
consequence, i.e. the semiclassical limit object is necessarily “good” w.r. to the
Poisson structure: namely, if we are quantizing a subgroup, then the latter is
necessarily coisotropic, while if we are quantizing a homogeneous space then it
is indeed a Poisson quotient.
In the spirit of global geometry, by (complex) “quantum group” of global type
we mean any Hopf algebra Hq over the ring C

[
q, q−1

]
whose semiclassical limit

at q = 1 — i.e., Hq

/
( q − 1)Hq — is of the form F [G] or U(g) for some alge-

braic group G or Lie algebra g . Then one writes Hq := Fq[G] or Hq := U~(g) ,
calling the former a QFA and the latter a QUEA. Again, if such a quantization
(of either type) exists the group G is Poisson and g is a Lie bialgebra, so that
dual formal Poisson groups G∗ and a dual Lie bialgebra g∗ exist too.
As to subgroups and homogeneous spaces, global quantizations can be defined
via a sheer reformulation of the same notions in the formal context: we refer to
such quantizations as strict. In this paper, we introduce two more versions of
quantizations, namely proper and weak ones, ordered by increasing generality,
namely {strict} ( {proper} ( {weak} . This is achieved by suitably weakening
the condition (2) above which characterizes a quantum subgroup or quantum
homogeneous space. Remarkably enough, one finds that now the existence of
a proper quantization is already enough to force a subgroup to be coisotropic,
or a homogeneous space to be a Poisson quotient.
The Quantum Duality Principle (=QDP) was first developed by Drinfeld
(cf. [7], §7) for formal quantum groups (see [10] for details). It provides two
functorial recipes, inverse to each other, acting as follows: one takes as input
a QFSHA for Gf and yields as output a QUEA for g∗ ; the other one as input
a QUEA for g and yields as output a QFSHA for G ∗

f .
The Global Quantum Duality Principle (=GQDP) is a version of the QDP
tailored for global quantum groups (see [11, 12]): now one functorial recipe
takes as input a QFA for G and yields a QUEA for g∗ , while the other takes a
QUEA for g and provides a QFA for G∗ .
An appropriate version of the QDP for formal subgroups and formal homo-
geneous spaces was devised in [5]. Quite in short, the outcome there was an
explicit recipe which taking as input a formal quantum subgroup, or a formal
quantum homogeneous space, respectively, of Gf provides as output a quantum
formal homogeneous space, or a formal quantum subgroup, respectively, of G ∗

f .
In short, these recipes come out as direct “restriction” (to formal quantum sub-
groups or formal quantum homogeneous spaces) of those in the QDP for formal
quantum groups. This four-fold construction is fully symmetric, in particular
all duality or orthogonality relations possibly holding among different quan-

Documenta Mathematica 19 (2014) 333–380



A Global QDP for Subgroups and Homogeneous Spaces 337

tum objects are preserved. Finally, Poisson duality is still involved, in that the
semiclassical limit of the output quantum object is always the coisotropic dual
of the semiclassical limit of the input quantum object.
The main purpose of the present work is to provide a suitable version of the
GQDP for global quantum subgroups and global quantum homogeneous spaces
— extending the GQDP for global quantum groups — as much general as pos-
sible. The inspiring idea, again, is to “adapt” (by restriction, in a sense) to
these more general quantum objects the functorial recipes available from the
GQDP for global quantum groups. Remarkably enough, this approach is fully
successful: indeed, it does work properly not only with strict quantizations
(which should sound natural) but also for proper and for weak ones. Even
more, the output objects always are global quantizations (of subgroups or ho-
mogeneous spaces) of proper type — which gives an independent motivation
to introduce the notion of proper quantization.
Also in this setup, Poisson duality, in a generalized sense, shows up again as
the link between the input and the output of the GQDP recipes: namely, the
semiclassical limit of the output quantum object is always the coisotropic dual
of the coisotropic interior of the semiclassical limit of the input quantum object.
Besides the wider generality this GQDP applies to (in particular, involving
also non-coisotropic subgroups, or homogeneous spaces which are not Poisson
quotients), we pay a drawback in some lack of symmetry for the final result —
compared to what one has in the formal quantization context. Nevertheless,
such a symmetry is almost entirely recovered if one restricts to dealing with
strict quantizations, or to dealing with “double quantizations” — involving
simultaneously a QFA and a QUEA in perfect (i.e. non-degenerate) pairing.
At the end of the paper (Section 6) we present some applications of our GQDP:
this is to show how it effectively works, and in particular that it does provide
explicit examples of global quantum subgroups and global quantum homoge-
neous spaces. Among these, we also provide an example of a quantization
which is proper but is not strict — which shows that the former notion is a
non-trivial generalization of the latter.

2 General Theory

The main purpose of the present section is to collect some classical material
about Poisson geometry for groups and homogeneous spaces. Everything is
standard, we just need to fix the main notions and notations we shall deal
with.

2.1 Subgroups and homogeneous spaces

Let G be a complex affine algebraic group and let g be its tangent Lie alge-
bra. Let us denote by F [G] its algebra of regular functions and by U(g) its
universal enveloping algebra. Both such algebras are Hopf algebras, and there
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exists a natural pairing of Hopf algebras between them, given by evaluation of
differential operators onto functions. This pairing is perfect if and only if G is
connected, which we will always assume in what follows.
A real form of either G or g is given once a Hopf ∗–algebra structure is fixed on
either F [G] or U(g) — and in case one take such a structure on both sides, the
two of them must be dual to each other. Thus by real algebraic group we will
always mean a complex algebraic group endowed with a suitable ∗–structure.
A subgroup K of G will always be considered as Zariski–closed and algebraic.
For any such subgroup, the quotient G

/
K is an algebraic left homogeneous

G–space, which is quasi-projective as an algebraic variety. Given an algebraic
left homogeneous G–space M and choosing m ∈ M , the stabilizer subgroup
Km will be a closed algebraic subgroup of G such that G

/
Km ≃M ; changing

point will change the stabilizer within a single conjugacy class.
We shall describe the subgroup K , or the homogeneous space G

/
K, through

either an algebraic subset of F [G] — to which we will refer as a global coding
— or an algebraic subset of U(g) — to which we will refer as a local coding.
The complete picture is the following:

— subgroup K :

(local) letting k = Lie(K) we can consider its enveloping algebra U(k) which
is a Hopf subalgebra of U(g) ; we then set C ≡ C(K) := U(k) ;

(global) functions which are 0 on K form a Hopf ideal I ≡ I(K) inside
F [G] , such that F [K] ≃ F [G]

/
I .

— homogeneous space G
/
K :

(local) let I ≡ I(K) = U(g) · k : this is a left ideal and two-sided coideal in
U(g) , and U(g)

/
I is the set of left–invariant differential operators

on G
/
K .

(global) regular functions on the homogeneous space G
/
K may be identified

with K–invariant regular functions on G . We will let C = C(K) =

F [G]
K
; this is a subalgebra and left coideal in F [G] .

Warning : this needs clarification! The point is: can one recover

the homogeneous space G
/
K from C(K) = F [G]K ? The answer

depends on geometric properties of G
/
K itself — or (equivalently)

of K — which we explain later on.

For any Hopf algebra H we introduce the following notations: ≤1 will stand for
“unital subalgebra”, E for “two-sided ideal”, El for “left ideal” and similarly
≤̇ will stand for “subcoalgebra”, Ė for “two-sided coideal” and Ėℓ for “left
coideal”. When the same symbols will be decorated by a subindex referring
to a specific algebraic structure their meaning should be modified accordingly,
e.g. EH will stand for “Hopf ideal” and ≤H for “Hopf subalgebra”.
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With such notations, with any subgroup K of G there is associated one of the
following algebraic objects:

(a) I EH F [G] , (b) C ≤1 Ėℓ F [G] , (c) I El ĖU(g) , (d) C ≤H U(g) (2.1)

In the real case, one has to consider, together with (2.1), additional require-
ments involving the ∗ structure and the antipode S , namely

(a) I∗ = I , (b) S(C)∗ = C , (c) S(I)∗ = I , (d) C∗ = C (2.2)

In the connected case algebraic objects of type I , I and C in (2.1) are enough
to reconstruct either K or G

/
K :

K = Spec
(
F [G]/I

)
= exp

(
Prim(C)

)
= exp

(
Prim(I)

)

where Prim(X) denotes the set of primitive elements of a bialgebra X .

In contrast, C(K) = F [G]
K

might be not enough to reconstructK , due to lack
of enough global algebraic functions; this happens, for example, when G

/
K is

projective and therefore C(K) = C . Any group K which can be reconstructed
from its associated C is called observable: we shall now make this notion more
precise. Let us call τ the map that to any subgroup K associates the algebra
of invariant functions F [G]K and let us call σ the map that to any subalgebra
A of F [G] associates its stabilizer σ(A) =

{
g ∈ G

∣∣ g · f = f ∀ f ∈ A
}
. These

two maps are obviously inclusion–reversing. Furthermore they establish what
is also known as a simple Galois correspondence: namely, for any subgroup K
and any subalgebra A one has

(σ ◦ τ)(K) ⊇ K , (τ ◦ σ)(A) ⊇ A
so that (τ ◦ σ ◦ τ) (K) = τ(K), (σ ◦ τ ◦ σ) (A) = σ(A). A subgroup K of G
such that (σ ◦ τ) (K) = K is said to be observable: this means exactly that
such a subgroup can be fully recovered from its algebra of invariant functions
τ(K). If K is any subgroup, then K̂ := (σ ◦ τ) (K) is the smallest observable
subgroup containing K; we will call it the observable hull of K. Remark then
that C(K) = C

(
K̂
)
.

The following fact (together with many properties of observable subgroups),
which gives a characterization of observable subgroups in purely geometrical
terms, may be found in [13]:
Fact: a subgroup K of G is observable if and only if G

/
K is quasi–affine.

Let us now clarify how to pass from algebraic objects directly associated with
subgroups to those corresponding to homogeneous spaces. Let H be a Hopf
algebra, with counit ε and coproduct ∆ . For any submodule M ⊆ H define

M+ :=M ∩Ker(ε) , HcoM :=
{
y ∈ H

∣∣ (∆(y)− y ⊗ 1) ∈ H ⊗M
}

(2.3)

Let C be a (unital) subalgebra and left coideal of H and define Ψ(C) = H ·C+.
Then Ψ(C) is a left ideal and two-sided coideal in H . Conversely, let I be a
left ideal and two-sided coideal in H and define Φ(I) := HcoI . Then Φ(I) is a
unital subalgebra and left coideal in H . Also, this pair of maps (Φ,Ψ) defines
a simple Galois correspondence, that is to say
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(a) Ψ and Φ are inclusion-preserving;

(b) (Φ ◦Ψ) (C) ⊇ C , (Ψ ◦ Φ) (I) ⊆ I ;

(c) Φ ◦Ψ ◦ Φ = Φ , Ψ ◦ Φ ◦Ψ = Ψ .

(where the third property follows from the previous ones; see [19, 21, 22] for
further details).
Let now K be a subgroup of G and let I, C, I, C the corresponding algebraic
objects as described in (2.1). We can thus establish the following relations
among them:

subgroup vs. homogeneous space: objects directly related to the sub-
group (namely, I and C) and objects directly related to the homogeneous
space (namely, C and I) are linked by Ψ and Φ as follows:

I = Ψ(C) , C = Φ(I) , I ⊇ Ψ(C) , C = Φ(I) (2.4)

In particular, K is observable if and only if I = Ψ(C) ; on the other hand,

we have in general Ψ(C(K)) = I(K̂) .

orthogonality with respect to the natural pairing between F [G] and U(g) :
this is expressed by the relations

I = C⊥ , C = I⊥ , C = I⊥ , I ⊆ C⊥ (2.5)

In particular, K is observable if and only if I = C⊥ ; on the other hand,
we have in general C(K)⊥ = I

(
K̂
)
.

Let us also remark that orthogonality intertwines the local and global
description.

The “formal” vs. “global” geometry approach. In the present ap-
proach we are dealing with geometrical objects — groups, subgroups and ho-
mogeneous spaces — which we describe via suitably chosen algebraic objects.
When doing that, universal enveloping algebras or subsets of them only pro-
vide a local description — around a distinguished point: the unit element in
a (sub)group, or its image in a coset (homogeneous) space. Instead, function
algebras yield a global description, i.e. they do carry information on the whole
geometrical object; for this reason, we refer to the present approach as the
“global” one.
The “formal geometry” approach instead only aims to describe a group by a
topological Hopf algebra, which can be realized as an algebra of formal power
series; in short, this is summarized by saying that we are dealing with a “formal
group”. Subgroups and homogeneous spaces then are described by suitable
subsets in such a formal series algebra (or in the universal enveloping algebra,
as above): this again yields only a local description — in a formal neighborhood
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of a distinguished point — rather than a global one. Now, the analysis above
shows that an asymmetry occurs when we adopt the global approach. Indeed,
we might have problems when describing a homogeneous space by means of
(a suitably chosen subalgebra of invariant) functions: technically speaking,
this shows up as the occurrence of inclusions — rather than identities! — in
formulas 2.4 and 2.5. This is a specific, unavoidable feature of the problem,
due to the fact that homogeneous spaces (for a given group) do not necessarily
share the same geometrical nature — beyond being all quasi-projective — in
particular they are not necessarily quasi-affine.
The case of those homogeneous spaces which are projective is treated in [6],
where their quantizations are studied; in particular, there a suitable method to
solve the problematic “C–side” of the QDP in that case is worked out, still in
terms of “global geometry” but with a different tool (semi-invariant functions,
rather than invariant ones). In contrast, in the formal geometry approach such
a lack of symmetry does not occur: in other words, it happens that every
formal (closed) subgroup is observable, or every formal homogeneous space is
quasi-affine. This means that there is no need of worrying about observability,
and the full picture — for describing a subgroup or homogeneous space, in four
different ways — is entirely symmetric. This was the point of view adopted in
[5], where this complete symmetry of the formal approach is exploited to its
full extent.

2.2 Poisson subgroups and Poisson quotients

Let us now assume that G is endowed with a complex Poisson group structure
corresponding to a Lie bialgebra structure on g , whose Lie cobracket is denoted
δ : g −→ g ∧ g . At the Hopf algebra level this means that F [G] is a Poisson–
Hopf algebra and U(g) a co-Poisson Hopf algebra, in such a way that the
duality pairing is compatible with these additional structures (see [4] for basic
definitions). Let us recall that the linear dual g∗ inherits a Lie algebra structure;
on the other hand, it has a natural Lie coalgebra structure, whose cobracket
δ : g∗ −→ g∗ ∧ g∗ is the dual map to the Lie bracket of g . Altogether, this
makes g∗ into a Lie bialgebra, which said to be dual to g . Therefore, there
exist Poisson groups whose tangent Lie bialgebra is g∗ ; we will assume one
such connected group is fixed, we will denote it with G∗ and call it the dual
Poisson group of G. In the real case the involution in F [G] is a Poisson algebra
antimorphism and the one in U(g) is a co-Poisson algebra antimorphism.
A closed subgroup K of G is called coisotropic if its defining ideal I(K) is a
Poisson subalgebra, while it is called a Poisson subgroup if I(K) is a Poisson
ideal, the latter condition being equivalent to K →֒ G being a Poisson map.
Connected coisotropic subgroups can be characterized, at an infinitesimal level,
by one of the following conditions on k ⊆ g :

(C-i) δ(k) ⊆ k ∧ g , that is k is a Lie coideal in g ,

(C-ii) k⊥ is a Lie subalgebra of g∗ ,
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while analogous characterizations of Poisson subgroups correspond to k being
a Lie subcoalgebra or k⊥ being a Lie ideal.
The most important features of coisotropic subgroups, in this setting, is the
fact that G

/
K naturally inherits a Poisson structure from that of G. Actually,

a Poisson manifold (M ,ωM ) is called a Poisson homogeneous G–space if there
exists a smooth, homogeneous G–action φ : G×M −→M which is a Poisson
map (w.r. to the product Poisson structure on the domain). In particular, we
will say that (M,ωM ) is a Poisson quotient if it verifies one of the following
equivalent conditions (cf. [26]):

(P-i) there exists x0 ∈M whose stabilizer Gx0 is coisotropic in G ;

(P-ii) there exists x0 ∈M such that φx0 : G→M , φ(x0, g) = φ(x, g) ,

is a Poisson map ;

(P-iii) there exists x0 ∈M such that ωM (x0) = 0 .

It is important to remark here that inside the same conjugacy class of sub-
groups of G there may be subgroups which are Poisson, coisotropic, or non
coisotropic. Therefore, on the same homogeneous space there may exist many
Poisson homogeneous structures, some of which make it into a Poisson quotient
while some others do not.
For a fixed connected subgroupK of a Poisson group G, with Lie algebra k, one
can consider the following descriptions in terms of the Poisson Hopf algebra
F [G] or of the co-Poisson Hopf algebra U(g) :

I ≤P F [G] , C ≤P F [G] (2.6)

I ĖP U(g) , C ĖP U(g) (2.7)

where on first line we have global conditions and on second line local ones.
Conversely each one of these conditions imply coisotropy of G with the excep-
tion of the condition on C, which implies only that the observable hull K̂ is
coisotropic. Therefore a connected, observable, coisotropic subgroup of G is
identified by one of the following algebraic objects:

I EH≤P F [G] , C ≤1 Ėℓ ≤P F [G] (2.8)

I El Ė ĖP U(g) , C ≤H ĖP U(g) (2.9)

(still with the usual, overall restriction on the use of C, which in general only

describes the observable hull K̂ ).
Thanks to self-duality in the notion of Lie bialgebra, with any Poisson group
there is associated a natural Poisson dual, which is fundamental in the QDP;
note that a priori many such dual groups are available, but when dealing with
the QDP such an (apparent) ambiguity will be solved. As we aim to extend
the QDP to coisotropic subgroups, we need to introduce a suitable notion of
(Poisson) duality for coisotropic subgroups as well.
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Definition 2.1. Let G be a Poisson group and G∗ a fixed Poisson dual.

1. If K is coisotropic in G we call complementary dual of K the unique
connected subgroup K⊥ in G∗ such that Lie(K⊥) = k⊥ .

2. IfM is a Poisson quotient and M ≃ G
/
KM we call complementary dual

of M the Poisson G∗–quotient M⊥ := G∗
/
K⊥
M .

3. For any subgroup H of G we call coisotropic interior of H the unique

maximal, closed, connected, coisotropic subgroup
◦
H of G contained in H .

Remarks:

1. The complementary dual of a coisotropic subgroup is, trivially, a
coisotropic subgroup whose complementary dual is the connected com-
ponent of the one we started with:. Similarly, the complementary dual of
a Poisson quotient is a Poisson quotient, and if we start with a Poisson
quotient whose coisotropy subgroup (w.r. to any point) is connected then
taking twice the complementary dual brings back to the original Poisson
quotient.

2. The coisotropic interior may be characterized, at an algebraic level, as
the unique closed subgroup whose Lie algebra is maximal between Lie
subalgebras of h which are Lie coideals in g .

Proposition 2.2. Let K be any subgroup of G and let K〈⊥〉 :=
〈
exp(k⊥)

〉
be

the closed, connected, subgroup of G∗ generated by exp(k⊥) . Then:

(a) the Lie algebra k〈⊥〉 of K〈⊥〉 is the Lie subalgebra of g∗ generated by k⊥;

(b) k〈⊥〉 is a Lie coideal of g∗, hence K〈⊥〉 is a coisotropic subgroup of G∗;

(c) K〈⊥〉 = (
◦
K )⊥ ; in particular if Kis coisotropic then K〈⊥〉 = K⊥ ;

(d) (K〈⊥〉)〈⊥〉 =
◦
K and K is coisotropic if and only if (K〈⊥〉)〈⊥〉 = K .

Proof. Part (a) is trivial. As for (b), since k = (k⊥)⊥ is a Lie subalgebra of g ,
we have that k⊥ is a Lie coideal in g∗ : therefore, due to the identity

δ
(
[x, y]

)
=
∑
[y]

(
[x, y[1]]⊗y[2]+y[1]⊗ [x, y[2]]

)
+
∑
[x]

(
[x[1], y]⊗x[2]+x[1]⊗ [x[2], y]

)

(where δ(z) =
∑

[z] z[1]⊗z[2] for z ∈ g∗), the Lie subalgebra 〈k⊥〉 of g∗ generated
by k⊥ is a Lie coideal too. It follows then by claim (a) that K〈⊥〉 is coisotropic.
Thus (b) is proved.
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As for part (c) we have

(
k〈⊥〉

)⊥
= 〈k⊥〉⊥ =

(
⋂

h≤L g∗

h⊇k⊥

h

)⊥
=

∑
h≤L g∗

h⊇k⊥

h =
∑

fĖLg
f⊇k

f =
◦
k

(with ≤L meaning “Lie subalgebra” and ĖL meaning “Lie coideal”) where
◦
k

is exactly the maximal Lie subalgebra and Lie coideal of g contained in k . To
be precise, this last statement follows from the above formula for δ

(
[x, y]

)
,

since that formula implies that the Lie subalgebra generated by a family of Lie
coideals is still a Lie coideal.

Now
◦
k= Lie(

◦
K) , so Lie(K〈⊥〉) = k〈⊥〉 =

((
k〈⊥〉

)⊥)⊥
=
( ◦
k
)⊥

= Lie(
◦
K)⊥

implies K〈⊥〉 = (
◦
k)⊥ as we wished to prove. If, in addition, K is coisotropic

then, obviously, K〈⊥〉 = K . All other statements follow easily.

3 Strict, proper, weak quantizations

The purpose of this section is to fix some terminology concerning the meaning
of the word “quantization” and to describe some possible ways of quantizing
a (closed) subgroup, or a homogeneous space. We set the algebraic machinery
needed for talking of “quantization” and “specialization”: these notions must
be carefully specified before approaching the construction of Drinfeld’s functors.

Let q be an indeterminate, C
[
q, q−1

]
the ring of complex-valued Laurent poly-

nomials in q , and C(q) the field of complex-valued rational functions in q .
Denote by HA the category of all Hopf algebras over C

[
q, q−1

]
which are

torsion-free as C
[
q, q−1

]
–modules.

Given a Hopf algebra H over the field C(q) , a subset H ⊆ H is called a
C
[
q, q−1

]
–integral form (or simply a C

[
q, q−1

]
–form) if it is a C

[
q, q−1

]
–Hopf

subalgebra of H and HF := C(q) ⊗C[q,q−1] H = H . Then H is torsion-free

as a C
[
q, q−1

]
–module, hence H ∈ HA .

