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Abstract. In a 1999 paper, Bercovici and Pata showed that a natural
bijection between the classically, free and Boolean infinitely divisible mea-
sures held at the level of limit theorems of triangular arrays. This result was
extended to include monotone convolution by the authors in [AW14]. In re-
cent years, operator-valued versions of free, Boolean and monotone proba-
bility have also been developed. Belinschi, Popa and Vinnikov showed that
the Bercovici-Pata bijection holds for the operator-valued versions of free
and Boolean probability. In this article, we extend the bijection to include
monotone probability theory even in the operator-valued case. To prove this
result, we develop the general theory of composition semigroups of non-
commutative functions and largely recapture Berkson and Porta’s classical
results on composition semigroups of complex functions in operator-valued
setting. As a byproduct, we deduce that operator-valued monotonically in-
finitely divisible distributions belong to monotone convolution semigroups.
Finally, in the appendix, we extend the result of the second author on the
classification of Cauchy transforms for non-commutative distributions to the
Cauchy transforms associated to more general completely positive maps.
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1. INTRODUCTION

It is a remarkable fact that there are natural bijections between the classes of infinitely
divisible measures in each of the four universal non-commutative probability theories,
which not only arise from the Lévy-Hinc̆in representations of the measures, but are
maintained at the level of limit theorems of triangular arrays. This is made precise in
the following theorem:

Theorem 1.1. Fix a finite positive Borel measureσ on R, a real numberγ,
a sequence of probability measures{µn}n∈N, and a sequence of positive integers
k1 < k2 < · · · . The following assertions are equivalent:

(a) (Classical / tensor) The sequenceµn ∗ µn ∗ · · · ∗ µn
︸ ︷︷ ︸

kn

converges weakly to

νγ,σ∗ ;
(b) (Free) The sequenceµn ⊞ µn ⊞ · · ·⊞ µn

︸ ︷︷ ︸

kn

converges weakly toνγ,σ
⊞

;

(c) (Boolean) The sequenceµn ⊎ µn ⊎ · · · ⊎ µn
︸ ︷︷ ︸

kn

converges weakly toνγ,σ⊎ ;

(d) (Monotone) The sequenceµn ⊲ µn ⊲ · · ·⊲ µn
︸ ︷︷ ︸

kn

converges weakly toνγ,σ⊲ ;

(e) The measures

kn
x2

x2 + 1
dµn(x) → σ

weakly, and

lim
n↑∞

kn

∫

R

x

x2 + 1
dµn(x) = γ.

Hereνγ,σ∗ , νγ,σ
⊞

, νγ,σ⊎ , νγ,σ⊲ are probability measures defined explicitly through their
complex-analytic transforms. The equivalence of classical, free, and Boolean limit
theorems in parts (a), (b), (c) and (e) was proven in a by now classic paper due to
Bercovici and Pata [BP99]. The monotone non-commutative probability theory is of
more recent provenance [Mur00, Mur01]. The inclusion of part (d) was proven in our
recent paper [AW14].
Voiculescu developed operator-valued notions of non-commutative probability
[Voi87] where probability measures are replaced by certaincompletely positive maps
from the ring of non-commutative polynomials over a C∗-algebra. An analogous
theorem in this more general setting, namely the equivalence of parts (b) and (c), was
proven in [BPV12]. The first main result in this paper is the inclusion of (d) at this
level of generality.
In order to study monotone infinitely divisibleB-valued distributions, we must first
develop the theory of composition semigroups of non-commutative functions in a
manner analogous to Berkson and Porta’s study of these semigroups at the level of
complex functions [BPo78]. This stems from the fact that theconvolution operation
for monotone probability theory satisfies the following relation for the associatedF -
transforms,

Fµ⊲ν = Fµ ◦ Fν ,
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so that infinitely-divisible distributions form such a composition semigroup. In the
second main result of the paper, we prove that any monotone infinitely-divisible dis-
tribution can be included in such a semigroup. Note that evenin the scalar-valued
case, this is a recent result, proved by Serban Belinschi in his thesis. Finally, we char-
acterize generators of such composition semigroups, and a smaller set of generators
of composition semigroups ofF -transforms.
In Section 2, we provide background and preliminary results. In section 3, we study
composition semigroups of vector-valued and non-commutative analytic functions.
The main results of this section are Proposition 3.3, which shows that there is a nat-
ural notion of a time derivative for semigroups of vector-valued analytic functions
{ft}t≥0, and Theorem 3.5, which proves that, in the case ofF -transforms and more
general self-maps of the complex upper half plane, these semi-groups are in bijection
with certain classes of functions defined through their analytic and asymptotic proper-
ties. This bijection provides a Lévy-Hinc̆in representation for these infinitely divisible
distributions. In section 4 we prove the main result of the paper, namely the extension
of Theorem 1.1 to the operator-valued case. In contrast to the previous section, this
is achieved through a combinatorial methodology. We close the paper with the Ap-
pendix, which is primarily concerned with the extension of the main result in [Wil13],
namely the classification of the Cauchy transforms associated toB-valued distribu-
tions, to a more general class of functions including the Cauchy transforms associated
to more general CP maps.
Acknowledgements. We are grateful to the referee for helpful comments.

2. PRELIMINARIES

Let B denote a unital C∗-algebra andX a self-adjoint symbol. We will define the
ring of noncommutative polynomialsB〈X〉 as the algebraic free product ofB andX .
B0〈X〉 are polynomials inB〈X〉 with zero constant term.

Definition 2.1. Letµ : B〈X〉 → B denote a linear map. We say thatµ is exponen-
tially boundedwith constantM if

(1) ‖µ(b1Xb2 · · ·Xbn+1)‖ ≤ Mn‖b1‖‖b2‖ · · · ‖bn+1‖
We abuse terminology and say that the mapµ is completely positive(CP) if

(2) (µ⊗ 1n)
([

Pi(X)P ∗
j (X)

]n

i,j=1

)

≥ 0

for every familyPi(X) ∈ B〈X〉.
We define a setΣ0 to be thoseB-bimodular linear mapsµ satisfying (1) and (2).

For a general introduction to non-commutative functions, we refer to [KVV14].
Throughout,B,A shall denote unital C∗-algebras. LetMn(B) denote then× n ma-
trices with entries inB. We define thenoncommutative space overB to be the set
Bnc = {Mn(B)}∞n=1. A non-commutative setis a subsetΩ ⊂ Bnc that respects
direct sums. That is, forX ∈ Ω ∩ Mn(B) and Y ∈ Ω ∩ Mp(B) we have that
X ⊕ Y ∈ Ω ∩ Mn+p(B). We note that these definitions apply to the more gen-
eral case ofB being any unital, commutative ring, but we focus on theC∗-algebraic
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setting. Givenb ∈ Mn(B), thenon-commutative ballof radiusδ aboutb is the set
Bnc

δ (b) := ⊔∞
k=1Bδ(⊕kb) whereBδ(⊕kb) ⊂ Mnk(B) is the standard ball of radiusδ.

A non-commutativefunction is a mapf : Ω → Anc with the following properties:

(a) f(Ωn) ⊂ Mn(A)
(b) f respects direct sums :f(X ⊕ Y ) = f(X)⊕ f(Y )
(c) f respects similarities: ForX ∈ Ωn andS ∈ Mn(C) invertible we have that

f(SXS−1) = Sf(X)S−1

provided thatSXS−1 ∈ Ωn.

A non-commutative function is said to belocally bounded in slicesif, for everyn and
elementx ∈ Ωn, f |Ωn

is bounded on some neighborhood ofx in the norm topol-
ogy. It is a remarkable fact originally due to Taylor ([Tay72], [Tay73]) that a non-
commutative function that is Gâteaux differentiable and locally bounded in slices is in
fact analytic. A non-commutative function isuniformly analyticat b ∈ Mn(B) if it is
analytic and bounded onBnc

r (b) for somer > 0.
Let M+,ǫ

n (B) ⊂ Mn(B) denote those elementb ∈ Mn(B) with ℑ(b) > ǫ1n and
M+

n (B) = ∪ǫ>0M
+,ǫ
n . We form a non-commutative set

H+(B) = ⊔∞
n=1M

+
n (B)

and refer to this set as thenon-commutative upper half plane.
We define a family of sets inH+(B). Forα, ǫ > 0 define a non-commutative Stolz
angle to be

Γ(n)
α,ǫ := {b ∈ M+,ǫ

n (B) : ℑ(b) > αℜ(b)}.
Letµ ∈ Σ0. We define theCauchy transformof µ to be the analytic, non-commutative
functionGµ = {G(n)

µ }∞n=1 such that

G(n)
µ (b) := (µ⊗ 1n)((b −X ⊗ 1n)

−1) : H+(B) 7→ H−(B).
From this map, we may construct themoment generating function, theF-transform,
the Voiculescu transformand theR-transform respectively through the following
equalities:

H(n)(b) := G(n)(b−1) : H−(B) 7→ H−(B)
F (n)(b) := G(n)(b)−1 : H+(B) 7→ H+(B)

ϕ(n)
µ (b) := (F (n)

µ )〈−1〉(b)− b

R(n)
µ (b) := ϕ(n)

µ (b−1)

where the superscript〈−1〉 refers to the composition inverse. We also note that the
moment generating function extend to a neighborhood of0 for µ ∈ Σ0 and that the
Voiculescu-transform is only defined on a subset ofH+(B). The following result,
proven in [Wil13] and [PV13], classifies theF -transforms in terms of their analytic
and asymptotic properties.

Theorem 2.1. Let f = (f (n)) : H+(B) → H+(B) denote an analytic, noncommu-
tative function. The following conditions are equivalent.

