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Preface

This volume is dedicated to Professor John Coates, an outstanding collab-
orator, colleague, author, teacher, and friend. He has greatly contributed to
number theory, both through his fundamental mathematical works and through
his impressive mathematical school. He is a continuous source of tremendous
inspiration to students and colleagues. John Coates has been one of the leading
proponents of and contributors to Iwasawa theory and he is the founding father
of its recent development in the form of non-commutative Iwasawa theory.
We included in the volume the Japanese tanka ”Samegai’s Waters” which was
selected by John upon our request.
Prior to the Cambridge conference

http://www.maths.nott.ac.uk/personal/ibf/jhc.html
to mark the 60th birthday of John Coates, Sarah Zerbes and Vladimir Dok-
chitser had produced a diagramme of his mathematical family tree which is
included in the volume (next page).

I. Fesenko, S. Lichtenbaum, B. Perrin-Riou, P. Schneider
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Foreword

Andrew Wiles

I first met John Coates during my first year as a graduate student at Cam-
bridge. John was about to move back to Cambridge where he had been a
graduate student himself. It was at a point in his career when he was starting
a whirlwind of moves. Coming from Stanford he spent two years in Cambridge,
and one in Australia before making a longer stop in Paris at Orsay. Mathemat-
ically however he was just settling down to what has become his most serious
and dedicated study of the last thirty years, the arithmetic of elliptic curves.
Needless to say for those who have devoted some time to this subject, it is so
full of fascinating problems that it is hard to turn from this to anything else.
The conjecture of Birch and Swinnerton-Dyer, by then fifteen years old, had
made the old subject irresistible.
In the two years he was at Cambridge we wrote four papers on elliptic curves,
culminating in the proof of a part of the conjecture for elliptic curves with
complex multiplication which are defined over the rationals. When John had
been at Cambridge previously as a graduate student of Alan Baker he had
worked on questions about the bounding of integral points on curves. Siegel’s
proof of the finiteness of the number of integral points on curves of genus at
least one was not effective. Work of John’s, in collaboration with Baker, had
given the first proof of an effective bound on the size of the integral solutions of
a genus one curve. During his time in the U.S. John had been much influenced
by the work of Tate and of Iwasawa. The key insight of Iwasawa had been
to see how to translate the theorems of Weil, which related the characteristic
polynomial of Frobenius in certain l-adic representations to the zeta function,
from the function field case to the number field case. Of course this involved
the p-adic zeta function and not the classical one and even then only became a
translation from a theorem to a conjecture, but it became a guiding principle
in the study of the special values of the zeta function and has remained so to
this day. Tate had been studying the relation of K2 of the ring of integers of
a number field to Galois cohomology groups. Together with Lichtenbaum and
Sinnott John had developed and examined these conjectures about K-groups
using some of the ideas of Iwasawa.

Documenta Mathematica · Extra Volume Coates (2006)



4 Andrew Wiles

When he returned to Cambridge John and I set about exploring how Iwasawa’s
approach would work in the case of elliptic curves with complex multiplication.
It worked wonderfully well! Although at that time Iwasawa’s main conjecture
seemed quite out of reach, even in the basic cyclotomic case, one could develop
enough using the methods of Iwasawa to get the first real theorems on the
Birch and Swinnerton-Dyer conjecture. Of course the search for a solution to
this conjecture remains elusive to this day but the progress has been enormous.
The theory of complex multiplication has to a large extent ceded its place to
the theory of modular forms but the basic idea has largely remained intact,
namely to relate the special values of L-functions to the points on the elliptic
curve via the class field theory of the division fields of those points.
The original work was all in the context of ordinary primes, these being primes
where the reduction of the elliptic curve is ordinary. Subsequently John and his
students have extended the study to try to understand first the supersingular
case, but still assuming the curve has complex multiplication, and then the
more general case where no complex multiplication is assumed. Meanwhile the
new ideas of Kolyvagin and of Gross and Zagier have to a large extent brought
the general case into line with the complex multiplication case. In the general
case where the curves are not assumed to have complex multiplication the fields
of division points are no longer abelian over a finite extension of the rationals.
To study these fields John and his coauthors have developed a non-abelian
version of Iwasawa theory.
This volume contains many papers on these and related topics. However no
tribute to John Coates could be complete without a testament to his continuing
generosity and skill as a teacher. Cambridge number theory seemed strongest
in bringing out the problem solver but one had a sense that in terms of modern
developments it was a little isolated. John’s arrival brought these two worlds
together, and made Cambridge and my own arrival in mathematics more ex-
citing than I could ever have anticipated. John’s return to Cambridge in 1986
has cemented his role as a teacher and inspiration to many more generations of
Cambridge number theorists, many of whom were present at his 60th birthday
celebrations in January of 2005.

Documenta Mathematica · Extra Volume Coates (2006)
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結
ぶ
手
に
に
ご
る
心
を
す
す
ぎ
な
ば
浮
世
の
夢
や
さ
め
が
井
の
水

（
阿
仏
尼
『
十
六
夜
日
記
』）

Samegai’s Waters

Samegai’s waters:
Were I to cup them in my hands
And cleanse my impure heart,
Might I awaken from the dream
Of this transitory world?
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musubu te ni
nigoru kokoro wo
susuginaba
ukiyo no yume ya
samegai no mizu.

Alphabetic transcription
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Ring-Theoretic Properties

of Iwasawa Algebras: A Survey1

K. Ardakov and K. A. Brown

Received: November 7, 2005

Revised: January 22, 2006

Abstract. This is a survey of the known properties of Iwasawa
algebras, i.e., completed group rings of compact p-adic analytic groups
with coefficients the ring Zp of p-adic integers or the field Fp of p
elements. A number of open questions are also stated.

2000 Mathematics Subject Classification: 16L30, 16P40, 20C07,
11R23
Keywords and Phrases: Iwasawa algebra; compact p-adic analytic
group; complete noetherian semilocal ring; Auslander-Gorenstein con-
dition

1. Introduction

Noncommutative Iwasawa algebras form a large and interesting class of com-
plete semilocal noetherian algebras, constructed as completed group algebras
of compact p-adic analytic groups. They were defined and their fundamen-
tal properties were derived in M. Lazard’s monumental 1965 paper [23], but
in the twenty years from 1970 they were little studied. Interest in them has
been revived by developments in number theory over the past fifteen years, see
for example [17],[19] and [37]. Prompted by this renewed interest, and helped
of course by the better understanding of noncommutative noetherian algebra
gained since 1965, a number of recent papers have built on Lazard’s initial
work. The emerging picture is of a class of rings which in some ways look sim-
ilar to the classical commutative Iwasawa algebras, (which are rings of formal
power series in finitely many commuting variables over the p-adic integers), but
which in other respects are very different from their commutative counterparts.
And while some progress has been made in understanding these rings, many
aspects of their structure and representation theory remain mysterious.
It is the purpose of this article to provide a report of what is known about Iwa-
sawa algebras at the present time, and to make some tentative suggestions for

1Some of the work for this article was done in June 2005, when Ardakov was visiting the
University of Glasgow with the support of the Edinburgh Mathematical Society Research

Support Fund and the Glasgow Mathematical Journal Learning and Research Support Fund.

Documenta Mathematica · Extra Volume Coates (2006) 7–33



8 K. Ardakov and K. A. Brown

future research directions. We approach the latter objective through the listing
of a series of open questions, scattered throughout the text. In an attempt to
make the paper accessible to readers from as wide a range of backgrounds as
possible, we have tried to give fairly complete definitions of all terminology; on
the other hand, most proofs are omitted, although we have tried to give some
short indication of their key points where possible. An exception to the omis-
sion of proofs occurs in the discussion of maximal orders in (4.4)-(4.7) as well
as in the discussion of the canonical dimension in (5.4), where we include some
original material. These paragraphs can be omitted by a reader who simply
wants a quick overview of the subject; moreover, after Sections 2 and 3 the
remaining sections are reasonably independent of each other.
Fundamental definitions and examples are given in Section 2; in particular we
recall the definition of a uniform pro-p group in (2.4), and make the important
observation (2.3)(1) that every Iwasawa algebra can be viewed as a crossed
product of the Iwasawa algebra of a uniform group by a finite group. This has
the effect of focusing attention on the Iwasawa algebra of a uniform group - this
is filtered by the powers of its Jacobson radical, and the associated graded alge-
bra is a (commutative) polynomial algebra. This fact and its consequences for
the structure of the Iwasawa algebras of uniform groups are explored in Section
3; then in Section 4 we examine how properties of general Iwasawa algebras
can be deduced from the uniform case using (2.3)(1). Section 5 concerns di-
mensions: first, the global (projective) dimension and the injective dimension,
whose importance is enhanced because Iwasawa algebras satisfy the Auslander-
Gorenstein condition, whose definition and properties we recall. In particular,
Auslander-Gorenstein rings possess a so-called canonical dimension function;
we explain this and describe some of the properties of the canonical dimension
of an Iwasawa algebra in (5.3)-(5.5). The Krull-Gabriel-Rentschler dimension
is discussed in (5.7). Finally, our very sparse knowledge of the two-sided ideals
of Iwasawa algebras is summarised in Section 6.

2. Key definitions

Iwasawa algebras are completed group algebras. We begin by recalling which
groups are involved, then give the definition of the algebras.

2.1. Compact p-adic analytic groups. Let p be a prime integer and let Zp
denote the ring of p-adic integers. A group G is compact p-adic analytic if it is
a topological group which has the structure of a p-adic analytic manifold - that
is, it has an atlas of open subsets of Znp , for some n ≥ 0. Such groups can be
characterised in a more intrinsic way, thanks to theorems due to Lazard, dating
from his seminal 1965 paper [23]. Namely, a topological group G is compact
p-adic analytic if and only if G is profinite, with an open subgroup which is
pro-p of finite rank, if and only if G is a closed subgroup of GLd(Zp) for some
d ≥ 1. Nowadays, these equivalences are usually viewed as being consequences
of deep properties of finite p-groups; a detailed account from this perspective
can be found in [20, Part II].

Documenta Mathematica · Extra Volume Coates (2006) 7–33



Ring-Theoretic Properties of Iwasawa Algebras: A Survey 9

Examples: (1) Every finite group is p-adic analytic, for every prime p.
(2) The abelian p-adic analytic groups are the direct products of finitely many
copies of the additive group of Zp with a finite abelian group [20, page 36].
(3) For any positive integer d the groups GLd(Zp) and SLd(Zp) are compact
p-adic analytic. More generally, given any root system Xℓ one can form the
universal Chevalley group GZp(Xℓ), [20, page 353]. This is a compact p-adic
analytic group. For more information about Chevalley groups, see [13].
(4) Let d and t be positive integers. The t-th congruence subgroup in SLd(Zp)
is the kernel Γt(SLd(Zp)) of the canonical epimorphism from SLd(Zp) to
SLd(Zp/ptZp). One sees at once from the equivalences above that Γt(SLd(Zp))
is compact p-adic analytic, as indeed are Γt(GLd(Zp)) and Γt(GZp(Xℓ)) for any
root system Xℓ.

Notation: When discussing a topological group G we shall use H to denote
the closure of a subset H of G in G; and when we refer to, say, G as being
generated by elements {g1, . . . , gd} we mean thatG = 〈g1, . . . , gd〉. In particular,

G is finitely generated if G = 〈X〉 for a finite subset X of G. For a subset X of
G, Xp denotes the subgroup of G generated by the subset {xp : x ∈ X} of G.

2.2. Iwasawa algebras. Let G be a compact p-adic analytic group. The
Iwasawa algebra of G is

ΛG := lim
←−

Zp[G/N ],

where the inverse limit is taken over the open normal subgroupsN ofG. Closely
related to ΛG is its epimorphic image ΩG, defined as

ΩG := lim
←−

Fp[G/N ],

where Fp is the field of p elements. Often, a property of ΛG can easily be
deduced from the corresponding property of ΩG, and vice versa; where this is
routine we will frequently save space by stating only one of the two variants.

2.3. Crossed products. Recall [29, 1.5.8] that a crossed product of a ring R
by a group A is an associative ring R ∗ A which contains R as a subring and
contains a set of units A = {a : a ∈ A}, isomorphic as a set to A, such that

• R ∗A is a free right R-module with basis A,
• for all x, y ∈ A, xR = Rx and x · yR = xyR.

Suppose that H is an open normal subgroup of the compact p-adic analytic
group G. Let CH denote the set of open normal subgroups of G which are
contained in H; then clearly ΛG = lim

←−
Zp[G/U ] where U runs over CH . It

follows at once that ΛG is a crossed product of ΛH by the finite group G/H
and similarly that ΩG is a crossed product of ΩH by G/H:

(1)
ΛG ∼= ΛH ∗ (G/H),
ΩG ∼= ΩH ∗ (G/H).

We shall see that, combined with a judicious choice of the subgroup H, the
isomorphism (1) reduces many questions about ΛG and ΩG to the analysis of

Documenta Mathematica · Extra Volume Coates (2006) 7–33



10 K. Ardakov and K. A. Brown

certain crossed products of finite groups. Usually, the right subgroup H to
choose is a uniform one, defined as follows.

2.4. Uniform groups. Let G be a pro-p group. Define P1(G) = G and

Pi+1(G) = Pi(G)p[Pi(G), G] for i ≥ 1. The decreasing chain of characteris-
tic subgroups

G = P1(G) ⊇ P2(G) ⊇ · · · ⊇ Pi(G) ⊇ · · · ⊇ ∩∞i=1Pi(G) = 1

is called the lower p-series of G. The group G is powerful if G/Gp is abelian

(for p odd), or G/G4 is abelian (when p = 2). Finally, G is uniform if it is
powerful, finitely generated, and

|G : P2(G)| = |Pi(G) : Pi+1(G)|
for all i ≥ 1.
Now we can add one further characterisation, also essentially due to Lazard,
to those given in (2.1): a topological group G is compact p-adic analytic if
and only if it has an open normal uniform pro-p subgroup of finite index, [20,
Corollary 8.34].

Examples: (1) Of course, (Zp)⊕d is uniform for all d ≥ 1.
(2)The groups Γ1(GLd(Zp)) (for p odd) and Γ2(GLd(Z2)) are uniform [20,
Theorem 5.2].

Let G be uniform, with |G : P2(G)| = pd. The non-negative integer d is called
the dimension of G; it is equal to the cardinality of a minimal set of (topologi-
cal) generators of G, [20, Definition 4.7 and Theorem 3.6]. More generally, we
can define the dimension of an arbitrary compact p-adic analytic group to be
the dimension of any open uniform subgroup; this is unambiguous [20, Lemma
4.6], and coincides with the dimension of G as a p-adic analytic manifold, [20,
Definition 8.6 and Theorem 8.36].

2.5. Completed group algebras. In fact ΛG and ΩG are I-adic comple-
tions of the ordinary group algebras Zp[G] and Fp[G], for suitable choices of
ideals I. It is most convenient for us to state the result for uniform groups,
although it can obviously be extended to the general case using (2.3)(1).

Theorem. Let G be a uniform pro-p group, and let I denote the augmentation
ideal of Fp[G]. Then ΩG is isomorphic to the I-adic completion of Fp[G]. There
is a similar result for Zp[G].

Indeed the theorem follows quite easily from the observations that the lower
p-series Pi(G) is coterminal with the family of all open normal subgroups of G,
and that the powers of I are coterminal with the ideals of Fp[G] generated by
the augmentation ideals of the subgroups Pi(G), [20, §7.1].

3. The case when G is uniform

Throughout this section, we assume that G is a uniform pro-p group of dimen-
sion d. We fix a topological generating set {a1, . . . , ad} for G.
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3.1. The “PBW” Theorem. It follows at once from Theorem 2.5 that the
usual group algebra Fp[G] embeds into ΩG. For i = 1, . . . , d, let bi = ai − 1 ∈
Fp[G] ⊆ ΩG. Then we can form various monomials in the bi: if α = (α1, . . . , αd)
is a d-tuple of nonnegative integers, we define

bα = bα1
1 · · · bαdd ∈ ΩG.

Note that this depends on our choice of ordering of the bi’s, because ΩG
is noncommutative unless G is abelian. The following basic result shows
that ΩG is a “noncommutative formal power series ring”; it follows from the
strong constraints which the hypothesis of uniformity imposes on the quotients
Pi(G)/Pi+1(G) of G, [20, Theorem 7.23].

Theorem. Every element c of ΩG is equal to the sum of a uniquely determined
convergent series

c =
∑

α∈Nd

cαb
α

where cα ∈ Fp for all α ∈ Nd.

We record an immediate consequence of both this result and of Theorem 2.5:

Corollary. The Jacobson radical J of ΩG is equal to

J = b1ΩG + · · ·+ bdΩG = ΩGb1 + · · ·+ ΩGbd.

Hence ΩG/J ∼= Fp, so in the language of (4.1), ΩG is a scalar local ring.

Proof. If c ∈ ΩG is such that c0 6= 0, then 1 − c is invertible with inverse
1 + c+ c2 + · · · ∈ ΩG. �

Theorem 3.1 says that the monomials {bα : α ∈ Nd} form a topological basis
for ΩG, and is thus analogous to the classical Poincaré-Birkhoff-Witt theorem
for Lie algebras g over a field k which gives a vector space basis for the univer-
sal enveloping algebra U(g) in terms of monomials in a fixed basis for g [21].
Nevertheless we should bear in mind that explicit computations in ΩG are often
much more difficult than those in U(g), since the Lie bracket of two generators
bi, bj for ΩG is in general an infinite power series with obscure coefficients.

3.2. Example. Let p be odd for simplicity and let G = Γ1(SL2(Zp)) be the
first congruence kernel of SL2(Zp). Then

a1 =

(
exp(p) 0

0 exp(−p)

)
, a2 =

(
1 p
0 1

)
, a3 =

(
1 0
p 1

)
.

is a topological generating set for G. Setting bi = ai − 1, elementary (but
tedious) computations yield

[b1, b2] ≡ 2bp2 mod Jp+1

[b1, b3] ≡ −2bp3 mod Jp+1

[b2, b3] ≡ bp1 mod Jp+1.
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12 K. Ardakov and K. A. Brown

Here J = b1ΩG + b2ΩG + b3ΩG denotes the Jacobson radical of ΩG. Using
Proposition 3.3 it is possible to produce more terms in the power series expan-
sion of [b1, b2] and [b1, b3]. However, we consider [b2, b3] to be inaccessible to
computation.

3.3. Skew power series rings. It is well known that if g is a finite dimen-
sional soluble Lie algebra over a field k, then its universal enveloping algebra
U(g) can be thought of as an “iterated skew polynomial ring”:

U(g) ∼= k[x1;σ1, δ1][x2;σ2, δ2] · · · [xn;σn, δn]
for some appropriate automorphisms σi and derivations δi (in fact, the σis can
be chosen to be trivial). This is because any such Lie algebra g has a chain of
subalgebras

0 = h0 ⊂ h1 ⊂ h2 ⊂ · · · ⊂ hn = g

with hi−1 an ideal in hi, so choosing some xi ∈ hi\hi−1 ensures that

U(hi) ∼= U(hi−1)[xi; δi]

where δi is the derivation on U(hi−1) defined by δi(y) = xiy − yxi.
An analogous result holds for Iwasawa algebras. More precisely, we have the

Proposition. Suppose that G has closed normal subgroup H such that G/H ∼=
Zp. Then ΩG is a skew power series ring with coefficients in ΩH :

ΩG ∼= ΩH [[t;σ, δ]].

Proof. See [41, §4]. �

Schneider and Venjakob [41] establish a general theory of skew power series
rings S = R[[t;σ, δ]] over a pseudocompact ring R. Here σ can be any topo-
logical automorphism of R and δ is a σ-derivation in the sense of [29, 1.2.1],
satisfying some extra conditions which are required to make the relation

ta = σ(a)t+ δ(a)

extend to a well-defined multiplication on S.
Consequently, the Iwasawa algebra ΩG of any soluble uniform pro-p group G
can be thought of as an iterated skew power series ring over Fp.
For example, in Example 3.2, the topological subring of ΩG generated by b1 and
b2 is actually the Iwasawa algebra ΩB where B = 〈a1, a2〉 is a Borel subgroup

of G. Since B is soluble with closed normal subgroup 〈a2〉, ΩB is isomorphic
to the skew power series ring Fp[[b2]][[b1;σ, δ]] for some appropriate σ and δ.
This justifies the claim that the commutator of b1 and b2 is at least partially
accessible to computation.
There is surely considerable scope to develop further the “abstract” theory of
skew power series algebras initiated in [41] - for instance, one could easily pose
skew power series versions of a number of the questions we list later, in Section
6. As a prompt for more work, here are two “general” questions:
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Question A. (1) Are there conditions on R, σ and δ such that S = R[[t;σ, δ]]
can be described without involving a derivation - that is, as S = R′[[t′;σ′]],
possibly after some Ore localisation?1

(2) Are there conditions on R, σ and δ such that every two-sided ideal of the
skew power series ring S = R[[t;σ, δ]] is generated by central elements and
“polynomial” elements2?

3.4. The J-adic filtration. We remind the reader that a filtration on a ring
R is an ascending sequence

· · · ⊆ FiR ⊆ Fi+1R ⊆ · · ·
of additive subgroups such that 1 ∈ F0R, FiR.FjR ⊆ Fi+jR for all i, j ∈ Z,
and ∪i∈ZFiR = R.
Let J denote the Jacobson radical of ΩG. The J-adic filtration on ΩG is defined
as follows: FiΩG = J−i for i ≤ 0 and FiΩG = ΩG f or i ≥ 0; this is an example
of a negative filtration. The basic tool which allows one to deduce many ring-
theoretic properties of Iwasawa algebras is the following result, which can be
deduced from Theorem 3.1, see [20, Theorem 7.24 and remarks on page 160].
We denote the associated graded ring

⊕
i∈Z Fi+1ΩG/FiΩG by grJ ΩG.

Theorem. The graded ring of ΩG with respect to the J-adic filtration is iso-
morphic to a polynomial ring in d = dimG variables:

grJ ΩG ∼= Fp[X1, . . . ,Xd].

Moreover, ΩG is complete with respect to this filtration.

The J-adic filtration is quite different from the filtrations encountered when
studying algebras like universal enveloping algebras and Weyl algebras, which
are nearly always positive (that is, F−1R = 0) and often satisfy the finiteness
condition dimk FiR < ∞ for all i ∈ Z. In particular, there is no well-behaved
notion of the Gel’fand-Kirillov dimension for Iwasawa algebras, a theme we will
return to in §5.
However, we are still able to lift many properties of the graded ring back to
ΩG, because the J-adic filtration is complete, meaning that Cauchy sequences
of elements in ΩG converge to unique limits. More precisely, recall [26, page
83] that a filtration on a ring R is said to be Zariskian, whenever

• The Jacobson radical of F0R contains F−1R, and

• The Rees ring R̃ :=
⊕

i∈Z FiR · ti ⊆ R[t, t−1] is noetherian.

Many filtrations are Zariskian. For example, by [26, Chapter II, Proposition
2.2.1], any complete filtration whose associated graded ring is noetherian is
necessarily Zariskian. Since any positive filtration is complete, it follows that
if a filtration is positive and has noetherian associated graded ring, then it is
Zariskian. More importantly for us, for any uniform pro-p group G, the J-
adic filtration on ΩG is clearly complete, thanks to Theorem 2.5; and grJ ΩG is

1Compare with [14].
2By the latter, we mean elements of R[t; σ, δ].
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14 K. Ardakov and K. A. Brown

noetherian by Theorem 3.4 and Hilbert’s basis theorem, so the J-adic filtration
is Zariskian.

3.5. The m-adic filtration on ΛG. There is an analogue of Theorem 3.4
for the Zp−version of Iwasawa algebras ΛG. Recall from (2.3) the lower p-series
P1(G) ⊇ P2(G) ⊇ · · · ⊇ ∩∞i=1Pi(G) = 1 of G and define an abelian group

grG :=

∞⊕

i=1

Pi(G)

Pi+1(G)
.

There is a natural way of turning grG into a Lie algebra over Fp[t], the poly-
nomial ring in one variable over Fp: the Lie bracket on grG is induced from
the Lie bracket on G described in [20, §4.5], and the action of t is induced from
the p-power map. Then grG is a free Fp[t]-module of rank equal to dimG. Let
m = ker(ΛG → Fp) be the Fp-augmentation ideal of ΛG, or equivalently, the
Jacobson radical of ΛG.

Theorem. The graded ring of ΛG with respect to the m-adic filtration is iso-
morphic to the universal enveloping algebra of the Fp[t]-Lie algebra grG:

grm ΛG ∼= U(grG).

Moreover, ΛG is complete with respect to this filtration.

Proof. See [39, §3.3] and [23, Chapter III, Theorem 2.3.3]. �

3.6. Lifting information from the graded ring. We recall here some
standard properties of a ring R. First, we say that R is prime if the product
of any two non-zero ideals of R is again non-zero. By Goldie’s theorem [29,
Theorem 2.3.6], ifR is prime and (right) noetherian then it has a simple artinian
classical (right) quotient ring Q(R). If S is another ring with classical right
quotient ring Q(R), so that Q(R) = Q(S), we say that R and S are equivalent
if there are units a, b, c and d in Q(R) such that aRb ⊆ S and cSd ⊆ R. Now
R is a maximal (right) order if it is maximal (with respect to inclusion) within
its equivalence class, [29, 5.1.1]. (The adjective right is omitted if R is both a
maximal right order and a maximal left order.) The commutative noetherian
maximal orders are just the noetherian integrally closed domains [29, Lemma
5.3.3].
Let RR denote the right R-module R. The Krull dimension K(M) of a finitely
generated (right) module M over a noetherian ring R is a well-defined ordinal,
bounded above by K(RR); the precise definition can be found at [29, 6.2.2].
This concept generalises the classical commutative definition; like it, it mea-
sures the “size” of a module and is 0 if and only if the module is non-zero and
artinian.
The (right) global dimension of R is defined to be the supremum of the projec-
tive dimensions (denoted pd(−)) of the right R-modules, [29, 7.1.8]. When R
is noetherian, its right and left global dimensions are always equal, [29, 7.1.11].
We say that R has finite (right) injective dimension d if there is an injective
resolution of RR of length d, but none shorter. If R is noetherian and has
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finite right and left injective dimensions, then these numbers are equal by [45,
Lemma A]. It is also well known [39, Remark 6.4] that if the (right) global
dimension of the noetherian ring R is finite, then it equals the (right) injective
dimension of R.
It has become apparent over the past 40 years that, when R is noncommutative
and noetherian, finiteness of the injective dimension of R is a much less strin-
gent condition than is the case for commutative noetherian rings - the structure
of (commutative) Gorenstein rings is rich and beautiful. An additional hypoth-
esis which, when coupled with finite injective dimension, has proved very useful
in the noncommutative world is the Auslander-Gorenstein condition. To recall
the definition, note first that, for every left R-moduleM and every non-negative
integer i, Exti(M,R) is a right R-module through the right action on R. The
Auslander-Gorenstein condition on a noetherian ring R requires that, when
M is a finitely generated left R-module, i is a non-negative integer and N is
a finitely generated submodule of Exti(M,R), then Extj(N,R) is zero for all
j strictly less than i; and similarly with “right” and “left” interchanged. We
say that R is Auslander-Gorenstein if it is noetherian, has finite right and left
injective dimensions, and satisfies the Auslander condition. Commutative noe-
therian rings of finite injective dimension are Auslander-Gorenstein. When R
is noetherian of finite global dimension and satisfies the Auslander-Gorenstein
condition it is called Auslander-regular.

Theorem. Let R be a ring endowed with a Zariskian filtration FR; then R is
necessarily noetherian. Also, R inherits the following properties from grR:

(1) being a domain,
(2) being prime,
(3) being a maximal order,
(4) being Auslander-Gorenstein,
(5) having finite global dimension,
(6) having finite Krull dimension.

Proof. See [26]. �

We immediately obtain from Theorem 3.4, Theorem 3.6 and Corollary 3.1, the

Corollary. If G is a uniform pro-p group, then ΩG is a noetherian,
Auslander-regular, scalar local domain which is a maximal order in its quo-
tient division ring of fractions.

4. Extensions over finite index

For an arbitrary p-adic analytic group G, many fundamental properties of ΩG
(and of ΛG) can be analysed using Corollary 3.6 and (2.3)(1).

4.1. Complete noetherian (semi)local rings. Recall that a ring R is
semilocal if the factor of R by its Jacobson radical J(R) is semisimple artinian.
It is local if R/J(R) is simple artinian, and scalar local if R/J(R) is a division
ring. For a crossed product R = S ∗H of a finite group H, like that in (2.3)(1),
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it’s not hard to show that J(S) ⊆ J(R), [31, Theorem 1.4.2]. From this,
Theorem 2.5 and Corollary 3.6, and their analogues for ΛG, we deduce (1) of
the following. Both it and (2) were known to Lazard.

Theorem. Let G be a compact p-adic analytic group.

(1) ΩG and ΛG are complete noetherian semilocal rings.
(2) ΩG and ΛG are (scalar) local rings if and only if G is a pro-p group.

4.2. Primeness and semiprimeness. Recall that a ring R is prime if the
product of two nonzero ideals is again nonzero and that R is semiprime if it
has no nonzero nilpotent ideals. A prime ring is always semiprime, but not
necessarily conversely.
The characterisations of these properties for Iwasawa algebras given in the
theorem below exactly parallel the results for ordinary group algebras proved
in the early 1960s by I.G. Connell and D.S. Passman [32, Theorems 4.2.10
and 4.2.14]. However, the proofs here are quite different from the classical
setting; that the stated conditions are necessary is easy to see, but sufficiency
in (1) and (2) depends on Corollary 3.6 to handle the uniform case, together
with non-trivial results on crossed products of finite groups. Part (3) is much
easier - one can simply appeal to the fact (a consequence of Maschke’s theorem)
that the group ring of a finite group over a commutative coefficient domain of
characteristic zero is semiprime, together with the fact that, by definition, ΛG
is an inverse limit of such group rings.

Theorem. Let G be a compact p-adic analytic group.

(1) [5] ΩG and ΛG are prime if and only if G has no non-trivial finite
normal subgroups.

(2) [5] ΩG is semiprime if and only if G has no non-trivial finite normal
subgroups of order divisible by p.

(3) (Neumann, [30]) ΛG is always semiprime.

4.3. Zero divisors. There is a method, familiar from the treatment of or-
dinary group rings, which allows one to use homological properties to deduce
results about the non-existence of zero divisors in certain noetherian rings. In
its simplest form, which is all that is needed here, the statement is due to Walker
[42]: if R is a scalar local noetherian semiprime ring of finite global dimension,
then R is a domain.3 This yields the following result; it was proved by Neu-
mann [30] for ΛG, but for ΩG it was necessary to wait first for semiprimeness
to be settled, as in Theorem 4.2(2).

Theorem. Let G be a compact p-adic analytic group. Then ΩG and ΛG are
domains if and only if G is torsion free.

Proof. If 1 6= x ∈ G with xn = 1, then (1 − x)(1 + x + · · ·xn−1) = 0, so the
absence of torsion is clearly necessary. Suppose that G is torsion free. Since G

3It is a famous and long-standing open question in ring theory whether “semiprime” is

necessary in Walker’s theorem.
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has a pro-p subgroup of finite index by (2.4), its Sylow q-subgroups are finite
for primes q not equal to p. Since G is torsion free these subgroups are trivial,
so G is a pro-p group. Therefore ΩG and ΛG are scalar local and noetherian
by Theorem 4.1. The other conditions needed for Walker’s theorem are given
by Theorems 4.2(2) and (3) and Theorem 5.1. �

4.4. Maximal orders. It might seem natural to suppose, in the light of The-
orem 3.6(3), that whenever ΛG or ΩG are prime then they are maximal orders.
This guess is wrong, though, as the following example shows. First, recall from
[29, 5.1.7] that if R is a ring and M is an R-module, then M is said to be reflex-
ive if the natural map M → M∗∗ = Hom(Hom(M,R), R) is an isomorphism.
Also, recall [29, Chapter 4] that the ideal I of R is said to be localisable if the
set CR(I) of elements of R which are regular modulo I is an Ore set in R.

Example: LetD := A⋊〈γ〉, where A is a copy of Z2 and γ is the automorphism
of order 2 sending each 2-adic integer to its negative. Since D is a pro-2 group
with no non-trivial finite normal subgroups, Theorems 4.1 and 4.2 show that
ΩD and ΛD are prime noetherian scalar local rings. But it’s not hard to see
that neither of these algebras is a maximal order: for ΩD, observe that it is local
with reflexive Jacobson radical J which is not principal, impossible for a prime
noetherian maximal order by [28, Théorème IV.2.15]; for ΛD, the kernel of the
canonical map to Zp is a reflexive prime ideal which is not localisable by [4,
Theorem A and Lemma 4.1], impossible in a maximal order by [28, Corollaire
IV.2.14]. We therefore ask:

Question B. When are ΩG and ΛG maximal orders?

Since the powerful structural results [15], which can be obtained for certain quo-
tient categories of the category of finitely generated modules over a noetherian
maximal order, are potentially important tools in arithmetic applications [18],
this question is of more than passing interest.
In the next three paragraphs we offer a conjecture for the answer to Question
B, and give some evidence in its support.

4.5. Conjectured answer to Question B. We will need some group-
theoretic notions. Let H be a closed subgroup of a compact p-adic analytic
group G. We say that H is orbital if H has finitely many G-conjugates, or
equivalently if its normaliser N = NG(H) has finite index in G. We say that
an orbital subgroup H is isolated if N/H has no non-trivial finite normal sub-
groups.
We will say that G is dihedral-free if, whenever H is an orbital closed subgroup
of G with dimH = 1, H is isomorphic to Zp. This seems to be the correct
generalisation of the definition in [9].

Conjecture. Let G be a compact p-adic analytic group, and suppose ΩG is
prime. Then ΩG is a maximal order if and only if G is dihedral-free.
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4.6. Necessary conditions on G. We fix a prime p and assume throughout
this paragraph that G is a compact p-adic analytic group.

Proposition. Suppose ΩG is a prime maximal order and let H be a closed
normal subgroup of G with dimH = 1. Then H is pro-p.

Proof. We may assume that H is isolated, so G/H has no non-trivial finite
normal subgroups. Hence, by Theorem 4.2(1), wH = ker(ΩG → ΩG/H) is a

prime ideal of ΩG, and it is not hard to see that it is also a reflexive ideal.4

Now because ΩG is a maximal order and wH is a prime reflexive ideal, it must
be localisable [28, Corollaire IV.2.14].
But the conditions needed for augmentation ideals to be localisable are known
[5, Theorem E]: H/F must be pro-p, where F is the largest finite normal p′-
subgroup of H. Since H is normal in G and G has no non-trivial finite normal
subgroups by Theorem 4.2(1), F = 1 and H is pro-p as required. �

We need the following group-theoretic lemma. We first set ǫ to be 1 for p odd,
and ǫ = 2 if p = 2, and define, for a closed normal uniform subgroup N of G,
EG(N) to be the centraliser in G of N/Npǫ , [5, (2.2)].

Lemma. Suppose that G is a pro-p group of finite rank with no non-trivial
finite normal subgroups. Let N be a maximal open normal uniform subgroup
of G. Then

EG(N) = N.

Proof. Recall that E = EG(N) is an open normal subgroup of G containing N .
If E strictly contains N then E/N must meet the centre Z(G/N) non-trivially
since G/N is a finite p-group by [20, Proposition 1.11(ii)]. Pick x ∈ E\N such
that xN ∈ Z(G/N); then H = 〈N,x〉 is normal in G by the choice of x, and
also H is uniform by [5, Lemma 2.3]. This contradicts the maximality of N . �

Recall from Example 4.4 that D denotes the pro-2 completion of the infinite
dihedral group.

Corollary. Let H be a pro-p group of finite rank with no non-trivial finite
normal subgroups. Suppose that dimH = 1. Then H ∼= Zp, unless p = 2 and
H is isomorphic to D.

Proof. Choose a maximal open normal uniform subgroup N of H. By the
lemma, H/N →֒ Aut(N/Npǫ). If p is odd, |N : Npǫ | = p, so the latter au-
tomorphism group is just F×p . Since H/N is a p-group by [20, Proposition
1.11(ii)] again, H = N ∼= Zp. If p = 2 and H > N , H ∼= D. �

This gives us the following weak version of one half of the conjecture. To
improve the result from “normal” to “orbital” will presumably require some
technical work on induced ideals.

4One quick way to see this uses the canonical dimension from (5.4): since
Cdim(ΩG/wH) = dim(G/H) = dim G − 1 and since ΩG is Auslander-Gorenstein, wH is

reflexive by Gabber’s Maximality Principle [36, Theorem 2.2].
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Corollary. Suppose ΩG is a prime maximal order. Then any closed normal
subgroup H of G of dimension 1 is isomorphic to Zp.

Proof. When p is odd the statement is immediate from the proposition and
corollary above. So suppose that p = 2. We have to rule out the possibility
that H ∼= D, so suppose for a contradiction that this is the case. Then, as
in the proof of the proposition, wH is a prime reflexive, and hence localisable,
ideal of ΩG. Let R denote the local ring (ΩG)wH , which has global dimension
one by [28, Théorème IV.2.15]. Let C = 〈c〉 be a copy of the cyclic group
of order 2 in H. Then F2C ⊆ ΩG and ΩG is a projective F2C-module by [11,
Lemma 4.5]. Thus R is a flat F2C-module. Since c+1 ∈ J(R), the F2C-module
R/J(R) is a sum of copies of the trivial module, so

∞ = pdF2C(F2) = pdF2C(R/J(R)) ≤ pdR(R/J(R)) = 1.

This contradiction shows that the only possibility for H is Z2. �

4.7. Sufficient conditions on G. We use the following result, essentially
due to R. Martin:

Proposition. [27] Let R be a prime noetherian maximal order and let F be a
finite group. Let S = R ∗ F be a prime crossed product. Then S is a maximal
order if and only if

(a) every reflexive height 1 prime P of S is localisable, and
(b) gld(SP ) <∞ for all such P .

Proof. Conditions (a) and (b) hold in any prime noetherian maximal order, [28,
Théorème IV.2.15]. Conversely, suppose that (a) and (b) hold. We use the Test
Theorem [27, Theorem 3.2]. Condition (i) of the Test Theorem is just condition
(a). We claim that if P is as in the theorem, then gld(SP ) = 1. It’s easy to
check that P ∩ R is a semiprime reflexive ideal of R, so that the localisation
RP∩R exists and is hereditary by [28, Théorème IV.2.15]. Thus RP∩R ∗ F has
injective dimension 1 by [5, Corollary 5.4]. But SP is a localisation of RP∩R∗F,
so - given (b) and the comments in (3.6) - gld(SP ) ≤ 1. The reverse inequality is
obvious, so our claim follows. Condition (ii) now follows from [27, Proposition
2.7]. Condition (iii) follows from the proof of [27, Lemma 3.5] and condition
(iv) follows from [27, Remark 3.6 and Lemma 3.7]. �

Lemma. Let G be a pro-p group of finite rank with no non-trivial finite normal
subgroups. Then every reflexive height 1 prime of ΩG is localisable.

Proof. Let P be a reflexive height 1 prime of ΩG. Choose an open normal
uniform subgroup N of G. Then ΩN is a maximal order by Corollary 3.6. Set
G := G/N. Now let Q = P ∩ ΩN - it is easy to see [27, Remark 3.6] that this
is a height 1 reflexive G-prime ideal of ΩN . Indeed, Q is the intersection of a
G-orbit of reflexive prime ideals {P1, . . . , Pn} of ΩN .
Since each Pi is localisable by [28, Théorème IV.2.15], Q is localisable. In other
words, the subset C := CΩN (Q) = ∩ni=1CΩN (Pi) is a G-invariant Ore set in ΩN .
An easy calculation [32, proof of Lemma 13.3.5(ii)] shows that C is an Ore set
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in ΩG. In other words, the semiprime ideal A =
√
QΩG is localisable in ΩG

and

(ΩN )Q ∗G ∼= (ΩG)A.

Since G is a p-group, A = P by [31, Proposition 16.4] and the result follows. �

Corollary. Let G be a torsion free compact p-adic analytic group. Then ΩG
is a prime maximal order.

Proof. Suppose that G is as stated. Since G has a pro-p open subgroup, the
Sylow q-subgroups of G are finite, and hence trivial, for all primes q not equal
to p. That is, G is a pro-p group. Thus the corollary follows from the lemma
and the proposition, since gld ΩG is finite by Theorem 5.1. �

5. Dimensions

5.1. Global dimension. The situation as regards the global dimension of ΩG
and ΛG is completely understood, and depends fundamentally on properties
of the cohomology of profinite groups - in particular behaviour under finite
extensions - due to Serre [34]. The result is due to Brumer [11, Theorem
4.1] who computed the global dimension of the completed group algebra of an
arbitrary profinite group G with coefficients in a pseudo-compact ring R. As a
consequence of his work, we have

Theorem. Let G be a compact p-adic analytic group of dimension d. Then ΩG
and ΛG have finite global dimension if and only if G has no elements of order
p, and in this case

gld(ΩG) = d and gld(ΛG) = d+ 1.

5.2. Auslander-Gorenstein rings. Recall that the group algebra of an ar-
bitrary finite group over any field is a Frobenius algebra [44, Proposition 4.2.6],
and thus is self-injective. It should therefore come as no surprise that injective
dimension is well-behaved for Iwasawa algebras. In fact, much more is true:

Theorem. [5, Theorem J] Let G be a compact p-adic analytic group of dimen-
sion d. Then ΩG and ΛG are Auslander-Gorenstein rings of dimensions d and
d+ 1 respectively.

This result was first proved by O. Venjakob [39] and is easy to deduce from
Theorem 3.6(4) and Theorem 5.1, as follows. Let H be an open uniform normal
subgroup of G. Then ΩH and ΛH are Auslander-Gorenstein by Theorem 3.6(4),
and the dimensions are given by Theorem 5.1. Now apply (2.3)(1): a simple
lemma [5, Lemma 5.4] shows that

(1) ExtiΩG(M,ΩG) ∼= ExtiΩH (M,ΩH)

for all i ≥ 0 and all ΩG-modules M , with a similar isomorphism for ΛG, and
the result follows.
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5.3. Dimension functions for Auslander-Gorenstein rings. We recall
from [24] the basics of dimension theory over an Auslander-Gorenstein ring R.
Write d for the injective dimension of R. The grade j(M) of a finitely generated
R-module M is defined as follows:

j(M) = min{j : ExtjR(M,R) 6= 0}.
Thus j(M) exists and belongs to the set {0, . . . , d} ∪ {+∞}. The canonical
dimension of M , Cdim(M) is defined to be

Cdim(M) = d− j(M).

It is known [24, Proposition 4.5] that Cdim is an exact, finitely partitive di-
mension function on finitely generated R-modules in the sense of [29, §6.8.4].
That is,

• Cdim(0) = −∞;
• if 0 −→ N −→M −→ T −→ 0 is an exact sequence of finitely generated

modules, then Cdim(M) = max{Cdim(N),Cdim(T )};
• if MP = 0 for a prime ideal P of R, and M is a torsion R/P -module,

then Cdim(M) ≤ Cdim(R/P )− 1;
• if Cdim(M) = t then there is an integer n such that every descending

chain M = M0 ⊇ M1 ⊇ · · · ⊇ Mi ⊇ Mi+1 · · · of submodules of M has
at most n factors Mi/Mi+1 with Cdim(Mi/Mi+1) = t.

The ring R is said to be grade symmetric if

Cdim(RM) = Cdim(MR)

for any R−R-bimodule M which is finitely generated on both sides.5 The

triangular matrix ring

(
k k
0 k

)
over a field k gives an easy example of an

Auslander Gorenstein ring which is not grade symmetric.
The existence of an exact, finitely partitive, symmetric dimension function for
the finitely generated modules over a noncommutative noetherian ring R is a
very valuable tool which is often not available: the Gel’fand-Kirillov dimen-
sion [29, §8.1] - although symmetric - is often not defined; and although the
Krull dimension is always defined [29, §6.2], it is a long-standing open question
whether it is symmetric in general. As we shall see in the next paragraph, the
canonical dimension function fulfils these requirements for an Iwasawa algebra.
If δ is a dimension function on finitely generated R-modules, we say that R is
Cohen-Macaulay with respect to δ if δ(M) = Cdim(M) for all finitely generated
R-modules M .
This definition is consistent with, and therefore generalises, the definition from
commutative algebra. To see this, suppose that R is a commutative noetherian
ring of dimension d. Suppose that R is Cohen-Macaulay [12, Definition 2.1.1],
and let M be a finitely generated R-module with Krull dimension K(M). Note

5Alternatively, we can say in these circumstances that the dimension function Cdim is

symmetric.
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that if R is an affine (i.e. finitely generated) k-algebra, this equals the Gel’fand-
Kirillov dimension of M . Then

(1) j(M) +K(M) = d,

[12, Corollary 2.1.4 and Theorem 1.2.10(e)]. And conversely, if (1) holds for all
simple R-modules M , then R is Cohen-Macaulay [12, Theorem 1.2.5].

5.4. Canonical dimension for ΩG. We continue in this paragraph to as-
sume that G is a compact p-adic analytic group of dimension d. Fix an open
uniform normal subgroupH of G, and letM be a finitely generated ΩG-module.
By Theorem 5.2 and paragraph (5.3), and with the obvious notation, CdimG(−)
and CdimH(−) are well-defined dimension functions, and in fact (5.2)(1) shows
that

(1) CdimH(M) = CdimG(M).

In particular, in studying the canonical dimension we may as well assume that
G = H is uniform, which we now do. Hence, by Theorem 3.4, the graded ring
of ΩG is a polynomial Fp-algebra in d variables.
Choose a good filtration for M (FnM = MJ−n for n ≤ 0 will do) and form
the associated graded module grM . Because the J-adic filtration is Zariskian,
it follows from [8, Remark 5.8] that

(2) j(grM) = j(M).

Moreover, from this and the concluding remarks of (5.3) we see that

(3) K(grM) = Cdim(grM) = d− j(M).

(This shows, incidentally, that K(grM) is actually independent of the choice
of good filtration on M .)6 Combining (2) and (3), we find that

Cdim(M) = d− j(M) = Cdim(grM) = K(grM) = GK(grM)

for any choice of good filtration on M . This proves the last part of the

Proposition. Let G be a compact p-adic analytic group.

(1) ΩG is grade-symmetric.
(2) ΩG is ideal-invariant with respect to Cdim.
(3) Suppose that G is uniform. Then for all finitely generated ΩG-modules

M ,
Cdim(M) = GK(grM).

Proof. (1) In view of (5.4)(1) we can and do assume that G is uniform. Write
J for the Jacobson radical of ΩG and let M be a finitely generated ΩG-
module. Then by the definition of the Gel’fand Kirillov dimension [29, §8.1.11],
GK(grM) is the growth rate γ(f) of the function

f(n) = dim
M

MJn
;

6Consider (3) with M the trivial ΩG-module Fp. Then K(gr M) = 0, so j(M) = d and
therefore the injective dimension of ΩG actually equals d, providing another proof of the
numerical part of Theorem 5.1.
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note that this function is eventually polynomial because the finitely generated
gr ΩG-module grM has a Hilbert polynomial.
Now let N be an ΩG-bimodule, finitely generated on both sides. Then NJ is a
sub-bimodule, and N/NJ is finite dimensional over Fp because N is a finitely
generated right ΩG-module. Hence N/NJ is also a finite dimensional left ΩG-
module and as such is killed by some power of J , Ja say. Thus JaN ⊆ NJ and
similarly there exists an integer b ≥ 1 such that NJb ⊆ JN. An easy induction
on n shows that

(1) JabnN ⊆ NJbn ⊆ JnN
for all n ≥ 0. Letting f(n) = dim N

NJn and g(n) = dim N
JnN , we obtain

g(n) ≤ f(bn) ≤ g(abn)

for all n ≥ 0. It follows that Cdim(N|ΩG) = γ(f) = γ(g) = Cdim(ΩG|N),
proving part (1).
For part (2), recall [29, 6.8.13] that a ring R is said to be ideal-invariant with
respect to a dimension function δ if δ(M⊗R I) ≤ δ(M) for all finitely generated
right R-modules M and all two-sided ideals I of R and if the left-hand version
of this statement also holds.
In fact, we will show that

(4) Cdim(M ⊗ΩG N) ≤ Cdim(M)

for any finitely generated ΩG-module M and any ΩG-bimodule N , finitely
generated on both sides.7 Let M and N be as above, and let H be an open
uniform normal subgroup of G. Since there is an ΩH -epimorphism M⊗ΩHN ։

M ⊗ΩG N , (5.2)(1) shows that we can replace G by H in proving (4); that is,
we now assume that G is uniform.
Choose the integer a as above so that JanN ⊆ NJn for all n ≥ 0. Fix n and
let

f(n) = dim
M

MJn
and g(n) = dim

(
M ⊗ΩG N

(M ⊗ΩG N).Jn

)
.

Note that (M ⊗ΩG N).Jn equals the image of M ⊗ΩG NJ
n in M ⊗ΩG N so the

right-exactness of tensor product gives

M ⊗ΩG

(
N

JanN

)
։ M ⊗ΩG

(
N

NJn

)
∼= M ⊗ΩG N

(M ⊗ΩG N).Jn
.

Now we have a natural isomorphism of right ΩG-modules

M ⊗ΩG

N

JanN
∼= M

MJan
⊗ΩG N

and picking a finite generating set of size t for the left ΩG-module N shows
that

dim

(
M

MJan
⊗ΩG N

)
≤
(

dim
M

MJan

)
· t.

7Compare this with [29, Proposition 8.3.14].
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Hence

g(n) = dim

(
M ⊗ΩG N

(M ⊗ΩG N).Jn

)
≤ dim

(
M ⊗ΩG

(
N

JanN

))
≤ f(an) · t

for all n ≥ 0, so Cdim(M ⊗ΩG N) = γ(g) ≤ γ(f) = Cdim(M) as required. �

The above proposition is due to the first author; it was inspired by a result of
S. J. Wadsley [43, Lemma 3.1].

5.5. Characteristic varieties. Assume in this paragraph that G is uni-
form. Let M be a finitely generated ΩG-module. There is another way of
seeing that K(grM) does not depend on the choice of good filtration for M , as
follows. It is well known [26, Chapter III, Lemma 4.1.9] that

J(M) :=
√

Anngr ΩG (grM)

is independent of this choice. Standard commutative algebra now gives

K(grM) = K
(

gr ΩG
J(M)

)
,

as claimed.
The graded ideal J(M) is called the characteristic ideal of M , and the affine
variety Ch(M) defined by it is called the characteristic variety of M . Thus we
obtain yet another expression for the canonical dimension of M :

(2) Cdim(M) = dim Ch(M).

The characteristic variety is defined in an entirely analogous fashion for finitely
generated modules over enveloping algebras and Weyl algebras An(C). In that
setting it enjoys many pleasant properties, in addition to the simple formula
(2). In particular, there exists a Poisson structure on Ch(M), which gives more
information about M through the geometric properties of the characteristic va-
riety. For example, the fact that the characteristic variety of a finitely generated
An(C)-module is integrable can be used to prove the Bernstein inequality.

Question C. Is there a way of capturing more information about M in the
characteristic variety Ch(M)?

The naive method (mimicking the construction of the Poisson structure in the
enveloping algebra case) seems to fail because derivations are not sufficient
when studying algebras in positive characteristic: they kill too much. Pre-
sumably, if the answer to the above question is affirmative, then differential
operators in characteristic p will play a role.

5.6. No GK-dimension. The theory outlined in the previous sections will
sound very familiar to the experts. However, Iwasawa algebras are not Cohen
Macaulay with respect to the GK dimension. This is easily seen by decoding
the definition of GK dimension in the case when G ∼= Zp: in this case, ΩG is
isomorphic to the one-dimensional power series ring Fp[[t]], which (being un-
countable) contains polynomial algebras over Fp of arbitrarily large dimension.
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Thus GK(ΩG) = ∞ for any infinite G, since any such G will contain a closed
subgroup isomorphic to Zp.
If one tries to brush this problem away by replacing the GK dimension by the
canonical dimension, then one has to be careful not to fall into the following
trap.
Recall [29, Lemma 8.1.13(ii)] that if R ⊆ S are affine k-algebras over a field k,
then for any finitely generated S-module M ,

(3) GK(N) ≤ GK(M)

whenever N is a finitely generated R-submodule of M . This enables one to
“pass to subalgebras of smaller dimension” and use inductive arguments on the
GK dimension - a ploy used, for example, in the computation of the Krull di-
mension of U(sl2(C)) by S.P. Smith [29, Theorem 8.5.16]. Another consequence
of this property of GK dimension is that it is impossible to find an embedding
R →֒ S of k-algebras such that GK(R) > GK(S).
Unfortunately, (3) fails for Iwasawa algebras, if one tries to replace the GK
dimension by the canonical dimension. This is due to the following pathological
example:

Example. [38, Chapter VII, page 219] There exists a continuous embedding
of Fp-algebras

ΩG →֒ ΩH

where dimG = 3 and dimH = 2.

Proof. Let G = Z3
p and H = Z2

p. By Theorem 3.1 we can identify ΩG with
the three-dimensional power series ring Fp[[x, y, z]] and ΩH with the two-
dimensional power series ring Fp[[a, b]].
Because Fp[[a]] is uncountable, we can find an element u = u(a) ∈ aFp[[a]] such
that the Fp-algebra generated by a and u is isomorphic to the two-dimensional
polynomial ring Fp[a, u]. Define θ : Fp[[x, y, z]] → Fp[[a, b]] to be the unique
continuous Fp-algebra map such that

θ(x) = b, θ(y) = ab, θ(z) = ub.

We have

θ


 ∑

λ,µ,ν∈N

rλ,µ,νx
λyµzν


 =

∞∑

n=0

bn


 ∑

λ+µ+ν=n

rλ,µ,νa
µuν


 .

This shows that θ is an injection, as required. �

One can of course concatenate these embeddings and produce a continuous
embedding of ΩG into Fp[[a, b]] for abelian uniform pro-p groups G of arbitrarily
large dimension. Here is the actual counterexample to the analogue of (3).

Example. There exist uniform pro-p groups H ⊂ G, a finitely generated
ΩG-module M and a finitely generated ΩH-submodule N of M such that
Cdim(M) = 2, but Cdim(N) = 3.
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Proof. Let R = Fp[[a, b, c, d]] and S = Fp[[b, c, d]]. Let I be the ideal of R
generated by c − ab and d − u(a)b where u(a) is chosen as in the previous
example and let M = R/I. By construction, the graded ideal gr I is generated
by the symbols of c and d, so

Cdim(M) = K(grM) = 2.

Now if r ∈ I ∩ S, then θ(r) = 0, letting θ : Fp[[b, c, d]] →֒ Fp[[a, b]] be as above.
Hence r = 0, so S →֒ R/I = M . Therefore the cyclic S-submodule N of M
generated by 1 + I is actually free, so Cdim(N) = 3. �

5.7. Krull dimension. The Krull-(Gabriel-Rentschler) dimension of ΩG was
first studied by one of the authors in [1]. An immediate upper bound of dimG
can be obtained using Theorem 3.6, or if one prefers, using [7, Corollary 1.3].
Here is a result covering a large number of cases.

Theorem. [1, Theorem A and Corollary C] Let G be a compact p-adic analytic
group, and let g be the Qp-Lie algebra of an open uniform subgroup of G. Let r

denote the soluble radical of g and suppose that the semisimple part g/r of g is
a direct sum of some number of copies of sl2(Qp). Then

K(ΩG) = dimG.

In particular, K(ΩG) equals dimG whenever G is soluble-by-finite. The main
idea in the proof is to obtain a lower bound on the Krull dimension of ΩG for
any compact p-adic analytic group G. Namely, with g as in the theorem, and
writing λ(g) for the length of the longest chain of subalgebras of g, we have

λ(g) ≤ K(ΩG).

Question D. With the above notation, is K(ΩG) = λ(g) in general?

It is easy to see that λ(g) = λ(n) + λ(g/n) whenever n is an ideal of g. Let N
be a closed uniform subgroup of G with Lie algebra n.

Question E. Is K(ΩG) = K(ΩN ) +K(ΩG/N )?

Aside from its intrinsic interest, an affirmative answer to Question E would
obviously reduce Question D to the study of almost simple groups G, (where
we say that a uniform pro-p group G is almost simple provided its Lie algebra
has no non-trivial ideals).
The classical split simple Lie algebras are the first examples to study. Given
such a Lie algebra g, choose a Borel subalgebra b and a Cartan subalgebra t.
Then it is easy to produce a chain of subalgebras of g of length dim b + dim t.

Question F. For G almost simple and split, is K(ΩG) = dim b + dim t ?

Question F has an affirmative answer in the two smallest cases: g = sl2(Qp)
and g = sl3(Qp). In particular,

Theorem. [1, Theorem B]. Let G be a uniform pro-p group with Qp-Lie alge-
bra sl3(Qp). Then ΩG is a scalar local complete noetherian domain of global
dimension 8, with

K(ΩG) = 7.
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The main idea of the proof of this last result is to show that ΩG has no finitely
generated modules whose canonical dimension equals precisely 1; that is, there
is a “gap” at Cdim = 1.8 The extra dim t term in our conjectured formula for
K(ΩG) comes from the fact that ΩG is scalar local - this fact is used crucially
in the proof of the lower bound for the Krull dimension of ΩG.

6. Two-sided ideal structure

6.1. One of the first questions asked when studying a noetherian algebra R
is “what are its two-sided ideals?” It is usually sensible to focus first on the
prime ideals of R.
One way of answering the above question is to give a reduction to the commuta-
tive case. This is a recurring theme in noncommutative algebra. For example,
if R = k[G] is the group algebra of a polycyclic group G over a field k, the
paper [33] by J. E. Roseblade achieves this, “to within a finite group”.9 Similar
results hold for universal enveloping algebras U(g) of finite dimensional soluble
Lie algebras over a field k: see [21] and [29, Chapter 13]. As for the case when
g is semisimple, one can view the huge body of research on the primitive ideals
of U(g) as an analysis of the failure of the naive hope that these primitive ideals
should be generated by their intersection with the centre of U(g), [21]. And
for quantised function algebras of semisimple groups, and many related quan-
tum algebras, there are “stratification theorems” which describe their prime
and primitive spectra as finite disjoint unions of affine commutative pieces, [10,
Theorem II.2.13].
Unfortunately, no such results are currently known for Iwasawa algebras - see
below for a summary of what little is known. Alleviation of this state of gross
ignorance would seem to be the most pressing problem in the subject.
Because of the crossed product decomposition (2.3)(1) and the going up and
down theorems for crossed products of finite groups [31, Theorem 16.6], one
should naturally first concentrate on the case when G is uniform.

6.2. Ideals arising from subgroups and from centres. Since centrally
generated one-sided ideals are necessarily two-sided, it helps to know the centre
of the ring in question. However the centre of Iwasawa algebras is not very big:

Theorem. [2, Corollary A] Let G be a uniform pro-p group and let Z be its
centre. Then the centre of ΩG equals ΩZ and the centre of ΛG equals ΛZ .

Thus when the centre of G is trivial (and this happens frequently), ΩG has no
non-trivial centrally generated ideals. This is one place where the analogy with
enveloping algebras of semisimple Lie algebras breaks down.

8A similar idea was used by Smith [35] in giving an upper bound for the Krull dimension
of U(g) when g is a complex semisimple Lie algebra. We note in passing that K(U(g)) when
g is complex semisimple has been recently proved to be equal to dim b by Levasseur [25],

answering a long-standing question in the affirmative.
9See [31, Chapter 5] for more details.
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One can also produce two-sided ideals by using normal subgroups. Certainly
when H is a closed normal subgroup of G, the augmentation ideal

wH := ker(ΩG → ΩG/H)

is a two-sided ideal of ΩG and we can tell whether it is prime or semiprime using
Theorem 4.2. As for ΛG, H yields two augmentation ideals: the inverse image
vH of wH under the natural projection ΛG ։ ΩG and “the” augmentation
ideal

IH = ker(ΛG → ΛG/H).

The behaviour of these ideals regarding localisation is quite well understood:

Theorem. Let H be a closed normal subgroup of the compact p-adic analytic
group G and let F be the largest finite normal subgroup of H of order coprime
to p. Then

(1) [5] wH and vH are localisable if and only if H/F is pro-p,
(2) [4] IH is localisable if and only if H is finite-by-nilpotent.

These results were prompted by the formulation of the Iwasawa Main Conjec-
ture by Coates et al in [19]. Localisation techniques play an important role
in the construction of characteristic elements for suitable ΛG-modules. For
number-theoretic reasons, it is assumed in [19] that the subgroup H actually
satisfies G/H ∼= Zp: in arithmetic applications, G arises as the Galois group of
a certain extension K of Q containing the cyclotomic Zp-extension Qcyc, and
H is taken to be Gal(K/Qcyc). The characteristic elements all lie inside the
K1-group of the localisation of ΛG at the Ore set

CΛG(vN )× {1, p, p2, . . .},
where N is the largest closed normal pro-p subgroup of G which is open in H.
For more details, see [19, §2], [6] and [5, Theorem G].
Notwithstanding the above, the most embarrassing aspect of the state of our
knowledge about ideals of Iwasawa algebras is the lack of examples. In particu-
lar, we’ve noted that central elements and closed normal subgroups give rise to
ideals. This suggests the following improperly-posed question, for which we’ll
suggest more precise special cases in the succeeding paragraphs.

Question G. Is there a mechanism for constructing ideals of Iwasawa algebras
which involves neither central elements nor closed normal subgroups?

One way to begin the study of prime ideals is to look first at the smallest
non-zero ones - that is, the prime ideals of height one. With one eye on the
commutative case and another on the results of (4.4) on maximal orders, one
can ask when they are all principal. Here are two slightly more precise ways to
ask this question:

Question H. When is ΩG a unique factorisation ring in the sense of [16]?

Question I. When G is uniform, is every reflexive prime ideal of ΩG princi-
pal?
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6.3. The case when G is almost simple. Recall that the compact p-adic
analytic group G is almost simple if every non-trivial closed normal subgroup
of G is open (5.7). For such groups the constructions of (6.2) do not produce
anything interesting because ΩG/wH is artinian and hence finite dimensional
over Fp for any closed normal subgroup H 6= 1. So Question G specialises here
to

Question J. Let G be an almost simple uniform pro-p group and let P be a
nonzero prime ideal of ΩG. Must P be the unique maximal ideal of ΩG?

We remind the reader that x ∈ ΩG is normal if xΩG = ΩGx. Another closely
related question is

Question K. Let G be as in Question J, with G ≇ Zp. Must any nonzero
normal element of ΩG be a unit?

In [22], M. Harris claimed that, for G as in Question J, any closed subgroup
H of G with 2 dimH > dimG gives rise to a non-zero two-sided ideal in ΩG,
namely the annihilator of the “Verma module” constructed by induction from
the simple ΩH -module. Unfortunately his paper contains a gap, so Question J
remains open. Some slight evidence towards a positive answer is provided by

Theorem. [3, Theorem A] Suppose that G is an almost simple uniform pro-p
group and that the Lie algebra of G contains a copy of the two-dimensional
non-abelian Lie algebra. Then for any two-sided ideal I of ΩG,

K(ΩG/I) 6= 1.

Recall [29, §6.4.4] that if R is a noetherian ring with K(R) < ∞, the classical
Krull dimension dimR of R is the largest length of a chain of prime ideals of
R. We always have dimR ≤ K(R); an easy consequence of the above result is

dim(ΩG) < dimG

whenever G satisfies conditions of the Theorem.

6.4. The case when G is nilpotent. Towards the opposite end of the
“spectrum of commutativity” from the almost simple groups lie the nilpotent
groups. Motivated by analogous results for enveloping algebras of nilpotent
Lie algebras [21, Chapter 4] and for group algebras k[G] of finitely generated
nilpotent groups G [33, Theorem E], we ask

Question L. Let G be a nilpotent uniform pro-p group with centre Z and let
I be a nonzero ideal of ΩG. Does I contain a non-zero central element? That
is, is I ∩ ΩZ nonzero?

S. J. Wadsley has shown that Question L has an affirmative answer in the
case when G is one of the simplest possible nonabelian nilpotent uniform pro-p
groups:

Theorem. [43, Theorem 4.10] Let G be a uniform Heisenberg pro-p group with
centre Z and let I be a nonzero two-sided ideal of ΩG. Then I ∩ ΩZ 6= 0.
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A uniform pro-p group G is said to be Heisenberg provided its centre Z is
isomorphic to Zp and G/Z is abelian. The main idea of the proof of the above
result is to show that for any integer t, any finitely generated ΩG-module M
satisfying Cdim(M) ≤ dimG/Z − t is actually finitely generated over “most”
subalgebras ΩH satisfying Z ≤ H and dimG/H = t [43, Theorem 3.10].
In a more precise version of Question L, one might also hope that, when G is
nilpotent, “small” prime ideals I in ΩG are controlled by ΩZ ; that is

I = (I ∩ ΩZ)ΩG.

Question O suggests a more general version of this.
Moreover, one might even hope that arbitrary ideals of these Iwasawa alge-
bras of nilpotent groups are constructed by means of a sequence of centrally
generated ideals - that is, one can ask:

Question M. Suppose that G is a nilpotent uniform pro-p group. If I is an
ideal of ΩG strictly contained in J(ΩG), is there a non-zero central element in
J(ΩG)/I? 10

6.5. The case when G is soluble. Given the parallels pointed out in (3.3)
between the Iwasawa algebras of uniform soluble groups and the enveloping
algebras of finite dimensional complex soluble Lie algebras, it is natural to
wonder whether properties known for the latter case might also be valid in the
former. We give two sample questions of this sort. Recall for the first that a
prime ideal P of the ring R is completely prime if R/P is a domain.

Question N. Let G be a soluble uniform pro-p group.

(i) Is every prime ideal of ΩG completely prime? 11

(ii) Is the prime spectrum of ΩG the disjoint union of finitely many commu-
tative strata (along the lines of [10, Theorem II.2.13], but with necessarily
non-affine strata)?

The simple possible nonabelian soluble case has been studied by O. Venjakob:

Theorem. [40, Theorem 7.1] Let G = X⋊Y be a nonabelian semidirect product
of two copies of Zp. Then the only prime ideals of ΩG are 0, wX and J(ΩG),
and each one is completely prime. Moreover, wX is generated by a normal
element.

An example of such a nonabelian semidirect product is provided by the group
B = 〈a1, a2〉 considered in Example 3.2.
Following J. E. Roseblade and D. S. Passman [33, §1.5], we define the Zalesskii
subgroup A of the soluble uniform pro-p group G to be the centre of the largest
nilpotent closed normal subgroup H of G. We say that an ideal I of ΩG is
faithful if G acts faithfully on the quotient ΩG/I. If Question L has a positive
answer, then it’s possible that a more general statement is true:

10Compare with [21, Proposition 4.7.1(i)].
11Compare with [21, Theorem 3.7.2].
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Question O. Let G be a soluble uniform pro-p group. Is every faithful prime
ideal of ΩG controlled by the Zalesskii subgroup A of G?
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Abstract. In this paper we investigate the image of the l-adic represen-
tation attached to the Tate module of an abelian variety over a number
field with endomorphism algebra of type I or II in the Albert classifica-
tion. We compute the image explicitly and verify the classical conjectures
of Mumford-Tate, Hodge, Lang and Tate for a large family of abelian va-
rieties of type I and II. In addition, for this family, we prove an analogue
of the open image theorem of Serre.
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Keywords and Phrases: abelian varieties, l-adic representations

1. Introduction.
Let A be an abelian variety defined over a number field F. Let l be an odd
prime number. In this paper we study the images of the l-adic representation
ρl : GF −→ GL(Tl(A)) and the mod l representation ρl : GF −→ GL(A[l]) of
the absolute Galois group GF = G(F̄ /F ) of the field F, associated with the
Tate module, for A of type I or II in the Albert classification list cf. [M]. In
our previous paper on the subject cf. [BGK], we computed the images of the
Galois representations for some abelian varieties with real (type I) and complex
multiplications (type IV) by the field E=EndF (A) ⊗ Q and for l which splits
completely in the field E loc. cit., Theorem 2.1 and Theorem 5.3.

In the present paper we extend results proven in [BGK] to a larger class (cf.
Definition of class A below) of abelian varieties which includes some varieties
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with non-commutative algebras of endomorphisms, and to almost all prime
numbers l. In order to get these results, we had to implement the Weil re-
striction functor RL/K for a finite extension of fields L/K. In section 2 of the
paper we give an explicit description of the Weil restriction functor for affine
group schemes which we use in the following sections. In a very short section
3 we prove two general lemmas about bilinear forms which we apply to Weil
pairing in the following section. Further in section 4, we collect some auxiliary
facts about abelian varieties. In section 5 we obtain the integral versions of the
results of Chi cf. [C2], for abelian varieties of type II and compute Lie algebras
and endomorphism algebras corresponding to the λ-adic representations related
to the Tate module of A. In section 6 we prove the main results of the paper
which concern images of Galois representations ρl, ρl ⊗Ql : GF → GL(Vl(A)),

the mod l-representation ρl and the associated group schemes Galgl , Galgl and

G(l)alg, respectively.

The main results proven in this paper concern the following class of abelian
varieties:

Definition of class A.
We say that an abelian variety A/F, defined over a number field F is of class
A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebraD = R⊗ZQ,

is of type I or II in the Albert list of division algebras with involution
(cf. [M], p. 201).

(iii) the field F is such that for every l the Zariski closure Galgl of ρl(GF ) in
GL2g/Ql is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d2 = [D : E].

Let us recall the definition of abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201. Let E ⊂ D =
EndF̄ (A) ⊗Z Q be the center of D and E be a totally real extension of Q of
degree e. Abelian varieties of type I are such that D = E. Abelian varieties
of type II are those for which D is an indefinite quaternion algebra with the
center E, such that D ⊗Q R ∼=

∏e
i=1M2,2(R).

We have chosen to work with principal polarizations, however the main results
of this paper have their analogs for any simple abelian variety A with a fixed
polarization, provided A satisfies the above conditions (ii), (iii) and (iv). The
most restrictive of the conditions in the definition of class A is condition (iv) on
the dimension of the variety A.We need this condition to perform computations
with Lie algebras in the proof of Lemma 5.33, which are based on an application
of the minuscule conjecture cf. [P]. Note that due to results of Serre, the
assumption (iii) is not very restrictive. It follows by [Se1] and [Se4] that for an
abelian variety A defined over a number field K, there exists a finite extension
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Kconn/K for which the Zariski closure of the group ρl(GKconn) in GL is a
connected variety for any prime l. Hence, to make A meet the condition (iii),
it is enough to enlarge the base field, if necessary. Note that the field Kconn

can be determined in purely algebraic terms, as the intersection of a family of
fields of division points on the abelian variety A cf. [LP2], Theorem 0.1.

Main results

Theorem A. [Theorem 6.9]
If A is an abelian variety of class A, then for l≫ 0, we have equalities of group
schemes:

(Galgl )′ =
∏

λ|l
REλ/Ql(Sp2h)

(G(l)alg)′ =
∏

λ|l
Rkλ/Fl(Sp2h),

where G′ stands for the commutator subgroup of an algebraic group G, and
RL/K(−) denotes the Weil restriction functor.

Theorem B. [Theorem 6.16]
If A is an abelian variety of class A, then for l≫ 0, we have:

ρl(G
′
F ) =

∏

λ|l
Sp2h(kλ) = Sp2h(OE/lOE)

ρl
(
G′F

)
=
∏

λ|l
Sp2h(Oλ) = Sp2h(OE ⊗Z Zl),

where G′F is the closure of G′F in the profinite topology in GF .

As an application of Theorem A we obtain:

Theorem C. [Theorem 7.12]
If A is an abelian variety of class A, then

Galgl = MT (A)⊗Ql,

for every prime number l, where MT (A) denotes the Mumford-Tate group of
A, i.e., the Mumford -Tate conjecture holds true for A.

Using the approach initiated by Tankeev [Ta5] and Ribet [R2], futher developed
by V.K. Murty [Mu] combined with some extra work on the Hodge groups in
section 7, we obtain:

Documenta Mathematica · Extra Volume Coates (2006) 35–75



38 G. Banaszak, W. Gajda, P. Krasoń

Theorem D. [Theorems 7.34, 7.35]
If A is an abelian variety of class A, then the Hodge conjecture and the Tate
conjecture on the algebraic cycle maps hold true for the abelian variety A.

In the past there has been an extensive work on the Mumford-Tate, Tate and
Hodge conjectures for abelian varieties. Special cases of the conjectures were
verified for some classes of abelian varieties, see for example papers: [Ab], [C2],
[Mu], [P], [Po], [R2], [Se1], [Se5], [Ta1], [Ta2], [Ta3]. For an abelian variety
A of type I or II the above mentioned papers consider the cases where A is
such that End(A)⊗Q is either Q or has center Q. The papers [Ta4], [C1] and
[BGK] considered some cases with the center larger than Q. For more complete
list of results concerning the Hodge conjecture see [G]. In the current work we
prove the conjectures in the case when the center of End(A)⊗Q is an arbitrary
totally real extension of Q. To prove the conjectures for such abelian varieties
we needed to do careful computations using the Weil restriction functor.

Moreover, using a result of Wintenberger (cf. [Wi], Cor. 1, p.5), we were able
to verify that for A of class A, the group ρl(GF ) contains the group of all the
homotheties in GLTl(A)(Zl) for l ≫ 0, i.e., the Lang conjecture holds true for
A cf. Theorem 7.38.

As a final application of the method developed in this paper, we prove an
analogue of the open image theorem of Serre cf. [Se1] for the class of abelian
varieties we work with.

Theorem E. [Theorem 7.42]
If A is an abelian variety of class A, then for every prime number l, the image
ρl(GF ) is open in the group CR(GSp(Λ, ψ))(Zl) of Zl-points of the commutant
of R=EndA in the group GSp(Λ, ψ) of symplectic similitudes of the bilinear
form ψ : Λ × Λ −→ Z associated with the polarization of A. In addition, for
l≫ 0 we have:

ρl(G′F ) = CR(Sp(Λ, ψ))(Zl).

As an immediate corollary of Theorem E we obtain that for any A of class A
and for every l, the group ρl(GF ) is open in Galgl (Zl) (in the l-adic topology),

where Galgl is the Zariski closure of ρl(GF ) in GL2g/Zl. cf. Theorem 7.48.
Recently, the images of Galois representations coming from abelian varieties
have also been considered by A.Vasiu (cf. [Va1],[Va2]).

2. Weil restriction functor RE/K for affine schemes and Lie al-
gebras.
In this section we describe the Weil restriction functor and its basic properties
which will be used in the paper c.f. [BLR], [V1], [V2, pp. 37-40], [W1] and
[W2, pp. 4-9]. For the completeness of the exposition and convenience of
the reader we decided to include the results although some of them might be
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known to specialists. Let E/K be a separable field extension of degree n. Let
{σ1, σ2, . . . , σn} denote the set of all imbeddings E → Eσi ⊂ K fixingK. Define
M to be the composite of the fields Eσi

M = Eσ1 . . . Eσn .

Let X = [x1, x2, . . . xr] denote a multivariable. For polynomials fk = fk(X) ∈
E[X], 1 ≤ k ≤ s, we denote by I = (f1, f2, . . . , fs) the ideal generated by
the fk’s and put Iσi = (fσi1 (X), fσi2 (X), . . . , fσis (X)) for any 1 ≤ i ≤ n. Let
A = E[X]/I. Define E-algebras Aσi and A as follows:

Aσi = A⊗E,σi M ∼= M [X]/ IσiM [X],

A = Aσ1 ⊗M · · · ⊗M Aσn .

Let Xσ1 , . . . ,Xσn denote the multivariables

Xσi = [xi,1, xi,2, . . . , xi,r]

on which the Galois group G = G(M/K) acts naturally on the right. Indeed
for any imbedding σi and any σ ∈ G the composition σi ◦ σ, applied to E
on the right, gives uniquely determined imbedding σj of E into K, for some
1 ≤ j ≤ n. Hence we define the action of G(M/K) on the elements Xσi in the
following way:

(Xσi)σ = Xσj .

We see that
A ∼= M [Xσ1 , . . . ,Xσn ]/ (I1 + · · ·+ In),

where Ik = M [Xσ1 , . . . ,Xσn ]I(k) and I(k) = (fσk1 (Xσk), . . . , fσks (Xσk)), for any
1 ≤ k ≤ n.
Lemma 2.1.

A
G ⊗K M ∼= A.

Proof. Let α1, . . . , αn be a basis of E over K. It is clear that

n∑

i=1

ασij X
σi ∈ A

G
.

Since [ασij ]i,j is an invertible matrix with coefficients in M, we observe that

Xσ1 , . . . ,Xσn are in the subalgebra of A generated by M and A
G
. But

Xσ1 , . . . ,Xσn and M generate A as an algebra. �

Remark 2.2. Notice that the elements
∑n
i=1 α

σi
j X

σi for j = 1, . . . , n generate

A
G

as a K-algebra. Indeed if C denotes the K-subalgebra of A
G

generated by

these elements and if C were smaller than A
G
, then C ⊗KM would be smaller

than A
G ⊗K M, contrary to Lemma 2.1.
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Definition 2.3. Put V = specA, andW = specA
G
.Weil’s restriction functor

RE/K is defined by the following formula:

RE/K(V ) = W.

Note that we have the following isomorphisms:

W ⊗K M = spec (A
G ⊗K M) ∼= specA ∼=

spec (Aσ1 ⊗M · · · ⊗M Aσn) ∼= (V ⊗E,σ1
M)⊗M · · · ⊗M (V ⊗E,σn M),

hence

RE/K(V )⊗K M ∼= (V ⊗E,σ1
M)⊗M · · · ⊗M (V ⊗E,σn M).

Lemma 2.4. Let V ′ ⊂ V be a closed imbedding of affine schemes over E. Then
RE/K(V ′) ⊂ RE/K(V ) is a closed imbedding of affine schemes over K.

Proof. We can assume that V = spec (E[X]/I) and V ′ = spec (E[X]/J) for two
ideals I ⊂ J of E[X]. Put A = E[X]/I and B = E[X]/J and let φ : A→ B
be the natural surjective ring homomorphism. The homomorphism φ induces
the surjective E-algebra homomorphism

φ : A→ B

which upon taking fix points induces the K-algebra homomorphism

(2.5) φ
G

: A
G → B

G
.

By Remark 2.2 we see that B
G

is generated as a K-algebra by elements∑n
i=1 α

σi
j X

σi (more precisely their images in B
G

). Similarly A
G

is generated as

a K-algebra by elements
∑n
i=1 α

σi
j X

σi (more precisely their images in A
G

). It

is clear that φ
G

sends the element
∑n
i=1 α

σi
j X

σi ∈ AG into
∑n
i=1 α

σi
j X

σi ∈ BG.
Hence φ

G
is onto. �

Let α1, . . . , αn be a basis of E over K and let β1, . . . , βn be the corresponding
dual basis with respect to TrE/K . Define block matrices:

A =




ασ1
1 Ir ασ2

1 Ir . . . ασn1 Ir
ασ1

2 Ir ασ2
2 Ir . . . ασn2 Ir

...
... . . .

...
ασ1
n Ir ασ2

n Ir . . . ασnn Ir


 , B =




βσ1
1 Ir βσ1

2 Ir . . . βσ1
n Ir

βσ2
1 Ir βσ2

2 Ir . . . βσ2
n Ir

...
... . . .

...
βσn1 Ir βσn2 Ir . . . βσnn Ir
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Notice that by definition of the dual basis AB = BA = Irn. Define block
diagonal matrices:

X =




Xσ1 0Ir . . . 0Ir
0Ir Xσ2 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Xσn


 , Y =




Y σ1 0Ir . . . 0Ir
0Ir Y σ2 . . . 0Ir
...

... . . .
...

0Ir 0Ir . . . Y σn


 ,

where Y σ1 , . . . , Y σn andXσ1 , . . . ,Xσn , are multivariables written now in a form
of r × r matrices indexed by σ1, . . . , σn. Let Tij and Sij , for all 1 ≤ i ≤ n, 1 ≤
j ≤ n, be r× r multivariable matrices. Define block matrices of multivariables:

T =




T11 T12 . . . T1n

T21 T22 . . . T2n
...

... . . .
...

Tn1 Tn2 . . . Tnn


 , S =




S11 S12 . . . S1n

S21 S22 . . . S2n
...

... . . .
...

Sn1 Sn2 . . . Snn




Notice that:

AXB =




∑n
j=1(α1β1)

σjXσj
∑n
j=1(α1β2)

σjXσj . . .
∑n
j=1(α1βn)

σjXσj
∑n
j=1(α2β1)

σjXσj
∑n
j=1(α2β2)

σjXσj . . .
∑n
j=1(α2βn)

σjXσj

...
... . . .

...∑n
j=1(αnβ1)

σjXσj
∑n
j=1(αnβ2)

σjXσj . . .
∑n
j=1(αnβn)

σjXσj




AYB =




∑n
j=1(α1β1)

σjY σj
∑n
j=1(α1β2)

σjY σj . . .
∑n
j=1(α1βn)

σjY σj∑n
j=1(α2β1)

σjY σj
∑n
j=1(α2β2)

σjY σj . . .
∑n
j=1(α2βn)

σjY σj

...
... . . .

...∑n
j=1(αnβ1)

σjY σj
∑n
j=1(αnβ2)

σjY σj . . .
∑n
j=1(αnβn)

σjY σj


.

Observe that the entries of AXB and AYB are G-equivariant. Hence, there is
a well defined homomorphism of K-algebras

(2.6) Φ : K[T,S]/(TS−Irn, ST−Irn) →
(
M [X,Y]/(XY−Irn, YX−Irn)

)G

T → AXB

S → AYB

The definition of Φ and the form of the entries of matrices AXB and AYB show
(by the same argument as in Lemma 2.4) that the map Φ is surjective. Observe
that

GLrn/K = spec K[T,S]/(TS− Irn, ST− Irn),
GLr/E = spec E[X,Y ]/(XY − Ir, Y X − Ir),

where X and Y are r × r multivariable matrices.
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Lemma 2.7. Consider the group scheme GLr/E. The map Φ induces a nat-
ural isomorphism RE/K(GLr) ∼= CE(GLrn/K) of closed group subschemes of
GLrn/K, where CE(GLrn/K) is the commutant of E in GLrn/K.

Proof. Observe that there is a natural M -algebra isomorphism

M [X,Y]/(XY− Irn, YX− Irn) ∼= Aσ1 ⊗M · · · ⊗M Aσn ,

where in this case

Aσj =M [X,Y ]/(XY−Ir, Y X−Ir)∼=M [Xσj , Y σj ]/(XσjY σj−Ir, Y σjXσj−Ir).

Hence, by Definition 2.3 we get a natural isomorphism of schemes over K :

RE/K(GLr) ∼= spec
(
M [X,Y]/(XY− Irn, YX− Irn)

)G

and it follows that Φ induces a closed imbedding of schemes RE/K(GLr) →
GLrn over K. Moreover we easily check that KerΦ is generated by elements
α ◦T−T ◦α and α ◦S−S ◦α for all α ∈ E, where ◦ denotes the multiplication
in GLrn/K. Note that CE(GLrn/K) is equal to

spec K[T,S]
/
(TS− Irn, ST− Irn, α ◦ T− T ◦ α, α ◦ S− S ◦ α, ∀α∈E). �

Remark 2.8. Let E/K be an unramified extension of two local fields. Hence
the extension of rings of integers OE/OK has an integral basis α1, . . . , αn of
OE over OK such that the corresponding dual basis β1, . . . , βn with respect to
TrE/K is also a basis of OE over OK see [A], Chapter 7. Let ROE/OK be the
Weil restriction functor defined analogously to the Weil restriction functor for
the extension E/K. Under these assumptions the following Lemmas 2.9 and
2.10 are proven in precisely the same way as Lemmas 2.4 and 2.6.

Lemma 2.9. Let V ′ ⊂ V be a closed imbedding of affine schemes over OE .
Under the assumptions of Remark 2.8 ROE/OK (V ′) ⊂ ROE/OK (V ) is a closed
imbedding of affine schemes over OK .

Lemma 2.10. Consider the group scheme GLr/OE . Under the assumptions of
Remark 2.8 there is a natural isomorphism ROE/OK (GLr) ∼= COE (GLrn/OK)
of closed group subschemes of GLrn/OK , where COE (GLrn/OK) is the com-
mutant of OE in GLrn/OK .

We return to the case of the arbitrary separable field extension E/K of degree n.
Every point ofX0 ∈ GLr(E) is uniquely determined by the ring homomorphism

hX0
: E[X,Y ]/(XY − Ir, Y X − Ir) → E
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X 7→ X0, Y 7→ Y0,

where Y0 is the inverse of X0. This gives immediately the homomorphism

hT0
: K[T,S]/(TS− Irn, ST− Irn)→ K

T 7→ T0 = AX0B,

S 7→ S0 = AY0B

where

X0 =




Xσ1
0 0Ir . . . 0Ir

0Ir Xσ2
0 . . . 0Ir

...
... . . .

...
0Ir 0Ir . . . Xσn

0


 , Y0 =




Y σ1
0 0Ir . . . 0Ir

0Ir Y σ2
0 . . . 0Ir

...
... . . .

...
0Ir 0Ir . . . Y σn0


 ,

and the action of σi on X0 and Y0 is the genuine action on the entries of X0

and Y0. Obviously hT0
determines uniquely the point T0 ∈ GLrn(K) with the

inverse S0.

Definition 2.11. Assume that Z = {Xt; t ∈ T} ⊂ GLr(E) is a set of points.
We define the corresponding set of points:

ZΦ = {Tt = AXtB; t ∈ T} ⊂ GLrn(K),

where

Xt =




Xσ1
t 0Ir . . . 0Ir

0Ir Xσ2
t . . . 0Ir

...
... . . .

...
0Ir 0Ir . . . Xσn

t


 .

We denote by Zalg the Zariski closure of Z in GLr/E and by ZalgΦ the Zariski
closure of ZΦ in GLrn/K.

Proposition 2.12. We have a natural isomorphism of schemes over K :

RE/K(Zalg) ∼= ZalgΦ .

Proof. Let
Jt = (XY − Ir, Y X − Ir, X −Xt, Y − Yt)

be the prime ideal of E[X,Y ] corresponding to the point Xt ∈ GLr(E). Let

J =
⋂

t∈T
Jt.

Documenta Mathematica · Extra Volume Coates (2006) 35–75



44 G. Banaszak, W. Gajda, P. Krasoń

By definition Zalg = spec (E[X,Y ]/J). Let

Jt = (TS− Irn, ST− Irn, T− AXtB, S− AYtB)

be the prime ideal in K[T,S]/(TS− Irn, ST− Irn) corresponding to the point
AXtB ∈ GLrn(K). Define

J =
⋂

t∈T
Jt.

By definition ZalgΦ = spec (K[T,S]/J). Put A = E[X,Y ]/(XY − Ir, Y X − Ir).
Observe that the ring A

G
is generated as a K-algebra by AXB and AYB, since

A is generated by X and Y as an M -algebra. Define

J′t = (AXB− AXtB, AYB− AYtB)

which is an ideal of A
G
. Put

J′ =
⋂

t∈T
J′t.

We have the following isomorphism induced by Φ.

(2.13) K[T,S]/Jt ∼= A
G
/ J′t ∼= K.

Hence, Φ−1(J′t) = Jt and Φ−1(J′) = J. This gives the isomorphism

(2.14) K[T,S]/J ∼= A
G
/ J′.

Let B = E[X,Y ]/J. There is a natural surjective homomorphism of K-algebras
coming from the construction in the proof of Lemma 2.4 (see (2.5)):

(2.15) A
G
/ J′ → B

G

induced by the quotient map A → B. We want to prove that (2.15) is an
isomorphism. Observe that there is natural isomorphism of K-algebras:

(2.16) A
G
/ J′t ∼= A/Jt

G ∼= K.

Consider the following commutative diagram of homomorphisms of K-algebras:

(2.17)

A
G
/ J′ −−−−→ B

G

y
y

∏
t∈T A

G
/ J′t

∼=−−−−→ ∏
t∈T A/Jt

G

The left vertical arrow is an imbedding by definition of J′ and the bottom
horizontal arrow is an isomorphism by (2.16). Hence the top horizontal arrow
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is an imbedding, i.e., the map (2.15) is an isomorphism. The composition of
maps (2.14) and (2.15) gives a natural isomorphism of K-algebras

(2.18) K[T,S]/J ∼= B
G
.

But ZalgΦ = spec (K[T,S]/J). In addition, Zalg = specB, hence

RE/K(Zalg) = specB
G

and Proposition 2.12 follows by (2.18). �

Remark 2.19. If Z is a subgroup of GLr(E), then ZΦ is a subgroup of

GLrn(K). In this case Zalg is a closed algebraic subgroup of GLr/E and ZalgΦ

is a closed algebraic subgroup of GLrn/K.

Definition 2.20. Let H = specA be an affine algebraic group scheme defined
over E and h its Lie algebra. We define g = RE/Kh to be the Lie algebra
obtained from h by considering it over K with the same bracket.

Lemma 2.21. There is the following equality of Lie algebras

Lie(RE/KH) = RE/Kh.

Proof. Let n = [E : K] and G = Gal(E/K). Since H is an algebraic group
h = Der(A) is the Lie algebra of derivations of the algebra A of functions on
H [ H1]. Let φ : Der(A) → Der(Ā) be the homomorphism of Lie algebras
(considered over E) given by the following formula:

φ(δ) = Σni=1id⊗ · · · ⊗ id⊗ δi ⊗ id⊗ · · · ⊗ id,

where δi = δ⊗1 as an element of Der(Aσi). Recall that Aσi = A⊗E,σiM. If σ ∈
G and σ(a1⊗· · ·⊗an) = σ(ak1)⊗· · ·⊗σ(akn) one readily sees that δj(σ(akj )) =

σ(δkj (akj )) and therefore φ(δ) is G-equivariant i.e., φ(δ) ∈ Der(ĀG). It is easy

to see that φ(δ) as an element of Der(Ā) is nontrivial if δ is nontrivial. Since
φ(δ) is M -linear and ĀG⊗KM = Ā, we see that φ(δ) is a nontrivial element of
Der(ĀG) = Lie(RE/KH). On the other hand, observe that

Lie(RE/KH)⊗KK̄ = Lie(RE/KH⊗KK̄) =

= Lie(H̄ ×K · · · ×K H̄) = (⊕h)⊗E K̄ = g⊗K K̄.

This shows that Lie(RE/KH) and RE/Kh have the same dimensions and there-
fore are equal. �

Lemma 2.22. Let g be a Lie algebra over E and let g′ be its derived algebra.
Then

RE/K(g′) = (RE/K(g))′

Proof. This follows immediately from the fact that RE/K(g) and g have the
same Lie bracket (cf. Definition 2.20) �
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Lemma 2.23. If G is a connected, algebraic group over E of characteristic 0,
then

RE/K(G′) = (RE/KG)′

Proof. We have the following identities:

Lie((RE/K(G))′) = (Lie(RE/K(G)))′ = (RE/K(Lie(G)))′ =

= RE/K((Lie(G))′) = RE/K(Lie(G′)) = Lie(RE/K(G′))

The first and the fourth equality follow from Corollary on p.75 of [H1]. The
second and fifth equality follow from Lemma 2.21. The third equality follows
from Lemma 2.22. The Lemma follows by Theorem on p. 87 of [H1] and
Proposition on p. 110 of [H1]. �

3. Some remarks on bilinear forms.

Let E be a finite extension of Q of degree e. Let El = E⊗Ql andOEl = OE⊗Zl.
Hence El =

∏
λ|lEλ and OEl =

∏
λ|lOλ. Let O′λ be the dual to Oλ with respect

to the trace TrEλ/Ql . For l≫ 0 we have O′λ = Oλ see [A], Chapter 7. From now
on we take l big enough to ensure that O′λ = Oλ for all primes λ in OE over l
and that an abelian variety A we consider, has good reduction at all primes in
OF over l. The following lemma is the integral version of the sublemma 4.7 of
[D].

Lemma 3.1. Let T1 and T2 be finitely generated, free OEl -modules. For any
Zl-bilinear (resp. nondegenerate Zl-bilinear ) map

ψl : T1 × T2 → Zl

such that ψl(ev1, v2) = ψl(v1, ev2) for all e ∈ OEl , v1 ∈ T1, v2 ∈ T2, there is a
unique OEl -bilinear (resp. nondegenerate OEl -bilinear ) map

φl : T1 × T2 → OEl

such that TrEl/Ql(φl(v1, v2)) = ψl(v1, v2) for all v1 ∈ T1 and v2 ∈ T2.

Proof. Similary to Sublemma 4.7, [D] we observe that the map

TrEl/Ql : HomOEl (T1 ⊗OEl T2 ;OEl)→ HomZl(T1 ⊗OEl T2 ; Zl)

is an isomorphism since it is a surjective map of torsion free Zl-modules of the
same Zl-rank. The surjectivity of TrEl/Ql can be seen as follows. The Zl-basis
of the module T1⊗OElT2 is given by

B =
(
(0, . . . , 0, αλk , 0, . . . , 0)ei ⊗ e′j

)
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where (0, . . . , 0, αλk , 0, . . . , 0) ∈ ∏λ|lOλ and αλk is an element of a basis of Oλ
over Zl and ei (resp. e′j) is an element of the standard basis of T1 (resp. T2)

over OEl . Let ψλk,i,j ∈ HomZl(T1 ⊗OEl T2 ; Zl) be the homomorphism which

takes value 1 on the element (0, . . . , 0, αλk , 0, . . . , 0)ei ⊗ e′j of the basis B and
takes value 0 on the remaining elements of the basis B. Let us take φi,j ∈
HomOEl (T1 ⊗OEl T2 ;OEl) such that

φi,j(er ⊗ e′s) =

{
1 if i = r and j = s

0 if i 6= r or j 6= s

Then for each k there exist elements (the dual basis) βλk ∈ Oλ such that
TrEλ/Ql(β

λ
kα

λ
n) = δk,n. If we put φλi,j,k = (0, . . . , 0, βλk , 0, . . . , 0)φi,j then clearly

TrEl/Ql(φ
λ
i,j,k(t1, t2)) = ψλi,j,k(t1, t2). Hence the proof is finished since the ele-

ments ψλi,j,k(t1, t2) form a basis of HomZl(T1 ⊗OEl T2 ; Zl) over Zl. �

Consider the case T1 = T2 and put Tl = T1 = T2. Assume in addition that ψl
is nondegenerate. Let

ψl : Tl/l Tl × Tl/l Tl → Z/l

be the Z/l-bilinear pairing obtained by reducing the form ψl modulo l. Define

Tλ = eλTl ∼= Tl ⊗OEl Oλ

Vλ = Tλ ⊗Oλ Eλ
where eλ is the standard idempotent corresponding to the decompositionOEl =∏
λOλ. Let πλ : OEl → Oλ be the natural projection. We can define an Oλ-

nondegenerate bilinear form as follows:

ψλ : Tλ × Tλ → Oλ

ψλ(eλv1, eλv2) = πλ(φl(v1, v2))

for any v1, v2 ∈ Tl. Put kλ = Oλ/λOλ. This gives the kλ-bilinear form ψλ =
ψλ ⊗Oλ kλ

ψλ : Tλ/λTλ × Tλ/λTλ → kλ.

We also have the Eλ-bilinear form ψ0
λ := ψλ ⊗Oλ Eλ

ψ0
λ : Vλ × Vλ → Eλ.

Documenta Mathematica · Extra Volume Coates (2006) 35–75



48 G. Banaszak, W. Gajda, P. Krasoń

Lemma 3.2. Assume that the form ψl is nondegenerate. Then the forms ψλ,
ψλ and ψ0

λ are nondegenerate for each λ|l.
Proof. First we prove that ψλ is nondegenerate for all λ|l. Assume that ψλ is
degenerate for some λ. Without loss of generality we can assume that the left
radical of ψλ is nonzero. So there is a nonzero vector eλv0 ∈ Tλ (for some
v0 ∈ Tl) which maps to a nonzero vector in Tλ/λTλ such that ψλ(eλv0, eλw) ∈
λOλ for all w ∈ Tl. Now use the decomposition Tl = ⊕λTλ, Lemma 3.1 and
the OEl -linearity of φl to observe that for each w ∈ Tl

ψl(eλv0, w) = TrEl/Ql(φl(eλv0,
∑

λ′

eλ′w)) = TrEλ/Qlψλ(eλv0, eλw) ∈ lZl.

This contradicts the assumption that ψl is nondegenerate.
Similarly, but in an easier way, we prove that ψλ is nondegenerate. From this
it immediately follows that ψ0

λ is nondegenerate. �

4. Auxiliary facts about abelian varieties.
Let A/F be a principally polarized, simple abelian variety of dimension g
with the polarization defined over F. Put R = EndF̄ (A) We assume that
EndF̄ (A) = EndF (A), hence the actions of R and GF on A(F ) commute. Put
D = EndF̄ (A) ⊗Z Q. The ring R is an order in D. Let E1 be the center of D
and let

E := {a ∈ E1; a
′ = a},

where ′ is the Rosati involution. Let RD be a maximal order in D containing
R. Put O0

E := R∩E. The ring O0
E is an order in E. Take l that does not divide

the index [RD : R]. Then RD ⊗Z Zl = R⊗Z Zl and OE ⊗Z Zl = O0
E ⊗Z Zl

The polarization of A gives a Zl-bilinear, nondegenerate, alternating pairing

(4.1) ψl : Tl(A)× Tl(A)→ Zl.

Because A has the principal polarization, for any endomorphism α ∈ R we get
α′ ∈ R, (see [Mi] chapter 13 and 17) where α′ is the image of α by the Rosati
involution. Hence for any v, w ∈ Tl(A) we have ψl(αv,w) = ψl(v, α

′w) (see loc.
cit.).

Remark 4.2. Notice that if an abelian variety were not principally polarized,
one would have to assume that l does not divide the degree of the polarization
of A, to get α′ ⊗ 1 ∈ R⊗ Zl for α ∈ R.
By Lemma 3.1 there is a unique nondegenerate, OEl-bilinear pairing

(4.3) φl : Tl(A)× Tl(A)→ OEl

such that TrEl/Ql(φl(v1, v2)) = ψl(v1, v2). As in the general case define

Tλ(A) = eλTl(A) ∼= Tl(A)⊗OEl Oλ
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Vλ(A) = Tλ(A)⊗Oλ Eλ.

Note that Tλ(A)/λTλ(A) ∼= A[λ] as kλ[GF ]-modules.
Again as in the general case define nondegenerate, Oλ-bilinear form

(4.4) ψλ : Tλ(A)× Tλ(A)→ Oλ

ψλ(eλv1, eλv2) = πλ(φl(v1, v2))

for any v1, v2 ∈ Tl(A), where πλ : OEl → Oλ is the natural projection. The
form ψλ gives the forms:

(4.5) ψλ : A[λ]×A[λ]→ kλ.

(4.6) ψ0
λ : Vλ(A)× Vλ(A)→ Eλ.

Notice that all the bilinear forms ψλ, ψλ and ψ0
λ are alternating forms. For

l relatively prime to the degree of polarization the form ψl is nondegenerate.
Hence by lemma 3.2 the forms ψλ, ψλ and ψ0

λ are nondegenerate.

Lemma 4.7. Let χλ : GF → Zl ⊂ Oλ be the composition of the cyclotomic
character with the natural imbedding Zl ⊂ Oλ.

(i) For any σ ∈ GF and all v1, v2 ∈ Tλ(A)

ψλ(σv1, σv2) = χλ(σ)ψλ(v1, v2).

(ii) For any α ∈ R and all v1, v2 ∈ Tλ(A)

ψλ(αv1, v2) = ψλ(v1, α
′v2).

Proof. The proof is the same as the proof of Lemma 2.3 in [C2]. �

Remark 4.8. After tensoring appropriate objects with Ql in lemmas 3.1 and
4.6 we obtain Lemmas 2.2 and 2.3 of [C2].

Let A/F be an abelian variety defined over a number field F such that
EndF̄ (A) = EndF (A). We introduce some notation. Let Gl∞ , Gl, G

0
l∞ de-

note the images of the corresponding representations:

ρl : GF → GL(Tl(A)) ∼= GL2g(Zl),

ρl : GF → GL(A[l]) ∼= GL2g(Fl),

ρl ⊗Ql : GF → GL(Vl(A)) ∼= GL2g(Ql).
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Let Galgl , (Galgl resp.) denote the Zariski closure of the image of the represen-

tation ρl, (ρl ⊗ Ql, resp.) in GL2g/Zl, (GL2g/Ql, resp). We define G(l)alg to

be the special fiber of the Zl−scheme Galgl .

Due to our assumptions on the GF -action and the properties of the forms
ψλ, ψλ and ψ0

λ we get:

(4.9) Gl∞ ⊂ Galgl (Zl) ⊂
∏

λ|l
GSpTλ(A)(Oλ) ⊂ GLTl(A)(Zl)

(4.10) Gl ⊂ G(l)alg(Fl) ⊂
∏

λ|l
GSpA[λ](kλ) ⊂ GLA[l](Fl)

(4.11) G0
l∞ ⊂ Galgl (Ql) ⊂

∏

λ|l
GSpVλ(A)(Eλ) ⊂ GLVl(A)(Ql).

Before we proceed further let us state and prove some general lemmas con-
cerning l-adic representations. Let K/Ql be a local field extension and OK the
ring of integers in K. Let T be a finitely generated, free OK-module and let
V = T ⊗OK K. Consider a continuous representation ρ : GF → GL(T ) and
the induced representation ρ0 = ρ⊗K : GF → GL(V ). Since GF is compact
and ρ0 is continuous, the subgroup ρ0(GF ) of GL(V ) is closed. By [Se7], LG.
4.5, ρ0(GF ) is an analytic subgroup of GL(V ).

Lemma 4.12. Let g be the Lie algebra of the group ρ0(GF )

(i) There is an open subgroup U0 ⊂ ρ0(GF ) such that

EndU0
(V ) = Endg (V ).

(ii) For all open subgroups U ⊂ ρ0(GF ) we have

EndU (V ) ⊂ Endg (V ).

(iii) Taking union over all open subgroups U ⊂ ρ0(GF ) we get

⋃

U

EndU (V ) = Endg (V ).
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Proof. (i) Note that for any open subgroup Ũ of g we have

(4.13) EndŨ (V ) = Endg (V )

because K Ũ = g. By [B], Prop. 3, III.7.2, for some open Ũ ⊂ g, there is an
exponential map

exp : Ũ → ρ0(GF )

which is an analytic isomorphism and such that exp (Ũ) is an open subgroup of
ρ0(GF ). The exponential map can be expressed by the classical power series for
exp (t). On the other hand by [B], Prop. 10, III.7.6, for some open U ⊂ ρ0(GF ),
there is a logarithmic map

log : U → g

which is an analytic isomorphism and the inverse of exp. The logarithmic map
can be expressed by the classical power series for ln t. Hence, we can choose Ũ0

such that U0 = exp (Ũ0) and log (U0) = Ũ0. This gives

(4.14) EndU0
(V ) = EndŨ0

(V ).

and (i) follows by (4.13) and (4.14).

(ii) Observe that for any open U ⊂ ρ0(GF ) we have

EndU (V ) ⊂ EndU0∩U (V ).

Hence (ii) follows by (i).

(iii) Follows by (i) and (ii). �

Lemma 4.15. Let A/F be an abelian variety over F such that EndF (A) =
EndF (A). Then

EndGF (Vl(A)) = Endgl (Vl(A)).

Proof. By the result of Faltings [Fa], Satz 4,

EndL (A)⊗Ql = EndGL (Vl(A))

for any finite extension L/F. By the assumption EndF (A) = EndL (A). Hence

EndGF (Vl(A)) = EndU ′ (Vl(A))

for any open subgroup U ′ of GF . So the claim follows by Lemma 4.12 (iii). �

Let A be a simple abelian variety defined over F and E be the center of the
algebra D = EndF (A) ⊗ Q. Let λ|l be a prime of OE over l. Consider the
following representations.

ρλ : GF → GL(Tλ(A)),

ρλ : GF → GL(A[λ]),

ρλ ⊗Oλ Eλ : GF → GL(Vλ(A)),

where λ|l. Let Galgλ , (Galgλ resp.) denote the Zariski closure of the image of the
representation ρλ, (ρλ⊗Eλ resp.) in GLTλ(A)/Oλ, ( GLVλ(A)/Eλ resp.) We

define G(λ)alg to be the special fiber of the Oλ-scheme Galgλ .
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Theorem 4.16. Let A be a simple abelian variety with the property that
R = EndF̄ (A) = EndF (A). Let Rλ = R ⊗O0

E
Oλ and let Dλ = D ⊗E Eλ.

Then

(i) EndOλ[GF ] (Tλ(A)) ∼= Rλ
(ii) EndRλ[GF ] (Vλ(A)) ∼= Dλ

(iii) Endkλ[GF ] (A[λ]) ∼= Rλ ⊗Oλ kλ for l≫ 0.

Proof. It follows by [Fa], Satz 4 and [Za], Cor. 5.4.5. �

Lemma 4.17. Let K be a field and let R be a unital K-algebra. Put D =
EndR(M) and let L be a subfield of the center of D. Assume that L/K is a
finite separable extension. If M is a semisimple R-module then M is also a
semisimple R⊗K L-module with the obvious action of R⊗K L on M.

Proof. Take α ∈ L such that L = K(α). Let [L : K] = n. Let us write M =

⊕iMi where all Mi are simple R modules. For any i we put M̃i =
∑n−1
k=0 α

kMi.

Then M̃i is an R⊗K L-module. Because Mi is a simple R-module we can write

M̃i =

m−1⊕

k=0

αkMi,

for some m. Observe that if m = 1, then M̃i is obviously a simple R ⊗K L-
module. If m>1, we pick any simple R-submodule Ni ⊂ M̃i, Ni 6= Mi. There
is an R- isomorphism φ : Mi → Ni by semisimplicity of M̃i. We can write
M = Mi⊕Ni⊕M ′, where M ′ is an R-submodule of M. Define Ψ ∈ AutR(M) ⊂
EndR(M) by Ψ|Mi

= φ, Ψ|Ni = φ−1 and Ψ|M ′ = IdM ′ . Note that

(4.18) Ψ(

m−1⊕

k=0

αkMi) =

m−1⊕

k=0

αkNi

since α is in the center of D. Hence M̃i =
⊕m−1

k=0 αkNi by the classification

of semisimple R-modules. We conclude that M̃i is a simple R ⊗K L-module.
Indeed, if N ⊂ M̃i were a nonzero R ⊗K L-submodule of M̃i then we could
pick any simple R-submodule Ni ⊂ N. If Ni = Mi then N = M̃i. If Ni 6= Mi

then by (4.18) M̃i =
⊕m−1

k=0 αkNi ⊂ N. Since M =
∑
i M̃i, we see that M is a

semisimple R⊗K L-module. �

Theorem 4.19. Let A be a simple abelian variety with the property that
R = EndF̄ (A) = EndF (A). Let Rλ = R⊗O0

E
Oλ and let Dλ = D⊗EEλ. Then

GF acts on Vλ(A) and A[λ] semisimply and Galgλ and G(λ)alg are reductive

algebraic groups. The scheme Galgλ is a reductive group scheme over Oλ for l
big enough.

Proof. It follows by [Fa], Theorem 3 and our Lemma 4.17. The last statement
follows by [LP1], Proposition 1.3, see also [Wi], Theoreme 1. �
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5. Abelian varieties of type I and II.
In this section we work with abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201, i.e. E ⊂ D =
EndF̄ (A) ⊗Z Q is the center of D and E is a totally real extension of Q of
degree e. To be more precise D is either E (type I) or an indefinite quaternion
algebra with the center E, such that D⊗Q R ∼=

∏e
i=1M2,2(R) (type II). In the

first part of this section we prove integral versions of the results of Chi [C2]
for abelian varieties of type II. Let l be a sufficiently large prime number that
does not divide the index [RD : R] and such that D ⊗E Eλ splits over Eλ for
any prime λ in OE over l. Hence, Dλ = M2,2(Eλ). Then by [R, Corollary 11.2
p. 132 and Theorem 11.5 p. 133] the ring Rλ is a maximal order in Dλ. So by
[R] Theorem 8.7 p. 110 we get Rλ = M2,2(Oλ), hence Rλ⊗Oλkλ = M2,2(kλ).
Similarly to [C2] we put

t =

(
1 0
0 −1

)
, u =

(
0 1
1 0

)
.

Let e = 1
2 (1+ t), f = 1

2 (1+u), X = e Tλ(A), Y = (1−e)Tλ(A), X ′ = f Tλ(A),
Y ′ = (1 − f)Tλ(A). Put X = X⊗OλEλ, X ′ = X ′⊗OλEλ, Y = Y⊗OλEλ,
Y ′ = Y ′⊗OλEλ, X = X⊗Oλkλ, X

′
= X ′⊗Oλkλ, Y = Y⊗Oλkλ, Y

′
= Y ′⊗Oλkλ.

Because ueu = 1 − e, the matrix u gives an Oλ[GF ]-isomorphism between
X and Y, hence it yields an Eλ[GF ]-isomorphism between X and Y and a
kλ[GF ]-isomorphism between X and Y. Multiplication by t gives an Oλ[GF ]-
isomorphism between X ′ and Y ′, hence it yields an Eλ[GF ]-isomorphism be-

tween X ′ and Y ′ and a kλ[GF ]-isomorphism between X ′ and Y ′. Observe that

(5.1) EndOλ[GF ] (X ) ∼= EndOλ[GF ](X ′) ∼= Oλ

(5.2) EndEλ[GF ] (X) ∼= EndEλ[GF ](X
′) ∼= Eλ

(5.3) Endkλ[GF ] (X ) ∼= Endkλ[GF ](X
′
) ∼= kλ.

So the representations of GF on the spaces X,Y,X ′, Y ′ (resp. X ,Y ,X ′,Y ′) are
absolutely irreducible over Eλ (resp. over kλ). Hence, the bilinear form ψ0

λ

cf. (4.4) (resp. ψλ cf. (4.5)) when restricted to any of the spaces X,X ′, Y, Y ′,

(resp. spaces X ,X ′,Y ,Y ′) is either nondegenerate or isotropic.

We obtain the integral version of Theorem A of [C2].

Theorem 5.4. If A is of type II, then there is a free Oλ-module Wλ(A) of
rank 2h such that

(i) we have an isomorphism of Oλ[GF ]- modules Tλ(A) ∼=Wλ(A)⊕Wλ(A)
(ii) there is an alternating pairing ψλ : Wλ(A)×Wλ(A)→ Oλ
(ii’) the induced alternating pairing ψ0

λ : Wλ(A) ×Wλ(A) → Eλ is nonde-
generate, where Wλ(A) =Wλ(A)⊗Oλ Eλ

(ii”) the induced alternating pairing ψλ : Wλ(A)×Wλ(A)→ kλ is nonde-
generate, where Wλ(A) =Wλ(A)⊗Oλ kλ.
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The pairings in (ii), (ii’) and (ii”) are compatible with the GF -action in the
same way as the pairing in Lemma 4.7 (i).

Proof. (ii’) is proven in [C2], while (i) and (ii) are straightforward generaliza-
tions of the arguments in loc. cit. The bilinear pairing φl is nondegenerate,
hence the bilinear pairing φl is nondegenerate, since the abelian variety A is
principally polarized by assumption. (Actually φl is nondegenerate for any
abelian variety with polarization degree prime to l). So, by Lemma 3.2 the
form ψλ is nondegenerate for all λ hence simultaneously the forms ψ0

λ and ψλ
are nondegenerate. Now we finish the proof of (ii”) arguing for A[λ] similarly
as it is done for Vλ in [C2], Lemma 3.3. �

From now on we work with the abelian varieties of type either I or II. We

assume that the field F of definition of A is such that Galgl is a connected
algebraic group.
Let us put

(5.5) Tλ =





Tλ(A) if A is of type I

Wλ(A) , if A is of type II

Let Vλ = Tλ ⊗Oλ Eλ and Aλ = Vλ/Tλ. With this notation we have:

(5.6) Vl(A) =





⊕
λ|l Vλ if A is of type I

⊕
λ|l
(
Vλ ⊕ Vλ

)
, if A is of type II

We put

(5.7) Vl =
⊕

λ|l
Vλ

Let VΦλ be the space Vλ considered over Ql. We define ρΦλ(g) = Tλ =
AλXλBλ, where Xλ ∈ GL(Vλ) is such that ρλ(g) = Xλ. ( cf. the definition
of the map Φ in (2.6) for the choice of Aλ and Bλ). Proposition 2.12 motivates
the definition of ρΦλ . We have the following equality of Ql-vector spaces:

(5.8) Vl =
⊕

λ|l
VΦλ

The l-adic representation

(5.9) ρl : GF −→ GL(Vl(A))
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induces the following representations (note that we use the notation ρl for both
representations (5.9) and (5.10) cf. Remark 5.13 ):

(5.10) ρl : GF −→ GL(Vl)

(5.11)
∏

ρλ : GF −→
∏

λ

GL(Vλ)

(5.12)
∏

ρΦλ : GF −→
∏

Φλ
GL(VΦλ).

Remark 5.13. In the case of abelian variety of type II we have Vl(A) = Vl⊕Vl
and the action of GF on the direct sum is the diagonal one as follows from
Theorem 5.4. Hence, the images of the Galois group via the representations
(5.9), (5.10) and (5.12) are isomorphic. Also the Zariski closures of the images
of these three representations are isomorphic as algebraic varieties over Ql in
the corresponding GL-groups. Similarly, Vλ(A) = Vλ ⊕ Vλ with the diagonal
action of GF on the direct sum by Theorem 5.4. Hence, the images of the
representations given by GF -actions on Vλ and Vλ(A) are isomorphic and so
are their Zariski closures in corresponding GL-groups. For this reason, in the
sequel, we will identify the representation of GF on Vl(A) (respectively on
Vλ(A)) with its representation on Vl (resp. Vλ).

By Remark 5.13 we can consider Galgl (resp. Galgλ ) to be the Zariski closure
in GLVl (resp. GLVλ) of the image of the representation ρl of (5.10) (resp. ρλ
of (5.11)). Let GalgΦλ

denote the Zariski closure in GLVΦλ
of the image of the

representation ρΦλ of (5.12). Let gl be the Lie algebra of Galgl , gλ be the Lie

algebra of Galgλ and let gΦλ be the Lie algebra of GalgΦλ
. By definition, we have

the following inclusions:

(5.14) Galgl ⊂
∏

λ|l
GalgΦλ

(5.15) (Galgl )′ ⊂
∏

λ|l
(GalgΦλ

)′

(5.16) gl ⊂
⊕

λ|l
gΦλ

(5.17) gssl ⊂
⊕

λ|l
gssΦλ .

The map (5.14) gives a map

(5.18) Galgl → GalgΦλ
,

which induces the natural map of Lie algebras:

(5.19) gl → gΦλ .

Documenta Mathematica · Extra Volume Coates (2006) 35–75



56 G. Banaszak, W. Gajda, P. Krasoń

Lemma 5.20. The map (5.19) of Lie algebras is surjective for any prime λ|l.
Hence the following map of Lie algebras:

(5.21) gssl → gssΦλ

is surjective.

Proof. We know by the result of Tate, [T2] that the Ql[GF ]-module Vl(A) is
of Hodge-Tate type for any prime v of OF dividing l. Hence by the theorem of
Bogomolov cf. [Bo] we have

gl = Lie (ρl(GF )).

Since each Ql[GF ]-module VΦλ is a direct summand of the Ql[GF ]-module Vl,
then the Ql[GF ]-module VΦλ is also of Hodge-Tate type for any prime v of OF
dividing l. It follows by the theorem of Bogomolov, [Bo] that

gΦλ = Lie (ρΦλ(GF )).

But the surjective map of l-adic Lie groups ρl(GF ) → ρΦλ(GF ) induces the
surjective map of l-adic Lie algebras Lie (ρl(GF ))→ Lie (ρΦλ(GF )). �

Lemma 5.22. Let A/F be an abelian variety over F of type I or II such that
EndF (A) = EndF (A). Then

(5.23) Endgλ (Vλ) ∼= EndEλ[GF ] (Vλ) ∼= Eλ

(5.24) EndgΦλ
(VΦλ)

∼= EndQl[GF ] (VΦλ)
∼= Eλ.

Proof. By [F], Theorem 4, the assumption EndF (A) = EndL (A) for any finite
extension L/F, Theorem 4.16 (ii), the equality (5.2) and Theorem 5.4 we get

(5.25) Eλ ∼= EndEλ[GF ] (Vλ) ∼= EndEλ[GL] (Vλ).

This implies the equality

EndGF (Vλ) = EndU (Vλ)

for any open subgroup U of GF . Hence, the equality (5.23) follows by
Lemma 4.12 (iii). For any F ⊂ L ⊂ F we have M2,2(EndQl[GL](Vl)) =

EndQl[GL](V
2
l ) = EndQl[GL](Vl(A)) and

(5.26) EndQl[GL](Vl(A)) ∼=
∏

λ|l
Dλ
∼=
∏

λ|l
M2,2(Eλ).
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On the other hand

(5.27)
∏

λ|l
Eλ ∼=

∏

λ|l
EndEλ[GL](Vλ) ⊂ EndQl[GL](Vl).

Hence, comparing the dimensions over Ql in (5.26) and (5.27) we get

(5.28)
∏

λ|l
EndEλ[GL](Vλ) ∼= EndQl[GL](Vl).

By (5.28) we clearly have

(5.29)
∏

λ|l
EndQl[GL](VΦλ) ⊂ EndQl[GL](Vl) ∼=

∏

λ|l
Eλ,

and

(5.30) EndEλ[GL](Vλ) ⊂ EndQl[GL](VΦλ).

It follows by (5.25), (5.29) and by (5.30) that for any finite field extension
F ⊂ L contained in F we have

(5.31) EndQl[GL](VΦλ)
∼= EndEλ[GL](Vλ) ∼= Eλ.

The isomorphisms (5.31) imply that

(5.32) EndGF (VΦλ)
∼= EndU (VΦλ)

for any open subgroup U of GF . The isomorphism (5.24) follows by (5.32) and
Lemma 4.12 (iii). �

Lemma 5.33. gssλ = sp2h(Eλ).

Proof. In the proof we adapt to the current situation the argument from [BGK],
Lemma 3.2. The only thing to check is the minuscule conjecture for the λ-adic
representations ρF : GF → GL(Vλ). By the work of Pink cf. [P], Corollary
5.11, we know that gssl ⊗ Q̄l may only have simple factors of types A,B,C or
D. By the semisimplicity of gssl and Lemma 5.20 the simple factors of gssΦλ ⊗ Q̄l

are of the same types. By Proposition 2.12 and Lemmas 2.21, 2.22, 2.23 we get

(5.34) gssΦλ
∼= REλ/Qlg

ss
λ .

Since
gssΦλ ⊗Ql Ql

∼= gssλ ⊗EλEλ⊗QlQ ∼=
⊕

Eλ →֒Ql

gssλ ⊗EλQ

we see that the simple factors of gssλ ⊗EλQ are of types A,B,C or D. The rest
of the argument is the same as in the proof of Lemma 3.2 of [BGK]. �

Documenta Mathematica · Extra Volume Coates (2006) 35–75



58 G. Banaszak, W. Gajda, P. Krasoń

Lemma 5.35. There are natural isomorphisms of Ql-algebras.

(5.36) EndgssΦλ
(VΦλ)

∼= Endgssλ
(Vλ) ∼= Eλ

Proof. Since gλ is reductive and it acts irreducibly on the module Vλ (cf.
Lemma 5.33) by [H2], Prop. p. 102 we have:

(5.37) gλ = Z(gλ)⊕ gssλ

and Z(gλ) = 0 or Z(gλ) = Eλ. This gives

(5.38) Endgssλ
(Vλ) = Endgλ (Vλ).

The Weil restriction functor commutes with the operation of taking the center
of a Lie algebra, hence we get Z(gΦλ) = 0 or Eλ and by (5.34):

gΦλ = Z(gΦλ)⊕ gssΦλ .

Since gΦλ
∼= REλ/Qlgλ, it is clear that

EndgssΦλ
(VΦλ) = EndgΦλ

(VΦλ).

The lemma follows now from Lemma 5.22. �

Proposition 5.39. There is an equality of Lie algebras:

(5.40) gssl =
⊕

λ|l
gssΦλ

Proof. Put V l = Vl ⊗Ql Ql, V λ = Vλ ⊗Eλ Ql, gssl = gssl ⊗Ql Ql, gssΦλ =

gssΦλ ⊗Ql Ql. By (5.34) we get

(5.41) gssΦλ
∼= gssλ ⊗Eλ Eλ ⊗Ql Ql

∼=
∏

Eλ →֒Ql

gssλ ⊗Eλ Ql
∼=

∏

Eλ →֒Ql

sp (V λ)

By Corollary 1.2.2 of [C1] we have gl = Ql ⊕ gssl , hence

Endgssl
(Vl(A)) = Endgl (Vl(A)).

By Lemmas 5.20 and 5.35

(5.42)
∏

λ|l
Eλ ∼=

∏

λ|l
EndgssΦλ

(VΦλ)
∼=
∏

λ|l
Endgssl

(VΦλ) ⊂ Endgssl
(Vl).
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But by assumption on l and (5.42)

∏

λ|l
Dλ
∼=
∏

λ|l
M2,2(Eλ) ∼= M2,2(

∏

λ|l
Eλ) ⊂M2,2(Endgssl

(Vl)) =

(5.43) = Endgssl
(Vl(A)) = Endgl(Vl(A)) ∼=

∏

λ|l
Dλ.

Comparing dimensions in (5.43) we get

(5.44) Endgssl
(Vl) ∼=

∏

λ|l
Eλ.

Hence we get

(5.45) Endgssl
(V l) ∼= Endgssl

(Vl)⊗QlQl
∼=
∏

λ|l
Eλ⊗Ql Ql

∼=
∏

λ|l

∏

Eλ →֒Ql

Ql.

(5.46) EndQl[GF ] (V λ)
∼= EndEλ[GF ] (Vλ)⊗Eλ Ql

∼= Eλ ⊗Eλ Ql
∼= Ql.

(5.47) V l ∼=
⊕

λ|l
Vλ ⊗Ql Ql

∼=
⊕

λ|l

⊕

Eλ →֒Ql

V λ.

By (5.21) the map of Lie algebras gssl → gssΦλ is surjective. Isomorphisms (5.45),

(5.46) and (5.47) show that the simple gssl modules gssλ ⊗Eλ Ql, for all λ|l and

all Eλ →֒ Ql, are pairwise nonisomorphic submodules of gssl . Hence by [H2],
Theorem on page 23

(5.48)
⊕

λ|l

⊕

Eλ →֒Ql

gssλ ⊗Eλ Ql ⊂ gssl .

Tensoring (5.17) with Ql and comparing with (5.48) we get

(5.49)
⊕

λ|l

⊕

Eλ →֒Ql

gssλ ⊗Eλ Ql
∼= gl

ss.

Hence for dimensional reasons (5.17), (5.41) and (5.49) imply (5.40). �

Corollary 5.50. The representations ρΦλ , for λ|l are pairwise nonisomor-
phic. The representations of the Lie algebra gssl on VΦλ are pairwise noniso-
morphic over Ql.

Proof. It follows by Lemmas 5.20 and 5.22 and equalities (5.8), (5.36),
(5.44). �
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Corollary 5.51. There is an equality of ranks of group schemes over Ql:

(5.52) rank (Galgl )′ = rank
∏

λ|l
REλ/Ql(Sp2h/Eλ).

Proof. The Corollary follows by Lemma 5.33, equality (5.40), the isomorphism
(5.34) and Lemma 2.21. �

Taking into account (4.10), (4.11) and Remark 5.13 we get:

(5.53) G(l)alg ⊂
∏

λ|l
Rkλ/Fl(GSpAλ[λ]) ∼=

∏

λ|l
Rkλ/Fl(GSp2h)

(5.54) Galgl ⊂
∏

λ|l
REλ/Ql(GSpVλ)

∼=
∏

λ|l
REλ/Ql(GSp2h).

6. Computation of the images of the Galois representations ρl and
ρl.

In this section we explicitly compute the images of the l-adic representations
induced by the action of the absolute Galois group on the Tate module of a
large class of abelian varieties of types I and II described in the definition below.

Definition of class A. We say that an abelian variety A/F, defined over a
number field F, is of class A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = EndF̄ (A) = EndF (A) and the endomorphism algebraD = R⊗ZQ,

is of type I or II in the Albert list of the division algebras with involution
cf. [Mu], p. 201

(iii) the field F is such that for every l the Zariski closure Galgl of ρl(GF ) in
GL2g/Ql is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d2 = [D : E].

Let L be a local field with the ring of integers OL with maximal ideal mL = m

and the residue field k = OL/m.
Lemma 6.1. Let

(6.2) G1
� � // G2
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be a closed immersion of two smooth, reductive group schemes over OL. Let

(6.3) G1
� � // G2

be the base change to L of the arrow (6.2) and let

(6.4) G1(m) � � // G2(m)

be the base change to k of the arrow (6.2). If rank G1 = rank G2 then
rank G1(m) = rank G2(m).

Proof. By [SGA3, Th. 2.5 p. 12] applied to the special point of the scheme
specOL there exists an étale neighborhood S′ → specOL of the geometric point
over the special point such that the group schemes G1,S′ = G1 ×specOL S′ and
G2,S′ = G2 ×specOL S′ have maximal tori T1,S′ and T1,S′ respectively. By
[SGA3] XXII, Th. 6.2.8 p. 260 we observe (we do not need it here but in the
Theorem 6.6 below) that (Gi,S′)′ ∩ Ti,S′ is a maximal torus of (Gi,S′)′. By the
definition of a maximal torus and by [SGA3] XIX, Th. 2.5, p. 12 applied to the
special point of specOL, we obtain that the special and generic fibers of each
scheme Gi,S′ have the same rank. But clearly the generic (resp. special) fibers
of schemes Gi,S′ and Gi have the same rank for i = 1, 2. Hence going around
the diagram

(6.5)

G1
_�

��

� � // G2
_�

��

G1
� � // G2

G1(m) � � //
?�

OO

G2(m)
?�

OO

and taking into account the assumptions that the ranks of the upper corners
are the same we get rank G1(m) = rank G2(m). �

Theorem 6.6. Let A/F be an abelian variety of class A. Then for all l ≫ 0,
we have equalitiy of ranks of group schemes over Fl:

(6.7) rank (G(l)alg)′ = rank
∏

λ|l
Rkλ/Fl(Sp2h)

Proof. By [LP1] Prop.1.3 and by [Wi], Th.1 and 2.1, for l ≫ 0 the group

scheme Galgl over specZl is smooth and reductive. For such an l the struc-

ture morphism (Galgl )′ → specZl is the base change of the smooth morphism
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Galgl → DZl(DZl(Galgl )) via the unit section of DZl(DZl(Galgl )), see [SGA3]
XXII, Th. 6.2.1, p. 256 where DS(G) = HomS−gr(G, Gm,S) for a scheme S.

Hence, the group scheme (Galgl )′ is also smooth over Zl. By [SGA3] loc. cit,

the group scheme (Galgl )′ is semisimple. We finish the proof by taking L = Ql,

G1 = (Galgl )′, G2 =
∏
λ|l ROλ/Zl(Sp2h) in Lemma 6.1 and applying Corollary

5.51. �

Remark 6.8. If G is a group scheme over S0 then the derived subgroup G′ is
defined as the kernel of the natural map

G → DS0
(DS0

(G))

[V], [SGA3]. Since this map is consistent with the base change, we see that for
any scheme S over S0 we get

G′ ×S0
S = (G×S0

S)′.

Theorem 6.9. Let A/F be an abelian variety of class A. Then for all l ≫ 0,
we have equalities of group schemes:

(6.10) (Galgl )′ =
∏

λ|l
REλ/Ql(Sp2h)

(6.11) (G(l)alg)′ =
∏

λ|l
Rkλ/Fl(Sp2h)

Proof. The proof is similar to the proof of Lemma 3.4 of [BGK]. We prove the
equality (6.11). The proof of the equality (6.10) is analogous. Let

ρ
l

: G(l)alg → GL2g

denote the representation induced by the inclusion G(l)alg ⊂ GL2g. By the re-
sult of Faltings cf. [Fa], the representation ρ

l
is semisimple and the commutant

of ρ
l
(G(l)alg) in the matrix ring M2g,2g is EndF̄ (A)⊗Z Fl. The representation

ρ
l

factors through the imbedding (5.53). Projecting onto the λ component in

(5.53) we obtain the representation

(6.12) ρ
Φλ

: G(l)alg → Rkλ/Fl(GSpA[λ]) ∼= Rkλ/Fl(GSp2h).

This map corresponds to the map

(6.13) G(l)alg ⊗Fl kλ → GSp2h.
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By Remark 6.8 restriction of the the map (6.13) to the derived subgroups gives
the following map:

(6.14) (G(l)alg)′ ⊗Fl kλ → Sp2h

which in turn gives the representation

ρ
Φλ

: (G(l)alg)′ → Rkλ/Fl(Sp2h).

Now by (5.3) we have the natural isomorphisms:

∏

kλ →֒Fl

Fl ∼= kλ ⊗Fl Fl ∼= Endkλ⊗Fl
Fl[GF ](Aλ[λ]⊗Fl Fl) ∼=

∼= Endkλ⊗Fl
Fl[GF ](Aλ[λ]⊗kλ kλ ⊗Fl Fl) ∼=

(6.15) ∼=
∏

kλ →֒Fl

EndFl[GF ](Aλ[λ]⊗kλ Fl).

Note that Z(Sp2h) ∼= µ2 and this isomorphism holds over any field of definition.
The isomorphisms (6.15) imply by the Schur’s Lemma:

ρ
Φλ

(Z((G(l)alg)′)) ⊂ Rkλ/Fl(µ2).

Hence
Z((G(l)alg)′) ⊂

∏

λ|l
Rkλ/Fl(µ2) = Z(

∏

λ|l
Rkλ/Fl(Sp2h)).

Observe that both groups (G(l)alg)′ and
∏
λ|lRkλ/Fl(Sp2h) are reductive. Now

the proof is finished in the same way as the proof of Lemma 3.4 in [BGK]. �

Theorem 6.16. Let A/F be an abelian variety of class A. Then for l≫ 0, we
have:

(6.17) ρl(G
′
F ) =

∏

λ|l
Sp2h(kλ) = Sp2h(OE/lOE),

(6.18) ρl(G′F ) =
∏

λ|l
Sp2h(Oλ) = Sp2h(OE ⊗Z Zl),

where ρl is the representation ρl mod l and G′F is the closure of the commutator
subgroup G′F ⊂ GF computed with respect to the natural profinite topology
of GF .

Proof. To prove the equality (6.17), note that the group scheme∏
λ|lRkλ/Fl(Sp2h) is simply connected, since its base change to Fl is
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∏
λ|l
∏
kλ →֒Fl

Sp2h/Fl, which is clearly simply connected. From now on

the argument is the same as in the proof of Theorem 3.5 in [BGK].
Namely: it follows by (6.11) that (G(l)alg)′ is simply connected. So
(G(l)alg)′(Fl) = (G(l)alg)′(Fl)u. Hence, by a theorem of Serre (cf. [Wi],
Th.4) we get

(G(l)alg)′(Fl) ⊂ (ρl(GF ))′ = ρl(G
′
F ).

On the other hand, by definition of the group G(l)alg, it is clear that

ρl(G
′
F ) = (ρl(GF ))′ ⊂ (G(l)alg)′(Fl).

As for the second equality in (6.18) we have

(6.19) ρl
(
G′F

)
= (ρl(GF ))′ ⊂

∏

λ|l
Sp2h(Oλ),

where (ρl(GF ))′ denotes the closure of (ρl(GF ))′ in the natural (λ-adic in each
factor) topology of the group

∏
λ|l Sp2h(Oλ). Using equality (6.17) and Lemma

6.20 stated below, applied to X = (ρl(GF ))′, we finish the proof. �

Lemma 6.20. LetX be a closed subgroup in
∏
λ|l Sp2h(Oλ) such that its image

via the reduction map

∏

λ|l
Sp2h(Oλ)→

∏

λ|l
Sp2h(kλ)

is all of
∏
λ|l Sp2h(kλ). Then X =

∏
λ|l Sp2h(Oλ).

Proof. The proof is similar to the proof of Lemma 3 in [Se] chapter IV, 3.4. �

7. Applications to classical conjectures.

Choose an imbedding of F into the field of complex numbers C. Let V =
H1(A(C),Q) be the singular cohomology group with rational coefficients. Con-
sider the Hodge decomposition

V ⊗Q C = H1,0 ⊕H0,1,

where Hp,q = Hp(A; ΩqA/C) and Hp,q = Hq,p. Observe that Hp,q are invariant

subspaces with respect to D = EndF (A) ⊗ Q action on V ⊗Q C. Hence, in
particular Hp,q are E-vector spaces. Let

ψ : V × V → Q
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be the Q-bilinear, nondegenerate, alternating form coming from the Riemann
form of A. Since A has a principal polarization by assumption, the form ψ is
given by the standard matrix

J =

(
0 Ig
−Ig 0

)
.

Define the cocharacter

µ∞ : Gm(C)→ GL(V ⊗Q C) = GL2g(C)

such that, for any z ∈ C×, the automorphism µ∞(z) is the multiplication by z
on H1,0 and the identity on H0,1.

Definition 7.1. The Mumford-Tate group of the abelian variety A/F is
the smallest algebraic subgroup MT (A) ⊂ GL2g, defined over Q, such that
MT (A)(C) contains the image of µ∞. The Hodge group H(A) is by definition
the connected component of the identity in MT (A) ∩ SLV ∼= MT (A) ∩ SL2g.

We refer the reader to [D] for an excellent exposition on the Mumford-Tate
group. In particular, MT (A) is a reductive group loc. cit. Since, by definition

µ∞(C×) ⊂ GSp(V, ψ)(C) ∼= GSp2g(C),

it follows that the group MT (A) is a reductive subgroup of the group of sym-
plectic similitudes GSp(V, ψ)

∼= GSp2g and that

(7.2) H(A) ⊂ Sp(V, ψ)
∼= Sp2g.

Remark 7.3. Let V be a finite dimensional vector space over a field K such
that it is also an R-module for a K-algebra R. Let G be a K-group subscheme
of GLV . Then by the symbol CR(G) we will denote the commutant of R in
G. The symbol C◦R(G) will denote the connected component of identity in
CR(G). Let β : V × V → K be a bilinear form and let G(V,β) ⊂ GLV be
the subscheme of GLV of all isometries with respect to the bilinear form β. It
is easy to check that CR(G(V,β)) ⊗K L ∼= CR⊗KL(G(V⊗KL, β⊗KL)). Note that
MT (A) ⊂ CD(GSp(V, ψ)) by definitions.

Definition 7.4. The algebraic group L(A) = C◦D(Sp(V, ψ)) is called the Lef-
schetz group of a principally polarized abelian variety A. Note that the group
L(A) does not depend on the form ψ cf. [R2].

By [D], Sublemma 4.7, there is a unique E-bilinear, nondegenerate, alternating
pairing

φ : V × V → E

such that TrE/Q(φ) = ψ. Taking into account that the actions of H(A) and
L(A) on V commute with the E-structure, we get

(7.5) H(A) ⊂ L(A) ⊂ RE/QSp(V, φ) ⊂ Sp(V, ψ).

But RE/Q(Sp(V, φ)) = CE(Sp(V, ψ)) hence CD(RE/Q(Sp(V, φ))) = CD(Sp(V, ψ))
so

(7.6) H(A) ⊂ L(A) = C◦D(RE/Q(Sp(V, φ))) ⊂ CD(RE/Q(Sp(V, φ))).
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Definition 7.7. If L/Q is a field extension of Q we put

MT (A)L := MT (A)⊗Q L, H(A)L := H(A)⊗Q L, L(A)L := L(A)⊗Q L.

Conjecture 7.8 (Mumford-Tate cf. [Se5], C.3.1). If A/F is an abelian
variety over a number field F , then for any prime number l

(7.9) (Galgl )◦ = MT (A)Ql ,

where (Galgl )◦ denotes the connected component of the identity.

Theorem 7.10 (Deligne [D], I, Prop. 6.2). If A/F is an abelian variety
over a number field F and l is a prime number, then

(7.11) (Galgl )◦ ⊂MT (A)Ql .

Theorem 7.12. The Mumford-Tate conjecture holds true for abelian varieties
of class A defined in the beginning of Section 6.

Proof. By [LP1], Theorem 4.3, it is enough to verify (7.9) for a single prime
l only. We use the equality (6.10) for a big enough prime l. The proof goes
similarly to the proof of Theorem 3.6 in [BGK]. In the proof we will make some
additional computations, which provide an extra information on the Hodge
group H(A). The Hodge group H(A) is semisimple (cf. [G], Prop. B.63) and
the center of MT (A) is Gm (cf. [G], Cor. B.59). Since MT (A) = GmH(A),
we get

(7.13) (MT (A)Ql)
′ = (H(A)Ql)

′ = H(A)Ql .

By (7.11), (7.13) and (6.10)

(7.14)
∏

λ|l
REλ/Ql(Sp(Vλ,ψ0

λ)) ∼=
∏

λ|l
REλ/Ql(Sp2h) ⊂ H(A)Ql .

On the other hand by (7.6)

(7.15) H(A)Ql ⊂ L(A)Ql ⊂ CD(RE/Q(Sp(V, φ)))⊗Q Ql.

Since RE/Q(Sp(V, φ)) = CE(Sp(V, ψ)), by Remark 7.3, formulae (7.14) and (7.15)
we get:

(7.16)
∏

λ|l
REλ/Ql(Sp(Vλ,ψ0

λ)) ⊂
∏

λ|l
CDλ(REλ/Ql(Sp(Vλ(A), ψ0

λ))).

For A of type I, Dλ = Eλ and Vλ(A) = Vλ hence, trivially, the inclusion
(7.16) is an equality. Assume that A is of type II. Since Vλ(A) = Vλ ⊕ Vλ and
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Dλ = M2,2(Eλ), evaluating both sides of the inclusion (7.16) on the Ql-points,
we get equality with both sides equal to∏

λ|l

∏

Eλ →֒Ql

(Sp(Vλ,φλ|Vλ ))(Ql)

which is an irreducible algebraic variety over Ql. Then we use Prop. II, 2.6 and
Prop. II, 4.10 of [H] in order to conclude that the groups H(A)Ql

, L(A)Ql
and

CD(RE/Q(Sp(V, φ))) ⊗Q Ql are connected. Hence all the groups H(A), L(A)
and CD(RE/Q(Sp(V, φ))) are connected, and we have

(7.17)
∏

λ|l
REλ/Ql(Sp(Vλ,φλ|Vλ )) ∼=

∏

λ|l
REλ/Ql(Sp2h) =

= H(A)Ql = L(A)Ql = CD(RE/Q(Sp(V, φ)))⊗Q Ql.

By (6.10), (7.17) and [Bo], Corollary 1. p. 702 we get

(7.18) MT (A)Ql = GmH(A)Ql = Gm(Galgl )′ ⊂ Galgl .

The Theorem follows by (7.11) and (7.18). �

Corollary 7.19. If A is an abelian variety of class A, then

(7.20) H(A)Q = L(A)Q = CD(RE/Q(Sp(V, φ))) = CD(Sp(V, ψ)).

Proof. Taking Lie algebras of groups in (7.17) we deduce by a simple dimension
argument that

(7.21) LieH(A) = Lie L(A) = LieCD(RE/Q(Sp(V, φ))).

In the proof of Theorem 7.12 we have showed that the groups H(A), L(A)
and CD(RE/Q(Sp(V, φ))) are connected. Hence, by Theorem p. 87 of [H1] we
conclude that

(7.22) H(A) = L(A) = CD(RE/Q(Sp(V, φ))). �

Corollary 7.23. If A is an abelian variety of class A, then for all l:

(7.24) H(A)Ql =
∏

λ|l
CDλ(REλ/Ql(Sp(Vλ(A), φ⊗QEλ))).

In particular, for l≫ 0 we get

(7.25) H(A)Ql =
∏

λ|l
REλ/Ql(Sp(Vλ, φ⊗QEλ)).

Proof. Equality (7.24) follows immediately from Corollary 7.19. Equality (7.25)
follows then from (7.17). �

We have:
H1(A(C); R) ∼= V ⊗Q R ∼=

⊕

σ:E →֒R

V ⊗E,σ R.

Put Vσ(A) = V ⊗E,σ R and let φσ be the form

φ⊗E,σ R : Vσ(A)⊗R Vσ(A) → R.
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Lemma 7.26. If A is simple, principally polarized abelian variety of type II,
then for each σ : E →֒ R there is an R-vector space Wσ(A) of dimension
g
e = 4 dimA

[D: Q] such that:

(i) Vσ(A) ∼= Wσ(A)⊕Wσ(A),
(ii) the restriction of φ⊗Q R to Wσ(A) gives a nondegenerate, alternating

pairing
ψσ : Wσ(A)×Wσ(A)→ R.

Proof. Using the assumption that D ⊗Q R ∼= M2,2(R) the proof is similar to
the proof of Theorem 5.4. �

We put

W∞,σ =





Vσ(A) if A is of type I

Wσ(A) , if A is of type II

and

ψσ =





φσ if A is of type I

φσ|Wσ(A) , if A is of type II.

Observe that

dimR W∞,σ =





2g
e = 2 dimA

[D: Q] if A is of type I

g
e = 4 dimA

[D: Q] , if A is of type II.

Corollary 7.27. If A is an abelian variety of class A, then

(7.28) H(A)R = L(A)R =
∏

σ:E →֒R

Sp(W∞,σ, ψσ)

(7.29) H(A)C = L(A)C =
∏

σE →֒R

Sp(W∞,σ⊗CC, ψσ⊗RC).

Proof. It follows from Lemma 7.26 and Corollary 7.19. �

We recall the conjectures of Tate and Hodge in the case of abelian varieties.
See [G], [K] and [T1] for more details.

Conjecture 7.30 (Hodge). If A/F is a simple abelian variety over a number
field F, then for every 0 ≤ p ≤ g the natural cycle map induces an isomorphism

(7.31) Ap(A) ∼= H2p(A(C); Q) ∩Hp,p,

where Ap(A) is the Q-vector space of codimension p algebraic cycles on A
modulo the homological equivalence.

Documenta Mathematica · Extra Volume Coates (2006) 35–75



The Image of l-Adic Galois Representations 69

Conjecture 7.32 (Tate). If A/F is a simple abelian variety over a number
field F and l is a prime number, then for every 0 ≤ p ≤ g the cycle map induces
an isomorphism:

(7.33) Ap(A)⊗Q Ql
∼= H2p

et (A; Ql(p))
GF

where A = A⊗F F .

Theorem 7.34. The Hodge conjecture holds true for abelian varieties of class
A.
Proof. By [Mu], Theorem 3.1 the Hodge conjecture follows from the equality
(7.20) of Corollary 7.19. �

Theorem 7.35. The Tate conjecture holds true for abelian varieties of class
A.
Proof. It is known (see Proposition 8.7 of [C1]) that Mumford-Tate conjec-
ture implies the equivalence of Tate and Hodge conjectures. Hence the Tate
conjecture follows by Theorems 7.12 and 7.34. �

Conjecture 7.36 (Lang). Let A be an abelian variety over a number field
F. Then for l ≫ 0 the group ρl(GF ) contains the group of all homotheties in
GLTl(A)(Zl).

Theorem 7.37 (Wintenberger [Wi], Cor. 1, p. 5). Let A be an abelian
variety over a number field F . The Lang conjecture holds for such abelian
varieties A for which the Mumford-Tate conjecture holds or if dimA < 5.

Theorem 7.38. The Lang’s conjecture holds true for abelian varieties of class
A.
Proof. It follows by Theorem 7.12 and Theorem 7.37. �

We are going to use Theorem 7.12 and Corollary 7.19 to prove an analogue of
the open image Theorem of Serre cf. [Se8]. We start with the following remark
which is a plain generalization of remark 7.3.

Remark 7.39. Let B1 ⊂ B2 be two commutative rings with identity. Let Λ be
a free, finitely generated B1-module such that it is also an R-module for a B1-
algebra R. Let G be a B1-group subscheme of GLΛ. Then CR(G) will denote the
commutant of R in G. The symbol C◦R(G) will denote the connected component
of identity in CR(G). Let β : Λ× Λ→ B1 be a bilinear form and let G(Λ,β) ⊂
GLΛ be the subscheme of GLΛ of the isometries with respect to the form β.
Then we check that CR(G(Λ,β))⊗B1

B2
∼= CR⊗B1

B2
(G(Λ⊗B1

B2, β⊗B1
B2)).
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Consider the bilinear form:

(7.40) ψ : Λ× Λ → Z

associated with the variety A. Abusing notation sligthly, we will denote by ψ
the Riemann form ψ ⊗Z Q, i.e., we put:

ψ : V × V → Q.

Consider the group scheme CR(Sp(Λ, ψ)) over SpecZ. Since CR(Sp(Λ, ψ)) ⊗Z

Q = CD(Sp(V, ψ)) (see Remark 7.39), there is an open imbedding in the l-adic
topology:

(7.41) CR(Sp(Λ, ψ))(Zl) ⊂ CD(Sp(V, ψ))(Ql).

Note that the form ψl of (4.1) is obtained by tensoring (7.40) with Zl.

Theorem 7.42. If A is an abelian variety of class A, then for every prime
number l, ρl(GF ) is open in the group

CR(GSp(Λ, ψ))(Zl) = CR⊗ZZl(GSp(Tl(A), ψl))(Zl).

In addition, for l≫ 0 we have:

(7.43) ρl(G′F ) = CR(Sp(Λ, ψ))(Zl).

Proof. For any ring with identity R the group GSp2g(R) is generated by sub-
groups Sp2g(R) and

{
(
aIg 0
0 Ig

)
; a ∈ R×}.

One checks easily that the group Z×l Sp2g(Zl) has index 2 (index 4 resp.)

in GSp2g(Zl), for l > 2 (for l = 2 resp.). Here the symbol Z×l stands
for the subgroup of homotheties in GL2g(Zl). Since by assumption A has
a principal polarization, Sp2g(Zl) ∼= Sp(Λ, ψ))(Zl). By [Bo], Cor. 1. on

p. 702, there is an open subgroup U ⊂ Z×l such that U ⊂ ρl(GF ).
Hence U CR(Sp(Λ, ψ))(Zl) = CR(U Sp(Λ, ψ)(Zl)) is an open subgroup of
CR(GSp(Λ, ψ))(Zl) = CR(GSp(Λ, ψ)(Zl)). By [Bo], Th. 1, p. 701, the group

ρl(GF ) is open in Galgl (Ql). By Theorem 7.12, Corollary 7.19 and Remark 7.3

U CR(Sp(Λ, ψ))(Zl) ⊂ Q×l CD(Sp(V, ψ))(Ql) =

(7.44) = Gm(Ql)H(A)(Ql) ⊂MT (A)(Ql) = Galgl (Ql).
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Hence, U CR(Sp(Λ, ψ))(Zl) ∩ ρl(GF ) is open in U CR(Sp(Λ, ψ))(Zl) and we get
that ρl(GF ) is open in CR(GSp(Λ, ψ))(Zl). Using Remark 7.39 and the univer-
sality of the fiber product, we observe that

(7.45) CR(Sp(Λ, ψ))(Zl) = CR⊗ZZl(Sp(Tl(A), ψl))(Zl).

For l≫ 0 we get

CR⊗ZZl(Sp(Tl(A), ψl))
∼= CR⊗ZZl(COE⊗ZZl(Sp(Tl(A), ψl)))

∼=

(7.46) ∼= CR⊗ZZl(
∏

λ|l
ROλ/Zl(Sp(Tλ(A), ψλ))).

Evaluating the group schemes in (7.46) on SpecZl we get

CR⊗ZZl(Sp(Tl(A), ψl))(Zl) ∼= CR⊗ZZl(
∏

λ|l
ROλ/Zl(Sp(Tλ(A), ψλ)))(Zl) ∼=

(7.47) ∼=
∏

λ|l
CRλSp(Tλ(A), ψλ)(Oλ) ∼=

∏

λ|l
Sp(Tλ, ψλ)(Oλ) ∼=

∏

λ|l
Sp2h(Oλ).

Hence by (7.45), (7.46), (7.47), (6.18) and Theorem 7.38, we conclude that for
l≫ 0 the equality (7.43) holds. �

Theorem 7.48. If A is an abelian variety of class A, then for every prime

number l, the group ρl(GF ) is open in the group Galgl (Zl) in the l-adic topology.

Proof. By Theorem 7.42 the group ρl(GF ) is open in CR⊗ZZl(GSp(Tl(A), ψl))(Zl)
in the l-adic topology, so ρl(GF ) has a finite index in the group

CR⊗ZZl(GSp(Tl(A), ψl))(Zl). By the definition of Galgl , we have:

ρl(GF ) ⊂ Galgl (Zl) ⊂ CR⊗ZZl(GSp(Tl(A), ψl))(Zl).

Hence, ρl(GF ) has a finite index in Galgl (Zl), and the claim follows since
CR⊗ZZl(GSp(Tl(A), ψl))(Zl) is a profinite group. �
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[Se2] J.P. Serre, Lettre à Daniel Bertrand du 8/6/1984, Oeuvres. Collected
papers. IV. (1985 - 1998), Springer-Verlag, Berlin, 21 - 26.
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Abstract. We use the Siegel-Eisenstein distributions of degree
three, and their higher twists with Dirichlet characters, in order to
construct admissible p-adic measures attached to the triple products
of elliptic cusp forms. We use an integral representation of Garrett’s
type for triple products of three cusp eigenforms. For a prime p
and for three primitive cusp eigenforms f1, f2, f3 of equal weights
k1 = k2 = k3 = k, we study the critical values of Garrett’s triple
product L(f1⊗ f2⊗ f3, s, χ) twisted with Dirichlet characters χ. The
result is stated in framework of a general program by John Coates,
see [Co], [Co-PeRi].
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0 Introduction

The purpose of this paper is to give a construction of p-adic admissible measures
(in the sense of Amice-Vélu) attached to Garrett’s triple L-function attached
to three primitive cusp eigenforms of equal weight k, where p is a prime. For
this purpose we use the theory of p-adic integration with values in spaces of
nearly-holomorphic modular forms (in the sense of Shimura, see [ShiAr]) over
a normed O-algebra A where O is the ring of integers in a finite extension K
of Qp. Often we simply assume that A = Cp.
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0.1 Generalities on triple products

Consider three primitive cusp eigenforms

fj(z) =

∞∑

n=1

an,je(nz) ∈ Skj (Nj , ψj), (j = 1, 2, 3) (0.1)

of weights k1, k2, k3, of conductors N1, N2, N3, and of nebentypus characters
ψj mod Nj (j = 1, 2, 3), and let χ denote a Dirichlet character.
The triple product twisted with Dirichlet characters χ is defined as the following
complex L-function (an Euler product of degree eight):

LS(f1 ⊗ f2 ⊗ f3, s, χ) =
∏

p6∈S
L((f1 ⊗ f2 ⊗ f3)p, χ(p)p−s), where (0.2)

L((f1 ⊗ f2 ⊗ f3)p,X)−1 = (0.3)

det

(
18 −X

(
α

(1)
p,1

0

0

α
(2)
p,1

)
⊗
(
α

(1)
p,2

0

0

α
(2)
p,2

)
⊗
(
α

(1)
p,3

0

0

α
(2)
p,3

))

=
∏

η

(1− α(η(1))
p,1 α

(η(2))
p,2 α

(η(3))
p,3 X), η : {1, 2, 3} → {1, 2}, and

1− ap,jX − ψj(p)pkj−1X2 = (1− α(1)
p,j(p)X)(1− α(2)

p,j(p)X), j = 1, 2, 3,

are the Hecke p–polynomials of forms fj and the product is extended over all
primes p 6∈ S, and S = Supp(N1N2N3) denotes the set of all prime divisors of
the product N1N2N3. We always assume that

k1 ≥ k2 ≥ k3, (0.4)

including the case of equal weights k1 = k2 = k3 = k.
We use the corresponding normalized motivic L function (see [De79], [Co],
[Co-PeRi]), which in the case of “balanced” weights (i.e. k1 ≤ k2 + k3 − 2) has
the form:

ΛS(f1 ⊗ f2 ⊗ f3, s, χ) = (0.5)

ΓC(s)ΓC(s− k3 + 1)ΓC(s− k2 + 1)ΓC(s− k1 + 1)L(f1 ⊗ f2 ⊗ f3, s, χ),

where ΓC(s) = 2(2π)−sΓ(s). The motivic Gamma-factor

ΓC(s)ΓC(s− k3 + 1)ΓC(s− k2 + 1)ΓC(s− k1 + 1)

determines the critical values s = k1, · · · , k2 + k3 − 2 and a (conjectural) func-
tional equation of the form: s 7→ k1 + k2 + k3 − 2− s.
Throughout the paper we fix an embedding

ip : Q →֒ Cp, and define (0.6)

λ(p) = α
(1)
p,1α

(1)
p,2α

(1)
p,3, where we assume that |ip(α(1)

p,j)| ≤ |ip(α
(2)
p,j)|, j = 1, 2, 3.

(0.7)
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0.2 Statement of main results

For a fixed positive integer N ∈ N consider the profinite group

Y = YN,p = lim←
v

Yv, where Yv = (Z/NpvZ)×.

There is a natural projection yp : Y → Z×p . Let us fix a normed O-algebra A
where O is the ring of integers in a finite extension K of Qp.

Definition 0.1 (a) For h ∈ N, h ≥ 1 let Ph(Y,A) denote the A-module of
locally polynomial functions of degree < h of the variable yp : Y → Z×p →֒ A×;
in particular,

P
1(Y,A) = C

loc−const(Y,A)

(the A-submodule of locally constant functions). We adopt the notation Φ(U) :=
Φ(χU) for the characteristic function χU of an open subset U ⊂ Y . Let also
denote Cloc−an(Y,A) the A-module of locally analytic functions and C(Y,A) the
A-module of continuous functions so that

P
1(Y,A) ⊂ P

h(Y,A) ⊂ C
loc−an(Y,A) ⊂ C(Y,A).

(b) For a given positive integer h we define an h-admissible measure on Y with
values in an A-module M as a homomorphism of A-modules:

Φ̃ : P
h(Y,A)→M,

such that for all a ∈ Y and for v →∞
∣∣∣∣∣

∫

a+(Npv)

(yp − ap)jdΦ̃
∣∣∣∣∣
p,M

= o(p−v(j−h)) for all j = 0, 1, · · · , h− 1,

where ap = yp(a).

We adopt the notation (a)v = a + (Npv) for both an element of Yv and the
corresponding open compact subset of Y .

Up–Operator and Method of Canonical projection.

In Section 2.2, we construct an h-admissible measure Φ̃λ : Ph(Y,A) → M(A)
out of a sequence of distributions

Φr : P
1(Y,A)→M(A)

with values in an A-module M = M(A) of nearly-holomorphic triple modular
forms over A (for all r ∈ N with r ≤ h − 1), where λ ∈ A× is a fixed non-
zero eigenvalue of triple Atkin’s operator UT = UT,p, acting on M(A), and
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h = [2ordpλ(p)] + 1. In our case M(A) ⊂ A[[q1, q2, q3]][R1, R2, R3], and such
modular forms are formal series

g =

∞∑

n1,n2,n3=0

a(n1, n2, n3;R1, R2, R3)q
n1
1 qn2

2 qn3
3 ∈ A[[q1, q2, q3]][R1, R2, R3]

such that for A = C, for all zj = xj + iyj ∈ H and for Rj = (4πyj)
−1 the series

converges to a C∞-modular form on H3 of a given weight (k, k, k) and character
(ψ1, ψ2, ψ3), j = 1, 2, 3. The usual action of U = Up on elliptic modular forms
of one variable extends to triple Atkin’s operator UT = UT,p = (Up)

⊗3 acting
on triple modular forms by

UT (g) =
∞∑

n1,n2,n3=0

a(pn1, pn2, pn3; pR1, pR2, pR3)q
n1
1 qn2

2 qn3
3 . (0.8)

We consider the canonical projection operator πλ : M(A) → M(A)λ onto the
maximal A-submodule M(A)λ over which the operator UT − λI is nilpotent,
and such that Kerπλ =

⋂
n≥1 Im(UT − λI)n. We define an A-linear map

Φ̃λ : P
h(Y,A)→M(A)

on local monomials yjp by

∫

(a)v

yjp dΦ̃
λ = πλ(Φj((a)v))

where Φj : P1(Y,A) → M(A) is a sequence of M(A)-valued distributions on
Y (for j = 0, 1, . . . , h − 1). Recall that for a primitive cusp eigenform fj =∑∞
n=1 an(f)qn of conductor C = Cfj , the function fj,0 =

∑∞
n=1 an(fj,0)q

n ∈
Q[[q]] is defined as an eigenfunction of U = Up with the eigenvalue α

(1)
p,j ∈ Q

(U(f0) = αf0) which satisfies the identity

fj,0 = fj − α(2)
p,jfj |Vp = fj − α(2)

p,jp
−k/2fj |

(
p

0

0

1

)
(0.9)

∞∑

n=1

an(fj,0)n
−s =

∞∑

n=1
p∤n

an(fj)n
−s(1− α(1)

p,jp
−s)−1.

For any fixed n0 = n·pm with p ∤ n we have an0
(fj,0) = an(fj)·(α(1)

p,j)
m ∈ Q and

an(fj) are eigenvalues of Hecke operators Tn. Therefore, UT (f1,0⊗f2,0⊗f3,0) =
λ(f1,0 ⊗ f2,0 ⊗ f3,0). Moreover,

f0
j = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
, where fρj,0 =

∞∑

n=1

a(n, f0)q
n. (0.10)
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Consider the triple product defined by (0.2) as an Euler product of degree
eight: D(f1 ⊗ f2 ⊗ f3, s, χ) = L(N)(f1 ⊗ f2 ⊗ f3, s, χ), attached to three cusp
eigenforms fj(z) =

∑∞
n=1 an,je(nz) ∈ Skj (Nj , ψj), (j = 1, 2, 3) of weight k, of

conductors N1, N2, N3, and of nebentypus characters ψj mod Nj (j = 1, 2, 3),
where χ mod Npv is an arbitrary Dirichlet character, and the notation L(N)

means that the local factors at primes dividing N = LCM(N1, N2, N2) are
removed from an Euler product. Before giving the precise statements of our
results on p-adic triple L-functions, we describe in more detail critical values
of the L function D(f1 ⊗ f2 ⊗ f3, s, χ).
Let us introduce the following normalized L-function

D
⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ) = (0.11)

ΓC(s+ 2k − 2)ΓC(s+ k − 1)3L(N)(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ),

where ΓC(s) = 2(2π)−sΓ(s), and ΓC(s + 2k − 2)ΓC(s + k − 1)3 is the motivic
Gamma-factor (compare with (0.5), and see [Co], [Co-PeRi], [Pa94]). For an
arbitrary Dirichlet character χ mod Npv consider the following Dirichlet char-
acters:

χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, (0.12)

χ3 mod Npv = ψ1ψ̄3χ,ψ = χ2ψ1ψ2ψ3;

later on we impose the condition that the conductors of the corresponding
primitive characters χ0,1, χ0,2, χ0,3 are Np-complete (i.e., have the same prime
divisors as those of Np).

Theorem A (Algebraic properties of the triple product) Assume
that k ≥ 2. Then for all pairs (χ, r) such that the corresonding Dirichlet
characters χj are Np-complete, and 0 ≤ r ≤ k − 2, we have that

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈fρ1 ⊗ fρ2 ⊗ fρ3 , fρ1 ⊗ fρ2 ⊗ fρ3 〉T
∈ Q

where

〈fρ1 ⊗ fρ2 ⊗ fρ3 , fρ1 ⊗ fρ2 ⊗ fρ3 〉T := 〈fρ1 , fρ1 〉N 〈fρ2 , fρ2 〉N 〈fρ3 , fρ3 〉N
= 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N .

For the p-adic construction, let Cp = Q̂p denote the completion of an alge-
braic closure of the field Qp of p-adic numbers. Fix a positive integer N , a
Dirichlet character ψ mod N and consider the commutative profinite group
Y = YN,p = lim

←−
m

(Z/NpmZ)∗ and its group XN,p = Homcont(Y,C×p ) of (contin-

uous) p-adic characters (this is a Cp-analytic Lie group). The group XN,p is
isomorphic to a finite union of discs U = {z ∈ Cp | |z|p < 1}.
A p-adic L-function L(p) : XN,p → Cp is a certain meromorphic function on
XN,p. Such a function often come from a p-adic measure µ(p) on Y (bounded
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or admissible in the sense of Amice-Vélu, see [Am-V]). In this case we write
for all x ∈ XN,p

L(p)(x) =

∫

YN,p

x(y)dµ(p)(y)

In order to establish p-adic properties, let us use the product (0.7) λ = λ(p) =

α
(1)
p,1α

(1)
p,2α

(1)
p,3, where we assume that |ip(α(1)

p,j)| ≤ |ip(α
(2)
p,j)|, j = 1, 2, 3.

Theorem B (on admissible measures attached to the triple prod-
uct). Under the assumptions as above there exist a Cp-valued measure
µ̃λf1⊗f2⊗f3 on YN,p, and a Cp-analytic function

D(p)(x, f1 ⊗ f2 ⊗ f3) : Xp → Cp,

given for all x ∈ XN,p by the integral

D(p)(x, f1 ⊗ f2 ⊗ f3) =

∫

YN,p

x(y)dµ̃λf1⊗f2⊗f3(y),

and having the following properties:
(i) for all pairs (r, χ) such that χ mod Cχ is a primitive Dirichlet character
modulo Cχ, χ ∈ Xtors

N,p , assuming that all three corresonding Dirichlet characters
χj given by (0.12) have Np-complete conductor (j = 1, 2, 3), and r ∈ Z is an
integer with 0 ≤ r ≤ k − 2, the following equality holds:

D(p)(χx
r
p, f1 ⊗ f2 ⊗ f3) = (0.13)

ip

( (ψ1ψ2)(2)C
4(2k−2−r)
χ

G(χ1)G(χ2)G(χ3)G(ψ1ψ2χ1)λ(p)2v

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,Np

)

where v = ordp(Cχ), χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ, G(χ) denotes the Gauß sum of a primitive Dirichlet character χ0 at-
tached to χ (modulo the conductor of χ0).
(ii) if ordpλ(p) = 0 then the holomorphic function in (i) is a bounded Cp-
analytic function;
(iii) in the general case (but assuming that λ(p) 6= 0) the holomorphic func-
tion in (i) belongs to the type o(log(xhp)) with h = [2ordpλ(p)] + 1 and it can
be represented as the Mellin transform of the h-admissible Cp-valued measure
µ̃λf1⊗f2⊗f3 (in the sense of Amice-Vélu) on Y
(iv) if h ≤ k − 2 then the function D(p) is uniquely determined by the above
conditions (i).

Remark 0.2 It was checked by B.Gorsse and G.Robert that

〈f0,ρ
1 ⊗ f0,ρ

2 ⊗ f0,ρ
3 , fρ1,0 ⊗ fρ2,0 ⊗ fρ3,0〉T,Np = β · 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N

for some β ∈ Q
∗

(see [Go-Ro]).
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0.3 Scheme of the Proof

We construct Q-valued distributions denoted by µf1⊗f2⊗f3,r on the profinite
group YN,p, and attached to the special values at s = 2k−2−r with 0 ≤ r ≤ k−2
of the triple product L(fρ1⊗fρ2⊗fρ3 , s, ψ1ψ2χ) twisted with a Dirichlet character
ψ1ψ2χ mod Npv. We use an integral representation of this special value in
terms of a C∞-Siegel-Eisenstein series Fχ,r of degree 3 and of weight k (to
be specified later), where 0 ≤ r ≤ k − 2. Such a series Fχ,r depends on the
character χ, but its precise nebentypus character is ψ = χ2ψ1ψ2ψ3, and it is
defined by Fχ,r = G⋆(Z,−r; k, (Npv)2,ψ), where Z denotes a variable in the

Siegel upper half space H3, and the normalized series G⋆(Z, s; k, (Npv)
2
,ψ) is

given by (A.12). This series depends on s = −r, and for the critical values
at integral points s ∈ Z such that 2 − k ≤ s ≤ 0, it represents a (nearly-)
holomorphic Siegel modular form in the sense of Shimura [ShiAr].
Our construction consists of the following steps:
1) We consider the profinite ring AN,p = lim←−

v

(Z/NpvZ). Starting from any

sequence Fr of nearly-holomorphic Siegel modular forms we construct first a
sequence ΨFr of modular distributions on the additive profinite group

S = SN,p :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN,p



 ;

such distributions take values in C∞-(nearly-holomorphic) modular forms on
the Siegel half plane H3. This construction, given in Section 1, generalizes
the higher twist of Fr, already utilized in the work [Boe-Schm], in a simpler
situation.
2) Next we consider the (real analytic) Siegel-Eisenstein series Fχ,r as a
formal (nearly-holomorphic) Fourier series, whose coefficients admit explicit
polynomial expressions (see Section 1 and Appendix A), and we use the fact
that they may be written in terms of p-adic integrals of χ over Y (see [PaSE]
and [PaIAS]).
A crucial point of our construction is the higher twist in Section 1. We define
the higher twist of the series Fχ,r by the characters (0.12) as the following
formal nearly-holomorphic Fourier expansion:

F χ̄1,χ̄2,χ̄3
χ,r =

∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)Q(R,T; k − 2r, r)aχ,r(T)qT. (0.14)

The series (0.14) can be naturally interpreted as an integral of the Dirichlet
character χ on the group Y with respect to a modular distribution Ψr:

F χ̄1,χ̄2,χ̄3
χ,r =

∫

Y

χ(y)dΨr(y) =: Ψr(χ). (0.15)

These modular distributions take values in the ring of formal Fourier expansion
whose coefficients are polynomials in R = (4π Im(Z))−1 over the field Q (which
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is imbedded into Cp via (0.6). The distributions Ψr are uniformly bounded
(coefficient-by-coefficient).
3) If we consider the diagonal embedding

diag : H×H×H→ H3,

then the restriction produces a sequence Φr = 2r diag∗Ψr of distributions on Y
with values in the tensor product Mk,r(Q)⊗Mk,r(Q)⊗Mk,r(Q) of three spaces
of elliptic nearly-holomorphic modular forms on the Poincaré upper half plane
H (the normalizing factor 2r is neeeded in order to prove certain congruences
between Φr in Section 3).
The important property of these distributions, established in Section 1, is that
the nebentypus character of the triple modular form Φr(χ) is fixed and is equal
to (ψ1, ψ2, ψ3), see Proposition 1.5. Using this property, and applying the
canonical projector πλ of Section 2 to Φr(χ), we prove in Section 3 that the se-
quence of modular distributions Φr on Y produces a p-adic admissible measure
Φ̃λ (in the sense of Amice-Vélu, [Am-V]) with values in a finite dimensional
subspace

M
λ(Cp) ⊂M(Cp), M(Cp) = Mk,r(Cp)⊗Mk,r(Cp)⊗Mk,r(Cp)

of the Cp-vector space M(Cp) =
⋃
v≥0 Mk,r(Np

v, ψ1, ψ2, ψ3; Cp) of formal
nearly-holomorphic triple modular forms of levels Npv and the fixed nebenty-
pus characters (ψ1, ψ2, ψ3). We use congruences between triple modular forms
Φr(χ) ∈ M(Q) (they have cyclotomic formal Fourier coefficients), and a gen-
eral admissibility criterion (see Theorem 2.4). Proof of the Main Congruence
is contained in Section 3.
4) Application of a Q-valued linear form of type

L : h 7−→

〈
f̃1 ⊗ f̃2 ⊗ f̃3, h

〉

〈
f̃1, f̃1

〉〈
f̃2, f̃2

〉〈
f̃3, f̃3

〉

for h ∈Mk,r(Q)⊗Mk,r(Q)⊗Mk,r(Q), produces a sequence of Q-valued distri-

butions given by µλr (χ) = L(πλ(Φr)(χ)), λ ∈ Q
×

. More precisely, we consider
three auxilliary modular forms

f̃j(z) =

∞∑

n=1

ãn,je(nz) ∈ Sk(Γ0(Njp
νj ), ψj) (1 ≤ j ≤ 3, νj ≥ 1), (0.16)

with the same eigenvalues as those of (0.1), for all Hecke operators Tq, with

q prime to Np. In our construction we use as f̃j certain “easy transforms”

of primitive cusp forms in (0.1). In particular, we choose as f̃j eigenfunctions

f̃j = f0
j of the adjoint Atkin’s operator U∗p , in this case we denote by fj,0 the

corresponding eigenfunctions of Up. The Q-linear form L produces a Cp-valued
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admissible measure µ̃λ = ℓ(Φ̃λ) starting from the modular p-adic admissible
measure Φ̃λ of stage 3), where ℓ : M(Cp) → Cp denotes a Cp-linear form,
interpolating L. See Section 4 for the construction of µ̃λ.
5) We show in Section 5 that for any suitable Dirichlet character χ mod Npv

the integral

µλr (χ) = L(πλ(Φr(χ)))

coincides (up to a normalisation) with the special L-value

D
∗(fρ1 ⊗fρ2 ⊗fρ3 , 2k−2−r, ψ1ψ2χ) (under the above assumptions on χ and r).

We use a general integral representation of Section B. The basic idea how
a Dirichlet character χ is incorporated in the integral representation [Ga87,
BoeSP] is somewhat similar to the one used in [Boe-Schm], but (surprisingly)
more complicated to carry out. Note however that the existence of a Cp-valued

admissible measure µ̃λ = ℓ(Φ̃λ) established at stage 4), does not depend on
this technical computation, and details will appear elsewhere.

Remark 0.3 Similar techniques can be applied in the case of three arbitrary
“balanced” weights (0.4) k1 ≥ k2 ≥ k3, i.e. when k1 ≤ k2+k3−2, using various
differential operators acting on modular forms (the Maaß-Shimura differential
operators (see [ShiAr], [Or]), and Ibukiyama’s differential operators (see [Ibu],
[BSY]). More precisely, one applies these operators to a twisted Eisenstein
series. In this case the critical values of the L function D(f1 ⊗ f2 ⊗ f3, s, χ)
correspond to s = k1, · · · , k2 + k3 − 2. The equality of weights in the present
paper is made to avoid (for lack of space) the calculus of differential operators.

0.4 Conclusion: some advantages of our p-adic method

The whole construction works in various situations and it can be split into
several independent steps:

1) Construction of modular distributions Φr (on a profinite or even adelic
space Y of type Y = A∗K/K

∗ for a number field K) with values in an infinite
dimensional modular tower M(A) over complex numbers (or in an A-module
of infinite rank over some p-adic algebra A).

2) Application of a canonical projector of type πλ onto a finite dimensional
subspace Mλ(A) of M(A) (or over a locally free A-module of finite rank over
some A) in the form: πλ(g) = (Uλ)−vπλ,1(Uv(g)) ∈ Mλ(Np,A) as in (2.3) of
Section 2 (this method works only for λ ∈ A×, and gives the λ-characteristic
projector of g ∈M(Npv,A) (independently of a sufficiently large v)).

3) One proves the admissibility criterium of Theorem 2.4 saying that the
sequence πλ(Φr) of distributions with values in Mλ(A) determines an h-
admissible measure Φ̃λ with values in this finite dimensional space for a suitable
h (determined by the slope ordp(λ)).
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86 S. Böcherer, A. A. Panchishkin

4) Application of a linear form ℓ of type g 7→ 〈f0, πλ(g)〉/〈f, f〉 to the modular
distributions Φr produces a sequence of A-valued distributions µλr = ℓ(πλ(Φr)),
and an A-valued admissible measure. The growth condition can be verified
starting from congruences between modular forms Φj(χ), generalizing our Main
Congruence of Section 3.

5) One shows that certain integrals µλj (χ) of the constructed distributions µλj
coincide with normalized L-values; however, computing these integrals is not
needed for the construction of p-adic admissible measures µ̃λ (which is already
done at stage 4)).

6) Under some assumptions, one can show a result on uniqueness for the con-
structed h-admissibles measures: they are determined by the integrals µλj (χ)
over almost all Dirichlet characters and sufficiently many j = 0, 1, · · · , h − 1
(this stage is not necessary, but it is nice to have uniqueness of the construc-
tion), see [JoH05].

7) If we are lucky, we can prove a functional equation for the constructed
measure µ̃λ (using the uniqueness in 6)), and using a functional equation for
the L-values (over complex numbers), computed at stage 5), for almost all
Dirichlet characters (again, this stage is not necessary, but it is nice to have a
functional equation).

This strategy is applicable in various cases (described above), cf. [PaJTNB],
[Puy], [Go02]. An interesting discussion in the Bourbaki talk [Colm03] of
P.Colmez indicates the use of this method for constructing Euler systems.
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1 Modular distributions attached to the higher twist
of Eisenstein series

1.1 Higher twists of the Siegel-Eisenstein series

In this Section we study a C∞-Siegel-Eisenstein series Fχ,r of degree 3 and of
weight k, where 0 ≤ r ≤ k − 2. As in the Introduction, consider the Dirichlet
characters (0.12) χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ.
The series Fχ,r = G⋆(Z,−r; k, (Npv)2,ψ), depends on the character χ, but its
precise nebentypus character is ψ = χ2ψ1ψ2ψ3. Here Z denotes a variable in
the Siegel upper half space H3, and the normalized series G⋆(Z, s; k, (Npv)

2
,ψ)

is given by (A.12). This series depends on s = −r, and for the critical values
at integral points s ∈ Z such that 2 − k ≤ s ≤ 0, it represents a (nearly-)
holomorphic function in the sense of Shimura [ShiAr] viewed as formal (nearly-
holomorphic) Fourier series, whose coefficients admit explicit polynomial ex-
pressions in terms of simple p-adic integrals for p ∤ det(T):

Fχ,r =
∑

T∈B3

det(T)k−2r−κQ(R,T; k − 2r, r)aχ,r(T)qT,

where B3 = {T = (Tij) ∈ M3(R) | T = tT,T ≥ 0,Tij , 2Tii ∈ Z} , and qT =
exp(2πitr(TZ)), R = (4πIm(Z))−1. More precisely, for any T with p ∤ det(T)
there exists a bounded measure FT on Y with values in Q such that

aχ,r(T) =

∫

Y

yrpχ(y)dFT =
∏

ℓ| det(2T)

Mℓ(T,ψ(ℓ)ℓ−k+2r), (1.1)

where ψ = χ2ψ1ψ2ψ3 (see (A.17), Theorem A.2 in Appendix A, also in [PaSE],
[PaIAS]). Here we use arithmetical nearly-holomorphic Siegel modular forms
(see [ShiAr] and Appendix A.2 for more details) viewed as formal power series
g =

∑
T∈Bm

a(T, Ri,j)q
T ∈ Q[[qBm ]][Ri,j ] such that for all Z ∈ Hm the series

converges to a C∞-Siegel modular form of a given weight k and character ψ.
As in the introduction, (0.14), we define the higher twist of the series Fχ,r
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by the characters (0.12) as the following formal nearly-holomorphic Fourier
expansion:

F χ̄1,χ̄2,χ̄3
χ,r =

∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)Q(R,T; k − 2r, r)aχ,r(T)qT = Ψr(χ).

We construct in this section a sequence of distributions Φr on Y using the
restriction to the diagonal

Φr(χ) : = 2r diag∗Ψr(χ) = 2rF χ̄1,χ̄2,χ̄3
χ,r ◦ diag (1.2)

= 2r
∑

t1,t2,t3≥0

∑

T:t11=t1,
t22=t2,t23=t3

χ̄1(t12)χ̄2(t13)χ̄3(t23) det(T)k−2r−κ×

×Q(diag(R1, R2, R3),T; k − 2r, r)aχ,r(T)qt11 q
t2
2 q

t3
3 ,

where χ̄1(t12)χ̄2(t13)χ̄3(t23) = χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23),

taking values in the tensor product of three spaces of nearly-holomorphic elliptic
modular forms on the Poincaré upper half plane H (recall that the normalizing
factor 2r is neeeded in order to prove congruences between Φr in Section 3).
We show in Proposition 1.5 that the (diagonal) nebentypus character of
F χ̄1,χ̄2,χ̄3
χ,r is (ψ1, ψ2, ψ3), thus it does not depend on χ.

1.2 The higher twist as a distribution

Let us fix a Dirichlet character χ mod Npv as above with v ≥ 1, and an arbi-
trary C∞-modular function

F ∈M
(3)
k (Γ0(Np

v),ψ)∞,

with a Dirichlet character ψ mod Npv which depends on χ mod Npv, for ex-
ample, the series Fχ,r with the nebentypus character ψ = χ2ψ1ψ2ψ3. Then
the higher twist of F with χ1, χ2, χ3 was initially defined by the formula

F̃ =
∑

ε12,ε13,ε23 mod Npv

χ1(ε12)χ2(ε13)χ3(ε23)F |ktε,Npv (1.3)

where we use the translation tε,Npv =

(
13

1
Npv ε

03 13

)
on H3 with ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0


 . The idea of the construction. We wish to interpret the series

(1.3) in terms of a distribution on a profinite group, using the following model
example: consider the profinite ring AN,p = lim←−

v

(Z/NpvZ), and a compact

open subset α + (Npv) ⊂ AN,p with α an integer mod Npv, and N is prime
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to p. For any formal series f =
∑
n≥1 anq

n ∈ C[[q]] and for any open subset
α+ (Npv) ⊂ AN,p consider the following partial series:

µf (α+ (Npv)) =
∑

n≥1
n≡α mod Npv

anq
n ∈ C[[q]].

If q = exp(2πiz) with z ∈ H, it follows from the orthogonality relations that

µf (α+ (Npv)) = (Npv)−1
∑

β mod Npv

exp(−2πiαβ/Npv)f

(
z +

β

Npv

)
,

and that for any Dirichlet character χ mod Npv one has
∫

AN,p

χ(α)dµf (α) =
∑

n≥1

χ(n)anq
n = f(χ) ∈ C[[q]].

(the series f twisted by the character χ).
In the same fashion, consider the additive profinite group

S = SN,p :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN,p



 ;

equipped with the scalar product 〈·, ·〉 : SN,p × SN,p −→ AN,p:

〈
ε(1), ε(2)

〉
= tr(ε(1)ε(2)) = 2ε

(1)
12 ε

(2)
12 + 2ε

(1)
13 ε

(2)
13 + 2ε

(1)
23 ε

(2)
23 , where

ε(1) =




0 ε
(1)
12 ε

(1)
13

ε
(1)
12 0 ε

(1)
23

ε
(1)
13 ε

(1)
23 0


 , ε(2) =




0 ε
(2)
12 ε

(2)
13

ε
(2)
12 0 ε

(2)
23

ε
(2)
13 ε

(2)
23 0


 .

Proposition 1.1 Suppose that the function F is invariant with respect to any
integer translation of type tε,1 : F |tε,1 = F . Then
1) The action F |tε,Npv depends only on the class of ε ∈ S/NpvS, and the
additive character e

ε
(0) : ε 7→ exp(

〈
ε, ε(0)

〉
/Npv) on S is trivial iff ε(0) ∈ NpvS.

2) The formula

ΨF (ε(0) + (Npv)) = (Npv)−3
∑

ε∈S mod NpvS

exp(−2πi
〈
ε, ε(0)

〉
/Npv)F |tε,Npv

(1.4)

= (Npv)−3
∑

ε∈S mod NpvS

e(−
〈
ε, ε(0)

〉
/Npv)F |tε,Npv

defines a distribution with values in C∞-functions on H3, where e(α/Npv) :=
exp(2πiα/Npv) is well-defined for all α ∈ AN .
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Proof: 1) Follows directly from the invariance: F |tε,1 = F .
2) It suffices to check the finite-additivity condition:

ΨF (ε(0) + (Npv)) =
∑

ε
(1)∈S mod p

ΨF (ε(0) +Npvε(1) + (Npv+1)), (1.5)

i.e.,

(Npv)−3
∑

ε∈S/NpvS
e(−

〈
ε, ε(0)

〉
/Npv)F |tε,Npv (1.6)

= (Npv+1)−3×
∑

ε
(1)∈S/pS

∑

ε
(2)∈S/Npv+1S

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1 .

(1.7)

For all ε(2) the sum on the right on ε(1) ∈ S/pS in (1.6) becomes

(Npv+1)−3
∑

ε
(1)∈S/pS

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1 (1.8)

= (Npv+1)−3e(−
〈
ε(2), ε(0)

〉

Npv+1
)F |t

ε
(2),Npv+1

∑

ε
(1)∈S/pS

e(−
〈
ε(2), Npvε(1)

〉

Npv+1
)

= (Npv+1)−3e(−
〈
ε(2), ε(0)

〉
/Npv+1)F |t

ε
(2),Npv+1

∑

ε
(1)∈S/pS

e
(
−
〈
ε(2), ε(1)

〉)
.

It remains to notice that

∑

ε
(1)∈S/pS

e(−
〈
ε(2), ε(1)

〉
/p) =

{
p3, if ε(2) = pε(3), ε(3) ∈ S
0, otherwise,

(1.9)

because ε(1) 7→ e(−
〈
ε(2), ε(1)

〉
/p) is a non trivial character of S/pS iff ε(2) ∈ pS.

The right hand side of (1.6) becomes

(Npv+1)−3
∑

ε
(1)∈S/pS

∑

ε
(2)∈S/Npv+1S

e(−
〈
ε(2), (ε(0) +Npvε(1))

〉
/Npv+1)F |t

ε
(2),Npv+1

(1.10)

= (Npv+1)−3p3
∑

ε
(3)∈S/NpvS

e(−
〈
ε(3), ε(0)

〉
/Npv)F |t

ε
(3),Npv .

Remark 1.2 The Fourier expansions of the nearly-holomorphic Siegel modular
form

Fε,v :=

ΨF (ε+ (Npv)) = (Npv)−3
∑

ε
′∈S mod NpvS

exp(−2πi〈ε′, ε〉/Npv)F |tε′,Npv .
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is given as the following partial Fourier series

Fε,v(Z) =
∑

T,t12≡ε12 mod Npv

t13≡ε13,t23≡ε23 mod Npv

a(T, R)qT, (1.11)

where F is a nearly-holomorphic Siegel modular form, which is a periodic func-

tion on H3: F =
∑

T

a(T, R)qT, and T =



t11 t12 t13
t12 t22 t23
t13 t23 t33


 runs over half

integral symmetric non negative matrices.

Indeed,

F |tε′,Npv =
∑

T

a(T, R)qT|tε′,Npv =
∑

T

exp(2πitr(ε′T)/Npv)a(T, R)qT,

hence

Fε,v = (Npv)−3
∑

ε
′∈S mod NpvS

exp(−2πi〈ε′, ε〉/Npv)
∑

T

exp(2πitr(ε′T)/Npv)a(T, R)qT.

It suffices to notice that

tr(ε′T) = tr






0 ε′12 ε′13
ε′12 0 ε′23
ε′13 ε′23 0





t11 t12 t13
t12 t22 t23
t13 t23 t33




= 2(ε′12t12+ε

′
13t13+ε

′
23t23).

Let us consider now three Dirichlet characters χ1, χ2, χ3 mod Npv, and let us
compute the corresponding integrals against the constructed modular distribu-
tion (1.4) of the locally constant function ε 7→ χ1(ε12)χ2(ε13)χ3(ε23) on the
profinite additive group

S = SN :=



ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0



∣∣∣∣∣ε12, ε13, ε23 ∈ AN



 .

Proposition 1.3 Let F be a function invariant with respect to any
translation of type tε,1 : F |tε,1 = F . Let us write Fχ̄1,χ̄2,χ̄3

=∫
S
χ̄1(ε12)χ̄2(ε13)χ̄3(ε23)dΨF (ε). Then

Fχ̄1,χ̄2,χ̄3
= (1.12)

(Npv)−3
∑

ε∈S/NpvS
GNpv (χ̄1,−ε12)GNpv (χ̄2,−ε13)GNpv (χ̄3,−ε23)F |tε,Npv .

Here GNpv (χ, ε) :=
∑

α′

e(εα′/Npv)χ(α′) denotes the Gauß sum (of a non nec-

essarily primitive Dirichlet character χ).
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Remarks 1.4 1) The advantage of the expression (1.12) in compare with (1.3)
is that it does not depend on a choice of v.
2)It follows from (1.11, that the Fourier expansion of the series (1.12) is given
by

Fχ̄1,χ̄2,χ̄3
=
∑

T

χ̄1(t12)χ̄2(t13)χ̄3(t23)a(T, R)qT. (1.13)

Proof is similar to that of Proposition 1.1, and it follows from the definitions.

1.3 The level of the higher twist

Let us consider the symplectic inclusion:

i : SL2(Z)× SL2(Z)× SL2(Z)→ Sp3(Z) (1.14)

(
a1

c1

b1
d1

)
,

(
a2

c2

b2
d2

)
,

(
a3

c3

b3
d3

)
7→




a1

a2

a3

c1
c2

c3

b1
b2

b3

d1

d2

d3




We study the behaviour of the modular form Fχ̄1,χ̄2,χ̄3
with respect to the

subgroup

i(Γ0(N
2p2v)3) ⊂ Γ

(3)
0 (N2p2v),

where (χ1 ⊗ χ2 ⊗ χ3)(ε) = χ1(ε12)χ2(ε13)χ3(ε23).
We will have to study two different types of twist; we can treat them simulta-
neously if we consider a function

φ : Z/NZ 7−→ C

which is “ϕ-spherical” i.e.

φ(gXh) = ϕ(g)ϕ(h)φ(X)

for all g, h ∈ (Z/NZ)×,X ∈ Z/NZ, where ϕ is a Dirichlet character mod N .
Let us use Proposition 1.12 and the spherical function

φ : (ε12, ε13, ε23) 7→ GNpv (χ̄1,−ε12)GNpv (χ̄2,−ε13)GNpv (χ̄3,−ε23),

with respect to three variables (ε12, ε13, ε23), and the Dirichlet characters

(ε12, ε13, ε23) 7→ χ1(ε12)χ2(ε13)χ3(ε23).
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Proposition 1.5 Consider a (nearly-holomorphic) Siegel modular form F for

the group Γ
(3)
0 (Npv) and the Dirichlet character ψ = χ2ψ1ψ2ψ3).

Then for all M = i
((

a1

c1

b1
d1

)
,
(
a2

c2

b2
d2

)
,
(
a3

c3

b3
d3

))
∈ Γ

(3)
0 (N2p2v) one has:

1) F̃ |M = ψχ̄1χ̄2(d1)︸ ︷︷ ︸
ψ1

ψχ̄1χ̄3(d2)︸ ︷︷ ︸
ψ2

ψχ̄2χ̄3(d3)︸ ︷︷ ︸
ψ3

F̃ , where F̃ is defined by (1.3),

2) Fχ̄1,χ̄2,χ̄3
|M = ψχ̄1χ̄2(d1)︸ ︷︷ ︸

ψ1

ψχ̄1χ̄3(d2)︸ ︷︷ ︸
ψ2

ψχ̄2χ̄3(d3)︸ ︷︷ ︸
ψ3

Fχ̄1,χ̄2,χ̄3
, where Fχ̄1,χ̄2,χ̄3

is defined by (1.12).

Proof. We study modular forms on H3. Let us consider a more general sit-
uation and write N instead of Npv. We use the (somewhat unconventional)
congruence subgroup (with N |M):

Γ
(3)
1 (M,N) :=

{
γ =

(
A B
C D

)
∈ Γ

(3)
0 (M)

∣∣∣D ≡ diag(D1,D2,D3)modN

}
.

Here the Di denote integers along the diagonal of D. It is easy to see that this
defines a subgroup of Sp(3,Z) and that a similar congruence also holds for A.

The appropriate space of modular forms, denoted by M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3),

with Dirichlet characters ψj mod N and a Dirichlet character χ mod M is then
the set of holomorphic functions on H3 satisfying

f |k γ = χ(detD)




3∏

j=1

ψj(Dj)


 f

for all γ =

(
A B
C D

)
∈ Γ

(3)
1 (M,N). For any α ∈ R and any 1 ≤ i < j ≤ 3

we define a symmetric matrix of size 3 by

S
(3)
ij (α) :=




α

α




(the number α sits in the (i, j)th and (j, i)positions). Then, for a function

F ∈M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3) we define a new function Fφij on H3 by

Fφij(Z) =
∑

α mod N

φ(α) · F (Z + S
(3)
ij (

α

N
))

Proposition 1.6 Assume that N2 |M , χ is a character mod M
N , and

F ∈M
(3)
k (M,N ;χ;ψ1, ψ2, ψ3). Then

Fφij ∈M
(3)
k (M,N ;χ;ψ′1, ψ

′
2, ψ
′
3)
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with

ψ′r =

{
ψr if r /∈ {i, j}

ψr · ϕ if r ∈ {i, j}

Remarks 1.7 1) We mention here two basic types of ϕ-spherical functions
φ : Z/NZ:
Type I: “Dirichlet character” φ(X) := ϕ(X)
Type II: “Gauß sum” φ(X) = G(ϕ,−X) where G(ϕ,X) denotes a Gauß
sum (a version of such spherical functions of matrix argument was studied
in [Boe-Schm]):

G(ϕ,X) :=
∑

α mod N

ϕ(α) exp(2πi
1

N
αX)

2) Our basic example is as follows: let ϕ1, ϕ2, ϕ3 be three Dirichlet characters
mod N and let φi be ϕi-spherical functions on Z/NZ. Furthermore let F ∈
M

(3)
k (Γ0(M), χ) with N2 |M and χ a Dirichlet character mod M

N . Then

h(z1, z2, z3) :=
∑

α,β,γ mod N

φ1(α)φ2(β)φ3(γ)F (




z1
α
N

β
N

α
N z2

γ
N

β
N

γ
N z3


)

is an element of

Mk(Γ0(M), χϕ̄1ϕ̄2)⊗Mk(Γ0(M), χϕ̄1ϕ̄3)⊗Mk(Γ0(M), χϕ̄2ϕ̄3)

(note that the definition of h depends on N)
3) Other important cases are treated in [Boe-Schm] it can also (by iteration) be
applied to cases of block matrices of different size which e.g. occur in the work
[Boe-Ha] on the L-function for GSp(2)×GL(2).

Proof. We first try to find X ∈ Sym3(
1
NZ) such that

(
13 S( αN )
03 13

)(
A B

C D

)(
13 −X
03 13

)

=

(
A + S( αN )C −AX + B− S( αN )CX + S( αN )D

C −CX + D

)

is in Γ
(3)
0 (M) (for the moment we only assume here that

(
A B

C D

)
is integral.

The conditions N2 |M and the congruences mod M and N will then be forced
to hold). The first (evident) condition is that C ≡ 0modM . It is easy to see
that the two numbers on the diagonal

−CX + D and A + S(
α

N
)C

are integers, if C is congruent to 0 modulo N .
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The remaining condition is that

−AX + B− S(
α

N
)CX + S(

α

N
)D

is integral, which is satisfied if C ≡ 0modN2 and −A ·X + S( αN )D is integral.
Therefore we should choose any X satisfying

(NX) ≡ AS(α)D mod N

where A is a (multiplicative) inverse of the matrix A mod N . Now we use the
fact that A ≡ diag(A1, A2, A3) mod N and D ≡ diag(D1,D2,D3) mod N are
matrices which are diagonal modulo N , we may therefore choose the integral
symmetric matrix NX to be modulo N equal to

NX := S
(3)
ij

(
Ai · α ·Dj

)
⇒ X = X(α) = S

(3)
ij

(
Ai · α ·Dj

N

)
.

By the above,

Fφij |k
(

A B

C D

)
=

∑

α mod N

φ(α)F |k
(

1 S( αN )
0 1

)(
A B

C D

)

=
∑

α mod N

φ(α)F |k
(

Ã B̃

C̃ D̃

)(
1 X(α)
0 1

)

where

(
Ã B̃

C̃ D̃

)
∈ Γ

(3)
1 (M,N) with

Ã ≡ A mod
M

N
and D̃ ≡ D mod

M

N

(in particular, these congruences hold mod N). Therefore

Fφij |k
(
A B

C D

)
= χ(det(D))ψ1(D1) . . . ψn(Dn)

∑

α mod N

φ(α)F |k
(
13 X(α)
03 13

)
.

Instead of summing over α we may as well sum over β := Di · α ·Dj mod N.
Then we obtain

χ(det(D))ψ1(D1) . . . ψn(Dn)ϕ(Di)ϕ(Dj)
∑

β mod N

φ(β)F |k
(

13 S
(3)
ij ( βN )

03 13

)

= χ(det(D)ψ1(D1) . . . ψn(Dn)ϕ(Di)ϕ(Dj)F
φ
ij .

Notice that the properties of Propositions 1.6 hold for the iterated twists, and
Propositions 1.5 follows from Propositions 1.6 by three iterated twists with N
equal to Npv.
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96 S. Böcherer, A. A. Panchishkin

2 Computation of the canonical projection

2.1 A general construction: the canonical λ-characteristic pro-
jection

We explain now a general method which associates a p-adic measure µλ,Φ on
a profinite group Y , to a sequence of distributions Φr on Y with values in
a suitable (infinite dimensional) vector space M of modular forms, and to a
nonzero eigenvalue λ of the Atkin operator U = Up acting on M. We consider
holomorphic (or nearly-holomorphic) modular forms in a space of the type

M = Mk(ψ,Q) =
⋃

v≥0

Mk(Np
v, ψ,Q) ⊂M(Cp) =

⋃

v≥0

Mk(Np
v, ψ,Cp),

with finite dimensional vector spaces Mk(Np
v, ψ,Q) at each fixed level, en-

dowed with a natural Q-rational structure (for example, given by the Fourier
coefficients). The parameters here are triples k = (k1, k2, k3), ψ = (ψ1, ψ2, ψ3)
of weights and characters. The important property of our construction is that
does not use passage to a p-adic limit. We put

Mk(Np
v, ψ,A) = Mk(Np

v, ψ,Q)⊗Q A.

for any Q-algebra A.

Definition 2.1 Let A = Cp , A = Q, or A = C, and M = M(A).

(a) For a λ ∈ A let us define M(λ) = Ker (U −λI) the subspace of eigenvectors
with eigenvalue λ).

(b) Let us define the λ-characteristic subspace of U on M by

M
λ =

⋃

n≥1

Ker (U − λI)n

(c) Let us define for any v ≥ 0

M
λ(Npv) = M

λ ∩M(Npv), M
(λ)(Npv) = M

(λ) ∩M(Npv).

Proposition 2.2 Let ψ mod N be a fixed Dirichlet character, then
Uv(M(Npv+1, ψ)) ⊂M(Np,ψ).

Proof follows from a known formula of J.-P. Serre: for g ∈Mk(Np
v+1, ψ),

g|kUv = p3v(k/2−1)g|kWNpv+1TrNp
v+1

Np WNp, (2.1)

where WN : M(N,ψ) → M(N, ψ̄) is the involution (over C) of level N (see
[Se73] for the elliptic modular case, which extends to the triple modular case).
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Proposition 2.3 Let A = Cp or A = Q, M = M(A), λ ∈ A∗, and let Uλ be
the restriction of U on Mλ, then

(a) (Uλ)v : Mλ(Npv+1)
∼→ Mλ(Np) is an A-linear invertible operator, where

Uλ = U |Mλ(Npv+1).

(b) The vector subspace Mλ(Npv+1) = Mλ(Np) does not depend on v.

(c) Let πλ,v+1 : M(Npv+1) → Mλ(Npv+1) be the projector on the λ-

characteristic subspace of U with the kernel Ker (πλ,v) =
⋂

n≥1

Im(U − λI)n =

⊕

β 6=λ
M
β(N0p

v)), then the following diagram is commutative

M(Npv+1) −→
πλ,v+1

Mλ(Npv+1)

Uv
y

y≀ Uv
M(Np) −→

πλ,1
Mλ(Np)

(2.2)

Let us use the notation

πλ(g) = (Uλ)−vπλ,1(U
v(g)) ∈M

λ(Γ0(Np), ψ,C) (2.3)

for the canonical λ-characteristic projection of g ∈M(Γ0(Np
v+1), ψ,C).

Proof of (a). The linear operator (Uλ)v acts on the A-linear vector space
Mλ(Npv+1) of finite dimension, and its determinant is in A∗, hence the A-
linear operator (Uλ)v is invertible.

Proof of (b). We have the obvious inclusion of vector spaces: Mλ(Np) ⊂
Mλ(Npv+1). On the other hand the A-vector spaces Mλ(Npv+1) and Mλ(Np)
are isomorphic by (a), hence they coincide:

M
λ(Np) ⊂M

λ(Npv+1) = Uv(Mλ(Npv+1)) ⊂M
λ(Np).

Proof of (c). Following the theory of reduction of endomorphisms in finite
dimensional vector spaces over a field K, the canonical projector πλ,v onto the
λ-characteristic subspace

⋃
n≥1 Ker (U − λI)n with the kernel

⋂
n≥1 Im(U −

λI)n can be expressed, on one hand, as a polynomial of U over K, hence πλ,v
commutes with U . On the other hand, the restriction of πλ,v+1 on M(Np)
coincides with πλ,1 : M(Np)→Mλ(Np), because its image is

⋃

n≥1

Ker (U − λI)n ∩M(Np) =
⋃

n≥1

Ker (U |M(Np) − λI)n,

and its kernel is

⋂

n≥1

Im(U − λI)n ∩M(Np) =
⋂

n≥1

Im(U |M(Np) − λI)n.
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2.2 A general result on admissible measures with values in mod-
ular forms (a criterion for admissibility)

Consider the profinite group Y = lim←−
v

Yv where Yv = (Z/NpvZ)×. There is a

natural projection yp : Y → Z×p . Let A be a normed ring over Zp, and M be a
normed A-module with the norm | · |p,M .
Let us recall Definition 0.1, c): for a given positive integer h an h-admissible
measure on Y with values in M is an A-module homomorphism

Φ̃ : P
h(Y,A)→M

such that for fixed a ∈ Y and for v →∞
∣∣∣∣∣

∫

a+(Npv)

(yp − ap)h
′
dΦ̃

∣∣∣∣∣
p,M

= o(p−v(h
′−h)) for all h′ = 0, 1, . . . , h− 1,

where ap = yp(a), Ph(Y,A) denotes the A-module of locally polynomial func-
tions of degree < h of the variable yp : Y → Z×p →֒ A×. We adopt the notation
(a)v = a+(Npv) for both an element of Yv and the corresponding open compact
subset of Y .
We wish now to construct an h-admissible measure Φ̃λ : Ph(Y,A)→M(A) out
of a sequence of distributions

Φλr : P
1(Y,A)→M(A)

with values in an A-module M = M(A) of modular forms over A as in Section
2.1).
For this purpose we recall first Proposition 2.3, (c). Suppose that λ ∈ A× is an
invertible element of the algebra A. Recall that the λ-characteristic projection
operator

πλ,v : M(Npv;A)→M(Npv;A)λ ⊂M(Npv;A) (v ≥ 1)

is determined by the kernel
⋂

n≥1

Im(U − λI)n; this projector is given as a poly-

nomial of U over A whose degree is bounded by the rank of M(Npv;A).
Using Proposition 2.3(c), the sequence of projectors πλ,v can be glued to the
canonical projection operator

πλ : M(A)→M(A)λ ⊂M(A) (2.4)

given for all g ∈M(A) by

πλ(g) = gλ = U−v [πλ,1U
v(g)]

(gλ is well defined if v is sufficiently large so that g ∈M(Npv+1)).
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Next we construct an admissible measure

Φ̃λ : P
h(Y,A)→M(Np;A)

such that ∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v) = πλ(Φr((a)v))

where Φr : P1(Y,A) → M(A) are M(A)-valued distributions on Y for r =
0, 1, . . . , h− 1 , and Φλr ((a)v) are their λ-characteristic projections given by

Φλr ((a)v) = U−v
′
[
πλ,1U

v′Φr((a)v)
]

for any sufficiently large v′. Note first of all that the definition
∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v) = U−κv [πλ,1U

κvΦr((a)v)] .

of the linear form Φ̃λ : Ph(Y,A) → M(A) is independent on the choice of the
level: for any sufficiently large v′, we have by Proposition 2.3 the following
comutative diagram

M(Npv
′+1;A)

πλ,v′+1−→ M(Npv
′+1;A)λ

Uv
′
y

y≀ Uv
′

M(Np;A)
πλ,1−→ M(Np;A)λ

in which the right vertical arrow is an A-isomorphism by Proposition 2.3 (b),
and the A-linear endomorphism U commutes with the characteristic projectors
πλ,v′+1, πλ,1. Hence the following sequence stabilizes: for some v′0 and for all
v′ ≥ v′0 we have that

U−v
′
[
πλ,1U

v′Φr((a)v)
]

= U−v
′
0

[
πλ,1U

v′0Φr((a)v)
]
.

Theorem 2.4 Let λ ∈ A be an element whose absolute value is a positive
constant with 0 < |λ|p < 1. Suppose that there exists a positive integer κ such
that for any (a)v ⊂ Y the following two conditions are satisfied:

Φr
(
(a)v

)
∈M(N ′pκv), with N ′ independent of v, (level)

∣∣∣∣∣U
κv
( r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φr′

(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (growth)

for all r = 0, 1, . . . , h− 1 with h = [κordp(λ)] + 1.

Then there exists an h-admissible measure Φ̃λ : Ph(Y,A) → M such that for
all ((a)v) ⊂ Y and for all r = 0, 1, . . . , h− 1 one has

∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v)
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where
Φλr ((a)v) = πλ(Φr((a)v)) := U−κv [πλ,1U

κvΦr((a)v)]

is the canonical projection of πλ of the modular form Φr((a)v) (note
that UκvΦr((a)v) ∈ M(Npκv;A)λ = M(Np;A)λ because of the inclusion
Uκv−1(M(Npκv;A)) ⊂M(Np;A) for all v ≥ 1, see Proposition 2.3 (a))

Proof. We need to check the h-growth condition of Definition 0.1, c) for the
linear form

Φ̃λ : P
h(Y,A)→M(A)λ

(given by the condition of Theorem 2.4). This growth condition says that for
all a ∈ Y and for v →∞

∣∣∣∣∣

∫

(a)v

(yp − y0
p)
r dΦ̃λ

∣∣∣∣∣
p,M

= o(p−v(r−h))

for all r = 0, 1, . . . , h− 1, where h = [κordp(λ)] + 1 and y0
p = yp(a).

Let us develop the definition of Φ̃λ using the binomial formula:

∫

(a)v

(yp − y0
p)
r dΦ̃λ =

r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φλr′((a)v) = λ−vκ·

λvκ · U−vκ

[
πλ,1U

κv
( r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φr′

(
(a)v

))
]
. (2.5)

First we notice that all the operators

λvκ · U−vκ =
(
λ−1U

)−vκ
=
(
I + λ−1Z

)−vκ
=

n−1∑

j=0

(−vκ
j

)(
λ−1Z

)j

are uniformly bounded for v → ∞ by a positive constant C1 (where U =
λI +Z and Zn = 0 where n is the rank of M(Np;A)). Note that the binomial

coefficients

(−vκ
j

)
are all Zp-integral.

On the other hand by the condition (growth) of the theorem (for the distribu-
tions Φr) we have the following inequality:

∣∣∣∣∣U
κv(

r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φr′((a)v))

∣∣∣∣∣
p,M

≤ Cp−vr

for all r = 0, 1, . . . ,κh− 1. If we apply to this estimate the previous bounded
operators we get

∣∣∣∣∣

∫

(a)v

(yp − y0
p)
r dΦ̃λ

∣∣∣∣∣
p,M

≤ C · C1|λ−vκ|p · p−vr = o(p−v(r−h))
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because of the estimate

|λ−vκ|p =
(
pordp(λ)

)vκ
= o(pvh), and κordp(λ) < h = [κordp(λ)] + 1.

(2.6)

We apply Theorem 2.4 in Section 5.1 in order to obtain a p-adic measure in
the form µλ,Φ = ℓ(πλ(Φ)). Here λ is a non-zero eigenvalue of Atkin’s operator
U = Up acting on M, ℓ : Mλ(Np;A) → A is an A-linear form, applied to the
projection πλ : M → Mλ ⊂ Mλ(Np;A) of a modular distribution Φ, where
A = Cp.

3 Main Congruence for the higher twists of the Siegel-
Eisenstein series

The purpose of this section is to show that the admissibility criterion of The-
orem 2.4 with h∗ = 2 is satisfied by a sequence of modular distributions (1.2),
constructed in Section 1.

3.1 Construction of a sequence of modular distributions

As in the Introduction, consider the series Fχ,r = G⋆(Z,−r; k, (Npv)2,ψ), given
by (A.12), viewed as formal (nearly-holomorphic) Fourier series, whose coeffi-
cients admit explicit polynomial expressions. The only property that we use
in this section is the fact that they can be written in terms of simple p-adic
integrals:

Fχ,r =
∑

T

det(T)k−2r−κQ(R,T; k − 2r, r)aχ,r(T)qT,

[PaSE], [PaIAS] and (1.1)). Here we use a universal polynomial, described in
[CourPa], Theorem 3.14 as follows:

Q(R,T) = Q(R,T; k − 2r, r) (3.1)

=
r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤mt−t
RL(κ− k + r)QL(R,T),

QL(R,T) = tr
(
tρm−l1(R)ρ⋆l1(T)

)
· . . . · tr

(
tρm−lt(R)ρ⋆lt(T)

)
),

where we use the natural representation ρr : GLm(C) −→ GL(∧rCm) (0 ≤
r ≤ m) of the group GLm(C) on the vector space ΛrCm. Thus ρr(z) is a
matrix of size

(
m
r

)
×
(
m
r

)
composed of the subdeterminants of z of degree r.

Put ρ⋆r(z) = det(z)ρm−r(tz)−1. Then the representations ρr and ρ⋆r turn out to
be polynomial representations so that for each z ∈ Mm(C) the linear operators
ρr(z), ρ

⋆
r(z) are well defined. In (3.1), L runs over all the multi-indices 0 ≤

l1 ≤ · · · ≤ lt ≤ m, such that |L| = l1 + · · · + lt ≤ mt − t. The coefficients
RL(β) ∈ Z[1/2][β] in (3.1) are polynomials in β of degree (mt− |L|) and with
coefficients in the ring Z[1/2].
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3.2 Utilizing the admissibility criterion

Recall an important property of the sequence of distributions Φr defined by
(1.2), Section 1: the nebentypus character of Φr(χ) is (ψ1, ψ2, ψ3), so that it
does not depend on χ. Now let us prove that the sequence of distributions Φr on
Y produces a certain admissible measure Φ̃ with values in a finite dimensional
Cp-vector subspace

M
λ ⊂M, M = Mk,r(Cp)⊗Mk,r(Cp)⊗Mk,r(Cp),

(of nearly-holomorphic triple modular forms over Cp) using a general admissi-
bility criterion (see Theorem 2.4).

3.3 Sufficient conditions for admissibility of measures with val-
ues in nearly-holomorphic modular forms

In order to construct the admissible measures of Theorem B we use the admis-
sible measures µ̃λ(f1 ⊗ f2 ⊗ f3, y) constructed in Section 5 out of the modular
distributions Φr in the form

µ̃λ(f1 ⊗ f2 ⊗ f3)(χyrp) = ℓ(πλ(Φr)(χ)).

The growth condition for µ̃λ follows then from a growth condition for Φr:

sup
a∈Y

∣∣∣∣∣

∫

a+(Npv)

(yp − ap)rdΦ̃λ
∣∣∣∣∣
p

= o
(
|Npv|r−2ordpλ

p

)
, (3.2)

where
Φ̃λ(χyrp) = πλ(Φr(χ)).

Let us use a general result giving a sufficient condition for the admissibility
of measures with values in nearly-holomorphic Siegel modular forms (given in
Theorem 2.4) with κ = 2, h = [2ordpλ] + 1. Then we need to check that the
nearly-holomorphic triple modular forms Φr(χ) are of level N2χ2v, nebentypus
(ψ1, ψ2, ψ3), and satisfy the congruences

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−a0

p)
r−r′Φr′

(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (3.3)

and for all r = 0, 1, · · · , k − 2.

3.4 Special Fourier coefficients of the higher twist of the
Siegel-Eisenstein distributions

Let us use the Fourier expansions (1.13) for Ψr(χ). These formulas directly
imply the Fourier expansion of Φr(χ)|U2v

p as follows

Φr(χ)|U2v
p =

∑

t1,t2t3≥0

a(p2vt1, p
2vt2, p

2vt3; p
2vR1, p

2vR2, p
2vR3, r)q

t1
1 q

t2
2 q

t3
3

(3.4)
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with

a(p2vt1, p
2vt2, p

2vt3; p
2vR1, p

2vR2, p
2vR3, r)

=
∑

T:diag(T)=(p2vt1,p2vt2,p2vt3)

χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)×

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T)

=
∑

T:diag(T)=(p2vt1,p2vt2,p2vt3)

vχ,r(T,diag(R1, R2, R3)),

where

vχ,r(T,diag(R1, R2, R3)) = χ̄(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)× (3.5)

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T)

= χ(p)(2)χ̄(p)(T)χ◦(t12t13t23)ψ̄2ψ3(t13)ψ̄1ψ3(t23)×

× det(T)k−2r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T).

Let us notice that, for any T with diag(T) = (p2vt1, p
2vt2, p

2vt3) one has

det(T) ≡ 2t12t13t23 mod p2v,

χ(p)(2t12t13t23) = χ(p)(det(T)) = χ(det(T)χ◦(det(T),

2raχ,r(T) =

∫

Y

yrpχ(y)dFT,

with χ = χ(p)χ◦, χ(p) mod pv, χ◦ mod N, and p ∤ N,

for a bounded measure FT on Y with values in Q. It follows that

vχ,r(T,diag(R1, R2, R3))

= χ(p)(2)χ̄(det(T)) det(T)−rχ◦(det(T)ψ̄2ψ3(t13)ψ̄1ψ3(t23)· (3.6)

· det(T)k−r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)2raχ,r(T) (3.7)

= det(T)k−r−κQ(p2v diag(R1, R2, R3),T; k − 2r, r)χ◦(2)

∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
,
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where FT;χ◦,ψ1,ψ2,ψ3
denotes the bounded measure defined by the equality:

∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
(3.8)

= χ(p)(2)χ◦(2)2rχ̄(det(T)) det(T)−rχ◦(det(T)ψ̄2ψ3(t13)ψ̄1ψ3(t23)aχ,r(T).

3.5 Main Congruence for the Fourier expansions

Let us use the orthogonality relations for Dirichlet characters in order to prove
the admissibility of the distributions given by the sequence πλ(Φr(χ)) using the
Fourier expansions (3.4). According to the admissibility criterion of Theorem
2.4 we need to check the following Main Congruence:

∣∣∣
r∑

r′=0

(
r

r′

)
(−a0

p)
r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)vχ,r′(T, p
2v diag(R1, R2, R3))

∣∣∣
p

≤ Cp−vr, (3.9)

where we use the notation (3.6) for vχ,r′(T,diag(R1, R2, R3)), implying that
the coefficients

ip(vχ,r′(T,diag(R1, R2, R3)))

in (3.5) are given as sums of the following expressions:

Br(χ,T) = χ◦(2) det(T)k−r−κ
∫

Y

χyrpdFT;χ◦,ψ1,ψ2,ψ3
· (3.10)

·
r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤mt−t
RL(κ− k + r)QL(p2v diag(R1, R2, R3),T),

where FT;χ◦,ψ1,ψ2,ψ3
denotes the bounded measure defined by (3.8). Using

the expressions (3.10), the main congruence (3.9) is reduced to proving the
congruence for the numbers Br(χ,T): there exists a non-zero integer Ck such
that

Ck ·
r∑

r′=0

(
r

r′

)
(−a0

p)
r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)Br′(χ,T) ≡ 0 mod pvr

(3.11)

⇐⇒ Ck ·A ≡ 0 mod Npvr,

Documenta Mathematica · Extra Volume Coates (2006) 77–132



Admissible p-adic Measures . . . 105

where we use the notation

A =Ar(T;χ◦, ψ1, ψ2, ψ3) =

r∑

r′=0

(
r

r′

)
(−a0

p)
r−r′ 1

ϕ(Npv)

∑

χ mod Npv

χ−1(a)·

(3.12)

· χ◦(2) det(T)k−r
′−κ
∫

Y

χyr
′
p dFT;χ◦,ψ1,ψ2,ψ3

r′∑

t=0

(
r′

t

)
det(T)r

′−t

∑

|L|≤mt−t
RL(κ− k + r′)QL(p2v diag(R1, R2, R3),T).

Note that RL(κ − k + r′) is a polynomial of degree mt − |L| = 3t − |L| in

κ − k + r′ (see (3.1)), hence in r′, and
(
r′

t

)
is a polynomial of degree t in r′.

One can therefore write

(
r′

t

)
RL(κ− k + r) =

4t−|L|∑

n=0

µn
(r′ + n+ 1)!

(r′ + 1)!
.

Here the coefficients µn are fixed rational numbers (independent of r′).
Using the orthogonality relations for Dirichlet characters modNpv, we see that
the sum over r′ in (3.12), denoted by C = Cr(t, L,T;χ◦, ψ1, ψ2, ψ3), takes the
form

Cr(t, L,T;χ◦, ψ1, ψ2, ψ3) = χ◦(2) det(T)k−t−κ

∫

y≡a mod pv

4t−|L|∑

n=0

µn

r∑

r′=0

(
r

r′

)
(−a)r−r′ (r

′ + n+ 1)!

(r′ + 1)!
yr
′

︸ ︷︷ ︸
y−n

∂n

∂yn
(
yn+1(y − a)r

)

dFT;χ◦,ψ1,ψ2,ψ3
(y)

Note that we write χ = χ◦χ(p), fix χ◦, and sum over all characters χ(p) mod pv.
We have therefore (y−a)r ≡ 0 mod (pv)r in the integration domain y ≡ a mod
pv, implying the congruence

ckCr(t, L,T;χ◦, ψ1, ψ2, ψ3) ≡ 0 (mod (pv)r−n) ≡ 0 (mod (pv)r−4t+|L|),
(3.13)

where ck ∈ Q∗ is a nonzero constant coming from the denominators of the fixed
rational numbers µn, and of the bounded distributions FT;χ◦,ψ1,ψ2,ψ3

.

3.6 Proof of the Main Congruence

Now the expression (3.12) transforms to

Ar(T) =
r∑

t=0

∑

|L|≤2t

det(T)t ·C(t, L,T) det(T)k−2r−κQL(p2v diag(R1, R2, R3),T),

(3.14)
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where QL(p2v diag(R1, R2, R3),T) is a homogeneuos polynomial of degree 3t−
|L| in the variables Rij implying the congruence

QL(p2v diag(R1, R2, R3),T) ≡ 0 (mod (p2v)(3t−|L|)). (3.15)

On the other hand we know from the description (3.1) of the polynomial

Q(R,T) = Q(R,T; k − 2r, r) =

r∑

t=0

(
r

t

)
det(T)r−t

∑

|L|≤2t

RL(κ− k + r)QL(R,T),

QL(R,T) = tr
(
tρ3−l1(R)ρ⋆l1(T)

)
· . . . · tr

(
tρ3−lt(R)ρ⋆lt(T)

)
,

that 2t− |L| ≥ 0 so we obtain the desired congruence as follows
{
ckCr(t, L,T) ≡ 0 (mod (pv)r−4t+|L|)

QL(p2v diag(R1, R2, R3),T) ≡ 0 (mod (p2v)(3t−|L|))
(3.16)

⇒ ckAr(T) ≡ 0 (mod pvr),

since v(r − 4t+ |L|) + 2v(3t− |L|) = vr + 2vt− v|L| ≥ vr, proving (3.9).

3.7 Construction of admissible measures with values in nearly-
holomorphic modular forms

We wish now to construct an h-admissible measure Φ̃λ : Ph(Y,A) → MT (A)
on Y out of the following sequence of the higher twists of Siegel-Eisenstein
distributions given by the equality (1.2):

Φr := 2r diag∗Ψr = 2rF χ̄1,χ̄2,χ̄3
χ,r ,Φr : P

1(Y,A)→MT (A)

(they take values in the A-module

M = MT (ψ1, ψ2, ψ3;A) ⊂Mk,r(ψ1;A)⊗Mk,r(ψ2;A)⊗Mk,r(ψ3;A)

of triple modular forms over A = Cp or A = Q).

Theorem 3.1 Let λ ∈ A be an element whose absolute value is a positive
constant with 0 < |λ|p < 1, and define h = [2ordp(λ)] + 1. Then the sequence
(1.2) satisfies for any (a)v ⊂ Y the following two conditions:

Φr
(
(a)v

)
∈M(N ′p2v), with N ′ independent of v, (level)

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φr′

(
(a)v)

))
∣∣∣∣∣
p

≤ Cp−vr (growth)

for all r = 0, 1, . . . , h− 1.
Moreover, there exists an h-admissible measure Φ̃λ : Ph(Y,A)→MT such that
for all ((a)v) ⊂ Y and for all r = 0, 1, . . . , h− 1 one has

∫

(a)v

yrp dΦ̃
λ = Φλr ((a)v)
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where

Φλr ((a)v) = πλ,T (Φr((a)v)) := U−2v
T

[
πλ,1U

2v
T Φr((a)v)

]

is the canonical projection of πλ of the triple modular form Φr((a)v) (note
that U2v

T Φr((a)v) ∈ MT (Np2v;A)λ = MT (Np;A)λ because of the inclusion
U2v−1
T (MT (Np2v;A)) ⊂MT (Np;A) for all v ≥ 1, see Proposition 2.3 (a)).

Proof. We use Theorem 2.4 with κ = 2, and we to check the h-growth condition
for the A-linear map

Φ̃λ : P
h(Y,A)→MT (A)

defined in Theorem 3.1. We have to check that for any ((a)v) ∈ Y the following
two conditions are satisfied: for all r = 0, 1, . . . , h− 1,

Φr((a)v) ∈M(N2p2v), (level)

∣∣∣∣∣U
2v
T

( r∑

r′=0

(
r

r′

)
(−y0

p)
r−r′Φr′((a)v)

)∣∣∣∣∣
p

≤ Cp−vr. (growth)

The (level) condition is implied by the definition (1.2)

Φr(χ) =2r diag∗ F χ̄1,χ̄2,χ̄3
χ,r ,

and Proposition 1.5.
The (growth) is deduced from the Main Congruence (3.9) (proved in Section
3.6) for the Fourier coefficients of the functions (1.2).

4 A trilinear form on the characteristic subspace of the U-
operator

4.1 The adjoint operator U∗

Let f =
∑∞
n=1 anq

n denote a primitive cusp eigenform of conductor dividing
Np, with coefficients ip(an) in a finite extension K of Qp and of Dirichlet
character ψ modulo N . Let α ∈ K be a root of the Hecke polynomial x2 −
ap(f)x+ ψ(p)pk−1 as above, and let α′ denote the other root.
Recall that the function f0 =

∑∞
n=1 an(f0)q

n ∈ Q[[q]] is defined by (0.9) as
an eigenfunction of U = Up with the eigenvalue α ∈ Q. In the following
proposition, let U∗ denote the operator adjoint to

U = Up : Mr,k(Γ1(Np),C)→Mr,k(Γ1(Np),C)

in the complex vector space Mr,k(Γ1(Np),C) with respect to the Petersson
inner product.

Proposition 4.1 (a) The following operator identity holds: U∗ = W−1
NpUWNp

(in the complex vector space Mr,k(Γ1(Np),C)).
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(b)There are the following identities in Mr,k(Γ1(Np),C):

f0|U∗ = αf0 and Tl(f
0) = al(f)f0

for all “good primes” l ∤ Np.
(c) The linear form g 7→ 〈f0, g〉Np on Mr,k(Γ1(Np),C) vanishes on the complex
vector subspace Kerπα,1 = Im(U−αI)n1 where n1 = dimMr,k(Γ1(Np),C), and
we use the same notation as above

πα,1 : Mr,k(Γ1(Np),C)→M
α
r,k(Γ1(Np),C)

for the complex characteristic projection onto the α-primary subspace of
the operator U (acting on the finite-dimensional complex vector space
Mr,k(Γ1(Np),C)) hence

〈f0, g〉Np = 〈f0, πα,1(g)〉Np

(d) If g ∈M(Npv+1; Q) and α 6= 0, then we have the equality

〈f0, πα(g)〉Np = α−v〈f0, Uvg〉Np

where
πα(g) = gα = U−v

[
πα,1U

vg
]
∈M

α(Np)

is the α-part of g.
(e) The linear form

Lf,α : M(Npv; C)→ C, g 7→ 〈f
0, α−vUv(g)〉Np
〈f0, f0〉Np

is defined over Q:
Lf,α : M(Npv; Q)→ Q

and there exists a unique Cp-linear form ℓf,α on M(Npv; Cp) = M(Npv; Q)⊗ip
Cp such that ℓf,α(g) = ip(Lf,α(g)) for all g ∈ ip(M(Npv; Q)).

Proof (a) See [Miy], Theorem 4.5.5 (see also [Ran90]).
(b) Let us use directly the statement a):

f0|U∗ = fρ0 |WNpW
−1
NpUWNp = ᾱfρ|WNp = ᾱf0.

(c) If g ∈ Kerπα,1 = Im(U − αI)n1 then g = (U − αI)n1g1 and

〈f0, (U − αI)n1g1〉Np = 〈(U∗ − ᾱI)f0, (U − αI)n1−1g1〉Np = 0

hence 〈f0, g〉Np = 0; moreover

〈f0, g〉Np = 〈f0, πα,1(g) + (g − πα,1(g))〉Np = 〈f0, πα,1(g)〉Np.
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(d) Let us use the definitions and write the following product:

αv〈f0, παg〉Np = 〈U∗v(f0), U−v
[
πα,1U

vg
]
〉Np

= 〈f0, πα,1(U
vg)〉Np = 〈f0, Uvg〉Np

by (c) as Uvg ∈M(Np).
(e) Note that Lf,α(f0) = 1, f0 ∈M(Np; Q). Consider the complex vector space

KerLf,α = 〈f0〉⊥ = {g ∈M(Npv; C) | 〈f0, g〉Npv = 0}.
It admits a Q-rational basis (as it is stable under all “good” Hecke operators
Tl (l ∤ Np):

〈f0, g〉Npv = 0⇒ 〈f0, Tlg〉Npv = 〈T ∗l f0, g〉Npv = 0

and diagonalizing the action of Tl (over Q) we get such a basis establishing e).
We obtain then the Cp-linear form ℓf,α on M(Npv; Cp) = M(Npv; Q) ⊗ip Cp
such that ℓf,α(g) = ip(Lf,α(g)) by extending scalars from Q to Cp via the
imbedding ip.
Note that we use here only the α-part M(Npv;A)α because the constructed
linear form ℓf,α passes through the πα (for A = Cp , A = Q, or A = C).
Moreover, f0 can be included to a basis {f0, gi}i=2,··· ,n of M(Npv;A)α, where
gi are eigenfunctions of all Hecke operators Tl for primes l ∤ Np; they are
algebraically orthogonal to f0 (in the sense of the algebraic Petersson product
studied by Hida [Hi90]) so that projection to the f0 part of this basis gives such
an A-linear form.

4.2 The triple U-operator

In the following proposition, we consider the triple U -operator

UT = U1,p ⊗ U2,p ⊗ U3,p : MT (Γ1(Np),C)→MT (Γ1(Np),C), where (4.1)

MT (Γ1(Np),C) = Mk1(Γ1(Np),C)⊗Mk2(Γ1(Np),C)⊗Mk3(Γ1(Np),C),

acting on the complex vector space MT (Γ1(Np),C) endowed with the triple
Petersson inner product 〈·, ·〉 defined by

〈g1 ⊗ g2 ⊗ g3, h1 ⊗ h2 ⊗ h3〉T = 〈g1, h1〉Np〈g2, h2〉Np〈g3, h3〉Np.
Let

U∗T = U∗1,p ⊗ U∗2,p ⊗ U∗3,p
denote the adjoint operator on MT (Γ1(Np),C) for the triple Petersson inner
product. Recall the notation (0.9) and (0.10):

fj,0 = fj − α(2)
p,jfj |Vp = fj − α(2)

p,jp
−k/2fj |

(
p

0

0

1

)

fρj,0 =

∞∑

n=1

a(n, f0)q
n, f0

j = fρj,0|k WNp = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
.
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Proposition 4.2 (a) The following operator identity holds:

U∗T = W−1
NpUp,1WNp ⊗W−1

NpUp,2WNp ⊗W−1
NpUp,3WNp

(in the complex vector space MT (Γ1(Np),C)).
(b) There are the following identities in MT (Γ1(Np),C):

U∗T (f0
1 ⊗ f0

2 ⊗ f0
3 ) = λ(f0

1 ⊗ f0
2 ⊗ f0

3 ).

(c)The linear form on MT (Γ1(Np),C) defined by

g1⊗g2⊗g3⊗ 7→
〈
f0
1 ⊗ f0

2 ⊗ f0
3 , g1 ⊗ g2 ⊗ g3

〉
T

= 〈f0
1 , g1〉Np〈f0

2 , g2〉Np〈f0
3 , g3〉Np

vanishes on the complex vector subspace Kerπλ,T,1 = Im(UT −λI)nT where we
write nT = dim MT (Γ1(Np),C), and we use the notation

πλ,T,1 : MT (Γ1(Np),C)→M
λ
T (Γ1(Np),C)

for the complex characteristic projection onto the λ-primary subspace of
the operator UT acting on the finite-dimensional complex vector space
MT (Γ1(Np),C). Moreover, the following equality holds

〈
f0
1 ⊗ f0

2 ⊗ f0
3 , g1 ⊗ g2 ⊗ g3

〉
T

=
〈
f0
1 ⊗ f0

2 ⊗ f0
3 , πλ,T,1(g1 ⊗ g2 ⊗ g3)

〉
T
.

(d) If g ∈MT (Npv+1; Q) and λ 6= 0, then we have the equality

〈f0
1 ⊗ f0

2 ⊗ f0
3 , πλ,T (g)〉T,Np = λ−v〈f0

1 ⊗ f0
2 ⊗ f0

3 , U
v
T g〉T,Np

where

πλ,T (g) = gλ = U−vT
[
πλ,T,1U

v
T g
]
∈M

λ
T (Np)

is the λ-part of g.
(e) The linear form

LT,λ : MT (Npv; C)→ C, g 7→ 〈f0
1 ⊗ f0

2 ⊗ f0
3 , λ
−vUvT g〉T,Np

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,Np

is defined over Q:

LT,λ : MT (Npv; Q)→ Q

and there exists a unique Cp-linear form ℓT,λ on MT (Npv; Cp) =
MT (Npv; Q)⊗ipCp such that ℓT,λ(g) = ip(Lf,α(g)) for all g ∈ ip(MT (Npv; Q)).

Remark 4.3 We may view the trilinear form

(g1, g2, g3) 7→ ℓT,λ(g1 ⊗ g2 ⊗ g3)

as a p-adic version of the triple Petersson product following Hida [Hi90].
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Proof of Proposition 4.2, a), b) follows directly from that of Proposition 4.1.
In order to prove c) we need to show that the linear form on MT (Γ1(Np),C)
defined by

g1 ⊗ g2 ⊗ g3⊗ 7→
〈
f0
1 ⊗ f0

2 ⊗ f0
3 , g1 ⊗ g2 ⊗ g3

〉
T,Np

= 〈f0
1 , g1〉Np〈f0

2 , g2〉Np〈f0
3 , g3〉Np

vanishes on the complex vector subspace

Kerπλ,T,1 = Im(UT − λI)nT = (Ker (U∗T − λI)nT )⊥.

It suffices to notice that

f0
1 ⊗ f0

2 ⊗ f0
3 ∈ Ker (U∗T − λI) ⊂ Ker (U∗T − λI)nT ,

because of the equality

U∗T (f0
1 ⊗ f0

2 ⊗ f0
3 ) = U∗1,p(f

0
1 )⊗ U∗2,p(f0

2 )⊗ U∗3,p(f0
3 ) = λ(f0

1 ⊗ f0
2 ⊗ f0

3 ).

More precisely, if g ∈ Kerπλ,T,1 = Im(UT −λI)nT then g = (UT −λI)nT g1 and

〈f0
1 ⊗ f0

2 ⊗ f0
3 , (UT − λI)ng1〉T,Np

= 〈(U∗T − λI)(f0
1 ⊗ f0

2 ⊗ f0
3 , (UT − λI)n−1g1)〉T,Np = 0

hence 〈f0
1 ⊗ f0

2 ⊗ f0
3 , g〉T,Np = 0. Moreover, the following equality holds

〈
f0
1 ⊗ f0

2 ⊗ f0
3 , g1 ⊗ g2 ⊗ g3

〉
T

=
〈
f0
1 ⊗ f0

2 ⊗ f0
3 , πλ,T,1(g1 ⊗ g2 ⊗ g3)

〉
T
,

by the definition of the projection πλ,T,1:

g1 ⊗ g2 ⊗ g3 − πλ,T,1(g1 ⊗ g2 ⊗ g3) ∈ Kerπλ,T,1.

d) Let us use the definitions and write the following product:

λv〈f0
1 ⊗ f0

2 ⊗ f0
3 , πλ,T g〉T,Np = 〈U∗T v(f0

1 ⊗ f0
2 ⊗ f0

3 ), U−vT
[
πλ,T,1U

v
T g
]
〉T,Np =

〈f0
1 ⊗ f0

2 ⊗ f0
3 , πλ,T,1(U

v
T g)〉T,Np = 〈f0

1 ⊗ f0
2 ⊗ f0

3 , U
v
T g〉T,Np

by c) as UvT g ∈MT (Np).
e) Note that LT,λ(f

0
1 ⊗ f0

2 ⊗ f0
3 ) = 1, f0

1 ⊗ f0
2 ⊗ f0

3 ∈MT (Np; Q). Consider the
complex vector space

KerLT,λ = 〈f0
1 ⊗ f0

2 ⊗ f0
3 〉⊥ = {g ∈MT (Npv; C) | 〈f0, g〉T,Npv = 0}.

It admits a Q-rational basis (as in Proposition 4.1) establishing e).
We obtain then the Cp-linear form ℓT,λ on MT (Npv; Cp) = MT (Npv; Q)⊗ip Cp
such that ℓT,λ(g) = ip(LT,λ(g)) by extending scalars from Q to Cp via the
imbedding ip.

Documenta Mathematica · Extra Volume Coates (2006) 77–132
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5 Computation of p-adic integrals and L-values

5.1 Construction of p-adic measures

Let M = MT (A) =
⋃
v≥0 Mk,r(Np

v, ψ1;A) ⊗A Mk,r(Np
v, ψ2;A) ⊗A

Mk,r(Np
v, ψ3;A) be the A-module of nearly-holomorphic triple modular

forms with formal Fourier coefficients in A, where A = Cp. Let us define an
A-valued measure

µ̃λ(y; f1 ⊗ f2 ⊗ f3) : C
loc−an(Y,A)→ A

by applying the trilinear form ℓT,λ : M(Npv;A)→ A of Proposition 4.2

µ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ(Φ̃
λ) (5.1)

to the h-admissible measure Φ̃λ of Theorem 2.4 on Y with values in M(A)λ ⊂
M(Np;A). That h-admissible measure was defined as an A-linear map Φ̃λ :
Ph(Y,A) → M(A)λ satisfying for any (a)ν ⊂ Y and for all r = 0, 1, . . . , h − 1
the following equality:

∫

(a)ν

yrp dΦ̃
λ = πλ(Φr((a)ν)) ∈M(Np),

where h = [2ordpλ(p)] + 1, hence

∫

(a)ν

yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ

(∫

(a)ν

yrp dΦ̃λ(y)

)
. (5.2)

5.2 Evaluation of the integral

∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3) (5.3)

for r ∈ N, 0 ≤ r ≤ k − 2. The result is given in terms of Garrett’s triple L
function D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2 − r, ψ1ψ2χ). Let us use the action of the

involution WNj =

(
0 −1
Nj 0

)
of the exact level Nj of fj :

fj
∣∣
k
WNj =

(
0 −1
Nj 0

)
= γj · fρj , fρj

∣∣
k
WNj =

(
0 −1
Nj 0

)
= γ̄j · fj ,

where fρj (z) =

∞∑

n=1

ān,je(nz) ∈ Sk(Nj , ψ̄j), (5.4)

(j = 1, 2, 3) and γj is the corresponding root number. (5.5)
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Recall the notation (0.9) and (0.10):

fj,0 = fj − α(2)
p,jfj |Vp = fj − α(2)

p,jp
−k/2fj |

(
p

0

0

1

)

fρj,0 =
∞∑

n=1

a(n, f0)q
n, f0

j = fρj,0|k WNp = fρj,0

∣∣∣
k

(
0

Np

−1

0

)
.

Proposition 5.1 Under the notations and assumptions as in Theorem B.2,
the value of the integral (5.3) is given for 0 ≤ r ≤ k − 2 by the image under ip
of the following algebraic number

T · λ−2vLNp(−r)
D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0⊗〉T,N2p2v

,

where

T = 2−r
((Np)3/N1N2N3)

k/2γ̄1γ̄2γ̄3(χ1χ2χ3)(2)p3·v(k−2)

N1,1N1,2N1,3G(χ1,0)G(χ2,0)G(χ3,0)
×

× (Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
.

γj is the corresponding root number, given by (5.4), and the factor LNp(−r),
given by (5.13).

Remark. In particular, Propostion 5.1 implies Theorem A, using a computa-
tion by B.Gorsse and G.Robert (see [Go-Ro]) that for some β ∈ Q

∗

〈f0,ρ
1 ⊗ f0,ρ

2 ⊗ f0,ρ
3 , fρ1,0 ⊗ fρ2,0 ⊗ fρ3,0〉T,Np = β · 〈f1, f1〉N 〈f2, f2〉N 〈f3, f3〉N .

5.3 Evaluation of the trilinear form

In order to compute the p-adic integral, the next step of the proof uses com-
putations similar to those in [Hi85], §4 and §7. More precisely let us write the
integral in the form
∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3) =
∑

a∈Yv
χ(a)

∫

(a)v

yrp dℓT,λ(Φ̃
λ)(y)) =

= ℓT,λ

(∑

a∈Yv
χ(a)

∫

(a)v

yrp dΦ̃λ(y)

)
= ℓT,λ

(∑

a∈Yv
χ(a)Φλr ((a)v)

)
, (5.6)

where (a)v = (a+ (Npv)) ⊂ Y , and by definition (5.1)

µ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ(Φ̃
λ)(y), (5.7)∫

(a)v

yrp d
(
Φ̃λ
)

= Φλr ((a)v) ∈M
λ
T (Np) (5.8)
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for r = 0, 1, . . . , h−1. Moreover Φr
(
(a)v

)
is a triple modular form given by (1.2)

of level N2p2v as a value of a higher twist of a Siegel-Eisenstein distributions,
hence

Φλr (χ) = U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)]
. (5.9)

Taking into account the equalities (5.9), the integral (5.6) transforms to the
following

∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3) = ℓT,λ

(∑

a∈Yv
χ(a)Φλr ((a)v)

)
(5.10)

= ℓT,λ

(
U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)])

Notice that then it follows that the sum in the right hand side of the equality
(5.10) can be expressed through the functions (1.2):

∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3)(y)

ℓT,λ

(
U−2v
T

[
πλ,T,1U

2v
T

(
2rF χ̄1,χ̄2,χ̄3

χ,r ◦ diag
)])

(5.11)

where we use the functions (1.2). The function

g = Φr(χ) = 2rF χ̄1,χ̄2,χ̄3
χ,r ◦ diag

is computed in (B.5), Appendix B as follows:

E(z1, z2, z3;−r, k,Npv,ψ, χ1, χ2, χ3)

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)2
−rΦr(χ),

thus it is a nearly-holomorphic triple modular form in in the Qab-module

M(Qab) = MT (N2p2v, ψ1 ⊗ ψ2 ⊗ ψ3; Qab)

⊂Mk,r(N
2p2v, ψ1; Qab)⊗Mk,r(N

2p2v, ψ2; Qab)⊗Mk,r(N
2p2v, ψ3; Qab).

Then by the general formula of Proposition 4.2 e) we have:

LT,λ : MT (N2p2v; C)→ C, g 7→ 〈f0
1 ⊗ f0

2 ⊗ f0
3 , λ
−2vU2v

T g〉T,N2p

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p

,

(5.12)

ℓT,λ
(
U−2v
T

[
πλ,T,1U

2v
T (g)

])
= ip

( 〈f0
1 ⊗ f0

2 ⊗ f0
3 , λ
−2vU2v

T (g)〉T,N2p

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉N2p

)

= ip

(
λ−2vp3·2v(k−1) · 〈V 2v(f0

1 ⊗ f0
2 ⊗ f0

3 ), g〉T,N2p2v+1

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p

)
.
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The scalar products in 5.12 can be computed using Theorem B.2, but we omit
here the details. This implies Proposition 5.1 using the integral representation

of Theorem B.2 for modular forms f̃j,2v(z) =

∞∑

n=1

aj,n,2ve(nz) as above:

D
⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1) (5.13)

(Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(−r)

=
〈
f̃1,2v ⊗ f̃2,2v ⊗ f̃3,2v,E(z1, z2, z3;−r, k,N2p2v,ψ, χ1, χ2, χ3)

〉
T,N2p2v

,

where

LNp(s)=LNp(s; f̃1,2v ⊗ f̃2,2v ⊗ f̃3,2v):=
∑

n|N∞
GN (ψ1ψ2χ1, 2n)

an,1,2van,2,2van,3,2v
n2s+2k−2

.

5.4 Proof of Theorem B

Let us use Propostion 5.1 and (5.13):

2−r
∫

Y

χ(y) yrp dµ̃λ(y; f1 ⊗ f2 ⊗ f3)(y) = 2−rℓT,λ
(
U−2v
T

[
πλ,T,1U

2v
T (g)

])

(5.14)

=
((Np)3/N1N2N3)

k/2γ̄1γ̄2γ̄3(χ1χ2χ3)(2)p3·v(k−2)

λ2vN1,1N2,1N3,1G(χ1,0)G(χ2,0)G(χ3,0)
×

× (Np2v)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
LNp(−r)×

× D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1)

〈f0
1 ⊗ f0

2 ⊗ f0
3 , f1,0 ⊗ f2,0 ⊗ f3,0〉T,N2p

Let us show that under the assumptions as above there exist an admissible
Cp-valued measure µ̃λf1⊗f2⊗f3 on YN,p, and a Cp-analytic function

D(p)(x, f1 ⊗ f2 ⊗ f3) : Xp → Cp,

given for all x ∈ XN,p by the integral

D(p)(x, f1 ⊗ f2 ⊗ f3) =

∫

YN,p

x(y)dµ̃λf1⊗f2⊗f3(y),
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and having the following properties: for all pairs (r, χ) such that for χ ∈ Xtors
p

the corresponding Dirichlet characters χj are Np-complete, and r ∈ Z with
0 ≤ r ≤ k − 2, the following equality holds:

D(p)(χx
r
p, f1 ⊗ f2 ⊗ f3) = (5.15)

ip

( (ψ1ψ2)(2)C
4(2k−3−r)
χ

G(χ1)G(χ2)G(χ3)G(ψ1ψ2χ1)λ(p)2v

D⋆(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ)

〈fρ1 ⊗ fρ2 ⊗ fρ3 , fρ1 ⊗ fρ2 ⊗ fρ3 〉T

)

where v = ordp(Cχ), χ1 mod Npv = χ, χ2 mod Npv = ψ2ψ̄3χ, χ3 mod Npv =
ψ1ψ̄3χ, G(χ) denotes the Gauß sum of a primitive Dirichlet character χ0 at-
tached to χ (modulo the conductor of χ0).
Indeed, we may write

D(p)(x, f1 ⊗ f2 ⊗ f3) = C · x(2)

∫

Y

x(y)dµ̃λ(y; f1 ⊗ f2 ⊗ f3)

with an appropriate constant, given by the RHS of (5.14), where v = ordp(Cχ).
Moreover, it follows from the properties of the constructed measure

µ̃λf1⊗f2⊗f3(y) := C · µ̃λ(2−1y; f1 ⊗ f2 ⊗ f3)

that

(ii) if ordpλ(p) = 0 then the holomorphic functions in (i), (ii) are bounded
Cp-analytic functions: it suffices to use the equality (2.5) with r = 0 in

order to show that in this case the measure Φ̃λ is bounded because of
|λ(p)|p = 1);

(iii) in the general case (but assuming that λ(p) 6= 0) the holomorphic func-
tions in (i) belong to the type o(log(xhp)) with h = [2ordpλ(p)]+1 and they
can be represented as the Mellin transform of the h-admissible measure
µ̃λf1⊗f2⊗f3 (in the sense of Amice-Vélu);

(iv) if h = [2ordpλ] + 1 ≤ k− 2 then the function D(p) is uniquely determined
by the above conditions (i).

A Nearly-holomorphic Siegel-Eisenstein series

A.1 Fourier expansions of Siegel-Eisenstein series

In this section χ denotes a Dirichlet character modulo an arbitrary integer N
(not to be confused with N in the Introduction). We recall some standard facts
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about the Fourier expansions of the Siegel-Eisenstein series defined by:

E(Z, s; k, χ,N) = E(Z, s) (A.1)

= det(y)s
∑

γ∈P∩Γ\Γ
χ(det(dγ))j(γ,Z)−k|j(γ,Z)|−2s,

for k + 2Re(s) > m + 1, s ∈ C, k ∈ Z, and by analytic continuation over s
for other values of s ∈ C (see [Sh83]). It is assumed in the identity (A.1) that
N > 1, χ is a Dirichlet character mod N (not necessarily primitive, e.g. trivial
modulo N > 1), and

γ =

(
aγ
cγ

bγ
dγ

)
∈ Γ = Γm0 (N) ⊂ Γm = Sp(m,Z).

Recall an explicit computation of the Fourier expansion of the series

E⋆(Z, s) = E⋆(Z, s; k, χ,N) := E(−Z
−1, s) det(Z)−k, (A.2)

obtained from (A.1) by applying the involution

Jm =

(
0m
1m

−1m
0m

)
.

Note that for k > m + 1 and N = 1 both series coincide and were studied by
Siegel:

E(Z) = Emk (Z) = E(Z, 0) = E⋆(Z, 0).

The detailed study of the series E⋆(Z, s; k, χ,N) was made by G. Shimura
[Sh83] and P. Feit ([Fei86], §10).

On the other hand, it is convenient to use the following notation. Let φ be
a Dirichlet character mod Q > 1 and consider the Eisenstein series of degree
m ≥ 1

Fα,β(Z, Q, φ) := det(y)β
∑

c,d

φ(det c) det(cZ + d)−α,−β (A.3)

= det(y)β
∑

c,d

φ(det c) det(cZ + d)−α det(cZ + d)−β

= det(y)β
∑

c,d

φ(det c) det(cZ + d)β−α|det(cZ + d)|−2β (A.4)

where (c, d) runs over all “non-associated coprime symmetric pairs” with
det(c) coprime to Q. A more conceptual description would be to sum over

Documenta Mathematica · Extra Volume Coates (2006) 77–132
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Tm(Q)∞\Tm(Q), where

T
m(Q) =

{(
a b
c d

)
∈ Sp(m,Z)

∣∣∣A ≡ 0 mod Q

}
=

(
0m −1m
1m 0m

)
Γm0 (Q)

T
m(Q)∞ =

((
0m −1m
1m 0m

)
Γm0 (Q)

(
0m −1m
1m 0m

)−1
)

∞{(
a b
c d

)
∈ Sp(m,Z)

∣∣∣c = 0, b ≡ 0 mod Q

}
⊂ Γm,0(Q) ⊂ Sp(m,Z),

where Γm,0(Q) =

(
0m −1m
1m 0m

)
Γm0 (Q)

(
0m −1m
1m 0m

)−1

⊂ Sp(m,Z) is the

stabilizer of M =

(
0m −1m
1m 0m

)
Γm0 (Q), and more generally, for any set M ⊂

Sp(m,Z) of symplectic matrices we denote by M∞ the set of those matrices

γ =
(
a
c
b
d

)
∈ Sp(m,Z) satisfying the conditions c = 0 and γM ⊂M.

Action of σ ∈ Sp(m,Z) on the Eisenstein series

Note that for any σ ∈ Sp(m,Z) one has

E(Z, s; k, χ,N)|kσ =
∑

γ∈Γm0 (N)∞\Γm0 (N)

φ(det dγ)(1|kγσ)(Z)(Im(γσ(Z))s

= det(y)s
∑

γ∈Γm0 (N)∞\Γm0 (N)

φ(det dγ)j(γσ,Z)−k|j(γσ,Z)|−2s

= det(y)s
∑

γ̃∈(Γm0 (N))∞\Γm0 (N)σ

φ(det dσ−1γ̃)j(γ̃,Z)−k|j(γ̃,Z)|−2s,

by writing γ̃ = σγ, σ−1γ̃ = γ: Pγ1 = Pγ2 ⇐⇒ P γ̃1 = P γ̃2.