For any C
[
q, q−1

]
–module M , we set M1 :=M

/
(q − 1)M = C⊗C[q,q−1] M :

this is a C–module (via C
[
q, q−1

]
→ C

[
q, q−1

]/
(q − 1) = C ), called special-

ization of M at q = 1 .
Given two C(q)–modules A and B and a C(q)–bilinear pairing A×B −→ F ,
for any C

[
q, q−1

]
–submodule A× ⊆ A we set:

A×
•

:=
{
b ∈ B

∣∣∣
〈
A×, b

〉
⊆ C

[
q, q−1

]}
(3.1)

In such a setting, we call A×
•
the C

[
q, q−1

]
–dual of A× .

We will call quantized universal enveloping algebra (or, in short, QUEA) any
Uq ∈ HA such that U1 := (Uq)1 is isomorphic to U(g) for some Lie algebra g ,

Documenta Mathematica 19 (2014) 333–380



A Global QDP for Subgroups and Homogeneous Spaces 345

and we will call quantized function algebra (or, in short, QFA) any Fq ∈ HA
such that F1 := (Fq)1 is isomorphic to F [G] for some connected algebraic
group G and, in addition, the following technical condition holds:

⋂
n≥0

(q − 1)
n
Fq =

⋂
n≥0

(
(q − 1)Fq + Ker(ǫFq

)
)n

We will add the specification that such quantum algebras are real whenever
the starting object is a ∗–Hopf algebra. As a matter of notation, we write

Uq := C(q)⊗C[q,q−1] Uq , Fq := C(q)⊗C[q,q−1] Fq .

When Uq is a (real) QUEA, its specialization U1 is a (real) co–Poisson Hopf
algebra so that g is in fact a (real) Lie bialgebra. Similarly, for any (real) QFA
Fq the specialization F1 is a (real) Poisson-Hopf algebra and therefore G is a
(real) Poisson group (see [4] for details).
On occasions it is useful to consider simultaneous quantizations of both the
universal enveloping algebra and the function algebra, or, in a larger generality,
of a pair of dual Hopf algebra. Let H ,K ∈ HA and assume that there exists
a pairing of Hopf algebras 〈 , 〉 : H ×K −→ C

[
q, q−1

]
. If the pairing is such

that

(a) H = K• , K = H• (notation of (3.1)) w.r.t. the pairing H×K→ C(q) ,
for H := C(q)⊗C[q,q−1 ]H , K := C(q)⊗C[q,q−1]K , induced from H×K →
C(q)

(b) the Hopf pairing H1×K1 → C given by specialization at q = 1 is perfect
(i.e. non-degenerate)

then we will say that H and K are dual to each other. Note that all these
assumptions imply that the initial pairing between H and K is perfect. When
H = Uq(g) is a QUEA and K = Fq[G] is a QFA, if the specialized pairing
at 1 is the natural pairing between U(g) and F [G] we will say that the pair
(Uq(g) , Fq[G]) is a double quantization of (G, g) .

Let us now move to the case in which G is a Poisson group and K a subgroup.
We want to define a reasonable notion of “quantization” of K and of the cor-
responding homogeneous space G

/
K . There is a standard way to implement

this, which actually implies — cf. Lemma 3.3 and Proposition 3.5 later on —
the additional constraint that K be coisotropic.

Definition 3.1. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq : Fq[G] −։ Fq[G]
/
(q−1)Fq[G] ∼= F [G]

πUq : Uq(g) −։ Uq(g)
/
(q −1)Uq(g) ∼= U(g)
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be the specialization maps. Let I, C, I and C be the algebraic objects associated
with the subgroup K of G (see 2.1). We call “strict quantization” (and some-
times we shall drop the adjective “strict”) of each of them any object Iq , Cq ,
Iq or Cq respectively, such that

(a) Iq Eℓ Ė Fq[G] , πFq (Iq) = I , πFq (Iq) ∼= Iq
/
(q−1) Iq

(b) Cq ≤1 Ėℓ Fq[G] , πFq (Cq) = C , πFq (Cq) ∼= Cq
/
(q−1) Cq

(c) Iq Eℓ Ė Uq(g) , πUq (Iq) = I , πUq (Iq)
∼= Iq

/
(q−1)Iq

(d) Cq ≤1 Ėℓ Uq(g) , πUq (Cq) = C , πUq (Cq)
∼= Cq

/
(q−1)Cq

(3.2)

In order to explain this definition let us start by considering the first two
conditions in each line of (3.2).

a) A left ideal and two-sided coideal in a QFA quantizes the Hopf ideal of
functions which are zero on a (closed) subgroup;

b) a left coideal subalgebra in a QFA quantizes the algebra of invariant
functions on a homogeneous space;

c) a left ideal and two-sided coideal in a QUEA quantizes the infinitesimal
algebra on a homogeneous space;

d) a left coideal subalgebra in a QUEA quantizes the universal enveloping
subalgebra of a subgroup.

Once again, we must stress the fact that Cq , as was explained in Proposition

2.4, has to be seen as a quantization of the observable hull K̂ rather than of K
itself.

Let us now be more precise about the last condition in the previous definition.
By asking Iq

/
(q − 1)Iq ∼= πFq (Iq) = I we mean the following: the special-

ization map sends Iq inside F [G]. This map factors through Iq
/
(q − 1)Iq ;

in addition, we require that the induced map Iq
/
(q − 1)Iq −→ F [G] be a

bijection on I . Of course this bijection will respect the whole Hopf structure,
since πFq does. Now, since

πFq (Iq) = Iq
/(
Iq ∩ (q − 1)Fq[G]

)

this property may be equivalently rephrased by saying that Iq ∩ (q−1)Fq [G] =
(q−1) Iq as well. The previous discussions may be repeated unaltered for all
four algebraic objects under consideration. An equivalent definition of strict
quantizations is therefore the following:

(a) Iq Eℓ Ė Fq[G] , πFq (Iq) = I , Iq ∩ (q−1)Fq[G] = (q−1) Iq
(b) Cq ≤1 Ėℓ Fq[G] , πFq (Cq) = C , Cq ∩ (q−1)Fq[G] = (q−1) Cq
(c) Iq Eℓ Ė Uq(g) , πUq (Iq) = I , Iq ∩ (q−1)Uq(g) = (q−1)Iq
(d) Cq ≤1 Ėℓ Uq(g) , πUq (Cq) = C , Cq ∩ (q−1)Uq(g) = (q−1)Cq

(3.3)
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The purpose of the last condition — which is often mentioned by saying that Cq
is a flat quantization (typically, in the literature on deformation quantization)
— should be clear: indeed, removing it means losing any control on what is
contained, in quantization, inside the kernel of the specialization map.

Although the just mentioned notion of quantization appears to be, in many
respect, the “correct” one — and indeed is typically the one considered in
literature — another notion of quantization naturally appears when one has to
deal with quantum duality principle.

Definition 3.2. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq : Fq[G] −։ Fq[G]
/
(q−1)Fq[G] ∼= F [G]

πUq : Uq(g) −։ Uq(g)
/
(q −1)Uq(g) ∼= U(g)

be the specialization maps. Let ∇ := ∆ − ∆op. Let I, C, I and C be the
algebraic objects associated with the subgroup K of G (see 2.1). We call “proper
quantization” of each of them any object Iq , Cq , Iq or Cq respectively, such
that

(a) Iq Eℓ Ė Fq[G] , πFq (Iq) = I ,
[
Iq , Iq

]
⊆ (q − 1) Iq

(b) Cq ≤1 Ėℓ Fq[G] , πFq (Cq) = C ,
[
Cq , Cq

]
⊆ (q − 1) Cq

(c) Iq Eℓ Ė Uq(g) , πUq (Iq) = I , ∇(Iq) ⊆ (q−1)Uq(g) ∧ Iq
(d) Cq ≤1 Ėℓ Uq(g) , πUq (Cq) = C , ∇(Cq) ⊆ (q−1)Uq(g) ∧ Cq

(3.4)

The link between these two notions of quantization is the following:

Lemma 3.3. Any strict quantization is a proper quantization.

Proof. This is an easy consequence of definitions. Indeed, let K be a subgroup
of G . If Iq := I

(
K̂
)
is any strict quantization of I(K), we have

Iq ∩ (q − 1)Fq = (q − 1) Iq

by assumption, and moreover
[
Fq , Fq

]
⊆ (q − 1)Fq . Then

[
Iq , Iq

]
⊆ Iq ∩

[
Fq , Fq

]
⊆ Iq ∩ (q − 1)Fq = (q − 1) Iq

thus
[
Iq , Iq

]
⊆ (q − 1) Iq , i.e. Iq is proper. A similar argument works for

quantizations of type Cq(K) . Also, if Iq(K) is any strict quantization of I(K) ,
then we have Iq ∩ (q − 1)Uq = (q − 1)Iq by assumption, and moreover
∇(Uq) ⊆ (q − 1)U ∧2

q . Then

∇(Iq) ⊆
(
Uq ∧ Iq

)
∩ ∇(Uq) ⊆

(
Uq ∧ Iq

)
∩ (q − 1)U ∧2

q ⊆ (q − 1)Uq ∧ Iq

so that Iq is proper. A similar argument works for quantizations of type Cq(K)
as well.
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Remark 3.4. The converse to Lemma 3.3 here above is false. Indeed, there
exist quantizations (of subgroups / homogeneous spaces) which are proper but
not strict: we present an explicit example — of type Cq — in Subsection 6.3
later on.
This means that giving two different versions of “quantization” does make
sense, in that they actually capture two inequivalent notions — hierarchically
related via Lemma 3.3.

The following statement clarifies why such definitions actually apply only to
the (restricted) case of coisotropic subgroups (this result can be traced back to
[18], where it is mentioned as coisotropic creed).

Proposition 3.5. Let K be a subgroup of G and assume a proper quantiza-
tion of it exists. Then K is coisotropic or, in case the quantization is Cq , its
observable hull K̂ is coisotropic.

Proof. Assume Iq exists. Let f, g ∈ I , and let ϕ, γ ∈ Iq with πFq (ϕ) = f ,
πFq (γ) = g . Then by definition {f, g} = πFq

(
(q − 1)−1[ϕ, γ]

)
. But

[ϕ, γ] ∈
[
Iq , Iq

]
⊆ (q − 1) Iq

by assumption, hence (q−1)−1[ϕ, γ] ∈ Iq , thus {f, g} = πFq

(
(q−1)−1[ϕ, γ]

)
∈

πFq (Iq) = I , which means that I is closed for the Poisson bracket. Thus (see
(2.6)) K is coisotropic.
Similar arguments work when dealing with Cq , Iq or Cq . We shall only remark

that working with Cq we end up with C
(
K̂
)
= C(K) ≤P F [G] , whence K̂ is

coisotropic.

Since we would like to show also what happens in the non coisotropic case, we
will consider, also, the weakest possible — näıve — version of quantization.

Definition 3.6. Let Fq[G] and Uq(g) be a QFA and a QUEA for G and g and
let

πFq : Fq[G] −։ Fq[G]
/
(q−1)Fq[G] ∼= F [G]

πUq : Uq(g) −։ Uq(g)
/
(q −1)Uq(g) ∼= U(g)

be the specialization maps. Let I, C, I and C be the algebraic objects associated
with the subgroup K of G (see 2.1). We call “weak quantization” of each of
them any object Iq , Cq , Iq or Cq respectively, such that

(a) Iq Eℓ Ė Fq[G] , πFq (Iq) = I
(b) Cq ≤1 Ėℓ Fq[G] , πFq (Cq) = C
(c) Iq Eℓ Ė Uq(g) , πUq (Iq) = I

(d) Cq ≤1 Ėℓ Uq(g) , πUq (Cq) = C

(3.5)
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It is obvious that strict or proper quantizations are weak. Let us remark
that every subgroup of G is quantizable in the weak sense, since we may just
consider e.g. Iq := π−1

Fq
(I) to be a quantization of I . As näıf as it may seem,

this remark will play a rôle in what follows.

Let us lastly remark how the real case should be treated.

Definition 3.7. Let (Fq [G] , ∗) and (Uq(g) , ∗) be a real QFA and a real QUEA
for G and g . Let Iq , Cq , Iq and Cq be subgroup quantizations (either strict,
proper or weak). Then such quantizations are called real if

(
S(Iq)

)⋆
= Iq , C⋆q = Cq ,

(
S(Iq)

)⋆
= Iq , C⋆q = Cq (3.6)

3.8. The formal quantization approach. In the present work we are
dealing with global quantizations. In [5] instead we treated formal quantiza-
tions: these are topological Hopf C[[h]]–algebras which for h = 0 yield back
the (formal) Hopf algebras associated with a (formal) group. In this case, such
objects as Iq , Cq , Iq and Cq are defined in the parallel way. However, in [5] we
did not consider the notions of proper nor weak quantizations but only dealt
with strict quantizations. Actually, one can consider the notions of proper or
weak quantizations in the formal quantization setup as well; then the relation
between these and strict quantizations will be again the same as we showed
here above.
We point out also that the semiclassical limits of formal quantizations are just
formal Poisson groups, or their universal enveloping algebras, or subgroups,
homogeneous spaces, etc. In any case, this means — see the end of Subsection
2.1 — that no restrictions on subgroups apply (all are “observable”) nor on
homogeneous spaces (all are “quasi-affine”).

4 Quantum duality principle

Drinfeld’s quantum duality principle (cf. [7], §7; see also [10] for a proof) has a
stronger version (see [12]) best suited for our quantum groups — in the sense
of Section 3.

Let H be any Hopf algebra in HA and let

I := Ker
(
H

ǫ
։ C

[
q, q−1

] ev1−−։C
)
= Ker

(
H

ev1−−։H
/
(q−1)H ǭ

։ C
)

(4.1)

Then I is a Hopf ideal of H . We define

H∨ :=
∑
n≥0

(q −1)−nIn =
⋃
n≥0

(
(q −1)−1

I
)n ( ⊆ C(q)⊗C[q,q−1] H

)
(4.2)
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Notice that, setting J := Ker
(
H

ǫ−։ C
[
q, q−1

])
, one has I = (q− 1) ·1H +J ,

so that
H∨ =

∑
n≥0 (q − 1)

−n
Jn =

∑
n≥0

(
(q − 1)

−1
J
)n

(4.3)

Consider, now, for every n ∈ N the iterated coproduct ∆n : H → H⊗n where

∆0 := ǫ ∆1 := idH ∆n :=
(
∆⊗ id

⊗(n−2)
H

)
◦∆n−1 if n ≥ 2 .

For any ordered subset Σ = {i1, . . . , ik} ⊆ {1, . . . , n} with i1 < · · · < ik ,
define the morphism jΣ : H⊗k −→ H⊗n by

jΣ(a1 ⊗ · · · ⊗ ak) := b1 ⊗ · · · ⊗ bn where

{
bi := 1 if i /∈ Σ

bim := am if 1 ≤ m ≤ k

then set ∆Σ := jΣ ◦∆k , ∆∅ := ∆0 , and δΣ :=
∑

Σ′⊂Σ (−1)n−|Σ
′|∆Σ′ , δ∅ :=

ǫ . By the inclusion-exclusion principle, the inverse formula ∆Σ =
∑

Ψ⊆Σ δΨ
holds. We shall use notation δ0 := δ∅ , δn := δ{1,2,...,n} , and the key identity

δn = (idH − ǫ)⊗n ◦∆n , for all n ∈ N+ . Given H ∈ H, we define

H ′ :=
{
a ∈ H

∣∣ δn(a) ∈ (q − 1)nH⊗n, ∀ n ∈ N
} (

⊆ H
)
. (4.4)

Theorem 4.1 (Global Quantum Duality Principle). (cf. [12]) For any H ∈
HA one has:

(a) H∨ is a QUEA and H ′ is a QFA. Moreover the following inclusions hold:

H ⊆
(
H∨
)′
, H ⊇

(
H ′
)∨
, H∨=

((
H∨
)′ )∨

, H ′=
((
H ′
)∨)′

(4.5)

(b) H =
(
H∨
)′ ⇐⇒ H is a QFA, and H =

(
H ′
)∨ ⇐⇒ H is a QUEA;

(c) If G is a Poisson group with Lie bialgebra g , then

Fq[G]
∨
/
(q − 1)Fq[G]

∨ = U(g∗) Uq(g)
′
/
(q − 1)Uq(g)

′ = F [G∗]

where G∗ is some connected Poisson group dual to G;

(d) Let Fq[G] and Uq(g) be dual to each other w.r. to some perfect Hopf
pairing. Then Fq[G]

∨
and Uq(g)

′
are dual to each other w.r. to the same

pairing.

A number of remarks are due, at this point:

1. The Poisson group G∗ dual to G appearing in (c) of Theorem 4.1 does
depend on Uq(g) which is given as a data. Different choices of Uq(g),
though associated with the same Lie bialgebra g may give rise to a dif-
ferent connected Poisson dual group G∗.
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2. For all Hopf C(q)–algebra H the existence of a C
[
q, q−1

]
-integral form Hf

which is a QUEA at q = 1 is equivalent to the existence of a C
[
q, q−1

]
–

integer form Hu which is a QFA at q = 1 .

3. All claims above have obvious analogues in the real case.

4. If H is a Hopf algebra and Φ ⊆ N is a finite subset, then ([16], Lemma
3.2)

δΦ(ab) =
∑

Λ∪Y=Φ

δΛ(a) δY (b) ∀ a, b ∈ H (4.6)

furthermore, if Φ 6= ∅ we have

δΦ(ab− ba) =
∑

Λ∪Y=Φ
Λ∩Y 6=∅

(
δΛ(a) δY (b)− δY (b) δΛ(a)

)
∀ a, b ∈ H (4.7)

The above formulas will be used frequently in what follows

Having clarified the exact statement of quantum duality principle that we have
in mind, let us extend it to objects of subgroup type as in Definition 3.6, i.e. to
left coideal subalgebras and to left ideals and two-sided coideals — either in
Fq[G] or in Uq(g) . This was already done in [5] where we only considered local
(i.e. over C[[h]]) quantizations. Let us remark that the quantum duality prin-
ciple we have in mind not only exchanges the rôle of algebras of functions with
that of universal enveloping algebras, but also exchanges the rôle of subgroups
with that of homogeneous spaces. At the semiclassical level, the pair of dual
objects is given by a coisotropic subgroup H and a Poisson quotient G∗

/
H⊥ .

When H is a Poisson subgroup, its orthogonal H⊥ turns out to be normal in
G∗ and G∗

/
H⊥ ∼= H∗ as a Poisson group, thus recovering the usual quantum

duality principle. In particular, we will consider a process moving along the
following draft:

(a) I
(
⊆F [G]

) (1)−→ Iq
(
⊆Fq[G]

) (2)−→ Iqg
(
⊆Fq[G]∨

) (3)−→ I1g
(
⊆U(g∗)

)

(b) C
(
⊆ F [G]

) (1)−→ Cq
(
⊆Fq[G]

) (2)−→ Cq▽
(
⊆Fq[G]∨

) (3)−→ C1▽
(
⊆U(g∗)

)

(c) I
(
⊆U(g)

) (1)−→ Iq
(
⊆Uq(g)

) (2)−→ Iq
!
(
⊆Uq(g)′

) (3)−→ I1
!
(
⊆F [G∗]

)

(d) C
(
⊆U(g)

) (1)−→ Cq
(
⊆Uq(g)

) (2)−→ Cq
�
(
⊆Uq(g)′

) (3)−→ C1
�
(
⊆F [G∗]

)

where arrows (1) are quantizations, arrows (3) are specializations at q = 1 and
the definition of arrows (2) will be the core of what follows. It will turn out
that:

1. each one of the right-hand-side objects above is one of the four algebraic
objects which describe a closed connected subgroup of G∗ : namely, the
correspondence is

(a) ==⇒ (c) , (b) ==⇒ (d) , (c) ==⇒ (a) , (d) ==⇒ (b) .
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2. the four quantizations of subgroups of G∗ so obtained are always proper
— hence the subgroups of G∗ associated with them are coisotropic.

3. if we begin with strict quantizations, and we start from a subgroup K,
then the quantization of the unique coisotropic closed connected subgroup
of G∗ mentioned above is strict as well, and the subgroup itself is K⊥

(cf. Definition 2.1), with some care in case (b), i.e. if we start from C(K).
This will partially generalize to weak quantizations, for which, starting
from a subgroup K of G, the unique coisotropic closed connected sub-
group of G∗ obtained above is K〈⊥〉 (cf. Proposition 2.2).

Let us fix, in what follows, quantizations Uq(g) and Fq[G] as in Section 3. Unless
explicitly mentioned we will not assume that this is a double quantization. To
simplify notations, let us set

Uq := Uq(g) , Uq := Uq(g) , Uq
′ := Uq(g)

′

Fq := Fq[G] , Fq := Fq[G] , Fq
∨ := Fq[G]

∨

As mentioned in the first remark after Theorem 4.1, this implies that a specific
connected Poisson dual G∗ of G is selected (it depends on the choice of Uq :=
UQ(g) , not only on g itself). Let us consider quantum subgroups Iq , Cq , Iq
and Cq as defined in 3.6.

Definition 4.2. Using notations as in (4.1) we define:

(a) Iqg :=
∞∑
n=1

(q − 1)
−n · I n−1 · Iq =

∞∑
n=1

(q − 1)
−n · J n−1 · Iq

(b) Cq▽ :=
∞∑
n=0

(q − 1)−n ·
(
Cq ∩ I

)n
=

∞∑
n=0

(q − 1)−n ·
(
Cq ∩ J

)n

(c) Iq
! :=

{
x ∈ Iq

∣∣∣ δn(x) ∈ (q−1)n
n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq⊗(n−s), ∀ n∈N+

}

(d) Cq
� :=

{
x ∈ Cq

∣∣∣ δn(x) ∈ (q − 1)n Uq
⊗(n−1)⊗ Cq , ∀ n ∈ N+

}

Let us remark that the following inclusions hold directly by definitions:

(i) Iqg ⊇ Iq , (ii) Cq▽ ⊇ Cq , (iii) Iq
! ⊆ Iq , (iv) Cq

� ⊆ Cq . (4.8)

5 Duality maps

In the present section we will prove properties of the four Drinfeld–type maps
defined in the previous section, namely the maps Iq 7→ Iqg , Cq 7→ Cq▽ ,

Iq 7→ Iq
! and Cq 7→ Cq

� . Let us recall that such maps do not change, as
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we will see, the algebraic properties of subobjects, but interchanges quantized
function algebra with quantum enveloping algebra and therefore quantizations
of coisotropic subgroups will be sent to quantizations of (embeddable) homo-
geneous spaces — of the dual quantum group — and viceversa.
Let us start by considering the map Iq 7→ Iqg .

