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1 Introduction

Convex nondifferentiable, also known as convex nonsmooth, optimization
(NDO) looks at problems where the functions involved are not continuously
differentiable. The gradient does not exist, implying that the function may
have kinks or corner points, and thus cannot be approximated locally by a
tangent hyperplane, or by a quadratic approximation. Directional derivatives
still exist because of the convexity property.
NDO problems are widespread, often resulting from reformulations of

smooth, or linear problems, that are formulated in a space with much smaller
number of variables than in the original problem. Examples of this are the
reformulation implicit in Dantzig-Wolfe decomposition or column generation
[4] and [5], which are equivalent by duality to Cheney’s cutting plane method
[20]. These methods do not work well if an aggregated formulation is used.
Shor’s subgradient method [35, 36] provided a superior alternative, leading to
a true Soviet revolution. His work was expanded both in theory and in prac-
tice by numerous authors. Held and Karp [17], unaware of the work of Shor,
developed a method for the traveling salesman problem that uses subgradient
optimization to compute a bound in a Lagrangean relaxation scheme. This
seminal contribution also led to a huge following; see for instance Fisher [11].

2 Basic definitions

The basic nondifferentiable optimization problem takes the form

[NDO] min
x∈Rn

f(x)
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where f is a real-valued, continuous, convex, and nondifferentiable function.
Sometimes there is a restriction that x ∈ X, a closed convex set, for which a
projection map is available:

x∗(x) = ΠX(x) =
{

x̄ : ‖x̄− x‖ ≤ ‖y − x‖, ∀y ∈ X
}

;

and the problem becomes:

[NDOc] min
x∈X

f(x).

The convexity of f implies that it has at least one supporting hyperplane at
every point of Rn. The subdifferential is the set of such slopes, i.e.,

∂f(x) =
{

ξ : f(x) + 〈ξ, (y − x)〉 ≤ f(y), ∀y ∈ Rn
}

.

At differentiable points there is a unique supporting hyperplane whose slope is
the gradient. At nondifferentiable points, there is an infinite set of subgradients
and, hence, an infinite set of supporting hyperplanes.
The derivative in the direction d is given by:

f ′(x; d) = sup
{

ξT d : ξ ∈ ∂f(x)
}

and the direction of steepest descent is given by d∗:

min
‖d‖=1

f ′(x; d) = f ′(x; d∗);

it can be shown that if 0 /∈ ∂f(x) and d̂ is the element of minimum norm in
the subdifferential ∂f(x), then

d∗ = − d̂

‖d̂‖
.

The use of the steepest descent method with exact line searches is not recom-
mended as:
1. The steepest descent method with exact line searches may converge to a

nonoptimum point, see Wolfe [43];
2. In the frequent case where f(x) = maxi∈I{〈ai, x〉 + bi}, and the set I is

computed by an oracle or subroutine, an LP or an IP, the cardinality of I
may be exponential, and the subdifferential is given by:

∂f(x) =
{

∑

i∈I(x)

αiai :

∑

i∈I(x)

αi = 1, αi ≥ 0
}

,

I(x) =
{

i : 〈ai, x〉+ bi = f(x)
}

;

so that it is unrealistic to expect that the full subdifferential will be available.
In NDO, one assumes that the function f is given by an oracle which for

every value of x returns the value of f , i.e., f(x), and one arbitrary subgradient
ξ(x) ∈ ∂f(x).
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3 Subgradient methods: The Soviet revolution

Subgradient methods were developed by Shor [35] and [36] in the 1960’s.
To quote from a paper by B.T. Polyak [33] delivered at the Task Force on

nondifferentiable optimization organized at IIASA by Lemaréchal and Mifflin,
(this paper also includes an excellent bibliography of work done in the USSR
before 1977):

The subgradient method was developed in 1962 by N.Z. Shor and
used by him for solving large-scale transportation problems of linear
programming [35]. Altough published in a low-circulation publica-
tion, this pioneering work became widely known to experts in the
optimization area in the USSR. Also of great importance for the
propagation of nondifferentiable concepts were the reports by the
same author presented in a number of conferences in 1962–1966.

Publication of papers by Ermoliev [9], Polyak [30] and Ermoliev
and Shor [10] giving a precise statement of the method and its
convergence theorems may be regarded as the culmination of the
first stage in developing subgradient techniques.