(a) f = Fµ for someµ ∈ Σ0.
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(b) The noncommutative functionk = (k(n))∞n=1 defined by k(n)(b) :=
(f (n)(b−1))−1 has uniformly analytic extension to a neighborhood of0. More-
over, for any sequence{bk}k∈N with ‖b−1

k ‖ ↓ 0, b−1
k f (n)(bk) → 1n in norm.

(c) There exists anα ∈ B and aσ : B〈X〉 → B which satisfies (1) and (2) such that,
for all n ∈ N,

f (n)(b) = α1n + b− (σ ⊗ 1n)(b(1 −Xb)−1).

Moreover, the mapσ in (c) is of the formσ(P (X)) = ρ(XP (X)X) for ρ such that
its restriction toB0〈X〉 is positive.

We will require several classical results in complex function theory to prove our re-
sults. Theorem 3.16.3 in [HP74] is a useful analogue of the classical Cauchy estimates
in complex analysis. We also refer to this reference for an overview of the differential
structure of vector valued functions, including the higherorder derivativeδn utilized
below.

Theorem 2.2. Let f be Gâteaux differentiable inU and assume that‖f(x)‖ ≤ M
for x ∈ U . Then

‖δnf(a;h)‖ ≤ Mn!

for a+ h ∈ U .

Further, theorem 3.17.17 in [HP74] provides Lipschitz estimates for analytic func-
tions. Indeed, for an analytic functionf that is locally bounded byM(a) in a neigh-
borhood of radiusra, we have that

(3) ‖f(y)− f(x)‖ ≤ 2M(a)‖x− y‖
ra − 2‖x− y‖

Notation 2.2. We define a familyΛ of functionsΦ : H+(B) → H−(B) through
the following properties:

(i) The mapR(b) := Φ(b−1) has uniformly analytic continuation to a non-
commutative ball about0 with R(b)∗ = R(b)

(ii) For any sequence{bk}k∈N ∈ B with ‖b−1
k ‖ ↓ 0, we have thatb−1

k Φ(bk) → 0.

We also define a larger family of functionsΛ̃ by replacing (i) and (ii) with the follow-
ing weaker conditions

(I) For anyǫ > 0, Φ is uniformly bounded on⊔∞
n=1M

+,ǫ
n (B).

(II) For anyα, ǫ > 0 and a sequence{bk}k∈N ∈ Γ
(n)
α,ǫ with ‖b−1

k ‖ ↓ 0, we have that
b−1
k Φ(bk) → 0.

Definition 2.3. Letµ, ν ∈ Σ0. We define themonotone convolutionto be the non-
commutative operation(µ, ν) 7→ µ⊲ ν ∈ Σ0 defined implicitly though the equality

Fµ⊲ν := Fµ ◦ Fν .

Note that this definition uses Theorem 2.1 in an essential way, to show that a
composition ofF -transforms is anF -transform. See Section 4 and references
[Pop08, HS11, Pop12, HS14] for the relation between this definition and monotone
independence of Muraki.
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Definition 2.4. We say thatµ is a⊲-infinitely divisible distribution if, for everyn,
there exists a distributionµn ∈ Σ0 such that

(4) µ = µn ⊲ µn ⊲ · · ·⊲ µn
︸ ︷︷ ︸

n times

We define a composition semigroup ofF -transforms{Ft}t∈Q+ by lettingFp/q :=
F ◦p
µq

whereµ = µ⊲q
q for all p, q ∈ N. We will show in Theorem 3.5 that this semigroup

extends to anR+ semigroup, which moreover is generated by a functionΦ ∈ Λ in a
sense that will be made specific. Moreover, one of the main results in [Wil13] is that
the setΛ is exactly the set of Voiculescu transforms associated to⊞-infinitely divisible
distributions. This is not a coincidence and will drive the main result of this paper.

3. LÉVY-HINC̆IN REPRESENTATIONS FORSEMIGROUPS OFNON-COMMUTATIVE

FUNCTIONS.

We begin this section with a result showing that the divisorsof ⊲-infinitely divisible
distributions maintain the same exponential bound. A similar result can be proven in
the combinatorial setting of Section 4 in an easier manner, but the bound is less sharp.

Proposition 3.1. Letµ denote a⊲-infinitely divisible distribution with exponential
boundM . Then, for eachk, the distributionµk satisfyingµ = µ⊲k

k has exponential
boundM .

Proof. Let Xb1Xb2 · · · bn−1X = Q(X) ∈ B〈X〉 such that‖b1‖ = ‖b2‖ =
· · · ‖bn−1‖ = 1 and assume, for the sake of contradiction, that‖µk(Q(X))‖ > Mn.
Then, using the Schwarz inequality for2-positive maps, we have that

‖µk(Q
∗(X)Q(X))‖‖µk(1)‖ ≥ ‖µk(Q(X))µk(Q

∗(X))‖
= ‖µk(Q(X))‖2 > M2n

Since µk(1) = 1, we may assume that our monomialP (X) =
Xb1Xb2 · · · bn−1X

2b∗n−1X · · · b∗1X has the property thatµk(P (X)) > M2n.
Define an elementB ∈ M2n(B) by

B =


















0 1 0 0 0 0 0 · · · 0
1 0 b1 0 0 0 0 · · · 0
0 b∗1 0 1 0 0 0 · · · 0
0 0 1 0 b2 0 0 · · · 0
0 0 0 b∗2 0 1 0 · · · 0
0 0 0 0 1 0 b3 · · · 0

...
...

...
0 0 0 0 0 · · · b∗n−1 0 1
0 0 0 0 0 · · · 0 1 0


















.

That is, the superdiagonal alternates between1 andbi, the subdiagonal alternates be-
tween1 andb∗i . Now, let0 < ǫ, δ and

Bδ,ǫ = δB + ǫ

(
2n−1∑

i=1

ei,i

)

+
e2n,2n
δn−1
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whereǫ is arbitrarily small andδ is chosen so thatBδ,ǫ is a strictly positive element.
Moreover, we have that

e1,1(Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2ne1,1 = e1,1Bδ,ǫ[(X ⊗ 12n)B

2
δ,ǫ]

2n−1(X ⊗ 12n)Bδ,ǫe1,1

(5)

= P (X) +O(max (δ, ǫ)).

To see this, note that a non-trivial contribution to (5) mustbe of the form

b1,2Xb2,j3bj3,j4Xbj4,j5X · · · bj4n−2,j4n−1bj4n−1,2Xb2,1

where bi,j denotes thei, j entry of Bδ,ǫ. Now, such a non-zero term isnot
O(max (δ, ǫ)) means thatbjℓ,jℓ+1

must equalb2n,2n for two distinctℓ. However, the
only possible way for this to occur is ifjk = k for k = 2, . . . , 2n, j2n = j2n+1 =
j2n+2 = 2n andjp = 4n+ 2− p for p = 2n+ 2, . . . , 4n− 1.
By assumption, there exists a stateφ ∈ B∗ such thatφ(µk(P (X))) > M2k. Thus, for
ǫ small enough, we have that

(6) φ1,1 ◦ (µk ⊗ 12n)((Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)
2n) > M2n

(hereφ⊗e1,1 = φ1,1). This implies that the scalar valued Cauchy transform associated
to this random variable,

Gδ,ǫ
µk
(z) = φ1,1 ◦ (µk ⊗ 12n)((z12n −Bδ,ǫ(X ⊗ 12n)Bδ,ǫ)

−1)

arises from a measure whose support has non-trivial intersection withR \ [−M,M ],
whereas the (similarly defined)Gδ,ǫ

µ has support contained in[−M,M ] (since its mo-
ments have growth rate smaller than powers ofM ). Using Stieltjes inversion, this
implies that

(7) lim
t↓0

−ℑGδ,ǫ
µk
(x+ it) > 0

for somex > M (or the limit simply does not exist in the atomic case).
Calculating the imaginary part of this Cauchy transform, wehave

ℑ([µk((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1) = B−1

δ,ǫℑ([µk(B
−2
δ,ǫ z −X)−1]−1)B−1

δ,ǫ

= B−1
δ,ǫℑF (n)

µk
(zB−2

δ,ǫ )B
−1
δ,ǫ

≤ B−1
δ,ǫℑF (n)

µ (zB−2
δ,ǫ )B

−1
δ,ǫ

= ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1)(8)

where the inequality follows from the fact thatFµ = F ◦k−1
µk

◦ Fµk
andF -transforms

increase the imaginary part.
Rewriting the right hand side of (8), we have that

ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1)

= [µ((z12n −Bδ,ǫXBδ,ǫ)
−1)∗]−1·

ℑ(µ((z12n −Bδ,ǫXBδ,ǫ)
−1))[µ((z12n −Bδ,ǫXBδ,ǫ)

−1)]−1(9)

= F δ,ǫ
µ (z)∗ℑ(F δ,ǫ

µ (z))F δ,ǫ
µ (z)
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We conclude that

(10) ℑ([µ((z12n −Bδ,ǫXBδ,ǫ)
−1)]−1) ≤ F δ,ǫ

µ (z)∗ℑ(F δ,ǫ
µ (z))F δ,ǫ

µ (z).

SinceF δ,ǫ
µ extends toR \ [−M,M ]

lim
t↓0

Gδ,ǫ
µ (x+ it)

converges to a positive element inB and

lim
t↓0

ℑ(F δ,ǫ
µ (x+ it)) → 0

it follows that the right hand side or (10) converges to0 in norm, contradicting (7).
This completes our proof. �

Proposition 3.2. Let µ, µk be as in the preceding proposition. We have that
Fµk

→ Id in norm ask ↑ ∞ uniformly onM+,ǫ
n (B), and this convergence is also

uniform overn . Moreover, the functionsF (n)
µk (b−1) − b−1 andF (n)

µk (b−1)−1 extend
analytically toBnc

r (0), where the radiusr is dependent only onM from Proposi-
tion 3.1, and satisfy

(11) F (n)
µk

(b−1)− b−1 → 0n

(12) F (n)
µk

(b−1)−1 = H(n)
µk

(b) → b

where this convergence is uniform onBnc
r (0).

