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Pope Gregory, the Calendar,

and Continued Fractions

Friedrich Eisenbrand

Abstract. The success of many activities of modern civilization cru-
cially depends on careful planning. Some activities should be carried
out during a certain period of the year. For example: When is the
right time of the year to sow, when is the right time to plow? It is
thus no surprise that calendars are found in literally every ancient
civilization.
The earth revolves around the sun in about 365.2422 days. An accu-
rate calendar can thus not provision the same number of days every
year if the calendar should be synchronous with the seasons. This
article is about the problem of approximating a given number by a ra-
tional number with small denominator, continued fractions and their
relationship to the Gregorian calendar with its leap-year rule that is
still in use today and keeps the calendar synchronized for a very long
time.
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The Julian calendar and Gregory’s reform

The number 365.2422 is close to 365 + 1/4. If this was precisely the duration
of one year in days, then the following rule would result in an exact calendar.

Each year that is divisible by 4 consists of 366 days and each other
year consists of 365 days.

The mean duration of a calendar year is thus 365 + 1/4. In other words, each
year that is divisible by 4 will be a leap year. This leap year rule was imposed
by Julius Cesar in 45 B.C. Already at this time, astronomers calculated the
duration of a year in days fairly accurately and it was clear that the calendar
would be behind by one day in roughly 130 years.
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In 1582, when the Julian calendar was evidently out of sync by a large extent,
pope Gregory the XIII imposed the following calendar reform. As before, every
year that is divisible by 4 is a leap-year, except for those divisible by 100 but
not by 400. The mean duration of a year of the Gregorian calendar is thus
365 + 97/400.

Best approximations

What is the mathematical challenge behind the design of an accurate leap-year
rule? The task is to approximate the number 0.2422 by a rational number p/q
with p, q ∈ N+ such that q as well as the error E = |.2422− p/q| is small. The
mean duration of a calendar year is then 365+ p/q if the calendar provisions p
leap years every q years. The smaller the q, the simpler should be the leap-year
rule. In the Julian calendar, p/q = 1/4. The rule “Each year divisible by four
is a leap year” is easy to remember. In 1/E years, the calendar will then be
ahead by one day or behind by one day depending on whether p/q is smaller
or larger than 0.2422.
Finding a convenient and sufficiently accurate leap-year rule is related to

approximating a real number α ∈ R≥0 by a rational number p/q in a good way.
In the following we always assume that p is a natural number or 0 and that q
is a positive natural number when we speak about the representation p/q of a
rational number. The rational number p/q is a best approximation of α if for
any other rational number p′/q′ 6= p/q one has

|α− p/q| < |α− p′/q′|

if q′ ≤ q. Going back to the calendar problem, this makes sense. If there exists
an approximation p′/q′ of 0.2422 with q′ ≤ q that results in a smaller error,
then we could hope that we can find a leap year rule that accommodates for p′

leap years in q′ years instead of the one that accommodates for p leap years in
q years that is just as easy to remember. Furthermore, the calendar would be
more accurate.

Continued fractions

Continued fractions have been used to approximate numbers for a very long
time and it seems impossible to attribute their first use to a particular re-
searcher or even to a particular ancient civilization. Keeping the best approxi-
mation problem in mind however, the application of continued fractions seems
natural.
Suppose our task is to approximate α ∈ R≥0 by a rational number with small

denominator. If α is not a natural number then we can re-write

α = ⌊α⌋+ (α− ⌊α⌋)

= ⌊α⌋+
1

1/(α− ⌊α⌋)
.
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The number β = 1/(α− ⌊α⌋) is larger than one. If β is not a natural number,
one continues to expand the number β and obtains

α = ⌊α⌋+
1

⌊β⌋+
1

1/(β − ⌊β⌋)

.

The continued fraction expansion of α is inductively defined as the sequence α if
α ∈ N and ⌊α⌋, a1, a2, . . . otherwise, where a1, a2, . . . is the continued fraction
expansion of 1/(α − ⌊α⌋). On the other hand, a finite sequence of integers
b0, . . . , bn, all positive, except perhaps b0 gives rise to the continued fraction

〈b0, . . . , bn〉 = b0 +
1

b1 +
1

. . . +
1

bn

.

If the sequence a0, a1, . . . is the continued fraction expansion of α ∈ R≥0 and
if its length is at least k + 1, then the k-th convergent of α is the continued
fraction

〈a0, . . . , ak〉 = a0 +
1

a1 +
1

. . . +
1

ak

Let us compute the first convergents of the number α = 365.2422. Clearly,
a0 is 365. To continue, it is convenient to represent α as a rational number
α = 1826211/5000. Clearly α−⌊α⌋ is the remainder of the division of 1826211
by 5000 divided by 5000. One has

1826211 = 5000 · 365 + 1211.

Thus we continue to expand 5000/1211 and obtain a1 = 4. The remainder of
the division of 5000 by 1211 is 156 which means that we next expand 1211/156
which results in a2 = 7. The remainder of this division is 119 and we next
expand 156/119 resulting in a3 = 1, then 119/37 yielding a4 = 3 and 37/8
yields a5 = 4.

At this point we can record an important observation. If α = p/q is a
rational number, then its continued fraction expansion is precisely the sequence
of quotients of the division-with-remainder steps that are carried out by the
Euclidean algorithm on input p and q. Also, for arbitrary real α ∈ R≥0, the
function fk(x) = 〈a0, . . . , ak−1, x〉 defined for x > 0 is strictly increasing in x
if k is even and decreasing if k is odd. Furthermore, if k is even, then ak is
the largest integer with 〈a0, . . . , ak〉 ≤ α and if k is odd then ak is the largest
integer such that 〈a0, . . . , ak〉 ≥ α.
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The quality of the Gregorian calendar

The third convergent of 365.2422 is

365 +
1

4 +
1

7 +
1

1

= 365 + 8/33.

