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1. Introduction

Noncommutative Iwasawa algebras form a large and interesting class of com-
plete semilocal noetherian algebras, constructed as completed group algebras
of compact p-adic analytic groups. They were defined and their fundamen-
tal properties were derived in M. Lazard’s monumental 1965 paper [23], but
in the twenty years from 1970 they were little studied. Interest in them has
been revived by developments in number theory over the past fifteen years, see
for example [17],[19] and [37]. Prompted by this renewed interest, and helped
of course by the better understanding of noncommutative noetherian algebra
gained since 1965, a number of recent papers have built on Lazard’s initial
work. The emerging picture is of a class of rings which in some ways look sim-
ilar to the classical commutative Iwasawa algebras, (which are rings of formal
power series in finitely many commuting variables over the p-adic integers), but
which in other respects are very different from their commutative counterparts.
And while some progress has been made in understanding these rings, many
aspects of their structure and representation theory remain mysterious.
It is the purpose of this article to provide a report of what is known about Iwa-
sawa algebras at the present time, and to make some tentative suggestions for

1Some of the work for this article was done in June 2005, when Ardakov was visiting the
University of Glasgow with the support of the Edinburgh Mathematical Society Research

Support Fund and the Glasgow Mathematical Journal Learning and Research Support Fund.

Documenta Mathematica · Extra Volume Coates (2006) 7–33



8 K. Ardakov and K. A. Brown

future research directions. We approach the latter objective through the listing
of a series of open questions, scattered throughout the text. In an attempt to
make the paper accessible to readers from as wide a range of backgrounds as
possible, we have tried to give fairly complete definitions of all terminology; on
the other hand, most proofs are omitted, although we have tried to give some
short indication of their key points where possible. An exception to the omis-
sion of proofs occurs in the discussion of maximal orders in (4.4)-(4.7) as well
as in the discussion of the canonical dimension in (5.4), where we include some
original material. These paragraphs can be omitted by a reader who simply
wants a quick overview of the subject; moreover, after Sections 2 and 3 the
remaining sections are reasonably independent of each other.
Fundamental definitions and examples are given in Section 2; in particular we
recall the definition of a uniform pro-p group in (2.4), and make the important
observation (2.3)(1) that every Iwasawa algebra can be viewed as a crossed
product of the Iwasawa algebra of a uniform group by a finite group. This has
the effect of focusing attention on the Iwasawa algebra of a uniform group - this
is filtered by the powers of its Jacobson radical, and the associated graded alge-
bra is a (commutative) polynomial algebra. This fact and its consequences for
the structure of the Iwasawa algebras of uniform groups are explored in Section
3; then in Section 4 we examine how properties of general Iwasawa algebras
can be deduced from the uniform case using (2.3)(1). Section 5 concerns di-
mensions: first, the global (projective) dimension and the injective dimension,
whose importance is enhanced because Iwasawa algebras satisfy the Auslander-
Gorenstein condition, whose definition and properties we recall. In particular,
Auslander-Gorenstein rings possess a so-called canonical dimension function;
we explain this and describe some of the properties of the canonical dimension
of an Iwasawa algebra in (5.3)-(5.5). The Krull-Gabriel-Rentschler dimension
is discussed in (5.7). Finally, our very sparse knowledge of the two-sided ideals
of Iwasawa algebras is summarised in Section 6.

2. Key definitions

Iwasawa algebras are completed group algebras. We begin by recalling which
groups are involved, then give the definition of the algebras.

2.1. Compact p-adic analytic groups. Let p be a prime integer and let Zp

denote the ring of p-adic integers. A group G is compact p-adic analytic if it is
a topological group which has the structure of a p-adic analytic manifold - that
is, it has an atlas of open subsets of Zn

p , for some n ≥ 0. Such groups can be
characterised in a more intrinsic way, thanks to theorems due to Lazard, dating
from his seminal 1965 paper [23]. Namely, a topological group G is compact
p-adic analytic if and only if G is profinite, with an open subgroup which is
pro-p of finite rank, if and only if G is a closed subgroup of GLd(Zp) for some
d ≥ 1. Nowadays, these equivalences are usually viewed as being consequences
of deep properties of finite p-groups; a detailed account from this perspective
can be found in [20, Part II].
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Examples: (1) Every finite group is p-adic analytic, for every prime p.
(2) The abelian p-adic analytic groups are the direct products of finitely many
copies of the additive group of Zp with a finite abelian group [20, page 36].
(3) For any positive integer d the groups GLd(Zp) and SLd(Zp) are compact
p-adic analytic. More generally, given any root system Xℓ one can form the
universal Chevalley group GZp

(Xℓ), [20, page 353]. This is a compact p-adic
analytic group. For more information about Chevalley groups, see [13].
(4) Let d and t be positive integers. The t-th congruence subgroup in SLd(Zp)
is the kernel Γt(SLd(Zp)) of the canonical epimorphism from SLd(Zp) to
SLd(Zp/ptZp). One sees at once from the equivalences above that Γt(SLd(Zp))
is compact p-adic analytic, as indeed are Γt(GLd(Zp)) and Γt(GZp

(Xℓ)) for any
root system Xℓ.

Notation: When discussing a topological group G we shall use H to denote
the closure of a subset H of G in G; and when we refer to, say, G as being
generated by elements {g1, . . . , gd} we mean that G = 〈g1, . . . , gd〉. In particular,

G is finitely generated if G = 〈X〉 for a finite subset X of G. For a subset X of
G, Xp denotes the subgroup of G generated by the subset {xp : x ∈ X} of G.

2.2. Iwasawa algebras. Let G be a compact p-adic analytic group. The
Iwasawa algebra of G is

ΛG := lim
←−

Zp[G/N ],

where the inverse limit is taken over the open normal subgroups N of G. Closely
related to ΛG is its epimorphic image ΩG, defined as

ΩG := lim
←−

Fp[G/N ],

where Fp is the field of p elements. Often, a property of ΛG can easily be
deduced from the corresponding property of ΩG, and vice versa; where this is
routine we will frequently save space by stating only one of the two variants.

2.3. Crossed products. Recall [29, 1.5.8] that a crossed product of a ring R
by a group A is an associative ring R ∗ A which contains R as a subring and
contains a set of units A = {a : a ∈ A}, isomorphic as a set to A, such that

• R ∗ A is a free right R-module with basis A,
• for all x, y ∈ A, xR = Rx and x · yR = xyR.

Suppose that H is an open normal subgroup of the compact p-adic analytic
group G. Let CH denote the set of open normal subgroups of G which are
contained in H; then clearly ΛG = lim

←−
Zp[G/U ] where U runs over CH . It

follows at once that ΛG is a crossed product of ΛH by the finite group G/H
and similarly that ΩG is a crossed product of ΩH by G/H:

(1)
ΛG

∼= ΛH ∗ (G/H),
ΩG

∼= ΩH ∗ (G/H).

We shall see that, combined with a judicious choice of the subgroup H, the
isomorphism (1) reduces many questions about ΛG and ΩG to the analysis of
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certain crossed products of finite groups. Usually, the right subgroup H to
choose is a uniform one, defined as follows.

2.4. Uniform groups. Let G be a pro-p group. Define P1(G) = G and

Pi+1(G) = Pi(G)p[Pi(G), G] for i ≥ 1. The decreasing chain of characteris-
tic subgroups

G = P1(G) ⊇ P2(G) ⊇ · · · ⊇ Pi(G) ⊇ · · · ⊇ ∩∞i=1Pi(G) = 1

is called the lower p-series of G. The group G is powerful if G/Gp is abelian

(for p odd), or G/G4 is abelian (when p = 2). Finally, G is uniform if it is
powerful, finitely generated, and

|G : P2(G)| = |Pi(G) : Pi+1(G)|
for all i ≥ 1.
Now we can add one further characterisation, also essentially due to Lazard,
to those given in (2.1): a topological group G is compact p-adic analytic if
and only if it has an open normal uniform pro-p subgroup of finite index, [20,
Corollary 8.34].