Proposition 5.1. Let Iq = Iq(K) be a left ideal and two-sided coideal in
Fq[G] , that is a weak quantization (of type I ) of some subgroup K of G . Then

1. Iqg is a left ideal and two-sided coideal in Fq[G]
∨
;

2. if Iq is strict, then Iqg is strict too, i.e. Iqg
⋂
(q − 1)Fq[G]

∨
= (q −

1) Iqg ;

3. there exists a coisotropic subgroup L of G∗ such that Iq(K)
g
= Iq(L) :

namely, Iq(K)
g

is a proper quantization, of type I, of some coisotropic
subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Iq is a real one, Iqg is real too,

i.e.
(
S
(
Iqg
))∗

= Iqg . Therefore claims (1–3) still hold in the framework
of real quantum subgroups.

Proof. (1) Consider that Iqg is the left ideal of Fq
∨ generated by

(q − 1)
−1 Iq ; therefore, in order to prove IqgĖFq

∨ it is enough to show that

∆
(
(q−1)−1 Iq

)
⊆ Fq

∨⊗ Iqg + Iqg⊗ Fq∨ . Since Iq is a coideal of Fq , we have

∆
(
(q − 1)

−1 Iq
)
⊆

⊆ Fq ⊗ (q−1)−1 Iq + (q−1)−1 Iq ⊗ Fq ⊆ Fq
∨⊗ Iqg + Iqg⊗ Fq∨

(5.1)

whence IqgĖFq
∨ follows, and the first claim is proved. (2) Assume Iq to be

a strict quantization, so that Iq
⋂
(q − 1)Fq = (q − 1) Iq .

Let J := Ker
(
ǫ : Fq −→ C

[
q, q−1

] )
. Then

J mod (q−1)Fq = Ker (ǫ)
∣∣
F [G]

= me

and me

/
me

2 = g∗, the cotangent Lie bialgebra of G . Let {y1, . . . , yn} be a

subset of me whose image in the local ring of G at the identity e is a local
system of parameters, and pull it back to a subset {j1, . . . , jn} of J . Let F̂q be
the J–adic completion of Fq. From [12], Lemma 4.1, we know that the set of

ordered monomials
{
j e
∣∣ e ∈ Nn

}
(where hereafter j e :=

∏n
s=1 j

e(i)
s , for all

e ∈ Nn ) is a C
[
q, q−1

]
–pseudobasis of F̂q , which means that each element of F̂q

has a unique expansion as a formal infinite linear combination of the j e’s. In a

similar way, the (q−1)–adic completion of Fq
∨ admits

{
(q − 1)−|e|j e

∣∣ e ∈ Nn
}

as a C
[
q, q−1

]
–pseudobasis, where |e| :=∑n

i=1 e(i) .
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For our purposes we need a special choice of the set {j1, . . . , jn} adapted to
the smooth subvariety K of G. By general theory we can choose {y1, . . . , yn}
so that y1, . . . , yk ∈ me and yk+1, . . . , yn ∈ I(K) , where k = dim (K) . We
can also choose the lift {j1, . . . , jn} of {y1, . . . , yn} inside J so that js is a lift
of ys, for all s = 1, . . . , k , and jk+1, . . . , jn ∈ Iq . With these assumptions,
it’s easy to see that

ϕ ∈ Iqg
⋂
(q − 1)Fq

∨ =⇒ (q − 1)n ϕ ∈
(
Jn−1 · Iq

)⋂
(q − 1)Jn

for some n ∈ N, which in turn yields (q − 1)
n
ϕ ∈ Jn−1 ·

(
Iq
⋂
(q−1)J

)
. Since

Iq
⋂
(q − 1)J ⊆ Iq

⋂
(q − 1)Fq = (q − 1) Iq

we conclude that (q − 1)
n
ϕ ∈ (q − 1)Jn−1 · Iq , whence ϕ ∈ (q − 1) Iqg .

The converse inclusion Iqg
⋂
(q− 1)Fq

∨ ⊇ (q− 1) Iqg is obvious, hence claim
(2) is proved. (3) It is an obvious statement that Iqg is a weak quantization
of its image πFq

∨

(
Iqg
)
: in particular, πFq

∨

(
Iqg
)
Eℓ Ė πFq

∨

(
Fq

∨
)
= U

(
g∗
)

implies that πFq
∨

(
Iqg
)
= I(L) for some subgroup L of G∗. Thus Iqg is a weak

quantization, to be called Iq(L), of I(L) , and it is even strict if Iq itself is
strict, as we’ve just seen. Now we show that such quantization Iq(L) turns out
to be always proper.
In fact, (5.1) implies ∇

(
(q − 1)

−1 Iq
)
⊆ (q − 1)

−1 (
Fq ∧ Iq

)
. On the other

hand Fq ∧ Iq ⊆ J ∧ Iq ⊆ (q − 1)2 Fq
∨∧ Iqg, thus, finally, ∇

(
Iqg
)
∈ (q −

1)Fq
∨∧ Iqg, which means that Iqg is proper and (3) holds. (4) This is an

obvious consequence of definitions.

Remark 5.2. In functorial language we may say that the map Iq 7→ Iqg
establishes a functor between quantizations of coisotropic subgroups of G and
quantizations of (embeddable) homogeneous spaces of G∗, moving from a global
to a local description, sending each type of quantization in a proper one and
preserving strictness. Indeed, we should make precise what are the “arrows”
in our categories of “quantum subgroups” or “quantum homogeneous spaces”,
and how the functor acts on these: we leave these details to the interested
reader.

Let us move on to properties of the map Cq 7→ Cq▽ .

Proposition 5.3. Let Cq = Cq(K) be a left coideal subalgebra in Fq[G]. Then

1. Cq▽ is a left coideal subalgebra in Fq[G]
∨;

2. if Cq is strict, then Cq▽ is strict too, i.e. Cq▽
⋂
(q − 1)Fq[G]

∨
= (q −

1) Cq▽ .

3. there exists a coisotropic subgroup L of G∗ such that Cq(K)
▽
= Cq(L) :

namely, Cq(K)
▽
is a proper quantization, of type C , of some coisotropic

subgroup L of G∗ ;

Documenta Mathematica 19 (2014) 333–380



A Global QDP for Subgroups and Homogeneous Spaces 355

4. in the real case, i.e. if the quantization Cq is a real one, Cq(K)
▽
is real

too, i.e.
(
Cq▽
)∗

= Cq▽ . Therefore claims (1–3) still hold in the framework
of real quantum subgroups.

Proof. The proof uses essentially the same arguments as the previous one.
(1) By the very definitions Cq▽ ≤1 Fq

∨ := Fq[G]
∨
. More precisely,

Cq▽ is (by construction) the unital C
[
q, q−1

]
–subalgebra of Fq

∨ generated by

(q − 1)−1 (Cq)+ , where (Cq)+ := Cq
⋂
J . So to get Cq▽Ėℓ Fq∨ we must only

prove ∆
(
(q−1)−1

(Cq)+
)
⊆ Fq∨⊗ Cq▽ . But Cq Ėℓ Fq , so:

∆
(
(q − 1)

−1
(Cq)+

)
⊆ Fq ⊗ (q − 1)

−1
(Cq)+ ⊆ Fq

∨⊗ Cq▽ (5.2)

therefore Cq▽ Ėℓ Fq
∨, and claim (1) is proved. (2) Now suppose Cq to be a strict

quantization, i.e. Cq
⋂
(q−1)Fq = (q−1) Cq . We need an explicit description

of Fq
∨ and of Cq▽ . This goes along the same lines followed to describe Iqg in

the proof of Proposition 5.1: but now the choice of the subset {j1, . . . , jn} of
J is different.

First, since C(K) = C
(
K̂
)
we can assume that K = K̂ , i.e. K is observable.

Then we can choose
{
j1, . . . , jn

}
so that jk+1, . . . , jn ∈ J

⋂ Cq = Cq+ (where

again k = dim (K) ) and, letting ys := js mod (q−1)Fq , the set
{
y1, . . . , yn

}

yields a local system of parameters at e ∈ G (in the localized ring), as before;
now in addition we have yk+1, . . . , yn ∈ me

⋂ C(K) =: C(K)
+
. With these

assumptions, the (q − 1)–adic completion of Fq
∨ admits

{
(q − 1)

−|e|
j e
∣∣ e ∈

Nn
}

as a C
[
q, q−1

]
–pseudobasis, like before, but in addition the same analysis

can be done for the (q − 1)–adic completion of Cq▽ (just because Cq is strict),
which then has C

[
q, q−1

]
–pseudobasis

{∏n
s=k+1 j

es
s

∣∣ (ek+1, . . . , en) ∈ Nn−k
}
.

From these description of the completions, and comparing the former with Fq
∨

and Cq , we easily see that Cq▽
⋂
(q − 1)Fq

∨ ⊆ (q − 1) Cq▽ . The converse is
trivial, hence claim (1) is proved. (3) It follows directly from (1) that Cq▽
is a weak quantization of its image πFq

∨

(
Cq▽
)
: in particular, πFq

∨

(
Cq▽
)
≤1

Ėℓ πFq
∨

(
Fq

∨
)
= U

(
g∗
)
means that πFq

∨

(
Cq▽
)
= C(L) for some subgroup L of

G∗. Thus Cq▽ is a weak quantization — to be called Cq(L) — of C(L), and it
is even strict if Cq itself is strict, by claim (1). Now in addition we show that,
in any case, such a quantization Cq(L) is always proper.

From (5.2) we have

∇
(
(q − 1)

−1
(Cq)+

)
⊆ (q − 1)

−1
J ∧ (Cq)+ ⊆
⊆ (q − 1)−1+2 Fq

∨∧ Cq▽ = (q − 1)Fq
∨∧ Cq▽

which implies exactly that Cq▽ — which by definition is the unital subalgebra

generated by (q − 1)−1 (Cq)+ — is proper. (4) This follows directly from
definitions and from Cq∗ = Cq, which holds by assumption.
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Remark 5.4. In functorial language we may say that the map Cq 7→ Cq▽ estab-
lishes a functor between quantized homogeneous spaces of G and quantizations
of coisotropic subgroups of G∗, moving from a global to a local description,
sending each type of quantization in a proper one and preserving strictness.
Again, to be precise, several details need to be fixed, and are left to the reader.

The third step copes with the map Iq 7→ Iq
! .

Proposition 5.5. Let Iq = Iq(K) be a left ideal and two-sided coideal in
Uq(g) , weak quantization (of type I) of some coisotropic subgroup K of G .
Then:

1. Iq
! is a left ideal and two-sided coideal in Uq(g)

′
;

2. if Iq is strict, then Iq
! is strict too, i.e. Iq

!⋂ (q−1)Uq(g)′ = (q−1)Iq! ;

3. there exists a coisotropic subgroup L in G∗ such that Iq(K)! = Iq(L) :
namely, Iq(K)! is a proper quantization, of type I , of some coisotropic
subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Iq is a real one, Iq
! is real too,

i.e.
(
S
(
Iq

!
))∗

= Iq
!. Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. (1) Let a ∈ Uq′ and b ∈ Iq
! : by definition of Iq

!, from Iq Eℓ Uq and
from (4.6) we get

δn(ab) ∈ (q − 1)
n
n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq⊗(n−s)

so a b ∈ Iq
! , thus Iq

! Eℓ Uq
′ .

As to the coideal property, it is proven resorting to (q − 1)–adic completions,
arguing as in the proof of Proposition 3.5 in [12], and basing on the fact that
IqĖ Uq . Details are left to the reader. (2) Assume now Iq to be strict. The
inclusion

Iq
!⋂ (q − 1)Uq(g)

′ ⊇ (q − 1)Iq
!

is trivially true, and we must prove the converse. Let η ∈ Iq
! ⋂ (q − 1)Uq(g)

′
.

We have

δn(η) ∈ (q − 1)
n
((∑n

s=1Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

)⋂
(q − 1)Uq

⊗n
)

for all n ∈ N+ . But then our assumption gives
(

n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

) ⋂
(q − 1)Uq

⊗n =

=
n∑
s=1

Uq
⊗(s−1) ⊗

(
Iq
⋂
(q−1)Uq

)
⊗ Uq⊗(n−s) =

= (q−1)n+1
n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)
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which, in turn, means η ∈ (q−1)Iq! . Thus Iq
! ⋂ (q−1)Uq(g)′ ⊆ (q−1)Iq! ,

as expected. (3) Claim (1) implies that Iq
! is a weak quantization of its im-

age, therefore there exists a subgroup L of G∗ such that πUq
′

(
Iq

!
)
= I(L) .

This quantization is even strict if Iq itself is strict, by the previous. Now we
show that this quantization Iq(L) is always proper — hence the subgroup L
is coisotropic, by Lemma 3.5. Recall that, by definition, Iq(L) is proper if and
only if [x, y] ∈ (q − 1)Iq

! for all x, y ∈ Iq
! . From definitions we have

[x, y] ∈ (q−1)Iq! ⇐⇒ δn
(
[x, y]

)
∈ (q − 1)

n+1∑n
s=1 Uq

⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

for all n ∈ N . Then by formula (4.7) we have (for all n ∈ N )

δn
(
[x, y]

)
=
∑

Λ∪Y={1,...,n}
Λ∩Y 6=∅

(
δΛ(x) δY (y) − δY (y) δΛ(x)

)
(5.3)

while (with notation of §4)

δΛ(x) ∈ (q − 1)|Λ| · jΛ
(∑|Λ|

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(|Λ|−s)

)
,

δY (y) ∈ (q − 1)
|Y | · jY

(∑|Y |
s=1 Uq

⊗(s−1) ⊗ Iq ⊗ Uq⊗(|Y |−s)
)
;

since Λ∪ Y = {1, . . . , n} and Λ ∩ Y 6= ∅ we have |Λ|+ |Y | ≥ n+ 1 ; moreover,
for each index i ∈ {1, . . . , n} we have i ∈ Λ (and otherwise Im (jΛ) has 1 in
the i–th spot) or i ∈ Y (with the like remark on Im (jY ) if not). As Iq is a left
ideal of Uq, we conclude

δΛ(x) · δY (y) , δY (y) · δΛ(x) ∈ (q − 1)
|Λ|+|Y |∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗Uq⊗(n−s)

⊆ (q − 1)
n+1∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

so that (5.3) gives δn
(
[x, y]

)
∈ (q−1)n+1∑n

s=1 Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s), as

expected. (4) In the real case,
(
S
(
Iq

!
))∗

= Iq
! follows at once from defi-

nitions and from the identity
(
S(Iq)

)∗
= Iq .

Remark 5.6. In functorial language we may say that the map Iq 7→ Iq
! estab-

lishes a functor between quantized homogeneous spaces of G and quantizations
of coisotropic subgroups of G∗, moving from a local to a global description,
sending each type of quantization in a proper one and preserving strictness.
Once more, details are left to the interested reader.

The fourth and last step is devoted to the map Cq 7→ Cq
� .

Proposition 5.7. Let Cq = Cq(K) be a subalgebra and left coideal in Uq(g) ,
weak quantization (of type C) of some subgroup K of G . Then:

1. Cq
� is a subalgebra and left coideal in Uq(g)

′;
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2. if Cq is strict, then Iq
! is strict too, i.e. Cq

�⋂ (q−1)Uq(g)′ = (q−1)Cq� ;

3. there exists a coisotropic subgroup L in G∗ such that Cq(K)
�
= Cq(L) :

namely, Cq(K)
�
is a proper quantization, of type C , of some coisotropic

subgroup L of G∗ ;

4. in the real case, i.e. if the quantization Cq is a real one, Cq(K)
�
is real

too, i.e.
(
Cq

�
)∗

= Cq
� . Therefore claims (1–3) still hold in the framework

of real quantum subgroups.

Proof. The whole proof is very similar to that of Proposition 5.5. (1) By
definitions, 1 ∈ Cq and δn(1) = 0 for all n ∈ N, so 1 ∈ Cq

�. Let x, y ∈ Cq
�

and n ∈ N ; by (4.6) we have δn(xy) =
∑

Λ∪Y={1,...,n} δΛ(x) δY (y) . Each of

the factors δΛ(x) belongs to a module (q − 1)
|Λ|
Uq

⊗(|Λ|−1)⊗X where the last
tensor factor is either X = Cq (if n ∈ Λ ) or X = {1} ⊂ Cq (if n 6∈ Λ ), and
similarly for δY (y); in addition Λ∪Y = {1, . . . , n} implies |Λ|+ |Y | ≥ n , and

summing up δn(xy) ∈ (q−1)nUq⊗(n−1)⊗ Cq , whence x y ∈ Cq
�. Thus Cq

� is a
subalgebra of Uq

′.

In order to prove that Cq
� is a left coideal in Uq

′, one can again resort to
(q − 1)–adic completions, with exactly the same arguments as in the proof
of Proposition 3.5 in [5], starting from the fact that Cq Ėℓ Uq. Details are
left to the reader. (2) Assume, now, that Cq is a strict quantization, i.e.

Cq
⋂
(q − 1)Fq = (q − 1)Cq. Then clearly Cq

� ⋂ (q − 1)Uq(g)
′ ⊇ (q − 1)Cq

� ,

and we must prove the converse inclusion. Let κ ∈ Cq
� ⋂ (q− 1)Uq(g)

′
. Then:

δn(κ) ∈ (q − 1)n
((
Uq

⊗(n−1) ⊗ Cq

)⋂
(q − 1)Uq

⊗n
)

=

= (q − 1)
n
(
Uq

⊗(n−1) ⊗
(
Cq
⋂
(q−1)Uq

))
= (q − 1)

n+1 · Uq⊗(n−1) ⊗ Cq

which means κ ∈ (q − 1)Cq
� . Therefore Cq

� ⋂ (q − 1)Uq(g)
′ ⊆ (q − 1)Cq

�, as

claimed. (3) The above algebraic properties show that Cq
� is a weak quanti-

zation of its image πUq
′

(
Cq

�
)
; thus there exists a coisotropic subgroup L of G∗

such that: πUq
′

(
Cq

�
)
= C(L). Thus Iq

! is a weak quantization — to be called
Iq(L) — of I(L) , and it is even strict if Iq itself is strict, by the previous. Now
we show first that this quantization Iq(L) is always proper — hence the sub-
group L is coisotropic, by Lemma 3.5. Proving that Iq(L) is proper amounts

to show that [x, y] ∈ (q − 1)Cq
� for all x, y ∈ Cq

�. By definition we have

[x, y] ∈ (q−1)Cq� ⇐⇒ δn
(
[x, y]

)
∈ (q−1)n+1Uq

⊗(n−1) ⊗ Cq ∀ n∈N

and formula (4.7) gives, for all n ∈ N,

δn
(
[x, y]

)
=
∑

Λ∪Y={1,...,n}
Λ∩Y 6=∅

(
δΛ(x) δY (y) − δY (y) δΛ(x)

)
(5.4)
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while

δΛ(x) ∈ (q−1)|Λ|
jΛ

(
Uq

⊗(|Λ|−1)⊗Cq
)
, δY (y) ∈ (q−1)|Y |

jY

(
Uq

⊗(|Y |−1)⊗Cq
)

Now, Λ∪ Y = {1, . . . , n} and Λ∩ Y 6= ∅ give |Λ|+ |Y | ≥ n+ 1, and since Cq is
a subalgebra of Uq we get

δΛ(x) δY (y) , δY (y) δΛ(x) ∈ (q−1)|Λ|+|Y |
Uq

⊗(n−1) ⊗ Cq ⊆
⊆ (q−1)n+1

Uq
⊗(n−1) ⊗ Cq

so that (5.4) yields

δn
(
[x, y]

)
∈ (q−1)n+1

Uq
⊗(n−1) ⊗ Cq

thus [x, y] ∈ (q − 1)Cq
� . (4) In the real case (Cq)

∗
= Cq : this and the very

definitions imply the claim.

Remark 5.8. In functorial language we may say that the map Cq 7→ Cq
�

establishes a functor between quantization of coisotropic subgroups of G and
quantizations of Poisson homogeneous spaces of G∗, moving from a local to
a global description, sending each type of quantization in a proper one and
preserving strictness. We leave to the interested reader all details which still
need to be fixed.

We now move to connectedness properties of the coisotropic subgroup L iden-
tified in Propositions 5.5 and 5.7.

Proposition 5.9.

1. Let Iq(K) be a strict quantization (of type I) of a (coisotropic) sub-

group K in G . Then the subgroup L of G∗ such that Iq(K)
!
= Iq(L) is

connected.

2. Let Cq(K) be a strict quantization of type C of a (coisotropic) subgroup K

of G . Then the subgroup L of G∗ such that Cq(K)
!
= Cq(L) is connected.

