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Abstract. The goal of this paper is to prove that oniveau spetralsequenes are motivially funtorial for all ohomology theories thatould be fatorized through motives. To this end the motif of a smoothvariety over a ountable �eld k is deomposed (in the sense of Post-nikov towers) into twisted (o)motives of its points; this is generalizedto arbitrary Voevodsky's motives. In order to study the funtorial-ity of this onstrution, we use the formalism of weight strutures(introdued in the previous paper). We also develop this formalism(for general triangulated ategories) further, and relate it with a newnotion of a nie duality (pairing) of (two distint) triangulated ate-gories; this piee of homologial algebra ould be interesting for itself.We onstrut a ertain Gersten weight struture for a triangulatedategory of omotives that ontains DM eff
gm as well as (o)motives offuntion �elds over k. It turns out that the orresponding weight spe-tral sequenes generalize the lassial oniveau ones (to ohomology ofarbitrary motives). When a ohomologial funtor is represented by a

Y ∈ ObjDM eff
− , the orresponding oniveau spetral sequenes anbe expressed in terms of the (homotopy) t-trunations of Y ; this ex-tends to motives the seminal oniveau spetral sequene omputationsof Bloh and Ogus.We also obtain that the omotif of a smooth onneted semi-loalsheme is a diret summand of the omotif of its generi point; o-motives of funtion �elds ontain twisted omotives of their residue�elds (for all geometri valuations). Hene similar results hold for anyohomology of (semi-loal) shemes mentioned.2010 Mathematis Subjet Classi�ation: 14F42, 14C35, 18G40,19E15, 14F20, 14C25, 14C35.Keywords and Phrases: Motives, oniveau, weight struture, t-struture, triangulated ategory, semi-loal sheme, ohomology.
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IntroductionLet k be our perfet base �eld.We reall two very important statements onerning oniveau spetral se-quenes. The �rst one is the alulation of E2 of the oniveau spetral se-quene for ohomologial theories that satisfy ertain onditions; see [5℄ and[8℄. It was proved by Voevodsky that these onditions are ful�lled by any the-ory H represented by a motivi omplex C (i.e. an objet of DM eff

− ; see [25℄);then the E2-terms of the spetral sequene ould be alulated in terms of the(homotopy t-struture) ohomology of C. This result implies the seond one:
H-ohomology of a smooth onneted semi-loal sheme (in the sense of �4.4of [26℄) injets into the ohomology of its generi point; the latter statementwas extended to all (smooth onneted) primitive shemes by M. Walker.The main goal of the present paper is to onstrut (motivially) funtorialoniveau spetral sequenes onverging to ohomology of arbitrary motives;there should exist a desription of these spetral sequenes (starting from E2)that is similar to the desription for the ase of ohomology of smooth varieties(mentioned above).A related objetive is to larify the nature of the injetivity result mentioned;it turned our that (in the ase of a ountable k) the ohomology of a smoothonneted semi-loal (more generally, primitive) sheme is atually a diretsummand of the ohomology of its generi point. Moreover, the (twisted) o-homology of a residue �eld of a funtion �eld K/k (for any geometri valuationof K) is a diret summand of the ohomology of K. We atually prove morein �4.3.
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36 M. V. BondarkoOur main homologial algebra tool is the theory of weight strutures (in trian-gulated ategories; we usually denote a weight struture by w) introdued inthe previous paper [6℄. In this artile we develop it further; this part of thepaper ould be interesting also to readers not aquainted with motives (andould be read independently from the rest of the paper). In partiular, westudy nie dualities (ertain pairings) of (two distint) triangulated ategories;it seems that this subjet was not previously onsidered in the literature at all.This allows us to generalize the onept of adjaent weight and t-strutures (t)in a triangulated ategory (developed in �4.4 of [6℄): we introdue the notionof orthogonal strutures in (two possibly distint) triangulated ategories. If Φis a nie duality of triangulated C,D, X ∈ ObjC, Y ∈ ObjD, t is orthogonalto w, then the spetral sequene S onverging to Φ(X,Y ) that omes fromthe t-trunations of Y is naturally isomorphi (starting from E2) to the weightspetral sequene T for the funtor Φ(−, Y ). T omes from weight trunations of
X (note that those generalize stupid trunations for omplexes). Our approahyields an abstrat alternative to the method of omparing similar spetral se-quenes using �ltered omplexes (developed by Deligne and Paranjape, andused in [22℄, [11℄, and [6℄). Note also that we relate t-trunations in D withvirtual t-trunations of ohomologial funtors on C. Virtual t-trunations forohomologial funtors are de�ned for any (C,w) (we do not need any trian-gulated 'ategories of funtors' or t-strutures for them here); this notion wasintrodued in �2.5 of [6℄ and is studied further in the urrent paper.Now, we explain why we really need a ertain new ategory of omotives (on-taining Voevodsky's DM eff

gm ), and so the theory of adjaent strutures (i.e.orthogonal strutures in the ase C = D, Φ = C(−,−)) is not su�ient for ourpurposes. It was already proved in [6℄ that weight strutures provide a power-ful tool for onstruting spetral sequenes; they also relate the ohomology ofobjets of triangulated ategories with t-strutures adjaent to them. Unfortu-nately, a weight struture orresponding to oniveau spetral sequenes annotexist on DM eff
− ⊃ DM eff

gm sine these ategories do not ontain (any) motivesfor funtion �elds over k (as well as motives of other shemes not of �nite typeover k; still f. Remark 4.5.4(5)). Yet these motives should generate the heartof this weight struture (sine the objets of this heart should orepresent o-variant exat funtors from the ategory of homotopy invariant sheaves withtransfers to Ab).So, we need a ategory that would ontain ertain homotopy limits of objets of
DM eff

gm . We sueed in onstruting a triangulated ategory D (of omotives)that allows us to reah the objetives listed. Unfortunately, in order to ontrolmorphisms between homotopy limits mentioned we have to assume k to beountable. In this ase there exists a large enough triangulated ategory Ds(DM eff
gm ⊂ Ds ⊂ D) endowed with a ertain Gersten weight struture w; itsheart is 'generated' by omotives of funtion �elds. w is (left) orthogonal to thehomotopy t-struture on DM eff

− and (so) is losely onneted with oniveauspetral sequenes and Gersten resolutions for sheaves. Note still: we need kto be ountable only in order to onstrut the Gersten weight struture. So
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Coniveau Spectral Sequences for Motives 37those readers who would just want to have a ategory that ontains reasonablehomotopy limits of geometri motives (inluding omotives of funtion �eldsand of smooth semi-loal shemes), and onsider ohomology theories for thisategory, may freely ignore this restrition. Moreover, for an arbitrary k onean still pass to a ountable homotopy limit in the Gysin distinguished triangle(as in Proposition 3.6.1). Yet for an unountable k ountable homotopy limitsdon't seem to be interesting; in partiular, they de�nitely do not allow toonstrut a Gersten weight struture (in this ase).So, we onsider a ertain triangulated ategory D ⊃ DM eff
gm that (roughly!)'onsists of' (ovariant) homologial funtors DM eff

gm → Ab. In partiular,objets of D de�ne ovariant funtors SmV ar → Ab (whereas another 'big'motivi ategory DM eff
− de�ned by Voevodsky is onstruted from ertainsheaves i.e. ontravariant funtors SmV ar → Ab; this is also true for allmotivi homotopy ategories of Voevodsky and Morel). Besides, DM eff

gm yieldsa family of (weak) oompat ogenerators for D. This is why we all objets of
D omotives. Yet note that the embedding DM eff

gm → D is ovariant (atually,we invert the arrows in the orresponding 'ategory of funtors' in order tomake the Yoneda embedding funtor ovariant), as well as the funtor thatsends a smooth sheme U (not neessarily of �nite type over k) to its omotif(whih oinides with its motif if U is a smooth variety).We also reall the Chow weight struture w′
Chow introdued in [6℄; the orre-sponding Chow-weight spetral sequenes are isomorphi to the lassial (i.e.Deligne's) weight spetral sequenes when the latter are de�ned. w′

Chow ouldbe naturally extended to a weight struture wChow for D. We always havea natural omparison morphism from the Chow-weight spetral sequene for
(H,X) to the orresponding oniveau one; it is an isomorphism for any bira-tional ohomology theory. We onsider the ategory of birational omotives
Dbir i.e. the loalization of D by D(1) (that ontains the ategory of birationalgeometri motives introdued in [15℄; though some of the results of this unpub-lished preprint are erroneous, this makes no di�erene for the urrent paper).It turns our that w and wChow indue the same weight struture w′

bir on Dbir .Conversely, starting from w′
bir one an 'glue' (from slies) the weight struturesindued by w and wChow on D/D(n) for all n > 0. Moreover, these struturesbelong to an interesting family of weight strutures indexed by a single integralparameter! It ould be interesting to onsider other members of this family. Werelate brie�y these observations with those of A. Beilinson (in [3℄ he proposeda 'geometri' haraterization of the onjetural motivi t-struture).Now we desribe the onnetion of our results with related results of F. Deglise(see [9℄, [10℄, and [11℄; note that the two latter papers are not published at themoment yet). He onsiders a ertain ategory of pro-motives whose objetsare naive inverse limits of objets of DM eff

gm (this ategory is not triangulated,though it is pro-triangulated in a ertain sense). This approah allows to ob-tain (in a universal way) lassial oniveau spetral sequenes for ohomologyof motives of smooth varieties; Deglise also proves their relation with the homo-topy t-trunations for ohomology represented by an objet of DM eff
− . Yet for
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38 M. V. Bondarkoohomology theories not oming from motivi omplexes, this method does notseem to extend to (spetral sequenes for ohomology of) arbitrary motives;motivi funtoriality is not obvious also. Moreover, Deglise didn't prove thatthe pro-motif of a (smooth onneted) semi-loal sheme is a diret summandof the pro-motif of its generi point (though this is true, at least in the ase ofa ountable k). We will tell muh more about our strategy and on the relationof our results with those of Deglise in �1.5 below. Note also that our methodsare muh more onvenient for studying funtoriality (of oniveau spetral se-quenes) than the methods applied by M. Rost in the related ontext of ylemodules (see [24℄ and �4 of [10℄).The author would like to indiate the interdependenies of the parts of thistext (in order to simplify reading for those who are not interested in all ofit). Those readers who are not (very muh) interested in (oniveau) spetralsequenes, may avoid most of setion 2 and read only ��2.1 �2.2 (Remark 2.2.2ould also be ignored). Moreover, in order to prove our diret summands results(i.e. Theorem 4.2.1, Corollary 4.2.2, and Proposition 4.3.1) one needs only asmall portion of the theory of weight strutures; so a reader very relutantto study this theory may try to derive them from the results of �3 'by hand'without reading �2 at all. Still, for motivi funtoriality of oniveau spetralsequenes and �ltrations (see Proposition 4.4.1 and Remark 4.4.2) one needsmore of weight strutures. On the other hand, those readers who are moreinterested in the (general) theory of triangulated ategories may restrit theirattention to ��1.1� 1.2 and �2; yet note that the rest of the paper desribes indetail an important (and quite non-trivial) example of a weight struture whihis orthogonal to a t-struture with respet to a nie duality (of triangulatedategories). Moreover, muh of setion �4 ould also be extended to a generalsetting of a triangulated ategory satisfying properties similar to those listedin Proposition 3.1.1; yet the author hose not to do this in order to make thepaper somewhat less abstrat.Now we list the ontents of the paper. More details ould be found at thebeginnings of setions.We start �1 with the reolletion of t-strutures, idempotent ompletions, andPostnikov towers for triangulated ategories. We desribe a method for extend-ing ohomologial funtors from a full triangulated subategory to the whole
C (after H. Krause). Next we reall some results and de�nitions for Voevod-sky's motives (this inludes ertain properties of Tate twists for motives andohomologial funtors). Lastly, we de�ne pro-motives (following Deglise) andompare them with our triangulated ategory D of omotives. This allows toexplain our strategy step by step.�2 is dediated to weight strutures. First we remind the basis of this theory(developed in �[6℄). Next we reall that a ohomologial funtor H from an(arbitrary triangulated ategory) C endowed with a weight struture w ouldbe 'trunated' as if it belonged to some triangulated ategory of funtors (from
C) that is endowed with a t-struture; we all the orresponding piees of H itsvirtual t-trunations. We reall the notion of a weight spetral sequene (intro-
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Coniveau Spectral Sequences for Motives 39dues in ibid.). We prove that the derived exat ouple for a weight spetralsequene ould be desribed in terms of virtual t-trunations. Next we intro-due the de�nition a (nie) duality Φ : Cop×D → A (here D is triangulated, Ais abelian), and of orthogonal weight and t-strutures (with respet to Φ). If wis orthogonal to t, then the virtual t-trunations (orresponding to w) of fun-tors of the type Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via
Φ' by the atual t-trunations of Y (orresponding to t). Hene if w and t areorthogonal with respet to a nie duality, the weight spetral sequene onverg-ing to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is naturally isomorphi (startingfrom E2) to the one oming from t-trunations of Y . We also mention somealternatives and predeessors of our results. Lastly we ompare weight deom-positions, virtual t-trunations, and weight spetral sequenes orrespondingto distint weight strutures (in possibly distint triangulated ategories).In �3 we desribe the main properties of D ⊃ DM eff

gm . The exat hoie of D isnot important for most of this paper; so we just list the main properties of D(and its ertain enhanement D′) in �3.1. We onstrut D using the formalismof di�erential graded modules in �5 later. Next we de�ne omotives for (ertain)shemes and ind-shemes of in�nite type over k (we all them pro-shemes). Wereall the notion of a primitive sheme. All (smooth) semi-loal pro-shemesare primitive; primitive shemes have all nie 'motivi' properties of semi-loalpro-shemes. We prove that there are no D-morphisms of positive degreesbetween omotives of primitive shemes (and also between ertain Tate twistsof those). In �3.6 we prove that the Gysin distinguished triangle for motivesof smooth varieties (in DM eff
gm ) ould be naturally extended to omotives ofpro-shemes. This allows to onstrut ertain Postnikov towers for omotivesof pro-shemes; these towers are losely related with lassial oniveau spetralsequenes for ohomology.�4 is entral in this paper. We introdue a ertain Gersten weight struturefor a ertain triangulated ategory Ds (DM eff

gm ⊂ Ds ⊂ D). We prove thatPostnikov towers onstruted in �3.6 are atually weight Postnikov towers withrespet to w. We dedue our (interesting) results on diret summands of omo-tives of funtion �elds. We translate these results to ohomology in the obviousway.Next we prove that weight spetral sequenes for the ohomology of X (orre-sponding to the Gersten weight struture) are naturally isomorphi (startingfrom E2) to the lassial oniveau spetral sequenes if X is the motif of asmooth variety; so we all these spetral sequene oniveau ones in the generalase also. We also prove that the Gersten weight struture w (on Ds) is or-thogonal to the homotopy t-struture t on DM eff
− (with respet to a ertain

