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Abstract. The purpose of this short note is to clarify the relation
between p-adic integration on curves with semistable reduction, and
the filtered (Φ, N)-module attached to the curve, following the work
of Coleman and Iovita.
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0.1. The filtered (Φ, N)-module attached to a semistable curve. Let
K be a local field of characteristic 0 and residual characteristic p. Denote by
OK its ring of integers, and by κ its residue field. Denote by K0 the fraction
field of the Witt vectors of κ, and by σ its Frobenius automorphism. Thus
K/K0 is a finite, totally ramified extension.
By a curve X over OK we shall mean a proper flat scheme over OK of relative
dimension 1. We denote its generic fiber by XK and its special fiber by Xκ.
We assume that X has semistable reduction. This means that X is regular and
Xκ is a reduced curve whose singularities are ordinary double points. [Some
authors use a less restrictive definition, in which X need not be regular, but
this will require some modifications in what we do below.] We assume also
that Xκ is split : the irreducible components of the (geometric) special fiber,
its singular points, and the two tangents at each singular point, are all defined
over κ. This can be achieved if we replace K by a finite unramified extension.
Let H = H1

dR(XK/K) be the first de-Rham cohomology of XK . It can be
identified with the space of differentials of the second kind on XK modulo
exact differentials. H is a finite dimensional vector space over K, and it carries
the Hodge filtration (differentials of the first kind)

(0.1) 0 ⊂ F 1
dR = H0(XK ,Ω1) ⊂ F 0

dR = H.
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Let X×
κ be the log-scheme associated to the special fiber with its induced log-

structure [Ill]. Let D = H1
crys(X

×
κ /K0) be its first log-crystalline cohomology

[LS, H-K]. Recall that D is a finite dimensional vector space over K0, which
comes equipped with a σ-linear bijective endomorphism Φ (Frobenius) and a
nilpotent endomorphism N (monodromy) satisfying the relation

(0.2) NΦ = pΦN.

For every prime π of K Hyodo and Kato constructed a comparison isomorphism

(0.3) ρπ : D ⊗K0
K ≃ H

and the following relation holds for any two choices of a uniformizer

(0.4) ρπ′ = ρπ ◦ exp (log(π′/π)N) .

Note that the exponential is in fact a finite sum because N is nilpotent.
The structure (H,F ·

dR,D,Φ, N, ρπ) is the filtered (Φ, N)-module attached to
X.

0.2. The weight decomposition. Let φ = Φf , where f = [κ : Fp], be
the relative Frobenius, which now acts linearly on D. Write q = pf for the
cardinality of κ. By [LS] (see [Mo] in higher dimensions) we have a weight
decomposition

(0.5) D = D0 ⊕ D1 ⊕ D2

where φ acts on Di with eigenvalues which are q-Weil numbers of weight i
(algebraic integers whose absolute value in any complex embedding is qi/2).
From the relation Nφ = qφN we deduce that N must vanish on D0 and D1,
and must map D2 to D0. In fact, it is known that it maps D2 isomorphically
onto D0. This is a special case of the p-adic monodromy-weight conjecture.
By means of the isomorphism ρπ we transport the weight decomposition to H,

(0.6) H = H0 ⊕ H1 ⊕ H2
π

where only the last summand, but not H0 or H1, depends on π, because N
vanishes on D0 and D1. The weight filtration is defined by

(0.7) F i
W H =

∑

j≤i

Hj .

Our goal is to explain the weight decomposition of H in terms of the generic
fiber only, using two transcendental processes in rigid analysis - Schneider and
Coleman integration. The main theorem is a reformulation of the work of
Coleman and Iovita [Co-I1], and only the presentation, and a few trivial ob-
servations, are new. We have a vague hope that similar techniques might help
to understand the weight decomposition, and in particular the monodromy-
weight conjecture, for the cohomology of higher dimensional varieties as well.
For p-adically uniformized varieties this was done in [dS], see also [Ito]. We also
note that [Co-I2] and [GK] treat Frobenius and monodromy in more general
situations, the first reference in cohomology of curves with coefficients, and the
second in higher dimensions.
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0.3. Schneider integration. To describe the main theorem, consider the
degeneration complex ∆ of X (also called the dual graph of the special fiber).
Its vertices ∆0 are the irreducible components of Xκ. Its edges ∆1 are the
singular points of Xκ (recall that the special fiber is assumed to be split). Each
singular point, being an ordinary double point, determines two distinct analytic
branches. The irreducible components on which these analytic branches lie,
which may be the same, are the two end points of the edge. An orientation of
an edge is an ordering of the two analytic branches at the singularity. We denote

by ~∆1 the set of oriented edges, and by ~∆1(v) the oriented edges originating
at a vertx v. Note that if the two end points of an edge e are distinct, at most

one of the oriented edges ε, ε̄ lying over e may belong to ~∆1(v), but if e is a
loop based at v, then both of them belong there.
We introduce the space of harmonic 1-cochains on ∆ which we denote by

