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Introduction

In this paper we extend the results of [Tay4] from the ordinary to the crys-
talline, low weight (i.e. in the Fontaine-Laffaille range) case. The underlying
ideas are the same. However this extension allows us to prove the meromor-
phic continuation and functional equation for the L-function of any regular
(i.e. distinct Hodge numbers) rank two “motive” over Q. We avoid having to
know what is meant by “motive” by working instead with systems of l-adic rep-
resentations satisfying certain conditions which will be satisfied by the l-adic
realisations of any “motive”.
More precisely by a rank 2 weakly compatible system of l-adic representations
R over Q we shall mean a 5-tuple (M,S, {Qp(X)}, {ρλ}, {n1, n2}) where
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• M is a number field;

• S is a finite set of rational primes;

• for each prime p 6∈ S of Q, Qp(X) is a monic degree 2 polynomial in
M [X];

• for each prime λ of M (with residue characteristic l say)

ρλ : GQ −→ GL2(Mλ)

is a continuous representation such that, if l 6∈ S then ρλ|Gl
is crystalline,

and if p 6∈ S ∪ {l} then ρλ is unramified at p and ρλ(Frobp) has charac-
teristic polynomial Qp(X); and

• n1, n2 are integers such that for all primes λ of M (lying above a rational
prime l) the representation ρλ|Gl

is Hodge-Tate with numbers n1 and n2,

i.e. ρλ⊗Ql
Q̂ac
l

∼= (Mλ⊗Ql
Q̂ac
l )(−n1)⊕(Mλ⊗Ql

Q̂ac
l )(−n2) as Mλ⊗Ql

Q̂ac
l -

modules with Mλ-linear, Q̂ac
l -semilinear GQl

-actions.

We call R regular if n1 6= n2 and det ρλ(c) = −1 for one (and hence all) primes
λ of M . We remark that if R arises from a regular (distinct Hodge numbers)
motive then one can use the Hodge realisation to check that det ρλ(c) = −1
for all λ. Thus we consider this oddness condition part of regularity. It is not
difficult to see that if one of the ρλ is absolutely reducible so are all the others.
In this case we call R reducible, otherwise we call it irreducible. (If ρss

λ0
is the

sum of two characters these characters are Hodge-Tate and hence by results of
[S1] themselves fit into compatible systems. The elements of these compatible
systems provide the Jordan-Hölder factors of the other ρλ.)
We will call R strongly compatible if for each rational prime p there is a Weil-
Deligne representation WDp(R) of WQp

such that for primes λ of M not di-
viding p, WDp(R) is equivalent to the Frobenius semi-simplification of the
Weil-Deligne representation associated to ρλ|Gp

. (WDp(R) is defined over M ,

but it is equivalent to all its Gal (M/M)-conjugates.) If R is strongly compat-
ible and if i : M →֒ C then we define an L-function L(iR, s) as the infinite
product

L(iR, s) =
∏

p

Lp(iWDp(R)∨ ⊗ |Art−1|−sp )−1

which may or may not converge. Fix an additive character Ψ =
∏

Ψp of A/Q

with Ψ∞(x) = e2π
√−1x, and a Haar measure dx =

∏
dxp on A with dx∞ the

usual measure on R and with dx(A/Q) = 1. If, say, n1 > n2 then we can also
also define an ǫ-factor ǫ(iR, s) by the formula

ǫ(iR, s) =
√
−1

1+n1−n2
∏

p

ǫ(iWDp(RS)∨ ⊗ |Art−1|−sp ,Ψp, dxp).
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(See [Tat] for the relation between l-adic representations of GQp
and Weil-

Deligne representations of WQp
, and also for the definition of the local L and

ǫ-factors.)

Theorem A Suppose that R = (M,S, {Qx(X)}, {ρλ}, {n1, n2})/Q is a regu-
lar, irreducible, rank 2 weakly compatible system of l-adic representations with
n1 > n2. Then the following assertions hold.

1. If i : M →֒ C then there is a totally real Galois extension F/Q and
a regular algebraic cuspidal automorphic representation π of GL2(AF )
such that L(iR|GF

, s) = L(π, s).

2. For all rational primes p 6∈ S and for all i : M →֒ C the roots of i(Qp(X))
have absolute value p−(n1+n2)/2.

3. R is strongly compatible.

4. For all i : M →֒ C, the L-function L(iR, s) converges in Re s > 1 −
(n1 + n2)/2, has meromorphic continuation to the entire complex plane
and satisfies a functional equation

(2π)−(s+n1)Γ(s + n1)L(iR, s) = ǫ(iR, s)(2π)s+n2−1Γ(1 − n2 − s)L(iR∨, 1 − s).

More precisely we express L(iR, s) as a ratio of products of the L-functions
associated to Hilbert modular forms over different subfields of F . (See section
6 for more details.)
For example suppose that X/Q is a rigid Calabi-Yau 3-fold, where by rigid
we mean that H2,1(X(C),C) = (0). Then the zeta function ζX(s) of X has
meromorphic continuation to the entire complex plane and satisfies a functional
equation relating ζX(s) and ζX(4− s). A more precise statement can be found
in section six.
Along the way we prove the following result which may also be of interest. It
partially confirms the Fontaine-Mazur conjecture, see [FM].

Theorem B Let l > 3 be a prime and let 2 ≤ k ≤ (l+ 1)/2 be an integer. Let
ρ : GQ → GL2(Q

ac
l ) be a continuous irreducible representation such that

• ρ ramifies at only finitely many primes,

• det ρ(c) = −1,

• ρ|Gl
is crystalline with Hodge-Tate numbers 0 and 1 − k.

Then the following assertions hold.

1. There is a Galois totally real field F in which l is unramified, a regu-
lar algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ of the field of rationality of π into Qac

l such that

• ρπ,λ ∼ ρ|GF
,
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• πx is unramified for all places x of E above l, and

• π∞ has parallel weight k.

2. If ρ is unramified at a prime p and if α is an eigenvalue of ρ(Frobp) then

α ∈ Qac and for any isomorphism i : Qac
l

∼→ C we have

|iα|2 = p(k−1)/2.

3. Fix an isomorphism i : Qac
l

∼→ C. There is a rational function Ll,i(X) ∈
C(X) such that the product

L(iρ, s) = Ll,i(l
−s)−1

∏

p6=l
idet(1 − ρIp

(Frobp)p
−s)−1

converges in Re s > (k+ 1)/2 and extends to a meromorphic function on
the entire complex plane which satisfies a functional equation

(2π)−sΓ(s)L(iρ, s) = WN(ρ)k/2−s(2π)s−kΓ(k− s)L(i(ρ∨ ⊗ ǫk−1), k− s),

where ǫ denotes the cyclotomic character, where N(ρ) denotes the con-
ductor of ρ (which is prime to l), and where W is a complex number. (W
is given in terms of local ǫ-factors in the natural way. See section 6 for
details.)

4. If k = 2 further assume that for some prime p 6= l we have

ρ|Gp
∼

(
ǫχ ∗
0 χ

)
.

Then ρ occurs in the l-adic cohomology (with coefficients in some Tate
twist of the constant sheaf) of some variety over Q.

Again we actually show that L(iρ, s) is a ratio of products of the L-functions
associated to Hilbert modular forms over different subfields of F . (See section
6 for more details.)
For further discussion of the background to these results and for a sketch of
the arguments we use we refer the reader to the introduction of [Tay4].
The first three sections of this paper are taken up generalising results of Wiles
[W2] and of Wiles and the author [TW] to totally real fields. Previous work
along these lines has been undertaken by Fujiwara [Fu] (unpublished) and Skin-
ner and Wiles [SW2]. However the generalisation we need is not available in
the literature, so we give the necessary arguments here. We claim no great
originality, this is mostly a technical exercise. We hope, however, that other
authors may find theorems 2.6, 3.2 and 3.3 of some use.
In the fourth and fifth sections we generalise some of our results from [Tay4]
about a potential version of Serre’s conjecture. This is the most original part of
this paper. The main result is theorem 5.7. Finally in section six we combine
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theorems 3.3 and 5.7 to deduce the main results of this paper which we have
summarised above.
We would like to apologise for the long delay in submitting this paper (initially
made available on the web in 2001) for publication. We would also like to
thank the referee for reading the paper very carefully and making several useful
suggestions.

Notation

Throughout this paper l will denote a rational prime, usually assumed to be
odd and often assumed to be > 3.
If K is a perfect field we will let Kac denote its algebraic closure and GK
denote its absolute Galois group Gal (Kac/K). If moreover p is a prime number
different from the characteristic of K then we will let ǫp : GK → Z×

p denote
the p-adic cyclotomic character and ωp the Teichmüller lift of ǫp mod p. In the
case p = l we will drop the subscripts and write simply ǫ = ǫl and ω = ωl. We
will let c denote complex conjugation on C.
If K is an l-adic field we will let | |K denote the absolute value on K normalised
to take uniformisers to the inverse of the cardinality of the residue field of K.
We will let IK denote the inertia subgroup of GK , WK denote the Weil group of
K and FrobK ∈WK/IK denote an arithmetic Frobenius element. We will also
let Art : K× ∼→ W ab

K denote the Artin map normalised to take uniformisers
to arithmetic Frobenius elements. Please note these unfotunate conventions.
We apologise for making them. (They are inherited from [CDT].) By an n-
dimensional Weil-Deligne representation of WK over a field M we shall mean
a pair (r,N) where r : WK → GLn(M) is a homomorphism with open kernel
and where N ∈Mn(M) satisfies

r(σ)Nr(σ)−1 = |Art−1σ|−1
K N

for all σ ∈ WK . We call (r,N) Frobenius semi-simple if r is semi-simple. For
n ∈ Z>0 we define a character ωK,n : IK → (Kac)× by

ωK,n(σ) = σ(
ln−1

√
l)/

ln−1
√
l.

We will often write ωn for ωQl,n. Note that ωK,1 = ω.
Now suppose that K/Ql is a finite unramified extension, that O is the ring of
integers of a finite extension of K with maximal ideal λ and that 2 ≤ k ≤
l − 1. Let MFK,O,k denote the abelian category whose objects are finite
length OK ⊗Zl

O-modules D together with a distinguished submodule D0 and
FrobK ⊗ 1-semilinear maps ϕ1−k : D → D and ϕ0 : D0 → D such that

• ϕ1−k|D0 = lk−1ϕ0, and

• Imϕ1−k + Imϕ0 = D.

Also let MFK,O/λn,k denote the full subcategory of objects D with λnD = (0).
If D is an object of MFK,O,k we define D∗[1 − k] by
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• D∗[1 − k] = Hom (D,Ql/Zl);

• D∗[1 − k]0 = Hom (D/D0,Ql/Zl);

• ϕ1−k(f)(z) = f(lk−1x+ y), where z = ϕ1−k(x) + ϕ0(y);

• ϕ0(f)(z) = f(x mod D0), where z ≡ ϕ1−k(x) mod (ϕ0D
0).

There is a fully faithful, O-length preserving, exact, O-additive, covariant func-
tor M from MFK,O,k to the category of continuous O[GK ]-modules with es-
sential image closed under the formation of sub-objects. (See [FL], especially
section 9. In the notation of that paper M(D) = US(D∗), where D∗ is D∗[1−k]
with its filtration shifted by k− 1. The reader could also consult section 2.5 of
[DDT], where the case k = 2 and K = Ql is discussed.)
If K is a number field and x is a finite place of K we will write Kx for the
completion of K at x, k(x) for the residue field of x, ̟x for a uniformiser in
Kx, Gx for a decomposition group above x, Ix for the inertia subgroup of Gx,
and Frobx for an arithmetic Frobenius element in Gx/Ix. We will also let OK

denote the integers of K and dK the different of K. If S is a finite set of
places of K we will write K×

S for the subgroup of K× consisting of elements
which are units outside S. We will write AK for the adeles of K and || ||
for

∏
x | |Fx

: A×
K → R×. We also use Art to denote the global Artin map,

normalised compatibly with our local normalisations.
We will write µN for the group scheme of N th roots of unity. We will write
W (k) for the Witt vectors of k. If G is a group, H a normal subgroup of G and ρ
a representation of G, then we will let ρH (resp. ρH) denote the representation
of G/H on the H-invariants (resp. H-coinvariants) of ρ. We will also let ρss

denote the semisimplification of ρ, ad ρ denote the adjoint representation and
ad 0ρ denote the kernel of the trace map from ad ρ to the trivial representation.
Suppose that A/K is an abelian variety over a perfect field K with an action of
OM defined over K, for some number field M . Suppose also that X is a finite
torsion free OM -submodule. The functor on K-schemes S 7→ A(S) ⊗OM

X is
represented by an abelian variety A ⊗OM

X. (If X is free with basis e1, ..., er
then we can take A ⊗OM

X = Ar. Note that for any ideal a of OM we then
have a canonical isomorphism

(A⊗OM
X)[a] ∼= A[a] ⊗OM

X.

In general if Y ⊃ X ⊃ aY with Y free and a a non-zero principal ideal of OM

prime to the characteristic of K then we can take

(A⊗OM
X) = (A⊗OM

aY )/(A[a] ⊗OM
X/aY ).)

Again we get an identification

(A⊗OM
X)[a] ∼= A[a] ⊗OM

X.

If X has an action of some OM algebra then A ⊗OM
X canonically inherits

such an action. We also get a canonical identification (A⊗OM
X)∨ ∼= A∨ ⊗OM
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Hom (X,OM ). Suppose that µ : A → A∨ is a polarisation which induces an
involution c onM . Note that c equals complex conjugation for every embedding
M →֒ C. Suppose also that f : X → HomOM

(X,OM ) is c-semilinear. If for all
x ∈ X − {0}, the totally real number f(x)(x) is totally strictly positive then
µ ⊗ f : A ⊗OM

X → (A ⊗OM
X)∨ is again a polarisation which induces c on

M .
If λ is an ideal of OM prime to the characteristic of K we will write ρA,λ for
the representation of GK on A[λ](Kac). If λ is prime we will write TλA for the
λ-adic Tate module of A, VλA for TλA⊗Z Q and ρA,λ for the representation of

GK on VλA. We have a canonical isomorphism Tλ(A⊗OM
X)

∼→ (TλA)⊗OM
X.

Suppose that M is a totally real field. By an ordered invertible OM -module
we shall mean an invertible OM -module X together with a choice of connected
component X+

x of (X ⊗Mx) − {0} for each infinite place x of M . If a is a
fractional ideal in M then we will denote by a+ the invertible ordered OM -
module (a, {(M×

x )0}), where (M×
x )0 denotes the connected component of 1 in

M×
x . By an M -HBAV (‘Hilbert-Blumenthal abelian variety’) over a field K we

shall mean a triple (A, i, j) where

• A/K is an abelian variety of dimension [M : Q],

• i : OM →֒ End (A/K)

• and j : (d−1
M )+

∼→ P(A, i) is an isomorphism of ordered invertible OM -
modules.