Examples: (1) Of course, (Zp)
⊕d is uniform for all d ≥ 1.

(2)The groups Γ1(GLd(Zp)) (for p odd) and Γ2(GLd(Z2)) are uniform [20,
Theorem 5.2].

Let G be uniform, with |G : P2(G)| = pd. The non-negative integer d is called
the dimension of G; it is equal to the cardinality of a minimal set of (topologi-
cal) generators of G, [20, Definition 4.7 and Theorem 3.6]. More generally, we
can define the dimension of an arbitrary compact p-adic analytic group to be
the dimension of any open uniform subgroup; this is unambiguous [20, Lemma
4.6], and coincides with the dimension of G as a p-adic analytic manifold, [20,
Definition 8.6 and Theorem 8.36].

2.5. Completed group algebras. In fact ΛG and ΩG are I-adic comple-
tions of the ordinary group algebras Zp[G] and Fp[G], for suitable choices of
ideals I. It is most convenient for us to state the result for uniform groups,
although it can obviously be extended to the general case using (2.3)(1).

Theorem. Let G be a uniform pro-p group, and let I denote the augmentation
ideal of Fp[G]. Then ΩG is isomorphic to the I-adic completion of Fp[G]. There
is a similar result for Zp[G].

Indeed the theorem follows quite easily from the observations that the lower
p-series Pi(G) is coterminal with the family of all open normal subgroups of G,
and that the powers of I are coterminal with the ideals of Fp[G] generated by
the augmentation ideals of the subgroups Pi(G), [20, §7.1].

3. The case when G is uniform

Throughout this section, we assume that G is a uniform pro-p group of dimen-
sion d. We fix a topological generating set {a1, . . . , ad} for G.
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3.1. The “PBW” Theorem. It follows at once from Theorem 2.5 that the
usual group algebra Fp[G] embeds into ΩG. For i = 1, . . . , d, let bi = ai − 1 ∈
Fp[G] ⊆ ΩG. Then we can form various monomials in the bi: if α = (α1, . . . , αd)
is a d-tuple of nonnegative integers, we define

b
α = bα1

1 · · · bαd

d ∈ ΩG.

Note that this depends on our choice of ordering of the bi’s, because ΩG

is noncommutative unless G is abelian. The following basic result shows
that ΩG is a “noncommutative formal power series ring”; it follows from the
strong constraints which the hypothesis of uniformity imposes on the quotients
Pi(G)/Pi+1(G) of G, [20, Theorem 7.23].

Theorem. Every element c of ΩG is equal to the sum of a uniquely determined
convergent series

c =
∑

α∈Nd

cαb
α

where cα ∈ Fp for all α ∈ Nd.

We record an immediate consequence of both this result and of Theorem 2.5:

Corollary. The Jacobson radical J of ΩG is equal to

J = b1ΩG + · · · + bdΩG = ΩGb1 + · · · + ΩGbd.

Hence ΩG/J ∼= Fp, so in the language of (4.1), ΩG is a scalar local ring.

Proof. If c ∈ ΩG is such that c0 6= 0, then 1 − c is invertible with inverse
1 + c + c2 + · · · ∈ ΩG. �

Theorem 3.1 says that the monomials {bα : α ∈ Nd} form a topological basis
for ΩG, and is thus analogous to the classical Poincaré-Birkhoff-Witt theorem
for Lie algebras g over a field k which gives a vector space basis for the univer-
sal enveloping algebra U(g) in terms of monomials in a fixed basis for g [21].
Nevertheless we should bear in mind that explicit computations in ΩG are often
much more difficult than those in U(g), since the Lie bracket of two generators
bi, bj for ΩG is in general an infinite power series with obscure coefficients.

3.2. Example. Let p be odd for simplicity and let G = Γ1(SL2(Zp)) be the
first congruence kernel of SL2(Zp). Then

a1 =

(
exp(p) 0

0 exp(−p)

)
, a2 =

(
1 p
0 1

)
, a3 =

(
1 0
p 1

)
.

is a topological generating set for G. Setting bi = ai − 1, elementary (but
tedious) computations yield

[b1, b2] ≡ 2bp
2 mod Jp+1

[b1, b3] ≡ −2bp
3 mod Jp+1

[b2, b3] ≡ bp
1 mod Jp+1.
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Here J = b1ΩG + b2ΩG + b3ΩG denotes the Jacobson radical of ΩG. Using
Proposition 3.3 it is possible to produce more terms in the power series expan-
sion of [b1, b2] and [b1, b3]. However, we consider [b2, b3] to be inaccessible to
computation.

3.3. Skew power series rings. It is well known that if g is a finite dimen-
sional soluble Lie algebra over a field k, then its universal enveloping algebra
U(g) can be thought of as an “iterated skew polynomial ring”:

U(g) ∼= k[x1;σ1, δ1][x2;σ2, δ2] · · · [xn;σn, δn]

for some appropriate automorphisms σi and derivations δi (in fact, the σis can
be chosen to be trivial). This is because any such Lie algebra g has a chain of
subalgebras

0 = h0 ⊂ h1 ⊂ h2 ⊂ · · · ⊂ hn = g

with hi−1 an ideal in hi, so choosing some xi ∈ hi\hi−1 ensures that

U(hi) ∼= U(hi−1)[xi; δi]

where δi is the derivation on U(hi−1) defined by δi(y) = xiy − yxi.
An analogous result holds for Iwasawa algebras. More precisely, we have the

Proposition. Suppose that G has closed normal subgroup H such that G/H ∼=
Zp. Then ΩG is a skew power series ring with coefficients in ΩH :

ΩG
∼= ΩH [[t;σ, δ]].

Proof. See [41, §4]. �

Schneider and Venjakob [41] establish a general theory of skew power series
rings S = R[[t;σ, δ]] over a pseudocompact ring R. Here σ can be any topo-
logical automorphism of R and δ is a σ-derivation in the sense of [29, 1.2.1],
satisfying some extra conditions which are required to make the relation

ta = σ(a)t + δ(a)

extend to a well-defined multiplication on S.
Consequently, the Iwasawa algebra ΩG of any soluble uniform pro-p group G
can be thought of as an iterated skew power series ring over Fp.
For example, in Example 3.2, the topological subring of ΩG generated by b1 and
b2 is actually the Iwasawa algebra ΩB where B = 〈a1, a2〉 is a Borel subgroup

of G. Since B is soluble with closed normal subgroup 〈a2〉, ΩB is isomorphic
to the skew power series ring Fp[[b2]][[b1;σ, δ]] for some appropriate σ and δ.
This justifies the claim that the commutator of b1 and b2 is at least partially
accessible to computation.
There is surely considerable scope to develop further the “abstract” theory of
skew power series algebras initiated in [41] - for instance, one could easily pose
skew power series versions of a number of the questions we list later, in Section
6. As a prompt for more work, here are two “general” questions:
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Question A. (1) Are there conditions on R, σ and δ such that S = R[[t;σ, δ]]
can be described without involving a derivation - that is, as S = R′[[t′;σ′]],
possibly after some Ore localisation?1

(2) Are there conditions on R, σ and δ such that every two-sided ideal of the
skew power series ring S = R[[t;σ, δ]] is generated by central elements and
“polynomial” elements2?

3.4. The J-adic filtration. We remind the reader that a filtration on a ring
R is an ascending sequence

· · · ⊆ FiR ⊆ Fi+1R ⊆ · · ·
of additive subgroups such that 1 ∈ F0R, FiR.FjR ⊆ Fi+jR for all i, j ∈ Z,
and ∪i∈ZFiR = R.
Let J denote the Jacobson radical of ΩG. The J-adic filtration on ΩG is defined
as follows: FiΩG = J−i for i ≤ 0 and FiΩG = ΩG f or i ≥ 0; this is an example
of a negative filtration. The basic tool which allows one to deduce many ring-
theoretic properties of Iwasawa algebras is the following result, which can be
deduced from Theorem 3.1, see [20, Theorem 7.24 and remarks on page 160].
We denote the associated graded ring

⊕
i∈Z

Fi+1ΩG/FiΩG by grJ ΩG.