Proof. (1) Saying that the (closed) subgroup L is connected is equivalent

to saying that its function algebra F [L] = F
[
G∗
]/
I(L) has no non-trivial

idempotents. Note that, since F
[
G∗
]
is the specialization of Uq

′ at q = 1 and

I(L) is the similar specialization of Iq
! , the quotient F [L] = F

[
G∗
]/
I(L) is

canonically isomorphic to the specialization at q = 1 of Uq
′
/
Iq

! . Let a be an

idempotent in F [L]: if we take any lift of it in Uq
′
/
Iq

! , i.e. any a ∈ Uq′
/
Iq

!

such that a = a mod (q−1)Uq′
/
Iq

! . We must prove:

a2 ≡ a mod (q−1)Uq′
/
Iq

! =⇒ a mod (q−1)Uq′
/
Iq

! ∈
{
0, 1
}

(5.5)
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We can clearly reduce to the case when ǫ(a) = 0: in fact, if a 2 = a then ǫ(a)
is necessarily 0 or 1 (for it is unipotent too), and in the latter case we then

find that a0 := 1 − a is idempotent and ǫ(a0) = 0. Also the lift a ∈ Uq′
/
Iq

!

can be chosen, in this case, such that: ǫ(a) = 0. To simplify notation, we set

H := Uq

/
Iq and H’ := Uq

′
/
Iq

!. We shall prove that, if a ∈ H’, ǫ(a) = 0 and

a2 ≡ a mod (q−1)H’, then a ≡ 0 mod (q−1)H’, i.e. a ∈ (q−1)H’ ; in fact,
this will give (5.5).
Having assumed that Iq to be strict, H’ identifies with a C

[
q, q−1

]
–submodule

of H given in terms of the coalgebra structure of the latter: the embedding is

the one canonically induced by the maps Uq
′ −֒→ Uq −։ Uq

/
Iq. In fact, the

kernel of the latter map is Uq
′ ⋂ Iq (by strictness assumption). It is easy to

see from definitions that Uq
′ ⋂ Iq = Iq

!. Thus H’ does embed into H :

H’ =

{
η ∈ H

∣∣∣∣ δn(η) ∈ (q−1)nH⊗n , ∀ n ∈ N
}
. (5.6)

Now, a2 ≡ a mod (q−1)H’ means a = a2 + (q−1) c for some c ∈ H’; since
ǫ(a) = 0, we have ǫ(c) = 0 as well. Applying δn to the identity a = a2+(q−1) c
and using formula (4.6) we get

δn(a) = δn
(
a2
)
+ (q − 1) δn(c) =

∑
Λ∪Y={1,...,n}

δΛ(a) δY (a) + (q − 1) δn(c)

for all n ∈ N, which — noting that δ0(a) := ǫ(a) = 0 yields:

δn(a) =
∑

Λ∪Y={1,...,n}
Λ,Y 6=∅

δΛ(a) δY (a) + (q − 1) δn(c) (5.7)

Since c ∈ H’ , the last summand (q−1) δn(c) in right-hand side of (5.7) belongs
to (q−1)n+1H⊗n, thanks to (5.6). Similarly, since a ∈ H’ we have δk(a) ∈
(q−1)kH⊗k for all k ∈ N, by (5.6) again: therefore each summand δΛ(a) δY (a)
in right-hand side of (5.7) belongs to (q − 1)n+1H⊗n as well. But then (5.7)

yields δn(a) ∈ (q − 1)
n+1

H⊗n for all n ∈ N, which, again by (5.6), means
exactly that a ∈ (q−1)H’. This ends the proof of the first claim. (2) We

will use similar arguments to show this claim: F [L] = F
[
G∗
]/
I(L) has no

non-trivial idempotents. Since Cq
� = Cq(L) and C(L) = C

(
L̂
)
, we can assume

L = L̂, i.e. L is observable. This implies I(L) = Ψ
(
C(L)

)
, which is clearly the

specialization at q = 1 of Ψ
(
C(L)

)
= Uq

′ Cq
�; therefore, F [L] = F

[
G∗
]/
I(L) is

canonically isomorphic to the specialization at q = 1 of Uq
′
/
Uq

′ Cq
� .

From now on, one can mimic step by step the proof of part (1). The only
detail to modify is that one must take Uq Cq

+ =: Ψ(Cq) in place of Iq , and

Uq
′
(
Cq

�
)+

=: Ψ
(
Cq

�
)
in place of Iq

! . Letting H := Uq

/
Ψ(Cq) , and H’ :=
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Uq
′
/
Ψ
(
Cq

�
)
, the thesis amounts to prove that

a ∈ H’ , a2 ≡ a mod (q−1)H’⇒ a ≡ 0 mod (q−1)H’

(In fact also a ≡ 1 mod (q−1)H’ would be ok, but, arguing as before, we’ll
restrict to the case ǫ(a) = 0).
As Cq is strict, it is easy to see from definitions that Cq

� = Uq
′ ⋂ Cq, hence

Ψ
(
Cq

�
)
:= Uq

′
(
Cq

�
)+

= Uq
′
(
Uq

′ ∩ Cq
)+
: the latter is the kernel of the map

Uq
′ −֒→ Uq −։ Uq

/
Uq C

+
q , so H’ embeds as a C

[
q, q−1

]
–submodule of H ,

namely

H’ =

{
η ∈ H

∣∣∣∣ δn(η) ∈ (q−1)nH⊗n , ∀ n ∈ N
}
.

With this description at hand, computations are as in the proof of claim (1).

Our next results are about the behavior of quantum subgroups under compo-
sition of Drinfeld-like maps.

Proposition 5.10. Let Iq , Cq , Iq , Cq be weak quantizations of a subgroup
K of G . Then:

1. Iq ⊆
(
Iqg
)!
, Cq ⊆

(
Cq▽
)�

;

2. Cq ⊇
(
Cq

�
)▽

, Iq ⊇
(
Iq

!
)g

.

Proof. (1) By the very definitions, for any n ∈ N we have

δn
(
Iq
)
⊆ JFq

⊗n⋂
(

n∑
s=0

Fq
⊗s ⊗ Iq ⊗ Fq⊗(n−s−1)

)
=

=
n∑
s=0

JFq

⊗s⊗Iq ⊗ JFq

⊗(n−s−1) ⊆ (q − 1)
n ·

n∑
s=0

(
Fq

∨
)⊗s⊗Iqg⊗

(
Fq

∨
)⊗(n−s−1)

which means exactly Iq ⊆
(
Iqg
)!

. Similarly we can remark that:

δn
(
Cq
)
⊆ JFq

⊗n⋂(Fq⊗(n−1) ⊗ Cq
)

=

= JFq

⊗(n−1) ⊗
(
Cq
⋂
JFq

)
⊆ (q−1)n

(
Fq

∨
)⊗(n−1)⊗ Cq▽

which means Cq ⊆
(
Cq▽
)�
. Therefore claim (1) is proved. (2) As

(
Cq

�
)▽

is generated — as an algebra — by (q−1)−1
Cq

�⋂ JUq
′ , it is enough to show

that the latter space is contained in Cq . Let, then, x′ ∈ Cq
�⋂ JUq

′ . Surely
δ1
(
x′
)
∈ (q − 1)Cq, hence x′ = δ1

(
x′
)
+ ǫ
(
x′
)
∈ (q − 1)Cq . Therefore

(q − 1)−1x′ ∈ Cq , q.e.d. Similarly,
(
Iq

!
)g

is the left ideal of Uq
′ gener-

ated by (q−1)−1
Iq

!⋂ JUq
′ , thus — since Uq

′ ⊆ Uq — we must only prove

that (q−1)−1
Iq

!⋂ JUq
′ is contained in Uq. Again, if y′ ∈ Iq

!⋂ JUq
′ then

y′ = δ1
(
y′
)
+ ǫ
(
y′
)
∈ (q − 1)Iq. Thus we get (q − 1)

−1
y′ ∈ Iq , and (2) is

proved.
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Remarks:

(a) By repeated applications of the previous proposition it is easily proved
that:

Iqg =
((
Iqg
)!)g

, Cq▽ =
((
Cq▽
)�)▽

, Cq
� =

((
Cq

�
)▽)�

, Iq
! =

((
Iq

!
)g)!

(b) Since we proved that Drinfeld-like maps always produce proper quantiza-
tions, and that proper quantizations specialize to coisotropic subgroups
(cf. Proposition 3.5), the following holds:

1. if Iq =
(
I g
q

)!
then Iq is a proper quantization (of type I) of a

coisotropic subgroup of G ;

2. if Cq =
(
C ▽
q

)�
then Cq is a proper quantization (of type C) of a

coisotropic subgroup of G ;

3. if Iq =
(
I !
q

)g
then Iq is a proper quantization (of type I) of a

coisotropic subgroup of G ;

4. if Cq =
(
C �
q

)▽
then Cq is a proper quantization (of type C) of a

coisotropic subgroup of G .

(c) Since the whole construction is independent of the existence of real struc-
tures all the above claims hold true in the real framework as well.

Next result reads as a converse of the previous one, holding for Drinfeld maps
applied to strict quantizations:

Theorem 5.11.

(a) if Iq is a strict quantization of a coisotropic subgroup of G then one has

Iq =
(
I g
q

)!
;

(b) if Cq is a strict quantization of a coisotropic subgroup of G then one has

Cq =
(
C ▽
q

)�
;

(c) if Iq is a strict quantization of a coisotropic subgroup of G then one has

Iq =
(
I !
q

)g
;

(d) if Cq is a strict quantization of a coisotropic subgroup of G then one has

Cq =
(
C �
q

)▽
;

(e) The above claims hold true in the real framework as well.
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Proof. (a) Let Iq be a strict quantization; by Proposition 5.10(1), it is enough

to prove Iq ⊇
(
I g
q

)!
. For this we apply the argument used in [12], Proposition

4.3, to prove that Fq ⊇
(
Fq

∨
)′
.

We denote by L the closed, coisotropic, connected subgroup of G∗ such that
I g
q = Iq(L) , as in Proposition 5.1, and with l its Lie algebra.

Let y′ ∈
(
I g
q

)!
. Then there is n ∈ N and y∨ ∈ I g

q \ (q − 1) I g
q such that

y′ = (q − 1)
n
y∨ . As we have seen strictness of Iq implies strictness of I g

q

and therefore y∨ 6∈ (q − 1)Fq
∨ , and so for y∨ := y∨ mod (q − 1)Fq

∨ we have

y∨ 6= 0 ∈ Fq∨
∣∣∣
q=1

= U
(
g∗
)
.

As Fq
∨ is a quantization of U

(
g∗
)
, we can pick an ordered basis {bλ}λ∈Λ of

g∗, and a subset
{
x∨λ
}
λ∈Λ

of (q − 1)
−1
JFq so that x∨λ mod (q − 1)Fq

∨ = bλ

for all λ ∈ Λ ; therefore x∨λ = (q − 1)
−1
xλ for some xλ ∈ JFq , for all λ (like in

the proof of [12] Proposition 4.3). In addition, we choose now the basis and its
lift so that a subset {bθ}θ∈Θ (for some suitable Θ ⊆ Λ ) is a basis of l , and,

correspondingly,
{
x∨θ
}
θ∈Θ

⊆ I g
q . Since y∨ 6= 0 ∈ Fq

∨
∣∣
q=1

= U
(
g∗
)
, by the

Poincaré-Birkhoff-Witt theorem there is a non-zero polynomial P
(
{bθ}θ∈Θ

)
in

the bθ’s such that y∨ = P
(
{bθ}θ∈Θ

)
, hence

y∨ − P
({
x∨θ
}
θ∈Θ

)
∈ I g

q

⋂
(q − 1)Fq

∨ = (q − 1) I g
q .

This implies y∨ = P
({
x∨θ
}
θ∈Θ

)
+ (q − 1)

ν
y∨1 for some ν ∈ N+ where y∨1 ∈

I g
q \ (q − 1) I g

q .
One can see, like in [9], Lemma 4.12, that the polynomial P has degree not
greater than n . Thus y′ = (q−1)ny∨ = (q−1)nP

({
x∨θ
}
θ∈Θ

)
+ (q−1)n+νy∨1 ,

and

(q−1)nP
({
x∨θ
}
θ∈Θ

)
= (q−1)nP

({
(q−1)−1 xθ

}
θ∈Θ

)
∈ Iq

by a degree argument. But now, Proposition 5.10 gives Iq ⊆
(
I g
q

)!
. Then

y′1 := y′−(q−1)nP
({
x∨µ
}
θ∈Θ

)
∈
(
I g
q

)!
and y′1 = (q−1)n+νy∨1 = (q−1)n1y∨1

where n1 := n + ν > n, and y∨1 ∈ I g
q \ (q − 1) I g

q . We can then repeat the
construction, with y′1 instead of y′, n1 instead of n, etc.: iterating, we find an in-
creasing sequence of numbers

{
ns
}
s∈N

(with n0 := n) and a sequence of polyno-

mials
{
Ps
(
{Xθ}θ∈Θ

)}
s∈N

(again P0 := P ) such that the degree of Ps
(
{Xθ}θ∈Θ

)

is at most ns, and the formal identity y′ =
∑

s∈N (q − 1)nsPs
({
x∨θ
}
θ∈Θ

)
holds.

Now set In :=
∑n

k=1 (q − 1)
n−k Iqk (for all n ∈ N), and let Îq be the topological

completion of Iq with respect to the filtration provided by the In’s. Then, by
construction, (q−1)nsPs

({
x∨θ
}
θ∈Θ

)
∈ In for all s∈N . This yields

∑
s∈N

(q−1)nsPs
({
x∨θ
}
θ∈Θ

)
∈ Îq and y′ =

∑
s∈N

(q−1)nsPs
({
x∨θ
}
θ∈Θ

)
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where the last is an identity in Îq . Thus y′ ∈
(
I g
q

)!⋂ Îq . Again with the

same arguments as in [12], we see that Iq
⋂
(q−1)ℓ Îq = (q−1)ℓ Iq for any

ℓ ∈ N . This together with y′ ∈
(
I g
q

)!⋂ Îq give y′ = (q − 1)
−m

η for some
m ∈ N and η ∈ Iq ; thus

η = (q−1)m y′ ∈ Iq
⋂
(q−1)m Îq = (q−1)m Iq ,

whence y′ ∈ Iq, q.e.d.
(b) Assume that Cq is a strict quantization; by Proposition 5.10(2), it is

enough to prove Cq ⊇
(
C ▽
q

)�
. To do that, we resume the argument used in [12],

Proposition 4.3, to show that Fq ⊇
(
Fq

∨
)′
.

We denote by L the closed, coisotropic, connected subgroup of G∗ such that
C ▽
q = Cq(L) and with l its Lie algebra.

Let c′ ∈
(
C ▽
q

)�
. Then there exist n ∈ N and c∨ ∈ C ▽

q \ (q − 1) C▽q such that
c′ = (q − 1)nc∨. Note that strictness of Cq implies strictness of C ▽

q ; hence

c∨ 6∈ (q − 1)Fq
∨, so that for c∨ := c∨ mod (q − 1)Fq

∨ we have c∨ 6= 0 ∈
Fq

∨
∣∣
q=1

= U
(
g∗
)
. Moreover, c∨ ∈ C ▽

q

∣∣
q=1

= C(L) = U(l) ⊆ U
(
g∗
)
.

Since Fq
∨ is a quantization of U

(
g∗
)
, we can fix an ordered basis {bλ}λ∈Λ of

g∗ , and a subset
{
x∨λ
}
λ∈Λ

of (q − 1)
−1
JFq such that x∨λ mod (q − 1)Fq

∨ = bλ

for all λ ∈ Λ; so x∨λ = (q − 1)−1xλ for some xλ ∈ JFq , for all λ (as in the proof
of [12] Proposition 4.3). We can choose both the basis and its lift so that a
subset {bµ}µ∈M is a basis of l (hereM ⊆ Λ), and, correspondingly,

{
x∨µ
}
µ∈M

⊆
(q−1)−1

JFq

⋂ C ▽
q . Since c∨ 6= 0 ∈ Fq∨

∣∣∣
q=1

= U
(
g∗
)
, by the Poincaré-Birkhoff-

Witt theorem there exists a non-zero polynomial P
(
{bµ}µ∈M

)
in variables bµ’s

such that c∨ = P
(
{bµ}µ∈M

)
, hence:

c∨ − P
({
x∨µ
}
µ∈M

)
∈ C ▽

q

⋂
(q − 1)Fq

∨ = (q − 1) C ▽
q .

Therefore, c∨ = P
({
x∨µ
}
µ∈M

)
+ (q − 1)ν c∨1 for some ν ∈ N+ where c∨1 ∈

C ▽
q \ (q − 1) C ▽

q .
Now, we can see — like in [9], Lemma 4.12 — that the degree of P is not
greater than n . Then

c′ = (q − 1)
n
c∨ = (q − 1)

n
P
({
x∨µ
}
µ∈M

)
+ (q − 1)

n+ν
c∨1

with (q − 1)nP
({
x∨µ
}
µ∈M

)
= (q − 1)nP

({
(q − 1)−1 xµ

}
µ∈M

)
∈ Cq because P

has degree bounded (from above) by n. As Cq ⊆
(
C ▽
q

)�
, by Proposition 5.10,

we get

c′1 := c′−(q−1)nP
({
x∨µ
}
µ∈M

)
∈
(
C ▽
q

)�
and c′1 = (q−1)n+νc∨1 = (q−1)n1c∨1

with n1 := n + ν > n, and c∨1 ∈ C ▽
q \ (q − 1) C ▽

q . We can repeat this con-
struction with c′1 in place of c′, n1 in place of n, etc.. Iterating, we get an
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increasing sequence of numbers
{
ns
}
s∈N

(n0 := n ) and a sequence of polyno-

mials
{
Ps
(
{Xµ}µ∈M

)}
s∈N

(P0 :=P ) such that the degree of Ps
(
{Xµ}µ∈M

)
is

at most ns, and c
′ =

∑
s∈N (q − 1)

nsPs
({
x∨µ
}
µ∈M

)
.

Consider

ICq := Ker
(
Cq

ǫ−։ C
[
q, q−1

] ev1−։ C
)
= Ker

(
Cq

ev1−։ Cq
/
(q − 1) Cq

ǭ−։ C
)

By construction, we have (q − 1)nsPs
({
x∨µ
}
µ∈M

)
∈ ICq

ns for all s ∈ N ;

in turn, this means that
∑

s∈N (q − 1)
nsPs

({
x∨µ
}
µ∈M

)
∈ Ĉq , the lat-

ter being the ICq–adic completion of Cq , and the formal expression c′ =
∑

s∈N (q − 1)
nsPs

({
x∨µ
}
µ∈M

)
is an identity in Ĉq : therefore c′ ∈

(
C ▽
q

)�⋂ Ĉq.
Acting as in [12], again, we see that Cq

⋂
(q − 1)

ℓ Ĉq = (q − 1)
ℓ Cq for all ℓ ∈ N.

Getting back to c′ ∈
(
C ▽
q

)�⋂ Ĉq, we have c′ = (q − 1)
−m

κ for some m ∈ N and

κ ∈ Cq ; thus κ = (q−1)m c′ ∈ Cq
⋂
(q−1)m Ĉq = (q−1)m Cq, whence c′ ∈ Cq,

q.e.d.
(c) Let Iq be a strict quantization: by Proposition 5.10(2) it is enough to

prove Iq ⊆
(
I !
q

)g
; so given y ∈ Iq, we must prove that y ∈

(
I !
q

)g
. Recall

that Iq ⊆ Uq =
(
Uq

′
)∨

, the last identity following from Theorem 4.1. By
construction,

(
Uq

′
)∨

=
∑
n≥0 (q − 1)

−n
I n
Uq

′ , IUq
′ :=

(
Uq

′
)+

+ (q − 1)Uq
′

so for y ∈ Iq ⊆ Uq =
(
Uq

′
)∨

there exists N ∈ N such that

y+ := (q − 1)
N
y ∈ I NUq

′ ⊆ Uq
′ (5.8)

Strictness of Iq , i.e. Iq
⋂
(q − 1)Uq = (q − 1)Iq , implies

( n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

)⋂ (
(q−1)n Uq⊗n

)
=

= (q−1)n
( n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

)

for all n ∈ N+ ; then, by the very definitions, the latter yields I !
q = Iq

⋂
Uq

′ .

If in (5.8) N = 1, then y+ = y ∈ Uq′, thus y ∈ Iq
⋂
Uq

′ = I !
q , q.e.d. If N > 1

instead, then formula (5.8), along with Iq ĖUq , yields

δn(y+) ∈
(
(q − 1)

N ·
n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s)

)⋂(
(q − 1)

n
Uq

⊗n
)

(5.9)

for all n ∈ N+ , and since Iq is strict, from (5.9) one gets

δn(y+) ∈ (q−1)n
n∑
s=1

Uq
⊗(s−1) ⊗ Iq ⊗ Uq⊗(n−s) ∀n ∈ N
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which means y+ ∈ I !
q . Eventually, we have found y+ ∈ I !

q

⋂
I N
Uq

′ .

Now look at II !
q
:= IUq

′

⋂
I !
q . Using the fact that Uq

′ = Uq(g)
′
= F

[
G∗
]
—

from Theorem 4.1 — and I !
q = Iq(K)

!
= Iq(L) for some coisotropic subgroup

L in G∗ — as granted by Proposition 5.5 — and still taking into account
strictness, by an easy geometrical argument (via specialization at q = 1) we
see that

I n
Uq

′

⋂
I !
q ≡ I n

I !
q

mod (q − 1)Uq
′ ∀n ∈ N+ .

This, together with Iq
⋂
(q − 1)Uq = (q − 1)Iq , yields also

I nUq
′

⋂
I !
q ≡ I n

I !
q

mod (q − 1)I !
q ∀n ∈ N+

Finally, by suitable, iterated cancelation of factors (q − 1), which is possible
because of the condition Iq

⋂
(q − 1)Uq = (q − 1)Iq , we eventually obtain

I n
Uq

′

⋂
I !
q ≡ I n

I !
q

mod (q − 1)n I !
q ∀n ∈ N+ .

To sum up, we have y+ ∈ I NUq
′

⋂
I !
q = I N

I !
q

; therefore, by definitions,

y = (q − 1)
−N

y+ ∈ (q − 1)
−N

I N
I !
q
⊆
(
I !
q

)g
.

(d) Let Cq be a strict quantization: by Proposition 5.10(2) it is enough to prove

Cq ⊆
(
C �
q

)▽
. We follow the same arguments used for claim (c). Let c ∈ Cq, since

Cq ⊆ Uq =
(
Uq

′
)∨

— from Theorem 4.1 — and
(
Uq

′
)∨

=
∑
n≥0 (q − 1)

−n
I n
Uq

′ ,

(notation as above) for c ∈ Cq ⊆ Uq =
(
Uq

′
)∨

there exists N ∈ N such that

c+ := (q − 1)N c ∈ I N
Uq

′ ⊆ Uq
′ .

Now, strictness of Cq implies

(
Uq

⊗(n−1) ⊗ Cq
)⋂

(q − 1)
n
Uq

⊗n = (q − 1)
n (
Uq

⊗(n−1) ⊗ Cq
)

∀ n ∈ N+

hence C �
q = Cq

⋂
Uq

′ . If the above N is 1, then c+ = c ∈ Uq
′ , thus c ∈

Cq
⋂
Uq

′ = C �
q , q.e.d. If instead N > 1 , then

δn(c+) ∈
(
(q − 1)

N · Uq⊗n−1 ⊗ Cq
)⋂ (

(q − 1)
n
Uq

⊗n
)

∀n ∈ N+

and, since Cq is strict, δn(c+) ∈ (q − 1)
n ·Uq⊗n−1⊗ Cq for all n ∈ N+ , which

means c+ ∈ C �
q . Thus, eventually, we have c+ ∈ C �

q

⋂
I N
Uq

′ .

Let us look, now, at IC �
q

:= IUq
′

⋂
C �
q . Again in force of strictness of Cq , a

geometrical argument (at q = 1) as before leads us to

I n
Uq

′

⋂
C �
q ≡ I n

C �
q

mod (q − 1)n C �
q , ∀ n ∈ N+

from which we conclude that c+ ∈ I NUq
′

⋂
C �
q = I N

C �
q

. Therefore, by the very

definitions,

c = (q − 1)
−N

c+ ∈ (q − 1)
−N

I N
C �
q
⊆
(
C �
q

)▽
, q.e.d.
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(e) This is a direct consequence of claims from (a) through (d). (f) Once
again, this is true because the whole construction is independent of the exis-
tence of real structures.

