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1. Introduction

In this article we study minimal free resolutions of the coordinate ring SC of
5-gonal canonically embedded curves C ⊂ P

g−1. The gonality of a curve C is
defined as the minimal degree of a nonconstant map C−→P

1.
A pencil of degree k on a canonically embedded curve C of genus g, defining
a degree k map C → P

1 sweeps out a rational normal scroll X of dimension
d = k − 1 and degree f = g − k + 1. It follows that the linear strand of X
is a subcomplex of the linear strand of the curve C. To be more precise the
scroll contributes with an Eagon-Northcott complex of length g−k to the linear
strand of the curve. This means in particular, that the Betti numbers of X
give a lower bound for the Betti numbers of C.
The main focus of this article lies on the relation between the Betti numbers
of the canonical curve C ⊂ P

g−1 and the Betti numbers of the scroll X defined
by a pencil of minimal degree on C.
>From the values of the Hilbert function HSC

and the relation with Betti
numbers (see [Eis05, Corollary. 9.4 and Corollary. 1.10]) one obtains the
following relation for the Betti numbers of a canonical curve C ⊂ P

g−1:

βi,i+1(C) = i ·

(
g − 2

i+ 1

)

− (g − i− 1) ·

(
g − 2

i− 2

)

+ βi−1,i+1(C).

Since the minimal free resolution of a canonical curve is self-dual, we have

βi−1,i+1(C) = βg−i−1,g−i(C) ≥ βg−i−1,g−i(X)
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and a direct computation for the case i =
⌈
g−3
2

⌉
shows that if k > 3 and g ≥ 5,

then

βi,i+1(C) ≥ i ·

(
g − 2

i+ 1

)

− (g − i− 1) ·

(
g − 2

i− 2

)

+ βg−i−1,g−i(X) > βi,i+1(X)

for all i = 1, . . . ,
⌈
g−3
2

⌉
. We are interested in the Betti numbers βi,i+1(C) for

i ≥ ⌈ g−1
2 ⌉.

The gonality of a general canonical curve of genus g is precisely ⌈ g+2
2 ⌉ and

therefore βn,n+1(X) = 0, where n = ⌈ g−1
2 ⌉. For odd genus g and ground field

of characteristic 0, Voisin and Hirschowitz-Ramanan (see [Voi05] and [HR98])
showed that the locus

Kg := {C ∈ Mg | βn,n+1(C) 6= 0}

defines an effective divisor in the moduli space of curves, the so-called Koszul
divisor.
On the Hurwitz-scheme Hg,k a natural analogue of the Koszul divisor could be
the following

Kg,k := {C ∈ Hg,k | βn,n+1(C) > βn,n+1(X)}.

If the genus is odd, then Kg,k is a divisor on the Hurwitz-scheme if βn,n+1(C) =
βn,n+1(X) holds for a general curve C ∈ Hg,k (see [HR98, §3]). For gonality
k = 3, 4 it is known from [Sch86, §6] that the so-called iterated mapping cone
construction, which we recall in Section 2, always gives a minimal free resolution
of C ⊂ P

g−1. In particular βn,n+1(C) = βn,n+1(X) holds for general 3-gonal
and 4-gonal canonical curves. For 5-gonal curves we used Macaulay2 (see
[GS]) to verify computationally, that βn,n+1(C) = βn,n+1(X) holds for general
5-gonal canonical curves of genus g < 13.
We will show that Kg,5 is no longer a divisor for odd g ≥ 13 by proving the
following theorem.

Theorem. Let C be a 5-gonal canonical curve of genus g and n = ⌈ g−1
2 ⌉.

Then
βn,n+1(C) > βn,n+1(X)

for odd genus g ≥ 13 and even genus g ≥ 28.

The proof is based on the techniques introduced in [Sch86]. First we resolve the
curve C as an OP(E )-module, where P(E ) is the bundle associated to the rational

normal scroll swept out by the g15. In the next step we resolve the OP(E )-modules
occurring in this resolution by Eagon-Northcott type complexes. An iterated
mapping cone construction then gives a non-minimal resolution of C ⊂ P

g−1.
By determining the ranks of the maps which give rise to non-minimal parts in
the iterated mapping cone we can decide whether the curve has extra syzygies.
In the last section we discuss the genus 13 case in detail.

Remark 1.1. The proof of the main theorem does not depend on the char-
acteristic of the ground field k. However for char(k) > 0 it is possible that
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βn,n+1(C) > βn,n+1(X) for general 5-gonal curves of genus g < 13. This hap-
pens, for example, for 5-gonal curves of genus 7 over a field of characteristic 2
[Sch86, §7].