Proof. Consider the Nevanlinna representations of each of these functions

(13) F (n)
µk

(b) = αk ⊗ 1n + b−G(n)
ρk

(b)

defined in Theorem 2.1 , where we have adopted the notation that µ = µ1. We claim
that the distributionsρk share a common exponential boundN for all k ∈ N.
To prove this claim, first observe that, by Theorem 4.1 in [Wil13], there exist distribu-
tionsνk such that

b − F (n)
µk

(b) = ϕ(n)
νk

(b) = −αk ⊗ 1n +G(n)
ρk

(b).

Moreover, it was shown in [PV13] that if theν and theνk have a common exponential
boundN then the distributionsρ andρk have a common exponential boundN2 + 1.
Focusing on theνk, we may manipulate equations 13 to conclude that

(14) Rνk(b
−1) = ϕνk(b) = b−1 − Fµk

(b−1).

Now, expand the moment series

(15) F (n)
µk

(b−1)−1 = H(n)
µk

(b) =

∞∑

p=0

µk((bX)pb).

Note that Proposition 3.1 implies that this function is convergent and uniformly
bounded forb ∈ Bnc

r (0), independent ofk.
Observe that the moment generating function satisfies
(16)
[H(n)

µk
(b)]−1 = b−1−µk(X)+µk(X)bµk(X)−µk(XbX)+ · · · = b−1+f (n)(b,X)
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wheref (n)(b,X) is analytic inb and converges for‖b‖ small, where the radius of

convergence is only dependent onM . Thus,[H(n)
µk (b)]−1 − b−1 extends to a neigh-

borhood of0 whose radius is independent ofn andk and agrees withF (n)
µk (b−1)−b−1

whenb is invertible. Moreover, these observations, combined with (14) imply that the
functionsRνk have a commonR,C > 0 such that the functions extend to a common
domainBnc

R (0) with a common boundC. Now a careful look at the Kantorovich ar-
gument in part II of the proof of Theorem4.1 in [Wil13] allows us to conclude that
the exponential bound on the distributionsνk depend only onR, proving our claim.
Recall thatFµk

◦ · · · ◦ Fµk
= Fµ we have that

(17) G(n)
ρ (b) = G(n)

ρk
(b) +G(n)

ρk
◦ F (n)

µk
(b) + · · ·+G(n)

ρk
◦ F (n)

µk
◦ · · · ◦ F (n)

µk
︸ ︷︷ ︸

k−1 times

(b)

Letting b = z1n for z ∈ C, we have that

lim
|z|↑∞

zH(n)
ρ

(
1

z
1n

)

= lim
|z|↑∞

zG(n)
ρ (z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zG(n)
ρk

◦ (F (n)
µk

)◦ℓ(z1n)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk

(

[(F (n)
µk

)◦ℓ(z1n)]
−1
)

= lim
|z|↑∞

k−1∑

ℓ=1

zH(n)
ρk

◦G(n)
νℓ

(z1n)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)

ρk
◦G(n)

νℓ

(
1

w
1n

)

= lim
|w|↓0

k−1∑

ℓ=1

1

w
H(n)

ρk
◦H(n)

νℓ (w1n)

where[(F (n)
µk )◦ℓ]−1 = Gνℓ is the Cauchy transform of a distributionνℓ ∈ Σ0 (this

follows from Theorem 2.1). Moreover, we have that

lim
|w|↓0

1

w
H(n)

νℓ (w1n) = 1n

so that, passing to limits and utilizing the chain rule and the fact thatH(n)
νℓ (0n) = 0n

, we have that

δH(n)
ρ (0n; 1n) = kδH(n)

ρk
(0n; 1n)

Utilizing the main result in our appendix, Theorem A.1, we conclude that

(18) ρ(1) = µ(X2) = kµk(X
2) = kρk(1).

so thatρk(1) = O(1/k).
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Now, assume thatb ∈ M+,ǫ
n (B). We claim that‖b−1‖ ≤ 1/ǫ. Indeed, observe that,

for b = x+ iy with y > ǫ1n,

(19) b =
√
y(i+ (

√
y)−1x(

√
y)−1)

√
y

(it follows easily from this equation thatb is invertible, but this is known). Thus,

(20) b−1 = (
√
y)−1(i+ (

√
y)−1x(

√
y)−1)−1(

√
y)−1.

Now, utilizing the spectral mapping theorem and the fact that the spectral radius agrees
with the norm for normal operators, we have that‖(√y)−1‖ ≤ (

√
ǫ)−1. Moreover,

sincei + (
√
y)−1x(

√
y)−1 is normal and has spectrum with imaginary part larger

than1, we have that(i + (
√
y)−1x(

√
y)−1)−1 is normal and, by the same spectral

considerations, has norm bounded by1. These observations, combined with (19)
imply our claim.
Thus, forb ∈ M+

n (B), we have

‖F (n)
µk

(b)− b‖ ≤ ‖αk‖+ ‖(ρk ⊗ 1n)((b −X)−1‖
≤ ‖α‖/k + ‖(b−X)−1‖‖(ρk ⊗ 1n)(1n)‖

≤ ‖α‖
k

+
‖ρk(1)‖

ǫ
=

‖α‖+ ρ(1)/ǫ

k

and the right hand side converges to zero uniformly overM+,ǫ
n (B), independent ofn.

Regarding the second part of our Proposition, we first observe that each of the mo-
ments ofµk converges to0. Indeed, utilizing the Schwarz inequality for2-positive
maps as well as Proposition 3.1, we have that

‖µk(Xb1Xb2X · · · bℓX)‖2 ≤ ‖µk(X
2)‖‖µk(Xb∗ℓX · · · b∗2Xb∗1b1Xb2X · · · bℓX)‖

≤ ‖µ(X2)‖M2ℓ‖b1‖2‖b2‖2 · · · ‖bℓ‖2
k

Moreover, the tail of the series expansion off (n)(b,X) is bounded in norm inde-
pendent ofn and k . the individual entries all go to0 so the we conclude that
f (n)(b,X) → 0 uniformly on b ∈ Bnc

r (0) ask ↑ ∞ so that we can immediately
conclude that (12) holds. This completes our proof. �

We next prove a differentiation result for vector valued functions. We adapt a proof
found in [BPo78] of a similar result for complex functions.

Proposition 3.3. Let A andB denote unital Banach algebras. Consider an open
subsetΩ ⊂ A. Let ft : Ω 7→ B for all t ≥ 0 be a composition semigroup of analytic
functions. Assume that for everyb′ ∈ Ω, there exists aδ > 0 such that

(a) limt↓0 ft(b)− b → 0 uniformly overb ∈ Bδ(b
′)

(b) For anyT > 0, we have thatft(b)− b is uniformly bounded overb ∈ Bδ(b
′) and

t ∈ [0, T ].

Then, there exists an analyticΦ : Ω 7→ B such that

(21)
dft(b)

dt
= −Φ(ft(b)).
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Proof. Fix b′ ∈ Ω. We first claim that there exists anα > 0 such that

(22) ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖.

for all t ∈ [0, α] andb ∈ Bδ/2(b
′) where the value ofδ comes from the statement .

Indeed, fixb ∈ Bδ/2(b
′). We first consider the simple case when there exists a se-

quencetn ↓ 0 such thatftn(b) = b. Since{ft} form a composition semigroup, this
property then holds for a dense set oft’s, and by continuity assumption in part (a), for
all t > 0. So (22) holds trivially.
Thus, suppose thatft(b) 6= b for t ∈ [0, α]. Define a family of complex functionsgt
through the following equalities:

ht :=
ft(b)− b

‖ft(b)− b‖ ; gt(ζ) := ft(b+ ζht)− b : Bδ/2(0) 7→ B.

whereBδ/2(0) refers to the neighborhood of zero in the complex plane. Notethat,
since we are taking a ball of radiusδ/2, we may defineht for all suchb provided that
our choice ofα is small enough.
Consider the vector valued complex integral

(23)
∫ ‖ft(b)−b‖

0

d

dζ
[gt(ζ)− ζht]dζ.

By (a) and the Cauchy estimates in Theorem 2.2, the integrandcan be made arbitrarily
small fort small. By the fundamental theorem, this integral is equal to

gt(‖ft(b)− b‖)− gt(0)− (ft(b)− b) =

= ft(b + (ft(b)− b))− b− 2(ft(b)− b) = f2t(b)− 2ft(b) + b.

Using our bound on the integrand, equation (22) follows immediately.
We now use (22) to prove that forα > 0 there exists anM > 0 such that

(24) ‖ft(b)− b‖ ≤ Mt2/3

for all t ∈ [0, α] andb ∈ Bδ/2(b
′). Indeed, pickt ∈ [0, α] andm ∈ N such that

2mt ≤ α < 2m+1t. Note that inequality (22) and the triangle inequality imply that

2‖ft(b)− b‖ − ‖f2t(b)− b‖ ≤ ‖f2t(b)− 2ft(b) + b‖ ≤ 1

10
‖ft(b)− b‖

so that

(25) ‖ft(b)− b‖ ≤ 10

19
‖f2t(b)− b‖ ≤ 2−2/3‖f2t(b)− b‖

Using this estimate inductively, we have

‖ft(b)−b‖ ≤ 2−2/3‖f2t(b)−b‖ ≤ · · · ≤ 2−2m/3‖f2mt(b)−b‖ = t2/3
(

1

2mt

)2/3

M ′

whereM ′ is a bound on‖fs(b) − b‖ for s ≤ 2 which exists by (b). Equation (24)
follows withM = 22/3M ′/α.
Now, revisiting the argument for (22), inequality (24) implies that the integrand in
(23) has bound equal to

2Mt2/3
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as a result of the Cauchy estimates. Thus, we have the following:

(26) ‖f2t(b)− 2ft(b) + b‖ ≤ 2t2/3‖ft(b)− b‖ ≤ 2Mt4/3.

