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PREFACE

This volume is dedicated to Professor John Coates, an outstanding collab-
orator, colleague, author, teacher, and friend. He has greatly contributed to
number theory, both through his fundamental mathematical works and through
his impressive mathematical school. He is a continuous source of tremendous
inspiration to students and colleagues. John Coates has been one of the leading
proponents of and contributors to Iwasawa theory and he is the founding father
of its recent development in the form of non-commutative Iwasawa theory.
We included in the volume the Japanese tanka ”Samegai’s Waters” which was
selected by John upon our request.
Prior to the Cambridge conference
http://www.maths.nott.ac.uk/personal/ibf/jhc.html
to mark the 60th birthday of John Coates, Sarah Zerbes and Vladimir Dok-
chitser had produced a diagramme of his mathematical family tree which is
included in the volume (next page).

I. Fesenko, S. Lichtenbaum, B. Perrin-Riou, P. Schneider
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Oh, what atangled web we weave...

— PhD.sudent
———  quas sudent P ey —

Wewould like to thank

Andrew Aitchison for technical support,

Julie Coates for providing the pictures,

and also Jilali Assim, Matthew Baker, Grzegorz Banaszak, Laure Barthel, Massimo Bertolini, Karsten Buecker, Oliver Bueltel, Kevin Buzzard, Pierrette Cassou-Nogues, Jung-Hee Cheon,
Robert Coleman, Pierre Colmez, Brian Conrad, Christophe Cornut, Daniel Delbourgo, Ehud de Shalit, Fred Diamond, Mike Evans, lvan Fesenko, Matthias Flach, Edray Goins, Catherine
Goldstein, Eyal Goren, Sang-Geun Hahn, Michael Harrison, Susan Howson, Frazer Jarvis, Bruce Kaskel, Payman Kassasi, Alain Kraus, Andreas Langer, Gary McConnell, Loic Merdl,
Ariane Mezard, Abbas Movahhedi, Thong Nguyen Quang Do, Y oshihiro Ochi, Joseph Oesterle, Bernadette Perrin-Riou, Andrew Plater, Arash Restegar, Karl Rubin, Anupam Saikia,

er, Peter Schneider, Leila Schneps, Tony Scholl, Sir Walter Scott, Warren Sinnott, Christopher Skinner, Paul Smith, Vic Snaith, Harvey Stein, Richard Taylor, Jacques

Norbert Schappach
Tilouine, Pavios Tzermias, Vinayak Vatsal, Andrew Wiles and Rodney Y ager.
Tim Dokchitser
Vladimir Dokchitser
Sarah LiviaZerbes

The John Coates mathematical family tree is reproduced here with the kind permission of its authors.
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FOREWORD

ANDREW WILES

I first met John Coates during my first year as a graduate student at Cam-
bridge. John was about to move back to Cambridge where he had been a
graduate student himself. It was at a point in his career when he was starting
a whirlwind of moves. Coming from Stanford he spent two years in Cambridge,
and one in Australia before making a longer stop in Paris at Orsay. Mathemat-
ically however he was just settling down to what has become his most serious
and dedicated study of the last thirty years, the arithmetic of elliptic curves.
Needless to say for those who have devoted some time to this subject, it is so
full of fascinating problems that it is hard to turn from this to anything else.
The conjecture of Birch and Swinnerton-Dyer, by then fifteen years old, had
made the old subject irresistible.

In the two years he was at Cambridge we wrote four papers on elliptic curves,
culminating in the proof of a part of the conjecture for elliptic curves with
complex multiplication which are defined over the rationals. When John had
been at Cambridge previously as a graduate student of Alan Baker he had
worked on questions about the bounding of integral points on curves. Siegel’s
proof of the finiteness of the number of integral points on curves of genus at
least one was not effective. Work of John’s, in collaboration with Baker, had
given the first proof of an effective bound on the size of the integral solutions of
a genus one curve. During his time in the U.S. John had been much influenced
by the work of Tate and of Iwasawa. The key insight of Iwasawa had been
to see how to translate the theorems of Weil, which related the characteristic
polynomial of Frobenius in certain [-adic representations to the zeta function,
from the function field case to the number field case. Of course this involved
the p-adic zeta function and not the classical one and even then only became a
translation from a theorem to a conjecture, but it became a guiding principle
in the study of the special values of the zeta function and has remained so to
this day. Tate had been studying the relation of K5 of the ring of integers of
a number field to Galois cohomology groups. Together with Lichtenbaum and
Sinnott John had developed and examined these conjectures about K-groups
using some of the ideas of Iwasawa.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006)



4 ANDREW WILES

When he returned to Cambridge John and I set about exploring how Iwasawa’s
approach would work in the case of elliptic curves with complex multiplication.
It worked wonderfully well! Although at that time Iwasawa’s main conjecture
seemed quite out of reach, even in the basic cyclotomic case, one could develop
enough using the methods of Iwasawa to get the first real theorems on the
Birch and Swinnerton-Dyer conjecture. Of course the search for a solution to
this conjecture remains elusive to this day but the progress has been enormous.
The theory of complex multiplication has to a large extent ceded its place to
the theory of modular forms but the basic idea has largely remained intact,
namely to relate the special values of L-functions to the points on the elliptic
curve via the class field theory of the division fields of those points.

The original work was all in the context of ordinary primes, these being primes
where the reduction of the elliptic curve is ordinary. Subsequently John and his
students have extended the study to try to understand first the supersingular
case, but still assuming the curve has complex multiplication, and then the
more general case where no complex multiplication is assumed. Meanwhile the
new ideas of Kolyvagin and of Gross and Zagier have to a large extent brought
the general case into line with the complex multiplication case. In the general
case where the curves are not assumed to have complex multiplication the fields
of division points are no longer abelian over a finite extension of the rationals.
To study these fields John and his coauthors have developed a non-abelian
version of Iwasawa theory.

This volume contains many papers on these and related topics. However no
tribute to John Coates could be complete without a testament to his continuing
generosity and skill as a teacher. Cambridge number theory seemed strongest
in bringing out the problem solver but one had a sense that in terms of modern
developments it was a little isolated. John’s arrival brought these two worlds
together, and made Cambridge and my own arrival in mathematics more ex-
citing than I could ever have anticipated. John’s return to Cambridge in 1986
has cemented his role as a teacher and inspiration to many more generations of
Cambridge number theorists, many of whom were present at his 60" birthday
celebrations in January of 2005.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006)
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SAMEGAI’'S WATERS

Samegai’s waters:

Were I to cup them in my hands
And cleanse my impure heart,
Might I awaken from the dream
Of this transitory world?
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musubu te ni
nigoru kokoro wo
susuginaba

ukiyo no yume ya
samegai no mizu.

Alphabetic transcription
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RING-THEORETIC PROPERTIES

OF IwWASAWA ALGEBRAS: A SURVEY!
K. ArRDAKOV AND K. A. BROWN

Received: November 7, 2005
Revised: January 22, 2006

ABSTRACT. This is a survey of the known properties of Iwasawa
algebras, i.e., completed group rings of compact p-adic analytic groups
with coefficients the ring Z, of p-adic integers or the field F, of p
elements. A number of open questions are also stated.

2000 Mathematics Subject Classification: 16L30, 16P40, 20C07,
11R23
Keywords and Phrases: Iwasawa algebra; compact p-adic analytic
group; complete noetherian semilocal ring; Auslander-Gorenstein con-
dition

1. INTRODUCTION

Noncommutative Iwasawa algebras form a large and interesting class of com-
plete semilocal noetherian algebras, constructed as completed group algebras
of compact p-adic analytic groups. They were defined and their fundamen-
tal properties were derived in M. Lazard’s monumental 1965 paper [23], but
in the twenty years from 1970 they were little studied. Interest in them has
been revived by developments in number theory over the past fifteen years, see
for example [17],[19] and [37]. Prompted by this renewed interest, and helped
of course by the better understanding of noncommutative noetherian algebra
gained since 1965, a number of recent papers have built on Lazard’s initial
work. The emerging picture is of a class of rings which in some ways look sim-
ilar to the classical commutative Iwasawa algebras, (which are rings of formal
power series in finitely many commuting variables over the p-adic integers), but
which in other respects are very different from their commutative counterparts.
And while some progress has been made in understanding these rings, many
aspects of their structure and representation theory remain mysterious.

It is the purpose of this article to provide a report of what is known about Iwa-
sawa algebras at the present time, and to make some tentative suggestions for

1Some of the work for this article was done in June 2005, when Ardakov was visiting the
University of Glasgow with the support of the Edinburgh Mathematical Society Research
Support Fund and the Glasgow Mathematical Journal Learning and Research Support Fund.
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8 K. ArpAKOV AND K. A. BROWN

future research directions. We approach the latter objective through the listing
of a series of open questions, scattered throughout the text. In an attempt to
make the paper accessible to readers from as wide a range of backgrounds as
possible, we have tried to give fairly complete definitions of all terminology; on
the other hand, most proofs are omitted, although we have tried to give some
short indication of their key points where possible. An exception to the omis-
sion of proofs occurs in the discussion of maximal orders in (4.4)-(4.7) as well
as in the discussion of the canonical dimension in (5.4), where we include some
original material. These paragraphs can be omitted by a reader who simply
wants a quick overview of the subject; moreover, after Sections 2 and 3 the
remaining sections are reasonably independent of each other.

Fundamental definitions and examples are given in Section 2; in particular we
recall the definition of a uniform pro-p group in (2.4), and make the important
observation (2.3)(1) that every Iwasawa algebra can be viewed as a crossed
product of the Iwasawa algebra of a uniform group by a finite group. This has
the effect of focusing attention on the Iwasawa algebra of a uniform group - this
is filtered by the powers of its Jacobson radical, and the associated graded alge-
bra is a (commutative) polynomial algebra. This fact and its consequences for
the structure of the Iwasawa algebras of uniform groups are explored in Section
3; then in Section 4 we examine how properties of general Iwasawa algebras
can be deduced from the uniform case using (2.3)(1). Section 5 concerns di-
mensions: first, the global (projective) dimension and the injective dimension,
whose importance is enhanced because Iwasawa algebras satisfy the Auslander-
Gorenstein condition, whose definition and properties we recall. In particular,
Auslander-Gorenstein rings possess a so-called canonical dimension function;
we explain this and describe some of the properties of the canonical dimension
of an Iwasawa algebra in (5.3)-(5.5). The Krull-Gabriel-Rentschler dimension
is discussed in (5.7). Finally, our very sparse knowledge of the two-sided ideals
of Iwasawa algebras is summarised in Section 6.

2. KEY DEFINITIONS

Iwasawa algebras are completed group algebras. We begin by recalling which
groups are involved, then give the definition of the algebras.

2.1. COMPACT p-ADIC ANALYTIC GROUPS. Let p be a prime integer and let Z,
denote the ring of p-adic integers. A group G is compact p-adic analytic if it is
a topological group which has the structure of a p-adic analytic manifold - that
is, it has an atlas of open subsets of Zy, for some n > 0. Such groups can be
characterised in a more intrinsic way, thanks to theorems due to Lazard, dating
from his seminal 1965 paper [23]. Namely, a topological group G is compact
p-adic analytic if and only if G is profinite, with an open subgroup which is
pro-p of finite rank, if and only if G is a closed subgroup of GL4(Z,) for some
d > 1. Nowadays, these equivalences are usually viewed as being consequences
of deep properties of finite p-groups; a detailed account from this perspective
can be found in [20, Part II].

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



RING-THEORETIC PROPERTIES OF IWASAWA ALGEBRAS: A SURVEY 9

ExaMPLES: (1) Every finite group is p-adic analytic, for every prime p.

(2) The abelian p-adic analytic groups are the direct products of finitely many
copies of the additive group of Z, with a finite abelian group [20, page 36].
(3) For any positive integer d the groups GL4(Z,) and SL4(Z,) are compact
p-adic analytic. More generally, given any root system X, one can form the
universal Chevalley group Gz, (Xe), [20, page 353]. This is a compact p-adic
analytic group. For more information about Chevalley groups, see [13].

(4) Let d and t be positive integers. The t-th congruence subgroup in SLq(Zpy)
is the kernel I't(SL4(Z,)) of the canonical epimorphism from SL4(Z,) to
SL4(Z,/p'Z,). One sees at once from the equivalences above that I'+(SL4(Z,))
is compact p-adic analytic, as indeed are I't (G Lq(Zy)) and I't(Gz, (X)) for any
root system Xj.

NoOTATION: When discussing a topological group G we shall use H to denote
the closure of a subset H of G in G; and when we refer to, say, G as being
generated by elements {g1, ..., g4} we mean that G = (g1, ..., gq). In particular,

G is finitely generated if G = (X) for a finite subset X of G. For a subset X of
G, X? denotes the subgroup of G generated by the subset {z? : x € X} of G.

2.2. IWASAWA ALGEBRAS. Let G be a compact p-adic analytic group. The
ITwasawa algebra of G is

A¢ = limZ,[G/N],

where the inverse limit is taken over the open normal subgroups N of G. Closely
related to Ag is its epimorphic image Q¢, defined as

Qe = lmF,[G/N],

where [, is the field of p elements. Often, a property of Ag can easily be
deduced from the corresponding property of {2, and vice versa; where this is
routine we will frequently save space by stating only one of the two variants.

2.3. CROSSED PRODUCTS. Recall [29, 1.5.8] that a crossed product of a ring R
by a group A is an associative ring R * A which contains R as a subring and
contains a set of units A = {@: a € A}, isomorphic as a set to A, such that

e Rx Ais a free right R-module with basis A,

o forall z,y € A, TR = RT and T - yR = TyR.
Suppose that H is an open normal subgroup of the compact p-adic analytic
group G. Let Cy denote the set of open normal subgroups of G which are
contained in H; then clearly Ag = @ZP[G/ U] where U runs over Cy. It

follows at once that Ag is a crossed product of Ay by the finite group G/H
and similarly that ¢ is a crossed product of Qy by G/H:
(1) Ag Ay« (G/H),

Qa Qp * (G/H).
We shall see that, combined with a judicious choice of the subgroup H, the
isomorphism (1) reduces many questions about Ag and Q¢ to the analysis of

111
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10 K. ArpAKOV AND K. A. BROWN

certain crossed products of finite groups. Usually, the right subgroup H to
choose is a uniform one, defined as follows.

2.4. UNIFORM GROUPS. Let G be a pro-p group. Define P;(G) = G and
P,11(G) = P(G)?|P;(G),G] for i > 1. The decreasing chain of characteris-
tic subgroups
G=Pi(G)2P(G)2-- 2 P(G) 2 - 2N, P(G) =1
is called the lower p-series of G. The group G is powerful if G /GP is abelian
(for p odd), or G/G* is abelian (when p = 2). Finally, G is uniform if it is
powerful, finitely generated, and
G : P5(G)| = |Pi(G) : Piya (G

for all ¢ > 1.

Now we can add one further characterisation, also essentially due to Lazard,
to those given in (2.1): a topological group G is compact p-adic analytic if
and only if it has an open normal uniform pro-p subgroup of finite index, [20,
Corollary 8.34].

EXAMPLES: (1) Of course, (Z,)®? is uniform for all d > 1.
(2)The groups I'1(GL4(Z,)) (for p odd) and I's(GL4(Z2)) are uniform [20,
Theorem 5.2].

Let G be uniform, with |G : P»(G)| = p%. The non-negative integer d is called
the dimension of G; it is equal to the cardinality of a minimal set of (topologi-
cal) generators of G, [20, Definition 4.7 and Theorem 3.6]. More generally, we
can define the dimension of an arbitrary compact p-adic analytic group to be
the dimension of any open uniform subgroup; this is unambiguous [20, Lemma
4.6], and coincides with the dimension of G as a p-adic analytic manifold, [20,
Definition 8.6 and Theorem 8.36].

2.5. COMPLETED GROUP ALGEBRAS. In fact Ag and Qg are I-adic comple-
tions of the ordinary group algebras Z,[G] and F,[G], for suitable choices of
ideals I. It is most convenient for us to state the result for uniform groups,
although it can obviously be extended to the general case using (2.3)(1).

THEOREM. Let G be a uniform pro-p group, and let I denote the augmentation
ideal of F,[G]. Then Q¢ is isomorphic to the I-adic completion of F,[G]. There
is a similar result for Z,[G].

Indeed the theorem follows quite easily from the observations that the lower
p-series P;(G) is coterminal with the family of all open normal subgroups of G,
and that the powers of I are coterminal with the ideals of F,,[G] generated by
the augmentation ideals of the subgroups P;(G), [20, §7.1].

3. THE CASE WHEN G IS UNIFORM

Throughout this section, we assume that G is a uniform pro-p group of dimen-
sion d. We fix a topological generating set {ay,...,aq} for G.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



RING-THEORETIC PROPERTIES OF IWASAWA ALGEBRAS: A SURVEY 11

3.1. THE “PBW” THEOREM. It follows at once from Theorem 2.5 that the
usual group algebra F,[G] embeds into Q. Fori=1,...,d,let b =a; — 1 €
F,[G] C Q. Then we can form various monomials in the b;: if @ = (a1, ..., aq)
is a d-tuple of nonnegative integers, we define

b = b3 b5 € Q.

Note that this depends on our choice of ordering of the b;’s, because Qg
is noncommutative unless G is abelian. The following basic result shows
that Q¢ is a “noncommutative formal power series ring”; it follows from the
strong constraints which the hypothesis of uniformity imposes on the quotients
P,(G)/P;4+1(G) of G, [20, Theorem 7.23].

THEOREM. Every element ¢ of Qq is equal to the sum of a uniquely determined
convergent series
c= Z cab®

aeNd
where co, € Fp, for all o € N,

We record an immediate consequence of both this result and of Theorem 2.5:
COROLLARY. The Jacobson radical J of Qg is equal to

J=01Qc + -+ baflc = Qb + -+ Qgba.
Hence Q¢ /J = TF,, so in the language of (4.1), Qg is a scalar local ring.

Proof. If ¢ € Qg is such that ¢y # 0, then 1 — ¢ is invertible with inverse
l+c+c+---€Qq. O

Theorem 3.1 says that the monomials {b® : a € N} form a topological basis
for Q¢, and is thus analogous to the classical Poincaré-Birkhoff-Witt theorem
for Lie algebras g over a field k which gives a vector space basis for the univer-
sal enveloping algebra U(g) in terms of monomials in a fixed basis for g [21].
Nevertheless we should bear in mind that explicit computations in 2 are often
much more difficult than those in U(g), since the Lie bracket of two generators
bi, b; for Q)¢ is in general an infinite power series with obscure coefficients.

3.2. EXAMPLE. Let p be odd for simplicity and let G = I'1(SL2(Z,)) be the
first congruence kernel of SLy(Z,). Then

(" p) 2= ) ()

is a topological generating set for G. Setting b; = a; — 1, elementary (but
tedious) computations yield

[b1,ba] = 2b8 mod JPH!
[b1,b5] = —2b5  mod JPtH!
[bg, b3] = bllj mod Jp+1.

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



12 K. ArpAKOV AND K. A. BROWN

Here J = b1Q¢ + b2Q¢ + b3Q2¢ denotes the Jacobson radical of Q. Using
Proposition 3.3 it is possible to produce more terms in the power series expan-
sion of [b1,bs] and [by,b3]. However, we consider [bs,bs] to be inaccessible to
computation.

3.3. SKEW POWER SERIES RINGS. It is well known that if g is a finite dimen-
sional soluble Lie algebra over a field k, then its universal enveloping algebra
U(g) can be thought of as an “iterated skew polynomial ring”:

U(g) = k[z1;01,01][20; 02, 02] - - [Zn; 0, O]

for some appropriate automorphisms o; and derivations d; (in fact, the ;s can
be chosen to be trivial). This is because any such Lie algebra g has a chain of
subalgebras

O=hoChChaC---Ch,=g

with h;—1 an ideal in b;, so choosing some z; € h;\h;—1 ensures that
Uhi) =U(Di—1)[m;04]

where §; is the derivation on U (h;—1) defined by §;(y) = z;y — yz;.
An analogous result holds for Iwasawa algebras. More precisely, we have the

PROPOSITION. Suppose that G has closed normal subgroup H such that G/H =
Zy. Then Qg is a skew power series ring with coefficients in Qg :

Q¢ = Qpllt; 0, 0]
Proof. See [41, §4]. O

Schneider and Venjakob [41] establish a general theory of skew power series
rings S = R[[t; 0, d]] over a pseudocompact ring R. Here ¢ can be any topo-
logical automorphism of R and § is a o-derivation in the sense of [29, 1.2.1],
satisfying some extra conditions which are required to make the relation

ta = o(a)t + d(a)

extend to a well-defined multiplication on S.

Consequently, the Iwasawa algebra g of any soluble uniform pro-p group G
can be thought of as an iterated skew power series ring over F,,.

For example, in Example 3.2, the topological subring of Q2 generated by b; and
bs is actually the Iwasawa algebra Qp where B = (a1, as) is a Borel subgroup
of GG. Since B is soluble with closed normal subgroup @, Q) p is isomorphic
to the skew power series ring Fp[[bs]][[b1; o, ]] for some appropriate o and 9.
This justifies the claim that the commutator of b; and bs is at least partially
accessible to computation.

There is surely considerable scope to develop further the “abstract” theory of
skew power series algebras initiated in [41] - for instance, one could easily pose
skew power series versions of a number of the questions we list later, in Section
6. As a prompt for more work, here are two “general” questions:
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QUESTION A. (1) Are there conditions on R,o and 6 such that S = R|[[t; 0, d]]
can be described without involving a derivation - that is, as S = R'[[t';0']],
possibly after some Ore localisation ?*

(2) Are there conditions on R,o and 0 such that every two-sided ideal of the
skew power series ring S = R|[[t;0,0]] is generated by central elements and
“polynomial” elements??

3.4. THE J-ADIC FILTRATION. We remind the reader that a filtration on a ring
R is an ascending sequence

- CFRRCF 1 RC--

of additive subgroups such that 1 € FyR, F;R.F;R C Fi ;R for all ¢,j € Z,
and UiEZFiR = R.

Let J denote the Jacobson radical of Q. The J-adic filtration on Q¢ is defined
as follows: FiQq = J ¢ for i < 0 and F;Q¢ = Q¢ for 4 > 0; this is an example
of a negative filtration. The basic tool which allows one to deduce many ring-
theoretic properties of Iwasawa algebras is the following result, which can be
deduced from Theorem 3.1, see [20, Theorem 7.24 and remarks on page 160].

We denote the associated graded ring @iEZ Fi11Q6/FiQa by gr;Qa.

THEOREM. The graded ring of Qg with respect to the J-adic filtration is iso-
morphic to a polynomial ring in d = dim G variables:

ary QG = Fp[Xl, SN ,Xd].
Moreover, Q¢ is complete with respect to this filtration.

The J-adic filtration is quite different from the filtrations encountered when
studying algebras like universal enveloping algebras and Weyl algebras, which
are nearly always positive (that is, F_1 R = 0) and often satisfy the finiteness
condition dimy F; R < oo for all i € Z. In particular, there is no well-behaved
notion of the Gel’fand-Kirillov dimension for Iwasawa algebras, a theme we will
return to in §5.
However, we are still able to lift many properties of the graded ring back to
Qa, because the J-adic filtration is complete, meaning that Cauchy sequences
of elements in Q¢ converge to unique limits. More precisely, recall [26, page
83] that a filtration on a ring R is said to be Zariskian, whenever

e The Jacobson radical of FyR contains F_1 R, and

e The Rees ring R := @D,c, FiR - t* C R[t,t™!] is noetherian.
Many filtrations are Zariskian. For example, by [26, Chapter II, Proposition
2.2.1], any complete filtration whose associated graded ring is noetherian is
necessarily Zariskian. Since any positive filtration is complete, it follows that
if a filtration is positive and has noetherian associated graded ring, then it is
Zariskian. More importantly for us, for any uniform pro-p group G, the J-
adic filtration on Q¢ is clearly complete, thanks to Theorem 2.5; and gr; Q¢ is

lCompare with [14].
2By the latter, we mean elements of R[t; 0, d].
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14 K. ArpAKOV AND K. A. BROWN

noetherian by Theorem 3.4 and Hilbert’s basis theorem, so the J-adic filtration
is Zariskian.

3.5. THE m-ADIC FILTRATION ON Ag. There is an analogue of Theorem 3.4
for the Z,—version of Iwasawa algebras Ag. Recall from (2.3) the lower p-series
P (G) 2 P(G) 2--- 2N, P(G) =1 of G and define an abelian group

R 1(S)
ng.—ZG:?H+1(G).

There is a natural way of turning gr G into a Lie algebra over F,[t], the poly-
nomial ring in one variable over F),: the Lie bracket on gr G is induced from
the Lie bracket on G described in [20, §4.5], and the action of ¢ is induced from
the p-power map. Then grG is a free ) [t]-module of rank equal to dim G. Let
m = ker(Ag — F,) be the F,-augmentation ideal of Ag, or equivalently, the
Jacobson radical of Ag.

THEOREM. The graded ring of Ag with respect to the m-adic filtration is iso-
morphic to the universal enveloping algebra of the F,[t]-Lie algebra gr G:

gro Ae =U(grG).
Moreover, Ag is complete with respect to this filtration.

Proof. See [39, §3.3] and [23, Chapter III, Theorem 2.3.3]. |

3.6. LIFTING INFORMATION FROM THE GRADED RING. We recall here some
standard properties of a ring R. First, we say that R is prime if the product
of any two non-zero ideals of R is again non-zero. By Goldie’s theorem [29,
Theorem 2.3.6], if R is prime and (right) noetherian then it has a simple artinian
classical (right) quotient ring Q(R). If S is another ring with classical right
quotient ring Q(R), so that Q(R) = Q(S), we say that R and S are equivalent
if there are units a,b,c and d in Q(R) such that aRb C S and ¢Sd C R. Now
R is a maximal (right) order if it is maximal (with respect to inclusion) within
its equivalence class, [29, 5.1.1]. (The adjective right is omitted if R is both a
maximal right order and a maximal left order.) The commutative noetherian
maximal orders are just the noetherian integrally closed domains [29, Lemma
5.3.3].

Let Rg denote the right R-module R. The Krull dimension (M) of a finitely
generated (right) module M over a noetherian ring R is a well-defined ordinal,
bounded above by K(Rpg); the precise definition can be found at [29, 6.2.2].
This concept generalises the classical commutative definition; like it, it mea-
sures the “size” of a module and is 0 if and only if the module is non-zero and
artinian.

The (right) global dimension of R is defined to be the supremum of the projec-
tive dimensions (denoted pd(—)) of the right R-modules, [29, 7.1.8]. When R
is noetherian, its right and left global dimensions are always equal, [29, 7.1.11].
We say that R has finite (right) injective dimension d if there is an injective
resolution of Rpr of length d, but none shorter. If R is noetherian and has
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finite right and left injective dimensions, then these numbers are equal by [45,
Lemma A]. It is also well known [39, Remark 6.4] that if the (right) global
dimension of the noetherian ring R is finite, then it equals the (right) injective
dimension of R.

It has become apparent over the past 40 years that, when R is noncommutative
and noetherian, finiteness of the injective dimension of R is a much less strin-
gent condition than is the case for commutative noetherian rings - the structure
of (commutative) Gorenstein rings is rich and beautiful. An additional hypoth-
esis which, when coupled with finite injective dimension, has proved very useful
in the noncommutative world is the Auslander-Gorenstein condition. To recall
the definition, note first that, for every left R-module M and every non-negative
integer i, Ext’(M, R) is a right R-module through the right action on R. The
Auslander-Gorenstein condition on a noetherian ring R requires that, when
M is a finitely generated left R-module, ¢ is a non-negative integer and N is
a finitely generated submodule of Ext’(M, R), then Ext?(N, R) is zero for all
j strictly less than 4; and similarly with “right” and “left” interchanged. We
say that R is Auslander-Gorenstein if it is noetherian, has finite right and left
injective dimensions, and satisfies the Auslander condition. Commutative noe-
therian rings of finite injective dimension are Auslander-Gorenstein. When R
is noetherian of finite global dimension and satisfies the Auslander-Gorenstein
condition it is called Auslander-regular.

THEOREM. Let R be a ring endowed with a Zariskian filtration F'R; then R is
necessarily noetherian. Also, R inherits the following properties from gr R:

(1) being a domain,

(2) being prime,

(3) being a mazimal order,

(4) being Auslander-Gorenstein,

(5) having finite global dimension,

(6) having finite Krull dimension.

Proof. See [26]. O
We immediately obtain from Theorem 3.4, Theorem 3.6 and Corollary 3.1, the

COROLLARY. If G is a uniform pro-p group, then Qg is a noetherian,
Auslander-reqular, scalar local domain which is a maximal order in its quo-
tient division ring of fractions.

4. EXTENSIONS OVER FINITE INDEX

For an arbitrary p-adic analytic group G, many fundamental properties of Q¢
(and of Ag) can be analysed using Corollary 3.6 and (2.3)(1).

4.1. COMPLETE NOETHERIAN (SEMI)LOCAL RINGS. Recall that a ring R is
semilocal if the factor of R by its Jacobson radical J(R) is semisimple artinian.
It is local if R/J(R) is simple artinian, and scalar local if R/J(R) is a division
ring. For a crossed product R = S H of a finite group H, like that in (2.3)(1),
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16 K. ArpAKOV AND K. A. BROWN

it’s not hard to show that J(S) C J(R), [31, Theorem 1.4.2]. From this,
Theorem 2.5 and Corollary 3.6, and their analogues for Ag, we deduce (1) of
the following. Both it and (2) were known to Lazard.

THEOREM. Let G be a compact p-adic analytic group.

(1) Qg and Ag are complete noetherian semilocal rings.
(2) Q¢ and Ag are (scalar) local rings if and only if G is a pro-p group.

4.2. PRIMENESS AND SEMIPRIMENESS. Recall that a ring R is prime if the
product of two nonzero ideals is again nonzero and that R is semiprime if it
has no nonzero nilpotent ideals. A prime ring is always semiprime, but not
necessarily conversely.

The characterisations of these properties for Iwasawa algebras given in the
theorem below exactly parallel the results for ordinary group algebras proved
in the early 1960s by I.G. Connell and D.S. Passman [32, Theorems 4.2.10
and 4.2.14]. However, the proofs here are quite different from the classical
setting; that the stated conditions are necessary is easy to see, but sufficiency
in (1) and (2) depends on Corollary 3.6 to handle the uniform case, together
with non-trivial results on crossed products of finite groups. Part (3) is much
easier - one can simply appeal to the fact (a consequence of Maschke’s theorem)
that the group ring of a finite group over a commutative coefficient domain of
characteristic zero is semiprime, together with the fact that, by definition, Ag
is an inverse limit of such group rings.

THEOREM. Let G be a compact p-adic analytic group.
(1) 5] Qg and Ag are prime if and only if G has no non-trivial finite
normal subgroups.
(2) 5] Q¢ is semiprime if and only if G has no non-trivial finite normal
subgroups of order divisible by p.
(3) (Neumann, [30]) Ag is always semiprime.

4.3. ZERO DIVISORS. There is a method, familiar from the treatment of or-
dinary group rings, which allows one to use homological properties to deduce
results about the non-existence of zero divisors in certain noetherian rings. In
its simplest form, which is all that is needed here, the statement is due to Walker
[42]: if R is a scalar local noetherian semiprime ring of finite global dimension,
then R is a domain.® This yields the following result; it was proved by Neu-
mann [30] for Ag, but for Q¢ it was necessary to wait first for semiprimeness
to be settled, as in Theorem 4.2(2).

THEOREM. Let G be a compact p-adic analytic group. Then Qg and Ag are
domains if and only if G is torsion free.

Proof. If 1 # x € G with 2" = 1, then (1 —2)(1 + a2+ ---2""!) = 0, so the
absence of torsion is clearly necessary. Suppose that G is torsion free. Since G

31t is a famous and long-standing open question in ring theory whether “semiprime” is
necessary in Walker’s theorem.
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has a pro-p subgroup of finite index by (2.4), its Sylow g-subgroups are finite
for primes ¢ not equal to p. Since G is torsion free these subgroups are trivial,
so G is a pro-p group. Therefore Qg and Ag are scalar local and noetherian
by Theorem 4.1. The other conditions needed for Walker’s theorem are given
by Theorems 4.2(2) and (3) and Theorem 5.1. O

4.4. MAXIMAL ORDERS. It might seem natural to suppose, in the light of The-
orem 3.6(3), that whenever Ag or Q¢ are prime then they are maximal orders.
This guess is wrong, though, as the following example shows. First, recall from
[29, 5.1.7] that if R is a ring and M is an R-module, then M is said to be reflex-
ive if the natural map M — M** = Hom(Hom(M, R), R) is an isomorphism.
Also, recall [29, Chapter 4] that the ideal I of R is said to be localisable if the
set Cr(I) of elements of R which are regular modulo I is an Ore set in R.

EXAMPLE: Let D := Ax(y), where A is a copy of Zs and  is the automorphism
of order 2 sending each 2-adic integer to its negative. Since D is a pro-2 group
with no non-trivial finite normal subgroups, Theorems 4.1 and 4.2 show that
Qp and Ap are prime noetherian scalar local rings. But it’s not hard to see
that neither of these algebras is a maximal order: for 2, observe that it is local
with reflexive Jacobson radical J which is not principal, impossible for a prime
noetherian maximal order by [28, Théoreme IV.2.15]; for Ap, the kernel of the
canonical map to Z, is a reflexive prime ideal which is not localisable by [4,
Theorem A and Lemma 4.1], impossible in a maximal order by [28, Corollaire
IV.2.14]. We therefore ask:

QUESTION B. When are Qg and Ag mazimal orders?

Since the powerful structural results [15], which can be obtained for certain quo-
tient categories of the category of finitely generated modules over a noetherian
maximal order, are potentially important tools in arithmetic applications [18],
this question is of more than passing interest.

In the next three paragraphs we offer a conjecture for the answer to Question
B, and give some evidence in its support.

4.5. CONJECTURED ANSWER TO QUESTION B. We will need some group-
theoretic notions. Let H be a closed subgroup of a compact p-adic analytic
group G. We say that H is orbital if H has finitely many G-conjugates, or
equivalently if its normaliser N = Ng(H) has finite index in G. We say that
an orbital subgroup H is isolated if N/H has no non-trivial finite normal sub-
groups.

We will say that G is dihedral-free if, whenever H is an orbital closed subgroup
of G with dimH = 1, H is isomorphic to Z,. This seems to be the correct
generalisation of the definition in [9)].

CONJECTURE. Let G be a compact p-adic analytic group, and suppose Qg is
prime. Then Qg is a mazximal order if and only if G is dihedral-free.
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4.6. NECESSARY CONDITIONS ON (. We fix a prime p and assume throughout
this paragraph that G is a compact p-adic analytic group.

PROPOSITION. Suppose Qg is a prime mazximal order and let H be a closed
normal subgroup of G with dim H = 1. Then H is pro-p.

Proof. We may assume that H is isolated, so G/H has no non-trivial finite
normal subgroups. Hence, by Theorem 4.2(1), wy = ker(Qa — Qg/u) is a
prime ideal of Q¢, and it is not hard to see that it is also a reflexive ideal.*
Now because Qg is a maximal order and wg is a prime reflexive ideal, it must
be localisable [28, Corollaire IV.2.14].

But the conditions needed for augmentation ideals to be localisable are known
[5, Theorem E|: H/F must be pro-p, where F is the largest finite normal p’-
subgroup of H. Since H is normal in G and G has no non-trivial finite normal
subgroups by Theorem 4.2(1), F = 1 and H is pro-p as required. O

We need the following group-theoretic lemma. We first set € to be 1 for p odd,
and € = 2 if p = 2, and define, for a closed normal uniform subgroup N of G,
Eq(N) to be the centraliser in G of N/N?°, [5, (2.2)].

LEMMA. Suppose that G is a pro-p group of finite rank with no non-trivial
finite normal subgroups. Let N be a mazimal open normal uniform subgroup
of G. Then

Ec(N)=N.

Proof. Recall that F = E¢(N) is an open normal subgroup of G containing N.
If E strictly contains N then E/N must meet the centre Z(G/N) non-trivially
since G/N is a finite p-group by [20, Proposition 1.11(ii)]. Pick € E\N such
that xN € Z(G/N); then H = (N,z) is normal in G by the choice of x, and
also H is uniform by [5, Lemma 2.3]. This contradicts the maximality of N. O

Recall from Example 4.4 that D denotes the pro-2 completion of the infinite
dihedral group.

COROLLARY. Let H be a pro-p group of finite rank with no non-trivial finite
normal subgroups. Suppose that dim H = 1. Then H = Z,, unless p = 2 and
H is isomorphic to D.

Proof. Choose a maximal open normal uniform subgroup N of H. By the
lemma, H/N — Aut(N/NP?°). If p is odd, [N : N?| = p, so the latter au-
tomorphism group is just F,. Since H/N is a p-group by [20, Proposition
1.11(ii)] again, H =N =2 Z,. f p=2and H > N, H = D. |

This gives us the following weak version of one half of the conjecture. To
improve the result from “normal” to “orbital” will presumably require some
technical work on induced ideals.

4One quick way to see this uses the canonical dimension from (5.4):  since

Cdim(Qg/wy) = dim(G/H) = dim G — 1 and since Q¢ is Auslander-Gorenstein, wy is
reflexive by Gabber’s Maximality Principle [36, Theorem 2.2].
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COROLLARY. Suppose (g is a prime mazximal order. Then any closed normal
subgroup H of G of dimension 1 is isomorphic to Z,.

Proof. When p is odd the statement is immediate from the proposition and
corollary above. So suppose that p = 2. We have to rule out the possibility
that H = D, so suppose for a contradiction that this is the case. Then, as
in the proof of the proposition, wy is a prime reflexive, and hence localisable,
ideal of Qg. Let R denote the local ring (2G)w, , which has global dimension
one by [28, Théoréme 1V.2.15]. Let C' = (c) be a copy of the cyclic group
of order 2 in H. Then FoC' C Q¢ and Q¢ is a projective FoC-module by [11,
Lemma 4.5]. Thus R is a flat FaC-module. Since ¢+1 € J(R), the FoC-module
R/J(R) is a sum of copies of the trivial module, so

o0 = pdy,c(F2) = pdp,c(R/J(R)) < pdgr(R/J(R)) = 1.
This contradiction shows that the only possibility for H is Zs. O

4.7. SUFFICIENT CONDITIONS ON (. We use the following result, essentially
due to R. Martin:

PROPOSITION. [27] Let R be a prime noetherian maximal order and let F be a
finite group. Let S = R« F be a prime crossed product. Then S is a mazimal
order if and only if

(a) every reflexive height 1 prime P of S is localisable, and
(b) gld(Sp) < oo for all such P.