Here P(A, i) is the invertible OM module of symmetric (i.e. f∨ = f) homomor-
phisms f : (A, i) → (A∨, i∨) which is ordered by taking the unique connected
component of (P(A, i) ⊗Mx) which contains the class of a polarisation. (See
section 1 of [Rap].)
If λ is a prime of M and if x ∈ d−1

M then j(x) : A → A∨ gives rise to an
alternating pairing

ej,x,0 : TλA× TλA −→ Zl(1).

This corresponds to a unique OM,λ-bilinear alternating pairing

ej,x : TλA× TλA −→ d−1
M,λ(1),

which are related by ej,x,0 = tr ◦ ej,x. The pairing x−1ej,x is independent of x
and gives a perfect OM,λ-bilinear alternating pairing

ej : TλA× TλA −→ OM,λ(1),

which we will call the j-Weil pairing. (See section 1 of [Rap].) Again using the
trace, we can think of ej as an OM,λ-linear isomorphism

ẽj : TλA⊗ d−1
M −→ Hom Zl

(TλA,Zl(1)).

More precisely

ẽj(a⊗ y)(b) = tr (yej(a, b)) = ej,x,0(x
−1ya, b).
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The same formula (for x ∈ d−1
M −ad−1

M ) gives rise to an OM,λ-linear isomorphism

ẽj : A[a] ⊗OM
d−1
M −→ A[a]∨,

which is independent of x and which we will refer to as the j-Weil pairing on
A[a].
Suppose that F is a totally real number field and that π is an algebraic (see
for instance [Cl]) cuspidal automorphic representation of GL2(AF ) with field
of definition (or coefficients) M ⊂ C. (That is M is the fixed field of the
group of automorphisms σ of C with σπ∞ = π∞. By the strong multiplicity
one theorem this is the same as the fixed field of the group of automorphisms
σ of C with σπx ∼= πx for all but finitely many places x of F .) We will

say that π∞ has weight (~k, ~w) ∈ Z
Hom (F,R)
>0 × ZHom (F,R) if for each infinite

place τ : F →֒ R the representation πτ is the (kτ − 1)st lowest discrete series
representation of GL2(Fx) ∼= GL2(R) (or in the case kτ = 1 the limit of discrete
series representation) with central character a 7→ a2−kτ−2wτ . Note that w =
kτ + 2wτ must be independent of τ . If π∞ has weight ((k, ..., k), (0, ..., 0)) we
will simply say that it has weight k. In some cases, including the cases that π∞
is regular (i.e. kτ > 1 for all τ) and the case π∞ has weight 1, it is known that
M is a CM number field and that for each rational prime l and each embedding
λ : M →֒ Qac

l there is a continuous irreducible representation

ρπ,λ : GF → GL2(Mλ)

canonically associated to π. For any prime x of F not dividing l the restriction
ρπ,λ|Gx

depends up to Frobenius semi-simplification only on πx (and λ). (See
[Tay1] for details. To see that M is a CM field one uses the Peterssen inner
product

(f1, f2) =

∫

GL2(F )(R×
>0)

Hom (F,R)

f1(g)
c(f2(g))||det g||w−2dg.

For all σ ∈ Aut (C) the representation σπ∞ extends to an algebraic automor-
phic representation π(σ) of GL2(AF ) with the same value for w. The pairing

( , ) gives an isomorphism cπ(σ) ∼= π(σ)∨||det ||2−w. Thus σ−1cσπ∞ is in-
dependent of σ and M is a CM field.) We will write ρπ,λ|ssWFx

= WDλ(πx),

where WDλ(πx) is a semi-simple two-dimensional representation of WFx
. If

πx is unramified then WDλ(πx) is also unramified and WDλ(πx)(Frobx) has
characteristic polynomial

X2 − txX + (Nx)sx

where tx (resp. sx) is the eigenvalue of

[
GL2(OFx

)

(
̟x 0
0 1

)
GL2(OFx

)

]
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(resp. of [
GL2(OFx

)

(
̟x 0
0 ̟x

)
GL2(OFx

)

]
)

on π
GL2(OFx )
x . An explicit description of some other instances of WDλ(πx) may

be found in section 4 of [CDT].
We may always conjugate ρπ,λ so that it is valued in GL2(OM,λ) and then
reduce it to get a continuous representation GF → GL2(F

ac
l ). If for one such

choice of conjugate the resulting representation is irreducible then it is inde-
pendent of the choice of conjugate and we will denote it ρπ,λ.

1 l-adic modular forms on definite quaternion algebras

In this section we will establish some notation and recall some facts about l-adic
modular forms on some definite quaternion algebras.
To this end, fix a prime l > 3 and a totally real field F of even degree in which
l is unramified. Let D denote the division algebra with centre F which ramifies
exactly at the set of infinite places of F . Fix a maximal order OD in D and
isomorphisms OD,x

∼= M2(OF,x) for all finite places x of F . These choices allow
us to identify GL2(A

∞
F ) with (D ⊗Q A∞)×. For each finite place x of F also

fix a uniformiser ̟x of OF,x. Also let A be a topological Zl-algebra which is
either an algebraic extension of Ql, the ring of integers in such an extension or
a quotient of such a ring of integers.
Let U =

∏
x Ux be an open compact subgroup of GL2(A

∞
F ) and let ψ :

(A∞
F )×/F× → A× be a continuous character. Also let τ : Ul → Aut (Wτ )

be a continuous representation of Ul on a finite A-module Wτ such that

τ |Ul∩O×
F,l

= ψ|−1

Ul∩O×
F,l

.

We will write Wτ,ψ for Wτ when we want to think of it as a U(A∞
F )×-module

with U acting via τ and (A∞
F )× by ψ−1.

We define Sτ,ψ(U) to be the space of continuous functions

f : D×\GL2(A
∞
F ) −→Wτ

such that

• f(gu) = τ(ul)
−1f(g) for all g ∈ GL2(A

∞
F ) and all u ∈ U , and

• f(gz) = ψ(z)f(g) for all g ∈ GL2(A
∞
F ) and all z ∈ (A∞

F )×.

If
GL2(A

∞
F ) =

∐

i

D×tiU(A∞
F )×

then

Sτ,ψ(U)
∼−→ ⊕

iW
(U(A∞

F )×∩t−1
i D×ti)/F

×

τ,ψ

f 7−→ (f(ti))i.

The index set over which i runs is finite.
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Lemma 1.1 Each group (U(A∞
F )× ∩ t−1

i D×ti)/F× is finite and, as we are as-
suming l > 3 and l is unramified in F , the order of (U(A∞

F )× ∩ t−1
i D×ti)/F×

is not divisible by l.

Proof: Set V =
∏
x6 |∞ O×

F,x. Then we have exact sequences

(0) −→ (UV ∩ t−1
i Ddet=1ti)/{±1} −→ (U(A∞

F )× ∩ t−1
i D×ti)/F× −→

(((A∞
F )×)2V ∩ F×)/(F×)2

and

(0) −→ O×
F /(O×

F )2 −→ (((A∞
F )×)2V ∩ F×)/(F×)2 −→ H[2] −→ (0),

where H denotes the class group of OF . We see that (((A∞
F )×)2V ∩F×)/(F×)2

is finite of 2-power order. Moreover UV ∩ t−1
i Ddet=1ti is finite. For l > 3 and l

unramified in F , D× and hence UV ∩ t−1
i Ddet=1ti contain no elements of order

exactly l. The lemma follows. 2

Corollary 1.2 If B is an A-algebra then

Sτ,ψ(U) ⊗A B ∼−→ Sτ⊗AB,ψ(U).

If x6 |l, or if x|l but τ |Ux
= 1, then the Hecke algebra A[Ux\GL2(Fx)/Ux] acts

on Sτ,ψ(U). Explicitly, if

UxhUx =
∐

i

hiUx

then
([UxhUx]f)(g) =

∑

i

f(ghi).

Let U0 denote
∏
xGL2(OF,x). Now suppose that n is an ideal of OF and that,

for each finite place x of F diving n, Hx is a quotient of (OF,x/nx)
×. Then

we will write H for
∏
x|nHx and we will let UH(n) =

∏
x UH(n)x denote the

open subgroup of GL2(A
∞
F ) defined by setting UH(n)x to be the subgroup of

GL2(OF,x) consisting of elements
(
a b
c d

)

with c ∈ nx and, in the case x|n, with ad−1 mapping to 1 in Hx.
If x6 |ln then we will let Tx denote the Hecke operator

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]

and Sx the Hecke operator
[
UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]
.
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If x|n and, either x6 |l or x|l but τ |UH(n) = 1, then we will set

〈h〉 =

[
UH(n)

(
h̃ 0
0 1

)
UH(n)

]

for h ∈ Hx and h̃ a lift of h to O×
F,x; and

U̟x
=

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]
;

and

V̟x
=

[
UH(n)

(
1 0
0 ̟x

)
UH(n)

]
;

and

S̟x
=

[
UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]
.

For x|n we note the decompositions

UH(n)x

(
̟x 0
0 1

)
UH(n)x =

∐

a∈k(x)

(
̟x ã
0 1

)
UH(n)x,

and

UH(n)x

(
1 0
0 ̟x

)
UH(n)x =

∐

a∈k(x)

(
̟x 0
̟xã 1

)
UH(n)x

and

UH(n)x

(
̟x 0
0 ̟x

)
UH(n)x =

(
̟x 0
0 ̟x

)
UH(n)x,

where ã is some lift of a to OF,x.
We will let hτ,A,ψ(UH(n)) denote the A-subalgebra of EndA(Sτ,ψ(UH(n))) gen-
erated by Tx for x6 |ln and by U̟x

for x|n but x6 |l. It is commutative. We will
call a maximal ideal m of hτ,A,ψ(UH(n)) Eisenstein if it contains Tx − 2 and
Sx − 1 for all but finitely many primes x of F which split completely in some
finite abelian extension of F . (The following remark may help explain the form
of this definition. If ρ : GF → GL2(Fl) is a continuous reducible representa-
tion, then there is a finite abelian extension L/F such that tr ρ(GL) = {2} and
(ǫ−1
l det ρ)(GL) = {1}.)

For k ∈ Z≥2 and we will let Symm k−2(A2) denote the space of homogeneous
polynomials of degree k − 2 in two variables X and Y over A with a GL2(A)-
action via

((
a b
c d

)
f

)
(X,Y ) = f

(
(X,Y )

(
a b
c d

))
= f(aX + cY, bX + dY ).

Let A be an OL algebra for some extension L/Ql containing the images of all

embeddings F →֒ Qac
l . Suppose that (~k, ~w) ∈ Z

Hom (F,Qac
l )

>1 ×ZHom (F,Qac
l ) is such
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that kσ+2wσ is independent of σ. We will write τ(~k,~w),A for the representation

of GL2(OF,l) on W(~k,~w),A =
⊗

σ:F→Qac
l

Symm kσ−2(A2) via

g 7−→ ⊗σ:F→Qac
l

(Symm kσ−2(σg) ⊗ detwσ (σg)).

We will also write S(~k,~w),A,ψ(U) for Sτ
(~k, ~w),A

,ψ(U). Let Striv
(~k,~w),A,ψ

(U) denote (0)

unless (~k, ~w) = ((2, ..., 2), (w, ..., w)), in which case let it denote the subspace of
S(~k,~w),A,ψ(U) consisting of functions f which factor through the reduced norm.

Set
S(~k,~w),A,ψ(Ul) = lim

→U l
S(~k,~w),A,ψ(U l × Ul).

It has a smooth action of GL2(A
∞,l
F ) (by right translation). If (~k, ~w) =

((k, ..., k), (0, ..., 0)) then we will often write k in place of (~k, ~w). Set

S2,A,ψ = lim
→U

S2,A,ψ(U)

and
Striv

2,A,ψ = lim
→U

Striv
2,A,ψ(U).

They have smooth actions of GL2(A
∞
F ).

Lemma 1.3 Suppose that (~k, ~w) ∈ Z
Hom (F,Qac

l )
>1 × ZHom (F,Qac

l ) and w = kσ −
1 + 2wσ is independent of σ. Also suppose that ψ : A×

F /F
× → (Qac

l )× is
a continuous character satisfying ψ(a) = (Na)1−w for all a in a non-empty

open subgroup of F×
l . Choose an isomorphism i : Qac

l
∼→ C. Define i(~k, ~w) =

(i~k, i~w) ∈ Z
Hom (F,C)
>1 × ZHom (F,C) by (i~k)τ = ~ki−1τ and (i ~w)τ = ~wi−1τ . Also

define ψi : A×
F /F

× → C× by ψi(z) = i((Nzl)
w−1ψ(z∞))(Nz∞)1−w. Then we

have the following assertions.

1. S(~k,~w),Qac
l ,ψ(Ul) is a semi-simple admissible representation of GL2(A

∞,l
F )

and S(~k,~w),Qac
l ,ψ(Ul)

U l

= S(~k,~w),Qac
l ,ψ(Ul × U l).

2. There is an isomorphism

(S(~k,~w),Qac
l ,ψ(Ul)/S

triv
(~k,~w),Qac

l ,ψ
(Ul)) ⊗Qac

l ,i C ∼=
⊕

π

π∞,l ⊗ πUl

l

where π runs over regular algebraic cuspidal automorphic representations
of GL2(AF ) such that π∞ has weight (~k, ~w) and such that π has central
character ψi.

3. S2,Qac
l ,ψ is a semi-simple admissible representation of GL2(A

∞
F ) and

SU2,Qac
l ,ψ = S2,Qac

l ,ψ(U).
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4. There is an isomorphism

S2,Qac
l ,ψ ⊗Qac

l ,i C ∼=
⊕

χ

Qac
l (χ) ⊕

⊕

π

π∞

where π runs over regular algebraic cuspidal automorphic representations
of GL2(AF ) such that π∞ has weight 2 and such that π has central char-
acter ψi, and where χ runs over characters (A∞

F )×/F×
>>0 → (Qac

l )× with
χ2 = ψ.

Proof: We will explain the first two parts. The other two are similar. Let
C∞(D×\(D ⊗Q A)×/Ul, ψ∞) denote the space of smooth functions

D×\(D ⊗Q A)×/Ul −→ C

which transform under A×
F by ψ∞. Let τ∞ denote the representation of D×

∞
on Wτ∞ = W(~k,~w),Qac

l
⊗i C via

g 7−→ ⊗σ:F→Qac
l

(Symm kσ−2(iσg) ⊗ detwσ (iσg)).

Then there is an isomorphism

S(~k,~w),Qac
l ,ψ(Ul)

∼−→ HomD×
∞

(W∨
τ∞ , C

∞(D×\(D ⊗Q A)×/Ul, ψ∞))

which sends f to the map

y 7−→ (g 7−→ y(τ∞(g∞)−1τ(~k,~w),Qac
l

(gl)f(g∞))).