Some of the statements in this article rely on computations done with
Macaulay2 [GS]. The Macaulay2 code which verifies these statements can
be found here:
http://www.math.uni-sb.de/ag-schreyer/images/data/computeralgebra/
fiveGonalFile.m2

2. Scrolls, Pencils and Canonical Curves

In this section we briefly summarize the connections between pencils on canon-
ical curves and rational normal scrolls. Most of this section follows Schreyer’s
article [Sch86].

Definition 2.1. Let e1 ≥ e2 ≥ · · · ≥ ed ≥ 0 be integers, E = OP1(e1) ⊕ · · · ⊕
OP1(ed) and let π : P(E )→ P

1 be the corresponding P
d−1-bundle.

A rational normal scroll X = S(e1, . . . , ed) of type (e1, . . . , ed) is the image of

j : P(E )→ PH0(P(E ),OP(E )(1)) = P
r

where r = f + d− 1 with f = e1 + · · ·+ ed ≥ 2.

In [Har81, §3] it is shown that the variety X defined above is a non-degenerate
d-dimensional variety of minimal degree f = r − d + 1 = codimX + 1. If
e1, . . . , ed > 0, then j : P(E ) → X ⊂ PH0(P(E ),OP(E )(1)) = P

r is an isomor-
phism. Otherwise it is a resolution of singularities and since the singularities
of X are rational, we can consider P(E ) instead of X for most cohomological
considerations.
It is furthermore shown that the Picard group Pic(P(E )) is generated by the
ruling R = [π∗OP1(1)] and the hyperplane class H = [j∗OPr(1)] with intersec-
tion products

Hd = f, Hd−1 ·R = 1, R2 = 0.

Remark 2.2 ([Sch86, (1.3)]). For a ≥ 0 we have an isomorphism
H0(P(E ),OP(E )(aH + bR)) ∼= H0(P1, Sa(E )(b)), where Sa(E ) denotes the

ath symmetric power of E . Thus we can compute the cohomology of the line
bundle OP(E )(aH + bR) explicitly.

If we denote by k[s, t] the coordinate ring of P
1 and by ϕi ∈

H0(P(E ),OP(E )(H − eiR)) the basic sections, then we can identify sections

ψ ∈ H0(OP(E ),OP(E )(aH + bR)) with homogeneous polynomials

ψ =
∑

α

Pα(s, t)ϕ
α1
1 . . . ϕαd

d

of degree a = α1+ · · ·+αd in ϕi’s and with polynomial coefficients Pα ∈ k[s, t]
of degree degPα = α1e1 + · · ·+αded+ b. Thus for a ·min{ei}+ b ≥ −1 we get

h0(P(E ),OP(E )(aH + bR)) = f

(
a+ d− 1

d

)

+ (b + 1)

(
a+ d− 1

d− 1

)

.
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In particular OP(E )(aH + bR) is globally generated if and only if a ≥ 0 and
a ·min{ei}+ b ≥ 0.

Next we want to describe how to resolve line bundles OP(E )(aH + bR) by OPr -

modules. If we denote by Φ the 2×f matrix with entries inH0(P(E ),OP(E )(H))
obtained from the multiplication map

H0(P(E ),OP(E )(R))⊗H
0(P(E ),OP(E )(H −R)) −→ H0(P(E ),OP(E )(H)),

then the equations of X are given by the 2× 2 minors of Φ. We define

F := H0(P(E ),OP(E )(H −R))⊗ OPr = O
f
Pr

and

G := H0(P(E ),OP(E )(R))⊗ OPr = O
2
Pr

and regard Φ as a map Φ : F (−1) → G. For b ≥ −1, we consider the Eagon-
Northcott type complex C (see [Eis95, Appendix A2.6]), whose jth term is
defined by

C
b
j =

{∧j
F ⊗ Sb−jG⊗ OPr (−j), for 0 ≤ j ≤ b

∧j+1 F ⊗Dj−b−1G
∗ ⊗ OPr (−j − 1), for j ≥ b+ 1

where SjG denotes the jth symmetric power and DjG
∗ denotes the jth divided

power of G. The differentials δj : C b
j → C b

j−1 are given by the multiplication

with Φ for j 6= b+ 1 and by
∧2 Φ for j = b+ 1.

Theorem 2.3. The Eagon-Northcott type complex C b(a) := C b ⊗ OPr(a), de-
fined above, gives a minimal free resolution of OP(E )(aH + bR) as an OPr -
module.

