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eralization of the classical relation between divisors and line bundles
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Des buissons lumineux fusaient comme des gerbes;
Mille insectes, tels des prismes, vibraient dans l’air;

–Emile Verhaeren (1855-1916),
Le paradis (Les rythmes souverains)

1 Introduction

This aim of this paper is to define higher categorical invariants (gerbes) of
codimension two algebraic cycles and provide a categorical interpretation of
the intersection of divisors on a smooth proper algebraic variety. This gener-
alization of the classical relation between divisors and line bundles sheds some
light on the geometric significance of the classical Bloch-Quillen formula (5.1.3)
relating Chow groups and algebraic K-theory.
Our work is motivated by the following three basic questions.

1Research was supported by the 2015-2016 “Research and Scholarship Award” from the
Graduate School, University of Maryland.
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i. Let A and B be sheaves of abelian groups on a manifold (or algebraic
variety) X . Given α ∈ H1(X,A) and β ∈ H1(X,B), one has their cup-
product α ∪ β ∈ H2(X,A ⊗ B). We recall that H1 and H2 classify
equivalence classes of torsors and gerbes2

H1(X,A) ←→ Isomorphism classes of A-torsors

H2(X,A) ←→ Isomorphism classes of A-gerbes;

we may pick torsors P and Q representing α and β and ask

Question 1.1. Given P and Q, is there a natural construction of a gerbe
GP,Q which manifests the cohomology class α ∪ β = [P ] ∪ [Q]?

The above question admits the following algebraic-geometric analogue.

ii. Let X be a smooth proper3 variety over a field F . Let Zi(X) be the
abelian group of algebraic cycles of codimension i on X and let CHi(X)
be the Chow group of algebraic cycles of codimension i modulo rational
equivalence. The isomorphism

CH1(X)
∼
−→ H1(X,O∗)

connects (Weil) divisors and invertible sheaves (or Gm-torsors). While di-
visors form a group,Gm-torsors onX form a Picard categoryTorsX(Gm)
with the monoidal structure provided by the Baer sum of torsors. Any
divisor D determines a Gm-torsor LD -see §5.2; the torsor LD+D′ is iso-
morphic to the Baer sum of LD and LD′ . In other words, one has an
additive map [23, II, Proposition 6.13]

Z1(X)→ TorsX(Gm) D 7→ LD. (1.0.1)

Question 1.2. What is a natural generalization of (1.0.1) to higher codi-
mension cycles?

Since TorsX(Gm) is a Picard category, one could expect the putative
additive maps on Zi(X) to land in Picard categories or their generaliza-
tions.

Question 1.3. Is there a categorification of the intersection pairing

CH1(X)× CH1(X)→ CH2(X)? (1.0.2)

More generally, one can ask for a categorical interpretation of the entire
Chow ring of X .

2For us, the term ”gerbe” signifies a stack in groupoids which is locally non-empty and
locally connected (§2.1).

3Actually, our results which depend on the Gersten resolution (5.1.1) are valid for any
separated smooth scheme of finite type over a field.
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Main results

Our first result is an affirmative answer to Question 1.1; the key observation is
that a certain Heisenberg group animates the cup-product.

Theorem 1.4. Let A,B be sheaves of abelian groups on a topological space or
scheme X.

i. There is a canonical functorial Heisenberg4 sheaf HA,B on X which sits
in an exact sequence

0→ A⊗B → HA,B → A×B → 0;

the sheaf HA,B (of non-abelian groups) is a central extension of A×B by
A⊗B.

ii. The associated boundary map

∂ : H1(X,A)×H1(X,B) = H1(X,A×B)→ H2(X,A⊗B)

sends the class (γ, δ) to the cup-product γ ∪ δ.

iii. Given torsors P and Q for A and B, view P ×Q as a A×B-torsor on X.
Let GP,Q be the gerbe of local liftings (see §2.2) of P×Q to a HA,B-torsor;
its band is A⊗B and its class in H2(X,A⊗B) is [P ] ∪ [Q].

iv. The gerbe GP,Q is covariant functorial in A and B and contravariant
functorial in X.

v. The gerbe GP,Q is trivial (equivalent to the stack of A ⊗ B-torsors) if
either P or Q is trivial.

We prove this theorem over a general site C. We also provide a natural inter-
pretation of the (class of the) Heisenberg sheaf in terms of maps of Eilenberg-
Mac Lane objects in §3.4.
Here is another rephrasing of Theorem 1.4: For abelian sheaves A and B on a
site C, there is a natural bimonoidal functor

TorsC(A)×TorsC(B) −→ GerbesC(A⊗B) (P,Q) 7→ GP,Q (1.0.3)

where TorsC(A), TorsC(B) are the Picard categories of A and B-torsors on
C and GerbesC(A⊗B) is the Picard 2-category of A⊗B-gerbes on C. Thus,
Theorem 1.4 constitutes a categorification of the cup-product map

∪ : H1(A) ×H1(B)→ H2(A⊗B). (1.0.4)

Let us turn to Questions 1.2 and 1.3. Let C be the Zariski site on the smooth
proper variety X .

4For A = B = Z we obtain the usual Heisenberg group over Z.
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Suppose that D and D′ are divisors on X which intersect in the codimension-
two cycle D.D′. Applying Theorem 1.4 to OD and OD′ with A = B = Gm,
one has a Gm ⊗Gm-gerbe GD,D′ on X . We now invoke the isomorphisms (the
second is the fundamental Bloch-Quillen isomorphism)

Gm
∼
−→ K1, CHi(X)

∼
−→
(5.1.3)

Hi(X,Ki)

where Ki is the Zariski sheaf associated with the presheaf U 7→ Ki(U).
Pushforward of GD,D′ along K1×K1 → K2 gives a K2-gerbe still denoted GD,D′ ;
we call this the Heisenberg gerbe attached to the codimension-two cycle D.D′.
This raises the possibility of relating K2-gerbes and codimension-two cycles
on X , implicit in (5.1.3). Since a general codimension-two cycle need not be
an intersection of divisiors (or even rationally equivalent to an intersection of
divisors), a new idea is necessary to generalize the above construction of the
Heisenberg gerbe to all codimension-two cycles. Our approach proceeds via the
Gersten sequence (5.1.1).

Theorem 1.5. (i) Any codimension-two cycle α ∈ Z2(X) determines a K2-
gerbe Cα on X.
(ii) the class of Cα in H2(X,K2) corresponds to α ∈ CH2(X) under the Bloch-
Quillen map (5.1.3).
(iii) the gerbe Cα+α′ is equivalent to the Baer sum of Cα and Cα′ .
(iv) Cα and Cα′ are equivalent as K2-gerbes if and only if α = α′ in CH2(X).

Since Cα uses the Gersten sequence (5.1.1) in a crucial way, we call Cα the
Gersten gerbe of α; it admits a geometric description, closely analogous to
that of the Gm-torsor LD of a divisor D of §5.2; see Remark 5.6. One has an
additive map

Z2(X)→ GerbesX(K2) α 7→ Cα. (1.0.5)

When α = D.D′ is the intersection of two divisors, there are two K2-gerbes
attached to it: the Heisenberg gerbe GD,D′ and the Gersten gerbe Cα; these
are abstractly equivalent as their classes in H2(X,K2) correspond to α. More
is possible.

Theorem 1.6. If α ∈ Z2(X) is the intersection D.D′ of divisors D,D′ ∈
Z1(X), then there is a natural equivalence Θ : Cα → GD,D′ between the Gersten
and Heisenberg K2-gerbes attached to α = D.D′.

Thus, Theorems 1.4, 1.5, 1.6 together provide the following commutative dia-
gram thereby answering Question 1.3:

Z1(X)× Z1(X) Z2(X)

TorsX(Gm)×TorsX(Gm) GerbesX(K2)

CH1(X)× CH1(X) CH2(X).

no map

(1.0.1) (1.0.5)

(1.0.3)

(1.0.2)
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Since the Heisenberg gerbe GD,D′ arises from a gerbe with band Gm⊗Gm, we
obtain:

Proposition. A necessary condition for a codimension-two cycle α on X to
be an intersection α = D.D′ of divisors D,D′ is that the Gersten gerbe Cα with
band K2 lifts to a Gm ⊗Gm-gerbe.

We begin with a review of the basic notions and tools (lifting gerbe, four-
term complexes) in §2 and then present the construction and properties of the
Heisenberg group in §3 before proving Theorem 1.4. After a quick discussion of
various examples in §4, we turn to codimension-two algebraic cycles in §5 and
construct the Gersten gerbe Cα and prove Theorems 1.5, 1.6 using the tools in
§2.

Dictionary for codimension two cycles

The above results indicate the viability of viewing K2-gerbes as natural in-
variants of codimension-two cycles on X . Additional evidence is given by the
following points: 5

• K2-gerbes are present (albeit implicitly) in the Bloch-Quillen formula
(5.1.3) for i = 2.

• The Picard category P = TorsX(Gm) of Gm-torsors on X satisfies

π1(P) := H0(X,O∗) = CH1(X, 1) ,

π0(P) := H1(X,O∗) = CH1(X) .

