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1. Introduction

Throughout this paper p denotes a prime number, and q = pa a power of p
with an exponent a ∈ N, the set of strictly positive integers. The goal of this
paper is to calculate explicitly the number of superspecial abelian surfaces over
a finite field Fq. This can be regarded as a natural extension of works of the
authors [22, 23] and the last named author [26] contributed to the study of
supersingular abelian varieties over finite fields.
Recall that an abelian variety over a field k of characteristic p is said to be
supersingular if it is isogenous to a product of supersingular elliptic curves over
an algebraic closure k of k; it is said to be superspecial if it is isomorphic to a
product of supersingular elliptic curves over k. As any supersingular abelian
variety is isogenous to a superspecial abelian variety, it is very common to
study supersingular abelian varieties through investigating the classification of
superspecial abelian varieties.
For any integer d ≥ 1, let Spd(Fq) denote the set of isomorphism classes of d-
dimensional superspecial abelian varieties over the finite field Fq of q elements.
The case where d = 1 concerns the classification of supersingular elliptic curves
over finite fields. The theory of elliptic curves over finite fields has been studied
by Deuring since 1940’s and becomes well known. There are explicit descrip-
tions for each isogeny class; see Waterhouse [21, Section 4]. However, the
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authors could not find an explicit formula for | Sp1(Fq)| in the literature. For
the sake of completeness we include a formula for | Sp1(Fq)|, based on the ex-
position of Deuring’s results by Waterhouse [21]. The goal of the present paper
is then to find an explicit formula for the number | Spd(Fq)| in the case where
d = 2.
Before stating our main results, we describe a basic method for counting
Spd(Fq). For simplicity, assume that Fq = Fp is the prime finite field for
the moment. One can divide the finite set Spd(Fp) into finitely many subsets
according to the isogeny classes of members. Therefore, it suffices to classify all
d-dimensional supersingular isogeny classes and to count the number of super-
special members in each supersingular isogeny class. The Honda-Tate theorem
allows us to describe isogeny classes over Fq in terms of multiple Weil q-numbers
(which are simply finite nonnegative integral formal sums of Weil q-numbers up
to conjugate; see Section 4.1). If π is a supersingular multiple Weil q-number,
we denote by [Xπ] the corresponding supersingular isogeny class (here Xπ is
an abelian variety in this class), H(π) the number of isomorphism classes of
abelian varieties in [Xπ] and Hsp(π) the number of isomorphism classes of
superspecial abelian varieties in [Xπ]. Then we have

(1.1) | Spd(Fp)| =
∑

π

Hsp(π),

where π runs through all supersingular multiple Weil p-numbers with dimXπ =
d. We classify all possible isogeny classes of π’s occurring in the sum (see
Sections 2–3). The problem then is to compute each term Hsp(π). One
should distinguish the cases according to whether the endomorphism alge-
bra End0(Xπ) = End(Xπ) ⊗ Q of Xπ satisfies the Eichler condition [19, Sec-
tion III.4, p.81] or not. We now focus on the case where d = 2.
Consider the case where π is the Weil p-number

√
p . Correspondingly, Xπ is

a supersingular abelian surface. It is known (see Tate [17]) that the endomor-
phism algebra End0(Xπ) of Xπ is isomorphic to the totally definite quaternion
algebra algebra D = D∞1,∞2

over the quadratic real field F = Q(
√
p ) ramified

exactly at the two real places {∞1,∞2} of F . In this case all abelian surfaces
in the isogeny class [X√

p ] are superspecial, i.e. H(
√
p ) = Hsp(

√
p ). When

p = 2 or p ≡ 3 (mod 4), Waterhouse proved that the number H(
√
p ) is equal

to the class number h(D) of D. The current authors analyzed the remain-
ing case in [22, Section 6] and showed that when p ≡ 1 (mod 4), the number
H(
√
p ) is equal to the sum of h(D) and the class numbers of two other proper

Z[
√
p ]-orders in D of index 8 and 16, respectively (the descriptions of these or-

ders are made concrete by results of [25]). These class numbers are computed
systematically in [22], which produces the explicit formulas for H(

√
p ) given

in Theorem 1.1 below. In what follows we write Km,j for the number field
Q(
√
m,
√−j ) for any square-free integers m > 1 and j ≥ 1. If m ≡ 1 (mod 4),

then we define

(1.2) ̟m := 3[O×
Q(

√
m )

: Z[
√
m ]×]−1,
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where OQ(
√
m ) denotes the ring of integers of Q(

√
m ). By similar arguments as

those in [23, Lemma 4.1 and Section 4.2], we have ̟m ∈ {1, 3}, and ̟m = 3
if m ≡ 1 (mod 8). The class number of a number field K is denoted by h(K).
When K = Q(

√
m ), we write h(

√
m ) for h(Q(

√
m )) instead.

Theorem 1.1. Let H(
√
p ) be the number of Fp-isomorphism classes of abelian

varieties in the simple isogeny class corresponding to the Weil p-number π =√
p , and let F = Q(

√
p ). Then

(1) H(
√
p ) = 1, 2, 3 for p = 2, 3, 5, respectively.

(2) For p > 5 and p ≡ 3 (mod 4), we have
(1.3)

H(
√
p ) =

1

2
h(F )ζF (−1)+

(
3

8
+

5

8

(
2−

(
2

p

)))
h(Kp,1)+

1

4
h(Kp,2)+

1

3
h(Kp,3),

where ζF (s) is the Dedekind zeta function of F .
(3) For p > 5 and p ≡ 1 (mod 4), we have
(1.4)

H(
√
p ) =





8ζF (−1)h(F ) + h(Kp,1) +
4
3h(Kp,3) for p ≡ 1 (mod 8);

1

2
(15̟p + 1)ζF (−1)h(F ) +

1

4
(3̟p + 1)h(Kp,1) +

4

3
h(Kp,3)

for p ≡ 5 (mod 8).

The computation in Theorem 1.1 is based on the generalized Eichler class
formula [22, Theorem 1.4] that the authors developed. Compared with the
classical Eichler class number formula [19, Corollary V.2.5] which treats only
the Eichler orders, this generalized formula allows us to compute the class
number of an arbitrary Z-order in a totally definite quaternion over a totally
real field F . This Z-order does not necessarily contains the maximal order
OF of F . For a quadratic real field F , the special zeta value ζF (−1) can be
calculated by Siegel’s formula [28, Table 2, p. 70]

(1.5) ζF (−1) =
1

60

∑

b2+4ac=dF
a,c>0

a,

where dF is the discriminant of F/Q, b ∈ Z and a, c ∈ N.
The first main result of this paper gives the following explicit formula for
|Sp2(Fp)|, the number of isomorphism classes of superspecial abelian surfaces
over Fp. To obtain this formula, we calculate all terms Hsp(π) with π 6= ±√p
in (1.1), and then sum them up together with H(

√
p ). The computation of

Hsp(π) uses a lattice description for superspecial abelian varieties; see Section
5 for details. Similar to Theorem 1.1, special attentions have to be paid to the
cases with small primes p.

Theorem 1.2. We have | Sp2(Fp)| = H(
√
p ) + ∆(p), where the formula for

H(
√
p ) is stated in Theorem 1.1 and ∆(p) is the number described as follows.

(1) ∆(p) = 15, 20, 9 for p = 2, 3, 5, respectively.
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(2) For p > 5 and p ≡ 1 (mod 4), we have

(1.6) ∆(p) = (̟p + 1)h(Kp,3) + h(K2p,1) + h(K3p,3) + h(
√−p ).

(3) For p > 5 and p ≡ 3 (mod 4), we have

(1.7) ∆(p) = h(Kp,3) + h(K2p,1) + (̟3p +1)h(K3p,3) +

(
4−

(
2

p

))
h(
√−p ).

A key ingredient of our computation for Sp2(Fp) is Proposition 5.1, which works
only for the prime finite fields. Centeleghe and Stix [4] provide a categorical
description of Proposition 5.1 (also compare [26, Theorem 3,1]). However,
their results are also limited to the prime finite fields. When the base field Fq

is no longer the prime finite field, direct calculations via the counting method
described earlier for Spd(Fq) (even when d = 2) become more complicated.
Our second main result extends the computations of Sp2(Fp) to Sp2(Fq) for
more general finite fields Fq via Galois cohomology. Observe that if d > 1,
then there is only one isomorphism class of d-dimensional superspecial abelian
varieties over Fp (see [12, Section 1.6, p. 13] or Theorem 6.6). SupposeX0 is any
d-dimensional superspecial abelian variety over Fp. Then there is a bijection
of finite pointed sets

(1.8) Spd(Fp) ≃ H1(ΓFp
, G), d > 1,

where ΓFp
= Gal(Fp/Fp) is the absolute Galois group of Fp, and G = Aut(X0⊗

Fp). Thus, computing the Galois cohomology would lead to a second proof of
Theorem 1.2. However, the complexity of the final formula as in Theorem 1.2
suggests that the computation of this Galois cohomology is likely on the same
level of difficulty as the counting method via (1.1). Nevertheless, the true
advantages of connecting to Galois cohomology are two folds.

(a) It naturally relates Spd(Fq) and Spd(Fq′) in the sense of Theorem 1.3

when the exponents in q = pa and q′ = pa
′

have the same parity.
(b) It gives rise to a lattice description of Spd(Fq) when q = pa is an even

power of p; see Proposition 6.11.

Theorem 1.3. Let q and q′ be powers of p with same exponent parity and d ≥ 1
an integer. Then there is a natural bijection Spd(Fq) ≃ Spd(Fq′) preserving
isogeny classes. In particular, the same formulas in Theorem 1.2 hold for
| Sp2(Fq)| since | Spd(Fq)| = | Spd(Fp)| when q is an odd power of p.

The bijection for the case d = 1 is handled separately in Section 4 (see Re-
mark 4.5). For d ≥ 2, the bijection is established in Theorem 6.7. Along the
way, we prove in Section 6.2 the following general result connecting isogeny
classes of abelian varieties over Fq with cohomology classes.

Proposition 1.4. Let [X0] be the Fq-isogeny class of an arbitrary abelian va-

riety X0 over Fq, and GQ = End0(X0)
× where X0 = X0 ⊗Fq

Fq. We write

E0(Fq/Fq, [X0]) for the set of Fq-isogeny classes of abelian varieties [X ] such
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that X is isogenous to X0 over Fq. Then there is a canonical bijection of
pointed sets

E0(Fq/Fq, [X0])
∼−→ H1(ΓFq

, GQ)

sending [X0] to the trivial cohomology class.

Theorem 1.3 together with Proposition 5.1 give a new lattice description in
Corollary 6.9 for Spd(Fq) when q is an odd power of p. When q is an even
power of p, a lattice description of Spd(Fq) completely different from the odd
case is given in Proposition 6.11, which paves the way to explicit formulas
of |Sp2(Fq)|. The detailed formulas and computations will be presented in a
separated paper.
The paper is organized as follows. In Section 2, we parameterize simple isogeny
classes of supersingular abelian varieties over Fq using Weil q-numbers. Their
dimensions are calculated in Section 3. In Section 4 we treat the dimension 1
case and calculate the number of isomorphism classes of supersingular elliptic
curves over finite fields. The dimension 2 case is then treated in Section 5,
except we work exclusively over the prime field Fp, and some arithmetic calcu-
lations are postponed to Section 7. Section 6 studies the parity property via
Galois cohomology, thus providing means to extend results of Section 5 to all
Fpa with a odd. The aforementioned lattices descriptions are obtained in this
process.

2. Parameterization of supersingular isogeny classes

2.1. Let q = pa be a power of a prime number p. In this section we param-
eterize simple isogeny classes of supersingular abelian varieties over Fq. Let

Q ⊂ C be the algebraic closure of Q in C. If two algebraic numbers α, β ∈ Q
are conjugate over Q, then we write α ∼ β. Recall that an algebraic inte-
ger π ∈ Q is said to be a Weil q-number if |ι(π)| = q1/2 for any embedding
ι : Q(π) →֒ C. By the Honda-Tate theory, the simple isogeny classes of abelian
varieties over Fq are in bijection with the conjugacy classes of Weil q-numbers.
A Weil q-number is said to be supersingular if the corresponding isogeny class
consists of supersingular abelian varieties. Let W ss

q denote the set of conjugacy
classes of supersingular Weil q-numbers. We will find a unique representative
for each conjugacy class in W ss

q .
Let π be a supersingular Weil q-number. It is known (the Manin-Oort Theorem,
cf. [27, Theorem 2.9]) that π =

√
q ζ for a root of unity ζ. Let K := Q(π) and

L := Q(
√
q , ζ). Note that both L and K are abelian extensions over Q. For

any n ∈ N (the set of positive integers), write ζn := e2πi/n ∈ Q.

Lemma 2.1. Any supersingular Weil q-number π is conjugate to
√
q ζn or

−√q ζn with n 6≡ 2 (mod 4).

Proof. Let π =
√
q ζνm for some positive integers ν and m with (ν,m) = 1.