Proof. See [Sch86, §1]. �

Now let C ⊂ P
g−1 be a canonically embedded curve of genus g and let further

g1k = {Dλ}λ∈P1 ⊂ |D|

be a pencil of divisors of degree k. If we denote by Dλ ⊂ P
g−1 the linear span

of the divisor, then

X =
⋃

λ∈P1

Dλ ⊂ P
g−1

is a (k− 1)-dimensional rational normal scroll of degree f = g − k+1 (see e.g.
[EH87, Theorem 2]). Conversely if X is a rational normal scroll of degree f
containing a canonical curve, then the ruling on X cuts out a pencil of divisors
{Dλ} ⊂ |D| such that h0(C, ωC ⊗ OC(D)−1) = f.

Notation 2.4. During the rest of this article C ⊂ P
g−1 will denote a canonical

curve with a basepoint free g1k. The variety X = S(e1, . . . , ed) is the scroll of
degree f = g − k + 1 and dimension d = k − 1 defined by this pencil and P(E )
will denote the P

d−1-bundle corresponding to X.
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The next important theorem due to Schreyer explains how to obtain a free
resolutions of k-gonal canonical curves C ⊂ P

g−1 by an iterated mapping cone
construction.

Theorem 2.5. i) C ⊂ P(E ) has a resolution F• of type

0 −→ OP(E )(−kH + (f − 2)R) −→

βk−3∑

j=1

OP(E )(−(k − 2)H + a
(k−3)
j R) −→

. . . −→

β1∑

j=1

OP(E )(−2H + a
(1)
j R) −→ OP(E ) −→ OC −→ 0

with βi =
i(k−2−i)
k−1

(
k
i+1

)
.

ii) The complex F• is self dual, i.e.,

Hom(F•,OP(E )(−kH + (f − 2)R)) ∼= F•

iii) If all a(j)k ≥ −1, then an iterated mapping cone






. . .



C
(f−2)(−k) −→

βk−3∑

j=1

C
(a

(k−3)
j

)(−k + 2)



 −→ . . .



 −→ C
0





gives a, not necessarily minimal, resolution of C as an OPg−1-module.

Proof. See [Sch86, Corollary 4.4] and [Sch86, Lemma 4.2]. �

Remark 2.6. The a
(k)
i ’s in part i) of the theorem above satisfy certain linear

equations obtained from the Euler characteristic of the complex F• and part
(ii) of the Theorem above. In particular in [Sch86, §6] it is shown, that for
5-gonal curves C

∑5
i=1 ai = 2g − 12 and ai + bi = f − 2,

where ai := a
(1)
i , bi := a

(2)
i and f = g − 4 is the degree of the rational normal

scroll swept out by the g15 on C.

Definition 2.7. We call a partition (e1, . . . , ed) balanced if maxi,j |ei−ej| ≤ 1.
A rational normal scroll X = S(e1, . . . , ed) of dimension d is said to be of
balanced type if (e1, . . . , ed) is a balanced partition.
With the same notation as in the remark above we say that a 5-gonal canonical
curve satisfies the balancing conditions if

• the scroll X of dimension 4 swept out by the g15 on C is of balanced
type and

• the partition (a1, . . . , a5) of 2g − 12 is balanced.

Remark 2.8. One can show (see e.g. [GV06, Corollary 3.3]) that a generic
k-gonal curve sweeps out a scroll of balanced type. The proof uses Ballico’s
Theorem [Bal89, Proposition 2.1.1] and the fact that the type of the scroll is
uniquely determined by the g1k (see [Sch86, (2.4)]).
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For a section Ψ : OX(−H + bR) −→ OX(aR) in H0(X,OX(H − (b − a)R))
the induced comparison maps ψ• : C b

• (−1) −→ C a
• between the corresponding

Eagon-Northcott type complexes are determined by Ψ up to homotopy. For
example

Hom(C b
a+1(−1),C

a
a+2) = Hom(C b

a (−1),C
a
a+1) = 0

by degree reasons, and therefore the (a+1)st−comparison map ψa+1 is uniquely
determined by Ψ (not only up to homotopy). The following lemma is due to
Martens and Schreyer.

Lemma 2.9. If Hom(C b
j (−1),C

a
j+1) = Hom(C b

j−1(−1),C
a
j ) = 0, then the jth-

comparison map ψj : C b
j → C a

j is given (up to a scalar factor) by the composi-
tion

ψj :

j∧
F ⊗ Sb−jG −→

j∧
F ⊗ Sb−jG⊗ Sj−a−1G⊗Dj−a−1G

∗

id⊗mult⊗id
−−−−−−−−→

j∧
F ⊗ Sb−a−1G⊗Dj−a−1G

∗ id⊗Ψ⊗id
−−−−−−→

j∧
F ⊗ F ⊗Dj−a−1G

∗

∧⊗id
−−−→

j+1∧
F ⊗Dj−a−1G

∗
.