Φ). It follows that for an arbitrary X ∈ ObjDM s, for a ohomology theoryrepresented by Y ∈ ObjDM eff
− (any hoie of) the oniveau spetral sequenethat onverges to Φ(X,Y ) ould be desribed in terms of the t-trunations of

Y (starting from E2).We also de�ne oniveau spetral sequenes for ohomology of motives overunountable base �elds as the limits of the orresponding oniveau spetral
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40 M. V. Bondarkosequenes over ountable perfet sub�elds of de�nition. This de�nition is om-patible with the lassial one; so we establish motivi funtoriality of oniveauspetral sequenes in this ase also.We also prove that the Chow weight struture for DM eff
gm (introdued in �6 of[6℄) ould be extended to a weight struture wChow on D. The orrespondingChow-weight spetral sequenes are isomorphi to the lassial (i.e. Deligne's)ones when the latter are de�ned (this was proved in [6℄ and [7℄). We ompareoniveau spetral sequenes with Chow-weight ones: we always have a ompar-ison morphism; it is an isomorphism for a birational ohomology theory. Weonsider the ategory of birational omotives Dbir i.e. the loalization of D by

D(1). w and wChow indue the same weight struture w′
bir on Dbir; one almostan glue w and wChow from opies of w′

bir (one may say that these weightstrutures ould almost be glued from the same slies with distint shifts).�5 is dediated to the onstrution of D and the proof of its properties. Weapply the formalism of di�erential graded ategories, modules over them, and ofthe orresponding derived ategories. A reader not interested in these detailsmay skip (most of) this setion. In fat, the author is not sure that thereexists only one D suitable for our purposes; yet the hoie of D does not a�etohomology of (omotives of) pro-shemes and of Voevodsky's motives.We also explain how the di�erential graded modules formalism an be used tode�ne base hange (extension and restrition of salars) for omotives. Thisallows to extend our results on diret summands of omotives (and ohomology)of funtion �elds to pro-shemes obtained from them via base hange. We alsode�ne tensoring of omotives by motives (in partiular, this yields Tate twistfor D), as well as a ertain ointernal Hom (i.e. the orresponding left adjointfuntor).�6 is dediated to properties of omotives that are not (diretly) related withthe main results of the paper; we also make several omments. We reall thede�nition of the additive ategory D
gen of generi motives (studied in [9℄). Weprove that the exat onservative weight omplex funtor orresponding to w(that exists by the general theory of weight strutures) ould be modi�ed toan exat onservative WC : Ds → Kb(Dgen). Next we prove that a ofun-tor Hw → Ab is representable by a homotopy invariant sheaf with transferswhenever is onverts all produts into diret sums.We also note that our theory ould be easily extended to (o)motives with o-e�ients in an arbitrary ring. Next we note (after B. Kahn) that reasonablemotives of pro-shemes with ompat support do exist in DM eff

− ; this obser-vation ould be used for the onstrution of an alternative model for D. Lastlywe desribe whih parts of our argument do not work (and whih do work) inthe ase of an unountable k.A aution: the notion of a weight struture is quite a general formalism fortriangulated ategories. In partiular, one triangulated ategory an supportseveral distint weight strutures (note that there is a similar situation with
t-strutures). In fat, we onstrut an example for suh a situation in thispaper (ertainly, muh simpler examples exist): we de�ne the Gersten weight
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Coniveau Spectral Sequences for Motives 41struture w for Ds and a Chow weight struture wChow for D. Moreover, weshow in �4.9 that these weight strutures are ompatible with ertain weightstrutures de�ned on the loalizations D/D(n) (for all n > 0). These two seriesof weight strutures are de�nitely distint: note that w yields oniveau spetralsequenes, whereas wChow yields Chow-weight spetral sequenes, that general-ize Deligne's weight spetral sequenes for étale and mixed Hodge ohomology(see [6℄ and [7℄). Also, the weight omplex funtor onstruted in [7℄ and [6℄is quite distint from the one onsidered in �6.1 below (even the targets of thefuntors mentioned are ompletely distint).The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for theirinteresting remarks. The author gratefully aknowledges the support fromDeligne 2004 Balzan prize in mathematis. The work is also supported byRFBR (grants no. 08-01-00777a and 10-01-00287a).
Notation. For a ategory C, A,B ∈ ObjC, we denote by C(A,B) the set of
A-morphisms from A into B.For ategories C,D we write C ⊂ D if C is a full subategory of D.For additive C,D we denote by AddFun(C,D) the ategory of additive funtorsfrom C toD (we will ignore set-theoreti di�ulties here sine they do not a�etour arguments seriously).
Ab is the ategory of abelian groups. For an additive B we will denote by B∗the ategory AddFun(B,Ab) and by B∗ the ategory AddFun(Bop, Ab). Notethat both of these are abelian. Besides, Yoneda's lemma gives full embeddingsof B into B∗ and of Bop into B∗ (these send X ∈ ObjB to X∗ = B(−, X) andto X∗ = B(X,−), respetively).For a ategory C, X, Y ∈ ObjC, we say that X is a retrat of Y if idX ouldbe fatorized through Y . Note that when C is triangulated or abelian then
X is a retrat of Y if and only if X is its diret summand. For any D ⊂ Cthe subategory D is alled Karoubi-losed in C if it ontains all retrats ofits objets in C. We will all the smallest Karoubi-losed subategory of Containing D the Karoubization of D in C; sometimes we will use the sameterm for the lass of objets of the Karoubization of a full subategory of C(orresponding to some sublass of ObjC).For a ategory C we denote by Cop its opposite ategory.For an additive C an objet X ∈ ObjC is alled oompat if C(

∏

i∈I Yi, X) =
⊕

i∈I C(Yi, X) for any set I and any Yi ∈ ObjC suh that the produt exists(here we don't need to demand all produts to exist, though they atually willexist below).For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC wewill write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we will denoteby D⊥ the lass
{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.Sometimes we will denote by D⊥ the orresponding full subategory of C.Dually, ⊥D is the lass {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}. This onvention is
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42 M. V. Bondarkoopposite to the one of �9.1 of [21℄.In this paper all omplexes will be ohomologial i.e. the degree of all di�eren-tials is +1; respetively, we will use ohomologial notation for their terms.For an additive ategory B we denote by C(B) the ategory of (unbounded)omplexes over it. K(B) will denote the homotopy ategory of omplexes. If
B is also abelian, we will denote by D(B) the derived ategory of B. We willalso need ertain bounded analogues of these ategories (i.e. Cb(B), Kb(B),
D−(B)).
C and D will usually denote some triangulated ategories. We will use theterm 'exat funtor' for a funtor of triangulated ategories (i.e. for a for afuntor that preserves the strutures of triangulated ategories).
A will usually denote some abelian ategory. We will all a ovariant additivefuntor C → A for an abelian A homologial if it onverts distinguished tri-angles into long exat sequenes; homologial funtors Cop → A will be alledohomologial when onsidered as ontravariant funtors C → A.
H : Cop → A will always be additive; it will usually be ohomologial.For f ∈ C(X,Y ), X,Y ∈ ObjC, we will all the third vertex of (any) distin-guished triangle X

f
→ Y → Z a one of f . Note that di�erent hoies of onesare onneted by non-unique isomorphisms, f. IV.1.7 of [13℄. Besides, in C(B)we have anonial ones of morphisms (see setion �III.3 of ibid.).We will often speify a distinguished triangle by two of its morphisms.When dealing with triangulated ategories we (mostly) use onventions andauxiliary statements of [13℄. For a set of objets Ci ∈ ObjC, i ∈ I, we willdenote by 〈Ci〉 the smallest stritly full triangulated subategory ontaining all

Ci; for D ⊂ C we will write 〈D〉 instead of 〈ObjD〉.We will say that Ci generate C if C equals 〈Ci〉. We will say that Ci weaklyogenerate C if for X ∈ ObjC we have C(X,Ci[j]) = {0} ∀i ∈ I, j ∈ Z =⇒
X = 0 (i.e. if ⊥{Ci[j]} ontains only zero objets).We will all a partially ordered set L a (�ltered) projetive system if for any
x, y ∈ L there exists some maximum i.e. a z ∈ L suh that z ≥ x and z ≥ y. Byabuse of notation, we will identify L with the following ategoryD: ObjD = L;
D(l′, l) is empty whenever l′ < l, and onsists of a single morphism otherwise;the omposition of morphisms is the only one possible. If L is a projetivesystem, C is some ategory, X : L → C is a ovariant funtor, we will denote
X(l) for l ∈ L by Xl. We will write Y = lim

←−l∈L
Xl for the limit of thisfuntor; we will all it the inverse limit of Xl. We will denote the olimit ofa ontravariant funtor Y : L → C by lim

−→l∈L
Yl and all it the diret limit.Besides, we will sometimes all the ategorial image of L with respet to suhan Y an indutive system.Below I, L will often be projetive systems; we will usually require I to beountable.A subsystem L′ of L is a partially ordered subset in whih maximums exist(we will also onsider the orresponding full subategory of L). We will all L′unbounded in L if for any l ∈ L there exists an l′ ∈ L′ suh that l′ ≥ l.
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Coniveau Spectral Sequences for Motives 43
k will be our perfet base �eld. Below we will usually demand k to be ountable.Note: this yields that for any variety the set of its losed (or open) subshemesis ountable.We also list entral de�nitions and main notation of this paper.First we list the main (general) homologial algebra de�nitions. t-strutures, t-trunations, and Postnikov towers in triangulated ategories are de�ned in �1.1;weight strutures, weight deompositions, weight trunations, weight Postnikovtowers, and weight omplexes are onsidered in �2.1; virtual t-trunations andnie exat omplexes of funtors are de�ned in �2.3; weight spetral sequenesare studied in �2.4; (nie) dualities and orthogonal weight and t-strutures arede�ned in De�nition 2.5.1; right and left weight-exat funtors are de�ned inDe�nition 2.7.1.Now we list notation (and some de�nitions) for motives. DM eff

gm ⊂ DM eff
− ,

HI and the homotopy t-struture forDM eff
gm are de�ned in �1.3; Tate twists areonsidered in �1.4; Dnaive is de�ned in �1.5; omotives (D and D

′) are de�nedin �3.1; in �3.2 we disuss pro-shemes and their omotives; in �3.3 we reall thede�nition of a primitive sheme; in �4.1 we de�ne the Gersten weight struture
w on a ertain triangulated Ds; we onsider wChow in �4.7; Dbir and w′

bir arede�ned in �4.9; several di�erential graded onstrutions (inluding extensionand restrition of salars for omotives) are onsidered in �5; we de�ne D
genand WC : Ds → Kb(Dgen) in �6.1.

1 Some preliminaries on triangulated categories and motives�1.1 we reall the notion of a t-struture (and introdue some notation for it),reall the notion of an idempotent ompletion of an additive ategory; we alsoreall that any small abelian ategory ould be faithfully embedded into Ab (awell-known result by Mithell).In �1.2 we desribe (following H. Krause) a natural method for extending o-homologial funtors from a full triangulated C′ ⊂ C to C.In �1.3 we reall some de�nitions and results of Voevodsky.In �1.4 we reall the notion of a Tate twist; we study the properties of Tatetwists for motives and homotopy invariant sheaves.In �1.5 we de�ne pro-motives (following [9℄ and [10℄). These are not neessaryfor our main result; yet they allow to explain our methods step by step. Wealso desribe in detail the relation of our onstrutions and results with thoseof Deglise.
1.1 t-structures, Postnikov towers, idempotent completions, and

an embedding theorem of MitchellTo �x the notation we reall the de�nition of a t-struture.
Definition 1.1.1. A pair of sublasses Ct≥0, Ct≤0 ⊂ ObjC for a triangulatedategory C will be said to de�ne a t-struture t if (Ct≥0, Ct≤0) satisfy thefollowing onditions:
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44 M. V. Bondarko(i) Ct≥0, Ct≤0 are strit i.e. ontain all objets of C isomorphi to their ele-ments.(ii) Ct≥0 ⊂ Ct≥0[1], Ct≤0[1] ⊂ Ct≤0.(iii) Orthogonality. Ct≤0[1] ⊥ Ct≥0.(iv) t-deomposition. For any X ∈ ObjC there exists a distinguished triangle
A→ X → B[−1]→A[1] (1)suh that A ∈ Ct≤0, B ∈ Ct≥0.We will need some more notation for t-strutures.

Definition 1.1.2. 1. A ategory Ht whose objets are Ct=0 = Ct≥0 ∩ Ct≤0,
Ht(X,Y ) = C(X,Y ) for X,Y ∈ Ct=0, will be alled the heart of t. Reall (f.Theorem 1.3.6 of [2℄) that Ht is abelian (short exat sequenes in Ht omefrom distinguished triangles in C).2. Ct≥l (resp. Ct≤l) will denote Ct≥0[−l] (resp. Ct≤0[−l]).Remark 1.1.3. 1. The axiomatis of t-strutures is self-dual: if D = Cop (so
ObjC = ObjD) then one an de�ne the (opposite) weight struture t′ on D bytaking Dt′≤0 = Ct≥0 and Dt′≥0 = Ct≤0; see part (iii) of Examples 1.3.2 in [2℄.2. Reall (f. Lemma IV.4.5 in [13℄) that (1) de�nes additive funtors C →
Ct≤0 : X → A and C → Ct≥0 : X → B. We will denote A,B by Xt≤0 and
Xt≥1, respetively.3. (1) will be alled the t-deomposition of X . If X = Y [i] for some Y ∈ ObjC,
i ∈ Z, then we will denote A by Y t≤i (it belongs to Ct≤0) and B by Y t≥i+1(it belongs to Ct≥0), respetively. Sometimes we will denote Y t≤i[−i] by t≤iY ;
t≥i+1Y = Y t≥i+1[−i− 1]. Objets of the type Y t≤i[j] and Y t≥i[j] (for i, j ∈ Z)will be alled t-trunations of Y .4. We denote by Xt=i the i-th ohomology of X with respet to t i.e. (Y t≤i)t≥0(f. part 10 of �IV.4 of [13℄).5. The following statements are obvious (and well-known): Ct≤0 = ⊥Ct≥1;
Ct≥0 = Ct≤−1⊥.Now we reall the notion of idempotent ompletion.
Definition 1.1.4. An additive ategory B is said to be idempotent ompleteif for any X ∈ ObjB and any idempotent p ∈ B(X,X) there exists a deom-position X = Y

⊕

Z suh that p = i ◦ j, where i is the inlusion Y → Y
⊕

Z,
j is the projetion Y

⊕

Z → Y .Reall that any additive B an be anonially idempotent ompleted. Its idem-potent ompletion is (by de�nition) the ategory B′ whose objets are (X, p)for X ∈ ObjB and p ∈ B(X,X) : p2 = p; we de�ne
A′((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′f = fp = f}.
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Coniveau Spectral Sequences for Motives 45It an be easily heked that this ategory is additive and idempotent omplete,and for any idempotent omplete C ⊃ B we have a natural full embedding
B′ → C.The main result of [1℄ (Theorem 1.5) states that an idempotent ompletionof a triangulated ategory C has a natural triangulation (with distinguishedtriangles being all retrats of distinguished triangles of C).Below we will need the notion of a Postnikov tower in a triangulated ategoryseveral times (f. �IV2 of [13℄)).
Definition 1.1.5. Let C be a triangulated ategory.1. Let l ≤ m ∈ Z.We will all a bounded Postnikov tower for X ∈ ObjC the following data:a sequene of C-morphisms (0 =)Yl → Yl+1 → · · · → Ym = X along withdistinguished triangles