Similarly, the Picard 2-category C = GerbesX(K2) ofK2-gerbes is closely
related to the higher Chow groups CH2(X,−) of Bloch [4] in codimension
two, generalizing the Chow groups CHj(X, 0) = CHj(X):

π2(C) := H0(X,K2) = CH2(X, 2) ,

π1(C) := H1(X,K2) = CH2(X, 1) ,

π0(C) := H2(X,K2)
(5.1.3)
= CH2(X) .

• The additive map arising from Theorem 1.5

Z2(X)→ GerbesX(K2) , α 7−→ Cα

gives the Bloch-Quillen isomorphism (5.1.3) on the level of π0. It provides
an answer to Question 1.2 for codimension two cycles.

• The Gersten gerbe Cα admits a simple algebro-geometric description (Re-
mark 5.5): Any α determines a Kη

2 /K2-torsor; then Cα is the gerbe of
liftings of this torsor to a Kη

2 -torsor on X .

5Let η : Spec FX → X be the generic point of X and write K
η
i for the sheaf η∗Ki(FX);

one has the map Ki → K
η
i .
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• The gerbe Cα is canonically trivial outside of the support of α (Remark
5.5).

• Pushing the Gersten gerbe Cα along the map K2 → Ω2 produces an Ω2-
gerbe which manifests the (de Rham) cycle class of α in H2(X,Ω2).

The map (1.0.1) is a part of the marvellous dictionary [23, II, §6] arising from
the divisor sequence (5.2.1):

Divisors←→ Cartier divisors←→ K1-torsors

←→ Line bundles←→ Invertible sheaves. (1.0.6)

More generally, from the Gersten sequence (5.1.1) we obtain the following:

Z1(X)
∼=
−→ H0(X,Kη

1/K1)(= Cartier divisors) ։ H1(X,K1) ∼= CH1(X)

Z2(X) ։ H1(X,Kη
2 /K2)

∼=
−→ H2(X,K2) ∼= CH2(X).

Inspired by this and [3, Definition 3.2], we call Kη
2 /K2-torsors as codimension-

two Cartier cycles on X . Thus the analog for codimension two cycles of the
dictionary (1.0.6) reads

Codimension two cycles ←→ Cartier cycles ←→ K2-gerbes.

Since the Gersten sequence (5.1.1) exists for all Ki, it should be possible to
generalize Theorem 1.5 to higher codimensions thereby answering Question
1.2; however, this would involve higher gerbes. Any cycle of codimension i > 2
determines a higher gerbe [7] with band Ki (an example in the context of
Parshin chains is presented below); this provides a new perspective on the
Bloch-Quillen formula (5.1.3). The higher dimensional analogues of (1.0.3),
(1.0.2), and Theorem 1.5 are still in progress.

Higher gerbes attached to smooth Parshin chains

By Gersten’s conjecture, the localization sequence [32, §7 Proposition 3.2]
breaks up into short exact sequences

0 −→ Ki(V ) −→ Ki(V − Y ) −→ Ki−1(Y ) −→ 0, (i > 0)

for any smooth variety V over F and a closed smooth subvariety Y of V . Let
j : D → X be a smooth closed subvariety of codimension one of X ; write
ι : X − D → X for the open complement of D. Any divisor α of D is a
codimension-two cycle on X ; one has a map Pic(D)→ CH2(X) [4, (iii), p. 269].
This gives the exact sequence (for i > 0)

0 −→ Ki −→ Fi −→ j∗K
D
i−1 −→ 0

of sheaves on X where Fi = ι∗K
U
i is the sheaf associated with the presheaf

U 7→ Ki(U − D). We write KD
i and KU

i for the usual K-theory sheaves on
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D and U since the notation Ki is already reserved for the sheaf on X . The
boundary map

H1(D,KD
1 ) = H1(X, j∗K

D
1 ) −→ H2(X,K2)

is the map CH1(D) → CH2(X). For any divisor α of D, the KD
1 -torsor

Oα determines a unique j∗K
D
1 -torsor Lα on X . The K2-gerbe Cα (viewing α

as a codimension two cycle on X) is the lifting gerbe of the j∗K
D
1 -torsor Lα

(obstructions to lifting to a F2-torsor).
This generalizes to higher codimensions (and pursued in forthcoming work):

• (codimension three) If β is a codimension-two cycle of D, then the gerbe
Cβ on D determines a unique gerbe Lβ on X (with band j∗K

D
2 ). The

obstructions to lifting Lβ to a F3-gerbe is a 2-gerbe Gβ [7] with band K3

on X . This gives an example of a higher gerbe invariant of a codimension
three cycle on X . Gerbes with band Kη

3 /K3 provide the codimension-
three analog of Cartier divisors H0(X,Kη

1 /K1).

• (Parshin chains) Recall that a chain of subvarieties

X0 →֒ X1 →֒ X2 →֒ X3 →֒ · · · →֒ Xn = X

where each Xi is a divisor of Xi+1 gives rise to a Parshin chain on X .
We will call a Parshin chain smooth if all the subvarieties Xi are smooth.
Iterating the previous construction provides a higher gerbe on Xn = X
with band Kj attached to Xn−j (a codimension j cycle of Xn).

Other than the classical Hartshorne-Serre correspondence between certain
codimension-two cycles and certain rank two vector bundles, we are not aware of
any generalizations of the dictionary (1.0.6) to higher codimension. In particu-
lar, our idea of attaching a higher-categorical invariant to a higher codimension
cycle seems new in the literature. We expect that Picard n-categories play a
role in the functorial Riemann-Roch program of Deligne [15].
Our results are related to and inspired by the beautiful work of S. Bloch [3],
L. Breen [8], J.-L. Brylinski [10], P. Gajer [18, 19], A. N. Parshin [30], B. Poonen
- E. Rains [31], and D. Ramakrishnan [33] (see §4). Brylinski’s hope6 [10,
Introduction] for a higher-categorical geometrical interpretation of the regulator
maps from algebraic K-theory to Deligne cohomology was a major catalyst. In
a forthcoming paper, we will investigate the relations between the Gersten
gerbe and Deligne cohomology.
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Notations and conventions

Let C be a site. We write C∼ for the topos of sheaves over C, C∼
ab the abelian

group objects of C∼, namely the abelian sheaves on C, and by C∼
grp the sheaves

of groups on C. Our notation for cohomology is as follows. For an abelian
object A of a topos T, Hi(A) denotes the cohomology of the terminal object
e ∈ T with coefficients in A, namely ith derived functor of HomT(e, A). This is
the same as Exti

Tab
(Z, A). More generally, Hi(X,A) denotes the cohomology

of A in the topos T/X . We use H for hypercohomology.
A variety over a field F is an integral scheme of finite type over F .

2 Preliminaries

2.1 Abelian Gerbes [21, 16, 7]

A gerbe G over a site C is a stack in groupoids which is locally non-empty and
locally connected.
G is locally nonempty if for every object U of C there is a cover, say a local
epimorphism, V → U such that the category G(V ) is nonempty; it is locally
connected if given objects x, y ∈ G(U) as above, then, locally on U , the sheaf
Hom(x, y) defined above has sections. For each object x over U we can intro-
duce the automorphism sheaf AutG(x), and by local connectedness all these
automorphism sheaves are (non canonically) isomorphic.
In the sequel we will only work with abelian gerbes, where there is a coherent
identification between the automorphism sheaves AutG(x), for any choice of
an object x of G, and a fixed sheaf of groups G. In this case G is necessarily
abelian7, and the class of G determines an element in H2(G), [7, §2] (and
also [26]), where Hi(G) = ExtiC∼

ab
(Z, G) denotes the standard cohomology with

coefficients in the abelian sheaf G in the topos C∼ of sheaves over C.
Let us briefly recall how the class of G is obtained using a Čech type argument.
Assume for simplicity that the site C has pullbacks. Let U = {Ui} be a cover of
an object X of C. Let xi be a choice of an object of G(Ui). For simplicity, let
us assume that we can find morphisms αij : xj |Uij

→ xi|Uij
. The class of G will

be represented by the 2-cocycle {cijk} of U with values in G obtained in the
standard way as the deviation for {αij} from satisfying the cocycle condition:

αij ◦ αjk = cijk ◦ αik.

In the above identity—which defines it—cijk ∈ Aut(xi|Uijk
) ∼= G|Uijk

. It is
obvious that {cijk} is a cocycle.

7The automorphisms in Aut(G) completely decouple, hence play no role.
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Returning to stacks for a moment, a stack G determines an object π0(G), defined
as the sheaf associated to the presheaf of connected components of G, where the
latter is the presheaf that to each object U of C assigns the set of isomorphism
classes of objects of G(U). By definition, if G is a gerbe, then π0(G) = ∗.
In general, writing just π0 in place of π0(G), by base changing to π0, namely
considering the site C/π0, every stack G is (tautologically) a gerbe over π0 [27].