Proof. In [MS86, Lemma of the Appendix] this is shown for the (a+1)st com-
parison map but the proof immediately generalizes to our situation as long as
Hom(C b

j (−1),C
a
j+1) = Hom(C b

j−1(−1),C
a
j ) = 0. �

3. Proof of the Main Theorem

The aim of this section is to prove Theorem 3.1 and then to show that a general
5-gonal curve satisfies the balancing conditions.

Theorem 3.1. Let C ⊂ P
g−1 be a general 5-gonal canonical curve of genus g

satisfying the balancing conditions. If X is the scroll swept out by the g15 and
n = ⌈ g−1

2 ⌉, then

βn,n+1(C) > βn,n+1(X) for odd g ≥ 13 and even g ≥ 28.

Throughout this section, C ⊂ P
g−1 will be a 5-gonal canonical curve of genus g.

In this case X is a d = 4 dimensional rational normal scroll of degree f = g−4.
Recall from Theorem 2.5 and Remark 2.6 that C ⊂ P(E ) has a resolution of
the form

OP(E )(−5H + (f − 2)R)→
5∑

i=1

OP(E )(−3H + biR)

Ψ
−→

5∑

i=1

OP(E )(−2H + aiR)→ OP(E ) → OC

where
∑5

i=1 ai = 2g − 12, ai + bi = f − 2.
The matrix Ψ is skew symmetric by the structure theorem for Gorenstein ideals
in codimension 3 and the 5 Pfaffians of Ψ generate the ideal of C (see [BE77,
Theorem 2.1]).
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As in Theorem 2.3, we denote by F = H0(P(E ),OP(E )(H−R))⊗OPg−1
∼= O

f

Pg−1

and byG = H0(P(E ),OP(E )(R))⊗OPg−1
∼= O2

Pg−1 . By abuse of notation, we will

also refer to the vector spacesH0(P(E ),OP(E )(H−R)) and H0(P(E ),OP(E )(R))
by F and G, respectively.
Resolving the OP(E )-modules occurring in the minimal resolution of C ⊂ P(E ),
we get

∑5
i=1 OP(E )(−3H + biR)

Ψ // ∑5
i=1 OP(E )(−2H + biR)

.

.

.

OO

.

.

.

OO

∑5
i=1 C

bi
n−2(−3)

OO

ψn−2 // ∑5
i=1 C

ai
n−2(−2)

OO

∑5
i=1 C

bi
n−1(−3)

OO

ψn−1 // ∑5
i=1 C

ai
n−1(−2)

OO

.

.

.

OO

.

.

.

OO

where rank(
∑5

i=1 C
bi
n−2) ≤ rank(

∑5
i=1 C

ai
n−2) (with equality for odd genus).

Next note that if C is a canonical curve of odd genus g = 2n+1 satisfying the
balancing conditions, then we obtain the following inequality

min{bi} =

⌊∑5
i=1 bi
5

⌋

=

⌊
6n− 15

5

⌋

≥ n− 2 ≥

⌈
4n− 10

5

⌉

= max{ai}(3.1)

if n ≥ 5. For even genus g = 2n and n ≥ 8 we similarly get

min{bi} =

⌊
6n− 18

5

⌋

≥ n− 2 ≥

⌈
4n− 12

5

⌉

= max{ai}.

It follows that in these cases

C
bi
n−2(−3) =

n−2∧

F ⊗ Sbi−n+2G(−n− 1)

and

C
ai
n−2(−2) =

n−1∧

F ⊗Dn−ai−3G
∗(−n− 1).

Thus, if C is a canonical curve of odd genus g ≥ 11 or even genus g ≥ 16, then
the (n− 2)th comparison map in the diagram above

ψ := ψn−2 :

5∑

i=1

C
bi
n−2(−3) −→

5∑

i=1

C
ai
n−2(−2)

has entries in the field k and its rank determines the Betti number βn,n+1(C).
To be more precise, we have

βn,n+1(C) = βn,n+1(X) + dimker(ψ),

where the Betti number βn,n+1(X) is given by rank(C 0
n ) = n ·

(
f
n+1

)
.
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For the proof of Theorem 3.1 we restrict ourselves to curves of odd genus since
the theorem is proved in exactly the same way for even genus. For curves of
odd genus g = 2n+1, we distinguish 5 types of curves satisfying the balancing
conditions. These types depend on the congruence class of n modulo 5, i.e., on
the block structure of the skew symmetric matrix Ψ. Setting r := ⌊n5 ⌋ we have
the following five possibilities.