Yi → Yi+1 → Xi (2)for some Xi ∈ ObjC; here l ≤ i < m.2. An unbounded Postnikov tower for X is a olletion of Yi for i ∈ Z thatis equipped (for all i ∈ Z) with: onneting arrows Yi → Yi+1 (for i ∈ Z),morphisms Yi → X suh that all the orresponding triangles ommute, anddistinguished triangles (2).In both ases, we will denote X−p[p] by Xp; we will all Xp the fators of outPostnikov tower.Remark 1.1.6. 1. Composing (and shifting) arrows from triangles (2) for twosubsequent i one an onstrut a omplex whose terms are Xp (it is easily seenthat this is a omplex indeed, f. Proposition 2.2.2 of [6℄). This observationwill be important for us below when we will onsider ertain weight omplexfuntors.2. Certainly, a bounded Postnikov tower ould be easily ompleted to an un-bounded one. For example, one ould take Yi = 0 for i < l, Yi = X for i > m;then X i = 0 if i < l or i ≥ m.Lastly, we reall the following (well-known) result.
Proposition 1.1.7. For any small abelian ategory A there exists an exatfaithful funtor A→ Ab.Proof. By the Freyd-Mithell's embedding theorem, any small A ould be fullyfaithfully embedded into R − mod for some (assoiative unital) ring R. Itremains to apply the forgetful funtor R−mod→ Ab.Remark 1.1.8. 1. We will need this statement below in order to assume thatobjets of A 'have elements'; this will onsiderably simplify diagram hase.Note that we an assume the existene of elements for a not neessarily small
A in the ase when a reasoning deals only with a �nite number of objets of Aat a time.2. In the proof it su�es to have a faithful embedding A → R − mod; thisweaker assertion was also proved by Mithell.
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46 M. V. Bondarko

1.2 Extending cohomological functors from a triangulated sub-
categoryWe desribe a method for extending ohomologial funtors from a full trian-gulated C′ ⊂ C to C (after H. Krause). Note that below we will apply some ofthe results of [17℄ in the dual form. The onstrution requires C′ to be skele-tally small i.e. there should exist a (proper) subset D ⊂ ObjC ′ suh that anyobjet of C′ is isomorphi to some element of D. For simpliity, we will some-times (when writing sums over ObjC ′) assume that ObjC′ is a set itself. Sinethe distintion between small and skeletally small ategories will not a�et ourarguments and results, we will ignore it in the rest of the paper.If A is an abelian ategory, then AddFun(C ′op, A) is abelian also; omplexes init are exat whenever they are exat omponentwisely.Suppose that A satis�es AB5 i.e. it is losed with respet to all small oprod-uts, and �ltered diret limits of exat sequenes in A are exat.Let H ′ ∈ AddFun(C ′op, A) be an additive funtor (it will usually be ohomo-logial).

Proposition 1.2.1. I Let A,H ′ be �xed.1. There exists an extension of H ′ to an additive funtor H : C → A. It isohomologial whenever H is. The orrespondene H ′ → H de�nes an additivefuntor AddFun(C′op, A)→ AddFun(Cop, A).2. Moreover, suppose that in C we have a projetive system Xl, l ∈ L, equippedwith a ompatible system of morphisms X → Xl, suh that the latter systemfor any Y ∈ ObjC′ indues an isomorphism C(X,Y ) ∼= lim
−→

C(Xl, Y ). Thenwe have H(X) ∼= lim
−→

H(Xl).II Let X ∈ ObjC be �xed.1. One an hoose a family of Xl ∈ ObjC and fl ∈ C(X,Xl) suh that (fl)indue a surjetion ⊕H ′(Xl) → H(X) for any H ′, A, and H as in assertionI1.2. Let F ′ f ′

→ G′ g′

→ H ′ be a (three-term) omplex in AddFun(C ′op, A) thatis exat in the middle; suppose that H ′ is ohomologial. Then the omplex
F

f
→ G

g
→ H (here F,G,H, f, g are the orresponding extensions) is exat inthe middle also.Proof. I1. Following �1.2 of [17℄ (and dualizing it), we onsider the abelian at-egory C = C′∗ = AddFun(C ′, Ab) (this is Mod C′op in the notation of Krause).The de�nition easily implies that diret limits in C are exatly omponentwisediret limits of funtors. We have the Yoneda's funtor i′ : Cop → C that sends

X ∈ ObjC to the funtor X∗ = (Y 7→ C(X,Y ), Y ∈ ObjC′); it is obviouslyohomologial. We denote by i the restrition of i′ to C′ (i is opposite to a fullembedding).By Lemma 2.2 of [17℄ (applied to the ategory C′op) we obtain that there existsan exat funtor G : C → A that preserves all small oproduts and satis�es
G ◦ i = H ′. It is onstruted in the following way: if for X ∈ ObjC we have an
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Coniveau Spectral Sequences for Motives 47exat sequene (in C)
⊕j∈J X∗

j → ⊕l∈LX
∗
l → X∗ → 0 (3)for Xj , Xl ∈ C′, then we set

G(X) = Coker⊕j∈JH
′(Xj)→ ⊕l∈LH

′(Xl). (4)We de�ne H = G ◦ i′; it was proved in lo.it. that we obtain a well-de�nedfuntor this way. As was also proved in lo.it., the orrespondene H ′ 7→ Hyields a funtor; H is ohomologial if H ′ is.2. The proof of lo.it. shows (and mentions) that G respets (small) �lteredinverse limits. Now note that our assertions imply: X∗ = lim
−→

X∗
l in C.II 1. This is immediate from (4).2. Note that the assertion is obviously valid if X ∈ ObjC ′. We redue thegeneral statement to this ase.Applying Yoneda's lemma to (3) is we obtain (anonially) some morphisms

fl : X → Xl for all l ∈ L and glj : Xl → Xj for all l ∈ L, j ∈ J , suh that: forany l ∈ L almost all glj are 0; for any j ∈ J almost all glj is 0; for any j ∈ Jwe have ∑

l∈L glj ◦ fl = 0.Now, by Proposition 1.1.7, we may assume that A = Ab (see Remark 1.1.8).We should hek: if for a ∈ G(X) we have g∗(a) = 0, then a = f∗(b) for some
b ∈ F (X).Using additivity of C′ and C, we an gather �nite sets of Xl and Xj into singleobjets. Hene we an assume that a = G(fl0)(c) for some c ∈ G(Xl) (=
G′(Xl)), l0 ∈ L and that g∗(c) ∈ H(gl0j0)(H(Xj0 )) for some j0 ∈ J , whereas
gl0j0 ◦ fl0 = 0. We omplete Xl0 → Xj0 to a distinguished triangle Y

α
→

Xl0

gl0j0→ Xj0 ; we an assume that B ∈ ObjC′. We obtain that fl0 ould bepresented as α ◦β for some β ∈ C(X,Y ). Sine H ′ is ohomologial, we obtainthat H(α)(g∗(c)) = 0. Sine Y ∈ ObjC, the omplex F (Y ) → G(Y ) → H(Y )is exat in the middle; hene G(α)(c) = f∗(d) for some d ∈ F (Y ). Then wean take b = F (β)(d).
1.3 Some definitions of Voevodsky: reminderWe use muh notation from [25℄. We reall (some of) it here for the onvenieneof the reader, and introdue some notation of our own.
V ar ⊃ SmV ar ⊃ SmPrV ar will denote the lass of all varieties over k, resp.of smooth varieties, resp. of smooth projetive varieties.We reall that for ategories of geometri origin (in partiular, for SmCor de-�ned below) the addition of objets is de�ned via the disjoint union of varietiesoperation.We de�ne the ategory SmCor of smooth orrespondenes. ObjSmCor =
SmV ar, SmCor(X,Y ) =

⊕

U Z for all integral losed U ⊂ X × Y that are�nite over X and dominant over a onneted omponent of X ; the omposition
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48 M. V. Bondarkoof orrespondenes is de�ned in the usual way via intersetions (yet, we do notneed to onsider orrespondenes up to an equivalene relation).We will write · · · → X i−1 → X i → X i+1 → . . . , for X l ∈ SmV ar, for theorresponding omplex over SmCor.
PreShv(SmCor) will denote the (abelian) ategory of additive ofuntors
SmCor → Ab; its objets are usually alled presheaves with transfers.
Shv(SmCor) = Shv(SmCor)Nis ⊂ PreShv(SmCor) is the abelian ategoryof additive ofuntors SmCor → Ab that are sheaves in the Nisnevih topology(when restrited to the ategory of smooth varieties); these sheaves are usuallyalled sheaves with transfers.
D−(Shv(SmCor)) will be the bounded above derived ategory of
Shv(SmCor).For Y ∈ SmV ar (more generally, for Y ∈ V ar, see �4.1 of [25℄) we onsider
L(Y ) = SmCor(−, Y ) ∈ Shv(SmCor). For a bounded omplex X = (X i)(as above) we will denote by L(X) the omplex · · · → L(X i−1) → L(X i) →
L(X i+1)→ · · · ∈ Cb(Shv(SmCor)).
S ∈ Shv(SmCor) is alled homotopy invariant if for any X ∈ SmV ar theprojetion A1 ×X → X gives an isomorphism S(X) → S(A1 × X). We willdenote the ategory of homotopy invariant sheaves (with transfers) by HI; itis an exat abelian subategory of SmCor by Proposition 3.1.13 of [25℄.
DM eff

− ⊂ D−(Shv(SmCor)) is the full subategory of omplexes whose oho-mology sheaves are homotopy invariant; it is triangulated by lo.it. We willneed the homotopy t-struture on DM eff
− : it is the restrition of the anon-ial t-struture on D−(Shv(SmCor)) to DM eff

− . Below (when dealing with
DM eff

− ) we will denote it by just by t. We have Ht = HI.We reall the following results of [25℄.
Proposition 1.3.1. 1. There exists an exat funtor RC :
D−(Shv(SmCor)) → DM eff

− right adjoint to the embedding DM eff
− →

D−(Shv(SmCor)).2. DM eff
− (Mgm(Y )[−i], F ) = Hi(F )(Y ) (the i-th Nisnevih hyperohomologyof F omputed in Y ) for any Y ∈ SmV ar.3. Denote RC ◦ L by Mgm. Then the orresponding funtor Kb(SmCor) →

DM eff
− ould be desribed as a ertain loalization of Kb(SmCor).Proof. See �3 of [25℄.Remark 1.3.2. 1. In [25℄ (De�nition 2.1.1) the triangulated ategory DM eff

gm(of e�etive geometri motives) was de�ned as the idempotent ompletion of aertain loalization of Kb(SmCor). This de�nition is ompatible with a di�er-ential graded enhanement for DM eff
gm ; f. �5.3 below. Yet in Theorem 3.2.6 of[25℄ it was shown that DM eff

gm is isomorphi to the idempotent ompletion of(the ategorial image) Mgm(Cb(SmCor)); this desription of DM eff
gm will besu�ient for us till �5.
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Coniveau Spectral Sequences for Motives 492. In fat, RC ould be desribed in terms of so-alled Suslin omplexes (seelo.it.). We will not need this below. Instead, we will just note that RC sends
D−(Shv(SmCor))t≤0 to DM eff

−
t≤0.

1.4 Some properties of Tate twistsTate twisting in DM eff
− ⊃ DM eff

gm is given by tensoring by the objet Z(1)(it is often denoted just by −(1)). Tate twist has several desriptions and nieproperties. We will only need a few of them; our main soure is �3.2 of [25℄; amore detailed exposition ould be found in [20℄ (see ��8�9).In order to alulate the tensor produt of X,Y ∈ ObjDM eff
− one should takeany preimagesX ′, Y ′ of X,Y in ObjD−(Shv(SmCor)) with respet to RC (forexample, one ould take X ′ = X , Y ′ = Y ); next one should resolve X,Y bydiret sums of L(Zi) for Zi ∈ SmV ar; lastly one should tensor these resolutionsusing the identity L(Z)⊗L(T ) = L(Z×T ) for Z, T ∈ SmV ar, and apply RC tothe result. This tensor produt is ompatible with the natural tensor produtfor Kb(SmCor).We note that any objet D−(Shv(SmCor))

t≤0 has a resolution onentratedin negative degrees (the anonial resolution of the beginning of �3.2 of [25℄).It follows that DM eff
−

t≤0 ⊗DM eff
−

t≤0 ⊂ DM eff
−

t≤0 (see Remark 1.3.2(2); infat, there is an equality sine Z ∈ ObjHI).Next, we denote A1 \ {0} by Gm. The morphisms pt→ Gm → pt (the point ismapped to 1 in Gm) indue a splitting Mgm(Gm) = Z ⊕ Z(1)[1] for a ertain(Tate) motif Z(1); see De�nition 3.1 of [20℄. For X ∈ ObjDM eff
− we denote

X ⊗ Z(1) by X(1).One ould also present Z(1) as Cone(pt → Gm)[−1]; hene the Tate twistfuntor X 7→ X(1) is ompatible with the funtor − ⊗ (Cone(pt → Gm)[−1])on Cb(SmCor) via Mgm. We also obtain that DM eff
−

t≤0(1) ⊂ DM eff
−

t≤1.Now we de�ne ertain twists for funtors.
Definition 1.4.1. For an G ∈ AddFun(DM eff

gm , Ab), n ≥ 0, we de�ne
G−n(X) = G(X(n)[n]).Note that this de�nition is ompatible with those of �3.1 of [26℄. Indeed, for
X ∈ SmV ar we have G−1(Mgm(X)) = G(Mgm(X × Gm))/G(Mgm(X)) =
Ker(G(Mgm(X × Gm)) → G(Mgm(X))) (with respet to natural morphisms
X × pt→ X ×Gm → X × pt); G−n for larger n ould be de�ned by iterating
−−1.Below we will extend this de�nition to (o)motives of pro-shemes.For F ∈ ObjDM eff

− we will denote by F∗ the funtor X 7→ DM eff
− (X,F ) :

DM eff
gm → Ab.