Example 2.1.

i. The trivial gerbe with band G is the stack Tors(G) of G-torsors. More-
over, for any gerbe G, the choice of an object x in G(U) determines an
equivalence of gerbes G|U ∼= Tors(G|U ), over C/U , where G = AutG(x).
There is an equivalence Tors(G) ∼= BG, the topos of (left) G-objects of
C∼ ([21]).

ii. Any line bundle L over an algebraic variety X over Q determines a gerbe
Gn with band µn (the sheaf of nth roots of unity) for any n > 1 as follows:
Over any open set U , consider the category of pairs (L, α) where L is a
line bundle on U and α : L⊗n ∼

−→ L is an isomorphism of line bundles
over U . These assemble to the gerbe Gn of nth roots of L. This is an
example of a lifting gerbe §2.2.

Remark. One also has the following interpretation, which shows that, in a fairly
precise sense, a gerbe is the categorical analog of a torsor. Let G be a gerbe
over C, let {Ui} be a cover of U ∈ Ob(C), and let {xi} be a collection of objects
xi ∈ G(Ui). The G-torsors Eij = Hom(xj , xi) are part of a “torsor cocycle”
γijk : Eij ⊗Ejk → Eik, locally given by cijk, above, and subject to the obvious
2-cocycle identity [9, (5-10) on p. 201]. Let Tors(G) be the stack of G-torsors
overX . Since G is assumed abelian, Tors(G) has a group-like composition law
given by the standard Baer sum. The fact that G itself is locally equivalent to
Tors(G), plus the datum of the torsor cocycle {Eij}, show that G is equivalent
to a Tors(G)-torsor.

The primary examples of abelian gerbes occurring in this paper are the gerbe of
local lifts associated to a central extension and four-term complexes, described
in the next two sections.

2.2 The gerbe of lifts associated with a central extension

(See [21, 7, 9].) A central extension

0 −→ A
ı
−→ E

p
−→ G −→ 0 (2.2.1)

of sheaves of groups determines a homotopy-exact sequence

Tors(A) −→ Tors(E) −→ Tors(G),

which is an extension of topoi with characteristic class c ∈ H2(BG, A). (Recall
that A is abelian and that Tors(G) is equivalent to BG.) If X is any topos

Documenta Mathematica 21 (2016) 1313–1344



1322 E. Aldrovandi and N. Ramachandran

over Tors(G) ∼= BG, the gerbe of lifts is the gerbe with band A

E = HomBG
(X,BE),

where Hom denotes the cartesian morphisms. The class c(E) ∈ H2(X, A) is
the pullback of c along the map X → BG. By the universal property of BG,
the morphism X → BG corresponds to a G-torsor P of X, hence the A-gerbe
E is the gerbe whose objects are (locally) pairs of the form (Q, λ), where Q
is an E-torsor and λ : Q → P an equivariant map. It is easy to see that an
automorphism of an object (Q, λ) can be identified with an element of A, so
that A is indeed the band of E .
Let us take X = C∼, and let P be a G-torsor. With the same assumptions
as the end of § 2.1, let X be an object of C with a cover {Ui}. In this case,
the class of E is computed by choosing E|Ui

-torsors Qi and equivariant maps
λi : Qi → P |Ui

. Up to refining the cover, let αij : Qj → Qi be an E-torsor
isomorphism such that λi ◦αij = λj . With these choices the class of E is given
by the cocycle αij ◦ αjk ◦ α

−1
ik .

Remark 2.2. The above argument gives the well known boundary map [21,
Proposition 4.3.4]

∂1 : H1(G) −→ H2(A)

(where we have omitted X from the notation). Dropping down one degree we
get [ibid., Proposition 3.3.1]

∂0 : H0(G) −→ H1(A).

In fact these are just the boundary maps determined by the above short exact
sequence when all objects are abelian. The latter can be specialized even
further: if g : ∗ → G, then by pullback the fiber Eg is an A-torsor [22].

2.3 Four-term complexes

Let C∼
ab be the category of abelian sheaves over the site C. Below we shall be

interested in four-term exact sequences of the form:

0 −→ A
ı
−→ L1

∂
−→ L0

p
−→ B −→ 0. (2.3.1)

Let Ch+(C
∼
ab) be the category of positively graded homological complexes of

abelian sheaves. The above sequence can be thought of as a (non-exact) se-
quence

0 −→ A[1] −→ [L1 −→ L0] −→ B −→ 0

of morphisms of Ch+(C
∼
ab). This sequence is short-exact in the sense of Picard

categories, namely as a short exact sequence of Picard stacks

0 −→ Tors(A) −→ L
p
−→ B −→ 0,

Documenta Mathematica 21 (2016) 1313–1344



Cup Products and Algebraic Cycles 1323

where L is the strictly commutative Picard stack associated to the complex
L1 → L0 and the abelian object B is considered as a discrete stack in the
obvious way. We have isomorphisms A ∼= π1(L) and B ∼= π0(L), where the
former is the automorphism sheaf of the object 0 ∈ L and the latter the sheaf of
connected components (see [7, 8, 13]). It is also well known that the projection
p : L → B makes L a gerbe over B. In this case the band of L over B is AB,
thereby determining a class in H2(B,A).8

Rather than considering L itself as a gerbe over B, we shall be interested in
its fibers above generalized points β : ∗ → B. Let us put A = Tors(A). By a
categorification of the arguments in [22], the fiber Lβ above β is an A-torsor,
hence an abelian A-gerbe, by the observation at the end of § 2.1 (see also the
equivalence described in [6]). Lβ is canonically equivalent to A whenever β = 0.
Writing

HomC∼(∗, B) ∼= HomC∼

ab
(Z, B) = H0(B),

we have the homomorphism

∂2 : H0(B) −→ H2(A), (2.3.2)

which sends β to the class of Lβ in H2(A). The sum of β and β′ is sent to the
Baer sum of Lβ +Lβ′ , and the characteristic class is additive. In the following
Lemma we show this map is the same as the one described in [21, Théorème
3.4.2].

Lemma 2.3.

i. The map ∂2 in (2.3.2) is the canonical cohomological map (iterated bound-
ary map) [21, Théorème 3.4.2]

d2 : H0(B) −→ H1(C) −→ H2(A)

(C is defined below) arising from the four-term complex (2.3.1).

ii. The image of β under d2 is the class of the gerbe Lβ.

Proof. We keep the same notation as above. Let us split (2.3.1) as

0

0 A L1 C 0

L0

B

0

ı π

∂


p

8This is part of the invariant classifying the four-term sequence, see the remarks in [8, §6].
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with C = Im ∂. By Grothendieck’s theory of extensions [22], with β : ∗ →
B, the fiber (L0)β is a C-torsor (see the end of Remark 2.2). According to
section 2.2, we have a morphism Tors(L1)→ Tors(C), and the object (L0)β
of Tors(C) gives rise to the gerbe of lifts Eβ ≡ EL0,β , which is an A-gerbe.
Now, consider the map assigning to β ∈ H0(B) the class of Eβ ∈ H2(A).
By construction, this map factors through H1(C) by sending β to the class
of the torsor (L0)β . We then lift that to the class of the gerbe of lifts in
H2(A). All stages are compatible with the abelian group structures. This is
the homomorphism described in [21, Théorème 3.4.2].
It is straightforward that this is just the classical lift of β through the four-
term sequence (2.3.1). Indeed, this is again easily seen in terms of a Čech
cover {Ui} of ∗. Lifts xi of β|Ui

are sections of the C-torsor (L0)β , therefore
determining a standard C-valued 1-cocycle {cij}. From section 2.2 we then
obtain an A-valued 2-cocycle {aijk} arising from the choice of local L1-torsors
Xi such that Xi → (L0)β |Ui

is (L1 → C)-equivariant. Note that in the case
at hand, π : L1 → C being an epimorphism, the lifting of the torsor (L0)β is
done by choosing local trivializations, i.e. the xi above, and then choosing
Xi = L1|Ui

.
The same argument shows that the class of Lβ , introduced earlier, is the same
as that of Eβ. This is a consequence of the following well known facts: objects of
Lβ are locally lifts of β to L0; morphisms between them are given by elements
of L1 acting through ∂. As a result, automorphisms are sections of A and
clearly the class so obtained coincides with that of Eβ. Therefore Eβ and Lβ
are equivalent and the homomorphism of [21, Théorème 3.4.2] is equal to (2.3.2),
as required.

From the proof of the above lemma, we obtain the following two descriptions
of the A-gerbe Lβ .

Corollary 2.4. (i) For any four-term complex (2.3.1) and any generalized
point β of B, the fiber Lβ is a gerbe. Explicitly, it is the stack associated with
the prestack which attaches to U the groupoid Lβ(U) whose objects are elements
g ∈ L0(U) with p(g) = β and morphisms between g and g′ given by elements h
of L1(U) satisfying ∂(h) = g − g′.
(ii) The A-gerbe Lβ is the lifting gerbe of the C-torsor (L0)β to a L1-torsor.

