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Abstract. We apply an equivariant version of the p-adic Weierstrass
Preparation Theorem in the context of possible non-commutative gen-
eralizations of the power series of Deligne and Ribet. We then con-
sider CM abelian extensions of totally real fields and by combining
our earlier considerations with the known validity of the Main Con-
jecture of Iwasawa theory we prove, modulo the conjectural vanishing
of certain µ-invariants, a (corrected version of a) conjecture of Snaith
and the ‘rank zero component’ of Kato’s Generalized Iwasawa Main
Conjecture for Tate motives of strictly positive weight. We next use
the validity of this case of Kato’s conjecture to prove a conjecture
of Chinburg, Kolster, Pappas and Snaith and also to compute ex-
plicitly the Fitting ideals of certain natural étale cohomology groups
in terms of the values of Dirichlet L-functions at negative integers.
This computation improves upon results of Cornacchia and Østvær,
of Kurihara and of Snaith, and, modulo the validity of a certain aspect
of the Quillen-Lichtenbaum Conjecture, also verifies a finer and more
general version of a well known conjecture of Coates and Sinnott.
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1. Introduction

In a beautiful series of papers in 1993 Kato formulated and studied a ‘Gener-
alized Iwasawa Main Conjecture’ for motives over number fields with respect
to certain commutative coefficient rings [24, 25, 26]. This conjecture refined
the ‘Tamagawa number conjectures’ previously formulated by Bloch and Kato
in [3] and by Fontaine and Perrin-Riou in [20], and led naturally to the subse-
quent formulation by Flach and the first named author in [9] of a Tamagawa
number conjecture for motives over number fields with respect to more general
coefficient rings which, in particular, need not be commutative.
The above approach has already led to some remarkable new insights and re-
sults in a number of rather different contexts. We recall, for example, that
it has led to a universal approach to and refinement of the ‘refined Birch and
Swinnerton-Dyer Conjectures’ for abelian varieties with complex multiplication
which were formulated by Gross (cf. [9, Rem. 10 and §3.3, Examples c), d) e)])
and of all of the ‘refined abelian Stark conjectures’ which were formulated by
Gross, by Tate, by Rubin and by Darmon (cf. [6, 7]). At the same time, the ap-
proach has led to a natural re-interpretation and refinement of all of the central
conjectures of classical Galois module theory (cf. [8, 5, 2]) and has also more
recently become the focus of attempts to formulate a natural ‘Main Conjecture
of non-abelian Iwasawa theory’ (see, for example, the forthcoming articles of
Huber and Kings and of Weiss and the first named author in this regard). It is
certainly a great pleasure, on the occasion of Kato’s fiftieth birthday, to offer
in this manuscript some additional explicit evidence in support of his General-
ized Iwasawa Main Conjecture and, more generally, to demonstrate yet further
the enormous depth and significance of the approach that he introduced in
[24, 25, 26].
To describe the main results of the present manuscript in some detail we now
fix a totally real number field k and a finite Galois extension K of k which
is either totally real or a CM field, and we set G := Gal(K/k). We also fix
a rational prime number p and an algebraic closure Qc

p of the field of p-adic
rationals Qp.
We recall that if G is abelian, then a key ingredient of Wiles’ proof [39] of the
Main Conjecture of Iwasawa theory is the construction by Deligne and Ribet of
an element of the power series ring Zp[G][[T ]] which is uniquely characterized
by its relation to the p-adic L-series associated to the extension K/k.
In this manuscript we first relax the restriction that G is abelian and discuss
the possible existence of elements of the (non-commutative) power series ring
Zp[G][[T ]] which are related in a precise manner to the p-adic Artin L-functions
associated to irreducible Qc

p-valued characters of G. In particular, under a
certain natural hypothesis on G (which does not require G to be abelian),
and assuming the vanishing of certain µ-invariants, we apply an appropriate
version of the Weierstrass Preparation Theorem for the ring Zp[G][[T ]] to derive
relations between two hypothetical generalizations of the power series of Deligne
and Ribet.
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In the remainder of the manuscript our main aim is to show that, if G is
abelian, then the above considerations can be combined with the constructions
of Deligne and Ribet and the theorem of Wiles to shed light on a number of
interesting questions. To describe these applications we assume for the rest of
this introduction that G is abelian.
Our first application is to the ‘Wiles Unit Conjecture’ which is formulated by
Snaith in [34, Conj. 6.3.4]. Indeed, by using the above approach we are able
to show that the validity of a slightly amended version of Snaith’s conjecture
follows directly from the (in general conjectural) vanishing of certain natural
µ-invariants, and also to show that the original version of Snaith’s conjecture
does not hold in general (cf. Remark 5).
To describe the next application we fix an integer r with r > 1. Un-
der the aforementioned hypothesis concerning µ-invariants we shall prove
the Generalized Iwasawa Main Conjecture of [25, Conj. 3.2.2] for the pair
(h0(Spec (K))(1 − r),Ar), where Ar is a natural ring which annihilates the
space Q ⊗Z K2r−1(K). If k = Q, then (by a result of Ferrero and Washington
in [18]) the appropriate µ-invariants are known to vanish and hence we obtain
in this way a much more direct proof of the relevant parts of the main result
(Cor. 8.1) of our earlier paper [11]. We remark however that the proofs of
all of our results in this area involve a systematic use of the equivariant Iwa-
sawa theory of complexes which was initiated by Kato in [25] and subsequently
extended by Nekovář in [30].
As a further application, we combine our result on the Generalized Iwasawa
Main Conjecture with certain explicit cohomological computations of Flach and
the first named author in [8] to prove (modulo the aforementioned hypothesis
on µ-invariants) that the element Ωr−1(K/k) of Pic(Z[G]) which is defined
by Chinburg, Kolster, Pappas and Snaith in [13] belongs to the kernel of the
natural scalar extension morphism Pic(Z[G]) → Pic(Ar).
As a final application we then combine our approach with a development of
a purely algebraic observation of Cornacchia and the second named author
in [15] to compute explicitly certain Fitting ideals which are of arithmetical
interest. To be more precise in this regard we assume that p is odd, we fix a
finite set of places S of K which contains all archimedean places and all places
which either ramify in K/k or are of residue characteristic p and we write OK,S

for the ring of S-integers of K. Writing τ for the complex conjugation in G
we let er denote the idempotent 1

2 (1 + (−1)rτ) of Zp[G]. Then, under the
aforementioned hypothesis on µ-invariants, we prove that the Fitting ideal of
the étale cohomology module er ·H2(Spec(OK,S)ét, Zp(r)) over the ring Zp[G]er

can be completely described in terms of the values at 1− r of the S-truncated
Dirichlet L-functions which are associated to K/k. This result improves upon
previous results of Cornacchia and Østvær [16, Thm. 1.2], of Kurihara [28,
Cor. 12.5] and of Snaith [34, Thm. 1.6, Thm. 2.4, Thm. 5.2] and also implies
a natural analogue of the main result of Solomon in [36] concerning relations
between Bernoulli numbers and the structure of certain ideal class groups (cf.
Remark 8). We finally remark that, under the assumed validity of a particular
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case of the Quillen-Lichtenbaum Conjecture, our result verifies a finer and more
general version of the well known conjecture formulated by Coates and Sinnott
in [14, Conj. 1].
Acknowledgements. The authors are very grateful to Masato Kurihara
and Otmar Venjakob for illuminating discussions relating to the results of this
manuscript. In addition, they are grateful to the referee for several very helpful
remarks.

2. Equivariant Weierstrass Preparation

In this section we discuss a natural generalization of the classical p-adic Weier-
strass Preparation Theorem.
We let A be a ring, write rad(A) for its Jacobson radical and set A := A/ rad(A).
In the sequel we shall say that A is strictly admissible if it is both separated
and complete in the rad(A)-adic topology and is also such that A is a skew
field. More generally, we shall say that A is admissible if it is a finite product
of strictly admissible rings.

Remark 1. Let G be a finite group and p any prime number. It can be shown
that the group ring A = Zp[G] is admissible if G is the direct product of a p-
group and an abelian group (and, in particular therefore, if G is itself abelian).
Note also that in any such case the ring A is a product of finite skew fields and
is therefore commutative.

In this manuscript we define the power series ring A[[T ]] over A just as for
commutative base rings; in particular, we require that the variable T commutes
with all elements of the coefficient ring A. We observe that, with this definition,
an element f of A[[T ]] is invertible if and only if its constant term f(0) is
invertible in A.
If f is any element of A[[T ]], then we write f for its image under the obvious
reduction map A[[T ]] → A[[T ]]. Assume for the moment that A is admissi-
ble, with a decomposition A =

∏

i∈I Ai for strictly admissible rings Ai. If
f = (fi)i∈I is any element of A[[T ]], then we define the degree deg(f), respec-
tively reduced degree rdeg(f), of f to be the vector (deg(fi))i∈I , respectively
(deg(f))i∈I , where by convention we regard the zero element of each ring Ai[[T ]]
and Ai[[T ]] to be of degree +∞. We observe that if A = Zp, then rdeg(f) is
finite if and only if the µ-invariant of the Zp[[T ]]-module Zp[[T ]]/(f) is zero. By
analogy, if A is any admissible ring, then we shall write ‘µA(f) = 0’ to express
the fact that (each component of) rdeg(f) is finite.
If A is strictly admissible, respectively admissible, then we shall say that an
element of A[[T ]] is a distinguished polynomial if it is a monic polynomial all of
whose non-leading coefficients are in rad(A), respectively if all of its components
are distinguished polynomials (of possibly varying degrees).

Proposition 2.1. (‘Equivariant Weierstrass Preparation’) Let A be an admis-
sible ring. If f is any element of A[[T ]] for which µA(f) = 0, then there exists
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a unique distinguished polynomial f∗ and a unique unit element uf of A[[T ]]
such that f = f∗ · uf .