C1
har(∆). These are the maps f : ~∆1 → K satisfying

(0.8) (i) f(ε̄) = −f(ε), (ii) ∀v
∑

ε∈~∆1(v)

f(ε) = 0.

There is a canonical isomorphism

(0.9) ν : C1
har(∆) ≃ H1(∆,K),

which sends a harmonic cochain to the singular cohomology class that it rep-
resents.
Let Xan denote the rigid analytic curve (over K̄) attached to XK̄ . There is a
well known “retraction” map r : Xan → |∆|. The inverse image under r of a
vertex v consists of an affinoid with good reduction Xv. The reduction of Xv

is the smooth part of Yv, the irreducible component of Xκ labelled by v. The
inverse image under r of an open edge e is an annulus Xe, isomorphic to

(0.10) {z| |π| < |z| < 1} ,

and an orientation of e determines an orientation of the annulus. All the points
in Xe reduce in the special fiber to the singular point labelled by e.
If ω is a regular differential, and ε is an orientation on e, resε(ω) will denote
the residue of ω with respect to a local parameter z on Xe compatible with ε.
Clearly

(0.11) resε̄ω = −resεω,

and the rigid analytic Cauchy theorem guarantees that

(0.12)
∑

ε∈~∆1(v)

resε(ω) = 0.

Defining

(0.13) cω(ε) = resε(ω)

we obtain a harmonic 1-cochain cω. This definition extends without any dif-
ficulty to differentials of the second kind. Indeed, such a differential may be
locally (Zariski) modified by an exact differential to make it regular, so on each
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Xe we may assume it is regular and define its residue as before. Cauchy’s the-
orem still holds, so cω is harmonic. Since all the residues along annuli of exact
differentials vanish, we get a well defined map

(0.14) H → C1
har(∆), [ω] 7→ cω.

Passing to H1(∆,K) we obtain the Schneider class

(0.15) Sω = ν(cω) ∈ H1(∆,K)

of ω.

0.4. Coleman integration. To define the Coleman class of a differential of
the second kind ω we use Coleman’s p-adic integration [Co], [Co-dS]. Let ∆̃ be
the tree which is the universal covering of ∆, and

(0.16) X̃an = Xan ×∆ ∆̃

the rigid analytic curve which is the fiber product of Xan with ∆̃ over ∆ (the
map from Xan to ∆ being the retraction map r). We shall denote by Γ the

group of deck transformations of the covering ∆̃ → ∆ (or, equivalently of

X̃an → Xan). We shall continue to denote by r also the map from X̃an to |∆̃|.

Let X̃(ṽ), for ṽ ∈ ∆̃0, be the inverse image under r of the star of a vertex
ṽ. (The star is the union of the vertex with the open edges originating at

ṽ. Note that a loop in ∆ based at v lifts in ∆̃ to two distinct edges starting
at ṽ. If we assume that ∆ has no loops, then X̃(ṽ) is isomorphic to X(v),

the inverse image of the star of v in Xan.) In Coleman’s language X̃(ṽ) is a

wide open space, and (if v is the image of ṽ in ∆) X̃ṽ ≈ Xv is an underlying

affinoid with good reduction in X̃(ṽ). One can define a Coleman primitive Fπ,ṽ

of ω in X̃(ṽ). It is a locally analytic function which satisfies dFπ,ṽ = ω, and is
uniquely determined up to an additive constant by its behavior under a rigid
analytic (overconvergent) lifting of Frobenius to X̃ṽ. As the notation suggests,