In particular, for σ = Jm =

(
0m −1m
1m 0m

)
one has

(
a
c
b
d

)
Jm =

(
b
d
−a
−c

)
∈

Γm0 (N)Jm, hence

E(Z, s; k, χ,N)|
(

0m −1m
1m 0m

)
= E⋆(Z, s; k, χ,N)

= det(y)s
∑

( bd
−a
−c )∈(Γm0 (N))∞\Γm0 (N)σ

χ(det d) det(dZ− c)−k|det(dZ− c)|−2s.

Notice that Jm(N)Γm0 (N) = Γm0 (N)Jm(N), where Jm(N) =(
0m −1m

N · 1m 0m

)
, and

Jm(N)

(
a

c

b

d

)
=

( −c
Na

−d
Nb

)
=

(
a1

c1

b1
d1

)
Jm(N) =

(
Nb1
Nd1

−a1

−c1

)
.
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Therefore (Nd1,−c1) = (Na,Nb), and (a, b) runs over all “non-associated co-
prime symmetric pairs” with det(a) coprime to N . We may therefore write
(Nd1,−c1) = (Na,Nb), and

E⋆(NZ, s; k, χ,N) (A.5)

= det(Ny)s
∑

“
b1
d1

−a1
−c1

”
∈(Γm0 (N))∞\Γm0 (N)σ

χ(det d1) det(d1NZ− c1)−k|det(d1NZ− c1)|−2s

= N−m(k+s) det(y)s
∑

a,b

χ(det a) det(aZ + b)−k−s,−s (A.6)

= N−m(k+s)Fk+s,s(Z, N, χ) (A.7)

A.2 Arithmetical variables of nearly-holomorphic Siegel modu-
lar forms and differential operators

Consider a commutative ring A, the formal variables q = (qi,j)i,j=1,...,m, R =
(Ri,j)i,j=1,...,m, and the ring of formal arithmetical Fourier series

A[[qBm ]][Ri,j ] =

{
f =

∑

T∈Bm
a(T, R)qT

∣∣∣ a(T, R) ∈ A[Ri,j ]

}
(A.8)

using the semi-group

Bm =
{
T = (Tij) ∈ Mm(R) | T = t

T,T ≥ 0,Tij , 2Tii ∈ Z
}

and the symbols

qT =

m∏

i=1

qTii
ii

∏

i<j

q
2Tij

ij ⊂ A[[q11, . . . , qmm]][qij , q
−1
ij ]i,j=1,··· ,m

(over the complex numbers this notation corresponds to qT = exp(2πitr(TZ)),
R = (4πIm(Z))−1).

The formal Fourier expansion of a nearly-holomorphic Siegel modular form f
with coefficients in A is an element of A[[qBm ]][Ri,j ]. Let

M
m
k (N,ψ) ⊂ M̃

m
k (N,ψ) ⊂M

m
k (N,ψ)∞

denote the complex vector spaces of holomorphic, nearly-holomorphic, and C∞-
Siegel modular forms of weight k and character ψ for Γm0 (N), see [ShiAr],
[CourPa] so that Mm

k (N,ψ) ⊂ C[[qBm ]], M̃m
k (N,ψ) ⊂ C[[qBm ]][Ri,j ], and

Mm
k (N,ψ)∞ ⊂ C∞(Hm).
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A.3 Formal Fourier expansions of nearly-holomorphic Siegel-
Eisenstein series

In the Siegel modular case Γm = Sp2m(Z) ⊃ Γm0 (N) the series

E(Z, s; k, χ,N) = E(Z, s) (A.9)

= det(y)s
∑

γ∈P∩Γ\Γ
χ(det(dγ))j(γ,Z)−k|j(γ,Z)|−2s ∈M

∞
k (Γ0(N), χ̄)

is absolutely convergent for k + 2Re(s) > m + 1, but can be continued to
all s ∈ C. However, for N > 1, the Fourier expansion is known only for

the involuted series E(·, s)|W (N), where W (N) =
(

0m
N ·1m

−1m
0m

)
, and for some

critical values s ∈ Z (for N = 1 both series coincide). Here Z ∈ Hm is in the
Siegel upper half-space:

Hm =
{
Z = t

Z ∈ Mm(C)|ImZ > 0
}
, and P =

{(
a b
0 c

)
∈ Sp2m(R)

}

is the Siegel parabolic subgroup.

Example A.1 (Involuted Siegel-Eisenstein series) Let χ be a Dirichlet
character modulo N . Recall that by (A.5)

E⋆(NZ, s; k, χ,N) = N−m(k+s)Fk+s,s(Z, N, χ) (A.10)

= N−m(k+s) det(y)s
∑

a,b

χ(det a) det(aZ + b)−k−s,−s, where

E⋆(NZ, s) = E(−(NZ)−1, s) det(NZ)−k = N−km/2E|W (N), (A.11)

G⋆(Z, s) = G∗(Z, s; k, χ,N) = Nm(k+s)E∗(NZ, s)· (A.12)

· Γ̃(k, s)LN (k + 2s, χ)




[m/2]∏

i=1

LN (2k + 4s− 2i, χ2)




κ = (m+ 1)/2, and for m odd the Γ-factor has the form:

Γ̃(k, s) = imk2−m(k+1)π−m(s+k)Γm(k + s),

where Γm(s) = πm(m−1)/4
m−1∏

j=0

Γ(s− (j/2))).

In order to describe the formal Fourier expansions explicitly let us consider the
Maass differential operator ∆m, acting on C∞-functions over V ⊗ C of degree
m, which is defined by the equality:

∆m = det(∂ij), ∂ij = 2−1(1 + δij)∂/∂ij . (A.13)
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For an integer n ≥ 0 and a complex number β consider the polynomial

Rm(Z;n, β) = (−1)mnetr(Z) det(Z)n+β∆n
m

[
e−tr(Z) det(Z)−β

]
, (A.14)

with Z ∈ V ⊗ C, where the exponentiation is well defined by

det(y)β = exp (β log[det(y)]) ,

for det(y) > 0, y ∈ Y ⊗ C. According to definition (A.14) the degree of
the polynomial Rm(Z;n, β) is equal to mn and the term of the highest degree
coincides with det(Z)n. We have also that for β ∈ Q the polynomial Rm(Z;n, β)
has rational coefficients.

Theorem A.2 Let m be an odd integer such that 2k > m, and N > 1 be an
integer, then:
For an integer s such that s = −r ≤ 0, 0 ≤ r ≤ k − κ, there is the following
Fourier expansion

G⋆(Z,−r) = G⋆(Z,−r; k, χ,N) =
∑

Am∋T≥0

b⋆(T, y,−r)qT =
∑

Am∋T≥0

a(T, R)qT,

(A.15)
where for s > (m + 2 − 2k)/4 in (A.15) the only non-zero terms occur for
positive definite T > 0, and for all s = −r with 0 ≤ r ≤ k − κ, and for all
T > 0, T ∈ Am, where

b⋆(T, y,−r) = a(T, R) = W ⋆(y,T,−r)M(T, χ, k − 2r), (A.16)

W ⋆(y,T,−r) = 2−mκ det(T)k−2r−κQ(R,T; k − 2r, r).

Here a(T, R) = a(T, R; r,N, χ) is a homogeneous polynomial with rational co-
efficients in the variables Rij and Tij, and

M(T, k − 2r, χ) =
∏

ℓ| det(2T)

Mℓ(T, χ(ℓ)ℓ−k+2r) (A.17)

is a finite Euler product, in which Mℓ(T, x) ∈ Z[x]; we use the notation qT =
exp(2πitr(TZ)), R = (4πIm(Z))−1 as above, and polynomials Q(R,T; k− 2r, r)
are given by (3.1).

Proof: see [Sh83], [Fei86], Theorem 2.14 and formulas (2.137) in [CourPa]. The
use of definitions gives

W ⋆(y,T,−r) =2−mκ det(T)k−2r−κ det(4πy)−rRm(4πTy; r, κ− k + r)

where Rm(y;n, β) is defined by (A.14). Moreover, let us use the polynomials
(3.1):

Q(R,T; k − 2r, r) det(T)−r = det(4πTy)−rRm(4πTy; r, κ− k + r),

it follows

W ⋆(y,T,−r) =2−mκ det(T)k−2r−κ det(4πy)−rRm(4πTy; r, κ− k + r)

= 2−mκ det(T)k−2r−κQ(R,T; k − 2r, r).
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B An integral representation for the triple product

B.1 Summary of analytic results

In this section we use the following data :

• Three equal weights k = k1 = k2 = k3

• Three Dirichlet characters modNj with ψj(−1) = (−1)k

• Three cusp forms f̃j(z) =
∑∞
n=1 ãn,je(nz) ∈ Sk(Ñj , ψj), (j =

1, 2, 3) with Nj |Ñj , assumed to be eigenforms for all Hecke operators Tq,

with q prime to N . In our construction we use as f̃j some “easy trans-
forms” of primitive cusp forms fj ∈ Sk(Nj , ψj) in the Introduction, so
that they have the same eigenvalues for all Hecke operators Tq, for q prime

to N . For example, f̃j could be chosen as eigenfunctions f̃j = f0
j of the

conjugate Atkin’s operator U∗p given by (0.10), in this case we denote by
fj,0 the corresponding eigenfunctions of Up.

• Assume that Ñ |Npv, where Ñ := LCM{Ñ1, Ñ2, Ñ3}

• Consider a non necessary primitive Dirichlet character χ mod Npv, and
the Dirichlet characters as in (0.12).

Using the notation zj = xj + iyj ∈ H, one associates to this data the following
function

E(z1, z2, z3) = E(z1, z2, z3; s, k,ψ, χ1, χ2, χ3) := (B.1)

i3k2−3(k+1)−2s−2k+2π3(s+k)+2Γ(2s+ 2k − 1)Γ(s+ k − 1)×

× L(Np)(k + 2s,ψ)L(Np)(4s+ 2k − 2,ψ2)
∑

ε12,ε13,ε23 mod Npv

χ1(ε12)χ2(ε13)χ3(ε23)

Fk+s,s(⋆,N
2p2v,ψ)

∣∣∣∣




1 0 0 0 ε12
Npv

ε13
Npv

1 0 ε12
Npv 0 ε23

Npv

1 ε13
Npv

ε23
Npv 0

1 0 0
1 0

1




(z1, z2, z3)y
s
1y
s
2y
s
3.

Note that the product of the normalizing Gamma-factor and of the two Dirich-
let L-functions come from the definitions (A.11) and (A.10) of the Siegel-
Eisenstein series.
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B.2 Fourier expansion of the Eisenstein series (B.1)

Consider again the Dirichlet characters (0.12), and the corresponding function
(B.1) of level Npv.
We wish to express the series (B.1), evaluated at s = −r, through the series
(1.2) in the case of Np-complete conductors.

Proposition B.1 For F (Z) =
∑

T

a(T, R)qT one has Fφ(Z) =

∑

T

gt(φ,T)a(T, R)qT, where ε =




0 ε12 ε13
ε12 0 ε23
ε13 ε23 0


 , φ(ε) =

χ1(ε12)χ2(ε13)χ3(ε23), T denotes the (half integral) block matrix and

gt(φ,T) =
∑

ε∈SN,p/NpvSN,p
φ(ε) exp(2πitr(

1

Npv
Tε)), where φ(ε) = χ1(ε12)χ2(ε13)χ3(ε23).

Proof. Indeed,

F |tε,Npv =
∑

T

a(T, R)qT|tε,Npv =
∑

T

exp(2πitr(εT)/Npv)a(T, R)qT, and it

suffices to notice again that

tr(εT) = tr






0 ε12 ε13
ε12 0 ε23
ε13 ε23 0





t11 t12 t13
t12 t22 t23
t13 t23 t33




 = 2(ε12t12 + ε13t13 + ε23t23).

Using this formula for F = G⋆(Z, s; k − 2r, (Npv)
2
,ψ) at s = −r (see (A.3)),

gives:

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) = (B.2)

∑

ε∈S/NpvS
χ1(ε12)χ2(ε13)χ3(ε23)G

⋆(Z,−r; k − 2r, (Npv)
2
,ψ)|tε,Npv (z1, z2, z3)

=


∑

T

∑

ε∈S/NpvS
χ1(ε12)χ2(ε13)χ3(ε23) exp(2πitr(εT)/Npv)a(T, R)qT


◦ diag

then the sum over ε ∈ S/NpvS transforms simply to the product

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23),

which is easily evaluated by the general formula for a generalized Gauss sum
GN (χ, c) =

∑
b mod N χ(b)e(bcN−1). This last sum admits the following known

expression in terms of the usual Gauss sums (see for example [PaTV], Section
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2, (2.20)): let χ0 denote the primitive Dirichlet character modulo N0 associated
with χ, N1 = NN−1

0 , then

GN (χ, c) = G(χ0)N1

∑

d|N1

µ(d)χ0(d)d
−1δ
( c

N1d−1

)
χ̄0

( c

N1d−1

)
.

Writing χ0,j for the primitive Dirichlet character modulo N0,j associated with
χj mod Npv, and using the notation Npv = N0,jN1,j , gives

GNpv (χ1, 2t12)

= G(χ0,1)N1,1

∑

d1|N1,1

µ(d1)χ0,1(d1)d
−1
1 δ
( 2t12

N1,1d
−1
1

)
χ̄0,1

( 2t12

N1,1d
−1
1

)

GNpv (χ2, 2t13)

= G(χ0,2)N1,2

∑

d2|N1,2

µ(d2)χ0,2(d2)d
−1
2 δ
( 2t12

N1,2d
−1
2

)
χ̄0,2

( 2t13

N1,2d
−1
2

)

GNpv (χ3, 2t23)

= G(χ0,3)N1,3

∑

d3|N1,3

µ(d3)χ0,3(d3)d
−1
3 δ
( 2t23

N1,3d
−1
3

)
χ̄0,3

( 2t23

N1,3d
−1
3

)

Let us take the product of these expressions using the notation

2t′12 =
2t12

N1,1/d1
(modN0,1d1),

2t′13 =
2t13

N1,2/d2
(modN0,2d2),

2t′23 =
2t23

N1,3/d3
(modN0,3d3)

It follows

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)

= N1,1N1,2N1,3

∑

d1|N1,1
d2|N1,2
d3|N1,3

µ(d1)µ(d2)µ(d3)χ0,1(d1)χ0,2(d2)χ0,3(d3)(d1d2d3)
−1

G(χ0,1)G(χ0,2)G(χ0,3)χ̄0,1(2t
′
12)χ̄0,2(2t

′
13)χ̄0,3(2t

′
23).

The formula (B.3) transforms to

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) (B.3)

=

(∑

T

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)a(T, R)qT

)
◦ diag
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= N1,1N1,2N1,3

∑

d1|N1,1
d2|N1,2
d3|N1,3

µ(d1)µ(d2)µ(d3)χ0,1(d1)χ0,2(d2)χ0,3(d3)(d1d2d3)
−1

G(χ0,1)G(χ0,2)G(χ0,3)
∑

T:t12=d1t
′
12,

t13=d2t
′
13,t23=d3t

′
23,

χ̄0,1(2t
′
12)χ̄0,2(2t

′
13)χ̄0,3(2t

′
23)a(T, R)qt111 qt222 qt333 .

Later on we impose the condition that the conductors of χ0,1, χ0,2, χ0,3 are
complete (i.e. have the same prime divisors as those of Np), when χ0,j(dj) = 0
unless all dj = 1, when χ0,j(dj) = 1. In this complete case χ0,j(n) = χj(n) for
all n ∈ Z, hence the equality (B.3) simplifies to the following:

E(z1, z2, z3;−r, k,ψ, χ1, χ2, χ3) (B.4)

=

(∑

T

GNpv (χ1, 2t12)GNpv (χ2, 2t13)GNpv (χ3, 2t23)a(T, R)qT

)
◦ diag

= N1,1N1,2N1,3G(χ0,1)G(χ0,2)G(χ0,3)

(∑

T

χ̄1(2t12)χ̄2(2t13)χ̄3(2t23)a(T, R)qT

)
◦ diag

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)

(∑

T

a(T, R)χ̄1(t12)χ̄2(t13)χ̄3(t23)q
T

)
◦ diag .

Thus we have expressed the series (B.1) through the series (1.2) in the case of
Np-complete conductors:

E(z1, z2, z3;−r, k,Npv,ψ, χ1, χ2, χ3) (B.5)

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)F
χ̄1,χ̄2,χ̄3
χ,r ◦ diag

= N1,1N1,2N1,3(χ̄1χ̄2χ̄3)(2)G(χ0,1)G(χ0,2)G(χ0,3)2
−rΦr(χ).

B.3 The integral representation

Consider three auxilliary modular forms as in (0.16):

f̃j(z) =

∞∑

n=1

ãn,je(nz) ∈ Sk(Γ0(Njp
νj ), ψj) (1 ≤ i ≤ 3)
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with the same eigenvalues, as those of (0.1), for all Hecke operators Tq, with q
prime to Np.

Theorem B.2 Under the assumptions and notations as in section B.1, the
following integral representation holds:

∫ ∫ ∫

(Γ0(N2p2v)\H)3

f̃1(z1)f̃2(z2)f̃3(z3)E(z1, z2, z3; s, k,N
2p2v,ψ, χ1, χ2, χ3))×

∏

j

ykj (
dxjdyj
y2
j

)

= i−3k+3(2π)−4sΓ(s+ 2k − 2)Γ(s+ k − 1)3

(Npv)k+2s N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(s)

L(Np)(fρ1 ⊗ fρ2 ⊗ fρ3 , s+ 2k − 2, ψ1ψ2χ1),

where

(2π)−4sΓ(s+ 2k − 2)Γ(s+ k − 1)3 = 2−4ΓC(s+ 2k − 2)ΓC(s+ k − 1)3,

ΓC(s) = 2(2π)−sΓ(s)

is the motivic Gamma-factor,

LNp(s) = LNp(s; f̃1 ⊗ f̃2 ⊗ f̃3) :=
∑

n|(Np)∞
GNpv (ψ1ψ2χ1, 2n)

ãn,1ãn,2ãn,3
n2s+2k−2

.

(B.6)

Remark. In the special case when the character ψ1ψ2χ has Np-complete con-

ductor, or if it is primitive mod Npv, and f̃1, f̃2, f̃3 are primitive normalized
cusp eigenforms, one can show that LNp(s) = (ψ1ψ2χ1)(2)G(ψ1ψ2χ1).

Theorem B.2 follows from a computation, similar to that in [BoeSP], Theorem
4.2, (triple product, no twisting character) and [Boe-Schm], Section 2 (standard
L-function, with twisting character). Details will appear elsewhere.

Corollary B.3 Under the notations and assumptions, for all critical values
s = 2k − 2− r, r = 0, · · · , k − 2 the following integral representation holds

(2π)4rΓ(−r + 2k − 2)Γ(−r + k − 1)3L(N)(fρ1 ⊗ fρ2 ⊗ fρ3 , 2k − 2− r, ψ1ψ2χ1)

(Npv)k−2r N
2p2vϕ(N2p2v)ϕ(Npv)

[Γ0(N2p2v) : Γ(N2p2v)]3
× LNp(s)

=
〈
f̃1 ⊗ f̃2 ⊗ f̃3,E(z1, z2, z3;−r, k, k,N2p2v,ψ, χ1, χ2, χ3)

〉
T,N2p2v

.
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[Am-V] Amice, Y. and Vélu, J., Distributions p-adiques associées aux séries
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1. Introduction

LetK/k be a Galois extension of number fields with group G. For each complex

character χ of G denote by L(χ, s) the Artin L-function of χ and let Ĝ be the
set of irreducible characters. We call

ζK/k(s) = (L(χ, s))χ∈Ĝ

the equivariant Dedekind Zeta function of K/k. It is a meromorphic function
with values in the center

∏
χ∈Ĝ C of C[G]. The ‘equivariant Tamagawa number

conjecture’ that is formulated in [9, Conj. 4], when specialized to the motive
M := Q(r)K := h0(Spec(K))(r) and the order A := Z[G], gives a cohomolog-
ical interpretation of the leading Taylor coefficient of ζK/k(s) at any integer
argument s = r. We recall that this conjecture is a natural refinement of the
seminal ‘Tamagawa number conjecture’ that was first formulated by Bloch and
Kato in [5] and then both extended and refined by Fontaine and Perrin-Riou
[18] and Kato [27]. If K = k and r ∈ {0, 1} then the conjecture specializes to
the analytic class number formula and is therefore already a theorem.
The most succinct formulation of the equivariant Tamagawa number conjecture
asserts the vanishing of a certain element TΩ(M,A) = TΩ(Q(r)K ,Z[G]) in the
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relative algebraic K-group K0(Z[G],R). Further, the functional equation of
Artin L-functions is reflected by an equality

(1) TΩ(Q(r)K ,Z[G]) + ψ∗(TΩ(Q(1− r)K ,Z[G]op)) = TΩloc(Q(r)K ,Z[G])

where ψ∗ is a natural isomorphism K0(Z[G]op,R) ∼= K0(Z[G],R) and
TΩloc(Q(r)K ,Z[G]) is an element of K0(Z[G],R) of the form

(2) TΩloc(Q(r)K ,Z[G]) = Lloc(Q(r)K ,Z[G])+ δK/k(r)+RΩloc(Q(r)K ,Z[G]).

Here Lloc(Q(r)K ,Z[G]) is an ‘analytic’ element constructed from the
archimedean Euler factors and epsilon constants associated to both Q(r)K
and Q(1 − r)K , the element δK/k(r) reflects sign differences between the
regulator maps used in defining TΩ(Q(r)K ,Z[G]) and TΩ(Q(1 − r)K ,Z[G]op)
and RΩloc(Q(r)K ,Z[G]) is an ‘algebraic’ element constructed from the various
realisations of Q(r)K . (We caution the reader that the notation in (1) and (2)
is slightly different from that which is used in [9] - see §3.1 for details of these
changes.)
In this article we shall further specialize to the case where K is an abelian
extension of Q and prove that TΩ(Q(r)K ,Z[G]) = 0 for all integers r and all
subgroups G of Gal(K/Q). In fact, taking advantage of previous work in this
area, the main new result which we prove here is the following refinement of
the results of Benois and Nguyen Quang Do in [1].

Theorem 1.1. If K is any finite abelian extension of Q, G any subgroup of
Gal(K/Q) and r any strictly positive integer, then TΩloc(Q(r)K ,Z[G]) = 0.

We now discuss some interesting consequences of Theorem 1.1. The first con-
sequence we record is the promised verification of the equivariant Tamagawa
number conjecture for Tate motives over absolutely abelian fields. This result
therefore completes the proof of [17, Th. 5.1] and also refines the main result
of Huber and Kings in [25] (for more details of the relationship between our
approach and that of [25] see [11, Intro.]).

Corollary 1.2. If K is any finite abelian extension of Q, G any subgroup of
Gal(K/Q) and r any integer, then TΩ(Q(r)K ,Z[G]) = 0.

Proof. If r ≤ 0, then the vanishing of TΩ(Q(r)K ,Z[G]) is proved modulo pow-
ers of 2 by Greither and the first named author in [11, Cor. 8.1] and the argu-
ment necessary to cover the 2-primary part is provided by the second named
author in [17]. For any r > 0, the vanishing of TΩ(Q(r)K ,Z[G]) then follows
by combining Theorem 1.1 with the equality (1). �

Corollary 1.3. The conjecture of Bloch and Kato [5, Conj. (5.15)] is valid
for the Riemann-Zeta function at each integer strictly bigger than 1.

Proof. If r is any integer strictly bigger than 1, then [5, Th. (6.1)] proves the
validity of [5, Conj. (5.15)] for the leading term of the Riemann Zeta function
at s = r, modulo powers of 2 and a certain compatibility assumption [5, Conj.
(6.2)] concerning the ‘cyclotomic elements’ of Deligne and Soulé in algebraic
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K-theory. But the latter assumption was verified by Huber and Wildeshaus in
[26] and Corollary 1.2 for K = k = Q now resolves the ambiguity at 2. �

For any finite group G the image of the homomorphism δG : K0(Z[G],R) →
K0(Z[G]) that occurs in the long exact sequence of relative K-theory is equal
to the locally-free class group Cl(Z[G]). In the following result we use the
elements Ω(K/k, 1),Ω(K/k, 2), Ω(K/k, 3) and w(K/k) of Cl(Z[Gal(K/k)]) that
are defined by Chinburg in [13].

Corollary 1.4. If K is any finite abelian extension of Q and k is any subfield
of K, then one has Ω(K/k, 1) = Ω(K/k, 2) = Ω(K/k, 3) = w(K/k) = 0. In
particular, the Chinburg conjectures are all valid for K/k.

Proof. In this first paragraph we do not assume that K is Galois over Q or
that G := Gal(K/k) is abelian. We recall that from [10, (31)] one has

δG(ψ∗(TΩ(Q(0)K ,Z[G]op))) = Ω(K/k, 3)− w(K/k).

Further, [4, Prop. 3.1] implies δG sends Lloc(Q(1)K ,Z[G]) + δK/k(1) to

−w(K/k) whilst the argument used in [4, §4.3] shows that RΩloc(Q(1)K ,Z[G])
is equal to the element RΩloc(K/k, 1) defined in [7, §5.1.1]. Hence, from [7,
Rem. 5.5], we may deduce that

(3) δG(TΩloc(Q(1)K ,Z[G])) = −w(K/k) + Ω(K/k, 2).

We now assume that G is abelian. Then G has no irreducible complex symplec-
tic characters and so the very definition of w(K/k) ensures that w(K/k) = 0.
Hence by combining the above displayed equalities with Theorem 1.1 (with r =
1) and Corollary 1.2 (with r = 0) we may deduce that Ω(K/k, 2) = Ω(K/k, 3) =
0. But from [13, (3.2)] one has Ω(K/k, 1) = Ω(K/k, 2)−Ω(K/k, 3), and so this
also implies that Ω(K/k, 1) = 0. �

For finite abelian extensions K/Q in which 2 is unramified, an alternative proof
of the equality Ω(K/k, 2) = 0 in Corollary 1.4 was first obtained by Greither
in [21].
Before stating our next result we recall that, ever since the seminal results of
Fröhlich in [19], the study of Quaternion extensions has been very important
to the development of leading term conjectures in non-commutative settings.
In the following result we provide a natural refinement of the main result of
Hooper, Snaith and Tran in [24] (and hence extend the main result of Snaith
in [35]).

Corollary 1.5. Let K be any Galois extension of Q for which Gal(K/Q) is
isomorphic to the Quaternion group of order 8 and k any subfield of K. Then
one has TΩloc(Q(1)K ,Z[Gal(K/k)]) = 0.

Proof. We set G := Gal(K/Q) and let Γ denote the maximal abelian quotient
of G with E the subfield of K such that Γ = Gal(E/Q) (so E/Q is biquadratic).
We set TΩloc := TΩloc(Q(1)K ,Z[G]) and TΩloc

E := TΩloc(Q(1)E ,Z[Γ]).
Then from [9, Th. 5.1 and Prop. 4.1] we know that TΩloc(Q(1)K ,Z[Gal(K/k)])
and TΩloc

E are equal to the images of TΩloc under the natural homomorphisms
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K0(Z[G],R) → K0(Z[Gal(K/k)],R) and K0(Z[G],R) → K0(Z[Γ],R) respec-
tively. In particular, it suffices to prove that TΩloc = 0.
Now [4, Cor. 6.3(i)] implies that TΩloc is an element of finite order in the
subgroup K0(Z[G],Q) of K0(Z[G],R) and so [10, Lem. 4] implies that TΩloc =
0 if and only if both TΩloc

E = 0 and δG(TΩloc) = 0. But Theorem 1.1 implies
TΩloc

E = 0 and, since δG(TΩloc) = −w(K/Q) + Ω(K/Q, 2) (by (3)), the main
result of Hooper, Snaith and Tran in [24] implies that δG(TΩloc) = 0. �

The following result provides the first generalization to wildly ramified exten-
sions of the algebraic characterization of tame symplectic Artin root numbers
that was obtained by Cassou-Noguès and Taylor in [12].

Corollary 1.6. Let K be any Galois extension of Q for which G := Gal(K/Q)
is isomorphic to the Quaternion group of order 8. Then the Artin root number
of the (unique) irreducible 2-dimensional complex character of G is uniquely
determined by the algebraic invariant RΩloc(Q(1)K ,Z[G]) in K0(Z[G],R).

Proof. This is a direct consequence of combining Corollary 1.5 with a result
of Breuning and the first named author [7, Th. 5.8] and the following facts:

Lloc(Q(1)K ,Z[G])+δK/Q(1) is equal to −1 times the element ∂̂1
G(ǫK/Q(0)) used

in [7, §5.1.1] and RΩloc(Q(1)K ,Z[G]) is equal to the element RΩloc(K/Q, 1)
defined in loc. cit. �

To prove Theorem 1.1 we shall combine some classical and rather explicit com-
putations of Hasse (concerning Gauss sums) and Leopoldt (concerning integer
rings in cyclotomic fields) with a refinement of some general results proved in
[9, §5] and a systematic use of the Iwasawa theory of complexes in the spirit of
Kato [27, 3.1.2] and Nekovář [32] and of the generalization of the fundamental
exact sequence of Coleman theory obtained by Perrin-Riou in [34].
We would like to point out that, in addition to the connections discussed above,
there are also links between our approach and aspects of the work of Kato [28],
Fukaya and Kato [20] and Benois and Berger [2]. In particular, the main
technical result that we prove (the validity of equality (16)) is closely related
to [28, Th. 4.1] and hence also to the material of [20, §3]. Indeed, Theorem 1.1
(in the case r = 1) provides a natural generalization of the results discussed
in [20, §3.6]. However, the arguments of both loc. cit. and [28] do not cover
the prime 2 and also leave open certain sign ambiguities, and much effort is
required in the present article to deal with such subtleties.
Both authors were introduced to the subject of Tamagawa number conjectures
by John Coates. It is therefore a particular pleasure for us to dedicate this
paper to him on the occasion of his sixtieth birthday.
Acknowledgements The authors are grateful to Denis Benois for several
very helpful conversations regarding this project and also to Laurent Berger
and Manuel Breuning for some very helpful advice. Much of the research
for this article was completed when the authors held visiting positions in the
Mathematics Department of Harvard University and they are very grateful to
Dick Gross for making that visit possible.
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2. Equivariant local Tamagawa numbers

In this article we must compute explicitly certain equivariant local Tamagawa
numbers, as defined in [9]. For the reader’s convenience, we therefore first
quickly review the general definition of such invariants. All further details of
this construction can be found in loc. cit.

2.1. We fix a motive M that is defined over Q (if M is defined over a general
number field as in [9], then we use induction to reduce to the base field Q) and
we assume that M is endowed with an action of a finite dimensional semisimple
Q-algebra A.
We write HdR(M) and HB(M) for the de Rham and Betti realisations of M
and for each prime number p we denote by Vp = Hp(M) the p-adic realisation of
M . We fix a Z-order A in A such that, for each prime p, if we set Ap := A⊗ZZp,
then there exists a full projective Galois stable Ap-sublattice Tp of Vp. We also
fix a finite set S of places of Q containing ∞ and all primes of bad reduction
for M and then set Sp := S ∪ {p} and Sp,f := Sp \ {∞}.
For any associative unital ring R we write Dperf(R) for the derived catgeory of
perfect complexes of R-modules. We also let DetR : Dperf(R)→ V (R) denote
the universal determinant functor to the Picard category of virtual objects
of R (which is denoted by P 7→ [P ] in [9]) and ⊗R the product functor in
V (R) (denoted by ⊠ in [9]). In particular, if R is commutative, then DetR
is naturally isomorphic to the Knudsen-Mumford functor to graded invertible
R-modules. We denote by 1R a unit object of V (R) and recall that the group
K1(R) can be identified with AutV (R)(L) for any object L of V (R) (and in
particular therefore with π1(V (R)) := AutV (R)(1R)). For each automorphism
α : W → W of a finitely generated projective R-module W we denote by
DetR(α|W ) the element of K1(R) that is represented by α. We let ζ(R) denote
the centre of R.
If X is any R-module upon which complex conjugation acts as an endomor-
phism of R-modules, then we write X+ and X− for the R-submodules of X
upon which complex conjugation acts as multiplication by 1 and −1 respec-
tively.
For any Q-vector space W we set WC = W ⊗Q C, WR = W ⊗Q R and Wp =
W ⊗Q Qp for each prime p.

2.2. The virtual object

Ξloc(M) := DetA(HdR(M))⊗A Det−1
A (HB(M))

is endowed with a canonical morphism

ϑloc
∞ : AR ⊗A Ξloc(M) ∼= 1AR

.

To describe this morphism we note that the canonical period isomorphism
HdR(M)C

∼= HB(M)C induces an isomorphism of AR-modules

(4) HdR(M)R = (HdR(M)C)+ ∼= (HB(M)C)+
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and that there is also a canonical isomorphism of AR-modules

(5) (HB(M)C)+ = (HB(M)+ ⊗Q R)⊕ (HB(M)− ⊗Q R(2πi)−1)

∼= (HB(M)+ ⊗Q R)⊕ (HB(M)− ⊗Q R) = HB(M)R

where the central map results from identifying R(2πi)−1 with R by sending
(2πi)−1 to 1.
By applying DetAR

to the composite of (4) and (5) one obtains a morphism
(ϑloc
∞ )′ : AR⊗AΞloc(M) ∼= 1AR

and ϑloc
∞ is defined in [9, (57)] to be the composite

of (ϑloc
∞ )′ and the ‘sign’ elements ǫB := DetA(−1 | HB(M)+) and ǫdR :=

DetA(−1 | F 0HdR(M)) of π1(V (AR)) ∼= K1(AR).

2.3. Following [9, (66), (67)], we set

Λp(S, Vp) :=


 ⊗

ℓ∈Sp,f
Det−1

Ap
RΓ(Qℓ, Vp)


⊗Ap Det−1

Ap
(Vp),

and let

θp : Ap ⊗A Ξloc(M) ∼= Λp(S, Vp)

denote the morphism in V (Ap) obtained by taking the product of the mor-
phisms θℓ-part

p for ℓ ∈ Sp,f that are discussed in the next subsection.

2.4. There exists a canonical morphism in V (Ap) of the form

θp-part
p : Ap ⊗A Ξloc(M)→ Det−1

Ap
RΓ(Qp, Vp)⊗Ap Det−1

Ap
(Vp).

This morphism results by applying DetAp to each of the following: the canonical
comparison isomorphism HB(M)p ∼= Vp; the (Poincaré duality) exact sequence
0 → (HdR(M∗(1))/F 0)∗ → HdR(M) → HdR(M)/F 0 → 0; the canonical com-
parison isomorphisms (HdR(M)/F 0)p ∼= tp(Vp) and (HdR(M∗(1))/F 0)∗p ∼=
tp(V

∗
p (1))∗ ; the exact triangle

(6) RΓf (Qp, Vp)→ RΓ(Qp, Vp)→ RΓf (Qp, V
∗
p (1))∗[−2]→

which results from [9, (18) and Lem. 12a)]; the exact triangle

(7) tp(W )[−1]→ RΓf (Qp,W )→
(
Dcris(W )

1−ϕv−−−→ Dcris(W )
)
→

of [9, (22)] for both W = Vp and W = V ∗p (1), where the first term of the last

complex is placed in degree 0 and DetAp
(
Dcris(W )

1−ϕv−−−→ Dcris(W )
)

is identified

with 1Ap via the canonical morphism DetAp(Dcris(W ))⊗ApDet−1
Ap

(Dcris(W ))→
1Ap .
For each ℓ ∈ Sp,f \ {p} there exists a canonical morphism in V (Ap) of the form

θℓ-part
p : 1Ap

∼= Det−1
Ap
RΓ(Qℓ, Vp).

For more details about this morphism see Proposition 7.1.
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2.5. From [9, (71), (78)] we recall that there exists a canonical object Λp(S, Tp)
of V (Ap) and a canonical morphism in V (Ap) of the form

θ′p : Λp(S, Vp) ∼= Ap ⊗Ap Λp(S, Tp)

(the definitions of Λp(S, Tp) and θ′p are to be recalled further in §7.2). We set

ϑloc
p := ǫ(S, p) ◦ θ′p ◦ θp : Ap ⊗A Ξloc(M) ∼= Ap ⊗Ap Λp(S, Tp)

where ǫ(S, p) is the element of π1(V (Ap)) that corresponds to multiplication
by −1 on the complex

⊕
ℓ∈Sp,f RΓ/f (Qℓ, Vp) which is defined in [9, (18)].

If M is a direct factor of hn(X)(t) for any non-negative integer n, smooth
projective variety X and integer t, then [9, Lem. 15b)] implies that the data

(
∏

p

Λp(S, Tp),Ξ
loc(M),

∏

p

ϑloc
p ;ϑloc

∞ ),

where p runs over all prime numbers, gives rise (conjecturally in general, but un-
conditionally in the case of Tate motives) to a canonical element RΩloc(M,A) of
K0(A,R). For example, if A is commutative, then 1AR

= (AR, 0) and K0(A,R)
identifies with the multiplicative group of invertible A-sublattices of AR and,
with respect to this identification, RΩloc(M,A) corresponds to the (conjec-
turally invertible) A-sublattice Ξ of AR that is defined by the equality

ϑloc
∞

(⋂

p

(Ξloc(M) ∩ (ϑloc
p )−1(Λp(S, Tp)))

)
= (Ξ, 0),

where the intersection is taken over all primes p.

2.6. We write L∞(AM, s) and ǫ(AM, 0) for the archimedean Euler factor and
epsilon constant that are defined in [9, §4.1]. Also, with ρ ∈ Zπ0(Spec(ζ(AR)))

denoting the algebraic order at s = 0 of the completed ζ(AC)-valued L-function
Λ(AopM

∗(1), s) that is defined in loc. cit., we set

E(AM) := (−1)ρǫ(AM, 0)
L∗∞(AopM

∗(1), 0)

L∗∞(AM, 0)
∈ ζ(AR)×.

Following [9, §5.1], we define

Lloc(M,A) := δ̂1A,R(E(AM)) ∈ K0(A,R)

where δ̂1A,R : ζ(AR)× → K0(A,R) is the ‘extended boundary homomorphism’

of [9, Lem. 9] (so, if A is commutative, then Lloc(M,A) = A · E(AM) ⊂ AR).
Finally, we let

(8) TΩloc(M,A)′ := Lloc(M,A) +RΩloc(M,A) ∈ K0(A,R)

denote the ‘equivariant local Tamagawa number’ that is defined in [9, just prior
to Th. 5.1].
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3. Normalizations and notation

3.1. Normalizations. In this section we fix an arbitrary Galois extension
of number fields K/k, set G := Gal(K/k) and for each integer t write
TΩ(Q(t)K ,Z[G])′ for the element of K0(Z[G],R) that is defined (uncondition-
ally) by [9, Conj. 4(iii)] in the case M = Q(t)K and A = Z[G].
Let r be a strictly positive integer. Then the computations of [10, 17] show that
[9, Conj. 4(iv)] requires that the morphism ϑ∞ : R⊗Q Ξ(Q(1−r)K)→ 1V (R[G])

constructed in [9, §3.4] should be normalized by using −1 times the Dirichlet
(resp. Beilinson if r > 1) regulator map, rather than the Dirichlet (resp.
Beilinson) regulator map itself as used in [9]. To incorporate this observation
we set

(9) TΩ(Q(1− r)K ,Z[G]) := TΩ(Q(1− r)K ,Z[G])′ + δK/k(r)

where δK/k(r) is the image under the canonical map K1(R[G])→ K0(Z[G],R)
of the element DetQ[G](−1 | K2r−1(OK)∗ ⊗Z Q). To deduce the validity of (1)
from the result of [9, Th. 5.3] it is thus also necessary to renormalise the defini-
tion of either TΩ(Q(r)K ,Z[G])′ or of the element TΩloc(Q(r)K ,Z[G])′ defined
by (8). Our proof of Theorem 1.1 now shows that the correct normalization is
to set

TΩ(Q(r)K ,Z[G]) := TΩ(Q(r)K ,Z[G])′

and

(10) TΩloc(Q(r)K ,Z[G]) := TΩloc(Q(r)K ,Z[G])′ + δK/k(r).

Note that the elements defined in (9) and (10) satisfy all of the functorial
properties of TΩ(Q(1 − r)K ,Z[G])′ and TΩloc(Q(r)K ,Z[G])′ that are proved
in [9, Th. 5.1, Prop. 4.1]. Further, with these definitions, the equalities
(1) and (2) are valid and it can be shown that the conjectural vanishing of
TΩloc(Q(1)K ,Z[G]) is compatible with the conjectures discussed in both [4]
and [7].
Thus, in the remainder of this article we always use the notation
TΩloc(Q(r)K ,Z[G]) as defined in (10).

3.2. The abelian case. Until explicitly stated otherwise, in the sequel we
consider only abelian groups. Thus, following [9, §2.5], we use the graded
determinant functor of [29] in place of virtual objects (for a convenient review
of all relevant properties of the determinant functor see [11, §2]). However, we
caution the reader that for reasons of typographical clarity we sometimes do not
distinguish between a graded invertible module and the underlying invertible
module.
We note that, when proving Theorem 1.1, the functorial properties of the el-
ements TΩloc(Q(r)K ,Z[Gal(K/k)]) allow us to assume that k = Q and also
that K is generated by a primitive N -th root of unity for some natural number
N 6≡ 2 mod 4. Therefore, until explicitly stated otherwise, we henceforth fix
the following notation:

K := Q(e2πi/N ); G := Gal(K/Q); M := Q(r)K , r ≥ 1; A := Q[G].
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For any natural number n we also set ζn := e2πi/n and denote by σn the
resulting complex embedding of the field Q(ζn).
For each complex character η of G we denote by eη = 1

|G|
∑
g∈G η(g

−1)g the

associated idempotent in AC. For each Q-rational character (or equivalently,
Aut(C)-conjugacy class of C-rational characters) χ of G we set eχ =

∑
η∈χ eη ∈

A and denote by Q(χ) = eχA the field of values of χ. There is a ring decompo-
sition A =

∏
χ Q(χ) and a corresponding decomposition Y =

∏
χ eχY for any

A-module Y . We make similar conventions for Qp-rational characters of G.

4. An explicit analysis of TΩloc(Q(r)K ,Z[G])

In this section we reduce the proof of Theorem 1.1 to the verification of an
explicit local equality (cf. Proposition 4.4).

4.1. The archimedean component of TΩloc(Q(r)K ,Z[G]). In this sub-
section we explicate the morphism ϑloc

∞ defined in §2.2 and the element
E(AM) ∈ A×R defined in §2.6.
The de Rham realization HdR(M) of M identifies with K, considered as a free
A-module of rank one (by means of the normal basis theorem). The Betti
realisation HB(M) of M identifies with the Q-vector space YΣ with basis equal
to the set Σ := Hom(K,C) of field embeddings and is therefore also a free
A-module of rank one (with basis σN ). We set Y −1

Σ := HomA(YΣ, A). Then,
by [9, Th. 5.2], we know that (ϑloc

∞ )−1((E(AM)−1, 0)) belongs to Ξloc(M) =
(K ⊗A Y −1

Σ , 0) and we now describe this element explicitly.

Proposition 4.1. We define an element ǫ∞ :=
∑
χ ǫ∞,χeχ of A× by setting

ǫ∞,χ :=





−2 if χ(−1) = (−1)r

− 1
2 if χ(−1) = −(−1)r and (χ 6= 1 or r > 1)

1
2 if χ = 1 and r = 1.

Then

(ϑloc
∞ )−1((E(AM)−1, 0)) = (ǫ∞βN ⊗ σ−1

N , 0) ∈ (K ⊗A Y −1
Σ , 0)

where σ−1
N is the (unique) element of Y −1

Σ which satisfies σ−1
N (σN ) = 1 and βN

is the (unique) element of K =
∏
χ eχK which satisfies

eχβN := [K : Q(ζfχ)]−1(r − 1)!fr−1
χ · eχζfχ

for all Q-rational characters χ of G.

Proof. For each Dirichlet character η of G the functional equation of L(η, s) is

L(η, s) =
τ(η)

2iδ

(
2π

fη

)s
1

Γ(s) cos(π(s−δ)
2 )

L(η̄, 1− s)

where fη is the conductor of η and

(11) τ(η) =

fη∑

a=1

η(a)e2πia/fη ; η(−1) = (−1)δ, δ ∈ {0, 1}
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(cf. [36, Ch. 4]). Thus, by its very definition in §2.6, the η-component of the
element E(AM)−1 of AC =

∏
η C is the leading Taylor coefficient at s = r of

the meromorphic function

(−1)ρη
2iδ

τ(η)

(
fη
2π

)s
Γ(s) cos(

π(s− δ)
2

); ρη =

{
1 r = 1, η = 1

0 else.

Hence we have

E(AM)−1
η =





2iδ

τ(η)

(
fη
2π

)r
(r − 1)!(−1)

r−δ
2 , r − δ even

(−1)ρη 2iδ

τ(η)

(
fη
2π

)r
(r − 1)!(−1)

r−δ+1
2

π
2 , r − δ odd

which, after collecting powers of i and using the relation τ(η)τ(η̄) = η(−1)fη,
can be written as

E(AM)−1
η =

{
2 τ(η̄)(2πi)−rfr−1

η (r − 1)!, r − δ even

(−1)ρη+1 1
2 τ(η̄)(2πi)

−(r−1)fr−1
η (r − 1)!, r − δ odd.

Lemma 4.2. The isomorphism Y +
Σ,C = (HB(M)C)+ ∼= HB(M)R = YΣ,R in (5)

is given by
∑

g∈G
αgg

−1σN 7→
∑

g∈G/<c>

(
ℜ(αg)(1 + (−1)rc)− 2πℑ(αg)(1− (−1)rc)

)
g−1σN

where c ∈ G is complex conjugation, G acts on Σ via (gσ)(x) = σ(g(x)) and
ℜ(α), resp. ℑ(α), denotes the real, resp. imaginary, part of α ∈ C.

Proof. An element x :=
∑
g∈G αgg

−1σN of YΣ,C belongs to the subspace Y +
Σ,C

if and only if one has αgc = (−1)rᾱg for all g ∈ G. Writing

αg = ℜ(αg)− (2πi)−1(2π)ℑ(αg), ᾱg = ℜ(αg) + (2πi)−1(2π)ℑ(αg)

we find that

x =
∑

g∈G/<c>

(
ℜ(αg)(1 + (−1)rc)− (2πi)−12πℑ(αg)(1− (−1)rc)

)
g−1σN .

But
∑
g∈G/<c>(2πi)−12πℑ(αg)(1− (−1)rc)g−1σN ∈ HB(M)−⊗Q R · i and the

central map in (5) sends (2πi)−1 to 1. This implies the claimed result. �

The canonical comparison isomorphism KC = HdR(M)C
∼= HB(M)C = YΣ,C

which occurs in (4) sends any element β of K to
∑

g∈G
σN (gβ)(2πi)−rg−1σN =

∑

a∈(Z/NZ)×

σNτa(β)(2πi)−rτ−1
a σN

where τa(ζ) = ζa for each N -th root of unity ζ. In particular, after composing
this comparison isomorphism with the isomorphism of Lemma 4.2 we find that
ζf is sent to the following element of YΣ,R
∑

a

(
ℜ(e2πia/f (2πi)−r)(1 + (−1)rc)− 2πℑ(e2πia/f (2πi)−r)(1− (−1)rc)

)
τ−1
a σN
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where the summation runs over all elements a of (Z/NZ)×/ ± 1. For each
Dirichlet character η the η-component of this element is equal to eησN multi-
plied by

∑

a∈(Z/NZ)×/±1

(2π)−rℜ(e2πia/f i−r)η(a) · 2

=
∑

a∈(Z/NZ)×/±1

(2πi)−r(e2πia/f + (−1)re−2πia/f )η(a)

=(2πi)−r
∑

a∈(Z/NZ)×

e2πia/fη(a)

if η(−1) = (−1)r (so δ − r is even), resp. by

− 2π
∑

a∈(Z/NZ)×/±1

(2π)−rℑ(e2πia/f i−r)η(a) · 2

=− 2π
∑

a∈(Z/NZ)×/±1

(2πi)−r
e2πia/f − (−1)re−2πia/f

i
η(a)

=(2πi)−(r−1)
∑

a∈(Z/NZ)×

e2πia/fη(a)

if η(−1) = −(−1)r (so δ− r is odd). Taking f = fη we find that the (η-part of
the) morphism (ϑloc

∞ )′ : AR ⊗A Ξloc(M) ∼= (AR, 0) defined in §2.2 sends

(12) eηζfη ⊗C eησ
−1
N 7→

{
(2πi)−r[K : Q(fη)]τ(η̄) if η(−1) = (−1)r

(2πi)−(r−1)[K : Q(fη)]τ(η̄) if η(−1) = −(−1)r.

Now ϑloc
∞ is defined to be the composite of (ϑloc

∞ )′ and the sign factors ǫdR and
ǫB that are defined at the end of §2.2. But it is easily seen that edR = 1,
that (ǫB)χ = −1 for χ(−1) = (−1)r and that (ǫB)χ = 1 otherwise. Thus, upon
comparing (12) with the description of E(AM)−1

η before Lemma 4.2 one verifies
the statement of Proposition 4.1. �

4.2. Reduction to the p-primary component. By [9, Th. 5.2] we know
that TΩloc(Q(r)K ,Z[G]) belongs to the subgroup K0(Z[G],Q) of K0(Z[G],R).
Recalling the direct sum decomposition K0(Z[G],Q) ∼=

⊕
ℓK0(Zℓ[G],Qℓ) over

all primes ℓ from [9, (13)], we may therefore prove Theorem 1.1 by showing that,
for each prime ℓ, the projection TΩloc(Q(r)K ,Z[G])ℓ of TΩloc(Q(r)K ,Z[G]) to
K0(Zℓ[G],Qℓ) vanishes. Henceforth we therefore fix a prime number p and
shall analyze TΩloc(Q(r)K ,Z[G])p.
We denote by

Tp := IndQ
K Zp(r) ⊂ Vp := IndQ

K Qp(r) = Hp(M)

the natural lattice in the p-adic realisation Vp of M . Then by combining the
definition of TΩloc(Q(r)K ,Z[G]) from (10) (and (8)) together with the explicit
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description of Proposition 4.1 one finds that TΩloc(Q(r)K ,Z[G])p = 0 if and
only if

Zp[G] · ǫ(r)ǫ(S, p) · θ′p ◦ θp((ǫ∞βN ⊗ σ−1
N , 0)) = Λp(S, Tp)

where θp is as defined in §2.3, Λp(S, Tp), θ
′
p and ǫ(S, p) ∈ A×p are as discussed

in §2.5 and we have set ǫ(r) := DetA(−1 | K2r−1(OK)∗ ⊗Z Q) ∈ A×.

Lemma 4.3. We set

ǫp := DetAp(2|V +
p )DetAp(2|V −p )−1 ∈ A×p .

Then, with ǫ∞ as defined in Proposition 4.1, there exists an element u(r) of
Zp[G]× such that ǫ(r)ǫ(S, p)ǫ∞ = u(r)ǫp.

Proof. We recall that ǫ(S, p) is a product of factors DetAp(−1|RΓ/f (Qℓ, Vp)).
Further, the quasi-isomorphism RΓ/f (Qℓ, Vp) ∼= RΓf (Qℓ, V

∗
p (1))∗[−2] from [9,

Lem. 12a)] implies that each such complex is quasi-isomorphic to a complex of
the form W → W (indeed, this is clear if ℓ 6= p and is true in the case ℓ = p
because the tangent space of the motive Q(1− r)K vanishes for r ≥ 1) and so
one has ǫ(S, p) = 1.
We next note that if ǫ(r) :=

∑
χ ǫ(r)χeχ with ǫ(r)χ ∈ {±1}, then the explicit

structure of the Q[G]-module K2r−1(OK)∗⊗Z Q (cf. [17, p. 86, p. 105]) implies
that ǫ(r)χ = 1 if either r = 1 and χ is trivial or if χ(−1) = (−1)r, and that
ǫ(r)χ = −1 otherwise.
Thus, after recalling the explicit definitions of ǫ∞ and ǫp, it is straightforward
to check that the claimed equality ǫ(r)ǫ(S, p)ǫ∞ = u(r)ǫp is valid with u(r) =
−(−1)rc where c ∈ G is complex conjugation. �

The element ǫp in Lemma 4.3 is equal to the element ǫVp that occurs in Propo-

sition 7.2 below (with Vp = IndQ
KQp(r)). Hence, upon combining Lemma 4.3

with the discussion which immediately precedes it and the result of Proposition
7.2 we may deduce that TΩloc(Q(r)K ,Z[G])p = 0 if and only if

(13) Zp[G]·θp((βN⊗σ−1
N , 0)) =


⊗

ℓ|Np
Det−1

Zp[G]RΓ(Qℓ, Tp)


⊗Zp[G] (T

−1
p ,−1).

Here we have set T−1
p := HomZp[G](Tp,Zp[G]) and also used the fact that, since

Tp is a free rank one Zp[G]-module, one has Det−1
Zp[G](Tp) = (T−1

p ,−1).

Now Shapiro’s Lemma allows us to identify the complexes RΓ(Qℓ, Tp) and
RΓ(Qℓ, Vp) with RΓ(Kℓ,Zp(r)) and RΓ(Kℓ,Qp(r)) respectively. Further, the
complex RΓ(Kp,Qp(r)) is acyclic outside degree 1 for r > 1, and for r = 1 one
has a natural exact sequence of Qp[G]-modules

(14) 0→ Ô×Kp → K̂×p ∼= H1(Kp,Qp(1))
val−−→

∏

v|p
Qp
∼= H2(Kp,Qp(1))→ 0

where the first isomorphism is induced by Kummer theory and the second
by the invariant map on the Brauer group. Our notation here is that M̂ :=
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(lim←−nM/pnM)⊗Zp Qp for any abelian group M . We let

Kp = DdR(Vp)
exp−−→ H1

f (Kp,Qp(r))

denote the exponential map of Bloch and Kato for the representation Vp of
Gal(Q̄p/Qp). This map is bijective (since r > 0) and H1

f (Kp,Qp(r)) coincides

with Ô×Kp for r = 1 and with H1(Kp,Qp(r)) for r > 1 (cf. [5]). Also, both

source and target for the map exp are free Ap-modules of rank one. By using
the sequence (14) for r = 1 we therefore find that for each r ≥ 1 there exists
an isomorphism of graded invertible Ap-modules of the form

(15) ẽxp : (Kp, 1)
exp−−→ (H1

f (Kp,Qp(r)), 1) ∼= Det−1
Ap
RΓ(Kp,Qp(r)).

For any subgroup H ⊆ G we set

eH :=
∑

χ(H)=1

eχ =
1

|H|
∑

g∈H
g.

Also, for each prime ℓ we denote by Jℓ and Dℓ the inertia and decomposition
groups of ℓ in G. For x ∈ Ap we then set

eℓ(x) := 1 + (x− 1)eJℓ ∈ Ap
(so x 7→ eℓ(x) is a multiplicative map that preserves the maximal Zp-order in
Ap) and we denote by Frℓ ∈ G ⊂ A any choice of a Frobenius element.

Proposition 4.4. We define an element e∗p(1− pr−1 Fr−1
p ) of A×p by setting

eχe
∗
p(1− pr−1 Fr−1

p ) =

{
eχep(1− pr−1 Fr−1

p ), if r > 1 or χ(Dp) 6= 1

|Dp/Jp|−1eχ, otherwise.

Then one has TΩloc(Q(r)K ,Z[G])p = 0 if and only if

(16) Zp[G] ·
∏

ℓ|N
ℓ 6=p

eℓ(−Fr−1
ℓ ) ep(1−

Frp
pr

)−1e∗p(1− pr−1 Fr−1
p ) ẽxp((βN , 1))

= Det−1
Zp[G]RΓ(Kp,Zp(r)).

Proof. It suffices to prove that (16) is equivalent to (13).
Now, by its definition in §2.3, the morphism θp which occurs in (13) is induced
by taking the tensor product of the morphisms

θp-part
p : Ap ⊗A Ξloc(M) ∼= Det−1

Ap
RΓ(Kp,Qp(r))⊗Ap (V −1

p ,−1),

where we set V −1
p := HomAp(Vp, Ap), and for each prime ℓ | N with ℓ 6= p

θℓ-part
p : (Ap, 0) ∼= Det−1

Ap
RΓ(Kℓ,Qp(r)).

In addition, for W = Vp the exact triangle (7) identifies with

Kp[−1]→ RΓf (Qp, Vp)→
(
Dcris(Vp)

1−p−r Frp−−−−−−−→ Dcris(Vp)

)
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(with this last complex concentrated in degrees 0 and 1), and there is a canon-
ical quasi-isomorphism

RΓf (Qp, V
∗
p (1))∗[−2] ∼=

(
Dcris(Vp)

1−pr−1 Fr−1
p−−−−−−−−→ Dcris(Vp)

)
,

where the latter complex is concentrated in degrees 1 and 2. The identity map
on Dcris(Vp) therefore induces isomorphisms of graded invertible Ap-modules

(17) (Kp, 1) ∼= Det−1
Ap
RΓf (Qp, Vp); (Ap, 0) ∼= DetAp RΓf (Qp, V

∗
p (1))∗[−2].

The morphism θp-part
p is thus induced by (17) and (6) together with the (ele-

mentary) comparison isomorphism

γ : YΣ,p = HB(M)p ∼= Hp(M) = Vp

between the Betti and p-adic realizations of M . On the other hand, the iso-
morphism ẽxp arises by passing to the cohomology sequence of (6) and then
also using the identifications in (14) if r = 1. Hence, from [8, Lem. 1, Lem. 2],
one has

(18) θp-part
p = ep(1− p−r Frp)

−1e∗p(1− pr−1 Fr−1
p )ẽxp⊗Ap γ−1.

Now if ℓ 6= p, then Proposition 7.1 below implies that

DetAp(−σℓℓ−1|(Vp)Iℓ)−1 · θℓ-part
p ((Zp[G], 0)) = Det−1

Zp[G]RΓ(Kℓ,Zp(r)).

Thus, since γ(σN ) is a Zp[G]-basis of Tp, we find that (13) holds if and only if
the element∏

ℓ|N
ℓ 6=p

DetAp(−σℓℓ−1|(Vp)Iℓ) ep(1− p−r Frp)
−1e∗p(1− pr−1 Fr−1

p ) ẽxp((βN , 1))

is a Zp[G]-basis of Det−1
Zp[G]RΓ(Kp,Zp(r)). But

DetAp(−σℓℓ−1|(Vp)Iℓ) = DetAp(−Fr−1
ℓ ℓr−1|Ap · eJℓ) = eℓ(−Fr−1

ℓ )eℓ(ℓ
r−1)

and so Proposition 4.4 is implied by Lemma 4.5 below with u equal to the
function which sends 0 to ℓr−1 and all non-zero integers to 1. �

Lemma 4.5. Fix a prime number ℓ 6= p. If u : Z → Zp[G]× is any function
such that ℓ−1 divides u(0)−u(1) in Zp[G], then the element

∑
χ u(ordℓ(fχ))eχ

is a unit of Zp[G].

Proof. If ℓ− 1 divides u(0)− u(1), then ℓ− 1 divides (u(1)− u(0))/u(1)u(0) =
u(0)−1−u(1)−1. It follows that the function u−1 also satisfies the hypothesis of
the lemma and so it suffices to prove that the element xu :=

∑
χ u(ordℓ(fχ))eχ

belongs to Zp[G].
To this end, we let Jℓ = Jℓ,0 ⊆ G denote the inertia subgroup at ℓ and Jℓ,k ⊆
Jℓ,k−1 ⊆ · · · ⊆ Jℓ,1 ⊆ Jℓ,0 its canonical filtration, so that a character χ satisfies
ordℓ(fχ) = k if and only if χ(Jℓ,k) = 1 (and χ(Jℓ,k−1) 6= 1 if k > 0). Then

xu =

k=K∑

k=0

u(k)(eJℓ,k − eJℓ,k−1
) =

k=K−1∑

k=0

(u(k)− u(k + 1))eJℓ,k + u(K)eJℓ,K
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whereK = ordℓ(N) and we have set eJℓ,−1
:= 0. For k ≥ 1 one has eJℓ,k ∈ Zp[G]

since Jℓ,k is an ℓ-group and ℓ 6= p. If K = 0, then eJℓ,0 = eJℓ,K = 1 also lies
in Zp[G]. Otherwise the assumptions that ℓ − 1 divides u(0) − u(1) and that
ℓ 6= p combine to imply that

(u(0)− u(1))eJℓ,0 =
u(0)− u(1)

(ℓ− 1)ℓK−1

∑

g∈Jℓ,0
g ∈ Zp[G],

as required. �

5. Local Iwasawa theory

As preparation for our proof of (16) we now prove a result in Iwasawa theory.
We write

N = N0p
ν ; ν ≥ 0, p ∤ N0.

For any natural number n we set Gn := Gal(Q(ζn)/Q) ∼= (Z/nZ)×. We also let
Q(ζNp∞) denote the union of the fields Q(ζNpm) over m ≥ 0 and set GNp∞ :=
Gal(Q(ζNp∞)/Q). We then define

Λ := Zp[[GNp∞ ]] = lim←−
n

Zp[GNpn ] ∼= Zp[GN0p̃][[T ]].

Here we have set p̃ := p for odd p and p̃ := 4 for p = 2, and the isomorphism
depends on a choice of topological generator of Gal(Q(ζNp∞)/Q(ζN0p̃))

∼= Zp.
We also set

T∞p := lim←−
n

IndQ
Q(ζNpn ) Zp(r).

This is a free rank one Λ-module upon which the absolute Galois group GQ :=
Gal(Q̄/Q) acts by the character (χcyclo)

rτ−1 where χcyclo : GQ → Z×p is the

cyclotomic character and τ : GQ → GNp∞ ⊆ Λ× is the tautological character.
In this section we shall describe (in Proposition 5.2) a basis of the invertible
Λ-module Det−1

Λ RΓ(Qp, T
∞
p ).

We note first that the cohomology of RΓ(Qp, T
∞
p ) is naturally isomorphic to

(19) Hi(Qp, T
∞
p ) ∼=





(lim←−n Q(ζNpn)×p /p
n)⊗Zp Zp(r − 1) i = 1∏

v|p Zp(r − 1) i = 2

0 otherwise

where the limit is taken with respect to the norm maps (and Q(ζNpn)p =
Q(ζNpn) ⊗Q Qp is a finite product of local fields). The valuation map induces
a natural short exact sequence

(20) 0→ Z̃ := lim←−
n

O×Q(ζNpn )p
/pn → lim←−

n

Q(ζNpn)×p /p
n val−−→

∏

v|p
Zp → 0

and in addition Perrin-Riou has constructed an exact sequence [34, Prop. 4.1.3]

(21) 0→
∏

v|p
Zp(r)→ Z̃(r − 1)

θPRr−−−→ R→
∏

v|p
Zp(r)→ 0
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where

R := {f ∈ Z[ζN0
]p[[X]] | ψ(f) :=

∑

ζp=1

f(ζ(1 +X)− 1) = 0}

and Z[ζN0
]p denotes the finite étale Zp-algebra Z[ζN0

]⊗Z Zp. We remark that,
whilst p is assumed to be odd in [34] the same arguments show that the sequence
(21) exists and is exact also in the case p = 2. The Zp-module R carries a
natural continuous GNp∞ -action [34, 1.1.4], and with respect to this action all
maps in (19), (20) and (21) are Λ-equivariant. In addition, if r = 1, then the
exact sequence (21) is due to Coleman and the map θPR1 is given by

(22) θPR1 (u) =

(
1− φ

p

)
log(fu)

where fu is the (unique) Coleman power series of the norm compatible system

of units u with respect to (ζpn)n≥1 and one has φ(fu)(X) = f
Frp
u ((1+X)p−1).

Lemma 5.1. The Λ-module R is free of rank one with basis

β∞N0
:= ξN0

(1 +X); ξN0
:=

∑

N1|d|N0

ζd

where N1 :=
∏
ℓ|N0

ℓ.

Proof. The element ξN0
is a Zp[GN0

]-basis of Z[ζN0
]p. Indeed, this observation

(which is due originally to Leopoldt [30]) can be explicitly deduced from [31,
Th. 2] after observing that the idempotents εd of loc. cit. belong to Zp[GN0

].
On the other hand, Perrin-Riou shows in [33, Lem. 1.5] that if W is the ring
of integers in any finite unramified extension of Zp, then W [[X]]ψ=0 is a free
rank one W [[Gp∞ ]]-module with basis 1 +X (her proof applies for all primes
p, including p = 2). Since Z[ζN0

]p is a finite product of such rings W and
GNp∞ ∼= GN0

×Gp∞ , the result follows. �

Proposition 5.2. Let Q be the total ring of fractions of Λ (so Q is a finite
product of fields). Using Lemma 5.1, we regard β∞N0

as a Q-basis of

R⊗Λ Q ∼= Z̃(r − 1)⊗Λ Q ∼= H1(Qp, T
∞
p )⊗Λ Q ∼= (Det−1

Λ RΓ(Qp, T
∞
p ))⊗Λ Q,

where the first isomorphism is induced by (θPRr ⊗Λ Q)−1, the second by (19)
and the (r − 1)-fold twist of (20) and the third by (19). Then one has

Λ · β∞N0
= Det−1

Λ RΓ(Qp, T
∞
p ) ⊂ (Det−1

Λ RΓ(Qp, T
∞
p ))⊗Λ Q.

Proof. We note first that, since Λ is noetherian, Cohen-Macauley and semilocal,
it is enough to prove that β∞N0

is a Λq-basis of Det−1
Λq
RΓ(Qp, T

∞
p )q for all height

one prime ideals q of Λ (see, for example, [17, Lem. 5.7]). In view of (19),
(20) and (21) this claim is immediate for prime ideals q which are not in the
support of the (torsion) Λ-modules

∏
v|p Zp(r − 1) and

∏
v|p Zp(r). On the

other hand, since these modules are each p-torsion free, any prime q which
does lie in their support is regular in the sense that p /∈ q (see, for example,
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[17, p. 90]). In particular, in any such case Λq is a discrete valuation ring and
so it suffices to check cancellation of the Fitting ideals of the occurring torsion
modules. But the Fitting ideal of H2(Qp, T

∞
p )q cancels against that of the

module (
∏
v|p Zp(r − 1))q which occurs in the (r − 1)-fold twist of (20), whilst

the Fitting ideals of the kernel and cokernel of θPRr obviously cancel against
each other. �

6. Descent calculations

In this section we deduce equality (16) as a consequence of Proposition 5.2 and
thereby finish the proof of Theorem 1.1.
At the outset we note that the natural ring homomorphism

(23) Λ→ Zp[G] ⊆ Qp[G] =
∏

χ

Qp(χ)

induces an isomorphism of perfect complexes of Zp[G]-modules

RΓ(Qp, T
∞
p )⊗L

Λ Zp[G] ∼= RΓ(Qp, Tp)

and hence also an isomorphism of determinants

Det−1
Λ RΓ(Qp, T

∞
p )⊗Λ Zp[G] ∼= Det−1

Zp[G]RΓ(Qp, Tp).

Taken in conjunction with Proposition 5.2, this shows that (β∞N0
⊗Λ 1, 1) is a

Zp[G]-basis of the graded module Det−1
Zp[G]RΓ(Qp, Tp). Hence, if we define an

element u of Qp[G]× by means of the equality

(24)
∏

ℓ|N0

eℓ(−Fr−1
ℓ ) ep(1−

Frp
pr

)−1e∗p(1− pr−1 Fr−1
p ) ẽxp((βN , 1))

= (u · β∞N0
⊗Λ 1, 1)

then it is clear that the equality (16) is valid if and only if u ∈ Zp[G]×.

6.1. The unit u′. To prove that the element u defined in (24) belongs to
Zp[G]× we will compare it to the unit described by the following result.

Lemma 6.1. There exists a unit u′ ∈ Zp[G]× such that for any integer k with

0 ≤ k ≤ ν and any Qp-rational character χ of G the element eχ(ζpkξ
Fr−kp
N0

) is
equal to




χ(u′)
∏
ℓ|N0,ℓ∤fχ

1
ℓ−1

∏
ℓ|N0

eℓ(−Fr−1
ℓ )eχζfχ , if k = ordp(fχ)

χ(u′)(−Fr−1
p )

∏
ℓ|N,ℓ∤fχ

1
ℓ−1

∏
ℓ|N0

eℓ(−Fr−1
ℓ )eχζfχ , if k = 1, ordp(fχ) = 0

0, otherwise.

Proof. For d | N0 and k ≥ 0 we set dk := pkd and

a(d) := (d, 1) ∈ (Z/pνZ)× × (Z/N0Z)× ∼= (Z/NZ)× ∼= G
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so that ζpkζ
Fr−kp
d = ζ

a(d)
dk

. Since ξN0
=
∑
N1|d|N0

ζd Lemma 6.2 below implies

(25) eχ(ζpkξ
Fr−kp
N0

) =
∑

N1|d|N0,fχ|dk

φ(fχ)

φ(dk)
µ(
dk
fχ

)χ−1(
dk
fχ

)χ(a(d))eχζfχ .

The only non-vanishing summands in (25) are those for which the quotient
dk/fχ is both square-free and prime to fχ. Given the nature of the summation
condition there is a unique such summand corresponding to

dk/fχ =

{∏
ℓ|N0,ℓ∤fχ

ℓ, if k = ordp(fχ)∏
ℓ|N,ℓ∤fχ ℓ, if k = 1 and ordp(fχ) = 0.

If neither of these conditions on k and ordp(fχ) is satisfied, then eχ(ζpkξ
Fr−kp
N0

) =
0. By using the multiplicativity of µ, φ and χ and the equalities µ(ℓ) = −1
and φ(ℓ) = ℓ− 1 we then compute that (25) is equal to





χ(a(dχ))
∏
ℓ|N0,ℓ∤fχ

(
1
ℓ−1

(
−χ−1(ℓ)

))
eχζfχ , if k = ordp(fχ)

χ(a(dχ))
∏
ℓ|N,ℓ∤fχ

(
1
ℓ−1

(
−χ−1(ℓ)

))
eχζfχ , if k = 1, ordp(fχ) = 0

0, otherwise

where dχ is the index of the unique nonvanishing summand in (25), i.e. dχ =
fχ,0

∏
ℓ|N0,ℓ∤fχ

ℓ with fχ,0 the prime to p-part of fχ. Now the element

u′ :=
∑

χ

χ
(
a(dχ)

)
eχ ∈ Qp[G]×

belongs to Zp[G]× by Lemma 4.5 (indeed the function d 7→ a(d) is multiplica-
tive, dχ = d(ordℓ(fχ)) is a function of ordℓ(fχ) only and satisfies d(0) = d(1)
as such). From here the explicit description of Lemma 6.1 follows because the
definition of eℓ ensures that

∏
ℓ|N0,ℓ∤fχ

(
−χ−1(ℓ)

)
=
∏
ℓ|N0

eℓ(−Fr−1
ℓ )eχ. �

Lemma 6.2. For any Q-rational (resp. Qp-rational) character χ of G ∼=
(Z/NZ)×, any d | N and any primitive d-th root of unity ζad we have

(26) eχζ
a
d =





0, if fχ ∤ d

φ(fχ)

φ(d)
µ(

d

fχ
)χ−1(

d

fχ
)χ(a)eχζfχ , if fχ | d

in K (resp. Kp). Here φ(m) is Euler’s φ-function, µ(m) is the Möbius function
and χ(m) = 0 if (m, fχ) > 1.

Proof. Recall that we view a Q-rational character χ as the tautological homo-
morphism G → A× → Q(χ)× to the field Q(χ) := eχA which is a direct ring
factor of A. Thus, any complex embedding j : Q(χ) → C induces a complex
character jχ = η : G → C×. We set b := N/d. Then under the C-linear map
σN : KC → C the element

(j eχ)ζad = eηζ
ab
N =

1

|G|
∑

g∈G
η(g−1)g ζabN =

1

φ(N)

∑

xmodN

η̄(x)ζxabN ∈ KC
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is sent to the general Gaussian sum φ(N)−1τ(η̄N |ζabN ) in the notation of Hasse
[22, §20.1]. By [22, §20.2.IV] we have

τ(η̄N |ζabN ) =

{
0, fη ∤ d
φ(N)
φ(d) µ( dfχ )η̄( dfχ )η(a)τ(η̄), fη | d

where the Gaussian sum τ(η) attached to the character η is as defined in (11).
For d = fχ and ζad = ζfχ we find τ(η̄) = φ(fχ)σN ((j eχ)ζfχ). This yields the
image of (26) under σN . Note that KC

∼=
∏
g∈G C via x 7→ (σNgx)g∈G and

both sides of (26) are multiplied by χ(g) after applying g. Since jχ(g) = η(g)
is a scalar and σN is C-linear we find that (26) holds in KC, hence in K, hence
also in Kp for all p. �

Given Lemma 6.1, our proof of Theorem 1.1 will be complete if we can show
that uu′ ∈ Zp[G]×. Recalling Lemma 4.5 it thus suffices to prove that for each
Qp-rational character χ one has

(27) χ(uu′) =
fr−1
χ,0

∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)

[Q(ζN0
) : Q(ζfχ,0)]

where fχ,0 denotes for the prime to p-part of fχ. (In this regard note that the
expression on the right hand side of (27) belongs to Z×p .)
We shall use explicit descent computations to prove that (27) is a consequence
of the definition of u in (24). To this end, for each Qp-character χ of G we
let qχ denote the kernel of the homomorphism Λ → Qp(χ) in (23). Then
qχ is a regular prime ideal of Λ and Λqχ is a discrete valuation ring with
residue field Qp(χ). To apply [17, Lem. 5.7] we need to describe a Λqχ-basis of

H1(Qp, T
∞
p )qχ and for this purpose we find it convenient to split the argument

into several different cases.

6.2. The case r > 1 or χ(Dp) 6= 1. In this subsection we shall prove (27)
for all characters χ except those which are trivial on Dp in the case that r = 1.
In particular, the material of this section completes the proof of Theorem 1.1
in the case r > 1.
We note first that if either r > 1 or χ(Dp) 6= 1, then qχ does not lie in the
support of either

∏
v|p Zp(r − 1) or

∏
v|p Zp(r). Hence, modulo the identifica-

tions made in Proposition 5.2, it follows from (19), (20) and (21) that β∞N0
is

a Λqχ-basis of H1(Qp, T
∞
p )qχ = (Det−1

Λ RΓ(Qp, T
∞
p ))qχ and that β∞N0

⊗Λqχ
1 is

equal to the image of β∞N0
under the composite map

H1(Qp, T
∞
p )qχ → H1(Qp, T

∞
p )qχ ⊗Λqχ

Qp(χ) ∼= H1(Kp,Qp(r))⊗Ap Qp(χ)

where the isomorphism is induced by the vanishing of H2(Qp, T
∞
p )qχ (cf. [17,

Lem. 5.7]).
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6.2.1. The descent diagram. By an obvious semi-local generalization of the
argument of [1, §2.3.2] there exists a commutative diagram of Λ-modules

(28)

Z̃(r − 1)
θPRr−−−−→ R

y Ξr,ν

y

H1(Kp,Qp(r))
(r−1)! exp←−−−−−− Kp

where ν = ordp(N) is as defined at the beginning of §5,

Ξr,ν(f) =





ν∑
k=1

prk−νfFr−kp (ζpk − 1) + p−ν(1− Frp
pr )−1f(0), ν ≥ 1

TrK(ζp)/K(Ξr,1(f)), ν = 0

is the map of [1, Lem. 2.2.2] and the choice of Frobenius element Frp ∈ G ∼=
GN0

× Gpν is that which acts trivially on p-power roots of unity. (We are
grateful to Laurent Berger for pointing out that the methods of [3] show that
the diagram (28) commutes even in the case p = 2.)
Now for f = β∞N0

= ξN0
(1 +X) this formula gives

Ξr,ν(β
∞
N0

) =





ν∑

k=1

prk−νζpk Fr−kp ξN0
+ p−ν

(
1− Frp

pr
)−1

ξN0
, ν ≥ 1

TrK(ζp)/K

(
pr−1ζp Fr−1

p +
1

p
(1− Frp

pr
)−1

)
ξN0

=

(
−pr−1 Fr−1

p +
p− 1

p
(1− Frp

pr
)−1

)
ξN0

=

(1− Frp
pr

)−1(1− pr−1 Fr−1
p )ξN0

, ν = 0.

In addition, since either r > 1 or χ(Dp) 6= 1, one has eχ exp = eχẽxp and so the
commutativity of (28) implies that the eχ-projection of the defining equality
(24) is equivalent to an equality in eχKp of the form

∏

ℓ|N0

eℓ(−Fr−1
ℓ ) ep(1−

Frp
pr

)−1ep(1− pr−1 Fr−1
p )eχβN(29)

=χ(u)(r − 1)!

(
ν∑

k=1

prk−νeχ(ζpkξ
Fr−kp
N0

) + p−ν
(

1− Frp
pr

)−1

eχξN0

)

if ν ≥ 1, resp.

(30)
∏

ℓ|N0

eℓ(−Fr−1
ℓ )eχβN = χ(u)(r − 1)!eχξN0

if ν = 0.
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6.2.2. The case ordp(fχ) > 0. In this case ν > 0 and ep(x)eχ = eχ for all
x ∈ A×p and so we may leave out all factors of the form ep(−) on the left
hand side of (29). In addition, Lemma 6.1 implies that the only non-vanishing
term in the summation on the right hand side of (29) is that corresponding to
k = ordp(fχ) and moreover that (29) is equivalent to an equality

eχβN = χ(uu′)(r − 1)!prk−ν
∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1
eχζfχ .

Now, since k = ordp(fχ) and ν = ordp(N), we have

prk−ν
∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1
=

[Q(ζN0
) : Q(ζfχ,0)]

fr−1
χ,0

∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)

fr−1
χ

[K : Q(ζfχ)]
.

To deduce the required equality (27) from the last two displayed formulas one
need only substitute the expression for eχβN given in Proposition 4.1.

6.2.3. The case ordp(fχ) = 0 and ν > 0. In this case Lemma 6.1 shows that
the only non-zero terms in the summation on the right hand side of (29) are
those which correspond to k = 0 and k = 1. Moreover, one has ep(x)eχ = xeχ
for x ∈ A×p . By Lemma 6.1, equation (29) is thus equivalent to

(31)

(
1− Frp

pr

)−1

(1− pr−1 Fr−1
p )eχβN =

χ(uu′)(r − 1)!
∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1

(
pr−ν

p− 1
(−Fr−1

p ) + p−ν
(

1− Frp
pr

)−1
)
eχζfχ .

But

pr−ν

p− 1
(−Fr−1

p ) + p−ν
(

1− Frp
pr

)−1

=
p−ν+1

p− 1

(
1− Frp

pr

)−1(
pr−1(−Fr−1

p )

(
1− Frp

pr

)
+
p− 1

p

)

=
1

φ(pν)

(
1− Frp

pr

)−1 (
1− pr−1 Fr−1

p

)

and so (31) implies that

eχβN = χ(uu′)(r − 1)!
1

φ(pν)

∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1
eχζfχ .

The required equality (27) follows from this in conjunction with the equality

1

φ(pν)

∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1
=

[Q(ζN0
) : Q(ζfχ,0)]

fr−1
χ,0

∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)

fr−1
χ

[K : Q(ζfχ)]

and the expression for eχβN given in Proposition 4.1.
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6.2.4. The case ν = ordp(N) = 0. In this case (27) results directly upon
substituting the formulas of Proposition 4.1 and Lemma 6.1 (with k = 0) into
(30).

6.3. The case r = 1 and χ(Dp) = 1. In this case qχ lies in the sup-
port of

∏
v|p Zp(r − 1) (but not of

∏
v|p Zp(r)) and β∞N0

is not a Λqχ-basis

of H1(Qp, T
∞
p )qχ . We fix a generator γ of Zp ∼= Gal(Q(ζNp∞)/K(ζp)) ⊆ GNp∞

and then define a uniformizer of Λqχ by setting

̟ := 1− γ.
The p-adic places of the fields K = Q(ζN0pν ) and Q(ζN0p∞) are in natural
bijection. We fix one such place v0 and set

η∞ := (1− ζpn)n≥1 ∈ lim←−
n

(Q(ζN0pn)×v0)/p
n

⊆ lim←−
n

∏

v|p
(Q(ζN0pn)×v )/pn = H1(Qp, T

∞
p ).

Then the image η̄∞ of η∞ in

H1(Qp, T
∞
p )qχ/̟ ⊆ H1(Kp,Qp(1))⊗Ap Qp(χ) =: H1(Kp,Qp(1))χ

coincides with that of p ∈ Q(ζN0
)×v0 and so is non-zero. In particular therefore,

η∞ is a Λqχ-basis of H1(Qp, T
∞
p )qχ . Now, by [17, Lem. 5.7] there is an exact

sequence

0→ H1(Qp, T
∞
p )qχ/̟ → H1(Kp,Qp(1))χ

β−→ H2(Kp,Qp(1))χ → 0

where β is the χ-projection of the composite homomorphism

H1(Kp,Qp(1)) ∼= K̂×p →
∏

v|p
Qp
∼= H2(Kp,Qp(1)); uv →

TrKv/Qp(logp(uv))

logp(χcyclo(γ))

(see [17, Lem. 5.8] and its proof). This exact sequence induces an isomorphism

φ̟ : Det−1
Qp(χ)RΓ(Qp, Vp)χ ∼= H1(Qp, T

∞
p )qχ/̟

and [17, Lem. 5.7] implies that, modulo the identifications made in Proposition
5.2, one has

(32) λ̄ · β∞N0
⊗Λqχ

1 = φ−1
̟ (η̄∞)

where the elements λ ∈ Λ×qχ and e ∈ Z are defined by the equality

(33) (θPR1 )−1
qχ

(λ · β∞N0
) = ̟eη∞ ∈ H1(Qp, T

∞
p )qχ

and λ̄ denotes the image of λ in Λqχ/̟. This description of η̄∞ implies that

val(η̄∞) = β(exp(eχb)),

where ‘val’ is the normalized valuation map which occurs in (14) and

b := |Dp|−1 logp(χcyclo(γ)) ∈ Qp ⊆ Kv0 ⊆
∏

v|p
Kv = Kp.
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Lemma 6.3. The element λ that is defined in (33) belongs to Λ and in
Q(ζN0

)p ∼=
∏
v|p Q(ζN0

)v one has

b = −|Dp|−1

(
1− 1

p

)−1

λ · ξN0
.

This formula uniquely determines the image λ̄ of λ in Qp(χ).

Proof. Since β∞N0
is a basis of the free rank one Λ-module R (by Lemma 5.1)

we have

(34) λ · β∞N0
= θPR1 ((η∞)̟)

for some element λ of Λ, which then also satisfies the condition (33).
The map θPR1 is described explicitly by (22). Further, with respect to the
system (ζpn)n≥1, the Coleman power series that is associated to the norm

compatible system of units (η∞)̟ = (η∞)(1−γ) is equal to

f(X) :=
X

(1 +X)χcyclo(γ) − 1
≡ χcyclo(γ)

−1 mod (X).

Thus, by computing constant terms in the power series identity (34) we obtain
equalities

λ · ξN0
= (1− φ

p
) log(f(X))

∣∣∣∣
X=0

= (1− 1

p
) logp(χcyclo(γ)

−1)

= −(1− 1

p
)|Dp|b

as required to finish the proof of the first sentence of the lemma. On the other
hand, the second sentence of the lemma is clear because ξN0

is a Qp[GN0
]-basis

of Q(ζN0
)p and Qp(χ) = Λqχ/̟ is a quotient of Qp[GN0

]. �

With ẽxp denoting the map in (15), the last lemma implies that

φ−1
̟ (η̄∞) = η̄∞ ∧ exp(eχb)⊗ β(exp(eχb))

−1

= − exp(eχb) ∧ η̄∞ ⊗ val(η̄∞)−1

= ẽxp(−eχb)

= ẽxp

(
|Dp|−1

(
1− 1

p

)−1

λ̄ · eχξN0

)
,

and hence, using (32), that
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ẽxp
−1

(β∞N0
⊗Λqχ

1)

=|Dp|−1(1− 1

p
)−1eχ(ξN0

)

=|Dp|−1(1− 1

p
)−1χ(u′)

∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1

∏

ℓ|N0

eℓ(−Fr−1
ℓ )eχζfχ

=|Dp|−1(1− 1

p
)−1χ(u′)

∏

ℓ|N0,ℓ∤fχ

1

ℓ− 1

∏

ℓ|N0

eℓ(−Fr−1
ℓ )[K : Q(ζfχ)]eχβN

=|Dp/Jp|−1(1− 1

p
)−1χ(u′)

[Q(ζN0
) : Q(ζfχ,0)]

fr−1
χ,0

∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)

∏

ℓ|N0

eℓ(−Fr−1
ℓ )eχβN

where the second equality follows from Lemma 6.1, the third from Proposition
4.1 and the fourth from the fact that r = 1, fχ = fχ,0 and

[K : Q(ζfχ)]

|Jp|
∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)
=

[Q(ζN0
) : Q(ζfχ,0)]

fr−1
χ,0

∏
ℓ|N0,ℓ∤fχ

(ℓ− 1)
.

The required equality (27) is now obtained by comparing the above formula

for ẽxp
−1

(β∞N0
⊗Λqχ

1) to the definition of u in (24).
This completes our proof of Theorem 1.1.

7. Some remarks concerning TΩloc(M,A)

In this section we prove two results that were used in the proof of Theorem
1.1 but which are most naturally formulated in a more general setting. In
particular, these results extend the computations made in [9, §5].
We henceforth fix notation as in §2. Thus, we stress, M is no longer assumed
to be a Tate motive and the (finite dimensional semisimple) Q-algebra A is not
assumed to be either commutative or a group ring.

7.1. The contribution from primes ℓ 6= p. We first recall the following
basic fact about the cohomology of the profinite group Ẑ (for distinction we

shall denote the canonical generator 1 ∈ Ẑ by σ). Let R be either a pro-p ring,
or a localization of such a ring, and let C be a perfect complex of R-modules
with a continuous action of Ẑ. Then

RΓ(Ẑ, C) ∼= Tot(C
1−σ−−−→ C)

is a perfect complex of R-modules where ‘Tot’ denotes the total complex of a
double complex. The identity map of C induces a morphism

idC,triv : 1R ∼= Det−1
R RΓ(Ẑ, C)

in V (R) which is functorial for exact triangles in the variable C and also com-
mutes with scalar extension.
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Proposition 7.1. For a prime number ℓ 6= p we let σℓ denote the Frobenius
automorphism in Gal(Qur

ℓ /Qℓ). If

θℓ-partp : 1Ap
∼= Det−1

Ap
RΓ(Qℓ, Vp)

denotes the morphism in V (Ap) which occurs in [9, (67)], then

DetAp(−σℓℓ−1|(Vp)Iℓ)−1 θℓ-partp

is induced by a morphism 1Ap
∼= Det−1

Ap
RΓ(Qℓ, Tp) in V (Ap).

Proof. Recall the exact triangle of complexes of Ap-modules

(35) RΓf (Qℓ, Vp)→ RΓ(Qℓ, Vp)→ RΓ/f (Qℓ, Vp)

from [9, (18)] as well as the isomorphism

AV : RΓ/f (Qℓ, Vp) ∼= RΓf (Qℓ, V
∗
p (1))∗[−2]

from [9, Lem. 12a)]. The triangle (35) is obtained by applying RΓ(Ẑ,−) to the
exact triangle

(36) H0(Iℓ, Vp)→ RΓ(Iℓ, Vp)→ H1(Iℓ, Vp)[−1]

together with the isomorphism

RΓ(Ẑ, RΓ(Iℓ, Vp)) ∼= RΓ(Qℓ, Vp).

According to the convention [9, (19)] the generator σ we use here is σ−1
ℓ . The

isomorphism AV is more explicitly given by the diagram

(Vp)Iℓ(−1)
1−σ−1

ℓ−−−−→ (Vp)Iℓ(−1)

‖
y−σℓ

(Vp)Iℓ(−1)
1−σℓ−−−−→ (Vp)Iℓ(−1)

y∼=
y∼=

((V ∗p )Iℓ(1))∗
1−σ−1

ℓ−−−−→ ((V ∗p )Iℓ(1))∗.

Note here that H1(Iℓ, Vp) is naturally isomorphic to (Vp)Iℓ(−1) and that in
the isomorphism ((V ∗p )Iℓ)∗ ∼= (Vp)Iℓ the first dual is the contragredient σℓ-
representation whereas the second is simply the dual. From this last diagram
we deduce

id(Vp)Iℓ (−1),triv = DetAp(−σℓℓ−1|(Vp)Iℓ) id((V ∗p )Iℓ (1))∗,triv

and by the discussion above with R = Ap the exact triangle (36) gives

id
V
Iℓ
p ,triv

⊗ id−1
(Vp)Iℓ (−1),triv = idRΓ(Iℓ,Vp),triv .

By the definition of [9, (67)] the morphism θℓ-part
p is induced by the triangle

(35), the isomorphism AV and the morphisms id
V
Iℓ
p ,triv

and id((V ∗p )Iℓ (1))∗,triv.

Hence
DetAp(−σℓℓ−1|(Vp)Iℓ)−1 θℓ-part

p
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is the scalar extension of the morphism idRΓ(Iℓ,Tp),triv in V (Ap) and this finishes
the proof of the Proposition. �

7.2. Artin-Verdier Duality. In this subsection we extend [9, Lem. 14] to
include the case p = 2 and hence resolve the issue raised in [9, Rem. 16].
Before stating the main result we recall that [9, (78)] defines a morphism in
V (Ap) of the form

(37) θ′p :


 ⊗

ℓ∈Sp,f
Det−1

Ap
RΓ(Qℓ, Vp)


⊗Ap Det−1

Ap
(Vp) ∼= Ap ⊗Ap Λp(S, Tp)

where

Λp(S, Tp) := DetAp C(Q, Tp)
with C(Q, Tp) a certain canonical perfect complex of Ap-modules (as occurs in
the diagram (39) below with E = Q).
We set

ǫVp := DetAp(2|V +
p )DetAp(2|V −p )−1 ∈ K1(Ap).

Proposition 7.2. The morphism ǫVp · θ′p is induced by a morphism in V (Ap)
of the form

(38)


 ⊗

ℓ∈Sp,f
Det−1

Ap
RΓ(Qℓ, Tp)


⊗Ap Det−1

Ap
(Tp) ∼= Λp(S, Tp).

The proof of this result will occupy the remainder of this subsection.
We note first that if p is odd, then ǫVp ∈ im(K1(Ap) → K1(Ap)) and so the
above claim is equivalent to asserting that θ′p itself is induced by a morphism
in V (Ap) of the form (38). Since this is precisely the statement of [9, Lem. 14]
we shall assume henceforth that p = 2.
Now if E is any number field, then [9, (81)] gives a true nine term diagram

(39)

L
v∈S∞

RΓ∆(Ev, T
∗
p (1))∗[−4]

L
v∈S∞

RΓ∆(Ev, T
∗
p (1))∗[−4]

??y α(E)

??y

R̃Γc(OE,Sp , T∗p (1))∗[−4] −→ 3L(Sp, Tp)[−1] −→ RΓc(OE,Sp , Tp)
??y

??y ‖

RΓc(OE,Sp , T∗p (1))∗[−4] −→ C(E, Tp) −→ RΓc(OE,Sp , Tp)

where the complex 3L(Sp, Tp) is endowed with a natural quasi-isomorphism

β(E) : 3L(Sp, Tp) ∼=
⊕

v∈Sp
RΓ(Ev, Tp).

To prove the Proposition we shall make an explicit study of the composite
morphism β(Q)◦α(Q). To do this we observe that if E is any Galois extension
of Q with group Γ, then (39), resp. β(E), is a true nine-term diagram, resp.
quasi-isomorphism, of complexes of Ap[Γ]-modules and the same arguments as

Documenta Mathematica · Extra Volume Coates (2006) 133–163



equivariant Tamagawa numbers 159

used in [8, Lem. 11] show that application of RHomZp[Γ](Zp,−) to (39), resp.
β(E), renders a diagram which is naturally isomorphic to the corresponding
diagram for E = Q, resp. a quasi-isomorphism which identifies naturally with
β(Q).
We now fix E to be an imaginary quadratic field and set Γ := Gal(E/Q) and
RΓTate(Ev,−) := RΓ(Ev,−) for each non-archimedean place v. Then for each
v0 ∈ S one has a natural morphism RΓTate(Ev0 ,−) → RΓ(Ev0 ,−) and we let
γv0(E) denote the following composite morphism in D(Ap[Γ])

RΓ∆(E∞, T
∗
p (1))∗[−3]

β(E)◦α(E)[1]−−−−−−−−→
⊕

v∈Sp
RΓ(Ev, Tp)→ RΓ(Ev0 , Tp).

Now if v0 is non-archimedean, then γv0(E) is equal to the composite

(40) RΓ∆(E∞, T
∗
p (1))∗[−3]→

⊕

v∈Sp
RΓTate(Ev, Tp)→ RΓ(Ev0 , Tp),

where the first arrow denotes the diagonal morphism in the following commu-
tative diagram in D(Ap[Γ])

RΓ∆(E∞, T
∗
p (1))∗[−3] −→ R̃Γc(OE,Sp , T∗p (1))∗[−3]

AV←−− RΓ(OE,Sp , Tp)

‖
??y

??y

RΓ∆(E∞, T
∗
p (1))∗[−3] −→ L

v∈Sp
RΓTate(Ev, T

∗
p (1))∗[−2]

⊕AVv←−−−−− L
v∈Sp

RΓTate(Ev, Tp)

in which the left, resp. right, hand square comes directly from the definition of
RΓ∆(E∞, T ∗p (1)) in [9, (80)], resp. from the compatibility of local and global
Artin-Verdier duality as in [9, Lem. 12]. Since (v0 is assumed for the moment
to be non-archimedean and) the image of the lower left hand arrow in this
diagram is contained in the summand RΓTate(E∞, T ∗p (1))∗[−2] it is therefore
clear that (40) is the zero morphism. Hence, there exists a natural isomorphism
in D(Ap[Γ]) of the form

C(E, Tp) ∼= C∞(E, Tp)[−1]⊕
⊕

v∈Sp,f
RΓ(Ev, Tp)[−1]

where C∞(E, Tp) is a complex which lies in an exact triangle in D(Ap[Γ]) of
the form

(41) RΓ∆(E∞, T
∗
p (1))∗[−3]

γ∞(E)−−−−→ RΓ(E∞, Tp)→ C∞(E, Tp)→ .

Now, via the canonical identifications RΓ∆(E∞, T ∗p (1))∗[−3] ∼= Tp(−1)[−3] and
RΓ(E∞, Tp) ∼= Tp[0], we may regard γ∞(E) as an element of

HomD(Ap[Γ])(Tp(−1)[−3], Tp[0]) ∼= Ext3Ap[Γ](Tp(−1), Tp).
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With respect to this identification, C∞(E, Tp) represents γ∞(E) viewed as a
Yoneda 3-extension and so can be obtained via a push-out diagram of Ap[Γ]-
modules of the form

(42)

0 −→ Tp −→ Tp[Γ]
1−c−−→ Tp[Γ]

1+c−−→ Tp[Γ] −→ Tp(−1) −→ 0

µ

y
y ‖ ‖ ‖

0 −→ Tp −→ Bµ −→ Tp[Γ]
1+c−−→ Tp[Γ] −→ Tp(−1) −→ 0.

Here we write c for the natural diagonal action of the generator τ of Gal(C/R),
the second arrow in the upper row is the map t 7→ t + τ(t) · γ where γ is
the generator of Γ and the fifth arrow in both rows is the map t + t′ · γ 7→
(t− τ(t′))⊗ ξ−1 with ξ := (ζpn)n≥1 (regarded as a generator of Zp(1)).
For any Ap[Γ]-module X the above diagram induces a commutative diagram
of the form

ExtiAp[Γ](Tp,X) −−−−→ Exti+3
Ap[Γ](Tp(−1),X)

µ∗,i
x ‖

ExtiAp[Γ](Tp,X) −−−−→ Exti+3
Ap[Γ](Tp(−1),X).

But C∞(E, Tp) belongs to Dperf(Ap[Γ]) (since the lower row of (39) belongs to
Dperf(Ap[Γ])) and so the projective dimension of the Ap[Γ]-module Bµ is finite
and therefore at most 1. This implies that the upper (resp. lower) horizontal
map in the last diagram is bijective for i ≥ 2 and surjective for i = 1 (resp.
bijective for i ≥ 1). The map µ∗,i is therefore bijective for each i ≥ 2 and
surjective for i = 1 and so a result of Holland [23, Th. 3.1] implies that there
exists an automorphism α ∈ AutAp[Γ](Tp) and a projective Ap[Γ]-module P
such that µ − α is equal to a composite of the form Tp → P → Tp. Now the
Γ-module

HomAp(Tp(−1), P ) ∼= HomAp(Tp(−1),Ap)⊗Ap P =: T ∗ ⊗Ap P

is cohomologically trivial (indeed, it suffices to check this for P = Ap[Γ] in
which case T ∗⊗Ap Ap[Γ] = T ∗⊗Zp Zp[Γ] ∼= Zp[Γ]d with d = rankZp(T

∗)) and so

Ext3Ap[Γ](Tp(−1), P ) ∼= H3(Γ,HomAp(Tp(−1), P )) = 0. In the diagram (42) we

may therefore assume that µ ∈ AutAp[Γ](Tp) and hence can use this diagram
to identify C∞(E, Tp) with the complex

Tp[Γ]
1−c−−→ Tp[Γ]

1+c−−→ Tp[Γ],

where the first term is placed in degree 0 (and the cohomology is computed via
the maps in upper row of (42)). Writing C∞(Tp) for the complex

Tp
1−c−−→ Tp

1+c−−→ Tp
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(where the first term is placed in degree 0), we may thus deduce the existence
of a composite isomorphism in D(Ap) of the form

C∞(Tp)[−1]⊕
⊕

ℓ∈Sp,f
RΓ(Qℓ, Tp)[−1]

∼=RHomZp[Γ](Zp, C∞(E, Tp)[−1]⊕
⊕

v∈Sp,f
RΓ(Ev, Tp)[−1])

∼=RHomZp[Γ](Zp, C(E, Tp))

∼=C(Q, Tp).

When taken in conjunction with the natural morphism

j(Tp) : DetAp C∞(Tp)[−1] = Det−1
Ap

(Tp)⊗Ap (DetAp(Tp)⊗Ap Det−1
Ap

(Tp))

∼= Det−1
Ap

(Tp)⊗Ap 1Ap = Det−1
Ap

(Tp)

the above composite isomorphism induces a morphism in V (Ap) of the form

θ′′p :


 ⊗

ℓ∈Sp,f
Det−1

Ap
RΓ(Qℓ, Tp)


⊗ApDet−1

Ap
(Tp) ∼= DetAp C(Q, Tp) =: Λp(S, Tp).

Now Ap ⊗Ap θ
′′
p differs from the morphism θ′p in (37) only in the following

respect: in place of Ap ⊗Ap j(Tp) the morphism θ′p involves the composite
morphism

j(Vp) : Ap ⊗Ap DetAp C∞(Tp)[−1] ∼=
Det−1

Ap
(Ap ⊗Ap H

0(C∞(Tp)))⊗Ap Det−1
Ap

(Ap ⊗Ap H
2(C∞(Tp)))

∼= Det−1
Ap
Vp

where the first morphism is the canonical ‘passage to cohomology’ map and the
second is induced by combining the isomorphisms Ap ⊗Ap H

0(C∞(Tp)) ∼= V +
p

and Ap ⊗Ap H
2(C∞(Tp)) ∼= Vp(−1)+ that are induced by the upper row of

(42) with the isomorphism V +
p ⊕Vp(−1)+ ∼= V +

p ⊕V −p = Vp (where the second

component of the first map sends each element v of Vp(−1)+ to v ⊗ ξ ∈ V −p ).
But the complex Ap ⊗Ap C∞(Tp) identifies with

V +
p ⊕ V −p

(0,2)−−−→ V +
p ⊕ V −p

(2,0)−−−→ V +
p ⊕ V −p

and so, by an explicit computation, one has Ap ⊗Ap j(Tp) = ǫVp · j(Vp) where

ǫVp := DetAp(2|V +
p )DetAp(2|V −p )−1 ∈ K1(Ap). The induced equality

Ap ⊗Ap θ
′′
p = ǫVp · θ′p

then completes the proof of the Proposition.

Documenta Mathematica · Extra Volume Coates (2006) 133–163



162 David Burns and Matthias Flach

References

[1] D. Benois and Th. N. Quang Do, La conjecture de Bloch et Kato pour

les motifs Q(m) sur un corps abélian, Ann. Sci. Éc. Norm. Sup. 35 (2002)
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[19] A. Fröhlich, Artin root numbers and normal integral bases for quaternion
fields, Inventiones Math. 17 (1972) 143-166.

[20] T. Fukaya and K. Kato, A formulation of conjectures on p-adic zeta func-
tions in non-commutative Iwasawa theory, Proc. St . Petersburg Math. Soc.
11 (2005).

[21] C. Greither, On Chinburg’s second conjecture for abelian fields, J. reine
angew. math. 479 (1996) 1-29.

[22] H. Hasse, Vorlesungen über Zahlentheorie, Grundl. der math. Wiss. 59,
Springer, Berlin 1964.

[23] D. Holland, Homological equivalences of modules and their projective in-
variants, J. London Math. Soc. 43 (1991) 396-411.

[24] J. Hooper, V. P. Snaith and M. van Tran, The second Chinburg conjecture
for quaternion fields, Mem. Amer. Math. Soc. 148 (2000).

[25] A. Huber and G. Kings, Bloch-Kato conjecture and main conjecture of
Iwasawa theory for Dirichlet characters, Duke. Math. J. 119 (2003) 393-
464.

[26] A. Huber and J. Wildeshaus, Classical Polylogarithms according to Beilin-
son and Deligne, Documenta Math. 3 (1998) 27-133.

[27] K. Kato, Lectures on the approach to Iwasawa theory of Hasse-Weil
L-functions via BdR, Part I, In: Arithmetical Algebraic Geometry (ed.
E.Ballico), Lecture Notes in Math. 1553 (1993) 50-163, Springer, New
York, 1993.

[28] K. Kato, Lectures on the approach to Iwasawa theory of Hasse-Weil L-
functions via BdR, Part II, preprint, 1993.

[29] F. Knudsen and D. Mumford, The projectivity of the moduli space of
stable curves I: Preliminaries on ‘det’ and ‘Div’, Math. Scand. 39 (1976)
19-55.
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1. Introduction

In the last few years there have been several significant developments in non-
commutative Iwasawa theory.
Firstly, in [11], Coates, Fukaya, Kato, Sujatha and the second named author
formulated a main conjecture for elliptic curves without complex multiplication.
More precisely, if F∞ is any Galois extension of a number field F which contains
the cyclotomic Zp-extension Fcyc of F and is such that Gal(F∞/F ) is a compact
p-adic Lie group with no non-trivial p-torsion, then Coates et al. formulated a
Gal(F∞/F )-equivariant main conjecture for any elliptic curve which is defined
over F , has good ordinary reduction at all places above p and whose Selmer
group (over F∞) satisfies a certain natural torsion condition.
Then, in [16], Fukaya and Kato formulated a natural main conjecture for any
compact p-adic Lie extension of F and any critical motive M which is defined
over F and has good ordinary reduction at all places above p.
The key feature of [11] is the use of the localization sequence of algebraic
K-theory with respect to a canonical Ore set. However, the more general ap-
proach of [16] is rather more involved and uses a notion of ‘localized K1-groups’
together with Nekovář’s theory of Selmer complexes and the (conjectural) ex-
istence of certain canonical p-adic L-functions. See [39] for a survey.
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The p-adic L-functions of Fukaya and Kato satisfy an interpolation formula
which involves both the ‘non-commutative Tamagawa number conjecture’ (this
is a natural refinement of the ‘equivariant Tamagawa number conjecture’ for-
mulated by Flach and the first named author in [7] and hence also implies the
‘main conjecture of non-abelian Iwasawa theory’ discussed by Huber and Kings
in [19]) as well as a local analogue of the non-commutative Tamagawa number
conjecture. Indeed, by these means, at each continuous finite dimensional p-
adic representation ρ of Gal(F∞/F ), the ‘value at ρ’ of the p-adic L-function
is explicitly related to the value at the central critical point of the complex
L-function associated to the ‘ρ∗-twist’ M(ρ∗) of M, where ρ∗ denotes the con-
tragredient of the representation ρ. However, if the Selmer module of M(ρ∗)
has strictly positive rank (and by a recent result of Mazur and Rubin [21],
which is itself equivalent to a special case of an earlier result of Nekovář [24,
Th. 10.7.17], this should often be the case), then both sides of the Fukaya-Kato
interpolation formula are equal to zero.
The main aim of the present article is therefore to extend the formalism of
Fukaya and Kato in order to obtain an interesting interpolation formula for
all representations ρ as above. To this end we shall introduce a notion of ‘the
leading term at ρ’ for elements of suitable localized K1-groups. This notion
is defined in terms of the Bockstein homomorphisms that have already played
significant roles (either implicitly or explicitly) in work of Perrin-Riou [27, 29],
of Schneider [34, 33, 32, 31] and of Greither and the first named author [9, 4]
and have been systematically incorporated into Nekovář’s theory of Selmer
complexes [24]. We then give two explicit applications of this approach in the
setting of extensions F∞/F with Fcyc ⊆ F∞. We show first that the ‘p-adic
Stark conjecture at s = 1’, as formulated by Serre [35] and interpreted by Tate
in [37], can be reinterpreted as providing interpolation formulas for the leading
terms of the global Zeta isomorphisms associated to certain Tate motives in
terms of the leading terms at s = 1 (in the classical sense) of the p-adic Artin
L-functions that are constructed by combining Brauer induction with the fun-
damental results of Deligne and Ribet and of Cassou-Nogués. We then also
prove an interpolation formula for the leading terms of the Fukaya-Kato p-adic
L-functions which involves the leading term at the central critical point of the
associated complex L-function, the Neron-Tate pairing and Nekovář’s p-adic
height pairing.
In a subsequent article we shall apply the approach developed here to describe
the leading terms of the ‘algebraic p-adic L-functions’ that are introduced by
the first named author in [5], and we shall use the resulting description to prove
that the main conjecture of Coates et al. for an extension F∞/F and an elliptic
curve E implies the equivariant Tamagawa number conjecture for the motive
h1(E)(1) at each finite degree subextension of F∞/F . We note that this result
provides a partial converse to the theorem of Fukaya and Kato which shows
that, under a natural torsion hypothesis on Selmer groups, the main conjecture
of Fukaya and Kato specialises to recover the main conjecture of Coates et al.
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The main contents of this article are as follows. In §2 we recall some basic
facts regarding (non-commutative) determinant functors and the localized K1-
groups of Fukaya and Kato. In §3 we discuss the formalism of Iwasawa theory
descent in the setting of localized K1-groups and we introduce a notion of the
leading terms at p-adic representations for the elements of such groups. We
explain how this formalism applies in the setting of the canonical Ore sets in-
troduced by Coates et al., we show that it can be interpreted as taking values
after ‘partial derivation in the cyclotomic direction’, and we use it to extend
several well known results concerning Generalized Euler-Poincaré characteris-
tics. In §4 we recall the ‘global Zeta isomorphisms’ that are conjectured to
exist by Fukaya and Kato, and in §5 we prove an interpolation formula for the
leading terms of the global Zeta isomorphisms that are associated to certain
Tate motives. Finally, in §6, we prove an interpolation formula for the leading
terms of the p-adic L-functions that are associated to certain critical motives.
We shall use the same notation as in [39].
It is clear that the recent developments in non-commutative Iwasawa theory
are due in large part to the energy, encouragement and inspiration of John
Coates. It is therefore a particular pleasure for us to dedicate this paper to
him on the occasion of his sixtieth birthday.
This collaboration was initiated during the conference held in Boston in June
2005 in recognition of the sixtieth birthday of Ralph Greenberg. The authors
are very grateful to the organizers of this conference for the opportunity to
attend such a stimulating meeting.

2. Preliminaries

2.1. Determinant functors. For any associative unital ring R we write
B(R) for the category of bounded (cohomological) complexes of (left) R-
modules, C(R) for the category of bounded (cohomological) complexes of
finitely generated (left) R-modules, P (R) for the category of finitely generated
projective (left) R-modules and Cp(R) for the category of bounded (cohomolog-
ical) complexes of finitely generated projective (left) R-modules. We also write
Dp(R) for the category of perfect complexes as full triangulated subcategory of
the bounded derived category Db(R) of (left) R-modules. We write (P (R), is),
(Cp(R), quasi) and (Dp(R), is) for the subcategories of isomorphisms in P (R),
quasi-isomorphisms in Cp(R) and isomorphisms in Dp(R) respectively.
For each complex C = (C•, d•C) and each integer r we define the r-fold shift

C[r] of C by setting C[r]i = Ci+r and diC[r] = (−1)rdi+rC for each integer i.

We recall that in [16, §1.2] Fukaya and Kato construct an explicit alternative
to the category of virtual objects that is used in [7]. Indeed, they construct
explicitly a category CR and a ‘determinant functor’

dR : (P (R), is)→ CR

which possess the following properties:
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a) CR has an associative and commutative product structure (M,N) 7→
M ·N (which we often write more simply as MN) with canonical unit
object 1R = dR(0). If P is any object of P (R), then in CR the object
dR(P ) has a canonical inverse dR(P )−1. Every object of CR is of the
form dR(P ) · dR(Q)−1 for suitable objects P and Q of P (R);

b) All morphisms in CR are isomorphisms and elements of the form dR(P )
and dR(Q) are isomorphic in CR if and only if P and Q correspond to
the same element of the Grothendieck group K0(R). There is a natural
identification AutCR(1R) ∼= K1(R) and if MorCR(M,N) is non-empty,
then it is a K1(R)-torsor where each element α of K1(R) ∼= AutCR(1R)

acts on φ ∈ MorCR(M,N) to give αφ : M = 1R ·M α·φ−−→ 1R ·N = N ;
c) dR preserves the product structure: specifically, for each P and Q in

P (R) one has dR(P ⊕Q) = dR(P ) · dR(Q).

The functor dR can be extended to give a functor

dR : (Cp(R), quasi)→ CR
in the following way: for each C ∈ Cp(R) one sets

dR(C) := dR(
⊕

i∈Z

C2i)dR(
⊕

i∈Z

C2i+1)−1.

This extended functor then has the following properties for all objects C,C ′

and C ′′ of Cp(R):

d) If 0 → C ′ → C → C ′′ → 0 is a short exact sequence in Cp(R), then
there exists a canonical morphism in CR of the form

dR(C) ∼= dR(C ′)dR(C ′′),

which we take to be an identification;
e) If C is acyclic, then the quasi-isomorphism 0→ C induces a canonical

morphism in CR of the form

1R = dR(0)→ dR(C);

f) For any integer r there exists a canonical morphism dR(C[r]) ∼=
dR(C)(−1)r in CR which we take to be an identification;

g) The functor dR factorizes through the image of Cp(R) in Dp(R) and
extends (uniquely up to unique isomorphism) to give a functor

dR : (Dp(R), is)→ CR.
h) For each C ∈ Db(R) we write H(C) for the complex with H(C)i =

Hi(C) in each degree i and in which all differentials are 0. If H(C)
belongs to Dp(R) (in which case we shall say that C is cohomologically
perfect), then there are canonical morphisms in CR of the form

dR(C) ∼= dR(H(C)) ∼=
∏

i∈Z

dR(Hi(C))(−1)i ;
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i) If R′ is any other (associative unital) ring and Y is an (R′, R)-bimodule
that is both finitely generated and projective as a left R′-module, then
the functor Y ⊗R − : P (R)→ P (R′) extends to give a diagram

(Dp(R), is)
dR−−−−→ CR

Y⊗L
R−
y

yY⊗R−

(Dp(R′), is)
dR′−−−−→ CR′

which commutes (up to canonical isomorphism). In particular, if R→
R′ is any ring homomorphism and C ∈ Dp(R), then we often write
dR(C)R′ in place of R′ ⊗R dR(C).

Remark 2.1. Unless R is a regular ring, property d) does not extend to ar-
bitrary exact triangles in Dp(R). In general therefore all constructions in the
sequel which involve complexes must be made in such a way to avoid this
problem (nevertheless, we suppress any explicit discussion of this issue in the
present manuscript and simply refer the reader to [7] for details as to how this
problem can be overcome). The second displayed morphism in h) is induced
by the properties d) and f). However, whilst a precise description of the first
morphism in h) is important for the purposes of explicit computations, it is
actually rather difficult to find in the literature. Here we use the description
given by Knudsen in [20, §3].

Remark 2.2. In the sequel we will have to distinguish between two inverses of a
morphism φ : C → D with C,D ∈ CR. The inverse with respect to composition
will be denoted by φ : D → C while

φ−1 := idD−1 · φ · idC−1 : C−1 → D−1

is the unique isomorphism such that φ · φ−1 = id1R under the identification
X · X−1 = 1R for both X = C and X = D. If D = C, then φ : C →
C corresponds uniquely to an element of K1(R) ∼= AutCR(1R) by the rule
φ · idC−1 : 1R → 1R. Under this identification φ and φ−1 agree in K1(R) and
are inverse to φ. Furthermore, the following relation between ◦ and · is easily
verified: if φ : A → B and ψ : B → C are morphisms in CR, then one has
ψ ◦ φ = ψ · φ · idB−1 .

We shall use the following

Convention: If φ : 1 → A is a morphism and B an object in CR, then we

write B
· φ // B ·A for the morphism idB · φ. In particular, any morphism

B
φ // A can be written as B

· (idB−1 · φ)
// A .

Remark 2.3. In this remark we let C denote the complex P0
φ→ P1, in which

the first term is placed in degree 0 and P0 = P1 = P . Then, by definition, one

has dR(C)
def

1R . However, if φ is an isomorphism (so C is acyclic), then
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by property e) there is also a canonical morphism 1R
acyc// dR(C) . This latter

morphism coincides with the composite

1R dR(P1)dR(P1)
−1
dR(φ)−1·id

dR(P1)−1
// dR(P0)dR(P1)

−1 dR(C)

and thus depends on φ. Indeed, Remark 2.2 shows that the composite mor-
phism

1R
acyc// dR(C)

def
1R

corresponds to the element dR(φ)−1 of K1(R). Thus, in order to distinguish
between the above identifications of 1R with dR(C), we shall say that C is

trivialized by the identity when using either dR(C)
def

1R or its inverse with

respect to composition.

Remark 2.4. Let O = OL be the valuation ring of a finite extension L of Qp

and A a finite O-module. Then for any morphism in CO of the form a : 1O →
dO(A), and in particular therefore for that induced by any exact sequence of
O-modules of the form 0 // On // On // A // 0 , we obtain a canonical

element c = c(a) ∈ L× ∼= AutCL(1L) by means of the composite

1L
aL // L⊗O dO(A) dL(L⊗O A)

acyc // 1L

where the map ’acyc’ is induced by property e). As an immediate consequence
of the elementary divisor theorem one checks that ordL(c) = lengthO(A).

2.2. The localized K1-group. In [16, §1.3] a localized K1-group is defined
for any full subcategory Σ of Cp(R) which satisfies the following four conditions:

(i) 0 ∈ Σ,
(ii) if C,C ′ are in Cp(R) and C is quasi-isomorphic to C ′, then C ∈ Σ ⇔

C ′ ∈ Σ,
(iii) if C ∈ Σ, then C[n] ∈ Σ for all n ∈ Z,
(iv) if 0 → C ′ → C → C ′′ → 0 is an exact sequence in Cp(R) with both

C ′ ∈ Σ and C ′′ ∈ Σ, then C ∈ Σ.

Since we want to apply the same construction to a subcategory which is not
necessarily closed under extensions, we weaken the last condition to

(iv′) if C ′ and C ′′ belong to Σ, then C ′ ⊕ C ′′ belongs to Σ.

Definition 2.5. (Fukaya and Kato) Let Σ be any full subcategory of Cp(R)
which satisfies the conditions (i), (ii), (iii) and (iv′). Then the localized K1-
group K1(R,Σ) is defined to be the (multiplicatively written) abelian group
which has as generators all symbols of the form [C, a] where C ∈ Σ and a is a
morphism 1R → dR(C) in CR, and as relations

(0) [0, id1R ] = 1,
(1) [C ′,dR(f) ◦ a] = [C, a] if f : C → C ′ is a quasi-isomorphism with C

(and thus also C ′) in Σ,
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(2) if 0→ C ′ → C → C ′′ → 0 is an exact sequence in Σ, then

[C, a] = [C ′, a′] · [C ′′, a′′]
where a is the composite of a′ · a′′ with the isomorphism induced by
property d),

(3) [C[1], a−1] = [C, a]−1.

Remark 2.6. Relation (3) is a simple consequence of the relations (0), (1) and
(2). Note also that this definition of K1(R,Σ) makes no use of the conditions
(iii) and (iv′) that the category Σ is assumed to satisfy. In particular, if Σ
satisfies (iv) (rather than only (iv′)), then the above definition coincides with
that given by Fukaya and Kato. We shall often refer to a morphism in CR of
the form a : 1R → dR(C) or a : dR(C)→ 1R as a trivialization (of C).

We now assume to be given a left denominator set S of R and we let
RS := S−1R denote the corresponding localization and ΣS the full subcat-
egory of Cp(R) consisting of all complexes C such that RS ⊗R C is acyclic.
For any C ∈ ΣS and any morphism a : 1R → dR(C) in CR we write θC,a for
the element of K1(RS) which corresponds under the canonical isomorphism
K1(RS) ∼= AutCRS (1RS ) to the composite

(1) 1RS −→ dRS (RS ⊗R C)→ 1RS

where the first arrow is induced by a and the second by the fact that RS ⊗R C
is acyclic. Then it can be shown that the assignment [C, a] 7→ θC,a induces an
isomorphism of groups

chR,ΣS : K1(R,ΣS) ∼= K1(RS)

(cf. [16, Prop. 1.3.7]). Hence, if Σ is any subcategory of ΣS we also obtain a
composite homomorphism

chR,Σ : K1(R,Σ)→ K1(R,ΣS) ∼= K1(RS).

In particular, we shall often use this construction in the following case: C is
a fixed object of Dp(R) which is such that RS ⊗R C is acyclic and Σ denotes
the smallest full subcategory ΣC of Cp(R) which contains all objects of Cp(R)
that are isomorphic in Dp(R) to C and also satisfies the conditions (i), (ii),
(iii) and (iv) that are described above. (With this definition, it is easily seen
that ΣC ⊂ ΣS).

3. Leading terms

In this section we define a notion of the leading term at a continuous finite
dimensional p-adic representation of elements of suitable localized K1-groups.
To do this we introduce an appropriate ‘semisimplicity’ hypothesis and use
a natural construction of Bockstein homomorphisms. We also discuss several
alternative characterizations of this notion. We explain how this formalism
applies in the context of the canonical localizations introduced in [11] and
we use it to extend several well known results concerning Generalized Euler-
Poincaré characteristics.
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3.1. Bockstein homomorphisms. Let G be a compact p-adic Lie group
which contains a closed normal subgroup H such that the quotient group
Γ := G/H is topologically isomorphic to Zp. We fix a topological generator
γ of Γ and denote by

θ ∈ H1(G,Zp) = Homcont(G,Zp)

the unique homomorphism G ։ Γ → Zp which sends γ to 1. We write Λ(G)

for the Iwasawa algebra of G. Then, since H1(G,Zp) ∼= Ext1Λ(G)(Zp,Zp) by

[25, Prop. 5.2.14], the element θ corresponds to a canonical extension of Λ(G)-
modules of the form

(2) 0→ Zp → Eθ → Zp → 0.

Indeed, one has Eθ = Z2
p upon which G acts via the matrix

(
1 θ
0 1

)
.

For any A• in B(Λ(G)) we endow the complex A• ⊗Zp Eθ with the natural
diagonal G-action. Then (2) induces an exact sequence in B(Λ(G)) of the form

0→ A• → A• ⊗Zp Eθ → A• → 0.

This sequence in turn induces a ‘cup-product’ morphism in Db(Λ(G)) of the
form

(3) A•
θ−→ A•[1].

It is clear that this morphism depends upon the choice of γ, but nevertheless
we continue to denote it simply by θ.
We now let ρ : G→ GLn(O) be a (continuous) representation ofG on Tρ := On,
where O = OL denotes the valuation ring of a finite extension L of Qp. Then
in the sequel we are mainly interested in the morphism

On ⊗L
Λ(G) A

• θ∗−→ On ⊗L
Λ(G) A

•[1]

that is induced by (3), where we consider On as a right Λ(G)-module via the
transpose ρt of ρ. In particular, in each degree i we shall refer to the induced
homomorphism

Bi : Tor
Λ(G)
i (Tρ, A

•)→ Tor
Λ(G)
i−1 (Tρ, A

•)

of hyper-tor groups

Tor
Λ(G)
i (Tρ, A

•) := H−i(On ⊗L
Λ(G) A

•)

as the Bockstein homomorphism (in degree i) of (A•, Tρ, γ).

3.2. The case G = Γ. In this section we consider the case G = Γ and take
the trivial Γ-module Zp for ρ. We set T := γ − 1 ∈ Λ(Γ).
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3.2.1. Bockstein homomorphisms. For any complex A• ∈ B(Λ(Γ)) it is clear
that the canonical short exact sequence

0→ Λ(Γ)
×T−−→ Λ(Γ)→ Zp → 0

induces an exact triangle in Db(Λ(Γ)) of the form

(4) A•
×T−−→ A• → Zp ⊗L

Λ(Γ) A
• → A•[1].

However, in order to be as concrete as possible, we choose to describe this
result on the level of complexes. To this end we fix the following definition of
the mapping cone of a morphism f : A• → B• of complexes:

cone(f) := B• ⊕A•[1],

with differential in degree i equal to

dicone(f) :=

(
diB• f i

0 −di+1
A•

)
: Bi ⊕Ai+1 → Bi+1 ⊕Ai+2.

If A• is a bounded complex of projective Λ(Γ)-modules, then we set

cone(A•) := cone(A•
T−→ A•)

and
A•0 := Zp ⊗Λ(Γ) A

•.

In any such case there exists a morphism of complexes π : cone(A•) → A•0 of
the form

−−−−→ Ai−1 ⊕Ai di−1
cone−−−−→ Ai ⊕Ai+1 dicone−−−−→ Ai+1 ⊕Ai+2 di+1

cone−−−−→

πi−1

y πi

y πi+1

y

−−−−→ Ai−1
0

di−1

A•0−−−−→ Ai0
di
A•0−−−−→ A0

i+1
di+1

A•0−−−−→
where, in each degree i, πi sends (a, b) ∈ Ai ⊕ Ai+1 to the image of a in
Zp ⊗Λ(Γ) A

i = Ai0. It is easy to check that π is a quasi-isomorphism.
Now from (4) we obtain short exact sequences

(5) 0→ Hi(A•)Γ → H−i(Γ, A•)→ Hi+1(A•)Γ → 0

where
Hi(Γ, A

•) := Tor
Λ(Γ)
i (Zp, A•)

denotes the hyper-homology of A• (with respect to Γ) and for any Λ(Γ)-module
M we write MΓ = M/TM and MΓ = TM (= kernel of multiplication by T )
for the maximal quotient module, resp. submodule, of M upon which Γ acts
trivially.

Lemma 3.1. Let A• be a bounded complex of projective Λ(Γ)-modules. Then in
each degree i the Bockstein homomorphism of the triple (A•,Zp, γ) coincides
with the composite

Hi(Γ, A
•)→ H−i+1(A•)Γ

κ−i+1(A•)−−−−−−−→ H−i+1(A•)Γ → Hi−1(Γ, A
•)
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where the first and third arrows are as in (5) and κ−i+1(A•) denotes the tau-
tological homomorphism

H−i+1(A•)Γ →֒ H−i+1(A•) ։ H−i+1(A•)Γ.

Proof. As is shown by Rapoport and Zink in [30, Lem. 1.2], on the level of
complexes the cup product morphism of the triple (A•,Zp, γ) is described by
the morphism

θ : cone(A•)→ cone(A•)[1]

which sends (a, b) ∈ Ai⊕Ai+1 to (b, 0) ∈ Ai+1⊕Ai+2. Now let ā be in ker(d−iA•0 )

representing a class in Hi(Γ, A
•). Then there exists (a, b) ∈ ker(d−icone) with

π−i((a, b)) = ā. Since (a, b) ∈ ker(d−icone) one has b ∈ ker(di+1
A• ) and Tb =

−diA•(a). This implies that diA•(a) is divisible by T (in Ai+1) and also that
b = −T−1diA•(a) ∈ Ai+1. Thus θ maps (a, b) to (−T−1diA•(a), 0) and the

class in Hi−1(Γ, A
•) is represented by −T−1diA•(a) ∈ ker(d−i+1

A•0
). By using the

canonical short exact sequence

0→ A• → cone(A•)→ A•[1]→ 0

one immediately verifies that Bi coincides with the composite homomorphism
described in the lemma. �

From this description it is clear that for any bounded complex of projective
Λ(Γ)-modules A• the pair

(6) (Hi(Γ, A
•),Bi)

forms a homological complex (which, by re-indexing, we shall consider as coho-
mological complex whenever convenient). It is also clear that this construction
extends in a well-defined fashion to objects A• of Dp(Λ(Γ)).

3.2.2. Semisimplicity.

Definition 3.2. (Semisimplicity) For any A• ∈ Dp(Λ(Γ)) we set

rΓ(A•) :=
∑

i∈Z

(−1)i+1 dimQp(H
i(A•)Γ ⊗Zp Qp) ∈ Z.

We say that a complex A• ∈ Dp(Λ(Γ)) is semisimple if the cohomology of the
associated complex (6) is Zp-torsion (and hence finite) in all degrees. We let
Σss denote the full subcategory of Cp(Λ(Γ)) consisting of those complexes that
are semisimple.

Remark 3.3. (i) If A• ∈ Dp(Λ(Γ)) is semisimple, then the cohomology of A•

is a torsion Λ(Γ)-module in all degrees.
(ii) In each degree i Lemma 3.1 gives rise to a canonical exact sequence

0→ cok(κ−i(A•))→ ker(Bi)/im(Bi+1)→ ker(κ−i+1(A•))→ 0.
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This implies that a complex A• ∈ Dp(Λ(Γ)) is semisimple if and only if the
homomorphism κi(A•)⊗Zp Qp is bijective in each degree i, and hence also that
in any such case one has

rΓ(A•) =
∑

i∈Z

(−1)i+1 dimQp(H
i(A•)Γ ⊗Zp Qp).

Definition 3.4. (The canonical trivialization) For each A• ∈ Db(Λ(Γ)) we
write (H•(Γ, A•), 0) for the complex with (H•(Γ, A•), 0)i = Hi(Γ, A

•) in each
degree i and in which all differentials are the zero map. In particular, if A• ∈
Σss, then we obtain a canonical composite morphism

(7) t(A•) : dZp(Zp ⊗Λ(Γ) A
•)Qp

∼= dZp((H•(Γ, A
•), 0))Qp

= dZp((H•(Γ, A
•),B•))Qp

∼= 1Qp

where the first, resp. last, morphism uses property h) (in §2.1) for the functor
dZp , resp. property i) for the natural homomorphism Zp → Qp and then
property e) for the functor dQp .

Remark 3.5. If the complex Qp⊗Λ(Γ) A
• is acyclic, then t(A•) coincides with

the trivialization obtained by directly applying property e) to Qp ⊗Λ(Γ) A
•.

The category Σss satisfies the conditions (i), (ii), (iii) and (iv′) that are de-
scribed in §2 (but does not satisfy condition (iv)). In addition, as the following
result shows, the above constructions behave well on short exact sequences of
semisimple complexes.

Lemma 3.6. Let A•, B• and C• be objects of Σss which together lie in a short
exact sequence in Cp(Λ(Γ)) of the form

0→ A• → B• → C• → 0.

Then one has

rΓ(B•) = rΓ(A•) + rΓ(C•)

and, with respect to the canonical morphism

dZp(Zp ⊗Λ(Γ) B
•)Qp

∼= dZp(Zp ⊗Λ(Γ) A
•)Qp · dZp(Zp ⊗Λ(Γ) C

•)Qp

that is induced by the given short exact sequence, one has

t(B•) = t(A•) · t(C•).

Proof. We let p denote the kernel of the augmentation map Λ(Γ) → Zp and
R the localization Λ(Γ)p of Λ(Γ) at p. Then R is a discrete valuation ring
with uniformizer T and residue class field R/(T ) naturally isomorphic to Qp.
Further, if a complex K• ∈ Dp(Λ(Γ)) is semisimple, then the structure theory
of finitely generated Λ(Γ)-modules implies that in each degree i the R-module
Hi(K•p) is isomorphic to a direct sum of (finitely many) copies of R/(T ) and

hence also to Qp ⊗Zp H
i(K•)Γ ∼= Qp ⊗Zp H

i(K•)Γ.
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To prove the claimed equality rΓ(B•) = rΓ(A•)+ rΓ(C•) it is therefore enough
to take dimensions over Qp

∼= R/(T ) in the long exact cohomology sequence of
the following short exact sequence in Cp(R)

(8) 0→ A•p → B•p → C•p → 0.

To prove the second claim we note that if K• ∈ Cp(Λ(Γ)), then the complex
K•0,p := Qp ⊗Λ(Γ) K

• is isomorphic in Dp(Qp) to Qp ⊗RK•p . Hence, since each
term of C•p is a projective R-module, the short exact sequence (8) gives rise to
a short exact sequence in Cp(Qp) of the form

(9) 0→ A•0,p → B•0,p → C•0,p → 0.

Now one has a commutative diagram in CQp

dQp(B
•
0,p) −−−−→ dQp(A

•
0,p)dQp(C

•
0,p)y

y

dQp(H(B•0,p)) −−−−→ dQp(H(A•0,p))dQp(H(C•0,p))

in which the upper, resp. lower, horizontal morphism is induced by (9), resp, by
the long exact cohomology sequence of (9), and both vertical arrows are induced
by applying property h) of dQp in §2.1. (For a proof of the commutativity of the
above diagram see [2, Thm. 3.3].) Further, in this situation the exact sequences
(5) induce short exact sequences 0 → Hi(A•p) → Hi(A•0,p) → Hi+1(A•p) → 0
(and similarly for B• and C•) which together lie in a short exact sequence of
long exact sequences

0 0 0 0
y

y
y

y

−→ Hi(A•p) −→ Hi(B•p) −→ Hi(C•p) −→ Hi+1(A•p) −→y
y

y
y

−→ Hi(A•0,p) −→ Hi(B•0,p) −→ Hi(C•0,p) −→ Hi+1(A•0,p) −→y
y

y
y

−→ Hi+1(A•p) −→ Hi+1(B•p) −→ Hi+1(C•p) −→ Hi+2(A•p) −→y
y

y
y

0 0 0 0

where the upper and lower, resp. central, row is the exact cohomology sequence
of (8), resp. (9). It is now a straightforward exercise to derive the required
equality t(B•) = t(A•) · t(C•) from the commutativity of both of the above
diagrams. �
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3.2.3. Leading terms. We write ρtriv for the trivial representation of Γ.

Definition 3.7. (The leading term) For each A• ∈ Σss and each morphism
a : 1Λ(Γ) → dΛ(Γ)(A

•) in CΛ(Γ) we define the leading term (A•, a)∗(ρtriv) of the

pair (A•, a) at ρtriv to be equal to (−1)rΓ(A•) times the element of Qp\{0} which
corresponds via the canonical isomorphisms Q×p ∼= K1(Qp) ∼= AutCQp

(1Qp) to
the composite morphism

1Qp

Qp⊗Λ(Γ)a−−−−−−→ dZp(Zp ⊗Λ(Γ) A
•)Qp

t(A•)−−−→ 1Qp .

After taking Lemma 3.6 into account, it can be shown that this construction
induces a well defined homomorphism of groups

(−)∗(ρtriv) : K1(Λ(Γ),Σss)→ Q×p
[A•, a] 7→ [A•, a]∗(ρtriv) := (A•, a)∗(ρtriv).

In particular therefore, (property g) of the functor dΛ(Γ) combines with re-
lation (1) in the definition of K1(Λ(Γ),Σss) to imply that) the notation
[A•, a]∗(ρtriv) extends in a well-defined fashion to pairs of the form (A•, a)
where A• ∈ Dp(Λ(Γ)) is semisimple and a is a morphism in CΛ(Γ) of the form
1Λ(Γ) → dΛ(Γ)(A

•).

The reason for the occurrence of ρtriv in the above definition will become clear
in the next subsection. In the remainder of the current section we justify the
name ‘leading term’ by explaining the connection between (A•, a)∗(ρtriv) and
the leading term (in the usual sense) of an appropriate characteristic power
series.
To this end we note that Remark 3.3(i) implies that Σss is a subcategory of
the full subcategory of Cp(Λ(Γ)) consisting of those complexes C for which
Q(Γ) ⊗Λ(Γ) C is acyclic, where we write Q(Γ) for the quotient field of Λ(Γ).
Hence there exists a homomorphism

chΓ := chΛ(Γ),Σss
: K1(Λ(Γ),Σss)→ K1(Q(Γ)) ∼= Q(Γ)×.

Now the identification between Λ(Γ) and the power series ring Zp[[T ]] (which,
of course, depends on the choice of T = γ − 1) allows any element F of Q(Γ)×

to be written uniquely as

(10) F (T ) = T rG(T )

with r = r(F ) ∈ Z and G(T ) ∈ Q(Γ) such that G(0) ∈ Q×p . The leading
coefficient of F with respect to its expansion in the Laurent series ring Qp{{T}}
is therefore equal to F ∗(0) := G(0).

Proposition 3.8. Let A• be any object of Dp(Λ(Γ)) which is semisimple and
a any morphism in CΛ(Γ) of the form 1Λ(Γ) → dΛ(Γ)(A

•).

(i) (Order of vanishing) For L := [A•, a] one has r(chΓ(L)) = rΓ(A•).
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(ii) (Leading terms) One has a commutative diagram of abelian groups

K1(Λ(Γ),Σss)
chΓ−−−−→ K1(Q(Γ))

(−)∗(ρtriv)

y
y(−)∗(0)

Q×p Q×p .

Proof. We use the localization R of Λ(Γ) that was introduced in the proof of
Lemma 3.6.
It is easy to see that both of the homomorphisms (−)∗(ρtriv) and chΓ factor
via the flat base change R ⊗Λ(Γ) − through K1(R,Ξ), where Ξ denotes the
full subcategory of Cp(R) consisting of those complexes K• with the property
that in each degree i the R-module Hi(K•) is isomorphic to a direct sum of
(finitely many) copies of R/(T ). Thus it suffices to show the commutativity
of the above diagram with K1(Λ(Γ),Σss) replaced by K1(R,Ξ). Moreover, by
Lemma 3.9 below this is reduced to the case where A• is a complex of the form

R
d−→ R where R occurs in degrees −1 and 0 and d denotes multiplication by

either T or 1. Further, since the complex R
×1−−→ R is acyclic we shall therefore

assume that d denotes multiplication by T .
Now MorCR(1R,dR(A•)) is a K1(R)-torsor and so all possible trivializations
arise in the following way: if ǫ is any fixed element of R×, then the R-module
homomorphism R → A−1, resp. R → A0, that sends 1 ∈ R to 1 ∈ R, resp. to
ǫ ∈ R, induces a morphism can1 : dR(R) → dR(A−1), resp. canǫ : dR(R) →
dR(A0), in CR, and hence also a morphism aǫ := (can1)

−1·canǫ : 1R → dR(A•).
Setting Lǫ := [A•, aǫ] ∈ K1(R,Ξ), one checks easily that chΓ(Lǫ) = T−1ǫ and
thus chΓ(Lǫ)∗(0) = ǫ(0). On the other hand, the Bockstein homomorphism B1

of the triple (A•, R/(T ), γ) is equal to Qp
−1−−→ Qp as one checks by using the

description given in the proof of Lemma 3.1. Thus L∗ǫ (ρtriv) is, by definition,

equal to (−1)rΓ(A•) times the determinant of

Qp
ǫ(0)−−→ Qp

(B1)
−1=−1−−−−−−−−→ Qp

1−→ Qp.

Hence, observing that rΓ(A•) = −1 = r(chΓ(Lǫ)), we have L∗ǫ (ρtriv) = ǫ(0) =
chΓ(Lǫ)∗(0). This proves both claims of the Proposition. �

Lemma 3.9. Let R be a discrete valuation ring with uniformizer T and assume
that A• ∈ Cp(R) is such that in each degree i the R-module Hi(A•) is annihi-
lated by T . Then A• is isomorphic in Cp(R) to the direct sum of finitely many
complexes of the form R → R where the differential is equal to multiplication
by either 1 or T.

Proof. Assume that m is the maximal degree such that Am 6= 0 and fix an
isomorphism D : Rd ∼= Am. Let (e1, . . . , ed) be the standard basis of Rd. Then,
by assumption, for each integer i with 1 ≤ i ≤ d, one has Tei ∈ im(D−1◦dm−1).
For each such i we set hi := 1 if ei ∈ im(D−1 ◦ dm−1) and, otherwise, we set
hi := T . We write H for the diagonal d × d-matrix with entries h1, . . . , hd.
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Then, since the image of the map Rd
H−→ Rd is equal to im(D−1 ◦ dm−1), there

exists a retraction E : Rd −→ Am−1 (i.e. with left inverse ‘H−1 ◦D−1 ◦ dm−1’)
that makes the following diagram commutative

−−−−→ 0 −−−−→ Rd
H−−−−→ Rd −−−−→ 0 −−−−→

y E

y D

y
y

−−−−→ Am−2 dm−2

−−−−→ Am−1 dm−1

−−−−→ Am
dm−−−−→ 0 −−−−→ .

Now if B• denotes the upper row of this diagram and C• := A•/B• the asso-
ciated quotient complex (not the mapping cone!), then one checks readily that
there exists a split exact sequence 0→ B• → A• → C• → 0. This implies that
C• belongs to Cp(R) and has cohomology annihilated by T (in all degrees).
Thus, since the length of C• is strictly shorter than the length of A•, the proof
can be completed by induction. �

Remark 3.10. It will be clear to the reader that analogous statements hold
for all results of this subsection if we replace Zp by O, Qp by L, Λ(Γ) by
ΛO(Γ) := O[[Γ]] and Q(Γ) by the quotient field QO(Γ) of ΛO(Γ).

3.3. The general case. We extend the constructions of §3.2 to the setting
of the Bockstein homomorphisms that are discussed at the end of §3.1.
If A• ∈ Cp(Λ(G)), then for any continuous representation of G of the form
ρ : G→ GLn(O) we regard the complex

A•(ρ∗) := On ⊗Zp A
•

as a complex of (left) ΛO(G)-modules by means of the following G-action:
g(x⊗Zp a) := ρ∗(g)(x)⊗Zp g(a) for each g ∈ G, x ∈ On and a ∈ Ai. With this
action, there exists a natural isomorphism in Cp(Zp) between Zp⊗Λ(G)A

•(ρ∗)
and the complex On ⊗Λ(G) A

• that occurs in §3.1. Further, it can be shown
that the Bockstein homomorphisms B• of the triple (A•, Tρ, γ) give rise to a
complex of the form (H•(G,A•(ρ∗)),B•) where for each integer i and each
normal closed subgroup J of G we set

Hi(J,A
•(ρ∗))) := H−i(Zp ⊗Λ(J) A

•(ρ∗)) ∼= Tor
Λ(J)
i (Tρ, A

•)

(see, for example, the proof of Lemma 3.13 below).

Definition 3.11. (Semisimplicity at ρ) For each A• ∈ Dp(Λ(G)) we set

rG(A•)(ρ) :=
∑

i∈Z

(−1)i+1 dimL

(
Hi(H,A

•(ρ∗))Γ ⊗O L
)
∈ Z,

where L is the fraction field of O. We say that a complex A• ∈
Dp(Λ(G)) is semisimple at ρ if the cohomology of the associated complex
(H•(G,A•(ρ∗)),B•) is Zp-torsion in each degree. We let Σss−ρ denote the
full subcategory of Cp(Λ(G)) consisting of those complexes that are semisim-
ple at ρ, and we note that Σss−ρ satisfies the conditions (i), (ii), (iii) and (iv′)
that are described in §2.
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Definition 3.12. (Finiteness at ρ) We say that a complex A• ∈ Dp(Λ(G)) is
finite at ρ if the groups Hi(G,A

•(ρ∗)) are Zp-torsion in all degrees i. We let
Σfin−ρ denote the full subcategory of Cp(Λ(G)) consisting of those complexes
that are finite at ρ, and we note that Σfin−ρ satisfies the conditions (i), (ii),
(iii) and (iv) that are described in §2. In particular we have Σfin−ρ ⊆ Σss−ρ.

In the next result we consider the tensor product ΛO(Γ) ⊗O On as an
(ΛO(Γ),Λ(G))-bimodule where ΛO(Γ) acts by multiplication on the left and
Λ(G) acts on the right via the rule (τ ⊗O x)g := τ ḡ⊗O ρ(g)t(x) for each g ∈ G
(with image ḡ in Γ), x ∈ On and τ ∈ ΛO(Γ). For each complex A• ∈ Σss−ρ we
then set

A•ρ := (ΛO(Γ)⊗O On)⊗Λ(G) A
• ∈ Cp(ΛO(Γ)).

Lemma 3.13. Fix A• ∈ Cp(Λ(G)).

(i) There are natural quasi-isomorphisms in Cp(ΛO(Γ)) of the form

A•ρ ∼= ΛO(Γ)⊗ΛO(G) A
•(ρ∗) ∼= O ⊗ΛO(H) A

•(ρ∗).

(ii) One has rG(A•)(ρ) = rΓ(A•ρ).
(iii) The Bockstein homomorphism in any given degree of (A•, Tρ, γ) (as

defined in §3.1) coincides with the Bockstein homomorphism in the
same degree of (A•ρ,Zp, γ).

(iv) One has A• ∈ Σss−ρ if and only if A•ρ ∈ Σss (when considered as an
object of Cp(ΛO(Γ))). Further, if this is the case, then the trivialization

t(A•ρ) : dO(O ⊗ΛO(Γ) A
•
ρ)L → 1L

that is defined as in (7) coincides with the composite morphism

(11) t(A•(ρ∗)) : dO(O ⊗ΛO(G) A
•(ρ∗))L ∼= dO((H•(G,A•(ρ∗)), 0))L

= dO((H•(G,A•(ρ∗)),B•))L ∼= 1L

where the first, resp. last, morphism uses property h) (in §2.1) for the
functor dO, resp. property i) for the homomorphism O → L and then
property e) for the functor dL.

(v) If A•, B• and C• are objects of Σss−ρ which together lie in a short exact
sequence in Cp(Λ(G)) of the form

0→ A• → B• → C• → 0,

then one has

rG(B•)(ρ) = rG(A•)(ρ) + rG(C•)(ρ)

and, with respect to the canonical morphism

dO(O ⊗ΛO(G) B
•(ρ∗))L = dO(O ⊗ΛO(G) A

•(ρ∗))L · dO(O ⊗ΛO(G) C
•(ρ∗))L

that is induced by the given short exact sequence, one has

t(B•(ρ∗)) = t(A•(ρ∗)) · t(C•(ρ∗)).
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Proof. Claim (i) is clear (given the specified actions). Claim (ii) then follows
by using the isomorphisms of claim (i) to directly compare the definitions of
rG(A•)(ρ) and rΓ(A•ρ). In a similar way, claims (iii) and (iv) follow from the
functorial construction of Bockstein homomorphisms and the fact that there
are natural isomorphisms in Cp(O) of the form

On ⊗Λ(G) A
• ∼= O ⊗ΛO(G) A

•(ρ∗)
∼= O ⊗ΛO(Γ)

(
ΛO(Γ)⊗ΛO(G) A

•(ρ∗)
)

∼= Zp ⊗Λ(Γ) A
•
ρ.

Finally, to prove claim (v) we observe that, by claim (i), the given short ex-
act sequence gives rise to a short exact sequence of semisimple complexes in
Cp(ΛO(Γ)) of the form

0→ A•ρ → B•ρ → C•ρ → 0.

The equalities of claim (v) thus follow from claims (ii), (iii) and (iv) and the
results of Lemma 3.6 as applied to the last displayed short exact sequence. �

Definition 3.14. (The leading term at ρ) For each complex A• ∈ Σss−ρ and
each morphism a : 1Λ(G) → dΛ(G)(A

•) in CΛ(G) we define the leading term

(A•, a)∗(ρ) of the pair (A•, a) at ρ to be equal to (−1)rG(A•)(ρ) times the element
of L \ {0} which corresponds via the canonical isomorphisms L× ∼= K1(L) ∼=
AutCL(1L) to the composite morphism

1L
Ln⊗Λ(G)a−−−−−−→ dL(Ln ⊗Λ(G) A

•)
t(A•(ρ∗))−−−−−−→ 1L.

Then, since ΣA• ⊂ Σss−ρ, Lemma 3.13(v) can be used to show that this con-
struction induces a well-defined homomorphism of groups

(−)∗(ρ) : K1(Λ(G),ΣA•)→ L×

[A•, a] 7→ [A•, a]∗(ρ) := (A•, a)∗(ρ).

In particular, (property g) of the functor dΛ(G) combines with relation (1) in
the definition of K1(Λ(G),ΣA•) to imply that) the notation [A•, a]∗(ρ) extends
in a well-defined fashion to pairs of the form (A•, a) where A• ∈ Dp(Λ(G)) is
semisimple at ρ and a is a morphism in CΛ(G) of the form 1Λ(G) → dΛ(G)(A

•).

If A• is clear from the context, then we often write a∗(ρ) in place of [A•, a]∗(ρ).
It is easily checked that (in the case G = Γ and ρ = ρtriv) these definitions are
compatible with those given in §3.2. Further, in §3.4.3 we shall reinterpret the
expression [A•, a]∗(ρ) defined above as the leading term at s = 0 of a natural
p-adic meromorphic function.

Remark 3.15. If A• ∈ Dp(Λ(G)) is both semisimple at ρ and such that
rG(A•)(ρ) = 0 (which is the case, for example, if A• is finite at ρ), then
we set [A•, a](ρ) := [A•, a]∗(ρ) and refer to this as the value of [A•, a] at ρ. In
particular, after taking account of Remark 3.5, it is clear that this definition
coincides with that given in [16, 4.1.5].
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3.4. Canonical localizations. We apply the constructions of §3.3 in the
setting of the canonical localizations of Λ(G) that were introduced in [11].

3.4.1. The canonical Ore sets. We recall from [11, §2-§3] that there are canon-
ical left and right denominator sets S and S∗ of Λ(G) where

S := {λ ∈ Λ(G) : Λ(G)/Λ(G)λ is a finitely generated Λ(H)-module}
and

S∗ :=
⋃

i≥0

piS.

We write S∗-tor for the category of finitely generated Λ(G)-modules M which
satisfy Λ(G)S∗ ⊗Λ(G) M = 0. We further recall from loc. cit. that a finitely
generated Λ(G)-module M belongs to S∗-tor, if and only if M/M(p) is finitely
generated when considered as a Λ(H)-module (by restriction) where M(p) de-
notes the submodule of M consisting of those elements that are annihilated by
some power of p.

3.4.2. Leading terms. In this subsection we use the notation of Definition 3.14
and the isomorphism K1(Λ(G),ΣS∗) ∼= K1(Λ(G)S∗) described at the end of
§2.2.
If ρ : G→ GLn(O) is any continuous representation and A• any object of ΣS∗ ,
then ΣA• ⊂ ΣS∗ and so there exists a canonical homomorphism

chG,A• := chΛ(G),ΣA• : K1(Λ(G),ΣA•)→ K1(Λ(G),ΣS∗) ∼= K1(Λ(G)S∗).

In addition, the ring homomorphism Λ(G)S∗ → Mn(Q(Γ)) which sends each
element g ∈ G to ρ(g)ḡ where ḡ denotes the image of g in Γ, induces a homo-
morphism of groups

ρ∗ : K1(Λ(G)S∗)→ K1(Mn(QO(Γ))) ∼= K1(QO(Γ)) ∼= QO(Γ)×.

Proposition 3.16. Let A• be a complex which belongs to both ΣS∗ and Σss−ρ.

(i) (Order of vanishing) One has rG(A•)(ρ) = rΓ(A•ρ) = r(ρ∗◦chG,A•(A•)).
(ii) (Leading terms) The following diagram of abelian groups commutes

K1(Λ(G),ΣA•)
chG,A•−−−−→ K1(Λ(G)S∗)

(−)∗(ρ)

y
y(ρ∗(−))∗(0)

L× L×,

where (−)∗(0) denotes the ‘leading term’ homomorphism
K1(QO(Γ)) → L× which occurs in Proposition 3.8 (and Remark
3.10).

Proof. By Lemma 3.13(i) one has Hi(H,A
•(ρ∗)) = H−i(O ⊗ΛO(H) A

•(ρ∗)) =

H−i(A•ρ) in each degree i. Thus, after taking account of Proposition 3.8 (and
Remark 3.10), claim (i) follows directly from Definitions 3.2 and 3.11.
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Claim (ii) is proved by the same argument as used in [16, Lem. 4.3.10]. Indeed,
one need only observe that the above diagram arises as the following composite
commutative diagram

K1(Λ(G),ΣA•)
chΛ(G),ΣA•−−−−−−−→ K1(Λ(G)S∗)

(ΛO(Γ)⊗OOn)⊗Λ(G)−
y

yρ∗

K1(ΛO(Γ),Σss)
chΛO(Γ),Σss−−−−−−−→ K1(QO(Γ))

(−)∗(ρtriv)

y
y(−)∗(0)

L× L×

where the lower square is as in Proposition 3.8. �

For any element F of K1(Λ(G)S∗) we write F ∗(ρ) for the leading term
(ρ∗(F ))∗(0) of F at ρ. By Proposition 3.16, this notation is consistent with
that of Definition 3.14 in the case that F belongs to the image of chG,A• . In a
similar way, if r(ρ∗(F )) = 0, then we shall use the notation F (ρ) := F ∗(ρ).

3.4.3. Partial derivatives. We now observe that the constructions of the pre-
vious section allow an interpretation of the expression (A•, a)∗(ρ) defined in
§3.3 as the leading term (in the usual sense) at s = 0 of a natural p-adic
meromorphic function.
At the outset we fix a representation of G of the form χ : G ։ Γ→ Z×p which
has infinite order and set

cχ,γ := logp(χ(γ)) ∈ Q×p .

We also fix an object A• of ΣS∗ and a morphism a : 1Λ(G) → dΛ(G)(A
•) in

CΛ(G), we set L := [A•, a] ∈ K1(Λ(G),ΣA•) and for any continuous representa-
tion ρ : G→ GLn(O) we define

fρ(T ) := ρ∗(chG,A•(L)) ∈ K1(QO(Γ)) ∼= QO(Γ)×.

Then, since the zeros and poles of elements of QO(Γ) are discrete, the function

s 7→ fL(ρχ
s) := fρ(χ(γ)s − 1)

is a p-adic meromorphic function on Zp.

Lemma 3.17. Let A• and a be as above and set r := rG(A•)(ρ). Then,

(i) in any sufficiently small neighbourhood U of 0 in Zp one has

L∗(ρχs) = L(ρχs) = fL(ρχ
s)

for all s ∈ U \ {0},
(ii) crχ,γL∗(ρ) is the (usual) leading coefficient at s = 0 of fL(ρχs), and

(iii) if r ≥ 0, then one has

crχ,γL∗(ρ) =
1

r!

dr

dsr
fL(ρχ

s)
∣∣
s=0

.
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Proof. If U is any sufficiently small neighbourhood of 0 in Zp, then one has
fρχs(0) ∈ L× for all s ∈ U \ {0}. Since fρχs(T ) = fρ(χ(γ)s(T + 1)− 1) we may
therefore deduce from Proposition 3.16 that L∗(ρχs) = L(ρχs) = fρχs(0) =
fρ(χ(γ)s − 1) = fL(ρχs) for any s ∈ U \ {0}. This proves claim (i).
In addition, if r ≥ 0 and we factorize fρ(T ) as T rGρ(T ) with Gρ(T ) ∈ QO(Γ),
then Gρ(0) = f∗ρ (0) and

1

r!

dr

dsr
fL(ρχ

s)
∣∣
s=0

= lim
0 6=s→0

fρ(χ(γ)s − 1)

sr

= lim
0 6=s→0

( (χ(γ)s − 1)r

sr
Gρ(χ(γ)s − 1)

)

=
(

lim
0 6=s→0

χ(γ)s − 1

s

)r
Gρ(0)

= (logp(χ(γ)))rf∗ρ (0)

= crχ,γL∗(ρ),
where the last equality follows from Proposition 3.16. This proves claim (iii).
Also, if r < 0, then (whilst we no longer have the interpretation of the limit as
a partial derivative) the same arguments prove the statement concerning the
leading coefficient at s = 0 that is made in claim (ii). �

Remark 3.18. Lemma 3.17 is of particular interest in the case that χ is equal
to the cyclotomic character of G when the above calculus can be interpreted
as partial derivation in the ‘cyclotomic’ direction (cf. Remark 5.6).

3.5. Generalized Euler-Poincaré characteristics. In this subsection
we show that the constructions made in §3.3 give rise to a natural extension of
certain results from [11, 16, 38].
To do this we fix a continuous representation ρ : G→ GLn(O) and a complex
A• ∈ Σss−ρ and in each degree i we set

Hi
B(G,A•(ρ∗)) := Hi

(
(H−•(G,A•(ρ∗)),B−•)

)
.

We then define the (generalized) additive, respectively multiplicative, Euler-
Poincaré characteristic of the complex A•(ρ∗) by setting

χadd(G,A•(ρ∗)) :=
∑

i∈Z

(−1)ilengthO
(
Hi

B(G,A•(ρ∗))
)
,

respectively

χmult(G,A
•(ρ∗)) := (#κL)χadd(G,A•(ρ∗))

where κL denotes the residue class field of L. We recall that for a single Λ(G)-
module M , or rather its Pontryagin-dual D, similar Euler characteristics have
already been studied by several other authors (cf. [12, 42, 18]). Indeed, they
use the Hochschild-Serre spectral sequence to construct differentials

di : Hi(G,D)→ Hi(H,D)Γ → Hi(H,D)Γ → Hi+1(G,D)

where the second arrow is induced by the identity map on Hi(H,D); then the
generalized Euler characteristics studied in loc. cit. are defined just as above but
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by using the complex (H•(G,D), d•) in place of (H−•(G,−),B−•). However,
Lemma 3.13(i) implies that the Pontryagin dual of di is equal to the Bockstein
homomorphism Bi+1 : Hi+1(G,P

•) → Hi(G,P
•) where P • is a projective

resolution of M .

Proposition 3.19. Let ordL denote the valuation of L which takes the value 1
on any uniformizing parameter and |− |p the p-adic absolute value, normalized
so that |p|p = p−1.
If A• ∈ Σss−ρ and a : 1Λ(G) → dΛ(G)(A

•) is any morphism in CΛ(G), then for
L := [A•, a] one has

χadd(G,A•(ρ∗)) = ordL(L∗(ρ))

and

χmult(G,A
•(ρ∗)) = |L∗(ρ)|−[L:Qp]

p .

Proof. We observe first that by combining Lemma 3.13 with property h) in
§2.1 (with R = O) we obtain canonical morphisms

1O
On⊗Λ(G)a // dO(On ⊗Λ(G) A

•) ∼= dO(O ⊗ΛO(G) A
•(ρ∗)))

∼= dO((H−•(G,A•(ρ∗)),B−•))

∼=
∏

i∈Z

dO
(
Hi

B(G,A•(ρ∗))
)(−1)i

.

After applying L⊗O− to this composite morphism and then identifying all fac-
tors in the product expression with 1L by acyclicity we recover the definition of
the leading term L∗(ρ) := (A•, a)∗(ρ).On the other hand, if we take the product

over all i of any arbitrarily chosen maps fi : 1O → dO
(
Hi

B(G,A•(ρ∗))
)(−1)i

,
this will coincide with the above map modulo O×. Thus the product over all i
of the maps

(1O)L
(fi)L// dO

(
Hi

B(G,A•(ρ∗))
)(−1)i

L

acyc // 1L ,

which calculate the length of Hi
B(G,A•(ρ∗)) by Remark 2.4, differs from L∗(ρ)

only by a unit in O and hence the claimed result follows. �

Remark 3.20. If the complex Qp ⊗Zp A
•(ρ∗) is acyclic, then the leading term

L∗(ρ) is equal to the value of L at ρ (in the sense of Remark 3.15). This implies
that Proposition 3.19 recovers the results of [11, Thm. 3.6], [38, Prop. 6.3 ] and
[16, Rem. 4.1.13].

4. Global Zeta isomorphisms

In this section we recall the non-commutative Tamagawa Number Conjecture
that has been formulated by Fukaya and Kato.
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4.1. Galois cohomology. The main reference for this section is [16, §1.6],
but see also [7]; here we use the same notation as in the survey article [39]. For
simplicity we assume throughout this section that p is odd.
We fix a finite set S of places of Q which contains both Sp := {p} and
S∞ := {∞} and let U denote the corresponding dense open subset Spec(Z[ 1

S ])

of Spec(Z). We fix an algebraic closure Q̄ of Q and, for each place v of
Q, an algebraic closure Q̄v of Qv. We then set GQ := Gal(Q̄/Q) and
GQv := Gal(Q̄v/Qv) and write GS for the Galois group of the maximal ex-
tension of Q inside Q̄ which is unramified outside S. If X is any topological
abelian group which is endowed with a continuous action of GS , then we write
RΓ(U,X) (RΓc(U,X)) for global Galois cohomology with restricted ramifica-
tion (and compact support) and for any place v of Q we denote by RΓ(Qv,X)
the corresponding local Galois cohomology complex.
We let L denote a finite extension of Qp, we write O for the valuation ring of L
and we let V denote a finite dimensional L-vector space which is endowed with
a continuous action of GQ. Then the ‘finite parts’ of global and local Galois
cohomology are written as RΓf (Q, V ) and RΓf (Qv, V ) respectively, and there
exists a canonical exact triangle of the form
(12)

RΓc(U, V ) // RΓf (Q, V ) //
⊕

v∈S RΓf (Qv, V ) // RΓc(U, V )[1].

We set tp(V ) := DdR(V )/D0
dR(V ) and also tℓ(V ) := 0 for each prime number

ℓ 6= p. Then, for each prime ℓ, Fukaya and Kato define a canonical morphism
in CL of the form

ηℓ(V ) : 1L → dL(RΓf (Qℓ, V ))dL(tℓ(V )).(13)

For the explicit definition of this morphism we refer the reader either to the
original reference [16, §2.4.4] or to the survey article [39, Appendix].

4.2. K-Motives over Q. For further background on this (standard) material
we refer the reader to either [16, §2.2, 2.4], [7, §3] or [39, §2].
We fix a finite extension K of Q and a motive M that is defined over Q and
has coefficients K. As usual we write MB ,MdR, Mℓ and Mλ for the Betti, de
Rham, ℓ-adic and λ-adic realizations of M , where ℓ ranges over rational primes
and λ over non-archimedean places of K. We also let tM denote the tangent
space MdR/M

0
dR of M . For any ring R and R[Gal(C/R)]-module X we denote

by X+ and X− the R-submodule of X upon which complex conjugation acts
as multiplication by +1 and −1 respectively.
In our later calculations we will use each of the following isomorphisms:

• The comparison isomorphisms between the Betti and λ-adic realiza-
tions of M induce canonical isomorphisms of Kλ-modules, respectively
Kℓ-modules, of the form

(14) g+
λ : Kλ ⊗K M+

B
∼= M+

λ , respectively g+
ℓ : Kℓ ⊗K M+

B
∼= M+

ℓ .

Documenta Mathematica · Extra Volume Coates (2006) 165–209



Non-Commutative p-Adic L-Functions 187

• We set KR := R ⊗Q K. Then the comparison isomorphism between
the de Rham and Betti realizations of M induces a canonical KR-
equivariant period map

(15) R⊗Q M
+
B

αM // R⊗Q tM .

• For each p-adic place λ of K, the comparison isomorphism between the
p-adic and de Rham realizations of M induces a canonical isomorphism
of Kλ-modules of the form

(16) tp(Mλ) = DdR(Mλ)/D
0
dR(Mλ)

gtdR
∼=

// Kλ ⊗K tM .

We further recall that the ‘motivic cohomology groups’ H0
f (M) := H0(M) and

H1
f (M) of M are K-modules that can be defined either in terms of algebraic

K-theory or motivic cohomology in the sense of Voevodsky (cf. [7]). They are
both conjectured to be finite dimensional.

4.3. The Tamagawa Number Conjecture. For each embedding K → C
the complex L-function that is associated to a K-motive M is defined (for the
real part of s large enough) as an Euler product

LK(M, s) =
∏

ℓ

Pℓ(M,p−s)−1

over all rational primes ℓ. We assume meromorphic continuation of this func-
tion and write L∗K(M) ∈ C× and r(M) ∈ Z for its leading coefficient and order
of vanishing at s = 0 respectively.
To establish a link between L∗K(M) and Galois cohomology one uses the ‘fun-
damental line’

∆K(M) : = dK(H0
f (M))−1dK(H1

f (M))dK(H0
f (M

∗(1))∗)dK(H1
f (M

∗(1))∗)−1

dK(M+
B )dK(tM )−1.

Indeed, as described in [16, §2.2.7], it is conjectured that archimedean regula-
tors and height pairings combine with the period map αM to induce a canonical
morphism in CKR

(the ‘period-regulator isomorphism’) of the form

(17) ϑ∞(N) : KR ⊗K ∆K(M) ∼= 1KR
.

In addition, a standard conjecture on cycle class maps and Chern class maps
induces, for each non-archimedean place λ of K, a canonical ‘λ-adic period-
regulator isomorphism’ in CKλ (which involves the morphism in (13))

(18) ϑλ(N) : ∆K(M)Kλ
∼= dKλ(RΓc(U,Mλ))

−1.

We now fix a compact p-adic Lie extension F∞ of Q which is unramified outside
S. We set G := Gal(F∞/Q) and write Λ(G) for the associated Iwasawa algebra.
For any motive M over Q we fix a GQ-stable full Zp-sublattice Tp of Mp and
define a (left) Λ-module by setting

T := Λ(G)⊗Zp Tp

Documenta Mathematica · Extra Volume Coates (2006) 165–209



188 David Burns and Otmar Venjakob

on which Λ(G) acts via left multiplication (on the left hand factor) and each
element g of GQ acts diagonally via g(x⊗Zp y) = xḡ−1⊗Zp g(y), where ḡ denotes
the image of g in G ⊂ Λ(G).
For any non-archimedean place λ of K we write Oλ for the valuation ring of
Kλ. We consider a continuous representation ρ : G → GLn(Oλ) of G which,
with respect to a suitable choice of basis, is the λ-adic realization Nλ of a
K-motive N. We continue to denote by ρ the induced ring homomorphism
Λ(G) → Mn(Oλ) and we consider Onλ as a right Λ(G)-module via action by
the transpose ρt on the left, viewing Onλ as set of column vectors (contained
in Kn

λ ). Note that, setting M(ρ∗) := N∗ ⊗M, we obtain an isomorphism of
Galois representations

Onλ ⊗Λ(G) T ∼= Tλ(M(ρ∗)),

where Tλ(M(ρ∗)) is the Oλ-lattice Onλ ⊗ Tp of M(ρ∗)λ, on which g ∈ GQ

acts diagonally: g(x ⊗ t) = ρ∗(g)x ⊗ g · t denoting by ρ∗ the contragredient
representation of ρ.

Conjecture 4.1 (Fukaya and Kato, [16, Conj. 2.3.2]). Set Λ := Λ(G). Then
there exists a canonical morphism in CΛ

ζΛ(M) := ζΛ(T) : 1Λ → dΛ(RΓc(U,T))−1

with the following property: for all K,λ and ρ as above the (generalized) base
change Kn

λ ⊗Λ − sends ζΛ(M) to the composite morphism

1Kλ
ζK(M(ρ∗))Kλ // ∆K(M(ρ∗))Kλ

ϑλ(N) // dKλ(RΓc(U,M(ρ∗)λ))−1,

where

ζK(M(ρ∗)) : 1K → ∆K(M(ρ∗))

denotes the unique morphism which is such that, for every embedding K → C,
the leading coefficient L∗K(M(ρ∗)) is equal to the composite

1C
ζK(M(ρ∗))C // ∆K(M(ρ∗))C

(ϑ∞(N))C // 1C.

Fukaya and Kato refer to the (conjectural) morphism ‘ζΛ(M)’ in Conjecture
4.1 as a global Zeta isomorphism. We note also that it is straightforward to
show that Conjecture 4.1 implies the ‘p-primary component’ of the Equivariant
Tamagawa Number Conjecture that is formulated by Flach and the first named
author in [7, Conj. 4(iv)] and hence also implies the ‘main conjecture of non-
abelian Iwasawa theory’ that is discussed by Huber and Kings in [19]. For a
further discussion of Conjecture 4.1 see [39, §4].

5. The interpolation formula for Tate motives

In this section we give a first explicit application of the formalism developed
in §3. More precisely, we show that the ‘p-adic Stark conjecture at s = 1’, as
formulated by Serre in [35] and discussed by Tate in [37, Chap. VI, §5], can be
naturally interpreted as an interpolation formula for the leading term (in the
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sense of Definition 3.14) of certain global Zeta isomorphisms that are predicted
to exist by Conjecture 4.1 in terms of the leading terms (in the classical sense)
of suitable p-adic Artin L-functions. Interested readers can find further explicit
results concerning Conjecture 4.1 in the special case that we consider here in,
for example, both [3] and [8].
Throughout this section we set G(F/E) := Gal(F/E) for any Galois extension
of fields F/E. We also fix an odd prime p and a totally real Galois extension
F∞ of Q which contains the cyclotomic Zp-extension Qcyc of Q and is such
that G := G(F∞/Q) is a compact p-adic Lie group. We assume further that
F∞/Q is unramified outside a finite set of prime numbers S (which therefore
contains p). We set H := G(F∞/Qcyc) and Γ := G(Qcyc/Q) ∼= G/H. We fix
a subfield E of F∞ which is both Galois and of finite degree over Q, we set
Ḡ := G(E/Q) and we write Sp(E) for the set of p-adic places of E and Ecyc,
Ew,cyc for each w ∈ Sp(E) and Qp,cyc for the cyclotomic Zp-extensions of E,
Ew and Qp respectively. For simplicity, we always assume that the following
condition is satisfied

(19) E ∩Qcyc = Q and Ew ∩Qp,cyc = Qp for all w ∈ Sp(E).

We note that this condition implies that there is a direct product decompo-
sition G(Ecyc/Q) ∼= Γ × Ḡ and hence allows us to regard γ as a topological
generator of each of the groups Γ, G(Ecyc/E), G(Ew,cyc/Ew) for w ∈ Sp(E)
and G(Qp,cyc/Qp).
We let T denote the (left) Λ(G)-module Λ(G) endowed with the following (left)
action of GQ: each σ ∈ GQ acts on T as right multiplication by the element
χcyc(σ̄)σ̄−1 where σ̄ denotes the image of σ in G and χcyc is the cyclotomic
character G → Γ → Z×p . For each subfield F of F∞ which is Galois over Q
we let TF denote the (left) Λ(G(F/Q))-module Λ(G(F/Q)) ⊗Λ(G) T. We also

set U := Spec(Z[ 1
S ]) and note that for each such field F there is a natural

isomorphism in Dp(Λ(G(F/Q))) of the form

(20) Λ(G(F/Q))⊗L
Λ(G) RΓc(U,T) ∼= RΓc(U,TF ).

We regard each character of Ḡ as a character of G via the natural projection
G ։ Ḡ. For any field C we write R+

C(G) and RC(G) for the set of finite dimen-

sional C-valued characters of G and for the ring of finite dimensional C-valued
virtual characters of G, respectively. For each ρ ∈ R+

C(G) we fix a repre-

sentation space Vρ of character ρ and for any Qp[G]-module N , respectively
endomorphism α of a Qp[Ḡ]-module N , we write Nρ for the Cp-module

HomḠ(Vρ,Cp ⊗Qp N) ∼= ((Vρ∗)Cp ⊗Qp N)Ḡ,

respectively αρ for the induced endomorphism of Nρ. We use similar notation
for complex characters ρ and Q[Ḡ]-modules N .
For any abelian group A we write A⊗̂Zp for its p-adic completion lim←−nA/p

nA.

5.1. Leopoldt’s Conjecture. We recall that Leopoldt’s Conjecture (for the
field E at the prime p) is equivalent to the injectivity of the natural localisation
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map

λp : OE
[
1

p

]×
⊗Z Zp →

∏

w∈Sp(E)

E×w ⊗̂Zp.

If ρ ∈ R+
Cp

(Ḡ), then in the sequel we say that Leopoldt’s Conjecture ‘is valid

at ρ’ if one has (Qp ⊗Zp ker(λp))
ρ = 0.

We set cγ := cχcyc,γ ∈ Q×p (see §3.4.3) and for each ρ ∈ R+
Cp

(Ḡ) we define

〈ρ, 1〉 := dimCp(H
0(Ḡ, Vρ)) = dimCp((Qp)

ρ).

Lemma 5.1. We fix ρ ∈ R+
Cp

(Ḡ) and assume that Leopoldt’s Conjecture is valid
at ρ.

(i) There are canonical isomorphisms

(Qp ⊗Zp H
i
c(U,TE))ρ ∼=





(Qp ⊗Zp cok(λp))
ρ, if i = 2

(Qp)
ρ, if i = 3

0, otherwise.

(ii) RΓc(U,T) is semisimple at ρ and one has rG(RΓc(U,T))(ρ) = 〈ρ, 1〉.
(iii) For each w ∈ Sp(E) we write NEw/Qp for the homomorphism

E×w ⊗̂Zp → Q×p ⊗̂Zp that is induced by the field theoretic norm map.
Then, with respect to the identifications given in claim (i), the Bock-
stein homomorphism in degree −2 of (RΓc(U,T), Tρ, γ) is equal to −c−1

γ

times the homomorphism

(Qp ⊗Zp H
2
c (U,TE))ρ → (Qp ⊗Zp H

3
c (U,TE))ρ

that is induced by the homomorphism

logp,E :
∏

w∈Sp(E)

E×w ⊗̂Zp → Zp

which sends each element (ew)w to
∑
w logp(NEw/Qp(ew)).

Proof. Claim (i) can be verified by combining the exact cohomology sequence
of the tautological exact triangle

(21) RΓc(U,TE)→ RΓ(U,TE)→
⊕

ℓ∈S
RΓ(Qℓ,TE)→ RΓc(U,TE)[1]

together with the canonical identifications Hi(U,TE) ∼= Hi(OE [ 1
S ],Zp(1)) and

Hi(Qℓ,TE) ∼=
⊕

w∈Sℓ(E)H
i(Ew,Zp(1)) and an explicit computation of each of

the groups Hi(OE [ 1
S ],Zp(1)) and Hi(Ew,Zp(1)). As this is routine we leave

explicit details to the reader except to note that Qp⊗ZpH
2
c (U,TE) is canonically

isomorphic to Qp⊗Zp cok(λp) (independently of Leopoldt’s Conjecture), whilst

the fact that E is totally real implies that the vanishing of (Qp⊗ZpH
1
c (U,TE))ρ

is equivalent to that of (Qp ⊗Zp ker(λp))
ρ.
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To prove claims (ii) and (iii) we note first that, in terms of the notation used in
§3.3, the isomorphism (20) (with F = Ecyc) induces a canonical isomorphism
in Dp(ΛO(Γ)) of the form

(22) RΓc(U,T)ρ ∼= On ⊗Zp[Ḡ] RΓc(U,TEcyc
),

where Γ acts naturally on the right hand factor in the tensor product.
From Lemma 3.13(iv) we may therefore deduce that RΓc(U,T) is semisim-
ple at ρ if and only if the complex On ⊗Zp[Ḡ] RΓc(U,TEcyc

) ∈ Dp(ΛO(Γ))
is semisimple. But the latter condition is easy to check by using the crite-
rion of Remark 3.3(ii): indeed, one need only note that Hi

c(U,TEcyc
) is finite

if i /∈ {2, 3}, that H3
c (U,TEcyc

) identifies with Zp (as a Γ-module) and that
the exact sequences of (5) combine with the descriptions of claim (i) to imply
that ((Qp ⊗Zp H

1
c (U,TEcyc

))ρ)Γ and (Qp ⊗Zp H
1
c (U,TEcyc

))ρΓ both vanish. In
addition, the same observations combine with Lemma 3.13(ii) to imply that
rG(RΓc(U,T))(ρ) = dimCp((Qp)

ρ).
Regarding claim (iii), the isomorphism (22) combines with Lemma 3.13(iii) to

imply that (B−2)
ρ = (B̂−2)

ρ where B̂−2 is the Bockstein homomorphism in
degree −2 of (RΓc(U,TEcyc

),Zp, γ), with γ regarded as a topological generator
of G(Ecyc/E). Also, by comparing (21) to the corresponding exact triangle
with Ecyc in place of E, we obtain a morphism of exact triangles of the form

RΓ(Qp,TEcyc
)

γ−1−−−−→ RΓ(Qp,TEcyc
) −−−−→ RΓ(Qp,TE) −−−−→

y
y

y

RΓc(U,TEcyc
)[1]

γ−1−−−−→ RΓc(U,TEcyc
)[1] −−−−→ RΓc(U,TE)[1] −−−−→ .

Thus, by combining the description of Lemma 3.1 with consideration of the
long exact cohomology sequences of this diagram we obtain a commutative
diagram

⊕
w∈Sp(E) Qp ⊗Zp H

1(Ew,Zp(1)) −−−−→ Qp ⊗Zp H
2
c (U,TE)

(Qp⊗ZpB−1,w)w

y
y(−1)×(Qp⊗ZpB̂−2)

⊕
w∈Sp(E) Qp ⊗Zp H

2(Ew,Zp(1)) −−−−→ Qp ⊗Zp H
3
c (U,TE).

Here the upper row is the (tautological) surjection that is induced by the
canonical identifications H1(Ew,Zp(1)) ∼= E×w ⊗̂Zp and Qp ⊗Zp H

2
c (U,TE) ∼=

Qp ⊗Zp cok(λp), the lower row is the surjection induced by the canonical

identifications H2(Ew,Zp(1)) ∼= Zp and H3
c (U,TE) ∼= Zp together with the

identity map on Zp, B−1,w is the Bockstein homomorphism in degree −1 of
(RΓ(Ew,cyc,Zp(1)),Zp, γ) where γ is considered as a topological generator of
G(Ew,cyc/Ew), and the factor −1 occurs on the right hand vertical arrow be-
cause of the 1-shift in the lower row of the previous diagram.
Further, for each w ∈ Sp(E) the natural isomorphism (in Dp(Zp))

Zp ⊗L
Zp[G(Ew/Qp)]

RΓ(Ew,Zp(1)) ∼= RΓ(Qp,Zp(1))
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induces a commutative diagram

H1(Ew,Zp(1)) −−−−→ H1(Qp,Zp(1))

B−1,w

y
yB−1,p

H2(Ew,Zp(1)) −−−−→ H2(Qp,Zp(1))

where the upper horizontal arrow is induced by the canonical identifications
H1(Ew,Zp(1)) ∼= E×w ⊗̂Zp and H1(Qp,Zp(1)) ∼= Q×p ⊗̂Zp together with the
map NEw/Qp , the lower horizontal arrow is induced by the canonical iden-

tifications H2(Ew,Zp(1)) ∼= Zp and H2(Qp,Zp(1)) ∼= Zp together with the
identity map on Zp, and B−1,p is the Bockstein homomorphism in degree
−1 of (RΓ(Qp,cyc,Zp(1)),Zp, γ). To prove claim (iii) it thus suffices to re-
call that, with respect to the natural identifications H1(Qp,Zp(1)) ∼= Q×p ⊗̂Zp
and H2(Qp,Zp(1)) ∼= Zp, the map B−1,p is equal to c−1

γ · logp (see, for example,
[9, p. 352]). �

5.2. The p-adic Stark conjecture at s = 1. For each character χ ∈
RC(Ḡ) we write LS(s, χ) for the Artin L-function of χ that is truncated by
removing the Euler factors attached to primes in S (cf. [37, Chap. 0, §4]).
Then, for each character ρ ∈ RCp(G) there exists a unique p-adic meromorphic
function Lp,S(·, ρ) : Zp → Cp such that for each strictly negative integer n and
each isomorphism ι : Cp ∼= C one has

Lp,S(n, ρ)ι = LS(n, (ρ · ωn−1)ι)

where ω : GQ → Z×p is the Teichmüller character (cf. [37, Chap. V., Thm.
2.2]). Indeed, this function is the ‘S-truncated p-adic Artin L-function’ of ρ
that is constructed by Greenberg in [17] by combining techniques of Brauer
induction with the fundamental results of Deligne and Ribet [15] and Cassou-
Noguès [10]. For typographical simplicity in the sequel, we fix an isomorphism
ι : Cp ∼= C as above and hence often omit it from the notation.
In this section we recall a conjecture of Serre regarding the ‘leading term at
s = 1’ of Lp,S(s, ρ). To this end we set E∞ := R ⊗Q E ∼=

∏
Hom(E,C) R and

write log∞(O×E) for the inverse image of O×E →֒ E×∞ under the (componentwise)
exponential map exp∞ : E∞ → E×∞. We set E0 := {x ∈ E : TrE/Q(x) = 0}.
Then log∞(O×E) is a lattice in R⊗QE0 and so there is a canonical isomorphism
of C[Ḡ]-modules

µ∞ : C⊗Z log∞(O×E) ∼= C⊗Q E0.

By a standard argument (cf. [14, §6, Exer. 6]) this implies that the Q[Ḡ]-
modules E0 and Q ⊗Z log∞(O×E) are (non-canonically) isomorphic. We also
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note that the composite homomorphism

(23) log∞(O×E)
exp∞−−−→ O×E

λp−→
∏

w∈Sp(E)

U1
Ew

(uw)w 7→(logp(uw))w−−−−−−−−−−−−−→
∏

w∈Sp(E)

Ew ∼= Qp ⊗Q E,

factors through the inclusion Qp ⊗Q E0 ⊂ Qp ⊗Q E and hence induces an
isomorphism of Qp[Ḡ]-modules

µp : Qp ⊗Z log∞(O×E) ∼= Qp ⊗Q E0.

Conjecture 5.2 (Serre). For each ρ ∈ R+
Cp

(Ḡ) we set

L∗p,S(1, ρ) := lim
s→1

(s− 1)〈ρ,1〉 · Lp,S(s, ρ).

Then L∗p,S(1, ρ) is equal to the leading term of Lp,S(s, ρ) at s = 1, and for each

choice of isomorphism of Q[Ḡ]-modules g : E0 → Q⊗Z log∞(O×E) one has

L∗p,S(1, ρ)

detCp((Cp ⊗Qp µp) ◦ (Cp ⊗Q g))ρ
=

L∗S(1, ρ)

detC(µ∞ ◦ (C⊗Q g))ρ
.

Remark 5.3. This conjecture is the ‘p-adic Stark conjecture at s = 1’ as
discussed by Tate in [37, Chap. VI, §5], where it is attributed to Serre [35].
More precisely, there are some slight imprecisions in the discussion of [37, Chap.
VI, §5] (for example, and as already noted by Solomon in [36, §3.3], the intended
meaning of the symbols ‘logU ’ and ‘µp’ in [37, p. 137] is unclear) and Conjecture
5.2 represents a natural clarification of the presentation given in loc. cit..

Remark 5.4. We fix a subgroup J of Ḡ and write 1J for the trivial character

of J . If ρ = IndḠJ 1J , then the inductive behaviour of L-functions combines
with the analytic class number formula for EJ to show that Conjecture 5.2 is
valid for ρ if and only if the p-adic zeta function of the field EJ has a simple

pole at s = 1 with residue equal to 2[EJ :Q]−1hRpep/
√
|d| where h,Rp and d are

the class number, p-adic regulator and absolute discriminant of EJ respectively
and ep :=

∏
v∈Sp(EJ )(1−Nv−1) (cf. [37, Rem., p. 138]). From the main result

(§5, Thm.) of Colmez in [13] one may thus deduce that Conjecture 5.2 is valid

for ρ = IndḠJ 1J if and only if Leopoldt’s Conjecture is valid for EJ . We note
also that if Leopoldt’s Conjecture is valid for E, then it is valid for all such
intermediate fields EJ .

5.3. The interpolation formula. We now reinterpret the equality of Con-
jecture 5.2 as an interpolation formula for the Zeta isomorphism ζΛ(G)(T) that
is predicted to exist by Conjecture 4.1.

Theorem 5.5. If Conjecture 5.2 is valid, then for each ρ ∈ R+
Cp

(Ḡ) the complex

RΓc(U,T) is semisimple at ρ and one has both rG(RΓc(U,T))(ρ) = 〈ρ, 1〉 and

(24) c〈ρ,1〉γ · ζΛ(G)(T)∗(ρ) = L∗p,S(1, ρ).
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Remark 5.6. One can naturally interpret (24) as an equality of leading terms
of p-adic meromorphic functions. Indeed, whilst Conjecture 5.2 predicts that
L∗p,S(1, ρ) is the leading term at s = 1 of Lp,S(s, ρ), Lemma 3.17 interprets the

left hand side of (24) as the leading term at s = 0 of the function fL(ρχscyc)
with L := [RΓc(U,T), ζΛ(G)(T)] ∈ K1(Λ(G),Σss−ρ).

Proof. We note first that if Conjecture 5.2 is valid, then Remark 5.4 implies
that Leopoldt’s Conjecture is valid for E and so Lemma 5.1(ii) implies that
rG(RΓc(U,T))(ρ) = 〈ρ, 1〉 for each ρ ∈ R+

Cp
(Ḡ) and also that RΓc(U,T) is

semisimple at each such ρ.
We now fix ρ ∈ R+

Cp
(Ḡ) and a number field K over which the character ρ can

be realised. We fix an embedding K →֒ C and write λ for the place of K which
is induced by the fixed isomorphism ι : Cp ∼= C. We set M := h0(SpecE)(1)
and note that M([ρ]∗) := M ⊗ [ρ]∗ is a K-motive, where [ρ]∗ denotes the dual
of the Artin motive corresponding to ρ.
To evaluate ζΛ(G)(T)∗(ρ) we need to make Definition 3.14 explicit. To do
this we use the observations of [6, §1.1, §1.3] to explicate the isomorphism
ζK(M([ρ]∗))Kλ which occurs in Conjecture 4.1. Indeed one has H1

f (M) =

O×E ⊗Z Q, H0
f (M

∗(1)) = Q, tM = E and H0
f (M) = H1

f (M
∗(1)) = M+

B = 0 (the

latter since E is totally real). This implies that

C⊗K ∆K(M([ρ]∗)) = dC((Q⊗Z O×E)ρ)dC((Q)ρ)dC((E)ρ)
−1

and that ζK(M([ρ]∗))Kλ is equal to the composite morphism

1Cp →1Cp(25)

→dCp((Qp ⊗Z O×E)ρ)dCp((Qp)
ρ)dCp((Qp ⊗Q E)ρ)−1

→dCp(Cp ⊗Kλ H2
c (U,M([ρ]∗)λ))

−1dCp(Cp ⊗Kλ H3
c (U,M([ρ]∗)λ)

→dCp(Cp ⊗Kλ RΓc(U,M([ρ]∗)λ))
−1.

In this displayed formula we have used the following notation: the first map
corresponds to multiplication by L∗S(1, ρ); the second map is induced by ap-
plying (Cp⊗R,ι−1 −)ρ to both the natural isomorphism R⊗QE ∼=

∏
Hom(E,C) R

and also the exact sequence

(26) 0→ R⊗Z O×E
(log ◦σ)σ−−−−−−→

∏

σ∈Hom(E,C)

R
(xσ)σ 7→

P
σ xσ−−−−−−−−−→ R→ 0;

the third map is induced by Lemma 5.1(i) and the inverse of the isomorphism

(27)
∏

w∈Sp(E)

Qp ⊗Zp U
1
Ew

(uw)w 7→(logp(uw))w−−−−−−−−−−−−−→
∏

w∈Sp(E)

Ew ∼= Qp ⊗Q E;

the last map is induced by property h) as described in §2.1 (with R = Cp).
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Also, from Lemma 5.1(iii) we know that Cp ⊗Kλ t(RΓc(U,T)(ρ∗)) is equal to
the composite

dCp(Cp ⊗Kλ RΓc(U,M([ρ]∗)λ)
−1(28)

→ dCp(H
2
c (U,M([ρ]∗)λ)

−1dCp(H
3
c (U,M([ρ]∗)λ)

→ dCp((Qp)
ρ)−1dCp((Qp)

ρ) = 1Cp

where the first arrow is induced by property h) in §2.1 (with R = Cp) and
the second by Lemma 5.1(i) and the homomorphism −c−1

γ logp,E described in
Lemma 5.1(iii).
Now, after taking account of Lemma 5.1(ii), the leading term ζΛ(G)(T)∗(ρ) is

defined (in Definition 3.14) to be equal to (−1)〈ρ,1〉 times the element of C×p
which corresponds to the composite of (25) and (28). Thus, after noting that
there is a commutative diagram of the form

∏
w∈Sp(E) Qp ⊗Zp U

1
Ew
−−−−→ Qp ⊗Zp cok(λp)

(27)

y
ylogp,E

Qp ⊗Q E
TrE/Q−−−−→ Qp

where the upper horizontal arrow is the tautological projection, the observa-
tions made above imply that

(29) c〈ρ,1〉γ · ζΛ(G)(T)∗(ρ) = L∗S(1, ρ) · ξ

where ξ is the element of C×p that corresponds to the composite morphism

1Cp = dCp((Qp ⊗Z O×E)ρ)dCp((Qp ⊗Z O×E)ρ)−1(30)

→ dCp((Qp ⊗Q E0)
ρ)dCp((Qp ⊗Z O×E)ρ)−1

→ dCp((Qp ⊗Q E0)
ρ)dCp((Qp ⊗Q E0)

ρ)−1 = 1Cp .

Here the first arrow is induced by applying Cp ⊗R,ι−1 − to the isomorphism

R⊗ZO×E ∼= R⊗QE0 coming from the map (log ◦σ)σ in (26) and the second by the

isomorphism Qp ⊗Z O×E ∼= Qp ⊗Q E0 coming from the second and third arrows

in (23). (Note also that the factor (−1)〈ρ,1〉 in the definition of ζΛ(G)(T)∗(ρ)
cancels against the factor −1 in the term −c−1

γ which occurs in the morphism
(28) and hence does not occur in the formula (29)).
But, upon comparing the definitions of µ∞ and µp in §5.2 with the maps
involved in (30), one finds that ξ is equal to

detCp((Cp ⊗Qp µp) ◦ (Cp ⊗C,ι−1 µ∞)−1)ρ =
detCp((Cp ⊗Qp µp) ◦ (Cp ⊗Q g))

ρ

detC(µ∞ ◦ (C⊗Q g))ρ

and hence (29) implies that

c
〈ρ,1〉
γ · ζΛ(G)(T)∗(ρ)

detCp((Cp ⊗Qp µp) ◦ (Cp ⊗Q g))ρ
=

L∗S(1, ρ)

detC(µ∞ ◦ (C⊗Q g))ρ
.
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The claimed equality (24) now follows immediately upon comparing this equal-
ity to that of Conjecture 5.2. �

Corollary 5.7. If Leopoldt’s Conjecture is valid for E at p, then for every
finite dimensional Q-rational character ρ of Ḡ there exists a natural number
nρ such that

(c〈ρ,1〉γ · ζΛ(G)(T)∗(ρ))nρ = L∗p,S(1, ρ)nρ .

Further, if ρ is a permutation character, then one can take nρ = 1.

Proof. If ρ is Q-rational, then Artin’s Induction Theorem implies the existence
of a natural number nρ such that in RCp(G) one has nρ · ρ =

∑
H nH · IndGH1H

where H runs over the set of subgroups of Ḡ and each nH is an integer (cf. [37,
Chap. II, Thm. 1.2]). Further, ρ is said to be a permutation character if and
only if there exists such a formula with nρ = 1. The stated result thus follows
by combining Theorem 5.5 with Remark 5.4 and the fact that each side of (24)
is both additive and inductive in ρ. �

6. The interpolation formula for critical motives

As a second application of the formalism introduced in §3, in this section we
prove an interpolation formula for the leading terms (in the sense of Definition
3.14) of the p-adic L-functions that Fukaya and Kato conjecture to exist for any
critical motive which has good ordinary reduction at all places above p. (We
recall that a motive M is said to be ‘critical’ if the map (15) is bijective). To
study these p-adic L-functions we must combine Conjecture 4.1 together with
a local analogue of this conjecture (which is also due to Fukaya and Kato, and
is recalled as Conjecture 6.1 below) and aspects of Nekovář’s theory of Selmer
complexes and of the theory of p-adic height pairings.

6.1. Local epsilon isomorphisms. At the outset we fix a ‘p-adic period’ t
(that is, a topological generator of Zp(1)). Let L be any finite extension of Qp

and V any finite-dimensional L-vector space with continuous GQp -action. Then
we write ǫp(V ) := ǫ(Dpst(V )) for Deligne’s epsilon-factor at p, where Dpst(V )
is endowed with the linearized action of the Weil group and thereby considered
as a representation of the Weil-Deligne group, see [16, §3.2] or [29, App. C].
(Note that this notation hides dependence on the choice of a Haar measure
and p-adic period. Note also that the choice of t = (tn) ∈ Zp(1) determines a

homomorphism ψp : Qp → Qp
×

with ker(ψp) = Zp by sending 1
pn to tn ∈ µpn).

The subfield of inertial invariants (BdR)Ip of BdR identifies with the completion

Q̂nr
p of the maximal unramified extension Qnr

p of Qp in Qp. For L and V as

above we set L̃ := Q̂nr
p ⊗Qp L and

Γ∗(−j) :=

{
Γ(j) = (j − 1)!, if j > 0,

lims→j(s− j)Γ(s) = (−1)j((−j)!)−1, if j ≤ 0,
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and
ΓL(V ) :=

∏

j∈Z

Γ∗(j)−h(−j),

where h(j) := dimL gr
jDdR(V ).

We let
ǫp,L(V ) : 1eL →

(
dL(RΓ(Qp, V ))dL(V )

)
eL

denote the morphism that is obtained by taking the product of ΓL(V ) with the

morphisms ηℓ(V ) and (ηℓ(V ∗(1))∗) from (13) and the morphism

ǫdR(V ) : 1eL → deL(V )deL(DdR(V ))−1

that is constructed by Fukaya and Kato in [16, Prop. 3.3.5].
We set Λ := Λ(G) and define

Λ̃ := W (Fp)[[G]] = lim←−
U

(
W (Fp)⊗Zp Zp[G/U ]

)
,

where U runs over all open normal subgroups of G and W (Fp) denotes the Witt

ring of Fp. Now we fix a finite-dimensional Qp-linear representation V of GQp ,
a full Galois stable Zp-sublattice T of V, set T := Λ⊗Zp T and we write O for
the valuation ring of L. For any continuous representations ρ : G → GLn(O)
we denote by V (ρ∗) the Galois representation ρ∗ ⊗ V := On ⊗Zp V, on which
GQp acts diagonally, via ρ∗ on the first factor.
The following conjecture will play a key role in the sequel (for further discussion
of this conjecture see [39, Conj. 5.9]).

Conjecture 6.1 (Fukaya and Kato, [16, Conj. 3.4.3]). There exists a canonical
morphism in CΛ̃ of the form

ǫp,Λ(T) : 1eΛ →
(
dΛ(RΓ(Qp,T)) · dΛ(T)

)
eΛ

which is such that for all finite degree extensions L of Qp, with valuation ring
O, and all continuous representations ρ : G → GLn(O) ⊆ GLn(L) such that
V (ρ∗) is de Rham one has

Ln ⊗Λ ǫp,Λ(T) = ǫp,L(V (ρ∗)).

6.2. Selmer complexes. We fix a continuous finite-dimensional L-linear rep-
resentation W of GQ which satisfies the following ‘condition of Da̧browski-
Panchishkin’:

(DP) W is de Rham and there exists a GQp-subrepresentation Ŵ of W (re-

stricted to GQp) such that D0
dR(Ŵ ) = tp(W ) := DdR(W )/D0

dR(W ).

Thus we have an exact sequence of GQp-representations

0→ Ŵ →W → W̃ → 0

such that D0
dR(Ŵ ) = tp(W̃ ) = 0 (cf. [23, Prop. 1.28]). Setting Z := W ∗(1),

Ẑ := W̃ ∗(1) and Z̃ := Ŵ ∗(1) we obtain by Kummer duality the analogous
exact sequence

0→ Ẑ → Z → Z̃ → 0
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and we note that Z also satisfies the condition (DP).
We now fix a finite set S of places of Q which contains both S∞ := {∞} and
Sp := {p} and is such that W (and hence also Z) is a representation of GS ,
and we set U := Spec(Z[ 1

S ]).

Then the Selmer complex SCU (Ŵ ,W ) is defined to be the natural mapping
fibre
(31)

SCU (Ŵ ,W ) // RΓ(U,W ) // RΓ(Qp,W/Ŵ )⊕⊕ℓ 6=p RΓ(Qℓ,W ) //

while the modified Selmer complex SC(Ŵ ,W ) is defined to be the natural
mapping fibre
(32)

SC(Ŵ ,W ) // RΓ(U,W ) // RΓ(Qp,W/Ŵ )⊕⊕ℓ 6=p RΓ/f (Qℓ,W ) //

where in both cases ℓ runs over all prime numbers that are distinct from p. Also,
for each such ℓ, the complex RΓ/f (Qℓ,W ) is defined as the natural mapping
cone

(33) RΓf (Qℓ,W ) // RΓ(Qℓ,W ) // RΓ/f (Qℓ,W ) //

For any GQp-representation V and prime number ℓ we define an element of the
polynomial ring L[u] by setting

Pℓ(V, u) := PL,ℓ(V, u) :=

{
detL(1− ϕℓu|V Iℓ), if ℓ 6= p,

detL(1− ϕpu|Dcris(V )), if ℓ = p,

where ϕℓ denotes the geometric Frobenius automorphism of ℓ.
Then the following three conditions are easily seen to be equivalent:

(A1) Pℓ(W, 1)Pℓ(Z, 1) 6= 0 for all primes ℓ 6= p,
(A2) H

0(Qℓ,W ) = H0(Qℓ, Z) = 0 for all primes ℓ 6= p,
(A3) RΓf (Qℓ,W ) is quasi-null for all primes ℓ 6= p.

We also consider the following conditions:

(B1) Pp(W, 1)Pp(Z, 1) 6= 0,
(B2) Dcris(W )ϕp−1 = Dcris(Z)ϕp−1 = 0,
(B3) H

0(Qp,W ) = H0(Qp, Z) = 0.

We note that (B1) is equivalent to (B2) and that [23, Thm. 1.15] shows that
(B3) implies (B2).
Finally we consider the following mutually equivalent conditions (to see that

(C2) is equivalent to (C3) one uses loc. cit. and the fact that tp(W̃ ) = tp(Z̃) =
0) :

(C1) Pp(W̃ , 1)Pp(Z̃, 1) 6= 0,

(C2) Dcris(W̃ )ϕp−1 = Dcris(Z̃)ϕp−1 = 0,

(C3) H
0(Qp, W̃ ) = H0(Qp, Z̃) = 0.

Lemma 6.2. Let X denote either W or Z.
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(i) If condition (A1) is satisfied, then for every prime ℓ 6= p all of the
following complexes are quasi-null

RΓ(Qℓ,X) ∼= RΓf (Qℓ,X) ∼= RΓ/f (Qℓ,X) ∼= 0.

(ii) If condition (C1) is satisfied, then there are isomorphisms in Dp(L) of
the form

RΓ/f (Qp,X) ∼= RΓ(Qp, X̃)

and
RΓf (Qp,X) ∼= RΓ(Qp, X̂) ∼= RΓf (Qp, X̂).

(iii) If conditions (A1) and (C1) are both satisfied, then there exists an
isomorphism in Dp(L) of the form

SCU (Ŵ ,W ) ∼= RΓf (Q,W ).

Proof. We assume (A1). Then by local duality and the local Euler character-
istic formula it follows immediately that RΓ(Qℓ,X) is quasi-null. The other
statements in claim (i) are then obvious. To prove claim (ii) we assume (C1).
Then, since every bounded complex of finitely generated L-modules is canoni-
cally isomorphic in Db(L) to its cohomology, considered as a complex with zero

differentials, we have RΓ(Qp, X̂) ∼= RΓf (Qp, X̂) ∼= RΓf (Qp,X) by [16, Lem.
4.1.7]. Thus the exact triangles

RΓ(Qp, X̂)→ RΓ(Qp,X)→ RΓ(Qp, X̃)→
and

RΓf (Qp,X)→ RΓ(Qp,X)→ RΓ/f (Qp,X)→
are naturally isomorphic in Dp(L). Finally, we note that claim (iii) follows im-

mediately from claims (i) and (ii) and the respective definitions of SCU (Ŵ ,W )
and RΓf (Q,W ). �

6.3. p-adic height pairings. To prepare for our derivation of the interpo-
lation formula in §6.4 we now discuss certain preliminaries regarding p-adic
height pairings.
We let M be any motive over Q, V = Mp its p-adic realization, ρ an Artin
representation defined over the number field K and [ρ] the corresponding Artin
motive. We fix a p-adic place λ of K, set L := Kλ and write O for the valuation
ring of L. Then the λ-adic realisation

(34) W := Nλ = V ⊗Qp [ρ]∗λ

of the motive N := M(ρ∗) := M ⊗ [ρ]∗ is an L-adic representation. We assume
that V (and hence, since [ρ]∗ is pure of weight zero, also W ) satisfies the
condition (DP). We fix a full Galois stable Zp-sublattice T of V and set Tρ :=
T ⊗Zp On, a Galois stable lattice in W (where we assume that without loss of
generality [ρ]∗λ is given as ρ∗ : GQ → GLn(O)). Similarly we fix a full GQp-

stable Zp-sublattice T̂ of V̂ and we define T̃ to be the lattice in Ṽ that is

induced from T . Finally we set T̂ρ := T̂ ⊗Zp On and T̃ρ := T̃ ⊗Zp On (which

are Galois stable O-sublattices of Ŵ and W̃ respectively).
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Example 6.3. Let A be an abelian variety that is defined over Q and set
M := h1(A)(1). If A has good ordinary reduction at p, then W := Nλ satisfies
the conditions (DP), (A1), (B1) and (C1). Indeed, the last three conditions are
valid for weight reasons, and more generally, condition (DP) is known to be
valid for any motive which has good ordinary reduction at p (see [28]). More

precisely, for A (still in the good ordinary case) we have Ŵ = V̂ ⊗ [ρ]∗λ where

V̂ = Vp(Â∨) denotes the p-adic Tate-module of the formal group of the dual
abelian variety A∨ of A. However, if, for example, A is an elliptic curve with
(split) multiplicative reduction at p, then M does not satisfy the condition
(B1).

Now we define a GQp-stable Zp-sublattice of V̂ by setting

T̂ := T ∩ V̂ .

As before we let T denote the Galois representation Λ⊗ZpT and set T̂ := Λ⊗Zp T̂

similarly. Then T̂ is a GQp-stable Λ-submodule of T. It is in fact a direct
summand of T and there exists a morphism in CΛ̃ of the form

(35) β : dΛ(T+)Λ̃
∼= dΛ(T̂)Λ̃.

Now the Selmer complexes SCU (T̂,T) and SC(T̂,T) are defined analogously
as for W above.
Then SCU (X̂,X) coincides with the Selmer complex R̃Γf (X) that occurs in
[24, (11.3.1.5)] for X ∈ {W,Z}. More generally, we set Γ := Gal(Qcyc/Q) and
define

Tcyc,ρ := Λ(Γ)⊗Zp Tρ

and similarly also T̂cyc,ρ and T̃cyc,ρ. Then SCU (T̂cyc,ρ,Tcyc,ρ) identifies with

the Selmer complex R̃Γf,Iw(Qcyc/Q, Tρ) that is defined in [24, (8.8.5)] (with

Nekovář’s local conditions induced by setting T+
ℓ := T̂cyc(ρ) if ℓ = p and

T+
ℓ := 0 otherwise, and with Nekovář’s set Σ taken to be the set of all rational

primes). Thus we obtain a pairing

hp(W ) : H1
f (Q,W )×H1

f (Q, Z)→ L

from [24, §11] where hp(W ) is denoted h̃π,1,1. Now, by [24, Thm. 11.3.9], the
pairing hp(W ) coincides up to sign with the height pairings constructed by
Schneider [32] (in the case of abelian varieties) and Perrin-Riou [26] (for semi-
stable representations) and also those constructed earlier by Nekovář [23]: see
also [loc. cit., §8.1] and the papers of Mazur and Tate [22] and Zarhin [41] for
alternative definitions of related height pairings.
It follows from the construction of Nekovář’s height pairing (cf. [24, the sen-
tence after (11.1.3.2)]) that the induced map

(36) ad(hp(W )) : H1
f (Q,W )→ H1

f (Q, Z)∗
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is equal to the composite

(37) H1
f (Q,W ) ∼= H1(SCU (Ŵ ,W ))

B−→ H2(SCU (Ŵ ,W ))

∼= H2
f (Q,W ) ∼= H1

f (Q, Z)∗

where the first and third maps are by Lemma 6.2(iii), B denotes the Bockstein

homomorphism for SCU (T̂cyc,ρ,Tcyc,ρ) and the last map comes from global
duality.

6.4. The interpolation formula. In this section we assume that the mo-
tive N := M(ρ∗) is critical. Then, assuming the conjecture [39, Conj. 3.3] of
Fontaine and Perrin-Riou to be valid, the motivic cohomology groups

(D1) H
0
f (N) = H0

f (N
∗(1)) = 0

both vanish. In fact, if we also assume the validity of a well-known conjecture
[39, Conj. 3.6] on p-adic regulator maps, this last condition is equivalent to the
condition

(D2) H
0
f (Q,W ) = H0

f (Q, Z) = 0

where W is defined in (34) and Z := W ∗(1).
We also consider the condition

(F) The pairing hp(W ) is non-degenerate.

Example 6.4. If A is an abelian variety over Q, then the motive M = h1(A)(1)
satisfies the conditions (D1) and (D2). However, very little is known about the
non-degeneracy of the p-adic height pairing in the ordinary case. Indeed, as far
as we are aware, the only theoretical evidence for non-degeneracy is a result of
Bertrand [1] that for an elliptic curve with complex multiplication, the height
of a point of infinite order is non-zero (but even this is unknown in the non CM
case). Computationally, however, there has been a lot of work done recently
by Stein and Wuthrich [40]. We are grateful to J. Coates, P. Schneider and C.
Wuthrich for providing us with these examples.

We now fix a compact p-adic Lie extension F∞ of Q which contains Qcyc and
is unramified outside S. We let G denote the group Gal(F∞/Q), with quotient
Γ := Gal(Qcyc/Q), and we set Λ := Λ(G).

In [16] Fukaya and Kato use the morphisms ζΛ(M) and ǫp,Λ(T̂) that are pre-
dicted to exist by Conjecture 4.1 and Conjecture 6.1 to construct canonical
‘p-adic L-function’ morphisms in CΛ of the form

(38) LU,β := LU,β(M) : 1Λ → dΛ(SCU (T̂,T))

and

(39) Lβ := Lβ(M) : 1Λ → dΛ(SC(T̂,T))

both depending on the isomorphism β in (35). We set SCU := SCU (T̂,T)

and SC := SC(T̂,T). Then the morphisms LU,β and Lβ give rise to elements
[SCU ,LU,β ] and [SC,Lβ ] of K1(Λ(G),ΣSCU ) and K1(Λ(G),ΣSC) respectively
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(where we use the notation ΣC introduced at the end of §2.2), and for simplicity
we continue to denote these elements by LU,β and Lβ respectively.
We write Υ for the set of all primes ℓ 6= p with the property that the ramification
index of ℓ in F∞/Q is infinite. We note that Υ is empty if G has a commutative
open subgroup.

Theorem 6.5. We assume that the motive M(ρ∗) is critical, that the repre-
sentation W defined in (34) satisfies the conditions (DP ), (A1), (B1), (C1),

(D2) and (F ) and that the morphisms ζΛ(M) and ǫp,Λ(T̂) that are described in
Conjecture 4.1 and Conjecture 6.1 exist.
Then both SCU (T̂,T) and SC(T̂,T) are semisimple at ρ, one has r :=

rG(SCU (T̂,T))(ρ) = rG(SC(T̂,T))(ρ) = dimLH
1
f (Q,W ) and the leading term

L∗β(ρ) (respectively L∗U,β(ρ)) is equal to the product

(40) (−1)r
L∗K,B(M(ρ∗))

Ω∞(M(ρ∗))R∞(M(ρ∗))
· Ωp,β(M(ρ∗))Rp(M(ρ∗))

· ΓQp(V̂ )−1 · PL,p(Ŵ
∗(1), 1)

PL,p(Ŵ , 1)
,

where L∗K,B(M(ρ∗)) denotes the leading term at s = 0 of the B-truncated com-

plex L-function of M(ρ∗) with B := Υ∪Sp (respectively B := S\S∞). Further,
the regulator terms R∞(M(ρ∗)) and Rp(M(ρ∗)) and period terms Ω∞(M(ρ∗))
and Ωp,β(M(ρ∗)) that occur in the above formula are as defined in the course
of the proof given below.

Remark 6.6. The formulas of Theorem 6.5 represent a natural generalization
of the formulas obtained by Perrin-Riou in [29, 4.2.2 and 4.3.6]. Further, by
slightly altering the definition of the complex L-function an analogous formula
can be proved even in the case that the condition (B1) is not satisfied. Indeed,
if condition (B1) fails, then one can have PL,p(W, 0) = 0 and so the order of
vanishing at s = 0 of the functions LK,B(M(ρ∗), s) and LK(M(ρ∗), s) may
differ. However, to avoid this problem, in formula (40) one need only replace

PL,p(Ŵ , 1) by the leading coefficient of PL,p(Ŵ , ps) at s = 0, or equivalently

one can replace the term
L∗K,B(M(ρ∗))

PL,p(Ŵ ,1)
by

L∗K,B\{p}(M(ρ∗))

{PL,p(W,u)−1PL,p(Ŵ ,u)}u=1
.

Proof. We first prove all of the assertions concerning SCU (T̂,T).
By [16, 4.1.4(2)] there exists a canonical isomorphism

(41) (ΛO(Γ)⊗O On)⊗L
Λ(G) SCU (T̂,T) ∼= SCU (T̂cyc,ρ,Tcyc,ρ).

Lemma 3.13 therefore combines with the following result to imply that,
under the stated conditions, SCU (T̂,T) is semisimple at ρ and one has

rG(SCU (T̂,T))(ρ) = dimLH
1
f (Q,W ).

Lemma 6.7. We assume that the conditions (A1), (C1) and (D2) are satisfied.

(i) Then SCU (T̂cyc,ρ,Tcyc,ρ) is semisimple if and only if the condition (F)
holds.
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(ii) Further, if condition (F) is satisfied, then rΓ(SCU (T̂cyc,ρ,Tcyc,ρ)) =
dimLH

1
f (Q,W ).

Proof. By assumption, the condition (D2) can be combined with the isomor-
phism of Lemma 6.2 (iii) and the global duality isomorphism H3

f (Q,W ) ∼=
H0
f (Q, Z)∗ to imply that SCU (Ŵ ,W ) is acyclic outside degrees 1 and 2. Both

claims therefore follow from the fact that the homomorphisms (36) and (37) are
known to coincide and that there are canonical isomorphisms L⊗Λ(Γ) Tcyc,ρ

∼=
W, L⊗Λ(Γ)T̂cyc,ρ

∼= Ŵ and thus L⊗Λ(Γ)SCU (T̂cyc,ρ,Tcyc,ρ) ∼= SCU (Ŵ ,W ). �

We next prove the explicit formula (40) for the leading term L∗U,β(ρ). Our

proof of this result is closely modeled on that of [16, Thm. 4.2.26] (as amplified
in [39, proof of Thm. 6.4]).
At the outset we set N := M(ρ∗), let γ = (γi)i and δ = (δi)i denote a choice of

‘good bases’ (in the sense of [16, 4.2.24(3)]) of M+
B and tM for T̂ and write γ′

and δ′ for the induced K-bases of N+
B and tN respectively. Then these choices

induce a morphism

(42) canγ′,δ′ : 1K → dK(N+
B )dK(tN )−1.

Furthermore, we let P∨ = (P∨1 , . . . , P
∨
d(N)) and P = (P1, . . . , Pd(N)) be K-bases

of H1
f (N) and H1

f (N
∗(1)) respectively. Then, letting P d := (P d1 , . . . , P

d
d(N))

denote the dual basis of P , we obtain a similar morphism

(43) canP∨,Pd : 1K → dK(H1
f (N))dK(H1

f (N
∗(1))∗)−1.

Then can := canγ′,δ′ · canP∨,Pd is a morphism
(44)
can : 1K → ∆K(N) = dK(N+

B )dK(tN )−1dK(H1
f (N))dK(H1

f (N
∗(1))∗)−1.

We fix an embedding of K into C. We let Ω∞(N) denote the determinant of
the canonical isomorphism

(45) αN : (N+
B )C → (tN )C

with respect to the bases γ′ and δ′, and R∞(N) the determinant of the inverse
of the canonical isomorphism

(46) h∞(N) :
(
H1
f (N

∗(1))∗
)

C
→ H1

f (N)C

with respect to the bases P d and P∨ respectively. Thus we have morphisms

Ω∞(N) : 1C

(canγ′,δ′ )C−−−−−−−→ dK(N+
B )CdK(tN )−1

C

d(αN )·id−−−−−−→ 1C

and

R∞(N) : 1C

(can
P∨,Pd )C−−−−−−−−→ dK(H1

f (N))CdK(H1
f (N

∗(1))∗)−1
C

id·d(h∞(N))−1

−−−−−−−−−−→ 1C

whose product gives

Ω∞(N)R∞(N) : 1C
can−−→ ∆K(N)C

(ϑ∞(N))C−−−−−−→ 1C.
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Upon comparing this with the leading term

L∗K(M) : 1C
ζK(N)C−−−−−→ ∆K(N)C

(ϑ∞(N))C−−−−−−→ 1C

we deduce that ζK(N) : 1K → ∆K(N) is equal to the morphism

L∗K(M)

Ω∞(N)R∞(N)
· can : 1K → ∆K(N).

Before proceeding we recall the relevant descent properties of Selmer complexes.

Lemma 6.8. We use the notation of §6.3.
(i) There exist canonical isomorphisms of the form

Ln ⊗L
Λ,ρ RΓc(U,T) ∼= RΓc(U,W ), Ln ⊗L

Λ,ρ SCU (T̂,T) ∼= SCU (Ŵ ,W ).

(ii) There exists an exact triangle of the form

Ln ⊗L
Λ,ρ SC(T̂,T) // SC(Ŵ ,W ) //

⊕
ℓ∈Υ RΓf (Qℓ,W ) // .

Proof. See [16, Prop. 1.6.5 and Prop. 4.2.17]. �

Now, after taking account of Lemma 6.8(i), the leading term L∗U,β(ρ) is defined

(in Definition 3.14) to be equal to (−1)r times the morphism

1L̃
ζΛ(M)(ρ)L̃−−−−−−−→ dL(RΓc(U,W ))−1

L̃

β(ρ)ǫ(T̂)−1(ρ)−−−−−−−−−→

dL(SCU (Ŵ ,W ))−1

L̃

t(SCU (ρ∗))L̃−−−−−−−−→ 1L̃

where ζΛ(M)(ρ) := Ln⊗ΛζΛ(N), β(ρ) := Ln⊗Λβ and ǫ(T̂)(ρ) := Ln⊗Λǫp,Λ(T̂).
But Conjecture 4.1 implies that ζΛ(M)(ρ) is equal to

1L̃
ζK(N)L̃−−−−−→ ∆K(N)L̃

ϑλ(N)−−−−→ dL(RΓc(U,W ))−1

L̃
,

while Conjecture 6.1 implies that

ǫ(T̂)(ρ) = ǫp,L(Ŵ ),

and hence it follows that L∗U,β(ρ) is equal to the product of the following seven

terms (47)-(53):

(47) (−1)r
L∗K(N)

Ω∞(M(ρ∗))R∞(N)
;

(48) ΓL(Ŵ )−1 = ΓQp(V̂ )−1;

(49)

Ωp,β(M(ρ∗)) : dL(Ŵ )L̃
· ǫdR(Ŵ )−1

// dL(DdR(Ŵ ))L̃
d(gtdR) // dK(tM(ρ∗))L̃

· canγ,δ //

dK
(
M(ρ∗)+B

)
L̃

d(g+λ )
// dL(W+)L̃

β(ρ) // dL(Ŵ )L̃,
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where we use D0
dR(Ŵ ) = 0 for the second isomorphism and where we apply

Remark 2.2 to regard this as an automorphism of 1L̃;

(50)
∏

ℓ∈S\{p,∞}
PL,ℓ(W, 1) :

1L

Q
ηℓ(W ) //

∏
ℓ∈S\{p,∞} dL(RΓf (Qℓ,W ))

acyc // 1L,

where the first map comes from the trivialization by the identity and the second
from the acyclicity;

(51) {PL,p(W,u)PL,p(Ŵ , u)−1}u=1 :

1L
ηp(W )·ηp(Ŵ )−1

// dL(RΓf (Qp,W ))dL(RΓf (Qp, Ŵ ))−1
quasi // 1L,

where we use that tp(W ) = DdR(Ŵ ) = tp(Ŵ ) and the quasi-isomorphism
described in Lemma 6.2(ii);

(52) PL,p(Ŵ
∗(1), 1) : 1L

(ηp(Ŵ∗(1)))∗ // dL(RΓf (Qp, Ŵ
∗(1)))

acyc // 1L,

where we use the fact that tp(Ŵ
∗(1)) = D0

dR(Ŵ ) = 0;

(53) Rp(N) : 1L
(can

P∨,Pd )L−−−−−−−−→ dK(H1
f (N))LdK(H1

f (N
∗(1))∗)−1

L

∼=−→

dK(H1
f (Q,W ))LdK(H1

f (Q, Z)∗)−1
L

hp(W )−−−−→ 1L

which is equal to the determinant over L of the isomorphism ad(hp(W )) with
respect to the chosen bases P∨ and P .
Indeed, in order to compare L∗U,β(ρ) with the product of the above terms (47)-

(53) one just has to verify that after revealing all definitions and identifications,
in particular all comparison isomorphisms, the same constituents show up in
both expressions (here we rely on Remark 2.2 which implies that all composi-
tions of maps in CL̃ can be interpreted as products and hence are independent
of any ordering). Thus we shortly indicate how the constituents of L∗U,β(ρ)
give rise to precisely those in the product: As we remarked earlier, ζΛ(M)(ρ)
decomposes up to the comparison isomorphism d(g+

λ ), which contributes to
factor (49), into ζK(N)L and ϑλ(N). While ζK(N)L gives the full factor (47)
and contributes with canγ,δ and canP∨,Pd to the factors (49) and (53), respec-
tively, the second part ϑλ(N) gives the full factor (50), the half factor (51)
in the form of ηp(W ) and contributes d(g+

dR) to factor (49). Further, β(ρ)

contributes to factor (49), while according to [16, §3.3] ǫ(T̂)−1(ρ) = ǫp,L(Ŵ )−1

gives the full factors (48) and (52), the other half of (51) in the form of ηp(Ŵ )−1

and adds ǫdR(Ŵ ) to factor (49). Finally, we had observed at the end of §6.3
that t(SCU (ρ∗)) is equal to hp(W ).
Since L∗U,β(ρ) is equal to the product of the terms (47)-(53), it is therefore
enough to show that the product of these terms is also equal to the explicit
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product expression in (40). But this follows immediately by a direct comparison
of the maps involved and then using the fact that

L∗K,B(N) = L∗K(N) ·
∏

ℓ∈S\S∞
PL,ℓ(W, 1) · PL,p(Ŵ , 1)−1 · PL,p(Ŵ ∗(1), 1).

At this stage we have proved all of the claims in Theorem 6.5 concerning
SCU (T̂,T) and so it only remains to prove the analogous claims for the com-

plex SC(T̂,T). But these claims can be proved easily by combining the above
argument with consideration of the exact triangle

SCU (Ŵ ,W )→ Ln ⊗L
Λ SC(T̂,T)→

⊕

ℓ/∈(Sp∪Υ)

RΓf (Qℓ,W )→

(which itself results from comparing the defining exact triangles (31) and (32)
firstly with each other and then with the exact triangle in Lemma 6.8(ii)) and
the equality

L∗K,Υ′(N) = L∗K,B′(N)
∏

ℓ∈B\Υ
PL,ℓ(W, 1)−1

with Υ′ = Υ ∪ {p} and B′ = S \ S∞. �

Example 6.9. Let E be an elliptic curve defined over Q. Set M := h1(E)(1)
and F∞ := Q(E(p)) where E(p) denotes the p-power torsion subgroup of E(Q).

Then it is conjectured that SCU (T̂,T) always belongs to ΣS∗ (cf. [11, Conj. 5.1]
and [16, 4.3.5 and Prop. 4.3.7]). Further, as was shown in [16], the existence
of a morphism Lβ(M) as in (39) implies the existence of the element LE of
K1(Λ(G)S∗) that [11, Conj. 5.7] predicts to exist with a precise interpolation

property for all Artin representations ρ such that rG(SC(T̂,T))(ρ) = 0. More
generally, the formula (40) now gives a precise interpolation property for (the
leading term of) the element LE at all Artin representations at which the
underlying archimedean and p-adic height pairings are non-degenerate.

References

[1] D. Bertrand, Valuers de fonctions theta et hauteur p-adiques, in Séminaire
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1 Introduction

In [7], Coleman and Mazur construct a rigid analytic space E (the “Eigen-
curve”) that parameterizes overconvergent and therefore classical modular
eigenforms of finite slope. The geometry of E is at present poorly understood,
and seems quite complicated, especially over the centre of weight space. Re-
cently, some progress has been made in understanding the geometry of E in
certain examples (see for example [3],[4]). Many questions remain. In this
paper, we address the following question raised on p5 of [7]:

Do there exist p-adic analytic families of overconvergent eigenforms
of finite slope parameterized by a punctured disc, and converging,
at the puncture, to an overconvergent eigenform of infinite slope?

We answer this question in the negative for the 2-adic eigencurve of tame
level 1. Another way of phrasing our result is that the map from the eigencurve
to weight space satisfies the valuative criterion of properness, and it is in this
sense that the phrase “proper” is used in the title, since the projection to
weight space has infinite degree and so is not technically proper in the sense of
rigid analytic geometry. One might perhaps say that this map is “functorially
proper”. Our approach is based on the following simple idea. One knows
(for instance, from [1]) that finite slope eigenforms of integer weight may be

1Supported in part by an EPSRC Advanced Research Fellowship
2Supported in part by the American Institute of Mathematics
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analytically continued far into the supersingular regions of the moduli space.
On the other hand, it turns out that eigenforms in the kernel of U do not extend
as far. Now one can check that a limit of highly overconvergent eigenforms is
also highly overconvergent, and this shows that given a punctured disc as above,
the limiting eigenform cannot lie in the kernel of U .

The problem with this approach is that perhaps the most natural definition
of “highly overconvergent” is not so easy to work with at non-integral weight.
The problem stems from the fact that such forms of non-integral weight are
not defined as sections of a line bundle. In fact Coleman’s definition of an
overconvergent form of weight κ is a formal q-expansion F for which F/Eκ
is overconvergent of weight 0, where Eκ is the p-deprived weight κ Eisenstein
series. One might then hope that the overconvergence of F/Eκ would be a good
measure of the overconvergence of F . One difficulty is that if F is an eigenform
for the Hecke operators, the form F/Eκ is unlikely to be an eigenform. This
does not cause too much trouble when proving that finite slope eigenforms
overconverge a long way, as one can twist the U -operator as explained in [5]
and apply the usual techniques. We outline the argument in sections 2 and
3 of this paper. On the other hand we do not know how to prove general
results about (the lack of) overconvergence of forms in the kernel of U in this
generality. Things would be easier if we used V (Eκ) to twist from weight κ
to weight 0, but unfortunately the results we achieve using this twist are not
strong enough for us to get the strict inequalities that we need.

The approach that we take in our “test case” of N = 1 and p = 2 is to control
the kernel of U in weight κ by explicitly writing down the matrix of U (and
of 2V U − Id) with respect to a carefully-chosen basis. To enable us to push
the argument through, however, we were forced to diverge from Coleman’s
choice of twist. We define the overconvergence of F , not in terms of F/Eκ, but
rather in terms of F/hs for some explicit modular form h. The benefit of our
choice of h is that it is nicely compatible with the explicit formulae developed
in [3], and hence we may prove all our convergence results by hand in this case.
Our proof that eigenforms of finite slope overconverge “as far as possible” is
essentially standard. The main contribution of this paper is to analyze the
overconvergence (or lack thereof) of eigenforms in the kernel of the U operator
in this case.

One disadvantage of our approach is that the power series defining hs only
converges for s sufficiently small and hence our arguments only deal with forms
whose weights lie in a certain disc at the centre of weight space. However,
recently in [4], the 2-adic level 1 eigencurve was shown to be a disjoint union
of copies of weight space near the boundary of weight space, and hence is
automatically proper there.
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2 Definitions

Let ∆(τ) = q
∏∞
n=1(1 − qn)24 = q − 24q2 + 252q3 − 1472q4 + · · · denote the

classical level 1 weight 12 modular form (where q = e2πiτ ). Set

f = ∆(2τ)/∆(τ) = q + 24q2 + 300q3 + 2624q4 + · · · ,

a uniformizer for X0(2), and

h = ∆(τ)2/∆(2τ) =
∏

n≥1

(
1− qn
1 + qn

)24

= 1− 48q + 1104q2 − 16192q3 + . . .

a modular form of level 2 and weight 12. Note that the divisor of h is 3(0),
where (0) denotes the zero cusp on X0(2), and hence that

h1/3 =
∏

n≥1

(
1− qn
1 + qn

)8

is a classical modular form of weight 4 and level 2.
We briefly review the theory of overconvergent p-adic modular forms, and make
it completely explicit in the setting we are interested in, namely p = 2 and tame
level 1. Let C2 denote the completion of an algebraic closure of Q2. Normalize
the norm on C2 such that |2| = 1/2, and normalize the valuation v : C×2 → Q
so that v(2) = 1. Choose a group-theoretic splitting of v sending 1 to 2, and let
the resulting homomorphism Q→ C×2 be denoted t 7→ 2t. Define v(0) = +∞.
Let O2 denote the elements of C2 with non-negative valuation.
If r ∈ Q with 0 < r < 2/3 (note that 2/3 = p/(p + 1) if p = 2) then
there is a rigid space X0(1)≥2−r over C2 such that functions on this space
are r-overconvergent 2-adic modular functions. Let X[r] denote the rigid space
X0(1)≥2−r . By Proposition 1 of the appendix to [3], we see that X[r] is simply
the closed subdisc of the j-line defined by |j| ≥ 2−12r. We will also need to use
(in Lemma 6.13) the rigid space X[2/3], which we define as the closed subdisc
of the j-line defined by |j| ≥ 2−8. The parameter q can be viewed as a rigid
function defined in a neighbourhood of∞ on X[r], and hence any rigid function
on X[r] can be written as a power series in q; this is the q-expansion of the
form in this rigid analytic setting. Moreover, it is well-known that the classical
level 2 form f descends to a function on X[r] (for any r < 2/3), with the same
q-expansion as that given above.
For 0 < r < 2/3, define M0[r] to be the space of rigid functions on X[r],
equipped with its supremum norm. Then M0[r] is a Banach space over C2

— it is the space of r-overconvergent modular forms of weight 0. An easy
calculation using the remarks after Proposition 1 of the appendix to [3] shows
that the set {1, 212rf, 224rf2, . . . , (212rf)n, . . .} is an orthonormal Banach basis
for M0[r], and we endow M0[r] once and for all with this basis.
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We defineW to be the open disc of centre 1 and radius 1 in the rigid affine line
over C2. If w ∈ W(C2) then there is a unique continuous group homomorphism
κ : Z×2 → C×2 such that κ(−1) = 1 and κ(5) = w; moreover this establishes a
bijection betweenW(C2) and the set of even 2-adic weights, that is, continuous
group homomorphisms κ : Z×2 → C×2 such that κ(−1) = 1. Note that if k is
an even integer then the map x 7→ xk is such a homomorphism, and we refer
to this weight as weight k. Let τ : Z×2 → C×2 denote the character with
kernel equal to 1 + 4Z2, and let 〈·〉 denote the character x 7→ x/τ(x); this
character corresponds to w = 5 ∈ W(C2). If t ∈ C2 with |t| < 2 then we may
define 5t := exp

(
t log(5)

)
∈ W(C2) and we let 〈·〉t denote the homomorphism

Z×2 → C×2 corresponding to this point of weight space. One checks easily
that the points of weight space corresponding to characters of this form are
{w ∈ W(C2) : |w − 1| < 1/2}.
We now explain the definitions of overconvergent modular forms of general
weight that we shall use in this paper. Recall h =

∏
n≥1(1− qn)24/(1 + qn)24.

Define h1/8 to be the formal q-expansion
∏
n≥1((1− qn)3/(1 + qn)3. Now

(1− qn)/(1 + qn) = 1− 2qn + 2q2n − · · · ∈ 1 + 2qZ[[q]]

and hence h1/8 ∈ 1 + 2qZ[[q]]. Write h1/8 = 1 + 2qg with g ∈ Z[[q]]. If S
is a formal variable then we define hS ∈ 1 + 16qSZ2[[8S, q]] to be the formal
binomial expansion of (1 + 2qg)8S . If s ∈ C2 with |s| < 8 then we define hs to
be the specialization in 1 + 2qO2[[q]] of hS at S = s. In fact for the main part
of this paper we shall only be concerned with hs when |s| < 4.
If s ∈ C2 with |s| < 8, then define µ(s) := min{v(s), 0}, so −3 < µ(s) ≤ 0.
Define X to be the pairs (κ, r) (where κ : Z×2 → C×2 and r ∈ Q) such that there
exists s ∈ C2 with |s| < 8 satisfying

• κ = 〈·〉−12s, and

• 0 < r < 1/2 + µ(s)/6.

Note that the second inequality implies r < 1/2, and conversely if |s| ≤ 1 and
0 < r < 1/2 then (〈·〉−12s, r) ∈ X .
For (κ, r) ∈ X , and only for these (κ, r), we define the space Mκ[r] of r-
overconvergent forms of weight κ thus. Write κ = 〈·〉−12s and define Mκ[r] to
be the vector space of formal q-expansions F ∈ C2[[q]] such that Fhs is the
q-expansion of an element of M0[r]. We give Mκ[r] the Banach space struc-
ture such that multiplication by hs induces an isomorphism of Banach spaces
Mκ[r] → M0[r], and we endow Mκ[r] once and for all with the orthonormal
basis {h−s, h−s(212rf), h−s(212rf)2, . . .}.

Remark 2.1. We do not consider the question here as to whether, for all
(κ, r) ∈ X , the space Mκ[r] is equal to the space of r-overconvergent modular
forms of weight κ as defined by Coleman (who uses the weight κ Eisenstein
series Eκ to pass from weight κ to weight 0). One could use the methods
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of proof of §5 of [4] to verify this; the issue is verifying whether Eκh
s is r-

overconvergent and has no zeroes on X[r]. However, we do not need this result
— we shall prove all the compactness results for the U operator that we need
by explicit matrix computations, rather than invoking Coleman’s results. Note
however that our spaces clearly coincide with Coleman’s if κ = 0, as the two
definitions coincide in this case. Note also that for r > 0 sufficiently small
(depending on κ = 〈·〉−12s with |s| < 8), the definitions do coincide, because if
E1 := 1 + 4q + 4q2 + · · · denotes the weight 1 level 4 Eisenstein series, then
h/E12

1 = 1 − 96q + · · · is overconvergent of weight 0, has no zeroes on X[r]
for r < 1/3, and has q-expansion congruent to 1 mod 32. Hence for r > 0
sufficiently small, the supremum norm of (h/E12

1 )−1 on X[r] is t with t < 1/2
and |s|t < 1/2, and this is enough to ensure that the power series (h/E12

1 )s is
the q-expansion of a function on X[r] with supremum norm at most 1. Hence
instead of using powers of h to pass between weight κ and weight 0, we could
use powers of E1. Finally, Corollary B4.5.2 of [5] shows that if κ = 〈·〉−12s

then there exists r > 0 such that E−12s
1 /Eκ is r-overconvergent, which suffices.

Recall that if X and Y are Banach spaces over a complete field K with or-
thonormal bases {e0, e1, e2, . . .} and {f0, f1, f2, . . .}, then by the matrix of a
continuous linear map α : X → Y we mean the collection (aij)i,j≥0 of elements
of K such that α(ej) =

∑
i≥0 aijfi. One checks that

• supi,j |aij | <∞, and

• for all j we have limi→∞ |aij | = 0,

and conversely that given any collection (aij)i,j≥0 of elements of K having
these two properties, there is a unique continuous linear map α : X → Y
having matrix (aij)i,j≥0 (see Proposition 3 of [10] and the remarks following it
for a proof). When we speak of “the matrix” associated to a continuous linear
map between two spaces of overconvergent modular forms, we will mean the
matrix associated to the map using the bases that we fixed earlier.
If R is a ring then we may define maps U , V and W on the ring R[[q]] by

U
(∑

anq
n
)

=
∑

a2nq
n,

V
(∑

anq
n
)

=
∑

anq
2n,

and

W
(∑

anq
n
)

=
∑

(−1)nanq
n.

Recall that U(V (G)F ) = GU(F ) for F,G formal power series in q, and that V :
R[[q]]→ R[[q]] is a ring homomorphism. The operator W is not standard (or at
least, our notation for it is not standard), but is also a ring homomorphism (it
sends f(q) to f(−q)) and one also checks easily that W = 2V U − Id. We shall
show later on that there are continuous linear maps between various spaces of
overconvergent modular forms which correspond to U and W , and will write
down explicit formulae for the matrices associated to these linear maps.
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3 The U operator on overconvergent modular forms

Our goal in this section is to make precise the statement in the introduction that
finite slope U -eigenforms overconverge a long way. Fix r ∈ Q with 0 < r < 1/2.
We will show that if (κ, r) ∈ X then the U -operator (defined on q-expansions)
induces a continuous linear map Mκ[r] → Mκ[r], and we will compute the
matrix of this linear map (with respect to our chosen basis of Mκ[r]). We
will deduce that if 0 < ρ < r and F is ρ-overconvergent with UF = λF 6= 0
then F is r-overconvergent. These results are essentially standard but we shall
re-prove them, for two reasons: firstly to show that the arguments still go
through with our choice of twist, and secondly to introduce a technique for
computing matrices of Hecke operators in arbitrary weight that we shall use
when analyzing the W operator later.
It is well-known that the U -operator induces a continuous linear map U :
M0[r] → M0[r], and its associated matrix was computed in [3]. Now choose
m ∈ Z≥0, and set k = −12m. One checks that (k, r) ∈ X . If φ ∈M0[r] then

hmU
(
h−mφ

)
= hmU

(
∆(2τ)−mf2mφ

)

= hm∆(τ)−mU
(
f2mφ

)
= f−mU

(
f2mφ

)
.

A simple analysis of the q-expansion of f−mU(f2mφ) shows that it has no
pole at the cusp of X[r] and hence f−mU(f2mφ) ∈ M0[r]. We deduce that
U induces a continuous map Mk[r] → Mk[r], and moreover that the matrix
of this map (with respect to the basis fixed earlier) equals the matrix of the
operator Uk := f−mUf2m acting on M0[r]. We now compute this matrix.

Lemma 3.1. For m ∈ Z≥0 and k = −12m as above, and j ∈ Z≥0, we have

Uk
(
(212rf)j

)
=

∞∑

i=0

uij(m)(212rf)i,

where uij(m) is defined as follows: we have u00(0) = 1, uij(m) = 0 if 2i−j < 0
or 2j − i+ 3m < 0, and

uij(m) =
3(i+ j + 3m− 1)!(j + 2m)28i−4j+12r(j−i)

2(2i− j)!(2j − i+ 3m)!

if 2i− j ≥ 0, 2j − i+ 3m ≥ 0, and i, j, m are not all zero.

Proof. The case m = 0 of the lemma is Lemma 2 of [3], and the general case
follows easily from the fact that Uk = f−mUf2m. Note that in fact all the
sums in question are finite, as uij(m) = 0 for i > 2j + 3m.

Now for i, j ∈ Z≥0 define a polynomial uij(S) ∈ C2[S] by uij(S) = 0 if 2i < j,
uij(S) = 212ir if 2i = j, and

uij(S) =
3 · 212r(j−i)(j + 2S)28i−4j

2(2i− j)!

2i−j−1∏

λ=1

(2j − i+ λ+ 3S)
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if 2i > j. One checks easily that evaluating uij(S) at S = m for m ∈ Z≥0 gives
uij(m), so there is no ambiguity in notation. Our goal now is to prove that for
all s ∈ C2 such that |s| < 8 and (〈·〉−12s, r) ∈ X , the matrix (uij(s))i,j≥0 is the
matrix of the U -operator acting on Mκ[r] for κ = 〈·〉−12s (with respect to the
basis of Mκ[r] that we fixed earlier).
Say s ∈ C2 with |s| < 8, define κ = 〈·〉−12s, set µ = min{v(s), 0}, and say
0 < r < 1/2 + µ/6. Then (κ, r) ∈ X . Note that v(as+ b) ≥ µ for any a, b ∈ Z,
and 3 + µ− 6r > 0.

Lemma 3.2. (a) One has v(uij(s)) ≥ (3 + µ− 6r)(2i− j) + 6rj.
(b) There is a continuous linear map U(s) : M0[r]→M0[r] with matrix uij(s).
Equivalently, there is a continuous linear map U(s) : M0[r]→M0[r] such that

U(s)
(
(212rf)j

)
=

∞∑

i=0

uij(s)(2
12rf)i.

Proof. (a) This is a trivial consequence of our explicit formula for uij(s), the
remark about v(as+ b) above, and the fact that v(m!) ≤ m− 1 if m ≥ 1 (see
Lemma 6.2).
(b) Recall that uij(s) = 0 if 2i < j. Hence by (a) we see that |uij(s)| ≤ 1 for all
i, j. It remains to check that for all j we have limi→∞ v(uij(s)) = +∞ which
is also clear from (a).

Note that U(s) = U−12s if s = m ∈ Z≥0.
In fact the same argument gives slightly more. Choose ǫ ∈ Q with 0 < ǫ <
min{r, 1/2 + µ/6− r}. Then (κ, r + ǫ) ∈ X .

Theorem 3.3. The endomorphism U(s) of M0[r] is the composite of a contin-
uous map M0[r]→M0[r + ǫ] and the restriction M0[r + ǫ]→M0[r].

Proof. Define wij(s) = uij(s)/2
12ǫi. By the previous lemma we have

v(wij(s)) ≥ (2i− j)(3 + µ− 6r − 6ǫ) + 6j(r − ǫ)

and wij(s) = 0 if j > 2i. In particular v(wij(s)) ≥ 0 for all i, j, and moreover for
all j we have limi→∞ wij(s) = 0. The continuous linear map M0[r]→M0[r+ǫ]
with matrix (wij(s))i,j≥0 will hence do the job.

As usual say |s| < 8, κ = 〈·〉−12s and (κ, r) ∈ X .

Corollary 3.4. The map U(s) : M0[r] → M0[r] is compact and its charac-
teristic power series is independent of r with 0 < r < 1/2 + µ/6. Furthermore
if 0 < ρ < r then any non-zero U(s)-eigenform with non-zero eigenvalue on
M0[ρ] extends to an element of M0[r].

Proof. This follows via standard arguments from the theorem; see for example
Proposition 4.3.2 of [7], although the argument dates back much further.
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Keep the notation: |s| < 8, κ = 〈·〉−12s, µ = min{v(s), 0} and 0 < r <
1/2 + µ/6, so (κ, r) ∈ X . We now twist U(s) back to weight κ and show that
the resulting compact operator is the U -operator (defined in the usual way on
power series).

Proposition 3.5. The compact endomorphism of Mκ[r] defined by φ 7→
h−sU(s)(hsφ) is the U -operator, i.e., sends

∑
anq

n to
∑
a2nq

n.

Proof. It suffices to check the proposition for φ = h−s(212rf)j for all j ∈ Z≥0,
as the result then follows by linearity. If S is a formal variable then recall that
we may think of hS as an element of 1 + 16qSO2[[8S, q]]) and in particular as
an invertible element of O2[[8S, q]]. Write h−S for its inverse. We may think of
(hS)U(h−S(212rf)j) as an element of O2[[8S, q]] (though not yet as an element
of M0[r]). Write

(hS)U(h−S(212rf)j) =
∑

i≥0

ũij(S)(212rf)i

with ũij(S) ∈ O2[[8S]]⊗C2 (this is clearly possible as f = q+ . . .). The propo-
sition is just the statement that the power series ũij(S) equals the polynomial
uij(S). Now there exists some integer N ≫ 0 such that both 2Nuij(S) and
2N ũij(S) lie in O2[[8S]] (as uij(S) is a polynomial). Furthermore, Lemma 3.1
shows that uij(m) = ũij(m) for all m ∈ Z≥0 and hence 2N (uij(S)− ũij(S)) is
an element of O2[[8S]] with infinitely many zeroes in the disc |8s| < 1, so it is
identically zero by the Weierstrass approximation theorem.

Corollary 3.6. If (κ, r) ∈ X and κ = 〈·〉−12s then U is a compact operator
on Mκ[r] and its characteristic power series coincides with the characteristic
power series of U(s) on M0[r]. Furthermore F ∈ Mκ[r] is an eigenvector for
U iff Fhs ∈M0[r] is an eigenvector for U(s).

Proof. Clear.

The utility of these results is that they allow us to measure the overconvergence
of a finite slope form F of transcendental weight by instead considering the
associated form Fhs in weight 0. This will be particularly useful to us later on
in the case when F is in the kernel of U . We record explicitly what we have
proved. By an overconvergent modular form of weight κ we mean an element
of
⋃
rMκ[r], where r runs through the r ∈ Q for which (κ, r) ∈ X .

Corollary 3.7. If (κ, r) ∈ X and f is an overconvergent modular form of
weight κ which is an eigenform for U with non-zero eigenvalue, then f extends
to an element of Mκ[r].

Proof. This follows from 3.4 and 3.5.

In fact we will need a similar result for families of modular forms, but our
methods generalize to this case. We explicitly state what we need.
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Corollary 3.8. Let A ⊆ W be an affinoid subdomain, say 0 < ρ < r < 1/2,
and assume that for all κ ∈ A(C2) we have (κ, r) ∈ X . Let F ∈ O(A)[[q]] be
an analytic family of ρ-overconvergent modular forms, such that UF = λF for
some λ ∈ O(A)×. Then F is r-overconvergent.

4 The W operator on overconvergent modular forms

We need to perform a similar analysis to the previous section with the operator
W . Because W = 2V U − Id we know that W induces a continuous linear map
V : M0[r]→M0[r] for r < 1/3 (for r in this range, U doubles and then V halves
the radius of convergence). Our goal in this section is to show that, at least
for κ = 〈·〉−12s with |s| < 8, there is an operator on weight κ overconvergent
modular forms which also acts on q-expansions in this manner, and to compute
its matrix.
We proceed as in the previous section by firstly introducing a twist of W . If
m ∈ Z≥0, if k = −12m and if φ ∈ M0[r] then the fact that h(q)/h(−q) =
(f(−q)/f(q))2 implies

hmW (h−mφ) = f−2mW (f2mφ)

and so we define the operator Wk on M0[r], r < 1/3, by Wk := f−2mWf2m :
M0[r]→M0[r].
Set g = Wf , so g(q) = f(−q) = −q + 24q2 − 300q3 + . . .. Because g =
2V Uf − f = 48Vf + 4096(Vf)2 − f , we see that the g can be regarded as
a meromorphic function on X0(4) of degree at most 4. Similarly f may be
regarded as a function on X0(4) of degree 2. Now the meromorphic function

(1 + 48f − 8192f2g)2 − (1 + 16f)2(1 + 64f)

on X0(4) has degree at most 16 but the first 1000 terms of its q-expansion can
be checked to be zero on a computer, and hence this function is identically
zero. We deduce the identity

g =
1 + 48f − (1 + 16f)

√
1 + 64f

8192f2
,

where the square root is the one of the form 1 + 32f + . . ., and one verifies
using the binomial theorem that g =

∑
i≥1 cif

i with

ci := (−1)i24i−4

(
(2i+ 2)!

(i+ 1)!(i+ 2)!
− (2i)!

i!(i+ 1)!

)

= (−1)i24(i−1) 3(2i)!

(i− 1)!(i+ 2)!

The other ingredient we need to compute the matrix of Wk is a combinatorial
lemma.
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Lemma 4.1. If j ≥ 1 and i ≥ j + 1 are integers then

i−1∑

a=j

3(2a+ j − 1)!j(2i− 2a)!

(a− j)!(a+ 2j)!(i− a− 1)!(i− a+ 2)!
=

(2i+ j)!(j + 1)

(i− j − 1)!(i+ 2j + 2)!
.

Proof. Set k = i − 1 − a and n = i − 1 − j and then eliminate the variables i
and a; the lemma then takes the form

n∑

k=0

F (j, n, k) = G(j, n)

and, for fixed n and k, both F (j, n, k) and G(j, n) are rational functions of j.
The lemma is now easily proved using Zeilberger’s algorithm (regarding j as
a free variable), which proves that the left hand side of the equation satisfies
an explicit (rather cumbersome) recurrence relation of degree 1; however it is
easily checked that the right hand side is a solution to this recurrence relation,
and this argument reduces the proof of the lemma to the case n = 0, where it
is easily checked by hand.

We now compute the matrix of Wk on M0[r] for r < 1/3 and k = −12m,
m ∈ Z≥0.

Lemma 4.2. For j ≥ 0 we have

Wk

(
(212rf)j

)
=

∞∑

i=0

ηij(m)(212rf)i,

where ηij(m) is defined as follows: we have ηij(m) = 0 if i < j, ηii(m) = (−1)i,
and for i > j we define

ηij(m) =
(2i+ j − 1 + 6m)!3(j + 2m) · 2(4−12r)(i−j)(−1)i

(i− j)!(i+ 2j + 6m)!
.

Proof. We firstly deal with the case m = 0, by induction on j. The case j = 0
is easily checked as ηi0(0) = 0 for i > 0, and the case j = 1 follows from
the fact that ci2

12r(1−i) = ηi1(0) for i ≥ 1, as is easily verified. For j ≥ 1
we have W (f j+1) = f(−q)j+1 = g · W (f j) = (

∑
t≥1 ctf

t)W (f j), and so to
finish the m = 0 case it suffices to verify that for j ≥ 1 and i ≥ j + 1 we
have ηi j+1(0) = 212r

∑i−1
a=0 ci−a2

−12r(i−a)ηaj(0), which quickly reduces to the
combinatorial lemma above.
Finally we note that because ηi+2mj+2m(0) = ηij(m), the general case follows
easily from the case m = 0 and the fact that Wk = f−2mWf2m.

As before, we now define polynomials ηij(S) by ηij(S) = 0 if i < j, ηii(S) =
(−1)i, and

ηij(S) =
3(j + 2S)2(4−12r)(i−j)(−1)i

(i− j)!

i−j−1∏

λ=1

(i+ 2j + λ+ 6S)
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for i > j. We observe that ηij(S) specializes to ηij(m) when S = m ∈ Z≥0.
Now if |s| < 8 and κ = 〈·〉−12s, and we set λ = min{v(2s), 0} > −2, then we
check easily that v(ηij(s)) ≥ (3− 12r+ λ)(i− j) + 1, so for 12r < 3 + λ we see
that (ηij(s))i,j≥0 is the matrix of a continuous endomorphism W (s) of M0[r].
Moreover, arguments analogous to those of the previous section show that if
furthermore (κ, r) ∈ X (so Mκ[r] is defined), then the endomorphism of Mκ[r]
defined by sending φ to h−sW (s)(hsφ) equals the W operator as defined on
q-expansions. Note that if |s| ≤ 4 then 12r < 3 + λ implies (κ, r) ∈ X .