Everything now follows from the Jacquet-Langlands theorem. 2

There is a pairing

Symm k−2(A2) × Symm k−2(A2) −→ A

defined by
〈f1, f2〉 = (f1(∂/∂Y,−∂/∂X)f2(X,Y ))|X=Y=0.

By looking at the pairing of monomials we see that

〈f1, f2〉 = (−1)k〈f2, f1〉

and that if 2 ≤ k ≤ l + 1 then this pairing is perfect. Moreover if

u =

(
a b
c d

)
∈ GL2(A)

then

〈uf1, uf2〉
= (f1(a∂/∂Y − c∂/∂X, b∂/∂Y − d∂/∂X)f2(aX + cY, bX + dY ))|X=Y=0

= (f1((detu)∂/∂W,−(detu)∂/∂Z)f2(Z,W ))|Z=W=0

= (detu)k−2〈f1, f2〉,

Documenta Mathematica · Extra Volume Coates (2006) 729–779



742 Richard Taylor

where Z = aX + cY and W = bX + dY . This extends to a perfect pairing
W(~k,~w),A ×W(~k,~w),A → A such that

〈ux, uy〉 = (N detu)w−1〈x, y〉

for all x, y ∈ W(~k,~w),A and all u ∈ GL2(OF,l). Here w = kσ + 2wσ − 1, which

is independent of σ.
We can define a perfect pairing Sk,A,ψ(UH(n))×Sk,A,ψ(UH(n)) → A by setting
(f1, f2) equal to

∑

[x]

〈f1(x), f2(x)〉ψ(detx)−1(#(UH(n)(A∞
F )× ∩ x−1D×x)/F×)−1,

where [x] ranges over D×\(D ⊗Q A∞)×/UH(n)(A∞
F )×. (We are using the fact

that #(UH(n)(A∞
F )× ∩ x−1D×x)/F× is prime to l.) The usual calculation

shows that

([UH′(n′)gUH(n)]f1, f2)UH′ (n′) = ψ(det g)(f1, [UH(n)g−1UH′(n′)]f2)UH(n).

Now specialise to the case that A = O is the ring on integers of a finite extension
of Ql. We will write simply h(~k,~w),ψ(UH(n)) for h(~k,~w),O,ψ(UH(n)). It follows

from lemma 1.3 and the main theorem in [Tay1] that there is a continuous
representation

ρ : GF −→ GL2(h(~k,~w),ψ(UH(n)) ⊗O Qac
l )

such that

• if x6 |nl then ρ is unramified at x and tr ρ(Frobx) = Tx; and

• det ρ = ǫ(ψ ◦ Art−1).

From the theory of pseudo-representations (or otherwise, see [Ca2]) we deduce
that if m is a non-Eisenstein maximal ideal of h(~k,~w),ψ(UH(n)) then ρ gives rise
to a continuous representation

ρm : GF −→ GL2(h(~k,~w),ψ(UH(n))m)

such that

• if x6 |nl then ρm is unramified at x and tr ρm(Frobx) = Tx; and

• det ρm = ǫ(ψ ◦ Art−1).

From the Cebotarev density theorem we see that h(~k,~w),ψ(UH(n))m is generated

by U̟x
for x|n but x6 |l and by Tx for all but finitely many x6 |ln. (For let h

denote the O-subalgebra of h(~k,~w),ψ(UH(n))m generated by U̟x
for x|n but
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x6 |l and by Tx for all but finitely many x6 |ln. The Cebotarev densitry theorem
implies that tr ρm is valued in h and hence

Tx = tr ρm(Frobx) ∈ h

for all x6 |nl. Thus h = h(~k,~w),ψ(UH(n))m.)

We will write ρm for (ρm mod m). If φ : h(~k,~w),ψ(UH(n))m → R is a map of

local O-algebras then we will write ρφ for φρm. If R is a field of characteristic
l we will sometimes write ρφ instead of ρφ.

Lemma 1.4 Let (~k, ~w) be as above. Suppose that x6 |n is a split place of F
above l such that 2 ≤ kx ≤ l − 1. If m is a non-Eisenstein maximal ideal of
h(~k,~w),ψ(UH(n)) and if I is an open ideal of h(~k,~w),ψ(UH(n))m (for the l-adic

topology) then ((ρm ⊗ ǫ−wx) mod I)|Gx
is of the form M(D) for some object D

of MFFx,O,kx
with D 6= D0 6= (0).

Proof: Combining the construction of ρm with the basic properties of M listed
in the section of notation, we see that it suffices to prove the following.
Suppose that π is a cuspidal automorphic representation of GL2(AF ) such that

π∞ is regular algebraic of weight (~k, ~w). Let M denote the field of definition
of π. Suppose that x is a split place of F above l with πx unramified. Let Mac

denote the algebraic closure of M in C and fix an embedding λ : Mac →֒ Qac
l .

Let τ : F →֒ Mac be the embedding so that λ ◦ τ gives rise to x. Suppose
that 2 ≤ kτ ≤ l − 1. If I is a power of the prime of OM induced by λ, then
(ρπ,λ⊗ǫ−wτ )|Gx

mod I is of the form M(D) for some object D of MFFx,OM,λ,kτ

with D 6= D0 6= (0).
By the construction of ρπ,λ in [Tay1], our assumption that (ρπ,λ mod λ) is
irreducible, and the basic properties of M, we see that it suffices to treat the
case that πy is discrete series for some finite place y (cf [Tay2]). Because
2 ≤ kτ ≤ l − 1, it follows from [FL] that we need only show that ρπ,λ is
crystalline with Hodge-Tate numbers −wτ and 1 − kτ − wτ . In the case πy is
discrete series for some finite place y this presumably follows from Carayol’s
construction of ρπ,λ [Ca1] and Faltings theory [Fa], but for a definite reference
we refer the reader to theorem VII.1.9 of [HT] (but note the different, more
sensible, conventions in force in that paper). 2

Corollary 1.5 Suppose that x6 |n is a split place of F . Suppose that (~k, ~w) is
as above and that 2 ≤ kx ≤ l − 1. If m is a non-Eisenstein maximal ideal of

h(~k,~w),ψ(UH(n)) then ρm|Ix
∼ ω

kx−1+(l+1)wx

2 ⊕ ω
l(kx−1)+(l+1)wx

2 or

(
ωkx+wx−1 ∗

0 ωwx

)
.

Proof: This follows easilly from the above lemma together with theorem 5.3,
proposition 7.8 and theorem 8.4 of [FL]. 2

The following lemma is well known.
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Lemma 1.6 Suppose that x is a finite place of F and that π is an irreducible
admissible representation of GL2(F ). If χ1 and χ2 are two characters of F×,
let π(χ1, χ2) denote the induced representation consisting of locally constant
functions GL2(F ) → C such that

f

((
a b
0 d

)
g

)
= χ1(a)χ2(b)|a/b|1/2x f(g)

(with GL2(F )-action by right translation). Let U1 (resp. U2) denote the sub-
group of elements in GL2(OF,x) which are congruent to a matrix of the form

(
1 ∗
0 1

)
mod (̟x)

(resp. (
∗ ∗
0 ∗

)
mod (̟2

x)).

1. If πU1 6= (0) then π is a subquotient of some π(χ1, χ2) where the conduc-
tors of χ1 and χ2 are ≤ 1.

2. If the conductors of χ1 and χ2 are ≤ 1 then

π(χ1, χ2)
U1

is two dimensional with a basis e1, e2 such that

U̟x
ei = (Nx)1/2χi(̟x)ei

and
〈h〉ei = χi(h)ei

for h ∈ (OF,x/x)
×.

3. If πU2 6= (0) then π is either cuspidal or a subquotient of some π(χ1, χ2)
where the conductors of χ1 and χ2 are equal and ≤ 1.

4. If π is cuspidal then dimπU2 ≤ 1 and U̟x
acts as zero on πU2 .

5. If χ1 and χ2 have conductor 1 then π(χ1, χ2)
U2 is one dimensional and

U̟x
acts on it as 0.

6. If χ1 and χ2 have conductor 0 then π(χ1, χ2)
U2 is three dimensional and

U̟x
acts on it with characteristic polynomial

X(X − (Nx)1/2χ1(̟x))(X − (Nx)1/2χ2(̟x)).

As a consequence we have the following lemma.

Lemma 1.7 Suppose that ξ : hk,ψ(UH(n))m → Qac
l and that x6 |l.
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1. If x(n) = 1 and if ξ′ is any extension of ξ to the subalgebra of
End (Sk,O,ψ(UH(n))m) generated by hk,ψ(UH(n))m and 〈h〉 for h ∈ H,
then

ξ(ρm)|Gx
∼

(
∗ ∗
0 χx

)

where χx(Art̟x) = ξ(U̟x
) and, for u ∈ O×

F,x, we have χx(Artu) =
ξ′(〈u〉).

2. If x(n) = 2 and Hx = {1} then either ξ(U̟x
) = 0 or ξ(U̟x

) is an
eigenvalue of ξ(ρm)|Gx

(σ) for any σ ∈ Gx lifting Frobx.

We also get the following corollary.

Corollary 1.8 1. If x6 |l, x(n) = 1 and U
2
̟x

− (Nx)ψ(̟x) 6∈ m then

ρm|Gx
∼

(
∗ ∗
0 χx

)

where χx(Art̟x) = U̟x
and χx(Artu) = 〈u〉 for u ∈ O×

F,x. In particu-
lar 〈h〉 ∈ hk,ψ(UH(n))m for all h ∈ Hx.

2. If x6 |l, x(n) = 2, Hx = {1} and U̟x
∈ m then U̟x

= 0 in hk,ψ(UH(n))m.

3. If l is coprime to n and for all x|n we have x(n) = 2, Hx = {1} and
U̟x

∈ m, then the algebra hk,ψ(UH(n))m is reduced.

Proof: The first part follows from the previous lemma via a Hensel’s lemma
argument. For the second part one observes that by the last lemma ξ(U̟x

) = 0
for all ξ : hk,ψ(UH(n))m → Qac

l . Hence by lemma 1.6 we have that U̟x
= 0 on

Sk,Qac
l ,ψ(UH(n))m. The third part follows from the second (because the algebra

hk,ψ(UH(n))m is generated by commuting semi-simple elements). 2

2 Deformation rings and Hecke algebras I

In this section we extend the method of [TW] to totally real fields. This relies
crucially on the improvement to the argument of [TW] found independently by
Diamond [Dia] and Fujiwara (see [Fu], unpublished). Following this advance
it has been clear to experts that some extension to totally real fields would be
possible, the only question was the exact extent of the generalisation. Fujiwara
has circulated some unpublished notes [Fu]. Then Skinner and Wiles made a
rather complete analysis of the ordinary case (see [SW2]). We will treat the
low weight, crystalline case. As will be clear to the reader, we have not tried
to work in maximal generality, rather we treat the case of importance for this
paper. We apologise for this. It would be very helpful to have these results
documented in the greatest possible generality.
In this section and the next let F denote a totally real field of even degree in
which a prime l > 3 splits completely. (As the reader will be able to check
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without undue difficulty it would suffice to assume that l is unramified in
F .) Let D denote the quaternion algebra with centre F which is ramified
at exactly the infinite places, let OD denote a maximal order in D and fix
isomorphisms OD,x

∼= M2(OF,x) for all finite places x of F . Let 2 ≤ k ≤ l − 1.
Let ψ : A×

F /F
× → (Qac

l )× be a continuous character such that

• if x6 |l is a prime of F then ψ|O×
F,x

= 1,

• ψ|O×
F,l

(u) = (Nu)2−k.

For each finite place x of F choose a uniformiser ̟x of OF,x. Suppose that
φ : hk,Fac

l ,ψ(U0) → Facl is a homomorphism with non-Eisenstein kernel, which
we will denote m. Let O denote the ring of integers of a finite extension K/Ql

with maximal ideal λ such that

• K contains the image of every embedding F →֒ Qac
l ,

• ψ is valued in O×,

• there is a homomorphism φ̃ : hk,O,ψ(U0)m → O lifting φ, and

• all the eigenvalues of all elements of the image of ρφ are rational over
O/λ.

For any finite set Σ of finite places of F not dividing l we will consider the
functor DΣ from complete noetherian local O-algebras with residue firld O/λ
to sets which sends R to the set of 12 + M2(mR)-conjugacy classes of liftings
ρ : GF → GL2(R) of ρφ such that

• ρ is unramified outside l and Σ,

• det ρ = ǫ(ψ ◦ Art−1), and

• for each place x of F above l and for each finite length (as an O-module)
quotient R/I of R the O[Gx]-module (R/I)2 is isomorphic to M(D) for
some object D of MFFx,O,k.

This functor is represented by a universal deformation

ρΣ : GF −→ GL2(RΣ).

(This is now very standard, see for instance appendix A of [CDT].)
Now let Σ be a finite set of finite places of F not dividing l such that if x ∈ Σ
then

• Nx ≡ 1 mod l,

• ρφ is unramified at x and ρφ(Frobx) has distinct eigenvalues αx 6= βx.
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By Hensel’s lemma the polynomial X2 − TxX + (Nx)ψ(̟x) splits as (X −
Ax)(X −Bx) in hk,O,ψ(U0)m, where Ax mod m = αx and Bx mod m = βx. For
x ∈ Σ we will let ∆x denote the maximal l-power quotient of (OF /x)

×. We
will let nΣ =

∏
x∈Σ x; ∆Σ =

∏
x∈Σ ∆x; U0,Σ = U{1}(nΣ); and U1,Σ = U∆Σ

(nΣ).
We will let mΣ denote the ideal of either hk,ψ(U0,Σ) or hk,ψ(U1,Σ) generated by

• l;

• Tx − tr ρφ(Frobx) for x6 |lnΣ; and

• U̟x
− αx for x ∈ Σ.

Lemma 2.1 Let Σ satisfy the assumptions of the last paragraph.

1. If x ∈ Σ then ρΣ|Gx
∼ χα,x ⊕ χβ,x where χα,x mod mRΣ

is unramified
and takes Frobx to αx.

2. χα,x ◦ Art |O×
F,x

factors through ∆x, and these maps make RΣ into a

O[∆Σ]-module.

3. The universal property of RΣ gives rise to a surjection of O[∆Σ]-algebras

RΣ →→ hk,ψ(U1,Σ)mΣ

under which ρΣ pushes forward to ρmΣ
.

Proof: The first part is proved in exactly the same manner as lemma 2.44 of
[DDT]. The second part is then clear. The third part is clear because for x6 |nΣl
we have tr ρΣ(Frobx) 7→ Tx while for x ∈ Σ we have χα,x(̟x) 7→ U̟x

. 2

Lemma 2.2 The map

η : Sk,O,ψ(U0,Σ−{x})mΣ−{x} −→ Sk,O,ψ(U0,Σ)mΣ

f 7−→ Axf −
(

1 0
0 ̟x

)
f

is an isomorphism which induces an isomorphism

η∗ : hk,ψ(U0,Σ)mΣ

∼−→ hk,ψ(U0,Σ−{x})mΣ−{x} .