Choose an element σ ∈ Gal(L/Q) such that σ(ζνm) = ζm, Then σ(π) = ±√q ζm.
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If m 6≡ 2 (mod 4), then we are done. Suppose that m = 2k for an odd integer

k = 1− 2u. Clearly (k, u) = 1. Since ζ2k = ζk+2u
2k = −ζ2u2k = −ζuk , we have

±√q ζ2k = ∓√q ζuk ∼ ǫ
√
q ζk, for some ǫ ∈ {±1}

by the previous argument. �

By Lemma 2.1, there is a unique subset W of {±√q ζn;n 6≡ 2 (mod 4)} that
contains {√q ζn;n 6≡ 2 (mod 4)} and represents W ss

q . We often identify W
with W ss

q . To determine the set W ss
q , we need to characterize when

√
q ζn and

−√q ζn are conjugate.
As usual, the Galois group Gn := Gal(Q(ζn)/Q) is naturally identified with
(Z/nZ)× by mapping any r ∈ (Z/nZ)× to the element σr ∈ Gn with σr(ζn) =
ζrn.

2.2. Let us first assume that a is even, i.e.,
√
q ∈ Q. Then

√
q ζn ∼ −√q ζn if

and only if there is an element σr ∈ Gn such that σr(ζn) = −ζn. It is easy to
see that

(2.1) ζrn = −ζn ⇐⇒ 2|n and r =
n

2
+ 1,

and if 4|n, then (r, n) = 1. As n 6≡ 2 (mod 4), this gives

(2.2)
√
q ζn ∼ −

√
q ζn ⇐⇒ 4|n.

Thus,

(2.3) W ss
q ≃ {±

√
q ζn ; 2 ∤ n } ∪ {√q ζn ; 4|n }.

Alternatively, since
√
q ∈ Q, we have

√
q ζνn ∼

√
q ζn for any ν ∈ N with

(ν, n) = 1. It follows that

(2.4) W ss
q ≃ {

√
q ζn ; n ∈ N}.

The two descriptions (2.3) and (2.4) match, because when n is odd, −ζn is a
primitive 2n-th root of unity and hence −√q ζn is conjugate to

√
q ζ2n.

2.3. We now assume that a is odd. Let dp be the discriminant of Q(
√
p ). In

other words, dp = p if p ≡ 1 (mod 4), otherwise dp = 4p. By [7, Chapter V,
Theorem 48],

√
p ∈ Q(ζn) if and only if dp | n. Suppose this is the case. Let

(2.5) χ : Gn = (Z/nZ)× → Gal(Q(
√
p )/Q) = {±1}, σr(

√
p ) = χ(r)

√
p

be the associated quadratic character. Clearly, χ factors through Gdp
=

Gal(Q(ζdp
)/Q).

Lemma 2.2. Let n be a positive integer with n 6≡ 2 (mod 4) and q = pa an odd
power of p.
(i) If

√
p 6∈ Q(ζn), then

√
q ζn ∼ −√q ζn.

(ii) Suppose that
√
p ∈ Q(ζn), i.e., n is divisible by dp. Then

(2.6)
√
q ζn ∼ −

√
q ζn ⇐⇒ 4|n and χ(n/2 + 1) = 1.
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Proof. (i) As
√
p 6∈ Q(ζn), there is an element σ ∈ Gal(L/Q) such that σ(ζn) =

ζn and σ(
√
p ) = −√p . Then σ(

√
q ζn) = −√q ζn.

(ii) First,
√
q ζn ∼ −√q ζn if and only if there is an element σr ∈ Gn such that

σr(
√
q ζn) = χ(r)

√
q ζrn = −√q ζn. If χ(r) = −1, then ζrn = ζn and σr = 1,

which is impossible. If χ(r) = 1, then ζrn = −ζn and hence 4|n and r = n/2+1
by (2.1). This concludes our assertion (2.6). �

Proposition 2.3. Let n and q be as in Lemma 2.2.
(a) Suppose that p = 2. Then

(2.7)
√
q ζn ∼ −

√
q ζn ⇐⇒ 8 ∤ n or 16|n.

(b) Suppose that p ≡ 1 (mod 4). Then

(2.8)
√
q ζn ∼ −

√
q ζn ⇐⇒ p ∤ n or 4p|n.

(c) Suppose that p ≡ 3 (mod 4). Then

(2.9)
√
q ζn ∼ −

√
q ζn ⇐⇒ 4p ∤ n or 8p|n.

Proof. (a) By Lemma 2.2, we have
√
q ζn ∼ −√q ζn if and only if either 8 ∤ n,

or both 8|n and χ(n/2+ 1) = 1. Suppose 8|n. Note that Q(ζ8) = Q(
√
2 ,
√
−1 )

and
√
2 = ζ8 + ζ−1

8 . It follows that

(2.10) χ(r) =

{
1 if r ≡ 1, 7 (mod 8);

−1 if r ≡ 3, 5 (mod 8).

If 8||n, then r = n/2 + 1 ≡ 5 (mod 8) and χ(r) = −1. If 16|n, then r =
n/2 + 1 ≡ 1 (mod 8) and χ(r) = 1. Thus,

√
q ζn ∼ −√q ζn ⇐⇒ 8 ∤ n or 16|n.

(b) By Lemma 2.2, we have
√
q ζn ∼ −√q ζn if and only if one of the following

two conditions holds: (i) p ∤ n; (ii) 4p|n and χ(n/2 + 1) = 1. If 4p |n, then
χ(n/2 + 1) = 1 since n/2 + 1 ≡ 1 (mod p). Thus,

√
q ζn ∼ −√q ζn ⇐⇒ p ∤

n or 4p|n.
(c) By Lemma 2.2, we have

√
q ζn ∼ −√q ζn if and only if one of the following

two conditions holds: (i) 4p ∤ n; (ii) 4p |n and χ(n/2 + 1) = 1. Suppose that
4p|n and write G4p = G4 ×Gp. Since r = n/2 + 1 ≡ 1 (mod p), the image of

σr in Gp is trivial. In particular, it fixes
√−p ∈ Q(ζp). As

√−p ·
√
−1 = −√p ,

one has χ(r) = 1 if and only if r ≡ 1 (mod 4). Write n = 4pk for some integer
k. Then r = 2pk + 1 ≡ 1 (mod 4) if and only if k ≡ 0 (mod 2). Therefore, we
get
√
q ζn ∼ −√q ζn ⇐⇒ 4p ∤ n or 8p|n. �

As typical examples, we have (a)
√
2 ζ8 6∼ −

√
2 ζ8 and

√
2 ζ16 ∼ −

√
2 ζ16, (b)√

5 ζ5 6∼ −
√
5 ζ5 and

√
5 ζ20 ∼ −

√
5 ζ20, and (c)

√
3 ζ12 6∼ −

√
3 ζ12 and

√
3 ζ24 ∼

−
√
3 ζ24.

Corollary 2.4. Suppose that q is an odd power of p and n 6≡ 2 (mod 4).
(1) If p ≡ 1 (mod 4), then

W ss
q = {√q ζn ; n 6≡ 2 (mod 4) } ∪ {−√q ζn ; 2 ∤ n and p|n }.

(2) If p ≡ 3 (mod 4) or p = 2, then

W ss
q = {√q ζn ; n 6≡ 2 (mod 4) } ∪ {−√q ζn ; 4p | n and 8p ∤ n }.
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Proof. (1) By Proposition 2.3,
√
q ζn 6∼ −√q ζn if and only if p|n and 4p ∤ n, i.e.

p|n and 2 ∤ n. (2) We have
√
q ζn 6∼ −√q ζn if and only if 4p|n and 8p ∤ n. �

Definition 2.5. Let dq be the smallest positive integer such that Q(
√
q ) ⊂

Q(ζdq
). More specifically, dq = dp if q is an odd power of p, otherwise dq = 1.

We say a positive integer n is critical at q if dq|n and 2dq ∤ n.

It is clear from the definition that for a fixed n ∈ N, the condition that n is
critical at q = pa depends only on p and the parity of a.

Proposition 2.6. Let n 6≡ 2 (mod 4) be a positive integer and q = pa a power
of a prime number p. Then

√
q ζn ∼ −√q ζn if and only if n is not critical at

q.

Proof. The proposition reduces to either (2.2) or Proposition 2.3 according to
whether a is even or odd respectively. �

Corollary 2.7. We have

W ss
q = {√q ζn ; n 6≡ 2 (mod 4) }

∪{−√q ζn ; n 6≡ 2 (mod 4) and n is critical at q }.

3. Dimension of supersingular abelian varieties

3.1. Let q = pa be a power of a prime number p, and π a supersingular Weil
q-number as in the previous section. Replacing π by a suitable conjugate, we
may assume that π = ±√q ζn for a positive integer n with n 6≡ 2 (mod 4). Let
Xπ be a simple abelian variety over Fq in the isogeny class corresponding to

π. Its endomorphism algebra E = Eπ := End0(Xπ) is a central division algebra
over K := Q(π), unique up to isomorphism depending only on π and not on
the choice of Xπ. The field K is either a totally real field or a CM field [18,
Section 1]. The goal of this section is to determine the dimension d(π) of Xπ.
For each d ∈ N, define

(3.1) W ss
q (d) := {π ∈W ss

q | d(π) = d}.
According to the Honda-Tate theory (ibid.), one has

d(π) =
1

2
[K : Q]

√
[E : K] =

1

2
degQ(E).

(For a semisimple algebra over a field F , its F -degree is the degree of any of its
maximal commutative semi-simple F -subalgebras.) Moreover, the invariants
of E at a place v of K is given by

invv(E) =





1/2 if v is real;

[Kv : Qp]v(π)/v(q) if v|p;
0 otherwise.

Here Kv is the completion of K at the place v. Observe that d(π) = d(−π).
As v(π)/v(q) = 1/2 for all v|p, every invariant invv(E) is a 2-torsion. It follows
from the Albert-Brauer-Hasse-Noether theorem that E is either a quaternionK-
algebra or the field K itself (henceforth labeled as case (Q) or (F) respectively).
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3.2. Totally real case. The case where K is a totally real field is well
known.
(a) If a is even, then K = Q and E is the quaternion algebra over Q ramified
exactly at {p,∞}. One has π = ±pa/2 (two isogeny classes) and d(π) = 1.
(b) If a is odd, then K = Q(

√
p ) and E is the quaternion algebra over K

ramified exactly at the two real places {∞1,∞2} of K. One has π = q1/2 (one
isogeny class) and d(π) = 2.

3.3. CM case. Consider the case where K is a CM field, i.e., n > 2. Put
L := Q(

√
q , ζn) ⊇ K. As K and L are abelian extensions of Q, the degree

[Kv : Qp] is even for one v|p if and only if it is so for all v|p. Thus, we have the
following two possibilities:

(F) [Kv : Qp] is even for all v|p.
(Q) [Kv : Qp] is odd for all v|p.

As K is CM, Condition (F) holds if and only if all invariants of E vanish. In
this case E = K and d(π) = [K : Q]/2.

3.4. The case where a is even. Suppose that n > 2. One has K = Q(ζn)
and [K : Q] = ϕ(n). Thus,

(3.2) d(π) =

{
ϕ(n)/2 if (F) holds;

ϕ(n) if (Q) holds.

The ramification index of any ramified prime p in Q(ζn) is even, so if p | n,
then (F) holds. When p ∤ n, Condition (F) holds if and only if the order of
p ∈ (Z/nZ)× is even. In particular, if [K : Q] is a power of 2, then Condition
(Q) holds if and only if Kv = Qp, or equivalently p ≡ 1 (mod n). We have
the following list, which enables us to list concretely all π with small values of
d(π).

n 6≡ 2 (mod 4) 3 4 5 7 8 9 11 12 15 16 20 21 24 rest
d(π), (Q) holds 2 2 4 6 4 6 10 4 8 8 8 12 8 > 8
d(π), (F) holds 1 1 2 3 2 3 5 2 4 4 4 6 4 > 4

Proposition 3.1. Let π = ±√q ζn be a supersingular Weil q-number with
n ≥ 1 and n 6≡ 2 (mod 4). Suppose that q = pa is an even power of p.

(1) We have d(π) = 1 if and only if n = 1, or n = 3, 4 and p 6≡ 1 (mod n).
(2) We have d(π) = 2 if and only if

(a) n = 3, 4 and p ≡ 1 (mod n), or
(b) n = 5, 8, 12 and p 6≡ 1 (mod n).

(3) We have d(π) = 3 if and only if n = 7 and p 6≡ 1, 2, 4 (mod 7), or
n = 9 and p 6≡ 1, 4, 7 (mod 9).

(4) We have d(π) = 4 if and only if
(a) n = 5, 8, 12 and p ≡ 1 (mod n), or
(b) n = 15, 16, 20, 24 and p 6≡ 1 (mod n).
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3.5. The case where a is odd. Suppose that n > 1 and n 6≡ 2 (mod 4).
Put

(3.3) m :=

{
n/2 if n is even,

n if n is odd,
and K := Q(

√
p ζn).

We have the following towers of number fields.

(3.4) L = Q(
√
p , ζn)

♥♥
♥♥
♥♥
♥♥
♥♥
♥♥

◆◆
◆◆

◆◆
◆◆

◆◆
◆

Q(
√
p , ζm)

PP
PP

PP
PP

PP
PP

K = Q(
√
p ζn) Q(ζn)

♣♣
♣♣
♣♣
♣♣
♣♣
♣

E = Q(ζm)

Note that the prime p is ramified in K with even ramification index, and hence
Condition (F) always holds. Therefore,

(3.5) E = K and d(π) =
1

2
[K : Q].