It is now time to clarify how the coisotropic subgroup L of G∗ is linked to the
coisotropic subgroup K of G . We will give this relation in the weak quantiza-
tion case first, and show how it improves under stronger hypothesis.

Theorem 5.12. Let K be a subgroup of G, and let Iq(K) , Cq(K) , Iq(K)
and Cq(K) be weak quantizations as in Definition 3.6. Then (with notation of
Proposition 2.2)

(a) Iq(K)
g
= Iq

(
K〈⊥〉

)
;

(b) Cq(K)
▽
= Cq

(
K〈⊥〉

)
;

(c) if Iq(K) =
(
Iq(K)

! )g
, then Iq(K)

!
= Iq

(
K〈⊥〉

)
; in particular, this

holds if the quantization Iq(K) is strict;

(d) if Cq =
(
Cq(K)�

)▽
, then Cq(K)� = Cq

(
K〈⊥〉

)
; in particular, this holds

if the quantization Cq(K) is strict;

(e) claims (a–d) hold as well in the framework of real quantum subgroups.

Proof. (a) By Proposition 5.1 we already have Iq(K)
g
= Iq(L) for some sub-

group L ⊆ G∗. In order to show that L = K〈⊥〉, we will proceed much like in

the proof of Fq
∨
/
(q − 1)Fq

∨ ∼= U(g∗), as given in [12], Theorem 4.7.

Let us fix a subset {j1, . . . , jn} of J adapted to K as in the proof of Proposition

5.1. Let J∨ := (q−1)−1J ⊂ Fq
∨ and j ∨ := (q − 1)−1j for all j ∈ J . From the

discussion in that proof, we argue also that
{
(q − 1)

−|e|
j e mod (q−1)Fq∨

∣∣ e ∈
Nn
}
, where j e =

∏n
s=1 j

e(i)
s , is a C–basis of F1

∨, and
{
j ∨
1 , . . . , j

∨
n

}
is a C–basis

of t = J∨ mod (q − 1)Fq
∨.

Now, jµ jν − jν jµ ∈ (q−1)J (for µ, ν ∈ {1, . . . , n}) implies that:

jµ jν − jν jµ = (q − 1)
∑n

s=1 cs js + (q − 1)
2
γ1 + (q − 1) γ2

for some cs ∈ C
[
q, q−1

]
, γ1 ∈ J and γ2 ∈ J2. Therefore

[
j∨µ , j

∨
ν

]
:= j∨µ j

∨
ν − j∨ν j∨µ =

∑n
s=1 cs j

∨
s + γ1 + (q−1)γ∨2 ≡

≡ ∑n
s=1 cs j

∨
s mod (q−1)Fq∨

(where we set γ∨2 := (q − 1)−2γ2 ∈ (q − 1)−2(J∨
)2 ⊆ Fq

∨ ) thus the subspace
t := J∨ mod (q−1)Fq∨ is a Lie subalgebra of F1

∨ . But then it should be F1
∨ ∼=

U(t) as Hopf algebras, by the above description of F1
∨ and PBW theorem.

Now for the second step. The specialization map π∨ : Fq
∨ −։ F1

∨ = U(t)

actually restricts to η : J∨ ։ t = J∨
/
J∨
⋂(

(q−1)Fq∨
)
= J∨

/(
J + J∨J

)
,
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because J∨
⋂(

(q−1)Fq∨
)
= J∨

⋂
(q−1)−1

IFq

2 = J + J∨J . Also, multiplica-

tion by (q−1)−1
yields a C

[
q, q−1

]
–module isomorphism µ : J

∼=−֒−։ J∨. Let

ρ : me −։ me
/
me

2 = g∗ be the natural projection map, and ν : g∗ −֒→ me
a section of ρ. The specialization map π : Fq −։ F1 restricts to a map
π′ : J −−։ J

/
(J
⋂
(q− 1)Fq) = me. Let’s fix a section γ : me −֒→ J of π′ and

consider the composition σ := η ◦ µ ◦ γ ◦ ν : g∗ −→ t: this is a well-defined Lie
bialgebra morphism, independent of the choice of ν and γ.
In the proof of Proposition 5.1 we made a particular choice for the subset
{j1, . . . , jn}. As a consequence, the above analysis to prove that σ : g∗ ∼= t
shows also that the left ideal I1g := Iqg mod (q−1)Fq∨ of U(t) is generated
by

η
(
Iqg
)
= (η ◦ µ)

(
Iq
)
= (σ ◦ ρ ◦ π)

(
Iq
)
= σ

(
ρ(I )

)
= σ

(
k⊥
)
.

So I1g = U(g∗) · k⊥ = U(g∗) · 〈k⊥〉 = I
(
K〈⊥〉

)
— where we are identifying g∗

with its image via σ—which eventually means l = 〈k⊥〉. (b) By Proposition 5.3
we have Cq(K)

▽
= Cq(L) for some coisotropic subgroup L in G∗. We must prove

that L = K〈⊥〉. Once again, we mimic the procedure of the proof of Proposition
5.3, and we fix a subset

{
j1, . . . , jn

}
of J as in the proof of such Proposition.

Then, tracking the analysis we did there to prove that σ : g∗ ∼= t, we see also
that the unital subalgebra C1▽ := Cq▽ mod (q−1)Fq∨ of U

(
g∗
)
is generated by

η
(
Cq▽
)
= (µ ◦ η)

(
Cq
)
= (σ ◦ ρ ◦ π)

(
Cq
)
= σ

(
ρ(C )

)
= σ

(
k⊥
)
. Thus C1▽ is the

subalgebra of U
(
g∗
)
generated by k⊥, hence C1▽ =

〈
k⊥
〉
Alg

= U
(〈
k⊥
〉
Lie

)
=

U
(
k〈⊥〉

)
= C

(
K〈⊥〉

)
, which means l = 〈k⊥〉 , q.e.d. (c) Thanks to Proposition

5.5 we already know that Iq(K)
!
= Iq(L) for some coisotropic subgroup L in

G∗. Again, we must prove that L = K〈⊥〉. Note that we can assume K to be
connected, as its relationship with Iq(K) passes through k alone; thus in the
end we simply have to prove that l := Lie (L) = k〈⊥〉 = k⊥, taking into account
that k〈⊥〉 = k⊥ because k is coisotropic, by a remark following Proposition 5.10.

By assumption Iq(K) =
(
Iq(K)

! )g
; this and (a) together give

Iq(K) =
(
Iq(K)

! )g
= Iq(L)g = Iq

(
L〈⊥〉

)
= Iq

(
L⊥
)

where L〈⊥〉 = L⊥ because L is coisotropic as well: at q = 1 this implies
k = l⊥ , q.e.d. (d) We must prove that L = K〈⊥〉: as above we can assume K
to be connected, so we only have to prove that l := Lie (L) = k〈⊥〉 = k⊥ (as k
is coisotropic, by Proposition 5.11.

By assumption Cq =
(
Cq(K)

� )▽
; this along with (c) gives

Cq(K) =
(
Cq(K)�

)▽
= Cq(L)▽ = Cq

(
L〈⊥〉

)
= Cq

(
L⊥
)

with L〈⊥〉 = L⊥ since L is coisotropic too: specializing at q = 1, this even-
tually yields k = l⊥ . (e) This is clear again since all arguments pass through
unchanged in the real setup.
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Corollary 5.13. Let Iq(K) and Cq(K) be weak quantizations of a (not nec-
essarily) coisotropic subgroup K of G, of type I and C respectively. Then, with
notation of Definition 2.1, we have

(
Iq(K)

g)!
= Iq

( ◦
K
)
,

(
Cq(K)

▽)�
= Cq

( ◦
K
)
.

Proof. Theorem 5.12(a) gives Iq(K)
g
= Iq

(
K〈⊥〉

)
, and Proposition 5.10 yields

(
Iq
(
K〈⊥〉

)!)g
=
((
Iq(K)

g)!)g
= Iq(K)

g
= Iq

(
K〈⊥〉

)

so that
(
Iq
(
K〈⊥〉

)!)g
= Iq

(
K〈⊥〉

)
. Then Theorem 5.12 gives

Iq
(
K〈⊥〉

)!
= Iq

(
(K〈⊥〉)〈⊥〉

)
= Iq

( ◦
K
)

by Proposition 2.2. Therefore
(
Iq(K)

g)!
= Iq

(
K〈⊥〉

)!
= Iq

( ◦
K
)
as claimed.

Similarly, Theorem 5.12(b) gives Cq(K)
▽
= Cq

(
K〈⊥〉

)
, and the first remark

after Proposition 5.10 yields

(
Cq
(
K〈⊥〉

)� )▽
=
((
Cq(K)▽

)� )▽
= Cq(K)▽ = Cq

(
K〈⊥〉

)

so that
(
Cq
(
K〈⊥〉

)� )▽
= Cq

(
K〈⊥〉

)
. Then again by Theorem 5.12(d) we get

Cq
(
K〈⊥〉

)�
= Cq

(
(K〈⊥〉)〈⊥〉

)
= Cq

( ◦
K
)

still by Proposition 2.2. Thus
(
Cq(K)

▽)�
= Cq

(
K〈⊥〉

)�
= Cq

( ◦
K
)
as claimed.

Remark 5.14. One might guess that the analogue to this Corollary holds true
for weak quantizations of type I and C as well: actually, we have no clue about
that, in either sense.

We now consider the “compatibility” among different Drinfeld-like maps acting
on quantizations of different types over a single pair (subgroup, space). Indeed,
we show that Drinfeld’s functors preserve the subgroup-space correspondence
— Proposition 5.15 — and the orthogonality correspondence — Proposition
5.17 — (if either occurs at the beginning) between different quantizations as
mentioned.

Proposition 5.15. Let K be a closed subgroup of G, and let Ψ and Φ be the
map mentioned in §2.1. Then the following holds:
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(a) Let Cq and Iq be as in Section 3. If Ψ(Cq) = Iq , then Ψ
(
Cq▽
)
= Iqg .

(b) Let Iq and Cq be as in Section 3. If Φ(Iq) = Cq , then Φ
(
Iqg
)
= Cq▽ .

(c) Let Cq and Iq be as in Section 3. If Ψ(Cq) = Iq , then Ψ
(
Cq

�
)
⊆ Iq

! .

(d) Let Iq and Cq be as in Section 3. If Φ(Iq) = Cq , then Φ
(
Iq

!
)
= Cq

� .

Proof. Claims (a) and (c) both follow trivially from definitions.

As to claim (b), let η ∈ Cq+ = Φ(Iq)+ , so that ∆(η) ∈ η ⊗ 1 + Fq ⊗ Iq . Then
η∨ := (q − 1)

−1
η enjoys

∆
(
η∨
)
∈ η∨⊗ 1 + Fq ⊗ (q − 1)

−1 Iq ⊆ η∨⊗ 1 + Fq
∨⊗ Iqg

whence η∨∈
(
Fq

∨
)coIq

g

=: Φ
(
Iqg
)
. Since Cq▽ is generated (as a subalgebra) by

(q − 1)
−1 Cq+ , we conclude that Cq▽ ⊆ Φ

(
Iqg
)
.

Conversely, let ϕ ∈ Φ
(
Iqg
)
. Then ∆(ϕ) ∈ ϕ⊗ 1+Fq

∨⊗Iqg , and there exists
n ∈ N such that ϕ+ := (q − 1)

n
ϕ ∈ Iq , so that ∆(ϕ+) ∈ Fq ⊗ Iq + Iq ⊗ Fq

(since Iq ĖFq ). Then

∆(ϕ+) ∈
(
ϕ+ ⊗ 1 + (q − 1)

n
Fq

∨⊗ Iqg
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq
)

or equivalently

∆(ϕ+) − ϕ+ ⊗ 1 ∈
(
(q − 1)

n
Fq

∨⊗ Iqg
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq
)

(5.10)

Now, the description of Iqg given in the proof of Proposition 5.1 implies that

(
(q − 1)

n
Fq

∨⊗ Iqg
)⋂ (

Fq ⊗ Iq + Iq ⊗ Fq
)

= Fq ⊗ Iq

this together with (5.10) yields ∆(ϕ+) ∈ ϕ+⊗1+Fq⊗Iq , hence ϕ+ ∈ FqcoIq =:
Φ(Iq) = Cq and so ϕ ∈ (q − 1)n Cq

⋂
Fq

∨ . On the other hand, the description

of Cq▽ in the proof of Proposition 5.3 implies that (q − 1)−n Cq
⋂
Fq

∨ ⊆ Cq▽ ,
hence we get ϕ ∈ Cq▽ , q.e.d.

We finish with claim (d). For the inclusion Φ
(
Iq

!
)
⊇ Cq

� , let κ ∈ Cq
� . Since

Φ
(
Iq

!
)
contains the scalars, we may assume that κ ∈ Ker (ǫ), thus ∆(κ) =

κ⊗1+1⊗κ+δ2(κ) . By Proposition 5.7, we have Cq
�Ėℓ Uq

′ ; thus ∆(κ)−κ⊗1 =
1⊗ κ+ δ2(κ) ∈ Uq′ ⊗ Cq

� , and more precisely

∆(κ)− κ⊗ 1 = 1⊗ κ+ δ2(κ) ∈ Uq′ ⊗
(
Cq

�
)+

.

Since Cq
� ⊆ Ψ

(
Cq

�
)
⊆ Iq

! , by claim (c), we get ∆(κ) − κ ⊗ 1 ∈ Uq
′ ⊗ Iq

! ,

so κ ∈
(
Uq

′
)coIq

!

=: Φ
(
Iq

!
)
. Thus Cq

� ⊆ Φ
(
Iq

!
)
. For the converse inclusion,
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let η ∈ Φ
(
Iq

!
)
; again, we can assume η ∈ Ker (ǫ) too. As Iq

! ⊆ Iq , we get

η ∈ Φ
(
Iq

!
)
⊆ Φ

(
Iq
)
= Cq . Then δn(η) ∈ Uq⊗n⊗ Cq for all n ∈ N+ , so

δn(η) ∈ (q−1)n
(
n−1∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq⊗(n−s)

)⋂ (
Uq

⊗(n−1)⊗ Cq
)
⊆

⊆ (q−1)n Uq⊗(n−1)⊗ Cq

hence δn(η) ∈ (q−1)n Uq⊗(n−1)⊗ Cq (n ∈ N+ ) and η ∈ Cq , which means that

η ∈ Cq
� .

Remark 5.16. The inclusion Ψ
(
Cq

�
)
⊆ Iq

! of Proposition 5.15(c) is not an
identity in general — indeed, counterexamples do exist.

Finally, we look at what happens when our Drinfeld-like recipes are applied to
a pair of quantizations associated with a same subgroup / homogeneous spaces
with respect to some fixed double quantization (in the sense of Section 3). The
result reads as follows:

Proposition 5.17. Let
(
Fq[G] , Uq(g)

)
be a double quantization of (G, g) .

Then:

(a) Let Cq and Iq be weak quantizations and assume that Cq = Iq
⊥ and

Iq = Cq⊥ . Then Iq
! =

(
Cq▽
)⊥

and Cq▽ ⊆
(
Iq

!
)⊥

. If, in addition, either

one of Cq or Iq is strict, then also Cq▽ =
(
Iq

!
)⊥

.

(b) Let Cq and Iq be weak quantizations and assume that Iq = Cq
⊥ and

Cq = Iq⊥ . Then Cq
� =

(
Iqg
)⊥

and Iqg ⊆
(
Cq

�
)⊥

. If, in addition,

either one of Cq or Iq is strict, then also Iqg =
(
Cq

�
)⊥

.

Proof. Both in claim (a) and in claim (b) the orthogonality relations between Cq
and Iq and between Cq and Iq are considered w.r.t. the pairing between Fq[G]
and Uq(g), and the subsequent orthogonality relations are meant w.r.t. the

pairing between Fq[G]
∨
and Uq(g)

′
. Indeed, by Theorem 4.1,

(
Uq(g)

′
, Fq[G]

∨
)

is a double quantization of
(
G∗, g∗

)
. (a) First, ǫ(Iq) = 0 because Iq is a

coideal. Then x = δ1(x) ∈ (q − 1)Uq for all x ∈ Iq
! , hence Iq

! ⊆ (q − 1)Uq .
Thus we have 〈

Cq, Iq!
〉
⊆ (q − 1)C

[
q, q−1

]
.

Now let J = JFq be the ideal of Fq, and take ci ∈ Cq ∩ J (i = 1, . . . , n) ; then

〈ci, 1〉 = ǫ(ci) = 0 (i = 1, . . . , n) . Given y ∈ Iq
! , look at

〈
n∏
i=1

ci , y

〉
=

〈
n
⊗
i=1

ci ,∆
n(y)

〉
=

〈
n
⊗
i=1

ci ,
∑

Ψ⊆{1,...,n}

δΨ(y)

〉
=

=
∑

Ψ⊆{1,...,n}

〈
n
⊗
i=1

ci , δΨ(y)

〉
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Consider the summands in the last term of the above formula. Let |Ψ| = t
(t ≤ n) , then

〈 n
⊗
i=1

ci , δΨ(y)
〉

=
〈
⊗
i∈Ψ

ci , δt(y)
〉
· ∏
j 6∈Ψ

〈
cj , 1

〉

by definition of δΨ . Thanks to the previous analysis, we have
∏
j 6∈Ψ〈cj , 1〉 = 0

unless Ψ = {1, . . . , n} , and in the latter case

δΨ(y) = δn(y) ∈ (q − 1)
n

n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq⊗(n−s) .

The outcome is
〈

n
⊗
i=1

ci , y

〉
=

〈
n
⊗
i=1

ci , δn(y)

〉
∈

∈
〈

n
⊗
i=1

ci , (q − 1)
n
n∑
s=1

Uq
⊗(s−1)⊗ Iq ⊗ Uq⊗(n−s)

〉
= 0

because y ∈ Iq
! and Iq = Cq⊥ by assumption. Therefore one has〈

(q−1)−n
(
Cq
⋂
J
)n
, Iq

!
〉

= 0 , for all n ∈ N+ . In addition,
〈
1 , Iq

!
〉

=

ǫ
(
Iq

!
)

= 0 . The outcome is
〈
Cq▽, Iq!

〉
= 0 , whence Iq

! ⊆
(
Cq▽
)⊥

and

Cq▽ ⊆
(
Iq

!
)⊥

.

Now we prove also
(
Cq▽
)⊥ ⊆ Iq

! . Notice that Cq▽ ⊇ Cq , whence
(
Cq▽
)⊥ ⊆

Cq⊥ = Iq ; therefore
(
Cq▽
)⊥ ⊆ Iq . Pick now η ∈

(
Cq▽
)⊥

(inside Uq
′). Since

η ∈ Uq′ , for all n ∈ N+ we have δn(η) ∈ (q − 1)
n
Uq

⊗n , and from η ∈
(
Cq▽
)⊥

we get also that η+ := (q − 1)−nδn(η) enjoys
〈(
Cq
⋂
JFq

)⊗n
, η+

〉
= 0 —

acting as before — so that

η+ ∈
((
Cq
⋂
JFq

)⊗n)⊥
=

∑
r+s=n−1

Uq
⊗r ⊗

(
Cq
⋂
JFq

)⊥ ⊗ Uq⊗s .

Moreover δn(η) ∈ JUq

⊗n , hence δn(η) ∈
(
(q−1)nUq⊗n

)⋂
JUq

⊗n =

(q−1)nJUq

⊗n , so

η+ ∈
((
Cq
⋂
JFq

)⊗n)⊥⋂
JUq

⊗n =

=

( ∑
r+s=n−1

Uq
⊗r ⊗

(
Cq
⋂
JFq

)⊥ ⊗ Uq⊗s
)⋂

JUq

⊗n =

=
∑

r+s=n−1
JUq

⊗r ⊗
((
Cq
⋂
JFq

)⊥⋂
JUq

)
⊗ JUq

⊗s .

Since
(
Cq
⋂
JFq

)⊥⋂
JUq = Cq⊥

⋂
JUq = Iq

⋂
JUq = Iq , we have

η+ ∈
∑

r+s=n−1

JUq

⊗r⊗ Iq ⊗ JUq

⊗s
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whence

δn(η) ∈ (q−1)n ∑
r+s=n−1

Uq
⊗r⊗ Iq ⊗ Uq⊗s ∀ n ∈ N+ .

Being, in addition, η ∈ Iq , for we proved that
(
Cq▽
)⊥ ⊆ Iq , we get η ∈ Iq

! .

Therefore
(
Cq▽
)⊥ ⊆ Iq

! , q.e.d.

Finally, assume that Cq or Iq are strict quantizations. Then we must still prove

that Cq▽ =
(
I !
q

)⊥
. Since Cq = Iq

⊥ and Iq = Cq⊥ , it is easy to check that Cq
is strict if and only if Iq is; therefore, we can assume that Iq is strict.

The assumptions and Theorem 5.11 (b) give Iq =
(
I !
q

)g
; moreover, Iq := Iq

!

is strict. Then we can apply the first part of claim (b) — which is proved, later
on, in a way independent of the present proof of claim (a) itself — and get(
Iqg
)⊥

=
(
Iq⊥
)�
. Therefore

Cq▽ =
(
Iq

⊥
)▽

=
(((

I !
q

)g)⊥ )▽
=
((
Iqg
)⊥)▽

=
((
Iq⊥
)� )▽

. (5.11)

Now, it is straightforward to prove that Iq strict implies that Iq⊥ is strict as

well. Then Proposition 5.11(d) ensures
((
Iq⊥
)� )▽

= Iq⊥ . This along with

(5.11) yields Cq▽ =
((
Iq⊥
)� )▽

= Iq⊥ =
(
I !
q

)⊥
, ending the proof of (a). (b)

With much the same arguments as for (a), we find as well that

〈
Iqg, Cq�

〉
∈
〈
J⊗(n−1)⊗ Iq , Uq⊗(n−1)⊗ Cq

〉
⊆
〈
Iq ,Cq

〉
= 0

because Iq = Cq
⊥ ; this means that

Iqg ⊆
(
Cq

�
)⊥

, Cq
� ⊆

(
Iqg
)⊥

. (5.12)

Let now κ ∈
(
Iqg
)⊥
q

(
⊆ Uq

′
)
. Since κ ∈ Uq

′ , we have δn(κ) ∈
(q − 1)nUq

⊗n for all n ∈ N ; moreover, from κ ∈
(
Iqg
)⊥

it follows that

κ+ := (q − 1)
−n
δn(κ) ∈ Uq⊗n enjoys

〈
J⊗(n−1) ⊗ Iq , κ+

〉
= 0 , so that

κ+ ∈
(
J⊗(n−1) ⊗ Iq

)⊥
=
∑

r+s=n−2 Uq
⊗r⊗J⊥⊗Uq⊗s⊗Uq + Uq

⊗(n−1)⊗Iq⊥ .