Fπ,ṽ depends (on the annuli surrounding X̃ṽ in X̃(ṽ)) on the choice of π. For

a given π, though, and neighboring vertices ṽ, ũ of ∆̃, Fπ,ṽ − Fπ,ũ is constant

on the annulus where it is defined. Since ∆̃ is a tree, it is possible to choose
the constants in such a way that the Fπ,ṽ glue to give a primitive Fπ of ω on

all of X̃an. Since ω is Γ-invariant,

(0.17) Cπ,ω(γ) = γ(Fπ) − Fπ = Fπ ◦ γ−1 − Fπ

is constant for every deck transformation γ ∈ Γ. The homomorphism

(0.18) Cπ,ω ∈ H1(Γ,K) = H1(∆,K)

is the obstruction to descending Fπ to Xan. It vanishes if and only if Fπ lives
on Xan, not merely on X̃an, namely if and only if we can “Coleman integrate”
ω on X.
We shall prove that

(0.19) Cπ′,ω − Cπ,ω = − log(π′/π)Sω.

Our reformulation of the paper [Co-I] can now be stated as follows.
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Theorem 0.1. (1) One has a canonical identification H/F 1
W H ≃ C1

har(∆) via
the residue homomorphism. In other words, the cochains cω give us all the
harmonic cochains, and cω = 0 if and only if Sω = 0, if and only if ω ∈ F 1

W H.
(2) One has a canonical identification F 0

W = H0 = H1(∆,K) and Cπ,ω is the
projection of [ω] onto H0 relative to the decomposition H = H0 ⊕ H1 ⊕ H2

π.
(3) The map ν corresponds to the monodoromy isomorphism

(0.20) ν : H/F 1
W H ≃ H0

derived from N.

Corollary 0.2. The subspace H1 is characterized as the space of differentials
of the second kind for which a global Coleman primitive exists on X, regardless
of π.

Proof. Indeed, in view of the relation between Cπ,ω, Cπ′,ω and Sω, the following
are equivalent: (i) Cπ,ω = 0 for all π (ii) Cπ,ω = 0 for two π whose ratio is not
a root of unity, (iii) Cπ,ω = 0 for some π and Sω = 0. In view of the theorem,
the last property is equivalent to [ω] ∈ H1. �

Another corollary is the following. Denote by g(XK) the genus of the curve
and by g(∆) the genus of ∆.

Corollary 0.3. For generic (all but finitely many) π the image of Cπ,ω is all
of H1(∆,K), and the dimension of the space of Coleman-integrable differentials
of the second kind modulo exact differentials is 2g(XK) − g(∆).

Proof. Since S is surjective, so is Cπ for all but finitely many π. �

The Hodge filtration did not play any role so far. The position of the dif-
ferentials of the first kind in H with respect to the weight decomposition is
mysterious. It is known that they are transversal to H0, and that together
with F 1

W H they span H, but their intersection with H1 can be large or small.
All we can say is the following.

Corollary 0.4. For generic π, the dimension of the Coleman-integrable dif-
ferentials of the first kind is g(XK) − g(∆). The dimension of the space of
differentials of the first kind for which a Coleman primitive exists for all π is

(0.21) g(XK) − 2g(∆) ≤ dim(H1 ∩ F 1
dR) ≤ g(XK) − g(∆).

Proof. Since F 1
dR maps onto C1

har(∆) under the residue map, S|F 1

dR

is still

surjective, so the first assertion is proved as in the previous corollary. The
upper bound in the second assertion follows from it, while the lower bound is
obvious by counting dimensions. �

Remark 0.1. In [Cz], Colmez defines primitives for every differential of the
second kind on XK , regardless of the type of reduction. His primitives are
independent of a choice of π, and in general do not coincide with Coleman’s
primitives, except for the case of good reduction. He embeds the curve in its
Jacobian, and uses the group structure of the latter to extend his integral from
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a neighborhood of the origin to the whole Jacobian. As an example, the reader
may keep in mind the case of a Tate elliptic curve, of multiplicative period
qE . Colmez’ primitive of the differential of the first kind in this case would be
the same as Coleman’s primitive, based on a branch of the p-adic logarithm
which vanishes on qE . It is clear that for curves of higher genus no branch of
the logarithm conforms to all the periods. It is precisely the consideration of
Coleman’s theory, as opposed to Colmez’, that gives us the possibility to identify
the weight decomposition in the generic fiber (granted a choice of π is fixed).