All of their massive contributions to the field are well reported in their two
books Shor[40] and Polyak[32], as well as in the second book by Shor[41]; see
also the book by Nesterov [27].
So subgradient optimization simply moves the current iterate in the direction

of a scaled subgradient by a stepsize that is decided a prori:

xk+1 = ΠX

(

xk − tk
ξk
‖ξk‖

)

,

where xk is the current point, ξk ∈ ∂f(xk) is an arbitrary subgradient of f at
xk, tk is a stepsize and ΠX is the projection map on the constraint set X. It is
assumed that the projection map is easily computed, such as if X is a sphere,
a box or a simplex. A subgradient is not a direction of descent for the function
f but it is one for the distance to the optimal set.
Shor [35] states that a constant stepsize tk = t does not converge, as the

example of f(x) = |x| clearly shows. He also shows that the iterates eventually
reach an O(t) neighborhood of the optimum.
This follows from an equivalent proof, extended to the case of a constraint

set:

Theorem 3.1 (Nesterov [27]). Let f be Lipschitz continuous on B2(x
∗, R) with

constant M and x0 ∈ B2(x
∗, R). Then

f∗
k − f∗ ≤ M

R2 +
∑k

i=0 h
2
i

2
∑k

i=0 hi

. (1)
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In this statement f∗
k = minki=0 f(xk) and f∗ = minx∈X f(x).

It follows that if the sequence tk is chosen as tk = Rǫ, ∀k = 1, . . . , N , and
N = ⌈ 1

ǫ2 ⌉ then: f∗
N − f∗ ≤ MRǫ; see also Shor [40] pp. 23–24.

This means that subgradient optimization is an optimal algorithm, uniformly
in the dimension of the problem, see Nemirovski and Yudin [25]. Almost quot-
ing from Polyak again [33]:

Reference [35] has described the following way of stepsize regulation
resting upon this result, although it is not entirely formalized. A
certain ǫ is chosen and the computation proceeds with tk = Rǫ until
the values of f(xk) start to oscillate about a certain limit. After
this ǫ is halved and the process is repeated.

This leads readily to the divergent series of stepsizes, suggested by Polyak [30]
and Ermoliev[9], and studied in Shor and Ermoliev [10]:

∞
∑

k=0

tk = ∞, tk → 0 tk > 0.

Theorem 3.2. Theorem 3.1 shows that f∗
k converges to f∗.

An often used stepsize is tk = R√
k+1

, which guarantees convergence in

O∗( 1√
k+1

) steps [27], where O∗ means the term of higher order, ignoring lower

order terms; the proof of this can be improved, see Nemirovski [26], who shows
that εN ≤ O(1)RM√

N
, where εN = f∗

N − f∗.

Unfortunately, the divergent stepsize rule can and is extremely slow. So the
question arose, as to whether geometric convergence can be obtained.

The answer is given in the following theorem, proved only in the uncon-
strained case:

Theorem 3.3 (Shor [40] pp. 30–31). Let f be a convex function defined on
Rn. Assume that for some ϕ satisfying 0 ≤ ϕ < π/2, and for all x ∈ Rn the
following inequality holds:

〈

ξ(x), x− x∗(x)
〉

≥ cosϕ‖ξ(x)‖ ‖x− x∗(x)‖, (2)

where ξ(x) ∈ ∂f(x), and x∗(x) is the point in the set of minima that is nearest
to x. If for a given x0 we choose a stepsize t1 satisfying:

t1 ≥
{

‖x∗(x0)− x0‖ cosϕ for π/4 ≤ ϕ < π/2
‖x∗(x0)− x0‖/(2 cosϕ) for 0 ≤ ϕ < π/4,

define {tk}∞k=1 by
tk+1 = tkr(ϕ), k + 1, . . . ,∞

where

r(ϕ) =

{

sinϕ for π/4 ≤ ϕ < π/2
1/(2 cosϕ) for 0 ≤ ϕ < π/4

}

,
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and generate {xk}∞k=0 according to the formula

xk+1 = xk − tk+1
ξ(xk)

‖ξ(xk)‖
.

Then either ξ(x∗
k) = 0 for some k∗, i.e., x∗

k is a minimum point, or for all
k = 1, . . . ,∞ the following inequality holds

‖xk − x∗(xk)‖
{

tk+1/ cosϕ for π/4 ≤ ϕ < π/2

2tk+1 cosϕ for 0 ≤ ϕ < π/4

This theorem was first proved in this form by Shor and Gamburd [38] and
by Shor [39]. An earlier version that used the asphericity σ of the level set of
f instead of cosϕ was proved by Shor [37]. This is a slightly weaker result as
cosϕ ≥ 1/σ.
In practice, a most widely used stepsize is tk = λ(f(xk)− f̄)/||ξk|| where λ ∈

(0, 2) and f̄ is expected to be a good estimate of the optimal value f(x∗). It can
be either the exact optimum f∗, an overestimate f̂ > f∗, or an underestimate
f̌ < f∗. This was suggested and studied by Polyak, see for instance [32].
The most general theorem is due to Nemirovski [26], under the assumption

that f̄ = f∗:
εN ≤ M‖x0 − x∗‖N−1/2.