Proof. Conditions (a) and (b) hold in any prime noetherian maximal order, [28,
Théoreme IV.2.15]. Conversely, suppose that (a) and (b) hold. We use the Test
Theorem [27, Theorem 3.2]. Condition (i) of the Test Theorem is just condition
(a). We claim that if P is as in the theorem, then gld(Sp) = 1. It’s easy to
check that P N R is a semiprime reflexive ideal of R, so that the localisation
Rpng exists and is hereditary by [28, Théoreme IV.2.15]. Thus Rpngr * F has
injective dimension 1 by [5, Corollary 5.4]. But Sp is a localisation of Rpng* F),
so - given (b) and the comments in (3.6) - gld(Sp) < 1. The reverse inequality is
obvious, so our claim follows. Condition (ii) now follows from [27, Proposition
2.7]. Condition (iii) follows from the proof of [27, Lemma 3.5] and condition
(iv) follows from [27, Remark 3.6 and Lemma 3.7]. O

LEMMA. Let G be a pro-p group of finite rank with no non-trivial finite normal
subgroups. Then every reflexive height 1 prime of Qg is localisable.

Proof. Let P be a reflexive height 1 prime of (2. Choose an open normal
uniform subgroup N of G. Then Qy is a maximal order by Corollary 3.6. Set
G :=G/N. Now let Q = PN Qy - it is easy to see [27, Remark 3.6] that this
is a height 1 reflexive G-prime ideal of Q. Indeed, Q is the intersection of a
G-orbit of reflexive prime ideals {Py, ..., P,} of Qx.

Since each P; is localisable by [28, Théoréme IV.2.15], @ is localisable. In other
words, the subset C := Cq, (Q) = N ,Ca, (P;) is a G-invariant Ore set in Q.
An easy calculation [32, proof of Lemma 13.3.5(ii)] shows that C is an Ore set
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in Qg. In other words, the semiprime ideal A = \/Qq is localisable in Qg
and

(QN)Q x G (Qg)A.
Since G is a p-group, A = P by [31, Proposition 16.4] and the result follows. [J

COROLLARY. Let G be a torsion free compact p-adic analytic group. Then Qg
18 a prime maximal order.

Proof. Suppose that G is as stated. Since G has a pro-p open subgroup, the
Sylow g-subgroups of G are finite, and hence trivial, for all primes g not equal
to p. That is, G is a pro-p group. Thus the corollary follows from the lemma
and the proposition, since gld Q¢ is finite by Theorem 5.1. |

5. DIMENSIONS

5.1. GLOBAL DIMENSION. The situation as regards the global dimension of 2
and Ag is completely understood, and depends fundamentally on properties
of the cohomology of profinite groups - in particular behaviour under finite
extensions - due to Serre [34]. The result is due to Brumer [11, Theorem
4.1] who computed the global dimension of the completed group algebra of an
arbitrary profinite group G with coefficients in a pseudo-compact ring R. As a
consequence of his work, we have

THEOREM. Let G be a compact p-adic analytic group of dimension d. Then Qg
and Ag have finite global dimension if and only if G has no elements of order
p, and in this case

gld(Qg)=d and gld(Ag)=d+1.

5.2. AUSLANDER-GORENSTEIN RINGS. Recall that the group algebra of an ar-
bitrary finite group over any field is a Frobenius algebra [44, Proposition 4.2.6],
and thus is self-injective. It should therefore come as no surprise that injective
dimension is well-behaved for Iwasawa algebras. In fact, much more is true:

THEOREM. [5, Theorem J| Let G be a compact p-adic analytic group of dimen-
sion d. Then Qg and Ag are Auslander-Gorenstein rings of dimensions d and
d + 1 respectively.

This result was first proved by O. Venjakob [39] and is easy to deduce from
Theorem 3.6(4) and Theorem 5.1, as follows. Let H be an open uniform normal
subgroup of G. Then Q and Ay are Auslander-Gorenstein by Theorem 3.6(4),
and the dimensions are given by Theorem 5.1. Now apply (2.3)(1): a simple
lemma [5, Lemma 5.4] shows that

(1) Extg,, (M, Qq) = Extg,, (M, Q)

for all 4 > 0 and all 2g-modules M, with a similar isomorphism for Ag, and
the result follows.
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5.3. DIMENSION FUNCTIONS FOR AUSLANDER-GORENSTEIN RINGS. We recall
from [24] the basics of dimension theory over an Auslander-Gorenstein ring R.
Write d for the injective dimension of R. The grade j(M) of a finitely generated
R-module M is defined as follows:

§(M) = min{j : Ext}(M, R) # 0}.

Thus j(M) exists and belongs to the set {0,...,d} U {+o0}. The canonical
dimension of M, Cdim(M) is defined to be

Cdim(M) = d — j(M).

It is known [24, Proposition 4.5] that Cdim is an exact, finitely partitive di-
mension function on finitely generated R-modules in the sense of [29, §6.8.4].
That is,
e Cdim(0) = —o0;
e if0 — N — M — T — 0 is an exact sequence of finitely generated
modules, then Cdim(M) = max{Cdim(N), Cdim(T")};
e if MP =0 for a prime ideal P of R, and M is a torsion R/P-module,
then Cdim(M) < Cdim(R/P) — 1;
e if Cdim(M) =t then there is an integer n such that every descending
chain M = My D My 2 -+ 2O M; 2 M;41--- of submodules of M has
at most n factors M;/M; 1 with Cdim(M;/M; 1) = t.

The ring R is said to be grade symmetric if
for any R—R-bimodule M which is finitely generated on both sides.® The

triangular matrix ring ( ) over a field k gives an easy example of an

0 k
Auslander Gorenstein ring which is not grade symmetric.

The existence of an exact, finitely partitive, symmetric dimension function for
the finitely generated modules over a noncommutative noetherian ring R is a
very valuable tool which is often not available: the Gel'fand-Kirillov dimen-
sion [29, §8.1] - although symmetric - is often not defined; and although the
Krull dimension is always defined [29, §6.2], it is a long-standing open question
whether it is symmetric in general. As we shall see in the next paragraph, the
canonical dimension function fulfils these requirements for an Iwasawa algebra.
If 6 is a dimension function on finitely generated R-modules, we say that R is
Cohen-Macaulay with respect to ¢ if §(M) = Cdim(M) for all finitely generated
R-modules M.

This definition is consistent with, and therefore generalises, the definition from
commutative algebra. To see this, suppose that R is a commutative noetherian
ring of dimension d. Suppose that R is Cohen-Macaulay [12, Definition 2.1.1],
and let M be a finitely generated R-module with Krull dimension K(M). Note

5Alternatively, we can say in these circumstances that the dimension function Cdim is
symmetric.
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that if R is an affine (i.e. finitely generated) k-algebra, this equals the Gel’fand-
Kirillov dimension of M. Then

(1) J(M) +K(M) = d,

[12, Corollary 2.1.4 and Theorem 1.2.10(e)]. And conversely, if (1) holds for all
simple R-modules M, then R is Cohen-Macaulay [12, Theorem 1.2.5].

5.4. CANONICAL DIMENSION FOR (lg. We continue in this paragraph to as-
sume that G is a compact p-adic analytic group of dimension d. Fix an open
uniform normal subgroup H of G, and let M be a finitely generated 2g-module.
By Theorem 5.2 and paragraph (5.3), and with the obvious notation, Cdimg(—)
and Cdimg (—) are well-defined dimension functions, and in fact (5.2)(1) shows
that

(1) Cdimp (M) = Cdimg (M).

In particular, in studying the canonical dimension we may as well assume that
G = H is uniform, which we now do. Hence, by Theorem 3.4, the graded ring
of Q)¢ is a polynomial [Fj,-algebra in d variables.

Choose a good filtration for M (F,,M = MJ~" for n < 0 will do) and form
the associated graded module gr M. Because the J-adic filtration is Zariskian,
it follows from [8, Remark 5.8] that

(2) j(gr M) = j(M).
Moreover, from this and the concluding remarks of (5.3) we see that
(3) K(gr M) = Cdim(gr M) =d — j(M).

(This shows, incidentally, that K(gr M) is actually independent of the choice
of good filtration on M.)® Combining (2) and (3), we find that

Cdim(M) =d — j(M) = Cdim(gr M) = K(gr M) = GK(gr M)
for any choice of good filtration on M. This proves the last part of the

PROPOSITION. Let G be a compact p-adic analytic group.

(1) Q¢ is grade-symmetric.

(2) Qg is ideal-invariant with respect to Cdim.

(3) Suppose that G is uniform. Then for all finitely generated Qg-modules

M,
Cdim(M) = GK(grM).

Proof. (1) In view of (5.4)(1) we can and do assume that G is uniform. Write
J for the Jacobson radical of Qs and let M be a finitely generated g-
module. Then by the definition of the Gel’'fand Kirillov dimension [29, §8.1.11],
GK(gr M) is the growth rate y(f) of the function

f(n) = dim M

SConsider (3) with M the trivial Qg-module Fp. Then K(gr M) = 0, so j(M) = d and
therefore the injective dimension of Qg actually equals d, providing another proof of the
numerical part of Theorem 5.1.
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note that this function is eventually polynomial because the finitely generated
gr Qg-module gr M has a Hilbert polynomial.

Now let N be an Q¢-bimodule, finitely generated on both sides. Then NJ is a
sub-bimodule, and N/N.J is finite dimensional over F,, because N is a finitely
generated right Qg-module. Hence N/NJ is also a finite dimensional left Q-
module and as such is killed by some power of J, J* say. Thus J*N C NJ and
similarly there exists an integer b > 1 such that NJ® C JN. An easy induction
on n shows that

(1) JON C N C J*N

for all n > 0. Letting f(n) = dim = and g(n) = dim 525, we obtain

TN
g(n) < f(bn) < g(abn)

for all n > 0. It follows that Cdim(Nq,) = 7(f) = v(g9) = Cdim(q,/N),
proving part (1).

For part (2), recall [29, 6.8.13] that a ring R is said to be ideal-invariant with
respect to a dimension function ¢ if §(M ®@rI) < §(M) for all finitely generated
right R-modules M and all two-sided ideals I of R and if the left-hand version
of this statement also holds.

In fact, we will show that

(4) Cdim(M ®q,, N) < Cdim(M)

for any finitely generated Qg-module M and any Qg-bimodule N, finitely
generated on both sides.” Let M and N be as above, and let H be an open
uniform normal subgroup of G. Since there is an Q g-epimorphism M ®q, N —
M ®q. N, (5.2)(1) shows that we can replace G by H in proving (4); that is,
we now assume that G is uniform.

Choose the integer a as above so that J*”N C NJ" for all n > 0. Fix n and
let

f(n) =dim M 9, N >

d =di —_c
M an g(n) im ((M Don N).J”
Note that (M ®q. N).J" equals the image of M ®q, NJ" in M ®q., N so the
right-exactness of tensor product gives

N N M N

M ®QG N ®QG )
Jan N NJn (M ®q, N).J"
Now we have a natural isomorphism of right Q2g-modules
N M
M®0q Fany = npgon @0 N

and picking a finite generating set of size t for the left Qg-module N shows

that
M M
. M < . 1
dim (MJ“” R N) < (dlm MJ“”) t

7Compare this with [29, Proposition 8.3.14].

M®QG(

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 7-33



24 K. ArpAKOV AND K. A. BROWN

Hence
. M ®q, N . N
= B — T < M _ < .
g(n) = dim ((M Do N).J”) < dlm( ®ae <J“”N>) < f(an) -t
for all n > 0, so Cdim(M ®q, N) =~(9) < v(f) = Cdim(M) as required. [

The above proposition is due to the first author; it was inspired by a result of
S. J. Wadsley [43, Lemma 3.1].

5.5. CHARACTERISTIC VARIETIES. Assume in this paragraph that G is uni-
form. Let M be a finitely generated 2g-module. There is another way of
seeing that K(gr M) does not depend on the choice of good filtration for M, as
follows. It is well known [26, Chapter III, Lemma 4.1.9] that

J(M) = 4/Anng, o (gr M)

is independent of this choice. Standard commutative algebra now gives

o0 (535).

as claimed.

The graded ideal J(M) is called the characteristic ideal of M, and the affine
variety Ch(M) defined by it is called the characteristic variety of M. Thus we
obtain yet another expression for the canonical dimension of M:

(2) Cdim(M) = dim Ch(M).

The characteristic variety is defined in an entirely analogous fashion for finitely
generated modules over enveloping algebras and Weyl algebras A, (C). In that
setting it enjoys many pleasant properties, in addition to the simple formula
(2). In particular, there exists a Poisson structure on Ch(M), which gives more
information about M through the geometric properties of the characteristic va-
riety. For example, the fact that the characteristic variety of a finitely generated
A, (C)-module is integrable can be used to prove the Bernstein inequality.

QUESTION C. Is there a way of capturing more information about M in the
characteristic variety Ch(M)?

The naive method (mimicking the construction of the Poisson structure in the
enveloping algebra case) seems to fail because derivations are not sufficient
when studying algebras in positive characteristic: they kill too much. Pre-
sumably, if the answer to the above question is affirmative, then differential
operators in characteristic p will play a role.

5.6. No GK-DIMENSION. The theory outlined in the previous sections will
sound very familiar to the experts. However, Iwasawa algebras are not Cohen
Macaulay with respect to the GK dimension. This is easily seen by decoding
the definition of GK dimension in the case when G' = Z,: in this case, g is
isomorphic to the one-dimensional power series ring F,[[t]], which (being un-
countable) contains polynomial algebras over F, of arbitrarily large dimension.
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Thus GK(Qg) = oo for any infinite G, since any such G will contain a closed
subgroup isomorphic to Z,.

If one tries to brush this problem away by replacing the GK dimension by the
canonical dimension, then one has to be careful not to fall into the following
trap.

Recall [29, Lemma 8.1.13(ii)] that if R C S are affine k-algebras over a field k,
then for any finitely generated S-module M,

(3) GK(N) < GK(M)

whenever N is a finitely generated R-submodule of M. This enables one to
“pass to subalgebras of smaller dimension” and use inductive arguments on the
GK dimension - a ploy used, for example, in the computation of the Krull di-
mension of U (sl2(C)) by S.P. Smith [29, Theorem 8.5.16]. Another consequence
of this property of GK dimension is that it is impossible to find an embedding
R — S of k-algebras such that GK(R) > GK(S5).

Unfortunately, (3) fails for Iwasawa algebras, if one tries to replace the GK
dimension by the canonical dimension. This is due to the following pathological
example:

ExAMPLE. [38, Chapter VII, page 219] There exists a continuous embedding
of Fp-algebras

Qg — Qpn
where dim G = 3 and dim H = 2.

Proof. Let G = Zf; and H = Zf,. By Theorem 3.1 we can identify Qg with
the three-dimensional power series ring Fp[[z,y,2]] and Qg with the two-
dimensional power series ring F[[a, b]].

Because F,[[a]] is uncountable, we can find an element u = u(a) € aFp[[a]] such
that the IFp-algebra generated by a and u is isomorphic to the two-dimensional
polynomial ring F,[a,u]. Define 0 : Fp[[z,y, z]] — F,[[a,b]] to be the unique
continuous IFp-algebra map such that

O(x)=0b, O(y)=ab, 6(z)=ub.
We have

o0
0 E rxyﬂyl,:v’\y“z” :E b" E T ppalu’

A, u,VvEN n=0 Ap+rv=n
This shows that # is an injection, as required. O
One can of course concatenate these embeddings and produce a continuous

embedding of ¢ into F,[[a, b]] for abelian uniform pro-p groups G of arbitrarily
large dimension. Here is the actual counterexample to the analogue of (3).

EXAMPLE. There exist uniform pro-p groups H C G, a finitely generated
Qa-module M and a finitely generated Qp-submodule N of M such that
Cdim(M) = 2, but Cdim(N) = 3.
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Proof. Let R = Fplla,b,c,d]] and S = Fp[[b,c,d]]. Let I be the ideal of R
generated by ¢ — ab and d — u(a)b where u(a) is chosen as in the previous
example and let M = R/I. By construction, the graded ideal gr I is generated
by the symbols of ¢ and d, so

Cdim(M) =K(gr M) = 2.

Now if r € I'NS, then 6(r) = 0, letting 0 : F,[[b, ¢, d]] — F,[[a, b]] be as above.
Hence r = 0, so S — R/I = M. Therefore the cyclic S-submodule N of M
generated by 1+ I is actually free, so Cdim(N) = 3. O

5.7. KRULL DIMENSION. The Krull-(Gabriel-Rentschler) dimension of Q¢ was
first studied by one of the authors in [1]. An immediate upper bound of dim G
can be obtained using Theorem 3.6, or if one prefers, using [7, Corollary 1.3].
Here is a result covering a large number of cases.

THEOREM. [1, Theorem A and Corollary C] Let G be a compact p-adic analytic
group, and let g be the Qp,-Lie algebra of an open uniform subgroup of G. Let ¢
denote the soluble radical of g and suppose that the semisimple part g/t of g is
a direct sum of some number of copies of 12(Q,). Then

K(Q¢g) = dimG.

In particular, £(Q2g) equals dim G whenever G is soluble-by-finite. The main
idea in the proof is to obtain a lower bound on the Krull dimension of 24 for
any compact p-adic analytic group GG. Namely, with g as in the theorem, and
writing A(g) for the length of the longest chain of subalgebras of g, we have

Ag) < K(Qq).
QUESTION D. With the above notation, is K(Qg) = A(g) in general?

It is easy to see that A(g) = A(n) + A(g/n) whenever n is an ideal of g. Let N
be a closed uniform subgroup of G with Lie algebra n.

QUESTION E. Is K(Qg) = K(Qn) + K(Qg/n)?

Aside from its intrinsic interest, an affirmative answer to Question E would
obviously reduce Question D to the study of almost simple groups G, (where
we say that a uniform pro-p group G is almost simple provided its Lie algebra
has no non-trivial ideals).

The classical split simple Lie algebras are the first examples to study. Given
such a Lie algebra g, choose a Borel subalgebra b and a Cartan subalgebra t.
Then it is easy to produce a chain of subalgebras of g of length dim b + dim t.

QUESTION F. For G almost simple and split, is K(2¢) = dimb + dimt ¢

Question F has an affirmative answer in the two smallest cases: g = slx(Q,)
and g = sl3(Q,). In particular,

THEOREM. [1, Theorem B|. Let G be a uniform pro-p group with Q,-Lie alge-
bra sl3(Qp). Then Qg is a scalar local complete noetherian domain of global

dimension 8, with
K(Qe)=T17.
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The main idea of the proof of this last result is to show that {2 has no finitely
generated modules whose canonical dimension equals precisely 1; that is, there
is a “gap” at Cdim = 1.8 The extra dim t term in our conjectured formula for
K () comes from the fact that Q¢ is scalar local - this fact is used crucially
in the proof of the lower bound for the Krull dimension of Q.

6. TWO-SIDED IDEAL STRUCTURE

6.1. One of the first questions asked when studying a noetherian algebra R
is “what are its two-sided ideals?” It is usually sensible to focus first on the
prime ideals of R.

One way of answering the above question is to give a reduction to the commuta-
tive case. This is a recurring theme in noncommutative algebra. For example,
if R = k[G] is the group algebra of a polycyclic group G over a field k, the
paper [33] by J. E. Roseblade achieves this, “to within a finite group”.? Similar
results hold for universal enveloping algebras U(g) of finite dimensional soluble
Lie algebras over a field k: see [21] and [29, Chapter 13]. As for the case when
g is semisimple, one can view the huge body of research on the primitive ideals
of U(g) as an analysis of the failure of the naive hope that these primitive ideals
should be generated by their intersection with the centre of U(g), [21]. And
for quantised function algebras of semisimple groups, and many related quan-
tum algebras, there are “stratification theorems” which describe their prime
and primitive spectra as finite disjoint unions of affine commutative pieces, [10,
Theorem I1.2.13].

Unfortunately, no such results are currently known for Iwasawa algebras - see
below for a summary of what little is known. Alleviation of this state of gross
ignorance would seem to be the most pressing problem in the subject.
Because of the crossed product decomposition (2.3)(1) and the going up and
down theorems for crossed products of finite groups [31, Theorem 16.6], one
should naturally first concentrate on the case when G is uniform.

6.2. IDEALS ARISING FROM SUBGROUPS AND FROM CENTRES. Since centrally
generated one-sided ideals are necessarily two-sided, it helps to know the centre
of the ring in question. However the centre of Iwasawa algebras is not very big:

THEOREM. [2, Corollary A] Let G be a uniform pro-p group and let Z be its
centre. Then the centre of Qg equals Q7 and the centre of Ag equals A .

Thus when the centre of G is trivial (and this happens frequently), ¢ has no
non-trivial centrally generated ideals. This is one place where the analogy with
enveloping algebras of semisimple Lie algebras breaks down.

8A similar idea was used by Smith [35] in giving an upper bound for the Krull dimension
of U(g) when g is a complex semisimple Lie algebra. We note in passing that /C({/(g)) when
g is complex semisimple has been recently proved to be equal to dim b by Levasseur [25],
answering a long-standing question in the affirmative.

9See [31, Chapter 5] for more details.
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One can also produce two-sided ideals by using normal subgroups. Certainly
when H is a closed normal subgroup of G, the augmentation ideal

wg = ker(Qg — Qg/p)

is a two-sided ideal of Q¢ and we can tell whether it is prime or semiprime using
Theorem 4.2. As for Ag, H yields two augmentation ideals: the inverse image
vy of wy under the natural projection Ag — Q¢ and “the” augmentation
ideal

IH = ker(AG — AG’/H)-

The behaviour of these ideals regarding localisation is quite well understood:

THEOREM. Let H be a closed normal subgroup of the compact p-adic analytic
group G and let F be the largest finite normal subgroup of H of order coprime
to p. Then

(1) [5] wg and vy are localisable if and only if H/F is pro-p,

(2) [4] Iy is localisable if and only if H is finite-by-nilpotent.

These results were prompted by the formulation of the Iwasawa Main Conjec-
ture by Coates et al in [19]. Localisation techniques play an important role
in the construction of characteristic elements for suitable Ag-modules. For
number-theoretic reasons, it is assumed in [19] that the subgroup H actually
satisfies G/H = Z,: in arithmetic applications, G arises as the Galois group of
a certain extension K of QQ containing the cyclotomic Z,-extension Q%°, and
H is taken to be Gal(K/Q%¢). The characteristic elements all lie inside the
Kj-group of the localisation of Ag at the Ore set

Cac(vn) x {1,p,9%, ...},

where N is the largest closed normal pro-p subgroup of G which is open in H.
For more details, see [19, §2], [6] and [5, Theorem GI.

Notwithstanding the above, the most embarrassing aspect of the state of our
knowledge about ideals of Iwasawa algebras is the lack of examples. In particu-
lar, we’ve noted that central elements and closed normal subgroups give rise to
ideals. This suggests the following improperly-posed question, for which we’ll
suggest more precise special cases in the succeeding paragraphs.

QUESTION G. Is there a mechanism for constructing ideals of ITwasawa algebras
which involves neither central elements nor closed normal subgroups?

One way to begin the study of prime ideals is to look first at the smallest
non-zero ones - that is, the prime ideals of height one. With one eye on the
commutative case and another on the results of (4.4) on maximal orders, one
can ask when they are all principal. Here are two slightly more precise ways to
ask this question:

QUESTION H. When is Qg a unique factorisation ring in the sense of [16]7
QUESTION 1. When G is uniform, is every reflexive prime ideal of Q¢ princi-

pal?
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6.3. THE CASE WHEN G IS ALMOST SIMPLE. Recall that the compact p-adic
analytic group G is almost simple if every non-trivial closed normal subgroup
of G is open (5.7). For such groups the constructions of (6.2) do not produce
anything interesting because Q¢ /wpy is artinian and hence finite dimensional
over [, for any closed normal subgroup H # 1. So Question G specialises here
to

QUESTION J. Let G be an almost simple uniform pro-p group and let P be a
nonzero prime ideal of Q. Must P be the unique maximal ideal of Qg ?

We remind the reader that x € Qg is normal if Q¢ = Qgx. Another closely
related question is

QUESTION K. Let G be as in Question J, with G % Z,. Must any nonzero
normal element of Qg be a unit?

In [22], M. Harris claimed that, for G as in Question J, any closed subgroup
H of G with 2dim H > dim G gives rise to a non-zero two-sided ideal in Qg,
namely the annihilator of the “Verma module” constructed by induction from
the simple Qg-module. Unfortunately his paper contains a gap, so Question J
remains open. Some slight evidence towards a positive answer is provided by

THEOREM. [3, Theorem A] Suppose that G is an almost simple uniform pro-p
group and that the Lie algebra of G contains a copy of the two-dimensional
non-abelian Lie algebra. Then for any two-sided ideal I of Q¢,

K(Qe/I) # 1.

Recall [29, §6.4.4] that if R is a noetherian ring with I(R) < oo, the classical
Krull dimension dim R of R is the largest length of a chain of prime ideals of
R. We always have dim R < IC(R); an easy consequence of the above result is

dim(Qg) < dim G
whenever GG satisfies conditions of the Theorem.

6.4. THE CASE WHEN G IS NILPOTENT. Towards the opposite end of the
“spectrum of commutativity” from the almost simple groups lie the nilpotent
groups. Motivated by analogous results for enveloping algebras of nilpotent
Lie algebras [21, Chapter 4] and for group algebras k[G] of finitely generated
nilpotent groups G [33, Theorem E], we ask

QUESTION L. Let G be a nilpotent uniform pro-p group with centre Z and let
I be a nonzero ideal of Q¢. Does I contain a non-zero central element? That
18, 1s I NQy nonzero?

S. J. Wadsley has shown that Question L has an affirmative answer in the
case when G is one of the simplest possible nonabelian nilpotent uniform pro-p
groups:

THEOREM. [43, Theorem 4.10] Let G be a uniform Heisenberg pro-p group with
centre Z and let I be a nonzero two-sided ideal of Qq. Then INQz # 0.
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A uniform pro-p group G is said to be Heisenberg provided its centre Z is
isomorphic to Z, and G/Z is abelian. The main idea of the proof of the above
result is to show that for any integer ¢, any finitely generated Qg-module M
satisfying Cdim(M) < dim G/Z — t is actually finitely generated over “most”
subalgebras Qp satisfying Z < H and dim G/H =t [43, Theorem 3.10].

In a more precise version of Question L, one might also hope that, when G is
nilpotent, “small” prime ideals I in Qg are controlled by Qz; that is

I= (Iﬂgz)gg.

Question O suggests a more general version of this.

Moreover, one might even hope that arbitrary ideals of these Iwasawa alge-
bras of nilpotent groups are constructed by means of a sequence of centrally
generated ideals - that is, one can ask:

QUESTION M. Suppose that G is a nilpotent uniform pro-p group. If I is an
ideal of Q¢ strictly contained in J(Qg), is there a non-zero central element in
J(Qg) /1?2 10

6.5. THE CASE WHEN G IS SOLUBLE. Given the parallels pointed out in (3.3)
between the Iwasawa algebras of uniform soluble groups and the enveloping
algebras of finite dimensional complex soluble Lie algebras, it is natural to
wonder whether properties known for the latter case might also be valid in the
former. We give two sample questions of this sort. Recall for the first that a
prime ideal P of the ring R is completely prime if R/P is a domain.

QUESTION N. Let G be a soluble uniform pro-p group.
(i) Is every prime ideal of Qc completely prime? 1
(ii) Is the prime spectrum of Qg the disjoint union of finitely many commu-
tative strata (along the lines of [10, Theorem I1.2.13], but with necessarily
non-affine strata)?

The simple possible nonabelian soluble case has been studied by O. Venjakob:

THEOREM. [40, Theorem 7.1] Let G = X XY be a nonabelian semidirect product
of two copies of Z,. Then the only prime ideals of Q¢ are 0,wx and J(Qg),
and each one is completely prime. Moreover, wx 1is generated by a mormal
element.

An example of such a nonabelian semidirect product is provided by the group
B = (a1, a2) considered in Example 3.2.

Following J. E. Roseblade and D. S. Passman [33, §1.5], we define the Zalesskii
subgroup A of the soluble uniform pro-p group G to be the centre of the largest
nilpotent closed normal subgroup H of G. We say that an ideal I of Q¢ is
faithful if G acts faithfully on the quotient Q¢/I. If Question L has a positive
answer, then it’s possible that a more general statement is true:

10Compare with [21, Proposition 4.7.1(i)].
HGompare with [21, Theorem 3.7.2].
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QUESTION O. Let G be a soluble uniform pro-p group. Is every faithful prime
ideal of Qg controlled by the Zalesskii subgroup A of G ¢
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ABSTRACT. In this paper we investigate the image of the [-adic represen-
tation attached to the Tate module of an abelian variety over a number
field with endomorphism algebra of type I or I in the Albert classifica-
tion. We compute the image explicitly and verify the classical conjectures
of Mumford-Tate, Hodge, Lang and Tate for a large family of abelian va-
rieties of type I and II. In addition, for this family, we prove an analogue
of the open image theorem of Serre.
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1. INTRODUCTION.

Let A be an abelian variety defined over a number field F. Let [ be an odd
prime number. In this paper we study the images of the [-adic representation
pi: Gp — GL(T;(A)) and the mod [ representation p, : Gp — GL(A[l]) of
the absolute Galois group Gp = G(F/F) of the field F, associated with the
Tate module, for A of type I or II in the Albert classification list c¢f. [M]. In
our previous paper on the subject cf. [BGK], we computed the images of the
Galois representations for some abelian varieties with real (type I) and complex
multiplications (type IV) by the field E=Endr(A) ® Q and for I which splits
completely in the field E loc. cit., Theorem 2.1 and Theorem 5.3.

In the present paper we extend results proven in [BGK] to a larger class (cf.
Definition of class A below) of abelian varieties which includes some varieties
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with non-commutative algebras of endomorphisms, and to almost all prime
numbers [. In order to get these results, we had to implement the Weil re-
striction functor Ry, x for a finite extension of fields L/K. In section 2 of the
paper we give an explicit description of the Weil restriction functor for affine
group schemes which we use in the following sections. In a very short section
3 we prove two general lemmas about bilinear forms which we apply to Weil
pairing in the following section. Further in section 4, we collect some auxiliary
facts about abelian varieties. In section 5 we obtain the integral versions of the
results of Chi cf. [C2], for abelian varieties of type II and compute Lie algebras
and endomorphism algebras corresponding to the A-adic representations related
to the Tate module of A. In section 6 we prove the main results of the paper
which concern images of Galois representations p;, p; ® Q; : Gp — GL(Vi(A)),
the mod [-representation p; and the associated group schemes G;' lg, G?lg and
G(1)™9, respectively.

The main results proven in this paper concern the following class of abelian
varieties:

DEFINITION OF CLASS A.
We say that an abelian variety A/F, defined over a number field F' is of class
A, if the following conditions hold:

(i) A is a simple, principally polarized abelian variety of dimension g

(ii) R = Endp(A) = Endp(A) and the endomorphism algebra D = R®zQ,
is of type I or II in the Albert list of division algebras with involution
(cf. [M], p. 201).

(iii) the field F is such that for every | the Zariski closure G¢* of p/(G) in
GLyy/Qy is a connected algebraic group

(iv) g = hed, where h is an odd integer, e = [E : Q] is the degree of the
center E of D and d*> = [D : E.

Let us recall the definition of abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201. Let E C D =
Endp(A) @z Q be the center of D and E be a totally real extension of Q of
degree e.  Abelian varieties of type I are such that D = E. Abelian varieties
of type II are those for which D is an indefinite quaternion algebra with the
center E, such that D ®g R = [[{_, M2 2(R).

We have chosen to work with principal polarizations, however the main results
of this paper have their analogs for any simple abelian variety A with a fixed
polarization, provided A satisfies the above conditions (ii), (iii) and (iv). The
most restrictive of the conditions in the definition of class A is condition (iv) on
the dimension of the variety A. We need this condition to perform computations
with Lie algebras in the proof of Lemma 5.33, which are based on an application
of the minuscule conjecture cf. [P]. Note that due to results of Serre, the
assumption (iii) is not very restrictive. It follows by [Sel] and [Se4] that for an
abelian variety A defined over a number field K, there exists a finite extension
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Keom /K for which the Zariski closure of the group p;(Ggeonn) in GL is a
connected variety for any prime [. Hence, to make A meet the condition (iii),
it is enough to enlarge the base field, if necessary. Note that the field K<™
can be determined in purely algebraic terms, as the intersection of a family of
fields of division points on the abelian variety A cf. [LP2], Theorem 0.1.

MAIN RESULTS

THEOREM A. [Theorem 6.9]
If A is an abelian variety of class A, then for I > 0, we have equalities of group
schemes:

(G?lg)/ = H Rg, jq,(Sp2n)
Al

(GO)™9) = H Ry, jr, (Sp2n),
All

where G’ stands for the commutator subgroup of an algebraic group G, and
Ry k(—) denotes the Weil restriction functor.

THEOREM B. [Theorem 6.16]
If A is an abelian variety of class A, then for | > 0, we have:

p1(Gr) = ] Span(ka) = Span(Og/l0g)
Al

p(G) = H Span(Ox) = Span(Or ®z Zy),
Al

where G7% is the closure of G’ in the profinite topology in Gp.

As an application of Theorem A we obtain:

THEOREM C. [Theorem 7.12]
If A is an abelian variety of class A, then

G = MT(A) ® Q,

for every prime number |, where MT(A) denotes the Mumford-Tate group of
A, i.e., the Mumford -Tate conjecture holds true for A.

Using the approach initiated by Tankeev [Ta5] and Ribet [R2], futher developed
by V.K. Murty [Mu] combined with some extra work on the Hodge groups in
section 7, we obtain:
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THEOREM D. [Theorems 7.34, 7.35]
If A is an abelian variety of class A, then the Hodge conjecture and the Tate
conjecture on the algebraic cycle maps hold true for the abelian variety A.

In the past there has been an extensive work on the Mumford-Tate, Tate and
Hodge conjectures for abelian varieties. Special cases of the conjectures were
verified for some classes of abelian varieties, see for example papers: [Ab], [C2],
[Mu], [P], [Po], [R2], [Sel], [Se5], [Tal], [Ta2], [Ta3]. For an abelian variety
A of type I or II the above mentioned papers consider the cases where A is
such that End(A) ® Q is either Q or has center Q. The papers [Tad], [C1] and
[BGK] considered some cases with the center larger than Q. For more complete
list of results concerning the Hodge conjecture see [G]. In the current work we
prove the conjectures in the case when the center of End(A)®Q is an arbitrary
totally real extension of Q. To prove the conjectures for such abelian varieties
we needed to do careful computations using the Weil restriction functor.

Moreover, using a result of Wintenberger (cf. [Wi], Cor. 1, p.5), we were able
to verify that for A of class A, the group p;(GFr) contains the group of all the
homotheties in GLx,(4)(Z;) for [ > 0, i.e., the Lang conjecture holds true for
A cf. Theorem 7.38.

As a final application of the method developed in this paper, we prove an
analogue of the open image theorem of Serre cf. [Sel] for the class of abelian
varieties we work with.

THEOREM E. [Theorem 7.42]

If A is an abelian variety of class A, then for every prime number [, the image
pi(Gr) is open in the group Cr(GSp(a,y))(Z:i) of Z-points of the commutant
of R=End A in the group GSp(y, ) of symplectic similitudes of the bilinear
form 1 : A Xx A — 7Z associated with the polarization of A. In addition, for
[ > 0 we have:

pi(G7) = Cr(Spa, ) (Z).

As an immediate corollary of Theorem E we obtain that for any A of class A
and for every [, the group p;(Gr) is open in gl“lg (Z;) (in the l-adic topology),
where Qlalg is the Zariski closure of p(Gp) in GLyy/Z;. cf. Theorem 7.48.
Recently, the images of Galois representations coming from abelian varieties
have also been considered by A.Vasiu (cf. [Val],[Va2]).

2. WEIL RESTRICTION FUNCTOR Rp,x FOR AFFINE SCHEMES AND LIE AL-
GEBRAS.

In this section we describe the Weil restriction functor and its basic properties
which will be used in the paper c.f. [BLR], [V1], [V2,pp. 37-40], [W1] and
[W2,pp. 4-9]. For the completeness of the exposition and convenience of
the reader we decided to include the results although some of them might be
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known to specialists. Let E/K be a separable field extension of degree n. Let
{o1,09,...,0,} denote the set of all imbeddings F — E? C K fixing K. Define
M to be the composite of the fields £

M = E° .. Eo".

Let X = [z1,@a,...x,] denote a multivariable. For polynomials f = f3(X) €
E[X], 1 < k < s, we denote by I = (f1, fa,..., fs) the ideal generated by
the fx’s and put I7 = (f7*(X), f§(X),..., f7 (X)) for any 1 < ¢ < n. Let
A = E[X]/I. Define E-algebras A% and A as follows:

A% = A®p, M = M[X]/I7M[X],

A=A Qpr - Qpp A%
Let X1, ..., X denote the multivariables

o
X% = [JCZ‘J,LE,L"Q, e ,I‘iﬂ»]

on which the Galois group G = G(M/K) acts naturally on the right. Indeed
for any imbedding o; and any ¢ € G the composition o; o o, applied to E
on the right, gives uniquely determined imbedding o; of £ into K, for some
1 < j < n. Hence we define the action of G(M/K) on the elements X% in the
following way:

(X797 = X,

We see that

A MXO,..., X)) (I + -+ L),

where I, = M[X7%, ..., X7 [y and I () = (f7*(X7),..., fJ*(X*)), for any
1<k<n.

LEMMA 2.1. s o
A Qr M = A.

Proof. Let aq,...,a, be a basis of E¥ over K. It is clear that

n
R —G

Za}’lX 7ie A,

i=1
Since [a}”]m is an invertible matrix with coefficients in M, we observe that

. —- —G

Xt ..., X% are in the subalgebra of A generated by M and A . But
X% ..., X% and M generate A as an algebra. O

n

REMARK 2.2. Notice that the elements > ;" a7 X for j = 1,...,n generate

A% as a K-algebra. Indeed if C' denotes the K-subalgebra of ac generated by
these elements and if C' were smaller than ZG, then C ® x M would be smaller
than A ®K M, contrary to Lemma 2.1.
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DEFINITION 2.3. PutV = spec A, and W = specZG. Weil’s restriction functor
R,k is defined by the following formula:

Rp/x (V) =W.