In addition, δn(κ) ∈ JUq

⊗n , where JUq := Ker
(
ǫ : Uq −→ C

[
q, q−1

])
; therefore

δn(κ) ∈
(
(q − 1)

n
Uq

⊗n
)⋂

JUq

⊗n = (q − 1)
n
JUq

⊗n , which together with the
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above formula yields

κ+ ∈
(
J⊗(n−1) ⊗ Iq

)⊥⋂
JUq

⊗n =

=

( ∑
r+s=n−2

Uq
⊗r⊗J⊥⊗Uq⊗s⊗Uq

)⋂
JUq

⊗n +
(
Uq

⊗(n−1)⊗Iq⊥
)⋂

JUq

⊗n =

=
∑

r+s=n−2
JUq

⊗r⊗
(
J⊥⋂ JUq

)
⊗JUq

⊗s⊗JUq + JUq

⊗(n−1)⊗
(
Iq⊥

⋂
JUq

)
=

= JUq

⊗(n−1) ⊗
(
Iq⊥

⋂
JUq

)
= JUq

⊗(n−1) ⊗
(
Cq
⋂
JUq

)
⊆ Uq

⊗(n−1) ⊗ Cq

where in the third equality we used the fact that J⊥
⋂
JUq = {0} . So κ+ ∈

Uq
⊗(n−1) ⊗ Cq , hence δn(κ) ∈ (q − 1)

n
Uq

⊗(n−1) ⊗ Cq for all n ∈ N+ : thus

κ ∈ Cq
� . Therefore

(
Iqg
)⊥ ⊆ Cq

� , which together with the right-hand side

inequality in (5.12) gives Cq
� =

(
Iqg
)⊥

.

In the end, suppose also that one between Cq and Iq is strict. As Iq = Cq
⊥

and Cq = Iq⊥ , one sees easily that Iq is strict if and only if Cq is; then we can

assume that Cq is strict. We want to show that Iqg =
(
Cq

�
)⊥

.

The assumptions and Theorem 5.11(d) give Cq =
(
C �
q

)▽
. Moreover, we have

that Cq is strict by Proposition 5.3(3) and Proposition 5.7 (3). Then we can

apply the first part of claim (a), thus getting
(
Cq▽
)⊥

=
(
Cq⊥
)!
. Therefore

Iqg =
(
Cq

⊥
)g

=
(((

C �
q

)▽)⊥ )g
=
((
Cq▽
)⊥)g

=
((
Cq⊥
)! )g

(5.13)

Now, one proves easily that Cq strict implies Cq⊥ strict. Then Theorem 5.11(c)

yields
((
Cq⊥
)! )g

= Cq⊥ . This and (5.13) give Iqg=
((
Cq⊥
)! )g

= Cq⊥=
(
Cq

�
)⊥

,

which eventually ends the proof of (b).

6 Examples

In this last section we will give some examples showing how our general con-
structions may be explicitly implemented. Some of the examples may look
rather singular, but our aim here is mainly to draw the reader’s attention on
how even badly behaved cases can produce reasonable results. It has to be
remarked that a wealth of new examples of coisotropic subgroups of Poisson
groups have been recently produced ([25]), to which our recipes could be inter-
estedly applied.

N.B.: for the last two examples — Subsections 6.2 and 6.3 — one can perform
the explicit computations (that we just sketch) using definitions, formulas and
notations as in [5], §6, and in [11], §7.
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6.1 Quantization of Stokes matrices as a GL ∗
n–space

As a first example, we mention the following. A well-known structure of Poisson
group, typically known as the standard one, is defined on SLn ; then one can
consider its (connected) dual Poisson group SL ∗

n , which in turn is a Poisson
group as well. The set of Stokes matrices — i.e. upper triangular, unipotent
matrices — of size n bears a natural structure of Poisson homogeneous space,
and even Poisson quotient, for SL ∗

n . In [5], Section 6, it was shown that one
can find an explicit quantization, of formal type, of this Poisson quotient by a
suitable application of the QDP procedure for formal quantizations developed
in that paper.
Now, let us look at the explicit presentation of the formal quantization U~(sln)
considered in [loc. cit.]. One sees easily that this can be turned into a presenta-
tion of a global quantization (of sln again), i.e. a QUEA Uq(sln) in the sense of
Section 3. Similarly, Drinfeld’s QDP (for quantum groups) applied to U~(sln)
provides a formal quantization F~[[SL

∗
n]] := U~(sln)

′ of the function algebra
over the formal group SL ∗

n ; but then the analogous functor for the global ver-
sion of QDP yields (cf. Theorem 4.1) a global quantization Fq[SL

∗
n] := Uq(sln)

′

of the function algebra over SL ∗
n . In a nutshell, Fq [SL

∗
n] is nothing but (a suit-

able renormalization of) an obvious C
[
q, q−1

]
–integral form of F~[[SL

∗
n]] .

Carrying further on this comparison, one can easily see that the whole analysis
performed in [5] can be converted into a similar analysis for the global context,
yielding parallel results; in particular, one ends up with a global quantization
— of type C, in the sense of Section 3 — of the space of Stokes matrices. More
in detail, this quantization is a strict one, as such is the quantum subobject
one starts with.
Since all this does not require more than a word by word translation, we refrain
from filling in details.

6.2 A parametrized family of real coisotropic subgroups

Coisotropic subgroups may come in families, in some cases inside the same con-
jugacy class (which is responsible for different Poisson homogeneous bivectors
on the same underlying manifold). An example in the real case was described
in detail in [2]. The setting is the one of standard Poisson SL2(R) , which con-
tains a two parameter family of 1– dimensional coisotropic subgroups described,
globally, by the right ideal and two-sided ideal

Iµ,ν :=
{
a− d+ 2 q

1
2µb , q νb+ c

}
· Fq
[
SL2(R)

]
(6.1)

where a, b, c, d are the usual matrix elements generating Fq
[
SL2(R)

]
, with ∗–

structure in which they are all real (thus q∗ = q−1 ) and µ, ν ∈ R . The corre-
sponding family of coisotropic subgroups of classical SL2(R) may be described
as

Kµ,ν :=

{(
d− 2µb b
−νb d

) ∣∣∣∣ b, d ∈ R , d2 + νb2 = 1

}
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(adapting our main text arguments to the case of right quantum coisotropic
subgroups, this is quite trivial and we will do it without further comments).
The corresponding SL2(R)–quantum homogeneous spaces have local descrip-
tion given as follows: Cµ,ν is the subalgebra generated by

z1 = q−
1
2 (ac+ νbd) + 2µbc , z2 = c2 + νd2 + 2µq−

1
2 cd ,

z3 = a2 + νb2 + 2µq−
1
2 ab .

(6.2)

Using commutation relations — see (12) in [3] — it is easily seen that Cµ,ν has
a linear basis given by

{
zp1z

q
2 , z

p
1z
r
3

∣∣ p, q, r ∈ N
}
.

Proposition 6.1. The subalgebra Cµ,ν is a right coideal of Fq
[
SL2(R)

]
and is

a strict quantization — of type C — of Kµ,ν .

Proof. The first statement is proven in [3]. As for the second we will first show
that zp1z

q
2 , z

p
1z
r
3 6∈ (q − 1)Fq

[
SL2(R)

]
for any p, q, r ∈ N . This may done by

considering their expression in terms of the usual basis
{
apbrcs , bhckdi

}
of

Fq
[
SL2(R)

]
. In fact we do not need a full expression of monomials zp1z

r
2 or

zp1z
r
3 in terms of this basis, which would lead to quite heavy computations. It

is enough to remark that, for example, since

zp1z
r
2 =

(
q−

1
2 ac+ b(νd+ 2µc)

)p (
c2 + (νd+ 2µq−

1
2 c)d

)r

we can get an element multiple of apcp+2r only from (ac) · · · · (ac) · c · · · · c ,
which is of the form qhapcp+2r 6∈ Fq

[
SL2(R)

]
. Since no other elements may

add up with this one, we have zp1z
r
2 6∈ (q− 1)Fq

[
SL2(R)

]
. A similar argument

works for zp1z
r
3 .

In a similar way we prove that any C
[
q, q−1

]
–linear combination of the zp1z

q
2 ’s

and the zs1z
r
3 ’s is in (q − 1)Fq

[
SL2(R)

]
if and only if all coefficients are in

(q − 1)C
[
q, q−1

]
. Therefore Cq is strict, q.e.d.

It makes therefore sense to compute C ▽
µ,ν ; to this end, we can resume a detailed

description of Uq(sl
∗
2 ) := Fq

[
SL2(R)

]∨
— apart for the real structure, which

is not really relevant here — from [11], §7.7. From our PBW-type basis we

have that C ▽
µ,ν is the subalgebra of Fq

[
SL2(R)

]∨
generated by the elements

ζi :=
1
q−1

(
zi − ε(zi)

)
∈ Fq

[
SL2(R)

]∨
(i = 1, 2, 3) . Since we know that

H+ :=
a− 1

q − 1
, E :=

b

q − 1
, F :=

c

q − 1
, H− :=

d− 1

q − 1
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are algebra generators of Uq(sl
∗
2 ) := Fq

[
SL2(R)

]∨
, we deduce that

ζ1
q − 1

= q−
1
2 (F + νE) + (q − 1)

(
q−

1
2H+F + q−

1
2 νEH− + 2µEF

)

ζ2 − ν
q − 1

= 2 (νH− + µq−
1
2F ) + (q − 1)

(
F 2 + νH2

− + 2µq−
1
2FH−

)

ζ3 − 1

q − 1
= 2 (H+ + µq−

1
2E) + (q − 1)

(
H2

+ + νE2 + 2µq−
1
2H+E

)
(6.3)

In the semiclassical specialization Uq(sl
∗
2 )

q−→1−−→ Uq(sl
∗
2 )
/
(q − 1)Uq(sl

∗
2 ) one

has that E 7→ e , F 7→ f , H± 7→ ±h , where h, e, f are Lie algebra generators
of sl∗2 ; therefore the semiclassical limit of the right hand side of (6.3) is the Lie
subalgebra generated by f + ν e , −ν h + µ e , h + µ e , or, equivalently, the 2–
dimensional Lie subalgebra generated by f+ν e and h+µ e (the three elements
above being linearly dependent) with relation [ h + µ e , f + ν e ] = f + ν e . The
quantization of this coisotropic subalgebra of sl ∗2 is therefore the subalgebra
generated inside Uq(sl

∗
2 ) by the quadratic elements (6.3).

Similar computations can be performed starting from Iµ,ν . The transformed

Igµ,ν is the right ideal generated by the image of a− d+ 2 q
1
2µb and qνb + c ,

i.e. the right ideal generated by H+ −H− +2 q
1
2µE and q νE +F ; also, from

its semiclassical limit it is easily seen that this again corresponds to the same
coisotropic subgroup of the dual Poisson group SL 2(R)

∗ .
All this gives a local — i.e., infinitesimal — description of the (2–dimensional)
coisotropic subgroups K ⊥

µ,ν in SL 2(R)
∗
.

6.3 The non coisotropic case

Let us finally consider the case of a non coisotropic subgroup. We will con-
sider the embedding of SL2(C) into SL3(C) corresponding to a non simple
root, which easily generalizes to higher dimensions. Computations will only be
sketched.
Let h be the subalgebra of sl3(C) spanned by E1,3 , F1,3 , H1,3 = H1 + H2 .
Easy computations show that the standard cobracket values are

δ(E13) = E13 ∧ (H1 +H2) + 2E23 ∧ E12

δ(F13) = F13 ∧ (H1 +H2)− 2F23 ∧ F12

δ(H1 +H2) = 0

(6.4)

and, therefore, the corresponding embedding SL2(C) −֒→ SL3(C) is not

coisotropic. To compute the coisotropic interior
◦
h of h , consider that 〈H1+H2〉

is, trivially, a subbialgebra of h , thus contained in
◦
h . Let X := (H1 +H2) +

αE13 + βF13 : then

δ(X) = X ∧ (H1 +H2) + 2 (αE23 ∧ E12 − βF23 ∧ F12)
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shows that no such X is in
◦
h , unless α = 0 = β . The outcome is that we have

◦
H =




γ 0 0
0 1 0
0 0 γ−1


 ⊆ SL3(C)

with γ ∈ C∗ . Correspondingly

h〈⊥〉 =
( ◦
h
)⊥

=
〈
e1,2 , e1,3 , e2,3 , f1,2 , f1,3 , f2,3 , h2.2

〉 (
⊆ sl3(C)

∗
)

and, thus SL3(C)
∗
/
H〈⊥〉 is a 1– dimensional Poisson homogeneous space —

with, of course, zero Poisson bracket.
Let us consider now any weak quantization Cq(H) of H . It should certainly
contain the subalgebra of Uq(sl3) generated by the root vectors E1,3 , F1,3 ,

together with K1K
−1
3 and Ĥ1,3 :=

(
K1K

−1
3 − 1

)/
(q − 1) . The equality

∆(E1,3) = E1,3 ⊗K1K
−1
3 + 1⊗ E1,3 + (q − 1)E1,2 ⊗ E2,3

tells us that, in order to be a left coideal, such a quantization should also
contain either (q − 1)E1,2 or (q − 1)E2,3 (and thus, as expected, it cannot be

strict). Let us try to compute some elements in Cq(H)
�
. Certainly, since

δ2
(
Ĥ1,3

)
= Ĥ1,3 ⊗

(
K1K

−1
3 − 1

)
= (q − 1) Ĥ1,3 ⊗ Ĥ1,3

we can conclude that (q − 1)Ĥ1,3 ∈ Cq(H)
�
. On the other hand,

δ2(E1,3) = (q − 1)E1,3 ⊗ Ĥ1,3 + (q − 1)E1,2 ⊗ E2,3

implies that (q − 1)E1,3 6∈ Cq(H)� , while (q − 1)2E1,3 ∈ Cq(H)� .
All this means the following.
Within Cq(H)

�
we find a non-diagonal matrix element of the form (q−1) t1,3 :

it belong to (q−1)Uq(sl3)′ but not to (q−1)Cq(H)
�
, so that

Cq(H)
�⋂

(q−1)Uq(sl3)′ % (q−1)Cq(H)
�

which means that the quantization Cq(H)
�
is not strict. On the other hand, we

know by Proposition 5.7(3) that Cq(H)
�
is proper. Therefore, we have an ex-

ample of a quantization (of type Cq , still by Proposition 5.7(3)) which is proper,
yet it is not strict. In addition, in the specialization map π : Uq(sl3)

′ −−։
Uq(sl3)

′
/
(q−1)Uq(sl3)′ the element (q−1) t1,3 is mapped to zero, i.e. it yields a

trivial contribution to the semiclassical limit of Cq(H)
�
— which here is meant

as being π
(
Cq(H)�

)
= Cq(H)�

/
Cq(H)�

⋂
(q − 1)Uq(sl3)

′ . With similar com-

putations it is possible to prove, in fact, that the only generating element in
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C(H)
�
having a non-trivial semiclassical limit is (q−1)Ĥ1,3 . Therefore, through

specialization at q = 1 , from C(H)
�
one gets only π

(
Cq(H)

�)
= C

[
t2,2
]
: in-

deed, this in turn tells us exactly that Cq(H)
�
is a quantization, of proper type,

of the homogeneous SL3(C)
∗
–space SL3(C)

∗
/
H〈⊥〉 (whose Poisson bracket is

trivial).
Remark. It is worth stressing that this example — no matter how rephrased
— could not be developed in the language of formal quantizations as a direct
application of the construction in [5], for only strict quantizations were taken
into account there.
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Abstract. Let E/Q be an elliptic curve. We investigate the de-
nominator of the modular symbols attached to E. We show that one
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1 Introduction

Let E/Q be an elliptic curve. Integrating a Néron differential ωE against all
elements in H1

(
E(C),Z

)
, we obtain the Néron lattice LE of E in C. For any

r ∈ Q, define λ(r) = 2πi
∫ r
∞
f(τ)dτ where f is the newform associated to the

isogeny class of E. A theorem by Manin [12] and Drinfeld [7] shows that the
values λ(r) are commensurable with LE . In other words, if Ω+

E and Ω−
E are

the minimal absolute values of non-zero elements in LE on the real and the
imaginary axis respectively, then

λ(r) = 2πi

∫ r

∞

f(τ)dτ = [r]+E · Ω+
E + [r]−E · Ω−

E · i

for two rational numbers [r]±E , which we will call the modular symbols of E.

1The author was supported by the EPSRC grant EP/G022003/1
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The first aim of this paper is to improve on the bound for the denominator
of [r]±E given by the Theorem of Manin and Drinfeld. It is not true in general
that [r]±E is an integer for all r. The only odd primes that can divide these
denominators are those which divide the degree of an isogeny E → E′ defined
over Q. Even by allowing to change the curve in the isogeny class, we can not
always achieve that the modular symbols are integers; for instance 3 will be a
denominator of [r]±E for some r ∈ Q for all E of conductor 27. However the
following theorem says that we may get rid of all odd primes p such that p2

does not divides the conductor N of E.

Theorem 1. Let E/Q be an elliptic curve. Then there exists an elliptic curve
E•, which is isogenous to E over Q, such that [r]±E•

is a p-integer for all r ∈ Q
and for all odd primes p for which E has semi-stable reduction.

As stated here one could take E• to be one of the curves in the isogeny class
with maximal Néron lattice. However it is a consequence of Theorem 4, which is
more precise and says that there is a curve E• whose Néron lattice is contained
in the lattice of all values of λ(r) with index not divisible by any odd prime of
semi-stable reduction.
As a direct consequence of this Theorem 1, one deduces that the algebraic part
of the special values of the twisted L-series L(E•, χ, s) at s = 1 are p-adic
integers for all Dirichlet characters χ and all odd semi-stable primes p. See
Corollary 7.
The second part of this paper is devoted to another application of this theorem.
Let p be an odd prime of semi-stable reduction. Kato has constructed in [10]
an Euler system for the isogeny class of E. See Section 3 for details of the
definitions. There are two sets of p-adic “zeta-elements”: First, a set of integral
zeta elements denoted by c,dzm(α) in the Galois cohomology of a lattice Tf
canonically associated to f which provides upper bounds for Selmer groups.
Secondly, a set of zeta elements denoted by zγ which are linked to the p-adic
L-functions. The latter are not known to be integral with respect to Tf . We
will show in Proposition 8 that Tf is equal to the Tate module TpE• of the
curve E• in Theorem 1.
Let Kn be the n-th layer in the cyclotomic Zp-extension of Q. Let z ∈
lim←−nH

1(Kn, TpE•) ⊗ Qp be the zeta element that is sent to the p-adic L-
function for E• via the Coleman map.

Theorem 2. If the reduction is good at p, then z belongs to the integral Iwasawa
cohomology lim←−nH

1(Kn, TpE•).

This is Theorem 13 in the text. Actually, the proof gives a more precise result.
The global Iwasawa cohomology group H1(TpE) with restricted ramification
turns out to be very often, but not always, a free module of rank 1 over the
Iwasawa algebra of the Zp-extension. If it is free for E = E• then the integrality
of z is easily deduced; otherwise one can show that H1(TpE•) is at worst equal
to the maximal ideal in the Iwasawa algebra and the integrality above follows
then from the interpolation property of the p-adic L-function Lp(E).
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Another consequence of Theorem 1 concerns the main conjecture in Iwasawa
theory for elliptic curves. We formulate it here for the full cyclotomic Z×

p -
extension.

Theorem 3. Let E be an elliptic curve and p an odd prime of semi-stable
reduction. Assume that E[p] is reducible as a Galois module over Q. Then
the characteristic series of the dual of the Selmer group over the cyclotomic
extension Q

(
ζp∞

)
divides the ideal generated by the p-adic L-function Lp(E)

in the Iwasawa algebra Λ = Zp
[[
Gal(Q(ζp∞)/Q)

]]
.

Note that our assumptions in the theorem imply that the reduction of E at
p is ordinary in the sense that E has either good ordinary or multiplicative
reduction, because E[p] is irreducible when E has supersingular reduction, see
Proposition 12 in [22]. In the case when E has split multiplicative reduction,
we can strengthen our theorem, see Theorem 16.
This theorem was proven by Kato in [10] in the case that the reduction is ordi-
nary and the representation on the Tate module was surjective. The method of
proof follows and generalises the incomplete proof in [30], where unfortunately
the integrality issue had been overlooked.
For most good ordinary primes p for which E[p] is irreducible the full main
conjecture, asserting the equality rather than the divisibility in the above the-
orem, is now known thanks to the work of Skinner and Urban [25]. However
their proof of the converse divisibility does not seem to extend easily to the
reducible case.
Nonetheless, the above theorem has applications to the conjecture of Birch and
Swinnerton-Dyer and to the explicit computations of Tate-Shafarevich groups
as in [26]. The theorem also implies that all p-adic L-functions for elliptic
curves at odd primes p of semi-stable ordinary reductions are integral elements
in the Iwasawa algebra. See Corollary 18.

Acknowledgements

It is my pleasure to thank Dino Lorenzini, Tony Scholl and David Loeffler.

2 The lattice of all modular symbols

Let E be an elliptic curve defined over Q. In what follows p will always stand
be an odd prime and we suppose that E does not have additive reduction at p.
The only case for which the integrality of Kato’s Euler system may not hold
is when E admits an isogeny of degree p defined over Q; so we may just as
well assume that we are in this “reducible” case. All conclusions in this section
and in the rest of the paper are still valid without this assumption, however
they are not our original work but rather well-known results. Denote by N the
conductor of E.
In the isogeny class of E there are two interesting elliptic curves. The first
is the optimal curve E0 with respect to the modular parametrisation from
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the modular curve X0(N), which is also often called the strong Weil curve.
The second is the optimal curve E1 with respect to the parametrisation from
X1(N). The definition of optimality is given in [28], for instance the map
H1

(
X0(N)(C),Z

)
→ H1

(
E0(C),Z

)
is surjective. Another interesting curve is

the so-called minimal curve (see [28]), which is conjecturally equal to E1, but
we will not make use of it in this article. Recall that a cyclic isogeny A → A′

defined over Q is étale (this is a slight abuse of notation, we should say more
precisely that it extends to an étale isogeny on the Néron models over Z) if the
pull-back of a Néron differential of A′ yields a Néron differential of A.
Let f be the newform of level N corresponding to the isogeny class of E. We
write ωf = 2πif(τ)dτ = f(q)dq/q for the corresponding differential form on
the modular curve X1(N). For any curve A in the isogeny class of E, we define
the Néron lattice LA to be the image of

∫
ωA : H1

(
A(C),Z

)
→ C

where ωA is a choice of a Néron differential. We denote by L0 and L1 the
lattices LE0 and LE1 respectively. Then Lf is defined to be the lattice of all∫
γ ωf where γ varies in H1

(
X1(N),Z

)
. Finally, we define

L̂f =

{∫

γ

ωf

∣∣∣∣ γ ∈ H1

(
X1(N)(C), {cusps},Z

)}
.

obtained by integrating ωf along all paths between cusps in X1(N). This is
the lattice of all modular symbols attached to f . By the Theorem of Manin–
Drinfeld L̂f is a lattice with L̂f ⊂ Lf Q. In fact, we know that all the
lattices above are commensurable and we view them now as Z-modules inside
V = L1 ⊗Q.