Proof: The map η is well defined because U̟x
◦ η = η ◦ Ax. It is injective

with torsion free cokernel because the composition of η with the adjoint of the
natural inclusion Sk,O,ψ(U0,Σ−{x}) →֒ Sk,O,ψ(U0,Σ) is (Nx)Ax − Bx 6∈ mΣ. As

αx/βx 6= (Nx)±1, no lift of ρφ with determinant ǫ(ψ ◦Art−1) has conductor at
x exactly x. Thus

Sk,O,ψ(U0,Σ)mΣ
= (Sk,O,ψ(U0,Σ−{x}) +

(
1 0
0 ̟x

)
Sk,O,ψ(U0,Σ−{x}))mΣ

.
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As

U̟x
(f1 +

(
1 0
0 ̟x

)
f2) = (Txf1 + (Nx)ψ(̟x)f2) −

(
1 0
0 ̟x

)
f1

and the matrix (
Tx (Nx)ψ(̟x)
−1 0

)

has eigenvalues Ax and Bx which are distinct mod m, the lemma follows. 2

We remark that Sk,O,ψ(U1,Σ) is a ∆Σ-module via h 7→ 〈h〉.
Lemma 2.3 1.

∑
h∈∆Σ

〈h〉 : Sk,O,ψ(U1,Σ)∆Σ

∼→ Sk,O,ψ(U0,Σ).

2. Sk,O,ψ(U1,Σ) is a free O[∆Σ]-module.

Proof: The second assertion follows from the first as we can compute that

dimSk,O,ψ(U1,Σ) ⊗O K = [U0,Σ : U1,Σ] dimSk,O,ψ(U0,Σ) ⊗O K.

(We use the fact that [U0,Σ : U1,Σ] is coprime to #(U0,Σ(A∞
F )×∩x−1D×x)/F×

for all x ∈ (D ⊗Q A∞)×.)
Using the duality introduced above it suffices to check that the natural map

Sk,O,ψ(U0,Σ) ⊗O K/O −→ (Sk,O,ψ(U1,Σ) ⊗O K/O)∆Σ

is an isomorphism. This is immediate from the definitions and the fact that
l 6 |#(U0,Σ(A∞

F )× ∩ x−1D×x)/F× for all x ∈ (D ⊗Q A∞)×. 2

As Sk,O,ψ(U1,Σ)mΣ
is a direct summand of Sk,O,ψ(U1,Σ), we deduce the follow-

ing corollary.

Corollary 2.4 1. Sk,O,ψ(U1,Σ)mΣ,∆Σ

∼→ Sk,O,ψ(U0)m compatibly with a
map hk,ψ(U1,Σ)mΣ

→ hk,ψ(U0)m sending Tx to Tx for x6 |lnΣ, 〈h〉 to 1 for
h ∈ ∆Σ and U̟x

to Ax for x ∈ Σ.

2. Sk,O,ψ(U1,Σ)mΣ
is a free O[∆Σ]-module.

Suppose that ρ : GF → GL2(O/λn) is a lifting of ρφ corresponding to some
map R∅ → O/λn. If x is a place of F above l and if (O/λn)2 ∼= M(D) as a
Gx-module, then we set

H1
f (Gx, ad 0ρ) =H1(Gx, ad 0ρ)∩Im (Ext 1

MFFx,O/λn,k
(D,D) −→ H1(Gx, ad ρ)).

Exactly as in section 2.5 of [DDT] we see that

Im (Ext 1
MFFx,O/λn,k

(D,D) −→ H1(Gx, ad ρ)) ∼= (O/λn)2 ⊕H0(Gx, ad 0ρ).

If two continuous O[Gx]-modules have the same restriction to Ix, then one is
in the image of M if and only if the other is. We conclude that the image of
the composite

Ext 1
MFO/λn,k

(D,D) −→ H1(Gx, ad ρ)
tr−→ H1(Gx,O/λn)
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is at least one dimensional (coming from unramified twists) and hence that

#H1
f (Gx, ad 0ρφ)|#(O/λn)#H0(Gx, ad 0ρφ).

We will let H1
Σ(GF , ad 0ρ) denote the kernel of the map

H1(GF , ad 0ρ) −→
⊕

x6 |nΣl

H1(Ix, ad 0ρ) ⊕
⊕

x|l
H1(Gx, ad 0ρ)/H1

f (Gx, ad 0ρ).

The trace pairing (a, b) 7→ tr ab gives a perfect duality on ad 0ρφ. For x|l
we will let H1

f (Gx, ad 0ρφ(1)) denote the annihilator in H1(Gx, ad 0ρφ(1)) of

H1
f (Gx, ad 0ρφ) under Tate local duality. We will also let H1

Σ(GF , ad 0ρφ(1))

denote the kernel of the restriction map from H1(GF , ad 0ρφ(1)) to

⊕
x6 |nΣl

H1(Ix, ad 0ρφ(1)) ⊕ ⊕
x∈ΣH

1(Gx, ad 0ρφ(1))⊕
⊕

x|lH
1(Gx, ad 0ρφ)/H

1
f (Gx, ad 0ρφ(1)))

so that

H1
Σ(GF , ad 0ρφ(1)) = ker(H1

∅ (GF , ad 0ρφ(1)) −→
⊕

x∈Σ

H1(Gx/Ix, ad 0ρφ(1))).

A standard calculation (see for instance section 2.7 of [DDT]) shows that

H1
Σ(GF , ad 0ρφ)

∼= HomO(mRΣ
/m2

RΣ
,O/λ),

so that RΣ can be topologically generated by dimH1
Σ(GF , ad 0ρφ) elements as

an O-algebra. A formula of Wiles (see theorem 2.19 of [DDT]) then tells us
that RΣ can be topologically generated as an O-algebra by

#Σ + dimH1
Σ(GF , ad 0ρφ(1))

elements.

Lemma 2.5 Suppose that the restriction of ρφ to F (
√

(−1)(l−1)/2l) is irre-
ducible. Then for any m ∈ Z>0 we can find a set Σm of primes such that

1. #Σm = dimH1
∅ (GF , ad 0ρφ(1)),

2. RΣm
can be topologically generated by dimH1

∅ (GF , ad 0ρφ(1)) elements as
an O-algebra,

3. if x ∈ Σm then Nx ≡ 1 mod lm and ρφ(Frobx) has distinct eigenvalues
αx and βx.
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Proof: By the above calculation we may replace the second requirement by the
requirement that H1

Σm
(GF , ad 0ρφ(1)) = (0) (for then RΣm

is generated by

#Σm = dimH1
∅ (GF , ad 0ρφ(1)) elements). Then we may suppress the first re-

quirement, because any set satisfying the modified second requirement and the
third requirement can be shrunk to one which also satisfies the first require-
ment. (Note that for x satisfying the third requirement H1(Gx/Ix, ad 0ρφ(1))
is one dimensional.) Next, by the Cebotarev density theorem, it suffices to
show that for [γ] ∈ H1

∅ (GF , ad 0ρφ(1)) we can find σ ∈ GF such that

• σ|F (ζlm ) = 1,

• ρφ(σ) has distinct eigenvalues, and

• γ(σ) 6∈ (σ − 1)ad 0ρφ.

Let Fm denote the extension of F (ζlm) cut out by ad 0ρ. Finally it will suffice
to show that

1. H1(Gal (Fm/F ), ad 0ρ(1)) = (0); and

2. for any non-trivial irreducible Gal (Fm/F )-submodule V of ad 0ρφ we can

find σ ∈ Gal (Fm/F (ζlm)) such that ad 0ρφ(σ) has an eigenvalue other
than 1 but σ does have an eigenvalue 1 on V .

(Given [γ] ∈ H1
∅ (GF , ad 0ρφ(1)) the first assertion tells us that the O/λ-span

of γGFm
contains some non-trivial irreducible Gal (Fm/F )-submodule V of

ad 0ρφ. Let σ be as in the second assertion for this V . Then for some σ′ ∈ GFm

we will have
γ(σ′σ) = γ(σ′) + γ(σ) 6∈ (σ − 1)ad 0ρφ.)

Because l > 3 is unramified in F , we see that [F (ζl) : F ] > 2 and so, by the
argument of the penultimate paragraph of the proof of theorem 2.49 of [DDT],
H1(Gal (Fm/F ), ad 0ρ(1)) = (0).
Suppose that V is an irreducible Gal (Fm/F )-submodule of ad 0ρφ and write

ad 0ρφ = V ⊕W . If W = (0) any σ ∈ Gal (Fm/F (ζlm)) with an eigenvalue

other than 1 on ad 0ρφ will suffice to prove the second assertion. Thus suppose
that W 6= (0). If dimW = 1 then ρφ is induced from a character of some
quadratic extension E/F and any σ 6∈ GE will suffice to prove the second
assertion (as E is not a subfield of F (ζlm)). If dimW = 2 then GF acts
on V via a quadratic character corresponding to some quadratic extension
E/F and ρφ is induced from some character χ of GE . Let χ′ denote the
Gal (E/F )-conjugate of χ. Then any σ ∈ GE(ζlm ) with χ/χ′(σ) 6= 1 will suffice
to prove the second assertion. (Such a σ will exist unless the restriction of

ad 0ρφ to E(
√

(−1)(l−1)/2l) is trivial in which case ρφ becomes reducible over

F (
√

(−1)(l−1)/2l), which we are assuming is not the case.) 2

Combining lemma 2.5, corollary 2.4 and theorem 2.1 of [Dia] we obtain the
following theorem.
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Theorem 2.6 Keep the notation and assumptions of the second and fourth
paragraphs of this section and suppose that the restriction of ρφ to the absolute

Galois group of F (
√

(−1)(l−1)/2l) is irreducible. Then the natural map

R∅ −→ hk,ψ(U0)m

is an isomorphism of complete intersections and Sk,O,ψ(U0)m is finite free as
a hk,ψ(U0)m-module.

3 Deformation rings and Hecke algebras II

In this section we use analogues of Wiles’ arguments from [W2] to extend the
isomorphism of theorem 2.6 from ∅ to any Σ.
We will keep the notation and assumptions of the last section. (Σ will again
be any finite set of finite places of F not dividing l.) Let ρeφ : GF → GL2(O)

denote the Galois representation corresponding to φ̃ (a chosen lift of φ). The
universal property of RΣ gives maps

RΣ →→ R∅
eφ−→ O.

We will denote the kernel by ℘Σ. A standard calculation (see section 2.7 of
[DDT]) shows that

HomO(℘Σ/℘
2
Σ,K/O) ∼= H1

Σ(GF , (ad 0ρ) ⊗K/O),

where

H1
Σ(GF , (ad 0ρ) ⊗K/O) = lim

−→
n

H1
Σ(GF , (ad 0ρ) ⊗ λ−n/O).

In particular we see that

#ker(℘Σ/℘
2
Σ →→ ℘∅/℘

2
∅) = #(H1

Σ(GF , (ad 0ρ)⊗K/O)/H1
∅ (GF , (ad 0ρ)⊗K/O))

divides

∏
x∈Σ #H1(Ix, (ad 0ρ) ⊗K/O)Gx

=
∏
x∈Σ #H0(Gx, (ad 0ρ) ⊗K/O(−1))

=
∏
x∈Σ #O/(1 − Nx)((1 + Nx)2 det ρ(Frobx) − (Nx)(tr ρFrobx))O.

Let n′
Σ denote the product of the squares of the primes in Σ and set UΣ =

U{1}(n
′
Σ). Let hΣ = hk,ψ(UΣ)m′

Σ
and SΣ = Sk,O,ψ(UΣ)m′

Σ
, where m′

Σ is the
maximal ideal of hk,ψ(UΣ) generated by

• λ,

• Tx − tr ρφ(Frobx) for x6 |ln′
Σ, and
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• U̟x
for x ∈ Σ.

The Galois representation ρm′
Σ

induces a homomorphism RΣ → hΣ which takes
tr ρΣ(Frobx) to Tx for all x6 |n′

Σl. Corollary 1.8 tells us that for x ∈ Σ we have
U̟x

= 0 in hΣ and that hΣ is reduced. In particular the map RΣ → hΣ is
surjective.
From lemma 1.3, lemma 1.6 and the strong multiplicity one theorem for
GL2(AF ) we see that dim(SΣ ⊗O K)[℘Σ] = 1.
We can write

SΣ ⊗O K = (SΣ ⊗O K)[℘Σ] ⊕ (SΣ ⊗O K)[Ann hΣ
(℘ΣhΣ)].

We set
ΩΣ = SΣ/(SΣ[℘Σ] ⊕ SΣ[Ann hΣ

(℘ΣhΣ)]).

By theorem 2.4 of [Dia] and theorem 2.6 above, we see that

#Ω∅ = #℘∅/℘
2
∅.

Let wΣ ∈ GL2(A
∞
F ) be defined by wσ,x = 12 if x 6∈ Σ and

wΣ,x =

(
0 1
̟2
x 0

)

if x ∈ Σ. Then wΣ normalises UΣ. We define a new pairing on Sk,O,ψ(UΣ) by

(f1, f2)
′ = (

∏

x∈Σ

ψ(̟x))
−1(f1, wΣf2).

Because ( , ) is a perfect pairing so is ( , )′. Moreover the action of any
element of hk,ψ(UΣ) is self adjoint with respect to ( , )′, so that ( , )′ restricts
to a perfect pairing on SΣ. Choose a perfect O-bilinear pairing on SΣ[℘Σ], let
jΣ denote the natural inclusion

jΣ : SΣ[℘Σ] →֒ SΣ,

and let j†Σ denote the adjoint of jΣ with respect to ( , )′ on SΣ and the chosen
pairing on SΣ[℘Σ]. Then one sees that

j†Σ : ΩΣ
∼−→ SΣ[℘Σ]/j†ΣSΣ[℘Σ].

If x6 |ln′
Σ then define

ix : Sk,O,ψ(UΣ) −→ Sk,O,ψ(UΣ∪{x})

by

ix(f) = (Nx)ψ(̟x)f −
(

1 0
0 ̟x

)
Txf +

(
1 0
0 ̟2

x

)
f.
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It is easy to check that ix commutes with Ty for y 6 |ln′
Σ∪{x} and with U̟y

for
y ∈ Σ. Moreover U̟x

ix = 0 and so

ix : SΣ −→ SΣ∪{x}.