Note that we have the following isomorphisms:

Il

WerM = spec(ZG ®x M) = spec A

spec (A @pr - @M A7) =2 (VQpo, M) Qum - QM (V Qp,q, M),

hence

Rp/x(V)®x M2 (V@pe, M)@y - @m (V @p,0, M).

LEMMA 2.4. Let V' C V be a closed imbedding of affine schemes over E. Then
Rp/k(V') C Rg/k (V) is a closed imbedding of affine schemes over K.

Proof. We can assume that V' = spec (E[X]/I) and V' = spec (E[X]/J) for two
ideals I C J of E[X]. Put A= E[X]/I and B= E[X]|/Jandlet ¢ : A— B
be the natural surjective ring homomorphism. The homomorphism ¢ induces
the surjective F-algebra homomorphism

¢:A—B
which upon taking fix points induces the K-algebra homomorphism

(2.5) ¢ . 2% - B

—=G .
By Remark 2.2 we see that B~ is generated as a K-algebra by elements
. . .. . =G - —G .
S ' X7 (more precisely their images in B). Similarly A~ is generated as
) . .. . —G
a K-algebra by elements Y . ; o' X7 (more precisely their images in A™). It
) —G PN —C i vor - 5C
is clear that ¢~ sends the element > " | af* X7 € A into 331" o' X7 € B

Hence ¢ is onto. [

Let ag,...,a, be a basis of F over K and let (1, ..., 3, be the corresponding
dual basis with respect to Trg, k. Define block matrices:

g1 g2 (g g1 T 1
oi'l, of?l, ... afj"l. . oL ... B,
o1 (op) o g2 T2 [eg
as'l, oyl ... ag"l, 8721, B3°L. ... 021,
A= . ) . , B= . . )
a2l a22I. ... oSl L pgend. ... B9,

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 35-75



THE IMAGE OF I-ADIC GALOIS REPRESENTATIONS 41

Notice that by definition of the dual basis AB = BA = I,.,. Define block
diagonal matrices:

Xor ol ... Ol Yor ol ... 0l
oI, X° ... 0I, oI, Y°2 ... O0I
X= . . . , Y= . . . ,
or. or. ... X° or. of, ... Yo
where Y71, ... Y9 and X' ..., X7~ are multivariables written now in a form
of r X r matrices indexed by o1,...,0,. Let Tj; and S;;, forall 1 <¢<n, 1 <

j < n, be r x r multivariable matrices. Define block matrices of multivariables:

Tll T12 .. Tln Sll 512 P Sln

Toy Toe ... Top So1 S22 ... Sop
T = ) . . , S= ) ) .

Tnl Tn2 cee Tnn Snl Sn2 s S'rm

Notice that:

22:1(0‘151)%)(67 Z?:1(a1ﬂ2)U]XGJ Z?=1(alﬁn)UJXU]

Dioi(aeB) X7 30 (a2f2) 7 X Do (aaBs)7 X
AXB = . .

Z;‘lzl (anﬁl)a'jXU7 Z?:l(anHQ)anUj ce Zyzl(anﬁn)ngaj

Z;L=1(041/61)0j Y7 Z?:l(alﬂZ)Uj Yoo Z?:1(alﬂn)gj Y7

Z;L:1(a2ﬁ1)aj Yo Z?:1(a252)ajygj e Z?:l(ann)oj Yo
AYB = ) ) .

S (@B)TYT S (anBa) YT S ()Y

Observe that the entries of AXB and AYB are G-equivariant. Hence, there is
a well defined homomorphism of K-algebras

(2.6) ® : K[T,S)/(TS—Iym, ST—1I,n) — (M[X,Y]/(XY—1,,, YX~I,,,))"
T — AXB

S — AYB

The definition of ® and the form of the entries of matrices AXB and AYB show
(by the same argument as in Lemma 2.4) that the map ® is surjective. Observe

that
GL.,/K = spec K[T,S|/(TS — Iy, ST — Iy,

GL,/E = spec E[X,Y]/(XY —I,, YX — I,),

where X and Y are r x r multivariable matrices.
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LEMMA 2.7. Consider the group scheme GL,/E. The map ® induces a nat-
ural isomorphism Rg; i (GL,) = Cg(GL,/K) of closed group subschemes of
GL,,/K, where Cg(GL,,/K) is the commutant of E in GL,, /K.

Proof. Observe that there is a natural M-algebra isomorphism
MK, Y]/ (XY = I, YX = Ipy) 2 A7 Qpp -+ @pp A7,
where in this case
A% =M[X,Y]/(XY—-I,, YX-L)2XM[X% Y7 /(X99Y% 1., Y7 X7 —1,).
Hence, by Definition 2.3 we get a natural isomorphism of schemes over K :
Rix(GL,) 2 spec (M[X, Y] /(XY — I, YX — I,,,))¢

and it follows that ® induces a closed imbedding of schemes Rp/x(GL,) —
GL,, over K. Moreover we easily check that Ker ® is generated by elements
aoT—Towa and aoS—Soa« for all « € E, where o denotes the multiplication
in GL,,/K. Note that Cg(GL,,/K) is equal to

spec K[']T,S]/(']I‘S—Im, ST —1I,,, aoT—Toa, aoS—Soaq, Vock). O

REMARK 2.8. Let F/K be an unramified extension of two local fields. Hence
the extension of rings of integers Og/Ok has an integral basis a1, ..., a, of
Opg over Ok such that the corresponding dual basis (y, ..., 8, with respect to
Trg/k is also a basis of Op over Ok see [A], Chapter 7. Let Ro, 0, be the
WEeil restriction functor defined analogously to the Weil restriction functor for
the extension E/K. Under these assumptions the following Lemmas 2.9 and
2.10 are proven in precisely the same way as Lemmas 2.4 and 2.6.

LEMMA 2.9. Let V' C V be a closed imbedding of affine schemes over Og.
Under the assumptions of Remark 2.8 Rp, /0, (V') C Ro, /0, (V) is a closed
imbedding of affine schemes over Ok .

LEMMA 2.10. Consider the group scheme GL,./Og. Under the assumptions of
Remark 2.8 there is a natural isomorphism Ro, /0, (GL;) = Co, (G Ly /Ok)
of closed group subschemes of GL,.,/Ok, where Co,(GL,,/Ok) is the com-
mutant of Og in GL,,/Ok.

We return to the case of the arbitrary separable field extension E /K of degree n.
Every point of Xy € GL,.(E) is uniquely determined by the ring homomorphism

hx, : E[X,Y]/(XY -1,,YX~1,) — E
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X — Xy, Y =Y,
where Y is the inverse of X. This gives immediately the homomorphism
hr, : K[T,S]/(TS — Iy, ST — I,.,)) = K
T — Ty = AXyB,
S +— Sp=AYB

where
Xgt 0, ... Ol Yot oL ... 0l
oI, Xg* ... O0I, oI, Yy* ... O0I,
Xo = ) . ) , Yo = . ) ) ,
o, oI ... Xg» 0I, 0L ... Yoo

and the action of o; on Xy and Y; is the genuine action on the entries of X
and Yp. Obviously hy, determines uniquely the point To € GL,,(K) with the
inverse Sg.

DEFINITION 2.11. Assume that Z = {Xy; t € T} C GL,.(E) is a set of points.
We define the corresponding set of points:

Ze = {T;=AX;B; teT} C GLn(K),
where
X7t 0oL ... 0l
or, X7* ... 0l
X; = ) ) )
or, oI ... X/

We denote by Z%9 the Zariski closure of Z in GL,/E and by Z3" the Zariski
closure of Zg in GL,,, /K.

PrOPOSITION 2.12. We have a natural isomorphism of schemes over K :

R/ (Z2°9) = Zg.

Proof. Let
JS=XY-L,YX-1 X-X,Y-Y)

be the prime ideal of E[X,Y] corresponding to the point X; € GL,(E). Let

J:ﬂ J;.

teT
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By definition Z%9 = spec (E[X,Y]/J). Let
Ty = (TS = Iy, ST — Im, T — AX;B, S — AY,B)

be the prime ideal in K|[T,S]/(TS — I, ST — I,.,) corresponding to the point
AX,B € GLy,(K). Define
J=) I

teT

By definition Z3" = spec (K[T,S]/J). Put A = E[X,Y]/(XY —I,, YX —1,).

Observe that the ring ZG is generated as a K-algebra by AXB and AYB, since
A is generated by X and Y as an M-algebra. Define

J, = (AXB — AX;B, AYB — AY;B)
. . . —G
which is an ideal of A~ . Put

Y=

teT

We have the following isomorphism induced by ®.

(2.13) K[T,S|/J, = 4°/1, = K.

Hence, ®~1(J}) = J; and ®~!(J') = J. This gives the isomorphism
(2.14) K[T,8]/3 = A%/ 7.

Let B = E[X,Y]/J. There is a natural surjective homomorphism of K-algebras
coming from the construction in the proof of Lemma 2.4 (see (2.5)):

(2.15) a°)r - B¢

induced by the quotient map A — B. We want to prove that (2.15) is an
isomorphism. Observe that there is natural isomorphism of K-algebras:

(2.16) A%y ~ a75,° ~ k.

Consider the following commutative diagram of homomorphisms of K-algebras:

ZG/J, o 3¢
(2.17) l l

—a ~ —G
HteTA /I —— HteTA/Jt

The left vertical arrow is an imbedding by definition of J' and the bottom
horizontal arrow is an isomorphism by (2.16). Hence the top horizontal arrow
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is an imbedding, i.e., the map (2.15) is an isomorphism. The composition of
maps (2.14) and (2.15) gives a natural isomorphism of K-algebras

(2.18) K[T,S)/J = BC.

But Zglg spec (K|[T,S]/]). In addition, Z%9 = specB, hence
Rk (Z2) = specEG and Proposition 2.12 follows by (2.18). O

REMARK 2.19. If Z is a subgroup of GL,(E), then Zg is a subgroup of
GL,»(K). In this case Z%9 is a closed algebraic subgroup of GL,/E and Zgl-"
is a closed algebraic subgroup of GL,, /K.

DEFINITION 2.20. Let H = spec A be an affine algebraic group scheme defined
over E and b its Lie algebra. We define g = Rp/khb to be the Lie algebra
obtained from b by considering it over K with the same bracket.

LEMMA 2.21. There is the following equality of Lie algebras
Eze(RE/KH) = RE/KIJ

Proof. Let n = [E : K] and G = Gal(E/K). Since H is an algebraic group
h = Der(A) is the Lie algebra of derivations of the algebra A of functions on

H [ H1]. Let ¢ : Der(A) — Der(A) be the homomorphism of Lie algebras
(considered over E) given by the following formula:

PO =" id® - Qid®§ Qid® - - ®id,

where §; = 0®1 as an element of Der(A%). Recall that A% = AQg ,,M.Ifo €
Gando(a1®---®ay) = o(ay,)®- - ®@0(ag, ) one readily sees that d;(c(ax;)) =
0(0k, (ax,;)) and therefore ¢(8) is G-equivariant i.e., ¢(8) € Der(AY). It is easy
to see that ¢(8) as an element of Der(A) is nontrivial if § is nontrivial. Since
$(8) is M-linear and A®@x M = A, we see that ¢(d) is a nontrivial element of
Der(A%) = Lie(Rg i H). On the other hand, observe that

ﬁie(RE/KH)®KK = ﬁie(RE/KH®KK) =
:ﬁie(ﬁXK“-XKH):(@f))@EK:g@KK.

This shows that Lie(Rg/x H) and Rg/kh have the same dimensions and there-
fore are equal. [

LEMMA 2.22. Let g be a Lie algebra over E and let g’ be its derived algebra.
Then

Rpk(9') = (Re/k(9))

Proof. This follows immediately from the fact that Rg/x(g) and g have the
same Lie bracket (cf. Definition 2.20) O
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LEMMA 2.23. If G is a connected, algebraic group over E of characteristic 0,
then

Rp/k(G') = (Rp/xG)'
Proof. We have the following identities:

Lie((Rp/k(G))") = (Lie(Rp/k (G)))" = (Rg,x (Lie(@)))" =
= Rp/x((Lie(G))') = Rpyx(Lie(G")) = Lie(Rp/x (G'))

The first and the fourth equality follow from Corollary on p.75 of [H1]. The
second and fifth equality follow from Lemma 2.21. The third equality follows
from Lemma 2.22. The Lemma follows by Theorem on p. 87 of [H1] and
Proposition on p. 110 of [H1]. O

3. SOME REMARKS ON BILINEAR FORMS.

Let E be a finite extension of Q of degree e. Let E; = EQQ; and O, = Op®Z,.
Hence E; = HAU E, and Of, = H)\” O). Let O be the dual to Oy with respect
to the trace T'rg, /g, For I > 0 we have O} = Oj see [A], Chapter 7. From now
on we take [ big enough to ensure that O} = O, for all primes A in Op over [
and that an abelian variety A we consider, has good reduction at all primes in

Op over [. The following lemma is the integral version of the sublemma 4.7 of
[D].

LeEmMMA 3.1. Let Ty and T, be finitely generated, free Op,-modules. For any
Z,-bilinear (resp. nondegenerate Z;-bilinear ) map

1/}1:T1><T2—>Zl

such that 1 (evi,ve) = ¥ (v1,evq) for all e € Op,,v1 € T1,v2 € Ty, there is a
unique OF,-bilinear (resp. nondegenerate Og,-bilinear ) map

¢ZZT1XT2*>OEL

such that Trg, /q,(¢1(v1,v2)) = Yi(v1,v2) for all vy € T and vy € T.

Proof. Similary to Sublemma 4.7, [D] we observe that the map
TTEl/Ql : HomoEl (Tl ®0El T OE;) — Hole (T1 ®OEL TS ;Zl)
is an isomorphism since it is a surjective map of torsion free Z;-modules of the

same Z;-rank. The surjectivity of Trg, o, can be seen as follows. The Z;-basis
of the module T1®(9EZ T, is given by

B=((0,...,0,03,0,...,0)e; ® €)
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where (0, .. .,0,042,0, ...,0) € H/\|l O, and 042 is an element of a basis of Oy
over Z; and e; (resp. e’) is an element of the standard basis of T3 (resp. T3)
over Of,. Let w,’e\’m € Homg, (T} Qog, T2; Z;) be the homomorphism which
takes value 1 on the element (0,...,0,a2,0,...,0)e; ® e;. of the basis B and
takes value 0 on the remaining elements of the basis B. Let us take ¢;; €
Homo, (Ti ®oy,, T ; OF,) such that

1 ifi=randj=s

¢i’j(er®65):{0 ifitrorj#s

Then for each k there exist elements (the dual basis) 37 € O, such that
Trg, (Brap) = 6j.n- If we put ¢§\,j,k =(0,...,0,62,0,...,0)¢; ; then clearly

Trg, g, (¢p, x(t1,t2)) = ¥7; . (t1, t2). Hence the proof is finished since the ele-

ments 97, . (t1,12) form a basis of Homg, (Ty ®o, Tz;Zi) over Z;. O

Consider the case T; = T and put 7; = T} = T5. Assume in addition that
is nondegenerate. Let

v, TUTy x Ty 1Ty, — Z]1
be the Z/I-bilinear pairing obtained by reducing the form ¢; modulo {. Define
In=e1; =T ®og, Ox

Vi =T\ ®0, Ex

where ey is the standard idempotent corresponding to the decomposition Og, =
[, Ox. Let my : O, — Oy be the natural projection. We can define an Oy-
nondegenerate bilinear form as follows:

1/})\:T)\XT)\*>O)\

Yaleav, exvz) = ma(di(v1, v2))

for any vy, ve € T;. Put kyx = Ox/AO,. This gives the kj-bilinear form E)\ =
P ®o, ka
JA : T)\/)\T)\ X T)\/)\T)\ — k‘)\.

We also have the E\-bilinear form wg\ =Y\ Qo, Ex

wg)\ : Vi x Vi — E).
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LEMMA 3.2. Assume that the form 1, is nondegenerate. Then the forms ),
¥y and wg are nondegenerate for each All.

Proof. First we prove that v, is nondegenerate for all A|l. Assume that 1, is
degenerate for some A. Without loss of generality we can assume that the left
radical of ¢, is nonzero. So there is a nonzero vector exvg € Ty (for some
v € T;) which maps to a nonzero vector in Ty /AT such that 1) (e vg, exw) €
A0, for all w € T;. Now use the decomposition T; = T, Lemma 3.1 and
the Op,-linearity of ¢; to observe that for each w € T;

Yi(exvo, w) = Trg, g, (¢i(exvo, Z exw)) =Trg, jo,¥r(exvo, exw) € 1Z;.
>\/

This contradicts the assumption that v, is nondegenerate.
Similarly, but in an easier way, we prove that v, is nondegenerate. From this
it immediately follows that wﬁ)\ is nondegenerate. [

4. AUXILIARY FACTS ABOUT ABELIAN VARIETIES.
Let A/F be a principally polarized, simple abelian variety of dimension g
with the polarization defined over F. Put R = Endz(A) We assume that
Endp(A) = Endp(A), hence the actions of R and G on A(F) commute. Put
D = Endp(A) ®z Q. The ring R is an order in D. Let E; be the center of D
and let

E:={a€ Ey; d =a},

where / is the Rosati involution. Let Rp be a maximal order in D containing
R. Put O% := RNE. The ring OY, is an order in E. Take [ that does not divide
the index [RD : R] Then Rp ®z Z; = R ®z Z; and O Qy Z; = OOE Rz Ly

The polarization of A gives a Z;-bilinear, nondegenerate, alternating pairing

Because A has the principal polarization, for any endomorphism « € R we get
o € R, (see [Mi] chapter 13 and 17) where o' is the image of a by the Rosati
involution. Hence for any v,w € T;(A) we have ¢;(av, w) = (v, &’ w) (see loc.
cit.).

REMARK 4.2. Notice that if an abelian variety were not principally polarized,
one would have to assume that [ does not divide the degree of the polarization
of A,toget & ®1 € R®Z; for a € R.

By Lemma 3.1 there is a unique nondegenerate, O,-bilinear pairing
(43) b1 TA) x Ty(A) — O,
such that Trg, /g, (¢1(v1,v2)) = i (v1,v2). As in the general case define

Ta(A) = exTi(A) = Ty(4) ®oy, Ox
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VA(A) =T\ (A) ®0, Ex.

Note that Tx(A)/AT\(A) = A[)] as kx[Gr]-modules.
Again as in the general case define nondegenerate, Oy-bilinear form

(44) 1/1)\ : T)\(A) X T)\(A) — OA

pa(exvy, exve) = ma(¢r(vi, v2))

for any vy,vy € Tj(A), where 7y : O, — O, is the natural projection. The
form 1 gives the forms:

(4.5) Dy 0 AN x AN — k.

(4.6) Y8 2 Va(A) x VA(A) — E,.

Notice that all the bilinear forms 1y, and ¥ are alternating forms. For
[ relatively prime to the degree of polarization the form 1), is nondegenerate.
Hence by lemma 3.2 the forms ¥y, ¢, and wg are nondegenerate.

LEMMA 4.7. Let x) : Gp — Z; C Oy be the composition of the cyclotomic
character with the natural imbedding Z; C Oy.

(i)  For any o € G and all v1,vy € T\(A)
Ua(ovr, ov2) = xa(0)¥a(v1, v2).
(i)  For any a € R and all v1,vy € Tx(A)

{5 (0401, 02) =P (Ul, O/U2)~

Proof. The proof is the same as the proof of Lemma 2.3 in [C2]. O

REMARK 4.8. After tensoring appropriate objects with Q; in lemmas 3.1 and
4.6 we obtain Lemmas 2.2 and 2.3 of [C2].

Let A/F be an abelian variety defined over a number field F such that
Endgz(A) = Endp(A). We introduce some notation. Let Gi=, Gy, G% de-
note the images of the corresponding representations:
Pt G(F - GL(E(A)) = GLQg(Zl)7
ol Grp — GL(AU]) = GLQQ(Fl),
p®Q : Gp — GL(Vi(A)) = GL2y(Qy).
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Let gl‘“g , (Gflg resp.) denote the Zariski closure of the image of the represen-
tation py, (o ® Qq, resp.) in GLay/Z;, (GL2y/Q, resp). We define G(1)@9 to
be the special fiber of the Z;—scheme gl‘”g.

Due to our assumptions on the Gp-action and the properties of the forms
¥, ¥y and ¥ we get:

(4.9) G C G1(Z) C [] GSpry(a)(Ox) © GLrya)(Z1)

Al
(4.10) G C GW™F) C [] GSpap(kr) C GLay(F)
Al
(4.11) Gl C GM(Q) C [ GSpvi(a)(Er) C GLy;a)(Q).
A

Before we proceed further let us state and prove some general lemmas con-
cerning [-adic representations. Let K/Q; be a local field extension and Ok the
ring of integers in K. Let T' be a finitely generated, free Ox-module and let
V =T ®p, K. Consider a continuous representation p : Gp — GL(T) and
the induced representation p° = p® K : Gp — GL(V). Since G is compact
and p° is continuous, the subgroup p°(Gr) of GL(V) is closed. By [Se7], LG.
4.5, p°(GF) is an analytic subgroup of GL(V).

LEMMA 4.12. Let g be the Lie algebra of the group p°(Gr)
(i)  There is an open subgroup Uy C p°(GF) such that

Endy, (V) = Endg (V).
(ii)  For all open subgroups U C p°(Gr) we have
Endy (V) C Endg (V).

(iii)  Taking union over all open subgroups U C p°(Gr) we get

U Endy (V) = Endg (V).
U
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Proof. (i) Note that for any open subgroup U of g we have
(4.13) Endg (V) = Endg (V)
because KU = g. By [B], Prop. 3, IIL.7.2, for some open U C g, there is an
exponential map }
exp : U — p°(Gr)
which is an analytic isomorphism and such that exp (0) is an open subgroup of
p°(GF). The exponential map can be expressed by the classical power series for
exp (t). On the other hand by [B], Prop. 10, IT1.7.6, for some open U C p°(Gr),
there is a logarithmic map
log: U — g

which is an analytic isomorphism and the inverse of exp. The logarithmic map
can be expressed by the classical power series for In?. Hence, we can choose Uy
such that Uy = exp (Up) and log (Uy) = Up. This gives
(4.14) Endy, (V) = Endg, (V).
and (i) follows by (4.13) and (4.14).
(ii) Observe that for any open U C p°(Gr) we have

Endy (V) C EndUOmU (V)
Hence (ii) follows by (i).

(iii) Follows by (i) and (ii). O

LEMMA 4.15. Let A/F be an abelian variety over F such that Endp (A) =
Endz (A). Then
Endg, (Vi(A)) = Endg, (Vi(A)).
Proof. By the result of Faltings [Fa], Satz 4,
Endy, (A) ® Qi = Endg,, (Vi(A))
for any finite extension L/F. By the assumption Endp (A) = Endy, (A). Hence
Endg,. (Vi(A)) = Endy: (Vi(A))
for any open subgroup U’ of Gg. So the claim follows by Lemma 4.12 (iii). O

Let A be a simple abelian variety defined over F' and FE be the center of the
algebra D = Endp(A) ® Q. Let Al be a prime of O over [. Consider the
following representations.

pr : Grp— GL(T\(4)),
Py G — GL(A),
pxr ®o, Ex : Gp — GL(VA(A)),
where A|l. Let G¢9, (G5 resp.) denote the Zariski closure of the image of the
representation px, (px ® Ex resp.) in GLp, (4)/Ox, ( GLy, (4)/Ex resp.) We
define G(\)%9 to be the special fiber of the Oy-scheme g;”g.
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THEOREM 4.16. Let A be a simple abelian variety with the property that
R = Endp(A) = Endp(A). Let Ry = R®OOE Oy and let Dy = D ®g E\.
Then
(i) Endo,cr (Ta(A4)) = R
(i) Endp,(cy) (VA(A)) = Dx
(iii)  Endg, g, (A[A]) = R ®o, kx for 1> 0.

Proof. Tt follows by [Fal, Satz 4 and [Za], Cor. 5.4.5. O

LEMMA 4.17. Let K be a field and let R be a unital K-algebra. Put D =
Endr(M) and let L be a subfield of the center of D. Assume that L/K is a
finite separable extension. If M is a semisimple R-module then M is also a
semisimple R ® g L-module with the obvious action of R @k L on M.

Proof. Take o € L such that L = K(«). Let [L : K] = n. Let us erte M =
@®; M; where all M; are simple R modules. For any ¢ we put M; = Sore 0 ok M;.
Then M; is an R®@x L-module. Because M; is a simple R-module we can write

m—1

Mi = @ Oék Mi,
k=0

for some m. Observe that if m = 1, then M; is obviously a simple R @ L-
module. If m>1, we pick any simple R-submodule N; C M;, N; # M;. There
is an R- isomorphism ¢ : M; — N; by semisimplicity of M;. We can write
M = M;®N;®M', where M’ is an R-submodule of M. Define ¥ € Autr(M) C
Endg(M) by \I/|Ml = ¢, \IJ|N,- = (,2571 and U|y; = Idysr. Note that

m—1

m—1
(4.18) V(P ot M) =Pt N
k=0 k=0

since a is in the center of D. Hence M; @k 0 ' ok N; by the classification
of semisimple R-modules. We conclude that M; is a simple R @k L-module.
Indeed, if N C Mi were a nonzero R ® g L-submodule of Mi then we could
pick any simple R—submodule N; € N.If N; = M; then N = M;. If N; # M;
then by (4.18) M; = @', "ok N; ¢ N. Since M = S, M;, we see that M is a
semisimple R ® g L-module. [

THEOREM 4.19. Let A be a simple abelian variety with the property that
R = Endp(A) = Endp(A). Let Ry = R®po Ox and let Dy = D®g Ey. Then
Gr acts on Vy(A) and A[)\] semisimply and Gilg and G(\)9 are reductive
algebraic groups. The scheme g;lg is a reductive group scheme over Oy for |

big enough.

Proof. Tt follows by [Fa], Theorem 3 and our Lemma 4.17. The last statement
follows by [LP1], Proposition 1.3, see also [Wi], Theoreme 1. O
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5. ABELIAN VARIETIES OF TYPE [ AND II.

In this section we work with abelian varieties of type I and II in the Albert’s
classification list of division algebras with involution [M], p. 201, i.e. EC D =
Endp(A) @z Q is the center of D and E is a totally real extension of Q of
degree e. To be more precise D is either E (type I) or an indefinite quaternion
algebra with the center E, such that D ®@gR = []7_, Ma»(R) (type II). In the
first part of this section we prove integral versions of the results of Chi [C2]
for abelian varieties of type II. Let [ be a sufficiently large prime number that
does not divide the index [Rp : R] and such that D ® g E splits over E) for
any prime A in Og over . Hence, Dy = M3 2(E»). Then by [R, Corollary 11.2
p. 132 and Theorem 11.5 p. 133] the ring R, is a maximal order in Dj. So by
[R] Theorem 8.7 p. 110 we get Ry = M5 2(O,), hence Ry\®o, kx = Ma 2(ky).
Similarly to [C2] we put

(1) (1)

Let e = £(1+1), f = 3(1+u), X =eT\(A),Y = (1—e)Ta(A), X' = fT\(A),
yl = (1 — f)T)\(A) Put X = X®O>\E)\, X' = X’@OAE)\, Y = y@OkE,\,
Y =Y ®0,Ex, X = XQ0,kx, X = X'Q0,kx, Y = YR0,kr, Y = V' ®o0, kx.
Because ueu = 1 — e, the matrix u gives an O)[Gp|-isomorphism between
X and Y, hence it yields an F)[Gg]-isomorphism between X and Y and a
k|G F]-isomorphism between X and ). Multiplication by ¢ gives an O,[GF]-
isomorphism between X’ and )’, hence it yields an Ey[Gr]-isomorphism be-
tween X’ and Y’ and a k) [Gp|-isomorphism between X and T’. Observe that

(51) Endo/\[GF] (X) = Endo,\[GF](X/) = O>\
(5.2) Endp,cp) (X) = Endp,jc,.)(X') = Ey
(5.3) Endkk[Gp] (?) = Endk/\[gp](?/) = k.

So the representations of G on the spaces X,Y, X', Y (resp. X,), ?’,j’) are
absolutely irreducible over E (resp. over ky). Hence, the bilinear form 9
cf. (4.4) (resp. ¥, cf. (4.5)) when restricted to any of the spaces X, X', Y,Y”,

(resp. spaces X, X I, Y, y’) is either nondegenerate or isotropic.
We obtain the integral version of Theorem A of [C2].

THEOREM 5.4. If A is of type II, then there is a free Ox-module Wy (A) of
rank 2h such that
(i) we have an isomorphism of O»[GF]- modules Tx(A) = Wi (A) @ Wy (A4)
(ii) there is an alternating pairing ¥y : Wx(A) x Wi (A4) — Oy
(ii’) the induced alternating pairing ¥ : Wx(A) x Wy(A) — E, is nonde-
generate, where Wy (A) = Wy (4) ®o, Ex
(ii”) the induced alternating pairing 1, : Wx(A) x Wx(A) — ky is nonde-
generate, where Wy (A) = Wy (A) ®o, ka.
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The pairings in (ii), (ii’) and (ii”) are compatible with the G p-action in the
same way as the pairing in Lemma 4.7 (i).

Proof. (ii’) is proven in [C2], while (i) and (ii) are straightforward generaliza-
tions of the arguments in loc. cit. The bilinear pairing ¢; is nondegenerate,
hence the bilinear pairing ¢, is nondegenerate, since the abelian variety A is
principally polarized by assumption. (Actually ¢, is nondegenerate for any
abelian variety with polarization degree prime to ). So, by Lemma 3.2 the
form 1), is nondegenerate for all A hence simultaneously the forms wg\ and 1)
are nondegenerate. Now we finish the proof of (ii”) arguing for A[A] similarly
as it is done for V) in [C2], Lemma 3.3. O

From now on we work with the abelian varieties of type either I or II. We
assume that the field F' of definition of A is such that G?lg is a connected
algebraic group.

Let us put

T\ (A) if A is of type I
(5.5) T\ =
Wi(A), if Ais of type II

Let V\ =T ®o, Ex and Ay = V) /Tx. With this notation we have:

SY NS if A is of type I
(5.6) Vi(A) =
EBW(VA & VA) , if Ais of type II

(5.7) Vi = P

All
Let Vg, be the space V) considered over Q;. We define pg,(g) = Th =
AyX,B,, where X € GL(V)) is such that py(g) = Xx. ( cf. the definition

of the map ® in (2.6) for the choice of Ay and B)). Proposition 2.12 motivates
the definition of pg,. We have the following equality of Q;-vector spaces:

(5'8) Vi = @Vdu

A
The l-adic representation
(5.9) p: Gr — GL(Vi(A))
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induces the following representations (note that we use the notation p; for both
representations (5.9) and (5.10) cf. Remark 5.13 ):

(5.10) pi: Gp — GL(V))
(5.11) [Irr: Gr — J]GLOA)
A
(5.12) [Irs,: Gr — H%GL(V%).

REMARK 5.13. In the case of abelian variety of type I we have V;(A) = V@V,
and the action of Gr on the direct sum is the diagonal one as follows from
Theorem 5.4. Hence, the images of the Galois group via the representations
(5.9), (5.10) and (5.12) are isomorphic. Also the Zariski closures of the images
of these three representations are isomorphic as algebraic varieties over Q; in
the corresponding G L-groups. Similarly, V\(A) = V) @ V) with the diagonal
action of Gp on the direct sum by Theorem 5.4. Hence, the images of the
representations given by Gg-actions on V) and V) (A) are isomorphic and so
are their Zariski closures in corresponding G L-groups. For this reason, in the
sequel, we will identify the representation of G on V;(A) (respectively on
VaA(A)) with its representation on V; (resp. Vy).

By Remark 5.13 we can consider G (resp. G$'9) to be the Zariski closure
in GLy, (resp. GLy,) of the image of the representation p; of (5.10) (resp. pa
of (5.11)). Let G;lf denote the Zariski closure in G Ly, ~of the image of the

representation pg, of (5.12). Let g; be the Lie algebra of G?lg, g be the Lie

algebra of Gilg and let go, be the Lie algebra of Gfl{)lf. By definition, we have
the following inclusions:

(5.14) G Hwagjf
(5.15) @iy < I1,,ca)

(5.16) u P, g0,

(5.17) g;° C @/\llgfg.
The map (5.14) gives a map

al al
(5.18) G — Gg?,

which induces the natural map of Lie algebras:

(5-19) g1 — 9o,
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LEMMA 5.20. The map (5.19) of Lie algebras is surjective for any prime A|l.
Hence the following map of Lie algebras:

(5.21) g° — 03,

is surjective.

Proof. We know by the result of Tate, [T2] that the Q;[GFr]-module V;(A4) is
of Hodge-Tate type for any prime v of Op dividing [. Hence by the theorem of
Bogomolov cf. [Bo] we have

g1 = Lie (p(GF))-
Since each Q;[Gp]-module Vg, is a direct summand of the Q;[Gr]-module V;,

then the Q;[G p]-module Vg, is also of Hodge-Tate type for any prime v of Op
dividing {. It follows by the theorem of Bogomolov, [Bo| that

9o, = Lie (pa, (GF)).

But the surjective map of l-adic Lie groups p;(Gr) — ps, (Gr) induces the
surjective map of [-adic Lie algebras Lie (p;(GFr)) — Lie (pa, (Gr)). O

LEMMA 5.22. Let A/F be an abelian variety over F' of type I or II such that
Endp (A) = Endp (A). Then

(5.23) Endg/\ (V)\) = EndE)[Gp] (V,\) = F)

(5.24) Endg‘% (V@A) = EndQL[GF] (V@A) = F).

Proof. By [F], Theorem 4, the assumption Endr (A) = Endy, (A) for any finite
extension L/F, Theorem 4.16 (ii), the equality (5.2) and Theorem 5.4 we get

(5.25) Ex = Endg, ¢y (Va) = Endg, a,) (V).
This implies the equality
Endg,. (V) = Endy (Vy)
for any open subgroup U of Gp. Hence, the equality (5.23) follows by

Lemma 4.12 (iii). For any FF C L C F we have Ms(Endg,q,1(Vi)) =
Endg,(c,)(V?) = Endg,g,)(Vi(4)) and

(5.26) Endy,ic,)(Vi(A)) = [ Dx = [] M22(Ey).
All All
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On the other hand

(5.27) HEA = HEndEA[GL](VA) C EndQl[GL](W)-
All All

Hence, comparing the dimensions over Q; in (5.26) and (5.27) we get

(5.28) [ Bnde, 6.1 (Va) = Endg,c,) (VD).
Al

By (5.28) we clearly have

(5.29) HEndQl[GL](Vd))\) C E’I’Ld@l[gL](VZ) = l_IE,\7
All All

and

(5.30) EndEA[GL](V)\) C End@z[GL](V‘i’x)'

It follows by (5.25), (5.29) and by (5.30) that for any finite field extension

F C L contained in F' we have

(5.31) Endg,ic,)(Ve,) = Endg,c,)(Va) = Ex.
The isomorphisms (5.31) imply that

(5.32) Endg, (Vo,) = Endy (Vs, )

for any open subgroup U of G . The isomorphism (5.24) follows by (5.32) and
Lemma 4.12 (iii). O

LEMMA 5.33. ¢5° = span(Ey).

Proof. In the proof we adapt to the current situation the argument from [BGK],
Lemma 3.2. The only thing to check is the minuscule conjecture for the A-adic
representations pr : Gp — GL(V)). By the work of Pink cf. [P], Corollary
5.11, we know that g;° ® @Q; may only have simple factors of types A, B,C or
D. By the semisimplicity of gj* and Lemma 5.20 the simple factors of gg’ RQ;
are of the same types. By Proposition 2.12 and Lemmas 2.21, 2.22, 2.23 we get

(534) gfI)SA = REx/@zgis'

Since o o o
gfbs,\ R Q = g§S®EAEA®@zQ = @ giS®E'\@
Ex—Q
we see that the simple factors of g§\5®Ek@ are of types A, B,C or D. The rest
of the argument is the same as in the proof of Lemma 3.2 of [BGK]. O
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LEMMA 5.35. There are natural isomorphisms of Q;-algebras.

(536) Endg% (V<1>>\) = Endgis (V,\) = E,\

Proof. Since g, is reductive and it acts irreducibly on the module V) (cf.
Lemma 5.33) by [H2], Prop. p. 102 we have:

(5.37) o =Z(gx) & g%’
and Z(gx) =0 or Z(gx) = Ex. This gives
(5.38) Endgss (Vi) = Endg, (V).

The Weil restriction functor commutes with the operation of taking the center
of a Lie algebra, hence we get Z(gs,) = 0 or Ey and by (5.34):

8o, = Z(ge,) © 05, -
Since go, = Rp, /g,8x, it is clear that
Endgy (Va,) = Endg, (Va,)-

The lemma follows now from Lemma 5.22. O

PROPOSITION 5.39. There is an equality of Lie algebras:

(5.40) 0" =P o3

A

Proot. Put Vi=Vi®g Q, Va=Wor Q, & =69 Q, s =
g%i 2o} Ql' By (534) we get

(541) 85, = 03 0m B0 @ = [ s¥@s @ = [[ (V)
Er—Q Erx—Q

By Corollary 1.2.2 of [C1] we have g; = Q; & g7°, hence
Endy: (Vi(4)) = Endg, (Vi(4)).

By Lemmas 5.20 and 5.35

(542)  [[E» = HEndg.; (Va,) = ] Endgs(Va,) C Endge (V).
Al Al All
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But by assumption on [ and (5.42)

HD)\ = HMQ»Q(EA) = MQﬁQ(HE)\) CMQQ(ETLdg-;S(W)) =
All Al Al

(5.43) = Endg;:(Vi(A)) = Endg,(Vi(A)) = []Dx.
Al

Comparing dimensions in (5.43) we get

(5.44) Endgs: =~ ] Ex
Al

Hence we get

(5.45) Endgy (V1) = Endg: (V)®e,Q = [[EBree@ = [ [ @

All Al By —Q,

Il

(5.46)  Endg g, (Va) = Endg,g,)(Va) @5, Q = Eyep, Q = Q.

(5.47) VizP e, =2=h P V.