5 Strategy of the proof.

We have proved in Corollary 3.7 that overconvergent modular forms f such
that Uf = λf with λ 6= 0 overconverge “a long way”. Using the W -operator
introduced in the previous section we will now prove that overconvergent mod-
ular forms f = q + · · · such that Uf = 0 cannot overconverge as far. We
introduce a definition and then record the precise statement.

Definition 5.1. If x ∈ C2 then set β = β(x) = sup{v(x − n) : n ∈ Z2},
allowing β = +∞ if x ∈ Z2, and define ν = ν(x) as follows: ν = β if β ≤ 0,
ν = β/2 if 0 ≤ β ≤ 1, and in general

ν =

n∑

k=1

1/2k + (β − n)/2n+1

if n ≤ β ≤ n+ 1. Finally define ν = 1 if β = +∞.

The meaning of the following purely elementary lemma will become apparent
after the statement of Theorem 5.3.

Lemma 5.2. Say s ∈ C2 with |s| < 4 and furthermore assume 2s 6∈ Z×2 . Then

for all s′ ∈ C2 with |s− s′| ≤ 1, we have 0 < 3+ν(2s)
12 < 1

2 + µ(s′)
6 .

Proof. We have ν(2s) > −1 and so certainly 3+ν(s)
12 > 0. The other inequality

can be verified on a case-by-case basis. We sketch the argument.
If |s| > 2 then |s′| = |s| > 2 and ν(2s)−1 = v(s) = v(s′) = µ(s′); the inequality
now follows easily from the fact that µ(s′) > −2.
If |s| ≤ 2 but 2s 6∈ Z2 then 0 < β(2s) < ∞ and ν(2s) < 1; now |s′| ≤ 2 and

hence µ(s′) ≥ −1, thus 3+ν(2s)
12 < 1

3 ≤ 1
2 + µ(s′)

6 .

Finally if 2s ∈ Z2 then we are assuming 2s 6∈ Z×2 and hence s ∈ Z2 so |s| ≤ 1

and hence |s′| ≤ 1. Hence µ(s′) = 0 and we have 3+ν(2s)
12 = 1

3 <
1
2 + µ(s′)

6 .

Again say |s| < 4 and 2s /∈ Z×2 . Write κ = 〈·〉−12s, and ν = ν(2s). Let
G = q + · · · be an overconvergent form of weight κ (by which we mean an
element of Mκ[ρ] for some ρ ∈ Q>0 sufficiently small). The theorem we prove
in the next section (which is really the main contribution of this paper) is
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Theorem 5.3. If G = q + · · · satisfies UG = 0, then F := hsG ∈ M0[ρ] does
not extend to an element of M0[r] for r = 3+ν

12 . Equivalently, G 6∈Mκ[r].

Note that by Lemma 5.2 we have (κ, r) ∈ X so the theorem makes sense.
Furthermore, by Corollary 3.7, overconvergent eigenforms of the form q+ · · · in
the kernel of U overconverge less than finite slope overconvergent eigenforms.
Note also that if 2s ∈ Z×2 then ν(2s) = 1 and for κ, r as above we have
(κ, r) 6∈ X . We deal with this minor annoyance in the last section of this
paper.

6 The Kernel of U

In this section we prove Theorem 5.3. We divide the argument up into several
cases depending on the value of s. We suppose that |s| < 4 and 2s 6∈ Z×2 ,
and we set κ = 〈·〉−12s. Define ν = ν(2s) as in the previous section, and set
r = 3+ν

12 . For simplicity we drop the s notation from ηij(s) and write

ηij =
3(j + 2s)2(4−12r)(i−j)(−1)i

(i− j)!

i−j−1∏

t=1

(i+ 2j + t+ 6s)

=
3(j + 2s)2(1−ν)(i−j)(−1)i

(i− j)!

i−j−1∏

t=1

(i+ 2j + t+ 6s).

Say G = q + · · · as in Theorem 5.3 is ρ-overconvergent for some 0 < ρ < r, so
F = hsG ∈M0[ρ]. If we expand F as

F =
∑

j≥1

ãj(2
12ρf)j

then it follows that ã1 6= 0. Recall also that ãj → 0 as j → ∞. On the other
hand, F = −W (s)F , and so

ãi = −
∞∑

j=1

ãj η̃i,j ,

where η̃ij denotes the matrix of W (s) on M0[ρ] (so ηij = η̃ij2
12(r−ρ)(j−i)). We

deduce from this that if we define ai = ãi2
12(ρ−r)i then F =

∑
j≥1 aj(2

12rf)j

and

ai = −
∑

j≥1

ajηij .

Note in particular that the sum converges even if W (s) does not extend to
a continuous endomorphism of M0[r] or if F does not extend to an element
of M0[r]. In fact our goal is to show that the ai do not tend to zero, and in
particular that F does not extend to an element of M0[r].
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Lemma 6.1. Suppose F is as above. Suppose also that there exist constants c1
and c3 ∈ R, an infinite set I of positive integers, and for each i ∈ I constants
N(i) and c2(i) tending to infinity as i→∞ and such that

(i) v(ηi1) ≤ c1, for all i ∈ I.

(ii) v(ηij) ≥ c2(i) for all i ∈ I and 2 ≤ j ≤ N(i).

(iii) v(ηij) ≥ c3 for all i ∈ I and j ∈ Z≥0.

Then the ai do not tend to zero as i → ∞, and hence F does not extend to a
function on M0[r].

Proof. Assume ai → 0. Recall that we assume a1 6= 0. By throwing away the
first few terms of I if necessary, we may then assume that for all i ∈ I we have

(1) c2(i) > v(a1) + c1 −min{v(aj) : j ≥ 1}, and

(2) min{v(aj) : j > N(i)} > v(a1) + c1 − c3.

We now claim that for all i ∈ I we have v(a1ηi1) < v(ajηij) for all j > 1. The
reason is that if j ≤ N(i) the inequality follows from equation (1) above, and
if j > N(i) it follows from (2). Now from the equality

ai = −
∞∑

j=1

ajηij

we deduce that v(ai) = v(a1ηi1) is bounded for all i ∈ I, contradicting the fact
that ai → 0.

The rest of this section is devoted to establishing these inequalities for suitable
I and r. We start with some preliminary lemmas.

Lemma 6.2. 1. If m ≥ 1 then v(m!) ≤ m− 1, with equality if and only if m
is a power of 2.

2. If m ≥ 0 then v(m!) ≥ (m− 1)/2, with equality if and only if m = 1, 3.

3. If n ≥ 0 and 0 ≤ m < 2n then setting t = 2n −m we have m− v(m!) ≥
n− (t/2).

Proof. 1 and 2 follow easily from

v(m!) = ⌊m/2⌋+ ⌊m/4⌋+ ⌊m/8⌋+ . . . .

For 3, we have m!(m+1)(m+2) . . . (2n−1)(2n) = (2n)! and for 0 < d < 2n we
have v(d) = v(2n−d), so v((m+1)(m+2) . . . (2n−1)) = v((t−1)!) ≥ (t−2)/2
by 2. Finally v((2n)!) = 2n − 1 by 1. Hence v(m!) ≤ 2n − 1− n− (t− 2)/2 =
2n − n− (t/2) and so m− v(m!) ≥ 2n − t− (2n − n− (t/2)) = n− (t/2).
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Lemma 6.3. Let m ∈ Z be arbitrary and set β = β(x) and ν = ν(x) as in
Definition 5.1.

1. If β ≤ 0 then v(x+n) = ν for all n ∈ Z, hence the valuation of
∏N
t=1(x+

m+ t) is Nν.

2. If 0 < β <∞ and if N is a power of 2 with N ≥ 2⌈β⌉ then the valuation
of

N∏

t=1

(x+m+ t)

is exactly Nν.

3. If 0 < β <∞ and if N ≥ 0 is an arbitrary integer then the valuation of

N∏

t=1

(x+m+ t)

is v, where |v −Nν| < β.

4. If β = ∞ and if N ≥ 0 is an arbitrary integer then the valuation of∏N
t=1(x+m+ t) is at least v(N !).

Proof. (1) is obvious and (2) is easy to check (note that v(x + n) is periodic
with period 2⌈β⌉). For part (3), say n = ⌊β⌋. Now about half of the terms in
this product are divisible by 2, about a quarter are divisible by 4, and so on.
More precisely, this means that the largest possible power of 2 that can divide
this product is

⌈N/2⌉+ ⌈N/4⌉+ . . .+ ⌈N/2n⌉+ (β − n)⌈N/2n+1⌉
<(N/2 + 1) + (N/4 + 1) + . . .+ (N/2n + 1) + (β − n)(N/2n+1 + 1)

=Nν + β.

A similar argument shows that the lowest possible power of 2 dividing this
product is strictly greater than Nν − β.
For part (4), if β =∞ then x ∈ Z2 and by a continuity argument it suffices to
prove the result for x a large positive integer, where it is immediate because
the binomial coefficient

(
x+m+N

N

)
is an integer.

Now set x = 2s and let β = β(2s), ν = ν(2s). Note that if β ≤ 0 then µ = β−1,
and if β ≥ 1 then µ = 0.
Recall ηij = 0 if i < j, ηii = (−1)i, and if i > j we have

ηij =
3(j + 2s)2(1−ν)(i−j)(−1)i

(i− j)!

i−j−1∏

t=1

(i+ 2j + t+ 6s).
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In particular, for i > j we have

(∗) v(ηi,j) = (1−ν)(i−j)−v((i−j)!)+v(j+2s)+v

(
i−j−1∏

t=1

(i+ 2j + t+ 6s)

)
.

We shall continually refer to (∗) in what follows.

Proposition 6.4. Say β ≤ 0 (and hence ν = β).

1. If j ≥ i then v(ηij) ≥ 0, and if j < i then v(ηij) = i− j − v((i− j)!) ≥ 1.

2. If i = 2n+1 then v(ηi1) = 1 and if 1 < j < i then v(ηij) ≥ n− (j− 1)/2.

Proof. 1 is immediate from (∗) and Lemma 6.3(1). Now 2 can be deduced from
1, using part 1 of Lemma 6.2 for the first part and part 3 of Lemma 6.2 for the
second.

We now prove:

Lemma 6.5. Theorem 5.3 is true if −1 < β ≤ 0 (i.e., if 2 ≤ |s| < 4).

Equivalently, if 2 ≤ |s| < 4 and κ = 〈·〉−12s, and if G = q + . . . is a non-zero
weight κ overconvergent form in ker(U), then F = hsG does not converge as
far as M0[1/4 + ν/12], where ν = ν(2s) as above.

Proof. This will be a direct application of lemma 6.1. We set I = {2n + 1 :
n ∈ Z>0}, and if i = 2n + 1 we define c2(i) = (n + 1)/2 and N(i) = n. We
set c1 = 1 and c3 = 0. Now assumptions (i) and (ii) of Lemma 6.1 follow from
Proposition 6.4(2), and (iii) follows from Proposition 6.4(1).

Let us now consider the case when 0 < β <∞.

Proposition 6.6. Let 0 < β <∞.

1. If j < i then v(ηi,j)−
(
(i− j)− v((i− j)!)− ν

)
∈ [−β, 2β].

2. If j < i then
v(ηij) ≥ 1− β − ν.

If i = 2n + 1 then
v(ηi1) ≤ 2β − ν + 1

and if 1 < j < i then

v(ηij) ≥ n− (j + 1)/2− ν − β.

Proof. From the definition of β, the valuation of j+2s lies in [0, β]. The result
then follows from (∗) and lemma 6.3, part 3. Part 2 follows from part 1 and
Lemma 6.2, parts (1) and (3), applied to (i− j)!.
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Lemma 6.7. Theorem 5.3 is true if 0 < β <∞, that is, if |s| ≤ 2 and 2s 6∈ Z2.

Proof. Again this is an application of lemma 6.1. Set I = {2n + 1 : n ∈ Z>0},
c1 = 2β − ν + 1, c3 = min{0, 1 − β − ν}, and if i = 2n + 1 then set N(i) = n
and c2(i) = (n + 1)/2 − ν − β. Conditions (i)–(iii) of Lemma 6.1 hold by
Proposition 6.6(2).

The only cases of Theorem 5.3 left to deal with are those with β = +∞, that
is, 2s ∈ Z2. Because the theorem does not deal with the case 2s ∈ Z×2 we may
assume from now on that 2s ∈ 2Z2, so s ∈ Z2. We next deal with the case
s ∈ Z2 and 6s 6∈ N, where N = {1, 2, 3, . . .} is the positive integers. In this case,
we shall again use Lemma 6.1 with i of the form i = 2n + 1. However, it will
turn out that only certain (although infinitely many) n will be suitable.

Since we assume s ∈ Z2 we have β = +∞, so ν = 1 and hence

(∗∗) ηij =
3(j + 2s)(−1)i

(i− j)!

i−j−1∏

t=1

(i+ 2j + t+ 6s).

Let u ∈ Z2. Define functions fn(u) as follows:

fn(u) = (2n + u)(2n + u+ 1) · · · (2n+1 − 1 + u) =

2n−1∏

τ=0

(2n + u+ τ).

Lemma 6.8. For any u ∈ Z2 there exist infinitely many values of n for which

vn(f(u)) = v((2n)!) or v((2n)!) + 1.

Proof. For each n, define an integer 0 < un ≤ 2n by setting u ≡ un mod 2n.
If 0 ≤ τ ≤ 2n − 1 and τ 6= 2n − un, then

v(2n + u+ τ) = v(un + τ).

Since τ takes on every equivalence class modulo 2n, It follows from the definition
of fn that

v(fn(u)) = v((2n − 1)!) + v(2n+1 + u− un).

If u 6≡ un mod 2n+1 then v(2n+1 + u − un) = v(2n) and v(fn(u)) = v((2n)!).
There are infinitely many n satisfying this condition unless u ≡ un mod 2n+1

for all sufficiently large n. Yet this implies un = un+1 for all sufficiently large n,
and subsequently that u = un. In this case we have v(2n+1+u−un) = v(2n+1),
and v(fn(u)) = v((2n)!) + 1.

Corollary 6.9. There are infinitely many n such that if i = 2n + 1 then
v(ηi1) ∈ {0, 1}.
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Proof. Let i = 2n + 1 and j = 1, and assume n ≥ 1. By (∗∗) we have

ηi1 =
3(1 + 2s)(−1)

(2n)!

2n−1∏

t=1

(2n + 3 + t+ 6s).

Let u = 6s+ 4 ∈ 2Z2 and set τ = t− 1. Then

ηi1 =
(1− u)
(2n)!

2n−2∏

τ=0

(2n + u+ τ) =
fn(u)

(2n)!
· 1− u
u− 1 + 2n+1

and the result follows from Lemma 6.8 and the fact that u ∈ 2Z2.

Let us now turn to estimating ηij for general i, j.

Lemma 6.10. If i, j ∈ Z≥0 then v(ηij) ≥ 0.

Proof. By continuity, it suffices to verify the result for 6s a large positive even
integer. It is clear if i ≤ j so assume i > j. Now because the product of N
successive integers is divisible by N ! we see (putting one extra term into the
product) that both x1 := i+2j+6s

3(j+2s) ηij and x2 := 2i+j+6s
3(j+2s) ηij are integers. The

result now follows as ηij = 2x1 − x2.

Set I0 = {i = 2n + 1 : v(ηi1) ∈ {0, 1}}. Then I0 is infinite by Corollary 6.9.
We will ultimately let I be a subset of I0. We must analyze ηij for i ∈ I0 and
1 < j small. Note that if i = 2n + 1 and j ≥ 2, then

ηi,j
ηi,1

= 2n · (j + 2s)

(1 + 2s)
·
j−2∏

t=1

(i− j + t) ·
∏j−1
t=1 (2i+ t+ 6s)

∏2j−2
t=1 (i+ 2 + t+ 6s)

Since 6s /∈ −N, 3 + 6s + t 6= 0. Thus for any N there exists n0 depending on
N such that for all n ≥ n0 we have v(i + 2 + 6s + t) = v(3 + 6s + t) for all
t ≤ 2N −2. In particular, for fixed N and sufficiently large n (with i = 2n+1),

v(ηij) ≥ n− v
(

2j−2∏

t=0

(3 + 6s+ t)

)
+ v(ηi1).

Lemma 6.11. For any constants c2 ∈ R and N ∈ Z≥1, there exists n1 =
n1(c2, N) such that for all n ≥ n1 such that i = 2n+1 ∈ I0, we have v(ηij) ≥ c2
for 2 ≤ j ≤ N .

Proof. Set M = v(
∏2N−2
t=0 (3+6s+t)) and choose n1 such that n1−M ≥ c2.

We may now prove:

Lemma 6.12. Theorem 5.3 is true if s ∈ Z2 and 6s 6∈ −N.
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Proof. We apply lemma 6.1 as follows. Set c1 = 1 and c3 = 0. We build I as
follows. As m runs through the positive integers, set N = c2 = m, define n1

as in Lemma 6.11, choose n ≥ n1 such that i := 2n + 1 ∈ I0 and such that i
is not yet in I; now add i to I and define N(i) = c2(i) = t. The conditions of
lemma 6.1 are then satisfied.

The final case in our proof of Theorem 5.3 is the case 6s ∈ −2N, which corre-
sponds to weight k = −12s ∈ 4N. We shall not use Lemma 6.1 in this case,
but give a direct argument.
Because our level structure is so small it is convenient to temporarily augment
it to get around representability issues. Choose some auxiliary odd integer
N and consider the compact modular curve Y over Q2 whose cuspidal points
parameterize elliptic curves with a subgroup of order 2 and a full level N
structure (note that this curve is not in general connected). There is a sheaf ω
on Y , and classical modular forms of weight k and level 2 are, by definition,
GL2(Z/NZ)-invariant global sections of ω⊗k on Y .
For 0 < r ≤ 2/3 let Y [r] denote the pre-image of X[r] via the forgetful functor.
Recall that there is a compact operator U on H0(Y [r], ω⊗k) for r < 2/3 and
k ∈ Z.

Lemma 6.13. If k ∈ Z and f ∈ H0(Y [1/3], ω⊗k) is in the kernel of U , then
f = 0.

Remark 6.14. The lemma is not special to p = 2; the proof shows that non-zero
p-adic modular forms in the kernel of U are never 1/(p+ 1)-overconvergent.

Proof. Say f ∈ H0(Y [1/3], ω⊗k) is arbitrary. If E is an elliptic curve over a
finite extension of Q2, equipped with with a subgroup C of order 2 and a full
level N structure L, and such that the corresponding point (E,C,L) ∈ Y is
in Y [1/3], then one can regard f(E,C,L) as an element of H0(E,Ω1)⊗k. Now
define g ∈ H0(Y [2/3], ω⊗k) by

g(E,L) =
∑

D 6=C
(pr)∗f(E/D,C,L),

where the sum is over the subgroups D 6= C of E of order 2, pr denotes the
projection E → E/D, and a bar over a level structure denotes its natural push-
forward. An easy calculation using Tate curves (see for example Proposition 5.1
of [1]) shows that g = 2Uf , and hence if Uf = 0 then g = 0. In particular if E is
an elliptic curve with no canonical subgroup and we fix a full level N structure
L on E, then then (E,C,L) ∈ Y [2/3] for all C, and g(E,C,L) = 0 for all C im-
plies that

∑
D 6=C(pr)∗f(E/D,E[2]/D,L) = 0 for all C. Summing, one deduces

that
∑
D(pr)∗f(E/D,E[2]/D,L) = 0 and hence that f(E/D,E[2]/D,L) = 0

for all D of order 2. This implies that f is identically zero on the “boundary”
of Y [1/3] and hence that f is identically zero.

We deduce
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Lemma 6.15. Theorem 5.3 is true for 6s ∈ −2N.

Proof. If G ∈ Mk[1/3] then G = hk/12F and, because k = −12s ∈ 4N, we
know that hk/12 is a classical modular form of level 2 and hence an element of
H0(Y [1/3], ω⊗(k/12)). Thus the preceding lemma applies to G and we conclude
that G = 0.

Theorem 5.3 now follows from Lemmas 6.5, 6.7, 6.12 and 6.15.

7 There are not too many holes in the eigencurve.

We begin with a simple rigid-analytic lemma that forms the basis to our ap-
proach. Let X be a connected affinoid variety, and let V be a non-empty
admissible open affinoid subdomain of X. Let B = Sp(C2〈T 〉) denote the
closed unit disc, and let A = Sp(C2〈T, T−1〉) denote its “boundary”, the closed
annulus with inner and outer radii both 1.

Lemma 7.1. If f is a function on V × B and the restriction of f to V × A
extends to a function on X ×A, then f extends to a function on X ×B.

Proof. We have an inclusion O(X) ⊆ O(V ), as X is connected, and we know
f ∈ O(V )〈T 〉 and f ∈ O(X)〈T, T−1〉. But the intersection of these two rings
is O(V )〈T 〉.

Let E denote the 2-adic eigencurve of tame level 1, and let W denote 2-adic
weight space. We recall that because 2 is a regular prime, E is a disjoint
union EEis

∐ Ecusp, and the natural map from the Eisenstein component EEis

to weight space is an isomorphism. One can also check from the definition of
the eigencurve in [2] that the cuspidal component Ecusp of E represents the
functor on rigid spaces over W sending a rigid space Y → W to the set of
normalized overconvergent finite slope cuspidal eigenforms of “weight Y ”, that
is, formal power series

∑
anq

n ∈ O(Y )[[q]] with a1 = 1 and a2 a unit, which
are eigenforms for all the Hecke operators and, when divided by the pullback
of the Eisenstein family to Y , become overconvergent functions on Y ×X[0].
Let B denote the closed unit disc and let B× denote B with the origin removed.
Suppose we have a map φ : B× → E such that the induced map B× → W
extends (necessarily uniquely) to a map B → W. Let κ0 ∈ W(C2) denote the
image 0 ∈ B(C2) under this map. The theorem we prove in this section is

Theorem 7.2. If κ0 /∈ {〈·〉−12s : 2s ∈ Z×2 } then the map φ : B× → E extends
to a map B → E.

Proof. If the image of φ is contained in EEis then the theorem is automatic, be-
cause the projection EEis →W is an isomorphism. Hence we may assume that
φ : B× → Ecusp. If |κ0(5)− 1| > 1/8 then we are finished by the main theorem
of [4]. Assume from now on that |κ0(5)−1| ≤ 1/8. Then the map φ corresponds
to a family

∑
anq

n of overconvergent eigenforms over B×. Furthermore, the

Documenta Mathematica · Extra Volume Coates (2006) 211–232



230 Kevin Buzzard and Frank Calegari

supremum norm of each an is at most 1 (because Hecke operators on over-
convergent p-adic modular forms have eigenvalues with norm at most 1) and,
analogous to the analysis of isolated singularities of holomorphic functions, one
checks easily that this is enough to ensure that each an extends to a function
on B. Our task is to analyze the “limiting” power series

∑
an(0)qn.

More precisely, we now have a formal power series
∑
n≥1 anq

n in O(B)[[q]].
To prove the theorem we must check that this formal power series is a finite
slope overconvergent form of weight B. We are assuming |κ0(5) − 1| ≤ 1/8
and hence κ0 = 〈·〉−12s with |s| < 4. Now assume also that 2s 6∈ Z×2 . Set

r = 3+ν(2s)
12 . After shrinking B if necessary, we may assume that for all b ∈ B

we have κb = 〈·〉−12s′ with |s − s′| ≤ 1. By Lemma 5.2 we have (κb, r) ∈ X
for all b ∈ B, and by Corollary 3.8 we see that on the boundary of B our
function

∑
anq

n is r-overconvergent, it being a finite slope eigenform for U
here. Moreover, the coefficients an are all bounded by 1 on all of B. Now
applying Lemma 7.1 with X = X[r] and V a small disc near infinity such such
that q (the q-expansion parameter) is a well-defined function on V , we deduce
that

∑
anq

n is r-overconvergent on all of B.

All that we need to show now is that a2 ∈ O(B)×. It suffices to prove that
a2(0) 6= 0, as we know that a2(b) 6= 0 for all 0 6= b ∈ B. But

∑
an(0)qn = q+. . .

is an r-overconvergent form of weight κ0, so by Theorem 5.3 (note that this is
where all the work is) we deduce a2(0) 6= 0. Hence a2 ∈ O(B)× and

∑
anq

n is
an overconvergent cuspidal finite slope eigenform of weight B, which induces
the map B → Ecusp which we seek.

8 There are no holes in the eigencurve

In the previous section we showed that if there are any holes in the eigencurve,
then they lie above weights of the form {〈·〉−12s : 2s ∈ Z×2 }. To show that in fact
there are no holes in the eigencurve, we redo our entire argument with a second,
even more non-standard, twist and show that using this twist we may deduce
that the only holes in the eigencurve lie above the set {〈·〉2−12s : 2s ∈ Z×2 }.
Because there is no s ∈ 1

2Z×2 such that 12s−2
12 ∈ 1

2Z×2 this finishes the argument.
We sketch the details.

Let E2 = 1 + 24q + 24q2 + 96q3 + . . . denote the holomorphic Eisenstein series
of weight 2 and level Γ0(2). We define X ′ = {(κ〈·〉2, r) : (κ, r) ∈ X}. If |s| < 8
then set κ′ = 〈·〉2−12s. If r is such that (κ′, r) ∈ X ′, we define M ′κ′ [r] to be
the vector space of formal q-expansions F ∈ C2[[q]] such that Fhs/E2 is the
q-expansion of an element of M0[r]. For r > 0 sufficiently small this definition
is easily checked to coincide with the usual definition. We shall be using this
definition with r quite large and again we neglect to verify whether the two
definitions coincide in the generality in which we use them. We give M ′κ′ [r]
the Banach space structure such that multiplication by hs/E2 is an isometric
isomorphism M ′κ′ [r] → M0[r], and endow M ′κ′ [r] once and for all with the
orthonormal basis {E2h

−s, E2h
−s(212rf), E2h

−s(212rf)2, . . .}. Note that the
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reason that this definition gives us more than our original definition of Mκ[r]
is that if k is an even integer with 2||k then (k, 1/3) 6∈ X but (k, 1/2− ǫ) ∈ X ′,
so we can “overconverge further” for such weights.
If θ = q(d/dq) is the operator on formal q-expansions, then one checks that
Uθ = 2θU . Moreover, it is well-known that θf = fE2 and hence θf j = jf jE2

for any j ≥ 0. Hence our formulae for the coefficients of U acting on M0[r]
will give rise to formulae for the coefficients of U acting on M ′2[r], which was
the starting point for the arguments in section 3. We give some of the details
of how the arguments should be modified. If m ∈ Z≥0 and k′ = 2− 12m then
we define a continuous operator U ′k′ on M0[r] by U ′k′(φ) = E−1

2 hmU(E2h
−mφ).

One checks that this is indeed a continuous operator by verifying that it has
a basis (u′ij(m))i,j≥0 defined by u′ij(m) = 0 for 2i < j or 2j − i + 3m < 0,
u′00(0) = 1, and

u′ij(m) =
3(i+ j + 3m− 1)!(i+m)28i−4j+12r(j−i)

(2i− j)!(2j − i+ 3m)!

otherwise. One checks that for i, j fixed there is a polynomial u′ij(S) in-
terpolating u′ij(m) and that for |s| < 8 with µ = min{v(s), 0} we have

v(u′ij(s)) ≥ (µ+3− 6r)(2i− j)+6rj as before. Hence for |s| < 8, κ′ = 〈·〉2−12s

and r ∈ Q such that (κ′, r) ∈ X ′, the matrix (u′ij(s))i,j≥0 defines a compact

operator U ′(s) on M0[r]. Furthermore we have U ′(s)(φ) = E−1
2 hsU(E2h

−sφ),
and in particular U : M ′κ′ [r]→ M ′κ′ [r] is well-defined and compact. Moreover,
U ′(s) increases overconvergence and any eigenvector for U ′(s) on M0[r] with
non-zero eigenvalue extends toM0[r

′] for any r′ such that 0 < r′ < 1/2+µ(s)/6.
Finally, these arguments also work for families of modular forms and the ana-
logue of Corollary 3.8 remains true in this setting.
Similar arguments work in section 4. One checks that 2V θ = θV and hence
V Uθ = 2V θU = θV U . Hence θ commutes with W and one now deduces from
our explicit formulae for W in weight −12m that in weight 2−12m the matrix
for W is given by Wk = [η′ij ], where:

η′ij =
(2i+ j − 1 + 6m)!3(i+ 2m) · 2(4−12r)(i−j)(−1)i

(i− j)!(i+ 2j + 6m)!
.

We remark that the only difference in this formula is that (j + 2m) has been
replaced by (i+ 2m). One finds that the arguments at the end of this section
apply mutatis mutandis in this case.
The analogue of Theorem 5.3 is that if |s| < 4 and 2s 6∈ Z×2 and κ′ = 〈·〉2−12s

then an overconvergent infinite slope form of weight κ′ is not r-overconvergent,

for r = 3+ν(2s)
12 . The proof follows the same strategy, although some of the

lemmas in section 6 need minor modifications; for example in Lemma 6.10
we set x1 = i+2j+6s

3(i+2s) η
′
ij and x2 := 2i+j+6s

3(i+2s) η
′
ij , and the result follows as η′ij =

2x2 − x1. Note that E2 can be regarded as an element of H0(Y [1/3], ω⊗2) so
that Lemma 6.13 does not need modification.
We deduce our main theorem:
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Theorem 8.1. If φ : B× → E and the induced map B× → W extends to a
map ψ : B →W, then φ extends to a map B → E.

Proof. If ψ(0) 6∈ {〈·〉−12s : 2s ∈ Z×2 } then we use Theorem 7.2, and if it is then
we use the modification explained above.
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[6] R. Coleman, F. Gouvêa, N. Jochnowitz. E2, Θ, and overconvergence, In-
ternat. Math. Res. Notices 1995, no. 1, 23–41

[7] R. Coleman, B. Mazur, The eigencurve, Galois representations in algebraic
geometry, (Durham, 1996), 1–113, London Math Soc. Lecture Note Ser.,
254, Cambridge Univ. Press, Cambridge, 1998.

[8] M. Emerton, The Eisenstein ideal in Hida’s ordinary Hecke algebra, IMRN
1999, No. 15.

[9] N. Katz, p-adic properties of modular schemes and modular forms., in
“Modular functions of one variable, III” (Proc. Internat. Summer School,
Univ. Antwerp, Antwerp, 1972), pp. 69–190. Lecture Notes in Mathemat-
ics, Vol. 350, Springer, Berlin, 1973.

[10] Jean-Pierre Serre. Endomorphismes complètement continus des espaces
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et Équidistribution des Points CM
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Abstract. This paper discusses the relations between a conjecture,
proposed by the authors, concerning the equidistribution of homoge-
neous subvarieties in arithmetic quotients; and the André–Oort con-
jecture.

1 Introduction

Dans un article récent [3 ] nous avons étudié la question suivante. Soient G
un groupe algébrique connexe sur Q, G(R)+ la composante neutre de G(R) et
Γ ⊂ G(R)+ un sous-groupe de congruence. Soit par ailleurs Hα ⊂ G (α > 1)
une suite de sous-groupes connexes définis sur Q. On suppose la suite stricte :

(1.1) Pour tout sous-groupe H & G (connexe, défini sur Q), Hα 6⊂ H
pour α assez grand.

Si Γα = Γ ∩Hα(R)+, on obtient alors naturellement une suite de mesures de
probabilité µα sur S(G,Γ) = Γ\G(R)+. (On suppose G, Hα “de type F ” [3 ] de
sorte que les mesures invariantes sont finies). On se demande si, pour α→∞,
µα tend vers la mesure de probabilité naturelle µG sur S(G,Γ) = Γ\G(R)+.
Dans certains cas il n’en est rien [3, § 2.3]. Nous avons donc donné une reformu-
lation adélique de la conjecture [3 ]. Soit K ⊂ G(Af ) le sous-groupe compact
ouvert définissant Γ, de sorte que S(G,Γ) = S(G,K)+ où

S(G,K) = G(Q)\G(A)/K .
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Pour H ⊂ G, soit S+(H,KH) la réunion des composantes connexes de
S(H,KH) = H(Q)\H(A)/KH ⊂ S(G,K) contenues dans S(G,K)+. Elle est
munie d’une mesure de probabilité naturelle (H de type F); notons-la µa,α si
H = Hα. Alors la conjecture est

(1.2) (Ea) - La suite de mesures µa,α tend vers µG (pour la conver-
gence faible) si α→ +∞.
Nous ne connaissons pas de contre-exemple à (Ea). Noter que cette conjecture
se formule naturellement de façon adélique : par exemple, si G est simple et
simplement connexe (et G(R) non compact) (Ea) est équivalente à la conjecture
analogue pour les sous-espaces

Hα(Q)\Hα(A) ⊂ G(Q)\G(A).

Dans [3], (Ea) est démontrée dans de nombreux cas, essentiellement quand la
théorie de Ratner s’applique, i.e., quand les groupes Ha “contiennent assez
d’unipotents” (mais voir a contrario [3, Théorème 3.3] où l’on démontre E
mais non (Ea)). Le cas pur et inaccessible à ces méthodes est celui où G est
semi-simple et où les Hα sont des tores; dans [3, § 5-7] on vérifie qu’il est lié à
des questions profondes de théorie analytique des nombres.
La théorie de Ratner a par ailleurs été appliquée dans [2] à des questions issues
de la conjecture d’André-Oort. On y démontre l’équidistribution de familles de
sous-variétés modulaires de dimension positive d’une variété de Shimura,
associées à des sous-groupes semi-simples du groupe ambiant. Au contraire, il
est bien connu [3, 16] que l’équidistribution des familles de points CM est lié
au problème d’équidistribution des orbites toriques.
Le but de cet article est d’éclaircir cette dernière relation, dans le cadre de
la conjecture d’André-Oort. Notons maintenant S une variété de Shimura,
associée à un groupe réductif G/Q est aux données usuelles (§ 2), et soit zα ∈ S
une suite de points CM. Ainsi tout point zα est associé à un tore Tα ⊂ G, son
groupe de Mumford-Tate. La variété S est définie sur un corps de nombres E
(le corps reflex); zα est défini sur la clôture algébrique Ē de E et son orbite
sous gE = Gal(Ē/E) est décrite par Shimura et Deligne, et liée à l’action de
Tα(Af ) sur S, Af désignant l’anneau des adèles finis.
Plus précisément, soit Eα = E(zα) le corps reflex de zα (c’est le corps E(Tα, hα)
de [4,§ 2.5] où hα : S → GR est associé à zα). Pour simplifier la notation,
écrivons simplement T pour Tα et soit R = ResE/QGm, un Q-tore. Il existe
alors un morphisme surjectif de tores algébriques dit de réciprocité

rec : R→ T

et l’orbite de zα sous gEα est contrôlée par l’image de R(Af )/R(Q). Notons U
le noyau de l’application de réciprocité: c’est un groupe diagonalisable sur Q.
Nous démontrons (Théorème 3.3) l’énoncé suivant.

Théorème 1.1 Soit (G,X) une donnée de Shimura de type adjoint. Il existe
un entier k tel que pour toute sous-donnée de Shimura spéciale (T, h) telle
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que T est le groupe de Mumford-Tate de h et telle que U = Ker(R → T ) est
connexe, l’ordre du conoyau de rec (vu comme morphisme des tores à valeurs
dans Af , modulo l’adhérence des points rationnels) est fini, d’ordre borné par
k. Il en résulte que la taille de l’orbite sous gE d’un point CM z, associé à une
sous-donnée de Shimura spéciale (T, h) vérifiant les hypothèses précédentes, est
(à un facteur majoré près) celle de T (Af ).

Il est donc crucial de comprendre la connexité de U , et c’est ce que nous avons
fait dans la première partie (§ 2, 3), au moins pour les groupes classiques.
Nous nous sommes limités en général aux points zα (ou aux tores Tα) “Galois-
génériques”. Ceci veut dire tout d’abord que le groupe de Mumford-Tate est
de dimension maximale (si G est adjoint, c’est en fait un tore maximal); puis,
que l’image de gE = Gal(Ē/E) dans Aut(X∗(T )), X∗(T ) étant le groupe des
caractères, est aussi maximale (cf. § 2, 3). On peut alors calculer le groupe
π0(U).
Dans le § 2, ceci est fait pour les groupes adjoints classiques, à l’aide du for-
malisme de Shimura et Deligne. Dans le § 3, on reprend le problème pour
G = GSp(g,Q) ou G = GU(h), groupe de similitudes unitaires.
Ces groupes sont plus naturels que les groupes adjoints, en relation avec les
problèmes de modules des variétés abéliennes. De plus, pour les groupes uni-
taires quasi-déployés à la place réelle, on verra que le noyau U est connexe alors
que son analogue ne l’est pas pour le groupe adjoint. Le § 3 contient aussi la
démonstration du Théorème mentionée plus haut.
Enfin, le § 4, plus géométrique, contient une application (conditionnelle) à la
Conjecture d’André-Oort (Théorème 4.7):

Théorème 1.2 Soit S une variété de Shimura associée à une donnée de
Shimura (G,X) avec G un groupe de type adjoint. Soit Z ⊂ S est une sous-
variété Hodge-générique ( condition naturelle, cf. § 4) contenant une famille
infinie bornée (pour la topologie usuelle) de points CM tels que le noyau U est
connexe. Si la conjecture (Ea) est vérifiée alors Z = S.

En particulier, sous (Ea), on peut donc démontrer la conjecture d’André-
Oort pour des familles de points CM (bornées) “Galois-génériques” quand les
résultats de § 2 et du § 3 nous assurent la connexité du noyau U . Notons
aussi que dans notre situation l’analogue de la conjecture (Ea) sur la variété de
Shimura est l’équidistribution des orbites toriques des points CM de S. Une
conséquence surprenante de l’étude de la conjecture (Ea) initiée dans [3] est
que la conjecture (Ea) semble plus facile à obtenir que son analogue sur la
variété de Shimura. Si G est le groupe PGL(2, F ) pour un corps de nombres
totalement réel, la conjecture (Ea) et son analogue sur la variété modulaire de
Hilbert se ramènent via une formule de Waldspurger à des estimations analy-
tiques de la valeur L(Π, 1

2 ) de la fonction L du changement de base Π d’une
représentation automorphe π pour PGl(2, F ) à un corps de multiplication com-
plexe E = F [

√
d]. La preuve de (Ea) se déduit de propriétés élémentaires de

convexité des fonctions L alors que l’analogue sur la variété de Shimura est une
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conséquence de la sous-convexité bien plus difficile à obtenir. L’hypothèse
de Lindelöf conséquence de l’hypothèse de Riemann généralisée donnerait des
résultats plus précis dans les deux situations.

Le Théorème 3.3 de cet article est étroitement lié à des arguments déjà utilisés
par Edixhoven et Yafaev [7]. On se référera aussi à un article récent de
Zhang [16] où des résultats plus complets sont obtenus dans un cas partic-
ulier. Néanmoins, Edixhoven et Yafaev appliquent ces idées en une place, ou
un nombre fini de places, p-adiques; ils n’ont donc pas besoin de la connexité du
noyau. La portée réelle, globale, du résultat, dans la situation particulière de
ce texte (quand le noyau du morphisme de réciprocité est connexe) ne semble
pas avoir été remarquée.

Dans tout l’article, notre référence implicite pour la théorie des variétés de
Shimura est à Deligne [4].

2 Connexité des noyaux de réciprocité : groupes adjoints

2.1

Dans tout ce paragraphe, G est un groupe semi-simple connexe sur Q et de
type adjoint (= de centre trivial). Notons T ⊂ G un tore maximal; soit
TC ⊂ GC les groupes obtenus par extension des scalaires à C et B un sous-
groupe de Borel de GC contenant TC. (Si X est un groupe sur k et k′/k une
extension, Xk′ = X ×k k′).
Soient X∗(T ) le groupe des caractères de TQ̄, R ⊂ X∗(T ) l’ensemble des racines
de (G,T ) et W = W (R) le groupe de Weyl. Soit Γ le groupe d’automorphismes
de R préservant les racines de B. Alors A(R) = W ⋊ Γ est le groupe
d’automorphismes de R; soient {α1, . . . αℓ} les racines simples.

L’image I de g = Gal(Q̄/Q) dans Aut(X∗(T )) est contenue dans A(R). Soit
π : A(R) → Γ la projection et soit IΓ = π(I). Alors IΓ est indépendant (à
isomorphisme unique près) du choix de T et B; l’application g → IΓ définit
en fait la classe des formes intérieures de G parmi les Q-formes de GQ̄. On
a I ⊂ W ⋊ IΓ. On dira que T est Galois-générique s’il est maximal et si
I = W ⋊ IΓ.

On se donne par ailleurs une classe de conjugaison X, sous G(R),
d’homomorphismes h : S → G(R) où S = ResC/RGm. On suppose que
X vérifie les conditions de Deligne [4, 2.1.1, 1-3]. Pour h ∈ X on note
µ : Gm,C → GC le groupe à un paramètre associé, “z 7→ h(z, 1)” [4, 1.1.1]. On
rappelle que si H ⊂ G est un Q-sous-groupe, h(C×) ⊂ H(R) si et seulement si
µ(C×) ⊂ H(C) [4, Lemme 1.2.4]. Pour h ∈ X soit MT (h) ⊂ G le plus petit
Q-sous-groupe H tel que H(R) contienne h(C×) – ou que H(C) contienne
µ(C×).

Proposition 2.1 Il existe un sous-ensemble X ′ de X, dense pour la topologie
complexe, tel que, si h ∈ X ′, MT (h) est un tore maximal Galois-générique.
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Notons en effet M l’espace de modules des tores maximaux de G : c’est une
variété rationnelle définie sur Q (Platonov-Rapinchuk [12, p. 104]) et on dispose
d’un espace fibré tautologique T → M tel que Tm est le tore maximal associé
à m ∈M . En particulier, soit Tη le tore au-dessus du point générique η de M
: c’est donc un tore sur Q(X1, . . . ,XN ). Si L est le corps de décomposition
de Tη, on sait d’après Voskresenskii [15] que Gal(L/Q(X1, . . . ,XN )) est égal à
W ⋊ IΓ. D’après le théorème d’irréductibilité de Hilbert (cf. Serre [13, Prop. 1
p. 122]) on sait alors que

V = {m ∈M(Q) : Tmest Galois-générique}

est le complémentaire d’un ensemble mince; il en résulte que V est dense dans
M(R) pour la topologie réelle (voir Lang [10, Cor. 2.5 p. 231] pour une variété
M de dimension 1. En général, on peut combiner ce théorème avec un balayage
de PN ou AN par des droites, cf. Serre [13, Theorem p. 127]).
Si U ⊂ M(R) est l’ensemble des tores compacts de G(R), alors U est ouvert
dans M(R). On en déduit :

Lemme 2.2 L’ensemble des tores maximaux Galois-génériques T tels que T (R)
est compact est dense dans U .

Soit T ⊂ G un Q–tore maximal et µ : Gm,C → TC. On a par ailleurs :

Lemme 2.3 (cf. Serre [14, Lemme 3 (b)])
Supposons que Im(µ) n’est contenu dans H(C) pour aucun Q-sous-groupe nor-
mal propre H de G. Alors l’orbite g·Wµ de µ dans X∗(TC) = X∗(TQ̄) engendre
le Q-espace vectoriel X∗(TQ̄)⊗Q.

En effet les sous-espaces de X∗(TQ̄)⊗Q stables par W et g correspondent aux
Q-sous-groupes normaux connexes de G.
Soit (G,X) une donnée de Shimura, on rappelle que le groupe de Mumford-
Tate générique de X est le plus petit Q-sous-groupe G′Q de GQ tel que les
x ∈ X se factorisent par G′(R). Un point x de X est dit Hodge-générique si son
groupe de Mumford-Tate est le groupe de Mumford-Tate générique de X. Il
existe toujours des points Hodge-génériques. Rappelons que G, étant adjoint,
est égal au groupe de Mumford-Tate d’un point Hodge-générique de X. Si
h ∈ X et µ est associé à h, on en déduit aussitôt que l’hypothèse du Lemme
2.3 est vérifiée puisqu’elle est invariante par conjugaison de h sous G(R).
Le lemme suivant permet de calculer simplement le groupe de Mumford-Tate
associé à un paramètre h dont l’image est contenue dans un tore.

Lemme 2.4 Soit T ⊂ G un Q-tore, de sorte que g opère sur X = X∗(TQ̄).
Soient h : S → TR et µ le paramètre associé. Soient V l’espace engendré par
gµ dans X ⊗ Q et Λ = X ∩ V . Alors Λ est le réseau des cocaractères de
MT (h) ⊂ T .

En effet Λ est un réseau primitif de X, invariant par g, et définit donc un
sous-tore rationnel de T contenant l’image de µ et évidemment minimal.
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Lemme 2.5 Si T ⊂ G est un Q-tore maximal Galois-générique et si

h : S→ TR,

alors T est le groupe de Mumford-Tate de h.

Avec les notations du Lemme précédent, soit en effet Vµ ⊂ X⊗Q le sous-espace
engendré par g · µ. Puisque T est Galois-générique, W · µ ⊂ g · µ. D’après le
Lemme 2.3, Vµ = V . On conclut grâce au Lemme 2.4.

2.2

Nous supposons maintenant que G, toujours adjoint, est absolument simple sur
Q. Puisqu’il existe une donnée de Shimura pour G, GR est absolument simple
et la conjugaison complexe agit sur le diagramme de Dynkin par l’involution
d’opposition [4].
Soit h ∈ X une donnée dont le groupe de Mumford-Tate est un tore maximal
Galois générique (i.e., une donnée passant par TR où T est Galois-générique,
cf. Lemme 2.5). Soient µ : Gm,C → GC associé à h et E = E(T, h) le corps
reflex: ainsi µ est défini sur E:

µ : Gm,E → TE ⊂ GE .

On dispose alors d’un morphisme de réciprocité

rec : R = ResE/QGm → T ,

défini sur Q, d’où par fonctorialité

rec∗ : X∗(RQ̄)→ X∗(TQ̄).

Rappelons que les corps reflex sont, par hypothèse, contenus dans C; on note
Q̄ la clôture algébrique de Q dans C. On a alors naturellement

X∗(RC) ∼=
⊕

σ:E→C

Z · [σ]

et rec([σ]) = σ(µ) := µσ ∈ X∗(T ), Gal(Q̄/Q) opérant naturellement sur
X∗(TQ̄). (Si T est un tore sur Q, on écrira simplement X∗(T ) pour le groupe
X∗(TC) = X∗(TQ̄) des cocaractères géométriques de T ).
Notons Lµ le sous Z-module de X∗(T ) engendré par les µσ (σ : E → C).
Puisque T est le groupe de Mumford-Tate, l’application R → T est sur-
jective. Du point de vue des cocaractères, ceci se traduit par le fait que
Lµ ⊗ Q = X∗(T ) ⊗ Q. Notre but est d’expliciter Lµ pour les groupes de type
A, B, C, D et les cocaractères minuscules associés aux variétés de Shimura.
Dans les énoncés, T est un tore maximal Galois-générique du groupe (du type
indiqué) G, et h se factorise par T . Le groupe de Galois opère donc sur T par
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I = W ⋊ IΓ. Enfin, les possibilités pour µ sont décrites par Deligne [4]: ce sont
les poids minuscules de Bourbaki [1].
Dans tous les calculs qui suivent, nous avons utilisé sans commentaire les no-
tations de Bourbaki [1] relatives aux systèmes de racines; en particulier nous
n’avons pas rappelé la description des bases naturelles, des poids fondamentaux
associés, etc.

2.3 Type Cℓ (ℓ > 2)

Proposition 2.6 Si T ⊂ G et G est de type Cℓ,

Lµ = X∗(T ).

Notons XR = X
⊗

Z R et YR le dual de XR, engendré par les coracines. On
peut alors identifier XR et YR à Rℓ, la dualité étant le produit scalaire usuel.
On a les racines et coracines 1 :

R = {±2εi , 1 6 i 6 ℓ} ∪ {±εi ± εj , i < j}

R∨ = {±εi , ±εi ± εj}.

Le groupe A(R) est W (R) = Sℓ ⋊ (Z/2Z)ℓ, opérant de la façon usuelle; il est
égal à I.
Le seul cocaractère minuscule est µ = ω∨ℓ = 1

2 (ε1 + · · · + εℓ), ℓ-ième copoids
(Bourbaki [1]); son orbite sous I, de cardinal 2ℓ, est l’ensemble { 1

2 (±ε1 ±
ε2 · · · ± εℓ)}. Donc Lµ contient ε1, . . . εℓ ainsi que 1

2 (ε1 + · · · εℓ)}; G étant
adjoint X∗(T ) est le réseau des copoids de T , qui est engendré par ces (ℓ+ 1)
éléments.

2.4 Type Bℓ (ℓ > 2).

Avec les notations précédentes,

R = {±εi , ±εi ± εj}
R∨ = {±2εi , ±εi ± εj}.

Le groupe de Weyl opère comme dans le cas Cℓ. L’unique copoids minuscule
est µ = ω∨1 = ε1 (Bourbaki [1, p. 255); on a fixé la base usuelle de R et donc
de R∨). Alors Lµ = X∗T = Zε1⊕ · · ·⊕Zεℓ, réseau des copoids (Bourbaki, loc.
cit.). Ainsi :

Proposition 2.7 (G de type Bℓ)

Lµ = X∗(T ).

1On a utilisé, sans risque de confusion, R pour un système de racines ainsi que pour le
tore ResE/QGm. . .
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2.5 Type Dℓ (ℓ > 4).

Nous excluons pour l’instant, dans le cas où ℓ = 4, les groupes associés à la
trialité. Distinguons deux cas :
– Si ℓ est pair, le groupe réel déployé de type Dℓ est forme intérieure de sa
forme compacte. D’après l’hypothèse qui précède, le groupe IΓ est isomorphe à
{1} ou à Z/2Z. Dans le second cas, gQ opère donc sur le diagramme de Dynkin
par Gal(F/Q) où F est une extension quadratique réelle de Q (cf. Deligne [4,
2.3.4]).
– Si ℓ est impair, le groupe compact de type Dℓ correspond à une action non
triviale de Gal(C/R) sur le diagramme de Dynkin. Donc IΓ ∼= Z/2Z.
Dans ce cas

R = {±εi ± εj : 1 6 i < j 6 ℓ}
R∨ = R (Rℓ étant identifié à son dual).

W (R) = Sℓ ⋊ (±1)ℓ−1, (±1)ℓ−1 étant donné par les changements de signe de
produit égal à 1 des coordonnées et par hypothèse gQ opère par W (R) ou par
W (R) ⋊ {1, c} où c permute les racines αℓ−1 = εℓ−1 − εℓ et αℓ = εℓ−1 + εℓ;
alors W (R) ⋊ {1, c} = Sℓ ⋊ (±1)ℓ.
Il y a deux possibilités pour le cocaractère µ [4, p. 261] :
– si GR est un vrai groupe orthogonal, µ = ω∨1 = ε1
– si ℓ > 5 et si GR est le groupe symplectique d’un module hermitien sur une
algèbre de quaternions, µ = ω∨ℓ = 1

2 (ε1 + · · ·+ εℓ).

Enfin, X∗(T ) = P (R∨) =

ℓ⊕

i=1

Zεi + Z(
1

2

ℓ∑

1

εi).

– Si µ = ω∨1 , l’orbite de µ est, quelle que soit l’image de gQ, égale à ⊕Zεi. On
a donc une suite exacte

1→ Lµ → X∗(T )→ Z/2Z→ 0 (2.1)

Z/2Z étant identifié à P (R∨)
⊕

Zεi.
– Si µ = ω∨ℓ , et si gQ est d’image Sℓ ⋊ (±1)ℓ, Lµ contient ω∨ℓ et 1

2 (ε1 + · · · +
εℓ−1 − εℓ) donc εℓ, donc

⊕

i

Zεi ⊕ Zω∨ℓ = X∗(T ).

Si l’image de gQ n’est pas totale, ℓ est pair; X∗(T )/ZR∨ ∼= Z/2Z × Z/2Z,

engendré par les images de ω∨ℓ et ε1; Lµ contient 1
2

∑
εi, donc 1

2 (ε1+ε2−
∑

i>2

εi),

donc ε1 + ε2, donc enfin R∨.
Enfin X∗(T ) = {x = (xi ∈ ( 1

2Z)ℓ : xi ≡ xj [1]}. L’homomorphisme X∗(T ) →
Z/2Z, x 7→

∑

i6ℓ

xi −
∑

i>ℓ

xi [2] annule ZR∨ et ω∨ℓ est invariant par l’action de

W (R). Il n’est pas trivial sur ε1, d’où de nouveau une suite exacte de la forme
(2.1), Z/2Z étant l’image de ε1.
Revenons sur le cas de la trialité. L’image I de gQ dans A(R) contient W (R)
qui est d’indice 1, 2 ou 6 dans I. Dans le second cas, nous pouvons supposer
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pour un choix de base convenable de R que I = S4⋊(±1)4. Les deux caractères
ω∨1 et ω∨ℓ ne sont pas conjugués par I et la relation entre Lµ et X∗(T ) est celle
décrite précédemment. Enfin, si |I/W (R)| = 6, ω∨1 et ω∨4 sont conjugués par
I. Ils sont donc indiscernables de notre point de vue, et le calcul précédent
montre que Lµ = X∗(T ). Pour résumer :

Proposition 2.8 (G de type Dℓ; si ℓ = 4, ω∨1 et ω∨4 sont définis comme ci-
dessus).
(1) Si µ = ω∨1 et si G n’est pas trialitaire sur Q, Lµ est d’indice 2 dans X∗(T ).
(2) Si µ = ω∨ℓ et si G n’est pas trialitaire, |X∗(T )/Lµ| = 1 si |I/W (R)| = 2;
|X∗(T )/Lµ| = 2 si I = W (R).
(3) Si ℓ = 4 et G est trialitaire, Lµ = X∗(T ).

2.6 Type Aℓ (ℓ > 2)

C’est le cas le plus riche, puisque tous les poids fondamentaux sont associés à
des variétés de Shimura. On pose n = ℓ+ 1, donc G est une forme de PGL(n).
On identifie XR = X∗(T )⊗ R à

H = {x ∈ Rn :
∑

xi = 0} .

La dualité euclidienne sur Rn permet d’identifier H à son dual. Alors

R = R∨ = {εi − εj : i, j 6 n , i 6= j}
B = B∨ = {α1 = ε1 − ε2, . . . αℓ = εn−1 − εn} .

Le groupe W (R) = Sn opère par permutation; A(R) = W (R) ⋊ Z/2Z, égal à
I car G(R) doit être forme extérieure de PGL(n,R).
Le réseau des racines est

Q(R) = Q(R∨) = {x ∈ Zn :
∑

xi = 0} ;

le réseau des poids est engendré par les poids

ωp = ω∨p = projection sur H de ε1 + · · ·+ εp

= ε1 + · · ·+ εp −
p

n

n∑

i=1

εi (1 6 p 6 ℓ).

On a donc :

P (R) = P (Ř) = (x ∈ 1

n
Zn :

∑
xi = 0 , xi ≡ xj [1]} ;

L’isomorphisme, qu’on notera det : P (Ř)/Q(R̂) → Z/nZ est donné par x =
(xi) 7→ xi [mod 1] où l’on a identifié 1

nZ/Z et Z/nZ, et i est arbitraire.
Fixons p ∈ {1, . . . ℓ} et soit r = (n, p).
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Proposition 2.9 (G de type Aℓ, n = ℓ+ 1, µ = ω∨p ).

(i) Lµ contient Q(R∨)

(ii) On a une suite exacte

0→ Lµ → X∗(T ) →
det
<
n

r
· 1 >→ 0

le quotient étant donc isomorphe à Z/(r)Z.

Notons π la projection de Rn sur H. Alors Lµ contient π(ε1 + · · ·+ εp) donc,
étant stable par Sn, π(ε2+· · ·+εp+1), donc π(ε1−εp+1); l’action de Sn montre
alors que Lµ contient Q(R∨). Par ailleurs

det(ω∨p ) = − p
n

(∈ 1

n
Z/Z) ≡ −p(∈ Z/nZ),

qui engendre le sous-groupe < r · 1 > de Z/nZ. Mais l’image inverse de ce
sous-groupe dans P (R∨) = X∗(T ) est stable par A(R) car det(σx) = det(x) si
σ ∈ Sn et det(θx) = −det(x) si θ est le générateur du sous-groupe Z/2Z de
A(R), qui opère par (x1, . . . , xn) 7→ (−xn, . . . ,−x1).

Corollaire 2.10 Lµ = X∗(T ) si, et seulement si, (p, n) = 1.

C’est le cas, en particulier, si p = 1 ou si n = 2p+ 1 : dans ce dernier cas GR

est quasi déployé. Dans le paragraphe suivant on vérifiera que si n = 2p (donc
GR quasi-déployé) on peut améliorer le résultat en considérant un groupe de
similitudes unitaire.

2.7

La signification de ces calculs pour le contrôle de l’application de réciprocité
est donnée par le résultat évident qui suit :

Proposition 2.11 Si Lµ = X∗(T ), U = ker(rec : R → T ) est connexe.
En général, X∗(T )/Lµ s’identifie à U/U0 où U0 est la composante neutre
(géométrique) de U .

Si en effet X est un tore, Ext1(Gm,X) = {0}, sur Q̄ ou C; si X est un groupe
(diagonalisable) fini, Ext1(Gm,X) est naturellement isomorphe à X(Q̄) (ou
X(C)).
La suite exacte

Hom(Gm, R) −−−−−→ Hom(Gm, T ) −−−−−→ Ext1(Gm, U) −−−−−→ Ext1(Gm, X)

‖ ‖ ‖

X∗(R) X∗(T ) {0}
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permet de conclure.

On remarquera que (pour G de type Aℓ) la description explicite du conoyau
donnée par la Proposition 2.9 contient l’action de Gal(Q̄/Q) sur U/U0.

Enfin, terminons sur l’espoir qu’un expert des calculs relatifs aux groupes ex-
ceptionnels pourra résoudre ce problème pour les groupes de type E6 et E7

(Deligne [4, p. 261]).

3 Connexité des noyaux de réciprocité : une autre approche

Dans ce paragraphe nous ne supposons pas G adjoint; nous supposerons en fait
que G est associé, à la Shimura-Deligne-Langlands, à un problème de modules
pour des variétés abéliennes (cf. tout particulièrement [8] pour une description
précise.) Nous reprenons dans ce cadre l’étude de la surjectivité de l’application
R→ T du § 2. Dans ce cas la question ne se réduit pas à un problème relatif aux
systèmes de racines. Nous avons décrit les tores, et les applications, en restant
proche du problème de modules. Nous nous limitons au groupe symplectique
et aux groupes unitaires.

3.1 Le formalisme de la multiplication complexe

Soient E un corps CM, F son sous-corps totalement réel maximal et c ∈
Aut(E/Q) la conjugaison complexe. Notons Egal la clôture galoisienne de E
dans Q̄ (comme dans le § 2, on suppose les corps de nombres plongés dans C).
Soient J l’ensemble des plongements E → Q̄ et Σ ⊂ J un type CM : ainsi
J = Σ∐ cΣ.

Notons g = Gal(Egal/Q). Alors g opère sur J , transitivement et fidèlement,
c ∈ g et cσ = σc (σ ∈ g).

Soit g = [F : Q].

Nous pouvons indexer Σ par les indices {1, . . . g} et cΣ par les indices {g +
1, . . . 2g} de sorte que c s’identifie à la permutation (1, 2g)(2, 2g−1) · · · (g, g+1).
Le centralisateur de c dans S2g s’identifie à Cg = Sg ⋉ (Z/2Z)g ; si σ ∈ Sg

l’élément associé de S2g laisse stable Σ et cΣ, opère sur Σ ∼= {1, . . . g} de la
façon naturelle et sur cΣ ∼= {g + 1, . . . 2g} par 2g + 1 − i 7→ 2g + 1 − σ(i)

(i = 1, . . . g). Un élément ε = (εi) de (Z/2Z)g opère par le produit

g∏

i=1

sεii où

si = (i, 2g + 1 − i) ∈ S2g. Noter que le groupe Cg est bien sûr isomorphe
au groupe de Weyl de type Cg. On a ainsi associé à un corps CM un groupe
g ⊂ Cg ⊂ S2g transitif sur J ≡ {1, . . . 2g}.

3.2 Le cas de GSp(g)

Fixons une forme bilinéaire alternée – par exemple, de matrice

(
−1g

1g

)
–

sur Q2g et soit G = GSp(g) le groupe de similitudes symplectiques associé.

Documenta Mathematica · Extra Volume Coates (2006) 233–260



244 L. Clozel, E. Ullmo

Soit h : S → GR un paramètre associé au problème de modules usuel des
variétés abéliennes (Kottwitz [8] : avec la description donnée de G, h est con-
jugué à

h0 : z = x+ iy 7→
(

x y
−y x

)

où les blocs sont de taille g). On suppose que h définit un point CM d’une
variété SK associée à G, avec K ⊂ G(Af ). Soit T un tore maximal de G
contenant l’image de h.

Alors TR est un tore maximal elliptique de GR et T est donc un tore maximal
elliptique de G. Rappelons que ceux-ci sont décrits par les données suivantes.
Posons g = g1 + · · · + gr (r 6 g) et donnons-nous, pour tout j, un corps
de nombres Fj de degré gj et une extension quadratique Ej de Fj ; on note
simplement z 7→ z̄ la conjugaison de Ej par rapport à Fj . Pour tout j soit
ιj ∈ Ej tel que ῑj = −ιj . On munit Ej d’une forme Q-linéaire alternée donnée
par < x, y >= TrEj/Q(x̄ιjy). Alors le tore {x ∈ Ej : xx̄ ∈ Q×} se plonge dans
le groupe des similitudes symplectiques de Ej . Lorsque les données proviennent
de h, les paires (Ej , Fj) doivent être des données CM. Le tore rationnel T associé
a pour points rationnels :

T (Q) = {(xj ∈ Ej : xj x̄j = x ∈ Q×)} ,

de dimension g+1. On le plonge dans G en identifiant les espaces symplectiques⊕
Ej et Q2g.

Nous dirons que h, ou T est Galois-générique s’il en est de même pour les
données à eux associées pour le groupe adjoint. Ceci veut dire que le corps CM
E est unique, de dimension 2g, et que le groupe g décrit dans le § 3.1 est égal à
Cg. (On vérifie que ceci ne dépend pas du choix d’un type CM). La Proposition
2.1 nous garantit l’existence de (nombreux) tores Galois-génériques.

Notons S le tore associé à T dans GL(Q2g) – son centralisateur. Alors S ∼=
ResE/Q(Gm) et h : S(R)→ (C×)2g s’écrit à permutation près des coordonnées
sous la forme

z 7→ (z, . . . , z, z̄, . . . , z̄) (z ∈ C×).

Le paramètre µ associé est

z 7→ (z, . . . , z, 1, . . . , 1).

Si on note (xi) (i 6 2g) les coordonnées de x ∈ S, T est décrit par

T = {(x1, . . . , x2g;x) : xix2g+1−i = x} ⊂ S ×Gm

(l’indexation étant choisie, pour l’action de la conjugaison complexe, con-
formément au § 3.1) et

µ : z 7→ ((z, . . . , z, 1, . . . 1); z). (3.1)
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Nous utiliserons aussi ces descriptions sur Q̄, l’action du groupe de Galois g

(ou gQ) s’y lisant de façon évidente. On a aussi

µ = ((1, . . . 1, 0, . . . 0); 1) ∈ X∗(S ×Gm) = Z2g+1.

Le réseau X∗(T ) ⊂ X∗(S ×Gm) s’identifie à l’ensemble des

λ = {(λ1, . . . λ2g;λ) : λi + λ2g+1−i = λ} . (3.2)

Calculons d’abord le corps reflex, que l’on notera ici K. C’est le corps de
rationalité de µ, donc

Gal(Egal/K) = {σ = (s, ε) ∈ Sg ⋉ (Z/2Z)g : σ fixe µ} = Sg.

Donc Gal(Egal/Q)/Gal(Egal/K) ∼= {j : K → Q̄} ∼= (Z/2Z)g (isomor-
phismes d’ensembles). On remarquera que |Gal(Egal/K)| est le degré de la
représentation du groupe dual associée par Langlands à la variété de Shimura
: tous deux sont en effet égaux au cardinal de l’orbite de µ par le groupe de
Weyl.
A ce point du calcul on peut vérifier que T est le groupe de Mumford-Tate du
paramètre h, ce qu’on pourrait bien sûr déduire du § 2. On a en effet une suite
exacte

0→ E×1 → T → Gm → 0

où E×1 est le Q-tore défini par le noyau de NE/F : E× → F×. Le groupe
de Mumford-Tate s’envoie surjectivement sur Gm, cf. (3.1); Cg opère na-
turellement sur X∗(S) = Z2g et commute à la conjugaison complexe c (§ 3.1).
Décomposons R2g = V = V +⊕ V − sous l’action de c. Alors l’action de Cg sur
X∗(E×1 )⊗R est sa représentation sur V −, qui est l’action naturelle, irréductible,
du groupe de Weyl. Le groupe de Mumford-Tate doit donc contenir E×1 et est
égal à T .

Vérifions la surjectivité de rec∗ : X∗(R)→ X∗(T ). On a X∗(R) =
⊕

ε∈(Z/2Z)g

Zε,

et X∗(T ) s’identifie à Zg+1 par les coordonnées (λ1, . . . , λg, λ) de (3.2). Alors
µ = (1, . . . , 1; 1) ∈ Zg+1; si ε = (1, . . . , 1, 0, 1, . . . , 1) ∈ (Z/2Z)g (0 à la place i),
ε(µ) = (0, . . . , 1, . . . 0; 1) (1 à la place i). Notons εi cet élément de (Z/2Z)g, et
soit θ = (1, . . . 1) ∈ (Z/2Z)g.
L’application

rec∗ :
⊕

ε=εj ,θ

Zε→ X∗(T ) = Zg+1

a pour matrice 


1 0 0

0 1
...

...
...

. . .
...

0 0 1 0
1 1 1 1
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de déterminant 1. L’application X∗(R) → X∗(T ) est donc surjective. On en
déduit, par la Proposition 2.11, la connexité du noyau.
Remarquons qu’il est vraisemblable que la connexité du noyau du morphisme de
réciprocité pour le groupe adjoint (et un morphisme µad) devrait l’impliquer
pour le groupe de similitudes (et µ d’image µad). Nous n’avons pas su le
démontrer.
Terminons par quelques calculs dans le cas g = 2; G est alors associé à l’espace
de modules de surfaces abéliennes. Supposons que T est un tore maximal
irréductible, i.e., défini par un corps CM E de degré 4. On ne suppose plus
E Galois-générique. D’après le § 3.1, Gal(Egal/Q) s’identifie à un sous-groupe
g de C2 = S2 ⋉ (Z/2Z)2, contenant la conjugaison complexe c = (14)(23), et

transitif sur I4. Soit s :=

(
1234
2143

)
le générateur du facteur S2. Il y a deux

possibilités pour g 6= C2 :
(a) g = {1, c, s, sc} ∼= (Z/2Z)2

(b) g = {1, τ, τ2, τ3} où τ = sε, ε = (14) ou (23) ∈ (Z/2Z)2. Alors τ2 = c et
g est cyclique d’ordre 4.
Soit V = Q4, muni de la représentation naturelle de g; on a V = V + ⊕ V −
sous l’action de c, et le groupe de Mumford-Tate M est déterminé par le sous-
espace de V − stable par g, tel que le tore associé à ce sous-espace et au facteur
de V + correspondant au sous-espace diagonal de V contienne l’image de h :
z 7→ (z, z, z̄, z̄). Dans le cas (a), c’est le cas pour (V −)s. On a un diagramme
d’extensions

E

< c > � � < s >

F E0

� �

Q
avec F quadratique réel, E0 quadratique imaginaire, et

M(Q) = E×0 ⊂ T (Q) = {z ∈ E× : NE/F z ∈ Q×}.
Le corps reflex est K = E0. Identifiant X∗(M) à Z2 de la façon naturelle, on
a X∗(R)→ X∗(M) donné par Gal(R/Q) = {R→ Q̄} = {1, c}

1 7→ (1, 0) ∈ X∗(M)

c 7→ (0, 1).

Le morphisme de réciprocité est donc l’isomorphisme canonique E×0 → E×0 et
donc bijectif.

Considérons le cas (b), par exemple pour ε = (14); alors τ =

(
1 2 3 4
3 1 4 2

)
=

(1 3 4 2). Puisque τ2 opère par (−1) sur V −, τ n’a pas de sous-espace ra-
tionnel stable. Par conséquent M = T . On vérifie que le corps reflex est E.
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L’application de réciprocité est donnée par

1 7→ (1, 1, 0, 0; 1)

τ 7→ (1, 0, 1, 0; 1)

τ2 7→ (0, 0, 1, 1; 1)

τ3 = cτ 7→ (0, 1, 0, 1; 1)

On vérifie aisément qu’elle est surjective de X∗(R) vers X∗(T ).
Il serait bien sûr intéressant d’étudier la surjectivité pour les corps CM arbi-
traires, mais ceci semble difficile.

3.3 Groupes de similitudes unitaires

Dans cette section E0/Q est un corps quadratique imaginaire, etG est le groupe
de similitudes unitaires d’un espace hermitien de dimension n sur E0. (Les cal-
culs qui suivent s’appliquent aussi aux groupes unitaires définis par des algèbres
à division).

Rappelons la description des tores maximaux (elliptiques) deG : soit n =
r∑

1

ni

et pour tout i soit Fi une extension de Q linéairement disjointe de E0 de degré
ni et Ei = E0Fi. Sur Ei notons simplement z 7→ z̄ la conjugaison par rapport
à Fi. Alors

T (Q) = {(zi ∈ E×i ) : ziz̄i = x ∈ Q×}.
Le tore T ne peut être Galois-générique que si r = 1; pour que T (R) contienne
l’image d’un paramètre de Shimura, il faut que F soit totalement réel; E est
alors un corps CM.
Choisissons un plongement complexe ι0 de E0. (E0 n’est pas a priori un corps
reflex, donc n’a pas de plongement préféré dans C). Les places complexes
de E s’identifient alors aux plongements complexes E → C par le choix, pour
toute place w, d’un plongement ι, ι0-linéaire, définissant w; ceci définit un type
CM pour E. Si T est associé à E,

T (Q) = {z ∈ E× : NE/F z ∈ Q×} (3.3)

et T (R) est défini par la relation déduite de (3.3) dans

S(R) = (E ⊗ R)× = E×w1
× · · · ×E×wn ∼= (C×)n; (3.4)

on a noté S le tore ResE/QGm.
Les paramètres h déduits des problèmes de module naturels, pour les variétés
abéliennes, associés à G sont décrits par Kottwitz [8]. Si h se factorise par
T (R) on a alors

h : z 7→ (z, . . . z, z̄ . . . z̄) (z ∈ S(R) = C×) (3.5)
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avec p occurences de z et q = n − p occurences de z̄. Noter que l’image de h
est bien dans T (R) défini, dans la description (3.4) par

T (R) = {(zi = zwi) : ziz̄i = x ∈ R×}.

On a naturellement
X∗(S) =

⊕

w

(Zι⊕ Zῑ) ∼= Z2n

où pour tout w = w1, . . . , wn, ι est défini comme ci-dessus, et X∗(T ) s’identifie
alors à

X∗(T ) = {(λι, λῑ : λι + λῑ = λ)}
isomorphe à Zn+1 par le choix des coordonnées (λι, λ). Le paramètre µ déduit
de h est alors

µ : z 7→ (z, . . . z, 1, . . . , 1; z) (z ∈ Gm)

ou de façon équivalente

µ = (1, . . . 1, 0 . . . 0; 1) ∈ Zn+1

(p occurences de 1).
Enfin, le tore adjoint associé T ad est Galois-générique si et seulement si
Gal(Egal/Q) est isomorphe à Sn × Z/2Z, Sn permutant les plongements {ι}
et le générateur c de Z/2Z opérant par conjugaison complexe.
Calculons le groupe de Mumford-Tate. Soit d’abord V = X∗(S) ⊗ Q ∼= Q2n.
Sous l’action de c, V est la somme de deux modules V + et V −, chacun
somme d’un module irréductible V ±n−1 sous Sn et d’un module trivial V ±1 .

La représentation de Sn× < c > sur X∗(T ) ⊗ Q est somme de V +
1 , V −1 et

V −n−1.
On a une application naturelle (rapport de similitude)

T → Gm,Q, z 7→ NE/F (z), (z ∈ T (Q)),

et l’on sait que le groupe de Mumford-Tate M ⊂ T a pour image Gm. De plus
son image dans T ad est égale à T ad, par exemple d’après le § 2 (T ad est son
groupe de Mumford-Tate). Il en résulte que X∗(M)⊗Q ⊂ X∗(T )⊗Q est égal
à V +

1 ⊕V −1 ⊕V −n−1 ou à V +
1 ⊕V −n−1. Le second module correspond au sous-tore

T1 de T défini par

T1(Q) = {z ∈ E× : NE/F z ∈ Q×, NE/E0
z ∈ Q×}.

Si z ∈ T1(R) ⊂ S(R) s’écrit (zi) avec zi ∈ E×wi
∼= C× (3.4), les relations

définissant T1 donnent alors :

ziz̄i = x ∈ R× (3.6)

z1 · · · zn = y ∈ R×. (3.7)

Revenons à l’expression (3.5) de h : h vérifie (3.6), et (3.7) si, et seulement si,
p = q. On a donc démontré :
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Lemme 3.1 Si p 6= q, T est égal à son groupe de Mumford-Tate. Si p = q, le
groupe de Mumford-Tate d’un paramètre h passant par T est égal à T1.

Soit K le corps reflex de µ, donc K ⊂ Egal. Un calcul simple montre que
Gal(Egal/K) = Sp × Sq ⊂ Sn si p 6= q, et que Gal(Egal/K) est le produit
semi-direct de Sp ×Sp avec {1, c} si p = q.
Supposons maintenant p 6= q (p, q > 1) et considérons le morphisme de
réciprocité

r∗ : X∗(R)→ X∗(T ) = Zn+1 (3.8)

où X∗(R) ∼= Z2N (N =

(
n
p

)
), et où l’on a utilisé le fait que T est le groupe de

Mumford-Tate. Une base de X∗(R) correspond à la réunion des sous-ensembles
I ⊂ {1, . . . , n} de cardinal p (action de Sn) et des sous-ensembles I de cardinal

q (action de Sn×c). Si eI sont les éléments de Zn donnés par eI =
∑

i∈I
ei dans la

base canonique, et si l’on choisit (n+1) éléments I1, . . . , In+1 ( Ij ⊂ {1, . . . , n}
de cardinal p ou q), le mineur correspondant de r∗ est

det

(
eI1 · · · eIn+1

1 · · · 1

)
.

Si (p, q) = (p, n) = r, on vérifie aisément que ce déterminant est divisible par r
(remplacer la première ligne par la somme des n premières lignes). Les résultats
du § 2 ne peuvent donc être améliorés.
Considérons, au contraire, le cas où p = q et n = 2p. On note toujours T1 le
groupe de Mumford-Tate, de sorte que T1 ⊂ T ⊂ S. On a naturellement

X∗(T ) = {(λ1, . . . λn, λn+1, . . . , λ2n)} ⊂ Z2n = X∗(S)

où λj + λj′ = λ (j′ = 2n+ 1− j); X∗(T ) s’identifie donc à Zn+1 = {(λj , λ)}.
La relation (3.7) définit alors X∗(T1) ⊂ X∗(T ) par

∑
λj =

∑
λj′ =

∑
(λ− λj)

donc X∗(T1) est défini par {(λj , λ) : 2
∑
λj = 2pλ} soit enfin

X∗(T1) = {(λj , λ) :

n∑

1

λj = pλ}

∼= Z2p−1 × Z

par les coordonnées ((λj)j62p−1, λ).
Pour tout I ⊂ {1, . . . 2p − 1} de cardinal p, l’image de X∗(R) dans X∗(T1)
contient, avec la notation précédente, le vecteur (eI , 1); si I ′ ⊂ I est de cardinal
p − 1, elle contient aussi (eI′ , 1) : remplacer I par I ′ ∪ {n}. Donc l’image
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contient les vecteurs (ei, 0) (i = 1, . . . 2p − 1) ainsi qu’un vecteur quelconque
(eI , 1). Puisque le déterminant d’ordre 2p




1 1
1 1

. . .
...

. . . 1
. . . 0

. . .
...

. . . 0
0 · · · · · · · · · · · · · · · 0 1




est égal à 1, on a démontré :

Proposition 3.2 Si G(R) est de type (p, p), le noyau de réciprocité est con-
nexe pour les tores maximaux Galois-génériques.

3.4 Uniformité du conoyau de l’application de réciprocité

Dans cette section nous supposons simplement que (G,X) est une donnée de
Shimura vérifiant les conditions de Deligne [4, § 2.1]. Soit T ⊂ G un tore; on
suppose qu’il existe un élément de X h : S → TR et que T est le groupe de
Mumford-Tate de h. Soit E le corps reflex, R = ResE/QGm et

rec : R→ T

le morphisme de réciprocité.
Si T est un tore, π0(T (A)/T (Q)) est son groupe de composantes connexes,
qui s’identifie à π0(T (R))×T (Af )/T (Q)− (adhérence topologique). On notera
simplement π(T ) le groupe T (Af )/T (Q)−, modifiant un peu la notation de
Deligne.
Si T → S est un morphisme de Q-tores tel que l’application T (A)/T (Q) →
S(A)/S(Q) soit de conoyau fini, il en est de même de l’application induite
au niveau des composantes connexes ; si l’on dispose, pour une famille de
tores, d’une borne universelle pour l’ordre du conoyau, il en est de même pour
l’application induite.
Le groupe π0(R(R)) × π(R) s’identifie, par la théorie du corps de classes, au
groupe Gal(Eab/E). Rappelons que le composé

Gal(Eab/E)→ π(R)
rec→ π(T )

décrit l’action du groupe de Galois abélien sur les points z des variétés de
Shimura SK(G,X) (K ⊂ G(Af )) déduits de h ([4 ,p. 269]; § 4).
Dans l’énoncé suivant, h : S → GR varie parmi les paramètres CM; T est le
groupe de Mumford-Tate associé; R est le tore associé au corps reflex E = E(h).
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Equidistribution Adélique des . . . 251

Théorème 3.3 Si (h, T ) varie parmi les sous-données CM de (G,X) telles
que le noyau

U = ker(rec : R→ T )

est connexe, le conoyau de rec : π(R) → π(T ) est de taille uniformément
bornée.

Noter que si G est adjoint, T (R) est compact et connexe et l’application de
réciprocité envoie Gal(Eab/E) vers T (Af )/T (Q).

Pour la démonstration, on utilise la description de la dualité de Tate-Nakayama
donnée par Kottwitz et Shelstad [9]. Considérons la suite exacte

1→ U → R→
rec
T → 1 (3.9)

Puisque U est un tore, elle se scinde sur Q̄; avec les notations de [9] on en
déduit une suite exacte

1→ U(Ā)/U(Q̄)→ R(Ā)/R(Q̄)→ T (Ā)/T (Q̄)→ 1 . (3.10)

Si X est un module continu sur gQ = Gal(Q̄/Q), on écrira simplement
H•(Q,X) pour H•ct(gQ,X). Alors (3.9) donne

H0(Q, R(Ā)/R(Q̄))→ H0(Q, T (Ā)/T (Q̄))→ H1(Q, U(Ā)/U(Q̄)). (3.11)

Le dernier terme de (3.11) est dual de H1(Q,X∗(U)) donc fini ([9, p. 621]) ;
noter que le terme suivant est H1(Q,X∗(R))∨ = H1(E,Z)∨ = {0} d’après le
lemme de Shapiro, donc (3.11) est surjective à droite.

Par ailleurs, pour tout tore T sur Q, la suite exacte

1→ T (Q̄)→ T (Ā)→ T (Ā)/T (Q̄)→ 1

donne

1→ T (A)/T (Q)→ H0(Q, T (Ā)/T (Q̄))→ H1(Q, T )→ H1(Q, T (Ā));

avec les notations de [9], cf. en particulier [9, 3.4.3], si on note H1(Q, T (Ā)) =⊕

p,∞
H1(Qv, T (Q̄v)) alors

ker1(Q, T ) = ker[H1(Q, T )→ H1(Q, T (Ā)],

est le groupe de Shafarevich-Tate, fini pour un tore. Réécrivons donc la suite
exacte précédente comme

1→ T (A)/T (Q)→ H0(Q, T (Ā)/T (Q̄))→ ker1(Q, T )→ 1 . (3.12)
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Le morphisme de suites exactes (3.12) appliquées aux groupes R et T de (3.9)
donne un diagramme

1 −−−−−→ A −−−−−→ A′ −−−−−→ A′′ −−− >
?

?

y

?

?

y

?

?

y

1 −−−−−→ R(A)/R(Q) −−−−−→ H0(Q, R(Ā)/R(Q̄)) −−−−−→ ker1(Q, R) −−−−−→ 1
?

?

y

?

?

y

?

?

y

1 −−−−−→ T (A)/T (Q) −−−−−→ H0(Q, T (Ā)/T (Q̄)) −−−−−→ ker1(Q, T ) −−−−−→ 1
?

?

y

?

?

y

?

?

y

−−− > B −−−−−→ B′ −−−−−→ B′′ −−−−−→ 1

où d’ailleurs A′′ = ker1(Q, R) = {1} d’après le théorème 90 de Hilbert. D’après
(3.11),

B′ = H1(Q, U(Ā)/U(Q̄)) = H1(Q,X∗(U))∨

(dualité de Pontryagin); B′′ = ker1(Q, T ) et le conoyau B du morphisme de
réciprocité s’identifie donc à

ker[H1(Q,X∗(U))∨ → ker1(Q, T )]. (3.13)

B est donc fini, les deux groupes figurant dans (3.13) l’étant; pour borner
uniformément 6=6= B, il suffit de borner 6=6= H1(Q,X∗(U)). Le lemme très simple
qui suit est fondamental (cf. [7]).

Lemme 3.4 Quand h varie parmi les paramètres CM, dimU = dimR− dimT
est uniformément borné.

Pour démontrer le Lemme, on n’a pas à supposer la connexité de U . Il suffit
bien sûr de borner dimR = [E : Q] = cardinal de l’orbite de µ sous Gal(Q̄/Q).
Le corps reflex est un sous corps du corps de décomposition d’un Q-tore de G
donc est de degré uniformément borné par le maximum des cardinaux des sous
groupes finis de GL(s,Z) où s désigne le rang de G (considérer l’action de gQ

sur le groupe des caractères d’un tore de G) .
Terminons la démonstration du Théorème. On considère H1(Q,X∗(U)) ∼=
H1(Q,Zr) où r est borné d’après le Lemme; gQ opère par un sous-groupe fini
g ⊂ GL(r,Z); à conjugaison près le nombre de possibilités pour g est fini.
Considérons la suite exacte

1→ h→ gQ → g→ 1 .

Elle donne une suite exacte

1→ H1(g,H0(h,Zr))→ H1(gQ,Zr)→ H1(h,Zr)g.

Le dernier terme, égal aux invariants de g dans Homct(h,Zr), est trivial. Le
premier est égal à H1(g,Zr). Puisque le nombre de sous-groupes g, munis
de leur plongement, à conjugaison près, dans GL(r,Z), est fini il n’y a qu’un
nombre fini de possibilités.
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4 Une conséquence géométrique

4.1

Soient G un groupe réductif sur Q, X une classe de conjugaison de morphismes
S → GR, vérifiant les conditions de Deligne [4, 2.1]. Soient K ⊂ G(Af ) et
S = SK(G,X) la variété associée.
Si E0 est le corps de rationalité de la classe de conjugaison de µ : Gm → G
déduit d’un élément arbitraire h ∈ X, la théorie des modèles canoniques définit
S sur E0. (Pour un exposé des résultats finaux, voir Milne [11]).
Soit h : S → T un point CM , T étant le groupe de Mumford-Tate. Le corps
reflex E = E(h, T ) contient E0. Dans ce qui suit, on notera souvent x le point
de X défini par ( égal à) h. Si (x, g) ∈ X ×G(Af ) on note [x, g] sa classe dans
SK . L’action de Gal(Eab/E) sur x est décrite par le morphisme de réciprocité
[§ 3.4].
Soit S+ la composante connexe de l’image de X+×1 dans S, où l’on a fixé une
composante connexe X+ de X. On considère une sous-variété fermée Z ⊂ X+.
On dit que Z est Hodge-générique si Z n’est pas contenue dans une sous-
variété de type Hodge propre [3] de S+.
Fixons un domaine fondamental F ⊂ X+ pour l’action de Γ = G(Q) ∩K. Si
z ∈ S+ et si x ∈ F relève z, on note MT (z) ⊂ G le groupe de Mumford-Tate
de x.

Proposition 4.1 Supposons Z Hodge-générique et que G est le groupe de
Mumford-Tate générique de X. Si H est un sous-groupe connexe propre de
G défini sur Q, l’ensemble des points CM{z ∈ Z : MT (z) ⊂ H} n’est pas
Zariski-dense dans Z.

La condition que G est le groupe de Mumford-Tate générique est nécessaire
(prendre H le groupe de Mumford-Tate générique). On peut en fait supposer
que G est adjoint. Soit en effet π : G→ Gad le morphisme canonique et H un
sous-groupe propre connexe de G tel que l’ensemble des points CM{z ∈ Z :
MT (z) ⊂ H} soit Zariski-dense dans Z. La proposition pour la donnée adjointe
(Gad,Xad) nous assure que π(H) = Gad donc que Hder = Gder. L’hypothèse
que G est Hodge générique assure alors que H = G.
On suppose donc G de type adjoint. Fixons H ⊂

6=
G sur Q et soit (zα) une suite

Zariski-dense de Z telle que MT (zα) ⊂ H.

Lemme 4.2 HQ est réductif.

Soit en effet HQ = N H ′Q, où N est unipotent et H ′Q est réductif, une
décomposition de Levi. Puisque MT (zα) est un tore on peut choisir cette
décomposition de sorte que MT (zα) ⊂ H ′Q. Alors ZG(H ′(R)) ⊂ ZG(hα(

√
−1))

où hα : S → G est associé à xα, donc ZG(H ′(R)) est compact. En partic-
ulier H ′ n’admet pas de caractère rationnel non trivial. Rappelons un lemme
d’Eskin, Mozes et Shah [6, Lemme 5.1].
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Lemme 4.3 Soit F ⊂ G un Q-sous-groupe sans caractère non trivial. Les
propriétés suivantes sont équivalentes.

(i) ZG(F ) est anisotrope (réductif).

(ii) Tout Q-sous-groupe de G contenant F est réductif.

Appliquant le Lemme à H ′ on en déduit que H = H ′ est réductif.
Revenant à la démonstration de la Proposition, soit

H = S H1 · · ·Hr

(produit quasi-direct) où S est un tore – tel que S(R) est compact – et les
Hi sont semi-simples et irréductibles sur Q. Soit πi la projection de H sur

H/S
∏

j 6=i
Hj . On peut supposer dans cette démonstration que πi ◦ hα 6= 1 pour

tout i.

Lemme 4.4 Pour tout α ∈ N soit Xα la H(R)-classe de conjugaison de hα;
donc Xα ⊂ X.

(i) (H,Xα) est une sous-donnée de Shimura de (G,X).

(ii) Pour α variable il n’y a qu’un nombre fini de possibilités pour Xα.

Pour les définitions précises relatives aux données et sous-données de Shimura
on renvoie à [2].
La partie (i) est une variante de [2, Prop. 3.2]. Fixons α tel que MT (xα) ⊂ H.
Si C = hα(

√
−1), C est de carré central dans H(R). Alors Lie(G/R) définit une

représentation fidèle et C-polarisable de HR, selon la terminologie de Deligne;
d’après celui-ci [4, 1.1.15] Int(C) est une involution de Cartan de H(R). Par
ailleurs G(R) opère fidèlement sur gC = Lie(G/C) = kC ⊕ pC ⊕ p̄C, z ∈ C× =
S(R) opérant par (1, z/z̄, z̄/z) via hα et C par (1,−1,−1). Puisque πi ◦hα 6= 1,
hα(z) n’opère pas trivialement sur Lie(Hi) par l’action adjointe. Il en résulte
que C n’est pas triviale sur Hi(R). Enfin, la représentation de S sur Lie(H/R)
est de type (0; (1,−1); (−1, 1)) comme sous-représentation de Lie(G/R). Ainsi
(H,XH) vérifie les conditions d’une sous-donnée de Shimura [3, 3.1].
Pour la partie (ii), noter tout d’abord qu’il n’y a qu’un nombre fini de pos-
sibilités pour les classes de conjugaison géométrique des hα : S → H/C par
H(C). Si h : S → H/R est donnée, et si L ⊂ H est le stabilisateur de h pour
la conjugaison, le nombre de classes de conjugaison réelles de h dans le classe
de h sous H(C) est 6=6= ker((H1(R, L)→ H1(R,H)) donc fini.
Complétons la démonstration de la Proposition 4.1. On peut supposer donnée
(zα) telle que zα soit défini par xα ∈ X+ et que la donnée (H,Xα) soit
constante; notons XH la classe Xα. Alors pour tout α, zα est donné
par [xα, 1] ∈ SK+ , qui est contenu dans l’image de ShK∩H(Af )(H,XH) =
H(Q)\XH × H(Af )/K ∩ H(Af ). Pour un sous-ensemble Zariski-dense de Z,
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zα est donc contenu dans une composante irréductible d’une sous-variété de
Shimura, i.e., une variété de type Hodge. Donc Z est contenu dans cette sous-
variété, contrairement à l’hypothèse.
On déduit aussitôt de la Proposition :

Corollaire 4.5 Soit Z une sous-variété Hodge-générique. Supposons que Z
contient une suite dense de points CM, (zα), et soit Tα = MT (zα). Alors Z
contient une suite Zariski-dense de points CM, (zβ), tels que la suite (Tβ) soit
stricte.

En effet Z, contenant un ensemble dense D de points algébriques, est
définie sur Q̄; les adhérences de Zariski des sous-ensembles de D sont
définies sur Q̄ et donc forment un ensemble dénombrable. Si l’on ordonne,
Z1, Z2, . . . Zk, . . . ces adhérences 6= Z on peut trouver une suite extraite (zαj )
telle que zαj /∈ Zk (j > k). Alors, pour tout H ⊂

6=
G, Tαj 6⊂ H, si j est assez

grand, d’après la Proposition.

4.2

Avec les hypothèses énoncées au début du § 4.1, et G étant adjoint, soit alors
Z ⊂ S+ une sous-variété Hodge-générique contenant une suite dense de points
CM . On en extrait une sous-suite, qu’on notera simplement (zα), ayant la
propriété du Corollaire 4.5.
Supposons pour l’instant que Z est définie sur E0, et que la suite Tα associée
à zα est telle que rec : π(Rα) → π(Tα) soit surjective (cf. Thm. 3.3 ; les
notations sont évidentes). Noter que ceci apparâıt par exemple dans un des
exemples traités à la fin du § 3.2. Puisque zα ∈ S+ on peut écrire

zα = [xα, 1] ∈ Z . (4.1)

Alors xα définit le tore Tα; sous notre hypothèse de surjectivité, on a alors

[xα, t] ∈ Z ∀t ∈ Tα(Af )/Tα(Q) (4.2)

Notons S̃K(G) ou simplement S̃, l’espace G(R)-homogène G(Q)\G(A)/K. On
notera [[g∞, g]] la classe d’un élément (g∞, g) ∈ G(R) ×G(Af ). Enfin, S̃+ est

la composante connexe de (la classe de) 1 dans S̃.
Supposons alors l’hypothèse Ea (§ 1) vérifiée pour la famille Tα, et soit g∞ ∈
G(R)+. La convergence de la suite de mesures implique évidemment, pour tout
α, la densité de ⋃

β>α

S̃+(Tβ ,Kβ)

dans S̃+, avec Kβ = K ∩ Tβ(Af ).
En particulier

[[g∞, 1]] = lim
α

[[t∞α , tα]]
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où (t∞α , tα) ∈ Tα(A) et la convergence est dans S̃+. On en déduit qu’il existe
une suite γα ∈ G(Q) telle que

γα(t∞α , tα)→ (g∞, 1)

dans G(R)×G(Af )/K. Le second facteur étant discret, ceci veut dire que

{
γα t

∞
α → g∞ ,

γα tα ∈ K (α >> 0).
(4.3)

Par ailleurs d’après (4.2)

[γα xα, γα tα] ∈ Z .

Si γα tα ∈ K, on a donc

[γα xα, γα tα] = [γα xα, 1] ∈ Z .

Mais t∞α appartient au centralisateur de xα := hα, donc

[γα t
∞
α xα, 1] ∈ Z . (4.4)

Supposons alors que la suite (zα) admet une sous-suite convergente dans S+.
On peut alors choisir le relèvement xα de (4.1) convergent dans X+ en choisis-
sant un domaine fondamental comme dans le § 4.1. Soit donc xα → x∞ ∈ X+.
Alors γα t

∞
α xα → g∞ x∞ ∈ X+ et (4.4) implique [g∞ x∞, 1] ∈ Z. Puisque g∞

était arbitraire, ceci implique que S+ ⊂ Z. (Noter que X+ étant connexe est
une orbite de G(R)+).
Nous supposons maintenant que G est adjoint, Z Hodge-générique dans S+;
soit E′ un corps de rationalité de Z, et supposons seulement que les conoyaux
de rec : π(Rα) → π(Tα) sont uniformément bornés. Pour tout α, l’image
de Gal(Eabα /EαE

′) (où Eα est le corps reflex du tore Tα) est un sous-groupe
d’indice uniformément borné dans π(Tα). Notons T̄ 0

α ce sous-groupe de T̄α =
Tα(Af )/Tα(Q). L’argument qui précède donne alors :

Lemme 4.6 Supposons g∞ ∈ G(R)+, et

(i) xα → x∞ ∈ X

(ii) [[g∞, 1]] = lim[[h∞α , hα]])

avec hα ∈ Tα(Af ) d’image contenue dans T̄ 0
α. Alors [g∞x∞, 1] ∈ Z.

Notons alors Z̃ ⊂ S̃+ l’image inverse de Z par l’application S̃+ → S,

[[g∞, 1]]→ [g∞x∞, 1].

Cette application est une submersion, donc Z̃ est une sous-variété
(différentielle) de S̃+, sous-variété propre si Z 6= S+.
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Considérons par ailleurs les plongements

(Tα(Q)\Tα(A)/Kα)+ → (G(Q)\G(A)/K)+ = S̃+ (4.5)

(notations du § 1 : le terme de gauche est l’ensemble des éléments du quotient
dont l’image est dans S̃+). D’après la loi de réciprocité des modèles canoniques
pour les composantes connexes de SK (Deligne [4]) le groupe G(Af ) opère sur

les composantes connexes de S̃ via l’action transitive d’un quotient abélien.
On en déduit que la composante (+) du membre de gauche de 4.5 est un sous-
groupe. Il contient un sous-groupe ouvert d’indice fini, l’image de T̄ 0

α, et l’indice
de cette image est uniformément borné.
Si µa,α est la mesure de Haar du membre de gauche de (4.5), identifiée à son

image sur S̃+, l’hypothèse (Ea) est

µa,α → µG ; (4.6)

quitte à supposer l’indice de l’image de T̄ 0
α constant, égal à r, on peut écrire

µa,α =
r∑

i=1

µiα

où r µ1
α est la mesure de Haar normalisée sur cette image, et µa,i est positive

de masse 1
r .

Soit alors f une fonction continue à support compact, telle que f(x) 6 1
(x ∈ S̃+), f(x) = 0 (x ∈ Z̃) et µG(f) = 1 − ε. Si µ1

α(f) 6= 0 pour une suite
infinie de α, Supp(f) doit rencontrer Z̃ d’après le Lemme 4.6. On a donc
µ1
α(f) = 0 (α >> 0) et donc

µa,α(f) =

r∑

2

µiα(f) 6
r − 1

r

ce qui contredit (4.6) pour ε < 1
r . On a ainsi démontré le théorème suivant dans

le cas où Z ⊂ S+; le cas général s’en déduit de la façon usuelle en translatant
Z par un élément de G(Af ).

Théorème 4.7 (G adjoint).
Soit Z une sous-variété de S = SK(G,h) et supposons :

(i) Z contient un sous-ensemble Zariski-dense de points CM (zα) dont le
groupe de Mumford-Tate Tα vérifie :

ker(rec : π(Rα)→ π(Tα)) est connexe.

(ii) (zα) contient une sous-suite convergente pour la topologie complexe.

(iii) Z est Hodge-générique.
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Alors, sous l’hypothèse Ea pour les groupes Tα ⊂ G, Z est une composante
connexe de S.

D’après les § 2-3, l’hypothèse (i) sera très souvent vérifiée si Z contient un
ensemble dense de points CM Galois-génériques.

Pour terminer (et pour justifier notre § 3.3), notons que l’hypothèse “G ad-
joint”, si elle est commode, n’est pas cruciale. Expliquons l’argument quand
G est un groupe de similitudes (de type (p, p) à l’infini, cf. § 3.3) et quand
les points zα sont Galois génériques. Soit E0 le corps quadratique imaginaire
associé à G. On notera ici E×0 le Q-tore ResE0/Q Gm.

Le tore T = Tα est décrit par T (Q) = {z ∈ E× : NE/F z ∈ Q×, NE/E0
z ∈ Q×}.

Le centre Z de G s’identifie à E×0 ⊃ Gm. Soit Ḡ = G/Gm : on a donc des
morphismes naturels

G→ Ḡ→ Gad.

Pour des choix de compacts naturels, les variétés de Shimura associées sont
identiques (sur C). Si (zα) est une suite de points de SK(G), dense dans
une variété Hodge-générique, un sous-groupe H ⊂ G contenant les Tα doit être
d’image totale dansGad. Son image dans Ḡ doit donc être Ḡ ou le groupe dérivé
de celui-ci. Mais la composante neutre de l’image inverse dans G de Ḡder est
Gder, avec Gder(R) ∼= SU(p, p) et le paramètre h : z 7→ (z, . . . z, z̄, . . . z̄) ne passe
pas par ce sous-groupe. Par conséquent les arguments du § 4.1 s’appliquent à
Ḡ.

Rappelons que la conjecture d’équidistribution n’est naturelle que pour les
groupes de type (F), ce qui exclut G à cause de son centre déployé. On procède
donc dans Ḡ, de centre E×0 /Gm. Les arguments du § 4.1 s’étendent : il reste
donc à vérifier l’essentielle surjectivité des applications π(R) → π(T̄ ) (T̄ ⊂ Ḡ
Galois-générique).

Si µ : Gm → T → T̄ est un paramètre Galois-générique, on vérifie tout d’abord
que le corps reflex cöıncide dans T et T̄ . Ceci résulte immédiatement de la
trivialité de H1(Q,Gm) où Gm = ker(T → T̄ ). Considérons alors le diagramme

1 −−−−→ 1 −−−−→ R R −−−−→ 1
y

y
y

1 −−−−→ Gm −−−−→ T −−−−→ T̄ −−−−→ 1 .

On en déduit une suite exacte

1→ ker(R→ T )→ ker(R→ T̄ )→ Gm → 1 ;

puisque les deux termes extrêmes sont connexes, il en est de même du terme
médian.
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Abstract. We complete the determination of the stable model of
X0(Np

3), p ≥ 5, (N, p) = 1 begun in [CMc] and compute the inertial
action on the stable reduction of X0(p

3).

2000 Mathematics Subject Classification: Primary 11G18; Secondary
14G22, 11G07
Keywords and Phrases: stable reduction, modular curve

1 Introduction

In [CMc] we found a stable model for the modular curve, X0(p
3), over the

ring of integers in Cp, for a prime p ≥ 13. The stable models of X0(p) and
X0(p

2) were previously known, due to work of Deligne-Rapoport and Edixhoven
(see [CMc, §1] for a more complete list of relevant results). Finding a stable
model for X0(p

n) for n > 3 remains an open problem, although a conjectural
stable model for X0(p

4) is given in [M2, §5].
The results and main ideas of the argument used in [CMc] are summarized

below in Section 2. Nevertheless, we still refer to [CMc] frequently, and do
recommend that it be read first. Indeed, the purpose of this paper is to refine
and extend those results. First, we prove results which enable us to define
our model over an explicit finite extension of Qp, and to compute the inertia
action on the stable reduction. More precisely, we show that a stable model for
X0(p

3) can be defined over any field over which a stable model forX0(p
2) exists,

and which contains the j-invariants of all elliptic curves whose formal groups
have endomorphism rings isomorphic to Zp[p

√−p] or Zp[p
√−Dp] for D a non-

square (mod p). Such elliptic curves, whose formal groups have endomorphism
rings bigger than Zp, are said to have fake CM. In Section 4, we show that
(real) CM points are dense in these fake CM points. Thus we are able to

1Supported by NSF grant DMS-0401594
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apply the theory of CM elliptic curves when we determine, in Section 5, an
explicit field of definition for our model. Once this is done, we compute the
action of the inertia group on the stable reduction (in Section 6). This uses
the results of Sections 3-5 and the fact (which we show) that the formal groups
of elliptic curves with fake CM are relative Lubin-Tate groups as in [dS2]. As
a consequence, we show that the extension of Qnr

p found by Krir in [K], over
which the Jacobian of X0(p

3) has semi-Abelian reduction, is minimal.
We also extend the results of [CMc] in two other ways. In order to do the

explicit analysis in [CMc], it was necessary to have an approximation formula
for the forgetful map, πf : X0(p) → X(1), over some supersingular annulus.
Such a formula followed from a result of de Shalit (recalled in Section 2) for any
region corresponding to a supersingular elliptic curve A/Fp whose j-invariant,
j(A), does not equal 0 or 1728. By a result of Everett Howe (see [CMc, §10]),
one always has such an A as long as p ≥ 13. So the only nontrivial cases
which were left open were the three specific primes: p = 5, 7, and 11. This
shortcoming of our construction could be resolved by either generalizing de
Shalit’s result or by adding level structure to the more symmetric deformation
space of formal groups studied by Gross-Hopkins in [GH]. We handle the
open cases here, however, by applying explicit known formulas (in Section 7).
It is our hope that these calculations not only deal with the remaining open
cases, but also serve to make the constructions of [CMc] more concrete and
understandable. Finally, in Section 8 we extend the result of [CMc] by adding
tame level, i.e. we compute the stable reduction of X0(Np

3) when (N, p) = 1.
This is done by first viewing X0(Np

3) as the fiber product of X0(N) and
X0(p

3) over X(1). We construct semi-stable maps (as in [C2]) which extend
both forgetful maps, and prove a lemma which implies that the product of
semi-stable maps is semi-stable in this case. Then we compute the reductions
of the components of X0(Np

3) by crossing pairs of components in X0(N) and
X0(p

3) which have the same image in X(1). Two specific examples are then
worked out in some detail.

2 Stable Reduction of X0(p
3) for p ≥ 13

In this section we summarize the content of [CMc] and in particular the
construction of the stable model of X0(p

3) for p ≥ 13. The goal will be to
present the main ideas, along with the specific details which pertain directly
to the results in this paper.

2.1 Foundations

Over Cp, we may think of points on the modular curve, X0(p
n), as cor-

responding to pairs (E,C) where E/Cp is an elliptic curve and C is a cyclic
subgroup of order pn. One way of studying the p-adic geometry of X0(p

n) is to
study regions where the pair, (E,C), has prescribed properties. The most basic
distinction which one can make is whether E has ordinary (including multi-
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plicative) or supersingular reduction, and the geometry of the ordinary region
of X0(p

n) is well understood. Indeed, if E is an elliptic curve with ordinary
reduction, we define the canonical subgroup K(E) to be the p-power torsion
of E(Cp) in the kernel of reduction. For each a, b ≥ 0 with a+ b = n, we then
have rigid subspaces of the ordinary locus of X0(p

n) given by

Xa b := { (E,C) : |C ∩K(E)| = pa }.

Then Xa b is an affinoid disk when ab = 0. Otherwise, it is shown in [C1, §1]
that Xa b is the disjoint union of two irreducible affinoids, X±a b, which reduce
to the Igusa curve, Ig(pc), where c = min{a, b}. This curve is studied in [Ig]
and classifies pairs, (E,α), where E/Fp is an elliptic curve and α : µpc →֒ E is
an embedding.

The supersingular locus is not as well understood, but there are a number
of tools which can provide a line of attack. One of the most important is the
theory of the canonical subgroup for curves with supersingular reduction, for
which we take [B, §3, §4] as our primary reference. When E/Cp has supersin-
gular reduction, one can still define the canonical subgroup of order pn, Hn(E),
to be the cyclic subgroup of order pn which is (p-adically) closest to the origin.
For each E with supersingular reduction, however, there is a largest n for which
Hn(E) exists, and we denote this subgroup by K(E). The size of K(E) is then
completely determined by the valuation of the Hasse invariant of Ē. Denoting
this valuation by h(E), from [B, Thm 3.3, Def 3.4] we have

|K(E)| > pn ⇐⇒ h(E) < p1−n/(p+ 1).

The theory of canonical subgroups is intimately connected to the geometry
of the supersingular region of X0(p). For a fixed supersingular elliptic curve,
A/Fp2 , we let WA(pn) be the subspace of X0(p

n) consisting of pairs (E,C)
where Ē ∼= A. It is well-known (from [DR, §VI 6.16], for example) that WA(p)
is an annulus of width i(A) = |Aut(A)|/2. Furthermore, one can choose a
parameter xA on this annulus, which identifies it with 0 < v(xA) < i(A), and
such that

v(xA(E,C)) =

{
i(A)h(E), if |C ∩K(E)| = p

i(A)(1− h(E/C)), if |C ∩K(E)| = 1.

Inside the annulus, WA(p), there are two circles of fundamental importance.
The “too-supersingular circle,” denoted TSA, is where

v(xA(E,C)) = (p/(p+ 1))i(A)

or (equivalently) K(E) is trivial. The self-dual circle, SDA, consists of all
pairs (E,C) where C is potentially self-dual, equivalently those points where
v(xA(E,C)) = i(A)/2. When A/Fp, this circle is fixed by the Atkin-Lehner
involution, w1 (recalled below), and hence can be called the “Atkin-Lehner
circle.”
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Another tool for the analysis of the supersingular region of X0(p
n) is

Woods Hole Theory [WH], which essentially says that lifting an elliptic curve
is equivalent to lifting its formal group. More precisely, if Rp ⊆ Cp is the ring
of integers, we have the following theorem.

Theorem 2.1. The category of elliptic curves over Rp is equivalent to the
category of triples (F,A, α), where F/Rp is a formal group, A/F̄p is an elliptic

curve, and α : F̄ → Â is an isomorphism. A morphism between two triples,
(F,A, α) and (F ′, A′, β), is either the 0 map or a pair (σ, τ), where σ : F → F ′

and τ : A→ A′ are isogenies such that the following diagram commutes.

F̄
σ̄−−−−→ F̄ ′

α

y
yβ

Â −−−−→
τ̂

Â′

The theorem is used in two specific ways in [CMc]. First of all, for any two
supersingular elliptic curves, A and A′, there is an isogeny φ : A → A′ whose
degree is prime to p and which therefore passes to an isomorphism on formal
groups. By taking (F,A, α) to (F,A′, φ̂ ◦ α), we can define a surjection of
WA(pn) onto WA′(p

n) as long as i(A) = 1 (see [CMc, §4.1]). Note that here we
have added level structure to Theorem 2.1 in the obvious way. So this implies
that all of the supersingular regions are nearly isomorphic, which enables us
to analyze WA(pn) under the simplifying assumptions that A/Fp and j(A) 6=
0, 1728 (as long as p ≥ 13, by the result of Howe). In particular, much of our
explicit analysis depends on an approximation formula for the forgetful map
from the annulus, WA(p), to the disk, WA(1). For A/Fp with j(A) 6= 0, 1728,
such a formula was essentially found by de Shalit in [dS1, §3]. Let πf : WA(p)→
WA(1) denote the forgetful map, and w1 : WA(p) → WA(p) the Atkin-Lehner
involution, given by πf (E,C) = E and w1(E,C) = (E/C,E[p]/C) respectively.
We reformulate de Shalit’s result as the following theorem.

Theorem 2.2. Let R = W (Fp2) and A/Fp be a supersingular curve with j(A) 6=
0, 1728. There are parameters s and t over R which identify WA(1) with the
disk B(0, 1) and WA(p) with the annulus A(p−1, 1), and series, F (T ), G(T ) ∈
TR[[T ]], such that
(i) w∗1(t) = κ/t for some κ ∈ R with v(κ) = 1.
(ii) π∗fs = F (t) +G(κ/t), where
(a) F ′(0) ≡ 1 (mod p), and
(b) G(T ) ≡ (F (T ))p (mod p).

The other way we use Woods Hole Theory is by letting Aut(Â) act on
WA(pn) in the obvious way (here, as in Theorem 2.1, Â denotes the formal
group of A). From [T], we can identify EndF̄p(Â) with B := Zp[i, j, k], where

i2 = −r (a non-residue), j2 = −p, and ij = −ji = k. When A/Fp, j can also

be identified with the Frobenius endomorphism. The action of B∗ ∼= Aut(Â)
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on WA(1) commutes with the Gross-Hopkins period map, Φ, which can be
viewed as a map from WA(1) to P1 whenever j(A) 6= 0, 1728. Furthermore, for
α, β ∈ Zp[i] and ρ = α + jβ ∈ B∗, Gross-Hopkins show in [GH, §25] that the
action of B∗ on P1 is given explicitly by

ρ(t) =
−pβ̄ + ᾱt

α+ βt
.

It is important to note here that the action of B∗ on WA(1) is then
only completely determined by the explicit formula of Gross-Hopkins for B∗-
invariant subspaces on which Φ is an injection. Fortunately, the Atkin-Lehner
circle, or rather πf (SDA), is such a subspace and is identified with the circle
described by v(t) = 1/2. So as an immediate consequence, the action of B∗

induces a faithful action of

B∗/Z∗p(1 + jB) ∼= µp2−1/µp−1

on SDA (still when j(A) 6= 0, 1728). Also, on SDA the involution w1 can be
identified with j in the above sense. We use this in [CMc, §4.2] to show that an
involution on SDA can be defined by wρ := ρ◦w1, for any ρ = a+bi+dk ∈ B∗
(this subset of B∗ is called B′).

Remark 2.3. An affinoid X defined over a complete subfield of Cp has a canon-
ical reduction over the ring of integers, which is what we mean by X. Later, we
adopt the convention of un-bolding affinoid names to refer to associated com-
ponents of the stable reduction. Thus, whenever both make sense, X and X are
birational but not isomorphic.

2.2 Stable Model Construction

Our approach to constructing a stable model is purely rigid-analytic, in
the sense that we actually construct a stable covering by wide open spaces.
This equivalent notion is explained in detail in [CMc, §2]. Roughly, the wide
open subspaces in a semi-stable covering intersect each other in disjoint annuli,
and have underlying affinoids with (almost) good reduction. Each component
in the stable reduction is (almost) the reduction of one of these underlying
affinoids, and the annuli of intersection reduce to the ordinary double points
where components intersect.

With this rigid analytic reformulation in mind, our strategy for construct-
ing the stable model of X0(p

3) is basically to construct nontrivial components
explicitly and then prove that nothing else interesting can happen (this is done,
in part, with a total genus argument). In addition to the components in the
ordinary region, we use the above tools to construct three distinct types of
components in the supersingular region of X0(p

3) corresponding to any fixed
supersingular elliptic curve, A/Fp, with j(A) 6= 0 or 1728. First we consider the
affinoid, YA := π−1

ν (TSA) ⊆ WA(p2), where πν : X0(p
2) → X0(p) is given by
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πν(E,C) = (E/C[p], C/C[p]). We show in [CMc, §5] that YA can be identified
with the rigid space,

TA := { (x, y) ∈ TSA ×TSA | x 6= y, πf (x) = πf (y) }.

Then by applying Theorem 2.2 we compute the reduction of YA explicitly to
be y2 = xp+1 + 1. This affinoid, YA, reduces to the supersingular component
which Edixhoven found in [E1, Thm 2.1.1]. It can also be pulled back to X0(p

3)
via πf and πν (defined as above) to obtain nontrivial components of WA(p3)
(these pullbacks of YA are denoted by E1A and E2A). However, there are
other nontrivial components as well. Analogous to the above construction, let
ZA := π−1

1 1 (SDA) ⊆ WA(p3), where π1 1 = πf ◦ πν . Then ZA can be identified
with

SA := { (x, y) ∈ CA ×CA | τf (x) = w1 ◦ τf (y) }.
Here CA ⊆WA(p) is the circle whose points correspond to pairs, (E,C), where
h(E) = 1/2 and C 6= H1(E). Then τf : CA → SDA is the degree p map
which replaces C with H1(E). The above reformulation of de Shalit’s analysis
is again sufficient to explicitly compute the reduction of ZA (in [CMc, §8]),
which is given by

Xp+1 +X−(p+1) = Zp.

Finally, we show that each of the 2(p + 1) singular residue classes of ZA
contains an affinoid which reduces to the curve, y2 = xp − x. We do this by
constructing a family of involutions on ZA, given by w̃ρ(x, y) = (ρy, ρ̄x) (for
ρ ∈ B′) and compatible with the wρ’s in the sense that π1 1 ◦ w̃ρ = wρ ◦ π1 1.
Thus, fixed points of w̃ρ lie over fixed points of wρ. Each singular residue class
of ZA is shown to be a connected wide open with one end, on which one of
these involutions acts with p fixed points. To finish the argument, we show in
[CMc, §8.2] that the quotient by w̃ρ of such a residue class is a disk, in which
the images of the p fixed points are permuted by an automorphism of order p
(reducing to a translation). It is then straightforward analysis to prove that
any such wide open is basic (as in [CMc, §2]), with an underlying affinoid that
reduces to y2 = xp − x.

Remark 2.4. We show in [CMc, Prop 4.9] that the fixed points of wρ corre-
spond to pairs, (E,C), where E has fake CM by Zp[

√−p] or Zp[
√−Dp] (and

C = H1(E)). So this is where fake CM enters into the arithmetic of our stable
model.

The last step in our stable model construction is to form an admissible
covering of X0(p

3) by wide open neighborhoods of the nontrivial affinoids that
we know about. Once again, any supersingular region corresponding to j(A) =
0 or 1728, or for which j(A) /∈ Fp, is dealt with by applying an appropriate
surjection from WA′(p

n) onto WA(pn). We then total up our lower bounds
for the genera of all of these wide opens (and the Betti number of the graph
associated to our covering), and compare this with the genus of X0(p

3). Since
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the two are equal, we are able to conclude from [CMc, Proposition 2.5] that we
haven’t missed anything. Thus we have the following theorem.

Theorem 2.5. The stable reduction of X0(p
3) for p ≥ 13 consists of six ordi-

nary components (reductions of the X±a b) and a “necklace” of components, for
each supersingular elliptic curve A/Fp2 , whose graph is given below in Figure

1. The reductions of E1A and E2A are isomorphic to y2 = x(p+1)/i(A) +1, and
ZA has 2(p + 1)/i(A) singular residue classes with underlying affinoids that
reduce to y2 = xp − x.

ZA

�������������

ordinary

E1,A

XXXXXXXXXXXXX

..........

ordinary

E2,A

Figure 1: Partial Graph of the Stable Reduction of X0(p
3)

3 Fake CM

Let K be a complete subfield of Cp with ring of integers R. Then we

say that an elliptic curve, E/R, has fake CM if EndR(Ê) 6= Zp, and potential
fake CM if this happens over Cp. We showed in [CMc] that curves with certain
types of fake CM can be used to understand the geometry of X0(p) and X0(p

3).
In particular, let R be the set of rings of integers in quadratic extensions of
Qp, and let S ∈ R be the ring of integers in a ramified extension. Then by
[CMc, Prop 4.9], curves E with potential fake CM by S are precisely those
for which (E,H1(E)) is fixed by some involution wρ (for ρ ∈ B′, as in Section
2). Moreover, by [CMc, Prop 7.4], any fixed point of some involution, w̃ρ, is
obtained from one of these by a non-canonical p-isogeny.

In this section we further investigate properties of curves which have fake
CM by some S ∈ R. In particular, we focus on the ways in which the fake
endomorphism ring can embed into B ∼= End(Â) (via Woods-Hole theory),
when A is supersingular and E corresponds to a point of WA(1). First we
show that all subrings of B which are isomorphic to the same S ∈ R are B∗

conjugate, and hence (using results from [G]) that all the curves in WA(1) with
fake CM by the same ramified S make up a B∗ orbit. Then we suppose that
(E,C) is fixed by the involution wρ, for some ρ ∈ B′, and give alternative

characterizations of the image of End(Ê) in B in terms of ρ.
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3.1 Fake CM Curves and Orbits of B∗

With notation as in Section 2.1, we fix a supersingular elliptic curve A/Fp2
and an isomorphism between End(Â) and B = Zp[i, j, k]. Then B∗ ∼= Aut(Â)
acts on WA(1) by ρ(F, α) = (F, ρ ◦α). It is immediate that this restricts to an
action of B∗ on the subset of WA(1) corresponding to curves E with fake CM
by a fixed S ∈ R. We want to describe the orbits of this (restricted) action.

Lemma 3.1. If S1 and S2 are subrings of B which are isomorphic to S, there
is a ρ ∈ B∗ such that S2 = ρ−1S1ρ.

Proof. We can assume without loss of generality that S1 = Zp[ι], where ι = i,
j or k. Note that for each of these ι, and for any α, we have

Tr(αι) = 0 ⇒ ια = ᾱι.

Suppose first that S1 = Zp[i]. Since S1 and S2 are isomorphic, there must
be an α ∈ S2 such that α2 = −r. Hence we have N(α) = r and Tr(α) = 0.
Now set γ = α/i ∈ B, from which it follows that N(γ) = 1 (and therefore
γ−1 = γ̄). Finally, choose ǫ = ±1 so that ρ := 1 + ǫγ is a unit. Then using
Tr(ρi) = 0 we calculate:

ρiρ̄

N(ρ)
= (ρ̄)−1ρi = (ρ̄)−1ργ−1α = (ρ̄)−1(ǫ+ γ−1)α = ǫα.

In other words, ρiρ−1 = ǫα, and therefore ρ−1S2ρ = Zp[i] = S1.
Now suppose that S1 = Zp[j]. In this case there must be an α ∈ S2 such

that α2 = −p, and hence α = bi+ cj + dk, for some b, c, d ∈ Zp such that

−b2r − c2p− d2rp = −p.

Thus, we see that p|b. So b = (ej)j for some e ∈ Zp, and α = γj where
γ := ek + c + di ∈ B. Again take ρ = 1 ± γ. The remaining case, when
S1 = Zp[k], is similar.

Corollary 3.2. When S is ramified, any two formal S-module structures,

σ1, σ2 : S → B = End(Â),

are conjugate in the sense that there is a ρ ∈ B∗ with

ρ−1σ1(s)ρ = σ2(s) ∀s ∈ S.

Proof. From Lemma 3.1, there exist γ1, γ2 ∈ B∗ such that γ−1
i σi(S)γi = Zp[ι]

where ι = j or k. Note that iιi−1 = −ι in either case. Therefore we obtain two
distinct automorphisms of S (over Qp) by taking

s→ σ−1
2 (ρ−1σ1(s)ρ),

where ρ is either γ1γ
−1
2 or γ1i

−1γ−1
2 . One of these automorphisms must be the

identity, which proves the corollary.
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Theorem 3.3. Suppose that a := (E,C) and b := (E′, C ′) are points in WA(p)
such that E and E′ have (potential) fake CM by S (ramified), and such that C
and C ′ are either both canonical or both not. Then a = ρb for some ρ ∈ B∗.

Proof. Let E = (F, α) and E′ = (F ′, β). By the lemma, there is a ρ ∈ B∗ such
that

αEnd(F )α−1 = (ρβ)End(F ′)(ρβ)−1.

Moreover, by the corollary, we can choose ρ so that (F, α) and (F ′, ρ ◦ β) are
two liftings of the same formal S-module structure on Â (in the sense of [G]).
Hence by [G, Prop 2.1], we have ρ(E′) = E.

Now, if C and C ′ are canonical, it is immediate that a = ρb for this same
ρ. So suppose that C and C ′ are both non-canonical. Then the isomorphism
between (F ′, ρ◦β) and (F, α) at least takes C ′ to some non-canonical subgroup
D ⊆ F . But Aut(F ) transitively permutes the non-canonical subgroups by
Remark 4.11 of [CMc]. Therefore we may choose an automorphism σ with
σ(D) = C, and thus we have a = ρ1b for ρ1 = (α ◦ σ ◦ α−1)ρ.

Remark 3.4. If E is defined over W (Fp2), and Ē ∼= A for some supersingular
A with A defined over Fp or with j(A) 6= 0 or 1728, then E has fake CM. Indeed,
the Frobenius endomorphism of Ē over Fp2 is [±p]Ē. Since this endomorphism

lifts to E, Ê is a Lubin-Tate formal group.
For example, suppose that p = 2 and E is given by y2 + 2xy − Ay = x3,

where A3 = 1. Then in characteristic 2, we have [2](x, y) = (Ax4, y4). So if
A 6= 1, we don’t know if E has fake CM 2-adically.

3.2 Embeddings of Fake Endomorphism Rings

Now suppose that A is defined over Fp and that j(A) 6= 0, 1728. Recall (from
[CMc, §4.2]) that for any ρ ∈ B′, the involution of SDA given by wρ = ρ ◦ w1

has two fixed points. Let x = (E,C) = (F, α,C) be one of the them. As in the
previous section, Woods Hole theory gives us an embedding of End(F ) into B:

α∗End(F ) := α−1End(F )α ⊆ End(Â) = B.

In this section, we use the embedding to reprove the result that E has fake CM
by the ring of integers in a ramified quadratic extension of Qp. We also give
alternate descriptions of the embedding which depend only on ρ, in particular
showing that the fake endomorphism rings of both fixed points embed onto the
same subring of B.

Definition 3.5. For ρ = a+ bi+ cj + dk ∈ B, we let ρ′ = a− bi+ cj − dk.

Lemma 3.6. (i) For all ρ ∈ B, ρj = jρ′.
(ii) B′ = { ρ ∈ B∗ | ρρ′ ∈ Z∗p }
(iii) If ρ1, ρ2 ∈ B∗, (ρ1ρ2)

′ = ρ′1ρ
′
2.

(iv) If ρ ∈ B′, ρρ′ = ρ′ρ.
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Proposition 3.7. Let ρ ∈ B′, and let x := (E,C) = (F, α,C) be fixed by wρ.
Then α∗End(F ) = Zp[γ], where γ = ρj and hence γ2 ∈ pZ∗p.
Proof. This is basically proven in [CMc, Prop 4.9], although we repeat the
argument here. By Theorem 2.1 (and the fact that the only degree p endomor-
phisms of A are ±j) we can choose isogenies,

β : F/C
∼−→ Â ιC : F → F/C,

such that E/C = (F/C, β), and such that (ιC , j) represents the natural isogeny
from E to E/C. In fact, ιC can be taken to be the natural map.

Now, the fact that ρ(E/C) = E implies that there is an isomorphism,
σ : F/C → F , such that ρ ◦ β = α ◦ σ̄. So let π0 = σ ◦ ιC ∈ End(F ), and then
take γ = απ0α

−1. Then γ ∈ α∗End(F ) by definition, γ = ρj by commutativity,
and from Lemma 3.6 we have

γ2 = ρjρj = −pρρ′ ∈ −pZ∗p.

Furthermore, since this implies that Zp[γ] is a maximal order, it must be all of
α∗End(F ).

Corollary 3.8. Let x = (F, α,C) be fixed by wρ for ρ ∈ B′, and let K =
Qp(
√−p,√−Dp) for D a quadratic non-residue (mod p). Then x is defined

over K, and

End(F ) = EndK(F ) ∼= Zp
[√
−ρρ′p

]
.

Proof. The fixed points of wρ are defined over K, by the explicit formula for wρ
(given in [CMc, Eq 3]). Therefore, F/C and the natural map, ιC : F → F/C,
are defined over K. Hence, the endomorphism, π0 (as in Proposition 3.7), is
defined over K.

Proposition 3.9. If ρ ∈ B′ and x := (F, α,C) is fixed by wρ, then

α∗End(F ) = Sρ := {τ ∈ B : ρτ ′ = τρ}.

Proof. One direction is easy. In particular, from the previous proposition,
everything in α∗End(F ) can be written as a+ bγ. This is in Sρ since

ρ(a+ bρj)′ = aρ+ bρρ′j = (a+ bρj)ρ.

For the other direction, Lemma 3.6 implies that Sρ is at least a ring. We want
to show that Sρ ⊆ α∗End(F ). So first choose a τ ∈ S∗ρ . From the fact that
ρ ◦w1 = w1 ◦ ρ′ on SDA (basically just ρj = jρ′, see [CMc, Cor 4.6]), we have

wρ(τx) = ρτ ′w1x = τρw1x = τx,

which means that τx is one of the two fixed points of wρ. Suppose first that
τx = x, i.e., (F, α) ∼= (F, τ ◦ α). Then by Theorem 2.1, there is a σ ∈ End(F )
such that

α ◦ σ̄ = τ ◦ α,
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and hence τ ∈ α∗End(F ). We conclude that if τ ∈ S∗ρ , at least τ2 ∈ α∗End(F ).
But then, since (1± τ)2 = 1± 2τ + τ2, it follows that τ ∈ α∗End(F ). Finally,
if c ∈ Sρ, one of either 1+ c or 1− c must be in S∗ρ . Thus, Sρ ⊆ α∗End(F ).

Corollary 3.10. If F and G are formal groups corresponding to the two fixed
points of wρ, End(F ) is canonically isomorphic to End(G).

Proof. Let x = (F, α,C) and y = (G, β,C ′) be the two fixed points of wρ. Then
from either proposition, we have

α∗End(F ) = β∗End(G).

So α∗ and β∗ identify End(F ) and End(G) with the same subring of B.

Remark 3.11. Let x = (F, α,C) and y = (G, β,C ′) be the two fixed points
of wρ, for ρ ∈ B′ (as above). Let S be the ring of integers in the ramified
quadratic extension of Qp for which End(F ) ∼= End(G) ∼= S. Then by [G, Prop
2.1], x and y are the two canonical liftings of the two S-module structures on
Â with image α∗End(F ) = β∗End(G).

4 Real CM

In this section, we shift our focus to elliptic curves E/R which have real
CM, i.e. for which EndR(E) 6= Z. Our main result is that, inside SDA, real
CM points are dense in the set of fake CM points. The strategy is to use Woods
Hole theory and the fact that End(A) is dense in End(Â). First we make B
into a topological ring in the usual way, by defining

||ρ|| = max{|h(ρ)| : h ∈ HomZp(B,Zp)}.

Then from the explicit formula of Gross-Hopkins (see [CMc, §4.2] or Section
2.1), the action,

B∗ × SDA → SDA,

is continuous with respect to both variables.
Now assume that A/Fp, and let K = Qp(

√−p,√−Dp) and R = OK .
Thus the fake CM curves corresponding to points of SDA are all defined and
have fake CM over R by Corollary 3.8. Then real CM points are dense in these
fake CM points in the following sense.

Theorem 4.1. Choose S ∈ R ramified. Then points of SDA corresponding to
elliptic curves, E/R, for which EndR(E)⊗Zp ∼= S are dense in those for which

EndR(Ê) ∼= S. In fact, if (F, α) has fake CM and ǫ ∈ R+, there exist ρ ∈ B∗
such that ||ρ− 1|| < ǫ and (F, ρα) 6= (F, α) has real CM.

Proof. In general, when E = (F, α) is defined over R with residue field k, E
has CM over R if and only if α∗EndR(F ) ∩ Endk(A) 6= Z in EndkÂ. In fact,

EndR(F, α) ∼= α∗EndRF ∩ EndkA.
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This follows from Theorem 2.1 if R = Rp, and an argument for more general R
can be made via crystalline cohomology. In our case, k = Fp2 , and since A/Fp
is supersingular, this guarantees that Endk(A) is dense in Endk(Â) = End(Â).

So suppose (F, α) is defined over R (as above) and has fake CM by S ∈ R
(ramified) and α∗S = Zp[γ]. Fix an ǫ > 0. Then there exists δ > 0 such that

for all g ∈ End(Â) with ||g− γ|| < δ, there exists ρ ∈ B∗ with ||ρ− 1|| < ǫ and

ρSρ−1 = Zp[g].

This follows from the construction of Theorem 3.3, since δ can be chosen so that
Zp[g] ∼= Zp[γ] for all ||g−γ|| < δ. In particular, we may then choose g ∈ End(A)

with Zp[g] 6= Zp[γ], since End(A) is dense in End(Â). Then (F, ρ ◦ α) has CM
because

(ρ ◦ α)∗EndRF = {ρ ◦ α ◦ γ ◦ (ρ ◦ α)−1 : γ ∈ EndRF} = ρSρ−1.

Therefore, g ∈ (ρ ◦ α)∗EndR(F ) ∩ End(A).

Corollary 4.2. Let A be any supersingular elliptic curve over Fp2 . Then
points corresponding to elliptic curves E with CM by an order of discriminant
pM with (p,M) = 1 fill out a µ2(p+1)/i(A) orbit of Gm ∼= SDA. Two such
curves correspond to points in the same µ(p+1)/i(A) orbit if and only if M1M2

is a square (mod p).

Proof. First suppose that A/Fp and j(A) 6= 0, 1728. Recall that curves with
fake CM by S (as above) correspond to fixed points of the involutions wρ for
ρ ∈ B′ by [CMc, Prop 4.10]. Remark 4.8 of [CMc] says that such points fill
out a µ2(p+1) orbit of Gm ∼= SDA, and that B∗ acts like µp+1. Now we have
Theorem 3.3 which says that curves with the same fake endomorphism ring are
B∗ translates. So this proves the analogous statement for fake CM curves, and
by Theorem 4.1 the statement about real CM curves then follows.

Now suppose that j(A) = 0 or 1728. Remark 4.8 is based on the explicit
formula for the action of B∗ on the deformation space, XK , for the formal
group Â. When j(A) = 0 or 1728, WA(1) can be identified with the quotient
of XK by a faithful action of Aut(A)/± 1, in a way which is compatible with
the natural embedding of Aut(A) into B∗. So basically, we can use the same
argument as above for the circle of XK which lies over SDA, and then apply
the degree i(A) map. Similarly, if A is not defined over Fp, we can choose some
A0/Fp and then apply an isomorphism between WA0

(p) and WA(p) as in [CMc,
§4.1].

Remark 4.3. When A/Fp, a canonical choice of parameter on SDA is given

by (j(E)− Teich(j(A)))/
√
pi(A).

Question: If E and E′ both satisfy the above conditions, the residue class of

j(E′)− Teich(j(A))

j(E)− Teich(j(A))
(mod

√
p)

is the residue class of a p+1
i(A) -th root of unity. Which one and when is it 1?
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4.1 Heegner Points

By a Heegner point on X0(N) we mean a pair (E,C) where E is a CM elliptic
curve and C is a cyclic subgroup of order N such that End(E) ∼= End(E/C).
Let X0(p

n) denote a stable model for X0(p
n). In this section, we discuss the

placement of Heegner points on X0(p
n), beginning with those Heegner points

which lie in the ordinary region.
Let Ri(D) denote the order of discriminant piD in Q[

√
piD] where D < 0,

and (D, p) = 1. Suppose End(E) ∼= Ri(D). Then E has ordinary reduction if
and only if (Dp ) = 1 and i is even.

In order to study ordinary Heegner points, we interpret the irreducible
affinoids, X±a b, which make up the ordinary locus as in [C1]. Recall that Xa b

(for a, b ≥ 0 and a+ b = n) was defined in Section 2.1 as the affinoid in X0(p
n)

whose points correspond to pairs (E,C) where E is ordinary and |C∩K(E)| =
pa. The first author showed (see [C1, §2] or [CMc, §3.2]) that for a ≥ b this
is equivalent to the affinoid whose points correspond to pairs, (E,P), where
E is ordinary and P is a certain pairing from Ka(E) := K(E) ∩ E[pa] onto
µpb . Furthermore, let Ca b denote the set of isomorphism classes of pairings
from Z/paZ onto µpb (which has two elements when a ≥ b ≥ 1). Then for any

β ∈ Ca b the subspace, Xβ
a b ⊆ Xa b, consisting of those pairs for which P ∈ β, is

an irreducible affinoid which reduces to Ig(pa). Now, using the Atkin-Lehner
involution, the remaining irreducible affinoids (for a < b) in the ordinary locus
can be defined by

X
β
a b = wnX

(
−1
p )β

b a .

(Note: This is a slight change from the notation of [C1].) Ordinary points of
X0(p

n) all have smooth reduction on one of these components, and we will
show that there are in fact infinitely many Heegner points on each.

Lemma 4.4. For any b ≥ 0, there are infinitely many Heegner points on Xb b.

Proof. Points of Xb b can also be thought of as triples, (E,C1, C2), where E
is an ordinary elliptic curve and Ci is a cyclic subgroup of order pb such that
C1 ∩ C2 = (0) and Ci ∩ K(E) = (0). If we let ιC denote the natural map
from E → E/C, then the triple, (E,C1, C2), just corresponds to the pair,
(E/C1, C(C1, C2)), where

C(C1, C2) := ker(ιC2
◦ ι̌C1

) ⊆ E/C1.

Now, choose any ordinary elliptic curve, E, with CM by R2i(D), and then
choose C1 and C2 (as above) so that End(E/C1) ∼= End(E/C2) ∼= R2(i+b)(D).
If i > 0, any choice of C1 and C2 (as above) will do. If i = 0, one also needs
Ci to be disjoint from the kernel of the Verschiebung lifting (which is always
possible if p > 2). Then (E/C1, C(C1, C2)) is a Heegner point on Xb b.

There are various maps between ordinary affinoids which can now be used
(along with Lemma 4.4) to construct Heegner points on every X

β
a b. First of all,
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wn takes Heegner points of Xa b to Heegner points of Xb a by definition. Sec-
ondly, the group Z∗p acts through (Z/pbZ)∗ on Xa b via τr : (E,P) 7→ (E,Pr).
Moreover, τr fixes X

β
a b (i.e. preserves the class of the pairing in Ca b) if and only

if τr is a square. Finally, we have a natural isomorphism, αa b : Xb b → Xa b,
which takes the pair (E,P) to the pair (E,P ′) for

P ′(R,S) = P(pa−bR, pa−bS).

We now investigate the effect of these maps on Heegner points.

Lemma 4.5. Let F be a fixed ordinary elliptic curve. Then (Z/pbZ)∗ acts
transitively on the set of points of the form (F,C) which lie in Xb,b.

Proof. Let Bb(F ) denote this set. Then points of Bb(F ) correspond to triples
(E,C1, C2) as above where E = F/Kb(F ) and C1 = F [pb]/Kb(E). There are
pb−1(p − 1) such triples. The lemma follows because (Z/pbZ)∗ acts faithfully
on Bb(F ).

Lemma 4.6. If (F,C) is a Heegner point on Xb b and End(F ) = R2b(D) then
αa b(F,C) is a Heegner point.

Proof. The point (F,C) is (E/C1, C(C1, C2)), where E = F/pbC, C1 =
ιpbC(F [pb]) and C2 = ιpbC(C). In this case, (p,disc(End(E))) = 1. Let

φc : E → Eσ
c

be the lifting of Frobenius. Then αa b(F,C) =

(F, ker(ι
Cσ

a−b
2

◦ φa−b ◦ ιpbC)),

which is clearly a Heegner point.

Theorem 4.7. There are infinitely many Heegner points lying over each ordi-
nary component of X0(p

n) for n ≥ 1 and p > 2 (all with smooth reduction).

Proof. By Lemma 4.6, it suffices to guarantee at least one Heegner point,
(F,C), on each X

β
b,b with End(F ) ∼= R2b(D). From the proof of Lemma 4.4,

such points correspond to triples (E,C1, C2) where End(E) ∼= R0(D). For a
fixed F , we must have E = F/Kb(F ) and C1 = F [pb]/Kb(E). Then we get a
point of Xb b by choosing any C2 disjoint from C1 and K(E), and a Heegner
point if C2 is also disjoint from the kernel of the Verschiebung lifting.

At this point, the argument is reduced to simple counting. We have a
total of pb−1(p− 2) Heegner points in each Bb(F ). The cardinality of Bb(F ) is

pb−1(p− 1), and from Lemma 4.5 half of these points lie in each Xβ
b b. So since

pb−1(p − 2) > pb−1(p − 1)/2 if p > 3, we are done (p = 3 can be handled by
Atkin-Lehner).

Heegner points in the supersingular region of X0(p
n) are somewhat easier to

describe.
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Lemma 4.8. Let E be a CM elliptic curve with supersingular reduction, such
that pm exactly divides the discriminant of End(E). Then we have

h(E) =

{
p1−k/(p+ 1), if m = 2k

p1−k/2, if m = 2k − 1.

Furthermore, if End(Ê) = Zp[γ] and γ2 ∈ Zp, we have Ker(γ)∩K(E) = K(E)
(which has order pk).

Proof. This is an exercise in applying [B, Thm 3.3]. The point is that if E/C ∼=
E, we must at least have h(E/C) = h(E).

Theorem 4.9. Let E be a CM elliptic curve with supersingular reduction, such
that pm exactly divides the discriminant of End(E). Then (E,C) ∈ X0(p

n) (for
n > 0) is a Heegner point if and only if m = n and K(E) ⊆ C.

Proof. This follows directly from Lemma 4.8 (and [B, Thm 3.3]). Indeed, if E
and m are as above, and C ⊆ E is any cyclic subgroup of order pn, we have

disc(End(E/C)) =
disc(End(E)) · |C|2
|K(E) ∩ C|4 ·

{
p, if m is odd and K(E) ⊆ C
1, otherwise.

Now, when n ≤ 3, the above results make it possible to be very explicit
about the placement of Heegner points on X0(p

n). On X0(p), the supersingular
Heegner points all lie on SDA for some A and have singular reduction (although
when j(A) = 1728 they have smooth reduction on the Deligne-Rapoport model
from [DR, §VI.6.16]). They also correspond to pairs, (E,C), where E has CM
by R1(D) and C = K(E). Heegner points of X0(p

2) correspond to those pairs,
(E,C), where E has CM by R2(D) (with (Dp ) = −1) and K(E) = pC. They

all have smooth reduction on the component of X0(p
2) which Edixhoven found

(and which we call YA). Finally, Heegner points on X0(p
3) correspond to pairs

where E has CM by R3(D) and K(E) = pC. This implies that they all lie on
the affinoid ZA. By Theorem 4.1, there are infinitely many which are fixed by
some w̃ρ. Hence, using the discussion at the beginning of [CMc, §8], they have
smooth reduction on each of the new components which lie in the singular
residue classes of ZA. However, there are also infinitely many supersingular
Heegner points of X0(p

3) which are not fixed by any w̃ρ, from the preceding
theorem and Proposition 7.4 of [CMc] (see also [CMc, Rem 7.5]), and it is
unclear where the reductions of these points lie on ZA.

5 Field of Definition

Suppose L/K is an unramified extension of local fields. It follows from [DM,
Thm 2.4] that an Abelian variety A over K has semi-stable reduction (i.e. has
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a model with semi-stable reduction over OK) if and only if AL has semi-stable
reduction. Also, in the special case where A is the Jacobian of a curve, C/K,
and L/K is the maximal unramified extension, A has semi-stable reduction if
and only if CL does. It is not true, however, that (in this case) C has semi-stable
reduction whenever A does. For example, the Jacobian of X0(p) has a model
with semi-stable reduction over Zp, while X0(p) may not (for example, when
p = 37). This is an important point for us, because Krir determined a field
over which the Jacobian of X0(p

n) attains stable reduction in [K, Théorème 1].
Indeed, let K = Qp(

√−p,√−Dp) for D a quadratic non-residue. Then Krir’s
result can be stated as follows.

Theorem 5.1 (Krir). The Jacobian of X0(p
n) has stable reduction over the

class field Mn over K of the subgroup of K∗ given by

{a ∈ O∗K : a2 ∈ 1 +
√
pn−1OK}.

By the above reasoning, it follows that X0(p
n) also has a stable model

over this same field, Mn. However, one can not conclude from this result which
extensions of Qp are sufficient for X0(p

n) to attain stable reduction (and there
may not be a minimal such field). What we do in this section is produce a finite
extension, F3 ⊇ Qp, over which our stable model for X0(p

3) can be defined,
partially using the result of Krir. Fake and real CM also play a role because of
the correspondence between wρ and w̃ρ fixed points and fake CM curves. Our
final result is the following.

Theorem 5.2. If 1 ≤ n ≤ 3, the stable model of X0(p
n) is defined over the

class field Fn over K := Qp(
√−p,√−Dp) of the subgroup of K∗ given by

(p2an)Z{a ∈ O∗K : abn ∈ 1 +
√
pn−1OK},

where (an, bn) = (1, 1) if n = 1, (3, 4) if n = 2, and (3, 2) if n = 3. In
particular,

([Fn : Qp], e(Fn/Qp)) =





(2, 1), if n = 1;

(6(p2 − 1), (p2 − 1)/2), if n = 2;

(12(p2 − 1)p2, (p2 − 1)p2) if n = 3.

5.1 Two Ingredients

One of the main ingredients in our field of definition is the field over which
the fixed points of our involutions, w̃ρ, are defined. This field is necessary, by
our construction, to obtain good reduction for the underlying affinoids in the
singular residue classes of ZA. As real CM curves have been shown to be dense
in these points, we are able to apply classical results on CM elliptic curves to
determine this field.

Documenta Mathematica · Extra Volume Coates (2006) 261–300



Fake CM and the Stable Model of X0(Np
3) 277

Proposition 5.3. Let A be a supersingular curve over Fp. Let F be the small-
est field over which all the fixed points in WA(p3) of our involutions w̃ρ are
defined. Then,

F = Qp(
√−p,

√
−Dp, j(p√−p), j(p

√
−Dp))

where D ∈ Z+ is a quadratic non-residue. This is the class field over K :=
Qp(
√−p,√−Dp) of the subgroup of K∗ given by

(
√
p)Zµp2−1(1 + pOK).

In particular, [F : K] = p2.

Proof. By Theorem 4.1 and Proposition 7.4 of [CMc] we see that F is the field
of definition over Qp of the set of points (E,C) where E lifts A and has CM by
an order whose discriminant is exactly divisible by p (note that here C is not
necessarily H1(E)). The proposition now follows from Theorem 5.5 of [S].

Remark 5.4. This field F is the same as that mentioned in Remark 8.1 of
[CMc].

We used a surjection from WA(pn) onto WA′(p
n), where A and A′ are super-

singular elliptic curves over Fp2 , to deal with those regions for which j(A′) = 0
or 1728, or for which A′ is not defined over Fp. The surjection can be defined
over W (Fpk) as long as A and A′ are p-prime isogenous over Fpk . Another
ingredient in our determination of a field of definition is the following theorem,
that k = 24 always suffices.

Theorem 5.5. Any two supersingular elliptic curves over Fp2 are 2-power
isogenous over Fp24 .

Proof. Suppose A and B are two supersingular elliptic curves over Fp2 . It is
well known that there exists a 2n-isogeny α : A0 := A → An := B over F̄p for
some n (see [R, Lemma 3.17]). We can factor α as

A0
α1→A1 · · ·Ai−1

αi→Ai · · ·An−1
αn→An

where Ai is an elliptic curve over F̄p and αi is a 2-isogeny. Furthermore, each
Ai is supersingular and hence can be defined over Fp2 . Thus it suffices to prove
the following lemma.

Lemma 5.6. Any two elliptic curves A and B over Fpk which are 2-isogenous
over F̄p are 2-isogenous over Fp12k .

There exists a subgroup C of A(F̄p) of order 2 so thatB and A/C are isomorphic
over F̄p. Now, A→ A/C is defined over Fp6k because all the points of order 2
on A are defined over the extension of Fpk of degree either 2 or 3. In particular,
B ∼= A/C over Fp12k because two elliptic curves with the same j-invariant are
isomorphic over the quadratic extension.
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5.2 Proof of Theorem 5.2

The case n = 1 follows from [DR, §VI 6.16] and the fact that all supersingular
elliptic curves in characteristic p are defined over Fp2 . The case n = 2 over Qnr

p

was handled by Edixhoven in [E1, Thm 2.1.1].
When n ∈ {2, 3}, we defined an admissible rigid open cover C0(pn) of

X0(p
n) in Theorems 5.3 and 9.2 of [CMc] and showed that it was semi-stable

over Cp. We must show that the cover is defined and semi-stable (as in [CMc,
Prop 2.5]) over Fn. In particular, we must show that (over Fn) each subspace
W in the cover is a basic wide open, and that the subspaces intersect each
other in the union of annuli.

Recall from [CMc, §3.2] that wide open neighborhoods, W±a b, of the ordi-
nary affinoids, X±a b, can be constructed by considering pairs (E,C) where E is
“nearly ordinary.” So we begin by showing that each W±a b is a basic wide open
(using essentially the same argument as was used in the proofs of [CMc, Thm
5.3, 9.2]). The affinoid, X±a b, is defined and has good reduction over Fn by
Lemma 3.6 of [CMc]. Then the intersections, W±a b ∩WA(pn), are shown to be
annuli over Fn by choosing an appropriate map to X0(p) and applying Lemma
2.3 about extensions of annuli. Thus each W±a b is a basic wide open over Fn.
Furthermore, there isn’t anything else to show in the n = 2 case, since

YA = WA(p2)−
⋃
W±a b

is defined and has good reduction over F2 by [CMc, Prop 5.2].
Now suppose that n = 3 and fix a supersingular curve, A/Fp, with j(A) 6=

0 or 1728. By [CMc, Prop 4.2] and Theorem 5.5, it suffices to verify the
above conditions for the subspaces which cover WA(p3) for one such A. For
convenience, we briefly recall the definitions of these subspaces. Initially, we
cover WA(p3) with three subspaces: V1(A), V2(A), and U(A). Each one is
π−1

1 1 of some sub-annulus of WA(p), and they are chosen so that Vi(A) is a
neighborhood of Ei A while U(A) is a neighborhood of ZA. Now, in order to
deal with the singular residue classes of ZA, we then refine the cover in the
following way. Let S := S(A) be the set of singular residue classes of ZA, and
let XS be the underlying affinoid of any S ∈ S. Then we basically remove every
XS from U(A) to get a new neighborhood, Û(A), of ZA. Thus the subspaces
in C0(p3) which cover WA(p3) are given by:

{
V1(A), V2(A), Û(A)

}
∪ S(A).

Now, much of the proof of [CMc, Thm 9.2] is still valid, as stated, over F3.
For example, by Proposition 8.7 of [CMc] and Proposition 5.3 the elements in
S(A) are basic wide opens over F3. Also, Vi(A) and U(A) are at least wide
opens over F3, because they are residue classes of affinoids which are defined
over F3 (exactly as in the proof over Cp). So the only things which we have to
justify are that the affinoids, ZA, E1A, and E2A have good reduction over F3,
and that Vi(A) ∩ U(A) is an annulus over F3. This is where we use Krir.
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By Krir’s result we know that the affinoids ZA, E1A and E2A have good
reduction over M3, and that Vi(A) ∩ U(A) is an annulus over M3. Then it
follows from Proposition 3.14 of [CMc] that Vi(A) ∩ U(A) is an annulus over
F3. Also, ZA, E1A, and E2A have good reduction over F3 because any reduced
affinoid which acquires good reduction over an unramified extension must have
good reduction. Therefore our cover can be defined and is semi-stable over F3,
and hence it corresponds by [CMc, Prop 2.7] to a semi-stable model for the
curve over F3.

6 Action of Inertia

If Y/K is a curve, and Y its stable model over Cp, there is a homomorphism
wY from

IK := Autcont(Cp/Knr)→ Aut(Y).

It is characterized by the fact that for each P ∈ Y (Cp) and σ ∈ IK ,

P σ = wY (σ)(P ). (1)

We have something similar if Y is a reduced affinoid over K. Namely, we
have a homomorphism wY : IK → Aut(YCp) characterized by (1). This follows
from the fact that IK preserves (YCp)

0 (power bounded elements of A(YCp))
and A(YCp)

v (topologically nilpotent elements of A(YCp)). Moreover, inertia
action behaves well with respect to morphisms in the following sense.

Lemma 6.1. If f : X → Y is morphism of reduced affinoids over K and σ ∈ IK ,
then wY (σ) ◦ f̄ = f̄ ◦ wX(σ).

For convenience, we let I = IQp and let w be the inertia action (over Qp) on

∏

n≥1

Aut(X0(pn)).

Also, let mn denote the intersection of all extensions of Knr over which X0(p
n)

has semi-stable reduction. It is known that mn is the minimal such extension.
Clearly mn ⊆ Mn but Krir says the extension Mn “n’est certainement pas
minimale.” In the case of X0(81), this is confirmed in [M2, §4], where a stable
model for X0(81) is defined over an extension of Qnr

3 of degree 36 while Krir’s
field has ramification index 8 · 34. From our calculation of the inertia action,
however, it will follow that mn = Mn for n ≤ 3.

6.1 Inertial action on the ordinary components

For a, b ≥ 0, let X±a b denote the reduction of the ordinary affinoid, (X±a b)Cp ,
in the sense of Remark 2.3. Then since Xa b is defined over Qp, w(σ) must
preserve Xa 0, X0 b and Xa b = X+

a b

∐
X−a b (for ab 6= 0). Also, as explained in

[C1, §1] (or the previous section on Heegner points), if a ≥ b, Xa b is naturally
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isomorphic to Xb a and to Xb b. Therefore, by Lemma 6.1, it suffices to compute
the inertial action on Xb b.

So recall first that there is an isomorphism between Xβ
b b and Ig(pb) which

can be constructed as follows. First we choose a primitive pb-th root of unity,
ζ, which represents β in the sense that whenever (E,P) ∈ X

β
b b and P generates

Kb(E) we have P(P, P ) = ζk
2

for some k ∈ (Z/pbZ)∗ (this is explained on page

5 of [C1]). Then we can define an embedding, αζ : X
β
b b → X1(p

b), given by
αζ(E,P) = (E, pbQ), where Q ∈ E[p2b] such that there exists P ∈ Kb(E) with

ep2b(P,Q) = P(P, P ) = ζ.

This passes to an isomorphism, Xβ
b b → Ig(pb).

Now, let d be a quadratic non-residue. Identify X+
b b with X−b,b by (E,P)→

(E,Pd), and correspondingly Xb b with Ig(pb)×{±1}. Suppose that σ ∈ I and

σ(ζ) = ζd
it2 , where i ∈ {0, 1} and t ∈ (Z/pbZ)∗. Then we have σ(E,P) =

(Eσ,Pσ), where

Pσ(σ(A), σ(B)) = σ(P(A,B)).

So if P(P, P ) = ζ, it follows that

ep2b(σ(P )/t, σ(Q)/T ) = Pσ(σ(P )/t, σ(P )/t) = ζd
i

,

where T ∈ Z/p2bZ and T ≡ t (mod pb). Identify (the obvious subgroup of)
Aut(Ig(pn)) with (Z/pnZ)∗. Then we see that w(σ) acts on Xb b as follows.

Proposition 6.2. The inertial action on the ordinary components of X0(p
n)

is given by

w(σ)|Xb b = (t−1, (−1)i).

Corollary 6.3. The field Qnr
p (µp[n/2]) is contained in mn.

6.2 Action of Inertia on X0(p2)

Suppose A is a supersingular elliptic curve over Fp2 . Inside the corresponding
residue class, WA(p2) ⊆ X0(p

2), we have an affinoid YA defined over W (Fp2)⊗
Qp such that YA := YA ⊗ Cp is the set of non-singular points in a component
of the stable reduction of X0(p

2). Now we determine the action of I on YA.
First assume that A is defined over Fp and that j(A) 6= 0 or 1728 (general

case will follow from Lemma 6.1). Let κ be as in Theorem 2.2. We know there
are series F (T ), G(T ) ∈ TZp[[T ]] such that YA is the affinoid

Max (Qp〈a, a−1, b, b−1, x, y〉/M)

where M is the ideal generated by κpa = xp+1, κpb = yp+1 and

(F (x) +G(κ/x)− F (y)−G(κ/y)).
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Suppose αp+1 = κ. Then if K = Qp(α), (YA)K is

Max
(
K〈u, v, u−1, v−1〉/(F (αp/u) +G(κu/αp)− F (αp/v)−G(κv/αp))

)
,

where u = αp/x and v = αp/y. It follows that YA has the equation,

uv(v − u)p−1 = 1,

or sp+1 = (r2 − 1)/4, if we let s = 1/(v − u) and r = (u+ v)/(v − u). Now, on
one hand we have σ(u(P )) = u(P ). On the other, if σ(α) = ζα for a p + 1-st
root of unity, ζ, we have σ(u(P )) = ζpu(σ(P )). Thus, on YA, w(σ) is the
automorphism (u, v)→ (ζu, ζv), or equivalently (r, s)→ (r, ζ−1s).

Since we have a finite morphism from YA to YA′ over W (F̄p) ⊗ Q for
arbitrary supersingular A′ (an isomorphism when j(A′) 6= 0 or 1728) we know
by Lemma 6.1 the action of I on YA′ for all A′ as long as p ≥ 13. In general,
YA has the equation

s(p+1)/i(A) = (r2 − 1)/4

and w(σ) is the automorphism (r, s) → (r, ζ−i(A)s). This also determines
the action on Ei A, i ∈ {1, 2}, since as explained in Remark 9.3 of [CMc] we
have finite degree p morphisms E1A → YA and E2A → YAFrob with purely
inseparable reduction.

Remark 6.4. It follows from the above and Corollary 6.3 that Knr(µp, α) ⊆
m2. Therefore, since

Gal(Knr(µp, α)/Knr) ∼= O∗K/{a ∈ O∗K : a2 ∈ 1 +
√
pOK},

we see that M2 = m2.

6.3 Action of Inertia on X0(p3)

Suppose A is a supersingular elliptic curve over Fp with B = End(Â). Suppose
ρ ∈ B′ and x is a fixed point of wρ. Then we know wρ has a unique fixed
point x̃ := (F, ι, C) in SD(Cp) above x. Let Cx be the smooth locus of the
corresponding component of the stable reduction of X0(p

3) (which is affine and
hyper-elliptic, with equation y2 = xp − x). By Proposition 7.4 of [CMc] the
fixed points Fx of the hyper-elliptic involution τx of Cx are naturally in 1-1 cor-
respondence with the p non-canonical subgroups of F [p]. So Aut(F ) acts on Fx.

If L is a finite extension of Qp, let ArtL denote the Artin map from L∗

to Gal(Lab/L). Let D ∈ Z+ be a quadratic non-residue mod p and K =
Qp(
√−p,√−Dp).

Theorem 6.5. Let NF denote the norm from K∗ to Qp ⊗ EndF . If b ∈ O∗K
and Q ∈ Fx, then

w(ArtK(b))Q = NF (b−1)Q.
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This makes sense because EndF maps naturally into K. Also, if M3 is the
class field over K of the subgroup of K∗ given by (

√
p)Zµp2−1(1 + pOK), then

the non-canonical subgroups of F [p] are defined over M3 by Proposition 5.3.

Proposition 6.6. Suppose K is an imaginary quadratic field and p is a prime
ideal of OK . If E is an elliptic curve with good reduction over the ring of
integers R of a finite unramified extension L of Kp with CM in K then the
formal group of E over R is a relative Lubin-Tate group as defined by de Shalit
in [dS2].

Lemma 6.7. Suppose E and L are as above and σ is the Frobenius automor-
phism of L/Kp. Then there is an isomorphism of E′ := E/ ker(p∩EndE) with
Eσ so that the reduction of the natural map α : E → E′ is Frobenius.

Proof. This follows from [S, Thm 5.4]. Indeed, identify C with Cp, and take σ
to be an automorphism of C which restricts to [s,K] on Kab where sl = 1 for
l 6= p and (sp) = p(OK)p. Then Shimura’s theorem implies that there exists

an isomorphism, ξ : E′
∼−→ Eσ, such that if P is a torsion point on E of order

prime to p, ξ(α(P )) = P σ. Because σ is a lifting of Frobenius and the points
of order prime to p reduce to infinitely many distinct points of E mod p, the
lemma follows.

Proof. (of proposition) Let β : E → Eσ be the isogeny of the above lemma. If T
is a parameter at the origin on E, let f(T ) = β∗T σ and f(T ) = π′T+· · · . Then
f ∈ FNL/K(π′) (notation as in [dS2]), and if p1 and p2 are the natural projections

of E ×E onto E, with X = p∗1T and Y = p∗2T , then Ê(X,Y ) = Ff (X,Y ).

Proposition 6.8. If E/R has fake CM, then Ê is a relative Lubin-Tate group.

Proof. Suppose S ∈ R, E = (F, α) and EndRF ∼= S. Then, by Theorem 4.1,
we know ∃ρ ∈ B∗, such that (F, ρα) has CM.

The theorem now follows from (6.4) of [Iw].

Corollary 6.9. M3 = m3.

Proof. It follows from Corollary 6.3 and the remarks at the end of §6.2 that
M2 = Knr(µp, p

1/(p+1)) ⊆ m3. (In general, it follows from Lemma 2 and
Theorem 6 of [BLR, §6] that mn ⊆ mn+1.) The theorem implies that (1 +√
pOK)/(1+pOK) injects into Gal(m3/K) via the Artin map. Indeed, if K1 =

Qp(
√
p) and K2 = Qp(

√
pD), the map (NK

K1
, NK

K2
) from (1+

√
pOK)/(1+pOK)

to
(1 +

√
pOK1

)/(1 + pOK1
)× (1 +

√
pDOK2

)/(1 + pOK2
)

is an isomorphism.

Remark 6.10. This implies the existence of a weight 2 newform on X0(p
3)

whose corresponding representation is wildly ramified at p, which has been in-
dependently verified by Jared Weinstein.
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Let Dx be the wide open residue class above x in SDA (recall that x is a
fixed point of wρ) and D̃x the residue class above Dx in ZA. Let s : Dx → X1(p)
be a section of X1(p)→ X0(p) on the image of Dx as in Lemma 8.6 of [CMc].
For ζ ∈ µp we defined an automorphism S̃s,ζ of D̃x. For b ∈ O∗K , let ν(b) = 0
if b is a square and 1 otherwise.

Corollary 6.11. Suppose x̃ = (E,C). Then there exists an nx ∈ {0, 1} such
that for b ∈ O∗K

w(ArtK(b))
∣∣
Cx

= S̃s,e1(P,Q)τ
ν(b)nx
x ,

where s(E,C) = (E,P ), Q ∈ E[p]\C, e1( , ) is the Weil pairing on E[p] and
(P +Q) = NF (b−1)(Q).

This follows from the theorem and the following lemma whose proof we leave
as an exercise for the reader.

Lemma 6.12. The automorphism group of the affine curve y2 = xp−x has order
2(p− 1)p and is generated by α : (x, y) 7→ (x+ 1, y) and βb : (x, y) 7→ (ax, by),

where a ∈ F∗p and b2 = a. These satisfy αp = β
2(p−1)
b = 1 and βbαβ

−1
b = αa.

In particular, there is only one p-Sylow subgroup, and its centralizer is Abelian
and generated by α and β−1.

We will show that nx = 1. Suppose σ ∈ I and σ(
√
p) = −√p. Then w(σ)

on the bridging component above A, which has the equation

X(p+1)/i(A) +X−(p+1)/i(A) = Zp,

is X → (−1)
i(A)

X. When j(A) 6= 0 or 1728, this follows from Equation (4) of
[CMc, §8]. The general case then follows from Lemma 6.1. As in the proof of
Proposition 8.3 of [CMc], the involutions w̃ρ are

(X,Z)→ (ζ/X,Z),

where ζ runs over the (p + 1)/i(A)-th roots of unity (X−p may be identified
with a parameter U on SDA so that the involutions wρ are U → ζ/U). The
fixed points of wρ on SDA are the solutions x of U(x)2 ≡ ζ. We now label the
fixed points of the involutions wρ by the 2(p+1)/i(A)-th roots of unity. So for

each such root of unity ξ, there is a component Cξ of X0(p3). It follows from
the above that w(σ) restricts to an isomorphism from Cξ to C(−1)i(A)ξ.

The group B∗ acts on the part of stable model over A. If α ∈ B∗, let h(α)
be the corresponding automorphism of that part of the reduction. If σ ∈ I,
because the action of B∗ is defined over Qnr

p (and by Lemma 6.1), we have

w(σ) ◦ h(α) = h(α) ◦ w(σ). (2)

Using Lemma 3.6, we see that if α ∈ B′ and α2 ∈ Z∗p, then

0 = α2 − (α′)2 = (α− α′)(α+ α′),
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and thus α = ±α′. In particular, we have αx̃ = α′x̃. So

wρ(αx̃) = ρw(α′x̃) = ραw(x̃),

which equals αx̃ if αρ = ρα and doesn’t equal x̃ if α /∈ Aut(A)Z∗p(1 + jB). (So
for example, if ρ ∈ Zp[i] and α = i and j(A) 6= 1728.) Suppose this to be the
case (i.e. α satisfies these conditions). Then if x̃ ∼ (F, ι, C), the other fixed
point of wρ is αx̃ ∼ (F, αι, C). (This implies Corollary 3.10 in this case.) Let
x′ = αx. Then h(α) takes Cx to Cx′ and vice-versa.

Let Xξ = Cξ
∐
C−ξ. For τ ∈ I, identifying Cξ with C−ξ via h(α) and

using (2), we can write

w(τ)|Xξ = (a(τ), s(τ)) ∈ Aut(Cξ)× {±1}

where s(τ) = τ(
√
p)/
√
p. If τ = ArtK(v), it follows that s(τ) = 1. Suppose

s(σ) = −1. Then on Xξ, on one hand we have

w(σ)w(τ)w(σ−1) = w(στσ−1) = (a(τ−1), 1),

and on the other we have

w(σ)w(τ)w(σ−1) = (a(σ)a(τ)a(σ−1), 1).

It follows that a(σ) is not in the commutative subgroup (α, β−1) of Aut(y2 =
xp − x). This implies a(σ)2 /∈ (α) so nx = 1. Thus, in particular, there exists
σ such that s(σ) = −1, a(σ) = βǫ, where ǫ2 = −1.

Suppose now that j(A) = 1728. Let ξ be a (p+ 1)/2-th root of unity and
X = Cξ. It follows that if σ ∈ I, w(σ)(X) = X. Let L = EndF⊗Qp. We know
X is a double cover of P1 and its branch points correspond to non-canonical
subgroups of F [p]. Moreover, if Q is such a subgroup and b ∈ O∗L, we have

w(ArtL(b))Q = b−1Q.

In particular, w(ArtL(Z∗p(1+pOL))) is the identity. Now suppose that σ|L 6= id.
Then

σArtL(b) = ArtL(b̄)σ.

So if τ = ArtL(b), then

w(σ)w(τ)w(σ)−1 = w(τ)−1.

It follows from the theorem and Lemma 6.12 that if the order of w(σ) is prime
to p, w(σ2) = w(σ)2 = τx and thus nx = 1.

7 Stable Model of X0(p
3) when p < 13

Recall from Section 2 that the argument which we used in [CMc] to com-
pute the stable model of X0(p

3) does not only apply when p < 13. The reason
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for this is that in these cases there is no supersingular region where one can
apply analysis of de Shalit, as restated in Theorem 2.2, which approximates
the forgetful map from X0(p) to X(1). In this section, we recall in greater
detail how the theorem is used to construct components in the supersingular
regions of X0(p

2) and X0(p
3) when p ≥ 13. We then use explicit equations for

X0(p) when p = 5, 7, and 11, to derive formulas analogous to Theorem 2.2,
and subsequently construct the analogous stable reduction components. This
should serve not only to extend the result of [CMc] to p > 3, but also to make
the construction more understandable and concrete.

7.1 Explicit Analysis of a “Good” Supersingular Region

Suppose that p > 13, and hence by the result of Howe that there is a
supersingular A/Fp with j(A) 6= 0, 1728. All of the information from Theorem
2.2 which we need to do the explicit analysis of [CMc] can be summarized
as follows. First of all, we have parameters, t and s, on WA(p) and WA(1)
(respectively), which identify these regions with the annulus, 0 < v(t) < 1, and
the disk, v(s) > 0. Moreover, in terms of these parameters, the maps πf and
w1 satisfy

w1(t) =
κ

t
and s = πf (t) ≡ t+

(κ
t

)p
(mod p),

for some κ ∈ W (Fp2) with v(κ) = 1. Finally, the three special circles inside
WA(p), namely TSA, SDA, and CA, are described by v(t) = p

p+1 , v(t) = 1
2 ,

and v(t) = 1− 1
2p (respectively).

Using the above information, we now recall briefly how to explicitly cal-
culate the reduction of the affinoid, YA := π−1

ν (TSA) ⊆ WA(p2). First of all,
we show in [CMc, Lemma 5.1] that YA is isomorphic to the rigid space:

TA := { (x, y) ∈ TSA ×TSA | x 6= y, πf (x) = πf (y) }.

Then we take u, v = αp/t as parameters on two copies of TSA, for any α with
v(α) = 1

p+1 . With these parameters, the condition that πf (x) = πf (y) leads to
the following congruence.

u−1 − v−1 ≡ (vp − up)(κ/αp+1)p (mod α).

By making the change of variables s = 1/(v − u) and r = (v + u)/(v − u), we
disregard the u = v component and arrive at an isomorphism between YA and
an affine curve of the form sp+1 = c(r2 − 1). Note that this equation also ends
up describing the reductions of the affinoids, E1A,E2A ⊆ WA(p3), which lie
over YA via πf and πν (see [CMc, Remark 9.3]).

Similarly, we compute the reduction of ZA := π−1
1 1 (SDA) ⊆ WA(p3) by

first identifying it with the rigid space:

SA := { (x, y) ∈ CA ×CA | τf (x) = w1 ◦ τf (y) }
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(this is done in [CMc, Prop 7.1]). Recall that τf : CA → SDA is the map
which takes (E,C) to (E,H1(E)), and hence that πf ◦ τf = πf . Therefore, in
terms of the parameter t from above, it is easy to show that

τf (t) ≡ t+ (κ/t)p (mod p).

Now we may proceed as before, taking U = t/
√
κ as a parameter on SDA (note

that w1(U) = 1/U), and taking X,Y = t/α as parameters on two copies of
CA, for any α with v(α) = 1− 1

2p . With a careful choice of α (see [CMc, Prop

8.2]), the definition of SA translates into the following congruence.

(X−p + αX/
√
κ)(Y −p + αY/

√
κ) ≡ 1 (mod

√
p)

Finally, after a second change of variables of the form, Z = c(XY − 1), we
obtain the following equation for ZA.

Xp+1 +X−(p+1) = Zp

Once again, when p < 13, the preceding calculations do not apply because
there is no such A. So for the specific primes, p = 5, 7, and 11, we will now
derive a formula which is analogous to Theorem 2.2 for each supersingular
region, and then use it to compute the reductions of YA and ZA (as above).
In each case, we do arrive at equations which are consistent with Theorem 2.5.
Our claim is that the rest of the argument of [CMc] (as summarized in Section
2) is completely analogous for these primes, and need not be repeated. As a
final note, we do not address X0(8) and X0(27) primarily because both have
good reduction. Additionally, complications arise from the fact that j = 0 and
j = 1728 lie in the same residue disk of X(1) in both cases.

7.2 X0(5
3)

Borrowing directly from [M1, §4], we can choose a parameter on the genus 0
curve, X0(5), by taking t = η6

1/η
6
5 . The only supersingular j-invariant is j = 0,

and the corresponding annulus is described by 0 < v(t) < 3. Furthermore, from
[M1, Table 3], the formulas for the forgetful map and Atkin-Lehner involution
are then given by

π∗f j =
(t2 + 2 · 53t+ 55)3

t5
and w∗1t = 125/t.

The circles SD and C are described by v(t) = 1.5 and v(t) = 2.7 (respectively),
and the too-supersingular circle, TS, is where v(t) = 2.5.

First we compute the reduction of the affinoid, Y := π−1
ν (TS) ⊆ X0(25),

by embedding it into TS×TS as above. For parameters on two copies of TS,
we may choose X,Y = t/(25

√
5). Then plugging these parameters into the

equation, πf (x) = πf (y), we quickly arrive at the congruence:

(X2 + 1)3/X5 ≡ (Y 2 + 1)3/Y 5 (mod
√

5).
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From the definition of TA, we are interested only in the component where
X 6= Y , and by letting X = s/(r − 1)3 and Y = s/(r + 1)3 we see that this is
isomorphic to the affine curve:

s2 = r2 − 1. (3)

Now we compute the reduction of Z := π−1
1 1 (SD) ⊆ X0(125) by means of

the embedding into C×C. We need an approximation for τf : C→ SD, and
from the above formula for πf , it is easy to show that

τf (t) ≡
515

t5
+

3 · 510

t3
(mod 52).

As in [CMc, §8.1], we need to work over a larger extension of Z5 to define
and compute the reduction of Z. In particular, it suffices to work over R :=
Z5[β,

√
5], where β ∈ C5 is chosen so that β25 ≡ 5 (mod 5

√
5). For parameters

on SD and (both copies of) C, we then choose the functions U = t/(5
√

5)
and X,Y = t/(25β5

√
5). Using these parameters and our formula for τf , the

equation τf (x) = w1 ◦ τf (y) then leads to the following congruence.

(
1

X5
+

3β10

X3

)(
1

Y 5
+

3β10

Y 3

)
≡ 1 (mod

√
5)

After making the substitution, Z = (XY − 1)/(3β2), we arrive at our final
equation for Z.

X2 +X−2 = Z5 (4)

Remark 7.1. Note that Equations (3) and (4), describing Y and Z, are con-
sistent with Theorem 2.5, since p = 5 and i(A) = 3 in this case.

7.3 X0(7
3)

This is very similar to the previous example, as X0(7) also has genus 0 and
only one supersingular annulus corresponding to j = 1728. If we take t = η4

1/η
4
7

as a parameter (see [M1, §2]), the supersingular annulus is the region described
by 0 < v(t) < 2, and the formulas for the forgetful map and Atkin-Lehner
involution are as follows.

π∗f (j − 1728) =
(t4 − 10 · 72t3 − 9 · 74t2 − 2 · 76t− 77)2

t7
w∗1t =

49

t

The circles, SD and C, are now given by v(t) = 1 and v(t) = 13/7 (respec-
tively), and TS is the circle where v(t) = 7/4.

We begin by embedding Y := π−1
ν (TS) ⊆ X0(49) into TS × TS, taking

X,Y = αt/49 as parameters on both copies of TS, where α4 = −7. With these
parameters, the equation πf (x) = πf (y) yields the congruence:

(X4 + 1)2/X7 ≡ (Y 4 + 1)2/Y 7 (mod α).
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Then the substitution, X = s/(r − 1)2 and Y = s/(r + 1)2, defines an isomor-
phism between the component with X 6= Y and the genus 1 affine curve:

s4 = r2 − 1. (5)

Likewise we compute the reduction of Z by embedding it into C×C. This
time the approximation formula for τf : C → SD, which we derive from the
formula for πf , is as follows.

τf (t) ≡
714

t7
− 2 · 77

t3
(mod 7

√
7)

Working over the extension given by R = Z7[β] with β49 ≡ 7 (mod 7
√

7), we
take X,Y = β7t/49 as parameters on two copies of C. We also take U = t/7
as our parameter on SD. Then the equation τf (x) = w1 ◦ τf (y) gives us the
congruence:

(
1

X7
− 2β21

X3

)(
1

Y 7
− 2β21

Y 3

)
≡ 1 (mod

√
7).

To complete the calculation, we make the substitution, Z = (1 −XY )/(2β3),
which results in our final equation for Z.

X4 +X−4 = Z7 (6)

Remark 7.2. Once again, note that Equations (5) and (6) are consistent with
Theorem 2.5, as p = 7 and i(A) is now 2.

7.4 X0(113)

When p = 11, X0(p) has genus 1 and two supersingular annuli correspond-
ing to j = 0 and j = 1728. In order to work out formulas for the forgetful map
on these supersingular regions, we must choose an appropriate model for the
overall curve. One convenient model relates the following two functions.

t =

(
η1
η11

)12

x =
dt/t

(η1η11)2

The first function has divisor 5(0)−5(∞), and the second is a degree 2 function
with a simple pole at each cusp. Since w1 interchanges the two cusps, it follows
that x is actually a parameter on the genus 0 quotient, X0(11)+ := X0(11)/w1.
Therefore, t must be quadratic over x, and indeed by comparing q-expansions
we have the equation:

t2 +
1

55
(x5 + 170x4 + 9345x3 + 167320x2 − 7903458)t+ 116 = 0.
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This model is singular, but we can normalize by adjoining a square root of the
discriminant. In particular, the following gives a nonsingular model for X0(11).

y =
2 · 55t+ (x5 + 170x4 + 9345x3 + 167320x2 − 7903458)

(x+ 47)(x2 + 89x+ 1424)

y2 = f(x) = (x− 8)(x3 + 76x2 − 8x+ 188)

Remark 7.3. Since x is invariant under w1, the formulas for the Atkin-Lehner
involution are given by w∗1t = 116/t and w∗1y = −y.

Note that there are two pairs of branch points in the degree two extension
from X0(11)+ up to X0(11), and they lie in the two residue disks where v(x−
2) > 0 and v(x + 3) > 0. It follows that the regions lying over these residue
disks are annuli. In fact, from [DR, §VI 6.16] (or the explicit calculations which
follow) these are precisely the two supersingular annuli.

7.4.1 j = 0

Let r1, r2 be the two roots of f(x) close to x = −3, and let s1, s2 be those
close to x = 2. Then the following map defines an isomorphism (over Q11)
between the annulus, 0 < v(z) < 3, and the subspace of X0(11) which lies over
the residue disk, v(x− 2) > 0.

x = z +
(s1 + s2)

2
+

(s1 − s2)2
16z

≡ z + 310− 212

 
113

z

!
(mod 11

3
)

y =

 
−z +

(s1 − s2)2
16z

!q
(x(z)− r1)(x(z)− r2)

≈
 
−z − 212

 
113

z

!!„
· · ·+ 484

 
113

z

!3

+ 363

 
113

z

!2

+

393

 
113

z

!
+ 775 + 243z + 484z

2
+ 968z

3
+ · · ·

«

To obtain an approximation formula for πf over the annulus, we begin with
the following explicit formula (easily verified by q-expansions).

π∗f j =
(60y + 61x2 + 864x− 2016)3

56t

Over the whole annulus, 60y + 61x2 + 864x − 2016 is well approximated by
5z − 1111/z3, in the sense that the error is always strictly smaller than the
larger of these two terms. Similarly, t is always close to −4z2. From this we
may conclude that v(j) > 0 over the whole annulus (as claimed).

Now we are able to embed Z ⊆ X0(113) into C×C and explicitly compute
its reduction. We know that the circles, SD and C, are described by v(z) = 3/2
and v(z) = 63/22 (respectively). So our formula for πf leads to the following
approximation for τf : C→ SD in terms of z.

τf (z) ≡
−3 · 1133

z11
+

1122

z7
(mod 112).
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Also, from the fact that x(z) must be fixed by w1, we see that

w1(z) =
(s1 − s2)2

16z
≡ −3 · 113

z
.

At this point our analysis closely parallels that of the two previous exam-
ples. In particular, let R = Z11[

√
−11, β] where β ∈ C11 satisfies β121 ≡ −11

(mod 11
√
−11), and choose the following functions as parameters on SD and

(two copies of) C.

U =
2z

11
√
−11

X,Y =
−2z

121β44
√
−11

In terms of these new parameters, the relation τf (x) = w1 ◦ τf (y) leads to the
following congruence.

(
1

X11
+

3β55

X7

)(
1

Y 11
+

3β55

Y 7

)
≡ 1 (mod

√
−11)

Finally, with the substitution, Z = (XY − 1)/(3β5), we obtain the desired
equation for the reduction of Z over R.

X4 +X−4 = Z11

Similarly, the equation for the (j = 0) supersingular component of X0(112)
follows directly from the embedding of Y into TS×TS (where TS is now the
circle, v(z) = 11/4). The approximating formula for πf on that circle is

j = πf (z) ≡
(5z − 1111/z3)3

56(−4z2)
(mod 113).

So now let α2 =
√
−11 and take as parameters on both copies of TS the

functions X,Y = αz/(5 · 113). Then the relation πf (x) = πf (y) reduces to

(X4 + 1)3/X11 ≡ (Y 4 + 1)3/Y 11 (mod α).

The irreducible component of this curve where X 6= Y is then isomorphic to
the genus 1 curve, s4 = r2 − 1, by the following map.

X = s/(r − 1)3 Y = s/(r + 1)3

Remark 7.4. These equations match those of Theorem 2.5 when p = 11 and
i(A) = 3.

7.4.2 j = 1728

The supersingular annulus of X0(11) corresponding to j = 1728 is the
region which lies over the residue disk, v(x + 3) > 0. To see this, we first
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parameterize the region using the annulus, 0 < v(z) < 2, and the following
map.

x = z +
(r1 + r2)

2
+

(r1 − r2)2
16z

≡ z + 2318 + 12356

 
112

z

!
(mod 11

4
)

y =

„
−z +

(r1−r2)2

16z

«q
(x(z)− s1)(x(z)− s2)

≈
 
−z + 12356

 
112

z

!!„
· · ·+ 5324

 
112

z

!3

+ 3993

 
112

z

!2

+

4370

 
112

z

!
+ 6001 + 11980z + 5324z

2
+ 3993z

3
+ · · ·

«

Then we choose an explicit formula for the forgetful map which is convenient
for analysis near j = 1728, in particular

π∗f (j − 1728) =
(665x3 + 666xy + 22680x2 + 2592y − 120960x+ 22680)2

56t
.

Over the entire annulus, the cubic function in the numerator is well approxi-
mated (in the above sense) by 5z2 − 3 · 1111/z4, and t is well approximated by
−3z3. Therefore by counting valuations it follows that v(j − 1728) > 0 over
the entire annulus, as claimed.

As in the previous examples we now compute the equations for the bridging
component of X0(113) and supersingular component of X0(112) corresponding
to j = 1728. By approximating πf on C (where v(z) = 21/11) and SD (where
v(z) = 1), we find the following formula for τf in terms of z.

τf (z) ≡ 3

(
112

z

)11

+ 11

(
112

z

)5

(mod 11
√

11)

After an appropriate choice of parameters on C and SD, this leads to the
equation,

X6 +X−6 = Z11,

which describes the bridging component. Then on the too-supersingular circle,
where v(z) = 11/6, we approximate πf by

j − 1728 = πf (z) ≡
(5z2 − 3 · 1111/z4)2

56(−3z3)
(mod 112).

After making an appropriate change of variables, this leads to the equation
which one should expect for Y:

s6 = r2 − 1.
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8 Stable Model of X0(Np
3)

Intuitively, one might expect the stable model of X0(Np
3) (when (N, p) =

1) to follow fairly directly from the stable model of X0(p
3). Indeed, X0(Np

3)
is birational to X0(p

3) ×X(1) X0(N), and X0(N) has good reduction. Using
semi-stable maps (as in [C2]) to make this line of reasoning precise, we are able
to show the following (compare with Theorem 2.5).

Theorem 8.1. The stable reduction of X0(Np
3) has six ordinary components:

two isomorphic to X0(N) and four isomorphic to (the normalization of) Ig(p)×
X0(N). Also, for each supersingular point P of X0(N), there is a “necklace”
of components whose graph is given below in Figure 2. Set i(P ) = 2 or 3 if P
is elliptic and j(P ) = 1728 or 0 (respectively). Set i(P ) = 1 otherwise. Then
E2,P and E1,P are isomorphic to y2 = x(p+1)/i(P ) + 1, while ZP is crossed by
2(p+ 1)/i(P ) components isomorphic to y2 = xp − x.

ZP

�������������

ordinary

E1,P

XXXXXXXXXXXXX

. ............

ordinary

E2,P

Figure 2: Partial Graph of the Stable Reduction of X0(Np
3)

Corollary 8.2. The stable reduction of the p-new part of the Jacobian of
X0(Np

3) has cN (p2 − 1)/6 copies of the Jacobian of y2 = xp − x, where
cN = [Γ : Γ0(N)].

8.1 Semi-stable Maps

We begin by giving the definition of semi-stable map, and by proving the
lemma which will form the blueprint for our overall construction.

Definition 8.3. Let K ⊆ Cp be a complete subfield with ring of integers R.
Then f : X → Y is a semi-stable map over R, if X/R and Y/R are semi-stable
(as in [CMc, Definition 2.6]) and f is finite. In this case we say that f extends
the restriction map, fK : XK → YK , on generic fibers.

Lemma 8.4. Let f : X → Z and g : Y → Z be semi-stable maps over R.
Suppose that the following conditions hold.
(i) X̄ and Ȳ have (only) smooth components.
(ii) f and g take singular points to singular points (and vice-versa).
(iii) For each pair, (xi, yi), of singular points in X̄ and Ȳ with f(xi) = g(yi),
Axi ×Ayi is the disjoint union of annuli (over K), where AP = red−1(P ).
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(iv) For each pair, (Xi, Yi), of components of X̄ and Ȳ with f(Xi) = g(Yi),
Xi × Yi is irreducible, and smooth away from all the points from (iii).
Then f × g : X × Y → Z is a semi-stable map (over R), and in particular
X × Y is semi-stable.

Proof. Choose any pair (Xi, Yi) of irreducible components of X̄ and Ȳ with
f(Xi) = g(Yi). Let Wi = red−1(Xi) × red−1(Yi) and Ai = red−1(Xns

i ) ×
red−1(Y ns

i ). Then (i)-(iv) guarantee that each Wi is a basic wide open (as in
[CMc, §2]. Furthermore, the Wi’s forms a semi-stable covering of XK × YK ,
and then it follows from [CMc, Prop 2.7] that X ×Y is semi-stable. Finiteness
of f × g is immediate.

Remark 8.5. We will apply Lemma 8.4 to semi-stable extensions of the for-
getful maps from X0(p

3) and X0(N) to X(1), but with one caveat. Technically,
condition (iv) will fail at all points of the form (P,Q) ∈ X0(p

3)×X0(N) where
P and Q lie over j = 0 (or j = 1728) and both ramify. This issue can basically
be ignored, however, as these singularities are resolved in X0(Np

3).

8.2 Semi-stable Extensions of the Forgetful Map

We begin by constructing a semi-stable map which extends πf : X0(p
3)→

X(1) (as in the main theorem of [C2]). This can be done by starting with the
stable models for X0(p

3) and X(1) (say, Spec(Zp[j])) and performing a series
of blow-ups. At each step, we choose a component of X0(p

3) which has finite
image in X(1). There is a unique minimal way to blow-up our models for X(1)
and X0(p

3) so that this component no longer has finite image and so that πf
still extends. After finitely many steps, the process terminates and we have
our semi-stable map. A partial picture of this map (showing one supersingular
region only) is given below in Figure 3, and the components in the final models
for X0(p

3) and X(1) can be described in words as follows.

First of all, the ordinary regions of X0(p
3) and X(1) are unchanged. In

other words, the final model for X0(p
3) still has six ordinary components cor-

responding to the six ordinary affinoids, X±a b (defined in §2), and these all map
onto the same component of X(1). For each supersingular elliptic curve, A, the
special fiber of X(1) also contains a “necklace” of trivial components. More
specifically, each necklace contains a chain of four components which corre-
spond to the circles (and disk) where h(E) = 1

p(p+1) , h(E) = 1
2p , h(E) = 1

p+1 ,

and h(E) ≥ p
p+1 (as in §2.1). Intersecting the second of these we also have

2(p+ 1)/i(A) components which correspond to residue classes within that cir-
cle. The components in our final model for X0(p

3) can be given similar de-
scriptions, i.e. we can describe the components within a fixed supersingular
region by describing points of the corresponding affinoids in moduli-theoretic
terms. Remember that these affinoids should map onto the ones which were
just described for X(1) via the forgetful map.
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E2,A = { (E,C) | h(E) = 1
p(p+1) , pC = K2(E) }

ZA = { (E,C) | h(E) = 1
2p , pC = K2(E) }

(with its 2(p+ 1)/i(A) nontrivial residue classes)

E1,A = { (E,C) | h(E) = 1
p+1 , p

2C = K1(E) }
W±1,2 ⊇ { (E,C) | h(E) = 1

2p , |C ∩K2(E)| = p }
(also blow-up 2(p+ 1)/i(A) residue classes)

⊇ { (E,C) | h(E) = 1
p(p+1) , |C ∩K2(E)| = p }

W0,3 ⊇ { (E,C) | h(E) = p
p+1 } (so E is too-ss)

⊇ { (E,C) | h(E) = 1
p+1 , |C ∩K1(E)| = 1 }

⊇ { (E,C) | h(E) = 1
2p , |C ∩K2(E)| = 1 }

(also blow-up 2(p+ 1)/i(A) residue classes)

⊇ { (E,C) | h(E) = 1
p(p+1) , |C ∩K2(E)| = 1 }

Remark 8.6. Recall that W±a b is a wide open neighborhood of the ordinary
affinoid, X±a b, which extends into the supersingular locus (see [CMc, §3.2]).

In order to apply Lemma 8.4, we also need to construct a semi-stable map
extending πf : X0(N)→ X(1) (involving the same model for X(1)). Basically,
we start with the good reduction model for πf : X0(N) → X(1). Then every
time we blow-upX(1) (as above), this forces a blow-up ofX0(N) so that πf still
extends. Again the ordinary locus of X0(N) is unchanged. To understand the
supersingular regions, consider πf : X0(N) → X(1) first as a map of smooth
curves over Fp, and let P be a point of X0(N) such that πf (P ) is supersingular.
If P does not ramify, πf must restrict to an isomorphism on the corresponding
residue class of X0(N). The only other option is that either e(P ) = 3 and
j(πf (P )) = 0, or e(P ) = 2 and j(πf (P )) = 1728. There are two key points to
make in either case. First of all, the corresponding residue class of X0(N) (over
Cp) is an extension of a disk which is ramified (totally) at exactly one point
(degree 2 if j = 1728, degree 3 if j = 0). Hence, the extension can be generated
analytically by adjoining either

√
j − 1728 or 3

√
j. Secondly, when j = 0 or

1728 is supersingular, it is necessarily too-supersingular. Hence it reduces to
a smooth point on the innermost component of its residue class in our final
model for X(1). Therefore, like its image in X(1), the residue class of X0(N)
corresponding to such a P contains a chain of 4 components on which πf is
given locally by t → t2 or t → t3. The “bridging component” then intersects
2(p + 1) copies of P1, which map 2 : 1 or 3 : 1 onto analogous components of
X(1).

To summarize the semi-stable extensions of both forgetful maps to X(1),
a picture of the special fibers is now given below in Figure 3. Once again, the
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graph shows the entire ordinary locus, but only one supersingular region for
each curve.

@@

πf
>

∨
πf

�
��

@@

@@ ........

X(1)

@
@

@

......

E2,A

X−
2,1X+

2,1X3,0

ZA

X0(p
3)

.........

@
@

@

X0,3X−
1,2X+

1,2

@
@

@

......E1,A

......

@@

�
��

X0(N)........

Figure 3: Partial Graph of Semi-Stable Maps from X0(p
3) and X0(N) to X(1)

8.3 Crossing the Semi-Stable Maps

At this point the proof comes down to verifying the hypotheses of Lemma
8.4 and computing the products of irreducible components with common image.
The first two hypotheses follow immediately from the construction. To verify
condition (iii), we first observe that πf : X0(N) → X(1) can only ramify over
j = 0, 1728, or ∞, all of which have smooth reduction on our model for X(1).
Furthermore, each supersingular residue class of X0(N) maps with total degree
at most 3. Therefore, for any pair of double points, (x, y) (as in the lemma),
the corresponding product of annuli, Ax × Ay, is an unramified extension of
some annulus of X0(p

3) with degree less than p. Hence it can only be the
disjoint union of annuli by [CMc, Lemma 3.3].

Now we compute the products of the irreducible components, starting with
the ordinary locus. When we cross X0(N) with the reduction of X3,0, we are
essentially crossing with P1 trivially (as πf has degree 1 on X3,0). So we
simply get a copy of X0(N). When we cross X0(N) with the reduction of X±2,1,
we get the curve Ig(p) × X0(N) which is at least irreducible from [E1, Thm
2.1.2]. Recall that Ig(p)/X(1) is a degree (p− 1)/2 extension which is totally
ramified over supersingular points, ramified with index 3 or 2 when j = 0 or
1728 is ordinary, and unramified elsewhere. Hence the only singular points
of Ig(p) × X0(N) can be ignored as a result of Remark 8.5. The remaining
ordinary components can be dealt with by applying an appropriate Atkin-
Lehner involution.
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Next we consider a fixed supersingular region corresponding to a point P
of X0(N) (as above). If j(P ) 6= 0, 1728, or if P is an elliptic point, there’s
nothing to do, since πf : X0(N) → X(1) must be an isomorphism on the
residue class corresponding to P . But now suppose that j(P ) = 0 or 1728, and
P is not elliptic. By [E2, 2.3.1] we can choose parameters on E2,A so that it
has the equation,

y2 = x
p+1
i(A) + 1.

Furthermore, the two infinite points are where E2,A meets X3,0 and ZA, and
(0,±1) are the points where E2,A meets X±2,1. The forgetful map induces a
degree p map on E2,A which has ramification indices of 1, (p− 1)/2, and p at
the intersections with X3,0, X

±
2,1, and ZA. Therefore, if t is a parameter on the

image of E2,A in X(1), with t = 0 and ∞ at the double points, it follows that

π∗f t =
cx

p−1
2

(y − x
p+1
2i(A) )i(A)

.

Now, we have already seen that the extension from X(1) up to X0(N) is equiv-
alent to adjoining an i(A)-th root of t in this case. Hence one can show that
the extension of E2,A can be obtained by adjoining an i(A)-th root of x. Subse-
quently, by a change of coordinates, the component lying over E2,A in X0(Np

3)
will have the equation, y2 = xp+1 + 1. The argument for the remaining com-
ponents is very similar. For example, on the bridging component, ZA, we may
choose a parameter x such that it meets E1,A and E2,A at 0 and ∞, and such
that πf is given by t = xp. Adjoining an i(A)-th root of t then generates the
same extension as adjoining an i(A)-th root of x. Thus we obtain a bridging
component, ZP , as in the statement of the theorem, which is crossed by 2(p+1)
components that lie i(A) : 1 over their counterparts on ZA. At this point the
remaining components can be computed in a similar manner, or dealt with by
applying an appropriate Atkin-Lehner involution. Thus all the supersingular
components of X0(Np

3) are as claimed, and the theorem is proved. One final
remark is that when P ramifies over j = 0 or j = 1728 and is supersingular, we
do technically get singularities in X0(N)×X0(p

3) which lie over the (smooth)
reduction of j = 0 or 1728. These singularities can be ignored, however, by
Remark 8.5.

8.4 Examples

It is now fairly straightforward to generate complete graphs with genera
for the stable reduction of X0(Np

3). First we determine the supersingular
values mod p, and the ramification of πf : X0(N) → X(1) over j = 0 and
j = 1728. The latter can be derived from [S, Prop 1.43], which gives both
the degree and number of elliptic points of each type. The components in the
supersingular region then follow directly from Theorem 8.1. The only things
which remain to be computed are the genera of X0(N) and Ig(p) × X0(N).

Documenta Mathematica · Extra Volume Coates (2006) 261–300



Fake CM and the Stable Model of X0(Np
3) 297

The genus of X0(N) can be computed with [S, Prop 1.40]. Then Riemann-
Hurwitz can be applied to the forgetful map from X0(N) × Ig(p) to X0(N).
By way of illustration, we now describe the stable reductions of X0(Np

3) in
two examples: X0(3 · 113) and X0(7 · 133).

Example 1: X0(3 · 113)

Only j = 0 and j = 1728 are supersingular mod 11. In the degree 4 ex-
tension from X0(3) → X(1), j = 0 splits into two points with e = 1 and
e = 3, while j = 1728 splits into two points with e = 2. So we have a total
of four supersingular necklaces. For the one corresponding to the unique
elliptic point, there are 8 genus 5 components along the bridging component,
and two outer components which meet the ordinary locus and have genus 1.
The other three supersingular regions have 24 genus 5 components along the
bridging component, and two outer components which also have genus 5. Now
we compute the genera of the ordinary components. X0(3) has genus 0, and
by Riemann-Hurwitz the genus of Ig(11) × X0(3) is then 4. Indeed, it lies
over X0(3) with degree 5, and is totally ramified over 4 points and unramified
elsewhere. This implies a total genus of:

2(0) + 4(4) + 1[2(1) + 8(5)] + 3[2(5) + 24(5)] + (4− 1)(6− 1) = 463,

which can easily be verified with [S, Prop 1.40].

Example 2: X0(7 · 133)

The unique supersingular j-invariant for p = 13 is j = 5. Since this is
neither 0 nor 1728, we simply get 8 supersingular regions which are all isomor-
phic to the supersingular region of X0(133). In particular, each necklace has
28 genus 6 components along the bridging component and then 2 more genus
6 components which meet the ordinary locus. Now we compute the genera
of X0(7) and X0(7) × Ig(13). The first has genus 0, and for the second we
again apply Riemann-Hurwitz. The degree is 6, and we have total ramification
over the 8 supersingular points. There are also two elliptic points of X0(7)
lying over j = 0, each of which must split into two points with e = 3 in
X0(7) × Ig(13). So the genus of Ig(13) ×X0(7) is 19. That means if we add
up the total genus of X0(7 · 133) we get

2(0) + 4(19) + 8[2(6) + 28(6)] + (8− 1)(6− 1) = 1551,

which again can be easily verified with [S, Prop 1.40].
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9 Index of Important Notation

K(E), canonical subgroup of E §2.1
Hn(E), canonical subgroup of E of order pn

X±a b, ordinary affinoids
Ig(pn), level pn Igusa curve
h(E), valuation of Hasse invariant of E
WA(pn), wide open subspace of X0(p

n) where Ē ∼= A
i(A) := |Aut(A)|/2
TSA, SDA, too-supersingular and self-dual circles inside WA(p)
wn, Atkin-Lehner involution on X0(p

n)
(F,A, α), Woods Hole representation of an elliptic curve
πf , forgetful map
W (Fpn), Witt vectors of Fpn
B, quaternionic order over Zp isomorphic to End(Â)
B′, special subset of B∗

Φ, Gross-Hopkins period map
wρ, generalized Atkin-Lehner involution of SDA for ρ ∈ B′
YA, nontrivial affinoid in WA(p2) §2.2
πν , moduli-theoretic map taking (E,C) to (E/C[p], C/C[p])
E1,A, E2,A, two pullbacks of YA to X0(p

3)
π1 1 := πf ◦ πν
ZA, affinoid in WA(p3) corresponding to “bridging component”
CA, τf , special circle of WA(p) and map to SDA

w̃ρ, generalized Atkin-Lehner involution of ZA for ρ ∈ B′
R, maximal orders in the quadratic extensions of Qp §3
α∗, embedding of End(F ) into B when (F, α) has fake CM §3.2
X0(p

n), stable model of X0(p
n) §4.1

P, pairing on Ka(E) onto µpb which distinguishes X±a b
Mn, field found by Krir over which J0(p

n) has stable reduction §5
Fn, field over which our stable model for X0(p

n) is defined (n ≤ 3)
W±a b, wide open neighborhood of X±a b §5.2
Vi(A), U(A), wide open neighborhoods of Ei,A and Z(A)
S(A), singular residue classes of ZA
Û(A), basic wide open refinement of U(A)
I = IQp , w = wX , inertia group and inertia action on X = X0(p

n) §6
mn, minimal extension of Qnr

p over which X0(p
n) has stable reduction

Cx, component of X0(p
3) corresponding to a wρ fixed point §6.3

τx, Fx, hyper-elliptic involution on Cx, and its p fixed points
Dx, D̃x, residue classes of SDA and ZA
S̃s,ζ , order p automorphism of D̃x
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Abstract. Let E/Q be a modular elliptic curve, and p > 3 a good
ordinary or semistable prime.

Under mild hypotheses, we prove an exact formula for the µ-invariant
associated to the weight-deformation of the Tate module of E. For exam-
ple, at ordinary primes in the range 3 < p < 100, the result implies the
triviality of the µ-invariant of X0(11).

2000 Mathematics Subject Classification: 11G40; also 11F33, 11R23,
11G05

0. Introduction

A central aim in arithmetic geometry is to relate global invariants of a variety,
with the behaviour of its L-function. For elliptic curves defined over a number
field, these are the numerical predictions made by Birch and Swinnerton-Dyer
in the 1960’s. A decade or so later, John Coates pioneered the techniques of
Iwasawa’s new theory, to tackle their conjecture prime by prime. Together
with Andrew Wiles, he obtained the first concrete results for elliptic curves
admitting complex multiplication.

Let p be a prime number, and F∞ a p-adic Lie extension of a number field F .
From the standpoint of Galois representations, one views the Iwasawa theory of
an elliptic curve E defined over F , as being the study of the p∞-Selmer group

SelF∞(E) ⊂ H1
(
Gal
(
F/F

)
, AF∞

)
.

Here AF∞ = Homcont

(
Tap(E)[[Gal(F∞/F )]], Q/Z

)
denotes the Pontrjagin

dual to the Gal(F∞/F )-deformation of the Tate module. The field F∞ is often
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taken to be the cyclotomic Zp-extension of F , or sometimes the anti-cyclotomic
extension. Hopefully a more complete picture becomes available over F∞ =
F
(
E[p∞]

)
, the field obtained by adjoining all p-power division points on E.

If E has no complex multiplication, then Gal
(
F∞/F

)
is an open subgroup of

GL2(Zp) by a theorem of Serre, which means the underlying Iwasawa algebras
are no longer commutative.

In this article we study a special kind of Selmer group, namely the one which is
associated to a Hida deformation of Tap(E). This object is defined by impos-
ing the local condition that every 1-cocycle lies within a compatible family of
points, living on the pro-jacobian of X̂ = lim←−rX1(Np

r). There is a natural ac-
tion of the diamond operators on the universal nearly-ordinary representation,
which extends to a continuous action of Λ = Zp[[1 + pZp]] on our big Selmer
group. By the structure theory of Λ-modules, we can define an analogue of the
µ-invariant for a weight deformation, µwt say. One can also deform both the
Tate-Shafarevich group and the Tamagawa factors [E(Fν) : E0(Fν)], as sheaves
over weight-space. Conjecturally the deformation of III should be mirrored by
the behaviour of the improved p-adic L-function in [GS, Prop 5.8], which in-
terpolates the L-values of the Hida family at the point s = 1. The Λ-adic
Tamagawa factors TamΛ,l are related to the arithmetic of F∞ = F

(
E[p∞]

)
, as

follows.

For simplicity suppose that E is defined over F = Q, and is without complex
multiplication. Let p ≥ 5 be a prime where E has good ordinary reduction,
and assume there are no rational cyclic p-isogenies between E and any other
elliptic curve. Both Howson and Venjakob have proposed a definition for a
µ-invariant associated to the full GL2-extension. Presumably, this invariant
should represent the power of p occurring in the leading term of a hypothet-
ical p-adic L-function, interpolating critical L-values of E at twists by Artin
representations factoring through Gal(F∞/Q).

Recall that for a discrete p-primary Gal(F∞/Q)-module M , its Gal(F∞/Q)-
Euler characteristic is the product

χ
(
Gal(F∞/Q), M

)
:=

∞∏

j=0

(
#Hj

(
F∞/Q,M

))(−1)j

.

Under the twin assumptions that L(E, 1) 6= 0 and SelF∞(E) is cotorsion over
the non-abelian Iwasawa algebra, Coates and Howson [CH, Th 1.1] proved that

χ
(
Gal(F∞/Q), SelF∞(E)

)
=

∏

bad primes l

∣∣Ll(E, 1)
∣∣
p
×
(
#Ẽ(Fp)[p∞]

)2

×
(
the p-part of the BS,D formula

)
.

Let µGL2 denote the power of p occurring above. It’s straightforward to combine
the main result of this paper (Theorem 1.4) with their Euler characteristic
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calculation, yielding the upper bound

µwt ≤ µGL2 +
∑

bad primes l

{
ordp

(
Ll(E, 1)

)
− ordp

(
TamΛ,l

)}
.

In other words, the arithmetic of the weight-deformation is controlled in the
p-adic Lie extension. This is certainly consistent with the commonly held
belief, that the Greenberg-Stevens p-adic L divides the projection (to the Iwa-
sawa algebra of the maximal torus) of some ‘non-abelian L-function’ living

in Zp
[[

Gal
(
Q
(
E[p∞]

)
/Q
)]]

. The non-commutative aspects currently remain

shrouded in mystery, however.

Finally, we point out that many elliptic curves E possess Λ-adic Tamagawa fac-
tors, which differ from the p-primary component of the standard factor Tam(E).
P. Smith has estimated this phenomenon occurs infrequently – a list of such
curves up to conductor < 10, 000 has been tabulated in [Sm, App’x A].

Acknowledgement: We dedicate this paper to John Coates on his sixtieth birth-
day. The author thanks him heartily for much friendly advice, and greatly
appreciates his constant support over the last decade.

1. Statement of the Results

Let E be an elliptic curve defined over the rationals. We lose nothing at all by
supposing that E be a strong Weil curve of conductor NE , and denote by ±φ
the non-constant morphism of curves φ : X0(NE) ։ E minimal amongst all
X0(NE)-parametrisations. In particular, there exists a normalised eigenform
fE ∈ Snew

2

(
Γ0(NE)

)
satisfying φ∗ωE = cMan

E fE(q)dq/q, where ωE denotes a

Néron differential on E and cMan
E is the Manin constant for φ.

Fix a prime number p ≥ 5, and let’s write N = p−ordpNENE for the tame level.
We shall assume E has either good ordinary or multiplicative reduction over
Qp,

hence f2 :=

{
fE(q)− βpfE(qp) if p ∤ NE
fE(q) if p||NE

will be the p-stabilisation of fE

at p.

Hypothesis(RE). f2 is the unique p-stabilised newform in Sord
2

(
Γ0(Np)

)
.

Throughout Λ = Zp[[Γ]] denotes the completed group algebra of Γ = 1 + pZp,
and L = Frac(Λ) its field of fractions. There are non-canonical isomorphisms
Λ ∼= Zp[[X]] given by sending a topological generator u0 ∈ Γ to the element

1+X. In fact the Zp-linear extension of the map σk : u0 7→ uk−2
0 transforms Λ

into the Iwasawa functions AZp = Zp〈〈k〉〉, convergent everywhere on the closed
unit disk.
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Under the above hypothesis, there exists a unique Λ-adic eigenform f ∈ Λ[[q]]
lifting the cusp form f2 at weight two; furthermore

fk :=
∞∑

n=1

σk
(
an(f)

)
qn ∈ Sord

k

(
Γ1(Np

r)
)

is a p-stabilised eigenform of weight k and character ω2−k, for all integers k ≥ 2.
Hida and Mazur-Wiles [H1,H2,MW] attached a continuous Galois representa-
tion

ρ∞ : GQ −→ GL2(Λ) = AutΛ(T∞)

interpolating Deligne’s p-adic representations for every eigenform in the family.
The rank two lattice T∞ is always free over Λ, unramified outside of Np, and
the characteristic polynomial of ρ∞

(
Frobl

)
will be 1−al(f)x+ l

〈
l
〉
x2 for primes

l ∤ Np. If we restrict to a decomposition group above p,

ρ∞ ⊗Λ AZp

∣∣∣∣∣
GQp

∼
(
χcy < χcy >

k−2 φ−1
k ∗

0 φk

)
where φk : GQp/Ip → Z×p

is the unramified character sending Frobp to the eigenvalue of Up at weight k.

Question. Can one make a Tamagawa number conjecture for the Λ-adic
form f, which specialises at arithmetic primes to each Bloch-Kato conjecture?

The answer turns out to be a cautious ‘Yes’, provided one is willing to work
with p-primary components of the usual suspects. In this article, we shall
explain the specialisation to weight two (i.e. elliptic curves) subject to a couple
of simplifying assumptions. The general case will be treated in a forthcoming
work, and includes the situation where the nearly-ordinary deformation ring
RE is a non-trivial finite, flat extension of Λ. Let’s begin by associating local
points to ρ∞...

For each pair of integers m, r ∈ N, the multiplication by pm endomorphism on
the p-divisible group Jr = jac X1(Np

r) induces a tautological exact sequence

0→ Jr[p
m]→ Jr

×pm→ Jr → 0. Upon taking Galois invariants, we obtain a long
exact sequence in GQp-cohomology

0→ Jr(Qp)[p
m]→ Jr(Qp)

×pm→ Jr(Qp)

∂r,m→ H1(Qp, Jr[p
m])→ H1(Qp, Jr)[p

m]→ 0.

The boundary map ∂r,m injects Jr(Qp)
/
pm into H1(Qp, Jr[p

m]), so applying
the functors lim←−m and lim←−r yields a level-compatible Kummer map

lim←−
r,m

∂r,m : J∞(Qp)⊗̂Zp →֒ H1
(
Qp,Tap(J∞)

)
which is Hecke-equivariant;
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here J∞ denotes the limit lim←−r jac X1(Np
r) induced from X1(Np

r+1)
πp
։

X1(Np
r).

For a compact Λ-module M , we define its twisted dual AM :=
Homcont

(
M,µp∞). Recall that Hida [H1] cuts T∞ out of the massive Galois

representation Tap(J∞) using idempotents eord = limn→∞Un!
p and eprim living

in the abstract Hecke algebra (the latter is the projector to the p-normalised
primitive part, and in general exists only after extending scalars to L).

Definition 1.1. (a) We define X(Qp) to be the pre-image of the local points

eprim.

((
eord. lim←−

r,m
∂r,m

(
J∞(Qp)⊗̂Zp

))
⊗Λ L

)

under the canonical homomorphism H1
(
Qp,T∞

) −⊗1−→ H1
(
Qp,T∞

)
⊗Λ L.

(b) We define the dual group XD(Qp) to be the orthogonal complement

{
x ∈ H1

(
Qp, AT∞

)
such that invQp

(
X(Qp) ∪ x

)
= 0

}

under Pontrjagin duality H1
(
Qp,T∞

)
× H1

(
Qp, AT∞

)
→ H2

(
Qp, µp∞

) ∼=
Qp/Zp.

The local condition X(Qp) will be Λ-saturated inside its ambient cohomology
group. These groups were studied by the author and Smith in [DS], and are
intimately connected to the behaviour of big dual exponential maps for the
family.

Let Σ denote a finite set containing p and primes dividing the conductor NE .
Write QΣ for the maximal algebraic extension of the rationals, unramified out-
side the set of bad places Σ ∪ {∞}. Our primary object of study is the big
Selmer group

SelQ(ρ∞) := Ker


H1

(
QΣ/Q, AT∞

) ⊕resl−→
⊕

l 6=p
H1
(
Ql, AT∞

)
⊕ H1

(
Qp, AT∞

)

XD(Qp)




which is a discrete module over the local ring Λ.

For each arithmetic point in Spec(Λ)alg, the Λ-adic object SelQ(ρ∞) interpolates
the Bloch-Kato Selmer groups associated to the p-stabilisations fk of weight
k ≥ 2. At k = 2 it should encode the Birch and Swinnerton-Dyer formulae, up
to some easily computable fudge-factors.
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Proposition 1.2. (a) The Pontrjagin dual

̂SelQ(ρ∞) = Homcont

(
SelQ(ρ∞), Q/Z

)

is a finitely-generated Λ-module;

(b) If L(E, 1) 6= 0 then ̂SelQ(ρ∞) is Λ-torsion, i.e. SelQ(ρ∞) is Λ-cotorsion.

In general, one can associate a characteristic element to SelQ(ρ∞) via

IIIQ(ρ∞) := charΛ

(
Homcont

(
SelQ(ρ∞)/

Λ-div
, Q/Z

))

where /
Λ-div

indicates we have quotiented by the maximal mΛ-divisible sub-

module; equivalently IIIQ(ρ∞) is a generator of the characteristic ideal of

TorsΛ

(
̂SelQ(ρ∞)

)
. If the L-function doesn’t vanish at s = 1 then by 1.2(b), the

Pontrjagin dual ̂SelQ(ρ∞) is already pseudo-isomorphic to a compact Λ-module
of the form

t⊕

i=1

Z
/
pµiZ ⊕

s⊕

j=1

Λ
/
F
ej
j Λ

where the Fj ’s are irreducible distinguished polynomials, and all of the µi, ej ≥
0. In this particular case IIIQ(ρ∞) will equal pµ1+···µt ×∏s

j=1 F
ej
j modulo Λ×,

and so annihilates the whole of ̂SelQ(ρ∞).

Definition/Lemma 1.3. For each prime l 6= p and integer weight k ≥ 2, we
set

Taml(ρ∞; k) := #TorsΛ

(
H1
(
Il,T∞

))Frobl=1

⊗Λ,σk Zp ∈ pN∪{0} .

Then at weight two,
∏

l 6=p
Taml(ρ∞; 2) divides the p-part of

∏

l 6=p

[
Cmin(Ql) : Cmin

0 (Ql)
]

where Cmin/
Q

refers to the Q-isogenous elliptic curve of Stevens, for which ev-

ery optimal parametrisation X1(Np) ։ E admits a factorisation X1(Np) →
Cmin → E.

These mysterious Λ-adic Tamagawa numbers control the specialisation of our
big Tate-Shafarevich group III at arithmetic points. In particular, for the
weight k = 2 they occur in the leading term of IIIQ(ρ∞) viewed as an element
of Λ ∼= Zp[[X]]. It was conjectured in [St] that Cmin is the same elliptic curve
for which the Manin constant associated to X1(Np) ։ Cmin is ±1. Cremona
pointed out the Tamagawa factors [Cmin(Ql) : Cmin

0 (Ql)] tend to be smaller
than the [E(Ql) : E0(Ql)]’s.

To state the simplest version of our result, we shall assume the following:
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Hypothesis(Frb). Either (i) p ∤ NE and ap(E) 6= +1,

or (ii) p||NE and ap(E) = −1

or (iii) p||NE and ap(E) = +1, p ∤ ordp

(
qTate(Cmin)

)
.

Note that in case (iii), the condition that p does not divide the valuation of the
Tate period qTate(Cmin) ensures the p-part of [Cmin(Qp) : Cmin

0 (Qp)] is trivial.

Theorem 1.4. Assume both (RE) and (Frb) hold. If L(E, 1) 6= 0, then

σ2

(
IIIQ(ρ∞)

)

≡ Lwt
p (E) × [E(Qp) : E0(Qp)]

∏

l 6=p

[E(Ql) : E0(Ql)]

Taml(ρ∞; 2)
× #IIIQ(E)

#E(Q)2

modulo Z×p , where the Lwt-invariant at weight two is defined to be

Lwt
p (E) :=

∫
E(R)

ωE∫
Cmin(R)

ωCmin

× #Cmin(Q)

#AT∞(Q)Γ
.

In particular, the Γ-coinvariants of AT∞(Q) = H0
(
QΣ/Q, AT∞

)
are always

finite, and the denominator #AT∞(Q)Γ divides into #Cmin(Q)[p∞].

This equation is a special case of a more general Tamagawa number formal-
ism. Whilst none of the assumptions (RE), (Frb) and L(E, 1) 6= 0 are actually
necessary, the full result requires a weight-regulator term, the relative covol-
ume of X(Qp) and various other additional factors – we won’t consider these
complications here.

Example 1.5. Consider the modular curve E = X0(11) given by the equation

E : y2 + y = x3 − x2 − 10x − 20 .

The Tamagawa number of E at the bad prime 11 equals 5, whereas elsewhere
the curve has good reduction. Let’s break up the calculation into three parts:
(a) Avoiding the supersingular prime numbers 19 and 29, one checks for every
good ordinary prime 7 ≤ p ≤ 97 that both of the hypotheses (RE) and (Frb)
hold true (to check the former, we verified that there are no congruences modulo
p between fE and any newform at level 11p). Now by Theorem 1.4,

σ2

(
IIIQ(ρ∞)

)
≡ Lwt

p (E) × 5 × #IIIQ(E)

Tam11(ρ∞; 2) × 52
≡ 1 modulo Z×p

since the Lwt
p -invariant is a p-adic unit, and the size of IIIQ(E) is equal to one.

(b) At the prime p = 11 the elliptic curve E has split multiplicative reduction.
The optimal curve Cmin is X1(11) whose Tamagawa number is trivial, hence so
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is Tam11(ρ∞; 2). Our theorem implies σ2

(
IIIQ(ρ∞)

)
must then be an 11-adic

unit.

(c) When p = 5 the curve E fails to satisfy (Frb) as the Hecke eigenvalue
a5(E) = 1. Nevertheless the deformation ring RE ∼= Λ, and E has good
ordinary reduction. Applying similar arguments to the proof of 1.4, one can
show that

∣∣∣σ2

(
IIIQ(ρ∞)

)∣∣∣
−1

5
divides

#X̃1(11)(F5)[5
∞] × #IIIQ

(
X1(11)

)
[5∞]

#AT∞(Q)Γ × #X1(11)(Q)[5∞]
.

The right-hand side equals one, since X1(11)(Q) and the reduced curve

X̃1(11)(F5) possess a non-trivial 5-torsion point. As the left-hand side is 5-

integral, clearly #AT∞(Q)Γ = 1 and it follows that σ2

(
IIIQ(ρ∞)

)
is a 5-adic

unit.

Corollary 1.6. For all prime numbers p such that 5 ≤ p ≤ 97 and
ap
(
X0(11)

)
6= 0,

the µwt-invariant associated to the Hida deformation of SelQ
(
X0(11)

)
[p∞] is

zero.

In fact the µwt-invariant is probably zero at all primes p for which X0(11) has
good ordinary reduction, but we need a more general formula than 1.4 to prove
this.

2. Outline of the Proof of Theorem 1.4

We begin with some general comments.

The rank two module T∞ ⊗Λ,σ2
Zp is isomorphic to the dual of H1

ét

(
E,Zp

)
,

in general only after tensoring by Qp. Consider instead the arithmetic pro-

variety X̂ = lim←−r≥1X1(Np
r) endowed with its canonical Q-structure. The

specialisation (σ2)∗ : T∞ ։
(
T∞
)
Γ
→֒ Tap

(
jac X1(Np)

)
is clearly induced

from X̂
proj−→ X1(Np). It follows from [St, Th 1.9] that T∞⊗Λ,σ2

Zp ∼= Tap(Cmin)
on an integral level, where Cmin denotes the same elliptic curve occurring as a
subvariety of jac X1(Np), alluded to earlier in 1.3.

Taking twisted duals of 0 → T∞
u0−1→ T∞ → Tap(Cmin) → 0, we obtain a

corresponding short exact sequence

0 → Homcont

(
Tap(Cmin), µp∞

)
→ AT∞

u0−1→ AT∞ → 0

of discrete Λ-modules. The Weil pairing on the optimal curve Cmin implies

that Homcont

(
Tap(Cmin), µp∞

)
∼= Cmin[p∞]. We thus deduce that Tap(Cmin) 6∼=

Tap(E) if and only if there exists a cyclic pn-isogeny defined over Q, between
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the two elliptic curves E and Cmin (note this can only happen when the prime
p is very small).
Let G denote either Gal(QΣ/Q), or a decomposition group Gal(Ql/Ql) at some
prime number l. For indices j = 0, 1, 2 there are induced exact sequences

0 → Hj
(
G,AT∞

)
⊗Λ,σ2

Zp → Hj+1
(
G, Cmin[p∞]

)
→ Hj+1

(
G,AT∞

)Γ → 0

and in continuous cohomology,

0 → Hj
(
G,T∞

)
⊗Λ,σ2

Zp → Hj
(
G,Tap(Cmin)

)
→ Hj+1

(
G,T∞

)Γ → 0 .

From now on, we’ll just drop the ‘ σ2
’ from the tensor product notation alto-

gether.

Remark: Our strategy is to compare SelQ(ρ∞) with the p-primary Selmer
group for Cmin over the rationals. We can then use the Isogeny Theorem to
exchange the optimal curve Cmin with the strong Weil curve E.

For each prime l 6= p, we claim there is a natural map

δl :
H1
(
Ql, Cmin[p∞]

)

H1
nr

(
Ql, Cmin[p∞]

) −→ H1
(
Ql, AT∞

)Γ
;

here H1
nr

(
Ql, Cmin[p∞]

)
denotes the orthogonal complement to the p-saturation

of H1
(
Frobl,Tap(Cmin)Il

)
inside H1

(
Ql,Tap(Cmin)

)
. To see why this map ex-

ists, note that H1
(
Ql,T∞

)
is Λ-torsion, hence H1

(
Ql,T∞

)
⊗Λ Zp is p∞-torsion

and must lie in any p-saturated subgroup of H1
(
Ql,Tap(Cmin)

)
. Consequently

the Γ-coinvariants

H1
(
Ql,T∞

)
Γ
→֒ the p-saturation of H1

(
Frobl,Tap(Cmin)Il

)
,

and then dualising we obtain δl.

Let’s now consider what happens when l = p. In [DS, Th 2.1] we identified the
family of local points X(Qp) with the cohomology subgroup

H1
G
(
Qp,T∞

)
:= Ker

(
H1

cont

(
Qp,T∞

) (−⊗1)⊗1−→ H1
cont

(
Qp,T∞ ⊗ BdR

)
⊗Λ L

)

where BdR denotes Iovita and Stevens’ period ring. In particular, we showed
that

X(Qp)Γ = H1
G
(
Qp,T∞

)
⊗Λ Zp →֒ H1

g

(
Qp,Tap(Cmin)

) ∼= Cmin(Qp)⊗̂Zp

the latter isomorphism arising from [BK, Section 3]. Dualising the above yields

δp :
H1
(
Qp, Cmin[p∞]

)

Cmin(Qp)⊗Qp/Zp
−→

(
H1
(
Qp, AT∞

)

XD(Qp)

)Γ

because H1
g

(
Qp,Tap(Cmin)

)⊥ ∼= Cmin(Qp)⊗Qp/Zp and X(Qp)
⊥ = XD(Qp).
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Lemma 2.1. For all prime numbers l ∈ Σ, the kernel of δl is a finite p-group.

We defer the proof until the next section, but for l 6= p it’s straightforward.
This discussion may be neatly summarised in the following commutative dia-
gram, with left-exact rows:

0 → SelQ(Cmin)[p∞] → H1
(
QΣ/Q, Cmin[p∞]

)
λ0−→

⊕

l∈Σ

H1
(
Ql, Cmin[p∞]

)

H1
⋆

(
Ql, Cmin[p∞]

)

α

y β

y ⊕δl

y

0 → SelQ(ρ∞)Γ → H1
(
QΣ/Q, AT∞

)Γ λ∞−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

.

Figure 1.

At primes l 6= p the notation H1
⋆ represents H1

nr. When l = p we have
written H1

⋆

(
Ql, Cmin[p∞]

)
for the points Cmin(Qp) ⊗ Qp/Zp, and analogously

H1
⋆

(
Ql, AT∞

)
in place of our family of local points XD(Qp).

Applying the Snake Lemma to the above, we obtain a long exact sequence

0 → Ker(α) → Ker(β) → Im(λ0) ∩
(⊕

l∈Σ

Ker(δl)

)
→ Coker(α) → 0

as the map β is surjective. The kernel of β equals H0
(
QΣ/Q, AT∞

)
⊗Λ Zp i.e.,

the Γ-coinvariants H1
(
Γ, H0

(
QΣ/Q, AT∞

))
. As Γ is pro-cyclic and AT∞ is

discrete,

#H1
(
Γ, H0

(
QΣ/Q, AT∞

))
≤ #H0

(
QΣ/Q, H0(Γ, AT∞)

)

= #H0
(
QΣ/Q, Homcont

(
T∞ ⊗Λ Zp , µp∞

))

= #H0
(
QΣ/Q, Cmin[p∞]

)
= #Cmin(Q)[p∞] .

In other words, the size of Ker(β) is bounded by #Cmin(Q)[p∞]. By a well-
known theorem of Mazur on torsion points, the latter quantity is at most 16.

Remarks: (i) Let’s recall that for any elliptic curve A over the rational num-
bers, its Tate-Shafarevich group can be defined by the exactness of

0 → A(Q)⊗Q/Z → H1(Q, A) → IIIQ(A) → 0 .

(ii) Lemma 2.1 implies every term occurring in our Snake Lemma sequence is

finite, and as a direct consequence SelQ(Cmin)[p∞]
α−→ SelQ(ρ∞)Γ is a quasi-

isomorphism. The coinvariants
(

̂SelQ(ρ∞)
)

Γ
must then be of finite type over
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Zp, Nakayama’s lemma forces ̂SelQ(ρ∞) to be of finite type over Λ, and Propo-
sition 1.2(a) follows.

(iii) Assume further that L(E, 1) 6= 0. By work of Kolyvagin and later Kato
[Ka], both E(Q) and IIIQ(E) are finite. Since Cmin is Q-isogenous to E, clearly
the Mordell-Weil and Tate-Shafarevich groups of the optimal curve must also
be finite. Equivalently #SelQ(Cmin) <∞, whence

rankΛ

(
̂SelQ(ρ∞)

)
≤

≤ corankZp

(
SelQ(ρ∞)Γ

)
= corankZp

(
SelQ(Cmin)[p∞]

)
= 0.

It follows that SelQ(ρ∞) is Λ-cotorsion, and Proposition 1.2(b) is established.
The special value of IIIQ(ρ∞) at σ2 is determined (modulo p-adic units) by the
Γ-Euler characteristic of SelQ(ρ∞), namely

χ
(
Γ,SelQ(ρ∞)

)
:=

∞∏

j=0

(
#Hj

(
Γ,SelQ(ρ∞)

))(−1)j

=
#H0

(
Γ,SelQ(ρ∞)

)

#H1
(
Γ,SelQ(ρ∞)

)

as Γ has cohomological dimension one.
After a brisk diagram chase around Figure 1, we discover that

χ
(
Γ,SelQ(ρ∞)

)
=

#SelQ(Cmin)[p∞] × #
(
Im(λ0) ∩

(⊕
l∈Σ Ker(δl)

) )

#Ker(β) × #H1
(
Γ,SelQ(ρ∞)

)

=
#IIIQ(Cmin)[p∞] × ∏

l∈Σ #Ker(δl)

#AT∞(Q)Γ × #H1
(
Γ,SelQ(ρ∞)

)
× ∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

] .

Proposition 2.2.

(a) #Ker(δl) =
∣∣∣
[
Cmin(Ql) : Cmin

0 (Ql)
]∣∣∣
−1

p
×
∣∣∣Taml(ρ∞; 2)

∣∣∣
p

if l 6= p;

(b) #Ker(δp) = 1 and
∣∣∣
[
Cmin(Qp) : Cmin

0 (Qp)
]∣∣∣
p
= 1 if Hypothesis(Frb) holds

for E.

Proposition 2.3. If L(E, 1) 6= 0, then

#H1
(
Γ,SelQ(ρ∞)

)
×
∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
= #Cmin(Q)[p∞] .

The former result is proved in the next section, and the latter assertion in §4.
Substituting them back into our computation of the Γ-Euler characteristic,

χ
(
Γ,SelQ(ρ∞)

)
≈ #IIIQ(Cmin) × ∏

l∈Σ

[
Cmin(Ql) : Cmin

0 (Ql)
]

#AT∞(Q)Γ × #Cmin(Q) × ∏
l∈Σ−{p} Taml(ρ∞; 2)
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where the notation x ≈ y is employed whenever x = uy for some unit u ∈ Z×p .

Setting Lwt,†
p (E) := #Cmin(Q)

/
#AT∞(Q)Γ , the above can be rewritten as

Lwt,†
p (E)∏

l∈Σ−{p} Taml(ρ∞; 2)
× #IIIQ(Cmin) × ∏

l∈Σ

[
Cmin(Ql) : Cmin

0 (Ql)
]

#Cmin(Q)2
.

Cassels’ Isogeny Theorem allows us to switch Cmin with the isogenous curve E,

although this scales the formula by the ratio of periods
∫
E(R)

ωE

/∫
Cmin(R)

ωCmin .

Observing that σ2

(
IIIQ(ρ∞)

)
≈ χ

(
Γ,SelQ(ρ∞)

)
, Theorem 1.4 is finally

proved.

3. Computing the Local Kernels

We now examine the kernels of the homorphisms δl for all prime numbers l ∈ Σ.
Let’s start by considering l 6= p. By its very definition, δl is the dual of

δ̂l : H1
(
Ql,T∞

)
⊗Λ Zp →֒ H1

nr

(
Ql,Tap(Cmin)

)

where H1
nr(· · · ) denotes the p-saturation of H1

(
Frobl,Tap(Cmin)Il

) ∼=
Tap(Cmin)Il

(Frobl−1) .

The key term we need to calculate is

#Ker(δl) = #Coker
(
δ̂l
)

=
[
H1

nr

(
Ql,Tap(Cmin)

)
: H1

(
Ql,T∞

)
⊗Λ Zp

]
.

Firstly, the sequence 0 → T Il∞ ⊗Λ Zp → Tap(Cmin)Il → H1
(
Il,T∞

)Γ → 0

is exact, and T Il∞ ⊗Λ Zp coincides with
(
T∞ ⊗Λ Zp

)Il = Tap(Cmin)Il since
the Galois action and diamond operators commute on T∞. As a corollary

H1
(
Il,T∞

)Γ
must be zero.

The group Gal
(
Qunr
l /Ql

)
is topologically generated by Frobenius, hence

H1
(
Frobl,T Il

∞

)
Γ

∼=
(

T Il∞
(Frobl − 1).T Il∞

)
⊗Λ Zp

=

( (
T∞ ⊗Λ Zp

)Il

(Frobl − 1).
(
T∞ ⊗Λ Zp

)Il

)
∼= H1

(
Frobl,Tap(Cmin)Il

)
.

Since the local cohomology H1
(
Ql,T∞

)
is always Λ-torsion when the prime

l 6= p, inflation-restriction provides us with a short exact sequence

0 → H1
(
Frobl,T Il

∞

)
infl→ H1

(
Ql,T∞

) rest→ TorsΛ

(
H1
(
Il,T∞

)Frobl
)
→ 0 .
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The boundary map TorsΛ

(
H1
(
Il,T∞

)Frobl
)Γ

→ H1
(
Frobl,T Il∞

)
Γ
trivialises be-

cause H1
(
Il,T∞

)Γ
= 0, so the Γ-coinvariants H1

(
Frobl,T Il∞

)
Γ

inject into

H1
(
Ql,T∞

)
Γ

under inflation.

We deduce that there is a commutative diagram, with exact rows and columns:

0 0
y

y

H1
(
Frobl,T Il

∞

)
Γ

infl→֒ H1
(
Ql,T∞

)
Γ

rest
։ TorsΛ

(
H1
(
Il,T∞

)Frobl
)

Γ∣∣∣
∣∣∣

y θ

y

H1
(
Frobl,Tap(Cmin)Il

)
infl→֒ H1

nr

(
Ql,Tap(Cmin)

) rest
։ H1

(
Il,Tap(Cmin)

)Frobl [p∞]
y

y

H2
(
Ql,T∞

)Γ ∼= Coker(θ)
y

y
0 0

Figure 2.

Remark: Using Figure 2 to compute indices, general nonsense informs us that

#Ker(δl) =
[
H1

nr

(
Ql,Tap(Cmin)

)
: H1

(
Ql,T∞

)
Γ

]
= #Coker(θ)

=
#H1

(
Il,Tap(Cmin)

)Frobl
[p∞]

#TorsΛ

(
H1
(
Il,T∞

)Frobl
)

Γ

≈

[
Cmin(Ql) : Cmin

0 (Ql)
]

Taml(ρ∞; 2)
.

In one fell swoop this proves Proposition 2.2(a), Lemma 1.3 and half of Lemma
2.1.
Let’s concentrate instead on l = p. The kernel of δp is dual to the cokernel of

δ̂p : H1
G
(
Qp,T∞

)
⊗Λ Zp →֒ H1

g

(
Qp,Tap(Cmin)

)
.

Clearly the Zp-rank of H1
G
(
Qp,T∞

)
⊗Λ Zp is bounded below by the Λ-rank of

H1
G
(
Qp,T∞

)
which equals one, thanks to a specialisation argument in [DS, Th

3]. On the other hand

rankZp

(
H1
g

(
Qp,Tap(Cmin)

))
= dimQp

(
Cmin(Qp) ⊗̂ Qp

)
= 1

because the formal group of Cmin/
Zp

has semistable height one. We conclude that

#Ker(δp) = #Coker
(
δ̂p
)

=
[
H1
g

(
Qp,Tap(Cmin)

)
: H1
G
(
Qp,T∞

)
Γ

]
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must be finite, which completes the demonstration of Lemma 2.1.

Remarks: (i) For any de Rham GQp-representation V , Bloch and Kato [BK]
define a dual exponential map

exp∗V : H1
(
Qp, V

)
−→ Fil0DdR(V ) :=

(
V ⊗Qp B

+
dR

)GQp

whose kernel is H1
g

(
Qp, V

)
. If V equals the p-adic representation Tap(Cmin)⊗Zp

Qp, then the cotangent space Fil0DdR(V ) ∼= Qp ⊗Q H
1
dR

(
Cmin

/
Q) is a Qp-line,

generated by a Néron differential ωCmin on the optimal elliptic curve.

(ii) Applying exp∗V above and then cupping with the dual basis ω∗Cmin , we obtain
a homomorphism

exp∗ω :
H1
(
Qp,Tap(Cmin)

)

H1
g

(
Qp,Tap(Cmin)

) −→
(
Tap(Cmin)⊗Zp B

+
dR

)GQp − ∪ ω∗Cmin−→ Qp

which sends Kato’s zeta element [Ka, Th 13.1] to a non-zero multiple of
LNp(Cmin,1)

Ω+

Cmin

. In particular LNp(Cmin, 1) = LNp(E, 1) 6= 0, so the image of

the composition exp∗ω must be a lattice pn1Zp ⊂ Qp say. Let’s abbreviate the
quotient H1/H1

g by H1
/g. Notice also that the Zp-rank of H1

/g

(
Qp,Tap(Cmin)

)

equals one and the module is p∞-torsion free, hence exp∗ω is injective.

In [De, Th 3.3] we showed the existence of a big dual exponential map

EXP∗T∞ : H1
(
Qp,T∞

)
−→ Λ[1/p] , Ker

(
EXP∗T∞

)
= H1

G
(
Qp,T∞

)

interpolating the standard exp∗’s at the arithmetic points (we skip over the
details). At weight two, EXP∗T∞ modulo u0 − 1 coincides with exp∗ω up to
a non-zero scalar. The weight-deformation of Kato’s zeta-element lives in

locp

(
H1
(
Q,T∞

))
, and via

H1
(
Qp,T∞

) mod u0−1−→ H1
(
Qp,T∞

)
Γ

proj
։

H1
(
Qp,T∞

)
Γ

H1
(
Qp,T∞

)
Γ
∩H1

g

exp∗ω→֒ Qp

is sent to the L-value
LNp(Cmin,1)

Ω+

Cmin

× (a Λ-adic period). In this case, the image

of H1
(
Qp,T∞

)
Γ

under exp∗ω will be a lattice pn2Zp ⊂ Qp for some n2 ≥ n1.
Key Claim: There is a commutative diagram, with exact rows

0→ H1
G
(
Qp,T∞

)
Γ

ε−→ H1
(
Qp,T∞

)
Γ

exp∗(−) ∪ ω∗Cmin−→ pn2Zp → 0
y nat

y id

y

0→ H1
g

(
Qp,Tap(Cmin)

)
−→ H1

(
Qp,Tap(Cmin)

) exp∗(−) ∪ ω∗Cmin−→ pn1Zp → 0.
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To verify this assertion, we need to prove the injectivity of the top-left map ε.

Recall that H1
G
(
Qp,T∞

)
= X(Qp) is Λ-saturated inside the local H1, thus the

quotient H1
/G
(
Qp,T∞

)
is Λ-free. In particular, both H1

G and H1 share the same

Λ-torsion submodules, so at weight two H1
G
(
Qp,T∞

)
Γ

and H1
(
Qp,T∞

)
Γ

must

have identical Zp-torsion. It follows from the invariants/coinvariants sequence

0 → H1
G
(
Qp,T∞

)Γ → H1
(
Qp,T∞

)Γ → H1
/G
(
Qp,T∞

)Γ

∂→ H1
G
(
Qp,T∞

)
Γ

ε→ H1
(
Qp,T∞

)
Γ
→ H1

/G
(
Qp,T∞

)
Γ
→ 0

that ε fails to be injective, if and only if the image of ∂ has Zp-rank at least
one. However,

rankZpIm(∂) =

= rankZp

(
H1
G
(
· · ·
)
Γ

)
− rankZp

(
H1
(
· · ·
)
Γ

)
+ rankZp

(
H1
/G
(
· · ·
)
Γ

)

≤ rankZp

(
H1
G
(
· · ·
)
Γ

)
− rankZp

(
H1
(
· · ·
)
Γ

)
+ rankZp

(
pn2Zp

)

as the rank of H1
/G
(
· · ·
)
Γ

is bounded by the rank of H1
(
· · ·
)
Γ

/(
H1
(
· · ·
)
Γ
∩

H1
g

)
. The right-hand side above is equal to zero, hence rankZpIm(∂) is forced to

be zero. The non-triviality of the boundary map ∂ can therefore never happen,
and the injectivity of ε follows as well.

Remark: Using our Key Claim to calculate
[
H1
g

(
· · ·
)

: H1
G
(
· · ·
)
Γ

]
, we find

that

#Ker(δp) = p−(n2−n1) ×
[
H1
(
Qp,Tap(Cmin)

)
: H1

(
Qp,T∞

)
Γ

]

= p−(n2−n1) ×#H2
(
Qp,T∞

)Γ
= p−(n2−n1) ×#H0

(
Qp, AT∞

)
Γ

where the very last equality arises from the non-degeneracy of the local pairing
H2
(
Qp,T∞

)
×H0

(
Qp, AT∞

)
→ Qp/Zp.

By an argument familiar from §2,

#H0
(
Qp, AT∞

)
Γ

≤ #H0
(
Qp, A

Γ
T∞

)
= #H0

(
Qp,Homcont

(
T∞ ⊗Λ Zp, µp∞

))

= #H0
(
Qp,Homcont

(
Tap(Cmin), µp∞

))
= #Cmin(Qp)[p

∞]

again due to the pro-cyclicity of Γ. Because n2 − n1 ≥ 0, we get an upper
bound

#Ker(δp) ≤ p−(n2−n1)#Cmin(Qp)[p
∞] ≤ #Cmin(Qp)[p

∞] ;
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we proceed by showing that the right-hand side is trivial under Hypothe-
sis(Frb).
Case (i): p ∤ NE and ap(E) 6= +1.

Here E and the isogenous curve Cmin have good ordinary reduction at the prime
p; in particular, the formal group of Cmin

/Zp
possesses no points of order p since

p 6= 2. It follows that Cmin(Qp)[p
∞] injects into the subgroup of Fp-rational

points on C̃min, the reduced elliptic curve. Moreover

#C̃min(Fp) = p+ 1− ap(E) 6≡ 0 (mod p ) as ap(E) 6≡ +1,

meaning Cmin(Qp)[p
∞] ∼= C̃min(Fp)[p∞] is the trivial group.

Case (ii): p||NE and ap(E) = −1.

Both E and Cmin have non-split multiplicative reduction at p. The Tamagawa
factor [Cmin(Qp) : Cmin

0 (Qp)] is either 1, 2, 3 or 4, all of which are coprime to
p ≥ 5. We thus have an isomorphism Cmin(Qp)[p

∞] ∼= Cmin
0 (Qp)[p

∞]. Again the
formal group is p-torsion free, so Cmin

0 (Qp)[p
∞] coincides with the p∞-torsion

in the group of non-singular points C̃min(Fp)−{node}. But these non-singular
points look like F×p which has no points of order p, so neither does Cmin(Qp).

Case (iii): p||NE and ap(E) = +1, p ∤ ordp

(
qTate(Cmin)

)
.

This last situation corresponds to our elliptic curves being split multiplica-
tive at p. The group of connected components Cmin(Qp)

/
Cmin
0 (Qp) ∼=

Z
/
ordp

(
qTate(Cmin)

)
Z has order coprime to p, by assumption. Again

Cmin(Qp)[p
∞] ∼= Cmin

0 (Qp)[p
∞], and an identical argument to case (ii) estab-

lishes that the p-part of Cmin(Qp) is trivial.

4. Global Euler-Poincaré Characteristics

It remains to give the proof of Proposition 2.3, i.e. to demonstrate why

#H1
(
Γ,SelQ(ρ∞)

)
×
∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
= #Cmin(Q)[p∞]

whenever the analytic rank of E is zero.
Let’s start by writing down the Poitou-Tate sequence for the optimal curve.

It is an easy exercise to verify that H1
(
Ql, Cmin[p∞]

)/
H1
⋆

(
Ql, Cmin[p∞]

)
is

isomorphic to H1
(
Ql, Cmin

)
[p∞] where ‘⋆ = nr’ if l 6= p, and ‘⋆ = g’ if l = p.

The exactness of the sequence

0 → SelQ
(
Cmin

)
[p∞] → H1

(
QΣ/Q, Cmin[p∞]

)
λ0→
⊕

l∈Σ

H1
(
Ql, Cmin

)
[p∞]

→ Homcont

(
Cmin(Q)⊗̂Zp , Q/Z

)
→ H2

(
QΣ/Q, Cmin[p∞]

)
→ · · ·

is then an old result of Cassels.
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Lemma 4.1. If SelQ
(
Cmin

)
[p∞] is finite, then H2

(
QΣ/Q, Cmin[p∞]

)
= 0.

The proof is well-known to the experts. It’s a basic consequence of the cy-
clotomic Iwasawa theory of elliptic curves, e.g. see Coates’ textbook on the
subject.

If we mimic the same approach Λ-adically, the Poitou-Tate exact sequence
reads as

0→ SelQ(ρ∞)→

→ H1
(
QΣ/Q, AT∞

)
λ†∞−→

⊕

l∈Σ

H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

) → ̂SelQ(T∞)→ · · ·

where the compact Selmer group is defined to be

SelQ(T∞) :=

:= Ker


H1

(
QΣ/Q, T∞

) ⊕resl−→
⊕

l 6=p

H1
(
Ql,T∞

)

H1
(
Ql, AT∞

)⊥ ⊕
H1
(
Qp,T∞

)

X(Qp)


 .

In fact H1
(
Ql, AT∞

)
is orthogonal to all of H1

(
Ql,T∞

)
under Pontrjagin du-

ality, so the local conditions at l 6= p are completely redundant.

Proposition 4.2. If L(E, 1) 6= 0, then the compact version SelQ(T∞) is zero.

The proof is rather lengthy – we postpone it till the end of this section.

As a corollary, the restriction map λ†∞ must be surjective at the Λ-adic level.
Taking Γ-cohomology, we obtain a long exact sequence

0 −→ SelQ(ρ∞)Γ −→ H1
(
QΣ/Q, AT∞

)Γ λ∞−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

−→ H1
(
Γ, SelQ(ρ∞)

)
−→ H1

(
Γ, H1

(
QΣ/Q, AT∞

))
.

The right-most term is zero, since it is contained inside H2
(
QΣ/Q, Cmin[p∞]

)

which vanishes by Lemma 4.1. We can then compare the cokernels of λ0 and
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λ∞ via the commutative diagram, with exact columns:

...
...

y
y

H1
(
QΣ/Q, Cmin[p∞]

)
β−→ H1

(
QΣ/Q, AT∞

)Γ

λ0

y λ∞

y

⊕

l∈Σ

H1
(
Ql, Cmin

)
[p∞]

⊕δl−→
⊕

l∈Σ

(
H1
(
Ql, AT∞

)

H1
⋆

(
Ql, AT∞

)
)Γ

y
y

Homcont

(
Cmin(Q)⊗̂Zp , Q/Z

)
99K H1

(
Γ, SelQ(ρ∞)

)

y
y

0 0 .

Figure 3.

Remark: Focussing momentarily on the homomorphisms δl and λ0, one de-
duces

[
Ker

(
⊕ δl

)
: Ker

(
⊕ δl

)
∩ Im(λ0)

]
=

[⊕
l∈ΣH

1
(
Ql, Cmin

)
[p∞] : Im(λ0)

]

[
Im
(
⊕ δl

)
: ⊕δl

(
Im(λ0)

)]

upon applying the Snake Lemma to the diagram

0 −→ Ker
(
⊕ δl

)
−→ H1

(
Ql, Cmin

)
[p∞]

⊕δl−→ Im
(
⊕ δl

)
−→ 0

⋃ ⋃ ⋃

0 −→ Ker
(
⊕ δl

)
∩ Im(λ0) −→ Im(λ0)

⊕δl−→ ⊕δl
(
Im(λ0)

)
−→ 0 .

The numerator above equals #Homcont

(
Cmin(Q)⊗̂Zp,Q/Z

)
, which has the

same size as the p-primary subgroup of Cmin(Q). Casting a cold eye over
Figure 3, one exploits the surjectivity of ⊕δl to conclude the denominator term
is #Coker(λ∞). Equivalently,

∏

l∈Σ

[
Ker(δl) : Im(λ0) ∩Ker(δl)

]
=

#Cmin(Q)[p∞]

#Coker(λ∞)

which finishes off the demonstration of 2.3.
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The proof of Proposition 4.2:
There are three stages. We first show that the compact Selmer group is Λ-
torsion. Using a version of Nekovár̃’s control theory along the critical line
(s, k) ∈ {1} × Zp, we next establish its finiteness. Lastly, we embed Sel inside
a tower of rational points, whose structure is narrow enough to imply the Selmer
group is zero.

Examining the behaviour of our big dual exponential EXP∗T∞ from [De, Th
3.3], there is a tautological sequence of Λ-homomorphisms

0 −→ SelQ(T∞) −→ H1
(
QΣ/Q, T∞

) locp(−) mod X(Qp)−→ H1
(
Qp,T∞

)

X(Qp)

EXP∗
T∞

y
Λ[1/p]

which is exact along the row. A global Euler characteristic calculation shows
that

rankΛ

(
H1
(
QΣ/Q,T∞

))
= rankΛ

(
H2
(
QΣ/Q,T∞

))
+ 1

≤ rankZp

(
H2
(
QΣ/Q,Tap(Cmin)

))
+ 1

by Kato
= 0 + 1

– the final equality lies very deep, and follows from [Ka, Th 14.5(1)].
On the other hand, the weight-deformation of Kato’s zeta-element will
generate rank one Λ-submodules inside both of H1

(
QΣ/Q, T∞

)
and

H1
(
Qp,T∞

)/
X(Qp). To verify this claim, observe that EXP∗T∞ modulo u0−1

sends the zeta-element to a multiple of
LNp(Cmin,1)

Ω+

Cmin

, which is non-zero. This

means the image of EXP∗T∞ ◦ locp is not contained in the augmentation ideal,
and so is abstractly isomorphic to Λ.

Remark: In summary, we have just shown that the global H1 has Λ-rank

one. Because the quotient H1
(
Qp,T∞

)/
X(Qp) is Λ-torsion free and also

has rank one, we may identify SelQ(T∞) with the Λ-torsion submodule of
H1
(
QΣ/Q, T∞

)
.

Question. Does SelQ(T∞) contain any pseudo-summands of the form
Λ
/
F
ej
j Λ

for some irreducible distinguished polynomial Fj and for ej ∈ N?

To provide an answer, we will need to specialise at arithmetic points of
Spec(Λ)alg. For any de Rham Gal

(
QΣ/Q

)
-lattice T, the Selmer group H1

g,SpecZ
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is defined by

H1
g,SpecZ

(
Q,T

)
:= Ker


H1

(
QΣ/Q,T

) ⊕resl−→
⊕

l 6=p
H1
(
Il,T

)
⊕ H1

(
Qp,T

)

H1
g

(
Qp,T

)


 .

Control Theorem. [Sm, Th 5.1] For all bar finitely many integral weights
k ≥ 2, the induced specialisation

SelQ(T∞)⊗Λ,σk Zp −→ H1
g,SpecZ

(
Q , T∞ ⊗Λ,σk Zp

)

has finite kernel and cokernel, bounded independently of the choice of σk : Λ ։

Zp.

Kato’s Theorem. [Ka, Th 14.2] For all integral weights k ≥ 3, the Bloch-

Kato compact Selmer group H1
f,SpecZ

(
Q , T∞ ⊗Λ,σk Zp

)
is finite.

Actually Kato proves this result for discrete Selmer groups, but they are
equivalent statements. Note that T∞ ⊗Λ,σk Zp is a lattice inside V ∗fk , the
contragredient of Deligne’s GQ-representation attached to the eigenform fk ∈
Sord
k

(
Γ0(Np

r), ω2−k). The non-vanishing of the L-value L(fk, 1) forces these
Selmer groups to be finite.