Lemma 3.2. Let K and E be as in (3.4). We have K = E if and only if n is
critical at q.

Proof. Clearly [K : E] = 1 or 2. If π ∼ −π, then π 7→ −π induces a nontrivial
automorphism ofK with fixed field E. Thus, π ∼ −π if and only if [K : E] = 2.
By Proposition 2.6, [K : E] = 1 if and only if n is critical at q. Note that the
lemma also holds when a is even with K = Q(

√
q ζn) = Q(ζn). �

Lemma 3.3. Suppose that a is odd and n > 1 with 4 ∤ n. Then

(3.6) d(π) =
1

2
[K : Q] =

{
ϕ(n)/2 if p |n and p ≡ 1 (mod 4);

ϕ(n) otherwise.

Proof. Since n is odd one has E = Q(ζn) and [E : Q] = ϕ(n). We have dq = p
or 4p according as p ≡ 1 (mod 4) or not. It is easy to see that n is critical
at q if and only if p ≡ 1 (mod 4) and p|n. The assertion then follows from
Lemma 3.2 and (3.5). �

Lemma 3.4. Suppose that a is odd and n = 4k with k ∈ N. Then

d(π) =
1

2
[K : Q] =

{
ϕ(n)/4 if p 6≡ 1 (mod 4), 4p | n and 8p ∤ n;

ϕ(n)/2 otherwise.

Proof. Since 4|n we have [E : Q] = ϕ(n)/2. By Lemma 3.2 we have [K : Q] =
δnϕ(n)/2, where δn = 1 or 2 depending on whether n is critical at q or not.
The lemma follows once we note that n = 4k is never critical when p ≡ 1
(mod 4). �
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The following are tables of d(π) for π =
√
q ζn with 4 ∤ n and 4|n, respectively.

The symbol (∗) denotes the primes satisfying the conditions p |n and p ≡ 1 (4),
and (∗∗) denotes the primes satisfying the three conditions p 6≡ 1 (mod 4),
4p | n and 8p ∤ n. For the sake of completeness, the case n = 1 is included and
also marked with a ♮ to make a distinction.

n odd 1♮ 3 5 7 9 11 13 15 rest
ϕ(n) 1 2 4 6 6 10 12 8 > 8
(∗) ∅ ∅ p = 5 ∅ ∅ ∅ p = 13 p = 5
d(π) 2 2 2 (p = 5) 6 6 10 6 (p = 13) 4 (p = 5) > 4

4 (p 6= 5) 12 (p 6= 13) 8 (p 6= 5)

n = 4k 4 8 12 16 20 24 28

ϕ(n) 2 4 4 8 8 8 12

(∗∗) ∅ 2 3 ∅ ∅ 2 7

d(π) 1 1 (p = 2) 1 (p = 3) 4 4 2 (p = 2) 3 (p = 7)
2 (p 6= 2) 2 (p 6= 3) 4 (p 6= 2) 6 (p 6= 7)

n = 4k 32 36 40 44 48 56 60

ϕ(n) 16 12 16 20 16 24 16

(∗∗) ∅ p = 3 p = 2 p = 11 ∅ p = 2 p = 3

d(π) 8 3 (p = 3) 4 (p = 2) 5 (p = 11) 8 6 (p = 2) 4 (p = 3)
6 (p 6= 3) 8 (p 6= 2) 10 (p 6= 11) 12 (p 6= 2) 8 (p 6= 3)

It is easy to see that when 4|n and either n = 52 or n > 60, the value
ϕ(n) > 16 and hence d(

√
q ζn) > 4.

Proposition 3.5. Suppose that q = pa is an odd power of p.

(1) W ss
q (1) consists of

√
q ζ4, ±

√
q ζ8 (p = 2), ±√q ζ12 (p = 3).

(2) W ss
q (2) consists of

√
q ,
√
q ζ3, ±

√
q ζ5 (p = 5),

√
q ζ8 (p 6= 2),

√
q ζ12 (p 6= 3), ±√q ζ24 (p = 2).

(3) W ss
q (3) consists of ±√q ζ28 if p = 7, or ±√q ζ36 if p = 3.

(4) W ss
q (4) consists of

√
q ζ5 (p 6= 5), ±√q ζ15 (p = 5),

√
q ζ16,

√
q ζ20,

√
q ζ24 (p 6= 2), ±√q ζ40 (p = 2), ±√q ζ60 (p = 3).

4. Supersingular elliptic curves over finite fields

4.1. Isogeny classes over finite fields. Let Isogq denote the set of
isogeny classes of abelian varieties over Fq, where q = pa is a power of the
prime number p. Let ZWq be the free abelian group (written multiplicatively)
generated by the set Wq of conjugacy classes of Weil q-numbers. A nontrivial
element π ∈ ZWq can be put in the form πm1

1 × · · · × πmr
r for some r ∈ N,

where each πi ∈ Wq, πi 6∼ πj if i 6= j, and mi 6= 0 for all 1 ≤ i ≤ r. Such an
element is called a multiple Weil q-number if mi > 0 for all i, and the set of
all these elements is denoted by MWq. Put Xπ :=

∏
iX

mi
πi

, where Xπi
is the
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simple abelian variety (up to isogeny) over Fq corresponding to πi. The Honda-
Tate theorem naturally extends to a bijection MWq ≃ Isogq which sends each
π ∈MWq to the isogeny class [Xπ] ∈ Isogq of Xπ.
For each π ∈MWq, we define its dimension as

d(π) := dimXπ =

r∑

i=1

mid(πi).

Let Isog(π) = Isog(Xπ) denote the set of Fq-isomorphism classes of abelian
varieties isogenous to Xπ over Fq, and denote H(π) := |Isog(π)|. Let
MW ss

q ⊂ MWq be the subset of supersingular multiple Weil q-numbers,
i.e. those π ∈ MWq whose corresponding abelian varieties Xπ are supersin-
gular. For any integer d ≥ 1, let MWq(d) (resp. MW ss

q (d)) denote the subset
consisting of all elements π in MWq (resp. in MW ss

q ) of dimension d. Let
Sd(Fq) (resp. Spd(Fq)) be the set of isomorphism classes of d-dimensional su-
persingular (resp. superspecial) abelian varieties over Fq. When π ∈ MW ss

q ,
we let Sp(π) ⊂ Isog(π) be the subset consisting of superspecial isomorphism
classes and denote Hsp(π) := |Sp(π)|. Thus,

(4.1) |Sd(Fq)| =
∑

π∈MW ss
q (d)

H(π), |Spd(Fq)| =
∑

π∈MW ss
q (d)

Hsp(π).

4.2. Supersingular elliptic curves. We compute the number |S1(Fq)| of
isomorphism classes of supersingular elliptic curves over Fq, where q = pa as
before. The method is based almost entirely on the results of Waterhouse [21],
except certain details need to be cleared up (compare with [21, Theorem 4.5]).

Proposition 4.1. Let π be the Frobenius endomorphism of an elliptic curve
E0 over Fq, and K := Q(π). Assume that π 6∈ Q so that K is an imaginary

quadratic field. Equivalently, the central K-algebra End0(E0) of the elliptic
curve E0 is assumed to be commutative and thus necessarily an imaginary
quadratic field.

(1) Any endomorphism ring R = End(E) of an elliptic curve E in the
isogeny class [E0] of E0 contains π and is maximal at p, that is, R ⊗
Zp is the maximal order in K ⊗ Qp. Conversely, any order R of K
satisfying these two properties occurs as an endomorphism ring of an
elliptic curve in this isogeny class.

(2) Suppose that R ⊂ K is a quadratic order as in (1). Then the Picard
group Pic(R) of R acts freely on the set [E0]R ⊂ [E0] of isomorphism
classes of elliptic curves in [E0] with endomorphism ring R. Moreover,
the number N of orbits is 2 if p is inert in K and a is even, and N = 1
otherwise.

Proof. Statement (1) is [21, Theorem 4.2]. We give a proof of the second part
of Statement (2) since it differs from [21, Theorem 4.5] in some cases. We
assert that the statement of [21, Theorem 5.1] for principal abelian varieties
is directly applicable to this situation. Namely, the number of orbits here

Documenta Mathematica 21 (2016) 1607–1643



Superspecial Abelian Surfaces 1619

is also given by N =
∏

v|p Nv, where v runs through the set of all places

of K over p, and each Nv is the number described as follows. Let ev and
fv be the ramification index and residue degree of v, respectively, and set
gv = gcd(fv, a) and mv := gv ordv(π)/a. Note that mv is an integer since
End0(E0) is commutative and thus fv ordv(π)/a ∈ N. ThenNv is the number of
all gv-tuples (n1, . . . , ngv ) of integers satisfying 0 ≤ nj ≤ ev and

∑gv
j=1 nj = mv.

In the present situation End0(E0) = K is commutative and R is maximal at
p. As in the proof of [21, Theorem 5.1], to find the number of orbits for the
action of Pic(R) on [E0]R, one needs to classify the Tate-modules TℓE at all
primes ℓ 6= p and the Dieudonné modules at the prime p of E ∈ [E0]R. The
number of orbits is then the product of the number of isomorphism classes of
the above modules at each prime.
The Tate-module TℓE of each E ∈ [E0]R at a prime ℓ 6= p is naturally an Rℓ-
module with Rℓ = R ⊗Z Zℓ. Since R[1/p] is a quadratic order, any fractional
R[1/p]-ideal I whose order ring equals R[1/p] must be locally free over R[1/p].
Particularly, there is only one isomorphism class of the prime-to-p Tate modules
of E for all E ∈ [E0]R. Thus, N is equal to the number of isomorphism classes
of Dieudonné modules occurring in the isogeny class [E0], which is equal to∏

v Nv as given in the proof of [21, Theorem 5.1].
Now it is easy to compute the number N of orbits. Notice Nv 6= 1 only when
gv > 1. For our case with [K : Q] = 2 this occurs only when p is inert in K and
a is even. In this case there is only one place v over p, gv = 2 and ev = 1. Then
N = Nv is the number of pairs (n1, n2) with 0 ≤ n1, n2 ≤ 1 and n1 + n2 = 1,
which is 2. �

Remark 4.2. In [21, Theorem 5.1] the assumption that the endomorphism ring
R = End(A) is the maximal order can be replaced by the weaker assumption
that R is both Gorenstein and maximal at p. Indeed, any proper R-lattice of
rank one over a Gorenstein order R is locally free [5, Theorem 37.16 p. 789], so
the same proof of [21, Theorem 5.1] applies.

Remark 4.3. Suppose that a is even and p is inert in the imaginary quadratic
field K = Q(π) so that N = 2. By the classification of Waterhouse ([21,
Lemma, p.537], see also Proposition 3.1), this occurs only for supersingular
Weil q-numbers π where

(4.2) π ∼ ±pa/2ζ3, p ≡ 2 (mod 3) or π ∼ pa/2ζ4, p ≡ 3 (mod 4).

Then by part (1) of Proposition 4.1, End(E) = OK for any elliptic curve
E in the isogeny class corresponding to π. Since h(OK) = 1, part (2) of
Proposition 4.1 implies that a complete set of representatives of Sp(π) consists
a pair of elliptic curves of the form {E,E(p)}, where E(p) := E ⊗Fq,σp

Fq,
and σp ∈ Gal(Fq/Fp) is the Frobenius automorphism of Fq/Fp. These two
elliptic curves are distinguished by the actions of OK on the respective 1-
dimensional Lie-algebras Lie(E) and Lie(E(p)) over Fq, which are given by
distinct embeddings OK/(p) ≃ Fp2 →֒ Fq. This establishes a natural bijection
Sp(π) ≃ Hom(OK/(p),Fq) for every π in (4.2).
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We return to the calculation of | Sp1(Fq)| by the counting method. The isogeny
classes of supersingular elliptic curves over Fq are completely listed by the
following Weil numbers

W ss
q (1) = {√q ζ4, ±

√
q ζ8 (p = 2), ±√q ζ12 (p = 3) }, for a odd;

W ss
q (1) = {±√q , ±√q ζ3 (p 6≡ 1 (3)),

√
q ζ4 (p 6≡ 1 (4)) }, for a even.

(4.3)

For each Weil q-number π ∈ W ss
q (1), let R0 be the smallest quadratic order in

K = Q(π) which contains π and is maximal at p. It is easy to see that R0 is
the maximal order except when π =

√
q ζ4, p ≡ 3 (mod 4) and a is odd. In the

latter case R0 = Z[
√−p ] and we have by Proposition 4.1 that

(4.4) H(
√
q ζ4) =

{
h(OK) for p = 2 or p ≡ 1 (mod 4);

h(R0) + h(OK) for p ≡ 3 (mod 4).

For the other cases, the order R0 is maximal and we have

(4.5) H(π) = N · h(OK)

where N = 2 if p is inert in K and a is even, and N = 1 otherwise. Recall that
for a square free m ∈ Z, the class number of Q(

√
m ) is denoted by h(

√
m ).

Suppose first that a is odd. For p = 2, we have

(4.6) | Sp1(Fq)| = H(
√
q ζ4) + 2H(

√
q ζ8) = h(

√
−2 ) + 2h(

√
−1 ) = 3.