Theorem. The graded ring of ΩG with respect to the J-adic filtration is iso-
morphic to a polynomial ring in d = dimG variables:

grJ ΩG
∼= Fp[X1, . . . ,Xd].

Moreover, ΩG is complete with respect to this filtration.

The J-adic filtration is quite different from the filtrations encountered when
studying algebras like universal enveloping algebras and Weyl algebras, which
are nearly always positive (that is, F−1R = 0) and often satisfy the finiteness
condition dimk FiR < ∞ for all i ∈ Z. In particular, there is no well-behaved
notion of the Gel’fand-Kirillov dimension for Iwasawa algebras, a theme we will
return to in §5.
However, we are still able to lift many properties of the graded ring back to
ΩG, because the J-adic filtration is complete, meaning that Cauchy sequences
of elements in ΩG converge to unique limits. More precisely, recall [26, page
83] that a filtration on a ring R is said to be Zariskian, whenever

• The Jacobson radical of F0R contains F−1R, and

• The Rees ring R̃ :=
⊕

i∈Z
FiR · ti ⊆ R[t, t−1] is noetherian.

Many filtrations are Zariskian. For example, by [26, Chapter II, Proposition
2.2.1], any complete filtration whose associated graded ring is noetherian is
necessarily Zariskian. Since any positive filtration is complete, it follows that
if a filtration is positive and has noetherian associated graded ring, then it is
Zariskian. More importantly for us, for any uniform pro-p group G, the J-
adic filtration on ΩG is clearly complete, thanks to Theorem 2.5; and grJ ΩG is

1Compare with [14].
2By the latter, we mean elements of R[t; σ, δ].
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noetherian by Theorem 3.4 and Hilbert’s basis theorem, so the J-adic filtration
is Zariskian.

3.5. The m-adic filtration on ΛG. There is an analogue of Theorem 3.4
for the Zp−version of Iwasawa algebras ΛG. Recall from (2.3) the lower p-series
P1(G) ⊇ P2(G) ⊇ · · · ⊇ ∩∞i=1Pi(G) = 1 of G and define an abelian group

grG :=

∞⊕

i=1

Pi(G)

Pi+1(G)
.

There is a natural way of turning grG into a Lie algebra over Fp[t], the poly-
nomial ring in one variable over Fp: the Lie bracket on grG is induced from
the Lie bracket on G described in [20, §4.5], and the action of t is induced from
the p-power map. Then grG is a free Fp[t]-module of rank equal to dimG. Let
m = ker(ΛG → Fp) be the Fp-augmentation ideal of ΛG, or equivalently, the
Jacobson radical of ΛG.

Theorem. The graded ring of ΛG with respect to the m-adic filtration is iso-
morphic to the universal enveloping algebra of the Fp[t]-Lie algebra gr G:

grm ΛG
∼= U(gr G).

Moreover, ΛG is complete with respect to this filtration.

Proof. See [39, §3.3] and [23, Chapter III, Theorem 2.3.3]. �

3.6. Lifting information from the graded ring. We recall here some
standard properties of a ring R. First, we say that R is prime if the product
of any two non-zero ideals of R is again non-zero. By Goldie’s theorem [29,
Theorem 2.3.6], if R is prime and (right) noetherian then it has a simple artinian
classical (right) quotient ring Q(R). If S is another ring with classical right
quotient ring Q(R), so that Q(R) = Q(S), we say that R and S are equivalent
if there are units a, b, c and d in Q(R) such that aRb ⊆ S and cSd ⊆ R. Now
R is a maximal (right) order if it is maximal (with respect to inclusion) within
its equivalence class, [29, 5.1.1]. (The adjective right is omitted if R is both a
maximal right order and a maximal left order.) The commutative noetherian
maximal orders are just the noetherian integrally closed domains [29, Lemma
5.3.3].
Let RR denote the right R-module R. The Krull dimension K(M) of a finitely
generated (right) module M over a noetherian ring R is a well-defined ordinal,
bounded above by K(RR); the precise definition can be found at [29, 6.2.2].
This concept generalises the classical commutative definition; like it, it mea-
sures the “size” of a module and is 0 if and only if the module is non-zero and
artinian.
The (right) global dimension of R is defined to be the supremum of the projec-
tive dimensions (denoted pd(−)) of the right R-modules, [29, 7.1.8]. When R
is noetherian, its right and left global dimensions are always equal, [29, 7.1.11].
We say that R has finite (right) injective dimension d if there is an injective
resolution of RR of length d, but none shorter. If R is noetherian and has
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finite right and left injective dimensions, then these numbers are equal by [45,
Lemma A]. It is also well known [39, Remark 6.4] that if the (right) global
dimension of the noetherian ring R is finite, then it equals the (right) injective
dimension of R.
It has become apparent over the past 40 years that, when R is noncommutative
and noetherian, finiteness of the injective dimension of R is a much less strin-
gent condition than is the case for commutative noetherian rings - the structure
of (commutative) Gorenstein rings is rich and beautiful. An additional hypoth-
esis which, when coupled with finite injective dimension, has proved very useful
in the noncommutative world is the Auslander-Gorenstein condition. To recall
the definition, note first that, for every left R-module M and every non-negative
integer i, Exti(M,R) is a right R-module through the right action on R. The
Auslander-Gorenstein condition on a noetherian ring R requires that, when
M is a finitely generated left R-module, i is a non-negative integer and N is
a finitely generated submodule of Exti(M,R), then Extj(N,R) is zero for all
j strictly less than i; and similarly with “right” and “left” interchanged. We
say that R is Auslander-Gorenstein if it is noetherian, has finite right and left
injective dimensions, and satisfies the Auslander condition. Commutative noe-
therian rings of finite injective dimension are Auslander-Gorenstein. When R
is noetherian of finite global dimension and satisfies the Auslander-Gorenstein
condition it is called Auslander-regular.

Theorem. Let R be a ring endowed with a Zariskian filtration FR; then R is
necessarily noetherian. Also, R inherits the following properties from gr R:

(1) being a domain,
(2) being prime,
(3) being a maximal order,
(4) being Auslander-Gorenstein,
(5) having finite global dimension,
(6) having finite Krull dimension.

Proof. See [26]. �

We immediately obtain from Theorem 3.4, Theorem 3.6 and Corollary 3.1, the

Corollary. If G is a uniform pro-p group, then ΩG is a noetherian,
Auslander-regular, scalar local domain which is a maximal order in its quo-
tient division ring of fractions.

4. Extensions over finite index

For an arbitrary p-adic analytic group G, many fundamental properties of ΩG

(and of ΛG) can be analysed using Corollary 3.6 and (2.3)(1).

4.1. Complete noetherian (semi)local rings. Recall that a ring R is
semilocal if the factor of R by its Jacobson radical J(R) is semisimple artinian.
It is local if R/J(R) is simple artinian, and scalar local if R/J(R) is a division
ring. For a crossed product R = S ∗H of a finite group H, like that in (2.3)(1),
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it’s not hard to show that J(S) ⊆ J(R), [31, Theorem 1.4.2]. From this,
Theorem 2.5 and Corollary 3.6, and their analogues for ΛG, we deduce (1) of
the following. Both it and (2) were known to Lazard.

Theorem. Let G be a compact p-adic analytic group.

(1) ΩG and ΛG are complete noetherian semilocal rings.
(2) ΩG and ΛG are (scalar) local rings if and only if G is a pro-p group.