Theorem 4. Let E/Q be an elliptic curve. Then there exists an elliptic curve
E•/Q in the isogeny class of E whose lattice L• = LE•

satisfies L• ⊗ Zp =

L̂f⊗Zp inside V ⊗Qp for all odd primes p at which E has semi-stable reduction.
Moreover the cyclic isogeny from E1 to E• is étale.

Alternatively, we could also say that the index of L• ⊂ L̂f is coprime to
any odd prime of semi-stable reduction. We should also emphasise that the
statement does not hold in general for primes p of additive reduction or for
p = 2. Counter-examples for these will be provided later. The proof will
require some intermediate lemmas.

Lemma 5. Let A/Q be an elliptic curve and let p be an odd prime. Suppose P
is a point of exact order p in A, defined over an abelian extension of Q which
is unramified at p. Then the isogeny with kernel generated by P is defined over
Q.

Proof. Let G be the Galois group of Q
(
A[p]

)
over Q. Let H be the subgroup

corresponding to the field of definitionQ(P ) of P . ThenH is a normal subgroup
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of G with abelian quotient. In any basis of A[p] with P as the first element,
the group H is contained in ( 1 ∗

0 ∗ ) when we view G as a subgroup of GL2(Fp).
Let S = G∩SL2(Fp) be the kernel of the determinant G→ F×

p . Hence H ∩S is
contained in the subgroup of matrices of the form ( 1 ∗

0 1 ). So we have two cases to
distinguish. EitherH∩S is equal to the cyclic group of order p of all matrices of
this form or it is trivial. But note first that the Weil pairing implies that Q(µp)
is contained in Q

(
A[p]

)
. So G/S is isomorphic to F×

p via the determinant.
Since Q(P ) is unramified at p, it must be linearly disjoint from Q(µp). For our
groups, this means that HS = G. Hence H/(H ∩ S) = G/S = F×

p .
Case 1: H ∩ S is equal to the cyclic group of order p generated by ( 1 1

0 1 ).
The above then implies that H is equal to the subgroup of all matrices ( 1 ∗

0 ∗ ).
Now G is contained in the normaliser of this group H inside GL2(Fp), which is
easily seen to be equal to the Borel subgroup of matrices of the form ( ∗ ∗

0 ∗ ). In
particular, the subgroup generated by P is fixed by G.
Case 2: H intersects S trivially. Then Q

(
A[P ]

)
is the composition of Q(µp)

and Q(P ). Hence G is the abelian group H × S. Note that H is now a cyclic
group of order p − 1. Let h be a non-trivial element of H ⊂

{
( 1 ∗
0 ∗ )

}
. It

has two eigenvalues, one equal to 1 and the other λ must be different than
1 as otherwise h would belong to S. Let Q ∈ A[p] be an eigenvector for h
with eigenvalue λ and use the basis {P,Q} for A[p]. For H to be an abelian
subgroup of

{
( 1 ∗
0 ∗ )

}
containing the element h = ( 1 0

0 λ ), it is necessary that H
is contained in the diagonal matrices. Therefore H is the group of all matrices
of the form ( 1 0

0 ∗ ).
We know that S has to commute with H . It is easy to see that this implies
that S is contained in the group of matrices of the form ( a 0

0 1/a ). It follows that
G is contained in the diagonal matrices. Once again the isogeny defined by P
is fixed by G.

If A is an elliptic curve defined over Q, we know by [2] that there is a non-
constant morphism of curves ϕA : X0(N) → A defined over Q. We normalise
it by requiring that it is of minimal degree and that the cusp ∞ maps to
O ∈ A(Q). It is well-defined up to composition with an automorphism of A.
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Lemma 6. Let A/Q be an elliptic curve and let p be an odd prime such that A
has semi-stable reduction at p. Let r ∈ Q represent a cusp on X0(N) such that
the image ϕA(r) in A(Q̄) has order divisible by p. Let P ∈ A(Q̄) be a multiple
of ϕA(r) which has exact order p. Then the isogeny with kernel generated by P
is étale and defined over Q.

Proof. Let D be the greatest common divisor of the denominator of r and N .
Next, let d be the greatest common divisor of D and N

D . So by definition d is
only divisible by primes of additive reduction and hence it is coprime to p. By
the description of the Galois-action on cusps of X0(N) given in Theorem 1.3.1.
in [27],we see that the cusp r on X0(N), and hence its image in A(Q̄), are
defined over the cyclotomic field K = Q(ζd). The previous Lemma 5 proves
that the isogeny generated by P is defined over Q. Since the kernel acquires a
point over an extension which is unramified at p, it has to be étale.

Proof of Theorem 4. The lattice L̂f is the set of all values of integrating ωf =
2πif(τ)dτ as τ runs along a geodesic from one cusp r1 ∈ Q to another r2 ∈ Q
inside the upper half plane. So it is also the set of all

∫
γ ωf as γ varies in

H1

(
X0(N), {cusps},Z

)
. We are allowed to switch here from X1(N) to X0(N)

and to identify ωf on both of them as the pullback of ωf underX1(N)→ X0(N)
is again ωf because it is determined by the q-expansion of f .
The Manin constant c0 for the optimal curveE0 is an integer such that ϕ∗

0(ω0) =
c0 · ωf , where ϕ0 : X0(N) → E0 is the modular parametrisation of minimal
degree and ω0 is a Néron differential on E0. One can choose ϕ0 and ω0 in such
a way as to make c0 > 0. It is known that c0 is coprime to any odd prime for
which E has semi-stable reduction. For this and more on the Manin constant
we refer to [1]. From the description of optimality above, we can deduce that

c0 ·Lf = L0 and hence that c0 · L̂f ⊃ L0.
To start, we set A to be the optimal curve E0. We shall successively re-
place A by one of its quotients by an étale kernel until we reach E•. Pick
an odd semi-stable prime that divides the index iA of LA in c0 · L̂f . The
modular parametrisation ϕA : X0(N) → A factors through E0. The quotient(
c0L̂f

)
/LA is generated by the images ϕA(r) ∈ A(C) ∼= C/LA of all cusps r in

X0(N). So we find a cusp r whose image in A(Q̄) has order divisible by p. We
can now apply Lemma 6, which gives us an étale isogeny A→ A′ such that the
index of LA′ in c0L̂f is now iA′ = iA/p. We replace now A by A′ and repeat
the procedure until the index iA is coprime to all odd semi-stable primes. By
the above mentioned property of c0, we now have LA ⊗ Zp = L̂f ⊗ Zp for all
odd semi-stable primes
By construction, A is now an étale quotient of E0. We consider the isogeny
E1 → E0 → A. The cyclic isogeny E1 → E0 has a constant kernel and hence
it is étale over Z[ 12 ], as explained in Remark 1.8 in [29]. If it is étale over Z,
we can set E• = A and we are done. Otherwise, there is an isogeny E0 → E′

0

whose degree is a power of 2 such that the cyclic isogeny from E1 to E′
0 is étale.

Since the degree of E0 → A is odd by construction, there is an isogeny A→ E•
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of the same degree as E0 → E′
0 such that E1 → E• is étale.

For any A in the isogeny class of E, we write Ω+
A for the smallest positive real

element of LA and Ω−
A for the smallest absolute value of a purely imaginary

element in LA. For any r ∈ Q, the modular symbols [r]± ∈ Q attached to A
are defined by

[r]+ =
1

Ω+
A

Re

(∫ ∞

r

ωf

)
and [r]− =

1

Ω−
A

Im

(∫ ∞

r

ωf

)
.

Then our theorem tells us that [r]± will have denominator coprime to any
odd semi-stable prime for the curve E•. In particular, it is obvious from the
construction (see [14]) of the p-adic L-function by modular symbols that it will
be an integral power series in Zp[[T ]] for ordinary primes p. However this also
follows from Proposition 3.7 in [9] and the fact that E1 → E• is étale.
A reformulation of the theorem is the following integrality statement.

Corollary 7. Let E be an elliptic curve over Q and p an odd prime for which
E has semi-stable reduction. Then there is a curve E• which is isogenous to E
over Q such that for all Dirichlet characters χ we have

G(χ) · L(E•, χ, 1)

Ω+
E•

∈ Zp[χ] if χ(−1) = 1 or

G(χ) · L(E•, χ, 1)

iΩ−
E•

∈ Zp[χ] if χ(−1) = −1

where Zp[χ] is the ring of integers in the extension of Qp generated by the values
of χ and G(χ) stands for the Gauss sum.

Proof. This follows from the formula of Birch, see formula (8.6) in [14]:

L(E,χ, 1) =
1

G(χ)

∑

a mod m

χ(a)

(∫ ∞

a/m

ωf

)

where m is the conductor of χ.

2.1 The semi-stable case

Let E/Q be an elliptic curve with semi-stable reduction at all primes. Hence
N is square-free. So d in the proof of Lemma 6 is equal to 1 for all cusps and
hence they are all defined over Q. By Mazur’s Theorem [13], we may obtain

E• satisfying L̂f ⊗ Z[ 12 ] = L• ⊗ Z[ 12 ] by taking the quotient of E0 only by at
most a p-torsion point defined over Q for some p = 3, 5 or 7. In particular,
if E0(Q)[3 · 5 · 7] = {O}, then E• = E0. If instead, there is a rational torsion
point of odd order, then we might have to take the isogeny with kernel E0(Q)[p].
Nonetheless the curve labelled 66c1 in [5] shows that in some examples we can
have E• = E0 even when E0 has a rational 5-torsion point.
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2.2 Examples

We can present here a few examples; in all of them we know that c0 = 1.
Throughout, we use the notations from Cremona’s tables [5]. First, for the
class 11a and p = 5, we find that E1 =11a3, E0 =11a1, and E• =11a2 and the
étale isogenies E1 → E0 → E• are all of degree 5. To justify this, one has to
note that L(f, 1) = 1

5Ω
+
E0

and so [0]+ = 1
5 for E0. Hence the lattice L̂f has

index at least 5 in L0.

For the class 17a, the curve E0 =17a1 has Mordell-Weil group E(Q) = Z/4Z.
The optimal curve E1 corresponds to a sublattice of index 4 in L0 and it is the
minimal curve 17a4. It is easy to compute the modular symbols for f . Since
L(f, 1) = 1

4Ω
+
0 , we find that L̂f has index at least 4 in L0. In fact, L̂f is the

lattice 1
2L17a3. This shows that the above lemma is not valid for p = 2.

In the class 91b, we find that E0 and E1 are equal to 91b1, which has 3-torsion
points over Q. It turns out that E•, which is equal to 91b2, has a 3-torsion
point as well. So it is not true in general that E•(Q) has no p-torsion even
when it is different from E0.

Now to elliptic curves, which are not semi-stable. The class 98a is the twist of
14a by −7. This time the lattice L̂f is equal to the lattice of 98a5, which has
the same real period as E0, but the imaginary period is divided by 9. Both E0

and E• have only a 2-torsion point defined over Q. The two cyclic isogenies of
degree 3 acquire a rational point in the kernel only over Q(

√
−7).

For the curves 27a, which admit complex multiplication, we find that L̂f =
1
3L0. The same happens for 54a. However in both cases E does not have
semi-stable reduction at p = 3. This shows that the lemma and theorem can
not be extended to primes p with additive reduction.

3 Kato’s Euler system

Let E/Q be an elliptic curve and p an odd prime. Suppose E has semi-stable
reduction at p. Since we are mainly interested in the case when E[p] is reducible,
we may assume that the reduction at E is ordinary.

We now follow the notations and definitions in [10]. As before f is the newform
of weight 2 and level N associated to the isogeny class of E. Define the Qp-
vector space VQp(f) as the largest quotient of H1

ét

(
Y1(N),Qp

)
on which the

Hecke operators act by multiplication with the coefficients of f . Further the
image of H1

ét

(
Y1(N),Zp

)
in VQp(f) is a Gal

(
Q̄/Q

)
-stable lattice, denoted by

VZp(f).

Proposition 8. We have an equality of Gal
(
Q̄/Q

)
-stable lattices VZp(f)(1) =

TpE• inside VQp(f)(1).

Proof. We consider first the version with coefficients in Z rather than in Zp as
in 6.3 of [10]. We define VQ(f) as the maximal quotient of H1

(
Y1(N)(C),Q

)

and VZ(f) as the image of H1
(
Y1(N)(C),Z

)
inside VQ(f). By Poincaré duality,
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we have
H1
(
Y1(N)(C),Z

) ∼= H1

(
X1(N)(C), {cusps},Z

)

as in 4.7 in [10]. Now let ϕ1 : X1(N) → E1 be the optimal modular
parametrisation. The optimality implies that ϕ1 induces a surjective map from
H1

(
X1(C),Z

)
to H1

(
E1(C),Z

)
. Hence we may identify VQ(f) via ϕ1 with

H1

(
E1(C),Q

)
. Under this identification, the lattice VZ(f) is mapped to the

image of the relative homology H1

(
X1(N)(C), {cusps},Z). It contains the lat-

tice H1

(
E1(C),Z

)
. Through the map integrating against the Néron differential

ω1 of E1, the lattice VZ(f) is brought to c1L̂f containing L1 where c1 is the
Manin constant of ϕ1, i.e. the integer such that ϕ∗

1(ω1) = c1ωf . Since c1 is a
p-adic unit by Proposition 3.3 in [9], our Theorem 4 shows that

VZ(f)⊗Zp = H1

(
E•(C),Z

)
⊗Zp inside VQ(f)⊗Qp = H1

(
E1(C),Q

)
⊗Qp.

Following 8.3 in [10], we can identify VZp(f) with VZ(f) ⊗ Zp through the
comparison of Betti and étale cohomology. We identify again VQp(f) with

H1
ét

(
E1,Qp

)
through ϕ1 and we obtain that

VZp(f) = H1
ét

(
E•,Zp

) ∼= TpE•(−1) containing H1
ét

(
E1,Zp

) ∼= TpE1(−1)

at least as Zp-lattices inside VQp(f). But the Galois action is the same on both
VZp(f) and Tp(E•)(−1).

From now on we will denote this lattice in our Galois representation simply
by T = VZp(f)(1) = TpE•. Kato constructs in 8.1 in [10] two sets of p-adic
zeta-elements in the Galois cohomology of T . First, let a and A > 1 be two
integers. Then there is an element

c,dzm(
a
A ) = c,dz

(p)
m

(
f, 1, 1, a(A), primes(pA)

)
∈ H1

ét

(
Z[ 1p , ζm], T

)

for all integers m > 1 and integers c, d coprime to 6pA. They are linked to the
modular symbol obtained from the path from a

A to ∞ in the upper half plane.
Also, ζm is a primitive m-th root of unity.
Secondly, for any α ∈ SL2(Z), there are elements

c,dzm(α) = c,dz
(p)
m

(
f, 1, 1, α, primes(pN)

)
∈ H1

ét

(
Z[ 1p , ζm], T

)

for any integer m > 1 and integers c ≡ d ≡ 1 (mod N) coprime to 6pN . They
are linked to the image under α of the path from 0 to ∞ in the upper half
plane.
The advantage of these integral elements (with respect to our lattice T ) is that
they form an Euler system (13.3 in [10]). Namely by fixing α, c and d as above,
the elements

(
c,dzm(α)

)
m

form an Euler system.
Out of the above elements for m being a power of p, Kato builds the zeta-
elements that are linked to the p-adic L-functions. We denote by

Λ = Zp
[[
Gal
(
Q(ζp∞)/Q

)]]
= lim←−

n

Zp
[
Gal
(
Q(ζpn)/Q

)]
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the Iwasawa algebra of the cyclotomic Z×
p -extension of Q. Then we have the

following finitely generated Λ-module

H1(T ) := lim←−
n

H1
ét

(
Z[ζpn , 1p ], T

)
= lim←−

n

H1
(
GΣ(Q(ζpn)), T

)
,

where Σ is any set of primes containing the infinite places and those dividing
pN and GΣ(K) is the Galois group of the maximal extension of K which is
unramified outside Σ. See Section 3.4.1 in [17] for the independence on Σ. For
each γ ∈ T , there is a

zγ = z(p)γ ∈ H1(T )⊗Qp = lim←−
n

H1
ét

(
Z[ 1p , ζpn ], T

)
⊗Qp .

In fact, they are defined in 13.9 in [10] as elements in the larger H1(T ) ⊗Λ

Frac(Λ) as they are quotients of elements of the form c,dzm(α) by certain ele-
ments µ(c, d) in Λ. However Kato shows in 13.12 that they belong to the much
smaller H1(T )⊗ Qp by comparing them with elements of the form c,dzpn(

a
A).

See also appendix A in [6] for more information about the division by µ(c, d).

3.1 Criteria for the Iwasawa cohomology to be free over the
Iwasawa algebra

The Λ-module H1(T ) is torsion-free of rank 1 as shown in Theorem 12.4 in [10].
If E[p] is irreducible, then Theorem 12.4.(3) shows that H1(T ) is free. In this
section we gather further cases in which we can prove that H1(T ) is free or
otherwise determine how far we are off from being free. When it is free one
deduces that zγ integral for all γ ∈ T . We will later turn back to this question
in Section 3.3

Lemma 9. Let p be an odd prime of semi-stable reduction. If the X0-optimal
curve E0 has no rational p-torsion point, but the degree of the cyclic isogeny
from E0 to E• is divisible by p, then H1(T ) is free of rank 1 over Λ.

This lemma is essentially about curves that are not semi-stable. It applies to
all twists of a semi-stable curve by a square-free D 6= ±p. This follows from the
fact that for semi-stable curves a result by Serre [24, Proposition 1] and [22,
Proposition 21] shows that E[p] is an extension of Z/pZ by µ[p] or an extension
of µ[p] by Z/pZ.
Conversely, if E0 has a point of order p > 2 defined over Q, then it has semi-
stable reduction at all places, except for p = 3 when we could have fibres of
type IV or IV∗.

Proof. We claim that under our hypothesis, the Mordell-Weil group E•

(
Q(ζp)

)

contains no p-torsion points. Let φ : A → A′ be a cyclic isogeny of degree p
in the isogeny E0 → E• and assume by induction that A has no torsion point
defined over Q. From the proof of Theorem 4, we know that A[φ] acquires
rational points over Q(ζd) with d | N as in the proof of Lemma 6. In particular
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p does not divide d and so A[φ] will not contain a rational point defined over

Q(ζp); neither will A′[φ̂] as it is its Cartier dual. This means that the semi-
simplification of A[p] is the sum of two distinct characters with conductor
divisible by a prime different from p. Hence A and A′ both have no p-torsion
point defined over Q(ζp).
One way to prove the lemma is by adapting Kato’s argument at the end of
13.8. The argument works as long as the twisted Fp(r) does not appear in E[p]
as a Galois sub-module. Instead we give a second proof here.
Let Γ = Gal

(
Q(ζp∞)/Q(ζp)

)
. Using the Tate spectral sequence [15, Theorem

2.1.11] we see that H1(T )Γ injects into H1
(
GΣ(Q(ζp)), T

)
via the corestriction

map. Now the torsion subgroup of the latter is equal to the torsion subgroup of
lim←−E

(
Q(ζp)

)
/pn, which is trivial if E

(
Q(ζp)

)
has no p-torsion. Hence H1(T )Γ

is a free Zp-module.
Choose an injection ι : H1(T )→ Λ with finite cokernel F . We deduce an exact
sequence

0 //FΓ //H1(T )Γ //ΛΓ
//FΓ

//0

Since H1(T )Γ is torsion-free, we obtain that FΓ = 0. Since F is finite, FΓ is of
the same size. But by Nakayama’s Lemma FΓ = 0 implies that F = 0. Hence
H1(T ) is Λ-free.

We refine our analysis of H1(T ) now a bit for the remaining cases. Any Λ-
module M comes equipped with an action by the group ∆ = Gal

(
Q(ζp)/Q

)

and we split M up into the eigenspaces M =
⊕p−2

i=0 Mi where ∆ acts on Mi =
M(−i)∆ by the i-th power of the Teichmüller character. Now Mi is a Λ(Γ) =
Zp[[Γ]]-module.

Lemma 10. Let φ : E → E′ be an isogeny whose kernel has a point of order p
defined over Q. Then H1(TpE)i and H1(TpE

′)i are free of rank 1 over Λ(Γ)
for all 1 < i 6 p − 2. Furthermore H1(TpE)1 and H1(TpE

′)0 are also free of
rank 1. The remaining H1(TpE)0 and H1(TpE

′)1 are either free of rank 1 or
there is an injection into Λ(Γ) with image equal to the maximal ideal.

Proof. We have two short exact sequence

0 // TpE
φ // TpE′ // Z/pZ // 0

0 µpoo TpEoo TpE
′

φ̂

oo 0oo

which induces two exact sequences

0 // H1(TpE)
φ // H1(TpE

′) // H1
(
Z/pZ

)

H1(µp) H1(TpE)oo H1(TpE
′)

φ̂

oo 0.oo

(*)
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Here the last terms are the projective limits as n tends to infinity of the
groupsH1

(
GΣ(Q(ζpn)),Z/pZ

)
and ofH1

(
GΣ(Q(ζpn)), µ[p]

)
respectively. Since

p = 3, 5 or 7, the class group of Q(ζpn) has no p-torsion and hence
H1(GΣ(Q(ζpn)), µ[p]) is the quotient of the global Σ-units by its p-th powers.
Lemma 4.3.4 and Proposition 4.5.3 in [4] show that H1(µ[p]) = Fp(1) ⊕ Λ+/p
as a Λ = Zp[∆][[Γ]]-module, where Λ+ the part of Λ fixed by complex conju-
gation. Also we have H1(Z/pZ) = H1(µ[p])(−1) = Fp ⊕ Λ−/p. Because the

composition of φ and φ̂ is the multiplication by p, the cokernels of the end
maps of the two exact sequences (*) above have to be finite because H1(TpE)
and H1(TpE

′) are known to be torsion-free Λ-modules of rank 1.
If i is not 0 or 1, then the argument in the proof of Lemma 9 applies to show
that H1(TpE)i and H1(TpE

′)i are both free since the p-torsion subgroup of
E
(
Q(ζp)

)
and E′

(
Q(ζp)

)
have trivial i-th eigenspace under the action of ∆.