According to Rickey [6], the Persian mathematician, philosopher and poet
Omar Khayyam (1048 - 1131) suggested a 33-year cycle where the years
4, 8, 12, 16, 20, 24, 28 and 33 should be leap years. Thus the mean-duration
of a year according to his suggestion would be exactly the value of the third
convergent. How does this compare to the mean duration of a year of the
Gregorian calendar. We calculate both error terms

E1 = |365.2422− 365 + 8/33| = 0.000224242424242432

E2 = |365.2422− 365 + 97/400| = 0.000299999999999995

and surprisingly, one finds that Omar Khayyam’s leap-year rule is more ac-
curate. Using the third convergent, his calendar will be imprecise by one day
in roughly 4459.45 years, whereas Gregory’s calendar will be off by one day
in “only” 3333.33 years. Still the leap-year rule of the Gregorian calendar is
convenient, as it relates nicely with our decimal number system and is simple
to remember. However, why is it a good idea to approximate a number by its
convergent? What is the relation of the convergents of a number with its best
approximations?

Best approximations and convergents

We now explain the relationship of convergents of α ∈ R≥0 and best approx-
imations. The subject is nicely treated in [2]. Let a0, a1, . . . be a sequence of
natural numbers where again all are positive except perhaps a0 and consider
the two sequences gk and hk that are inductively defined as

(

g−1 g−2

h−1 h−2

)

=

(

1 0
0 1

)

,

(

gk gk−1

hk hk−1

)

=

(

gk−1 gk−2

hk−1 hk−2

)(

ak 1
1 0

)

, k ≥ 0.

(1)
It follows from a simple inductive argument that, if βk is the number βk =
gk/hk, then one has 〈a0, . . . , ak〉 = βk for k ≥ 0.

Now the process of forming convergents admits a nice geometric interpreta-
tion. Notice that, since the ai are integers and since the determinant of

(

gk gk−1

hk hk−1

)

(2)
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Figure 1: An illustration of the geometric interpretation of convergents

is 1, such a matrix (2) is a basis of the standard lattice Z2. This means
that each vector in Z2 can be obtained by multiplying the matrix (2) with an
integral 2-dimensional vector and conversely, the result of such a multiplication
is always an integral 2-dimensional vector. If vk =

( gk
hk

)

then the line with slope
α through 0 is sandwiched between the vectors vk and vk−1 in the positive
orthant, see Figure 1. In Figure 1, the rational number gk−1/hk−1 is larger
than α. Since there is no integer point in the shaded region, any other rational
number p/q ≥ α with p/q−α ≤ gk−1/hk−1 −α must have a denominator that
is larger than hk−1. One says that gk−1/hk−1 is a best approximation from
above. Similarly, gk/hk is a best approximation from below. At this point it is
already clear that one of the convergents is a best approximation.

Next we show that the following best approximation problem can be solved
in polynomial time.

Given a rational number α ∈ Q>0 and a positive integer M , com-
pute the best approximation of α with denominator bounded by M ,
i.e., compute a rational number p/q with p ≤ M such that |α−p/q|
is minimum.

The algorithm is described in [2], see also [1], and is as follows. One computes
the convergents α as long as the denominator (h-component) of the latest
convergent is bounded by M . Since the denominators double every second
round, the number of steps is bounded by the encoding length of M . Suppose
that this is the k-th convergent and we denote the columns of the matrix (2)
again by vk and vk−1. In the next round, the new first column would be
vk−1 + ak+1 · vk but the h-component of this vector exceeds M . Instead, one
computes now the largest µ ∈ N0 such that the h-component of vk−1 + µ · vk
does not exceed M . If we denote the resulting vector by u then still u, vk is
a basis of Z2 but the second component of u + vk exceeds M . The situation
is depicted in Figure 2. Any rational number p/q that approximates α better
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Figure 2: An illustration of the algorithm solving the best approximation prob-
lem

than u and vk is in the cone C spanned by u and vk

C = {λ1u+ λ2vk : λ1, λ2 ≥ 0}.

But if this rational number is different from the one represented by u and v,
then λ1 and λ2 must be strictly positive. However, since u and vk form a
lattice-basis, λ1 and λ2 are positive integers and thus the h-component q of
the corresponding vector exceeds M . Thus u or vk is a solution to the best-
approximation problem.

Further historical remarks

Continued fractions are a true classic in mathematics and it is impossible to give
a thorough historical account. In this final section I content myself with a very
brief discussion of computational issues related to best approximations and con-
tinued fractions and some recent results. The simultaneous best approximation
problem is the high-dimensional counterpart to the best approximation problem
that we discussed. Here, one is given a rational vector and a denominator bound
and the task is to find another rational vector where each component has the
same denominator that is bounded by the prescribed denominator bound. The
objective is to minimize the error in the ℓ∞-norm. Lagarias [3] has shown that
this problem is NP-hard and applied the LLL-algorithm [4] to approximate this
optimization problem. Variants of this simultaneous best approximation prob-
lem are also shown to be hard to approximate [7]. Schönhage [8] showed how
to compute convergents in a quasilinear amount of bit-operations. Recently
Novocin, Stehlé and Villard [5] have shown that a variant of LLL-reduction
depends on the bit-size of the largest input coefficient in a similar way.
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