Proof. By direct verification one finds that the argument of [4, Chap.VII, §3,
no. 8] extends to the present (non-commutative) context to prove the following
‘Generalized Division Lemma’: if f is any element of A[[T ]] for which µA(f) =
0, then each element g of A[[T ]] can be written uniquely in the form g = fq + r
where q and r are elements of A[[T ]] and each component of deg(r) is strictly
less than the corresponding component of rdeg(f) .
The deduction of the claimed result from this Generalized Division Lemma now
proceeds exactly as in [31, V.5.3.3-V.5.3.4]. ¤

Remark 2. i) If A is a discrete valuation ring, then it is (strictly) admissible and
Proposition 2.1 is equivalent to the classical Weierstrass Preparation Theorem
(cf. [38, Thm. 7.1]).
ii) Shortly after the first version of this manuscript was circulated (in December
2001) we learnt of a recent preprint [37] of Venjakob in which a Weierstrass
Preparation Theorem is proved under conditions which are considerably more
general than those of Proposition 2.1. We remark that if A is strictly admissible,
then it can be shown that the result of Proposition 2.1 is indeed equivalent to
a special case of the main result of loc. cit.
iii) For any prime p, any Zp-order A which is not admissible and any element
f of A[[T ]] a natural interpretation of the equality ‘µA(f) = 0’ would be that,
for each primitive central idempotent ε of A, the element ε · f is not divisible
by p (indeed, this interpretation recovers that given above in the case that A

is admissible). However, under this interpretation the product decomposition
of Proposition 2.1 is not always possible. For example, if A = M2(Zp), then

the constant series f :=

(

1 0
0 p

)

satisfies µA(f) = 0 (in the above sense) and

yet cannot be written in the stated form f∗ · uf . Indeed, if it did admit such a
decomposition, then the Zp-module A[[T ]]/f ·A[[T ]] would be finitely generated
and this is not true since f ·A[[T ]] is equal to the subset of M2(Zp[[T ]]) consisting
of those matrices which have both second row entries divisible by p.
iv) In just the same way as Proposition 2.1, one can prove that if A is admissible,
then every element f of A[[T ]] for which µA(f) = 0 can be written uniquely
in the form uf · f∗ with f∗ a distinguished polynomial and uf a unit of A[[T ]].
However, as the following example shows, the relation between the elements f∗

and f∗ (and uf and uf ) is in general far from clear.

Example 1. Let a and b be elements of rad(A), and set f := (T − a)(1 + bT ).
Then it is clear that µA(f) = 0, f∗ = T − a and uf = 1 + bT . On the other
hand it may be shown that f∗ = T −c where c is the unique element of A which
satisfies T − c ∈ A · f , and that uf = (1− ab + bc) + bT . Upon calculating c as
a power series in the noncommuting variables a and b, one finds that

c = a − baa + aba + bbaaa − baaba − abbaa + ababa + . . . .
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However, describing c completely is tricky. For example, a convenient option
is to use the context-free formal language with four productions S → Ta, S →
TbSS, T → ε, T → Tab. Indeed, it may be shown that the degree n part of the
series c is equal to the weighted sum of all words w of length n in this language,
counted with weight (−1)e(w) where e(w) denotes the number of times that b
occurs in w not immediately preceded by a. For background and a similar
example, we refer the reader to [32], in particular Chapter VI.

3. p-adic L-functions

In this section we apply Proposition 2.1 in the context of Iwasawa theory. The
main result of this section (Theorem 3.1) was first motivated by the observation
that the constructions of Deligne and Ribet which are used by Wiles in [39,
p. 501f] can be combined with Proposition 2.1 to shed light upon the ‘Wiles
Unit Conjecture’ formulated by Snaith in [34, Conj. 6.3.4]. In particular, by
these means we shall prove that the validity in the relative abelian case of
a corrected version of Snaith’s conjecture is a direct consequence of the (in
general conjectural) vanishing of certain natural µ-invariants.
We first introduce some necessary notation. Throughout this section we fix an
odd prime p and a finite group G. We recall that Qc

p is a fixed algebraic closure
of Qp, and we write Irrp(G) for the set of irreducible Qc

p-characters of G. For
each ρ ∈ Irrp(G) we write Zp(ρ) for the extension of Zp which is generated by
the values of ρ.
Following Fröhlich [21, Chap. II], we now define for each element f of Zp[G][[T ]]
a canonical element Det(f) of Map(Irrp(G), Qc

p[[T ]]). To do this we fix a subfield
N of Qc

p which is of finite degree over Qp and over which all elements of Irrp(G)
can be realized, and we write ON for the valuation ring of N . For each character
ρ ∈ Irrp(G) we choose a finitely generated ON [G]-module Lρ which is free over
ON (of rank n say) and is such that the space Lρ ⊗ON

N has character ρ,
and we write rρ : G → GLn(ON ) for the associated homomorphism. If now
f =

∑

i≥0 ciT
i, then rρ(f) :=

∑

i≥0 rρ(ci)T
i belongs to Mn(ON [[T ]]) and we

define Det(f)(ρ) := det(rρ(f)) ∈ ON [[T ]] (which is indeed independent of the
choices of field N and lattice Lρ). We observe in particular that if ρ is any
element of Irrp(G) which is of dimension 1, then one has Det(f)(ρ) = ρ(f).
In the remainder of this manuscript we assume given a finite Galois extension
of number fields K/k for which Gal(K/k) = G. We write k∞ (or kp

∞ if we need
to be more precise) for the cyclotomic Zp-extension of k, and K∞ (or Kp

∞) for
the compositum of K and k∞.
In the rest of this section we assume that k is totally real and that K is either
totally real or a CM field. We also fix a finite set S of non-archimedean places
of k which contains all non-archimedean places which ramify in K/k. We write
Irr+p (G) for the subset of Irrp(G) consisting of those characters which are even
(that is, factor through characters of the Galois group of the maximal totally
real extension K+ of k in K). We fix a topological generator γ of Gal(k∞/k)
and, with χcyclo denoting the cyclotomic character, we set u := χcyclo(γ) ∈ Z×

p .
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We recall that for each ρ ∈ Irr+p (G) there exists a p-adic L-function Lp,S(−, ρ)
and an associated element fS,ρ of the quotient field of Zp(ρ)[[T ]] such that

(1) Lp,S(1 − s, ρ) = fS,ρ(u
s − 1)

for almost all s ∈ Zp. To be more precise about the denominator of fS,ρ we set
Hρ := 1 unless ρ is induced by a multiplicative character of Gal(k∞/k) (that
is, ρ is a character of ‘type W’ in the terminology of Wiles [39]) in which case
we set Hρ := ρ(γ)(1 + T ) − 1 ∈ Zp(ρ)[[T ]]. Then there exists an element GS,ρ

of Zp(ρ)[[T ]][ 1p ] such that fS,ρ = GS,ρ · H−1
ρ (cf. [39, Thm. 1.1]). We hope

that the reader will not in the sequel be confused by our notation: whenever G
occurs without a subscript it denotes a Galois group; whenever G is adorned
with a subscript it denotes a power series.

By the classical Weierstrass Preparation Theorem, each series GS,ρ can be
decomposed as a product

(2) GS,ρ = π(ρ)µ(S,ρ) · G∗
S,ρ · US,ρ

where π(ρ) is a uniformising parameter of Zp(ρ), µ(S, ρ) is an integer, G∗
S,ρ is

a distinguished polynomial and US,ρ is a unit of Zp(ρ)[[T ]].
We now proceed to describe four natural hypotheses relating to the Weierstrass
decompositions (2). The main result of this section will then describe certain
relations that exist between these hypotheses.

Hypothesis (µp): For each ρ ∈ Irr+p (G) one has µ(S, ρ) = 0.

Remark 3. i) It is a standard conjecture that Hypothesis (µp) is always valid
(the first statement of this was due to Iwasawa [23]). However, at present the
only general result one has in this direction is that Hypothesis (µp) is valid
for K/k when k = Q and G is abelian. Indeed, this is proved by Ferrero and
Washington in [18].
ii) In this remark we describe a natural Iwasawa-theoretical reinterpretation
of Hypothesis (µp) in the case that K is totally real. To do this we write Sp

for the union of S and the set of places of k which lie above p, and we let
Y (Sp) denote the Galois group of the maximal abelian pro-p-extension of K∞

which is unramified outside the set of places which lie above any element of
Sp. (We note that, since p is odd, any pro-p-extension of K∞ is automatically
unramified at all archimedean places.)

Lemma 1. If K is totally real, then Hypothesis (µp) is valid for K/k if and
only if the µ-invariant of the Zp[Gal(K∞/K)]-module Y (Sp) is 0.

Proof. We set L := K(ζp) and ∆ := Gal(L/K) and let ω : ∆ → Z×
p denote the

Teichmüller character. For each Zp[∆]-module M and integer i we write M (i)

for the submodule consisting of those elements m which satisfy δ(m) = ωi(δ)·m
for all δ ∈ ∆. (Since p - |∆|, each such functor M 7→ M (i) is exact.)
We write Y , respectively YL, for the Galois group of the maximal abelian pro-
p-extension of K∞, respectively of L∞, which is unramified outside all places
above p. For each ρ ∈ Irrp(Gal(K/k)) we also write Gρ for the element of
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Zp(ρ)[[T ]][ 1p ] which is defined just as GS,ρ but with S taken to be the empty
set.
We first observe that µ(Y (Sp)) = 0 if and only if µ(Y ) = 0 and that for each
ρ ∈ Irrp(Gal(K/k)) one has µ(S, ρ) = 0 if and only if µ(Gρ) = 0.

We also note that µ(Y ) = 0 if and only if µ(X
(1)
L ) = 0, where XL de-

notes the Galois group of the maximal unramified abelian pro-p-extension
of L∞. For the reader’s convenience, we briefly sketch the argument.

By Kummer duality, for each even integer i the module Y
(i)
L is isomor-

phic to Hom(Cl(L∞)(1−i), Qp/Zp)(1) and hence in turn pseudo-isomorphic

to X
(1−i),#
L (1) where # indicates contragredient action of Gal(L∞/k) [31,

(11.1.8), (11.4.3)]. This implies, in particular, that Y = Y
(0)
L is pseudo-

isomorphic to X
(1),#
L (1), and this in turn implies the claimed result.

We next recall that, as a consequence of [39, Thm. 1.4], one has µ(X
(1)
L ) = 0 if

and only if µ(Gη0
) = 0, where η0 denote the trivial character of ∆.

To finish the proof of the lemma, we now need only invoke the inductive prop-
erty of L-functions and Iwasawa series. Indeed, one has Gη0

= Gχreg
, where

χreg is the character of the regular representation of Gal(K/k) (note that this
is equal to the induction of η0 from K to k), and by its very definition, one

has Gχreg
=

∏

ρ G
deg(ρ)
ρ , where ρ runs over all elements of Irrp(Gal(K/k)). It

is therefore clear that µ(Gη0
) = 0 if and only if for all ρ ∈ Irrp(Gal(K/k)) one

has µ(Gρ) = 0 (or equivalently µ(S, ρ) = 0), as required. ¤

We continue to introduce further natural hypotheses relating to the decompo-
sitions (2).
If f and f ′ are elements of Zp[G][[T ]], then we say that f is right associated,
respectively left associated, to f ′ if there exists a unit element u of Zp[G][[T ]]
such that f = f ′ · u, respectively f = u · f ′.