For p = 3, we have

| Sp1(Fq)| = H(
√
q ζ4) + 2H(

√
q ζ12)

= h(Z[
√
−3 ]) + h(

√
−3 ) + 2h(

√
−3 ) = 4.

(4.7)

For p > 3, we have by [26, Theorem 1.1] that

| Sp1(Fq)| = H(
√
q ζ4)

=





h(
√−p ) for p ≡ 1 (mod 4);

2h(
√−p ) for p ≡ 7 (mod 8) (2 splits in Q(

√−p )) ;
4h(
√−p ) for p ≡ 3 (mod 8) (2 is inert in Q(

√−p )).

(4.8)

Since
(

2
p

)
= 1 for p ≡ 1, 7 (mod 8) and

(
2
p

)
= −1 for p ≡ 3, 5 (mod 8), we

can rewrite (4.8) as

(4.9) | Sp1(Fq)| =
{
h(
√−p ) for p ≡ 1 (mod 4);(
3−

(
2
p

))
h(
√−p ) for p ≡ 3 (mod 4).

Suppose now that a is even. By (4.3), we have

(4.10) | Sp1(Fq)| = 2H(
√
q ) + 2δ3(p)H(

√
q ζ3) + δ4(p)H(

√
q ζ4),

where δm(p) = 1, 0 according as p 6≡ 1 (mod m) or not for m = 3, 4. It is
well known that H(

√
q ) is equal to the class number h(Bp,∞) of the quaternion
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Q-algebra Bp,∞ ramified only at p and ∞. Thus,

(4.11) H(
√
q ) =

p− 1

12
+

1

3

(
1−

(−3
p

))
+

1

4

(
1−

(−4
p

))
.

By Proposition 4.1, we have

(4.12) δ3(p)H(
√
q ζ3) =





1 for p = 3;

2 for p ≡ 2 (mod 3);

0 for p ≡ 1 (mod 3);

and get δ3(p)H(
√
q ζ3) = 1 −

(
−3
p

)
. Similarly, we have δ4(p)H(

√
q ζ4) = 1 −

(
−4
p

)
. Using (4.10) and (4.11), we get

| Sp1(Fq)| =
p− 1

6
+

2

3

(
1−

(−3
p

))
+

1

2

(
1−

(−4
p

))

+ 2

(
1−

(−3
p

))
+

(
1−

(−4
p

))

=
p− 1

6
+

8

3

(
1−

(−3
p

))
+

3

2

(
1−

(−4
p

))
.

(4.13)

From (4.6), (4.7), (4.9) and (4.13), we obtain an explicit formula for the number
| Sp1(Fq)| of supersingular elliptic curves over Fq.

Proposition 4.4. Suppose q = pa is a power of the prime number p.

(1) If a is odd, then

(4.14) | Sp1(Fq)| =





3, 4 for p = 2, 3, respectively;

h(
√−p ) for p ≡ 1 (mod 4);(
3−

(
2
p

))
h(
√−p ) for p ≡ 3 (mod 4) and p > 3.

(2) If a is even, then

| Sp1(Fq)| =
p− 1

6
+

8

3

(
1−

(−3
p

))
+

3

2

(
1−

(−4
p

))
.(4.15)

Remark 4.5. From the formulas above we observe a phenomenon that the
number | Sp1(Fq)| depends only on the parity of the exponent a of q = pa. We
have already seen in Section 2 that the classification of supersingular isogeny
classes depends only on the parity of a. More explicitly, if the exponents a and
a′ of q and q′ respectively have the same parity, then a bijective correspondence
between supersingular isogeny classes over Fq and those over Fq′ can be given

by matching π ∈ W ss
q (1) with π′ = (−p)(a′−a)/2π (see Remark 6.8). The parity

phenomenon of | Sp1(Fq)| arises because there is a bijection Sp(π) ≃ Sp(π′)
for all pairs (π, π′) as above. Indeed, if π and π′ are of the form in (4.2),
then a canonical bijection Sp(π) ≃ Sp(π′) is given by identifying both with
Hom(OK/(p),Fq) as in Remark 4.3. For the remaining cases, first suppose
that K = Q(π) = Q(π′) is imaginary quadratic. Then the endomorphism
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rings occurring for both isogeny classes are the same by Proposition 4.1. We
partition Sp(π) into

∐
R Sp(π,R), where R runs over all possible endomorphism

rings, and Sp(π,R) ⊆ Sp(π) consists of those members with endomorphism
ring R. Every Sp(π,R) is a principal homogeneous space of Pic(R). Thus
a Pic(R)-equivariant bijection between Sp(π,R) and Sp(π′, R) is established
whenever a base point is chosen respectively in each of them. Lastly, suppose
that Q(π) = Q(π′) = Q. Then πa′

= (π′)a = paa
′/2. So we have canonical

bijections Sp(π) ≃ Sp(πa′

) ≃ Sp(π′) by extending both base fields to Fpaa′ ([21,

Remark, p. 542]). Equivalently, the bijection Sp(π) ≃ Sp(π′) can be obtained
by matching the j-invariants.

5. Superspecial abelian surfaces over Fp

In this section we assume that the ground field is the prime field Fp; abelian
varieties and their morphisms are all defined over Fp unless otherwise stated.

5.1. Supersingular abelian varieties over Fp. We describe a result
which allows us to count supersingular and superspecial abelian varieties over
Fp, based on a result of Waterhouse [21, Theorem 6.1 (3)] (see also [26, Theorem
3.1] for an extension to non-simple isogenies).
Let X0 be a fixed supersingular abelian variety over Fp and let π = πm1

1 ×
· · ·×πmr

r be a multiple Weil p-number corresponding to the isogeny class [X0].
One has X0 ∼

∏r
i=1 X

mi

i , where each Xi with 1 ≤ i ≤ r is a simple abelian
variety with Frobenius endomorphism πi. The endomorphism algebra E =
End0(X0) of X0 is equal to

∏r
i=1 Matmi

(End0(Xi)). Let π0 ∈ End(X0) be
the Frobenius endomorphism. The Q-subalgebra K = Q(π0) ⊂ E generated
by π0 is semi-simple and coincides with the center of E . One has K =

∏
i Ki

and π0 = (π1, . . . , πr), where Ki = Q(πi). Let R := Z[π0, pπ
−1
0 ] ⊂ K and

Rsp := R[π2
0/p] ⊂ K. Clearly π2

0/p is an integral element of finite multiplicative
order, and p/π0 = π0 · (π2

0/p)
−1, so Rsp = Z[π0, π

2
0/p] ⊆ OK , where OK =∏

iOKi
is the maximal order K. Observe that the Tate module Tℓ(X0) (for

any prime ℓ 6= p), as a Zℓ[Gal(Fp/Fp)]-module, is nothing but an Rℓ-module,
and the (covariant) Dieudonné module M(X0) is simply an Rp-module, where
Rℓ = R⊗ Zℓ and Rp = R⊗ Zp.

Proposition 5.1. Let π = πm1

1 × . . . πmr
r , and K, R and Rsp be as above.

Assume that K has no real place, that is, none of πi is conjugate to
√
p , and

set V :=
∏r

i=1 K
mi

i .

(1) There is a natural bijection between the set Isog(π) and the set of iso-
morphism classes of R-lattices in V .

(2) Under the above map the subset Sp(π) is in bijection with the set of
isomorphism classes of Rsp-lattices in V .

Proof. Set Λ :=
∏r

i=1 O
mi

Ki
⊂ V , and view V and Λ as a K-module and an

R-lattice, respectively. We choose an identification V ⊗QQℓ = Tℓ(X0)⊗Qℓ for
primes ℓ 6= p and V ⊗Q Qp = M(X0) ⊗ Qp such that Λℓ = Tℓ(X0) for almost
all primes ℓ. Under this identification, any R-lattice Λ′ in V gives rise to a
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unique quasi-isogeny ϕ : X → X0 such that ϕ∗(Tℓ(X)) = Λ′⊗Zℓ for ℓ 6= p and
ϕ∗(M(X)) = Λ′ ⊗ Zp. Two lattices Λ1 and Λ2 are isomorphic as R-modules
if and only if there is an element g ∈ GLK(V ) such that Λ2 = gΛ1. Two
quasi-isogenies are isomorphic if and only if they differ by an element in E×.
Our assumption ensures that GLK(V ) ≃ E×. Then the above correspondence
induces the desired bijection (also see [26, Theorem 3.1] for a detailed proof).
Note that the abelian variety X in [X0] as above is superspecial if and only if
π2
0M(X) = pM(X), or equivalently, M(X) is a (Rsp)p-lattice in M(X0)⊗Qp.

That is, X is superspecial if and only if the corresponding R-module is Rsp-
stable. The statement (2) then follows from (1). �

Remark 5.2. Let π = πe1
1 be a multiple supersingular Weil p-number with

π1 = ±√p ζn and n critical at p. Then by Lemma 3.2, K = Q(π1) = Q(ζm)

and OK = Z[ζm], where m is defined in (3.3). Since Rsp = R[π2
1/p] ∋ ζm, it

follows that Rsp coincides with the maximal order OK in this case.

5.2. Proof of the main theorem. By Section 3, we list the sets W ss
p (1)

and W ss
p (2) of supersingular Weil p-numbers of dimension 1 or 2 as follows:

W ss
2 (1) = {

√
2 ζ4,±

√
2 ζ8},

W ss
3 (1) = {

√
3 ζ4,±

√
3 ζ12},(5.1)

W ss
p (1) = {√p ζ4}, p ≥ 5;

and

W ss
2 (2) = {

√
2 ,
√
2 ζ3,
√
2 ζ12,±

√
2 ζ24},

W ss
3 (2) = {

√
3 ,
√
3 ζ3,
√
3 ζ8},(5.2)

W ss
5 (2) = {

√
5 ,
√
5 ζ3,
√
5 ζ8,
√
5 ζ12,±

√
5 ζ5},

W ss
p (2) = {√p ,√p ζ3,

√
p ζ8,
√
p ζ12}, p ≥ 7.

Consider the case π ∈ W ss
p (2) or π = π1 × π2 with π1, π2 ∈ W ss

p (1). By (4.1)
we have

(5.3) |Sp2(Fp)| =
∑

π∈W ss
p (2)

Hsp(π) +
∑

π1,π2∈W ss
p (1)

Hsp(π1 × π2).

The number Hsp(
√
p ) = H(

√
p ) has been calculated in [22], so this case will

be excluded from our discussion. We refer to [5, Section 37] for the definition
of a Bass order. Note that when π = π1 × π1, Rsp is an order in the quadratic
field Q(π1), and such orders are well known to be Bass. It will be shown in
Section 7.2 that Rsp is a Bass order for all π considered (i.e. π ∈ MW ss

p (2)).
Thus, when the K-module V is free of rank one (i.e. in the case where π 6=
π1 × π1), Proposition 5.1 gives

(5.4) Hsp(π) =
∑

Rsp⊂B⊂OK

h(B).
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In the case when V is free of higher rank (in fact, rank 2 when π = π1 × π1),
one can use the results of Borevič and Faddeev on lattices over orders of cyclic
index to compute Hsp(π) (cf. [5, Section 37, p. 789]).
In the following, the notation Bπ,j (or Bj for short) with j ∈ N, will stand for
an order B of K with Rsp ⊂ B ⊂ OK and [OK : B] = j. The dependence of
K, Rsp and Bj on the choice of the Weil p-number π should be understood
though it is omitted from the notation. For any two square-free integers d > 1
and j ≥ 1, we write Kd,j for the CM field Q(

√
d ,
√−j ). For a finite collection

of algebraic numbers α1, . . . , αn, the notation h(α1, . . . , αn) denotes the class

number of the number field Q(α1, . . . , αn). Particularly, h(
√
d ,
√−j ) and

h(Kd,j) have the same meaning.

Case π = π1 × π1. For π1 = ±
√
2 ζ8, one has K = Q(

√
−1 ), Rsp = R = OK ,

and Hsp(π) = H(π) = 1. For π1 = ±
√
3 ζ12, one has K = Q(

√
−3 ), Rsp =

R = OK , and Hsp(π) = H(π) = 1.
For π1 =

√−p , we have K = Q(
√−p ), Rsp = R and [OK : Rsp] = 2 or 1

depending on p ≡ 3 (mod 4) or not. In this case we have Hsp(π) = 1, 3 for
p = 2, 3, respectively, and

(5.5) Hsp(π) =

{
h(
√−p ) for p ≡ 1 (mod 4);(
4−

(
2
p

))
h(
√−p ) for p ≡ 3 (mod 4) and p > 3;

see [26, Theorem 1.1]. Therefore, the contribution of the self-product cases is
given by
(5.6)

∑

π1∈W ss
p (1)

Hsp(π1×π1)=





3, 5 for p = 2, 3, respectively;

h(
√−p ) for p ≡ 1 (mod 4);(
4−

(
2
p

))
h(
√−p ) for p ≡ 3 (mod 4) and p > 3.

Case π = π1 × π2, π1 6= π2. This occurs only when p = 2 or 3. The following
are class numbers of B with Rsp ⊂ B ⊂ OK obtained in Section 7.3.