4.2. Primeness and semiprimeness. Recall that a ring R is prime if the
product of two nonzero ideals is again nonzero and that R is semiprime if it
has no nonzero nilpotent ideals. A prime ring is always semiprime, but not
necessarily conversely.
The characterisations of these properties for Iwasawa algebras given in the
theorem below exactly parallel the results for ordinary group algebras proved
in the early 1960s by I.G. Connell and D.S. Passman [32, Theorems 4.2.10
and 4.2.14]. However, the proofs here are quite different from the classical
setting; that the stated conditions are necessary is easy to see, but sufficiency
in (1) and (2) depends on Corollary 3.6 to handle the uniform case, together
with non-trivial results on crossed products of finite groups. Part (3) is much
easier - one can simply appeal to the fact (a consequence of Maschke’s theorem)
that the group ring of a finite group over a commutative coefficient domain of
characteristic zero is semiprime, together with the fact that, by definition, ΛG

is an inverse limit of such group rings.

Theorem. Let G be a compact p-adic analytic group.

(1) [5] ΩG and ΛG are prime if and only if G has no non-trivial finite
normal subgroups.

(2) [5] ΩG is semiprime if and only if G has no non-trivial finite normal
subgroups of order divisible by p.

(3) (Neumann, [30]) ΛG is always semiprime.

4.3. Zero divisors. There is a method, familiar from the treatment of or-
dinary group rings, which allows one to use homological properties to deduce
results about the non-existence of zero divisors in certain noetherian rings. In
its simplest form, which is all that is needed here, the statement is due to Walker
[42]: if R is a scalar local noetherian semiprime ring of finite global dimension,
then R is a domain.3 This yields the following result; it was proved by Neu-
mann [30] for ΛG, but for ΩG it was necessary to wait first for semiprimeness
to be settled, as in Theorem 4.2(2).

Theorem. Let G be a compact p-adic analytic group. Then ΩG and ΛG are
domains if and only if G is torsion free.

Proof. If 1 6= x ∈ G with xn = 1, then (1 − x)(1 + x + · · ·xn−1) = 0, so the
absence of torsion is clearly necessary. Suppose that G is torsion free. Since G

3It is a famous and long-standing open question in ring theory whether “semiprime” is

necessary in Walker’s theorem.
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has a pro-p subgroup of finite index by (2.4), its Sylow q-subgroups are finite
for primes q not equal to p. Since G is torsion free these subgroups are trivial,
so G is a pro-p group. Therefore ΩG and ΛG are scalar local and noetherian
by Theorem 4.1. The other conditions needed for Walker’s theorem are given
by Theorems 4.2(2) and (3) and Theorem 5.1. �

4.4. Maximal orders. It might seem natural to suppose, in the light of The-
orem 3.6(3), that whenever ΛG or ΩG are prime then they are maximal orders.
This guess is wrong, though, as the following example shows. First, recall from
[29, 5.1.7] that if R is a ring and M is an R-module, then M is said to be reflex-
ive if the natural map M → M∗∗ = Hom(Hom(M,R), R) is an isomorphism.
Also, recall [29, Chapter 4] that the ideal I of R is said to be localisable if the
set CR(I) of elements of R which are regular modulo I is an Ore set in R.

Example: Let D := A⋊〈γ〉, where A is a copy of Z2 and γ is the automorphism
of order 2 sending each 2-adic integer to its negative. Since D is a pro-2 group
with no non-trivial finite normal subgroups, Theorems 4.1 and 4.2 show that
ΩD and ΛD are prime noetherian scalar local rings. But it’s not hard to see
that neither of these algebras is a maximal order: for ΩD, observe that it is local
with reflexive Jacobson radical J which is not principal, impossible for a prime
noetherian maximal order by [28, Théorème IV.2.15]; for ΛD, the kernel of the
canonical map to Zp is a reflexive prime ideal which is not localisable by [4,
Theorem A and Lemma 4.1], impossible in a maximal order by [28, Corollaire
IV.2.14]. We therefore ask:

Question B. When are ΩG and ΛG maximal orders?

Since the powerful structural results [15], which can be obtained for certain quo-
tient categories of the category of finitely generated modules over a noetherian
maximal order, are potentially important tools in arithmetic applications [18],
this question is of more than passing interest.
In the next three paragraphs we offer a conjecture for the answer to Question
B, and give some evidence in its support.

4.5. Conjectured answer to Question B. We will need some group-
theoretic notions. Let H be a closed subgroup of a compact p-adic analytic
group G. We say that H is orbital if H has finitely many G-conjugates, or
equivalently if its normaliser N = NG(H) has finite index in G. We say that
an orbital subgroup H is isolated if N/H has no non-trivial finite normal sub-
groups.
We will say that G is dihedral-free if, whenever H is an orbital closed subgroup
of G with dimH = 1, H is isomorphic to Zp. This seems to be the correct
generalisation of the definition in [9].

Conjecture. Let G be a compact p-adic analytic group, and suppose ΩG is
prime. Then ΩG is a maximal order if and only if G is dihedral-free.
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4.6. Necessary conditions on G. We fix a prime p and assume throughout
this paragraph that G is a compact p-adic analytic group.

Proposition. Suppose ΩG is a prime maximal order and let H be a closed
normal subgroup of G with dimH = 1. Then H is pro-p.

Proof. We may assume that H is isolated, so G/H has no non-trivial finite
normal subgroups. Hence, by Theorem 4.2(1), wH = ker(ΩG → ΩG/H) is a

prime ideal of ΩG, and it is not hard to see that it is also a reflexive ideal.4

Now because ΩG is a maximal order and wH is a prime reflexive ideal, it must
be localisable [28, Corollaire IV.2.14].
But the conditions needed for augmentation ideals to be localisable are known
[5, Theorem E]: H/F must be pro-p, where F is the largest finite normal p′-
subgroup of H. Since H is normal in G and G has no non-trivial finite normal
subgroups by Theorem 4.2(1), F = 1 and H is pro-p as required. �

We need the following group-theoretic lemma. We first set ǫ to be 1 for p odd,
and ǫ = 2 if p = 2, and define, for a closed normal uniform subgroup N of G,
EG(N) to be the centraliser in G of N/Npǫ

, [5, (2.2)].

Lemma. Suppose that G is a pro-p group of finite rank with no non-trivial
finite normal subgroups. Let N be a maximal open normal uniform subgroup
of G. Then

EG(N) = N.

Proof. Recall that E = EG(N) is an open normal subgroup of G containing N .
If E strictly contains N then E/N must meet the centre Z(G/N) non-trivially
since G/N is a finite p-group by [20, Proposition 1.11(ii)]. Pick x ∈ E\N such
that xN ∈ Z(G/N); then H = 〈N,x〉 is normal in G by the choice of x, and
also H is uniform by [5, Lemma 2.3]. This contradicts the maximality of N . �

Recall from Example 4.4 that D denotes the pro-2 completion of the infinite
dihedral group.

Corollary. Let H be a pro-p group of finite rank with no non-trivial finite
normal subgroups. Suppose that dimH = 1. Then H ∼= Zp, unless p = 2 and
H is isomorphic to D.

Proof. Choose a maximal open normal uniform subgroup N of H. By the
lemma, H/N →֒ Aut(N/Npǫ

). If p is odd, |N : Npǫ | = p, so the latter au-
tomorphism group is just F×p . Since H/N is a p-group by [20, Proposition
1.11(ii)] again, H = N ∼= Zp. If p = 2 and H > N , H ∼= D. �

This gives us the following weak version of one half of the conjecture. To
improve the result from “normal” to “orbital” will presumably require some
technical work on induced ideals.

4One quick way to see this uses the canonical dimension from (5.4): since
Cdim(ΩG/wH) = dim(G/H) = dim G − 1 and since ΩG is Auslander-Gorenstein, wH is

reflexive by Gabber’s Maximality Principle [36, Theorem 2.2].
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Corollary. Suppose ΩG is a prime maximal order. Then any closed normal
subgroup H of G of dimension 1 is isomorphic to Zp.