Moreover ixSΣ[℘Σ] ⊂ SΣ∪{x}[℘Σ∪{x}]. We will let i†x denote the adjoint of ix
with respect to the pairings ( , )′ on SΣ and SΣ∪{x}. (We warn the reader
that the former is not simply the restriction of the latter.) An easy calculation
shows that i†x equals

ψ(̟x)(Nx)[UΣUΣ∪{x}]−Tx[UΣ

(
̟x 0
0 1

)
UΣ∪{x}]+[UΣ

(
̟2
x 0

0 1

)
UΣ∪{x}]

and hence that

i†x ◦ ix = ψ(̟x)(Nx)(1 − Nx)(T 2
x − (1 + Nx)2ψ(̟x)).

The following key lemma is often referred to as Ihara’s lemma.

Lemma 3.1 SΣ∪{x}/ixSΣ is l-torsion free.

Proof: It suffices to check that

ix : Sk,O/λ,ψ(UΣ)m′
Σ
−→ Sk,O/λ,ψ(UΣ∪{x})m′

Σ∪{x}

is injective, or even that the localisation at m′
Σ of the kernel of

Sk,O/λ,ψ(UΣ)3 −→ Sk,O/λ,ψ(UΣ∪{x})

(f1, f2, f3) 7−→ f1 +

(
1 0
0 ̟x

)
f2 +

(
1 0
0 ̟2

x

)
f3

vanishes.
Let V denote the subgroup of elements u ∈ UΣ with

ux ≡
(

∗ ∗
0 ∗

)
mod ̟x.

We see that

V ∩
(

1 0
0 ̟x

)
V

(
1 0
0 ̟x

)−1

= UΣ∪{x}

and that UΣ is the subgroup of GL2(A
∞
F ) generated by V and

(
1 0
0 ̟x

)−1

V

(
1 0
0 ̟x

)
.

Thus the sequence

(0) → Sk,O/λ,ψ(UΣ) → Sk,O/λ,ψ(V ) ⊕ Sk,O/λ,ψ(V ) → Sk,O/λ,ψ(UΣ∪{x})

f 7→ (

„

1 0
0 ̟x

«

f,−f)

(f1, f2) 7→f1 +

„

1 0
0 ̟x

«

f2
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is exact.
Hence it suffices to show that the localisation at m′

Σ of the kernel of

Sk,O/λ,ψ(UΣ)2 −→ Sk,O/λ,ψ(V )

(f1, f2) 7−→ f1 +

(
1 0
0 ̟x

)
f2

vanishes. However if (f1, f2) is in the kernel then f1 is invariant by the subgroup
of GL2(A

∞
F ) generated by UΣ and

(
1 0
0 ̟x

)
UΣ

(
1 0
0 ̟x

)−1

,

i.e. by UΣSL2(Fx).
First suppose that k = 2. Then, by the strong approximation theorem, we
see that f1 is invariant by right translation by any element of SL2(A

∞
F ), so

that f1 ∈ Striv
k,O/λ,ψ(Uσ). Any maximal ideal of h2,ψ(UΣ) in the support of

Striv
k,O/λ,ψ(Uσ) is Eisenstein.

Now suppose that 3 ≤ k ≤ l − 1. By the strong approximation theorem,
given any g ∈ GL2(A

∞
F ) and any u ∈ GL2(OF,l), we can find a δ ∈ D× ∩

gUΣSL2(Fx)g
−1 such that

g−1
l δgl ≡ u mod l.

Then

f1(g) = f1(δg) = f1(g(g
−1δg)) = f1(gu) = u−1f1(g),

so that

f1(g) ∈ (
⊗

OF,l→O/λ
Symm k−2((O/λ)2))GL2(OF,l) = (0).

Thus f1 = 0. 2

In particular we see that ixSΣ[℘Σ] = SΣ∪{x}[℘Σ∪{x}]. Thus

ΩΣ∪{x} ∼= SΣ[℘Σ]/j†Σi
†
xSΣ[℘Σ]

∼= SΣ[℘Σ]/j†Σ(1 − Nx)(Nx)(T 2
x − (1 + Nx)2ψ(̟x))SΣ[℘Σ],

and so

#ΩΣ∪{x} = #ΩΣ#
`

O/(1 −Nx)((Nx)tr ρ(Frobx)
2
− (1 + Nx)2 det ρ(Frobx))

´

.

We conclude that

#(℘Σ/℘
2
Σ)|#ΩΣ

for all Σ (which contains no prime above l). Combining this with theorem 2.4
of [Dia] we see obtain the following theorem.
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Theorem 3.2 Keep the notation and assumptions of the second and fourth
paragraphs of section 2 and suppose that the restriction of ρφ to the absolute

Galois group of F (
√

(−1)(l−1)/2l) is irreducible. If Σ is a finite set of finite
places of F not dividing l then the natural map

RΣ −→ hΣ

is an isomorphism of complete intersections and SΣ is a free hΣ-module.

As an immediate consequence we have the following theorem.

Theorem 3.3 Let l > 3 be a prime and let 2 ≤ k ≤ l − 1 be an integer.
Let F be a totally real field of even degree in which l splits completely. Let
ρ : GF → GL2(OQac

l
) be a continuous irreducible representation unramified

outside finitely many primes and such that for each place x of F above l the
restriction ρ|Gx

is crystalline with Hodge-Tate numbers 0 and 1 − k. Let ρ
denote the reduction of ρ modulo the maximal ideal of OQac

l
. Assume that the

restriction of ρ to F (
√

(−1)(l−1)/2l) is irreducible and that there is a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

• ρπ,λ ∼ ρ,

• πx is unramified for every finite place x of F , and

• π∞ has weight k.

Then there is a regular algebraic cuspidal automorphic representation π′ of
GL2(AF ) and an embedding λ′ : Mπ′ → Qac

l such that ρ ∼ ρπ′,λ′ and π′
∞ has

weight k.

Proof: We need only remark that det ρ/det ρπ,λ has finite l-power order and so
by twisting π we may suppose that det ρ = det ρπ,λ (as l > 2). 2

4 A potential version of Serre’s conjecture

In this section we will prove the following result, which we will improve some-
what in section 5.

Proposition 4.1 Let l > 2 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is

a continuous odd representation with ρ|Il
∼ ωk−1

2 ⊕ ω
l(k−1)
2 for some integer

2 ≤ k ≤ l. (In particular ρ|Gl
is absolutely irreducible.) Then there is a

Galois totally real field F of even degree in which l splits completely, a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

1. ρ|GF
∼ ρπ,λ;
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2. π∞ has weight 2; and

3. for each place x of F above l, WDλ(πx) is tamely ramified and

WDλ(πx)|Ix
= ω

k−(l+1)
2 ⊕ ω

lk−(l+1)
2 .

We remark that the key improvement of this over results in [Tay4] is the con-
dition that l split completely in F . This may seem minor but it will be crucial
for the arguments in section 5 and the proof of theorem 5.7. We now turn to
the proof of the proposition.
Suppose that ρ is valued in GL2(k

′) for some finite field k′ ⊂ Facl and let
k denote the unique quadratic extension of k′ in Facl . We must have that

ρ|Gl
= Ind Ql

Ql2
θ, where θ|Il

= ωk−1
2 with 2 ≤ k ≤ l and so θ is not equal to its

Gal (Ql2/Ql)-conjugate. Set µ = ǫ−1 det ρ, let N denote the minimum splitting
field for µ and fµ its conductor. Thus N is a cyclic totally real extension
of Q. Choose an imaginary quadratic field M in which l remains prime and
which contains only two roots of unity. Let δM denote the unique non-trivial
character of A×/Q×NA×

M and let fM denote the conductor of δM . Choose a
Galois totally real field E′′ such that E′′M contains a primitive root of unity
ζ of order 2#k×. Note that the degree over Fl of every residue field of a prime
of E′′ above l is even.
Choose a continuous character χ0 : M×(M×

∞×∏
q O×

M,q) →M× which extends

the canonical inclusion on M× (use the fact that M has a prime x6 |2 with
−1 6∈ (k(x)×)2) and let f0 denote the conductor of χ0. Also choose two distinct
odd primes p1 and p2 such that for both i = 1, 2

• χ0 is unramified above pi;

• pi 6= l;

• ρ is unramified at pi;

• ρ(Frobpi
) has distinct eigenvalues; and

• pi splits in the Hilbert class field of M .

(We explain why this is possible. Let M ′ denote the extension of M cut out

by M
ker ρ

and by the Hilbert class field H of M . By the Cebotarev density
theorem it suffices to find σ ∈ Gal (M ′/H) so that ρ(σ) has distinct eigenvalues.
A fortiori it suffices to find σ ∈ Il so that ρ(σ) has distinct eigenvalues. This
is possible because (l + 1)6 |k − 1.) Set w = 2wE′′M#(OM/lfM fµf0f

c
0OM )×,

where wE′′M denotes the number of roots of unity in E′′M . Let S1 denote set
of rational primes dividing fM fµf0f

c
0, let S2 be a finite set of rational primes

disjoint from S1 which split in M and such that the primes of M above S2

generate the class group of M , and set S0 = S1∪S2∪{l, p1, p2}. As in the proof
of lemma 1.1 of [Tay4] we can find an open subgroup W0 of

∏
q 6∈S0

O×
M,q/Z

×
q

such that W0 ∩M×
S0
/Q×

S0
⊂ (M×

S0
/Q×

S0
)w. Let w′ denote the index of W0 in
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∏
q 6∈S0

O×
M,q/Z

×
q . Then we can choose a Galois (over Q) totally real field E′

such that

• E′ ⊃ E′′;

• E′ contains a primitive root of 1 of order ww′; and

• χ0 extends to a continuous character χ0 : A×
M → (E′M)×.

(If χ̃0 : A×
M → C× is any extension of χ0 then χ̃0c(χ̃0)

∏
x6 |∞ | |x has finite order

and is valued in R×
>0 and so is identically 1. Hence c(χ̃0) = χ̃−1

0

∏
x6 |∞ | |x and

χ̃0 is valued in a CM field.)

Let E denote the maximal totally real extension of E′ which is unramified
outside lp1p2 and tamely ramified at these primes. Choose primes ℘1 and ℘2

of EM above p1 and p2 respectively. Also choose a prime λ of EM above l
and an embedding k →֒ OEM/λ such that the composite of the Artin map
Il → O×

M,l with the natural map O×
M,l → (OEM/λ)× coincides with ω−1

2 :

Il → k× ⊂ (OEM/λ)×. Let µ : Gal (N/Q) → (EM)× be the unique character
reducing modulo λ to µ. For i = 1, 2 we can find αi ∈ (℘i ∩M)OE′′M which
reduces modulo λ to an eigenvalue of ρ(Frobpi

) and which satisfies αiα
c
i = pi.

(First choose α′
i ∈ M ∩ ℘i satisfying α′

i(α
′
i)
c = pi and then multiply α′

i by a
suitable root of unity in E′′M .)

Lemma 4.2 Let a′ denote the product of all primes of E above lp1p2 and factor
a′OME = aac, where ℘1℘2λ|a (which is possible as p1 and p2 split in M and
as the degree over Fl of the residue field of every prime of E above l is even).
There is a unit η ∈ O×

E with η ≡ ζ mod a.

Proof: Let ζ denote the image of ζ in OE′/(a′ ∩ OE′) = OE′M/(a ∩ OE′M ).
Let H denote the maximal totally real abelian extension of E which is un-
ramified outside lp1p2 and which is tamely ramified above each of these three
primes. Thus H/E′ is Galois and Gal (H/E) is the commutator subgroup of
Gal (H/E′). In particular the transfer map Gal (E/E′) → Gal (H/E) van-
ishes. By class field theory we can identify (OE′/a′)×/O×

E′ as a subgroup of
Gal (E/E′) and (OE/a)×/O×

E as a subgroup of Gal (H/E) in such a way that
the natural map

(OE′/a′)×/O×
E′ −→ (OE/a)×/O×

E

corresponds to the transfer map on Galois groups and so is trivial. The lemma
follows. 2

Lemma 4.3 There is a continuous character χ : A×
M → (EM)× such that

• χ|M× is the canonical inclusion;
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• χ|O×
M,l

is the unique character of order prime to l with

χ|O×
M,l

(x) ≡ xl+1−k mod λ

for all x ∈ O×
M,l and all primes λ of EM above l (and where OM →֒ OEM

via the natural map);

• for i = 1, 2, χ is non-ramified above pi and χ|M℘i
(pi) = αi; and

• χ|A× = µδM/Q|| ||−1i∞ where δM/Q is the unique non-trivial character of

A×/Q×NA×
M , || || is the product of the usual absolute values and i∞ is

the projection onto R×.

Proof: Note that χ0|A× = νδM/Q|| ||−1i∞, where ν is a finite order character of
A×/Q×R× with conductor dividing f0f

c
0fM . We look for χ = χ0χ1. Thus we are

required to find a finite order continuous character χ1 : A×
M/M

× −→ (EM)×

such that

• χ1|A× = µν−1, and

• χ1 has prescribed, finite order restriction to M×
℘1

, M×
℘2

and O×
M,l, the

latter compatible with µν−1|
Z
×
l

(because µ|
Z
×
l

takes x to (x mod l)2−k).

Note that µν−1 has conductor dividing fM fµf0f
c
0. Also note that for i = 1, 2

the unit ai = αiχ0(̟℘i
)−1 satisfies aia

c
i = 1 for all complex conjugations c and

so is a root of unity. Thus the specified restrictions have orders dividing wE′′M

in the first two cases and #(OM/lfM fµf0f
c
0OM )× in the third case.

We can find a character

χ1,S0
:

∏

q∈S0

M×
q −→ (EM)×

with the desired restrictions to
∏
q∈S0

Q×
q , M×

℘1
, M×

℘2
and O×

M,l, and with order
dividing w. As

(
∏

q∈S0

M×
q ×

∏

q 6∈S0

O×
M,q)/M

×
S0

∼−→ A×
M/M

×M×
∞,

it suffices to find a character

χS0
1 :

∏

q 6∈S0

O×
M,q/Z

×
q −→ (EM)×

which coincides with χ−1
1,S0

on M×
S0
/Q×

S0
. One can choose such a character

which is trivial on W0 and so has order dividing w′. 2

We remark that as χ(c◦χ)|| ||(i∞ ◦NM/Q)−1 has finite image contained in the
totally positive elements of E× we must have χ(c ◦ χ) = || ||−1(i∞ ◦ NM/Q).
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If x is a place of EM above a place x′ of M , let χx denote the character

A×
M/M

× −→ (EM)×x
a 7−→ χ(a)a−1

x′

where ax′ denotes the x′ component of a embedded in (EM)×x via the natural
map Mx′ → (EM)x.
Set b = λ℘1℘2 and b0 = b∩E, so that OE/b0

∼= OEM/λ×OEM/℘1×OEM/℘2.
Let Wb0,0/Q denote the finite free group scheme with OE-action which has

Wb0,0(Q
ac) ∼= OE/b0(1) ⊕OE/b0.

By the standard pairing on Wb0,0 we shall mean the map Wb0,0 ⊗OE
d−1
E →

W∨
b0,0

which corresponds to the pairing

(OE/b0(1) ⊕OE/b0) × (OE/b0(1) ⊕OE/b0) −→ OE/b0(1)
(x1, y1) × (x2, y2) 7−→ y2x1 − y1x2.