π = π1 × π2 K [OK : Rsp] Rsp ⊂ B ⊂ OK h(B)√
2 ζ4 ×±

√
2 ζ8 Q(

√
−2 )×Q(

√
−1 ) 2 Rsp, OK 1, 1√

2 ζ8 ×−
√
2 ζ8 Q(

√
−1 )×Q(

√
−1 ) 8 Rsp, B4, B2, OK 1, 1, 1, 1√

3 ζ4 ×±
√
3 ζ12 Q(

√
−3 )×Q(

√
−3 ) 6 Rsp, B3, B2, OK 1, 1, 1, 1√

3 ζ12 ×−
√
3 ζ12 Q(

√
−3 )×Q(

√
−3 ) 12 Rsp, B4, B3, OK 1, 1, 1, 1

The orders Bj are listed here for the convenience of the reader:

B2 = Z[(1 + ζ4, 0), (ζ4, ζ4)] for π =
√
2 ζ8 ×−

√
2 ζ8;

B2 = Z[
√
−3 ]× Z[ζ6] for π =

√
3 ζ4 ×±

√
3 ζ12;

B3 = Z[(
√
−3 , 0), (ζ6, ζ6)] for π =

√
3 ζ4 ×±

√
3 ζ12 or

√
3 ζ12 ×−

√
3 ζ12;

B4 = Z[(2, 0), (ζ2p, ζ2p)] for π =
√
p ζ4p ×−

√
p ζ4p and p = 2, 3.
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The contribution of other non-simple cases is

(5.7)
∑

π1 6=π2

Hsp(π1 × π2) =

{
2× 2 + 4 = 8 for p = 2;

2× 4 + 4 = 12 for p = 3.

Case π ∈ W ss
p (2). We have π ∈ {±

√
2 ζ24,±

√
5 ζ5,
√
p ζ8 (p 6=

2),
√
p ζ3,
√
p ζ12 (p 6= 3)}. For π = ±√p ζn with (p, n) = (5, 5) or (2, 24), we

haveRsp = OK by Remark 5.2 since n is critical at p. For π =
√
p ζ8 with p 6= 2,

we have K = Q(
√
p ζ8) = Q(

√
−1 ,√2p ) and Rsp = Z[(

√
2p +

√−2p )/2,
√
−1 ],

which is the maximal order in K by Exercise 42(b) of [13, Chapter 2].
Therefore,

(5.8) Hsp(±
√
2 ζ24) = Hsp(±

√
5 ζ5) = 1, h(

√
p ζ8) = h(

√
2p ,
√
−1 ), p 6= 2.

For π =
√
p ζ3, we have K = Q(

√
p ,
√
−3 ) and Rsp = Z[

√
p , ζ3]. The suborders

B ⊆ OK containing Z[
√
p ] with the property [B× : Z[

√
p ]×] > 1 are classified

in [23]. We list the suporders of Rsp in OK and their class numbers in the
following table.

π =
√
p ζ3 [OK : Rsp] Rsp ⊂ B ⊂ OK h(B)

p = 2 1 OK 1
p = 3 3 Rsp, OK 1, 1

p ≡ 3 (mod 4), p 6= 3 1 OK h(K)
p ≡ 1 (mod 4) 4 Rsp, OK ̟p h(K), h(K)

Thus,

(5.9) Hsp(
√
p ζ3) =





1, 2 for p = 2, 3, respectively;

(̟p + 1)h(
√
p ,
√
−3 ) for p ≡ 1 (mod 4);

h(
√
p ,
√
−3 ) for p ≡ 3 (mod 4) and p > 3.

For π =
√
p ζ12 (p 6= 3), we have K = Q(

√−p ,
√
−3 ) and Rsp = Z[

√
p ζ12, ζ6] =

Z[
√−p , ζ6]. We have the following results from Section 7.4.

π =
√
p ζ12 (p 6= 3) [OK : Rsp] Rsp ⊂ B ⊂ OK h(B)
p = 2 1 OK 1

p ≡ 1 (mod 4) 1 OK h(K)
p ≡ 3 (mod 4) 4 Rsp, OK ̟3p h(K), h(K)

Thus,
(5.10)

Hsp(
√
p ζ12) =





1 for p = 2;

h(
√−p ,

√
−3 ) for p ≡ 1 (mod 4);

(̟3p + 1)h(
√−p ,

√
−3 ) for p ≡ 3 (mod 4) (p 6= 3).

The following are the class numbers of the fieldsK = Q(
√
p ζn) for n ∈ {3, 8, 12}

and p ∈ {2, 3, 5}. They are checked using the Magma algebra system [2].
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h(K) p = 2 p = 3 p = 5

Q(
√
p ζ3) = Q(

√
p ,
√
−3 ) 1 1 1

Q(
√
p ζ8) = Q(

√
2p ,
√
−3 ) 1 2 2

Q(
√
p ζ12) = Q(

√−p ,
√
−3 ) 1 1 2

We collect the contribution of simple cases. For p = 2, we have

(5.11) Hsp(
√
2 ζ3) +Hsp(

√
2 ζ12) + 2Hsp(

√
2 ζ24) = 1 + 1 + 2 = 4.

For p = 3, we have

(5.12) Hsp(
√
3 ζ3) +Hsp(

√
3 ζ8) = 1 + 2 = 3.

For p = 5, we have

(5.13) Hsp(
√
5 ζ3)+Hsp(

√
3 ζ8)+Hsp(

√
5 ζ12)+2Hsp(

√
5 ζ5) = 1+2+2+2 = 7.

For p ≥ 7, we have
∑

π 6=√p∈W ss
p (2)

Hsp(π) = Hsp(
√
p ζ3) +Hsp(

√
p ζ8) +Hsp(

√
p ζ12)

=

{
(̟p + 1)h(Kp,3) + h(K2p,1) + h(K3p,3), for p ≡ 1 (mod 4);

h(Kp,3) + h(K2p,1) + (̟3p + 1)h(K3p,3), for p ≡ 3 (mod 4).

(5.14)

Let ∆(p) be the number of isomorphism classes of superspecial abelian surfaces
whose Frobenius endomorphism not equal to ±√p . Then we have
(5.15)

∆(p) =
∑

π∈W ss
p (2),π 6=√p

Hsp(π)+
∑

π1×π2,π1 6=π2

Hsp(π1×π2)+
∑

π1∈W ss
p (1)

Hsp(π1×π1).

Collecting the results (5.6), (5.7), (5.11) (5.12), (5.13) and (5.14), we obtain
the following result.

Theorem 5.3.

(1) The number ∆(p) is 15, 20, 9 for p = 2, 3, 5, respectively.
(2) For p > 5 and p ≡ 1 (mod 4), we have

(5.16) ∆(p) = (̟p + 1)h(Kp,3) + h(K2p,1) + h(K3p,3) + h(
√−p ),

where ̟p is defined in (1.2).
(3) For p > 5 and p ≡ 3 (mod 4), we have

(5.17) ∆(p) = h(Kp,3)+h(K2p,1)+(̟3p+1)h(K3p,3)+

(
4−

(
2

p

))
h(
√−p ),

where ̟3p is defined in (1.2).

Theorem 1.2 then follows from Theorems 1.1 and 5.3.

Remark 5.4. Based on our computation we observe that the endomorphism
ring of a superspecial abelian surface over Fp may be a non-maximal order, or

even non-maximal at p. For example, when p = 3 and π =
√
3 ζ3, the order

Rsp, which occurs as the endomorphism ring of a superspecial abelian surface
[21, Theorem 6.1], has index 3 in the maximal order.

Documenta Mathematica 21 (2016) 1607–1643



Superspecial Abelian Surfaces 1627

5.3. Asymptotic behavior of | Sp2(Fp)|. We now determine the asymptotic
behavior of the size of Sp2(Fp) as the prime p goes to infinity. For simplicity, let
F = Q(

√
p ). By Theorem 1.2, | Sp2(Fp)| is expressed as a linear combination

of ζF (−1)h(F ), h(
√−p ), and class numbers of certain biquadratic CM fields.

The term cζF (−1)h(√p ) (for a suitable constant c) comes from the contribu-
tion of the isogeny class corresponding to the Weil p-number π =

√
p . More

precisely, it arises from the mass part in the Eichler class number formula for
the calculation of H(

√
p ). We recall from Theorem 1.1 that the mass part for

p > 5 is

(5.18) Mass(p) =





1
2ζF (−1)h(F ) for p ≡ 3 (mod 4);

8ζF (−1)h(F ) for p ≡ 1 (mod 8);
1
2 (15̟p + 1)ζF (−1)h(F ) for p ≡ 5 (mod 8).

In [22, Theorem 6.3.1] we showed that the mass part Mass(p) is the main term
of H(

√
p ). It is expected that Mass(p) is also the main term of | Sp2(Fp)|. This

is true and we have the following asymptotic formula for the size of Sp2(Fp).

Proposition 5.5. We have

lim
p→∞

| Sp2(Fp)|
Mass(p)

= 1.

Proof. It is enough to show that limp→∞ h(
√−p )/h(F )ζF (−1) = 0, and for all

the biquadratic CM-fields Kd,j appearing in the formula of | Sp2(Fp)|,
lim
p→∞

h(Kd,j)/h(F )ζF (−1) = 0.

The above limit has been verified for the pairs (d, j) with d = p and j = 1, 2, 3
in [22, Theorem 6.3.1], and it remains to consider the pairs (2p, 1) and (3p, 3).
Recall that the discriminant of F is denoted by dF , which is either p or 4p.
Using the functional equation and the trivial inequality ζF (2) > 1, we have
ζF (−1) > c1(dF )

3/2 for a constant c1 > 0. For any CM-field K, let h−(K)
be the relative class number of K defined as h(K)/h(K+), where K+ is the
maximal totally real subfield of K. By [8, Lemma 4], when K ranges over a
sequence of CM-fields with bounded degree and dK →∞, we have

(5.19) lim
dK→∞

(log h−(K))/(log
√
dK/dK+ ) = 1.

In particular, applying this to the quadratic imaginary fields Q(
√−p ), we ob-

tain that h(
√−p )/ζF (−1)→ 0 as p→∞.

Assume (d, j) = (2p, 1) or (3p, 3). One calculates that dKd,j
/dK+

d,j
≤ 32p. Let ǫd

be the fundamental unit of the quadratic real field Q(
√
d ). By Siegel’s theorem

[9, Theorem 15.4, Chapter 12], the growth of h(K+
d,j) = h(

√
d ) satisfies the

following formula

lim
d→∞

log(h(
√
d ) log ǫd)

log
√
d

= 1.
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Note that ǫd is bounded below by (1 +
√
5 )/2 for all d. Recall that h(Kd,j) =

h−(Kd,j)h(
√
d ). Combining these bounds yields that h(Kd,j)/ζF (−1) → 0 as

p goes to infinity. �

6. Galois cohomology and Superspecial abelian varieties

6.1. Galois cohomology and conjugacy classes. We refer to [15, Sec-
tion I.5] for the definition of nonabelian Galois cohomology. Let ΓFq

=

Gal(Fq/Fq) be the absolute Galois group of Fq, and G a group with discrete
topology on which ΓFq

acts continuously. Let σq be the arithmetic Frobenius

automorphism of Fq, which raises each element of Fq to its q-th power. The

group ΓFq
is isomorphic to the profinite group Ẑ = lim←−n∈N

Z/nZ with canoni-

cal generator σq. Each 1-cocycle (aσ)σ∈ΓFq
is uniquely determined by its value

x = aσq
∈ G at σq. An element of G is called a 1-cocycle element if it arises from

a 1-cocycle in this way. We will identify the set of 1-cocycles Z1(ΓFq
, G) with

the subset of 1-cocycle elements of G. Two 1-cocycle elements x, y ∈ Z1(ΓFq
, G)

define the same cohomology class if and only if they are σq-conjugate (denoted
by x ∼σq

y), i.e., there exists z ∈ G such that x = z−1yσq(z). Write [x]σq

for the σq-conjugacy class of x ∈ G, and B(G) for the set of all σq-conjugacy
classes of G. Then

H1(ΓFq
, G) = {[x]σq

∈ B(G) | x ∈ Z1(ΓFq
, G)} ⊆ B(G).

If the action of ΓFq
on G is trivial, then B(G) is reduced to the set Cl(G)

of (the usual) conjugacy classes of G. Define Cl0(G) := {[x] ∈ Cl(G) |
x is of finite order} ⊆ Cl(G).

Lemma 6.1. Assume that the action of ΓFq
on G factors through a finite quo-

tient Gal(FqN /Fq). We have

Z1(ΓFq
, G) = {x ∈ G | xσq(x) · · · σN−1

q (x) is of finite order }.
In particular, if the action of ΓFq

on G is trivial, then H1(ΓFq
, G) = Cl0(G).

Proof. This follows directly from Exercise 2 of [15, Section I.5.1]. �

6.2. Abelian varieties over finite fields and twisted forms. Let X0

be an abelian variety over Fq with Frobenius endomorphism πX0
∈ EndFq

(X0).

Set X0 = X0 ⊗ Fq, and G = Aut(X0). The Galois group ΓFq
acts on End(X0)

as follows (see [24, Lemma 3.3])

(6.1) σq(x) = πX0
xπ−1

X0
, ∀x ∈ End(X0),

where the conjugation by πX0
is taken inside End0(X0). As End(X0) is a

free Z-module of finite rank, the action of ΓFq
factors through a finite quotient

Gal(FqN /Fq), and hence (πX0
)N is central in End(X0).