We will use both descriptions in §5 especially in the comparison of the Gersten
and the Heisenberg gerbe of a codimension two cycle, in the case that it is an
intersection of divisors.
A slightly different point of view is the following. Recast the sequence (2.3.1)
as a quasi-isomorphism

A[2]
∼=
−→

[

L1 −→ L0 −→ B
]

of three-term complexes of Ch+(C
∼
ab), where now A has been shifted two places

to the left. Also, relabel the right hand side as L′
2 → L′

1 → L′
0 (where again we

Documenta Mathematica 21 (2016) 1313–1344



Cup Products and Algebraic Cycles 1325

employ homological degrees) for convenience. By [35], the above morphism of
complexes of Ch+(C

∼
ab), placed in degrees [−2, 0], gives an equivalence between

the corresponding associated strictly commutative Picard 2-stacks

A
∼=
−→ L

over C. Here L = [L′
2 → L′

1 → L′
0]

∼ and A = [A → 0 → 0]∼ ∼= Tors(A) ∼=
Gerbes(A). This time we have π0(L) = π1(L) = 0, and π2(L) ∼= A, as it
follows directly from the quasi-isomorphism above. Thus L is 2-connected,
namely any two objects are locally (i.e. after base change) connected by an
arrow; similarly, any two arrows with the same source and target are—again,
locally—connected by a 2-arrow.
Locally, any object of L is a section β ∈ B = L′

0. By the preceding argument,
the Picard stack Lβ = AutL(β) is an A-gerbe, and the assignment β 7→ Lβ
realizes (a quasi-inverse of) the equivalence between A and L. It is easy to see
that Lβ is the same as the fiber over β introduced before.
In particular, for the Gersten resolution (5.1.1), (5.1.2), for K2, we get the
equivalence of Picard 2-stacks

Gerbes(K2) ∼=
[

GX
2

]∼
. (2.3.3)

3 The Heisenberg group

The purpose of this section is to describe a functor H : Ab× Ab→ Grp, where
Ab is the category of abelian groups and Grp that of groups. If C is a site,
the method immediately generalizes to the categories of abelian groups and of
groups in C∼, the topos of sheaves on C. For any pair A,B of abelian sheaves
on C, there is a canonical Heisenberg sheaf HA,B (of non-commutative groups
on C), a central extension of A×B by A⊗B.
The definition of H is based on a generalization of the Heisenberg group
construction due to Brylinski [10, §5]. A pullback along the diagonal map
A→ A⊗A gives the extension constructed by Poonen and Rains [31].

3.1 The Heisenberg group

Let A and B be abelian groups. Consider the (central) extension

0→ A⊗B → HA,B → A×B → 0 (3.1.1)

where the group HA,B is defined by the group law:

(a, b, t) (a′, b′, t′) = (aa′, bb′, t+ t′ + a⊗ b′). (3.1.2)

Here a, a′ are elements of A, b, b′ of B, and t, t′ of A⊗B. The nonabelian group
HA,B is evidently a functor of the pair (A,B), namely a pair of homomorphisms
(f : A→ A′, g : B → B′) induces a homomorphism Hf,g : HA,B → HA′,B′ . The
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special case A = B = µn occurs in Brylinski’s treatment of the regulator map
to étale cohomology [10].
The map

f : (A×B)× (A×B) −→ A⊗B, f(a, b, a′, b′) = a⊗ b′, (3.1.3)

is a cocycle representing the class of the extension (3.1.1) in H2(A×B,A⊗B)
(group cohomology). Its alternation

ϕf : ∧
2
Z
(A×B) −→ A⊗B, ϕf ((a, b), (a

′, b′)) = a⊗ b′ − a′ ⊗ b,

coincides with the standard commutator map and represents the value of the
projection of the class of f under the third map in the universal coefficient
sequence

0 −→ Ext1(A×B,A⊗B) −→ H2(A×B,A⊗B) −→ Hom(∧2
Z
(A×B), A⊗B).

As for the commutator map, it is equal to [s, s] : ∧2
Z
(A ×B)→ A⊗B, where

s : A × B → HA,B is a set-theoretic lift, but the map actually is independent
of the choice of s. (For details see, e.g. the introduction to [8].)

Remark 3.1. The properties of the class of the extension HA,B, in particular
that it is a cup-product of the fundamental classes of A and B, as we can
already evince from (3.1.3), are best expressed in terms of Eilenberg-Mac Lane
spaces. We will do this below working in the topos of sheaves over a site.

3.2 Extension to sheaves

The construction of the Heisenberg group carries over to the sheaf context. Let
C be a site, and C∼ the topos of sheaves over C. Denote by C∼

ab the abelian
group objects of C∼, namely the abelian sheaves on C, and by C∼

grp the sheaves
of groups on C.
For all pairs of objects A,B of C∼

ab, it is clear that the above construction of
HA,B carries over to a functor

H : C∼
ab × C∼

ab −→ C∼
grp.

In particular, since HA,B is already a sheaf of sets (isomorphic to A×B× (A⊗
B)), the only question is whether the group law varies nicely, but this is clear
from its functoriality. Note further that by definition of HA,B the resulting
epimorphism HA,B → A×B has a global section s : A×B → HA,B as objects
of C∼, namely s = (idA, idB, 0), which we can use this to repeat the calculations
of § 3.1.
In more detail, from § 2.2, the class of the central extenson (3.1.1) is to be
found in H2(BA×B, A ⊗ B) (A ⊗ B is a trivial A × B-module). This replaces
the group cohomology of § 3.1 with its appropriate topos equivalent. By pulling
back to the ambient topos, say X = C∼, this is the class of the gerbe of lifts
from BA×B to BH . We are ready to give a proof of Theorem 1.4. This proof
is computational.

Documenta Mathematica 21 (2016) 1313–1344



Cup Products and Algebraic Cycles 1327

Proof of Theorem 1.4. Let us go back to the cocycle calculations at the end of
§ 2.2, where X is an object of C equipped with a cover U = {Ui}. An A × B-
torsor (P,Q) over X would be represented by a Čech cocycle (aij , bij) relative
to U . The cocycle is determined by the choice of isomorphisms (P,Q)|Ui

∼=
(A × B)|Ui

. Now, define Ri = HA,B|Ui
with the trivial HA,B-torsor structure,

and let λi : Ri → (P,Q)|Ui
equal the epimorphism in (3.1.1). Carrying out

the calculation described at the end of 2.2 with these data gives αij ◦ αjk ◦
α−1
ik = aij ⊗ bjk, which is the cup-product in Čech cohomology of the classes

corresponding to the A-torsor P and the B-torsor Q. In other words, the gerbe
of lifts corresponding to the central extension determined by the Heisenberg
group incarnates the cup product map

H1(X,A)×H1(X,B)
∪
−→ H2(X,A⊗B).

For the choice αij = (aij , bij , 0), one has the following explicit calculation in
the Heisenberg group

αij ◦ αjk ◦ α
−1
ik = (aij , bij , 0)(ajk, bjk, 0)(aik, bik, 0)

−1

= (aik, bik, aij ⊗ bjk)(a
−1
ik , b

−1
ik , aik ⊗ bik)

= (1, 1, aij ⊗ bjk + aik ⊗ bik − aik ⊗ bik)

= (1, 1, aij ⊗ bjk);

We used that the inverse of (a, b, t) in the Heisenberg group is (a−1, b−1,−t+
a⊗ b):

(a, b, t)(a−1, b−1,−t+ a⊗ b) = (1, 1, a⊗ b−1 + t− t+ a⊗ b) = (1, 1, 0).

It is well known [9, Chapter 1, §1.3, Equation (1-18), p. 29] that the Čech
cup-product of a = {aij} and b = {bij} is given by the two-cocycle

{a ∪ b}ijk = {aij ⊗ bjk}.

This proves the first three points of the statement, whereas the fourth is built-
in from the very construction. The fifth follows from the fact that the class
of the gerbe of lifts is bilinear: this is evident from the expression computed
above.

As hinted above, the cup product has a more intrinsic explanation in terms of
maps between Eilenberg-Mac Lane objects in the topos. Passing to Eilenberg-
Mac Lane objects in particular “explains” why the cup-product realizes the
cup-product pairing. First, we state

Theorem 3.2. The class of the extension (3.1.1) in C∼ corresponds to (the
homotopy class of) the cup product map

K(A× B, 1) ∼= K(A, 1)×K(B, 1) −→ K(A⊗B, 2)

between the identity maps of K(A, 1) and K(B, 1); its expression is given
by (3.1.3).
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Proof. Observe the epimorphism HA,B → A × B has global set-theoretic sec-
tions. The statement follows from Propositions 3.3 and 3.4 below.

The two main points, which we now proceed to illustrate, are that Eilenberg-
Mac Lane objects represent cohomology (and hypercohomology, once we take
into account simplicial objects) in a topos, and that the cohomology of a group
object in a topos (such as A×B in C∼) with trivial coefficients can be traded for
the hypercohomology of a simplicial model of it. In this way we calculate the
class of the extension as a map, and such map is identified with the cup product.
We assemble the necessary results to flesh out the proof of Theorem 3.2 in the
next two sections.