We will let X/Q denote the moduli space for quadruples (A, i, j, α), where
(A, i, j) is an E-HBAV and α : Wb0,0

∼→ A[b0] takes the standard pairing
on Wb0,0 to the j-Weil pairing on A[b0]. As b0 is divisible by two primes
with coprime residue characteristic we see that X is a fine moduli space. As
in section 1 of [Rap] we see that X is smooth and geometrically connected
(because of the analytic uniformization of its complex points by a product of
copies of the upper half complex plane).
Let Γ denote the set of pairs

(γ, ε) ∈ GL2(OE/b0) ×O×
E,≫0/(O×

E,≡1 (b0)
)2

such that
εdet γ ≡ 1 mod b0.

Here O×
E,≫0 denotes the set of totally positive elements of O×

E , and O×
E,≡1 (b0)

denotes the set of elements of O×
E which are congruent to 1 modulo b0. The

group Γ acts faithfully on X via

(γ, ε)(A, i, j, α) = (A, i, j ◦ ε−1, α ◦ γ−1).

The action of GQ on the group of automorphisms of X preserves Γ and we have

σ(γ, ε) =

((
ǫ(σ) 0
0 1

)
γ

(
ǫ(σ)−1 0

0 1

)
, ε

)
.

The set H1(GQ,Γ) is in bijection with the set of pairs (R,ψ) where
R : GQ → GL2(OE/b0) is a continuous representation and ψ : GQ →
O×
E,≫0/(O×

E,≡1 (b0)
)2 is a continuous homomorphism with

ǫ−1 detR ≡ ψ−1 mod b0.
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This pair corresponds to the cocycle

(R,ψ)(σ) =

(
R(σ)

(
ǫ(σ)−1 0

0 1

)
, ψ(σ)

)
.

Thus to any such pair we can associated a twist XR,ψ/Q of X/Q.
Next we will give a description of the F -rational points of XR,ψ for any number
field F . Let N ′ denote the splitting field of ψ. Let WR/Q denote the finite free
group scheme with an action of OE such that

WR(Qac) ∼= OE/b0 ⊕OE/b0

with Galois action via R. By the standard pairing on WR/N
′ we shall mean the

map WR ⊗OE
d−1
E →W∨

R (defined over N ′) which corresponds to the pairing

(OE/b0 ⊕OE/b0) × (OE/b0 ⊕OE/b0) −→ OE/b0

(x1, y1) × (x2, y2) 7−→ y2x1 − y1x2.

Then F -rational points of XR,ψ correspond to quadruples (A, i, j, β), where

(A, i, j)/N ′F is an E-HBAV and where β : WR
∼→ A[b0] such that

• under β the standard pairing on WR and the j-Weil pairing on A[b0]
correspond, and

• for all σ ∈ Gal (N ′F/F ) there is an isomorphism

κσ : σ(A, i)
∼−→ (A, i)

such that σ(j) = κ∗σ ◦ j ◦ψ(σ)∼ for some lifting ψ(σ)∼ ∈ O×
E of ψ(σ) and

such that for some lifting σ∼ ∈ GF of σ

σA[b0]
κσ−→ A[b0]

↑ ↑
WR

R(σ∼)−→ WR

commutes, where the left vertical arrow is σ∼ ◦ β and the right one is β.

We will be particularly interested in two pairs (R,ψ) defined as follows. For
σ ∈ Gal (N/Q) we can write µ(σ) = ζ−2mσ for some integer mσ. Define
ησ = (ηζ−1)mσ ∈ O×

EM,≡1 (b) and ψ(σ) = NEM/Eησ = η2mσ . As

η2#k× = (−η#k×)2 ∈ (O×
E,≡1 (b0)

)2,

we see that
ψ : Gal (N/Q) −→ O×

E,≫0/(O×
E,≡1 (b0)

)2

is a homomorphism. Let

Rρ = ρ⊕ Ind
GQ

GM
χ℘1

⊕ Ind
GQ

GM
χ℘2
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and
RDih = Ind

GQ

GM
χλ ⊕ Ind

GQ

GM
χ℘1

⊕ Ind
GQ

GM
χ℘2

,

so that ǫ−1 detRρ = ǫ−1 detRDih = µ. Then (Rρ, ψ) and (RDih, ψ) define
elements of H1(GQ,Γ) and we will denote the corresponding twists of X by Xρ

and XDih respectively. Note that Xρ and XDih become isomorphic over Ql,
Qp1 , Qp2 and R.

Lemma 4.4 Suppose that F is a number field. If Xρ has an F -rational point
then there exists an abelian variety B/F of dimension [EM : Q], an embedding
i′ : OEM →֒ End (B/F ), and an isomorphism β′ between B[b](F ac) and Rρ.

Proof: Suppose that (A, i, j, β)/FN is a quadruple corresponding to an F -
rational point of Xρ as above. Also, for σ ∈ Gal (NF/F ) let κσ : σA

∼→ A
be the maps of the last but one paragraph. Set B = A ⊗OE

OEM and let i′

denote the natural map OEM → End (B). Let β′ denote the composite

WRρ

β−→ A[b0] −→ A[b0] ⊗OE
OEM/b = B[b].

Define f0 : OEM → HomOE
(OEM ,OE) by f0(a)(b) = trEM/Eab

c and set
f = j(1) ⊗ f0 a polarisation of B. Also set

κ′σ = κσ ⊗ ησ : σB −→ B.

We see that κ′σ commutes with the action of OEM , that σf = (κ′σ)
∨fκ′σ and

that for any lifting σ∼ ∈ GF of σ

σB[b]
κ′

σ−→ B[b]
↑ ↑

WRρ

Rρ(σ∼)−→ WRρ

commutes, where the left vertical arrow is σ∼ ◦ β′ and the right one is β′. As
the quadruple (B, i′, f, β′) has no non-trivial automorphisms (because any au-
tomorphism of (B, i′, f) has finite order and because b is divisible by two primes
with distinct residual characteristic), we see that κ′σσ(κ′τ ) = κ′στ . Thus we can
descend (B, i′) to F in such a way that β′ also descends to an isomorphism
β′ : WRρ

∼→ B[b] over F . 2

Lemma 4.5 XDih has a Q-rational point and hence Xρ has rational points over
Ql, Qp1 , Qp2 and over R.

Proof: Fix an embedding τ : M →֒ C and let Φ denote the CM -type for EM
consisting of all embeddings EM →֒ C which restrict to τ on M . Let (d−1

EM )−

denote the ordered OE-module {d ∈ d−1
EM : trEM/Ed = 0} with (d−EM⊗E,σR)+

the subset with positive imaginary part under σ⊗τ . From the theory of complex
multiplication (see [Lang], particularly theorem 5.1 of chapter 5) we see that
there is
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• an abelian variety A/M of dimension [E : Q];

• an embedding i : OEM →֒ End (A/M);

• an isomorphism j : (d−1
EM )−

∼→ P(A, i|OE
); and

• for each prime q of E a Galois invariant isomorphism αq : OEM,q(χq)
∼→

TqA

such that

• the action of EM on Lie τA is
⊕

σ∈Φ σ; and

• for any d ∈ (d−1
EM )− which is totally positive the j(d)-Weil pairing on TqA

is given by
x× y 7−→ trEM/Edxy

c.

(For the existence of j note that if f is a polarisation of τA/C such that
the f -Rosati involution stabilises and acts trivially on E, then the f -Rosati
involution also stabilises EM and acts on it via complex conjugation. This
follows from the fact that EM is the centraliser of E in End (τA/C).) As
χ(c ◦ χ) = (|| ||−1i∞) ◦ NM/Q, we see that for σ ∈ GM we have

trEM/Mdαq(σx)αq(σy)
c = ǫq(σ)trEM/Mdαq(x)αq(y)

c.

Thus the quadruple (A, i|OE
, j, (

∏
q αq) mod b0) defines a point in XDih(M).

As χ(χ◦ c) = (|| ||−1i∞µ)◦NM/Q, we see that c◦χ◦NNM/M = χ◦ c◦NNM/M

and so over NM there is an isomorphism between (A, i, j, {αq}) and (cA, c ◦
i ◦ c, c ◦ j, {c ◦ αq ◦ c}). Thus the point in XDih(M) ⊂ XDih(NM) defined by
(A, i|OE

, j, (
∏

q αq) mod b0) is invariant under c and so lies in XDih(Q). 2

Combining the last two lemmas with a theorem of Moret-Bailly (see theorem
G of [Tay4]) we see that we can find a Galois totally real field F of even degree
in which l, p1 and p2 split completely, an abelian variety B/F of dimension
[EM : M ] and an embedding i : OEM →֒ End (B/F ) such that B[λ] realises

ρ and, for i = 1, 2, B[℘i] realises Ind
GQ

GM
(χ℘i

mod ℘i). As B[λ] is unramified
at any prime above p1 we see that the action of inertia at such a prime on
TλB has l-power order. As B[℘2] is unramified at any prime above p1 we see
that the action of inertia at such a prime on T℘2

B has p2-power order. Hence
the action of inertia at a prime above p1 on TλB has both l-power order and
p2-power order. We conclude that TλB is unramified at primes above p1 and
hence B has semi-stable reduction at such primes. As p1 splits completely in
F and as B[℘1] is reducible as a representation of the decomposition group of
any prime of F above p1, we see that T℘1

B is an ordinary representation of
the decomposition group at any prime of F above p1. If x is a prime of F

above l then Ix acts on both B[℘1] and B[℘2] via ω̃
k−(l+1)
2 ⊕ ω̃

lk−(l+1)
2 where

ω̃2 : Ix → O×
EM is tamely ramified and reduces mod λ to ω2. Thus Ix acts on

T℘1
B by ω̃

k−(l+1)
2 ⊕ ω̃

lk−(l+1)
2 . Because IndGF

GF M
(χ℘1

) is modular, theorem 5.1
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of [SW2] tells us that there is a algebraic, cuspidal automorphic representation
π of GL2(AF ) of weight 2 and an embedding Mπ →֒ EM such that ρπ,℘1

is equivalent to T℘1
B. (Alternatively one may appeal to the main theorem

of [SW1], theorem 3.3 of this paper and a standard descent argument.) It
follows that in addition ρπ,λ is equivalent to TλB. This completes the proof of
proposition 4.1.
Using Langlands base change [Langl] we immediately obtain the following corol-
lary.

Corollary 4.6 Let l > 2 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is

a continuous odd representation with ρ|Il
∼ ωk−1

2 ⊕ ω
l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F of even degree in which l
splits completely, a regular algebraic cuspidal automorphic representation π of
GL2(AF ) and an embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF
∼ ρπ,λ;

2. π∞ has weight 2;

3. the central character of π∞,l is unramified; and

4. for each place x of F above l, WDλ(πx) is tamely ramified and

WDλ(πx)|Ix
= ω

k−(l+1)
2 ⊕ ω

lk−(l+1)
2 .

5 Change of weight

In this section we will prove various refinements of proposition 4.1, but first we
shall discuss some results about congruences between modular forms.
Let F be a totally real field of even degree in which a prime l > 3 splits
completely. Let n denote an ideal of OF coprime to l. Let ψ : (A∞

F )×/F× →
(Qac

l )× be a continuous character trivial on O×
F,x if x6 |l and on (1 + lOF,x) if

x|l. Suppose further that there exists i ∈ (Z/(l − 1)Z) such that for a ∈ O×
F,l,

ψ(a) is congruent to (Na)−i modulo the maximal ideal of OQac
l

.
Let D denote the division algebra with centre F ramified at exactly the infinite
places of F . Let OD be a maximal order in D and fix an isomorphism OD,x

∼=
M2(OF,x) for each finite place x of F . We will write

• U0(n, l) for U{1}(nl), and

• U1(n, l) for U(OF /lOF )×(nl).

(See section 1, in particular the paragraph after corollary 1.2, for this notation.)
We will let ηi denote the character U0(n, l)/U1(n, l) → (Facl )× which sends u,
with

ul =

(
∗ ∗
∗ d

)
,
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to (Nd mod l)i. We will also let ηi denote the Teichmüller lift of ηi. For any
OQac

l
-algebra R, there is a natural embedding

Sηi⊗R,ψ(U0(n, l)) →֒ Sηi⊗R,ψ(U1(n, l)) = S2,R,ψ(U1(n, l)),

which is equivariant for the action of Tx and Sx for all x6 |ln, and for U̟x

for x|n. The image is the subset of S2,R,ψ(U1(n, l)) where 〈h〉 = 1 for all
h ∈ (OF /lOF )×. If φ : hηi,Fl,ψ(U0(n, l)) → Facl has non-Eisenstein kernel then
for x|l we have

det ρφ|Ix
= ω1+i.

The operators U̟x
and V̟x

on S2,Fac
l ,ψ(U1(n, l)) commute with the action

of 〈h〉 for h ∈ (OF /lOF )× and hence preserve Sηi,ψ(U0(n, l)). We will let
hηi,Fl,ψ(U0(n, l))

′ (resp. hηi,Fl,ψ(U0(n, l))
′′) denote the commutative subalgebra

of the endomorphisms of Sηi,ψ(U0(n, l)) generated by hηi,Fl,ψ(U0(n, l)) and U̟x

(resp. V̟x
) for all x|l. If φ : hηi,Fl,ψ(U0(n, l))

′ → Facl and φ(U̟x
) 6= 0 then

ρφ|Gx
∼

(
χ1 ∗
0 χ2

)

where χ2 is unramified and χ2(Frobx) = φ(U̟x
) (see [W1]).