Polyak [31], see also Shor [40] shows that if in addition to the Lipschitz condition
on f one has a lower bound on the variation of f such as

f(x) ≥ md(x,X∗)α

where d(x,X∗) is the distance to the optimal set X∗ and α = 1 or 2 then:

‖xk − x∗‖ ≤ qk‖x0 − x∗‖,

where q =
√

1− λ(2− λ)m2

M2 .

The more practical case of f̄ < f∗, as an underestimate of f∗, can be com-
puted by getting a feasible dual solution, was studied by Eremin [6, 7, 8] who
studied the Chebyshev solution to an infeasible system of linear inequalities:

P =
{

x : 〈ai, x〉+ bi ≤ 0, ∀i ∈ I
}

.

This is equivalent to minimizing the function f(x) = maxi∈I{< ai, x > +bi},
where f∗ > 0, and taking the stepsize tk = λkf(xk)/‖ξk‖. He shows conver-
gence of (xk)k=1,...,∞ to a point in X∗ if (λk) k=0,...,∞ > 0 is a divergent series
that converges to 0.
From a practical point of view subgradient optimization has solved quite suc-

cessfully a wide range of problems. This means that many problems are quite
surprisingly well conditioned. Subgradient optimization fails miserably on ill
conditioned problems such as highly nonlinear multicommodity flow problems.
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4 Sources of NDO problems

Nonsmooth problems are encountered in many disciplines. In some instances,
they occur naturally and in others they result from mathematical transforma-
tions.

The most complete reference on NDO problems is Chapter 5 of Shor’s book
[40]. In Shor original work [35], he mentions solving the transportation problem
using subgradient optimization.

A standard transportation problem is a special case of an NDO that occurs
when optimizing the Lagrangean dual of a constrained optimization problem:

min 〈c, y〉
s.t. Ay ≥ b

By ≥ d

Dualizing the first set of constraints, with dual variables x, one gets the partial
dual:

f(x) = max
x≥0

(〈b, x〉+min
y∈Y

〈c−ATx, y〉),

where Y = {y : By ≥ d} is a polyhedron, assumed to be compact, and with a
set of extreme points given by{yi : i ∈ I}.

One subgradient is thus any b−Ayi(x) where yi(x) is a minimizer of miny∈Y <
c−ATx, y >. The formulation with an objective variable:

min 〈b, x〉+ w
s.t. w ≤ 〈c−ATx, yi〉∀i ∈ I

is the dual of the extended form of the Dantzig-Wolfe decomposition reformu-
lation.

5 Other contributions

The seminal contribution by Held and Karp [17] on the traveling salesman
problem introduced Lagrangean relaxation and the solution of the partial La-
grangean dual by subgradient optimization. They were not aware at that time
of the Soviet revolution in this field, so they developed subgradient optimiza-
tion from scratch. The symmetric traveling-salesman problem seeks to find a
minimum cost tour in a complete undirected graph. A minimum tour k∗ can
be shown to be a 1-tour k with the added constraint that every node has degree
2. A 1-tree consists of a tree on the vertex set {2, 3, . . . , n}, together with two
distinct edges at vertex 1. Therefore a formulation of the TSP is:

mink ck
s.t. : di,k = 2
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and di,k is the degree of vertex i in the kth 1-tree, and ck is the cost of the
1-tree. Dualizing the degree constraints with multipliers πk leads to:

f(π) = min
k

{

ck +

n
∑

i=1

(di,k − 2)πi

}

The cost of a minimum cost tour C∗ is greater than or equal to maxπ f(π),
which provides a lower bound on C∗. The computation of f(π) and a subgra-
dient ξ involves the computation of a minimum cost 1-tree which can be done
in O(n) steps. This formulation can be solved by the dual of Dantzig-Wolfe
decomposition; this method shows the long tail typical of DW when no disag-
gregation is available, as seems the case here. Held and Karp [17] suggested
the use of subgradient optimization, i.e.,

πm+1 = πm + tmξm,

and proved a result analogous to Shor’s [35], with a constant tm = t̄ and
convergence to within O(t̄) of the optimum is achieved. The solution of the
TSP by branch and bound, using the bound computed here, was extremely
successful, and led the authors to claim that:

In fact, this experience with the traveling-salesman problem indi-
cates that some form of the relaxation method may be superior
to the simplex method for linear programs including a very large
number of inequalities.