Type I: (a1, . . . , a5) = (a, a, a, a, a), (b1, . . . , b5) = (b, b, b, b, b) ⇔ a =
4r + 2, b = 6r + 3 and n = 5r + 5.

Type II: (a1, . . . , a5) = (a− 1, a, a, a, a), (b1, . . . , b5) = (b+1, b, b, b, b)⇔
a = 4r − 1, b = 6r − 2 and n = 5r + 1.

Type III: (a1, . . . , a5) = (a − 1, a − 1, a, a, a), (b1, . . . , b5) = (b + 1, b +
1, b, b, b)⇔ a = 4r, b = 6r − 1 and n = 5r + 2.

Type IV: (a1, . . . , a5) = (a, a, a, a + 1, a + 1), (b1, . . . , b5) = (b, b, b, b −
1, b− 1)⇔ a = 4r, b = 6r + 1 and n = 5r + 3.

Type V: (a1, . . . , a5) = (a, a, a, a, a+ 1), (b1, . . . , b5) = (b, b, b, b, b− 1)⇔
a = 4r + 1, b = 6r + 2 and n = 5r + 4.

Proof of Theorem 3.1.
Since the proof of the theorem is similar for all different types above, we will
only carry out the proof for curves of type II, leaving the other cases to the
reader. We show that the map

ψ :

(

C
(b+1)
n−2 ⊕

4∑

i=1

C
b
n−2

)

(−3) −→

(

C
(a−1)
n−2 ⊕

4∑

i=1

C
a
n−2

)

(−2)

induced by the skew-symmetric matrix

Ψ :
OP(E)(−3H+(b+1)R)

⊕
OP(E)(−3H+bR)⊕4

−→
OP(E)(−2H+(a−1)R)

⊕
OP(E)(−2H+aR)⊕4

has a non-trivial decomposable element in the kernel. Note that the map

Ψ(11) : OP(E )(−3H + (b + 1)R) −→ OP(E )(−3H + (a− 1)R)

is zero by the skew-symmetry of Ψ. Thus it is sufficient to find an element in

the kernel of the map ψ(41) : C
(b+1)
n−2 (−3) −→

∑4
i=1 C

(a)
n−2(−2), induced by the

submatrix

Ψ(41) : OP(E )(−3H + (b + 1)R) −→ OP(E )(−2H + aR)⊕4

of the matrix Ψ. By Lemma 2.9, the map ψ(41) is uniquely determined and is
given as the composition

C
b+1
n−2(−3) =

n−2∧

F ⊗ Sb−n+3G =

n−2∧

F ⊗ Sn−a−2G

→֒
n−2∧

F ⊗ Sn−a−2G⊗ Sn−a−3G⊗Dn−a−3G
∗

−→

n−2∧

F ⊗ S2n−2a−5G⊗Dn−a−3G
∗

id⊗Ψ(41)⊗id
−−−−−−−−→

n−2∧

F ⊗ F⊕4 ⊗Dn−a−3G
∗
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∧⊗id
−−−→

( n−1∧

F

)⊕4

⊗Dn−a−3G
∗ =

4∑

i=1

C
a
n−2(−2) .

Since the multiplication map Sn−a−2G ⊗ Sn−a−3G −→ S2n−2a−5G is not in-

jective, we show that the existence of an f ∈
∧n−2

F and a g ∈ Sn−a−2G such
that f ∧Ψ(41)(g · g

′) = 0 for all g′ ∈ Sn−a−3G.
To this end, let g ∈ Sn−a−2G be an arbitrary element and let {g′1, . . . , g

′
n−a−2}

be a basis of Sn−a−3G. For i = 1, . . . , (n− a− 2), we define

(f
(i)
1 , f

(i)
2 , f

(i)
3 , f

(i)
4 )t := Ψ(41)(g · g

′

i) ∈ F
4

and choose a maximal linearly independent subset {fk}k=1,...,p of {f
(i)
j } ⊂ F .

Since

n− 2 = 5r − 1 ≥ #{f
(i)
j } = 4 · dimk(Sn−a−3G) = 4(n− a− 2) = 4r

≥ #{fk} = p

holds for all r ≥ 1 (i.e. g ≥ 13), we find a nonzero element f of the form

f = f1 ∧ f2 ∧ · · · ∧ fp ∧ f̃ ∈

n−2∧

F

for some f̃ ∈
∧n−p−2 F . By construction, f ⊗ g is in the kernel of ψ(41), and

hence (f ⊗ g, 0, 0, 0, 0)t lies in the kernel of ψ. �

We can immediately generalize Theorem 3.1.