Let now i = 0 and set A = H1(TpE)0 and B = H1(TpE
′)0. In the case i = 1,

we would just swap the roles of A and B. The exact sequences (*) show that

φ : A→ B has finite cokernel of size at most p and that φ̂ : B → A has cokernel
in Λ(Γ)/p ∼= Fp[[Γ]]. Choose an injection ι : B → Λ(Γ) with finite cokernel F .
We now view B via ι and A via φ ◦ ι as ideals in Λ(Γ) of finite index. The map

φ̂ : B → A becomes the multiplication by p.
Let I be the kernel of the map Λ(Γ)→ Zp sending all elements of Γ to 1. Then
we obtain the exact sequence

0 //FΓ //A/IA //Λ/I //F/IF //0.

Again if A/IA = AΓ is Zp-free, then A is Λ(Γ)-free and since A→ B has finite
cokernel, then B has to be free, too. Assume therefore that A/IA is not free.
We know that A/IA injects into H1

(
GΣ(Q), TpE

)
whose torsion part is the

p-primary part of E(Q). Hence it is at most of order p. We conclude that FΓ

and FΓ are both of order p under our assumption. Hence A/IA ∼= Z/pZ ⊕ Zp
and we can take p+ IA to be the generator of the free part. Let a ∈ A be such
that a + IA is a generator of the torsion part. It must lie in I but not in IA.
By Nakayama’s Lemma p and a generate the ideal A. Consider now the exact
sequence

0 //pΛ(Γ)/pB //A/pB //A/pΛ(Γ) //0

where the middle term is a finite index sub-Λ(Γ)-module of Λ(Γ)/p. But a such
does not have any finite non-zero sub-modules. Hence pΛ(Γ) = pB shows that
B is Λ(Γ)-free of rank 1. Since the smaller ideal A has index p it has no choice
but to be the maximal ideal of Λ(Γ).

Here is an example for which H1(TpE)0 is not free. The semi-stable isogeny
class 11a contains three curves

E1 = 11a3
φ //E0 = 11a1

ψ //E• = 11a2

where the direction of the arrow is the isogeny with kernel Z/pZ with p = 5.
While E1 and E0 have rational 5-torsion points, the Mordell-Weil group of E•
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over Q is trivial. Hence by the proof of Lemma 9, we see that H1(TpE•)0 is
Λ(Γ)-free. This lemma does not apply to E0, however Lemma 10 does and
shows that H1(TpE0)0 is also Λ(Γ)-free. We will now show that H1(TpE1)0 is
not free.
For this we continue the first exact sequence in (*) as follows

H1(TpE1)0
φ //H1(TpE0)0 //Fp //H2(TpE1)0

φ2 //H2(TpE0)0

where H2(·) stands for the projective limit of H2
(
GΣ(Q(ζpn)), ·). Our aim is to

show that φ2 is injective. Let Zv,i be the projective limit ofH2
(
Qv(ζpn), TpEi

)
0

as n→∞ and consider the localisation maps

0 // Y1 //

��

H2(TpE1)0 //

φ2

��

⊕
v∈Σ Zv,1 //

��
0 // Y0 // H2(TpE0)0 //

⊕
v∈Σ Zv,0

//

By global duality the kernels Y1 and Y0 are fine Selmer groups which we will
properly define in Section 4; for our purpose here it is sufficient to say that
they are both trivial in our example. To show that φ2 is injective it is sufficient
to show that φ : Zv,1 → Zv,0 is injective for all v ∈ Σ = {5, 11}. Local duality
shows that Zv,i is dual to the p-primary part of the group of points of Ei over
Qv(ζp∞)∆. Hence we want to show that for all v ∈ {5, 11} the map

φ̂ : E0

(
Qv(ζp∞)∆

)
[p∞]→ E1

(
Qv(ζp∞)∆

)
[p∞]

is surjective. First for v = 11 where both curves have split multiplicative
reduction; however the Tamagawa number for E0 is 5 while it is 1 for E1. We
conclude that the p-primary part of E

(
Q11(ζ5∞)

)
is isomorphic to Qp/Zp for

E = E0 and it is equal to Qp/Zp⊕Z/pZ for E = E1. The map φ̂ is easily seen
to be surjective by looking at the 5-torsion points over Q11.
Next for v = 5, where the reduction is good ordinary. Here the p-primary parts
of both groups of local points are equal to Z/5Z. This follows from the fact that
the formal group of these curves have torsion group isomorphic to µp∞ which
has no ∆-fixed points and from the existence of the rational 5-torsion points
over Q5.
This ends the proof that H1(TpE1)0 is not free but equal to the maximal ideal
as shown in Lemma 10. Note that the same argument won’t work for ψ, because
ψ̂ is not surjective locally on the p-primary part neither at v = 5 nor at v = 11.

3.2 Link to the p-adic L-function

For any extension K/Qp, we write H1
f (K,T ) for the Bloch-Kato group of local

conditions. The quotient groupH1
s (K,T ) = H1(K,T )/H1

f (K,T ) is in fact dual
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to E•(K) ⊗ Qp/Zp by local Tate duality. We set H1
s(T ) to be the projective

limit of H1
s

(
Qp(ζpn), T

)
, which is a Λ-module of rank 1.

Perrin-Riou has constructed a Coleman map Col : H1
s(T ) → Λ. Proposition

17.11 in [10] shows that the Coleman map Col : H1
s(T ) → Λ is injective and

has finite cokernel if the reduction of E at p is good. The same proof also
applies when the reduction is non-split multiplicative. Instead in the case when
E has split multiplicative reduction, then Theorem 4.1 in [11] proves that the
Coleman map Col: H1

s(T ) → Λ is injective and has image with finite index
inside I = ker

(
1 : Λ → Zp

)
where the map 1 sends all elements of the Galois

group Gal
(
Q(ζp∞)/Q

)
to 1. Extend Col to an injective map Col : H1

s(T )⊗Qp →
Λ⊗Qp.
Choose γ ∈ T such that γ = γ+ + γ− with γ± being Zp-generators of the
subspaces T± on which the complex conjugation acts by ±1. We now apply
Theorem 16.6 in [10] with this “good choice” of γ and with the “good choice”
of the Néron differential ω = ωE•

in the terminology of 17.5. Consider the zeta
element z = zγ ∈ H1(T )⊗Qp. The theorem yields

Col
(
loc(z)

)
= Lp(E•) ∈ Λ,

where loc : H1(T ) ⊗ Qp → H1
s(T ) ⊗ Qp is the localisation followed by the

quotient map.
Let ZT = Z(f, T ) be the Λ-module generated by zγ in H1(T )⊗ Qp and let Z
be the Λ-submodule of H1(T ) generated by all

(
c,dzpn(α)

)
n
and

(
c,dzpn(

a
A )
)
n

where c, d, a, A and α run over all permitted choices in the construction of
these integral elements. Then Theorem 12.6 in [10] states that Z is contained
in ZT with finite index. Here it is crucial that we work with exactly the lattice
T = VZp(f)(1). Kato allows himself the flexibility of twists by the cyclotomic
character and works with VZp(f)(r); we only need r = 1 here.
Since H1(T ) is Λ-torsion-free, there is an injective Λ-morphism ι : H1(T )→ Λ
with finite cokernel. The linear extension ιQ : H

1(T )⊗Qp → Λ⊗Qp sends ZT
to a sub-Λ-module J . This J contains the integral ideal ι(Z) ⊂ Λ with finite
index. Hence J itself is an integral ideal in Λ. Write λ = ιQ(z) ∈ J .
Lemma 11. For any k > 0 such that pkZT ⊂ Z, the index of pkz in H1(T ),
defined as

I = indΛ(p
kz) =

{
ψ
(
pkz
) ∣∣∣ ψ ∈ HomΛ(H

1(T ),Λ)
}
,

satisfies Ip = λΛp for all height one prime ideals p of Λ that do not contain p.

Proof. Let p 6∋ p be prime ideal of Λ of height 1. Because ι has finite cokernel,
we have H1(T )p = Λp via ι. Hence

Ip =
{
ψ
(
pkz
) ∣∣∣ ψ ∈ HomΛp

(H1(T )p,Λp)
}

=
{
ψ̃
(
ι(pkz)

) ∣∣∣ ψ̃ ∈ HomΛp
(Λp,Λp)

}

= ι(pkz)Λp = pkλΛp = λΛp.
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because p does not belong to p.

3.3 Integrality of zγ

Recall first how Kato deduces the integrality of his second set of zeta-elements
in the case E[p] is irreducible.

Lemma 12. If H1(T ) is free over Λ then zγ ∈ H1(T ) for all γ ∈ T .

Proof. This is 13.14 in [10]: For every prime ideal p of height 1 in Λ, we have
(ZT )p ⊂ H1(T )p since Z has finite index in ZT . Hence ZT ⊂ H1(T ).

We will concentrate here on one case that interests us most. Let z0 be the core-
striction of z from H1(T ) to H1(T )0, which is the limit lim←−nH

1
(
GΣ(Kn), T

)

as Kn increases in the cyclotomic Zp-extension of Q.

Theorem 13. Let E/Q be an elliptic curve and p an odd prime at which E
has good reduction. Then z0 belongs to H1(T )0.

In other words z0 is integral with respect to the Tate module of E•.

Proof. First, we may apply the idea of the proof in Lemma 9, to conclude
that H = H1(T )0 is free over Λ(Γ) if E•(Q) has no p-torsion point. If so the
previous lemma shows that z0 lies in H.
Assume now that E• admits a rational p-torsion point. Let φ : E• → E′ be
the isogeny whose kernel contains the rational p-torsion points. We apply
Lemma 10 to see that either H is free or it injects into Λ(Γ) with index p. As
the former case is done with the previous lemma, we assume that we are in the
latter. We know already that the Coleman map Col0 : H → Λ(Γ) is injective
with finite cokernel. Now, since H is isomorphic to the maximal ideal, the
image of Col0 has to be equal to the maximal ideal of Λ(Γ). Therefore if z0 is
not integral, the image Col0

(
loc(z0)

)
= Lp(E•)0 ∈ Λ0 = Λ(Γ) must be a unit.

However the interpolation property of the p-adic L-function tells us that

1

(
Lp(E•)0

)
=
(
1− α−1

)2 · [0]+E•

where α is the unit root of the characteristic polynomial of Frobenius and the
map 1 : Λ(Γ)→ Zp sends all elements of Γ to 1. Since we have a p-torsion point
on the reduction of E• to Fp, the valuation of 1−α−1 is 1. By construction of E•

the modular symbol [0]+E•
is a p-adic integer. Therefore the p-adic L-function

cannot be a unit. Hence z0 is integral.

4 The fine Selmer group

Let E be an elliptic curve with a p-isogeny for an odd prime p. In this section,
we do not need any condition on the type of reduction at p. We define the fine2

2This group is sometimes called the “strict” or “restricted” Selmer group.
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Selmer group R
(
E/Q(ζpn)

)
as the kernel of the localisation map

H1
(
GΣ

(
Q(ζpn)

)
, E[p∞]

)
//
⊕
v∈Σ

H1
(
Qv(ζpn), E[p∞]

)

where the sum runs over all places v in Q(ζpn) above those in Σ. It is indepen-
dent of the choice of the finite set Σ as long as it contains p and all the places
of bad reduction. By global duality it is dual to the kernel

H2
(
GΣ

(
Q(ζpn)

)
, TpE

)
// ⊕

v∈ΣH
2
(
Qv(ζpn), TpE

)
.

The Pontryagin dual of the direct limit of the groups R(E/Q(ζpn)) will be
denoted by Y (E); it is a finitely generated Λ-module. Theorem 13.4.1 in [10]
proves that Y (E) is Λ-torsion.

Lemma 14. Let E be an elliptic curve and p an odd prime such that E admits
an isogeny of degree p defined over Q. Then the fine Selmer group Y (E) is a
finitely generated Zp-module.

Proof. Let φ : E → E′ be an isogeny with cyclic kernel E[φ] of order p defined
over Q. The extension F of Q fixed by the kernel of ρφ : GΣ

(
Q
)
→ Aut

(
E[φ]

)

is a cyclic extension of degree dividing p − 1. Let G be the Galois group
of K = F (ζp) over Q(ζp). Over the abelian field K, the curve admits a p-
torsion point. We can therefore apply Corollary 3.6 in [3] (a consequence
of the Theorem of Ferrero-Washington) to the dual Y (E/K∞) of the Selmer
group over the cyclotomic Zp-extension K∞ = K(ζp∞) of K. This proves
that Y (E/K∞) is a finitely generated Zp-module. Then we have the following
diagram

0 // ̂Y (E/K∞)
∆ // H1

(
GΣ(K∞), E[p∞]

)∆

0 // Ŷ (E) //

OO

H1
(
GΣ(Q(ζp∞)), E[p∞]

)

OO

H1
(
G,E(K∞)[p∞]

)

OO

and since the group G is of order prime to p, the kernel on the right is trivial.
We deduce that the left hand side is injective, too, and hence that the dual
map Y (E/K∞) → Y (E) is surjective. Therefore Y (E) is a finitely generated
Zp-module.

For any torsion Λ-module M , we define the characteristic series charΛ(M) as
the product of the ideals plp where lp = lengthΛp

(Mp) as p runs through all
primes of height 1 in Λ.
Recall that we have defined λ = ιQ(z) as an element in J ⊂ Λ just before
Lemma 11.
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Proposition 15. Suppose E does not have additive reduction at p. Then the
characteristic series charΛ

(
Y (E)

)
divides λΛ.

Proof. We will first prove this proposition in the case E is the curve E• in
Theorem 4. With a sufficiently large choice of k, the element pk ·z ∈ Z∩H1(T )
extends to an Euler system for T as in [21]. Since the representation ρp is not
surjective, the Euler system argument gives us only a divisibility of the form

charΛ
(
Y (E)

)
divides J · indΛ

(
pkz)

for some ideal J of Λ which is a product of primes containing p, see Theorem
2.3.4 in [21] or Theorem 13.4 in [10]. By Lemma 11, we know that indΛ

(
pkz
)
=

J ′λΛ for some ideal J ′ which is a product of primes containing p. The previous
lemma shows that charΛ(Y (E)) is not divisible by any prime ideal containing
p, so the proposition follows for E•.
Now an isogeny E → E• can only change the µ-invariants of the dual of the
fine Selmer groups, i.e. only by ideals containing p, but the previous lemma
shows that they are zero for all curves in the isogeny class.

5 The first divisibility in the main conjecture

Let E be an elliptic curve defined Q such that E[p] is reducible for some odd
prime of semi-stable reduction. Recall that this implies that the reduction of
E at p can not be good supersingular. The Selmer group E over Q(ζpn) is
defined as usual as the elements in H1

(
GΣ(Q(ζpn)), E[p∞]

)
that are locally in

the image of the points. It fits into the exact sequence

0 //R
(
E/Q(ζpn)

)
// Sel
(
E/Q(ζpn)

)
//H1
(
Qp(ζpn), E[p∞]

)
.

We denote the dual of the limit of the Selmer group by X(E); it is a finitely
generated Λ-module. If the reduction is good ordinary, Theorem 17.4 in [10]
shows that X(E) is Λ-torsion. The same conclusion holds in general in our
situation; see [11] for the split multiplicative case.

Theorem 16. Let E/Q be an elliptic curve and let p > 2 be a prime. Suppose
that E has semi-stable reduction at p and that E[p] is reducible as a GQ-module.
Then charΛ

(
X(E)

)
divides the ideal generated by Lp(E). If the reduction of

E is split multiplicative at p, then I · charΛ
(
X(E)

)
divides the ideal generated

by Lp(E), where I is the kernel of the homomorphism Λ → Zp that sends all
elements of Gal

(
Q(ζp∞)/Q

)
to 1.

The main conjecture asserts that the element Lp(E) generates the characteristic
ideal charΛ

(
X(E)

)
.

Lemma 17. To prove Theorem 16 for E, it is sufficient to prove it for any one
curve in the isogeny class of E.
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Proof. The fact that Theorem 16 is invariant under isogenies follows from the
formula for the change of the µ-invariant under isogenies for the characteristic
series by Perrin-Riou [16, Appendice] when compared to the change of the
p-adic L-function. See in particular her Lemme on page 455.

Proof of Theorem 16. By the previous Lemma 17, we may choose E to be the
curve E• in the isogeny class. Recall from Section 3.2 that the Coleman map
Col : H1

s(T ) → Λ is injective and has image with finite index inside I in the
multiplicative case and it has a finite cokernel in the other cases. In what
follows we treat only the case when the reduction is not split multiplicative;
otherwise one has to multiply with I where appropriate.
Rohrlich [20] has shown that Lp(E) is non-zero and hence loc(z) is not torsion.
Choose a k such that pkZT ⊂ Z. Then the Λ-torsion module H1

s(T )/p
k loc(z)Λ,

which is equal to Col
(
H1
s(T )

)
/pkLp(E) Λ, has characteristic series pkLp(E)Λ.

The characteristic series of H1(T )/pkzΛ is equal to the characteristic series
of Λ/ι(pkz)Λ and therefore equal to pkλΛ, where ιH1(T ) → Λ is an injective
Λ-morphism with finite cokernel.

By global duality (see Proposition 1.3.2 in [18]), we have the following exact
sequence

0 // H1(T ) // H1
s(T )

// X(E) // Y (E) // 0.

It induces an exact sequence of torsion Λ-modules

0 // H1(T )
pkzΛ

// H1
s(T )
pkzΛ

// X(E) // Y (E) // 0.

Using Proposition 15, we conclude that

charΛ
(
X(E)

)
= charΛ

(
Y (E)

)
·
(
pkLp(E)Λ

)
·
(
pkλΛ

)−1

divides λ · pkLp(E) · p−kλ−1Λ = Lp(E)Λ.

6 Consequences

Corollary 18. The analytic p-adic L-function Lp(E) belongs to Λ for all
elliptic curves E/Q with semi-stable ordinary reduction at p > 2.

The conclusion can certainly not be extended to the supersingular case since
the p-adic L-functions in this case will never be integral. The supersingular
case is well explained in [19] where it is shown how one can extract integral
power series.

Corollary 19. If E/Q is a semi-stable elliptic curve and p an odd prime
where E has ordinary reduction, then charΛ

(
X(E)

)
, or I charΛ

(
X(E)

)
in the

split multiplicative case, divides the ideal generated by Lp(E).
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Proof. By a Theorem of Serre ([24, Proposition 1] and [22, Proposition 21]),
we know that the image of the representation ρ̄p : GQ → Aut(E[p]) is either
the whole of GL2(Fp) or it is contained in a Borel subgroup. In the latter
case the representation ρ̄p is reducible and in the first case the representation
ρp : GQ → Aut(TpE) is surjective by another result of Serre [23, Lemme 15]
unless p = 3. Finally for p = 3 we use the following lemma to exclude that ρp
is not surjective.

Unfortunately, the hypothesis in Corollary 19 that E is semi-stable can not be
dropped. For instance, there are curves E/Q such that ρ̄p has its image in the
normaliser of a non-split Cartan subgroup.

Lemma 20. Let p = 3 and suppose p2 does not divide the conductor N . If the
residual representation ρ̄ : Gal(Q̄/Q) → GL2(Fp) is surjective then the p-adic
representation ρ : Gal(Q̄/Q)→ GL2(Zp) is surjective, too.

Proof. We make use of the explicit parametrisation of all these exotic cases by
Elkies in [8]. Let E/Q be an elliptic curve such that ρ is not surjective, but ρ̄
is. Then its j-invariant satisfies

j(E) = 1728− 27A(n : m)2 B(n : m)2 C(n : m)

D(n : m)9
with

A(n : m) = n6 + 6n5m+ 4n3m3 + 12n2m4 − 18nm5 − 23m6,

B(n : m) = 7n6 + 24n5m+ 18n4m2 − 26n3m3 − 33n2m4 + 18nm5 + 28m6,

C(n : m) = 2n3 − 3n2m+ 4m3,

D(n : m) = n3 − 3nm3 −m3.

for two coprime integers n and m. Note first that the denominator D(n : m)
in j(E) is never divisible by 9, so j(E) is a 3-adic integer.
With a bit more work one can see that j(E) ≡ 2 · 33 (mod 34): If n 6≡ m
(mod 3), then A(n : m) ≡ (n−m)6 ≡ B(n : m) (mod 3), C(n : m) ≡ 2(n−m)3

and D(n : m) ≡ (n −m)3 (mod 3) gives the result. For n = m + 3k, we can
use A(n : m) ≡ B(n : m) ≡ 32 (mod 33), C(n : m) ≡ 3 (mod 32), and
D(n : m) ≡ 2 · 3 (mod 32) to conclude.
Now suppose E is given by a Weierstrass equation minimal at 3. We may
assume that it is of the form y2 = x3 + a2x

2 + a4x+ a6 with a2 ∈ {−1, 0,+1}
and a4, a6 ∈ Z. If a2 = ±1, then

j(E) = 16
−27a34 + 27a24 − 9a4 + 1

∆

where ∆ is the discriminant. However this is a contradiction with j(E) ∈ 33Z3.
Hence a2 = 0 and so

j(E) = 33 · 26 · a34
a34 + 27a26/4
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and we see that it is impossible that j(E) ≡ 2 · 33 (mod 34) unless 3 divides
a4 and the discriminant ∆ = 4a34 + 27a26. Therefore E has bad reduction at 3.
The fact that j(E) is a 3-adic integer shows that the reduction is additive.

Finally, here is the usual application to the Birch and Swinnerton-Dyer conjec-
ture.

Proposition 21. Let E be an elliptic curve over Q such that L(E, 1) 6= 0.
Let cv be the Tamagawa number of E at each finite place v and the number of
components in E(R) for v =∞. Then

#X(E/Q) divides C · L(E, 1)
Ω+
E

·
(
#E(Q)

)2
∏
v cv

where C is a rational number only divisible by 2, primes of additive reduction
or primes for which the Galois representation on E[p] is neither surjective nor
contained in a Borel subgroup.

In particular, for semi-stable curve C is a power of 2. The methods in [26] can
now be extended to the reducible case, too.
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