The authors sought the wisdom of Alan Hoffman, who advised them that the
method they just developed was closely related to the relaxation method for
linear inequalities due to Agmon [1], and Motzkin and Schoengerg [23]. The
relaxation method attempts to solve a system of linear inequalities {x : 〈ai, x〉+
bi ≤ 0 : i ∈ I} by projecting, in the case of Agmon, or reflecting in the case
of Motzkin and Schoenberg on the most distant inequality. This amounts to
minimizing the convex function

f(x) = max

{

0,max
i∈I

{

< ai, x > +bi
‖ai‖

}}

,

by using what became known as subgradient optimization with a stepsize that
uses the information that f∗ = 0. The algorithm is thus xk+1 = xk + λkξk,
where

ξk =
aī
‖aī‖

,

with ī one of the indices that satisfies 〈ai,x〉+bi
‖ai‖ = f(x).

Agmon [1] showed that for λ = 1 the convergence to a feasible point x∗ ∈
P = {x : f(x) = 0} is geometric at a rate

√

1− µ∗2, unless finite convergence
occurs. Motzkin and Schoenberg [23] showed that if P is full-dimensional, finite
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convergence occurs if λ = 2. It was shown by the author [14] that Agmon’s
definition of µ∗ can be written as µ∗ = infx 6∈P f(x)/d(x, P ), where d(x, P ) is
the distance from x to P . It can also be shown [14] that µ∗ = cosϕ as defined
by Shor and Gamburd in Theorem 3.3.
The works by Agmon and Motzkin and Schoenberg may be viewed as a

precursors to the Soviet revolution.
The successful solution of the traveling-salesman problem by computing

bounds using subgradient optimization led to a true explosion of works in
Lagrangean relaxation in the West; for example Fisher [11] and the many ref-
erences therein.
Karp, who was my thesis adviser, asked me to read the Held and Karp [17]

paper as well as the ones by Agmon [1] and Motzkin and Schoenberg [23],
and apply subgradient optimization to the transportation problem, and see if
something could be done to explain the success of subgradient optimization.
He also mentioned that the simplex method when applied to a “normallly”
formulated system of equalities converges in a number of iterations which is
a small multiple of the number of constraints, but that in the case where the
number of variables is exponential, as in Dantzig-Wolfe decomposition, this
estimate does not hold, thus requiring another solution technique. I engaged
in a thorough review of the Soviet literature, and found the works of Eremin
and Polyak, but missed the huge contributions by Shor.
My 1971 thesis, published later as Goffin [12], has the following result, ex-

tending Motzkin and Schoenberg: the relaxation method converges finitely to
a point x∗ ∈ P , where P is assumed to be full dimensional, if

λ ∈ [1, 2] if P is obtuse

λ ∈
[ 2

1 + 2ν(P )
√

1− ν2(P )
, 2
]

, if ν(P ) <
√
2/2,

where the condition number ν(P ) equals the minimum over all tangent cones
to P of the sine of the half aperture of the largest spherical cone included in
a tangent cone. It is easy to show that µ∗ ≥ ν(P ), and that if the constraints
defining every tangent cone are linearly independent then µ∗ = ν(P ).

Unfortunately, both ν(P ) and µ∗ are not polynomial, showing that the re-
laxation method is not a polynomial algorithm; see, for instance, Todd [42].
An unpublished result by the author shows that if {ai : i ∈ I} forms a totally
unimodular matrix, then ν(P ) ≥ 1/n.
The author then extended this convergence theory to subgradient optimiza-

tion [13], and at the IIASA meeting in 1977, B.T. Polyak mentioned the work
by Shor and Gamburd [38], and helped translate it, showing that this author’s
results were essentially identical to that work. A very nice extension of the
geometric convergence to the case of functional constraints has been published
by Rosenberg [34], extending also results by Polyak [30].
A thorough study of subgradient optimization and its applications was per-

formed by Held, Wolfe and Crowder [18]. They cite Polyak [30, 31] and
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Shor [36]. As stepsize they use an underestimate f̄ of the function minimum
f∗ = minx∈X f(x) and use the Agmon relaxation step for an infeasible system:

xk+1 = ΠX

(

xk − λk
f(xk)− f̄

‖ξk‖2
ξk

)