3.3 Simplicial computations

The class of the central extension (2.2.1) can be computed simplicially. (For
the following recollections, see [25, VI.5, VI.6, VI.8] and [5, §2].)
Let T be a topos, G a group-object of T (for us it will be T = C∼) and
BG = K(G, 1) the standard classifying simplicial object with BnG = Gn [14].
Let A be a trivial G-module. We will need the following well known fact.9

Proposition 3.3. Hi(BG, A) ∼= H
i(BG,A).

Proof. The object on the right is the hypercohomology as a simplicial object
of T. Let X be a simplicial object in a topos T. One defines

H
i(X,A) = Exti(Z[X ]∼, A)

whereM∼, for any simplicial abelian objectM of T, denotes the corresponding
chain complex defined by M∼

n = Mn, and by taking the alternate sum of the
face maps. ZXn denotes the abelian object of T generated by Xn. Of interest
to us is the spectral sequence [5, Example (2.10) and below]:

Ep,q
1 = Hq(Xp, A) =⇒ H

•(X,A).

Let X be any simplicial object of T. The levelwise topoi T/Xn, n = 0, 1, . . . ,
form a simplicial topos X = T/X or equivalently a topos fibered over ∆op, where
∆ is the simplicial category. The topos BX of X-objects essentially consists of
descent-like data, that is, objects L of X0 equipped with an arrow a : d∗1L→ d∗0L
the cocycle condition d∗0a d

∗
2a = d∗1a and s∗0a = id (the latter is automatic if a is

an isomorphism). By [25, VI.8.1.3], in the case where X = BG, BX is nothing
but BG, the topos of G-objects of T. One also forms the topos Tot(X), whose
objects are collections Fn ∈ Xn such that for each α : [m] → [n] in ∆op there
is a morphism Fα : α

∗Fm → Fn, where α
∗ is the inverse image corresponding

to the morphism α : Xn → Xm. There is a functor ner : BX→ Tot(X) sending

9Unfortunately we could not find a specific entry point in the literature to reference,
therefore we assemble here the necessary prerequisites. See also [11, §§2,3] for a detailed
treatment in the representable case.
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(L, a) to the object of Tot(X) which at level n equals (d0 · · · d0)
∗L (a enters

through the resulting face maps), see loc. cit. for the actual expressions. The
functor ner is the inverse image functor for a morphism Tot(X)→ BX, and, X
satisfying the conditions of being a “good pseudo-category” ([25, VI 8.2]) we
have an isomorphism

RΓ(BX, L)
∼=
−→ RΓ(Tot(X), ner (L))

and, in turn, a spectral sequence

Ep,q
1 = Hq(Xp, nerp(L)) =⇒ H•(BX, L),

[25, VI, Corollaire 8.4.2.2]. On the left hand side we recognize the spectral
sequence for the cohomology of a simplicial object in a topos [5, §2.10].
Applying the foregoing to X = BG, and L a left G-object of T, we obtain [25,
VI.8.4.4.5]

Ep,q
1 = Hq(Gp, L) =⇒ H•(BG, L).

(We set Y = e, the terminal object of T, in the formulas from loc. cit.)
Thus if L = A, the trivial G-module arising from a central extension of G
by A, by comparing the spectral sequences we can trade H2(BG, A) for the
hypercohomology H

2(K(G, 1), A).

3.4 The cup product

The class of the extension extension (3.1.1) corresponds to the homotopy class
of a map K(A×B, 1)→ K(A⊗B, 2). We interpret it in terms of cup products
of Eilenberg-Mac Lane objects.
Recall that for an object M of C∼

ab we have K(M, i) = K(M [i]), where M [i]
denotes M placed in homological degree i, and K : Ch+(C

∼
ab) → sC∼

ab is the
Dold-Kan functor from nonnegative chain complexes of C∼

ab to simplicial abelian
sheaves. Explicitly:

K(M, i)n =

{

0 0 ≤ n < i,
⊕

s : [n]։[i]M n ≥ i.

In particular, K(M, i)i = M . K is a quasi-inverse to the normalized complex
functor N : sC∼

ab → Ch+(C
∼
ab).

If X is a simplicial object X of C∼, we have

H
i(X,M) ∼= [X,K(M, i)], (3.4.1)

where the right-hand side denotes the hom-set in the homotopy category [24, 5].
In particular, there is a fundamental class ınM ∈ H

n(K(M,n),M), correspond-
ing to the identity map.
Returning to the objects A and B of C∼

ab, also recall the morphism [5, Chapter
II, Equation (2.22), p. 64]

δi,j : K(A, i)×K(B, j) −→ K(A⊗B, i+ j). (3.4.2)
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It is the composition of two maps. The first is:

K(A, i)×K(B, j) −→ d((K(A, i)⊠K(B, j)) = (K(A, i)⊗K(B, j))),

where ⊠ denotes the external tensor product of simplicial objects of C∼
ab and

d the diagonal; the second is the map in sC∼
ab corresponding to the Alexander-

Whitney map under the Dold-Kan correspondence. We have:

Proposition 3.4. The class of the extension (3.1.1) is equal to ı1A ⊗ ı1B =
δ1,1(ı

1
A × ı

1
B).

Proof. Observe that any simplicial morphism f : X → K(M, i) is determined by
fi, the rest, for n > i, being determined by the simplicial identities. Therefore
we need to compute:

K(A×B, 1)2 ∼= K(A, 1)2 ×K(B, 1)2 −→ K(A⊗B, 2)2,

namely

(A×B)× (A×B) −→ (A×A)× (B ×B) −→ A⊗ B.

From the expression of the Alexander-Whitney map, in e.g. [24], the image of
the second map in Ch+(C

∼
ab) is the sum of dv0d

v
0 , d

h
1d

h
1 , and dh2d

v
0. Only the

third one is nonzero, giving ((a, b), (a′, b′)) → a ⊗ b′, which equals f in the
construction of the extension (3.1.1). Using (3.4.1) we obtain the conclusion.

The morphism (3.4.2) represents the standard cup product in cohomology. By
Proposition 3.4, for an object X of sC∼, the cup product

H
1(X,A)×H

1(X,B) −→ H
2(X,A⊗B)

factors through X → K(A, 1)×K(B, 1) and the extension (3.1.1).

Remark. Proposition 3.4 and the above map provide a more conceptual proof
of Theorem 1.4.

4 Examples and connections to prior results

In this section, we collect some examples and briefly indicate the connections
with earlier results [3, 10, 30, 31, 33].

4.1 Self-cup products of Poonen-Rains

In [31], Poonen and Rains construct, for any abelian group A, a central exten-
sion of the form

0→ A⊗A→ UA→ A→ 0,

providing a functor U : Ab→ Grp. The group law in UA is obtained from (3.1.2)
by setting a = a′ and b = b′. Hence the above extension can be obtained
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from (3.1.1) by pulling back along the diagonal homomorphism∆A : A→ A×A.
Similarly, both the cocycle and its alternation for the extension constructed in
loc. cit. are obtained from ours by pullback along ∆A, for A ∈ Ab. Similar
remarks apply over an abelian sheaf A on any site C. They use UA to describe
the self-cup product α ∪ α of any element α ∈ H1(A).

4.2 Brylinski’s work on regulators and étale analogues

In [10], Brylinski has proved Theorem 1.4 in the case A = B = µn, the étale
sheaf µn of nth roots of unity on a scheme X over SpecZ[ 1

n
] using the Heisen-

berg group Hµn,µn
(in our notation). The gerbe from Theorem 1.4 in this

particular case is related to the Bloch-Deligne line bundle [15, 33], in a sense
made precise in [10, Proposition 5.1 and after]. Brylinski has used this special
case of Theorem 1.4 to provide a geometric interpretation of certain regulator
maps.

4.3 Finite flat group schemes

Let X be any variety over a perfect field F of characteristic p > 0. For any
commutative finite flat group scheme N killed by pn, consider the cup product
pairing

H1(X,N)×H1(X,ND)→ H2(C,µpn)

of flat cohomology groups where ND is the Cartier dual of N . Theorem 1.4
provides a µpn -gerbe on X given a N -torsor and a ND-torsor. When N is the

kernel of pn on an abelian scheme A so that ND is the kernel of pn on the dual
abelian scheme AD of A, the cup-product pairing is related to the Néron-Tate
pairing [28, p. 19].

4.4 The gerbe associated with a pair of divisors

Let X be a smooth variety over a field F . Let D and D′ be divisors on X .
Consider the non-abelian sheaf H on X obtained by pushing the Heisenberg
group HK1,K1 along the multiplication map m : K1 ⊗ K1 → K2. So H is a
central extension of K1 ×K1 by K2 which we write

0 −→ K2 −→ H
π
−→ K1 ×K1 −→ 0. (4.4.1)

Let L = LD,D′ denote the K1 ×K1-torsor defined by the pair D,D′. Applying
Theorem 1.4 gives a K2-gerbe on X as follows. Since H is a central extension
(so K1×K1 acts trivially on K2), the category of local liftings of L to a K2-torsor
provide (§2.2, [21, IV, 4.2.2]) a canonical K2-gerbe GD,D′ .