Proposition 1.4.2. Let X ∈ SmV ar, n ≥ 0, i ∈ Z.1. For any F ∈ ObjDM eff
− we have: F∗−n(Mgm(X)[−i]) is a retrat of

Hi(F )(X ×G×n
m ) (whih an be desribed expliitly).
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50 M. V. Bondarko2. There exists a t-exat funtor Tn : DM eff
− → DM eff

− suh that for any
F ∈ ObjDM eff

− we have F∗−n
∼= (Tn(F ))∗.Proof. 1. Proposition 1.3.1 along with our desription of Z(1) yields the result.2. For F represented by a omplex of F i ∈ ObjShv(SmCor) (i ∈ Z) wede�ne Tn(F ) as the omplex of Tn(F

i), where Tn : PreShv(SmCor) →
PreShv(SmCor) is de�ned similarly to −−n in De�nition 1.4.1. Tn(F

i) aresheaves sine Tn(Fi)(X), X ∈ SmV ar, is a funtorial retrat of Fi(X ×Gn
m).In order to hek that we atually obtain a well-de�ned a t-exat funtor thisway, it su�es to note that the restrition of Tn to Shv(SmCor) is an exatfuntor by Proposition 3.4.3 of [9℄.Now, it su�es to hek that Tn de�ned satis�es the assertion for n = 1. In thisase the statement follows easily from Proposition 4.34 of [26℄ (note that it isnot important whether we onsider Zariski or Nisnevih topology by Theorem5.7 of ibid.).

1.5 Pro-motives vs. comotives; the description of our strategyBelow we will embed DM eff
gm into a ertain triangulated ategory D of omo-tives. Its onstrution (and omputations in it) is rather ompliated; in fat,the author is not sure whether the main properties of D (desribed below)speify it up to an isomorphism. So, before working with o-motives we will(following F. Deglise) desribe a simpler ategory of pro-motives. The latteris not needed for our main results (so the reader may skip this subsetion);yet the omparison of the ategories mentioned would larify the nature of ourmethods.Following �3.1 of [9℄, we de�ne the ategory D

naive as the additive ategoryof naive i.e. formal (�ltered) pro-objets of DM eff
gm . This means that for any

X : L→ DM eff
gm , Y : J → DM eff

gm we de�ne
D

naive(lim
←−l∈L

Xl, lim←−j∈J
Yj) = lim

←−j∈J
(lim
−→l∈L

DM eff
gm (Xl, Yj)). (5)The main disadvantage ofDnaive is that it is not triangulated. Still, one has theobvious shift for it; following Deglise, one an de�ne pro-distinguished trianglesas (�ltered) inverse limits of distinguished triangles in DM eff
gm . This allows toonstrut a ertain motivi oniveau exat ouple for a motif of a smooth varietyin �4.2 of [10℄ (see also �5.3 of [9℄). This onstrution is parallel to the lassialonstrution of oniveau spetral sequenes (see �1 of [8℄). One starts withertain 'geometri' Postnikov towers in DM eff

gm (Deglise alls them triangulatedexat ouples). For Z ∈ SmV ar we onsider �ltrations ∅ = Zd+1 ⊂ Zd ⊂
Zd−1 ⊂ · · · ⊂ Z0 = Z; Zi is everywhere of odimension ≥ i in Z for all i.Then we have a system of distinguished triangles relating Mgm(Z \ Zi) and
Mgm(Z \ Zi → Z \ Zi+1); this yields a Postnikov tower. Then one passesto the inverse limit of these towers in D

naive (here the onneting morphisms
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Coniveau Spectral Sequences for Motives 51are indued by the orresponding open embeddings). Lastly, the funtorialform of the Gysin distinguished triangle for motives allows Deglise to identify
Xi = lim

←−
(Mgm(Z \ Zi → Z \ Zi+1)) with the produt of shifted Tate twists ofpro-motives of all points of Z of odimension i. Using the results of see �5.2of [9℄ (the relation of pro-motives with yle modules of M. Rost, see [24℄) onean also ompute the morphisms that onnet X i with X i+1.Next, for any ohomologial H : DM eff

gm → A, where A is an abelian ategorysatisfying AB5, one an extend H to D
naive via the orresponding diret limits.Applying H to the motivi oniveau exat ouple one gets the lassial oniveauspetral sequene (that onverges to the H-ohomology of Z). This allowsto extend the seminal results of �6 of [5℄ to a omprehensive desription ofthe oniveau spetral sequene in the ase when H is represented by Y ∈

ObjDM eff
− (in terms of the homotopy t-trunations of Y ; see Theorem 6.4 of[11℄).Now suppose that one wants to apply a similar proedure for an arbitrary

X ∈ ObjDM eff
gm ; say, X = Mgm(Z1 f

→ Z2) for Z1, Z2 ∈ SmV ar, f ∈
SmCor(Z1, Z2). One would expet that the desired exat ouple for X ouldbe onstruted from those for Zj , j = 1, 2. This is indeed the ase when f satis-�es ertain odimension restritions; f. �7.4 of [6℄. Yet for a general f it seemsto be quite di�ult to relate the �ltrations of distint Zj (by the orresponding
Zj
i ). On the other hand, the formalism of weight strutures and weight spe-tral sequenes (developed in [6℄) allows to 'glue' ertain weight Postnikov towersfor objets of a triangulated ategories equipped with a weight struture; seeRemark 4.1.2(3) below.So, we onstrut a ertain triangulated ategory D that is somewhat similarto D

naive. Certainly, we want distinguished triangles in D to be ompatiblewith inverse limits that ome from 'geometry'. A well-known reipe for this is:one should onsider some ategory D
′ where (ertain) ones of morphisms arefuntorial and pass to (inverse) limits in D

′; D should be a loalization of D′.In fat, D′ onstruted in �5.3 below ould be endowed with a ertain (Quillen)model struture suh that D is its homotopy ategory. We will never use thisfat below; yet we will sometimes all inverse limits oming from D
′ homotopylimits (in D).Now, in Proposition 4.3.1 below we will prove that ohomologial funtors

H : DM eff
gm → A ould be extended to D in a way that is ompatible withhomotopy limits (those oming from D

′). So one may say that objets of Dhave the same ohomology as those of Dnaive. On the other hand, we haveto pay the prie for D being triangulated: (5) does not ompute morphismsbetween homotopy limits in D. The 'di�erene' ould be desribed in termsof ertain higher projetive limits (of the orresponding morphism groups in
DM eff

gm ).Unfortunately, the author does not know how to ontrol the orresponding
lim
←−

2 (and higher ones) in the general ase; this does not allow to onstruta weight struture on a su�iently large triangulated subategory of D if k
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52 M. V. Bondarkois unountable (yet see �6.5, espeially the last paragraph of it). In the aseof a ountable k only lim
←−

1 is non-zero. In this ase the morphisms betweenhomotopy limits in D are expressed by the formula (28) below. This allowsto prove that there are no morphisms of positive degrees between ertain Tatetwists of omotives of funtion �elds (over k). This immediately yields that onean onstrut a ertain weight struture on the triangulated subategory Ds of
D generated by produts of Tate twists of omotives of funtion �elds (in fat,we also idempotent omplete Ds). Now, in order to prove that Ds ontains
DM eff

gm it su�es to prove that the motif of any smooth variety X belongsto Ds. To this end it learly su�es to deompose Mgm(X) into a Postnikovtower whose fators are produts of Tate twists of omotives of funtion �elds.So, we lift the motivi oniveau exat ouple (onstruted in [10℄) from D
naiveto D. Sine ones in D

′ are ompatible with inverse limits, we an onstrut atower whose terms are the homotopy limits of the orresponding terms of thegeometri towers mentioned. In fat, this ould be done for an unountable kalso; the di�ulty is to identify the analogues of Xi in D. If k is ountable,the homotopy limits orresponding to our tower are ountable also. Hene (byan easy well-known result) the isomorphism lasses of these homotopy limitsould be omputed in terms of the orresponding objets and morphisms in
DM eff

gm . This means: it su�es to ompute X i in D
naive (as was done in [10℄);this yields the result needed. Note that we annot (ompletely) ompute the

D-morphisms X i → X i+1; yet we know how they at on ohomology.The most interesting appliation of the results desribed is the following one.We prove that there are no positive D-morphisms between (ertain) Tate twistsof omotives of smooth semi-loal shemes (or primitive shemes, see below);this generalizes the orresponding result for funtion �elds. It follows thatthese twists belong to the heart of the weight struture on Ds mentioned.Therefore omotives of (onneted) primitive shemes are retrats of omotivesof their generi points. Hene the same is true for the ohomology of theomotives mentioned and also for the orresponding pro-motives. Also, theomotif of a funtion �eld ontains as retrats twisted omotives of its residue�elds (for all geometri valuations); this also implies the orresponding resultsfor ohomology and pro-motives.Remark 1.5.1. In fat, Deglise mostly onsiders pro-objets for Voevodsky's
DMgm and of DM eff

− ; yet the distintions are not important sine the fullembeddings DM eff
gm → DMgm and DM eff

gm → DM eff
− obviously extend to fullembedding of the orresponding ategories of pro-objets. Still, the embeddingsmentioned allow Deglise to extend several nie results for Voevodsky's motivesto pro-motives.2. One of the advantages of the results of Deglise is that he never requires k tobe ountable. Besides, our onstrution of weight Postnikov towers mentionedheavily relies on the funtoriality of the Gysin distinguished triangle for motives(proved in [10℄; see also Proposition 2.4.5 of [9℄).
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Coniveau Spectral Sequences for Motives 53
2 Weight structures: reminder, truncations, weight spectral se-

quences, and duality with t-structuresIn �2.1 we reall basi de�nitions of the theory of weight strutures (it wasdeveloped in [6℄; the onept was also independently introdued in [23℄). Notehere that weight strutures (usually denoted by w) are natural ounterparts of t-strutures. Weight strutures yield weight trunations; those (vastly) generalizestupid trunations in K(B): in partiular, they are not anonial, yet anymorphism of objets ould be extended (non-anonially) to a morphism oftheir weight trunations. We reall several properties of weight strutures in�2.2.We reall virtual t-trunations for a (ohomologial) funtor H : C → A (for Cendowed with a weight struture) in �2.3 (these trunations are de�ned in termsof weight trunations). Virtual t-trunations were introdued in �2.5 of [6℄;they yield a way to present H (anonially) as an extension of a ohomologialfuntor that is positive in a ertain sense by a 'negative' one (as if H belongedto some triangulated ategory of funtors C → A endowed with a t-struture).We study this notion further here, and prove that virtual t-trunations for aohomologial H ould be haraterized up to a unique isomorphism by theirproperties (see Theorem 2.3.1(III4)). In order to give some haraterizationalso for the 'dimension shift' (onneting the positive and the negative virtual
t-trunations of H), we introdue the notion of a nie (strongly exat) omplexof funtors. We prove that omplexes of representable funtors oming fromdistinguished triangles in C are nie, as well as those omplexes that ould beobtained from nie strongly exat omplexes of funtors C′ → A for some smalltriangulated C′ ⊂ C (via the extension proedure given by Proposition 1.2.1).In �2.4 we onsider weight spetral sequenes (introdued in ��2.3�2.4 of [6℄).We prove that the derived exat ouple for the weight spetral sequene T (H)(for H : C → A) ould be naturally desribed in terms of virtual t-trunationsof H . So, one an express T (H) starting from E2 (as well as the orresponding�ltration of H∗) in these terms also. This is an important result, sine the baside�nition of T (H) is given in terms of weight Postnikov towers for objets of C,whereas the latter are not anonial. In partiular, this result yields anonialfuntorial spetral sequenes in lassial situations (onsidered by Deligne; f.Remark 2.4.3 of [6℄; note that we do not need rational oe�ients here).In �2.5 we introdue the de�nition a (nie) duality Φ : Cop × D → A, andof (left) orthogonal weight and t-strutures (with respet to Φ). The latterde�nition generalizes the notion of adjaent strutures introdued in �4.4 of[6℄ (this is the ase C = D, A = Ab, Φ = C(−, )). If w is orthogonal to
t then the virtual t-trunations (orresponding to w) of funtors of the type
Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via Φ' by the atual
t-trunations of Y (orresponding to t). We also prove that (nie) dualitiesould be extended from C′ to C (using Proposition 1.2.1). Note here that(to the knowledge of the author) this paper is the �rst one whih onsiders'pairings' of triangulated ategories.
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54 M. V. BondarkoIn �2.6 we prove: if w and t are orthogonal with respet to a nie duality, theweight spetral sequene onverging to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) isnaturally isomorphi (starting from E2) to the one oming from t-trunationsof Y . Moreover even when the duality is not nie, all Epq
r for r ≥ 2 and the�ltrations orresponding to these spetral sequenes are still anonially iso-morphi. Here nieness of a duality (de�ned in �2.5) is a somewhat tehnialondition (de�ned in terms of nie omplexes of funtors). Nieness gener-alizes to pairings (C × D → A) the axiom TR3 (of triangulated ategories:any ommutative square in C ould be ompleted to a morphism of distin-guished triangles; note that this axiom ould be desribed in terms of the fun-tor C(−,−) : C×C → Ab). We also disuss some alternatives and predeessorsof our methods and results.In �2.7 we ompare weight deompositions, virtual t-trunations, and weightspetral sequenes orresponding to distint weight strutures (in possibly dis-tint triangulated ategories, onneted by an exat funtor).