We may further conclude that

(27)

∥
∥
∥
∥

f2t(b)− b

2t
− ft(b)− b

t

∥
∥
∥
∥
≤ Mt1/3

Thus, we have that

(28) lim
k↑∞

2k(f2−k(b)− b)

converges uniformly onBδ/2(b
′) and we refer to this limit as−Φ(b).

Using (27), we note thatΦ is locally bounded. Indeed, we have that

‖2p(f1/2p(b)− b) + Φ(b)‖ ≤
∞∑

k=p

‖2k(f1/2k(b)− b)− 2k+1(f1/2k+1(b)− b)‖

≤ M

2

∞∑

k=p

(
1

21/3

)k

= MC(p).(29)

for all b ∈ Bδ/2(b
′). Local boundedness ofΦ follows since(f1/2p(b) − b) is locally

bounded. Also note thatC(p) → 0 asp ↑ ∞.
Regarding analyticity ofΦ, consider a stateϕ ∈ B∗ , b ∈ Bδ/2(b

′), and an element
h ∈ B with ‖h‖ ≤ 1. We define complex maps

Hm(z) : Bδ/2(0) ⊂ C → C

for m ≥ 0 through the equalities:

H0(z) := ϕ ◦ Φ(b+ zh); Hm(z) := 2mϕ ◦ (f2−m(b + zh)− (b+ zh)).

By (28),Hm → H0 for z ∈ Bδ/2(0), and by (29), the limit is bounded on this set.
Thus,H0 is analytic inz. By Dunford’s theorem ([Dun38]), it follows thatΦ(b +
zh) is analytic inz and, therefore, Gâteaux differentiable. As this functionis locally
bounded, it is analytic.
Regarding (21), observe that{ft(b)}t≥0 is compact since it is the continuous image
of [0, t]. As (a) and (b) hold on neighborhoods of every point in this set, taking a finite
cover, we have that (a) and (b) holds uniformly on a neighborhood of this set and,
after a close look at the relevant constants, (29) is also maintained on this set. Now,
fix t ≥ 0 and letℓp/2p → t asp ↑ ∞.

ft(b)− b = (ft(b)− ft−ℓp/2p(b)) +

ℓp∑

j=1

(fj/2p(b)− f(j−1)/2p(b))

= (ft(b)− ft−ℓp/2p(b)) +

ℓp∑

j=1

1

2p
(2p[fj/2p(b)− f(j−1)/2p(b)])

As p ↑ ∞,

ft(b)− ft−ℓp/2p(b) = fℓp/2p ◦ ft−ℓp/2p(b)− ft−ℓp/2p(b) → 0
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since (a) holds on the entire path. Moreover, the remaining summand is simply a
Riemann sum approximation of a sequence of functions converging uniformly to−Φ◦
fs(b) for s ∈ [0, t]. The following equation follows immediately:

ft(b) = b−
∫ t

0

Φ ◦ fs(b)ds.

We conclude that (21) holds, completing our proof. �

Corollary 3.4. LetA andB denote Banach algebras andΩ ⊂ ⊔∞
n=1Mn(A) a non-

commutative set. LetFt : Ω 7→ ⊔∞
n=1Mn(B) for all t ≥ 0 and assume that they form a

composition semigroup of analytic non-commutative functions. Assume that, for each
n, the composition semigroup of vector valued analytic functions{F (n)

t }t≥0 satisfies
the hypotheses of Proposition 3.3. Then there exists an analytic, noncommutative map
Φ : Ω 7→ ⊔∞

n=1Mn(B) such that

(30)
dF

(n)
t (b)

dt
= −Φ(n)(F

(n)
t (b))

for all n ∈ N, b ∈ Ωn.
Moreover, if we strengthen these assumptions so that, for any n andb ∈ Mn(B), there
exists aδ > 0 with

(a) limt↓0 Ft − Id → 0 uniformly overBnc
δ (b).

(b) For anyT > 0, we have thatft(b) − b is uniformly bounded onBnc
δ (b) and

t ∈ [0, T ].

thenΦ is uniformly analytic.

Proof. We showed in Proposition 3.3 this mapΦ exists. We must show that it is a
non-commutative function. However, this is immediate since, for b1 ∈ Mn(B) and
b2 ∈ Mp(B), we have

Φ(n+p)(b1 ⊕ b2) = lim
k↑∞

2k(F
(n+p)

2−k (b1 ⊕ b2)− b1 ⊕ b2)

= lim
k↑∞

2k([F
(n)

2−k(b1)− b1]⊕ [F
(n)

2−k(b2)− b2])

= Φ(n)(b1)⊕ Φ(p)(b2).

A similar proof shows that it also satisfies the defining invariance property so that our
first claim holds.
With respect to the uniform analyticity, we refer to the proof of Proposition 3.3. Ob-
serve that inequality (22) holds forα small enough. Thisα is only dependent on the
convergence of the integrand in (23). This converges to0 uniformly onBnc

δ (b) by
assumption (a) and the same Cauchy estimate so that the choice ofα is also uniform
on this set. Moreover, the constantM in (24) is equal to22/3M ′/α whereM ′ is
the upper bound onFs − Id for s ≤ α. Assumption (b) implies that this bound is
uniform onBnc

δ (b). Thus, inequality (29) holds on all of this set, implying uniform
analyticity. �

Theorem 3.5. Let {Ft}t∈Q+ denote a composition semigroup of non-commutative
functionsFt : H

+(B) 7→ H+(B) such that
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(i) ‖F (n)
t (b) − b‖ → 0 uniformly onM+,ǫ

n (B) for all ǫ > 0, independent ofn as
t ↓ 0.

(ii) For any α, ǫ > 0 and sequencebk ∈ Γ
(n)
α,ǫ with ‖b−1

k ‖ ↓ 0, we have that

b−1
k F

(n)
t (bk) → 1n ask ↑ ∞

(iii) ℑF (n)
t (b) ≥ ℑb for all b ∈ M+

n (B) andt ≥ 0.

Then{Ft}t∈Q+ extends to a semigroup{Ft}t≥0 and the mapΦ from Proposition 3.4
is an element of̃Λ.
Since, by Proposition 3.2, the conditions above are satisfied by F -transforms, this
implies that a⊲-infinitely divisible distributionµ as in Definition 2.4 can be realized
asµ = µ1 for a monotone convolution semigroup{µt}t≥0. For such a semigroup,
Φ ∈ Λ.
Conversely, given a mapΦ ∈ Λ̃ we may construct a semigroup of non-commutative
functions satisfying the hypotheses above as well as the differential equation

(31)
dFt(b)

dt
= −Φ(Ft(b))

If Φ ∈ Λ then the semigroup arises from a⊲-infinitely divisible distribution.

We shall refer to this elementΦ as thegeneratoror the semigroup{Ft}t≥0.

Proof. First, letΦ ∈ Λ̃. We will produce the semigroup it generates by the method of
successive approximations.
Consider a sequence of non-commutative functions{fk(t, ·)}t≥0, k∈N defined as fol-
lows:

(32) f
(n)
1 (t, b) = b; f

(n)
k+1(t, b) = b−

∫ t

0

Φ(f
(n)
k (s, b))ds.

We claim thatfk(t, ·) is convergent and satisfies the semigroup property with genera-
torΦ.
Observe that sinceΦ is uniformly bounded by a constantM on setM+,ǫ/2

n (B) and
fk(t, ·) maps the setM+,ǫ

n (B) to itself since

Φ : H+(B) 7→ H−(B)
we have that

(33) ℑf (n)
k (t, b) ≥ ℑ(b).

By (3), this implies thatf (n)
k (t, ·) is Lipschitz on the setBǫ/2(b) ⊂ M

+,ǫ/2
n (B) for all

b ∈ M+,ǫ
n (B), and the Lipschitz constantL is uniform over bothk, b and boundedt.

Moreover, we may extend the Lipschitz inequality

‖fk(t, b)− fk(t, b
′)‖ ≤ L‖b− b′‖

to all b, b′ ∈ M+,ǫ
n (B) by taking a pathb + s(b′ − b) for s ∈ [0, 1] and using the

Lipschitz estimate on intervals of distanceǫ/2 since the distances are additive on this
path. Using this Lipschitz estimate in the integrand of (32), we conclude that

(34) ‖f (n)
2 (t, b)− f

(n)
1 (t, b)‖ = t‖Φ(b)‖ ≤ tML
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and we may conclude that

‖f (n)
3 (t, b)− f

(n)
2 (t, b)‖ =

∥
∥
∥
∥

∫ t

0

[Φ(f
(n)
2 (s, b))− Φ(f

(n)
1 (s, b))]ds

∥
∥
∥
∥

≤ L

∥
∥
∥
∥

∫ t

0

[f
(n)
2 (s, b)− f

(n)
1 (s, b)]ds

∥
∥
∥
∥

≤ L

∫ t

0

[LMs]ds ≤ t2L2M

2

Continuing inductively, we have that

(35) ‖f (n)
k+1(t, b)− f

(n)
k (t, b)‖ ≤ M(Lt)k+1

L(k + 1)!
.