Proof. When p is odd the statement is immediate from the proposition and
corollary above. So suppose that p = 2. We have to rule out the possibility
that H ∼= D, so suppose for a contradiction that this is the case. Then, as
in the proof of the proposition, wH is a prime reflexive, and hence localisable,
ideal of ΩG. Let R denote the local ring (ΩG)wH

, which has global dimension
one by [28, Théorème IV.2.15]. Let C = 〈c〉 be a copy of the cyclic group
of order 2 in H. Then F2C ⊆ ΩG and ΩG is a projective F2C-module by [11,
Lemma 4.5]. Thus R is a flat F2C-module. Since c+1 ∈ J(R), the F2C-module
R/J(R) is a sum of copies of the trivial module, so

∞ = pdF2C(F2) = pdF2C(R/J(R)) ≤ pdR(R/J(R)) = 1.

This contradiction shows that the only possibility for H is Z2. �

4.7. Sufficient conditions on G. We use the following result, essentially
due to R. Martin:

Proposition. [27] Let R be a prime noetherian maximal order and let F be a
finite group. Let S = R ∗ F be a prime crossed product. Then S is a maximal
order if and only if

(a) every reflexive height 1 prime P of S is localisable, and
(b) gld(SP ) < ∞ for all such P .

Proof. Conditions (a) and (b) hold in any prime noetherian maximal order, [28,
Théorème IV.2.15]. Conversely, suppose that (a) and (b) hold. We use the Test
Theorem [27, Theorem 3.2]. Condition (i) of the Test Theorem is just condition
(a). We claim that if P is as in the theorem, then gld(SP ) = 1. It’s easy to
check that P ∩ R is a semiprime reflexive ideal of R, so that the localisation
RP∩R exists and is hereditary by [28, Théorème IV.2.15]. Thus RP∩R ∗ F has
injective dimension 1 by [5, Corollary 5.4]. But SP is a localisation of RP∩R∗F,
so - given (b) and the comments in (3.6) - gld(SP ) ≤ 1. The reverse inequality is
obvious, so our claim follows. Condition (ii) now follows from [27, Proposition
2.7]. Condition (iii) follows from the proof of [27, Lemma 3.5] and condition
(iv) follows from [27, Remark 3.6 and Lemma 3.7]. �

Lemma. Let G be a pro-p group of finite rank with no non-trivial finite normal
subgroups. Then every reflexive height 1 prime of ΩG is localisable.

Proof. Let P be a reflexive height 1 prime of ΩG. Choose an open normal
uniform subgroup N of G. Then ΩN is a maximal order by Corollary 3.6. Set
G := G/N. Now let Q = P ∩ ΩN - it is easy to see [27, Remark 3.6] that this
is a height 1 reflexive G-prime ideal of ΩN . Indeed, Q is the intersection of a
G-orbit of reflexive prime ideals {P1, . . . , Pn} of ΩN .
Since each Pi is localisable by [28, Théorème IV.2.15], Q is localisable. In other
words, the subset C := CΩN

(Q) = ∩n
i=1CΩN

(Pi) is a G-invariant Ore set in ΩN .
An easy calculation [32, proof of Lemma 13.3.5(ii)] shows that C is an Ore set
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in ΩG. In other words, the semiprime ideal A =
√

QΩG is localisable in ΩG

and

(ΩN )Q ∗ G ∼= (ΩG)A.

Since G is a p-group, A = P by [31, Proposition 16.4] and the result follows. �

Corollary. Let G be a torsion free compact p-adic analytic group. Then ΩG

is a prime maximal order.

Proof. Suppose that G is as stated. Since G has a pro-p open subgroup, the
Sylow q-subgroups of G are finite, and hence trivial, for all primes q not equal
to p. That is, G is a pro-p group. Thus the corollary follows from the lemma
and the proposition, since gld ΩG is finite by Theorem 5.1. �

5. Dimensions

5.1. Global dimension. The situation as regards the global dimension of ΩG

and ΛG is completely understood, and depends fundamentally on properties
of the cohomology of profinite groups - in particular behaviour under finite
extensions - due to Serre [34]. The result is due to Brumer [11, Theorem
4.1] who computed the global dimension of the completed group algebra of an
arbitrary profinite group G with coefficients in a pseudo-compact ring R. As a
consequence of his work, we have

Theorem. Let G be a compact p-adic analytic group of dimension d. Then ΩG

and ΛG have finite global dimension if and only if G has no elements of order
p, and in this case

gld(ΩG) = d and gld(ΛG) = d + 1.

5.2. Auslander-Gorenstein rings. Recall that the group algebra of an ar-
bitrary finite group over any field is a Frobenius algebra [44, Proposition 4.2.6],
and thus is self-injective. It should therefore come as no surprise that injective
dimension is well-behaved for Iwasawa algebras. In fact, much more is true:

Theorem. [5, Theorem J] Let G be a compact p-adic analytic group of dimen-
sion d. Then ΩG and ΛG are Auslander-Gorenstein rings of dimensions d and
d + 1 respectively.

This result was first proved by O. Venjakob [39] and is easy to deduce from
Theorem 3.6(4) and Theorem 5.1, as follows. Let H be an open uniform normal
subgroup of G. Then ΩH and ΛH are Auslander-Gorenstein by Theorem 3.6(4),
and the dimensions are given by Theorem 5.1. Now apply (2.3)(1): a simple
lemma [5, Lemma 5.4] shows that

(1) Exti
ΩG

(M,ΩG) ∼= Exti
ΩH

(M,ΩH)

for all i ≥ 0 and all ΩG-modules M , with a similar isomorphism for ΛG, and
the result follows.
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5.3. Dimension functions for Auslander-Gorenstein rings. We recall
from [24] the basics of dimension theory over an Auslander-Gorenstein ring R.
Write d for the injective dimension of R. The grade j(M) of a finitely generated
R-module M is defined as follows:

j(M) = min{j : Extj
R(M,R) 6= 0}.

Thus j(M) exists and belongs to the set {0, . . . , d} ∪ {+∞}. The canonical
dimension of M , Cdim(M) is defined to be

Cdim(M) = d − j(M).

It is known [24, Proposition 4.5] that Cdim is an exact, finitely partitive di-
mension function on finitely generated R-modules in the sense of [29, §6.8.4].
That is,

• Cdim(0) = −∞;
• if 0 −→ N −→ M −→ T −→ 0 is an exact sequence of finitely generated

modules, then Cdim(M) = max{Cdim(N),Cdim(T )};
• if MP = 0 for a prime ideal P of R, and M is a torsion R/P -module,

then Cdim(M) ≤ Cdim(R/P ) − 1;
• if Cdim(M) = t then there is an integer n such that every descending

chain M = M0 ⊇ M1 ⊇ · · · ⊇ Mi ⊇ Mi+1 · · · of submodules of M has
at most n factors Mi/Mi+1 with Cdim(Mi/Mi+1) = t.

The ring R is said to be grade symmetric if

Cdim(RM) = Cdim(MR)

for any R−R-bimodule M which is finitely generated on both sides.5 The

triangular matrix ring

(
k k
0 k

)
over a field k gives an easy example of an

Auslander Gorenstein ring which is not grade symmetric.
The existence of an exact, finitely partitive, symmetric dimension function for
the finitely generated modules over a noncommutative noetherian ring R is a
very valuable tool which is often not available: the Gel’fand-Kirillov dimen-
sion [29, §8.1] - although symmetric - is often not defined; and although the
Krull dimension is always defined [29, §6.2], it is a long-standing open question
whether it is symmetric in general. As we shall see in the next paragraph, the
canonical dimension function fulfils these requirements for an Iwasawa algebra.
If δ is a dimension function on finitely generated R-modules, we say that R is
Cohen-Macaulay with respect to δ if δ(M) = Cdim(M) for all finitely generated
R-modules M .
This definition is consistent with, and therefore generalises, the definition from
commutative algebra. To see this, suppose that R is a commutative noetherian
ring of dimension d. Suppose that R is Cohen-Macaulay [12, Definition 2.1.1],
and let M be a finitely generated R-module with Krull dimension K(M). Note

5Alternatively, we can say in these circumstances that the dimension function Cdim is

symmetric.
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that if R is an affine (i.e. finitely generated) k-algebra, this equals the Gel’fand-
Kirillov dimension of M . Then

(1) j(M) + K(M) = d,

[12, Corollary 2.1.4 and Theorem 1.2.10(e)]. And conversely, if (1) holds for all
simple R-modules M , then R is Cohen-Macaulay [12, Theorem 1.2.5].