Corollary 4.3. For almost all k ≥ 2, the order of SelQ(T∞) ⊗Λ,σk Zp is
bounded.

Proof: We first observe that H1
g,SpecZ(Q, V ∗fk) coincides with H1

f,SpecZ(Q, V ∗fk)
unless the local condition H1

g (Qp, V
∗
fk

) is strictly larger than H1
f (Qp, V

∗
fk

). How-
ever,

dimQp

(
H1
g/f (Qp, V

∗
fk

)
)

= dimQp

(
Dcris

(
Vfk(1)

)/
(ϕ− 1)

)
by [BK, Cor 3.8.4]

and an argument involving slopes of the Frobenius ϕ shows this dimension is
zero.

By Kato’s theorem H1
f,SpecZ is finite, so it lies in H1

(
QΣ/Q,T∞⊗Λ,σk Zp

)
[p∞];

the latter torsion is identified with H0
(
QΣ/Q,

(
T∞ ⊗Λ,σk Zp

)
⊗ Q/Z

)
via a

standard technique in continuous cohomology. It follows from the Control
Theorem, that

SelQ(T∞)⊗Λ,σkZp
nat→ H1

f,SpecZ

(
Q,T∞⊗Λ,σkZp

)
→֒
((

T∞⊗Λ,σkZp
)
⊗Q/Z

)GQ

has kernel killed by a universal power pν1 say, independent of the weight k.
Let us choose a prime l ∤ Np. By definition 1−al(fk).Frobl+ l < l >k−2 .Frob2

l

is zero on V ∗fk , and 1−al(fk)+l < l >k−2 must kill off
((

T∞⊗Λ,σkZp
)
⊗Q/Z

)GQ
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because Frobenius acts trivially on the GQ-invariants. We claim that there are
infinitely many choices of l for which 1− al(fk) + l < l >k−2 6= 0. If not,

1−al(fk)l−s+ l < l >k−2 l−2s =
(
1− l−s

)(
1−ω2−k(l)lk−1−s) for all l 6∈ S

where S is some finite set containing Σ. Proceeding further down this
cul-de-sac, we obtain an equality of incomplete L-functions LS(fk, s) =
ζS(s)LS(ω2−k, s+1−k) which is patently ridiculous, as fk is not an Eisenstein
series!
If k ≡ k′mod (p− 1)pc, then

1− al(fk) + l < l >k−2 ≡ 1− al(fk′) + l < l >k
′−2 modulo pc+1 .

For each class τ modulo p−1, we can cover weight-space by a finite collection of
open disks Dτ

1 , . . . ,D
τ
n(τ) upon which ordp

(
1−al(fk)+ l < l >k−2

)
is constant

for every k ∈ Dτ
j , k ≡ τ(mod p − 1). Setting ν2 equal to the non-negative

integer

max
τ mod p−1

{
max

1≤j≤n(τ)

{
ordp

(
1− al(fk) + l < l >k−2

)
with k ∈ Dτ

j , k ≡ τ
}}

,

clearly pν2 annihilates all the
((

T∞ ⊗Λ,σk Zp
)
⊗ Q/Z

)GQ

’s. We deduce that

pν1+ν2 kills off SelQ(T∞) ⊗Λ,σk Zp for almost all k ≥ 3, and the corollary is
proved.

Remark: The answer to the question posed above is therefore negative, i.e.
there can exist no pseudo-summands of the shape Λ

/
F
ej
j Λ lying inside of

SelQ(T∞) (otherwise the specialisations SelQ(T∞) ⊗Λ,σk Zp would have un-
bounded order for varying weights k ≥ 2, which violates Corollary 4.3). The
compact Selmer group is of finite-type over the local ring Λ, and it follows from
the structure theory that SelQ(T∞) must be a finite abelian p-group, of order
dividing pν1+ν2 .

Let us recall the definition of the degeneration maps between modular curves.
For integers d ≥ 1 and m,n ≥ 5 with dm

∣∣n, the finite map πd : X1(n)→ X1(m)
operates on the affine curves Y1(−) by the rule

πd

(
A, µn

θ→֒ A[n]

)
=

(
A′, µm

θ′→֒ A′[m]

)

where A′ = A
/
θ(µd), and the injection θ′ : µm →֒ µn/d

d∼← µn/µd
θmod µd→֒

A
/
θ(µd).
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Hida [H1] identified the Γp
r−1

-coinvariants of T∞, with the Tate module of a
p-divisible subgroup of jac X1(n) at level n = Npr. The natural composition

H1
(
QΣ/Q,T∞

)
∼= lim←−
r≥1

H1
(
QΣ/Q,

(
T∞
)
Γpr−1

)
→֒ lim←−

πp ∗

H1
(
QΣ/Q,Tap(Jr)

ord
)

injects SelQ(T∞) into the projective limit lim←−πp ∗
(
H1
(
QΣ/Q,Tap(Jr)

ord
)
[p∞]

)
.

Again it’s continuous cohomology, so the Zp-torsion in H1
(
QΣ/Q,Tap(Jr)

ord
)

is then isomorphic to H0
(
QΣ/Q,Tap(Jr)

ord ⊗Q/Z
)

= Jord
r (Q)[p∞] as finite

groups.

Lemma. (Nekovár̃) [NP, 1.6.6] (i) π1 ∗
(
eord.Tap(Jr+1)

)
⊂ p

(
eord.Tap(Jr)

)
;

Let 1
pπ1 ∗ : Tap(Jr+1)

ord → Tap(Jr)
ord denote the map satisfying p

(
1
pπ1 ∗

)
=

π1 ∗.

(ii)
(

1
pπ1 ∗

)
◦ π∗1 = multiplication by p on eord.Tap(Jr);

(iii) π∗1 ◦
(

1
pπ1 ∗

)
=
∑
γ∈Γr/Γr+1

〈γ〉 on eord.Tap(Jr+1) where Γr = Γp
r−1

;

(iv) πp ∗ = Up ◦
(

1
pπ1 ∗

)
on eord.Tap(Jr+1).

We shall use these facts directly, to show the triviality of the compact Selmer
group. Because it is finite of order dividing pν1+ν2 , for large enough r ≫ 1 we
can realise SelQ(T∞) as a subgroup Sr of jac X1(Np

r)ord(Q)[pν1+ν2 ].

The sequence of Sr’s is compatible with respect to the degeneration maps πp ∗
and π∗1 : jac X1(Np

r)(Q)[p∞] −→ jac X1(Np
r+1)(Q)[p∞], so for any e ≥ 0

Sr =
(
πp ∗

)e(Sr+e
)
∼=

(
πp ∗

)e ◦
(
π∗1
)e(Sr

)
.

By part (iv) of this lemma
(
πp ∗

)e
coincides with

(
Up ◦

(
1
pπ1 ∗

))e
, and the

covariant action of the Up-operator is invertible on the ordinary locus. Conse-
quently

Sr ∼= ap(f)
e ×

(
1

p
π1 ∗

)e
◦
(
π∗1
)e(Sr

)
by (ii)

= ap(f)
e × pe

(
Sr
)

and picking e ≥ ν1 +ν2, we see that SelQ(T∞) ∼= Sr ⊂ Jr[pν1+ν2 ] must be zero.

The proof of Proposition 4.2 is thankfully over.
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Sci. École Norm. Sup. (4) 19 (1986), 231-273.
[Ka] K. Kato, p-adic Hodge theory and values of zeta functions of modular

forms, preprint (2002).
[MW] B. Mazur and A. Wiles, On p-adic analytic families of Galois represen-

tations, Compositio Math. 59 (1986), 231-264.
[NP] J. Nekovár̃ and A. Plater, On the parity ranks of Selmer groups, Asian

Journal Math. (2) 4 (2000), 437-498.
[Sm] P. Smith, PhD Thesis, University of Nottingham (2006).
[St] G. Stevens, Stickelberger elements and modular parametrizations of

elliptic curves, Invent. Math. 98 (1989), 75-106.

Daniel Delbourgo
Department of Mathematics
University Park
Nottingham
England NG7 2RD
dd@maths.nott.ac.uk

Documenta Mathematica · Extra Volume Coates (2006) 301–323



324

Documenta Mathematica · Extra Volume Coates (2006)



Documenta Math. 325

Coleman Integration Versus

Schneider Integration on Semistable Curves

To John Coates, on the occasion of his 60th birthday

Ehud de Shalit

Received: August 17, 2005

Revised: February 27, 2006

Abstract. The purpose of this short note is to clarify the relation
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0.1. The filtered (Φ, N)-module attached to a semistable curve. Let
K be a local field of characteristic 0 and residual characteristic p. Denote by
OK its ring of integers, and by κ its residue field. Denote by K0 the fraction
field of the Witt vectors of κ, and by σ its Frobenius automorphism. Thus
K/K0 is a finite, totally ramified extension.
By a curve X over OK we shall mean a proper flat scheme over OK of relative
dimension 1. We denote its generic fiber by XK and its special fiber by Xκ.
We assume that X has semistable reduction. This means that X is regular and
Xκ is a reduced curve whose singularities are ordinary double points. [Some
authors use a less restrictive definition, in which X need not be regular, but
this will require some modifications in what we do below.] We assume also
that Xκ is split : the irreducible components of the (geometric) special fiber,
its singular points, and the two tangents at each singular point, are all defined
over κ. This can be achieved if we replace K by a finite unramified extension.
Let H = H1

dR(XK/K) be the first de-Rham cohomology of XK . It can be
identified with the space of differentials of the second kind on XK modulo
exact differentials. H is a finite dimensional vector space over K, and it carries
the Hodge filtration (differentials of the first kind)

(0.1) 0 ⊂ F 1
dR = H0(XK ,Ω

1) ⊂ F 0
dR = H.
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Let X×κ be the log-scheme associated to the special fiber with its induced log-
structure [Ill]. Let D = H1

crys(X
×
κ /K0) be its first log-crystalline cohomology

[LS, H-K]. Recall that D is a finite dimensional vector space over K0, which
comes equipped with a σ-linear bijective endomorphism Φ (Frobenius) and a
nilpotent endomorphism N (monodromy) satisfying the relation

(0.2) NΦ = pΦN.

For every prime π ofK Hyodo and Kato constructed a comparison isomorphism

(0.3) ρπ : D ⊗K0
K ≃ H

and the following relation holds for any two choices of a uniformizer

(0.4) ρπ′ = ρπ ◦ exp (log(π′/π)N) .

Note that the exponential is in fact a finite sum because N is nilpotent.
The structure (H,F ·dR,D,Φ, N, ρπ) is the filtered (Φ, N)-module attached to
X.

0.2. The weight decomposition. Let φ = Φf , where f = [κ : Fp], be
the relative Frobenius, which now acts linearly on D. Write q = pf for the
cardinality of κ. By [LS] (see [Mo] in higher dimensions) we have a weight
decomposition

(0.5) D = D0 ⊕D1 ⊕D2

where φ acts on Di with eigenvalues which are q-Weil numbers of weight i
(algebraic integers whose absolute value in any complex embedding is qi/2).
From the relation Nφ = qφN we deduce that N must vanish on D0 and D1,
and must map D2 to D0. In fact, it is known that it maps D2 isomorphically
onto D0. This is a special case of the p-adic monodromy-weight conjecture.
By means of the isomorphism ρπ we transport the weight decomposition to H,

(0.6) H = H0 ⊕H1 ⊕H2
π

where only the last summand, but not H0 or H1, depends on π, because N
vanishes on D0 and D1. The weight filtration is defined by

(0.7) F iWH =
∑

j≤i
Hj .

Our goal is to explain the weight decomposition of H in terms of the generic
fiber only, using two transcendental processes in rigid analysis - Schneider and
Coleman integration. The main theorem is a reformulation of the work of
Coleman and Iovita [Co-I1], and only the presentation, and a few trivial ob-
servations, are new. We have a vague hope that similar techniques might help
to understand the weight decomposition, and in particular the monodromy-
weight conjecture, for the cohomology of higher dimensional varieties as well.
For p-adically uniformized varieties this was done in [dS], see also [Ito]. We also
note that [Co-I2] and [GK] treat Frobenius and monodromy in more general
situations, the first reference in cohomology of curves with coefficients, and the
second in higher dimensions.
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0.3. Schneider integration. To describe the main theorem, consider the
degeneration complex ∆ of X (also called the dual graph of the special fiber).
Its vertices ∆0 are the irreducible components of Xκ. Its edges ∆1 are the
singular points of Xκ (recall that the special fiber is assumed to be split). Each
singular point, being an ordinary double point, determines two distinct analytic
branches. The irreducible components on which these analytic branches lie,
which may be the same, are the two end points of the edge. An orientation of
an edge is an ordering of the two analytic branches at the singularity. We denote

by ~∆1 the set of oriented edges, and by ~∆1(v) the oriented edges originating
at a vertx v. Note that if the two end points of an edge e are distinct, at most

one of the oriented edges ε, ε̄ lying over e may belong to ~∆1(v), but if e is a
loop based at v, then both of them belong there.
We introduce the space of harmonic 1-cochains on ∆ which we denote by

C1
har(∆). These are the maps f : ~∆1 → K satisfying

(0.8) (i) f(ε̄) = −f(ε), (ii) ∀v
∑

ε∈~∆1(v)

f(ε) = 0.

There is a canonical isomorphism

(0.9) ν : C1
har(∆) ≃ H1(∆,K),

which sends a harmonic cochain to the singular cohomology class that it rep-
resents.
Let Xan denote the rigid analytic curve (over K̄) attached to XK̄ . There is a
well known “retraction” map r : Xan → |∆|. The inverse image under r of a
vertex v consists of an affinoid with good reduction Xv. The reduction of Xv

is the smooth part of Yv, the irreducible component of Xκ labelled by v. The
inverse image under r of an open edge e is an annulus Xe, isomorphic to

(0.10) {z| |π| < |z| < 1} ,
and an orientation of e determines an orientation of the annulus. All the points
in Xe reduce in the special fiber to the singular point labelled by e.
If ω is a regular differential, and ε is an orientation on e, resε(ω) will denote
the residue of ω with respect to a local parameter z on Xe compatible with ε.
Clearly

(0.11) resε̄ω = −resεω,
and the rigid analytic Cauchy theorem guarantees that

(0.12)
∑

ε∈~∆1(v)

resε(ω) = 0.

Defining

(0.13) cω(ε) = resε(ω)

we obtain a harmonic 1-cochain cω. This definition extends without any dif-
ficulty to differentials of the second kind. Indeed, such a differential may be
locally (Zariski) modified by an exact differential to make it regular, so on each
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Xe we may assume it is regular and define its residue as before. Cauchy’s the-
orem still holds, so cω is harmonic. Since all the residues along annuli of exact
differentials vanish, we get a well defined map

(0.14) H → C1
har(∆), [ω] 7→ cω.

Passing to H1(∆,K) we obtain the Schneider class

(0.15) Sω = ν(cω) ∈ H1(∆,K)

of ω.

0.4. Coleman integration. To define the Coleman class of a differential of
the second kind ω we use Coleman’s p-adic integration [Co], [Co-dS]. Let ∆̃ be
the tree which is the universal covering of ∆, and

(0.16) X̃an = Xan ×∆ ∆̃

the rigid analytic curve which is the fiber product of Xan with ∆̃ over ∆ (the
map from Xan to ∆ being the retraction map r). We shall denote by Γ the

group of deck transformations of the covering ∆̃ → ∆ (or, equivalently of

X̃an → Xan). We shall continue to denote by r also the map from X̃an to |∆̃|.
Let X̃(ṽ), for ṽ ∈ ∆̃0, be the inverse image under r of the star of a vertex
ṽ. (The star is the union of the vertex with the open edges originating at

ṽ. Note that a loop in ∆ based at v lifts in ∆̃ to two distinct edges starting
at ṽ. If we assume that ∆ has no loops, then X̃(ṽ) is isomorphic to X(v),

the inverse image of the star of v in Xan.) In Coleman’s language X̃(ṽ) is a

wide open space, and (if v is the image of ṽ in ∆) X̃ṽ ≈ Xv is an underlying

affinoid with good reduction in X̃(ṽ). One can define a Coleman primitive Fπ,ṽ
of ω in X̃(ṽ). It is a locally analytic function which satisfies dFπ,ṽ = ω, and is
uniquely determined up to an additive constant by its behavior under a rigid
analytic (overconvergent) lifting of Frobenius to X̃ṽ. As the notation suggests,

Fπ,ṽ depends (on the annuli surrounding X̃ṽ in X̃(ṽ)) on the choice of π. For

a given π, though, and neighboring vertices ṽ, ũ of ∆̃, Fπ,ṽ − Fπ,ũ is constant

on the annulus where it is defined. Since ∆̃ is a tree, it is possible to choose
the constants in such a way that the Fπ,ṽ glue to give a primitive Fπ of ω on

all of X̃an. Since ω is Γ-invariant,

(0.17) Cπ,ω(γ) = γ(Fπ)− Fπ = Fπ ◦ γ−1 − Fπ
is constant for every deck transformation γ ∈ Γ. The homomorphism

(0.18) Cπ,ω ∈ H1(Γ,K) = H1(∆,K)

is the obstruction to descending Fπ to Xan. It vanishes if and only if Fπ lives
on Xan, not merely on X̃an, namely if and only if we can “Coleman integrate”
ω on X.
We shall prove that

(0.19) Cπ′,ω − Cπ,ω = − log(π′/π)Sω.

Our reformulation of the paper [Co-I] can now be stated as follows.
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Theorem 0.1. (1) One has a canonical identification H/F 1
WH ≃ C1

har(∆) via
the residue homomorphism. In other words, the cochains cω give us all the
harmonic cochains, and cω = 0 if and only if Sω = 0, if and only if ω ∈ F 1

WH.
(2) One has a canonical identification F 0

W = H0 = H1(∆,K) and Cπ,ω is the
projection of [ω] onto H0 relative to the decomposition H = H0 ⊕H1 ⊕H2

π.
(3) The map ν corresponds to the monodoromy isomorphism

(0.20) ν : H/F 1
WH ≃ H0

derived from N.

Corollary 0.2. The subspace H1 is characterized as the space of differentials
of the second kind for which a global Coleman primitive exists on X, regardless
of π.

Proof. Indeed, in view of the relation between Cπ,ω, Cπ′,ω and Sω, the following
are equivalent: (i) Cπ,ω = 0 for all π (ii) Cπ,ω = 0 for two π whose ratio is not
a root of unity, (iii) Cπ,ω = 0 for some π and Sω = 0. In view of the theorem,
the last property is equivalent to [ω] ∈ H1. �

Another corollary is the following. Denote by g(XK) the genus of the curve
and by g(∆) the genus of ∆.

Corollary 0.3. For generic (all but finitely many) π the image of Cπ,ω is all
of H1(∆,K), and the dimension of the space of Coleman-integrable differentials
of the second kind modulo exact differentials is 2g(XK)− g(∆).

Proof. Since S is surjective, so is Cπ for all but finitely many π. �

The Hodge filtration did not play any role so far. The position of the dif-
ferentials of the first kind in H with respect to the weight decomposition is
mysterious. It is known that they are transversal to H0, and that together
with F 1

WH they span H, but their intersection with H1 can be large or small.
All we can say is the following.

Corollary 0.4. For generic π, the dimension of the Coleman-integrable dif-
ferentials of the first kind is g(XK) − g(∆). The dimension of the space of
differentials of the first kind for which a Coleman primitive exists for all π is

(0.21) g(XK)− 2g(∆) ≤ dim(H1 ∩ F 1
dR) ≤ g(XK)− g(∆).

Proof. Since F 1
dR maps onto C1

har(∆) under the residue map, S|F 1
dR

is still

surjective, so the first assertion is proved as in the previous corollary. The
upper bound in the second assertion follows from it, while the lower bound is
obvious by counting dimensions. �

Remark 0.1. In [Cz], Colmez defines primitives for every differential of the
second kind on XK , regardless of the type of reduction. His primitives are
independent of a choice of π, and in general do not coincide with Coleman’s
primitives, except for the case of good reduction. He embeds the curve in its
Jacobian, and uses the group structure of the latter to extend his integral from
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a neighborhood of the origin to the whole Jacobian. As an example, the reader
may keep in mind the case of a Tate elliptic curve, of multiplicative period
qE . Colmez’ primitive of the differential of the first kind in this case would be
the same as Coleman’s primitive, based on a branch of the p-adic logarithm
which vanishes on qE . It is clear that for curves of higher genus no branch of
the logarithm conforms to all the periods. It is precisely the consideration of
Coleman’s theory, as opposed to Colmez’, that gives us the possibility to identify
the weight decomposition in the generic fiber (granted a choice of π is fixed).

1. The proof

1.1. Establishing the relation between Cπ,ω and Sω. Denote by logπ
the unique logarithm on K̄× for which logπ(π) = 0. We recall that Coleman’s

primitive Fπ,ṽ on the wide open X̃(ṽ) satisfies the following. If ε̃ = (ṽ, ũ) is an

oriented edge of ∆̃, and X̃ε̃ the corresponding oriented annulus in X̃an, and if
z is a local parameter on X̃ε̃, then we may expand

(1.1) ω|X̃ε̃ =
∑

anz
ndz

and, up to an additive constant,

(1.2) Fπ,ṽ|X̃ε̃ =
∑

n6=−1

an(n+ 1)−1zn+1 + a−1 logπ(z).

Since

(1.3) logπ′(z)− logπ(z) = − log(π′/π)ordK(z)

we get that (again, up to a constant)

(1.4) Fπ′ − Fπ|X̃ε̃ = − log(π′/π)resε(ω)ordK(z).

On an affinoid X̃ṽ, Coleman’s primitive is independent of π, up to a constant.
Let γ ∈ Γ and normalize Fπ′ and Fπ so that they agree on X̃ṽ. On X̃γ−1(ṽ) we
shall then have

(1.5) Fπ′ − Fπ = − log(π′/π)
∑

ε∈(ṽ,γ−1(ṽ))

resεω,

where the sum is over the oriented edges leading from ṽ to γ−1(ṽ). This sum is
just Sω(γ), because Sω is obtained from cω via the connecting homomorphism

(1.6) C1
har(∆) = C1

har(∆̃)Γ → H1(Γ,K)

which is associated with the short exact sequence

(1.7) 0→ K → C̃0
har(∆̃)→ C1

har(∆̃)→ 0,

where C̃0
har(∆̃) are the 0-cochains on the tree satisfying the mean value prop-

erty. It follows that

(1.8) Cπ′,ω(γ)− Cπ,ω(γ) = − log(π′/π)Sω(γ),

as we had to prove.
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If we assume theorem 1, then (1.8) follows also from (0.4) and the fact that
N2 = 0 (and vice versa). In the rest of this chapter we shall show how to derive
the main theorem from the paper [Co-I].

1.2. The weight filtration on H. Determining the weight filtration on H
in terms of the general fiber, and finding an expression for N, do not require a
choice of π, or the use of Coleman integration. These will be needed only for
the weight decomposition, to be considered in the next section.
By GAGA, H can be identified with rigid de-Rham cohomology H1

dR(Xan
K ).

For simplicity let us assume from now on that ∆ contains no loops, so we
identify the wide open set X̃(ṽ) with its image X(v) in Xan. The covering
U = {X(v)} of Xan is admissible and acyclic, defined over K. It follows that
we may identify H with the space of rigid 1-hyper-cocycles

(1.9)

{
(ωv, fε); ωv ∈ Ω(X(v)), fε ∈ O(Xε), dfε = ωv − ωu|Xε

if ε connects u to v, and fε̄ = −fε

}
,

modulo the space of rigid 1-hyper-coboundaries: elements of the type (dfv, fv−
fu) for fv ∈ O(X(v)). Specifically, if ω is a differential of the second kind, we
pick rational functions gv so that ωv = ω − dgv is holomorphic on X(v), and
put fε = gu − gv. The class [ω] is then represented by (ωv, fε).
Since Xv is an affinoid with good reduction, the Frobenius morphism φ (of
degree q) lifts to characteristic 0, to a rigid analytic mapping φv of Xv to
itself. This rigid analytic Frobenius is overconvergent: there exists a strict
neighborhood Xv ⊂ X ′v ⊂ X(v) such that φv extends to a morphism of X ′v
to X(v). This X ′v can (and will) be chosen to consist of Xv together with an
open annulus for each edge originating at v, and then the inclusion X ′v ⊂ X(v)
induces isomorphism on de Rham cohomology. We can therefore regard φ∗v
as an endomorphism of H1

dR(X(v)). In fact, if we let Y 0
v be the smooth part

of Yv, the reduction of Xv, H
1
dR(X(v)) is nothing but the Monsky-Washnitzer

cohomology of Y 0
v (tensored with K) and φ∗v is its Frobenius. It is independent

of the lifting.
The roots of the characteristic polynomial of φ∗v on H1

dR(X(v)) have weights 1
or 2. Moreover, there is an exact sequence

(1.10) 0→ F 1
WH

1
dR(X(v))→ H1

dR(X(v))
res→
(
⊕ε∈~∆v

K
)

0
→ 0

where res is the residue map, and F 1
W is the weight 1 subspace. The subscript 0

on the quotient means that we take only those elements in the direct sum whose
coordinates add up to 0. On the weight 2 quotient φ∗v acts by multiplication
by q.
Let F 0

WH be the subspace of H represented by classes [(0, kε)], where the kε are
constants. It is thus isomorphic to H1(∆,K). Coleman and Iovita prove that
under the Hyodo-Kato isomorphism this subspace is the image of the weight
zero part of D (combine Lemma I.4.2 and Theorem II.5.4 of their paper).
The quotient

(1.11) H/F 0
WH
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is the image of H in H1
dR(X̃an) under pullback. It is the space of differentials

of the second kind on Xan, modulo those which become exact on X̃an. The
residue map gives the filtration

(1.12) 0→ gr1WH = F 1
WH/F

0
WH → H/F 0

WH
res→ C1

har(∆)→ 0,

which is the direct sum, over the vertices of ∆, of the short exact sequences
recorded above. The surjectivity of the global residue map results from a
dimension counting. Once again, Coleman and Iovita prove that under the
Hyodo-Kato isomorphism, the Frobenius structure of H/F 0

WH is the one de-
scribed above, rigid analytically, in terms of the φ∗v. (Compare how they define,
in Section I.1, the Frobenius structure on

(1.13) Ker(H1
dR(X0)→ H1

dR(X1)−),

which is our H/F 0
WH, and apply their Theorem II.5.4.) It follows that F 1

W is
indeed the weight 1 filtration, and C1

har = gr2WH. Finally, that the monodromy
operator is derived from the isomorphism ν between C1

har(∆) and H1(∆,K)
also follows from [Co-I] (combine the description of N in Section I.1.1 and the
commutative diagram on p.185). This checks all the statements of our main
theorem, except for the identification of the weight decomposition in terms of
Coleman integration.

1.3. The weight decomposition on H. Fix a choice of π. In Section I.1 of
[Co-I] the authors describe a splitting of the projection H → H/F 0

WH, whose
image is H1 ⊕H2

π. Recall that an element of H/F 0
WH is a collection {[ωv]} of

classes [ωv] ∈ H1
dR(X(v)), such that for any oriented edge ε, connecting u to v,

resεωu = resεωv. Let Fπ,v be the Coleman integral of ωv on X(v), described
above, which is determined up to a constant. Since the residues of ωu and ωv
on Xε agree, the function

(1.14) fπ,ε = Fπ,v − Fπ,u ∈ O(Xε)

is rigid analytic in the annulus. The 1-hyper-cocyle (ωv, fπ,ε) is well-defined
up to a coboundary, and its class in H gives the desired splitting.
It is now easy to check that Cπ vanishes on classes ω which are in the image
of this splitting. Indeed, suppose the differential of the second kind ω is such
that

(1.15) ω = ωv + dgv

for a meromorphic function gv on X(v), and gu − gv = fπ,ε = Fπ,v − Fπ,u
on Xε. Then Fπ,u + gu agree on the annuli, hence glue to give a well defined
Coleman meromorphic function Fπ,ω on Xan, which is a global primitive of ω.
It follows that Cπ,ω = 0.
On the other hand, if we start with a 1-hypercocycle (0, kε) where the kε are
constants, and if ω is a differential of the second kind for which there are
meromorphic functions gv on X(v) such that ω = dgv there, and gv− gu = kε
for an edge connecting u to v, then [(kε)] ∈ H1(∆,K) is the obstruction to
integrating ω globally on Xan, hence is equal to Cπ,ω.
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These computations show that Cπ annihilates H1 ⊕ H2
π, and is the identity

map on H0. This completes the proof of Theorem 1.

1.4. Relation to the Neron model of the Jacobian. Even though the
primitive F̃π,ω of a differential of the second kind ω need not descend to Xan,
we may use it to define the integral

(1.16)

∫

D

ω

over certain divisors of degree 0, namely those who specialize in Xκ to divisors
which avoid the singular points and are of degree 0 on each of the irreducible
components Yv separately. This is because such a divisor D intersects each
affinoid Xv in a divisor Dv of degree 0, while Fπ,v is well defined, up to a
constant, and independently of π, on Xv. Observe that the divisors in question
are precisely those whose classes in Pic0 represent the connected component
J 0 of the Neron model of the Jacobian of XK .
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which we consider are discrete R-modules. Under certain hypotheses,
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module. We also consider the subgroup of locally trivial elements in
the second cohomology group, proving under certain hypotheses that
it is a coreflexive R-module.
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1 Introduction

Suppose that K is a finite extension of Q and that Σ is a finite set of primes of
K. Let KΣ denote the maximal extension of K unramified outside of Σ. We
assume that Σ contains all archimedean primes and all primes lying over some
fixed rational prime p. The Galois cohomology groups that we consider in this
article are associated to a continuous representation

ρ : Gal(KΣ/K)−→GLn(R)

where R is a complete local ring. We assume that R is Noetherian and com-
mutative. Let m denote the maximal ideal of R. We also assume that the
residue field R/m is finite and has characteristic p. Thus, R is compact in its

Documenta Mathematica · Extra Volume Coates (2006) 335–391



336 Ralph Greenberg

m-adic topology, as will be any finitely generated R-module. Let T denote the
underlying free R-module on which Gal(KΣ/K) acts via ρ. We define

D = T ⊗R R̂,

where R̂ = Hom(R,Qp/Zp) is the Pontryagin dual of R with a trivial action of

Gal(KΣ/K). Thus, D is a discrete abelian group which is isomorphic to R̂n as
an R-module and which has a continuous R-linear action of Gal(KΣ/K) given
by ρ.

The Galois cohomology groups Hi(KΣ/K,D), where i ≥ 0, can be considered
as discrete R-modules too. The action of Gal(KΣ/K) on D is R-linear and
so, for any r ∈ R, the map D → D induced by multiplication by r induces
a corresponding map on Hi(KΣ/K,D). This defines the R-module structure.
It is not hard to prove that these Galois cohomology groups are cofinitely
generated over R. That is, their Pontryagin duals are finitely generated R-
modules. We will also consider the subgroup defined by

X
i
(K,Σ,D) = ker

(
Hi(KΣ/K,D)→

∏

v∈Σ

Hi(Kv,D)
)
.

Here Kv denotes the v-adic completion of K. Thus, X
i
(K,Σ,D) consists of

cohomology classes which are locally trivial at all primes in Σ and is easily
seen to be an R-submodule of Hi(KΣ/K,D). Of course, it is obvious that

X
0
(K,Σ,D) = 0. It turns out that X

i
(K,Σ,D) = 0 for i ≥ 3 too. However,

the groups X
1
(K,Σ,D) and X

2
(K,Σ,D) can be nontrivial and are rather

mysterious objects in general.

Suppose that one has a surjective, continuous ring homomorphism φ : R→ O,
where O is a finite, integral extension of Zp. Such homomorphisms exist if R
is a domain and has characteristic 0. Then Pφ = ker(φ) is a prime ideal of R.
One can reduce the above representation modulo Pφ to obtain a representation
ρφ : Gal(KΣ/K)−→GLn(O) which is simply the composition of ρ with the
homomorphism GLn(R)→ GLn(O) induced by φ. Thus, ρ is a deformation of
ρφ and one can think of ρ as a family of such representations. The underlying
Galois module for ρφ is Tφ = T /PφT . This is a free O-module of rank n. Let

Dφ = Tφ⊗O Ô, where Ô is the Pontryagin dual of O with trivial Galois action.

The Pontryagin dual of R/Pφ is R̂[Pφ], the submodule of R̂ annihilated by Pφ.
Since R/Pφ ∼= O, we have R̂[Pφ] ∼= Ô. One can identifyDφ with D[Pφ]. We can
compare the cohomology of Dφ with D since one has a natural homomorphism

Hi(KΣ/K,Dφ) = Hi(KΣ/K,D[Pφ]) −→ Hi(KΣ/K,D)[Pφ].

However, unless one makes certain hypotheses, this homomorphism may fail to
be injective and/or surjective. Note also that all of the representation ρφ have
the same residual representation, namely ρ, the reduction of ρ modulo m. This
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gives the action of Gal(KΣ/K) on Tφ/mTφ ∼= T /mT or, alternatively, on the
isomorphic Galois modules Dφ[m] ∼= D[m].

Assume that R is a domain. Let X denote the Pontryagin dual of
H1(KΣ/K,D). One can derive a certain lower bound for rankR(X) by us-
ing Tate’s theorems on global Galois cohomology groups. Let Y denote the
torsion R-submodule of X. The main result of this paper is to show that if
rankR(X) is equal to the lower bound and if R and ρ satisfy certain additional
assumptions, then the associated prime ideals for Y are all of height 1. Thus,
under certain hypotheses, we will show that X has no nonzero pseudo-null R-
submodules. By definition, a finitely generated, torsion R-module Z is said to
be “pseudo-null” if the localization ZP is trivial for every prime ideal P of R
of height 1, or, equivalently, if the associated prime ideals for Z have height at
least 2.

If the Krull dimension of R is d = m+1, where m ≥ 0, then it is known that R
contains a subring Λ such that (i) Λ is isomorphic to either Zp[[T1, ..., Tm]] or
Fp[[T1, ..., Tm+1]], depending on whether R has characteristic 0 or p, and (ii) R
is finitely generated as a Λ-module. (See theorem 6.3 in [D].) One important
assumption that we will often make is that R is reflexive as a Λ-module. We
then say that R is a reflexive domain. It turns out that this does not depend
on the choice of the subring Λ. An equivalent, intrinsic way of stating this
assumption is the following: R =

⋂
P RP , where P varies over all prime ideals

of R of height 1. HereRP denotes the localization ofR at P, viewed as a subring
of the fraction field K of R. Such rings form a large class. For example, if R is
integrally closed, then R is reflexive. Or, if R is Cohen-Macaulay, then R will
actually be a free Λ-module and so will also be reflexive. We will also say that
a finitely generated, torsion-free R-module X is reflexive if X =

⋂
P XP , where

P again varies over all the prime ideals of R of height 1 and XP = X ⊗R RP
considered as an R- submodule of the K-vector space X ⊗R K.

We will use the following standard terminology throughout this paper. If A is
a discrete R-module, let X = Â denote its Pontryagin dual. We say that A is
a cofinitely generated R-module if X is finitely generated as an R-module, A is
a cotorsion R-module if X is a torsion R-module, and A is a cofree R-module
if X is a free R-module. We define corankR(A) to be rankR(X). Similar
terminology will be used for Λ-modules. Although it is not so standard, we
will say that A is coreflexive if X is reflexive, either as an R-module or as a
Λ-module, and that A is co-pseudo-null if X is pseudo-null. For most of these
terms, it doesn’t matter whether the ring is Λ or a finite, integral extension R of
Λ. For example, as we will show in section 2, A is a coreflexive R-module if and
only if it is a coreflexive Λ-module. A similar statement is true for co-pseudo-
null modules. However, the module D defined above for a representation ρ
is a cofree R-module and a coreflexive, but not necessarily cofree, Λ-module,
assuming that R is a reflexive domain.

Assume that X is a torsion-free R-module. Then, if r is any nonzero element
of R, multiplication by r defines an injective map X → X. The corresponding
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map on the Pontryagin dual is then surjective. Thus, A = X̂ will be a divisible
R-module. Conversely, if A is a divisible R-module, then X is torsion-free. If
R is a finite, integral extension of Λ, then A is divisible as an R-module if and
only if A is divisible as a Λ-module. The kernel of multiplication by an element
r ∈ R will be denoted by A[r]. More generally, if I is any ideal of R or Λ, we
let A[I] = {a ∈ A

∣∣ ia = 0 for all i ∈ I}.
Suppose v is a prime of K. Let K,Kv denote algebraic closures of the in-
dicated fields and let GK = Gal(K/K), GKv = Gal(Kv/Kv). We can
fix an embedding K → Kv and this induces continuous homomorphisms
GKv → GK → Gal(KΣ/K). Thus, we get a continuous R-linear action of
GKv on T and on D. Define T ∗ = Hom(D, µp∞), where µp∞ denotes the group
of p-power roots of unity. Note that T ∗ is a free R-module of rank n. Choos-
ing a basis, the natural action of Gal(KΣ/K) on T ∗ is given by a continuous
homomorphism ρ∗ : Gal(KΣ/K)−→GLn(R). Consider the action of GKv on
T ∗. The set of GKv -invariant elements (T ∗)GKv = HomGKv

(D, µp∞) is an
R-submodule. The following theorem is the main result of this paper.

Theorem 1. Suppose that R is a reflexive domain. Suppose also that T ∗
satisfies the following two local assumptions:

(a) For every prime v ∈ Σ, the R-module T ∗/(T ∗)GKv is reflexive.

(b) There is at least one non-archimedean prime vo ∈ Σ such that
(T ∗)GKvo = 0.

Then X
2
(K,Σ,D) is a coreflexive R-module. If X

2
(K,Σ,D) = 0, then the

Pontryagin dual of H1(KΣ/K,D) has no nonzero, pseudo-null R-submodules.

The proof of this theorem will be given in section 6, but some comments about
the role of various assumptions may be helpful here. The assumption that R
is a domain is not essential. It suffices to just assume that R contains a formal
power series ring Λ over either Zp or Fp and that R is a finitely generated,
reflexive module over Λ. Then D will be a coreflexive Λ-module. In fact, it is
precisely that assumption which is needed in the argument. In particular, it
implies that if π is an irreducible element of Λ, then D[π] is a divisible module
over the ring Λ/(π). Coreflexive Λ-modules are characterized by that property.

(See corollary 2.6.1.) The assertion that X
2
(K,Σ,D) is also a coreflexive Λ-

module implies that it is Λ-divisible, but is actually a much stronger statement.
Reflexive Λ-modules are a rather small subclass of the class of torsion-free Λ-
modules.

The conclusion in theorem 1 concerning H1(KΣ/K,D) can be expressed in
another way which seems quite natural. It suffices to consider it just as a Λ-
module. The ring Λ is a UFD and so we can say that two nonzero elements of
Λ are relatively prime if they have no irreducible factor in common. We make
the following definition.

Definition. Assume that A is a discrete Λ-module. We say that A is an
“almost divisible” Λ-module if there exists a nonzero element θ ∈ Λ with the
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following property: If λ ∈ Λ is a nonzero element relatively prime to θ, then
λA = A.

If A is a cofinitely generated Λ-module, then it is not hard to see that A is an
almost divisible Λ-module if and only if the Pontryagin dual of A has no nonzero
pseudo-null Λ-submodules. (See proposition 2.4.) Under the latter condition,
one could take θ to be any nonzero annihilator of the torsion Λ-submodule Y
of X = Â, e.g., a generator of the characteristic ideal of Y . Thus, theorem 1
asserts that, under certain assumptions, the Λ-module H1(KΣ/K,D) is almost
divisible.

The main local ingredient in the proof is to show that H1(Kv,D) is an almost
divisible Λ-module for all v ∈ Σ. Assumption (a) guarantees this. In fact,
it is sufficient to assume that T ∗/(T ∗)GKv is reflexive as a Λ-module for all
v ∈ Σ. This implies that the map H2(Kv,D[P ]) −→ H2(Kv,D) is injective for
all but a finite number of prime ideals P in Λ of height 1; the almost divisibility

of H1(Kv,D) follows from that. The hypothesis that X
2
(K,Σ,D) = 0 then

allows us to deduce that the map H2(KΣ/K,D[P ]) −→ H2(KΣ/K,D) is in-
jective for all but finitely many such P ’s, which implies the almost divisibility
of H1(KΣ/K,D).

Both assumptions (a) and (b) are used in the proof that X
2
(K,Σ,D) is a

coreflexive Λ-module. Assumption (b) obviously implies that (T ∗)Gal(KΣ/K)

vanishes. That fact, in turn, implies that the global-to-local map defining

X
2
(K,Σ,D) is surjective. Such a surjectivity statement plays an important

role in our proof of theorem 1. We will discuss the validity of the local as-
sumptions at the end of section 5. Local assumption (a) is easily verified for
archimedean primes if p is odd, but is actually not needed in that case. It is
needed when p = 2 and, unfortunately, could then fail to be satisfied. For non-
archimedean primes, the local assumptions are often satisfied simply because
(T ∗)GKv = 0 for all such v ∈ Σ. However, there are interesting examples where
this fails to be true for at least some v’s in Σ and so it is too restrictive to make
that assumption.

The hypothesis that X
2
(K,Σ,D) = 0 is quite interesting in itself.

Under the assumptions in theorem 1, X
2
(K,Σ,D) will be coreflexive,

and hence divisible, as an R-module. Therefore, the statement that

X
2
(K,Σ,D) = 0 would then be equivalent to the seemingly weaker state-

ment that corankR
(
X

2
(K,Σ,D)

)
= 0. Just for convenience, we will give a

name to that statement.

Hypothesis L: X
2
(K,Σ,D) is a cotorsion R-module.

Of course, it is only under certain assumptions that this statement implies

that X
2
(K,Σ,D) actually vanishes. We will now describe two equivalent

formulations of hypothesis L which are more easily verified in practice. To
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state the first one, let D∗ = T ∗ ⊗R R̂. Then we will show that

corankR
(
X

2
(K,Σ,D)

)
= corankR

(
X

1
(K,Σ,D∗)

)
(1)

This will be proposition 4.4. Thus, one reformulation of hypothesis L is the

assertion that X
1
(K,Σ,D∗) is a cotorsion R-module. This formulation has

the advantage that it is easier to study H1 and hence X
1
. We should mention

that even under strong hypotheses like those in theorem 1, it is quite possible

for X
1
(K,Σ,D∗) to be a nonzero, cotorsion R-module.

A second equivalent formulation can be given in terms of the R-corank of
H1(KΣ/K,D). As we mentioned before, we will derive a lower bound on
this corank by using theorems of Tate. Those theorems concern finite Galois
modules, but can be extended to Galois modules such as D in a straightfor-
ward way. The precise statement is given in proposition 4.3. It is derived
partly from a formula for the Euler-Poincaré characteristic. For i ≥ 0, we let
hi = corankR

(
Hi(KΣ/K,D)

)
. Let r2 denote the number of complex primes of

K. For each real prime v of K, let n−v = corankR
(
D/DGKv

)
. Then

h1 = h0 + h2 + δ.

where δ = r2n+
∑
v real n

−
v . The Euler-Poincaré characteristic h0 − h1 + h2 is

equal to −δ. Thus, h1 is essentially determined by h0 and h2 since the quantity
δ is usually easy to evaluate. On the other hand, one gets a lower bound on h2

by studying the global-to-local map

γ : H2(KΣ/K,D) −→ P 2(K,Σ,D),

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). The cokernel of γ is determined by
Tate’s theorems: coker(γ) ∼= H0(KΣ/K, T ∗)∧. Thus, one can obtain a certain
lower bound for h2 and hence for h1. In proposition 4.3, we give this lower
bound in terms of the ranks or coranks of various H0’s. The assertion that
h1 is equal to this lower bound is equivalent to the assertion that ker(γ) has
R-corank 0, which is indeed equivalent to hypothesis L.

The local duality theorem of Poitou and Tate asserts that the Pontryagin dual
of H2(Kv,D) is isomorphic to H0(Kv, T ∗) = (T ∗)GKv . Thus, if we assume
that (T ∗)GKv = 0 for all non-archimedean v ∈ Σ, then H2(Kv,D) = 0 for all
such v. If we also assume that p is odd, then obviously H2(Kv,D) = 0 for all
archimedean v. Under these assumptions, P 2(K,Σ,D) = 0 and Hypothesis L
would then be equivalent to the assertion that H2(KΣ/K,D) = 0.

The validity of Hypothesis L seems to be a very subtle question. We will dis-
cuss this at the end of section 6. It can fail to be satisfied if R has Krull
dimension 1. If R has characteristic 0, then, apart from simple counterexam-
ples constructed by extension of scalars, it is not at all clear what one should
expect when the Krull dimension is greater than 1. However, one can construct
nontrivial counterexamples where R has arbitrarily large Krull dimension and
R has characteristic p.
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Theorem 1 has a number of interesting consequences in classical Iwasawa the-
ory. These will be the subject of a subsequent paper. We will just give an
outline of some of them here. In fact, our original motivation for this work
was to improve certain results in our earlier paper [Gr89]. There we con-
sidered the cyclotomic Zp-extension K∞ of a number field K and a discrete
Gal(KΣ/K)-module D isomorphic to (Qp/Zp)n as a Zp-module. We obtain
such a Galois module from a vector space V of dimension n over Qp which
has a continuous Qp-linear action of Gal(KΣ/K). Let T be a Galois-invariant
Zp-lattice in V and let D = V/T . The Galois action defines a representation
ρo : Gal(KΣ/K)→ AutZp(T ) ∼= GLn(Zp). Since only primes of K lying above
p can ramify in K∞/K, we have K∞ ⊂ KΣ. One therefore has a natural
action of Γ = Gal(K∞/K) on the Galois cohomology groups Hi(KΣ/K∞,D)
for any i ≥ 0. Now Hi(KΣ/K∞,D) is also a Zp-module. One can then re-
gard Hi(KΣ/K∞,D) as a discrete Λ-module, where Λ = Zp[[Γ]], the completed
Zp-group algebra for Γ. The ring Λ is isomorphic to the formal power series
ring Zp[[T ]] in one variable and is a complete Noetherian local domain of Krull
dimension 2. The modules Hi(KΣ/K∞,D) are cofinitely generated over Λ.

Propositions 4 and 5 in [Gr89] assert that if p is an odd prime, then
H2(KΣ/K∞,D) is a cofree Λ-module, and if H2(KΣ/K∞,D) = 0, then the
Pontryagin dual of H1(KΣ/K∞,D) contains no nonzero, finite Λ-modules.
One consequence of theorem 1 is the following significantly more general re-
sult. We allow p to be any prime and K∞/K to be any Galois extension such
that Γ = Gal(K∞/K) ∼= Zmp for some m ≥ 1. For any i ≥ 0, we define

X
i
(K∞,Σ,D) to be the subgroup of Hi(KΣ/K∞,D) consisting of cocycle

classes which are locally trivial at all primes of K∞ lying above the primes
in Σ. Again, Γ acts continuously on those Galois cohomology groups and so
we can regard them as modules over the ring Λ = Zp[[Γ]]. This ring is now
isomorphic to the formal power series ring Zp[[T1, ..., Tm]] in m variables and

has Krull dimension d = m + 1. The group X
i
(K∞,Σ,D) is a Λ-submodule

of Hi(KΣ/K∞,D). All of these Λ-modules are cofinitely generated.

Theorem 2. Suppose that K∞/K is a Zmp -extension, where m ≥ 1 and p is

a prime. Then X
2
(K∞,Σ,D) is a coreflexive Λ-module. If X

2
(K∞,Σ,D)

vanishes, then the Pontryagin dual of H1(KΣ/K∞,D) has no nonzero, pseudo-
null Λ-submodules.

The results proved in [Gr89] which were mentioned above concern the case
where K∞ is the cyclotomic Zp-extension of K. For odd p, one then has

X
2
(K∞,Σ,D) = H2(KΣ/K∞,D). The assertion about cofreeness follows

since m = 1 and so a cofinitely generated Λ-module A is coreflexive if and only
if it is cofree. (See remark 2.6.2.) Also, A is co-pseudo-null if and only if it is
finite. In that special case, theorem 2 is more general only because it includes
p = 2.

The relationship to theorem 1 is based on a version of Shapiro’s lemma which
relates the above cohomology groups to those associated with a suitably defined
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Gal(KΣ/K)-module D. We can regard Γ as a subgroup of the multiplicative
group Λ× of Λ. This gives a homomorphism Γ → GL1(Λ). and hence a
representation over Λ of Gal(KΣ/K) of rank 1 factoring through Γ. We will
denote this representation by κ. Define T = T ⊗Zp Λ. Thus, T is a free Λ-
module of rank n. We let Gal(KΣ/K) act on T by ρ = ρo ⊗ κ−1. We then

define, as before, D = T ⊗Λ Λ̂, which is a cofree Λ-module with a Λ-linear
action of Gal(KΣ/K). The Galois action is through the first factor T . We will
say that D is induced from D via the Zmp -extension K∞/K. Sometimes we will
use the notation: D = IndK∞/K(D). Of course, the ring R is now Λ which is
certainly a reflexive domain. We have the following comparison theorem.

Theorem 3. For i ≥ 0, Hi(KΣ/K,D) ∼= Hi(KΣ/K∞,D) as Λ-modules.

There is a similar comparison theorem for the local Galois cohomology groups
which is compatible with the isomorphism in theorem 3 and so, for any i ≥ 0,
one obtains an isomorphism

X
i
(K,Σ,D) ∼= X

i
(K∞,Σ,D) (2)

as Λ-modules. In particular, one can deduce from (1) and (2) that

X
2
(K∞,Σ,D) has the same Λ-corank as X

1
(K∞,Σ,D∗), where D∗ denotes

Hom(T, µp∞).

Both of the local assumptions in theorem 1 turn out to be automatically sat-
isfied for D and so theorem 2 is indeed a consequence of theorem 1. The
verification of those assumptions is rather straightforward. The most subtle
point is the consideration of primes that split completely in K∞/K, including
the archimedean primes of K if p = 2. For any v which does not split com-
pletely, one sees easily that (T ∗)GKv = 0. Thus, hypothesis (b) is satisfied
since at least one of the primes of K lying over p must be ramified in K∞/K;
one could take vo to be one of those primes. If v does split completely, then
one shows that (T ∗)GKv is a direct summand in the free Λ-module T ∗. This
implies that the corresponding quotient, the complementary direct summand,
is also a free Λ-module and hence reflexive.

As a consequence, we can say that X
2
(K∞,Σ,D) is a coreflexive Λ-module.

We believe that it is reasonable to make the following conjecture.

Conjecture L. Suppose that K∞ is an arbitrary Zmp -extension of a number
field K, Σ is any finite set of primes of K containing the primes lying above p
and ∞, and D is a Gal(KΣ/K)-module which is isomorphic to (Qp/Zp)n as a

group for some n ≥ 1. Then X
2
(K∞,Σ,D) = 0.

That is, hypothesis L should hold for D = IndK∞/K(D). Equivalently,

X
1
(K∞,Σ,D∗) should be a cotorsion Λ-module. Furthermore, it turns out

that the global-to-local map γ is now actually surjective. The Λ-module
P 2(K,Σ,D) can, in general, be nonzero and even have positive Λ-corank. To
be precise, only primes v of K which split completely in K∞/K can make a
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nonzero contribution to P 2(K,Σ,D). The contribution to the Λ-corank can
only come from the non-archimedean primes. If v is a non-archimedean prime
of K which splits completely in K∞/K, then we have

corankΛ

(
H2(Kv,D)

)
= corankZp

(
H2(Kv,D)

)

and this can be positive.

As an illustration, consider the special case where D = µp∞ . In this case,
D∗ = Qp/Zp (with trivial Galois action). One then has the following concrete

description of X
1
(K∞,Σ,D∗). Let L∞ denote the maximal, abelian, pro-p-

extension of K∞ which is unramified at all primes. Let L
′
∞ be the subfield in

which all primes of K∞ split completely. Then we have

X
1
(K∞,Σ,Qp/Zp) = Hom

(
Gal(L

′
∞/K∞),Qp/Zp)

)

It is known that Gal(L∞/K∞) is a finitely generated, torsion Λ-module. (This
is a theorem of Iwasawa if m = 1 and is proved in [Gr73] for arbitrary
m.) Hence the same thing is true for the quotient Λ-module Gal(L

′
∞/K∞).

Therefore, X
1
(K∞,Σ,Qp/Zp) is indeed Λ-cotorsion. Thus, conjecture L is

valid for D = µp∞ for an arbitrary Zmp -extension K∞/K. Note also that

corankZp

(
H2(Kv, µp∞)

)
= 1 for any non-archimedean prime v. Hence, if

Σ contains non-archimedean primes which split completely in K∞/K, then

H2(KΣ/K∞, µp∞) will have a positive Λ-corank. Since X
2
(K∞,Σ, µp∞) = 0,

as just explained, it follows that corankΛ

(
H2(KΣ/K∞, µp∞)

)
is precisely the

number of such primes, i.e., the cardinality of Υ. Therefore, the Λ-corank of
H1(KΣ/K∞, µp∞) will be equal to r1 + r2 + |Υ|. Non-archimedean primes
that split completely in a Zmp -extension can exist. For example, let K be an
imaginary quadratic field and let K∞ denote the so-called “anti-cyclotomic”
Zp-extension of K. Thus, K∞ is a Galois extension of Q and Gal(K∞/Q) is
a dihedral group. One sees easily that if v is any prime of K not lying over p
which is inert in K/Q, then v splits completely in K∞/K.

As a second illustration, consider the Galois module D = Qp/Zp with
a trivial action of Gal(KΣ/K). For an arbitrary Zmp -extension K∞/K,

it is not hard to see that X
2
(K∞,Σ,D) = H2(KΣ/K∞,D). This is

so because H2(Kv,Qp/Zp) = 0 for all primes v of K. Let MΣ
∞ de-

note the maximal abelian pro-p-extension of K∞ contained in KΣ. Then
H1(KΣ/K∞,D) = Hom

(
Gal(MΣ

∞/K∞),Qp/Zp
)
, which is just the Pontrya-

gin dual of Gal(MΣ
∞/K∞). In this case, n = 1 and n−v = 0 for all real

primes. Conjecture L is therefore equivalent to the statement that the Λ-
module Gal(MΣ

∞/K∞) has rank r2. Theorem 3 together with other remarks
we have made has the following consequence.

Theorem 4. Let p be a prime. Suppose that K∞/K is any Zmp -extension,

where m ≥ 1. Then Gal(MΣ
∞/K∞) is a finitely generated Λ-module

and rankΛ

(
Gal(MΣ

∞/K∞)
)
≥ r2. If rankΛ

(
Gal(MΣ

∞/K∞)
)

= r2, then
Gal(MΣ

∞/K∞) has no nonzero pseudo-null Λ-submodules.

Documenta Mathematica · Extra Volume Coates (2006) 335–391



344 Ralph Greenberg

LetM∞ denote the maximal abelian pro-p-extension ofK∞ which is unramified
at all primes of K∞ not lying above p or∞. One can show that Gal(MΣ

∞/M∞)
is a torsion Λ-module and so the equality in the above theorem is equivalent
to the assertion that the Λ-rank of Gal(M∞/K∞) is equal to r2. Note that
M∞ = MΣ

∞ if one takes Σ = {v
∣∣ v|p or v|∞}. In that case, the above theorem

is proved in [NQD]. A somewhat different, but closely related, result is proved
in [Gr78]. Theorem 1 can be viewed as a rather broad generalization of these
results in classical Iwasawa theory.

The statement that corankΛ

(
Gal(M∞/K∞)

)
= r2 is known as the Weak

Leopoldt Conjecture for K∞/K. That name arises from the fact that if one
considers a Zp-extension K∞/K and the Galois module D = Qp/Zp, the con-
jecture is equivalent to the following assertion:

Let Kn denote the n-th layer in the Zp-extension K∞/K. Let Mn be the com-
positum of all Zp-extensions of Kn. Let δn = rankZp

(
Gal(Mn/Kn)

)
− r2pn.

Then δn is bounded as n→∞.

The well-known conjecture of Leopoldt would assert that δn = 1 for all n.

If a Zmp -extension K∞ of K contains µp∞ , then the Galois modules µp∞ and
Qp/Zp are isomorphic over K∞. Since conjecture L is valid for D = µp∞ , it
is then also valid for D = Qp/Zp. One deduces easily that conjecture L is
valid for D = Qp/Zp if one just assumes that K∞ contains the cyclotomic Zp-
extension of K. Thus, under that assumption, it follows unconditionally that
Gal(MΣ

∞/K∞) has no nonzero pseudo-null Λ-submodules. If K∞ is the cyclo-
tomic Zp-extension of K, then this result was originally proved by Iwasawa. It
is theorem 18 in [Iw73]. He showed that that Galois group indeed has Λ-rank
r2 and deduced the non-existence of finite Λ-submodules from that.

There is a long history behind the topics discussed in this article. We have al-
ready mentioned Iwasawa’s theorem in [Iw73]. A similar, but less general, result
is proved in his much earlier paper [Iw59]. There he assumes a special case of
Leopoldt’s conjecture. Those theorems of Iwasawa were generalized in [Gr78],
[NQD], and [Pe84] for similarly-defined Galois groups over Zmp -extensions of a
number field. The generalization to Galois cohomology groups for arbitrary Ga-
lois modules of the form D = V/T has also been considered by several authors,
e.g., see [Sch], [Gr89], and [J]. The conjecture concerning the possible vanishing
of H2(KΣ/K∞,D), and its relevance to the question of finite submodules, can
be found in those references. Perrin-Riou has a substantial discussion of these
issues in [Pe95], Appendice B, referring to that conjecture as the Conjecture de
Leopoldt faible because it generalizes the assertion of the same name mentioned
before. We also want to mention that the idea of proving the non-existence
of nonzero pseudo-null submodules under an assumption like hypothesis L was
inspired by the thesis of McConnell [McC].

Considerable progress has been made in one important special case, namely
D = E[p∞], where E is an elliptic curve defined over Q. If one takes K∞ to
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be the cyclotomic Zp-extension of Q, where p is an odd prime, then conjecture
L was verified in [C-M] under certain hypotheses. This case is now settled
completely; a theorem of Kato asserts that H2(KΣ/K∞, E[p∞]) = 0 if K∞
is the cyclotomic Zp-extension of K, K/Q is assumed to be abelian and p is
assumed to be odd. Kato’s theorem applies more generally when D = V/T
and V is the p-adic representation associated to a cuspform.

More recently, similar types of questions have been studied when K∞/K is
a p-adic Lie extension. The ring Λ is then non-commutative. Nevertheless,
Venjakob has defined the notion of pseudo-nullity and proved the non-existence
of nonzero pseudo-null submodules in certain Galois groups. We refer the
readers to [Ve] for a discussion of this situation. In [C-S], Coates and Sujatha

study the group X
1
(K∞,Σ, E[p∞]), where E is an elliptic curve defined over

K. Those authors refer to this group as the “fine Selmer group” for E over
K∞ and conjecture that it is actually a co-pseudo-null Λ-module under certain
assumptions.

Another topic which we intend to study in a future paper concerns the structure
of a Selmer group SelD(K) which can be attached to the representation ρ
under certain assumptions. This Selmer group will be an R-submodule of
H1(KΣ/K,D) defined by imposing certain local conditions on the cocycles.
Theorem 1 can then be effectively used to prove that the Pontryagin dual
of SelD(K) has no nonzero pseudo-null R-submodules under various sets of
assumptions. One crucial assumption will be that SelD(K) is a cotorsion R-
module. Such a theorem is useful in that one can then study how the Selmer
group behaves under specialization, i.e., reducing the representation ρ modulo
a prime ideal P of R.

The study of Iwasawa theory in the context of a representation ρ was initi-
ated in [Gr94]. More recently, Nekovar has taken a rather innovative point
of view towards studying large representations and the associated cohomology
and Selmer groups, introducing his idea of Selmer complexes [Nek]. It may be
possible to give nice proofs of some of the theorems in this paper from such a
point of view. In section 9.3 of his article, Nekovar does give such proofs in the
context of classical Iwasawa theory. (See his proposition 9.3.1, corollary 9.3.2
and propositions 9.3.6, 9.3.7.)

This research was partially support by grants from the National Science Foun-
dation. Part of this research was carried out during two visits to the Institut
des Hautes Études Scientifiques. The author is gratefully to IHÉS for their
support and hospitality during those visits. The author also wishes to take
this opportunity to thank John Coates for numerous valuable and stimulating
discussions over the years. They have been influential on many aspects of the
author’s research, including the topic of this paper.
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2 Some Module Theory.

Theorem 1 and some of the other theorems mentioned in the introduction
concern modules over a complete Noetherian local domain R. This section will
include a variety of module-theoretic results that will be useful in the proofs.
In particular, we will point out that several properties, such as pseudo-nullity
or reflexivity, can be studied by simply considering the modules as Λ-modules.
The main advantage of doing so is that Λ is a regular local ring and so has
the following helpful property: Every prime ideal of Λ of height 1 is principal.
This is useful in proofs by induction on the Krull dimension. Such arguments
would work for any regular, Noetherian local ring. It seems worthwhile to state
and prove various results in greater generality than we really need. However,
in some cases, we haven’t determined how general the theorems can be.

We will use the notation Specht=1(R) to denote the set of prime ideals of height
1 in a ring R. The terminology “almost all” means all but finitely many. If I is
any ideal of R, we will let V (I) denote the set of prime ideals of R containing
I.

A. Behavior of ranks and coranks under specialization. Consider a
finitely generated module X over an integral domain R. If K is the fraction
field of R, then rankR(X) = dimK(X ⊗R K). The following result holds:

Proposition 2.1. Let r = rankR(X). Then rankR/P(X/PX) ≥ r for
every prime ideal P of R. There exists a nonzero ideal I of R such
that rankR/P(X/PX) > r if and only if P ∈ V (I). In particular,
rankR/P(X/PX) = r for all but finitely many prime ideals P ∈ Specht=1(R).

Proof. We prove a somewhat more general result by a linear algebra argument.
Suppose that s ≥ r. We will show that there is an ideal Is with the property:

rankR/P(X/PX) > s ⇐⇒ P ∈ V (Is)

The ideal Is will be a Fitting ideal. Suppose that X has g generators as an
R-module. Thus X is a quotient of the free R-module F = Rg. Therefore, one
has an exact sequence of R-modules

Rh
φ−→Rg

ψ−→X −→ 0

The map φ is multiplication by a certain g×h matrix α. Let f denote the rank
of the matrix α. The R-rank of the image of φ is equal to f and so we have
r = g − f . By matrix theory, there is at least one f × f -submatrix (obtained
by omitting a certain number of rows and/or columns) of the matrix α whose
determinant is nonzero, but there is no larger square submatrix with nonzero
determinant.

For every prime ideal P of R, the above exact sequence induces a free presen-
tation of X/PX.

(R/P)h
φP−→(R/P)g

ψP−→X/PX −→ 0
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The second term is F/PF and exactness at that term follows from the fact that
the image of PF under ψ is PX. The homomorphism φP is multiplication by
the matrix αP , the reduction of α modulo P. We have

rankR/P(X/PX) = g − rank(αP).

The description of the rank in terms of the determinants of submatrices shows
that rank(αP) ≤ rank(α) for every prime ideal P of R. If g ≥ s ≥ r, let e = g−s
so that 0 ≤ e ≤ f . Let Is denote the ideal in R generated by the determinants
of all e × e submatrices of the matrix α. If e = 0, then take Is = R. Since
e ≤ f , it is clear that Is is a nonzero ideal. Then αP has rank < e if and only
if Is ⊆ P. This implies that rankR/P(X/PX) > g− e = s if and only if Is ⊆ P
as stated. Finally, we recall the simple fact that if I is any nonzero ideal in a
Noetherian domain R, then there can exist only finitely many prime ideals of
R of height 1 which contain I. �

Corollary 2.1.1. Let X1 and X2 be finitely generated R-modules. Suppose
that φ : X1 → X2 is an R-module homomorphism. Let r1 = rankR

(
ker(φ)

)

and r2 = rankR
(
coker(φ)

)
. For every prime ideal P of R, let

φP : X1/PX1 → X2/PX2

be the induced map. There exists a nonzero ideal I of R such that

rankR/P
(
ker(φP)

)
= r1, rankR/P

(
coker(φP)

)
= r2

if P /∈ V (I). These equalities hold for almost all P ∈ Specht=1(R)

Proof. Let X = coker(φ) = X2/φ(X1). The cokernel of φP is isomorphic
X/PX and so the statement about the cokernels follows from proposition 2.1.
Now the (R/P)-rank of the kernel of φP is determined by the (R/P)-ranks of
X1/PX1, X2/PX2, and coker(φP). We can apply proposition 2.1 to X, X1

and X2, which gives certain nonzero ideals of R in each case. Take I to be the
intersection of those ideals. �

Remark 2.1.2. Consider the special case whereX1 andX2 are free R-modules.
Then the map φ is given by a matrix and the behavior of the ranks of the kernels
and cokernels in the above corollary is determined by the rank of the matrix
and its reduction modulo P as in the proof of proposition 2.1. The following
consequence will be useful later.

Suppose that X1 and X2 are free R-modules. Then for every prime ideal P of
R, we have rankR/P

(
ker(φP)

)
≥ rankR

(
ker(φ)

)
.

This can also be easily deduced from the corollary. A similar inequality holds
for the cokernels of φ and φP .

Suppose that R is a complete Noetherian local domain with finite residue field.
Then X is compact and its Pontryagin dual A = X̂ is a cofinitely generated,
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discrete R-module. The Pontryagin dual of X/PX is A[P], the set of elements
of A annihilated by P. Thus, one has corankR/P(A[P]) = rankR/P(X/PX).
If A1 and A2 are two cofinitely generated R-modules and ψ : A1 → A2 is an
R-module homomorphism, then one can define the adjoint map φ of ψ, an R-
module homomorphism from X2 = Â2 to X1 = Â1. The kernel and cokernel
of ψ are dual, respectively, to the cokernel and kernel of φ. We will say that
A1 and A2 are R-isogenous if there exists an R-module homomorphism ψ such
that ker(ψ) and coker(ψ) are both R-cotorsion. We then refer to ψ as an R-
isogeny. It is easy to see that R-isogeny is an equivalence relation on cofinitely
generated R-modules.

Remark 2.1.3. The above proposition and corollary can be easily translated
into their “dual” versions for discrete, cofinitely generated R-modules. For
example,

1. If r = corankR(A), then corankR/P(A[P]) ≥ r for every prime ideal
P of R. There exists a nonzero ideal I of R with the following property:
corankR/P(A[P]) = r if and only if I 6⊆ P. The equality corankR/P(A[P]) = r
holds for almost all P ∈ Specht=1(R).

2. Suppose that A1 and A2 are cofinitely generated, discrete R-modules and that
ψ : A1 → A2 is an R-module homomorphism. Let c1 = corankR

(
ker(ψ)

)
and

c2 = corankR
(
coker(ψ)

)
. For every prime ideal P of R, let ψP : A1[P]→ A2[P]

be the induced map. There exists a nonzero ideal I of R such that

corankR/P
(
ker(ψP)

)
= c1, corankR/P

(
coker(ψP)

)
= c2

if P /∈ V (I). In particular, if ψ is an R-isogeny, then ψP is an (R/P)-isogeny
if P /∈ V (I).

Remark 2.1.2 can also be translated to the discrete version and asserts that if
the above A1 and A2 are cofree R-modules, then

corankR/P
(
ker(ψP)

)
≥ c1, corankR/P

(
coker(ψP)

)
≥ c2

for every prime ideal P of R.

Remark 2.1.4. As mentioned before, if I is a nonzero ideal in a Noetherian
domain R, then there exist only finitely many prime ideals P ∈ Specht=1(R)
which contain I. This is only important if R has infinitely many prime ideals
of height 1. Suppose that R is a finite, integral extension of a formal power
series ring Λ, as we usually consider in this article. Then if the Krull dimension
of R is at least 2, the set of prime ideals of R of height 1 is indeed infinite.
This follows from the corresponding fact for the ring Λ which will have the
same Krull dimension. In fact, if Q is any prime ideal of R of height at least 2,
then Q contains infinitely many prime ideals of R of height 1. Corollary 2.5.1
provides a useful strengthening of this fact when R = Λ. It will also be useful
to point out that in the ring Λ, assuming its Krull dimension d is at least 2,
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there exist infinitely many prime ideals P of height 1 with the property that
Λ/P is also a formal power series ring. The Krull dimension of Λ/P will be
d− 1.

The ideal I occurring in proposition 2.1 is not unique. In the special case where
X is a torsion R-module, so that r = 0, one can take I = AnnR(X). That is:

Proposition 2.2. Suppose that X is a finitely generated, torsion R-module
and that P is a prime ideal of R. Then rankR/P(X/PX) > 0 if and only if
AnnR(X) ⊆ P.

Proof. This follows by a simple localization argument. Let RP denote the
localization of R at P. Then M = PRP is the maximal ideal of RP . Let k
denote the residue field RP/M. Let XP = X ⊗R RP , the localization of X at
P. Then rankR/P(X/PX) = dimk(XP/MXP). Furthermore, we have

rankR/P(X/PX) = 0⇐⇒ XP =MXP ⇐⇒ XP = 0,

the last equivalence following from Nakayama’s Lemma. Finally, XP = 0 if
and only if AnnR(X) 6⊆ P. �

Remark 2.2.1. Proposition 2.2 can be easily restated in terms of the discrete,
cofinitely generated, cotorsion R-module A = X̂. Note that the annihilator
ideals in R for A and for X are the same. As we will discuss below, the height
of the prime ideals P for which A[P] fails to be (R/P)-cotorsion is of some
significance, especially whether or not such prime ideals can have height 1.

A contrasting situation occurs when X is a torsion-free R-module. We then
have the following simple result.

Proposition 2.3. Assume that X is a finitely generated, torsion-free R-
module and that P is a prime ideal of R of height 1 which is also a principal
ideal. Then rankR/P(X/PX) = rankR(X). In particular, if R is a regular local
ring, then rankR/P(X/PX) = rankR(X) for all P ∈ Specht=1(R).

Proof. The assumption about P implies that the localization RP is a discrete
valuation ring and hence a principal ideal domain. Therefore XP is a free
RP -module of finite rank. Letting k = RP/M again, it is then clear that
dimk(XP/MXP) = rankRP (XP). The above equality follows from this. �

If X is a free R-module, then the situation is better. One then has the obvious
equality rankR/P(X/PX) = rankR(X) for all prime ideals P of R.

B. Associated prime ideals and pseudo-nullity. Assume that X is
a finitely generated, torsion R-module. A prime ideal P of R is called an
associated prime ideal for X if P = AnnR(x) for some nonzero element x ∈ X.
Assuming that R is Noetherian, there are only finitely many associated prime
ideals for X. We say that X is a pseudo-null R-module if no prime ideal of R
associated with X has height 1. If R has Krull dimension 1, then every nonzero
prime ideal has height 1 and so a pseudo-null R-module must be trivial. If R
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is a local ring of Krull dimension 2 and has finite residue field, then X is a
pseudo-null R-module if and only if X is finite.

If R is a finite, integral extension of a Noetherian domain Λ, then an R-module
X can be viewed as a Λ-module. We say that a prime ideal P of R lies over a
prime ideal P of Λ if P = P ∩Λ. The height of P in R will then be the same as
the height of P in Λ. For a given prime ideal P of Λ, there exist only finitely
many prime ideals P lying over P . It is clear that if P is an associated prime
ideal for the R-module X and if P lies over P , then P is an associated prime
ideal for the Λ-module X. Conversely, if P is an associated prime ideal for the
Λ-module X, then there exists at least one prime ideal P of R lying over P
which is an associated prime ideal for the R-module X. To see this, consider
the R-submodule Y = X[P ] which is nonzero. Suppose that the associated
prime ideals of R for Y are P1, ...,Pt. Let Pi = Pi capΛ for 1 ≤ i ≤ t. Thus,
each Pi is an associated prime ideal for the Λ-module Y and so P ⊆ Pi for each
i. There is some product of the Pi’s which is contained in AnnR(Y ) and the
corresponding product of the Pi’s is contained in AnnΛ(Y ) = P . Thus, Pi ⊆ P
for at least one i. This implies that Pi = P and so, indeed, at least one of the
prime ideals Pi lies over P . These observations justify the following statement:

1. X is pseudo-null as an R-module if and only if X is pseudo-null as a Λ-
module.

The ring Λ is a UFD. Every prime ideal of height 1 is generated by an irreducible
element of Λ. One can give the following alternative definition of pseudo-nullity:

2. A finitely generated Λ-module X is pseudo-null if and only if Ann(X) con-
tains two relatively prime elements.

Another equivalent criterion for pseudo-nullity comes from the following obser-
vations. If Q is an associated prime ideal of X, then X[Q] 6= 0 and so X[P ] 6= 0
for every ideal P ⊆ Q. If Q has height ≥ 2, then Q contains infinitely many
prime ideals P of height 1. On the other hand, if the associated prime ideals
for X all have height 1, then X[P ] = 0 for all the non-associated prime ideals
P of height 1. To summarize:

3. A finitely generated Λ-module X has a nonzero pseudo-null Λ-submodule if
and only if there exist infinitely many prime ideals P ∈ Specht=1(Λ) such that
X[P ] 6= 0.

If A = X̂, then X[P ] 6= 0 if and only if PA 6= A. Hence, the above remarks
imply the following result.

Proposition 2.4. Suppose that A is a cofinitely generated, discrete Λ-module.
The following three statements are equivalent:

(a) PA = A for almost all P ∈ Specht=1(Λ).

(b) The Pontryagin dual of A has no nonzero pseudo-null Λ-submodules.
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(c) A is an almost divisible Λ-module.

As mentioned before, if P has height 1, then P = (π) where π is an irreducible
element of Λ. The statement that PA = A means that πA = A, i.e., A
is divisible by π. Let Y denote the torsion Λ-submodule of X = Â. Then,
assuming statement (b), one has PA = A if and only if P 6∈ Supp(Y ). In the
definition of “almost divisible,” one can take θ to be any nonzero element of Λ
divisible by all irreducible elements π which generate prime ideals in Supp(Y ),
e.g., θ could be a generator of the characteristic ideal of the Λ-module Y .

One can ask about the behavior of pseudo-null modules under specialization.
Here is one useful result.

Proposition 2.5. Suppose that the Krull dimension of Λ is at least 3 and
that X is a finitely generated, pseudo-null Λ-module. Then there exist in-
finitely many prime ideals P ∈ Specht=1(Λ) such that X/PX is pseudo-null as
a (Λ/P )-module.

Proof. One can consider Λ as a formal power series ring Λo[[T ]] in one variable,
where the subring Λo is a formal power series ring (over either Zp or Fp) in
one less variable. One can choose Λo so that X is a finitely generated, torsion
module over Λo. (See Lemma 2 in [Gr78] if Λ has characteristic 0. The proof
there works if Λ has characteristic p.) Since the Krull dimension of Λo is at
least 2, there exist infinitely many prime ideals Po of Λo of height 1. The
module X/PoX will be a finitely generated, torsion (Λo/Po)-module for all but
finitely many such Po’s. Now Po = (πo), where πo is an irreducible element of
Λo. Clearly, πo is also irreducible in Λ. The ideal P = πoΛ is a prime ideal of
height 1 in Λ. Since X/PX is finitely generated and torsion over Λo/Po, and
Λ/P ∼= (Λo/Po)[[T ]], it follows that X/PX is a pseudo-null (Λ/P )-module. �

One surprising consequence concerns the existence of infinitely many height 1
prime ideals of a different sort.

Corollary 2.5.1. Suppose that Λ has Krull dimension at least 2 and that X
is a finitely generated, pseudo-null Λ-module. Then there exist infinitely many
prime ideals P ∈ Specht=1(Λ) such that P ⊂ AnnΛ(X).

Proof. We will argue by induction. If Λ has Krull dimension 2, the the result
is rather easy to prove. In that case, one has mn

Λ ⊂ AnnΛ(X) for some n > 0.
It suffices to prove that mn

Λ contains infinitely many irreducible elements which
generate distinct ideals. First consider Λ = Zp[[T ]]. There exist field extensions
of Qp of degree ≥ n. For any such extension F , choose a generator over
Qp which is in a large power of the maximal ideal of F . Then its minimal
polynomial over Qp will be in mn

Λ and will be an irreducible elements of Λ. By
varying the extension F or the generator, one obtains the desired irredicible
elements of Λ. The same argument works for Fp[[S, T ]] since the fraction field
of Fp[[S]] also has finite, separable extensions of arbitrarily high degree.
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In the proof of proposition 2.5, it is clear that we can choose the Po’s so that
Λo/Po is also a formal power series ring. The same will then be true for Λ/P .
Now assume that the Krull dimension of Λ is at least 3. Choose two elements
θ1, θ2 ∈ Ann(X) such that θ1 and θ2 are relatively prime. The Λ-module
Y = Λ/(θ1, θ2) is then pseudo-null. Choose P so that Λ = Λ/P is a formal
power series ring and so that Y = Y/PY is a pseudo-null Λ-module. Let θ1
and θ2 denote the images of θ1 and θ2 in Λ. Then Y = Λ/(θ1, θ2) and the fact
that this is pseudo-null means that θ1 and θ2 are relatively prime in that ring.
Clearly, the ideal AnnΛ(Y ) in Λ is generated by θ1 and θ2. We assume that this
ideal contains infinitely many prime ideals of Λ of height 1. Any such prime
ideal has a generator of the form α1θ1 +α2θ2, where α1, α2 ∈ Λ are the images
of α1, α2 ∈ Λ, say. Let η = α1θ1 + α2θ2. Then η ∈ AnnΛ(X) and is easily seen
to be an irreducible element of Λ. We can find infinitely many distinct prime
ideals (η) ⊂ AnnΛ(X) in this way. �

C. Reflexive and coreflexive modules. Let m ≥ 0. Suppose that
the ring Λ is either Zp[[T1, ..., Tm]] (which we take to be Zp if m = 0) or
Fp[[T1, ..., Tm+1]], so that the Krull-dimension of Λ is m + 1. Suppose that X
is a finitely generated, torsion-free Λ-module. Let L denote the fraction field
of Λ. Let ΛP be the localization of Λ at P . We can view the localization
XP = X ⊗Λ ΛP as a subset of V = X ⊗Λ L which is a vector space over L of
dimension rankΛ(X). The reflexive hull of X is defined to be the Λ-submodule

of V defined by X̃ =
⋂
P XP , where this intersection is over all prime ideals

P ∈ Specht=1(Λ) and ΛP is the localization of Λ at P . Then X̃ is also a

finitely generated, torsion-free Λ-module, X ⊆ X̃, and the quotient X̃/X is a
pseudo-null Λ-module. Furthermore, suppose that X ′ is any finitely generated,
torsion-free Λ-module such that X ⊆ X ′ and X ′/X is pseudo-null. Since X ′/X
is Λ-torsion, one can identify X ′ with a Λ-submodule of V containing X. Then
X ′ ⊆ X̃. We say that X is a reflexive Λ-module if X̃ = X. This is equivalent
to the more usual definition that X is isomorphic to its Λ-bidual under the
natural map. We will make several useful observations.

Suppose that R is a finite, integral extension of Λ. Let K denote the fraction
field of R. We can define the notion of a reflexive R-module in the same way as
above. IfX is any finitely generated, torsion-free R-module, the R-reflexive hull
of X is the R-submodule of the K-vector space X⊗RK defined by X̃ =

⋂
P XP ,

where P runs over all the prime ideals of R of height 1. This is easily seen to
coincide with the Λ-reflexive hull of X as defined above. One uses the fact that,
with either definition, X̃ is torsion-free as both an R-module and a Λ-module,
X̃/X is pseudo-null as both an R-module and a Λ-module, and X̃ is maximal
with respect to those properties. We can define X to be a reflexive R-module
if X̃ = X. But our remarks justify the following equivalence:

1. An R-module X is reflexive as an R-module if and only if it is reflexive as
a Λ-module.

Thus, it suffices to consider Λ-modules. Suppose that X is a reflexive Λ-
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module and that Y is an arbitrary Λ-submodule of X. Both are torsion-free
Λ-modules, but, of course, the quotient R-module X/Y may fail to be torsion-
free. However, one can make the following important observation:

2. The Λ-module Y is reflexive if and only if X/Y contains no nonzero pseudo-
null Λ-submodules.

This is rather obvious from the properties of the reflexive hull. Since X is as-
sumed to be reflexive, we have Ỹ ⊆ X. Hence Ỹ /Y is the maximal pseudo-null
Λ-submodule of X/Y . Every pseudo-null Λ-submodule of X/Y is contained in

Ỹ /Y . The observation follows from this.

The above observation provides a rather general construction of reflexive Λ-
modules. To start, suppose that X is any reflexive Λ-module and that
rank(X) = r, e.g., X = Λr. If Y is a Λ-submodule of X such that X/Y
is torsion-free, then X/Y certainly cannot contain a nonzero pseudo-null Λ-
submodule. Thus Y must be reflexive. Consider the L-vector space V defined
before. It has dimension r over L. Let W be any L-subspace of V. Let
Y = X∩W. Then rankΛ(Y ) = dimL(W). It is clear that X/Y is a torsion-free
Λ-module and so the Λ-module Y will be reflexive. To see this, first note that
X/Y is a torsion-free Λ-module. Here is one important type of example.

3. Suppose that a group G acts Λ-linearly on a reflexive Λ-module X. Then
Y = XG must also be reflexive as a Λ-module.

This is clear since G will act L-linearly on V and, if we let W denote the
subspace VG, then Y = X ∩W.

Suppose thatm = 0. Then Λ is either Zp or Fp[[T ]]. Both are discrete valuation
rings and have just one nonzero prime ideal, its maximal ideal, which has height
1. The module theory is quite simple, and every finitely generated, torsion-free
Λ-module is free and hence reflexive. However, suppose that m ≥ 1. Then Λ
has infinitely many prime ideals of height 1. They are all principal since Λ is
a UFD. We then have the following useful result. We always take the term
reflexive to include the assumption that the module is finitely generated and
torsion-free.

Proposition 2.6. Assume that m ≥ 1 and that X is a finitely generated
Λ-module.

(a) If X is a reflexive Λ-module and if P ∈ Specht=1(Λ), then X/PX is a
torsion-free (Λ/P )-module.

(b) If X/PX is a torsion-free (Λ/P )-module for almost all P ∈ Specht=1(Λ),
then X is a reflexive Λ-module.

Proof. Suppose first that X is reflexive and that P is any prime ideal of
height 1 in Λ. Then we have P = (π), where π is an irreducible element of
Λ. Therefore, PX = πX is isomorphic to X and hence is also a reflexive
Λ-module. As observed above, it follows that X/PX contains no nonzero
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pseudo-null Λ-submodules. But any finitely generated, torsion (Λ/P )-module
will be pseudo-null when considered as a Λ-module. This is clear because the
annihilator of such a (Λ/P )-module will contain π as well as some nonzero
element of Λ which is not divisible by π. Therefore, X/PX must indeed be a
torsion-free as a (Λ/P )-module, proving part (a).

Now, under the assumptions of (b), we first show that X must be a torsion-free
Λ-module. For if Y is the Λ-torsion submodule of X and if P = (π) is any
height 1 prime ideal, then the snake lemma implies that there is an injective
map Y/PY → X/PX. But, if Y is nonzero, so is Y/PY . Also, if λ ∈ Λ is
a nonzero annihilator of Y , then Y/PY is a torsion (Λ/P )-module for all but
the finitely many prime ideals P of height 1 which contain λ. It follows that
Y = 0. There are infinitely many such P ’s.

Let Z = X̃/X. Then Z is a pseudo-null Λ-module. Assume Z is nonzero.
Then there exist infinitely many prime ideals P = (π) of Λ of height 1 such
that Z[π] is nonzero too. Clearly, Z[π] is a torsion (Λ/P )-module. Consider
the exact sequence

0→ X → X̃ → Z → 0

By the snake lemma, together with the fact that X̃ is a torsion-free Λ-module,
one obtains an injective map Z[π]→ X/PX. Therefore, for infinitely many P ’s,
X/PX fails to be torsion-free as a (Λ/P )-module, contradicting the hypothesis.
Hence Z = 0 and X is indeed reflexive. �

The first part of proposition 2.6 is quite trivial for free modules. In fact, if R
is any ring and X is a free R-module, then X/PX is a free (R/P)-module and
will certainly be torsion-free if P is any prime ideal of R.

We often will use proposition 2.6 in its discrete form.

Corollary 2.6.1. Suppose that m ≥ 1 and that A is a cofinitely generated
Λ-module.

(a) If A is a coreflexive Λ-module, then A[P ] is a divisible (Λ/P )-module for
every prime ideal P of Λ of height 1.

(b) If A[P ] is a divisible (Λ/P )-module for almost all P ∈ Specht=1(Λ), then
A must be coreflexive as a Λ-module.

Remark 2.6.2. One simple consequence concerns the case where the Krull-
dimension is 2, i.e. Λ is either Zp[[T ]] or Fp[[S, T ]]. Suppose thatX is a reflexive
Λ-module. The ring Λ/(T ) is isomorphic to either Zp or Fp[[S]], both principal
ideal domains. Since X/TX is a finitely-generated, torsion-free module over
Λ/(T ), it is therefore a free module. Let r = rankΛ(X). Proposition 2.3 implies
that the rank of X/TX over Λ/(T ) is also equal to r. Hence X/TX can be
generated as a Λ/(T )-module by exactly r elements. By Nakayama’s lemma,
X can be generated by r elements as a Λ-module and so it is a quotient of Λr.
It follows that X ∼= Λr. Therefore, we have the following well-known result:
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If Λ has Krull dimension 2, then every reflexive Λ-module is free.

It follows that every coreflexive Λ-module is cofree when Λ has Krull dimension
2.

Remark 2.6.3. One can use proposition 2.6 to give examples of reflexive
Λ-modules which are not free if the Krull dimension of Λ is at least 3. A
torsion-free Λ-module of rank 1 will be isomorphic to an ideal in Λ and it
is known that a reflexive ideal must be principal and hence free. Thus, our
examples will have rank at least 2. We take X = Λr. Let Y be a Λ-submodule
of X with the property that Z = X/Y is a torsion-free Λ-module. Thus, as
observed before, Y will be Λ-reflexive. Suppose that P = (π) is any prime ideal
of Λ of height 1. Then we have an exact sequence

0 −→ Y/PY −→ X/PX −→ Z/PZ −→ 0

of (Λ/P )-modules. We can choose P so that Λ/P is also a formal power se-
ries ring. Assume that Y is actually a free Λ-module. Then both Y/PY and
X/PX would be free (Λ/P )-modules and hence reflexive. Therefore, the quo-
tient module Z/PZ would contain no nonzero pseudo-null (Λ/P )-submodules.
However, it is easy to give examples of torsion-free Λ-modules Z which fail to
have that property. As one simple example, suppose that Z is the maximal
ideal mΛ of Λ. Then Λ/Z is annihilated by π and so we have

πZ ( πΛ ⊂ Z

Thus, πΛ/πZ is a (Λ/P )-submodule of Z/PZ, has order p, and will be a
pseudo-null (Λ/P )-module since that ring has Krull dimension at least 2. Take
r to be the number of generators of Z as a Λ-module and take X as above.
Then one has a surjective Λ-module homomorphism X → Z. If we let Y denote
the kernel of this homomorphism, then Y is a reflexive Λ-module, but cannot
be free.

One can view this remark from the point of view of homological algebra.
Nakayama’s Lemma implies easily that projective Λ-modules are free. Let
d denote the Krull dimension of Λ. Thus, as we just explained, the Λ-module
mΛ cannot have projective dimension 1 if d ≥ 3. In fact, one can show that mΛ

has projective dimension d− 1.

D. Reflexive domains. In general, if R is any commutative integral domain,
we will say that R is a reflexive domain if

R =
⋂

P
RP ,

where P varies over all prime ideal of R of height 1 and RP denotes the local-
ization of R at P. If R contains Λ as a subring and is finitely generated as a
Λ-module, then R is reflexive in the above sense precisely when R is reflexive
as a Λ-module. This is implied by the following result. Note that K = R⊗Λ L
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is the fraction field of R. We define R̃ =
⋂
P RP , where P varies over all prime

ideals of R of height 1. Thus, R̃ is a subring of K containing R and R is a
reflexive domain if and only if R = R̃.

Proposition 2.7. R̃ is the reflexive hull of R as a Λ-module.

Proof. Let P be a prime ideal of Λ of height 1. Let P1, ...,Pg be the prime
ideals P of R such that P ∩ Λ = P . We let RP = R ⊗Λ ΛP , which is the ring
of fractions of R corresponding to the multiplicative set Λ− P . Then RP is a
subring of K. The maximal ideals of RP are PiRP , 1 ≤ i ≤ g . The localization
of RP at PiRP is clearly RPi and so we have

RP =
⋂

1≤i≤g
RPi

If P is any height 1 prime ideal of R, then P = P⋂Λ is a height 1 prime ideal
of Λ. The proposition follows immediately. �

Since R̃ is also a finitely generated Λ-module, and hence an integral extension
of Λ, we get the following corollary (which is actually a standard theorem; see
corollary 11.4 in [E]).

Corollary 2.7.1. If R is integrally closed, then R is reflexive.

Suppose that R is a finite integral extension of Λ. Then it is known that R is
a free Λ-module if and only if R is Cohen-Macaulay. (See proposition 2.2.11 in
[B-H].) Any free Λ-module is reflexive, Thus, if R is Cohen-Macaulay, then R
is reflexive. One simple type of example is R = Λ[θ], where θ is integral over
Λ. Also, if R is regular or Gorenstein, then R is Cohen-Macaulay.

The first part of proposition 2.6 is valid for R-modules if R is assumed to be a
reflexive domain. That is, if X is a finitely generated, reflexive R-module and
P ∈ Specht=1(R), then X/PX is a torsion-free (R/P)-module. The same proof
works once one notes that any prime ideal P of height 1 in a reflexive domain
R must be reflexive as an R-module. This is easily verified.

Suppose that R is a complete Noetherian local ring, but is not necessarily a
domain. We will say that R is a reflexive ring if it has the following properties:
(i) R contains a subring Λ which is isomorphic to a formal power series ring
over either Zp or Fp and (ii) R is a finitely generated, reflexive module over
Λ. One important example arises from Hida theory. The universal ordinary
Hecke algebra h for a given level contains a natural subring Λ isomorphic to the
formal power series ring Zp[[T ]] in one variable and is actually a free Λ-module
of finite rank. Thus this ring h is reflexive, but is not necessarily a domain. In
general, suppose that R satisfies (i) and R is a torsion-free Λ-module. Then R

is a subring of the L-algebra R⊗ΛL and the reflexive hull R̃ of R as a Λ-module
will be a reflexive ring.

E. Different choices of D. In the introduction we considered a free R-
module T and defined D = T ⊗R R̂, a cofree R-module, which we will now

Documenta Mathematica · Extra Volume Coates (2006) 335–391



Structure of Certain Galois Cohomology Groups 357

denote by DR. This construction behaves well under specialization at any ideal
I of R in the following sense. Consider the free (R/I)-module T /IT . Applying
the construction, we get

(T /IT )⊗R/I (̂R/I) ∼= T ⊗R (R̂[I]) ∼= DR[I].

Another construction which will be useful later is to define DΛ = T ⊗Λ Λ̂.
Both constructions can be applied to an arbitrary R-module T . To see the
relationship, note that DΛ

∼= T ⊗R Λ̂R where Λ̂R = R ⊗Λ Λ̂, the R-module
obtained from Λ̂ by extending scalars from Λ to R. We have Λ̂R ∼= R̂ if R is
free as a Λ-module. In that case, it would follow that DR and DΛ are isomorphic
as R-modules. In general, one can only say that DR and DΛ are R-isogenous.
Their R-coranks are equal to rankR(T ).

The Λ-module DΛ is always coreflexive. To see this, let P = (π) be any prime
ideal of height 1 in Λ. Consider the exact sequence induced by multiplication
by π.

0 −→ Λ̂[P ] −→ Λ̂
π−→ Λ̂ −→ 0

Tensoring over Λ by T , one gets a surjective homomorphism

(T /PT )⊗Λ/P (Λ̂[P ]) −→ DΛ[P ] (3)

Since Λ̂[P ] is (Λ/P )-divisible, so is (T /PT )⊗Λ/P (Λ̂[P ]) and that implies that
DΛ[P ] is a divisible (Λ/P )-module. Corollary 2.6.1 then implies that DΛ is
coreflexive. We also remark that if T is assumed to be a torsion-free Λ-module,
then proposition 2.3 implies that rankΛ/P (T /PT ) and corankΛ/P (DΛ[P ]) are
both equal to rankΛ(T ) and so the map in (3) must be a (Λ/P )-isogeny.

Suppose that T1 and T2 are finitely generated R-modules. Let D1 = T1 ⊗R R̂
and D2 = T2 ⊗R R̂. We then have the following result.

Proposition 2.8. Suppose that φ : T1 → T2 is an R-module homomorphism.
Let ψ : D1 → D2 be the R-module homomorphism determined by

ψ(x⊗ y) = φ(x)⊗ y

for x ∈ T1, y ∈ R̂. Then corankR
(
ker(ψ)

)
= rankR

(
ker(φ)

)
. A similar

equality holds for the cokernels of ψ and φ.

Proof. Let T3 denote the cokernel of φ. Let D3 = T3⊗R R̂. We then have exact
sequences:

T1 φ−→T2 −→ T3 −→ 0, D1
ψ−→D2 −→ D3 −→ 0

The second exact sequence follows from the first by tensoring each term with
R̂. Since corankR(Di) = rankR(Ti) for each i, the stated equalities follow
immediately. �

The proposition is also valid if Di is defined to be Ti ⊗Λ Λ̂ instead.
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3 Cohomology Groups.

We consider a rather general situation. Suppose that R is a complete Noethe-
rian local ring with maximal ideal m and finite residue field k of characteristic
p. Suppose that D is a cofinitely generated R-module and that G is a profi-
nite group which acts continuously and R-linearly on D. Then the cohomol-
ogy groups Hi(G,D) are also R-modules. Now D[m] is a finite dimensional
representation space for G over k and hence over Fp. Denote the distinct,
Fp-irreducible subquotients by α1, ..., αt. We will assume throughout that the
cohomology groups Hi(G,αk) are finite for all i ≥ 0 and for all k, 1 ≤ k ≤ t.
This is so if (i) G = GKv , where Kv is the v-adic completion of a number field
K at any prime v, or if (ii) G = Gal(KΣ/K), where Σ is any finite set of primes
of K.

A. Properties inherited from D. First we prove the following result which
will be useful in subsequent arguments.

Proposition 3.1. Let C = D1/D2, where D1 and D2 are G-invariant R-
submodules of D. Then every Fp-irreducible subquotient of C[m] is isomorphic
to one of the αk’s.

Proof. First note that C is a cofinitely generated R-module, and so C[m] is finite.
Also, D =

⋃
n≥0D[mn]. It follows that C[m] is a subquotient of D[mn] for some

n. Hence it is enough to prove that the composition factors for the G-module
D[mn] are isomorphic to the αk’s. It suffices to verify this for D[mj+1]/D[mj ]
for all j ≥ 0. Let λ1, ..., λg be a set of generators for the ideal mj . Then one can
define an injective G-homomorphism D[mj+1]/D[mj ]→ D[m]g by mapping the
coset of x ∈ D[mj+1] to (λ1x, ..., λgx). The assertion about the composition
factors follows from this. �

Corollary 3.1.1. Let i ≥ 0. If Hi(G,αk) = 0 for all k, 1 ≤ k ≤ t, then
Hi(G, C) = 0 for every subquotient C of D as an R[G]-module.

Proof. The hypothesis implies that Hi(G, C[mn]) = 0 for all n ≥ 0. Since
C = Lim

−→
n

C[mn], it follows that Hi(G, C) = 0 as stated. �

Note that H0(G,D) = DG is just an R-submodule of D, and so is also a
cofinitely generated R-module. More generally, we have

Proposition 3.2. For any i ≥ 0, Hi(G,D) is a cofinitely generated R-module.

Proof. We prove this by induction on the minimal number of generators of the
maximal ideal m. Let λ be one element of such a generating set for m. Consider
the two exact sequences

0→ D[λ]→ D → λD → 0, 0→ λD → D → D/λD → 0
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The first is induced by multiplication by λ; the second is obvious. If m is prin-
cipa1, thenD[λ] = D[m] andD/λD = D/mD are both finite, and the hypothesis
that the Hi(G,αk)’s are finite implies that Hi(G,D[λ]) and Hi−1(G,D/λD)
are both finite. Thus the kernels of the two maps

Hi(G,D)→ Hi(G,λD), Hi(G,λD)→ Hi(G,D)

are both finite. But the composite map D → λD → D is multiplication by λ,
and so the kernel of the composite map Hi(G,D) → Hi(G,λD) → Hi(G,D)
is just Hi(G,D)[λ], which is therefore finite. Thus, Hi(G,D)[m] is finite, and
hence, by Nakayama’s lemma (the version for compact R-modules), Hi(G,D)
is cofinitely generated as a R-module.

If a minimal generating set for m requires g generators, where g > 1, then the
maximal ideal of R/(λ) requires g − 1 generators. The R/(λ)-modules D[λ]
and D/λD are both cofinitely generated. And so, by induction, we can assume
that the R/(λ)-modules Hi(G,D[λ]) and Hi−1(G,D/λD) are also cofinitely
generated. The above argument then shows that theR/(λ)-moduleHi(G,D)[λ]
is cofinitely generated, and hence so is Hi(G,D)[m]. Nakayama’s lemma then
implies that the R-module Hi(G,D) is cofinitely generated. �

Various other properties of D are inherited by the Galois cohomology groups
under certain hypotheses. Some are quite obvious. We assume in the rest of
this section that R is a domain.

If D is R-cotorsion, then so is Hi(G,D).

If D is a co-pseudo-null R-module, then so is Hi(G,D).

As for the properties of divisibility or coreflexivity, these are also inherited
under certain rather stringent hypotheses. We have the following result.

Proposition 3.3. Suppose that i ≥ 0. Suppose that Hi+1(G,αk) = 0 for
1 ≤ k ≤ t.

(a) If D is a divisible R-module, then so is Hi(G,D).

(b) If D is a coreflexive R-module, then so is Hi(G,D).

Note that the hypothesis that the Hi+1(G,αk)’s vanish is true if G has p-
cohomological dimension equal to i. In particular, this hypothesis is true when
i = 2 for G = GKv , where v is any non-archimedean prime of K, and for
G = Gal(KΣ/K) when p is an odd prime.

Proof. The ring R is a finitely generated module over a formal power series ring
Λ. A finitely generated R-module X is torsion-free as an R-module if and only
if it is torsion-free as a Λ-module. Also, X is reflexive as an R-module if and
only if it is reflexive as a Λ-module. Thus, we may prove the proposition by
using only the Λ-module structure. Prime ideals of Λ of height 1 are principal.
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First we consider divisibility. Let λ ∈ Λ be nonzero. Then we have the exact
sequence

0→ D[λ]→ D → D → 0

induced by multiplication by λ. Hence we get an exact sequence

Hi(G,D)→ Hi(G,D)→ Hi+1(G,D[λ])

The hypothesis in corollary 3.1.1 is satisfied for the index i+ 1 for the module
C = D[λ], and so we have Hi+1(G,D[λ]) = 0. Thus multiplication by λ is
surjective on Hi(G,D), proving part (a) of the proposition.

Now we consider coreflexivity. Let P = (π) be any prime ideal of height 1 in
Λ. It suffices to show that Hi(G,D)[P ] is a divisible (Λ/P )-module for all such
P . Then one can apply corollary 2.6.1 to get the conclusion. Now since D is
Λ-divisible, we get an exact sequence

0→ D[P ]→ D → D → 0

induced by multiplication by π. The corresponding cohomology sequence then
gives a surjective map Hi(G,D[P ]) → Hi(G,D)[P ] of (Λ/P )-modules. Corol-
lary 2.6.1 implies that D[P ] is (Λ/P )-divisible, and hence, by part (a), so is
Hi(G,D[P ]). It follows thatHi(G,D)[P ] is indeed divisible as a (Λ/P )-module,
proving part (b). �

B. Behavior under specialization. If I is any ideal of R, then one has an
obvious (R/I)-module homomorphism

Hi(G,D[I]) −→ Hi(G,D)[I] (4)

We will discuss the kernel and cokernel. Since D[I]G = DG[I], this homomor-
phism is an isomorphism when i = 0. If i ≥ 1, the simplest case to study is
when I is a principal ideal and D is a divisible R-module. If I = (ξ), then we
consider the exact sequence induced by multiplication by ξ.

0 −→ D[I] −→ D ξ−→D −→ 0

The corresponding map on the cohomology groups is also induced by multipli-
cation by ξ. This gives the exact sequence

0→ Hi−1(G,D)/ξHi−1(G,D)→ Hi(G,D[I])→ Hi(G,D)[I]→ 0 (5)

Thus, when I is principal and D is divisible, the map (5) will at least be surjec-
tive. It suffices just to assume that D is divisible by the element ξ generating
I. Here is one rather general and useful result for arbitrary ideals, valid even
when D is not assumed to be divisible.

Proposition 3.4. Suppose that D is a cofinitely generated R-module. Let
i ≥ 0. If i > 0, assume that Hi−1(G,αk) = 0 for 1 ≤ k ≤ t. Suppose that I is
any ideal of R. Then the map

Hi(G,D[I]) −→ Hi(G,D)[I]
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is an isomorphism.

Proof. We’ve already remarked that the map is an isomorphism when i = 0.
If i > 0, the assumption implies that Hi−1(G, C) = 0 for every subquotient
C of D as an R[G]-module. Therefore, if D′ is an R[G]-submodule of D, then
Hi−1(G,D/D′) = 0 and so the induced map Hi(G,D′) → Hi(G,D) will be
injective.

Suppose first that I = (λ) is a principal ideal. Multiplication by λ gives an
exact sequence

0 −→ D[λ]
a−→D b−→λD −→ 0

Let α : Hi(G,D[λ]) → Hi(G,D) and β : Hi(G,D) → Hi(G,λD) be the maps
induced from a and b. The map α is injective and its image is the kernel of the
map β. But the map γ : Hi(G,λD) → Hi(G,D) is also injective and so the
maps β and γ ◦β have the same kernel. The map γ ◦β : Hi(G,D)→ Hi(G,D)
is just multiplication by λ. Therefore, the image of α is indeed Hi(G,D)[λ],
which proves the proposition if I is principal - an ideal with one generator.

We will argue by induction on the minimum number of generators of I. Sup-
pose that λ1, ..., λg is a minimal generating set for I, where g > 1. Let
J = (λ1, ..., λg−1). Assume that the map Hi(G,D[J ]) → Hi(G,D)[J ] is an
isomorphism. Then so is the map

Hi(G,D[J ])[λg]→ (Hi(G,D)[J ])[λg] = Hi(G,D)[I]

Now D[J ][λg] = D[I] and so, applying the proposition to D[J ] and the principal
ideal (λg), as we may, it follows that the map

Hi(G,D[I])→ Hi(G,D[J ])[λg]

is an isomorphism. Composing these isomorphisms, we get the isomorphism
stated in the proposition for I. �

Remark 3.4.1. For i = 1, the assumption in proposition 3.4 is that the
trivial Fp-representation of G is not a composition factor in the Fp[G]-module
D[m]. Assuming this is satisfied, we have H1(G,D[P]) ∼= H1(G,D)[P] for every
prime ideal P of R. Let r = corankR

(
H1(G,D)

)
. Applying remark 2.1.3 to

A = H1(G,D), we see that corankR/P
(
H1(G,D[P ])

)
≥ r for all P and that

equality holds for all P /∈ V (I), where I is some nonzero ideal of R. A similar
statement is true for any i under the assumptions of proposition 3.4.

Remark 3.4.2. Suppose now that R = Λ and that D is a cofree Λ-module.
Assume that P is a regular prime ideal of Λ, i.e., that the local ring Λ/P
is regular. The ideal P can be generated by a regular sequence λ1, ..., λg of
elements of Λ. (See proposition 2.2.4 in [B-H].) Define P0 = (0) and, for
1 ≤ j ≤ g, define Pj = (λ1, ..., λj). Then Pj is a prime ideal for j ≥ 0 and
D[Pj ] is cofree and hence divisible as a (Λ/Pj)-module. Note that if j ≥ 1, then
D[Pj ] = (D[Pj−1])[λj ] and multiplication by λj defines a surjective map on
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D[Pj−1]. The induced map Hi(G,D[Pj ]) −→ Hi(G,D[Pj−1])[Pj ] is surjective.
Hence

corankΛ/Pj

(
Hi(G,D[Pj ])

)
≥ corankΛ/Pj

(
Hi(G,D[Pj−1])[Pj ]

)

On the other hand, remark 2.1.3 implies that

corankΛ/Pj

(
Hi(G,D[Pj−1])[Pj ]

)
≥ corankΛ/Pj−1

(
Hi(G,D[Pj−1])

Since D[P0] = D, we have proved that

corankΛ/P

(
Hi(G,D[P ])

)
≥ corankΛ

(
Hi(G,D)

)

for all regular prime ideals of Λ. In particular, suppose that Λ/P ∼= Zp. Then

corankΛ

(
Hi(G,D)

)
≤ corankZp

(
Hi(G,D[P ])

)
≤ dimFp

(
Hi(G,D[mΛ])

)
.

In the following proposition, we consider D just as a Λ-module and take I = P
to be a prime ideal of height 1. However, the result can be extended to a more
general class of rings R as explained in remark 3.5.2 below.

Proposition 3.5. Suppose that D is a cofinitely generated Λ-module. Let
i ≥ 0. Then, for almost all P ∈ Specht=1(Λ), the kernel and cokernel of the
map

Hi(G,D[P ]) −→ Hi(G,D)[P ]

are cotorsion (Λ/P )-modules and hence Hi(G,D[P ]) and Hi(G,D)[P ] will have
equal (Λ/P )-coranks.

Proof. As already mentioned, the result is obvious for i = 0. We assume
first that D is Λ-divisible. Suppose that i ≥ 1. The map in question is sur-
jective. Let π be a generator of P , which is a principal ideal. Since we are
assuming that D is Λ-divisible, we can use (5) for I = P . As a Λ-module,
Hi−1(G,D)/πHi−1(G,D) is a quotient of the cofinitely generated, cotorsion
Λ-module A = Hi−1(G,D)/Hi−1(G,D)Λ−div. Let J = AnnΛ(A). Then it is
clear that if P does not contain J , then Hi−1(G,D)/πHi−1(G,D) is a cotorsion
(Λ/P )-module. If D is not Λ-divisible, then one notes that D is Λ-isogenous to
DΛ−div and so one can easily reduce to the Λ-divisible case. �

Remark 3.5.1. A similar result holds for the cohomology groups associated
to a finitely generated Λ-module T . We assume that G acts continuously
and Λ-linearly on T and that the cohomology groups Hi(G,α) are finite for
every simple subquotient α of the G-module T /mΛT . The G-module T is now
compact and so we consider the continuous cohomology groups. A discussion of
their properties can be found in [NSW], chapter II, §3. Since T = Lim

←−
n

T /mnT ,

an inverse limit of finite Galois modules, we have

Hi
cts(G, T ) = Lim

←−
n

Hi(G, T /mnT )
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This follows from corollary 2.3.5 in [NSW]. Note that our assumption that the
Hi(G,α)’s are finite is needed for this. It is not hard to show that Hi

cts(G, T )
is a finitely generated Λ-module. If P is a prime ideal of Λ, one has a natural
map Hi

cts(G, T )→ Hi
cts(G, T /PT ). Suppose that P is a prime ideal of height

1. Then we have the following compact version of proposition 3.5.

The kernel and cokernel of the map

Hi
cts(G, T )/PHi

cts(G, T ) −→ Hi
cts(G, T /PT )

are torsion (Λ/P )-modules for almost all P ∈ Specht=1(Λ).

The argument is analogous to that given above. Suppose that P = (π). As-
suming first that T is a torsion-free Λ-module, one considers the exact sequence

0 −→ T π−→T −→ T /PT −→ 0

induced by multiplication by π. The map in question is induced by this exact
sequence. It is injective and its cokernel is isomorphic to Hi+1

cts (G, T )[π], which
is a Λ-submodule ofHi+1

cts (G, T )Λ−tors, the torsion Λ-submodule ofHi+1
cts (G, T ).

Therefore, this cokernel is indeed (Λ/P )-torsion for all but the finitely many
P ∈ Specht=1(Λ) containing the annihilator of Hi+1

cts (G, T )Λ−tors. As before,
one easily reduces the general case to the case where T is torsion-free.

Remark 3.5.2. Suppose that D is a cofinitely generated R-module, where
R is a finite, integral extension of Λ. Let K be the field of fractions for R, a
finite extension of the field of fractions L of Λ. We will assume that K/L is a
separable extension. One can prove that the kernel and cokernel of the map

Hi(G,D[P]) −→ Hi(G,D)[P]

will be cotorsion (R/P)-modules for almost all P ∈ Specht=1(R) as follows.
Assume that P ∈ Specht=1(Λ) satisfies the conclusion of proposition 3.5 and is
also unramified for the extension K/L in the following sense: For all P lying
over P , the maximal ideal in the localization RP is generated by P . Fix one
such P. Consider the following commutative diagram

Hi(G,D[P])
α //

β

��

Hi(G,D)[P]

β′

��
Hi(G,D[P ])

α′ // Hi(G,D)[P ]

The horizontal maps α and α′ are defined in the obvious way. Both ker(α′)
and coker(α′) are (Λ/P )-cotorsion by assumption. Thus, they are annihilated
by some element λ ∈ Λ − P . The inclusion D[P] → D[P ] induces the map
β. Since P is assumed to be unramified, P ⊂ PRP and hence there exists an
element γ ∈ R − P such that γP ⊆ PR. This implies that γD[P ] ⊆ D[P] and
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so γ annihilates D[P ]/D[P]. It follows that ker(β) and coker(β) are annihilated
by γ. It is also clear that β′ is injective and coker(β′) is annihilated by γ. A
diagram chase then implies that ker(α) and coker(α) are annihilated by λγ.
Since this element of R is not in P, it follows that the kernel and cokernel of α
are cotorsion (R/P)-modules. This is true for all P lying over P .

The conclusion of proposition 3.5 is true for almost all P ∈ Specht=1(Λ). It
remains to show that almost all P ∈ Specht=1(Λ) are unramified in K/L. Let
S denote the integral closure of R in K. Then it is known that S is finitely
generated as a Λ-module. (See theorem 6.4 in [D].) Let ω1, ..., ωn be a fixed
basis for K over L contained in R. Then for almost all P ∈ Specht=1(Λ), the
localizations RP and SP coincide and are free ΛP -modules with basis ω1, ..., ωn.
Assume that P has this property. Now ΛP is a discrete valuation ring and
RP = SP is a Dedekind ring. Since K/L is separable, the discriminant of this
extension for the fixed basis is nonzero, and the prime ideal P is unramified if
it doesn’t contain this discriminant. It clearly follows that only finitely many
P ∈ Specht=1(Λ) can be ramified in K/L.

C. Almost divisibility. Suppose that i ≥ 1 and that P = (π) is a prime ideal
of Λ of height 1. Then, according to (5), the map Hi(G,D[P ]) −→ Hi(G,D)[P ]
will be injective if and only if Hi−1(G,D)/πHi−1(G,D) = 0, assuming that D
is divisible by π. Thus, we have the following useful equivalence.

Proposition 3.6. Suppose that D is an almost divisible, cofinitely generated
Λ-module. Let i ≥ 1. Then the Λ-module Hi−1(G,D) is almost divisible if and
only if the map

Hi(G,D[P ]) −→ Hi(G,D)[P ]

is injective for almost all P ∈ Specht=1(Λ).

Here is one important special case.

Proposition 3.7. Suppose that D is a coreflexive Λ-module on which G acts.
Let i ≥ 0. Assume that Hi+2(G,αk) = 0 for 1 ≤ k ≤ t. If Hi+1(G,D) = 0,
then Hi(G,D) is an almost divisible Λ-module.

Proof. By proposition 3.6, it certainly suffices to show that Hi+1(G,D[P ]) = 0
for almost all P ∈ Specht=1(Λ). This follows if we show that Hi+1(G,D[P ]) is
both (Λ/P )-cotorsion and (Λ/P )-divisible. Since Hi+1(G,D) = 0, proposition
3.5 implies the first statement for all but finitely many height 1 prime ideals
P . By corollary 2.6.1, D[P ] is a divisible (Λ/P )-module, and proposition 3.3
then implies the (Λ/P )-divisibility of Hi+1(G,D[P ]) for every height 1 prime
ideal P of Λ. �

D. Replacing R by its reflexive closure. Now suppose that T is a
free R-module of rank n and that G is a group which acts continuously and
R-linearly on T . Then G acts continuously and R̃-linearly on T̃ = T ⊗R R̃. If
R is a finite extension of Λ, then the above proposition implies that T̃ is the
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reflexive hull of T as a Λ-module. Both R and R̃ are complete Noetherian local
rings. As in the introduction, we define discrete G-modules D = T ⊗R R̂ and

D̃ = T̃ ⊗ eR
̂̃
R. Then D is an R-module, D̃ is an R̃-module, both are cofinitely

generated Λ-modules, D is a divisible Λ-module, D̃ is a coreflexive Λ-module,
and there is a surjective G-equivariant Λ-module homomorphism D̃ → D whose
kernel C is a co-pseudo-null Λ-module.

The hypothesis in proposition 3.3 for D and for D̃ are equivalent. To explain
this, let mΛ denote the maximal ideal of Λ, m̃ the maximal ideal of R̃. Then
we can regard D[mΛ] as a finite-dimensional representation space for G over

the residue field Λ/mΛ
∼= Fp and D[m̃] as such a representation space over R̃/m̃

and hence over Fp. We then have the following observation.

Proposition 3.8. The Fp-representations spaces D[m], D̃[m̃], D[mΛ], and

D̃[mΛ] for G have the same irreducible subquotients.

Proof. First note that D is a quotient of D̃. Also, for any nonzero λ ∈ Λ, one
has D̃/D̃[λ] ∼= D̃. One can choose λ so that C ⊆ D̃[λ]. Since D̃/C ∼= D, it is

clear that D̃ is isomorphic to a subquotient of D. Hence proposition 3.1 implies
that D[m] and D̃[m] have the same irreducible subquotients.

Now mΛ ⊆ m and so D[m] ⊆ D[mΛ]. Also, the fact that R/mΛR is finite
implies that mt ⊆ mΛR for some t ≥ 1. Hence D[mΛ] ⊆ D[mt]. Proposition
3.1 again implies that D[mΛ] and D[m] have the same irreducible subquotients.

The same argument applies to D̃[mΛ] and D̃[m̃]. The proposition follows from
these observations. �

The surjective homomorphism D̃ → D induces a map Hi(G, D̃) → Hi(G,D)
for any i ≥ 0. Since Hi(G, C) and Hi+1(G, C) are co-pseudo-null, the same will
be true for both the kernel and the cokernel of that induced map. Proposition
3.3 then has the following consequence.

Proposition 3.9. Suppose that i ≥ 0. Suppose that Hi+1(G,αk) = 0 for

1 ≤ k ≤ t. Then the map Hi(G, D̃) → Hi(G,D) is surjective, Hi(G,D) is

Λ-divisible, Hi(G, D̃) is Λ-coreflexive, and the Pontryagin dual of Hi(G, D̃) is
precisely the reflexive hull of the Pontryagin dual of Hi(G,D).

Proof. Note that Hi+1(G, C) = 0 by proposition 3.8 and corollary 3.1.1.
This implies the surjectivity. The divisibility of Hi(G,D) and coreflexivity

of Hi(G, D̃) follow from propositions 3.8 and 3.3. The Pontryagin dual of
Hi(G,D) is a torsion-free Λ-module which is mapped injectively into the Pon-

tryagin dual ofHi(G, D̃). The corresponding quotient Λ-module is a submodule
of the Pontryagin dual of Hi(G, C), and so it is pseudo-null. The final state-
ment follows from this. �

Remark 3.9.1. If D is not coreflexive, then Hi(G,D) would often fail to be
coreflexive too. Suppose, for example, that i = 1 and that both H0(G,αk) and
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H2(G,αk) vanish for all k, 1 ≤ k ≤ t. Then, if H1(G,D[m]) 6= 0, it follows

that H1(G, C) 6= 0 and that the map Hi(G, D̃)→ Hi(G,D) will have a nonzero
kernel. In that case, proposition 3.9 implies that Hi(G,D) is non-reflexive.

E. Relationship between Hi(G,D) and Hi
cts(G, T ). Consider an arbi-

trary finitely generated R-module T on which a group G acts continuously
and R-linearly. We assume that Hi(G,α) is finite for all i ≥ 0 and all simple

subquotients α of the finite G-module T /mT . Let D = T ⊗R R̂.

Proposition 3.10. We have rankR
(
Hi
cts(G, T )

)
= corankR

(
Hi(G,D)

)
for all

i ≥ 0.

Proof. The statement concerns D = DR. Note that the simple subquotients
α of the G-module D[m] are among those for T /mT and so the corresponding
cohomology groups are finite. To prove the equality, it is enough to consider
the rank and corank over the subring Λ of R. We replace DR by DΛ = T ⊗Λ Λ̂.
This module is R-isogenous to DR and so the corresponding cohomology groups
will have the same coranks.

If Λ has Krull dimension 1, then the argument is straightforward. The maximal
ideal mΛ of Λ is then principal. Letting An = T /mn

ΛT , we have An ∼= D[mn
Λ] for

any n ≥ 0. One can relate the rank or corank in question to the growth of the
finite groups Hi(G,An) as n→∞. If Λ has Krull dimension > 1, there are in-
finitely many prime ideals of Λ of height 1. We then use an induction argument
on the Krull dimension. Let r = corankΛ

(
Hi(G,D)

)
and s = rankΛ

(
Hi(G, T )

)
.

According to proposition 3.5, the (Λ/P )-corank of Hi(G,D[P ]) will be equal
to r for almost all P ∈ Specht=1(Λ). As pointed out in part E of section 2, one
has a surjective (Λ/P )-homomorphism

(T /PT )⊗Λ/P (̂Λ/P )→ D[P ]

For almost all P ’s, the (Λ/P )-coranks of these modules will be equal, the kernel

will therefore be (Λ/P )-cotorsion, and hence Hi
(
G, (T /PT )⊗Λ/P (̂Λ/P )

)
will

also have (Λ/P )-corank equal to r. We can choose such a P so that Λ/P is
also a formal power series ring. The Krull dimension will be reduced by 1 and
so we assume, inductively, that the (Λ/P )-rank of Hi(G, T /PT ) is equal to
r too. This will be true for an infinite set of P ’s in Specht=1(Λ). However,
according to remark 3.5.1, Hi(G, T /PT ) will have (Λ/P )-rank equal to s for
all but finitely many such P ’s. Therefore, r = s. �

Remark 3.10.1. We want to mention another argument for the case i = 0
based on proposition 2.8. Let D = DR. We will assume that G is topologically
finitely generated. Let g1, ..., gt ∈ G generate a dense subgroup of G. Consider
the map φ : T −→ T t defined by φ(x) =

(
(g1 − 1)x, ..., (gt − 1)x

)
for all

x ∈ T . The induced map ψ : D −→ Dt, as defined in proposition 2.8, is
given by the same formula, but for x ∈ D instead. This definition implies that
ker(φ) = H0(G, T ) and that ker(ψ) = H0(G,D). Proposition 2.8 then implies
the equality of the R-rank and R-corank for these two R-modules.

Documenta Mathematica · Extra Volume Coates (2006) 335–391



Structure of Certain Galois Cohomology Groups 367

A similar argument implies that the R-rank of TG is equal to the R-corank
of DG. These modules are the maximal quotients on which G acts trivially.
Consider the map φ′ : T t −→ T defined by φ′(x1, ..., xt) =

∑t
i=1(gi − 1)xi for

all x ∈ T t. The induced map ψ′ : Dt −→ D is again given by the same formula.
It is easy to see that coker(φ′) = TG and coker(ψ′) = DG. The stated equality
follows from proposition 2.8.

Remark 3.10.2. One can apply remark 2.1.2 to obtain a useful consequence
if we assume that T is a free R-module. Then T t is also a free R-module. Let
φ be the map defined above. If P is a prime ideal of R, then φP is defined by
the same formula as φ. It follows that rankR/P

(
(T /PT )G

)
≥ rankR

(
T G
)

for
every prime ideal P of R. According to proposition 2.1.1, equality holds on a
nonempty Zariski-open subset of Spec(R). Also, note that if (T /PT )G = 0 for
some prime ideal P, then it follows that T G = 0.

4 Coranks.

In this section we will prove theorems concerning Euler-Poincaré characteris-
tics, lower bounds on theR-coranks ofH1 andH2, and the relationship between

the R-coranks of X
1

and X
2
. Assume that R is a finite, integral extension of

Λ. IfX is a finitely generated R-module, then rankΛ(X) = rankR(X)rankΛ(R).
Hence we can derive the formulas for ranks or coranks by considering the var-
ious R-modules as Λ-modules. This simplifies the arguments since the prime
ideals of height 1 in Λ are principal. Thus, we will formulate all the results for
a discrete, cofinitely generated Λ-module D which has a Λ-linear action of the
appropiate Galois groups. Proposition 3.2 implies that the Galois cohomology
groups Hi(KΣ/K,D) and Hi(Kv,D) are also cofinitely generated Λ-modules.
Thus, we can consider their Λ-coranks.

A. Euler-Poincaré characteristics. We assume that D has a Λ-linear
action of Gal(KΣ/K). We will prove the following result.

Proposition 4.1. Let m = corankΛ(D), m−v = corankΛ(D/DGKv ) for each
real prime v of K, and let r2 denote the number of complex primes of K. Then

2∑

i=0

(−1)icorankΛ

(
Hi(KΣ/K,D)

)
= −δΛ(K,D)

where δΛ(K,D) = r2m+
∑
v realm

−
v .

For i ≥ 3, we have Hi(KΣ/K,D) = 0 except possibly when p = 2. In fact, the
global-to-local restriction maps induces an isomorphism for i ≥ 3

Hi(KΣ/K,D) ∼=
∏

v|∞
Hi(Kv,D)
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(See [NSW], (8.6.13, ii).) This justifies our remark in the introduction that

X
i
(K,Σ,D) = 0 for i ≥ 3. The right-hand side is trivial if p is an odd prime.

But suppose that p = 2. In that case, if v|∞, then Hi(Kv,D) is of exponent
2 and hence can be regarded as a module over Λ/(2) for any such v. Thus, if
Λ has characteristic 0, then Hi(KΣ/K,D) is a cotorsion Λ-module for i ≥ 3.
However, if Λ is a formal power series ring over F2, then Hi(KΣ/K,D) can
have positive Λ-rank.

We will also state a formula for a local Euler-Poincaré characteristic for every
non-archimedean prime v of K. The cofinitely generated Λ-module D is just
assumed to have a Λ-linear action of GKv .

Proposition 4.2. Let m = corankΛ(D). Let v be any non-archimedean prime
of K.

(a) If v lies over p, then
∑2
i=0(−1)icorankΛ

(
Hi(Kv,D)

)
= −m[Kv : Qp].

(b) If v does not lie over p, then
∑2
i=0(−1)icorankΛ

(
Hi(Kv,D)

)
= 0.

Both of these propositions will be proved by a specialization argument, reducing
to the case where the Krull dimension of Λ is 1. That case is then rather easy,
derived from the Poitou-Tate formula for the Euler-Poincaré characteristic of
a finite Galois module. The Euler-Poincaré characteristic is additive for an
exact sequence 0 → D1 → D2 → D3 → 0. For any D, we let DΛ−div denote
its maximal Λ-divisible Λ-submodule. Then D/DΛ−div is Λ-cotorsion. Also,
the Euler-Poincaré characteristic for a Λ-cotorsion module is 0. Thus, we can
assume for the proof that D is Λ-divisible. The proofs of the two propositions
are virtually the same and so we will just give the proof of proposition 4.1.

Proof. If the Krull dimension of Λ is 1, then either Λ = Zp or Λ = Fp[[T ]]. In
the first case, the result is known. One determines the Zp-corank by reducing
to the case of the finite modules D[pn], n ≥ 0. In the second case, the argument
would be similar, reducing to the case of the finite modules D[Tn], n ≥ 0. If
the Krull dimension is at least 2, then there are infinitely many prime ideals P
of height 1 such that (Λ/P ) is also a formal power series ring, but with Krull
dimension reduced by 1. By remark 2.1.3, we can choose such a P so that
corankΛ/P (D[P ]) = corankΛ(D) and corankΛ/P (D[P ]GKv ) = corankΛ(DGKv )
for all archimedean primes v of K. Then δΛ/P (K,D[P ]) = δΛ(K,D) for all such
P . By proposition 3.5 and remark 2.1.3, we can also assume that P has the
property that corankΛ/P

(
Hi(G,D[P ])

)
= corankΛ

(
Hi(G,D)

)
for i = 0, 1, and

2. Choosing a P with all of these properties reduces the proof of proposition
4.1 to the corresponding result for D[P ] considered as a module over the formal
power series ring (Λ/P ). By induction, we are done. �

B. Lower bound on the Λ-corank of H1(KΣ/K,D). We will derive a
lower bound in terms of various local and global H0’s. First we do this for the
Λ-corank of H2(KΣ/K,D). Then applying proposition 4.1 gives a lower bound
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for the Λ-corank of H1(KΣ/K,D). The theorems of Poitou-Tate determine the
cokernel of the map

γ : H2(KΣ/K,D)→ P 2(K,Σ,D)

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). Usually these theorems are stated for
finite Galois modules. See [NSW], (8.6.13, i) for a complete statement in this
case. But D is a direct limit of the finite Galois modules D[mn] as n→∞, and
one can therefore extend these theorems easily. In particular, we have

coker(γ) ∼= H0(KΣ/K, T ∗)∧, (6)

where T ∗ = Hom(D, µp∞). This module is the inverse limit of the finite Ga-
lois modules Hom(D[mn

Λ], µp∞) as n → ∞. One can also extend Tate’s local
duality theorem ([NSW], (7.2.6) ), usually stated for finite Galois modules, to
D obtaining, for example, the isomorphisms H2(Kv,D) ∼= H0(Kv, T ∗)∧ for
every non-archimedean prime v of K. When Λ has characteristic 2, it is also
necessary to consider the real archimedean primes since H2(Kv,D) could then
have a positive Λ-corank. If v is such a prime, then the Pontryagin dual of
H2(Kv,D) is Ĥ0(Kv, T ∗) = (T ∗)GKv /(1 + σv)T ∗, where σv is the nontrivial
element of Gv.

We will use the following abbreviations for various ranks and coranks over
Λ. For i ≥ 0, let hi(KΣ/K,D) = corankΛ

(
Hi(KΣ/K,D)

)
. If i = 0, we will

usually write K in place of KΣ/K since the group is then just the GK-invariant
elements. We let h0(K, T ∗) and h0(Kv, T ∗) denote the Λ-ranks of H0(K, T ∗)
and H0(Kv, T ∗), respectively. If v is archimedean, we will let ĥ0(Kv, T ∗)
denote the Λ-rank of Ĥ0(Kv, T ∗). With this notation, we get the following
lower bound for corankΛ

(
H2(KΣ/K,D)

)
:

h2(KΣ/K,D) ≥
∑

v|∞
ĥ0(Kv, T ∗) +

∑

v∈Σ,v∤∞
h0(Kv, T ∗) − h0(K, T ∗) (7)

Equality occurs precisely when X
2
(K,Σ,D) = ker(γ) has Λ-corank equal to

0.

The terms in the quantity δΛ(K,D) (defined in proposition 4.1) are mostly
Λ-ranks of H0’s. For a complex prime v, one obviously has m = h0(Kv, T ∗).
For a real prime v, one sees easily that m−v = h0(Kv, T ∗) if the characteristic
of Λ is not 2. This is not necessarily so if Λ has characteristic 2. However, in
all cases, one has the following result.

Proposition 4.3. Let b1Λ(K,Σ,D)=h0(K,D)+
∑
v∈Σ h0(Kv, T ∗)−h0(K, T ∗).

Then we have the inequality h1(KΣ/K,D) ≥ b1Λ(K,Σ,D). Equality holds if

and only if X
2
(K,Σ,D) is Λ-cotorsion.

Of course, one can similarly define all the quantities in terms of R-ranks and
coranks. The corresponding lower bound will be denoted by b1R(K,Σ,D).
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Proof. Assume first that either p is odd or, if p = 2, that Λ has characteristic
0. Note that the sum is over all v ∈ Σ, finite and infinite. The contribution to
this sum from the infinite primes is just δΛ(K,D). Indeed, each complex prime
contributes an m. To check the contribution when v is a real prime, let σv be
a generator of Gv. Let βv = 1 + σv, the norm map. Then (T ∗)GKv /βvT ∗ has
exponent 2 and is therefore a torsion Λ-module. Hence (T ∗)GKv and βvT ∗ have
the same Λ-ranks. Since σv acts by inversion on µp∞ , βvT ∗ is the Pontryagin
dual of D/DGKv as a Λ-module. Thus, the contribution from v will be m−v . It
follows that the contribution from the infinite primes is just δΛ(K,D) and so
the stated inequality then follows from proposition 4.1 together with (7). The

fact that ĥ0(Kv, T ∗) = 0 implies that equality holds if and only if it holds in

(7) and that is equivalent to the vanishing of the Λ-corank of X
2
(K,Σ,D).

Now assume that Λ has characteristic 2. For the complex primes and finite
primes, everything is the same as before. If v is a real prime, then it is still
true that βvT ∗ is the Pontryagin dual of D/DGKv as a Λ-module. Thus, the

Λ-rank of βvT ∗ is m−v . It follows that h0(Kv, T ∗) = m−v + ĥ0(Kv, T ∗). Using
that observation, the inequality in proposition 4.3 follows from proposition 4.1
and (7). Equality is again equivalent to the validity of hypothesis L. �

Remark 4.3.1. One can express all the quantities occurring in the in-
equality of the above proposition in terms of the discrete Λ-modules D and
D∗ = T ∗ ⊗Λ Λ̂. Then we have h0(Kv, T ∗) = corankΛ

(
H0(Kv,D∗)

)
for each

v ∈ Σ and h0(K, T ∗) = corankΛ

(
H0(K,D∗)

)
. These equalities follow from

proposition 3.10 or remark 3.10.1. Note that GKv is topologically finitely gen-
erated and that the action of Gal(KΣ/K) on T ∗ factors through a quotient
group G satisfying that property.

In theorem 1, we assume that H0(Kvo , T ∗) = 0 for at least one non-
archimedean vo ∈ Σ. Since T ∗ is torsion-free Λ-module in that theorem, an
equivalent assumption would be that h0(Kv, T ∗) = 0 for some such vo. Note
that this assumption obviously implies that H0(K, T ∗) = 0 or, equivalently,
that h0(K, T ∗) = 0.

C. The coranks of X
1

and X
2
. Another part of the Poitou-Tate du-

ality theorems gives a perfect pairing between X
2

for a finite Galois mod-

ule A and X
1

for the “Kummer dual” A∗ = Hom(A,µN ), where N = |A|.
See [NSW], (8.6.8). Taking direct and inverse limits gives a perfect pairing

between X
2
(K,Σ,D) and X

1
(K,Σ, T ∗). As discussed in the introduction,

both groups might be zero in important cases. We prefer to consider X
1

for a

discrete module D∗, but this may often be nonzero even if X
1
(K,Σ, T ∗) = 0.

We can only prove a relationship between the Λ-coranks. It is not even quite
clear how one should define D∗. We have some freedom because the Λ-corank of
X

i
is not changed by a Λ-isogeny of the coefficient module, as we show below.

For the purpose of the following proposition, we define D∗ = T ∗⊗Λ Λ̂, although
this may differ from D∗, as defined in the introduction, by a Λ-isogeny.
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Proposition 4.4. The Λ-coranks of X
2
(K,Σ,D) and X

1
(K,Σ,D∗) are

equal.

We will use the following lemma which is the analogue of proposition 3.5 for

X
i
.

Lemma 4.4.1. Suppose that D is a cofinitely generated Λ-module. Let i ≥ 1.
Then, for almost all P ∈ Specht=1(Λ), both the kernel and the cokernel of the
map

X
i
(K,Σ,D[P ]) −→X

i
(K,Σ,D)[P ]

will be cotorsion as (Λ/P )-modules. Hence X
i
(G,D[P ]) and X

i
(G,D)[P ]

will have the same (Λ/P )-coranks.

Proof. Applying proposition 3.5 to the global and local cohomology groups
shows that the kernels and cokernels of the maps

Hi(KΣ/K,D[P ]) −→ Hi(KΣ/K,D)[P ], P i(K,Σ,D[P ]) −→ P i(K,Σ,D)[P ]

are Λ-cotorsion for all but finitely many P ’s of height 1. A straightforward
application of the snake lemma implies the result. One uses the fact that the
kernels of both maps and the cokernel of the first map are Λ-cotorsion. �

Now we show that the Λ-corank of X
i

is unchanged by Λ-isogenies. Assume
that D1 and D2 are cofinitely generated Λ-modules with a Λ-linear action of
Gal(KΣ/K) and that φ : D1 → D2 is a Gal(KΣ/K)-equivariant Λ-isogeny.
Then φ induces maps on both the global and local cohomology groups and one
has a commutative diagram

0 // X
i
(K,Σ,D1)

//

α

���
�

�

Hi(KΣ/K,D1) //

κ

��

P i(K,Σ,D1)

λ

��
0 // X

i
(K,Σ,D2)

// Hi(KΣ/K,D2)
σ // P i(K,Σ,D2)

The maps κ and λ are Λ-isogenies. It is clear that the image of X
i
(K,Σ,D1)

under the map κ is contained in the kernel of σ and so the map α corresponding
to the dashed arrow making the diagram commutative does exist. The fact that
κ and λ are Λ-isogenies implies that α is a Λ-isogeny.

Let s2 = corankΛ

(
X

2
(K,Σ,D)

)
, s∗1 = corankΛ

(
X

1
(K,Σ,D∗)

)
. We prove

the equality by induction. If the Krull dimension of Λ is 1, then proposition
4.4 is, as before, rather straightforward to derive from the Poitou-Tate duality
theorems for finite Galois modules. In that case, let V = T ⊗ΛL, V∗ = T ∗⊗ΛL,
where L is the fraction field for Λ. Thus, L = Qp or L = Fp((T )). One

then verifies that s2 = dimL
(
X

2
(K,Σ,V)

)
and s∗1 = dimL

(
X

1
(K,Σ,V∗)

)
.

Also, the duality theorem asserts that X
2
(K,Σ,V) and X

1
(K,Σ,V∗) are

dual vector spaces, and so the equality s2 = s∗1 follows.
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If the Krull dimension d of Λ is at least 2, we reduce to the case of Krull di-
mension d− 1 by using remark 2.1.3 and the above lemma. These imply that

s2 = corankΛ/P

(
X

2
(K,Σ,D[P ])

)
and s∗1 = corankΛ/P

(
X

1
(K,Σ,D∗[P ])

)

for all but finitely many P of height 1. We may assume, inductively, that

s2 = corankΛ/P

(
X

1
(K,Σ,D[P ]∗)

)
. We can also assume that D is Λ-divisible,

replacing D by its maximal Λ-divisible submodule if necessary. This doesn’t
change s2. Then T ∗ will be a torsion-free Λ-module. Also, D∗ and s∗1 will be
unchanged.

To prove that s∗1 = s2, it is now enough to show that D∗[P ] is (Λ/P )-isogenous
to D[P ]∗. Now Hom(D[P ], µp∞) is isomorphic to T ∗/PT ∗ and so, by definition,

D[P ]∗ ∼= (T ∗/PT ∗)⊗Λ/P (Λ̂/P )

According to (3), we therefore have a surjective map D[P ]∗ → D∗[P ]. The
remark following (3) implies that this map is actually a (Λ/P )-isogeny. �

The most interesting case is as described in the introduction. A somewhat
different proof of proposition 4.4 works nicely in that case, which we will sketch
here. Assume that T is a free R-module and that D = T ⊗R R̂. As above, let
T ∗ = Hom(D, µp∞). We now take D∗ = T ∗⊗ R̂. Then, one can verify that D∗
is canonically isomorphic to Hom(T , µp∞). Hence the theorems of Poitou and
Tate can be applied to the dual pair D∗ and T .

One can define X
2
(K,Σ, T ) for the compact R-module T as the kernel of the

homomorphism
γcpt : H2

cts(KΣ, T ) −→ P 2
cts(K,Σ, T )

where P 2(K,Σ, T ) =
∏
v∈ΣH

2
cts(Kv, T ). The cokernel of γcpt is isomorphic to

H0(K,D∗)∧. If one applies proposition 3.10 to all the global and local terms,
one deduces that the R-rank of ker(γcpt) is equal to the R-corank of ker(γ).
That is,

rankR
(
X

2
(K,Σ, T )

)
= corankR

(
X

2
(K,Σ,D)

)

Now X
1
(K,Σ,D∗) is isomorphic to the Pontryagin dual of X

2
(K,Σ, T ) as

an R-module and so its R-corank must indeed be equal to the R-corank of

X
2
(K,Σ,D).

5 Local Galois cohomology groups.

Suppose that v is a prime of K and that p is any prime number. We assume
that D is a cofinitely generated Λ-module with a Λ-linear action of GKv . Let
T ∗ = Hom(D, µp∞). We will consider first the local H2 and then various
properties for the local H1. Most results will be for non-archimedean primes.
We discuss the archimedean primes at the end of this section.

A. The structure of H2(Kv,D). If v is non-archimedean, then it is known
that the p-cohomological dimension of GKv is equal to 2. (See theorem (7.1.8)
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in [NSW].) Proposition 3.3 therefore has the following immediate consequence:

Proposition 5.1. Let v be a non-archimedean prime of K. If D is Λ-divisible,
then H2(Kv,D) is Λ-divisible. If D is Λ-coreflexive, then H2(Kv,D) is Λ-
coreflexive.

The fact that the Λ-module H2(Kv,D) is coreflexive when D is coreflexive can
also be seen as follows. Since the Λ-module T ∗ is reflexive, it follows that
(T ∗)GKv is also reflexive, as observed in section 2, part C. But the Pontryagin
dual of (T ∗)GKv = H0(Kv, T ∗) is H2(Kv,D).

Remark 5.1.1. It is not difficult to give an example where H2(Kv,D) fails to
be Λ-cofree even if D is assumed to be Λ-cofree. This is based on the example
described in remark 2.6.3. We will use the same notation. There we exhibited
a reflexive, but non-free, Λ-submodule Y of X = Λr for some r assuming that
the Krull dimension of Λ is at least 3. Suppose that Λ = Zp[[T1, T2]]. Recall
that Y was the kernel of a Λ-module homomorphism X → Z where Z was
torsion-free and of rank 1. If we choose any injective Λ-module homomorphism
Z → X, then we can regard Y as the kernel of a Λ-module homomorphism
τ : X → X. Choose a basis for the Λ-module X. We will identify τ with the
corresponding matrix. Multiplying τ by an element of Λ, if necessary, we can
assume that τ has entries in mΛ. The kernel will still be Y . Thus, σ = 1 + τ
will be an invertible matrix over Λ. The closed subgroup < σ > of GLr(Λ)
generated topologically by σ will be a pro-p group, either isomorphic to Zp or
to a finite cyclic group of p-power order. In either case, we can easily define
a continuous, surjective homomorphism GKv → < σ >. Thus, GKv acts Λ-
linearly on X. If we let D = Hom(X,µp∞), then D has the desired properties.
Note that this example arises from a representation of GKv over Λ of rank r.
It is also easy to arrange for this representation to be the restriction to GKv of
such a representation of Gal(KΣ/K) if v ∈ Σ.

The next result holds for any prime of K, archimedean or non-archimedean.

Proposition 5.2. Let v be any prime of K. Let D be a cofinitely gen-
erated Λ-module. Assume that T ∗/(T ∗)GKv is Λ-reflexive. For almost all
P ∈ Specht=1(Λ), the map

H2(Kv,D[P ])→ H2(Kv,D)

is injective.

Proof. First assume that v is non-archimedean. We take P to be a prime ideal
of height 1 in Λ. To prove injectivity of the map in question, we consider the
adjoint map on the Pontryagin duals: H0(Kv, T ∗) −→ H0(Kv, T ∗/PT ∗). If
we let X = T ∗, then we must prove that the map XGKv −→ (X/PX)GKv is
surjective for all but finitely many P ’s. Let Y = XGKv , the Pontryagin dual
of H2(Kv,D).
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According to proposition 3.5, both the kernel and cokernel of the map in ques-
tion will be (Λ/P )-cotorsion for all but finitely many P ’s. Therefore, the same
will be true for the adjoint map Y/PY → (X/PX)GKv . Let Z = X/Y . By
assumption, Z is a reflexive Λ-module. Now we have an exact sequence of
(Λ/P )-modules:

0→ Y/PY → X/PX → Z/PZ → 0 (8)

and the image of (X/PX)GKv in Z/PZ is (Λ/P )-torsion. Since Z/PZ is a
torsion-free (Λ/P )-module, it is clear that this image must be trivial, i.e. the
map Y/PY → (X/PX)GKv is surjective as we needed to prove.

Suppose now that v is a real prime of K. We again must prove the surjectivity
of the adjoint map: Ĥ0(Kv, T ∗) −→ Ĥ0(Kv, T ∗/PT ∗), involving the modified
H0’s. But these Λ-modules are quotients of the Λ-modules H0(Kv, T ∗) and
H0(Kv, T ∗/PT ∗) considered above. It follows that the adjoint maps will again
be surjective for all but finitely many P ∈ Specht=1(Λ). �

Remark 5.2.1. The assumption that T ∗/(T ∗)GKv is a reflexive Λ-module is
important. In the notation of the above proof, let’s assume that X = T ∗ is
itself reflexive, but that Z = X/Y is not. Thus, the Krull dimension of Λ is

at least 2. Let Z̃ be the reflexive hull of the torsion-free Λ-module Z. Then
U = Z̃/Z is nonzero. Corollary 2.5.1 asserts that there are infinitely many
prime ideals P = (π) of Λ such that U [P ] = U . Since U is pseudo-null as
a Λ-module, U is then a torsion (Λ/P )-module. Multiplication by π induces

an isomorphism U = Z̃/Z → πZ̃/πZ which is a (Λ/P )-submodule of Z/PZ.

Also, Z/πZ̃ is a submodule of the (Λ/P )-module Z̃/πZ̃, which is torsion-free
by proposition 2.6. Thus, the maximal torsion (Λ/P )-submodule of Z/PZ is

isomorphic to U . Let Z ′ = πZ̃ and let X ′ be the inverse image in X of Z ′

under the surjective map X → Z. Then Z ′/PZ ∼= U and we have an exact
sequence derived from (8)

0→ Y/PY → X ′/PX → Z ′/PZ → 0

Since X/PX is a torsion-free (Λ/P )-module (by proposition 2.6) and the image
of Y/PY is contained in (X/PX)GKv , it follows that X ′/PX ⊂ (X/PX)GKv .
Furthermore, if we exclude only finitely many P ’s, we can then assume that the
(Λ/P )-ranks of Y/PY and (X/PX)GKv are both equal to rankΛ(Y ). Then we
have X ′/PX = (X/PX)GKv . It follows that the map Y → (X/PX)GKv will
not be surjective for such P ’s. The cokernel will be isomorphic to U . These
considerations imply the following statement.

If T ∗ is reflexive, but T ∗/(T ∗)GKv is not reflexive as Λ-modules, then there
exist infinitely many prime ideals P ∈ Specht=1(Λ) such that the map
H2(Kv,D[P ])→ H2(Kv,D) has a nonzero kernel.

The kernel of the map will be isomorphic to Û for infinitely many P ’s.
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B. Almost divisibility of H1(Kv,D). Proposition 3.7 has the following
consequence.

Proposition 5.3. Suppose that v is a non-archimedean prime. If D is
Λ-coreflexive and H2(Kv,D) = 0, then H1(Kv,D) is an almost divisible Λ-
module.

Here is a more general result. It follows from proposition 5.2 together with
proposition 3.6.

Proposition 5.4. Suppose that v is any prime of K. Assume that
T ∗/(T ∗)GKv is reflexive as a Λ-module. If D is an almost divisible Λ-module,
then H1(Kv,D) is an almost divisible Λ-module.

Remark 5.2.1 makes it clear that the assumption concerning T ∗/(T ∗)GKv is cru-
cial. The following proposition makes this more precise when D is Λ-coreflexive
and v is non-archimedean.

Proposition 5.5. Let v be a non-archimedean prime. Assume that D is a core-
flexive Λ-module. Then the maximal pseudo-null Λ-submodule of H1(Kv,D)∧

is isomorphic to Z̃/Z, where Z̃ denotes the reflexive hull of the Λ-module
Z = T ∗/(T ∗)GKv .
Proof. Let U = Z̃/Z. Let U ′ denote the maximal pseudo-null Λ-submodule of
H1(Kv,D)∧. There is nothing to prove unless Λ has Krull dimension at least
2. Applying corollary 2.5.1 to the pseudo-null Λ-module U × U ′, we see that
there exist prime ideals P = (π) of Λ such that πU = 0 and πU ′ = 0. We
can also assume that P is not an associated prime for the Λ-torsion submodule
of H1(Kv,D)∧. It follows that H1(Kv,D)∧[P ] = U ′. We therefore have an
isomorphism

H1(Kv,D)/πH1(Kv,D) ∼= ker
(
H2(Kv,D[P ]) −→ H2(Kv,D)[P ]

)

since D is assumed to be Λ-divisible. The choice of P implies that the first
group is precisely the Pontryagin dual of U ′ and, as explained in remark 5.2.1,
the second group is the Pontryagin dual of U . Thus, indeed, U ∼= U ′. �

C. Divisibility of H1(Kv,D). It is rather common for H1(Kv,D) to be
a divisible Λ-module. Proposition 3.3 gives sufficient conditions. The as-
sumption that H2(Kv, α) = 0 for a GKv -irreducible subquotient α of the
Fp-representation space D[mΛ] means that H0(Kv,Hom(α, µp)) = 0, or, equiv-
alently, that α 6∼= µp. Thus, we need just assume that µp is not a subquotient
of D[mΛ] for the action of GKv to apply that proposition.

Proposition 5.6. Suppose that v is non-archimedean. Assume that µp is
not a GKv -subquotient of D[mΛ] and that D is Λ-divisible. Then H1(Kv,D) is
Λ-divisible.

Even if µp is a subquotient of D[mΛ], one can prove divisibility under other
assumptions. Here is one such result.
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Proposition 5.7. Suppose that v is non-archimedean. Assume that D is Λ-
coreflexive. Let D∗ = T ∗ ⊗Λ Λ̂. Assume that H0(Kv,D∗) is a co-pseudo-null
Λ-module. Then H1(Kv,D) is a divisible Λ-module.

Note that the assumption about H0(Kv,D∗) implies that H0(Kv, T ∗) = 0
according to proposition 3.10, and hence that H2(Kv,D) = 0. Therefore, we
already know that H1(Kv,D) is an almost divisible Λ-module.

Proof. Let P = (π) be any prime ideal of Λ of height 1. Since H2(Kv,D) = 0,
we must show that H2(Kv,D[P ]) = 0 in order to conclude that H1(Kv,D) is
divisible by π. (See (6) for I = P, i = 2.) Now D[P ] is (Λ/P )-divisible and
hence so is H2(Kv,D[P ]). It therefore suffices to prove that its (Λ/P )-corank
is 0. The Pontryagin dual of this group is (T ∗/PT ∗)GKv . By proposition 3.10,
the rank of this (Λ/P )-module is equal to the corank of the (Λ/P )-module(
(T ∗/PT ∗) ⊗Λ/P (Λ̂/P )

)GKv . As pointed out at the end of section 2, part

E, the map (T ∗/PT ∗) ⊗Λ/P (Λ̂/P ) → D∗[P ] is a (Λ/P )-isogeny and so the
submodules of GKv -invariant elements have the same (Λ/P )-coranks. Finally,
note that D∗[P ]GKv = (D∗)GKv [P ]. The (Λ/P )-corank of this module is equal
to 0 because the Pontryagin dual of the Λ-module (D∗)GKv has no associated
prime ideals of height 1. �

D. Coreflexivity of H1(Kv,D). Proposition 3.3 immediately gives one
simple sufficient condition for coreflexivity.

Proposition 5.8. Suppose that v is a non-archimedean prime and that µp is
not a GKv -subquotient of D[mΛ]. If D is Λ-coreflexive, then H1(Kv,D) is also
Λ-coreflexive.

A more subtle result is the following.

Proposition 5.9. Suppose that v is non-archimedean. Assume that D is Λ-
cofree. Let D∗ = T ∗ ⊗Λ Λ̂. Assume that every associated prime ideal for the
Λ-module H0(Kv,D∗)∧ has height at least 3. Then H1(Kv,D) is a coreflexive
Λ-module.

Proof. Let d denote the Krull dimension of Λ. Let P ∈ Specht=1(Λ) be fixed.
We will denote Λ/P by R′ and D[P ] by D′. Thus, D′ is a cofree R′-module.
Since P is a principal ideal, the ring R′ is a complete intersection and is there-
fore a Cohen-Macaulay ring. (See section 2.3 in [B-H].) It follows that R′

contains a subring Λ′ such that: (i) Λ′ is isomorphic to a formal power series
ring and (ii) R′ is a free, finitely generated Λ′-module. The Krull dimension of
Λ′ is d− 1. Note that D[P ] is cofree and hence coreflexive as a Λ′-module. We
will apply proposition 5.7 to this Λ′-module. For that purpose, the role of T ∗
is played by T ′∗ = T ∗/PT ∗ and D∗ by D′∗ = T ′∗ ⊗Λ′ Λ̂′.

Since T ∗ is Λ-free, the discussion at the beginning of section 2, part E, shows
that T ′∗ ⊗R′ R̂′ is isomorphic to D∗[P ] as an R′-module. Since R′ is free as a

Λ′-module, T ′∗ ⊗R′ R̂′ is isomorphic to T ′∗ ⊗Λ′ Λ̂′ and so D′∗ and D∗[P ] are
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isomorphic. The isomorphisms are GKv -equivariant. The assumption about
H0(Kv,D∗) implies that H0(Kv,D′∗) = H0(Kv,D∗)[P ] is co-pseudo-null as an
R′-module, and hence as a Λ′-module. Therefore, proposition 5.7 implies that
H1(Kv,D′) is Λ′-divisible, and hence R′-divisible. That is, H1(Kv,D[P ]) is a
divisible (Λ/P )-module.

Now we have a surjective homomorphism H1(Kv,D[P ]) → H1(Kv,D)[P ].
Therefore, for all P ∈ Specht=1(Λ), the (Λ/P )-module H1(Kv,D)[P ] is also
divisible. Corollary 2.6.1 implies that H1(Kv,D) is indeed coreflexive as a Λ-
module. �

Remark 5.9.2. An example that we have in mind in propositions 5.7 and
5.9 arises from classical Iwasawa theory over the local field Kv. Suppose that
K∞,v/Kv is a Zmp -extension where m ≥ 1. Let Λ = Zp[[Gal(K∞,v/Kv]]. If
v ∤ p, then one can only have m = 1, but if v|p, then m could be as large
as [Kv : Qp] + 1. If D = V/T is a GKv -module isomorphic to (Qp/Zp)n, let
D = IndK∞,v/Kv (D). There is a comparison theorem just as stated in the
introduction, but for a local field. We have that H0(Kv,D∗) is isomorphic as
a Λ-module to H0(K∞,v,D∗) = D∗(K∞,v). This module has finite Zp-corank
and is often even finite.

Assume first that D∗(K∞,v) is finite. Then the only associated prime ideal
will be mΛ. In that case, propositions 5.7 and 5.9 imply that H1(K∞,v,D) is
a divisible Λ-module for m ≥ 1 and even coreflexive for m ≥ 2. If D∗(K∞,v) is
infinite, then H1(K∞,v,D) is Λ-divisible if m ≥ 2 and Λ-coreflexive if m ≥ 3.

This is not a new result. See lemma 5.4 in [O-V], which even applies to non-
abelian p-adic Lie extensions of a local field. Also, for the case m = 1, more
precise results can be found in section 3 of [Gr89].

E. Cofreeness of H1(Kv,D). We can prove cofreeness under suitable as-
sumptions. Let Z/pZ denote the one-dimension Fp-vector space with trivial
Galois action.

Proposition 5.10. Suppose that v is a non-archimedean prime and that nei-
ther Z/pZ nor µp are GKv -subquotients of D[mΛ]. If D is a cofree Λ-module,
then H1(Kv,D) is also a cofree Λ-module.

Proof. We can apply proposition 3.4 to conclude that the map

H1(Kv,D[mΛ]) −→ H1(Kv,D)[mΛ]

is an isomorphism. The hypothesis about Z/pZ nor µp means that for ev-
ery GKv -irreducible subquotient α of the Fp-representation space D[mΛ], we
have H0(Kv, α) = H2(Kv, α) = 0. Hence, by corollary 3.1.1, it follows that
H0(Kv,D) = 0 and H2(Kv,D) = 0. We can then apply proposition 4.2 to de-
termine the Λ-corank of H1(GKv ,D), which will be either equal to 0 if v ∤ p or
equal to [Kv : Qp]corankΛ(D) if v|p. However, we also have H0(Kv,D[mΛ]) = 0

Documenta Mathematica · Extra Volume Coates (2006) 335–391



378 Ralph Greenberg

and H2(Kv,D[mΛ]) = 0. The Euler-Poincaré characteristic formula for the fi-
nite GKv -module D[mΛ] determines the Fp-dimension of H1(Kv,D[mΛ]). It
will either equal 0 if v ∤ p or equal [Kv : Qp]dimFp(D[mΛ]) if v|p.
If D is a cofree Λ-module, then corankΛ(D) = dimFp(D[mΛ]). Thus, the above
observations show that

corankΛ

(
H1(GKv ,D)

)
= dimFp

(
H1(Kv,D[mΛ])

)
= dimFp

(
H1(Kv,D)[mΛ]

)

We now use Nakayama’s lemma. Let r = corankΛ

(
H1(GKv ,D)

)
. Let X be

the Pontryagin dual of H1(GKv ,D). Then X is a finitely generated Λ-module
of rank r and the minimum number of generators of X is dimFp(X/mΛX),
which is also equal to r. Thus, there is a surjective Λ-module homomorphism
Λr → X. Comparing ranks, it is clear that this map is an isomorphism. Thus,
X is free and so H1(GKv ,D) is indeed cofree as a Λ-module. �

Remark 5.10.1. If v ∤ p, then one could just assume that D is Λ-divisible.
The assumption about Z/pZ and µp implies that Hi(GKv ,D) = 0 for i = 0
and i = 2. Proposition 4.2 then implies that H1(GKv ,D) is Λ-cotorsion. By
proposition 5.6, H1(GKv ,D) is also Λ-divisible and so we haveH1(GKv ,D) = 0,
which is trivially Λ-cofree.

It is worthwhile to point out that the above proof applies with virtually no
change if one assumes that D is a cofree R-module over a complete Noetherian
local domain R. One concludes that, for any non-archimedean v, H1(GKv ,D)
is a cofree R-module under the same hypothesis about Z/pZ nor µp.

F. Local assumptions (a) and (b). Assume now that we are in the situation
described in the introduction. Thus, T is a free R-module of rank n, D = DR
is R-cofree, and T ∗ is R-free. We have several comments about the important
assumption that T ∗/(T ∗)GKv is also R-free. For many results proven in this
section, it suffices to assume that T ∗/(T ∗)GKv is Λ-reflexive, but we don’t know
how to verify such an assumption in itself. Freeness is more accessible.

As a first observation, note that if T ∗/(T ∗)GKv is a free R-module, then it fol-
lows that T ∗ ∼= (T ∗)GKv ⊕ (T ∗/(T ∗)GKv ) as R-modules. Hence, (T ∗)GKv is a
projective R-module and therefore must also be free. Let r = rankR

(
(T ∗)GKv

)
.

It follows, furthermore, that the image of (T ∗)GKv in T ∗/mT ∗ will have di-
mension r over the residue field k = R/m. Conversely, if (T ∗)GKv is free of
rank r and its image in T ∗/mT ∗ has dimension r, then (T ∗)GKv will be a di-
rect summand of T ∗ and the complementary summand, which is isomorphic to
T ∗/(T ∗)GKv will also be R-free.

An important case to consider is D = IndK∞/K(D), where K∞/K is a Zmp -
extension and D = V/T is a Galois module isomorphic to (Qp/Zp)n for some
n ≥ 1. In this case, T is a free Zp-module of rank n and T ∗ ∼= T ∗⊗ZpΛ, a free Λ-
module of rank n. We take R = Λ. The action of Gal(KΣ/K) on Λ in the tensor
product is given by a homomorphism κ : Gal(KΣ/K)→ Γ→ Λ× as described
in the introduction. Now if v is a prime of K which splits completely in K∞/K,
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including, in particular, all archimedean primes, then κ|GKv is trivial. Thus,
the action of GKv on T ∗ is via the first factor T ∗ in the tensor product. One
sees easily that

(T ∗)GKv ∼= (T ∗)GKv ⊗Zp Λ, T ∗/(T ∗)GKv ∼=
(
T ∗/(T ∗)GKv

)
⊗Zp Λ .

Since T ∗/(T ∗)GKv is a torsion-free Zp-module, it is Zp-free. This implies that
T ∗/(T ∗)GKv is indeed a free Λ-module and hence local assumption (a) is sat-
isfied if v splits completely. If v doesn’t split completely in K∞/K, then one
can use remark 3.10.2 to verify that (T ∗)GKv = 0.

In some cases, assumption (a) can be verify by considering just the residual
representation ρ. We illustrate this when n = 2. Thus, ρ is a 2-dimensional
representation over the residue field k. There is nothing to show unless
rankR

(
(T ∗)GKv

)
= 1 and so we assume this is the case. Suppose that ρ|GKv is

reducible and that the two k×-valued characters that occur are distinct. Then
the same is true for ρ∗ and so it follows that the k-subspace (T ∗/mT ∗)GKv
of T ∗/mT ∗ has dimension 1 and that the action of GKv on the corresponding
quotient is by a nontrivial character η : GKv → k×. One deduces easily that
there exists a finite cyclic subgroup ∆ of GKv such that p ∤ |∆| and η|∆ is still
nontrivial. Considering just the action of ∆ on T ∗, we see that we have a direct
sum decomposition

T ∗ = (T ∗)ηo ⊕ (T ∗)η

as R-modules, where ηo is the trivial character and η is a “lifting” of η, both
characters of ∆ having values in R×. Since (T ∗)GKv ⊆ (T ∗)∆ = (T ∗)ηo and
T ∗/(T ∗)GKv is a torsion-free R-module, it follows that (T ∗)GKv = (T ∗)ηo ,
which is indeed a direct summand, verifying assumption (a).

Note that if Gv acts on T ∗ through a finite quotient group ∆ whose order is
not divisible by p, then one has (T ∗)GKv = (T ∗)∆, which is again obviously
a direct summand of T ∗. The idempotent eo for the trivial character ηo of
∆ is in the group ring Zp[∆]. One has (T ∗)GKv = eoT ∗ and the complemen-
tary direct summand is (1 − eo)T ∗. In particular, assumption (a) is satisfied
for archimedean primes if p is odd - an unimportant case because the groups
Ĥi(Kv,D) are then trivial.

Now suppose that v is a real prime of K and that p = 2. Otherwise, the
corresponding cohomology groups are all trivial. Let σv denote the nontrivial
element of GKv . Note that σv(ζ) = ζ−1 for ζ ∈ µp∞ . First assume that
R has characteristic 0. Let αv = σv − 1 which we consider as an R-module
endomorphism of T ∗. Thus ker(αv) = (T ∗)GKv and so assumption (a) is
equivalent to the statement that im(αv) = αv(T ∗) is R-free.

Let βv = σv + 1 be the norm map on T ∗. The Pontryagin dual of H1(Kv,D)
is H1(Kv, T ∗) = ker(βv)/im(αv), a consequence of the local duality theorem
but also easily verified directly from the definitions of these groups. Assume
now that R is a finite, integral extension of Λ and is reflexive. Then T ∗ is a
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reflexive Λ-module. Since T ∗/ ker(βv) is a torsion-free Λ-module, it follows that
ker(βv) is reflexive and that im(αv) is reflexive if and only if ker(βv)/im(αv)
has no nonzero pseudo-null Λ-submodules. That is, T ∗/(T ∗)GKv is a reflexive
Λ-module if and only if H1(Kv,D) is an almost divisible Λ-module. Since
this group has exponent 2, one can simply take θ = 2 in the definition of
almost divisibility, which then simply means that H1(Kv,D) is divisible when
considered as a Λ/(2)-module.

It is easy to give an example where assumption (a) is not satisfied. Suppose
that R = Λ = Z2[[S]] and that T ∗ ∼= Λ2. Suppose that σv acts on T ∗ by the

matrix

[
−1 S
0 1

]
. Then im(αv) is isomorphic to mΛ and is not reflexive. Note

that H1(Kv,D) ∼= Λ/mΛ
∼= F2 in this example. We have just specified the

action of GKv , but it is not hard to contrive a global representation ρ over Λ
where GKv acts in this way.

Now assume that R has characteristic 2. Then αv = σv − 1 = βv and α2
v is

the zero-map. We have H1(Kv, T ∗) ∼= ker(αv)/im(αv). Also, im(αv) is the
orthogonal complement of DGKv under the pairing D × T ∗ → µ2. Therefore,
using the notation from the introduction, we have

n−v = corankR(D/DGKv ) = rankR
(
im(αv)

)
.

If we define n+
v = corankR

(
DGKv

)
, then n = n+

v +n−v . Since im(αv) ⊆ ker(αv),
it follows that n−v ≤ n+

v and H1(Kv, T ∗) has R-rank equal to n+
v −n−v . Almost

anything could occur subject to these constraints. One could simply define αv
so that im(αv) ⊆ ker(αv). It could be any R-submodule of T ∗ which has a
generating set of n elements and has R-rank at most n/2. This submodule
could certainly fail to be R-free or Λ-reflexive. Note that (1 + αv)

2 is the
identity map and so we can define an action of GKv on T ∗ (and hence on D)
by letting σv = 1 + αv.

Finally, we will discuss the verification of assumption (b). Suppose that vo
is a non-archimedean prime in Σ. Since T ∗ is a torsion-free R-module, so is
(T ∗)GKvo . Hence (T ∗)GKvo = 0 if and only if its rank over R is equal to 0.
According to remark 3.10.2, we have the inequality

rankR
(
(T ∗)GKvo

)
≤ rankRP

(
(T ∗/PT ∗)GKvo

)

for every prime ideal P of R. Therefore, it suffices to find just one P such
that (T ∗/PT ∗)GKvo has (R/P)-rank equal to 0, or equivalently, such that
D∗[P]GKvo has (R/P)-corank equal to 0. For example, this may occur for
P = m. In that case, one would have (D∗)GKvo = 0. If the Krull dimension d
of R is at least 2, then there are infinitely many prime ideals P of R of height
d− 1. Then R/P has Krull dimension 1. If DGKvo is indeed R-cotorsion, then
remark 2.1.3 implies that D[P]GKvo = DGKvo [P] is finite for infinitely many
such P’s. Exhibiting one such P is sufficient to verify assumption (b).
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6 Global Galois cohomology groups.

Assume that D is a cofinitely generated Λ-module and that Gal(KΣ/K) acts
Λ-linearly on D, where Σ is a finite set of primes of K containing all primes
above p and ∞. Let T ∗ = Hom(D, µp∞). This section will contain the proof
of theorem 1. It will be a consequence of somewhat more general theorems.
The heart of the matter is to study H2(KΣ/K,D) and certain Λ-submodules
obtained by requiring local triviality at some of the primes in Σ. The almost
divisibility assertion in theorem 1 for H1(KΣ/K,D) will follow easily.

A. The structure of H2(KΣ/K,D) and certain submodules. As-
sume first that p is an odd prime. It is then known that Gal(KΣ/K) has
p-cohomological dimension 2 and so propositions 3.3 has the following imme-
diate consequence.

Proposition 6.1. Assume that p is an odd prime. If D is Λ-divisible, then
H2(KΣ/K,D) is Λ-divisible. If D is Λ-coreflexive, then H2(KΣ/K,D) is Λ-
coreflexive.

We will prove a more general result. The arguments depend on the fundamental
commutative diagram below. We assume that D is a cofinitely generated,
divisible Λ-module. Suppose that Σ′ is any subset of Σ. We make the following
definition:

Hi
Σ′(KΣ/K,D) = ker

(
Hi(KΣ/K,D)→

∏

v∈Σ′

Hi(Kv,D)
)

for i ≥ 1. Since Hi
Σ′(KΣ/K,D) is clearly a Λ-submodule of Hi(KΣ/K,D),

it must also be cofinitely generated. Note that if we take Σ′ = Σ, then

Hi
Σ′(KΣ/K,D) = X

i
(K,Σ,D). However, we will now assume from here on

that there is at least one non-archimedean prime vo in Σ which is not in Σ′.
Thus Σ′ will be a proper subset of Σ. We will also always make the assumption
that D is a cofinitely generated, divisible Λ-module. Here is the fundamental
diagram, where we take P to be any prime ideal of Λ of height 1.

0 // H2
Σ′(KΣ/K,D[P ]) //

δ

���
�

�

H2(KΣ/K,D[P ])
σ //

κ

��

∏
v∈Σ′ H

2(Kv,D[P ]) //

λ

��

0

0 // H2
Σ′(KΣ/K,D) //

ϕ

��

H2(KΣ/K,D) //

χ

��

∏
v∈Σ′ H

2(Kv,D) //

ψ

��

0

0 // H2
Σ′(KΣ/K,D) //

ǫ

��

H2(KΣ/K,D) //

��

∏
v∈Σ′ H

2(Kv,D) //

��

0

0 // H3(KΣ/K,D[P ])
τ //
∏
v∈Σ′ H

3(Kv,D[P ]) // 0
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The 2nd and 3rd columns of maps in this diagram are induced by the exact
sequence

0 −→ D[P ] −→ D π−→D −→ 0

where we have chosen a generator π for P . Thus, those columns are certainly
exact. The maps ϕ, χ and ψ are all just multiplication by π. As for the rows,
the exactness of the last row is part of the Poitou-Tate theorems. (See [NSW],
(8.6.13).) For the other rows, the only issue is the surjectivity of the global-
to-local maps. This follows from the following general lemma since we are
assuming that Σ− Σ′ contains at least one non-archimedean prime vo.

Lemma 6.2. Let vo be any non-archimedean prime in Σ. Then the map

H2(KΣ/K,D) −→
∏

v∈Σ,v 6=vo
H2(Kv,D)

is surjective.

Proof. First consider the case where D, and hence T ∗ = Hom(D, µp∞), are just
finite Gal(KΣ/K)-modules. One has an exact sequence

H2(KΣ/K,D)
γ−→P 2(K,Σ,D)

α−→H0(KΣ/K, T ∗)∧,

where P 2(K,Σ,D) =
∏
v∈ΣH

2(Kv,D). The map γ is just the global-to-
local restriction map. Let G denote its image. Let Hvo denote the factor
H2(Kvo ,D) in the product P 2(K,Σ,D). The assertion to be proved is that
GHvo = P 2(K,Σ,D). The map α is the adjoint of the “diagonal” map

β : H0(KΣ/K, T ∗)→ P 0(K,Σ, T ∗)

where P 0(K,Σ, T ∗) =
∏
v|∞ Ĥ0(Kv, T ∗) ×

∏
v∈Σ,v∤∞H

0(Kv, T ∗). Since G is
the kernel of the map α, its orthogonal complement is the image of β. The
orthogonal complement of Hvo is just the kernel of the natural projection map
πvo : P 0(K,Σ, T ∗)→ H0(Kvo , T ∗). The assertion means that the intersection
of these orthogonal complements is trivial. Since vo is non-archimedean, the
map H0(KΣ/K, T ∗) → H0(Kvo , T ∗) is injective. That is, the composite map
πvo ◦ β is injective. This implies that im(β′) ∩ ker(πvo) = 0 which proves the
assertion. In general, D =

⋃
n≥0D[mn

Λ], a union of finite Galois modules, and
the surjectivity therefore follows in general. �

It remains to discuss the maps δ and ǫ. Under the assumptions that we are
making, the equality im(ϕ) = ker(ǫ) is established. It amounts to proving
Λ-divisibility.

Proposition 6.3. If D is a divisible Λ-module, then H2
Σ′(KΣ/K,D) is a

divisible Λ-module.
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Proof. We must show that ϕ is surjective. Applying the snake lemma to the
2nd and 3rd rows gives an exact sequence

ker(χ)
a−→ ker(ψ) −→ coker(ϕ) −→ coker(χ)

b−→ coker(ψ)

Since σ is surjective, it follows that the map a is surjective too. Now τ is
injective and so it follows that the map b is also injective. The exact sequence
then implies that coker(ϕ) = 0 as we want. �

Finally, we consider the map δ in the fundamental diagram. The first two rows
in that diagram can be rewritten as follows. We use the letters d, k and l for
the vertical maps corresponding to δ, κ, and λ.

0 // H2
Σ′(KΣ/K,D[P ]) //

d

��

H2(KΣ/K,D[P ])
σ //

k

��

∏
v∈Σ′ H

2(Kv,D[P ]) //

l

��

0

0 // H2
Σ′(KΣ/K,D)[P ] // H2(KΣ/K,D)[P ] //

∏
v∈Σ′ H

2(Kv,D)[P ]

The maps k and l are surjective. Since k is surjective, the snake lemma gives
us an exact sequence ker(l) −→ coker(d) −→ 0. We can now apply proposition
5.2 to deduce that d is at least sometimes surjective. If so, the first column of
maps in the fundamental diagram will then be exact.

Proposition 6.4. Assume that T ∗/(T ∗)GKv is a reflexive Λ-module for all
v ∈ Σ′. Then, for almost all P ∈ Specht=1(Λ), we have im(δ) = ker(ϕ).

Proof. The assumption concerning T ∗ implies that ker(l) = 0 for almost all
prime ideals of Λ of height 1. It would then follow that coker(d) = 0 and so d
is indeed surjective for those P ’s. �

We can apply this proposition to obtain the following important result.

Proposition 6.5. Assume that T ∗/(T ∗)GKv is a reflexive Λ-module for all
v ∈ Σ′. If D is a coreflexive Λ-module, then H2

Σ′(KΣ/K,D) is also a coreflexive
Λ-module.

Proof. Excluding just finitely many prime ideals P ∈ Specht=1(Λ), the stated
assumptions imply the following statements: The map d will be surjective and
D[P ] will be a cofinitely generated, divisible (Λ/P )-module. Proposition 6.3
implies that H2

Σ′(KΣ/K,D[P ]) is (Λ/P )-divisible for all those P ’s. There-
fore, its image H2

Σ′(KΣ/K,D)[P ] under the map d will also be (Λ/P )-divisible.
Corollary 2.6.1 implies that H2

Σ′(KΣ/K,D) is coreflexive. �

The assumption about T ∗/(T ∗)GKv in theorem 1 is due primarily to our need
for that assumption in propositions 6.5. Since we assume that R is a cofree
Λ-module, the assumption that T ∗/(T ∗)GKv is R-free implies that this module
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is also Λ-reflexive. The other local assumption in theorem 1 is made for the
following simple reason. If (T ∗)GKvo = 0 for some non-archimedean prime
vo ∈ Σ, then we have H2(Kvo ,D) = 0. If we then let Σ′ = Σ − {vo}, it

is clear that X
2
(K,Σ,D) = H2

Σ′(KΣ/K,D). We then can apply the above
propositions to get the following result.

Proposition 6.6. Assume that T ∗/(T ∗)GKv is Λ-reflexive for all v ∈ Σ and
that (T ∗)GKvo = 0 for at least one non-archimedean prime vo ∈ Σ. If D
is Λ-divisible, then X

2
(K,Σ,D) is Λ-divisible. If D is Λ-coreflexive, then

X
2
(K,Σ,D) is Λ-coreflexive.

Thus, all but the final statement is theorem 1 has been proven.

It is interesting to consider the case where Σ′ is as small as possible - just
the set of archimedean primes of K. We will then denote H2

Σ′(KΣ/K,D) by
H2
∞(KΣ/K,D). For any real prime v of K, we let σv denote the nontrivial

element of GKv . Then propositions 6.3 and 6.5 give the following result. The
content is the same as proposition 6.1 when p 6= 2. Note that the assumption
about (1+σv)D is true when p is odd and is equivalent to the assumption that
T ∗/(T ∗)GKv is reflexive when p = 2.

Proposition 6.7. If D is a divisible Λ-module, then H2
∞(KΣ/K,D) is a

divisible Λ-module. If D is a coreflexive Λ-module and if (1 + σv)D is also
coreflexive for every real prime v of K, then H2

∞(KΣ/K,D) is a coreflexive
Λ-module.

B. The cokernel of γ. The duality theorems of Poitou and Tate have
some interesting and useful consequences concerning the cokernel of the map

γ : H2(KΣ/K,D) −→ P 2(K,Σ,D), the map whose kernel is X
2
(K,Σ,D).

According to (6), coker(γ)∧ ∼= (T ∗)Gal(KΣ/K) which is a Λ-submodule of T ∗.
If T ∗ is Λ-reflexive, then so is (T ∗)Gal(KΣ/K). (See part C in section 2.) Fur-
thermore, proposition 3.10 implies that the Λ-rank of (T ∗)Gal(KΣ/K) is equal to
the Λ-corank of H0(KΣ/K,D∗). These remarks give us the following results.

Proposition 6.8. If D is Λ-divisible, then coker(γ) is also Λ-divisible. If D
is Λ-coreflexive, then coker(γ) is also Λ-coreflexive.

Proposition 6.9. Assume that D is Λ-divisible and that H0(KΣ/K,D∗) is
Λ-cotorsion. Then γ is surjective. In general, H0(KΣ/K,D∗) and coker(γ)
have the same Λ-corank.

One simple case where γ is surjective is if H0(KΣ/K,D∗[mΛ]) = 0. Then,
of course, H0(KΣ/K,D∗)[mΛ] = 0, and Nakayama’s lemma implies that
H0(KΣ/K,D∗) = 0. Another important case is if D is induced from some
D = V/T via a Zmp -extension K∞/K, where m ≥ 1. Then

H0(KΣ/K,D∗) = H0(KΣ/K∞,D
∗) = D∗(K∞)
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has finite Zp-corank and so is clearly Λ-cotorsion since the Krull dimension of
Λ is greater than 1. More generally, if assumption (b) in theorem 1 holds, then,
as we pointed out in the introduction, it follows that H0(KΣ/K, T ∗) = 0 and
hence that γ is surjective.

C. The structure of H1(KΣ/K,D). We now complete the proof of theorem
1. The hypotheses are somewhat broader and so we state this as a proposition.

Proposition 6.10. Assume that D is Λ-coreflexive, that T ∗/(T ∗)GKv is Λ-
reflexive for all v ∈ Σ, that (T ∗)GKvo = 0 for some non-archimedean vo ∈ Σ,

and that X
2
(K,Σ,D) = 0. Then H1(KΣ/K,D) is an almost divisible Λ-

module.

Proof. The assertion will follow from proposition 3.6 if we show that κ is an
injective map for almost all P ∈ Specht=1(Λ). We have an exact sequence

0 −→ ker(δ) −→ ker(κ) −→ ker(λ)

Proposition 5.2 implies that ker(λ) = 0 for almost all P ∈ Specht=1(Λ). Thus
it suffices to prove the same statement for ker(δ).

If Σ′ = Σ − {vo}, then we have H2
Σ′(KΣ/K,D) = X

2
(K,Σ,D) = 0. Hence,

ker(δ) = H2
Σ′(KΣ/K,D[P ]). Now D[P ] is a divisible (Λ/P )-module for all

P ∈ Specht=1(Λ) and hence proposition 6.3 implies that H2
Σ′(KΣ/K,D[P ]) is

also (Λ/P )-divisible. Therefore, it suffices to prove that the (Λ/P )-corank of
ker(δ) is equal to 0 for almost all P ∈ Specht=1(Λ). It will then follow that
ker(δ) = 0 and hence that κ is injective. Proposition 3.5 implies that the
(Λ/P )-corank of ker(κ) is 0 for almost all P ∈ Specht=1(Λ) and therefore the
same must be true for the submodule ker(δ) = 0. This argument proves that,
under the stated assumptions, H1(KΣ/K,D) is indeed an almost divisible Λ-
module. �

It is worth pointing out that H1(KΣ/K,D) is not necessarily a divisible Λ-
module as the following proposition shows. It is not hard to find examples
satisfying the hypotheses and where at least one of the local factors H1(Kv,D)
for v ∈ Σ′ fails to be Λ-divisible.

Proposition 6.11. Assume that D is Λ-divisible, that p is odd, that
H2(Kv,D) = 0 for all nonarchimedean v ∈ Σ′, and that H2(KΣ/K,D) = 0.
Then the natural map

H1(KΣ/K,D)/H1(KΣ/K,D)Λ−div −→
∏

v∈Σ′

H1(Kv,D)/H1(Kv,D)Λ−div

is surjective.
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If A is a discrete Λ-module, then AΛ−div denotes the maximal Λ-divisible sub-

module of A. If X = Â, then the Pontryagin dual of A/AΛ−div is isomorphic
to the torsion Λ-submodule of X.

Proof. Applying the snake lemma to the two-row commutative diagram above,
it follows that the map ker(k) → ker(l) is surjective. That is, we have a
surjective homomorphism

H1(KΣ/K,D)/PH1(KΣ/K,D) −→
∏

v∈Σ′

H1(Kv,D)/PH1(Kv,D)

for all P ∈ Specht=1(Λ). In general, suppose that A and B are two cofinitely
generated, cotorsion Λ-modules and that ψ : A→ B is a Λ-module homomor-
phism with the property that the induced map A/PA → B/PB is surjective
for all P ∈ Specht=1(Λ). This means that ψ(A) + PB = B for all such P ’s.
Let C = coker(ψ), which is also a cotorsion Λ-module. It follows that πC = C
for all irreducible elements of Λ. Thus C is a divisible Λ-module and so C = 0.
This proves the proposition. �

D. A discussion of hypothesis L. One natural way to verify hypothesis L for
a given Galois module D is to show that the inequality in proposition 4.3, which
gives a lower bound b1Λ(K,Σ,D) on the Λ-corank of H1(KΣ/K,D), is actually
an equality. One can often verify this by specialization. For example, suppose
that Λ is a formal power series over Zp in m variables, where m ≥ 1. Consider a
cofree, cofinitely generated Λ-module D with Λ-corank n. Suppose that P is a
prime ideal such that Λ′ = Λ/P is isomorphic to a formal power series ring over
Zp or Fp in m′ variable, where 0 ≤ m′ ≤ m. (If m′ = 0, we mean that Λ′ ∼= Zp
or Fp. In the latter case, P = mΛ.) Since Λ′ is a regular local ring, remark 3.4.2
can be applied. If the equality corankΛ′

(
H1(KΣ/K,D[P ])

)
= b1Λ(K,Σ,D) can

be verified for one such prime ideal P , then hypothesis L for D would follow.
Of course, it may happen b1Λ′(K,Σ,D[P ]) > b1Λ(K,Σ,D), in which case, the
equality would be impossible. However, remark 3.10.2 implies that there exists
a nonzero ideal I of Λ such that b1Λ′(K,Σ,D[P ]) = b1Λ(K,Σ,D) for all P /∈ V (I).

We will discuss various special cases and give examples where hypothesis L fails
to be true. But it will be clear that these examples are rather special.

Elliptic curves. Suppose that E is an elliptic curve defined over K and that
the Mordell-Weil group E(K) has rank r > [K : Q]. Let sK = r− [K : Q]. Let
p be any prime number and let Σ be a finite set of primes of K containing all
primes lying above p or ∞ and the primes where E has bad reduction. The
Kummer map defines an injective homomorphism

E(K)⊗Z (Qp/Zp)→ H1(KΣ/K,E[p∞])

It follows that corankZp

(
H1(KΣ/K,E[p∞])

)
≥ r. In the notation of propo-

sition 4.1, we have δZp(K,E[p∞]) = [K : Q]. The Euler-Poincaré charac-
teristic formula then implies that corankZp

(
H2(KΣ/K,E[p∞])

)
> 0. But

Documenta Mathematica · Extra Volume Coates (2006) 335–391



Structure of Certain Galois Cohomology Groups 387

H2(Kv, E[p∞]) = 0 for every non-archimedean prime v of K and is fi-
nite for the archimedean primes (trivial if p > 2). Hence it follows that

corankZp

(
X

2
(K,Σ, E[p∞])

)
> 0. Thus hypothesis L fails if R = Zp and

D = E[p∞]. This example corresponds to the representation ρ giving the ac-
tion of Gal(KΣ/K) on the Tate module T = Tp(E).

In this example, the Krull dimension of R is 1. However, one can simply extend
scalars to obtain a “constant” deformation of Tp(E) where R has arbitrary Krull
dimension and hypothesis L still fails to be valid. For example, suppose that
T = Tp(E)⊗Zp Λ, where Λ is a formal power series ring over Zp in m variables.

We assume that the Galois action on Λ is trivial. Define D = T ⊗Λ Λ̂. If
m ≥ 1, there are infinitely many homomorphism φ : Λ → Zp and one has
Tφ ∼= Tp(E), Dφ

∼= E[p∞] for all such φ. It follows easily (by using lemma 4.4.1

for example) that corankΛ

(
X

2
(K,Σ,D)

)
= corankZp

(
X

2
(K,Σ, E[p∞])

)
.

One natural non-constant deformation to consider was described in the in-
troduction. Suppose that K∞/K is a Zmp -extension, where m ≥ 1, and let

D = IndK∞/K(E[p∞]). It is known in certain cases that rank
(
E(K ′)

)
is un-

bounded as K ′ varies over the finite extensions of K contained in K∞. One can
find a discussion of this phenomenon in [M], [M-R], [Va], and [C], for example.
To produce an example where Hypothesis L fails based on the above discussion,
one would need sK′ = rank

(
E(K ′)

)
− [K ′ : Q] to be unbounded above as K ′

varies. No such examples are known. It is hard to imagine that they could
exist.

Suppose that R = Λ ∼= Zp[[T1, ..., Tm]] and that D[P ] ∼= E[p∞] for some
prime ideal P of Λ, as in the example in the previous paragraph. Note that
both b1Λ(K,Σ,D) and b1Zp(K,Σ, E[p∞]) equal [K : Q]. Suppose further that

corankZp

(
H1(KΣ/K,E[p∞])

)
= [K : Q], i.e., that hypothesis L holds for D[P ].

Thus, by our initial remarks, hypothesis L would then hold for D. One example
where this happens is if K = Q, E(Q) has rank 1, and the p-primary subgroup
of the Tate-Shafarevich group for E/Q is finite. (See [M-C] for a discussion of
this case.)

As another example, suppose instead that D[P ] ∼= IndKcyc
∞ /K(E[p∞]) for

some prime ideal P of Λ, where Kcyc
∞ denotes the cyclotomic Zp-extension

of K. Assume also that E has ordinary reduction at all the primes of
K lying above p. A conjecture of Mazur asserts that the p-Selmer group
SelE(Kcyc

∞ ) for E over Kcyc
∞ is a cotorsion module over Zp[[Gal(Kcyc

∞ /K)]].

Since X
1
(Kcyc
∞ ,Σ, E[p∞]) ⊆ SelE(Kcyc

∞ ), Mazur’s conjecture would imply that

X
1
(Kcyc
∞ ,Σ, E[p∞]) is also cotorsion. Now E[p∞]∗ ∼= E[p∞] and so it would

follow that conjecture L holds for D[P ]. It then would hold for D. One special
case is D = IndK∞/K(E[p∞]), where K∞ is a Zmp -extension of K containing
Kcyc
∞ .

A twist of Qp/Zp. Let K denote the maximal real subfield of Q(µp). Assume
that p = 37, an irregular prime. Let Σ be the set of primes of K lying above
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p and ∞. Let M∞ be the maximal abelian pro-p-extension of Kcyc
∞ which is

unramified outside of Σ. Then it is known that X = Gal(M∞/Kcyc
∞ ) ∼= Zp.

The action of Γ = Gal(Kcyc
∞ /K) on X is given by a nontrivial homomorphism

φ : Γ→ 1 + pZp. We define ρ : Gal(KΣ/K)→ GL1(Zp) to be the composition
of φ with the restriction map Gal(KΣ/K)→ Γ. Thus the corresponding Galois
module D is isomorphic to Qp/Zp and Gal(KΣ/K) acts via ρ. We denote this
D by (Qp/Zp)(ρ). Then we have

H1(KΣ/K,D) ∼= H1(KΣ/K
cyc
∞ ,D)Γ ∼= Qp/Zp

The Zp-corank is 1. We have δZp(K,D) = 0 and so it follows that
corankZp

(
H2(KΣ/K,D)

)
> 0. We again have H2(Kv,D) = 0 for all v ∈ Σ and

so, as in example 1, X
2
(K,Σ,D) fails to be a cotorsion module over R = Zp.

Just as before, one can form a constant deformation of ρ over an arbitrary R
to construct additional examples where hypothesis L also fails to hold. How-
ever, if instead one considers D = IndKcyc

∞ /K((Qp/Zp)(ρ)), a cofree module over
R = Zp[[Γ]] of corank 1, then H1(KΣ/K,D) ∼= Hom(X, (Qp/Zp)(ρ)), which is
isomorphic to Qp/Zp as a group and is a cotorsion R-module. Hypothesis L
holds in this case.

Consider an arbitrary number field K. Let K∞ denote the compositum of all
Zp-extensions of K. Let Γ = Gal(K∞/K), which is isomorphic to Zmp for some
m ≥ 1. Let D = IndK∞/K(D), where D = µp∞ . Thus D is simply the twist of
Qp/Zp by the cyclotomic character χ and D is a cofree module over Λ = Zp[[Γ]]
with corank 1. As we pointed out in the introduction, hypothesis L is true for

D and X
1
(K,Σ,D∗) is essential just the Pontryagin dual of the Galois group

Y = Gal(L
′
∞/K∞). It is conjectured that Y is a pseudo-null module over Λ.

Thus, X
1
(K,Σ,D∗) should even be a co-pseudo-null Λ-module. However, this

module can be nontrivial and it is conceivable that examples where hypothesis
L fails can arise by specialization.

Suppose that P is a prime ideal of Λ which is an associated prime ideal for Y .

Then X
1
(K,Σ,D∗)[P ] will have positive corank over Λ/P . Consider the map

X
1
(K,Σ,D∗[P ]) −→X

1
(K,Σ,D∗)[P ]

Thus, for such a P , either the cokernel of this map or X
1
(K,Σ,D∗[P ]) will

have a positive (Λ/P )-corank. If it is the latter, then hypothesis L would fail
to be true for the (Λ/P )-module D[P ]. Virtually nothing is known about the
associated prime ideals of Y in general. One can construct examples where Y
has an associated prime ideal P such that Λ/P is of characteristic 0 and has
arbitrarily large Krull dimension. However, the construction is an imitation of
classical genus theory and it is probably the cokernel of the above map which
has positive (Λ/P )-corank. This example illustrates the subtlety of hypothesis
L.

Characteristic p. Let R be a formal power series ring over Fp in any number
of variables. Let Σ′ be a finite set of primes of K containing the primes above
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p and ∞. Suppose that we have a representation ρ : Gal(KΣ′/K)→ GLn(R).
Let D be the cofree R-module of corank n with Galois action given by ρ.
We will make the following assumption: there exist infinitely many primes v
of K such that (i) ρ|GΣ′

v
is trivial and (ii) µp ⊂ Kv. Here GΣ′

v denotes the

decomposition subgroup of Gal(KΣ′/K) for any prime of KΣ′ lying above v.
For any prime v satisfying (i) and (ii), it is clear that GKv acts trivially on
T ∗ = Hom(D, µp). Thus, the R-rank of H0(Kv, T ∗) is n and so the R-corank
of H2(Kv,D) is equal to n. Suppose that Υ = {v1, ...., vt} is a set consisting of
such primes. Let Σ = Σ′ ∪Υ. Then, by (7), we have the following inequality:

corankR
(
H2(KΣ/K,D)

)
≥ (t− 1)n

If we assume that H0(KΣ′/K, T ∗) is a torsion R-module, then we get the
better lower bound tn instead. In either case, it follows that the lower bound
b1R(K,Σ,D) for the R-corank of H1(KΣ/K,D) is unbounded as t→∞.

Now let c′ denote the R-corank of
∏
v∈Σ′ H

1(Kv,D). The definition of
H1

Σ′(KΣ/K,D) gives the following inequality:

corankR
(
H1

Σ′(KΣ/K,D)
)
≥ b1R(K,Σ,D)− c′

We can make this corank positive by choosing a sufficiently large set Υ. We will
assume that the primes in Υ do not lie over p. The elements of H1

Σ′(KΣ/K,D)
are locally trivial at all v ∈ Σ′, but could be nontrivial at the primes v ∈ Υ.
However, for each v ∈ Υ, GKv acts trivially on D. This module is just a vector
space over Fp - a direct sum of copies of the trivial Galois module Z/pZ. Let
Lv denote the maximal abelian extension of Kv such that Gal(Lv/Kv) has
exponent p. Thus [Lv : Kv] = p2. Every element of H1(Kv,Z/pZ) becomes
trivial when restricted to GLv and so the same thing is true for the elements
of H1(Kv,D).

Choose a finite extension F of K such that, for each v ∈ Υ and for every
prime η lying over v, the completion Fη contains Lv. We will also assume
that F is chosen so that F ∩ KΣ = K. Such a choice is easily seen to be
possible. Suppose that σ ∈ H1

Σ′(KΣ/K,D). Let σ|F denote the image of σ
under the restriction map H1(KΣ/K,D) → H1(FΣF /F,D). Here ΣF denotes
the set of primes of F lying over those in Σ. This restriction map is easily
seen to be injective. Then σ|F is locally trivial at all primes η ∈ ΣF . That is,

σ|F ∈X
1
(F,ΣF ,D). It follows that corankR

(
X

1
(F,ΣF ,D)

)
will be positive

and so we do get examples where hypothesis L fails.
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Abstract. We construct the Eisenstein measure in several variables on a
quasi-split unitary group, as a first step towards the construction of p-adic
L-functions of families of ordinary holomorphic modular forms on unitary
groups. The construction is a direct generalization of Katz’ construction
of p-adic L-functions for CM fields, and is based on the theory of p-adic
modular forms on unitary Shimura varieties developed by Hida, and on
the explicit calculation of non-degenerate Fourier coefficients of Eisenstein
series.
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Introduction

This is the first of a projected series of papers devoted to studying the relations
between p-adic L-functions for GL(n) (and unitary groups), congruences be-
tween stable and endoscopic automorphic forms on unitary groups, and Selmer
groups for p-adic representations. The goals of these papers are outlined in the
survey article [HLS]. The purpose of the present installment is to prepare the
ground for the construction of p-adic L-functions in sufficient generality for the
purposes of subsequent applications to congruences and Selmer groups.
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The first general conjectures on the construction of p-adic L-functions for or-
dinary motives were elaborated by Coates in [Co]. The conjectured p-adic
analytic functions of [Co] interpolate the quotients of normalized values of L-
functions at critical points, in the sense of Deligne. The normalization proceeds
in two steps. The critical values are first rendered algebraic, by dividing by
their Deligne periods. Next, they are p-stabilized: the Euler factors at p and
∞ are modified according to a complicated but explicit recipe. Coates’ conjec-
ture is that the resulting values are p-adically interpolated by a p-adic analytic
function of Iwasawa type, associated to a p-adic measure. In our setting, the
Deligne period is generally replaced by a certain Petersson norm or an algebraic
multiple thereof; the relation of this Petersson norm to the Deligne period is
discussed at length in [H3]. In [Pa], Panchishkin points out that Coates’ recipe
can be adapted unchanged for motives satisfying a condition weaker than ordi-
narity, which he calls admissibility and which Perrin-Riou and Greenberg have
called the Panchishkin condition. Although this is somewhat obscured by the
automorphic normalization, we work in the generality of Panchishkin’s admis-
sibility condition. Panchishkin also conjectures the existence of more general
p-adic L-functions in the absence of admissibility; we do not address this ques-
tion.

We work with automorphic forms on the unitary groups of hermitian vector
spaces over a CM field K, with maximal totally real subfield E. We assume
every prime of E dividing p splits in K; we also impose a hypothesis (1.1.2)
linking primes above p to signatures of the unitary group at real places of E.
Unitary groups, unlike GL(n), are directly related to Shimura varieties. We
show that the special values of L-functions of automorphic forms on unitary
groups satisfy the congruences needed for the construction of p-adic L-functions
by appealing to the fact that the corresponding Shimura varieties are moduli
spaces for abelian varieties of PEL type. In this our approach is directly mod-
eled on Katz’s construction [K] of p-adic L-functions for Hecke characters of
CM fields; indeed, for groups of type U(1) our results reduce to those of Katz.

The starting point of Katz’s construction is Damarell’s formula and its general-
izations due to Shimura, which relate the values of arithmetic Eisenstein series
at CM points to special values of L-functions of arithmetic Hecke characters. A
generalization of Damerell’s formula in higher dimensions is the construction of
standard L-functions of unitary groups by the doubling method. This was first
developed systematically in the article [PSR] of Piatetski-Shapiro and Rallis,
though special cases had been discovered independently by Garrett, and a more
thorough development in classical language is contained in the books [S97, S00]
of Shimura. The local theory for unitary groups was ignored in [PSR] but was
worked out in [L2] and [HKS].

Our p-adic L-functions are actually attached to Hida families of nearly ordinary
modular forms on a unitary group G = U(V ). As in [K], the main step is the
construction of an Eisenstein measure on a large unitary group H, attached to
the sum of two copies V ⊕ (−V ) of V . The hermitian form on −V has been
multiplied by −1, so thatH is quasi-split and its associated Shimura variety has
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a point boundary component, stabilized by a maximal parabolic subgroup, the
Siegel parabolic. The Eisenstein series attached to the Siegel parabolic are the
direct generalizations of the classical Eisenstein series onGL(2). The Eisenstein
measure is a p-adic measure on a product T of copies of Z×p with values in the
algebra of p-adic modular forms on H interpolating such Eisenstein series. The
theory of p-adic modular forms on H was developed by Hida in [Hi04, Hi05].
As in [K], these forms belong to the algebra of functions on the Igusa tower,
which is a rigid analytic étale covering of the ordinary locus of the Shimura
variety attached to H. The existence of the Eisenstein measure relies crucially
on the irreducibility of the Igusa tower; this was established in some generality
by Hida, though easier arguments due to Chai and Hida himself suffice for the
case at hand (cf. [Ch, Hi06]).

The Eisenstein measure associates, by integrating over T with respect to this
measure, p-adic modular forms to continuous functions on T . The integrals
of characters of T of finite order, which determine the measure, are classical
holomorphic (Siegel) Eisenstein series on H and as such are associated to ex-
plicit functions (“sections”) belonging to degenerate principal series induced
from characters of the Siegel parabolic. These sections factor as tensor prod-
ucts of local sections over the primes of E. At almost all finite primes the local
sections are unramified and present no difficulty, and we simplify the theory by
choosing local sections at ramified primes, other than those dividing p, that are
insensitive to p-adic variation of the character of T . With our choice of data,
the Fourier coefficients of the Eisenstein series at a chosen point boundary
component also factor over primes. All the work in constructing the Eisenstein
measure then comes down to choosing local data at primes above p such that
the corresponding local coefficients satisfy the necessary Kummer congruences.
Our strategy for choosing local data follows [K] in making use of a partial
Fourier transform. Unlike in [K], our construction is systematically adelic and
isolates the local considerations at p. The Eisenstein measure is designed to
pair with Hida families – on G × G, not on G itself – and thus depends on
several variables, considerably complicating the calculations.

The doubling method was used by Böcherer and Schmidt in [BS] to construct
standard p-adic L-functions for Siegel modular forms. They do not use p-adic
modular forms; their approach is to construct the p-adic measure directly in
terms of normalized special values of complex L-functions. Their approach ap-
plies to all critical values, unlike the present paper, which avoids reference to
non-holomorphic differential operators (and their p-adic analogues). Presum-
ably their techniques work for quasi-split unitary groups as well. We have not
attempted to compare our results where they can be compared, namely in the
local analysis at the prime p, since our group is locally isomorphic to GL(2n),
in principle much simpler than a symplectic group.

As predicted by Coates, the shape of the modified Euler factor at a prime v
dividing p depends on the p-adic valuations of the eigenvalues of Frobenius at
v. On the other hand, as in [H3], the fact that a critical value of the standard
L-function is an algebraic multiple of a period of an arithmetic modular form on
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the doubled group G×G – in other words, the Petersson norm of an arithmetic
modular form on G – can be expressed in terms of Hodge numbers. Then the
Panchishkin condition, applied to the standard L-function for GL(n)K, roughly
states that, for each v dividing p, the modified Euler factor at v is given by
a natural partition of the Frobenius eigenvalues at v that corresponds to the
signature of the unitary group at real places assigned to v by Hypothesis (1.1.2).
The form of the modified Euler factor at p is thus linked to the real form of
G. This is reflected in the fact that the natural embedding of the Shimura
variety attached to G × G in that attached to H in general does not define a
map of Igusa towers. In order to pair p-adic modular forms on H with p-adic
modular forms on G × G, the natural embedding has to be replaced by a p-
adic translation (cf. (2.1.11)), which is exactly what is needed to provide the
expected modification of the Euler factor.
The main innovation of our construction concerns the zeta integral at p. As
in [K], the use of a partial Fourier transform to define local data at p with
the appropriate congruence properties to construct the Eisenstein measure is
precisely what is needed to obtain the modified Euler factor at p directly as a
local zeta integral, up to some volume factors. For U(1), this was proved by
Katz by direct computation. In general, we obtain the result as an immediate
application of the local functional equation for the Godement-Jacquet integral
representation of the standard L-function of GL(n). These calculations are
presented in Part II.

Why the present construction is not altogether satisfactory.
The first reasons have to do with somewhat arbitrary restrictions on the scope
of our result. We have only constructed the p-adic L-function for holomorphic
automorphic forms of scalar weight. Moreover, for any fixed scalar weight,
we have only studied the p-adic interpolation of the critical values at a fixed
point s0, though we allow the inertial characters at p to vary freely. Relaxing
these restrictions would require the construction of the p-adic analogues of the
classical non-holomorphic weight-raising operators of Maass, as in [K]. There
is no doubt that Katz’s constructions can be generalized, but the paper was
already quite long without this additional generality, which is not necessary for
our intended applications to Selmer groups. Moreover, although Garrett has
determined the special values of the archimedean zeta integrals up to rational
factors in general, his method does not permit identification up to p-adic units
in general.4

As mentioned above, our choice of Eisenstein measure is insensitive to p-adic
variation at ramified primes not dividing p, and the resulting p-adic L-function
is missing its local Euler factors at the corresponding primes. A construction
taking ramification away from p into account would probably require at the very
least a p-integral version of the Godement-Jacquet theory of local zeta integrals

4Shimura calculates the archimedean zeta integrals precisely in [S97], but only for forms of
scalar weight. His scalar weights, unlike those treated here, are non-constant functions on
the set of real primes; thus he is forced to work with Maass operators.
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(at primes not dividing p), based on Vignéras’ modular representation theory
of GL(n) over local fields. We hope to return to this question in the future.
Ignoring a finite number of Euler factors at places prime to p introduces a
bounded error in expected applications to Selmer groups.
There are also local restrictions at primes dividing p. Working with general
r-dimensional Hida families, we expect the values of our p-adic L-functions at
algebraic (classical) points to be explicitly related to normalized special values
of archimedean L-functions. The normalization involves dividing by a complex
period invariant, to which we return momentarily. Our main results assert this
to be the case under certain restrictions: at algebraic points corresponding to
r-tuples of characters lying in a certain positive cone (the regular case); or when
r = 1, where the Hida family is just the family of twists by characters composed
with the determinant; or finally when r ≤ 2 but only along an “anticyclotomic”
direction. This is sufficient for our intended applications but is certainly less
than optimal, and we hope to be able to relax at least the anticyclotomic
condition in the final version of Part II. The restrictions allow us to identify
the specialization of the Hida family at an algebraic point as an explicit vector
in a principal series representation, which can then be used as a test vector in
a local zeta integral.
The most serious defect of our construction is global. The conjectures of [Co]
and [Pa] are expressed in the language of motives, and relate the special values
of the p-adic L-function to the special values of the quotient of an archimedean
L-function by a complex period invariant attached to the motive. In order
for this relation to make sense, one needs to know that this quotient is an
algebraic number, and so the statements of the conjectures of [Co] and [Pa]
require Deligne’s conjecture on the critical values of motivic L-functions as a
preliminary hypothesis.5 Our archimedean L-functions are attached to auto-
morphic forms rather than to motives, and the period invariants are defined,
as in Shimura’s work, as (suitable algebraic multiples of) Petersson norms of
arithmetic holomorphic modular forms on the appropriate Shimura varieties.
The conjectural relation of these Petersson norms to Deligne’s motivic periods,
up to rational factors, is discussed in [H3], at least when the ground field is
Q. Partial results in this direction are obtained in [H4, H5], using an elaborate
inductive argument, based on the theta correspondence, for establishing period
relations between automorphic forms on unitary groups of different signatures.
It is not beyond the realm of imagination that such techniques can eventually
provide relations between Petersson norms up to integral factors, though it may
well be beyond the limits of anyone’s patience. Even the relatively favorable
case of Shimura curves, where no products of periods are involved, required ex-
traordinary efforts on the part of Prasanna [Pr]. However, and this is the most
important point, even assuming integral period relations for Petersson norms,
we still need to compare products of Petersson norms to motivic periods. When

5The more general conjectures of Perrin-Riou concern non-critical values of motivic L-
functions, and the normalizing periods are defined by Beilinson’s conjectures; in general,
this is far beyond the scope of the automorphic theory as it presently stands.
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n = 2 and the ground field is Q, Hida realized long ago that the ratio of the
Petersson norm to the motivic period generates the congruence ideal, and is
itself the specialization of a p-adic L-function. When n > 2 we do not know
how to use the automorphic theory to study the analogous ratios.

Contents of this paper.
To keep this first paper in the series to a reasonable length we have decided to
break it into two parts. Part I, by recalling the theory of p-adic modular forms
on unitary groups and constructing the Eisenstein measure, sets up the ground
work for the construction of the p-adic L-functions.
More precisely, §1 recalls the theory of modular forms on unitary Shimura
varieties, a theory ultimately due to Shimura but presented here in the setting
of [H1]. We present the theory of p-adic modular forms on unitary Shimura
varieties in §2, following Hida’s generalization of the constructions of Deligne
and Katz for GL(2). Most of these results are at least implicitly due to Hida,
but we have highlighted some special features adapted to the embedding of
Igusa towers mentioned above. The calculation of the local coefficients at p of
Eisenstein series occupies the greater part of §3, the rest of which is concerned
with the local coefficients at the remaining places, and the relation of local
to global coefficients, due essentially to Shimura. We conclude §3 with the
construction of the Eisenstein measures.
Part II will develop Hida theory for p-adic modular forms on unitary groups
G, carry out the related zeta-integral calculations from the doubling method,
and complete the construction of p-adic L-functions. It will also establish a
dictionary between the motivic and automorphic normalizations, and in par-
ticular will verify that the modified Euler factors at p are as predicted in [Co]
and [Pa].

Acknowledgments

The authors, working on three separate continents, are grateful to the insti-
tutions that have provided us the opportunity to meet occasionally. Harris
began working on this project in 2001, while visiting the Centre de Recerca
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0. Notation and Conventions

Let G be a reductive algebraic group over the number field F . If v is a place of
F we let Gv = G(Qv); if v is archimedean we let gv = Lie(Gv)C. We let G∞
denote

∏
v|∞Gv, the product being over all archimedean places of F , and let

g∞ =
∏
v|∞ gv. In practice we will denote by K∞ a subgroup of G∞ which is

maximal compact modulo the center of G.
We let Q denote the algebraic closure of Q in C. Thus for any number field L
we identify the set ΣL of complex embeddings of L with the set Hom(L,Q).
Let Cp denote the completion of an algebraic closure of Qp, with integer ring

OCp . We choose once and for all an embedding inclp : Q → Cp, and let Z̄(p) =

incl−1
p (OCp), the corresponding valuation ring. When necessary, we denote by

incl∞ the given inclusion of Q in C. Via this pair of inclusions, any embedding
τ : L → C of a number field L gives rise to an embedding τp = inclp ◦ τ :
L → Cp.

(0.1) Unitary groups over CM fields.
Let E be a totally real number field of degree d over Q and let K be a totally
imaginary quadratic extension of E, with ring of integers O. Let c ∈ Gal(K/E)
denote the non-trivial automorphism, and εK the character of the idele classes
of E associated to the quadratic extension K. We fix a CM type of K, i.e. a
subset Σ ⊂ ΣK such that Σ

∐
Σc = ΣK.

Let V be an n-dimensional K-vector space, endowed with a non-degenerate
hermitian form < •, • >V relative to the extension K/E. For each σ ∈ ΣK,
< •, • >V defines a hermitian form < •, • >σ on the complex space Vσ =
V ⊗K,σ C. We let (aσ, bσ) denote the signature of the form < •, • >σ. Note
that (acσ, bcσ) = (bσ, aσ) for all σ ∈ ΣK.
The hermitian pairing < •, • >V defines an involution c̃ on the algebra End(V )
via

(0.1.1) < a(v), v′ >V =< v, ac̃(v′) >,

and this involution extends to End(V ⊗Q R) for any Q-algebra R. We define
Q-algebraic groups U(V ) = U(V,< •, • >V ) and GU(V ) = GU(V,< •, • >V )
over Q such that, for any Q-algebra R,
(0.1.2)

U(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = 1};
GU(V )(R) = {g ∈ GL(V ⊗Q R) | g · c̃(g) = ν(g) for some ν(g) ∈ R×}.

Thus GU(V ) admits a homomorphism ν : GU(V ) → Gm with kernel U(V ).

There is an algebraic group UE(V ) over E such that U(V )
∼−→ RE/QUE(V ),
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where RE/Q denotes Weil’s restriction of scalars functor. This isomorphism
identifies automorphic representations of U(V ) and UE(V ).
The groups U(V ) (resp. GU(V )) are all inner forms of the same quasi-split
unitary group (resp. unitary similitude group), denoted U0 (resp. GU0). The
group U0 is of the form U(D0, χ̃(∗)0) where D0 is the matrix algebra and

χ̃(∗)0 is an appropriate involution. Then U0,∞ ∼= U(n2 ,
n
2 )[E:Q] if n is even,

U0,∞ ∼= U(n−1
2 , n+1

2 )[E:Q] if n is odd.

(0.2) Haar measures.
The bulk of this article and its companion, Part II, is devoted to calculations
involving Fourier transforms, zeta integrals, and Petersson inner products of
automorphic forms on the groups U(V ) of (0.1). The integrals are defined with
respect to local and adelic Haar measures. The natural adelic Haar measure
on G = UE(V ) is Tamagawa measure dτg, associated to an invariant top dif-
ferential ω rational over E on G. Let δ(E) denote the discriminant of E. The
adelic Tamagawa measure dτg factors up to normalization as a product of local
measures

(0.2.1) dτg = |δ(E)|− dimG
2 L(1, εK)−1

∏

v

dτgv

where dτgv is the measure defined by ωv if v is real and by Lv(1, εK)ωv if v
is finite. The Tamagawa number τ(G) of G is vol(G(Q)\G(A), dτg) = 2. For
finite v the volume of any compact open set with respect to dτgv is always a
rational number.
An alternative measure, traditionally used in the calculation of zeta integrals,
is dg =

∏
v dgv where dgv = dτgv for archimedean v but dgv is chosen to

give volume 1 to a hyperspecial maximal compact subgroup Kv at almost all
finite primes. Let SG be the set of finite places v of E where ωv is not an
OE,v generator of the module of top differentials; in particular, the group G is
unramified at v /∈ SG and so G(Ev) has hyperspecial maximal compacts. The
relation is

(0.2.2) dτgv = Lv(1, εK) ·Av(n)dgv, Av(n) = (qv)
− dimG · |Gv(kv)|

where Gv is the smooth reductive group scheme over Spec(OE,v) associated to
the hyperspecial subgroup Kv. If for v ∈ SG (which includes the finite places
where G has no hyperspecial maximal compact) we arbitrarily set d∗gv = dgv
for v ∈ SG, then

(0.2.3) vol(G(Q)\G(A), dg))/vol(G(Q)\G(A), dτg) =

= |δ(E)| dimG
2 ·

∏

v/∈SG
Av(n)−1 =

n∏

j=1

LSG(j, εjK)

where LSG denotes the partial L-function with the factors at SG removed.
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Given an open compact subgroup K ⊂ G(Af ), we let dµK(g) be the Haar
measure that gives each connected component of KS(G) = G(Q)\G(A)/K∞K
total volume 1, for any maximal compact subgroup K∞ ⊂ G(R). When V is
totally definite, so G(R) = K∞, dµK(g) is counting measure on the finite set

KS(G). In general,

(0.2.4) dµK(g) =
C(G,K)

2
dτg

where the class number C(G,K) = |π0(KS(G)| can be determined explicitly.

1. Automorphic forms on unitary groups

(1.1) Ordinary primes for unitary groups.

Let (V,< •, • >V ) be a hermitian pairing as in (0.1). Let p be a rational prime
which is unramified in K (hence in particular in the associated reflex field
E(V )), and such that every divisor of p in E splits completely in K. Choose
an inclusion inclp : Q →֒ Cp as above. Composition with inclp defines an

identification ΣK
∼−→ Hom(K,Cp), hence for every τ ∈ Hom(K,Cp) we can

define a signature

(1.1.1) (aτ , bτ ) = (aσ, bσ) if τ = inclp ◦ σ.

We assume the triple (Σ, inclp, (aσ, bσ)σ∈ΣK) to be ordinary in the following
sense:

(1.1.2) Hypothesis. Suppose σ, σ′ ∈ Σ have the property that inclp ◦ σ and
inclp ◦ σ′ define the same p-adic valuations. Then aσ = aσ′ .

When aσ = n for all σ ∈ Σ – this is the definite case, to be described in detail
later – or more generally, when aσ = a for all σ ∈ Σ is constant, this comes
down to the following hypothesis, used by Katz in the case n = 1:

(1.1.3) Hypothesis. For σ, σ′ ∈ Σ, the p-adic valuations defined by inclp ◦ σ
and inclp ◦ σ′ċ are distinct.

As Katz observes in [K], our hypotheses on p guarantee that Σ’s satisfying
(1.1.2) exist.
We let Σp denote the set inclp ◦ σ | σ ∈ Σ} of Cp-embeddings of K. Complex
conjugation c acts on the set of primes of K dividing p, and the set of all such
primes of K is the disjoint union

(1.1.4) Hom(K,Cp) = Σp
∐

Σpc.

Hypothesis (1.1.2) was suggested by Fargues, who observed that it is equivalent
to the condition that the completion of the reflex field of the Shimura variety
attached to G (see §1.2) at the place defined by inclp is Qp. This is in turn
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equivalent, by a criterion of Wedhorn [We], to the condition that the ordinary
locus of the completion of the Shimura variety at inclp is non-empty (see (2.1.7),
below). We reformulate the elementary condition (1.1.2) in equally elementary

terms. We have a canonical isomorphism Vp
∼−→ ⊕w|p Vw where Vw = V ⊗K

Kw. Let Vp,Σp and Vp,Σpc be, respectively, the preimages of the subspaces
⊕w|p,w∈ΣpVw and ⊕w|p,w∈ΣpcVw, where the notation w ∈ Σp designates those
w such that w is the valuation determined by some σp ∈ Σp. In particular,

(1.1.5) Vp,Σp
∼−→ ⊕w|p,w∈Σp Vw.

The fact that all primes of E above p split in K/E is equivalent to the condition
that the Qp-vector space Vp = RK/QV ⊗Q Qp decomposes Qp-rationally as
Vp = Vp,Σp ⊕ Vp,Σpc. The decomposition (1.1.5) is tautologically Qp-rational.
For any w dividing p, let

Σw = {σ ∈ ΣK | σp = w}.

Equivalent to (1.1.2) is the hypothesis:

(1.1.6) Hypothesis. There is a Qp-rational K ⊗Q Qp-submodule W (sig) ⊂
Vp,Σp (resp. F 0Vp ⊂ Vp) such thatW (sig) = ⊕w|p,w∈ΣpW (sig)w (resp. F 0Vp =

⊕w|pF 0Vw) with dimW (sig)w = aσ for any σ ∈ Σ (resp. dimF 0Vw = aσ for
any σ ∈ Σw).

In the definite case we just have W (sig) = Vp,Σp . Under hypothesis (1.1.2) we
write (aw, bw) = (aσ, bσ) for any σ ∈ Σw.

(1.2) Shimura varieties and automorphic vector bundles.

Let (V,< •, • >V ) be an n-dimensional hermitian space over K as above. As
in [H4], we let −V denote the space V with hermitian form < •, • >−V = − <
•, • >V and 2V denote the doubled hermitian space V ⊕ (−V ) with hermitian
form the sum of < •, • >V and < •, • >−V . We define U(2V ) and GU(2V ) as
in (1.1); in particular, GU(2V ) denotes the rational similitude group.
The stabilizer in U(2V ) of the direct sum decomposition 2V = V ⊕ (−V )
is naturally isomorphic to the product U(V ) × U(−V ), embedded naturally
in U(2V ). Similarly, the stabilizer in GU(2V ) is isomorphic to the subgroup
G(U(V )× U(−V )) ⊂ GU(V )×GU(−V ), defined by

(1.2.1) G(U(V )× U(−V )) = {(g, g′) ∈ GU(V )×GU(−V ) | ν(g) = ν(g′)}.

Let (W,< •, • >W ) be any hermitian space over K. To the group G = GU(W )
one can canonically attach a Shimura datum (G,X), and hence a Shimura
variety Sh(W ) = Sh(G,X), as follows. For each σ ∈ Σ, let (aσ, bσ) denote
the signature of the hermitian form induced by < •, • >W on the complex
space Wσ = W ⊗K,σ C. Let GU(aσ, bσ) = GU(Wσ) denote the real unitary
similitude group, and let Xaσ,bσ denote the GU(aσ, bσ)(R)-conjugacy class of
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homomorphisms RC/RGm,C → GU(aσ, bσ) defined in [H4, p. 143]. The prod-

uct X = X(W ) =
∏
σ∈ΣX

aσ,bσ is naturally a G(R)-conjugacy class of homo-
morphisms RC/RGm,R → GR, and the pair (G,X) satisfies the axioms of [D]
defining a Shimura variety – unless Wσ is definite for all σ, in which case one
can attach a zero-dimensional Shimura variety to (G,X) all the same, as in
[H3]. We recall that the complex-valued points of Sh(G,X) are given by

(1.2.2) Sh(G,X)(C) = lim←−
K

G(Q)\X ×G(Af )/K,

where K runs over open compact subgroups of G(Af ). We let KSh(G,X)
denote the associated variety whose complex points are given by G(Q)\X ×
G(Af )/K.
If W ′ is a second hermitian space, the above construction applies to groups
of the form G(U(W ) × U(W ′)), defined by analogy with (1.2.1), yielding a
Shimura datum (G(U(W )×U(W ′)),X(W,W ′)). With the above conventions,
it is immediate that the natural map G(U(W ) × U(W ′)) → GU(W ⊕ W ′)
defines a map of Shimura data (G(U(W ) × U(W ′)),X(W,W ′)) → G(U(W ⊕
W ′)),X(W ⊕W ′)), hence a morphism of Shimura varieties

(1.2.3) Sh(W,W ′) = Sh((G(U(W )× U(W ′)),X(W,W ′))) → Sh(W ⊕W ′).

When E = Q, this is worked out in detail in [H4]. In particular, we obtain a
map

(1.2.4) Sh(V,−V ) → Sh(2V ).

The group GU(2V ) is always quasi-split; in particular, up to isomorphism, it
does not depend on the choice of V of dimension n. The corresponding Shimura
variety always has a canonical model over Q. The more general Shimura vari-
eties Sh(W ), Sh(W,W ′) are defined over reflex fields E(W ), E(W,W ′), respec-
tively, of which one can only say in general that they are contained in the Galois
closure of K over Q. It is easy to see, however, that E(V,−V ) = E(V ), and the
general theory of canonical models implies that the map (1.2.4) is rational over
E(V ). If E = Q then K is a quadratic imaginary field, and E(V ) = K unless V
is quasi-split, in which case E(V ) = Q. When V is a definite hermitian space,
E(V ) is the reflex field E(K,Σ) of the CM type (K,Σ).
We will be working with holomorphic automorphic forms on G, when G is of
the form G = GU(W ) or GU(W,W ′). These are constructed as follows; for
details, see [H1]. Let K∞ ⊂ G(R) be the stabilizer of a point x ∈ X (= X(W )
or X(W,W ′)); thus K∞ contains a maximal connected compact subgroup of
G(R), as well as the real points of the center ZG of G. In fact, K∞ is the
group of real points of an algebraic subgroup, also denoted K∞, of G, the
centralizer of the torus x(RC/RGm,C). Moreover, the derived subgroup of G is
simply connected, hence K∞ is connected. Hence one can speak of algebraic
representations of K∞ and their extreme weights. If τ : K∞ → GL(Wτ ) is an
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algebraic representation, then there exists a holomorphic vector bundle [Wτ ]
on Sh(G,X); more precisely, there exists a canonical holomorphic structure on
the C∞ vector bundle

(1.2.5) [Wτ ] = lim←−
K

G(Q)\G(R)×Wτ ×G(Af )/K∞K,

where K∞ acts on the right on G(R) and on the left on Wτ , yielding a natural
map to

lim←−
K

G(Q)\G(R)×G(Af )/K∞K = lim←−
K

G(Q)\X ×G(Af )/K = Sh(G,X)(C).

A holomorphic automorphic form on G of type τ is a global section f ∈
H0(Sh(G,X), [Wτ ]); when G contains a rational normal subgroup isogenous
to SL(2)Q one needs to add a growth condition at infinity. The representation
τ is included in the notation for [Wτ ], but is superfluous; [Wτ ] can be defined
without reference to a choice of K∞ (or, equivalently, a choice of p ∈ X),
and has a canonical model rational over a number field E(Wτ ), containing the
reflex field E(G,X), and attached canonically to the set of extreme weights
of Wτ . In particular, the space H0(Sh(G,X), [Wτ ]) has a canonical rational
structure over E(Wτ ). However, since we have chosen K∞, we can also realize
holomorphic automorphic forms of type τ as Wτ -valued functions on the adèle
group of G via (1.2.5). Let A(G) denote the space of automorphic forms on
G(Q)\G(A). Then
(1.2.6)

H0(Sh(G,X), [Wτ ])
∼−→ Ahol,τ (G) := {f ∈ (A(G)⊗Wτ )

K∞ | p−f = 0},

canonically. Here

(1.2.7) g∞ = Lie(K∞)C ⊕ p− ⊕ p+

is the Harish-Chandra decomposition, and the choice a base point x ∈ X, and
hence K∞ and the decomposition (1.2.7), is implicit in the notation Ahol,τ (G).
We also write the right-hand side of (1.2.6) as

(A(G)⊗Wτ )
K∞ [p−],

the p−-torsion in (A(G)⊗Wτ )
K∞ .

If X = X(V,−V ) with V a definite hermitian space, then K∞ =
GU(V,−V )(R). If X = X(2V ), with V again definite, we can take K∞ to
be GU(V,−V )(R) ⊂ GU(2V ). With this choice, the Harish-Chandra decom-
position (1.2.7) is rational over E(V,−V ) = E(V ) = E(K,Σ).

Restricting forms.

Let G = GU(V,−V ), X = X(V,−V ), G′ = GU(2V ), and X ′ = X(2V ). Pick
x ∈ X(V,−V ). This determines a base point in X ′ and hence K ′∞ ⊆ G′∞
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in addition to K∞, with K∞ being identified with a subgroup of K ′∞ via the
canonical embedding of G into G′.
Suppose τ is a one-dimensional representation of K ′∞. This then deter-
mines a one-dimensional representation of K∞ by restriction, and we obtain
holomorphic vector bundles [Wτ ] and [W ′τ ] on Sh(V,−V ) = Sh(G,X) and
Sh(2V ) = Sh(G′,X ′), respectively, having canonical models over the respec-
tive fields E(Wτ ) and E(W ′τ ). There is canonical map from the pull-back of
[W ′τ ] under the morphism (1.2.4) to [Wτ ] and therefore a homomorphism:

(1.2.8) resV,τ : H0(Sh(2V ), [W ′τ ])→ H0(Sh(V,−V ), [Wτ ]).

This is rational over E(Wτ ). Over the complex numbers (1.2.8) is compatible
in the obvious way with the isomorphisms in (1.2.6) and the restriction of forms
in Ahol,τ (G′) to G(A), which gives forms in Ahol,τ (G).

Connected components.

We let G = GU(V ). Let C denote the algebraic group G/Gder over Q. Let
G(R)+ denote the identity component of G(R), G(Q)+ = G(Q) ∩ G(R)+.
For any open compact subgroup K ⊂ G(Af ), the set π0(KSh(G,X)(C)) of

connected components of KSh(G,X)(C) is given by G(Q)+\G(Af )/K, where

G(Q)+ denotes the closure of G(Q)+ in G(Af ). Let CK ⊂ C(Af ) denote
the image of K under the natural map; let C+ ⊂ C(Af ) denote the image
of G(Q)+. Now Gder is an inner form of the simply-connected group SL(n),
hence satisfies strong approximation. It follows (cf. [D, (2.1.3.1)]) that

(1.2.9) π0(KSh(G,X)(C)) = C(K)
def.
= C(Af )/CK · C+.

We can define a Shimura datum (C,X(C)) to be the quotient of (G,X) byGder.
The corresponding Shimura variety Sh(C,X(C)) also has a modular interpre-
tation in terms of level structures on certain direct factors of rank one over K
of certain tensor powers of the Tate modules of abelian varieties with CM by
K. The tensor power in question depends on the signatures (aσ, bσ). The nat-
ural map KSh(G,X)(C) → C(K) = π0(KSh(G,X)(C)) becomes a morphism
of moduli spaces. This interpretation will not be used in the sequel.

(1.3) PEL structures.

Let G = GU(V ). Notation is as in the previous section. Write

K ⊗Q Q = ⊕σ∈ΣKQσ,

and let eσ ∈ K ⊗Q Q be the corresponding orthogonal idempotents. We de-

compose V ⊗Q Q as a K⊗QQ-module as V ⊗Q Q = VΣ⊕VΣc, where VΣ is the

sum of the spaces Vσ = eσ(V ⊗Q Q) for σ ∈ Σ, and similarly for VΣc. Inside

V ⊗Q Q we consider a variable K ⊗Q Q- submodule F 0V satisfying
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(1.3.0) Property. For any σ ∈ ΣK, the projection F 0Vσ = eσF
0V of F 0V

on Vσ is of dimension aσ.

Let T be an indeterminate and, for x ∈ K, let P0(x, T ) ∈ Q[T ] denote the
characteristic polynomial of x, acting on F 0V . It follows from the definition
of the reflex field E(V ) that PΣ(x, T ) ∈ E(V )[T ], independently of the choice
of F 0V . Indeed, Shimura defined E(V ) to be the field generated by traces of
elements of K acting on F 0V .
Choose a purely imaginary element ג ∈ K, i.e. an element such that TrK/E(ג) =
0. The form < •, • >V,ג= ·ג < •, • >V is skew-hermitian. When we fix a prime
p we will always assume ג to be a unit at p. Fix a compact open subgroup
K ⊂ GU(V )(Af ). We consider the following functor from the category of
schemes over E(V ) to the category of sets:

(1.3.1) S 7→ KAV (S) = KAV,ג(S) = {(A, λ, ι, α)}

where

(1.3.1.1) A is an abelian scheme over S, viewed as an abelian scheme up to
isogeny;

(1.3.1.2) λ : A → Â is a polarization;
(1.3.1.3) ι : K → EndS(A)⊗Q is an embedding of Q-algebras;

(1.3.1.4) α : V (Af )
∼−→ V f (A) is an isomorphism of K-spaces, modulo K.

Here V f (A) =
∏
ℓ Tℓ(A) ⊗ Q is the adelic Tate module, viewed as a ind-pro-

étale sheaf over S; it’s K-structure comes from (1.2.1.3). The level K structure
of (1.3.1.4) is understood in the sense of Kottwitz [Ko]. These data satisfy the
usual compatibility conditions:

(1.3.1.5) The Rosati involution on EndS(A)⊗Q defined by λ fixes ι(K) and acts
as complex conjugation;

(1.3.1.6) The isomorphism α identifies the Weil pairing on V f (A) with an Af
×-

multiple of the skew-symmetric pairing on V (Af ) defined by trK/Q <
•, • >V,ג.

Finally, the action induced by ι on LieA/S satisfies Shimura’s trace condi-
tion, which we state here in the equivalent formulation due to Kottwitz.
Let Pι(x, T ) ∈ OS [T ] denote the characteristic polynomial of x, acting on
Lie(A/S). We view E(V )[T ] as a subalgebra of OS [T ]. The Shimura-Kottwitz
condition is

(1.3.1.7) Pι(x, T ) = P0(x, T ) ∈ OS [T ], ∀x ∈ K.

Two quadruples (A, λ, ι, α) and (A′, λ′, ι′, α′) are identified if and only if there
is an isogeny φ : A → A′, commuting with ι′, prime to the level K in the
obvious sense and taking α to α′, and identifying λ′ with a positive rational
multiple of λ.
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(1.3.2) Theorem (Shimura). For K sufficiently small, the functor (1.3.1)
is representable by a quasi-projective scheme over E(V ), and this is precisely
the canonical model of KSh(V ). As K varies, the natural maps between these
functors induce the natural maps between the various KSh(V ). The action of
GU(V )(Af ) on the tower KSh(V ) preserves the E(V )-rational structure.

For U ⊂ GU(V )(Af ) a closed compact subgroup, we write USh(V ) =
lim←−K⊃U KSh(V ), as K runs over compact open subgroups of GU(V )(Af ). This
is simply a shorthand for referring to the full tower of the KSh(V ) for K ⊂ U ,
and we will not need to worry about the nature of the projective limit.
The above theory applies in particular to the Shimura varieties Sh(2V )
and Sh(V ) × Sh(−V ). The Shimura variety Sh(V,−V ) is defined as the
subvariety of Sh(V ) × Sh(−V ), which parametrizes pairs of quadruples
((A, λ, ι, α), (A−, λ−, ι−, α−)), determined by compatibility of polarizations in
the obvious sense. As a subvariety of Sh(2V ), Sh(V )×Sh(−V ) is then the set
of quadruples (B,µ, ι2, β) which decompose as a product

(B,µ, ι2, β)
∼−→ (A×A−, λ× λ−, ι× ι−, α× α−).

In particular, β respects the AK,f -decomposition 2V (Af ) = V (Af ) ⊕
(−V )(Af ). The most important level structures β for our purposes do not,
however, respect this decomposition. In other words, in the applications, we
will not be working with the Shimura variety Sh(V,−V ) via its natural em-
bedding in Sh(2V ), but rather with a translate of the latter, cf. (2.1.11).
For the remainder of this section, let G = GU(V ), X = X(V ), Sh = Sh(G,X).
We identify

GU(V )(Qp) = U(V )(Qp)×Qp
× ∼−→ UE(V )(E ⊗Q Qp)×Qp

×,

where the map to Qp
× is the similitude factor and UE(V ) is as in (0.1). The

ordinarity hypothesis (1.1.2) allows us to define subspaces Vp,Σp and Vp,c·Σp of
Vp as in (1.1.5). The hermitian pairing

Vp × Vp → E ⊗Qp

determines, and is determined by, a perfect duality Vp,Σp⊗Vp,c·Σp → E⊗Q (Qp)

of free E⊗Q Qp
∼−→ ∏

w∈Σp
Kw-modules. There is thus a natural isomorphism

(1.3.3) G(Qp)
∼−→ GL(Vp,Σp)×Qp

× ∼−→
∏

w,Σw⊂Σp

GL(n,Kw)×Q×p

The indexing by w such that Σw ⊂ Σp is a reminder of the fact that several
elements of Σp can correspond to the same divisor w of p. This is just a way
of saying, somewhat more carefully than usual, that the unitary group at a
split place is isomorphic to a general linear group. We identify GQp with the
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product of algebraic groups G0 × GL(1), where G0 = GL(Vp,Σp) as algebraic
groups and the map to GL(1), as before, is the similitude factor ν.
Fix a compact open subgroupK = Kp×Kp ⊂ G(Af ), withKp ⊂ G(Qp), K

p ⊂
G(Ap

f ), and let KSh denote the Shimura variety at level K. Our hypotheses

imply that GQp is an unramified group over Qp, hence that G(Qp) contains
hyperspecial maximal compact subgroups; we assume that Kp is one such.
Then Kp is the group of Zp-points of an extension of G to a smooth group
scheme, also denoted G, over Spec(Zp). The choice of Kp is equivalent to
the choice of a self-dual O ⊗ Zp-lattice MV ⊂ Vp. Let MV,Σp ⊂ Vp,Σp be the
projection of MV . We can extend G0 to a group scheme over Zp as G0 =
GL(MV,Σp). Then there are isomorphisms

(1.3.4) Kp = G(Zp)
∼−→ G0(Zp)×GL(1,Zp) =

∏

w,Σw⊂Σp

GL(n,Ow)× Z×p

compatible with the factorization (1.3.3). We also assume Kp is sufficiently
small, in a sense we will make precise later.
When G = G(2V ) ⊃ G(V,−V ), we choose Kp so that M2V = MV ⊕M−V with
MV ⊂ V ⊗ Qp and M−V ⊂ (−V ) ⊗ Qp self-dual lattices; this is equivalent to
the assumption that Kp ∩ G(V,−V )(Qp) is a hyperspecial maximal compact
subgroup of G(V,−V )(Qp). In (2.1) we will impose additional conditions on
the choice of MV in the general case.

(1.4) Automorphic vector bundles on unitary Shimura varieties,
again.

Notation is as in the previous sections: G = GU(2V ), resp. GU(V,−V ),
X = X(2V ), resp. X(V,−V ), and [Wτ ] is an automorphic vector bundle on
Sh(G,X).
In (1.2) we have fixed the stabilizer K∞ ⊂ G(R) of a point x ∈ X. Choose a
maximal torus T∞ ⊂ K∞, an algebraic subgroup over R necessarily containing
the image of x. Then T∞ is also a maximal torus in G. A specific choice of
pair (T∞,K∞) can be obtained as follows. Decompose (V,< •, • >V ) as an
orthogonal direct sum of one-dimensional hermitian spaces over K:

(1.4.1) (V,< •, • >V ) = ⊕ni=1(Vi, < •, • >i).

We assume the Vi are numbered so that, for any σ ∈ Σ, Vi,σ = Vi ⊗K,σ C has
signature (1, 0) for i ≤ rσ and signature (0, 1) for i > rσ. Let −Vi denote Vi
with the hermitian form − < •, • >i. Let GU⊕i(V,−V ) denote the subgroup
of the torus

∏
iGU(Vi)×

∏
iGU(−Vi) defined by equality of similitude factors.

We obtain embeddings of Shimura data
(1.4.2)

(GU⊕i(V,−V ),
∏

i

(Xi×X ′i)) →֒ (GU(V,−V ),X(V,−V )) →֒ (GU(2V ),X(2V ))
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where
∏
i(Xi×X ′i) is an appropriate product of point symmetric spaces deter-

mined by the signatures of each Vi and −Vi. We write

Sh⊕i(V,−V ) = Sh(GU⊕i(V,−V ),
∏

i

(Xi ×X ′i)),

the superscript ⊕i serving as a reminder of the choice of direct sum
decomposition above. Define (GU⊕i(V ),

∏
iXi) ⊂ (GU(V ),X(V )),

GU⊕i(−V ),
∏
iX
′
i) ⊂ (GU(−V ),X(−V )) analogously. The groups GU⊕i(V ),

GU⊕i(−V ), and GU⊕i(V,−V ), defined over Q, are maximal R-elliptic tori
in GU(V ), GU(−V ), and GU(V,−V ) or GU(2V ), and we take T∞ to be
the group of real points of one of these tori. We can of course find K∞
containing T∞, though K∞ will in general not be defined over Q. The Shimura
data (GU⊕i(V ),

∏
iXi), etc., define CM points of the corresponding unitary

Shimura varieties.
The group T∞ is a maximal torus in a reductive group of type A, and we
parametrize its roots in the usual way. In the case G = GU(V ), GC is natu-
rally isomorphic to

∏
σ∈ΣGL(n,C)×GL(1,C), the last term coming from the

similitude factor. Thus the group X(T∞) of characters λ of the algebraic torus
T∞ consists of d-tuples (a1,σ, . . . , an,σ)σ∈Σ of n-tuples of integers, indexed by
σ ∈ Σ, together with a single integer a0 for the similitude factor. The (aj,σ) are
given by the restriction of the character λ to T∞ ∩ U(V ), whereas a0 is given
by the restriction of λ to the maximal R-split torus in T∞ ∩ZG: if tIn ∈ G(R)
is a real central element then λ(tIn) = ta0 . The parameters satisfy the relation

(1.4.3) a0 ≡
∑

j,σ

aj,σ (mod 2).

Given an ordering on the roots of the maximal torus T∞ ⊂ G, the dominant
weights are then the characters parametrized as above, with ai,σ ≥ ai+1,σ,
for all σ and i = 1, . . . , n − 1. We choose a set of positive roots con-
taining the roots in p−. The n-tuple corresponding to σ will often be
written with a semi-colon (a1,σ, . . . , aaσ,σ;−bbσ,σ, . . . ,−b1,σ) or occasionally
(a1,σ, . . . , aaσ,σ;−bbσ,σ, . . . ,−b1,σ; a0) when the term a0 needs to be stressed,
in such a way that it gives a dominant weight of the σ-factor of K∞ ∩U(V )∞,
U(V )∞ ≡

∏
σ U(aσ, bσ) if and only if

(1.4.4) a1,σ ≥ · · · ≥ aaσ,σ, b1,σ ≥ · · · ≥ bbσ,σ

The parametrization in G = GU(2V ) is the same as above, except that n is
replaced by 2n and aσ = bσ = n. For G = GU(V,−V ), we place the parameters
for GU(V ) and GU(−V ) side by side.
If K is sufficiently small, KSh(V ) carries a universal abelian scheme KA en-
dowed with PEL structure of the appropriate type. Let pK : KA → KSh(V )
denote the structure map and put

ω = ωV = pK,∗Ω
1
KA/KSh(V ).
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This is a locally-free sheaf on KSh(V ) of rank dn = [E : Q] dimK V with
a natural action of O

KSh(V ) ⊗Q K, the K-action coming from (1.3.1.3). If
we extend the ground field to contain E, then ω breaks up as ω = ⊕σ∈Σωσ
corresponding to the canonical decomposition E ⊗Q K = ⊕σ∈ΣK. Each ωσ
is a locally-free O

KSh(V )-sheaf of rank n. The sheaf ⊗σ∈Σωσ is the canonical
bundle associated to (0, ..., 0; 1, 0, ..., 0; 1)σ∈Σ.
The canonical bundles for other τ ’s can be constructed as follows, again assum-
ing the ground field contains E. Let Fl(ωσ)KSh(V ) be the scheme representing
the functor

S 7→ (E1 = ωσ/S ⊃ E2 ⊃ · · · ⊃ En ⊃ En+1 = 0 ;

φi : Ei/Ei+1
∼−→ OS , i = 1, ..., n).

There is an obvious action of Dσ = Gn
m/KSh(V ) on FL(ωσ): d = (d1, ...., dn)

acts by multiplying φi by di. Let πσ : FL(ωσ) → KSh(V ) be the structure
map. For each τσ ∈ X(Dσ) we define a locally-free sheaf ρτσ on KSh(V ) by
H0(U, ρτσ ) = H0(π−1

σ (U),OFL(ωσ))[τσ], where the [τσ] signifies the submodule
on which Dσ acts through τσ. We identify each τσ with an n-tuple of integers
(m1,σ, ....,mn,σ) in the usual way and say that such a τσ is dominant if m1,σ ≥
· · · ≥ mn,σ. Given a d-tuple τ = (τσ)σ∈Σ of dominant characters, let ρτ =
⊗σ∈Σρτσ . Then we can naturally identify ρτ with [Wτ ], where the character of
T∞ associated to τ is (m1,σ, ...,maσ ,σ;maσ+1,σ, ...,mn,σ). These identifications
respect the maps in (1.2.8) in the obvious way.

(1.5) Fourier expansions of modular forms.

In this section we consider the Shimura datum (GU(2V ),X(2V )). The symmet-
ric domainX(2V ) is holomorphically isomorphic to the product of [E : Q] = |Σ|
copies of the irreducible tube domain Xn,n of dimension n2 attached to the
group U(n, n). Let P = P∆ ⊂ G be the maximal parabolic defined in §1.5.
The group of real points of P stabilizes the 0-dimensional boundary compo-
nent of this product of tube domains. Fourier expansion with respect to U(R)
defines the q-expansion of a holomorphic automorphic form on X relative to
a congruence subgroup of GU(2V,Q). By work of Fujiwara [F], extending the
results of Chai and Faltings, one can also define q-expansions for sections of the
automorphic vector bundles [Wτ ] over KS when Kp is hyperspecial. In [Hi04,
Hi05], Hida defined q-expansions on the closed Igusa tower. We will formulate
this theory in an adelic version analogous to the characteristic zero formulation
in [H1, §6] and [P].
In [H1, §6] we attach a Shimura datum (GP ,XP ) to the rational parabolic
subgroup P ⊂ GU(2V ). The domain XP is a version of the point boundary
component mentioned above, and GP is a torus; specifically, GP is contained
in the center of the standard Levi component of P . Recall the definition of
GP : the standard rational representation of G on RK/Q(2V ) carries a family
of Hodge structures of type (−1, 0) + (0,−1), corresponding to the family of
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abelian varieties of PEL type over Sh(2V ). In a neighborhood of the bound-
ary component corresponding to P , this family degenerates to a mixed Hodge
structure of type (0, 0) + (−1,−1).
Actually, the formulation in [H1] is not quite correct: in general the boundary
Shimura datum should be defined as in [Pink], where XP is a homogeneous
space for GP (R) finitely fibered over a GP (R) conjugacy class of homomor-
phisms RC/R → GP,R. In the present case, GP (R) has two connected compo-
nents, corresponding to upper and lower hermitian half-spaces, andXP consists
of two points. The Shimura variety Sh(GP ,XP ) is zero-dimensional, and one
easily verifies it is of PEL type.
Indeed, it parametrizes pairs (αΣ, αm) where αΣ is a complete level structure
on the abelian variety with complex multiplication type (K,Σ), and αm is an
isomorphism

αm :
∏

q

Qq/Zq
∼−→

∏

q

µq∞

Thus as long as one works in finite level KP prime to p, there is no difficulty
defining an integral model KP S(GP ) of KP Sh(GP ,XP ). For general level KP ,
there is a unique normal integral model, and we define this to be KP S(GP ).
We let UP denote the unipotent radical of P , and let U∗ = Hom(UP (Q),Q).
This is the vector space denoted g−2(Q)∗ in [H1, ]. The space U∗⊗R contains
a self-adjoint cone, homogeneous under P (R)/UP (R), and denoted C in [H1,
5.1]; we let U∗(C) = U∗ ∩ C. Let [Wτ ] be an automorphic vector bundle over
S̄, as above. There is an automorphic vector bundle [WτP ] over Sh(GP ,XP ),
and a map

(1.5.1) F.J.P,0 : Γ(Sh(2V ), [Wτ ]) →
⊕̂

β∈U∗
Γ(Sh(GP ,XP ), [WτP ])

defined, with slightly different notation, in [H1, (6.3.3)], and in [Pink, §12].

Here
⊕̂

is understood as the subset (fβ) of the direct product over β ∈ U∗

such that fα = 0 for all but finitely many β /∈ U∗(C). If F.J.P,0(f) = (fβ) for
some f ∈ Γ(Sh(2V ), [Wτ ]), then the usual Fourier expansion is written

∑
fβq

β .
The Koecher principle asserts that, for n > 0, F.J.P,0 is supported on U∗(C),
and even for n = 0 one takes care only to consider f with that property.
Since C is self-adjoint, it can also be viewed as a cone in UP (R). One obtains
a more reassuring variant of the q-expansion in the following way. Let N =
dimUP , and let

(1.5.2) Λ = Λ(Kp) = UP (Q) ∩K(U,m) ⊂ UP (Q).

Note that Λ is a lattice in UP (Q) and does not depend on m. We choose a
polyhedral cone c ⊂ C generated by a basis {λ1, . . . , λN} of Λ:

c = {
N∑

i=1

aiλi | ai ≥ 0}
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and let c∗ ⊃ U∗(C) be the dual cone:

c∗ = {v ∈ U∗(C) | v(λi) ≥ 0, i = 1, . . . N}.

Let Λ∗ = Hom(Λ,Z), viewed as a subgroup of U∗(C). Let R be a Ov-algebra
and M a free R-module. The intersection Λ∗ ∩ c∗ is a free monoid on N
generators βi, i = i, . . . , N , and the ring of formal series

(1.5.3) R[[qΛ
∗∩c∗ ]] = {

∑

β∈Λ∗∩c∗

fβq
β},

with fβ ∈ R, and with the usual multiplication rule qβ · qβ′ = qβ+β′ , is then

isomorphic to R[[qβ1 , . . . qβN ]]. We define the R[[qΛ
∗∩c∗ ]]-module

M[[qΛ
∗∩c∗ ]] =M⊗R R[[qΛ

∗∩c∗ ]] = {
∑

β∈Λ∗∩c∗

fβq
β}

where now fβ ∈M for all β. Taking

M0 =M0([WτP ],KP (m)) = Γ(KP (m)S(GP ), [WτP ])

for appropriate m, F.J.P,0 can be regarded as a map

(1.5.4) F.J.P,0 : Γ(K(U,m)Sh(2V ), [Wτ ]) → M0([WτP ],KP (m))[[qΛ
∗∩c∗ ]].

LettingKp run over a fundamental set of open subgroups of G(Ap
f ) corresponds

to letting Λ∗ grow to a Z(p)-lattice in UP (Q), or equivalently to adding nth roots

of the generators qβi of R[[qΛ
∗∩c∗ ]] for all n prime to p.

(1.5.5) One-dimensional τ ’s.

In the present article we will mainly consider Wτ of dimension one. More
precisely, [WτP ] is the automorphic vector bundle associated to an algebraic
character, say τP , of the torus GP . Fix a base point x ∈ KP (m)S(GP )(C); for
instance, we can take x to be the image of the element 1 ∈ GU(2V )(A) under

the isomorphism GP (Q)\GP (A)/KP (m)
∼−→ KP (m)S(GP )(C). Let WτP be the

stalk at x of [WτP ]. Then H0(S(GP ), [WτP ]) can be canonically identified with
the spaceM(WτP (C),KP (m)) of WτP (C)-valued automorphic forms on GP of
infinity type τ−1

P ; i.e., the space of functions

c : GP (Q)\GP (A)/KP (m) → WτP (C)

such that c(g∞g) = τP (g∞)−1c(g) for all g ∈ GP (A) and all g∞ ∈ GP (R).
Choosing a basis of WτP (C) identifies M(WτP (C),KP (m)) with the space

(1.5.5.1) XτP (GP ;KP (m)) =

= {c : GP (Q)\GP (A)/KP (m) → C | c(g∞g) = τP (g∞)−1c(g)}
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spanned by C-valued Hecke characters of the indicated infinity type. This in
turn identifies the Fourier expansion of a holomorphic modular form with an
element of XτP (GP ;KP (m))[[qΛ

∗∩c∗ ]]. In this notation we can regard C as a
Ov-algebra or, more prudently, regard both C and Ov as algebras over the ring
of integers of some number field.

(1.5.6) Comparison with the transcendental theory

Let ψ : A/Q → C× be a non-trivial additive character, with local component
ψv at the place v of Q, such that ψ∞(x) = e2πix. For any β ∈ U∗(Q) we define
the character

(1.5.6.1) ψβ : U(Q)\U(A) → C× | ψβ(u) = ψ(β(u)), u ∈ U(A).