All Al By\—Q

By (5.21) the map of Lie algebras g;* — g%, is surjective. Isomorphisms (5.45),
(5.46) and (5.47) show that the simple g;* modules g5° ®x, Q;, for all A\|l and
all By — Q, are pairwise nonisomorphic submodules of g;*. Hence by [H2],
Theorem on page 23

(5.48) B P oo g

All EA‘—’@Z

Tensoring (5.17) with Q; and comparing with (5.48) we get

(5.49) @ @ 03 ®r, Q = g™

Al Ex—Q

Hence for dimensional reasons (5.17), (5.41) and (5.49) imply (5.40). O

COROLLARY 5.50. The representations pg,, for Al are pairwise nonisomor-
phic. The representations of the Lie algebra g;® on Vg, are pairwise noniso-
morphic over Q.

Proof. Tt follows by Lemmas 5.20 and 5.22 and equalities (5.8), (5.36),
(5.44). O

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 35-75



60 G. BaNaszAak, W. GAJDA, P. KRASON

COROLLARY 5.51. There is an equality of ranks of group schemes over Q;:

(5.52) rank (G™9) = rank H Rg, /q,(Sp2n/Ex).
All

Proof. The Corollary follows by Lemma 5.33, equality (5.40), the isomorphism
(5.34) and Lemma 2.21. O

Taking into account (4.10), (4.11) and Remark 5.13 we get:

(5.53) GW™ C T Brasr(GSpay) = [ Rinse (GSpan)
All All
(554) G?lg C HREA/QL(GSPVA) = HREA/@L(GSPQh)'
Al Al

6. COMPUTATION OF THE IMAGES OF THE (GALOIS REPRESENTATIONS p1 AND
pr-
In this section we explicitly compute the images of the l-adic representations

induced by the action of the absolute Galois group on the Tate module of a
large class of abelian varieties of types I and IT described in the definition below.

DEFINITION OF CLASS A. We say that an abelian variety A/F, defined over a
number field F, is of class A, if the following conditions hold:
(i) A is a simple, principally polarized abelian variety of dimension g
(ii) R = Endp(A) = Endp(A) and the endomorphism algebra D = RQ7zQ,
is of type I or I in the Albert list of the division algebras with involution
cf. [Mu], p. 201
(iii) the field F is such that for every | the Zariski closure G of p/(Gp) in
G Loy /Q is a connected algebraic group
(iv) g = hed, where h is an odd integer, e = [E : Q)] is the degree of the
center E of D and d* = [D : E].

Let L be a local field with the ring of integers Oy, with maximal ideal m;, = m
and the residue field k = O /m.

LEMMA 6.1. Let

(6.2) G & G»
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be a closed immersion of two smooth, reductive group schemes over Op,. Let
(6.3) G —— Gy
be the base change to L of the arrow (6.2) and let
(6.4) G1(m) &—— Ga(m)

be the base change to k of the arrow (6.2). If rank Gy = rank Gy then
rank G1(m) = rank Gz(m).

Proof. By [SGA3, Th. 2.5 p. 12] applied to the special point of the scheme
spec Of, there exists an étale neighborhood S’ — spec O, of the geometric point
over the special point such that the group schemes G157 = G1 Xspeco, S’ and
Gosr = G2 Xspeco, S’ have maximal tori 773 ¢» and 77 g respectively. By
[SGA3] XXII, Th. 6.2.8 p. 260 we observe (we do not need it here but in the
Theorem 6.6 below) that (G; s/)' N 7; s/ is a maximal torus of (G; s/). By the
definition of a maximal torus and by [SGA3] XIX, Th. 2.5, p. 12 applied to the
special point of spec O, we obtain that the special and generic fibers of each
scheme G; g have the same rank. But clearly the generic (resp. special) fibers
of schemes G; v and G; have the same rank for ¢ = 1,2. Hence going around
the diagram

G — G

(6.5) G & G

G1 (m) (G G2 (m)

and taking into account the assumptions that the ranks of the upper corners
are the same we get rank Gi(m) = rank Ga(m). O

THEOREM 6.6. Let A/F be an abelian variety of class A. Then for all I > 0,
we have equalitiy of ranks of group schemes over F;:

(6.7) rank (G(1)™9)" = rank H Ry, /v, (Sp2n)
Al

Proof. By [LP1] Prop.1.3 and by [Wi], Th.1 and 2.1, for [ > 0 the group

scheme g;‘ 19 over specZ; is smooth and reductive. For such an [ the struc-
ture morphism (G9) — specZ; is the base change of the smooth morphism
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G — Dy, (D, (GM™)) via the unit section of Dz, (Dz,(G")), see [SGA3]
XXIIL, Th. 6.2.1, p. 256 where Ds(G) = Homg_,,.(G, Gy, s) for a scheme S.
Hence, the group scheme (G{"?)’ is also smooth over Z;. By [SGA3] loc. cit,
the group scheme (Qlalg )’ is semisimple. We finish the proof by taking L = Qy,

g1 = (gflg)/7 Go = HMZ Ro, /z,(Sp2n) in Lemma 6.1 and applying Corollary

5.51. O

REMARK 6.8. If GG is a group scheme over Sy then the derived subgroup G’ is
defined as the kernel of the natural map

G — Ds,(Ds,(G))

[V], [SGA3]. Since this map is consistent with the base change, we see that for
any scheme S over Sy we get

Gl XSOS = (G X S S)/

THEOREM 6.9. Let A/F be an abelian variety of class A. Then for all | > 0,
we have equalities of group schemes:

(6.10) (G = 1] Re./e(Span)
NI

(6.11) (GW)™) = [ Rusz(Spon)
1

Proof. The proof is similar to the proof of Lemma 3.4 of [BGK]. We prove the
equality (6.11). The proof of the equality (6.10) is analogous. Let

P, G()™ — GLy,

denote the representation induced by the inclusion G(1)*9 C GLa,. By the re-
sult of Faltings cf. [Fa], the representation p, is semisimple and the commutant
of &(G(Z)alg) in the matrix ring Mag 24 is Endz(A) ®z F;. The representation
P, factors through the imbedding (5.53). Projecting onto the A component in

(5.53) we obtain the representation

(6.12) Py G)™ — Ry, yr, (GSpa) = Ri,/r, (GSpan).

A
This map corresponds to the map

(6.13) G(1)" ®g, kx — GSpan.
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By Remark 6.8 restriction of the the map (6.13) to the derived subgroups gives
the following map:

(6.14) (G()*9) @, kx — Span
which in turn gives the representation

Py, (G(1)™9) — Ru, 5, (Spa2n)-
Now by (5.3) we have the natural isomorphisms:

II B = kvonFi 2 Endy, g, 56, (AN @5, Fr) =

kx—T;

= Endk,\@F,E[GF](A)‘ [A] Rky, kx X, Fl) =

(6.15) = [ Ends,g, (AN @k, Fo).
k})\‘—>Fl

Note that Z(Spap) = pe and this isomorphism holds over any field of definition.
The isomorphisms (6.15) imply by the Schur’s Lemma:

Ly (Z((G()™)")) C Ry, /m, (p2)-

A

Hence

Z((GW)™)) ] Riasr (12) = Z(I | Rir s (Sp2n))-
i i

Observe that both groups (G(1)%%9)" and [T Ry /r, (Sp2n) are reductive. Now
the proof is finished in the same way as the proof of Lemma 3.4 in [BGK]. O

THEOREM 6.16. Let A/F be an abelian variety of class A. Then for | > 0, we
have:

(6.17) pi(Gr) = ] Spen(kx) = Spen(Og/10g),
Al

(6.18) p(G) = ] Sp2m(Ox) = Span(Op @2 Z1),
Al

where pj is the representation p; mod [ and @ is the closure of the commutator
subgroup G C Gp computed with respect to the natural profinite topology
of GF

Proof. To prove the equality (6.17), note that the group scheme
HA\IRM/JF,,(SP%) is simply connected, since its base change to IF; is

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 35-75



64 G. BaNaszAak, W. GAJDA, P. KRASON

HMZka—»E Spon /F;, which is clearly simply connected. From now on
the argument is the same as in the proof of Theorem 3.5 in [BGK].
Namely: it follows by (6.11) that (G(1)*9)" is simply connected. So
(G (Fy) = (G(1)™9)'(F;),. Hence, by a theorem of Serre (cf. [Wi],
Th.4) we get

(GW)™) (F) < (pi(Gr)) = pi(Gr).
On the other hand, by definition of the group G(1)%%9, it is clear that

pi(Gr) = (pi(Gp)) < (G (F).

As for the second equality in (6.18) we have

(6.19) p(Gy) = (n(Gr)) C [] Span(On),
All

where (p;(GF))’ denotes the closure of (p;(GF))’ in the natural (A-adic in each
factor) topology of the group HMl Spap(Oy). Using equality (6.17) and Lemma

6.20 stated below, applied to X = (p;(GF))’, we finish the proof. O

LEMMA 6.20. Let X be a closed subgroup in HAU Span(Oy) such that its image
via the reduction map

11 5p20(0x) = ] Span(ka)

A A

is all of [T ; Span(kx). Then X = []; Span(Ox).

Proof. The proof is similar to the proof of Lemma 3 in [Se] chapter IV, 3.4. O

7. APPLICATIONS TO CLASSICAL CONJECTURES.

Choose an imbedding of F' into the field of complex numbers C. Let V =
H'(A(C),Q) be the singular cohomology group with rational coefficients. Con-
sider the Hodge decomposition

VeeC=H"Ye H",

where HP? = HP(A; QZ‘/C) and HP¢ = H?P. Observe that H?? are invariant

subspaces with respect to D = Endz(A) ® Q action on V ®qg C. Hence, in
particular HP? are E-vector spaces. Let

P VxV -Q
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be the Q-bilinear, nondegenerate, alternating form coming from the Riemann
form of A. Since A has a principal polarization by assumption, the form v is
given by the standard matrix

_ U
=5 %)
Define the cocharacter

oo : Gon(€) — GL(V ©g C) = GLay (C)

such that, for any z € C*, the automorphism p(2) is the multiplication by z
on H'® and the identity on H"!.

DEFINITION 7.1. The Mumford-Tate group of the abelian variety A/F is
the smallest algebraic subgroup MT(A) C GLag, defined over Q, such that
MT(A)(C) contains the image of po. The Hodge group H(A) is by definition
the connected component of the identity in MT(A) N SLy = MT(A) N SLyg.

We refer the reader to [D] for an excellent exposition on the Mumford-Tate
group. In particular, MT(A) is a reductive group loc. cit. Since, by definition

too(C*) C GSp(v, 4)(C) = GSpay(C),

it follows that the group MT(A) is a reductive subgroup of the group of sym-
plectic similitudes GSp(v, ) = GSp2y and that

(7.2) H(A) C Spv,y) = Spay.

REMARK 7.3. Let V be a finite dimensional vector space over a field K such
that it is also an R-module for a K-algebra R. Let G be a K-group subscheme
of GLy. Then by the symbol Cr(G) we will denote the commutant of R in
G. The symbol C%(G) will denote the connected component of identity in
Cr(G). Let g : V xV — K be a bilinear form and let G(y,3) C GLy be
the subscheme of G Ly of all isometries with respect to the bilinear form 3. It
is easy to check that Cr(G(v3) ®x L = Crexr(G(vexL, sexr)) Note that
MT(A) C Cp(GSpev,y)) by definitions.

DEFINITION 7.4. The algebraic group L(A) = Cp(Spv,y)) is called the Lef-

schetz group of a principally polarized abelian variety A. Note that the group
L(A) does not depend on the form v cf. [R2].

By [D], Sublemma 4.7, there is a unique E-bilinear, nondegenerate, alternating
pairing

¢o: VXV —-FE
such that Trg/q(¢) = 1. Taking into account that the actions of H(A) and
L(A) on V commute with the E-structure, we get
(75) H(A) C L(A) - RE/QSP(V, ) C Sp(vyw).
But Rp/q(Spv,4)) = Ce(SP(V,)) hence Cp(Re/o(Spv,¢))) = Cp(SPv,4))
S0

(7.6) H(A) C L(A) = Ch(RE/q(Sprv,¢))) C Co(Re(Spwv, ¢)))-
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DEFINITION 7.7. If L/Q is a field extension of Q we put

MT(A)y = MT(A) ®g L, H(A) = H(A)®gL, L(A)L = L(A)®g L.

CONJECTURE 7.8 (MUMFORD-TATE CF. [SE5], C.3.1). If A/F is an abelian
variety over a number field F', then for any prime number [

(7.9) (G}'9)° = MT(A)q,,

where (G?lg )° denotes the connected component of the identity.
THEOREM 7.10 (DELIGNE [D], I, ProOP. 6.2). If A/F is an abelian variety

over a number field F and [l is a prime number, then

(7.11) (G9)° € MT(A)g,.

THEOREM 7.12. The Mumford-Tate conjecture holds true for abelian varieties
of class A defined in the beginning of Section 6.

Proof. By [LP1], Theorem 4.3, it is enough to verify (7.9) for a single prime
[ only. We use the equality (6.10) for a big enough prime [. The proof goes
similarly to the proof of Theorem 3.6 in [BGK]. In the proof we will make some
additional computations, which provide an extra information on the Hodge
group H(A). The Hodge group H(A) is semisimple (cf. [G], Prop. B.63) and
the center of MT(A) is G, (cf. [G], Cor. B.59). Since MT(A) = G,,H(A),
we get

(7.13) (MT(A)g,)" = (H(A)g,)" = H(A)qg,-

By (7.11), (7.13) and (6.10)

(7.14) 11 Res o (Spevsg) = [ Rease (Span) € H(A)g,-
All All

On the other hand by (7.6)
(7.15) H(A)q, € L(A)o, € Cp(Re/o(Spv,¢))) @0 Q-

Since Rg,q(Sp(v,¢)) = CE(SP(v,4)), by Remark 7.3, formulae (7.14) and (7.15)
we get:

(7.16) H Rp, /(5P .9)) C H Cp, (RE, /0, (SP(v; (4), 0)))-
All All

For A of type I, Dy = E) and V)(A4) = V) hence, trivially, the inclusion
(7.16) is an equality. Assume that A is of type II. Since V) (A) = V) @ V), and
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Dy = My 5(E)), evaluating both sides of the inclusion (7.16) on the Q;-points,
we get equality with both sides equal to

IT II Sresnn)@)
Al Ey—Q,

which is an irreducible algebraic variety over Q,. Then we use Prop. 11, 2.6 and
Prop. II, 4.10 of [H] in order to conclude that the groups H (A)@l7 L(A)@l and

Cp(RE/0(Sp(v,4))) ®¢ Q; are connected. Hence all the groups H(A), L(A)
and Cp(Rg/q(Sp(v,4))) are connected, and we have

(7.17) 1 Resse (5o o) = [ By, (Span) =
All All

= H(A)g, = L(A)g, = Cp(RE/(Spv, ¢))) ®o Q.
By (6.10), (7.17) and [Bo], Corollary 1. p. 702 we get
(7.18) MT(A)g, = G H(A)g, = Gn(GH9) c G.
The Theorem follows by (7.11) and (7.18). O
COROLLARY 7.19. If A is an abelian variety of class A, then
(7.20) H(A)g = L(A)g = Cp(Re/0(Sp(v,4))) = Cp(SPv, 4))-

Proof. Taking Lie algebras of groups in (7.17) we deduce by a simple dimension
argument that

(721) Lie H(A) = Lie L(A) = Lie CD(RE/Q(SP(V, ¢)))
In the proof of Theorem 7.12 we have showed that the groups H(A), L(A)

and Cp(Rg/q(Spv,¢))) are connected. Hence, by Theorem p. 87 of [H1] we
conclude that

(7.22) H(A) = L(A) = Cp(Rg/o(Spv,¢))). O
COROLLARY 7.23. If A is an abelian variety of class A, then for all I:
(7.24) H(A)g, = H Cp, (RE, /0, (SP(vi(a), ¢®QE>\)))'

All

In particular, for | > 0 we get

(7.25) H(A)g, = HREA/QZ (Sp(Vx7¢®@E>\))'
All

Proof. Equality (7.24) follows immediately from Corollary 7.19. Equality (7.25)
follows then from (7.17). O

‘We have:
HY(ACC)R) 2 VeoR = P Ver,R
o:E—R
Put V,(A) =V ®g, R and let ¢, be the form

d) ®E,a R : VO’(A) ®r VU(A) — R.
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LEMMA 7.26. If A is simple, principally polarized abelian variety of type II,
then for each o : E — R there is an R-vector space W,(A) of dimension

g _ 4dimA .
2= ﬁ such that:

(i) Vo(A) =Wo(A)® W, (A),
(i) the restriction of ¢ ®gR to W, (A) gives a nondegenerate, alternating
pairing
Ve + We(A) x Wy (A) — R.

Proof. Using the assumption that D ®g R = M, o(R) the proof is similar to
the proof of Theorem 5.4. O

We put
V,(A)  if Ais of type I
Woo,cr =
Wy(A), if Aisof type II
and
on if A is of type I
IIZ}U =
bolw,(a), if Ais of type IL.
Observe that
279 = 72[1%%‘]4 if Ais of type I
dimR Woo,a =

7= 4[‘5:’?@‘]4 , if A is of type IL

COROLLARY 7.27. If A is an abelian variety of class A, then

(7.28) HAr =LAr =[] Spwe..vn)
o:E—R
(7.29) H(A)c = L(A)c = H SP(Wo, 0 ®cC, 5 ®=C) -
ocE—R

Proof. 1t follows from Lemma 7.26 and Corollary 7.19. [

We recall the conjectures of Tate and Hodge in the case of abelian varieties.
See [G], [K] and [T1] for more details.

CONJECTURE 7.30 (HODGE). If A/F is a simple abelian variety over a number
field F, then for every 0 < p < g the natural cycle map induces an isomorphism

(7.31) AP(A) =2 H*(A(C); Q)N HPP,
where AP(A) is the Q-vector space of codimension p algebraic cycles on A

modulo the homological equivalence.
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CONJECTURE 7.32 (TATE). If A/F is a simple abelian variety over a number
field F' and l is a prime number, then for every 0 < p < g the cycle map induces
an isomorphism:

(7.33) AP(A) ®g Q = HZP (A; Qu(p))©F

where A = A®p F.

THEOREM 7.34. The Hodge conjecture holds true for abelian varieties of class
A.

Proof. By [Mu], Theorem 3.1 the Hodge conjecture follows from the equality
(7.20) of Corollary 7.19. O

THEOREM 7.35. The Tate conjecture holds true for abelian varieties of class

A.

Proof. It is known (see Proposition 8.7 of [C1]) that Mumford-Tate conjec-
ture implies the equivalence of Tate and Hodge conjectures. Hence the Tate
conjecture follows by Theorems 7.12 and 7.34. O

CONJECTURE 7.36 (LANG). Let A be an abelian variety over a number field
F. Then for I > 0 the group p;(Gg) contains the group of all homotheties in
G L7, 4)(Zy).

THEOREM 7.37 (WINTENBERGER [WI|, COR. 1, P. 5). Let A be an abelian
variety over a number field F. The Lang conjecture holds for such abelian
varieties A for which the Mumford-Tate conjecture holds or if dim A < 5.

THEOREM 7.38. The Lang’s conjecture holds true for abelian varieties of class

A.
Proof. 1t follows by Theorem 7.12 and Theorem 7.37. O

We are going to use Theorem 7.12 and Corollary 7.19 to prove an analogue of
the open image Theorem of Serre cf. [Se8]. We start with the following remark
which is a plain generalization of remark 7.3.

REMARK 7.39. Let By C Bs be two commutative rings with identity. Let A be
a free, finitely generated Bj-module such that it is also an R-module for a B;-
algebra R. Let G be a By-group subscheme of GL,. Then Cr(G) will denote the
commutant of R in G. The symbol CF,(G) will denote the connected component
of identity in Cr(G). Let 3 : A x A — By be a bilinear form and let G, gy C
GL, be the subscheme of GL, of the isometries with respect to the form (.
Then we check that CR(G(A,,G)) ®pB, B2 = CR®3132 (G(A®Bl B2;B®B132))'
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Consider the bilinear form:
(7.40) v AXA—Z

associated with the variety A. Abusing notation sligthly, we will denote by v
the Riemann form ¢ ®z Q, i.e., we put:

P VxV — Q.
Consider the group scheme Cr(Sp(a,y)) over SpecZ. Since Cr(Spa, ) @z
Q = Cp(Spv,y)) (see Remark 7.39), there is an open imbedding in the [-adic
topology:
(7.41) Cr(Spa, ) (Zi) C Co(Spv, 4))(Q).

Note that the form ; of (4.1) is obtained by tensoring (7.40) with Z;.

THEOREM 7.42. If A is an abelian variety of class A, then for every prime
number I, p;(G ) is open in the group

Cr(GSpa, v))(Z1) = Cre,z, (GSP(1y (A, ) ) (Z1)-

In addition, for I > 0 we have:

(7.43) pi(GT) = Cr(Spa, ) (Z).

Proof. For any ring with identity R the group GSpag(R) is generated by sub-

groups Spag(R) and
al, O ) x
;a€ R™}.
{< 0 I }

One checks easily that the group Z;Spsy(Z;) has index 2 (index 4 resp.)
in GSpay(Z;), for I > 2 (for | = 2 resp.). Here the symbol Z) stands
for the subgroup of homotheties in GLyg4(Z;). Since by assumption A has
a principal polarization, Spag(Z;) = Spa,4))(Zi). By [Bo], Cor. 1. on
p. 702, there is an open subgroup U C Z; such that U C pi(Gp).
Hence U CRr(Sp,v))(Z1) = Cr(USp,y)(Z1)) is an open subgroup of
CR(GSp(Aﬁw))(Zl) = CR(GSp(A’w)(Zl)). By [Bo], Th. 1, p. 701, the group
pi(Gr) is open in G?lg((@l). By Theorem 7.12, Corollary 7.19 and Remark 7.3

UCr(Sp, ¢))(Z1) € Q Cp(Spv,))(Qi) =

(7.44) = Gum(Q)H(A)(Q) € MT(A)(Q) = G"(Q).
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Hence, U Cr(Sp(a,v))(Z1) N pi(GF) is open in U Cr(Sp(a,y))(Z;) and we get
that p;(Gr) is open in Cr(GSp(a, y))(Zi). Using Remark 7.39 and the univer-
sality of the fiber product, we observe that

(7.45) Cr(Spa, ) (Z1) = Creyz, (SP(13(A), w1) ) (Z1)-

For [ > 0 we get

Creuz (SP(1y(4), 1) = Or@.2, (Copeuz (SP(T,(A),v1)) =

(7'46) = CR@ZZz (H ROA/Zl (Sp(Tx(A)vwk)))'
All

Evaluating the group schemes in (7.46) on SpecZ; we get

Creuz (Sprya), 00)(Z1) = Creuz ([ Rosjz (Spaay,vn)(Z1) =
All

(7.47) = HCRASP(TA(A),W)(OA) = HSP(TAM/JA)(OA)% HSPQh(OA)~
All All All

Hence by (7.45), (7.46), (7.47), (6.18) and Theorem 7.38, we conclude that for
[ > 0 the equality (7.43) holds. O

THEOREM 7.48. If A is an abelian variety of class A, then for every prime
number [, the group p;(G ) is open in the group Qlalg (Z;) in the l-adic topology.

Proof. By Theorem 7.42 the group p;(G r) is open in Cre,z, (GSD(1,(A), 4:)) (Z1)
in the l-adic topology, so p;(Gr) has a finite index in the group
Crenz, (GSP(r, (), v))(Z4). By the definition of G, we have:

pi(GF) C GM(Z)) C Crayz, (GSpery(a), vn) ) (Za).

Hence, p;(Gr) has a finite index in G}’ '9(7,), and the claim follows since

CR@zZz (GSP(E(A),wl))(Zl) is a profinite group. O
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ABSTRACT. We use the Siegel-Eisenstein distributions of degree
three, and their higher twists with Dirichlet characters, in order to
construct admissible p-adic measures attached to the triple products
of elliptic cusp forms. We use an integral representation of Garrett’s
type for triple products of three cusp eigenforms. For a prime p
and for three primitive cusp eigenforms f1, fo, f3 of equal weights
k1 = ko = ks = k, we study the critical values of Garrett’s triple
product L(f1 ® fa ® fs,s,x) twisted with Dirichlet characters x. The
result is stated in framework of a general program by John Coates,

see [Col, [Co-PeRli].
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0 INTRODUCTION

The purpose of this paper is to give a construction of p-adic admissible measures
(in the sense of Amice-Vélu) attached to Garrett’s triple L-function attached
to three primitive cusp eigenforms of equal weight k, where p is a prime. For
this purpose we use the theory of p-adic integration with values in spaces of
nearly-holomorphic modular forms (in the sense of Shimura, see [ShiAr]) over
a normed O-algebra A where O is the ring of integers in a finite extension K
of Q,. Often we simply assume that A = C,,.

*Supported by a French-German cooperation program by J.-P. Demailly (Institut Fourier,
Grenoble)
tSupported by DFG - Forschergruppe ” Arithmetik Heidelberg-Mannheim”
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0.1 GENERALITIES ON TRIPLE PRODUCTS

Consider three primitive cusp eigenforms
oo
=Y anje(nz) € 8, (Nj, 1), (7 =1,2,3) (0.1)
n=1

of weights k1, ks, k3, of conductors Ny, No, N3, and of nebentypus characters
t; mod N; (j =1,2,3), and let x denote a Dirichlet character.

The triple product twisted with Dirichlet characters x is defined as the following
complex L-function (an Euler product of degree eight):

L5(f1® f2® f3,5,x) = [ [ L((f1 @ f2® f3)p, x(p)p~*), where (0.2)

PES
L((f1® fa® f3)p, X) " = (0.3)
(1) (1) (1)
« 0
Qo Qs
H (77(1)) (’7(2))01;5) 3))X n: {1 3} N {172}, and

n
L= ap; X = ()" ' X7 = (1= o J(0)X)(1 - 0 (0)X), §=1,2,3,
are the Hecke p—polynomials of forms f; and the product is extended over all

primes p ¢ S, and S = Supp(N;NaN3) denotes the set of all prime divisors of
the product Ny Ny N3. We always assume that

k1 > ko > k3, (0.4)

including the case of equal weights k1 = ko = k3 = k.
We use the corresponding normalized motivic L function (see [De79], [Col,
Co-PeRi]), which in the case of “balanced” weights (i.e. k; < ko + k3 — 2) has
the form:

AS(Fr® f2® f3,8,%) = (05)

Te(s)Te(s — ks +1)c(s — ke + D)I'c(s — k1 + 1)L(f1 @ fo ® f3.8, %),
where I'c(s) = 2(2m) " °T'(s). The motivic Gamma-factor

FC(S)Fc(S — ks + 1)Fc(8 — ko + 1)F(C(S — k1 + 1)

determines the critical values s = ky,--- , ko + k3 — 2 and a (conjectural) func-
tional equation of the form: s — ki + ko + k3 — 2 — s.
Throughout the paper we fix an embedding

ip : Q — C,p, and define (0.6)

Ap) = al(,lga;l%al(}%, where we assume that |ip(a$-)| < ip (e (2))| j=1,2,3.
(0.7)
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0.2 STATEMENT OF MAIN RESULTS

For a fixed positive integer N € N consider the profinite group

Y =Yn, =1imY,, where Y, = (Z/Np"Z)*.

There is a natural projection y, : Y — Z;. Let us fix a normed O-algebra A
where O is the ring of integers in a finite extension K of @Q,.

DEFINITION 0.1 (a) For h € N,h > 1 let P*(Y, A) denote the A-module of
locally polynomial functions of degree < h of the variable y, : Y — Z; — A*;
in particular,

TI(Y, A) _ Gloc—const(y’ A)

(the A-submodule of locally constant functions). We adopt the notation ®(U) :=
®(xu) for the characteristic function xu of an open subset W C Y. Let also
denote Cloc=a (Y, A) the A-module of locally analytic functions and (Y, A) the
A-module of continuous functions so that

PLY,A) C P(Y, A) C Clema(Y, A) C C(Y, A).

(b) For a given positive integer h we define an h-admissible measure on'Y with
values in an A-module M as a homomorphism of A-modules:

o PY,A) — M,

such that for all a € Y and for v — oo

/ (Yp — ap>jd(i)
a+(Np?)

where a, = yp(a).

= o(p—v(j—h)) for all j=0,1,---,h—1,

p,M

We adopt the notation (a), = a + (Np”) for both an element of Y, and the
corresponding open compact subset of Y.
U,~OPERATOR AND METHOD OF CANONICAL PROJECTION.

In Section [2.2, we construct an h-admissible measure ®* : P"(Y, A) — M(A)
out of a sequence of distributions

¢ PHY, A) — M(A)

with values in an A-module M = M(A) of nearly-holomorphic triple modular
forms over A (for all » € N with r < h — 1), where A € A* is a fixed non-
zero eigenvalue of triple Atkin’s operator Ur = Ur,y, acting on M(A), and
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h = [2ord,A(p)] + 1. In our case M(A) C Afqi, g2, 3] [R1, Rz, R3], and such
modular forms are formal series

o0

g= > a(ni,na,ng; Ry, Ry, Rs)q" a5 q5* € Alqr, g2, gs][Ri, Ra, Ry

ni,nz,n3=0

such that for A = C, for all z; = x; +iy; € H and for R; = (4mwy;)~" the series
converges to a C>-modular form on H? of a given weight (k, k, k) and character
(1,72,%3), 7 =1,2,3. The usual action of U = U, on elliptic modular forms
of one variable extends to triple Atkin’s operator Ur = Ur, = (U,)®? acting
on triple modular forms by

o0

Ur(9)= > alpni,pna,pna; pRi, pRa, pR3)q}" g5 q5° (0.8)

ni,n2,n3=0

We consider the canonical projection operator my : M(A) — M(A)* onto the
maximal A-submodule M(A)* over which the operator Uy — Al is nilpotent,
and such that Kermy =(1,~, Im (Ur — AI)". We define an A-linear map

* : PI(Y, A) — M(A)
on local monomials yg by
[ s = ms@n)

where ®; : P1(Y, A) — M(A) is a sequence of M(A)-valued distributions on
Y (for j = 0,1,...,h —1). Recall that for a primitive cusp eigenform f; =
> an(f)g™ of conductor C' = Cf,, the function fjo = D07 an(fj0)q" €

Q[q] is defined as an eigenfunction of U = U, with the eigenvalue a](;j). €Q
(U(fo) = afo) which satisfies the identity

_ p0
fio =1 —al fiIVe = £ — ol p 72 ) (0 1> (0.9)

an(fi)n (1 — agj)vp_s)_l.

hE

D an(fiom™® =
n=1

1
n

3
Il

For any fixed ng = n-p™ with p { n we have a,,(fj0) = an(f;)- (ozgj)-)m € Qand
an(f;) are eigenvalues of Hecke operators T,,. Therefore, Ur(f1,0® f2,0® f3.0) =
A(f1,0 @ f2,0 ® f3,0). Moreover,

0 —1 o
k <Np 0 ) where f£y = a(n, fo)g". (0.10)

n=1

0 __ pp
fi =Tio
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Consider the triple product defined by as an Euler product of degree
eight: D(f1 ® fo ® f3,8,x) = LN (f1 @ fo ® f3,5, ), attached to three cusp
eigenforms f;(2) = >0 an je(nz) € 8k, (N;,1;), (j = 1,2,3) of weight k, of
conductors Ny, No, N3, and of nebentypus characters ¢; mod N; (j = 1,2,3),
where x mod Np is an arbitrary Dirichlet character, and the notation L")
means that the local factors at primes dividing N = LCM(Ny, No, Ny) are
removed from an Euler product. Before giving the precise statements of our
results on p-adic triple L-functions, we describe in more detail critical values
of the L function D(f; ® fa ® f3, 5, X).

Let us introduce the following normalized L-function

D*(fY ® f5 ® f§, s+ 2k — 2,91¢p2x) = (0.11)
Te(s+2k—2)Tc(s+k— 1)LV (ff @ f5 @ 5,5+ 2k — 2, ¢192X),
where I'c(s) = 2(27)7*T'(s), and I'c(s + 2k — 2)['c(s + k — 1) is the motivic
Gamma-factor (compare with (0.5), and see [Co], [Co-PeRi], [Pa94]). For an

arbitrary Dirichlet character x mod Np consider the following Dirichlet char-
acters:

x1 mod Np¥ = x, x2 mod Np” = 13X, (0.12)
x3 mod Np® = 1hsx, ¥ = X*1h1¢aths;

later on we impose the condition that the conductors of the corresponding
primitive characters xo.1, X0,2, X0,3 are Np-complete (i.e., have the same prime
divisors as those of Np).

THEOREM A (ALGEBRAIC PROPERTIES OF THE TRIPLE PRODUCT) Assume
that k > 2. Then for all pairs (x,r) such that the corresonding Dirichlet
characters x; are Np-complete, and 0 < r < k — 2, we have that

D7 @ ff®f5,2%k —2—rivhax) _ g
(flofeff ool

where

(floffefs ffoffo e = NS SN )N
= (f1, [1)N{f2, f2) N (f3, f3) -

For the p-adic construction, let C, = @p denote the completion of an alge-
braic closure of the field @, of p-adic numbers. Fix a positive integer NV, a
Dirichlet character vy mod N and consider the commutative profinite group
Y=Yy,= lirfl(Z/Nme)* and its group Xy, = Homeent (Y, C)) of (contin-

m
uous) p-adic characters (this is a Cp-analytic Lie group). The group Xy, is
isomorphic to a finite union of discs U = {z € C,, | |z], < 1}.
A p-adic L-function L, : Xy, — C, is a certain meromorphic function on
XN,p- Such a function often come from a p-adic measure p,) on Y (bounded
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or admissible in the sense of Amice-Vélu, see [Am-V]). In this case we write
for all x € X p

L) (z) = /Y z(y)dpp) (v)

2P

In order to establish p-adic properties, let us use the product (0.7) A = A(p) =

1) 1) (1 NG NN
a;,ia;,%a;,g’, where we assume that \zp(a;,j)-ﬂ < |zp(a;7])-)\7] =1,2,3.

THEOREM B (ON ADMISSIBLE MEASURES ATTACHED TO THE TRIPLE PROD-
ucT). Under the assumptions as above there exist a C,-valued measure
[L/}@fz@fg on Ynp, and a C,-analytic function

Dy, f1® f2® f3) : Xp — Cp,

given for all x € Xy, by the integral

D(P)(xafl & f2 2y f?)) = /Y x(y)d'a}l@)fz@fs(y)’

and having the following properties:

(i) for all pairs (r,x) such that x mod Cy is a primitive Dirichlet character
modulo Cy,, x € X}\?w’;f, assuming that all three corresonding Dirichlet characters
X; given by (0.12) have Np-complete conductor (j = 1,2,3), and r € Z is an
integer with 0 < r < k — 2, the following equality holds:

Dy 1 ® f2© fa) = (0.13)

i ( (P112)(2)Cx 27

PAG(x1)G(x2)G(x3)G(h1thax1)A(p)?*
DA f®fg,2k—2—r, wlwzx))
(2 f2®f9, f1.0® f20 ® f3,0)1,Np

where v = ord,(Cy), x1 mod Np¥ = x, x2 mod Np¥ = thth3x, x3 mod Np® =
13X, G(x) denotes the Gaup sum of a primitive Dirichlet character xo at-
tached to x (modulo the conductor of xo).

(ii) if ordyA(p) = 0 then the holomorphic function in (i) is a bounded C,-
analytic function;

(iii) in the general case (but assuming that \(p) # 0) the holomorphic func-
tion in (i) belongs to the type o(log(x])) with h = [2ord,A(p)] + 1 and it can
be represented as the Mellin transform of the h-admissible C,-valued measure
ﬂ?l@fz@fa (in the sense of Amice-Vélu) on'Y

(iv) if h < k — 2 then the function D,y is uniquely determined by the above
conditions (i).

REMARK 0.2 It was checked by B.Gorsse and G.Robert that
(17 ® J30 @[5, Lo © f50 ® flodrnp = B+ (fr, fU)N(fas fodn (fs, fa)n
for some 3 € Q" (see [Go-Ro)).
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0.3 SCHEME OF THE PROOF

We construct Q-valued distributions denoted by fif,@f,6 .- on the profinite
group Y ,, and attached to the special values at s = 2k—2—r with 0 <7 < k-2
of the triple product L(f{ @ f§ @ f£, s,¢¥112x) twisted with a Dirichlet character
P11 x mod Np¥. We use an integral representation of this special value in
terms of a C>°-Siegel-Eisenstein series F) , of degree 3 and of weight &k (to
be specified later), where 0 < r < k — 2. Such a series F, , depends on the
character , but its precise nebentypus character is 1 = %1215, and it is
defined by F, , = G*(Z,—r;k, (Np”)g,w)7 where Z denotes a variable in the
Siegel upper half space Hs, and the normalized series G*(Z, s; k, (Np”)Q, 1) is
given by (A.12). This series depends on s = —r, and for the critical values
at integral points s € Z such that 2 — k < s < 0, it represents a (nearly-)
holomorphic Siegel modular form in the sense of Shimura [ShiAr].

Our construction consists of the following steps:

1) We consider the profinite ring Ay, = lim(Z/Np“Z). Starting from any

sequence F). of nearly-holomorphic Siegel modular forms we construct first a
sequence ¥ of modular distributions on the additive profinite group

0 €12 €13
S=5Syp=q¢e= ez 0 a3 €12,€13,623 € ANy ¢ ;
€13 €23 0

such distributions take values in €°°-(nearly-holomorphic) modular forms on
the Siegel half plane Hs3. This construction, given in Section [1, generalizes
the higher twist of F,., already utilized in the work [Boe-Schm], in a simpler
situation.

2)  Next we consider the (real analytic) Siegel-Eisenstein series F) , as a
formal (nearly-holomorphic) Fourier series, whose coefficients admit explicit
polynomial expressions (see Section [l and Appendix[A), and we use the fact
that they may be written in terms of p-adic integrals of x over Y (see [PaSE
and [PaIAS)).

