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Linear Programming Stories

The history of polyhedra, linear inequalities, and linear programming has many
diverse origins. Polyhedra have been around since the beginning of mathemat-
ics in ancient times. It appears that Fourier was the first to consider linear
inequalities seriously. This was in the first half of the 19th century. He in-
vented a method, today often called Fourier-Motzkin elimination, with which
linear programs can be solved, although this notion did not exist in his time. If
you want to know anything about the history of linear programming, I strongly
recommend consulting Schrijver’s book [5]. It covers all developments in deep-
est possible elaborateness.
This section of the book contains some aspects that complement Schrijver’s

historical notes. The origins of the interior point method for linear program-
ming are explored as well as column generation, a methodology that has proved
of considerable practical importance in linear and integer programming. The
solution of the Hirsch conjecture is outlined, and a survey of the development
of computer codes for the solution of linear (and mixed-integer) programs is
given. And there are two articles related to the ellipsoid method to which I
would like to add a few further details.
According to the New York Times of November 7, 1979: “A surprise discov-

ery by an obscure Soviet mathematician has rocked the world of mathematics

. . . ”. This obscure person was L. G. Khachiyan who ingeniously modified an
algorithm, the ellipsoid method, developed for nonlinear programming by N. Z.
Shor, D. B. Yudin, and A. S. Nemirovskii and proved in a very short paper [3]
that this method solves linear programs in polynomial time. This was indeed
a sensation. The ellipsoid method is a failure in practical computation but
turned out to be a powerful tool to show the polynomial time solvability of
many optimization problems, see [2].
One step in the ellipsoid method is the computation of a least volume ellipsoid

containing a given convex body. The story of the persons behind the result that
this ellipsoid, the Löwner-John ellipsoid, is uniquely determined and has very
interesting properties, is told in this section. A second important ingredient of
Khachiyan’s modification is “clever rounding”. A best possible approximation
of a real number by a rational number with a bounded denominator can be
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achieved by computing a continued fraction. The history and some applications
of this technique are covered also in a subsequent article.
When L. Lovász, A. Schrijver, and I were working on our book [2] we wanted

to eliminate some “dirty tricks” that were needed to make the original version of
the ellipsoid method work. The ellipsoid method produces successively shrink-
ing ellipsoids containing the given polyhedron. It terminates due to a volume
criterion, and thus it can only be applied to full-dimensional polyhedra. Since
one usually does not know whether a given polyhedron is full-dimensional, one
has to blow it up appropriately. How can one avoid this artificial blow up?
If a polyhedron is not full-dimensional (let us assume its dimension is one

less than the space dimension), then it must lie in some hyperplane H. One
observation is that, in such a case, the ellipsoid method produces shrinking
ellipsoids that get very flat in the direction perpendicular to H. This means that,
for these flat ellipsoids, the symmetry hyperplane belonging to the shortest axis
must be very close to H. Is it possible to identify H by rounding the equation
of this symmetry hyperplane? An immediate idea is to round each coefficient
of the equation (using continued fractions), but this does not deliver what
one wants. Simultaneous rounding, more precisely simultaneous Diophantine
approximation, is needed. We searched all number theory books. There are
important results of Dirichlet that could be applied, but no polynomial time
algorithms. We were stuck. Then I obtained the following letter from Laci
Lovász:

Laci’s algorithm is based on an idea for finding short vectors in a lattice. At
about the same time, several other mathematicians were addressing completely
different problems that lead to the same type of questions Lovász answered.
Among these were the brothers Arjen and Hendrik Lenstra with whom Laci
teamed up and wrote the famous paper [4]. The algorithm described in [4]
is now called LLL algorithm; it spurred enormous interest in many different
areas of mathematics and computer science and found various extensions and
improvements. The LLL algorithm virtually created a very lively subfield of
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mathematics, lattice basis reduction, and is already the subject of textbooks,
see [1].
The brief story sketched here is nicely presented, including many other angles

of this development and persons involved, in [6] and describes, in particular,
the way the brothers Lenstra and some others recognized the importance of
algorithmic basis reduction. From my personal point of view, this important
development began with the successful attempt to handle an annoying detail
of a linear programming algorithm.

Martin Grötschel
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