Hypothesis (EPS) (‘Equivariant Power Series’) Assume that Hypothesis (µp)
is valid for K/k. Then there exist elements GS = GS(T ) and H = H(T ) of
Zp[G][[T ]] which are each right associated to distinguished polynomials and are

such that for all ρ ∈ Irr+p (G) the quotient Det(GS)(ρ)/Det(H)(ρ) is defined
and equal to GS,ρ/Hρ = fS,ρ.

Remark 4. i) If Zp[G] is admissible, then Proposition 2.1 (and Remark 2iv))
implies that an element f of Zp[G][[T ]] is right associated to a distinguished
polynomial if and only if it is left associated to a distinguished polynomial and
that these conditions are in turn equivalent to an equality µZp[G](f) = 0.
ii) The completed group ring Zp[[Gal(K∞/k)]] is naturally isomorphic to the
power series ring Zp[Gal(K∞/k∞)][[T ]]. If K ∩ k∞ = k, then this ring can be
identified with Zp[G][[T ]] but in general no such identification is possible.

We write cρ for the leading coefficient of Hρ (so, explicitly, one has cρ = 1
unless ρ is a non-trivial character of ‘type W’ in which case cρ = ρ(γ)). We
observe that the polynomial H∗

ρ := c−1
ρ · Hρ is distinguished.
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The following hypothesis is directly motivated by the ‘Wiles Unit Conjecture’
which is formulated by Snaith in [34, Conj. 6.3.4]. (We shall explain the precise
connection at the end of this section.)

Hypothesis (EUS) (‘Equivariant Unit Series’) There exists a unit element US of
Zp[G][[T ]] which is such that for all ρ ∈ Irr+p (G) one has Det(US)(ρ) = c−1

ρ US,ρ.

For each character ρ ∈ Irr+p (G) we next consider the vector space over N which

is given by H0(Gal(K∞/k∞),HomN (Lρ ⊗ON
N,Y (Sp)⊗Zp

N)). This space is
finite-dimensional (over N) and also equipped with a canonical action of the
quotient group Gal(K∞/k)/Gal(K∞/k∞) ∼= Gal(k∞/k) and hence, in particu-
lar, of the automorphism γ. We write hS,ρ for the characteristic polynomial of
the endomorphism of the above space which is induced by the action of γ − 1.

Hypothesis (ECP) (‘Equivariant Characteristic Polynomials’) Assume that Hy-
pothesis (µp) is valid for K/k. Then there exist distinguished polynomials
G∗

S = G∗
S(T ) and H∗ = H∗(T ) in Zp[G][T ] which are such that for all

ρ ∈ Irr+p (G) the quotient Det(G∗
S)(ρ)/Det(H∗)(ρ) is defined and equal to

hS,ρ/H∗
ρ .

We can now state the main result of this section.

Theorem 3.1. Assume that Hypothesis (µp) is valid for K/k.

i) If Hypotheses (ECP) and (EUS) are both valid for K/k, then Hypoth-
esis (EPS) is valid for K/k with GS = G∗

S · US and H = H∗.
ii) If Zp[G] is admissible and Hypothesis (EPS) is valid for K/k, then

Hypotheses (EUS) and (ECP) are both valid for K/k.
iii) If K/k is abelian, then Hypotheses (EPS), (ECP) and (EUS) are all

valid for K/k.

Proof. i) We suppose that Hypotheses (µp), (ECP) and (EUS) are all valid
for K/k. Under these hypotheses we claim that the series GS := G∗

S · US ∈
Zp[G][[T ]] and H := H∗ ∈ Zp[G][T ] are as described in Hypothesis (EPS). To

show this we first observe that for every character ρ ∈ Irr+p (G) one has

Det(GS)(ρ) · Det(H)(ρ)−1 = hS,ρc
−1
ρ US,ρ · (H∗

ρ )−1

= hS,ρ · US,ρ · H−1
ρ

= (hS,ρ · (G∗
S,ρ)

−1) · (GS,ρ · H−1
ρ ),

where the last equality is a consequence of the decomposition (2) and our
assumption that µ(S, ρ) = 0. It is therefore enough to show that for each
ρ ∈ Irr+p (G) one has an equality

(3) hS,ρ = G∗
S,ρ.

Now if ρ is a one-dimensional even character which is of ‘type S’, then this
equality is equivalent to the Main Conjecture of Iwasawa theory as proved by
Wiles [39, Thm. 1.3]. In the general case the equality has been verified by
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Snaith [34, Thm. 6.2.5] and, for the reader’s convenience, we briefly sketch the
argument (for details see loc. cit.). One proceeds by reduction to the result of
Wiles by means of Brauer’s Induction Theorem and the fact that characteristic
polynomials and Iwasawa series enjoy the same inflation and induction proper-
ties. The only complication in this reduction is caused by the need to twist with
characters which are of ‘type W ’ and by the denominator polynomials Hρ, and
this is resolved by using the fact, first observed by Greenberg [22], that the de-
nominator of the Iwasawa series which is attached to each irreducible character
ρ of dimension greater than 1 is trivial (this justifies our setting Hρ = 1 for these
ρ). We would like to point out that there is actually a very simple argument for
this absence of denominator in the case that K ∩ k∞ = k. Indeed, in this case,
if ρ is any irreducible character of G which has degree greater than 1, then
Brauer induction implies that ρ =

∑

i ni Indk
ki

(ρi) where the ki are suitable
intermediate fields and ρi is a one-dimensional character of Gal(K/ki) which is
of ‘type S’. It follows that the denominator of each series fρi

is trivial unless ρi

is itself the trivial character. Further, if χ0 denotes the one-dimensional trivial
representation of G, then one has 0 = 〈χ0, ρ〉 =

∑

i ni〈χ0, Indk
ki

(ρi)〉. Since the
latter sum is equal to the sum of the multiplicities ni for which ρi is trivial, it
follows that the denominator of fρ is indeed trivial.
ii) We now suppose that Zp[G] is admissible and that Hypotheses (µp) and
(EPS) are both valid for K/k. Recalling Remark 4i) (and Proposition 2.1), we
find that the series GS and H (as given by Hypothesis (EPS)) admit canonical
decompositions GS = G∗

S · U ′
S and H = H∗ · V , where G∗

S and H∗ are distin-
guished polynomials in Zp[G][T ] and U ′

S and V are units of the ring Zp[G][[T ]].

It follows that for each character ρ ∈ Irr+p (G) one has an equality

GS,ρ

Hρ
=

Det(G∗
S)(ρ) Det(U ′

S)(ρ)

Det(H∗)(ρ) Det(V )(ρ)
.

We now recall that GS,ρ = G∗
S,ρ · US,ρ = hS,ρ · US,ρ (by (2) and (3)) and we

set US := U ′
S · V −1 ∈ Zp[G][[T ]]×. Upon clearing denominators in the last

displayed formula, we therefore obtain equalities

hS,ρ · Det(H∗)(ρ) · US,ρ = Det(G∗
S)(ρ) · Hρ · Det(US)(ρ),

or equivalently

(4) hS,ρ · Det(H∗)(ρ) · c−1
ρ US,ρ = Det(G∗

S)(ρ) · H∗
ρ · Det(US)(ρ).

Lemma 2. Let f be a distinguished polynomial in Zp[G][[T ]]. Then, for each
ρ ∈ Irrp(G), the series Det(f)(ρ) is a distinguished polynomial in ON [[T ]].

Proof. It is clear that the series Det(f)(ρ) is a polynomial in ON [[T ]] which

is distinguished if and only if the polynomial Det(f)(ρ)pj

is distinguished for
any natural number j. In addition, since f is a distinguished polynomial, of

degree d say, there exists a natural number j such that fpj ≡ T dpj

(modulo

p · Zp[G][[T ]]). Since Det(fpj

)(ρ) = Det(f)(ρ)pj

we may therefore assume
in the sequel that f is a monic polynomial which satisfies f ≡ T d (modulo
p · Zp[G][[T ]]).
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We now use the notation introduced at the beginning of §3 (when defining the

map Det(f)). We write f = T d +
∑d−1

i=0 αiT
i where αi ∈ p · Zp[G] for each

integer i with 0 ≤ i < d, and for each such i we set Ri := rρ(αi) ∈ Mn(ON ).
Upon denoting the n×n identity matrix by Rd, we obtain an equality rρ(f) =
∑d

i=0 RiT
i in Mn(ON [T ]). We observe that each off-diagonal entry of rρ(f)

belongs to p ·ON [T ] and is of degree strictly less than d, and that each diagonal
entry of rρ(f) is a monic polynomial which is congruent to T d modulo p·ON [T ].
From this description it is immediately clear that Det(f)(ρ) := det(rρ(f)) is a
monic polynomial which is congruent to Tnd modulo p ·ON [T ], and hence that
it is distinguished, as claimed. ¤

Upon applying this lemma with f equal to G∗
S and H∗ we deduce that the

polynomials Det(G∗
S)(ρ) and Det(H∗)(ρ), and hence also Det(G∗

S)(ρ) ·H∗
ρ and

hS,ρ · Det(H∗)(ρ), are distinguished. When combined with the equality (4)
and the uniqueness of Weierstrass product decompositions in the ring ON [[T ]],
this observation implies that hS,ρ ·Det(H∗)(ρ) = Det(G∗

S)(ρ) ·H∗
ρ , as required

by Hypothesis (ECP), and also that c−1
ρ US,ρ = Det(US)(ρ), as required by

Hypothesis (EUS).
iii) We now assume that G is abelian, so that Zp[G] is admissible. Following
claim ii), it is therefore enough for us to assume that Hypothesis (µp) is valid
for K/k, and then to prove that Hypothesis (EPS) is valid for K/k.
To verify Hypothesis (EPS) for K/k we first assume that K ∩ k∞ = k. In
this case, we may use the constructions of Deligne and Ribet which are used
by Wiles in [39, p.501f.]. To be explicit, we obtain the elements GS and H as
required by Hypothesis (EPS) by combining in the obvious way the elements
Gm,c,S and Hm,c of loc. cit., where m runs over the ‘components’ of Zp[G] (and
for each non-trivial component m we set Hm,c := 1). The required equalities