2.1 Weight structures: basic definitionsWe reall the de�nition of a weight struture (see [6℄; in [23℄ D. Pauksztellointrodued weight strutures independently and alled them o-t-strutures).
Definition 2.1.1 (De�nition of a weight struture). A pair of sublasses
Cw≤0, Cw≥0 ⊂ ObjC for a triangulated ategory C will be said to de�ne aweight struture w for C if they satisfy the following onditions:(i) Cw≥0, Cw≤0 are additive and Karoubi-losed (i.e. ontain all retrats oftheir objets that belong to ObjC).(ii) "Semi-invariane" with respet to translations.
Cw≥0 ⊂ Cw≥0[1]; Cw≤0[1] ⊂ Cw≤0.(iii) Orthogonality.
Cw≥0 ⊥ Cw≤0[1].(iv) Weight deomposition.For any X ∈ ObjC there exists a distinguished triangle

B[−1]→ X → A
f
→ B (6)suh that A ∈ Cw≤0, B ∈ Cw≥0.A simple example of a ategory with a weight struture is K(B) for any addi-tive B: positive objets are omplexes that are homotopy equivalent to thoseonentrated in positive degrees; negative objets are omplexes that are homo-topy equivalent to those onentrated in negative degrees. Here one ould alsoonsider the subategories of omplexes that are bounded from above, below,or from both sides.The triangle (6) will be alled a weight deomposition of X . A weight de-omposition is (almost) never unique; still we will sometimes denote any pair

(A,B) as in (6) by Xw≤0 and Xw≥1. Besides, we will all objets of the type
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Coniveau Spectral Sequences for Motives 55
(X [i])w≤0[j] and (X [i])w≥0[j] (for i, j ∈ Z) weight trunations of X . A shift ofthe distinguished triangle (6) by [i] for any i ∈ Z, X ∈ ObjC (as well as anyits rotation) will sometimes be alled a shifted weight deomposition.In K(B) (shifted) weight deompositions ome from stupid trunations of om-plexes.We will also need the following de�nitions and notation.
Definition 2.1.2. Let X ∈ ObjC.1. The ategory Hw ⊂ C whose objets are Cw=0 = Cw≥0 ∩ Cw≤0,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0, will be alled the heart of theweight struture w.2. Cw≥l (resp. Cw≤l, resp. Cw=l) will denote Cw≥0[−l] (resp. Cw≤0[−l],resp. Cw=0[−l]).3. We denote Cw≥l ∩ Cw≤i by C [l,i].4. Xw≤l (resp. Xw≥l) will denote (X [l])w≤0 (resp. (X [l− 1])w≥1).5. w≤iX (resp. w≥iX) will denote Xw≤i[−i] (resp. Xw≥i[−i]).6. w will be alled non-degenerate if
∩lC

w≥l = ∩lC
w≤l = {0}.7. We onsider Cb = (∪i∈ZC

w≤i) ∩ (∪i∈ZC
w≥i) and all it the lass ofbounded objets of C.For X ∈ Cb we will usually take w≤iX = 0 for i small enough, w≥iX = 0for i large enough.We will also denote by Cb the orresponding full subategory of C.8. We will say that (C,w) is bounded if Cb = C.9. We will all a Postnikov tower for X (see De�nition 1.1.5) a weight Post-nikov tower if all Yi are some hoies for w≥1−iX . In this ase we will allthe omplex whose terms are Xp (see Remark 1.1.6) a weight omplex for

X .We will all a weight Postnikov tower for X negative if X ∈ Cw≤0 andwe hoose w≥jX to be 0 for all j > 0 here.10. D ⊂ ObjC will be alled extension-stable if for any distinguished triangle
A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.We will also say that the orresponding full subategory is extension-stable.11. D ⊂ ObjC will be alled negative if for any i > 0 we have D ⊥ D[i].
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56 M. V. BondarkoRemark 2.1.3. 1. One ould also dualize our de�nition of a weight Postnikovtower i.e. build a tower from w≤lX instead of w≥lX . Our de�nition of aweight Postnikov tower is more onvenient for our purposes sine in �3.6 belowwe will onsider Yi = j(Z0 \ Zi) instead of = j(Z0 \ Zi → Z0)[−1]. Yet thisdoes not make muh di�erene; see �1.5 of [6℄ and Theorem 2.2.1(12) below. Inpartiular, our de�nition of the weight omplex for X oinides with De�nition2.2.1 of ibid. Note also, that De�nition 1.5.8 of ibid (of a weight Postnikovtower) ontained both 'our' part of the data and the dual part.2. Weight Postnikov towers for objets of C are far from being unique; theirmorphisms (provided by Theorem 2.2.1(15) below) are not unique also (f.Remark 1.5.9 of [6℄). Yet the orresponding weight spetral sequenes for o-homology are unique and funtorial starting from E2; see Theorem 2.4.2 of ibid.and Theorem 2.4.2 below for more detail. In partiular, all possible hoies ofa weight omplex for X are homotopy equivalent (see Theorem 3.2.2(II) andRemark 3.1.7(3) in [6℄).
2.2 Basic properties of weight structuresNow we list some basi properties of notions de�ned. In the theorem belowwe will assume that C is endowed with a �xed weight struture w everywhereexept in assertions 18 � 20.
Theorem 2.2.1. 1. The axiomatis of weight strutures is self-dual: if

D = Cop (so ObjC = ObjD) then one an de�ne the (opposite) weightstruture w′ on D by taking Dw′≤0 = Cw≥0 and Dw′≥0 = Cw≤0.2. We have
Cw≤0 = Cw≥1⊥ (7)and
Cw≥0 = ⊥Cw≤−1. (8)3. For any i ∈ Z, X ∈ ObjC we have a distinguished triangle w≥i+1X →

X → w≤iX (given by a shifted weight deomposition).4. Cw≤0, Cw≥0, and Cw=0 are extension-stable.5. All Cw≤i are losed with respet to arbitrary (small) diret produts(those, whih exist in C); all Cw≥i and Cw=i are additive.6. For any weight deomposition of X ∈ Cw≥0 (see (6)) we have A ∈ Cw=0.7. If A→ B → C → A[1] is a distinguished triangle and A,C ∈ Cw=0, then
B ∼= A⊕ C.8. If we have a distinguished triangle A → B → C for B ∈ Cw=0, C ∈
Cw≤−1 then A ∼= B

⊕

C[−1].
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Coniveau Spectral Sequences for Motives 579. If X ∈ Cw=0, X [−1] → A
f
→ B is a weight deomposition (of X [−1]),then B ∈ Cw=0; B ∼= A⊕X.10. Let l ≤ m ∈ Z, X,X ′ ∈ ObjC; let weight deompositions of X [m] and

X ′[l] be �xed. Then any morphism g : X → X ′ an be ompleted to amorphism of distinguished triangles
w≥m+1X −−−−→ X

c
−−−−→ w≤mX





y

a





y

g





y

b

w≥l+1X
′ −−−−→ X ′ d

−−−−→ w≤lX
′

(9)This ompletion is unique if l < m.11. Consider some ompletion of a ommutative triangle w≥m+1X →
w≥l+1X → X (that is uniquely determined by the morphisms w≥m+1X →
X and w≥l+1X → X oming from the orresponding shifted weight de-ompositions; see the previous assertion) to an otahedral diagram:

w≤lX

[1]

&&MMMMMMMMMM

[1]

��

Xoo

w≥l+1X

88rrrrrrrrrrr

xxqqqqqqqqqq

w[l+1,m]X
[1] // w≥m+1X

ffLLLLLLLLLL

OO

w≤lX

[1]

��

X

yyrrrrrrrrrrr

oo

w≤mX

ffLLLLLLLLLL

[1]

%%KKKKKKKKKK

w[l+1,m]X

99rrrrrrrrrr [1] // w≥m+1X

OO

Then w[l+1,m]X ∈ C [l+1,m]; all the distinguished triangles of this otahe-dron are shifted weight deompositions.12. For X,X ′ ∈ ObjC, l, l′,m,m′ ∈ Z, l < m, l′ < m′, l > l′, m > m′, on-sider two otahedral diagrams: (11) and a similar one orresponding tothe ommutative triangle w≥m+1X → w≥l+1X → X and w≥m′+1X
′ →

w≥l′+1X → X (i.e. we �x some hoies of these diagrams). Then any
g ∈ C(X,X ′) ould be uniquely extended to a morphism of these dia-grams. The orresponding morphism h : w[l+1,m]X → w[l′+1,m′]X

′ isharaterized uniquely by any of the following onditions:
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58 M. V. Bondarko(i) there exists a C-morphism i that makes the squares
w≥l+1X −−−−→ X





y

i





y

g

w≥l′+1X
′ −−−−→ X ′

(10)and
w≥l+1X −−−−→ w[l+1,m]X





y

i





y

h

w≥l′+1X
′ −−−−→ w[l′+1,m′]X

′

(11)ommutative.(ii) there exists a C-morphism j that makes the squares
X −−−−→ w≤mX




y

g





y

j

X ′ −−−−→ w≤m′X ′

(12)and
w[l+1,m]X −−−−→ w≤mX





y

h





y

j

w[l′+1,m′]X
′ −−−−→ w≤m′X ′

(13)ommutative.13. For any hoie of w≥iX there exists a weight Postnikov tower for X (seeDe�nition 2.1.2(9)). For any weight Postnikov tower we have Cone(Yi →
X) ∈ Cw≤−i; X i ∈ Cw=0.14. Conversely, any bounded Postnikov tower (for X) with X i ∈ Cw=0 is aweight Postnikov tower for it.15. For X,X ′ ∈ ObjC and arbitrary weight Postnikov towers for them, any
g ∈ C(X,X ′) an be extended to a morphism of Postnikov towers (i.e.there exist morphisms Yi → Y ′

i , X i → X ′i, suh that the orrespondingsquares ommute).16. For X,X ′ ∈ Cw≤0, suppose that f ∈ C(X,X ′) an be extended to amorphism of (some of) their negative Postnikov towers that establishesan isomorphism X0 → X ′0. Suppose also that X ′ ∈ Cw=0. Then f yieldsa projetion of X onto X ′ (i.e. X ′ is a retrat of X via f).17. Cb is a Karoubi-losed triangulated subategory of C. w indues a non-degenerate weight struture for it, whose heart equals Hw.
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Coniveau Spectral Sequences for Motives 5918. For a triangulated idempotent omplete C let D ⊂ ObjC be negative.Then there exists a unique weight struture w on the Karoubization Tof 〈D〉 in C suh that D ⊂ Tw=0. Its heart is the Karoubization of thelosure of D in C with respet to (�nite) diret sums.19. For the weight struture mentioned in the previous assertion, Tw≤0 is theKaroubization of the smallest extension-stable sublass of ObjC ontain-ing ∪i≥0D[i]; Tw≥0 is the Karoubization of the smallest extension-stablesublass of ObjC ontaining ∪i≤0D[i].20. For the weight struture mentioned in two previous assertions we alsohave
Tw≤0 = (∪i<0D[i])⊥; Tw≥0 = ⊥(∪i>0D[i]).Proof. 1. Obvious; f. Remark 1.1.3 of [6℄ (and Remark 1.1.2 of ibid. formore detail).2. These are parts 1 and 2 of Proposition 1.3.3 of ibid.3. Obvious (sine [i] is exat up to hange of signs of morphisms); f. Remark1.2.2 of ibid.4. This is part 3 of Proposition 1.3.3 of ibid.5. Obvious from the de�nition and parts 4 of lo.it.6. This is part 6 of Proposition 1.3.3 of ibid.7. This is part 7 of lo.it.8. It su�es to note that C(B,C) = 0, hene the triangle splits.9. This is part 8 of lo.it.10. This is Lemma 1.5.1 of ibid.11. The only non-trivial statement here is that w[l+1,m]X ∈ C [l+1,m] (iteasily implies: the left hand side of the lower ap in (11) also yieldsa shifted weight deomposition). (11) yields distinguished triangles:

T1 = (w≥l+1X → w[l+1,m]X → w≥m+1X [1]) and T2 = (w≤lX →
w[l+1,m]X [1]→ w≤mX [1]). Hene assertion 4 yields the result.12. By assertion 10, g extends uniquely to a morphism of the following dis-tinguished triangles: from T3 = (w≥m+1X → X → w≤mX) to T ′

3 =
(w≥m′+1X

′ → X ′ → w≤m′X), and from T4 = (w≥l+1X → X → w≤lX)to T ′
4 = (w≥l′+1X

′ → X ′ → w≤l′X); next we also obtain a unique mor-phism from T1 (as de�ned in the proof of the previous assertion) to itsanalogue T ′
1. Putting all of this together: we obtain unique morphismsof all of the verties of our otahedra, whih are ompatible with allthe edges of the otahedra expet (possibly) those that belong to T2 (as
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60 M. V. Bondarkode�ned above). We also obtain that there exists unique i and h thatomplete (10) and (11) to ommutative squares.Now, the morphism w≤lX → w[l+1,m]X ould be deomposed into theomposition of morphisms belonging to T1 and T3. Hene in order to ver-ify that we have atually onstruted a morphism of otahedral diagrams,it remains to verify the ommutativity of the squares
w≤mX −−−−→ w≤lX





y

g





y

j

w≤m′X ′ −−−−→ w≤l′X
′

(14)and (13) i.e. we should hek that the two possible ompositions of ar-rows for eah of the squares are equal. Now, assertion 10 implies: theompositions in question for (14) both equal the only morphism q thatmakes the square
X −−−−→ w≤mX




y

g





y

q

X ′ −−−−→ w≤l′X
′ommutative. Similarly, the ompositions for (13) both equal the onlymorphism r that makes the square

w≥l+1X −−−−→ w[l+1,m]X




y





y

r

X ′ −−−−→ w≤m′X ′ommutative. Here we use the part of the otahedral axiom that saysthat the square
w≥l+1X −−−−→ w[l+1,m]X





y





y

X −−−−→ w≤mXis ommutative (as well as the orresponding square for (X ′, l′,m′)).Lastly, as we have already noted, the ondition (i) haraterizes huniquely; for similar (atually, exatly dual) reasons the same is truefor (ii). Sine the morphism w[l+1,m]X → w[l′+1,m′]X
′ oming from themorphism of the otahedra onstruted satis�es both of these onditions,it is haraterized by any of them uniquely.13. Immediate from part 2 of (Proposition 1.5.6) of lo.it (and also fromassertion 11).14. Immediate from Remark 1.5.9(2) of ibid.
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Coniveau Spectral Sequences for Motives 6115. Immediate from part 1 (of Remark 1.5.9) of lo.it.16. It su�es to prove that Cone f ∈ Cw≤−1. Indeed, then the distinguishedtriangle X f
→ X ′ → Cone f neessarily splits.We omplete the ommutative triangle Xw≤−1 → X ′w≤−1 → X0(= X ′0)to an otahedral diagram. Then we obtain Cone f ∼= Cone(Xw≤−1 →

X ′w≤−1)[1]; hene Cone f ∈ Cw≤−1 indeed.17. This is Proposition 1.3.6 of ibid.18. By Theorem 4.3.2(II1) of ibid., there exists a unique weight struture on
〈D〉 suh that D ⊂ 〈D〉w=0. Next, Proposition 5.2.2 of ibid. yields that
w an be extended to the whole T ; along with part Theorem 4.3.2(II2)of lo.it. it also allows to alulate Tw=0 in this ase.19. Immediate from Proposition 5.2.2 of ibid. and the desription of 〈H〉w≤0and 〈H〉w≥0 in the proof of Theorem 4.3.2(II1) of ibid.20. If X ∈ Tw≤0 then the orthogonality ondition for w immediately yields:
Y ⊥ X for any Y ∈ ∪i<0D[i].Conversely, suppose that for some X ∈ ObjT we have Y ⊥ X for all
Y ∈ ∪i<0D[i]. Then Y ⊥ X also for all Y belonging to the smallestextension-stable sublass of ObjC ontaining ∪i<0D[i]. Hene this is alsotrue for all Y ∈ Tw≥1 (see the previous assertion). Hene (7) yields:
X ∈ Tw≤0. We obtain the �rst part of the assertion.The seond part of the assertion is dual to the �rst one (and easy from(8)).Remark 2.2.2. 1. In the notation of assertion 10, for any a (resp. b) suhthat the left (resp. right) hand square in (9) ommutes there exists some
b (resp. some a) that makes (9) a morphism of distinguished triangles(this is just axiom TR3 of triangulated ategories). Hene for l < m theleft (resp. right) hand side of (9) haraterizes a (resp. b) uniquely.2. Assertions 10 and 12 yield mighty tools for proving that a onstrutiondesribed in terms of weight deompositions is funtorial (in a ertainsense). In partiular, the proofs of funtoriality of weight �ltration andvirtual t-trunations for ohomology (we will onsider these notions be-low) in [6℄ were based on assertion 10.Now we explain what kind of funtoriality ould be obtained using asser-tion lo.it. Atually, suh an argument was already used in the proof ofassertion 12.In the notation of assertion 10 we will say that a and b are ompatiblewith g (with respet to the orresponding weight deompositions). Nowsuppose that for some X ′′ ∈ ObjC, some n ≤ l, g′ ∈ C(X ′, X ′′), and
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62 M. V. Bondarkoa distinguished triangle w≥n+1X
′′ → X ′ → w≤nX

′ we have morphisms
a′ : w≥l+1X

′ → w≥n+1X
′′ and b′ : w≤lX

′ → w≤nX
′′ ompatible with

g′. Then a′ ◦ a and b′ ◦ b are ompatible with g′ ◦ g (with respet tothe orresponding weight deompositions)! Moreover, if n < m then
(a′ ◦ a, b′ ◦ b) is exatly the (unique!) pair of morphisms ompatible with
g′ ◦ g.3. In the notation of assertion 12 we will (also) say that h : w[l+1,m]X →
w[l′+1,m′]X

′ is ompatible with g. Note that h is uniquely haraterizedby (i) (or (ii)) of lo.it.; hene in order to haraterize it uniquely itsu�es to �x g and all the rows in (10) and (11) (or in (12) and (13)).Besides, we obtain that h is funtorial in a ertain sense (f. the reasoningabove).4. Assertion 11 immediately implies: for any l < m the lass of all possible
w≤lX oinides with the lass of possible w≤l(w≤mX), whereas the lassof possible w≥mX oinides with those of w≥m(w≥lX).Besides, assertion 11 also allows to onstrut weight Postnikov towers (f.�1.5 of [6℄). Hene w[i,i]X is just X i[−i] (for any i ∈ Z, X ∈ ObjC), and aweight omplex for any w[l+1,m]X an be assumed to be the orrespondingstupid trunation of the weight omplex of X .5. Assertions 10 and 15 will be generalized in �2.7 below to the situationwhen there are two distint weight strutures; this will also larify theproofs of these statements. Besides, note that our remarks on funtorial-ity are also atual for this setting.Some of the proofs in �2.7 may also help to understand the onept ofvirtual t-trunations (that we will start to study just now) better.