A section f ∈ Γ(Sh(2V ), [Wτ ]) can be identified with a Wτ (C)-valued auto-
morphic form on GU(2V )(A), belonging to the space on the right-hand side
of (1.2.6), which This automorphic form will again be denoted f . We as-
sume we are given an isomorphism of Wτ (C) with C, so that f is viewed as
a complex-valued automorphic form. The Fourier coefficients of such an f are
then defined, classically, as functions on GU(2V,A) by

(1.5.6.2) fβ(h) =

∫

U(Q)\U(A)

f(uh)ψ−β(u)du

For h = (h∞, hf ) ∈ GU(2V,A), the holomorphy of f implies a factorization
fβ(h) = fβ,∞(h∞)fβ,f (hf ) where fβ,∞ depends only on τ and β. Explicitly, if
we write h∞ = p∞k∞ with p∞ ∈ P (R) and k∞ ∈ K∞, we have

(1.5.6.3) fβ,∞(p∞k∞) = τ(k∞)−1e2πiβ(Z(p∞))

where Z(p∞) = p∞(x) ∈ U(C), with x the fixed point of K∞ in X(2V ) and
X(2V ) is realized as the tube domain U(C) over the self-adjoint cone C in
U(R) and the action of P (R) on the tube domain is the standard one. For
more details, see [H1, II].
We write qβ(h∞) = fβ,∞(h∞). The function f can be recovered from the
Fourier coefficients by Fourier inversion, to which we add Koecher’s principle:

(1.5.6.4) f(h) =
∑

β∈U∗∩C
fβ(h) =

∑

β∈U∗∩C
qβ(h∞)fβ,f (hf ).

It follows that the finite parts fβ,f of fβ , as β varies, suffice to deter-
mine the form f . Suppose f is invariant under the compact open subgroup
K ⊂ GU(2V )(Af ). Now the derived subgroup GU(2V )der is simply-connected,
hence strong approximation is valid, and it follows that the coefficients fβ,f are
uniquely determined by their values on any subset C ′ ⊂ GU(2V )(Af ) which
maps surjectively onto the quotient C(K) defined as in (1.2). Let LP ⊂ P
be the standard Levi component, the centralizer of GP . Then we can take
C ′ = LP (Ap

f ). It follows that
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(1.5.6.5) Transcendental q-expansion principle. A form f ∈
Ahol,τ (GU(2V )) is determined by the values fβ,f (hf ) for hf ∈ LP (Ap

f ).

To simplify the comparison of the algebraic and transcendental theories, we
introduce the “Shimura variety” Sh(LP ,XP ) attached to LP :

(1.5.6.6) Sh(LP ,XP ) = Sh(GP ,XP )×GP (Af ) LP (Af ).

This can be interpreted as an inductive limit of profinite schemes over
E(GP ,XP ) = Q, with natural LP (Af )-action. The normal integral model
S(GP ) extends similarly to an LP (Af )-equivariant normal integral model SP
of Sh(LP ,XP ). The automorphic vector bundles [WτP ] on Sh(GP ,XP ) extend
trivially to L(Af )-equivariant vector bundles on Sh(LP ,XP ). As in (1.5.5), we
can write

M =M([WτP ],KL(P )(m)) = Γ(KL(P )(m)SP , [WτP ])

for an appropriate compact open subgroup KL(P )(m) ⊂ LP (Af ), and identify
the latter with

(1.5.6.7) XτP (LP ;KLP (m)) =

= {c : GP (Q)\GP (R) · LP (Af )/KL(P )(m) → C | c(g∞h) = τP (g∞)−1c(h)}

where now h ∈ LP (Af ) but g∞ ∈ GP (R). Ignoring the level structure, the
Fourier expansion (1.5.6.4), with hf restricted to LP (Ap

f ), then corresponds to
a map

(1.5.6.8) F.J.P : Γ(Sh(2V ), [Wτ ]) →
⊕̂

β∈U∗
Γ(Sh(LP ,XP ), [WτP ])

defined over Q. By (1.5.6.5), this map is injective.

(1.5.7) Trivializations.

A good choice of basis of WτP is provided by the theory of degenerating abelian
varieties of type K(U,m)A2V (1.3.1); cf. [K, p. 212 ff.], [H1, Lemma 6.6], and
[Pink,12.20]. The automorphic vector bundle WτP is some power, say the kth,
of the relative canonical sheaf (bundle of top differentials) on the universal
degenerating abelian scheme over the toroidal compactification. Its natural
basis is then the product

(1.5.7.1) (

N∧

j=1

dqβj/qβj )⊗k = (2πi)Nk(
∧

j

dzj)
k,

where the tube domain coordinate zj on X(2V ) is defined by qβj = e2πizj .
This basis is defined over Z(p) because the coordinates qβj are used to define
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the toroidal compactification over Z(p) in [F]. Thus the trivialization (1.5.7.1)
is compatible with the theory of p-adic modular forms, just as in [K], and allows
us to identify

(1.5.7.2) F.J.P (f)β(h) = qβ(h∞)fβ,f (hf ), h = (h∞, hf ) ∈ LP (A)

where the left-hand term is (1.5.6.8) and the right-hand expression is from
(1.5.6.4).

(1.6) p-integral models and p-integral sections.

Let p be a rational prime, and assume hypothesis (1.1.2) is satisfied. Let L′ be
a finite extension of Q containing E(V ) and let O′ be the ring of integers of L′.
For simplicity we will assume that L′ also contains E. Fix a sufficiently small
compact open subgroup K = Kp ×Kp ⊂ G(Af ), as in §1.3. Then it is known
(cf. [Ko]) that KSh(G,X) admits a smooth integral model KS = KS(G,X)
over the valuation ring O′(p) that is a moduli space for abelian varieties with

additional structure of PEL type (the moduli problem is that of (1.3.1) but with
ι now an embedding O(p) → EndS(A) ⊗ Z(p)). Moreover, if L′ also contains
E(Wτ ) for every τ (a finite set of τ suffices) then the automorphic vector
bundles [Wτ ] extend naturally to locally free sheaves over KS. In particular, the
construction of the ρτ ’s from §1.4 can be carried out over KS; these then provide
integral structures on the various [Wτ ]’s. Both KS and the integral structures
on the [Wτ ]’s are functorial with respect to change of the level subgroup Kp

away from p. In particular, we occasionally drop the notation K in what
follows.
By our hypotheses on p, and by an elementary approximation argument, the
decomposition (1.4.1) can be taken integral over O(p). We assume that K

is so defined so that Kp ∩ GU⊕i(V,−V )(Qp) is again a maximal compact.
Then KSh

⊕i(V,−V ) (where the subscript K has the obvious meaning) also
has a model over O′(p), which we denote KS⊕i = KS⊕i(V,−V ). The natural

map KSh
⊕i(V,−V ) → KSh(G,X) (which is just the inclusion of certain CM

points) extend to a map KS⊕i → KS, which can be uses to detect p-integrality
of sections of the [Wτ ]’s, as we now explain.

Let AΣ be an abelian variety over Q, of dimension 2d, with complex multiplica-
tion by K of type Σ, and assume End(AΣ)⊗Z Z(p) = O(p). In other words, O(p)

acts on the object “AΣ ⊗Z Z(p)” defined by AΣ in the category of abelian va-
rieties up to prime-to-p isogeny. One knows AΣ extends to an abelian scheme,
also denoted AΣ, over the valuation ring Z̄(p), also with action by O(p) up to
prime-to-p isogeny. There is a decomposition

(1.6.1) H1
DR(AΣ/Z̄(p))

∼−→ ⊕σ∈ΣK Ω(Σ)σ,

with each Ω(Σ)σ a free Z̄(p)-module of rank one. Choose Z̄(p)-generators
ωσ, σ ∈ ΣK of Ω(Σ)σ. On the other hand, the topological (Betti) homology
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H1(AΣ(C), Z̄(p)) is a free rank one O ⊗Z Z̄(p)-module, hence admits a decom-
position

(1.6.2) H1(AΣ(C), Z̄(p))
∼−→ ⊕σ∈ΣK (Z̄(p))σ

where (Z̄(p))σ is the submodule of H1(AΣ(C), Z̄(p)), isomorphic to Z̄(p), on

which O acts via σ. Choose Z̄(p)-generators γσ′ ∈ (Z̄(p))σ′ , for σ′ ∈ ΣK. The
natural pairing (integration)

Int : H1
DR(AΣ/Z̄(p))⊗H1(AΣ(C), Z̄(p)) → C

defines invariants

(1.6.3) pK(σ,Σ) = Int(ωσ, γ), σ ∈ ΣK, γ ∈ H1(AΣ(C), Z̄(p))

where γ is taken to be a free O ⊗Z Z̄(p) generator of H1(AΣ(C), Z̄(p)). It is

easy to see that Int(ωσ, γ) depends only on the projection of γ on (Z̄(p))cσ,
hence that the complex number pK(σ,Σ) is well defined up to multiplication
by units in (Z̄(p))

×. Indeed, both H1(AΣ(C), Z̄(p)) and H1
DR(AΣ/Z̄(p)) are

invariants of the prime-to-p isogeny class of AΣ, so the invariants pK(σ,Σ) are
independent of the choice of base point in the prime-to-p isogeny class of AΣ,
up to (Z̄(p))

×-multiples. It is well-known that any two choices of AΣ can be

related by a prime-to-p isogeny (concretely, any idèle class of K mod K×∞ can
be represented by an idèle trivial at p). Thus the pK(σ,Σ) can be considered
well-defined invariants of Σ, once a base point in the isogeny class is chosen.
Now the elements of ΣK generate the character group of the torus RK/QGm,
hence their restrictions to the subtorus GU(Vi), for any Vi as above, generate
the character group of the latter. We only consider characters of RK/QGm

trivial on the Zariski closure of a sufficiently small congruence subgroup of the
units in K. These are characters of the Serre group, and can be identified with
the formal linear combinations

∑
σ∈ΣK

nσσ with nσ ∈ Z such that nσ + nσc is
independent of σ. For such characters we define

(1.6.4) pK(
∑

σ

nσσ,Σ, Vi) =
∏

σ

pK(σe(i, σ),Σ)nσ

where e(i, σ) = 1 if i ≤ aσ and e(i, σ) = c otherwise. More generally, if κ is a
character of

∏
iGU(Vi)×

∏
iGU(−Vi), written as an n-tuple of pairs of formal

linear combinations
(
∑

σ∈ΣK

ni,σσ,
∑

σ∈ΣK

n−i,σσ)

we define

(1.6.5) pK(κ,Σ, 2V ) =
∏

i

pK(
∑

σ

ni,σσ,Σ, Vi) ·
∏

i

pK(
∑

σ

n−i,σσ,Σ,−Vi).
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Here pK(
∑
σ ni,σσ,Σ,−Vi) is defined as in (1.6.4) but with aσ replaced by n−aσ

The subgroup T = GU⊕i(V,−V )∞ ⊂
∏
iGU(Vi)×

∏
iGU(−Vi) is a maximal

torus in K∞ (maximal compact mod center in G = GU(2V )). The formalism
of CM periods implies that the product on the right in (1.6.5) depends only
on the restriction of the algebraic character κ to the subgroup T . Indeed,
if the restriction of κ to

∏
i U(Vi) ×

∏
i U(−Vi) is trivial, then in particular

ni,σ = ni,σc for all i and all σ. Since ni,σ +ni,σc is independent of σ for each i,
it follows that ni = ni,σ is independent of σ for each i, and one can define n−i
likewise. One then has

pK(
∑

σ

nσσ,Σ, Vi) = pK(
∑

σ

σ,Σ, Vi)
ni = pK(|| • ||, 1)ni = (2πi)−dni

as in [H2,Lemma 1.8.3]. If moreover κ|T ≡ 1, then
∑
i ni + n−i = 0, and so

the product of powers of 2πi is in fact algebraic. Hence the statement of the
following Proposition makes sense:

(1.6.6) Proposition. Let G = GU(2V ). Let κ be a character of the torus
T that extends to a one-dimensional representation of K∞. Let [Wτ ] be the
corresponding automorphic line bundle over KS. Let D ⊂ Sh⊕i(V,−V )(Q)
be a set of points with the following property: the G(Ap

f ) orbit of the image
of D under specialization is Zariski dense in the special fiber of KS. Then
f ∈ H0(KS, [Wτ ])⊗L′ C belongs to H0(KS, [Wτ ])⊗O′ Z̄(p) if and only if, for all
g ∈ G(Ap

f ), the weight κ component fg[κ] of the restriction of the g translate
fg of f to D satisfies

(1.6.7) pK(κ,Σ, 2V )−1fg[κ](x) ∈ Z̄(p)

for all x ∈ D. Here the section fg ∈ H0(KS, [Wτ ]) ⊗L′ C is identified with
a classical automorphic form on X(2V ) × G(Af ) via (1.2.6). The same holds
with C replaced by Cp and Z̄(p) replaced by OCp .

Remark. There is an analogous proposition for [Wτ ] of arbitrary dimension,
but we will not be needing it in the present paper.

Proof. Write H = H0(KS, [Wτ ]), H̄ = H⊗O′
(p)

Q. Our hypothesis on D implies

that D ·G(Ap
f ) is Zariski dense in the generic fiber KSh(G,X). Then (1.6.7),

with Z̄(p) replaced by Q, is a version of Shimura’s criterion for f to belong to

H̄ (cf. ([H1,§5.3], cf. [H3, III, Lemma 3.10.2] for an explicit statement when
K is imaginary quadratic). Then there is a number field L, containing L, such
that f ∈ H ⊗L′ L. Let Hp = H ⊗O′

(p)
OL,(p). Thus Hp is a free OL,(p)-module

of finite rank, and H̄ = Hp ⊗OL,(p) Q.
Let p be a prime of OL,(p), necessarily dividing p, and let ̟ be a uniformizer
of p. Thus for some positive integer m we have ̟mf ∈ Hp. Write F = ̟mf .
Condition (1.6.7) asserts that

(1.6.8) pK(κ,Σ, 2V )−1F g[κ](x) ≡ 0 (mod pm),∀x ∈ D
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The proposition then comes down to showing that any F satisfying (1.6.8)
belongs to pmHp.
Since belonging to pmHp is a local condition on KS×OL,p, we can replace the
latter by an affine open subset U = Spec(A) flat over OL,p, and Hp by a free
A-module Mp; F is an element of Mp. By induction we reduce to the case
m = 1. Let Ū = Spec(A/pA) denote the special fiber of U ; for a geometric
point y of Ū let Iy ⊂ A denote the maximal ideal at y. Condition (1.6.8) is
the condition that F ∈ Iy ·Mp for y in a Zariski dense subset D̄ of Ū ; this
is essentially the obvious p-integal version of the results of [H3, (3.10)]. By
definition, the intersection

⋂
D̄ Iy = p · A. Since Mp is free of finite rank over

the noetherian ring A, the proposition is clear.
A simple continuity argument now provides the proof in the case where Z̄(p) is
replaced by OCp .

2. p-adic automorphic forms on unitary groups

(2.1) The Igusa tower, I: Definitions.

Notation is as in §1. Recall the Qp-rational K ⊗Q Qp-submodule F 0Vp ⊂
Vp, defined in (1.1.6), and the K ⊗Q Q-submodule subspace F 0V ⊂ V ⊗Q Q
introduced at the beginning of (1.3). The flag variety X̂ of K-linear subspaces of
V satisfying (1.3.0) has a natural E(V )-rational structure. Hypothesis (1.1.6)
is equivalent to the condition that the completion E(V )w0

of E(V ) at the
place w0 of E(V ) corresponding to inclp is isomorphic to Qp, and the K-linear

subspace F 0Vp ⊂ Vp is indeed a Qp = E(V )w0
-rational point of X̂.

The skew-hermitian pairing trK/Q < •, • >V,ג on V ⊗Q Qp defines a perfect
duality

(2.1.1) Vp,Σp ⊗ Vp,cΣp → Qp.

This duality identifies

Vw/F
0Vw

∼−→ Hom(F 0Vc·w,Qp)

for any w dividing p. In this way

(2.1.2)
∏

w|p
GL(F 0Vw)

∼−→
∏

w,Σw⊂Σp

GL(F 0Vw)×GL(Vw/F
0Vw),

is naturally isomorphic to the Levi quotient L0 of the parabolic

P 0 =
∏

w,Σw⊂Σp

Stab(F 0Vw).
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Here P 0 is a viewed as a parabolic subgroup of the unitary group G0 rather
than the unitary similitude group G. Bear in mind that the action of L0 on
Vw/F

0Vw is dual to that on F 0Vc·w.
We return to the situation of (1.3.1), and let K = Kp × Kp where Kp =
G0(Zp)×GL(1,Zp) is the hyperspecial maximal compact subgroup of (1.3.4),
viewed as the group of Zp-points of a smooth reductive group scheme K over Zp
with generic fiber G×Q Qp. We assume the subspace F 0Vp and Kp are chosen
compatibly, in the sense that P 0 is the Qp-points of a parabolic subgroup
P0 ⊂ K (parabolic in the subgroup of K corresponding to G0(Zp)), and we can

define L0 to be the Levi quotient of P0 so that L) = (L)0(Qp). Equivalently, Vp
and F 0Vp contain compatible Op-stable lattices M and M0, respectively, with
Kp the stabilizer of M , and the decomposition F 0Vp = ⊕w|pF 0Vw of (1.1.6)

is obtained by extension of scalars from a decomposition M0 = ⊕w|pM0
w; P0

is then the stabilizer in K of M0. Where necessary, we write M = M(V ),
M0 = M(V )0, etc., to emphasize the relation with the hermitian space V
defining the moduli problem.
We write

(2.1.3) M0
Σp = ⊕w,Σw⊂ΣpM

0
w, M

−1
Σp

= ⊕w,Σw⊂ΣpMw/M
0
w

As in the preceding paragraph, the skew-hermitian form trO/Z < •, • >V,ג can
be normalized to define a natural skew-hermitian perfect duality.

(2.1.4) M0 ⊗M/M0 → Zp.

There is also a natural isomorphism

(2.1.5) M0 ∼−→ M0
Σp ⊕Homc(M−1

Σp
,Zp),

where
Homc(M−1

Σp
,Zp) = Op ⊗Op,c Hom(M−1

Σp
,Zp)

i.e. the natural action of Op on Hom(M−1
Σp
,Zp) is composed with complex

conjugation.
Let KpAp = KpApV,ג be the functor

S 7→ {(A, λ, ι, αp)}

where A is now an abelian scheme over S up to prime-to p-isogeny, λ is a po-
larization of degree prime to p, ι : O(p) → EndS(A) ⊗ Z(p) is an embedding

of Z(p)-algebras, and αp : V (Ap
f )

∼−→ V f,p(A) is a prime-to-p O(p)-linear level
structure modulo Kp. The forgetful map KA → KpAp is obviously an isomor-
phism. The functor KpAp is representable over the integer ring Ow0

of E(V )w0

by a scheme we will denote KS, as in (1.4).

(2.1.6) Igusa Schemes
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The following constructions are compatible with change of the level subgroup
Kp, and with passage to the limit over all Kp. Hence we drop the subscript

Kp for the time being. We view Ap as a functor on the category of schemes
over Ow0

. Points of Ap(S) will be denoted A. Define three families of functors
above Ap, indexed by non-negative integers m:

(2.1.6.1) Ig1,m(S) = {(A, jet)}, jet : A[pm] ։ (M/M0)⊗ Z/pmZ.

(2.1.6.2) Ig2,m(S) = {(A, jo)}, A = (A, λ, ι, αp), jo : M0 ⊗ µpm →֒ A[pm].

(2.1.6.3) Ig3,m(S) = {(A, j0, j(−1))},
j0 : M0

Σp ⊗ µpm →֒ A[pm]Σp , j
(−1) : A[pm]Σp ։ M−1

Σp
⊗ Z/pmZ.

In each case A designates a quadruple (A, λ, ι, αp) ∈ Ap(S). The maps j0, jet,
j0, and j(−1) are all assumed O/pmO-linear.

(2.1.6.4) Lemma. The functors Igi,m, i = 1, 2, 3, are all relatively repre-
sentable over Ap, and are canonically isomorphic for allm. These isomorphisms
are compatible with the natural forgetful projection maps Igi,m+1 → Igi,m for
all i; moreover, these projection maps are étale for all m.

Proof. Since the polarization λ is assumed of degree prime to p, we can use it to
identify Â[pm]

∼−→ A[pm]. The isomorphism Ig1,m
∼−→ Ig2,m is then obtained

by combining the duality (2.1.4) with Cartier duality A[pm] × Â[pm] → µpm .
The isomorphism between Ig2,m and Ig3,m is obtained in a similar way from
(2.1.5). Compatibility of these isomorphisms with the forgetful projection maps
is obvious. Finally, the projection Ig1,m+1 → Ig1,m is obviously étale, since it
corresponds to lifting a trivialization of the étale quotient of A[pm] to one of
the étale quotient of A[pm+1].

Since the isomorphisms in (2.1.6) are canonical, we write Igm for Igi,m, i =
1, 2, 3, or Ig(V )m when we need to emphasize V . For any m > 0, the natural
forgetful map Igm → S obviously factors through the inclusion of the ordinary
locus Sord ⊂ S. The limit Ig∞ = lim←−m Igm is an étale Galois covering of Sord

with covering group

L0(Zp) = Aut(M0)
∼−→ Aut(M0

Σp)×Aut(M
−1
Σp

).

Let F denote the algebraic closure of the residue field of Ow0
, and let S̄ =

KS ×Ow0
F denote the geometric special fiber of the moduli scheme KS. Let

S̄ord = Sord ×Spec(Ow0
) S̄ ⊂ S̄ denote the ordinary locus of the special fiber.

The following theorem is a special case of a result of Wedhorn [We]:
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(2.1.7) Theorem. The ordinary locus S̄ord contains an open dense subscheme
of every irreducible component of S̄.

(2.1.8) Modular interpretation of the Igusa tower in the limit

In the limit as m tends to infinity we can reformulate the definition of the Igusa
tower in terms of abelian varieties up to isogeny. We prefer to use the models
Ig3,m. Let T (Gm) = lim←−m µpm denote the Tate module of the multiplicative
group, viewed as a profinite flat group scheme over Spec(Zp). For any vector
space W over Qp we let W (1) = W ⊗Zp T (Gm). Consider the functor on
schemes over Ow0

:
(2.1.8.1)

Ig′3,∞(S) = {(A, j0, j−1)},
j0 : F 0VΣp(1) →֒ Qp ⊗Zp A[p∞]Σp , j

−1 : Qp ⊗Zp A[p∞]Σp ։ V/F 0VΣp .

Here A = (A, λ, ι, αp) as above, but now A is an abelian variety up to isogeny,
and A[p∞] is a p-divisible group up to isogeny, or rather quasi-isogeny (cf. [RZ],
2.8). For fixed m we define Ig′3,m by the same functor as Ig′3,∞ but with j0

and j−1 defined only modulo the principal congruence subgroups modulo pm

of GL(M0
Σp

) and GL(M−1
Σp

), respectively. The usual argument shows that

(2.1.8.2) Lemma. There are canonical isomorphisms Ig′3,m
∼−→ Ig3,m for all

m, compatible with the forgetful maps from level pm+1 to level pm for all m.

In particular, the natural action of L0(Zp) on Ig∞ extends canonically to an
action of L0(Qp).

The final assertion is completely analogous to the existence of an action of
G(Ap

f ) in the inverse limit over Kp.

(2.1.9) Irreducibility of the Igusa tower

We reintroduce the prime-to-p level subgroups Kp, and the level subgroup
K = Kp ×Kp. The fiber over Qp of the ordinary locus KSord coincides with

KS ×Zp Qp = KSh(V )Qp ; here, as above, we identify Qp = E(V )w0
. The

generic fibers KpIgm,Qp can be identified with Shimura varieties attached to

appropriate level subgroups, as follows. Let U ⊂ P0 denote the unipotent
radical. For any non-negative integer m, let K(U,m)p ⊂ Kp denote the inverse
image of U(Zp/pmZp)×GL(1,Zp) under the natural map Kp → K(Zp/pmZp).
Let K(U,m) = K(U,m)p ×Kp. The variety K(U,m)Sh, as m tends to infinity,
parametrizes quadruples (A, λ, ι, α) where α = (αp,m, α

p) with αp as above and

α0
p,m : M/pmM

∼−→ A[pm] (mod K(U,m))

is an O/pmO-linear injection that identifies the given skew-symmetric pairing
on M/pmM with the Weil pairing on A[pm]. This comes down to an inclusion
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of (M/pmM)K(U,m) = M0/pmM0 in A[pm]Σp and a Cartier dual surjection of

A[pm]Σp onto M−1/pmM−1. It follows that there are natural isomorphisms

(2.1.9.1) KpIgm,Qp
∼−→ K(U,m)Sh

compatible with the forgetful maps from level m+ 1 to level m.
Over C, the connected components of K(U,m)Sh(G,X) are in bijection with the
class group C(m) = C(K(U,m)), as at the end of (1.2). Consider the normal-

ization K̂S of KS in K(U,m)Sh(G,X). This is an Ov-model of K(U,m)Sh(G,X),

though not a very good one. However the non-singular locus (̂̄S
o

is étale over

K S̄
ord, and KpIgm is naturally isomorphic to an open subscheme of (̂̄S)o. In

particular, there is a map cm :Kp Igm → C(m), which can be given a modular
interpretation as in (1.2). A special case of Corollary 8.17 of [Hi04], (cf. also
[Hi05, §10]) is that

(2.1.10) Theorem. ([Hida]) The fibers of cm are geometrically irreducible for
all m.

This is proved in [loc. cit.] under a hypothesis labeled (ord), which is equivalent
to our hypothesis (1.1.2). Lemma 8.10 of [loc. cit.] makes this explicit, but
only for imaginary quadratic K.

(2.1.11) Inclusion of Igusa towers for Sh(V,−V ) in Sh(2V )

Applying the previous discussion to the hermitian space 2V , we identify
Ig(2V )m = Ig(2V )2,m with the moduli space of quintuples

{B = (B,µ, ι2, β
p), jo2V : M(2V )0 ⊗ µpm →֒ B[pm]).

Now M(2V )0 is a lattice in the K ⊗Q Qp-submodule F 0(2V )p of (2V )p, which
we can choose arbitrarily as long as we respect Hypothesis (1.1.6). For example,
we can choose

(2.1.11.1) F 0(2V )p = F 0Vp ⊕ F 0(−V )p

where F 0(−V )p ⊂ (−V )p is any K ⊗Q Qp-submodule satisfying (1.1.6), which
for −V amounts to the condition that dimF 0(−V )w = n − aσ = acσ for any
σ ∈ Σw. As K ⊗Q Qp-module −V is isomorphic to V , and it is particularly
convenient to choose F 0(−V )p ⊂ (−V )p = Vp to be a subspace mapping iso-
morphically to Vp/F

0Vp under the projection, or equivalently such that (2.1.1)
restricts to a duality between F 0(−V )w and F 0Vcw for any w dividing p.
We define Ig(V,−V )m ⊂ Ig(V )m×Ig(−V )m as Sh(V,−V ) in (1.3) as the sub-
variety with compatible polarizations. Then, ignoring prime-to p level struc-
tures, the reduction modulo p of the natural morphism Sh(V,−V ) ⊂ Sh(2V )
defines a family of morphisms Ig(V,−V )m → Ig(2V )m whose image, in the
version Ig2,m, is the moduli space of quintuples as above where

(B,µ, ι2, β)
∼−→ (A×A−, λ× λ−, ι× ι−, α× α−)
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as in §1.4 and where

(2.1.11.2) jo2V = joV ×jo−V : M(V )0⊗µpm×M(−V )0⊗µpm →֒ A[pm]×A−[pm].

We make this more explicit. Fix w dividing p, let (a, b) = (aw, bw), and
choose bases (e1, . . . , en) and (f1, . . . , fn) for Vw and (−V )w, respectively, with
e1, . . . ea a basis for F 0Vw, f1, . . . fb a basis for F 0(−Vw). We regard the natural
identification of Vw with (−V )w as an isomorphism between the two halves of
2V , in such a way that ei is taken to fb+i for 1 ≤ i ≤ a and ea+j is taken to fj
for 1 ≤ j ≤ b. The 2n× 2n-matrix γ1 = γ1;a,b:

(2.1.11.3) γ1 = γ1;a,b =



Ia 0 0 0
0 0 0 Ib
0 0 Ia 0
0 Ib 0 0


 ,

in the basis (e1, . . . , en, f1, . . . fn) of 2Vw, takes the subspace Vw ⊂ 2Vw to the
subspace F 0(2V )w defined by (2.1.11.1).

(2.2) The Igusa tower, II: p-adic modular forms.

We now recall Hida’s generalization of the Deligne-Katz construction of p-adic
modular forms, for the Shimura varieties Sh(G,X). In the present article we
will only need p-adic modular forms in order to define a good notion of p-
integrality for certain holomorphic Eisenstein series ramified at p, but later we
will use them to construct p-adic L-functions and establish their boundedness .
So for the moment we let (G,X) = (GU(V ),X(V )) or (GU(V,−V ),X(V,−V )).
We work with a smooth, projective, toroidal compactification K S̃ of KS. The
construction of such compactifications in this setting is due to Fujiwara. The
choice of K S̃ is not canonical. However, the universal abelian scheme KA over

KS extends to a semi-abelian scheme over K S̃ . Hence ω, and therefore each
ρτ , also extends.
Let v be the prime of K determined by inclp. We begin by choosing a lifting
of K S̄

ord to an Ov-flat open subscheme of K S̃ . (This is possible since under
(1.1.2) E(V )w0

= Qp so our schemes are all defined over Ov.) More precisely,

K S̄
ord is defined by the non-vanishing of the Hasse invariant H, which can be

regarded as a section of a certain automorphic line bundle [L] over S̄. The line
bundle L is known to be ample, hence for some power κ >> 0 the section Hκ

lifts to a section H̃ ∈ Γ(KS, [L]κ). We let KSord ⊂ KS be the open subscheme

defined by non-vanishing of H̃. This is slightly abusive, since it depends on the
choice of lifting H̃, but different choices yield isomorphic theories. For all this,
see [Hi05, p. 213 ff.] or [SU].
We let W be a finite flat Ov algebra, Wr = W/prW , and let Sm = KSord ⊗Ov
Wr. The Sr form a sequence of flat Wr schemes, with given isomorphisms

Sr+1 ⊗Wr+1
Wr

∼−→ Sr.
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For m ≥ 1, let Pm = A[pm]et = A[pm]/A[pm]0 over K S̄
ord, the quotient of

the K S̄
ord group scheme of pm-division points of A by its maximal connected

subgroup scheme. This is a free étale sheaf in Ov/pmOv-modules over K S̄
ord,

hence lifts canonically, together with its Ov-action, to an étale sheaf over Sr for
all r. Following [Hi04], we define Tr,m to be the lifting to Sr of the correspond-
ing principal GL(n,O/pmO)-bundle (resp.., GL(n,O/pmO)×GL(n,O/pmO)-
bundle) Igm(V ) = Ig1,m (resp., Igm(V,−V )), defined by (2.1.6.1) (resp., as in
(2.1.11)); note that our indices are not the same as Hida’s. Let

Vr,m = Γ(Tr,m,OTr,m); Vr,∞ = lim−→
m
Vr,m; V∞,∞ = lim←−

r
Vr,∞

Note that these carry actions of GL(n,Op) or of GL(n,Op) × GL(n,O), de-
pending on whether G = GU(V ) or GU(V,−V ). Let U be the upper-triangular
unipotent radical of GL(n,Op) or GL(n,Op)×GL(n,Op), depending. We then
define our space of p-adic modular forms to be

V := VU∞,∞.

We will adopt the convention of adding a superscript V or V,−V when it is
necessary to distinguish the groups in question. Hence, VV is the ring of p-adic
modular forms for GU(V ).
It is clear that the construction of the spaces of p-adic modular forms for
GU(V,−V ) and GU(2V ) can be done compatibly, at least when the var-
ious prime-to-p level structures are compatible (i.e., there are morphisms

KSh(V,−V )→ K′Sh(2V )). This gives rise to a restriction map

rV : V2V → V(V,−V ).

The primary goal of this section is to explain why this is a good definition and
how it naturally contains all p-adic sections of [Wτ ] for all τ , and, in the case
G = GU(2V ), is contained in the power series ring R[[qΛ

∗∩c∗ ]] of (1.5.3) for an
appropriate R. For n > 1, the sections of [Wτ ] are vector-valued functions. To
compare them for different τ , we follow Hida and trivialize the [Wτ ], using the
modular definition of Tr,m, and then apply the theorem of the highest weight
in integral form. The discussion below follows [Hi04,8.1], to which we refer for
missing details.
Let ωr,m denote the pullback of ω to Tr,m. By Cartier duality, the universal
surjection (2.1.6.1), with S = T1,m, is equivalent to an isomorphism of group
schemes

(2.2.1) d−1 ⊗ (µpm)n
∼−→ Â[pm]0.

Here d−1 is the different of K over Q, µpm is the kernel of multiplication by pm

in the multiplicative group scheme, Â is the abelian scheme dual to A, and the
superscript 0 denotes the maximal connected subgroup scheme. Since (2.2.1)
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is Cartier dual to an isomorphism of étale group schemes induced by (2.1.6.1),
it lifts canonically to Tr,m. Since there are canonical isomorphisms

ωr,m
∼−→ Lie(Â)⊗Wr

∼−→ Lie(Â[pm]0)⊗Wr

we can identify

(2.2.2) ωr,m
∼−→ d−1 ⊗ Lie(µpm)n ⊗Wr

∼−→ d−1 ⊗OnTr,m .

as Op ⊗Zp Wr modules.

Since K is unramified at p, d−1 is prime to p, and (2.2.2) reduces to a family
of Op ⊗Zp Wr isomorphisms

(2.2.3) ωr,m
∼−→ O ⊗Zp OnTr,m ,

compatible as m and r vary. Note that in (2.2.1), (2.2.2), and (2.2.3) the n
should be replaced by a 2n if G = GU(V,−V ).
Suppose that G = GU(V ). Now we apply the highest weight formalism as
in [Hi05]. Let G1 = ResOp/ZpGL(n), let B1 be the upper-triangular Borel
of G1, U1 its unipotent radical, and T1 the torus of diagonal elements. Let
H = G1/U1. Then (2.2.3) yields a family of isomorphisms

(2.2.4) G1/Tr,m
∼−→ GLO(ωr,m)

and

(2.2.5) HTr,m
∼−→ Yr,m

def
= GLO(ωr,m)/Ucan

where Ucan is the Tr,m-unipotent group scheme corresponding to U1 under
(2.2.4). The isomorphisms (2.2.5) are compatible with the natural G1 × T1

actions on the two sides (G1 acting on the left and T1 on the right) and patch
together as r and m vary. Not that for any character κ of T1, taking κ-
equivariant sections (indicated by [κ]) of OYr,m makes sense.
Continuing as in [Hi05, §7], and writing Y = Yr,m, pY : Y → Tr,m the natural
map, note that pY,∗(OY [κ]) inherits an action of G1(Zp), covering the trivial
action on Tr,m, because pY is a fibration in G1(Z/pmZ)-homogeneous spaces.
On the other hand, Tr,m is a G1(Z/pmZ)-torsor over Sr. We let δm denote the
diagonal action of G1(Z/pmZ) on pY,∗(OY [κ]) over Sr. Over Sr

(2.2.6) ρκ = pY,∗(OY [κ])/δm(G1(Z/pmZ)),

From the isomorphism (2.2.5) one obtains an isomorphism

φm : H0(Sm, ρκ)
∼−→ {f ∈MorVm,m(G1/Vm,m ,Ga/Vm,m) | f(hgut) = κ(t)h · f(g),

h ∈ G1(Zp), u ∈ U1, t ∈ T1}.
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These isomorphisms are clearly compatible with varying m. Composing with
the evaluation at the identity map yields a map

βκ : H0(Sm, ρκ)→ VU1
m,m.

Because of the compatibilities as m varies, this also makes sense for m = ∞,
in which case we have an injection

(2.2.7) βκ : H0(S∞, ρκ) → V = VU1
∞,∞.

The image of βκ is naturally contained in V[κ].
From (2.2.7) we obtain an injection
(2.2.8)
Ig : H0(K(U,∞)Sh(V ), [Wτ ])⊗QCp = H0(K(U,∞)Sh(V ), ρτ )⊗QCp → V⊗OvCp.

This is defined by restricting a section of H0(K(U,∞)Sh(V ), ρτ ) to a formal

neighborhood of the Igusa tower in the special fibre of the normalization K̂S of

KS in KSh(V ).
When G = GU(V,−V ) the same arguments apply, but in the definition of G1,
GL(n) is replaced by GL(n)×GL(n), and in (2.2.4) GLO(ωr,m) is replaced by

the subgroup preserving the splitting of Lie(Â) coming from the splitting of A.
In particular, when the prime-to-p levels are compatible, there is a commutative
diagram
(2.2.9)

H0(K(U,∞)Sh(2V ), [Wτ ])⊗Q Cp
res′−−−−→ H0(K(U,∞)Sh(V,−V ), [Wτ ])⊗Q Cp

Ig2V

y IgV,−V

y

V2V ⊗Ov Cp
rV−−−−→ VV,−V ⊗Ov Cp

where res′ is the map coming from the inclusion of Igusa towers as in (2.1.11).

(2.3) p-adic modular forms and the q-expansion principle.

Now we return to the situation of (1.5), with the Shimura datum
(GU(2V ),X(2V )). We write Sh(LP ) instead of Sh(LP ,XP ). For sim-
plicity, we again restrict attention to one-dimensional [Wτ ]. Then the Fourier
expansion of (1.5.6.8), applied to

H0(K(U,∞)Sh(2V ), [Wτ ]) := lim−→
m
H0(K(U,m)Sh(2V ), [Wτ ]),

takes values in

⊕̂

β∈U∗
H0(KP (∞)Sh(LP ), [WτP ]) :=

⊕̂

β∈U∗
lim−→
m
H0(KLP (m)Sh(LP ), [WτP ]).
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These can be translated into locally constant functions on LP (Af ) as in the
discussion following (1.5.6.5), and as indicated there, it suffices to consider
values on LP (Ap

f ). In [Hi04, 8.3.2], Hida explains how to fill in the lower
horizontal arrow in the following commutative diagram:

(2.3.1)

H0(K(U,∞)Sh(2V ), [Wτ ])⊗Q Cp
F.J.P−−−−→

⊕̂

β∈U∗
H0(KP (∞)Sh(LP ), [WτP ])⊗Q Cp

Ig

y =

y

V ⊗Ov Cp
(F.J.P )Cp−−−−−−→

⊕̂

β∈U∗
H0(KP (∞)SP , [WτP ])⊗Ov Cp

More precisely, and more usefully, Hida explains how to construct an integral
map

(2.3.2) V F.J.P−−−→
⊕̂

β∈U∗
H0(KP (∞)SP ,OSP )

which yields the bottom line of (2.3.1) upon tensoring with Cp.6

Now we can state

Theorem 2.3.3 (q-expansion principle, [Hi04]).
(a) The map F.J.P of (2.3.2) is injective and its cokernel has no p-torsion.

(b) Let f ∈ H0(K(U,∞)Sh(2V ), [Wτ ]) and suppose f is defined over Q, viewed

as a subfield of C or of Cp. Then the expansions F.J.P (f), defined via (2.3.2)
or (1.5.6.8), coincide, and the following are equivalent:

(i) Ig(f) ∈ H0(S∞, ρκ)⊗OCp

(ii) F.J.P (f) has coefficients in OCp .

Here, as in (1.5), the coefficients of F.J.P (f) can be viewed as functions on
LP (Af ), and to test their integrality it suffices to consider their values on
LP (Af ).

When n = 1 and E = Q, this theorem, or rather the corrected version of
this theorem incorporating a growth condition at the cusps, is essentially due
to Katz; for general E, still with n = 1, it is due to Ribet. The principal
ingredient in the proof is the irreducibility theorem 2.1.10.

(2.4) The case of definite groups.

We end our discussion of p-adic modular forms with a naive description when
V is definite. The comparison of this naive description, which is useful, for

6Actually Hida only considered the case of level prime to p; the general case is treated in
[SU].
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calculations, and the geometric description of the previous section is made in
(2.4.7). We will need it to understand how the restriction of a p-adic modular
form on U(2V ) to U(V,−V ) can be described in the naive sense.
Throughout this section we assume that < •, • >σ is positive definite for all
σ ∈ Σ (so aσ = n for all σ).

(2.4.1) Spaces of forms and rational structures.

For applications to definite unitary groups, we can avoid similitude factors, so
for the moment we let G denote U(V ) or U(−V ) (since these are canonically
identified, the distinction is made primarily for ease of subsequent notation).
In what follows, we consider only compact subgroups K ⊂ G(Af ) of the form
K =

∏
vKv, the product being over finite places of Q, with Kv a subgroup of

Gv. We fix a rational prime p such that all places of E dividing p split in K
and let Kp = K ∩G(Af,p) ∼=

∏
v 6=pKv.

Let ρ be a complex algebraic character of G. Via the fixed isomorphism Cp ∼= C
we view ρ as an algebraic character over Cp. Then ρ has a model over some
finite extension F of Qp. We fix such an F . For each finite place v of Q let
sv : Kv → GL(Lv) be a finite-dimensional F -representation of Kv factoring
through a finite quotient of Kv and such that sv and Lv are trivial for almost
all v and for v = p. Let s = ⊗v,F sv and L = ⊗v,FLv. The product G∞ ×K
acts on C⊗F L via ρ⊗ s.
For a finite set S of places of Q and a finite-dimensional complex vector space
H let C∞(G(AS),H) denote the space of functions from G(AS) to Wσ(C)
that are smooth as functions of the infinite component of G(AS) and locally
constant as functions of the finite component. If S contains ∞, G′ ⊂ G(AS) is
an open subgroup, and M is any set, then we write C∞(G′,M) for the set of
locally constant functions from G′ to M .
Let

A0(G,K, ρ, s) =

= {f ∈ C∞(G(A),C⊗F L)) | f(γg · g∞k) = (ρ⊗ s)(g∞ × k)−1f(g)},

where γ ∈ G(Q), g ∈ G(A), g∞ ∈ G∞, and k ∈ K. For any F -algebra R let

Af (G,K, ρ, s)(R) =

= {f ∈ C∞(G(Af ), R⊗F L) | f(γ · gk) = (ρ⊗ s)(γ × k−1)f(g)},

where γ ∈ G(Q), g ∈ G(Af ), and k ∈ K. Note that there is a canonical
isomorphism

(2.4.1.1) Af (G,K, ρ, s)(R) = Af (G,K, ρ, s)(F )⊗F R.

Restriction to G(Af ) defines a natural isomorphism

(2.4.1.2) res : A0(G,K, ρ, s)
∼−→ Af (G,K, ρ, s)(C),
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and hence, by (2.4.1.1), Af (G,K, ρ, s)(F ) defines an F -structure on
A0(G,K, ρ, s).
When ρ or s is the trivial one-dimensional representation, we drop it from our
notation.

(2.4.2) Integral structures.

Let R be a commutative ring. For any R[K]-module M let

A(G,K,M) =

= {f ∈ C∞(G(Af ),M) | f(γgk) = k−1 · f(g), γ ∈ G(Q), k ∈ K}.

If K ′ ⊆ K is an open subgroup then A(G,K,M) ⊆ A(G,K ′,M) and there
is a trace map trK′,K : A(G,K ′,M) → A(G,K,M) defined by trK′,Kf(x) =∑
y∈K/K′ yf(xy). These maps are clearly functorial in M and R and they

satisfy

(2.4.2.1) trK′′,K = trK′,K ◦ trK′′,K′ , K ′′ ⊆ K ′ ⊆ K.

Let A be the ring of integers of F . We choose a Kv-stable A-lattice Λsv

in each Lv and let Λs = ⊗v,AΛsv . Clearly A(G,K,Λs) is an A-lattice in
Af (G,K, s)(F ).
Let ΓK = G(Q) ∩Kp. For χ an R×-valued character of ΓK and M an R[K]-
module let

Af (G,K,χ,M) = {f ∈ C∞(G(Af,p)×Kp,M |
f(γgk) = χ(γ−1) · k−1f(g), γ ∈ ΓK , k ∈ K}.

Weak approximation shows that restriction to G(Af,p)×Kp yields an isomor-
phism

(2.4.2.2) A(G,K,M)
∼−→ Af (G,K,1,M).

Similarly, when R is an F -algebra, restriction to G(Af,p) ×Kp yields an iso-
morphism

(2.4.2.3) Af (G,K, ρ, s)(R)
∼−→ Af (G,K, ρ,L⊗F R).

It follows from (2.4.2.3) that to define an A-lattice in Af (G,K, ρ, s)(F ) it suf-
fices to define an A-lattice in L. In particular, Af (G,K, ρ,Λs) defines an A-
lattice in Af (G,K, ρ, s).
For K ′ ⊆ K we define a trace map trK′,K : Af (G,K ′, χ,M)→ Af (G,K,χ,M)
just as we did above. These maps also satisfy (2.4.2.1) and are functorial in
M , and R and agree with our previous definitions via (2.4.2.2) when χ = 1.

(2.4.3) p-adic forms
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For a topological space X and a group G′ = H × H ′ with H ⊆ G(Qp) and
H ′ ⊆ G(Af,p) open sets, we write Cp(G′,X) for the space of maps from G′ to
X that are continuous on H (for the p-adic topology) and locally constant on
H ′.
Let G1 denote the group scheme ROE,p/ZpGL(n) over Zp and fix an identi-
fication of G with G1 over Qp. Let B ⊆ G1 be its upper-triangular Borel.
Let P ⊇ B be a standard parabolic of G1. Let L be its standard Levi sub-
group and UP its unipotent radical. Upon fixing an identification OE,p =∏
w|pOE,w we have G1(Zp) =

∏
w|p GL(n,OE,w), P (Zp) =

∏
w|p Pw(OE,w)

where Pw ⊆ GL(n) is a standard parabolic corresponding to a partition
pw : n = n1,w + · · · + nlw,w of n, and L(Zp) =

∏
w|p Lw where Lw is the

set of block diagonal matrices diag(A1, ..., Alw) with Ai ∈ GL(ni,w,OE,w). Let
L1 ⊆ L(Zp) be the subgroup

∏
w|p Lw,1 where Lw,1 is the subgroup defined by

det(Ai) = 1. Let P1 = L1UP (Zp). For m ≥ 0 let UP,m = {x ∈ G1(Zp) | x
mod pm ∈ (P1 mod pm)}. So ∩UP,m = P1. Let IP,m = {x ∈ G1(Zp) | x
mod pm ∈ P (Zp/pm)}.
Assume that K = G1(Zp)×Kp. Let KP,m = UP,m×Kp and let KP = P1×Kp.
Then ∩KP,m = KP . Let R be a p-adic ring and M any finite R-module that
is also an R[K]-module on which Kp acts trivially. Let

Ap(G,KP ,M)={f ∈ Cp(G(Af ),M) | f(γgk) = k−1 ·f(g), γ ∈ G(Q), k ∈ KP }.

Since M/prM is discrete, the canonical projections M ։ M/prM together
with (2.4.2.2) induce a canonical isomorphism

(2.4.3.1) Ap(G,KP ,M)
∼−→ lim←−

r
lim−→
m
Af (G,KP,m,M/prM).

Let A and Λs be as in (2.4.2) and take R = A. Then Λs provides an important
example of an M as above. We call Ap(G,KP ,Λs) the space of (Λs-valued)
p-adic modular forms on G relative to P (and K). When P is understood then
we just call this the space of p-adic modular forms.

(2.4.4) Characters

The group L(Zp) normalizes each KP,m, m > 0, and so acts on Ap(G,KP ,M)
via right translation, determining an action of

ZP = L(Zp)/L1 = P (Zp)/P1
∼−→ lim←−

m
IP,m/UP,m.

For any R×-valued character χ of ZP we define Ap(G,KP ,M)[χ] to be the
submodule on which ZP acts via χ. Note that

(2.4.4.1) ZP
∼−→

∏

w|p
(O×E,w)lw , diag(A1, ..., Alw )) 7→ (det(A1), ...,det(Alw).
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By an arithmetic character of Z(Zp) we will mean a character χ such that
χ = χ0ρ with χ0 a finite-order character and ρ arising from the restriction of
an algebraic character of G as in (2.4.1). For an arithmetic character χ let mχ

be the smallest integer such that χ0 is trivial on IP,mχ/UP,mχ . For m ≥ mχ

we can extend χ to a character of IP,m by setting χ(x) = χ(z) where z ∈ Zp
is such that z has the same image as x in IP,m/UP,m. We also extend χ to a
character of the center of L(Qp) as follows. We fix a uniformizer ξw of OE,w
for each w|p. Then we put

χ(diag(ξr1w 1n1,w
, ...., ξ

rlw
w 1nlw,w)) = ρ(diag(ξr1w 1n1,w

, ...., ξ
rlw
w 1nlw,w)).

Since any element of the center of L(Qp) can be uniquely written as a product
of a diagonal element as above and an element in L(Zp) this is enough to define
the desired extension.
For any R×-valued arithmetic character χ = χ0ρ of ZP we have injective maps

(2.4.4.2)
rχ : Af (G,K0

P,m, χ,M) →֒ Ap(G,KP ,M)[χ], m ≥ mχ,

rχ(f)(g) = χ(xp)f(x),
g = γx, γ ∈ G(Q), x ∈ G(Af,p)× IP,m,

where K0
P,m = Kp× IP,m. A product decomposition of g as in (2.4.4.2) always

exists by weak approximation.
An important observation is that the rχ’s induce an isomorphism

(2.4.4.3) lim−→
m≥n
Af (G,K0

P,m, χ,M/prM)
∼−→ Ap(G,KP ,M/prM)[χ].

For the surjectivity we note that for any f ∈ Ap(G,KP ,M/prM)[χ] if m is
sufficiently large then f belongs to A(G,KP,m,M/pr). For g ∈ G(Af,p) ×
IP,m let sχ(f)(g) = χ(g−1

p )f(g). Then sχ(f) ∈ Af (G,K0
P,m, χ,M/pr) and

rχ(sχ(f)) = f .

(2.4.5) Hecke actions.

Let K be an open compact subgroup of G(Af ). Suppose H ⊆ G(A) is a
subgroup containing K and M is a Z[K]-module on which Kv acts trivially for
all v not in some finite set ΣM . For an open subgroup K ′ ⊆ K let C(H,K ′,M)
be the space of functions f : H →M such that f(gk) = k−1f(g) for all k ∈ K ′.
Then for any g ∈ H ∩ G(Af ) such that gv = 1 if v ∈ ΣM and any two
open subgroups K ′,K ′′ ⊆ K, the double coset K ′gK ′′ determines a map from
C(H,K ′,M) to C(H,K ′′,M) by

(2.4.5.1) [K ′gK ′′]f(x) =
∑

i

f(xg−1
i ), K ′gK ′′ = ⊔K ′gi.

This map is obviously functorial in M . It is easy to see that from (2.4.5.1)
we get actions of double cosets on the various modules of functions defined
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in the preceding sections; one need only observe that these actions preserve
the requisite topological properties. These actions are compatible with all the
various comparisons and isomorphisms described so far.
One important observation is that if g is such that the KP,mgKP,m have the
same left-coset representatives for all m, then from (2.4.3.1) we get an action
of T (g) = lim−→m[KP,mgKP,m] on Ap(G,KP ,M). If we further assume that gp
is in the center of L(Qp), then T (g) commutes with the action of P (Zp) and
hence stabilizes each Ap(G,KP ,M)[χ], χ a character of ZP .
Let CP ⊂ G1(Qp) be those elements g in the center of L(Qp) such that

(2.4.5.2) g−1UP (Zp)g ⊆ UP (Zp).

For such g we also have
(2.4.5.3)

IP,mgIP,m = ⊔IP,mgui and UP,mgUP,m = ⊔UP,mgui, ui ∈ UP (Zp).

Also, for g, g′ ∈ CP ,

(2.4.5.4)
IP,mgIP,m · IP,mg′IP,m = IP,mgg

′IP,m
UP,mgUP,m · UP,mg′UP,m = UP,mgg

′UP,m
,

where the multiplications are the usual double-coset multiplications.
Let M1 = ROE,p/ZpMn×n. Suppose Kp ⊆ G1(Zp) and let ∆K be the semigroup

in M1(Qp) generated by Kp and those g such that g−1 ∈ CP . Let M be an
A[K]-module for which there exists a finite set of places ΣM , p 6∈ ΣM , such
that Kv acts trivially on M if v 6∈ ΣM . Let g ∈ G(Af ) be such that gv = 1 for
all v ∈ ΣM , gp ∈ CP , and suppose that

(2.4.5.5) KgK = ⊔Kgi, g−1
i,p ∈ ∆K .

Under this assumption we define an action of KgK on Af (G,K,χ,M) by

(2.4.5.6)
(KgK)f(x) =

∑
i χ(γi)f(xi),

γi ∈ G(Q), γixg
−1
i = xi ∈ G(Af,p)×Kp;

the assumption (2.4.5.5) ensures that γ−1
i ∈ ∆K .

Let χ be an A×-valued arithmetic character of ZP . If gp ∈ CP and gv = 1
for v ∈ ΣM then (2.4.5.3) implies that (2.4.5.5) holds with K replaced by

K0
P,m for any m ≥ mχ. In particular, (2.4.5.6) defines an action of T̃ (g) =

(K0
P,mgK

0
P,m) on Af (G,K

0
P,m, χ,M), m ≥ mχ, which is multiplicative in such

g by (2.4.5.4). Moreover, viewing Af (G,K0
P,m, χ,Λs) as an A-submodule of

Af (G,KP,m, ρ, σ)(F ) we find that

(2.4.5.6) T̃ (g) = χ−1(gp)[KP,mgKP,m].
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Additionally, it is clear from the definitions that

(2.4.5.7) rχ ◦ T̃ (g) = T (g) ◦ rχ,

where rχ is as in (2.4.4.2).

(2.4.6) Pairings.

For K ⊆ G(Af ) an open compact subgroup, let

KS(G) = G(Q)\G(Af )/K.

This is a finite set. Let R be a commutative ring and let M,M ′ be R[K]-
modules on which Kp acts trivially. Suppose (•, •) : M ×M ′ → R is a K-
equivariant R-pairing. Given an R×-valued character χ of ΓK we define an
R-pairing

< •, • >K : Af (G,K,χ,M)×Af (G,K,χ−1,M ′)→ R,

(2.4.6.1) < f, g >K=
∑

[x]∈KS(G)

(f(x), g(x)), x ∈ G(Af,p)×Kp.

These pairings (integration with respect to the measure dµK(g) of (0.2.4)) are
clearly functorial in R,M,M ′. The following lemma records some basic but
important properties of these pairings. For simplicity we will assume that

(2.4.6.2) γxk = x, γ ∈ G(Q), x ∈ G(Af ), k ∈ K =⇒ k = 1.

This holds for sufficiently small K.

(2.4.6.3) Lemma. Assume (2.4.6.2).

(i) If (•, •) is a perfect pairing, then so is < •, • >K .
(ii) Let K ′ ⊆ K be an open subgroup. Then

(2.4.6.4)
< f, trK′,K(h) >K=< f, h >K′ ,

f ∈ Af (G,K,χ,M), h ∈ Af (G,K ′, χ−1,M ′).

(iii) Suppose there exists a finite set of places ΣM such that Kv acts trivially
onM if v 6∈ ΣM . LetK ′,K ′′ ⊆ K be open subgroups and let g ∈ G(Af )
be such that gp = 1 and gv = 1 for all v ∈ ΣM . Then

(2.4.6.5)
< [K ′′gK ′]f, h >K′=< f, [K ′g−1K ′′]h >K′′ ,

f ∈ Af (G,K ′′, χ,M), h ∈ Af (G,K ′, χ−1,M ′).
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Part (i) holds because Af (G,K,χ,M) is spanned by the functions δx,m, x ∈
G(Af,p)×Kp, m ∈M , defined by

δx,m(y) =

{
χ(γ−1) · k−1m y = γxk, γ ∈ ΓK , k ∈ K,

0 otherwise.

The assumption (2.4.6.2) ensures that these functions are well-defined. Part (ii)
is also clear from (2.4.6.2). Part (iii) follows from part (ii) and the observation
that

[K ′′gK ′](f(x)) = trK′∩g−1K′′g,K′(f(xg−1)).

For our purposes, the most important situation to which we will apply Lemma
(2.4.6.3) is when R is the integer ring of some finite extension of F , χ comes
from an arithmetic character of ZP , and M = Λs ⊗A R. In this case we let
M ′ = HomA(Λs, R), the latter being an R[K]-module with the usual action,
and let (•, •) be the canonical pairing between M and M ′. Let

(2.4.6.6) < •, • >m,χ,σ=< •, • >K0
P,m

, m ≥ mχ,

where the right-hand side is defined by (2.4.6.1) with our current choices of
M,M ′, etc. Assuming that (2.4.6.2) holds for K0

P,m, then all the conclusions

of Lemma (2.4.6.3) hold for < •, • >m,χ,σ.

(2.4.7) Comparison with the geometric picture.

Previously, we defined spaces of p-adic modular form for GU(V ) from a geomet-
ric perspective. We now compare these to the spaces in (2.4.3). For simplicity

we will assume that the similitude character maps K onto Ẑ×.

In the definite situation the geometric constructions of (2.2) are simple. The
varieties K(U,m)Sh(V ) clearly all have models over Ov; the base change to

Ov/pr is just Tr,m. From this it is easily deduced that VUr,mΓ(Tr,m,OTr,m) is
naturally identified with the set of Ov/pr-valued functions on K(U,m)Sh(V ) and
so, under our hypotheses on K, with Af (G,K(U,m),Ov/pm) (in particular,
these identifications are compatible with varying r and m. Thus we have that

(2.4.7.1) V = lim←−
r

lim−→
m
VUr,m = lim←−

r
lim−→
m
Af (G,K(U,m),Ov/pm).

Then (2.4.3.1) identifies V with Ap(G,KB ,Ov). The spaces of p-adic modular
forms for other parabolics are obtained by taking UP -invariants.

The restriction on K can be dropped; then V is identified with a direct sum of
copies of Ap(G,KB ,Ov).
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3. Fourier coefficients of Siegel
Eisenstein series on unitary groups

(3.0) Conventions for automorphic forms on unitary groups.
We let ΣE denote the set of archimedean places of E. Let W be any hermitian
space over K of dimension n, and define −W and 2W = W ⊕ (−W ) as in §1.
Set

W d = {(v, v) | v ∈W}, Wd = {(v,−v) | v ∈W}
These are totally isotropic subspaces of 2W . Let P be the stablizer of W d in
U(2W ). As a Levi component of P we take the subgroup M ⊂ U(2W ) which
is stablizer of both W d and Wd. Then M ≃ GL(W d). We let U denote the
unipotent radical of P .
The decomposition 2W = W d ⊕ Wd is a complete polarization. Choose a
basis (u1, . . . , um) for W , so that (ui, ui) is a basis for W d. Let (−vj , vj),
j = 1, . . . ,m, be the dual basis of Wd. For any A ∈ GL(n)K, we define

m(A) to be the element of U(2W ) with matrix

(
A 0
0 tĀ−1

)
in the basis

{(ui, ui)}∪{(−vj , vj)}, where Ā is the image of A under the non-trivial Galois
automorphism of K/E. We will let

w =

(
0 1n
−1n 0

)

in the same basis; then P\PwP is the big cell in the Bruhat decomposition of
P\U(2W ).
All automorphic forms will be assumed K∞-finite, where K∞ will be a max-
imal compact modulo center subgroup of either U(2W )(R) or U(W )(R), as
appropriate. Conventions are as in §1.5; in particular K∞ will be associated to
a CM point, except where otherwise indicated.
We let GU(2W ) be the group of rational similitudes, as in §1. Let GP ⊂
GU(2W ) denote the stabilizer of W d, and let GM be the normalizer of M in

GP . We can identify GM
∼−→ M × Gm where M acts as GL(W d) and Gm

acts via the center of GL(Wd). Here and below Gm designates Gm,Q. In other
words, writing GP in standard form:

(3.0.1) GP = {
(
A B
0 D

)
}

with D = d · tc(A)−1 for some scalar d, we can identify the factor Gm ⊂ GM
with the group of matrices

(3.0.2) {d(t) =

(
1n 0
0 t1n

)
} ⊂ GU(2W ).

Let v be any place of E, | · |v the corresponding absolute value on Qv, and let

(3.0.3) δv(p) = |NK/E ◦ det(A(p))|
n
2
v |ν(p)|−

1
2n

2

, p ∈ GP (Ev).
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This is the local modulus character of GP (Ev). The adelic modulus character
of GP (A), defined analogously, is denoted δA. Let χ be a Hecke character of

K. We view χ as a character of M(AE)
∼−→ GL(W d) via composition with

det. For any complex number s, define

δ0P,A(p, χ, s) = χ(det(A(p))) · |NK/E ◦ det(A(p))|sv|ν(p)|−ns

δA(p, χ, s) = δA(p)δ0P,A(p, χ, s) =

= χ(det(A(p))) · |NK/E ◦ det(A(p))|
n
2 +s
v |ν(p)|− 1

2n
2−ns.

The local characters δP,v(·, χ, s) and δ0P,v(·, χ, s) are defined analogously. The

restrictions to M of the characters δP,v, δ
0
P,v, and so on are denoted by the

same notation.
As in (2.2), the symmetric domain X(2W ) is isomorphic to the Xd

n,n of tube

domains. Let τ0 ∈ X(2W ) be a fixed point of K∞, X+ the connected compo-
nent of X(2W ) containing τ0, GU(n, n)+ ⊂ GU(2W )(R) the stabilizer of X+.

Thus X+ ∼−→ ∏
σ∈ΣE

X+
n,n;σ with X+

n,n;σ the symmetric space associated to

U(n, n) = U(Eσ). Let GK∞ ⊂ GU(n, n)+ be the stabilizer of τ0; thus GK∞
contains K∞ as well as the center of GU(n, n).
In the tube domain realization, the canonical holomorphic automorphy factor
associated to GP and GK∞ is given as follows. Let τ = (τσ)σ∈ΣE ∈ X+ and

h =

((
Aσ Bσ
Cσ Dσ

))

σ∈ΣE

∈ GU(n, n)+. Then the triple

(3.0.4) J(h, τ) = (Cστσ +Dσ)σ∈ΣE , J
′(h, τ) = (C̄tστσ + D̄σ)σ∈ΣE , ν(h)

defines a canonical automorphy factor with values in (GL(n,C)×GL(n,C))d×
GL(1,R) (note the misprint in [H3, 3.3]). Write J(h) = J(h, τ0) = (Jσ(h))σ∈ΣE

and define J ′(h) and J ′σ(h) analogously. Given a pair of integers (µ, κ), we
define a complex valued function on GU(n, n)+:

(3.0.5) Jµ,κ((hσ)σ∈ΣE ) =
∏

σ∈ΣE

det Jσ(h)
−µ · det(J ′σ(h))

−µ−κ · ν(h)n(µ+κ)

For purposes of calculation, we let τ0 = (σ(ג))σ∈Σ, where ג is the trace zero
element of K chosen in (1.4). We also write σג = σ(ג). Then the stabilizer
GK∞ is rational over the reflex field E(GU(2W ),X(2W )) = E(K,Σ), and the
map h 7→ J(h) is a rational function on the algebraic group GU(2W ) with
values in GK∞, rational over E(K,Σ).

(3.1) The Siegel Eisenstein series and doubling.

In this section we let G denote U(W ), H = U(2W ), viewed alternatively as
groups over E or, by restriction of scalars, as groups over Q. Identifying G
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with U(−W ), we obtain a natural embedding G×G ⊂ H. We choose maximal
compact subgroups K∞,G =

∏
v∈ΣE

Kv,G ⊂ G(R) and K∞ =
∏
v∈ΣE

Kv ⊂
H(R) – as at the end of the previous subsection – such that

K∞ ∩ (G×G)(R) = K∞,G ×K∞,G.

We will be more precise about these choices in (4.3).

(3.1.1) Formulas for the Eisenstein series

Let χ be a unitary Hecke character of K. We view χ as a character of
M(AE)

∼−→ GL(W d) via composition with det. Consider the induced rep-
resentation

(3.1.1.1) I(χ, s) = Ind(χ| · |sK)
∼−→ ⊗v Iv(χv| · |sv),

the induction being normalized; the local factors Iv, as v runs over places of
E, are likewise defined by normalized induction. At archimedean places we
assume our sections to be K∞-finite. For a section f(h;χ, s) ∈ I(χ, s) (cf. [H4,
I.1]) we form the Eisenstein series

(3.1.1.2) Ef (h;χ, s) =
∑

γ∈P (k)\U(2V )(k)

f(γh;χ, s)

This series is convergent for Re(s) > n/2, and it can be continued to a mero-
morphic function on the entire plane. We now fix an integer m ≥ n and assume

(3.1.1.3) χ|A = εmK

Then the main result of [T] states that the possible poles of Ef (g;χ, s) are all
simple, and can only occur at the points in the set

(3.1.1.4)
n− δ − 2r

2
, r = 0, . . . , [

n− δ − 1

2
],

where δ = 0 if m is even and δ = 1 if m is odd.

(3.1.2) The standard L-function via doubling. Let (π,Hπ) be a cuspidal auto-
morphic representation of G, (π∨,Hπ∨) its contragredient, which we assume
given with compatible isomorphisms of G(A)-modules

(3.1.2.1) π
∼−→ ⊗v πv, π∨ ∼−→ ⊗v π∨v .

The tensor products in (3.1.2.1) are taken over places v of the totally real field
E, and at archimedean places πv is a admissible (gv,Kv,G)-module, which we
assume to be of cohomological type, with lowest Kv,G-type (cf., e.g., [L1]) τv.
For each v we let (•, •)πv denote the canonical bilinear pairing πv ⊗ π∨v → C.
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Let f(h;χ, s) be a section, as above, ϕ ∈ Hπ, ϕ
′ ∈ Hπ̌, and let ϕ′χ(g) =

ϕ′(g)χ−1(det g′). We define the zeta integral:
(3.1.2.2)

Z(s, ϕ, ϕ′, f, χ) =

∫

G×G)(Q)\(G×G)(A)

Ef ((g, g
′);χ, s)ϕ(g)ϕ′χ(g′)dgdg′.

The Haar measures dg = dg′ on G(A) are normalized as in (0.2.2). The relation
to the integral in terms of Tamagawa measure is determined by (0.2.3).
The theory of this function, due to Piatetski-Shapiro and Rallis [PSR], was
worked out (for trivial χ) by Li [L2] and more generally in [HKS,§6]. We make
the following hypotheses:
(3.1.2.4) Hypotheses

(a) There is a finite set of finite places Sf of E such that, for any non-
archimedean v /∈ Sf , the representations πv, the characters χv, and the
fields Kw, for w dividing v, are all unramified;

(b) The section f admits a factorization f = ⊗vfv with respect to (3.1.1.1).
(c) The functions ϕ, ϕ′ admit factorizations ϕ = ϕSf ⊗ ⊗v/∈Sfϕv, ϕ′ =

ϕSf ⊗⊗v/∈Sfϕ′v, with respect to (3.1.2.1)
(d) For v /∈ Sf non-archimedean, the local vectors fv, ϕv, and ϕ′v, are the

normalized spherical vectors in their respective representations, with
(ϕv, ϕ

′
v)πv = 1.

(e) For v archimedean, the vector ϕv (resp. ϕ′v) is a non-zero highest (resp.
lowest) weight vector in τv (resp. in τ∨v ), such that (ϕv, ϕ

′
v)πv = 1.

We let S = ΣE ∪ Sf . Define

(3.1.2.5) dn(s, χ) =

n−1∏

r=0

L(2s+ n− r, εn−1+r
K ) =

∏

v

dn,v(s, χ),

the Euler product on the right being taken only over finite places;

(3.1.2.6) Q0
W (ϕ,ϕ′) =

∫

G(Q)\G(A)

ϕ(g)ϕ′(g)dg;

(3.1.2.7) ZS(s, ϕ, ϕ′, f, χ) =

∫
Q
v∈S G(Ev)

fv((gv, 1);χ, s)(πv(gv)ϕ,ϕ
′)dgv;

Z̃S(s, ϕ, ϕ′, f, χ) =
∏

v∈S
[dn,v(s, χ)]ZS(s, ϕ, ϕ′, f, χ).

The integral in (3.1.2.7) converges absolutely in a right halfplane and admits
a meromorphic continuation to all s.7 We have the following identity of mero-
morphic functions on C:

7For non-archimedean places this is worked out in detail in [HKS]. There is no published
reference for unitary groups at archimedean places in general. Shimura [S97] calculates
the archimedean integrals explicitly for holomorphic automorphic forms of scalar weight. For
general π∞ meromorphic continuation is established by Kudla and Rallis [KR] for symplectic

groups by reduction to principal series. The same technique applies to unitary groups, bearing
in mind that not all unitary groups are quasi-split. For the special values we have in mind
we appeal to the explicit calculations of Garrett [G].
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(3.1.2.8) Basic Identity of Piatetski-Shapiro and Rallis.

dn(s, χ)Z(s, ϕ, ϕ′, f, χ) = Z̃S(s, ϕ, ϕ′, f, χ)LS(s+
1

2
, π, χ, St).

Here LS(s+ 1
2 , π, χ, St) =

∏
v/∈S Lv(s+

1
2 , πv, χv, St), where Lv(s+

1
2 , πv, χv, St)

is the local Langlands Euler factor attached to the unramified representations
πv and χv and the standard representation of the L-group of G×RK/QGm,K.8

For any place v /∈ S, there is a formal (unramified) base change from πv to a

representation BC(πv) of G(K ⊗E Ev) ∼−→ GL(m,K ⊗E Ev), and

Lv(s, πv, χv, St) = L(s,BC(πv)⊗ χv ◦ det),

where the right-hand term is the standard Godement-Jacquet Euler factor (cf.
[H4,I.1] for a further discussion).
If we assume ϕSf and ϕ′Sf to be factorizable over the v ∈ Sf , with respect to

the isomorphisms (3.1.2.1), then the integral ZS also breaks up as a product of
local integrals multiplied by the factor Q0

W , as in [H3,H4], as well as [PSR,Li92].
To treat congruences it seems preferable not to impose factorizability at this
stage. However, under special hypotheses on the local data we can obtain
a factorization, as follows. Write Gv = G(Ev), and let Kv ⊂ G(Ev) be a
compact open subgroup fixing ϕ. The natural map G×G → P\H defines an
isomorphism between G× 1 and the open G×G orbit in the flag variety P\H
[PSR, p. 4]. In particular, P · (G× 1) is open in H and P ∩ (G× 1) = {1}. It
follows that, if Y is any locally constant compactly supported function on Gv,
there is a unique section fY (h, χ, s) ∈ Iv(χv, s) such that fY ((g, 1), χ, s) = Y (g)
for all g ∈ Gv, s ∈ C. Let fKv (h, χ, s) = fY (Kv)(h, χ, s), where Y (Kv) is the
characteristic function of the open compact subgroup Kv chosen above. With
this choice, we have

(3.1.2.9)

∫

Gv

fKv ((gv, 1);χ, s)(πv(gv)ϕ,ϕ
′)dgv = vol(Kv)

for any s. If we choose fv = fKv for all v ∈ Sf , the basic identity becomes

dn(s, χ)Z(s, ϕ, ϕ′, f, χ) =

= dn,S(s, χ) · vol(KSf )Z∞(s, ϕ, ϕ′, f, χ)LS(s+
1

2
, π, χ, St),

where dn,S(s, χ) =
∏
v∈Sf [dn,v(s, χ)], KSf =

∏
Kv, and

(3.1.2.10) Z∞(s, ϕ, ϕ′, f, χ) =

∫
Q
v∈ΣE

G(Ev)

fv((gv, 1);χ, s)(πv(gv)ϕ,ϕ
′)dgv.

8As in the previous footnote, there is no published reference for the meromorphic continua-
tion and functional equation of standard L-functions of unitary groups, although the results

of Kudla and Rallis for symplectic groups adapt to the case of unitary groups. In the applica-
tions we will restrict attention to π admitting base change to automorphic representations of
GL(n,K), which immediately implies the analytic continuation of the standard L-functions.
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The integrals in (3.1.2.10) are purely local in the following sense. For any
archimedean place v we can define a local analogue of (3.1.2.7) by

(3.1.2.11) Zv(s, ϕv, fv, χv) =

∫

G(Ev)

fv((gv, 1);χv, s)πv(gv)ϕvdgv.

This is a function of s with values in the K∞,v-finite vectors of πv, absolutely
convergent and holomorphic in a right half-plane, and admitting a meromorphic
continuation to C (see note 5). Let τ+

v ⊂ τv denote the line spanned by
the highest weight vector ϕv, let p+

v : πv → τ+
v denote orthogonal projection.

Define the meromorphic function Zv(s, fv, χv) by

p+
v (Zv(s, ϕv, fv, χv)) = Zv(s, fv, χv) · ϕv.

This is well-defined, because τ+
v is a line, and does not depend on the choice

of ϕv because both sides are linear functions of ϕv. Let Z∞(s, f, χ) =∏
v∈ΣE

Zv(s, fv, χv) It then follows that

(3.1.2.12) Z∞(s, ϕ, ϕ′, f, χ) = Z∞(s, f, χ)Q0
W (ϕ,ϕ′),

hence that

(3.1.2.13) dn(s, χ)Z(s, ϕ, ϕ′, f, χ)

= dm,S(s, χ) · vol(KSf )Z∞(s, f, χ)LS(s+
1

2
, π, χ, St)Q0

W (ϕ,ϕ′)

We note the following consequence of the basic identity in the form (3.1.2.13).
Let Kf = KSf × KS , where KS =

∏
w/∈S Kw is a product of hyperspecial

maximal compact subgroups fixing ϕ and ϕ′.

(3.1.2.14) Hypothesis. We assume f , s = s0, and χ can be chosen so that

dn,S(s0, χ)Z∞(s0, f, χ) 6= 0.

Thus we are staying away from poles of the local Euler factors in dn,S(s, χ))
and the global Euler products dn(s, χ) and LS(s+ 1

2 , π, χ, St) have neither zeros
nor poles at s = s0. This hypothesis is easy to verify in practice, e.g. in the
situation of [H3]; the only subtle point is the non-vanishing of Z∞(s0, f, χ) when
φv is holomorphic and the Eisenstein series defined by fv is nearly holomorphic,
and in this case the non-vanishing follows from the arguments of Garrett [G].
Let A0(π, S), resp. A0(π

∨, S) denote the space spanned by Kf -invariant cusp
forms on G, that generate irreducible automorphic representations whose v-
component is isomorphic to πv (resp. to π∨v ) for all v /∈ Sf , and belonging to
the highest weight subspace τ+

v of τv (resp. to the lowest weight subspace of τ∨v
for all v ∈ ΣE . Then (3.1.2.12) asserts that the bilinear forms Z(s0, ϕ, ϕ

′, f, χ)
and Q0

W on A0(π, S) are proportional. (If π occurs with multiplicity one in
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A0(G), then this is automatic.) This simplifies the arguments of §3 of [H3],
proving, when E = Q, that critical values of L(s, π, χ, St) are K-multiples of
a basic period equal to an elementary expression multiplied by a square norm
of the form Q0

W (ϕ,ϕ′), where ϕ and ϕ′ are arithmetic holomorphic modular
forms of the given type.9 In particular, this gives a somewhat more natural
proof of Corollary 3.5.12 of [H3], to the effect that, under the hypotheses of
loc. cit. (existence of sufficiently many critical values) Q0

W (ϕ,ϕ′) depends up
to arithmetic factors only on the abstract representation πS .

(3.1.2.15) Remark. Local Euler factors Lv(s, πv, χv, St) are defined in [HKS]
for all finite places, by the method of Piatetski-Shapiro and Rallis. It should
not be difficult to prove by global methods that these factors coincide with
L(s,BC(πv)⊗ χv ◦ det), at least when πv is a local component of an automor-
phic cuspidal representation for a definite unitary group. A complete proof
would require local functional equations at archimedean primes. When n = 2
the unitary group can be compared simply to the multiplicative group of a
quaternion algebra, and the result can be proved easily in that case directly.

(3.1.3) Eisenstein series and zeta integrals on similitude groups.

We now return to the situation of (3.1). Let GH = GU(2W ), and consider the
subgroup GU(W,−W ) = G(U(W )× U(−W ) ⊂ GH. The induced representa-
tion I(χ, s) and the Eisenstein series Ef ((g, g

′);χ, s) can be extended in various
ways to automorphic forms on GH. Let GP ⊂ GH denote the Siegel parabolic
defined in (3.2.5). Global characters of GM = M×Gm are given by pairs (χ, υ)
where χ is a Hecke character of Mab = RK/QGm,Q, lifted to a character of M

by composition with the determinant, and υ is a Hecke character of A×/Q×.
Let

(3.1.3.1) I(χ, υ, s) = IndGHGP ((χ| · |sK) ◦ det ·υ ◦ ν).

For any section f(h;χ, υ, s) ∈ I(χ, υ, s) we form the Eisenstein series
Ef (h, χ, υ, s) by the analogue of the formula (3.1.1.2). The character υ fac-
tors through a character of GH and does not affect convergence.

Let π, π′ be automorphic representations of GU(W ), with central characters
ξ, ξ′, respectively. Let ϕ ∈ π, ϕ′ ∈ π′, and consider ϕ ⊗ ϕ′ by restriction as
an automorphic form on GU(W,−W ). Let Z be the identity component of the
center of GU(W,−W ), which we may also view as a central subgroup of GH,
or (via projection) as a central subgroup of GU(W ). We assume

(3.1.3.2) ξ · ξ′ · ξχ,υ = 1;

9In [H3] only values of s in the absolutely convergent range are considered, but the argument
remains valid in general under hypothesis (3.1.2.14). See [H5] for a more extended discussion
of this point.
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here ξχ,υ is the central character of I(χ, υ, s). We can then define the zeta
integral

(3.1.3.3) Z(s, ϕ, ϕ′, f, χ, υ) =
∫

Z(A)GU(W,−W ))(Q)\(GU(W,−W )(A)

Ef ((g, g
′);χ, s)ϕ(g)ϕ′χ(g′)dgdg′.

The basic identity (3.1.2.8) then takes the following form (cf. [H3,(3.2.4)]):
(3.1.3.4)

dn(s, χ)Z(s, ϕ, ϕ′, f, χ, υ) = QW (ϕ,ϕ′)Z̃S(s, ϕ, ϕ′, f, χ)LS(s+
1

2
, π, χ, St).

where

(3.1.3.5) QW (ϕ,ϕ′) =

∫

Z(A)GU(W )(Q)\GU(W )(A)

ϕ(g)ϕ′(g)ξ−1
χ,υdg

and the remaining terms are as in (3.1.2). The period QW (ϕ,ϕ′) is slightly
more natural from the standpoint of Shimura varieties.

(3.1.4) Holomorphic Eisenstein series.

Fix (µ, κ) as in (3.0.1). Define

χ∗ = χ · |NK/E |
κ
2 .

Suppose the character χ has the property that

(3.1.4.1) χ∗σ(z) = zκ, χ∗cσ(z) = 1 ∀σ ∈ ΣE

Then the function Jµ,κ, defined in (3.0.5), belongs to

(3.1.4.2) In(µ−
n

2
, χ∗)∞ = In(µ+

κ− n
2

, χ)∞ ⊗ |ν|
nκ
2∞

(cf. [H3,(3.3.1)]). More generally, define

(3.1.4.3) Jµ,κ(h, s+ µ− n

2
) = Jµ,κ(h)|det(J(h) · J ′(h))|−s ∈ In(s, χ∗)∞

When E = Q, these formulas just reduce to the formulas in [H3].
Let f∞(h, χ, s) = Jµ,κ(h, s+µ−n2 ), and suppose the Eisenstein series Ef (h;χ, s)
is holomorphic at s = 0. The local section J(µ, κ) is a holomorphic vector in
the corresponding induced representation, and in what follows we will extend
it to a global section f so that Ef (h;χ, 0) is a holomorphic automorphic form.
This is always the case if χ/|χ| is a character of U(1) and if f is a Siegel-Weil
section, as we will be assuming in later articles. It is also the case for the
specific sections f considered in (3.2) and (3.3), where holomorphy is verified
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by explicit calculation of Fourier coefficients (see especially (3.3.3.2), (3.2.2.3),
and (3.3.4.8)). As in [H3, (3.3.4)] we can identify Ef (h;χ, 0) with an element
of H0(Sh(2W ), Eµ,κ) where Eµ,κ is the automorphic vector bundle defined in
[H3,(3.3)]. The identification is as in (1.3.6) and depends on a choice of canon-
ical trivialization of the fiber of Eµ,κ at τ0.
The center of symmetry s = 1

2 for L(s, π, χ, St) in the unitary normalization
corresponds via (3.1.2.8) to a zeta integral with the Eisenstein series at s =
s0 = 0. Since χ is by (3.1.1.3) a unitary character, this corresponds in turn to
the relation to s0 = µ+ κ−n

2 = 0. More generally, the value of the motivically
normalized L-function

Lmot(s, π, χ∗, St) def= L(s− n− κ− 1

2
, π, χ, St)

at s = s0 + n−κ
2 corresponds as above to the Eisenstein series at s0 = µ+ κ−n

2 ),
i.e. at s = µ, as in [H3] (where µ was called m). It follows from (3.1.4.1) that
we can choose m in (3.1.1.3) so that

(3.1.4.4) m = n+ 2s0 = 2µ+ κ;

the assumption m ≥ n translates to s0 ≥ 0, so the Eisenstein series is always
to the right of the center of symmetry.

(3.2) Fourier coefficients of Eisenstein series:
General considerations.

(3.2.1) Notation and preliminaries.

We let V , 2V = V ⊕−V , and H = U(2V ) be as in (3.1) with n = dimV . Let
ג be as in (1.4). We fix an orthogonal basis u1, · · · , un of V , and set

(3.2.1.1) ej = (uj , uj), fj = δj · (−uj , uj)

where

(3.2.1.2) δj =
1

2 ג < uj , uj >V

With respect to this basis, the matrix of the skew-hermitian form <,>2V,ג is
given by (

0 1n
−1n 0

)

Let g ∈ GL(V ). When no confusion is possible, we use the same letter g to
denote the n× n matrix (gij) given by

g(ui) =

n∑

j=1

gjiuj

Documenta Mathematica · Extra Volume Coates (2006) 393–464



444 Michael Harris, Jian-Shu Li, Christopher M. Skinner

Write δ = diag(δ1, · · · , δn). Then g ∈ U(V ) if and only if tḡδ−1g = δ−1, or
equivalently gδtḡ = δ. With respect to the basis {ei, fj}, the matrix corre-
sponding to (g, 1) ∈ U(V )× U(V ) ⊆ U(2V ) is

(3.2.1.3) (g, 1) =

(
1
2 (1n + g) 1

2 (1n − g)δ
1
2δ
−1(1n − g) 1

2δ
−1(1n + g)δ

)

We let

w′ = diag(−1V , 1V ) =

(
−1n 0
0 1n

)
with respect to 2V = V ⊕−V

Then with respect to the basis ei, fj we have

(3.2.1.4) w′ =

(
δ 0
0 tδ̄−1

)
· w = m(δ) · w, w =

(
0 1n
−1n 0

)
,

This amounts to taking g = −1n in (3.2.1.3). In other words, the coset P ·
(−1n, 1n) ⊂ P ·G× {1} belongs to the big cell PwP , and indeed

(3.2.1.5) P · (−1n, 1n) = Pw · 1

More generally, for any positive integer r ≤ n let Vr be the subspace of V
spanned by u1, · · · , ur. Let V ⊥r be the othogonal complement of Vr in V . We
define

(3.2.1.6) w′r = diag(−1Vr , 1V ⊥r , 1Vr , 1V ⊥r ) ∈ U(2V )

Then w′ = w′n. With respect to the basis ei, fj we have

(3.2.1.7) w′r =



rδ 0 0 0
0 1n−r 0 0
0 0 t

r δ̄
−1 0

0 0 0 1n−r


 · wr,

with rδ = diag(δ1, · · · , δr), where

(3.2.1.8) wr =




0 0 1r 0
0 1n−r 0 0
−1r 0 0 0
0 0 0 1n−r


 .

By means of the basis {ei, fj} we identify elements of H as 2n× 2n matrices.
Then if v is any finite place of E we define H(Ov) to be the subgroup of H(Ev)
consisting of matrices whose entries are in OK ⊗Ov. Let B be the stablizer of
the flag

[e1] ⊂ [e1, e2] ⊂ · · · ⊂ [e1, · · · , en]
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where [e1, · · · , er] denotes the linear span of e1, · · · , er. Then B is a Borel
subgroup, and we have the Iwasawa decomposition H(Ev) = B(Ev)H(Ov).
In what follows we fix a non-trivial character ψ =

∏
ψv of A/E, as follows.

Let e0 =
∏

e0
p be the unique character of AQ/Q such that

e0
∞(x) = e2πix (x ∈ R),

and that e0
p has conductor Zp for every finite p. Let e =

∏
ev be the character

of A/E defined by

(3.2.1.9) e(x) = e0(TrE/Q(x)) (x ∈ A)

Alternatively, we may characterize e as the unique character of A/E such that
for every archimedean place v we have

ev(x) = e2π
√−1x (x ∈ Ev = R).

An arbitrary character of A/E is given by x 7→ e(ax), with a some element of E.
We let ψ be one such character with a ∈ E totally positive, fixed henceforward.
We can and will always assume a to be a unit at all primes dividing p. Thus

(3.2.1.10) ψ(x) = e(ax) = e0(TrE/Q(ax)) (x ∈ A)

In paricular, for every archimedean place v we have

ψv(x) = e2πa
√−1x (x ∈ Ev = R).

(3.2.2) Formulas for Fourier coefficients.

We start with a general Siegel Eisenstein series F = Ef (h, χ, s) with f ∈ I(χ, s).
Here we have written Ef instead of Ef , in order to leave space for a subscript
to denote Fourier coefficients. Let Hern be the space of all n × n hermitian
matrices. For β ∈ Hern(E) we define the character ψβ of U(Q)\U(A) by

ψβ(n(b)) = ψ(tr(βb))

Note that we have tr(ββ′) ∈ E for any β, β′ ∈ Hern(E).
We now fix a Haar measure dx on U(A) ≃ Hern(A) as follows. First we
take counting measure on the discrete subgroup Hern(E) ⊆ Hern(A). We
choose dx, so that the quotient mesaure on U(E)\U(A) = Hern(E)\Hern(A)
is normalized, with total volume 1. Consider the lattice Λ ⊆ Hern(E) consisting
of all hermitian matrices with entries in OK. We shall also need the dual lattice
Λ∗, defined by

Λ∗ = {β ∈ Hern(E) | tr(βξ) ∈ OE ∀ ξ ∈ Λ}
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For each finite place v of E we set

Λv = Hern(Ov) = Λ⊗Ov,

Define Λ∗v similarly. Then Λv = Λ∗v unless v ramifies in K. Let dxv be the Haar
measure of Hern(Ev) normalized by

∫
Λv
dxv = 1. For any archimedean place v

we set

dxv = |
n∧

j=1

dxjj
∧

j<k

(2−1dxjk ∧ dx̄jk)|

where xjk is the (j, k)-entry of xv. There is a constant c(n,E,K) so that

dx = c(n,E,K) ·
∏

v

dxv.

Since Hern(A) is the product of n copies of A and n(n − 1)/2 copies of AK,
we obtain (say from [Tate])

(3.2.2.1) c(n,E,K) = 2n(n−1)[E:Q]/2|δ(E)|−n/2|δ(K)|−n(n−1)/4,

where δ(E) and δ(K) are the discriminants of E and K. This is the same as
[S97], p. 153.
For β ∈ Hern(E) we define the β-th Fourier coefficient

Fβ(h) =

∫

U(Q)\U(A)

F (uh)ψ−β(u)du

as in (1.5.6).
We now assume that f is factorizable, and write f = ⊗fv. If β has full rank n
then a familiar calculation gives
(3.2.2.2)

Efβ (h, χ, s) = c(n,E,K)·
∏

v

∫

U(Ev)

fv(wnvhv, χv, s)ψ−β(nv)dnv, (detβ 6= 0)

the product being over all places of E. Here w is the Weyl group element given
by (3.2.1.4).
Remark 3.2.2.3. Suppose that for at least one place v the function fv(•, χv, s)
is supported on the big cell P (Ev)wP (Ev). Then (3.2.2.2) is valid for h ∈ P (A)
and any β. Indeed for h ∈ P (A) we have

f(γh, χ, s) 6= 0=⇒γ ∈ P (E)wP (E) = P (E)wU(E)

So that
Ef (h, χ, s) =

∑

δ∈U(E)

f(wδh, χ, s)

and (3.2.2.1) follows immediately for any β, not necessarily of full rank.
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Write

(3.2.2.4) Wβ,v(hv, fv, s) =

∫

U(Ev)

fv(wnvhv, χv, s)ψ−β(nv)dnv.

This function satisfy a transformation law as follows. Suppose

m = m(A) =

(
A 0
0 tĀ−1

)
∈M(Ev)

Then

(3.2.2.5)
Wβ,v(mhv, fv, s) = |N ◦ detA|n/2−sv χv(detA) ·WtĀβA,v(hv, fv, s)

= |N ◦ detA|
n−κ

2 −s
v χ∗v(detA) ·WtĀβA,v(hv, fv, s)

where N = NK/E .
We now recall a calculation of Shimura. In what follows, a is the totally positive
element of E, prime to p, fixed in (3.2.1.10).

(3.2.2.6) Lemma. ([S97], 19.2) Suppose β is of full rank n. Let v be a finite
place of E. Let fv(•, χv, s) be the unique section which is invariant under
H(Ov), and such that fv(1, χv, s) = 1. Let m = m(A) ∈ M(Ev). Then
Wβ,v(m, fv, s) = 0 unless tĀβA ∈ a−1D(E/Q)−1

v Λ∗v, where D(E/Q)v is the
different of Ev relative to Qp (p being the rational prime lying below v). In
this case, one has

Wβ,v(m, fv, s) =

= |N ◦ detA|n/2−sv χv(detA)gβ,m,v(χ(̟v)q
−2s−n
v ) ·

n∏

j=1

Lv(2s+ j, χεn−jK/E)−1.

Here Lv(•, •) is the local abelian L-factor at v, with χ viewed as a character
for A×E by restriction, and gβ,m,v is a polynomial with constant term 1 and
coefficients in Z. Let D(E/Q)v = δvOv for some δv ∈ Ev. If v is unramified in
K, and

det(aδv
tĀβA) ∈ O×v ,

then gβ,m,v(t) ≡ 1.

Example. Let n = 1. Then β ∈ E×v and A is a scalar. Let r ≥ 0 be the
integer determined by

|aδvĀAβ|v = q−rv

Then

gβ,m,v(t) =
(1− t)[1− (qt)r+1]

1− qt
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(3.2.2.7) Corollary. For any finite place v we let Tv be the characteristic
function of D(E/Q)−1

v Λ∗v. Suppose that β ∈ Hern(E) is of full rank n. Let
S be a finite set of places including all the archimedean ones and all places
ramified in K, and large enough so that the conditions of Lemma 3.2.2.6 are
satisfied at any place v 6∈ S. Let m = m(A) ∈M(A). Then

(3.2.2.8) Efβ (m,χ, s) = c(n,E,K) · |detA|n−sK χ(detA) ·(
∏

v∈S
WtĀβA,v(1, fv, s))

·
∏

v/∈S
[Tv(a

tĀβA)gβ,m,v(χ(̟v)q
−2s−n
v )] ·

n∏

j=1

LS(2s+ j, χεn−jK/E)−1

Here LS(•, •) is the partial L-function, with χ viewed as a character for A×E
by restriction.

(3.2.2.9) Remarks.

(i) In the subsequent sections we will always assume S contains all primes
of residue characteristic p. Suppose this is the case and v /∈ S. Then the
local factor Tv(a

tĀβA)gβ,m,v(χ(̟v)q
−2s0−n
v ) is p-adically integral for

any half-integer s0. In particular, the p-adic denominators of the Fourier

coefficients Efβ (m,χ, s0), normalized by the product of the partial L-
functions, are determined by the local factors at v ∈ S and by the global
factors.

(ii) Let β ∈ Hern(E) be of full rank n. We say β is S-primitive if det(aβ) ∈
O×v for all v /∈ S. The condition depends implicitly on a. Since S
contains the ramified primes, the local different factors can be ignored.
It follows from (3.2.2.7) that for S-primitive β, the product of local
coefficients satisfies

n∏

j=1

LS(2s0 + j, χεn−jK/E) ·
∏

v/∈S
Wβ,v(1, fv, s0) = 1

and in particular is a p-adic unit.
(iii) On the other hand, the factors gβ,m,v(χ(̟v)q

−2s−n
v ) are p-units at half-

integer values of s, provided v is prime to p. Our local data at primes
v dividing p will guarantee the vanishing of coefficients Wβ,v unless
det(aδv

tĀβA) ∈ O×v , and we will only evaluate the coefficients at points
m = m(A) with Av ∈ GL(n,Ov)). Thus we will always have the local
factors gβ,m,v(t) ≡ 1 for v dividing p, and the product

(3.2.2.10) T 0(β,m(A), s) =
∏

v/∈S
[Tv(a

tĀβA)gβ,m,v(χ(̟v)q
−2s−n
v )]

will always be a p-adic unit when s ∈ 1
2Z.

(iv) In other words, the p-adic behavior of the Eisenstein series is completely

determined by the global normalizing factor
∏n
j=1 L

S(2s+ j, χεn−jK/E)−1

and by the local factors at v ∈ S. Calculation of the local factors will
occupy most of the rest of this section.
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(3.3) Local coefficients of holomorphic Eisenstein series.

In this section we consider a finite set S of places as in (3.2.2.7), containing all
archimedean places, all places ramified in K/E, all places dividing p, and all
places at which the character χv is ramified. We also include in S a collection
of finite places where, to guarantee non-vanishing of local zeta integrals for
ramified πv, fv cannot be the unramified vector funrv ∈ I(χ, s), i.e., the vector
invariant under H(Ov). At the archimedean places we will take specific local
data. Otherwise the data will vary according to circumstances to be defined
later. The resulting calculation (3.3.1.5, 3.3.2.1) of the local Fourier coefficients
at ramified finite primes is less precise than at unramified places.
We treat non-split places, split places, and archimedean places separately.

(3.3.1) Finite non-split places.

Let v be a finite place in S. Suppose first that v does not split in K. We let
w be the unique place of K dividing v. We define a special section in I(χv, s)
as follows. Let uv be a Schwartz function on Hern(Ev). Define a section

fv(h;χv, s)
def
= fuv (h;χv, s) ∈ I(χv, s) by the condition that it is supported in

the big cell P (Ev)wP (Ev), and

(3.3.1.2) fv(wn(b);χv, s) = uv(b) (b ∈ Hern(Ev))

It is easy to see that Wβ,v(1, fv, s) = ûv(β). Together with the transformation
law (3.2.2.5), we find that

(3.3.1.3) Wβ,v(m(A)f̃v, s) = |detA|n/2−sv χv(detA) · ûv(tĀβA)

We now choose a lattice Lv ⊂ Hern(Ev), and make the following assumption:

(3.3.1.4) Hypothesis. uv is the characteristic function of Lv.

Let L∨v be the dual lattice defined by

L∨v = {β |ψ(trβx) = 1 for all x ∈ Lv}

Then we have

(3.3.1.5) Wβ,v(m(A), fuv , s) = Tv(
tĀβA)|detA|n/2−sv χv(detA) · vol(Lv),

(3.3.2)Finite split places.

Next we consider the case where v is finite and splits in K, of residue character-
istic different from p. Let uv be a Schwartz function on Hern(Ev) ≃Mn,n(Ev)
(n× n matrices with entries in Ev). Then there is a section fuv (h;χv, s) such
that fv(•;χv, 0) has support in P (Ev)wP (Ev), and fv(wn(b);χv, 0) = uv(b).
Formula (3.3.1.3) remains valid for all β. If uv is chosen as in (3.3.1.4), then
we write fLv instead of fuv . In what follows, A ∈ GL(n,Kv) can be written as
a pair (Av,Bv) with Av,Bv ∈ GL(n,Ev), and |det(A)|v = |det(Av ·B−1

v )|v,
with conventions as in (3.3.4) below.
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(3.3.2.1) Lemma. With fv = fLv , formula (3.3.1.5) is valid for all β.

At split places other choices might be more convenient. For example, let Uv ⊂
GL(n,Ev) be a compact open subgroup and τv a finite-dimensional irreducible
representation of Uv. Let uv be a matrix coefficient of τv, viewed as a function
on Uv ⊂ GL(n,Ev) and extended by zero to M(n,Ev). Then uv takes values in
the integers of some cyclotomic field. It then follows immediately from (3.3.1.3)
that:

(3.3.2.2) Lemma. The functions ûv and Wβ,v(m(A), fv, 0) are locally con-
stant, compactly supported, not identically zero, and takes values in Qab with
denominators bounded p-adically independently of τv.

Indeed, the integral defining ûv is a finite sum of terms, each of which is an
algebraic integer multiplied by a volume. The volume lies in Q and the denom-
inators are bounded in terms of the orders of finite subgroups of GL(n,Ev),
independently of τv. The remaining factors in (3.3.1.5) are p-units.

(3.3.2.3) Remark 3.3.2.3 Alternatively, we can let uv be a matrix valued
function, namely the function τv, with values in End(τv), extended to zero off
Kv. The Eisenstein series and its Fourier coefficients will then have values in
End(τv). This will allow us to pair the Eisenstein series with forms taking
values in the space of τv and its dual. The local zeta integral will be essentially
a volume.

(3.3.3) Archimedean places.

Let v ∈ S∞ be a real place of E. We shall regard elements of H(Ev) ≃ U(n, n)
as 2n × 2n matrices by means of the basis {ei, fj} chosen in (3.2.1). Let
j = σv(ג). We let Kv ⊂ H(Ev) be the maximal compact subgroup consisting
of those matrices k with tk̄ diag(j2In,−In)k = diag(j2In,−In), where In de-
note the identity matrix of size n. Then Kv ≃ U(n) × U(n). We make this
isomorphism explicit as follows. Set

γ =

(
1n 1n

j−11n −j−11n

)
∈ GU(n, n)

Then for any A,B ∈ U(n) one has

k(A,B) = γ

(
A 0
0 B

)
γ−1 ∈ Kv

The map (A,B) 7→ k(A,B) is an isomorphism from U(n)× U(n) onto Kv.
Let x ∈ Hern(R). One easily checks that the Iwasawa decomposition of wn(x)
is given by

wn(x) =

=

(
1n − x

−j2+x2

0 1n

)( 1√
−j2+x2

0

0
√
−j2 + x2

)
k
(
− x+ j1n√
−j2 + x2

,− x− j1n√
−j2 + x2

)
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Let m = 2µ + κ as in (3.1.4.4), so that χv(−1) = (−1)m (3.1.1.3). We follow
Shimura [S82] and take fv to be (up to sign) the v component of the canonical
automorphy factor denoted Jµ,κ(h, s − κ

2 ) in (3.1.4.3); thus fv is holomorphic

for s = s0 = m−n
2 . More precisely,

(3.3.3.1)
fv(wn(x), χv, s) = det(−j2 + x2)−s−n/2 det(

−j1n − x√
−j2 + x2

)m

= (−1)mn · δ(x− j1n)−s−
m+n

2 δ(x+ j1n)
−s+m−n

2

In subsequent articles we will identify fv with a Siegel-Weil section for the
theta lift of the trivial representation of U(m). Continuing the calculation,
and making the simple change of variables, x 7→ x/α, where α = −j/i > 0, we
find

Wβ,v(1, fv, s) =

= (−1)mn(−j/i)−2ns

∫

Hern(R)

δ(x+i1n)
−s−m+n

2 δ(x−i1n)−s+
m−n

2 e−2πitr(βx)dx

= (−1)mn(−j/i)−2nsξ(1n, β; s+
n+m

2
, s+

n−m
2

)

([S82], p. 274, (1.25)). By ([S82], p. 275, (1.29)), this is equal to

(−i)mn2nπn2

(−j/i)−2nsΓn(s+
n+m

2
)−1Γn(s+

n−m
2

)−1 ×

η(21n, πβ; s+
n+m

2
, s+

n−m
2

)

Choose A ∈ GL(n,C) with AA∗ = πβ, where A∗ = tĀ. By ([S82], p.280-281),
we have

η(21n, πβ; s+
n+m

2
, s+

n−m
2

) = δ(πβ)2s ·η(2A∗A, 1n; s+
n+m

2
, s+

n−m
2

)

= (2π)2nsδ(β)2se−2πtr(β)ζ(4A∗A; s+
n+m

2
, s+

n−m
2

)

Thus

Wβ,v(1, fv, s) =(−i)mn2n(m−n+1)πns+n(m+n)/2(−j/i)−2nsδ(β)s−
n−m

2 e−2πtr(β)

Γn(s+
n+m

2
)−1ω(4A∗A; s+

n+m

2
, s+

n−m
2

)

The function ω(z;µ, λ) is analytic in µ, λ and satisfies the functional equation

ω(z;n− λ, n− µ) = ω(z;µ, λ)
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By (3.15) of Shimura we know ω(z;µ, 0) = 1. So at s = (m− n)/2 we obtain
(3.3.3.2)

Wβ,v(1, fv,
m− n

2
) =

= mn+n2−(vג)

(−i)−n2

2n(m−n+1)πmn det(β)m−ne−2πtr(β)Γn(m)−1

=
mn+n2−(vג)

(−i)−n2

2n(m−n+1)πmn−n(n−1)/2 det(β)m−n∏n
j=1(m− j)!

· e−2πtr(β).

The factor e−2πtr(β) at the end is the value at h∞ = 1 of the function denoted
qβ in §(1.5.6); more precisely, qβ factors over the archimedean primes, and
e−2πtr(β) is the factor at v. The coefficient preceding this factor is the local
contribution at v to the Fourier coefficient fβ .

(3.3.4) Local results at primes dividing p (choice of special functions at p)

First we fix some notation.

(3.3.4.1) Notation. Let v be a place of E dividing p. Then v splits in K
according to our assumptions. Throughout we shall identify Ev with Kw, where
w is the divisor of v with w ∈ Σp (see (1.1.4)). We denote by Ov the ring of
integers of Ev, and by pv the prime ideal in Ov. For any pair of positive integers
a, b we denote by Ma,b or M(a, b) the space of a × b matrices. Let dZ be the
normalized Haar measure on Mn,n(Ev) that assigns measure 1 to Mn,n(Ov).
We write d×Z = dZ/|detZ|n. Let dgv be the normalized Haar measure on
GL(n,Ev) that assigns measure 1 to GL(n,Ov). Then d×Z = A(n) · dgv,
where

A(n) =

∫

GL(n,Ov)
d×Z =

n∏

j=1

(1− q−j) = q−n
2

#GL(n,Fq)

This is just the right hand side of (0.2.2). Thus we may assume that d×Z =
Lv(1, εK)−1dτgv in the notation of (0.2).
Let χ be the character of A×K that goes into the definition of our Siegel Eisenstein
series. At the place v which splits in K, χ is given by the pair of characters
(χ1v, χ

−1
2v ).

For the rest of section (3.3.4) we drop the subscript v from our notation, writing
χ1 for χ1v, etc. On H(Ev) ≃ GL(2n,Ev), the inducing character is

(
A ∗
0 B

)
7→ χ1(detA)χ2(detB) · |det(AB−1)|s+ρ,

with ρ = n/2.
Fix a partition

n = n1 + · · ·+ nl

Let P = LU be the standard parabolic subgroup of GL(n) corresponding to the
above partition. Let I ⊆ GL(n,Ov) be the paraholic subgroup corresponding

Documenta Mathematica · Extra Volume Coates (2006) 393–464



p-adic L-functions for unitary Shimura varieties, I 453

to P . Thus I consists of matrices Z = (Zij) (written in blocks with respect to
the above partition of n), such that
• Zjj ∈ GL(nj ,Ov) for 1 ≤ j ≤ l.
• Zij has entries in Ov for 1 ≤ i < j ≤ l.
• Zij has entries in pv for i > j.
Note that I is an open set in the space M(n, n) of all n × n matrices with
entries in Ev. Consider l characters ν = (ν1, · · · , νl) of E×v . We define our
Schwartz function φν by the formula

(3.3.4.2) φν(Z) =

{
ν1(detZ11) · · · νl(detZll), Z ∈ I

0, otherwise

We use the same letter ν to denote the character of L(O) given by

ν(diag(A1, · · · , Al)) = ν1(detA1) · · · νl(detAl)

It is easy to see that the function φν satisfies the relation

φν(mZ) = φν(Zm) = ν(m)φν(Z) (m ∈ L(O), anyZ)

Define Fourier transform by

(3.3.4.3) F(φ)(x) =

∫
φ(z)ψv(tr(ztx))dz

The function F(φν) satisfies the (obvious) condition

(3.3.4.4) F(φν)(mx) = F(φν)(xm) = ν−1(m)F(φν)(x) (m ∈ L(O), anyx)

The explicit formula for F(φν) is given in Part II, Appendix B.
Consider another l-tuple of characters µ = (µ1, · · · , µl). We can define φµ
as above. Take any integer t which is large enough — say larger than the
conductors of all the characters µj . Let

Γ = Γ(pt) ⊆ GL(n,O)

be the subgroup of GL(n,O) consisting of matrices whose off diagonal blocks
are divisible by pt.
Note that the restriction of φµ to Γ(pt) is a character. We have

(3.3.4.5) φµ(γx) = φµ(xγ) = φµ(γ)φµ(x) (γ ∈ Γ(pt), anyx)

Define a related function φ̃µ by

φ̃µ(x) =

{
Vol(Γ(pt); d×Z)−1 · φµ(x), if x ∈ Γ(pt)

0, otherwise
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Here Vol(Γ(pt); d×Z) is the volume of Γ(pt) with respect to the measure d×Z.
We have

Vol(Γ(pt); d×Z)−1= A(n)−1[GL(n,O) : Γ(pt)] = (

l∏

j=1

A(nj)
−1)(

∏

1≤i<j≤l
q2tninj )

Later on, we shall identify various spaces with Mn,n, and φµ, etc, will be viewed
as a function on these spaces.
We define a Schwartz function Φ1 on M(n, n) by

(3.3.4.6) Φ1(u, v) = φ̃µ(
u− v

2
) · F(φν)(u+ v)

Recall that we have identified U(2V )(Ev) with GL(2n,Ev). Thus it acts on
M(n, 2n) by right multiplications. We take a global section

f(h;χ, s) = ⊗fu(h;χ, s) ∈ Ind(χ| · |s)

with u running through all places of E. At the place v we choose the local
section by the following formula:

(3.3.4.7) fv(h;χ, s) = fv,µ(h;χ, s)
def
= χ1(deth) · |deth|s+ρ

·
∫

GL(n,Ev)

Φ1((Z,Z)h)χ1χ
−1
2 (detZ)|detZ|2(s+ρ)d×Z.

Recall that we have the decomposition

2V = V d ⊕ Vd

of the doubled space 2V into totally isotropic subspaces. We now define a
Weyl element wn that interchanges the two summands above. To make it
precise wewrite matrices in blocks corresponding to the decomposition

2V = V ⊕ (−V )

Then we take

w = wn =

(
1n 0
0 −1n

)

For each index j with 1 ≤ j ≤ n we also define

wj =




1j 0 0 0
0 1n−j 0 0
0 0 −1j 0
0 0 0 1n−j




(Really, 1n is the identity on V . But the definition of 1j for 0 < j < n implies
an implicit choice of an orthogonal basis for V ).
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(3.3.4.8) Lemma. Let P = P d be the stabilizer of V d in U(2V ). Then as
a function of h the local section fv(h;χ, s) is supported on the “big cell”
P (Ev)wnP (Ev).

Proof. We know that U(2V ) is the disjoint union of the double cosets PwjP .
Since fv is a section, it suffices to show that

fv(wjp;χ, s) = 0, for any p ∈ P (Ev), j < n

As remarked above, the definition of wj involves an implicit choice of a basis,
and therefore a decomposition

V = Vj ⊕ V j

where Vj is of dimension j. Recall that U(2V )(Ev) ≃ GL(2n,Ev). Under this
identification, a typical element of P (Ev), written in blocks with respect to the
decomposition 2V = V ⊕−V , is of the form

p =

(
A B
C D

)

where A,B,C,D are n× n matrices, and

A+ C = B +D

In accordance with the decomposition V = Vj ⊕ V j , we may write an n × n
matrix as Z = (X,Y ) where X is n× j and Y is n× (n− j). Then we find

(Z,Z)wjp = (u, v)

with
u = (X,Y )A+ (−X,Y )C, v = ((X,Y )B + (−X,Y )D

Consequently
u− v = (X, 0)(A+D −B − C)

(Here we have used the condition A + C = B +D). The right hand side is a
singular matrix unless j = n. Since

Φ1(u, v) = φ̃µ(
u− v

2
)F(φν)(u+ v)

and φ̃µ is supported on invertible matrices, we find

Φ1((Z,Z)wjp) = 0 for all Z

if j < n. Hence fv(wjp;χ, s) = 0 for j < n and p ∈ P (Ev).
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We define the Eisenstein series Ef (h;χ, s) = Efµ(h;χ, s) and its Fourier co-
efficients as before. Let P = MN be a Levi decomposition. We assume that

M is normalized by w. We will calculate the v-component of Efβ (h;χ, s) un-

der the condition that hv ∈ P (Ev). In view of the above lemma and Remark
3.2.2.3, we know that the factorization (3.2.2.2) is valid for any β (full rank or
otherwise), provided hv ∈ P (Ev). However, in (3.3.4.9) we will see that our

choice of local data at primes dividing p forces Efβ (h, χ, s) = 0 for rank(β) < n,

provided hv ∈ P (Ev) for at least one place v dividing p.
For the remainder of this section we shall calculate

Wβ,v(hv, fv, s) =

∫

N(Ev)

fv(wnvhv;χv, s)ψ−β(nv)dnv

The group N can be identified with the space Hermn of n × n hermitian ma-
trices. We write this isomorphism as

Hermn−→N, R 7→ n(R)

If R ∈ Hermn(A) then
ψβ(n(R)) = ψ(tr(βtR))

where tr denotes trace of the matrix, followed by trK/E . We need to explain
what this means at the split place v. We have the isomorphism

K ⊗ Ev ≃ Ev ⊕ Ev

where the first summand Ev is identified with Kw, with w the place of K
dividing v, such that w ∈ Σp. The second summand is then identified with Kwc .
Also, on the right hand side the trace map is identified with the summation of
the two coordinates. This gives rise to

2V ⊗ Ev = (2V )1 ⊕ (2V )2

etc. Now any R ∈ Hermn(Ev) is identified with an arbitrary n×n matrix with
coefficients in Ev, as follows. We consider

Mn,n(K) ⊂Mn,n(Kw) = Mn,n(Ev)

Then the embedding

Mn,n(K)−→Mn,n(Ev)⊕Mn,n(Ev), γ 7→ (γ, γ̄)

extends to an isomorphism

Mn,n(K)⊗ Ev−→Mn,n(Ev)⊕Mn,n(Ev)
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Since γ̄ = tγ for γ ∈ Hermn(E), we see that the image of

Hermn(Ev) = Hermn(E)⊗ Ev ⊂Mn,n(K)⊗ Ev

under the above isomorphism is precisely

{(R, tR) |R ∈Mn,n(Ev)}

Thus we get the identification Hermn(Ev) = Mn,n(Ev) by the map (R, tR) 7→
R.
Now if a matrix R ∈ Mn,n(Ev) is identified with an element of Hermn(Ev) as
above then a simple calculation gives

ψβ(n(R)) = ψ(2 · trE(βtR))

This time, on the right hand side trE(βtR) is the trace of βtR viewed as a
matrix with coefficients in Ev.
We may assume hv ∈ M(Ev). Then hv preserves both the diagonal and the
anti-diagonal. So there are n× n invertible matrices A and B such that

(Z,−Z)hv = (ZA,−ZA), (Z,Z)hv = (ZB,ZB)

for any Z. Suppose n = n(R). A simple calculation gives

(Z,Z)wnhv = (Z(RB +A), Z(RB −A))

Recalling the definition of Φ1 we obtain

(3.3.4.9) Φ1((Z,Z)wnhv) = φ̃µ(ZA)F(φν)(2ZRB)

We already know that fv is supported on the big cell. In the integral expression
for fv given by (3.3.4.7) we may translate the variable Z by any element of
L(O) and then integrate over L(O) ⊆ GL(n,Ev). By formula (3.3.4.9) and the
transformation properties of φµ and F(φν) given by (3.3.4.4)-(3.3.4.5), we see
immediately that fv would be identically 0 unless the following conditions are
satisfied:

(3.3.4.10) µj = νjχ2χ
−1
1 on O×v , for 1 ≤ j ≤ l

We assume this from now on. Then

fv(wnhv;χ, s) = χ1(detB)χ2(detA)|detBA−1|s+ρF(φν)(2A
−1RB)

By Fourier inversion we obtain
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(3.3.4.11) Lemma. For hv ∈ M(Ev) as above, the v-component of the β-th

Fourier coefficient Efβ (h, χ, s) = E
fµ
β (h, χ, s) is given by

(3.3.4.12)
Wβ,v(hv, fv, s) = χ1(detB)χ2(detA)|detAB−1|−s+ρφν(tAβtB−1),

where ν is defined in terms of µ and χ by (3.3.4.10).
In particular, the β-th Fourier coefficient vanishes unless β is of full rank.

The last assertion of the lemma follows from the fact that φν is supported on
I.
(3.3.5) Summary.

Recall that m = n+ 2s0. Define

C∞(n,m,K) =
∏

v∈Σ

mn+n2−(vג) ·
(

(−i)−n2

2n(m−n+1)πmn−n(n−1)/2

∏n
j=1(m− j)!

)[E:Q]

,

(3.3.5.1) CS(n,m,K) = c(n,E,K)

n−1∏

j=0

LS(m+ j, χεj)−1C∞(n,m,K);

We choose a global section

(3.3.5.2) f = fµ(h, χ, s) =
⊗

v/∈S
funrv ⊗

⊗

v∈S∞
fv ⊗

⊗

v∈Spf

fuv ⊗v|p fv(h;χ, s)

in accordance with the preceding sections. The functions fv for v | ∞, resp. v |
p, are defined by (3.3.3.1), resp. (3.3.4.7), the characters µj being determined
by νj and χ by (3.3.4.10). Finally, for v /∈ S, funrv is the unramified vector in
I(s, χ) normalized to take value 1 at 1.
Let

E(h, χ,m, f) = E(h, χ,m, fµ)
def
= CS(n,K)−1Ef (h, χ, s0).

We define the factor T 0(β,m(A), s0) by (3.2.2.10). When h = m(A) ∈M(Af ),
we write m(A) = m(Ap) ·∏v|p hv, and let Av be the local component of A at

v for v prime to p. The preceding calculations show that the β-Fourier coef-
ficient of E(m(A), χ,m, f) equals zero if rank(β) < n. Otherwise, the Fourier
coefficient is given by the following formula, in which χ has been replaced by

the (motivic) Hecke character χ∗ = χ · Nκ/2
K/E and where for split v in Spf we

write χ∗v(det(Av)) as an abbreviation for χ∗v(det(Av ·B−1
v ) as in (3.3.2):

(3.3.5.3) Eβ(m(A), χ,m, f) = Eβ(m(A), χ,m, fµ) =

= T 0(β,m(A), s0) det(β)(m−n)[E:Q]|detA|
n−κ

2 −s0
A ×

×
∏

v∈Σp

χ∗1(detB(hv))χ
∗
2(detA(hv))φν(

tA(hv)βB(hv)
−1)×

×
∏

v∈Spf

χ∗v(det(Av))ûv(
tĀvβAv)
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We have dropped the term qβ of (1.5.6). The complete arithmetic Fourier
expansion is
(3.3.5.4)

E(h∞m(A), χ,m, f) = E(h∞m(A), χ,m, fµ) =
∑

β

Eβ(m(A), χ,m, f)qβ

with m(A) ∈M(Af ) as before.

Remarks

(3.3.5.5) By (3.1.4.4) the exponent in the absolute value factor |detA|
n−κ

2 −s0
A

is an integer. Thus these factors are always integers, and in fact are
p-units under our standing hypothesis that A(hv) and B(hv) are in
GL(n,Ov) for all v dividing p. Similarly, since m ≥ n, the factor
det(β)m−n is p-adically integral provided β is, and this is guaran-
teed by our hypothesis on A(hv) and B(hv) and the definition of
T 0(β,m(A)).

(3.3.5.6) With uv chosen as in (3.3.1) and (3.3.2) at places in Spf , the coef-
ficients are then p-adic integers, and in fact are p-adic units where
they are non-zero. Better control of the local theta correspondence
at places in S will require different choices of fv at Spf .

(3.3.5.7) In applications to the zeta function we will want to work with finite
sums of Siegel-Weil Eisenstein series attached to hermitian spaces V ′

that differ locally at non-split primes in S, since at such primes we
are forced to take the local sections denoted f̃v of (3.3.1.2), which are
not generally Siegel-Weil sections. These Fourier coefficients of these
sums remain p-adically integral and since the different V ′ represent
different β, they are also p-adically primitive.

(3.4) Review of abstract p-adic distributions and measures.

Let T be a torus over Zp, and let R be a complete Zp-algebra, assumed Zp-
flat and compact, R[ 1p ] = R ⊗Zp Qp. For instance, we can take R = OCp , so

that R[ 1p ] = Cp. Let B denote an R[ 1p ]-Banach space, M ⊂ B the unit ball of

elements of norm ≤ 1. If A = R,R[ 1p ], B, or M, let C(T (Zp), A) denote the

R-module of continuous A-valued functions on T (Zp). Since T (Zp) is compact,
C(T (Zp),B) = C(T (Zp),M)⊗RR[ 1p ]), and this is true in particular forM = R

itself. The sup norm makes C(T (Zp, R[ 1p ] into an R[ 1p ]-Banach space. The

locally constant functions in C(T (Zp), A) are denoted C∞(T (Zp), A).
A p-adic distribution on T (Zp) with values in an R[ 1p ]-vector space V is a

homomorphism of R-modules

λ : C∞(T (Zp, R) → V.
To define a distribution V need not be a Banach space. A B-valued p-adic
measure on T (Zp) is a continuous homomorphism of R[ 1p ]-Banach spaces

µ : C(T (Zp), R[
1

p
]) → B.
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Let Xfin(T ) denote the set of characters of finite order of T (Zp), viewed as a
subset of C∞(T (Zp), R) for any sufficiently large p-adic ring R, e.g. R = OCp .

The setXfin(T ) forms a basis for theR[ 1p ]-vector space C∞(T (Zp), R[ 1p ]), hence

any function χ 7→ vχ from Xfin(T ) to V determines a V-valued distribution on
T (Zp) by linearity.

(3.4.1) Lemma. Let χ 7→ mχ be a function from Xfin(T ) toM, and let λ(m)
denote the corresponding B-valued distribution. Then λ(m) extends to a p-adic
measure if and only if, for every integer n and for any finite sum

∑
j αjχj with

αj ∈ R[ 1p ] and χj ∈ Xfin(T ) such that
∑
j αjχj(t) ∈ pnR for all t ∈ T (Zp), we

have

(3.4.2)
∑

j

αjmχj ∈ pnM.

This is a version of the abstract Kummer congruences stated as Proposition
5.0.6 of [K].

(3.4.3) Corollary. In Lemma (3.4.1) above, it actually suffices to check
(3.4.2) with n = 0.

Indeed, the the condition for n=0 implies the condition for general n: a bounded
distribution is a measure.
In the next section we will be constructing measures with values in the Ba-
nach space of p-adic modular forms on the Shimura variety Sh(2V ). Let
R = OCp , so that R[ 1p ] = Cp. Let V denote the algebra of p-adic modular

forms, as in (2.2.9), and let B = V ⊗OCp
Cp. LetM denote the right-hand side

ˆ⊕
α∈U∗H

0(KP (∞)S(GP ,XP ),OSP ) of (2.3.2), and let Q = M⊗OCp
Cp. The

Cp-vector space B is a Banach space via the sup norm, whereasQ can be viewed
as a ring of formal series over the Banach space H0(KP (∞)S(GP ,XP ),OSP ),
hence again becomes a Banach space via the sup norm. The q-expansion map
F.J.P (2.3.2) is a continuous homomorphism of Banach spaces.
The following proposition follows from the q-expansion principle, as in [DR] or
[K], and represents the primary application of the q-expansion principle to our
project:

(3.4.4) Proposition. Let T be a torus over Zp, and let µ be a p-adic measure
on T (Zp) with values in Q. Suppose that µ(χ) =

∫
T (Zp)

χdµ lies in the image

of F.J.P for all χ ∈ Xfin(T ). Then µ is the image, under F.J.P , of a measure
with values in B.

(3.5) Construction of Eisenstein measures.
Let ℓ be a positive integer and let T (ℓ)0 denote the torus over Zp given by
(ROE/ZpGm,OE )ℓ. Thus T (ℓ)0(Zp) is canonically isomorphic to

∏
w|pO×,ℓw ,

where w runs through places of E. This can also be identified with the product
of ℓ copies of

∏
v∈Σp

O×v , where now v are places of K. The latter form will be
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the most useful for us. For brevity we write O×Σp for
∏
v∈Σp

O×v . We let

T (ℓ) = T (ℓ)0 × (ROK/ZpGm,OK).

Then the set Xfin(T (ℓ)) of finite order characters of T (ℓ) can be parametrized
by (ℓ + 1)-tuples (ν1, . . . , νℓ, χ), where each νi is a character of finite order of
O×Σp , and χ is a character of finite order of

∏
v|pO×v where now v runs over

all places of K dividing p. We will further write χ = (χ1, χ2), where χ1 is the
restriction of χ to

∏
v∈Σp

O×v and χ2 is a second character of the same group∏
v∈Σp

O×v obtained by restricting χ−1 to
∏
v∈cΣp O×v and then composing with

c. So in the end, Xfin(T ) can be viewed as the set of (ℓ+2)-tuples of characters
of O×Σp . The character χ will in practice be the restriction to O×K,p of a character

of K×p =
∏
v|pK×v , which in turn will most commonly be the p-adic component

of a global Hecke character.
We introduce additional notation: for j = 1, . . . , ℓ, we let µj = νj · χ2 · χ−1

1 .
Let m,n, and s0 be as in (3.3.5). Let n = n1 + · · ·+ nℓ be a partition of n and
Q the corresponding standard parabolic subgroup of GL(n).

(3.5.1) Theorem. There is a B-valued measure λmQ on T (ℓ) with the property

that, for any ℓ+2-tuple (µ, χ) = (µ1, . . . , µℓ, χ1, χ2) of characters of finite order
of O×Σp .

(3.5.2) F.J.P ◦
∫

T (ℓ)

(µ1, . . . , µℓ, χ)dλmQ = E(•, χ,m, fµ)

where the right hand side is the q-expansion of (3.3.5.4).

Proof. The right-hand side of (3.5.2) defines the value at (µ, χ) of a Q-valued
distribution on T (t). To show that this distribution is in fact a Q-valued p-
adic measure, it suffices, by Corollary (3.4.3), to show that the right-hand side
of (3.5.2) satisfies the abstract Kummer congruences (3.4.2) for n = 0. In
other words, for any β ∈ U∗ ∩C, the Fourier coefficients Eβ(m(A), χ,m, fµ) as
(ν, χ) vary, satisfy the abstract Kummer congruences as functions of m(A) ∈
LP (Af ), with the coefficients Av ∈ GL(n,Ov) for v | p. Bearing in mind the
relation (3.3.4.10) between ν and µ, this follows immediately from (3.3.5.3) and
Remarks (3.3.5.5) and (3.3.5.6).
Now the theorem follows from Proposition 3.4.4 and from the fact that
E(•, χ,m, fµ) is a classical modular form for (µ, χ) ∈ Xfin(T (ℓ)).
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1. Introduction

Iwasawa’s theory for elliptic curves with complex multiplication was initiated
by J. Coates in the 1970s in a series of papers (for example, [CW] and [CW1]),
and it is now well developed (by the effort of a handful of number-theorists)
into a solid theory for abelian varieties of CM type (or one may call it
Iwasawa’s theory for CM fields). In this paper, we prove many cases of the
anticyclotomic main conjecture for general CM fields with p-ordinary CM type.

Let M be a CM field with maximal real subfield F . The field F is totally real,
and M is a totally imaginary quadratic extension of F (inside a fixed algebraic
closure F of F ). We fix a prime p > 3 unramified in M/Q. We assume to have
a p–ordinary CM type Σ of M . Thus, fixing an embedding ip : Q →֒ Qp, the
embeddings ip ◦ σ for σ ∈ Σ induce exactly a half Σp of the p–adic places of
M . We identify Σp with a subset of prime factors of p in M . For the generator
c of Gal(M/F ), the disjoint union Σp ⊔ Σcp gives the total set of prime factors
of p in M . For a multi-index e =

∑
P|p e(P)P ∈ Z[Σp ⊔ Σcp], we write Pe

for
∏

P|p Pe(P). We choose a complete discrete valuation ring W inside Qp

finite flat and unramified over Zp. A Hecke character ψ : M×\M×A → C× is
called anticyclotomic if ψ(xc) = ψ(x)−1. We call ψ has split conductor if the
conductor of ψ is divisible only by primes split in M/F . We fix a continuous
anticyclotomic character ψ : Gal(F/M) → W× of finite order. It is an easy
consequence of class field theory(see (7.18) and [HMI] Lemma 5.31) that we
can always find another Hecke character ϕ : M×A /M

×M×∞ → C× such that
ψ(x) = ϕ−(x) = ϕ−1(x)ϕ(xc). Regarding ϕ and ψ as Galois characters, this
is equivalent to ψ(σ) = ϕ−1(σ)ϕ(cσc−1) for any complex conjugation c in
Gal(F/F ). We assume the following four conditions:

(1) The character ψ has order prime to p with exact conductor cPe for c

prime to p.
(2) The conductor c is a product of primes split in M/F .
(3) The local character ψP is non-trivial for all P ∈ Σp.

(4) The restriction ψ∗ of ψ to Gal(F/M [
√
p∗]) for p∗ = (−1)(p−1)/2p is

non-trivial.
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We study arithmetic of the unique Z[F :Q]
p –extension M−∞ of M (unramified

outside p and ∞) on which cσc−1 = σ−1 for all σ ∈ Γ−M = Gal(M−∞/M). The
extension M−∞/M is called the anticyclotomic tower over M . Let M(ψ)/M
be the class field with ψ inducing the isomorphism Gal(M(ψ)/M) ∼= Im(ψ).
Let L∞/M−∞M(ψ) be the maximal p–abelian extension unramified outside Σp.
Each γ ∈ Gal(L∞/M) acts on the normal subgroup X = Gal(L∞/M−∞M(ψ))
continuously by conjugation, and by the commutativity of X, this ac-
tion factors through Gal(M(ψ)M−∞/M). We have a canonical splitting
Gal(M(ψ)M−∞/M) = Γ−M × Gtor(ψ) for the maximal torsion subgroup
Gtor(ψ) ∼= Im(ψ). Since ψ is of order prime to p, it factors through the
maximal torsion subgroup Gtor(ψ). Then we look into the Γ−M–module:
X[ψ] = X ⊗Zp[Gtor(ψ)],ψ W .

As is well known, X[ψ] is a W [[Γ−M ]]–module of finite type, and it is a tor-
sion module by a result of Fujiwara (cf. [H00] Corollary 5.4 and [HMI] The-
orem 5.33) generalizing the fundamental work of Wiles [W] and Taylor-Wiles
[TW]. Thus we can think of the characteristic element F−(ψ) ∈W [[Γ−M ]] of the
module X[ψ]. As we have seen in [HT1] and [HT2], we have the anticyclotomic
p–adic Hecke L–function L−p (ψ) ∈W [[Γ−M ]] (constructed by Katz), where W is
the completed p–adic integer ring of the maximal unramified extension of Qp

inside Qp. We regard W ⊂W . Then we prove

Theorem. We have the identity: F−(ψ) = L−p (ψ) up to a unit in W [[Γ−M ]].

The condition p > 3 is necessary because at one point we need to choose a prime
ideal q of F with NF/Q(q) 6≡ ±1 mod p. By implementing our idea more care-
fully, we might be able to include the prime p = 3, but there is no hope (without
a new idea) of including p = 2. The condition (1) is probably inessential, and
it could be avoided by using the nearly ordinary Galois deformation with fixed
p–power order nearly ordinary characters instead of the minimal one we used,
although some of our argument has to be done more carefully to incorporate p–
power order characters. In such a generalization, we probably need to assume
(2-4) replacing ψ by the Teichmüller lift of ψ mod mW for the maximal ideal
mW of W . The condition (2) is imposed to guarantee the local representation

at the prime l given by IndFl

Ml
ϕl is reducible; otherwise, we possibly need to

work with quaternionic modular forms coming from a quaternion algebra ram-
ifying at an inert or ramified prime l|c, adding further technicality, though we
hope that the obstacle is surmountable. The condition (3) is a rigidity condi-

tion for nearly ordinary Galois deformation of IndFM ϕ, assuring the existence
of the “universal” (not “versal”) deformation ring. To remove this, we need to
somehow invent a reasonable requirement to rigidify the deformation problem.
The condition (4) is a technical assumption in order to form a Taylor-Wiles
system to identify the deformation ring with an appropriate Hecke algebra (see
[TW], [Fu] and [HMI] Sections 3.2–3).
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The type of the assertion (in the theorem) is called the anticyclotomic main con-
jecture for CM fields. The main conjecture for imaginary quadratic fields (in-
cluding the cyclotomic Zp–extension) and its anticyclotomic version for imag-
inary quadratic fields have been proved by K. Rubin [R] and [R1] refining
Kolyvagin’s method of Euler systems, and basically at the same time, the an-
ticyclotomic conjecture was treated by J. Tilouine (and B. Mazur) [Ti] and
[MT] (for imaginary quadratic cases) by a method similar to the one exploited
here combined with the class number formula of the ring class fields. A partial
result towards the general conjecture was studied in [HT1], [HT2] and [H05d].

The present idea of the proof is a refinement of those exploited in [HT1], [HT2]
and [H05d] Theorem 5.1, where we have proven L−p (ψ)|F−(ψ) in W [[Γ−M ]].
One of the main ingredients of the proof is the congruence power series H(ψ) ∈
W [[Γ−M ]] of the CM–component of the universal nearly ordinary Hecke algebra
h for GL(2)/F . In the joint works with Tilouine, we took h of (outside p)
level NM/F (C)d(M/F ) for the conductor C of ϕ and the relative discriminant
d(M/F ) of M/F . In this paper, as in [H05d] Section 2.10, we take the Hecke
algebra of level N(ψ) which is a product of c∩F and d(M/F ) (introducing a new
type of Neben character determined by ϕ with ψ = ϕ−). Fujiwara formulated
his results in [Fu] using such level groups. Another important ingredient is the
divisibility proven in [H05d] Corollary 5.5:

(L) (h(M)/h(F ))L−p (ψ−)
∣∣H(ψ) in W [[Γ−M ]].

Here h(M) (resp. h(F )) is the class number of M (resp. F ). On the other
hand, Fujiwara’s result already quoted implies (see [Fu], [HT2], [H00] and [HMI]
Sections 3.2–3 and 5.3):

(F) H(ψ) = (h(M)/h(F ))F−(ψ−) up to units in W [[Γ−M ]].

Thus we need to prove:

(R) H(ψ)(κ)
∣∣(h(M)/h(F ))L−p (ψ−)(κ) in W

for a (single) weight κ specialization, where Φ(κ) is the value of a power series
Φ ∈ W [[Γ−M ]] at κ ∈ Spec(W [[Γ−M ]])(W ). By (L) and Nakayama’s lemma, the
reverse divisibility (R) (specialized at κ) implies the theorem. In the (finite
dimensional) space Sn.ordκ (N(ψ)p∞, ελ;W ) of nearly p–ordinary cusp forms
of weight κ with coefficients in W and with suitable Neben character ελ, we
have a CM Hecke eigenform f(λ) of a Hecke character λ of weight κ (regarded
as a Galois character) such that λ− factors through Gal(M(ψ)M−∞/M) and
λ−|Gtor(ψ) = ψ. We write N(λ) (N(λ)|N(ψ)p∞) for the level of f(λ). This
form studied in [H91] is of minimal level (possibly of level smaller than that of
the primitive form). Since the CM local ring R of h is a Gorenstein ring (see
[Fu], [H00] Corollary 5.3 (3) and [HMI] Proposition 1.53 and Theorem 3.59),

the number H(ψ)(κ) is the maximal denominator of the numbers (f(λ),f)
(f(λ),f(λ))

in W as f running through all elements of Sκ(N(λ), ελ;W ) (see again [H00]
Corollary 5.3 (1) and [H86] Proposition 3.9), where (·, ·) is the Petersson
inner product of level N(λ). As seen in [HT1] Theorem 7.1 and [H05d]
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Proposition 5.6, we have πκ1−κ2+Σ(f(λ), f(λ)) = c1(h(M)/h(F ))L(1, λ−) for
an innocuous constant c1 ∈ W (for the constant c1, see (7.17)). The quotient
π2(κ1−κ2)Wp(λ

−)(f(λ),f(λ))

Ω2(κ1−κ2) is then the value (h(M)/h(F ))L−p (ψ−)(κ) ∈ W (up

to units in W ). Here Wp(λ
−) is the local Gauss sum of λ− at p, Ω is the

Néron period of the abelian variety of CM type Σ (defined over Q ∩W ), and
the exponent κ1 − κ2 is determined by the weight κ. Since H(ψ)(κ) is the

maximal denominator of (f(λ),f)
(f(λ),f(λ)) , what we need to show (to prove (R))

is the W–integrality of
π2(κ1−κ2)Wp(λ

−)(f(λ),f)

Ω2(κ1−κ2) for all f ∈ Sκ(N(λ), ελ;W ).
This we will show by a detailed analysis of the residue formulas of general-
ized Eisenstein series, which we call Shimura series, on orthogonal groups of
signature (n, 2). The series have been introduced in [Sh1] and [Sh2], and we
take those associated with a theta series of M and the determinant (quadratic
form) of M2(F ). The validity of the q–expansion principle is very important
to show the W–integrality, because we write the Petersson inner product as
a value of a modular form (with integral q–expansion) at a CM point of (the
product of two copies of) the Hilbert modular variety. This modular form
is obtained as the residue of a Shimura series. However in the split case,
the orthogonal similitude group of signature (2, 2) over F is isogenous to the
product GL(2) × GL(2)/F ; so, basically we are dealing with Hilbert modular
forms, and the q–expansion principle is known by a work of Ribet (see [PAF]
Theorem 4.21).

Another important point is to write down every W–integral Hilbert cusp form
as a W–integral linear combination of theta series of the definite quaternion
algebra unramified at every finite (henselian) place. Such a problem over Q
was first studied by Eichler (his basis problem) and then generalized to the
Hilbert modular case by Shimizu and Jacquet-Langlands in different manners.
We scrutinize the integrality of the Jacquet-Langlands-Shimizu correspondence
(mainly using duality between Hecke algebras and their spaces of cusp forms;
see [H05b]). At the last step of finalizing the W–integral correspondence, we
again need a result of Fujiwara: Freeness theorem in [Fu] of quaternionic coho-
mology groups as Hecke modules, which is valid again under the assumptions
(1-4) for cusp forms with complex multiplication (see [HMI] Corollary 3.42).
The everywhere unramified definite quaternion algebra exists only when the
degree [F : Q] is even; so, we will at the end reduce, by a base-change
argument, the case of odd degree to the case of even degree.

The identity: (h(M)/h(F ))L−p (ψ−) = H(ψ) resulted from our proof of the
theorem is the one (implicitly) conjectured at the end of [H86] (after Theorem
7.2) in the elliptic modular case. A similar conjecture made there for Eisenstein
congruences has now also been proven by [O] under some mild assumptions.
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2. Siegel’s theta series for GL(2)×GL(2)

Since the Shimura series has an integral presentation as a Rankin-Selberg con-
volution of Siegel’s theta series and a Hilbert modular form, we recall here the
definition and some properties of the theta series we need later.

2.1. Symmetric Domain of O(n, 2). We describe the symmetric domain as-
sociated to an orthogonal group of signature (n, 2), following [Sh1] Section 2.
Let V be a n+ 2–dimensional space over R. We consider a symmetric bilinear
form S : V × V → R of signature (n, 2) with n > 0. We define an orthogonal
similitude group G by

(2.1) G(R) =
{
α ∈ EndR(V )

∣∣S(αx, αy) = ν(α)S(x, y) with ν(α) ∈ R×
}
.

We would like to make explicit the symmetric hermitian domain G(R)+/R×C
for a maximal compact subgroup C ⊂ G(R)+ for the identity connected com-
ponent G(R)+ of G(R). We start with the following complex submanifold of
VC = V ⊗ C:

Y(S) =
{
v ∈ VC = V ⊗R C

∣∣S[v] = S(v, v) = 0, S(v, v) < 0
}
.

Since S is indefinite over C, the space Y(S) is always non-empty. Obviously
g ∈ G(R) with ν(g) > 0 acts on Y(S) by v 7→ gv.

Take v ∈ Y(S), and write W for the subspace spanned over R by v + v and
iv − iv for i =

√
−1. Then we have

S(v + v, v + v) = 2S(v, v) < 0

S(iv − iv, iv − iv) = 2S(v, v) < 0

S(v + v, iv − iv) = −i · S(v, v) + i · S(v, v) = 0.

This shows that S|W is negative definite. Let W⊥ =
{
w ∈ V

∣∣S(w,W ) = 0
}
.

Then we have an orthogonal decomposition: V = W⊕W⊥ and S|W⊥ is positive
definite. We then define a positive definite bilinear form

Pv(x, y) = −S(xW , yW ) + S(xW⊥ , yW⊥)

for the orthogonal projections xW to W and xW⊥ to W⊥ of x. The bilinear
form Pv is called the positive majorant of S indexed by v ∈ Y(S). If g ∈ G(R)
fixes v ∈ Y(S), g fixes by definition the positive definite form Pv. Thus g
has to be in the compact subgroup O(Pv) made up of orthogonal matrices
preserving Pv. Thus G(R)+/O(Pv) →֒ Y(S). If we have two v, w ∈ Y(S),
then by Sylvester’s theorem, we find g ∈ G(R)+ such that gv = w, and hence
G(R)+/O(Pv) ∼= Y(S).
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Writing Pv[x] = Pv(x, x) for x = cv + cv + z with c ∈ C and z ∈W⊥, we see

Pv[x]− S[x] =Pv(cv + cv + z, cv + cv + z)− S(cv + cv + z, cv + cv + z)

=− 2c2S[v]− 2c2S[v]− 4|c|2S(v, v) + S[z]− S[z]

=4|c|2S(v, v) = −4S(v, v)−1|S(x, v)|2 ≥ 0.

(2.2)

We now make explicit the domain Y(S) as a hermitian bounded matrix domain.

Proposition 2.1. We have a C–linear isomorphism A : VC
∼= Cn+2 such that

S(x, y) = t(Ax) ·RAy, S(x, y) = t(Ax) ·QAy,
where R and Q are real symmetric matrices given by

R =
(

1n 0 0
0 0 −1
0 −1 0

)
, Q =

(
1n 0
0 −12

)
.

Proof. Choose a base v1, . . . , vn+2 of V over R, identify V with Rn+2 by send-

ing
∑n+2
i=1 xivi 7→ t(x1, . . . , xn+2) ∈ Rn+2 and use the same symbol S for the

symmetric matrix (S(vi, vj))i,j . Then S(x, y) = tx · Sy for x, y ∈ V = Rn+2.
By a theorem of Sylvester, S is equivalent (in GLn+2(R)) to Q; so, we find an
invertible matrix X ∈ GLn+2(R) with tX · SX = Q.

Choose B = diag[1n,
√

2
−1 ( 1 1

−i i
)
]. Then by computation tB · QB = Q and

tBQB = R. Then x 7→ Ax for A = (XB)−1 = B−1X−1 does the desired
job. �

By our choice of A, the map α 7→ AαA−1 gives an isomorphism of Lie groups:

(2.3) ι : G(R) ∼= G(Q,R)

=
{
α ∈ GLn+2(C)

∣∣tα ·Rα = ν(α)R, tα · qα = ν(α)Q with α ∈ R×
}
,

and the map: v 7→ Av gives an isomorphism of complex manifolds:

(2.4) j : Y(S) ∼= Y(Q,R) =
{
u ∈ Cn+2

∣∣tu ·Ru = 0, tu ·Qu < 0
}
.

These two maps are equivariant:

ι(α)j(v) = j(αv).

We are going to show that Y(Q,R) has two connected components. Write
u = t(u1, . . . , un+2) ∈ Y(Q,R). Then we have

(
n∑

i=1

u2
i

)
− 2un+1un+2 = tu ·Ru = 0,

n∑

i=1

|ui|2 < |un+1|2 + |un+2|2 ⇔ tu ·Qu < 0.
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Assume |un+1| = |nn+2| towards contradiction. Then we see
n∑

j=1

|uj |2 ≥ |
n∑

j=1

u2
j | = 2|un+1un+2| = |un+1|2 + |un+2|2,

a contradiction; hence we have either |un+1| > |un+2| or |un+1| < |un+2|. These
two cases split the domain Y(Q,R) into two pieces of connected components.
To see each component is connected, we may assume that |un+2| > |un+1| by
interchanging indices if necessary; so, un+2 6= 0. Put zj = Uj/un+2 for j ≤ n,
and define a column vector z = t(z1, z2, . . . , zn). Then w = un+1/un+2 =
tz · z/2, and defining

(2.5) Z = Zn =

{
z ∈ Cn

∣∣tz · z < 1 +
1

4
|tz · z|2 < 2

}
,

C××Z is isomorphic to the connected component of Y(Q,R) given by |un+2| >
|un+1| via (λ, z) 7→ λP(z), where

(2.6) P(z) = t(z, (tz · z)/2, 1).

From this expression, it is plain that Y(Q,R) has two connected components.
We define the action of α ∈ G(R) on Z and a factor of automorphy µ(α; z)
(z ∈ Z) by

(2.7) ι(α)P(z) = P(α(z))µ(α; z).

We look into spherical functions on VC. Choose a base v1, . . . , vd of V over R.
By means of this base, we identify V with Rd (d = n+2); so, v 7→ (x1, . . . , xd) if
v =

∑
j xjvj . We take the dual base v∗j so that S(v∗i , vj) = δij for the Kronecker

symbol δij and define a second-degree homogeneous differential operator ∆ by

∆ =
∑

i,j

S(v∗i , v
∗
j )

∂2

∂xi∂xj
.

A polynomial function η : V → C is called a spherical function if ∆η = 0.
Writing S = (S(vi, vj)), we see that this definition does not depend on the

choice of the base vj , because ∆ = t∂S−1∂ for ∂ = t( ∂
∂x1

, . . . , ∂
∂xd

). Since

∂(twSx) = Sw for a constant vector w = (w1, . . . , wd), we find that, for k ≥ 2

∆(twSx)k = kt∂(S−1Sw)(twSx)k−1 = k(k − 1)(twSw)(twSx)k−2.

Thus the polynomial function x 7→ S(w, x)k for k ≥ 2 is spherical if and only
if S[w] := S(w,w) = 0. All homogeneous spherical functions of degree k ≥ 2
are linear combination of S(w, x)k for a finite set of spherical vectors w with
S[w] = 0. In particular, for v ∈ Y(S), the function x 7→ S(v, x)k is a spherical
function.

Note here that for v ∈ Y(S), S[v] = 0 and S(v, x) = −Pv(v, x), because
P (v, x) = P (v, xW ) + P (v, xW⊥) = −S(v, xW ) = −S(v, x). Define ∂v = ṽ · ∂,
where ṽ = (λ1, . . . , λd) when v =

∑
j λjvj . Then we have, by computation,

(2.8) ∂vS[x] = 2S(v, x), ∂vPv[x] = 2Pv(v, x) = −S(v, x).
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We define a Schwartz function Ψ on V for each τ = ξ + iη ∈ H and v ∈ Y(S)
by

Ψ(τ ; v;w) = e(
1

2
(S[w]ξ + iPv[w]η)) = exp(πi(S[w]ξ + iPv[w]η)).

We see by computation using (2.8)

(2.9) (∂kvΨ)(τ ; v;w) = (2πi)k(τS(v, w))kΨ(τ ; v;w).

2.2. SL(2) × SL(2) as an orthogonal group. We realize the product as
an orthogonal group of signature (2, 2), and hence this group gives a special
case of the orthogonal groups treated in the previous subsection.

Let V = M2(R), and consider the symmetric bilinear form S : V × V → R
given by S(x, y) = Tr(xyι), where yyι = yιy = det(y) for 2× 2 matrices y. We
let (a, b) ∈ GL2(R)×GL2(R) act on V by x 7→ axbι. Then

S(axbι, aybι) = Tr(axbιbyιaι) = det(b)Tr(axyιaι)

= det(b)Tr(xyιaιa) = det(a) det(b)S(x, y).

Thus we have an isomorphism

(GL2(R)×GL2(R)) /{±(1, 1)} →֒ G(R)

with ν(a, b) = det(a) det(b). Since the symmetric space of G(R) has dimension
2 over C, the above isomorphism has to be onto on the identity connected
component. Since G(R) has four connected components (because Y(S) has
two), the above morphism has to be a surjective isomorphism becauseGL2(R)×
GL2(R) has four connected components:

(2.10) (GL2(R)×GL2(R)) /{±(1, 1)} ∼= G(R).

Since the symmetric domain of GL2(R) × GL2(R) is isomorphic to H × H for
the upper half complex plane H = {z ∈ C| Im(z) > 0}, we find that Z ∼= H×H.

We are going to make this isomorphism: Z ∼= H × H more explicit. We study
Y = Y(S) more closely. Since VC = M2(C), writing v =

(
a b
c d

)
∈ M2(C), we

have from the definition:

Y =
{(

a b
c d

)
∈M2(C)

∣∣∣ad = bc, ad− bc+ da− cb < 0
}
.

Pick v =
(
a b
c d

)
∈ Y, and suppose that c = 0. Then by the defining equation

of Y, ad = 0 ⇒ 0 = ad + da < 0, which is a contradiction. Thus c 6= 0; so,
we define for v as above, z = a

c and w = −dc . Then −zw = b
c , and hence (see

[Sh2] II (4.6))

(2.11) v = cp(z, w) with p(z, w) =
(
z −wz
1 −w

)
= −t(z, 1)(w, 1)ε,

where ε =
(

0 1
−1 0

)
. Again by the equation defining Y,

(2.12) S(p(z, w), p(z, w)) = (w − w)(z − z) = −zw + zw − zw + zw < 0.
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From this, it is clear that Y ∼= C× ×
(
H2 ⊔ H

2
)
. By this isomorphism, for α ∈

G(R), we can define its action α(z, w) ∈
(
H2 ⊔ H

2
)

and a factor µ(α; z, w) ∈ C×

of automorphy by

α · p(z, w) = p(α(z, w))µ(α; z, w).

By a direct computation, writing j(v, z) = cz+d for v =
(
a b
c d

)
and v(z) = az+b

cz+d ,

we have, for (α, β) ∈ GL2(R)×GL2(R),

(2.13) αp(z, w)βι = p(α(z), β(w))j(α, z)j(β,w).

Thus

(α, β)(z, w) = (α(z), β(w)) and µ((α, β); (z, w)) = j(α, z)j(β,w).

We define a spherical function

(2.14) v 7→ [v; z, w]k = S(v, p(z, w))k

for a positive integer k > 0. This function is spherical because S[p(z, w)] =
2 det p(z, w) = 0, and we have

(2.15) [αvβι; z, w] = j(αι, z)j(βι, w)[v;α−1(z), β−1(w)].

2.3. Growth of theta series. Let F be a totally real field with integer
ring O and B be a quaternion algebra over F . The algebra B can be M2(F ).
Let x 7→ xι be the main involution of B; so, xxι = N(x) and x + xι = Tr(x)
for the reduced norm N : B → F and the reduced trace Tr : B → F . We
consider the symmetric bilinear form S : B×B → F given by S(x, y) = Tr(xyι).

Writing I for the set of all archimedean places of F , we split I = IB ⊔ IB so
that B ⊗F,σ R ∼= M2(R)⇔ σ ∈ IB . Thus for σ ∈ IB,

B ⊗F,σ R ∼= H =
{(

a b
−b a

) ∣∣∣a, b ∈ C
}
.

We identify Bσ = B ⊗F,σ R with M2(R) or H for each σ ∈ I. Thus G(Q) =
(B× × B×)/{±(1, 1)} is the orthogonal group of (B,S). Since S at σ ∈ IB is

positive definite, G(R) ∼= (GL2(R)×GL2(R))IB × (H××H×)I
B

/{±(1, 1)}. For
each b ∈ B∞ = B ⊗Q R, writing b = (bσ) for σ–component bσ ∈ Bσ, we define

(2.16) [b; z, w]k =
∏

σ∈IB
[bσ; zσ, wσ]

kσ (k =
∑

σ∈IB
kσσ ∈ Z[IB ]),

where [bσ; zσ, wσ] is as in (2.14) defined for Bσ = M2(R). For σ ∈ IB , we
pick a homogeneous spherical polynomial ϕσ : Bσ → C of degree κσ, and put
ϕ =

∏
σ∈IB ϕσ and κ =

∑
σ κσ ∈ Z[IB ]. We define an additive character

eF : FC = F ⊗Q C→ C× by eF (z) = exp(2πi
∑
σ zσ) (z = (zσ)σ∈I) identifying

FC with CI as C–algebras. Writing Tr : FC → C for the trace map, we have
eF (z) = e(Tr(z)).
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We consider Siegel’s theta series defined for 0 ≤ k ∈ Z[IB ] and a Schwartz-
Bruhat function φ : BA(∞) → C:

(2.17) η−Iθk(τ ; z, w; v, φϕ) =
∑

ℓ∈B
[ℓ; z, w]k(φϕ)(ℓ)eF (

1

2
(ξS[ℓ] + iηPp(z,w)[ℓ]))

=
∑

ℓ∈B
[ℓ; z, w]k(φϕ)(ℓ)e(

1

2
Tr(S[ℓ]τ))e

(
i

2

∑

σ∈IB

ησ |[ℓσ; zσ, wσ]|2
Im(zσ) Im(wσ)

)
,

where τ = ξ + iη ∈ HI , ηI(τ) =
∏
σ ησ and the last equality follows from

(2.12). Since the majorant Pp(z,w) is positive definite, the theta series is rapidly

decreasing with respect to τ towards the cusp ∞, as long as ϕ(0)[0; z, w]k = 0
(in other words, as long as k + κ > 0). Since the infinity type k + κ does not
change under the transformation τ 7→ α(τ) for α ∈ SL2(F ), the theta series is
rapidly decreasing towards any given cusp if k + κ > 0. Otherwise it is slowly
increasing (see below Proposition 2.3).

2.4. Partial Fourier transform. We are going to compute in the following
subsection the Fourier expansion of the theta series (introduced in the earlier
subsections) with respect to (z, w) when B = M2(F ). This is non-trivial,
because θ is defined by its Fourier expansion with respect to the variable τ . A
key idea is to compute the partial Fourier transform of each term of the theta
series and to resort to the Poisson summation formula. In this subsection, we
describe the computation of the partial Fourier transform.

The Schwartz function on B∞ = B ⊗Q R = M2(F∞) which gives rise to the
theta series θ0(τ ; z, w;φ) is given by

u 7→ Ψ0(u) = ηIeF (det(u)τ +
η

2yt
|[u; z, w]|2)

for τ = ξ + iη, z = x+ yi and w = r + ti with ξ, x, r ∈ F∞ and η, y, t ∈ F×∞+.

Here F×∞+ is the identity connected component of F×∞. We define

(2.18) Ψk(u) =
∏

σ

Ψkσ,σ(uσ) (0 ≤ k =
∑

σ

kσσ ∈ Z[I]) and

Ψkσ,σ(uσ) = ηkσ+1
σ [uσ; zσ, wσ]

kσe(det[uσ]τσ + i
ησ

2yσtσ
|[uσ; zσ, wσ]|2).

We write the variable u = ( u1
u2

) for two row vectors uj and write individually
u1 = (a, b) and u2 = (c, d). The partial Fourier transform φ∗ of φ is given by

(2.19) φ∗
(
a b
c d

)
=

∫

F 2
∞

φ
(
a′ b′
c d

)
eF (ab′ − ba′)da′db′,

where ab′ − ba′ = 1
2S
[(

a b
a′ b′

)]
and da′ = ⊗σda′σ for the Lebesgue measure da′σ

on the σ–component R of F∞. By applying complex conjugation, we have

(2.20) φ∗
(
a b
c d

)
=
(
φ
)∗ (−a −b

c d

)
.
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We compute first the partial Fourier transform to the action of U(F∞) ×
GL2(F∞), where U(X) is made up of upper unipotent matrices with right
shoulder entry in X. We first deal with (1, β) with β ∈ GL2(F∞):

(φ ◦ (1, β))∗
(
a b
c d

)
=

∫

F 2
∞

φ
((

a′ b′
c d

)
βι
)
eF (−(a′, b′)εt(a, b))da′db′

(a′,b′)βι 7→(a′,b′)
= |N(det(β)|−1

∫

F 2
∞

φ
(
a′ b′
c d

)
eF (−(a′, b′)β−ιεt(a, b))da′db′

=|N(det(β)|−1

∫

F 2
∞

φ
(
a′ b′
c d

)
eF (−(a′, b′)β−ιεtβ−1t(a, b))da′db′

=|N(det(β)|−1φ∗ ◦
((

1 0
0 det(β)

)
, β−1

) (
a b
c d

)
.

We now compute (φ ◦ (α, 1))∗ for α ∈ U(F∞):

(φ ◦ (( 1 x
0 1 ) , 1))∗

(
a b
c d

)
=

∫

F 2
∞

φ
(
a′+xc b′+xd
c d

)
eF (ab′ − ba′)da′db′

(a′+xc,b′+xd) 7→(a′,b′)
=

∫

F 2
∞

φ
(
a′ b′
c d

)
eF (ab′ − ba′)da′db′eF (−x(ad− bc))

= eF (−x(ad− bc))φ∗
(
a b
c d

)
.

Summarizing the above computation, we get for (( 1 x
0 1 ) , 1) ∈ U(F∞)×SL2(F∞)

(2.21) (φ ◦ (( 1 x
0 1 ) , β))∗(u) = eF (−xdet(u))φ∗ ◦ (1, β−1)(u).

By (2.15), for (α, β) ∈ SL2(F∞)× SL2(F∞), we have

[αuβι; z, w] = S(αuβι; p(z, w)) = S(u;α−1p(z, w)β−ι)

= [u, α−1(z), β−1(w)]j(α−1, z)j(β−1, z).

To compute the partial Fourier transform of Ψk, we may therefore assume that
r = x = 0. Then the computation for Ψ∗0 is reduced to, writing u′ =

(
a′ b′
c d

)

(and omitting the subscript σ),

(2.22)

∫

F 2
σ

Ψ0,σ(u
′)e(ab′ − ba′)da′db′ =

∫

R2

ηe

(
ξ detu′ +

iη

2
(
ta′2

y
+
b′2

yt
+
yd2

t
+ ytc2)

)
e(ab′ − ba′)da′db′.

We then invoke the following formula:

∫ ∞

−∞
exp(−πza′2)e(a′b)da′ = z−1/2 exp(−πb

2

z
),
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where z ∈ C− R− (R−: the negative real line) and z−1/2 is the branch of the
square root which is positive real if z is positive real. Then (2.22) is equal to

(2.23)

yσ exp(−πη−1

(
yσ
tσ

(dξσ − b)2 + yσtσ(cξσ − a)2
)

e

(
iησ
2

(
yσ
tσ
d2 + yσtσc

2)

)

= yσ exp

(
−π yσ

ησ
(

1

tσ
|dτσ − b|2 + t|cτσ − a|2)

)
.

By computation, we have

(2.24) t|τc− a|2 + t−1|τd− b|2 = t−1|[u; τ, it]|2 + 2η det(u).

Thus we get

Φ0(u) = Ψ∗0(u) =
∏

σ

Ψ∗0,σ(uσ),

Φ0,σ(u) = Ψ∗0,σ
(
a b
c d

)
= yσ exp

(
−π yσ

ησ
(

1

tσ
|dτσ − b|2 + tσ|cτσ − a|2)

)

= yσ exp

(
−2πyσ det(u)− π yσ

ησtσ
|[u; τσ, itσ]|2

)
.

(2.25)

In order to compute the partial Fourier transform of Ψk, we consider the fol-
lowing differential operator

(2.26) ∂σ = S

(
p(τσ, wσ),

t ( ∂
∂a

∂
∂b

∂
∂c

∂
∂d

)ι)
= τσ

∂

∂a
− wστσ

∂

∂b
+
∂

∂c
− wσ

∂

∂d
.

Since we have, for u =
(
a′ b′
c d

)
,

τσ
∂

∂a
e(ab′ − ba′) = 2πiτσb

′e(ab′ − ba′)

−wστσ
∂

∂b
e(ab′ − ba′) = 2πiwστσa

′e(ab′ − ba′)
∂

∂c
Ψ0,σ(u) = (−2πib′τσ − π

ησ
yσtσ

(wσzσ[u; zσ, wσ] + wσzσ[u; zσ, wσ]))Ψ0,σ(u)

−wσ
∂

∂d
Ψ0,σ(u)

= −(2πia′τσwσ − π
ησ
yσtσ

(wσzσ[u; zσ, wσ] + wσzσ[u; zσ, wσ]))Ψ0,σ(u).

Taking the fact that wσ − wσ = 2itσ, zσ = iyσ and

∂σ([u; zσ, wσ]) = ∂σ(Sσ(u, p(zσ, wσ)) = Sσ(p(τσ, wσ), p(zσ, wσ)) = 0

into account, we have

(2.27) ∂σ(Ψj,σ(u)e(ab′ − ba′)) = 2πΨj+1,σ(u)e(ab′ − ba′)
for all integers j ≥ 0.
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To complete the computation, we need to compute ∂σΦj,σ(u). We have, noting
that we are restricting ourselves to wσ = itσ:

τσ
∂

∂a
Φ0,σ(u) = π

yσtσ
ησ

(τσ(cτσ − a) + τσ(cτσ − a))Φ0,σ(u)

−itστσ
∂

∂b
Φ0,σ(u) = −πiyσ

ησ
(τσ(dτσ − b) + τσ(dτσ − b))Φ0,σ(u)

∂

∂c
Φ0,σ(u) = −πyσtσ

ησ
(τσ(cτσ − a) + τσ(cτσ − a))Φ0,σ(u)

−itσ
∂

∂d
Φ0,σ(u) = πi

yσ
ησ

(τσ(dτσ − b) + τσ(dτσ − b))Φ0,σ(u).

From this we get, taking the fact:

itσ(cτσ − a) + dτσ − b = [u; τ, itσ]

into account, we have

∂σΦ0,σ(u) = 2πyσ[u; τσ, itσ]Φ0,σ(u).

Since ∂σ([u; τ, w]) = 0, we again obtain, when z = iy and w = it,

(2.28) ∂σ(Φj,σ)(u) = 2πΦj+1(u),

where Φj,σ(u) = yj+1
σ [u; τ, w]jΦ0,σ(u). By (2.27) and (2.28) combined, we get,

at this moment for z = iy and w = it,

(2.29) (Ψk)
∗
(u) = Φk(u),

where Φk(u) =
∏
σ Φkσ,σ(uσ) and Ψk(u) =

∏
σ Ψkσ,σ(uσ).

We are going to compute the partial Fourier transform for general (z, w) and
show that (2.29) is valid in general under a suitable description of Φ for general
(z, w): To do this, we write

Ψzσ,wσ,τσ
j,σ (u) = ηj+1

σ [u; zσ, wσ]
je

(
det(u)τσ + i

ησ
2yσtσ

|[u; zσ, wσ]|2
)
.

Since [u, α(zσ), β(wσ)]j(α, z)j(β,w) = [α−1uβ−ι; zσ, wσ] by (2.13) and (2.14)
combined, we have

Ψzσ,wσ,τσ
j,σ = Ψiyσ,itσ,τσ

j,σ ◦
((

1 −xσ
0 1

)
,
(

1 −rσ
0 1

))
.

Then by (2.21),
(
φ ◦
((

1 −xσ
0 1

)
,
(

1 −rσ
0 1

)))∗
(u) = e(xσ det(u))φ∗ ◦

(
1,
(

1 rσ
0 1

))

and applying this to Ψzσ,wσ,τσ
j,σ , we get from (2.29)

(
Ψzσ,wσ,τσ
j,σ

)∗
(u) = e(xσ det(u))Φiyσ,itσ,τσj,σ

(
u
(

1 −rσ
0 1

))
,

where

Φiyσ,itσ,τσj,σ (u) = [uσ; τσ, itσ]
jyj+1
σ exp

(
−2πyσ det(u)− π yσ

ησtσ
|[u; τσ, itσ]|2

)
.
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Define

Φk(u) =Φz,w,τk (u) =
∏

σ

Φzσ,wσ,τσkσ,σ
(u) for

Φj,σ(u) =Φzσ,wσ,τσj,σ (u) = yj+1
σ [u; τσ, wσ]

je

(
det(u)zσ +

iyσ
2ησtσ

|[u; τσ, wσ]|2
)
.

(2.30)

Using this definition, (2.29) is valid for general (z, w, τ) ∈ HI × HI × HI . In
other words, we have the reciprocal formula:

(2.31) Φz,w,τk = Ψτ,w,z
k and (Ψz,w,τ

k )
∗
(u) = Ψτ,w,z

k (u).

By (2.20) (and (2.15)), we also have

(2.32)
(
Ψz,w,τ
k

)∗
(u)

=
∏

σ

(
ykσ+1
σ [uσ;−τσ, wσ]kσe

(
det(uσ)τσ +

yσ
2ησtσ

|[uσ;−τσ, wσ]|2
))

.

2.5. Fourier expansion of theta series. Write V = M2(F ). We choose
on FA(∞) = F ⊗Q A(∞) the standard additive Haar measure da so that

∫

bO
da = 1 for Ô = O ⊗Z Ẑ (Ẑ =

∏

p

Zp).

At infinity, we choose the Lebesgue measure ⊗σdaσ on F∞ =
∏
σ∈I R. Then

we take the tensor product measure du = da⊗db⊗dc⊗dd for u =
(
a b
c d

)
∈ VA.

Let φ : VA = M2(FA) → C be a Schwartz-Bruhat function, and assume that
φ =

∏
v φv for φv : V ⊗Qv → C. We define the partial Fourier transform of φ

for φ : VA → C by the same formula as in (2.19):

(2.33) φ∗
(
a b
c d

)
=

∫

F 2
A

φ
(
a′ b′
c d

)
eA(ab′ − ba′)da′db′,

where eA : FA/F → C× is the additive character with eA(x∞) = eF (x∞)
for x∞ ∈ F∞. We further assume that φ∞ = Ψz,w,τ

k studied in the previous
subsection. Then we define

(2.34) Θ(φ) =
∑

ℓ∈V
φ(ℓ).

Writing φ(∞) for the finite part of φ and regarding it as a function on V ⊂ VA(∞) ,
we find

Θ(φ) = ηkθk(τ ; z, w;φ(∞)).

Since
∫
FA/F

da =
√
|D| for the discriminant D of F , the measure |D|−1da′db′

has volume 1 for the quotient F 2
A/F

2. Thus |D|−1φ∗ gives the partial Fourier
transform with respect to volume 1 measure |D|−1da′db′. The Poisson summa-
tion formula (with respect to the discrete subgroup F 2 ⊂ F 2

A) is valid for the
volume 1 measure (cf. [LFE] Section 8.4), we have the following result:
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Proposition 2.2. We have Θ(φ) = |D|−1Θ(φ∗). In terms of θk, we have

ηkθk(τ ; z, w;φ(∞)) = |D|−1ykθk(z; τ, w;φ∗(∞)).

We could say that the right-hand-side of this formula gives the Fourier expan-
sion of the theta series in terms of the variable z.

Proposition 2.3. Let

Γτ (φ∗) = {γ ∈ SL2(F )|φ∗(∞)(γu) = χτ (γ)φ
∗(∞)(u)}

Γz,w(φ) = {(γ, δ) ∈ SL2(F )2|φ(∞)(γuδ−1) = χz,w(γ, δ)φ(∞)(u)}.
for characters χτ : Γτ (φ∗) → C× and χz,w : Γz,w(φ) → C× Suppose that
φ∞ = Ψz,w,τ

k . Then for (α, β, γ) ∈ Γτ (φ∗)× Γz,w(φ), we have

Θ(φ)(α(τ);β(z), γ(w))

= Θ(φ)(τ ; z, w)χτ (α)−1χz,w(β, γ)−1j(α, τ)−kj(β, z)−kj(γ,w)−k.

More generally, for general α ∈ SL2(F ), we have

Θ(φ)(α(τ); z, w)j(α, τ)k = |D|−1Θ(φ∗ ◦ α) = Θ(Φ),

where φ∗ ◦ α(u) = φ∗(αu) and Φ
(
a b
c d

)
= (φ∗ ◦ α)∗

(−a −b
c d

)
. Similarly, for

(β, γ) ∈ SL2(F ), we have

Θ(φ)(τ ; z, w)j(β, z)kj(γ,w)k = Θ(φ ◦ (β, γ)),

where φ ◦ (β, γ)(u) = φ(βuγ−1).

Proof. Since the argument is similar, we prove the formula in details for the
action on τ . Write Γ = Γτ (φ∗). We use the expression Θ(φ) = |D|−1Θ(φ∗).
By (2.15), we have

|[γ−1ℓ; τσ, wσ]|2
η(τs)

=
|[ℓ; γ(τσ), wσ]|2

η(γ(τs))
, [γ−1ℓ; τ, w]k = [ℓ; γ(τ), w]kj(γ, τ)k.

Then, up to yk+IeF (det(ℓ)z) (independent of τ), Θ(φ∗) is the sum of the
following terms over ℓ ∈ Γ\M2(F ) and γ ∈ Γ:

χτ (γ)φ
∗(ℓ)Yℓ(γ(τ))j(γ, τ)

k,

where Yℓ(τ) = [ℓ; τ, w]k exp(−π∑σ
yσ
tσ

|[ℓ;τσ,wσ ]|2
ησ(τσ) ). Thus we need to prove the

automorphic property with respect to τ for

f(τ) =
∑

γ∈Γ/Γℓ

χτ (γ)Yℓ(γ(τ))j(γ, τ)
k,

where Γℓ ⊂ Γ is the stabilizer of ℓ. We see

f(α(τ)) =
∑

γ∈Γ/Γℓ

χτ (γ)Yℓ(γα(τ))j(γ, α(τ))k

=
∑

γ∈Γ/Γℓ

χτ (γ)Yℓ(γα(τ))j(γα, τ)kj(α, τ)−k
γα7→γ

= χτ (α)−1f(τ)j(α, τ)−k.
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This shows the first assertion for τ . As for the assertion with respect to (z, w),
we argue similarly looking into the terms of Θ(φ).

For the action of general α, the argument is similar for Θ(φ∗). To return to
Θ(φ), we need to use the Fourier inversion formula (φ∗)∗

(
a b
c d

)
= φ

(−a −b
c d

)
.

We leave the details to the attentive readers. �

3. q–Expansion of Shimura series

The Shimura series for GL(2)×GL(2) is defined for 0 < k ∈ Z[I] and 0 ≤ m ∈
Z[I] in [Sh2] II (4.11) by

(3.1) H(z, w; s) = Hk,m(z, w; s;φ(∞), f)

= [U ]
∑

0 6=α∈M2(F )/U

φ(∞)(α)a(−det(α), f)|det(α)|m[α; z, w]−k |[α; z, w]|−2sI

for (z, w) ∈ HI×HI . When m = 0, we simply write Hk for Hk,0. The positivity
of k means that k ≥ 0 and kσ > 0 for at least one σ ∈ I. Here f is a Hilbert
modular form given by the Fourier expansion:

∑
ξ∈F a(ξ, f)eF (ξτ) for τ ∈ HI

of weight ℓ (eF (ξτ) = exp(2πi
∑
σ ξ

στσ)) with a(ξ, f) = 0 if ξσ < 0 for some

σ ∈ I, U is a subgroup of finite index of the group O×+ of all totally positive

units for which each term of the above sum is invariant, [U ] = [O×+ : U ]−1

and φ(∞) : M2(FA(∞))→ C is a locally constant compactly supported function
(a Schwartz-Bruhat function). To have invariance of the terms under the unit
group U , we need to assume

(3.2) k − ℓ− 2m = [k − ℓ− 2m]I (I =
∑

σ∈I
σ) for an integer [k − ℓ− 2m].

The series (3.1) converges absolutely and locally uniformly with respect to all
variables s, z, w if

(3.3) Re(s) > n+ 2 + 2θ(f)− [k − ℓ− 2m]

as was shown in [Sh2] I Proposition 5.1 and Theorem 5.2, where
θ(f) = −1 when f is a constant, and otherwise, θ(f) = θ ≥ − 1

2 with

|a(ξ, f)ξ−ℓ/2| = O(|N(ξ)|θ) for the norm map N = NF/Q. This series is a
generalization of Eisenstein series, because if we take f = 1 (so ℓ = 0 and
m = 0), the series gives an Eisenstein series for GL(2)×GL(2) over F .

We are going to compute the Fourier expansion of the Shimura series. We sum-
marize here how we proceed. We have already computed the Fourier expansion
of Θ(φ)(τ ; z, w) with respect to z, and it is equal to |D|−1Θ(φ∗)(z; τ, w) for
the partial Fourier transform φ∗ of φ. By the integral expression of the series
given in [Sh2] I Section 7, the series (actually its complex conjugate) is the
Rankin-Selberg convolution product of Θ(φ) and f with respect to the variable
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τ . Since integration with respect to τ preserves Fourier expansion of Θ(φ) with
respect to z, what we need to compute is

∫

Γ\HI
Θ(φ∗)(z; τ, w)f(τ)E(τ ; 0)dµ(τ)

for the invariant measure dµ(τ) for a suitable holomorphic Eisenstein series
E(τ ; 0). This has been actually done, though without referring the result as
the Fourier expansion of the series Hk(z, w; 0), in [Sh2] II Proposition 5.1 (re-
placing f(w) and variable w there by E(τ ; 0)f(τ) and τ). We recall the integral
expression in Subsection 3.1 and the computation of Proposition 5.1 in [Sh2] II
in Subsection 3.2. We shall do this to formulate our result in a manner optimal
for our later use.

3.1. Integral expression. Let Γ be a congruence subgroup of SL2(F ) which
leaves θk(τ ; z, w;φ(∞)) and f fixed; thus, Γ ⊂ Γτ (φ∗). The stabilizer Γ∞ of the
infinity cusp has the following canonical exact sequence:

(3.4)
0→ a −→ Γ∞ −→ U → 1

a 7→ ( 1 a
0 1 )

( ǫ a
0 ǫ−1 ) 7→ ǫ

for a fractional ideal a and a subgroup U ⊂ O× of finite index. By shrinking
Γ a little, we may assume that U ⊂ O×+ . We recall the integral expression of
the Shimura series involving Siegel’s theta series given in [Sh2] I (7.2) and II
(6.5b):

(3.5) [U ]N(a)−1
√
|D|−1

∫

F×∞+/U
2

(∫

F∞/a
Θ(φ)dmf(τ)dξ

)
η(s−1)Id×η,

where dm =
∏
σ

(
1

2πi
∂
∂τσ

)mσ
, φ(u) = φ(∞)(u(∞))Ψz,w,τ

k (u∞) and d×η is the

multiplicative Haar measure given by ⊗σ(η−1
σ dησ). We first compute the inner

integral: if Re(s)≫ 0,

N(a)−1
√
|D|−1

∫

F∞/a
Θ(φ)dmf(τ)dξ =

∑

α∈V,β∈F
φ(∞)(α)a(β, f)|β|m[α; z, w]k exp(−π(2β + Pz,w(α))η)ηk+Iδdet(α),−β ,

because for C = N(a)−1
√
|D|−1

C

∫

F∞/a
eF ((det(α) + β)ξ)dξ = δdet(α),−β =

{
1 if det(α) = −β,

0 otherwise.

To compute the outer integral, when det(α) = −β, we note from (2.2) that

Pz,w[α] = S[α] + |[α;z,w]|2
yt for S[α] = 2 det(α) and that

exp(−π(2β+Pz,w(α))η) = exp(π(2 det(α)−Pz,w(α))η) = exp(−π |[α; z, w]|2
yt

η).
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Here we have integrated term wise (with respect to) the summation of Θ and
the Fourier expansion of f , which can be justified by the locally uniform and
absolute convergence of the Fourier expansions of Θ and f as long as the
resulting series is absolutely convergent (Lebesgue’s term wise integration the-
orem). The convergence of the series is guaranteed by (3.3) if Re(s) is large.
Again spreading the integral

∫
F×∞+/U

2

∑
ǫ∈U Φ(ε2η)d×η to the whole F×∞+ for

Φ(η) = exp(−π |[α;z,w]|2η
yt ), we see that (as long as the latter integral is abso-

lutely convergent) the integral (3.5) is equal to

[U ]
∑

α∈V/U
φ(∞)(α)a(−det(α), f)|det(α)|m[α; z, w]k

×
∫

F×∞+

exp(−πTr(
|[α; z, w]|2

yt
η))ηk+sId×η.

(3.6)

We know

[α; z, w]k
∫

F×∞+

exp(−π |[α; z, w]|2
yt

η)ηk+sId×η

= 21−[F :Q]π−k−sIΓF (k + sI)yk+sItk+sI [α; z, w]k|[α; z, w]|−2s−2k

= 21−[F :Q]π−k−sIΓF (k + sI)yk+sItk+sI [α; z, w]−k|[α; z, w]|−2s,

where ΓF (k) =
∏
σ Γ(kσ), and as for the factor 21−[F :Q], see [LFE] page 271.

Thus we conclude

21−[F :Q]π−k−sIΓF (k + sI)yk+sItk+sIHk,m(z, w; s;φ
(∞)

, fc)

= [U ]N(a)−1
√
|D|−1

∫

F×∞+/U
2

∫

F∞/a
Θ(φ)dmf(τ)η(s−1)Idξd×η,

where fc(z) = f(−z). In other words, by taking complex conjugation, we have,

for φ̃ = φ
(∞)

φ∞,

(3.7) 21−[F :Q]π−k−sIΓF (k + sI)yk+sItk+sIHk,m(z, w; s;φ(∞), f)

= [U ]N(a)−1
√
|D|−1

∫

F×∞+/U
2

∫

F∞/a
Θ(φ̃)dmfc(τ)η

(s−1)Idξd×η.

The above formula (3.7) is only valid for s satisfying (3.3). However, by Rankin-
Selberg convolution, we can analytically continue the function H to a mero-
morphic function on the whole s–plane (see [Sh2] I Section 7). We recall the
process. We first assume that m = 0. Since Γ∞\HI ∼= (F×∞+/U

2) × (F∞/a),
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we can rewrite the above integral as

21−[F :Q]π−k−sIΓF (k + sI)yk+sItk+sIHk(z, w; s;φ(∞), f)

= [U ]N(a)−1
√
|D|−1

∫

Γ∞\HI
Θ(φ̃)fc(τ)η

sIdµ(τ)

= N(a)−1
√
|D|−1

∫

Γ\HI

∑

γ∈Γ∞\Γ

(
Θ(φ̃)fc(τ)η

sI
)
◦ γdµ(τ)

= N(a)−1
√
|D|−1

∫

Γ\HI
Θ(φ̃)fc(τ)E(τ ; s)dµ(τ),

(3.8)

where dµ(τ) is the invariant measure η−2Idξdη on HI , and by Proposition 2.3,

(3.9) E(τ ; s) = Ek−ℓ(τ ; s) = ηsI
∑

γ∈Γ∞\Γ
j(γ, τ)ℓ−k|j(γ, τ)|−2sI .

In general, if m 6= 0, we use the formula (see [Sh2] I (1.16a)):

dm =
∑

0≤j≤m

(
m

j

)
ΓF (ℓ+m)

ΓF (ℓ+ j)
(4πη)j−mδjτ (ℓ)

for δστ (j) = 1
2πi

(
j

τσ−τσ + ∂
∂τσ

)
and

δjτ (ℓ) =
∏

σ

(δστ (ℓσ + 2jσ − 2) · · · δστ (ℓσ + 2)δστ (ℓσ)) .

The binomial coefficients
(
m
j

)
is the product of individual ones

(
mσ
jσ

)
over

σ ∈ I. Since δjτ (ℓ) preserves automorphy (but not holomorphy), we can
write dmfc as a linear combination of δuℓ fc, which is an automorphic form
of weight ℓ+2u on the same Γ, and therefore the above computation still works.

The integral (3.8) (in general for m ≥ 0) is convergent for all s ∈ C except for
s giving rise to a singularity of the Eisenstein series, because Θ(φ) for k > 0
does not have constant term at any cusp; so, it is rapidly decreasing. Thus
the integral of (3.8) converges absolutely for any slowly increasing automor-
phic form f(τ) as long as E(τ ; s) is finite. This is the proof of the analytic
continuation given in [Sh1] Section 13. This proof works well even when k = 0
for cusp forms f .

3.2. Computation of q–expansion. We assume that m = 0. We are going
to compute the Fourier expansion of

∫
Γ\HI Θ(φ)g(τ)dµ(τ) for an eigenform

g(τ) of Laplacian ∆σ: ∆σg = (s2σ − 1
4 )g (sσ ∈ C) for all σ ∈ I, where ∆σ =

η2
σ

(
∂2

∂ξ2σ
+ ∂2

∂η2
σ

)
. We assume that (Θ(φ)g)(γ(τ)) = (Θ(φ)g)(τ) for all γ ∈ Γ.

By (2.2), Θ(φ) = |D|−1Θ((φ)∗) is the sum of the following terms:

∏

σ

ykσ+1
σ [ασ; τσ, wσ]

kσe

(
det(ασ)zσ +

iyσ
2ησtσ

|[ασ; τσ, wσ]|2
)
.
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By (2.15), we have, for γ ∈ Γ,

log(Yσ(τσ)) =
−πyσ
ησtσ

|[(γα)σ; τσ, wσ]|2

=
−πyσ
ησtσ

|[ασ; γ−1(τσ), wσ]|2|j(γ−1, z)|2

=
−πyσ

Im(γ−1(τσ))tσ
|[ασ; γ−1(τσ), wσ]|2.

This shows

y−(k+I)

∫

Γ\HI
Θ(φ)g(τ)dµ(τ)

=
∑

α∈Γ\M2(F )

eF (det(α)z)φ(∞)(α)

∫

Γ\HI

∑

γ∈Γα\Γ
[α; γ(τ), w]kg(γ(τ))Y (γ(τ))dµ

=
∑

α∈Γ\M2(F )

eF (det(α)z)φ(∞)(α)

∫

Γα\HI
[α; τ, w]kY (τ)g(τ)dµ,

(3.10)

where Γα = {γ ∈ Γ|γα = α} and Y (z) =
∏
σ e(Y (zσ)). If det(α) 6= 0, then

Γα = {1}.

We first compute the general term:
∫

HI
[α; τ, w]kY (τ)g(τ)dµ(τ). For that, we

recall [Sh2] Lemma 5.2 and the discussion after the lemma:

Lemma 3.1. Let α ∈ GL2(F ). Let P (τ, w) = exp(−∑σ
uσ
ησtσ
|[α, τσ, wσ]|2) for

τ, w ∈ HI with 0 < uσ ∈ R. Assume that the integral
∫

HI
P (τ, w)g(τ)dµ(τ) is

convergent. If ∆σg = (s2σ − 1
4 )g and det(α) is totally positive, we have

(3.11)

∫

HI
P (τ, w)g(τ)dµ(τ)

= π[F :Q]/2(det(α)u−1)I/2 exp(−2
∑

σ

det(ασ)uσ)K(det(α)u, s)g|kα(w)

for the modified Bessel function:

K(u, s) =
∏

σ

∫ ∞

0

exp(−uσ(xσ + x−1
σ ))xsσ−1

σ dxσ,

where g|kα(w) = det(α)k−Ig(α(w))j(α, z)−k. If det(α) is not totally positive
and g is holomorphic, the integral (3.11) vanishes, as long as it converges.

By the above lemma, taking g = f (so, g = f is holomorphic), only non-trivial
case is when det(α) is totally negative, and noting the fact that K(u, 1

2 ) =
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π[F :Q]/2u−I/2 exp(−2
∑
σ uσ), we have

∫

HI
exp(−π

∑

σ

yσ
ησ(τσ)tσ

|[ασ; τσ, wσ]|2)[α; τ, w]kf(τ)dµ(τ)

τ 7→α(τ)
=

∫

HI
exp(−π

∑

σ

yσ
|ησ(α(τσ))|tσ

|[ασ;α(τσ), wσ]|2)[α;α(τ), w]kf(τ)dµ(τ)

(2.15)
=

∫

HI
exp(−π

∑

σ

|det(ασ)|yσ
ησ(τσ)tσ

|[1; τσ, wσ]|2)

× [1; τ , w]k det(α)kj(α, τ)−kf(α(τ))dµ(τ)

sσ=1/2
= (−1)[F :Q](−2i)ktky−I exp(−4π

∑

σ

|det(ασ)|yσ)f |kα(w).

If α 6= 0 and det(α) = 0, then Γα is equal to Γ ∩ βU(F )β−1 for β ∈ GL2(F ).
By a variable change, we may assume that α = ( 1 0

0 0 ). Then Γα = Γ ∩ U(F ),
and we have an isomorphism: a ∼= Γα by a ∋ a 7→ ( 1 a

0 1 ), where a is a fractional
ideal of F . In this case, [α; τ, w] = −w. We then have

(3.12)

∫

Γα\HI
[α; τ, w]kY (τ)f(τ)dµ(τ)

=

∫

F×∞+

[α; τ, w]kY (τ)

∫

F∞/a
f(ξ + iη)dξη−2Idη

= N(a)
√
|D|a(0, f)

∫

F×∞+

(−w)k exp(−π
∑

σ

yσ
ησtσ

|w|2)η−2Idη

η 7→η−1

= N(a)
√
|D|a(0, f)(−w)k

∫

F×∞+

exp(−π
∑

σ

ησyσ
tσ
|w|2)dη

= π−1N(a)
√
|D|a(0, f)(−w)k

tσ
yσ
|w|−2I ,

where f(τ) =
∑
δ∈F a(δ, f)eF (δτ).

Thus we obtain the following version of [Sh2] II Proposition 5.1 for B = M2(F ):

Theorem 3.2. Suppose that f is a holomorphic cusp form of weight k > 0.
Let Γ be a congruence subgroup of SL2(F ) fixing f(τ)Θ(φ)(τ). Then we have

(−1)[F :Q]|D|
∫

Γ\HI
Θ(φ)(τ ; z, w)f(τ)dµ(τ)

= (−2i)ktkyk
∑

α∈Γ\M2(F );det(α)≪0

φ∗(∞)(α)eF (det(α)z)f |kα(w),

where f |α(w) = det(α)k−If(α(w))j(α,w)−k for α ∈ M2(F ) with totally nega-
tive determinant.

Taking complex conjugate of the above expansion and replacing the pair (φ, f)

in the above theorem by (φ̃ = φ
(∞)

φ∞, fcE(w; 0)), we get
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Corollary 3.3. We have, if f is a holomorphic cusp form of weight ℓ with
k − ℓ = [k − ℓ]I for an integer [k − ℓ] > 0,

Hk(z, w; 0;φ(∞), f) = 2[F :Q]−1[U ]|D|−3/2N(a)−1 (2πi)k

ΓF (k)

×
∑

α∈Γ\M2(F );det(α)≫0

φ∗(∞)(ǫα)eF (det(α)z)(fEk−ℓ(w; 0))|kα(w),

where ǫ =
(−1 0

0 1

)
.

We can apply the above theorem to the following integral:∫

Γ\HI
Θ(φ̃)(s− 1)Ek−ℓ(τ ; s)f c(τ)dµ(τ)

at s = 1 when k = ℓ, because E(τ, s) has a simple pole at s = 1 whose residue
is a constant cΓ 6= 0 (independent of τ). We then have

Corollary 3.4. We have, if f is a holomorphic cusp form of weight k,

Ress=1Hk(z, w; s;φ(∞), f) = cΓ(−i)[F :Q]2−1[U ]|D|−3/2N(a)−1 (2πi)k+I

ΓF (k + I)

× y−It−I
∑

α∈Γ\M2(F );det(α)≫0

φ∗(∞)(ǫα)eF (det(α)z)f |kα(w),

where cΓ = Ress=1E(w; s).

For the exact value of the constant cΓ 6= 0, see [H99] (RES3) page 173.

4. Evaluation at CM points

We follow [Sh2] I Sections 5 and 8 to write down the evaluation of the Shimura
series at some special CM points in terms of Rankin-Selberg L–functions.

4.1. CM points. We fix the “identity” embedding (σ0 : F → Q) ∈ I. Let
(z0, w0) be a point in HI such that M = F [z0,σ0

] and L = F [w0,σ0
] are totally

imaginary quadratic extensions of F (so, CM fields). Let Y = M ⊗F L, and
we embed Y into M2(F )⊗F M2(F ) = M4(F ) by (a, b) 7→ ρM (a)⊗ ρL(b) with

( z0aa ) = ρM (a) ( z01 ) and
(
w0b
b

)
= ρL(b) (w0

1 ) .

We see easily that ρM (a)ι = ρM (ac) and ρL(b)ι = ρL(bc) for complex conjuga-
tion c. We regard V = M2(F ) as a Y –module for the multiplicative semi-group
Y via ρM ⊗ ρL; in other words, (a, b)v = ρM (a)vριL(b).

We have four distinct Y –eigenvectors p(z0,σ, w0,σ), p(z0,σ, w0,σ), p(z0,σ, w0,σ)

and p(z0,σ, w0,σ) in M2(C) = V ⊗F,σ C, whose eigenvalues of (a, b) are (aeσbeσc),
(aeσbeσ), (aeσcbeσc) and (aeσcbeσ), respectively, for an extension σ̃ of σ to the com-
posite LM . Since V ⊗F,σ C is free of rank 1 over Yσ = Y ⊗F,σ C, V = M2(F ) is
free of rank 1 over Y (because C is faithfully flat over F ). Thus we find v ∈ V
such that V = Y v. Then SY : (y, y′) 7→ S(yv, y′v) gives a non-degenerate
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symmetric F–bilinear form on Y with SY (yy′, y′′) = SY (y′, ycy′′), and we can
write SY (x, y) = TrY/F (δxyc) for δ ∈ Y × with δc = δ.

Suppose now that L = M . Then Y ∼= M⊕Y0 with Y0
∼= M , the first projection

to M is given by a ⊗ b 7→ abc and the second to Y0 is given by a ⊗ b 7→ ab.
Since c is an automorphism of M , p(z, w) and p(z0,σ, w0,σ) belongs to Mv⊗F,σ
C ⊂ Yσv = Vσ. The vectors p(z0,σ, w0,σ) and p(z0,σ, w0,σ) are orthogonal to
Y0 ⊗F,σ C. In other words,

Y0 =
{
y ∈ Y

∣∣σ̃(y) = cσ̃(y) = 0 for all σ ∈ I
}
.

Thus Σ =
∑
σ∈I σ̃ gives rise to a CM type of M (with Σ⊔Σc giving all complex

embeddings of M). This shows: writing V ∋ α = av ⊕ bv with a ∈ M and
b ∈ Y0

[ασ; z0,σ, w0,σ] = S(ασ, p(z0,σ, w0,w0
)) = S(avσ, p(z0,σ, w0,w0

))

= S(vσ, a
cp(z0,σ, w0,w0

)) = aeσc[vσ; z0,σ, w0,σ],

[α; z0, w0]
−k |[α; z0, w0]|−2sI

= C−kΣ|CΣ|−2sa−ckΣN(a)−s,

(4.1)

where C = [vσ; z0,σ, w0,σ] and N(a) is the absolute norm of a ∈ M . Here we
have written kΣ =

∑
σ∈I kσσ̃ and ckΣ =

∑
σ∈I kσσ̃c.

Since p(z0,σ, w0,σ) and p(z0,σ, w0,σ) span (by the definition of Y(S) in Subsec-
tion 2.1) a scalar extension to C of a subspace on which Sσ is negative definite,
S is totally positive definite on W = Y0v, because every vector in W is orthog-
onal to p(z0,σ, w0,σ) and p(z0,σ, w0,σ). We write SW for the restriction of S to
W . By this fact, writing δ = −δM ⊕ δ0 for δM ∈M and δ0 ∈ Y0, then δM is a
totally positive element of F ; so, we may assume that δM = 1

2 by changing v

if necessary. Similarly, we may choose δ0 = 1
2 .

4.2. Special values of Shimura series. As we have explained already, we
choose v as in previous subsection so that

(4.2) SY ((a, b), (a′, b′)) =
1

2
TrM/F (−aa′c + bb′

c
).

We see, supposing

(4.3) φ(∞)(u) = φM ⊗ φ0

for functions φM : Mv → C and φ0 : Y0v → C,

CkΣ|CΣ|2sHk(z0, w0; s;φ
(∞), f)

= [U ]
∑

α∈M/U

φM (αv)
∑

β∈Y0/U

φ0(βv)a(αα
c − ββc, f)α−ckΣN(α)−s,

where C is as in (4.1). We now define θ(φ0) =
∑
β∈Y0

φ0(βv)eF (ββcz). Then

for f ′(z) = θ(φ0)f(z) =
∑
ξ∈F a(ξ, f

′)eF (ξz), we have

a(ξ, f ′) =
∑

β∈Y0/U

a(ξ − ββc, f)φ0(βv),
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which is a finite sum because {x ∈ Y0 ⊗F R|xσxσc < ξσ ∀σ} is a compact set.
Thus we have, under (4.2) and (4.3)

CkΣ|CΣ|2sHk(z0, w0; s;φ
(∞), f)

= [U ]
∑

α∈M/U

φM (αv)a(ααc, f ′)α−ckΣN(α)−s.(4.4)

In general, φ(∞)|detm | is a constant linear combination of the functions sat-
isfying (4.3); so, H(z0, w0; s) is a linear combination of the series of the above
type. The series (4.4) is the Rankin convolution of f ′ and the theta series
θ(φk,M ) of the norm form of M for φk,M (α) = αkΣφM (αv) (see (4.9)).

4.3. An explicit formula of Petersson inner product. For a given
theta series θM (φ) of weight k + I of a CM field M/F , we are going to write
down the inner product 〈θM (φ), f ′c〉 for a special value of a modular form on
GL(2)×GL(2), taking f ′ = fθM (φ′) for another theta series θM (φ′) of weight

I of M . Here f ′c(z) = f ′(−z); so, f ′c is a holomorphic modular form whose
Fourier coefficients (at the infinity) are the complex conjugate of those of f ′.
The modular form is given by, up to an explicit constant,

Ress=1Hk(z, w; s;φ′ ⊗ φ(∞), f).

We will later in Section 7 deduce from this the integrality of π2k+2I〈g,θ(φ)〉
Ω2(k+I) for

the period Ω of the Néron differential of the abelian variety of CM-type sitting
at the evaluation point (z0, w0).

Let f and g be Hilbert modular forms on Γ ⊂ SL2(F ) with Fourier expansion
f =

∑
ξ∈F a(ξ, f)eF (ξτ) and g =

∑
ξ∈F a(ξ, g)eF (ξτ) for z ∈ HI . We take the

ideal a ⊂ F and the unit group U ⊂ O×+ as in (3.4). Let ℓ and κ be the weights
of f and g respectively. We suppose that one of f and g is a cusp form so that
fg is rapidly decreasing.

We let ǫ ∈ U act on HI by τ 7→ ǫ2τ . Then f(ǫ2τ) = ǫ−ℓf(τ) and g(ǫ2τ) =
ǫ−κg(τ). Then the function fg(τ)η(ℓ+κ)/2 is U–invariant. We then consider
(4.5)

D(s; f, g) = [U2]N(a)−1
√
|D|−1

∫

F∞/a

∫

F×∞+/U
2

f(τ)g(τ)ηsI+(ℓ+κ)/2dξd×η.

We now assume that

(4.6) ℓ ≡ κ mod 2Z[I] + ZI.

Thus we find m ∈ Z[I] such that ℓ− κ− 2m ∈ ZI. Replacing Γ by

{
γ ∈ Γ

∣∣(fgη(ℓ+κ)/2 ◦ γ)(τ) = (fgη(ℓ+κ)/2)(τ)j(γ, τ )ℓj(γ, τ)κ|j(γ, τ)−ℓ−κ|
}
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if necessary, we have

(4.7) [U2]−1N(a)
√
|D|D(s; f, g)

=

∫

Γ\HI
f(τ)g(τ)ηℓ−mE[ℓ−κ−2m]I,m(τ ; s+ 1− [ℓ− κ− 2m]

2
)dµ(τ),

where

EnI,m(τ ; s) = ηsI
∑

γ∈Γ∞\Γ

(
j(γ, τ)

j(γ, τ)

)m
j(γ, τ)−nI |j(γ, τ)|−2sI .

When m = 0, we write simply EnI for EnI,0 (n ∈ Z). Since EnI,m(τ ; s) has
meromorphic continuation on the whole s–plane as a slowly increasing function
(outside its singularity), the above integral gives an analytic continuation of
D(s; f, g) to the whole complex s–plane. In particular if ℓ = κ, the L–function
D(s; f, g) can have a pole at s = 0 because in that case, we can choose m = 0
and E0(τ, s) has a simple pole at s = 1 with a constant residue.

By the same calculation as in Subsection 3.1, we have

2[F :Q]−1(4π)sI+(ℓ+κ)/2D(s; f, g)

= [U2]ΓF (sI + (ℓ+ κ)/2)
∑

0≪ξ∈F×/U2

a(ξ, f)ξ−ℓ/2a(ξ, g)ξ−κ/2N(ξ)−s(4.8)

if Re(s) > θ(f) + θ(g) + 1 for θ(f) as in Section 3.

Let us recall the theta series defined below (4.4):

θ(φk,M ) =
∑

a∈M
φk,M (a)eF (aacτ)

for φk,M (a) = akΣφM (a) as in (4.4). We compute D(s; f ′c, θ(φk,M )) for a cusp
form f ′ of weight ℓ+ I:

2[F :Q]−1 (4π)sI+(ℓ+k+2I)/2

ΓF (sI + (ℓ+ k + 2I)/2)
D(s; f ′c, θ(φk,M ))

= [U2]
∑

0≪ξ∈F×/U2

a(ξ, f ′)ξ−(ℓ+I)/2a(ξ, θ(φk,M ))ξ−(k+I)/2N(ξ)−s

= [U2]
∑

α∈M×/U
φM (α)a(ααc, f ′)αkΣ(ααc)−(k+ℓ+2I)/2N(α)−s

= [U2]
∑

α∈M×/U
φM (α)a(ααc, f ′)αkΣ(α−kΣα−kcΣ)N(α)−s−1+(k−ℓ)/2

= [U2]
∑

α∈M×/U
φM (α)a(ααc, f ′)α−kcΣN(α)−s−1+(k−ℓ)/2
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From this, we get under the notation and the assumption of (4.4)

21−[F :Q]CkΣ|CΣ|2s(4π)−sI−kΓF (sI + k)Hk(z0, w0; s;φ
(∞), f)

= [U : U2]D(s− 1 +
[k − ℓ]

2
; f ′c, θ(φk,M )),

(4.9)

where ℓ is the weight of f (so, weight of f ′c is ℓ + I). Note here that
[U : U2] = 2[F :Q]−1.

Since E0(τ ; s) has a simple pole at s = 1 with constant residue cΓ 6= 0, if k = ℓ
and φ(∞) = φM ⊗ φ0, we have from (4.7)

41−[F :Q]CkΣ|CΣ|2(4π)−k−IΓF (k + I)Ress=1Hk(z0, w0; s;φ
(∞), f)

= Ress=1D(s− 1; f ′c, θ(φk,M ))

= [U2]N(a)−1
√
|D|−1

cΓ〈θ(φk,M ), f ′c〉Γ,
(4.10)

where

〈g, f〉Γ =

∫

Γ\HI
g(τ)f(τ)ηkdµ(τ).

Let Ψf (z, w) be the modular from on GL(2) × GL(2) given by the Fourier
expansion:

Ψf (z, w) =
∑

α∈Γ\M2(F ),det(α)≫0

φ∗(∞)(ǫα)eF (det(α)z)f |kα(w)

as in Corollary 3.4. Then taking Γ sufficiently small and combining Corol-
lary 3.4 and (4.10), we get the following explicit formula:

Theorem 4.1. Let f be a Hilbert modular cusp form of weight k. Then we
have

〈θ(φk,M ), f ′c〉Γ = 2−k−2I |D|−1CkΣ|CΣ|2ik Im(z0)
−I Im(w0)

−IΨf (z0, w0)

under the notation of (4.4).

This type of results enabled Shimura to get a rationality result of the Petersson
inner product of quaternionic cusp forms of CM type with respect to CM
periods (for example, see [Sh2] II Section 3).

5. Jacquet-Langlands-Shimizu correspondence

It is a well known result of Jacquet-Langlands and Shimizu that if we choose
level appropriately, the space of quaternionic automorphic forms can be embed-
ded into the space of Hilbert modular forms keeping the Hecke operator action.
We are going to recall the result, scrutinizing integrality of the correspondence.
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5.1. Hilbert modular forms and Hecke algebras. Let us recall the
definition of the adelic Hilbert modular forms and their Hecke ring of level N

for an integral ideal N of F (cf. [H96] Sections 2.2-4).

We first recall formal Hecke rings of double cosets. We consider the following
open compact subgroup of GL2(FA(∞)):

(5.1) U0(N) =
{(

a b
c d

)
∈ GL2(Ô)

∣∣c ≡ 0 mod NÔ
}
,

where Ô = O⊗Z Ẑ and Ẑ =
∏
ℓ Zℓ. Then we introduce the following semi-group

(5.2) ∆0(N) =
{(

a b
c d

)
∈ GL2(FA(∞)) ∩M2(Ô)

∣∣c ≡ 0 mod NÔ, dN ∈ O×N
}
,

where dN is the projection of d ∈ Ô to
∏

l|NOl for prime ideals l. Writing T0

for the maximal diagonal torus of GL(2)/O and putting

(5.3) D0 =
{

( a 0
0 d ) ∈ T0(FA(∞)) ∩M2(Ô)

∣∣dN = 1
}
,

we have (e.g. [MFG] 3.1.6)

(5.4) ∆0(N) = U0(N)D0U0(N).

Formal finite linear combinations
∑
δ cδU0(N)δU0(N) of double cosets of U0(N)

in ∆0(N) form a ring R(U0(N),∆0(N)) under convolution product (see [IAT]
Chapter 3 or [MFG] 3.1.6). The algebra is commutative and is isomorphic to the
polynomial ring with variables {T (l), T (l, l)}l, T (l) for primes l corresponding to
the double coset U0(N)

(
̟l 0
0 1

)
U0(N) and T (l, l) for primes l ∤ N corresponding

to U0(N)̟lU0(N), where ̟l is a prime element of Ol.

The double coset ring R(U0(N),∆0(N)) naturally acts on the space of adelic
modular forms whose definition we now recall. Since T0(O/N

′) is canonically
a quotient of U0(N

′), a character ε : T0(O/N
′) → C× can be considered as a

character of U0(N
′). Writing ε ( a 0

0 d ) = ε1(a)ε2(d), if ε̃ = ε1ε
−1
2 factors through

O/N for N|N′, then we can extend the character ε of U0(N
′) to U0(N) by

putting ε(u) = ε2(det(u))ε̃(a) for u =
(
a b
c d

)
∈ U0(N). Writing ε− = ε̃−1, ε(u)

has another expression ε(u) = ε1(det(u))ε−(d), because they induce the same

character on U0(N
′) and on U0(N) ∩ SL2(Ô). Hereafter we use the expression

ε(u) = ε1(det(u))ε−(d) (although ε(u) = ε2(det(u))ε̃(a) is used in [Fu] and
[HMI]; we note that (κ1, κ2) in this paper corresponds to (κ2, κ1) in [HMI] and
[PAF]). We fix an arithmetic character ε+ : F×A /F

× → C× with ε+| bO× = ε1ε2
and ε∞(x) = x−(κ1+κ2−I). We use the symbol ε for the triple (ε1, ε2, ε+);
thus, we may regard ε as a character of U0(N)F×A by ε(uz) = ε(u)ε+(z) for

z ∈ F×A and u ∈ U0(N). If we replace ε+ by its p–adic avatar ε̂+, we get a

p–adic character ε̂ of U0(N)F×A .

We identify the group of algebraic characters X∗(T0) of T0 with Z[I]2 so that
κ = (κ1, κ2) ∈ Z[I]2 sends

(
x 0
0 y

)
to x−κ1y−κ2 =

∏
σ∈I(σ(x)−κ1,σσ(y)−κ2,σ ). To
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each κ ∈ X∗(T0), we associate a factor of automorphy:

(5.5) Jκ(g, τ) = det(g)κ2−Ij(g, τ)κ1−κ2+I for g ∈ GL2(F∞) and τ ∈ HI .

Then we define Sκ(N, ε; C) to be the space of functions f : GL2(FA) → C
satisfying the following conditions (e.g. [H96] Section 2.2):

(S1) We have f(αxuz) = ε+(z)ε(u)f(x)Jκ(u∞, i)−1 for all α ∈ GL2(F ),
z ∈ F×A and u ∈ U0(N)Ci for the stabilizer Ci in GL+

2 (F∞) of i =

(
√
−1, . . . ,

√
−1) ∈ Z = HI , where GL+

2 (F∞) is the identity connected
component of GL2(F∞);

(S2) Choosing u ∈ GL2(F∞) with u(i) = τ for each τ ∈ HI , define fx(τ) =
f(xu∞)Jκ(u∞, i) for each x ∈ GL2(FA(∞)). Then fx is a holomorphic
function on Z for all x;

(S3) fx(τ) is rapidly decreasing towards the cusp ∞.

If we replace the word: “rapidly decreasing” in (S3) by “slowly increasing”,
we get the definition of the space of modular forms Mκ(N, ε; C). It is easy to
check (e.g. [MFG] 3.1.5 and [HMI] 2.3.5) that the function fx in (S2) satisfies
the classical automorphy condition:

(5.6) f(γ(τ)) = ε(x−1γx)−1f(τ)Jκ(γ, τ) for all γ ∈ Γ0,x(N),

where Γ0,x(N) = xU0(N)x−1GL+
2 (F∞) ∩ GL2(F ), and GL+

2 (F∞) is the sub-
group of GL2(F∞) made up of matrices with totally positive determinant. Also
by (S3), fx is rapidly decreasing towards all cusps of Γx (e.g. [MFG] (3.22)).
It is well known that Mκ = 0 unless κ1 +κ2 = [κ1 +κ2]I for [κ1 +κ2] ∈ Z. We
write simply [κ] for [κ1 + κ2] ∈ Z if Mκ 6= 0. In [H88a] Section 2, the space Sκ
is written as S∗k, bw for k = κ1 − κ2 + I and ŵ = I − κ2, and the action of Hecke

operators is the same as specified in [H88a] (2.9e), which we recall now.

In order to define the Hecke operator action on the space of automorphic forms,
we fix a prime element ̟l of the l–adic completion Ol of O for each prime ideal

l of F . We extend ε− : Ô× → C× to F×
A(∞) → C× just by putting ε−(̟m

l ) = 1

for m ∈ Z. This is possible because F×l = O×l × ̟Z
l for ̟Z

l = {̟m
l |m ∈ Z}.

Similarly, we extend ε2 to F×
A(∞) . Then we define ε(u) = ε1(det(u))ε−(d) for

u =
(
a b
c d

)
∈ ∆0(N). Let U be the unipotent algebraic subgroup of GL(2)/F

defined by

U(A) =
{
( 1 a

0 1 )
∣∣a ∈ A

}
.

For each U0(N)yU0(N) ∈ R(U0(N),∆0(N)), we can decompose

U0(N)yU0(N) =
⊔

t∈T0(F
(∞)
A

),u∈U( bO)

utU0(N)

for finitely many u and t (see [IAT] Chapter 3 or [MFG] 3.1.6). We define

(5.7) f |[U0(N)yU0(N)](x) =
∑

t,u

ε(t)−1f(xut).

It is easy to check that this operator preserves the space Mκ(N, ε; C) and
Sκ(N, ε; C) by verifying (S1-3) for f |[U0(N)yU0(N)]. This action for y with
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yN = 1 is independent of the choice of the extension of ε to T0(FA). When
yN 6= 1, we may assume that yN ∈ D0 ⊂ T0(FA), and in this case, t can be
chosen so that tN = yN (so tN is independent of single right cosets in the double

coset). If we extend ε to T (F
(∞)
A ) by choosing another prime element ̟′l and

write the extension as ε′, then we have

ε(tN)[U0(N)yU0(N)] = ε′(tN)[U0(N)yU0(N)]′,

where the operator on the right-hand-side is defined with respect to ε′. Thus
the sole difference is the root of unity ε(tN)/ε′(tN) ∈ Im(ε|T0(O/N)). Since it
depends on the choice of ̟l, we make the choice once and for all, and write T (l)
for [U0(N)

(
̟l 0
0 1

)
U0(N)] (if l|N). By linearity, these action of double cosets

extends to the ring action of the double coset ring R(U0(N),∆0(N)).

To introduce rationality structure on the space of modular forms, we recall
Fourier expansion and q–expansion of modular forms (cf. [H96] Sections 2.3–4
and [HMI] Proposition 2.26, where the order of κj (j = 1, 2) is reversed; so,

(κ1, κ2) here corresponds to (κ2, κ1) in [HMI]). We fix an embedding i∞ : Q →֒
C once and for all and identify Q with the subfield of all algebraic numbers
in C. We also choose a differental idele d ∈ F×A with trivial prime-to–d part:

d(d) = 1. Thus dÔ = dÔ for the absolute different d of F . Each member f of
Mκ(N, ε; C) has Fourier expansion of the following form:
(5.8)

f ( y x0 1 ) = |y|A



a0(yd, f)|u|[κ2]

A +
∑

0≪ξ∈F
a(ξyd, f)(ξy∞)−κ2eF (iξy∞)eA(ξx)



 .

Here y 7→ a(y, f) and a0(y, f) are functions defined on y ∈ F×A only depending

on its finite part y(∞). The function a(y, f) is supported by the set (Ô ×
F∞)∩F×A . When f ∈ Sκ(N, ε; C), a0(y, f) = 0; so, we just ignore the constant
term a0(y, f). When κ2 is not in ZI, we have Sκ = Mκ; so, we ignore the
constant term if [κ2] ∈ Z is not well defined. Let F [κ] be the field fixed by
{σ ∈ Gal(Q/F )|κσ = κ}, which is the field of rationality of the character
κ ∈ X∗(T0). Write O[κ] for the integer ring of F [κ]. We also define O[κ, ε]
for the integer ring of the field F [κ, ε] generated by the values of ε (on finite

ideles) over F [κ]. We call an idele y ∈ F×A integral if y(∞) ∈ Ô. Then for any
F [κ, ε]–algebra A inside C, we define

Mκ(N, ε;A) =
{
f ∈Mκ(N, ε; C)

∣∣a0(y, f), a(y, f) ∈ A as long as y is integral
}

Sκ(N, ε;A) = Mκ(N, ε;A) ∩ Sκ(N, ε; C).

(5.9)

Using rationality of (the canonical models of) the Hilbert modular vari-
ety (studied by Shimura and others), we can interpret Sκ(N, ε;A) (resp.
Mκ(N, ε;A)) as the space of A–rational global sections of a line bundle of
the variety defined over A; so, we have, by the flat base-change theorem (e.g.
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[GME] Lemma 1.10.2),

(5.10) Mκ(N, ε;A)⊗A C = Mκ(N, ε; C) and Sκ(N, ε;A)⊗A C = Sκ(N, ε; C)

Since Hecke operators are induced by algebraic correspondences on the prod-
uct of two Hilbert modular varieties defined over A (e.g. [GME] 4.2.1 and
[PAF] 4.2.5), the action of the Hecke operators T (l) and T (l, l) preserves the
A–rational space of modular forms (see below (5.15) for a more concrete ar-
gument showing the Hecke operator stability). We define the Hecke algebra
hκ(N, ε;A) ⊂ EndA(Sκ(N, ε;A)) by the A–subalgebra generated by the Hecke
operators T (l) and T (l, l) for all prime ideals l (here we agree to put T (l, l) = 0
if l|N). In the same manner, we define Hκ(N, ε;A) ⊂ EndA(Mκ(N, ε;A)).

5.2. q–Expansion of p–integral modular forms. We recall the rational
prime p and the embedding ip : Q →֒ Qp. Then for any Qp–algebras A, we
define
(5.11)
Mκ(N, ε;A) = Mκ(N, ε; Q)⊗Q,ip

A and Sκ(N, ε;A) = Sκ(N, ε; Q)⊗Q,ip
A.

By linearity, y 7→ a(y, f) and a0(y, f) extend to functions on F×A ×Mκ(N, ε;A)

with values in A. Let N : F×A /F
× → Q

×
p be the p–cyclotomic character defined

by N (y) = y−Ip |y(∞)|−1
A . Then we define the q–expansion coefficients (at p) of

f ∈Mκ(N, ε;A) by

(5.12) ap(y, f) = y−κ2
p a(y, f) and a0,p(y, f) = N (yd−1)[κ2]a0(y, f).

Here we note that a0(y, f) = 0 unless [κ2] ∈ Z is well defined. We now define

for any p–adically complete O[κ, ε]–algebra A in Q̂p (the p–adic completion of

Qp)

Mκ(N, ε;A) =
{
f ∈Mκ(N, ε; Q̂p)

∣∣a0,p(y, f),ap(y, f) ∈ A for integral y
}

Sκ(N, ε;A) = Mκ(N, ε;A) ∩ Sκ(N, ε; Q̂p).

(5.13)

These spaces have geometric meaning as the space of A–integral global sections
of a line bundle of the Hilbert modular variety of level N (e.g. [HT1] 1.3 and
[HMI] 4.3.7).

The formal q–expansion of f has values in the space of functions on F×
A(∞) with

values in the formal monoid algebra A[[qξ]]ξ∈F+
of the multiplicative semi-group

F+ made up of totally positive elements, which is given by

(5.14) f(y) = N (y)−1



a0,p(yd, f) +

∑

ξ≫0

ap(ξyd, f)qξ



 .

We choose a complete representative set {ai}i=1,...,h in finite ideles for the strict

idele class group F×\F×A /Ô×F×∞+. Let ai = aiO. Write ti =
(
aid
−1 0

0 1

)
and

Documenta Mathematica · Extra Volume Coates (2006) 465–532



496 Haruzo Hida

consider fi = fti as defined in (S2). The collection (fi)i=1,...,h determines f ,
because

GL2(FA) =

h⊔

i=1

GL2(F )tiU0(N)GL+
2 (F∞)

by the approximation theorem. Then as observed in [H88a] Section 4 (and
[PAF] 4.2.10), f(aid

−1) gives the q–expansion over A of fi at the Tate abelian
variety with aiO–polarization Tatea−1

i ,O(q) as in [HT1] 1.7. Thus by the q–

expansion principle ([HT1] 1.7 and [HMI] 4.2.8), the q–expansion: y 7→ f(y)
determines f uniquely (for any algebra A for which the space of A–integral
modular forms is well defined).

We write T (y) for the Hecke operator acting on Mκ(N, ε;A) corresponding to
the double coset decomposition of

T (y) =
{
x ∈ ∆0(N)

∣∣ det(x)Ô = yÔ
}

for y ∈ Ô ∩ F×
A(∞) . We renormalize T (y) to create a new operator T(y) by

T(y) = y−κ2
p T (y). Since this only affects T (y) with yp 6= 1, T(l) = T (̟l) = T (l)

if l ∤ p. However T(p) 6= T (p) for primes p|p. This renormalization is optimal to
have the stability of the A–integral spaces under Hecke operators. We define
〈l〉 = N(l)T (l, l) for l ∤ N. This new action also preserves the integrality as
long as [κ] ≥ 0 (cf. [H96] Section 2.2 and [HMI] Theorem 2.28). We have the
following formula of the action of T (l) and T (l, l) (e.g. [H96] Section 2.4):

(5.15) ap(y, f |T(l)) =

{
ap(y̟l, f) + ap(y̟

−1
l , f |〈l〉) if l ∤ N

ap(y̟l, f) if l|N.

From this, it is plain that T (l) preserves the space Sκ(N, ε;A) if either p|N
or [κ] ≥ 0, because ap(y̟

−1
l , f |〈l〉) = ̟−2κ2

l,p N(l)ε+(l)ap(y, f). We hereafter
assume

(5.16) Either p|N or [κ] ≥ 0 and κ1 − κ2 ≥ I.
We define hκ(N, ε;A) again by the A–subalgebra of EndA(Sκ(N, ε;A)) gen-
erated by T(l) and 〈l〉 over A for all primes l (for a p–adically complete
O[κ, ε]–algebra A).

We can think of the subgroup U(N) of U0(N) made of matrices u ∈ U0(N)
whose reduction modulo N are upper unipotent. Then for any subgroup U
with U(N) ⊂ U ⊂ U0(N), we can think of the space of cusp forms Sκ(U, ε; C)
made up of cusp forms satisfying (S1-3) for U in place of U0(N). We have Hecke
operators T(y) corresponding to (U ·D0U)∩ T (y) acting on Sκ(U, ε;A). Then
in the same manner of Sκ(N, ε;A), we define Sκ(U, ε;A) and the Hecke algebra
hκ(U, ε;A) as the A–subalgebra of EndA(Sκ(U, ε;A)) generated by T(y) and
〈l〉.
Proposition 5.1. Let A be an O[κ, ε]–algebra for which the space of cusp
forms Sκ(N, ε;A) is well defined (by (5.9) or (5.11) or (5.13)). Write H =
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hκ(N, ε;A) and S = Sκ(N, ε;A). Let V be an H–module and V ′ be an A–
module of finite type with an A–bilinear product 〈 , 〉 : V × V ′ → A. Then we
have:

(1) The formal q–expansion for v ∈ V and w ∈ V ′:

f(v ⊗ w)(y) = N (y)−1




∑

ξ≫0

〈v|T(ξyd), w〉qξ




gives a unique element of S.
(2) The map v ⊗ w 7→ f(v ⊗ w) gives an A–linear map of V ⊗A V ′ into S

with f((v|T(y)) ⊗ w) = f(v ⊗ w)|T(y). If further V ′ is an H–module
and 〈v|h,w〉 = 〈v, w|h〉 for all v ∈ V , w ∈ V ′ and h ∈ H, then the map
f induces an H–linear map: V ⊗H V ′ → Sκ(N, ε;A).

(3) Suppose that R is an A–algebra direct summand of H, and put
V (R) = RV and S(R) = RS. If V (R) is R–free of finite rank and
HomA(V (R), A) is embedded into V ′ by the pairing 〈 , 〉, then the map
f : V (R)⊗A V ′ → S(R) is surjective.

The formulation of this proposition is suggested by the expression of the theta
correspondence given in [Sh2] II, Theorem 3.1.

Proof. We have an isomorphism ι : HomA(H,A) ∼= S given by ap(y, ι(φ)) =
φ(T(y)) (see [H88a] Theorem 5.11, [H91] Theorem 3.1 and [H96] Section 2.6),
which is an H–linear map (that is, ι(φ ◦ h) = ι(φ)|h). Since V is an H–
module, h 7→ 〈v|h,w〉 gives an element of HomA(H,A) and hence an element
in S. The element has the expression as in (1) by the above explicit form of
ι. The assertion (2) is then clear from (1). As for (3), by the isomorphism
HomA(V (R), A) →֒ V ′, each element of Hom(R,A) ∼= S(R) is a finite A–linear
combination of h 7→ 〈v|h,w〉 for v ∈ V (R) and w ∈ V ′; so, the surjectivity
follows. �

5.3. Integral correspondence. In order to create a proto-typical example
of the module V in Proposition 5.1, we study here cohomology groups on
quaternionic Shimura varieties. See [H94] and [H88a] for more details of such
cohomology groups.

Let B be a quaternion algebra over F . We write G for the algebraic group
defined over Q such that G(A) = (B ⊗Q A)× for each Q–algebra A. Let d(B)2

be the discriminant of B. We assume that p ∤ d(B) and that

(5.17) B ⊗F,σ R ∼=
{
M2(R) if σ ∈ IB
H if σ ∈ I − IB = IB,

where H is the Hamilton quaternion algebra over R.

We fix once and for all an extension of σ : F →֒ Q to σ : F ∼= Q for an
algebraic closure F/F . We take a quadratic extension K/F inside F so that
K⊗F,σ R ∼= R×R as F–algebras for σ ∈ IB, K⊗F Fp

∼= Fp×Fp for primes p|p
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and B⊗F K ∼= M2(K). We can always choose such a quadratic extension K as
long as p ∤ d(B). These condition automatically impliesK⊗FR ∼= C for σ ∈ IB .

We identify B ⊗F K with M2(K) by the above isomorphism. We fix maximal
orders OB and OK of B and K, respectively, and we suppose that

(5.18) OB ⊗O OK ⊂M2(OK).

We fix an isomorphism OB,l ∼= M2(Ol) so that for the p–adic place p|p induced

by ip ◦ σ, this isomorphism coincides with the one: OB →֒ M2(OK)
ip◦σ−−−→

M2(Op). For an integral ideal N0 of F prime to d(B), putting N = N0d(B),
we define

(5.19) UB0 (N) =
{
x ∈ G(A)

∣∣xN0
=
(
a b
c d

)
with c ∈ N0ON0

}
,

where ON0
=
∏

l|N0
Ol. Similarly we define ∆B

0 (N) ⊂ B ⊗Q A(∞) so that it

is the product of local components ∆l which coincide with the local compo-
nents of ∆0(N) as long as l ∤ d(B) and ∆l = OB,l if l|d(B). Again we can
think of the double coset ring R(UB0 (N),∆B

0 (N)). We have T (l) and T (l, l) in
R(UB0 (N),∆B

0 (N)) for l ∤ d(B), because the local component at l of ∆B
0 (N) is

identical to that of ∆0(N). For l|d(B), we take αl ∈ OB,l so that its reduced
norm generates lOl. Then we define T (l) = −UB0 (N)αlU

B
0 (N) for l|d(B), and

we have

(5.20) R(U0(N),∆0(N)) ∼= R(UB0 (N),∆B
0 (N)).

The above isomorphism brings T (l) and T (l, l) to the corresponding elements
in the right-hand-side.

For a given ring A, we consider the following module L(κ;A) over the multi-
plicative semi-group M2(A): Let n = κ1−κ2−I ∈ Z[I]. We suppose that n ≥ 0
(implying nσ ≥ 0 for all σ ∈ I), and we consider polynomials with coefficients
in A of (Xσ, Yσ)σ∈I homogeneous of degree nσ for each pairs (Xσ, Yσ). The
collection of all such polynomials forms an A–free module L(κ;A) of rank∏
σ(nσ + 1).

Suppose that A is a closed OK [κ, ε]-algebra (via ip) of Q̂p. Then ip(σ(δp))
(which we write simply σ(δp)) for δ ∈ G(A) can be regarded as an element in
M2(A). We let ∆B

0 (N) act on L(κ;A) as follows:

(5.21) δΦ
((

Xσ
Yσ

))
= ε(δ)N(δ)κ2Φ

((
σ(δι)(XσYσ

))
.

Here N(δ) is the reduced norm of B. We also let z ∈ F×A act on L(κ;A)
through scalar multiplication by ε̂+(z) = ε+(z)z−κ1−κ2+I

p (the p–adic avatar of

ε+). We write L(κε;A) for the module L(κ;A) with this ∆B
0 (N)F×A –action. By

the condition: κ1 + κ2 ∈ ZI, if U ⊂ UB0 (N) is sufficiently small open compact
subgroup, central elements in Γx = xUx−1 ∩G(Q) acts trivially on L(κε;A).

We let g ∈ G(R) with N(g) ≫ 0 act on HIB (by the linear fractional trans-
formation) component-wise via gσ = σ(g) ∈ GL2(K ⊗K,σ R) = GL2(R). We
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put Cσ+ for the stabilizer of
√
−1 in the identity connected component of

(B ⊗F,σ R)× and define

C∞+ =
∏

σ∈IB
Cσ+ ×

∏

σ∈IB
(B ⊗F,σ R)×.

Thus we have HIB ∼= G(R)+/C∞+ by g(i) ↔ g (i = (
√
−1, . . . ,

√
−1) ∈ HIB )

for the identity connected component G(R)+ of G(R). For any open compact
subgroup U ⊂ UB0 (N), we think of the complex manifold associated to the
Shimura variety:

Y (U) = G(Q)\G(A)/F×A U · C∞+.

We write simply Y B0 (N) for Y (UB0 (N)).

If U is sufficiently small so that the image ΓU,x of ΓU,x = xUx−1G+(R)∩G(Q)

in G(R)/F×∞ acts freely on HIB for all x ∈ G(A(∞)), and the action of ΓU,x on

L(κε;A) factors through ΓU,x. Then we can define an étale space over Y (U):

L(κε;A) = G(Q)\ (G(A)× L(κε;A)) /F×A U · C∞+,

where γ(x,Φ)uz = (γxuz, uιε̂+(z)Φ) for u ∈ U · C∞+, z ∈ F×A and γ ∈ G(Q).
This étale space gives rise to the sheaf L(κε;A)/Y (U) of locally constant
sections. We consider the sheaf cohomology group Hq(Y (U), L(κε;A)).

Since Y (U) ∼= ⊔xΓx\HIB for finitely many x with xp = 1, we have a canonical
isomorphism (cf. [H94] page 470):

(5.22) Hq(Y (U), L(κε;A)) ∼=
⊕

x

Hq(ΓU,x, L(κε;A)),

where the right-hand-side is the direct sum of the group cohomology of the
Γx–module L(κε;A). The kernel E = Ker(ΓU,x → ΓU,x) is a subgroup of units
O×. Since κ1+κ2 ∈ ZI, the action of ǫ ∈ E on L(κε;A) is the multiplication by
ε̂+(ǫ)N(ǫ)[κ]+1 = 1. Even if ΓU,x does not act freely on the module L(κε;A),

we still have Y (U) ∼=
⊔
x Γx\HIB for finitely many x with xp = 1, we can

define the left-hand-side of (5.22) by the right hand side of (5.22).

We choose U sufficiently small as above so that [UB0 (N) : U ] is prime to p (this
is a condition on p). Then we have the trace map Tr (that is, the transfer map
in group cohomology) and the restriction map Res:

Tr : Hq(Y B(U), L(κε;A))→ Hq(Y B0 (N), L(κε;A))

Res : Hq(Y B0 (N), L(κε;A))→ Hq(Y B(U), L(κε;A)).

Since Tr ◦ Res is the multiplication by [U0(N) : U ], we have

(5.23) Hq(Y B0 (N), L(κε;A)) = Hq(Y B(U), L(κε;A))/Ker(Tr) = Im(Res).

We can always choose a multiple N′ = Nq (by a prime q) of N so that Γ0,x(N
′)

acts freely on HIB .

Documenta Mathematica · Extra Volume Coates (2006) 465–532



500 Haruzo Hida

As defined in [H88a] Section 7 and [H94] Section 4, where L(κε;A) is written
as L(n, v, ε;A) for v = κ2 and n = κ1 − κ2 − I, we have a natural action of
the ring R(UB0 (N),∆B

0 (N)) on the cohomology group Hq(Y B0 (N), L(κε;A)).
For our later use, we recall the definition of the action when q = 0: In this
case, we may regard each cohomology class as a global section f : B×A →
L(κε;A) with f(αxu) = uιf(x) for α ∈ B× and u ∈ UB0 (N)B×∞. Decomposing
UB0 (N)

(
y 0
0 1

)
UB0 (N) =

⊔
̟̟U

B
0 (N), we have

(5.24) f |T(y) = y−κ2
p

∑

̟

̟f(x̟−ι).

Let W be a valuation ring as in the introduction. We assume that hκ(N, ε;W )
is well defined and OK [κ, ε] is embedded into W via ip. Let V be the image of
Hq(Y B0 (N), L(κε;W )) in Hq(Y B0 (N), L(κε;W ⊗Z Q)). By the Eichler-Shimura
isomorphism (between the space of cusp forms on G(A) and the cohomology
group; e.g. [H94] Proposition 3.1 and (10.4)) combined with the Jacquet-
Langlands-Shimizu correspondence (e.g. [H88a] Theorem 2.1, Proposition 2.3
and [H81] 2.12), the above cohomology group and its compactly supported
version (denoted by Hq

c (Y
B
0 (N), ·)) are the module over the Hecke algebra

Hκ(N, ε;W ⊗Z Q). Since

Hκ(N, ε;W ⊗Z Q) = hκ(N, ε;W ⊗Z Q)⊕ E
as an algebra direct sum for the Eisenstein part E, for the idempotent 1h of the
cuspidal part hκ(N, ε;W ⊗Z Q), we can define the cuspidal cohomology groups
by

Hq
cusp(Y

B
0 (N), L(κε;W ⊗Z Q)) = 1hH

q(Y B0 (N), L(κε;W ⊗Z Q)).

The natural map from compactly supported cohomology group into the coho-
mology group without support condition actually induces an isomorphism

1hH
q
c (Y

B
0 (N), L(κε;W ⊗Z Q)) ∼= Hq

cusp(Y
B
0 (N), L(κε;W ⊗Z Q)).

We then put

(5.25) Hq
cusp(Y

B
0 (N), L(κε;W )) = Hq

cusp(Y
B
0 (N), L(κε;W ⊗Z Q)) ∩ Im(i)

for the natural morphism

i : Hq(Y B0 (N), L(κε;W ))→ Hq(Y B0 (N), L(κε;W ⊗Z Q)).

We consider the duality pairing [ , ] on L(κε;A) (for Q–algebra A) introduced
in [H94] Section 5:

(5.26)


 ∑

0≤j≤n
bjX

n−jY j ,
∑

0≤j≤n
ajX

n−jY j


 =

∑

j

(−1)j
(
n

j

)−1

bn−jaj ∈ A,

where n = κ1 − κ2 − I,
(
n
j

)
=
∏
σ∈I

(
nσ
jσ

)
and for example Xj =

∏
σ∈I X

jσ
σ . As

U0(N)F×A -modules, this pairing satisfies:

(5.27) [uzΦ, uzΦ′] = ε2(u)ε̂+(z)2NB/F (up)
κ1+κ2−I [Φ,Φ′],
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where NB/F : B → F is the reduced norm map.

Define κ∗ = (−κ2, 1 − κ1) and ε∗ = ε−1. Thus [κ∗] ≤ 1 ⇔ [κ] ≥ 0. Then the
pairing [ , ] induces U0(N)F×A –equivariant pairing

[ , ] : L(κε;A)× L(κ∗ε∗;A)→ A.

We now choose q = |IB | = dimC HIB . Then the cup product pairing induces
([H94] (5.3)) a non-degenerate pairing:

( , ) : Hq
cusp(Y

B
0 (N), L(κε;W ))×Hq

cusp(Y
B
0 (N), L(κ∗ε∗;W ))→W ⊗Z Q.

Thus we obtain from Proposition 5.1 the following result:

Proposition 5.2. Let V = Hq
cusp(Y

B
0 (N), L(κε;W )). Let V ∗ be the dual W–

lattice of V in Hq
cusp(Y

B
0 (N), L(κ∗ε∗;W ⊗Z Q)) under the Poincaré duality:

( , ) : Hq
cusp(Y

B
0 (N), L(κε;W ))×Hq

cusp(Y
B
0 (N), L∗(κ∗ε∗;W ))→W ⊗Z Q.

Then we have a hκ(N, ε;W )–linear map

f : V ⊗W V ∗ → Sκ(N, ε;W )

defined by the q–expansion:

f(v ⊗ w) = N (y)−1
∑

0≪ξ
(v|T(ξyd), w)qξ,

where we regard V ⊗W V ∗ as an hκ(N, ε;W )–module through the left factor V .

A similar fact for the matrix coefficients of T (y) in place of (v|T (y), w)
has been proven in [Sh2] Theorem 3.1 by analytic means without using the
Jacquet-Langlands-Shimizu correspondence.

We have Hq
cusp(Y

B
0 (N), L(κε;W )) = Hq(Y B0 (N), L(κε;W )) under the follow-

ing two conditions:

(V1) The character κε : T0(Ô) → W× does not factor through the reduced

norm map N : T0(Ô
(d(B))) →֒ G(Ô(d(B)) → (Ô(d(B)))×. In particular,

if κ1 6= κ2, this condition is satisfied.
(V2) The quaternion algebra B is a division algebra. In particular, this

condition is satisfied if |IB | < [F : Q].

6. Ordinary cohomology groups

We are going to prove that the morphism f : V (R) ⊗W V (R) → S(R) in
Proposition 5.1 for V in Proposition 5.2 is surjective for the nearly ordinary
local ring R (associated to a mod p irreducible Galois representation), when
B is unramified at every finite place and q = |IB | ≤ 1. A key to the proof
is the R–freeness of V (R) proven by Fujiwara [Fu] (see [HMI] Corollary 3.42).
Another important ingredient of the proof is the self duality of V (R) over W .
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6.1. Freeness as Hecke modules. We recall here a special case of Fuji-
wara’s result in [Fu] “Freeness Theorem” of the component V (R) for a local
ring R of the Hecke algebra hκ(N, ε;W ) (see also [HMI] Corollary 3.42). To
state the result, we need to have a good description of the modular nearly or-
dinary Galois representation; so, we recall the description. We call a local ring
R of hκ(N, ε;W ) nearly ordinary if the projection of T(p) to R is a unit. We
hereafter always assume

(ord) R is nearly ordinary with κ1 − κ2 ≥ I, that is, κ1,σ − κ2,σ ≥ 1 for all
σ.

(unr) F/Q is unramified at Q.

We write N′ for the product of primes l ∤ p for which one of ε1 and ε2 ramifies;
so, N′ ⊂ N(p). For aW–algebra homomorphism λ : hκ(N, ε;W )→W factoring
through R (such a λ is called nearly ordinary), we have a Galois representation
ρ = ρλ : Gal(F/F )→ GL2(W ) (e.g. [H96] 2.8 and [MFG] 5.6.1) such that

(G1) ρ is continuous and is absolutely irreducible over W ⊗Z Q;
(G2) ρ is unramified outside N′p;
(G3) For primes l outside N′p, we have

det(12 − ρ(Frobl)X) = 1− λ(T (l))X + λ(〈l〉)X2;

(G4) For the decomposition group Dp ⊂ Gal(F/F ) at each prime p|p, we
have an exact sequence of Dp–modules: 0 → ǫp → ρ|Dp

→ δp → 0
with one dimensional character δp satisfying δp([y;Fp]) = λ(T(y)) for
the local Artin symbol [y;Fp] of y ∈ F×p .

Writing F for the residue field of W , the semi-simplification ρ = ρR of the
reduction of ρ modulo the maximal ideal mW of W is independent of λ by
(G2-3) (cf. [MFG] Corollary 2.8 combined with the Chebotarev density). In
particular, if ρ is irreducible, the isomorphism class of ρ mod mW for the
maximal ideal mW is unique, and always we have (ρ mod mW ) ∼= ρ.

We shall recall some terminology from (formal) deformation theory of Galois
representations. See [MFG] Section 2.3 for basics of formal deformation theory
of representations. Let H be a subgroup of Gal(F/F ). We call a representation
ρ : H → GL2(A) for a local proartinian W–algebra A with residue field F a
deformation over H of ρ if ρ ≡ ρ|H mod mA. Let χ = det(ρλ)/N [κ] for the
p–adic cyclotomic character N . Then χ is of finite order. For any character
ϕ : Dl → A×, let C(ϕ) denote the conductor of ϕ; thus, C(ϕ) = 1 if ϕ is
unramified, and C(ϕ) = lm if y 7→ ϕ([y, Fl]) factors through F×l /(1 + lmOl)

but not F×l /(1 + lm−1Ol) for m > 0. We assume the following four conditions
on ρλ:

(H1) χ is of order prime to p.
(H2) For primes l|Np, write Dl for the decomposition group at l. Then we

have ρ|Dp
∼=
( ǫl ∗

0 δl

)
with δ([y, Fl]) = λ(T(y)). This condition actually

follows for l|p from near ordinarity of λ as already remarked in (G4).
(H3) If a prime l|N but l ∤ p, then the restriction of δl and ǫl to the inertia

subgroup Il of Dl is of order prime to p.
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(H4) If ǫp ≡ δpN mod mW on Ip for a prime p|p, the following five condi-
tions have to be met: (i) the character ǫp is of order prime to p, (ii)
κ = (I, 0), (iii) ρλ|Ip

is associated to a p–divisible group over an un-

ramified extension of Op, (iv) p ∤ N, and (v) ǫpδ
−1
p (y)y−I = 1 for all

y ∈ O×p .

We write δl = (δl mod mW ) and ǫl = (ǫl mod mW ). We assume the following
two local conditions on ρ.

(H5) For all p|p, δp 6= ǫp.

(H6) For l|N and l ∤ p, the l–primary part of N coincides with C(ǫlδ
−1

l ).

Thus ρ could ramify at a prime l ∤ N, and by (H3), N′ gives the product
of primes (outside p) at which ρ ramifies. We assume the following global
condition on ρ:

(H7) ρ is absolutely irreducible over Gal(F/F [
√
p∗]) for p∗ = (−1)(p−1)/2p.

We choose a quaternion algebra B/F so that d(B) = 1 and ramified at most

infinite places (that is IB is as large as possible). This implies:

(6.1) IB = {σ1} if [F : Q] is odd, and IB = ∅ if [F : Q] is even.

We now quote the following special case of “Freeness Theorem” in Section 0 in
[Fu] (see [HMI] Corollary 3.42 for a proof of this Fujiwara’s result):

Theorem 6.1. Suppose the conditions (6.1), (ord), (unr), (H1-7) and p > 3.
Then V (R) for V = Hq(Y B0 (N), L(κε;W )) (q = |IB |) is free of rank 2q over
the local ring R. Even if we ease the condition (H4) to allow the case where
the p–primary part of N is equal to p for primes p|p, the same assertion holds
as long as [F : Q] is even.

This is a special case of Fujiwara’s result. In particular, we do not need to
assume unramifiedness of p in F , but we use the assumption (unr) anyway in
our later application; so, we have imposed it.

Proof. Here is a brief account of how to deduce the above theorem either from
[HMI] Corollary 3.42 or from [Fu], because the set of the assumptions imposed
in these works appears different. In [HMI] Corollary 3.42, the theorem is proven
under the assumptions:

(A) [F : Q] is even;
(B) κ = (I, 0);
(C) the assumptions (H1–3) and (H5–7);
(D) the milder condition than (H4) as stated in the theorem.

As can be easily seen, the conditions (A–D) implies the assumptions actu-
ally stated in Corollary 3.42 of [HMI]: the absolute irreducibility of ρ over
F [µp] (written as (aiF [µp]) in [HMI]) which follows from (H7), the conditions
(h1–4) in [HMI] 3.2.1, (dsQ) which is (H5) and (H6), and the conditions
(Q1–6) (for Q = ∅) in [HMI] Section 3.2.1. These conditions exhaust all the
assumptions of Corollary 3.42 of [HMI] except for the condition (sm1). The
condition: p > 3 and the unramifiedness of p in F/Q implies [F [µp] : F ] > 2,
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which is the last assumption (sm1) in Corollary 3.42 of [HMI]. We only
use this theorem under the four conditions (A–D); so, logically, for the proof
of the main theorem of this paper, it is sufficient to quote [HMI] Corollary 3.42.

For the sake of completeness, we now reduce the theorem in the case not covered
under (A–D) to [Fu] (the version of 1999). Recall that N′ is the product of all
primes (outside p) at which ρ ramifies. We consider an open compact subgroup
U(ρ) =

∏
l Ul(ρ) ⊂ U0(N) and a character νl of Ul(ρ) with values inW× defined

as follows:

(1) Ul(ρ) = GL2(Ol) in B×l if l ∤ Np, and νl is the trivial character;

(2) Suppose that l|N′. If ǫl 6= δl on Il, then l|N,

Ul(ρ) =
{(

a b
c d

)
∈ U0(N)l

∣∣a ≡ 1 mod l, (d mod l) is of p–power order
}

and νℓ(u) = δl([det(u), Fl]). If ǫl = δl on Il, Ul(ρ) = GL2(Ol) (so l ∤ N)
and νl(u) = δl([det(u), Fl]).

(3) For p|p, define νp(u) = ǫp([det(u), Fp])(det(u))−κ2 for u ∈ GL2(Op),
which is a finite order character and can be regarded as a character
with values in W×. If ǫp 6= δpω on Ip for ω = (N mod mW ), then p|N
and

Up(ρ) =
{(

a b
c d

)
∈ U0(p)p

∣∣a ≡ 1 mod p, (d mod p) is of p–power order
}
.

If ǫp = δpωp on Ip, then Up = GL2(Op) (and p ∤ N).

Let U = Ker(
∏

l νl : U(ρ) → W×). Since the restriction of operators of
hκ(U, ε;W ) to Sκ(N, ε;W ) induces a surjective algebra homomorphism π :
hκ(U, ε;W ) ։ hκ(N, ε;W ), we have a unique local ring RU of hκ(U, ε;W )
through which λ ◦ π factors. Then RU is nearly ordinary. For a smaller open
compact subgroup U ′ with U(Nq) ⊂ U ′ ⊂ U for a suitable prime q outside
N′p, it is proven in [Fu] that

(1) For all x ∈ G(A(∞)), ΓU ′,x is torsion-free and acts on HIB freely;

(2) The action of ΓU ′,x on L(κε;A) factors through ΓU ′,x for all x ∈
G(A(p∞));

(3) The Hecke algebra hκ(U
′, ε;W ) has a local ring R′ with R′ ∼= R as

W–algebras;
(4) Let VU = Hq(Y B(U), L) and V ′ = Hq(Y B(U ′), L) for L = L(κε;W ))

and q = |IB |. Then the restriction map Res : Hq(Y B0 (N), L) →
Hq(Y B(U), L) composed with the multiplication by the idempotent
of R′ induces a W–linear map: VU (RU ) ∼= V ′(R′) which is T(y)–
equivariant as long as yq = 1;

(5) RU is generated by T(y) with yq = 1;
(6) V ′(R′) ∼= R′r for some r.

In [Fu], U ′ and U are written as KD,y and KD, respectively. This is enough to
conclude that V (RU ) is RU–free. On the other hand, for the Sylow p–subgroup
S of U0(N)/U , RU is W [S]–free of finite rank. Then R ∼= RU ⊗W [S],εW , where
ε is the algebra homomorphism W [S] → W induced by the character ε of S.
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This fact follows from the freeness of the Hecke algebra over the group algebra
(under (unr) and p > 2), for example, [H02] Corollary 4.3, [H05a] Corollary 9.3
or [PAF] 4.2.11–12. In the above papers, the symbol N is used for the prime-
to-p–part of the present level N. Similarly, VU is W [S]–free of finite rank by
[H89] Theorem 3.8. Thus we have

V (R) = VU (R)⊗W [S],εW ∼= (RU ⊗W [S],εW )r ∼= Rr

for a suitable integer r. Actually r = 2q ≤ 2, because V ⊗Q is of rank 2q over
the (rational) Hecke algebra.

As for the easing of the condition (H4) on N, it follows from the same argument,
replacing N by N ∩∏p∈P p, because this is the case where the deformation is

unrestricted at p ∈ P , which has been dealt with in [Fu] assuming that, for
example, [F : Q] is even (see [HMI] Section 3.2). �

By the theory of p–adic analytic families of nearly ordinary cusp forms (see
[H89], [H96] Section 2.7 and [HMI] 3.2.8, 3.3.4 and 4.3.9), we can ease slightly
the conditions necessary to have freeness of V (R) over R. We shall describe
this generalization for our later use. Let G = G(N′) = Cl+F (N′p∞) × (Op ×
O/N′(p))×, where Cl+F (N′pn) is the strict ray class group modulo N′pn of F ,
and

Cl+F (N′p∞) = lim←−
n

Cl+F (N′pn) = F×A /F
×UF (N′)(p)F×∞+

with UF (N′) = Ô×∩(1+N′Ô). We have a natural homomorphism ι : T0(Op)→
G sending (a, b) to (a−1, a−1b). Each element (z, y) ∈ G acts on f ∈ Sκ(U, ε;A)
by f |(z, y)(x) = f |T(y)(xz) (for U ⊂ U0(N

′)). Let Γ0 be the maximal torsion-
free quotient of G (which is independent of N′ up to isomorphisms), and fix
a splitting G = Γ0 ×Gtor. We consider the Iwasawa algebra W [[Γ0]]. For an
integral domain I finite flat over W [[Γ0]], we define

A(I) =
{
P ∈ HomW (I,Qp)

∣∣P ◦ ι ∼ κ with κ1 − κ2 ≥ I and [κ] ≥ 0
}
,

where ϕ ∼ ψ if ϕ = ψ locally on T0(Op) (in other words, ϕψ−1 is of finite order).
For each P ∈ A(I), we write κ(P ) and εP for the corresponding algebraic
character of T0 and the character of

g = ( a 0
0 b ) z ∈ T0(Op × (O/N′

(p)
)F×A ⊂ GL2(FA)

given by G ∋ g 7→ P (T (ab−1))P (〈bz〉)εtor(g), where εtor is the restriction of
ε to the torsion part Gtor (regarded as a character of G). Thus we can form
a triple (εP,1, εP,2, εP+) out of εP so that εP (g) = εP,1(a)εP,2(b)εP+(z). For
a given nearly ordinary Hecke eigenform f ∈ Sκ(N, ε;W ) with κ1 − κ2 ≥ I,
decomposing G into a product Γ0×∆ for a finite subgroup ∆, we write ε(P ) =
εP ε|∆. Thus for a suitable P ∈ Spec(I)(Qp) whose weight is κ, we find ε(P ) = ε.
Then there exist I/W [[Γ0]] as above and a unique family of Hecke eigenforms
{fP }P∈A(I) containing f and satisfying the following two conditions:
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(1) fP ∈ Sκ(P )(NP , ε(P );W [εP ]) for the conductor NP of the character

ε(P )−, where W [εP ] is a subring of Qp generated over W by the values
of εP ;

(2) There exists a function a : F×A → I such that ap(y, fP ) = a(y)(P ) for

all y ∈ F×A and all P ∈ A(I).

Corollary 6.2. Let {fP }P∈A(I) be the family of nearly p–ordinary Hecke
eigenforms as above. Write RP be the local ring of hκ(P )(NP , ε(P );W [εP ])
through which the algebra homomorphism λP of the Hecke algebra given
by fP |T(y) = λP (T(y))fP factors. If one member f ∈ Sκ(N, ε;W ) sat-
isfies the assumptions (H1-7), V (RP ) is RP –free of rank 2q, where V =
Hq(Y B0 (NP ), L(κ(P )ε(P );W [εP ])) and q = 0, 1 by (6.1).

Proof. We choose U ′ as in the proof of Theorem 6.1 and write U ′0(N
′) = U ′ ∩

U0(N
′). We consider the limit V = lim−→n

Hq
n.ord(Y

B(U ′ ∩U(pn)), L(κε;W )⊗Zp

Qp/Zp), where Hq
n.ord = eHq for the idempotent e = limn→∞ T(p)n!. The

module V is naturally a module over G(N′) and hence over W [[Γ0]]. Then in
the same manner in [H89] Corollary 3.5 and Theorem 3.8, we can prove that
for the Pontryagin dual V′ of V,

V′/PV′ ∼= Hq
n.ord(Y

B(U ′0(NP )), L(κ(P )ε(P );W [εP ]))

as Hecke modules and that V′ is W [[Γ0]]–free module of finite rank. We write
V ′P for the Hecke module of the right-hand-side of the above formula. Then
we define h′ ⊂ EndW [[Γ0]](V

′) by the W [[Γ0]]–subalgebra generated by T(y)
for all integral ideles y. As proved under (unr) and p > 3 in [PAF] Corollaries
4.31–32 or [H02] Corollary 4.3 (where the assumption is p > 2 and N denotes
the prime-to–p part of the present N′), h′ is W [[Γ0]]–algebra free of finite rank,
whose rank is equal to rankW [εP ] h

′
P for h′P = hn.ordκ(P ) (U ′0(Npe(P )), ε(P );W [εP ]).

Since they have the same generators T(y)’s, h′/Ph′ surjects down to h′P . By
comparing their rank over W [εP ], we find h′/Ph′ ∼= h′P canonically sending
T(y) to T(y). Since R′ is the direct summand of h′P0

⊂ hκ(N, ε;W ), by
Hensel’s lemma (cf. [BCM] III.4.6), h′ has a unique local ring R′ ⊂ h′ with
R′/P0R

′ ∼= R′. We put V′(R′) = R′V′, which is W [[Γ0]]–free module of finite
rank. Since V′(R′)/P0V

′(R′) ∼= V ′(R′), which is a free of finite rank over
R′ = R′/P0R

′, we choose a lift {v1, . . . ,vr} in V′ of a base of V ′(R′) over R′.
Then the R′–linear map π : R′r → V′(R′) given by (h1, . . . , hr) 7→

∑
j hjvj

is surjective by Nakayama’s lemma applied to R′ and ideal P0. By comparing
the rank over W [[Γ0]], we find that π is an isomorphism. Thus V′(R′) is free
of rank r = 2q over R′.