If f1 ∈ Sηi,ψ(U0(n, l)) and f2 ∈ Sη−i,ψ−1(U0(n, l)) then define (f1, f2) to be

∑

[x]∈D×\(D⊗QA∞)/U0(n,l)(A∞
F )×

f1(x)f2(xw)(#(U0(n, l)(A
∞
F )×∩x−1D×x)/F×)−1,

where

wx =

(
0 1

̟
x(n)
x 0

)

if x6 |l and wx = 12 if x|l. This is easily seen to be a perfect pairing. Moreover
a standard calculation shows that the adjoint of Sx is S−1

x , the adjoint of Tx
is S−1

x Tx, the adjoint of U̟x
for x|n is S−1

̟x
U̟x

and the adjoint of U̟x
for

x|l is S−1
̟x

V̟x
. Thus if φ : hηi,Fl,ψ(U0(n, l)) → Facl then there is also a homo-

morphism φ∗ : hη−i,Fl,ψ−1(U0(n, l)) → Facl satisfying φ∗(Tx) = φ(Sx)
−1φ(Tx)

and φ∗(Sx) = φ(Sx)
−1. Moreover if φ extends to hηi,Fl,ψ(U0(n, l))

′′ so that
φ(V̟x

) 6= 0 then φ∗ extends to hη−i,Fl,ψ−1(U0(n, l))
′ with φ∗(U̟x

) 6= 0. We de-
duce that ρφ∗ = ρ∨φ(1). Hence if φ : hηi,Fl,ψ(U0(n, l))

′′ → Facl and φ(V̟x
) 6= 0

then

ρφ|Gx
∼

(
ǫχ1 ∗
0 ωiχ2

)

where χ1 and χ2 are unramified.
We will denote by Ii the induced representation from U0(n, l) to UH(n) of
ηi. It is a tesnor product

⊗
x|l I

i
x where Iix is the induction from U0(n, l)x to

GL2(OF,x) of ηi. We can realise Iix concretely as the space of functions

θ : k(x)2 − {(0, 0)} −→ Facl

Documenta Mathematica · Extra Volume Coates (2006) 729–779



765

such that θ(a(x, y)) = aiθ(x, y) for all a ∈ k(x)×. The action of GL2(OF,x) is
via (uθ)(x, y) = θ((x, y)u). We have an isomorphism

Sηi,ψ(U0(n, l)) ∼= SIi,ψ(UH(n))

under which f ∈ Sηi,ψ(U0(n, l)) corresponds to F ∈ SIi,ψ(UH(n)) if

f(g) = F (g)((0, 1)x)

and
F (g)(ax, bx) = f(gu−1)

where u ∈ GL2(OF,l) and

u mod x =

(
∗ ∗
ax bx

)

for all x|l.
Now suppose that 0 ≤ i ≤ l − 2. If x is a prime of F above l then we have an
exact sequence

(0) −→ Symm i((Facl )2) −→ Iix −→ Symm l−1−i((Facl )2) ⊗ deti −→ (0).

The first map is just the natural inclusion of homogeneous polynomials of
degree i into the space of homogeneous functions of degree i. The second map
sends a homogeneous function θ onto the polynomial

∑

(s,t)∈P1(k(x))

θ(s, t)(tX − sY )l−1−i.

Thus for any subset T of the set of places of F above l we have a submodule
IiT ⊂ Ii with

IiT
∼=

⊗

x6∈T
Symm i((Facl )2) ⊗

⊗

x∈T
Iix.

These give rise to subspaces

Sηi,ψ,T (U0(n, l)) ⊂ Sηi,ψ(U0(n, l))

with
Sηi,ψ,∅(U0(n, l)) ∼= Si+2,Fac

l ,ψ(UH(n))

as a module for the Hecke operators Tx and Sx for all x6 |ln and for U̟x
for all

x|n.
The following lemma is a variant of an unpublished result of Buzzard (see [Bu]).

Lemma 5.1 For any set T of places of F above l and for any place x 6∈ T of
F above l there is an injection

κx : Sηi,ψ,T∪{x}(U0(n, l))/Sηi,ψ,T (U0(n, l)) →֒ Sηi,ψ,T∪{x}(U0(n, l))

Documenta Mathematica · Extra Volume Coates (2006) 729–779



766 Richard Taylor

which is equivariant for the actions of Ty and Sy for all y 6 |l and for U̟x
for

x|n, and such that the composite

Sηi,ψ,T∪{x}(U0(n, l))
κx−→ Sηi,ψ,T (U0(n, l)) →֒ Sηi,ψ,T∪{x}(U0(n, l))

coincides with V̟x
.

Proof: Define U0(T ) ⊂ UH(n) by U0(T )y = U0(n, l)y if y ∈ T and U0(T )y =
UH(n)y otherwise. Let τT denote the representation

(
⊗

y∈T
ηiy) ⊗ (

⊗

y 6∈T
Symm 2+i((Facl )2)

of U0(T )l. If x 6∈ T is a place of F above l, let τT,x denote the representation

(
⊗

y∈T
ηiy) ⊗ (

⊗

y 6∈T∪{x}
Symm i+2((Facl )2)) ⊗ (Symm l−1−i((Facl )2) ⊗ deti)

of U0(T )l. Then the exact sequence

(0) −→ Sηi,ψ,T (U0(n, l)) −→ Sηi,ψ,T∪{x}(U0(n, l)) −→
−→ Sηi,ψ,T∪{x}(U0(n, l))/Sηi,ψ,T (U0(n, l)) −→ (0)

is identified to the exact sequence

(0) −→ SτT ,ψ(U0(T ))
α−→ SτT∪{x},ψ(U0(T ∪ {x})) β−→ SτT,x,ψ(U0(T )) −→ (0),

where
α(f)(g) = f(g)(0, 1)x

and
β(f)(g)(X,Y )x =

∑

(s:t)∈P1(k(x))

f(gu(s, t)−1)(tX − sY )l−1−i

with u(s, t) ∈ GL2(OF,x) congruent to

(
∗ ∗
s t

)

modulo x.
Now define

κ : SτT,x,ψ(U0(T )) −→ SτT∪{x},ψ(U0(T ∪ {x}))
by

κ(f)(g) = f(gγ)(1, 0)x

where

γ =

(
1 0
0 ̟x

)
∈ GL2(Fx).
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To see this is well defined the only slightly subtle point is that if u ∈ U0(n, l)x
then

κ(f)(gu) = f(gγ(γ−1uγ))(1, 0)x
= (detu)if(gγ)((1, 0)x(γ

−1u−1γ))
= (detu)if(gγ)(ηx(u)/detu, 0)x
= ηx(u)

−if(gγ)(1, 0)x
= ηx(u)

−iκ(f)(g).

Moreover κ is clearly injective and equivariant for the action of Ty and Sy if
y 6 |ln and for U̟x

for x|n. Finally we have

(κ ◦ β)(f)(g) =
∑

(s:t)∈P1(k(x)) f(gγu(s, t)−1)tl−1−i

=
∑
s∈k(x) f(gγu(s, 1)−1)

= (V̟x
f)(g).

as we can take

u(s, 1) =

(
1 0
s 1

)
.

2

Corollary 5.2 There is a natural surjection

hηi,Fac
l ,ψ(U0(n, l)) →→ hi+2,Fac

l ,ψ(UH(n))

which takes Ty to Ty and Sy to Sy for all y 6 |ln and which takes U̟x
to U̟x

for
all x|n. If m is a maximal ideal of hηi,Fac

l ,ψ(U0(n, l)) such that for any x|l and

any maximal ideal m′′
x of hηi,Fac

l ,ψ(U0(n, l))
′′ extending m one has V̟x

∈ m′′
x,

then hi+2,Fac
l ,ψ(UH(n))m 6= (0). This assumption will be verified if m is non-

Eisenstein and the kernel of a homomorphism φ : hηi,ψ(U0(n, l)) → Facl such
that for all x|l

ρφ|Gx
6∼

(
ǫχ1 ∗
0 ωiχ2

)
,

with χ1 and χ2 unramified.

Proof: Choose a minimal T such that Sηi,ψ,T (U0(n, l))m 6= (0). If T = ∅ then
Sk,Fac

l ,ψ(UH(n))m 6= (0) and the corollary follows. Thus suppose that x ∈ T
and set T ′ = T − {x}. By our minimality assumption we see that

Sηi,ψ,T (U0(n, l))m
∼→(Sηi,ψ,T (U0(n, l))/Sηi,ψ,T ′(U0(n, l)))m

κx→֒ Sηi,ψ,T (U0(n, l))m

and the composite coincides with V̟x
. Thus V̟x

is an isomorphism on
the space Sηi,ψ,T (U0(n, l))m and V̟x

does not lie in some maximal ideal of
hηi,Fac

l ,ψ(U0(n, l))
′′ above m, a contradiction. 2

We also have the following lemma, which generalises results of Ash and Stevens
[AS]. We write U0 for

∏
y GL2(OF,y).
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Lemma 5.3 If k ∈ Z≥2 and if φ : hk,Fac
l ,ψ(U0) → Facl is a homomorphism, then

there is a homomorphism (Dφ) : hk+l+1,Fac
l ,ψ(ǫ◦Art −1)(U0) → Facl such that for

all places y 6 |l we have (Dφ)(Ty) = φ(Ty)(Ny) and (Dφ)(Sy) = φ(Sy)(Ny)
2.

Proof: If f ∈ Sk,Fac
l ,ψ(U0) then the function

(Df)(g) = f(g)(||N det g||(N det gl))
−1,

where || || : (A∞)× → Q×
>0 denotes the product of the usual p-adic absolute

values, lies in Sτk,Fac
l

⊗(N det),ψ(ǫ◦Art −1)(U0). Moreover if Tyf = af (resp. Syf =

bf) then Ty(Df) = a(Ny)(Df) (resp. Sy(Df) = b(Ny)(Df)). Thus it suffices
to exhibit an embedding

Sτk,Fac
l

⊗(N det),ψ(ǫ◦Art −1)(U0) →֒ Sk+l+1,Fac
l ,ψ(ǫ◦Art −1)(U0)

compatible with the action of Ty and Sy for all y 6 |l. By lemma 1.1 it suffices
to exhibit a GL2(OF,l)-equivariant embedding

⊗

x

(Symm k−2(k(x)2) ⊗ det) →֒
⊗

x

Symm k+l−1(k(x)2),

or simply GL2(OF,x)-equivariant embeddings

Symm k−2(k(x)2) ⊗ det →֒ Symm k+l−1(k(x)2)

for all x|l. Because l splits completely in F such an embedding simply results
from multiplication by X lY − XY l, as we see from the following calculation.
For a, b, c, d ∈ Fl we have

(aX + cY )l(bX + dY ) − (aX + cY )(bX + dY )l

= (aX l + cY l)(bX + dY ) − (aX + cY )(bX l + dY l)
= (ad− bc)(X lY −XY l).

2

We now turn to our improvements to proposition 4.1. First we have the fol-
lowing lemma.

Lemma 5.4 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is a

continuous odd representation with ρ|Il
∼ ωk−1

2 ⊕ ω
l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F in which l splits completely,
a regular algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF
∼ ρπ,λ;

2. π∞ has weight 2; and
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3. for each place x of F above l, πx has conductor dividing x.

Proof: Let F , π, λ be as provided by corollary 4.6. Let ψ0 : (A∞
F )×/F× →

(Qac
l )× be the character such that ǫ(ψ0 ◦ Art−1) equals the determinant of

ρπ,λ. Thus ψ0 is unramified away from l. Let n0 denote the prime to l part
of the conductor of π. Let D be the division algebra with centre F which is
ramified at exactly the infinite places of F . Let OD be a maximal order in D
and fix an isomorphism OD,x

∼= M2(OF,x) for each finite place x of F . Let O
denote the ring of integers of Qac

l .
Let χk denote the character F×

l2 → O× which sends a to the Teichmüller lift of
ak−l−1. Let Θ(χk) denote a model over O of the representation of GL2(Zl) →
→ GL2(Fl) denoted the same way in section 3.1 of [CDT]. Let Θk denote the
representation

⊗
x|l Θ(χk) of GL2(OF,l). From proposition 4.1, lemma 1.3 and

lemma 4.2.4 of [CDT] we see that there is a homomorphism

φ1 : hΘk,O,ψ0
(UH0

(n0)) −→ Facl

such that kerφ1 is non-Eisenstein and ρφ1
∼ ρ|GF

.
By lemma 3.1.1 of [CDT] we see that Θk ⊗ Facl has a Jordan-Hölder sequence
with subquotients

RT =
⊗

x6∈T
Symm k−2((Facl )2) ⊗

⊗

x∈T
(Symm l−1−k((Facl )2) ⊗ detk−1)

where T runs over sets of places of F above l, and where, if k = l, we only
have one subquotient namely T = ∅. Thus for some T , φ1 factors through
hRT ,Fac

l ,ψ0
(UH0

(n0)). It then follows from corollary 1.5 that for x ∈ T we must

have ρ|Ix
∼ ωk−l2 ⊕ ωkl−1

2 or

(
1 ∗
0 ωk−1

)
.

Thus in fact φ1 must factor through hR∅,Fac
l ,ψ0

(UH0
(n0)) = hk,Fac

l ,ψ0
(UH0

(n0)).
It follows from the first part of corollary 5.2 that φ1 gives rise to a map

φ0 : hηk−2,O,ψ0
(UH0

(n0)) −→ Facl

such that kerφ0 is non-Eisenstein and ρφ0
∼ ρ|GF

. The proposition follows. 2

Combining the lemma 5.4 with the main theorem of [SW1], we immediately
obtain the following corollary.

Corollary 5.5 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is

a continuous odd representation with ρ|Il
∼ ωk−1

2 ⊕ ω
l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F in which l splits completely,
a regular algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ : Mπ →֒ Qac

l such that
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1. ρ|GF
∼ ρπ,λ;

2. π∞ has weight 2;

3. for each finite place x of F not dividing l, πx is unramified; and

4. for each place x of F above l, the conductor of πx divides x.

Now we can use corollary 5.2 to obtain a further refinement of proposition 4.1.

Lemma 5.6 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is a

continuous odd representation with ρ|Il
∼ ωk−1

2 ⊕ ω
l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F of even degree in which l
splits completely, a regular algebraic cuspidal automorphic representation π of
GL2(AF ) and an embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF
∼ ρπ,λ;

2. π∞ has weight k; and

3. πx is unramified at every finite place x of F .

Proof: Now let F , π, λ be as provided by corollary 5.5. Also denote by ψ0 :
(A∞

F )×/F× → (Qac
l )× be the character such that ǫ(ψ0 ◦ Art−1) equals the

determinant of ρπ,λ. Thus ψ0 is unramified away from l. Note also that if
a ∈ O×

F,l then ψ0(a) is the Teichmüller lift of (Na)2−k mod l. Let D be the
division algebra with centre F which is ramified at exactly the infinite places of
F . Let OD be a maximal order in D and fix an isomorphism OD,x

∼= M2(OF,x)
for each finite place x of F . Let U0 =

∏
y GL2(OF,y). There is a homomorphism

φ0 : hηk−2,Fac
l ,ψ0

(U0(OF , l)) → Facl

with kerφ0 non-Eisenstein and ρφ0
∼ ρ|GF

. By corollary 5.2 this factors
through hk,Fac

l ,ψ0
(U0) and the proposition follows. 2

Finally we have the following version of our potential version of Serre’s conjec-
ture.

Theorem 5.7 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(F
ac
l ) is a

continuous irreducible odd representation with ρ|Gl
irreducible. Then there is a

Galois totally real field F of even degree in which l splits completely, a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

1. ρ|GF
∼ ρπ,λ;

2. π∞ has weight kρ, where kρ is the weight associated to ρ|Gl
by Serre in

[S2]; and

3. πx is unramified for every finite place x of F .
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Proof: From the definition of kρ we see that there is an integer 0 ≤ c < l − 1

such that 2 ≤ kρ−c(l+1) ≤ l and (ρ⊗ǫ−c)|Il
∼ ω

kρ−1−c(l+1)
2 ⊕ωl(kρ−1)−c(l+1)

2 .
By lemma 5.6 we can find a Galois totally real field F of even degree in which l
splits completely and a regular algebraic cuspidal automorphic representation
π of GL2(AF ) such that

1. (ρ⊗ǫ−c)|GF
is equivalent to ρπ,λ for some prime λ|l and some embedding

k(λ) →֒ Facl ;

2. π∞ has weight kρ − c(l + 1); and

3. πx is unramified at every finite place x of F .