Definition 4.1. The Heisenberg gerbe GD,D′ with band K2 is the following:
For each open set U , the category GD,D′(U) has objects pairs (P, ρ) where P is
a H-torsor on U and

ρ : P ×π (K1 ×K1)
∼
−→ L
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is an isomorphism of K1 ×K1-torsors; a morphism from (P, ρ) to (P ′, ρ′) is a
map f : P → P ′ of H-torsors satisfying ρ = ρ′ ◦ f . It is clear that the set of
morphisms from (P, ρ) to (P ′, ρ′) is a K2-torsor.

Example 4.2. Assume X is a curve (smooth proper) and put Y = X ×X .
(i) Assume F = Fq is a finite field. Let D be the graph on Y of the Frobenius
morphism π : X → X and D′ be the diagonal, the image of X under the map
∆ : X → X × X . Theorem 1.4 attaches a K2-gerbe on Y to the zero-cycle
D.D′, the intersection of the divisors D and D′. Since the zero cycle D.D′ is

the pushforward ∆∗β of β =
∑

x∈X(Fq)

x on X , we obtain that the set of rational

points on X determines a K2-gerbe on X ×X .
(ii) Note that the diagonal ∆Y (a codimension-two cycle on Y × Y ) can be
written as an intersection of divisors V and V ′ on Y × Y = X ×X ×X ×X
where V (resp. V ′) are the set of points of the latter of the form {(a, b, a, c)}
(resp. {(a, b, d, b)}). Theorem 1.4 says that ∆Y determines a K2-gerbe on
Y × Y .

4.5 Adjunction formula

Let X be a smooth proper variety and D be a smooth divisor of X . The
classical adjunction formula states:
The restriction of the line bundle L−1

D to D is the conormal bundle ND (a line
bundle on D).
Given a pair of smooth divisorsD,D′ with E = D∩D′ smooth of pure codimen-
sion two, write ι : E →֒ X for the inclusion. There is a map π : ι∗K2 → K

E
2 ,

where KE
2 indicates the usual K-theory sheaf K2 on E. An analogue of the

adjunction formula for E would be a description of the KE
2 -gerbe π∗ι

∗GD,D′

obtained from the K2-gerbe GD,D′ on X .

Proposition 4.3. Let D and D′ be smooth divisors of X with E = D ∩ D′

smooth of pure codimension two. Consider the line bundles V = (ND)|E and
V ′ = (ND′)|E on E. Then, π∗ι

∗GD,D′ is equivalent to the KE
2 -gerbe GV,V ′ .

Proof. Since the restriction map H∗(X,Ki) → H∗(E,KE
i ) respects cup-

product, this follows from the classical adjunction formula for D and D′.

4.6 Parshin’s adelic groups

Let S be a smooth proper surface over a field F . For any choice of a curve C in
S and a point P on C, Parshin [30, (18)] has introduced a discrete Heisenberg
group

0→ Z→ Γ̃P,C → ΓP,C → 0,

where ΓP,C is isomorphic (non-canonically) to Z ⊕ Z; he has shown [30, end
of §3] how a suitable product of these groups leads to an adelic description
of CH2(S) and the intersection pairing (1.0.2). His constructions are closely
related to an adelic resolution of the sheaf HK1,K1 on S.
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5 Algebraic cycles of codimension two

Throughout this section, X is a smooth proper variety over a field F . Let
η : Spec FX → X be the generic point of X and write Kη

i for the sheaf
j∗Ki(FX).
In this section, we construct the Gersten gerbe Cα for any codimension two
cycle α on X , provide various equivalent descriptions of Cα and use them to
prove Theorems 5.4, 5.10. As a consequence, we obtain Theorems 1.5 and 1.6
of the introduction.

5.1 Bloch-Quillen formula

Recall the (flasque) Gersten resolution10 [32, §7] [17, p. 276] [20] of the Zariski
sheaf Ki associated with the presheaf U 7→ Ki(U):

0 −→ Ki −→
⊕

x∈X(0)

j∗Ki(x) −→
⊕

x∈X(1)

j∗Ki−1(x) −→ · · ·

· · · −→
⊕

x∈X(i−1)

j∗K1(x)
δi−1
−−−→

⊕

x∈X(i)

j∗K0(x); (5.1.1)

here, any point x ∈ X(m) corresponds to a subvariety of codimension m and
the map j is the canonical inclusion x →֒ X . So Ki is quasi-isomorphic to the
complex

GX
i =

[

Kη
i −→

⊕

x∈X(1)

j∗Ki−1(x) −→ · · ·

· · · −→
⊕

x∈X(i−1)

j∗K1(x)
δi−1
−−−→

⊕

x∈X(i)

j∗K0(x)
]

. (5.1.2)

By (5.1.1), there is a functorial isomorphism [32, §7, Theorem 5.19] [17, Corol-
lary 72, p. 276]

⊕

i

CHi(X)
∼
−→

⊕

i

Hi(X,Ki) ; (5.1.3)

(Bloch-Quillen formula)

this is an isomorphism of graded rings: D. Grayson has proved that the in-
tersection product on CH(X) = ⊕iCH

i(X) corresponds to the cup-product
in cohomology [17, Theorem 77, p.278]. Thus, algebraic cycles of codimen-
sion n give n-cocycles of the sheaf Kn on X and that two such cocycles are
cohomologous exactly when the algebraic cycles are rationally equivalent.
The final two maps in (5.1.1) arise essentially from the valuation and the tame
symbol map [3, pp.351-2]. Let R be a discrete valuation ring, with fraction

10This resolution exists for any separated smooth scheme of finite type over F .
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field L; let ord : L× → Z be the valuation and let l be the residue field. The
boundary maps from the localization sequence for SpecR are known explicitly:
the map L× = K1(L) → K0(l) = Z is the map ord and the map K2(L) →
K1(l) = l× is the tame symbol. This applies for any normal subvariety V
(corresponds to a y ∈ X(i)) and a divisor x of V (corresponding to a x ∈ X(i+1)).

5.2 Divisors

We recall certain well known results about divisors and line bundles for com-
parison with the results below for the K2-gerbes attached to codimension two
cycles. See [23, Chapter II §6] and [17, Vol. 1, II.2] for details.
If A is a sheaf of abelian groups on X , then Ext1X(Z, A) = H1(X,A) classifies
A-torsors on X . Given an extension E

0 −→ A −→ E
π
−→ Z −→ 0

of abelian sheaves on X , the corresponding A-torsor is simply π−1(1) (a sheaf
of sets). When X is a point, then π−1(1) is a coset of π−1(0) = A, i.e., a A-
torsor. The classical correspondence [23] between Weil divisors (codimension-
one algebraic cycles) D on X , Cartier divisors, line bundles LD, and torsors
LD over O∗

X = Gm = K1 comes from the Gersten sequence (5.1.1) for K1 (see
also [20, 2.2]):

0 −→ O∗
X −→ F×

X

d
−→

⊕

x∈X(1)

j∗Z→ 0, (5.2.1)

where FX is the constant sheaf of rational functions on X and the sum is over
all irreducible effective divisors on X , using that K0(L) ∼= Z and K1(L) = L×

for any field L.
We recall that the categories of line bundles and O∗

X -torsors are equivalent:
given a line bundle LD, the O∗

X -torsor LD is the complement of the zero section
of the line bundle. The functor LD 7→ LD is induced by the natural action of
Gm on the affine line A1. Pushing the principal O∗

X -torsor along this action
gives an A1-bundle.
As a Weil divisor D = Σx∈X1 nxx is a formal combination with integer coeffi-
cients of subvarieties of codimension one of X , it determines a map of sheaves

ψ : Z −→
⊕

x∈X(1)

j∗Z;

ψ(1) is the section with components nx. The O∗
X -torsor LD attached to D is

given as the subset

d−1(ψ(1)) ⊂ F×

X . (5.2.2)

A Čech description of LD relative to an Zariski open cover {Ui} of X is as
follows. Pick a rational function fi on Ui with pole of order nx along x for all

x ∈ U
(1)
i (so x is a irreducible subvariety of codimension one of Ui); we view
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fi ∈ F
×
X . On Ui ∩ Uj , one has fi = gijfj for unique gij ∈ O

∗
X(Ui ∩ Uj); the

collection {gij} is a Čech one-cocycle with values in O∗
X representing LD.

For any D, LD (and LD) is trivial on the complement of the support of D.

Remark 5.1. For each open U of X , one has the Picard category TorsU (O
∗) of

O∗-torsors on U . These combine to the Picard stack Tors(O∗) of O∗-torsors
on X . The Gersten sequence incarnates this Picard stack [12, 1.10].