We define R′P by R′P = R/PR ⊂ h′P . Then R′P
∼= RP canonically, and

V ′P (R′P ) ∼= VP (RP ) for VP = Hq
n.ord(U

′
0(NP ), L(κ(P )ε(P );W [εP ]) in the same

manner as in the proof of Theorem 6.1. This finishes the proof. �

6.2. Induced representations. We are going to verify the assumption of
the freeness theorem: Theorem 6.1 for induced representations from CM fields.
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We first recall a cusp form f on GL2(FA) with complex multiplication by a CM
field M . Let M/F be a CM field with integer ring R and choose a CM type Σ:

IM = Homfield(M,Q) = Σ ⊔ Σc

for complex conjugation c. To assure the assumption (ord), we need to assume
that the CM type Σ is p–ordinary, that is, the set Σp of p–adic places induced
by ip ◦ σ for σ ∈ Σ is disjoint from Σpc (its conjugate by the generator c of
Gal(M/F )). The existence of such an ordinary CM type implies that all prime
factors of p in F split in M/F . For each k ∈ Z[I], we write kΣ =

∑
σ∈Σ kσ|Fσ.

We choose κ1 > κ2 with κ1 + κ2 = [κ]I for an integer [κ]. We then choose a
Hecke character λ of conductor CPe (C prime to p) such that

λ((α)) = ακ1Σ+cκ2Σ for α ∈M× with α ≡ 1 mod CPe,

where Pe =
∏

P∈Σp

(
Pe(P)Pce(Pc)

)
for e =

∑
P∈Σp⊔Σpc

e(P)P. We also

decompose C =
∏

L Le(L) for prime ideals L of M . We extend λ to a p–adic

idele character λ̂ : M×A /M
×M×∞ → Q

×
p so that λ̂(a) = λ(aO)a−κ1Σ−cκ2Σ

p . By

class field theory, we may regard λ̂ as a character of Gal(F/M). Any character

ϕ of Gal(F/M) of the form λ̂ as above is called “of weight κ”. For a prime ideal

L of M outside p, we write λL for the restriction of λ̂ to M×L . For P ∈ Σp, we

define λP(x) = λ̂(x)xκ1Σ for x ∈ M×P and λPc(x) = λ̂(x)xcκ2Σ for x ∈ M×Pc .

Then λL for all prime ideals L is a continuous character of M×L with values in

Q whose restriction to R×L is of finite order. By the condition κ1 > κ2, λ̂ cannot

be of the form λ̂ = φ ◦NM/F for an idele character φ : F×A /F
×F×∞+ → Q

×
p .

We define a function F×A ∋ y 7→ ap(y, θ(λ)) supported by integral ideles by

(6.2) ap(y, θ(λ)) =
∑

x∈M×
A
,xxc=y,xΣp=1

λ̂(x) if y is integral.

where x runs over elements in M×
A(∞)/(R̂

(pCCc))× satisfying the following three
conditions: (i) xR is an integral ideal of M , (ii) NM/F (x) = y and (iii) xQ = 1
for primes Q in Σp and Q|C. The q–expansion determined by the coefficients

ap(y, θ(λ)) gives a unique element θ(λ) ∈ Sκ(N′, ε′λ; Q) ([HT1] Theorem 6.1),
where N′ = NM/F (CPe)d(M/F ) for the discriminant d(M/F ) of M/F and ε′λ
is a suitable “Neben” character.

We decompose C = FFcI so that FFc is a product of split primes and I for the
product of inert or ramified primes, F + Fc = R and F ⊂ Fcc. We put f = F∩F
and i = I ∩ F . Assuming that λ− has split conductor, we describe the Neben
character ελ of the minimal form f(λ) in the automorphic representation π(λ)
generated by θ(λ). The character ελ is possibly different from ε′λ and is given
as follows:
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(1) For l|f, we identify T0(Ol) = O×l ×O×l with R×Lc×R×L with this order for
the prime ideal L|(lR∩F). We define ελ,l by the restriction of λLc×λL

to T0(Ol).
(2) For p|p, identify T0(Op) with R×Pc × R×P for P|p in Σp, we define ελ,p

by the restriction of λPc × λP to T0(Op).
(3) For l|id(M/F ), we choose a character φl : F×l → C× such that λL =

φl ◦ NML/Fl
(this is possible because λ− has split conductor). Then

we define ελ,1,l(a) = φl and ελ,2,l(d) =
(
ML/Fl

d

)
λL(d), where L is the

prime factor of l in M and
(
ML/Fl

d

)
is the quadratic residue symbol

for ML/Fl.
(4) The central character ελ+ is given by the product of the restriction of

λ to F×A and the quadratic character
(
M/F

)
of the CM field M/F .

We now give an explicit description of f(λ) without assuming that λ− has split
conductor. Let Ξpr be the set of prime factors l of N′ = d(M/F )NM/F (CPe)

where πl is principal. If λ− has split conductor, Ξpr is the full set of prime
factors of N′. Otherwise, l ∈ Ξpr if and only if either l|f or l|i and

(6.3) λL(x) = φl(xx
c) for a character φl : F×l → C×.

For l ∈ Ξpr, taking a prime L|l in M , we have

(6.4) πl(λ) ∼=
{
π(λLc , λL) if l|f and L|F,

π(φl,
(
ML/Fl

)
φl) if l|i.

We split N′ into a product N1N2 of co-prime ideals so that N1 is made up of
primes in Ξpr. Writing πl(λ) = π(ηl, η

′
l) for characters ηl, η

′
l : F×l → C×, we

write Cl for the conductor of η−1
l η′l. Define the minimal level of π(λ) by

N(λ) = N2

∏

l∈Ξpr

Cl.

We write Ξ = {L|L ⊃ FPΣ,L ⊃ N(λ)} for primes L of M and define

(6.5) ap(y, f(λ)) =

{∑
xxc=y,xΞ=1 λ̂(x)x

(κ1−κ2)Σ
p if y is integral,

0 otherwise,

where x runs over (R̂∩M×
A(∞)/(R

(Ξ))× with xL = 1 for L ∈ Ξ. The value λ̂(x)

is well defined modulo (R(Ξ))× as long as xΞ = 1 for the following reason: For
primes l|N(λ) non-split in M/F , by the condition xxc = y, x is determined
up to a unit u with uuc = 1. Since λL(u) = φl(uu

c) = 1, the value λL(xL) is
well defined. For L ∈ Ξ, by imposing xL = 1, the condition xxc = y implies
xLc = yl; so, the value λL(xl) is again well defined. As for a split prime
l ∤ N(λ) but l|NM/F (C), we have λL|O×

l
= λLc |O×

l
, so λL(uL)λLc(uLc) = 1

because uuc = 1 implies uL = u−1
Lc identifying RL and RLc with Ol. As for p|p
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with p ∤ N(λ), if (uuc) = 1, we have

λ̂(u)u(κ1−κ2)Σ = u−κ1Σ−cκ2Σ+(κ1−κ2)Σ = (uuc)−κ2 = 1.

So again, λ̂(x)x
(κ1−κ2)Σ
p is well-defined modulo such local units.

For a principal series representation π(η′, η) of GL2(Fl), if η|O×
l

= η′|O×
l
, we

have π(η′, η) ∼= η ⊗ π(η−1η′, 1) and π(η−1η′, 1) is spherical; thus we have a
unique spherical vector v 6= 0 in π(η−1η′, 1) with v|T (l) = (1+η−1η′(̟l))v. The
corresponding vector v′ = v ⊗ η in π(η′, η) has minimal level fixed by SL2(Ol)
with v′|T (y) = (η(y)+η′(y))v′. If the conductor Cl of η−1η′ is non-trivial, again
by the same argument, we find v′ 6= 0 in πl(λ) such that v′|T (y) = η(y)v′ and
v′|u = ε(u)v′ (u ∈ U0(Cl)l), where ε(u) = η(det(u))(η−1η′(a)) for u =

(
a b
c d

)
∈

U0(Cl)l. This shows that f(λ) is a classical modular form in Mκ(N(λ), ελ; Q)
if λ− has split conductor. The form f(λ) is a common eigenform of Hecke
operators T(y). The p–adic Galois representation ρλ associated to f(λ) is the

induced representation IndFM λ̂, regarding λ̂ as a character of Gal(F/M) by

class field theory. By regularity: κ1 > κ2, λ̂(cσc−1) 6= λ̂(σ) for σ ∈ Gal(F/M),
ρλ is absolutely irreducible by Mackey’s theorem, andf(λ) is a cusp form.

We take the coefficient ring W to be free of finite rank over Zp. Assuming that
λ− has split conductor (⇔ π(λ) is principal at every finite place), we shall study
when f(λ) satisfies the conditions (H1-7) of Theorem 6.1. We take a character

ϕ of Gal(F/M) of order prime to p such that λ̂ϕ−1 ≡ 1 mod mW and define
ψ = ϕ−. Suppose that λ and ϕ coincides on R×L if L ∤ p. Then the conditions
(2) and (3) on ψ in the introduction are an interpretation of principality of
π(λ) at every finite place. To interpret the four conditions (1-4) on ψ in the

introduction in terms of ϕ, let G(C) = M×A /M
×UM (C)(p)M×∞, where

UM (C)(p) =
{
x ∈ R̂×

∣∣xp = 1, x ≡ 1 mod CR̂
}
.

The first conditions (1) on ψ can be stated in terms of ϕ as follows:

(h1) ϕ has order prime to p with exact conductor CPe for C prime to p.

Thus ϕ factors through the maximal prime-to-p quotient of G(C) which can be
regarded canonically as a subgroup of G(C), because G(C) is almost p–profinite.
The conditions (2-4) in the introduction imply the following three assertions:

(h2) For all prime factors L|I, ϕL = φl ◦NM/F for a character φl : F×l →
W×.

(h3) ϕP 6= ϕPc for all P ∈ Σp.

(h4) Over Gal(F/M [
√
p∗]), we have ϕc 6= ϕ, where ϕc(σ) = ϕ(cσc−1).

We write Gtor(C) for the maximal torsion subgroup of G(C).

Theorem 6.3. Assume (6.1) and the four conditions (h1-4). Let λk :

G(C) → Q
×
p be an arithmetic Galoischaracter of weight k1Σ + ck2Σ (kj ∈

Z[I]) such that k1 > k2 and λk|Gtor(C) = ϕ. Then for the local ring R
of hk(N(λk), ελk ;W [λk]) corresponding to f(λk), the R–component V (R) of
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V = Hq(Y B0 (N(λk)), L(kελk ;W [λk])) is R–free of rank 2q, where W [λk] is the
complete discrete valuation ring inside Qp generated by the values of λk over
W and q = |IB | ≤ 1.

Proof. We take a sufficiently large κ with κ1 > κ2 and κ1 + κ2 = [κ]I for
0 ≤ [κ] ∈ Z so that ζκ1Σ+cκ2Σ = 1 for all ζ ∈ R× and κ ≡ 0 mod (Q− 1)Z[I]
forQ = |F|. Then we can find a Hecke character λ with the following properties:

(1) We have λ((α)) = ακ1Σ+cκ2Σϕ((α)) for all α ∈M× prime to CPe;
(2) λ ≡ ϕ mod mW .

We are going to show for f(λ) the assumptions (H1-7) except for (H4) of

Theorem 6.1. Thus if (H4) is not applicable to IndFM λ̂ , we get the result
for f(λk) by Corollary 6.2, because f(λ) is a member of the p–adic family of
modular forms determined by f(λk). Otherwise, we modify the choice of λ.

We verify condition (H1-3) and (H5-7) one by one. We always have a character
λ1 of conductor 1 with λ1((α)) = ακ1Σ+cκ2Σ for all α ∈ M× and λ1 ≡ 1
mod mW by our choice of κ; so, λ/λ1 ≡ ϕ mod mW . We may assume that
λ/λ1 = ϕ.

• By the above choice of λ1, we have det ρλ1
= N [κ]

(
M/F

)
and det ρλ =

N [κ]ϕ̃
(
M/F

)
, where ϕ̃ is the Galois character corresponding to the pull

back of ϕ as a Hecke character of M×A to F×A . Then χ in (H1) is given

by ϕ̃
(
M/F

)
, which has order prime to p because p > 2. This shows

(H1).
• By (h2), we have for l|N(λ)p,

ρλ|Dl
∼=





(
eλ 0
0 eλc

)
if l = LL (L 6= L) in M ,

( eλl 0

0 eλl(M/F )

)
if l is inert or ramified in M/F .

We can choose λ̂c to corresponds to λ̂Pc for P ∈ Σp with P|l if l|p.
Then by construction (or the definition of κ2), we have δl = λ̂Pc . This
shows (H2).

• Since λ1 is of conductor 1, we find that λ̂|Il
= ϕ|Il

, which is of order
prime to p. This shows (H3).

• Since λ̂ ≡ ϕ mod mW , (h3) implies that δp 6= εp; so, (H5) follows from
(h3).

• The condition (H6) follows from the definition of N(λ) and (h1), be-

cause C(εlδ
−1

l ) is equal to C(εlδ
−1
l ) by (H3) already verified. By our

definition of N(λ), its l part coincides with C(εlδ
−1
l ).

• The condition (H7) follows from (h4) by Mackey’s theorem.

Thus as long as λ̂ 6≡ λ̂cN mod mW on Ip for every p|p, we have verified the
theorem.
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Now assume that

P =
{

p|p
∣∣λ̂ ≡ λ̂cN mod mW on Ip

}

is non-empty. Let R× (resp. O×) be the p–adic closure of R× (resp. O×) in
R×p for Rp = R⊗Z Zp. Since M cannot have p–th root of unity (by ordinarity

of Σ and unramifiedness of p in F/Q), [R× : O×] is prime to p; so, R×/O×

has order prime to p. We consider the character x 7→ xΣ of R×p → W×,
which has values in a complete valuation subring A of W unramified and
finite over Zp. Let A×p be the maximal p–profinite subgroup of A×, which

is canonically a direct factor of A×, because A is unramified over Zp. Let
x 7→ 〈x〉 be the projection of x ∈ A× to A×p . Thus 〈x〉 ≡ 1 mod mW for

all x ∈ A× and 〈ζ〉 = 1 for all roots of unity ζ in A. Thus x 7→ 〈xΣ〉 is a

character of R×p /R×, which is a subgroup of finite index of G(1). We can
extend this character to a character χ̂ of G(1) so that χ̂ ≡ 1 mod mW on G(1).
This is possible for the following reason: We first extend the character to a
character χ′ : G(1) → W×, which is always possible, replacing W by its finite
extension if necessary. Then we take a Teichmüller lift ε of the reduction (χ′

mod mW ). Then χ̂ = ε−1χ′ gives the desired extension. By our construction, χ̂
is the p–adic avatar of an arithmetic Hecke character χ whose infinity type is Σ.

We now take the Teichmüller lift λ̂0 of (λ̂ mod mW ), which is a p–adic avatar
of a finite order character λ0 : G(C) → W×. Then λ′ = λ0χ is of infi-
nite type Σ and satisfies λ′ ≡ λ ≡ ϕ mod mW . For x ∈ Rp, we write

ω(x) = limn→∞ x[R:pR]n ∈ Rp for x ∈ Rp. Since p is unramified in M/Q,
the Teichmüller lift of (xk mod mW ) for k ∈ Z[Σ ∪ Σc] is given by ω(x)k (in
other words, the operations k and ω commute). Thus, at the place p ∈ P ,

by the above process of construction, λ′−(xp) = N−1(xp) for xp ∈ RP ∩ F×P
(P ∈ Σp with P|p), and the level N(λ′) of f(λ′) is prime to all p ∈ P . Thus
f(λ′) has weight (I, 0) and its Galois representation satisfies (H4). Then the
theorem follows from Corollary 6.2, since f(λk) comes from the same local ring
of the universal nearly ordinary Hecke algebra h as the local ring of the p–adic
family of Hecke eigenforms determined by f(λ) or f(λ′). �

For our later use, we shall compute the q–expansion of classical modular forms
associated to f(λ). Pick y ∈ F×A with yp = y∞ = 1. Then by the definition of

λ̂ and (6.5), we get the following formula of the complex Fourier coefficients:

a(ξyd, f(λ)) =
∑

xxc=ξyd,xΞ=1

λ(xR),

where xR = F ∩ xR̂ and x runs over (R̂ ∩M×
A(∞))/R

(Ξ) for Ξ as in (6.5). This
shows that for fdiag[y,1] in (S2),

fdiag[y,1](τ) = N(y)−1
∑

A;AAc∼yd

λ(A)α−κ2θ(λ;A),
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where A runs over a complete representative set for ideal classes of M with

AAc = αyd (y = yÔ ∩ F ) for a totally positive α ∈ F and

(6.6) θ(λ;A) =
∑

ξ∈A−1/µ(M)

λ(ξ(∞Ξ))(ξξc)−κ2qαξξ
c

.

Here we regard λ as an idele character λ : M×A /M
× by putting

λ(x) = λ(xR)x−κ1Σ−cκ2Σ
∞ ,

and ξ runs over elements in A−1 such that ξA is outside Ξ for Ξ as in (6.5).

As a locally constant function on Â−1, the p–component of φ′1 : ξ 7→ λ(ξ(Ξ)) is
given by λ−1

p restricted to A−1
p by the following reason: φ′1 is the characteristic

function of A−1
l for l outside the conductor C(λ), and taking ξ ∈ A−1 with

ξ ≡ 1 mod C(p)(λ), we see that φ′1(ξ) = λ(ξ(Ξ)) = λ(ξ(p)) = λ(ξp)
−1.

The modular form θ(λ;A) is of weight κε on

Γ0(N(λ); y) =
{(

a b
c d

)
∈ SL2(F )

∣∣a, d ∈ O, b ∈ y, c ∈ N(λ)y−1
}
.

6.3. Self-duality. Let L∗(κε;W ) be the dual lattice of L(κ;W ) un-
der the pairing [ , ] introduced in Subsection 5.3. Then by definition,
L∗(κε;W ) ⊂ L(κε;W ) and the quotient L(κε;W )/L∗(κε;W ) is spanned by
Xn−jY j for 0 < j < n.

Since

U0(Np)p diag[p, 1]U0(Np)p =
⊔

u mod pOp

( p u0 1 )U0(Np)p,

the action of ( p u0 1 ) on L(κε;W )/L∗(κε;W ) (even after dividing by pκ2) is nilpo-
tent. Thus the projector e = limn→∞ T(p) kills the cohomology group:

Hr
∗(Y,L(κε;W )/L∗(κε;W )) (Y = Y B0 (N))

for any r ≥ 0, and hence by cohomology sequence, we get a canonical isomor-
phism for Y = Y B0 (N):

(6.7) Hr
∗,n.ord(Y,L

∗(κε;W )) ∼= Hr
∗,n.ord(Y,L(κε;W )),

where Hr
∗ is either compactly supported or usual cohomology group. We define

the action of Hecke operators T(y) and 〈l〉 on Hr
∗(Y,L

∗(κ∗ε∗;W )) via the ad-
joint action under [, ] of the semi-group ∆0(N). Then the operator is integral
if either p|N or [κ] ≤ 1⇔ [κ] ≥ 0. Thus in the same way, we get

(6.8) Hr
∗,n.ord(Y,L(κ∗ε∗;W )) ∼= Hr

∗,n.ord(Y,L
∗(κ∗ε∗;W )).

As we have seen in [H88a] Theorem 10.1, Hr
∗(Y,L(κε;W ) ⊗ (Qp/Zp)) is p–

divisible if |IB | ≤ 1. Then by looking into the cohomology sequence attached
to the short exact sequence:

0→ L(κε;W )→ L(κε;W ⊗Qp)→ L(κε;W )⊗ (Qp/Zp)→ 0,
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Hr
∗(Y,L(κε;W )) is free of finite rank over W , and we get a perfect pairing:

( , )W : Hq
n.ord(Y,L(κε;W ))×Hq

c,n.ord(Y,L(κ∗ε∗;W ))→W

of W–free modules. For the moment, assume that F 6= Q. Then Y B(U) is
compact; so, Hq

cusp,n.ord = Hq
n.ord = Hq

c,n.ord, and we have the perfect duality
pairing

(6.9) ( , )W : Hq
cusp,n.ord(Y,L(κε;W ))×Hq

cusp,n.ord(Y,L(κ∗ε∗;W )) −→W

As already verified in [H88b] Theorem 3.1 for F = Q, the assertion (6.9) holds
even for F = Q; so, we do not need to assume F 6= Q anymore. We thus have

Corollary 6.4. Under the assumptions and notations of Corollary 6.2,
the map (v, w) 7→ f(v ⊗ w) induces a surjective linear map: V (RP ) ⊗RP
V ′(RP ) ։ S(RP ) for all P ∈ A(I), where S = Sκ(P )(N, ε(P );W [εP ]),
V = Hq(Y,L(κ(P )ε(P );W [εP ])), V ′ = Hq(Y,L(κ(P )∗ε(P )∗;W [εP ])). If
q = |IB | = 0, f is an isomorphism: V (RP )⊗RP V ′(RP ) ∼= S(RP ).

7. Proof of the theorem

We shall prove the theorem in the introduction under the assumptions (h1-4)
on ϕ, which are equivalent to the assumptions (1-4) in the introduction once we
have chosen ϕ with ψ = ϕ−. We first recall integrality results due to Shimura
[ACM] Section 32 and Katz [K] II on the values of modular forms and then
prepare preliminary results on integral decomposition of quaternionic quadratic
spaces. After that, we prove the theorem in the case where the degree [F : Q]
is even. The odd degree case will be reduced to the even degree case.

7.1. Integrality of values of modular forms. By the approximation
theorem,

GL2(F )\GL2(F
(∞)
A )/U0(N) ∼= F×\F×

A(∞)/det(U0(N)) ∼= ClF via y 7→ det(y)

for the class group ClF of F . From this, f ∈ Sκ(N, ε;W ) is determined by

the q–expansions {f(y)}y. Writing y = yÔ ∩ F for the ideal corresponding
to the idele y and setting ỹ =

(
y 0
0 1

)
, f(y) is the q–expansion at the Tate

AVRM Tatey∗,O(q) (in [K] 1.1) of the classical modular form fey (of (S2) in
Subsection 5.1) of weight k = κ1−κ2+I on the following congruence subgroup:

(7.1) Γ0(N; y) =
{(

a b
c d

)
∈ SL2(F )

∣∣a, d ∈ O, b ∈ y, c ∈ y−1N
}
.

Here y∗ = y−1d−1 for the absolute different d of F .

A classical modular form with q–expansion coefficients in W on a slightly
smaller Γ1–type congruence subgroup:

(7.2) Γ(N; y) =
{(

a b
c d

)
∈ Γ0(N; y)

∣∣a ≡ d ≡ 1 mod N
}

has a moduli theoretic interpretation, which we recall in the following para-
graph. We write Sk(Γ(N; y);A) for the space of the classical cusp forms on
Γ(N; y) of weight k with q–expansion coefficients in A.
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Let A be a valuation ring with residual characteristic p. An abelian scheme
X/A′ over an A–algebra A′ is called an abelian variety with real multiplication
by O (AVRM) if it has an embedding: O →֒ End(X/A′) of algebras such

that H0(X,ΩX/O) = (O ⊗Z A
′)ω for a nowhere vanishing differential ω. Here

we have used the unramifiedness of F at p (otherwise, we need to formulate
this condition as H0(X,ΩX/O) = (d−1 ⊗Z A

′)ω). Each Hilbert modular form
f ∈ Sk(Γ(N; y);A) can be regarded as a function of quintuples: (X,λ, i, ω,A′)
made up of an A–algebra A′, an AVRM X over A′, a polarization λ whose
polarization ideal is given by y∗, an embedding i : µN →֒ X of group schemes
over A′ and a differential ω as above (see, for more details of AVRM’s, [K] 1.0
and [PAF] Section 4.1). Here µN is the group scheme made up of N–torsion
points of Gm ⊗ d−1, that is, µN(A) = {ζ ∈ Gm ⊗ d−1(A)|Nζ = 0}, regarding
Gm ⊗ d−1(A) as an additive group. Every ingredient of the quintuple has to
be defined over A′. As a function of (X,λ, i, ω)/A′ , f satisfies the following
conditions (see [HMI] 4.2.7):

(M1) f(X ′, λ′, i′, ω′) = ρ(f(X,λ, i, ω)) if ρ : A′ → C is an A–algebra homo-
morphism and (X ′, λ′, i′, ω′)/C ∼= (X,λ, i, ω)×A′,ρC. Here “∼=” implies:
φ : X ×A C ∼= X ′/C as AVRM’s, tφ ◦ λ′ ◦ φ = λ ×A′ C, φ ◦ i ≡ i′ and

φ∗ω′ = ω.
(M2) f vanishes at all cusps, that is, the q–expansion of f at every Tate

quintuple vanishes at q = 0.
(M3) f(X,λ, i, αω) = α−kf(X,λ, i, ω) for α ∈ (A′ ⊗Z O)×.

The “Neben” character ε : U0(N)→ Q
×

restricted to U1
0 (N) = U0(N)∩SL2(Ô)

factors through U1
0 (N)/U1(N) for U1(N) = U(N) ∩ SL2(Ô) (the conductor

of ε− is N), because ε(u) = ε1(det(u))ε−(d) for u =
(
a b
c d

)
. Thus to evaluate

f ∈ Sκ(N, ε;A) at an AVRM X of CM type, we only need to specify µN →֒ X.

Let M/F be the CM quadratic extension in the introduction. Recall the
decomposition: C = FFcI of the conductor of the Hecke character λ such that
F + Fc = R with F ⊂ Fcc and I is made up of primes non-split in M/F . By
(h2) (for ϕ = λ), the prime factors of N(λ) are either split or ramified over
F . If l|N(λ) and l = LL (with L 6= L) in M , we may choose L so that L ⊃ F.
The exponent of l in N(λ) is less than or equal to that of L in F. Thus to
evaluate f(λ) at a CM point, we need to specify the level structure for the
level d(M/F )f (f = F ∩ F ). Actually we later need the level structure at other
primes non-split in M/F ; so, we first specify level structure for split primes
and then extend the definition to non-split primes. We shall do this first for
an abelian variety of CM type Σ with multiplication by R. Hereafter F is an
integral ideal of R with F + Fc = R and prime to p (because we need to be
more careful for primes dividing p).

Let W be as in the introduction. Define W = i−1
p (W ) ⊂ Q, which is a

valuation ring unramified over Z(p) with algebraically closed residue field F.
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We consider X(R)/C to be the algebraization of the complex torus CΣ/RΣ,

where RΣ = {(aσ)σ∈Σ|a ∈ R} and CΣ = RΣ ⊗Z R. Since X(R) has complex
multiplication, it can be defined over Q and hence over a number field (see
[ACM] 12.4). By the main theorem of complex multiplication (see [ACM]
18.6), X(R) and its ℓ–divisible group for any prime ℓ outside p are actually
defined over an infinite extension K of Q unramified at p. By the criterion of
good reduction by unramifiedness of ℓ–power torsion points (see [ST]), we find
a model X(R)/W of X(R)/K .

By choosing δ ∈M with Im(σ(δ)) > 0 for σ ∈ Σ, we have a polarization pairing
(x, y) 7→ TrM/Q(δxc(y)). This pairing identifies R ∧O R with y for a suitable
choice of a fractional ideal y ⊂ F (prime to p) and induces a y∗–polarization
λ = λ(R). Thus we have the CM-triple (X(R), λ(R), i(R), ω(R))/W , choosing

ω(R) so that H0(X(R),ΩX(R)/W) = (O ⊗ZW)ω(R).

Since W has algebraically closed residue field, for any integer m prime to p, we
have X(R)[m] = {x ∈ X(R)(W )|mx = 0} ∼= (Z/mZ)[M :Q] and µm ∼= Z/mZ as
group schemes over W . Thus we define the level f–structure to be

µf
∼= O/f ∼= X(R)[F] = {x ∈ X(R)(W )|Fx = 0}.

Since the Frobenius map of Fp acts by multiplication by p (times a unit) on
ΩX(R)/W , the p–divisible group X(R)[P∞]/W for P ∈ Σp is connected. Since

the residue field of W is algebraically closed, we see that X(R)[Pe] ∼= µPe

overW (for e = (e(P))P∈Σp), which gives rise to the level pe–structure we need.

Since R∧R ∼= y, we can choose a base w1 and w2 of R so that R = Ow1 +yw2.
For any integral ideal q prime to p, we choose a generator ̟q of qOq. Fixing
an isomorphism O/q ∼= y/q, we embed O/q ∼= y/q/y →֒ q−1Rq/Rq

∼= X(R)[q]
by sending x to ̟−1

q xw2 ∈Mq/Rq, which gives the level q–structure on X(R).
We choose the base w = (w1, w2) so that the level pef–structure we have chosen
coincides with the one for q if pef + q is non-trivial. We may always choose
w so that w0 = w1/w2 ∈ HI . Therefore choosing the base (w1, w2) is almost
equivalent to the choice of a point w0 ∈ HI modulo Γ(N, y) for N = q ∩ fpe.
We write the level structure as i(R) : µN →֒ X(R)[N].

The above definition of the quadruple x(R) = (X(R),Λ(R), i(R), ω(R))/W
can be generalized to ideals of an O–order of R. Let m be an integral ideal
of F prime to pf. Let R′ = O + mR be the O–order of M of conductor m.
We take a proper fractional ideal A of R′ prime to pfqd(M/F ). A fractional
R′–ideal A is called R′–proper if {x ∈ M |xA ⊂ A} = R′. The polarization
pairing on R (so on M) induces the polarization Λ(A) on A. We identify
A ∧ A with a fractional ideal y(A) of F under this pairing. It is easy to
verify y(A) = y(R)mNM/F (A). Then we can choose a base w of A so that

A = Ow1 + y(A)w2 and w0(A) = w1/w2 ∈ HI . This choice w gives rise to the
level structure i(A) : µN →֒ X(A)[N]. We can always find an étale constant
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subgroup C ∼= O/c (c prime to fqd(M/F )p) in X(R) such that the étale
quotient X(A) = X(R)/C over W (e.g. [GME] 1.8.3) gives a model over W
of CΣ/AΣ. Since c is prime to pf, the level structure i(R) and the differential
ω(R) induce a unique level structure and a unique differential ω(A) on X(A).
We make a choice w so that the two level structures (one coming from i(R) and
another from the base w) coincide at primes where the two are well defined.
Thus we have a unique point w0(A) ∈ HI/Γ1(N, y). Having w is equivalent to
having the quadruple x(A) = (X(A),Λ(A), i(A), ω(A)) over C.

Supposing that f ∈ Sk(Γ(N; y);W) (and regarding f as a complex modular
form), we may interpret the value f(x(A)) in terms of evaluation at a CM
point w0(A) ∈ HI . For each z = (z1, z2) with z0 := z1

z2
∈ HI , we consider

the lattice Lz = Ly
z = 2πi(Oz1 + yz2) ⊂ FC = F ⊗Q C. We define a pairing

〈 , 〉 : FC×FC → R by 〈2πi(az1 +bz2), 2πi(cz1 +dz2)〉 = ad−bc, which induces
a y∗–polarization λz = λy

z on the complex torus Xz = Xy
z = FC/Lz. Thus

we can algebraize Xz to an abelian variety Xz/C. We have a canonical level

N–structure iz : (d−1⊗O/N) ∼= 2πi(yz2⊗O/N) ⊂ Xz(C) as long as y is prime
to N. Then the analytic value of f at z is given by

(7.3) z−k2 f((z0, 1)) = f(z) = f(xy
z) for xy

z = (Xz, λz, iz, du),

where u is the variable (uσ)σ∈I with uσ ∈ C identifying FC with CI as
C–algebras.

Defining the canonical period Ω ∈ F×C = (C×)Σ by

(7.4) ω(R) = Ωdu

and choosing y so that R = (2πi)−1Ly
z0 , we find x(A) ∼= x

y(A)
z and

(7.5) f(x(A)) =
(2πi)kf(z)

Ωk
∈ W up to units in W,

because ω(A)/ω(R) ∈ (O ⊗Z W)× (see [ACM] Section 32 and [K] II). Here
writing Ω = (Ωσ) ∈ CΣ, Ωk =

∏
σ∈Σ Ωkσσ .

Since W–integral modular forms f(z, w) of weight (k, k) for the product of
congruence subgroups: Γ(N; y) × Γ(N′; y′) classify the pairs of test objects:

(xy
z , x

y′
w ), the same formula is valid (by the same proof given in [K]): up to

units in W,

(7.6) f(x(A), x(B)) =
(2πi)2kf(z, w)

Ω2k
.

7.2. Error terms of integral decomposition. Let B be a quaternion
algebra over F . Let M/F be a CM field with integer ring R. We are going
to compute error terms of O–integral decomposition of an O–lattice of B as
an integral quadratic space into a direct sum of two O–lattices of M with its
norm form.
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We fix a maximal order OB of B. For an embedding i : R →֒ B of O–algebras,
since i is an embedding of O–algebras, we have Tr(i(a)) = TrM/F (a) for
the reduced trace Tr of B and i(a)i(a)ι = NM/F (a) = aac. This shows
i(ac) = i(a)ι for the main involution ι of B.

Let L be an O–lattice in B. We consider the two orders:

(7.7) OlL = {x ∈ B|xL ⊂ L} and OrL = {x ∈ B|Lx ⊂ L}.
We suppose to have two embedding l : R →֒ B and r : R →֒ B. Thus L
becomes an Rl ⊗O Rr–module by (a ⊗ b)ℓ = l(a)ℓr(b), where Rl = l−1(l(R) ∩
OlL) and Rr = r−1(r(R) ∩ OrL). Since Km ⊗ Kn ∼= Mm×n(K), we find that
Mm ⊗K Mn(K) ∼= Mmn(K) as K–algebras. By extending scalars to M , we
find B ⊗F M ∼= M2(M), and the above argument applied to the extended
algebra M2(M) shows that the embedding l ⊗ r : Rl ⊗O Rr →֒ EndO(L) is
injective. Therefore B is a free M ⊗FM–module of rank 1. When we regard B
as an M–vector space, we agree to use right multiplication by α ∈M given by
αb = b · r(α). Therefore M ⊗F M is identified with M ⊕M by a⊗ b 7→ (ab, acb)
for the generator c of Gal(M/F ). Then we define L1 = (1, 0)L and L2 = (0, 1)L
for the idempotents (1, 0), (0, 1) ∈ M ⊕M . Since LM = L1 ⊕ L2 ⊃ L, we can
define Lj = Lj ∩ L. Then LM = L1 ⊕ L2 ⊂ L. Since (1, 0)B is the eigenspace
of M ⊕M killed by the right factor M , we have

L2 =
{
x ∈ L

∣∣S(L1, x) = 0
}
,

because multiplication by units in (M ⊗F M)× preserves the inner product
S(x, y) = Tr(xyι) up to scalar similitude. By S, we have the orthogonal
projection π1 of B to ML1 and π2 to ML2. Then we may have defined
LM = π1(L) ⊕ π2(L). Indeed, π1 (resp. π2) is given by the multiplication
by (1, 0) (resp. (0, 1) ∈ M ⊗F M). We want to determine primes dividing the
index [LM : LM ]. Here is the result:

Lemma 7.1. Let d(Rl/O) (resp. d(Rr/O)) be the relative discriminant of Rl/O
(resp. of Rr/O). Then we have d(Rl/O)d(Rr/O)LM ⊂ LM .

Proof. The process constructing LM and LM can be done at each localization
Bp for primes p of O. Then Li,p = Lp ∩MpLi and πj(Lp) = πj(L)p. If a
prime p of O is unramified in Rr and Rl, we have Rl,p ⊗Op

Rr,p ∼= Rp ⊕ Rp,

and hence LMp = LM,p by definition. More generally, by the definition of the
discriminant, we have

d(Rl/O)d(Rr/O)(R⊕R) ⊂ Rl ⊗Rr ⊂M ⊗F M.

This shows the desired assertion. �

For a prime l outside the discriminant of B/F , identifying Bl with M2(Fl), we
define the Eichler order of level lm by

Ô0(l
m)l =

{(
a b
c d

)
∈M2(Fl)

∣∣c ∈ lmOl

}
.
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Here Ô0(l
0)l is the fixed maximal order of Bl. We then put for ideals N

outside the discriminant of B/F , Ô0(N) =
∏

l Ô0(l
e(l)), where N =

∏
l l
e(l) is

the prime decomposition of N (for l ∤ N, we agree to put e(l) = 0).

We identify Bp with M2(Fp) so that r and l both bring (x, y) ∈ Mp = MΣp ×
MΣpc onto

(
x 0
0 y

)
in M2(Fp). For l|f = F ∩ O, we take the factor L|l so that

L|F, and we identify Bl with M2(Fl) bringing (x, y) ∈ Ml = ML × ML to(
x 0
0 y

)
in M2(Fl). For l|D(M/F ), we embed Ml by r = l into the Ol–order

of M2(Fl) generated by the scalar in Ol and ∆B
0 (l), that is the Eichler order

Ô0(D(M/F ))l of level D(M/F )l.

Proposition 7.2. Suppose the following three conditions:

(a) pN is prime to D = d(Rr/O)d(Rl/O);

(b) Lfp = Ô0(fp
e)fp ⊂ Bfp for the conductor pe =

∏
p|p pe(p) of ε2;

(c) ε1,p is trivial on O×p and κ = (I, 0).

Let v ∈ L(κε;W ) = W and w ∈ L(κ∗ε∗;W ) = W . Then φ : L → W given
by φ(γ) = [γv,w] is a W–integral linear combination of functions of the form
φ1 ⊗ φ2 for functions φj : Lj →W such that

(1) φ1(x) = φ1,p(xp)φ
(p)
1 (x(p)) (resp. φ2(x) = φ2,p(xp)φ

(p)
2 (x(p))), where

we embed x ∈M into Mp×M (p) by x 7→ (xp, x
(p)) and for a Z–module

X ⊂ B, X(p) = X ⊗Z Ẑ(p) with Ẑ(p) =
∏
ℓ∤p Zℓ;

(2) φ2,p

(
b
d

)
= ε2(d) if

(
b
d

)
∈ O2

p and vanishes outside Op×O×p ⊂ O2
p = L2

p;

(3) φ1,p is the characteristic function of L1
p
∼= Op × peOp;

(4) φ
(p)
j (j = 1, 2) factors through the finite quotient Lj/fDLj of Lj,(p);

(5) the function φj is supported on Lj and has values in W .

Proof. We regard φ as a function of B
(∞)
A = Bp × B(p∞)

A supported on L̂ so

that φ(b) = φp(bp)φ
(p)(b(p)) for φp = φ|Bp and φ(p) = φ|

B
(p∞)
A

. We identify Bp

with

M2(Fp) = Mp ⊕Mp =
(
RΣpc RΣpc

RΣp RΣp

)
.

Then φp
(
a b
c d

)
= ε1(a)ε2(d)[v, w] if

(
a b
c d

)
∈ Ô0(p

e)p. This shows the desired
assertion for φp.

As for the component outside p, we only need to prove that the characteris-
tic function χL(p) of L(p) is a finite W–linear combination of tensor products
of W–integral locally constant functions. Note that any additive character

LM/LM → W
×

is a tensor product of W–integral valued additive characters

of LM/LM = LM,(p)/L
(p)
M , because [LM : L] is a product of primes dividing

the discriminant D by the proposition. We then have χL = [LM : L]−1
∑
ψ ψ,

where ψ running through all additive characters of LM,(p)/L(p). Note that

ψ = ψ1 ⊗ ψ2 with locally constant additive characters of ψj : Lj → W
×

.
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Thus we may take φ1(xp, x
(p)) = φ1,p(xp)ψ1(x

(p))ε
(p)
2 (xc(p)) and φ2(yp, y

(p)) =

φ2,p(yp)ψ1(y
(p))ε

(p)
1 (y(p)) for (x, y) ∈ L1 ⊕ L2. Since ψj (resp. ε

(p)
j ) factors

through Lj/DLj by Lemma 7.1 (resp. Lj/fLj by definition), we conclude that

φ
(p)
j factors through Lj/fDLj . �

Let B = M2(F ). We choose two fractional ideals B1 and B2 of M . Then
we decompose A = Oz1 + az2 and B = Ow1 + bw2 with z0 = z1/z2 ∈ HI

and w0 = w1/w2 ∈ HI . The regular representation l of R on B1 given by
l(α) ( z01 ) = ( z0αα ) gives an embedding of R into

OlL =
{(

a b
c d

) ∣∣a, d ∈ O, b ∈ a, c ∈ a−1
}
.

Similarly we define an embedding r : R →֒ OrL replacing z0 by w0, where

OrL =
{(

a b
c d

) ∣∣a, d ∈ O, b ∈ b, c ∈ b−1
}
.

We consider the tensor product: B1 ⊗O B2 and L = l(B1)v · r(B2) ⊂ M2(F )
for a suitable v ∈M2(F ).

We want to determine the factors of LM and LM . Since L1 is the projection
of L to the first factor M of M ⊗F M = M ⊕M , writing the projection to the
first factor as (a⊗ b) 7→ acb (so the projection to the second factor is given by
(a⊗ b) 7→ acbc), we have L1 ∼= Bc

1B2 and L2 ∼= Bc
1B

c
2.

Since R⊗O R can be identified with
{
(a, b) ∈ R⊕R

∣∣a ≡ b mod d(M/F )
}

inside R ⊕ R ⊂ M ⊗F M for the relative different d(M/F ) for M/F , we see
that L1

∼= Bc
1B2d(M/F ) and L2

∼= Bc
1B

c
2d(M/F ).

Remark 7.1. We analyze the choice of v locally at primes p|p of F when Bj,p =
Rp for j = 1, 2. Since the prime ideal p is split into PPc with P ∈ Σp in M , by
choosing the base (e1, e2) for e1 = (1, 0), e2 = (0, 1) of Rp = RPc⊕RP over Op,
we may assume that l(α) = r(α) =

(
αc 0
0 α

)
. Then we choose v to be b = ( 1 1

1 1 ).
By computation, we have

l(α)b · r(βc) =
(
αc 0
0 α

)
b
(
β 0
0 βc

)
=
(
αcβ αcβc

αβ αβc

)
.

This shows that l(Rp)b · r(Rp) = M2(Op), and regarding M2(Op) as an Rp–
module via αx = l(α)x, we find

M2(Op) =
(
RPc RPc

RP RP

)
.

Take Op basis w = (w1, w2) and z = (z1, z2) of Rp inM so that w ≡ z ≡ (e1, e2)
mod pm for m ≥ e(p) for e(p) as in Proposition 7.2.

We define p(z, w) = z2w2p(z0, w0) and [u; z, w] = S(u, p(z, w)) (the homoge-
neous form of [u; z0, w0]). Then we find [b; z, w] = (z1 − z2)(w2 −w1) and that
[b; z, w] is a p–adic unit.
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7.3. Proof. We first suppose that [F : Q] is even. Then we have a definite
quaternion algebra B/F with d(B/F ) = 1 and IB = ∅. We write G/Q for the

algebraic group associated to B×.

We fix a maximal order OB and identify ÔB with M2(Ô) once and for all. Thus

Ô0(N) ⊂ ÔB is an open compact subring. We have UB0 (N) = Ô0(N)×. We fix
complete representative sets {a1, . . . , ah} for G(Q)\G(A)/UB0 (N)G(R)F×A with

ai,Np = a∞ = 1 and Z ⊂ (F×A )(Np∞) for ClF = F×A /F
×Ô×F×∞. We consider

(7.8) ∆ijz(N) = a−ιi z ·∆B
0 (N)aιj ∩B,Oijz(N) = a−ιi z · Ô0(N)aιj ∩B (z ∈ Z)

and Γi0(N) = G1(Q) ∩ aiUB0 (N)a−1
i G(R),

where G1(A) = {g ∈ G(A)|ggι = 1}. Thus ∆ijz(N) ⊂ Oijz(N). Note
here that {aiz|z ∈ Z}i=1,...,h gives a complete representative set for
G(Q)\G(A)/UB0 (N)G(R).

Let φ ∈ H0(Y B0 (N), L(κε;W )); so, we may regard φ : G(A) → L(κε;W ) with
φ(γxu) = uιφ(x) for u ∈ UB0 (N)F×A G(R)F×A and γ ∈ G(Q). Similarly, we

choose φ∗ ∈ H0(Y B0 (N), L(κ∗ε∗;W )). Then

(φ, φ∗)W =

h∑

i=1

[φ(ai), φ
∗(ai)].

Pick y ∈ F×A with yp = y∞ = 1. Supposing ξyd is integral, we consider T(ξyd)
for 0≪ ξ ∈ F . By (unr), we have dp = 1. We choose a decomposition

UB0 (N)
(
ξyd 0
0 1

)
UB0 (N) =

⊔

̟

̟UB0 (N).

Here we can choose ̟ so that ̟̟ι = ξyd, because

U\U
(
y 0
0 1

)
U/U = UB0 (N)\UB0 (N)

(
y 0
0 1

)
UB0 (N)/UB0 (N)

writing U = {u ∈ UB0 (N)|uuι = 1}. Thus ̟p̟
ι
p = ξ. Then

φ|T(ξyd)(x) = ξ−κ2

∑

̟

̟pNφ(x̟−ι).

Since ai̟
−ι ∈ ⊔j,zG(Q)ajz · UB0 (N)G(R), we can write ai̟

−ι = γiajuiz
for γ−ιi ∈ ∆ijz(N) and ui ∈ UB0 (N)G(R). Thus we have, writing ai =

NB/F (ai)Ô ∩ F and y = yÔ ∩ F , ajydz
2ξ = N(γ−1

i )ai z = zÔ ∩ F ; in other

words, y−1d−1aia
−1
j z−2 is generated by a totally positive element αijz ∈ F

prime to pN. Thus we have

ξ = αijzγ
−1
i γ−ιi up to totally positive units.

Then we see, up to totally positive units,

φ|T(ξyd)(ai) = ξ−κ2

∑

̟

̟pNφ(ai̟
−ι) = α−κ2

ijz

∑

γi

NB/F (γi)
κ2γ−ιi φ(aj).
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Here, extending ε : U0(N) → Q
×

to ε : U0(N)F×A → Q
×
p by the p–adic avatar

ε̂+ : F×A /F
× → Q

×
p of the central character ε+, we have

NB/F (γi)
κ2γ−ιi φ(aj) = ε(γ−ιi )φ(aj)

(
σ(γ−1

i )
(
Xσ
Yσ

))
,

which is p–integral if φ(aj) is in L(κε;W ).

Since B is totally definite (|IB | ≤ 1 and |IB | ≡ [F : Q] mod 2 ⇒ IB = ∅),
Γ
i

0(N) = Γi0(N)/O× is a finite group. We then put ei = |Γi0(N)|. Defining

Θijz(v, w) =
1

eiej

∑

γ∈∆ijz(N)∩Supp(ε)
NB/F (γ)−κ2 [γv,w]qαijzγγ

ι

for v ∈ H0(Γj0(N), L(κε;W )) and w ∈ H0(Γi0(N), L(κ∗ε∗;W )) (and rewriting
γ−ιi as γ), we find for y ∈ F×A with yp = 1

(7.9) f(φ⊗ φ∗)(y) = N(y)−1
∑

i,j,z;aia
−1
j z−2∼yd

α−κ2
ijz Θijz(φ(aj), φ

∗(ai)),

where a ∼ b indicates that the two ideals belong to the same strict class
in F . Here Θijz is a theta series of the O–lattice ∆ijz(N) and is a Hilbert

modular form of weight κε on Γ0(N; y) for y = F ∩ yÔ. Since the pairing: [ , ]
is p–integral valued on L(κε;W ) × L(κ∗ε∗;W ) and αijz is prime to pN, the
theta series has p–integral Fourier coefficients (except possibly for the constant
term). The constant term does not show up if φ ∈ H0

n.ord(Y
B
0 (N), L(κε;W )) ⊂

H0
cusp(Y

B
0 (N), L(κε;W )). Thus restricting φ to the ordinary part, f(φ⊗φ∗) has

to be cuspidal (cf. [H88a] Theorem 6.2) and hence, the constant term vanishes.
We may forget about the integrality problem stemming from the denominator:
eiej .

We choose an ideal A of M with NM/F (A) ∼ y. We choose α ≫ 0 with

y−1d−1NM/F (A) = (α). Then we consider the theta series defined in (6.6):

θ(λ;A) =
∑

γ∈A−1

λ(γ)(γγc)−κ2qαγγ
c

for a Hecke character λ of conductor C with λ(α) = ακ1Σ+κ2Σc if α ≡ 1
mod C. Strictly speaking, we need to divide the above series by |µ(M)| (see
(6.6)), but |µ(M)| is prime to p by the unramifiedness of p in M/Q. So we
forget about |µ(M)|. Here we have freedom of choosing A in its ideal class (by
changing α≫ 0 suitably).

We define the reversed Petersson inner product (f, g) = 〈g, f〉 = 〈f, g〉 to make
it linear with respect to the right variable g. By the variable change z 7→ −z,
we have

(7.10) (f, g) = 〈fc, gc〉 for fc(z) = f(−z).

Documenta Mathematica · Extra Volume Coates (2006) 465–532



522 Haruzo Hida

Unless the following condition is met:

(7.11) κ = (I, 0) and (λ−)∗(Pc) ≡ 1 mod mW for some P ∈ Σp,

we have proven in [H05d] Proposition 5.6 the following equality up to units in
W :

(MT) Lp(λ̂
−) =

(2πi)2(κ1−κ2)Wp(λ
−)(f(λ), f(λ))N

Ω2(κ1−κ2)
∈W,

where Wp(λ) =
∏

P∈Σp
W (λP) and

W (λP) = N(P−e(P))λ(̟
−e(P)
P )

∑

u∈(R/Pe(P))×

λP(u)eM

(
u

̟
e(P)
P

)

if e(P) > 0 and W (λP) = 1 otherwise. We would like to show (choosing λ in
the p–adic analytic family so that (7.11) does not hold)

(GL)
(2πi)2(κ1−κ2)Wp(λ

−)(θ(λ;A),Θijz(φ(aj), φ
∗(aj)))Γ

Ω2(κ1−κ2)
∈W

for Γ = Γ0(N(λ); y) and the optimal CM period Ω defined in (7.4), as long as
φ ∈ V (R) and φ∗ ∈ V ∗(R) for R = RP as in Corollary 6.4 for P associated to
λ.

We write Oi(N) for Oiiz(N) with z = 1. We choose an embedding i0 : M →֒ B.
We may then realize B as

B =
{(

ac bc

bη a

) ∣∣a, b ∈M
}

with OB containing
(
ac bc

bη a

)
if a, b ∈ R. We define i1(a) =

(
ac 0
0 a

)
∈ B.

For primes l split in M/F , we assume that our identification Bl
∼= M2(Fl)

is induced by completing L–adically the above expression of B choosing
one prime factor L|l in M . Taking a1 = 1, we find that i1(R) ⊂ O1(N) if
N is made of primes split in M/F . Suppose now that N contains primes
non-split in M/F . For a given finite set S of primes, we can conjugate the
embedding i1 by a norm 1 element ul (l ∈ S) so that ui1u

−1(RS) ⊂ O1(N)S
(O1(N)S = O1(N) ⊗O OS for the localization OS =

∏
l∈S Ol). By the strong

approximation theorem, choosing one prime q of F , we can write u = γu′ with
γ ∈ G(Q) and u′ ∈ UB0 (N)B×q . Thus changing i1 by γi1γ

−1, we may assume
that for any given N that i1(R1) ⊂ O1(N) for an O–order R1 ⊂ R of q–power
conductor. We identify M×A with the image in G(A) under i1.

If d(M/F ) 6= 1, we find b1, . . . , bj in M×A so that NM/F (bj) gives a complete

representative set for F×\F×A /Ô×(F×A )2. By the reduced norm map: NB/F :

G(A)→ F×A+, we have a surjection:

G(Q)\G(A)/UB0 (N)G(R)F×A ։ F×+ \F×A+/Ô
×(F×A )2.

Thus we can choose {ai = bjsk} = {bj} × {sk} so that NB/F (sk) = 1. Then
again by the strong approximation theorem, we can write sk = γkuk with
uk ∈ UB0 (N)B×q and γk ∈ G(Q). Since bj commutes with i1(R1), conjugation
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by bj does not alter i1. Then defining ij : M → B by γki1γ
−1
k and putting

Rj to be the inverse image under ij of ij(M) ∩ Oj(N), we find that Rj is an
O–order of M of q–power conductor.

Suppose now that d(M/F ) = 1. In this case, the image of M×A in the class

group F×+ \F×A+/Ô
×F×∞+ under the norm map is of index two; so, we need to

add one more element b′ ∈ G(Fq) with NM/F (b) generating qOq, choosing the
prime q to be inert in M/F . Then the representatives ai can be chosen as bjsk
or bjb

′sk for sk ∈ SL2(Fq) and bj ∈ M×A . Thus, by the same argument as
above, we find again an O–order Rj of q–power conductor and an embedding
ij : Rj →֒ Oj(N). We have now proven:

Lemma 7.3. Let the notation be as above. By choosing a prime ideal q of F
outside any given finite set of primes, we can embed the order O + qmR ⊂ M
of q–power conductor into Oj(N) for all j = 1, 2, . . . , h, if the conductor qm is
sufficiently deep.

We write Rj for Oj(N) ∩ R. By the above lemma, we assume that Rj is

of conductor qm(j). We choose later q in a way optimal to our proof. We
regard Lijz = Oijz(N) as Ri ⊗O Rj module by i1: (α, β)b = αbβ. Since
M ⊗F M = M ⊕M , writing 1r (resp. 1l) the idempotent of left and right
factors, we split Oijz(N) ⊂ LMijz = 1rLijz ⊕ 1lLijz. The index [LMijz : Lijz] is a
product of a power of q and primes ramifying in M/F , which we can choose to
be prime to p. Then as studied in Subsection 7.2, we can write Θijz of level N

as a p–integral linear combination of θ(φ1)θ(φ2) of theta series of Lrijz = 1rLijz
and Llijz = 1lLijz, respectively. The functions φk (k = 1, 2) can be chosen to
be p–integral.

We now bound the level of θ(φk). To make the argument simple, first assume
that i1(R) ⊂ O1(N), ai = bi′ and aj = bj′ , and we choose that bi′ so that

bi′,l = 1 for all primes l|Np · d(M/F )q. Note that bi′z ·O0(N)b−1
j′ = zbi′ ⊗ b−1

j′

as R ⊗O R–modules for bi′ = (bi′R̂ ∩M), we find from the discussion at the
end of the previous section that L1

ijz = zbci′b
−1
j′ and L2

ijz = zbci′b
−c
j′ . Thus we

find that yd = a−1
i ajz

2 = NM/F (L1
ijz) = NM/FL

2
ijz.

As explained in the introduction, we take ϕ with ψ = ϕ−. We may assume
that the weight κ of f(ϕ) is (I, 0). We than take a weight κ member f(λ) of the

p–adic family (associated with ϕ: λ̂|Gtor(C) = ϕ) with complex multiplication
by M . To avoid (7.11) (⇔ (MT)), we choose ε so that it is non-trivial at all

p|p. Replacing ϕ by ϕη for a finite order character η : Gal(Q/F ) → W
×

does
not alter the anticyclotomic part ϕ−. By a theorem of Chevalley ([Ch]), we
can choose η so that ηl = λ−1

l on the inertia group at l for every prime l in any
given finite set of prime ideals. Thus we may assume

(7.12) λ has conductor prime to Σpc.
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Write N = N(λ). Under this assumption, κ = κ∗, ε∗ = ε−1 and [v, w] = vw by
identifying L(κε;W ) = W (on which ∆0(N) acts via multiplication by ε) and
L(κ∗ε∗;W ) = W . Then

[γφ(aj), φ
∗(ai)] = ε(γfp)φ(aj)φ

∗(ai).

Regarding the character ε : ∆B
0 (N)fp → W

×
as a function εijz of

B ⊗Q A(∞) supported on ∆̂ijz(N) = aιiz∆
B
0 (N)a−ιj by εijz(x) = ε(xfp)

(∆̂ijz(N)fp = ∆B
0 (N)fp), the function χijz : γ 7→ ε(γ)[γφ(aj), φ

∗(ai)] is the
function εijz multiplied by the p–integral constant: φ(aj)φ

∗(ai). Write down
χijz as a sum χijz =

∑
φ1,φ2

φ1 ⊗ φ2 for finitely many p–integral locally

constant functions φ1 : L1
ijz → W and φ2 : L2

ijz → W . By Proposition 7.2,

φ2,p(xp) = λΣp(xΣp) on RΣpc×R×Σp and is supported by (RΣpc×R×Σp) ⊂ L2
ijz,p

(and φ1,p is the characteristic function of L1
ijz,p = RΣpc × peRΣp).

By the proof of Proposition 7.2, we find that φ
(p)
k (k = 1, 2) factors through

Lkijz/d(M/F )fLkijz. Thus θ(φk) is at least automorphic with respect to the

congruence subgroup Γ0(N(λ); y) ∩ Γ(d(M/F )2; y), where

Γ(N; y) =
{(

a b
c d

)
∈ Γ0(N; y)

∣∣a ≡ d ≡ 1 mod N
}
.

This follows from the fact that φk as above is a linear combination of p–integral
functions χ of the lattice (zbcj′b

−1
i′ ) modulo (zbcj′b

−1
i′ d(M/F )) for a sufficiently

large m and the fact that θ(χ) =
∑
ξ∈M χ(ξ)qαijzξξ

c

has the level as described
above.

More generally, when ai = bi′s and aj = bj′s
′ for s or s′ with norm 1 in B×q ,

Ri and Rj could have conductor a power of q; so, the same argument yields
that θ(φk) is on Γ = Γ0(N(λ); y) ∩ Γ(d(M/F )2qm; y) for a sufficiently large m.

As seen in (6.6), the y–component of f(λ) is given by a p–integral finite sum
|µ(M)|−1

∑
A λ(A)θ(λ;A) of theta series of the form:

θ(λ;A) =
∑

ξ∈A−1

λ(ξ(Ξ∞))qαξξ
c

,

where AAc = αyd (with α ≫ 0 in F ). Here the sum
∑

A λ(A)θ(λ;A) is over
ideal classes of M whose norm isequivalent to yd. By choosing v ∈M2(F ) and
(z0, w0) ∈ HI × HI as in Section 4, we identify M2(F ) with M ⊕M . Then
we choose L = A−1 ⊕ L2

ijz as an O–lattice of M2(F ). Since we have freedom
of changing A in its ideal class, we may assume that the p–adic completion
Lp = L ⊗Z Zp is equal to M2(Op) in M2(Fp) = Bp, because L2

ijz = Op ⊕ Op.
Then L1 = A−1 and L2 = L2

ijz. We take φ′1 : L1 →W so that θ(φ′1) = θ(λ;A).

Then φ′1(ξ) = λ(ξ(Ξ∞)) and φ′1,Σp = λ−1
Σp

(ξΣp), and φ′1,Σpc is the characteristic

function of RΣpc.
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We choose two ideals B1 and B2 of M and v ∈ M2(F ) very close p–adically
to b = ( 1 1

1 1 ) ∈ M2(Fp) as in Remark 7.1 so that L = l(B1)v · r(B2) ⊂ L with
L/L killed by a power of d(M/F )q. Here we need to introduce another prime
q, because L2 is stable only by an O–order in M of q–power conductor. We
choose the base B1 = Oz1 + yz2 and B2 = Ow1 + yw2 again as in Remark 7.1.
Let z = (z1, z2) and w = (w1, w2). Thus z0 = z1/z2 and w0 = w1/w2 are both
in HI . Thus we have from Theorem 4.1 and (7.10) that:

(θ(φ′1), θ(φ1)θ(φ2))Γ = 〈θ(φ′1)c, θ(φ1 ⊗ φ2)c〉Γ = CΨ(z, w)

for a constant C ∈W× and a congruence subgroup

Γ = Γ0(N(λ); y) ∩ Γ(d(M/F )2qm; y) (m≫ 0).

Here Ψ(z, w) is the homogeneous version of the modular form:

(7.13) Ψ(z0, w0) =
∑

0≪α∈Γ\M2(F )

φ∗(∞)(ǫα)eF (det(α)z0)θ(φ1)|1α(w0)

for the partial Fourier transform φ∗ of φ = φ
′
1 ◦ c ⊗ φ2, because θ(φ)c(z) =

θ(φ)(−z) = θ(φ ◦ c). The constant C is prime to p (that is, ip(C) ∈ W×)
because of the following reason: Since Ψ is of weight (I, I), the homogeneous
form is given by zI2w

I
2Ψ(z, w) = Ψ(z0, w0). Since v is very close p–adically to b,

we may assume that v = b. Then by Theorem 4.1 and [b; z, w] = (z1−z2)(w2−
w1), we have

C = zI2w
I
2 Im(z0)

−I Im(w0)
−I [b; z0, w0]

I |[b; z0, w0]|2I

=
(z1 − z2)(w2 − w1)|(z1 − z2)(w2 − w1)|2

(z1z2 − z1z2)(w1w2 − w1w2)
,

whose image under ip is easily seen to be in W× (by our choice of the base z
and w as in Remark 7.1).

The local partial Fourier transform preserves p–integral Schwartz-Bruhat func-
tions on M2(Fl) as long as l ∤ p. Since Mp = MΣp ⊕MΣpc, we find

M2(Fp) = Mp ⊕Mp =
(
MΣpc MΣpc

MΣp MΣp

)
.

The first column is the factor Mp carrying φ
′
1,p ◦ c. The function φ

′
1,p ◦ c is

supported on Rp. Since complex conjugation interchanges a and c (see Propo-

sition 7.2), we see from (6.6) that (φ
′
1,p ◦ c) ( ac ) = λΣp(a) (because we have as-

sumed that λ has conductor prime to Σcp: (7.12)). Similarly, φ2,p

(
b
d

)
= λΣp(d)

for b ∈ RΣpc and d ∈ RΣp . Thus φp(a, b) equals to χ(a, b)λΣp(a) for the char-
acteristic function χ of Rp = O×p × Op. The partial Fourier transform is with

respect to the variables “(a(p), b(p))” keeps p–integrality by the Fourier inver-
sion formula. Thus we may concentrate on the p–component. Define for each
P ∈ Σ, Φλ(x) to be equal to λP(x) if x ∈ R×P and 0 outside R×P. Then the

Fourier transform of Φλ is given by W (λP)λP(̟
e(P)
P )Φλ(̟

e(P)
P x) (see [BNT]
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Proposition 13 in VII.7). Thus we need to prove W (λ−P)W (λP)λ(̟
e(P)
P ) ∈W .

This can be done as follows: writing e = e(P) and ̟ = ̟P,

(7.14) W (λ−P)λ(̟e)W (λP) = N(P−2e)λ(̟e)λ(̟−ce)G(λ−1
P )G(λP)

= λP(−1)λ(̟−ce)λ(̟e)N(P−e),

where G(χ) =
∑
u∈R/Pe χ(u)eM ( u

̟e ) for the conductor Pe of χ. Note here

that the infinity type of λ is −Σ, and hence λ(̟e) is up to unit equal to ̟eΣ

which is equal to N(Pe) up to units in W . This shows the desired integrality.

Since the partial Fourier transform with respect to the character eA(ab′ − ba′)
interchanges (a, b), the support of φ

∗
p is contained in

(
Op ̟

−eO×p
Op Op

)
= τ−1

(
Op Op

peOp O
×
p

)
⊂M2(Fp),

where τ =
(

0 −1
̟e 0

)
.

The function φ1,p is the characteristic function of RΣpc × peR×Σp . Since τ

normalizes U0(p
e)p, we can choose complete representative set R for

U0(p
e)p\

((
Op Op

peOp O
×
p

)
×GL2(FA(p∞))

)

such that α ∈ R can be written as τ−1β with p–component βp is upper tri-
angular (e.g. [MFG] 3.1.6) with p–adic unit at the lower bottom corner. The
Hecke operator UxU for x ∈ R preserves the p–integral structure of Sκ(Γ;W )
(the space of cusp forms on Γ with W–integral Fourier coefficients). This fact
follows, for example, [H88a] Theorem 4.11, and actually, if x ∈ GL2(F ) has
upper triangular p–component with p–adic unit at the lower bottom corner,
the action of θ 7→ θ|1x on modular forms preserves p–integrality since it is
basically given by θ(z) 7→ θ(az) for totally positive a. Thus the action of β:
θ(φ1)|1τ−1 7→ θ(φ1)|1τ−1β in (7.13) preserves the p–integrality (see Theorem
4.9 in [H88a]), and θ(φ1)|1τ−1β has p–integral q–expansion with respect to the
variable w if θ(φ1)|τ−1 is p–integral. Thus we need to prove that θ(φ)|1τ−1

has p–integral q–expansion coefficients, in order to show Ψ(z, w) in (7.13)

has p–integral q–expansion. Since θ(φ)|τ ′ for τ ′ =
(

0 −1
1 0

)
is given by θ(φ̂1)

for the Fourier transform φ̂1 of φ1 regarding it as a function on MA. The

p–integrality only depends on the p–part φ1,p of φ1. By computation, φ̂1,p is
N(p−e) times the characteristic function of RΣpc × p−eRΣp . Taking ̟−e in

O, we find that θ(φ1)|τ−1 is equal to θ(φ̂1)|1
(

1 0
0 ̟−e

)
(w) = ̟eθ(φ̂1)(̟

ew) up

to a p–adic unit. Since̟eN(p−e) is a p–adic unit, we get the desired integrality.

By the q–expansion principle, we conclude from (7.6)

(7.15)
(2πi)2ΣWp(λ

−)(θ(λ;A), θ(φ1)θ(φ2))Γ
Ω2Σ

∈W.
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This shows

[Γ0(N(λ); y) : Γ]
(2πi)2ΣWp(λ

−)(θ(λ;A),Θijz)Γ0(N(λ);y)

Ω2Σ
∈W.

Write (θ(λ;A), f)Γ for the inner product (θ(λ;A), fy) for the y–component fy

of f ∈ Sκ(N, ε;W ). Since any f ∈ Sκ(N(λ), ε;W ) is a W–linear combination
of Θijz by Corollary 6.4, we conclude

[Γ0(N(λ); y) : Γ]
(2πi)2ΣWp(λ

−)(θ(λ;A), Sκ(N(λ), ε;W ))Γ0(N(λ);y)

Ω2Σ
⊂W.

Since [Γ0(N(λ); y) : Γ] is a factor of

NF/Q(N′)2
∏

l|N′

(
1− 1

NF/Q(l)2

)

for N′ = d(M/F )2qm, if p ∤ (N(l)± 1) for all primes l|d(M/F )q, we get

(7.16)
(2πi)2ΣWp(λ

−)(θ(λ;A), Sκ(N(λ), ε;W ))Γ0(N(λ);y)

Ω2Σ
⊂W.

We can choose q (by unramifiedness of p in F/Q and p ≥ 5) so that

p ∤ (NM/F (q)± 1).

Thus if p ∤ (NM/F (l)±1) for all primes l|d(M/F ), we concludeH(ϕ)|h(M)
h(F ) L

−(ϕ)

as we explained in the introduction. Here H(ϕ) is the congruence power series
with respect to the nearly ordinary Hecke algebra h(N(ϕ), εϕ;W ) interpolating
hn.ordκ (N(λ), ελ;W ) (for all κε ∈ A(I)). Thus H(ϕ) divides thecongruence
power series H in [HT1] but could be smaller if C ∩ Cc contains non-trivial
prime factor. In [HT1], we had an extra factor ∆(M/F ;C) which is equal
to the product of the Euler factors of L(s, α)L(s, ϕ−1ϕc) for primes outside
p in C ∩ Cc. This comes from the formula of the inner product of θ(λ) in
[HT1] Theorem 7.1. After doing the same computation for f(λ) of smaller
level instead of θ(λ) and writing k = κ1 − κ2 + I (see [H05d] (5.5)), we get the
exact formula, if λ− has split conductor:

(7.17) (f(λ)u, f(λ)u)N(λ)

= D ·NF/Q(N(λ))2−2k+1π−(k+I)ΓF (k + I)L(1, Ad(f(λ)))

under the terminology of [HT1] Section 7 without any error terms. Here D =
N(d) is the discriminant of F/Q.

Here is how to remove the condition: p ∤ (NM/F (l) ± 1) for primes l in the
discriminant d(M/F ). The idea is to make quadratic base-change (and then
descent). As a target of the base-change, we can find a totally real qua-
dratic extension F ′/F unramified at p such that d(M ′/F ′) for the composite
M ′ = MF ′ does not contain prime factors as above. Then for M ′/F ′, we get
the assertion. We later choose F ′ more carefully so that we can effectively
descend back to F again. Let χ be the character Gal(F ′/F ) ∼= {±1} restricted
to Gal(Q/M). Suppose that we find a character η of Gal(Q/M) of conductor
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C′ such that ηc−1 = χ.

We can always assume that η is of order prime to p by taking the Teichmüller
lift of (η mod mW ). Let ΓM be as in the introduction and we consider the
universal character ϕ̃ : G(C) → W [[ΓM ]] with branch character ϕ. Put Ψ :

Gal(F/F ) → GL2(I) be the induced Galois representation IndFM ϕ̃. Then we
have

Ad(Ψ) ∼= α⊕ IndFM (ψ̃) for α =

(
M/F

)
.

Thus

Ad(Ψ)⊗ χ ∼= αχ⊕ IndFM (ϕ̃η
−1
ϕ̃ηc).

By Fujiwara’s “R = T” theorem [Fu] (actually its I–adic version: [HMI] The-
orem 3.59), under the assumption (h1-4), the congruence power series H(ϕ)
gives the characteristic power series of the Selmer group

Sel(Ad(Ψ)) = Hom(Cl−,Qp/Zp)⊗Z I⊕ Sel(ψ),

where Cl− = ClM/ClF for the class groups ClM (resp. ClF ) of M (resp. F ).

We need to argue more for the character ϕη, because ϕη may not satisfy the
condition (h2). We choose F ′ so that F ′l = Ml for all l|2pd(M/F ) and F ′/F
ramifies outside 2d(M/F ) only at primes which split in M/F . This is possible

for the following reason: We take an element δ ∈ O so that M = F [
√
δ].

Then we take a high power a = (2pd(M/F ))m so that any element u ∈ F
with u ≡ 1 mod a is a square in Fl for all l|2pd(M/F ). Then for the infinite
set Ξ = {ε ∈ O|ε ≡ δ mod a, ε ≫ 0}, we can find an infinite set of primes
q = (εδ−1) which splits in M/F . Then we define F ′ = F [

√
ε]. By our choice,

(ε) = q(δ), and hence if a prime outside 2d(M/F ) ramifies in F ′/F , it has to
be q, which splits in M/F .

We shall show that for the above choice of F ′, ϕη satisfies (h2). In fact, suppose
that l remains prime in M/F . Then if ηc−1

l = χl 6= 1, then χl has to ramify, and
hence F ′/F ramifies at l. By our choice of F ′, l splits in M/F , a contradiction.
If l ramifies in M , χl restricted in Gal(M l/Ml) is trivial because F ′l = Ml.
This shows that ϕlηl is c–invariant, and hence by local class field theory, it is
a pull-back of a character of F×l by the norm. Thus ϕη satisfies (h2), and the
congruence power series H(ϕη) still gives the exact characteristic power series

of Sel(Ad(Ψ′)), where Ψ′ = IndFM ϕ̃η. This is the beauty of taking level N(ϕ)
(not the deeper level: NM/F (C)d(M/F ) taken in [HT1] and [HT2]). Writing
the congruence power series for ϕ̂ = ϕ ◦ NM ′/M as H(ϕ̂), by the base change
(cf. [H00] Proposition 2.4), we have (by p > 2),

Sel(Ad(IndF
′

M ′ ϕ̃)) = Sel(Ad(Ψ))⊕ Sel(Ad(Ψ)⊗ χ),

which implies

H(ϕ̂) = H(ϕ)H(ϕη)
h(M ′′)

h(M)
,
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where M ′′ is the third (and unique) CM quadratic extension of F inside
M ′ = MF ′.

If χ = η1−c for a Hecke character η of M , χψ is again anti-cyclotomic. We
have shown in [H05d] Corollary 5.5:

(h(M)/h(F ))L−(ψ)|H(ϕ) and (h(M)/h(F ))L−(ψη)|H(ϕη),

which is enough to conclude the equality for each (by Nakayama’s lemma):

(h(M)/h(F ))L−(ψ) = H(ϕ) and (h(M)/h(F ))L−(ψη) = H(ϕη)

from (h(M ′)/h(F ′))L−(ψ̂) = H(ϕ̂) we have already proven.

We now prove the anticyclotomy of χ: χ = ηc−1. Let χ : M×A /M
× → {±1}

be the quadratic idele character corresponding to M ′/M . We want to have
a finite order Hecke character η : M×A → µN such that ηc−1 = χ, where

ηc(x) = η(c(x)) for x ∈M×A .

Let k be a number field. By class field theory, any continuous character of
Gal(Q/k) can be regarded as a continuous idele character: Ck = k×A /k

× → T,
where

T =
{
z ∈ C

∣∣|z| = 1
}
.

A given continuous character of Ck is of finite order if and only if it is trivial on
the identity component of the infinite part k×∞ of k×A (cf. [MFG] Proposition
2.2). By Artin reciprocity, any continuous character of Ck trivial on the
identity component of k×∞ ⊂ k×A can be viewed as a (finite order) character of

Gal(Q/k) canonically.

Looking at the exact sequence:

1→M× →M×A → CM → 1,

by Hilbert’s theorem 90 applied to M× and Gal(M/F ) = 〈c〉, we find

H0(Gal(M/F ), CM ) = CF ,

and the kernel of c−1 : x 7→ xc−1 is given by CF . A character φ : CM → T is of
the form φ = ηc−1 if and only if φ is trivial on CF . Since Gal(M ′/F ) ∼= (Z/2Z)2,
we find a quadratic character α of CF such that χ = α ◦ NM/F . This shows

that χ(x) = α(xxc) = α(x2) = 1 for x ∈ CF . Thus we can write χ = ηc−1 for
a character η : CM → T.

To have η factor through the Galois group of the maximal abelian extension
of M , we need to show that η can be chosen so that its restriction to M×∞ is
trivial. Since χ = ηc−1 is trivial on M×∞, η is trivial on (M×∞)c−1 = Ker(NM/F :

M×∞ → F×∞). Thus η|M×∞ factors through NM/F : M×∞ → F×∞+. Replacing η

by η(ξ ◦NM/F ) for a Hecke character ξ of F , we may assume that η is trivial

on M×∞. This finishes the proof for even degree field.
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We now assume that F has odd degree. The above trick of taking totally real
quadratic extensions F ′/F reduces the proof to the even degree case of M ′/F ′;
so, we get the theorem. �

As we have seen that ψ = ϕ− if and only if ψ is trivial on CF . If ψ is
anticyclotomic, then ψ(xc) = ψ(x−1) (⇔ ψ = 1 on NM/F (M×A )). Thus ψ|CF
is either the character of M/F or trivial. Since ψ is a Hecke character of M×A
of finite order, its infinity type is trivial; so, ψ has to be trivial on CF . This
shows

(7.18) If ψ is anticyclotomic, then ψ = ϕ− for a Hecke character ϕ of M .

We leave the reader to show that we can take ϕ to be of finite order (see [HMI]
Lemma 5.31).
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Abstract. In this paper, we study the level lowering problem for
mod 2 representations of the absolute Galois group of a totally real
field F. In the case F = Q, this was done by Buzzard; here, we
generalise some of Buzzard’s results to higher weight and arbitrary
totally real fields, using Rajaei’s generalisation of Ribet’s theorem
and previous work of Fujiwara and the author.
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The main theorem of this paper is the following result, which reduces level low-
ering for the prime ℓ = 2 for totally real fields to a multiplicity one hypothesis,
thus showing that multiplicity one is the only obstruction to level lowering in
characteristic 2.

Theorem 0.1 Let F be a totally real number field. Let

ρ : Gal(F/F) −→ GL2(F2)

be a continuous irreducible representation such that ρ is not induced from a
character of Gal(F/F(i)). Let n(ρ) denote the Artin conductor away from 2 of
ρ. Suppose that there is some Hilbert cuspidal eigenform of arithmetic weight
k and level U1(n) that gives rise to ρ, where (2, n) = 1. Suppose also that ρ
satisfies a certain multiplicity one hypothesis (see Definition 6.1). Then there
is a Hilbert cuspidal eigenform of weight k and level U1(n(ρ)) that gives rise
to ρ.
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We note that it is part of the hypothesis that ρ occurs at some level prime
to 2. This will not be true in general, but it makes for a comparatively clean
statement, and the reader will easily be able to extend the statement if needed.
The question of possible level structures at 2 is more naturally considered in
the context of optimising the weight, we shall not address this problem here;
this is the subject of work in progress with Kevin Buzzard and Fred Diamond.
We remark (as Fujiwara [11] also explains) that the methods in this paper
show that if ℓ is odd, the same result holds for characteristic ℓ representations
without the multiplicity one hypothesis. We have:

Theorem 0.2 Let ℓ be an odd prime. Let

ρ : Gal(F/F) −→ GL2(Fℓ)

be a continuous irreducible representation. If [F(µℓ) : F] = 2, suppose that ρ is
not induced from a character of Gal(F/F(µℓ)). Let n(ρ) denote the Artin con-
ductor away from ℓ of ρ. Suppose that there is some Hilbert cuspidal eigenform
of arithmetic weight k and level U1(npr) that gives rise to ρ. If r > vp(n(ρ)),
then there is a Hilbert cuspidal eigenform of weight k and level U1(npr−1) that
gives rise to ρ.

This result has no multiplicity one hypothesis, and also allows us to lower the
level if ℓ and n are not coprime, so as to lower the level by all primes not dividing
the characteristic. We recall that Fujiwara’s work remains unpublished, but
alternative references are available for all but his version of Mazur’s Principle
when [F : Q] is even. In particular, when [F : Q] is odd, this theorem does not
depend on Fujiwara’s unpublished work.
We will concentrate on the case ℓ = 2, as Theorem 0.2 is an easy corollary of
previous results of Fujiwara ([11]) and Rajaei ([18]). However, the case ℓ = 2
requires additional work, and combines Rajaei’s results with ideas of Buzzard
([3]), which in turn are based on work of Ribet, for the case F = Q.

1 Notation

Our notation completely follows [15], and we summarise it next. Throughout
this paper, F will denote a totally real number field of degree d over Q. Let
I = {τ1, . . . , τd} denote the set of embeddings F →֒ R. If p is a prime of F,
then we will denote the local ring at p by Op and its residue field by κp. We
will be considering continuous semisimple representations

ρ : Gal(F/F) −→ GL2(F2),

and we study such representations which are associated to Hilbert modular
forms.
The weight of a Hilbert modular form will be a d-tuple of integers, k ∈ ZI , so
that there is one component for each infinite place of F.
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Definition 1.1 We say that k is arithmetic if kτ ≥ 2 for all τ ∈ I, and further,
if all kτ have the same parity.

Throughout this paper, weights will always be supposed arithmetic.
Given a weight k, we define a d-tuple v ∈ ZI≥0 so that k + 2v is parallel (i.e.,
kτ + 2vτ is independent of τ), and some vτ = 0. We also write t = (1, . . . , 1),
so that k + 2v is a multiple of t. The transformation law for Hilbert modular
forms is normalised by choosing a vector w = k + v − α.t for some integer α,
and we choose α = 1 (as in [12]). If x ∈ ZI is parallel, we write x = [x]t so
[x] ∈ Z.
If G denotes the algebraic group ResF/Q(GL2) with centre Z, then the level
of a Hilbert modular form is an open compact subgroup U of G(A∞), where
A∞ denotes the finite adeles of Q. In this paper, we will only ever consider
subgroups U of the form U =

∏
p Up, where Up is an open compact subgroup of

GL2(Fp). The (finite-dimensional complex) vector space of Hilbert cusp forms
of weight k and level U will be denoted Sk(U) (see [12], (2.3), for the precise
definition of this space, where it is denoted Sk,w,I(U ; C); in [15], it is denoted
Sk,w(U)).
Suppose B is a quaternion algebra over F and let S(B) denote the set of finite
places ramifying in B. If S is any finite set of finite places of F containing S(B),
we define the Hecke algebra TS,B as the Z-algebra generated by all the Hecke
operators Tq with q /∈ S(B), and the operators Sq for q /∈ S. If U is as above,
and S contains all finite places at which Uq is not maximal compact, then TS,B

acts on Sk(U) through a quotient which we denote TS,Bk (U). If B = GL2, we
will omit it from the notation. If S consists precisely of S(B) together with
the places q such that Uq is not maximal compact in (OB ⊗Oq)

× ∼= GL2(Oq),
then we will omit it from the notation.

2 Preliminaries

Carayol ([5]) and Taylor ([19]) have proven that to any Hilbert cuspidal eigen-
form, one may attach a compatible system of global Galois representations
compatible with the local Langlands correspondence. For a statement, see [19]
or [15].
This result leads us to examine analogues of the Serre conjectures for Galois
representations over totally real fields.

Definition 2.1 Given an irreducible modulo ℓ representation,

ρ : Gal(F/F) −→ GL2(Fℓ),

we say that ρ is modular of level U and weight k if there exists a Hilbert
cuspidal eigenform f ∈ Sk(U) and a prime λ|ℓ of Of (the ring of integers of
the number field generated by the Hecke eigenvalues) such that ρ is isomorphic
to the reduction of ρf,λ mod λ. As we will primarily be interested in the case
U = U1(n), we will simply say that ρ is modular of level n if it is modular of
level U1(n).
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(Note that we only consider here Hilbert modular forms coming from charac-
teristic zero, and do not think about mod ℓ forms in the sense of Katz.)

In general, a modular ρ may have many different weights and levels, even when
we insist that f is a newform (i.e., does not occur at a lower level). We are
interested in this paper in the smallest possible levels that may arise.

We define an “optimal” level as in [15]. Given ρ, define

n(ρ) = the Artin conductor (away from ℓ) of ρ.

Note that n(ρ) is prime to ℓ. It is not true that if ρ is modular, then it is modular
of level n(ρ) (one can see that one cannot always remove primes dividing the
characteristic simply by looking at det ρ). To get a clean statement, however,
we will be assuming that our representation is modular at a level prime to ℓ,
and try to remove primes not dividing the characteristic. The reader will be
able to adapt the statement to more general situations if required.

Let p ∤ ℓ be prime. For any ℓ-adic character χ ofDp, the decomposition group at
p, let χ denote the reduction modulo ℓ, and let a(χ) denote the p-adic valuation
of the conductor. In [15], one finds the following generalisation of a result of
Carayol ([6]) and Livné ([17]).

Theorem 2.2 Suppose π is an automorphic representation of GL2/F giving
rise to ρ. If π has conductor n, write np = vp(n). Write np = vp(n(ρ)). Then
one always has np ≤ np (so n(ρ)|n), and one has equality except possibly in the
following cases:

1. πp is special, associated to a character χ of F×p which is unramified.

2. πp is special, associated to a character χ of F×p which degenerates, in that
a(χ) = 1 and a(χ) = 0.

3. πp is principal series, associated to two characters χ and ψ of F×p , with
at least one of the characters degenerating.

4. πp is a supercuspidal Weil representation, associated to a character of Ω×

which degenerates, where Ω is the unramified quadratic extension of Fp.

For a character of F×p to degenerate, we require that NF/Q(p) ≡ 1 (mod ℓ), and
for a character of Ω× to degenerate, we require that NF/Q(p) ≡ −1 (mod ℓ).

Conjecture 2.3 Suppose that ρ is modular of weight k and level U1(n) with
(n, ℓ) = 1. If vp(n) > vp(n(ρ)) and p ∤ ℓ, then it is modular of weight k and
level U1(n/p).

As usual, the method is to remove one prime at a time from the level. The
theorem above classifies the primes which may occur.
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Remark 2.4 We first remark that cases (2)–(4) of the classification above
(Theorem 2.2) will be treated with the existing methods, once we have a good
notion of auxiliary prime. Indeed, [15] treats cases (2) and (4), and [11] also
treats (3) (as well as doing (2) and (4) independently). One readily verifies
that all proofs continue to hold in the case of mod 2 representations, as long as
auxiliary primes are available. We will explain later that Buzzard’s construction
of auxiliary primes generalises to the totally real case.

Remark 2.5 We also point out for later use that the proof of “Mazur’s Prin-
ciple” (the case NF/Q(p) 6≡ 1 (mod ℓ) of case (1)) given in [14] for [F : Q]
odd, and [11] for [F : Q] even, is valid more generally when ρ(Frobp) is not a
scalar (see [14], Corollary 18.8, and [11], end of §5). As the ratio of the diagonal
entries of ρ(Frobp) is equal to NF/Q(p), this is implied by the congruence condi-
tion; however, we will later need the stronger version—after all, the congruence
condition will never be satisfied when ℓ = 2. The condition that ℓ be odd was
imposed in [14] and [11] only in order that auxiliary primes should exist; as in
the previous remark, our generalisation of Buzzard’s construction of auxiliary
primes then implies some cases of Mazur’s Principle even when ℓ = 2.

3 Characters and Carayol’s Lemma

One of the crucial technical tricks used in the theory of level lowering is a result
known as Carayol’s Lemma (after [6]). The version we want to use was proven
in [15].
Roughly, Carayol’s Lemma allows us to show that if a mod ℓ representation ρ
is modular, associated to some modular form with character φ, then given any
character ψ ≡ φ (mod ℓ), there is some modular form with character ψ which
gives rise to the given mod ℓ representation. In other words, whether or not
there is a modular form of given character giving rise to ρ depends only on the
character modulo ℓ.
In [15], we proved the following (for additional notation, as well as a more
general statement, see [15]):

Theorem 3.1 (Carayol’s Lemma) Let ℓ be an odd prime. Suppose that S
is a finite set of places of F containing all infinite places of F. Let k be arith-
metic, and let U and U ′ be S-subgroups with U ′ normal in U . Suppose r
(resp. χ) is an irreducible representation (resp. a character with ℓ-power order)
of U/U ′(U ∩ Z(Q)). Let θ : TSk (U, r) −→ Fℓ be a homomorphism for which
ρ = ρθ is irreducible. If [F(µℓ) : F] = 2, suppose that ρ is not induced from
a character of the kernel of the mod ℓ cyclotomic character. Then there exists

a homomorphism θ
′
: TSk (U, r ⊗ χ) −→ Fℓ such that the two maps TS −→ Fℓ

induced by θ and θ
′
coincide.

The additional hypothesis when [F(µℓ) : F] = 2 was not explicitly stated in [15],
as it was a running hypothesis throughout the paper. (The author apologises if
this has caused any confusion.) This hypothesis on ℓ, as well as the stipulation
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that ℓ be odd, was only invoked to allow us to introduce an auxiliary prime
(see next section) so that U—and therefore U ′—may be assumed sufficiently
small in the sense of Carayol ([4], 1.4.1.1, 1.4.1.2). However, as a corollary of
the proof, we can omit this hypothesis, and still deduce the same result (even
for ℓ = 2), so long as U is sufficiently small.

Corollary 3.2 Suppose the notation and hypotheses are as above, except that
we replace the hypotheses on ℓ by the hypothesis that U is sufficiently small.
Then Carayol’s Lemma is again true.

4 Auxiliary primes

A crucial trick that we will use is to alter the level by making it sufficiently
small, and then return to the original level. This trick originated in [8] and [9]
and easily generalises to totally real fields; the case of mod 2 representations
was treated in [3].
Let G be a finite group. Suppose that

ρ : G −→ GL2(F2)

is an irreducible continuous representation and let

χ : G −→ {±1}

be a surjective character.
In our applications, ρ will be the given Galois representation. We will let χ be
the mod 4 cyclotomic character giving the action of Gal(F/F) on the fourth
roots of unity. As F is totally real, its absolute Galois group contains complex
conjugation elements, so this mod 4 cyclotomic character is non-trivial, and
hence maps surjectively onto {±1}. As ρ is continuous, it factors through a
finite group; we let G be a finite group through which ρ⊕ χ factors.
We say that g ∈ G is special if tr ρ(g) = 0.
We will need the following lemma.

Lemma 4.1 Suppose that ρ is not induced from a character of kerχ. Then
there exists g ∈ G which is not in kerχ and which is not special.

Proof. See [3]. �

When χ is the mod 4 cyclotomic character, its kernel is precisely Gal(F/F(i)).
We now apply this lemma to construct “auxiliary” primes. From the lemma,
we see that if

ρ : G −→ GL2(F2)

is an irreducible mod 2 representation, then there exists an element g ∈ G
such that χ(g) = −1 and tr ρ(g) 6= 0. If χ is the mod 4 cyclotomic character,
and g ∈ G is the image of Frobq, then χ(g) = −1 is equivalent to NF/Q(q) ≡
3 (mod 4).
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Lemma 4.2 Let q be a prime ideal of OF with NF/Q(q) ≡ 3 (mod 4). Suppose
that E is a finite extension of Q2 and that

ψ : (OF/q)
× −→ O×E

is a character with trivial reduction. If ψ(−1) = 1, then ψ is trivial.

Proof. As ψ has trivial reduction, it is valued in ker(O×E −→ k×E ), where kE
denotes the residue field of OE . It is easy to see (using Hensel’s lemma, for
example) that the only torsion in this kernel is killed by a power of 2. But

|(OF/q)
×| = NF/Q(q)− 1 ≡ 2 (mod 4).

It follows that ψ is valued in {±1}. If also ψ(−1) = 1, then the 2-torsion of
(OF/q)

× is killed by ψ, so ψ must be trivial. �

The following result generalises Corollary 2.6 of [3] to totally real fields.

Theorem 4.3 Suppose that ρ is an irreducible continuous mod 2 representa-
tion not induced from a character of Gal(F/F(i)). Then there exists a prime r

with the property that if ρ is associated to a cuspidal eigenform f of weight k
and level U1(n)∩U1

1 (r) for some n prime to r, then there is a cuspidal eigenform
g of weight k and level U1(n) which also gives rise to ρ.

Proof. For this, we apply Carayol’s Lemma and the lemmas above. Let G be
a finite group through which ρ⊕ χ factors. By the hypotheses above on ρ, we
can find an element g ∈ G which is neither in kerχ, nor is special. Let r be any
prime such that NF/Q(r) > 4d which is unramified for ρ such that Frobr maps
to g. Then

• χ(Frobr) = −1, i.e., NF/Q(r) ≡ 3 (mod 4), and

• tr ρ(Frobr) 6= 0.

As NF/Q(r) > 4d, the group U1
1 (r) is sufficiently small ([14], §12) so that we

may apply Corollary 3.2. We may regard f as an eigenform on U0(nr) with
character χ = χnχr of the abelian group U0(n)/U1(n)×U0(r)/U

1
1 (r). We apply

Corollary 3.2 with U = U0(n)∩U1
1 (r) and U ′ = U1(n)∩U1

1 (r) to see that there
is a cuspidal eigenform f ′ on U1(n) ∩ U1

1 (r) with character χ′ = χ′nχ
′
r which is

congruent to f and such that χ′n(−1) = (−1)[k+2v].
However, one knows that χ′(−1) = (−1)[k+2v], so that χ′r(−1) = 1. As ρ is
unramified at r, the reduction of χ′r is trivial. By Lemma 4.2, χ′r itself is trivial.
It follows that f ′ is actually a cuspidal eigenform on U1(n)∩U0(r). This implies
that the component at r of the automorphic representation corresponding to
f ′ is either unramified principal series or is special unramified. The latter is
ruled out as then we would have tr ρ(Frobr) = 0. Thus f ′ is old at r, and we
may choose an eigenform g for level U1(n) with the same Hecke eigenvalues as
those for f ′ except possibly at r. The result follows. �
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5 Shimura curves

In this section, we summarise results (in §5.2) of [14] on integral models and
their reductions in characteristic p of Shimura curves whose level structure in-
volves primes dividing p, but where such primes do not ramify in the quaternion
algebra, and the relevant results (in §5.3) of Boutot-Zink ([2]) and Varshavsky
([20], [21]) on integral models and their reductions in characteristic p of Shimura
curves whose level structure does not involve primes dividing p, but where such
primes do ramify in the quaternion algebra. These results also appear in [18];
this section is as much to fix notation as it is to remind the reader of previous
results.

5.1 Formalism of vanishing cycles

Here we summarise the theory of vanishing cycles from SGA 7, XIII, XV. For
a beautiful introduction to the theory, see also [18].
Let V be a mixed characteristic henselian discrete valuation ring with fraction
fieldK and residue field k of characteristic p. If C is a proper generically smooth
curve over S = specV with semistable reduction, and F is a constructible sheaf
on C with torsion prime to p, then we have the following exact sequence:

0 −→ H1(C ⊗ k,F) −→ H1(C ⊗K,F)
β−→H1(C ⊗ k,RΦF)

−→ H2(C ⊗ k,F) −→ H2(C ⊗K,F) −→ 0

where RΦF is a complex of sheaves supported on the singular points Σ of the
special fibre, and RiΦF 6= 0 only when i = 1. In particular,

H1(C ⊗ k,RΦF) =
⊕

x∈Σ

(R1ΦF)x.

Furthermore, we have a complete understanding of the sheaf R1ΦF coming
from the Picard-Lefschetz formula. We define

X(C,F) = im(β)(1)

where the (1) denotes the Tate twist.
The cohomology H1(C⊗K,F) may be computed by means of another complex
RΨF of sheaves on C ⊗ k.
There is a trace pairing in this situation; Illusie ([13]) has explained that this
induces a second exact sequence, dual to the first:

0 −→ H0(Ĉ ⊗ k,RΨF) −→ H0(Ĉ ⊗ k,F) −→
⊕

x∈Σ

H1
x(C ⊗ k,RΨF)

β′−→H1(C ⊗K,F) −→ H1(C ⊗ k,F) −→ 0,
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where Ĉ ⊗ k denotes the normalisation of the special fibre of C. We set

X̂(C,F) = im(β′).

Rajaei ([18], prop.1) points out that X̂(C,F) actually lies inside H1(C ⊗ k,F),
regarded a subspace of H1(C ⊗ K,F) by the first exact sequence. The first
exact sequence is called the specialisation exact sequence and the second is
called the cospecialisation exact sequence.
Deligne defines a variation map

Var(σ)x : (R1ΦF)x −→ H1
x(C ⊗ k,F)

for σ ∈ IK , the inertia group of Gal(K/K). The action of σ ∈ IK on both
exact sequences may be expressed using this map; for example, the action of σ
on H1(C ⊗K,F) is given by id + (β′ ◦⊕x∈Σ Var(σ)x ◦ β). From the form of
the variation map, one may define a canonical monodromy logarithm

Nx : (R1ΦF)x(1) −→ H1
x(C ⊗ k,F).

Rajaei explains that this monodromy map induces an injective map λ :
X(C,F) −→ X̂(C,F); we write Φ(C,F) = cokerλ, and call it the component
group (by analogy with Jacobians).

We end this survey with an alternative, more concrete, description of X̂(C,F).
Let

r : Ĉ ⊗ k −→ C ⊗ k
denote the normalisation map. Then we define the sheaf G by

0 −→ F −→ r∗r
∗F −→ G −→ 0;

as in [14], §17, or [18], §1.3, we may also write

X̂(C,F) = im(H0(C ⊗ k,G) −→ H1(C ⊗ k,F)).

5.2 Integral models of Shimura curves: the split case

Next, we fix a quaternion algebra B over F, and suppose that p is a finite
prime of F at which B is split. We will suppose that B is split at the infinite
place τ1 and ramified at the other infinite places of F. At each split place v,
we fix an isomorphism B(Fv) ∼= M2(Fv), and if v is a finite place, we even fix
B(Ov) ∼= M2(Ov). We regard F as a subfield of C via τ1. In the usual way,
we let G = ResF/Q(B×), and if U is an open compact subgroup of G(A∞), we
may form a Shimura curve MU , defined over F, whose complex points are

G(Q)\G(A∞)×X/U,

where X = h± = C− R is two copies of the upper-half complex plane.
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Now we suppose that U = U0(p) × H, as in [14]. Thus U , the level, has a
component U0(p) ⊂ GL2(Op) at p, and a level H ⊂∏v 6=p(B×Fv)

× away from

p. Write Γ =
∏
v 6=p(B × Fv)

×. Here,

U0(p) =

{(
a b
c d

)
∈ GL2(Op)

∣∣∣∣ c ∈ p

}
,

using the above identification. We suppose that H is sufficiently small in the
sense of Carayol ([4], 1.4.1.1 and 1.4.1.2). When the level structure at p is
maximal compact, then Carayol ([4]) proved that the Shimura curve has an
integral model M0,H over specO(p) with good reduction (i.e., is proper and
smooth).
Then in [14], we proved the following:

Theorem 5.1 1. If H is sufficiently small (as above), then there exists a
regular model MU0(p),H over specO(p) of MU .

2. The special fibre MU0(p),H × κp looks like two copies of M0,H × κp inter-
secting transversely above a finite set of points ΣH .

The set of points ΣH are the supersingular points of M0,H×κp, and we use the
same notation ΣH for the points which lie above them in MU0(p),H × κp, the
singular points of the special fibre. Carayol ([4], §11) describes ΣH as follows:
Let B(p) denote the quaternion algebra got from B by changing the invariants
at p and at τ1 (so it is now ramified at both these places, and is totally definite).

We write B = B(p). Let G denote the algebraic group ResF/QB
×

, and fix, for

all places v 6= p, τ1, an isomorphism between B⊗Fv and B⊗Fv. Then G(A∞)

may be identified with Γ×B×p . By [4], 11.2(3), there is a bijection

ΣH ∼= G(Q)\G(A∞)/H ×O×
Bp

∼= G(Q)\Γ× F×p /H ×O×p

where the second isomorphism is induced by the reduced norm B
×
p −→ F×p .

5.3 Integral models of Shimura curves: the ramified case

Again, we consider a quaternion algebra B over F, and again suppose that B is
split at the infinite place τ1 and ramified at the other infinite places of F. This
time, however, we suppose that p is a finite prime of F at which B is ramified.
Fix isomorphisms at split places in the same way as in the previous subsection.
Again, if U is an open compact subgroup of G(A∞), we may form a Shimura
curve MU , defined over F.
Now we suppose that the level structure may be written U = Kp ×H, where
Kp = O×B,p. In this case (and more generally), the integral models were studied
by Boutot-Zink ([2]) and by Varshavsky ([20], [21]). Their methods generalise
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the case F = Q due to Drinfeld and Čerednik respectively. As in the case
F = Q, the results of Boutot and Zink apply for more general level structures.
Again, the main result depends on defining another quaternion algebra B(p),
whose invariants are the same as B, except with the invariants at p and τ1
changed. So B = B(p) is now split at p, and is totally definite. We define the
algebraic group G in the usual way, and fix isomorphisms between B and B
everywhere except at p and at τ1.
Let H denote the subgroup of (B ⊗ A∞,pF )× corresponding to H under the
isomorphism

(B ⊗ A∞,pF )×
∼−→(B ⊗ A∞,pF )×.

Theorem 5.2 1. In the above sitution, the Shimura curve MU has an inte-
gral model MU defined over specO(p), and the completion of this model
along its special fibre is isomorphic as a formal Op-scheme (and the iso-
morphism is G(A∞,p)-equivariant) to

GL2(Fp)\(hp ×Spf Op
Spf Ounr

p )×XH ,

where XH denotes the finite set H\G(A∞)/G(Q) and hp is Mumford’s
p-adic upper half-plane.

2. In particular, the dual graph associated to the special fibre of MU is
GL2(Fp)

+\(∆ × XH), where ∆ denotes the Bruhat-Tits building of
SL2(Fp); here, GL2(Fp)

+ denotes the set of elements of GL2(Fp) with
even p-adic valuation.

6 Ribet’s theorem

As already remarked, the existence of auxiliary primes and Carayol’s Lemma
proves that one may lower the level for characteristic 2 representations in Cases
(2)–(4) of Theorem 2.2 in the same way as [15] or [11] does for odd characteristic
representations. To finish the proof of Theorem 0.1, it remains to verify Case
(1). For odd characteristic, this is done in [18], except for certain cases where
[F : Q] is even. In this section, we deal with the case of characteristic 2
representations, also indicating how to deal with all cases when [F : Q] is even.
This analysis is also valid for odd characteristic, and thus completes the proof
of level lowering for primes not dividing the characteristic in this case also.
The proof synthesizes the techniques of Buzzard ([3]) with the work of Rajaei
([18]) to find a version of Ribet’s theorem for ℓ = 2 applicable for totally real
fields. Most of the hard work has been done in these two sources, and we refer
to them for certain details.
Our target is to prove Theorem 0.1. For simplicity, we shall first describe the
case where [F : Q] is odd, and will later indicate how to adapt the argument to
the even degree case.
We therefore fix a modular mod 2 Galois representation

ρ : Gal(F/F) −→ GL2(F2)
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which is continuous, irreducible and not induced from a character of
Gal(F/F(i)). Part of the hypotheses of the statement is that ρ is associated to
some modular form of level prime to 2. If D denotes the quaternion algebra
over F ramified at exactly all infinite places of F except τ1, then the Jacquet-
Langlands correspondence provides examples of automorphic representations
on D of conductor prime to 2 and of some weight whose mod 2 Galois repre-
sentation are isomorphic to ρ.
Fix isomorphisms between D and GL2 at split places in the usual way. If π is
such an automorphic representation, with a fixed vector under U ⊂ GL2(A∞F )
and of weight k, then π corresponds to a maximal ideal m in the Hecke algebra
T = TDk (U) defined in §1. The level structure U gives a Shimura curve MU as
in §5.2, and Carayol ([5], §2) defines a sheaf FDk on MU corresponding to the
weight k.

Definition 6.1 We say that ρ satisfies multiplicity one at weight k if for all
such maximal ideals m coming from automorphic representations of conductor
prime to 2 and weight k, we have

dimT/m(H1(MU ⊗F F,FDk )⊗ T/m) = 1.

Although we expect multiplicity one to hold often (after all, Fujiwara [10] has
shown that at least in the ordinary case the minimal Hecke algebra is a complete
intersection), Kilford ([16]) has shown that it sometimes fails for F = Q when
ℓ = 2.
Having defined the notion of multiplicity one, we now turn to the proof of
Theorem 0.1. By Remark 2.4, it suffices to consider Case (1) of Theorem 2.2,
i.e., the special unramified case. Thus we suppose that ρ is modular of some
weight k and some level U1(n) ∩ U0(p). Here, n is coprime to 2, and p ∤ 2n.
We must prove the following result.

Theorem 6.2 Let f ∈ Sk(U1(n)∩U0(p)) be a Hilbert cuspidal eigenform, where
(n, 2) = 1 and p ∤ 2n is a prime ideal. Suppose that the mod 2 representation
associated to f ,

ρ : Gal(F/F) −→ GL2(F2),

1. is absolutely irreducible and unramified at p,

2. is not induced from a character of Gal(F/F(i)),

3. satisfies multiplicity one at weight k.

Then there is a Hilbert cuspidal eigenform g ∈ Sk(U1(n)) that gives rise to ρ.

In order to apply geometric arguments, we first add some auxiliary level struc-
ture with the aid of Theorem 4.3. This theorem guarantees the existence of
infinitely many primes r0 ∤ 2np such that NF/Q(r0) > 4d and such that r0 is an
example of a prime such that Theorem 4.3 holds. We may then add auxiliary
level U1

1 (r0)-structure, and we showed in [14], §12, that this is sufficiently small
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so that integral models exist for Shimura curves with this level structure. We
may thus use geometric arguments when this auxiliary level is present; however,
all modular forms occuring are automatically old at r0.
Write U for the level structure U1(n) ∩ U1

1 (r0). Thus f ∈ Sk(U ∩ U0(p)).
Write TU (resp. Tp,U ) for the Hecke algebra TDk (U) (resp. TDk (U ∩U0(p))). So
TU is generated by operators Tr and Sr for primes r ∤ nr0 and operators Ur for
primes r|nr0, and Tp,U has the same generators, except that there is an operator
Up replacing the pair Tp and Sp. On the p-old subspace of Sk(U ∩ U0(p)), the
operators Sp, Tp and Up are related by the Eichler-Shimura relation

U2
p − UpTp +NF/Q(p)Sp = 0.

As ρ is modular of level U ∩U0(p) by hypothesis, there is a non-trivial maximal
ideal m̂ of Tp,U containing 2 and a Hilbert cuspidal eigenform f whose mod 2
eigenvalues are given by the map

Tp,U −→ Tp,U/m̂ →֒ F2

such that ρ is the mod 2 Galois representation associated to f .
Next, we add another auxiliary prime to the level. Its function is rather different
to the first.
Let G denote the image of ρ. As in [3], G must have even order; if it were
to have odd order, then it could not have any degree 2 absolutely irreducible
representations: its representation theory would be the same as in characteristic
0, and then the degree of any absolutely irreducible representation would divide
the order of the group. We may therefore find an involution σ ∈ G. By
the Čebotarev density theorem, there are infinitely many primes q such that
ρ(Frobq) = σ. All involutions in GL2(F2) have trace 0, so we conclude that
these Frobenius elements Frobq are special. We fix such a prime q ∤ np. We
will also be considering the Hecke algebra Tpq,U associated to U ∩ U0(pq). We
say that an ideal m of Tpq,U is compatible with m̂ if the restrictions of the two
maps

Tp,U −→ Tp,U/m̂ →֒ F2

Tpq,U −→ Tpq,U/m →֒ F2

agree on the intersection of the two Hecke algebras.
We have the following level raising result:

Theorem 6.3 If m is a maximal ideal of Tpq,U which is p-new, and compatible
with m̂, then m is also q-new.

Proof. This is exactly as in [18], Theorem 5, noting that NF/Q(q) is odd and
tr ρ(Frobq) = 0, so that Tq ∈ m̂. �

So there is a Hilbert cusp form in Sk(U ∩ U0(pq)), which is p-new and q-
new and which gives rise to the representation ρ. If there were a form in
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Sk(U ∩ U0(q)), then we could apply Mazur’s Principle of [14] or [11] as in
Remark 2.5, as ρ(Frobq) is of order 2 in GL2(F2), and is therefore not a scalar.
Mazur’s Principle now implies that there must be a form in Sk(U) giving ρ,
and so the theorem above will hold.
Thus we assume for a contradiction that there is no Hilbert cusp form in Sk(U∩
U0(q)) giving ρ. Write T for the Hecke algebra Tpq,U .
We let B denote the quaternion algebra over F ramified at all infinite places of F
except τ1, and also at both p and q, so differs from D only in that the invariants
at p and q have been switched. We fix an isomorphism B ⊗ Fv ∼= D ⊗ Fv at
all other places v, and also integral versions at all finite v 6= p, q. As we have
already fixed isomorphisms between D and GL2 at finite places, we obtain
isomorphisms between B and GL2 at all finite split places.
As in [18], we let C denote the Shimura curve associated to the quaternion
algebra B with level structure U , and we write Mpq,U (resp. Mp,U , Mq,U )
for the Shimura curve associated to D with level structure U0(pq) ∩ U (resp.
U0(p) ∩ U , U0(q) ∩ U). Rajaei points ([18], §3.1) out that the Hecke algebra T
acts on the cohomology of all of these objects (which is not a priori clear for
C).
As remarked above, Carayol ([5], §2, §4) defines a sheaf FDk on Mpq,U corre-
sponding to the weight k, and explains how to extend the definition to the
integral model. The same construction (see [18], §3.1) gives a sheaf FBk on C.
We make the following abbreviations for objects defined in §5.1:

Xp(p) = X(Mp,U ⊗ Fp,FDk ),

Xp(pq) = X(Mpq,U ⊗ Fp,FDk ),

Xq(p) = X(Mp,U ⊗ Fq,FDk ),

Xq(pq) = X(Mpq,U ⊗ Fq,FDk ),

and similarly for X̂ and the “component group” Φ. We will also use these
definitions with p and q interchanged. As for C, we define:

Yp(q) = X(C ⊗ Fp,FBk ),

Ŷp(q) = X̂(C ⊗ Fp,FBk ),

Ψp(q) = Φ(C ⊗ Fp,FBk );

again we will use these definitions with p and q interchanged.
The detailed studies of the dual graphs of the special fibres of Mpq,U mod q

and C mod p shows that the combinatorics of the two reductions have much
in common. In particular, the vertices (resp. edges) of the dual graph of the
special fibre of C mod p are in bijection with the singular points of Mq,U mod q

(resp. of Mpq,U mod q). Using this, Rajaei proves ([18], (3.15)) that there is an
analogue of Ribet’s exact sequence in this general weight, general totally real
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field, case:
0 −→ X̂q(q)

2
m −→ X̂q(pq)m −→ Ŷp(q)m −→ 0

and similarly with p and q interchanged.
By the theorem of Boston, Lenstra and Ribet ([1]), the T-module H1(Mpq,U⊗F

F,FDk ) ⊗ T/m is a semisimple T/m[Gal(F/F)]-module, isomorphic to ρ̌
λ

for
some λ ≥ 1.
As we are assuming that ρ satisfies multiplicity one, we have λ = 1.
In the same way, H1(C⊗FF,FBk )⊗T/m is a semisimple T/m[Gal(F/F)]-module,
isomorphic to ρ̌

µ
for some integer µ. As m corresponds to a cuspidal eigenform

on U0(pq)∩U which is new at p and at q, the corresponding automorphic rep-
resentation is special at p and q. Then the Jacquet-Langlands correspondence
furnishes a cuspidal automorphic representation on B of level O×B,p×O×B,q×U
whose associated Galois representation is ρ. It follows that µ > 0.
Our assumptions on ρ imply that Xq(q)m = 0 and X̂q(q)m = 0.

Proposition 6.4 We have:

1. dimT/m(Ŷp(q)⊗ T/m) = 2µ,

2. dimT/m(X̂q(pq)⊗ T/m) ≤ 1.

Proof.

1. This is proven in the same way as the first claim of [18], Proposition 10.
We have the following isomorphisms:

Ŷp(q)⊗ T/m ∼= (H1(C ⊗ Fp,FBk )⊗ T/m)Ip

∼= H1(C ⊗ Fp,FBk )⊗ T/m
∼= H1(C ⊗ F,FBk )⊗ T/m
∼= ρ̌

µ

where the first isomorphism comes from the theory of vanishing cycles
(see [18], Lemma 1), and the second occurs as ρ is unramified at p. Now
ρ is 2-dimensional as a T/m-vector space, and so the result follows.

2. From the specialisation exact sequence for Mpq,U mod q, we get the fol-
lowing exact sequence (as in [18]):

0 −→ H1(Mpq,U⊗κq ,FD
k )m −→H1(Mpq,U⊗Fq ,FD

k )m −→Xq(pq)m(−1) −→ 0.

We see that Xq(pq)(−1)⊗ T/m is a quotient of H1(Mpq,U ⊗ Fq,FDk )⊗
T/m. However, this latter space is precisely ρ (at least restricted to a
decomposition group at q), using the multiplicity one hypothesis. We
know from Carayol’s Theorem ([5], Théorème (A)) that Frobq acts on
Xq(pq)⊗ T/m by a scalar. However, q was chosen so that ρ(Frobq) is an
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involution on a 2-dimensional space. It follows that any quotient space
on which Frobq acts as a scalar must be at most 1-dimensional.

Finally, as the integral model Mpq,U is regular (as U is sufficiently small),
the theory of vanishing cycles implies that Xq(pq) is isomorphic (as T-

modules, though not as Galois modules) to X̂q(pq). They therefore have
the same dimension, and the result follows.

�

Finally, however, we consider Ribet’s exact sequence:

0 −→ X̂q(q)
2
m −→ X̂q(pq)m −→ Ŷp(q)m −→ 0.

Our assumptions on ρ imply that X̂q(q)m = 0. It follows that the remaining
two terms are isomorphic, but we have just shown that the first has dimension
≤ 1, while the second has dimension 2µ. As µ is a strictly positive integer, this
is a contradiction. This contradiction establishes the desired result.

In the even degree case, we will construct yet another auxiliary prime r1 such
that ρ(Frobr1) is an involution as above. This implies that Tr1 ∈ m, and we
may then use Taylor’s level raising result ([19], Theorem 1) to add r1 to the
level. We then use exactly the same argument as above, except where all of
the quaternion algebras involved are also ramified at r1, and where all Hecke
algebras contain the operator Ur1 rather than Sr1 and Tr1 . At the end of the
argument we remove the prime r1 from the level using Fujiwara’s version of
Mazur’s Principle ([11], §5) for the even degree case.

In fact, this approach also works when ℓ is an odd prime. One adds an auxiliary
prime to the level using Taylor’s result, lowers the level using Rajaei’s result (in
which there is no multiplicity one hypothesis), and removes the auxiliary prime
using Fujiwara’s result. This therefore completes level lowering away from the
characteristic for all odd primes, and completes the proof of Theorem 0.1 and
Theorem 0.2. We stress that in this case, all necessary results are already due
to Fujiwara and Rajaei, and the only new results in this paper concern the case
ℓ = 2.

An alternative to this method might be to compare the Shimura curve of level
U0(p) × H in characteristic q for the quaternion algebra ramified at all but
one infinite places and at p with the Shimura curve of level U0(q) × H in
characteristic p for the quaternion algebra ramified at all but one infinite places
and at q. One might hope to derive a version of Ribet’s theorem without
introducing auxiliary primes, which would be rather cleaner. However, the
theory of level raising already exists in the even degree case, and so we make
use of it freely.
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1 Introduction.

Fix a prime number p. Let F be a finite extension of Q and let F∞ be an
algebraic extension of F . We will consider the Zp-submodule U(F∞/F ) of
OF [1/p]× ⊗ Zp defined by

U(F∞/F ) = Image(lim←−
L

(OL[1/p]× ⊗ Zp)→ OF [1/p]× ⊗ Zp),

where L ranges over all finite extensions of F contained in F∞ and where the
inverse limit is taken with respect to the norm maps.
In the case F∞ is the cyclotomic Zp-extension of F , the understanding of
U(F∞/F ) is related to profound aspects in Iwasawa theory studied by Coates
and other people, as we will shortly recall in §3. Concerning bigger Galois
extensions F∞/F , the following result is (essentially) contained in Corollary
3.23 of Coates and Sujatha [4] (see §3 of this paper).

Assume F∞/F is a Galois extension and Gal(F∞/F ) is a commutative p-adic
Lie group. Assume also that there is only one place of F lying over p. Then
U(F∞/F ) is of finite index in OF [1/p]× ⊗ Zp.

We ask what happens in the case of non-commutative Lie extensions.
The purpose of this paper is to prove the following theorem, which was conjec-
tured by Coates.
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Theorem 1.1. Let a1, · · · , ar ∈ F , and let

Fn = F (ζpn , a
1/pn

1 , · · · , a1/pn

r ), F∞ = ∪n≥1Fn,

where ζpn denotes a primitive pn-th root of 1. Let F cyc be the cyclotomic Zp-
extension of F . Then:

(1) The quotient group U(F cyc/F )/U(F∞/F ) is finite.

(2) If there is only one place of F lying over p, then U(F∞/F ) is of finite index
in OF [1/p]× ⊗ Zp.

An interesting point in the proof is that we use the finiteness of the higher
K-groups K2n(OF ) for n ≥ 1, for this result on the muliplicative group K1.
The author does not have any result on lim←−LOF [1/S]× without ⊗Zp.
The plan of this paper is as follows. In §2, we review basic facts. In §3, we
review some known results in the case F∞/F is an abelian extension. In §4
and §5, we prove Theorem 1.1 (we will prove a slightly stronger result Theorem
5.1).
The author expresses his hearty thanks to John Coates for suggesting this
subject and for advice, and to Ramdorai Sujatha for advice and the hospitality
in Tata Institute where a part of this work was done.

2 Basic facts.

We prepare basic facts related to U(F∞/F ). Most materials appear in Coates
and Sujatha [4]. We principally follow their notation.

2.1. Let p be a prime number, and let F be a finite extension of Q. In the case
p = 2, we assume F is totally imaginary, for simplicity.
Let F∞ be a Galois extension of F such that the Galois group G = Gal(F∞/F )
is a p-adic Lie group and such that only finitely many finite places of F ramify
in F∞.
Let Zp[[G]] be the completed group ring of G, that is, the inverse limit of the
group rings Zp[G/U ] where U ranges over all open subgroups of G.

2.2. We define Zp[[G]]-modules

Zi(F∞) and ZiS(F∞) (i ≥ 0)

where S is a finite set of finite places of F contaning all places of F lying over
p. Let

ZiS(F∞) = lim←−
L

Hi(OL[1/S],Zp(1))

where L ranges over all finite extensions of F contained in F∞, OL[1/S] denotes
the subring of L consisting of all elements which are integral at any finite place
of L not lying over S, and Hi is the étale cohomology. In the case S is the set
of all places of F lying over p, we denote ZiS(F∞) simply by Zi(F∞).
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Since
(1) H1(OL[1/S],Zp(1)) ≃ OL[1/S]× ⊗ Zp

by Kummer theory,

(2) Z1
S(F∞) ≃ lim←−

L

(OL[1/S]× ⊗ Zp).

Note that Hi(OL[1/S],Zp(1)) are finitely generated Zp-modules and Zi(F∞)
are finitely generated Zp[[G]]-modules. These modules are zero if i ≥ 3 for
the reason of cohomological dimension (here in the case p = 2, we use our
assumption F is totally imaginary).

2.3. Let US(F∞/F ) be the image of lim←−L(OL[1/S]× ⊗ Zp) in OF [1/S]× ⊗ Zp.
Here L ranges over all finite extensions of F contained in F∞.
The main points of the preparation in this section are the isomorphisms (1b)
and (2b) below.

(1) Assume S contains all finite places of F which ramify in F∞. Then there
are canonical isomorphisms

(1a) H0(G,Z2
S(F∞)) ≃ H2(OF [1/S],Zp(1)),

(1b) H1(G,Z2
S(F∞)) ≃ (OF [1/S]× ⊗ Zp)/US(F∞/F ).

(2) Assume F∞ contains the cyclotomic Zp-extension F cyc. Then we have
canonical isomorphisms

(2a) H0(G,Z2(F∞/F ))⊗Zp Qp ≃ H2(OF [1/p],Zp(1))⊗Zp Qp,

(2b) H1(G,Z2(F∞))⊗Zp Qp ≃ (OF [1/p]× ⊗ Zp)/U(F∞/F )⊗Zp Qp.

Here Hm(G, ?) = TorZp[[G]]
m (Zp, ?) denotes the G-homology. Note that

Hm(G,M) are finitely generated Zp-modules for any finitely generated Zp[[G]]-
module M .

(1a) and (1b) follow from the spectral sequence

Ei,j2 = H−i(G,ZjS(F∞))⇒ Ei∞ = Hi(OF [1/S],Zp(1)),

the isomorphisms 2.2 (1) (2), and the fact ZjS(F∞) = 0 for j ≥ 3. The above
spectral sequence is given in [9] Proposition 8.4.8.3 in the case G is commuta-
tive. In general, we have the above spectral sequence by [6] 1.6.5 (3).
The proofs of (2a) and (2b) are given in 2.6 later.

2.4. By Kummer theory and by the well known structure theorem of the Brauer
group of a global field, we have an exact sequence

(1) 0→ Pic(OF [1/S]){p} → H2(OF [1/S],Zp(1))→ ⊕v∈SZp
sum−→ Zp → 0,
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where {p} denotes the p-primary part. Let

YS(F∞) = lim←−
L

Pic(OL[1/S]){p},

where L ranges over all finite extensions of F contained in F∞. In the case S
is the set of all places of F lying over p, we denote YS(F∞) simply by Y (F∞).
Then the exact sequences (1) with F replaced by L give an exact sequence of
Zp[[G]]-modules

(2) 0→ YS(F∞)→ Z2
S(F∞)→ ⊕v∈SZp[[G]]⊗Zp[[Gv]] Zp → Zp → 0

where for each v ∈ S, Gv ⊂ G is the decomposition group of a place of F∞
lying over v.
If S contains all finite place of F which ramify in F∞, the composite homo-
morphism

(3) (OF [1/S]× ⊗ Zp)/U(F∞/F ) ≃ H1(G,Z2
S(F∞))

→ ⊕v∈SH1(G,Zp[[G]]⊗Zp[[Gv]] Zp) = ⊕v∈SH1(Gv,Zp)

induced by (1b) and (2) coincides with the homomorphism induced by the
reciprocity maps

F×v → Gab
v (p) ≃ H1(Gv,Zp)

of local class field theory, where Gab
v denotes the abelian quotient of Gv and

(p) means the pro-p part.

2.5. Assume F∞ ⊃ F cyc. Then we have isomorphisms

Z1(F∞)
≃→ Z1

S(F∞), Y (F∞)
≃→ YS(F∞).

The first isomorphism shows U(F∞/F ) = US(F∞/F ).
In fact, for each finite extension L of F contained in F∞, we have an exact
sequence

0→ OL[1/p]× ⊗ Zp → OL[1/S]× ⊗ Zp →
→ ⊕wZp → Pic(OL[1/p]){p} → Pic(OL[1/S]){p} → 0

where w ranges over all places of L lying over S but not lying over p. If L′ is
a finite extension of F such that L ⊂ L′ ⊂ F∞, and if w′ is a place of L′ lying
over w, the transition map from Zp at w′ to Zp at w is the multiplication by
the degree of the residue extension of w′/w. Since the residue extension of v
in F cyc/F for v not lying over p is a Zp-extension, this shows that the inverse
limit of ⊕wZp for varying L is zero. Hence we have the above isomorphisms.

2.6. We prove (2a) (2b) of 2.3. Take S containing all finite places of F which
ramify in F∞. Let T be the set of all elements of S which do not lie over p.

Documenta Mathematica · Extra Volume Coates (2006) 551–565



Universal Norms of p-Units . . . 555

By 2.4 (2) and by Y (F∞)
≃→ YS(F∞) in 2.5, we have an exact sequence of

Zp[[G]]-modules

0→ Z2(F∞)→ Z2
S(F∞)→ ⊕v∈TZp[[G]]⊗Zp[[Gv ]] Zp → 0.

This gives a long exact sequence

· · · → Hm(G,Z2(F∞))→ Hm(G,Z2
S(F∞))→

→ ⊕v∈THm(Gv,Zp)→ Hm−1(G,Z2(F∞))→ · · · .

Let Gcyc = Gal(F cyc/F ) and for v ∈ T , let Gcyc
v be the image of Gv in Gcyc.

Then v is unramified in F cyc/F , and we have a canonical isomorphism Gcyc
v ≃

Zp which sends the Frobenius of v in Gcyc
v to 1 ∈ Zp. Let Hv (v ∈ T ) be the

kernel of Gv → Gcyc
v . Since G is a p-adic Lie group and since the characteristic

of the residue field of v is different from p, Hv is of dimension ≤ 1 as a p-adic
Lie group. Furthermore, if Hv is infinite, for an element σv of Gv whose image
in Gcyc

v is the Frobenius of v, the inner automorphism on Hv by σv is of infinite
order as is seen from the usual description of the tame quotient of the absolute
Galois group of Fv. These prove

(1) For v ∈ T , the kernel and the cokernel of the canonical map Hm(Gv,Zp)→
Hm(Gcyc

v ,Zp) are finite for any m.

Since the composition OF [1/S]× → H1(G,Z2
S(F∞))→ H1(G

cyc
v ,Zp) = Gcyc

v ≃
Zp for v ∈ T coincides with the v-adic valuation OF [1/S]× → Z, (1) shows
that the cokernel of H1(G,Z2

S(F∞)) → ⊕v∈TH1(Gv,Zp) is finite. Hence by
the above long exact sequence, we have the following commutative diagram
with exact rows in which the kernel of the first arrow of each row is finite.

H0(G,Z2(F∞)) → H0(G,Z2
S(F∞)) → ⊕v∈TZp → 0

↓ ↓ ↓
H2(OF [1/p],Zp(1)) → H2(OF [1/S],Zp(1)) → ⊕v∈TZp → 0

By this diagram and by 2.3 (1a), we have 2.3 (2a).
We next prove 2.3 (2b). By the above (1), H2(Gv,Zp) is finite for v ∈ T . By
this and by the case m = 1 of the above (1), we see that the complex 0 →
H1(G,Z2(F∞)) → H1(G,Z2

S(F∞)) → ⊕v∈TH1(G
cyc
v ,Zp) has finite homology

groups. By 2.3 (1b) and by U(F∞/F ) = US(F∞/F ) (2.5), the kernel of the
last arrow of this complex is isomorphic to (OF [1/p]× ⊗ Zp)/U(F∞/F ). This
proves 2.3 (2b).

3 Abelian extensions (Review).

In this section, we review the proof of the following result of Coates and Sujatha
([4] Cor. 3.23), and then recall some known facts on U(F cyc/F ).

Proposition 3.1. Assume F∞/F is Galois and Gal(F∞/F ) is a commutative
p-adic Lie group. Assume further that there is only one place of F lying over
p. Then:
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(1) U(F∞/F ) is of finite index in OF [1/p]× ⊗ Zp.

(2) Hm(G,Y (F∞)) and Hm(G,Z2(F∞)) are finite for any m.

In fact, this result was written in [4] in the situation Gal(F∞/F ) ≃ Z2
p. This

was because this result appeared in [4] in the study of the arithmetic of a Z2
p-

extension generated by p-power division points of an elliptic curve with complex
multiplication. We just check here that the method of their proof works in this
generality.

Proof. We may (and do) assume F∞ ⊃ F cyc. In the case p = 2, to apply our
preparation in §2, we assume F is totally imaginary without a loss of generality
(we may replace F by a finite extension of F having only one place lying over
p for the proof of 3.1).
(1) follows from the finiteness of H1(G,Z2(F∞)) in (2) by 2.3 (2b). We prove
(2).
We have H0(G,Z2(F∞))⊗Zp Qp ≃ H2(OF [1/p],Zp(1))⊗Zp Qp by 2.3 (2a), and
H2(OF [1/p],Zp(1)) is finite by the exact sequence 2.4 (1) and by the assump-
tion that there is only one place of F lying oer p. Hence H0(G,Z2(F∞)) ⊗Zp

Qp = 0. This shows that Hm(G,Z2(F∞)) ⊗Zp Qp = 0 for any m (Serre [11]).
(Here the assumption G is commutative is essential. See 5.6.) This proves
Hm(G,Z2(F∞)) is finite for any m.
Let v be the unique place of F lying over p. Then by class field theory, the
decomposition group Gv of v in G is of finite index in G. By the exact sequence

H2(Gv, Zp) → H2(G, Zp) → H1(G,Z2(F∞)/Y (F∞)) → H1(Gv, Zp) → H1(G, Zp)

obtained from 2.4 (2), this shows that H1(G,Z2(F∞)/Y (F∞)) and hence the
kernel of H0(G,Y (F∞))→ H0(G,Z2(F∞)) are finite. Hence H0(G,Y (F∞)) is
finite, and by Serre [11], Hm(G,Y (F∞)) is finite for any m.

3.2. In the rest of this section, we recall some known facts about U(F cyc/F ).
Let Gcyc = Gal(F cyc/F ). For a place v of F lying over p, let Gcyc

v ⊂ Gcyc be
the decomposition group of v (so Gcyc

v ≃ Zp). Let (⊕v|pGcyc
v )0 be the kernel of

the canoncial map ⊕v|pGcyc
v → Gcyc.

Let

αF : (OF [1/p]× ⊗ Zp)/U(F cyc/F )→ (⊕v|pGcyc
v )0

be the homomorphism induced by the reciprocity maps of local fields Fv, which
appeared in 2.4 (3).
It is known that the following conditions (1) - (3) are equivalent.

(1) Ker (αF ) is finite. (That is, U(F cyc/F ) is of finite index in the kernel of
OF [1/p]× ⊗ Zp → (⊕v|pGcyc

v )0.)

(2) Coker (αF ) is finite.

(3) H0(G
cyc, Y (F cyc)) is finite.
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The equivalence of (1)-(3) is proved as follows. Though this is not at all
an essential point, in the case p = 2, to apply our preparation in §2, we
assume F is totally imaginary without a loss of generality (we can replace
F by a finite extension of F for the proof of the equivalence). Let σ be a
topological generator of Gcyc. Then H0(G

cyc,Z2(F cyc)) is isomorphic to the
cokernel of σ − 1 : Z2(F cyc) → Z2(F cyc) and H1(G

cyc,Z2(F cyc)) is isomor-
phic to the kernel of it. Since Z2(F cyc) is a torsion Zp[[Gcyc]]-module, this
shows that the Zp-rank of H1(G

cyc,Z2(F cyc)) ≃ (OF [1/p] ⊗ Zp)/U(F cyc/F )
is equal to the Zp-rank of H0(G

cyc,Z2(F cyc)) ≃ H2(OF [1/p],Zp(1)) which is
equal to the Zp-rank of (⊕v|pGcyc

v )0 by 2.4 (1). Hence (1) and (2) are equiv-
alent. The exact sequence 2.4 (2) (take F∞ = F cyc and S to be the set of all
places of F lying over p) shows that Coker (αF ) is isomorphic to the kernel of
H0(G

cyc, Y (F cyc)) → H0(G
cyc,Z2(F cyc)) = H2(OF [1/p],Zp(1)). The image

of the last map is Pic(OF [1/p]){p} by 2.4 (1) (2), and hence is finite. Hence
Coker (αF ) is finite if and only if H0(G

cyc, Y (F cyc)) is finite.

3.3. Greenberg [7] proved that H0(G
cyc, Y (F cyc)) is finite if F is an abelian

extension of Q (hence all (1) - (3) in 3.2 are satisfied in this case).

3.4. In the case F is totally real, by Coates [2] Theorem 1.13, H0(G
cyc, Y (F cyc))

is finite if Leopoldt conjecture for F is true.

3.5. Let F be a CM field. Let F+ be the real part of F , and let
H0(G

cyc, Y (F cyc))± ⊂ H0(G
cyc, Y (F cyc)) be the ±-part with respect to the

action of the complex conjugation in Gal(F/F+). Then by the above result
of Coates, H0(G

cyc, Y (F cyc))+ is finite if Leopoldt conjecture for F+ is true.
On the other hand, Conjecture 2.2 in Coates and Lichtenbaum [3] says that
H0(G

cyc, Y (F cyc))− is finite. In [8], Gross conjectured that the kernel and the
cokernel of the (-)-part αF of αF is finite (this finiteness is also a consequence
of Conjecture 2.2 of [3]), and formulated a conjecture which relates α−F to the
leading terms of the Taylor expansions at s = 0 of p-adic Artin L-functions.

Thus known conjectures support that the equivalent conditions (1) - (3) in 3.2
are satisfied by any CM field F .

A natural question arises: Are (1) - (3) in 3.2 true for any number field F?

4 A result on Tor modules.

The purpose of this section is to prove Proposition 4.2 below.

4.1. For a compact p-adic Lie group G, for a Zp[[G]]-module T , and for a
continuous homomorphism G → Z×p , let T (χ) be the Zp[[G]]-module whose
underlying abelian group is that of T and on which Zp[[G]] acts by Zp[[G]]→
Zp[[G]] → End(T ), where the first arrow is the automorphism σ 7→ χ(σ)σ
(σ ∈ G) of the topological ring Zp[[G]] and the second arrow is the original
action of Zp[[G]] on T . We call T (χ) the twist of T by χ.
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Proposition 4.2. Let G be a compact p-adic Lie group, let H be a closed
normal subgroup of G, and assume that we are given a finite family of closed
normal subgroups Hi (0 ≤ i ≤ r) of G such that {1} = H0 ⊂ H1 ⊂ · · · ⊂ Hr =
H, Hi/Hi−1 ≃ Zp for 1 ≤ i ≤ r and such that the the action of G on Hi/Hi−1

by inner automorphisms is given by a homomorphism χi : G/H → Z×p .
Let M be a finitely generated Zp[[G]]-module, and let M ′ be a subquotient of
the Zp[[G]]-module M . Let m ≥ 0. Then there is a finite family (Si)1≤i≤k of
Zp[[G/H]]-submodules of Hm(H,M ′) satisfying the following (i) and (ii).

(i) 0 = S0 ⊂ S1 ⊂ · · · ⊂ Sk = Hm(H,M ′).

(ii) For each i (1 ≤ i ≤ k), there are a subquotient T of the Zp[[G/H]]-
module H0(H,M) and a family (s(j))1≤j≤r of non-negative integers s(j) such
that ♯{j|s(j) > 0} ≥ m and such that Si/Si−1 is isomorphic to the twist

T (
∏

1≤j≤k χ
s(j)
j ) of T .

Note

Hm(H,M) = TorZp[[H]]
m (Zp,M) = TorZp[[G]]

m (Zp[[G/H]],M)

for Zp[[G]]-modules M .
A key point in the proof of Proposition 3.1 was that for commutative rings,
Torm vanishes if Tor0 vanishes. This is not true for non-commutative rings.
In the next section, we will use the above relation of Tor0 and Torm in a
non-commutative situation for the proof of Theorem 1.1.

4.3. We denote this proposition with fixed r by (Ar). Let (Br) be the case
M = M ′ of (Ar).

Since (Br) is a special case of (Ar), (Br) follows from (Ar).
In 4.4, we show that conversely, (Ar) follows from (Br). In 4.5, we prove (B1).
In 4.6, for r ≥ 1, we prove (Br) assuming (Ar−1) and (B1). These give a proof
of Prop.4.2.

4.4. We can deduce (Ar) from (Br) as follows. Let M ′′ be the quotient of the
Zp[[G]]-module M such that M ′ is a Zp[[G]]-submodule of M ′′. We have an
exact sequence of Zp[[G/H]]-modules

Hm+1(H,M
′′/M ′)→ Hm(H,M ′)→ Hm(H,M ′′).

Then (Ar) for the pair (M,M ′) is obtained from (Br) applied to M ′′/M ′ and
to M ′′ since H0(H,M

′′/M ′) and H0(H,M
′′) are quotients of the Zp[[G/H]]-

module H0(H,M).

4.5. We prove (B1). Assume r = 1. Let χ = χ1.
Note that H ≃ Zp. Let α be a topological generator of H, and let N = α−1 ∈
Zp[[G]]. Let I = Ker (Zp[[G]]→ Zp[[G/H]]) = Zp[[G]]N = NZp[[G]].
We have
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(1) For σ ∈ G, σNσ−1 is expressed as a power series in N with coefficients
in Zp which is congruent to χ(σ)N mod N2. In particular, σNσ−1 ≡ χ(σ)N
mod I2.

In fact, σNσ−1 = αχ(σ) − 1 = (1 +N)χ(σ) − 1 = χ(σ)N +
∑
n≥2 ciN

i for some
ci ∈ Zp.
Concerning Hm(H,M) (m ≥ 0), we have:

(2) N(M) is a Zp[[G]]-submodule of M , I kills M/N(M), and there is an
isomorphism of Zp[[G/H]]-modules

H0(H,M) ≃M/N(M).

(3) Ker (N : M →M) is a Zp[[G]]-submodule of M , I kills Ker (N : M →M),
and there is an isomorphism of Zp[[G/H]]-modules

H1(H,M) ≃ Ker (N : M →M)(χ).

(4) Hm(H,M) = 0 fo m ≥ 2.

We prove (2)–(4). We have a projective resolution

0→ I → Zp[[G]]→ Zp[[G/H]]→ 0

of the right Zp[[G]]-module Zp[[G/H]]. Since Hm(H, ?) =

TorZp[[G]]
m (Zp[[G/H]], ?), H0(H,M) (resp. H1(H,M)) is isomorphic to the

cokernel (resp. kernel) of I⊗Zp[[G]]M →M , and Hm(H,M) = 0 for all m ≥ 2.
This proves (2) and (4). Furthermore,

H1(H,M) ≃ Ker (I ⊗Zp[[G]] M →M) ≃ I ⊗Zp[[G]] Ker (N : M →M)

≃ I/I2 ⊗Zp[[G/H]] Ker (N : M →M).

Consider the bijection

Ker (N : M →M)→ I/I2 ⊗Zp[[G/H]] Ker (N : M →M) ; x 7→ N ⊗ x.

By the above (1), for σ ∈ G, we have σN ⊗ x = χ(σ)Nσ ⊗ x = χ(σ)N ⊗ σx in
I/I2 ⊗Zp[[G/H]] Ker (N : M →M). Hence

I/I2 ⊗Zp[[G/H]] Ker (N : M →M) ≃ Ker (N : M →M)(χ)

as Zp[[G/H]]-modules. This proves (3).
Let

Vn = Ker (Nn : M →M) (n ≥ 0), V = ∪nVn.
Then, since Zp[[G]]Nn = NnZp[[G]], Vn is a Zp[[G]]-submodule of M . Since
Zp[[G]] is Noetherian and M is a finitely generated Zp[[G]]-module, V = Vn for
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some n. That is, N is nilpotent on V . Since Ker (N : M/V → M/V ) = 0, we
have H1(H,M/V ) = 0 by (3). Hence

(5) H1(H,V ) = H1(H,M),

(6) H0(H,V )→ H0(H,M) is injective.

Consider the monodromy filtration (Wi)i on the abelian group V given by the
nilpotent endomorphism N in the sense of Deligne [5] 1.6. It is an increasing
filtration characterized by the properties N(Wi) ⊂ Wi−2 for all i, and N i :

grWi
≃→ grW−i for all i ≥ 0.

(7) Wi are Zp[[G]]-submodules of V .

In fact, for σ ∈ G, the filtration (σWi)i also has the characterizing property of
(Wi)i by (1).
Now we define an increasing filtration (W ′i )i of the Zp[[G/H]]-module H0(H,V )
and an increasing filtration (W ′′i )i on the Zp[[G/H]]-module H1(H,V ) =
H1(H,M) as follows. By identifying H0(H,V ) with Coker (N : V → V ), let
W ′i = Wi(Coker (N : V → V )) (i.e. the image of Wi in Coker (N : V → V )).
By identifying H1(H,V ) with Ker (N : V → V )(χ), let W ′′i = Wi(Ker (N :
V → V ))(χ) (i.e. (Wi ∩ Ker (N : V → V ))(χ)). Then W ′′0 = H1(H,M), and
W ′′i = 0 if i is sufficiently small. We prove:

(8) For any i ≥ 0,

grW
′′

−i ≃ grW
′

i (χi+1)

as Zp[[G/H]]-modules.

By the injectivity of H0(H,V )→ H0(H,M) (6), this proves (B1).

We prove (8). By (1), we have

(9) The map N : grWi → grWi−2 satisfies σNσ−1 = χ(σ)N for σ ∈ G.

Let Pi ⊂ grWi (i ≤ 0) be the primitive part Ker (N : grWi → grWi−2) ([5]
1.6.3). Then for i ≥ 0, the canonical map grW−i(Ker (N : V → V )) → P−i
is an isomorphism of Zp[[G/H]]-modules ([5] 1.6.6). Furthermore, we have a

bijection P−i
≃→ grWi (Coker (N : V → V )) as the composition

P−i → grW−i
Ni← grWi → grWi (Coker (N : V → V ))

([5] 1.6.4, 1.6.6, and the dual statement of 1.6.6 for Coker (N)). By (9), this
gives an isomorphism of Zp[[G/H]]-modules P−i ≃ grWi (Coker (N : V →
V ))(χi). Hence we have (8).

4.6. Let r ≥ 1. We prove (Br) assuming (Ar−1) and (B1). Let J = H1. By
the spectral sequence

E−i,−j2 = Hi(H/J,Hj(J,M))⇒ E−m∞ = Hm(H,M)
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in which Hj(J,M) = 0 for j ≥ 2, we have an exact sequence of Zp[[G/H]]-
modules

(1) Hm−1(H/J,H1(J,M))→ Hm(H,M)→ Hm(H/J,H0(J,M)).

We consider Hm−1(H/J,H1(J,M)) first. By (B1) applied to the triple
(G, J,M), H1(J,M) is a successive extension of twists of subquotients of
H0(J,M) by χi1 (i ≥ 1). By (Ar−1) applied the triple (G/J,H/J,H0(J,M)),
Hm−1(H/J, ?) of these subquotients of H0(J,M) are successive extensions of

twists of subquotients of H0(H/J,H0(J,M)) = H0(H,M) by
∏

2≤j≤r χ
s(j)
j

such that s(j) ≥ 0 for all j and such that ♯({j | s(j) > 0} ≥ m − 1.
Hence Hm−1(H/J,H1(J,M)) is a successive extension of twists of subquo-

tients of H0(H,M) by
∏

1≤j≤r χ
s(j)
j such that s(j) ≥ 0 for all j and such that

♯({j | s(j) > 0} ≥ m.
We consider Hm(H/J,H0(J,M)) next. By (Br−1) (which is assumed
since we assume (Ar−1)) applied to the triple (G/J,H/J,H0(J,M)),
Hm(H/J,H0(J,M)) is a successive extension of twists of subquotients of

H0(H/J,H0(J,M)) = H0(H,M) by
∏

2≤j≤r χ
s(j)
i such that s(j) ≥ 0 for all j

and such that ♯({j | s(j) > 0} ≥ m.
By these properties of Hm−1(H/J,H1(J,M)) and Hm(H/J,H0(J,M)), the
exact sequence (1) proves (Br) (assuming (Ar−1) and (B1)).

5 Some non-commutative Galois extensions.

Theorem 1.1 in Introduction is contained in Corollary 5.2 of the following The-
orem 5.1, for the extension F∞/F in Theorem 1.1 satisfies the assumption of
Theorem 5.1 with n(i) = 1 for all i.

Theorem 5.1. Assume that F∞ is a Galois extension of F , F∞ ⊃ ∪nF (ζpn),
and that there is a finite family of closed normal subgroups Hi (1 ≤ i ≤ r) of
G = Gal(F∞/F ) satisfying the following condition. Let F cyc be the cyclotomic
Zp-extension of F and let H be the kernel of G→ Gcyc = Gal(F cyc/F ). Then
{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hr, Hr is an open subgroup of H, and for 1 ≤ i ≤ r,
Hi/Hi−1 ≃ Zp and the action of G on it by inner automorphism is the n(i)-th
power of the cyclotomic character G→ Z×p for some positive integer n(i) > 0.
Let S be any finite set of finite places of F containing all places lying over p.
Then the kernel and the cokernel of the canonical maps

Hm(G,Z2
S(F∞))→ Hm(Gcyc,Z2

S(F cyc)),

Hm(G,Y (F∞))→ Hm(Gcyc, Y (F cyc))

are finite for any m.
In particular (since Hm(Gcyc, ?) = 0 for m ≥ 2), Hm(G,Z2

S(F∞)) and
Hm(G,Y (F∞)) are finite for any m ≥ 2.
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Corollary 5.2. Let the assumption be as in Theorem 5.1. Then:

(1) The quotient group U(F cyc/F )/U(F∞/F ) is finite.
(2) If there is only one place of F lying over p, then U(F∞/F ) is of finite index
in OF [1/p]× ⊗ Zp, and Hm(G,Y (F∞)) and Hm(G,Z2(F∞)) are finite for any
m.

(3) If F is an abelian extension over Q, then Hm(G,Y (F∞)) is finite for any
m.

In fact, by 2.3 (2b), (1) of Corollary 5.2 follows from the finiteness of the
kernel and the cokernel of H1(G,Z2(F∞)) → H1(G

cyc,Z2(F cyc)) which is a
special case of Theorem 5.1. (2) follows from (1) and the case F∞ = F cyc of
Proposition 3.1. (3) follows from (1) and the result of Greenberg introduced in
3.3.

Corollary 5.3. Let the assumption be as in Theorem 5.1. Then
Hm(G,Z1(F∞)) for m ≥ 1 and the kernel of the canonical map
H0(G,Z1(F∞))→ OF [1/p]× ⊗ Zp are finite.

In fact, for S containing all finite places which ramify in F∞, since Z1(F∞)
≃→

Z1
S(F∞) (2.5), the spectral sequence in 2.3 shows that Hm(G,Z1(F∞)) for

m ≥ 1 is isomorphic toHm+2(G,Z2
S(F∞)), and the kernel ofH0(G,Z1(F∞))→

OF [1/p]× ⊗ Zp is isomorphic to H2(G,Z2
S(F∞)). Hence this corollary follows

from the finiteness of Hm(G,Z2
S(F∞)) for m ≥ 2 in Theorem 5.1.

5.4. We prove Theorem 5.1. First in this 5.4, we show that the kernel and
the cokernel of Hm(G,Z2

S(F∞)) → Hm(Gcyc,Z2
S(F cyc)) are finite for any m

assuming that S contains all finite places of F which ramify in F∞,.
We may replace F by a finite extension of F . Hence we may assume that
Hr = H, ∪n≥1F (ζpn) = F cyc, and that in the case p = 2, F is totally imaginary.
Let p be the augmentation ideal of Zp[[Gcyc]]. It is a prime ideal of Zp[[Gcyc]].

By the spectral sequence E−i,−j2 = Hi(G
cyc,Hj(H, ?)) ⇒ E−m∞ = Hm(G, ?),

it is sufficient to prove that Hi(G
cyc,Hm(H,Z2

S(F∞))) is finite for any i and
for any m ≥ 1. For a finitely generated Zp[[Gcyc]]-module M , Hi(G

cyc,M) is
isomorphic to M/pM if i = 0, to the part of M annihilated by p if i = 1, and
is zero if i ≥ 2. Applying this taking M = Hm(H,Z2

S(F∞)), we see that it is
sufficient to prove

(1) Hm(H,Z2
S(F∞))p = 0 for any m ≥ 1,

where (?)p denotes the localization at the prime ideal p.
We apply Proposition 4.2 to the case M = M ′ = Z2

S(F∞). By this proposition,
to prove (1), it is sufficient to show that for any subquotient T of the Zp[[Gcyc]]-
module H0(H,M) = Z2

S(F cyc) and for any integer k ≥ 1, we have T (k)p = 0.
Here T (k) is the k-th Tate twist. It is sufficient to prove that H0(G

cyc, T (k))
is finite. Since Z2

S(F cyc) is a finitely generated torsion Zp[[Gcyc]]-module, the
Zp[[Gcyc]]-module T is a successive extension of Zp[[Gcyc]]-modules which are
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either finite or isomorphic to Zp[[Gcyc]]/q for some prime ideal q of Zp[[Gcyc]]
of height one. We may assume T ≃ Zp[[Gcyc]]/q. Then there is a Zp[[Gcyc]]-
homomorphism Z2

S(F cyc) → T with finite cokernel. Hence it is sufficient to
prove that H0(G

cyc,Z2(F cyc)(k))) is finite for any k ≥ 1. But

H0(G
cyc,Z2(F cyc)(k))) ≃ H2(OF [1/S],Zp(k + 1)).

The last group is finite by Soulé [12]. In fact, by Quillen [10] and Borel [1],
K2k(OF [1/S]) is finite, and by Soulé [12], we have a surjective Chern class map
from K2k(OF [1/S]) to H2(OF [1/S],Zp(k + 1)).

5.5. We complete the proof of Theorem 5.1. Let S be a finite set of finite places
of F which contains all places of F lying over p. Take a finite set S′ of finite
places of F such that S ⊂ S′ and such that S′ contains all finite places of F
which ramify in F∞.
By comparing the exact sequence 2.4 (2) for F∞/F and that for
F cyc/F , we see that the finiteness of the kernel and the cokernel
of Hm(G,Z2

S(F∞)) → Hm(Gcyc,Z2
S(F cyc)) for all m and that of

Hm(G,Y (F∞)) → Hm(Gcyc, Y (F cyc)) for all m are consequences of the
following (1) - (3).

(1) The kernel and the cokernel of Hm(G,Z2
S′(F∞)) → Hm(Gcyc,Z2

S′(F
cyc))

are finite for all m.

(2) The kernel and the cokernel of Hm(G,Zp) → Hm(Gcyc,Zp) are finite for
all m.

(3) The kernel and the cokernel of Hm(Gv,Zp) → Hm(Gcyc
v ,Zp) are finite for

all m and for all finite places v of F . Here Gv ⊂ G denotes a decomposition
group of a place of F∞ lying over v, and Gcyc

v denotes the image of Gv in Gcyc.

We proved (1) already in 5.4. (2) and (3) follow from the case M = M ′ = Zp
of Proposition 4.2.

Remark 5.6. There is an example of a p-adic Lie extension F∞/F for which
there is only one place of F lying over p but U(F∞/F ) is not of finite index
in OF [1/p]× ⊗ Zp. For example, let F = Q, let E be an elliptic curve over F
with good ordinary reduction at p, and let F∞ be the field generated over F
by pn-division points of E for all n. Then U(F∞/F ) = {1} and is not of finite
index in OF [1/p]×⊗Zp = Z[1/p]×⊗Zp ≃ Zp. In fact U(F∞/F ) must be killed
by the reciprocity map of local class field theory of Qp into Gab

p (p) ≃ Z2
p, where

Gp ⊂ G = Gal(F∞/F ) denotes the decomposition group at p, and Gab
p (p)

denotes the pro-p part of the abelian quotient of Gp. The image of p ∈ Z[1/p]×

in Gab
p (p) is of infinite order. This proves U(F∞/F ) = {1}. In this case,

H0(G,Z2(F∞)) is finite, but H1(G,Z2(F∞)) is not finite.

Remark 5.7. There is an example of a p-adic Lie extension F∞/F for which
G = Gal(F∞/F ) ≃ Z2

p and H0(G,Y (F∞/F )) is not finite. Let K be an imag-
inary quadratic field in which p splits, let K∞ be the unique Galois extension
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of K such that Gal(K∞/K) ≃ Z2
p, let F be a finite extension of K in which p

splits completely, and let F∞ = FK∞. Then the Zp-rank of H1(G,Y (F∞)) is
≥ [F : K]− 1 as is shown below. Hence it is not zero if F 6= K. In fact, from
the exact sequence 2.4 (2) with S the set of all places of F lying over p, we can
obtain

rank ZpH1(G,Y (F∞)) ≥
≥ (
∑

v∈S
rank ZpH1(Gv,Zp))− rank ZpH1(G,Zp)− rank Z OF [1/p]×.

But rank ZpH1(Gv,Zp) = 2 for any v ∈ S, rank ZpH1(G,Zp) = 2,
rank ZOF [1/p]× = 3[F : K]−1 by Dirichlet’s unit theorem, and hence the right
hand side of the above inequality is 2[F : Q]− 2− (3[F : K]− 1) = [F : K]− 1.
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Norm. Sup. 7 (1974), 235-272.

[2] Coates, J., p-adic L-functions and Iwasawa’s theory, Algebraic number
fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham,
1975), 269–353. Academic Press, (1977), 269–353.

[3] Coates, J. and Lichtenbaum, S., On l-adic zeta functions, Ann. of
Math. 98 (1973), 498–550.

[4] Coates, J., and Sujatha, R, Fine Selmer groups for elliptic curves
with complex multiplication, Algebra and Number Theory, Proc. of the
Silver Jubilee Conference, Univ. of Hyderabad, ed. Rajat Tandon (2005),
327-337.

[5] Deligne, P., La conjecture de Weil. II, Inst. Hautes Études Sci. Publ.
Math. 52 (1980), 137–252.

[6] Fukaya, T. and Kato, K., A formulation of conjectures p-adic zeta
functions in non-commutative Iwasawa theory to appear in Proc. of Amer.
Math. Soc.

[7] Greenberg, R., On a certain l-adic representation, Inventiones Math
21 (1973), 117–124.

[8] Gross, B., p-adic L-series at s = 0, J. Fac. Sci. Univ. Tokyo Sect. IA
Math. 28 (1981), 979–994 (1982).

[9] Nekovar, J., J., Selmer complexes, preprint.

Documenta Mathematica · Extra Volume Coates (2006) 551–565



Universal Norms of p-Units . . . 565

[10] Quillen, D., Finite generation of the groups Ki of rings of algebraic
integers, Algebraic K-theory, I, Springer Lecture Notes 341 (1973), 179–
198.
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1. Introduction

The p-adic L-function Lp(E, s) of an elliptic curve E defined over Q has an
extra zero at s = 1 coming from the interpolation factor at p if E has split
multiplicative reduction at the prime p. The Mazur-Tate-Teitelbaum conjec-
ture (now a theorem of Greenberg-Stevens) describes the first derivative of
Lp(E, s) as

d

ds
Lp(E, s) | s=1 =

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

where qE is the Tate period of E coming from the p-adic uniformization of E at
p, logp is the Iwasawa p-adic logarithm, Ω+

E is the real period of E and L(E, 1)
is the special value of the complex Hasse-Weil L-function at s = 1.
Known proofs of this conjecture are classified into two kinds. One is, as
Greenberg-Stevens [GS] did first, a proof using a global theory like Hida’s
universal ordinary deformation. The other is, as Kato-Kurihara-Tsuji [KKT]
or Colmez [C] did, a proof based on local theory (except using Kato’s element).
Each kind of proof has its own importance but the latter type of proof makes it
clear that the substantial facts behind this conjecture are of local nature. The
p-adic L-function is the image of Kato’s element via a purely local morphism,

1Supported by JSPS Postdoctoral Fellowships for Research Abroad.
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the so called Coleman map or Perrin-Riou map. The extra zero phenomena dis-
covered by Mazur-Tate-Teitelbaum is, in fact, a property of the local Coleman
map.
In this paper, we prove a derivative formula (Theorem 4.1) of the Coleman map
for elliptic curves by purely local and elementary method and we apply this
formula to Kato’s element to show the conjecture of Mazur-Tate-Teitelbaum.
Of course, our proof is just a special and the simplest case of that in Kato-
Kurihara-Tsuji [KKT] or Colmez [C] (they proved the formula not only for
elliptic curves but for higher weight modular forms) but I believe that it is
still worthwhile to write it down for the following reason. First, the important
paper Kato-Kurihara-Tsuji [KKT] has not yet been published. Second, since
we restrict ourselves to the case of elliptic curves, the proof is much simpler and
elementary (of course, such a simple proof would be also known to specialists.
In fact, Masato Kurihara informed me that Kato, Kurihara and Tsuji have
two simple proofs and one is similar to ours). I hope that this paper would
help those who are interested in the understanding of this interesting problem.

Acknowledgement: I would like to wish Professor John Coates a happy six-
tieth birthday, and to thank him for his contribution to mathematics, especially
to Iwasawa theory. It is my great pleasure to dedicate this article to him on
this occasion.
This paper was written during the author’s visit at the university of Paris 6.
He would like to thank P. Colmez and L. Merel for the accommodation. He
also would like to thank K. Bannai and N. Otsubo for discussion. Finally, he
is grateful to the referee for his careful reading of the manuscript.

2. A structure of the group of local units in k∞/Qp.

Let k∞ be the (local) cyclotomic Zp-extension of Qp in Qp(ζp∞) :=
∪∞n=0Qp(ζpn) with Galois group Γ and let kn be its n-th layer in k∞ with
Galois group Γn. We identify the Galois group Gal(Qp(ζp∞)/Qp) with Z×p by
the cyclotomic character κ. Then Γ is identified with 1 + pZp and the torsion
subgroup ∆ of Gal(Qp(ζp∞)/Qp) is regarded as µp−1 ⊂ Z×p .

Let U1
n be the subgroup of O×kn consisting of the elements which are congruent

to 1 modulo the maximal ideal mn of Okn .
Following the Appendix of Rubin [R] or [Ko], for a fixed generator (ζpn)n∈N of
Zp(1), we construct a certain canonical system of local points (dn)n ∈ lim←−n U

1
n

and we determine the Galois module structure of U1
n by using these points.

The idea of the construction of such a system is as follows. First we consider a

certain formal group F isomorphic to Ĝm whose formal logarithm has a certain
compatible property with the trace operator of k∞. Then the system of local

points is essentially the image of cyclotomic units by the isomorphism F ∼= Ĝm.
We let

ℓ(X) = log(1 +X) +

∞∑

k=0

∑

δ∈∆

(X + 1)p
kδ − 1

pk
.
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The Mazur-Tate-Teitelbaum Conjecture 569

This power series is convergent in Qp[[X]] due to the summation
∑
δ∈∆. It is

straightforward to see that

ℓ′(X) ∈ 1 +XZp[[X]], ℓ(0) = 0, (ϕ− p) ◦ ℓ(X) ∈ pZp[[X]]

where ϕ is the Frobenius operator such that (ϕ ◦ ℓ)(X) = ℓ((X + 1)p − 1).
Hence by Honda’s theory, there is a formal group F over Zp whose logarithm
is given by ℓ, and ι(X) = exp ◦ ℓ (X) − 1 ∈ Zp[[X]] gives an isomorphism of

formal groups F ∼= Ĝm over Zp. (See for example, Section 8 of [Ko].) Take an
element ε of pZp such that ℓ(ε) = p and we define

cn := ι((ζpn+1 − 1) [+]F ε).

Since this element is fixed by the group ∆, this is an element of Ĝm(mn). Then
by construction, dn = 1 + cn ∈ U1

n satisfies the relation

logp(dn) = ℓ(ε) + ℓ(ζpn+1 − 1) = p+

n∑

k=0

∑

δ∈∆

ζpn+1−k
δ − 1

pk
.

Proposition 2.1. i) (dn)n is a norm compatible system and d0 = 1.
ii) Let u be a generator of U1

0 . Then as Zp[Γn]-module, dn and u generate U1
n,

and dn generates (U1
n)N=1 where N is the absolute norm from kn to Qp.

Proof. Since ζp − 1 is not contained in mn, the group Ĝm(mn) does not con-
tain p-power torsion points. Therefore to see i), it suffices to show the trace
compatibility of (logp(dn))n, and this is done by direct calculations. For ii),

we show that (ι−1(cn)
σ)σ∈Γn and ε generate F(mn) as Zp-module by induction

for n. The proof is the same as that of Proposition 8.11 of [Ko] but we rewrite
it for the ease of the reader. The case n = 0 is clear. For arbitrary n, we show
that ℓ(mn) ⊂ mn + kn−1 and

F(mn)/F(mn−1) ∼= ℓ(mn)/ℓ(mn−1) ∼= mn/mn−1.

Here the first isomorphism is induced by the logarithm ℓ and the last isomor-
phism is by (mn + kn−1)/kn−1

∼= mn/mn−1. As a set, F(mn) is the maximal
ideal mn, and we write x ∈ F(mn) in the form x =

∑
δ∈∆

∑
i ai ζ

iδ
pn+1 , ai ∈ Zp.

Then for y =
∑
δ∈∆

∑
i ai ζ

iδ
pn ∈ mn−1, we have that xp ≡ y mod pOkn .

Therefore for k ≥ 1, we have

∑

δ∈∆

(x+ 1)p
kδ − 1

pk
≡
∑

δ∈∆

(xp + 1)p
k−1δ − 1

pk
≡
∑

δ∈∆

(y + 1)p
k−1δ − 1

pk
mod mn.

Hence we have
∑
δ

(x+1)p
kδ−1

pk
∈ mn + kn−1. Since ℓ(x) is convergent, for

sufficiently large k0, we have
∑∞
k=k0

∑
δ

(x+1)p
kδ−1

pk
∈ mn, and therefore ℓ(x)

is contained in mn + kn−1. Since ℓ is injective on F(mn) (there is no torsion

point in F(mn) ∼= Ĝm(mn)) and is compatible with the Galois action, we have
ℓ (mn) ∩ kn−1 = ℓ (mn−1). Therefore we have an injection

ℓ(mn)/ℓ(mn−1) →֒ (mn + kn−1)/kn−1
∼= mn/mn−1.
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By direct calculations, we have ℓ(ι−1(cn)) ≡
∑
δ(ζ

δ
pn+1 − 1) mod kn−1. Since∑

δ(ζ
δ
pn+1 − 1) generates mn/mn−1 as a Zp[Γn]-module with respect to the

usual addition, the above injection is in fact a bijection. Thus (ι−1(cn)
σ)σ∈Γn

generate F(mn)/F(mn−1). By induction (ι−1(cn)
σ)σ∈Γn and ε generate F(mn).

Since Ĝm is isomorphic to F by ι, we have ii). �

Since Ndn = d0 = 1, by Hilbert’s theorem 90, there exists an element
xn ∈ kn such that dn = xγn/xn for a fixed generator γ of Γ. We put
πn =

∏
δ∈∆(ζδpn+1 − 1). Then πn is a norm compatible uniformizer of kn.

By the previous proposition, xn can be taken of the form xn = πenn un for some
integer en and un ∈ (U1

n)N=1.

Proposition 2.2. In the same notation as the above, we have

p ≡ en (p− 1) logp κ(γ) mod pn+1.

Proof. If we put

G(X) = exp(p) · exp ◦ ℓ (X) = exp ◦ ℓ (X[+]ε) ∈ 1 + (p,X)Zp[[X]],

then by definition
Gσ(ζpm+1 − 1) = dσm

where Gσ(X) = G((X + 1)κ(σ) − 1) for σ ∈ Γ. By Proposition 2.1 ii), un is
written as a product in the form un =

∏
(dσn)

a. If we put H(X) =
∏
Gσ(X)a,

then H(X) satisfies H(ζpm+1 − 1) = Nkn/kmun for 0 ≤ m ≤ n. We put

F (X) =

(∏

δ∈∆

(X + 1)δκ(γ) − 1

(X + 1)δ − 1

)en
H((X + 1)κ(γ) − 1)

H(X)
.

Then we have

G(X) ≡ F (X) mod
(X + 1)p

n+1 − 1

X
since they are equal if we substitute X = ζpm+1−1 for 0 ≤ m ≤ n. Substituting
X = 0 in this congruence and taking the p-adic logarithm, we have that p ≡
en(p− 1) logp κ(γ) mod pn+1. �

3. The Coleman map for the Tate curve.

We construct the Coleman map for the Tate curve following the Appendix of
[R] or Section 8 of [Ko]. See also [Ku]. In this section we assume that E is the
Tate curve

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

where q = qE ∈ Q×p satisfying |q|p < 1 and

sk(q) =
∑

n≥1

nkqn

1− qn , a4(q) = −s3(q), a6(q) = −5s3(q) + 7s5(q)

12
.

Then we have the uniformization

φ : Cp×/qZ ∼= Eq(Cp), u 7→ (X(u, q), Y (u, q))
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where

X(u, q) =
∑

n∈Z

qnu

(1− qnu)2 − 2s1(q),

Y (u, q) =
∑

n∈Z

(qnu)2

(1− qnu)3 + s1(q).

(Of course, we put φ(qZ) = O.) This isomorphism induces the isomorphism of

the formal groups φ̂ : Ĝm
∼= Ê. It is straightforward to see that the pull back

by φ̂ of the invariant differential ωE = dx
2y+x on Ê with the parameter t = −x/y

is the invariant differential ωbGm = dX
1+X on Ĝm with the parameter X = u− 1.

Hence φ̂ is given by the power series t = exp bE ◦ log(1 +X)− 1 ∈ Zp[[X]].

From now we identify Ĝm with Ê by φ̂. In particular, we regard cn ∈ Ĝm(mn)

in the previous section as an element of Ê(mn).
Let T = TpE be the p-adic Tate module of E and V = T ⊗ Qp. The cup
product induces a non-degenerate pairing of Galois cohomology groups

( , )E,n : H1(kn, T )×H1(kn, T
∗(1))→ H2(kn,Zp(1)) ∼= Zp.

If there is no fear of confusion, we write ( , )E,n simply as ( , )E . By the

Kummer map, we regard Ê(mn) as a subgroup of H1(kn, T ). Then we define
a morphism Coln : H1(kn, T

∗(1))→ Zp[Γn] by

z 7−→
∑

σ∈Γn

(cσn, z)E,n σ.

This morphism is compatible with the natural Galois action and since the
sequence (cn)n is norm compatible, Coln is also compatible for n with respect
to the corestrictions and the natural projections. We define the Coleman map

Col : lim←−
n

H1(kn, T
∗(1)) −→ Λ = Zp[[Γ]]

as the projective limit of Coln over all n.
We recall the dual exponential map. For every n let tan(E/kn) denote the
tangent space of E/kn at the origin, and consider the Lie group exponential
map

expE,n : tan(E/kn)→ E(kn)⊗Qp.

The cotangent space cotan(E/kn) is generated by the invariant differential ωE
over kn, and we let ω∗E be the corresponding dual basis of tan(E/kn). Then
there is a dual exponential map

exp∗E,n : H1(kn, V
∗(1)) −→ cotan(E/kn) = kn ωE ,

which has a property

(x, z)E,n = Trkn/Qp log bE(x) exp∗ωE ,n(z)

for every x ∈ Ê(mn) and z ∈ H1(kn, V
∗(1)). Here exp∗ωE ,n = ω∗E ◦ exp∗E,n. If

there is no fear of confusion, we write exp∗ωE ,n(z) as exp∗ωE (z). Then using the
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identification φ̂ : Ĝm
∼= Ê, the morphism Coln is described in terms of the dual

exponential map as follows.

Coln(z) =
∑

σ∈Γn

(cσn, z)E,n σ

=
∑

σ∈Γn

(Trkn/Qp logp(d
σ
n) exp∗ωE (z) )σ

=

(∑

σ∈Γn

logp(d
σ
n)σ

) (∑

σ∈Γn

exp∗ωE (zσ)σ−1

)
.

Let Gn be the Galois group Gal(Qp(ζpn)/Qp) and let χ be a finite character of
Gn+1 of conductor pn+1 which is trivial on ∆. Then we have

∑

σ∈Γn

logp(d
σ
n)χ(σ) =

{
τ(χ) if χ is non-trivial,

0 otherwise

where τ(χ) is the Gauss sum
∑
σ∈Gn+1

χ(σ) ζσpn+1 . Hence for χ 6= 1, we have

χ ◦ Col(z) = τ(χ)
∑

σ∈Γn

exp∗ωE (zσ)χ(σ)−1.

Kato showed that there exists an element zKato ∈ lim←−nH
1(kn, T

∗(1)) such that

∑

σ∈Γn

exp∗ωE ((zKato)σ)χ(σ)−1 = ep(χ)
L(E,χ, 1)

Ω+
E

where ep(χ) is the value at s = 1 of the p-Euler factor of L(E,χ, s), that is,

ep(χ) = 1 if χ is non-trivial and ep(χ) =
(
1− 1

p

)
if χ is trivial. (See [Ka],

Theorem 12.5.) Hence we have

χ ◦ Col(zKato) = τ(χ)
L(E,χ, 1)

Ω+
E

if χ is non-trivial. The p-adic L-function Lp(E, s) is written of the form

Lp(E, s) = Lp,γ(E, κ(γ)s−1 − 1)

for some power series Lp,γ(E,X) ∈ Zp[[X]]. If we identify Λ = Zp[[Γ]] with
Zp[[X]] by sending γ 7→ 1 +X, then it satisfies an interpolation formula

χ ◦ Lp,γ(E,X) = τ(χ)
L(E,χ, 1)

Ω+
E

.

Since an element of Λ has only finitely many zeros, we conclude that

Col(zKato)(X) = Lp,γ(E,X).

Here we denote Col(zKato) by Col(zKato)(X) to emphasis that we regard
Col(zkato) as a power series in Zp[[X]]. Note that we have 1 ◦ Col(z) = 0
for the trivial character 1, or Col(z)(0) = 0, namely, any Coleman power series
Col(z)(X) for the Tate curve has a trivial zero at X = 0.
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4. The first derivative of the Coleman map.

We compute the first derivative of the Coleman map Col(z)(X). By Tate’s
uniformization, there is an exact sequence of local Galois representations

(1) 0→ T1 → T → T2 → 0

where T1 = TpÊ ∼= Zp(1) and T2
∼= Zp. The cup product induces a non-

degenerate paring

H1(kn, T1)×H1(kn, T
∗
1 (1))→ H2(kn,Zp(1)) ∼= Zp.

With the identification by φ̂ : T1
∼= Zp(1), this is in fact the cup product pairing

of Gm

( , )Gm,n : H1(kn,Zp(1))×H1(kn,Zp)→ H2(kn,Zp(1)) ∼= Zp.

If there is no fear of confusion, we write ( , )Gm,n simply as ( , )Gm . Since

cn ∈ Ê(kn) ⊂ H1(kn, T1), we have

(cσn, z)E,n = (dσn, π(z))Gm,n

for z ∈ H1(kn, T
∗(1)) where π is the morphism induced by the projection

T ∗(1)→ T ∗1 (1). Tate’s uniformization φ also induces a commutative diagram

H1(kn, V
∗(1))

exp∗E−−−−→ kn ωE
ω∗E−−−−→ kn

π

y
y

H1(kn, V
∗
1 (1))

exp∗Gm−−−−→ kn ωGm

ω∗Gm−−−−→ kn

where ωGm is the invariant differential of Gm which is dX
1+X on Ĝm, and ω∗Gm

is the dual basis for ωGm . We also put exp∗ωGm
= ω∗Gm ◦ exp∗Gm .

Now we compute the derivative. With the same notation as the previous sec-
tion, we have

Coln(z) =
∑

σ∈Γn

(cσn, z)E,n σ =
∑

σ∈Γn

(dσn, π(z))Gm,n σ

=
∑

σ∈Γn

((xγn/xn)
σ, π(z))Gm,n σ

= (γ−1 − 1)
∑

σ∈Γn

(xσn, π(z))Gm,n σ.

Therefore by the identification Zp[X]/((X + 1)p
n − 1) ∼= Zp[Γn], X 7→ γ − 1,

we have

Col(z)(X)

X
≡ − 1

γ

∑

σ∈Γn

(xσn, π(z))Gm,n σ mod
(X + 1)p

n − 1

X
.

Hence

Col(z)′(0) ≡ − (Nxn, π(z))Gm,0 mod pn.
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Since Nxn = penN(un) = pen and by Proposition 2.2, we have

(Nxn, π(z))Gm = en (p, π(z))Gm ≡
p

(p− 1) logp κ(γ)
(p, π(z))Gm mod pn.

Taking limit for n, we have that

(2) Col(z)′(0) = − p

(p− 1) logp κ(γ)
(p, π(z))Gm .

Next we compute (p, π(z))Gm . We consider the exact sequence

H1(Qp, T
∗(1))

π−−−−→ H1(Qp, T
∗
1 (1))

δ2−−−−→ H2(Qp, T
∗
2 (1))

induced by (1), and a diagram

H1(Qp, T1) × H1(Qp, T
∗
1 (1))

( , )Gm−−−−→ H2(Qp,Zp(1)) = Zp

δ1

x δ2

y
y

H0(Qp, T2) × H2(Qp, T
∗
2 (1))

( , )Gm−−−−→ H2(Qp,Zp(1)) = Zp.

It is straightforward to see that the connecting morphism δ1 is given by

H0(Qp, T2) = Zp → Q×p ⊗ Zp = H1(Qp, T1), 1 7→ qE ⊗ 1.

Hence for w ∈ H1(Qp, T
∗
1 (1)), we have

(qE ⊗ 1, w)Gm = (δ1(1), w)Gm = (1, δ2(w))Gm .

In particular, if w comes from H1(Qp, T
∗(1)), namely, it is of the form π(z),

then

(3) (qE ⊗ 1, w)Gm = (qE ⊗ 1, π(z))Gm = (1, δ2 ◦ π(z))Gm = 0.

On the other hand, if we put qE = pordp(qE) ρ uq where ρ ∈ µp−1 and uq ∈
1 + pZp, we have

(qE ⊗ 1, w)Gm = ordp(qE) (p, w)Gm + (uq, w)Gm(4)

= ordp(qE) (p, w)Gm + logp(uq) exp∗ωGm
(w).(5)

Hence by (3) and (5) we have

(6) (p, π(z))Gm = − logp(uq)

ordp(qE)
exp∗ωGm

(π(z)) = − logp(qE)

ordp(qE)
exp∗ωE (z).

Combining (2) and (6), we obtain

Theorem 4.1. For z ∈ lim←−nH
1(kn, T

∗(1)), the first derivative of the Coleman

map Col(z) is given by

d

dX
Col(z)(X) |X=0 =

p

(p− 1) logp κ(γ)

logp(qE)

ordp(qE)
exp∗ωE (z).

Now if E/Q has split multiplicative reduction at p, then we may assume that
E is locally the Tate curve for some qE ∈ Q×p . We apply the above formula to

Kato’s element z = zKato. Since exp∗ωE (zKato) = (1− 1
p )
L(E,1)

Ω+
E

, we have
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Corollary 4.2. Let Lp,γ(E,X) be the power series in Zp[[X]] such that
Lp(E, s) = Lp,γ(E, κ(γ)s−1 − 1). Then

d

dX
Lp,γ(E,X) |X=0 =

1

logp κ(γ)

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

,

or
d

ds
Lp(E, s) |s=1 =

logp(qE)

ordp(qE)

L(E, 1)

Ω+
E

.
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Abstract. This paper is about computational and theoretical ques-
tions regarding p-adic height pairings on elliptic curves over a global
field K. The main stumbling block to computing them efficiently is
in calculating, for each of the completions Kv at the places v of K
dividing p, a single quantity: the value of the p-adic modular form E2

associated to the elliptic curve. Thanks to the work of Dwork, Katz,
Kedlaya, Lauder and Monsky-Washnitzer we offer an efficient algo-
rithm for computing these quantities, i.e., for computing the value of
E2 of an elliptic curve. We also discuss the p-adic convergence rate
of canonical expansions of the p-adic modular form E2 on the Hasse
domain. In particular, we introduce a new notion of log convergence
and prove that E2 is log convergent.

2000 Mathematics Subject Classification: 11F33, 11Y40, 11G50
Keywords and Phrases: p-adic heights, algorithms, p-adic modular
forms, Eisenstein series, sigma-functions

1 Introduction

Let p be an odd prime number, and E an elliptic curve over a global field K
that has good ordinary reduction at p. Let L be any (infinite degree) Galois
extension with a continuous injective homomorphism ρ of its Galois group to

1This material is based upon work supported by the National Science Foundation under
Grant No. 0555776.
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Qp. To the data (E,K, ρ), one associates2 a canonical (bilinear, symmetric)
(p-adic) height pairing

( , )ρ : E(K)× E(K) −→ Qp.

Such pairings are of great interest for the arithmetic of E over K, and they arise
specifically in p-adic analogues of the Birch and Swinnerton-Dyer conjecture.3

The goal of this paper is to discuss some computational questions regarding
p-adic height pairings. The main stumbling block to computing them efficiently
is in calculating, for each of the completions Kv at the places v of K dividing p,
the value of the p-adic modular form E2 associated to the elliptic curve with a
chosen Weierstrass form of good reduction over Kv.

We shall offer an algorithm for computing these quantities, i.e., for com-
puting the value of E2 of an elliptic curve (that builds on the works of Katz
and Kedlaya listed in our bibliography) and we also discuss the p-adic conver-
gence rate of canonical expansions of the p-adic modular form E2 on the Hasse
domain, where for p ≥ 5 we view E2 as an infinite sum of classical modular
forms divided by powers of the (classical) modular form Ep−1, while for p ≤ 5
we view it as a sum of classical modular forms divided by powers of E4.

We were led to our fast method of computing E2 by our realization that the
more naive methods, of computing it by integrality or by approximations to it
as function on the Hasse domain, were not practical, because the convergence
is “logarithmic” in the sense that the nth convergent gives only an accuracy
of logp(n). We make this notion of log convergence precise in Part II, where
we also prove that E2 is log convergent.

The reason why this constant E2 enters the calculation is because it is
needed for the computation of the p-adic sigma function [MT91], which in turn
is the critical element in the formulas for height pairings.

For example, let us consider the cyclotomic p-adic height pairing in the
special case where K = Q and p ≥ 5.

If GQ is the Galois group of an algebraic closure of Q over Q, we have the
natural surjective continuous homomorphism χ : GQ → Z∗p pinned down by the

standard formula g(ζ) = ζχ(g) where g ∈ GQ and ζ is any p-power root of unity.
The p-adic logarithm logp : Q∗p → (Qp,+) is the unique group homomorphism
with logp(p) = 0 that extends the homomorphism logp : 1 + pZp → Qp defined
by the usual power series of log(x) about 1. Explicitly, if x ∈ Q∗p, then

logp(x) =
1

p− 1
· logp(u

p−1),

where u = p− ordp(x) · x is the unit part of x, and the usual series for log
converges at up−1.

2See [MT83], [Sch82] [Sch85], [Zar90], [Col91], [Nek93], [Pla94], [IW03], and [Bes04].
3See [Sch82], [Sch85] [MT83], [MT87], [PR03a]. See also the important recent work of

Jan Nekovář [Nek03].
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The composition ( 1
p · logp) ◦ χ is a cyclotomic linear functional GQ → Qp

which, in the body of our text, will be dealt with (thanks to class field theory)

as the idele class functional that we denote ρcycl
Q .

Let E denote the Néron model of E over Z. Let P ∈ E(Q) be a non-torsion
point that reduces to 0 ∈ E(Fp) and to the connected component of EFℓ at all
primes ℓ of bad reduction for E. Because Z is a unique factorization domain,
any nonzero point P = (x(P ), y(P )) ∈ E(Q) can be written uniquely in the
form (a/d2, b/d3), where a, b, d ∈ Z, gcd(a, d) = gcd(b, d) = 1, and d > 0. The
function d(P ) assigns to P this square root d of the denominator of x(P ).

Here is the formula for the cyclotomic p-adic height of P , i.e., the value of

hp(P ) := −1

2
(P, P )p ∈ Qp

where ( , )p is the height pairing attached to GQ → Qp, the cyclotomic linear
functional described above:

hp(P ) =
1

p
· logp

(
σ(P )

d(P )

)
∈ Qp. (1.1)

Here σ = σp is the p-adic sigma function of [MT91] associated to the
pair (E,ω). The σ-function depends only on (E,ω) and not on a choice
of Weierstrass equation, and behaves like a modular form of weight −1, that is
σE,cω = c · σE,ω. It is “quadratic” the sense that for any m ∈ Z and point Q
in the formal group Ef (Zp), we have

σ(mQ) = σ(Q)m
2 · fm(Q), (1.2)

where fm is the mth division polynomial of E relative to ω (as in [MT91,
App. 1]). The σ-function is “bilinear” in that for any P,Q ∈ Ef (Zp), we have

σ(P −Q) · σ(P +Q)

σ2(P ) · σ2(Q)
= x(Q)− x(P ). (1.3)

See [MT91, Thm. 3.1] for proofs of the above properties of σ.
The height function hp of (1.1) extends uniquely to a function on the full

Mordell-Weil group E(Q) that satisfies hp(nQ) = n2hp(Q) for all integers n
and Q ∈ E(Q). For P,Q ∈ E(Q), setting

(P,Q)p = hp(P ) + hp(Q)− hp(P +Q),

we obtain a pairing on E(Q). The p-adic regulator of E is the discriminant
of the induced pairing on E(Q)/ tor (well defined up to sign), and we have the
following standard conjecture about this height pairing.

Conjecture 1.1. The cyclotomic height pairing ( , )p is nondegenerate; equiv-
alently, the p-adic regulator is nonzero.
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Remark 1.2. Height pairings attached to other p-adic linear functionals can be
degenerate; in fact, given an elliptic curve defined over Q with good ordinary
reduction at p, and K a quadratic imaginary field over which the Mordell-Weil
group E(K) is of odd rank, the p-adic anticyclotomic height pairing for E over
K is always degenerate.

The p-adic σ function is the most mysterious quantity in (1.1). There are
many ways to define σ, e.g., [MT91] contains 11 different characterizations
of σ! We now describe a characterization that leads directly to an algorithm
(see Algorithm 3.3) to compute σ(t). Let

x(t) =
1

t2
+ · · · ∈ Zp((t)) (1.4)

be the formal power series that expresses x in terms of the local parameter
t = −x/y at infinity. The following theorem, which is proved in [MT91],
uniquely determines σ and c.

Theorem 1.3. There is exactly one odd function σ(t) = t+ · · · ∈ tZp[[t]] and
constant c ∈ Zp that together satisfy the differential equation

x(t) + c = − d
ω

(
1

σ

dσ

ω

)
, (1.5)

where ω is the invariant differential dx/(2y + a1x + a3) associated with our
chosen Weierstrass equation for E.

Remark 1.4. The condition that σ is odd and that the coefficient of t is 1 are
essential.

In (1.1), by σ(P ) we mean σ(−x/y), where P = (x, y). We have thus given
a complete definition of hp(Q) for any point Q ∈ E(Q) and a prime p ≥ 5 of
good ordinary reduction for E.

1.1 The p-adic σ-function

The differential equation (1.5) leads to a slow algorithm to compute σ(t) to
any desired precision. This is Algorithm 3.3 below, which we now summarize.
If we expand (1.5), we can view c as a formal variable and solve for σ(t) as
a power series with coefficients that are polynomials in c. Each coefficient of
σ(t) must be in Zp, so we obtain conditions on c modulo powers of p. Taking
these together for many coefficients must eventually yield enough information
to compute c (mod pn), for a given n, hence σ(t) (mod pn). This integrality
algorithm is hopelessly slow in general.

Another approach to computing σ is to observe that, up to a constant, c is
closely related to the value of a certain p-adic modular form. More precisely,
suppose that E is given by a (not necessarily minimal) Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1.6)
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and let ω = dx/(2y + a1x+ a3). Let x(t) be as in (1.4). Then the series

℘(t) = x(t) +
a2
1 + 4a2

12
∈ Q((t)) (1.7)

satisfies (℘′)2 = 4℘3 − g2℘− g3. In [MT91] we find4 that

x(t) + c = ℘(t)− 1

12
·E2(E,ω), (1.8)

where E2(E,ω) is the value of the Katz p-adic weight 2 Eisenstein series at
(E,ω), and the equality is of elements of Qp((t)). Using the definition of ℘(t)
and solving for c, we find that

c =
a2
1 + 4a2

12
− 1

12
E2(E,ω). (1.9)

Thus computing c is equivalent to computing the p-adic number E2(E,ω).
Having computed c to some precision, we then solve for σ in (1.5) using Algo-
rithm 3.1 below.

1.2 p-adic analogues of the Birch and Swinnerton-Dyer conjec-
ture

One motivation for this paper is to provide tools for doing computations in
support of p-adic analogues of the BSD conjectures (see [MTT86]), especially
when E/Q has rank at least 2. For example, in [PR03b], Perrin-Riou uses her
results about the p-adic BSD conjecture in the supersingular case to prove that
X(E/Q)[p] = 0 for certain p and elliptic curves E of rank > 1, for which the
work of Kolyvagin and Kato does not apply.

Another motivation for this work comes from the study of the fine structure
of Selmer modules. Let K be a number field and Λ the p-adic integral group
ring of the Galois group of the maximal Zp-power extension of K. Making
use of fundamental results of Nekovář [Nek03] and of Greenberg [Gre03] one
can construct (see [RM05]) for certain elliptic curves defined over K, a skew-
Hermitian matrix with coefficients in Λ from which one can read off a free
Λ-resolution of the canonical Selmer Λ-module of the elliptic curve in question
over K. To compute the entries of this matrix modulo the square of the aug-
mentation ideal in Λ one must know all the p-adic height pairings of the elliptic
curve over K. Fast algorithms for doing this provide us with an important first
stage in the computation of free Λ-resolutions of Selmer Λ-modules.

The paper [GJP+05] is about computational verification of the full Birch
and Swinnerton-Dyer conjecture for specific elliptic curves E. There are many
cases in which the rank of E is 1 and the upper bound on #X(E/Q) coming
from Kolyvagin’s Euler system is divisible by a prime p ≥ 5 that also divides a
Tamagawa number. In such cases, theorems of Kolyvagin and Kato combined

4There is a sign error in [MT91].
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with explicit computation do not give a sufficiently sharp upper bound on
#X(E/Q). However, it should be possible in these cases to compute p-adic
heights and p-adic L-functions, and use results of Kato, Schneider, and others to
obtain better bounds on #X(E/Q). Wuthrich and the second author (Stein)
are writing a paper on this.

1.3 Sample computations

In Section 4 we illustrate our algorithms with curves of ranks 1, 2, 3, 4 and 5,
and two twists of X0(11) of rank 2.

Acknowledgement: It is a pleasure to thank Nick Katz for feedback that
led to Section 3. We would also like to thank Mike Harrison for discussions
about his implementation of Kedlaya’s algorithm in Magma, Kiran Kedlaya
for conversations about his algorithm, Christian Wuthrich for feedback about
computing p-adic heights, Alan Lauder for discussions about computing E2 in
families, and Fernando Gouvea for remarks about non-overconvergence of E2.
We would also like to thank all of the above people for comments on early drafts
of the paper. Finally, we thank Jean-Pierre Serre for the proof of Lemma 6.6.

Part I

Heights, σ-functions, and E2

2 The Formulas

In this section we give formulas for the p-adic height pairing in terms of the σ
function. We have already done this over Q in Section 1. Let p be an (odd)
prime number, K a number field, and E an elliptic curve over K with good
ordinary reduction at all places ofK above p. For any non-archimedean place w
of K, let kw denote the residue class field at w.

2.1 General global height pairings

By the idele class Qp-vector space of K let us mean

I(K) = Qp ⊗Z



A∗K/


K∗ ·

∏

v ∤ p

O∗v · C





 ,

where A∗K is the group of ideles of K, and C denotes its connected com-
ponent containing the identity. Class field theory gives us an identification
I(K) = Γ(K) ⊗Zp Qp, where Γ(K) is the Galois group of the maximal Zp-
power extension of K. For every (nonarchimedean) place v of K, there is a
natural homomorphism ιv : K∗v → I(K).
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For K-rational points α, β ∈ E(K) we want to give explicit formulas for an
element that we might call the “universal” p-adic height pairing of α and β;
denote it (α, β) ∈ I(K). If ρ : I(K) → Qp is any linear functional, then the
ρ-height pairing is a symmetric bilinear pairing

( , )ρ : E(K)× E(K)→ Qp,

defined as the composition of the universal pairing with the linear functional ρ:

(α, β)ρ = ρ(α, β) ∈ Qp.

We define the ρ-height of a point α ∈ E(K) by:

hρ(α) = −1

2
(α, α)ρ ∈ Qp.

Of course, any such (nontrivial) linear functional ρ uniquely determines
a Zp-extension, and we sometimes refer to the ρ-height pairing in terms of
this Zp-extension. E.g., if ρ cuts out the cyclotomic Zp-extension, then the
ρ-height pairing is a normalization of the cyclotomic height pairing that has,
for the rational field, already been discussed in the introduction.

If K is quadratic imaginary, and ρ is the anti-cyclotomic linear functional,
meaning that it is the unique linear functional (up to normalization) that has
the property that ρ(x̄) = −ρ(x) where x̄ is the complex conjugate of x, then
we will be presently obtaining explicit formulas for this anti-cyclotomic height
pairing.

We will obtain a formula for (α, β) ∈ I(K) by defining, for every nonar-
chimedean place, v, of K a “local height pairing,” (α, β)v ∈ K∗v . These local
pairings will be very sensitive to some auxiliary choices we make along the way,
but for a fixed α and β the local height pairings (α, β)v will vanish for all but
finitely many places v; the global height is the sum of the local ones and will
be independent of all the choices we have made.

2.2 Good representations

Let α, β ∈ E(K). By a good representation of the pair α, β we mean that we
are given a four-tuple of points (P,Q,R, S) in E(K) (or, perhaps, in E(K ′)
where K ′/K is a number field extension of K) such that

• α is the divisor class of the divisor [P ] − [Q] of E, and β is the divisor
class of the divisor [R]− [S],

• P,Q,R, S are four distinct points,

• for each v | p all four points P,Q,R, S specialize to the same point on
the fiber at v of the Néron model of E.

• at all places v of K the points P,Q,R, S specialize to the same component
of the fiber at v of the Néron model of E.
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We will show how to erase these special assumptions later, but for now, let
us assume all this, fix a choice of a good representation, P,Q,R, S, of (α, β) as
above, and give the formulas in this case.

2.3 Local height pairings when v | p

Let σv be the canonical p-adic σ-function attached to the elliptic curve E
over Kv given in Weierstrass form. We may view σv as a mapping from E1(Kv)
to K∗v , where E1(Kv) is the kernel of the reduction map E(Kv)→ E(kv), and
E(kv) denotes the group of points on the reduction of E modulo v. Define
(α, β)v ∈ K∗v by the formula,

(α, β)v =
σv(P −R)σv(Q− S)

σv(P − S)σv(Q−R)
∈ K∗v .

The dependence of σ on the Weierstrass equation is through the differential
ω = dx/(2y + a1x + a3), and σcω = cσω, so this depends upon the choice of
P,Q,R, S, but does not depend on the choice of Weierstrass equation for E.

2.4 Local height pairings when v ∤ p

First let x denote the “x-coordinate” in some minimal Weierstrass model for A
at v. Define for a point T in E(Kv) the rational number λv(T ) to be zero if
x(T ) ∈ Ov, and to be − 1

2v(x(T )) if x(T ) 6∈ Ov.
Next, choose a uniformizer πv of Kv and define:

σ̃v(T ) = πλv(T )
v ,

the square of which is in K∗v . We think of σ̃v as a rough replacement for σv in
the following sense. The v-adic valuation of σ̃v is the same as v-adic valuation
of the v-adic sigma function (if such a function is definable at v) and therefore,
even if σv cannot be defined, σ̃v is a perfectly serviceable substitute at places v
at which our p-adic idele class functionals ρ are necessarily unramified, and
therefore sensitive only to the v-adic valuation.

For v ∤ p, put:

(α, β)v =
σ̃v(P −R)σ̃v(Q− S)

σ̃v(P − S)σ̃v(Q−R)
.

The square of this is in K∗v . However, note that π
λv(T )
v really means

√
πv

2λv(T ),
for a fixed choice of

√
πv and that the definition of (α, β)v is independent of

the choice of square root and therefore that (α, β)v, not only its square, is in
K∗v .

Our local height (α, β)v, depends upon the choice of P,Q,R, S and of the
uniformizer πv.
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2.5 How the local heights change, when we change our choice
of divisors

Let β ∈ E(K) be represented by both [R]− [S] and [R′]− [S′]. Let α ∈ E(K)
be represented by [P ] − [Q]. Moreover let both four-tuples P,Q,R, S and
P,Q,R′, S′ satisfy the good representation hypothesis described at the begin-
ning of Section 2.2. Since, by hypothesis, [R] − [S] − [R′] + [S′] is linearly
equivalent to zero, there is a rational function f whose divisor of zeroes and
poles is

(f) = [R]− [S]− [R′] + [S′].

If v is a nonarchimedean place of K define (α, β)v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R, S, (and of
uniformizer πv when v ∤ p). Similarly, define (α, β)′v to be as defined in the
previous sections using the choice of four-tuple of points P,Q,R′, S′, (and of
uniformizer πv when v ∤ p).

Proposition 2.1. 1. If v | p then

(α, β)v =
f(P )

f(Q)
· (α, β)′v ∈ K∗v .

2. If v ∤ p then there is a unit u in the ring of integers of Kv such that

(α, β)2v = u ·
(
f(P )

f(Q)
· (α, β)′v

)2

∈ K∗v .

2.6 The global height pairing more generally

We can then form the sum of local terms to define the global height

(α, β) =
1

2

∑

v

ιv((α, β)2v) ∈ I(K).

This definition is independent of any of the (good representation) choices
P,Q,R, S and the πv’s made. It is independent of the choice of πv’s because the
units in the ring of integers of Kv is in the kernel of ιv if v ∤ p. It is independent
of the choice of P,Q,R, S because by the previous proposition, a change (an
allowable one, given our hypotheses) of P,Q,R, S changes the value of (α, β)
by a factor that is a principal idele, which is sent to zero in I(K).

What if, though, our choice of P,Q,R, S does not have the property that α
and β reduce to the same point in the Néron fiber at v for all v | p, or land
in the same connected component on each fiber of the Néron model? In this
case the pair α, β do not have a good representation. But replacing α, β by
m · α, n · β for sufficiently large positive integers m,n we can guarantee that
the pair m ·α, n ·β does possess a good representation, and obtain formulas for
(α, β) by:

(α, β) =
1

mn
(m · α, n · β).
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Note in passing that to compute the global height pairing (α, α) for a non-
torsion point α ∈ E(K) that specializes to 0 in the Néron fiber at v for all
v | p, and that lives in the connected component containing the identity in all
Néron fibers, we have quite a few natural choices of good representations. For
example, for positive integers m 6= n, take

P = (m+ 1) · α; Q = m · α; R = (n+ 1) · α; S = n · α.

Then for any p-adic idele class functional ρ the global ρ-height pairing (α, α)ρ
is given by

∑

v | p
ρv

{
σv((m− n)α)2

σv((m− n+ 1)α) · σv((m− n− 1)α)

}

+
∑

v ∤ p

ρv

{
σ̃v((m− n)α)2

σ̃v((m− n+ 1)α) · σ̃v((m− n− 1)α)

}
,

which simplifies to

(2(m− n)2 − (m− n+ 1)2 − (m− n− 1)2) ·




∑

v | p
ρvσv(α) +

∑

v ∤ p

ρvσ̃v(α)



 .

Since (2(m−n)2− (m−n+ 1)2− (m− n− 1)2) = −2 we have the formula

hρ(α) = −1

2
(α, α)ρ

quoted earlier.

2.7 Formulas for the ρ-height

For each v, let σv be the canonical p-adic σ-function of E over Kv given in
Weierstrass form. Suppose P ∈ E(K) is a (non-torsion) point that reduces
to 0 in E(kv) for each v | p, and to the connected component of all special
fibers of the Néron model of E. Locally at each place w of K, we have a
denominator dw(P ), well defined up to units.

We have

hρ(P ) =
∑

v | p
ρv(σv(P ))−

∑

w ∤ p

ρw(dw(P )).

Note that hρ is quadratic because of the quadratic property of σ from (1.2),
and the hρ-pairing is then visibly bilinear. See also property (1.3).

Documenta Mathematica · Extra Volume Coates (2006) 577–614



p-Adic Heights and Log Convergence 587

2.8 Cyclotomic p-adic heights

The idele class Qp-vector space I(Q) attached to Q is canonically isomorphic
to Qp ⊗ Z∗p. Composition of this canonical isomorphism with the mapping

1× 1
p logp induces an isomorphism

ρQcycl : I(Q) = Qp ⊗ Z∗p
∼=−−−→ Qp.

For K any number field, consider the homomorphism on idele class Qp-
vector spaces induced by the norm NK/Q : I(K)→ I(Q), and define

ρKcycl : I(K)→ Qp

as the composition
ρKcycl = ρQcycl ◦NK/Q.

By the cyclotomic height pairing for an elliptic curve E over K (of good
ordinary reduction at all places v ofK above p) we mean the ρKcycl-height pairing
E(K)× E(K)→ Qp. We put

hp(P ) = hρKcycl
(P )

for short. Here is an explicit formula for it.

hp(P ) =
1

p
·


∑

v|p
logp(NKv/Qp

(σv(P )))−
∑

w∤p

ordw(dw(P )) · logp(#kw)


 .

If we assume that P lies in a sufficiently small (finite index) subgroup of E(K)
(see [Wut04, Prop. 2]), then there will be a global choice of denominator d(P ),
and the formula simplifies to

hp(P ) =
1

p
· logp


∏

v|p
NKv/Qp

(
σv(P )

d(P )

)
 .

2.9 Anti-cyclotomic p-adic heights

Let K be a quadratic imaginary field in which p splits as (p) = π · π̄. Suppose
ρ : A∗K/K

∗ → Zp is a nontrivial anti-cyclotomic idele class character, meaning
that if c : A∗K/K

∗ → A∗K/K
∗ denotes the involution of the idele class group

induced by complex conjugation x 7→ x̄ in K, then ρ · c = −ρ. Then the term
∑

v | p
ρv(σv(P ))

in the formula for the ρ-height at the end of Section 2.7 is just
∑

v | p
ρv(σv(P )) = ρπ(σπ(P ))− ρπ(σπ(P̄ )),
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so we have the following formula for the ρ-height of P :

hρ(P ) = ρπ(σπ(P ))− ρπ(σπ(P̄ ))−
∑

w ∤ p

ρw(dw(P )).

Remark 2.2. The Galois equivariant property of the p-adic height pairing
implies that if P is a Q-rational point, its anti-cyclotomic height is 0. Specif-
ically, let K/k be any Galois extension of number fields, with Galois group
G = Gal(K/k). Let V = V (K) be the Qp-vector space (say) defined as
(GK)ab ⊗ Qp, so that V is naturally a G-representation space. Let E be an
elliptic curve over k and view the Mordell-Weil group E(K) as equipped with
its natural G-action. Then (if p is a good ordinary prime for E) we have the
p-adic height pairing

〈P,Q〉 ∈ V,
for P,Q ∈ E(K) and we have Galois equivariance,

〈g · P, g ·Q〉 = g · 〈P,Q〉,

for any g in the Galois group.
Put k = Q, K/k a quadratic imaginary field. Then V is of dimension

two, with V = V + ⊕ V − each of the V ± being of dimension one, with the
action of complex conjugation, g ∈ G on V ± being given by the sign; so that
V + corresponds to the cyclotomic Zp-extension and V − corresponds to the
anticyclotomic Zp- extension. In the notation above, the anticyclotomic height
of P and Q is just 〈g · P, g ·Q〉− where the superscript − means projection to
V −. Suppose that P ∈ E(Q), so that g · P = P . Then we have by Galois
equivariance

〈P, P 〉− = 〈g · P, g · P 〉− = −〈P, P 〉−,
so 〈P, P 〉− = 0. More generally, the anticyclotomic height is zero as a pairing
on either E(K)+ × E(K)+ or E(K)− × E(K)− and can only be nonzero on
E(K)+×E(K)−. If E(K) is of odd rank, then the ranks of E(K)+ and E(K)−

must be different, which obliges the pairing on E(K)+ × E(K)− to be either
left-degenerate or right-degenerate (or, of course, degenerate on both sides).
Rubin and the first author conjecture that it is nondegenerate on one side (the
side, of course having smaller rank); for more details see, e.g., [MR04, Conj. 11].

3 The Algorithms

Fix an elliptic curve E over Q and a good ordinary prime p ≥ 5. In this section
we discuss algorithms for computing the cyclotomic p-adic height of elements
of E(Q).

3.1 Computing the p-adic σ-function

First we explicitly solve the differential equation (1.5). Let z(t) be the formal
logarithm on E, which is given by z(t) =

∫
ω
dt = t + · · · (here the symbol

∫
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means formal integration with 0 constant term). There is a unique function
F (z) ∈ Q((z)) such that t = F (z(t)). Set x(z) = x(F (z)). Rewrite (1.5) as

x(z) + c = − d
ω

(
d log(σ)

ω

)
. (3.1)

A crucial observation is that

x(z) + c =
1

z2
− a2

1 + 4a2

12
+ c+ · · · ;

in particular, the coefficient of 1/z in the expansion of g(z) = x(z) + c is 0.
Since z =

∫
(ω/dt) we have dz = (ω/dt)dt = ω, hence dz/ω = 1, so

− d
ω

(
d log(σ)

ω

)
= −dz

ω

d

dz

(
d log(σ)

ω

)
= − d

dz

(
d log(σ)

dz

)
. (3.2)

Write σ(z) = zσ0(z) where σ0(z) has nonzero constant term. Then

− d

dz

(
d log(σ)

dz

)
=

1

z2
− d

dz

(
d log(σ0)

dz

)
. (3.3)

Thus combining (3.1)–(3.3) and changing sign gives

1

z2
− x(z)− c =

d

dz

(
d log(σ0)

dz

)
.

This is particularly nice, since g(z) = 1
z2 −x(z)− c ∈ Q[[z]]. We can thus solve

for σ0(z) by formally integrating twice and exponentiating:

σ0(z) = exp

(∫ ∫
g(z)dzdz

)
,

where we choose the constants in the double integral to be 0, so
∫ ∫

g = 0 +
0z + · · · . Using (1.8) we can rewrite g(z) in terms of e2 = E2(E,ω) and ℘(z)
as

g(z) =
1

z2
− (x(z) + c) =

1

z2
− ℘(z) +

e2
12
.

Combining everything and using that σ(z) = zσ0(z) yields

σ(z) = z · exp

(∫ ∫ (
1

z2
− ℘(z) +

e2
12

)
dzdz

)
,

Finally, to compute σ(t) we compute σ(z) and obtain σ(t) as σ(z(t)).
We formalize the resulting algorithm below.

Algorithm 3.1 (The Canonical p-adic Sigma Function). Given an elliptic
curve E over Q, a good ordinary prime p for E, and an approximation e2 for
E2(E,ω), this algorithm computes an approximation to σ(t) ∈ Zp[[t]].
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1. [Compute Formal Log] Compute the formal logarithm z(t) = t+· · · ∈ Q((t))
using that

z(t) =

∫
dx/dt

2y(t) + a1x(t) + a3
, (0 constant term) (3.4)

where x(t) = t/w(t) and y(t) = −1/w(t) are the local expansions of x and y
in terms of t = −x/y, and w(t) =

∑
n≥0 snt

n is given by the following
explicit inductive formula (see, e.g., [Blu, pg. 18]):

s0 = s1 = s2 = 0, s3 = 1, and for n ≥ 4,

sn = a1sn−1+a2sn−2+a3

∑

i+j=n

sisj+a4

∑

i+j=n−1

sisj+a6

∑

i+j+k=n

sisjsk.

2. [Reversion] Using a power series “reversion” (functional inverse) algorithm,
find the unique power series F (z) ∈ Q[[z]] such that t = F (z). Here F is
the reversion of z, which exists because z(t) = t+ · · · .

3. [Compute ℘] Compute α(t) = x(t) + (a2
1 + 4a2)/12 ∈ Q[[t]], where the ai

are as in (1.6). Then compute the series ℘(z) = α(F (z)) ∈ Q((z)).

4. [Compute σ(z)] Set g(z) =
1

z2
− ℘(z) +

e2
12
∈ Qp((z)), and compute

σ(z) = z · exp

(∫ ∫
g(z)dzdz

)
∈ Qp[[z]].

5. [Compute σ(t)] Set σ(t) = σ(z(t)) ∈ t · Zp[[t]], where z(t) is the formal
logarithm computed in Step 1. Output σ(t) and terminate.

3.2 Computing E2(E,ω) using cohomology

This section is about a fast method of computation of E2(E,ω) for individual
ordinary elliptic curves, “one at a time”. The key input is [Kat73, App. 2] (see
also [Kat76]), which gives an interpretation of E2(E,ω) as the “direction” of
the unit root eigenspace (cf. formula A.2.4.1 of [Kat73, App. 2]) of Frobenius
acting on the one-dimensional de Rham cohomology of E.

Concretely, consider an elliptic curve E over Zp with good ordinary re-
duction. Assume that p ≥ 5. Fix a Weierstrass equation for E of the form
y2 = 4x3−g2x−g3, The differentials ω = dx/y and η = xdx/y form a Zp-basis
for the first p-adic de Rham cohomology group H1 of E, and we wish to com-
pute the matrix F of absolute Frobenius with respect to this basis. Frobenius
is Zp-linear, since we are working over Zp; if we were working over the Witt
vectors of Fq, then Frobenius would only be semi-linear.

We explicitly calculate F (to a specified precision) using Kedlaya’s algo-
rithm, which makes use of Monsky-Washnitzer cohomology of the affine curve
E − O. Kedlaya designed his algorithm for computation of zeta functions of
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hyperelliptic curves over finite fields. An intermediate step in Kedlaya’s algo-
rithm is computation of the matrix of absolute Frobenius on p-adic de Rham
cohomology, via Monsky-Washnitzer cohomology. For more details see [Ked01]
and [Ked03]. For recent formulations and applications of fast algorithms to
compute Frobenius eigenvalues, see [LW02].

Now that we have computed F , we deduce E2(E,ω) as follows. The unit
root subspace is a direct factor, call it U , of H1, and we know that a comple-
mentary direct factor is the Zp span of ω. We also know that F (ω) lies in pH1,
and this tells us that, mod pn, the subspace U is the span of Fn(η). Thus if
for each n, we write Fn(η) = anω + bnη, then bn is a unit (congruent (mod p)
to the nth power of the Hasse invariant) and E2(E,ω) ≡ −12an/bn (mod pn).
Note that an and bn are the entries of the second column of the matrix Fn.

Algorithm 3.2 (Evaluation of E2(E,ω)). Given an elliptic curve over Q and a
good ordinary prime p ≥ 5, this algorithm approximates E2(E,ω) ∈ Zp modulo
pn.

1. [Invariants] Let c4 and c6 be the c-invariants of a minimal model of E. Set

a4 = − c4
24 · 3 and a6 = − c6

25 · 33
.

2. [Kedlaya] Apply Kedlaya’s algorithm to the hyperelliptic curve y2 = x3 +
a4x+ a6 (which is isomorphic to E) to obtain the matrix F (modulo pn) of
the action of absolute Frobenius on the basis

ω =
dx

y
, η =

xdx

y
.

We view F as acting from the left.

3. [Iterate Frobenius] Compute the second column

(
a
b

)
of Fn, so Frobn(η) =

aω + bη.

4. [Finished] Output −12a/b (which is a number modulo pn, since b is a unit).

3.3 Computing E2(E,ω) using integrality

The algorithm in this section is more elementary than the one in Section 3.2,
and is directly motivated by Theorem 1.3. In practice it is very slow, except
if p is small (e.g., p = 5) and we only require E2(E,ω) to very low precision.
Our guess is that it should be exponentially hard to compute a quantity using
a log convergent series for it, and that this “integrality” method is essentially
the same as using log convergent expansions.

Let c be an indeterminate and in view of (1.9), write e2 = −12c+a2
1 +4a2 ∈

Q[c]. If we run Algorithm 3.1 with this (formal) value of e2, we obtain a
series σ(t, c) ∈ Q[c][[t]]. For each prime p ≥ 5, Theorem 1.3 implies that
there is a unique choice of cp ∈ Zp such that σ(t, cp) = t + · · · ∈ tZp[[t]]
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is odd. Upon fixing a prime p, we compute the coefficients of σ(t, c), which
are polynomials in Q[c]; integrality of σ(t, cp) then imposes conditions that
together must determine cp up to some precision, which depends on the number
of coefficients that we consider. Having computed cp to some precision, we
recover E2(E,ω) as −12cp+a2

1 +4a2. We formalize the above as an algorithm.

Algorithm 3.3 (Integrality). Given an elliptic curve over Q and a good ordinary
prime p ≥ 5, this algorithm approximates the associated p-adic σ-function.

1. [Formal Series] Use Algorithm 3.1 with e2 = −12c + a2
1 + 4a2 to compute

σ(t) ∈ Q[c][[t]] to some precision.

2. [Approximate cp] Obtain constraints on c using that the coefficients of σ
must be in Zp. These determine c to some precision. (For more details see
the example in Section 4.1).

3.4 Computing cyclotomic p-adic heights

Finally we give an algorithm for computing the cyclotomic p-adic height hp(P )
that combines Algorithm 3.2 with the discussion elsewhere in this paper. We
have computed σ and hp in numerous cases using the algorithm described
below, and implementations of the “integrality” algorithm described above,
and the results match.

Algorithm 3.4 (The p-adic Height). Given an elliptic curve E over Q, a good
ordinary prime p, and a non-torsion element P ∈ E(Q), this algorithm approxi-
mates the p-adic height hp(P ) ∈ Qp.

1. [Prepare Point] Compute a positive integer m such that mP reduces to
O ∈ E(Fp) and to the connected component of EFℓ at all bad primes ℓ. For
example, m could be the least common multiple of the Tamagawa numbers
of E and #E(Fp). Set Q = mP and write Q = (x, y).

2. [Denominator] Let d be the positive integer square root of the denominator
of x.

3. [Compute σ] Approximate σ(t) using Algorithm 3.1 together with either
Algorithm 3.2 or Algorithm 3.3, and set s = σ(−x/y) ∈ Qp.

4. [Height] Compute hp(Q) =
1

p
logp

( s
d

)
, then hp(P ) =

1

m2
·hp(Q). Output

hp(P ) and terminate.

4 Sample Computations

We did the calculations in this section using SAGE [SJ05] and Magma [BCP97].
In particular, SAGE includes an optimized implementation due to J. Balakr-
ishnan, R. Bradshaw, D. Harvey, Y. Qiang, and W. Stein of our algorithm
for computing p-adic heights for elliptic curves over Q. This implementation
includes further tricks, e.g., for series manipulation, which are not described in
this paper.
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4.1 The rank one curve of conductor 37

Let E be the rank 1 curve y2 + y = x3 − x of conductor 37. The point
P = (0, 0) is a generator for E(Q). We illustrate the above algorithms in detail
by computing the p-adic height of P for the good ordinary prime p = 5. The
steps of Algorithm 3.4 are as follows:

1. [Prepare Point] The component group of EF37
is trivial. The group E(F5)

has order 8 and the reduction of P to E(F5) also has order 8, so let

Q = 8P =

(
21

25
, − 69

125

)
.

2. [Denominator] We have d = 5.

3. [Compute σ] We illustrate computation of σ(t) using both Algorithm 3.2
and Algorithm 3.3.

(a) [Compute σ(t, c)] We use Algorithm 3.1 with e2 = 12c − a2
1 − 4a2

to compute σ as a series in t with coefficients polynomials in c, as
follows:

i. [Compute Formal Log] Using the recurrence, we find that

w(t) = t3 + t6 − t7 + 2t9 − 4t10 + 2t11 + 5t12 − 5t13 + 5t14 + · · ·

Thus

x(t) = t−2 − t+ t2 − t4 + 2t5 − t6 − 2t7 + 6t8 − 6t9 − 3t10 + · · ·
y(t) = −t−3 + 1− t+ t3 − 2t4 + t5 + 2t6 − 6t7 + 6t8 + 3t9 + · · ·

so integrating (3.4) we see that the formal logarithm is

z(t) = t+
1

2
t4− 2

5
t5 +

6

7
t7− 3

2
t8 +

2

3
t9 +2t10− 60

11
t11 +5t12 + · · ·

ii. [Reversion] Using reversion, we find F with F (z(t)) = t:

F (z) = z− 1

2
z4+

2

5
z5+

1

7
z7− 3

10
z8+

2

15
z9− 1

28
z10+

54

385
z11+· · ·

iii. [Compute ℘] We have a1 = a2 = 0, so

α(t) = x(t) + (a2
1 + 4a2)/12 = x(t),

so

℘(z) = x(F (z)) = z−2 +
1

5
z2 − 1

28
z4 +

1

75
z6 − 3

1540
z8 + · · ·

Note that the coefficient of z−1 is 0 and all exponents are even.
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iv. [Compute σ(t, c)] Noting again that a1 = a2 = 0, we have

g(z, c) =
1

z2
− ℘(z) +

12c− a2
1 − 4a2

12

= c− 1

5
z2 +

1

28
z4 − 1

75
z6 +

3

1540
z8 − 1943

3822000
z10 + · · ·

Formally integrating twice and exponentiating, we obtain

σ(z, c) = z · exp

(∫ ∫
g(z, c)dzdz

)

= z · exp
( c

2
· z2 − 1

60
z4 +

1

840
z6 − 1

4200
z8 +

1

46200
z10

− 1943

504504000
z12 + · · ·

)

= z +
1

2
cz3 +

(
1

8
c2 − 1

60

)
z5 +

(
1

48
c3 − 1

120
c+

1

840

)
z7+

(
1

384
c4 − 1

480
c2 +

1

1680
c− 1

10080

)
z9 + · · ·

Finally,

σ(t) = σ(z(t)) = t+
1

2
ct3 +

1

2
t4 +

(
1

8
c2 − 5

12

)
t5 +

3

4
ct6+

(
1

48
c3 − 73

120
c+

103

120

)
t7 + · · ·

(b) [Approximate] The first coefficient of σ(t) that gives integrality in-
formation is the coefficient of t7. Since

1

48
c3 − 73

120
c+

103

120
∈ Z5,

multiplying by 5 we see that

5

48
c3 − 73

24
c+

103

24
≡ 0 (mod 5).

Thus

c ≡ 103

24
· 24

73
≡ 1 (mod 5).

The next useful coefficient is the coefficient of t11, which is

1

3840
c5 − 169

2880
c3 +

5701

6720
c2 +

127339

100800
c− 40111

7200

Multiplying by 25, reducing coefficients, and using integrality yields
the congruence

10c5 + 5c3 + 20c2 + 2c+ 3 ≡ 0 (mod 25).
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Writing c = 1 + 5d and substituting gives the equation 10d+ 15 ≡ 0
(mod 25), so 2d + 3 ≡ 0 (mod 5). Thus d ≡ 1 (mod 5), hence
c = 1+5+O(52). Repeating the procedure above with more terms,
we next get new information from the coefficient of t31, where we
deduce that c = 1 + 5 + 4 · 52 +O(53).

Using Algorithm 3.2: Using Kedlaya’s algorithm (as implemented in
[BCP97]) we find almost instantly that

E2(E,ω) = 2+4 · 5+2 · 53 +54 +3 · 55 +2 · 56 +58 +3 · 59 +4 · 510 + · · · .

Thus

c =
1

12
E2(E,ω) = 1+5+4·52+53+54+56+4·57+3·58+2·59+4·510+· · · ,

which is consistent with what we found above using integrality.

4. [Height] For Q = (x, y) = 8(0, 0) as above, we have

s = σ

(
−x
y

)
= σ

(
35

23

)
= 4 · 5 + 52 + 53 + 54 + · · · ,

so

h5(Q) =
1

5
· log5

(s
5

)
=

1

5
· log5(4 + 5 + 52 + 53 + 2 · 55 + · · · )

= 3 + 5 + 2 · 53 + 3 · 54 + · · · .

Finally,

h5(P ) =
1

82
· h5(Q) = 2 + 4 · 5 + 52 + 2 · 53 + 2 · 54 + · · · .

Remark 4.1. A very good check to see whether or not any implementation of
the algorithms in this paper is really correct, is just to make control experiments
every once in a while, by computing h(P ) and then comparing it with h(2P )/4,
h(3P )/9, etc. In particular, compute h(P )−h(nP )/n2 for several n and check
that the result is p-adically small. We have done this in many cases for the
implementation used to compute the tables in this section.

4.2 Curves of ranks 1, 2, 3, 4, and 5

4.2.1 Rank 1

The first (ordered by conductor) curve of rank 1 is the curve with Cremona
label 37A, which we considered in Section 4.1 above.
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p p-adic regulator of 37A
5 1 + 5 + 52 + 3 · 55 + 4 · 56 +O(57)
7 1 + 7 + 3 · 72 + 73 + 6 · 74 + 2 · 75 + 4 · 76 +O(77)
11 7 + 9 · 11 + 7 · 112 + 8 · 113 + 9 · 114 + 2 · 115 + 7 · 116 +O(117)
13 12 · 13 + 5 · 132 + 9 · 133 + 10 · 134 + 4 · 135 + 2 · 136 +O(137)
23 20 + 10 · 23 + 18 · 232 + 16 · 233 + 13 · 234 + 4 · 235 + 15 · 236 +O(237)
29 19 + 4 · 29 + 26 · 292 + 2 · 293 + 26 · 294 + 26 · 295 + 17 · 296 +O(297)
31 15 + 10 · 31 + 13 · 312 + 2 · 313 + 24 · 314 + 9 · 315 + 8 · 316 +O(317)
41 30 + 2 · 41 + 23 · 412 + 15 · 413 + 27 · 414 + 8 · 415 + 17 · 416 +O(417)
43 30 + 30 · 43 + 22 · 432 + 38 · 433 + 11 · 434 + 29 · 435 +O(436)
47 11 + 37 · 47 + 27 · 472 + 23 · 473 + 22 · 474 + 34 · 475 + 3 · 476 +O(477)
53 26 · 53−2 + 30 · 53−1 + 20 + 47 · 53 + 10 · 532 + 32 · 533 +O(534)

Note that when p = 53 we have #E(Fp) = p, i.e., p is anomalous.

4.3 Rank 2

The first curve of rank 2 is the curve 389A of conductor 389. The p-adic
regulators of this curve are as follows:

p p-adic regulator of 389A
5 1 + 2 · 5 + 2 · 52 + 4 · 53 + 3 · 54 + 4 · 55 + 3 · 56 +O(57)
7 6 + 3 · 72 + 2 · 73 + 6 · 74 + 75 + 2 · 76 +O(77)
11 4 + 7 · 11 + 6 · 112 + 113 + 9 · 114 + 10 · 115 + 3 · 116 +O(117)
13 9 + 12 · 13 + 10 · 132 + 5 · 133 + 5 · 134 + 135 + 9 · 136 +O(137)
17 4 + 8 · 17 + 15 · 172 + 11 · 173 + 13 · 174 + 16 · 175 + 6 · 176 +O(177)
19 3 + 5 · 19 + 8 · 192 + 16 · 193 + 13 · 194 + 14 · 195 + 11 · 196 +O(197)
23 17 + 23 + 22 · 232 + 16 · 233 + 3 · 234 + 15 · 235 +O(237)
29 9 + 14 · 29 + 22 · 292 + 293 + 22 · 294 + 295 + 20 · 296 +O(297)
31 1 + 17 · 31 + 4 · 312 + 16 · 313 + 18 · 314 + 21 · 315 + 8 · 316 +O(317)
37 28 + 37 + 11 · 372 + 7 · 373 + 3 · 374 + 24 · 375 + 17 · 376 +O(377)
41 20 + 26 · 41 + 412 + 29 · 413 + 38 · 414 + 31 · 415 + 23 · 416 +O(417)
43 40 + 25 · 43 + 15 · 432 + 18 · 433 + 36 · 434 + 35 · 435 +O(436)
47 25 + 24 · 47 + 7 · 472 + 11 · 473 + 35 · 474 + 3 · 475 + 9 · 476 +O(477)

4.4 Rank 3

The first curve of rank 3 is the curve 5077A of conductor 5077. The p-adic
regulators of this curve are as follows:
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p p-adic regulator of 5077A
5 5−2 + 5−1 + 4 + 2 · 5 + 2 · 52 + 2 · 53 + 4 · 54 + 2 · 55 + 56 +O(57)
7 1 + 3 · 7 + 3 · 72 + 4 · 73 + 4 · 75 +O(77)
11 6 + 11 + 5 · 112 + 113 + 114 + 8 · 115 + 3 · 116 +O(117)
13 2 + 6 · 13 + 133 + 6 · 134 + 135 + 4 · 136 +O(137)
17 11 + 15 · 17 + 8 · 172 + 16 · 173 + 9 · 174 + 5 · 175 + 11 · 176 +O(177)
19 17 + 9 · 19 + 10 · 192 + 15 · 193 + 6 · 194 + 13 · 195 + 17 · 196 +O(197)
23 7 + 17 · 23 + 19 · 233 + 21 · 234 + 19 · 235 + 22 · 236 +O(237)
29 8 + 16 · 29 + 11 · 292 + 20 · 293 + 9 · 294 + 8 · 295 + 24 · 296 +O(297)
31 17 + 11 · 31 + 28 · 312 + 3 · 313 + 17 · 315 + 29 · 316 +O(317)
43 9 + 13 · 43 + 15 · 432 + 32 · 433 + 28 · 434 + 18 · 435 + 3 · 436 +O(437)
47 29 + 3 · 47 + 46 · 472 + 4 · 473 + 23 · 474 + 25 · 475 + 37 · 476 +O(477)

For p = 5 and E the curve 5077A, we have #E(F5) = 10, so ap ≡ 1 (mod 5),
hence p is anamolous.

4.5 Rank 4

Next we consider the curve of rank 4 with smallest known conductor (234446 =
2 · 117223):

y2 + xy = x3 − x2 − 79x+ 289.

Note that computation of the p-adic heights is just as fast for this curve as
the above curves, i.e., our algorithm for computing heights is insensitive to
the conductor, only the prime p (of course, computing the Mordell-Weil group
could take much longer if the conductor is large).

p p-adic regulator of rank 4 curve
5 2 · 5−2 + 2 · 5−1 + 3 · 5 + 52 + 4 · 53 + 4 · 54 + 3 · 55 + 3 · 56 +O(57)
7 6 · 7 + 4 · 72 + 5 · 73 + 5 · 75 + 3 · 76 +O(77)
11 5 + 10 · 11 + 5 · 112 + 113 + 3 · 115 + 116 +O(117)
13 12 + 2 · 13 + 4 · 132 + 10 · 133 + 3 · 134 + 5 · 135 + 7 · 136 +O(137)
17 15 + 8 · 17 + 13 · 172 + 5 · 173 + 13 · 174 + 7 · 175 + 14 · 176 +O(177)
19 14 + 16 · 19 + 15 · 192 + 6 · 193 + 10 · 194 + 7 · 195 + 13 · 196 +O(197)
23 3 + 15 · 23 + 15 · 232 + 12 · 234 + 20 · 235 + 7 · 236 +O(237)
29 25 + 4 · 29 + 18 · 292 + 5 · 293 + 27 · 294 + 23 · 295 + 27 · 296 +O(297)
31 21 + 26 · 31 + 22 · 312 + 25 · 313 + 314 + 3 · 315 + 14 · 316 +O(317)
37 34 + 14 · 37 + 32 · 372 + 25 · 373 + 28 · 374 + 36 · 375 +O(376)
41 33 + 38 · 41 + 9 · 412 + 35 · 413 + 25 · 414 + 15 · 415 + 30 · 416 +O(417)
43 14 + 34 · 43 + 12 · 432 + 26 · 433 + 32 · 434 + 26 · 435 +O(436)
47 43 + 47 + 17 · 472 + 28 · 473 + 40 · 474 + 6 · 475 + 7 · 476 +O(477)
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4.6 Rank 5

Next we consider the curve of rank 5 with smallest known conductor, which is
the prime 19047851. The curve is

y2 + y = x3 − 79x+ 342

p p-adic regulator of rank 5 curve
5 2 · 5 + 52 + 53 + 2 · 54 + 55 + 56 +O(57)
7 2 + 6 · 7 + 4 · 72 + 3 · 73 + 6 · 74 + 2 · 75 + 4 · 76 +O(77)
11 10 + 11 + 6 · 112 + 2 · 113 + 6 · 114 + 7 · 115 + 5 · 116 +O(117)
13 11 + 8 · 13 + 3 · 132 + 4 · 133 + 10 · 134 + 5 · 135 + 6 · 136 +O(137)
17 4 + 11 · 17 + 4 · 172 + 5 · 173 + 13 · 174 + 5 · 175 + 2 · 176 +O(177)
19 11 + 7 · 19 + 11 · 192 + 7 · 193 + 9 · 194 + 6 · 195 + 10 · 196 +O(197)
23 14 + 14 · 23 + 20 · 232 + 6 · 233 + 19 · 234 + 9 · 235 + 15 · 236 +O(237)
29 3 + 5 · 29 + 20 · 293 + 21 · 294 + 18 · 295 + 11 · 296 +O(297)
31 4 + 26 · 31 + 11 · 312 + 12 · 313 + 3 · 314 + 15 · 315 + 22 · 316 +O(317)
37 3 + 20 · 37 + 11 · 372 + 17 · 373 + 33 · 374 + 5 · 375 +O(377)
41 3 + 41 + 35 · 412 + 29 · 413 + 22 · 414 + 27 · 415 + 25 · 416 +O(417)
43 35 + 41 · 43 + 432 + 11 · 433 + 32 · 434 + 11 · 435 + 18 · 436 +O(437)
47 25 + 39 · 47 + 45 · 472 + 25 · 473 + 42 · 474 + 13 · 475 +O(476)

Note that the regulator for p = 5 is not a unit, and #E(F5) = 9. This is the
only example of a regulator in our tables with positive valuation.

Part II
Computing expansions for E2 in terms of classical modular forms

We next study convergence of E2 in the general context of p-adic and overcon-
vergent modular forms. Coleman, Gouvea, and Jochnowitz prove in [CGJ95]
that E2 is transcendental over the ring of overconvergent modular forms, so E2

is certainly non-overconvergent. However, E2 is log convergent in a sense that
we make precise in this part of the paper.

5 Questions about rates of convergence

Fix p a prime number, which, in this section, we will assume is ≥ 5. We only
consider modular forms of positive even integral weight, on Γ0(M) for some M ,
and with Fourier coefficients in Cp. By a classical modular form we will mean
one with these properties, and by a Katz modular form we mean a p-adic
modular form in the sense of Katz ([Kat73]), again with these properties, i.e.,
of integral weight k ≥ 0, of tame level N for a positive integer N prime to p,
and with Fourier coefficients in Cp. A p-integral modular form is a modular
form with Fourier coefficients in Zp. Note that throughout Sections 5 and 6,
all our modular forms can be taken to be with coefficients in Qp.
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If f is a classical, or Katz, modular form, we will often simply identify the
form f with its Fourier expansion, f =

∑
n≥0 cf (n)qn. By ordp(f) we mean the

greatest lower bound of the non-negative integers ordp(cf (n)) for n ≥ 0. The
valuation ordp on Cp here is given its natural normalization, i.e., ordp(p) = 1.

We say two p-integral modular forms are congruent modulo pn, denoted

f ≡ g (mod pn),

if their corresponding Fourier coefficients are congruent modulo pn. Equiva-
lently, f ≡ g (mod pn) if ordp(f − g) ≥ n.

Recall the traditional notation,

σk−1(n) =
∑

0 < d | n
dk−1,

and put σ(n) = σ1(n).
Let Ek = −bk/2k+

∑∞
n=0 σk−1(n)qn be the Eisenstein series of even weight

k ≥ 2, and denote by Ek the “other natural normalization” of the Eisenstein
series,

Ek = 1− 2k

bk
·
∞∑

n=0

σk−1(n)qn,

for k ≥ 2. We have
Ep−1 ≡ 1 (mod p).

(Note that Ek is the q-expansion of the Katz modular form that we denote by
Ek elsewhere in this paper.)

For k > 2 these are classical modular forms of level 1, while the Fourier series
E2 = −1/24 +

∑∞
n=0 σ(n)qn, and the corresponding E2, are not; nevertheless,

they may all be viewed as Katz modular forms of tame level 1.
Put

σ(p)(n) =
∑

0 < d | n; (p,d)=1

d,

so that we have:

σ(n) = σ(p)(n) + pσ(p)(n/p) + p2σ(p)(n/p2) + · · · (5.1)

where the convention is that σ(p)(r) = 0 if r is not an integer.
Let V = Vp be the operator on power series given by the rule:

V


∑

n≥0

cnq
n


 =

∑

n≥0

cnq
pn.

If F =
∑
n≥0 cnq

n is a classical modular form of weight k on Γ0(M), then V (F )
is (the Fourier expansion of) a classical modular form of weight k on Γ0(Mp)
(cf. [Lan95, Ch. VIII]).
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The Fourier series

E
(p)
2 = (1− pV )E2 =

p− 1

24
+
∑

σ
(p)
1 (n)qn

is, in contrast to E2, a classical modular form (of weight 2 on Γ0(p)) and we
can invert the formula of its definition to give the following equality of Fourier
series:

E2 =
∑

ν≥0

pνV νE
(p)
2 , (5.2)

this equality being, for the corresponding Fourier coefficients other than the
constant terms, another way of phrasing (5.1).

Definition 5.1 (Convergence Rate). We call a function α(ν) taking values that
are either positive integers or +∞ on integers ν = 0,±1,±2, . . . a convergence
rate if α(ν) is a non-decreasing function such that α(ν) = 0 for ν ≤ 0, α(ν+µ) ≤
α(ν) + α(µ), and α(ν) tends to +∞ as ν does.

A simple nontrivial example of a convergence rate is

α(ν) =

{
0 for ν ≤ 0,

ν for ν ≥ 0.

If α(ν) is a convergence rate, put Tα(ν) = α(ν − 1); note that Tα(ν) is also a
convergence rate (T translates the graph of α one to the right). Given a collec-
tion {αj}j∈J of convergence rates, the “max” function α(ν) = maxj∈J αj(ν)
is again a convergence rate.

Definition 5.2 (α-Convergent). Let α be a convergence rate. A Katz modular
form f is α-convergent if there is a function a : Z≥0 → Z≥0 such that

f =

∞∑

ν=0

pa(ν)fνE−νp−1 (5.3)

with fν a classical p-integral modular form (of weight k + ν(p − 1) and level
N) and a(ν) ≥ α(ν) for all ν ≥ 0.

If α′ ≤ α are convergence rates and a modular form f is α-convergent
then it is also α′-convergent. As formulated, an expansion of the shape of
(5.3) for a given f is not unique but [Kat73] and [Gou88] make a certain
sequence of choices that enable them to get canonical expansions of the type
(5.3), dependent on those initial choices. Specifically, let Mclassical(N, k,Zp)
denote the Zp-module of classical modular forms on Γ0(N) of weight k and
with Fourier coefficients in Zp. Multiplication by Ep−1 allows one to identify
Mclassical(N, k,Zp) with a saturated Zp-lattice in Mclassical(N, k + p − 1,Zp).
(The lattice is saturated because multiplication by Ep−1(mod p) is injective,
since it is the identity map on q-expansions.) Fix, for each k, a Zp-module,

C(N, k + p− 1,Zp) ⊂Mclassical(N, k + p− 1,Zp)
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that is complementary to Ep−1 ·Mclassical(N, k,Zp) ⊂Mclassical(N, k+p−1,Zp).
Requiring the classical modular forms fν of the expansion (5.3) to lie in these
complementary submodules, i.e., fν ∈ C(N, k + ν(p − 1),Zp) for all ν, pins
down the expansion uniquely. Let us call an expansion of the form

f =

∞∑

ν=0

pa(ν)fνE−νp−1

pinned down by a choice of complementary submodules as described above a
Katz expansion of f .

A classical p-integral modular form is, of course, α-convergent for every α.
For any given convergence rate α, the α-convergent Katz modular forms of
tame level N are closed under multiplication, and the collection of them forms
an algebra over the ring of classical modular forms of level N (with Fourier
coefficients in Zp). Any Katz p-integral modular form is α-convergent, for
some convergence rate α (see [Gou88]).

Proposition 5.3. A Katz p-integral modular form f of weight k and tame
level N as above is α-convergent if and only if the Fourier series of fEνp−1 is
congruent to the Fourier series of a classical p-integral modular form (of weight
k + ν(p− 1) and level N) modulo pα(ν+1) for every integer ν ≥ 0.

Proof. We use the q-expansion principle. Specifically, if Gν is a classical modu-
lar form such that fEνp−1 ≡ Gν (mod pα(ν+1)) then gν = p−α(ν+1)(fEνp−1−Gν)
is again a Katz modular form, and we can produce the requisite α-convergent
Katz expansion by inductive consideration of these gν ’s. (Note that the other
implication is trivial. Also note our running hypothesis that p ≥ 5.)

In view of this, we may define, for any f as in Proposition 5.3, the function
af (ν) (for ν ≥ 0) as follows: af (0) = 0, and for ν ≥ 1, af (ν) is the largest
integer a such that fEν−1

p−1 is congruent to a classical p-integral modular form
(of weight k + (ν − 1)(p− 1) and level N) modulo pa.

Corollary 5.4. The Katz p-integral modular form f is α-convergent for any
convergence rate α that is majorized by the function af . (I.e., for which α(ν) ≤
af (ν) for all ν ≥ 0.)

Definition 5.5 (Overconvergent of Radius r). Let r ∈ Q be a positive rational
number. A Katz p-integral modular form f of tame level N is overconvergent
of radius r if and only if it is α-convergent for some function α such that
α(ν) ≥ r · ν for all ν, and α(ν)− r · ν tends to infinity with ν.

Remarks 5.6. It is convenient to say, for two function α(ν) and α′(ν), that

α(ν) ≫ α′(ν)

if α(ν) ≥ α′(ν) and α(ν)−α′(ν) tends to infinity with ν. So, we may rephrase
the above definition as saying that f is overconvergent with radius r if it is
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α-convergent with α(ν) ≫ r · ν. The above definition is equivalent to the
definition of [Kat73, Gou88] except for the fact that the word radius in these
references does not denote the rational number r above, but rather a choice of
p-adic number whose ordp is r. We may think of our manner of phrasing the
definition as being a definition by Katz expansion convergence rate as opposed to
what one might call the definition by rigid analytic geometric behavior, meaning
the equivalent, and standard, formulation (cf. [Kat73]) given by considering f
as a rigid analytic function on an appropriate extension of the Hasse domain
in the (rigid analytic space associated to) X0(N).

Definition 5.7 ((Precisely) Log Convergent). A Katz p-integral modular form
f is log-convergent if c · log(ν) ≤ af (ν) for some positive constant c and all but
finitely many ν (equivalently: if it is α-convergent for α(ν) = c · log(ν) for some
positive constant c). We will say that f is precisely log-convergent if there are
positive constants c, C such that c · log(ν) ≤ af (ν) ≤ C · log(ν) for all but
finitely many ν.

Remark 5.8. As in Definition 5.1 above, we may think of this manner of
phrasing the definition as being a definition by Katz expansion convergence
rate. This seems to us to be of some specific interest in connection with the
algorithms that we present in this article for the computation of E2. For
more theoretical concerns, however, we think it would be interesting to give, if
possible, an equivalent definition by rigid analytic geometric behavior: is there
some explicit behavior at the “rim” of the Hasse domain that characterizes
log-convergence?

Proposition 5.9. Let p ≥ 5. Let f be a Katz p-integral modular form of
weight k and tame level N that admits an expansion of the type

f =

∞∑

ν=0

pνFνE−νp−1

where, for all ν ≥ 0, Fν is a classical p-integral modular form (of weight k +
ν(p− 1)) on Γ0(p

ν+1). Then f is log-convergent and

lim inf
n→∞

af (n)

log(n)
≥ 1

log(p)
.

Proof. The classical modular form Fν on Γ0(p
ν+1) is an overconvergent Katz

modular form of radius r for any r such that r < 1
pν−1(p+1) (cf. [Kat73], [Gou88,

Cor. II.2.8]). Let

Fν =

∞∑

µ=0

f (ν)
µ E−µp−1

be its Katz expansion. So,

ordp(f
(ν)
µ ) ≫

(
1

pν−1(p+ 1)
− ǫµ,ν

)
· µ
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for any choice of positive ǫµ,ν . We have

f =

∞∑

ν=0

pν
∞∑

µ=0

f (ν)
µ E−(µ+ν)

p−1 ,

or (substituting γ = µ+ ν)

f =

∞∑

γ=0

{
γ∑

ν=0

pν f
(ν)
γ−ν

}
E−γp−1.

Putting Gγ =
∑γ
ν=0 p

ν f
(ν)
γ−ν we may write the above expansion as

f =

∞∑

γ=0

GγE−γp−1,

and we must show that
ordp(Gγ) ≥ c · log(γ)

for some positive constant c.
For any ν ≤ γ we have

ordp

(
pν f

(ν)
γ−ν

)
≫ ν +

(
1

pν−1(p+ 1)
− ǫγ−ν,ν

)
(γ − ν).

We need to find a lower bound for the minimum value achieved by the right-
hand side of this equation. To prepare for this, first note that at the extreme

value ν = 0 we compute ordp( f
(0)
γ ) ≥

(
p

(p+1) − ǫγ,0
)
· γ, and to study the

remaining cases, ν = 1, . . . , γ, we look at the function

R(t) = t+

(
1

pt−1(p+ 1)

)
(γ − t)

in the range 1 ≤ t ≤ γ. This, by calculus, has a unique minimum at t = tγ ∈
(1, γ) given by the equation

p+ 1

p
· ptγ = log(p) · (γ − tγ) + 1. (5.4)

Define eγ = tγ − logp(γ) and substituting, we get:

peγ =
p log(p)

p+ 1
− p log(p)

p+ 1

eγ
γ

+Aγ (5.5)

where Aγ goes to zero, as γ goes to ∞.
If eγ is positive we get that

peγ ≤ p log(p)

p+ 1
+Aγ
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and so eγ is bounded from above, independent of γ, while if eγ = −dγ with dγ
positive, we have

1

pdγ
=
p log(p)

p+ 1
+
p log(p)

p+ 1

dγ
γ

+Aγ .

Recall that since tγ > 0 we also have dγ < logp(γ), so that the right hand

side of the displayed equation tends to p log(p)
p+1 as γ goes to ∞, so the equation

forces dγ to be bounded from above, as γ tends to ∞.
This discussion gives:

Lemma 5.10. The quantity |tγ − logp(γ)| is bounded independent of γ.

Substituting tγ = logp(γ) + eγ in the defining equation for R(t) and noting
the boundedness of |eγ |, we get that |R(tγ) − logp(γ)| is bounded as γ goes
to ∞, thereby establishing our proposition.

Corollary 5.11. For all p ≥ 5, the Katz modular form f = E2 is log-
convergent and

lim inf
n→∞

af (n)

log(n)
≥ 1

log(p)
.

Proof. The modular forms V νE
(p)
2 are classical modular forms on Γ0(p

ν+1) and
therefore formula (5.1) exhibits E2 as having a Katz expansion of the shape of
(5.3). Proposition 5.9 then implies the corollary.

Remark 5.12. Is E2 precisely log-convergent? The minimal c (cf. Def-
inition 5.7) that can be taken in the log-convergence rate for f = E2 is
lim supn→∞(af (n)/ log(n)). Is this minimal c equal to 1/ log(p)? It is for
p = 5, as we will show in Section 6. The previous discussion tells us that, as a
kind of generalization of the well-known congruence

E2Ep−1 ≡ Ep+1 (mod p),

we have that for any ǫ > 0, and all but finitely many ν, there are classical
modular forms Gν of level 1 and weight 2 + ν(p− 1) such that

E2Eνp−1 ≡ Gν (mod p⌊(1−ǫ)logp(ν)⌋).

Let θ = qd/dq denote the standard shift operator; so that if f =
∑
n≥0 cnq

n,
then θ(f) =

∑
n≥0 ncnq

n. We have ordp(θ(f)) ≥ ordp(f). The operator θ
preserves Katz modular forms, and almost preserves classical modular forms
in the sense that if f is a classical modular form of weight k ≥ 2 then so is
F = θ(f)− kfE2/12 (cf. [Kat73]). Note, also, that ordp(F ) ≥ ordp(f).

Corollary 5.13. The operator θ preserves log-convergent Katz modular
forms.
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Proof. Let f be a log-convergent Katz p-integral modular form of weight k, of
tame conductor N with a Katz expansion,

f =

∞∑

ν=0

pa(ν)fνE−νp−1 (5.6)

where a(ν) ≥ c · log(ν) for some positive c, and the fν ’s are classical p-integral
modular forms on Γ0(N). Let Fν = θ(fν)− (k + ν(p− 1))fνE2/12 (which is a
classical modular form of weight k + 2 + ν(p− 1) on Γ0(N)). Put

G = θ(Ep−1)−
p− 1

12
Ep−1E2.

Apply the derivation θ to (5.6) to get

θ(f) =

∞∑

ν=0

pa(ν)
{

(Fν + (k + ν(p− 1))fνE2/12)E−νp−1−

νfνE−ν−1
p−1

(
G+

p− 1

12
Ep−1E2

)}
.

or:
θ(f) = A+BE2 − C −DE2,

where

A =

∞∑

ν=0

pa(ν)FνE−νp−1,

B =

∞∑

ν=0

pa(ν)(k + ν(p− 1))fν/12)E−νp−1,

C =

∞∑

ν=0

pa(ν)νfνGE−ν−1
p−1 ,

D =

∞∑

ν=0

pa(ν)
p− 1

12
νfνEp−1.

Now A,B,C,D are all log-convergent, as is E2 by Corollary 5.11. Therefore so
is θ(f).

6 Precise log convergence of E2 for p = 2, 3, 5

In this section we assume p = 2, 3 or 5 and let P,Q,R denote the Eisenstein
series of level 1 of weights 2, 4, 6, respectively, normalized so that the constant
term in its Fourier expansion is 1. Let f be a Katz form of tame level 1 and
weight k. Write k = 4d + 6e, with d an integer ≥ −1 and e = 0 or 1. Then
fQ−dR−e is a Katz form of weight 0, that is, a Katz function. Since 0 is the
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only supersingular value of j for p = 2, 3, 5, a Katz function has an expansion
in powers of j−1 convergent everywhere on the disc |j−1| ≤ 1. Hence, putting
z = j−1, we can write

f = QdRe
∞∑

n=0

cf (n)zn =
∞∑

n=0

Re∆nQ−3n+d.

with cf (n) ∈ Qp and cf (n)→ 0 as n→∞. Let

Cf,p(N) = min
n>N

(ordp(cf (n))).

Theorem 6.1. For p = 5, we have Cf,5(N) = af (3N + 1− d), for all large N .

Proof. Notice that for p = 5, Ep−1 = Q. Let ν = 3N + 1− d for large N . Then

Qν−1f =

N∑

n=0

c(n)Re∆nQ3(N−n) +ReQd
∑

n>N

c(n)zn = F +G,

say. We have ord5(G) = minn>N (ord5(c(n)) = Cf,5(N). 5

Since F is a classical modular form of weight 12N + 6e it follows from
the definition of af that af (ν) ≥ Cf,5(N). On the other hand, since
{Re∆nQ3(N−n) : 0 ≤ n ≤ N} is a basis for the space of classical modular
forms of weight 12N + 6e, it is clear that for any such classical form F ′, the
difference Qν−1f − F ′ is a 5-adic Katz form which can be written as ReQ3Ng
with g a Katz function whose z-expansion coefficients are c(n) for n > N . Thus
ord5(Q

ν−1f − F ′) ≤ Cf,5(N).

We have defined f to be log convergent if

lim inf
n→∞

af (n)

log(n)
> 0,

and to be precisely log convergent if in addition

lim sup
n→∞

af (n)

log(n)
<∞.

Lemma 6.2. Suppose h(n) and H(n) are nondecreasing funcions defined for all
sufficiently large positive integers n. If for some integers r > 0 and s we have
H(N) = h(rN + s) for all sufficiently large integers N, then

lim inf
n→∞

h(n)

log(n)
= lim inf

N→∞
H(N)

log(N)
,

5To justify this claim we extend our definition of ordp from the ring of Katz forms
with Fourier coefficients in Z to the ring Zp[[q]] of all formal power series with coefficients
in Z. Moreover, since z ∈ q + q2

Zp[[q]], we have Zp[[q]] = Zp[[z]], and for a formal series
g =

P

anqn =
P

bnzn, we have ordp(g) = min(ordp(an)) = min(ordp(bn)). Also (Gauss
Lemma) the rule ord(g1g2) = ord(g1) + ord(g2) holds. Since ord5(R) = ord5(Q) = 0, it
follows that ord5(G) = Cf,5(N) as claimed.
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and

lim sup
n→∞

h(n)

log(n)
= lim sup

N→∞

H(N)

log(N)
.

Proof. We use the fact that log(rx+s)
log(x) → 1 as x→∞. For n and N related by

rN + s ≤ n ≤ r(N + 1) + s

we have

h(n)

log(n)
≤ h(r(N + 1) + s

log(rN + s)
=

H(N + 1)

log(N + 1)
· log(N + 1)

log(rN + s)
.

Similarly,

h(n)

log(n)
≥ h(rN + s

log(r(N + 1) + s)
=

H(N)

log(N)
· log(N)

log(r(N + 1) + s)
.

This proves the lemma, because the second factor of the right hand term in
each line approaches 1 as N goes to infinity.

Theorem 6.1 and Lemma 6.2 show that for p = 5 we can replace af by Cf
in the definition of log convergent and precisely log convergent. Therefore we
define log convergent and precisely log convergent for p = 2 and p = 3 by using
Cf,p as a replacement for af .

Theorem 6.3. For p = 2, 3 or 5, the weight 2 Eisenstein series P = E2 is
precisely log convergent. In fact,

lim
n→∞

CP,p(n)

log(n)
=

1

log(p)
.

During the proof of this theorem we write c(n) = cP (n) and Cp(n) = CP,p.
The cases p = 2, 3 follow immediately from results of Koblitz (cf. [Kob77]).

Koblitz writes P =
∑
anj
−n qdj

jdq . Since dj/j = −dz/z, and as we will see later

in this proof, qdz/zdq = R/Q, Koblitz’s an is the negative of our c(n), hence
ordp(c(n)) = ordp(an). Koblitz shows that if we let lp(n) = 1+⌊log(n)/ log(p)⌋,
the number of digits in the expression of n in base p, and let sp(n) denote
the sum of those digits, then ord2(c(n)) = l2(n) + 3s2(n) and ord3(c(n)) =
l3(n) + s3(n). From this it is an easy exercise to show

C2(n) = ⌊log(n+ 1)/ log(2)⌋+ 4 and C3(n) = ⌊(log(n+ 1)/ log(3)⌋+ 2,

formulas from which cases p = 2 and p = 3 of the theorem are evident.
Investigating the case p = 5 we found experimentally with a PARI program

that the following conjecture holds for n < 1029.

Conjecture 6.4. We have ord5(c(n)) ≥ l5(2n), with equality if n written in
base 5 contains only the digits 0,1 or 2, but no 3 or 4.
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It is easy to see that Conjecture 6.4 implies that

lim sup
n→∞

C5(n)

log(n)
=

1

log(5)
.

We already know from Corollary 5.11 that

lim inf
n→∞

aP (n)

log(n)
≥ 1

log(5)
.

By Lemma 6.2, this is equivalent to

lim inf
n→∞

CP,5(n)

log(n)
≥ 1

log(5)
.