Theorem 3.2. Let C ⊂ P
g−1 be a general 5-gonal canonical curve satisfying

the balancing conditions. Then

βn+c,n+c+1(C) > βn+c,n+c+1(X) for odd genus g = 2n+ 1 ≥ 30c+ 13

βn+c,n+c+1(C) > βn+c,n+c+1(X) for even genus g = 2n ≥ 30c+ 28.

Proof. With the above notation we always have

rank(

5∑

i=1

C
bi
n−2+c) ≤ rank(

5∑

i=1

C
ai
n−2+c).

Since the curve C satisfies the balancing conditions, we obtain as in (3.1)

min{bi} ≥ n− 2 + c ≥ max{ai}

for odd genus g = 2n+1 if n ≥ 5c+5 or even genus g = 2n if n ≥ 5c+8. Thus,
it follows that the Betti number βn+c,n+c+1(C) is determined by the rank of
the map

ψn−2+c :

5∑

i=1

C
bi
n−2+c(−3) −→

5∑

i=1

C
ai
n−2+c(−2)

which has entries in the ground field k. By the same construction as in the
proof of Theorem 3.1, we find a decomposable element in the kernel of ψn−2+c

if r = ⌊n5 ⌋ ≥ 3c+ 1 (for odd genus) or r = ⌊n5 ⌋ ≥ 3c+ 3 (for even genus). This
gives precisely the range for the genus, as stated in the theorem. �
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Next we want to show that the generic 5-gonal curve satisfies the balancing
conditions. The balancing conditions on a 5-gonal canonical curve are open
conditions. It is therefore sufficient to find an example for each g.

Proposition 3.3. For any odd g ≥ 13 (and even g ≥ 28), there exists a
smooth and irreducible 5-gonal canonical genus g curve satisfying the balancing
conditions.

Proof. We illustrate the proof for odd genus curves of type II:
To this end, let X = S(e1, . . . , e4) ∼= P(E ) with e1 ≥ · · · ≥ e4 be a fixed 4-
dimensional rational normal scroll of balanced type and of degree f = g − 4.
Let further

(a1, . . . , a5) = (a− 1, a, a, a, a) and (b1, . . . , b5) = (b+ 1, b, b, b, b)

be balanced partitions such that
∑5

i=1 ai = 2g − 12, g = 2n + 1, n = 5r + 1,

a = 4r−1 and ai+bi = g−6. We consider a general skew-symmetric morphism

OP(E )(−3H+(b+1)R)

⊕
OP(E )(−3H+bR)⊕4

︸ ︷︷ ︸

=:F

Ψ
−−→

OP(E )(−2H+(a−1)R)

⊕
OP(E )(−2H+aR)⊕4

︸ ︷︷ ︸

=:F∗⊗L

If
∧2

F ∗ ⊗L is globally generated, then it follows by a Bertini type theorem
(see e.g. [Oko94, §3]) that the scheme Pf(Ψ) cut out by the Pfaffians of Ψ is
smooth of codimension 3 or empty. Recall from Remark 2.2, that a line bundle
OP(E )(H + cR) is globally generated if and only if e4 + c ≥ 0. Thus since for
r ≥ 1

min{ei} =

⌊
g − 4

4

⌋

=

⌊
10r − 1

4

⌋

= 2r +

⌊
2r − 1

4

⌋

≥ (b− a+ 1) = 2r,

we conclude that in this case
2∧

F
∗ ⊗L = OP(E )(H − (b− a+ 1)R)⊕4 ⊕ OP(E )(H − (b− a)R)⊕6

is globally generated. It follows that C = Pf(Ψ) is smooth of codimension 3 or
empty. The iterated mapping cone construction gives a free resolution of C ⊂
P
g−1 of length g− 2 which is not null-homotopic. Therefore it follows from the

Auslander-Buchsbaum formula that C is a non-empty (and therefore smooth)
arithmetically Cohen-Macaulay scheme. In particular we have a surjective map

H0(Pg−1,OPg−1)
︸ ︷︷ ︸

∼=k

→ H0(C,OC)→ 0

and therefore C is smooth and connected and hence an irreducible curve.
Doing the same for curves of type I, III, IV and V and the even genus cases

the result follows for all genera except for g = 15 (in this case
∧2

F ∗ ⊗L is
not globally generated). For the g = 15 case one can verify the statement by
using Macaulay2 (see [GS]). �
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Corollary 3.4. Kg,5 = {C ∈ Hg,5 | βn,n+1(C) > βn,n+1(X)} equals Hg,5 for
odd genus g ≥ 13 and even genus g ≥ 28.