5.4. Canonical dimension for ΩG. We continue in this paragraph to as-
sume that G is a compact p-adic analytic group of dimension d. Fix an open
uniform normal subgroup H of G, and let M be a finitely generated ΩG-module.
By Theorem 5.2 and paragraph (5.3), and with the obvious notation, CdimG(−)
and CdimH(−) are well-defined dimension functions, and in fact (5.2)(1) shows
that

(1) CdimH(M) = CdimG(M).

In particular, in studying the canonical dimension we may as well assume that
G = H is uniform, which we now do. Hence, by Theorem 3.4, the graded ring
of ΩG is a polynomial Fp-algebra in d variables.
Choose a good filtration for M (FnM = MJ−n for n ≤ 0 will do) and form
the associated graded module gr M . Because the J-adic filtration is Zariskian,
it follows from [8, Remark 5.8] that

(2) j(gr M) = j(M).

Moreover, from this and the concluding remarks of (5.3) we see that

(3) K(gr M) = Cdim(gr M) = d − j(M).

(This shows, incidentally, that K(gr M) is actually independent of the choice
of good filtration on M .)6 Combining (2) and (3), we find that

Cdim(M) = d − j(M) = Cdim(gr M) = K(gr M) = GK(grM)

for any choice of good filtration on M . This proves the last part of the

Proposition. Let G be a compact p-adic analytic group.

(1) ΩG is grade-symmetric.
(2) ΩG is ideal-invariant with respect to Cdim.
(3) Suppose that G is uniform. Then for all finitely generated ΩG-modules

M ,
Cdim(M) = GK(grM).

Proof. (1) In view of (5.4)(1) we can and do assume that G is uniform. Write
J for the Jacobson radical of ΩG and let M be a finitely generated ΩG-
module. Then by the definition of the Gel’fand Kirillov dimension [29, §8.1.11],
GK(gr M) is the growth rate γ(f) of the function

f(n) = dim
M

MJn
;

6Consider (3) with M the trivial ΩG-module Fp. Then K(gr M) = 0, so j(M) = d and
therefore the injective dimension of ΩG actually equals d, providing another proof of the
numerical part of Theorem 5.1.
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note that this function is eventually polynomial because the finitely generated
gr ΩG-module gr M has a Hilbert polynomial.
Now let N be an ΩG-bimodule, finitely generated on both sides. Then NJ is a
sub-bimodule, and N/NJ is finite dimensional over Fp because N is a finitely
generated right ΩG-module. Hence N/NJ is also a finite dimensional left ΩG-
module and as such is killed by some power of J , Ja say. Thus JaN ⊆ NJ and
similarly there exists an integer b ≥ 1 such that NJb ⊆ JN. An easy induction
on n shows that

(1) JabnN ⊆ NJbn ⊆ JnN

for all n ≥ 0. Letting f(n) = dim N
NJn and g(n) = dim N

JnN , we obtain

g(n) ≤ f(bn) ≤ g(abn)

for all n ≥ 0. It follows that Cdim(N|ΩG
) = γ(f) = γ(g) = Cdim(ΩG|N),

proving part (1).
For part (2), recall [29, 6.8.13] that a ring R is said to be ideal-invariant with
respect to a dimension function δ if δ(M⊗R I) ≤ δ(M) for all finitely generated
right R-modules M and all two-sided ideals I of R and if the left-hand version
of this statement also holds.
In fact, we will show that

(4) Cdim(M ⊗ΩG
N) ≤ Cdim(M)

for any finitely generated ΩG-module M and any ΩG-bimodule N , finitely
generated on both sides.7 Let M and N be as above, and let H be an open
uniform normal subgroup of G. Since there is an ΩH -epimorphism M⊗ΩH

N ։

M ⊗ΩG
N , (5.2)(1) shows that we can replace G by H in proving (4); that is,

we now assume that G is uniform.
Choose the integer a as above so that JanN ⊆ NJn for all n ≥ 0. Fix n and
let

f(n) = dim
M

MJn
and g(n) = dim

(
M ⊗ΩG

N

(M ⊗ΩG
N).Jn

)
.

Note that (M ⊗ΩG
N).Jn equals the image of M ⊗ΩG

NJn in M ⊗ΩG
N so the

right-exactness of tensor product gives

M ⊗ΩG

(
N

JanN

)
։ M ⊗ΩG

(
N

NJn

)
∼= M ⊗ΩG

N

(M ⊗ΩG
N).Jn

.

Now we have a natural isomorphism of right ΩG-modules

M ⊗ΩG

N

JanN
∼= M

MJan
⊗ΩG

N

and picking a finite generating set of size t for the left ΩG-module N shows
that

dim

(
M

MJan
⊗ΩG

N

)
≤

(
dim

M

MJan

)
· t.

7Compare this with [29, Proposition 8.3.14].
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Hence

g(n) = dim

(
M ⊗ΩG

N

(M ⊗ΩG
N).Jn

)
≤ dim

(
M ⊗ΩG

(
N

JanN

))
≤ f(an) · t

for all n ≥ 0, so Cdim(M ⊗ΩG
N) = γ(g) ≤ γ(f) = Cdim(M) as required. �

The above proposition is due to the first author; it was inspired by a result of
S. J. Wadsley [43, Lemma 3.1].

5.5. Characteristic varieties. Assume in this paragraph that G is uni-
form. Let M be a finitely generated ΩG-module. There is another way of
seeing that K(gr M) does not depend on the choice of good filtration for M , as
follows. It is well known [26, Chapter III, Lemma 4.1.9] that

J(M) :=
√

Anngr ΩG
(grM)

is independent of this choice. Standard commutative algebra now gives

K(gr M) = K
(

gr ΩG

J(M)

)
,

as claimed.
The graded ideal J(M) is called the characteristic ideal of M , and the affine
variety Ch(M) defined by it is called the characteristic variety of M . Thus we
obtain yet another expression for the canonical dimension of M :

(2) Cdim(M) = dim Ch(M).

The characteristic variety is defined in an entirely analogous fashion for finitely
generated modules over enveloping algebras and Weyl algebras An(C). In that
setting it enjoys many pleasant properties, in addition to the simple formula
(2). In particular, there exists a Poisson structure on Ch(M), which gives more
information about M through the geometric properties of the characteristic va-
riety. For example, the fact that the characteristic variety of a finitely generated
An(C)-module is integrable can be used to prove the Bernstein inequality.

Question C. Is there a way of capturing more information about M in the
characteristic variety Ch(M)?

The naive method (mimicking the construction of the Poisson structure in the
enveloping algebra case) seems to fail because derivations are not sufficient
when studying algebras in positive characteristic: they kill too much. Pre-
sumably, if the answer to the above question is affirmative, then differential
operators in characteristic p will play a role.

5.6. No GK-dimension. The theory outlined in the previous sections will
sound very familiar to the experts. However, Iwasawa algebras are not Cohen
Macaulay with respect to the GK dimension. This is easily seen by decoding
the definition of GK dimension in the case when G ∼= Zp: in this case, ΩG is
isomorphic to the one-dimensional power series ring Fp[[t]], which (being un-
countable) contains polynomial algebras over Fp of arbitrarily large dimension.