2.3 Virtual t-truncations of (cohomological) functorsTill the end of the setion C will be endowed with a �xed weight struture
w; H : C → A (A is an abelian ategory) will be a ontravariant (usually,ohomologial) funtor. We will not onsider ovariant (homologial) funtorshere; yet ertainly, dualization is absolutely no problem.Now we reall the results of �2.5 of [6℄ and develop the theory further.
Theorem 2.3.1. Let H : C → A be a ontravariant funtor, k ∈ Z, j > 0.I The assignments H1 = Hkj

1 : X → Im(H(w≤kX) → H(w≤k+jX)) and
H2 = Hkj

2 : X → Im(H(w≥kX)→ H(w≥k+jX)) de�ne ontravariant funtors
C → A that do not depend (up to a anonial isomorphism) from the hoie ofweight deompositions. We have natural transformations H1 → H → H2.II Let k′ ∈ Z, j′ > 0. Then there exist the following natural isomorphisms.1. (Hkj

1 )k
′j′

1
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
1 .2. (Hkj

2 )k
′j′

2
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
2 .
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Coniveau Spectral Sequences for Motives 633. (Hkj
1 )k

′j′

2
∼= (Hk′j′

2 )kj1
∼= Im(H(w[k,k′ ]X)→ H(w[k+j,k′+j′]X)). Here the lastterm is de�ned using the onnetion morphism w[k+j,k′+j′]X → w[k,k′ ]X thatis ompatible with idX in the sense of Remark 2.2.2(3); the last isomorphismis funtorial in the sense desribed in lo.it.III Let H be ohomologial, j = 1; let k be �xed.1. Hl (l = 1, 2) are also ohomologial; the transformations H1 → H → H2extend anonially to a long exat sequene of funtors

· · · → H2 ◦ [1]→ H1 → H → H2 → H1 ◦ [−1]→ . . . (15)(i.e. the sequene is exat when applied to any X ∈ ObjC).2. H1
∼= H whenever H vanishes on Cw≥k+1.3. H ∼= H2 whenever H vanishes on Cw≤k.4. Let H ′ f
→ H

g
→ H ′′ be a (three-term) omplex of funtors exat in the middlesuh that:(i) H ′, H ′′ are ohomologial.(ii) for any X ∈ ObjC we have Coker g(X) ∼= Ker f(X [−1]) (we do not �xthese isomorphisms).(iii) H ′ vanishes on Cw≥k+1; H ′′ vanishes on Cw≤k.Then H ′ f

→ H is anonially isomorphi to H1 → H; H g
→ H ′′ is anoniallyisomorphi to H → H2.Proof. I This is Proposition 2.5.1(III1) of [6℄.II Easily follows from Theorem 2.2.1, parts 11 and 12; see Remark 2.2.2.III1. This is Proposition 2.5.1(III2) of [6℄.2. If H vanishes on Cw≥k+1 then for any X we have w≥k+1X = 0; hene H2vanishes. Therefore in the long exat sequene · · · → H2(X [1])→ H1 → H →

H2(X)→ . . . given by assertion II1 we have H2(X [1]) ∼= 0 ∼= H2(X); we obtain
H1
∼= H .Conversely, suppose that H1

∼= H . Let X ∈ ObjCw≥k+1; we an assume that
w≤kX = 0. Then we have H(X) ∼= H1(X) = ImH(w≤kX)→ H(w≤k+1X)) =
0.3. It su�es to apply assertion II1 to the dual funtor Cop → Aop; note that theaxiomatis of abelian ategories, triangulated ategories, and weight struturesare self-dual (see Remark 1.1.3(1) and Theorem 2.2.1(1)).4. We should hek that in the diagram

H ′
1

g
−−−−→ H1





y

h





y

H ′ −−−−→ H

g and h are isomorphisms. Then g◦h−1 will yield the �rst isomorphism desired,whereas dualization will yield the remaining half of the statement.Now, assertion III2 yields that g in isomorphism.
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64 M. V. BondarkoNext, for an X ∈ ObjC we hoose some weight deompositions for X [k] and
X [k + 1] and onsider the diagram
H′′((w≤kX)[1]) −−−−−→ H′(w≤kX)

l
−−−−−→ H(w≤kX) −−−−−→ H′′(w≤kX)





y

a





y

b

H′′((w≤k+1X)[1]) −−−−−→ H′(w≤k+1X)
m

−−−−−→ H(w≤k+1X) −−−−−→ H′′(w≤k+1X).By our assumptions, H ′′((w≤kX)[1]) ∼= H ′′(w≤kX) ∼= H ′′((w≤k+1X)[1]) ∼= 0;hene l is an isomorphism and m is a monomorphism. Hene the indued map
Im a → Im b is an isomorphism; so h is an isomorphism (sine its appliationto any X ∈ ObjC is an isomorphism).
Definition 2.3.2. [virtual t-trunations of H ℄Let k,m ∈ Z. For a (o)homologial H we will all Hk1

l , l = 1, 2, k ∈ Z, virtual
t-trunations of H . We will often denote them simply by Hl; in this ase wewill assume k = 0 unless k is spei�ed expliitly.We denote the following funtors C → A: Hk1

1 , Hk−1,1
2 , (Hm1

2 )k11 , and X 7→
(H01

1 )−11
2 (X [k]) by τ≤kH , τ≥kH , τ[m+1,k]H , and Hτ=k, respetively. Note thatall of these funtors are ohomologial if H is.Remark 2.3.3. 1. Note that H often lies in a ertain triangulated 'ategory offuntors' D (whose objets are ertain ohomologial funtors C → A). We willaxiomatize this below by introduing the notion of a duality Φ : Cop×D→ A: if

Φ is a duality then for any Y ∈ ObjD we have a ohomologial funtor Φ(−, Y ) :
C → A. It is also often the ase when the virtual t-trunations de�ned areompatible with atual t-trunations with respet to some t-struture t on D(see below). Still, it is very amusing that these t-trunated funtors as well astheir transformations orresponding to t-deompositions (see De�nition 1.1.1)an be desribed without speifying any D and Φ!2. Below we will need an expliit desription of the onneting morphisms in(15). We give it here (following the proof of Proposition 2.5.1 of [6℄).The transformation H1 → H (resp. H → H2) for any k, j an be alulated byapplying H to any possible hoie either of X → w≤kX or of X → w≤k+jX(resp. of w≥kX → X or of w≥k+jX → X) that omes from any possible hoiethe orresponding weight deomposition. The transformation H2 → H1 ◦ [−1]for j = 1 is given by applying H to any possible hoie either of the morphism
w≤k+1X → w≥k+2X [1] or of the morphism w≤kX → w≥k+1X [1] that omesfrom any possible hoie of a weight deomposition of X [k].Here we use the following trivial observation: for A-morphisms X1

f1
→ Y1 and

X2
f2
→ Y2 any g : X1 → X2 (resp. h : Y1 → Y2) is ompatible with at most onemorphism i : Im f1 → Im f2; if suh an i exists, we will say that it is induedby g (resp. by h). Certainly, here f1 ould be equal to idX1

or f2 ould beequal to idX2
.
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Coniveau Spectral Sequences for Motives 653. For any k, j, and any C-morphism g : X → Y the morphism H1(X) →
H1(Y ) (resp. H2(X) → H2(Y )) is indued by any hoie of either of themorphism w≤kX → w≤kY or of w≤k+jX → w≤k+jY (resp. of the morphism
w≥kX → w≥kY or of w≥k+jX → w≥k+jY ) that is ompatible with g withrespet to the orresponding weight deomposition (in the sense of Remark2.2.2(2)); see the proof of Proposition 2.5.1 of [6℄.We would like to extend assertion III4 of Theorem 2.3.1 to a statement on a(anonial) isomorphism of long exat sequenes of funtors. To this end weneed the following de�nition.
Definition 2.3.4. 1. We will all a sequene of funtors C = · · · → H ′′ ◦

[1]
[1](h)
→ H ′ f

→ H
g
→ H ′′ h

→ H ′ ◦ [−1]→ . . . of ontravariant funtors C → Ab astrongly exat omplex if H ′, H,H ′′ are ohomologial and C(X) is a long exatsequene for any X ∈ ObjC; here [1](h) is the transformation indued by h.2. We will also say that a strongly exat omplex C is nie in H if the followingondition is ful�lled:For any distinguished triangle T = A
l
→ B

m
→ C

n
→ A[1] in C the naturalmorphism p:

Ker((H ′(A)
⊕

H(B)
⊕

H ′′(C))









f(A) −H(l) 0
0 g(B) −H ′′(m)

−H ′([−1](n)) 0 h(C)









−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(H(A)
⊕

H ′′(B)
⊕

H ′(C[−1])))
p
→ Ker((H ′(A)

⊕

H(B))

f(A)⊕−H(l)
−−−−−−−−→ H(A)) is epimorphi. (16)Now we desribe the onnetion of (16) with trunated realizations; our argu-ments will also somewhat larify the meaning of this ondition.

Theorem 2.3.5. 1. Let C be a strongly exat omplex of funtors that is niein H; let H ′ f
→ H

g
→ H ′′ (a 'piee' of C) satisfy the onditions of assertionIII4 of Theorem 2.3.1. Then C is anonially isomorphi to (15).2. Let X → Y → Z be a distinguished triangle in C. Then C = · · · →

C(−, X)→ C(−, Y )→ C(−, Z)→ . . . is a strongly exat omplex of funtors
C → Ab; it is nie in C(−, Y ).3. Let there exist a (skeletally) small full triangulated C′ ⊂ C suh that the re-strition of a strongly exat omplex C to C ′ is nie in H. For D ∈ ObjCwe onsider the projetive system L(D) whose elements are (E, i) : E ∈
ObjC ′, i ∈ C(D,E); we set (E, i) ≥ (E′, i′) if (E, i) = (E′

⊕

E′′, i′ ⊕ i′′)for some (E′′, i′′) ∈ L(D).Suppose that for any D ∈ C and for G = H ′ and G = H we have
lim
−→L(D)

(ImG(i) : G(E)→ G(D)) = G(D); (17)
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66 M. V. Bondarkohere we also assume that these limits exist. Then C is nie on C also.4. Let C′ ⊂ C be a (skeletally) small triangulated subategory, let A satisfyAB5. Let C′ = · · · → H ′ → H → H ′′ → . . . be a strongly exat omplexof funtors C′ → A. We extend all its terms from C′ to C by the methodof Proposition 1.2.1 and denote the omplex obtained by C; we arry on thenotation for the terms and arrows from C′ to C. Then C is a strongly exatomplex also (and its terms are ohomologial funtors).It is nie in H whenever C′ is.Proof. 1. It su�es to hek that the isomorphism provided by Theorem2.3.1(III4) is ompatible with the oboundaries if (16) is ful�lled. We anassume A = Ab; see Remark 1.1.8. Then (16) transfers into: for any
(x, y) : x ∈ H ′(A), y ∈ H(B), f(A)(x) = H(l)(y) there exists a
z ∈ H ′′(C) suh that g(B)(y) = H ′′(z) and H([−1](n))(x) = h(C)(z). (18)We should prove: if the images of x ∈ H2(X) and of y ∈ H ′′(X) in H ′′

2 (X) o-inide, w ∈ H1(X [−1]) and t = H(X)(y) ∈ H ′(X [−1]) are their oboundaries,then w and t ome from some (single) u ∈ H ′
1(X [−1]).We lift x to some x′ ∈ H(w≥k+1X). Then (16) (if we substitute w≥k+1 for Aand X for B in it) implies the existene of some v ∈ H ′((w≤kX)[−1]) whoseimage in H ′(X [−1]) (resp. in H(w≤kX [−1])) oinides with t (resp. with theoboundary of x′). Hene we an take u being the image of v (in H ′

1(X [−1])).2. Sine the bi-funtor C(−,−) is (o)homologial with respet to both argu-ments, C is a strongly exat omplex indeed. It remains to note: (16) in thisase just means that any ommutative square an be ompleted to a morphismof distinguished triangles; so it follows from the orresponding axiom (TR3) oftriangulated ategories.3. First suppose that A = Ab (or any other abelian ategory equipped withan exat faithful funtor A → Ab that respets small diret limits; note thatbelow we will only need A = Ab). Then we should hek (18).Now note: it su�es to prove that there exist A′, B′ ∈ ObjC ′, l′ ∈ C(A′, B′),
α ∈ C(A,A′), β ∈ C(B,B′), x′ ∈ H ′(A′), g′ ∈ H(B′) suh that:

x = H ′(α)(x′), y = H(β)(y′), l′ ◦ α = β ◦ l, f(A′)(x′) = H(l′)(y′). (19)Indeed, denote C′ = Cone(l′); denote by γ some element of C(C,C′) thatompletes
A −−−−→ B




y





y

A′ −−−−→ B′to a morphism of triangles. Let z′ ∈ H ′′(C′) be some element satisfying theobvious analogue of (18). Then h = H ′′(γ)(h′) is easily seen to satisfy (18).Now we onstrut A′, B′, . . . as desired. Note that in this ase the assumption(17) is equivalent to: for any t ∈ G(D) there exist E ∈ ObjC′, s ∈ G(D), and
Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 67
r ∈ C(D,E), suh that t = G(r)(s) (sine C′ is additive). So, we an hoose
A′ ∈ ObjC ′, α ∈ C(A,A′), x′ ∈ H ′(A′) suh that x = H ′(α)(x′). We omplete
q = α ⊕ l ∈ C(A,A′