For any choice oft ∈ [0, α], we have that

(36) f
(n)
N+1(t, b)− b =

N∑

k=0

(

f
(n)
k+1(t, b)− f

(n)
k (t, b)

)

is a convergent series asN ↑ ∞ and we may conclude thatfN(t, ·) converges to a
functionf(t, ·) uniformly onM+,ǫ

n (B), independent ofn.
It is clear thatf(t, ·) satisfies (31). Regarding the asymptotics, letα, ǫ > 0 and fix
a sequencebℓ ∈ Γ

(n)
α,ǫ with ‖b−1

ℓ ‖ ↓ 0. Note thatb−1
ℓ f

(n)
1 (t, bℓ) ≡ 1n and satisfies

‖f (n)
1 (t, bℓ)‖−1 ↓ 0 as ‖b−1

ℓ ‖ ↓ 0. We claim b−1
ℓ f

(n)
k (t, bℓ) → 1n and satisfies

‖f (n)
k (t, bℓ)‖−1 ↓ 0 as‖b−1

ℓ ‖ ↓ 0 for all k, uniformly overt ∈ [0, α].
Proceeding by induction, we have that for fixedk

(37) b−1
ℓ f

(n)
k+1(t, bℓ) = 1n −

∫ t

0

[b−1
ℓ f

(n)
k (s, bℓ)](f

(n)
k (s, bℓ))

−1Φ(f
(n)
k (s, bℓ))ds.

We bound the integrand by

‖[b−1
ℓ f

(n)
k (s, bℓ)]‖‖(f (n)

k (s, bℓ))
−1Φ(f

(n)
k (s, bℓ))‖

which converges to0 uniformly overs ∈ [0, α] by induction, so that (37) converges to
1n. Moreover,

‖[f (n)
k+1(t, bℓ)]

−1‖ ≤ ‖b−1
ℓ ‖‖bℓ[f (n)

k+1(t, bℓ)]
−1‖ → 0.

Thus, eachfk(t, ·) has the appropriate asymptotics and, sincef(t, ·) is a uniform limit
of these functions onM+,ǫ

n , our claim holds Condition (iii) follows from (33).
In order to complete our proof, we further assume thatΦ ∈ Λ and prove that the
functionsf(t, ·) are in fact theF -transforms of noncommutative distributionsµt ∈
Σ0. To do so we must show that the functionf(t, b−1)−1 has a uniformly analytic
extension to a neighborhood of0 for all t ≥ 0. Note that, sinceΦ ∈ Λ, there exists
a δ > 0 and constantsM,L > 0 such thatΦ(n)(b−1) extends toBnc

δ (0) with upper
boundM and Lipschitz constantL.
Now fix α > 0. We claim that, forγ > 0 small enough we have thatf (n)

k (t, b−1)−1

extends toBγ(0n) ⊂ Mn(B) for all n and satisfiesf (n)
k (t, b−1)−1 ∈ Bδ(0n) for all
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b ∈ Bγ(0n). Choose anyt ∈ [0, α] andb ∈ Bγ(0n) whereγ < δ is yet unspecified.
We have

‖f (n)
2 (t, b−1)−1 − f

(n)
1 (t, b−1)−1‖ =

∥
∥
∥
∥
∥

[(

1n −
∫ t

0

bΦ(b−1)ds

)−1

− 1n

]

b

∥
∥
∥
∥
∥

≤
∞∑

n=1

∥
∥
∥
∥

∫ t

0

bΦ(b−1)ds

∥
∥
∥
∥

n

‖b‖

≤ γ

∞∑

n=1

(γMα)n

=
γ2Mα

1− γMα

Deriving a similar inequality for generalk, we have that

‖f (n)
k+1(t, b

−1)−1 − f
(n)
k (t, b−1)−1‖

=

∥
∥
∥
∥
∥

(

b−1 −
∫ t

0

Φ ◦ f (n)
k (s, b−1)ds

)−1

−
(

b−1 −
∫ t

0

Φ ◦ f (n)
k−1(s, b

−1)ds

)−1
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥

(

1n −
∫ t

0

bΦ(f
(n)
k (t, b−1))

)−1(

b

∫ t

0

Φ(f
(n)
k−1(t, b

−1))− Φ(f
(n)
k (t, b−1))

)

(

1n −
∫ t

0

bΦ(f
(n)
k−1(t, b

−1))

)−1

b

∥
∥
∥
∥
∥

≤
(

1

1− γMα

)2

(γ2Lα)‖f (n)
k (t, b−1)−1 − f

(n)
k−1(t, b

−1)−1‖

(38)

By induction, we have that

‖f (n)
k+1(t, b

−1)−1 − b‖ =

k∑

ℓ=1

Mγ2ℓLℓ−1αℓ

(1− γMα)2ℓ−1

This is convergent ask ↑ ∞ for γ small and converges to0 asγ ↓ 0. Thus, forγ small
enough, we have thatf (n)

k+1(t, b
−1) ∈ Bδ(0n) for all k andn and, therefore, converges

to a limit function onBγ(0n) (since the differences in (38) are Cauchy). This limit
function must agree withf(t, ·) by analytic continuation. This completes our proof
thatf(t, ·) is anF -transform for allt.
To address the converse, consider a semigroup{Ft}t∈Q+ satisfying the (i) and (ii) in
the statement of the theorem. First note that this easily extends to anR+ composition
semigroup. Indeed, defineFt(b) = limp/q→t Fp/q(b). To see that this is well defined,
note that, asp/q, p′/q′ → t, we have

‖F (n)
p/q (b)− F

(n)
p′/q′(b)‖ = ‖F (n)

p/q−p′/q′ ◦ F
(n)
p′/q′(b)− F

(n)
p′/q′(b)‖ → 0

uniformly onM+,ǫ
n (B) by property (i) and (iii) . It is immediate that this is a compo-

sition semigroup overR+ satisfying (i), (ii) and (iii).
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By Corollary 3.4, this semigroup may be differentiated to produce a non-commutative
functionΦ . Regarding the asymptotics ofΦ, consider the inequality

(39) ‖b−1Φ(n)(b)‖ ≤
∥
∥
∥
∥
∥

b−1(F
(n)
t (b)− b)

t

∥
∥
∥
∥
∥
+ ‖b−1‖

∥
∥
∥
∥
∥

(F
(n)
t (b)− b)

t
− Φ(n)(b)

∥
∥
∥
∥
∥
.

Utilizing inequality (29) in the proof of Proposition 3.3 produces

(40)

∥
∥
∥
∥
∥

(F
(n)

2N
(b)− b)

2N
− Φ(n)(b)

∥
∥
∥
∥
∥
≤ M

∞∑

k=N+1

(
1

21/3

)k

where thisM = 2M ′/α . As was noted in the proof of Corollary 3.4, uniform
convergence in the sense of (i) and (ii) implies a uniform bound onM . Thus, (40)
converges to0 uniformly onM+,ǫ

n (B) so that, for fixedt small enough, second term
on the right hand side of (39) is smaller than anyδ > 0 for b ∈ M+,ǫ

n (B). Letting

bk ∈ Γ
(n)
α,ǫ satisfy‖b−1

k ‖ ↓ 0, the first term on the right hand side of (39) converges to
0 by assumption (ii), and it follows thatΦ ∈ Λ̃.
If {Ft}t≥0 arises from a⊲-infinitely divisible measure, then it follows from Proposi-

tion 3.1 and Theorem 2.1 thatb−1
k F

(n)
µt (bk) → 1n for any sequencebk ∈ Mn(B) with

‖b−1
k ‖ ↓ 0 and a similar proof allows one to conclude thatΦ satisfies condition (ii) in

the definition ofΛ.
It remains to show thatΦ satisfies (i). However, Proposition 3.2 implies that there
exists a fixedr > 0 such that each functionF (n)

µt (b−1)− b−1 extends toBr({0}) and
converges to0 uniformly on this set. Thus, the strengthened hypotheses inCorollary
3.3 hold so that the non-commutative function defined by the equalities

R(n)(b) = lim
t↓0

F
(n)
µt (b−1)− b−1

t

is uniformly analytic at0 and, by continuation, is an extension ofΦ(n)(b−1) for each
n. Thus,Φ ∈ Λ, completing our proof. �

The following proposition establishes continuity in generating the semigroups, and
may be useful in future applications.

Proposition 3.6. Assume thatΦ1,Φ2 ∈ Λ̃ generate the semigroups of noncom-
mutative functions{F1(t, ·)}t≥0 and{F2(t, ·)}t≥0. If we assume that‖Φ(n)

1 (b) −
Φ

(n)
2 (b)‖ < ǫ for all b ∈ Bδ(b

′) ⊂ Mn(B), a ball of radiusδ whereℑ(b′) > δ1n,

then we may conclude that‖F (n)
1 (1, b)− F

(n)
2 (1, b)‖ < Cǫ for all b ∈ Bδ(b

′) where
C depends only onΦ1.