By lemma 1.3 we can find, for some character ψ, a homomorphism

φ : hkρ−c(l+1),Fac
l ,ψ(U0) → Facl

with non-Eisenstein kernel such that ρφ
∼= (ρ ⊗ ǫ−c)|GF

. The theorem now
follows from lemma 5.3. 2

6 Applications

Combining theorem 2.1 of [Tay4], theorem 5.7, theorem 3.3 and a standard
descent argument (see for example the proof of theorem 2.4 of [Tay3]) we obtain
our main theorem.

Theorem 6.1 Let l > 3 be a prime and let 2 ≤ k ≤ l − 1 be an integer. Let
ρ : GQ → GL2(OQac

l
) be a continuous irreducible representation such that

• ρ is ramifies at only finitely many primes,

• det ρ(c) = −1,

• ρ|Gl
is crystalline with Hodge-Tate numbers 0 and 1 − k.

Let ρ denote the reduction of ρ modulo the maximal ideal of OQac
l

. If ρ|Gl
is

irreducible assume that ρ restricted to Ql(
√

(−1)(l−1)/2l) is irreducible. (This
will be the case if, for instance, 2k 6= l+ 3.) Then there is a Galois totally real
field F in which l is unramified with the following property. For each subfield
E ⊂ F with Gal (F/E) soluble there is a regular algebraic cuspidal automorphic
representation πE of GL2(AE) and an embedding λ of the feild of coefficients
of πE into Qac

l such that

• ρπE ,λ ∼ ρ|GE
,

• πE,x is unramified for all places x of E above l, and

• πE,∞ has weight k.
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(We explain the parenthetical comment. In the case discussed in that comment

ρ|Il
= ωk−1

2 ⊕ ω
l(k−1)
2 and so ρ|IQl(

√±l)
= (ω′

2)
2(k−1) ⊕ (ω′

2)
2l(k−1) where ω′

2 is

the fundamental character of level 2 of IQl(
√
±l). The assumption k 6= (l+3)/2

tells us that (l + 1)6 |2(k − 1) so that ρ|GQl(
√±l)

is absolutely irreducible.)

Combining this with the main theorem of [Bl] we deduce the following corollary.

Corollary 6.2 Keep the assumptions of theorem 6.1. If ρ is unramified at
a prime p and if α is an eigenvalue of ρ(Frobp) then α ∈ Qac and for any

isomorphism i : Qac
l

∼→ C we have

|iα|2 ≤ p(k−1)/2.

(We remark that we can deduce this corollary for all but finitely many primes
p by appealing to theorem 3.4.6 of [BL] instead of the main theorem of [Bl].)
Continue to assume that ρ satisfies the hypotheses of theorem 6.1. If p 6= l and
if i : Qac

l
∼→ C then we define

Lp(iρ,X) = idet(1 − ρIp
(Frobp)X) ∈ C[X].

Corollary 6.2 tells us that

Ll(iρ, s) =
∏

p6=l
Lp(iρ, p

−s)−1

defines a meromorphic function in Re s > (k + 1)/2.
Choose a non-trivial additive character Ψ =

∏
Ψp : A/Q → C× with ker Ψl =

Zl and Ψ∞(x) = e2π
√−1x. Also choose a Haar measure dx =

∏
dxp on AF

with dx∞ the usual measure on R, with dxl(Zl) = 1 and with dx(AF /F ) = 1.
If p 6= l we will let WD(ρ|Gp

) denote the Weil-Deligne representation associated
to ρ|Gp

. Then we define

ǫ(iρ, s) =
√
−1

k ∏

p6=l
ǫ(iWD(ρ∨|Gp

) ⊗ |Art−1|−sp ,Ψp, dxp).

(See [Tat].) Note that ǫ(iρ, s) = WNk/2−s where W is independent of s, and
where N is the (prime to l) conductor of ρ. The proof of corollary 2.2 of [Tay4]
then gives the following corollary.

Corollary 6.3 Keep the assumptions of theorem 6.1 and let i : Qac
l

∼→ C.
There is a rational function Ll(ρ,X) such that if we set

L(iρ, s) = Ll(iρ, s)Ll(iρ, l
−s)−1

then L(iρ, s) has meromorphic extension to the entire complex plane and sat-
isfies the functional equation

(2π)−sΓ(s)L(iρ, s) = ǫ(iρ, s)(2π)s−kΓ(k − s)L(i(ρ∨ ⊗ ǫk−1), k − s).
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The proof of corollary 2.4 of [Tay4] also gives us the following result.

Corollary 6.4 Keep the assumptions of theorem 6.1 and if k = 2 further
assume that for some prime p 6= l we have

ρ|Gp
∼

(
ǫχ ∗
0 χ

)
.

Then ρ occurs in the l-adic cohomology (with coefficients in some Tate twist of
the constant sheaf) of some variety over Q.

By a rank d weakly compatible system of l-adic representations R over Q we
shall mean a 5-tuple (M,S, {Qp(X)}, {ρλ}, {n1, ..., nd}) where

• M is a number field;

• S is a finite set of rational primes;

• for each prime p 6∈ S of Q, Qp(X) is a monic degree d polynomial in
M [X];

• for each prime λ of M (with residue characteristic l say)

ρλ : GQ −→ GLd(Mλ)

is a continuous representation such that, if l 6∈ S then ρλ|Gl
is crystalline,

if p 6∈ S ∪ {l} then ρλ is unramified at p and ρλ(Frobp) has characteristic
polynomial Qp(X); and

• {n1, ..., nd} is a multiset (i.e. set with multiplicities) of integers such that
for all primes λ of M (lying above a rational prime l) the representation
ρλ|Gl

is Hodge-Tate with numbers {n1, ..., nd}.

We will call {n1, ..., nd} the Hodge numbers of R. We will call R strongly
compatible if for each rational prime p there is a Weil-Deligne representation
WDp(R) of WQp

such that for primes λ of M not dividing p, WDp(R) is equiv-
alent to the Frobenius semi-simplification of the Weil-Deligne representation
associated to ρλ|Gp

. We will call a rank 2 weakly compatible system R regular
if the Hodge numbers are distinct and for one, and hence all, primes λ of M
we have det ρλ(c) = −1.
We remark that whatever is meant by a “motive”, the l-adic realisations of a
“motive” would give rise to weakly compatible systems of l-adic representations
which are generally expected to be strongly compatible. Moreover one can use
the Hodge realisation to see that if the Hodge numbers of a rank 2 “motive”
are distinct then the associated system of l-adic representations is regular in
the above sense. This explains the perhaps somewhat unnatural definition of
regularity given above.
The following lemma is an easy consequence of the characterisation of one
dimensional Hodge-Tate representations of GQ.
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Lemma 6.5 If R/Q is a rank 2 weakly compatible system of l-adic representa-
tions and if ρλ is absolutely reducible for one λ, then ρλ is absolutely reducible
for all λ.

We will call a rank 2 weakly compatible system of l-adic representations re-
ducible if the hypothesis (and hence the conclusion) of the previous lemma
holds. Otherwise we call it irreducible.

Theorem 6.6 Suppose that R = (M,S, {Qx(X)}, {ρλ}, {n1, n2})/Q is a regu-
lar, irreducible, rank 2 weakly compatible system of l-adic representations with
n1 > n2.

1. There is a Galois totally real field such that for any i : M →֒ C there is
a regular algebraic cuspidal automorphic representation of GL2(AF ) with
L(iR|GF

, s) = L(π, s).

2. For all rational primes p 6∈ S and for all i : M →֒ C the roots of i(Qp(X))
have absolute value p−(n1+n2)/2.

3. R is strongly compatible.

4. Fix i : M →֒ C. If we define

L(iR, s) =
∏

p

Lp(iWDp(R)∨, s)−1

and

ǫ(iR, s) = i1+n1−n2

∏

p

ǫ(iWDp(R)∨ ⊗ |Art−1|−sp ,Ψp, dxp)

then the product defining L(iR, s) converges to a meromorphic function
in Re s > 1− (n1 + n2)/2 and L(iR, s) has meromorphic continuation to
the entire complex plane and satisfies a functional equation

(2π)−(s+n1)Γ(s + n1)L(iR, s) = ǫ(iR, s)(2π)s+n2−1Γ(1 − n2 − s)L(iR∨, 1 − s).

Proof: We may assume that n1 = 0. For all but finitely many primes λ of M
the representation ρλ satisfies the hypotheses of theorem 6.1. The first part
follows immediately from that theorem and the second part from corollary 6.2.
Choose one such prime λ and fix an embedding Mλ ⊂ Qac

l . Let F be as in
theorem 6.1 and write

1 =
∑

j

mjInd
Gal (F/Q)
Gal (F/Ej)

χj

where mj ∈ Z, Gal (F/Ej) is soluble and χj is a character of Gal (F/Ej). For
each j we have a regular algebraic cuspidal automorphic representation πj of
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GL2(AEj
) with field of coefficients Mj and an embedding λj : Mj →֒ Qac

l such
that

ρπj ,λj
∼ ρλ|GEj

.

We see in particular that λj : Mj →֒ M . Thus any embedding λ′ : M →֒ Qac
l′

gives rise to an embedding λ′j : Mj →֒ Qac
l′ . From the Cebotarev density

theorem we see that
ρπj ,λ′

j
∼ ρλ′ |GEj

and hence that
ρλ′ =

∑

j

mjInd
Gal (Qac/Q)
Gal (Qac/Ei)

ρπj ,λ′
j
⊗ χj .

As the ρπj ,λ′
j

are strongly compatible (see [Tay1]), the same is true for the

ρλ′ . (To check compatibility of the nilpotent operators in the Weil-Deligne
representations one notices that it suffices to check that they are equal after
any finite base change.) Moreover we see that

L(iR, s) =
∏

j

L(πj ⊗ (χj ◦ Art ◦ det), s)mj

and that
ǫ(iR, s) =

∏

j

ǫ(πj ⊗ (χj ◦ Art ◦ det), s)mj ,

and the fourth part of the theorem follows. 2

As an example suppose that X/Q is a rigid Calabi-Yau 3-fold. Let X/Z denote
a model for X. Also let ζX(s) denote the zeta function of X, so that

ζX(s) =
∏

p

ζX,p(p
−s)−1,

where ζX,p(T ) is a rational function of T and for all but finitely many p we
have

ζX,p(T ) =
∏

x

(1 − T [k(x):Fp])

where x runs over closed points of X × Fp. If we set

ZX(s) = ((s− 1)(s− 3))−1(2π)−s dimH2(X(C),R)Γ(s− 1)dimH2(X(C),R)c=1

Γ(s− 2)dimH2(X(C),R)c=−1

ζX(s),

then we have that
ZX(s) = ABs−2ZX(4 − s)

where B is a non-zero rational number and where A = ±1. (To see this note
that

• H0(X × Qac,Ql) = Ql and H6(X × Qac,Ql) = Ql(−3);
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• H1(X × Qac,Ql) = H5(X × Qac,Ql) = (0);

• H2,0(X(C),C) = H0,2(X(C),C) = (0) and so by Lefschetz’s theorem
there is finite dimensional Q-vector space W with a continuous action of
GQ such that

H2(X × Qac,Ql) ∼= W ⊗Q Ql(−1)

and

H4(X × Qac,Ql) ∼= W∨ ⊗Q Ql(−2)

for all rational primes l; and

• {H3(X × Qac,Ql)} forms a regular, rank two weakly compatible system
in the above sense.

Thus it suffices to combine the above theorem with the functional equation for
Artin L-series.)

Corrections to [Tay4].

We are extremely grateful to Laurent Clozel for raising the following points.
All the references below are to [Tay4].

• The third bulleted point on page 130 should read det ρ = ǫ. (Without
this change the choice of aλ at the top of page 136 becomes impossible.)

• It would be clearer if the parenthetical comment “(as βv − βcv is coprime
to p)” read “(as βvβ

c
v = ψ(φv)ψ

c(φv) = p and βv − βcv is coprime to p)”.

• Before the “i.e.” in the middle of page 135 it would be clearer to add
a parenthetical explanation “(note that EndOM

(A1) is the centraliser of
OM in M[N :Q(βv)](OQ(βv)), which is just ON )”.

• The superscript Gal (L/K) in the fourth displayed formula on page 135

should read Gal (F̃v/Fv).

• After the fourth displayed formula on page 135 it would be clearer to add
the parenthetical comment: “(N.B. Because [F̃v : Fv]|#χv(Iv)|#k× and
because N0 contains a primitive #k× root of one, N contains a primitive
[F̃v : Fv] root of one.)”.

• The proof of lemma 1.4 is wrong. A correct proof can be given as follows.
“Choose z ∈ (iR>0)

Hom (M,R). Let M act on CHom (M,R) by acting via
τ on the τ -component. Set A = CHom (M,R)/(d−1

M 1 + OMz) (where 1
denotes the vector (1, ..., 1)). This complex torus is an abelian variety
with an action of OM , which is actually defined over R (in such a way
that complex conjugation on A(C) corresponds to complex conjugation
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on CHom (M,R)). Moreover P(A, i) ∼= O+
M , where α ∈ OM corresponds to

the alternating Riemannian form

E(x+ yz, u+ vz) = trM/Qα(yu− xv)

for x, y, u, v ∈M ⊗Q R.”

• At the end of the second sentence of the paragraph before theorem 1.6
add “and det ρ = ǫ” after “the case that ρ has insoluble image”.

• With the above changes, specifically adding det ρ = ǫ in two places,
theorem 1.6 requires some further proof. The following will suffice: “We
may assume that ρ has insoluble image. Choose a totally real quadratic
extension F ′/F in which all primes above l split and a finite extension
k′/k and a character ξ : GF ′ → (k′)× such that det ρ|GF ′ = ǫξ2. (This is
possible as the obstruction to taking the square root of a character lies in
the two part of the Brauer group.) Now work with ρ′ = ρ⊗ ξ−1 : GF ′ →
GL2(k

′), and find p, N , M , λ, ℘, L, ψ, E′/F ′ and A′ as above. Let E be
the normal closure of E′/F . Then l and p split completely in E/F . Take
A = A′ ×E′ E and argue as above.”
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dans un anneau local complet, in “p-adic monodromy and the Birch and
Swinnerton-Dyer conjecture”, Contemp. Math. 165, Amer. Math. Soc.,
1994.

[Cl] L.Clozel, Motifs et formes automorphes: applications du principe
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