⊕

B) to a distinguished triangle A → A′
⊕

B
p=p1⊕p2
→

D. Sine H(q)((−H ′(f(A′)(x′), y)) = 0, there exists an s ∈ H(D) suh that
H(p)(s) = (−H ′(f(A′)(x′), y) (reall that H is ohomologial on C). So, wehave H(p2)(s) = y, −H(p1)(s) = f(A′)(X ′), p2 ◦ l = −p1 ◦ α.
D �ts for B′ if it lies in ObjC′. In the general ase using (17) again, we hoose
B′ ∈ ObjC ′, δ ∈ C(D,B′), g′ ∈ H(Y ), suh that s = H(δ)(g′). Then it iseasily seen that taking l′ = −δ ◦ p1, β = δ ◦ p2, we omplete the hoie of a setof data satisfying (19).This argument an be modi�ed to work for a general A. To this end we separatethose parts of the reasoning where we used the fat that H is ohomologialfrom those where we deal with limits; this allows us to 'work as if A = Ab'.We denote Ker(H ′(A)

⊕

H(B))→H(A)) (with respet to the morphism in (16)by S(A,B), and Ker(H ′(A)
⊕

H(B)
⊕

H ′′(C))→H(A)
⊕

H ′′(B)
⊕

H ′(C[−1]) by
T (A,B,C).Then we have a ommutative diagram
lim
−→

(Im(T (A′, B′, C′)→ T (A,B,C)))
t′

−−−−→ lim
−→

(Im(S(A′, B′)→ S(A,B)))




y





y

i

T (A,B,C)
t

−−−−→ S(A,B)here the �rst diret limit above is taken with respet to morphisms of triangles
(A → B → C) → (A′ → B′ → C′) for A′, B′, C′ ∈ ObjC′ (the ordering issimilar to those of (17)); the seond limit is taken similarly with respet tomorphisms (A→ B)→ (A′ → B′) for A′, B′ ∈ ObjC ′. Sine the restrition of
C to C′ is nie in H , for all A′, B′, C′ the morphism T (A′, B′, C′)→ S(A′, B′)is epimorphi; hene t′ is epimorphi. Therefore, it su�es to prove that i isepimorphi.Now let us �x A′ = A0 and α = α0. We use the notation introdued above;denote the preimage of Im(H ′(α) : H ′(A′) → H ′(A)) with respet to thenatural morphism S(A,B)→ H ′(A) by J . Then J equals Im(H ′(A′)×H(D)→
S(A,B)). Indeed, here we an apply Proposition 1.1.7 (see Remark 1.1.8) andthen apply the reasoning 'with elements' used above.In any A we obtain: sine Φ(D,Y ) = lim

−→
(Im(Φ(B′, Y )→ Φ(D,Y ))), we obtainthat G = lim

−→
(Im(S(A0, B

′, X, Y )→ S(A,B,X, Y ))). Here we use the followingfat (valid in any abelian A): if Ji ⊂ J ′ ∈ ObjA, lim
−→

Ji = J (for some projetivesystem), u : J ′ → J is an A-epimorphism, then lim
−→

u(Ji) = J .Now, passing to the limit with respet to (A0, α0) (using (17)) �nishes theproof.4. C is a omplex indeed sine the extension proedure is funtorial.By Proposition 1.2.1(I1), all the terms of C are ohomologial on C. Also, partII2 of lo.it. immediately implies that C is exat (i.e. C(X) is exat for any
X ∈ ObjC). Hene C is a strongly exat omplex.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



68 M. V. BondarkoObviously, if C is nie in H then C′ also is.Conversely, let C′ be nie in H . Then Proposition 1.2.1(II1) implies that H ′and H satisfy (17) (for all D). Hene C is nie in H by assertion 3.
2.4 Weight spectral sequences and filtrations; relation with vir-

tual t-truncations

Definition 2.4.1. For an arbitrary (C,w) let H : C → A be a ohomologialfuntor (A is any abelian ategory).We de�ne W i(H) : C → A as X → Im(H(w≤iX)→ H(X)).By Proposition 2.1.2(2) of [6℄, W i(H)(X) does not depend on the the hoieof the weight deomposition of X [i]; it also de�nes a (anonial) subfuntor of
H(X).Now reall that Postnikov towers yield spetral sequenes for ohomology. Wewill denote H(X [−i]) by Hi(X) (for X ∈ ObjC). We will also use the notationof De�nition 2.3.2.
Theorem 2.4.2. Let k,m ∈ Z.I1. For any weight Postnikov tower for X (see De�nition 2.1.2(9)) there existsa spetral sequene T = T (H,X) with Epq

1 (T ) = Hq(X−p) suh that the map
Epq

1 → Ep+1q
1 is indued by the morphism X−p−1 → X−p (oming from thetower). We have T (H,X) =⇒ Hp+q(X) for any X ∈ Cb.One an onstrut it using the following exat ouple: Epq

1 = Hq(X−p), Dpq
1 =

Hq(Xw≥1−p).2. T is (ovariantly) funtorial in H; it is ontravariantly C-funtorial in Xstarting from E2.3. Denote the step of �ltration given by (El,m−l
1 : l ≥ −k) on Hm(X) by

F−kHm(X). Then F−kHm(X) = (W kHm)(X).II The derived exat ouple for T (H,X) an be naturally alulated in terms ofvirtual t-trunations of H in the following way: Epq
2
∼= E′pq

2 = (Hq)τ=−p(X),
Dpq

2 = D′pq
2 = (τ≥qH)(X [1 − p]); the onneting morphisms of the ouple

((E′
2, D

′
2)) ome from (15).III1. F−kHm(X) = Im((τ≤kH

m)(X)→ Hm(X)) (with respet to the onnet-ing morphism mentioned in Theorem 2.3.1(I)).2. For any r ≥ 2, p, q ∈ Z there exists a funtorial isomorphism Epq
r
∼=

(F p(τ[−p+2−r,−p+r−2]H)q)p/F p+1(τ[−p+2−r,−p+r−2]H)q)p.Proof. I This is Theorem 2.4.2 of [6℄; see also Remark 2.4.1 of ibid. for thedisussion of exat ouples.In fat, assertion 1 follows easily from well known properties of Postnikov towersand of related spetral sequenes.II Sine virtual t-trunations are funtorial, the exat ouple (D′
2, E

′
2) is fun-torial also.
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Coniveau Spectral Sequences for Motives 69The de�nitions of the derived exat ouple and of the virtual t-trunationsimply immediately that Dpq
2 and their onneting maps are exatly D′pq

2 (andtheir onneting morphisms) spei�ed in the assertion.It remains to ompare E2 with E′
2, and also the onneting maps of exatouples starting and ending in E2 with those for E′

2. It su�es to onsider
p = q = 0. Our strategy is the following one. First we onstrut an isomorphism
E00

2 → E′00
2 ; our onstrution depends on some hoies. Then we prove that theisomorphism onstruted is atually natural (in partiular, it does not dependon the hoies made). Lastly we verify that the isomorphisms of the terms ofthe exat ouples onstruted is ompatible with the onneting morphisms ofthese ouples. Note that in this (last) part of the argument we an make thosehoies (of ertain weight deompositions) that we like.By the de�nition of the derived exat ouple we have: E00

2 is the 0-th ohomol-ogy of the omplex (H(X−j)) (for any hoie of the weight omplex (X i)). E′00
2is the image of H(k) where k ∈ C(w[0,1]X,w[−1,0]X) is any morphism that isompatible with idX with respet to the orresponding weight deompositions(see see Theorem 2.3.1(II3) and Remark 2.2.2(3)). So, we should ompare asubfator of H(X0) with a subobjet of H(w[0,1]X).Now suppose that we are given an otahedral diagram ontaining a ommu-tative triangle w[1,1]X → w[0,1]X → w[−1,1]X (see Theorem 2.2.1(11)). Weould obtain it as follows: �x some w[−1,1]X ; then hoose ertain w[0,1]X =

w≥0(w[−1,1]X) and w[1,1]X = w≥1(w[−1,1]X) (see Remark 2.2.2(4)). For anypossible ompletion of the ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]Xto an otahedral diagram, the remaining verties of the otahedron are ertain
w[−1,0]X , w[0,0]X = X0, and w[−1,−1]X = X−1[1] (by Theorem 2.2.1(11)). Weobtain morphisms w[0,1]X

i
→ X0 j

→ w[−1,0]X suh that k = j ◦ i. Moreover,
Im(H(X1) → H(X0)) = KerH(i). Hene H(i) indues some monomorphism
α : H(X0)/ Im(H(X1) → H(X0)) to H(w[0,1]X). Besides, Ker(H(X0) →
H(X−1)) = ImH(j); therefore the restrition of α to α−1(ImH(k)) yields anisomorphism β : E00

2 → E′00
2 .Now we verify that the isomorphism onstruted is natural.Note that it atually depends only on w[0,1]X

i
→ X0 and ImH(k) (we usedthe remaining data only in order to verify that we atually obtain an iso-morphism). So, suppose that we have X ′ ∈ ObjC, g ∈ C(X,X ′), and somehoie of w≥0X

′, w≥1X
′, and w≥2X

′. We have anonial onneting mor-phisms w≥0X
′ → w≥1X

′ → w≥2X
′ that are ompatible with idX′ with respetto the morphisms w≥lX

′ → X ′ (l = 0, 1, 2). Applying Theorem 2.2.1(11), weobtain a hoie of w[0,1]X
′ i′
→ X ′0. We also �x some hoie of H(k′) (in orderto do this we �x some hoie of w≤−1X and of w[−1,0]X). Note that all ofthese hoies are neessarily ompatible with some hoie of the isomorphism

β′ : E00
2 (X ′)→ E′00

2 (X ′) onstruted as above (see 2.2.2(2)).Now we hoose some morphisms gl : w≥lX → w≥lX
′, for −1 ≤ l ≤ 2, ompat-ible with g (see Remark 2.2.2(2)). These hoies ould be extended to somemorphisms a : w[0,1]X → w[0,1]X

′ and b : X0→X ′0 (by extending morphisms
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70 M. V. Bondarkoof arrows to morphism of distinguished triangles).Now we verify the ommutativity of the diagram
w[0,1]X

i
−−−−→ X0





y

a





y

b

w[0,1]X
′ i′
−−−−→ X ′0It follows from Theorem 2.2.1(10) applied to the morphism g0 : w≥0X →

w≥0X
′, l = 1, m = 2 (sine both b ◦ i and i′ ◦ a are ompatible with g0).Moreover, Remark 2.2.2(3) yields that H(a) sends H(k) to H(k′). We obtaina ommutative diagram

E00
2

β
−−−−→ E′00

2




y





y

E00
2 (H,X ′)

β′

−−−−→ E′00
2 (H,X ′)Sine E00

2 (H,−) and E′00
2 (H,−) are Cop-funtorial (and the vertial arrows inthe diagram are exatly those that yield this funtoriality; see Remark 2.3.3(3)),we obtain the naturality in question.Now it remains to prove that the isomorphisms of terms of exat ouples on-struted above is ompatible with the (two remaining) onneting morphismsof these ouples.First onsider the morphisms E00

2 → D10
2 . Reall (by the de�nition of thederived exat ouple) that it is indued by any morphism w≥0X → X0that extends to a weight deomposition of w≥0X (here we onsider E00

2 asa subfator of H(X0)). On the other hand, the morphism E′00
2 → D′10

2 =
Im(H(w≥−1X)→ H(w≥0X)) is indued by any possible hoie of a morphism
w≥0X → w[0,1]X that yields a weight deomposition of w≥0X [1] (by Remark2.3.3(2); see also Remark 2.2.2(3)). Hene it su�es to note that the triangle
w≥0X → w[0,1]X

i
→ X0 is neessarily ommutative by Remark 2.2.2.It remains onsider the morphism D1,−1

2 → E00
2 . It is indued by the morphism

X0 → w≥1X (that yields a weight deomposition of w≥0X). The morphism
D′1,−1

2 (= Im(H(w≥1X)[1]) → H(w≥2X)[1])) → E′00
2 is indued by the mor-phism w[0,1]X → w≥2X [1]. Hene it su�es to onstrut a ommutative square

w[0,1]X
i

−−−−→ X0





y





y

w≥2X [1] −−−−→ w≥1X [1]By applying Theorem 2.2.1(11) to the ommutative triangle w≥2X → w≥1X →
w≥0X we obtain that there exists suh a ommutative square with a ertain i0
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Coniveau Spectral Sequences for Motives 71instead of i. Note that (by lo.it.) i0 yields a weight deomposition of w[0,1]X .It su�es to verify that we may take i0 for i i.e. that i0 ould be ompleted toan otahedral diagram one of whose faes yields some hoie of the ommutativetriangle w[1,1]X → w[0,1]X → w[−1,1]X . We take w[1,1]X = Cone i0[−1], hoosesome w[−1,1]X (oming from the same w≤1X as w[0,1]X). By Remark 2.2.2(2)we obtain a unique ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X thatis ompatible with idw≤1X respet to the orresponding weight deompositions.It remains to apply Theorem 2.2.1(11).III We an assume k = m = 0.1. In the notation of Theorem 2.3.1 we onsider the morphism of spetralsequenes M : T (H1, X)→ T (H,X) (indued by H1 → H). Part II of lo.it.implies: M is an isomorphism on Epq
2 for p ≥ −k and Epq

2 (T (H1, X)) = 0otherwise. The assertion follows immediately.2. Similarly to the the previous reasoning, we have natural isomorphisms:
Epq

2 (T (τ[2−r,r−2]H,X) ∼= Epq
2 (T (H,X)) for 2−r ≤ p ≤ r−2 and = 0 otherwise.It easily follows that Epq

∞ (T (τ[2−r,r−2]H,X) ∼= Epq
r (T (τ[−p+2−r,−p+r−2]H,X).The result follows immediately.Remark 2.4.3. 1. The dual of assertion II is: if we onsider the alternativeexat ouple for our weight spetral sequene (see Remark 2.1.3) then thederived exat ouple an also be desribed in terms of virtual t-trunations (ina way that is dual in an appropriate sense to that of Theorem 2.4.2).2. Possibly, at least a part of (assertion II of) the theorem ould be proved bystudying the funtoriality of the derived exat ouple (and applying Theorem2.3.5(1)).

2.5 Dualities of triangulated categories; orthogonal weight and
t-structuresLet C,D be triangulated ategories. We study ertain pairings of triangulatedategories Cop ×D → A. In the following de�nition we onsider a general A,yet below we will mainly need A = Ab.