Proof. To prove our claim, we first note that, by the vector-valued chain rule,

δ2F
(n)
i (t, b)

δt2
= δΦ(n)

(

F
(n)
i (t, b),

δ

δt
F (n)(b, t)

)

so thatFi(t, b) is twice differentiable int and has uniformly bounded derivative for
b ∈ H+,ǫ(B) andt ∈ [0, 1]. We refer to the maximum of this bound overi = 1, 2 as
M2.
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Using the remainder estimates for the Taylor series associated toFi, we have the
following:

(41) ‖Fi(b, t+ γ)− Fi(b, t)− γΦ(Fi(b, t))‖ ≤ M2γ
2

2

Let M1 = supb∈M+,ǫ
n (B), n∈N

‖δΦ(n)(b, ·)‖. Utilizing the estimate (41) withγ =

1/N , we produce the following inequalities:

‖F (n)
1 (b, t0 + 1/N)− F

(n)
2 (b, t0 + 1/N)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖

+ ‖F (n)
1 (b, t0)− F

(n)
2 (b, t0)‖

≤ M2

N2
+

1

N
‖Φ(n)

1 (F
(n)
1 (b, t0))− Φ

(n)
1 (F

(n)
2 (b, t0))‖

+
1

N
‖Φ(n)

1 (F
(n)
2 (b, t0))− Φ

(n)
2 (F

(n)
2 (b, t0))‖ + ‖F (n)

1 (b, t0)− F
(n)
2 (b, t0)‖

≤ M2

N2
+

ǫ

N
+

(

1 +
M1

N

)

‖F (n)
1 (b, t0)− F

(n)
2 (b, t0)‖

Using this estimate inductively, we have that

‖F (n)
1 (b, 1)− F

(n)
2 (b, 1)‖ ≤

(
ǫ

N
+

M2

N2

)N−1∑

k=0

(

1 +
M1

N

)k

→ eM1 − 1

M1
ǫ

where the convergence occurs asN ↑ ∞. This implies our result.
�

4. THE BERCOVICI-PATA BIJECTION.

Definition 4.1. Let (S,≺) be a poset (partially ordered set). Anorder onS is an
order-preserving bijection

f : (S,≺) → ({1, 2, . . . , |S|} , <) .

Denote byo(S) the number of different orders onS.

Lemma 4.2. Let (S,≺) be a poset, andS = U ⊔ V a partition ofS. U andV are
posets with the induced order.

(a) Suppose that for allu ∈ U andv ∈ V , u ≺ v. Then

o(S) = o(U)o(V ).

(b) Suppose that for allu ∈ U andv ∈ V , u andv are unrelated to each other.
Then

o(S)

|S|! =
o(U)

|U |!
o(V )

|V |! .
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Proof. Part (a) is obvious. It is also clear that under the assumptions of part (b), there
is a bijection between the orders onS and triples

{order onU , order onV , a subset of{1, 2, . . . , |S|} of cardinality|U |} .
Therefore

o(S) =

(|S|
|U |

)

o(U)o(V ).

This implies part (b). �

Definition 4.3. For a non-crossing partitionπ = {V1, V2, . . . , Vk}, define a partial
order on it as follows: forU, V ∈ π, U ≺ V if for somei, j ∈ U and anyv ∈ V , we
havei < v < j. In this case we say thatU coversV . Minimal elements with respect
to this order are called theouterblocks ofπ; the rest are theinner blocks.

See [HS11, HS14] for more on orders on non-crossing partitions.

Definition 4.4. Letµ : B〈X〉 → B be aB-bimodule map; at this point no positivity
assumptions are made. Itsmonotone cumulant functionalis theB-bimodule mapKµ :
B0〈X〉 → B defined implicitly by

(42) µ[b0Xb1X . . . bn−1Xbn] =
∑

π∈NC(n)

o(π)

|π|! K
µ
π [b0Xb1X . . . bn−1Xbn].

Here for a non-crossing partitionπ, Kµ
π is defined in terms ofKµ in the usual way

as in [Spe98] (see Section 3 of [ABFN13] for a detailed discussion), ando(π) is the
number of orders onπ considered as a poset (as in the preceding definition). The
implicit definition determines the monotone cumulants uniquely since
(43)

Kµ[b0X . . . bn−1Xbn] = µ[b0X . . . bn−1Xbn]−
∑

π∈NC(n)

π 6=1̂n

o(π)

|π|! K
µ
π [b0X . . . bn−1Xbn],

and the second term on the right-hand side can be expressed interms of lower-order
moments.

Remark 4.5. ForN ∈ N, we note that

Kµ⊗1N = Kµ ⊗ 1N .

The proof of this fact is identical to that of Proposition 6.3of [PV13].
It follows that the generating function arguments in the rest of this section work
equally well for eachµ ⊗ 1N , and so the corresponding generating functions com-
pletely determine the states.

Lemma 4.6. For B-bimodule maps,µi → µ if and only ifKµi → Kµ.

Proof. By assumption,µi[b] = b = µ[b]. Forn ≥ 1, clearly if

Kµi [b0Xb1X . . . bn−1Xbn] → Kµ[b0Xb1X . . . bn−1Xbn]

then
µi[b0Xb1X . . . bn−1Xbn] → µ[b0Xb1X . . . bn−1Xbn]
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from equation (42). The other implication follows by induction on n, using equa-
tion (43). �

Definition 4.7. Forµ as above andη : B → B a linear map, defineµ⊲η via

Kµ⊲η

[b0Xb1X . . . bn−1Xbn] = b0η (K
µ[Xb1X . . . bn−1X ]) bn.

Define the formal generating functions

Hµ(b) =

∞∑

n=0

µ[b(Xb)n]

and

Kµ(b) =

∞∑

n=1

Kµ[b(Xb)n].

Note that as formal series,
Hµ(b) = Gµ(b−1),

so our notation is consistent with the analytic function notation in the rest of the article,
except that we use superscripts for formal series. Note alsothat these generating
functions differ by a factor ofb from the more standard ones, and are more appropriate
for the computations with monotone convolution.

Remark 4.8. Fix n ∈ N andπ ∈ NC(n). Denote byV1, . . . , Vk the outer blocks of
π, by c(Vi) the partition consisting ofVi and the inner blocks it covers, and bycj(Vi),
j = 1, 2, . . . , |Vi| − 1 the partition consisting of the inner blocks lying between the
jth and the(j + 1)st elements ofVi. By Lemma 4.2 part (b),

(44)
o(π)

|π|! =

k∏

i=1

o(c(Vi))

|c(Vi)|!
.

By part (a) of that lemma,

o(c(Vi)) = o({Vi})o





|Vi|−1
⋃

j=1

cj(Vi)



 = o





|Vi|−1
⋃

j=1

cj(Vi)





and so by part (b),

(45)
o(c(Vi))

(|c(Vi)| − 1)!
=

|Vi|−1
∏

j=1

o(cj(Vi))

|cj(Vi)|!
.

The following results may be contained in [Pop08], and are closely related to Propo-
sition 3.5 in [HS14]. We provide a purely combinatorial direct proof.

Proposition 4.9. Let µ : B〈X〉 → B be an exponentially boundedB-bimodule
map. Then for eachn

dH(µ⊗1N )⊲t

(b)

dt
= Kµ⊗1N (H(µ⊗1N )⊲t

(b)).
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Proof. It suffices to prove the result forN = 1. We begin by proving this equality for
each of the coefficients of the series expansions ofHµ⊲t

andKµ ◦Hµ⊲t

. Since

d

dt
µ⊲t[b(Xb)n] =

d

dt

∑

π∈NC(n)

t|π|
o(π)

|π|! K
µ
π [bXbX . . . bXb]

=
∑

π∈NC(n)

t|π|−1 o(π)

(|π| − 1)!
Kµ

π [bXbX . . . bXb],

(46)

the coefficient ofKµ
π [b(Xb)n] in its expansion ist|π|−1 o(π)

(|π|−1)! . On the other hand,

Kµ

[

Hµ⊲t

(b)
(

XHµ⊲t

(b)
)l
]

= Kµ
[

Hµ⊲t

(b)XHµ⊲t

(b)X . . .Hµ⊲t

(b)XHµ⊲t

(b)
]

=
∑

k0,...,kl≥0

Kµ




∑

π0∈NC(k0)

t|π0|
o(π0)

|π0|!
Kµ

π0
X

∑

π1∈NC(k1)

t|π1|
o(π1)

|π1|!
Kµ

π1
X . . .X

∑

πl∈NC(kl)

t|πl|
o(πl)

|πl|!
Kµ

πl





=
∑

k0,...,kl≥0

∑

πi∈NC(ki),
0≤i≤l

o(π0)

|π0|!
o(π1)

|π1|!
. . .

o(πl)

|πl|!
Kµ

[
Kµ

π0
XKµ

π1
X . . .XKµ

πl

]
t|π0|+|π1|+...+|πl|,

whereK∅(b) = b. Fixing n = k0 + . . . + kl + l, each term in this expansion is a
multiple of Kµ

π [b(Xb)n], whereπ is constructed from partitionsπ0, π1, . . . , πk and
an additional outer block ofl elements:

V = {k0 + 1, k0 + k1 + 2, . . . , k0 + . . .+ kl−1 + l} ∈ π

and

πi = restriction ofπ to [k0 + . . .+ ki−1 + i+1, k0 + . . .+ ki+ i], i = 0, 1, . . . , l.

Note that|π0|+ |π1|+ . . .+ |πl| = |π| − 1. This identification has an inverse, which
requires first choosing one of thek outer blocks ofπ. Order the outer blocks left-
to-right and call the specially chosen blockVi. Using the notation from Remark 4.8,
we see that the coefficient ofKµ

π [b(Xb)n] in the expansion ofKµ(Hµ⊲t

(b)) is t|π|−1
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times

k∑

i=1

o
(
⋃

j<i c(Vj)
)

∣
∣
∣
⋃

j<i c(Vj)
∣
∣
∣!





|Vi|−1
∏

j=1

o(cj(Vi))

|cj(Vi)|!




o
(
⋃

j>i c(Vj)
)

∣
∣
∣
⋃

j>i c(Vj)
∣
∣
∣!