A crucial point of our construction is the higher twist in Section[1l We define
the higher twist of the series F) , by the characters (0.12) as the following
formal nearly-holomorphic Fourier expansion:

FEuXeXs =N "5y (tia) Xa(t1s) Xa(t2s) Q(R, Tk — 21, 1)ay »(T)g”. (0.14)
T

The series (0.14) can be naturally interpreted as an integral of the Dirichlet
character x on the group Y with respect to a modular distribution ¥,.:

L = [ x)aw o) = ,00. (0.15)
Y

These modular distributions take values in the ring of formal Fourier expansion
whose coefficients are polynomials in R = (47Im (2)) ! over the field Q (which
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is imbedded into C, via (0.6). The distributions ¥, are uniformly bounded
(coefficient-by-coefficient).
3) If we consider the diagonal embedding

diag : H x H x H — Hi,

then the restriction produces a sequence ®, = 2" diag™ ¥,. of distributions on Y’
with values in the tensor product My, ,-(Q) ® My (Q) ® My, -(Q) of three spaces
of elliptic nearly-holomorphic modular forms on the Poincaré upper half plane
H (the normalizing factor 2" is neeeded in order to prove certain congruences
between @, in Sectionl3).
The important property of these distributions, established in Section|[1] is that
the nebentypus character of the triple modular form ®,.(x) is fixed and is equal
o (¢1,%2,13), see Proposition [1.5] Using this property, and applying the
canonical projector 7y of Section[2]to ®,.(x), we prove in Section [3]that the se-
quence of modular distributions ®,. on Y produces a p-adic admissible measure
®* (in the sense of Amice-Vélu, [Am-V]) with values in a finite dimensional
subspace

MA(CP) C M(Cp)» M(Cp) = Mk,r((cp) ® Mk,r((cp) ® Mk,r((cp)

of the C,-vector space M(C,) = Uu>o My (NP, 901, 92,13;Cp) of formal
nearly—holomorphlc triple modular forms of levels Np¥ and the fixed nebenty-
pus characters (11,2, 13). We use congruences between triple modular forms
®,.(x) € M(Q) (they have cyclotomic formal Fourier coefficients), and a gen-
eral admissibility criterion (see Theorem [2.4). Proof of the Main Congruence
is contained in Section

4) Application of a Q-valued linear form of type

<f1 ®fa® fs,h>

0} (o 2 i )

for h € My, - (Q) ® My -(Q) @ My (Q), produces a sequence of Q-valued distri-

butions given by 2 (x) = L(mx(®,)(x)), A € Q. More precisely, we consider
three auxilliary modular forms

L :h—

Z e(nz) € Sp(To(N;p™), ;) (1<7<3,1;>1), (0.16)

with the same eigenvalues as those of (0.1), for all Hecke operators T,, with
q prime to Np. In our construction we use as fj certain “easy transforms”
of primitive cusp forms in (0.1). In particular, we choose as fj eigenfunctions
fj = f]o of the adjoint Atkin’s operator Uy, in this case we denote by f;o the
corresponding eigenfunctions of U,. The Q-linear form £ produces a C,-valued
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admissible measure i = £(®*) starting from the modular p-adic admissible
measure ®* of stage 3), where £ : M(C,) — C, denotes a C,-linear form,
interpolating L. See Section [4]for the construction of ji*.

5) We show in Section 5] that for any suitable Dirichlet character y mod Np¥
the integral

12 (x) = L(ma (@ (x)))

coincides (up to a normalisation) with the special L-value
D*(fl @ 5@ fL,2k—2—r,111p2x) (under the above assumptions on y and 7).

We use a general integral representation of Section [B. The basic idea how
a Dirichlet character x is incorporated in the integral representation |Ga87,
is somewhat similar to the one used in [Boe-Schm], but (surprisingly)
more complicated to carry out. Note however that the existence of a Cp-valued
admissible measure ji* = ((®) established at stage 4), does not depend on
this technical computation, and details will appear elsewhere.

REMARK 0.3 Similar techniques can be applied in the case of three arbitrary
“balanced” weights (0.4) k1 > ko > ks, i.e. when k1 < ko+ks—2, using various
differential operators acting on modular forms (the Maaf-Shimura differential
operators (see [ShiAr], [Or]), and Ibukiyama’s differential operators (see [Ibu],
[BSY]). More precisely, one applies these operators to a twisted Eisenstein
series. In this case the critical values of the L function D(f1 ® fo @ f3,8,%)
correspond to s = ky,--- ko + k3 — 2. The equality of weights in the present
paper is made to avoid (for lack of space) the calculus of differential operators.

0.4 CONCLUSION: SOME ADVANTAGES OF OUR p-ADIC METHOD

The whole construction works in various situations and it can be split into
several independent steps:

1) Construction of modular distributions ®, (on a profinite or even adelic
space Y of type Y = A} /K* for a number field K) with values in an infinite
dimensional modular tower M(A) over complex numbers (or in an A-module
of infinite rank over some p-adic algebra A).

2) Application of a canonical projector of type 7y onto a finite dimensional
subspace M*(A) of M(A) (or over a locally free A-module of finite rank over
some A) in the form: m\(g) = (U7 1(U"(g)) € M*(Np,A) as in (2.3) of
Section [2 (this method works only for A € A*, and gives the A-characteristic
projector of g € M(Np", A) (independently of a sufficiently large v)).

3) One proves the admissibility criterium of Theorem [2.4] saying that the
sequence my(®,) of distributions with values in M*(A) determines an h-
admissible measure ®* with values in this finite dimensional space for a suitable
h (determined by the slope ord,())).
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4) Application of a linear form £ of type g — (f°,7x(9))/{f, f) to the modular
distributions ®,. produces a sequence of A-valued distributions ) = £(7x(®,.)),
and an A-valued admissible measure. The growth condition can be verified
starting from congruences between modular forms ®; (), generalizing our Main
Congruence of Section [3

5) One shows that certain integrals u?(x) of the constructed distributions ,u?‘
coincide with normalized L-values; however, computing these integrals is not
needed for the construction of p-adic admissible measures fi* (which is already
done at stage 4)).

6) Under some assumptions, one can show a result on uniqueness for the con-
structed h-admissibles measures: they are determined by the integrals u?(x)
over almost all Dirichlet characters and sufficiently many j = 0,1,--- ;A — 1
(this stage is not necessary, but it is nice to have uniqueness of the construc-

tion), see .

7) If we are lucky, we can prove a functional equation for the constructed
measure ji* (using the uniqueness in 6)), and using a functional equation for
the L-values (over complex numbers), computed at stage 5), for almost all
Dirichlet characters (again, this stage is not necessary, but it is nice to have a
functional equation).

This strategy is applicable in various cases (described above), cf. [PaJTNB],
Puy|, [Go02]. An interesting discussion in the Bourbaki talk [Colm03] of
P.Colmez indicates the use of this method for constructing Euler systems.
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1 MODULAR DISTRIBUTIONS ATTACHED TO THE HIGHER TWIST
OF EISENSTEIN SERIES

1.1 HIGHER TWISTS OF THE SIEGEL-EISENSTEIN SERIES

In this Section we study a €°°-Siegel-Eisenstein series F , of degree 3 and of
weight &, where 0 < r < k — 2. As in the Introduction, consider the Dirichlet
characters x1 mod Np¥ = x, x2 mod Np¥ = 1at)sx, x3 mod Np¥ =
Y1 x.

The series Fy , = G*(Z, —r; k, (Np“)2,'¢), depends on the character x, but its
precise nebentypus character is 1 = x291¢215. Here Z denotes a variable in
the Siegel upper half space Hj, and the normalized series G*(Z, s; k, (]\710”)27 )
is given by (A.12). This series depends on s = —r, and for the critical values
at integral points s € Z such that 2 — k < s < 0, it represents a (nearly-)
holomorphic function in the sense of Shimura [ShiAr] viewed as formal (nearly-
holomorphic) Fourier series, whose coefficients admit explicit polynomial ex-
pressions in terms of simple p-adic integrals for p { det(7T):

Fyr= Y det(T)* > "Q(R,T; k — 2r,1)ay »(T)g”,
TEB3

where Bz = {‘.T: (‘Tij) S Mg(R) ‘ T = ﬁI,‘IZ O,TZ‘J‘,QTZ‘Z‘ € Z}, and q‘I =
exp(2mitr(T2)), R = (4nIm(Z))~'. More precisely, for any T with p { det(T)
there exists a bounded measure F5 on Y with values in Q@ such that

0 = [ipass = I Mm@, @y

¢] det(27)

where 1 = 2911215 (see , Theorem[A.2/in Appendix A also in [PaSE],
PalAS]). Here we use arithmetical nearly-holomorphic Siegel modular forms
(see [ShiAr| and Appendix[A.2]for more details) viewed as formal power series

g = > a(T,Ri;)q" € Q[¢P"][R;,] such that for all Z € H,, the series
TE€Bm
converges to a C*°-Siegel modular form of a given weight k& and character .

As in the introduction, (0.14), we define the higher twist of the series F) ,
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by the characters (0.12) as the following formal nearly-holomorphic Fourier
expansion:

Fexs = Z)Zl(t12)>22(t13)>23(t23)Q(R7 Tk —2r,7)ay(T)g” = W, (x).
T

We construct in this section a sequence of distributions ®, on Y using the
restriction to the diagonal

®,.(x) : = 2" diag" ¥, (x) = 2" FXLX2X8 o diag (1.2)

=2 Z Z X1 (t12) X2 (t13) Y3 (ta3) det(T)F =277 x

t1,t2,t3>0  Titi1=ty,
top=ty.ta3=t3

x Q(diag(Ry, R2, R3), T; k — 2r, r)ax,r(T)q§1q§2q§37
where ¥1(t12)X2(t13)¥3(tas) = X(t12t13tas)Yoths (t13) 13 (tas),

taking values in the tensor product of three spaces of nearly-holomorphic elliptic
modular forms on the Poincaré upper half plane H (recall that the normalizing
factor 2" is neeeded in order to prove congruences between @, in Section 3).
We show in Proposition [1.5] that the (diagonal) nebentypus character of
FX1:X2:X3 s (41, 1h2,43), thus it does not depend on x.

1.2 THE HIGHER TWIST AS A DISTRIBUTION

Let us fix a Dirichlet character x mod Np” as above with v > 1, and an arbi-
trary C*°-modular function

F e M (To(Np®), ),

with a Dirichlet character ¢ mod Np" which depends on x mod Np’, for ex-
ample, the series F, , with the nebentypus character ¢ = x211215. Then
the higher twist of F' with x1, x2, x3 was initially defined by the formula

F= Z x1(e12)x2(€13)x3(€23) F|ite, npv (1.3)

v
€12,€13,623 mod Np

5

Jg— .
where we use the translation te npv = ( 3 Np ) on Hs with € =

03 13
0 e12 e13
€12 0 €93 | . The idea of the construction. We wish to interpret the series
€13 €23 0
1.3) in terms of a distribution on a profinite group, using the following model
example: consider the profinite ring Ay, = lm(Z/Np"Z), and a compact

open subset o + (Np¥) C Ay, with « an integer mod Np", and N is prime
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to p. For any formal series f = Y ., anq™ € C[g¢] and for any open subset
a+ (Np¥) C Ay, consider the following partial series:

pila+(Np*) = > auq" €C[q].

n>1
n=a mod Np"

If ¢ = exp(2miz) with z € H, it follows from the orthogonality relations that

prla+ (Np*) = (Np*) ™" > exp(%iaﬁ/Np”)f< Nﬂpv)7

B mod Npv

and that for any Dirichlet character x mod Np¥ one has

/A a)dpus(a) =Y x(n)ang™ = f(x) € Clq].

n>1

(the series f twisted by the character x).
In the same fashion, consider the additive profinite group

0 €12 €13
S=8Snpi=q€e= ez 0 eo3 €12,€13,623 € ANp ¢
€13 €23 0

equipped with the scalar product (-,-) : Snp X Snp — AN p:

<€(1), 5(2)> - tr(s(1)€(2)) — 25(1) (2) + 25(1?5(1? + 25%)553), where

1 1 2 2

0 552) 5%3) 0 552) 553)

e — (1) 0 %) 7[;-(2) _ (2) 0 %)
1 1 2 2

5&3) 5&3) 0 5%3) 553) 0

PRrROPOSITION 1.1 Suppose that the function F is invariant with respect to any
integer translation of type teq : Flte1 = F. Then

1) The action Flte npv depends only on the class of € € S/Np®S, and the
additive character ego) : € — eXp(<€, 6(0)>/Np”) on S is trivial iff e®) € Npv8S.
2) The formula

Up(e® + (Np") = (Np) >0 exp(=2ri{e, 0 ) ND") Flte vy
e€S mod NpvS
(1.4)

=) Y e (e e ) /NP Flte e

ecS mod NpvS

defines a distribution with values in C>-functions on Hs, where e(a/Np) :=
exp(2mia/Np©) is well-defined for all € Ay
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Proof: 1) Follows directly from the invariance: Flte 1 = F.
2) It suffices to check the finite-additivity condition:

Up(e® + (NpY)) = Z Up(e® + Npve® 4+ (Np*+1)), (1.5)
e(MeS mod p
ie.,
(Np") 2 30 el (e, e ) /NP ) Flte vy (1.6)
e€S/Np*S
= (Np"1) 7%
Z Z e(_<5(2)7(5(0) +vae(n)>/va+1)F|ts<2)7va+l.

eWeS/pSe@eS/Npvtis
(17)

For all £ the sum on the right on e") € S/pS in (1.6) becomes

(VP Y e (e, (e 4 NpeD) )N Fltn s (18)
eMes/pS

(), ©) (), Npre®)

= (va+1)_36(_W)F|t€(2>’]\mv+l Z el— va+1
eMeS/pS
= (Np"+1) Pe(— (@, eV NP ) Fltee pperr > e(—(e@,eV)).
eMeS/pS

It remains to notice that

37 if 5(2) = 5(3)75(3) c S
) e(,<€(2)7€(1)>/p): p P (1.9)
pmye 0, otherwise,

eMeS/pS

because (1) e(—<5(2), 5(1)>/p) is a non trivial character of S/pS iff e®) € pS.
The right hand side of (1.6) becomes

(va—i-l)—S Z Z e(_<€(2)’(€(0)_|_vag(l))>/va+1)F‘ts(2),va+1
eMeS/pSeeS/Npv+1s
(1.10)

— (Np**1)=3p3 Z e(—<€(3)7E(O)>/Np”)F|t€(3>7va.
e®eS/NpvsS

REMARK 1.2 The Fourier expansions of the nearly-holomorphic Siegel modular
form

Fe o=
Up(e+ (Np")) = (Np”)~* > exp(—2mi(e’, €) /Np") Flte npo.

e’eS mod NpvS
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is given as the following partial Fourier series

F.,(2) = > a(T,R)q", (1.11)

T,t19=e15 mod Np?
t13=e13,t93=e93 mod Np?
where F' is a nearly-holomorphic Siegel modular form, which is a periodic func-
t11 ti2 113
tion on Hs: F = Za(‘]’, R)qT, and T = | tyo too tog | Tuns over half
T t13 toz 133
integral symmetric non negative matrices.

Indeed,
Flter Npo = Za(‘)’, R)¢" |ter Npo = Zexp(27ritr(€"3')/Np“)a(‘T, R)¢”,
T T
hence
F.,=(Np")~® Z exp(—2mi(e’,e)/Np") Zexp(%ritr(z—:"f)/Np”)a(‘J’, R)¢".
e’€S mod NpvS T

It suffices to notice that

0 €y €ls t11 tiz lis

tr(e/‘T) =tr 5/12 0 5/23 t1a  tog tog = 2(6’12t12+8/13t13+€/23t23).
elg & 0 t13  tog  ta:
13 23 13 23 33

Let us consider now three Dirichlet characters x1, x2, x3 mod Np", and let us
compute the corresponding integrals against the constructed modular distribu-
tion (1.4) of the locally constant function € — x1(g12)x2(€13)x3(g23) on the
profinite additive group

0 €12 €13
S=Syv:i=q¢e= €12 0 a3 €12,€13,€23 € AN
€13 €23 0

PrOPOSITION 1.3 Let F be a function invariant with respect to any

translation of type teq : Flten = F.  Let us write Fyg, g,xs =
Js X1(e12)X2(e13)X3(£23)dV - (€). Then
FY xoxs = (1.12)
(Np)~? Z Gnpy (X1, —€12)Gnpr (X2: —€13) G Npe (X3, —€23) Flte, npe-
€€S/Np*S

Here Gnpo (X, €) = Z e(ea’ /Np¥)x(a') denotes the Gaufy sum (of a non nec-

ol

essarily primitive Dirichlet character x ).
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REMARKS 1.4 1) The advantage of the expression (1.12) in compare with
1s that it does not depend on a choice of v.

2)It follows from (1.11, that the Fourier expansion of the series (1.12) is given
by

Py, xos = O X1(t12)Xa(t13) X (t23)a(T, R)q” . (1.13)
T

Proof is similar to that of Proposition [1.1, and it follows from the definitions.
|
1.3 THE LEVEL OF THE HIGHER TWIST

Let us consider the symplectic inclusion:

i :SLy(Z) x SLy(Z) x SLy(Z) — Sps(Z) (1.14)
aq b1
as b2
(a1 b1> (CLQ b2> <a3 bg) s as b3
cidy) \cady) \c3ds c1 dy
Co dy
c3 ds

We study the behaviour of the modular form Fy, y, 5, With respect to the
subgroup

i(To(N™)%) € T (V*p),
where (X1 ® x2 ® x3)(€) = x1(€12)x2(c13)X3(€23)-
We will have to study two different types of twist; we can treat them simulta-
neously if we consider a function
¢:Z/NZ+— C
which is “p-spherical” i.e.
P(9Xh) = (g)p(h)¢(X)

for all g,h € (Z/NZ)*,X € Z/NZ, where ¢ is a Dirichlet character mod N.
Let us use Proposition [1.12 and the spherical function

¢ (e12,€13,€23) — Gnpr (X1, —€12) G Npr (X2, —€13) G Npv (X3, —€23),

with respect to three variables (12,13, €23), and the Dirichlet characters

(51275137€23) — X1(€12)X2(€13)X3(€23)-

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 77-132



ADMISSIBLE p-ADIC MEASURES . . . 93

PROPOSITION 1.5 Consider a (nearly-holomorphic) Siegel modular form F for
the group I‘é3)(va) and the Dirichlet character 1 = x*11ba1b5).
Then for all M =i ((“1 b1> , (‘” bz) , (“3 b3>) I‘(()S)(N2 2v) one has:

¢y dy co da c3 d3
1) FIM = v¥y1x2(d1) ¥x1¥s(d2) ¥xaxs(ds) F, where F is defined by (1.3),
P1 P2 P3
2) F)Zla)ZZO_(B |M = ¢Xl>22(d1) ¢Xl)€3(d2) ¢X2X3(d3) F)Zl,iz,isv where FXI X2,X3
Y1 P2 P3

is defined by (1.12).

Proof. We study modular forms on Hs. Let us consider a more general sit-
uation and write N instead of Np”. We use the (somewhat unconventional)
congruence subgroup (with N | M):

r® (M, N) == {7 - < é g ) e 1P (M) ‘ D= diag(Dl,DQ,Dg)modN}.

Here the D; denote integers along the diagonal of D. It is easy to see that this
defines a subgroup of Sp(3,7Z) and that a similar congruence also holds for A.

The appropriate space of modular forms, denoted by Mf) (M, N;x; 1, 12,13),
with Dirichlet characters 1; mod N and a Dirichlet character x mod M is then
the set of holomorphic functions on Hj satisfying

f Ik ¥ = x(detD) Hw]

A B
C D

we define a symmetric matrix of size 3 by

for all v = GFgS)(M,N). For any « € R and any 1 <i < j <3

(3) —
Sij (o) :=

(the number « sits in the (7,j)th and (j,7)positions). Then, for a function
Fe M,(f)(M, N x;1p1,%2,v3) we define a new function Fﬁ on Hs by

= Y @) PSP

a mod N

PROPOSITION 1.6 Assume that N? | M, x is a character mod £ N and
F € Ml(€3)(M’ Na X5 d)la 1/)2a 7/}3) Then

e MC (M, Ny x; 0, v, 04)
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with
w0 i
" 1/%@ Zf Te{i,j}
REMARKS 1.7 1) We mention here two basic types of @-spherical functions
¢:Z/NZL:
Type I “Dirichlet character” ¢(X) := ¢o(X)
Type II: “Gaufl sum” ¢(X) = G(@,—X) where G(p,X) denotes a Gauf
sum (a version of such spherical functions of matriz argument was studied

in [Boe-Schm]):

G(p, X) := Z @(a)exp(Qwi%aX)
a mod N

2) Our basic example is as follows: let @1, pa, w3 be three Dirichlet characters
mod N and let ¢; be @;-spherical functions on Z/NZ. Furthermore let F €

M,(f) (To(M), x) with N* | M and x a Dirichlet character mod 4. Then

h(z1,22,23) = Y dr(a)da(B)ds()F(

«,3,y mod N

2wzl &
z & =k
& zRzw

is an element of
M (Lo(M), xp192) @ My(To(M), xp1903) @ My (Lo (M), xP23)

(note that the definition of h depends on N)
3) Other important cases are treated in it can also (by iteration) be
applied to cases of block matrices of different size which e.qg. occur in the work

on the L-function for GSp(2) x GL(2).
Proof. We first try to find X € Symg(+Z) such that
1, S(2)\(A B 1, —X
05 13 e D 05 13
_( A+S(§)C —AX +B - S(§)CX + S(#)D
B C —-CX+D

isin I‘(()3) (M) (for the moment we only assume here that ( Jél % ) is integral.

The conditions N2 | M and the congruences mod M and N will then be forced
to hold). The first (evident) condition is that € = Omod M. It is easy to see
that the two numbers on the diagonal

—CX+D and A+ S(%)G
are integers, if C is congruent to 0 modulo N.
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The remaining condition is that
! @
—AX +B - S(—=)CX —)D
AX + S( N)G +5( N)
is integral, which is satisfied if € = 0mod N? and —A - X + S(%)D is integral.
Therefore we should choose any X satisfying
(NX)=AS(a)D mod N

where A is a (multiplicative) inverse of the matrix A mod N. Now we use the
fact that A = diag(A1, Az, A3) mod N and D = diag(D1, Dy, D3) mod N are
matrices which are diagonal modulo N, we may therefore choose the integral
symmetric matrix NX to be modulo N equal to

_ Aj-a-D;
NX =SSP (A a D)) = X = X(a) = S (NJ) :
By the above,
® A B _ 1 5(%) A B
Fij|k(e @) = Z¢(O‘)F|k(0 1N e D
a mod N
- A B 1 X()
= Z¢(0‘)F|k(é @)(O 1 >
o mod N
where ( “él g ) e I'®(M, N) with
f[zﬂmod% and D=D mod%
(in particular, these congruences hold mod N). Therefore
A B 13 X(«
Fo b (f p) = xdet®)in(Dy). D) Y otar e (32 K.

amodN

Instead of summing over a@ we may as well sum over 3 := D; - « - D; mod N.
Then we obtain

(3)
X(det(D))er (D) ... on(Du)B(D)B(D;) > (3 < S <§3)>

B mod N 13
= X(det(D)1(D1) - . . ¥u(Dy)p(D)P(DH) L. 1

Notice that the properties of Propositions hold for the iterated twists, and
Propositions[1.5 follows from Propositions 1.6 by three iterated twists with NV
equal to Np”. 1
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2 COMPUTATION OF THE CANONICAL PROJECTION

2.1 A GENERAL CONSTRUCTION: THE CANONICAL A-CHARACTERISTIC PRO-
JECTION

We explain now a general method which associates a p-adic measure py ¢ on
a profinite group Y, to a sequence of distributions ®, on Y with values in
a suitable (infinite dimensional) vector space M of modular forms, and to a
nonzero eigenvalue A of the Atkin operator U = U, acting on M. We consider
holomorphic (or nearly-holomorphic) modular forms in a space of the type

M =My (1,Q) = | Mu(Np",%, Q) € M(C,) = | Mi(Np*, ¢, C,),

v>0 v>0

with finite dimensional vector spaces My (Np®, 1, Q) at each fixed level, en-
dowed with a natural Q-rational structure (for example, given by the Fourier
coefficients). The parameters here are triples k = (kq, ko, k3), © = (11,2, 13)
of weights and characters. The important property of our construction is that
does not use passage to a p-adic limit. We put

My (Np", v, A) = My(Np*, 1, Q) &g A.
for any Q-algebra A.

DEFINITION 2.1 Let A=C, , A=Q, or A=C, and M = M(A).

(a) For a A € A let us define M) = Ker (U — XI) the subspace of eigenvectors
with eigenvalue \).

(b) Let us define the A-characteristic subspace of U on M by

MY = | J Ker (U = AI)"

n>1
(¢c) Let us define for any v >0
MA(Np?) = MO M(NpY), MV (Np?) = MY 1 M(Np).

PROPOSITION 2.2 Let Y mod N be a fized Dirichlet character, then
U"(M(Np"*, ) € M(Np, ).

Proof follows from a known formula of J.-P. Serre: for g € My (Np**1, ),

v41

k20 gl Winpenn TIgh Wy, (2.1)

glkU" =p

where Wy : M(N, 1) — M(N, ) is the involution (over C) of level N (see
Se73]| for the elliptic modular case, which extends to the triple modular case).
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PROPOSITION 2.3 Let A= C, or A= Q, M =M(A), A € A*, and let U* be

the restriction of U on M*, then

(a) (U)? : MM Npvt) = M Np) is an A-linear invertible operator, where

UA == U|M>\(va+l)¢

(b) The vector subspace MN(Np*Tt) = M (Np) does not depend on v.

(¢) Let mxpi1 = M(Npt1) — MM Np**l) be the projector on the -

characteristic subspace of U with the kernel Ker (my,) = ﬂ Im(U — A" =
n>1

@ MP(Nop®)), then the following diagram is commutative

BEN

M(Np**t)  —  MA(NpH)

TN, v+1
v U (2.2)
M(Np)  —  M(Np)
Let us use the notation
m(g) = (UY)'m1(U%(g)) € MMTo(Np),,C) (2.3)

for the canonical A-characteristic projection of g € M(Io(Np¥*1), 4, C).
Proof of (a). The linear operator (U*)" acts on the A-linear vector space
MA(Np”'*'l) of finite dimension, and its determinant is in A*, hence the A-
linear operator (UMY is invertible.

Proof of (b). We have the obvious inclusion of vector spaces: M*(Np) C
MA(Np*1). On the other hand the A-vector spaces M*(Np¥*!) and M*(Np)
are isomorphic by (a), hence they coincide:

M*(Np) € MMNNp'™) = U (MM (Np°th)) € MM (Np).

Proof of (¢). Following the theory of reduction of endomorphisms in finite
dimensional vector spaces over a field K, the canonical projector my , onto the
A-characteristic subspace | J,,~, Ker (U — AI)™ with the kernel (-, Im (U —
AI)™ can be expressed, on one hand, as a polynomial of U over K, hence 7,
commutes with U. On the other hand, the restriction of my 441 on M(Np)
coincides with 7y 1 : M(Np) — M*(Np), because its image is

U Ker (U =AD" nM(Np) = | Ker (Ulnevp) — M)™,

n>1 n>1

and its kernel is

() Im (U =AD" N M(Np) = (| Im (Ulawvp) =AD" B

n>1 n>1
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2.2 A CGENERAL RESULT ON ADMISSIBLE MEASURES WITH VALUES IN MOD-
ULAR FORMS (A CRITERION FOR ADMISSIBILITY)

Consider the profinite group Y = limY, where Y, = (Z/Np"Z)*. There is a

natural projection y, : Y — Z;. Let A be a normed ring over Z,, and M be a
normed A-module with the norm | - [, .

Let us recall Definition 0.1} ¢): for a given positive integer h an h-admissible
measure on Y with values in M is an A-module homomorphism

P:PMY,A) - M
such that for fixed a € Y and for v — oo

/ (yp — ap)h/dé) =o(p "M for all K =0,1,...,h—1,
a+(Npv) M

where a, = y,(a), P*(Y, A) denotes the A-module of locally polynomial func-
tions of degree < h of the variable y,, : Y — Z; — A*. We adopt the notation
(a)y = a+(Np?) for both an element of ¥, and the corresponding open compact
subset of Y.

We wish now to construct an h-admissible measure ®* : P"(Y, A) — M(A) out
of a sequence of distributions

o) PHY, A) — M(A)

with values in an A-module M = M(A) of modular forms over A as in Section

2.1).

For this purpose we recall first Proposition[2.3, (¢). Suppose that A € A* is an
invertible element of the algebra A. Recall that the A-characteristic projection
operator

Taw : M(NpU; A) — M(Np¥; A)* € M(Np¥; A) (v>1)
is determined by the kernel ﬂ Im(U — AI)™; this projector is given as a poly-
n>1
nomial of U over A whose degree is bounded by the rank of M(Np”; A).

Using Proposition [2.3c), the sequence of projectors my , can be glued to the
canonical projection operator

mx t M(A) = M(A)> € M(A) (2.4)
given for all g € M(A) by
m(g) =g =U" [mx1U"(g)]

(g* is well defined if v is sufficiently large so that g € M(Np¥+1)).
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Next we construct an admissible measure
d* . PH(Y, A) — M(Np; A)
such that

/( P = @2(@0) = T (@ (@)

where @, : PH(Y,A) — M(A) are M(A)-valued distributions on Y for r =
0,1,...,h— 1, and ®}((a),) are their A-characteristic projections given by

OX((a)y) = U™ [maa U ®,((a)y)]

for any sufficiently large v’. Note first of all that the definition
[ a8 = @@ = U a0 (@)

of the linear form ®* : P*(V, A) — M(A) is independent on the choice of the
level: for any sufficiently large v’, we have by Proposition [2.3 the following
comutative diagram

M(Np”/'H; A) T J\/[(Np“/'*'l; AP

U”'l lz U’

TN,

M(Np;4) =2 M(Np; A)>

in which the right vertical arrow is an A-isomorphism by Proposition [2.3 (b),
and the A-linear endomorphism U commutes with the characteristic projectors
Taw'+1, T,1. Hence the following sequence stabilizes: for some vj; and for all
v’ > v}, we have that

U [mlev@r((a)v)} — U [m,lU%@T((a)v) .

THEOREM 2.4 Let A € A be an element whose absolute value is a positive
constant with 0 < |\|, < 1. Suppose that there exists a positive integer s such
that for any (a), CY the following two conditions are satisfied:

P, ((a),) € M(N'p*"), with N' independent of v, (level)

T

U%U(Z <:,>(yg)”/@w((a)v)))| <Cp™™ (growth)

r’=0

forallr =0,1,...,h —1 with h = [>ord,(\)] + 1.

Then there exists an h-admissible measure ® : PH(Y, A) — M such that for
all ((a)y) CY and for allT =0,1,...,h—1 one has

[ it = ek

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 77-132



100 S. BOCHERER, A. A. PANCHISHKIN

where

©((a)e) = mA(@r((a)u)) == U [ma1U @, ((a)o)]
is the canonical projection of wx of the modular form ®.((a),) (note
that U**®,.((a),) € M(Np*’; A)» = M(Np; A)* because of the inclusion
U= (M(Np*; A)) C M(Np; A) for all v > 1, see Proposition[2.3 (a))

Proof. We need to check the h-growth condition of Definition [0.1, ¢) for the
linear form

N Ph(Y, A) — M(A)N

(given by the condition of Theorem [2.4). This growth condition says that for
all a € Y and for v — oo

]()<ypmbrdéA

=o(p~"""M)
p,M

for all 7 =0,1,...,h — 1, where h = [>0rd,(\)] + 1 and y) = y,(a).
Let us develop the definition of ®* using the binomial formula:

T

/<a)1, (v )" ¥ = 3 (:) (—yp)" " @0 ((a)y) = A%

r’=0
AU L [T 7T,\)1U%U (Z (:,) (_yg)T—T/(I)T/ ((G,)v)>‘| . (25)
r’=0
First we notice that all the operators
n—1 o .
AU = (AT = (AT 2T =) ( ; ) (A tz)
j=0

are uniformly bounded for v — oo by a positive constant C; (where U =
M + Z and Z™ = 0 where n is the rank of M(Np; A)). Note that the binomial

coefficients (_Qf%) are all Z,-integral.
J

On the other hand by the condition (growth) of the theorem (for the distribu-
tions ®,.) we have the following inequality:

I

(3 (1) (@0

r’'=0

S Cpf’l)’l’
p,M

for all r =0,1,...,5ch — 1. If we apply to this estimate the previous bounded
operators we get

< C- Cl‘)\ivx|p . pfvr _ 0(p7v(r7h))
»,M

L[)@p—ﬁrdék
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because of the estimate

AT, = (pordP(A))v% = o(p*™), and sord,(\) < h = [xord,(\)] +1. 1
(2.6)

We apply Theorem [2.4]in Section [5.1 in order to obtain a p-adic measure in
the form py ¢ = (mA(P)). Here X is a non-zero eigenvalue of Atkin’s operator
U = U, acting on M, £ : M*(Np; A) — A is an A-linear form, applied to the
projection m, : M — M*» € MM Np; A) of a modular distribution ®, where
A=C,.

3 MAIN CONGRUENCE FOR THE HIGHER TWISTS OF THE SIEGEL-
EISENSTEIN SERIES

The purpose of this section is to show that the admissibility criterion of The-
orem [2.4] with h* = 2 is satisfied by a sequence of modular distributions (1.2),
constructed in Section [T.

3.1 CONSTRUCTION OF A SEQUENCE OF MODULAR DISTRIBUTIONS

As in the Introduction, consider the series F), , = G*(Z, —r; k, (Np”)Q, 1), given
by (A.12), viewed as formal (nearly-holomorphic) Fourier series, whose coeffi-
cients admit explicit polynomial expressions. The only property that we use
in this section is the fact that they can be written in terms of simple p-adic
integrals:

Fyp=> det(T)" " Q(R, T;k — 2r,r)ay »(T)q”,
T

PaSE]|, [PalAS| and (1.1)). Here we use a universal polynomial, described in
CourPal, Theorem 3.14 as follows:

QR,T) = Q(R,T; k —2r,7) (3.1)
= Z <:> det(T)Tﬁt Z Rp(k—k+7)QL(R,T),
t=0 |L|<mt—t

QL(R,T) = tr (‘pm—1, (R)p;, (7)) - -t (-1, (R, (7)),

where we use the natural representation p, : GL,,(C) — GL(A"C™) (0 <
r < m) of the group GL,,(C) on the vector space A"C™. Thus p,(z) is a
matrix of size (") x (") composed of the subdeterminants of z of degree r.
Put pX(2) = det(2)pm_r(%2) L. Then the representations p, and p’ turn out to
be polynomial representations so that for each z € M,,(C) the linear operators
pr(2), pi(z) are well defined. In (3.I), L runs over all the multi-indices 0 <
li <+ <1ly <m,such that |[L] =13 + -+ 1; < mt—t. The coefficients
Rr(5) € Z]1/2]|F] in are polynomials in § of degree (mt — |L|) and with
coefficients in the ring Z[1/2].
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3.2 UTILIZING THE ADMISSIBILITY CRITERION

Recall an important property of the sequence of distributions @, defined by
(1.2), Section [1: the nebentypus character of ®,.(x) is (¢1,2,13), so that it
does not depend on x. Now let us prove that the sequence of distributions ®,. on
Y produces a certain admissible measure ® with values in a finite dimensional
Cp-vector subspace

MY C M, M = My (Cp) @ My (Cp) @ My, (Cp),

(of nearly-holomorphic triple modular forms over C,) using a general admissi-
bility criterion (see Theorem [2.4).

3.3 SUFFICIENT CONDITIONS FOR ADMISSIBILITY OF MEASURES WITH VAL-
UES IN NEARLY-HOLOMORPHIC MODULAR FORMS

In order to construct the admissible measures of Theorem B we use the admis-
sible measures i*(f1 ® fo ® f3,y) constructed in Section [5/out of the modular
distributions ®,. in the form

N1 ® f2® f3)(xyp) = £(ma(@,)(x))-
The growth condition for i* follows then from a growth condition for ®,.:

sup

/ (yp _ ap)rd&))\ -0 (levl;;—ZordpA) 7 (3.2)
a€Y |Ja+(Npv)

p

where R

M (xyp) = mA(@r(X))-
Let us use a general result giving a sufficient condition for the admissibility
of measures with values in nearly-holomorphic Siegel modular forms (given in
Theorem 2.4) with sr = 2, h = [2ord,A] + 1. Then we need to check that the
nearly-holomorphic triple modular forms ®,.() are of level N2x?¥, nebentypus
(11, 12,13), and satisfy the congruences

vt (3 (L)oo (@)

r’'=0

<Cpr (3.3)

P
and for all  =0,1,--- ,k — 2.

3.4 SPECIAL FOURIER COEFFICIENTS OF THE HIGHER TWIST OF THE
SIEGEL-EISENSTEIN DISTRIBUTIONS

Let us use the Fourier expansions (1.13) for ¥, (x). These formulas directly
imply the Fourier expansion of ®,(x)|Uz" as follows

.00 = D alp®ty, p*ty, p*ts; p* Ry, p* Ry, ™ R, 1) gf 45 5
t1,t2t3>0

(3.4)
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with
a’(pgvtl ) p2vt27 p2vt3; pQURl ) pzsz ’ p2’UR3a T)
= Z X(t1atiatas)hats(t13) 13 (t23)
T:diag(T)=(p2vt1,p?Vt2,pvVt3)
X det(‘J’)k_QT_“Q(pzv diag(R1, R2, R3), T; k — 2r,7)2"ay, - (7T)
= Z ’Ux,r(r-]da diag(RlvR2aR3)>7
T:diag(T)=(p2vt1,p2Vt2,p%"t3)
where
vy, (T, diag(R1, Ra, R3)) = X(tiotistas)Paths(tiz) 113 (tas) X (3.5)

x det(T)" 2" =% Q(p*" diag(Ry, Ra, R3), T; k — 2r,7)2"ay . (T)

= xP(2)x® (T)X° (t1ot13t23) 203 (t13) P13 (taz) X

x det(T)"~2"=*Q(p*" diag(Ry, Ra, R3), T; k — 2r,7)2"ay (7).
Let us notice that, for any T with diag(T) = (p?t1, p?°t2, p*Ut3) one has

det(‘J’) = 2t12t13t23 mod p2v’
xP)(2t10t15t23) = X (det(T)) = x(det(T)x° (det(T),

2y (T) = / yox(y)dT,
Y

with x = x®x°, x® mod p”, x° mod N, and p{ N,
for a bounded measure Fy on Y with values in Q. It follows that

UX,T(‘.T, diag(Rl, RQ, Rg))
= x)(2)x(det(T)) det(T) " x°(det(T)hoths (t15) 113 (t23)- (3.6)

~det(T)*"rQ(p?" diag(Ry, Ra, R3), T; k — 2r,7)2"ay . (T) (3.7)

= det(gi)kiriﬁQ(p2v diag(Rl, RQ, Rg), r.T, k— 27", 7’)?(2) / Xy;d?g';xo’wl’w%ws,
Y
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where Fg.y0 4, 0,0, denotes the bounded measure defined by the equality:

/nygd%;xo,wl,wz,wg (3.8)

= xP(2)x°(2)2"x(det(T)) det(T) "X (det (T) b2t (t13) 13 (t2s)ar, (7).