1. The proof

1.1. Establishing the relation between Cπ,ω and Sω. Denote by logπ

the unique logarithm on K̄× for which logπ(π) = 0. We recall that Coleman’s

primitive Fπ,ṽ on the wide open X̃(ṽ) satisfies the following. If ε̃ = (ṽ, ũ) is an

oriented edge of ∆̃, and X̃ε̃ the corresponding oriented annulus in X̃an, and if
z is a local parameter on X̃ε̃, then we may expand

(1.1) ω|X̃ε̃
=

∑

anzndz

and, up to an additive constant,

(1.2) Fπ,ṽ|X̃ε̃
=

∑

n6=−1

an(n + 1)−1zn+1 + a−1 logπ(z).

Since

(1.3) logπ′(z) − logπ(z) = − log(π′/π)ordK(z)

we get that (again, up to a constant)

(1.4) Fπ′ − Fπ|X̃ε̃
= − log(π′/π)resε(ω)ordK(z).

On an affinoid X̃ṽ, Coleman’s primitive is independent of π, up to a constant.
Let γ ∈ Γ and normalize Fπ′ and Fπ so that they agree on X̃ṽ. On X̃γ−1(ṽ) we
shall then have

(1.5) Fπ′ − Fπ = − log(π′/π)
∑

ε∈(ṽ,γ−1(ṽ))

resεω,

where the sum is over the oriented edges leading from ṽ to γ−1(ṽ). This sum is
just Sω(γ), because Sω is obtained from cω via the connecting homomorphism

(1.6) C1
har(∆) = C1

har(∆̃)Γ → H1(Γ,K)

which is associated with the short exact sequence

(1.7) 0 → K → C̃0
har(∆̃) → C1

har(∆̃) → 0,

where C̃0
har(∆̃) are the 0-cochains on the tree satisfying the mean value prop-

erty. It follows that

(1.8) Cπ′,ω(γ) − Cπ,ω(γ) = − log(π′/π)Sω(γ),

as we had to prove.
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If we assume theorem 1, then (1.8) follows also from (0.4) and the fact that
N2 = 0 (and vice versa). In the rest of this chapter we shall show how to derive
the main theorem from the paper [Co-I].

1.2. The weight filtration on H. Determining the weight filtration on H
in terms of the general fiber, and finding an expression for N, do not require a
choice of π, or the use of Coleman integration. These will be needed only for
the weight decomposition, to be considered in the next section.
By GAGA, H can be identified with rigid de-Rham cohomology H1

dR(Xan
K ).

For simplicity let us assume from now on that ∆ contains no loops, so we
identify the wide open set X̃(ṽ) with its image X(v) in Xan. The covering
U = {X(v)} of Xan is admissible and acyclic, defined over K. It follows that
we may identify H with the space of rigid 1-hyper-cocycles

(1.9)

{

(ωv, fε); ωv ∈ Ω(X(v)), fε ∈ O(Xε), dfε = ωv − ωu|Xε

if ε connects u to v, and fε̄ = −fε

}

,

modulo the space of rigid 1-hyper-coboundaries: elements of the type (dfv, fv−
fu) for fv ∈ O(X(v)). Specifically, if ω is a differential of the second kind, we
pick rational functions gv so that ωv = ω − dgv is holomorphic on X(v), and
put fε = gu − gv. The class [ω] is then represented by (ωv, fε).
Since Xv is an affinoid with good reduction, the Frobenius morphism φ (of
degree q) lifts to characteristic 0, to a rigid analytic mapping φv of Xv to
itself. This rigid analytic Frobenius is overconvergent: there exists a strict
neighborhood Xv ⊂ X ′

v ⊂ X(v) such that φv extends to a morphism of X ′
v

to X(v). This X ′
v can (and will) be chosen to consist of Xv together with an

open annulus for each edge originating at v, and then the inclusion X ′
v ⊂ X(v)

induces isomorphism on de Rham cohomology. We can therefore regard φ∗
v

as an endomorphism of H1
dR(X(v)). In fact, if we let Y 0

v be the smooth part
of Yv, the reduction of Xv, H1

dR(X(v)) is nothing but the Monsky-Washnitzer
cohomology of Y 0

v (tensored with K) and φ∗
v is its Frobenius. It is independent

of the lifting.
The roots of the characteristic polynomial of φ∗

v on H1
dR(X(v)) have weights 1

or 2. Moreover, there is an exact sequence

(1.10) 0 → F 1
W H1

dR(X(v)) → H1
dR(X(v))

res
→

(

⊕ε∈~∆v
K

)