Documenta Mathematica · Extra Volume Coates (2006) 7–33



Ring-Theoretic Properties of Iwasawa Algebras: A Survey 25

Thus GK(ΩG) = ∞ for any infinite G, since any such G will contain a closed
subgroup isomorphic to Zp.
If one tries to brush this problem away by replacing the GK dimension by the
canonical dimension, then one has to be careful not to fall into the following
trap.
Recall [29, Lemma 8.1.13(ii)] that if R ⊆ S are affine k-algebras over a field k,
then for any finitely generated S-module M ,

(3) GK(N) ≤ GK(M)

whenever N is a finitely generated R-submodule of M . This enables one to
“pass to subalgebras of smaller dimension” and use inductive arguments on the
GK dimension - a ploy used, for example, in the computation of the Krull di-
mension of U(sl2(C)) by S.P. Smith [29, Theorem 8.5.16]. Another consequence
of this property of GK dimension is that it is impossible to find an embedding
R →֒ S of k-algebras such that GK(R) > GK(S).
Unfortunately, (3) fails for Iwasawa algebras, if one tries to replace the GK
dimension by the canonical dimension. This is due to the following pathological
example:

Example. [38, Chapter VII, page 219] There exists a continuous embedding
of Fp-algebras

ΩG →֒ ΩH

where dimG = 3 and dimH = 2.

Proof. Let G = Z3
p and H = Z2

p. By Theorem 3.1 we can identify ΩG with
the three-dimensional power series ring Fp[[x, y, z]] and ΩH with the two-
dimensional power series ring Fp[[a, b]].
Because Fp[[a]] is uncountable, we can find an element u = u(a) ∈ aFp[[a]] such
that the Fp-algebra generated by a and u is isomorphic to the two-dimensional
polynomial ring Fp[a, u]. Define θ : Fp[[x, y, z]] → Fp[[a, b]] to be the unique
continuous Fp-algebra map such that

θ(x) = b, θ(y) = ab, θ(z) = ub.

We have

θ




∑

λ,µ,ν∈N

rλ,µ,νxλyµzν


 =

∞∑

n=0

bn




∑

λ+µ+ν=n

rλ,µ,νaµuν


 .

This shows that θ is an injection, as required. �

One can of course concatenate these embeddings and produce a continuous
embedding of ΩG into Fp[[a, b]] for abelian uniform pro-p groups G of arbitrarily
large dimension. Here is the actual counterexample to the analogue of (3).

Example. There exist uniform pro-p groups H ⊂ G, a finitely generated
ΩG-module M and a finitely generated ΩH-submodule N of M such that
Cdim(M) = 2, but Cdim(N) = 3.
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Proof. Let R = Fp[[a, b, c, d]] and S = Fp[[b, c, d]]. Let I be the ideal of R
generated by c − ab and d − u(a)b where u(a) is chosen as in the previous
example and let M = R/I. By construction, the graded ideal gr I is generated
by the symbols of c and d, so

Cdim(M) = K(gr M) = 2.

Now if r ∈ I ∩ S, then θ(r) = 0, letting θ : Fp[[b, c, d]] →֒ Fp[[a, b]] be as above.
Hence r = 0, so S →֒ R/I = M . Therefore the cyclic S-submodule N of M
generated by 1 + I is actually free, so Cdim(N) = 3. �

5.7. Krull dimension. The Krull-(Gabriel-Rentschler) dimension of ΩG was
first studied by one of the authors in [1]. An immediate upper bound of dimG
can be obtained using Theorem 3.6, or if one prefers, using [7, Corollary 1.3].
Here is a result covering a large number of cases.

Theorem. [1, Theorem A and Corollary C] Let G be a compact p-adic analytic
group, and let g be the Qp-Lie algebra of an open uniform subgroup of G. Let r

denote the soluble radical of g and suppose that the semisimple part g/r of g is
a direct sum of some number of copies of sl2(Qp). Then

K(ΩG) = dimG.

In particular, K(ΩG) equals dim G whenever G is soluble-by-finite. The main
idea in the proof is to obtain a lower bound on the Krull dimension of ΩG for
any compact p-adic analytic group G. Namely, with g as in the theorem, and
writing λ(g) for the length of the longest chain of subalgebras of g, we have

λ(g) ≤ K(ΩG).

Question D. With the above notation, is K(ΩG) = λ(g) in general?

It is easy to see that λ(g) = λ(n) + λ(g/n) whenever n is an ideal of g. Let N
be a closed uniform subgroup of G with Lie algebra n.

Question E. Is K(ΩG) = K(ΩN ) + K(ΩG/N )?

Aside from its intrinsic interest, an affirmative answer to Question E would
obviously reduce Question D to the study of almost simple groups G, (where
we say that a uniform pro-p group G is almost simple provided its Lie algebra
has no non-trivial ideals).
The classical split simple Lie algebras are the first examples to study. Given
such a Lie algebra g, choose a Borel subalgebra b and a Cartan subalgebra t.
Then it is easy to produce a chain of subalgebras of g of length dim b + dim t.

Question F. For G almost simple and split, is K(ΩG) = dim b + dim t ?

Question F has an affirmative answer in the two smallest cases: g = sl2(Qp)
and g = sl3(Qp). In particular,

Theorem. [1, Theorem B]. Let G be a uniform pro-p group with Qp-Lie alge-
bra sl3(Qp). Then ΩG is a scalar local complete noetherian domain of global
dimension 8, with

K(ΩG) = 7.
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The main idea of the proof of this last result is to show that ΩG has no finitely
generated modules whose canonical dimension equals precisely 1; that is, there
is a “gap” at Cdim = 1.8 The extra dim t term in our conjectured formula for
K(ΩG) comes from the fact that ΩG is scalar local - this fact is used crucially
in the proof of the lower bound for the Krull dimension of ΩG.

6. Two-sided ideal structure

6.1. One of the first questions asked when studying a noetherian algebra R
is “what are its two-sided ideals?” It is usually sensible to focus first on the
prime ideals of R.
One way of answering the above question is to give a reduction to the commuta-
tive case. This is a recurring theme in noncommutative algebra. For example,
if R = k[G] is the group algebra of a polycyclic group G over a field k, the
paper [33] by J. E. Roseblade achieves this, “to within a finite group”.9 Similar
results hold for universal enveloping algebras U(g) of finite dimensional soluble
Lie algebras over a field k: see [21] and [29, Chapter 13]. As for the case when
g is semisimple, one can view the huge body of research on the primitive ideals
of U(g) as an analysis of the failure of the naive hope that these primitive ideals
should be generated by their intersection with the centre of U(g), [21]. And
for quantised function algebras of semisimple groups, and many related quan-
tum algebras, there are “stratification theorems” which describe their prime
and primitive spectra as finite disjoint unions of affine commutative pieces, [10,
Theorem II.2.13].
Unfortunately, no such results are currently known for Iwasawa algebras - see
below for a summary of what little is known. Alleviation of this state of gross
ignorance would seem to be the most pressing problem in the subject.
Because of the crossed product decomposition (2.3)(1) and the going up and
down theorems for crossed products of finite groups [31, Theorem 16.6], one
should naturally first concentrate on the case when G is uniform.

6.2. Ideals arising from subgroups and from centres. Since centrally
generated one-sided ideals are necessarily two-sided, it helps to know the centre
of the ring in question. However the centre of Iwasawa algebras is not very big:

Theorem. [2, Corollary A] Let G be a uniform pro-p group and let Z be its
centre. Then the centre of ΩG equals ΩZ and the centre of ΛG equals ΛZ .

Thus when the centre of G is trivial (and this happens frequently), ΩG has no
non-trivial centrally generated ideals. This is one place where the analogy with
enveloping algebras of semisimple Lie algebras breaks down.