3.5 MAIN CONGRUENCE FOR THE FOURIER EXPANSIONS

Let us use the orthogonality relations for Dirichlet characters in order to prove
the admissibility of the distributions given by the sequence 7y (®,-(x)) using the
Fourier expansions (3.4). According to the admissibility criterion of Theorem
[2.4] we need to check the following Main Congruence:

- r r—r’ 1 — v o
‘ Z <T,)(a2) (NP Z X~ H(a)vy (T, p*° diag(Ry, Ry, Rs3)) )
x mod Npv

<Cp™"", (3.9)

where we use the notation for v, (T, diag(R1, Re, R3)), implying that
the coefficients

ip(vy,r (T, diag(R1, Ra, R3)))

in (3.5) are given as sums of the following expressions:

By (x. ) = X°(2) det ()" / NV AT T s it (3.10)
Y

T r )
t) det(T)""" > Ru(k—k+7)QL(p” diag(Ri, R, Rs),T),
t=0 |L|I<mt—t

where Fg.yo y, w,,0, denotes the bounded measure defined by (3.8). Using
the expressions (3.10), the main congruence (3.9) is reduced to proving the
congruence for the numbers B,.(x,T): there exists a non-zero integer C} such
that

Cl - Z (T/> (_ag)T_Tl ! Z X ' (a)By(x,T) = 0 mod p”"

r’=0 x mod Npv

(3.11)
= (O} -A=0mod Np"",
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where we use the notation

A :AT(‘I7 Xoawlana ¢3) = Z (:,) (_a/g)r_r/ : Z X_l(a’).

r'=0 <p(NpU) x mod Np?
(3.12)
S0 —r'—k r’ - T, r—
DT [0 Wi Y < ) det(T)"
Y t=0 4
> Rp(k—k+1)Qu(p” diag(Ry, Ry, R3), 7).

|L|<mt—t

Note that Rp(x — k 4+ r’) is a polynomial of degree mt — |L| = 3t — |L| in
k —k+ 1’ (see (3.1)), hence in 7/, and (")) is a polynomial of degree ¢ in 7.
One can therefore write

71/ 4t—|L| (T/ +n+ 1)'

Here the coefficients p,, are fixed rational numbers (independent of 7).

Using the orthogonality relations for Dirichlet characters mod Np", we see that
the sum over r' in (3.12), denoted by C' = C\.(t, L, T; x°,¥1, 12, 13), takes the
form

Cr(t, L, T3 X%, 01, P2, 1b3) = X°(2) det(T)F 1=

el " o (1 45
/y o mod ; “2 (r/>(‘“) T Y YT wive ()
a’ﬂ
-n_—~ n+1 _ T

Note that we write y = x°x®, fix x°, and sum over all characters y® mod p®.
We have therefore (y —a)” = 0 mod (p¥)" in the integration domain y = a mod
p", implying the congruence
e Cr(t, L, T3 X, 1,02, 903) =0 (mod (p*)"™™) =0 (mod (p°)"~*FIH),
(3.13)
where ¢, € Q* is a nonzero constant coming from the denominators of the fixed
rational numbers fi,,, and of the bounded distributions Fg o v, s, -

3.6 PROOF OF THE MAIN CONGRUENCE

Now the expression (3.12) transforms to

T

AT = > det(T)"-C(t, L, T) det(T)* >~ Qp(p*" diag(Ry, Ra, Rs), ),
t=0|L|<2t
(3.14)
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where Qr,(p?” diag(Ry, R2, R3),T) is a homogeneuos polynomial of degree 3t —
|L| in the variables R;; implying the congruence

Qr(p* diag(R1, Ra, R3),T) =0 (mod (p)@=1ED). (3.15)
On the other hand we know from the description (3.1) of the polynomial

T

QR,T) = Q(R,T;k—2r,r) =) (:) det(T)" ") Rp(k —k+1)QL(R,T),

t=0 |L|<2t
QL(R,T) = tx (‘ps—1, (R)p}, (T)) - .. - tr (s, (R)pf, (7)) .

that 2¢ — |L| > 0 so we obtain the desired congruence as follows

{ckC’r(t, L) =0 (mod (p) 1) (3.16)

Qu(p™ diag(Ry, Ry, ), T) = 0 (mod (p*)*~1£)
= A (T) =0 (mod p'"),
since v(r — 4t + |L|) + 2v(3t — |L|) = vr + 2vt — v|L| > vr, proving (3.9). 1
3.7 CONSTRUCTION OF ADMISSIBLE MEASURES WITH VALUES IN NEARLY-
HOLOMORPHIC MODULAR FORMS

We wish now to construct an h-admissible measure ®* : P*(Y, A) — My (A)
on Y out of the following sequence of the higher twists of Siegel-Eisenstein
distributions given by the equality (1.2):

P, := 2" diag" U, = 2" F}X1 X% @, : PL(Y, A) — Mrp(A)
(they take values in the A-module
M = Mp (1, 02,93 A) C M r (Y15 A) @ My (V23 A) @ My (1035 A)
of triple modular forms over A = C, or A = Q).

THEOREM 3.1 Let A € A be an element whose absolute value is a positive
constant with 0 < ||, < 1, and define h = [2ord,()\)] + 1. Then the sequence
(1.2) satisfies for any (a), CY the following two conditions:

‘ﬁr((a)u) € M(N'p?Y), with N' independent of v, (level)
2v - r 0\r—r’ —ur
Ur (Z (T/>(_yp) @T/((a)v)))‘ <Cp (growth)
r’=0 »

forallr=0,1,...,h—1. }
Moreover, there exists an h-admissible measure ®* : P"(Y, A) — My such that
for all ((a),) CY and for allr =0,1,...,h — 1 one has

|t =X,
(a),,
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where

(I)i\((a)v) = WA,T((DT((G)U)) = U;% [WA,IUIQ“”(I)T((G)U)]
is the canonical projection of wy of the triple modular form ®,.((a),) (note
that U2°®,.((a),) € Mp(Np?’; A)A = Mq(Np; A)* because of the inclusion
U2~ (M (Np?¥; A)) € Mg (Np; A) for all v > 1, see Proposition2.3 (a)).

Proof. We use Theorem|[2.4 with s = 2, and we to check the h-growth condition
for the A-linear map .
PN PM(Y, A) — Mp(A)

defined in Theorem[3.1] We have to check that for any ((a),) € Y the following

two conditions are satisfied: for all r =0,1,...,h — 1,
®,((a)y) € M(N?p™), (level)
"
U%U<Z (r’) (—92)7"”” @,./((a)v)) <Cp™". (growth)
r’'=0 »

The (level) condition is implied by the definition (1.2)
D, (x) =2" diag” F;Z#Xz,)z%

and Proposition
The (growth) is deduced from the Main Congruence (3.9) (proved in Section
[3.6) for the Fourier coefficients of the functions (1.2). 1

4 A TRILINEAR FORM ON THE CHARACTERISTIC SUBSPACE OF THE U-
OPERATOR

4.1 THE ADJOINT OPERATOR U*

Let f =77, a,g" denote a primitive cusp eigenform of conductor dividing
Np, with coefficients i,(a,) in a finite extension K of Q, and of Dirichlet
character ¢ modulo N. Let o € K be a root of the Hecke polynomial 22 —
a,(f)x + 1 (p)p*~! as above, and let o’ denote the other root.

Recall that the function fo = 307 an(fo)g" € Q[[q]] is defined by (0.9) as
an eigenfunction of U = U, with the eigenvalue o € Q. In the following
proposition, let U* denote the operator adjoint to

U=U,: M, ,(T'1(Np),C) = M, x(I'1(Np),C)

in the complex vector space M, (I'1(Np),C) with respect to the Petersson
inner product.

PROPOSITION 4.1 (a) The following operator identity holds: U* = W&; UWnp
(in the complex vector space M, (I'1(Np),C)).
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(b) There are the following identities in M, (1 (Np),C):

PlUr =af® and Ti(f°) = ai(f)f°

for all “good primes” 11 Np.

(c) The linear form g — (f°,g)np on M, (T1(Np), C) vanishes on the complex
vector subspace Kerm,, 1 = Im(U —ad)™ where ny = dimM,. (T'1(Np),C), and
we use the same notation as above

T, + Mr,k(FI (Np)a(c) - M;},k(rl(Np)a (C)

for the complex characteristic projection onto the «-primary subspace of
the operator U (acting on the finite-dimensional complex wvector space
M, x(T'1(Np),C)) hence

(% 9hnp = (f%, a1 (9))vp

(d) If g € M(Np**%;Q) and a # 0, then we have the equality

(£ 7a(9))np = @~ (f*, U g)np

where
Ta(9) = 9% = U " [ra,1U"] € M*(Np)

is the a-part of g.
(e) The linear form

<f07 ai’UUU(g»Np
<f07 fO)Np

Lo : M(Np";C) —C, g+~

is defined over Q:

Lfa:MND';Q) —Q
and there exists a unique Cp-linear form Ly on M(Np®; Cp) = M(Np*; Q) ®;,
C, such that L5.4(g) = ip(L1.a(g)) for all g € ip(M(Np¥; Q)).

Proof (a) See [Miy], Theorem 4.5.5 (see also [Ran90]).
(b) Let us use directly the statement a):

FOU* = FEIWNp W UWny = af Wy, = af’.
(c) If g € Kermy,1 = Im(U — o)™ then g = (U — al)™ g1 and
(f°, (U —al)™gi)np = (U* = al)f°, (U — al)" " g1)np =0
hence (f°, g)np = 0; moreover

(2 90 np = (f°, a1 (9) + (9 — Ta1(9)) vp = (% Ta,1(9)) Np-
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(d) Let us use the definitions and write the following product:

av<f0’ 7Ta9>Np = <U*U(f0)7 v [’”a,lUvg} >Np

= <f07 Wa,l(Uvg»Np = <f07 UU9>NP
by (c) as U"g € M(Np). B
(e) Note that L7 (fo) =1, fo € M(Np; Q). Consider the complex vector space
KerLjo = ()" = {g € M(Np";C) | {f°, g)np» = 0}.
It admits a Q-rational basis (as it is stable under all “good” Hecke operators
T, (I Np):
(f°, 9 npr = 0= (", Tig)npe = (I7 %, g)npe =0

and diagonalizing the action of 7; (over Q) we get such a basis establishing e).
We obtain then the Cp-linear form £f, on M(Np“;C,) = M(Np*; Q) ®;, C,
such that £;4(g) = i,(La(g)) by extending scalars from Q to C, via the
imbedding i,.

Note that we use here only the a-part M(Np”; A)® because the constructed
linear form (;, passes through the 7, (for A = C, , A = Q, or A = C).
Moreover, fy can be included to a basis {fo, g; }i=2.... » of M(Np¥; A)*, where
g; are eigenfunctions of all Hecke operators T; for primes [ { Np; they are
algebraically orthogonal to fy (in the sense of the algebraic Petersson product
studied by Hida [Hi90]) so that projection to the fo part of this basis gives such
an A-linear form.

4.2 THE TRIPLE U-OPERATOR

In the following proposition, we consider the triple U-operator

Ur=Uip®@Usp®@Us, : Mp(T'1(Np),C) — Mp(I'y(Np),C), where (4.1)

Mz (T'1(Np),C) = My, (T1(Np), C) @ My, (I'1(Np), C) @ My, (T1(Np), C),

acting on the complex vector space Mp(I'1(Np),C) endowed with the triple
Petersson inner product (-,-) defined by

(91 ® g2 ® g3, h1 @ ha @ h3)p = (g1, h1) (925 h2) Ny (935 h3) -
Let
Ur=U;,®U;,®Us,
denote the adjoint operator on M (I'1(Np),C) for the triple Petersson inner
product. Recall the notation (0.9) and :

2 2) _k p0
fio= 1=l filVp = fi — allp~*2 1| (0 1)

— n 07 =
0= Za(n,fo)q o f5 = Folk WNP*fﬁO’k (Np 0 >

n=1
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PROPOSITION 4.2 (a) The following operator identity holds:
Ui = Wiy Up i Wiy @ Wi Up s Wy @ Wy Uy sWip

(in the complex vector space Mg (T'1(Np),C)).
(b) There are the following identities in Mp(I'1(Np),C):

Ur(fi @ f2 @ f5) = \fi ® f2 @ f3).
(¢) The linear form on Mr(T'1(Np),C) defined by

J1® G2 @G3R — <f? ® 3 f, 01 © g ®g3>T = <f{)agl>Np<f20792>Np<fé)a93>Np

vanishes on the complex vector subspace Kermy 1 = Im(Up — A\I)"T where we
write np = dim Mz (T'1(Np), C), and we use the notation

o1 Mr(D1(Np),C) — M)(T1(Np),C)

for the complex characteristic projection onto the A-primary subspace of
the operator Ur acting on the finite-dimensional complexr wvector space
Mr (T (Np),C). Moreover, the following equality holds

(o000 0g),= (1O mri(n®g®gs)),.
(d) If g € Mz (Np*T1,Q) and A # 0, then we have the equality

(Y@ f3® f3,mar(9)rnp = AL ® f3 © f3, Upg)r.np

where
mr(g) =g =Uz" [ma1,1Upg] € M} (Np)

s the A\-part of g.
(e) The linear form

(fi®f3® 8\ "Upg)r,Np
(Y@@ f, f1,0® f2,0® f30)1,Np

Lr:Mrp(Np’;C) - C, g~

is defined over Q:

Lrx: Mr(Np;Q) — Q
and there evists a wunique Cp-linear form Ll on Mgp(Np';Cp) =
M7 (Np”; Q)®i,Cp such that L1 x(g) = ip(Ly,a(g)) for all g € iy(Mr(Np¥;Q)).

REMARK 4.3 We may view the trilinear form

(91,92, 93) — LrA(g1 ® g2 @ g3)

as a p-adic version of the triple Petersson product following Hida [Hi90)].
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Proof of Proposition a), b) follows directly from that of Proposition [4.1!
In order to prove c) we need to show that the linear form on My (I'y(Np),C)
defined by

G1©92@9:0 = (1 @f ®f3,019002®3)7 v,
= (0, 91)np{f2, 92) Np(f3, 93)vp
vanishes on the complex vector subspace
Kermy 1 = Im (Up — AX)"T = (Ker (U} — XI)"7)*.

It suffices to notice that

oo e Ker (Us —X) C Ker (U — X)"T,
because of the equality

Ur(fl @ f3 @ f5) = UL, (1) @ Uz, (£2) @ U3, (f3) = M(f1 © f2 ® f3).

More precisely, if g € Kernmy 7,1 = Im(Up —AI)"7 then g = (Up — A)"" g1 and

(@ f3® f3,(Ur — M) "g1)r.np
= ((Ur = AD(f{ © f2 @ f5, (Ur = AD)""'g1))r,np = 0
hence (f{ @ f9® f9,g)r,np = 0. Moreover, the following equality holds

(PR, 0 ©g0g3), = (1 ©f3 @[3, mami(g1 © g2 @ g3))

by the definition of the projection my 7 1:

g1 ®g2® 93— mar1(91 @92 @ g3) € Kermy 1.
d) Let us use the definitions and write the following product:
AL @ f3 @ f3 margyrnp = (Ur"(ff @ f3 @ £3),Ur " [mar1Upg]) ronvp =
(L ® f3 @ f3,mara(URg)rny = (L © f2 © 3, Upg) 7wy

by ¢) as Ujg € Mp(Np). B
e) Note that L7 (ff @ @ f9) =1, fl® f® f € My (Np; Q). Consider the
complex vector space

KerLry = (ff ® f3 ® f3)* = {g € M (Np";C) | (f°,9)7,np» = 0}.

It admits a Q-rational basis (as in Proposition [4.1) establishing e).

We obtain then the C-linear form ¢\ on Mz (Np?; C,) = My (Np¥; Q) ®;, Cp
such that ¢7,(g) = i,(L1(g9)) by extending scalars from Q to C, via the
imbedding i,. 1
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5 COMPUTATION OF p-ADIC INTEGRALS AND L-VALUES

5.1 CONSTRUCTION OF p-ADIC MEASURES

Let M = Mr(4) = U,soMir(Np?, 013 4) @4 My, (Np¥, 9025 A) @4
My -(Np¥,13; A) be the A-module of nearly-holomorphic triple modular
forms with formal Fourier coefficients in A, where A = C,. Let us define an
A-valued measure

PNy f1© 2 ® fa) €79 (Y, A) — A
by applying the trilinear form ¢p 5 : M(Np”; A) — A of Proposition
My f1 @ fo @ f3) = LA (@) (5.1)

to the h-admissible measure ®* of Theorem [2.4Jon Y with values in M(A)

M(Np; A). That h-admissible measure was defined as an A-linear map ®* :
Ph(Y, A) — M(A)* satisfying for any (a), C Y and for all » = 0,1,...,h — 1
the following equality:

/( BB = m(@(@)) € M)

where h = [2ord,A\(p)] + 1, hence
/( ) yr A (y; f1 ® fo @ f3) = b,z (/( ) v d@(y)> : (5.2)
5.2 EVALUATION OF THE INTEGRAL

/Yx(y) yr diM y; f1 ® fo @ f3) (5.3)

for r € N, 0 < r < k —2. The result is given in terms of Garrett’s triple L
function D*(f @ f§ @ f§,2k — 2 — r,h1bax). Let us use the action of the

involution Wy, = ( 0 —1

N, 0 of the exact level IV; of f;:

0 -1 0 -1 B
fj|kWNj:(Nj 0)27]” JP’ fj/')|kWNj:(Nj 0)2 (RIT

where f7(2) = Zdn,je(nz) € 8k (Nj,1;), (5.4)
n=1

(7 =1,2,3) and +; is the corresponding root number. (5.5)
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Recall the notation (0.9) and :
2 2) _ p0
Fo=f = a1V, = 1y~ a5 (57

o 0 -1
, noop0 _ ¢p = fr
73,0 ™ Za(nvfo)q ’ fj - j70|k WNp B fjp’k (Np 0 > .

n=1

ProprosITION 5.1 Under the notations and assumptions as in Theorem |B.2,
the value of the integral (5.8) is given for 0 <r <k —2 by the image under i,
of the following algebraic number

9*(]0{) & fé) ® fé)an —-2- Tawl’(/)QX)
(Y@ @19, 1,0 f2,0 @ f3,00)1 N2p2o

T- )\_21),2]\]17(—7“)

where

27" ((Np)? /N1 N3 N3)* 253152793 (x1 x2x3) (2)p* " F =)
N11N1L2 N3G 0,0) G x2.0) G o)
kor N2 p(N2p*")p(Np¥)

[Fo(N2p2”) : F(N2p2’0)}3 .

T= X

% (Np2v)

7, s the corresponding root number, given by (5.4), and the factor £np(—r),

given by (5.13).

REMARK. In particular, Propostion 5.1 implies Theorem A, using a computa-
tion by B.Gorsse and G.Robert (see [Go-Ro]) that for some § € Q

(P @[3 @ f5° fLo® Lo @ fLo)rnp = B+ (i, f1)n (f2. f2) N (f3. f3)n-

5.3 EVALUATION OF THE TRILINEAR FORM

In order to compute the p-adic integral, the next step of the proof uses com-
putations similar to those in [Hi85], §4 and §7. More precisely let us write the
integral in the form

/Yx(y) ypdin(y; /@ 2@ f3) = Y x(a)/ yp Al A (@M (y)) =

agY, a)o
=l (Z X(a)/ 2/; d(i)/\(y)> = L7\ (Z X(a)@?((a)”) ) (5.6)
a€Y, (@)o a€Y,
where (a), = (a + (Np*)) C Y, and by definition (5.1)
My L ® fa ® f3) = Lo (V) (y), (5.7)
[ @) = @@ €60 (58)
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forr =0,1,...,h—1. Moreover ®,. ((a)q,) is a triple modular form given by
of level N2p?¥ as a value of a higher twist of a Siegel-Eisenstein distributions,
hence

BN (x) = Up2? [M’T’IU%” (2’“F§;>227>’<3 ° diag)} . (5.9)

Taking into account the equalities (5.9), the integral (5.6) transforms to the
following

/Yx(y) yp i (y; [r © f2 @ f3) = lra (Z X(a)‘P?((a)v)> (5.10)

a€cy,
= ETJ\ (UEQU {7‘()77'71 U%v (2TF§71T’>22’)23 ] diag)] )
Notice that then it follows that the sum in the right hand side of the equality
5.10) can be expressed through the functions (1.2):

/ X() yp Ay fr © f2 @ f3)(y)
Y
lra (UT_Q” [m,T,lU%” (27 FXyXe%s o diag)D (5.11)
where we use the functions (1.2). The function
9= Pr(x) = 2"FYX% o diag
is computed in (B.5)), Appendix /B as follows:

8(217 22,23, T, kv vav 17b7 X1 X2 X3)
= N1,1N12N1 3(X1X2X3)(2)G (x0,1)G(X0,2)G(x0,3)27 " (X),

thus it is a nearly-holomorphic triple modular form in in the Q*-module

M(Q™) = Mg (N?p®, 1 ® by @ 1b3; Q)
C Mk,r(szzva Q;Z)l; Qab) ® Mk,r (N2p2va 7/}2; Qab) ® Mk,T(N2p2v7 1/)3; @ab).

Then by the general formula of Proposition [4.2 e) we have:

(L ®f3® [, U g)r N2

(P21 19, f1,0® f2,0® fa0),N2p
(5.12)
0 0 0 —2uTT2V
_ . ® f3 @ 3, \"2UZ(9)) 7, N>

/ U. 2v U2'u _ <f1 2 3 T s V4
T,)\( T [W)\,T,l T (g)]) ZP (<f10 ®f§| ® fg,fL() ® f270 ® f370>N2p
=4 (/\va3<2v(k1) . <V2U(f10 ® fg ® f??)vg>T,N2p2”+1 ) .

3 (R f@ 19, 1,09 f2,0 ® f3,0)7,N2p

Lry:Mp(N?p?";C) - C, g~
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The scalar products in[5.12 can be computed using Theorem B.2, but we omit
here the details. This implies Proposition [5.1 using the integral representation
o0

of Theorem [B.2| for modular forms fjﬁgv (2) = Z ajn20e(nz) as above:

n=1

D(ff @ f5 ® f5,2k — 2 — r,h1¢baxa) (5.13)

k—ar N2D?Y0(N?p*)o(Np")

(Np™) [To(N2p2v) : [(N2p2v)]3

X SNP(—’I’)

= <f172'v & fQ,Q’U & f~3,2v7 8(Z17 22,23, T, kv N2p2va¢7X17X27X3)> )
T,N2p2v

where

Un 1,200n,2,200n 3,20

'SNP(S):EN]O(S; f~1,2v & f2,2v & f~3,2v)::ZGN (1;[}11/)2X17 2”) n28+2k_2
n|N>

5.4 PROOF OF THEOREM B

Let us use Propostion [5.1]and (5.13):

2_T/ XW) yp di* (y; f1 ® fo @ f3)(y) = 27"y » (U;sz [77,\7T,1U%v(9)])
. (5.14)

_ ((Np)3/N1N2N3)*/ 25419575 (x1x2x3) (2)p* 2
A2 N7 1N 1 N3 1G(x1,0)G (x2,0)G(X3,0)

N2p**o(N?p*”)p(Np®)
[Co(N2p?v) : T(N2p?v)]3

% (Np2v)k727‘ SNp(_r)X

.D*(flp ® f2p & f3,0’2k -2 T71/)1¢2X1)
(Y@@ F9, f1,0® fa0 @ fa0)T,n2p

Let us show that under the assumptions as above there exist an admissible
Cp-valued measure /1}‘1 ©f2@fs Ol Yn p, and a Cp-analytic function

Dipy(x, [ @ f2® f3) : X — Cp,

given for all x € X, by the integral

'D(p) (J?, fl & f2 & f3) = / $(y)dﬂ?1®f2®f3 (y)’

N,p
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and having the following properties: for all pairs (r, y) such that for x € X;"rs
the corresponding Dirichlet characters x; are Np-complete, and r € Z with
0 <r <k — 2, the following equality holds:

Dip) (x@ps [ ® f2 @ f3) = (5.15)

in( (Y12 QO
PAG(x1)G(x2)G(x3)G(1thax1) A (p)?®

Dl ®f5® ff,2k—2— 7",1/J1¢2X))
(ffoffeff, feffeffr

where v = ord,(Cy), x1 mod Np” = x, x2 mod Np’ = oh3X, x3 mod Np¥ =

P13x, G(x) denotes the Gaufl sum of a primitive Dirichlet character xo at-

tached to x (modulo the conductor of o).
Indeed, we may write

Dipy(@: f1 @ fo® f5) = C - 2(2) /Y )i i fr © fo® f)

with an appropriate constant, given by the RHS of (5.14), where v = ord,,(C) ).
Moreover, it follows from the properties of the constructed measure

oo ) =C-ix2 'y /L @ fa @ fa)
that

(ii) if ordyA(p) = 0 then the holomorphic functions in (i), (ii) are bounded
Cp-analytic functions: it suffices to use the equality (2.5) with » = 0 in
order to show that in this case the measure ®* is bounded because of

IA®)]p =1);

(iii) in the general case (but assuming that A(p) # 0) the holomorphic func-
tions in (i) belong to the type o(log(x])) with h = [20rd,A(p)]+1 and they
can be represented as the Mellin transform of the h-admissible measure
ﬂ}1®f2®f3 (in the sense of Amice-Vélu);

(iv) if h = [2ord,A] +1 < k — 2 then the function D,y is uniquely determined
by the above conditions (i). N

A NEARLY-HOLOMORPHIC SIEGEL-EISENSTEIN SERIES

A.1 TFOURIER EXPANSIONS OF SIEGEL-EISENSTEIN SERIES

In this section x denotes a Dirichlet character modulo an arbitrary integer N
(not to be confused with N in the Introduction). We recall some standard facts
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about the Fourier expansions of the Siegel-Eisenstein series defined by:

E(Z,s:k,x,N) = E(Z,s) (A1)
=det(y)® > x(det(dy))i(v,2)*[5(v, )7,
yePNI'\I'

for k 4+ 2Re(s) > m+ 1, s € C, k € Z, and by analytic continuation over s
for other values of s € C (see [Sh83|). It is assumed in the identity (A.1) that
N > 1, x is a Dirichlet character mod N (not necessarily primitive, e.g. trivial
modulo N > 1), and

b
y= (a’* d’*) €T =I7(N) c I'™ = Sp(m, Z).
Cy Oy

Recall an explicit computation of the Fourier expansion of the series
E*(2,5) = E*(Z,8:k,x, N) := B(—=271,s)det(2) 7", (A.2)

obtained from (A.1) by applying the involution

Om _lm
I = .
(o))
Note that for £ > m + 1 and N = 1 both series coincide and were studied by
Siegel:

E(2) = EM(2) = B(Z,0) = E(Z,0).

The detailed study of the series E*(Z,s;k,x, N) was made by G. Shimura
Sh83] and P. Feit ([Fei86], §10).

On the other hand, it is convenient to use the following notation. Let ¢ be
a Dirichlet character mod ) > 1 and consider the Eisenstein series of degree
m>1

Fo3(2,Q,¢) = det(y)” Y " ¢(det ¢) det(cZ + d) =7 (A.3)
c,d
= det(y)” Z o(det ) det(cZ 4 d) = det(cZ +d) P
c,d
= det(y)” Z p(det ¢) det(cZ + d)°~| det(cZ +d)| 727 (A.4)
c,d

where (c¢,d) runs over all “non-associated coprime symmetric pairs” with
det(c) coprime to Q. A more conceptual description would be to sum over

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 77-132



118 S. BOCHERER, A. A. PANCHISHKIN

T"™(Q) oo \T™(Q), where

@ ={( % ) esmplazomaef=( " )y

o= (1 S Yt )
{(¢3)ewma

O —1 Om  —Lm \
where IT™0(Q) = < 1’" 0 " )FB”(Q) < 1m 0 " > C Sp(m,Z) is the
0p, —1,
1, O
Sp(m,Z) of symplectic matrices we denote by M, the set of those matrices
v = (LCL Z) € Sp(m, Z) satisfying the conditions ¢ = 0 and YM C M.

¢=0,b=0mod Q} c "%Q) c Sp(m, 7),

stabilizer of M = ( > ' (Q), and more generally, for any set M C

ACTION OF ¢ € Sp(m,Z) ON THE EISENSTEIN SERIES

Note that for any o € Sp(m,Z) one has

E(Z, sk, x, N)|ko = >, ¢(det dy)(1]ry0)(2)(Im (o (2))*
YETT (N) oo \I'FH (V)

= det(y)’ Y. ¢ldetd,)j(vo,2) *|j(yo,2)[ 7

YETG (N)oo \TF (N)

= det(y)* > ddetd,15)i(5,2)Fi(3, 2) 7%,

FEMT(N)) oo \I'T (N) o
by writing 5 = 0y, 0715 = 1 Py = Py <= Py = PAo.
In particular, for ¢ = J,, = ( (1): _O:n ) one has (ZZ) - (Z:Z) c
Iy (N)Jpm, hence

E(Z,s;k,x,N)| ( (1): *Oinm ) = E*(Z,s;k,x,N)
= det(y)® > x(det d) det(dZ — ¢) 7| det(dZ — ¢)|~25.

(4 28)e@y (V) \IF (N)o

Notice that J,(N)TJH(N) = T9(N)Jn(N), where J,(N) =
O, -1, d
N1, 0, )™

20 (20) = () = () o= (3 70)
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Therefore (Ndy, —c¢1) = (Na, Nb), and (a,b) runs over all “non-associated co-
prime symmetric pairs” with det(a) coprime to N. We may therefore write
(Ndy,—c1) = (Na, Nb), and

E*(NZ,s;k,x,N) (A5)
= det(Ny)* > x(det dy) det(diNZ — ¢1) "% det(di NZ — ¢1)| 7
(5 o) e@p (V) \g (N)o
= NE+9) det(y)® Z x(det a) det(aZ + b)~F=5~* (A.6)
a,b
= N_m(k+S)Fk+s,s(z'7 N7 X) (A7)

A.2 ARITHMETICAL VARIABLES OF NEARLY-HOLOMORPHIC SIEGEL MODU-
LAR FORMS AND DIFFERENTIAL OPERATORS

Consider a commutative ring A, the formal variables ¢ = (¢;,5):j=1
(Ri,j)ij=1,...,m, and the ring of formal arithmetical Fourier series

maR:

.....

Al¢®"][Ri;] = {f = > aT Ry’ ] a(T,R) € A[Rz-,j]} (A.8)

TEBm,

using the semi-group
and the symbols

- i 2T _

¢’ = Hqg Hqij P C Alguns - Gmm]lis qijl]i,jzl,'-- m

i=1 i<y
(over the complex numbers this notation corresponds to q7 = exp(2mitr(J2)),
R = (47Im(2))71).

The formal Fourier expansion of a nearly-holomorphic Siegel modular form f
with coefficients in A is an element of AJg®"][R; ;]. Let

MP(N, ) C© MP(N, ) € M (N, )™

denote the complex vector spaces of holomorphic, nearly-holomorphic, and C>°-
Siegel modular forms of weight k and character 1 for I'f*(N), see [ShiAr],
so that MP(N,v) C ClgP~], MP(N,v) c C[¢P~][Ri,], an

M (N, ) C C*(H,y,).
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A.3 TFoRMAL FOURIER EXPANSIONS OF NEARLY-HOLOMORPHIC SIEGEL-
EISENSTEIN SERIES

In the Siegel modular case ' = Sp,,,,(Z) D T§*(N) the series
E(Z, sk, x, N) = E(Z, 5) (A.9)

=det(y)® > x(det(dy))i(v,2)7*i(7,2)[7* € M (To(N), X)
~yePNT\T

is absolutely convergent for k + 2Re(s) > m + 1, but can be continued to
all s € C. However, for N > 1, the Fourier expansion is known only for

the involuted series E(-,s)|W(N), where W(N) = (NOT;,Z _()Z”‘), and for some

critical values s € Z (for N = 1 both series coincide). Here Z € H,, is in the
Siegel upper half-space:

H,, = {2 ='2 € M,,,(C)[ImZ > 0}, and P = {(g l;) € szm(R)}
is the Siegel parabolic subgroup.

EXAMPLE A.1 (INVOLUTED SIEGEL-EISENSTEIN SERIES) Let x be a Dirichlet
character modulo N. Recall that by (A.5)

E*(NZ,s;k,x, N) = Nkt B (2, N, x) (A.10)
= NE+9) det(y)® Z x(det a) det(aZ + b)~*=57% where
a,b

E*(NZ,s) = E(—(N2)7!,s)det(NZ)~™*F = N=F"/2E|W (N), (A.11)
G*(Z,5) = G*(Z,s:k, x, N) = N"FT) E*(NZ, 5)- (A.12)

(m/2]
Tk, s)Ln(k+2s,x) | [ Ln(2k+4s—2i,x%)
i=1

k= (m+1)/2, and for m odd the T'-factor has the form:

f(k,s) _ -mkz—m(k+1)ﬂ_—m(s+k)rm(k + S),
m—1

where Ty, (s) = 7m(m=1)/4 H ['(s—(5/2))).
j=0

In order to describe the formal Fourier expansions explicitly let us consider the
Maass differential operator A,,, acting on C*°-functions over V ® C of degree
m, which is defined by the equality:

A, = det(d;;), Dij = 27 (14 6;;)0/0s;. (A.13)
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For an integer n > 0 and a complex number [ consider the polynomial
Ron(Z:m, B) = (—1)™met() det(2)+B AR [atr(l) det(zrﬂ . (A14)
with Z € V @ C, where the exponentiation is well defined by

det(y)” = exp (Blog[det(y)]),

for det(y) > 0, y € Y ® C. According to definition the degree of
the polynomial R,,(Z;n, 3) is equal to mn and the term of the highest degree
coincides with det(Z)™. We have also that for § € Q the polynomial R,,(Z;n, ()
has rational coefficients.

THEOREM A.2 Let m be an odd integer such that 2k > m, and N > 1 be an
integer, then:

For an integer s such that s = —r < 0, 0 < r < k — &, there is the following
Fourier expansion

G*(2,—1) = G*(2,—r;ik, ., N) = > b (Ty,-r)g" = Y a(T Ry,
Am>T20 Am3T>0
(A.15)
where for s > (m + 2 — 2k)/4 in (A.15) the only non-zero terms occur for
positive definite T > 0, and for all s = —r with 0 < r < k — K, and for all
T>0,Te€ A, where

b (‘Ia Y, _T) = (1(77 R) =W (y7 ‘Ia _T)M(77 e k — 2T)a (A16)
W*(y, T, —r) =27 det(T)* 2" "Q(R,T; k — 2r,7).
Here o(T,R) = (T, R;r, N, x) is a homogeneous polynomial with rational co-
efficients in the variables R;; and T;j;, and
M(T,k=2r,x) = [ M7, x(0)e ) (A.17)

£] det(27)

is a finite Buler product, in which My(T,x) € Z[z]; we use the notation q° =
exp(2mitr(72)), R = (47rIm(2))~! as above, and polynomials Q(R,T; k —2r,7)
are given by (3.1).

Proof: see [Sh83], [Fei86], Theorem 2.14 and formulas (2.137) in [CourPa]. The
use of definitions gives

W*(y, T, —r) =27"% det(T)* 2" " det(47y) " Ry (47T y; 7,k — k + 1)

where R,,(y;n, ) is defined by (A.14). Moreover, let us use the polynomials

Q(R, Tk —2r,r)det(T)"" = det(4nTy) "Ry, (47 Ty; 1 6 — k + 1),
it follows
W*(y, T, —r) =27"% det(T)* 2" " det(47y) " Ry (47T y; 7,k — k + 1)
= 27" det(T)" 2 RQ(R, Tk —2r,7). 1
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B AN INTEGRAL REPRESENTATION FOR THE TRIPLE PRODUCT

B.1 SUMMARY OF ANALYTIC RESULTS

In this section we use the following data :
e Three equal weights k = ky = ko = k3
e Three Dirichlet characters mod N; with 1;(—1) = (=1)*

e Three cusp forms fj(z) = Yoo anje(nz) € Sk(Nj, i), (j =
1,2,3) with N; |Z\7j, assumed to be eigenforms for all Hecke operators T,
with ¢ prime to N. In our construction we use as fj some “easy trans-
forms” of primitive cusp forms f; € 8;(N;,%;) in the Introduction, so
that they have the same eigenvalues for all Hecke operators Ty, for ¢ prime
to N. For example, f; could be chosen as eigenfunctions f; = f} of the
conjugate Atkin’s operator U, given by (0.10), in this case we denote by
fj,0 the corresponding eigenfunctions of U,,.

e Assume that N|Np", where N := LCM{N;, No, N3}

e Consider a non necessary primitive Dirichlet character y mod Np", and
the Dirichlet characters as in (0.12).

Using the notation z; = x; +iy; € H, one associates to this data the following
function

8(21722733) = E(ZlaZQa23;svka¢?X1?X27X3> = (Bl)

i3k273(k+1)72872k+2ﬂ_3(s+k)+21—\(25 4 2k _ 1)1—\(8 + k_ _ I)X

x LOVP) (b + 25, 4p) LVP) (45 + 2k — 2, 9°) Z x1(e12)x2(€13)x3(E23)

v
€12,€13,823 mod Np

100 0 £ £
1o g2 0
Fiot (e, N2 40) U w5 O | (), 2a)yiusus.
’ 1 0 0
1 0
1

Note that the product of the normalizing Gamma-factor and of the two Dirich-
let L-functions come from the definitions (A.11) and (A.10) of the Siegel-
Eisenstein series.
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B.2 FOURIER EXPANSION OF THE EISENSTEIN SERIES (B.1)

Consider again the Dirichlet characters (0.12), and the corresponding function
(B.1) of level Np*.

We wish to express the series , evaluated at s = —r, through the series
(1.2) in the case of Np-complete conductors.