Proof. For odd genus g ≥ 13 and even genus g ≥ 28 it follows by Theorem 3.1
and Proposition 3.3 that Kg,5 is a non empty and dense subset of Hg,5. The
conclusion follows by semi-continuity on the Betti numbers. �

4. A First Example

In this section, we discuss the case of a general 5-gonal canonical curve of genus
13. The rational normal scroll X swept out by the g15 on C is therefore a 4-
dimensional scroll of type S(3, 2, 2, 2) and degree f = 9. The curve C ⊂ P(E )
has a resolution of the form

OP(E )(−5H + 7R)→
OP(E)(−3H+5R)

⊕
OP(E)(−3H+4R)⊕4

Ψ
−→

OP(E)(−2H+2R)

⊕
OP(E)(−2H+3R)⊕4

→ OP(E ) → OC

where Ψ is a skew-symmetric matrix with entries as indicated below

(4.1) (Ψ) ∼













0 (H − 2R) (H − 2R) (H − 2R) (H − 2R)
0 (H − R) (H − R) (H − R)

0 (H − R) (H − R)
0 (H − R)

0













We resolve the OP(E )-modules in the resolution above by Eagon-Northcott
type complexes and determine the rank of the maps which give rise to non-
minimal parts in the iterated mapping cone. As in Section 3, we denote by
F = H0(P(E ),OP(E )(H −R)) and by G = H0(P(E ),OP(E )(R)).

∑5
i=1 C

bi
3 (−3) =

∧3 F⊗S2G(−6)
⊕

(
∧3 F⊗S1G(−6))⊕4

OO

ψ3 // ∑5
i=1 C

ai
3 (−2) =

∧4 F (−6)
⊕

(
∧4 F (−5))⊕4

OO

∑5
i=1 C

bi
4 (−3) =

∧4 F⊗S1G(−7)
⊕

(
∧

4 F (−7))⊕4

OO

ψ4 // ∑5
i=1 C

ai
4 (−2) =

∧5 F⊗D1G
∗(−7)

⊕
(
∧

5 F (−7))⊕4

OO

∑5
i=1 C

bi
5 (−3) =

∧5 F (−8)
⊕

(
∧

5 F (−9))⊕4

OO

ψ5 // ∑5
i=1 C

ai
5 (−2) =

∧6 F⊗D2G
∗(−8)

⊕
(
∧

6 F⊗D1G∗(−8))⊕4

OO

OO OO

Note that by degree reasons, the maps indicated above are the only ones which
give rise to possibly non-minimal parts in the iterated mapping cone.
By the Gorenstein property of canonical curves, it follows that the maps

ψ′

3 : (

3∧

F ⊗ S1G)
⊕4(−6)→

4∧

F (−6)
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and

ψ′

5 :

5∧

F (−8)→ (

6∧

F ⊗D1G
∗)⊕4(−8)

are dual to each other and one can easily check the surjectivity of ψ′
3. It remains

to compute the rank of ψ4.

Proposition 4.1. Let Ψ be a general skew symmetric matrix with entries as
indicated above. Then the induced matrix ψ4 :

∑5
i=1 C

bi
4 (−3)→

∑5
i=1 C

ai
4 (−2)

has a six dimensional kernel.

Proof. According to Section 2, we can write down the relevant cohomology
groups. Let {s, t} be a basis of G = H0(P(E ),OP(E )(R)) and {ϕ1} be a basis of

H0(P(E ),OP(E )(H − 3R)) then a basis of H0(P(E ),OP(E )(H − 2R)) is given by

{sϕ1, tϕ1, ϕ2, ϕ3, ϕ4}. We consider the submatrix ψ(41) :
∧4

F ⊗ S1G(−7) →
(
∧5 F (−7)

)4

of ψ4 induced by the first column of Ψ. As in the proof of

Theorem 3.1, the map ψ(41) is given as the composition

∧4
F ⊗ S1G ∼=

∧4
F ⊗H0(OP(E )(R))

id⊗Ψ(41)

��
∧4

F ⊗H0(OP(E )(H −R))
⊕4 ∼=

∧4
F ⊗ F⊕4 ∧ // (

∧5
F )⊕4.