=

k∑

i=1

o(c(Vi))

(|c(Vi)| − 1)!

∏

j 6=i

o(c(Vj))

|c(Vj)|!

=

k∏

j=1

o(c(Vj))

|c(Vj)|!

k∑

i=1

|c(Vi)|

= |π|
k∏

j=1

o(c(Vj))

|c(Vj)|!

=
o(π)

(|π| − 1)!
.

Here we used equation (45), and equation (44) applied to partitions
⋃

j<i c(Vj) and
⋃

j>i c(Vj), in the first line, and again (44) in the last line. Since we obtained the
same coefficient as in expansion (46), the result is proved for each of the individual
components of the respective series expansions for eachn ∈ N.
Extending this to the series expansions and, therefore, thefunctions, observe that all of
the sets over which the sums occur have cardinality whose growth rate is exponential
overn. Thus, for‖b‖ small enough, the exponential boundedness ofµ implies that
the respective series are absolutely convergent. We may therefore conclude that thet
coefficients of the series expansions agree, provided thatb ∈ Bδ(0) for δ > 0 small
enough. Thus,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)).

for b ∈ Bδ(0).
To extend to arbitrary bounded sets inB−, consider the net of difference quotients

Dµ
h(b, t) =

Hµ⊲t+h

(b)−Hµ⊲t

(b)

h

for t > 0. We have just shown that

lim
h→0

Dµ
h(b, t) → Kµ(Hµ⊲t

(b))

uniformly onBδ(0). By Theorem2.10 in [BPV12], this implies that the same is true
on all bounded sets inB−. Thus, at the level of functions,

dHµ⊲t

(b)

dt
= Kµ(Hµ⊲t

(b)),

proving our result. �

Corollary 4.10.

H(µ⊗1n)
⊲(s+t)

(b) = H(µ⊗1n)
⊲s
(

H(µ⊗1n)
⊲t

(b)
)

.
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In particular,

Fµ⊲(s+t)

(b) = Fµ⊲s
(

Fµ⊲t

(b)
)

,

so the combinatorial definition of monotone convolution powers coincides with the
complex analytic one in Definition 2.3.

Proof. By Proposition 4.9,Hµ⊲s
(

Hµ⊲t

(b)
)

, as a function ofs, satisfies

d

ds
Hµ⊲s

(

Hµ⊲t

(b)
)

= Kµ
(

Hµ⊲s
(

Hµ⊲t

(b)
))

,

Hµ⊲s
(

Hµ⊲t

(b)
)∣
∣
∣
s=0

= Hµ⊲t

(b).

Since, by the same proposition,Hµ⊲(s+t)

(b) also satisfies this differential equation
with this initial condition, they coincide for all positives.
For the second statement, we observe that

Gµ⊲s
(

Fµ⊲t

(b)
)

= Gµ⊲s

((

Gµ⊲t

(b)
)−1

)

= Hµ⊲s
(

Hµ⊲t

(b−1)
)

=

= Hµ⊲(s+t)

(b−1) = Gµ⊲(s+t)

(b).

�

Proposition 4.11. If µ, ν ∈ Σ0 andµ ⊲ µ = ν ⊲ ν, thenµ = ν. In particular, if
the square root with respect to the monotone convolution exists, it is unique.

Proof. Under the given assumption,

Kµ =
1

2
Kµ⊲µ = Kν,

and thereforeµ = ν. �

Remark 4.12. Let γ ∈ B be self-adjoint, andσ : B〈X〉 → B be a completely
positive butnot necessarily aB-bimodule map. Defineνγ,σ⊎ via its Boolean cumulant
functional

Bνγ,σ
⊎ [b0Xb1] = b0γb1, Bνγ,σ

⊎ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

It is known [BPV12, ABFN13] thatνγ,σ⊎ is a completely positiveB-bimodule map.
Similarly, defineνγ,σ⊲ via its monotone cumulant functional

Kνγ,σ
⊲ [b0Xb1] = b0γb1, Kνγ,σ

⊲ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

We could also defineνγ,σ
⊞

via its free cumulant functional

Rνγ,σ

⊞ [b0Xb1] = b0γb1, Rνγ,σ

⊞ [b0Xb1X . . . bn−1Xbn] = b0σ[b1X . . . bn−1]bn.

Lemma 4.13. Let ki → ∞ be a numerical sequence,{µi : B〈X〉 → B}∞i=1 a se-
quence of linearB-bimodule maps, andρ : B0〈X〉 → B a linearB-bimodule map.
The following are equivalent.

(a) kiµi[P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
(b) kiR

µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
(c) kiB

µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.
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(d) kiK
µi [P (X)] → ρ[P (X)] for all P (X) ∈ B0〈X〉.

Here in all cases, the convergence is in norm onB.

Proof. We will prove the equivalence between (a) and (d); the rest are similar, and
were proved in [BPV12]. Indeed, onB0〈X〉,

kiµi[b0Xb1X . . . bn−1Xbn] = kiK
µi [b0Xb1X . . . bn−1Xbn]

+
∑

π∈NC(n)
|π|≥2

1

k
|π|−1
i

o(π)

|π|! (kiK
µi)π [b0Xb1X . . . bn−1Xbn].

It follows immediately that (d) implies (a). The converse implication follows by in-
duction onn. �

Corollary 4.14. For linear B-bimodule mapsµi : B〈X〉 → B, the following are
equivalent.

(a)

kiµi[X ] → γ, kiµi[Xb1X . . . bn−1X ] → σ[b1X . . . bn−1].

(b)

µ⊞ki

i → νγ,σ
⊞

.

(c)

µ⊎ki

i → νγ,σ⊎ .

(d)

µ⊲ki

i → νγ,σ⊲ .

Proof. We will prove the equivalence between (a) and (d); the rest are similar, see
Lecture 13 in [NS06]. Indeed, by Lemma 4.6, the statement in part (d) is equivalent
to

kiK
µi → Kνγ,σ

⊲ ,

which by definition ofνγ,σ⊲ means

kiK
µi [X ] → γ, kiK

µi [Xb1X . . . bn−1X ] → σ[b1X . . . bn−1]

This is equivalent to (a) by the preceding lemma. �

Corollary 4.15. νγ,σ⊲ is a completely positive map.

Proof. We can choose completely positiveµi such thatµ⊎i
i → νγ,σ⊎ , for example by

takingµi = ν
1
i
γ, 1

i
σ

⊎ . Thenνγ,σ⊲ is the limit of completely positive mapsµ⊲i
i , and as

such is completely positive (monotone convolution of two completely positive maps
is known to be positive, see Proposition 6.2 of [Pop08] and also [Pop12]). �

Proposition 4.16. Monotone convolution semigroups of completely positiveB-
bimodule maps are in a one-to-one correspondence with pairs(γ, σ) as above.
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Proof.
{
νtγ,tσ⊲ : t ≥ 0

}
form a one-parameter monotone convolution semigroup of

completely positiveB-bimodule maps. Conversely, if{µt} is such a semigroup, define

γ =
d

dt

∣
∣
∣
∣
t=0

µt[X ] = Kµ1 [X ] ∈ Bsa,

σ[b1X . . . bn−1] =
d

dt

∣
∣
∣
∣
t=0

µt[Xb1X . . . bn−1X ] = Kµ1 [Xb1X . . . bn−1X ].

Since forPi ∈ B〈X〉 andci ∈ B,

N∑

i,j=1

c∗i σ[P
∗
i Pj ]cj =

d

dt

∣
∣
∣
∣
t=0

µt





N∑

i,j=1

c∗iXP ∗
i PjXcj



 =

= lim
t↓0

1

t
µt





N∑

i,j=1

c∗iXP ∗
i PjXcj



 ≥ 0,

σ is completely positive �

Remark 4.17. A short calculation shows that

Φ(b) = γ +Gσ(b).

This, combined with Theorem 2.1, gives an alternative proofof the result in Theo-
rem 3.5 that generators of semigroups arising from⊲-infinitely divisible distributions
coincide with the setΛ. One can also use a standard combinatorial argument to show
that⊲-infinitely divisible distributions belong to such one-parameter semigroups. At
this point, we do not know how to obtain the more general results in Theorem 3.5 by
combinatorial methods.

APPENDIX A. CHARACTERIZATION OF GENERALCAUCHY TRANSFORMS

In this appendix, we extend the main result in [Wil13], namely the classification of
the Cauchy transforms associated to distributionsµ ∈ Σ0, to the Cauchy transforms
associated to more general CP maps.

Theorem A.1. The following are equivalent:

(I) The analytic non-commutative functionG = (G(n))n≥1 : H+(B) → H−(B)
has the property thatH = (H(n))n≥1 defined through the equalitiesH(n)(b) :=

G(n)(b−1) for all n ∈ N andb ∈ Mn(B) has uniformly analytic extension to a
neighborhood of0 satisfyingH(n)(0) = 0.

(II) There exists aC-linear mapσ : B〈X〉 → B satisfying (1) and (2) such that
G(n)(b) = σ((b −X)−1).