PROPOSITION B.1 For F(2) = Y a(T.R)q’ one has F®(2) =
T

0 €12 €13

12 0 e, oe) =

€13 €23 0

X1(e12)x2(e13)x3(€23), T denotes the (half integral) block matriz and

thw’?)a(mR)qT, where €
T

0(6,7) = 3 0le) exp(2mitr( 5 T€)), where 6(e) = xa(er2)xa(e13)xs (e25).
e€SN,p/NpYSn,p p

Proof. Indeed,

Flte Np» = Za(ﬂ', R)¢" |tenpe = Z:exp(27rz'tr(s»:‘ll')/Np“)a(‘T7 R)q¢”, and it
T T
suffices to notice again that

0 €12 €3\ /[t tiz ti3
tr(eT) =tr || ez 0 ea3 || tiz too tos || = 2(e12t12 + €13t13 + €23ta3).
€13 €23 0 t13 ta23 33

|
Using this formula for F' = G*(Z, s; k — 2r, (Np”)z,gb) at s = —r (see (A.3)),
gives:
&(z1, 22, 235 =7, k, ¥, X1, X2, X3) = (B.2)

> xa(e2)xa(e13)xs(eas) GH (2, =1k — 2r, (ND)?, ) |te wpe (21, 22, 23)
ecS/Np”S

= Z Z x1(e12)x2(e13) x3(€23) exp(2mitr(e€T)/Np*)a(T, R)q” |o diag
T e€S/Np’S

then the sum over € € S/Np"S transforms simply to the product
Gnpe (X1, 2812) Gnpe (X2, 2813) G pe (X35 2t23),

which is easily evaluated by the general formula for a generalized Gauss sum
GN(X:€) = 2 moa v X(b)e(beN™1). This last sum admits the following known
expression in terms of the usual Gauss sums (see for example [PaTV], Section
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2, (2.20)): let xo denote the primitive Dirichlet character modulo Ny associated
with x, Ny = NNy *, then

Gn(x.) = Gl N 3 ld)vo(d)d=5( 5o ) o (5o )
d|Ny

Writing xo,; for the primitive Dirichlet character modulo Ny ; associated with

x; mod Np”, and using the notation Np” = Ny ; Ny ;, gives

Gpe (X1,2t12)

= G0N Y ald)xoa(d)dr (2 Yo ()
’ 7(11\1\/1,1 , POAN AN

G npv (X2, 2t13)

_ 2t B 2t
= G(x0,2)N1,2 Z M(dz)Xo,2(d2)d215< 12,1)X0,2( 13,1)
da| N2 Nl’gdz Ny 2d2

Gnpv (X3, 2t23)

21 2t
B 1 23 _ 23
= G(x0,3) V13 dBXN:l 3 1(d3)xo0,3(d3)d3 5<N1,3d51 )X0,3 (N1 3d_1>

Let us take the product of these expressions using the notation

25 = No1/ds (mod Ny 1dy),

2y = 23 (mod Ny ods),
Nio/dy '

2t/23 = 2t23 (mOdNo gdg)
Ni3/ds '

It follows

Gnpr (X1, 2t12) G npy (X2, 2813) G vpy (X3, 2t23)
= N1,1N12N1 3 Z pu(dy) p(dz) (ds) x0.1(d1) xo,2(da) xo0,3(ds) (drdads) !

dy|Ny 1
da|Ny 2
d3|Ny 3

G(x0,1)G (X0,2)G (X0,3)X0,1(2t12)X0,2(2t13) X0,3(2t23).
The formula (B.3) transforms to

8(Z17227Z3;_T7k7¢7X17X27X3) (B3)

= (Z Gnpr (X1, 2t12) GNpe (X2, 2813) Gvpe (X3, 2t23)a(T, R)QT> o diag
T
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= NiaN1aNis Y pldy)p(dz)p(ds)xo1(d1)xo,2(d2)xo0,5(ds) (didads) ™"

d1|N1 1
d2|Ny,2
d3|Ny, 3

G(x01)G(x02)G(x03) Y Xo.1(2t12)X02(2t13)X0,3(2ths)a(T, R)qi™ g5 5.

T:t12=dy t'12,
tiz3=dat] 3, taz=dstss,

Later on we impose the condition that the conductors of xo 1, Xx0,2,X0,3 are
complete (i.e. have the same prime divisors as those of Np), when x¢ j(d;) =0
unless all d; = 1, when xq ;(d;) = 1. In this complete case xo ;(n) = x;(n) for
all n € Z, hence the equality (B.3) simplifies to the following:

E(zla227z3;_T,k7¢7X17X27X3) (B4)

= (Z Gnpr (X1, 2t12) GNpe (X2, 2813) Gvpe (X3, 2ta3)a(T, R)C]T) o diag
T

= N1,1N12N1,3G(x0,1)G(x0,2)G(x0,3)

(Z X1(2t12)X2(2t13) X3(2t23)a(T, R)(IT) o diag

T

= N1,1N12N13(X1X2X3)(2)G(X0,1)G (x0,2)G(x0,3)

(Z a(T, R)X1(t12) X2 (t13)X3(t23)q7> o diag .

T

Thus we have expressed the series (B.1) through the series (1.2) in the case of
Np-complete conductors:

8(217327'23;_rvkaNpU7’¢'>X17X27X3) (B5)
= N1,1N1 2 N1 3(X1X2X3) (2)G(x0,1)G(X0,2) G (x0,3) FX0X2X8 o diag

= N1,1N12N1 3(X1X2X3)(2)G(x0,1)G(X0,2) G (x0,3)27 " P (X)-
B.3 THE INTEGRAL REPRESENTATION

Consider three auxilliary modular forms as in (0.16):

fi(z) =) anje(nz) € Sy(To(N;p™), 1) (1 <i<3)

n=1
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with the same eigenvalues, as those of (0.1)), for all Hecke operators T, with ¢
prime to Np.

THEOREM B.2 Under the assumptions and notations as in section |B.1, the
following integral representation holds:

/// Fi(z1) fa(20) f3(23)E (21, 22, 233 8, ky N2p? ab, X1, X2, X3)) X

(To(N2p2v)\H)*

dxidy,
[Ty ()

2
J Yi

=i 3RO (s 4+ 2k — 2)T (s + k — 1)3

kt2s N2D?Vo(N?p*)o(NpY)

(Np") [To(N2p2v) : T(N2p2¥)]3

X Enp(s)

LP(fP @ 5 @ f5, s+ 2k — 2,¢1¢ax1),
where
(2m) " T(s + 2k — 2)T(s + k — 1)3 = 27 T¢(s + 2k — 2)Tc(s + k — 1)3,
Te(s) =2(2m) " °T'(s)
is the motivic Gamma-factor,

s =z _— (n,10p,20n,3
Svp(s) = Exp(ss i@ @ fa) = ) G (Daidaxa, 20) =g
n|(Np)>
(B.6)
REMARK. In the special case when the character 1oy has Np-complete con-

ductor, or if it is primitive mod Np”, and fth,fg are primitive normalized
cusp eigenforms, one can show that Ln,(s) = (V12x1)(2)G(P1bax1)-
Theorem B.2 follows from a computation, similar to that in [BoeSP], Theorem

4.2, (triple product, no twisting character) and [Boe-Schm], Section 2 (standard
L-function, with twisting character). Details will appear elsewhere.

COROLLARY B.3 Under the notations and assumptions, for all critical values
s=2k—2—r,r=0,---,k—2 the following integral representation holds

T T(—r + 2k = 2T (—r + k= 1)’ LN (ff @ £ @ f5,2k — 2 — 7,199 x1)

k—or N2D? O(N2p?¥)p(Np")
[Co(N2p2v) : T(N2p2v)]3

(Np”) X Lp(s)

= <f1 @ f2 & f~37 E(Zla 22,23, T, ka ka szm}vd]aleXQa X3)> .
T,NZPZ"’
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of the equivariant Tamagawa Number Conjecture for the pair
(h°(Spec(K))(r), Z[Gal(K/k))).
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1. INTRODUCTION

Let K/k be a Galois extension of number fields with group G. For each complex
character y of G denote by L(x, s) the Artin L-function of x and let G be the
set of irreducible characters. We call

Cre/u(8) = (L(X: 8)) e

the equivariant Dedekind Zeta function of K/k. It is a meromorphic function
with values in the center [, .4 C of C[G]. The ‘equivariant Tamagawa number
conjecture’ that is formulated in [9, Conj. 4], when specialized to the motive
M = Q(r)k := h%(Spec(K))(r) and the order A := Z[G], gives a cohomolog-
ical interpretation of the leading Taylor coefficient of (x/(s) at any integer
argument s = r. We recall that this conjecture is a natural refinement of the
seminal ‘Tamagawa number conjecture’ that was first formulated by Bloch and
Kato in [5] and then both extended and refined by Fontaine and Perrin-Riou
[18] and Kato [27]. If K = k and r € {0,1} then the conjecture specializes to
the analytic class number formula and is therefore already a theorem.

The most succinct formulation of the equivariant Tamagawa number conjecture
asserts the vanishing of a certain element TQ(M, ) = TQ(Q(r) k, Z[G]) in the
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relative algebraic K-group Ko(Z[G],R). Further, the functional equation of
Artin L-functions is reflected by an equality

(1) TUQ(Mx, ZIG) + v (TQQ(1 - 1)k, Z[G]P)) = TQ**(Q(r)x, ZIG))

where t¢* is a natural isomorphism Ky(Z[G]°?,R) = Ky(Z[G],R) and
TOQY(Q(r)k,Z][G)) is an element of Ko(Z[G],R) of the form

(2) TQ°(Q(r)x, ZI[G)) = L°“(Q(r)x, ZIG)) + 05 i (r) + RA(Q(r) 1, Z[G)).

Here L'°¢(Q(r)k,Z[G]) is an ‘analytic’ element constructed from the
archimedean Euler factors and epsilon constants associated to both Q(r)g
and Q(1 — )k, the element 0g /4 (r) reflects sign differences between the
regulator maps used in defining TQ(Q(r)k, Z[G]) and TQ(Q(1 — r)k, Z[|G]°P)
and RO°¢(Q(r)k,Z[G)) is an ‘algebraic’ element constructed from the various
realisations of Q(r)x. (We caution the reader that the notation in (1) and (2)
is slightly different from that which is used in [9] - see §3.1 for details of these
changes.)

In this article we shall further specialize to the case where K is an abelian
extension of Q and prove that TQ(Q(r)k,Z[G]) = 0 for all integers r and all
subgroups G of Gal(K/Q). In fact, taking advantage of previous work in this
area, the main new result which we prove here is the following refinement of
the results of Benois and Nguyen Quang Do in [1].

THEOREM 1.1. If K is any finite abelian extension of Q, G any subgroup of
Gal(K/Q) and r any strictly positive integer, then TQY(Q(r)k,Z[G]) = 0.

We now discuss some interesting consequences of Theorem 1.1. The first con-
sequence we record is the promised verification of the equivariant Tamagawa
number conjecture for Tate motives over absolutely abelian fields. This result
therefore completes the proof of [17, Th. 5.1] and also refines the main result
of Huber and Kings in [25] (for more details of the relationship between our
approach and that of [25] see [11, Intro.]).

COROLLARY 1.2. If K is any finite abelian extension of Q, G any subgroup of
Gal(K/Q) and r any integer, then TQ(Q(r) i, Z[G]) = 0.

Proof. If r < 0, then the vanishing of TQ(Q(r) k, Z[G]) is proved modulo pow-
ers of 2 by Greither and the first named author in [11, Cor. 8.1] and the argu-
ment necessary to cover the 2-primary part is provided by the second named
author in [17]. For any r > 0, the vanishing of TQ(Q(r)k, Z[G]) then follows
by combining Theorem 1.1 with the equality (1). a

COROLLARY 1.3. The conjecture of Bloch and Kato [5, Conj. (5.15)] is valid
for the Riemann-Zeta function at each integer strictly bigger than 1.

Proof. If r is any integer strictly bigger than 1, then [5, Th. (6.1)] proves the
validity of [5, Conj. (5.15)] for the leading term of the Riemann Zeta function
at s = r, modulo powers of 2 and a certain compatibility assumption [5, Conj.
(6.2)] concerning the ‘cyclotomic elements’ of Deligne and Soulé in algebraic
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K-theory. But the latter assumption was verified by Huber and Wildeshaus in
[26] and Corollary 1.2 for K = k = Q now resolves the ambiguity at 2. a

For any finite group G the image of the homomorphism d¢ : Ko(Z[G],R) —
Ky (Z|G]) that occurs in the long exact sequence of relative K-theory is equal
to the locally-free class group Cl(Z[G]). In the following result we use the
elements Q(K /k, 1), Q(K /k, 2), QK /k, 3) and w(EK /k) of CL(Z[Gal(K /k)]) that
are defined by Chinburg in [13].

COROLLARY 1.4. If K is any finite abelian extension of Q and k is any subfield
of K, then one has Q(K/k,1) = Q(K/k,2) = Q(K/k,3) = w(K/k) = 0. In
particular, the Chinburg conjectures are all valid for K/k.

Proof. In this first paragraph we do not assume that K is Galois over QQ or
that G := Gal(K/k) is abelian. We recall that from [10, (31)] one has

0 (Y (TRQ(0)k, Z[GIP))) = QK [k, 3) — w(K/k).
Further, [4, Prop. 3.1] implies dg sends L'¢(Q(1)x,Z[G]) + 6k k(1) to
—w(K/k) whilst the argument used in [4, §4.3] shows that RQ°¢(Q(1) g, Z[G])

is equal to the element RQY(K/k,1) defined in [7, §5.1.1]. Hence, from [7,
Rem. 5.5], we may deduce that

(3) 36 (T°°(Q(V) K, Z[G))) = —w(E/k) + UK/k,2).

We now assume that G is abelian. Then G has no irreducible complex symplec-
tic characters and so the very definition of w(K/k) ensures that w(K/k) = 0.
Hence by combining the above displayed equalities with Theorem 1.1 (with r =
1) and Corollary 1.2 (with r = 0) we may deduce that Q(K/k,2) = Q(K/k,3) =
0. But from [13, (3.2)] one has Q(K/k,1) = Q(K/k,2) — Q(K/k,3), and so this
also implies that Q(K/k,1) = 0. O

For finite abelian extensions K /Q in which 2 is unramified, an alternative proof
of the equality Q(K/k,2) = 0 in Corollary 1.4 was first obtained by Greither
in [21].

Before stating our next result we recall that, ever since the seminal results of
Frohlich in [19], the study of Quaternion extensions has been very important
to the development of leading term conjectures in non-commutative settings.
In the following result we provide a natural refinement of the main result of
Hooper, Snaith and Tran in [24] (and hence extend the main result of Snaith
in [35]).

COROLLARY 1.5. Let K be any Galois extension of Q for which Gal(K/Q) is

isomorphic to the Quaternion group of order 8 and k any subfield of K. Then
one has TQ°°(Q(1)k, Z[Gal(K/k)]) = 0.

Proof. We set G := Gal(K/Q) and let T denote the maximal abelian quotient
of G with FE the subfield of K such that I' = Gal(E/Q) (so E/Q is biquadratic).
We set TQ¢ := TQ°(Q(1) g, Z[G]) and TR := TQP(Q(1) g, Z[T)).

Then from [9, Th. 5.1 and Prop. 4.1] we know that TQ°¢(Q(1) x, Z[Gal(K/k)])
and TQYC are equal to the images of TQ'°° under the natural homomorphisms
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Ky(Z|G],R) — Ko(Z[Gal(K/k)],R) and Ko(Z[G],R) — Ko(Z[I'],R) respec-
tively. In particular, it suffices to prove that TQ°¢ = 0.

Now [4, Cor. 6.3(i)] implies that TQ°¢ is an element of finite order in the
subgroup Ko(Z[G], Q) of Ko(Z|G],R) and so [10, Lem. 4] implies that TQ!°¢ =
0 if and only if both TQR = 0 and 6¢(TQ'°°) = 0. But Theorem 1.1 implies
TQRC = 0 and, since 6¢(TQ°°) = —w(K/Q) + Q(K/Q,2) (by (3)), the main
result of Hooper, Snaith and Tran in [24] implies that dg(TQ°¢) = 0. O

The following result provides the first generalization to wildly ramified exten-
sions of the algebraic characterization of tame symplectic Artin root numbers
that was obtained by Cassou-Nogues and Taylor in [12].

COROLLARY 1.6. Let K be any Galois extension of Q for which G := Gal(K/Q)
is isomorphic to the Quaternion group of order 8. Then the Artin root number
of the (unique) irreducible 2-dimensional complex character of G is uniquely
determined by the algebraic invariant RQY(Q(1)k, Z[G]) in Ko(Z[G],R).

Proof. This is a direct consequence of combining Corollary 1.5 with a result
of Breuning and the first named author [7, Th. 5.8] and the following facts:
L°°(Q(1) k, Z[G)) + bk jg(1) is equal to —1 times the element 5 (e /q(0)) used
in [7, §5.1.1] and RQ°¢(Q(1)x,Z[G]) is equal to the element RON¢(K/Q,1)
defined in loc. cit. O

To prove Theorem 1.1 we shall combine some classical and rather explicit com-
putations of Hasse (concerning Gauss sums) and Leopoldt (concerning integer
rings in cyclotomic fields) with a refinement of some general results proved in
[9, §5] and a systematic use of the Iwasawa theory of complexes in the spirit of
Kato [27, 3.1.2] and Nekovar [32] and of the generalization of the fundamental
exact sequence of Coleman theory obtained by Perrin-Riou in [34].

We would like to point out that, in addition to the connections discussed above,
there are also links between our approach and aspects of the work of Kato [28],
Fukaya and Kato [20] and Benois and Berger [2]. In particular, the main
technical result that we prove (the validity of equality (16)) is closely related
to [28, Th. 4.1] and hence also to the material of [20, §3]. Indeed, Theorem 1.1
(in the case r = 1) provides a natural generalization of the results discussed
in [20, §3.6]. However, the arguments of both loc. cit. and [28] do not cover
the prime 2 and also leave open certain sign ambiguities, and much effort is
required in the present article to deal with such subtleties.

Both authors were introduced to the subject of Tamagawa number conjectures
by John Coates. It is therefore a particular pleasure for us to dedicate this
paper to him on the occasion of his sixtieth birthday.
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2. EQUIVARIANT LOCAL TAMAGAWA NUMBERS

In this article we must compute explicitly certain equivariant local Tamagawa
numbers, as defined in [9]. For the reader’s convenience, we therefore first
quickly review the general definition of such invariants. All further details of
this construction can be found in loc. cit.

2.1. We fix a motive M that is defined over Q (if M is defined over a general
number field as in [9], then we use induction to reduce to the base field Q) and
we assume that M is endowed with an action of a finite dimensional semisimple
Q-algebra A.

We write Hyjr(M) and Hp(M) for the de Rham and Betti realisations of M
and for each prime number p we denote by V,, = H,(M) the p-adic realisation of
M. We fix a Z-order  in A such that, for each prime p, if we set A, := ARz Z,,,
then there exists a full projective Galois stable 2l,-sublattice T}, of V,,. We also
fix a finite set S of places of Q containing co and all primes of bad reduction
for M and then set Sy, := S U {p} and Sy s := S, \ {oo}.

For any associative unital ring R we write DP°f(R) for the derived catgeory of
perfect complexes of R-modules. We also let Detg : DP*™(R) — V(R) denote
the universal determinant functor to the Picard category of virtual objects
of R (which is denoted by P — [P] in [9]) and ®p the product functor in
V(R) (denoted by X in [9]). In particular, if R is commutative, then Detp
is naturally isomorphic to the Knudsen-Mumford functor to graded invertible
R-modules. We denote by 1 a unit object of V(R) and recall that the group
K1(R) can be identified with Auty (g)(L) for any object L of V(R) (and in
particular therefore with 71 (V(R)) := Auty(g)(1g)). For each automorphism
a: W — W of a finitely generated projective R-module W we denote by
Detgr(a|W) the element of K7 (R) that is represented by o. We let ((R) denote
the centre of R.

If X is any R-module upon which complex conjugation acts as an endomor-
phism of R-modules, then we write X+ and X~ for the R-submodules of X
upon which complex conjugation acts as multiplication by 1 and —1 respec-
tively.

For any Q-vector space W we set We = W ®q C, W = W ®g R and W), =
W ®q Q, for each prime p.

2.2. The virtual object
El°¢(M) := Deta(Har(M)) ®4 Det ;' (Hp(M))
is endowed with a canonical morphism
9 AR @4 E9(M) 2 14,.

To describe this morphism we note that the canonical period isomorphism
Hig(M)c = Hg(M)c induces an isomorphism of Ag-modules

(4) Har(M)g = (Har(M)c)" = (Hp(M)c)™"
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and that there is also a canonical isomorphism of Ag-modules

() (Hp(M)e)* = (Hp(M)* ©qR) & (Ha(M)" &g R(2ni) ™)

= (Hp(M)* @qR) @ (Hp(M)~ ®gR) = Hp(M)r
where the central map results from identifying R(27i)~! with R by sending
(2mi)~" to 1.
By applying Det4, to the composite of (4) and (5) one obtains a morphism
(919) : AR@AZ1¢(M) = 1 4, and 9¥'2¢ is defined in [9, (57)] to be the composite
of (91°¢) and the ‘sign’ elements ep := Deta(—1 | Hg(M)*) and €4 =
Deta(—1| FYHyr(M)) of m1(V(AR)) = K1 (Ag).

2.3. Following [9, (66), (67)], we set

Ap(8,Vp) = | Q) Dety! RT(Q, V) | @4, Dety(V,),
ZESp,f

and let

Op - Ap ®a EIOC(M) = Ap(S: V)
denote the morphism in V(A,) obtained by taking the product of the mor-
phisms 65P for £ € S, ¢ that are discussed in the next subsection.

2.4. There exists a canonical morphism in V(4,) of the form
r>t s Ay @4 B°°(M) — Dety RT(Qp, V) @4, Dety! (V).

This morphism results by applying Det 4, to each of the following: the canonical
comparison isomorphism Hp (M), = V,; the (Poincaré duality) exact sequence
0 — (Hgr(M*(1))/F°)* — Hqr(M) — Hyr(M)/F° — 0; the canonical com-
parison isomorphisms (Hgp(M)/F°), = t,(V,) and (Hqr(M*(1))/F°); =
tp(Vy(1))*; the exact triangle

(6) BT 1 (Qp, Vi) — RU(Qp, Vp) — RT(Qy, V7 (1))"[-2] —

which results from [9, (18) and Lem. 12a)]; the exact triangle
1—py
(7) tp(W)[_l] - er((@pvw) - (DcriS(W) R DcriS(W)) -

of [9, (22)] for both W =V}, and W = V,*(1), where the first term of the last

)
complex is placed in degree 0 and Det 4, (Deris (W) LN Deris(W)) is identified
with 14, via the canonical morphism Det 4, (Deris(W))®4, Det;:) (Deris(W)) —

1a,.
For each ¢ € S, ;s\ {p} there exists a canonical morphism in V(4,) of the form

0,7 1 14, = Dety! RT(Qr, V).

For more details about this morphism see Proposition 7.1.
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2.5. From [9, (71), (78)] we recall that there exists a canonical object A, (S, T},)
of V(,) and a canonical morphism in V' (A4,) of the form

0, : Ap(S, V) = Ap ®a1, Ap(S,T))
(the definitions of A,(S,T},) and ), are to be recalled further in §7.2). We set
0y = €e(S,p) 00,00, Ay ®4 E°°(M) = Ay @, Ay(S,T)

where €(S,p) is the element of m(V(Ap)) that corresponds to multiplication
by —1 on the complex @eGSM RT'/£(Qg, V}) which is defined in [9, (18)].

If M is a direct factor of h"™(X)(t) for any non-negative integer n, smooth
projective variety X and integer ¢, then [9, Lem. 15b)] implies that the data

(JTAs(s. 1) B (M), [T 0y 95),
P

p

where p runs over all prime numbers, gives rise (conjecturally in general, but un-
conditionally in the case of Tate motives) to a canonical element RQ°¢(M, 2A) of
Ko(2A,R). For example, if A is commutative, then 14, = (Agr,0) and Ky (A, R)
identifies with the multiplicative group of invertible 2-sublattices of Ar and,
with respect to this identification, RQ¢(M,2A) corresponds to the (conjec-
turally invertible) 2A-sublattice Z of Ag that is defined by the equality

gl <ﬂ<51°C<M> N (0) (Ag(S, Tp>>>> ~ (2,0),

P

where the intersection is taken over all primes p.

2.6. We write Loo(aM,s) and €(4M,0) for the archimedean Euler factor and
epsilon constant that are defined in [9, §4.1]. Also, with p € Zmo(Spec(((4=)))
denoting the algebraic order at s = 0 of the completed ((Ac)-valued L-function
A(400M*(1), s) that is defined in loc. cit., we set

L5 (aer M*(1),0)

E(aM) = (—1)Pe(aM,0) L*_(4M,0)

€ ((Ar)™.

Following [9, §5.1], we define
(M, %) := 0y 5 (E(4M)) € Ko(%R)

where 5%[,11@ : C(Ar)™ — Kop(U,R) is the ‘extended boundary homomorphism’
of [9, Lem. 9] (so, if A is commutative, then L°¢(M, ) = A - E(4M) C Ag).
Finally, we let

(8) TQR (M, ) := L'°°(M, ) + RQ"°(M,A) € Ko(A,R)

denote the ‘equivariant local Tamagawa number’ that is defined in [9, just prior
to Th. 5.1].

DOCUMENTA MATHEMATICA - EXTRA VOLUME COATES (2006) 133-163



140 DaviD BURNS AND MATTHIAS FLACH

3. NORMALIZATIONS AND NOTATION

3.1. NORMALIZATIONS. In this section we fix an arbitrary Galois extension
of number fields K/k, set G := Gal(K/k) and for each integer ¢ write
TQ(Q(t) i, Z[G]) for the element of Ky(Z[G],R) that is defined (uncondition-
ally) by [9, Conj. 4(iii)] in the case M = Q(t)x and A = Z[G].

Let r be a strictly positive integer. Then the computations of [10, 17] show that
[9, Conj. 4(iv)] requires that the morphism Vo, : R®gZ(Q(1-7)x) — Ly ®(a)
constructed in [9, §3.4] should be normalized by using —1 times the Dirichlet
(resp. Beilinson if r > 1) regulator map, rather than the Dirichlet (resp.
Beilinson) regulator map itself as used in [9]. To incorporate this observation
we set

(9) TQ(1 = ), Z[G]) := TUQ = 1), Z[G])" + e/ (7)

where dg/(r) is the image under the canonical map K1 (R[G]) — Ko(Z[G],R)
of the element Detgq(—1 | K2p—1(Ok)* ®z Q). To deduce the validity of (1)
from the result of [9, Th. 5.3] it is thus also necessary to renormalise the defini-
tion of either TQ(Q(r)x, Z[G])’ or of the element TQY(Q(r)x, Z[G])’ defined
by (8). Our proof of Theorem 1.1 now shows that the correct normalization is
to set
TO(Q) k. ZIG) = TQQ) k. ZIG)

and

(10) TP (Q(r)k, ZIG)) == TQ(Q(r)k, ZIG)) + b5 su(r).

Note that the elements defined in (9) and (10) satisfy all of the functorial
properties of TQ(Q(1 — 7), Z[G])" and TQ°(Q(r)x,Z[G])" that are proved
in [9, Th. 5.1, Prop. 4.1]. Further, with these definitions, the equalities
(1) and (2) are valid and it can be shown that the conjectural vanishing of
TOY(Q(1)k, Z[G]) is compatible with the conjectures discussed in both [4]
and [7].

Thus, in the remainder of this article we always use the notation
TQ"(Q(r)k,Z|G]) as defined in (10).

3.2. THE ABELIAN CASE. Until explicitly stated otherwise, in the sequel we
consider only abelian groups. Thus, following [9, §2.5], we use the graded
determinant functor of [29] in place of virtual objects (for a convenient review
of all relevant properties of the determinant functor see [11, §2]). However, we
caution the reader that for reasons of typographical clarity we sometimes do not
distinguish between a graded invertible module and the underlying invertible
module.

We note that, when proving Theorem 1.1, the functorial properties of the el-
ements TQ°(Q(r)x, Z[Gal(K/k)]) allow us to assume that k = Q and also
that K is generated by a primitive N-th root of unity for some natural number
N # 2 mod 4. Therefore, until explicitly stated otherwise, we henceforth fix
the following notation:

K :=Q(™/N), G:=Gal(K/Q); M:=Q(r)x, r>1; A:=Q[qG)
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For any natural number n we also set ¢, := €2>™/™ and denote by o, the
resulting complex embedding of the field Q(¢,).
For each complex character n of G we denote by e, = ﬁ dea n(g~1)g the

associated idempotent in A¢. For each Q-rational character (or equivalently,
Aut(C)-conjugacy class of C-rational characters) x of G weset e, =3°, - e, €
A and denote by Q(x) = e, A the field of values of x. There is a ring decompo-
sition A = [, Q(x) and a corresponding decomposition Y = [ e, Y for any
A-module Y. We make similar conventions for (Q,-rational characters of G.

4. AN EXPLICIT ANALYSIS OF TQY°¢(Q(r)k, Z[G))

In this section we reduce the proof of Theorem 1.1 to the verification of an
explicit local equality (cf. Proposition 4.4).

4.1. THE ARCHIMEDEAN COMPONENT OF TQ°¢(Q(r)f,Z[G]). In this sub-
section we explicate the morphism ¥'%¢ defined in §2.2 and the element
E(aM) € Ay defined in §2.6.

The de Rham realization Hyr(M) of M identifies with K, considered as a free
A-module of rank one (by means of the normal basis theorem). The Betti
realisation Hp (M) of M identifies with the Q-vector space Ys with basis equal
to the set ¥ := Hom(K,C) of field embeddings and is therefore also a free
A-module of rank one (with basis oy). We set Yy, ! := Hom(Yx, A). Then,
by [9, Th. 5.2], we know that (9'°¢)71((£(4M)~1,0)) belongs to Z°¢(M) =
(K ®4 Yy ',0) and we now describe this element explicitly.

PROPOSITION 4.1. We define an element €5 := Zx €oo,x€x Of AX by setting
=2 if x(=1) = (=1)"

ooy =9 -3 fx(=1)=—(-1)"and (x#1 orr>1)
% ifx=1andr=1.

Then
(02) T (E(aM)™1,0)) = (ecfin @ 03", 0) € (K ®a Yy 1, 0)

where o' is the (unique) element of Yy ' which satisfies oy (on) = 1 and Py
is the (unique) element of K =[], e, K which satisfies

exBn = [K : QCr )] r = DU - exCy,
for all Q-rational characters x of G.
Proof. For each Dirichlet character n of G the functional equation of L(7, s) is

L(n,s) = % (27‘-) F(s)lL(n,l —5)

JTn COS(LSQ_‘S))

where f,, is the conductor of 7 and
In '

(11) T(n) = Y _n(a)e®™ Py p(=1) = (-1)°, 6 € {0,1}
a=1
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(cf. [36, Ch. 4]). Thus, by its very definition in §2.6, the n-component of the
element £(4M)~! of Ac = [I,C is the leading Taylor coefficient at s = r of
the meromorphic function

7;6 s (s — . _
(=1)% : (fn) F(S)cos(u); pn = {1 Lnp=1

T(n) \ 27 2 0 else.

Hence we have

20 (f)" (r—1(-1)= r —§ even
S(AM);l — 7(n) (27">

id \ T =841 o
(1) 22 (é%) (r— (=122 r—5odd

which, after collecting powers of i and using the relation 7(n)7(7) = n(—1) f,
can be written as
_ 27(0)(2md) T fr 1 (r — 1), r —§ even
g(AM)nl = (77)(+1 1) f”] ( —( ,)1) -1
(=1)Pn 45 () (2mi) " I (r—11 r—4odd.
LEMMA 4.2. The isomorphism Y5« = (Hg(M)c)™ = Hp(M)g = Yar in (5)
s given by
daggton = > (Rlag)(1+ (=1)7¢) — 278 (ag) (1 = (=1)7¢)) g o
geG geG/<c>

where ¢ € G is complex conjugation, G acts on ¥ via (go)(x) = o(g(x)) and
R(a), resp. S(av), denotes the real, resp. imaginary, part of a € C.

Proof. An element = := dec agg~ton of Ys ¢ belongs to the subspace ch
if and only if one has ag. = (—1)"@, for all g € G. Writing

ag = R(ay) — 2m) 7 2m)S(ay),  ag = R(ay) + (2m1) 7 (2m)I(ay)
we find that
r= Y (Rlag)1+ (=1)"c) — (2mi) ' 273(ag) (1 = (—1)"¢))g ' ow.

geG/<c>
But deG/<c>(27ri)7127r%(ag)(l —(=Dre)g oy € Hg(M)~ ®gR-i and the
central map in (5) sends (2mi)~! to 1. This implies the claimed result. O

The canonical comparison isomorphism K¢ = Hyr(M)c &2 Hg(M)c = Ysc
which occurs in (4) sends any element 3 of K to

> on(gB @) g lon = Y onTa(B)(2mi) 1, ton
geG a€(Z/NT)*

where 7,(¢) = ¢* for each N-th root of unity ¢. In particular, after composing
this comparison isomorphism with the isomorphism of Lemma 4.2 we find that
(s is sent to the following element of Y5 r

Z(?R(ezﬂm/f(%ri)_r)(l + (=1)"¢) = 27S(e2™ % (2mi) 7Y (1 — (—1)rc))T;10N

a
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where the summation runs over all elements a of (Z/NZ)*/ + 1. For each
Dirichlet character n the n-component of this element is equal to e,on multi-
plied by

> @n)TRE i )n(a) - 2
a€(Z/NZ)* [£1
— Z (27”-)—7"(6271-7@/)‘ + (_1)re—27ria/f)n(a)
a€(Z/NZ)* /+1

@2ri)™" Y M n(a)

a€(Z/NT)*

if n(—1) = (=1)" (so § — r is even), resp. by

— 27 Z (2m) 7" S(e?™ 1 1) n(a) - 2
a€(Z/NZ)* /%1
2mia/f _ —1) —2mia/f
=27 Z (2mi)~ < ( ‘ Je n(a)
a€(Z/NL)* J+1 !
=(2mi)~0 3T 2l ya)
a€(Z/NT)

if n(—1) = —(—1)" (so § —r is odd). Taking f = f;, we find that the (n-part of
the) morphism (92¢)’ : Ag ®4 Z'°¢(M) = (Ag, 0) defined in §2.2 sends

(2mi) 7" [K - Q(fy)l7 (1) if n(=1) = (=1)"
(2md)~ VK Q(fy))r () if n(=1) = —(=1)".

Now 9'9¢ is defined to be the composite of (912€)" and the sign factors e;r and
ep that are defined at the end of §2.2. But it is easily seen that eqp = 1,
that (eg)y, = —1 for x(—1) = (—1)" and that (eg), = 1 otherwise. Thus, upon
comparing (12) with the description of £(4 M), * before Lemma 4.2 one verifies
the statement of Proposition 4.1. O

(12)  eyCr, @ceqoy' — {

4.2. REDUCTION TO THE p-PRIMARY COMPONENT. By [9, Th. 5.2] we know
that TQY(Q(r)x, Z|[G]) belongs to the subgroup Ko(Z[G], Q) of Ko(Z[G],R).
Recalling the direct sum decomposition Ko(Z[G], Q) = @, Ko(Z¢[G], Q) over
all primes ¢ from [9, (13)], we may therefore prove Theorem 1.1 by showing that,
for each prime ¢, the projection TQ°¢(Q(r)k, Z[G])¢ of TQ°¢(Q(r)k, Z[G)) to
Ky(Z¢[G),Qp) vanishes. Henceforth we therefore fix a prime number p and
shall analyze TQ°(Q(r) i, Z[G]),-

We denote by

Ty := Ind% Z,(r) C V, := nd% Q,(r) = H,(M)

the natural lattice in the p-adic realisation V,, of M. Then by combining the
definition of TQ°(Q(r)x, Z[G]) from (10) (and (8)) together with the explicit
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description of Proposition 4.1 one finds that 7Q"°¢(Q(r)k, Z[G]), = 0 if and
only if

Zy[G] - e(r)e(S,p) - 0;, 0 Op((ec By ® oy, 0)) = Ay (S, Ty)
where 0, is as defined in §2.3, A,(S,T}), 0, and €(S,p) € A} are as discussed
in §2.5 and we have set ¢(r) := Deta(—1 | Ko _1(Ok)* ®7 Q) € A*.

LEMMA 4.3. We set
ey = Deta, (21V;) Deta, (2V,)7" € A7

Then, with €x as defined in Proposition 4.1, there exists an element u(r) of
Zy[G]* such that e(r)e(S, p)ecc = u(r)ep.

Proof. We recall that €(S, p) is a product of factors Deta, (—1|RT,;(Qq, V})).
Further, the quasi-isomorphism RI'/;(Q,V;) = RT(Qg, V,(1))*[~2] from [9,
Lem. 12a)] implies that each such complex is quasi-isomorphic to a complex of
the form W — W (indeed, this is clear if £ # p and is true in the case £ = p
because the tangent space of the motive Q(1 — r) x vanishes for r > 1) and so
one has €(S,p) = 1.

We next note that if e(r) := >_ €(r)ye, with e(r), € {£1}, then the explicit
structure of the Q[G]-module Ka,._1(Og)*®zQ (cf. [17, p. 86, p. 105]) implies
that ¢(r), = 1 if either » = 1 and x is trivial or if x(—1) = (—1)", and that
€(r)y = —1 otherwise.

Thus, after recalling the explicit definitions of €5, and €, it is straightforward
to check that the claimed equality e(r)e(S,p)ess = u(r)e, is valid with u(r) =
—(=1)"c where ¢ € G is complex conjugation. O

The element ¢, in Lemma 4.3 is equal to the element €y, that occurs in Propo-

sition 7.2 below (with V, = Ind(%@p(r)). Hence, upon combining Lemma 4.3
with the discussion which immediately precedes it and the result of Proposition
7.2 we may deduce that TQ°(Q(r)k, Z[G]), = 0 if and only if

(13) Z,[G]-0,((By @0y, 0) = [ X Detipl[c] RD(Qq, Tp) | ®z,(c) (T, —1).
{|Np

Here we have set T, ! := Homy, (T}, Zy[G]) and also used the fact that, since

T, is a free rank one Z,[G]-module, one has Detipl[G} (Tp) = (T, -1).