ρ(GS)/ρ(H) = fS,ρ (for each ρ ∈ Irr+p (G)) and the fact that µZp[G](H) = 0
then follow as direct consequences of the properties of the series Gm,c,S and
Hm,c described by Wiles in loc. cit., and the fact that µZp[G](GS) = 0 follows
from the assumed validity of Hypothesis (µp) for K/k. From Remark 4i) we
therefore deduce that GS and H are both right associated to distinguished
polynomials, as required.
In general one has K ∩ k∞ 6= k, and in this case we proceed as follows. There
exists an extension K ′ of k such that K ′ ∩ k∞ = k and K∞ is the compositum
of K ′ and k∞. We observe that K ′/k is a finite abelian extension and we
set G′ := Gal(K ′/k) and Γ := Gal(k∞/k). Each character ρ ∈ Irrp(G) can
be lifted to a character of Gal(K∞/k) ∼= G′ × Γ (which we again denote by
ρ), and as such it has a unique factorisation ρ = ψκ where ψ ∈ Irrp(G

′)
and κ is a character of Γ which has finite order. As a consequence of the
formula [39, (1.4)] one has an equality GS,ψκ(T ) = GS,ψ(κ(γ)(1 + T ) − 1). By
the very definition of the polynomials Hψκ and Hψ one also has an equality
Hψκ(T ) = Hψ(κ(γ)(1 + T ) − 1).
We now write GK′,S(T ) and HK′(T ) for the elements of Zp[G

′][[T ]] which are
afforded by Hypothesis (EPS) for the extension K ′/k (which we know to be
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valid by the above argument since K ′, which sits between k and some Kn, is
again either totally real or a CM field). Let G̃S(T ) = GK′,S(γ(1 + T ) − 1)

and H̃(T ) = HK′(γ(1 + T ) − 1); these series lie in Zp[[G
′ × Γ]][[T ]]. Then

applying the character ρ of G (considered as a character of G′×Γ by inflation)

to G̃S(T ) yields ψ(GK′,S)(κ(γ)(1+T )−1), similarly for H̃(T ), so applying ρ to

the quotient G̃S(T )/H̃(T ) gives fψ(κ(γ)(1 + T ) − 1) by Hypothesis (EPS) for
K ′/k. By the aforementioned formulas, we therefore have fψ(κ(γ)(1+T )−1) =
fρ(T ) and so we are almost done: indeed, it simply suffices to define GS(T ),

respectively H(T ), to be equal to the image of G̃S(T ), respectively H̃(T ), under
the map Zp[[G

′ × Γ]][[T ]] → Zp[G][[T ]] which is induced by the epimorphism
G′ × Γ → G. ¤

Remark 5. To end this section we now explain the precise connection between
Hypothesis (EUS) and the ‘Wiles Unit Conjecture’ [34, Conj. 6.3.4] of Snaith.
To do this we fix an integer n with n > 1 and, assuming Hypothesis (EUS)
to be valid for K/k, we set αS,n := US(un − 1) ∈ Zp[G]×. Then for each

ρ ∈ Irr+p (G) one has an equality

Det(αS,n)(ρ) = c−1
ρ US,ρ(u

n − 1).

After taking account of the equalities (2) and (3) one finds that this property
of αS,n is closely related to that which should be satisfied by the element
αn,K+/k of Zp[Gal(K+/k)]× whose existence is predicted by [34, Conj. 6.3.4].
However, there are two important differences: in loc. cit. the p-adic L-functions
are untruncated and the factors cρ are omitted. Whilst, a priori, Hypothesis
(EUS) and [34, Conj. 6.3.4] could be simultaneously valid, we now present
an explicit example which shows that [34, Conj. 6.3.4] is not valid (because
the relevant p-adic L-functions are untruncated). We remark that similarly
explicit examples exist to show that [34, Conj. 6.3.4] must also be corrected by
the introduction of the factors cρ.

Example 2. We set p := 3 and k := Q and we let K denote the composite of
the cyclic cubic extension K1 of Q which has conductor 7 and the field K2 :=
Q(

√
5). We set G := Gal(K/Q) (which is cyclic), we write ρ0 for the nontrivial

character of Gal(K2/Q) (considered as a character of G) and ρ1 for any faithful
character of G, and we set S := {5, 7}. Then ρ0 and ρ1 have conductors 5 and
35 respectively and Theorem 3.1iii) implies that there exists a unit element
US of Zp[G][[T ]] such that, for i ∈ {1, 2}, the unit part Uρi

of the Iwasawa
series fS,ρi

which is associated to Lp,S(−, ρi) is equal to ρi(US). We now let
w(T ) be the power series such that w(un − 1)Lp,{5}(1 − n, ρ0) = Lp,S(−, ρ0)

for all natural numbers n. Then w(un − 1) = 1 − ρ0(7)ω−n(7)7n−1 where ω
is the 3-adic Teichmüller character. Since ω(7) = 1 it follows that w(T ) =
1 − ρ0(7) · 7−1(T + 1)a with ua = 7. Now ρ0(7) = −1 and so w(0) = 8

7 ≡ −1
(mod 3); in particular w(T ) ∈ Zp[[T ]]× and so the unit part U ′

ρ0
of the Iwasawa

series f{5},ρ0
is equal to w(T )−1Uρ0

. In this setting [34, Conj. 6.3.4] predicts

the existence (for any given n) of an element α′
n of Z3[G]× which satisfies
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both ρ0(α
′
n) = U ′

ρ0
(un − 1) and ρ1(α

′
n) = Uρ1

(un − 1). If such an element

existed, then the element q := US(un − 1)(α′
n)−1 of Z3[G]× would satisfy both

ρ0(q) = w(un − 1) and ρ1(q) = 1. However, the above calculation shows that
w(un − 1) ≡ −1 (mod 3) and so no such element q can exist (indeed, ρ0 and ρ1

differ by a character of order 3 and so, for any q′ ∈ Z3[G], the elements ρ0(q
′)

and ρ1(q
′) must be congruent modulo the maximal ideal of Z3[ζ3]).

4. Algebraic Preliminaries

In the remainder of this manuscript our aim is to describe certain explicit con-
sequences of Theorem 3.1iii) concerning the values of Dirichlet L-functions at
strictly negative integers. However, before doing so, in this section we describe
some necessary algebraic preliminaries.
We now let K/k be any finite Galois extension of number fields of group G
(which is not necessarily abelian). We fix any rational prime p and a finite
set of places T of k which contains all archimedean places, all places which
ramify in K/k and all places of residue characteristic p. For any extension E
of k we write OE,T for the ring of TE-integers in E, where TE denotes the set
of places of E which lie above those in T . We set U := Spec(Ok,T ) and we
write Gk,T for the Galois group of the maximal algebraic extension of k which
is unramified outside T . For each non-negative integer n we write Kn for the
subextension of Kp

∞ which is of degree pn over K, and πn : Spec(OKn,T ) → U
for the morphism of schemes which is induced by the inclusion Ok,T ⊆ OKn,T .
If F is any finite Gk,T -module, then we use the same symbol to denote the
associated locally-constant sheaf on the étale site Uét. If F is any continuous
Gk,T -module which is finitely generated over Zp, then we let F∞ denote the
associated pro-sheaf (Fn, tn)n≥0 on Uét where, for each non-negative integer n,
we set Fn := πn,∗ ◦ π∗

n(F/pn+1) and the transition morphism tn is induced by
the composite of the trace map πn+1,∗ ◦ π∗

n+1(F/pn+2) → πn,∗ ◦ π∗
n(F/pn+2)

and the natural projection F/pn+2 → F/pn+1.
Let Λ be a pro-p ring. (Thus we depart here from the usual convention that
Λ has the fixed meaning Zp[[T ]].) We write D(Λ) for the derived category
of bounded complexes of Λ-modules and Dp(Λ), respectively Dp,f(Λ), for the
full triangulated subcategory of D(Λ) consisting of those complexes which are
perfect, respectively are perfect and have finite cohomology groups.
If F is any (p-adic) étale sheaf of Λ-modules on U , then we follow the ap-
proach of [9, §3.2] to define the complex of compactly supported cohomology
RΓc(Uét,F) so as to lie in a canonical distinguished triangle in D(Λ)

(5) RΓc(Uét,F) −→ RΓ(Uét,F) −→
⊕

v∈T

RΓ(Spec(kv)ét,F).

We recall that the approach developed by Kato in [25, §3.1] and by Nekovář in
[30] (cf. also [11, Rem. 4.1] in this regard) allows one to extend the definitions
of each of these complexes in a natural manner to the case of pro-sheaves
of Λ-modules of the form F∞ discussed above, and that in this case there is
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again a canonical distinguished triangle of the form (5). If p = 2, then we
set RΓ∗(Uét,−) := RΓc(Uét,−). If p is odd, then we let RΓ∗(Uét,−) denote
either RΓc(Uét,−) or RΓ(Uét,−). In each degree i we then set Hi

∗(Uét,−) :=
HiRΓ∗(Uét,−).
We next recall that if Λ is any Zp-order which spans a finite dimensional
semisimple Qp-algebra ΛQp

, then to each object C of Dp,f(Λ) one can asso-

ciate a canonical element χrel
Λ C of the relative algebraic K-group K0(Λ, Qp)

(cf. [5, Prop. 1.2.1] or [9, §2.8, Rem. 4]). We recall further that the
Whitehead group K1(ΛQp

) of ΛQp
is generated by elements of the form [α]

where α is an automorphism of a finitely generated ΛQp
-module, and we write

δΛ : K1(ΛQp
) → K0(Λ, Qp) for the homomorphism which occurs in the long

exact sequence of relative K-theory (as described explicitly in, for example, [5,
§1.1]).

Proposition 4.1. Let F be a continuous Zp[Gk,T ]-module which is both
finitely generated and free over Zp. Then RΓ∗(Uét,F∞) is an object of
Dp(Zp[Gal(Kp

∞/k)]).
Assume now that K ∩kp

∞ = k. Let ε be a central idempotent of Zp[G], set Λ :=
Zp[G]ε, and let θ∞ be an injective Zp[Gal(Kp

∞/k)]-equivariant endomorphism
of ε · F∞. If both

ci) in each degree i the Zp-module Hi
∗(Uét, ε ·F∞) is finitely generated, and

cii) in each degree i the endomorphism Hi
∗(Uét, θ∞) ⊗Zp

Qp is bijective,

then RΓ∗(Uét, coker(θ∞)) is an object of Dp,f(Λ), and in K0(Λ, Qp) one has an
equality

χrel
Λ RΓ∗(Uét, coker(θ∞)) =

∑

i∈Z

(−1)iδΛ([Hi
∗(Uét, θ∞) ⊗Zp

Qp]).