By our generality assumption on C, we can assume that the 4 entries of Ψ(41) are
independent and after acting with an element in Aut(X), we can furthermore
assume that Ψ(41) = (sϕ1, ϕ2, ϕ3, ϕ4)

t. It follows that elements of the form

(λs+µt)sϕ1∧ (λs+µt)ϕ2 ∧ (λs+µt)ϕ3∧ (λs+µt)ϕ4⊗ (λs+µt),with λ, µ ∈ k

lie in the kernel of ψ(41). Expanding those elements we get

λ5s2ϕ1 ∧ sϕ2 ∧ sϕ3 ∧ sϕ4 ⊗ s+ · · ·+ µ5stϕ1 ∧ tϕ2 ∧ tϕ3 ∧ tϕ4 ⊗ t

and conclude that a rational normal curve of degree 5 lies in P(Syz) where

Syz ⊂ TorT6 (T/IC)7 is the subspace of the 6th syzygy module spanned by the
extra syzygies and IC ⊂ T denotes the ideal of the canonical curve C. We get
β6,7(C) ≥ β6,7(X) + 6 = 222 and by computing one example using Macaulay2,
it follows that ψ4 has a 6-dimensional kernel in general. �

Remark 4.2. A direct computation using Macaulay2 shows that none of the
entries of the skew symmetric matrix Ψ can be made zero by suitable row and
column operations respecting the skew symmetric structure of Ψ. By [Sch86,
§5] this implies that the 6 extra syzygies are not induced by an additional linear
series on C.

The question arises of how the extra syzygies of a 5-gonal canonical curve
C ⊂ P

12 differ from the syzygies induced by the scroll swept out by the g15 on
C. At least in the genus g = 13 case we can give an answer in this direction by
considering syzygy schemes, originally introduced in [Ehb94].
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Definition and Remark 4.3. Let C ⊂ P
g−1 be a smooth and irreducible

canonical curve and let IC ⊂ S be the ideal of C. Let further

L• : S ← S(−2)β1,2 ← S(−3)β2,3 ← · · ·

be the linear strand of a minimal free resolution of SC = S/IC . For a pth

linear syzygy s ∈ Lp, let Vs be the smallest vector space such that the following
diagram commutes

Lp−1 ←− Lp

∪ ∪
Vs ⊗ S(−p) ←− S(−p− 1) ∼= 〈s〉 .

The rank of the syzygy s is defined to be rank(s) := dimVs.
Since Hom(L•, S) is a free complex and the Koszul complex is exact, it follows
that the maps of the dual diagram extend to a morphism of complexes. Dualizing
again we get

S L1
oo · · ·oooo Lp−1

oo Lpoo

∧p
Vs ⊗ S(−1)

ϕp

OO

∧p−1
Vs ⊗ S(−2)oo

OO

· · ·oo Vs ⊗ S(−p)oo

OO

S(−p− 1) .oo

OO

By degree reasons there are only trivial homotopies and therefore all the vertical
maps except ϕp are unique. The syzygy scheme Syz(s) of s is the scheme
defined by the ideal

Is = im(S ←−

p−1
∧

Vs ⊗ S(−2)).

The pth-syzygy scheme Syzp(C) of a curve C is defined to be the intersection
⋂

s∈Lp
Syz(s).

Any pth-syzygy of a canonical curve has rank ≥ p+ 1 and the syzygies of rank
p + 1 are called scrollar syzygies. The name is justified by a theorem due to
von Bothmer:

Theorem 4.4 ([GvB07, Corollary 5.2]). Let s ∈ Lp be a pth scrollar syzygy.
Then Syz(s) is a rational normal scroll of degree p+1 and codimension p that
contains the curve C.

We can now come back to our example of a 5-gonal genus 13 curve. Recall that
in this case the space of extra syzygies can be identified with the kernel of the
map

C
5
4 (−3)→ (C 3

4 )
⊕4(−2)

which is induced by the first column of the skew symmetric matrix Ψ.
We denote by Pf1, . . . ,Pf4 ∈ H

0(OP(E ),OP(E )(2H − 3R)) the 4 Pfaffians of the
matrix Ψ that involve the first column and consider the iterated mapping cone

[[
C

5 → (C 3)⊕4
]
→ C

0
]
,

where
∑4
i=1 C 3 → C 0 is induced by the multiplication with (Pf1, . . . ,Pf4).

This complex is a resolution of the ideal J generated by the 4 Pfaffians as an
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OP12 -module. In particular the minimized resolution is a subcomplex of the
minimal free resolution of SC .
Since all extra syzygies are induced by the first column of Ψ, it follows that
the 6th syzygy modules in the linear strand of these minimal resolutions
are canonically isomorphic. Therefore Syz6(V (J)) and Syz6(C) coincide and
V (J) ⊂ Syz6(C).

Proposition 4.5. Let C ⊂ P
12 be a general 5-gonal canonical curve. Then

Syz6(C) is the scheme cut out by the 4 Pfaffians of Ψ involving the first column.
In particular Syz6(C) = C ∪ p for some point p ∈ X.

Proof. One inclusion follows from the discussion above. The other inclusion
follows by computing one example using Macaulay2. �

Remark 4.6. Since we do not have a full description of the space of extra
syzygies for 5-gonal canonical curves of higher genus, a similar approach does
not work in these cases.
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