5.3 The Gersten gerbe of a codimension two cycle

Our next task is to show that every cycle α of codimension two onX determines
a gerbe Cα with band K2. The Gersten complex (5.1.1) enables us to give a
geometric description of Cα; see Remark 5.5 below.
First, let us make the map in (5.1.3) explicit for codimension-two cycles by
showing how a codimension-two cycle determines a class in H2(X,K2). The
cycle α can be viewed as an element 1α of H0(X,

⊕

x∈X(2)

j∗K0(x)). Writing α =

∑

x nx[x] as a sum over x ∈ X(2) (irreducible codimension two subvarieties),
then the x-component of 1α corresponds to nx under the canonical isomorphism
K0(x) ∼= Z. This provides a natural map φ determined by φ(1) = 1α:

Z

0 K2 Kη
2

⊕

x∈X(1)

j∗K1(x)
⊕

x∈X(2)

j∗K0(x) 0

φ

µ ν δ

(5.3.1)
and an exact sequence (by pullback)

0 −→ K2 −→ Kη
2

ν
−→ T

δ
−→ Z −→ 0. (5.3.2)

This two-extension of Z by K2 gives a class in Ext2(Z,K2) = H2(X,K2) and
so a map Z2(X)→ H2(X,K2).
The maps δ and ν are essentially given by the valuation (or ord) and tame
symbol maps; see §5.1.
Since the Gersten sequence

K2 Kη
2

⊕

x∈X(1)

j∗K1(x)
⊕

x∈X(2)

j∗K0(x)
µ ν δ

is a four-term complex, one can apply the results of §2.3, specifically, Corollary
2.4 to it

Definition 5.2. For any codimension-two cycle α on X, the gerbe Cα is the
gerbe Lβ of Corollary 2.4 from §2.3 applied to the four-term Gersten sequence
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(5.3.1) - see above - with β = φ(1) = 1α; and L is the Picard stack associated
to the complex [Kη

2 →
⊕

x∈X(1)

j∗K1(x)].

Remark 5.3. Corollary 2.4 provides two descriptions of Lβ (and so of Cα). It
should be emphasized that both descriptions are useful. One description of Cα
is the succinct description given in Remark 5.5. The other explicit description,
crucial for the comparison with the Heisenberg gerbe (Theorem 5.10), consists
of the following main points:

i. For any open set U of X , the category Cα(U) has objects u ∈
⊕

x∈X(1)

j∗K1(x) with δu = φ(1) and morphisms from u to u′ are elements

a ∈ Kη
2 with ν(a) = u′ − u.

ii. Any Hom-set HomCα
(u, u′) is a K2(U)-torsor.

iii. The category Cα(U) can be described geometrically in terms of the ord
and tame maps. For instance, let X be a surface. Write the zero-cycle α
as a finite sum

∑

i∈I nixi of points xi of X . We assume ni 6= 0 and write
V for the complement of the support of α. Any non-zero rational function
f on a curve C defines an object of Cα(U) if f is invertible on C ∩U ∩ V
and satisfies ordxi

f = ni for each xi ∈ U (assuming, for simplicity, that
xi is a smooth point of C). A general object of Cα(U) is a finite collection
u = {Cj , fj} of curves Cj and non-zero rational functions fj on Cj such
that fj is invertible on Cj ∩U ∩V and

∑

ordxi
fj = ni (an index j occurs

in the sum if xi ∈ Cj) for each xi ∈ U . A morphism from u to u′ is an
element a ∈ Kη

2 whose tame symbol is u′ − u.

Theorem 5.4. (i) Cα is a gerbe on X with band K2.
(ii) Under (5.1.3), the class of Cα ∈ H

2(X,K2) corresponds to α ∈ CH2(X).
(iii) Cα is equivalent to Cα′ (as gerbes) if and only if the cycles α and α′ are
rationally equivalent.

Proof. (i) The Gersten sequence (5.3.1) is an example of a four-term complex,
discussed in §2.3. As the stack Cα is a special case of the gerbe Lβ constructed
in §2.3, (i) is obvious.
In more detail: We first observe that (5.3.2) provides a quasi-isomorphism
between K2 (sheaf) and the complex (concentrated in degree zero and one)

η : K2 → [Kη
2

ν
−→ Ker(δ)]. (5.3.3)

Now, suppose U is disjoint from the support of α. On such an open set U , the
map φ is zero. This means that the objects u of the category Cα(U) are elements
of Ker(δ). The gerbe Cα, when restricted to U , is equivalent to the Picard stack

of K2-torsors [1, Expose XVIII, 1.4.15]: in the complex [Kη
2

ν
−→ Ker(δ)], one has

Coker(ν) = 0 and Ker(ν) = K2|U . Since for any abelian sheaf G, the category
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Tors(G) is the trivial G-gerbe, Cα is the trivial gerbe with band K2 on the
complement of the support of α.
Now, consider an arbitrary open set V of X . By the exactness of (5.3.2), there
is an open covering {Ui} of V and sections ui ∈ T (Ui) with ti = φ(1). Fix i and
let U be an open set contained in Ui. Then the category Cα(U) is non-empty.
The categoryD with objects d ∈ Ker(δ) ⊂ T (U) and morphisms HomD(d, d′) =
elements a ∈ Kη

2 with ν(a) = d′ − d. The category D is clearly equivalent to
the category of K2(U)-torsors. The functor which sends d to d + ui is easily
seen to be an equivalence of categories between D and Cα(U). Thus Cα is a
gerbe with band K2.
(ii) The Bloch-Quillen formula (5.1.3) arises from the canonical map

d2 : Z2(X)→ H2(X,K2)

of Lemma 2.3 applied to the four-term complex (5.3.1). As Cα is a gerbe of the
form Lβ , (ii) follows from Lemma 2.3.
(iii) This is a simple consequence of the Bloch-Quillen formula (5.1.3).

Remark 5.5. (i) Split the sequence (5.3.1) into

0 −→ K2 −→ Kη
2 −→ Kη

2 /K2 −→ 0

and
0 −→ Kη

2 /K2 −→
⊕

x∈X(1)

j∗K1(x) −→
⊕

x∈X(2)

j∗K0(x) −→ 0.

Since the Gersten resolution is by flasque sheaves, one has H1(X,Kη
2 /K2)

∼
−→

H2(X,K2). Just as Cartier divisors are elements ofH0(X,Kη
1 /K1), we will now

view elements ofH1(X,Kη
2/K2) as Cartier cycles of codimension two. The map

Z2(X) = H0(X,
⊕

x∈X(2)

j∗K0(x) )→ H1(X,Kη
2 /K2)

attaches to any cycle its Cartier cycle. Lemma 2.4 provides the following suc-
cinct description of Cα:
it is the gerbe of liftings (to a Kη

2 -torsor) of the (Kη
2 /K2)-torsor determined by

α.
(iii) The proof of Theorem 5.4 provides a canonical trivialization11 ηα of the
gerbe Cα on the complement of the support of α.
(iv) The pushforward of Cα alongK2 → Ω2 produces a Ω2-gerbe which manifests
the cycle class of α in de Rham cohomology H2(X,Ω2). If α is homologically
equivalent to zero, then this latter gerbe is trivial, i.e., it is the Picard stack of
Ω2-torsors.

Remark 5.6. It may be instructive to compare the Gm-torsor LD attached to a
divisor D of X and the K2-gerbe Cα attached to a codimension-two cycle. Let
U be any open set of X . This goes, roughly speaking, as follows.

11This uses (5.3.3).
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• LD: The set of divisors on U rationally equivalent to zero is exactly the
image of d over U in (5.2.1). So, the set of sections of LD over U is
non-empty if D = 0 in CH1(U). The sections of LD over U are given
by rational functions f on U whose divisor is D|U . In other words, the
sections are rational equivalences between the divisor D and the empty
divisor. The set LD(U) is a torsor over Gm(U).

• Cα: We observe that the image of δ in (5.3.1) consists of codimension-
two cycles rationally equivalent to zero. So Cα is non-empty if α =
0 in CH2(U). Each rational equivalence between α and the empty
codimension-two cycle gives an object of Cα(U). The sheaf of morphisms
between two objects is a K2-torsor.

The Bloch-Quillen formula (5.1.3) states that equivalence classes of K2-gerbes
are in bijection with codimension-two cycles (modulo rational equivalence) on
X . We have seen that a codimension-two cycle determines a K2-gerbe (an
actual gerbe, not just one up to equivalence). It is natural to ask whether the
converse holds: (see Proposition 5.8 in this regard)

Question 5.7. Does a K2-gerbe on X determine an actual codimension-two
cycle?

Since the analogous question in codimension one has a negative answer (a Gm-
torsor does not determine a codimension-one cycle), one expects a negative
answer to Question 5.7. A proof that the answer is negative can be based
on the non-existence of a canonical intersection of Weil divisors: Consider the
K2-gerbe GD,D′ attached to a pair of divisors D,D′ on X . If GD,D′ determines
an actual codimension-two cycle, then any pair D,D′ of divisors determines a
canonical codimension-two cycle on X which contradicts the non-existence of
a canonical intersection of Weil divisors.