Proof. For each non-negative integer n we set Λn := (Z/pn+1)[Gal(Kn/k)]. We
also set Λ∞ := lim←−n

Λn where the limit is taken with respect to the natural

projection morphisms ρn : Λn+1 → Λn. In the sequel we identify Λ∞ with
Zp[Gal(Kp

∞/k)] in the natural way.
We first note that, for each non-negative integer n, Fn is the sheaf which is
associated to the free Λn-module Λn ⊗Zp

F and that tn is the morphism which
is associated to the natural morphism of Λn+1-modules

Λn+1 ⊗Zp
F → Λn ⊗Λn+1,ρn

(Λn+1 ⊗Zp
F) ∼= Λn ⊗Zp

F .

By using results of Flach [19, Thm. 5.1, Prop. 4.2] we may therefore deduce
that, for each such n, RΓ∗(Uét,Fn) is an object of Dp(Λn) which is acyclic
outside degrees 0, 1, 2, 3 and is also such that there exists an isomorphism ψn

in Dp(Λn) between Λn ⊗L
Λn+1,ρn

RΓ∗(Uét,Fn+1) and RΓ∗(Uét,Fn).

We observe next that Λn+1 is Artinian and that ker(ρn) is a two sided nilpo-
tent ideal. By using the structure theory of [17, Prop. (6.17)] we may thus
deduce that for any morphism of finitely generated projective Λn-modules
φn : Mn → Nn there exists a morphism of finitely generated projective Λn+1-
modules φn+1 : Mn+1 → Nn+1 for which one has Mn = Λn ⊗Λn+1,ρn

Mn+1,
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Nn = Λn ⊗Λn+1,ρn
Nn+1 and φn = Λn ⊗Λn+1,ρn

φn+1. This fact allows one to
adapt the constructions of Milne in [29, p.264-265] and hence to prove that, for
each non-negative integer n, there exists a complex of finitely generated projec-
tive Λn-modules C·

n with the following properties: Ci
n = 0 for i /∈ {0, 1, 2, 3};

C·
n is isomorphic in Dp(Λn) to RΓ∗(Uét,Fn); there exists a Λn+1-equivariant

homomorphism of complexes ψ′
n : C·

n+1 → C·
n which is such that the morphism

Λn⊗Λn+1,ρn
ψ′

n : Λn⊗Λn+1,ρn
C·

n+1 → C·
n is bijective in each degree and induces

ψn. In this way we obtain a bounded complex of finitely generated projective
Λ∞-modules C·

∞ := lim←−ψ′

n

C·
n which represents RΓ∗(Uét,F∞). This proves the

first claim of the proposition.
We now assume that K ∩ kp

∞ = k and that θ∞ is an injective Λ∞-equivariant
endomorphism of the pro-sheaf ε · F∞. By adapting the constructions of [29,
Chap. VI, Lem. 8.17, Lem. 13.10] (but note that [loc. cit., Lem. 8.17] is
incorrect as stated since the morphism ψ need not be a quasi-isomorphism)
it may be shown that there exists a Λ∞-equivariant endomorphism θ·∞ of the
complex D·

∞ := ε ·C·
∞ which induces the morphism RΓ∗(Uét, θ∞). In this way

one obtains a canonical short exact sequence of complexes

(6) 0 → D·
∞ → Cone(θ·∞) → D·

∞[1] → 0

and also an isomorphism in Dp(Λ∞) between Cone(θ·∞) and
RΓ∗(Uét, coker(θ∞)).
Now Λ∞ is a free Zp[G]-module and so D·

∞ is a bounded complex of projective
Λ-modules. If also each Zp-module Hi(D·

∞) is finitely generated, as is implied
by condition ci), then by a standard argument (see, for example, the proof of
[12, Thm. 1.1, p.447]) it follows that D·

∞ belongs to Dp(Λ). The exact sequence
(6) then implies that Cone(θ·∞) also belongs to Dp(Λ). Further, condition cii)
now combines with the long exact sequence of cohomology which is associated to
(6) to imply that each module Hi

∗(Cone(θ·∞)) is finite and hence that Cone(θ·∞)
belongs to Dp,f(Λ), as claimed.
It only remains to prove the explicit formula for χrel

Λ RΓ∗(Uét, coker(θ∞)). To do
this we let P · be a bounded complex of finitely generated projective Λ-modules

which is quasi-isomorphic to D·
∞ and θ̂· : P · → P · a morphism of complexes

which induces θ·∞. Condition cii) combines with the argument of [13, Lem.

7.10] to imply we may assume that in each degree i the map θ̂i is injective
(and so has finite cokernel). It follows that RΓ∗(Uét, coker(θ∞)) is isomorphic

in Dp,f(Λ) to the complex coker(θ̂·) which is equal to coker(θ̂i) in each degree
i and for which the differentials are induced by those of P ·, and hence that

χrel
Λ RΓ∗(Uét, coker(θ∞)) = χrel

Λ coker(θ̂·).
We next recall that χrel

Λ is additive on exact triangles in Dp,f(Λ) [5, Prop. 1.2.2].
From the short exact sequences of complexes

0 → coker(θ̂i)[−i] → τi coker(θ̂·) → τi−1 coker(θ̂·) → 0

(where, for each integer j, τj denotes the naive truncation in degree j) we may

therefore deduce that χrel
Λ coker(θ̂·) =

∑

i∈Z χrel
Λ (coker(θ̂i)[−i]). The claimed
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formula now follows directly from the fact that for each integer i one has

χrel
Λ (coker(θ̂i)[−i]) = (−1)iδΛ([θ̂i ⊗Zp

Qp]) and in K1(ΛQp
) there is an equality

[θ̂i ⊗Zp
Qp] = [θ̂i+1 ⊗Zp

Qp |Bi+1 ] + [Hi
∗(Uét, θ∞) ⊗Zp

Qp] + [θ̂i ⊗Zp
Qp |Bi ].

Here we write Bi for the submodule of coboundaries of P · ⊗Zp
Qp in degree i,

and the displayed equality is a consequence of the natural filtration of P i⊗Zp
Qp

which has graded pieces isomorphic to Bi+1,Hi
∗(Uét, ε ·F∞)⊗Zp

Qp and Bi. ¤

Remark 6. In this remark we assume that G is abelian, but otherwise use the
same notation and hypotheses as in the second part of Proposition 4.1. We
write DetΛ for the determinant functor introduced by Knudsen and Mumford
in [27], and (both here and in the sequel) we identify any graded invertible
Λ-module of the form (I, 0) with the underlying invertible Λ-module I.
We recall that the assignment χrel

Λ C 7→ DetΛ C (where C ranges over all objects
of Dp,f(Λ)) induces a well-defined isomorphism between K0(Λ, Qp) and the
multiplicative group of invertible Λ-lattices in ΛQp

(cf. [1, Lem. 2.6]). In
particular, in this case the equality at the end of Proposition 4.1 is equivalent
to the following equality in ΛQp

DetΛ RΓ∗(Uét, coker(θ∞)) =
∏

i∈Z

detΛQp
(Hi

∗(Uét, θ∞) ⊗Zp
Qp)

(−1)i+1 · Λ.

(We remark that the exponent (−1)i+1 on the right hand side of this formula
is not a misprint!)

5. Values of Dirichlet L-functions

In this section we derive certain explicit consequences of Theorem 3.1iii) and
Proposition 4.1 concerning the values of Dirichlet L-functions at strictly nega-
tive integers.
To this end we continue to use the notation introduced in §3. In particular, we
now assume that k is totally real and that K is a CM abelian extension of k
and we set G := Gal(K/k). We also fix an odd prime p, algebraic closures Qc

of Q and Qc
p of Qp, and we set G∧ := Hom(G, Qc×) and G∧,p := Hom(G, Qc×

p ).
We let τ denote the complex conjugation in G, and for each integer a we
write ea for the idempotent 1

2 (1 + (−1)aτ) of Z[ 12 ][G], and G∧
(a) and G∧,p

(a) for

the subsets of G∧ and G∧,p respectively which consist of those characters ψ
satisfying ψ(τ) = (−1)a. For each element ψ of G∧, respectively of G∧,p, we
write eψ for the associated idempotent 1

|G|

∑

g∈G ψ(g)g−1 of Qc[G], respectively

of Qc
p[G].

We fix a finite set S of non-archimedean places of k which contains all non-
archimedean places which ramify in K/k and, for each ψ ∈ G∧, we write
LS(s, ψ) for the Dirichlet L-function of ψ which is truncated by removing the
Euler factors at all places in S.
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If r is any integer with r > 1, then each function LS(s, ψ) is holomorphic at
s = 1 − r and so we may set

LS(1 − r) :=
∑

ψ∈G∧

LS(1 − r, ψ)eψ ∈ C[G].

If k = Q, then this element can be interpreted in terms of higher Bernoulli
numbers and is therefore a natural analogue of the classical Stickelberger ele-
ment. In general, by a result of Siegel [33], one knows that LS(1 − r) belongs
to the unit group of the ring Q[G]er.

In order to state our next result we assume that K ∩ kp
∞ = k. Under this

hypothesis we set

hS :=
∑

ρ∈G∧,p

(0)

hS,ρeρ ∈ Zp[G][[T ]][
1

p
].

We also write e for the idempotent 1
|G|

∑

g∈G g of Qp[G] and then set

H ′ :=
∑

ρ∈G∧,p

(0)

Hρeρ = Te + (e0 − e) ∈ Qp[G][T ],

where the second equality is a consequence of our assumption that K∩kp
∞ = k.

For the purposes of the next result we also assume that K contains a primitive
p-th root of unity, and we write ω for the Teichmüller character of G. For each
integer b we then let twb denote the Zp-linear automorphism of Zp[G] which
sends each element g of G to ωb(g) · g.

Theorem 5.1. Assume that Hypothesis (µp) is valid for K/k, that K∩kp
∞ = k

and that K contains a primitive p-th root of unity. Then for each integer r > 1
one has an equality

LS(1 − r) · Zp[G] = twr(H
′(ur − 1)−1hS(ur − 1)) · Zp[G]er.

Proof. At the outset we fix an integer r > 1 and an embeddding j : Qc → Qc
p

and, for each χ ∈ G∧, we set ρχ := (j ◦ χ) · ωr ∈ G∧,p.

We observe that ω belongs to G∧,p
(1) and hence that χ belongs to G∧

(r) if and

only if ρχ belongs to G∧,p
(0) . In addition, for all characters χ ∈ G∧

(r) one has an

equality

(7) (j ◦ χ)(LSp
(1 − r)) = j(LSp

(1 − r, χ)) = Lp,S(1 − r, ρχ).