Proof. We begin with (II)⇒ (I). Let σ satisfy (1) and (2). By [PV13], Lemma5.8,
we may conclude that there exists a⊞-infinitely divisible distributionµ ∈ Σ0 such
that ρµ(XP (X)X) = σ(P (X)) for all P (X) ∈ B〈X〉 (here,ρµ denotes the free
cumulant function associated toµ). Thus, the Voiculescu transform ofµ satisfies the
following equality:

(47) ϕ(n)
µ (b) = −σ((b−X)−1)
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for all n ∈ N and where the inverse in the equality is considered as a geometric series,
so that the right hand side is convergent for‖b−1‖ small enough dependent on (1).
Sinceµ is ⊞-infinitely divisible, by Proposition5.1 in [Wil13], we have that the left
hand side of (47) extends to

H+(B) ∪H−(B)
∞⋃

n=1

{b ∈ Mn(B) : ‖b−1‖ < C}

whereC is a fixed constant, independent ofn.
Now, by Proposition1.2 in [PV13], the fact thatµ ∈ Σ0 implies thatµ is realized as
the distribution arising from a non-commutative probability space(A, E,B). That is,

µ(P (X)) = E(P (a))

for a fixed self-adjoint elementa ∈ B and allP (X) ∈ B〈X〉. Thus,σ((b −X)−1) =
ρµ(a(b − a)−1a) and, sinceb − a ∈ M+

n (B) andρµ is a CP map onB〈X〉0 we may
conclude that theσ((b −X)−1) ∈ M−

n (B) for all b ∈ M+
n (B).

Further note that

H(b) = σ((b−1 −X)−1) =

∞∑

k=0

σ((bX)kb)

is convergent in a neighborhood of zero sinceσ satisfies (1). It is also immediate that
H(0) = 0. This completes one direction of our proof.
We now prove (I)⇒ (II). We will follow the proof of Theorem 4.1 in [Wil13] and
refer to this paper for the appropriate terminology.
We recover our operatorσ through the differential structure ofH . Indeed, we define
the mapσ by letting

(σ⊗1n)(b1(X⊗1n)b2 · · · (X⊗1n)bℓ+1) := ∆ℓ+1
R H(n)( 0, . . . , 0

︸ ︷︷ ︸

ℓ+2 − times

)(b1, b2, . . . , bℓ+1)

for elementsb1, b2, · · · , bℓ+1 ∈ Mn(B). It is a consequence of Proposition3.1 in
[Wil13] and [KVV14], Theorem 3.10 that this is a well defined operator. Moreover,
the equality

∆ℓ+1
R H(n)( 0, . . . , 0

︸ ︷︷ ︸

ℓ+2 − times

)(b, b, . . . , b) =
1

(ℓ+ 1)!

dℓ+1

dtℓ+1
H(n)(0 + tb)|t=0

and the fact that the function is analytic in a neighborhood of 0 implies that

(48) H(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((bX)kb)

once we show thatσ satisfies (1). Continuation will allow us to conclude that

(49) G(n)(b) =

∞∑

k=0

(σ ⊗ 1n)((b
−1X)kb−1) = (σ ⊗ 1n)((b −X)−1).

Thus, our theorem will follow when we can show thatσ satisfies properties (1) and
(2).
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To prove (1), we note that this is equivalent to showing that

‖σ(b1Xb2 · · ·Xbℓ+1)‖ ≤ CM ℓ+1

for a fixedC > 0, provided that‖b1‖ = · · · = ‖bℓ+1‖ = 1. This will follow
from uniform analyticity and matches the proof of the same fact in [Wil13]. Indeed,
consider the element ofMℓ+2(B)

B =












0 b1 0 0 · · · 0
0 0 b2 0 · · · 0
0 0 0 b3 · · · 0

...
...

0 0 0 0 · · · bℓ+1

0 0 0 0 · · · 0












.

Note thatH(ℓ+1) has a bound ofC on a ball of radiusr about0, independent ofℓ
since we are assuming thatH is uniformly analytic. Thus,

‖σ(b1Xb2 · · ·Xbℓ+1)‖ =
‖δℓ+1H(ℓ+2)(0;B)‖

(ℓ+ 1)!

= ‖∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(B, . . . , B)‖

= ‖r−(ℓ+1)∆ℓ+1
R H(ℓ+2)(0, . . . , 0)(rB, . . . , rB)‖

=

(
1

r

)ℓ+1 ‖δℓ+1H(ℓ+2)(0; rB)‖
(ℓ+ 1)!

≤ C

(
1

r

)ℓ+1

where the last inequality follows from the Cauchy estimatesin Theorem 2.2.
We must prove the technical fact that fact that

(50) σ|Mn(B) ≥ 0

Assume thatσ(P ) < 0 for someP ∈ M+
n (B) where we can assume thatP > δ1 for

someδ > 0. Note thatG(n)(zP−1) ∈ M−
n (B) for all z ∈ C+ by assumption so that

λG(n)(iλP−1) ∈ M−
n (B) for all λ ∈ R+. Utilizing the series expansion in (49) as

well as the exponential bound that we have just proven, we conclude that the

lim
λ↑∞

λG(n)(iλP−1) =
σ(P )

i
= −iσ(P ) /∈ M−

n (B).

This contradiction implies (50).
It remains to show (2). Once again, this will closely follow the proof of the analogous
fact in Theorem 4.1 in [Wil13]. Indeed, we will first show that

(51) (σ ⊗ 1n)(P (X ⊗ 1n + b0)
∗P (X ⊗ 1n + b0)) ≥ 0

for any monomialP (X) = b1(X ⊗ 1n)b2 · · ·X ⊗ 1nbℓ+1 ∈ Mn(B)〈X〉 andb0 ∈
Mn(B). We also assume that|bℓ+1| > ǫ1n and the general case follows by letting
ǫ ↓ 0.

Documenta Mathematica 21 (2016) 841–871



868 Michael Anshelevich, John D. Williams

Towards this end, we consider elementsC,E0, E1 ∈ Mn(ℓ+1)(B) defined as follows:

C =












0 c1 0 0 0 · · · 0
c∗1 0 c2 0 0 · · · 0
0 c∗2 0 c3 0 · · · 0
...

...
...

0 0 · · · 0 c∗ℓ−1 0 cℓ
0 0 · · · 0 0 c∗ℓ |cℓ+1|2












;E0 = 1n ⊕ 1n ⊕ · · · ⊕ 1n
︸ ︷︷ ︸

ℓ times

⊕0n

andE1 = 1n(ℓ+1)−E0 whereci = δbi for i = 1, . . . , ℓ andcℓ+1 = bℓ+1/δ
ℓ for δ > 0

to be specified. Note thatb1Xb2 · · ·Xbℓ+1 = c1Xc2 · · ·Xcℓ+1. We define a function

ĝn(ℓ+1)(b) := Gn(ℓ+1)(b− b0) : M
+
n(ℓ+1)(B) → M−

n(ℓ+1)(B)

The following properties are rather trivial and their proofmatches those of Theorem
4.1 in [Wil13].

(a) C + ǫE0 > γ1n for someγ > 0 provided thatδ > 0 is small enough.
(b) Then× n minor in the top left corner of

[(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0 ⊗ 1ℓ+1)]
2(ℓ−1)(C + ǫE0)

is equal toP (X + b0)P
∗(X + b0) +O(ǫ).

(c) ĝ(n(ℓ+1))(b) =
∑∞

p=0 σ([b
−1(X⊗1n(ℓ+1)+ b0⊗1ℓ+1)]

pb−1) for b−1 in a neigh-
borhood of0.

(d) We have thatzĝ(n(ℓ+1))(zb) → σ(b−1) in norm as|z| ↑ ∞ for b > γ1n.
(e) ĥ(n(ℓ+1))(b) := ĝ(n(ℓ+1))(b−1) has analytic extension to a neighborhood of zero.

The only one of these properties that differs from the proof of Theorem 4.1 in [Wil13]
is (d). It follows immediately from the series expansion in (48).
We now have the pieces in place to prove (51). Note that (a) implies thatC + ǫE0 is
invertible so that the map

z 7→ ĝ(n(ℓ+1))(z(C + ǫE0)
−1)

sendsC+ into Mn(B)−. LetBi,j ∈ Mn(B) for i, j = 1, . . . , ℓ + 1 and consider the
elementB = (Bi,j)

ℓ+1
i,j=1 ∈ Mn(ℓ+1)(B). Given a statef ∈ Mn(B)∗ we define a new

state
f1,1(B) := f(B1,1) : Mn(ℓ+1)(B) → C.

We may define a map

Gf,C,ǫ(z) = f1,1 ◦ ĝ(n(ℓ+1))(z(C + ǫE0)
−1) : C+ → C

−.

Properties (c) and (d) imply the following forz ∈ C+:

lim
|z|↑∞

zGf,C,ǫ(z) = lim
|z|↑∞

f1,1

[

zĝ(n(ℓ+1))(z(C + ǫE0)
−1)
]

= f1,1(σ(C + ǫE0)) ≥ 0

where the last inequality will follow from the fact thatf1,1 is a state, property (a) and
(50).
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Now, observe that the coefficient ofz−2ℓ+1 in the functionGf,C,ǫ is equal to
ρ(t2(ℓ−1)) > 0. Furthermore, since

Gf,C,ǫ(z) = Gρ(z) =
∞∑

ℓ=0

ρ(tℓ)

zℓ+1

=

∞∑

ℓ=0

f1,1(σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
ℓ(C + ǫE0)))

zℓ+1

we may conclude that

f1,1 ◦ σ([(C + ǫE0)(X ⊗ 1n(ℓ+1) + b0)]
2(ℓ−1)(C + ǫE0)) = ρ(t2(ℓ−1)) ≥ 0.

Recalling (b), it follows thatf ◦ σ([P (X + b0)P
∗(X + b0) + O(ǫ)]) ≥ 0. Letting

ǫ ↓ 0 and noting thatf was an arbitrary state, we have proven that

(σ ⊗ 1n)(P (X + b0)P
∗(X + b0)) ≥ 0

for any monomialP (X) ∈ Mn(B)〈X〉.
The extension from the case of monomials to general elementsin B〈X〉 follows the
proof in [Wil13] exactly so we will refrain from repeating it. This implies (2) and,
therefore, our theorem. �
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