Now Shapiro’s Lemma allows us to identify the complexes RI'(Qg,T,) and

RY'(Qg,V,) with RI'(Ky,Z,(r)) and RI'(K,, Q,(r)) respectively. Further, the

complex RT'(K,,Q,(r)) is acyclic outside degree 1 for r > 1, and for r = 1 one

has a natural exact sequence of Q,[G]-modules

(14) 0- 0% — K} = H'(K,,Q,(1) 5 [] @ = H(K,,Q,(1) — 0
v|p

where the first isomorphism is induced by Kummer theory and the second
by the invariant map on the Brauer group. Our notation here is that M :=
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(lim M/p"M) @z, Q, for any abelian group M. We let

Ky, = Dar(Vp) = Hf( Ky, Qy(r))
denote the exponential map of Bloch and Kato for the representation V), of
Gal(Q,/Qp). This map is bijective (since 7 > 0) and H} (K}, Q,(r)) coincides
with @[X(P for = 1 and with H*(K,,Q,(r)) for r > 1 (cf. [5]). Also, both
source and target for the map exp are free Ap-modules of rank one. By using

the sequence (14) for r = 1 we therefore find that for each r > 1 there exists
an isomorphism of graded invertible A,-modules of the form

(15)  exp: (Kp,1) = (Hf(Kp, Qy(r)),1) = Det ;) RU(Kp, Qp(r)).
For any subgroup H C G we set

= ) = 1H| Zg

x(H)=1 geH

Also, for each prime ¢ we denote by J; and D, the inertia and decomposition
groups of £ in G. For x € A, we then set

es(z) =1+ (z—1)ey, € 4,
(so x — ey(x) is a multiplicative map that preserves the maximal Z,-order in

A,) and we denote by Fr, € G C A any choice of a Frobenius element.

PROPOSITION 4.4. We define an element e}(1 —p"~! Fr;l) of A) by setting

exep(l—p™! Fl"gl)7 ifr>1 or x(Dy) #1
|Dp/Jp| ey, otherwise.

exey(1—p"~ 1]5‘1"71) {

Then one has TQ(Q(r) i, Z[G]), = 0 if and only if

7 Fr,

(16) G- [ eo(-Fry Y ep(t — —2)~en (1 — p " Fr, ) &xp((B. 1))

f|N
L#£p

= Dety, g BT (K, Z, (7).

Proof. Tt suffices to prove that (16) is equivalent to (13).
Now, by its definition in §2.3, the morphism 8, which occurs in (13) is induced
by taking the tensor product of the morphisms

OrP¥ s Ay @4 2°°(M) = Dety R (K, Qp(r)) @4, (V, ', —1),
where we set Vp_1 := Homy, (Vp, Ay), and for each prime £ | N with £ # p
0,7 : (Ap,0) = Det ! RT(Kg, Qy(r)).
In addition, for W = V), the exact triangle (7) identifies with

Ds(13))

p~ " Frp

Ky[~1] — RT4(Qy. V) — (Dcriswp) !
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(with this last complex concentrated in degrees 0 and 1), and there is a canon-
ical quasi-isomorphism
* * ~ 17pT71 Fr;l
R (@, Vi (1)[-2] 2 ( Dee(V}) Ders(Vy) ) -

where the latter complex is concentrated in degrees 1 and 2. The identity map
on De,is(V),) therefore induces isomorphisms of graded invertible A,-modules
(17) (Kp,1)= Detgi RT;(Qp, V);  (Ap,0) = Deta, BRI ¢(Qy, V(1)) [-2].
The morphism 5P*"* is thus induced by (17) and (6) together with the (ele-
mentary) comparison isomorphism

v: Yy, =Hp(M), = Hy,(M) =Y,
between the Betti and p-adic realizations of M. On the other hand, the iso-
morphism exp arises by passing to the cohomology sequence of (6) and then
also using the identifications in (14) if r = 1. Hence, from [8, Lem. 1, Lem. 2],
one has

(18) Gg'part =ep(l—p™" Frp)fle;(l —prt Fr;l)é\q/) ®a, L.

Now if ¢ # p, then Proposition 7.1 below implies that
Deta, (—ael|(Vy)r,) ™" - 057 ((Z,[G], 0)) = Det; | RT (K¢, Zy (1))
Thus, since y(on) is a Zp[G]-basis of T}, we find that (13) holds if and only if
the element
[IDeta, (et (Vo)1) ep(1 = p™" Frp) ~rep (1 —p ' Fr, t) exp((Bw, 1))

(N
L#£p

is a Z,|G]-basis of Deti:[G] RI(Kp,Zy(r)). But

DetAp(—aM*lKVp)“) = DetAp(— Fr[l €r71|Ap . 6]2) = eg(— Fr;l)eg(gril)

and so Proposition 4.4 is implied by Lemma 4.5 below with u equal to the
function which sends 0 to £"~! and all non-zero integers to 1. O

LEMMA 4.5. Fiz a prime number { # p. If u : Z — Zy[G]* is any function
such that £ —1 divides u(0) —u(1) in Zy[G], then the element 3 u(orde(fy))ex
is a unit of Z,[G).

Proof. If ¢ — 1 divides u(0) — u(1), then £ — 1 divides (u(1) —w(0))/u(1)u(0) =
u(0)~t —u(1)~1. It follows that the function u~! also satisfies the hypothesis of
the lemma and so it suffices to prove that the element z, := 3 u(orde(fy))ey
belongs to Z,[G].

To this end, we let J; = Jy o € G denote the inertia subgroup at £ and J;; C
Jok—1 C -+ C Jp1 C Joo its canonical filtration, so that a character y satisfies
orde(fy) = k if and only if x(J,x) =1 (and x(Jrx—1) # 1 if £ > 0). Then
k=K k=K—1

Ly = u(k)(er,k - eJZ,k'—l) = Z (u(k) - U(k + 1))€Jl,k + u(K)er,K
k=0 k=0
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where K = ordy(N) and we haveset e, _, := 0. Fork > lonehasey,, € Z,[G]
since Jy  is an f-group and ¢ # p. If K = 0, then €Jo = €J,x = 1 also lies
in Zp[G]. Otherwise the assumptions that £ — 1 divides «(0) — u(1) and that
{ # p combine to imply that

(u(0) —u(l))es,, = Z 9 € Zp|

QEJﬁ 0

as required. O

5. LOCAL IWASAWA THEORY
As preparation for our proof of (16) we now prove a result in Iwasawa theory.
We write

N = Nop”; v >0, ptNo.
For any natural number n we set G,, := Gal(Q(¢,,)/Q) = (Z/nZ)*. We also let

Q(¢npe) denote the union of the fields Q({npm) over m > 0 and set G yp~ =
Gal(Q(Cnp=)/Q). We then define

A 1= Z,[[Gpee]] = T Z,[Gvpn] & Z, G [T

Here we have set p := p for odd p and p := 4 for p = 2, and the isornorphism
depends on a choice of topological generator of Gal(Q (( Npo=)/Q(Cnpp)) = Z
We also set

)7 = hmIndQ(C Y »(7).

This is a free rank one A-module upon which the absolute Galois group Gg :=
Gal(Q/Q) acts by the character (chclo)TT_l where Xcyclo : Gg — Z, is the
cyclotomic character and 7 : Gg — Gnp € A* is the tautological character.
In this section we shall describe (in Proposition 5.2) a basis of the invertible
A-module Dety " RT(Q,, T:°).

We note first that the cohomology of RT'(Q,,7;°) is naturally isomorphic to

| (lim, Q(Cnpr )y /P") @z, Zp(r —1) i =1
(19) HZ(QP’T;O) = Hvlp ZP(T - 1) 1=2
0 otherwise

where the limit is taken with respect to the norm maps (and Q(Cnpn)p =
Q(¢npn) ®g Qp is a finite product of local fields). The valuation map induces
a natural short exact sequence

n val
(20) 0—Z _hmOQ(an) /p" —>th(CNp HZ —0

and in addition Perrin-Riou has constructed an exact sequence [34, Prop. 4.1.3]

(21) 0—>HZ —>Zr—1)0—>R—>HZ =0

v|p
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where

R:={f € ZCnJp[IX]] | ¥(f):= Y f(C(1+X) 1) =0}

¢r=1

and Z[(n,]p denotes the finite étale Z,-algebra Z[(n,] ®z Z,. We remark that,
whilst p is assumed to be odd in [34] the same arguments show that the sequence
(21) exists and is exact also in the case p = 2. The Z,-module R carries a
natural continuous Gpype-action [34, 1.1.4], and with respect to this action all
maps in (19), (20) and (21) are A-equivariant. In addition, if » = 1, then the
exact sequence (21) is due to Coleman and the map 677 is given by

(22) o7 = (1 2 ) tox(1.)

p
where f, is the (unique) Coleman power series of the norm compatible system
of units u with respect to ((pn),>1 and one has ¢(f,)(X) = 2T (14X)P—1).

LEMMA 5.1. The A-module R is free of rank one with basis
B =1+ X);  Enyi= Y. G
Nl‘d‘No
where Ny := Hleo L.

Proof. The element &y, is a Z,[Gn,]-basis of Z[(n,]p. Indeed, this observation
(which is due originally to Leopoldt [30]) can be explicitly deduced from [31,
Th. 2] after observing that the idempotents €4 of loc. cit. belong to Z,[Gy,]-
On the other hand, Perrin-Riou shows in [33, Lem. 1.5] that if W is the ring
of integers in any finite unramified extension of Z,, then W[[X]]¥=0 is a free
rank one W{[Gp~]]-module with basis 1 + X (her proof applies for all primes
p, including p = 2). Since Z[(n,], is a finite product of such rings W and
Gnpe =2 G, X Gpeo, the result follows. O

PROPOSITION 5.2. Let Q be the total ring of fractions of A (so Q is a finite
product of fields). Using Lemma 5.1, we regard B, as a Q-basis of

RoAQ=Z(r—1) 9y Q= HY(Q), T;°) ®a Q = (Dety ' RT(Q,, T;°)) @4 Q,
where the first isomorphism is induced by (07 @5 Q)~1, the second by (19)
and the (r — 1)-fold twist of (20) and the third by (19). Then one has

A- B3, =Dety ! RI(Q,, T5°) C (Dety " RT(Qy, T°)) @4 Q.

Proof. We note first that, since A is noetherian, Cohen-Macauley and semilocal,
it is enough to prove that 337 is a Ag-basis of Dethl RI(Qy, T;°)q for all height
one prime ideals q of A (see, for example, [17, Lem. 5.7]). In view of (19),
(20) and (21) this claim is immediate for prime ideals q which are not in the
support of the (torsion) A-modules [],,Zy(r — 1) and [, Zy(r). On the
other hand, since these modules are each p-torsion free, any prime q which
does lie in their support is regular in the sense that p ¢ q (see, for example,
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(17, p. 90]). In particular, in any such case Aq is a discrete valuation ring and
so it suffices to check cancellation of the Fitting ideals of the occurring torsion
modules. But the Fitting ideal of H 2((@,”T];’°)cI cancels against that of the
module (J],, Zy(r —1))q which occurs in the (r — 1)-fold twist of (20), whilst

the Fitting ideals of the kernel and cokernel of 8% obviously cancel against
each other. 0

6. DESCENT CALCULATIONS

In this section we deduce equality (16) as a consequence of Proposition 5.2 and
thereby finish the proof of Theorem 1.1.
At the outset we note that the natural ring homomorphism

(23) A — Z,[G] € Q,[G HQP

induces an isomorphism of perfect complexes of Z,[G]-modules
RU(Qy, T;°) @ Z,[G] = RT(Qy, T;)
and hence also an isomorphism of determinants
Dety " RT(Qp, T5°) @4 Zy[G] = Dety oy RT(Qp, Ty).-

Taken in conjunction with Proposition 5.2, this shows that (83 ®@a 1,1) is a
Z,|G)-basis of the graded module Det, LG | RI(Qp, T},). Hence, if we define an
element u of Q,[G]* by means of the equality

Fr,

24) T ee(=Fr7 ") el fp—T)*le;(l*pr’lFr;I)Eﬁ((ﬂN,l))

| No
= (u- B3, ®a1,1)
then it is clear that the equality (16) is valid if and only if u € Z,[G]*.

6.1. THE UNIT «'. To prove that the element u defined in (24) belongs to
Z,[G]* we will compare it to the unit described by the following result.

LEMMA 6.1. There exists a unit u' € Z,[G]* such that for any integer k with

—k
0 <k < v and any Qp-rational character x of G the element eX(Cpkfi,ro” ) is
equal to

x(u') Hz|N0,e¢fX ﬁ HQN0 ee(— Frzl)exéfx, if k= ordp(fx)
x(u')(=Fr,t) Iowerr, 75 o, €e(= FryYeyls,, if k=1, ordy(fy) =0
0, otherwise.

Proof. For d | Ny and k > 0 we set dj, := pFd and
a(d) :=(d,1) € (Z/p"Z)* x (Z/NoZ)* = (Z/NZ)* =G
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vk a . . .
so that (p,» Cg ro= Cd,fd)- Since &y, = ZNlld\No (4 Lemma 6.2 below implies

Fr " o(fx) diy 1 dk
25 ex(Grény ) = — exCfy-
(25) (Cpéng ) N1|d|§o:,fxdk ¢(dk)u(fx)x (fx) x(a(d))exCy

The only non-vanishing summands in (25) are those for which the quotient
di/ fy is both square-free and prime to f,. Given the nature of the summation
condition there is a unique such summand corresponding to

di/ o = HéINo [Jffx ¢, if k= ordy(fy)
X [Lgnep, ¢ ifk=1andordy(fy) =0

=k
If neither of these conditions on k and ord,(fy) is satisfied, then e, ((,x £]FVO” )=
0. By using the multiplicativity of u, ¢ and x and the equalities p(¢) = —1
and ¢(¢) = ¢ — 1 we then compute that (25) is equal to

X(a(dx)) HE|NO,EJ(fX (%( )) exCfys if k= 0rdp<fx)
x(a(dy)) Iy n ez, (% ) exCre k=1, ordy(fy) =0
0, otherwise

where d, is the index of the unique nonvanishing summand in (25), i.e. d, =
fx.0 Hleo oF, ¢ with f, o the prime to p-part of f,. Now the element

ZX exe(@p[ )"

belongs to Z,[G]* by Lemma 4.5 (indeed the function d — a(d) is multiplica-
tive, dy, = d(ordy(fy)) is a function of ord(fy) only and satisfies d(0) = d(1)
as such). From here the explicit description of Lemma 6.1 follows because the
definition of e, ensures that [Ty, 4. (=x10) = Ty, ee(— Fr,;Yey. O

o~

LEMMA 6.2. For any Q-rational (resp. Qp-rational) character x of G
(Z/NZ)*, any d | N and any primitive d-th root of unity (J we have

Oa Zf fX Td
(26) et =9 of) d. . d ’

p(=)x " (Fxla)exCr,,  if fx | d

¢(d) (fx) (fx)()XfX X|
in K (resp. K,). Here ¢(m) is Euler’s ¢-function, p(m) is the Mobius function
and x(m) =0 if (m, fy) > 1.
Proof. Recall that we view a Q-rational character x as the tautological homo-
morphism G — A* — Q(x)* to the field Q(x) := e, A which is a direct ring
factor of A. Thus, any complex embedding j : Q(x) — C induces a complex

character jx =n: G — C*. We set b := N/d. Then under the C-linear map
oy : K¢ — C the element

(ex)Cd = enCR = |G|Z *1g<N—W) > n@)GE" € Ke

geG z modN
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is sent to the general Gaussian sum ¢(N)~17(7x|¢%) in the notation of Hasse
[22, §20.1]. By [22, §20.2.IV] we have

R () fatd
T(NN|CN) = {wu(ﬁ)ﬁ(ﬁ)n(aﬁ(ﬁ)» fold

where the Gaussian sum 7(n) attached to the character 7 is as defined in (11).
For d = f, and ¢§ = (y, we find 7(7) = &(fy)on((jey)(s, ). This yields the
image of (26) under oy. Note that K¢ = [[ ., C via z — (ongz)gec and
both sides of (26) are multiplied by x(g) after applying g. Since jx(g) = n(g)
is a scalar and oy is C-linear we find that (26) holds in K¢, hence in K, hence
also in K, for all p. O

Given Lemma 6.1, our proof of Theorem 1.1 will be complete if we can show
that wu’ € Z,[G]*. Recalling Lemma 4.5 it thus suffices to prove that for each
Q,-rational character x one has

f;51 [Long,err, (€= 1)
[Q(CNO) : Q(Cfx,o)]

where f, o denotes for the prime to p-part of f,. (In this regard note that the
expression on the right hand side of (27) belongs to Z,.)

We shall use explicit descent computations to prove that (27) is a consequence
of the definition of u in (24). To this end, for each Qp-character x of G we
let q, denote the kernel of the homomorphism A — Q,(x) in (23). Then
dy is a regular prime ideal of A and A, is a discrete valuation ring with
residue field Q,(x). To apply [17, Lem. 5.7] we need to describe a A4, -basis of
HY(Qp, T°)q, and for this purpose we find it convenient to split the argument
into several different cases.

(27) x(uu') =

6.2. THE CASE r > 1 OR x(D,) # 1. In this subsection we shall prove (27)
for all characters x except those which are trivial on D), in the case that r = 1.
In particular, the material of this section completes the proof of Theorem 1.1
in the case r > 1.

We note first that if either » > 1 or x(D,) # 1, then g, does not lie in the
support of either [, , Z,(r — 1) or [],,, Zy(r). Hence, modulo the identifica-
tions made in Proposition 5.2, it follows from (19), (20) and (21) that 337 is
a Aq, -basis of H'(Qy, T;°),, = (Det, ! RI(Qp, T;°))q, and that 83, @, 1is
equal to the image of 337 under the composite map

X

Hl(@panoo)qX - Hl(@p»Tpoo)qX ®Ac,X Qp(X) = Hl(Kpan(T)) ®Ap QP(X)

where the isomorphism is induced by the vanishing of H*(Qp,T;5°)q, (cf. [17,
Lem. 5.7]).
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6.2.1. The descent diagram. By an obvious semi-local generalization of the
argument of [1, §2.3.2] there exists a commutative diagram of A-modules

QPR

Z(r—1) —— R

(28) l Ewl

HY(K), Qy(r) <% K,
where v = ord, (V) is as defined at the beginning of §5,

S G 1) (= GO, w2
Tric(c,)/x(Er1(f)), v=0

ET,V(f) =

is the map of [1, Lem. 2.2.2] and the choice of Frobenius element Fr, € G =
Gn, X Gpv is that which acts trivially on p-power roots of unity. (We are
grateful to Laurent Berger for pointing out that the methods of [3] show that
the diagram (28) commutes even in the case p = 2.)

Now for f = %, = &n, (1 + X) this formula gives

Zprk7V<pk Fr;k §N0 +p (

k=1

r_ 4 1 Fr, _
Trre(c,)/x (P 1CpFrp1+Z;(1 - prp) 1) Eny =

T_ 1 p—1 Fr
(—p 1Frp1+T( p) )gNo

"
Fr -
( ——Tp)*l(l—prlerpl)fNo, v=0.

) fNo, v>1

Enl/(ﬁ]o\?o) =

In addition, since either r > 1 or x(D,) # 1, one has e, exp = e, exp and so the
commutativity of (28) implies that the e,-projection of the defining equality
(24) is equivalent to an equality in e, K, of the form

Fr _
(29) H eo(— Fre )ep(l— 7;0)—1%(1 —pt Fr, 1)6X6N
£|No
rk— I/ —v FI'p -
’I" B 1 Zp CP §No ) 1— pr 6X§N0
if v > 1, resp.
(30) TT eo(= Fri Hexfn = x(@)(r — Dlexén,

Z‘NO

if v=0.
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6.2.2. The case ord,(f,) > 0. In this case v > 0 and e,(x)e, = e, for all
r € A and so we may leave out all factors of the form e,(—) on the left
hand side of (29). In addition, Lemma 6.1 implies that the only non-vanishing
term in the summation on the right hand side of (29) is that corresponding to
k = ord,(fy) and moreover that (29) is equivalent to an equality

. 1
exBn = x(uu)(r — 1)!Prk H mefox-
£|No,ltfx

Now, since k = ord,(fy) and v = ord,(N), we have

7 1 1 [QCN) : Q)] it
C=1 £ Ty ar, (€= 1) I = QUG )]

To deduce the required equality (27) from the last two displayed formulas one
need only substitute the expression for e, 3n given in Proposition 4.1.

Z‘No,@(fx

6.2.3. The case ord,(fy) = 0 and v > 0. In this case Lemma 6.1 shows that
the only non-zero terms in the summation on the right hand side of (29) are
those which correspond to k = 0 and k& = 1. Moreover, one has e,(z)e, = xe,
for z € A). By Lemma 6.1, equation (29) is thus equivalent to

T

T—V -1
x(ua)(r — 1)! H (_% (;)_ 1(7 Fr;l) +pY <1 — P;}’) > eXCfx'

e|N07€)(fX

-1
(31) (1 - Frp) (1—p—t Frgl)exﬁN =

But

—v+1 —1

P Fr . _ Fr p—1
S (-5) (remn (i-52)+55)
p—1 P D D

_L _% - a1 —1
~o(pY) (1 pr) (L=p )

and so (31) implies that
1

, 1
exfOn = x(uu')(r — 1”@ ZNIO—’E“X mexcfx'

The required equality (27) follows from this in conjunction with the equality

1 H 1 _ [Q(CNO) : Q(Cfx,o)] ;71
o(p”) -1 ;,_01 HZINO,WX (0—1) [K:Q(¢)]

and the expression for e, By given in Proposition 4.1.

l
£|No,tfx
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6.2.4. The case v = ord,(N) = 0. In this case (27) results directly upon
substituting the formulas of Proposition 4.1 and Lemma 6.1 (with k£ = 0) into
(30).

6.3. THE CASE r = 1 AND x(D,) = 1. In this case q, lies in the sup-
port of [, Zy(r — 1) (but not of [[,,Zy(r)) and B3, is not a Aq -basis
of H'(Q,, T°)q, . We fix a generator v of Z, = Gal(Q(Cnp~)/K((p)) € Gnp-

P
and then define a uniformizer of Ay by setting

w:=1-—7.
The p-adic places of the fields K = Q({n,p») and Q({n,p) are in natural

bijection. We fix one such place vy and set

™= (1= Gr)nz1 € 1m(Q(Cngpn ), ) /P

Clim [ [(Q(Cnopr)2) /0" = H' (Qp, T50).

" ovlp
Then the image 7°° of n°° in
HY(Qy, T3%)q, /@ € H' (K, Qp(1)) @4, Qp(x) = H' (Kp, Qp(1))x

coincides with that of p € Q((n, )., and so is non-zero. In particular therefore,

N> is a Ag, -basis of H'(Qp, T5°)q, . Now, by [17, Lem. 5.7] there is an exact
sequence

0— Hl(@vaoo)qx/w - Hl(va@p(l))x LN HQ(vaQp(l))x —0

P

where 3 is the y-projection of the composite homomorphism

Trg, /g, (log,(uy))
log,, (Xeyelo(7))

H'(K, Q1)) 2 K — [[Q, = H*(K,,Qp(1));  uy —
vlp

(see [17, Lem. 5.8] and its proof). This exact sequence induces an isomorphism

bw : Detg! () RT(Qp, Vp)y = HY(Qp, T;%)q, /@

and [17, Lem. 5.7] implies that, modulo the identifications made in Proposition
5.2, one has

(32) A= BR, ®a,, 1= 05 (1)
where the elements A € AqXX and e € Z are defined by the equality
(33) (07 g - BR) = @ n™ € HY(Qp, T;®)q,

and X denotes the image of X in A, /@. This description of 7°° implies that
val(7°°) = B(exp(eyb)),

where ‘val’ is the normalized valuation map which occurs in (14) and

b= Dyl 10g, (Xeyelo (7)) € Qp € Koy, € [ Ko = K-

vlp
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LEMMA 6.3. The element X\ that is defined in (33) belongs to A and in
Q(CNo)p = HU“, Q(¢n, )v one has

1 -1
b=—|D,|™! (1-) €N,
P

This formula uniquely determines the image A of A in Q,(x).

Proof. Since (%, is a basis of the free rank one A-module R (by Lemma 5.1)
we have

(34) A= B3, = 07 (™))

for some element A of A, which then also satisfies the condition (33).

The map 7% is described explicitly by (22). Further, with respect to the
system ((pn)n>1, the Coleman power series that is associated to the norm
compatible system of units (n°°)® = (7)1~ is equal to

X

_ -1
(1 + X)Xevero(7) — 1 = Xeyelo(7) mod (X).

f(X) =

Thus, by computing constant terms in the power series identity (34) we obtain
equalities

b = (1- D) log(£(X))
p X=0

(1- %) log, (eyeto(1) ™)

1
—(1—2)|Dylb
(1= 2Dyl

as required to finish the proof of the first sentence of the lemma. On the other
hand, the second sentence of the lemma is clear because &y, is a Qp[Gn,]-basis
of Q(¢ny)p and Q,(x) = Aq, /w is a quotient of Qp[Gn,].

With exp denoting the map in (15), the last lemma implies that

b (1) = 7™ N explexh) ® Blexp(exd)) !
= —exp(eyb) A @ val(7>)
=exp(—eyb)

__ _ 1\ e
=exp <|Dp| 1(1—p> )\-efoO),

and hence, using (32), that
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xp (R, @, 1)

=mrm-§*M@9

1
=D, (1= =)'k ] 71_[6@ Fr; Mey(r,
p €| No ety ¢|No
D, =y ) T oy [T e B )i QGG e
€|No et ¢|No
— 1._ ’ [Q(CNO) : Q(Cf .0)] —1
=|D,/J,| {1 - =)t = X —F Jé;
| p/ p| ( p) X(U)f;01 HélND’HfX((—l) }J_VIOGK( r, )eX N

where the second equality follows from Lemma 6.1, the third from Proposition
4.1 and the fourth from the fact that r =1, f, = fy,0 and

(K Q(¢r,)] [Q(¢o) = QCy0)]

ol en.etr, 6= 1) Fro! Tomg,err, (£ 1)

The required equality (27) is now obtained by comparing the above formula
for Eﬁ)*l(ﬂf\?{) ®A,, 1) to the definition of u in (24).
This completes our proof of Theorem 1.1.

7. SOME REMARKS CONCERNING TQ1°¢(M, )

In this section we prove two results that were used in the proof of Theorem
1.1 but which are most naturally formulated in a more general setting. In
particular, these results extend the computations made in [9, §5].

We henceforth fix notation as in §2. Thus, we stress, M is no longer assumed
to be a Tate motive and the (finite dimensional semisimple) Q-algebra A is not
assumed to be either commutative or a group ring.

7.1. THE CONTRIBUTION FROM PRIMES ¢ # p. We first recall the following
basic fact about the cohomology of the profinite group 7 (for distinction we
shall denote the canonical generator 1 € 7 by o). Let R be either a pro-p ring,
or a localization of such a ring, and let C' be a perfect complex of R-modules
with a continuous action of Z. Then

RI(Z,C) = Tot(C =% ©)

is a perfect complex of R-modules where ‘Tot’ denotes the total complex of a
double complex. The identity map of C' induces a morphism

ide,triv 1 1g 2 Dety! RT(Z, C)

in V(R) which is functorial for exact triangles in the variable C' and also com-
mutes with scalar extension.
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PRrROPOSITION 7.1. For a prime number £ # p we let o, denote the Frobenius
automorphism in Gal(Q}*/Qy). If

0,77 : 14, = Dety! RT(Qy, Vj)
denotes the morphism in V(A,) which occurs in [9, (67)], then
Deta, (—oel™'|(V,)r,) " 057"
is induced by a morphism 1y, = Detii RT(Qy, Tp) in V().
Proof. Recall the exact triangle of complexes of A,-modules

(35) RI'#(Qg,Vp) — RI(Qg, V) — RT¢(Qy, V)

from [9, (18)] as well as the isomorphism
AV RT)p(Q, Vp) = RE(Qe, Vi (1)) [-2]

from [9, Lem. 12a)]. The triangle (35) is obtained by applying RF(Z, —) to the
exact triangle

(36) H(1;,V,) = RT(Iy, V) — H' (1, V,)[-1]
together with the isomorphism
RT(Z, RT (I, V,)) = RT(Q, Vp).

According to the convention [9, (19)] the generator o we use here is o, '. The
isomorphism AV is more explicitly given by the diagram

(Vo)r,(=1) (Vo)1 (=1)

-1
1-0o,

1—o, !
(V)r) —— (V)" (1)".
Note here that H'(I,,V,) is naturally isomorphic to (V},)s,(—1) and that in
the isomorphism ((V;)'¢)* = (V,)y, the first dual is the contragredient o-
representation whereas the second is simply the dual. From this last diagram
we deduce
id(v,), (~1).iv = Deta, (ool (Vp)1,) (v Te (1)) triv

and by the discussion above with R = A, the exact triangle (36) gives

. ci—1 .

ldvpfe7triv ® ld(Vp)I[(fl),triv = 1dRr(1,,v;) triv -
By the definition of [9, (67)] the morphism 5P is induced by the triangle
(35), the isomorphism AV and the morphisms id s, . . and id )1 (1))« riv-

P P ’

Hence
Deta, (ool |(V,)r,) "t 657>
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is the scalar extension of the morphism idgr(z,,7,,),triv in V/(2lp) and this finishes
the proof of the Proposition. O

7.2. ARTIN-VERDIER DUALITY. In this subsection we extend [9, Lem. 14] to
include the case p = 2 and hence resolve the issue raised in [9, Rem. 16].
Before stating the main result we recall that [9, (78)] defines a morphism in
V(A,) of the form

(37)  6,: | @ Dety! RT(Q,V,) | @4, Dety! (V) = Ay, ®a, Ay(S,T)
Zesp,f

where
Ap(S,Tp) := Dety, C(Q,T))
with C'(Q,T},) a certain canonical perfect complex of 2,-modules (as occurs in
the diagram (39) below with E = Q).
We set
ey, = Deta, (2|V,;7) Deta, (2]V, )" € K1(4,).

PROPOSITION 7.2. The morphism ey, - 0,, is induced by a morphism in V(2A,)
of the form

(38) @) Dety! RT(Qr,Tp) | @a, Dety! () = Ay(S, T).
LeSy, ¢

The proof of this result will occupy the remainder of this subsection.

We note first that if p is odd, then ey, € im(K(2A,) — K1(4,)) and so the
above claim is equivalent to asserting that 0;, itself is induced by a morphism
in V(2,) of the form (38). Since this is precisely the statement of [9, Lem. 14]
we shall assume henceforth that p = 2.

Now if E is any number field, then [9, (81)] gives a true nine term diagram

@ RUa(E, T;(1)"[-4] = @ RUa(E,, T} (1)"[-4]
vVESoo VESoo
| o]
(39)  Rle(Op.s,, Ty (1) [-4] — 5 L(Sp, Tp)[~1] — RT.(Op.s,,Ty)
| | H
RTo(Op,s,, Ty (1) [-4] — C(B,T,) — RT.(Op.s,,Ty)

where the complex 3L(S,,T,) is endowed with a natural quasi-isomorphism
B(E) : 3L(S,, Tp) = @D RT(E,, T).
vES)y

To prove the Proposition we shall make an explicit study of the composite
morphism 3(Q) o a(Q). To do this we observe that if E is any Galois extension
of Q with group I', then (39), resp. [(E), is a true nine-term diagram, resp.
quasi-isomorphism, of complexes of ,[I']-modules and the same arguments as
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used in [8, Lem. 11] show that application of R Homg, r)(Zy, —) to (39), resp.
B(E), renders a diagram which is naturally isomorphic to the corresponding
diagram for £ = Q, resp. a quasi-isomorphism which identifies naturally with
B(Q).

We now fix E to be an imaginary quadratic field and set T' := Gal(E/Q) and
RUTate(Ey, —) := RT(E,, —) for each non-archimedean place v. Then for each
vo € S one has a natural morphism RT'Tate(Eyy, —) — RI(Ey,, —) and we let
Yoo (E) denote the following composite morphism in D(2,[I'])

B(E)oa(E)[1]
—_——

RTA(Boo, T3 (1))*[-3] P RU(E,,T,) — R (E,,. T,).

vES)

Now if vy is non-archimedean, then ~,, (F) is equal to the composite

(40)  RUA(Ewx,T;(1)"[-3] = €D Rl'tate(Ey, T) — RT (B, T),
vES)

where the first arrow denotes the diagonal morphism in the following commu-
tative diagram in D(2,[I])

RTA(Eoo, Ty (1))*[-3] —  RTc(Op.s,, T (1))*[~3] AV RT(Op,s,,Tp)

u | l

RUA(Boo, Ty (1) [-3] — @ Rlraae(By, T; (1) [2) B AV @ Alrare(EoTy)

veSp veSp
in which the left, resp. right, hand square comes directly from the definition of
RUA(Ew, T, (1)) in [9, (80)], resp. from the compatibility of local and global
Artin-Verdier duality as in [9, Lem. 12]. Since (vo is assumed for the moment
to be non-archimedean and) the image of the lower left hand arrow in this
diagram is contained in the summand RI'Tate(Eoo, Ty (1))*[—2] it is therefore
clear that (40) is the zero morphism. Hence, there exists a natural isomorphism
in D(A,[I']) of the form

C(E.T,) = (B, T,)[-1& P RI(E,,T,)-1]
vESy, f

where C(E,T),) is a complex which lies in an exact triangle in D(2,[I']) of
the form

Yoo (E)
—_—

(41)  RUA(Bwo, Tr(1))*[-3] RT(Es,T)) — Coo(E, T,) — .

Now, via the canonical identifications RI'a(Eoo, T (1))*[—3] = T),(—1)[-3] and
RI'(E,T,) = T,[0], we may regard v.(E) as an element of

Hom p o, (1) (Tp(—1)[=3], T, [0]) = Ethlp[r] (Tp(=1),T,).
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With respect to this identification, Coo(E,T}) represents voo(E) viewed as a
Yoneda 3-extension and so can be obtained via a push-out diagram of 2(,[I']-
modules of the form

0 — T, — T,[[] =5 T,[I] =% T,[0] — Tp(~1) — 0

(42) Ao || || ||

0T, = B, — T[] =5 T[] = T,(=1) = 0.
Here we write ¢ for the natural diagonal action of the generator 7 of Gal(C/R),
the second arrow in the upper row is the map ¢ +— t + 7(t) - v where v is
the generator of I' and the fifth arrow in both rows is the map ¢t + ¢ -~ —
(t—7(t)) ® &1 with € := ((yn)n>1 (regarded as a generator of Z,(1)).
For any 2,[I']-module X the above diagram induces a commutative diagram
of the form

Extay, ry(Tp, X) —— Exty 3 (Tp(~1), X)

v [

Extay, py(Tp, X) —— Exty 1 (Tp(=1), X).

But C(E,T,) belongs to DP*(21,[I']) (since the lower row of (39) belongs to
Drerf(2(,[T])) and so the projective dimension of the 2,[I'-module B,, is finite
and therefore at most 1. This implies that the upper (resp. lower) horizontal
map in the last diagram is bijective for ¢ > 2 and surjective for i« = 1 (resp.
bijective for ¢ > 1). The map p** is therefore bijective for each i > 2 and
surjective for ¢ = 1 and so a result of Holland [23, Th. 3.1] implies that there
exists an automorphism a € Auty r)(7}) and a projective 2, [I']-module P
such that y — a is equal to a composite of the form T, — P — T,,. Now the
I'-module

HOHlQ[p (Tp(—l),P) = HOIIlQ[p (Tp(—l),ﬂp) L, pP=1T L, P

is cohomologically trivial (indeed, it suffices to check this for P = 2,[['] in
which case T* ®g, Ap[I] = T* @7, Zy[I'] = Z,[I']* with d = rankz, (T*)) and so
Extg[p[r] (T,(—1), P) = H*(I',Homg, (T,(—1), P)) = 0. In the diagram (42) we
may therefore assume that p1 € Autg rj(7},) and hence can use this diagram
to identify Coo(E,T)) with the complex

1—c

T,[T] 5 T,[1] =5 T, [T,

where the first term is placed in degree 0 (and the cohomology is computed via
the maps in upper row of (42)). Writing Coo(T},) for the complex

1—c 1+4c
Tp TLD TP
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(where the first term is placed in degree 0), we may thus deduce the existence
of a composite isomorphism in D(2,) of the form

COO(TP)[_l]@ @ RF(QZ7TP)[_1]
2ESy, §

= RHomg, 1)(Zp, Coo(E, T,)[-1] & € RT(E,,T,)[-1])
’UESP f

gRHOmZP[F](ZP,C(E, Tp))

=C(Q Tp).

When taken in conjunction with the natural morphism

J(Ty) : Detay, Cos(T,)[~1] = Det (Ty) @a,, (Deta, (Ty) ©a, Detz! (7))
%Det%(T)é@m 1y, = Dety (Tp)

the above composite isomorphism induces a morphism in V'(2(,) of the form

0, : | @ Dety! RT(Qe,T,) | ®a,Dety ! (T;) = Deta, C(Q, T,,) =: Ay (S, Ty).
LeSy, s

Now A, ®q, 0, differs from the morphism 6, in (37) only in the following
respect: in place of Ay, ®x, j(T,) the InOI‘phlSHl ¢, involves the composite
morphism

J(Vp) t Ay ®g1, Detg, Coo(Tp)[—1] =
Det;i (Ap @91, HO(COO (Tp))) ®a, DetZi (Ap X9, HQ(COO (Tp)))
= Det;i Vi

where the first morphism is the canonical ‘passage to cohomology’ map and the
second is induced by combining the isomorphisms A, ®a, H(Coo(T},)) =V,
and A, @, H*(Coo(T})) = V,(—1)7 that are induced by the upper row of
(42) with the isomorphism V5 @ Vj,(=1)* = V,F @V~ =V}, (where the second
component of the first map sends each element v of V,(—1)* tov® & € V7).
But the complex A, ®g, Coo(T)) identifies with

2) 0)

viov, Y ytgys GOyt gy

and so, by an explicit computation, one has A, ®q(, j(Tp) = €y, - j(V}) where
ey, := Deta, (2|V,F) Deta, (2|V,")~! € K1(Ap). The induced equality

AP ®le 91/91 =& 9;’
then completes the proof of the Proposition.
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