We now set ZS := (H ′)−1 · hS . Upon comparing images under each character
ρ ∈ G∧,p, recalling the equality (3) and noting that in the present case cρ = 1
for all such ρ, we may deduce that ZS is equal to the quotient G∗

S/H∗ which
occurs in Hypothesis (ECP). With US denoting the unit element which occurs
in Hypothesis (EUS) for K/k, and setting GS := G∗

S · US and H := H∗ it
therefore follows that

ZS · US = (G∗
S · US) · (H∗)−1

= GS · H−1.
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From Theorem 3.1i),iii) we know that the series GS and H satisfy the conditions
specified in Hypothesis (EPS). Hence the last displayed formula implies that,
for each character χ ∈ G∧

(r), one has

ρχ(ZS · US) = ρχ(GS)ρχ(H)−1

= fS,ρχ
.

Upon combining this formula with the equalities (1) and (7) we deduce that

(j ◦ χ)(LSp
(1 − r)) = ρχ(ZS(ur − 1) · US(ur − 1))

= (j ◦ χ)(twr(ZS(ur − 1) · US(ur − 1)))

= (j ◦ χ)(twr(ZS(ur − 1)) · twr(US(ur − 1))).

Since this equality is valid for every character χ in G∧
(r) it implies that the

elements LSp
(1 − r) and twr(ZS(ur − 1)) of Qp[G]er differ by the factor

twr(US(ur − 1)) which is a unit of the ring Zp[G]er.
It now only remains for us to show that the elements LSp

(1− r) and LS(1− r)
differ by a unit of Zp[G]er. But LSp

(1− r) = LS(1− r)x where x is a product

of Euler factors of the form 1−Nvr−1 ·fv where v is a place of k which divides p
and does not belong to S, Nv is the absolute norm of v and fv is the Frobenius
automorphism of v in G. Further, since r > 1, it is clear that each such element
1 − Nvr−1 · fv is a unit of Zp[G]. ¤

Our next result concerns a special case of Kato’s Generalized Iwasawa Main
Conjecture. However, before stating this result, it will be convenient to intro-
duce some further notation.
For the remainder of this section we let Σ denote the (finite) set of rational
primes ` which satisfy either ` = 2 or K ∩ k`

∞ 6= k. We also write ZΣ for the
subring of Q which is generated by the inverses of each element of Σ.
For any extension E of k and any finite set of places V of k we let OE,V denote
the ring of VE-integers in E, where VE denotes the set of all places of E which
are either archimedean or lie above a place in V . We set Uk := Spec(Ok,Sp

) and
for each p-adic étale sheaf F on Uk and each finite Galois extension E/k which
is unramified at all non-archimedean places outside Sp we write FE for the étale
sheaf of Zp[Gal(E/k)]-modules π∗π

∗F on Uk where π denotes the morphism
Spec(OE,Sp

) → Uk which is induced by the inclusion Ok,Sp
⊆ OE,Sp

. We
recall that, since π∗ is exact, the complexes RΓ(Uk,ét,FE) and RΓc(Uk,ét,FE)
are canonically isomorphic in D(Zp[Gal(E/k)]) to RΓ(Spec(OE,Sp

)ét, π
∗F) and

RΓc(Spec(OE,Sp
)ét, π

∗F) respectively, and in the sequel we shall often use such
identifications without explicit comment.
For each integer r > 1 we set

CK,1−r := RΓc(Uk,ét, erZp(1 − r)K)

and we recall that (since r > 1) this complex is an object of Dp,f(Zp[G]er) (see
the upcoming proof of Lemma 3 for further details in this regard). From the
equalities of [8, (11),(12)] (with r replaced by 1 − r), it therefore follows that
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the ‘Equivariant Tamagawa Number Conjecture’ of [9, Conj. 4(iv)] is for the
pair (h0(Spec(K))(1 − r), ZΣ[G]er) equivalent to asserting that if p does not
belong to Σ, then in Qp[G]er one has an equality

(8) Det−1
Zp[G]er

CK,1−r = LS(1 − r) · Zp[G]

(cf. Remark 6).
Before proceeding, we remark that the above equality is in general strictly
finer than the corresponding case of the Generalized Iwasawa Main Conjecture
which Kato formulates in [25, Conj. 3.2.2 and 3.4.14]. Indeed, since graded
determinants are not used in [25] the central conjecture of loc. cit. is in this
case only well defined to within multiplication by elements of (Qp[G]er)

× of
square 1 which reflect possible re-ordering of the factors in tensor products.
For more details in this regard we refer the reader to [loc cit., Rem. 3.2.3(3)
and 3.2.6(3),(5)] and [9, Rem. 9]. We recall also that a direct comparison of
[9, Conj. 4(iv)] with the central conjecture formulated by Kato in [24, Conj.
(4.9)] can be found in [10, §2].

Theorem 5.2. Assume that p does not belong to Σ and that Hypothesis (µp)
is valid for K/k. Then for each integer r > 1 the equality (8) is valid. In
particular, the Generalized Iwasawa Main Conjecture of Kato is valid for each
such pair (h0(Spec(K))(1 − r), Zp[G]er).

Remark 7. i) It is straightforward to describe explicit conditions on K/k which
ensure that Σ = {2}. For example, if [K : k] is coprime to the class number of
k, then Σ = {2} whenever the conductor of K/k is not divisible by the square
of any prime ideal which divides [K : k].
ii) If K/Q is abelian, then Hypothesis (µp) is known to be valid for all p (Remark
3i)) and so Theorem 5.2 gives an alternative proof of parts of the main result
(Cor. 8.1) of [11]. The reader will find that the approach of loc. cit. is
considerably more involved than that used here. We remark that, nevertheless,
the approach of loc. cit. can be extended to improve upon Theorem 5.2 by
showing that [9, Conj. 4(iv)] is valid for the pair (h0(Spec(K))(1−r), Z[ 12 ][G]er)
under the assumption that Hypothesis (µp) is valid for K/k at all odd p.

Proof of Theorem 5.2. For the purposes of this argument we set A := Zp[G]er

and A := Qp[G]er.
We first remark that, when verifying the equality (8), the functorial behaviour
of compactly supported étale cohomology and of Dirichlet L-functions under
Galois descent allows us to replace K by the extension of K which is generated
by a primitive p-th root of unity (cf. [9, Prop. 4.1b)]). We may therefore
henceforth assume that K contains a primitive p-th root of unity and is such
that K ∩ kp

∞ = k. After taking into account the result of Theorem 5.1 it is
therefore enough for us to prove that in Qp[G]er one has an equality

(9) Det−1
A

CK,1−r = twr(H
′(ur − 1)−1hS(ur − 1)) · A.
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We now use the notation of Proposition 4.1. We regard γ as a topological
generator of Gal(Kp

∞/K) ∼= Gal(kp
∞/k), we set γ̂ := 1−γ ∈ Zp[Gal(Kp

∞/k)] and
we observe that the action of γ̂ induces an injective Zp[Gal(Kp

∞/k)]-equivariant
endomorphism γ̂1−r of the pro-sheaf er · Zp(1 − r)∞ on Uk,ét.

Lemma 3. Let T denote the union of Sp and the set of archimedean places of k,
and set U := Uk,F := Zp(1− r), ε := er and θ∞ := γ̂1−r. If Hypothesis (µp) is
valid for K/k, then this data satisfies the conditions ci) and cii) of Proposition
4.1, and in A one has an equality

∏

i∈Z

detA(Hi
c(Uk,ét, γ̂1−r) ⊗Zp

Qp)
(−1)i

= detA(γ̂ | e0Y (Sp) ⊗Zp
Qp(−r)) · detA(γ̂ | Qp(−r))−1

where γ̂ acts diagonally on e0Y (Sp) ⊗Zp
Qp(−r).

Proof. We assume that Hypothesis (µp) is valid for K/k, and we recall (from
Remark 3ii)) that this is equivalent to asserting that e0Y (Sp) is a finitely
generated Zp-module.
For each integer i we set Hi

c(1 − r) := Hi
c(Uét, er · Zp(1 − r)∞). To verify

that condition ci) of Proposition 4.1 is satisfied by the given data and also to
prove the claimed equality, it is clearly enough to show that Hi

c(1− r) vanishes
if i /∈ {2, 3} and that H2

c (1 − r) and H3
c (1 − r) are canonically isomorphic

to e0Y (Sp) ⊗Zp
Zp(−r) (endowed with the natural diagonal action of γ) and

Zp(−r) respectively.
To show this we first observe that, since p is odd and k is totally real, for
each archimedean place v of k and any non-negative integer n the complex
RΓ(Spec(kv)ét, er · Zp(1 − r)n) is acyclic. This implies that our definition
of compactly supported cohomology (as in (5)) coincides with that used by
Nekovář in [30, (5.3)], and hence that the complex RΓc(Uét, er · Zp(1 − r)∞)
coincides with the complex RΓc,Iw(K∞/k, Zp(1 − r)) which is defined in [loc.
cit., (8.5.4)]. To compute Hi

c(1 − r) we may therefore use the fact that there
are natural isomorphisms of Zp[Gal(K∞/k)]-modules

Hi
c(1 − r) ∼= er(H

i
c(Uét, Zp(1)∞ ⊗Zp

Zp(−r)))(10)

∼= (lim←−
n

Hi,+
c,n (1)) ⊗Zp

Zp(−r)

∼= (lim←−
n

Hi,+
c,n,n(1)) ⊗Zp

Zp(−r)

where, for each non-negative integer n, we set Hi,+
c,n (1) := e0 ·Hi

c(Uk,ét, Zp(1)Kn
)

and Hi,+
c,n,n(1) := e0 ·Hi

c(Uk,ét, (µpn+1)Kn
), each limit over the integers n ≥ 0 is

taken with respect to the natural projection maps, Gal(K∞/k) acts diagonally
on each tensor product, and the second and third isomorphisms follow as a
consequence of [loc. cit., Prop 8.5.5(ii), respectively Lem. (4.2.2)].
Now to compute explicitly each group Hi,+

c,n (1) for i 6= 2 it is enough to combine
the long exact sequence of cohomology of the triangle (5) (with U = Uk and
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F = Zp(1)Kn
) together with certain standard results of Kummer theory and

class field theory. To describe the result we write

λn : O×
Kn,T ⊗Z Zp →

∏

wn

lim←−
m≥1

K×
n,wn

/(K×
n,wn

)pm

for the natural ‘diagonal’ morphism where on the right hand side wn runs over
all places of Kn which lie above places in T and the limit over m is taken with
respect to the natural projection morphisms. Then one finds that Hi,+

c,n (1)

vanishes if i /∈ {1, 2, 3}, that H3,+
c,n (1) identifies with Zp and that H1,+

c,n (1) is
isomorphic to e0 · ker(λn). Upon passing to the inverse limit over n (and by
using (10)) one finds that Hi

c(1 − r) vanishes if i /∈ {2, 3} and that H3
c (1 − r)

is canonically isomorphic to Zp(−r).
To proceed we next recall that, for each pair of non-negative integers m and
n, the Artin-Verdier Duality Theorem induces a canonical isomorphism in
D(Z/pmZ[Gal(Kn/k)])