5.4 Gerbes and cohomology with support

Let F be an abelian sheaf on a site C. Recall that (see e.g. [29, §5.1]) H1(F ) is
the set of isomorphism classes of auto-equivalences of the trivial gerbe Tors(F )
with band F ; more generally, given gerbes G and G′ with band F , then the set
HomC(G,G

′) (assumed non-empty) of maps of gerbes is a torsor for H1(F ).
Recall also that, for any sheaf F on a scheme V , the cohomology H∗

Z(V, F )
with support in a a closed subscheme Z of V fits into an exact sequence [3, §5]

· · · −→ Hi
Z(V, F ) −→ Hi(V, F ) −→ Hi(V − Z, F ) −→ Hi+1

Z (V, F ) −→ · · · ;
(5.4.1)

the exactness of

H1(V, F ) −→ H1(V − Z, F ) −→ H2
Z(V, F ) −→ H2(V, F ) −→ H2(V − Z, F )

leads to an interpretation of the group H2
Z(V, F ): it classifies isomorphism

classes of pairs (G, φ) consisting of a gerbe G with band F on V and a trivial-
ization φ of G on V −Z, i.e., φ is an equivalence of G|V −Z with Tors(F |V −Z).
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5.5 Geometric interpretation of some results of Bloch

Bloch [3] has proved that:

i. [3, Proposition 5.3] Any codimension-two cycle α on X has a canonical
cycle class [α] ∈ H2

Z(X,K2); here Z is the support of α.

ii. [3, Theorem 5.11] If D is a smooth divisor of X , then Pic(D) = H1(D,K1)
is a direct summand of H2

D(X,K2).

For (1), we note that, by Remark 5.5, the gerbe Cα has a trivialization ηα
on X − Z. By the above interpretation of H2 with support, the pair (Cα, ηα)
defines an element of H2

Z(X,K2); this is the canonical class [α].
For (2), recall that Bloch constructed maps a : Pic(D) → H2

D(X,K2) and
b : H2

D(X,K2) → Pic(D) with b ◦ a the identity on Pic(D). We can interpret
the map a as follows. Note that any divisor E of D is a codimension-two cycle
α on X . The K2-gerbe Cα on X has a canonical trivialization ηα on X − E
(and so also on the smaller X − D). The association E 7→ (Cα, ηα) gives the
homomorphism a : Pic(D)→ H2

D(X,K2).
These results of Bloch provide a partial answer to Question 5.7 summarized in
the following

Proposition 5.8. Let G be a K2-gerbe on X and let β ∈ CH2(X) correspond
to G in the Bloch-Quillen formula (5.1.3). Let φ be a trivialization of G on the
complement X −D of a smooth divisor D of X. Then, β can be represented by
a divisor of D (unique up to rational equivalence on D).

Note that the data of φ is crucial: the map Pic(D)→ CH2(X) is not injective
in general [4, (iii), p. 269].

Proposition 5.9. Let i : D → X and j : U = X − D → X be the inclusion
maps. We have the following short exact sequence 12 of Picard 2-stacks

Tors(i∗K
D
1 ) −→ Gerbes(KX

2 ) −→ Gerbes(j∗K
U
2 ).

Proof. Analyzing the Gersten sequence (5.1.1), (5.1.2) for K2 on X and U , we
get the short exact sequence:

0 −→ i∗G
D
1 −→ GX

2 −→ j∗G
U
2 −→ 0.

This gives a short exact sequence of Picard 2-stacks, then use (2.3.3). Note that
Tors(i∗K

D
1 ) is considered as a Picard 2-stack with no nontrivial 2-morphisms.

12For the notion of short exact sequence of Picard 2-stacks see, e.g. [2]. Briefly, we say
that the diagram

B
ı

−→ E
p

−→ A

is a short exact sequence if: (1) the composition p ◦ ı is naturally isomorphic to the zero
morphism; (2) p is full and essentially surjective, and (3) ı is an equivalence between B

and the so-called “homotopy kernel” of p, consisting of those objects whose image by p is
equivalent in A to the zero object. The meaning of “full” must be qualified: we want p to
induce full and essentially surjective functors at the level of morphism categories (see loc. cit.

for details).
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The global long exact cohomology sequence arising from the exact sequence in
the proposition gives part of the localization sequence for higher Chow groups

· · · −→ CH1(D, 1) −→ CH2(X, 1) −→ CH2(X −D, 1) −→

−→ Pic(D) −→ CH2(X) −→ CH2(X −D) −→ 0.

This uses the fact that CH1(D, 0) = Pic(D), that CH1(D, 1) = H0(D,O∗)
and CH1(D, j) is zero for j > 1 [4, (viii), p. 269].

5.6 The two gerbes associated with an intersection of divisors

For a codimension-two cycle α of X presented as the intersection of divisors

α = D.D′,

we know that the K2-gerbes

(i) the Gersten gerbe Cα in Theorem 5.4 and

(ii) the Heisenberg gerbe GD,D′ in §4.4 using Theorem 1.4

are equivalent (as their classes in H2(X,K2) corresponds to the class of the
codimension-two cycle in CH2(X) via (5.1.3)). We now construct an actual
equivalence between them.

Theorem 5.10. Suppose that the codimension-two cycle α is the intersection
D.D′ of divisors D and D′ on X. There is a natural equivalence13

Θ : Cα → GD,D′

of K2-gerbes on X.

Proof. By Theorem 1.4 and Theorem 5.4, the classes of the gerbes GD,D′ and
Cα in H2(X,K2) both correspond to the class of α in CH2(X). This shows
that they are equivalent.

Let us exhibit an actual equivalence. We will construct a functor ΘU : Cα(U)→
GD,D′(U), compatible with restriction maps V ⊂ U ⊂ X . We will need the
Heisenberg group H from (4.4.1).

Consider an object r ∈ Cα(U). We want to attach to r a H-torsor ΘU (r) on U
in a functorial manner. Each ΘU (r) is a H-torsor which lifts the K1×K1-torsor
OD × OD′ on U . We will describe ΘU (r) by means of Čech cocycles. Fix an
open covering {Ui} of U and write Cn(A) for Čech n-cochains with values in
the sheaf A with respect to this covering.

13By §5.4. the set of such equivalences is a torsor under the action of the group
H1(X,K2) = CH2(X, 1) [34, §2.1].
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Step 1. Let a = {ai,j} and b = {bi,j} with a, b ∈ C1(O∗) be Čech 1-cocycles
for OD and OD′ . Pick h = {hi,j} ∈ C

1(H) of the form

hi,j = (ai,j , bi,j , ci,j) ∈ H(Ui ∩ Uj).

We need ci,j ∈ K2(Ui ∩ Uj) such that h is a Čech 1-cocycle (for ΘU (r), the
putative H-torsor). Since a, b are Čech cocycles, the Čech boundary ∂h is of
the form

∂h = {(1, 1, yi,j,k)}

with y = {yi,j,k} ∈ C
2(K2) a Čech 2-cocycle. This cocycle y represents the

gerbe GD,D′ on U .

Step 2. Recall that Cα is the associated stack of the prestack U 7→ Cα(U)
where the category Cα(U) has objects u ∈ ⊕x∈X1j∗K1(x) with δu = φ(1) and
morphisms from u to v are elements a ∈ Kη

2 with ν(a) = v − u. Since the
category Cα(U) is non-empty, the class of the gerbe Cα (restricted to U) in
H2(U,K2) is zero. Since Cα and GD,D′ are equivalent, so the class of GD,D′ in
H2(U,K2) is also zero.

Step 3. Consider the case in which the chosen object r is given by a pair (C, g)
where C is a divisor on X and g is a rational function on C. The condition
δ(r) = φ(1) says α∩U is the intersection of U with the zero locus of g. Assume
g ∈ OC(C ∩ U). Given any lifting g̃ ∈ OX(U) of g, let C′ be its divisor on U .
Notice that the codimension-two cycle α ∩U is the intersection of the divisors
C ∩ U and the (principal) divisor C′ in U . So we can apply the results in §4.4
to the codimension-two cycle

α ∩ U = (C ∩ U).C′

on the smooth variety U ; we obtain a K2-gerbe GC∩U,C′ on U . As C′ is a
principal divisor, its class in H1(U,K1) is zero; also zero is the class of GC∩U,C′

in H2(U,K2) because it is the image of the cup product of the classes of C ∩U
and C′ in H1(U,K1).

Step 4. Let z = {zi,j,k} ∈ C
2(K2) be a Čech 2-cocycle for GC∩U,C′ ;

So z = ∂w is the boundary of a Čech cochain w = {wi,j} ∈ C
1(K2). Note that

y − z = ∂v for a 1-cochain v since GC∩U,C′ and GD,D′ are equivalent as gerbes
on U : both are trivial on U !
The Čech cochain h′ = {h′i,j} ∈ C

1(H) with

h′i,j = (ai,j , bi,j , ci,j)(1, 1,−wi,j)(1, 1,−vi,j)

is a Čech cocycle and represents the required H-torsor ΘU (r) on U .
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Step 5. The same argument with simple modifications works for a general
object of Cα. It is easy to check that ΘU is a functor, compatible with restriction
maps V ⊂ U ⊂ X , and that the induced morphism of gerbes is an equivalence.

References
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