Recall that an (Fq/Fq)-form of X0 is an abelian varieties X over Fq such that

X := X ⊗ Fq is Fq-isomorphic to X0. Let E(Fq/Fq, X0) be the set of Fq-

isomorphism classes of (Fq/Fq)-forms of X0. By [15, Section III.1.3], there is a
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canonical bijection of pointed sets

(6.2) θ : E(Fq/Fq, X0)
∼−→ H1(ΓFq

, G),

sending the Fq-isomorphism class of X0 to the trivial class. The map θ is

induced from mapping each Fq-isomorphism f : X0 → X to the 1-cocycle ele-
ment x = f−1σq(f) ∈ G. The injectivity of θ follows purely from cohomological
formalism, and the surjectivity is a consequence of Weil’s Galois descent.
An isomorphism f of abelian varieties as above induces an isomorphism

(6.3) αf : End(X) ≃ End(X0), y 7→ f−1yf.

The Frobenius endomorphisms πX0
and πX are related by the following com-

mutative diagram (see [24, (3.2)]):

(6.4)

X0
f−−−−→ X

πX0

y
yπX

X0
σq(f)−−−−→ X.

We compute

(6.5) αf (πX) = f−1πXf = f−1σq(f)πX0
= xπX0

.

Note that for x, y, z ∈ G,

x = z−1yσq(z) ⇔ xπX0
= z−1(yπX0

)z.

Hence there is a well-defined injective map

(6.6) Π : B(G) →֒ End(X0)/G, [x]σq
7→ [xπX0

],

where End(X0)/G denotes the set of orbits of End(X0) under the right action
of G by conjugation. In a sense, the image ofH1(ΓFq

, G) under Π consists of the

conjugacy classes of Frobenius endomorphisms of members of E(Fq/Fq, X0).
We can also work in the category of abelian varieties up to isogeny and study
the (Fq/Fq)-forms of the isogeny class [X0]. Thus we pass from isomorphisms of
abelian varieties to quasi-isogenies, and endomorphism rings to endomorphism
algebras, etc. Let E0(Fq/Fq, [X0]) be the set of Fq-isogeny classes of abelian

varieties [X ] such that X is isogenous to X0 over Fq, and GQ = End0(X0)
×.

Many previous constructions can be carried over. In particular, both (6.4) and
(6.5) hold true for any quasi-isogeny f : X0 → X, and one obtains a 1-cocycle
element x = f−1σq(f) ∈ GQ as before. This gives a canonical injective map

(6.7) θ : E0(Fq/Fq, [X0]) →֒ H1(ΓFq
, GQ),

which fits into a commutative diagram

(6.8)

E(Fq/Fq, X0)
∼=−−−−→
θ

H1(ΓFq
, G)

y
y

E0(Fq/Fq, [X0])
θ−−−−→ H1(ΓFq

, GQ).
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The left vertical map sends the Fq-isomorphism class of X to its Fq-isogeny
class [X ], and the right vertical map is induced from the inclusion of ΓFq

-groups
G ⊂ GQ. Thus (6.8) endows a geometric meaning for this cohomological map.
We complete the picture by showing that the map θ in (6.7) is surjective and
thus a bijection of pointed sets as stated in Proposition 1.4. Recall that the
action of ΓFq

on End0(X) factors through Gal(FqN /Fq) for a fixed N ∈ N.
Without lose of generality, assume that X0 is FqN -isotypical, i.e., X0 ⊗ FqN

is isogenous to (YN )d, where YN is an absolutely simple abelian variety over
FqN with End(YN ) = End(Y N ). Equivalently, we assume that the multiple

Weil q-number πt1
0,1 × · · · × πtu

0,u ∈ MWq corresponding to the Fq-isogeny class

[X0] satisfies that πN
0,1 = πN

0,2 = · · · = πN
0,u after suitable conjugation, and

Q((πX0
)N ) ⊂ End0(X0) is a field which coincides with Q((πX0

)sN ) for all s ∈ N.
Then End0(X0) = Matd(End

0(Y N )), and End0(Y N ) is a central division alge-

bra over Q((πX0
)N ). For simplicity, let D = End0(Y N ) and K0 = Q((πX0

)N ).

Then GQ = End0(X0)
× = GLd(D).

Lemma 6.2. There is a bijection between H1(ΓFq
, GQ) and the following subset

of Cl(GQ):

(6.9) C (πX0
) = {[π] ∈ Cl(GQ) | ∃M ∈ N : πNM = πNM

X0
}.

Proof. Since πX0
∈ GQ, the map Π in (6.6) defines a bijection

Π : B(GQ)
∼−→ Cl(GQ), [x]σq

7→ [xπX0
].

Let πx = xπX0
for each x ∈ GQ. Then

xσq(x) · · ·σN−1
q (x) = (xπX0

)N (πX0
)−N = (πx)

N (πX0
)−N .

By Lemma 6.1, x ∈ Z1(ΓFq
, GQ) if and only if (πx)

N = (πX0
)N ξ for some

ξ ∈ GQ of finite order, or equivalently, πNM
x = (πX0

)NM for some M ∈ N. �

Any π ∈ GQ with [π] ∈ C (πX0
) is semisimple, as πNM = (πX0

)NM lies in

the center of the simple Q-algebra End0(X0). The minimal polynomial of π
factorizes as a product of distinct irreducible polynomials over Q:

(6.10) P (t) =

r∏

i=1

Pi(t) ∈ Q[t].

For all π′ in the conjugacy class [π], the Q-subalgebra Kπ′ := Q(π′) ⊂
End0(X0) is canonically isomorphic to K := Q[t]/(P (t)) via the map π′ 7→ t.
Since πNM

X0
= πNM , the field K0 = Q(πNM

X0
) can be identified with the Q-

subalgebra of K generated by tNM , thus providing a K0-algebra structure on
K. By (6.10), K factorizes as a products of number fields

(6.11) K = K1 × · · · ×Kr, with Ki = Q[t]/(Pi(t)) ⊇ K0.

By an abuse of notation, we regard πN
X0

as a Weil qN -number via a embedding

K0 →֒ Q. Then for each 1 ≤ i ≤ r, the roots of Pi(t) in Q is a conjugacy class
of Weil q-numbers such that one of its representative πi satisfies π

NM
i = πNM

X0
.
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Therefore, given π ∈ C (πX0
), we find r Weil q-numbers representing distinct

conjugacy classes
(6.12)
{π1, · · · , πr} with πNM

i = πNM
X0

for some M ∈ N and all 1 ≤ i ≤ r.

Next, we fix P (t) ∈ Q[t] as above, and produce a discrete invariant for every
conjugacy class [π] ∈ C (πX0

) with minimal polynomial P (t). Let V = Dd be
the right vector space over D of column vectors. Then EndD(V ) = Matd(D)
acts on V from the left by the usual matrix multiplication. We have a canonical
K0-algebra embedding K →֒ EndD(V ) sending K to Kπ. Thus π endows a
faithful (K,D)-bimodule structure on V , denoted by Vπ. By (6.11), there is a
decomposition of V into right D-subspaces:

(6.13) V =

r⊕

i=1

Vi, di = dimD Vi.

The action of Ki on Vi gives rise to a K0-embedding Ki →֒ EndD(Vi) =
Matdi

(D). We study each of the embeddings individually first.

Lemma 6.3. Let π ∈Wq be a Weil q-number such that πNM = πNM
X0

for some
integer M ∈ N, and Xπ a simple abelian variety over Fq in the isogeny class
corresponding to π. Let e = e(π) be the smallest integer such that there is an
K0-embedding Q(π) →֒ Mate(D). Then Xπ = Xπ ⊗ Fq is isogenous to (Y N )e,

and End0(Xπ) is isomorphic to the centralizer Cπ of Q(π) in Mate(D).

Proof. Since πNM = πNM
X0

, there exists an isogeny Xπ → (Y N )e for some

e ∈ N, which gives an identification of End0(Xπ) with Mate(D) = End0((Y N )e)
in the same way as (6.3). Thus we obtain a K0-embedding Q(π) →֒ Mate(D),
and End0(Xπ) is recovered as the ΓFq

-invariants of End0(Xπ), or equivalently,
the centralizer Cπ of Q(π) in Mate(D) by (6.1). On the other hand, Cπ is also
the endomorphism algebra of the (Q(π), D)-bimodule De. Now the minimality

of e follows from the fact that Cπ = End0(Xπ) is a division algebra. �

Given e′ ∈ N, a K0-embedding of Q(π) into the simple algebra Mate′(D) exists
if and only if e(π) divides e′. Therefore, every di in (6.13) is of the form mie(πi)
for some positive integer mi ∈ N subjecting to the condition

(6.14) m1e(π1) + · · ·+mre(πr) = d.

We shall call the r-tuple m = (m1, . . . ,mr) the type of the (K,D)-bimodule
Vπ or simply the type of π.

Lemma 6.4. There are natural bijections between the following sets:

(1) the set of conjugacy classes [π] ∈ C (πX0
) with minimal polynomial

P (t);
(2) the set of GQ-conjugacy classes of K0-embedding K →֒ EndD(V );
(3) the set of isomorphism classes of faithful (K,D)-bimodule structures

on V ;
(4) the set of r-tuples m = (m1, . . . ,mr) ∈ Nr satisfying (6.14).
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Proof. The bijection between between (1) and (2) is established by the map
sending each K0-embedding φ : K = Q[t]/(P (t)) →֒ EndD(V ) to π = φ(t).
Every faithful (K,D)-bimodule structure on V is given by a K0-embedding
φ : K →֒ EndD(V ). Two such embeddings define isomorphic structures if and
only if they are conjugate by an element of GQ. Hence (2) is bijective to (3).
The proof that (2) is bijective to (4) is similar to that of [16, Proposition 3.2]
and is omitted. �

Proposition 6.5. Each cohomology class [x]σq
∈ H1(ΓFq

, GQ) determines a
unique conjugacy class of multiple Weil q-number πm1

1 ×· · ·×πmr
r ∈MWq such

that

• πNM
i = πNM

X0
for some M ∈ N and all 1 ≤ i ≤ r;

• m = (m1, . . . ,mr) ∈ Nr satisfies (6.14).

In particular, the map θ in (6.7) is a bijection of pointed sets.

Proof. Given [x]σq
∈ H1(ΓFq

, GQ), we produce the desired multiple Weil q-
number by combing the type m = (m1, · · · ,mr) of [πx] ∈ C (πX0

) and the set
{π1, · · · , πr} determined by [πx] as in (6.12). Let X =

∏r
i=1(Xπi

)mi be an

abelian variety over Fq corresponding to πm1

1 ×· · ·×πmr
r . Then X is isogenous

to X0 by Lemma 6.3 and (6.14). Identify End0(X) with End0(X0) via an
isogeny f : X0 → X as in (6.3). The conjugacy class of αf (πX) ∈ GQ is
independent of the choice of f . By the construction, αf (πX) is a semisimple
element with the same minimal polynomial and type as πx = xπX0

. It follows
from Lemma 6.4 that they must lie in the same conjugacy class of GQ. We
conclude that θ is surjective by Lemma 6.2. �

6.3. Superspecial abelian varieties and the parity property. We ap-
ply the previous construction to the study of superspecial abelian varieties
over finite fields. Let E0 be a supersingular elliptic curve over the prime fi-
nite field Fp whose Frobenius endomorphism π0 satisfying π2

0 + p = 0 (Recall

that
√−p ∈ W ss

p (1) for all p by Proposition 3.5). Let O := End(E0 ⊗ Fp)

be the endomorphism ring of E0 ⊗ Fp; this is a maximal order in the unique
quaternion Q-algebra D = Bp,∞ ramified exactly at {p,∞}. Take X0 = Ed

0

and X0 := X0 ⊗ Fp for d ≥ 1. Then End(X0) = Matd(O). In what follows we
denote by

G := Aut(X0) = GLd(O)
the automorphism group of X0. Consider O as a subring of Matd(O) by the
diagonal embedding and view π0 as an element in Matd(O). Then the action
of ΓFp

on G = GLd(O) is given by

(6.15) σp(x) = π0xπ
−1
0 , x ∈ G.

We will also write GQ for the group GLd(D).
Recall that Spd(Fq) denotes the set of isomorphism classes of d-dimensional
superspecial abelian varieties over Fq. For the classification of superspecial
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abelian varieties over the algebraic closure Fq of Fq, we have the following
result, due to Deligne, Shioda and Ogus (cf. [12, Section 1.6, p. 13]).

Theorem 6.6. For any integer d ≥ 2, there is only one isomorphism class of
d-dimensional superspecial abelian varieties over any algebraically closed field
of characteristic p > 0.

According to this theorem, any d-dimensional superspecial abelian variety over
Fq is an (Fq/Fq)-form of X0 ⊗ Fq. Thus we obtain a natural bijection by (6.2)

(6.16) H1(ΓFq
, G) ≃ Spd(Fq), d > 1,

which sends the trivial class to the isomorphism class of X0 ⊗ Fq. The set
Spd(Fq) is partitioned into isogeny classes:

(6.17) Spd(Fq) =
∐

π∈MW ss
q (d)

Sp(π).