Hence to finish the proof of Theorem 6.3, we need only prove

lim sup
n→∞

CP,5(n)

log(n)
≤ 1

log(5)
. (6.1)

To prove (6.1) it is enough to prove that Conjecture 6.4 holds for n = 5m, that
is, ord5(c(n)) = m + 1. Indeed that equality implies that C5(n) ≤ m + 1 for
n < 5m and, choosing m such that 5m−1 ≤ n < 5m, shows that for every n we
have C5(n) ≤ m+ 1 ≤ log(n)/ log(5) + 2.

To prove ord5(c(n)) = m+ 1 we use two lemmas.

Lemma 6.5. We have PQ
R − 1 = 3 zdQQdz .

Proof. Let θ denote the classical operator qd/dq. From the formula ∆ =
q
∏
n≥1(1− qn)24 we get by logarithmic differentiation the classical formula

θ∆

∆
= P.

From z = 1/j = ∆/Q3 we get by logarithmic differentiation that

θz

z
=
θ∆

∆
− 3

θQ

Q
= P − 3

θQ

Q
.

By a formula of Ramanujan (cf. [Ser73, Thm. 4]) we have

3
θQ

Q
= P − R

Q
.

Substituting gives
θz

z
=
R

Q
,

and dividing the next to last equation by the last proves the lemma.

Lemma 6.6. Let F =
∑
n≥1 σ3(n)qn, so that Q = 1 + 240F . Then F ≡∑

m≥0(z
5m + z2·5m) (mod 5).
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Proof. Guessing this result by computer experiment, we asked Serre for a proof.
He immediately supplied two, one of which is the following. During the rest
of this proof all congruences are understood to be modulo 5. Since F = z +
3z2 + · · · , the statement to be proved is equivalent to F −F 5 ≡ z+3z2. Using
the trivial congruence Q ≡ 1 and the congruence P ≡ R (the case p = 5 of a
congruence of Swinnerton-Dyer, (cf. [Ser73, Thm. 5]), we note that

z = ∆/Q3 ≡ ∆ = (Q3 −R2)/1728 ≡ 2− 2R2.

The case p = 5, k = 4 of formula (**) in section 2.2 of [Ser73] reads F − F 5 ≡
θ3R. By Ramanujan’s formula

θR = (PR−Q2)/2 ≡ 3R2 − 3,

one finds that indeed

θ3R ≡ 2R4 −R2 − 1 ≡ z + 3z2,

which proves Lemma 6.6.

Let F =
∑
n≥1 b(n)zn. By Lemma 6.6, b(5m) and b(2 · 5m) are not divisible

by 5. Therefore the 5mth and 2 · 5mth coefficients of zdF/dz =
∑
n≥1 nb(n)zn

are divisible exactly by 5m. By Lemma 6.5 we have

∑

n≥1

c(n)zn =
PQ

R
− 1 = 3

zdQ

Qdz
= 3

240zdF

(1 + 240F )dz
.

This shows that ord5(c(5
m)) = ord5(c(2 · 5m)) = m+1 thereby completing the

proof of Theorem 6.3.

Remark 6.7. For p = 2 or 3 a simple analogue of Lemma 6.6 holds, namely
F ≡ ∑m≥0 z

pm (mod p). This can be used to obtain Koblitz’s result for the
very special case n = pm.

7 Discussion

7.1 Log convergence

The running hypothesis in Section 5 is that p ≥ 5, but in Section 6 we con-
sidered only p = 2, 3, 5. In dealing with the different primes, our discussion
changes strikingly, depending on the three slightly different cases:

(1) p = 2, 3

(2) p = 5

(3) p ≥ 5
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For (7.1), in Section 6 we used expansions in powers of z = 1/j to give a
careful analysis of convergence rates, and in contrast, the general discussion
of Section 5 must keep away from those cases p = 2, 3, in order to maintain
the formulation that it currently has. The prime p = 5 is in a very fortunate
position because it can be covered by the general discussion a la (7.1); but we
have also given a precise “power series in 1/j” treatment of p = 5. These issues
suggest four questions:

1. Is there any relationship between the convergence rate analysis we give,
and computation-time estimates for the actual algorithms?

2. We have produced an algebra of log-convergent modular forms, and it
has at least one new element that the overconvergent forms do not have,
namely E2. Moreover, it is closed under the action of θ, i.e., “Tate
twist”. Are there other interesting Hecke eigenforms in this algebra that
we should know about? Going the other way, are there any Hecke eigen-
forms that are not log-convergent? Is there something corresponding to
the “eigencurve” (it would have to be, at the very least, a surface) that
p-adically interpolates log-convergent eigenforms? Is a limit (in the sense
of ordp’s of Fourier coefficients) of log-convergent eigenforms again log-
convergent? For this last question to make sense, we probably need to
know the following:

3. Is there a rigid-analytic growth type of definition (growth at the rim of
the Hasse domain) that characterizes log-convergence, just as there is
such a definition characterizing overconvergence?

4. Almost certainly one could treat the case p = 7 by expansions in powers
of 1/(j − 1728) = ∆/R2 in the same way that we did p = 5 with powers
of 1/j = ∆/Q3. The case p = 13 might be more interesting.

7.2 Uniformity in the algorithms

We are most thankful to Kiran Kedlaya and Alan Lauder for some e-mail
communications regarding an early draft of our article. The topic they address
is the extent to which the algorithms for the computation of E2 of an elliptic
curve are “uniform” in the elliptic curve, and, in particular, whether one can
get fast algorithms for computing E2 of specific families of elliptic curves. In
this section we give a brief synopsis of their comments.

A “reason” why E2 should turn out not to be overconvergent is that Katz’s
formula relates it to the direction of the unit-root subspace in one-dimensional
de Rham cohomology, and that seems only to make (at least naive) sense in the
ordinary case (and not for points in a supersingular disc, not even ones close
to the boundary).

Nevertheless, part of the algorithm has good uniformity properties.
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1. Calculating the matrix of Frobenius: One can calculate the matrix of
Frobenius for, say, all elliptic curves in the Legendre family (or any one-
parameter family) and the result is overconvergent everywhere, so this
should be relatively efficient. This can be done either by the algorithm
developed by Kedlaya, or also using the Gauss-Manin connection, as in
Lauder’s work, which is probably faster. An approach to computing the
“full” Frobenius matrix “all at once” for elliptic curves in the Legendre
family has been written up and implemented in Magma by Ralf Gerk-
mann: See [Ger05] for the paper and program. Lauder’s paper [Lau03]
also discusses Kedlaya’s algorithm “all at once” for a one-parameter fam-
ily of hyperelliptic curves using the Gauss-Manin connection.

2. Extracting the unit root subspace in de Rham cohomology: To compute E2

for an individual elliptic curve, one can specialize the Frobenius matrix
and extract the unit root. But extracting only the unit root part over
the entire family at once would involve non-overconvergent series, and
consequently might be slow. The unit root zeta function, which encodes
the unit root of Frobenius over a family of ordinary elliptic curves, has
been very well studied by Dwork and Wan (cf. [Wan99]).

7.3 Other future projects

1. Explicitly compute anticyclotomic p-adic heights, and apply this to the
study of universal norm questions that arise in [RM05].

2. Further investigate Kedlaya’s algorithm with a parameter in connection
with log convergence and computation of heights.

3. Determine if the equality limn→∞ aP (n)/ log(n) = 1/ log(p) holds for all
primes p, as it does for p = 5 by Theorem 6.3.
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Abstract. We consider a generalization of a result of Kida in clas-
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of number fields. In this paper, we consider Selmer groups of a general
class of Galois representations which includes the case of p-ordinary
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1. Introduction

Let f be a modular eigenform of weight at least two and let F be a finite
abelian extension of Q. Fix an odd prime p at which f is ordinary in the
sense that the pth Fourier coefficient of f is not divisible by p. In Iwasawa
theory, one associates two objects to f over the cyclotomic Zp-extension F∞ of
F : a Selmer group Sel(F∞, Af ) (where Af denotes the divisible version of the
two-dimensional Galois representation attached to f) and a p-adic L-function
Lp(F∞, f). In this paper we prove a formula, generalizing work of Kida and
Hachimori–Matsuno, relating the Iwasawa invariants of these objects over F
with their Iwasawa invariants over p-extensions of F .
For Selmer groups our results are significantly more general. Let T be a
lattice in a nearly ordinary p-adic Galois representation V ; set A = V/T .
When Sel(F∞, A) is a cotorsion Iwasawa module, its Iwasawa µ-invariant
µalg(F∞, A) is said to vanish if Sel(F∞, A) is cofinitely generated and its λ-
invariant λalg(F∞, A) is simply its p-adic corank. We prove the following result
relating these invariants in a p-extension.
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Theorem 1. Let F ′/F be a finite Galois p-extension that is unramified at all
places dividing p. Assume that T satisfies the technical assumptions (1)–(5) of
Section 2. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then Sel(F ′∞, A)
is Λ-cotorsion with µalg(F ′∞, A) = 0. Moreover, in this case

λalg(F ′∞, A) = [F ′∞ : F∞] · λalg(F∞, A) +
∑

w′

m(F ′∞,w′/F∞,w, V )

where the sum extends over places w′ of F ′∞ which are ramified in F ′∞/F∞.
If V is associated to a cuspform f and F ′ is an abelian extension of Q, then
the same results hold for the analytic Iwasawa invariants of f .

Here m(F ′∞,w′/F∞,w, V ) is a certain difference of local multiplicities defined in
Section 2.1. In the case of Galois representations associated to Hilbert modular
forms, these local factors can be made quite explicit; see Section 4.1 for details.
It follows from Theorem 1 and work of Kato that if the p-adic main conjecture
holds for a modular form f over Q, then it holds for f over all abelian p-
extensions of Q; see Section 4.2 for details.
These Riemann-Hurwitz type formulas were first discovered by Kida [5] in
the context of λ-invariants of CM fields. More precisely, when F ′/F is a p-
extension of CM fields and µ−(F∞/F ) = 0, Kida gave a precise formula for
λ−(F ′∞/F

′) in terms of λ−(F∞/F ) and local data involving the primes that
ramify in F ′/F . (See also [4] for a representation theoretic interpretation of
Kida’s result.) A similar formula in a somewhat different setting was given
for elliptic curves with complex multiplication at ordinary primes by Wingberg
[12]; Hachimori–Matsuno [3] established the cyclotomic version in general. The
analytic analogue was first established for ideal class groups by Sinnott [10] and
for elliptic curves by Matsuno [7].
Our proof is most closely related to the arguments in [10] and [7] where con-
gruences implicitly played a large role in their study of analytic λ-invariants.
In this paper, we make the role of congruences more explicit and apply these
methods to study both algebraic and analytic λ-invariants.
As is usual, we first reduce to the case where F ′/F is abelian. (Some care
is required to show that our local factors are well behaved in towers of fields;
this is discussed in Section 2.1.) In this case, the λ-invariant of V over F ′

can be expressed as the sum of the λ-invariants of twists of V by characters
of Gal(F ′/F ). The key observation (already visible in both [10] and [7]) is
that since Gal(F ′/F ) is a p-group, all of its characters are trivial modulo a
prime over p and, thus, the twisted Galois representations are all congruent to
V modulo a prime over p. The algebraic case of Theorem 1 then follows from
the results of [11] which gives a precise local formula for the difference between
λ-invariants of congruent Galois representations. The analytic case is handled
similarly using the results of [1].
The basic principle behind this argument is that a formula relating the Iwasawa
invariants of congruent Galois representations should imply of a transition for-
mula for these invariants in p-extensions. As an example of this, in Section 4.3,
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we use results of [2] to prove a Kida formula for the Iwasawa invariants (in the
sense of [8, 6, 9]) of weight 2 modular forms at supersingular primes.

Acknowledgments: We would like to thank the anonymous referee for several
helpful comments and for pointing out some errors in an earlier draft of this
paper.

2. Algebraic invariants

2.1. Local preliminaries. We begin by studying the local terms that appear
in our results. Fix distinct primes ℓ and p and let L denote a finite extension
of the cyclotomic Zp-extension of Qℓ. Fix a field K of characteristic zero and a
finite-dimensionalK-vector space V endowed with a continuousK-linear action
of the absolute Galois group GL of L. Set

mL(V ) := dimK (VIL)
GL ,

the multiplicity of the trivial representation in the IL-coinvariants of V . Note
that this multiplicity is invariant under extension of scalars, so that we can
enlarge K as necessary.
Let L′ be a finite Galois p-extension of L. Note that L′ must be cyclic and
totally ramified since L contains the Zp-extension of Qℓ. Let G denote the
Galois group of L′/L. Assuming that K contains all [L′ : L]th roots of unity,
for a character χ : G → K× of G, we set Vχ = V ⊗K K(χ) with K(χ) a
one-dimensional K-vector space on which G acts via χ. We define

m(L′/L, V ) :=
∑

χ∈G∨
mL(V )−mL(Vχ)

where G∨ denotes the K-dual of G.
The next result shows how these invariants behave in towers of fields.

Lemma 2.1. Let L′′ be a finite Galois p-extension of L and let L′ be a Galois
extension of L contained in L′′. Assume that K contains all [L′′ : L]th roots of
unity. Then

m(L′′/L, V ) = [L′′ : L′] ·m(L′/L, V ) +m(L′′/L′, V ).

Proof. Set G = Gal(L′′/L) and H = Gal(L′′/L′). Consider the Galois group
GL/IL′′ over L of the maximal unramified extension of L′′. It sits in an exact
sequence

(1) 0→ GL′′/IL′′ → GL/IL′′ → G→ 0

which is in fact split since the maximal unramified extensions of both L and
L′′ are obtained by adjoining all prime-to-p roots of unity.
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Fix a character χ ∈ G∨. We compute

mL(Vχ) = dimK

(
(Vχ)IL

)GL

= dimK

((
((Vχ)IL′′ )G

)GL′′)G

= dimK

((
((Vχ)IL′′ )

GL′′
)
G

)G
since (1) is split

= dimK

((
(Vχ)IL′′

)GL′′)G since G is finite cyclic

= dimK

(
(VIL′′ )

GL′′ ⊗ χ
)G

since χ is trivial on GL′′ .

The lemma thus follows from the following purely group-theoretical statement
applied with W = (VIL′′ )

GL′′ : for a finite dimensional representation W of a
finite abelian group G over a field of characteristic zero containing µ#G, we
have
∑

χ∈G∨

(
〈W, 1〉G − 〈W,χ〉G

)
=

#H ·
∑

χ∈(G/H)∨

(
〈W, 1〉G − 〈W,χ〉G

)
+
∑

χ∈H∨

(
〈W, 1〉H − 〈W,χ〉H

)

for any subgroup H of G; here 〈W,χ〉G (resp. 〈W,χ〉H) is the multiplicity of
the character χ in W regarded as a representation of G (resp. H). To prove
this, we compute

X

χ∈G∨

`

〈W, 1〉G − 〈W, χ〉G
´

= #G · 〈W, 1〉G −
D

W, IndG1 1
E

G

= #G · 〈W, 1〉G − #H ·
D

W, IndGH 1
E

G
+ #H ·

D

W, IndGH 1
E

G
−

D

W, IndG1 1
E

G

= #H ·
X

χ∈(G/H)∨

`

〈W, 1〉G − 〈W, χ〉G
´

+
X

χ∈H∨

“D

W, IndGH 1
E

G
−

D

W, IndGH χ
E

G

”

= #H ·
X

χ∈(G/H)∨

`

〈W, 1〉G − 〈W, χ〉G
´

+
X

χ∈H∨

`

〈W, 1〉H − 〈W, χ〉H
´

by Frobenius reciprocity. �

2.2. Global preliminaries. Fix a number field F ; for simplicity we assume
that F is either totally real or totally imaginary. Fix also an odd prime p and
a finite extension K of Qp; we write O for the ring of integers of K, π for a
fixed choice of uniformizer of O, and k = O/π for the residue field of O.
Let T be a nearly ordinary Galois representation over F with coefficients in O;
that is, T is a free O-module of some rank n endowed with an O-linear action
of the absolute Galois group GF , together with a choice for each place v of F
dividing p of a complete flag

0 = T 0
v ⊂ T 1

v ⊂ · · · ⊂ Tnv = T
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stable under the action of the decomposition group Gv ⊆ GF of v. We make
the following assumptions on T :

(1) For each place v dividing p we have
(
T iv/T

i−1
v

)
⊗ k 6∼=

(
T jv /T

j−1
v

)
⊗ k

as k[Gv]-modules for all i 6= j;
(2) If F is totally real, then rankT cv=1 is independent of the archimedean

place v (here cv is a complex conjugation at v);
(3) If F is totally imaginary, then n is even.

Remark 2.2. The conditions above are significantly more restrictive than are
actually required to apply the results of [11]. As our main interest is in abelian
(and thus necessarily Galois) extensions of Q, we have chosen to include the
assumptions (2) and (3) to simplify the exposition. The assumption (1) is
also stronger than necessary: all that is actually needed is that the centralizer
of T ⊗ k consists entirely of scalars and that gln/bv has trivial adjoint Gv-
invariants for all places v dividing p; here gln denotes the p-adic Lie algebra of
GLn and bv denotes the p-adic Lie algebra of the Borel subgroup associated to
the complete flag at v. In particular, when T has rank 2, we may still allow
the case that T ⊗ k has the form (

χ ∗
0 χ

)

so long as ∗ is non-trivial. (Equivalently, if T is associated to a modular form
f , the required assumption is that f is p-distinguished.)

Set A = T ⊗O K/O; it is a cofree O-module of corank n with an O-linear
action of GF . Let c equal the rank of T cv=1

v (resp. n/2) if F is totally real
(resp. totally imaginary) and set

Acr
v := im

(
T cv ⊗O K →֒ T ⊗O K ։ A

)
.

We define the Selmer group of A over the cyclotomic Zp-extension F∞ of F by

Sel(F∞, A) = ker

„

H1(F∞, A) →

„

⊕
w∤p

H1(F∞,w, A)

«

×

„

⊕
w|p

H1(F∞,w, A/Acr
v )

««

.

The Selmer group Sel(F∞, A) is naturally a module for the Iwasawa alge-
bra ΛO := O[[Gal(F∞/F )]]. If Sel(F∞, A) is ΛO-cotorsion (that is, if the
dual of Sel(F∞, A) is a torsion ΛO-module), then we write µalg(F∞, A) and
λalg(F∞, A) for its Iwasawa invariants; in particular, µalg(F∞, A) = 0 if and
only if Sel(F∞, A) is a cofinitely generated O-module, while λalg(F∞, A) is the
O-corank of Sel(F∞, A).

Remark 2.3. In the case that T is in fact an ordinary Galois representation
(meaning that the action of inertia on each T iv/T

i−1
v is by an integer power ei

(independent of v) of the cyclotomic character such that e1 > e2 > . . . > en),
then our Selmer group Sel(F∞, A) is simply the Selmer group in the sense of
Greenberg of a twist of A; see [11, Section 1.3] for details.
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2.3. Extensions. Let F ′ be a finite Galois extension of F with degree equal
to a power of p. We write F ′∞ for the cyclotomic Zp-extension of F ′ and set
G = Gal(F ′∞/F∞). Note that T satisfies hypotheses (1)–(3) over F ′ as well, so
that we may define Sel(F ′∞, A) analogously to Sel(F∞, A). (For (1) this follows
from the fact that Gv acts on (T iv/T

i−1
v )⊗k by a character of prime-to-p order;

for (2) and (3) it follows from the fact that p is assumed to be odd.)

Lemma 2.4. The restriction map

(2) Sel(F∞, A)→ Sel(F ′∞, A)G

has finite kernel and cokernel.

Proof. This is straightforward from the definitions and the fact that G is finite
and A is cofinitely generated; see [3, Lemma 3.3] for details. �

We can use Lemma 2.4 to relate the µ-invariants of A over F∞ and F ′∞.

Corollary 2.5. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then
Sel(F ′∞, A) is Λ-cotorsion with µalg(F ′∞, A) = 0.

Proof. This is a straightforward argument using Lemma 2.4 and Nakayama’s
lemma for compact local rings; see [3, Corollary 3.4] for details. �

Fix a finite extension K ′ of K containing all [F ′ : F ]th roots of unity. Consider
a character χ : G → O′× taking values in the ring of integers O′ of K ′; note
that χ is necessarily even since [F ′ : F ] is odd. We set

Aχ = A⊗O O′(χ)

where O′(χ) is a free O′-module of rank one with GF∞ -action given by χ. If
we give Aχ the induced complete flags at places dividing p, then Aχ satisfies
hypotheses (1)–(3) and we have

Acr
χ,v = Acr

v ⊗O O′(χ) ⊆ Aχ
for each place v dividing p. We write Sel(F∞, Aχ) for the corresponding Selmer
group, regarded as a ΛO′ -module; in particular, by λalg(F∞, Aχ) we mean the
O′-corank of Sel(F∞, Aχ), rather than the O-corank. We write G∨ for the set
of all characters χ : G→ O′×.

Proposition 2.6. Assume that Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) =
0. If G is an abelian group, then there is a natural map

⊕
χ∈G∨

Sel(F∞, Aχ)→ Sel(F ′∞, A)⊗O O′

with finite kernel and cokernel.

Proof. First note that as O′[[GF ′ ]]-modules we have

A⊗O O′ ∼= Aχ

from which it easily follows that

(3)
(
Sel(F ′∞, A)⊗O O′(χ)

)G
= Sel(F ′∞, Aχ)G.
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Also, for any cofinitely generated O[G]-module S, the natural map

(4) ⊕
χ∈G∨

(S ⊗O′(χ))
G → S ⊗O′

has finite kernel and cokernel. Since we are assuming that µalg(F∞, A) = 0, we
may take S = Sel(F ′∞, A) in (4); combining this with (3) yields a map

⊕
χ∈G∨

(Sel(F ′∞, Aχ))
G → Sel(F ′∞, Aχ)⊗O′

with finite kernel and cokernel. Now applying Lemma 2.4 for each twist Aχ,
we obtain our proposition. �

As an immediate corollary, we have the following.

Corollary 2.7. If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then each
group Sel(F∞, Aχ) is ΛO′-cotorsion with µalg(F∞, Aχ) = 0. Moreover, if G is
abelian, then

λalg(F ′∞, A) =
∑

χ∈G∨
λalg(F∞, Aχ).

2.4. Algebraic transition formula. We continue with the notation of the
previous section. We write R(F ′∞/F∞) for the set of prime-to-p places of F ′∞
which are ramified in F ′∞/F∞. For a place w′ ∈ R(F ′∞/F∞), we write w for its
restriction to F∞.

Theorem 2.8. Let F ′/F be a finite Galois p-extension with Galois group G
which is unramified at all places dividing p. Let T be a nearly ordinary Galois
representation over F with coefficients in O satisfying (1)–(3). Set A = T ⊗
K/O and assume that:

(4) H0(F,A[π]) = H0
(
F,Hom(A[π], µp)

)
= 0;

(5) H0(Iv, A/A
cr
v ) is O-divisible for all v dividing p.

If Sel(F∞, A) is Λ-cotorsion with µalg(F∞, A) = 0, then Sel(F ′∞, A) is Λ-
cotorsion with µalg(F ′∞, A) = 0. Moreover, in this case,

λalg(F ′∞, A) = [F ′∞ : F∞] · λalg(F∞, A) +
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, V )

with V = T ⊗K and m(F ′∞,w′/F∞,w, V ) as in Section 2.1.

Note that m(F ′∞,w′/F∞,w, V ) in fact depends only on w and not on w′. The

hypotheses (4) and (5) are needed to apply the results of [11]; they will not
otherwise appear in the proof below. We note that the assumption that F ′/F
is unramified at p is primarily needed to assure that the condition (5) holds for
twists of A as well.
Since p-groups are solvable and the only simple p-group is cyclic, the next
lemma shows that it suffices to consider the case of Z/pZ-extensions.

Lemma 2.9. Let F ′′/F be a Galois p-extension of number fields and let F ′

be an intermediate extension which is Galois over F . Let T be as above. If
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Theorem 2.8 holds for T with respect to any two of the three field extensions
F ′′/F ′, F ′/F and F ′′/F , then it holds for T with respect to the third extension.

Proof. This is clear from Corollary 2.5 except for the λ-invariant formula. Sub-
stituting the formula for λ(F ′∞, A) in terms of λ(F∞, A) into the formula for
λ(F ′′∞, A) in terms of λ(F ′∞, A), one finds that it suffices to show that

∑

w′′∈R(F ′′∞/F∞)

m(F ′′∞,w′′/F∞,w, V ) =

[F ′′∞ : F ′∞] ·
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, V )

+
∑

w′′∈R(F ′′∞/F
′
∞)

m(F ′′∞,w′′/F
′
∞,w′ , V ).

This formula follows upon summing the formula of Lemma 2.1 over all w′′ ∈
R(F ′′∞/F∞) and using the two facts:

• [F ′′∞ : F ′∞]/[F ′′∞,w′′ : F ′∞,w′ ] equals the number of places of F ′′∞ lying

over w′ (since the residue field of F∞,w has no p-extensions);
• m(F ′′∞,w′′/F

′
∞,w′ , V ) = 0 for any w′′ ∈ R(F ′′∞/F∞)−R(F ′′∞/F

′
∞).

�

Proof of Theorem 2.8. By Lemma 2.9 and the preceding remark, we may as-
sume that F ′∞/F∞ is a cyclic extension of degree p. The fact that Sel(F ′∞, A)
is cotorsion with trivial µ-invariant is simply Corollary 2.5. Furthermore, by
Corollary 2.7, we have

λalg(F ′∞, A) =
∑

χ∈G∨
λalg(F∞, Aχ).

For χ ∈ G∨, note that χ is trivial modulo a uniformizer π′ of O′ as it takes
values in µp. In particular, the residual representations Aχ[π′] and A[π] are
isomorphic. Under the hypotheses (1)–(5), the result [11, Theorem 1] gives
a precise formula for the relation between λ-invariants of congruent Galois
representations. In the present case it takes the form:

λalg(F∞, Aχ) = λalg(F∞, A) +
∑

w′∤p

(
mF∞,w(V ⊗ ω−1)−mF∞,w(Vχ ⊗ ω−1)

)

where the sum is over all prime-to-p places w′ of F ′∞, w denotes the place of
F∞ lying under w′ and ω is the mod p cyclotomic character. The only non-zero
terms in this sum are those for which w′ is ramified in F ′∞/F∞. For any such
w′, we have µp ⊆ F∞,w by local class field theory so that ω is in fact trivial at
w; thus

λalg(F∞, Aχ) = λalg(F∞, A) +
∑

w′∈R(F ′∞/F∞)

(
mF∞,w(V )−mF∞,w(Vχ)

)
.
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Summing over all χ ∈ G∨ then yields

λalg(F ′∞, A) = [F ′∞ : F∞] · λalg(F∞, A) +
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, V )

which completes the proof. �

3. Analytic invariants

3.1. Definitions. Let f =
∑
anq

n be a modular eigenform of weight k ≥ 2,
level N and character ε. Let K denote the finite extension of Qp generated
by the Fourier coefficients of f (under some fixed embedding Q̄ →֒ Q̄p), let O
denote the ring of integers of K and let k denote the residue field of O. Let Vf
denote a two-dimensional K-vector space with Galois action associated to f in
the usual way; thus the characteristic polynomial of a Frobenius element at a
prime ℓ ∤ Np is

x2 − aℓx+ ℓk−1ε(ℓ).

Fix a Galois stable O-lattice Tf in Vf . We assume that Tf ⊗k is an irreducible
Galois representation; in this case Tf is uniquely determined up to scaling. Set
Af = Tf ⊗K/O.
Assuming that f is p-ordinary (in the sense that ap is relatively prime to
p) and fixing a canonical period for f , one can associate to f a p-adic L-
function Lp(Q∞/Q, f) which lies in ΛO. This is well-defined up to a p-adic
unit (depending upon the choice of a canonical period) and thus has well-defined
Iwasawa invariants.
Let F/Q be a finite abelian extension and let F∞ denote the cyclotomic Zp-
extension of F . For a character χ of Gal(F/Q), we denote by fχ the modular
eigenform

∑
anχ(n)qn obtained from f by twisting by χ (viewed as a Dirichlet

character). If f is p-ordinary and F/Q is unramified at p, then fχ is again
p-ordinary and we define

Lp(F∞/F, f) =
∏

χ∈Gal(F/Q)∨

Lp(Q∞/Q, fχ).

If F/Q is ramified at p, it is still possible to define Lp(F∞/F, f); see [7, pg. 5],
for example.
If F1 and F2 are two distinct number fields whose cyclotomic Zp-extensions
agree, the corresponding p-adic L-functions of f over F1 and F2 need not
agree. However, it is easy to check that the λ-invariants of these two power
series are equal while their µ-invariants differ by a factor of a power of p.
As we are only interested in the case of vanishing µ-invariants, we will abuse
notation somewhat and simply denote the Iwasawa invariants of Lp(F∞/F, f)
by µan(F∞, f) and λan(F∞, f).

3.2. Analytic transition formula. Let F/Q be a finite abelian extension
of Q and let F ′ be a finite p-extension of F such that F ′/Q is abelian. As
always, let F∞ and F ′∞ denote the cyclotomic Zp-extensions of F and F ′. As
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before, we write R(F ′∞/F∞) for the set of prime-to-p places of F ′∞ which are
ramified in F ′∞/F∞.

Theorem 3.1. Let f be a p-ordinary modular form such that Tf ⊗ k is irre-
ducible and p-distinguished. If µan(F∞, f) = 0, then µan(F ′∞, f) = 0. More-
over, if this is the case, then

λan(F ′∞, f) = [F ′∞ : F∞] · λan(F∞, f) +
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, Vf ).

Proof. By Lemma 2.9, we may assume [F : Q] is prime-to-p. Indeed, let F0

be the maximal subfield of F of prime-to-p degree over Q. By Lemma 2.9,
knowledge of the theorem for the two extensions F ′/F0 and F/F0 would then
imply it for F ′/F as well. Furthermore, replacing F (resp. F ′) by the maximal
tamely ramified subextension of F∞ (resp. F ′∞), we may assume that every
character of Gal(F/Q) and Gal(F ′/Q) is the product of a power of the mod p
cyclotomic character and a character unramified at p.
After making these reductions, we let M denote the (unique) p-extension of Q

inside of F ′ such that MF = F ′. Set G = Gal(F/Q) and H = Gal(M/Q), so
that Gal(F ′/Q) ∼= G×H. We have

(5) µan(F∞, f) =
∑

ψ∈Gal(F/Q)∨

µan(Q∞, fψ)

and

(6) µan(F ′∞, f) =
∑

ψ∈Gal(F ′/Q)∨

µan(Q∞, fψ) =
∑

ψ∈G∨

∑

χ∈H∨
µan(Q∞, fψχ).

Since we are assuming that µan(F∞, f) = 0 and since these µ-invariants are non-
negative, from (5) it follows that µan(Q∞, fψ) = 0 for each ψ ∈ Gal(F/Q)∨.
Fix ψ ∈ G∨. For any χ ∈ H∨, ψχ is congruent to ψ modulo any prime over
p and thus fχ and fψχ are congruent modulo any prime over p. Then, since
µan(Q∞, fψ) = 0, by [1, Theorem 3.7.5] it follows that µan(Q∞, fψχ) = 0 for
each χ ∈ H∨. (Note that the results of [1] apply to twists of p-ordinary forms
by powers of the mod p cyclotomic character; this is why the reduction to the
tamely ramified case is necessary for this argument.) Therefore, by (6) we have
that µan(F ′∞, f) = 0 proving the first part of the theorem.
For λ-invariants, we again have

λan(F∞, f) =
∑

ψ∈Gal(F/Q)∨

λan(Q∞, fψ).

and

(7) λan(F ′∞, f) =
∑

ψ∈G∨

∑

χ∈H∨
λan(Q∞, fψχ).

Documenta Mathematica · Extra Volume Coates (2006) 615–630



Kida’s Formula and Congruences 625

By [1, Theorem 3.7.7] the congruence between fχ and fψχ implies that

λan(Q∞, fψχ)− λan(Q∞, fψ) =
∑

v

(
mQ∞,v (Vfψχ ⊗ ω−1)−mQ∞,v (Vfψ ⊗ ω−1)

)

where the sum is over all places v of Q∞ at which χ is ramified. (Note that in
[1] the sum extends over all prime-to-p places; however, the terms are trivial
unless χ is ramified at v. Also note that the mod p cyclotomic characters that
appear are actually trivial since if Q∞,v has a ramified Galois p-extensions for
v ∤ p, then µp ⊆ Q∞,v.)
Combining this with (7) and the definition of m(M∞,v′/Q∞,v, Vfψ ), we con-
clude that

λan(F ′∞, f) =
∑

ψ∈G∨

(
[F ′∞ : F∞] · λan(Q∞, fψ)+

∑

v′∈R(M∞/Q∞)

m(M∞,v′/Q∞,v, Vfψ )
)

= [F ′∞ : F∞] · λan(F∞, f)+
∑

v′∈R(M∞/Q∞)

∑

ψ∈G∨
m(M∞,v′/Q∞,v, Vfψ )

= [F ′∞ : F∞] · λan(F∞, f) +
∑

v′∈R(M∞/Q∞)

gv′(F
′
∞/M∞)·

m(M∞,v′/Q∞,v,Z[Gal(F∞,w/Q∞,v)]⊗ Vf )

where gv′(F
′
∞/M∞) denotes the number of places of F ′∞ above the place v′ of

M∞. By Frobenius reciprocity,

m(M∞,v′/Q∞,v,Z[Gal(F∞,w/Q∞,v)]⊗ Vf ) = m(F ′∞,w′/F∞,w, Vf )

where w′ is the unique place of F ′∞ above v′ and w. It follows that

λ(F ′∞, f) = [F ′∞ : F∞] · λan(F∞, f) +
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, Vf )

as desired. �

4. Additional Results

4.1. Hilbert modular forms. We illustrate our results in the case of the
two-dimensional representation Vf associated to a Hilbert modular eigenform
f over a totally real field F . Although in principle our analytic results should
remain true in this context, we focus on the less conjectural algebraic picture.
Fix a GF -stable lattice Tf ⊆ Vf and let Af = Tf ⊗K/O.
Let F ′ be a finite Galois p-extension of F unramified at all places dividing p;
for simplicity we assume also that F ′ is linearly disjoint from F∞. Let v be a
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place of F not dividing p and fix a place v′ of F ′ lying over v. For a character
ϕ of Gv, we define

h(ϕ) =





−1 ϕ ramified, ϕ|Gv′ unramified, and ϕ ≡ 1 mod π;

0 ϕ 6≡ 1 mod π or ϕ|Gv′ ramified;

ev(F
′/F )− 1 ϕ unramified and ϕ ≡ 1 mod π

where ev(F
′/F ) denotes the ramification index of v in F ′/F and Gv′ is the

decomposition group at v′. Set

hv(f) =





h(ϕ1) + h(ϕ2) f principal series with characters ϕ1, ϕ2 at v;

h(ϕ) f special with character ϕ at v;

0 f supercuspidal or extraordinary at v.

For example, if f is unramified principal series at v with Frobenius character-
istic polynomial

x2 − avx+ cv,

then

hv(f) =





2(ev(F
′/F )− 1) av ≡ 2, cv ≡ 1 mod π

ev(F
′/F )− 1 av ≡ cv + 1 6≡ 2 mod π

0 otherwise.

Theorem 4.1. Assume that f is ordinary (in the sense that for each place v
dividing p the Galois representation Vf has a unique one-dimensional quotient
unramified at v) and that

H0(F,Af [π]) = H0
(
F,Hom(Af [π], µp)

)
= 0.

If Sel(F∞, Af ) is Λ-cotorsion with µalg(F∞, Af ) = 0, then also Sel(F ′∞, Af ) is
Λ-cotorsion with µalg(F ′∞, Af ) = 0 and

λalg(F ′∞, A) = [F ′∞ : F∞] · λalg(F∞, A) +
∑

v

gv(F
′
∞/F ) · hv(f);

here the sum is over the prime-to-p places of F ramified in F ′∞ and gv(F
′
∞/F )

denotes the number of places of F ′∞ lying over such a v.

Proof. Fix a place v of F not dividing p and let w denote a place of F∞ lying
over v. Since there are exactly gv(F∞/F ) such places, by Theorem 2.8 it suffices
to prove that

(8) hv(f) = m(F ′∞,w′/F∞,w, Vf ) :=
∑

χ∈Gal(F ′∞,w′/F∞,w)∨

(
mF∞,w(Vf )−mF∞,w(Vf,χ)

)
.

This is a straightforward case analysis. We will discuss the case that Vf is
special associated to a character ϕ at v; the other cases are similar. In the
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special case, we have

Vf,χ|IF∞,w =

{
K ′(χϕ) χϕ|GF∞,w unramified;

0 χϕ|GF∞,w ramified.

Since an unramified character has trivial restriction to GF∞,w if and only if it
has trivial reduction modulo π, it follows that

mF∞,w(Vf,χ) =

{
1 ϕ ≡ 1 mod π and χϕ|GF∞,w unramified;

0 otherwise.

In particular, the sum in (8) is zero if ϕ 6≡ 1 mod π or if ϕ is ramified when
restricted to GF ′∞,w′ (as then χϕ is ramified for all χ ∈ G∨v ). If ϕ ≡ 1 mod π and

ϕ itself is unramified, then mF∞,w(Vf ) = 1 while mF∞,w(Vf,χ) = 0 for χ 6= 1,
so that the sum in (8) is [F ′∞,w′ : F∞,w]−1 = ev(F

′/F )−1, as desired. Finally,
if ϕ ≡ 1 mod π and ϕ is ramified but becomes unramified when restricted to
Gv′ , then mF∞,w(Vf ) = 0, while mF∞,w(Vf,χ) = 1 for a unique χ, so that the
sum is −1. �

Suppose finally that f is in fact the Hilbert modular form associated to an
elliptic curve E over F . The only principal series which occur are unramified
and we have cv ≡ 1 (mod π) (since the determinant of Vf is cyclotomic and
F∞ has a p-extension (namely, F ′∞) ramified at v), so that

hv(f) 6= 0 ⇔ av ≡ 2 ⇔ E(Fv) has a point of order p

in which case hv(f) = 2(ev(F
′/F )−1). The only characters which may occur in

a special constituent are trivial or unramified quadratic, and we have hv(f) =
ev(F

′/F )− 1 or 0 respectively. Thus Theorem 4.1 recovers [3, Theorem 3.1] in
this case.

4.2. The main conjecture. Let f be a p-ordinary elliptic modular eigenform
of weight at least two and arbitrary level with associated Galois representation
Vf . Let F be a finite abelian extension of Q with cyclotomic Zp-extension
F∞. Recall that the p-adic Iwasawa main conjecture for f over F asserts
that the Selmer group Sel(F∞, Af ) is Λ-cotorsion and that the characteristic
ideal of its dual is generated by the p-adic L-function Lp(F∞, f). In fact,
when the residual representation of Vf is absolutely irreducible, it is known
by work of Kato that Sel(F∞, Af ) is indeed Λ-cotorsion and that Lp(F∞, f)
is an element of the characteristic ideal of Sel(F∞, Af ). In particular, this
reduces the verification of the main conjecture for f over F to the equality
of the algebraic and analytic Iwasawa invariants of f over F . The identical
transition formulae in Theorems 2.8 and 3.1 thus yield the following immediate
application to the main conjecture.

Theorem 4.2. Let F ′/F be a finite p-extension with F ′ abelian over Q. If the
residual representation of Vf is absolutely irreducible and p-distinguished, then
the main conjecture holds for f over F with µ(F∞, f) = 0 if and only if it holds
for f over F ′ with µ(F ′∞, f) = 0 .
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For an example of Theorem 4.2, consider the eigenform

∆ = q
∏

n≥1

(1− qn)24

of weight 12 and level 1. We take p = 11. It is well known that ∆ is congruent
modulo 11 to the newform associated to the elliptic curve X0(11). The 11-adic
main conjecture is known for X0(11) over Q; it has trivial µ-invariant and λ-
invariant equal to 1 (see, for instance, [1, Example 5.3.1]. We should be clear
here that the non-triviality of λ in this case corresponds to a trivial zero of the
p-adic L-function; we are using the Greenberg Selmer group which does account
for the trivial zero.) It follows from [1] that the 11-adic main conjecture also
holds for ∆ over Q, again with trivial µ-invariant and λ-invariant equal to 1.
Theorem 4.2 thus allows us to conclude that the main conjecture holds for ∆
over any abelian 11-extension of Q.
For a specific example, consider F = Q(ζ23)

+; it is a cyclic 11-extension of
Q. We can easily use Theorem 4.1 to compute its λ-invariant: using that
τ(23) = 18643272 one finds that h23(∆) = 0, so that λ(Q(ζ23)

+,∆) = 11.
For a more interesting example, take F to be the unique subfield of Q(ζ1123)
which is cyclic of order 11 over Q. In this case we have

τ(1123) ≡ 2 (mod 11)

so that we have h1123(∆) = 20. Thus, in this case, Theorem 4.1 shows that
λ(F,∆) = 31.

4.3. The supersingular case. As mentioned in the introduction, the un-
derlying principle of this paper is that the existence of a formula relating the
λ-invariants of congruent Galois representations should imply a Kida-type for-
mula for these invariants. We illustrate this now in the case of modular forms
of weight two that are supersingular at p.
Let f be an eigenform of weight 2 and level N with Fourier coefficients in K
some finite extension of Qp. Assume further than p ∤ N and that ap(f) is
not a p-adic unit. In [8], Perrin-Riou associates to f a pair of algebraic and
analytic µ-invariants over Q∞ which we denote by µ⋆±(Q∞, f). (Here ⋆ denotes
either “alg” or “an” for algebraic and analytic respectively.) Moreover, when
µ⋆+(Q∞, f) = µ⋆−(Q∞, f) or when ap(f) = 0, she also defines corresponding
λ-invariants λ⋆±(Q∞, f). When ap(f) = 0 these invariants coincide with the
Iwasawa invariants of [6] and [9]. We also note that in [8] only the case of
elliptic curves is treated, but the methods used there generalize to weight two
modular forms.
We extend the definition of these invariants to the cyclotomic Zp-extension of
an unramified abelian extension F of Q. We define

µ⋆±(F∞, f) =
∑

ψ∈Gal(F/Q)∨

µ⋆±(Q∞, fψ) and λ⋆±(F∞, f) =
∑

ψ∈Gal(F/Q)∨

λ⋆±(Q∞, fψ)

for ⋆ ∈ {alg, an}.
The following transition formula follows from the congruence results of [2].
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Theorem 4.3. Let f be as above and consider a p-extension of number fields
F ′/F with F ′/Q unramified at p. If µ⋆±(F∞, f) = 0, then µ⋆±(F ′∞, f) = 0.
Moreover, if this is the case, then

λ⋆±(F ′∞, f) = [F ′∞ : F∞] · λ⋆±(F∞, f) +
∑

w′∈R(F ′∞/F∞)

m(F ′∞,w′/F∞,w, Vf ).

In particular, if the main conjecture is true for f over F (with µ⋆±(F∞, f) = 0),
then the main conjecture is true for f over F ′ (with µ⋆±(F ′∞, f) = 0).

Proof. The proof of this theorem proceeds along the lines of the proof of The-
orem 3.1 replacing the appeals to the results of [1, 11] to the results of [2].
The main result of [2] is a formula relating the λ⋆±-invariants of congruent su-
persingular weight two modular forms. This formula has the same shape as
the formulas that appear in [1] and [11] which allows for the proof to proceed
nearly verbatim. �
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In this paper, we take some initial steps towards illuminating the (hypothetical)
p-adic local Langlands functoriality principle relating Galois representations of
a p-adic field L and admissible unitary Banach space representations of G(L)
when G is a split reductive group over L. The outline of our work is derived
from Breuil’s remarkable insights into the nature of the correspondence between
2-dimensional crystalline Galois representations of the Galois group of Qp and
Banach space representations of GL2(Qp).

In the first part of the paper, we study the p-adic completion B(G, ρ) of the
Hecke algebra H(G, ρ) of bi-equivariant compactly supported End(ρ)-valued
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functions on a totally disconnected, locally compact group G derived from a
finite dimensional continuous representation ρ of a compact open subgroup U
of G. (These are the “Banach-Hecke algebras” of the title). After describing
some general features of such algebras we study in particular the case where G
is split reductive and U = U0 is a special maximal compact or U = U1 is an
Iwahori subgroup of G and ρ is the restriction of a finite dimensional algebraic
representation of G to U0 or U1.

In the smooth theory for trivial ρ = 1U , by work of Bernstein, the maxi-
mal commutative subalgebra of the Iwahori-Hecke algebra is isomorphic to the
group ring K[Λ] where Λ is the cocharacter group of a maximal split torus T
of G, and the spherical Hecke algebra is isomorphic by the Satake isomorphism
to the ring K[Λ]W of Weyl group invariants. At the same time the algebra
K[Λ] may be viewed as the ring of algebraic functions on the dual maximal
torus T ′ in the dual group G′. Together, these isomorphisms allow the identifi-
cation of characters of the spherical Hecke algebra with semisimple conjugacy
classes in G′. On the one hand, the Hecke character corresponds to a certain
parabolically induced smooth representation; on the other, the conjugacy class
in G′ determines the Frobenius in an unramified Weil group representation of
the field L. This is the unramified local Langlands correspondence (the Satake
parametrization) in the classical case.

With these principles in mind, we show that the completed maximal commuta-
tive subalgebra of the Iwahori-Hecke algebra for ρ is isomorphic to the affinoid
algebra of a certain explicitly given rational subdomain T ′ρ in the dual torus
T ′. The spectrum of this algebra therefore corresponds to certain points of T ′.
We also show that the quotient of this subdomain by the Weyl group action is
isomorphic to the corresponding completion of the spherical Hecke algebra; this
algebra, for most groups G, turns out to be a Tate algebra. These results may
be viewed as giving a p-adic completion of the Satake isomorphism, though our
situation is somewhat complicated by our reluctance to introduce a square root
of q as is done routinely in the classical case. These computations take up the
first four sections of the paper.

In the second part of the paper, we let G = GLd+1(L). We relate the sub-
domain of T ′ determined by the completion B(G, ρ) to isomorphism classes
of a certain kind of crystalline Dieudonne module. This relationship follows
Breuil’s theory, which puts a 2-dimensional irreducible crystalline representa-
tion V of Gal(Qp/Qp) with coefficients in a field K into correspondence with a
topologically irreducible admissible unitary representation of GL2(Qp) in a K-
Banach space. Furthermore, this Banach space representation is a completion
of a locally algebraic representation whose smooth factor comes from Dcris(V )
viewed as a Weil group representation and whose algebraic part is determined
by the Hodge-Tate weights of V .

To state our relationship, let V be a d+1-dimensional crystalline representation
of Gal(L/L) in a K-vector space, where L and K are finite extensions of Qp. In
this situation, Dcris(V ) has a K-vector space structure. Suppose further that:
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i. L is embeddable into K, and fix once and for all such an embedding L ⊆ K;

ii. the eigenvalues of the Frobenius on Dcris(V ) lie in K;

iii. the (negatives of) the Hodge-Tate weights of Dcris(V ) are multiplicity free
and are separated from one another by at least [L : Qp];

iv. V is special, meaning that the kernel of the natural map

Cp ⊗Qp V → Cp ⊗L V

is generated by its Gal(L/L) invariants.

It follows from the Colmez-Fontaine theory that the category of such special
representations is equivalent to a category of “K-isocrystals”, which are K-
vector spaces with a K-linear Frobenius and a filtration that is admissible in a
sense very close to the usual meaning.

Given such a representation, we extract from the associated K-isocrystal its
Frobenius, which we view as an element of the dual group G′(K) determined
up to conjugacy. The semi-simple part ζ of this element determines a point
of T ′(K) up to the Weyl group action. From the Hodge-Tate weights, we
extract a dominant cocharacter of G′ and hence a highest weight ξ determining
an algebraic representation ρ = ρξ for G. (In fact, the highest weight is a
modification of the Hodge-Tate weights, but we avoid this complication in this
introduction). Put together, this data yields a completion of the Iwahori-Hecke
algebra, determined by the highest weight, and a character of its maximal
commutative subalgebra, determined up to the Weyl group action. In other
words, we obtain a simple module Kζ for the completed spherical Hecke algebra
B(G, ρξ|U0).

Our main result is that the existence of an admissible filtration on Dcris(V )
translates into the condition that the point of T ′ determined by the Frobenius
lives in the subdomain T ′ρ. Conversely, we show how to reverse this procedure
and, from a point of T ′ρ(K) (up to Weyl action), make an isocrystal that admits
an admissible filtration of Hodge-Tate type determined by ρ. See Section 5 (esp.
Proposition 5.2) for the details.

It is crucial to realize that the correspondence between points of T ′ρ and isocrys-
tals outlined above does not determine a specific filtration on the isocrystal.
Except when d = 1 there are infinitely many choices of filtration compatible
with the given data. Consequently the “correspondence” we describe is a very
coarse version of a p-adic local Langlands correspondence.

To better understand this coarseness on the “representation-theoretic” side, re-
call that to a Galois representation V of the type described above we associate
a simple module Kζ for the completion B(G, ρ|U0) of the spherical Hecke alge-
bra. There is an easily described sup-norm on the smooth compactly induced
representation indGU0

(ρ|U0); let BGU0
(ρ|U0) be the completion of this represen-

tation. We show that the completed Hecke algebra acts continuously on this
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space. By analogy with the Borel-Matsumoto theory constructing paraboli-
cally induced representations from compactly induced ones, and following also
Breuil’s approach for GL2(Qp), it is natural to consider the completed tensor
product

Bξ,ζ := Kζ ⊗̂B(G,ρξ|U0)B
G
U0

(ρξ|U0) .

A deep theorem of Breuil-Berger ([BB]) says that, in the GL2(Qp)-case, this
representation in most cases is nonzero, admissible, and irreducible, and under
Breuil’s correspondence it is the Banach representation associated to V . In our
more general situation, we do not know even that Bξ,ζ is nonzero. Accepting,
for the moment, that it is nonzero, we do not expect it to be admissible or
irreducible, because it is associated to the entire infinite family of representa-
tions having the same Frobenius and Hodge-Tate weights as V but different
admissible filtrations. We propose that Bξ,ζ maps, with dense image, to each
of the Banach spaces coming from this family of Galois representations. We
discuss this further in Section 5.

In the last section of this paper (Section 6) we consider the shape of a p-adic
local Langlands functoriality for a general L-split reductive group G over L,
with Langlands dual group G′ also defined over L. Here we rely on ideas from
the work of Kottwitz, Rapoport-Zink, and Fontaine-Rapoport. Recall that a
cocharacter ν of the dual group G′ defined over K allows one to put a filtra-
tion Fil·ρ′◦ν E on every K-rational representation space (ρ′, E) of G′. Using
(a modified version of) a notion of Rapoport-Zink, we say that a pair (ν, b)
consisting of an element b of G′(K) and a K-rational cocharacter ν of G′ is
an “admissible pair” if, for any K-rational representation (ρ′, E) of G′, the
K-isocrystal (E, ρ′(b), F il·ρ′◦ν E) is admissible. Such an admissible pair defines
a faithful tensor functor from the neutral Tannakian category of K-rational
representations of G′ to that of admissible filtered K-isocrystals. Composing
this with the Fontaine functor one obtains a tensor functor to the category
of “special” Gal(L/L) representations of the type described earlier. The Tan-
nakian formalism therefore constructs from an admissible pair an isomorphism
class of representations of the Galois group of L in G′(K).

Now suppose given an irreducible algebraic representation ρ of G. Its highest
weight may be viewed as a cocharacter of G′. Under a certain technical con-
dition, we prove in this section that there is an admissible pair (ν, b) where
ν is conjugate by G′(K) to a (modification of) the highest weight, and b is
an element of G′(K), if and only if the semisimple part of b is conjugate to
an element of the affinoid domain T ′ρ(K) (See Proposition 6.1). Thus in some
sense this domain is functorial in the group G′.

Our work in this section relies on a technical hypothesis on G. Suppose that η
is half the sum of the positive roots of G. We need [L : Qp]η to be an integral
weight of G. This happens, for example, if L has even degree over Qp, and in
general for many groups, but not, for example, when G = PGL2(Qp). This
complication has its origin in the normalization of the Langlands correspon-
dence. Because of the square root of q issue the p-adic case seems to force
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the use of the “Hecke” or the “Tate” correspondence rather than the tradi-
tional unitary correspondence; but even for smooth representations this is not
functorial (cf. [Del] (3.2.4-6)). It turns out that without the above integrality
hypothesis one even has to introduce a square root of a specific continuous
Galois character (for L = Qp it is the cyclotomic character). This leads to
isocrystals with a filtration indexed by half-integers. Although it seems possi-
ble to relate these to Galois representations this has not been done yet in the
literature. We hope to come back to this in the future.

The authors thank Matthew Emerton for pointing out that the conditions
which define our affinoid domains T ′ρ are compatible with the structure of his
Jacquet functor on locally algebraic representations ([Em1] Prop. 3.4.9 and
Lemma 4.4.2, [Em2] Lemma 1.6). We thank Laurent Berger, Christophe Breuil,
and especially Jean-Marc Fontaine for their very helpful conversations about
these results. We also want to stress that our computations in Section 4 rely
in an essential way on the results of Marie-France Vigneras in [Vig]. The first
author gratefully acknowledges support from UIC and CMI. During the final
stages of this paper he was employed by the Clay Mathematics Institute as
a Research Scholar. The second author was supported by National Science
Foundation Grant DMS-0245410.

We dedicate this paper to John Coates on the occasion of his sixtieth birthday.
His constant support and unrelenting enthusiasm was and is an essential source
of energy and inspiration for us over all these years.

Throughout this paper K is a fixed complete extension field of Qp with absolute
value | |.
Added in proof: In a forthcoming joint paper by C. Breuil and P. Schneider the
technical restrictions of the present paper – that L ⊆ K, that the crystalline
Galois representations V have to be special, and that [L : Qp]η has to be an
integral weight for the split group G – will be removed. In fact, this forces a
renormalization of the picture in the present paper.

1. Banach-Hecke algebras

In this section G denotes a totally disconnected and locally compact group,
and U ⊆ G is a fixed compact open subgroup. We let (ρ,E) be a continuous
representation of U on a finite dimensional K-vector space E, and we fix a
U -invariant norm ‖ ‖ on E.

The Hecke algebra H(G, ρ) is the K-vector space of all compactly supported
functions ψ : G −→ EndK(E) satisfying

ψ(u1gu2) = ρ(u1) ◦ ψ(g) ◦ ρ(u2) for any u1, u2 ∈ U and g ∈ G .

It is a unital associative K-algebra via the convolution

ψ1 ∗ ψ2(h) :=
∑

g∈G/U
ψ1(g) ◦ ψ2(g

−1h) .
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Its unit element is the function

ψe(h) :=

{
ρ(h) if h ∈ U,
0 otherwise.

We note that any function ψ in H(G, ρ) necessarily is continuous. We now
introduce the norm

‖ψ‖ := supg∈G ‖ψ(g)‖

on H(G, ρ) where on the right hand side ‖ ‖ refers to the operator norm on
EndK(E) with respect to the original norm ‖ ‖ on E. This norm on H(G, ρ)
evidently is submultiplicative. By completion we therefore obtain a unital
K-Banach algebra B(G, ρ), called in the following the Banach-Hecke algebra,
with submultiplicative norm. As a Banach space B(G, ρ) is the space of all
continuous functions ψ : G −→ EndK(E) vanishing at infinity and satisfying

ψ(u1gu2) = ρ(u1) ◦ ψ(g) ◦ ρ(u2) for any u1, u2 ∈ U and g ∈ G .

In the special case where ρ = 1U is the trivial representation H(G, 1U ), resp.
B(G, 1U ), is the vector space of all K-valued finitely supported functions, resp.
functions vanishing at infinity, on the double coset space U\G/U .

A more intrinsic interpretation of these algebras can be given by introducing
the compactly induced G-representation indGU (ρ). This is the K-vector space
of all compactly supported functions f : G −→ E satisfying

f(gu) = ρ(u−1)(f(g)) for any u ∈ U and g ∈ G

with G acting by left translations. Again we note that any function f in indGU (ρ)
is continuous. We equip indGU (ρ) with the G-invariant norm

‖f‖ := supg∈G ‖f(g)‖

and let BGU (ρ) denote the corresponding completion. The G-action extends
isometrically to the K-Banach space BGU (ρ), which consists of all continuous
functions f : G −→ E vanishing at infinity and satisfying

f(gu) = ρ(u−1)(f(g)) for any u ∈ U and g ∈ G .

Lemma 1.1: The G-action on BGU (ρ) is continuous.

Proof: Since G acts isometrically it remains to show that the orbit maps

cf : G −→ BGU (ρ)
g 7−→ gf ,
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for any f ∈ BGU (ρ), are continuous. In case f ∈ indGU (ρ) the map cf even is
locally constant. In general we write f = lim

i→∞
as the limit of a sequence (fi)i∈IN

in indGU (ρ). Because of

‖(cf − cfi)(g)‖ = ‖g(f − fi)‖ = ‖f − fi‖

the map cf is the uniform limit of the locally constant maps cfi and hence is
continuous.

One easily checks that the pairing

(1)
H(G, ρ)× indGU (ρ) −→ indGU (ρ)

(ψ, f) 7−→ (ψ ∗ f)(g) :=
∑
h∈G/U ψ(g−1h)(f(h))

makes indGU (ρ) into a unital left H(G, ρ)-module and that this module structure
commutes with the G-action.

Lemma 1.2: The map

H(G, ρ)
∼=−→ EndG(indGU (ρ))

ψ 7−→ Aψ(f) := ψ ∗ f

is an isomorphism of K-algebras.

Proof: For a smooth representation ρ this can be found in [Kut]. Our more
general case follows by the same argument. But since we will need the notations
anyway we recall the proof. The map in question certainly is a homomorphism
of K-algebras. We now introduce, for any w ∈ E, the function

fw(g) :=

{
ρ(g−1)(w) if g ∈ U,
0 otherwise

in indGU (ρ). We have

(2) Aψ(fw)(g) = (ψ ∗ fw)(g) = ψ(g−1)(w) for any ψ ∈ H(G, ρ) .

This shows that the map in question is injective. To see its surjectivity we fix
an operator A0 ∈ EndG(indGU (ρ)) and consider the function

ψ0 : G −→ EndK(E)
g 7−→ [w 7→ A0(fw)(g−1)] .

It clearly has compact support. Furthermore, for u1, u2 ∈ U , we compute

ψ0(u1gu2)(w) = A0(fw)(u−1
2 g−1u−1

1 ) = ρ(u1)[A0(fw)(u−1
2 g−1)]

= ρ(u1)[(u2(A0(fw)))(g−1)] = ρ(u1)[A0(u2(fw))(g−1)]

= ρ(u1)[A0(fρ(u2)(w))(g
−1)] = ρ(u1)[ψ0(ρ(u2)(w))]

= [ρ(u1) ◦ ψ0 ◦ ρ(u2)](w) .
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Hence ψ0 ∈ H(G, ρ). Moreover, for any f ∈ indGU (ρ) we have

f =
∑

h∈G/U
h(ff(h))

and therefore

Aψ0
(f)(g) = (ψ0 ∗ f)(g) =

∑

h∈G/U
ψ0(g

−1h)(f(h))

=
∑

h∈G/U
A0(ff(h))(h

−1g) = A0(
∑

h∈G/U
h(ff(h)))(g)

= A0(f)(g) .

Hence Aψ0
= A0.

We evidently have ‖ψ ∗ f‖ ≤ ‖ψ‖ · ‖f‖. By continuity we therefore obtain a
continuous left action of the Banach algebra B(G, ρ) on the Banach space BGU (ρ)
which is submultiplicative in the corresponding norms and which commutes
with the G-action. This action is described by the same formula (1), and we
therefore continue to denote it by ∗.

Lemma 1.3: The map

B(G, ρ)
∼=−→ EndcontG (BGU (ρ))

ψ 7−→ Aψ(f) := ψ ∗ f

is an isomorphism of K-algebras and is an isometry with respect to the operator
norm on the right hand side.

Proof: (The superscript “cont” refers to the continuous endomorphisms.) By
the previous discussion the map ψ 7−→ Aψ is well defined, is a homomorphism
of K-algebras, and is norm decreasing. Using the notations from the proof of
Lemma 1.2 the formula (2), by continuity, holds for any ψ ∈ B(G, ρ). Using
that ‖fw‖ = ‖w‖ we now compute

‖Aψ‖ ≥ sup
w 6=0

‖ψ ∗ fw‖
‖fw‖

= sup
w 6=0

sup
g

‖ψ(g−1)(w)‖
‖w‖ = sup

g
‖ψ(g−1)‖

= ‖ψ‖ ≥ ‖Aψ‖ .

It follows that the map in the assertion is an isometry and in particular is
injective. To see its surjectivity we fix an A0 ∈ EndcontG (BGU (ρ)) and define

ψ0 : G −→ EndK(E)
g 7−→ [w 7→ A0(fw)(g−1)] .
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Since each A0(fw) is continuous and vanishing at infinity on G it follows that
ψ0 is continuous and vanishing at infinity. By exactly the same computations
as in the proof of Lemma 1.2 one then shows that in fact ψ0 ∈ B(G, ρ) and
that Aψ0

= A0.

We end this section by considering the special case where (ρ,E) is the restriction
to U of a continuous representation ρ of G on a finite dimensional K-vector
space E. It is easy to check that then the map

ιρ : H(G, 1U ) −→ H(G, ρ)
ψ 7−→ (ψ · ρ)(g) := ψ(g)ρ(g)

is an injective homomorphism of K-algebras. There are interesting situations
where this map in fact is an isomorphism. We let L be a finite extension of Qp
contained in K, and we assume that G as well as (ρ,E) are locally L-analytic.

Lemma 1.4: Suppose that, for the derived action of the Lie algebra g of G,
the K ⊗L g-module E is absolutely irreducible; then the homomorphism ιρ is
bijective.

Proof: Using Lemma 1.2 and Frobenius reciprocity we have

H(G, ρ) = EndG(indGU (ρ)) = HomU (E, indGU (ρ))

= HomU (E, indGU (1)⊗K E)

= [indGU (1)⊗K E∗ ⊗K E]U

where the last term denotes the U -fixed vectors in the tensor product with
respect to the diagonal action. This diagonal action makes the tensor prod-
uct equipped with the finest locally convex topology into a locally analytic
G-representation. Its U -fixed vectors certainly are contained in the vectors
annihilated by the derived action of g. Since G acts smoothly on indGU (1) we
have

(indGU (1)⊗K E∗ ⊗K E)g=0 = indGU (1)⊗K (E∗ ⊗K E)g=0

= indGU (1)⊗K EndK⊗Lg(E) .

Our assumption on absolute irreducibility implies that EndK⊗Lg(E) = K. We
therefore see that

H(G, ρ) = [indGU (1)⊗K E∗ ⊗K E]U = indGU (1)U = H(G, 1U ) .

2. Weights and affinoid algebras

For the rest of this paper L/Qp is a finite extension contained in K, and G
denotes the group of L-valued points of an L-split connected reductive group
over L. Let | |L be the normalized absolute value of L, valL : K× −→ IR
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the unique additive valuation such that valL(L×) = ZZ, and q the number of
elements in the residue class field of L. We fix a maximal L-split torus T in
G and a Borel subgroup P = TN of G with Levi component T and unipotent
radical N . The Weyl group of G is the quotient W = N(T )/T of the normalizer
N(T ) of T in G by T . We also fix a maximal compact subgroup U0 ⊆ G which
is special with respect to T (i.e., is the stabilizer of a special vertex x0 in
the apartment corresponding to T , cf. [Car]§3.5). We put T0 := U0 ∩ T and
N0 := U0 ∩N . The quotient Λ := T/T0 is a free abelian group of rank equal to
the dimension of T and can naturally be identified with the cocharacter group
of T . Let λ : T −→ Λ denote the projection map. The conjugation action of
N(T ) on T induces W -actions on T and Λ which we denote by t 7−→ wt and
λ 7−→ wλ, respectively. We also need the L-torus T ′ dual to T . Its K-valued
points are given by

T ′(K) := Hom(Λ,K×) .

The group ring K[Λ] of Λ over K naturally identifies with the ring of algebraic
functions on the torus T ′. We introduce the “valuation map”

val : T ′(K) = Hom(Λ,K×)
valL ◦ // Hom(Λ, IR) =: VIR .

IfX∗(T ) denotes the algebraic character group of the torus T then, as |χ(T0)| =
{1}, we have the embedding

X∗(T ) −→ Hom(Λ, IR)
χ 7−→ valL ◦χ

which induces an isomorphism

X∗(T )⊗ IR
∼=→VIR .

We therefore may view VIR as the real vector space underlying the root datum
of G with respect to T . Evidently any λ ∈ Λ defines a linear form in the dual
vector space V ∗IR also denoted by λ. Let Φ denote the set of roots of T in G
and let Φ+ ⊆ Φ be the subset of those roots which are positive with respect
to P . As usual, α̌ ∈ Λ denotes the coroot corresponding to the root α ∈ Φ.
The subset Λ−− ⊆ Λ of antidominant cocharacters is defined to be the image
Λ−− := λ(T−−) of

T−− := {t ∈ T : |α(t)|L ≥ 1 for any α ∈ Φ+} .

Hence
Λ−− = {λ ∈ Λ : valL ◦α(λ) ≤ 0 for any α ∈ Φ+} .

We finally recall that Λ−− carries the partial order ≤ given by

µ ≤ λ if λ− µ ∈
∑

α∈Φ+

IR≥0 · (−α̌) ⊆ Λ⊗ IR .
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In this section we will investigate certain Banach algebra completions of the
group ring K[Λ] together with certain twisted W -actions on them. We will
proceed in an axiomatic way and will give ourselves a cocycle on W with values
in T ′(K), i.e., a map

γ : W × Λ −→ K×

such that

(a) γ(w, λµ) = γ(w, λ)γ(w, µ) for any w ∈W and λ, µ ∈ Λ

and

(b) γ(vw, λ) = γ(v,wλ)γ(w, λ) for any v, w ∈W and λ ∈ Λ .

Moreover we impose the positivity condition

(c) |γ(w, λ)| ≤ 1 for any w ∈W and λ ∈ Λ−−

as well as the partial triviality condition

(d) γ(w, λ) = 1 for any w ∈W and λ ∈ Λ such that wλ = λ .

The twisted action of W on K[Λ] then is defined by

W ×K[Λ] −→ K[Λ]
(w,
∑
λ cλλ) 7−→ w · (∑λ cλλ) :=

∑
λ γ(w, λ)cλ

wλ .

By (a), each w ∈W acts as an algebra automorphism, and the cocycle condition
(b) guarantees the associativity of this W -action. The invariants with respect
to this action will be denoted by K[Λ]W,γ . Since Λ−− is a fundamental domain
for the W -action on Λ it follows that K[Λ]W,γ has the K-basis {σλ}λ∈Λ−−

defined by

σλ :=
∑

w∈W/W (λ)

w · λ =
∑

w∈W/W (λ)

γ(w, λ)wλ

where W (λ) ⊆ W denotes the stabilizer of λ and where the sums are well
defined because of (d). Next, again using (d), we define the map

γdom : Λ −→ K×

λ 7−→ γ(w, λ) if wλ ∈ Λ−− ,

and we equip K[Λ] with the norm

‖
∑

λ

cλλ‖γ := sup
λ∈Λ
|γdom(λ)cλ| .

The cocycle condition (b) implies the identity

(1) γdom(wλ)γ(w, λ) = γdom(λ)
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from which one deduces that the twisted W -action on K[Λ] is isometric in the
norm ‖ ‖γ and hence extends by continuity to a W -action on the completion
K〈Λ; γ〉 of K[Λ] with respect to ‖ ‖γ . Again we denote the corresponding W -
invariants by K〈Λ; γ〉W,γ . One easily checks that {σλ}λ∈Λ−− is an orthonormal
basis of the Banach space (K〈Λ; γ〉W,γ , ‖ ‖γ).

Lemma 2.1: i. |γdom(λ)| ≥ 1 for any λ ∈ Λ;

ii. |γdom(λµ)| ≤ |γdom(λ)||γdom(µ)| for any λ, µ ∈ Λ.

Proof: i. If wλ ∈ Λ−− then γdom(λ) = γ(w, λ) = γ(w−1,wλ)−1. The claim
therefore is a consequence of the positivity condition (c). ii. If w(λµ) ∈ Λ−−

then, using (1), we have

γdom(λµ) = γdom(wλ)−1γdom(wµ)−1γdom(λ)γdom(µ) .

Hence the claim follows from the first assertion.

It is immediate from Lemma 2.1.i that the norm ‖ ‖γ is submultiplicative.
Hence K〈Λ; γ〉 is a K-Banach algebra containing K[Λ] as a dense subalgebra.
Moreover, since the twisted W -action on K〈Λ; γ〉 is by algebra automorphisms,
K〈Λ; γ〉W,γ is a Banach subalgebra of K〈Λ; γ〉.
In order to compute the Banach algebra K〈Λ; γ〉 we introduce the subset

T ′γ(K) := {ζ ∈ T ′(K) : |ζ(λ)| ≤ |γdom(λ)| for any λ ∈ Λ}

of T ′(K). We obviously have

T ′γ(K) = val−1(V γ
IR

)

with
V γ

IR
:= {z ∈ VIR : λ(z) ≥ valL(γdom(λ)) for any λ ∈ Λ} .

By (a), our cocycle γ defines the finitely many points

zw := −val(γ(w−1, .)) for w ∈W

in VIR. The cocycle condition (b) implies that

(2) zvw = vzw + zv for any v, w ∈W

and the positivity condition (c) that

(3) λ(zw) ≤ 0 for any w ∈W and λ ∈ Λ−− .

Remark 2.2: {z ∈ VIR : λ(z) ≤ 0 for any λ ∈ Λ−−} =
∑
α∈Φ+ IR≥0 · valL ◦α.
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Proof: This reduces to the claim that the (closed) convex hull of Λ−− in V ∗IR is
equal to the antidominant cone

(V ∗IR)−− = {z∗ ∈ V ∗IR : z∗(z) ≤ 0 for any z ∈
∑

α∈Φ+

IR≥0 · valL ◦α} .

Let Z ⊆ G denote the connected component of the center of G. Then G/Z is
semisimple and the sequence

0 −→ Z/Z0 −→ T/T0 −→ (T/Z)/(T/Z)0 −→ 0

is exact. Hence the fundamental antidominant coweights for the semisimple
group G/Z can be lifted to elements ω1, . . . , ωd ∈ V ∗IR in such a way that, for
some m ∈ IN, we have mω1, . . . ,mωd ∈ Λ−−. It follows that

(V ∗IR)−− = (Z/Z0)⊗ IR +
d∑

i=1

IR≥0 · ωi

and

Λ−− ⊇ Z/Z0 +m ·
d∑

i=1

ZZ≥0 · ωi .

We therefore obtain from (3) that

(4) zw ∈
∑

α∈Φ+

IR≥0 · valL ◦α for any w ∈W .

In terms of these points zw the set V γ
IR

is given as

{z ∈ VIR : λ(z) ≥ λ(−zw−1) for any λ ∈ Λ, w ∈W such that wλ ∈ Λ−−}
= {z ∈ VIR : w

−1

λ(z) ≥ w−1

λ(−zw−1) for any w ∈W and λ ∈ Λ−−}
= {z ∈ VIR : λ(wz) ≥ λ(zw) for any w ∈W and λ ∈ Λ−−}

where the last identity uses (2). Obviously V γ
IR

is a convex subset of VIR. Using
the partial order ≤ on VIR defined by Φ+ (cf. [B-GAL] Chap. VI §1.6) we obtain
from Remark 2.2 that

V γ
IR

= {z ∈ VIR : wz ≤ zw for any w ∈W} .

Lemma 2.3: V γ
IR

is the convex hull in VIR of the finitely many points −zw for
w ∈W .

Proof: From (2) and (4) we deduce that

wzv + zw = zwv ≥ 0 and hence w(−zv) ≤ zw
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for any v, w ∈ W . It follows that all −zv and therefore their convex hull is
contained in V γ

IR
. For the reverse inclusion suppose that there is a point z ∈ V γ

IR

which does not lie in the convex hull of the −zw. We then find a linear form
ℓ ∈ V ∗IR such that ℓ(z) < ℓ(−zw) for any w ∈ W . Choose v ∈ W such that

ℓ0 := vℓ is antidominant. It follows that v−1

ℓ0(z) <
v−1

ℓ0(−zw) and hence,
using (2), that

ℓ0(
vz) < ℓ0(−vzw) = ℓ0(zv)− ℓ0(zvw)

for any w ∈W . For w := v−1 we in particular obtain

ℓ0(
vz) < ℓ0(zv) .

On the other hand, since z ∈ V γ
IR

, we have

λ(vz) ≥ λ(zv)

for any λ ∈ Λ−− and hence for any λ in the convex hull of Λ−−. But as we have
seen in the proof of Remark 2.2 the antidominant ℓ0 belongs to this convex hull
which leads to a contradiction.

Proposition 2.4: i. T ′γ(K) is the set of K-valued points of an open K-affinoid
subdomain T ′γ in the torus T ′;

ii. the Banach algebra K〈Λ; γ〉 is naturally isomorphic to the ring of analytic
functions on the affinoid domain T ′γ ;

iii. the affinoid domain T ′γ is the preimage, under the map “val”, of the convex
hull of the finitely many points −zw ∈ VIR for w ∈W ;

iv. K〈Λ; γ〉W,γ is an affinoid K-algebra.

Proof: It follows from Gordan’s lemma ([KKMS] p. 7) that the monoid Λ−− is
finitely generated. Choose a finite set of generators F−−, and let

F := {wλ : λ ∈ F−−} .

Using the fact that, by construction, the function γdom is multiplicative within
Weyl chambers we see that the infinitely many inequalities implicit in the
definition of T ′γ(K) can in fact be replaced by finitely many:

T ′γ(K) = {ζ ∈ T ′(K) : |ζ(λ)| ≤ |γdom(λ)| for any λ ∈ F}.

We therefore define T ′γ to be the rational subset in T ′ given by the finitely many

inequalities |γdom(λ)−1λ(ζ)| ≤ 1 for λ ∈ F and obtain point i. of our assertion.
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Now choose indeterminates Tλ for λ ∈ F and consider the commutative diagram
of algebra homomorphisms

oK [Tλ : λ ∈ F ]

⊆
��

// K[Λ]0

⊆
��

K[Tλ : λ ∈ F ]

⊆
��

// K[Λ]

⊆
��

K〈Tλ : λ ∈ F 〉 // K〈Λ; γ〉

where the horizontal arrows send Tλ to γdom(λ)−1λ, where oK is the ring of
integers of K, and where K[Λ]0 denotes the unit ball with respect to ‖ ‖γ in
K[Λ]. Again, the multiplicativity of γdom within Weyl chambers shows that
all three horizontal maps are surjective. The lower arrow gives a presentation
of K〈Λ; γ〉 as an affinoid algebra. The middle arrow realizes the dual torus T ′

as a closed algebraic subvariety

ι : T ′ −→ AAf

ζ 7−→ (ζ(λ))λ∈F

in the affine space AAf where f denotes the cardinality of the set F . The
surjectivity of the upper arrow shows that the norm ‖ ‖γ onK[Λ] is the quotient
norm of the usual Gauss norm on the polynomial ring K[Tλ : λ ∈ F ]. Hence
the kernel of the lower arrow is the norm completion of the kernel I of the
middle arrow. Since any ideal in the Tate algebra K〈Tλ : λ ∈ F 〉 is closed we
obtain

K〈Λ; γ〉 = K〈Tλ : λ ∈ F 〉/IK〈Tλ : λ ∈ F 〉 .
This means that the affinoid variety Sp(K〈Λ; γ〉) is the preimage under ι of the
affinoid unit polydisk in AAf . In particular, Sp(K〈Λ; γ〉) is an open subdomain
in T ′ which is reduced and coincides with the rational subset T ′γ (cf. [FvP]
Prop. 4.6.1(4)). This establishes point ii. of the assertion. The point iii. is
Lemma 2.3. For point iv., as the invariants in an affinoid algebra with respect
to a finite group action, K〈Λ; γ〉W,γ is again affinoid (cf. [BGR] 6.3.3 Prop. 3).

Suppose that the group G is semisimple and adjoint. Then the structure of
the affinoid algebra K〈Λ; γ〉W,γ is rather simple. The reason is that for such
a group the set Λ−− is the free commutative monoid over the fundamental
antidominant cocharacters λ1, . . . , λd. As usual we let K〈X1, . . . ,Xd〉 denote
the Tate algebra in d variables over K. Obviously we have a unique continuous
algebra homomorphism

K〈X1, . . . ,Xd〉 −→ K〈Λ; γ〉W,γ

sending the variable Xi to σλi .
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We also need a general lemma about orthogonal bases in normed vector spaces.
Let (Y, ‖ ‖) be a normed K-vector space and suppose that Y has an orthogonal
basis of the form {xℓ}ℓ∈I . Recall that the latter means that

‖
∑

ℓ

cℓxℓ‖ = supℓ |cℓ| · ‖xℓ‖

for any vector
∑
ℓ cℓxℓ ∈ Y . We suppose moreover that there is given a partial

order ≤ on the index set I such that:

– Any nonempty subset of I has a minimal element;

– for any k ∈ I the set {ℓ ∈ I : ℓ ≤ k} is finite.

(Note that the partial order ≤ on Λ−− has these properties.)

Lemma 2.5: Suppose that ‖xℓ‖ ≤ ‖xk‖ whenever ℓ ≤ k; furthermore, let
elements cℓk ∈ K be given, for any ℓ ≤ k in I, such that |cℓk| ≤ 1; then the
vectors

yk := xk +
∑

ℓ<k

cℓkxℓ

form another orthogonal basis of Y , and ‖yk‖ = ‖xk‖.
Proof: We have

‖yk‖ = max(‖xk‖,maxℓ<k |cℓk| · ‖xℓ‖) = ‖xk‖

as an immediate consequence of our assumptions. We also have

xk = yk +
∑

ℓ<k

bℓkyℓ

where (bℓk) is the matrix inverse to (cℓk) (over the ring of integers in K; cf.
[B-GAL] Chap. VI §3.4 Lemma 4). Let now x =

∑
k ckxk be an arbitrary

vector in Y . We obtain

x =
∑

k

ckxk =
∑

k

ck(
∑

ℓ≤k
bℓkyℓ) =

∑

ℓ

(
∑

ℓ≤k
ckbℓk)yℓ .

Clearly ‖x‖ ≤ supℓ |
∑
ℓ≤k ckbℓk| · ‖yℓ‖. On the other hand we compute

supℓ |
∑
ℓ≤k ckbℓk| · ‖yℓ‖ ≤ supℓ supℓ≤k |ck| · ‖yℓ‖ = supℓ supℓ≤k |ck| · ‖xℓ‖

≤ supk |ck| · ‖xk‖ = ‖x‖ .

Proposition 2.6: If the group G is semisimple and adjoint then the above

map is an isometric isomorphism K〈X1, . . . ,Xd〉
∼=−→K〈Λ; γ〉W,γ .
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Proof: We write a given λ ∈ Λ−− as λ = λm1
1 . . . λmdd and put

σ̃λ := σm1

λ1
· . . . · σmdλd .

It suffices to show that these {σ̃λ}λ∈Λ−− form another orthonormal basis of
K〈Λ; γ〉W,γ . One checks that the arguments in [B-GAL] Chap. VI §§3.2 and
3.4 work, over the ring of integers in K, equally well for our twisted W -action
and show that we have

σ̃λ = σλ +
∑

µ<λ

cµλσµ

with |cµλ| ≤ 1. So we may apply Lemma 2.5.

We finish this section with a discussion of those examples of a cocycle γ which
will be relevant later on.

Example 1: We fix a prime element πL of L. Let ξ ∈ X∗(T ) be a dominant
integral weight and put

γ(w, λ(t)) := π
valL(ξ(wt))−valL(ξ(t))
L for t ∈ T .

This map γ obviously has the properties (a),(b), and (d). For t ∈ T−− we have
λ(wt) ≤ λ(t) by [B-GAL] Chap. VI §1.6 Prop. 18; since ξ is dominant we obtain

valL ◦ξ(
t
wt

) ≤ 0 .

This means that |γ(w, λ)| ≤ 1 for λ ∈ Λ−− which is condition (c). We leave it
as an exercise to the reader to check that the resulting Banach algebra K〈Λ; γ〉
together with the twisted W -action, up to isomorphism, is independent of the
choice of the prime element πL.

Example 2: A particular case of a dominant integral weight is the determinant
of the adjoint action of T on the Lie algebra Lie(N) of the unipotent radical N

∆(t) := det(ad(t); Lie(N)) .

Its absolute value satisfies
δ(t) = |∆(t)|−1

L

where δ : P −→ Q× ⊆ K× is the modulus character of the Borel subgroup P .
We let Kq/K denote the splitting field of the polynomial X2 − q and we fix
a root q1/2 ∈ K×q . Then the square root δ1/2 : Λ −→ K×q of the character δ
is well defined. For a completely analogous reason as in the first example the
cocycle

γ(w, λ) :=
δ1/2(wλ)

δ1/2(λ)
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has the properties (a)− (d). Moreover, using the root space decomposition of
Lie(N) one easily shows that

γ(w, λ(t)) =
∏

α∈Φ+\w−1Φ+

|α(t)|L .

Hence the values of this cocycle γ are integral powers of q and therefore lie in
K.

Example 3: Obviously the properties (a)− (d) are preserved by the product
of two cocycles. For any dominant integral weight ξ ∈ X∗(T ) therefore the
cocycle

γξ(w, λ(t)) :=
δ1/2(wλ)

δ1/2(λ)
· πvalL(ξ(wt))−valL(ξ(t))

L

is K-valued and satisfies (a)− (d). We write

V ξ
IR

:= V
γξ
IR

and T ′ξ := T ′γξ .

Let η ∈ VIR denote half the sum of the positive roots in Φ+ and put

ηL := [L : Qp] · η .

Let
ξL := valL ◦ξ ∈ VIR .

For the points zw ∈ VIR corresponding to the cocycle γξ we then have

zw = (ηL + ξL)− w(ηL + ξL) .

In particular, V ξ
IR

is the convex hull of the points w(ηL + ξL) − (ηL + ξL) for
w ∈W . Note that, since γξ has values in L×, the affinoid variety T ′ξ is naturally

defined over L. Given any point z ∈ VIR, we will write zdom for the unique
dominant point in the W -orbit of z.

Lemma 2.7: V ξ
IR

= {z ∈ VIR : (z + ηL + ξL)dom ≤ ηL + ξL}.
Proof: Using the formula before Lemma 2.3 we have

V ξ
IR

= {z ∈ VIR : wz ≤ (ηL + ξL)− w(ηL + ξL) for any w ∈W}
= {z ∈ VIR : w(z + ηL + ξL) ≤ ηL + ξL for any w ∈W} .

It remains to recall ([B-GAL] Chap. VI §1.6 Prop. 18) that for any z ∈ VIR and
any w ∈W one has wz ≤ zdom.

The γξ in Example 3 are the cocycles which will appear in our further investiga-
tion of specific Banach-Hecke algebras. In the following we explicitly compute
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the affinoid domain T ′ξ in case of the group G := GLd+1(L). (In case ξ = 1
compare also [Vig] Chap. 3.) We let P ⊆ G be the lower triangular Borel sub-
group and T ⊆ P be the torus of diagonal matrices. We take U0 := GLd+1(oL)
where oL is the ring of integers of L. If πL ∈ oL denotes a prime element then

Λ−− = {



πm1

L 0
. . .

0 π
md+1

L


T0 : m1 ≥ . . . ≥ md+1} .

For 1 ≤ i ≤ d+ 1 define the diagonal matrix

ti :=




πL 0
. . .

πL
1

. . .

0 1




with i diagonal entries equal to πL .

As a monoid Λ−− is generated by the elements λ1, . . . , λd+1, λ
−1
d+1 where λi :=

λ(ti). For any nonempty subset I = {i1, . . . , is} ⊆ {1, . . . , d+ 1} let λI ∈ Λ be
the cocharacter corresponding to the diagonal matrix having πL at the places
i1, . . . , is and 1 elsewhere. Moreover let, as usual, |I| := s be the cardinality of
I and put ht(I) := i1 + . . .+ is. These λI together with λ−1

{1,...,d+1} form the W -

orbit of the above monoid generators. From the proof of Prop. 2.4 we therefore
know that T ′ξ as a rational subdomain of T ′ is described by the conditions

|ζ(λI)| ≤ |γdomξ (λI)|

for any I and

|ζ(λ{1,...,d+1})| = |γdomξ (λ{1,...,d+1})| .

One checks that

|γdom1 (λI)| = |q||I|(|I|+1)/2−ht(I) .

If the dominant integral weight ξ ∈ X∗(T ) is given by



g1 0

. . .

0 gd+1


 7−→

d+1∏

i=1

gaii

with (a1, . . . , ad+1) ∈ ZZd+1 then

|γdomξ (λI)| = |q||I|(|I|+1)/2−ht(I)|πL|
∑|I|

j=1
aj−
∑

i∈I ai .
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We now use the coordinates

T ′(K) −→ (K×)d+1

ζ 7−→ (ζ1, . . . , ζd+1) with ζi := qi−1πaiL ζ(λ{i})

on the dual torus. In these coordinates T ′ξ is the rational subdomain of all

(ζ1, . . . , ζd+1) ∈ (K×)d+1 such that

∏

i∈I
|ζi| ≤ |q||I|(|I|−1)/2|πL|

∑|I|
i=1

ai

for any proper nonempty subset I ⊆ {1, . . . , d+ 1} and

d+1∏

i=1

|ζi| = |q|d(d+1)/2|πL|
∑d+1

i=1
ai .

The advantage of these variables is the following. As usual we identify the Weyl
group W with the symmetric group on the set {1, . . . , d+ 1}. One checks that

γξ(w, λ{i}) = qw(i)−iπ
aw(i)−ai
L

for any w ∈ W and 1 ≤ i ≤ d + 1. This implies that the twisted W -action on
the affinoid algebra K〈Λ; γξ〉 is induced by the permutation action on the coor-
dinates ζ1, . . . , ζd+1 of the affinoid domain T ′ξ. In fact, the above identity means
that the cocycle γξ can be written as the coboundary of an element in T ′(K).
This is more generally possible for any group G whose derived group is simply
connected (cf. [Gro] §8). We do not pursue this point of view systematically,
though, since it is not compatible with general Langlands functoriality. But
the problem of “splitting” the cocycle and the difficulty of reconciling the nor-
malization of the Satake isomorphism will reappear as a technical complication
in our attempt, in section 6, to treat Langlands functoriality.

3. The p-adic Satake isomorphism

Keeping the notations and assumptions introduced in the previous section we
now consider a locally L-analytic representation (ρ,E) of G of the form

E = Kχ ⊗L EL

where

– Kχ is a one dimensional representation of G given by a locally L-analytic
character χ : G −→ K×, and

– EL is an L-rational irreducible representation ρL of G of highest weight ξ.
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Let
EL = ⊕β∈X∗(T )EL,β

be the decomposition into weight spaces for T . According to [BT] II.4.6.22
and Prop. II.4.6.28(ii) the reductive group G has a smooth connected affine
model G over the ring of integers oL in L such that G(oL) = U0. We fix once
and for all a U0-invariant oL-lattice M in EL ([Jan] I.10.4) and let ‖ ‖ be the
corresponding U0-invariant norm on E. The following fact is well-known.

Lemma 3.1: We have M = ⊕
β∈X∗(T )

Mβ with Mβ := M ∩ EL,β.

Proof: For the convenience of the reader we sketch the argument. Fix a weight
β ∈ X∗(T ). It suffices to construct an element Πβ in the algebra of distributions
Dist(G) which acts as a projector

Πβ : EL −→ EL,β .

Let B be the finite set of weights 6= β which occur in EL. Also we need the
Lie algebra elements

Hi := (dµi)(1) ∈ Lie(G)
where µ1, . . . , µr is a basis of the cocharacter group of T . We have

γ := (dγ(H1), . . . , dγ(Hr)) ∈ ZZr for any γ ∈ X∗(T ) .

According to [Hum] Lemma 27.1 we therefore find a polynomial Π ∈
Q[y1,. . .,yr] such that Π(ZZr) ⊆ ZZ, Π(β) = 1, and Π(γ) = 0 for any γ ∈ B.
Moreover [Hum] Lemma 26.1 says that the polynomial Π is a ZZ-linear combi-
nation of polynomials of the form

(
y1
b1

)
· . . . ·

(
yr
br

)
with integers b1, . . . , br ≥ 0 .

Then [Jan] II.1.12 implies that

Πβ := Π(H1, . . . ,Hr)

lies in Dist(G). By construction Πβ induces a projector from EL onto EL,β .

It follows that, for any t ∈ T , the operator norm of ρL(t) on EL is equal to

‖ρL(t)‖ = max{|β(t)| : β ∈ X∗(T ) such that EL,β 6= 0}.

Lemma 3.2: For any t ∈ T we have ‖ρ(t)‖ = |χ(t)| · |ξ(wt)| with w ∈ W such
that wt ∈ T−−.

Documenta Mathematica · Extra Volume Coates (2006) 631–684



652 P. Schneider, J. Teitelbaum

Proof: Consider first the case t ∈ T−− with w = 1. For any weight β occurring
in EL one has ξ = αβ where α is an appropriate product of simple roots. But
by definition of T−− we have |α(t)|L ≥ 1 for any simple root α. For general
t ∈ T and w ∈W as in the assertion we then obtain

|ξ(wt)| = max{|β(wt)| : EL,β 6= 0}
= max{|β(t)| : EL,β 6= 0}
= ‖ρL(t)‖ .

Here the second identity is a consequence of the fact that the set of weights of
EL is W -invariant.

Collecting this information we first of all see that Lemma 1.4 applies and gives,
for any open subgroup U ⊆ U0, the isomorphism

H(G, 1U ) ∼= H(G, ρ|U) .

But the norm ‖ ‖ on H(G, ρ|U) corresponds under this isomorphism to the
norm ‖ ‖χ,ξ on H(G, 1U ) defined by

‖ψ‖χ,ξ := supg∈G |ψ(g)χ(g)| · ‖ρL(g)‖ .

If |χ|= 1 (e.g., if the group G is semisimple) then the character χ does not affect
the norm ‖ ‖ξ := ‖ ‖χ,ξ. In general χ can be written as a product χ = χ1χun
of two characters where |χ1| = 1 and χun|U0 = 1. Then

(H(G, 1U ), ‖ ‖ξ)
∼=−→ (H(G, 1U ), ‖ ‖χ,ξ)

ψ 7−→ ψ · χ−1
un

is an isometric isomorphism. We therefore have the following fact.

Lemma 3.3: The map

‖ ‖ξ-completion of H(G, 1U )
∼=−→ B(G, ρ|U)

ψ 7−→ ψ · χ−1
unρ

is an isometric isomorphism of Banach algebras.

In this section we want to compute these Banach-Hecke algebras in the case
U = U0. By the Cartan decomposition G is the disjoint union of the double
cosets U0tU0 with t running over T−−/T0. Let therefore ψλ(t) ∈ H(G, 1U0

)
denote the characteristic function of the double coset U0tU0. Then {ψλ}λ∈Λ−−

is a K-basis of H(G, 1U0
). According to Lemma 3.2 the norm ‖ ‖ξ on H(G, 1U0

)
is given by

‖ψ‖ξ := supt∈T−− |ψ(t)ξ(t)| .
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The {ψλ}λ∈Λ−− form a ‖ ‖ξ-orthogonal basis of H(G, 1U0
) and hence of its

‖ ‖ξ-completion.

The Satake isomorphism computes the Hecke algebra H(G, 1U0
). For our pur-

poses it is important to consider the renormalized version of the Satake map
given by

Sξ : H(G, 1U0
) −→ K[Λ]

ψ 7−→ ∑
t∈T/T0

π
valL(ξ(t))
L (

∑
n∈N/N0

ψ(tn))λ(t) .

On the other hand we again let Kq/K be the splitting field of the polynomial
X2 − q and we temporarily fix a root q1/2 ∈ Kq. Satake’s theorem says (cf.
[Car]§4.2) that the map

Snorm : H(G, 1U0
)⊗K Kq −→ Kq[Λ]

ψ 7−→ ∑
t∈T/T0

δ−1/2(t)(
∑

n∈N/N0

ψ(tn))λ(t)

induces an isomorphism of Kq-algebras

H(G, 1U0
)⊗K Kq

∼=−→Kq[Λ]W .

Here the W -invariants on the group ring Kq[Λ] are formed with respect to the

W -action induced by the conjugation action of N(T ) on T . Since πvalL ◦ξ
L δ1/2

defines a character of Λ it is clear that Sξ is a homomorphism of algebras as well
and a simple Galois descent argument shows that Sξ induces an isomorphism
of K-algebras

H(G, 1U0
)
∼=−→K[Λ]W,γξ

where γξ is the cocycle from Example 3 in section 2. The left hand side has
the ‖ ‖ξ-orthogonal basis {ψλ}λ∈Λ−− with

‖ψλ(t)‖ξ = |ξ(t)| .

The right hand side has the ‖ ‖γξ -orthonormal basis {σλ}λ∈Λ−− where

σλ =
∑

w∈W/W (λ)

γξ(w, λ)wλ

(cf. section 2). Since the maps

N/N0
≃−→ NtU0/U0

nN0 7−→ tnU0

are bijections we have

∑

n∈N/N0

ψλ(s)(tn) = |(NtU0 ∩ U0sU0)/U0| =: c(λ(t), λ(s)) for any s, t ∈ T .

Documenta Mathematica · Extra Volume Coates (2006) 631–684



654 P. Schneider, J. Teitelbaum

It follows that

Sξ(ψµ) =
∑

t∈T/T0

π
valL(ξ(t))
L c(λ(t), µ)λ(t)

=
∑

λ∈Λ−−

π
valL ◦ξ(λ)
L c(λ, µ)σλ for any µ ∈ Λ−− .

and
π

valL ◦ξ(wλ)
L c(wλ, µ) = γξ(w, λ)π

valL ◦ξ(λ)
L c(λ, µ)

for any λ ∈ Λ−−, µ ∈ Λ, and w ∈W .

The reason for the validity of Satake’s theorem lies in the following properties
of the coefficients c(λ, µ).

Lemma 3.4: For λ, µ ∈ Λ−− we have:

i. c(µ, µ) = 1;

ii. c(λ, µ) = 0 unless λ ≤ µ.
Proof: [BT] Prop. I.4.4.4.

Proposition 3.5: The map Sξ extends by continuity to an isometric isomor-
phism of K-Banach algebras

‖ ‖ξ-completion of H(G, 1U0
)
∼=−→K〈Λ; γξ〉W,γξ .

Proof: Define
ψ̃λ := π

− valL ◦ξ(λ)
L ψλ

for λ ∈ Λ−−. The left, resp. right, hand side has the ‖ ‖ξ-orthonormal, resp.

‖ ‖γξ -orthonormal, basis {ψ̃λ}λ∈Λ−− , resp. {σλ}λ∈Λ−− . We want to apply
Lemma 2.5 to the normed vector space (K[Λ]W,γξ , ‖ ‖γξ), its orthonormal basis
{σλ}, and the elements

Sξ(ψ̃µ) = σµ +
∑

λ<µ

π
valL ◦ξ(λ)−valL ◦ξ(µ)
L c(λ, µ)σλ

(cf. Lemma 3.4). The coefficients c(λ, µ) are integers and therefore satisfy
|c(λ, µ)| ≤ 1. Moreover, λ < µ implies, since ξ is dominant, that valL ◦ξ(µ) ≤
valL ◦ξ(λ). Hence the assumptions of Lemma 2.5 indeed are satisfied and we

obtain that {Sξ(ψ̃λ)} is another orthonormal basis for (K[Λ]W,γξ , ‖ ‖γξ).

Corollary 3.6: The Banach algebras B(G, ρ|U0) and K〈Λ; γξ〉W,γξ are iso-
metrically isomorphic.
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If ξ = 1 then, in view of Lemma 2.7, the reader should note the striking analogy
between the above result and the computation in [Mac] Thm. (4.7.1) of the
spectrum of the algebra of integrable complex valued functions on U0\G/U0.
The methods of proof are totally different, though. In fact, in our case the
spherical function on U0\G/U0 corresponding to a point in T ′1 in general is not
bounded.

Suppose that the group G is semisimple and adjoint. We fix elements
t1, . . . , td ∈ T−− such that λi := λ(ti) are the fundamental antidominant
cocharacters. In Prop. 2.6 we have seen that then K〈Λ; γξ〉W,γξ is a Tate al-
gebra in the variables σλ1

. . . , σλd . Hence B(G, ρ|U0) is a Tate algebra as well.
But it seems complicated to compute explicitly the variables corresponding to
the σλi . Instead we may repeat our previous reasoning in a modified way.

Proposition 3.7: Suppose that G is semisimple and adjoint; then B(G, ρ|U0)

is a Tate algebra over K in the variables
ψλ1
·ρ

ξ(t1)
, . . . ,

ψλd ·ρ
ξ(td)

.

Proof: By Lemma 3.3 and Prop. 3.5 it suffices to show that K〈Λ; γξ〉W,γξ is
a Tate algebra in the variables ξ(ti)

−1Sξ(ψλi). We write a given λ ∈ Λ−− as
λ = λm1

1 . . . λmdd and put

σ̃λ := Sξ(ψ̃λ1
)m1 · . . . · Sξ(ψ̃λd)md = Sξ(ψ̃

m1

λ1
∗ . . . ∗ ψ̃mdλd )

using notation from the proof of Prop. 3.5. Similarly as in the proof of Prop.
2.7 one checks that the arguments in [B-GAL] Chap. VI §§3.2 and 3.4 work,
over the ring of integers in K, equally well for our twisted W -action (note that,
in the language of loc. cit. and due to Lemma 3.4, the unique maximal term in
Sξ(ψ̃λi) is λi) and show that we have

σ̃λ = σλ +
∑

µ<λ

cµλσµ

with |cµλ| ≤ 1. So we may apply again Lemma 2.5 and obtain that {σ̃λ} is
another orthonormal basis for K〈Λ; γξ〉W,γξ . It remains to note that ξ(ti) and

π
valL(ξ(t))
L only differ by a unit.

Example: Consider the group G := GLd+1(L). Cor. 3.6 applies to G but
Prop. 3.7 does not. Nevertheless, with the same notations as at the end of
section 2 a simple modification of the argument gives

B(G, ρ|U0) = K
〈ψλ1

· χ−1
unρ

ξ(t1)
, . . . ,

ψλd · χ−1
unρ

ξ(td)
,
(ψλd+1

· χ−1
unρ

ξ(td+1)

)±1〉
.

Moreover in this case the λi are minimal with respect to the partial order ≤ so
that we do have

ξ(ti)
−1Sξ(ψλi) = σλi .
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Hence the above representation of B(G, ρ|U0) as an affinoid algebra corresponds
to the representation

K〈Λ; γξ〉W,γξ = K〈σλ1
. . . , σλd , σ

±1
λd+1
〉 .

On affinoid domains this corresponds to a map

T ′ξ −→ {(ω1, . . . , ωd+1) ∈ Kd+1 : |ω1|, . . . , |ωd| ≤ 1, |ωd+1| = 1}

which, using our choice of coordinates on T ′ from section 2, is given by

(ζ1, . . . , ζd+1) 7−→ (. . . , q−
(i−1)i

2 ξ(ti)
−1Σi(ζ1, . . . , ζd+1), . . .)

where

Σ1(ζ1, . . . , ζd+1) = ζ1 + . . .+ ζd+1, . . . ,Σd+1(ζ1, . . . , ζd+1) = ζ1 · . . . · ζd+1

denote the elementary symmetric polynomials.

Let us further specialize to the case G = GL2(L). Then EL is the k-th sym-
metric power, for some k ≥ 0, of the standard representation of GL2. The

highest weight of EL is ξ(

(
t1 0
0 t2

)
) = tk2 . We obtain

B(G, ρ|U0) = K
〈
X1, (π

−k
L X2)

±1
〉
.

with the variables Xi := ψλi · χ−1
unρ. The above map between affinoid domains

becomes
(ζ1, ζ2) −→ (ζ1 + ζ2, q

−1π−kL ζ1ζ2) .

4. p-adic Iwahori-Hecke algebras

With the same assumptions and notations as in the previous section we now
let U1 ⊆ U0 be the Iwahori subgroup such that U1∩P = U0∩P . In this section
we will compute the Banach-Hecke algebras B(G, ρ|U1). By Lemma 3.3 this
means, similarly as before, computing the ‖ ‖ξ-completion of H(G, 1U1

).

The extended affine Weyl group W̃ of G is given by

W̃ := N(T )/T0 .

Since the Weyl group W lifts to U0 ∩ N(T )/T0 ⊆ W̃ we see that W̃ is the
semidirect product of W and Λ. The Bruhat-Tits decomposition says that
G is the disjoint union of the double cosets U1xU1 with x running over W̃ .
Therefore, if we let τx ∈ H(G, 1U1

) denote the characteristic function of the
double coset U1xU1, then {τx}x∈W̃ is aK-basis ofH(G, 1U1

). The τx are known
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to be invertible in the algebra H(G, 1U1
). As a consequence of Lemma 3.2 the

‖ ‖ξ-norm is given by

‖ψ‖ξ = supv,w∈W supt∈T−− |ψ(vλ(wt))ξ(t)| .

In particular, {τx}x∈W̃ is an ‖ ‖ξ-orthogonal basis of H(G, 1U1
) such that

‖τx‖ξ = |ξ(wt)| if v, w ∈W and t ∈ T such that x = vλ(t) and wt ∈ T−− .

We let C be the unique Weyl chamber corresponding to P in the apartment
corresponding to T with vertex x0 (cf. [Car]§3.5). The Iwahori subgroup U1

fixes pointwise the unique chamber C ⊆ C with vertex x0. The reflections at the
walls of C generate the Weyl group W . Let s0, . . . , se ∈ W̃ be the reflections
at all the walls of C and let Waff denote the subgroup of W̃ generated by
s0, . . . , se. This affine Weyl group Waff with the generating set {s0, . . . , se}
is a Coxeter group. In particular we have the corresponding length function
ℓ : Waff −→ IN∪{0} and the corresponding Bruhat order≤ onWaff . If Ω ⊆ W̃
is the subgroup which fixes the chamber C then W̃ also is the semidirect product
of Ω and Waff . We extend the length function ℓ to W̃ by ℓ(ωw) := ℓ(w) for

ω ∈ Ω and w ∈ Waff . The Bruhat order is extended to W̃ by the rule
ωw ≤ ω′w′, for w,w′ ∈Waff and ω, ω′ ∈ Ω, if and only if ω = ω′ and w ≤ w′.
One of the basic relations established by Iwahori-Matsumoto is:

(1) For any x, y ∈ W̃ such that ℓ(xy) = ℓ(x) + ℓ(y) we have τxy = τx ∗ τy.
It easily implies that, for any λ ∈ Λ, the element

Θ(λ) := τλ1
∗ τ−1

λ2
∈ H(G, 1U1

)

where λ = λ1λ
−1
2 with λi ∈ Λ−− is independent of the choice of λ1 and λ2.

Moreover Bernstein has shown that the map

Θ : K[Λ] −→ H(G, 1U1
)

λ 7−→ Θ(λ)

is an embedding of K-algebras.

Comment: It is more traditional (cf. [HKP] §1) to consider the embedding of
Kq-algebras (with Kq/K and q1/2 ∈ Kq be as before)

Θnorm : Kq[Λ] −→ H(G, 1U1
)⊗K Kq

λ 7−→ δ−1/2(λ)τλ1
∗ τ−1

λ2

where λ = λ1λ
−1
2 with dominant λi. The modified map Θ+ := δ1/2 · Θnorm

already is defined over K. On K[Λ] we have the involution ιλ defined by
ιΛ(λ) := λ−1, and on H(G, 1U1

) there is the anti-involution ι defined by
ι(ψ)(g) := ψ(g−1). We then have

Θ = ι ◦Θ+ ◦ ιΛ .
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In the following we consider the renormalized embedding of K-algebras

Θξ : K[Λ] −→ H(G, 1U1
)

λ 7−→ π
− valL ◦ξ(λ)
L Θ(λ) .

In order to compute the norm induced, via Θξ, by ‖ ‖ξ on K[Λ] we introduce
the elements

θx := q(ℓ(x)−ℓ(w)−ℓ(λ1)+ℓ(λ2))/2τw ∗ τλ1
∗ τ−1

λ2
.

for any x ∈ W̃ written as x = wλ1λ
−1
2 with w ∈ W and λi ∈ Λ−−. Since

ℓ(w) + ℓ(λ1) = ℓ(wλ1) (cf. [Vig] App.) we obtain from (1) that

θx = q(ℓ(wλ1λ
−1
2 )−ℓ(wλ1)+ℓ(λ2))/2τwλ1

∗ τ−1
λ2

.

On the other hand [Vig] Lemma 1.2 (compare also [Hai] Prop. 5.4) says that,

for any x, y ∈ W̃ , the number

(ℓ(xy−1)− ℓ(x) + ℓ(y))/2

is an integer between 0 and ℓ(y) and that

τx ∗ τ−1
y = q−(ℓ(xy−1)−ℓ(x)+ℓ(y))/2(τxy−1 +Qx,y)

where Qx,y is a linear combination with integer coefficients of τz with z < xy−1.

It follows that for any x ∈ W̃ we have

(2) θx = τx +Qx

where Qx is a linear combination with integer coefficients of τz with z < x.

Lemma 4.1: Consider two elements x = w′λ and y = v′µ in W̃ where w′, v′ ∈
W and λ, µ ∈ Λ; let w, v ∈W such that wλ, vµ ∈ Λ−−; if x ≤ y then we have:

i. vµ− wλ ∈∑α∈Φ+ IN0 · (−α̌);

ii. ‖τx‖ξ ≤ ‖τy‖ξ.
Proof: i. Let w0 ∈ W denote the longest element. We will make use of the
identity

{x′ ∈ W̃ : x′ ≤ w0(
w0vµ)} =

⋃

λ′

Wλ′W

where λ′ ranges over all elements in Λ−− such that vµ−λ′ ∈∑α∈Φ+ IN0 · (−α̌)
(see [Ka2] (4.6) or [HKP] 7.8). Since y ∈ W (vµ)W this identity implies first
that x ≤ y ≤ (w0vµ)w0 and then that x ∈Wλ′W for some λ′ ∈ Λ−− such that
vµ−λ′ ∈∑α∈Φ+ IN0 ·(−α̌). Obviously we must have λ′ = vλ. ii. Let λ = λ(t1)
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and µ = λ(t2). We have ‖τx‖ξ = |ξ(wt1)| and ‖τy‖ξ = |ξ(vt2)|. Since highest
weights are dominant we obtain from i. that |ξ(vt2(wt1)−1)| ≥ 1.

It follows from Lemma 4.1.ii and formula (2) that Lemma 2.5 is applicable
showing that {θx}x∈W̃ is another ‖ ‖ξ-orthogonal basis of H(G, 1U1

) with

‖θx‖ξ = ‖τx‖ξ .

For any λ(t) = λ = λ1λ
−1
2 ∈ Λ with λi ∈ Λ−− we have

θλ = q(ℓ(λ)−ℓ(λ1)+ℓ(λ2))/2π
valL(ξ(t))
L Θξ(λ)

and
‖θλ‖ξ = ‖τλ‖ξ = |ξ(wt)|

where w ∈W such that wt ∈ T−−. In particular {θλ}λ∈Λ is a ‖ ‖ξ-orthogonal
basis of im(Θξ).

Lemma 4.2: With the above notations we have

q−(ℓ(λ)−ℓ(λ1)+ℓ(λ2))/2 =
δ1/2(wλ)

δ1/2(λ)
.

Proof: Write t = t1t
−1
2 with λ(ti) = λi. According to the explicit formula for

the length ℓ in [Vig] App. we have

qℓ(λ) =
∏

α∈Φ+,|α(t)|L≥1

|α(t)|L ·
∏

α∈Φ+,|α(t)|L≤1

|α(t)|−1
L

and
qℓ(λi) =

∏

α∈Φ+

|α(ti)|L .

It follows that

q−(ℓ(λ)−ℓ(λ1)+ℓ(λ2))/2 =
∏

α∈Φ+,|α(t)|L≤1

|α(t)|L

Since wt ∈ T−− we have |w−1

α(t)|L ≥ 1 for any α ∈ Φ+. Hence {α ∈ Φ+ :

|α(t)|L < 1} ⊆ Φ+ \ w−1

Φ+. By the last formula in Example 2 of section 2 the

above right hand side therefore is equal to δ1/2(wλ)
δ1/2(λ)

.

It readily follows that

‖Θξ(λ)‖ξ = |γdomξ (λ)| for any λ ∈ Λ .
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In other words
Θξ : (K[Λ], ‖ ‖γξ) −→ (H(G, 1U1

), ‖ ‖ξ)
is an isometric embedding. Combining all this with Lemma 3.3 we obtain the
following result.

Proposition 4.3: i. The map

K〈Λ; γξ〉 −→ B(G, ρ|U1)
λ 7−→ Θξ(λ) · χ−1

unρ

is an isometric embedding of Banach algebras;

ii. the map

H(U0, 1U1
)⊗K K〈Λ; γξ〉

∼=−→ B(G, ρ|U1)
τw ⊗ λ 7−→ (τw ∗Θξ(λ)) · χ−1

unρ

is a K-linear isomorphism.

Remarks: 1) A related computation in the case ξ = 1 is contained in [Vig]
Thm. 4(suite).

2) It is worth observing that the “twisted” W -action on K〈Λ; γξ〉 corresponds
under the isomorphism Θξ to the W -action on im(Θξ) given by

(w, θλ) 7−→ θwλ .

The results of this section and of the previous section are compatible in the
following sense.

Proposition 4.4: The diagram

K〈Λ; γξ〉
Θξ(.)·χ−1

unρ // B(G, ρ|U1)

(ψλ(1)·χ−1
unρ)∗.

��
K〈Λ; γξ〉W,γξ

⊆

OO

S−1
ξ

(.)·χ−1
unρ // B(G, ρ|U0)

is commutative. Moreover, the image of K〈Λ; γξ〉W,γξ under the map Θξ(.) ·
χ−1
unρ lies in the center of B(G, ρ|U1).

Proof: We recall that the upper, resp. lower, horizontal arrow is an isometric
unital monomorphism by Prop. 4.3.i, resp. by Lemma 3.3 and Prop. 3.5.
The right perpendicular arrow is a continuous linear map respecting the unit
elements. It suffices to treat the case of the trivial representation ρ = 1. By
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continuity we therefore are reduced to establishing the commutativity of the
diagram

K[Λ]
Θ // H(G, 1U1

)

ψλ(1)∗.
��

K[Λ]W,γξ

⊆

OO

S−1
1 // H(G, 1U0

)

as well as the inclusion

Θ(K[Λ]W,γξ) ⊆ center of H(G, 1U1
) .

It is known (cf. [HKP] Lemma 2.3.1, section 4.6, and Lemma 3.1.1) that:

– Θnorm(Kq[Λ]W ) = center of H(G, 1U1
)⊗K Kq;

– ψλ(1) ∗Θnorm ◦ Snorm = id on H(G, 1U0
)⊗K Kq;

– Θnorm = ι ◦Θnorm ◦ ιΛ on Kq[Λ]W .

The first identity implies the asserted inclusion. We further deduce that

Θ ◦ S1 = ι ◦ (δ1/2 ·Θnorm) ◦ ιΛ ◦ (δ1/2 · Snorm)

= ι ◦Θnorm ◦ ιΛ ◦ Snorm
= Θnorm ◦ Snorm on H(G, 1U0

)⊗K Kq

and hence that

ψλ(1) ∗ (Θ ◦ S1) = id on H(G, 1U0
) .

5. Crystalline Galois representations

We go back to the example of the group G := GLd+1(L) which we have dis-
cussed already at the end of section 3. But we now want to exploit Lemma 2.7.
As before we fix a dominant integral weight ξ ∈ X∗(T ) that is given by



g1 0

. . .

0 gd+1


 7−→

d+1∏

i=1

gaii

with (a1, . . . , ad+1) ∈ ZZd+1. Note that the dominance means that

a1 ≤ . . . ≤ ad+1 .

Equally as before we use the coordinates

T ′(K) −→ (K×)d+1

ζ 7−→ (ζ1, . . . , ζd+1) with ζi := qi−1πaiL ζ(λ{i})
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on the dual torus. Some times we view ζ as the diagonal matrix in GLd+1(K)
with diagonal entries (ζ1, . . . , ζd+1). On the other hand, on the root space we
use the coordinates

VIR = Hom(Λ, IR) −→ IRd+1

z 7−→ (z1, . . . , zd+1) with zi := z(λ{i}) .

In these coordinates we have:

1) The points ηL and ξL from Example 3 in section 2 correspond to

[L : Qp]

2
(−d,−(d− 2), . . . , d− 2, d) and (a1, . . . , ad+1) ,

respectively.

2) The map val : T ′(K) −→ VIR corresponds to the map

(K×)d+1 −→ IRd+1

(ζ1, . . . , ζd+1) 7−→ (valL(ζ1), . . . , valL(ζd+1))− ξL − η̃L .

where

η̃L := [L : Qp](0, 1, . . . , d) = ηL +
[L : Qp]

2
(d, . . . , d) .

3) On IRd+1 the partial order defined by Φ+ is given by

(z1, . . . , zd+1) ≤ (z′1, . . . , z
′
d+1)

if and only if

zd+1 ≤ z′d+1 , zd + zd+1 ≤ z′d + z′d+1 , . . . , z2 + . . .+ zd+1 ≤ z′2 + . . .+ z′d+1

and
z1 + . . .+ zd+1 = z′1 + . . .+ z′d+1 .

4) The map z 7−→ zdom corresponds in IRd+1 to the map which rearranges the
coordinates in increasing order and which we will also denote by (.)dom.

It now is a straightforward computation to show that Lemma 2.7 amounts to

T ′ξ = {ζ ∈ T ′ : (valL(ζ1), . . . , valL(ζd+1))
dom ≤ ξL + η̃L}.

Even more explicitly, T ′ξ is the domain of all (ζ1, . . . , ζd+1) ∈ (K×)d+1 such
that

(valL(ζ1), . . . , valL(ζd+1))
dom ≤ (a1, a2 + [L : Qp], . . . , ad+1 + d[L : Qp]) .
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For any increasing sequence r = (r1 ≤ . . . ≤ rd+1) of real numbers we denote
by P(r) the convex polygon in the plane through the points

(0, 0), (1, r1), (2, r1 + r2), . . . , (d+ 1, r1 + . . .+ rd+1) .

We then may reformulate the above description of T ′ξ as follows.

Lemma 5.1: T ′ξ is the subdomain of all ζ ∈ T ′ such that P(val(ζ)dom) lies
above P(ξL + η̃L) and both polygons have the same endpoint.

We recall that a filtered K-isocrystal is a triple D = (D,ϕ, F il·D) consisting
of a finite dimensional K-vector space D, a K-linear automorphism ϕ of D
– the “Frobenius” – , and an exhaustive and separated decreasing filtration
Fil·D on D by K-subspaces. In the following we fix the dimension of D to
be equal to d+ 1 and, in fact, the vector space D to be the d+ 1-dimensional
standard vector space D = Kd+1. We then may think of ϕ as being an element
in the group G′(K) := GLd+1(K). The (filtration) type type(D) ∈ ZZd+1 is the
sequence (b1, . . . , bd+1), written in increasing order, of the break points b of the
filtration Fil·D each repeated dimK gr

bD many times. We put

tH(D) :=
∑

b∈ZZ

b · dimK gr
bD .

Then (d+ 1, tH(D)) is the endpoint of the polygon P(type(D)). On the other
hand we define the Frobenius type s(D) of D to be the conjugacy class of the
semisimple part of ϕ in G′(K). We put

tLN (D) := valL(detK(ϕ)) .

The filtered K-isocrystal D is called weakly L-admissible if tH(D) = tLN (D)
and tH(D′) ≤ tLN (D′) for any filtered K-isocrystal D′ corresponding to a ϕ-
invariant K-subspace D′ ⊆ D with the induced filtration.

Proposition 5.2: Let ζ ∈ T ′(K) and let ξ be a dominant integral weight of G;
then ζ ∈ T ′ξ(K) if and only if there is a weakly L-admissible filtered K-isocrystal
D such that type(D) = ξL + η̃L and ζ ∈ s(D).

Proof: Let us first suppose that there exists a filtered K-isocrystal D with the
asserted properties. Then P(type(D)) = P(ξL+ η̃L) is the Hodge polygon of D
and P(val(ζ)dom) is its Newton polygon (relative to valL). By [Fon] Prop. 4.3.3
(the additional assumptions imposed there on the field K are irrelevant at this
point) the weak admissibility of D implies that its Newton polygon lies above
its Hodge polygon with both having the same endpoint. Lemma 5.1 therefore
implies that ζ ∈ T ′ξ(K).

Documenta Mathematica · Extra Volume Coates (2006) 631–684



664 P. Schneider, J. Teitelbaum

We now assume vice versa that ζ ∈ T ′ξ(K). We let ϕss be the semisimple
automorphism of the standard vector space D given by the diagonal matrix
with diagonal entries (ζ1, . . . , ζd+1). Let

D = D1 + . . .+Dm

be the decomposition of D into the eigenspaces of ϕss. We now choose the
Frobenius ϕ on D in such a way that ϕss is the semisimple part of ϕ and
that any Dj is ϕ-indecomposable. In this situation D has only finitely many
ϕ-invariant subspaces D′ and each of them is of the form

D′ = D′1 + . . .+D′m

with D′j one of the finitely many ϕ-invariant subspaces of Dj . By construction

the Newton polygon of (D,ϕ) is equal to P(val(ζ)dom). To begin with consider
any filtration Fil·D of type ξL + η̃L on D and put D := (D,ϕ, F il·D). The
corresponding Hodge polygon then is P(ξL + η̃L). By Lemma 5.1 the first
polygon lies above the second and both have the same endpoint. The latter
already says that

tH(D) = tLN (D) .

It remains to be seen that we can choose the filtration Fil·D in such a way
that tH(D′) ≤ tLN (D′) holds true for any of the above finitely many ϕ-invariant
subspaces D′ ⊆ D. The inequality between the two polygons which we have
does imply that

a1 + (a2 + [L : Qp]) + . . .+ (adimD′ + (dimD′ − 1)[L : Qp]) ≤ tLN (D′) .

Hence it suffices to find the filtration in such a way that we have

tH(D′) ≤ a1 + (a2 + [L : Qp]) + . . .+ (adimD′ + (dimD′ − 1)[L : Qp])

for any D′. But it is clear that for any filtration (of type ξL + η̃L) in general
position we actually have

tH(D′) = a1 + (a2 + [L : Qp]) + . . .+ (adimD′ + (dimD′ − 1)[L : Qp])

for the finitely many D′.

In order to connect this to Galois representations we have to begin with a dif-
ferent kind of filtered isocrystal (cf. [BM] §3.1). First of all we now suppose
that K is a finite extension of Qp (as always containing L). Then a filtered
isocrystal over L with coefficients in K is a triple M = (M,φ, F il·ML) consist-
ing of a free L0 ⊗Qp K-module M of finite rank, a σ-linear automorphism φ of
M – the “Frobenius” – , and an exhaustive and separated decreasing filtration
Fil·ML on ML := L ⊗L0

M by L ⊗Qp K-submodules. Here L0 denotes the
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maximal unramified subextension of L and σ its Frobenius automorphism. By
abuse of notation we also write σ for the automorphism σ ⊗ id of L0 ⊗Qp K.
We put

tH(M) :=
∑

b∈ZZ

b · dimL gr
bML = [K : L] ·

∑

b∈ZZ

b · dimK gr
bML .

The equality is a consequence of the fact that for any finitely generated L⊗QpK-
module M ′ the identity

dimLM
′ = [K : L] · dimKM

′

holds true. By semisimplicity this needs to be verified only for a simple module
which must be isomorphic to a field into which L and K both can be embedded
and in which case this identity is obvious.

The number tN (M) is defined as valQp(φ(x)/x) where x is an arbitrary nonzero
element in the maximal exterior power of M as an L0-vector space. But we
have

tN (M) = valQp(φ(x)/x)

=
1

[L0 : Qp]
· valQp(detL0

(φ[L0:Qp]))

=
1

[L0 : Qp]
· valQp(NormK/L0

(detK(φ[L0:Qp])))

= valQp(NormK/L0
(detK(φ)))

= [K : L0] · valQp(detK(φ))

= [K : L] · valL(detK(φ)) .

The filtered isocrystal M over L with coefficients in K is called weakly admis-
sible (cf. [BM] Prop. 3.1.1.5) if tH(M) = tN (M) and tH(M ′) ≤ tN (M ′) for
any subobject M ′ of M corresponding to a φ-invariant L0 ⊗Qp K-submodule
M ′ ⊆M with the induced filtration on L⊗L0

M ′.

By the main result of [CF] there is a natural equivalence of categories V 7−→
Dcris(V ) between the category of K-linear crystalline representations of the
absolute Galois group Gal(L/L) of the field L and the category of weakly
admissible filtered isocrystals over L with coefficients in K. It has the property
that

dimK V = rankL0⊗QpK
Dcris(V ) .

To avoid confusion we recall that aK-linear Galois representation is called crys-
talline if it is crystalline as a Qp-linear representation. We also recall that the
jump indices of the filtration on Dcris(V )L are called the Hodge-Tate coweights
of the crystalline Galois representation V (they are the negatives of the Hodge-
Tate weights). Moreover, we will say that V is K-split if all eigenvalues of the
Frobenius on Dcris(V ) are contained in K. This is a small technical condition
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which always can be achieved by extending the coefficient field K. More im-
portant is the following additional condition. We let Cp denote the completion
of the algebraic closure L. We may view V as an L-vector space through the
inclusion L ⊆ K.

Definition: A K-linear crystalline representation V of Gal(L/L) is called
special if the kernel of the natural map Cp⊗Qp V −→→ Cp⊗L V is generated, as

a Cp-vector space, by its Gal(L/L)-invariants (for the diagonal action).

On the full subcategory of special crystalline Galois representations we have a
simplified form of the above equivalence of categories. This is well known (see
[FR] Remark 0.3). But since we have not found any details in the literature
we include them here for the convenience of the reader. We will speak of a
K-isocrystal and an isocrystal over L with coefficients in K, respectively, if
no filtration is prescribed. Suppose that (M,φ) is an isocrystal over L with
coefficients in K. We then have the L0-isotypic decomposition

M = ⊕τ∈∆Mτ

where ∆ := Gal(L0/Qp) and where Mτ is the K-subspace of M on which L0

acts via the embedding τ : L0 →֒ K. One has

φ(Mτ ) = Mτσ−1

so that φf with f := |∆| is an L0 ⊗Qp K-linear automorphism of M which

respects the above decomposition. We see that (M1, φ
f |M1) is a K-isocrystal

with dimKM1 = rankL0⊗Qp K
M .

Lemma 5.3: The functor

category of isocrystals over L
∼−→ category of K-isocrystals

with coefficients in K
(M,φ) 7−→ (M1, φ

f |M1)

is an equivalence of categories.

Proof: Let I denote the functor in question. To define a functor J in the
opposite direction let (D,ϕ) be a K-isocrystal. We put M := L0 ⊗Qp D and
φ := (σ ⊗ 1) ◦ φ′ with

φ′|Mτ :=

{
ϕ if τ = 1,
id otherwise.

Here we have used the K-linear composed isomorphism

D −→ L0 ⊗Qp D = M
pr−→→M1
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to transport ϕ from D to M1. At the same time it provides a natural isomor-
phism id ≃ I ◦ J . The opposite natural isomorphism id ≃ J ◦ I is given by
the composed maps

Mσi
φi−→M1

∼=−→(L0 ⊗Qp M1)1
σ−i⊗φ−f−→ (L0 ⊗Qp M1)σi

for 0 ≤ i ≤ f − 1.

Suppose now that ML carries a filtration Fil·ML making M := (M,φ, F il·ML)
into a filtered isocrystal over L with coefficients in K. Let

ML = ⊕βML,β

where β runs over the Gal(K/K)-orbits in HomQp(L,K) be the L-isotypic
decomposition of the L ⊗Qp K-module ML. The filtration on ML induces a
filtration Fil·ML,β on each ML,β and by the naturality of the decomposition
we have

Fil·ML = ⊕β Fil·ML,β .

Moreover, let β0 denote the orbit of the inclusion map L ⊆ K. Then ML,β0

is the K-subspace of ML on which L acts through the inclusion L ⊆ K. The
composite map

M1
⊆−→M −→ L⊗L0

M = ML
pr−→→ML,β0

is a K-linear isomorphism which we may use to transport the filtration
Fil·ML,β0

to a filtration Fil·M1 on M1. In this way we obtain the filtered
K-isocrystal D := (M1, φ

f |M1, F il
·M1). Obviously the full original filtration

Fil·ML can be recovered from Fil·M1 if and only if it satisfies

(∗) gr0ML,β = ML,β for any β 6= β0 .

Let us suppose that the condition (∗) is satisfied. Since gr0, by definition, does
not contribute to the number tH(.) we obviously have

tH(M) = [K : L] · tH(D) .

On the other hand, using a normal basis of L0 over Qp as well as the inverse
functor in the proof of Lemma 5.3, we compute

tN (M) = [K : L] · valL(detK(φ))

= [K : L] · valL(detK((σ ⊗ 1) ◦ (φf |M1 ⊕ idMσ
⊕ . . .⊕ idM

σf−1
)))

= [K : L] · valL(detK(φf |M1))

= [K : L] · tLN (D) .
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With M any of its subobjects also satisfies the condition (∗). Moreover, by
Lemma 5.3, the subobjects of M are in one to one correspondence with the
subobjects of D). It follows that M is weakly admissible if and only if D is
weakly L-admissible. Hence we have the induced equivalence of categories

category of weakly admissible category of weakly
filtered isocrystals over L with

∼−→ L-admissible filtered
coefficients in K satisfying (∗) K-isocrystals.

Suppose now that M = Dcris(V ) of some K-linear crystalline representation of
Gal(L/L). By the general theory of crystalline Galois representations we have
the comparison isomorphism

ker(Cp ⊗Qp V −→→ Cp ⊗L V ) ∼= ⊕
i∈ZZ

(
Cp(−i)⊗L ( ⊕

β 6=β0

griML,β)
)
.

It is Galois equivariant with Gal(L/L) acting diagonally on the left and through
the first factors on the right. For the Galois invariants we therefore obtain the
formula

ker(Cp ⊗Qp V −→→ Cp ⊗L V )Gal(L/L) ∼= ⊕
β 6=β0

gr0ML,β .

It follows that the isocrystal Dcris(V ) satisfies the condition (∗) if and only if
the crystalline Galois representation V is special. Altogether we obtain that
the functor V 7−→ Dcris(V )1 induces an equivalence of categories

category of K-linear special category of weakly
crystalline representations

∼−→ L-admissible filtered
of Gal(L/L) K-isocrystals.

It satisfies
dimK V = dimK Dcris(V )1 .

Finally suppose that V is a

(+)
(d+ 1)-dimensional K-linear K-split special crystalline

representation of Gal(L/L) all of whose Hodge-Tate coweights have
multiplicity one and increase at least by [L : Qp] in each step.

Precisely in this situation there is a dominant integral ξ = (a1, . . . , ad+1) such
that the Hodge-Tate coweights of V are ξL+ η̃L. By Prop. 5.2 we find an up to
permutation unique point ζ ∈ T ′ξ(K) such that ζ ∈ s(Dcris(V )). This means
we have constructed a surjection

set of isomorphism classes of V ’s with (+) −→→
·⋃

ξ dominant

W\T ′ξ(K) .
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Let us again fix a dominant ξ = (a1, . . . , ad+1) and let ρξ denote the irreducible
rational representation of G of highest weight ξ. By Prop. 2.4 and Cor. 3.6 we
have an identification

W\T ′ξ(K) ⊆ (W\T ′ξ)(K) ≃ Sp(B(G, ρξ|U0))(K)

where Sp(B(G, ρ|U0))(K) the space of K-rational points of the affinoid variety
B(G, ρξ|U0), i.e., the space of K-valued characters of the Banach-Hecke algebra
B(G, ρξ|U0). Our map therefore becomes a map

set of isomorphism classes of
(d+ 1)-dimensional K-linear K-split
special crystalline representations of −→ Sp(B(G, ρξ|U0))(K)
Gal(L/L) with Hodge-Tate coweights
(a1, a2 + [L : Qp], . . . , ad+1 + d[L : Qp])

which we write as V 7−→ ζ(V ). We point out that in this form our map
is canonical in the sense that it does not depend on the choice of the prime
element πL: This choice entered into our normalization of the Satake map Sξ
and into the coordinates on T ′ which we used; it is easy to check that the two
cancel each other out. We also note that in the limit with respect to K this
map is surjective.

We finish this section with a speculation in which way the map which we have
constructed above might be an approximation of a true p-adic local Lang-
lands correspondence. We view a point ζ ∈ Sp(B(G, ρξ|U0))(K) as a character
ζ : B(G, ρξ|U0) −→ K. Correspondingly we let Kζ denote the one dimen-
sional K-vector space on which B(G, ρξ|U0) acts through the character ζ. We
may “specialize” the “universal” Banach B(G, ρξ|U0)-module BGU0

(ρξ|U0) from
section 1 to ζ by forming the completed tensor product

Bξ,ζ := Kζ ⊗̂B(G,ρξ|U0)B
G
U0

(ρξ|U0) .

By construction the K-Banach space Bξ,ζ still carries a continuous and iso-
metric (for the quotient norm) action of G. A future p-adic local Langlands
correspondence should provide us with a distinguished correspondence (being
essentially bijective) between the fiber of our map in ζ (i.e., all V of the kind
under consideration such that ζ(V ) = ζ) and the isomorphism classes of all
topologically irreducible “quotient” representations of Bξ,ζ . Unfortunately it
is not even clear that the Banach spaces Bξ,ζ are nonzero.

In order to describe the existing evidence for this picture we first have to recall
how the characters of the Hecke algebra H(G, 1U0

) can be visualized repre-
sentation theoretically. Any element ζ ∈ T ′(K) can be viewed as a character
ζ : T → Λ → K×, and correspondingly we may form the unramified principal
series representation

IndGP (ζ)∞ := space of all locally constant functions F : G −→ K such that
F (gtn) = ζ(t)−1F (g) for any g ∈ G, t ∈ T, n ∈ N

Documenta Mathematica · Extra Volume Coates (2006) 631–684



670 P. Schneider, J. Teitelbaum

of G. The latter is a smooth G-representation of finite length. By the Iwasawa
decomposition G = U0P the subspace of U0-invariant elements in IndGP (ζ)∞ is
one dimensional so that the action of H(G, 1U0

) on it is given by a character
ωζ . On the other hand ζ defines in an obvious way a character of the algebra
K[Λ] which we also denote by ζ. Using the Satake isomorphism from section
3 one then has (cf. [Ka1] Lemma 2.4(i))

ωζ = ζ ◦ S1 = (ζ · π− valL(ξ(.))
L ) ◦ Sξ .

By [Ka1] Thm. 2.7 the “specialization” in ωζ

H1,ζ := Kωζ ⊗H(G,1U0
) indGU0

(1U0
) .

of the “universal” H(G, 1U0
)-module indGU0

(1U0
) from section 1 is an admissible

smooth G-representation. Since it also is visibly finitely generated it is, in fact,
of finite length. Since indGU0

(1U0
) as a G-representation is generated by its U0-

fixed vectors the same must hold true for any of its quotient representations,
in particular for any quotient of H1,ζ . But the subspace of U0-invariant vectors
in H1,ζ is one dimensional. It follows that H1,ζ possesses a single irreducible
quotient representation V1,ζ – the so called spherical representation for ζ. One
has the G-equivariant map

H1,ζ −→ IndGP (ζ)∞

1⊗ f 7−→ f ∗ 1ζ :=
∑
g∈G/U0

f(g)g(1ζ)

where 1ζ ∈ IndGP (ζ)∞ denotes the unique U0-invariant function with value one
in 1 ∈ G. Hence Vζ can also be viewed as the, up to isomorphism, unique

irreducible constituent of IndGP (ζ)∞ with a nonzero U0-fixed vector.

Bringing in again the dominant integral weight ξ we have the K-linear isomor-
phism

indGU0
(1U0

)⊗K ρξ
∼=−→ indGU0

(ρξ|U0)
f ⊗ x 7−→ fx(g) := f(g)g−1x .

It is G-equivariant if, on the left hand side, we let G act diagonally. On the left,
resp. right, hand side we also have the action of the Hecke algebra H(G, 1U0

)
through the first factor, resp. the action of the Hecke algebra H(G, ρξ|U0). Rel-
ative to the isomorphism ιρξ between these two algebras discussed in section 1
the above map is equivariant for these Hecke algebra actions as well. (Warn-
ing: But this map does not respect our norms on both sides.) By abuse of
notation we will use the same symbol to denote characters of these two Hecke
algebras which correspond to each other under the isomorphism ιρξ . We obtain
an induced G-equivariant isomorphism

H1,ζ ⊗K ρξ
∼=−→Hξ,ζ := Kωζ ⊗H(G,ρξ|U0) indGU0

(ρξ|U0)
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between “specializations”. Since with V1,ζ also

Vξ,ζ := V1,ζ ⊗K ρξ

is irreducible as a G-representation ([ST1] Prop. 3.4) we see that Vξ,ζ is the
unique irreducible quotient of Hξ,ζ and is also the, up to isomorphism, unique

irreducible constituent of IndGP (ζ)∞⊗Kρξ which as a U0-representation contains
ρξ|U0.

Assuming once more that ζ ∈ T ′ξ(K) we, of course, have that

Bξ,ζ = Hausdorff completion of Hξ,ζ

with respect to the quotient seminorm from indGU0
(ρξ|U0). We remark that the

unit ball in indGU0
(ρξ|U0) and a fortiori its image in Hξ,ζ are finitely generated

over the group ring oK [G]. Hence in order to prove that the quotient topology
on Hξ,ζ is Hausdorff, i.e., that the canonical map Hξ,ζ −→ Bξ,ζ is injective it
suffices to exhibit some bounded open G-invariant oK-submodule in Hξ,ζ .

Example 1: Let G = GL2(Qp), ξ = (a1, a2) a dominant weight, and
ζ = (ζ1, ζ2) ∈ (K×)2. By the discussion at the end of section 2 the defin-
ing conditions for the affinoid domain T ′ξ are

|ζi| ≤ |p|a1 for i = 1, 2 and |ζ1ζ2| = |p|a1+a2+1 .

The complete list of the weakly Qp-admissible filtered K-isocrystals with a
Frobenius ϕ whose semisimple part is given by ζ is well known (cf. [BB] end of
section 3.1): Up to conjugation we may assume that |ζ1| ≥ |ζ2|.
Case 1: |ζ1| = |p|a1 and |ζ2| = |p|a2+1; then ϕ is semisimple, and there are (up
to isomorphism) exactly two weakly Qp-admissible filtrations; one corresponds
to a decomposable and the other to a reducible but indecomposable Galois
representation.
Case 2: ζ1 6= ζ2 with |ζi| < |p|a1 for i = 1, 2; then ϕ is semisimple, and there is
(up to isomorphism) exactly one weakly Qp-admissible filtration; it corresponds
to an irreducible Galois representation.
Case 3: ζ1 = ζ2 with |ζi| < |p|a1 ; then ϕ is not semisimple, and there is (up to
isomorphism) exactly one weakly Qp-admissible filtration; it corresponds to an
irreducible Galois representation.
In particular, the fiber of our above surjection consists of two elements in case
1 and of one element in cases 2 and 3.

On the other hand for |ζ1| ≥ |ζ2| the map Hξ,ζ

∼=−→ IndGP (ζ)∞⊗K ρξ always is an
isomorphism. It therefore follows from [BB] Thm. 4.3.1 that our Bξ,ζ coincides
in Case 2 with the representation denoted by Π(V ) in loc. cit. Moreover, still
in Case 2, by [BB] Cor.s 5.4.1/2/3 the representation of G in the Banach space
Bξ,ζ is topologically irreducible (in particular nonzero) and admissible in the
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sense of [ST2] §3. In Case 3 the same assertions are shown in [Bre] Thm. 1.3.3
under the restriction that a2 − a1 < 2p − 1 and a1 + a2 6= −3 if p 6= 2, resp.
a2 − a1 < 2 and a1 + a2 6= −1 if p = 2.

We mention that in contrast to Bξ,ζ the representation IndGP (ζ)∞ ⊗K ρξ (or

equivalently IndGP (ζ)∞) is irreducible if and only if ζ2 6= pζ1. Hence reducibility
can only occur for a1 = a2 in Case 1 and for a1 < a2 in Case 2.

It was Breuil’s fundamental idea that the two dimensional crystalline Galois
representations of Gal(Qp/Qp) with distinct Hodge-Tate weights should corre-
spond to the Banach representations Bξ,ζ of GL2(Qp). Our general speculation
therefore should be seen as an attempt to extend his picture. But we warn the
reader that the case of GL2 is atypical insofar as in general, given a pair (ξ, ζ),
there will be infinitely many possibilities for a weakly admissible filtration.

Example 2. The unit ball indGU0
(1U0

)0 in the normed space indGU0
(1U0

) is a
module for the unit ball H(G, 1U0

)0 in the Hecke algebra H(G, 1U0
) (for the

sup-norm in both cases). For the two groups G = GL2(L) and G = GL3(L) it
is known that indGU0

(1U0
)0 is free as an H(G, 1U0

)0-module. For G = GL2(L)
this is a rather elementary computation on the tree and for G = GL3(L) it
is the main result in [BO] Thm. 3.2.4 (see also the paragraph after Thm. 1.5;
we point out that the arguments in this paper actually prove freeness and not
only flatness). Let {bj}j∈IN be a basis. Then {1 ⊗ bj}j is a basis of H1,ζ as a
K-vector space, and

∑
j oK · (1⊗ bj) is open in H1,ζ for the quotient topology

provided ζ ∈ T ′1(K). Hence the quotient topology on H1,ζ is Hausdorff which
means that the natural map H1,ζ −→ B1,ζ is injective. In particular, B1,ζ is
nonzero.

Example 3: LetG = GLd+1(L) be general but assume that ζ ∈ Hom(Λ, o×K) ⊆
T ′(K). Then, for any element F ∈ IndGP (ζ)∞ the function |F |(g) := |F (g)| is
right P -invariant. Since G/P is compact we therefore may equip IndGP (ζ)∞

with the G-invariant norm

‖F‖ := supg∈G |F |(g) .

Moreover, our above map

indGU0
(1U0

) −→ H1,ζ −→ IndGP (ζ)∞

then is continuous. Assuming in addition that ζ ∈ T ′ξ(K) we obtain by com-
pletion a G-equivariant continuous K-linear map

B1,ζ −→ IndGP (ζ)c .

The completion IndGP (ζ)c of IndGP (ζ)∞ is explicitly given by

IndGP (ζ)c := space of all continuous functions F : G −→ K such that
F (gtn) = ζ(t)−1F (g) for any g ∈ G, t ∈ T, n ∈ N
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It is easy to show that IndGP (ζ)c as a representation of G in a K-Banach space
is admissible.

Conjecture: If ζ is regular then the representation of G in the Banach space
IndGP (ζ)c is topologically irreducible.

Suppose therefore that ζ is regular, i.e., is not fixed by any 1 6= w ∈W for the
conjugation action of W on T ′). It is then well known that:
– The smooth G-representation IndGP (ζ)∞ is irreducible (for example by the
Bernstein-Zelevinsky classification).

– The above map H1,ζ

∼=−→ IndGP (ζ)∞ is an isomorphism ([Ka1] Thm. 3.2 and
Remark 3.3 or [Dat] Lemma 3.1).
The latter in particular implies that the quotient topology on H1,ζ is Hausdorff

and that the map B1,ζ −→ IndGP (ζ)c has dense image. In this context we also
mention, without proof, the following result.

Proposition 5.4: For any two ζ, ζ ′ ∈ Hom(Λ, o×K) the vector space of all G-

equivariant continuous linear maps from IndGP (ζ)c to IndGP (ζ ′)c is zero if ζ 6= ζ ′

and is K · id if ζ = ζ ′.

For G = GL2(Qp) the above conjecture follows from a combination of [ST1]
§4 and [ST3] Thm. 7.1. If ζ = ζ(1) ⊗ . . . ⊗ ζ(d+1) with unramified characters

ζ(i) : L×/o×L −→ o×K such that ζ(i) 6≡ ζ(i+1) mod πK for any 1 ≤ i ≤ d then the
above conjecture is a consequence of an irreducibility result in characteristic p
in the thesis of R. Ollivier.

6. Weakly admissible pairs and functoriality

In the traditional Langlands program the irreducible smooth representations
of a general group G over L are put into correspondence with continuous ho-
momorphisms from the Galois group Gal(L/L) (or rather the Weil-Deligne
group of L) into the Langlands dual group G′ of G. In order to do something
in this spirit in our setting it is useful to slightly change our point of view
which we motivate by looking once again at the GLd+1-case. We started from
a dominant weight ξ ∈ X∗(T ) and an element ζ ∈ T ′(K) in the dual torus.
Viewing ζ, by our particular choice of coordinates, as a diagonal matrix ζc
in G′(K) = GLd+1(K) we considered the K-isocrystals (Kd+1, ϕ) such that
ζc lies in the conjugacy class of the semisimple part of ϕ. The weight ξ was
used to prescribe the type of the filtration which would make these isocrystals
into filtered isocrystals. Our basic result then was that among all these fil-
tered K-isocrystals there is at least one weakly L-admissible one if and only if
ζ ∈ T ′ξ(K). Now we observe that ξ actually can be used to define a model filtra-

tion on Kd+1. Quite generally, for any K-rational cocharacter ν : Gm −→ G′

we decompose Kd+1 into weight spaces

Kd+1 = ⊕i∈ZZ(Kd+1)i
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with respect to ν and put

Filiν K
d+1 := ⊕j≥i(Kd+1)j .

Because of X∗(T ) = X∗(T ′) ⊆ X∗(G′) this in particular applies to ξη̃L. Of
course, the filtration Fil·ξη̃L K

d+1 has no reason to be weakly L-admissible. But

any other filtration of the same type as Fil·ξη̃L K
d+1 is of the form gF il·ξη̃L K

d+1

= Fil·g(ξη̃L)K
d+1 for some g ∈ G′(K). Hence we may express our basic result

also by saying that, given the pair (ξ, ζ), there is a pair (ν, ϕ) ∈ X∗(G′)(K)×
G′(K) such that
– ν lies in the G′(K)-orbit of ξη̃L,
– the semisimple part of ϕ is conjugate to ζc in G′(K), and
– the filtered K-isocrystal (Kd+1, ϕ, F il·ν K

d+1) is weakly L-admissible
if and only if ζ ∈ T ′ξ(K).

Let now G be again a general L-split reductive group. We denote by G′ its
Langlands dual group which we consider to be defined over L as well (cf. [Bor]).
In particular, T ′ is a maximal L-split torus in G′. We view our dominant ξ ∈
X∗(T ) = X∗(T ′) ⊆ X∗(G′), as above, as a K-rational cocharacter ξ : Gm −→
G′ and ζ ∈ T ′(K) ⊆ G′(K). For a general pair (ν, b) ∈ X∗(G′)(K) × G′(K)
we introduce some constructions and terminology which is borrowed from [RZ]
Chap. 1. Let REPK(G′) denote the category of K-rational representations
of G′ and let FICK denote the category of filtered K-isocrystals. Both are
additive tensor categories. The pair (ν, b) gives rise to the tensor functor

I(ν,b) : REPK(G′) −→ FICK
(ρ,E) 7−→ (E, ρ(b), F il·ρ◦ν E) .

Definition: The pair (ν, b) is called weakly L-admissible if the filtered K-
isocrystal I(ν,b)(ρ,E), for any (ρ,E) in REPK(G′), is weakly L-admissible.

Suppose that (ν, b) is weakly L-admissible. Then I(ν,b) can be viewed as a
functor

I(ν,b) : REPK(G′) −→ FICL−admK

into the full subcategory FICL−admK of weakly L-admissible filtered K-isocrys-
tals which, in fact, is a Tannakian category (the shortest argument for this
probably is to observe that for a Galois representation the property of being spe-
cial crystalline is preserved by tensor products and to use the Colmez-Fontaine
equivalence of categories). Moreover, letting RepconK (Gal(L/L)) denote the cat-
egory of finite dimensional K-linear continuous representations of Gal(L/L) we
know from the last section that the inverse of the functor Dcris(.)1 induces a
tensor functor between neutral Tannakian categories

FICL−admK −→ RepconK (Gal(L/L)) .
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By composing these two functors we therefore obtain a faithful tensor functor

Γ(ν,b) : REPK(G′) −→ RepconK (Gal(L/L))

which possibly is no longer compatible with the obvious fiber functors. This
is measured by a G′-torsor over K ([DM] Thm. 3.2). By Steinberg’s theorem
([Ste] Thm. 1.9) that H1(Knr, G′) = 0 over the maximal unramified extension
Knr of K this torsor is trivial over Knr. It follows then from the general
formalism of neutral Tannakian categories ([DM] Cor. 2.9, Prop. 1.13) that
the functor Γ(ν,b) gives rise to a Knr-homomorphism in the opposite direction
between the affine group schemes of the two categories which is unique up to
conjugation in the target group. For REPK(G′) this affine group scheme of
course is G′ ([DM] Prop. 2.8). For RepconK (Gal(L/L)) we at least have that
the K-rational points of this affine group scheme naturally contain the Galois
group Gal(L/L). Hence by restriction we obtain a continuous homomorphism
of groups

γν,b : Gal(L/L) −→ G′(Knr)

which is determined by the functor Γ(ν,b) up to conjugation in G′(Knr). So we
see that any weakly L-admissible pair (ν, b) determines an isomorphism class of
“Galois parameters” γν,b. We remark that if the derived group of G′ is simply
connected Kneser ([Kne]) showed that H1(K,G′) = 0 so that in this case the
Galois parameter γν,b already has values in G′(K). Following [RZ] p. 14 and
[Win] one probably can establish an explicit formula for the cohomology class
in H1(K,G′) of the torsor in question.

We indicated already earlier that Langlands functoriality (for smooth repre-
sentations) requires to work with the normalized Satake isomorphism Snorm.
This forces us to assume in this section that our coefficient field K contains a
square root of q and to pick one once and for all. As a consequence we also have
a preferred square root δ1/2 ∈ T ′(K) of δ ∈ T ′(K). Being able to work with
the normalized Satake map we do not have to consider the twisted W -action
on K[Λ]. But, of course, we still have a norm in the picture which depends on
ξ and which is the following. We consider the automorphism of K-algebras

aξ : K[Λ] −→ K[Λ]

λ = λ(t) 7−→ δ1/2(λ)π
valL(ξ(t))
L λ

which intertwines the conjugation action by W on the source with the twisted
action on the target. Pulling back along aξ the norm ‖ ‖γξ gives the norm

‖
∑

λ∈Λ

cλλ‖normξ := sup
λ=λ(t)

|δ1/2(wλ)π
valL(ξ(wt))
L cλ|

on K[Λ] with w ∈ W for each λ being chosen in such a way that wλ ∈ Λ−−.
Let K〈Λ; ξ〉 denote the corresponding Banach algebra completion of K[Λ]. It
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follows from Prop. 2.4 that K〈Λ; ξ〉 is the affinoid algebra of the affinoid sub-
domain T ′ξ,norm obtained by pulling back T ′ξ along aξ. Since aξ induces on T ′

the map ζ 7−→ δ1/2πvalL ◦ξ
L ζ we deduce from Lemma 2.7 that

T ′ξ,norm(K) = val−1(V ξ,norm
IR

)

with
V ξ,norm

IR
:= {z ∈ VIR : zdom ≤ ηL + ξL} .

We have the commutative diagram

B(G, ρξ|U0)

��
‖ ‖ξ-completion of H(G, 1U0

)

Snormuujjjjjjjjjjjjjjj

Sξ **TTTTTTTTTTTTTTTT

K〈Λ; ξ〉W
aξ // K〈Λ; γξ〉W,γξ

in which, as a consequence of Lemma 3.3 and Prop. 3.5, all maps are iso-
morphisms of Banach algebras. In this section we use the left hand sequence
of arrows to identify B(G, ρξ|U0) with the algebra of analytic functions on
the affinoid space W\T ′ξ,norm. In particular, this identifies (W\T ′ξ,norm)(K)
with the set of K-valued (continuous) characters of the Banach-Hecke algebra
B(G, ρξ|U0).

Remark: Using that δ(λ{i}) = q−d+2(i−1) the statement of Prop. 5.2 for
the group G = GLd+1(L) becomes: ζ ∈ T ′ξ,norm(K) if and only if there is a
weakly L-admissible filtered K-isocrystal D such that type(D) = ξL + η̃L and
the semisimple part of its Frobenius is given by the diagonal matrix with entries
qd/2ζ(λ{i}).

We note that in the case where ηL happens to be integral (i.e., if d[L : Qp] is
even) we can go one step further, can remove completely normalizations acci-
dental to the group GLd+1(L), and can restate the above remark equivalently
as follows. We have ζ ∈ T ′ξ,norm(K) if and only if there is a weakly L-admissible
filtered K-isocrystal D such that type(D) = ξL + ηL and the semisimple part
of its Frobenius is given by the diagonal matrix with entries ζ(λ{i}). Passing
now to a general G this unfortunately forces us at present to work under the
technical hypothesis that ηL ∈ X∗(T ) = X∗(T ′). This, for example, is the case
if [L : Qp] is even or if the group G is semisimple and simply connected. To
emphasize that ηL then will be considered primarily as a rational cocharacter
of T ′ we will use multiplicative notation and write ξηL for the product of the
rational cocharacters ξ and ηL. In this setting and for general G the analog of
Prop. 5.2 is the following.
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Proposition 6.1: Suppose that ηL is integral, let ξ ∈ X∗(T ) be dominant, and
let ζ ∈ T ′(K); then there exists a weakly L-admissible pair (ν, b) (and hence
a Galois parameter γν,b) such that ν lies in the G′(K)-orbit of ξηL and b has
semisimple part ζ if and only if ζ ∈ T ′ξ,norm(K).

Proof: First let (ν, b) be a weakly L-admissible pair as in the assertion. Further
let ρ : G′ −→ GL(E) be any K-rational representation. We then have the
weakly L-admissible filtered K-isocrystal (E, ρ(b), F il·ρ◦ν E). Furthermore ρ◦ν
is conjugate to ρ ◦ (ξηL) in GL(E)(K) and ρ(ζ) is the semisimple part of ρ(b).
We fix a K-rational Borel subgroup PE ⊆ GL(E) and a maximal K-split torus
TE ⊆ PE such that ρ(ζ) ∈ TE(K). There is a unique K-rational cocharacter
(ρ ◦ ν)dom : Gm −→ TE which is dominant with respect to PE and which is
conjugate to ρ ◦ ν in GL(E)(K). Then (ρ ◦ ν)dom = (ρ ◦ (ξηL))dom corresponds
to the type of the filtration Fil·ρ◦ν E in the sense of section 5. As in the
first part of the proof of Prop. 5.2 we know from [Fon] Prop. 4.3.3 that the
weak L-admissibility of our filtered isocrystal implies that the Newton polygon
P((ρ(val(ζ)))dom) lies above the Hodge polygon P((ρ ◦ (ξηL))dom) with both
having the same endpoint. But, as discussed before Lemma 5.1, this means
that

(ρ(val(ζ)))dom ≤ (ρ ◦ (ξηL))dom .

According to [FR] Lemma 2.1 the latter implies that

val(ζ)dom ≤ (ξηL)dom = ξηL , i.e., that ζ ∈ T ′ξ,norm(K) .

For the reverse implication we first recall that, given any pair (ν, b) and any K-
rational representation ρ : G′ −→ GL(E), the associated filtered K-isocrystal
(E, ρ(b), F il·ρ◦ν E) carries the canonical HN-filtration by subobjects (cf. [RZ]
Prop. 1.4). The latter is stabilized by a unique parabolic subgroup P ρ(ν,b) ⊆
GL(E). We obviously have

ρ(b) ∈ P ρ(ν,b)(K) .

The HN-filtrations, being functorial, equip our functor I(ν,b) in fact with the
structure of an exact ⊗-filtration in the sense of [Saa] IV.2.1.1. The exactness
is trivial since the category REPK(G′) is semisimple. The compatibility with
the tensor product is a theorem of Faltings and Totaro (independently). It
then follows from [Saa] Prop. IV.2.2.5 and Thm. IV.2.4 that

P(ν,b) :=
⋂

ρ

ρ−1(P ρ(ν,b))

is a K-rational parabolic subgroup of G′. Since [Saa] only considers filtrations
indexed by integers this requires the following additional observation. The
category REPK(G′) has a generator ([Saa] II.4.3.2) and is semisimple. From
this one deduces that the jump indices in the HN-filtrations on all the values
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of our functor can be written with a common denominator. Hence all these
HN-filtrations can be reindexed simultaneously in such a way that they become
integral, and [Saa] applies. We emphasize that, denoting by ID the protorus
with character group Q, one actually has a (not unique) K-rational homomor-
phism ι(ν,b) : ID −→ G′ whose weight spaces define the HN-filtration on the
functor I(ν,b). Its centralizer in G′ is a Levi subgroup of P(ν,b).

Note that we have
b ∈ P(ν,b)(K) .

After these preliminaries we make our choice of the element b.

Lemma 6.2: There is a regular element b ∈ G′(K) with semisimple part ζ.

Proof: Let M ′ ⊆ G′ denote the connected component of the centralizer of ζ in
G′. We have:
– M ′ is connected reductive ([Ste] 2.7.a);
– M ′ is K-split of the same rank as G′ (since T ′ ⊆M ′);
– ζ ∈ T ′(K) ⊆M ′(K); in fact, ζ lies in the center of M ′.
The regular unipotent conjugacy class in M ′, by its unicity ([Ste] Thm. 3.3),
is defined over K. Since M ′ is K-split it therefore contains a point u ∈M ′(K)
([Kot] Thm. 4.2). We put b := ζu ∈ G′(K). The centralizer of b in G′ contains
with finite index the centralizer of u in M ′. Hence b is regular in G′ with
semisimple part ζ.

We now fix b ∈ G′(K) to be regular with semisimple part ζ.

Lemma 6.3: There are only finitely many K-rational parabolic subgroups Q ⊆
G′ such that b ∈ Q(K).

Proof: Obviously it suffices to prove the corresponding statement over the
algebraic closure K of K. By [Ste] Thm. 1.1 there are only finitely many
Borel subgroups Q0 ⊆ G′ such that b ∈ Q0(K). Let Q ⊆ G′ be any parabolic
subgroup with b ∈ Q(K). It suffices to find a Borel subgroup Q0 ⊆ Q such that
b ∈ Q0(K). Consider the Levi quotient M of Q and the image b ∈ M(K) of
b. Then b is contained in some Borel subgroup Q0 ⊆M (cf. [Hu1] Thm. 22.2)
and we can take for Q0 the preimage of Q0 in Q.

It follows that with ν varying over the G′(K)-orbit Ξ ⊆ X∗(G′) of ξηL the
family of parabolic subgroups P(ν,b) actually is finite. Let P1, . . . , Pm denote
these finitely many parabolic subgroups and write

Ξ = Ξ1 ∪ . . . ∪ Ξm with Ξi := {ν ∈ Ξ : P(ν,b) = Pi} .

We want to show that ν ∈ Ξ can be chosen in such a way that P(ν,b) = G′.
Because then the homomorphism ι(ν,b) : ID −→ G′ factorizes through the center
of G′. Since by Schur’s lemma the center of G′ acts through scalars on any
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irreducible K-rational representation ρ of G′ it follows that the HN-filtration
on the filtered isocrystal (E, ρ(b), F il·ρ◦ν E) for irreducible ρ has only one step.
On the other hand, our assumption that ζ ∈ T ′ξ,norm(K) together with [FR]
Lemma 2.1 imply that this filtered isocrystal, for any ρ, has HN-slope zero.
Hence it is weakly L-admissible, first for irreducible ρ and then by passing
to direct sums also for arbitrary ρ. This proves that the pair (ν, b) is weakly
L-admissible.

We argue by contradiction and assume that all P1, . . . , Pm 6= G′ are proper
parabolic subgroups. By [FR] Lemma 2.2.i we then find, for any 1 ≤ i ≤ m, an
irreducible K-rational representation ρi : G′ −→ GL(Ei) and a K-line ℓi ⊆ Ei
such that

Pi = stabilizer in G′ of ℓi

(in particular, ℓi 6= Ei). We claim that P ρi(ν,b), for each ν ∈ Ξi, stabilizes

the line ℓi. To see this we have to recall the actual construction of ρi in loc.
cit. Fix a maximal K-split torus Ti in a Levi subgroup Mi of Pi and fix a
Borel subgroup Ti ⊆ Bi ⊆ Pi. By conjugation we may assume that all the
homomorphisms ι(ν,b), for ν ∈ Ξi, factorize through the center of Mi. Recall
that Mi then is equal to the centralizer of ι(ν,b) in G′. Hence we may view these
ι(ν,b) as elements in X∗(Ti) ⊗ Q which lie in the interior of the facet defined
by Pi (the latter follows from [Saa] Prop. IV.2.2.5.1)). Pick on the other hand
a Bi-dominant character λi ∈ X∗(Ti) which lies in the interior of the facet
corresponding to Pi and let ρi be the rational representation of highest weight
λi. Then, according to [FR], the highest weight space ℓi ⊆ Ei has the required
property that Pi is its stabilizer in G′. Let λ ∈ X∗(Ti) be any weight in Ei
different from λi. Then λi−λ is a nonzero linear combination with nonnegative
integral coefficients of Bi-simple roots.

Claim: (λi − λ)(ι(ν,b)) > 0

Proof: Let {αj : j ∈ ∆} ⊆ X∗(Ti) be the set of Bi-simple roots and let J ⊆ ∆
denote the subset corresponding to Pi. The highest weight λi then satisfies

λi(α̌j)

{
= 0 if j ∈ J,
> 0 if j 6∈ J

where the α̌j ∈ X∗(Ti) denote the simple coroots. On the other hand the
connected center of Mi is equal to (

⋂
j∈J ker(αj))

◦, and we have

αj(ι(ν,b))

{
= 0 if j ∈ J,
> 0 if j 6∈ J.

We may write

λi − λ =
∑

j∈∆

cjαj with cj ∈ ZZ≥0 .
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Hence

(+) (λi − λ)(ι(ν,b)) =
∑

j 6∈J
cjαj(ι(ν,b)) ≥ 0

and we have to show that cj , for at least one j 6∈ J , is nonzero. Let λ′ ∈ X∗(Ti)
denote the unique dominant element in the orbit of λ under the Weyl group of
Ti. Then λ′ also is a weight occurring in Ei and we have

λi − λ′ =
∑

j∈∆

djαj and λ′ − λ =
∑

j∈∆

ejαj with dj , ej ∈ ZZ≥0 .

In particular, dj + ej = cj . Suppose first that λi 6= λ′. Then it suffices to find
a j 6∈ J such that dj > 0. By the proof of [Hum] 13.4 Lemma B we obtain
λ′ from λi by successively subtracting simple roots while remaining inside the
weights occurring in Ei in each step. But because of λi(α̌j) = 0 if j ∈ J we
know ([Hum] 21.3) that λi − αj cannot be a weight occurring in Ei for any
j ∈ J . This means of course that we have to have dj > 0 for some j 6∈ J .
Now assume that λi = λ′ so that λ = σλi for some σ in the Weyl group of
Ti. According to the proof of [Hum] 10.3 Lemma B we obtain λ from λi in the
following way: Let σj be the reflection in the Weyl group corresponding to the
simple root αj . Write σ = σj1 . . . σjt in reduced form. Then

λi − λ =
∑

1≤s≤t
σjs+1

. . . σjt(λi)(α̌js)αjs

with all coefficients being nonnegative integers. Since the σj for j ∈ J fix λi
we may assume that jt 6∈ J . Then the last term in the above sum is λi(α̌jt)αjt
whose coefficient is positive.

This claim means that ℓi is a full weight space of ρi ◦ ι(ν,b). But it follows from
(+) also that the weight of ID on ℓi is maximal with respect to the natural order
on the character group Q of ID among all weights of ID occurring in Ei. Hence
ℓi must be the bottom step in the HN-filtration of the filtered K-isocrystal
Ei,ν := (Ei, ρi(b), F il

·
ρi◦ν Ei) for each ν ∈ Ξi. As such it carries the structure

of a subobject ℓi,ν ⊆ Ei,ν . As noted already, due to ζ ∈ T ′ξ,norm, the HN-slope
of Ei,ν is zero. By the fundamental property of the HN-filtration (cf. [RZ]
Prop. 1.4) the HN-slope of ℓi,ν then must be strictly positive which means that

tH(ℓi,ν) > tLN (ℓi,ν) .

Suppose that we find an 1 ≤ i ≤ m and a ν ∈ Ξi such that ℓi is transversal to
the filtration Fil·ρi◦ν Ei. Let (a1, . . . , ar), resp. (z1, . . . , zr), denote the filtration
type (in the sense of section 5), resp. the slopes written in increasing order, of
the corresponding Ei,ν . The transversality means that tH(ℓi,ν) = a1. On the

other hand, since ℓi is a line we must have tLN (ℓi,ν) = zj ≥ z1. But because of
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ζ ∈ T ′ξ,norm(K), once more [FR] Lemma 2.1, and Lemma 5.1 we have z1 ≥ a1

which leads to the contradictory inequality

tH(ℓi,ν) ≤ tLN (ℓi,ν) .

It finally remains to justify our choice of ν. Since the filtration Fil·ρi◦ν Ei is
well defined for any ν ∈ Ξ (and not only ν ∈ Ξi) it suffices to establish the
existence of some ν ∈ Ξ such that

ℓi is transversal to Fil·ρi◦ν Ei for any 1 ≤ i ≤ m .

Let Fi ⊂ Ei denote the top step of the filtration Fil·ρi◦ξηL Ei. We have to find
an element g ∈ G′(K) such that

ρi(g)(ℓi) 6⊆ Fi for any 1 ≤ i ≤ m .

For each individual i the set Ui := {g ∈ G′ : ρi(g)(ℓi) 6⊆ Fi} is Zariski open
in G′. Since ρi is irreducible the set Ui is nonempty. The intersection U :=
U1∩ . . .∩Um therefore still is a nonempty Zariski open subset of G′. But G′(K)
is Zariski dense in G′ (cf. [Hu1] §34.4). Hence U must contain a K-rational
point g ∈ U(K). Then the cocharacter ν := g−1(ξηL) has the properties which
we needed.

We summarize that, under the integrality assumption on ηL, any K-valued
character of one of our Banach-Hecke algebras B(G, ρξ|U0) naturally gives rise
to a nonempty set of Galois parameters Gal(L/L) −→ G′(K). The need to pass
to the algebraic closure K comes from two different sources: First the element
ζ ∈ T ′ξ,norm giving rise to a K-valued character of B(G, ρξ|U0) in general is
defined only over a finite extension of K; secondly, to make Steinberg’s theorem
applicable we had to pass to the maximal unramified extension. In the spirit
of our general speculation at the end of the last section we view this as an
approximation to a general p-adic Langlands functoriality principle.

Without the integrality assumption on ηL one can proceed at least half way as
follows. Let us fix, more generally, any natural number r ≥ 1. We introduce
the category of r-filtered K-isocrystals FICK,r whose objects are triples D =
(D,ϕ, F il·D) as before only that the filtration Fil·D is allowed to be indexed
by r−1ZZ (in particular, FICK = FICK,1). The invariants tH(D) and tLN (D)
as well as the notion of weak L-admissibility are defined literally in the same
way leading to the full subcategory FICL−admK,r of FICK,r.

Proposition 6.4: FICL−admK,r is a K-linear neutral Tannakian category.

Proof: This follows by standard arguments from [Tot].

The tensor functor

I(ν,b) : REPK(G′) −→ FICK,r
(ρ,E) 7−→ (E, ρ(b), F il·ρ◦ν E)
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makes sense for any pair (ν, b) ∈ (X∗(G′) ⊗ r−1ZZ)(K) × G′(K) as does the
notion of weak L-admissibility of such a pair. With these generalizations Prop.
6.1 continues to hold in complete generality (involving 2-filtered K-isocrystals)
with literally the same proof. What is missing at present is the connection
between the categories FICL−admK,r and RepconK (Gal(L/L)). This might involve

a certain extension of the Galois group Gal(L/L). We hope to come back to
this problem in the future.
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[Vig] Vigneras M.-F.: Algèbres de Hecke affines génériques. Preprint 2004

[Win] Wintenberger J.-P.: Propriétés du groupe Tannakien des structures
de Hodge p-adiques et torseur entre cohomologies cristalline et étale.
Ann. Inst. Fourier 47, 1289-1334 (1997)

Peter Schneider
Mathematisches Institut
Westfälische Wilhelms-Universität
Münster
Einsteinstr. 62
D-48149 Münster, Germany
pschnei@math.uni-muenster.de
http://www.uni-muenster.de/

math/u/schneider

Jeremy Teitelbaum
Department of Mathematics, Statistics
and Computer Science (M/C 249)
University of Illinois at Chicago
851 S. Morgan St.
Chicago, IL 60607, USA
jeremy@uic.edu
http://raphael.math.uic.edu/∼jeremy

Documenta Mathematica · Extra Volume Coates (2006) 631–684



Documenta Math. 685

Higher Fields of Norms and (φ,Γ)-Modules

Dedicated to John Coates

on the occasion of his 60th birthday

Anthony J. Scholl

Received: December 1, 2005

Revised: March 3, 2006

Abstract. We describe a generalisation of the Fontaine-
Wintenberger theory of the “field of norms” functor to local fields
with imperfect residue field, generalising work of Abrashkin for
higher dimensional local fields. We also compute the cohomology of
associated p-adic Galois representations using (φ,Γ)-modules.

2000 Mathematics Subject Classification: 11S15, 11S23, 11S25, 12G05
Keywords and Phrases: local fields, ramification theory, Galois repre-
sentations

Introduction

Abrashkin [3] has found an analogue of the field of norms functor for higher-
dimensional local fields. His construction uses the theory of ramification groups
[24] for such fields. As an application of his results (include the transfer of
the ramification group structure from characteristic zero to characteristic p)
he obtains the analogue of Grothendieck’s anabelian conjecture for higher-
dimensional local fields.
In the first part of this paper we construct an analogue of the field of norms
for fairly general1 local fields with imperfect residue field. Like Abrashkin’s,
as a starting point it uses the alternative characterisation of the ring of inte-
gers of the (classical) field of norms as a subring of Fontaine’s ring R = Ẽ+

(the perfection of oK ⊗ Fp). However we differ from him, and the original
construction by Fontaine and Wintenberger [12], [13], by making no appeal to

1The only requirement is that the residue field has a finite p-basis.
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higher ramification theory. We instead restrict to extensions which are “strictly
deeply ramified” (see §1.3 and Remark 1.3.8 below) and appeal instead to the
differential characterisation of deeply ramified extensions which forms the ba-
sis for Faltings’s approach to p-adic Hodge theory [10] (although we only use
the most elementary parts of Faltings’s work). These extensions are (in the
classical case) closely related to strictly APF extensions; one may hope that
by using Abbès and Saito’s higher ramification theory ([1], [2]) a theory for
all APF extensions could be developed. We hope to clarify this relation in a
subsequent paper. In any case, the theory presented here includes those ex-
tensions which arise in the theory of (φ,Γ)-modules. It is also perhaps worth
noting that in the classical case (perfect residue field), the 2 key propositions
on which the theory depends (1.2.1 and 1.2.8) are rather elementary.
In the second part of the paper we begin the study of (φ,Γ)-modules in this
setting, and prove the natural generalisation of Herr’s formula [15] for the
cohomology of a p-adic Galois representation. We also describe a natural family
of (non-abelian) extensions to which this theory applies. We hope to develop
this further in a subsequent paper.
This work grew out of the preparation of talks given during a study group at
Cambridge in winter 2004, and the author is grateful to the members of the
study group, particularly John Coates and Sarah Zerbes, for their comments
and encouragement, to Victor Abrashkin, Ivan Fesenko and Jan Nekovář for
useful discussions, to Pierre Colmez for letting me have some of his unpublished
work, and to the referee for his careful reading of the paper. He also wishes to
thank Bilkent University, Ankara, for their hospitality while parts of this paper
were being written.
As the referee has pointed out, the possibility of such constructions has been
known to the experts for some time (see for example the remarks on page 251
of [11]). After this paper was written the author received a copy of Andreatta
and Iovita’s preprints [4, 5], which construct rings of norms and compute the
cohomology of (φ,Γ)-modules for Kummer-like extensions of more general p-
adic base rings.

Notation

Throughout this paper p denotes a fixed prime number.
If A is an abelian group and ξ an endomorphism of A, or more generally an
ideal in a ring of endomorphisms of A, we write A/ξ for A/ξA, and A[ξ] for
the ξ-torsion subgroup of A.
If R is a ring of characteristic p, we denote by f = fR : x 7→ xp the Frobenius
endomorphism of R.
If K is any p-adically valued field and λ ∈ Q belongs to the value group of K,
we will by abuse of notation write pλ for the fractional ideal comprised of all
x ∈ K with vp(x) ≥ λ.
We use the sign = to denote equality or canonical isomorphism, and A := B
to indicate that A is by definition B.
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1 Fields of norms

1.1 Big local fields

By a big local field we mean a complete discretely-valued field, whose residue
field k has characteristic p and satisfies [k : kp] = pd for some d ≥ 0 (we then
talk of a “d-big local field”). If K is such a field we use the usual notations:
oK for its valuation ring, ̟K for a uniformiser (not always fixed), kK or (if
no confusion is likely) simply k for its residue field, and vK for the normalised
valuation on K with vK(̟K) = 1. When charK = 0, we write eK for its
absolute ramification degree, and vp for the p-adic valuation with vp(p) = 1.
Of course, d = 0 if and only if K is a local field in the usual sense (i.e., with
perfect residue field).
We recall for convenience some facts about big local fields and their extensions,
and fix some notation. If L/K is a finite separable extension of d-big local
fields, then [L : K] = ef0p

s where e = e(L/K) = vL(̟K) is the (reduced)
ramification degree, and f0 and ps are the separable and inseparable degrees
of the extension kL/kK , respectively, so that f = f0p

s = [kL : kK ].
If L/K is a finite separable extension of big local fields, the valuation ring oL
is not necessarily of the form oK [x]. There are two particular cases when this
is true:
(i) when the residue class extension kL/kK is separable [21, III, §6 Lemme 4].
Then there exists x ∈ oL with oL = oK [x]; and if kL = kK then x = ̟L

for any uniformiser ̟L will do, and its minimal polynomial is an Eisenstein
polynomial.
(ii) when ̟K = ̟L and the residue class extension is purely inseparable and
simple2. Let kL = kK(b) for some b with bq = a ∈ kK \ kpK , and let u ∈ oL
be any lift of b. Then oL = oK [u] where the minimal polynomial of u has the

form g(T ) = T q +
∑q−1
i=1 ciT

i − v, with ̟K |ci and a = v mod ̟K .

Conversely, let g = T q+
∑q−1
i=0 ciT

i ∈ oK [T ] be any polynomial. Let us say that
g is a fake Eisenstein polynomial if (a) its degree q is a power of p; (b) for every
i ≥ 1, ci ≡ 0 (mod ̟K); and (c) c0 is a unit whose reduction mod ̟K is not a
pth power. Then g is irreducible (since it is irreducible mod ̟K) and oK [T ]/(g)
is a discrete valuation ring. It is the valuation ring of a totally fiercely ramified
extension of K of degree q.
In particular, if L/K is Galois of prime degree then one of (i), (ii) applies, so
oL = oK [x].
For any big local field K of characteristic zero there exists a complete subfield
Ku ⊂ K which is absolutely unramified (that is, p is a uniformiser) having the
same residue field as K. (This holds by the existence of Cohen subrings; see
for example [EGA4, 19.8.6] or [18, pp. 211–212]). If d = 0 then Ku is unique;
otherwise (except when eK = 1) it is non-unique [EGA4, 19.8.7]. If L/K is
a finite extension it is not in general possible to find such subfields Ku ⊂ K,
Lu ⊂ L satisfying Ku ⊂ Lu (even when K itself is absolutely unramified).

2In the terminology of [24], L/K is totally fiercely ramified.
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Let K be a big local field with residue field k, and choose Ku ⊂ K as above.
Then for any m with 0 < m ≤ eK , the quotient oK/(̟

m
K) contains oKu/(p) = k

and therefore oK/(̟
m
K) ≃ k[̟K ]/(̟m

K). When k is perfect (but not in general)
this isomorphism is canonical, since the projection oK/(̟

m
K) →−→ k has a unique

section, whose image is the maximal perfect subring of oK/(̟
m
K).

If K is a big local field of characteristic p then it contains a coefficient field
(non-unique if d > 0), so that K ≃ kK((̟K)). If L/K is a finite separable
extension then one cannot in general find a coefficient field of L containing one
of K.
From now on, unless stated explicitly to the contrary, all big local fields will be
assumed to have characteristic zero. For a finite extension L/K we then write

δ(L/K) =
∑

δi(L/K) = vp(DL/K)

where the δi(L/K) are the p-adic valuations of the primary factors of Ω(L/K).

1.2 Differentials and ramification

If L/K is an extension of big local fields, we usually write Ω(L/K) := ΩoL/oK

for the module of relative Kähler differentials, which is an oL-module of finite
length. Then Ω(L/K) can be generated by ≤ (d+ 1) generators (for example,
by equation (1.2.2) below). The Fitting ideal of Ω(L/K) (the product of its
primary factors) equals the relative different DL/K , defined in the usual way as
the inverse of the oK-dual of oL with respect to the trace form; see for example
[10, Lemma 1.1].

Proposition 1.2.1. Let L/K be a finite extension of d-big local fields with
[L : K] = pd+1. Assume that there exists a surjection

Ω(L/K) −→−→ (oL/ξ)
d+1

for some ideal ξ ⊂ oK with 0 < vp(ξ) ≤ 1. Then e(L/K) = p and kL = k
1/p
K ,

and the Frobenius endomorphism of oL/ξ has a unique factorisation

oL/ξ

mod ξ′

����

f
// oL/ξ

oL/ξ
′ ∼ //_______ oK/ξ

?�

inclusion

OO

where ξ′ ⊂ oL is the ideal with valuation p−1vp(ξ). In particular, Frobenius
induces a surjection f : oL/ξ −→−→ oK/ξ.

Proof. Let ̟L be a uniformiser. We have [L : K] = pd+1 = ef0p
s, and if

pr = [kL : kpLk] then dimkL ΩkL/k = r ≤ s. We have the exact sequence of
differentials

(̟L)/(̟2
L) −→ Ω(L/K)⊗oL kL −→ ΩkL/k −→ 0 (1.2.2)
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and if e = 1 the first map is zero (taking ̟L = ̟k). It follows that

dimkL

(
Ω(L/K)⊗oL kL

)
{
≤ 1 + r in general

= r if e = 1.

By definition, d = [kL : kpL] ≥ r and by hypothesis dimkL

(
Ω(L/K) ⊗oL kL

)
≥

d+ 1, so we must have r = s = d, f0 = 1, e = p and kL = k1/p.
Let {tα | 1 ≤ α ≤ d} ⊂ o∗L be a lift of a p-basis for kL. Then d̟L, {dtα} is
a basis for Ω(L/K) ⊗ kL. Introduce a multi-index notation I = (i1, . . . , id),
tI =

∏
tiαα . Then the k-vector space oL/(̟K) has as a basis the reduction

mod ̟K of the pd+1 monomials {tI̟j
L | 0 ≤ j < p, 0 ≤ iα < p}. So by

Nakayama’s lemma,

oL = oK [̟L, {tα}] =
⊕

0≤j<p
0≤iα<p

tI̟j
LoK . (1.2.3)

Lemma 1.2.4. If x =
∑

0≤j<p, 0≤iα<p xI,jt
I̟j

L with xI,j ∈ oK , then

vp(x) = min
I,j

(
vp(xI,j) +

j

eL

)
.

Proof. If yI ∈ oK for 0 ≤ iα < p, then since the elements tI are linearly
independent mod (̟L), we have

̟L

∣∣∑

I

yIt
I ⇐⇒ for all I, yI ≡ 0 (mod ̟K) ⇐⇒ ̟K

∣∣∑

I

yIt
I

from which we see that

vK

(∑

I

yIt
I
)

= min
I
vK(yI) (1.2.5)

and that this is an integer. Therefore

vK

(
̟j
L

∑

I

xI,jt
I
)
≡ j

p
(mod Z)

and so

vp(x) = vp

(p−1∑

j=0

̟j
L

∑

I

xI,jt
I
)

= min
j

{
vp
(
̟j
L

∑

I

xI,jt
I
)}
.

Then the lemma follows from (1.2.5).

From (1.2.3) we obtain (d+ 1) relations in oL of the shape:

̟p
L =

p−1∑

j=0

Aj(t)̟
j
L, tpα =

p−1∑

j=0

Bα,j(t)̟
j
L (1 ≤ α ≤ d) (1.2.6)
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where Aj , Bα,j ∈ oK [X1, . . . ,Xd] are polynomials of degree < p in each vari-
able. Write Dγ for the derivative with respect to Xγ , and δαγ for Kronecker
delta. Therefore in Ω(L/K) the following relations hold:

(
−p̟p−1

L +

p−1∑

j=1

jAj(t)̟
j−1
L

)
d̟L +

∑

γ

(p−1∑

j=0

DγAj(t)̟
j
L

)
dtγ = 0

(p−1∑

j=1

jBα,j(t)̟
j−1
L

)
d̟L − ptp−1

α dtα +
∑

γ

(p−1∑

j=0

DγBα,j(t)̟
j
L

)
dtγ = 0

The condition on Ω(L/K) forces all the coefficients in these identities to be
divisible by ξ. From (1.2.4) this implies that for all j > 0, Aj(t)̟

j−1
L ≡ 0 ≡

Bα,j(t)̟
j−1
L (mod ξ). Therefore

̟p
L ≡ A0(t) and tpα ≡ Bα,0(t) (mod ̟Lξ).

Similarly, for every γ and every j ≥ 0,

DγAj(t) ≡ DγBα,j(t) ≡ 0 (mod ̟−jL ξ).

This last congruence implies that the nonconstant coefficients of Aj and Bα,j
are divisible by ̟−jL ξ, so especially

A0(t) ≡ A0(0), Bα,0(t) ≡ Bα,0(0) (mod ξ).

The first of these congruences, together with 1.2.4 and the first equation of
(1.2.6), implies that vL(A0(0)) = p. We will therefore choose ̟K = A0(0) as
the uniformiser of K. Then

̟p
L ≡ ̟K , tpα ≡ bα (mod ξ)

where bα = Bα,0(0) ∈ o∗K . If m = vK(ξ) then, as noted just before the state-

ment of this Proposition, oK/ξ
∼−→ k[̟K ]/(̟m

K). We fix such an isomorphism.
If b̄α ∈ k denotes the reduction of bα mod ̟K , then by (1.2.3) there are com-
patible isomorphisms

oL/ξ
∼−→ k[̟L, {tα}]/(̟mp

L , {tpα − b̄α})
oL/ξ

′ ∼−→ k[̟L, {tα}]/(̟m
L , {tpα − b̄α})

such that the inclusion oK/ξ −֒→ oL/ξ induces the identity on k and maps ̟K

to ̟p
L. Therefore

oL/ξ
′ ∼−−→

f
(oL/ξ)

p
= oK/ξ ⊂ oL/ξ

as required.
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Remark 1.2.7. It is perhaps worth noting that in the case d = 0 the proof just
given simplifies greatly; in this case L/K is totally ramified by hypothesis, so
̟L satisfies an Eisenstein polynomial over K, whose constant term we may
take to be −̟K . We then have canonical isomorphisms oK/ξ = k[̟K ]/(̟m

K),
oL/ξ = k[̟L]/(̟mp

L ), and the minimal polynomial of ̟L gives at once the
congruence ̟p

L ≡ ̟K (mod ξ) — cf. [21], Remark 1 after Proposition 13 of
§III.6.

Recall now the key lemma in the theory ([9], [10], [22]) of deep ramification of
local fields:

Proposition 1.2.8. (Faltings) Let L and K ′ be linearly disjoint finite exten-
sions of a d-big local field K, and set L′ = LK ′ ≃ L ⊗K K ′. Assume there
exists a surjection Ω(K ′/K) −→−→ (oK′/p

λ)d+1 for some λ ≥ 0. Then

δ(L′/K ′) ≤ δ(L/K)− 1

d+ 2
min(λ, δ(L/K)).

Proof. (expanded from the proof of [10, Theorem 1.2]). For simplicity of nota-
tion write:

R = oK , S = oL, R′ = oK′ , S
′ = oL′

δ = δ(L/K), δi = δi(L/K), δ′ = δ(L′/K ′), δ′i = δi(L
′/K ′).

If M is an S′-module of finite length, write ℓp(M) for 1/eL′ times the length
of M (so ℓp(M) also equals the p-adic valuation of the Fitting ideal of M).
Consider the homomorphism γ = βα, which links the two exact3 sequences of
differentials in the commutative diagram:

0

��

S′ ⊗S ΩS/R

α

��

γ

%%K

K

K

K

K

0 // S′ ⊗R′ ΩR′/R // ΩS′/R β
// ΩS′/R′

// 0

In this diagram, all entries are torsion S′-modules which can be generated by
≤ (d+ 1) elements. We then have the following inequalities:

(a) ℓp(ker γ) ≥ min(λ, δ)

(b) ℓp(im γ) ≥ (d+ 2)δ′ − (d+ 1)δ

3See [20, p.420, footnote] or [10, Lemma 1.1]

Documenta Mathematica · Extra Volume Coates (2006) 685–709



692 Anthony J. Scholl

Since ℓp(im γ)+ ℓp(ker γ) = ℓp(S
′⊗ΩS/R) = δ, combining (a) and (b) gives the

desired inequality.
Proof of (a):
We have α : ker γ ∼−→ imα∩ kerβ. Therefore as there is a surjection ΩR′/R →
(R′/pλ)d+1, and as ΩS′/R can be generated by (d+ 1) elements, we have

kerβ ⊃ ΩS′/R[pλ] ≃ (S′/pλ)d+1

and so

ker γ ⊃ S′ ⊗S ΩS/R[pλ] ≃
d⊕

i=0

S′/pmin(λ,δi).

Therefore

ℓp(ker γ) ≥
∑

min(λ, δi) ≥ min(λ,
∑

δi) = min(λ, δ).

Proof of (b):
Evidently im γ = S′d(S) = S′d(R′S). Now since under the trace form we have
D−1
L/K = HomR(S,R), it follows that

R′D−1
L/K = HomR′(R

′ ⊗ S,R′) ⊃ HomR′(S
′, R′) = D−1

L′/K′

and so S′ ⊃ R′S ⊃ DL/KD−1
L′/K′ = ̟jS′ say, where ̟ = ̟L′ is a uniformiser

and j = eL′(δ − δ′). Therefor we have inclusions

im γ ⊃ S′d(̟jS′) ⊃ ̟jΩS′/R′ = pδ−δ
′
ΩS′/R′ ≃

d⊕

i=0

S′/(pmax(0,δ′i−δ+δ′))

and therefore

ℓp(im γ) ≥
d∑

i=0

(δ′i − δ + δ′) = (d+ 2)δ′ − (d+ 1)δ.

1.3 Deep ramification and norm fields

In this section we will work with towers K0 ⊂ K1 ⊂ . . . of finite extensions
of d-big local fields. If K• = {Kn} is such a tower, write K∞ =

⋃
Kn. We

abbreviate on = oKn , ̟n = ̟Kn and kn = kKn . Define an equivalence relation
on towers by setting K• ∼ K ′• if there exists r ∈ Z such that for every n
sufficiently large, K ′n = Kn+r.
We shall say that a tower K• is strictly deeply ramified if there exists n0 ≥ 0
and an ideal ξ ⊂ on0

with 0 < vp(ξ) ≤ 1, such that the following condition
holds:

For every n ≥ n0, the extension Kn+1/Kn has degree pd+1, and there
exists a surjection Ω(Kn+1/Kn) −→−→ (on+1/ξ)

d+1.
(1.3.1)
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If K• is strictly deeply ramified then so is any equivalent tower (with the same ξ
and possible different n0). See 1.3.8 below for some comments on this definition.
Let K• be a strictly deeply ramified tower, and (n0, ξ) a pair for which (1.3.1)
holds. Then by 1.2.1, for every n ≥ n0 we have e(Kn+1/Kn) = p, and Frobenius
induces a surjection f : on+1/ξ −→−→ on/ξ. We can then choose uniformisers ̟n

of Kn such that ̟p
n+1 ≡ ̟n (mod ξ) for every n ≥ n0. Define

X+ = X+(K•, ξ, n0) := lim←−
n≥n0

(on/ξ, f)

and wite prn : X+ −→−→ on/ξ for the nth projection in the inverse limit. Set
Π = (̟n mod ξ) ∈ X+.

Let k′ = lim←−
n≥n0

(kn, f); since kn+1 = k
1/p
n , the projections prn : k′ → kn for any

n ≥ n0 are isomorphisms. (Note that the residue field k∞ of K∞ is then the
perfect closure (k′)1/p

∞
of k′.)

Theorem 1.3.2. X(K•, ξ, n0) is a complete discrete valuation ring of char-
acteristic p, with uniformiser Π, and residue field k′. Up to canonical iso-
morphism (described in the proof below) X+(K•, ξ, n0) depends only on the
equivalence class of the tower K•, and not on the choices of ξ and n0 satisfying
(1.3.1).

Proof. Define a partial order on triples (K•, ξ, n0) satisfying (1.3.1) by setting
(K ′•, ξ

′, n′0) ≥ (K•, ξ, n0) if and only if vp(ξ
′) ≤ vp(ξ) and for some r ≥ 0 one

has n′0 + r ≥ n0 and K ′n = Kn+r for every n ≥ 0. It is obvious that under this
order any two triples have an upper bound if and only if the associated towers
of extensions are equivalent.
If (K ′•, ξ

′, n′0) ≥ (K•, ξ, n0) and r is as above then there is a canonical map

X+(K•, ξ, n0)→ X+(K ′•, ξ
′, n′0)

g : (xn)n≥n0
7→ (xn+r mod ξ′)n≥n′0 .

If ξ = ξ′, g is obviously an isomorphism. In general we can define a map h in
the other direction by

h : (yn)n≥n′0 7→ (yp
s

n+s−r)n≥n0

which is well-defined and independent of s for s sufficiently large. Then g and h
are mutual inverses. For three triples (K ′′• , ξ

′′, n′′0) ≥ (K ′•, ξ
′, n′0) ≥ (K•, ξ, n0)

the isomorphisms just described are obviously transitive, so we obtain the de-
sired independence on choices.
Truncating K• if necessary we may therefore assume that n0 = 0 and ξ = ̟0.
We then have by 1.2.1

X+/(Πpm) = lim←− on/(̟0,̟
pm

n ) ∼−−→
prm

om/(̟0).
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Therefore lim←−X
+/(Πpm) = lim←− om/(̟0) = X+, so X+ is Π-adically complete

and separated, and Π is not nilpotent. Since X+/(Π) is a field, X+ is therefore
a discrete valuation ring with uniformiser Π.

To make the definition of X+ truly functorial, we define for an equivalence
class K of towers

X+
K := lim−→X+(K•, ξ, n0)

where the limit is taken over triples (K•, ξ, n0) with K• ∈ K and (ξ, n0) satis-
fying (1.3.1), and the transition maps are the isomorphisms g in the preceding
proof. We let ΠK denote any uniformiser of X+

K , and define kK = X+
K/(ΠK) to

be its residue field.

Definition. The field of fractions XK of X+
K is the norm field of K.

Of course this is illogical terminology, because when d > 0 this has nothing to
do with norms. But when d = 0 it is just the field of norms XK(K∞) for the
extension K∞/K in the sense of Fontaine and Wintenberger ([12], [13], and
[23] — especially 2.2.3.3), and for d > 0 see also remark 1.3.9 below.
Let K• be a tower of d-big local fields, K its equivalence class, and L∞/K∞ a
finite extension. Then there exists a finite extension L0/K0 contained in L∞
such that L∞ = K∞L0; write Ln = KnL0. The equivalence class L of L•
depends only on L∞.

Theorem 1.3.3. Let K and L be as above. Then if K is strictly deeply ramified
so is L.
Proof. The condition on the extension degrees is clear. By Proposition 1.2.8
with (K,K ′, L, L′) = (Kn,Kn+1, Ln, Ln+1) we have

δ(Ln+1/Kn+1) ≤ δ(Ln/Kn)−
1

d+ 2
min(vp(ξ), δ(Ln/Kn))

and so δ(Ln/Kn)→ 0 as n→∞. Using the exact sequences of differentials for
the extensions Ln+1/Ln/Kn and Ln+1/Kn+1/Kn, it follows that the annihila-
tors of the kernel and cokernel of the canonical map

oLn+1
⊗oKn+1

Ω(Kn+1/Kn)→ Ω(Ln+1/Ln)

have p-adic valuation tending to zero as n→∞. Therefore L• satisfies (1.3.1)
for any ξ′ with 0 < vp(ξ

′) < vp(ξ) (and suitable n0).

Theorem 1.3.4. Let K• be strictly deeply ramified, K its equivalence class and
L∞/K∞ a finite extension.

(i) XL is a finite separable extension of XK. More generally, if L′∞/K∞ is
another finite extension and τ : L∞ → L′∞ is a K∞-homomorphism, the
maps τ : oLn/ξ →֒ oL′n/ξ, for n sufficiently large and vp(ξ) sufficiently

small, induce an injection XK(τ) : X+
L →֒ X+

L′ which makes XL′/XL a
separable extension of degree [L′∞ : τL∞].
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(ii) The sequences (e(Ln/Kn)), (s(Ln/Kn)) and (f0(Ln/Kn)) are stationary
for n sufficiently large. Their limits equal e(XL/XK), s(XL/XK) and
f0(XL/XK) respectively.

(iii) There exists a constant c ≥ 0 such that δ(Ln/Kn) = cp−n for n suffi-
ciently large.

Proof. It suffices in (i) to consider the case of a single extension L∞/K∞. Let
m = [L∞ : K∞]. Changing ξ and n0 if necessary, we can assume that (1.3.1)
holds for both K• and L• with the same ξ and n0, and that [Ln : Kn] = [L∞ :
K∞] = m for n ≥ n0. Then for every n ≥ n0, oLn/ξ is a finite flat on/ξ-algebra
of rank m. Therefore by Nakayama’s lemma X+

L is a finite flat X+
K -algebra of

rank m, so XL/XK is a finite extension of degree m.
Consider the discriminant d = dXL/XK ⊂ X+

K of X+
L /X

+
K . The projection of d

to on/ξ equals the discriminant of oLn/ξ over on/ξ. Since δ(Ln/Kn) → 0 the
latter is nonzero for n sufficiently large. So XL/XK is separable. Its residue
field extension is isomorphic to kLn/kn for n sufficiently large. So the sequences
(f0(Ln/Kn)) and (s(Ln/Kn)) are ultimately stationary, hence the same holds
for e(Ln/Kn) = [Ln : Kn]/f(Ln/Kn).
Let vXK(d) = r; then for n ≥ n0, (̟r

n) equals the discriminant of oLn/ξ over
on/ξ. So for n sufficiently large, vp(̟

r
n) = mδ(Ln/Kn). Therefore δ(Ln/Kn) =

p−nc where c equals rpn/meKn , which is constant for n sufficiently large.

So if K is strictly deeply ramified, for any finite L∞/K∞ we may define

X+
K (L∞) := X+

L , XK(L∞) := XL

which by the above is a functor from the category of finite extensions of K∞
to that of XK.

Theorem 1.3.5. The functor XK(−) defines an equivalence between the cate-
gory of finite extensions of K∞ and the category of finite separable extensions
of XK.

Proof.
The functor is fully faithful. It is enough to show that if L∞/K∞ is a fi-
nite Galois extension then any non-trivial σ ∈ Gal(L∞/K∞) induces a non-
trivial automorphism XK(σ) of XK(L∞) = XL. In that case since [XL :
XK] = [L∞ : K∞] it follows that XL/XK is a Galois extension, and that
XK(−) : Gal(L∞/K∞) ∼−→ Gal(XL/XK), from which the fully faithfulness is
formal by Galois theory.
Assume that XK(σ) = 1. Then replacing σ by a suitable power, we may assume
it has prime order. Replacing K∞ by the fixed field of σ, and truncating the
tower if necessary we may then assume that L∞/K∞ is cyclic of prime degree
ℓ, with Galois group G say.
In this case for n sufficiently large, Ln/Kn is cyclic of degree ℓ and so oLn =
oKn [xn] for some xn ∈ oLn . If gn ∈ oKn [T ] is the minimal polynomial of xn
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then

DLn/Kn = (g′n(xn)) =
∏

1 6=σ∈G
(xn − σxn).

So since δ(Ln/Kn)→ 0, it follows that if 1 6= σ ∈ G and n is sufficiently large,
then σxn 6≡ xn (mod ξ). So σ acts nontrivially on oLn/ξ hence also on XL.
The functor is essentially surjective.
Using fully faithfulness, it is enough to show that if Y/XK is a finite Galois
extension then there exists L∞/K∞ and a XK-isomorphism XK(L∞) ∼−→ Y .
Let Y + ⊂ Y be the valuation ring of Y . Building the extension step-by-step
we are reduced to the cases:
(a) Y/XK is unramified. The categories of finite unramified extensions of XK
and K∞ are equivalent to the categories of finite separable extensions of their
respective residue fields kK and k∞. But as k∞ is the perfect closure of kK
these categories are equivalent.
(b) Y/XK is ramified and of prime degree ℓ. There are two subcases:
(b1) e(Y/XK) = ℓ. Then Y + = X+

K [ΠY ] where the uniformiser ΠY satisfies an
Eisenstein polynomial G(T ) ∈ X+

K [T ].
Choose n0 such that (1.3.1) holds and vp(ξ) > vp(̟n0

). For every n ≥ n0,
let gn ∈ on[T ] be any monic polynomial such that ḡn = prn(G) ∈ (on/ξ)[T ].
Then gn is an Eisenstein polynomial, and gn(T

p) ≡ gn+1(T )p (mod ξ). Fix an
algebraic closure K of K∞ and let ō be its valuation ring.

Claim: There exist n1 ≥ n0, ξ
′ ∈ on1

with vp(ξ
′) ≤ vp(ξ), and roots xn ∈ ō of

gn, such

(i) For every n ≥ n1, x
p
n+1 ≡ xn (mod ξ′)

(ii) If Ln := Kn(xn) ⊂ K then Ln+1 = Kn+1Ln for all n ≥ n1.

(iii) If n ≥ n1 then (oLn+1
/ξ′)p = oLn/ξ

′, and there is an isomorphism of
X+
K -algebras

Y + ∼−→ lim←−
n≥n1

(
oLn/ξ

′, f
)

mapping ΠY to (xn mod ξ′)n.

Granted this claim, L∞ :=
⋃
Ln is an extension with XK(L∞) ≃ Y .

Proof of claim. (i) Let Sn = {xn,i | 1 ≤ i ≤ ℓ} ⊂ ō be the set of roots of gn.
Then for all n ≥ 0 and all i we have

ℓ∏

j=1

(xpn+1,i − xn,j) = gn(x
p
n+1,i) ≡ gn+1(xn+1,i)

p ≡ 0 (mod ξ).

Choose n1 ≥ n0 and ξ′ ⊂ on1
such that 0 < vp(ξ

′) ≤ ℓ−1vp(ξ). Then for each i
there exists j with xpn+1,i ≡ xn,j (mod ξ′). Choosing such a j for each i then
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determines a map Sn+1 → Sn, and by compactness lim←−Sn is nonempty. Let

(xn) be any element of the inverse limit; then (i) is satisfied.
If Ln = Kn(xn), then [Ln : Kn] = e(Ln/Kn) = ℓ. Since it satisfies an
Eisenstein polynomial, xn is a uniformiser of Ln, and oLn/ξ

′ = (on/ξ
′)[xn] =

(on/ξ
′)[T ]/ḡn(T ). Therefore for each n there is a unique surjection

f : oLn+1
/ξ′ −→−→ oLn/ξ

′ (1.3.6)

which is Frobenius on on+1/ξ and maps xn+1 to xn (mod ξ′).
Let µn : Y + −→−→ oLn/ξ

′ be the map taking ΠY to xn, and whose restriction
to X+

K is prn. The different of Y/XK is (G′(ΠY )), and it is nonzero since
Y/XK is separable. Let r = vY (G′(ΠY )). Then ḡ′n(xn) = µn(G

′(ΠY )) equals
xrn times a unit. Therefore if n is large enough so that vLn(ξ) > r, we have
vLn(g′n(xn)) = r. Therefore δ(Ln/Kn) = vp(g

′
n(xn)) → 0. Order the roots of

gn so that xn = xn,1. Since
∏

i6=1

(xpn+1 − xn,i) ≡
∏

i6=1

(xn − xn,i) ≡ g′n(xn) (mod ξ)′

it follows that for n sufficiently large, xpn+1 is closer to xn than to any of the
other roots {xn,i | i 6= 1} of gn. By Krasner’s lemma, xn ∈ Kn(x

p
n+1), so

Ln ⊂ Ln+1 and the map (1.3.6) is induced by the Frobenius endomorphism of
oLn+1

/ξ′ (by its uniqueness).
We have to check that Ln+1 = Kn+1Ln for n sufficiently large. Since [Ln+1 :
Kn+1] = ℓ = [Ln : Kn] it is enough to show that the extensions Ln/Kn and
Kn+1/Kn are linearly disjoint. If not, since [Ln : Kn] is prime, there exists a
Kn-homomorphism τ : Ln → Kn+1, and so ℓ = p. But as δ(Ln/Kn) → 0 and
Ω(Kn+1/Kn) surjects onto (on+1/ξ)

d+1 this implies that for n sufficiently large,
Ω(Kn+1/τLn) surjects onto kd+1

n+1, which is impossible as [Kn+1 : τLn] = pd.
Finally, making n1 sufficiently large, we have a commutative diagram

X+
K

prn+1

����

� � // Y +

µn+1

����
µn

�� ��
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

6
6

on+1/ξ
′ � � //

f
%% %%J

J
J

J
J

J
J

J
J

oLn+1
/ξ′

f
$$ $$I

I
I

I
I

I
I

I
I

on/ξ
′ � � // oLn/ξ

′

(1.3.7)

where Ln+1 = Kn+1Ln for n ≥ n1, inducing a X+
K -homorphism

Y + → X+
K (L∞) = lim←−

n≥n1

(oLn/ξ
′, f).

Since Y + and X+
K (L∞) are both valuation rings of extensions of XK of the

same degree, this is an isomorphism.
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(b2) e = 1 and s = 1. Then Y + = X+
K [U ] for some U ∈ (Y +)∗, whose reduction

mod ΠK generates kY /kK. As in (b1), let G be the minimal polynomial of U ,
and get ḡn ∈ (on/ξ)[T ] be its image, and gn ∈ on[T ] any monic lift. Then gn
is a fake Eisenstein polynomial (cf. §1.1) hence is irreducible; just as above
we find roots un ∈ ō of gn such that upn+1 ≡ un (mod ξ′) for n sufficiently
large and suitable ξ′. The remainder of the argument proceeds exactly as for
(b1).

Remark 1.3.8. The condition 1.3.1 is closely related, in the case d = 0, to that
of strictly arithmetically profinite extension [23, §1.2.1]. It is possible to weaken
the condition without affecting the results: one could instead just require that
there exist surjections Ω(Kn+1/Kn) −→−→ (on+1/ξn+1)

d+1 where ξn ⊂ on is a
sequence of ideals whose p-adic valuations do not tend too rapidly to zero.

Remark 1.3.9. Suppose that K (and therefore also XK) is a (d+1)-dimensional
local field. Then, as Fesenko and Zerbes have remarked to the author, local
class field theory for higher dimensional local fields [17] gives a reciprocity
homomorphism KM

d+1(K) → Gal(K/K)ab, where KM
∗ () is Milnor K-theory,

which becomes an isomorphism after passing to a suitable completion ̂KM
d+1(K).

Therefore there is a commutative diagram

lim←−
norms

̂KM
d+1(Kn)

∼−−−−→ ̂KM
d+1(XK)

‖ ‖

lim←−Gal(K/Kn)
ab = Gal(K/K∞)ab ∼−−−−→ Gal(XK/XK)ab

which may be viewed as the generalisation of the Fontaine-Wintenberger def-
inition (for d = 0) of XK as the inverse limit of the Kn with respect to the
norm maps.

2 (φ,Γ)-modules

2.1 Definitions

We review Fontaine’s definition [11] of the (φ,Γ)-module associated to a p-adic
representation, in an appropriately axiomatic setting. The key assumptions
making the theory possible are (2.1.1) and (2.1.2) below.
We begin with a strictly deeply ramified tower K• of d-big local fields (always
of characteristic zero) such that Kn/K0 is Galois for each n, and set K = K0,
ΓK = Gal(K∞/K). Fixing an algebraic closure K of K containing K∞, write
GK = Gal(K/K) ⊃ HK = Gal(K/K∞). All algebraic extensions of K will be
tacitly assumed to be subfields of K.
Let EK = XK be the norm field of the tower K•, and E+

K its valuation ring. To
be consistent with the notation established in [8], we write π̄, or when there is
no confusion simply π, for a uniformiser of EK . Then E+

K is (noncanonically)
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isomorphic to kK[[π̄]]. For a finite extension L/K, one writes EL for the norm
field of the tower LK•, and E for lim−→EL (the limit over all finite extensions

L/K). The group GK then acts continuously (for the valuation topology) on
E = E

sep
K , and this action identifies the subgroup HK with Gal(E/EK).

If E is any of these rings of characteristic p, write Erad for the perfect closure
p∞√E of E, and Ẽ for the completion of Erad. In particular, Ẽ+ is the valu-
ation ring of the algebraic closure of EK , and can be alternatively described
as lim←−(oK/p, f), also known as R. By continuity the action of GK on E ex-

tends uniquely to a continuous action on Erad and Ẽ, and for any L on has
ẼL = ẼHL .
In the theory of (φ,Γ)-modules there are two kinds of rings of characteristic
zero which appear. The first are those with perfect residue ring, which are
completely canonical. These are:

• Ã+ = W (Ẽ+) ⊂ Ã = W (Ẽ);

• ÃL = W (ẼL), for any finite L/K;

• Ã+
L = W (Ẽ+

L) = Ã+ ∩ ÃL

They carry a unique lifting of Frobenius (namely the Witt vector endomor-

phism F ), and the action of GK on Ẽ defines an action on Ã. The ring Ã

has a canonical topology (also called the weak topology) which is the weakest

structure of topological ring for which Ã → Ẽ is continuous (for the valua-

tion topology on Ẽ). Equivalently, in terms of the definition of W (Ẽ) as ẼN

with Witt vector multiplication and addition, it is the product of the valuation
topologies on the factors. The GK-action is evidently continuous with respect
to the canonical topology. The other natural topology to put on Ã is the p-adic
(or strong) topology.
The other rings of characteristic zero have imperfect residue rings, and depend
on certain choices. Let A+

K be a complete regular local ring of dimension 2,
together with an isomorphism A+

K/(p) ≃ E+
K . Such a lift of E+

K exists and is
unique up to nonunique isomorphism. If C is a p-Cohen ring with residue field
k, then any A+

K is (non-canonically) isomorphic to C[[π]]. Define AK to be
the p-adic completion of (A+

K)(p); it is a p-Cohen ring with residue field EK .

Fix a principal ideal I = (π) of A+
K lifting (π̄) ⊂ E+

K . Then AK is the p-adic
completion of A+

K [1/π]. The essential choice to be made is a lifting φ : A+
K →

A+
K of the absolute Frobenius endomorphism of E+

K , which is required to satisfy
two conditions. The first is simply

φ(I) ⊂ I. (2.1.1)

It is clear that φ extends to an endomorphism of AK , whose reduction mod p
is the absolute Frobenius of EK .
For any finite extension L/K there exists a finite étale extension AL/AK ,
unique up to unique isomorphism, with residue field EL. Let AK = lim−→AL, the
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direct limit taken over finite extensions L/K, and let A be the p-adic comple-
tion of AK . Then AK is the maximal unramified extension of AK , and the iso-
morphism HK ≃ Gal(E/EK) extends to an isomorphism with Aut(AK/AK).
This in turn extends to a unique action of HK on A, continuous for both the
canonical and p-adic topologies, and for any finite L/K one has AHL = AL by
the Ax-Sen-Tate theorem [6].
Since AL/AK is étale there is a unique extension of φ to an endomorphism of
AL whose reduction mod p is Frobenius; by passage to the limit and comple-
tion it extends to an endomorphism of A. We use φ to denote any of these
endomorphisms.
The lifting φ of Frobenius determines (see [7, Ch,IX, §1, ex.14] and [11, 1.3.2])
a unique embedding

µK : AK −֒→W (EK)

such that µ◦φ = F ◦µ, which maps A+
K into W (E+

K). We identify AK with its
image under this map. An alternative description of µK is as follows: consider
the direct limit

φ−∞AK = lim−→(AK , φ)

on which φ is an automorphism. Its p-adic completion is a complete unramified
DVR of characteristic zero, with perfect residue field Erad

K , hence is canonically
isomorphic to W (Erad

k ). Likewise the action of φ on A determines an embed-
ding µ : A →֒ W (E), which is uniquely characterised by the same properties

as µK . The embeddings AK →֒ A →֒ W (Ẽ) induce topologies on AK and

A. One writes A+ = A ∩ Ã+. Then A+/pA+ ≃ E+ by [11, 1.8.3], and a
basis of neighbourhoods of 0 for the canonical topology on A is the collection
of A+-submodules

pmA + πnA+, m, n ≥ 0.

The reduction map A → E is HK-equivariant by construction, and so µ is
HK-equivariant. The second, and much more serious, condition to be satisfied
by φ is:

A ⊂ Ã is stable under the action of GK . (2.1.2)

In particular, A inherits an action of GK , and AK and A+
K inherit an action

of ΓK , continuous for the canonical topology.
A Zp-representation of GK is by definition a Zp-module of finite type with
a continuous action of GK . Assuming (2.1.1) and (2.1.2) above are satisfied,
Fontaine’s theory associates to a Zp-representation of GK the AK-module of
finite type

D(V ) = DK(V ) := (A⊗Zp V )HK .

The functor D is faithful and exact. The AK-module D(V ) has commuting
semilinear actions of φ and ΓK . Being a finitely-generated AK-module, D(V )
has a natural topology (which is the quotient topology for any surjection Ad

K →
D(V )), for which the action of ΓK is continuous. Therefore D(V ) has the
structure of an étale (φ,ΓK)-module, and just as in [11] we have:
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Theorem 2.1.3. Assume conditions (2.1.1) and (2.1.2) are satisfied. The func-
tor D is an equivalence of categories

(Zp-representations of GK) −→ (étale (φ,ΓK)-modules over AK)

and an essential inverse is given by D 7→ (A⊗AK
D)φ=1.

Lemma 2.1.4. (i) The sequences

0→ Zp → A
φ−1−→ A→ 0 (2.1.5)

0→ Zp → A+ φ−1−→ A+ → 0 (2.1.6)

are exact, and for every n > 0, the map

φ− 1: πnA+ → πnA+ (2.1.7)

is an isomorphism.
(ii) For any n > 0 and for any L/K, the map φ− 1: E+

L → E+
L is an isomor-

phism.

Proof. It suffices (by passage to the limit) to prove the corresponding state-
ments mod pm. By dévissage it is enough to check them mod p. There-
fore (2.1.5), (2.1.6) follow from the Artin–Schreier sequences for E and E+,
and (2.1.7) follows from (ii), since A+/pA+ = E+. Rewriting the map as
πn(p−1)φ− 1: E+

L → E+
L , by Hensel’s lemma it is an isomorphism.

2.2 Cohomology

We assume that we are in the situation of the previous subsection. In par-
ticular, we assume that conditions (2.1.1) and (2.1.2) are satisfied. If G is a
profinite group and M a topological abelian group with a continuous G-action,
by H∗(G,M) we shall always mean continuous group cohomology. Write
C•(G,M) for the continuous cochain complex of G with coefficients in M , so
that H∗(G,M) = H∗(C•(G,M)). If φ ∈ EndG(M) write C•φ(G,M) for the sim-

ple complex associated to the double complex [C•(G,M)
φ−1−→ C•(G,M)]. Write

H∗φ(G,M) for the cohomology of C•φ(G,M), and H∗φ(M) for the cohomology of

the complex M
φ−1−→M (in degrees 0 and 1).

If H ⊂ G is a closed normal subgroup and M is discrete then there are two
Hochschild–Serre spectral sequences converging to H∗φ(G,M), whose E2-terms
are respectively

Ha(G/H,Hb
φ(H,M)) and Ha

φ(G/H,Hb(H,M)),

and which reduce when H = {1} and H = G respectively to the long exact
sequence

Ha(G,Mφ=1)→ Ha
φ(G,M)→ Ha−1(G,M/(φ− 1))→ Ha+1(G,Mφ=1)
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and the short exact sequences

0→ Hb−1(G,M)/(φ− 1)→ Hb
φ(G,M)→ Hb(G,M)φ=1 → 0.

Theorem 2.2.1. Let V be a Zp-representation of GK , and set D = DK(V ).
There are isomorphisms

H∗(GK , V ) ∼−→ H∗φ(ΓK ,D) (2.2.2)

H∗(HK , V ) ∼−→ H∗φ(D) (2.2.3)

which are functorial in V , and compatible with restriction and corestriction.

Remarks. (i) In the case when K has perfect residue field, and K∞ is the
cyclotomic Zp-extension, we recover Théorème 2.1 of [15], since taking γ to be
a topological generator of ΓK ≃ Zp, the complex

D
(φ−1
γ−1)−→ D ⊕D (γ−1,1−φ)−−−−−−−→ D

computes H∗φ(ΓK ,D).
(ii) An oversimplified version of the proof runs as follows: from the short
exact sequence (2.1.5) we have, tensoring with V and applying the functor
RΓ(HK ,−), an isomorphism (in an unspecified derived category)

RΓ(HK , V ) ∼−→ RΓ(HK ,A⊗ V φ−1−→ A⊗ V ). (2.2.4)

But for i > 0, Hi(HK ,A⊗V ) = 0, and H0(HK ,A⊗V ) = D, so the right-hand

side of (2.2.4) is isomorphic to [D
φ−1−→ D]. Applying RΓ(ΓK ,−) then would

give

RΓ(GK , V ) ∼−→ RΓ(ΓK ,D
φ−1−→ D).

Since the formalism of derived categories in continuous cohomology requires
extra hypotheses (see for example [16] or [19, Ch.4]) which do not hold in
the present situation, we fill in this skeleton by explicit reduction to discrete
modules. (Note that in general these Galois cohomology groups will not be of
finite type over Zp, hence need not commute with inverse limits.)

Proof. We construct a functorial isomorphism (2.2.2); once one knows that it
is compatible with restriction, one may obtain (2.2.3) by passage to the limit
over finite extensions L/K; alternatively it can be proved directly (and more
simply) by the same method as (2.2.2). The compatibility of the constructed
isomorphisms with restriction and corestriction is an elementary verification
which we leave to the interested reader.
Write Vm = V/pmV and Dm = D/pmD; we have Dm = DK(Vm) since DK is
exact. A basis of neighbourhoods of 0 in Dm is given by the open subgroups

Dm ∩ (πnA+ ⊗ Vm) = (πnA+ ⊗ Vm)HK
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which are stable under ΓK and φ. Write also

Dm,n = Dm/(π
nA+ ⊗ Vm)HK

which is a discrete ΓK-module; we have topological isomorphisms

Dm = lim←−
n

(Dm,n), D = lim←−
m

(Dm)

and H∗φ(ΓK ,D) is the cohomology of lim←−
m,n

C•φ(ΓK ,Dm,n).

From 2.1.4 we obtain for every m,n ≥ 1 a short exact sequence

0→ Vm → (A/πnA+)⊗ Vm φ−1−→ (A/πnA+)⊗ Vm → 0

and so the canonical map

C•(GK , Vm)→ C•φ(GK , (A/πnA+)⊗ Vm) (2.2.5)

is a quasi-isomorphism, for every m,n ≥ 1.
The inclusion Dm,n −֒→ (A/πnA+)⊗ Vm induces a morphism of complexes

αm,n : C•φ(ΓK ,Dm,n)→ C•φ(GK , (A/πnA+)⊗ Vm).

Passing to the inverse limit and taking cohomology, this together with (2.2.5)
defines a functorial map

H∗φ(ΓK ,D)→ H∗(GK , V ) (2.2.6)

whose inverse will be (2.2.2). To prove it is an isomorphism, it is enough to
show:

Proposition 2.2.7. For every m ≥ 1, lim←−
n

(αm,n) is a quasi-isomorphism.

Proof. First note that the exactness of D implies that there is a short exact
sequence

0→ Dm → Dm+1 → D1 → 0

which clearly has a continuous set-theoretical splitting (it is enough to give a
continuous section of the surjection AK → EK which is easy), so gives rise to
a long exact sequence of continuous cohomology. Suppose the result is shown
for m = 1. Then (2.2.6) is an isomorphism for every V with pV = 0, and so
by the 5-lemma it is an isomorphism for every V of finite length, whence the
result holds for all m ≥ 1. So we may assume for the rest of the proof that
pV = 0 and m = 1, and therefore replace A by E.
Fix a finite Galois extension L/K such that HL acts trivially on V . We then
have a natural map

D1,n =
(E⊗ V )HK

(πnE+ ⊗ V )HK
→ (E⊗ V )HL

(πnE+ ⊗ V )HL
= EL/π

nE+
L ⊗ V.
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The map α1,n therefore factors as the composite of two maps

C•φ(ΓK ,D1,n)
βn−−→ C•φ(Gal(L∞/K),EL/π

nE+
L ⊗ V )

γn−→ C•φ(GK ,E/πnE+ ⊗ V )

which we treat in turn:

(a) γn is a quasi-isomorphism. We may compute the induced map H∗(γn)
on cohomology using the morphism of associated spectral sequences, which on
E2-terms is the map

Ha(Gal(L∞/K),Hb
φ(EL/π

nE+
L)⊗ V )

→ Ha(Gal(L∞/K),Hb
φ(HL,EL/πnE+

L)⊗ V ) (2.2.8)

We then have a commutative square (where E is regarded as a discrete HL-
module)

Hb
φ(EL) −−−−→ Hb

φ(EL/π
nE+

L)
y

y

Hb
φ(HL,E) −−−−→ Hb

φ(HL,E/πnE+)

in which all the arrows are isomorphisms; in fact by 2.1.4(ii), the horizontal
arrows are isomorphisms, and since Hb(HL,E) = 0 for b > 0 the same is true
of the left vertical arrow. Therefore the maps (2.2.8) are isomorphisms, and
hence γn is a quasi-isomorphism, for every n ≥ 1.

(b) lim←−(βn) is a quasi-isomorphism. We consider the cohomology of the finite

group ∆ = Gal(L∞/K∞) acting on the short exact sequence

0→ πnE+
L ⊗ V → EL ⊗ V → EL/π

nE+
L ⊗ V → 0. (2.2.9)

Lemma 2.2.10. (i) Hj(∆,EL ⊗ V ) = 0 for j > 0.
(ii) There exists r ≥ 0 such that for all j > 0 and n ∈ Z, the group
Hj(∆, πnE+

L ⊗ V ) is killed by πr.

Proof. It is enough to prove (ii) for n = 0 (since π is fixed by ∆) and since
EL = lim−→π−nE+

L , (ii) implies (i). It is therefore enough to know that if M

is any E+
L -module with a semilinear action of ∆, then there exists r ≥ 0 such

that πrHj(∆,M) = 0 for any j > 0, which is standard.4

To complete the computation of βn, we next recall [16, 1.9] that an inverse
system (Xn) of abelian groups is ML-zero if for every n there exists r = r(n) ≥ 0

4Let M → N• be the standard resolution. Choose y ∈ E
+
L such that x = trEL/EK (y) 6= 0,

and let λ(m) =
P

g∈∆ g(ym). Then the composite (N•)∆ −֒→N• λ
−→ (N•)∆ is multiplica-

tion by x, hence by passing to cohomology, multiplication by x kills Hj(∆, M) for j > 0.
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such that Xn+r → Xn is the zero map. The class of ML-zero inverse systems
is a Serre subcategory [16, 1.12]. A morphism (Xn) → (Yn) is said to be an
ML-isomorphism if its kernel and cokernel are ML-zero, and if this is so, the
induced maps

lim←−Xn → lim←−Yn, R1 lim←−Xn → R1 lim←−Yn (2.2.11)

are isomorphisms. This implies that if (fn) : (X•n) → (Y •n ) is a morphism of
inverse systems of complexes with surjective transition maps Xi

n+1 → Xi
n,

Y in+1 → Y in, then if (H∗(fn)) : (H∗(X•n)) → (H∗(Y •n )) is an ML-isomorphism,
the map lim←−(fn) : lim←−X

•
n → lim←−Y

•
n is a quasi-isomorphism. (Consider the

induced map between the exact sequences [16, (2.1)] for X•n and Y •n .)

From the exact sequence of cohomology of (2.2.9) and the lemma, we deduce
that:

• for all j > 0, the inverse system (Hj(∆,EL/π
nE+

L ⊗ V ))n is ML-zero;

• the map of inverse systems

(D1,n)n → (H0(∆,EL/π
nE+

L ⊗ V ))n

is an ML-isomorphism.

We now have a spectral sequence of inverse systems of abelian groups
(nE

ij
2 )n ⇒ (nE

i+j
∞ )n with

nE
ij
2 = Hi

φ(ΓK ,H
j(∆,EL/π

nE+
L ⊗ V ))

nE
k
∞ = Hk

φ(Gal(L∞/K),EL/π
nE+

L ⊗ V ).

such that, for all i ≥ 0 and j > 0, the inverse system (nE
ij
2 )n are ML-zero.

Therefore the edge homomorphism

(nE
i0
2 )n → (nE

i
∞)n

is an ML-isomorphism. Moreover for all i ≥ 0 the map of inverse systems

(Hi
φ(ΓK ,Dm,n))n → (nE

i0
2 )n

is an ML-isomorphism, so composing with the edge homomorphism gives an
ML-isomorphism

(Hi
φ(ΓK ,D1,n))n → (Hi

φ(Gal(L∞/K),EL/π
nE+

L ⊗ V ))n.

Hence lim←−(βn)n is a quasi-isomorphism.
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2.3 Kummer towers

Let F be any local field of characteristic 0, with perfect residue field. Set
̟ = ̟F , k = kF , o = oF . (Later in this section we will require further that F
is absolutely unramified.)

Let K ⊃ F be any d-big local field such that oK/oF is formally smooth (i.e., ̟
is a uniformiser of K). Let {tα | 1 ≤ α ≤ d} ⊂ o∗K be a set of units whose
reductions {t̄α} ⊂ kK form a p-basis for kK .

Fix an algebraic closure K of K. Let (εn)n≥0 be a compatible system of
primitive pn-th roots of unity in K, and for each α let (tα,n)n≥0 be a compatible
system of pn-th roots of tα.

Set Fn = F (εn), on = oFn , kn = kFn ,K ′n = K(t1,n, . . . , td,n) andKn = K ′n(εn).

The tower {Fn} is strictly deeply ramified; choose n0 ≥ 0, ξ ∈ Kn0
with

0 < vp(ξ) ≤ 1, and uniformisers ̟n ∈ on such that ̟p
n+1 ≡ ̟p

n (mod ξ) for all
n ≥ n0. Let XF be the field of norms of {Fn} and kF = lim←−(kn, f) its residue
field. Put π̄ = ΠF , so that XF ≃ kF [[π̄]], and the isomorphism is canonical
once the uniformisers ̟n are fixed (since kF is perfect). Write for reduction
mod ξ.

We have oK′n = oK [t1,n, . . . , td,n] since this ring is a DVR, and so ̟n satisfies
an Eisenstein polynomial over K ′n as well as over F . Hence oKn = oK′n [̟n] =
on ⊗o oK [{tα,n}], and so

oKn/ξ = on/ξ ⊗k kK [t̄1,n, . . . , t̄d,n] = on/ξ ⊗k k1/pn

K

and we have a commutative diagram

on+1/ξ ⊗k k1/pn+1

K

1⊗fn+1

∼ //

f

��

on+1/ξ ⊗
f−n−1, k

kK

f⊗1

��

on/ξ ⊗k k1/pn

K

1⊗fn
∼ // on/ξ ⊗

f−n, k
kK

≀

��

kn[̟n]/(̟
rpn

n ) ⊗
f−n, k

kK

Therefore

E+
K = X+

K = lim←−
n≥n0

kn[̟n]/(̟
rpn

n ) ⊗
f−n, k

kK = kF [[π̄]] ⊗̂
f−∞, k

kK
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where f−∞ : k −֒→ kF is the homomorphism making the diagram

kF
∼ // . . . ∼

f
// kn+1

∼
f

// kn

k

� ?

OO

∼
f

// k

� ?

OO

∼
fn

// k
f−∞

^^

commute. In other words, if we view kF as an extension of k via the map f−∞

just defined, we have E+
K = kF [[π̄]]⊗̂kkK .

Set K ′∞ =
⋃
K ′n ⊂ K∞. Define the various Galois groups

ΓK = Gal(K∞/K) = ΓF×∆K/F

ΓF = Gal(K∞/K
′
∞) = Gal(F∞/F ) →֒ Z∗p

∆K/F = Gal(K∞/F∞) ≃ Zdp

acting on K∞ as follows: if a ∈ Z∗p is the image of γa ∈ ΓF and b ∈ Zdp the
image of δb ∈ ∆K/F then

γa : εn 7→ εan δb : εn 7→ εn

tα,n 7→ tα,n tα,n 7→ εbαn tα,n.

To be more precise we suppose from now on that F/Qp is unramified, so that
on = o[εn], and we may choose ̟n = εn − 1. Then the projections kF → k,
kK → kK are isomorphisms, and ΓK acts on E+

K = kK [[π̄]] as follows: for
a ∈ Z∗p,

γa : Π 7→ (1 + Π)a − 1, γa = identity on kcK

and for b ∈ Zdp, δb is the unique automorphism of E+
K whose reduction mod (π̄)

is the identity, and which satisfies

δb : π̄ 7→ π̄, t̄α 7→ (1 + π̄)bα t̄α.

Such a unique automorphism exists since kK is formally étale over
Fp(t̄1, . . . , t̄d).
To lift to characteristic 0, set A+

K = oK [[π]], with the obvious surjection to
E+
K = kK [[π̄]]. The lifting φ of Frobenius is given as follows: on oK it is the

unique lifting of Frobenius for which φ(ti) = tpi ; and φ(π) = (1 + π)p − 1. It is
then immediate that the conditions (2.1.1), (2.1.2) hold, and the action of ΓK
on A+

K satisfies

γa : π 7→ (1 + π)a − 1 δb : π 7→ π

γa = identity on oK tα 7→ (1 + π)bαtα.
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Remark 2.3.1. There is a natural generalisation of this construction for a Lubin-
Tate formal group G over oF associated to a distinguished polynomial g ∈
oF [X]. One takes F∞/F to be the Lubin-Tate extension generated by the
division points of G, and K ′n = K({tα,n}) where g(tα,n+1) = tα,n. Then A+

K is
the affine algebra of G over oK ; the lifting of Frobenius is given by g. For some
details when d = 0, and indications of what does and what does not extend,
see Lionel Fourquaux’s Ph.D. thesis [14, §1.4.1].
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Divisibility Sequences and

Powers of Algebraic Integers
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Abstract. Let α be an algebraic integer and define a sequence of
rational integers dn(α) by the condition

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
We show that dn(α) is a strong divisibility sequence and that it sat-
isfies log dn(α) = o(n) provided that no power of α is in Z and no
power of α is a unit in a quadratic field. We completely analyze
some of the exceptional cases by showing that dn(α) splits into subse-
quences satisfying second order linear recurrences. Finally, we provide
numerical evidence for the conjecture that aside from the exceptional
cases, dn(α) = d1(α) for infinitely many n, and we ask whether the
set of such n has postive (lower) density.

2000 Mathematics Subject Classification: Primary: 11R04; Sec-
ondary: 11A05, 11D61
Keywords and Phrases: divisibility sequence, multiplicative group

Introduction

A sequence of positive integers {dn} is called a divisibility sequence if it has the
property

(1) m|n =⇒ dm|dn.
Well-known examples of divisibility sequences include sequences of the form
dn = an − 1, the Fibonacci sequence Fn, and elliptic divisibility sequences Dn.
The first two also satisfy a linear recurrence. A complete characterization
of linear recurrence divisibility sequences is given in [2]. Elliptic divisibility
sequences are associated to points of infinite order on elliptic curves. Thus if
P ∈ E(Q), then the sequence Dn is formed by writing x(nP ) = An/D

2
n, see [9].

In this paper we investigate divisibility sequences (dn(α))n≥1 associated to
algebraic integers α ∈ Z̄ by the rule

(2) dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
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(We assume throughout that α 6= 0 and that α is not a root of unity.) It is
not difficult to show that dn(α) is a divisibility sequence, and indeed that it
satisfies the stronger divisibility property

gcd
(
dm(α), dn(α)

)
= dgcd(m,n)(α),

see Proposition 2.
These sequences are interesting in their own right as generalizations of the

classical divisibility sequences an − 1 with a ∈ Z. They are also interesting
as a special case of divisibility sequences attached to points of infinite order
on algebraic groups (see [8, Section 6]) for which we can prove unconditional
results.

We now briefly summarize the contents of this paper. We begin in Section 1
with the proof that dn(α) is a strong divisibility sequence. Section 2 contains a
variety of numerical examples illustrating varied behaviors of dn(α) for different
choices of α. In Section 3 we prove a useful result on linear dependence of Galois
conjugates, and in Section 4 we combine this with a deep result of Corvaja and
Zannier [5] to prove:

Theorem 1. Let α ∈ Z̄ and let dn(α) be the associated divisibility sequence (2).
Then

lim
n→∞

log dn(α)

n
= 0

unless either some power of α is in Z or some power of α is a unit in a quadratic
extension of Q.

The theorem says that aside from a few specific cases, the sequences dn(α)
grow slower than exponentially. One of the exceptional cases is easy to analyze.
If αr ∈ Z with |αr| ≥ 2 and if no smaller power of α is in Z, then one easily
checks that

dn(α) =

{
|αn − 1| if r|n,

1 if r ∤ n.

In particular, dn(α) contains a subsequence that grows exponentially.
In Section 5 we analyze the other exceptional case and give a complete de-

scription of dn(α) for real quadratic units α = u+ v
√
D. If the norm of α is 1,

we prove that dn(α) satisfies a fourth order linear recurrence. More precisely,
we show that the subsequences d2n(α) and d2n+1(α) both satisfy the same sec-
ond order linear recurrence, but with different starting values. If the norm of α
is −1, then we prove that dn(α) = 1 for all of the odd values of n. The subse-
quence of even terms d2n(α) = dn(α

2) satisfies a fourth order linear recurrence,
since α2 has norm 1. The proofs of these statements involve elementary, but
rather intricate, calculations.

Finally, in Section 6 we observe that except in the two exceptional cases, the
sequences dn(α) appear to include many small values. Theorem 1 says that
log dn(α) = o(n), and dn(α) does contain arbitrarily large values, but exper-
imentally one finds for example that dn(α) is frequently equal to d1(α). We
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present one such experiment in Section 6 and use it to conjecture that the set

{n ≥ 1 : dn(α) = d1(α)}
is infinite (generalizing a conjecture of Ailon and Rudnick [1]) and to ask
whether this set in fact has positive (lower) density.

Acknowledgements. The author thanks Mike Rosen for his assistance in sim-
plifying the proof of Proposition 3.

1. Divisibility sequences associated to algebraic integers

We begin by reminding the reader of some classical definitions.

Definition 1. A divisibility sequence is a sequence of of positive inte-
gers (dn)n≥1 with the property that

(3) m|n =⇒ dm|dn.
The sequence is normalized if d1 = (1), which can always be arranged by
replacing dn by dn/d1. A strong divisibility sequence satisfies the more stringent
requirement that

(4) dgcd(m,n) = gcd(dn, dm) for all m,n ∈ N.

Examples of strong divisibility sequences include the Fibonacci sequence and
elliptic divisibility sequences.

Our principal objects of study in this note are the sequences (dn(α)) defined
by (2). Our first task is to show that they are strong divisibility sequences.

Proposition 2. Let α ∈ Z̄ be a nonzero algebraic integer. The associated
sequence (dn(α))n≥1 defined by (2) is a strong divisibility sequence.

Proof. We begin by verifying that (dn) is a divisibility sequence, i.e., it satis-
fies (3). Let m,n ∈ N satisfy m|n and write

αm − 1 = dmv and αn − 1 = dnw.

By assumption, m|n, so we can use the identity

XN − 1 = (X − 1)(XN−1 +XN−2 + · · ·+X + 1)

with X = αm and N = n/m to obtain

αn − 1 = (αm − 1)z with z ∈ Z̄.

Let g = gcd(dm, dn) and write

dmx+ dny = g with x, y ∈ Z.

We multiply through by w and substitute to obtain

gw = dmxw + dnyw = dmxw + dmvzy = dm(xw + vzy).

Subtituting this in above yields (note that g|dm)

αn − 1 = dn ·
dm
g
· (xw + vzy).
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Thus dndm/g divides αn − 1. But dn is, by definition, the largest natural
number dividing αn − 1, so dm = g. This shows that dm|dn, so (dn) is a
divisibility sequence.

We next show that (dn) is a strong divisibility sequence, i.e., it satisfies (4).
Let m,n ∈ N be arbitrary and let k = gcd(m,n). Then k|m and k|n, so from
above we know that dk|dm and dk|dn. Therefore dk| gcd(dm, dn).

To prove the opposite divisibility, we write m = kM and n = kN . Then
gcd(M,N) = 1, so there are polynomials A(X), B(X) ∈ Z[X] satisfying

A(X) · (XM − 1) +B(X) · (XN − 1) = X − 1.

(To see this, it is enough to observe that the resultant of XM−1
X−1 and XN−1

X−1

is 1.) Substituting X = αk yields

A(αk) · (αm − 1) +B(αk) · (αn − 1) = αk − 1.

As above, write αm − 1 = amv and αn − 1 = anw and let g = gcd(am, an).
Then

g ·
(
A(αk) · dm

g
· v +B(αk) · dn

g
· w
)

= αk − 1,

where the quantity in parentheses is in Z̄. It follows that g ≤ dk, since dk is
the largest natural number dividing αk − 1. We have now shown that g ≤ dk
and dk|g, which completes the proof that dk = g = gcd(dm, dn). �

Remark 1. The fact that dn(α) is a divisibility sequence follows from the [8,
Proposition 8] applied to the torus obtained by restriction of scalars from Z[α]
to Z of the multiplicative group Gm. Thus Proposition 2 strengthens [8] (for
certain tori) by showing that the divisibility sequence is strong. To avoid
introducing unnecessary machinery, we have been content to prove here the
case that we need, but we note that it is not difficult to generalize Proposition 2
to the more general setting of commutative algebraic groups studied in [8].

2. Numerical examples

In this section we look at numerical examples that illustrate different sorts of
behavior.

Example 1. The most elementary example is α ∈ Z with |α| > 1, which yields
most classical examples an = αn − 1 of divisibility sequences. However, there
are many deep open problems for even this simple case. For example, are there
infinitely many values of n for which an(2) is prime?

Example 2. Let α = 1 + i. The associated sequence is

(an(1 + i)) = 1, 1, 1, 5, 1, 1, 1, 15, 1, 1, 1, 65, 1, 1, 1, 255, 1, 1, 1, 1025, . . .

The pattern is clear and, using the fact that α4 = −4, it is easy to verify

an = |(−4)n/4 − 1| if 4|n, and otherwise an = 1.
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Although very elementary, we point out that for this example we have

(5) lim sup
n→∞

log(an)

n
=

1

4
log(4) > 0.

Example 3. We again work in the Gaussian integers, but now we take α = 2+i.
The associated sequence is

(an(2 + i)) = 1, 2, 1, 8, 1, 2, 1, 48, 1, 2, 1, 104, 1, 2, 1, 1632, 1, 2, 1, 8, 1, 2, 1, . . .

The pattern for α = 2+i is less regular than for α = 1+i, but the data certainly
suggest that all of the odd entries are equal to 1. Unfortunately, it turns out
that this is not true, since a27 = 109. Indeed, 914 of the first 1000 an’s with n
odd are equal to 1, but some of them get quite large, for example a1917 =
835921. (Question: Are there infinitely many n satisfying an(2 + i) = 1?)

The an with even n seem to fluctuate more than the odd n, and in particular,
many large values appear, as is apparent from the following longer list of values:

(an(2 + i)) = 1, 2, 1, 8, 1, 2, 1, 48, 1, 2, 1, 104, 1, 2, 1, 1632, 1, 2, 1, 8, 1, 2, 1, 1872,

1, 2, 109, 232, 1, 1342, 1, 3264, 1, 2, 1, 3848, 149, 2, 1, 1968, 1, 2,

1, 712, 1, 2, 1, 445536, 1, 2, 1, 424, 1, 218, 1, 1392, 1, 2, 1, 69784,

1, 2, 1, 6528, 1, 2, 1, 8, 1, 2, 1, 15168816, 1, 298, 1, 8, 1, 2, 1, . . .

It is not hard to see that sup an = ∞. More precisely, if p is a rational
prime with p ≡ 1 (mod 4), then αp−1 ≡ 1 (mod p), so p|ap−1. Hence there
are infinitely many n such that log(an) ≥ log(n). However, this is much slower
growth than (5), so we might ask whether log(an)/n has a positive limsup.
Table 1 lists the values of an for those n < 3000 satisfying an > am for all
m < n. The table suggests that

lim sup
n→∞

log(an(2 + i))

n
= 0.

In Section 4 we use [5] to prove that this is indeed the case, but we note that [5]
itself relies on Schmidt’s subspace theorem, so is far from elementary.

Example 4. Let α = 2 +
√

3. The associated sequence is

(an(2 +
√

3 )) = 1, 2, 5, 8, 19, 30, 71, 112, 265, 418, 989, 1560, 3691, 5822,

13775, 21728, 51409, 81090, 191861, 302632, 716035, 1129438,

2672279, 4215120, 9973081, 15731042, 37220045, 58709048, . . .

The sequence clearly grows quite rapidly and regularly. We will show that it
satisfies the linear recurrence

an+4 = 4an+2 − an.
In other words, if we define two subsequences using the odd and even terms,
respectively,

bn = a2n−1 and cn =
1

2
a2n for n = 1, 2, 3, . . . ,

Then bn and cn satisfy the linear recurrence, xn+2 = 4xn+1−xn, with starting
values 1 and 5 for bn and 1 and 4 for cn. This is typical for the division
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n an log(an)/n

1 1 0.0000
2 2 0.3466
4 8 0.5199
8 48 0.4839

12 104 0.3870

16 1632 0.4623
24 1872 0.3139
32 3264 0.2528
36 3848 0.2293
48 445536 0.2710

72 15168816 0.2296
96 2679453504 0.2261

144 4682401135776 0.2026
288 73018777396433948352 0.1588
576 16262888139288561844854144 0.1008

1152 28839207217834356759345681513216 0.0629
1440 118208444086469083866098414522688 0.0513
1728 194974704634639262404276022769124992 0.0470
2016 773127404949837686996635213979409984 0.0410
2160 54208082000209968285932117562946424303904 0.0434

Table 1. Growth of an(2 + i)

sequences associated to units in real quadratic fields (see Section 5). As the
next example shows, nonunits appear to behave quite differently.

Example 5. Let α = 2 + 3
√

3. The associated sequence is

(an(2 + 3
√

3 )) = 1, 6, 13, 24, 1, 234, 1, 48, 13, 66, 1, 34632, 1, 6, 13, 96,

1, 702, 1, 264, 13, 6, 1, 346320, 1, 6, 13, 24, 59, 2574, . . .

Notice the striking difference between this sequence and the sequence for 2+
√

3
examined in Example 4. We will show that

log
(
an(2 + 3

√
3 )
)

= o(n),

so this example resembles Example 3.

3. Linear dependence of Galois conjugates

In this section we prove an elementary result on the linear dependence of Galois
conjugates. With an eye towards future applications and since the proof is no
more difficult, we give a result that is more general than needed in this paper.

Proposition 3. Let K be a field with separable closure Ks, let X/K be a
commutative algebraic group, which we write additively, and let x ∈ X(Ks).
Suppose that for every σ ∈ GKs/K , the points x and xσ are dependent in X.
Then one of the following two conditions is true:

(a) There is an n ≥ 1 such that nx ∈ X(K).
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(b) There is an n ≥ 1 such that

[K(nx) : K] = 2, and also TraceK(x)/K(x) ∈ X(K)tors.

Conversely, if either (a) or (b) is true, then x and xσ are dependent for every
σ ∈ GKs/K .

Proof. Let V = X(Ks)⊗Q and for any y ∈ X(Ks), let Vy be the vector sub-
space (over Q) of V generated by y and all of its Galois conjugates. ThenGKs/K

acts continuously on Vy and we obtain a represenation ρy : GKs/K → GL(Vy).
The image is a finite subgroup of GL(Vy), which in general will yield informa-
tion about y if dim(Vy) is smaller than [K(y) : K]. We have yσ = ρy(σ)y in V ,
so there are torsion points tσ ∈ X(Ks)tors so that yσ = ρy(σ)y + tσ in X(Ks).
There are only finitley many distinct tσ, so we can find an integer n ≥ 1 such
that

(6) (ny)σ = ρy(σ)(ny) for all σ ∈ GKs/K .

We start with the assumption that x and xσ are dependent for all σ ∈ GKs/K ,
or equivalently, that Vx has dimension 1. Hence ρx : GKs/K → GL(Vx) = Q∗,
and since the image has finite order, it lies in {±1}. We consider two cases
depending on this image.

First, if Image(ρx) = {1}, then (6) tells us that nx is fixed by GKs/K .
Hence x ∈ X(K), which verifies that x satisfies (a).

Second, suppose that Image(ρx) = {±1}, and let L be the fixed field of the
kernel of ρx, so [L : K] = 2. Then (6) tells us that nx is fixed by GKs/L, so
nx ∈ X(L), and further it tells us that if σ /∈ GKs/L, then (nx)σ = −nx. Thus
nx /∈ G(K), so L = K(nx), which gives the first part of (b). For the second
part, we use the fact that nx ∈ X(L) to compute

nTraceK(x)/K(x) = TraceK(x)/K(nx)

=
[K(x) : L]

n
TraceL/K(nx) = nx+ (−nx) = 0.

This shows that TraceK(x)/K(x) is in X(K)tors, which completes the proof
that x satisfies (b)

We will not need the opposite implication, but for completeness, we sketch
the proof. First, if nx ∈ X(K), then for every σ ∈ GKs/K we have xσ = x+ tσ
for some n-torsion point ts ∈ X(Ks)tors. Hence nxσ −nx = 0, so xσ and x are
dependent.

Next suppose that [K(nx) : K] = 2 and Trace(x) ∈ X(K)tors. Let σ ∈
GKs/K . If σ fixes K(nx), then (nx)σ−nx = 0, so (nx)σ and nx are dependent.
If σ does not fix K(nx), then

[K(x) : K(nx)]
(
(nx)σ + nx

)
= [K(x) : K(nx)] TraceK(nx)/K(nx)

= TraceK(x)/K(nx)

= nTraceK(x)/K(x) ∈ X(K)tors.

This proves that (nx)σ and nx are dependent, which completes the proof of
the theorem. �
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We state as a corollary the special case that is needed later.

Corollary 4. Let α ∈ Q̄∗ and suppose that for every σ ∈ GQ̄/Q, the ele-
ments α and ασ are multiplicatively dependent. Then there is an integer n ≥ 1
so that one of the following is true.

(a) αn ∈ Q.
(b) [Q(αn) : Q] = 2 and N(α) = ±1.

Proof. Apply Proposition 3 to the multiplicative group Gm/Q and note that
the torsion subgroup of Gm(Q) consists only of ±1. �

4. The growth of divisibility sequences

In this section we apply Corvaja and Zannier’s recent results [5] on generalized
greatest common divisors (see also [3, 4]) to bound the growth rate of divisibility
sequences (dn(α)). More precisely, Theorem 5 describes precise conditions that
force a divisibility sequence (dn(α)) to grow slower than exponentially. We note
that [5] is itself an application of Schmidt’s subspace theorem, so although the
proof of the theorem is not long, it describes a deep property of divisibility
sequences associated to algebraic integers.

Theorem 5. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α)) be the
associated divisibility sequence,

dn(α) = max{d ∈ Z : αn ≡ 1 (mod d)}.
Assume that one of the following two conditions is true:

(a) [Q(αr) : Q] ≥ 3 for all r ≥ 1.
(b) [Q(αr) : Q] ≥ 2 for all r ≥ 1 and NK/Q(α) 6= ±1.

Then

lim sup
n→∞

log(dn(α))

n
= 0.

In other words, dn(α) grows slower than exponentially.

Proof. To ease notation, we write dn for dn(α). Let K = Q(α), let L/Q be the
Galois closure of K and let OL be the ring of integers of L. By definition we
have

αn − 1 ∈ dnR,
so in particular αn − 1 ∈ dnOL. Applying an automorphism σ ∈ GL/Q, we see
that (ασ)n − 1 ∈ dnOL, since dn ∈ Z. Hence for every prime ideal p of L we
have

min
{
ordp(α

n − 1), ordp(α
σn − 1)

}
≥ ordp(dn).

Multiplying by an appropriate multiple of log NL/Q p and summing over primes
yields

(7) log gcd(αn − 1, ασn − 1) ≥ log dn,

where gcd is the generalized greatest common divisor used in [5, 8].
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Suppose now that α and ασ are multiplicatively independent in Q̄∗. Then [5,
Proposition] tells us that for every ǫ > 0 there is an n0 = n0(ǫ, α, α

σ) with the
property that

(8) log gcd(αn − 1, ασn − 1) ≤ ǫn for all n ≥ n0.

Combining (7) and (8) yields the desired result.
So we are reduced to the case that for every σ ∈ GL/Q, the elements α and ασ

are multiplicatively dependent. Corollary 4 says that in this case, there is an
integer r with the property [Q(αr) : Q] ≤ 2, which completes the proof of the
theorem if α satisfies condition (a). If in addition [Q(αs) : Q] 6= 1 for all s ≥ 1,
then Corollary 4 says that α has norm ±1, which proves the theorem when α
satisfies condition (b). �

The theorem says that except in special cases, the sequence dn(α) cannot
grow too rapidly. One might ask if dn(α) is frequently very small. We consider
this question later in Section 6.

5. Real quadratic divisibility sequences

Theorem 5 says that dn(α) grows slowly except in a few specified instances.
In this section we analyze the cases that dn(α) may grow rapidly. We assume
throughout that α is not a root of unity.

The first case allowed by Theorem 5 is when there is an r ≥ 1 such that
αr ∈ Z. By assumption, |αr| ≥ 2, so we find that

drn(α) = |αrn − 1| ≥ |αr|n − 1 ≥ 2n − 1.

Thus this “Kummer case” yields

lim sup
n→∞

log(dn(α))

n
≥ log 2

r
> 0.

Further, if αr is the smallest power of α that is in Z, then it is easy to see that
dn(α) = 1 if r ∤ n.

The more interesting case arises when αr lies in a real quadratic extension
of Q and has norm ±1. The following elementary identities will be useful in
analyzing this case.

Lemma 6. For each n ∈ N, let An, Bn ∈ Q[X,X−1] be the Laurent polynomials

An(X,X
−1) =

Xn +X−n

2
and Bn(X,X

−1) =
Xn −X−n

2
.

Then the following identities hold in Q[X,X−1].

(a) A2n − 1 = 2B2
n

(b) B2n = 2AnBn
(c) (A1 + 1)(A2n−1 − 1) = (Bn +Bn−1)

2

(d) B1B2n−1 = B2
n −B2

n−1
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Proof. Substitute the definition of An and Bn into each of the stated identi-
ties and use elementary algebra to simplify. We illustrate with (c). First we
compute

2(Bn +Bn−1) = Xn −X−n +Xn−1 −X−n+1

= Xn−1(X + 1)−X−n(1 +X)

= (X + 1)(Xn−1 −X−n).
Replacing X by X−1 introduces a minus sign into Bn and Bn−1, so

2(Bn +Bn−1) = −(X−1 + 1)(X−n+1 −Xn).