0
→ 0

where res is the residue map, and F 1
W is the weight 1 subspace. The subscript 0

on the quotient means that we take only those elements in the direct sum whose
coordinates add up to 0. On the weight 2 quotient φ∗

v acts by multiplication
by q.
Let F 0

W H be the subspace of H represented by classes [(0, kε)], where the kε are
constants. It is thus isomorphic to H1(∆,K). Coleman and Iovita prove that
under the Hyodo-Kato isomorphism this subspace is the image of the weight
zero part of D (combine Lemma I.4.2 and Theorem II.5.4 of their paper).
The quotient

(1.11) H/F 0
W H
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is the image of H in H1
dR(X̃an) under pullback. It is the space of differentials

of the second kind on Xan, modulo those which become exact on X̃an. The
residue map gives the filtration

(1.12) 0 → gr1
W H = F 1

W H/F 0
W H → H/F 0

W H
res
→ C1

har(∆) → 0,

which is the direct sum, over the vertices of ∆, of the short exact sequences
recorded above. The surjectivity of the global residue map results from a
dimension counting. Once again, Coleman and Iovita prove that under the
Hyodo-Kato isomorphism, the Frobenius structure of H/F 0

W H is the one de-
scribed above, rigid analytically, in terms of the φ∗

v. (Compare how they define,
in Section I.1, the Frobenius structure on

(1.13) Ker(H1
dR(X0) → H1

dR(X1)−),

which is our H/F 0
W H, and apply their Theorem II.5.4.) It follows that F 1

W is
indeed the weight 1 filtration, and C1

har = gr2
W H. Finally, that the monodromy

operator is derived from the isomorphism ν between C1
har(∆) and H1(∆,K)

also follows from [Co-I] (combine the description of N in Section I.1.1 and the
commutative diagram on p.185). This checks all the statements of our main
theorem, except for the identification of the weight decomposition in terms of
Coleman integration.

1.3. The weight decomposition on H. Fix a choice of π. In Section I.1 of
[Co-I] the authors describe a splitting of the projection H → H/F 0

W H, whose
image is H1 ⊕ H2

π. Recall that an element of H/F 0
W H is a collection {[ωv]} of

classes [ωv] ∈ H1
dR(X(v)), such that for any oriented edge ε, connecting u to v,

resεωu = resεωv. Let Fπ,v be the Coleman integral of ωv on X(v), described
above, which is determined up to a constant. Since the residues of ωu and ωv

on Xε agree, the function

(1.14) fπ,ε = Fπ,v − Fπ,u ∈ O(Xε)

is rigid analytic in the annulus. The 1-hyper-cocyle (ωv, fπ,ε) is well-defined
up to a coboundary, and its class in H gives the desired splitting.
It is now easy to check that Cπ vanishes on classes ω which are in the image
of this splitting. Indeed, suppose the differential of the second kind ω is such
that

(1.15) ω = ωv + dgv

for a meromorphic function gv on X(v), and gu − gv = fπ,ε = Fπ,v − Fπ,u

on Xε. Then Fπ,u + gu agree on the annuli, hence glue to give a well defined
Coleman meromorphic function Fπ,ω on Xan, which is a global primitive of ω.
It follows that Cπ,ω = 0.
On the other hand, if we start with a 1-hypercocycle (0, kε) where the kε are
constants, and if ω is a differential of the second kind for which there are
meromorphic functions gv on X(v) such that ω = dgv there, and gv− gu = kε

for an edge connecting u to v, then [(kε)] ∈ H1(∆,K) is the obstruction to
integrating ω globally on Xan, hence is equal to Cπ,ω.

Documenta Mathematica · Extra Volume Coates (2006) 325–334



Coleman Integration Versus . . . 333

These computations show that Cπ annihilates H1 ⊕ H2
π, and is the identity

map on H0. This completes the proof of Theorem 1.

1.4. Relation to the Neron model of the Jacobian. Even though the
primitive F̃π,ω of a differential of the second kind ω need not descend to Xan,
we may use it to define the integral

(1.16)

∫

D

ω

over certain divisors of degree 0, namely those who specialize in Xκ to divisors
which avoid the singular points and are of degree 0 on each of the irreducible
components Yv separately. This is because such a divisor D intersects each
affinoid Xv in a divisor Dv of degree 0, while Fπ,v is well defined, up to a
constant, and independently of π, on Xv. Observe that the divisors in question
are precisely those whose classes in Pic0 represent the connected component
J 0 of the Neron model of the Jacobian of XK .
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