Theorem 6.7. Let q = pa and q′ = pa
′

be powers of the prime number p such
that a ≡ a′ (mod 2). For any integer d ≥ 1, there are natural bijections

H1(ΓFq
, G) ≃ H1(ΓFq′

, G),(6.18)

Spd(Fq) ≃ Spd(Fq′).(6.19)

Proof. If d = 1, then (6.19) has been proven in Section 4.2; see Proposition 4.4
and Remark 4.5. If d > 1, then (6.19) follows from (6.16) and (6.18). Therefore,
it remains to prove (6.18).
Since π2

0 is a central element, the element σ2
p acts trivially on G by (6.15).

Thus σq(x) = σq′ (x) for all x ∈ G. This together with the canonical isomor-
phism ΓFq

≃ ΓFq′
(sending σq 7→ σq′ ) yields a natural bijection H1(ΓFq

, G) ≃
H1(ΓFq′

, G). The theorem is proved. �

Remark 6.8. By the same token, we have a natural bijection

(6.20) H1(ΓFq
, GQ) ≃ H1(ΓFq′

, GQ).

Thus by Proposition 6.5, there is also a natural bijection between the isogeny
classes of supersingular abelian varieties over Fq and those over Fq′ . This can
be made explicit in terms of multiple Weil numbers. The Frobenius endomor-
phism of X0 ⊗ Fq is πa

0 . Hence the Frobenius endomorphisms of the isogeny
class corresponding to a cohomology class [x]σq

∈ H1(ΓFq
, GQ) is given by

the conjugacy class [xπa
0 ] by (6.5). Without lose of generality, assume that

a−a′ = 2s ≥ 0. If π = πm1

1 ×· · ·×πmr
r is a multiple Weil q-number determined

by [x]σq
, then the corresponding multiple Weil q′-number is π̃ = π̃m1

1 ×· · ·×π̃mr
r ,

with π̃i = (−p)−sπi for all 1 ≤ i ≤ r.
By the commutative diagram (6.8), the bijection (6.19) preserves isogeny classes
in the sense that there is a natural bijection

(6.21) Sp(π) ≃ Sp(π̃) ∀π ∈MW ss
q (d).
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Corollary 6.9. Let q = p2s+1 be an odd power of p. Let Y0 be a fixed su-
persingular abelian variety over Fq and π = πm1

1 × · · · × πmr
r the correspond-

ing multiple Weil q-number. Let V and K be as in Proposition 5.1, and set
Rsp := Z[π̃0, pπ̃

−1
0 ] ⊂ K, where π̃0 = (−p)−s(π1, . . . , πr). Assume that K has

no real place. Then there is a natural bijection between the set Sp(π) of iso-
morphism classes of superspecial abelian varieties in the isogeny class [Y0] and
the set of isomorphism classes of Rsp-lattices in V .

Proof. This follows from Proposition 5.1 and Theorem 6.7. �

The above theorem provides an approach for computing the size of Spd(Fq)
explicitly in the odd exponent case, subject to the condition that K has no to-
tally real factors. For the rest of this section we shall describe H1(ΓFq

,GLd(O))
(and hence Spd(Fq)) when q is an even power of p.

6.4. A description of H1(ΓFq
,GLd(O)) with even exponent. In what

follows we assume that q = pa is an even power of p and X0 = Ed
0 ⊗ Fq

with d ≥ 2. The Frobenius endomorphism πX0
= (−p)a/2 lies in the center

of End(X0) = Matd(O). Hence ΓFq
acts trivially on the group G := GLd(O)

by (6.15). Then it follows from Lemma 6.1 that H1(ΓFq
, G) can be identified

with the set Cl0(G) of conjugacy classes of elements in G of finite order. We
shall give a lattice description for Cl0(G) and hence for Spd(Fq) by the previous
correspondence. See Proposition 6.11 for details.
Suppose x ∈ G is an element of finite order, which is necessarily semi-simple.
The minimal polynomial of x over Q has the form

(6.22) Pn(t) = Φn1
(t)Φn2

(t) · · ·Φnr
(t), 1 ≤ n1 < n2 < · · · < nr

for some r-tuple n = (n1, . . . , nr) ∈ Nr, where Φm(t) ∈ Z[t] denotes the m-th
cyclotomic polynomial. We define

Kn :=
Q[t]∏r

i=1 Φni
(t)

and An :=
Z[t]∏r

i=1 Φni
(t)

.

The Q-subalgebras of End0(X0) = Matd(D) generated by x and πx = xπX0

coincide and are isomorphic to Kn. Moreover, the subring Z[x] ⊂ Matd(O) is
canonically isomorphic to An.
We denote by C(n) ⊂ Cl0(G) the set of conjugacy classes of G with minimal
polynomial Pn(t). By Proposition 6.5, each conjugacy class [x] ∈ C(n) deter-
mines a (conjugacy class of) supersingular multiple Weil q-number πm1

1 × · · ·×
πmr
r , where πi = (−p)a/2ζni

, and m = (m1, · · · ,mr) is the type of the faithful
(Kn, D)-bimodule structure on V = Dd equipped by πx ∈ Matd(D). Since
Q(πx) = Q(x) ∼= Kn, the (Kn, D)-bimodule structure on V is also equipped di-
rectly by x ∈Matd(D). Thus m is also called the type of [x], as it depends only
on the conjugacy class. Recall that a (Kn, D)-bimodule V is said to be type m
if the decomposition into D-subspaces V = ⊕r

i=1Vi induced from the decom-
position Kn =

∏r
i=1 Q(ζni

) satisfies that dimD Vi = mie(πi) for all 1 ≤ i ≤ r,
where e(πi) is defined in Lemma 6.3. Since dimE0 = 1, we have e(πi) = d(πi),
the dimension of the Weil number πi. Note that d(πi) depends only on the
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integer ni as q = pa is fixed, so we write d(ni) for it instead. Equation (6.14)
becomes

(6.23) m1d(n1) + · · ·+mrd(nr) = d.

A pair of r-tuples (n,m) ∈ Nr × Nr with 1 ≤ n1 < · · · < nr is said to be
d-admissible if the condition (6.23) is satisfied. Let C(n,m) ⊂ C(n) denote
the subset of conjugacy classes of type m. An element x ∈ G or its conjugacy
[x] ∈ Cl(G) is said to be type (n,m) if [x] ∈ C(n,m).

Lemma 6.10. Fix a faithful (Kn, D)-bimodule V = Dd of type m. There is a
natural bijection between the set C(n,m) and the set of isomorphism classes of
(An,O)-lattices in V .

Proof. Let M0 := Od ⊂ V be the standard lattice in V . Every element x ∈
G of type (n,m) gives rise to an (An,O)-bimodule structure on M0. Two
elements x, x′ determine isomorphism bimodule structures if and only if they
are conjugate in G. Therefore, the set C(n,m) is in bijection with the set
of isomorphism classes of (An,O)-lattices in V that are O-isomorphic to M0.
Since d ≥ 2, every O-lattice in V is isomorphic to M0. This follows from a
theorem of Eichler [6] that the class number of Matd(O) is 1 for d ≥ 2 (see also
[10, Theorem 2.1]). �

Proposition 6.11. Let Cl0(G) be the set of conjugacy classes of G = GLd(O)
of finite order with d ≥ 2. Then

(6.24) Cl0(G) =
∐

(n,m)

C(n,m),

where (n,m) runs through all d-admissible types. For each fixed (n,m), there
are natural bijections between the following sets:

(1) C(n,m), the set of conjugacy classes of type (n,m);
(2) Sp(π), where π = πm1

1 × · · · × πmr
r and πi = (−p)a/2ζni

;
(3) the set of isomorphism classes of (An,O)-lattices in the (Kn, D)-

bimodule V of type m.

Proof. The bijection between (1) and (2) is established by combining (6.16) and
Proposition 6.5. The bijection between (1) and (3) follows from Lemma 6.10.

�

7. Arithmetic results

In this section, we prove the arithmetic results used in Section 5 concerning
the order Rsp. In the light of (5.4), our goals are two fold: (1) show that
Rsp is Bass for every supersingular multiple Weil p-number π ∈ MW ss

p (2) of
dimension 2 distinct from ±√p ; (2) classify all suporders of Rsp (i.e., orders in
K containing Rsp) and calculate their class numbers when π is not of the form
π1 × π1 with π1 ∈ W ss

p (1) (The case π = π1 × π1 has already been treated in
Section 5.2).
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7.1. Orders in products of number fields. Let K =
∏r

i=1 Ki be a
product of number fields, and S be an order contained in the maximal or-
der OK =

∏r
i=1 OKi

. We write pri : K → Ki for the projection map onto the
i-th factor. By a theorem of Borevič and Faddeev [1] (see [5, Section 37, p. 789]
or [11, Theorem 2.1]), S is Bass if and only if OK/S is cyclic as an S-module.
This leads to the following simple criterion when r = 2.

Lemma 7.1. A suborder S ⊆ OK1
× OK2

that projects surjectively onto both
factors OK1

and OK2
is Bass.

Proof. Each OKi
is equipped with an S-module structure via the projection

map pri : S → OKi
. Since pr2(S) = OK2

, the natural inclusion OK1
→֒

OK1
×OK2

defined by x 7→ (x, 0) induces an isomorphism of S-modules

(7.1) OK1
/(OK1

∩ S) ≃−→ (OK1
×OK2

)/S.
The left hand side is a cyclic S-module because pr1(S) = OK1

. �

We return to the general case with r ≥ 1. Let a be an OK-lattice (i.e., a
fractional OK -ideal that contains a Q-basis of K) contained in S. There is
a one-to-one correspondence between the orders B intermediate to S ⊆ OK

and the subrings of OK/a containing S/a. By [14, Theorem I.12.12], the class
number h(B) can be calculated by

(7.2) h(B) =
h(OK)[(OK/a)× : (B/a)×]

[O×
K : B×]

,

where h(OK) =
∏r

i=1 h(OKi
). A priori, [14, Theorem I.12.12] is only stated

for the number field case with a being the conductor of B, but the same proof
applies in the current setting as well.

Lemma 7.2. Let a ⊂ OK be an OK-lattice. If the natural map O×
K → (OK/a)×

is surjective, then h(B) = h(OK) for every suborder B ⊆ OK containing a.

Proof. Let K be the kernel of O×
K → (OK/a)×. Then K ⊆ B× and [O×

K : B×] =
[O×

K/K : B×/K]. We identify O×
K/K with the image of O×

K → (OK/a)×, and
similarly for B×/K. By [22, Lemma 2.7], B× = O×

K ∩B. Hence

B×/K = (O×
K/K) ∩ (B/a).

When O×
K maps surjectively onto (OK/a)×, we have B×/K = (OK/a)× ∩

(B/a) = (B/a)×. Therefore, h(B) = h(OK) by (7.2). �

Lemma 7.3. Let S be a suborder of OK =
∏r

i=1 OKi
, and c1 be a nonzero

ideal of OK1
contained in pr1(S). If x1 ∈ OK1

is an element such that
(x1, 0, · · · , 0) ∈ S, then (x1c1, 0, · · · , 0) is an ideal of OK contained in S. Sim-
ilar results hold for all 1 ≤ i ≤ r.

Proof. Clearly (x1c1, 0, · · · , 0) is an ideal of OK . For any element y1 ∈ c1, we
may find y ∈ S such that pr1(y) = y1. Then (x1y1, 0, · · · , 0) = (x1, 0, · · · , 0) ·
y ∈ S. �
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7.2. The order Rsp is Bass when d(π) = 2. We recall the definition of
Rsp. Suppose that π = πm1

1 × · · · × πmr
r is a supersingular multiple Weil p-

number with mi ∈ N and πi 6∼ πj . Let K =
∏

i Ki with Ki = Q(πi), and
π0 = (π1, . . . , πr) ∈ K. Then Rsp is defined to be the order Z[π0, π

2
0/p] ⊆ OK .

Assume that π has dimension 2 and none of πi is conjugate to
√
p . The case

π = π2
1 with π1 ∈ W ss

p (1) has already been studied in Section 5.2. It remains
to treat the following two cases:

(1) π = π1 × π2 with both π1, π2 ∈ W ss
p (1) and π1 6∼ π2 (the nonisotypic

product case);
(2) π = π1 ∈W ss

p (2) and π1 6∼√p (the nonreal simple case).

The first case occurs only when

(7.3) p = 2, 3, and π =
√
p ζ4 × (±√p ζ4p), or

√
p ζ4p × (−√p ζ4p).

In the second case, the supersingular Weil p-numbers of dimension 2 distinct
from ±√p are

(7.4)
√
p ζ3, ±

√
p ζ5 (p = 5),

√
p ζ8 (p 6= 2),

√
p ζ12 (p 6= 3), ±√p ζ24 (p = 2).

Lemma 7.4. Assume p = 2 or 3. If π =
√
p ζ4 × (±√p ζ4p), then

Rsp = Z[(
√−p , 0), (0, 1 + ζ2p)] ⊂ Q(

√−p )×Q(ζ2p) = K.

If π =
√
p ζ4p × (−√p ζ4p), then
Rsp = Z[(2(1 + ζ2p, 0), (ζ2p, ζ2p)] ⊂ Q(ζ2p)×Q(ζ2p) = K.