(3)

where ξk ∈ ∂f(xk). Paraphrasing from the Held et al. [18] paper on the “Val-
idation of Subgradient Optimization”: We observed that the results did not
seem to depend critically on the exact value of f̄ . Of course it is necessary that
the stepsize converges to 0, which we will not accomplish, with an underesti-
mate f̄ , unless we choose a sequence λk which tends to zero. Generally (but
not always) a good rule is to set λ = 2 for 2n iterations (where n is a measure
of the problem size), and then successively halve both the value of λ and the
number of iterations until the number of iterations reaches some threshold z.
λ is then halved every z iterations until the resulting λk is sufficiently small.
It is thus possible to converge to a point not in the optimal set, altough in our
work that almost never happened. We would particularly point out choice of
stepsize as an area which is imperfectly understood.
The answers provided to that question did not appear in the works of Shor

[40] or Polyak [31], who prove rather weak results. The following result which
extends [12] for Part 1 and Eremin [6, 7] for Part 2 appears in Allen et al. [2]:

Theorem 5.1. In algorithm (3),
1. given δ > 0 and 0 < λk = λ < 2, there is some K such that

f(xK) ≤ f∗ +
(

λ/(2− λ)
)

(f∗ − f̄) + δ;

2. if
∞
∑

k=1

λk = ∞, and λk → 0, then f∗
K =

K
min
k=1

f(xk) converges to f∗.

This shows that the strategy of using λk → 0 is the correct one. The stepsize
chosen by Held et al. [18] was, towards the end of the sequence, a halving
of λ at each five iterations. This is equivalent to r(ϕ) = ( 12 )

1/5 ∼= .85, where
r(ϕ) is defined in Shor’s theorem (3.3), assuming that Shor’s result of (3.3)
applies in this case, which nobody has proven, but which seems quite likely to
be provable.
Held et al. [18] experimented with great success on a variety of problems,

including the assignment problem, the multicommodity flow problems and the
TSP, concluding:

Briefly, we think that subgradient optimization holds promise for
alleviating some of the computational difficulties of large-scale opti-
mization. It is no panacea, though, and needs careful work to make
it effective, but its basic simplicity and its wide range of applicabil-
ity indicate that it deserves to be more widely studied.

Further developments include:
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1. An updating procedure for the target f̄ which can be either an overestimate
f̄ > f∗ or an underestimate f̄ < f∗, which now becomes a variable f̄k
to be adjusted depending on the behaviour of the sequence f(xk). Both
Ahn et al. [21] and [15] show an updating rule for f̄k that guarantees that
f∞ = infk f(xk) = f∗.

2. The computation of the primal variables y in section 4 can be done in the
limit. This was shown by Shor [40] pp. 117–118 and improved by Anstreicher
and Wolsey [3] and Nesterov [28]. Define the subgradient optimization by
the recursive relation:

xk+1 = ΠX(xk − tkξk),

and the convex combination

t̄ki =
ti

∑k
j=1 tj

.

Then the sequence defined by

ȳk =

k
∑

i=1

t̄ki y
i

has the following properties
Theorem 5.2. Let the sequence xk in the problem of section 4 be generated
according to the formulae above, and

ti → 0,
∞
∑

i=1

ti = ∞, and
∞
∑

i=1

t2i < ∞.

Then xk → x∗ ∈ X∗, and any accumulation point of ȳk is in the optimal set
Y ∗.

3. Nedic and Berstsekas [24] showed how to use the disaggregation structure,
often available in problems obtained from Dantzig-Wolfe decomposition, by
introducing an incremental subgradient method that cycles between the sub-
gradients of the individual functions.

4. A recent paper by Nesterov [29] shows how to use subgradient optimization
successfully on huge-scale problems, by using sparse updates of the subgra-
dient, leading to excellent computational results.

6 Conclusions

From my doctoral thesis:

“To simplex, to relax: This thesis’ question
Whether ’tis faster on P to iterate
On the narrowing edge slung between vertices
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Or to take the normal against a sea of planes
And by opposing it, to leap to end today.”1

Silly and somewhat arrogantly optimistic. But as we have seen in this journey,
subgradient optimization outperforms the simplex method in many instances.
When it is good it’s very good, but when it is bad it is very bad, as is the case of
ill-conditioned problems, or in the terminolgy of Shor, gully shaped functions.
This has given rise to a set of more complex methods that deal well with ill
conditioned problems. Among them are:
1. The r-algorithm due to Shor [40], which introduces a variable metric on top

of the subgradient; it worked quite well with a heuristic choice of pararme-
ters, until a theoretically selected choice of the parameters by Yudin and
Nemirovksi [25] led to the ellipsoid method and its deep theoretical signifi-
cance

2. The mirror descent method of Yudin and Nemirovski [25]
3. The bundle method developed by Lemaréchal and Kiwiel and many others,

about which a chapter appears in this book by Mifflin and Sagastizabal [22]
4. The analytic center cutting plane method by Goffin and Vial [16]
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