RΓc(Uét, er(µ
⊗(1−r)
pm )Kn

) ∼= HomZ/pmZ(RΓ(Uét, er(µ
⊗r
pm)Kn

), Z/pmZ[−3])

where the linear dual is endowed with the contragredient action of Gal(Kn/k)
(cf. [30, Prop. (5.4.3)(i), (2.11)] with R = Z/pmZ[Gal(Kn/k)], J = R[0],K =

k, S = T and X = er(µ
⊗(1−r)
pm )Kn

[0]). Now if Kab,n
n,T denotes the maximal

abelian extension of Kn which is unramified outside T and of exponent divid-
ing pn+1, then the above isomorphism (with r = 0 and m = n + 1) implies

that H2,+
c,n,n(1) is canonically isomorphic to e0 ·Gal(Kab,n

n,T /Kn). These isomor-
phisms are compatible with the natural transition morphisms as n varies and
hence upon passing to the inverse limit (and using (10)) we obtain a canonical
isomorphism between H2

c (1 − r) and e0Y (Sp) ⊗Zp
Zp(−r) (endowed with the

diagonal action of Gal(K∞/k)), as required.
At this stage we need only verify that condition cii) of Proposition 4.1 is satisfied
by the specified data. However, this is so because coker(γ̂1−r) is isomorphic to
the constant pro-sheaf erZp(1− r)K and all cohomology groups of the complex
CK,1−r are finite. To explain the latter fact we recall that, for any given n and
r, the above displayed duality isomorphisms are compatible with the natural
transition morphisms as m varies and hence (in the case n = 0) induce upon
passing to the inverse limit a canonical isomorphism in D(A)

(11) CK,1−r
∼= R HomZp

(RΓ(Uét, erZp(r)K), Zp[−3]).

where the linear dual is endowed with the action of A which is induced by
the contragredient action of G. (The existence of such an isomorphism also
follows from the exactness of the central column of [8, diagram (114)] (where L
corresponds to our field K) and the fact that each complex RΓ∆(Lw, Zp(1−r))∗

which occurs in that diagram becomes acyclic upon multiplication by er.) Now,
after taking (11) into account, it is enough for us to prove that all of the groups
Hi(Uét, erZp(r)K) are finite and this follows, for example, as a consequence of
the description of [11, Lem. 3.2ii)] and the fact that er(K2r−i(OK,T )⊗Z Zp) is
finite for both i ∈ {1, 2}. ¤
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We next observe that (as can be verified by explicit computation)

detA(γ̂ | Qp(−r)) = (1 − u−r)eω−r + (er − eω−r )

= twr(vr · H ′(ur − 1))

where vr := u−re + (e0 − e), and also

detA(γ̂ | e0Y (Sp) ⊗Zp
Qp(−r))

=
∑

ρ∈G∧,p

(r)

detQc
p
(1 − γ | eρ(Y (Sp) ⊗Zp

Qc
p(−r)))eρ

=
∑

ρ∈G∧,p

(r)

detQc
p
(1 − u−rγ | eρωr (Y (Sp) ⊗Zp

Qc
p))eρ

= twr(v
′
r · hS(ur − 1)),

where v′
r :=

∑

ρ∈G∧,p

(0)
u−rdρeρ with dρ := dimQc

p
(eρ(Y (Sp) ⊗Zp

Qc
p)) for each

ρ ∈ G∧,p
(0) . We remark that in proving the last displayed equality one uses the

fact that for each κ ∈ G∧,p the Qc
p[γ]-module eκ(Y (Sp) ⊗Zp

Qc
p) is isomorphic

to H0(Gal(K∞/k∞),HomQc
p
(Qc

p · eκ, Y (Sp) ⊗Zp
Qc

p)).
Upon combining the last two displayed formulas with the result of Lemma 3,
the quasi-isomorphism CK,1−r

∼= RΓc(Uk,ét, coker(γ̂1−r)) and the equality of
Remark 6 we find that

Det−1
A

CK,1−r = twr(v
−1
r v′

r) twr(H
′(ur − 1)−1hS(ur − 1)) · A.

The required equality (9) is thus a consequence of the following observation.

Lemma 4. v−1
r v′

r is a unit of Zp[G]e0.

Proof. We start by making a general observation. For this we set B := Zp[G]e0,
and we let f1(T ) and f2(T ) denote any elements of B[[T ]] which satisfy
µB(f1(T )) = µB(f2(T )) = 0. For i = 1, 2 we write f∗

i (T ) and Ui(T ) for
the distinguished polynomial and unit series which occur in the product de-
composition of fi(T ) afforded by Proposition 2.1 (with A = B). We also set
fi,r(T ) := fi(u

r(1 + T ) − 1) ∈ B[[T ]] and, observing that µB(fi,r(T )) = 0, we
write Ui,r(T ) for the unit series which occurs in the product decomposition of
fi,r(T ) afforded by Proposition 2.1. Then, by explicit computation, one verifies
that the element (U1(u

r − 1)U2,r(0))(U2(u
r − 1)U1,r(0))−1 of B

× is equal to
∑

ρ∈G∧,p

(0)
u−rδρeρ where δρ := deg(ρ(f∗

1 (T ))) − deg(ρ(f∗
2 (T ))).

We now apply this observation with f1(T ) and f2(T ) equal to the series GS and
H which occur in Hypothesis (EPS). We observe that, in this case, the equality
(3) implies that for each ρ ∈ G∧,p

(0) one has deg(ρ(G∗
S)) − deg(ρ(H)) = d′ρ

where here d′ρ := dρ − 1 if ρ is trivial, and d′ρ := dρ otherwise. From the
general observation made above we may therefore deduce that the element

v−1
r v′

r =
∑

ρ∈G∧,p

(0)
u−rd′

ρeρ belongs to B
×, as claimed. ¤
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This completes our proof of Theorem 5.2. ¤

We next use Theorem 5.2 to prove a result concerning the element Ωr−1(K/k)
of Pic(Z[G]) which is defined by Chinburg, Kolster, Pappas and Snaith in [13,
§3]. We recall that it has been conjectured by the authors of loc. cit. that
Ωr−1(K/k) = 0.
We write ρΣ,r for the natural scalar extension morphism Pic(Z[G]) →
Pic(ZΣ[G]er). With R denoting either Z or Q we also write ρ# for the R-
linear involution of R[G] which is induced by sending each element of G to its
inverse.

Corollary 1. Assume that (if k 6= Q, then) Hypothesis (µp) is valid for
K/k at each prime p /∈ Σ. Then for each integer r > 1 one has an equality
ρΣ,r(Ωr−1(K/k)) = 0.

Proof. The key point we use here is a result of Flach and the first named author.
Indeed, the result of [8, Thm. 4.1] implies that ρΣ,r(Ωr−1(K/k)) is equal to the
class of the invertible ZΣ[G]er-submodule of Q[G]er which is defined by means
of the intersection

(
⋂

p/∈Σ

Det−1
Zp[G]er

RΓc(Uk,ét, erZp(1 − r)K)) ⊗Z[G],ρ#
Z[G].

(To see this one must recall that the normalisation of the determinant functor
which is used in [8] is the inverse of that used here.)
On the other hand, Theorem 5.2 implies that the above intersection is equal
to the free ZΣ[G]er-module which is generated by the element ρ#(LS(1 − r)).
Hence one has ρΣ,r(Ωr−1(K/k)) = 0, as required. ¤

Before stating our final result we introduce a little more notation. If V is any
finite set of places of k, then for each rational prime ` we let V` denote the
union of V and the set of places of k which are either archimedean or of residue
characteristic `. We set Z′ := Z[12 ] and we define a Z′[G]-module by setting

H2(OK,V , Z′(r)) :=
⊕

` 6=2

H2(Spec(OK,V`
)ét, Z`(r)).

We let Σ′ denote the set {2}, respectively Σ, if k = Q, respectively k 6= Q, and
we write ZΣ′ for the subring of Q which is generated by the inverses of each
element of Σ′. We also write µQc for the torsion subgroup of Qc×.

Corollary 2. Assume that (if k 6= Q, then) Hypothesis (µp) is valid for K/k
at each prime p /∈ Σ. Then for each integer r > 1 one has an equality

ρ#(LS(1 − r)) · AnnZ[G](H
0(K,µ⊗r

Qc )) ⊗Z ZΣ′

= er · FitZ′[G](H
2(OK,S , Z′(r))) ⊗Z′ ZΣ′ .

Remark 8. i) If T is any subset of S, then the localisation sequence of étale
cohomology induces a natural inclusion of Z′[G]-modules H2(OK,T , Z′(r)) ⊆
H2(OK,S , Z′(r)). From this we may deduce that AnnZ′[G](H

2(OK,S , Z′(r))) ⊆
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AnnZ′[G](H
2(OK,T , Z′(r))) and also if, for example, G is cyclic, that

FitZ′[G](H
2(OK,S , Z′(r))) ⊆ FitZ′[G](H

2(OK,T , Z′(r))). In particular, if Σ′ =
{2} (cf. Remark 7i)), and we write OK in place of OK,∅ (which, in terms of our
current notation, denotes the ring of algebraic integers in K), then the equality
of Corollary 2 implies that

(12) ρ#(LS(1− r)) ·AnnZ[G](H
0(K,µ⊗r

Qc ))⊗Z Z′ ⊆ AnnZ′[G](H
2(OK , Z′(r))),

and also if, for example, G is cyclic, that

ρ#(LS(1 − r)) · AnnZ[G](H
0(K,µ⊗r

Qc )) ⊗Z Z′ ⊆ FitZ′[G](H
2(OK , Z′(r))).