Proof. Note that
√
p ζ4p = 1 + ζ2p when p = 2 or 3. If π =

√
p ζ4 × (±√p ζ4p),

then

Rsp = Z[(
√−p ,±√p ζ4p), (−1, ζ2p)] = Z[(

√−p ,±√p ζ4p), (0, 1 + ζ2p)]

= Z[(
√−p , 0), (0, 1 + ζ2p)].

If π =
√
p ζ4p × (−√p ζ4p), then

Rsp = Z[(
√
p ζ4p,−

√
p ζ4p), (ζ2p, ζ2p)] = Z[(1 + ζ2p,−(1 + ζ2p)), (ζ2p, ζ2p)]

= Z[(2(1 + ζ2p), 0), (ζ2p, ζ2p)]. �

Proposition 7.5. The order Rsp is a Bass order for every supersingular mul-
tiple Weil p-number π ∈MW ss

p (2) distinct from ±√p .
Proof. We only need to consider the cases where π is not of the form π2

1 with
π1 ∈W ss

p (1). Suppose that π = ±√p ζn ∈ W ss
p (2) is one of the Weil p-numbers

listed in (7.4), and m is defined as in (3.3). If n is critical at p, then Rsp

equals to the maximal order Z[ζm] in K = Q(ζm) by Remark 5.2. Otherwise,
[K : Q(ζm)] = 2 and Rsp is a quadratic Z[ζm]-order, and such type of orders
are Bass [11, Example 2.3].

If p = 2, 3 and π =
√
p ζ4p × (−√p ζ4p), or p = 2 and π =

√
2 ζ4 × (±

√
2 ζ8),

then Rsp projects surjectively onto both OK1
and OK2

, and hence Rsp is Bass
by Lemma 7.1.
Lastly, suppose that p = 3 and π =

√
3 ζ4 × (±

√
3 ζ12). Then pr1(Rsp) =

Z[
√
−3 ], a suborder of index 2 in OK1

= Z[ζ6], while pr2(Rsp) = Z[ζ6] = OK2
.
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So by (7.1), to show that Rsp is Bass, it is enough to prove that OK1
/(OK1

∩
Rsp) is a cyclic Rsp-module. Note that OK1

⊂ OK1
× OK2

is generated by
(1, 0) and (ζ6, 0) over Z, and

Rsp(ζ6, 0) ∋ (−1 +
√
−3 ,−1) · (ζ6, 0) = (1, 0) + (

√
−3 , 0)2 ≡ (1, 0)

(mod OK1
∩Rsp).

Hence OK1
/(OK1

∩Rsp) is a cyclic Rsp-module generated by (ζ6, 0). �

7.3. Suporders of Rsp and class numbers: the nonisotypic product

case. Assume that p = 2 or 3 and π = π1×π2 is a supersingular multiple Weil
p-number of dimension 2 listed in (7.3). Using Lemma 7.3 and Lemma 7.4, one
may easily find an OK-lattice a contained in Rsp and compute the quotient
rings OK/a and Rsp/a. We obtain the following table (For simplicity, we set

i = ζ4 =
√
−1 ).

π = π1 × π2 a ⊂ Rsp OK/a Rsp/a√
2 ζ4 ×±

√
2 ζ8

√
−2OK1

× (1 + i)OK2
(F2)

2
D2√

2 ζ8 ×−
√
2 ζ8 (2(1 + i)OK1

)2 (Z[i]/(1 + i)3)2 D8√
3 ζ4 ×±

√
3 ζ12 (2

√
−3 )OK1

×
√
−3OK2

F4 × (F3)
2 F2 ×D3√

3 ζ12 ×−
√
3 ζ12 (2

√
−3 )OK1

× (2
√
−3 )OK2

(F4 × F3)
2

D12

Here D2, D8, D3, and D12 denote the diagonal in (F2)
2, (Z[i]/(1+ i)3)2, (F3)

2,
and (F4 × F3)

2 respectively.
It is an exercise to show that O×

K maps surjectively onto (OK/a)× in all the
above cases. By Lemma 7.2, h(B) = h(OK) for every order B with Rsp ⊆ B ⊆
OK . Note that h(OK) = h(OK1

)h(OK2
) = 1 since both Z[i] and Z[ζ6] have

class number 1. We obtain the following proposition.

Proposition 7.6. Assume that p = 2 or 3 and π = π1 × π2 is given in (7.3).
Then any suporder B of Rsp has class number 1.

It remains to list all suporders B of Rsp for each π. We recall the convention
in Section 5.2 that a suporder of Rsp with index j > 1 in OK is denoted by Bj .
Our calculation will show that for those π considered in this subsection, if such
an order exists, then it is unique. So there is no ambiguity in this notation if
π is clear from the context. We separate into cases.

Case π =
√
2 ζ4 × ±

√
2 ζ8. Since [OK : Rsp] = [OK/a : Rsp/a] = 2, there are

no other suporders of Rsp besides Rsp and OK .

Case π =
√
3 ζ4 ×±

√
3 ζ12. We have [OK : Rsp] = [F4 × (F3)

2 : F2 ×D3] = 6.
There are two rings properly intermediate to the inclusion F2×D3 ⊂ F4×(F3)

2,
namely F4×D3 and F2×(F3)

2. Under the inclusion-preserving correspondence
between suborders of OK containing a and subrings of OK/a, we have

B3 := Z[(
√
−3 , 0), (ζ6, ζ6)] = Z[(1 + ζ6, 0), (0, 1 + ζ6)]←→ F4 ×D3,

B2 := Z[
√
−3 ]× Z[ζ6]←→ F2 × (F3)

2.

The remaining two cases are best seen in the light of the following lemma.
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Lemma 7.7. Let R be a commutative ring, and D be the diagonal of R2. Ev-
ery subring S of R2 containing D decomposes uniquely as D ⊕ (IS , 0), where
IS is an ideal of R. In particular, there is an inclusion-preserving bijective
correspondence between subrings of R2 containing D and ideals of R.

Proof. Every subring of R2 containing D is naturally an R-submodule of R2.
So the intersection (IS , 0) := S∩(R, 0) is again an R-submodule of R2. Equiva-
lently, IS is an ideal of R. Clearly, we have S = D⊕(IS , 0). Conversely, for any
ideal I ⊆ R, the direct sum D⊕ (I, 0) is a subring of R2. The correspondence
is established. �

By Lemma 7.4, if π =
√
p ζ4p × −√p ζ4p with p = 2 or 3, then OK = Z[ζ2p]

2,
and

Rsp = Z[(2(1 + ζ2p), 0), (ζ2p, ζ2p)] = D⊕ (2(1 + ζ2p)Z[ζ2p], 0).

Case π =
√
2 ζ8×−

√
2 ζ8. We have 2(1+i)Z[i] = (1+i)3Z[i]. So by Lemma 7.7,

the suborders of OK properly containing Rsp and distinct from OK are

B4 := Z[(i, i), (2, 0)]←→ (1 + i)2Z[i] = 2Z[i],

B2 := Z[(i, i), (1 + i, 0)]←→ (1 + i)Z[i].

Case π =
√
3 ζ12 × −

√
3 ζ12. In this case, the ideal 2(1 + ζ6)Z[ζ6] factors as

the product of the prime ideals 2Z[ζ6] and
√
−3Z[ζ6]. The suborders of OK

properly containing Rsp and distinct from OK are

B4 := Z[(ζ6, ζ6), (2, 0)]←→ 2Z[ζ6],

B3 := Z[(ζ6, ζ6), (
√
−3 , 0)]←→

√
−3Z[ζ6].

7.4. Suporders of Rsp and class numbers: the nonreal simple case.

Assume that π is a supersingular Weil p-number of dimension 2 listed in (7.4).
Only the case π =

√
p ζ12 with p 6= 3 needs to be studied, as the rest have

already been covered in Section 5.2.
If π =

√
p ζ12, we have K = Q(

√−p ,
√
−3 ), and Rsp = Z[

√−p , ζ6]. Since the

discriminants of Q(
√
−3 ) and Q(

√−p ) are coprime, OK is the compositum
of Z[ζ6] and OQ(

√−p ). If p = 2 or p ≡ 1 (mod 4), then OQ(
√−p ) = Z[

√−p ],
and Rsp is the maximal order in K. We assume that p ≡ 3 (mod 4) and
p 6= 3 for the rest of this subsection. Note that 2OK ⊆ Rsp, and Rsp/2OK =
Z[ζ6]/(2) ≃ F4, which embeds into OK/2OK ≃ F4 ⊕ F4 diagonally. It follows
thatRsp and OK are the only orders in OK containingRsp. By (7.2), h(Rsp) =

3h(OK)/[O×
K : R×

sp]. It remains to calculate the index [O×
K : R×

sp].

Lemma 7.8. Let p1 and p2 be distinct primes with p1 ≡ p2 ≡ 3 (mod 4),
and ǫ be the fundamental unit of F = Q(

√
p1p2 ). Then

√−ǫ ∈ K =

Q(
√−p1 ,

√−p2 ), and O×
K =

〈√−ǫ
〉
×µK , the direct product of the free abelian

group generated by
√−ǫ and the group µK of roots of unity in K. Moreover,

if ǫ ∈ Z[
√
p1p2 ], then

√−ǫ lies in the Z-module Z
√−p1 + Z

√−p2 ⊂ OK ;

otherwise
√−ǫ ≡ (

√−p1 +
√−p2 )/2 (mod Z

√−p1 + Z
√−p2 ).
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Proof. By Dirichlet’s Unit Theorem, the quotient group O×
K/µK is a free

abelian group of rank 1 containing O×
F /{±1} ∼= 〈−ǫ〉 as a subgroup of finite

index. In fact, we have [O×
K/µK : O×

F /{±1}] ≤ 2 by [20, Theorem 4.12] as K
is a CM-field with maximal totally real subfield F .
Since both pi ≡ 3 (mod 4), it follows from [7, (V.1.7)] that the norm NF/Q(ǫ) =

+1. By [3, Lemma 3], p1ǫ is a perfect square in F×. Write p1ǫ = (x+y
√
p1p2 )

2

with x, y ∈ Q. Then

√
−ǫ =

√
p1ǫ ·

−1√−p1
= (x+ y

√
p1p2 ) ·

−1√−p1
∈ Q
√−p1 +Q

√−p2 ⊂ K.

In particular, [O×
K/µK : O×

F /{±1}] ≥ 2. It follows that [O×
K/µK : O×

F /{±1}] =
2, and O×

K/µK
∼=

〈√−ǫ
〉
. Hence O×

K =
〈√−ǫ

〉
× µK .

By our assumption on pi, the prime 2 is unramified in OK . One easily checks
that the following statements are equivalent:

(1) ǫ ∈ Z[
√
p1p2 ] = Z+ 2OF ;

(2) ǫ ≡ 1 (mod 2OF );
(3)
√−ǫ ≡ 1 (mod 2OK);

(4)
√−ǫ ∈ Z+ 2OK .

By Exercise 42(d) of [13, Chapter 2], a Z-basis of OK is given by
{
1,

1 +
√−p1
2

,
1 +
√−p2
2

,
(1 +
√−p1 )(1 +

√−p2 )
4

}
.

It follows that

OK ∩ (Q
√−p1 +Q

√−p2 ) = Z
√−p1 + Z(

√−p1 +
√−p2 )/2;

(Z+ 2OK) ∩ (Q
√−p1 +Q

√−p2 ) = Z
√−p1 + Z

√−p2 .
Therefore, if ǫ ∈ Z[

√
p1p2 ], then

√−ǫ ∈ Z
√−p1 + Z

√−p2 . Otherwise
√−ǫ

lies in Z
√−p1 + Z(

√−p1 +
√−p2 )/2 but not in Z

√−p1 + Z
√−p2 . Hence√−ǫ ≡ (

√−p1 +
√−p2 )/2 (mod Z

√−p1 + Z
√−p2 ) in this case. �

We return to the assumption that K = Q(
√−p ,

√
−3 ) with p ≡ 3 (mod 4)

and p 6= 3. Note that µK = 〈ζ6〉 ⊂ R×
sp, and Rsp ∩ (Q

√−p + Q
√
−3 ) =

(Z
√−p+Z

√
−3 ). Let ǫ be the fundamental unit of F = Q(

√
3p ). If ǫ ∈ Z[

√
3p ],

then
√−ǫ ∈ Rsp, and hence R×

sp = O×
K . This holds in particular when p ≡ 3

(mod 8) and p 6= 3 as remarked after (1.2). Assume that p ≡ 7 (mod 8) and
ǫ 6∈ Z[

√
3p ]. Then (OF /2OF )

× ≃ F×
4 and ǫ3 ∈ Z + 2OF = Z[

√
3p ]. On the

other hand, [(OK/2OK)× : (Rsp/2OK)×] = [(F×
4 )

2 : F×
4 ] = 3, so we have√−ǫ 6∈ Rsp but (

√−ǫ )3 ∈ Rsp.
In summary, we find that

[O×
K : R×

sp] = [O×
F : Z[

√
3p ]×] =

{
1 if ǫ ∈ Z[

√
3p ];

3 otherwise.

Therefore, we have h(Rsp) = ̟3ph(OK), where ̟3p = 3/[O×
F : Z[

√
3p ]×] as

defined in (1.2).
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