8A similar idea was used by Smith [35] in giving an upper bound for the Krull dimension
of U(g) when g is a complex semisimple Lie algebra. We note in passing that K(U(g)) when
g is complex semisimple has been recently proved to be equal to dim b by Levasseur [25],

answering a long-standing question in the affirmative.
9See [31, Chapter 5] for more details.
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One can also produce two-sided ideals by using normal subgroups. Certainly
when H is a closed normal subgroup of G, the augmentation ideal

wH := ker(ΩG → ΩG/H)

is a two-sided ideal of ΩG and we can tell whether it is prime or semiprime using
Theorem 4.2. As for ΛG, H yields two augmentation ideals: the inverse image
vH of wH under the natural projection ΛG ։ ΩG and “the” augmentation
ideal

IH = ker(ΛG → ΛG/H).

The behaviour of these ideals regarding localisation is quite well understood:

Theorem. Let H be a closed normal subgroup of the compact p-adic analytic
group G and let F be the largest finite normal subgroup of H of order coprime
to p. Then

(1) [5] wH and vH are localisable if and only if H/F is pro-p,
(2) [4] IH is localisable if and only if H is finite-by-nilpotent.

These results were prompted by the formulation of the Iwasawa Main Conjec-
ture by Coates et al in [19]. Localisation techniques play an important role
in the construction of characteristic elements for suitable ΛG-modules. For
number-theoretic reasons, it is assumed in [19] that the subgroup H actually
satisfies G/H ∼= Zp: in arithmetic applications, G arises as the Galois group of
a certain extension K of Q containing the cyclotomic Zp-extension Qcyc, and
H is taken to be Gal(K/Qcyc). The characteristic elements all lie inside the
K1-group of the localisation of ΛG at the Ore set

CΛG
(vN ) × {1, p, p2, . . .},

where N is the largest closed normal pro-p subgroup of G which is open in H.
For more details, see [19, §2], [6] and [5, Theorem G].
Notwithstanding the above, the most embarrassing aspect of the state of our
knowledge about ideals of Iwasawa algebras is the lack of examples. In particu-
lar, we’ve noted that central elements and closed normal subgroups give rise to
ideals. This suggests the following improperly-posed question, for which we’ll
suggest more precise special cases in the succeeding paragraphs.

Question G. Is there a mechanism for constructing ideals of Iwasawa algebras
which involves neither central elements nor closed normal subgroups?

One way to begin the study of prime ideals is to look first at the smallest
non-zero ones - that is, the prime ideals of height one. With one eye on the
commutative case and another on the results of (4.4) on maximal orders, one
can ask when they are all principal. Here are two slightly more precise ways to
ask this question:

Question H. When is ΩG a unique factorisation ring in the sense of [16]?

Question I. When G is uniform, is every reflexive prime ideal of ΩG princi-
pal?
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6.3. The case when G is almost simple. Recall that the compact p-adic
analytic group G is almost simple if every non-trivial closed normal subgroup
of G is open (5.7). For such groups the constructions of (6.2) do not produce
anything interesting because ΩG/wH is artinian and hence finite dimensional
over Fp for any closed normal subgroup H 6= 1. So Question G specialises here
to

Question J. Let G be an almost simple uniform pro-p group and let P be a
nonzero prime ideal of ΩG. Must P be the unique maximal ideal of ΩG?

We remind the reader that x ∈ ΩG is normal if xΩG = ΩGx. Another closely
related question is

Question K. Let G be as in Question J, with G ≇ Zp. Must any nonzero
normal element of ΩG be a unit?

In [22], M. Harris claimed that, for G as in Question J, any closed subgroup
H of G with 2 dim H > dim G gives rise to a non-zero two-sided ideal in ΩG,
namely the annihilator of the “Verma module” constructed by induction from
the simple ΩH -module. Unfortunately his paper contains a gap, so Question J
remains open. Some slight evidence towards a positive answer is provided by

Theorem. [3, Theorem A] Suppose that G is an almost simple uniform pro-p
group and that the Lie algebra of G contains a copy of the two-dimensional
non-abelian Lie algebra. Then for any two-sided ideal I of ΩG,

K(ΩG/I) 6= 1.

Recall [29, §6.4.4] that if R is a noetherian ring with K(R) < ∞, the classical
Krull dimension dimR of R is the largest length of a chain of prime ideals of
R. We always have dim R ≤ K(R); an easy consequence of the above result is

dim(ΩG) < dim G

whenever G satisfies conditions of the Theorem.

6.4. The case when G is nilpotent. Towards the opposite end of the
“spectrum of commutativity” from the almost simple groups lie the nilpotent
groups. Motivated by analogous results for enveloping algebras of nilpotent
Lie algebras [21, Chapter 4] and for group algebras k[G] of finitely generated
nilpotent groups G [33, Theorem E], we ask

Question L. Let G be a nilpotent uniform pro-p group with centre Z and let
I be a nonzero ideal of ΩG. Does I contain a non-zero central element? That
is, is I ∩ ΩZ nonzero?

S. J. Wadsley has shown that Question L has an affirmative answer in the
case when G is one of the simplest possible nonabelian nilpotent uniform pro-p
groups:

Theorem. [43, Theorem 4.10] Let G be a uniform Heisenberg pro-p group with
centre Z and let I be a nonzero two-sided ideal of ΩG. Then I ∩ ΩZ 6= 0.
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A uniform pro-p group G is said to be Heisenberg provided its centre Z is
isomorphic to Zp and G/Z is abelian. The main idea of the proof of the above
result is to show that for any integer t, any finitely generated ΩG-module M
satisfying Cdim(M) ≤ dimG/Z − t is actually finitely generated over “most”
subalgebras ΩH satisfying Z ≤ H and dimG/H = t [43, Theorem 3.10].
In a more precise version of Question L, one might also hope that, when G is
nilpotent, “small” prime ideals I in ΩG are controlled by ΩZ ; that is

I = (I ∩ ΩZ)ΩG.

Question O suggests a more general version of this.
Moreover, one might even hope that arbitrary ideals of these Iwasawa alge-
bras of nilpotent groups are constructed by means of a sequence of centrally
generated ideals - that is, one can ask:

Question M. Suppose that G is a nilpotent uniform pro-p group. If I is an
ideal of ΩG strictly contained in J(ΩG), is there a non-zero central element in
J(ΩG)/I? 10

6.5. The case when G is soluble. Given the parallels pointed out in (3.3)
between the Iwasawa algebras of uniform soluble groups and the enveloping
algebras of finite dimensional complex soluble Lie algebras, it is natural to
wonder whether properties known for the latter case might also be valid in the
former. We give two sample questions of this sort. Recall for the first that a
prime ideal P of the ring R is completely prime if R/P is a domain.

Question N. Let G be a soluble uniform pro-p group.

(i) Is every prime ideal of ΩG completely prime? 11

(ii) Is the prime spectrum of ΩG the disjoint union of finitely many commu-
tative strata (along the lines of [10, Theorem II.2.13], but with necessarily
non-affine strata)?

The simple possible nonabelian soluble case has been studied by O. Venjakob:

Theorem. [40, Theorem 7.1] Let G = X⋊Y be a nonabelian semidirect product
of two copies of Zp. Then the only prime ideals of ΩG are 0, wX and J(ΩG),
and each one is completely prime. Moreover, wX is generated by a normal
element.

An example of such a nonabelian semidirect product is provided by the group
B = 〈a1, a2〉 considered in Example 3.2.
Following J. E. Roseblade and D. S. Passman [33, §1.5], we define the Zalesskii
subgroup A of the soluble uniform pro-p group G to be the centre of the largest
nilpotent closed normal subgroup H of G. We say that an ideal I of ΩG is
faithful if G acts faithfully on the quotient ΩG/I. If Question L has a positive
answer, then it’s possible that a more general statement is true:

10Compare with [21, Proposition 4.7.1(i)].
11Compare with [21, Theorem 3.7.2].
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Question O. Let G be a soluble uniform pro-p group. Is every faithful prime
ideal of ΩG controlled by the Zalesskii subgroup A of G?
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