We observe that if (as has been famously conjectured by Quillen and Licht-
enbaum) the Z′[G]-module H2(OK , Z′(r)) is isomorphic to K2r−2(OK) ⊗Z Z′,
then the inclusion (12) is finer than (the image under −⊗Z Z′ of) the inclusion

#H0(Q, µ⊗r
Qc )ρ#(LS(1 − r)) · AnnZ[G](H

0(K,µ⊗r
Qc )) ⊆ AnnZ[G](K2r−2(OK))

which was conjectured in the case k = Q by Coates and Sinnott in [14, Conj. 1].
We also recall that if k = Q, r is even and K is any abelian extension of
Q, then Kurihara has recently used different methods to explicitly compute
FitZ′[G](H

2(OK , Z′(r))) in terms of Stickelberger elements [28, Cor. 12.5 and
Rem. 12.6].
ii) In the case that k = Q and the conductor of K/k is a prime power, the image
under multiplication by er −eωr of the equality of Corollary 2 has already been
proved by Cornacchia and Østvær in [16, Thm. 1.2].
iii) If r is even, then the equality of Corollary 2 can be re-expressed as an
equality in which K is replaced by K+ and the idempotent factor er is omitted.
In a recent preprint [35], Snaith uses results from [11] to prove a weaker version
of the equality of Corollary 2 in this context. More precisely, Snaith’s results
[loc. cit., Th. 1.6, Th. 5.2] assume that K is totally real, that r is even and
that Hypothesis (µp) is valid for K/k at all odd primes p, and involve chains of
inclusions rather than a precise specification of Fitting ideals (see also Remark
9 in this regard).
iv) In this remark we fix an odd prime p, an embedding j : Qc → Qc

p and a
character χ ∈ G∧

(r). We set O := Zp(j ◦χ) and we write lthO(M) for the length

of any finite O-module M . We let Kχ denote the (cyclic) extension of Q which
corresponds to ker(χ). Then the image under the functor − ⊗Z′[G] O of the
equality of Corollary 2 with k = Q and K = Kχ is equivalent to an equality

valO(j(LS(1 − r, χ−1))) =

lthO(H2(OK,S , Z′(r)) ⊗Z′[G] O) − lthO(H0(K,µ⊗r
Qc ) ⊗Z[G] O).

In addition, since in this case G is cyclic, for any finite Z′[G]-module N one
has lthO(N ⊗Z′[G] O) = lthO(HomZ′[G](O, N)) and so the previous displayed
equality provides a natural analogue of the main result (Thm. II.1) of Solomon
in [36] concerning the relation between generalised Bernoulli numbers and the
structure of certain ideal class groups. (The first named author is very grateful
to Masato Kurihara for a most helpful conversation in this regard.)

Documenta Mathematica · Extra Volume Kato (2003) 157–185



Values of L-Functions at Negative Integers 181

Proof of Corollary 2. We now fix a prime p /∈ Σ′ and we assume that Hypothesis
(µp) is valid for K/k (as is known in the case k = Q). We set A := Zp[G]er,
µ(r) := H0(K,µ⊗r

Qc ) ⊗Z Zp and C := RΓ(Uk,ét, erZp(r)K).
In the sequel we shall say that a commutative Zp-algebra Λ is ‘relatively Goren-
stein over Zp’ if HomZp

(Λ, Zp) (endowed with the natural action of Λ) is a free
Λ-module of rank one.
For each bounded object X of D(A) we set X∗ := R HomZp

(X, Zp) which we
endow with the action of A which is induced by the contragredient action of G.
We observe that A is relatively Gorenstein over Zp and hence that X∗ belongs
to Dp(A), respectively Dp,f(A), if and only if X belongs to Dp(A), respectively
Dp,f(A). Now for any A-module X there exists a canonical isomorphism be-
tween the A-modules HomA(X,A)⊗Zp[G],ρ#

Zp[G] and HomZp
(X, Zp). This in

turn implies that for any object X of Dp(A) the lattice Det−1
A

X∗[−3] identifies

canonically with (Det−1
A

X)⊗Zp[G],ρ#
Zp[G]. Upon noting that (11) induces an

isomorphism in Dp,f(A) of the form C ∼= RΓc(Uk,ét, erZp(1 − r)K)∗[−3], and
recalling that the equality (8) is known to be valid as a consequence of Theorem
5.2 in the case k 6= Q and as a consequence of [11, Cor. 8.1] in the case k = Q,
we deduce that Det−1

A
C = ρ#(LS(1 − r)) · A. The equality of Corollary 2 will

therefore follow if we can show that

(13) Det−1
A

C · AnnA(µ(r)) = FitA(H2(C)).

We next observe that, since C belongs to Dp,f(A) and is acyclic outside degrees
1 and 2, there exists an exact sequence of A-modules

(14) 0 → H1(C) → Q
d−→ Q′ → H2(C) → 0

which is such that both Q and Q′ are finite and of projective dimension at most
1 and there exists an isomorphism ι in Dp,f(A) between C and the complex

Q
d−→ Q′ (where the modules are placed in degrees 1 and 2, and the cohomology

is identified with H1(C) and H2(C) by using the maps in (14)) for which Hi(ι)
is the identity map in each degree i. This implies that FitA(Q) and FitA(Q′)
are invertible ideals of A and that Det−1

A
C = FitA(Q)−1 FitA(Q′).

Lemma 5. Let R be any reduced commutative Zp-algebra which is finitely gen-
erated, free and relatively Gorenstein over Zp. If

0 → A −→ P −→ P ′ −→ A′ → 0

is any exact sequence of finite R-modules in which P and P ′ are both of pro-
jective dimension at most 1 over R, then FitR(P ) and FitR(P ′) are principal
ideals of R and one has an equality

FitR(A∨) FitR(P ′) = FitR(P ) FitR(A′),

where A∨ denotes the Pontryagin dual HomZp
(A, Qp/Zp) (endowed with the

natural action of R).

Proof. This is almost covered by the result of [15, Prop. 6]; however, the latter
is stated only for rings R of the form O[G] with G a finite abelian p-group,
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and involves FitR(A) rather than FitR(A∨). In addition, the second named
author would like to take this opportunity to point out that the argument in
loc. cit. makes the assumption that G (which is written as P in loc. cit.) is
cyclic, which is unfortunately not stated explicitly at the appropriate place,
and that the equality of [15, Prop. 6] does not appear to hold in general. We
will therefore now quickly adapt the arguments of [15, Prop. 6] to better suit
our present purpose.
We first observe that, since R is semilocal, the Fitting ideal of any finite R-
module P which is of projective dimension at most 1 is principal, being gener-

ated by the determinant of α in any presentation Rn α−→ Rn → P → 0. We may
find the following data, proceeding exactly as in [15, p.456f.]: a nonzerodivisor
f of R (it is in fact always possible to take f to be a large enough power of

p); a natural number n; short exact sequences 0 → Q → Ã → A → 0 and

0 → A′ → Ã′ → Q′ → 0 in which Q and Q′ are both finite and of projective
dimension at most 1, and a four term exact sequence

0 → Ã → (R/fR)n → (R/fR)n → Ã′ → 0.

In a similar way one obtains the equalities

FitR(P ) FitR(Q) = fnR = FitR(P ′) FitR(Q′).

Now R/fR is Gorenstein of dimension zero, that is: (R/fR)∨ ∼= R/fR as R-
modules. Therefore the argument in loc. cit. starting with equation (4) applies
to give an equality

FitR(Ã′) = FitR(Ã∨).

(Note that we do not claim that FitR(Ã∨) = FitR(Ã), as was done in loc. cit.)

Applying the result of [15, Lem. 3] to the sequence 0 → A′ → Ã′ → Q′ → 0,

respectively to the Pontryagin dual of the sequence 0 → Q → Ã → A → 0, we
obtain an equality

FitR(Ã′) = FitR(A′) FitR(Q′),

respectively

FitR(Ã∨) = FitR(A∨) FitR(Q∨).

Lemma 6. FitR(Q∨) = FitR(Q).

Proof. Since Q is finite and of projective dimension at most 1 there exists an
exact sequence of R-modules of the form

0 → Rn α−→ Rn → Q → 0.

Now HomZp
(Q, Zp) = 0 and Ext1Zp

(Q, Zp) is isomorphic to Q∨ (as Q is fi-

nite), Ext1Zp
(Rn, Zp) = 0 (as R is Zp-free) and HomZp

(Rn, Zp) is isomorphic

to Rn (as R is relatively Gorenstein over Zp). From the long exact sequence

of Exti
Zp

(−, Zp)-groups which is associated to the above sequence we therefore
obtain a further exact sequence of R-modules

0 → Rn αt

−→ Rn → Q∨ → 0,
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where αt denotes the transpose of α. By using the two displayed sequences we
now compute that FitR(Q) = det(α)R = det(αt)R = FitR(Q∨), as claimed.

¤

The equality of Lemma 5 now follows directly upon combining the equality of
Lemma 6 with the four displayed equalities which immediately precede it. ¤

Upon applying Lemma 5 with R = A (which is both reduced and relatively
Gorenstein over Zp) to the exact sequence (14) we obtain an equality

Det−1
A

C · FitA(H1(C)∨) = FitA(Q)−1 FitA(Q′) FitA(H1(C)∨)

= FitA(H2(C)).

To deduce the required equality (13) from this equality we now simply observe
that the A-module H1(C)∨ is isomorphic to the cyclic A-module µ(r)∨, and
hence that FitA(H1(C)∨) = FitA(µ(r)∨) = AnnA(µ(r)∨) = AnnA(µ(r)).
This completes our proof of Corollary 2. ¤

Remark 9. Let Γ be any finite abelian group and ` any rational prime.
If M is any finite Z`[Γ]-module, then AnnZ`[Γ](M) = AnnZ`[Γ](M

∨) and

AnnZ`[Γ](M)n(M) ⊆ FitZ`[Γ](M) ⊆ AnnZ`[Γ](M) where n(M) denotes the min-
imal number of elements required to generate M over Z`[Γ]. Hence, if X
is any object of Dp,f(Z`[Γ]) which is acyclic outside degrees 0 and 1 and
ti ∈ AnnZ`[Γ](H

i(X)) for i ∈ {0, 1}, then (since Z`[Γ] is both reduced and
relatively Gorenstein over Z`) the equality of Lemma 5 implies that

t
n(H0(X)∨)
0 · DetZ`[Γ] X ⊆ FitZ`[Γ](H

1(X))

and also

t
n(H1(X))
1 · Det−1

Z`[Γ] X ⊆ FitZ`[Γ](H
0(X)∨).

In particular, if n(H0(X)∨) = n(H0(X)) (which, for example, is the case when
H0(X) = H0(K,µ⊗r

Qc ) ⊗Z Z`), then Lemma 5 refines the main algebraic result

(Thm. 2.4) of Snaith in [35].
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