Now multiplying these two expressions yields

4(Bn +Bn−1)
2 = −(X + 1)(X−1 + 1)(Xn−1 −X−n)(X−n+1 −Xn)

= (X +X−1 + 2)(X2n−1 +X−2n+1 − 2)

= 4(A1 + 1)(A2n−1 − 1).

The other parts are similar. �

The next two propositions give a complete description of dn(α) for α =

u + v
√
D with u, v ∈ Z. The other cases of real quadratic irrationalities are

handled similarly. The details are left to the reader.

Theorem 7. Let D ≥ 2 be an integer that is not a perfect square, and let
α = u + v

√
D ∈ Z[

√
D] be the unit associated to a nontrivial positive solution

(i.e., u, v > 0) of the Pell equation

u2 − v2D = 1.

Write

αn =
(
u+ v

√
D
)n

= un + vn
√
D,

so the divisibility sequence associated to α is given by

dn(α) = gcd(un − 1, vn).

Then

dn(α) =





2vn/2 if n is even,

gcd(u− 1, v)
v(n+1)/2 + v(n−1)/2

v
if n is odd.

The sequence dn(α) satisfies the fourth order linear recursion

dn+4 = 2udn+2 − dn
whose characteristic polynomial is

T 4 − 2uT 2 + 1 =
(
T 2 − (u+ v

√
D )
)(
T 2 − (u− v

√
D )
)
.

The sequence grows exponentially,

(9) lim
n→∞

log dn(α)

n
=

1

2
log(α) > 0.
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Theorem 8. Let D,α, un, vn, dn(α) be as in the statement of Theorem 7 except
now we assume that

u2 − v2D = −1.

Then

dn(α) =





1 if n ≡ 1 (mod 2),

2vn/2 if n ≡ 0 (mod 4),

vn/2+1 + vn/2−1

u
if n ≡ 2 (mod 4),

In particular, the even terms d2n(α) satisfy a linear recurrence and grow expo-
nentially, but the odd terms d2n+1(α) form a constant sequence.

Proof of Theorem 7. Letting ᾱ = u− v
√
D, we have the usual formulas

(10) un =
αn + ᾱn

2
and vn =

αn − ᾱn
2
√
D

.

The sequences (un) and (vn) satisfy the recurrence

xn+2 = 2uxn+1 − xn
with initial values

u0 = 1, u1 = u, v0 = 0, v1 = v.

We observe that v|vn for every n ≥ 0, so if we define a reduced sequence by
ṽn = vn/v, then ṽn is the linear recursion sequence defined by

(11) ṽ0 = 0, ṽ1 = 1, ṽn+2 = 2uṽn+1 − ṽn.
By assumption, αᾱ = 1, so we have ᾱ = α−1 and the identities in

Lemma 6(a,b) with X = α yield

u2n − 1 = d2n − 1 = 2B2
n = 2v2

nD,(12)

v2n =
B2n√
D

=
2AnBn√

D
= 2unvn,(13)

Using these, it is easy to compute the even terms of the divisibility sequence,

d2n(α) = gcd(2v2
nD, 2unvn) = 2vn gcd(vnD,un) = 2vn.

For the last equality, we use the fact that u2
n −Dv2

n = 1 to conclude that un
and vnD are relatively prime.

Similarly, the identities in Lemma 6(c,d) with X = α give

(u+ 1)(u2n−1 − 1) = (A1 + 1)(d2n−1 − 1)

= (Bn +Bn−1)
2 = (vn + vn−1)

2D,(14)

vv2n−1 =
B1B2n−1

D
=
B2
n −B2

n−1

D
= v2

n − v2
2n−1.(15)

These give us a somewhat complicated formula for the odd terms in the divis-
ibility sequence,

(16) d2n−1(α) = gcd

(
(vn + vn−1)

2D

u+ 1
,
v2
n − v2

n−1

v

)
.
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Using the reduced sequence ṽn = vn/v, we observe that

(vn + vn−1)
2D = (ṽn + ṽn−1)

2v2D = (ṽn + ṽn−1)
2(u2 − 1),

so we can rewrite (16) as

d2n−1(α) = gcd

(
(ṽn + ṽn−1)

2(u2 − 1)

u+ 1
,
(ṽ2
n − ṽ2

n−1)v
2

v

)

= gcd
(
(ṽn + ṽn−1)

2(u− 1), (ṽ2
n − ṽ2

n−1)v
)

= (ṽn + ṽn−1) gcd ((ṽn + ṽn−1)(u− 1), (ṽn − ṽn−1)v) .(17)

It remains to show the the gcd is equal to gcd(u− 1, v).
A first observation is that adjacent terms of the sequence (ṽn) are rela-

tively prime, i.e., gcd(ṽn, ṽn−1) = 1, and further, they are alternately odd and
even. This follows easily by induction from the initial values and recursive
formula (11) satisfied by the sequence (ṽn). Hence

(18) gcd (ṽn + ṽn−1, ṽn − ṽn−1) = 1,

since the gcd certainly divides gcd(2ṽn, 2ṽn−1) = 2, and it cannot equal 2 since
ṽn + ṽn−1 is odd.

It is convenient to write out explicitly the closed sum for ṽn:

ṽn =
vn
v

=
(u+ v

√
D)n − (u− v

√
D)n

2
√
Dv

=
1

2
√
Dv

n∑

k=0

(
n

k

)
un−k(v

√
D)k(1− (−1)k)

=

⌊(n−1)/2⌋∑

k=0

(
n

2k + 1

)
un−2k−1v2kDk.

In particular, there are rational integers En ∈ Z such that

(19) ṽn = nun−1 + v2DEn.

We first compute (using v2D = u2 − 1)

ṽn − ṽn−1 =
(
nun−1 + v2DEn

)
−
(
(n− 1)un−2 + v2DEn−1

)

= nun−2(u− 1) + un−2 + (u2 − 1)(En − En−1)

≡ 1 (mod u− 1).

This proves that

(20) gcd(u− 1, ṽn − ṽn−1) = 1.

If we could prove that gcd(ṽn + ṽn−1, v) = 1, we would be done, but unfor-
tunately it is easy to produce examples where this fails to be true. To obtain
a weaker identity that suffices, we begin with the formula

ṽn + ṽn−1 = nun−1 + (n− 1)un−2 + v2D(En + En−1)

≡ un−2
(
n(u+ 1)− 1

)
(mod v).(21)
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Multiplying by u− 1 yields

(ṽn + ṽn−1)(u− 1)

≡ un−2
(
n(u2 − 1)− (u− 1)

)
(mod v) from (21),

≡ un−2(nv2D − (u− 1)) (mod v) since u2 − 1 = v2D,

≡ −un−2(u− 1) (mod v).

Hence

gcd ((ṽn + ṽn−1)(u− 1), v) = gcd
(
−un−2(u− 1), v

)

= gcd(u− 1, v),(22)

since u and v are relatively prime.
Combining the above gcd computations, we find that

gcd
(
(ṽn + ṽn−1)(u− 1), (ṽn − ṽn−1)v

)

= gcd ((ṽn + ṽn−1)(u− 1), v) from (18) and (20),

= gcd(u− 1, v) from (22).

We are finally able to substitute this into (17) to obtain the formula

d2n−1(α) = (ṽn + ṽn−1) gcd
(
(ṽn + ṽn−1)(u− 1), (ṽn − ṽn−1)v

)

= (ṽn + ṽn−1) gcd(u− 1, v)

=
(vn + vn−1) gcd(u− 1, v)

v
,

which completes the proof of the stated formula for the odd terms in the divis-
ibility sequence dn(α).

In order to prove that dn(α) satisfies a recurrence relation and to measure its
exponential growth, we observe that we have proven that there are constants c1
and c2 (depending on u and v) so that

d2n(α) = c1vn,

d2n−1(α) = c2(vn + vn−1).
(23)

The sequence vn satisfies vn+2 = 2uvn+1−vn, so (23) implies the two recursions

d2n+4(α) = 2ud2n+2(α)− dn(α)

d2n+3(α) = 2ud2n+1(α)− d2n−1(α).

Thus the sequence dn(α) satisfies the recursive formula xn+4 = 2uxn+2 − xn
whose characteristic polynomial is

T 4 − 2uT 2 + 1 = (T 2 − α)(T 2 − ᾱ),

since α+ᾱ = 2u and αᾱ = 1. Finally, since we have chosen α to satisfy |α| > 1,
the limit formula (9) follows from (23) and the fact that

lim
n→∞

log vn
n

= lim
n→∞

log

(
αn − α−n

2
√
D

)

n
= log(α).
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This completes the proof of Theorem 7. �

Proof of Theorem 8. Clearly we have d2n(α) = dn(α
2) directly from the defini-

tion. Let β = α2. Then ββ̄ = (αᾱ)2 = (−1)2 = 1, so the divisibility sequence
dn(β) is of exactly the type described in Theorem 8. In order to obtain an
explicit formula for dn(β) = d2n(α), we observe that

vn/2(β) = vn(α) for even n,

v(n±1)/2(β) = vn±1(α) for odd n,

u(β)− 1 = u2(α)− 1 = u2 + v2D − 1 = 2v2D,

v(β) = v2(α) = 2uv,

gcd
(
u(β)− 1, v(β)

)
= gcd(2v2D, 2uv) = 2v.

(Note that here u and v are given by α = u+v
√
D.) We substitute these values

into the formula for an(β) provided by Theorem 8. Thus if n is even we find
that

d2n(α) = dn(β) = 2vn/2(β) = 2vn(α),

and if n is odd we obtain

d2n(α) = dn(β) =
gcd(u(β)− 1, v(β))(v(n+1)/2(β) + v(n−1)/2(β))

v(β)

=
2v(vn+1(α) + vn−1(α))

2uv

=
(vn+1(α) + vn−1(α))

u

This completes the proof of the formula for the even terms in the se-
quence dn(α). It remains to show that dn(α) = 1 when n is odd.

We assume henceforth that n is odd. Then u2
n−v2

nD = −1, which we rewrite
as

(24) (un + 1)(un − 1)− v2
nD = −2.

This equation shows that gcd(un−1, vn) divides 2. However, it cannot equal 2,
since otherwise the lefthand side of (24) would be divisible by 4. This completes
the proof that dn(α) = gcd(un − 1, vn) = 1 when n is odd. �

6. Small entries in divisibility sequences

Theorem 5 tells us that except in a few specified cases, the sequence dn(α) grows
slower than exponentially, and although the values do occasionally get quite
large, we find experimentally that dn(α) is also often quite small. This leads us
to make the following conjecture, which is the analog of a conjecture of Ailon
and Rudnick [1] regarding gcd(an − 1, bn − 1) for multiplicatively independent
integers a and b.
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n ≤ dn = 1 dn = 2 dn = 3 dn = 4 dn = 5 dn = 6

1000 67.30 % 6.30 % 3.90 % 2.80 % 1.10 % 0.30 %

5000 66.32 % 6.10 % 3.72 % 2.50 % 0.78 % 0.32 %

10000 65.91 % 6.03 % 3.66 % 2.47 % 0.77 % 0.33 %

15000 65.82 % 5.99 % 3.60 % 2.42 % 0.78 % 0.33 %

20000 65.59 % 5.98 % 3.60 % 2.40 % 0.76 % 0.32 %

Table 2. Frequency of {n : dn(α) = k} for α3 − α− 1 = 0

Conjecture 9. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α))
be the associated divisibility sequence (2). Assume that α satisfies one of the
conditions (a) or (b) in Theorem 5. Then

{
n ≥ 1 : dn(α) = d1(α)

}

is infinite.

Example 6. It is worthwhile looking at a nontrivial example numerically. Let
α be root of T 3 − T − 1. We find that the associated sequence starts

(dn) = 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 5, 1, 3, 1, 8,

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 1, 1, 4, 1, 1, 1, 1, 1, 35, 2, 1, 1, 3, 1,

1, 1, 16, 1, 59, 1, 1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 4, 1, 5, 1, 1, 1, 1, 2, 9, 1,

1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 35, 1, 4, 1, 101, . . .

The data appears to support Conjecture 9 that dn = 1 for infinitely many
values of n. From this small amount of data it is less clear how often we should
expect to have, say, dn = 2 or dn = 3. Table 2 gives the frequency of dn = k
for each k = 1, 2, . . . , 6 and n ≤ N for various values of N . The table suggests
that the set {n ∈ N : dn = k} is infinite, and indeed possibly that it has a
positive density.

However, it is easily seen that there are some values of k for which the set is
empty. For example, we claim that dn(α) 6= 7 for all n. The reason is that the
smallest power of α satsifying αn ≡ 1 (mod 7) is α48 and

α48 − 1 = 128800 + 226030α+ 170625α2 = 35(3680 + 6458α+ 4875α2).

Thus
7|dn =⇒ 48|n =⇒ 35|dn,

so dn will never equal 7. It would be interesting to characterize the set
{k ∈ N : dn(α) 6= k for all n}.

Based on this and various other examples, it is tempting to make a conjecture
of the following sort, although given the scanty evidence, it seems safer to phrase
it as a question.

Question 1. Let α ∈ Z̄ be a nonzero algebraic integer and let (dn(α)) be the
associated divisibility sequence (2) as usual. For each k ∈ N, let

Sα(k) =
{
n ∈ N : dn(α) = k

}
.
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Is it true that either Sα(k) = ∅ or else Sα(k) has positive (lower) density in N.

If Question 1 has an affirmative answer, it then becomes a very interesting
question to describe the density of Sα(k) in terms of arithmetic properties of α,
even for the initial nontrivial case Sα(d1(α)).

Remark 2. The divisibility sequences dn(α) studied in this paper can be defined
in far more generality, for example using an element α in a ring of the form R =
Z[T ]/(F (T )) for a monic polynomial F (T ) ∈ Z[T ]. Thus dn(α) is the largest
rational integer d such that αn − 1 is divisible by d in the ring R.

As a particular example, consider the ring R = Z[T ]/(T 2 − T ) and element
α = T + 2. The natural isomorphism

R ∼= Z[T ]/(T )× Z[T ]/(T − 1)

identifies α ↔ (2, 3), so dn(α) = gcd(2n − 1, 3n − 1). Ailon and Rudnick [1]
conjecture in this case that dn(α) = 1 for infinitely many n, and more generally
they conjecture that if a, b ∈ Z are multiplicatively independent, then

(25) gcd(an − 1, bn − 1) = gcd(a− 1, b− 1) for infinitely many n ≥ 1.

Thus Conjecture 9 may be viewed as a generalization of Ailon and Rudnick’s
conjecture, and Question 1 suggests a strengthened statement. Ailon and Rud-
nick prove a strong version of (25) with Z replaced by the polynomial ring C[T ].
See also [6] and [7] for analogs over Fq[T ] and for elliptic curves and [8, Sec-
tion 7] for a more general conjecture on the infinitude, although not the density,
of values of divisibility sequences associated to commutative group schemes.
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Introduction

In this paper we extend the results of [Tay4] from the ordinary to the crys-
talline, low weight (i.e. in the Fontaine-Laffaille range) case. The underlying
ideas are the same. However this extension allows us to prove the meromor-
phic continuation and functional equation for the L-function of any regular
(i.e. distinct Hodge numbers) rank two “motive” over Q. We avoid having to
know what is meant by “motive” by working instead with systems of l-adic rep-
resentations satisfying certain conditions which will be satisfied by the l-adic
realisations of any “motive”.
More precisely by a rank 2 weakly compatible system of l-adic representations
R over Q we shall mean a 5-tuple (M,S, {Qp(X)}, {ρλ}, {n1, n2}) where

1This material is based upon work partially supported by the National Science Founda-
tion under Grant Nos. 9702885 and 0100090. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the author and do not necessarily
reflect the views of the National Science Foundation.
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• M is a number field;

• S is a finite set of rational primes;

• for each prime p 6∈ S of Q, Qp(X) is a monic degree 2 polynomial in
M [X];

• for each prime λ of M (with residue characteristic l say)

ρλ : GQ −→ GL2(Mλ)

is a continuous representation such that, if l 6∈ S then ρλ|Gl is crystalline,
and if p 6∈ S ∪ {l} then ρλ is unramified at p and ρλ(Frobp) has charac-
teristic polynomial Qp(X); and

• n1, n2 are integers such that for all primes λ of M (lying above a rational
prime l) the representation ρλ|Gl is Hodge-Tate with numbers n1 and n2,

i.e. ρλ⊗Ql Q̂ac
l
∼= (Mλ⊗Ql Q̂ac

l )(−n1)⊕(Mλ⊗Ql Q̂ac
l )(−n2) as Mλ⊗Ql Q̂ac

l -

modules with Mλ-linear, Q̂ac
l -semilinear GQl-actions.

We call R regular if n1 6= n2 and det ρλ(c) = −1 for one (and hence all) primes
λ of M . We remark that if R arises from a regular (distinct Hodge numbers)
motive then one can use the Hodge realisation to check that det ρλ(c) = −1
for all λ. Thus we consider this oddness condition part of regularity. It is not
difficult to see that if one of the ρλ is absolutely reducible so are all the others.
In this case we call R reducible, otherwise we call it irreducible. (If ρss

λ0
is the

sum of two characters these characters are Hodge-Tate and hence by results of
[S1] themselves fit into compatible systems. The elements of these compatible
systems provide the Jordan-Hölder factors of the other ρλ.)
We will call R strongly compatible if for each rational prime p there is a Weil-
Deligne representation WDp(R) of WQp such that for primes λ of M not di-
viding p, WDp(R) is equivalent to the Frobenius semi-simplification of the
Weil-Deligne representation associated to ρλ|Gp . (WDp(R) is defined over M ,

but it is equivalent to all its Gal (M/M)-conjugates.) If R is strongly compat-
ible and if i : M →֒ C then we define an L-function L(iR, s) as the infinite
product

L(iR, s) =
∏

p

Lp(iWDp(R)∨ ⊗ |Art−1|−sp )−1

which may or may not converge. Fix an additive character Ψ =
∏

Ψp of A/Q
with Ψ∞(x) = e2π

√−1x, and a Haar measure dx =
∏
dxp on A with dx∞ the

usual measure on R and with dx(A/Q) = 1. If, say, n1 > n2 then we can also
also define an ǫ-factor ǫ(iR, s) by the formula

ǫ(iR, s) =
√
−1

1+n1−n2
∏

p

ǫ(iWDp(RS)∨ ⊗ |Art−1|−sp ,Ψp, dxp).
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(See [Tat] for the relation between l-adic representations of GQp and Weil-
Deligne representations of WQp , and also for the definition of the local L and
ǫ-factors.)

Theorem A Suppose that R = (M,S, {Qx(X)}, {ρλ}, {n1, n2})/Q is a regu-
lar, irreducible, rank 2 weakly compatible system of l-adic representations with
n1 > n2. Then the following assertions hold.

1. If i : M →֒ C then there is a totally real Galois extension F/Q and
a regular algebraic cuspidal automorphic representation π of GL2(AF )
such that L(iR|GF , s) = L(π, s).

2. For all rational primes p 6∈ S and for all i : M →֒ C the roots of i(Qp(X))
have absolute value p−(n1+n2)/2.

3. R is strongly compatible.

4. For all i : M →֒ C, the L-function L(iR, s) converges in Re s > 1 −
(n1 + n2)/2, has meromorphic continuation to the entire complex plane
and satisfies a functional equation

(2π)−(s+n1)Γ(s + n1)L(iR, s) = ǫ(iR, s)(2π)s+n2−1Γ(1 − n2 − s)L(iR∨, 1 − s).

More precisely we express L(iR, s) as a ratio of products of the L-functions
associated to Hilbert modular forms over different subfields of F . (See section
6 for more details.)
For example suppose that X/Q is a rigid Calabi-Yau 3-fold, where by rigid
we mean that H2,1(X(C),C) = (0). Then the zeta function ζX(s) of X has
meromorphic continuation to the entire complex plane and satisfies a functional
equation relating ζX(s) and ζX(4− s). A more precise statement can be found
in section six.
Along the way we prove the following result which may also be of interest. It
partially confirms the Fontaine-Mazur conjecture, see [FM].

Theorem B Let l > 3 be a prime and let 2 ≤ k ≤ (l+ 1)/2 be an integer. Let
ρ : GQ → GL2(Qac

l ) be a continuous irreducible representation such that

• ρ ramifies at only finitely many primes,

• det ρ(c) = −1,

• ρ|Gl is crystalline with Hodge-Tate numbers 0 and 1− k.

Then the following assertions hold.

1. There is a Galois totally real field F in which l is unramified, a regu-
lar algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ of the field of rationality of π into Qac

l such that

• ρπ,λ ∼ ρ|GF ,
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• πx is unramified for all places x of E above l, and

• π∞ has parallel weight k.

2. If ρ is unramified at a prime p and if α is an eigenvalue of ρ(Frobp) then

α ∈ Qac and for any isomorphism i : Qac
l
∼→ C we have

|iα|2 = p(k−1)/2.

3. Fix an isomorphism i : Qac
l
∼→ C. There is a rational function Ll,i(X) ∈

C(X) such that the product

L(iρ, s) = Ll,i(l
−s)−1

∏

p6=l
idet(1− ρIp(Frobp)p

−s)−1

converges in Re s > (k+ 1)/2 and extends to a meromorphic function on
the entire complex plane which satisfies a functional equation

(2π)−sΓ(s)L(iρ, s) = WN(ρ)k/2−s(2π)s−kΓ(k− s)L(i(ρ∨ ⊗ ǫk−1), k− s),

where ǫ denotes the cyclotomic character, where N(ρ) denotes the con-
ductor of ρ (which is prime to l), and where W is a complex number. (W
is given in terms of local ǫ-factors in the natural way. See section 6 for
details.)

4. If k = 2 further assume that for some prime p 6= l we have

ρ|Gp ∼
(
ǫχ ∗
0 χ

)
.

Then ρ occurs in the l-adic cohomology (with coefficients in some Tate
twist of the constant sheaf) of some variety over Q.

Again we actually show that L(iρ, s) is a ratio of products of the L-functions
associated to Hilbert modular forms over different subfields of F . (See section
6 for more details.)
For further discussion of the background to these results and for a sketch of
the arguments we use we refer the reader to the introduction of [Tay4].
The first three sections of this paper are taken up generalising results of Wiles
[W2] and of Wiles and the author [TW] to totally real fields. Previous work
along these lines has been undertaken by Fujiwara [Fu] (unpublished) and Skin-
ner and Wiles [SW2]. However the generalisation we need is not available in
the literature, so we give the necessary arguments here. We claim no great
originality, this is mostly a technical exercise. We hope, however, that other
authors may find theorems 2.6, 3.2 and 3.3 of some use.
In the fourth and fifth sections we generalise some of our results from [Tay4]
about a potential version of Serre’s conjecture. This is the most original part of
this paper. The main result is theorem 5.7. Finally in section six we combine
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theorems 3.3 and 5.7 to deduce the main results of this paper which we have
summarised above.
We would like to apologise for the long delay in submitting this paper (initially
made available on the web in 2001) for publication. We would also like to
thank the referee for reading the paper very carefully and making several useful
suggestions.

Notation

Throughout this paper l will denote a rational prime, usually assumed to be
odd and often assumed to be > 3.
If K is a perfect field we will let Kac denote its algebraic closure and GK
denote its absolute Galois group Gal (Kac/K). If moreover p is a prime number
different from the characteristic of K then we will let ǫp : GK → Z×p denote
the p-adic cyclotomic character and ωp the Teichmüller lift of ǫp mod p. In the
case p = l we will drop the subscripts and write simply ǫ = ǫl and ω = ωl. We
will let c denote complex conjugation on C.
If K is an l-adic field we will let | |K denote the absolute value on K normalised
to take uniformisers to the inverse of the cardinality of the residue field of K.
We will let IK denote the inertia subgroup of GK , WK denote the Weil group of
K and FrobK ∈WK/IK denote an arithmetic Frobenius element. We will also
let Art : K×

∼→ W ab
K denote the Artin map normalised to take uniformisers

to arithmetic Frobenius elements. Please note these unfotunate conventions.
We apologise for making them. (They are inherited from [CDT].) By an n-
dimensional Weil-Deligne representation of WK over a field M we shall mean
a pair (r,N) where r : WK → GLn(M) is a homomorphism with open kernel
and where N ∈Mn(M) satisfies

r(σ)Nr(σ)−1 = |Art−1σ|−1
K N

for all σ ∈ WK . We call (r,N) Frobenius semi-simple if r is semi-simple. For
n ∈ Z>0 we define a character ωK,n : IK → (Kac)× by

ωK,n(σ) = σ(
ln−1
√
l)/

ln−1
√
l.

We will often write ωn for ωQl,n. Note that ωK,1 = ω.
Now suppose that K/Ql is a finite unramified extension, that O is the ring of
integers of a finite extension of K with maximal ideal λ and that 2 ≤ k ≤
l − 1. Let MFK,O,k denote the abelian category whose objects are finite
length OK ⊗Zl O-modules D together with a distinguished submodule D0 and
FrobK ⊗ 1-semilinear maps ϕ1−k : D → D and ϕ0 : D0 → D such that

• ϕ1−k|D0 = lk−1ϕ0, and

• Imϕ1−k + Imϕ0 = D.

Also letMFK,O/λn,k denote the full subcategory of objects D with λnD = (0).
If D is an object of MFK,O,k we define D∗[1− k] by
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• D∗[1− k] = Hom (D,Ql/Zl);

• D∗[1− k]0 = Hom (D/D0,Ql/Zl);

• ϕ1−k(f)(z) = f(lk−1x+ y), where z = ϕ1−k(x) + ϕ0(y);

• ϕ0(f)(z) = f(x mod D0), where z ≡ ϕ1−k(x) mod (ϕ0D
0).

There is a fully faithful, O-length preserving, exact, O-additive, covariant func-
tor M from MFK,O,k to the category of continuous O[GK ]-modules with es-
sential image closed under the formation of sub-objects. (See [FL], especially
section 9. In the notation of that paper M(D) = US(D∗), where D∗ is D∗[1−k]
with its filtration shifted by k− 1. The reader could also consult section 2.5 of
[DDT], where the case k = 2 and K = Ql is discussed.)
If K is a number field and x is a finite place of K we will write Kx for the
completion of K at x, k(x) for the residue field of x, ̟x for a uniformiser in
Kx, Gx for a decomposition group above x, Ix for the inertia subgroup of Gx,
and Frobx for an arithmetic Frobenius element in Gx/Ix. We will also let OK
denote the integers of K and dK the different of K. If S is a finite set of
places of K we will write K×S for the subgroup of K× consisting of elements
which are units outside S. We will write AK for the adeles of K and || ||
for

∏
x | |Fx : A×K → R×. We also use Art to denote the global Artin map,

normalised compatibly with our local normalisations.
We will write µN for the group scheme of N th roots of unity. We will write
W (k) for the Witt vectors of k. If G is a group, H a normal subgroup of G and ρ
a representation of G, then we will let ρH (resp. ρH) denote the representation
of G/H on the H-invariants (resp. H-coinvariants) of ρ. We will also let ρss

denote the semisimplification of ρ, ad ρ denote the adjoint representation and
ad 0ρ denote the kernel of the trace map from ad ρ to the trivial representation.
Suppose that A/K is an abelian variety over a perfect field K with an action of
OM defined over K, for some number field M . Suppose also that X is a finite
torsion free OM -submodule. The functor on K-schemes S 7→ A(S) ⊗OM X is
represented by an abelian variety A ⊗OM X. (If X is free with basis e1, ..., er
then we can take A ⊗OM X = Ar. Note that for any ideal a of OM we then
have a canonical isomorphism

(A⊗OM X)[a] ∼= A[a]⊗OM X.

In general if Y ⊃ X ⊃ aY with Y free and a a non-zero principal ideal of OM
prime to the characteristic of K then we can take

(A⊗OM X) = (A⊗OM aY )/(A[a]⊗OM X/aY ).)

Again we get an identification

(A⊗OM X)[a] ∼= A[a]⊗OM X.

If X has an action of some OM algebra then A ⊗OM X canonically inherits
such an action. We also get a canonical identification (A⊗OM X)∨ ∼= A∨⊗OM

Documenta Mathematica · Extra Volume Coates (2006) 729–779



735

Hom (X,OM ). Suppose that µ : A → A∨ is a polarisation which induces an
involution c onM . Note that c equals complex conjugation for every embedding
M →֒ C. Suppose also that f : X → HomOM (X,OM ) is c-semilinear. If for all
x ∈ X − {0}, the totally real number f(x)(x) is totally strictly positive then
µ ⊗ f : A ⊗OM X → (A ⊗OM X)∨ is again a polarisation which induces c on
M .
If λ is an ideal of OM prime to the characteristic of K we will write ρA,λ for
the representation of GK on A[λ](Kac). If λ is prime we will write TλA for the
λ-adic Tate module of A, VλA for TλA⊗Z Q and ρA,λ for the representation of

GK on VλA. We have a canonical isomorphism Tλ(A⊗OMX)
∼→ (TλA)⊗OMX.

Suppose that M is a totally real field. By an ordered invertible OM -module
we shall mean an invertible OM -module X together with a choice of connected
component X+

x of (X ⊗Mx) − {0} for each infinite place x of M . If a is a
fractional ideal in M then we will denote by a+ the invertible ordered OM -
module (a, {(M×x )0}), where (M×x )0 denotes the connected component of 1 in
M×x . By an M -HBAV (‘Hilbert-Blumenthal abelian variety’) over a field K we
shall mean a triple (A, i, j) where

• A/K is an abelian variety of dimension [M : Q],

• i : OM →֒ End (A/K)

• and j : (d−1
M )+

∼→ P(A, i) is an isomorphism of ordered invertible OM -
modules.

Here P(A, i) is the invertible OM module of symmetric (i.e. f∨ = f) homomor-
phisms f : (A, i) → (A∨, i∨) which is ordered by taking the unique connected
component of (P(A, i) ⊗Mx) which contains the class of a polarisation. (See
section 1 of [Rap].)
If λ is a prime of M and if x ∈ d−1

M then j(x) : A → A∨ gives rise to an
alternating pairing

ej,x,0 : TλA× TλA −→ Zl(1).

This corresponds to a unique OM,λ-bilinear alternating pairing

ej,x : TλA× TλA −→ d−1
M,λ(1),

which are related by ej,x,0 = tr ◦ ej,x. The pairing x−1ej,x is independent of x
and gives a perfect OM,λ-bilinear alternating pairing

ej : TλA× TλA −→ OM,λ(1),

which we will call the j-Weil pairing. (See section 1 of [Rap].) Again using the
trace, we can think of ej as an OM,λ-linear isomorphism

ẽj : TλA⊗ d−1
M −→ Hom Zl(TλA,Zl(1)).

More precisely

ẽj(a⊗ y)(b) = tr (yej(a, b)) = ej,x,0(x
−1ya, b).
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The same formula (for x ∈ d−1
M −ad−1

M ) gives rise to an OM,λ-linear isomorphism

ẽj : A[a]⊗OM d−1
M −→ A[a]∨,

which is independent of x and which we will refer to as the j-Weil pairing on
A[a].
Suppose that F is a totally real number field and that π is an algebraic (see
for instance [Cl]) cuspidal automorphic representation of GL2(AF ) with field
of definition (or coefficients) M ⊂ C. (That is M is the fixed field of the
group of automorphisms σ of C with σπ∞ = π∞. By the strong multiplicity
one theorem this is the same as the fixed field of the group of automorphisms
σ of C with σπx ∼= πx for all but finitely many places x of F .) We will

say that π∞ has weight (~k, ~w) ∈ ZHom (F,R)
>0 × ZHom (F,R) if for each infinite

place τ : F →֒ R the representation πτ is the (kτ − 1)st lowest discrete series
representation of GL2(Fx) ∼= GL2(R) (or in the case kτ = 1 the limit of discrete
series representation) with central character a 7→ a2−kτ−2wτ . Note that w =
kτ + 2wτ must be independent of τ . If π∞ has weight ((k, ..., k), (0, ..., 0)) we
will simply say that it has weight k. In some cases, including the cases that π∞
is regular (i.e. kτ > 1 for all τ) and the case π∞ has weight 1, it is known that
M is a CM number field and that for each rational prime l and each embedding
λ : M →֒ Qac

l there is a continuous irreducible representation

ρπ,λ : GF → GL2(Mλ)

canonically associated to π. For any prime x of F not dividing l the restriction
ρπ,λ|Gx depends up to Frobenius semi-simplification only on πx (and λ). (See
[Tay1] for details. To see that M is a CM field one uses the Peterssen inner
product

(f1, f2) =

∫

GL2(F )(R×>0)
Hom (F,R)

f1(g)
c(f2(g))||det g||w−2dg.

For all σ ∈ Aut (C) the representation σπ∞ extends to an algebraic automor-
phic representation π(σ) of GL2(AF ) with the same value for w. The pairing

( , ) gives an isomorphism cπ(σ) ∼= π(σ)∨||det ||2−w. Thus σ−1cσπ∞ is in-
dependent of σ and M is a CM field.) We will write ρπ,λ|ssWFx

= WDλ(πx),

where WDλ(πx) is a semi-simple two-dimensional representation of WFx . If
πx is unramified then WDλ(πx) is also unramified and WDλ(πx)(Frobx) has
characteristic polynomial

X2 − txX + (Nx)sx

where tx (resp. sx) is the eigenvalue of

[
GL2(OFx)

(
̟x 0
0 1

)
GL2(OFx)

]
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(resp. of [
GL2(OFx)

(
̟x 0
0 ̟x

)
GL2(OFx)

]
)

on π
GL2(OFx )
x . An explicit description of some other instances of WDλ(πx) may

be found in section 4 of [CDT].
We may always conjugate ρπ,λ so that it is valued in GL2(OM,λ) and then
reduce it to get a continuous representation GF → GL2(Facl ). If for one such
choice of conjugate the resulting representation is irreducible then it is inde-
pendent of the choice of conjugate and we will denote it ρπ,λ.

1 l-adic modular forms on definite quaternion algebras

In this section we will establish some notation and recall some facts about l-adic
modular forms on some definite quaternion algebras.
To this end, fix a prime l > 3 and a totally real field F of even degree in which
l is unramified. Let D denote the division algebra with centre F which ramifies
exactly at the set of infinite places of F . Fix a maximal order OD in D and
isomorphisms OD,x ∼= M2(OF,x) for all finite places x of F . These choices allow
us to identify GL2(A∞F ) with (D ⊗Q A∞)×. For each finite place x of F also
fix a uniformiser ̟x of OF,x. Also let A be a topological Zl-algebra which is
either an algebraic extension of Ql, the ring of integers in such an extension or
a quotient of such a ring of integers.
Let U =

∏
x Ux be an open compact subgroup of GL2(A∞F ) and let ψ :

(A∞F )×/F× → A× be a continuous character. Also let τ : Ul → Aut (Wτ )
be a continuous representation of Ul on a finite A-module Wτ such that

τ |Ul∩O×F,l = ψ|−1

Ul∩O×F,l
.

We will write Wτ,ψ for Wτ when we want to think of it as a U(A∞F )×-module
with U acting via τ and (A∞F )× by ψ−1.
We define Sτ,ψ(U) to be the space of continuous functions

f : D×\GL2(A∞F ) −→Wτ

such that

• f(gu) = τ(ul)
−1f(g) for all g ∈ GL2(A∞F ) and all u ∈ U , and

• f(gz) = ψ(z)f(g) for all g ∈ GL2(A∞F ) and all z ∈ (A∞F )×.

If
GL2(A∞F ) =

∐

i

D×tiU(A∞F )×

then

Sτ,ψ(U)
∼−→ ⊕

iW
(U(A∞F )×∩t−1

i D×ti)/F
×

τ,ψ

f 7−→ (f(ti))i.

The index set over which i runs is finite.
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Lemma 1.1 Each group (U(A∞F )× ∩ t−1
i D×ti)/F× is finite and, as we are as-

suming l > 3 and l is unramified in F , the order of (U(A∞F )× ∩ t−1
i D×ti)/F×

is not divisible by l.

Proof: Set V =
∏
x6 |∞O

×
F,x. Then we have exact sequences

(0) −→ (UV ∩ t−1
i Ddet=1ti)/{±1} −→ (U(A∞F )× ∩ t−1

i D×ti)/F× −→
(((A∞F )×)2V ∩ F×)/(F×)2

and

(0) −→ O×F /(O×F )2 −→ (((A∞F )×)2V ∩ F×)/(F×)2 −→ H[2] −→ (0),

where H denotes the class group of OF . We see that (((A∞F )×)2V ∩F×)/(F×)2

is finite of 2-power order. Moreover UV ∩ t−1
i Ddet=1ti is finite. For l > 3 and l

unramified in F , D× and hence UV ∩ t−1
i Ddet=1ti contain no elements of order

exactly l. The lemma follows. 2

Corollary 1.2 If B is an A-algebra then

Sτ,ψ(U)⊗A B ∼−→ Sτ⊗AB,ψ(U).

If x6 |l, or if x|l but τ |Ux = 1, then the Hecke algebra A[Ux\GL2(Fx)/Ux] acts
on Sτ,ψ(U). Explicitly, if

UxhUx =
∐

i

hiUx

then
([UxhUx]f)(g) =

∑

i

f(ghi).

Let U0 denote
∏
xGL2(OF,x). Now suppose that n is an ideal of OF and that,

for each finite place x of F diving n, Hx is a quotient of (OF,x/nx)×. Then
we will write H for

∏
x|nHx and we will let UH(n) =

∏
x UH(n)x denote the

open subgroup of GL2(A∞F ) defined by setting UH(n)x to be the subgroup of
GL2(OF,x) consisting of elements

(
a b
c d

)

with c ∈ nx and, in the case x|n, with ad−1 mapping to 1 in Hx.
If x6 |ln then we will let Tx denote the Hecke operator

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]

and Sx the Hecke operator
[
UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]
.
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If x|n and, either x6 |l or x|l but τ |UH(n) = 1, then we will set

〈h〉 =

[
UH(n)

(
h̃ 0
0 1

)
UH(n)

]

for h ∈ Hx and h̃ a lift of h to O×F,x; and

U̟x =

[
UH(n)

(
̟x 0
0 1

)
UH(n)

]
;

and

V̟x =

[
UH(n)

(
1 0
0 ̟x

)
UH(n)

]
;

and

S̟x =

[
UH(n)

(
̟x 0
0 ̟x

)
UH(n)

]
.

For x|n we note the decompositions

UH(n)x

(
̟x 0
0 1

)
UH(n)x =

∐

a∈k(x)

(
̟x ã
0 1

)
UH(n)x,

and

UH(n)x

(
1 0
0 ̟x

)
UH(n)x =

∐

a∈k(x)

(
̟x 0
̟xã 1

)
UH(n)x

and

UH(n)x

(
̟x 0
0 ̟x

)
UH(n)x =

(
̟x 0
0 ̟x

)
UH(n)x,

where ã is some lift of a to OF,x.
We will let hτ,A,ψ(UH(n)) denote the A-subalgebra of EndA(Sτ,ψ(UH(n))) gen-
erated by Tx for x6 |ln and by U̟x for x|n but x6 |l. It is commutative. We will
call a maximal ideal m of hτ,A,ψ(UH(n)) Eisenstein if it contains Tx − 2 and
Sx − 1 for all but finitely many primes x of F which split completely in some
finite abelian extension of F . (The following remark may help explain the form
of this definition. If ρ : GF → GL2(Fl) is a continuous reducible representa-
tion, then there is a finite abelian extension L/F such that tr ρ(GL) = {2} and
(ǫ−1
l det ρ)(GL) = {1}.)

For k ∈ Z≥2 and we will let Symm k−2(A2) denote the space of homogeneous
polynomials of degree k − 2 in two variables X and Y over A with a GL2(A)-
action via
((

a b
c d

)
f

)
(X,Y ) = f

(
(X,Y )

(
a b
c d

))
= f(aX + cY, bX + dY ).

Let A be an OL algebra for some extension L/Ql containing the images of all

embeddings F →֒ Qac
l . Suppose that (~k, ~w) ∈ ZHom (F,Qacl )

>1 ×ZHom (F,Qacl ) is such
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that kσ+2wσ is independent of σ. We will write τ(~k,~w),A for the representation

of GL2(OF,l) on W(~k,~w),A =
⊗

σ:F→Qacl
Symm kσ−2(A2) via

g 7−→ ⊗σ:F→Qacl
(Symm kσ−2(σg)⊗ detwσ (σg)).

We will also write S(~k,~w),A,ψ(U) for Sτ
(~k,~w),A

,ψ(U). Let Striv
(~k,~w),A,ψ

(U) denote (0)

unless (~k, ~w) = ((2, ..., 2), (w, ..., w)), in which case let it denote the subspace of
S(~k,~w),A,ψ(U) consisting of functions f which factor through the reduced norm.

Set
S(~k,~w),A,ψ(Ul) = lim

→U l
S(~k,~w),A,ψ(U l × Ul).

It has a smooth action of GL2(A
∞,l
F ) (by right translation). If (~k, ~w) =

((k, ..., k), (0, ..., 0)) then we will often write k in place of (~k, ~w). Set

S2,A,ψ = lim
→U

S2,A,ψ(U)

and
Striv

2,A,ψ = lim
→U

Striv
2,A,ψ(U).

They have smooth actions of GL2(A∞F ).

Lemma 1.3 Suppose that (~k, ~w) ∈ ZHom (F,Qacl )
>1 × ZHom (F,Qacl ) and w = kσ −

1 + 2wσ is independent of σ. Also suppose that ψ : A×F /F
× → (Qac

l )× is
a continuous character satisfying ψ(a) = (Na)1−w for all a in a non-empty

open subgroup of F×l . Choose an isomorphism i : Qac
l
∼→ C. Define i(~k, ~w) =

(i~k, i~w) ∈ ZHom (F,C)
>1 × ZHom (F,C) by (i~k)τ = ~ki−1τ and (i ~w)τ = ~wi−1τ . Also

define ψi : A×F /F
× → C× by ψi(z) = i((Nzl)

w−1ψ(z∞))(Nz∞)1−w. Then we
have the following assertions.

1. S(~k,~w),Qacl ,ψ
(Ul) is a semi-simple admissible representation of GL2(A

∞,l
F )

and S(~k,~w),Qacl ,ψ
(Ul)

U l = S(~k,~w),Qacl ,ψ
(Ul × U l).

2. There is an isomorphism

(S(~k,~w),Qacl ,ψ
(Ul)/S

triv
(~k,~w),Qacl ,ψ

(Ul))⊗Qacl ,i
C ∼=

⊕

π

π∞,l ⊗ πUll

where π runs over regular algebraic cuspidal automorphic representations
of GL2(AF ) such that π∞ has weight (~k, ~w) and such that π has central
character ψi.

3. S2,Qacl ,ψ
is a semi-simple admissible representation of GL2(A∞F ) and

SU2,Qacl ,ψ = S2,Qacl ,ψ
(U).
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4. There is an isomorphism

S2,Qacl ,ψ
⊗Qacl ,i

C ∼=
⊕

χ

Qac
l (χ)⊕

⊕

π

π∞

where π runs over regular algebraic cuspidal automorphic representations
of GL2(AF ) such that π∞ has weight 2 and such that π has central char-
acter ψi, and where χ runs over characters (A∞F )×/F×>>0 → (Qac

l )× with
χ2 = ψ.

Proof: We will explain the first two parts. The other two are similar. Let
C∞(D×\(D ⊗Q A)×/Ul, ψ∞) denote the space of smooth functions

D×\(D ⊗Q A)×/Ul −→ C

which transform under A×F by ψ∞. Let τ∞ denote the representation of D×∞
on Wτ∞ = W(~k,~w),Qacl

⊗i C via

g 7−→ ⊗σ:F→Qacl
(Symm kσ−2(iσg)⊗ detwσ (iσg)).

Then there is an isomorphism

S(~k,~w),Qacl ,ψ
(Ul)

∼−→ HomD×∞
(W∨τ∞ , C

∞(D×\(D ⊗Q A)×/Ul, ψ∞))

which sends f to the map

y 7−→ (g 7−→ y(τ∞(g∞)−1τ(~k,~w),Qacl
(gl)f(g∞))).

Everything now follows from the Jacquet-Langlands theorem. 2

There is a pairing

Symm k−2(A2)× Symm k−2(A2) −→ A

defined by
〈f1, f2〉 = (f1(∂/∂Y,−∂/∂X)f2(X,Y ))|X=Y=0.

By looking at the pairing of monomials we see that

〈f1, f2〉 = (−1)k〈f2, f1〉

and that if 2 ≤ k ≤ l + 1 then this pairing is perfect. Moreover if

u =

(
a b
c d

)
∈ GL2(A)

then

〈uf1, uf2〉
= (f1(a∂/∂Y − c∂/∂X, b∂/∂Y − d∂/∂X)f2(aX + cY, bX + dY ))|X=Y=0

= (f1((detu)∂/∂W,−(detu)∂/∂Z)f2(Z,W ))|Z=W=0

= (detu)k−2〈f1, f2〉,

Documenta Mathematica · Extra Volume Coates (2006) 729–779



742 Richard Taylor

where Z = aX + cY and W = bX + dY . This extends to a perfect pairing
W(~k,~w),A ×W(~k,~w),A → A such that

〈ux, uy〉 = (N detu)w−1〈x, y〉

for all x, y ∈ W(~k,~w),A and all u ∈ GL2(OF,l). Here w = kσ + 2wσ − 1, which

is independent of σ.
We can define a perfect pairing Sk,A,ψ(UH(n))×Sk,A,ψ(UH(n))→ A by setting
(f1, f2) equal to

∑

[x]

〈f1(x), f2(x)〉ψ(detx)−1(#(UH(n)(A∞F )× ∩ x−1D×x)/F×)−1,

where [x] ranges over D×\(D ⊗Q A∞)×/UH(n)(A∞F )×. (We are using the fact
that #(UH(n)(A∞F )× ∩ x−1D×x)/F× is prime to l.) The usual calculation
shows that

([UH′(n
′)gUH(n)]f1, f2)UH′ (n′) = ψ(det g)(f1, [UH(n)g−1UH′(n

′)]f2)UH(n).

Now specialise to the case that A = O is the ring on integers of a finite extension
of Ql. We will write simply h(~k,~w),ψ(UH(n)) for h(~k,~w),O,ψ(UH(n)). It follows

from lemma 1.3 and the main theorem in [Tay1] that there is a continuous
representation

ρ : GF −→ GL2(h(~k,~w),ψ(UH(n))⊗O Qac
l )

such that

• if x6 |nl then ρ is unramified at x and tr ρ(Frobx) = Tx; and

• det ρ = ǫ(ψ ◦Art−1).

From the theory of pseudo-representations (or otherwise, see [Ca2]) we deduce
that if m is a non-Eisenstein maximal ideal of h(~k,~w),ψ(UH(n)) then ρ gives rise
to a continuous representation

ρm : GF −→ GL2(h(~k,~w),ψ(UH(n))m)

such that

• if x6 |nl then ρm is unramified at x and tr ρm(Frobx) = Tx; and

• det ρm = ǫ(ψ ◦Art−1).

From the Cebotarev density theorem we see that h(~k,~w),ψ(UH(n))m is generated

by U̟x for x|n but x6 |l and by Tx for all but finitely many x6 |ln. (For let h
denote the O-subalgebra of h(~k,~w),ψ(UH(n))m generated by U̟x for x|n but
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x6 |l and by Tx for all but finitely many x6 |ln. The Cebotarev densitry theorem
implies that tr ρm is valued in h and hence

Tx = tr ρm(Frobx) ∈ h
for all x6 |nl. Thus h = h(~k,~w),ψ(UH(n))m.)

We will write ρm for (ρm mod m). If φ : h(~k,~w),ψ(UH(n))m → R is a map of

local O-algebras then we will write ρφ for φρm. If R is a field of characteristic
l we will sometimes write ρφ instead of ρφ.

Lemma 1.4 Let (~k, ~w) be as above. Suppose that x6 |n is a split place of F
above l such that 2 ≤ kx ≤ l − 1. If m is a non-Eisenstein maximal ideal of
h(~k,~w),ψ(UH(n)) and if I is an open ideal of h(~k,~w),ψ(UH(n))m (for the l-adic

topology) then ((ρm ⊗ ǫ−wx) mod I)|Gx is of the form M(D) for some object D
of MFFx,O,kx with D 6= D0 6= (0).

Proof: Combining the construction of ρm with the basic properties of M listed
in the section of notation, we see that it suffices to prove the following.
Suppose that π is a cuspidal automorphic representation of GL2(AF ) such that

π∞ is regular algebraic of weight (~k, ~w). Let M denote the field of definition
of π. Suppose that x is a split place of F above l with πx unramified. Let Mac

denote the algebraic closure of M in C and fix an embedding λ : Mac →֒ Qac
l .

Let τ : F →֒ Mac be the embedding so that λ ◦ τ gives rise to x. Suppose
that 2 ≤ kτ ≤ l − 1. If I is a power of the prime of OM induced by λ, then
(ρπ,λ⊗ǫ−wτ )|Gx mod I is of the form M(D) for some object D ofMFFx,OM,λ,kτ
with D 6= D0 6= (0).
By the construction of ρπ,λ in [Tay1], our assumption that (ρπ,λ mod λ) is
irreducible, and the basic properties of M, we see that it suffices to treat the
case that πy is discrete series for some finite place y (cf [Tay2]). Because
2 ≤ kτ ≤ l − 1, it follows from [FL] that we need only show that ρπ,λ is
crystalline with Hodge-Tate numbers −wτ and 1− kτ − wτ . In the case πy is
discrete series for some finite place y this presumably follows from Carayol’s
construction of ρπ,λ [Ca1] and Faltings theory [Fa], but for a definite reference
we refer the reader to theorem VII.1.9 of [HT] (but note the different, more
sensible, conventions in force in that paper). 2

Corollary 1.5 Suppose that x6 |n is a split place of F . Suppose that (~k, ~w) is
as above and that 2 ≤ kx ≤ l − 1. If m is a non-Eisenstein maximal ideal of

h(~k,~w),ψ(UH(n)) then ρm|Ix ∼ ωkx−1+(l+1)wx
2 ⊕ ωl(kx−1)+(l+1)wx

2 or

(
ωkx+wx−1 ∗

0 ωwx

)
.

Proof: This follows easilly from the above lemma together with theorem 5.3,
proposition 7.8 and theorem 8.4 of [FL]. 2

The following lemma is well known.
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Lemma 1.6 Suppose that x is a finite place of F and that π is an irreducible
admissible representation of GL2(F ). If χ1 and χ2 are two characters of F×,
let π(χ1, χ2) denote the induced representation consisting of locally constant
functions GL2(F )→ C such that

f

((
a b
0 d

)
g

)
= χ1(a)χ2(b)|a/b|1/2x f(g)

(with GL2(F )-action by right translation). Let U1 (resp. U2) denote the sub-
group of elements in GL2(OF,x) which are congruent to a matrix of the form

(
1 ∗
0 1

)
mod (̟x)

(resp. (
∗ ∗
0 ∗

)
mod (̟2

x)).

1. If πU1 6= (0) then π is a subquotient of some π(χ1, χ2) where the conduc-
tors of χ1 and χ2 are ≤ 1.

2. If the conductors of χ1 and χ2 are ≤ 1 then

π(χ1, χ2)
U1

is two dimensional with a basis e1, e2 such that

U̟xei = (Nx)1/2χi(̟x)ei

and
〈h〉ei = χi(h)ei

for h ∈ (OF,x/x)×.

3. If πU2 6= (0) then π is either cuspidal or a subquotient of some π(χ1, χ2)
where the conductors of χ1 and χ2 are equal and ≤ 1.

4. If π is cuspidal then dimπU2 ≤ 1 and U̟x acts as zero on πU2 .

5. If χ1 and χ2 have conductor 1 then π(χ1, χ2)
U2 is one dimensional and

U̟x acts on it as 0.

6. If χ1 and χ2 have conductor 0 then π(χ1, χ2)
U2 is three dimensional and

U̟x acts on it with characteristic polynomial

X(X − (Nx)1/2χ1(̟x))(X − (Nx)1/2χ2(̟x)).

As a consequence we have the following lemma.

Lemma 1.7 Suppose that ξ : hk,ψ(UH(n))m → Qac
l and that x6 |l.
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1. If x(n) = 1 and if ξ′ is any extension of ξ to the subalgebra of
End (Sk,O,ψ(UH(n))m) generated by hk,ψ(UH(n))m and 〈h〉 for h ∈ H,
then

ξ(ρm)|Gx ∼
(
∗ ∗
0 χx

)

where χx(Art̟x) = ξ(U̟x) and, for u ∈ O×F,x, we have χx(Artu) =
ξ′(〈u〉).

2. If x(n) = 2 and Hx = {1} then either ξ(U̟x) = 0 or ξ(U̟x) is an
eigenvalue of ξ(ρm)|Gx(σ) for any σ ∈ Gx lifting Frobx.

We also get the following corollary.

Corollary 1.8 1. If x6 |l, x(n) = 1 and U2
̟x − (Nx)ψ(̟x) 6∈ m then

ρm|Gx ∼
(
∗ ∗
0 χx

)

where χx(Art̟x) = U̟x and χx(Artu) = 〈u〉 for u ∈ O×F,x. In particu-
lar 〈h〉 ∈ hk,ψ(UH(n))m for all h ∈ Hx.

2. If x6 |l, x(n) = 2, Hx = {1} and U̟x ∈ m then U̟x = 0 in hk,ψ(UH(n))m.

3. If l is coprime to n and for all x|n we have x(n) = 2, Hx = {1} and
U̟x ∈ m, then the algebra hk,ψ(UH(n))m is reduced.

Proof: The first part follows from the previous lemma via a Hensel’s lemma
argument. For the second part one observes that by the last lemma ξ(U̟x) = 0
for all ξ : hk,ψ(UH(n))m → Qac

l . Hence by lemma 1.6 we have that U̟x = 0 on
Sk,Qacl ,ψ(UH(n))m. The third part follows from the second (because the algebra
hk,ψ(UH(n))m is generated by commuting semi-simple elements). 2

2 Deformation rings and Hecke algebras I

In this section we extend the method of [TW] to totally real fields. This relies
crucially on the improvement to the argument of [TW] found independently by
Diamond [Dia] and Fujiwara (see [Fu], unpublished). Following this advance
it has been clear to experts that some extension to totally real fields would be
possible, the only question was the exact extent of the generalisation. Fujiwara
has circulated some unpublished notes [Fu]. Then Skinner and Wiles made a
rather complete analysis of the ordinary case (see [SW2]). We will treat the
low weight, crystalline case. As will be clear to the reader, we have not tried
to work in maximal generality, rather we treat the case of importance for this
paper. We apologise for this. It would be very helpful to have these results
documented in the greatest possible generality.
In this section and the next let F denote a totally real field of even degree in
which a prime l > 3 splits completely. (As the reader will be able to check
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without undue difficulty it would suffice to assume that l is unramified in
F .) Let D denote the quaternion algebra with centre F which is ramified
at exactly the infinite places, let OD denote a maximal order in D and fix
isomorphisms OD,x ∼= M2(OF,x) for all finite places x of F . Let 2 ≤ k ≤ l − 1.
Let ψ : A×F /F

× → (Qac
l )× be a continuous character such that

• if x6 |l is a prime of F then ψ|O×F,x = 1,

• ψ|O×F,l(u) = (Nu)2−k.

For each finite place x of F choose a uniformiser ̟x of OF,x. Suppose that
φ : hk,Facl ,ψ(U0) → Facl is a homomorphism with non-Eisenstein kernel, which
we will denote m. Let O denote the ring of integers of a finite extension K/Ql

with maximal ideal λ such that

• K contains the image of every embedding F →֒ Qac
l ,

• ψ is valued in O×,

• there is a homomorphism φ̃ : hk,O,ψ(U0)m → O lifting φ, and

• all the eigenvalues of all elements of the image of ρφ are rational over
O/λ.

For any finite set Σ of finite places of F not dividing l we will consider the
functor DΣ from complete noetherian local O-algebras with residue firld O/λ
to sets which sends R to the set of 12 + M2(mR)-conjugacy classes of liftings
ρ : GF → GL2(R) of ρφ such that

• ρ is unramified outside l and Σ,

• det ρ = ǫ(ψ ◦Art−1), and

• for each place x of F above l and for each finite length (as an O-module)
quotient R/I of R the O[Gx]-module (R/I)2 is isomorphic to M(D) for
some object D ofMFFx,O,k.

This functor is represented by a universal deformation

ρΣ : GF −→ GL2(RΣ).

(This is now very standard, see for instance appendix A of [CDT].)
Now let Σ be a finite set of finite places of F not dividing l such that if x ∈ Σ
then

• Nx ≡ 1 mod l,

• ρφ is unramified at x and ρφ(Frobx) has distinct eigenvalues αx 6= βx.
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By Hensel’s lemma the polynomial X2 − TxX + (Nx)ψ(̟x) splits as (X −
Ax)(X −Bx) in hk,O,ψ(U0)m, where Ax mod m = αx and Bx mod m = βx. For
x ∈ Σ we will let ∆x denote the maximal l-power quotient of (OF /x)×. We
will let nΣ =

∏
x∈Σ x; ∆Σ =

∏
x∈Σ ∆x; U0,Σ = U{1}(nΣ); and U1,Σ = U∆Σ

(nΣ).
We will let mΣ denote the ideal of either hk,ψ(U0,Σ) or hk,ψ(U1,Σ) generated by

• l;

• Tx − tr ρφ(Frobx) for x6 |lnΣ; and

• U̟x − αx for x ∈ Σ.

Lemma 2.1 Let Σ satisfy the assumptions of the last paragraph.

1. If x ∈ Σ then ρΣ|Gx ∼ χα,x ⊕ χβ,x where χα,x mod mRΣ
is unramified

and takes Frobx to αx.

2. χα,x ◦ Art |O×F,x factors through ∆x, and these maps make RΣ into a

O[∆Σ]-module.

3. The universal property of RΣ gives rise to a surjection of O[∆Σ]-algebras

RΣ →→ hk,ψ(U1,Σ)mΣ

under which ρΣ pushes forward to ρmΣ
.

Proof: The first part is proved in exactly the same manner as lemma 2.44 of
[DDT]. The second part is then clear. The third part is clear because for x6 |nΣl
we have tr ρΣ(Frobx) 7→ Tx while for x ∈ Σ we have χα,x(̟x) 7→ U̟x . 2

Lemma 2.2 The map

η : Sk,O,ψ(U0,Σ−{x})mΣ−{x} −→ Sk,O,ψ(U0,Σ)mΣ

f 7−→ Axf −
(

1 0
0 ̟x

)
f

is an isomorphism which induces an isomorphism

η∗ : hk,ψ(U0,Σ)mΣ

∼−→ hk,ψ(U0,Σ−{x})mΣ−{x} .

Proof: The map η is well defined because U̟x ◦ η = η ◦ Ax. It is injective
with torsion free cokernel because the composition of η with the adjoint of the
natural inclusion Sk,O,ψ(U0,Σ−{x}) →֒ Sk,O,ψ(U0,Σ) is (Nx)Ax − Bx 6∈ mΣ. As

αx/βx 6= (Nx)±1, no lift of ρφ with determinant ǫ(ψ ◦Art−1) has conductor at
x exactly x. Thus

Sk,O,ψ(U0,Σ)mΣ
= (Sk,O,ψ(U0,Σ−{x}) +

(
1 0
0 ̟x

)
Sk,O,ψ(U0,Σ−{x}))mΣ

.
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As

U̟x(f1 +

(
1 0
0 ̟x

)
f2) = (Txf1 + (Nx)ψ(̟x)f2)−

(
1 0
0 ̟x

)
f1

and the matrix (
Tx (Nx)ψ(̟x)
−1 0

)

has eigenvalues Ax and Bx which are distinct mod m, the lemma follows. 2

We remark that Sk,O,ψ(U1,Σ) is a ∆Σ-module via h 7→ 〈h〉.
Lemma 2.3 1.

∑
h∈∆Σ

〈h〉 : Sk,O,ψ(U1,Σ)∆Σ

∼→ Sk,O,ψ(U0,Σ).

2. Sk,O,ψ(U1,Σ) is a free O[∆Σ]-module.

Proof: The second assertion follows from the first as we can compute that

dimSk,O,ψ(U1,Σ)⊗O K = [U0,Σ : U1,Σ] dimSk,O,ψ(U0,Σ)⊗O K.

(We use the fact that [U0,Σ : U1,Σ] is coprime to #(U0,Σ(A∞F )×∩x−1D×x)/F×

for all x ∈ (D ⊗Q A∞)×.)
Using the duality introduced above it suffices to check that the natural map

Sk,O,ψ(U0,Σ)⊗O K/O −→ (Sk,O,ψ(U1,Σ)⊗O K/O)∆Σ

is an isomorphism. This is immediate from the definitions and the fact that
l 6 |#(U0,Σ(A∞F )× ∩ x−1D×x)/F× for all x ∈ (D ⊗Q A∞)×. 2

As Sk,O,ψ(U1,Σ)mΣ
is a direct summand of Sk,O,ψ(U1,Σ), we deduce the follow-

ing corollary.

Corollary 2.4 1. Sk,O,ψ(U1,Σ)mΣ,∆Σ

∼→ Sk,O,ψ(U0)m compatibly with a
map hk,ψ(U1,Σ)mΣ

→ hk,ψ(U0)m sending Tx to Tx for x6 |lnΣ, 〈h〉 to 1 for
h ∈ ∆Σ and U̟x to Ax for x ∈ Σ.

2. Sk,O,ψ(U1,Σ)mΣ
is a free O[∆Σ]-module.

Suppose that ρ : GF → GL2(O/λn) is a lifting of ρφ corresponding to some
map R∅ → O/λn. If x is a place of F above l and if (O/λn)2 ∼= M(D) as a
Gx-module, then we set

H1
f (Gx, ad 0ρ) =H1(Gx, ad 0ρ)∩Im (Ext 1

MFFx,O/λn,k(D,D) −→ H1(Gx, ad ρ)).

Exactly as in section 2.5 of [DDT] we see that

Im (Ext 1
MFFx,O/λn,k(D,D) −→ H1(Gx, ad ρ)) ∼= (O/λn)2 ⊕H0(Gx, ad 0ρ).

If two continuous O[Gx]-modules have the same restriction to Ix, then one is
in the image of M if and only if the other is. We conclude that the image of
the composite

Ext 1
MFO/λn,k(D,D) −→ H1(Gx, ad ρ)

tr−→ H1(Gx,O/λn)
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is at least one dimensional (coming from unramified twists) and hence that

#H1
f (Gx, ad 0ρφ)|#(O/λn)#H0(Gx, ad 0ρφ).

We will let H1
Σ(GF , ad 0ρ) denote the kernel of the map

H1(GF , ad 0ρ) −→
⊕

x6 |nΣl

H1(Ix, ad 0ρ)⊕
⊕

x|l
H1(Gx, ad 0ρ)/H1

f (Gx, ad 0ρ).

The trace pairing (a, b) 7→ tr ab gives a perfect duality on ad 0ρφ. For x|l
we will let H1

f (Gx, ad 0ρφ(1)) denote the annihilator in H1(Gx, ad 0ρφ(1)) of

H1
f (Gx, ad 0ρφ) under Tate local duality. We will also let H1

Σ(GF , ad 0ρφ(1))

denote the kernel of the restriction map from H1(GF , ad 0ρφ(1)) to

⊕
x6 |nΣl

H1(Ix, ad 0ρφ(1))⊕⊕x∈ΣH
1(Gx, ad 0ρφ(1))⊕

⊕
x|lH

1(Gx, ad 0ρφ)/H
1
f (Gx, ad 0ρφ(1)))

so that

H1
Σ(GF , ad 0ρφ(1)) = ker(H1

∅ (GF , ad 0ρφ(1)) −→
⊕

x∈Σ

H1(Gx/Ix, ad 0ρφ(1))).

A standard calculation (see for instance section 2.7 of [DDT]) shows that

H1
Σ(GF , ad 0ρφ)

∼= HomO(mRΣ
/m2

RΣ
,O/λ),

so that RΣ can be topologically generated by dimH1
Σ(GF , ad 0ρφ) elements as

an O-algebra. A formula of Wiles (see theorem 2.19 of [DDT]) then tells us
that RΣ can be topologically generated as an O-algebra by

#Σ + dimH1
Σ(GF , ad 0ρφ(1))

elements.

Lemma 2.5 Suppose that the restriction of ρφ to F (
√

(−1)(l−1)/2l) is irre-
ducible. Then for any m ∈ Z>0 we can find a set Σm of primes such that

1. #Σm = dimH1
∅ (GF , ad 0ρφ(1)),

2. RΣm can be topologically generated by dimH1
∅ (GF , ad 0ρφ(1)) elements as

an O-algebra,

3. if x ∈ Σm then Nx ≡ 1 mod lm and ρφ(Frobx) has distinct eigenvalues
αx and βx.
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Proof: By the above calculation we may replace the second requirement by the
requirement that H1

Σm
(GF , ad 0ρφ(1)) = (0) (for then RΣm is generated by

#Σm = dimH1
∅ (GF , ad 0ρφ(1)) elements). Then we may suppress the first re-

quirement, because any set satisfying the modified second requirement and the
third requirement can be shrunk to one which also satisfies the first require-
ment. (Note that for x satisfying the third requirement H1(Gx/Ix, ad 0ρφ(1))
is one dimensional.) Next, by the Cebotarev density theorem, it suffices to
show that for [γ] ∈ H1

∅ (GF , ad 0ρφ(1)) we can find σ ∈ GF such that

• σ|F (ζlm ) = 1,

• ρφ(σ) has distinct eigenvalues, and

• γ(σ) 6∈ (σ − 1)ad 0ρφ.

Let Fm denote the extension of F (ζlm) cut out by ad 0ρ. Finally it will suffice
to show that

1. H1(Gal (Fm/F ), ad 0ρ(1)) = (0); and

2. for any non-trivial irreducible Gal (Fm/F )-submodule V of ad 0ρφ we can

find σ ∈ Gal (Fm/F (ζlm)) such that ad 0ρφ(σ) has an eigenvalue other
than 1 but σ does have an eigenvalue 1 on V .

(Given [γ] ∈ H1
∅ (GF , ad 0ρφ(1)) the first assertion tells us that the O/λ-span

of γGFm contains some non-trivial irreducible Gal (Fm/F )-submodule V of
ad 0ρφ. Let σ be as in the second assertion for this V . Then for some σ′ ∈ GFm
we will have

γ(σ′σ) = γ(σ′) + γ(σ) 6∈ (σ − 1)ad 0ρφ.)

Because l > 3 is unramified in F , we see that [F (ζl) : F ] > 2 and so, by the
argument of the penultimate paragraph of the proof of theorem 2.49 of [DDT],
H1(Gal (Fm/F ), ad 0ρ(1)) = (0).
Suppose that V is an irreducible Gal (Fm/F )-submodule of ad 0ρφ and write

ad 0ρφ = V ⊕W . If W = (0) any σ ∈ Gal (Fm/F (ζlm)) with an eigenvalue

other than 1 on ad 0ρφ will suffice to prove the second assertion. Thus suppose
that W 6= (0). If dimW = 1 then ρφ is induced from a character of some
quadratic extension E/F and any σ 6∈ GE will suffice to prove the second
assertion (as E is not a subfield of F (ζlm)). If dimW = 2 then GF acts
on V via a quadratic character corresponding to some quadratic extension
E/F and ρφ is induced from some character χ of GE . Let χ′ denote the
Gal (E/F )-conjugate of χ. Then any σ ∈ GE(ζlm ) with χ/χ′(σ) 6= 1 will suffice
to prove the second assertion. (Such a σ will exist unless the restriction of

ad 0ρφ to E(
√

(−1)(l−1)/2l) is trivial in which case ρφ becomes reducible over

F (
√

(−1)(l−1)/2l), which we are assuming is not the case.) 2

Combining lemma 2.5, corollary 2.4 and theorem 2.1 of [Dia] we obtain the
following theorem.

Documenta Mathematica · Extra Volume Coates (2006) 729–779



751

Theorem 2.6 Keep the notation and assumptions of the second and fourth
paragraphs of this section and suppose that the restriction of ρφ to the absolute

Galois group of F (
√

(−1)(l−1)/2l) is irreducible. Then the natural map

R∅ −→ hk,ψ(U0)m

is an isomorphism of complete intersections and Sk,O,ψ(U0)m is finite free as
a hk,ψ(U0)m-module.

3 Deformation rings and Hecke algebras II

In this section we use analogues of Wiles’ arguments from [W2] to extend the
isomorphism of theorem 2.6 from ∅ to any Σ.
We will keep the notation and assumptions of the last section. (Σ will again
be any finite set of finite places of F not dividing l.) Let ρeφ : GF → GL2(O)

denote the Galois representation corresponding to φ̃ (a chosen lift of φ). The
universal property of RΣ gives maps

RΣ →→ R∅
eφ−→ O.

We will denote the kernel by ℘Σ. A standard calculation (see section 2.7 of
[DDT]) shows that

HomO(℘Σ/℘
2
Σ,K/O) ∼= H1

Σ(GF , (ad 0ρ)⊗K/O),

where

H1
Σ(GF , (ad 0ρ)⊗K/O) = lim

−→
n

H1
Σ(GF , (ad 0ρ)⊗ λ−n/O).

In particular we see that

#ker(℘Σ/℘
2
Σ →→ ℘∅/℘

2
∅) = #(H1

Σ(GF , (ad 0ρ)⊗K/O)/H1
∅ (GF , (ad 0ρ)⊗K/O))

divides

∏
x∈Σ #H1(Ix, (ad 0ρ)⊗K/O)Gx

=
∏
x∈Σ #H0(Gx, (ad 0ρ)⊗K/O(−1))

=
∏
x∈Σ #O/(1−Nx)((1 + Nx)2 det ρ(Frobx)− (Nx)(tr ρFrobx))O.

Let n′Σ denote the product of the squares of the primes in Σ and set UΣ =
U{1}(n

′
Σ). Let hΣ = hk,ψ(UΣ)m′Σ

and SΣ = Sk,O,ψ(UΣ)m′Σ
, where m′Σ is the

maximal ideal of hk,ψ(UΣ) generated by

• λ,

• Tx − tr ρφ(Frobx) for x6 |ln′Σ, and
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• U̟x for x ∈ Σ.

The Galois representation ρm′Σ
induces a homomorphism RΣ → hΣ which takes

tr ρΣ(Frobx) to Tx for all x6 |n′Σl. Corollary 1.8 tells us that for x ∈ Σ we have
U̟x = 0 in hΣ and that hΣ is reduced. In particular the map RΣ → hΣ is
surjective.
From lemma 1.3, lemma 1.6 and the strong multiplicity one theorem for
GL2(AF ) we see that dim(SΣ ⊗O K)[℘Σ] = 1.
We can write

SΣ ⊗O K = (SΣ ⊗O K)[℘Σ]⊕ (SΣ ⊗O K)[Ann hΣ
(℘ΣhΣ)].

We set
ΩΣ = SΣ/(SΣ[℘Σ]⊕ SΣ[Ann hΣ

(℘ΣhΣ)]).

By theorem 2.4 of [Dia] and theorem 2.6 above, we see that

#Ω∅ = #℘∅/℘
2
∅.

Let wΣ ∈ GL2(A∞F ) be defined by wσ,x = 12 if x 6∈ Σ and

wΣ,x =

(
0 1
̟2
x 0

)

if x ∈ Σ. Then wΣ normalises UΣ. We define a new pairing on Sk,O,ψ(UΣ) by

(f1, f2)
′ = (

∏

x∈Σ

ψ(̟x))
−1(f1, wΣf2).

Because ( , ) is a perfect pairing so is ( , )′. Moreover the action of any
element of hk,ψ(UΣ) is self adjoint with respect to ( , )′, so that ( , )′ restricts
to a perfect pairing on SΣ. Choose a perfect O-bilinear pairing on SΣ[℘Σ], let
jΣ denote the natural inclusion

jΣ : SΣ[℘Σ] →֒ SΣ,

and let j†Σ denote the adjoint of jΣ with respect to ( , )′ on SΣ and the chosen
pairing on SΣ[℘Σ]. Then one sees that

j†Σ : ΩΣ
∼−→ SΣ[℘Σ]/j†ΣSΣ[℘Σ].

If x6 |ln′Σ then define

ix : Sk,O,ψ(UΣ) −→ Sk,O,ψ(UΣ∪{x})

by

ix(f) = (Nx)ψ(̟x)f −
(

1 0
0 ̟x

)
Txf +

(
1 0
0 ̟2

x

)
f.

Documenta Mathematica · Extra Volume Coates (2006) 729–779



753

It is easy to check that ix commutes with Ty for y 6 |ln′Σ∪{x} and with U̟y for
y ∈ Σ. Moreover U̟xix = 0 and so

ix : SΣ −→ SΣ∪{x}.

Moreover ixSΣ[℘Σ] ⊂ SΣ∪{x}[℘Σ∪{x}]. We will let i†x denote the adjoint of ix
with respect to the pairings ( , )′ on SΣ and SΣ∪{x}. (We warn the reader
that the former is not simply the restriction of the latter.) An easy calculation
shows that i†x equals

ψ(̟x)(Nx)[UΣUΣ∪{x}]−Tx[UΣ

(
̟x 0
0 1

)
UΣ∪{x}]+[UΣ

(
̟2
x 0

0 1

)
UΣ∪{x}]

and hence that

i†x ◦ ix = ψ(̟x)(Nx)(1−Nx)(T 2
x − (1 + Nx)2ψ(̟x)).

The following key lemma is often referred to as Ihara’s lemma.

Lemma 3.1 SΣ∪{x}/ixSΣ is l-torsion free.

Proof: It suffices to check that

ix : Sk,O/λ,ψ(UΣ)m′Σ
−→ Sk,O/λ,ψ(UΣ∪{x})m′

Σ∪{x}

is injective, or even that the localisation at m′Σ of the kernel of

Sk,O/λ,ψ(UΣ)3 −→ Sk,O/λ,ψ(UΣ∪{x})

(f1, f2, f3) 7−→ f1 +

(
1 0
0 ̟x

)
f2 +

(
1 0
0 ̟2

x

)
f3

vanishes.
Let V denote the subgroup of elements u ∈ UΣ with

ux ≡
(
∗ ∗
0 ∗

)
mod ̟x.

We see that

V ∩
(

1 0
0 ̟x

)
V

(
1 0
0 ̟x

)−1

= UΣ∪{x}

and that UΣ is the subgroup of GL2(A∞F ) generated by V and

(
1 0
0 ̟x

)−1

V

(
1 0
0 ̟x

)
.

Thus the sequence

(0) → Sk,O/λ,ψ(UΣ) → Sk,O/λ,ψ(V ) ⊕ Sk,O/λ,ψ(V ) → Sk,O/λ,ψ(UΣ∪{x})

f 7→ (

„

1 0
0 ̟x

«

f,−f)

(f1, f2) 7→f1 +

„

1 0
0 ̟x

«

f2
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is exact.
Hence it suffices to show that the localisation at m′Σ of the kernel of

Sk,O/λ,ψ(UΣ)2 −→ Sk,O/λ,ψ(V )

(f1, f2) 7−→ f1 +

(
1 0
0 ̟x

)
f2

vanishes. However if (f1, f2) is in the kernel then f1 is invariant by the subgroup
of GL2(A∞F ) generated by UΣ and

(
1 0
0 ̟x

)
UΣ

(
1 0
0 ̟x

)−1

,

i.e. by UΣSL2(Fx).
First suppose that k = 2. Then, by the strong approximation theorem, we
see that f1 is invariant by right translation by any element of SL2(A∞F ), so
that f1 ∈ Striv

k,O/λ,ψ(Uσ). Any maximal ideal of h2,ψ(UΣ) in the support of

Striv
k,O/λ,ψ(Uσ) is Eisenstein.

Now suppose that 3 ≤ k ≤ l − 1. By the strong approximation theorem,
given any g ∈ GL2(A∞F ) and any u ∈ GL2(OF,l), we can find a δ ∈ D× ∩
gUΣSL2(Fx)g

−1 such that

g−1
l δgl ≡ u mod l.

Then

f1(g) = f1(δg) = f1(g(g
−1δg)) = f1(gu) = u−1f1(g),

so that

f1(g) ∈ (
⊗

OF,l→O/λ
Symm k−2((O/λ)2))GL2(OF,l) = (0).

Thus f1 = 0. 2

In particular we see that ixSΣ[℘Σ] = SΣ∪{x}[℘Σ∪{x}]. Thus

ΩΣ∪{x} ∼= SΣ[℘Σ]/j†Σi
†
xSΣ[℘Σ]

∼= SΣ[℘Σ]/j†Σ(1−Nx)(Nx)(T 2
x − (1 + Nx)2ψ(̟x))SΣ[℘Σ],

and so

#ΩΣ∪{x} = #ΩΣ#
`

O/(1 −Nx)((Nx)tr ρ(Frobx)
2 − (1 + Nx)2 det ρ(Frobx))

´

.

We conclude that

#(℘Σ/℘
2
Σ)|#ΩΣ

for all Σ (which contains no prime above l). Combining this with theorem 2.4
of [Dia] we see obtain the following theorem.
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Theorem 3.2 Keep the notation and assumptions of the second and fourth
paragraphs of section 2 and suppose that the restriction of ρφ to the absolute

Galois group of F (
√

(−1)(l−1)/2l) is irreducible. If Σ is a finite set of finite
places of F not dividing l then the natural map

RΣ −→ hΣ

is an isomorphism of complete intersections and SΣ is a free hΣ-module.

As an immediate consequence we have the following theorem.

Theorem 3.3 Let l > 3 be a prime and let 2 ≤ k ≤ l − 1 be an integer.
Let F be a totally real field of even degree in which l splits completely. Let
ρ : GF → GL2(OQacl

) be a continuous irreducible representation unramified
outside finitely many primes and such that for each place x of F above l the
restriction ρ|Gx is crystalline with Hodge-Tate numbers 0 and 1 − k. Let ρ
denote the reduction of ρ modulo the maximal ideal of OQacl

. Assume that the

restriction of ρ to F (
√

(−1)(l−1)/2l) is irreducible and that there is a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

• ρπ,λ ∼ ρ,

• πx is unramified for every finite place x of F , and

• π∞ has weight k.

Then there is a regular algebraic cuspidal automorphic representation π′ of
GL2(AF ) and an embedding λ′ : Mπ′ → Qac

l such that ρ ∼ ρπ′,λ′ and π′∞ has
weight k.

Proof: We need only remark that det ρ/det ρπ,λ has finite l-power order and so
by twisting π we may suppose that det ρ = det ρπ,λ (as l > 2). 2

4 A potential version of Serre’s conjecture

In this section we will prove the following result, which we will improve some-
what in section 5.

Proposition 4.1 Let l > 2 be a prime. Suppose that ρ : GQ → GL2(Facl ) is

a continuous odd representation with ρ|Il ∼ ωk−1
2 ⊕ ωl(k−1)

2 for some integer
2 ≤ k ≤ l. (In particular ρ|Gl is absolutely irreducible.) Then there is a
Galois totally real field F of even degree in which l splits completely, a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

1. ρ|GF ∼ ρπ,λ;
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2. π∞ has weight 2; and

3. for each place x of F above l, WDλ(πx) is tamely ramified and

WDλ(πx)|Ix = ω
k−(l+1)
2 ⊕ ωlk−(l+1)

2 .

We remark that the key improvement of this over results in [Tay4] is the con-
dition that l split completely in F . This may seem minor but it will be crucial
for the arguments in section 5 and the proof of theorem 5.7. We now turn to
the proof of the proposition.
Suppose that ρ is valued in GL2(k

′) for some finite field k′ ⊂ Facl and let
k denote the unique quadratic extension of k′ in Facl . We must have that

ρ|Gl = Ind Ql
Ql2
θ, where θ|Il = ωk−1

2 with 2 ≤ k ≤ l and so θ is not equal to its

Gal (Ql2/Ql)-conjugate. Set µ = ǫ−1 det ρ, let N denote the minimum splitting
field for µ and fµ its conductor. Thus N is a cyclic totally real extension
of Q. Choose an imaginary quadratic field M in which l remains prime and
which contains only two roots of unity. Let δM denote the unique non-trivial
character of A×/Q×NA×M and let fM denote the conductor of δM . Choose a
Galois totally real field E′′ such that E′′M contains a primitive root of unity
ζ of order 2#k×. Note that the degree over Fl of every residue field of a prime
of E′′ above l is even.
Choose a continuous character χ0 : M×(M×∞×

∏
q O×M,q)→M× which extends

the canonical inclusion on M× (use the fact that M has a prime x6 |2 with
−1 6∈ (k(x)×)2) and let f0 denote the conductor of χ0. Also choose two distinct
odd primes p1 and p2 such that for both i = 1, 2

• χ0 is unramified above pi;

• pi 6= l;

• ρ is unramified at pi;

• ρ(Frobpi) has distinct eigenvalues; and

• pi splits in the Hilbert class field of M .

(We explain why this is possible. Let M ′ denote the extension of M cut out

by M
ker ρ

and by the Hilbert class field H of M . By the Cebotarev density
theorem it suffices to find σ ∈ Gal (M ′/H) so that ρ(σ) has distinct eigenvalues.
A fortiori it suffices to find σ ∈ Il so that ρ(σ) has distinct eigenvalues. This
is possible because (l + 1)6 |k − 1.) Set w = 2wE′′M#(OM/lfM fµf0f

c
0OM )×,

where wE′′M denotes the number of roots of unity in E′′M . Let S1 denote set
of rational primes dividing fM fµf0f

c
0, let S2 be a finite set of rational primes

disjoint from S1 which split in M and such that the primes of M above S2

generate the class group of M , and set S0 = S1∪S2∪{l, p1, p2}. As in the proof
of lemma 1.1 of [Tay4] we can find an open subgroup W0 of

∏
q 6∈S0

O×M,q/Z
×
q

such that W0 ∩M×S0
/Q×S0

⊂ (M×S0
/Q×S0

)w. Let w′ denote the index of W0 in
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∏
q 6∈S0

O×M,q/Z
×
q . Then we can choose a Galois (over Q) totally real field E′

such that

• E′ ⊃ E′′;

• E′ contains a primitive root of 1 of order ww′; and

• χ0 extends to a continuous character χ0 : A×M → (E′M)×.

(If χ̃0 : A×M → C× is any extension of χ0 then χ̃0c(χ̃0)
∏
x6 |∞ | |x has finite order

and is valued in R×>0 and so is identically 1. Hence c(χ̃0) = χ̃−1
0

∏
x6 |∞ | |x and

χ̃0 is valued in a CM field.)

Let E denote the maximal totally real extension of E′ which is unramified
outside lp1p2 and tamely ramified at these primes. Choose primes ℘1 and ℘2

of EM above p1 and p2 respectively. Also choose a prime λ of EM above l
and an embedding k →֒ OEM/λ such that the composite of the Artin map
Il → O×M,l with the natural map O×M,l → (OEM/λ)× coincides with ω−1

2 :

Il → k× ⊂ (OEM/λ)×. Let µ : Gal (N/Q) → (EM)× be the unique character
reducing modulo λ to µ. For i = 1, 2 we can find αi ∈ (℘i ∩M)OE′′M which
reduces modulo λ to an eigenvalue of ρ(Frobpi) and which satisfies αiα

c
i = pi.

(First choose α′i ∈ M ∩ ℘i satisfying α′i(α
′
i)
c = pi and then multiply α′i by a

suitable root of unity in E′′M .)

Lemma 4.2 Let a′ denote the product of all primes of E above lp1p2 and factor
a′OME = aac, where ℘1℘2λ|a (which is possible as p1 and p2 split in M and
as the degree over Fl of the residue field of every prime of E above l is even).
There is a unit η ∈ O×E with η ≡ ζ mod a.

Proof: Let ζ denote the image of ζ in OE′/(a′ ∩ OE′) = OE′M/(a ∩ OE′M ).
Let H denote the maximal totally real abelian extension of E which is un-
ramified outside lp1p2 and which is tamely ramified above each of these three
primes. Thus H/E′ is Galois and Gal (H/E) is the commutator subgroup of
Gal (H/E′). In particular the transfer map Gal (E/E′) → Gal (H/E) van-
ishes. By class field theory we can identify (OE′/a′)×/O×E′ as a subgroup of
Gal (E/E′) and (OE/a)×/O×E as a subgroup of Gal (H/E) in such a way that
the natural map

(OE′/a′)×/O×E′ −→ (OE/a)×/O×E
corresponds to the transfer map on Galois groups and so is trivial. The lemma
follows. 2

Lemma 4.3 There is a continuous character χ : A×M → (EM)× such that

• χ|M× is the canonical inclusion;
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• χ|O×M,l is the unique character of order prime to l with

χ|O×M,l(x) ≡ x
l+1−k mod λ

for all x ∈ O×M,l and all primes λ of EM above l (and where OM →֒ OEM
via the natural map);

• for i = 1, 2, χ is non-ramified above pi and χ|M℘i
(pi) = αi; and

• χ|A× = µδM/Q|| ||−1i∞ where δM/Q is the unique non-trivial character of

A×/Q×NA×M , || || is the product of the usual absolute values and i∞ is
the projection onto R×.

Proof: Note that χ0|A× = νδM/Q|| ||−1i∞, where ν is a finite order character of
A×/Q×R× with conductor dividing f0f

c
0fM . We look for χ = χ0χ1. Thus we are

required to find a finite order continuous character χ1 : A×M/M
× −→ (EM)×

such that

• χ1|A× = µν−1, and

• χ1 has prescribed, finite order restriction to M×℘1
, M×℘2

and O×M,l, the

latter compatible with µν−1|Z×l (because µ|Z×l takes x to (x mod l)2−k).

Note that µν−1 has conductor dividing fM fµf0f
c
0. Also note that for i = 1, 2

the unit ai = αiχ0(̟℘i)
−1 satisfies aia

c
i = 1 for all complex conjugations c and

so is a root of unity. Thus the specified restrictions have orders dividing wE′′M
in the first two cases and #(OM/lfM fµf0f

c
0OM )× in the third case.

We can find a character

χ1,S0
:
∏

q∈S0

M×q −→ (EM)×

with the desired restrictions to
∏
q∈S0

Q×q , M×℘1
, M×℘2

and O×M,l, and with order
dividing w. As

(
∏

q∈S0

M×q ×
∏

q 6∈S0

O×M,q)/M
×
S0

∼−→ A×M/M
×M×∞,

it suffices to find a character

χS0
1 :

∏

q 6∈S0

O×M,q/Z
×
q −→ (EM)×

which coincides with χ−1
1,S0

on M×S0
/Q×S0

. One can choose such a character
which is trivial on W0 and so has order dividing w′. 2

We remark that as χ(c◦χ)|| ||(i∞ ◦NM/Q)−1 has finite image contained in the
totally positive elements of E× we must have χ(c ◦ χ) = || ||−1(i∞ ◦NM/Q).
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If x is a place of EM above a place x′ of M , let χx denote the character

A×M/M
× −→ (EM)×x
a 7−→ χ(a)a−1

x′

where ax′ denotes the x′ component of a embedded in (EM)×x via the natural
map Mx′ → (EM)x.
Set b = λ℘1℘2 and b0 = b∩E, so that OE/b0

∼= OEM/λ×OEM/℘1×OEM/℘2.
Let Wb0,0/Q denote the finite free group scheme with OE-action which has

Wb0,0(Q
ac) ∼= OE/b0(1)⊕OE/b0.

By the standard pairing on Wb0,0 we shall mean the map Wb0,0 ⊗OE d−1
E →

W∨b0,0
which corresponds to the pairing

(OE/b0(1)⊕OE/b0) × (OE/b0(1)⊕OE/b0) −→ OE/b0(1)
(x1, y1) × (x2, y2) 7−→ y2x1 − y1x2.

We will let X/Q denote the moduli space for quadruples (A, i, j, α), where
(A, i, j) is an E-HBAV and α : Wb0,0

∼→ A[b0] takes the standard pairing
on Wb0,0 to the j-Weil pairing on A[b0]. As b0 is divisible by two primes
with coprime residue characteristic we see that X is a fine moduli space. As
in section 1 of [Rap] we see that X is smooth and geometrically connected
(because of the analytic uniformization of its complex points by a product of
copies of the upper half complex plane).
Let Γ denote the set of pairs

(γ, ε) ∈ GL2(OE/b0)×O×E,≫0/(O×E,≡1 (b0)
)2

such that
εdet γ ≡ 1 mod b0.

Here O×E,≫0 denotes the set of totally positive elements of O×E , and O×E,≡1 (b0)

denotes the set of elements of O×E which are congruent to 1 modulo b0. The
group Γ acts faithfully on X via

(γ, ε)(A, i, j, α) = (A, i, j ◦ ε−1, α ◦ γ−1).

The action of GQ on the group of automorphisms of X preserves Γ and we have

σ(γ, ε) =

((
ǫ(σ) 0
0 1

)
γ

(
ǫ(σ)−1 0

0 1

)
, ε

)
.

The set H1(GQ,Γ) is in bijection with the set of pairs (R,ψ) where
R : GQ → GL2(OE/b0) is a continuous representation and ψ : GQ →
O×E,≫0/(O×E,≡1 (b0)

)2 is a continuous homomorphism with

ǫ−1 detR ≡ ψ−1 mod b0.
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This pair corresponds to the cocycle

(R,ψ)(σ) =

(
R(σ)

(
ǫ(σ)−1 0

0 1

)
, ψ(σ)

)
.

Thus to any such pair we can associated a twist XR,ψ/Q of X/Q.
Next we will give a description of the F -rational points of XR,ψ for any number
field F . Let N ′ denote the splitting field of ψ. Let WR/Q denote the finite free
group scheme with an action of OE such that

WR(Qac) ∼= OE/b0 ⊕OE/b0

with Galois action via R. By the standard pairing on WR/N
′ we shall mean the

map WR ⊗OE d−1
E →W∨R (defined over N ′) which corresponds to the pairing

(OE/b0 ⊕OE/b0) × (OE/b0 ⊕OE/b0) −→ OE/b0

(x1, y1) × (x2, y2) 7−→ y2x1 − y1x2.

Then F -rational points of XR,ψ correspond to quadruples (A, i, j, β), where

(A, i, j)/N ′F is an E-HBAV and where β : WR
∼→ A[b0] such that

• under β the standard pairing on WR and the j-Weil pairing on A[b0]
correspond, and

• for all σ ∈ Gal (N ′F/F ) there is an isomorphism

κσ : σ(A, i)
∼−→ (A, i)

such that σ(j) = κ∗σ ◦ j ◦ψ(σ)∼ for some lifting ψ(σ)∼ ∈ O×E of ψ(σ) and
such that for some lifting σ∼ ∈ GF of σ

σA[b0]
κσ−→ A[b0]

↑ ↑
WR

R(σ∼)−→ WR

commutes, where the left vertical arrow is σ∼ ◦ β and the right one is β.

We will be particularly interested in two pairs (R,ψ) defined as follows. For
σ ∈ Gal (N/Q) we can write µ(σ) = ζ−2mσ for some integer mσ. Define
ησ = (ηζ−1)mσ ∈ O×EM,≡1 (b) and ψ(σ) = NEM/Eησ = η2mσ . As

η2#k× = (−η#k×)2 ∈ (O×E,≡1 (b0)
)2,

we see that
ψ : Gal (N/Q) −→ O×E,≫0/(O×E,≡1 (b0)

)2

is a homomorphism. Let

Rρ = ρ⊕ Ind
GQ

GM
χ℘1
⊕ Ind

GQ

GM
χ℘2
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and
RDih = Ind

GQ

GM
χλ ⊕ Ind

GQ

GM
χ℘1
⊕ Ind

GQ

GM
χ℘2

,

so that ǫ−1 detRρ = ǫ−1 detRDih = µ. Then (Rρ, ψ) and (RDih, ψ) define
elements of H1(GQ,Γ) and we will denote the corresponding twists of X by Xρ

and XDih respectively. Note that Xρ and XDih become isomorphic over Ql,
Qp1 , Qp2 and R.

Lemma 4.4 Suppose that F is a number field. If Xρ has an F -rational point
then there exists an abelian variety B/F of dimension [EM : Q], an embedding
i′ : OEM →֒ End (B/F ), and an isomorphism β′ between B[b](F ac) and Rρ.

Proof: Suppose that (A, i, j, β)/FN is a quadruple corresponding to an F -
rational point of Xρ as above. Also, for σ ∈ Gal (NF/F ) let κσ : σA

∼→ A
be the maps of the last but one paragraph. Set B = A ⊗OE OEM and let i′

denote the natural map OEM → End (B). Let β′ denote the composite

WRρ
β−→ A[b0] −→ A[b0]⊗OE OEM/b = B[b].

Define f0 : OEM → HomOE (OEM ,OE) by f0(a)(b) = trEM/Eab
c and set

f = j(1)⊗ f0 a polarisation of B. Also set

κ′σ = κσ ⊗ ησ : σB −→ B.

We see that κ′σ commutes with the action of OEM , that σf = (κ′σ)
∨fκ′σ and

that for any lifting σ∼ ∈ GF of σ

σB[b]
κ′σ−→ B[b]

↑ ↑
WRρ

Rρ(σ
∼)−→ WRρ

commutes, where the left vertical arrow is σ∼ ◦ β′ and the right one is β′. As
the quadruple (B, i′, f, β′) has no non-trivial automorphisms (because any au-
tomorphism of (B, i′, f) has finite order and because b is divisible by two primes
with distinct residual characteristic), we see that κ′σσ(κ′τ ) = κ′στ . Thus we can
descend (B, i′) to F in such a way that β′ also descends to an isomorphism
β′ : WRρ

∼→ B[b] over F . 2

Lemma 4.5 XDih has a Q-rational point and hence Xρ has rational points over
Ql, Qp1 , Qp2 and over R.

Proof: Fix an embedding τ : M →֒ C and let Φ denote the CM -type for EM
consisting of all embeddings EM →֒ C which restrict to τ on M . Let (d−1

EM )−

denote the ordered OE-module {d ∈ d−1
EM : trEM/Ed = 0} with (d−EM⊗E,σR)+

the subset with positive imaginary part under σ⊗τ . From the theory of complex
multiplication (see [Lang], particularly theorem 5.1 of chapter 5) we see that
there is
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• an abelian variety A/M of dimension [E : Q];

• an embedding i : OEM →֒ End (A/M);

• an isomorphism j : (d−1
EM )−

∼→ P(A, i|OE ); and

• for each prime q of E a Galois invariant isomorphism αq : OEM,q(χq)
∼→

TqA

such that

• the action of EM on Lie τA is
⊕

σ∈Φ σ; and

• for any d ∈ (d−1
EM )− which is totally positive the j(d)-Weil pairing on TqA

is given by
x× y 7−→ trEM/Edxy

c.

(For the existence of j note that if f is a polarisation of τA/C such that
the f -Rosati involution stabilises and acts trivially on E, then the f -Rosati
involution also stabilises EM and acts on it via complex conjugation. This
follows from the fact that EM is the centraliser of E in End (τA/C).) As
χ(c ◦ χ) = (|| ||−1i∞) ◦NM/Q, we see that for σ ∈ GM we have

trEM/Mdαq(σx)αq(σy)
c = ǫq(σ)trEM/Mdαq(x)αq(y)

c.

Thus the quadruple (A, i|OE , j, (
∏

q αq) mod b0) defines a point in XDih(M).

As χ(χ◦ c) = (|| ||−1i∞µ)◦NM/Q, we see that c◦χ◦NNM/M = χ◦ c◦NNM/M

and so over NM there is an isomorphism between (A, i, j, {αq}) and (cA, c ◦
i ◦ c, c ◦ j, {c ◦ αq ◦ c}). Thus the point in XDih(M) ⊂ XDih(NM) defined by
(A, i|OE , j, (

∏
q αq) mod b0) is invariant under c and so lies in XDih(Q). 2

Combining the last two lemmas with a theorem of Moret-Bailly (see theorem
G of [Tay4]) we see that we can find a Galois totally real field F of even degree
in which l, p1 and p2 split completely, an abelian variety B/F of dimension
[EM : M ] and an embedding i : OEM →֒ End (B/F ) such that B[λ] realises

ρ and, for i = 1, 2, B[℘i] realises Ind
GQ

GM
(χ℘i mod ℘i). As B[λ] is unramified

at any prime above p1 we see that the action of inertia at such a prime on
TλB has l-power order. As B[℘2] is unramified at any prime above p1 we see
that the action of inertia at such a prime on T℘2

B has p2-power order. Hence
the action of inertia at a prime above p1 on TλB has both l-power order and
p2-power order. We conclude that TλB is unramified at primes above p1 and
hence B has semi-stable reduction at such primes. As p1 splits completely in
F and as B[℘1] is reducible as a representation of the decomposition group of
any prime of F above p1, we see that T℘1

B is an ordinary representation of
the decomposition group at any prime of F above p1. If x is a prime of F

above l then Ix acts on both B[℘1] and B[℘2] via ω̃
k−(l+1)
2 ⊕ ω̃lk−(l+1)

2 where
ω̃2 : Ix → O×EM is tamely ramified and reduces mod λ to ω2. Thus Ix acts on

T℘1
B by ω̃

k−(l+1)
2 ⊕ ω̃lk−(l+1)

2 . Because IndGFGFM (χ℘1
) is modular, theorem 5.1
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of [SW2] tells us that there is a algebraic, cuspidal automorphic representation
π of GL2(AF ) of weight 2 and an embedding Mπ →֒ EM such that ρπ,℘1

is equivalent to T℘1
B. (Alternatively one may appeal to the main theorem

of [SW1], theorem 3.3 of this paper and a standard descent argument.) It
follows that in addition ρπ,λ is equivalent to TλB. This completes the proof of
proposition 4.1.
Using Langlands base change [Langl] we immediately obtain the following corol-
lary.

Corollary 4.6 Let l > 2 be a prime. Suppose that ρ : GQ → GL2(Facl ) is

a continuous odd representation with ρ|Il ∼ ωk−1
2 ⊕ ωl(k−1)

2 for some integer
2 ≤ k ≤ l. Then there is a Galois totally real field F of even degree in which l
splits completely, a regular algebraic cuspidal automorphic representation π of
GL2(AF ) and an embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF ∼ ρπ,λ;

2. π∞ has weight 2;

3. the central character of π∞,l is unramified; and

4. for each place x of F above l, WDλ(πx) is tamely ramified and

WDλ(πx)|Ix = ω
k−(l+1)
2 ⊕ ωlk−(l+1)

2 .

5 Change of weight

In this section we will prove various refinements of proposition 4.1, but first we
shall discuss some results about congruences between modular forms.
Let F be a totally real field of even degree in which a prime l > 3 splits
completely. Let n denote an ideal of OF coprime to l. Let ψ : (A∞F )×/F× →
(Qac

l )× be a continuous character trivial on O×F,x if x6 |l and on (1 + lOF,x) if

x|l. Suppose further that there exists i ∈ (Z/(l − 1)Z) such that for a ∈ O×F,l,
ψ(a) is congruent to (Na)−i modulo the maximal ideal of OQacl

.
Let D denote the division algebra with centre F ramified at exactly the infinite
places of F . Let OD be a maximal order in D and fix an isomorphism OD,x ∼=
M2(OF,x) for each finite place x of F . We will write

• U0(n, l) for U{1}(nl), and

• U1(n, l) for U(OF /lOF )×(nl).

(See section 1, in particular the paragraph after corollary 1.2, for this notation.)
We will let ηi denote the character U0(n, l)/U1(n, l) → (Facl )× which sends u,
with

ul =

(
∗ ∗
∗ d

)
,
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to (Nd mod l)i. We will also let ηi denote the Teichmüller lift of ηi. For any
OQacl

-algebra R, there is a natural embedding

Sηi⊗R,ψ(U0(n, l)) →֒ Sηi⊗R,ψ(U1(n, l)) = S2,R,ψ(U1(n, l)),

which is equivariant for the action of Tx and Sx for all x6 |ln, and for U̟x

for x|n. The image is the subset of S2,R,ψ(U1(n, l)) where 〈h〉 = 1 for all
h ∈ (OF /lOF )×. If φ : hηi,Fl,ψ(U0(n, l))→ Facl has non-Eisenstein kernel then
for x|l we have

det ρφ|Ix = ω1+i.

The operators U̟x and V̟x on S2,Facl ,ψ
(U1(n, l)) commute with the action

of 〈h〉 for h ∈ (OF /lOF )× and hence preserve Sηi,ψ(U0(n, l)). We will let
hηi,Fl,ψ(U0(n, l))

′ (resp. hηi,Fl,ψ(U0(n, l))
′′) denote the commutative subalgebra

of the endomorphisms of Sηi,ψ(U0(n, l)) generated by hηi,Fl,ψ(U0(n, l)) and U̟x

(resp. V̟x) for all x|l. If φ : hηi,Fl,ψ(U0(n, l))
′ → Facl and φ(U̟x) 6= 0 then

ρφ|Gx ∼
(
χ1 ∗
0 χ2

)

where χ2 is unramified and χ2(Frobx) = φ(U̟x) (see [W1]).
If f1 ∈ Sηi,ψ(U0(n, l)) and f2 ∈ Sη−i,ψ−1(U0(n, l)) then define (f1, f2) to be

∑

[x]∈D×\(D⊗QA∞)/U0(n,l)(A∞F )×

f1(x)f2(xw)(#(U0(n, l)(A∞F )×∩x−1D×x)/F×)−1,

where

wx =

(
0 1

̟
x(n)
x 0

)

if x6 |l and wx = 12 if x|l. This is easily seen to be a perfect pairing. Moreover
a standard calculation shows that the adjoint of Sx is S−1

x , the adjoint of Tx
is S−1

x Tx, the adjoint of U̟x for x|n is S−1
̟xU̟x and the adjoint of U̟x for

x|l is S−1
̟xV̟x . Thus if φ : hηi,Fl,ψ(U0(n, l)) → Facl then there is also a homo-

morphism φ∗ : hη−i,Fl,ψ−1(U0(n, l)) → Facl satisfying φ∗(Tx) = φ(Sx)
−1φ(Tx)

and φ∗(Sx) = φ(Sx)
−1. Moreover if φ extends to hηi,Fl,ψ(U0(n, l))

′′ so that
φ(V̟x) 6= 0 then φ∗ extends to hη−i,Fl,ψ−1(U0(n, l))

′ with φ∗(U̟x) 6= 0. We de-
duce that ρφ∗ = ρ∨φ(1). Hence if φ : hηi,Fl,ψ(U0(n, l))

′′ → Facl and φ(V̟x) 6= 0
then

ρφ|Gx ∼
(
ǫχ1 ∗
0 ωiχ2

)

where χ1 and χ2 are unramified.
We will denote by Ii the induced representation from U0(n, l) to UH(n) of
ηi. It is a tesnor product

⊗
x|l I

i
x where Iix is the induction from U0(n, l)x to

GL2(OF,x) of ηi. We can realise Iix concretely as the space of functions

θ : k(x)2 − {(0, 0)} −→ Facl
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such that θ(a(x, y)) = aiθ(x, y) for all a ∈ k(x)×. The action of GL2(OF,x) is
via (uθ)(x, y) = θ((x, y)u). We have an isomorphism

Sηi,ψ(U0(n, l)) ∼= SIi,ψ(UH(n))

under which f ∈ Sηi,ψ(U0(n, l)) corresponds to F ∈ SIi,ψ(UH(n)) if

f(g) = F (g)((0, 1)x)

and
F (g)(ax, bx) = f(gu−1)

where u ∈ GL2(OF,l) and

u mod x =

(
∗ ∗
ax bx

)

for all x|l.
Now suppose that 0 ≤ i ≤ l − 2. If x is a prime of F above l then we have an
exact sequence

(0) −→ Symm i((Facl )2) −→ Iix −→ Symm l−1−i((Facl )2)⊗ deti −→ (0).

The first map is just the natural inclusion of homogeneous polynomials of
degree i into the space of homogeneous functions of degree i. The second map
sends a homogeneous function θ onto the polynomial

∑

(s,t)∈P1(k(x))

θ(s, t)(tX − sY )l−1−i.

Thus for any subset T of the set of places of F above l we have a submodule
IiT ⊂ Ii with

IiT
∼=
⊗

x6∈T
Symm i((Facl )2)⊗

⊗

x∈T
Iix.

These give rise to subspaces

Sηi,ψ,T (U0(n, l)) ⊂ Sηi,ψ(U0(n, l))

with
Sηi,ψ,∅(U0(n, l)) ∼= Si+2,Facl ,ψ

(UH(n))

as a module for the Hecke operators Tx and Sx for all x6 |ln and for U̟x for all
x|n.
The following lemma is a variant of an unpublished result of Buzzard (see [Bu]).

Lemma 5.1 For any set T of places of F above l and for any place x 6∈ T of
F above l there is an injection

κx : Sηi,ψ,T∪{x}(U0(n, l))/Sηi,ψ,T (U0(n, l)) →֒ Sηi,ψ,T∪{x}(U0(n, l))
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which is equivariant for the actions of Ty and Sy for all y 6 |l and for U̟x for
x|n, and such that the composite

Sηi,ψ,T∪{x}(U0(n, l))
κx−→ Sηi,ψ,T (U0(n, l)) →֒ Sηi,ψ,T∪{x}(U0(n, l))

coincides with V̟x .

Proof: Define U0(T ) ⊂ UH(n) by U0(T )y = U0(n, l)y if y ∈ T and U0(T )y =
UH(n)y otherwise. Let τT denote the representation

(
⊗

y∈T
ηiy)⊗ (

⊗

y 6∈T
Symm 2+i((Facl )2)

of U0(T )l. If x 6∈ T is a place of F above l, let τT,x denote the representation

(
⊗

y∈T
ηiy)⊗ (

⊗

y 6∈T∪{x}
Symm i+2((Facl )2))⊗ (Symm l−1−i((Facl )2)⊗ deti)

of U0(T )l. Then the exact sequence

(0) −→ Sηi,ψ,T (U0(n, l)) −→ Sηi,ψ,T∪{x}(U0(n, l)) −→
−→ Sηi,ψ,T∪{x}(U0(n, l))/Sηi,ψ,T (U0(n, l)) −→ (0)

is identified to the exact sequence

(0) −→ SτT ,ψ(U0(T ))
α−→ SτT∪{x},ψ(U0(T ∪ {x})) β−→ SτT,x,ψ(U0(T )) −→ (0),

where
α(f)(g) = f(g)(0, 1)x

and
β(f)(g)(X,Y )x =

∑

(s:t)∈P1(k(x))

f(gu(s, t)−1)(tX − sY )l−1−i

with u(s, t) ∈ GL2(OF,x) congruent to

(
∗ ∗
s t

)

modulo x.
Now define

κ : SτT,x,ψ(U0(T )) −→ SτT∪{x},ψ(U0(T ∪ {x}))
by

κ(f)(g) = f(gγ)(1, 0)x

where

γ =

(
1 0
0 ̟x

)
∈ GL2(Fx).
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To see this is well defined the only slightly subtle point is that if u ∈ U0(n, l)x
then

κ(f)(gu) = f(gγ(γ−1uγ))(1, 0)x
= (detu)if(gγ)((1, 0)x(γ

−1u−1γ))
= (detu)if(gγ)(ηx(u)/detu, 0)x
= ηx(u)

−if(gγ)(1, 0)x
= ηx(u)

−iκ(f)(g).

Moreover κ is clearly injective and equivariant for the action of Ty and Sy if
y 6 |ln and for U̟x for x|n. Finally we have

(κ ◦ β)(f)(g) =
∑

(s:t)∈P1(k(x)) f(gγu(s, t)−1)tl−1−i

=
∑
s∈k(x) f(gγu(s, 1)−1)

= (V̟xf)(g).

as we can take

u(s, 1) =

(
1 0
s 1

)
.

2

Corollary 5.2 There is a natural surjection

hηi,Facl ,ψ(U0(n, l))→→ hi+2,Facl ,ψ
(UH(n))

which takes Ty to Ty and Sy to Sy for all y 6 |ln and which takes U̟x to U̟x for
all x|n. If m is a maximal ideal of hηi,Facl ,ψ(U0(n, l)) such that for any x|l and

any maximal ideal m′′x of hηi,Facl ,ψ(U0(n, l))
′′ extending m one has V̟x ∈ m′′x,

then hi+2,Facl ,ψ
(UH(n))m 6= (0). This assumption will be verified if m is non-

Eisenstein and the kernel of a homomorphism φ : hηi,ψ(U0(n, l)) → Facl such
that for all x|l

ρφ|Gx 6∼
(
ǫχ1 ∗
0 ωiχ2

)
,

with χ1 and χ2 unramified.

Proof: Choose a minimal T such that Sηi,ψ,T (U0(n, l))m 6= (0). If T = ∅ then
Sk,Facl ,ψ(UH(n))m 6= (0) and the corollary follows. Thus suppose that x ∈ T
and set T ′ = T − {x}. By our minimality assumption we see that

Sηi,ψ,T (U0(n, l))m
∼→(Sηi,ψ,T (U0(n, l))/Sηi,ψ,T ′(U0(n, l)))m

κx→֒ Sηi,ψ,T (U0(n, l))m

and the composite coincides with V̟x . Thus V̟x is an isomorphism on
the space Sηi,ψ,T (U0(n, l))m and V̟x does not lie in some maximal ideal of
hηi,Facl ,ψ(U0(n, l))

′′ above m, a contradiction. 2

We also have the following lemma, which generalises results of Ash and Stevens
[AS]. We write U0 for

∏
y GL2(OF,y).
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Lemma 5.3 If k ∈ Z≥2 and if φ : hk,Facl ,ψ(U0)→ Facl is a homomorphism, then
there is a homomorphism (Dφ) : hk+l+1,Facl ,ψ(ǫ◦Art−1)(U0)→ Facl such that for

all places y 6 |l we have (Dφ)(Ty) = φ(Ty)(Ny) and (Dφ)(Sy) = φ(Sy)(Ny)
2.

Proof: If f ∈ Sk,Facl ,ψ(U0) then the function

(Df)(g) = f(g)(||N det g||(N det gl))
−1,

where || || : (A∞)× → Q×>0 denotes the product of the usual p-adic absolute
values, lies in Sτk,Fac

l
⊗(N det),ψ(ǫ◦Art−1)(U0). Moreover if Tyf = af (resp. Syf =

bf) then Ty(Df) = a(Ny)(Df) (resp. Sy(Df) = b(Ny)(Df)). Thus it suffices
to exhibit an embedding

Sτk,Fac
l
⊗(N det),ψ(ǫ◦Art−1)(U0) →֒ Sk+l+1,Facl ,ψ(ǫ◦Art−1)(U0)

compatible with the action of Ty and Sy for all y 6 |l. By lemma 1.1 it suffices
to exhibit a GL2(OF,l)-equivariant embedding

⊗

x

(Symm k−2(k(x)2)⊗ det) →֒
⊗

x

Symm k+l−1(k(x)2),

or simply GL2(OF,x)-equivariant embeddings

Symm k−2(k(x)2)⊗ det →֒ Symm k+l−1(k(x)2)

for all x|l. Because l splits completely in F such an embedding simply results
from multiplication by X lY − XY l, as we see from the following calculation.
For a, b, c, d ∈ Fl we have

(aX + cY )l(bX + dY )− (aX + cY )(bX + dY )l

= (aX l + cY l)(bX + dY )− (aX + cY )(bX l + dY l)
= (ad− bc)(X lY −XY l).

2

We now turn to our improvements to proposition 4.1. First we have the fol-
lowing lemma.

Lemma 5.4 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(Facl ) is a

continuous odd representation with ρ|Il ∼ ωk−1
2 ⊕ ω

l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F in which l splits completely,
a regular algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF ∼ ρπ,λ;

2. π∞ has weight 2; and
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3. for each place x of F above l, πx has conductor dividing x.

Proof: Let F , π, λ be as provided by corollary 4.6. Let ψ0 : (A∞F )×/F× →
(Qac

l )× be the character such that ǫ(ψ0 ◦ Art−1) equals the determinant of
ρπ,λ. Thus ψ0 is unramified away from l. Let n0 denote the prime to l part
of the conductor of π. Let D be the division algebra with centre F which is
ramified at exactly the infinite places of F . Let OD be a maximal order in D
and fix an isomorphism OD,x ∼= M2(OF,x) for each finite place x of F . Let O
denote the ring of integers of Qac

l .
Let χk denote the character F×l2 → O× which sends a to the Teichmüller lift of
ak−l−1. Let Θ(χk) denote a model over O of the representation of GL2(Zl)→
→ GL2(Fl) denoted the same way in section 3.1 of [CDT]. Let Θk denote the
representation

⊗
x|l Θ(χk) of GL2(OF,l). From proposition 4.1, lemma 1.3 and

lemma 4.2.4 of [CDT] we see that there is a homomorphism

φ1 : hΘk,O,ψ0
(UH0

(n0)) −→ Facl

such that kerφ1 is non-Eisenstein and ρφ1
∼ ρ|GF .

By lemma 3.1.1 of [CDT] we see that Θk ⊗ Facl has a Jordan-Hölder sequence
with subquotients

RT =
⊗

x6∈T
Symm k−2((Facl )2)⊗

⊗

x∈T
(Symm l−1−k((Facl )2)⊗ detk−1)

where T runs over sets of places of F above l, and where, if k = l, we only
have one subquotient namely T = ∅. Thus for some T , φ1 factors through
hRT ,Facl ,ψ0

(UH0
(n0)). It then follows from corollary 1.5 that for x ∈ T we must

have ρ|Ix ∼ ωk−l2 ⊕ ωkl−1
2 or

(
1 ∗
0 ωk−1

)
.

Thus in fact φ1 must factor through hR∅,Facl ,ψ0
(UH0

(n0)) = hk,Facl ,ψ0
(UH0

(n0)).
It follows from the first part of corollary 5.2 that φ1 gives rise to a map

φ0 : hηk−2,O,ψ0
(UH0

(n0)) −→ Facl

such that kerφ0 is non-Eisenstein and ρφ0
∼ ρ|GF . The proposition follows. 2

Combining the lemma 5.4 with the main theorem of [SW1], we immediately
obtain the following corollary.

Corollary 5.5 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(Facl ) is

a continuous odd representation with ρ|Il ∼ ωk−1
2 ⊕ ωl(k−1)

2 for some integer
2 ≤ k ≤ l. Then there is a Galois totally real field F in which l splits completely,
a regular algebraic cuspidal automorphic representation π of GL2(AF ) and an
embedding λ : Mπ →֒ Qac

l such that
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1. ρ|GF ∼ ρπ,λ;

2. π∞ has weight 2;

3. for each finite place x of F not dividing l, πx is unramified; and

4. for each place x of F above l, the conductor of πx divides x.

Now we can use corollary 5.2 to obtain a further refinement of proposition 4.1.

Lemma 5.6 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(Facl ) is a

continuous odd representation with ρ|Il ∼ ωk−1
2 ⊕ ω

l(k−1)
2 for some integer

2 ≤ k ≤ l. Then there is a Galois totally real field F of even degree in which l
splits completely, a regular algebraic cuspidal automorphic representation π of
GL2(AF ) and an embedding λ : Mπ →֒ Qac

l such that

1. ρ|GF ∼ ρπ,λ;

2. π∞ has weight k; and

3. πx is unramified at every finite place x of F .

Proof: Now let F , π, λ be as provided by corollary 5.5. Also denote by ψ0 :
(A∞F )×/F× → (Qac

l )× be the character such that ǫ(ψ0 ◦ Art−1) equals the
determinant of ρπ,λ. Thus ψ0 is unramified away from l. Note also that if
a ∈ O×F,l then ψ0(a) is the Teichmüller lift of (Na)2−k mod l. Let D be the
division algebra with centre F which is ramified at exactly the infinite places of
F . Let OD be a maximal order in D and fix an isomorphism OD,x ∼= M2(OF,x)
for each finite place x of F . Let U0 =

∏
y GL2(OF,y). There is a homomorphism

φ0 : hηk−2,Facl ,ψ0
(U0(OF , l))→ Facl

with kerφ0 non-Eisenstein and ρφ0
∼ ρ|GF . By corollary 5.2 this factors

through hk,Facl ,ψ0
(U0) and the proposition follows. 2

Finally we have the following version of our potential version of Serre’s conjec-
ture.

Theorem 5.7 Let l > 3 be a prime. Suppose that ρ : GQ → GL2(Facl ) is a
continuous irreducible odd representation with ρ|Gl irreducible. Then there is a
Galois totally real field F of even degree in which l splits completely, a regular
algebraic cuspidal automorphic representation π of GL2(AF ) and an embedding
λ : Mπ →֒ Qac

l such that

1. ρ|GF ∼ ρπ,λ;

2. π∞ has weight kρ, where kρ is the weight associated to ρ|Gl by Serre in
[S2]; and

3. πx is unramified for every finite place x of F .
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Proof: From the definition of kρ we see that there is an integer 0 ≤ c < l − 1

such that 2 ≤ kρ−c(l+1) ≤ l and (ρ⊗ǫ−c)|Il ∼ ω
kρ−1−c(l+1)
2 ⊕ωl(kρ−1)−c(l+1)

2 .
By lemma 5.6 we can find a Galois totally real field F of even degree in which l
splits completely and a regular algebraic cuspidal automorphic representation
π of GL2(AF ) such that

1. (ρ⊗ǫ−c)|GF is equivalent to ρπ,λ for some prime λ|l and some embedding
k(λ) →֒ Facl ;

2. π∞ has weight kρ − c(l + 1); and

3. πx is unramified at every finite place x of F .

By lemma 1.3 we can find, for some character ψ, a homomorphism

φ : hkρ−c(l+1),Facl ,ψ
(U0)→ Facl

with non-Eisenstein kernel such that ρφ
∼= (ρ ⊗ ǫ−c)|GF . The theorem now

follows from lemma 5.3. 2

6 Applications

Combining theorem 2.1 of [Tay4], theorem 5.7, theorem 3.3 and a standard
descent argument (see for example the proof of theorem 2.4 of [Tay3]) we obtain
our main theorem.

Theorem 6.1 Let l > 3 be a prime and let 2 ≤ k ≤ l − 1 be an integer. Let
ρ : GQ → GL2(OQacl

) be a continuous irreducible representation such that

• ρ is ramifies at only finitely many primes,

• det ρ(c) = −1,

• ρ|Gl is crystalline with Hodge-Tate numbers 0 and 1− k.

Let ρ denote the reduction of ρ modulo the maximal ideal of OQacl
. If ρ|Gl is

irreducible assume that ρ restricted to Ql(
√

(−1)(l−1)/2l) is irreducible. (This
will be the case if, for instance, 2k 6= l+ 3.) Then there is a Galois totally real
field F in which l is unramified with the following property. For each subfield
E ⊂ F with Gal (F/E) soluble there is a regular algebraic cuspidal automorphic
representation πE of GL2(AE) and an embedding λ of the feild of coefficients
of πE into Qac

l such that

• ρπE ,λ ∼ ρ|GE ,

• πE,x is unramified for all places x of E above l, and

• πE,∞ has weight k.
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(We explain the parenthetical comment. In the case discussed in that comment

ρ|Il = ωk−1
2 ⊕ ωl(k−1)

2 and so ρ|IQl(
√±l) = (ω′2)

2(k−1) ⊕ (ω′2)
2l(k−1) where ω′2 is

the fundamental character of level 2 of IQl(
√
±l). The assumption k 6= (l+3)/2

tells us that (l + 1)6 |2(k − 1) so that ρ|GQl(
√±l) is absolutely irreducible.)

Combining this with the main theorem of [Bl] we deduce the following corollary.

Corollary 6.2 Keep the assumptions of theorem 6.1. If ρ is unramified at
a prime p and if α is an eigenvalue of ρ(Frobp) then α ∈ Qac and for any

isomorphism i : Qac
l
∼→ C we have

|iα|2 ≤ p(k−1)/2.

(We remark that we can deduce this corollary for all but finitely many primes
p by appealing to theorem 3.4.6 of [BL] instead of the main theorem of [Bl].)
Continue to assume that ρ satisfies the hypotheses of theorem 6.1. If p 6= l and
if i : Qac

l
∼→ C then we define

Lp(iρ,X) = idet(1− ρIp(Frobp)X) ∈ C[X].

Corollary 6.2 tells us that

Ll(iρ, s) =
∏

p6=l
Lp(iρ, p

−s)−1

defines a meromorphic function in Re s > (k + 1)/2.
Choose a non-trivial additive character Ψ =

∏
Ψp : A/Q→ C× with ker Ψl =

Zl and Ψ∞(x) = e2π
√−1x. Also choose a Haar measure dx =

∏
dxp on AF

with dx∞ the usual measure on R, with dxl(Zl) = 1 and with dx(AF /F ) = 1.
If p 6= l we will let WD(ρ|Gp) denote the Weil-Deligne representation associated
to ρ|Gp . Then we define

ǫ(iρ, s) =
√
−1

k∏

p6=l
ǫ(iWD(ρ∨|Gp)⊗ |Art−1|−sp ,Ψp, dxp).

(See [Tat].) Note that ǫ(iρ, s) = WNk/2−s where W is independent of s, and
where N is the (prime to l) conductor of ρ. The proof of corollary 2.2 of [Tay4]
then gives the following corollary.

Corollary 6.3 Keep the assumptions of theorem 6.1 and let i : Qac
l
∼→ C.

There is a rational function Ll(ρ,X) such that if we set

L(iρ, s) = Ll(iρ, s)Ll(iρ, l
−s)−1

then L(iρ, s) has meromorphic extension to the entire complex plane and sat-
isfies the functional equation

(2π)−sΓ(s)L(iρ, s) = ǫ(iρ, s)(2π)s−kΓ(k − s)L(i(ρ∨ ⊗ ǫk−1), k − s).
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The proof of corollary 2.4 of [Tay4] also gives us the following result.

Corollary 6.4 Keep the assumptions of theorem 6.1 and if k = 2 further
assume that for some prime p 6= l we have

ρ|Gp ∼
(
ǫχ ∗
0 χ

)
.

Then ρ occurs in the l-adic cohomology (with coefficients in some Tate twist of
the constant sheaf) of some variety over Q.

By a rank d weakly compatible system of l-adic representations R over Q we
shall mean a 5-tuple (M,S, {Qp(X)}, {ρλ}, {n1, ..., nd}) where

• M is a number field;

• S is a finite set of rational primes;

• for each prime p 6∈ S of Q, Qp(X) is a monic degree d polynomial in
M [X];

• for each prime λ of M (with residue characteristic l say)

ρλ : GQ −→ GLd(Mλ)

is a continuous representation such that, if l 6∈ S then ρλ|Gl is crystalline,
if p 6∈ S ∪ {l} then ρλ is unramified at p and ρλ(Frobp) has characteristic
polynomial Qp(X); and

• {n1, ..., nd} is a multiset (i.e. set with multiplicities) of integers such that
for all primes λ of M (lying above a rational prime l) the representation
ρλ|Gl is Hodge-Tate with numbers {n1, ..., nd}.

We will call {n1, ..., nd} the Hodge numbers of R. We will call R strongly
compatible if for each rational prime p there is a Weil-Deligne representation
WDp(R) of WQp such that for primes λ of M not dividing p, WDp(R) is equiv-
alent to the Frobenius semi-simplification of the Weil-Deligne representation
associated to ρλ|Gp . We will call a rank 2 weakly compatible system R regular
if the Hodge numbers are distinct and for one, and hence all, primes λ of M
we have det ρλ(c) = −1.
We remark that whatever is meant by a “motive”, the l-adic realisations of a
“motive” would give rise to weakly compatible systems of l-adic representations
which are generally expected to be strongly compatible. Moreover one can use
the Hodge realisation to see that if the Hodge numbers of a rank 2 “motive”
are distinct then the associated system of l-adic representations is regular in
the above sense. This explains the perhaps somewhat unnatural definition of
regularity given above.
The following lemma is an easy consequence of the characterisation of one
dimensional Hodge-Tate representations of GQ.
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Lemma 6.5 If R/Q is a rank 2 weakly compatible system of l-adic representa-
tions and if ρλ is absolutely reducible for one λ, then ρλ is absolutely reducible
for all λ.

We will call a rank 2 weakly compatible system of l-adic representations re-
ducible if the hypothesis (and hence the conclusion) of the previous lemma
holds. Otherwise we call it irreducible.

Theorem 6.6 Suppose that R = (M,S, {Qx(X)}, {ρλ}, {n1, n2})/Q is a regu-
lar, irreducible, rank 2 weakly compatible system of l-adic representations with
n1 > n2.

1. There is a Galois totally real field such that for any i : M →֒ C there is
a regular algebraic cuspidal automorphic representation of GL2(AF ) with
L(iR|GF , s) = L(π, s).

2. For all rational primes p 6∈ S and for all i : M →֒ C the roots of i(Qp(X))
have absolute value p−(n1+n2)/2.

3. R is strongly compatible.

4. Fix i : M →֒ C. If we define

L(iR, s) =
∏

p

Lp(iWDp(R)∨, s)−1

and

ǫ(iR, s) = i1+n1−n2

∏

p

ǫ(iWDp(R)∨ ⊗ |Art−1|−sp ,Ψp, dxp)

then the product defining L(iR, s) converges to a meromorphic function
in Re s > 1− (n1 + n2)/2 and L(iR, s) has meromorphic continuation to
the entire complex plane and satisfies a functional equation

(2π)−(s+n1)Γ(s + n1)L(iR, s) = ǫ(iR, s)(2π)s+n2−1Γ(1 − n2 − s)L(iR∨, 1 − s).

Proof: We may assume that n1 = 0. For all but finitely many primes λ of M
the representation ρλ satisfies the hypotheses of theorem 6.1. The first part
follows immediately from that theorem and the second part from corollary 6.2.
Choose one such prime λ and fix an embedding Mλ ⊂ Qac

l . Let F be as in
theorem 6.1 and write

1 =
∑

j

mjInd
Gal (F/Q)
Gal (F/Ej)

χj

where mj ∈ Z, Gal (F/Ej) is soluble and χj is a character of Gal (F/Ej). For
each j we have a regular algebraic cuspidal automorphic representation πj of
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GL2(AEj ) with field of coefficients Mj and an embedding λj : Mj →֒ Qac
l such

that
ρπj ,λj ∼ ρλ|GEj .

We see in particular that λj : Mj →֒ M . Thus any embedding λ′ : M →֒ Qac
l′

gives rise to an embedding λ′j : Mj →֒ Qac
l′ . From the Cebotarev density

theorem we see that
ρπj ,λ′j ∼ ρλ′ |GEj

and hence that
ρλ′ =

∑

j

mjInd
Gal (Qac/Q)
Gal (Qac/Ei)

ρπj ,λ′j ⊗ χj .

As the ρπj ,λ′j are strongly compatible (see [Tay1]), the same is true for the

ρλ′ . (To check compatibility of the nilpotent operators in the Weil-Deligne
representations one notices that it suffices to check that they are equal after
any finite base change.) Moreover we see that

L(iR, s) =
∏

j

L(πj ⊗ (χj ◦Art ◦ det), s)mj

and that
ǫ(iR, s) =

∏

j

ǫ(πj ⊗ (χj ◦Art ◦ det), s)mj ,

and the fourth part of the theorem follows. 2

As an example suppose that X/Q is a rigid Calabi-Yau 3-fold. Let X/Z denote
a model for X. Also let ζX(s) denote the zeta function of X, so that

ζX(s) =
∏

p

ζX,p(p
−s)−1,

where ζX,p(T ) is a rational function of T and for all but finitely many p we
have

ζX,p(T ) =
∏

x

(1− T [k(x):Fp])

where x runs over closed points of X × Fp. If we set

ZX(s) = ((s− 1)(s− 3))−1(2π)−s dimH2(X(C),R)Γ(s− 1)dimH2(X(C),R)c=1

Γ(s− 2)dimH2(X(C),R)c=−1

ζX(s),

then we have that
ZX(s) = ABs−2ZX(4− s)

where B is a non-zero rational number and where A = ±1. (To see this note
that

• H0(X ×Qac,Ql) = Ql and H6(X ×Qac,Ql) = Ql(−3);
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• H1(X ×Qac,Ql) = H5(X ×Qac,Ql) = (0);

• H2,0(X(C),C) = H0,2(X(C),C) = (0) and so by Lefschetz’s theorem
there is finite dimensional Q-vector space W with a continuous action of
GQ such that

H2(X ×Qac,Ql) ∼= W ⊗Q Ql(−1)

and

H4(X ×Qac,Ql) ∼= W∨ ⊗Q Ql(−2)

for all rational primes l; and

• {H3(X ×Qac,Ql)} forms a regular, rank two weakly compatible system
in the above sense.

Thus it suffices to combine the above theorem with the functional equation for
Artin L-series.)

Corrections to [Tay4].

We are extremely grateful to Laurent Clozel for raising the following points.
All the references below are to [Tay4].

• The third bulleted point on page 130 should read det ρ = ǫ. (Without
this change the choice of aλ at the top of page 136 becomes impossible.)

• It would be clearer if the parenthetical comment “(as βv − βcv is coprime
to p)” read “(as βvβ

c
v = ψ(φv)ψ

c(φv) = p and βv − βcv is coprime to p)”.

• Before the “i.e.” in the middle of page 135 it would be clearer to add
a parenthetical explanation “(note that EndOM (A1) is the centraliser of
OM in M[N :Q(βv)](OQ(βv)), which is just ON )”.

• The superscript Gal (L/K) in the fourth displayed formula on page 135

should read Gal (F̃v/Fv).

• After the fourth displayed formula on page 135 it would be clearer to add
the parenthetical comment: “(N.B. Because [F̃v : Fv]|#χv(Iv)|#k× and
because N0 contains a primitive #k× root of one, N contains a primitive
[F̃v : Fv] root of one.)”.

• The proof of lemma 1.4 is wrong. A correct proof can be given as follows.
“Choose z ∈ (iR>0)

Hom (M,R). Let M act on CHom (M,R) by acting via
τ on the τ -component. Set A = CHom (M,R)/(d−1

M 1 + OMz) (where 1
denotes the vector (1, ..., 1)). This complex torus is an abelian variety
with an action of OM , which is actually defined over R (in such a way
that complex conjugation on A(C) corresponds to complex conjugation
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on CHom (M,R)). Moreover P(A, i) ∼= O+
M , where α ∈ OM corresponds to

the alternating Riemannian form

E(x+ yz, u+ vz) = trM/Qα(yu− xv)

for x, y, u, v ∈M ⊗Q R.”

• At the end of the second sentence of the paragraph before theorem 1.6
add “and det ρ = ǫ” after “the case that ρ has insoluble image”.

• With the above changes, specifically adding det ρ = ǫ in two places,
theorem 1.6 requires some further proof. The following will suffice: “We
may assume that ρ has insoluble image. Choose a totally real quadratic
extension F ′/F in which all primes above l split and a finite extension
k′/k and a character ξ : GF ′ → (k′)× such that det ρ|GF ′ = ǫξ2. (This is
possible as the obstruction to taking the square root of a character lies in
the two part of the Brauer group.) Now work with ρ′ = ρ⊗ ξ−1 : GF ′ →
GL2(k

′), and find p, N , M , λ, ℘, L, ψ, E′/F ′ and A′ as above. Let E be
the normal closure of E′/F . Then l and p split completely in E/F . Take
A = A′ ×E′ E and argue as above.”
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Abstract. In this paper, we present a conjecture concerning the
classicality of a genus two overconvergent Siegel cusp eigenform whose
associated Galois representation happens to be geometric, and more
precisely, given by the Tate module of an abelian surface. This con-
jecture is inspired by the Fontaine-Mazur conjecture. It generalizes
known results in the genus one case, due to Kisin, Buzzard-Taylor
and Buzzard. The main difference in the genus two case is the com-
plexity of the arithmetic geometry involved. This is why most of the
paper consists in recalling (mostly with proofs) old and new results
on the bad reduction of parahoric type Siegel varieties, with some
consequences on their rigid geometry. Our conjecture would imply,
in certain cases, a conjecture posed by H. Yoshida in 1980 on the
modularity of abelian surfaces defined over the rationals.

2000 Mathematics Subject Classification:
11F33, 11F46, 11F80, 11G18

Keywords and Phrases:
Arithmetic Siegel varieties, q-expansion, Bad reduction of Siegel

varieties of parahoric level, Overconvergent Siegel modular forms, Ga-
lois representations

In a previous paper, we showed under certain assumptions (Theorem 4 of [26])
that a degree four symplectic Galois representation ρ with singular Hodge-
Tate weights which is congruent to a cohomological modular Galois represen-
tation (we say then that ρ is residually cohomologically modular) is p-adically
modular. The precise definitions of the expressions above can be found in
[26] Sect.2 and 4. As a corollary, we obtain that certain abelian surfaces
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A/Q do correspond, if they are residually cohomologically modular, to over-
convergent Siegel cusp forms of weight (2, 2) (see Theorem 8 of [26]), in the
sense that their Galois representations coincide. This result fits a Generalized
Shimura-Taniyama Conjecture due to H. Yoshida ([30], Section 8.2) according
to which for any irreducible abelian surface A defined over Q, there should ex-
ist a genus two holomorphic Siegel cusp eigenform g of weight (2, 2) such that
L(h1(A), s) = Lspin(g, s), where L(h1(A), s) is the Grothendieck L function
associated to the motive h1(A) and Lspin(g, s) is the degree four automorphic
L function associated to g (with Euler factors defined via Hecke parameters
rather than Langlands parameters, for rationality purposes). One should no-
tice that this conjecture presents a new feature compared to the genus one
analogue. Namely, contrary to the genus one case, the weight (2, 2) occuring
here is not cohomological; in other words, the Hecke eigensystem of g does not
occur in the singular cohomology of the Siegel threefold (it occurs however in
the coherent cohomology of this threefold). In particular, the only way to de-
fine the Galois representation ρg,p associated to such a form g, either classical
or overconvergent, is to use a p-adic limit process, instead of cutting a piece
in the étale cohomology with coefficients of a Siegel threefold. This can be
achieved in our case because g fits into a two-variable Hida family of p-nearly
ordinary cusp eigenforms. Note that, more generally, for a classical cusp eigen-
form g of weight (2, 2) with (finite) positive slopes for its Hecke eigenvalues at
p, one believes that two-variable Coleman families of cusp eigenforms passing
through g in weight (2, 2) could also be constructed, and this would allow a
similar construction of ρg,p.

For our p-nearly ordinary overconvergent g, Theorem 8 of [26] states that the
associated Galois representation ρg,p does coincide with the p-adic realization
of a motive h1(A). Therefore, ρg,p is geometric; several results in the analogue
situation for genus 1 (see [18], [6] and [7]) lead us to conjecture that this g is
actually classical.

The goal of the present paper is to generalize slightly and state precisely this
conjecture (Sect.4.2). We also take this opportunity to gather geometric facts
about Siegel threefolds with parahoric level p, which seem necessary for the
study of the analytic continuation of such overconvergent cusp eigenforms to
the whole (compactified) Siegel threefold; the rigid GAGA principle would
then imply the classicity of such g. We are still far from fulfilling this program.
However, we feel that the geometric tools presented here, although some of them
can actually be found in the literature, may be useful for various arithmetic
applications besides this one, for instance to establish the compatibility between
global and local Langlands correspondence for cusp forms of parahoric level for
GSp(4,Q).

As a final remark, we should point out that there exist other Generalized
Shimura-Taniyama Conjectures for submotives of rank 3 resp.4 of the motive
h1(A) for certain abelian threefolds resp. fourfolds A (see [3]). For those, The-
orem 8 of [26] seems transposable; the question of classicity for the resulting
overconvergent cusp eigenforms for unitary groups U(2, 1) resp. U(2, 2) could
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then be posed in a similar way. It would then require a similar study of the
(rigid) geometry of Shimura varieties of parahoric type for the corresponding
groups.
Part of this paper has been written during visits at NCTS (Taiwan) and CRM
(Montreal). The excellent working conditions in these institutions were appre-
ciated. The author wishes to express his thanks to Professors Jing Yu and A.
Iovita for their invitations, as well as the Clay Institute which financed part
of the stay in Montreal. Discussions with H. Hida, A. Iovita, C.-F. Yu and
especially A. Genestier were very useful to remove several falsities and add
truths to an earlier draft (but the author alone is responsible for the remaining
errors).
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1 Notations

Let
G = GSp(4) = {X ∈ GL4;

tXJX = ν · J}
be the split reductive group scheme over Z of symplectic simitudes for the anti-

symmetric matrix J , given by its 2× 2 block decomposition: J =

(
0 −s
s 0

)

where s is the 2 × 2 antidiagonal matrix whose non zero entries are 1. This
group comes with a canonical character ν : X 7→ ν(X) ∈ Gm called the simili-
tude factor. The center of G is denoted by Z, the standard (diagonal) maximal
torus by T and the standard (upper triangular) Borel by B; UB denotes its
unipotent radical, so that B = TUB. Let γP = t1/t2 resp. γQ = ν−1t22 be
the short, resp. the long simple root associated to the triple (G,B, T ). The
standard maximal parabolic P = MU , associated to γP , is called the Klingen
parabolic, while the standard maximal parabolic Q = M ′U ′, associated to γQ,
is the Siegel parabolic. The Weyl group of G is denoted WG. It is generated

by the two reflexions sP and sQ induced by conjugation on T by

(
s 0
0 s

)

resp.




1
s

1


 . Let us fix a pair of integers (a, b) ∈ Z2, a ≥ b ≥ 0; we

identify it with a dominant weight for (G,B, T ), namely the character

T ∋ t = diag(t1, t2, ν
−1t2, ν

−1t1) 7→ ta1t
b
2
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Let Va,b be a generically irreducible algebraic representation of G associated to
(a, b) over Z.
Let A = Af ×Q∞ be the ring of rational adeles. Fix a compact open subgroup
K of Gf = G(Af ); let N ≥ 1 be an integer such that K = KN × KN with
KN = G(ZN ) maximal compact and KN =

∏
ℓ|N Kℓ for local components Kℓ

to be specified later.
Let HN be the unramified Hecke algebra outside N (that is, the tensor prod-
uct algebra of the unramified local Hecke algebras at all prime-to-N rational
primes); for each rational prime ℓ prime to N , one defines the abstract Hecke
polynomial Pℓ ∈ HN [X] as the monic degree four polynomial which is the min-
imal polynomial of the Hecke Frobenius at ℓ (see Remarks following 3.1.5 in
[12]).
Let C∞ be the subgroup of G∞ = G(Q∞) generated by the standard maximal
compact connected subgroup K∞ and by the center Z∞.
For any neat compact open subgroup L of G(Af ), the adelic Siegel variety of
level L is defined as: SL = G(Q)\G(A)/LC∞; it is a smooth quasi-projective
complex 3-fold. If L ⊂ L′ are neat compact open subgroups of Gf , we have a
finite etale transition morphism φL,L′ : SL → SL′ .

2 Integral models and local models

Let K be a compact open subgroup of G(Ẑ) such that K(N) ⊂ K. For any
integer M ≥ 1, we write KM resp. KM for the product of the local components
of K at places dividing M , resp. prime to M .
Let p be a prime not dividing N we denote by I, ΠP resp. ΠQ the Iwahori
subgroup, Klingen parahoric, resp. Siegel parahoric subgroup of G(Zp). We
consider KB(p) = K∩I×Kp, KP (p) = K∩ΠP×Kp and KQ(p) = K∩ΠQ×Kp

and the corresponding Shimura varieties SB(p), SP (p) resp. SQ(p).
Let us consider the moduli problems

F∅ : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η)/S}/ ∼,

FB : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H1 ⊂ H2 ⊂ A[p])/S}/ ∼,

FP : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H1 ⊂ A[p])/S}/ ∼

and

FQ : Z[
1

N
]−Sch→ Sets, S 7→ {A, λ, η,H2 ⊂ A[p])/S}/ ∼

where A/S is an abelian scheme, λ is a principal polarisation on A, η is a K-
level structure (see end of Sect.6.1.1 of [12]), Hi is a rank pi finite flat subgroup
scheme of A[p] with H2 totally isotropic for the λ-Weil pairing.
As in Th.6.2.1 of [12] or [16] Prop.1.2, one shows
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Theorem 1 If K is neat, the functors above are representable by quasipro-
jective Z[ 1

N ]-schemes X∅, XB(p), XP (p) and XQ(p). The first one is smooth
over Z[ 1

N ] while the others are smooth away from p; the functors of forgetful-
ness of the level p structure provide proper morphisms πB,∅ : XB(p) → X∅,
πP,∅ : XP (p) → X∅, and πQ,∅ : XQ(p) → X∅ which are finite etale in generic
fiber.

We’ll see that these morphisms are not necessarily finite hence not necessarily
flat.
We’ll also consider a moduli problem of level Γ1(p). Let UB be the unipotent
radical of the Borel B of G. Let FUB be the functor on Q−Sch sending S to
{A, λ, η, P1, P2)/S}/ ∼ where P1 is a generator of a rank p finite flat subgroup
scheme H1 of A[p] while P2 is a generator of the rank p finite flat group scheme
H2/H1 for H2 a lagrangian of A[p]. Over Q, it is not difficult to show that it
is representable by a scheme XUB (p)Q.
Following [14] and [12] Sect.6.2.2, we define the Z[ 1

N ]-scheme XUB (p) as the
normalisation of XB(p) in XUB (p)Q; it comes therefore with a morphism
πUB ,B : XUB (p)→ XB(p) which is generically finite Galois of group T (Z/pZ).

Remark: All schemes above have geometrically connected generic fibers if and
only if ν(K) = Ẑ×. However, in general, the morphisms π∗,∅ induce bijections
between the sets of geometric connected components ofX∗(p) andX∅; therefore
the descriptions of irreducible components of the special fiber at p given below
should be interpreted as relative to an arbitrary given connected component of
the special fiber at p of X∅.
We still denote by X∗(p) the base change to Zp of X∗(p)/Z| 1N ] (∗ = ∅, B, P,Q).

The results that we will explain below are essentially due to de Jong [16],
Genestier [11], Ngô-Genestier [22], Chai-Norman [9], C.-F. Yu [29]. As most
of these authors, we make first use of the theory of local models [23], which
allows to determine the local structure of X∗(p); then, one globalizes using the
surjectivity of the monodromy action due to [10]. This argument is sketched in
[16] for g = 2 and developed for any genus and for any parahoric level structure
in [29].
The determination of the local model and of its singularities has been done in
case ∗ = B by de Jong [16], in case ∗ = P in [12] Sect.6.3 (inspired by [14])
and in case ∗ = Q in [12] Appendix. Let us recall the results.

2.1 The case ∗ = B

We first recall the definition of the local model MB of XB(p) over Zp.
Let St0 = Z4

p, with its canonical basis (e0, e1, e2, e3), endowed with the standard
unimodular symplectic form ψ: ψ(x, y) = txJy. We consider the standard

diagram St2
α2→ St1

α1→ St0 where αi+1 sends ei to pei and ej to ej (j 6= i).
We endow St2 resp. St0 with the unimodular standard symplectic form ψ,
which we prefer to denote ψ2 resp. ψ0. Let α2 = α1 ◦ α2; then we have
ψ0(α

2(x), α2(y)) = pψ2(x, y).
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Then, MB is the scheme representing the functor from Zp−Sch to Sets sending a
scheme S to the set of triples (ωi)i=0,1,2, where ωi is a direct factor of Sti⊗OS ,
ω0 and ω2 are totally isotropic, and αi+1(ωi+1) ⊂ ωi for i = 0, 1.
It is a closed subscheme of the flag variety over Zp G(St2, 2) × G(St1, 2) ×
G(St0, 2). Let ξ0 = (ω2, ω1, ω0) ∈MB(Fp) be the point given by ω2 = 〈e0, e1〉,
ω1 = 〈e0, e3〉 and ω0 = 〈e2, e3〉. Consider the affine neighborhood U of ξ0 in
MB given by ω2 = 〈e0 + c11e2 + c12e3, e1 + c21e2 + c22e3〉, ω1 = 〈e0 + b11e1 +
b12e2, e3 + b21e1 + b22e2〉 and ω0 = 〈e2 + a11e0 + a12e1, e3 + a21e0 + a22e1〉.
We’ll see below that it is enough to study the geometry of U because this open
set is “saturating” in MB (i.e. its saturation GBU for the action of the group
GB of automorphisms of MB is MB). Let us first study the geometry of U .
The equations of U are c11 = c22, a11 = a22,
pe1 + c21e2 + c22e3 = c22(e3 + b21e1 + b22e2),
e0 + c11e2 + c12e3 = e0 + b11e1 + b12e2 + c12(e3 + b21e1 + b22e2),
and similarly
pe0 + b11e1 + b12e2 = b12(e2 + a11e0 + a12e1),
e3 + b21e1 + b22e2 = e3 + a21e0 + a22e1 + b22(e2 + a11e0 + a12e1).
Equating the coordinates of the two members, one gets the set of equations (2)
of [16] Sect.5.
Putting x = a11, y = b12, a = c12, b = a12 and c = b22, an easy calculation
shows that U = spec Zp[x, y, a, b, c]/(xy − p, ax + by + abc). The special fiber
U0 ⊂ MB ⊗ Fp of U is an affine threefold given by the equations xy = 0 and
ax + by + abc = 0; it is the union of its four smooth irreducible components
Z00 = V (x, b), Z01 = V (x, y + ac), Z10 = V (y, a) and Z11 = V (y, x+ bc).
Let R = Zurp [x, y, a, b, c]/(xy − p, ax + by + abc); then ξ0 has coordinates

(0, 0, 0, 0, 0) in U0(Fp). Let ζ0 = (x0, y0, a0, b0, c0) be an arbitrary point of
U0(Fp). Note that x0y0 = 0 and a0x0+b0(y0+a0c0) = b0y0+a0(x0+b0c0) = 0.
Let m0 be the maximal ideal of R corresponding to ζ0. The completion of R
at m0 is given by the following easy lemma ([16] Section 5).

Lemma 2.1 • If x0 + b0c0 6= 0, then if y0 6= 0, R̂m0
∼= Zurp [[u, β, γ]],

• If x0 + b0c0 6= 0 and y0 = 0, then R̂m0
∼= Zurp [[x, y, b, c]]/(xy − p),

• If a0 6= 0, if y0 = b0 = 0 then R̂m0
∼= Zurp [[y, b, t, c]]/(ybt − p), and if

y0 6= 0 or b0 6= 0, if y0b0 = 0 then R̂m0
is Zurp [[y, b, t, c]]/(yt− p), or it is

smooth if y0b0 6= 0,

• If c0 6= 0 and x0 = b0 = a0 = y0 = 0, if moreover c0 6= 0, then R̂m0
∼=

Zurp [[x, y, u, v, w]]/(xy − p, uv − p),

• If x0 = b0 = a0 = y0 = c0 = 0, that is, if s0 = x0 (defined above), then

R̂m0
∼= Zurp [[x, y, a, b, c]]/(xy − p, ax+ by + abc),

The other cases are brought back to those by permuting the variables x and y
resp. a and b.
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Proof: If x0 + b0c0 6= 0, and y0 6= 0, we choose liftings x0, a0, b0, c0 ∈ Zurp and
y0 ∈ Zurp × and introduce new variables u, α, β, γ by putting y = y0 + u and

a = a0 +α, b = b0 +β, c = c0 +γ (in case b0 = 0 for instance, we choose b0 = 0

so that β = b, and similarly for γ). Then, the relation ax+ by+abc = 0 in R̂m0

reads a(x+ bc) + by = 0, so that the image of the variable α can be expressed
as a series of the images of the variables u, β, γ; similarly, the relation xy = p
allows to express x as a series of u; in conclusion, we have R̂m0

∼= Zurp [[u, β, γ]].

If x0 6= 0 = y0 = 0, this reasoning shows that R̂m0
∼= Zurp [[x, y, β, γ]]/(xy − p).

If a0 6= 0, let us omit the centering at 0 of variables as above (needed for
instance if b0 6= 0 or y0 6= 0). Let us write the relation ax + by + abc = 0 as
x = −a−1by− bc = b(−a−1y− c). We introduce a new variable t = −a−1y− c.
Then we have p = xy = bty so that R̂m0

∼= Zurp [[y, b, t, c]]/(ybt − p) unless, as

mentioned, b0 6= 0 or y0 6= 0 where things become simpler.
If x0 = b0 = a0 = y0 = 0 but c0 6= 0, then (x+bc)(y+ac) = p+c(ax+by+abc) =
p; hence, putting u = x+ bc and v = y + ac, one defines a change of variables
from the set of variables (x, y, a, b, c) to (x, y, u, v, c) (actually, as above, one
should use γ = c− c0 instead of c) and the conclusion follows.
The last case is clear.QED.

By the theory of local models, we have a diagram

WB

π ւ ց f
XB(p) MB

where WB classifies quintuples (A, λ,H1,H2;φ : St· ⊗ OS ∼= D(A·)) over a
scheme S (see Sect.3 of [16], especially Prop.3.6, for the definition of φ). One
sees easily that it is representable by a XB(p)-scheme π : WI → XB(p). The
morphism f consists in transporting the Hodge filtration from the Dieudonné
modules to St· by φ and π consists in forgetting φ. Recall that those morphisms
are smooth and surjective.
Given a point z = (A0 → A1 → A2, λ0, λ2;φ) ofWB(Fp), the degree p isogenies
A0 → A1 → A2 (defined by quotienting A = A0 by H1 and H2) give rise to
morphisms of filtered Dieudonné modules (writing Mi for D(Ai)S): M2 →
M1 → M0, sending ωi+1 into ωi. Let us consider the rank p finite flat group
schemes G0 = H1 = Ker (A0 → A1) and G1 = H2/H1 : Ker (A1 → A2). Then,
we have a canonical isomorphism
1) ωi/α(ωi+1) ∼= ωGi .
Recall that ωA∨i = ω∨i = Mi/ωi, hence by Th.1, Sect.15 of [20]), if G∨i denotes
the Cartier dual of Gi, we have
2) ωG∨i = Mi/(ωi + α(Mi+1)).

For z ∈ WB(Fp) as above, let x = π(z) = (A0 → A1 → A2, λ0, λ2) and
s = f(z) = (ω2, ω1ω0).
We define σi(s) = dimωi/α(ωi+1) and τi(s) = dimMi/(ωi + α(Mi+1)).
Then,
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• if Gi is µp, σi(s) = 1 and τi(s) = 0

• if Gi is Z/pZ, σi(s) = 0 and τi(s) = 1

• if Gi is αp, σi(s) = 1 and τi(s) = 1

We define MB(Fp)ord as the set of points s such that (σi(s), τi(s)) ∈
{(1, 0), (0, 1)} for i = 1, 2.
One determines its four connected components and we check their Zariski clo-
sures are the irreducible components of MB(Fp) as follows. The calculations of
the lemma above show that MB(Fp) ∩ U is the union of the loci

• (1) x = b = 0,

• (2) x = y + ac = 0,

• (3) y = a = 0,

• (4) y = x+ bc = 0,

Then, let us check that the component x = b = 0 is the Zariski closure of the
locus (m,m) where H1 and H2/H1 are multiplicative. This component consists
in triples (ω2, ω1, ω0) such that the generators of ω0 satisfy a11 = a12 = 0, that
is, by equations (1) of U0 in Sect.6 of [16], such that ω0 = 〈e2, e3〉. Then one
sees that α(ω1) = 〈b12e2, e3 + b22e2〉 has codimension 1 in ω0 if b12 = 0, and
codimension 0 otherwise, while α(ω2) = 〈e0 + c11e2 + c12e3, c21e2 + c22e3〉 has
codimension 1 if c11 = 0 and 0 otherwise.
On the other hand, α(M1) is generated by (e1, e2, e3) soM0/α(M1) is generated
by the image of e0; since ω0 = 〈e2, e3〉, we see that τ0(s) = 1 for any s ∈ Z00,
while α(M2) is generated by (e0, e2, e3) so that M1/α(M2) is generated by the
image of e1; since ω1 = 〈e0+b12e2, e3+b22e2〉, we see that τ1(s) = 1 also on Z00.
Hence the open dense locus defined by b12 6= 0 and c11 6= 0 is the ordinary locus
of this component (that is, the set of points s such that (σi(s), τi(s)) = (0, 1)
(i = 1, 2).
One can do similar calculations for the other components; to obtain the table
at bottom of page 20 of [16] (note however that our labeling of the components
is different).
This calculation proves the density of the ordinary locus in each irreducible
component in U0 and provides at the same time the irreducible components of
the non-ordinary locus and of the supersingular locus. We find

Lemma 2.2 The open subset U0 of MB ⊗ Fp is an affine scheme with four
irreducible components

• (1) x = b = 0, Zariski closure of the locus (m,m) where H1 and H2/H1

are multiplicative

• (2) x = y + ac = 0, Zariski closure of the locus (m, e) where H1 is
multiplicative and H2/H1 is étale
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• (3) y = a = 0, Zariski closure of the locus (e, e) where H1 and H2/H1

are étale

• (4) y = x + bc = 0, Zariski closure of the locus (e,m) where H1 is étale
and H2/H1 is multiplicative.

The singular locus U sing
0 can be viewed as the union of two loci: “H1 bicon-

nected”,whose equation is x = y = 0, and “H2/H1 biconnected”, whose equa-
tion is y + ac = x+ bc = 0. The intersection of those two is the supersingular
locus U ssing

0 .

The locus “H1 biconnected” is the union of U ssing
0 and two 2-dimensional irre-

ducible components

• (14) the locus x = b = y = 0,equation of the Zariski closure of the locus
where H1 is biconnected and H2/H1 is multiplicative,

• (23) the locus y = x = a = 0, equation of the Zariski closure of the locus
where H1 is biconnected and H2/H1 is étale,

where the label (ij) denotes the irreducible 2-dimensional intersection of (i) and
(j).

The supersingular locus U ssing
0 coincides with the intersection (2)∩ (4) which is

the union of one 2-dimensional component x = y = c = 0, which we denote by
(24) and one 1-dimensional component a = b = x = y = 0.

The locus “H2/H1 biconnected” is the union of U ssing
0 and of two irreducible

components

• (12) x = b = y+ac = 0, equation of the Zariski closure of the locus where
H1 is multiplicative and H2/H1 is biconnected,

• (34) y = a = x+bc = 0, equation of the Zariski closure of the locus where
H1 is étale and H2/H1 is biconnected .

with the same convention (ij) = (i) ∩ (j) (here, those are irreducible 2-
dimensional components);
Finally, the three irreducible components of the one-dimensional stratum asso-
ciated to the four irreducible components of U sing

0 are

• x = y = a = b = 0,

• x = y = a = c = 0,

• x = y = b = c = 0,

They are all contained in U ssing
0 . More precisely, the second and third are

contained in (24), and U ssing
0 is the union of the first and of (24).

Thus, the supersingular locus of MB is not equidimensional, it is union of a two-
dimensional irreducible component, namely the Zariski closure of the locus (24),
and a one-dimensional irreducible component, closure of x = y = a = b = 0.

Documenta Mathematica · Extra Volume Coates (2006) 781–817



Siegel Varieties and p-Adic Siegel Modular Forms 791

Let us consider the Iwahori group scheme GB ; it is a smooth group scheme
over Zp representing the functor S 7→ AutS(St· ⊗OS). Its generic fiber is the
symplectic group G while its special fiber is extension of the upper triangular
Borel B by the opposite unipotent radical.
The complete list of the GB-orbits in MB⊗Fp follows from the analysis above.
There are thirteen such orbits. There are four 3-dimensional orbits (whose
Zariski closures are the irreducible components), five 2-dimensional orbits, three
1-dimensional orbits, and one 0-dimensional orbit, intersection of all the clo-
sures of the other orbits. These orbits can be detected from the irreducible
components as complement in an irreducible component of the union of the
other components of smaller dimension. In [13] p.594, they are described in
terms of thirteen alcoves in an apartment of the Bruhat-Tits building.
Let us explain now the property of saturation of U : GB · U = MB. To prove
this, we note that U0 meets all the orbits of GB because it contains the smallest
orbit, namely the point ξ0 defined above and that this point is in the closure
of all the other orbits. (cf. the remark of [11] above Lemma 3.1.1). This
observation, together with the previous lemma implies [16], [22]

Proposition 2.3 The scheme MB is flat, locally complete intersection over
Zp. Its special fiber is the union of four smooth irreducible components. Its or-
dinary locus coincides with the regular locus and is dense; the singular locus has
5 2-dimensional irreducible components, all smooth, and two one-dimensional
irreducible components, also smooth; the p-rank zero locus has 3 irreducible
components, all smooth; one is 2-dimensional and two are 1-dimensional.

The local and global geometry of XB(p) is mostly contained in the following:

Theorem 2 The scheme XB(p) is flat, locally complete intersection over Zp.
The ordinary locus in the special fiber coincides with the regular locus; it is
therefore dense in the special fiber XB(p)⊗Fp; this scheme is the union of four
smooth irreducible components Xmm, Xme, Xem, Xee. They are the Zariski
closures of their ordinary loci, which are given respectively by the following
conditions on the filtration 0 ⊂ H1 ⊂ H2 ⊂ A[p]: H2 is multiplicative, H1 is
multiplicative and H2/H1 étale, H1 is étale and H2/H1 is multiplicative, H2 is
étale. The singular locus of XB(p)⊗ Fp is therefore the locus where either H1

or H2/H1 is étale-locally isomorphic to αp.

There exists a semistable model X̃B(p) of XB(p) over Zp with a proper mor-

phism h : X̃B(p) → XB(p) whose generic fiber h ⊗ Qp is an isomorphism and
whose special fiber h⊗ Fp is an isomorphism over the ordinary locus.

Remark:
The stratification of the special fiber of MB by the GB-orbits (called the
Kottwitz-Rapoport stratification) defines also a stratification of the special
fiber of XB(p); the stratum XS associated to the (irreducible) stratum S of
MB is defined as π(f−1(S)). The four orbits corresponding to the irreducible
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components are connected because of the monodromy theorem of [10] (due to
C.-F. Yu [29]). It has been pointed out to the author by A.Genestier that for
the 2-dimensional orbits, no such connexity result is available yet by a p-adic
monodromy argument. However, C.F. Yu explained to us how to prove that the
p-rank one stratum does consist of four 2-dimensional irrreducible components
as listed above for M sing

B . Indeed, for any p-rank one geometric closed point x
of XB(p) ⊗ Fp, we have Ax[p] = G1,1[p] × µp × Z/pZ where G1,1 denotes the
p-divisible group of a supersingular elliptic curve; hence the possibilities for the
pairs (H1,H2/H1) are (αp, µp), (αp,Z/pZ), (µp, αp), (Z/pZ, αp). This shows
that the p-rank one stratum has exactly four connected components, so that
the components of each type are irreducible.
For the supersingular locus XB(p)ss, it is known by Li-Oort that the number
of irreducible components is in general strictly greater than 3 (which is the
number of irreducible components of M ss

B ).
Proof: By [16] Sect.4, the morphisms π : WB → XB(p) and f : WI → MB

are smooth and surjective and for any geometric point x of XB(p), there exists
a geometric point s ∈ f(π−1({x}) of MB and a local ring isomorphism

ÔXB(p),x
∼= ÔMB ,s

The description of the strictly henselian local rings ÔXB(p),x is therefore given
by the list of Lemma 2.2. They are flat, complete intersection over Zurp .

The ordinary subcheme XB(p)ord of the special fiber XB(p) ⊗ Fp is the locus
where the connected component of A[p] is of multiplicative type. By total
isotropy of H2 it follows easily that XB(p)ord(Fp) = π(f−1(Mord

B )). Therefore,
XB(p)ord is the disjoint union of four open subsets Xmm,ord, Xme,ord, Xem,ord,
Xee,ord, defined by the conditions: “the type of the pair (H1,H2/H1) is (m,m)
resp. (m, e), resp. (e,m), resp. (e, e), where m means multiplicative and e
means étale”. Let us denote by Xmm, Xme, Xem, Xmm their Zariski closures
in XB(p) ⊗ Fp. By density of the ordinary locus, one has XB(p) ⊗ Fp =
Xmm ∪ Xme ∪ Xem ∪ Xmm. Let us show that these four subschemes are
smooth irreducible. For i, j ∈ {0, 1}, let Mαβ

B ( α and β in {m, e}) be the

irreducible components of MB⊗Fp such that Mαβ
B ∩U0 is the component (α, β)

in Lemma 2.2; then we have π(f−1(Mαβ
B )) = Xαβ . Thus, the smoothness of

the components Mαβ
B of MB ⊗ Fp yields the smoothness of Xαβ ∩ U0 for all α

and β in {m, e}. The connectedness of Xαβ follows from a simple argument due
to C.-F. Yu [29] which we repeat briefly, with a small correction (of the wrong
statement (2.2) p.2595). let A→ X∅ be the universal abelian variety; let Xo

∅ be
the ordinary locus ofX∅⊗Fp; then for any closed geometric point x, by Sect.V.7
of [10] the monodromy representation π1(X

o
∅ , x)→ GLg(Zp) is surjective; this

is equivalent to saying that the finite étale Xo
∅ -cover Ig(p) = IsomXo∅

(µ2
p, A[p]o)

is connected. Consider the scheme Igb(p) = IsomXo∅
((µ2

p×(Z/pZ)2, A[p]) where
the second member consists in symplectic isometries between the standard
symplectic space (for the pairing given by the matrix J) and A[p] endowed
with the Weil pairing.
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By extension of isomorphisms between lagrangians to symplectic isometries,
we see that Igb(p) is a purely inseparable torsor above Ig(p) under the group
scheme µp ⊗ U(Z/pZ) where U denotes the unipotent radical of the Siegel
parabolic. Hence Igb(p) is connected. Now, for each connected component
Xαβ,ord of XB(p)ord, one can define a finite surjective morphism Igb(p) →
Xo,αβ . For instance for Xme,ord, we define a filtration inside µ2

p × (Z/pZ)2 by
Hme

1 = µp × 1 × 0 × 0 ⊂ Hme
2 = µp × 1 × Z/pZ × 0, and we define fme as

sending (A, λ, ξ) ∈ Ig(p) to (A, λ, 0 ⊂ ξ(Hme
1 ) ⊂ ξ(Hme

2 ) ⊂ A[p]) ∈ Xme,ord.
This shows the connectedness of Xme,ord. A similar argument applies to the
other components.
The construction of the GB-equivariant semistable model M̃B of MB has been
done first by de Jong [16] by blowing-up MB along either of the irreducible
components (m,m) or (e, e), while Genestier constructs a semistable scheme

L̃ by three consecutive blowing-ups of the lagrangian grassmannian L in such
a way that the resulting scheme has an action of GB ; then he shows that the
isomorphism from the generic fiber of L̃ to that of MB extends to a proper
morphism L̃ → MB . He also shows [11] Construction 2.4.1 that the two con-

structions coincide: M̃B = L̃.
Then, both authors define X̃B(p) as (WB ×MB

M̃B)/GB (for its diagonal ac-
tion). QED
Remark: The previous calculations show also that the proper morphism πB,∅
is not finite over the supersingular locus C of X∅, for instance the inverse image
π−1
B,∅(CSS) of the (zero dimensional) superspecial locus CSS ⊂ C coincides

with the locus where the lagrangian H2 coincides with the lagrangian αp × αp
of G1,1[p]×G1,1[p], and H1 ⊂ H2; thus by [20] Sect.15, Th.2, the fiber of πB,Q
at each superspecial point of XQ(p) is a projective line.
On the other hand, the morphism πQ,∅ : XQ(p)→ X∅ is finite.

2.1.1 The case ∗ = UB

Recall that UB denotes the unipotent radical of B. The study of XUB (p)
can be deduced from that of XB(p) following the lines of [14] Sect.6, using
Oort-Tate theory. More precisely, let W be the GB-torsor considered above
and WU = f−1(U) the inverse image of the affine open subset U of MB (see
beginning of 2.1). The locus where H1 and H2/H1 are connected has equa-
tion x = b = 0. This locus can also be described by oort-Tate theory as
follows. There exist two line bundles L1, L2 on XB(p) and two global sections

ui ∈ H0(XB(p),L⊗(p−1)
i , i = 1, 2, together with scheme isomorphisms H1

∼=
Spec (OXB(p)[T ]/(T p − u1T )), resp. H2/H1

∼= Spec (OXB(p)[T ]/(T p − u2T ))
such that the neutral sections correspond to T = 0; then the locus where H1

and H2/H1 are connected is given by u1 = u2 = 0 in XB(p). Moreover, the
(ramified) covering XUB (p)→ XB(p) is defined by p− 1st roots ti of ui. More
precisely, when L is a line bundle on a scheme X and u is a global section of L,
one defines the scheme X[u1/n] as the closed subscheme of Spec

X
(Symm•L)

given by the (well-defined) equation tn = u; it is finite flat over X.
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Hereafter, we pull back the line bundles and sections ui to WU . The divisor
x = 0 has two irreducible components: x = b = 0 and x = y + ac = 0 along
which u1 has a simple zero. Moreover, u1/x is well defined and does not vanish
on WU . Similarly, u2/(x + bc) is defined everywhere and does not vanish on
WU . By extracting p−1st roots of these nowhere vanishing sections, one defines
an etale covering Z → WU . Define ZUB = XUB ×XB(p) Z. On this scheme,
the functions x and x + bc admit p − 1st roots. Moreover, one has a diagram
analogue to the local model theory:

XUB (p)← ZUB → U ′ = U [f1, f2]/(f
p−1
1 − x, fp−1

2 − (x+ bc))

Lemma 2.4 The two morphisms of the diagram above are smooth and surjec-
tive. The scheme U ′ is a local model of XUB (p).

Proof: The morphism Z → XB(p) is smooth since it is the composition of
an étale and a smooth morphism; the same holds therefore for its base change
ZUB → XUB (p). The smoothness of the other morphism is proved in a similar
way, noticing that one also has ZUB = Z ×U U ′.
The surjectivity of WU → XB(p) (hence of ZUB → XUB (p)) follows because U
is GB-saturating. The surjectivity of ZUB → U ′ comes from the surjectivity of
W →MB .

Corollary 2.5 The singular locus of the reduced irreducible components of
XUB (p) is either empty or zero-dimensional.

Let T ′ be the diagonal torus of the derived group G′ of G.

Proposition 2.6 The morphism πUB ,B : XUB (p) → XB(p) is finite flat,
generically étale of Galois group T ′(Z/pZ). The special fiber XUB (p) ⊗ Fp of
XUB (p) has four irreducible components mapped by πUB ,B onto the respective ir-
reducible components of XB(p)⊗Fp; each irreducible component of XUB (p)⊗Fp
has prime to p multiplicities and the singular locus of the underlying reduced
subscheme of each component is at most zero dimensional.

One can also describe a local model of the quasisemistable scheme X̃UB (p) =

XUB (p) ×XB(p) X̃B(p). Namely, recall that the map M̃B → MB restricted to
the affine subscheme U ⊂ MB as before, is described (in de Jong’s approach)
as the blowing-up of U along x = b = 0. It is the union of two charts V :
(b, [x/b]) and V ′ : (x, [b/x]); the first is more interesting as it is GB-saturating
in the blowing-up. In V , one has y = −([x/b] + c), hence after eliminating
y, one finds a single equation for V in the affine space of a, b, c, [x/b], namely:

p = −ab[x/b]([x/b] + c). Therefore the inverse image VUB of V in X̃UB (p) has
equations

p = −ab[x/b]([x/b] + c), fp−1
1 = b.[x/b], fp−1

2 = b · ([x/b] + c)
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This scheme is not regular, but has toric, hence mild, singularities. The re-
striction of Z̃UB above V provides again a diagram

X̃UB (p)← Z̃UB ,V → VUB

with smooth and surjective arrows (for the left one, the surjectivity comes from

the GB-saturating character of V ). Therefore, VUB is a local model of X̃UB (p).

2.2 The case ∗ = P

We follow the same method (see [12] Sect.6 for a slightly different proof). We
keep the same notations (so p is prime to the level N of the neat group K). In
order to study XP (p) over Zp, we consider the diagram of morphisms

WP

π ւ ց f
XP (p) MP

WP is the Zp-scheme which classifies isomorphism classes of (A, λ, η,H1, φ)
where φ : St· ⊗OS →M·(A) is an isomorphism between two diagrams.
The first is St·⊗OS , ψ0 where Sti = Z4

p (i = 0, 1) and the diagram St· consists
in the inclusion α1 : St1 → St0, α1(e0) = pe0 and α1(ei) = ei (i 6= 0), and as
before, ψ0 is the standard unimodular symplectic pairing on St0 given by J .
The second is given by the inclusion of Dieudonné modules D(A1) → D(A0)
associated to the p-isogeny A0 → A1 where A0 = A and A1 = A/H1.
Let GP be the group scheme representing the functor S 7→ AutS (St· ⊗ OS);
is is a smooth group scheme of dimension 11 over Zp whose generic fiber is G
and the special fiber is an extension of the Klingen parahoric P by the opposite
unipotent radical. Then π : cWP → XP (p) is a GP -torsor .
The local modelMP is the projective Zp-scheme classifying isomorphism classes
of pairs (ω1, ω0) of rank 2 direct factors ωi ⊂ Sti (i = 0, 1) such that α1(ω1) ⊂
ω0 and ω0 is totally isotropic for ψ0. The map f send a point ofWP to the pair
obtained by transporting the Hodge filtrations to St·⊗OS via the isomorphism
φ
We introduce again an open neighborhood U of the point ξ0 = (ω1, ω0) in MP

with ω1 = 〈e0, e3〉 and ω0 = 〈e2, e3〉. Its importance, as in the Iwahori case,
stems from the fact that it is GP -saturating GPU = MP (same proof as above).
It consists in the points (ω1, ω0) where ω1 = 〈e0+b11e1+b12e2, e3+b21e1+b22e2〉
and ω0 = 〈e2 + a11e0 + a12e1, e3 + a21e0 + a22e1〉.
The condition α1(ω1) ⊂ ω0 yields the relations p = b12a11, b11 = b12a12,
0 = a21 + b22a11 and b21 = a22 + b22a12. The isotropy relation yields a11 = a22.
By putting x = a11, y = b12, z = a12, t = b22, we find that U = specR where
R = Zp[x, y, z, t]/(xy − p), so that for any maximal ideal m0 corresponding

to (x0, y0, z0, t0) of U(Fp), the completion R̂m0
is Zurp [[x, y, z, t]]/(xy − p), if

x0y0 = 0, and smooth otherwise. In any case, the local rings are Zp-regular.
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Via transitive action of GP we conclude that MP is semistable, with special
fiber a union of two smooth irreducible components Z0 (locally: x = 0) and Z1

(locally: y = 0).
In this situation, it is natural to consider only the maps

σ0 : s 7→ dimω0(s)/α1(ω1(s)) and τ0 : s 7→ dimM0/ω0(s) + α1(M1)

as above; the regular locus Mr
P of MP ⊗ Fp coincides with the locus where

(σ0(s), τ0(s)) ∈ {(0, 1), (1, 0)}.
As for ∗ = B, we conclude that

Theorem 3 The scheme XP (p) is flat, semistable over Zp. The ordinary locus
in the special fiber is dense, strictly contained in the regular locus. The special
fiber XB(p) ⊗ Fp is the union of two smooth irreducible components Xm and
Xe where Xm−Xe is the locus where H1 is multiplicative, and Xe−Xm is the
locus where H1 is étale. The singular locus of XP (p)⊗Fp is a smooth surface;
it is the locus where H1 is étale-locally isomorphic to αp.

The proof of the density of the ordinary locus is as follows. The forgetful
morphism XB(p) → XP (p) sends the ordinary locus of XB(p) onto the one
of XP (p); hence the density of the first implies that of of the second. The
singular locus is the intersection of the two components; it is the locus where
H1 is étale-locally isomorphic to αp.
Remark: We give an ad hoc proof of the density of the ordinary locus of
XP (p)⊗ Fp in[12] Prop.6.4.2.

2.3 The case ∗ = Q

Again, the same method applies; however, in order to study XQ(p) over Zp
and find a semistable model X̃Q(p) → XQ(p), we’ll first perform calculations
in the flavor of de Jong’s method [16], as a motivation for Genestier’s approach
([11] Sect.3.3.0 and 3.3.3 and [12] Appendix) which we will follow and further
a little.
We consider the diagram of morphisms

WQ

π ւ ց f
XQ(p) MQ

where πQ :WQ → XQ(p) is the XQ(p)-scheme classifying isomorphism classes
of (A, λ, η,H2, φ) where φ : St· ⊗ OS → M·(A) is a symplectic isomorphism
between two diagrams.
The first is St· ⊗ OS , ψ0, ψ2 where Sti = Z4

p (i = 0, 2) and the diagram St·
consists in the inclusion α2 : St2 → St0, α

2(ei) = pei (i = 0, 1) and α1(ei) =
ei (i > 1), and as before, ψ0 and ψ2 both denote the standard unimodular
symplectic pairing on Z4

p given by J . Note that α2 is a symplectic similitude
of similitude factor p: ψ2(α

2(x), α2(y)) = p · ψ0(x, y).
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Let GQ be the Zp-group scheme of automorphisms of MQ. It acts on WQ as
well and πQ is a GQ-torsor.
Let L be the grassmannian of lagrangian direct factors in St0 over Zp. Fol-
lowing [11] and [12] Appendix, we shall construct a GQ-equivariant birational
proper morphism L(2) → L over Zp, composition of two blowing-up morphisms
along closed subschemes of the special fiber such that L(2) is semistable and
is endowed with a canonical GQ-equivariant proper morphism h : L(2) → MQ

(an isomorphism in generic fiber). We shall call h the Genestier morphism for
(GSp4, Q). For the easiest case (GSp2g, P ), see Prop.6.3.4. of [12].
As a motivation for the detailed construction below by two blowing-ups, we
introduce the open subset U of MQ consisting of pairs (ω2, ω0) ∈ MQ where
ω0 is spanned by e3 + a21e0 + a11e1 and e2 + a22e0 + a12e1 (with a12 = a21)
and ω2 = 〈e1 + c21e2 + c11e3, αe0 + c22e2 + c12e3〉 (with c12 = c21), such that
α2(ω2) ⊂ ω0; it is therefore isomorphic to the affine set of A6

Zp consisting of
pairs (A,C) of 2× 2 symmetric matrices such that AC = p12 by the map

(A,C) 7→
(

s
sC

)
,

(
sA
s

)

Its special fiber has three irreducible components, given by A = 0, B = 0 and
the Zariski closure of the locally closed set: rkA = rkB = 1. One then defines
Ũ in M̃Q as the quotient by Gm of the affine open set of triples (λ,A′, µ) such
that A′ 6= 0 is symmetric and λµdetA′ = p, the action of Gm being given by
t · (λ,A′, µ) = ((tλ, t−1A′, tµ). The map (λ,A′, µ) 7→ (A,C) given by A = λA′,
C = µtcom(A′) is the blowing-up of U along the component A = 0.

Remark: One checks easily that Ũ is also the blowing-up of U along C = 0.
Hence the projection is invariant under the symmetry (A,C) 7→ (C,A). This

allows the definition of an involution W on Ũ . This involution will extend to
M̃B . See after Prop. below. Note however that the following construction
is dyssymmetrical, and does not make explicit use of the open set U defined
above.

The first blowing-up L(1) of the lagrangian grassmannian L over Zp along the
closure of Q · ω23 where ω23 is the Fp-lagrangian spanned by e2 and e3.
Note that by functoriality of the blowing-up, L(1) is endowed with a natural
action of GQ (which acts on L through the canonical morphism GQ → G and
leaves the center of blowing-up stable).
Namely, let us consider the affine open subset Ω0 of L consisting of the la-
grangian planes ω0 = 〈e3 + a11e0 + a12e1, e2 + a21e0 + a22e1〉 (with a12 = a21),
the blowing-up L(1)|Ω0 is the closed Zp-subscheme of A3 × P3 of points
(a11, a12, a22; [A11, A12, A22, S]) such that

a11A12 − a12A11 = 0, a11A22 − a22A11 = 0, a12A22 − a22A12, = 0

and
pA11 = a11S, pA12 = a12S, pA22 = a22S.
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The scheme L(1)|Ω0 can be described as the quotient by Gm of the locally closed
Zp-subscheme T1 of the affine space A5 defined in terms of the coordinates
(λ0, P0, A11, A12, A22) as the intersection of the closed subscheme λ0P0 = p
with the complement of the closed subscheme P0 = A11 = A12 = A22 = 0. The
action of Gm is given by multiplication by λ−1 on the first variable and by λ
on the rest.
Indeed, the quotient map T1 → L(1)|Ω0 is

(λ0, P0, A11, A12, A22) 7→ (a11, a12, a22; [A11, A12, A22, S])

where a11 = λ0A11, a12 = λ0A12, a22 = λ0A22, S = P0.
To take care of equation (1), following [11] Theorem, one forms the blow-

up L(2) of L(1) along the strict transform Z
c,(1)
02 of the Zariski closure Zc02 of

Z02 = Q · ω02 where ω02 is the lagrangian spanned by e0 and e2.
The equations of L(2)|Ω0 can be determined as follows. First, one notes that

Z
c,(1)
02 |Ω0 is given as a Zp-subscheme of L(1)|Ω0 by the equations A11A22−A2

12 =
P0 = 0. Its inverse image in T1 is given by the same equations (this time, viewed
in an affine space). Let δ = A11A22 −A2

12.
Then, the blowing-up T (2) of T1 along this inverse image is the subscheme of
T1 × P1 with coordinates (λ0, P0, A11, A12, A22, [P1, δ1]) given by the equation
δP1 = δ1P0 (with (P1, δ1) 6= (0, 0)).
Introducing λ1 such that P0 = λ1P1, and δ = λ1δ1, one can rewrite T (2)

as the quotient by Gm of the affine locally closed subscheme T2 of A7 with
affine coordinates (λ0, λ1, P1, A11, A12, A22, δ1) and equations λ0λ1P1 = p and
λ1δ1 = A11A22 − A2

12 in the open subset of A7 intersection of the locus
(λ1P1, A11, A12, A22) 6= (0, 0, 0, 0) with (δ1, P1) 6= (0, 0); the action of µ ∈ Gm

being the trivial one on λ0 and Aij , the multiplication by µ−1 on λ1 and the
multiplication by µ on P1 and δ1.
The quotient map is

(λ0, λ1, P1, A11, A12, A22, δ1) 7→ (λ0, P0, A11, A12, A22, [P1, δ1])

with P0 = λ1P1.
We can thus write L(2)|Ω0 as a quotient T2/G2

m, for the action of (λ, µ) ∈ G2
m

on (λ0, λ1, P1, A11, A12, A22, δ1) ∈ T2 by multiplication by λ−1 on λ0, µ
−1 on

λ1, by λµ on P1, by λ on Aij and λ2µ on δ1.
The Zp-scheme T2 is clearly semistable. It implies by Lemme 3.2.1 of [11] that
L(2)|Ω0 is also semistable. Since GQ · L(2)|Ω0 = L(2), the same holds for L(2).
Let us consider the forgetful morphism π0 : MQ → L, (ω2, ω0) 7→ ω0; the open
subset U ′′ = π−1(Ω0) ⊂MQ. This open set is not affine, it is dyssymmetrical,
it contains the affine open set U defined above.
We can now define the Genestier morphism h on L(2)|Ω0. It is given by the
G2
m-invariant map

T2 → U ′′, (λ0, λ1, P1, A11, A12, A22, δ1) 7→ (ω2, ω0)
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where ω0 is given by aij = λ0Aij and ω2 is given in terms of its Plücker
coordinates on the basis (e0 ∧ e1, e0 ∧ e2, e0 ∧ e3, e1 ∧ e2, e1 ∧ e3, e2 ∧ e3):
[δ1, P1A11,−P1A12, P1A12, P1A22, λ1P

2
1 ]. This point of P5 is well defined be-

cause if δ1 = 0, we have P1 6= 0 and if λ1 = 0, one of the Aij 6= 0. It is invariant
by the action of G2

m hence factors through L(2)|Ω0. Moreover it corresponds
to an isotropic plane because the third and fourth coordinates are opposite.
By [11] Sect.3 before Lemme3.1.1, the saturation of Ω0 under GQ is L, hence
by GQ equivariance, it is defined everywhere on L(2). One sees easily the
surjectivity of h restricted to L(2)|Ω0 onto U ′′ (which consists of points in P5

[u0, u1, u2,−u2, u3, u4] such that u0u4 = u1u3−u2
2), hence by GQ-equivariance,

to the whole of MQ.

Definition 2.7 We put M̃Q = L(2), it is a semistable Zp-scheme; its special

fiber has three smooth irreducible components. We define X̃Q(p) = (WQ ×
M̃Q)/GQ; it is a semistable model of XQ(p) over Zp with smooth irreducible
components; their number is at least three. It comes with a proper birational
morphism hX : X̃Q(p) → XQ(p) which we call the Genestier morphism which
is an isomorphism on the generic fiber.

What precedes is a developed version of [12] Appendix, which may be useful
to non expert algebraic geometers. We give now some new information on h
and hX .
For any geometric point s = (ω2, ω0) of the special fiber of MQ, let k = k(s)
be the residue field; we define

σ(s) = dimω0/α
2(ω2), τ(s) = dimM0/(α

2(M2) + ω0)

Let x = (A, λ,H2) be a geometric point of XQ(p) corresponding to s. Note
that σ(s) is the p-rank of the connected component H0

2 of the group scheme
H2, while τ(s) is the p-rank of the connected component of the Cartier dual
Ht

2 of H2. It can be identified by the Weil pairing to A[p]/H2. From this it is
easy to verify that the condition

(Ord) (σ(s), τ(s)) ∈ {(0, 2), (2, 0), (1, 1)}
is equivalent to the ordinarity of the point x. Let Mord

Q be the locus where

(Ord) is satisfied. Then the ordinary locus of XQ(p)ord of XQ(p)× Fp is equal
to π(f−1(Mord

Q ).

We have a partition Mord
Q = M ee,ord

Q ⊔Mmm,ord
Q ⊔M em,ord

Q . corresponding to the
conditions (σ(s), τ(s)) ∈ {(0, 2), resp. (σ(s), τ(s)) ∈ {(2, 0), resp. (σ(s), τ(s)) ∈
{(1, 1).

Similarly, by taking the inverse images in M̃Q by h, we can define a similar

partition of M
ord

Q :

M̃ord
Q = M̃ ee,ord

Q ⊔ M̃mm,ord
Q ⊔ M̃ em,ord

Q .
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Let M̃ reg
Q resp. M̃ sing

Q be the regular locus resp. singular locus of the special

fiber of M̃Q.

Let us determine the locus M ee,ord
Q ∩ U ′′ where (σ(s), τ(s)) = (0, 2) in U ′′,

together with its inverse image M̃ ee,ord
Q |Ω0 by h. The condition τ(s) = 2

translates as a11 = a12 = a22 = 0; this implies λ0 = 0. On the other hand,
σ(s) = 0 implies, using Plücker coordinates, that λ1P1 6= 0. One checks easily
that actually (σ(s), τ(s)) = (0, 2) if and only if λ0 = 0 and λ1P1 6= 0.

In particular,M̃ ee,ord
Q |Ω0 coincides with the (smooth) irreducible component

λ0 = 0 deprived from M̃ sing
Q ; moreover, h induces an isomorphism between

M̃ ee,ord
Q |Ω0 and M ee,ord

Q ∩ U ′′.
Similarly for the locus Mmm

Q ∩ U ′′ where (σ(s), τ(s)) = (2, 0) in U ′′; the

condition τ(s) = 0 is given by the equation a11a22 − a2
12 6= 0, that is,

λ2
0λ1δ1 6= 0; while σ(s) = 2 implies P1 = 0. Conversely, one sees easily that

(σ(s), τ(s)) = (2, 0) if and only if P1 = 0 and λ0λ1 6= 0.

Therefore,M̃mm,ord
Q |Ω0 coincides with the smooth irreducible component P1 = 0

minus M̃ sing
Q .

Finally, we consider the locusMem
Q ∩U ′′ where (σ(s), τ(s)) ∈ {(1, 1)} in U ′′. We

see that τ(s) = 1 is equivalent to a11a22−a2
12 = 0 and (a11, a12, a22) 6= (0, 0, 0),

that is, λ2
0λ1δ1 = 0 and (λ0Aij 6= (0, 0, 0). While σ(s) = 1 implies λ1P

2
1 = 0.

Conversely, one sees easily that
(σ(s), τ(s)) ∈ {(1, 1)} if and only if λ1 = 0 and λ0P1 6= 0. In other words

M̃ em,ord
Q |Ω0 coincides with the smooth irreducible component λ1 = 0 minus

M̃ sing
Q .

In the three cases, one deduces also from the previous calculations that h
induces an isomorphism between M̃αβ,ord

Q |Ω0 and Mαβ,ord
Q ∩ U ′′.

We define then the Zariski closuresMαβ
Q ofMαβ,ord

Q and M̃αβ
Q of M̃αβ,ord

Q . Using

GQ-equivariance, we define X̃αβ as (WQ×Mαβ
Q )/GQ for all α, β ∈ {e,m} (with

the convention that em = me )
We can then conclude

Theorem 4 The scheme XQ(p) is flat, locally complete intersection over Zp.
The ordinary locus in the special fiber is dense in every irreducible component;
it is contained in the regular locus. The special fiber XQ(p) ⊗ Fp is the union
of three irreducible components Xmm and Xme and Xem which are the Zariski
closures respectively of the locus where H2 is of multiplicative type, the locus
where, locally for the étale topology, H2 = µp × Z/pZ and the locus where H2

is étale. The singular locus of XQ(p) ⊗ Fp is the locus where H2 étale-locally
contains αp.
There is a semistable model together with a blowing-up morphism hX :
X̃Q(p) → XQ(p) whose center is in the special fiber; the special fiber of

X̃Q(p) consists of three smooth irreducible components X̃mm, X̃me and X̃em
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crossing transversally. The ordinary locus X̃Q(p)ord coincides with the regu-

lar locus X̃Q(p)reg.The restriction of hX induces proper surjective morphisms

X̃αβ → Xαβ (α, β ∈ {e,m}) which are isomorphisms between the respective
ordinary loci.

The irreducibility of the components Xαβ follows from [29] as explained above.

This implies the irreducibility of the three components X̃αβ because hX is an
isomorphism between the two dense open subsets X̃αβ,ord and Xαβ,ord, the
latter being irreducible.
Remark: Note that we have thus recovered part of the results of [9]; how-
ever, this paper contains extra informations: the singular locus of XQ(p)⊗ Fp
coincides with the finite set of superspecial abelian surfaces (that is, the carte-
sian products of supersingular elliptic curves); these isolated singularities are
Cohen-Macaulay. The description of the intersections two by two and of the
three components is given in Sect.6.2 there.
Finally, we introduce an involution W of the Zp-schemes XQ(p) and XQ(p)
compatible with hX . The automorphism of the functor FQ given by
(A, λ, η,H2) 7→ (A, λ, η,H2) where A = A/H2, λ, resp. η is the quotient polar-
ization resp. Γ-level structure on A deduced from λ resp. η and H2 = A[p]/H2,
induces an involution of the Z[1/N ]-scheme XQ(p), hence of its pull-back to
Zp. If one writes the test objects as (α : A0 → A2, η0, η2) where Ai’s are
principally polarized abelian varieties, α is an isogeny with lagrangian ker-
nel in A[p] respecting the polarizations and the Γ-level structures ηi on Ai,
we see that the involution W can be written as the duality α 7→ tα followed
by the identifications of the dual abelian varieties tAi to Ai; hence W maps
(α : A0 → A2, η0, η2) to (tα : A2 → A0, η2, η0).
This involution W therefore extends to the torsorWQ by replacing the diagram
M·(A) = (M(α) : M(A2)→ M(A0)) by its dual M(tA) = (M(tα) : M(A0)→
M(A2)) and by interchanging the two isomorphisms φ0 and φ2 in the isomor-
phism of diagrams φ : St· ⊗OS →M·(A) to obtain φ′ : St· ⊗OS →M·(A).
The involutionW onWQ is compatible with the forgetful morphismWQ →MQ

where W on MQ is given by taking the dual of α2 : St2 → St0 with respect to
the standard symplectic pairings ψ0 and ψ2, and exchanging ω0 and ω2.
Hence, the involution acts on the diagram XQ(p)←WQ →MQ.
Remark: By taking symplectic bases, its matricial interpretation is(

0 −s
p · s 0

)
; note that this matrix normalizes the automorphism group

GQ of the diagram St·.
The involution W exchanges the two extreme irreducible components Xee and
Xmm of XQ(p)⊗ Fp and it leaves the intermediate component Xem stable.
Remarks:
1) There is another construction of the morphism h : M̃Q → MQ by noticing
that the restriction of h above the open subset U introduced at the beginning
of the present section coincides with the map Ũ → U defined above and is
GQ-equivariant. Since U , Ũ and h|Ũ is symmetric under (A,C) 7→ (C,A); W
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extends by GQ-action to an involution of M̃Q-still denoted W , compatible to h.

We thus obtain an involution W of the Zp-scheme X̃Q(p) = (WQ × M̃Q)/GQ
compatible to hX : X̃Q(p) → XQ(p); it exchanges the irreducible components

X̃ee and X̃mm of X̃Q(p)⊗ Fp and leaves X̃em stable.

2) Genestier’s construction [11] of the semistable model M̃B of the local model

MB of XB(p) in a way similar to that of M̃Q implies that the forgetful mor-
phism MB → MQ, (ω2, ω1, ω0) 7→ (ω2, ω0) extends to the semistable models

M̃B → M̃Q; an easy argument provides then a canonical morphism between

the Genestier models X̃B(p) → X̃Q(p). However, it should be noted that the
morphism MB →MQ is NOT a local model of the morphism XB(p)→ XQ(p).
This is already false for the case of the classical modular curve X0(p) and the
classical modular curve X of level prime to p.
Finally, note that as explained in the case ∗ = Q, there is a Fricke-Weil in-
volution W on XB(p); it extends to the semistable models and the forgetful
morphism π̃B,Q is compatible with W .

2.4 Rigid geometry of Siegel varieties

We gather here some informations concerning the rigid geometry of the Siegel
varieties X = X∅ and XQ(p). Some (Prop.2.6, 2) are used in the formulation
of the conjecture of Sect.4.3. We hope to develop them in another paper for
studying analytic continuation of overconvergent Siegel cusp eigenforms.

Let Xrig, X∗,rig resp. X
rig

be the rigid analytic space associated to the p-adic
completion of its corresponding Zp-scheme (for the toroidal compactification,
we assume throughout this section that we fixed a fine Γ-admissible polyedral
cone decomposition Σ).
Choosing a ΓQ(p)-admissible refinement Σ′ of Σ, one can define a smooth
toroidal compactification XQ(p)/Qp of the Qp-scheme XQ(p) ⊗ Qp (actually,

by [10], it exists as a proper smooth scheme over Z[ 1
Np ]). Because of the

compatibility of Σ and Σ′, we see that the forgetful morphism π = πQ∅ :
XQ(p)→ X extends uniquely as a morphism π : XQ(p)→ X.
Let XQ(p)rig be the rigid space over Qp corresponding to the scheme XQ(p)/Qp

(cf. Chapter 9, Ex.2 of [5]). Let X be the formal completion of X along the

special fiber. The ordinary locus X ord
is an open formal subscheme of X ;

let X
rig,ord

be the corresponding admissible rigid open subset of X
rig

. Let

XQ(p)rig,ord be the inverse image of X
rig,ord

by πrig.
We want to describe the connected components of this admissible rigid open
set and strict neighborhoods thereof, in terms of a suitable model of XQ(p)rig.

For this purpose, we write simply XG for the semistable model X̃Q(p) of XQ(p)
over Zp. We briefly explain the construction of a “toroidal compactifcation of
XG” associated to Σ′, by which we mean a proper regular Zp-scheme XG

together with a toroidal open immersion XG →֒ XG such that XG ⊗ Qp is
the (smooth) toroidal compactification XQ(p)/Qp associated to Σ′ mentioned

Documenta Mathematica · Extra Volume Coates (2006) 781–817



Siegel Varieties and p-Adic Siegel Modular Forms 803

above. Details on this construction, specific to the genus 2 case, should appear
in the thesis of a student of A. Genestier. The model of XQ(p)rig that we are
looking for is then defined as the formal completion XG of XG along the special
fiber.
The construction is as follows. One first takes the normalization of the Zp-
toroidal compactification X associated to Σ, in the finite étale morphism
XQ(p)/Qp → X/Qp . Let XQ(p)Σ be this normalization. The morphism
XG → XQ(p) is an isomorphism outside the supersingular locus XQ(p)ss and
this locus is proper (because we are in genus 2). We can therefore glue the
schemes XQ(p)Σ and XG along their common open subscheme XQ(p)\XQ(p)ss.

We obtain a Zp-scheme denoted X
Σ

G. Let Z(Σ′)/Qp be the closed subscheme of

XQ(p)Σ/Qp
which is the center of the blowing-up morphism

XQ(p)/Qp = XQ(p)Σ
′

/Qp
→ XQ(p)Σ/Qp

We consider the Zariski closure Z(Σ′) of Z(Σ′)/Qp in the Zp-scheme X
Σ

G. The

blowing-up of X
Σ

G along Z(Σ′) is the desired scheme. It is denoted XG; by
restricting the construction to the local charts of Faltings-Chai, it can be proven
that XG is regular over Zp and that XG →֒ XG is toroidal, although the divisor
at infinity doesn’t have good reduction.

Remark: For the sake of completion, let us mention another abstract con-
struction. Let XG be the formal completion of XG along the special fiber. One
can apply the notion of normalization studied in[4] to define the “normaliza-

tion” X (Ui)
G of XG along XQ(p)rig associated to an admissible affinoid cover of

XQ(p)rig (we denote by Ui the formal scheme associated to the affinoid Ui).

The Zp-formal scheme X (Ui)
G is endowed with an open immersion of formal

schemes XG → X
(Ui)
G . However, this construction does depend on the choice

of the covering. This is why the specific construction described above is better
suited for our purpose.

We still denote by π the morphism XG → X as well as its p-adic completion

XG → X . We define the ordinary locus X ord

G as the inverse image in XG of the

ordinary locus X ord
of X .

We observe that X ord

G is smooth. Its underlying Fp-scheme is denoted by X
ord

G .

Let X̃αβ,ord (α, β ∈ {e,m}) be the three connected components of XG⊗Fp. We

denote by X
αβ,ord

G the Zariski closure of X̃αβ,ord in X
ord

G . We have a partition
into three smooth open subschemes

X
ord

G = X
mm,ord

G ⊔Xme,ord

G ⊔Xee,ord

G

Therefore, by taking the inverse image by the specialization map associated to
the model XG, we obtain three connected components of the open admissible
subset XQ(p)rig,ord:
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XQ(p)rig,ord =]X
mm,ord

G [⊔]X
me,ord

G [⊔]X
ee,ord

G [

We need to extend this to admissible quasi-compact neighborhoods of
XQ(p)rig,ord. First we fix a lifting E of the Hasse invariant (see [15] Sect.3,

or see next section below). Let Grig → X
rig

be the rigid analytification of the
semi-abelian scheme G → X (as in Chap.9, ex.2 of [5]). By a Theorem of
Abbès and Mokrane [1] Prop.8.2.3 (and [2] for an improved radius of conver-

gence), the open subdomain X
rig

(p−a) of X
rig

defined as the locus where the
lifting E of the Hasse invariant satisfies |E|p > p−a (a = 1

p(p−1) for [1], and

a = p−1
2p−1 for [2]) is endowed with a finite flat group scheme Ccan of rank p2

whose restriction to the ordinary locus is canonically isomorphic to G[p]0. For
each r ∈]p−a, 1[∩pQ, we define

X{r} = {x ∈ Xrig
(L); |E|p ≥ r}

These domains are admissible, quasi-compact relatively compact neighbor-
hoods of XQ(p)rig,ord (cf.[19] Sect.3.1.6). Let XQ(p){r} be the inverse image
of X{r} by πrig.

Proposition 2.8 1) For any r sufficiently close to 1, the neighborhood

XQ(p){r} has still three connected components denoted X
αβ

G {r} (α, β ∈
{e,m}); Xαβ

G {r} is defined as the largest connected subset of XQ(p){r} con-

taining ]X
αβ,ord

G [.

2) For any r ∈]p−a, 1[, the isomorphism ]X
mm,ord

G [∼= X
rig,ord

induced by the

forgetful morphism extends to an isomorphism X
mm,rig

G {r} ∼= X{r} (the inverse
morphism being given by the canonical subgroup).

Proof: Since we won’t need the first part of the proposition, we won’t prove
it in this paper. For the second statement, which is crucial to our conjecture,
we notice that by definition, the morphism π sends X

mm

G {r} into X{r} while
the inverse map is provided by the canonical subgroup as in [1] Prop.8.2.3.
Finally, we note that the involution W extends to the toroidal compactifica-

tions hence defines an involution of XQ(p)rig which exchanges ]X
mm,ord

G [ and

]X
ee,ord

G [ resp. X
mm

G {r} and X
ee

G {r} and leaves stable the middle component

]X
em,ord

G [ resp. X
em

G {r}.

Finally, we can consider in a similar way the extension to compatible toroidal
compactifications XUB (p) and XB(p) of the morphisms πUB ,B and πB,Q. We
shall consider the inverse image by

πB,Q ◦ πUB ,B : XUB (p)rig → XQ(p)rig

of X
mm

G {r}.
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3 Siegel modular forms

3.1 Arithmetic Siegel modular forms and q-expansion

In [26], care has been taken to define the arithmetic Siegel varieties and modular
forms adelically. However, here for simplicity, we restrict our attention to one
connected component X corresponding to a discrete subgroup Γ ⊂ Sp4(Z).
We assume that X has a geometrically connected model over Z[1/N ]. We also
assume that Γ is neat, so that the problem of classifying principally polarized
abelian surfaces with Γ-level structure is a fine moduli problem (if it is not the
case, see [26] Section 3 where X is only a coarse moduli problem).
Let f : A → X be the universal principally polarized abelian surface with Γ-
level structure η over Z[1/N ]. We put ω = e∗ΩA/X , where e denotes the unit
section.
For any pair of integers κ = (k, ℓ) (k ≥ ℓ), we consider the rational represen-
tation of GL(2): Wκ(Q) = Symk−ℓ ⊗ detℓ St2. Here, St2 denotes the standard
two-dimensional representation of GL(2); the standard Levi M of the Siegel
parabolic of Sp4 is identified to GL(2) by
(4.1.1) U 7→ diag(U, stU−1s)
The twist by s occurs because our choice of the symplectic matrix J defining
G involves the matrix s instead of 12. We use (4.1.1) to identify M to GL(2).
Let BM = TNM be the Levi decomposition of the standard Borel of M (cor-
responding to the group of upper triangular matrices in GL(2)). In order to
define integral structures on the space of Siegel modular forms, it will be use-
ful to consider an integral structure of Wκ(Q). Since there is in general an
ambiguity for such an integral structure, we need to make our choice explicit:
following [15] Sect.3, we take it to be the induced Z-module Wκ = IndMBMκ.
For any ring R, we put Wκ(R) = Wκ ⊗R.
Let T = IsomX(O2

X , ω) be the right GL(2)-torsor over X of isomorphisms
φ : O2

X → ω. By putting ω1 = φ((1, 0)) and ω1 = φ((0, 1)), it can also be
viewed as the moduli scheme classifying quintuples (A, λ, η, ω1, ω2) where A, λ
is a principally polarized abelian varieties with a Γ level structure η over a
base S, endowed with a basis (ω1, ω2) of ωA/S . One writes π : T → X for the
structural map. Note that π∗OT carries a left action (by right translation) of
GL(2).
Then, for any κ = (k, ℓ) ∈ Z2, one defines the locally free sheaf ωκ over
X as (π∗OT )NM [κ−1]. Its sections are functions on T such that for any
φ ∈ IsomX(O2

X , ω), for any t ∈ T and any n ∈ NM , f(A, λ, η, φ ◦ tn) =
κ(t)−1f(A, λ, η, φ).
One sees easily that π∗ωκ = Wκ(OT ), so that ωκ is a locally free sheaf which
is non zero if and only if k ≥ ℓ.

We briefly recall some notations concerning toroidal compactifications, canon-
ical extensions of sheaves and q-expansions. It will allow us in particular to
define the cuspidal subsheaf ωκ of the canonical extension of ωκ.
For any ring R, let S2(R) be the module of symmetric 2 × 2-matrices with
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entries in R. Recall that the bilinear form Tr : S2(R) × S2(R) → R identifies

the dual of S2(Z) to the module S of matrices

(
a 1

2b
1
2b c

)
, a, b, c ∈ Z.

Let S2(R)+ be the cone of definite positive matrices in S2(R) and S̃2 the cone
of semi-definite positive matrices whose kernel is Q-rational.

A standard rational boundary component of level N is a pair (Z, φ : 1
NZ/Z →

(Z/NZ)r) where Z is a free non zero quotient of Z2 (of rank r) and φ is an
isomorphism. Let us view Z2 as the standard lagrangian 〈e1, e2〉 of Z4 endowed
with the symplectic pairing txJy, Then, a general rational boundary component
of level N is the image of a standard one by the action of Sp4(Z) on the space
of lagrangians and on the projective space of Z4.

We denote by RBC1, RBCN , resp. SRBC1, SRBCN , the set of rational
boundary components, resp. the set of standard rational boundary compo-
nents. We can partition S̃2 ∩ S2(Z) as ⊔Z∈SRBC1

S(Z)+ where S(Z)+ denotes
the set of semidefinite symmetric matrices of S2(Z) which induce a positive
definite quadratic form on Z.

Let Σ = {ΣZ}Z∈RBC1
be an Sp4(Z)-admissible family of rational polyhedral

cone decompositions ΣZ of S(Z)+ (see [8] Chapt.I Def.5.8.2). As explained in
[10] p.126, this decomposition can be used for any level N congruence subgroup
Γ, since it is a fortiori Γ-admissible. To Σ, one can associate a toroidal com-
pactification X over Z[ 1

N ] of X as in [10] IV.6.7; it is smooth if Σ is sufficiently
fine; this is assumed in the sequel.

The compactificationX carries a degenerating semi-abelian scheme G extending
A (see [10] Th.IV.5.7 and IV.6.7). One still denotes by ω the sheaf e∗ΩG/X
where e is the unit section of G → X.

Recall that X is a projective smooth, geometrically connected scheme over
Z[ 1

N ]. It is endowed with a projection map b to the minimal compactification

X∗
Z[ 1
N ]

. Let D = X\X = b−1(∂X∗); it is a relative Cartier divisor with normal

crossings; its irreducible components are smooth.

The rank two vector bundle ω over X does not descend as a vector bundle on
X∗; however its determinant ω = detω descends as an ample line bundle.

The GL(2)-torsor T = IsomX(O2
X
, ω) (with structural map π : T → X) allows

to define “the canonical extension” of the vector bundles ωκ to X: one can
either define this extension as

ωκ = (π∗OT )NM [κ−1]

(k ≥ ℓ). Or one can also use the Z-structure Wκ = IndMBMκ of the rational
representation Wκ(Q) of GL(2) in order to give an equivalent definition of

ωκ as the sections of the X-vector bundle T
GL2× Wκ; here, as usual, the

contraction product is the quotient of the product by the equivalence relation
(φ ◦ g, w) ∼ (φ, g ·w) for any φ ∈ T , g ∈ GL2 and w ∈Wκ. For details see [10]
Chapter 4 and 6, [21] Sect.4 and [15] Sect.3.
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Let ωκ = ωκ(−D) the sub-vector bundle of ωκ on X whose sections vanish
along D. Recall the Koecher principle: H0(X ⊗ C, ωκ) = H0(X ⊗ C, ωκ). We
define

Definition 3.1 For any Z[1/N ]-algebra R one defines the R-module of arith-
metic Siegel modular forms resp. cusp forms, as H0(X ⊗ R,ωκ) resp.
H0(X ⊗R,ωκ) which we write also H0(X ⊗R,ωκ) by convention.

For R = C, these vector spaces canonically identify to the corresponding spaces
of classical Siegel modular forms of level Γ and weight κ (see [15] Th.3.1).

The arithmetic q-expansion (at the ∞ cusp) is defined as follows.
Let η = (Z, φ) ∈ SRBCN with Z = Z2 and with φ the canonical identification
1
NZ2/Z2 = Z/NZ2 (it is called the infinity cusp).

Consider the rational polyhedral cone decomposition (RPCD) Ση of S2(R)+

corresponding to η. Let Dη = D ∩ b−1({η}). By definition, the com-
pletion of X along Dη admits an open cover by affine formal schemes Uσ
(σ ∈ Ση) with a canonical surjective finite etale cover φσ : Sσ → Uσ where
Sσ = Spf Z[1/N ][[qT ;T ∈ S ∩σ∨]]. The morphism φσ is Galois; its group is the
stabilizer Γσ of σ in the image Γ of Γ ∩ Q by the projection Q → Q/U = M .
Recall that M(Z) = GL(2,Z) acts on S2(Z)+ by g · S = gStg. Moreover, φσ is
uniquely determined by the property that the pull-back by φσ of the restriction
of G to Uσ is the canonical Mumford family

fσ : Gσ → Sσ
deduced by Mumford’s construction (see [10] p.54) from the canonical de-
generescence data in DDample on the global torus G̃σ = G2

m over Sσ, together

with the standard level N structure µ2
N × (Z/NZ)2 → G̃σ[N ];

Given f ∈ H0(X,ωκ), for any rational polyedral cone σ, we restrict f to Uσ
and pull it back to Sσ by φσ. The bundle ωGσ/Sσ of the Mumford family is

trivial, hence the pull-back of the torsor T to Sσ is trivial too; it is isomorphic
to Sσ × GL(2). In consequence, φ∗σω

κ is the trivial bundle Wκ ⊗ Sσ. Hence
φ∗σf yields a series in Wκ[[q

T ;T ∈ S ∩ σ∨]] which is invariant by Γ where

the action of γ ∈ Γ is given by γ · (∑T aT q
T ) =

∑
T ρκ(γ)(aT )qγT

tγ . These
series are compatible when one varies the cone σ either by restricting to its
faces of by letting Γ act (this action permutes the cones in Ση); recall that⋂
σ∈Ση

σ∨ = S̃2; this implies that there exists one well-defined series which

belongs to the intersection Wκ[[q
T ;T ∈ S∩S̃2]] of the ringsWκ[[q

T ;T ∈ S∩σ∨]]
and which is fixed by Γ. It is called the q-expansion or Fourier expansion (at
the infinity cusp) of f :

FE(f) ∈Wκ[[q
T ;T ∈ S ∩ S̃2]]

Γ

For any Z[1/N ]-algebra R and any form f ∈ H0(X × R,ωκ) defined over R,
one defines an analogue series FER(f) with coefficients in Wκ(R) = Wκ ⊗R.
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Proposition 3.2 1) (q-expansion principle) If f is any form defined over R,
if the coefficients of its q-expansion vanish in Wκ(R), then f = 0.
2) The map FE sends the submodule of cusp forms over any ring R to the

submodule of Wκ(R)[[qT ;T ∈ S∩ S̃2]]
Γ of series whose coefficients aT ∈Wκ(R)

vanish unless T ∈ S ∩ S2(R)+.

The first point follows from the irreducibility of the modular scheme; the second
from the examination of φ∗σ(f) along φ∗σD.

Remark: By comparing the two definitions of ωκ given above, one sees that

Wκ[[q
T ;T ∈ S ∩ σ∨]] = (π∗OT )NM [κ−1]⊗OX Z[[qT ;T ∈ S ∩ σ∨]]

We shall use this when comparing q-expansion of classical forms to q-expansion
of p-adic forms.

3.2 p-adic Siegel modular forms and q-expansion

LetX as in the previous subsection. We fix a fine Γ-admissible family of rational
polyedral cone decompositions Σξ; we denote by For any integer m ≥ 1, let Xm

be the pull-back of X to Z/pmZ. Let Sm be the ordinary locus and for each
n ≥ 1, consider Tm,n = IsomSm(µ2

pn , A[pn]0) = IsomSm(A[pn]et, (Z/pnZ)2); for
any n ≥ 1, Tm,n is a connected Galois cover of Sm of Galois group GL2(Z/pnZ)
(see [10] Prop.7.2).
Let Vm,n = H0(Tm,n,OTm,n), Vm,∞ =

⋃
n≥1 Vm,n. One can define the Σ-

”toroidal compactification” Sm of Sm as the locus of Xm over which G[p]0 is
of multiplicative type; similarly, define Tm,n as

IsomX⊗Z/pmZ(µ2
pn ,G[pn]0)

We still denote by D the pull-back to Tm,n of the divisor at ∞. We can
now define V!,m,n = H0(Tm,n,OTm,n(−D)) and V!,m,∞ =

⋃
m V!,m,n. We also

consider the corresponding p-adic limits: S∞ = lim−→Sm, T∞,∞ = lim−→Tm,∞,
V = lim←−Vm,∞ and V! = lim←−V!,m,∞. These last two spaces are respectively the
space of generalized p-adic modular forms resp. cusp forms.
Let M resp. NM be the group of Zp-points of M = GL2 resp. NM the unipo-
tent radical of the standard Borel BM of M . Then, T∞,∞ → S∞ is a right
M étale torsor, hence M acts on the left (by right translations) on V (and
V!) by m · f(ψ) = f(ψ ◦ m). Let LC(M/NM,Z/pmZ) resp. C(M/NM,Zp)
be the ring of Z/pmZ-valued locally constant, resp. Zp-valued continous func-
tions on M/NM, viewed as a left M-module via the left translation action.
In particular, these modules are Γ-modules. Note that C(M/NM,Zp) =
projlimLC(M/NM,Z/pmZ).
Let us define now the p-adic q-expansion map. It is a ring homomorphism

FE : V NM →
(
C(M/NM,Zp)[[qT ;T ∈ S ∩ S̃2]]

)Γ
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given as follows.
For the infinity cusp η defined above, and for any σ ∈ Ση, we consider the
base change φσ,m of the morphism φσ : Sσ → Uσ to Z/pmZ. As noticed above,
the canonical Mumford family fσ : Gσ → Sσ admits a canonical rigidification
ψcan : µ2

p∞
∼= Gσ[p∞]0 induced from the tautological rigidification of G̃σ = G2

m.

This provides a canonical lifting Φσ,m : Sσ → Tm,∞ of φσ,m. These liftings are
compatible when m grows, this gives rise to a lifting Φσ : Sσ (̂p) → T∞,∞ of
φσ : Sσ (̂p) → Uσ (̂p) (the hat means p-adic completion).
For f ∈ V , one can therefore take the pull-back of f mod pm by Φσ,m (resp. of f
by Φσ). The resulting series belongs toOSσ⊗Z/pmZ = Z/pmZ[[qT ;T ∈ S∩σ∨]]
resp. OSσ ⊗ Zp = Zp[[qT ;T ∈ S ∩ σ∨]]. It is however useful for further use
to view it as belonging to OSσ ⊗ LC(M,Z/pmZ) resp. to OSσ ⊗̂C(M,Zp) =
C(M,Zp)[[qT ;T ∈ S ∩σ∨]] in the following way: the map x ∈M 7→ Φ∗σ,m(x ·f)
is an OSσ ⊗ Z/pmZ-valued locally constant map on M. The evaluation of
this function at 1 ∈M gives the Z/pmZ[[qT ;T ∈ S ∩ σ∨]]-valued q-expansion
mentioned above. By taking the inverse limit over m, one gets the desired
q-expansion with coefficients in C(M,Zp). Both Zp-coefficient and C(M,Zp)-
coefficient q-expansions are compatible to restriction to faces; however, only
the C(M,Zp)-coefficient expansion is compatible to the action of Γ; we con-
clude that the functions x ∈ M 7→ Φ∗σ(x · f) for all σ’s give rise to an ele-

ment of the submodule H0(Γ, C(M,Zp)[[qT ;T ∈ S ∩ S̃2]]) of Γ- invariants of

C(M,Zp)[[qT ;T ∈ S ∩ S̃2]]. We finally restrict our attention to f ∈ V NM ; thus
we obtain a q-expansion in

C(M/NM,Zp)[[qT ;T ∈ S ∩ S̃2]]

We list below some well-known facts for which we refer to [15].

Proposition 3.3 1) (p-adic q-expansion principle) For any σ ∈ Ση, for any
m ≥ 1, V/pmV ⊂ Vm,∞ →֒ Z/pmZ[[qT ;T ∈ S ∩ σ∨]] is injective with flat
cokernel. In particular, the ring homomorphism FE is injective.
2) The restriction of FE to the ideal V! of cusp forms takes values in the ideal
generated by qT for T ∈ S ∩ S2(R)+. and the q-expansion principle holds for
cusp forms for any cone σ and any m ≥ 1 as above.

We simply recall that the first point results from the irreducibility of Tm,∞
(Igusa irreducibility theorem, [10] V.7.2) and the second from direct examina-
tion of Φ∗σ(f).

It remains to compare the classical and p-adic modular forms resp. q-
expansions. The embedding of classical forms into V comes from the canon-
ical morphism ι : T∞,∞ → T |S∞ given by the fact that for an abelian vari-
ety A (of dimension 2) over a base S where p is nilpotent, any rigidification
ψ : µ2

p∞
∼= A[p∞]0 gives rise to an isomorphism O2

S
∼= ωA/S . One checks easily

that ι∗ : H0(X,ωκ)→ V NM [κ] and ι∗ : H0(X,ωκ)→ V NM

! [κ].
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Thus given a classical form, we first view it as a section of (π∗OT )NM , then one
restricts it to the ordinary locus and one takes its pull-back by the morphism
ι.

The comparison of the two definitions of ωκ provides a commutative square
expressing the compatibility of classical and p-adic q-expansions:

V NM → H0(Γ, C(M/NM,Zp)[[qT ;T ∈ S ∩ S̃2]])
↑ ↑

H0(X,ωκ) → H0(Γ,Wκ(Zp)[[qT ;T ∈ S ∩ S̃2]])

In the case where κ is diagonal so that Wκ(Zp) is free of rank one, one can
formulate more simply the diagram by composing both horizontal maps by the
evaluation of functions on M/NM at 1, sending f : M/NM → Zp to f(1). We
thus get a commutative square

V NM → Zp[[qT ;T ∈ S ∩ S̃2]])
↑ ↑

H0(X,ωκ) → H0(Γ,Wκ(Zp)[[qT ;T ∈ S ∩ S̃2]])

Let H ∈ H0(X1,detp−1ω) be the Hasse invariant on X1. We fix an integer
t ≥ 1 sufficiently large such that Ht lifts to X over Zp. This can be achieved
because detω is ample. We denote by E such a lifting. Recall that FE(E) ≡ 1

(mod p); this is because FE(H) = 1 in Z/pZ[[qT ;T ∈ S ∩ S̃2]].

By [15] Sect.3.6, the Hecke operators Up,1 = [NMdiag(1, 1, p, p)NM] and

Up,2 = p−3[NMdiag(1, p, p, p2)NM] do act on V NM

! . Let e = lim (Up,1Up,2)
n!

be the corresponding idempotent of EndZpV
NM

! . The module eV NM

! is called
the module of ordinary p-adic cusp forms (with strict Iwahori p-level). Hida’s
control theorem [15] Th.1.1 says that for any weight κ (not necessarily coho-
mological), the cokernel of the inclusion eH0(S∞, ωκ) ⊂ eV NM

! [κ] is finite.

Comment: Actually, Th.1.1 of [15] also contains a “classicity statement”,
but only for very regular weights. Since we need in [26] an analogue of this
statement including all cohomological weights (including those such that k = ℓ),
we prove it there for all cohomological weights after localisation to a non-
Eisenstein maximal ideal of the Hecke algebra.

This theorem is crucial for us in [26] in order to produce overconvergent cusp
forms g satisfying

(LIM) The q-expansion of g is the p-adic limit of q-expansions of cusp eigen-
forms of cohomological weight.

This condition provides the framework for the conjecture stated in the present
paper. On the other hand, it would be very interesting to generalize Hida
theorem to p-adic forms with finite slope for Up,1 different from 0. Such a
generalization would produce new overconvergent forms satisfying (LIM).
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3.3 Overconvergence

We endow Cp with the p-adic norm such that ||p = p−1. For any extension L of
Qp contained in Cp and for any real number r ∈]0, 1[, we consider the L-vector
space of r-overconvergent Siegel modular forms

Sκ(Γ; r) = H0(X{r} × L, ωκ)

If r is in |L×|p, this is a Banach space for the norm |f | = supx∈X{r}(L)|f(x)|p
by [5] Th.4.1.6. In particular, for any r < r′ in ]p−a, 1[∩|L×|p, the inclusions

resr,r′ : Sκ(K; r) →֒ Sκ(K; r′)

are completely continuous by [19] 2.4.1.
It should be noted that the above fact does not require the assumption that
the weight κ be cohomological (that is k1 ≥ k2 ≥ 3). In [26], we indeed apply
this to κ = (2, 2).

Let a be either the Abbès-Mokrane bound (a = 1
p(p−1) ) or the Andreatta-

Gasbarri’s bound (a = p−1
2p−1 ). By [1] Lemma 8.2.1 and [2], for any r ∈]p−a, 1[,

the canonical lifting Fcan of the Frobenius endomorphism is defined as a rigid

morphism X{r} → X
rig

.
The following two results are contained in [26] Sect.4.5

Proposition 3.4 There exists r ∈]p−a, 1[∩pQ such that Fcan maps X{r} into
X{rp} and is finite flat of degree p3. It yields a continous homomorphism of
Banach spaces φ = F ∗can : Sκ(Γ; rp) → Sκ(K; r) and a trace homomorphism
Trφ : Sκ(Γ; r)→ Sκ(Γ; rp).

Corollary 3.5 There exists r ∈]p−a/p, 1[∩|L×|p, the composition ψ =
resrp,r◦Trφ defines a completely continuous endomorphism of the Banach space
Sκ(Γ; r).

The evaluation on the rigid Mumford families Grigη → Sσ (for all polyedral
cones σ in Ση as above) defines a L-linear homomorphism

FE : Sκ(K; r) →֒ L[[qT ;T ∈ S ∩ S2(R)+]].

The overconvergent q-expansion principle says that FE is injective. It follows

directly from the connectedness of X
rig

.
We define Up,1 as p−3ψ the operator corresponding to the weight κ = (2, 2).
We denote by S2(Γ; r) the L-Banach space of r-overconvergent forms of weight
(2, 2). Then it follows immediately from Cor.3.3 that

Corollary 3.6 There exists r ∈]p−a/p, 1[∩|L×|p such that the operator Up,1 is
completely continuous on the Banach space S2(Γ; r) of weight 2 overconvergent
p-adic cusp forms.
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Recall that by [24] Prop.7, one can define a Fredholm determinant P (t) =
det(1 − tUp,1) which is a p-adic entire function of t and such that λ ∈ Qp

is a non-zero eigenvalue of Up,1 if and only if P (λ−1) = 0; so that the non-
zero eigenvalues of Up,1 form a sequence decreasing to 0. By Prop.12 and
Remark 3 following this proposition in [24], each spectral subspace associated
to a non-zero eigenvalue is finite dimensional (its dimension being equal to the
multiplicity of the root λ−1 of P ) and there is a direct sum decomposition of
the Banach space as the sum of the (finite dimensional) spectral subspace and
the largest closed subspace on which Up,1 − λ is invertible.

In particular, for any positive number α, the set of eigenvalues λi ∈ Qp of Up,1
such that ordp(λi) ≤ α is finite. Moreover one has a direct sum decomposition
of the Banach space S2(Γ, r) as S2(Γ, r)

≤α ⊕ S2(Γ, r)
>α, where the first space

is finite dimensional, defined as the direct sum of the spectral subspaces for
all eigenvalues λi with ordp(λi) ≤ α, and the second is the (closed) largest
subspace on which all the operators Up,1 − λi are invertible.

4 Galois representations of low weight and overconvergent
modular forms

4.1 Eichler-Shimura maps

Let κ = (k, ℓ) be a cohomological weight, that is, a pair of integers such that
k ≥ ℓ ≥ 3. Let k = a + 3, ℓ = b + 3. Then, (a, b), a ≥ b ≥ 0 is a dominant
weight for (G,B, T ); let Va,b be the local system on the Siegel variety associated
to the irreducible representation of G of highest weight (a, b); recall that the
central character of this representation is z 7→ za+b. For any (neat) compact
open subgroup L of Gf , for a′ ≥ b′ ≥ 0 and k′ = a′ + 3, ℓ′ = b′ + 3, there is a
canonical Hecke-equivariant linear injection

H0(SL, ωκ) →֒ H3(SL, Va,b(C))

See Section 3.8 of [15] where it is explained how to make it canonical, and
where it is called the Eichler-Shimura map. Actually the image is contained in
H3

! = Im(H3
c → H3). It follows for instance from Th.5.5, Chapter VI of [10].

4.2 Galois representation associated to a cohomological cusp
eigenform

Let f be a cusp eigenform of cohomological weight κ = (k, ℓ). Let k = a + 3,
ℓ = b+ 3. By the EIchler-Shimura injection, the Hecke eigensystem associated
to f occurs in H3(X(C), Va,b(C)). For any prime q prime to N , let Pf,q ∈ C[X]
be the degree four Hecke polynomial at q for the eigensystem of f (see [26]).

Let E be the number field generated by the eigenvalues of the Hecke operators
outside N . We fix a p-adic embedding ιp of Q; let F ⊂ Qp be a p-adic field
containing ιp(E) ( big enough but of finite degree).
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The Galois representation Wf = H3(SK , Va,b(F )))f (largest subspace where
Hecke acts as on f) is E-rational and pure of Deligne weight w = 3 + a+ b.
Let S be the set of prime divisors of N , and Γ be the Galois group of the
maximal algebraic extension of Q unramified outside S and p. By a series of
papers (due to R. Taylor, Laumon and Weissauer) there exists a degree four
Galois representation Rf,p : Γ → GL4(Qp) such that for any ℓ /∈ S ∪ {p},
det(X · 14 −Rf,p(Frℓ)) = Pπ,ℓ(X).
Its relation to Wf is: W 4

f = Rmf,p, where m = dimWf .
We take F big enough for Rf,p to be defined over it.
Remark: Let ǫ : Γ → Z×p be the p-adic cyclotomic character. With the
convention above, we have ν ◦ ρπ,p = ǫ−w · ωf , where ωf is a finite order
character modulo N , given as the Galois avatar of the companion character
of f (this can viewed using Poincaré duality for Wf , see for instance [25],
beginning of Sect.2).
Remark: Given a classical cusp eigenform g ∈ H0(X,ω(2,2)), there is no geo-
metric construction of an associated Galois representation (there is no Eichler-
Shimura map to transport the eigensystem to the étale cohomology). See below
for a p-adic construction, if the q-expansion of g is a p-adic limit of q-expansions
of cohomological weight cusp eigenforms.

4.3 A conjecture

Let g ∈ H0(X{r}, ω(2,2)) be an overconvergent cusp eigenform of weight (2, 2)

and auxiliary level group K (unramified at p). By Prop.2.6, 2, since X{r} is
canonically identified to X

mm

G {r} ⊂ XQ(p)rig, one can view g as an element

of H0(X
mm

G {r}, ω(2,2)), where X
mm

G {r} is a strict neighborhood of ]X
mm

G [ in

XQ(p)rig. We shall actually need to consider the pull-back of g by πB,Q ◦πUB ,B
as a section of ω2,2 over the quasi-compact relatively compact rigid open

(πB,Q ◦ πUB ,B)−1(X
mm

G {r})

in XUB (p)rig.
Assume that

(LIM-EIG) there exists a sequence (gi) of classical cusp eigenforms gi ∈
H0(XUB (p), ωκi) with cohomological weights κi = (ki, ℓi) and level K (that
is, prime to p, equal to the auxiliary level of g) such that the q-expansions of
the gi’s converge p-adically to that of g.

Let ΠUB be the subgroup of matrices in G(Zp) whose reduction modulo p
belongs to UB(Z/pZ).

Comments: 1) Note that the key-point in this assumption is that the forms
gi are eigenforms. If we insist that the sequence of p-adic weights satisfies
κi ≡ (2, 2) (mod p − 1)pi, we cannot assume in general that the level of the
gi’s is prime to p; then we simply need to replace Kp = G(Zp) by ΠUB as
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p-component of the level group in (LIM-EIG). We can motivate the choice of
the p-level group ΠUB by recalling that both in the proof of the main theorem
of [6] and in the Control Theorem for the Iwahori levels for GSp(4) of [27], it
has been natural to consider the pull-back of g by πB,Q ◦ πUB ,B as a section of
ω2,2 over the strict neighborhood

(πB,Q ◦ πUB ,B)−1(X
mm

G {r})

in XUB (p)rig. This is the analogue of Hida’s p-stabilization for p-adic modular
forms.
2) Note also that it is a well-known theorem [15] that any p-adic cusp form is
the p-adic limit (in the sense of q-expansions) of prime-to-p level classical cusp
forms of weights κi satisfying κi ≡ (2, 2) (mod p − 1), where however, the
forms gi’s are not necessarily eigen even if g is.

Recall then that for any weight κ, there is a q-expansion map (always at the
infinity cusp)

H0((πB,Q ◦ πUB ,B)−1(X
mm

G {r}), ωκ)→Wκ(Qp)[[q
T ;T ∈ S ∩ S̃2]]

Γ

These maps are compatible with the p-adic q-expansion map via the canonical
injection of H0((πB,Q ◦ πUB ,B)−1(X

mm

G {r}), ωκ) into the space of p-adic cusp
forms.
We give below a conjectural criterion for the analytic continuation of g to
XUB (p)rig.
Let ρg,p : Gal(Q/Q)→ GL4(Qp) be the Galois representation associated to the
limit of the pseudo-representations of the gi’s. We call it the Galois represen-
tation associated to g. Note that by Sen theory (Bull. Soc. Math. de France
1999), if the κi converge to (2, 2) in Z/(p−1)Z×Zp and if ρg,p is Hodge-Tate, its
p-adic Hodge-Tate weights should be 0, 0, 1, 1. Our conjecture reads as follows.

Conjecture: Let g ∈ S2,2(K, r) be an overconvergent cusp eigenform satis-
fying (LIM-EIG); assume that there exists an abelian surface A defined over
Q such that ρg,p is isomorphic to the contragredient ρ∨A,p of the representa-
tion on the p-adic Tate module of A. Then, g extends to a global section
g ∈ H0(XUB (p)rig, ω(2,2)) thus defining by the rigid GAGA principle a classical
cusp form of weight (2, 2) and level Kp ×ΠUB .
If the abelian variety has good reduction at p, the cusp eigenform has level
prime to p.

Remark: The minimal level group Πg,p at p of the classical cusp eigenform
g satisfies ΠUB ⊂ Πg,p ⊂ G(Zp); the compatibility between gobal and local
Langlands correspondences predicts that the (local) Weil-Deligne representa-
tion associated to Dpst(ρg,p) determines Πg,p.

The main result (Theorem 4) of [26] provides under certain assumptions (pri-
marily the assumption of near ordinarity) such pairs of an overconvergent cusp
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eigenform g with a converging sequence (gi) of cusp eigenforms, together with
an abelian surface A defined over Q with potential good ordinary reduction at
p.
Actually one starts there from an abelian surface satisfying certain condition,
the most stringent being that the Galois representation ρ∨A,p must be congruent
modulo p to the representation ρf,p associated to a cusp eigenform of level K
prime to p, ordinary at p with cohomological weight. Then Hida theory ([26]
Lemma 4.2) yields a sequence (gi) converging to a limit g which is overconver-
gent of weight (2, 2) and auxiliary level K.
Note that once a generalization of Coleman Families Theory to the Siegel case
is available, there might be new examples of such forms g.
In the situation treated in [26], the representation ρg,p = ρ∨A,p is potentially
crystalline but not crystalline, which implies that the eigenforms gi are indeed
p-new of p-level ΠUB , hence the presence of ΠUB as conjectural p-level group
of g.
The conjecture above would imply that the L function of the motive h1(A)
is automorphic: L(h1(A), s) = Lspin(g, s), hence, by a classical theorem of
Piatetskii-Shapiro, it would have analytic continuation and functional equation.
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Abstract. A conjecture of Fontaine and Mazur states that a geo-
metric odd irreducible p-adic representation ρ of the Galois group of
Q comes from a modular form ([10]). Dieulefait proved that, under
certain hypotheses, ρ is a member of a compatible system of ℓ-adic
representations, as predicted by the conjecture ([9]). Thanks to recent
results of Kisin ([15]), we are able to apply the method of Dieulefait
under weaker hypotheses. This is useful in the proof of Serre’s con-
jecture ([20]) given in [11], [14],[12],[13].

2000 Mathematics Subject Classification: : 11R32, 11R39

1 Introduction.

Let Q be an algebraic closure of Q. For L a finite extension of Q contained in
Q, we write GL for the Galois group of Q/L. For ℓ a prime number, we write
Qℓ for the field of ℓ-adic numbers and Qℓ for an algebraic closure of Qℓ.
An ℓ-adic representation ρ of GL of dimension d is a continuous morphism ρ
from GL to GLd(Qℓ). In fact, ρ has values in GLd(M), for M a finite extension
of Qℓ contained in Qℓ (lemma 2.2.1.1. of [6]). Such a representation ρ is said
to be geometric if it satisfies the following two conditions ([10]):
- for L a prime of L above ℓ, the restriction of ρ to the decomposition subgroup
DL satisfies the potentially semi-stable condition of Fontaine’s theory (exp. 8
of [1]) ;
- there exists a finite set S of primes of L such that ρ is unramified outside S
and the primes above ℓ.
A geometric ℓ-adic Galois representation defines for each prime L of L an
isomorphy class of representations of the Weil-Deligne group WDL in GLd(Qℓ)
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([8], exp. 8 of [1], [10]). We call rL(ρ) its F -semisimplification. It is attached to
the restriction of ρ to the decomposition group DL. When L is of characteristic
ℓ, in order to define rL, one needs to use the action of WDL on the filtered
Dieudonné module attached to the restriction of ρ to DL via Fontaine’s theory
(see remark 1 of section 4).

Let E be a finite extension of Q contained in Q. By a compatible system of
geometric representations of GL with coefficients in E of dimension d, we mean
the following data :

- for each ℓ and for each embedding ι of E in Qℓ, a geometric representation
ρι : GL → GLd(Qℓ),

- a finite set S of primes of L, and for each prime L of L, an F -semisimple
representation rL of WDL in GLd(E), such that :

- rL is unramified if L /∈ S ;

- for each ι as above, ι ◦ rL is isomorphic to rL(ρι).
We fix a prime p. Let ρ be a p-adic geometric irreducible odd representation of
dimension 2 of GQ. By odd, we mean that ρ(c) has eigenvalues 1 et −1, for c
a complex conjugation. We suppose that ρ has Hodge-Tate weights (0, k − 1),
where k is an integer ≥ 2 : we shall say that ρ is of weight k. It is conjectured
by Fontaine and Mazur that ρ comes from a modular form of weight k.

More precisely, let k ≥ 2 and N ≥ 1 be integers. Let f = q + . . .+ anq
n + . . .

be a primitive modular form on Γ1(N) of weight k. Let E(f) be its coefficient
field, i.e. the field generated by the coefficients of f and the values of the
character of f . The field E(f) is a finite extension of Q. It is classical that
one can associate a p-adic representation ρ(f)ι : GQ → GL2(Qp) to f and an
embedding ι of E(f) in Qp. The representation ρ(f)ι is unramified at ℓ if ℓ is
6= p and does not divide N and is characterized by :

tr(ρ(f)ι(Frobℓ)) = ι(aℓ),

for these ℓ. Furthermore, ρ(f)ι is absolutely irreductible, odd, geometric, of
conductor N and of weight k (Hodge-Tate weights (0, k − 1)). The conjecture
of Fontaine and Mazur states that ρ is isomorphic to ρ(f)ι for an f and a ι.

A consequence of the conjecture of Fontaine and Mazur is that ρ is a member
of a compatible system of Galois representations. Dieulefait proved that it is
the case under certain hypotheses ([9]). Using a recent result of Kisin ([15]),
we give weaker hypotheses under which the result of Dieulefait is true.

The main tool of the proof is a theorem of Taylor ([26] and [25]). There exists
a totally real number field F which is Galois over Q and such that ρ|GF comes
from an cuspidal automorphic representation π of GL2(AF ) of parallel weight
k (or a Hilbert modular form for F ). By Arthur-Clozel ([2]), for each F ′ such
that the Galois group of F/F ′ is solvable, ρ|GF ′ comes from an automorphic
representation πF ′ for GL2(AF ′). Using Brauer’s theorem, we put together the
compatible systems associated to the automorphic representations πF ′ , and we
obtain the compatible system of representations of GQ.
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2 Taylor’s theorem.

Let ρ be an odd irreducible geometric p-adic representation of GQ of dimension
2 of weight k, k an integer ≥ 2.

We say that ρ is potentially modular if there exists a Galois totally real finite
extension F of Q contained in Q such that the restriction of ρ to GF comes
from a cuspidal automorphic representation π of GL2(AF ) of parallel weight k.

The theorem of Taylor states in many cases that ρ is potentially modular. In
fact, Taylor proves that the reduction ρ of ρ is potentially modular, with F
unramified (resp. split) at p if the restriction of ρ to Dp is reducible (resp.
irreducible). Then, the modularity of ρ|GF follows from modularity theorems.
According to which modularity theorem one applies, one get different state-
ments. We write the following statement which is needed for our work with
Khare on Serre’s conjecture.

Théorème 1 Let ρ : GQ → GL2(Qp) be a p-adic representation, absolutely
irreducible, odd, unramified outside a finite set of primes. One supposes that
the reduction ρ of ρ has non solvable image and, if p 6= 2, that ρ has Serre’s
weight k(ρ) in the range [2, p+1]. Then ρ is potentially modular in the following
cases :

- a1) p 6= 2 and ρ|Dp is crystalline of weight k = k(ρ) ;

- a2) p = 2, k(ρ) = 2 and ρ|D2
is Barsotti-Tate ;

- b) p 6= 2 and k(ρ) 6= p + 1, ρ|Dp is potentially Barsotti-Tate, Barsotti-Tate
after restriction to Qp(µp), and the restriction of the representation of the Weil-
Deligne group WDp to inertia is (ωk−2

p ⊕ 1), where ωp is the Teichmuller lift
of the cyclotomic character modulo p ;

- c) p 6= 2 and k(ρ) = p + 1 or p = 2 and k(ρ) = 4 and ρ|Dp is semistable of
weight 2.

The theorem follows from the potential modularity of ρ ([26], [25]) and the
modularity theorem stated in 8.3. of [13].

Remark. Using Skinner-Wiles modularity theorem ([22]), Taylor gives a variant
of this statement in a lot of ordinary cases.

3 Field of coefficients of ρ.

Let ρ : GQ → GL2(Qp) be as in the preceeding section. Furthermore, we
suppose that ρ is potentially modular.

Proposition 1 There is a finite extension E of Q and an embedding ιp : E →֒
Qp and for each prime ℓ, a F -semisimple representation rℓ of the Weil-Deligne
group WDℓ with values in GL2(E) such that for each ℓ, the F -semisimplification
rℓ(ρ) of the representation of the Weil-Deligne group WDℓ associated to ρ is
isomorphic to ιp ◦ rℓ.
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Proof. Let F and π as in the theorem of Taylor. Let F ′ be a subfield of F
such that F/F ′ has solvable Galois group. By Arthur and Clozel, we know that
the restriction of ρ to GF ′ is also associated to a cuspidal representation πF ′ of
GL2(AF ′) ([2]). It follows that there exists a finite extension EF ′ of Q such that
the F -semisimplification of the representation of the Weil-Deligne group WDL
associated to the restriction of ρ to GF ′ can be realized in EF ′ for each prime L
of F ′. The rationality properties of πF ′ follows from Shimura for the unramified
primes and from Rogawski-Tunnell for the ramified primes ([21], see also [19] ;
[18]). The compatiblity of global and local Langlands correspondances follows
for L of characteristic 6= p from Carayol completed by Taylor ([7],[23]) and for
L of characteristic p from Saito and Kisin ([19],[15]).
Take for E an extension of Q containing the images by all embeddings in Q of
the fields EF ′ . Let L be a prime of F . Let F ′L be the subfield of F which is fixed
by the decomposition subgroup of Gal(F/Q) for L. Let L′ be the restriction of
L to F ′L. The representation of the Weil-Deligne group WDL′ defined by the
restriction of ρ to F ′L can be realized in EF ′L . As the Weil-Deligne groups WDℓ

and WDL′ coincide, the proposition follows.
Remark. Particular cases of the compatibility between global and local Lang-
lands correspondences for the primes dividing the characteristic follows from
Breuil, Berger and Taylor ([5],[3],[24]).

4 Construction of the compatible system.

Théorème 2 Let ρ be as in the preceeding section. Then, there exists a com-
patible system (ρι) of geometric representations of GQ with coefficients in a
number field E such that there exists an embedding ιp : E →֒ Qp with ριp
isomorphic to ρ. The ρι are irreducible, odd and of weight k.

Proof. If ρ is induced from the p-adic representation associated to a Hecke’s
character Ψ of an imaginary quadratic field, then one takes for (ρι) the compat-
ible system induced from the one defined by the Hecke character. Otherwise,
ρ remains absolutely irreducible after restriction to any open subgroup of GQ.
We suppose this from now.
Let F , π, E(π) and ιp such that ρ|GF is isomorphic to the Galois representation
ρ(π)ιp attached to π, and the embedding ιp of the coefficient field E(π) of π

in Qp. As in Taylor’s 5.3.3. of [27], one applies Brauer’s theorem to the trivial
representation of Gal(F/Q). There exist fields Fi ⊂ F , such that each F/Fi
has a solvable Galois group, integers mi ∈ Z and characters Ψi of Gal(F/Fi)
such that the trivial representation of Gal(F/Q) equals :

∑

i

miInd
GQ

GFi
Ψi.

One has :

ρ =
∑

i

miInd
GQ

GFi
(ρ|GFi ⊗Ψi).
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As in the proof of proposition 1, it follows from the theorems of Taylor and
Arthur-Clozel that ρ|GFi is the Galois representation ρ(πi) attached to an au-
tomorphic representation πi of GL2(AFi) whose coefficient field is embedded in
E.
Let ι be an embedding of E in Qq for a prime q. We enlarge E such that it
contains the values of the characters Ψi. One defines the virtual representa-
tion Rι in the Grothendieck group of irreducible representations of GQ with
coefficients in Qq by :

Rι =
∑

i

miInd
GQ

GFi
(ρ(πi)ι ⊗Ψi).

Let us prove that Rι is a true representation. For i and j, let {τk}, τk ∈ GQ

be a set of representatives of the double classes GFi\GQ/GFj . Let us call Fijk
the compositum of Fi and τk(Fj). One has :

Ind
GQ

GFj
(ρ(πj)ι ⊗Ψj)|GFi =

∑

k

Ind
GFi
GFijk

(
((ρ(πj)ι ⊗Ψj) ◦ int(τ−1

k ))|GFijk

)
.

It follows that the scalar product < Rι, Rι > in the Grothendieck group is
equal to the sum over i, j, k of :

mimj <
(
(ρ(πj)ι ⊗Ψj) ◦ int(τ−1

k )
)
|GFijk

, (ρ(πi)ι ⊗Ψi)|GFijk > .

We see that the scalar product of Rι with itself is
∑
i,j,kmimjtijk with tijk = 1

or 0 depending whether
(
(ρ(πj)ι ⊗Ψj) ◦ int(τ−1

k )
)
|GFijk

≃ (ρ(πi)ι ⊗Ψi)|GFijk

or not. One has a similar calculation for the scalar product of ρ with itself in
the Grothendieck group of irreducible representations of GQ with coefficients in
Qp. The calculation gives

∑
ijkmimjt

′
ijk, with t′ijk = 1 or 0 depending whether

(
(ρ⊗Ψj) ◦ int(τ−1

k )
)
|GFijk

≃ (ρ⊗Ψi)|GFijk

or not. As ρ(πi)ι and ρ|GFi are irreducible and have the same characteristic
polynomial of Frobenius outside a finite set of primes, one has tijk = t′ijk. As
< ρ, ρ >= 1, it follows that the scalar product of Rι with itself is 1. As the
dimensions of Rι and ρ are both

∑
2mi[GQ : GFi ], we have dim(Rι) = 2. We

see that Rι is a true representation of dimension 2. We call it ρι.
It follows from the formula defining Rι that the restriction of ρι to GF is as-
sociated to π. By Blasius-Rogawski ([4]), (ρι)|GF comes from a motive, except
perhaps if k = 2. It then follows by Tsuji that the restriction of ρι to the
decomposition group for the characteristic q of ι is potentially semi-stable of
weight k ([28]). The case k = 2 and ρι is constructed as a limit of q-adic rep-
resentations attached to automorphic forms with one local component discrete
series is taken care by Kisin ([23],[15]).
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The F -semisimple representation of the Weil-Deligne group WDℓ on ρι is iso-
morphic to :

∑

i

mi

(∑

L
IndDℓDL(rL(πi)⊗Ψi)

)
,

where L describes the set of primes of Fi over ℓ. The compatibility follows from
the fact that πi 7→ ρ(πi) is compatibility with local Langlands correspondance
(see the references quoted in the proof of proposition 1).

By an argument of Ribet, it follows from compatibility that ρι is absolutely
irreducible ([17]). As the restriction of ρι to GF is associated to π, it is odd
and ρι is odd. This finishes the proof of the theorem.

Remarks.

1) Let M be a finite extension of Qp contained in Qp and let γ : GM →
GLd(E) be a potentially semistable representation of the Galois group GM
with coefficients in a finite extension E of Qp. Let WDM be the Weil-Deligne
group. Let M0 be the maximal unramified extension of Qp contained in M .
Fontaine has defined a representation of WDM on the filtered Dieudonné D
module attached to γ (exp. 8 of [1]). Let us recall how it defines, up to
conjugacy, a representation r of WDM in GLd(Qp). The filtered Dieudonné
module D is a L⊗Qp E-module D, L a finite unramified extension of M0 in Qp,
with an action of WDM commuting with the action of L ⊗Qp E. One knows
that the E ⊗Qp L-module D is free. Let us briefly recall why. Let us choose

such an embedding of E in Qp, and let us call E1 = E ∩ L. For each element
τ of the Galois group of E1/Qp, let Dτ be the sub-module of the elements x of
D such that (e⊗ 1)x = (1⊗ τ(e))x for every e ∈ E1. As the Frobenius φ of D
acts semi-linearly relatively to the action of L and commutes with the action
of E, φ transitively permutes the Dτ , and the Dτ have the same dimension.
This implies the freeness. As the action of the Weil-Deligne group WDM on D
commutes with the action of E ⊗Qp L, it follows that WDM acts on each Dτ .
One defines r as the F-simplification of the action of WDM on Did.

2) One can describe the projective representation associated to ρι as in [29]. Let
F and π as in Taylor’s theorem. Let ρι the Galois-representation associated
to π and ι. The multiplicity one theorem ([16]) implies that for σ ∈ GQ,
the automorphic representations π and σπ are isomorphic. It follows that the
Galois representations ρι and ρι ◦ int(σ) are isomorphic. That means that there
exists gσ ∈ PGL2(Qq) such that :

ρι ◦ int(σ) ≃ int(gσ) ◦ ρι.

This characterizes gσ as ρF,q is absolutely irreducible. Then, σ 7→ gσ defines
a projective representation which is the projective representation associated to
ρι. As in [29], one can show directly that this projective representation lifts to
a representation in GL2(Qq).
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Gal(Q/Q). Duke Mathematical Journal, 54, 1987, 1, 179–230.

[21] Goro Shimura. The special values of the zeta functions associated with
Hilbert modular forms. Duke Mathematical Journal, 45, 1978, 3, 637–679.

[22] C. M. Skinner and A. J. Wiles. Residually reducible representations and
modular forms. Inst. Hautes Études Sci. Publ. Math., (89):5–126 (2000),
1999.

[23] Richard Taylor. On Galois representations associated to Hilbert modular
forms. Invent. Math., 98(2):265–280, 1989.

[24] Richard Taylor. On Galois representations associated to Hilbert modu-
lar forms. II. In Elliptic curves, modular forms, & Fermat’s last theo-
rem (Hong Kong, 1993), Ser. Number Theory, I, pages 185–191. Internat.
Press, Cambridge, MA, 1995.

[25] Richard Taylor. On the meromorphic continuation of degree two L-
functions. Preprint, pages 1–53, 2001.

[26] Richard Taylor. Remarks on a conjecture of Fontaine and Mazur. J. Inst.
Math. Jussieu, 1(1):125–143, 2002.

[27] Richard Taylor. Galois representations. Ann. Fac. Sci. Toulouse Math.
(6), 13(1):73–119, 2004.

[28] Takeshi Tsuji. p-adic Hodge theory in the semi-stable reduction case, Pro-
ceedings of the International Congress of Mathematicians, Vol. II (Berlin,
1998). Documenta Mathematica, 1998, Extra Vol. II, 207–216.

Documenta Mathematica · Extra Volume Coates (2006) 819–827



On p-Adic Geometric Representations of GQ 827

[29] J.-P Wintenberger. Sur les représentations p-adiques géométriques de con-
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