Definition 2.5.1. 1. We will all a (ovariant) bi-funtor Φ : Cop ×D → A aduality if it is bi-additive, homologial with respet to both arguments; and isequipped with a (bi)natural transformation Φ(X,Y ) ∼= Φ(X [1], Y [1]).2. We will say that Φ is nie if for any distinguished triangle X → Y → Z theorresponding (strongly exat) omplex of funtors
· · · → Φ(−, X)→ Φ(−, Y )→ Φ(−, Z)

f
→ Φ([−1](−), X)→ . . . (20)is nie in Φ(−, Y ) (see De�nition 2.3.4); here f is obtained from the natu-ral morphism Φ(−, Z)→Φ(−, X [1]) by applying the (bi)natural transformationmentioned above.
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72 M. V. Bondarko3. Suppose that C is endowed with a weight struture w, D is endowed with a
t-struture t. Then we will say that w is (left) orthogonal to t with respet to
Φ if the following orthogonality ondition is ful�lled:
Φ(X,Y ) = 0 if: X ∈ Cw≤0 and Y ∈ Dt≥1, or X ∈ Cw≥0 and Y ∈ Dt≤−1.(21)4. If w is de�ned on Cop, t is de�ned on Dop, w is left orthogonal to t (withrespet to some duality); then we will say that the orresponding oppositeweight struture on C is right orthogonal to the opposite t-struture for D.Remark 2.5.2. 1. The axioms of Φ immediately imply that (20) is a stronglyexat omplex of funtors indeed (whether Φ is nie or not).2. Certainly, if Φ is nie then (20) is nie at any term (sine we an 'rotate'distinguished triangles in D).First we prove a statement that will simplify heking the orthogonality ofweight and t-strutures.

Proposition 2.5.3. Let Φ : Cop × D → A be some duality; let (C,w) bebounded. Then w is (left) orthogonal to t whenever there exists a D ⊂ Cw=0suh that any objet of Cw=0 is a retrat of a �nite diret sum of elements of
D and

Φ(X,Y ) = 0 ∀ X ∈ D, Y ∈ Dt≥1 ∪Dt≤−1. (22)Proof. If w is is left orthogonal to t, then (22) for D = Cw=0 follows immedi-ately from the orthogonality ondition.Conversely, let D satisfy the assumptions of our assertion. Hene we have:
Φ(X,Y ) = 0 if X ∈ D[i], i ≥ 0, Y ∈ Dt≥1, or if X ∈ D[i], i ≤ 0, Y ∈ Dt≤−1.Now suppose that for some E,F ⊂ ObjC we have: any objet of Cw≤0 is aretrat of an objet of E, any objet of Cw≥0 is a retrat of an objet of F .Then it obviously su�es to hek that Φ(X,Y ) = 0 if either X ∈ E and
Y ∈ Dt≥1 or X ∈ F and Y ∈ Dt≤−1.Now by Theorem 2.2.1(19), we an take E being the smallest extension-stablesubategory of C ontaining D[i], i ≥ 0; and F being the smallest extension-stable subategory of C ontainingD[i], i ≤ 0. To onlude the proof it remainsto note that for a distinguished triangle X → Y → Z in C, O ∈ ObjD we have:
Φ(X,O) = 0 = Φ(Z,O) =⇒ Φ(Y,O) = 0.When (weight and t-) strutures are orthogonal, virtual t-trunations of
Φ(−, Y ) are given by t-trunations in D. We use the notation of De�nition2.3.2.
Proposition 2.5.4. 1. Let t be orthogonal to w with respet to Φ, k ∈ Z.For Y ∈ ObjD denote the funtor Φ(−, Y ) : C → A by H. Then we havean isomorphism of omplexes (τ≤kH → H → τ≥kH) ∼= (Φ(−, t≤kY ) → H →
Φ(−, t≥k+1Y )) (where the onneting maps of the seond omplex are induedby t-trunations); this isomorphism is natural in Y .
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Coniveau Spectral Sequences for Motives 732. Suppose also that Φ is nie. Then the (strongly exat) omplex of funtorsthat sends X to
· · · → Φ(X, t≤kY )→ Φ(X,Y )→ Φ(X, t≥k+1Y )→ Φ(X [−1], t≤kY )→ . . .(23)(onstruted as in the de�nition of a nie duality) is naturally isomorphi to(15).Proof. 1. Sine t and w orthogonal, Φ(−, t≤kY ) vanishes on Cw≥k+1, whereas

Φ(−, t≥k+1Y ) vanishes on Cw≤k. Moreover, (23) yields that H ′ = Φ(−, t≤kY )and H ′′ = Φ(−, t≥k+1Y ) also satisfy the ondition (iii) of Theorem 2.3.1(III4).Hene the theorem yields the laim.2. Immediate from the previous assertion and Theorem 2.3.5(1).Remark 2.5.5. Note that we atually need quite a partial ase of the 'nienessondition' for Φ in order to prove assertion 2. Hene here (and so, in all theappliations below) we will not need the nieness ondition in its full generality.Possibly, the orresponding partial ase of the ondition is weaker than thewhole assertion; yet heking it does not seem to be muh easier.Also, it seems quite possible that for an arbitrary (not neessarily nie) dualitythere exists some isomorphism of (15) with (23) if we modify the boundarymaps of the seond omplex. Yet there seems to be no way to hoose suh amodi�ation anonially.'Natural' dualities are nie; we will justify this thesis now.
Proposition 2.5.6. 1. If A = Ab, D = C, then Φ : (X,Y ) 7→ C(X,Y ) is anie duality.2. For some duality Φ : Cop × D → A let there exist a (skeletally) small fulltriangulated C′ ⊂ C suh that: the restrition of Φ to C ′op×D is a nie duality(of C′ with D); for any X ∈ ObjD the funtor G = Φ(−, X), Cop → A,satis�es (17). Then Φ is nie also.3. For D, C′ ⊂ C as above, A satisfying AB5, let Φ′ : C′op × D → A be aduality. For any Y ∈ ObjD we extend the funtor Φ′(−, Y ) from C′ to C bythe method of Proposition 1.2.1; we denote the funtor obtained by Φ(−, Y ).Then the orresponding bi-funtor Φ is a duality (Cop × D → A). It is niewhenever Φ′ is.Proof. Immediate from parts 2�4 of Theorem 2.3.5.Remark 2.5.7. 1. Proposition 2.5.6(1) yields an important family of nie dual-ities; this ase was thoroughly studied in [6℄ (in setions 4 and 7). We will saythat w is left (resp. right) adjaent to t if it is left (resp. right) orthogonal to itwith respet to Φ(X,Y ) = C(X,Y ). Note that for w left (resp. right) adjaentto t with respet to this de�nition we neessarily have Cw≤0 = Ct≤0 (resp.
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74 M. V. Bondarko

Cw≥0 = Ct≥0) by Theorem 2.2.1(2) and Remark 1.1.3(2); so this de�nition isatually ompatible with De�nition 4.4.1 of [6℄.One an generalize this family as in �8.3 of ibid.: for A = Ab and an exat
F : D → C we de�ne Φ(X,Y ) = C(X,F (Y )). Certainly, one ould alsodualize this onstrution (in a ertain sense) and onsider F : C → D and
Φ(X,Y ) = C(F (X), Y ).2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) ofibid. All the families of dualities mentioned an be expanded using part 3 ofthe proposition.3. It is also easy to onstrut a duality that is not nie. To this end one anstart with C = D, Φ = C(−,−) and then modify the hoie of distinguishedtriangles in D (without hanging the shift in D, and hanging nothing in C)in a way that would not a�et the properties of funtors to be ohomologial.The simplest way to do this is to prolaim a triangle X

f
→ Y

g
→ Z

h
→ X [1] tobe distinguished in D if X −f

→ Y
−g
→ Z

−h
→ X [1] is distinguished in C. Certainly,suh a modi�ation is not very 'serious'; in partiular, one an '�x the problem'by multiplying the isomorphism Φ(X,Y ) ∼= Φ(X [1], Y [1]) by −1.The author does not know whether any duality an be made nie by modifyingthe hoie of the lass of distinguished triangles (in D), or by modifying the iso-morphism mentioned. Note also that the question whether there exists a D forwhih suh a modi�ation an hange the 'equivalene lass' of triangulationsis well-known to be open.

2.6 Comparison of weight spectral sequences with those coming
from (orthogonal) t-truncationsNow we desribe the relation of weight spetral sequenes with orthogonalstrutures.

Theorem 2.6.1. Let w for C and t for D be orthogonal with respet to a duality
Φ; let i, j ∈ Z, X ∈ ObjC, Y ∈ ObjD.1. Consider the spetral sequene S oming from the following exat ouple:

Dpq
2 (S) = Φ(X,Y t≥q[p − 1]), Epq

2 (S) = Φ(X,Y t=q[p]) (we start S from
E2). It naturally onverges to Φ(X,Y [p+ q]) if X ∈ Cb.2. Let T be the weight spetral sequene given by Theorem 2.4.2 for thefuntor H : Z 7→ Φ(Z, Y ). Then for all r ≥ 2 we have natu-ral isomorphisms Epq

r (T (H,X)) ∼= Epq
r (S). There is also an equality

F−kHm(X) = Im(Φ(X, t≤kY [m]) → Hm(X)) (here we use the notationof part I4 of lo.it.) ompatible with this isomorphism.3. Suppose that Φ is also nie. Then the isomorphism mentioned in theprevious assertion extends naturally to the isomorphism of of T with S(starting from E2).
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Coniveau Spectral Sequences for Motives 754. Let · · · → X−j−1 → X−j → X1−j → . . . denote an arbitrary hoie ofthe weight omplex for X. Then we have a funtorial isomorphism
Φ(X,Y t=i[j]) ∼=

(Ker(Φ(X−j , Y [i]) → Φ(X−1−j , Y [i]))/ Im(Φ(X1−j , Y [i]) → Φ(X−j , Y [i])).(24)Proof. 1. The theory of t-strutures easily yields: Y t≥q and Y t=q an befuntorially organized into a ertain Postnikov tower for Y . Hene theusual results on spetral sequenes oming from Postnikov towers (see�IV2, Exerise 2, of [13℄) yield the assertion easily.2. Immediate from Proposition 2.5.4(1) and Theorem 2.4.2(III). Note thatthe latter assertion does not use the 'dimension shift' in (15).3. Proposition 2.5.4(2) and Theorem 2.4.2(II) imply: there is a natural iso-morphism of the derived exat ouple for T with the exat ouple of S('at level 2'). The result follows immediately.4. This is just assertion 2 for E2-terms.Remark 2.6.2. 1. So, we justi�ed parts 4 and 5 of Remark 4.4.3 of [6℄.2. Note that the spetral sequene denoted by S in (Remark 4.4.3(4) and�6.4 of) ibid. started from E1; so it di�ered from our S and T by a ertainshift of indies.3. So, we developed an 'abstrat triangulated alternative' to the method ofomparing similar spetral sequenes that was developed by Deligne andParanjape. The latter method used �ltered omplexes; it was applied in[22℄, [11℄, and in �6.4 of [6℄. The disadvantage of this approah is that oneneeds extra information in order to onstrut the orresponding �lteredomplexes; this makes di�ult to study the naturality of the isomorphismonstruted. Moreover, in some ases the omplexes required annotexist at all; this is the ase for the spherial weight struture and itsadjaent Postnikov t-struture for C = D = SH (the topologial stablehomotopy ategory; see �4.6 of [6℄; yet in this ase one an ompare theorresponding spetral sequenes using topology).4. One ould modify our reasoning to prove a version of the theorem thatdoes not mention weight and t-strutures. To this end instead of onsid-ering a weight Postnikov tower for X and the Postnikov tower omingfrom t-trunations of Y one should just ompare spetral sequenes om-ing from some Postnikov towers for X and Y in the ase when thesePostnikov towers satisfy those 'orthogonality' onditions (with respet toa (nie) duality Φ) that are implied by the orthogonality of strutures
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76 M. V. Bondarkoondition in our situation. Yet it seems di�ult to obtain the naturalityof the isomorphisms in Theorem 2.6.1(3) using this approah.5. Even more generally, it su�es to have an indutive system of Postnikovtowers inD and a projetive system of Postnikov towers in C suh that theorthogonality onditions required are satis�ed in the (double) limit. Thenthe omparison statements for the double limits of the orrespondingspetral sequenes are valid also. A very partial (yet rather important)example of a reasoning of this sort is desribed in �7.4 of [6℄. Besides, thisapproah ould possibly yield the omparison result of �6 of [11℄ (evenwithout assuming k to be ountable as we do here).6. A simple (yet important) ase of (24) is: for any i ∈ Z

X ∈ Cw=i =⇒ ∀Y ∈ ObjD we have Φ(X,Y ) ∼= Φ(X,Y t=i). (25)
2.7 ’Change of weight structures’; comparing weight spectral

sequencesNow we ompare weight deompositions, virtual t-trunations, and weight spe-tral sequenes orresponding to distint weight strutures. In order make ourresults more general (and to apply them below) we will assume that these stru-tures are de�ned on distint triangulated ategories; yet the ase when bothare de�ned on C is also interesting.So, till the end of the setion we will assume: C,D are triangulated ategoriesendowed with weight strutures w and v, respetively; F : C → D is an exatfuntor.
Definition 2.7.1. 1. We will say that F is right weight-exat if F (Cw≥0) ⊂
Dv≥0.2. If F is fully faithful and right weight-exat, we will say that v dominates w.3. We will say that F is left weight-exat if F (Cw≤0) ⊂ Dv≤0.4. F will be alled weight-exat if it is both right and left weight-exat.We will say that w indues v (via F ) if F is a weight-exat loalization funtor.
Proposition 2.7.2. Let F be a right weight-exat funtor; let l ≥ m ∈ Z,
X ∈ ObjD, X ′ ∈ ObjC, g ∈ D(F (X ′), X).1. Let weight deompositions of X [m] with respet to v and X ′[l] with respetto w be �xed. Then g an be ompleted to a morphism of distinguished triangles

F (w≥l+1X
′) −−−−→ F (X ′) −−−−→ F (w≤lX

′)




y

a





y

g





y

b

v≥m+1X −−−−→ X −−−−→ v≤mX

(26)This ompletion is unique if l > m.
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Coniveau Spectral Sequences for Motives 772. For arbitrary weight Postnikov towers Pov(X) for X (with respet to v)and PowX
′ for X ′ (with respet to w), g an be extended to a morphism

F∗(PowX
′)→ Pov(X).3. Let H : D → A be any funtor, k ∈ Z, j > 0. Denote H ◦ F by G. Then(26) allows to extend H(g) naturally to a diagram

Hv
1 (X) −−−−→ H(X) −−−−→ Hv

2 (X)




y





y

H(g)





y

Gw
1 (X

′) −−−−→ G(X ′) −−−−→ Gw
2 (X

′)here we add the weight struture hosen as an index to the notation of Theorem2.3.1(I).Proof. 1. Sine F is right weight-exat, D(F (w≥n+1X
′), v≤mX) = {0} for any

n ≥ m. Hene the omposition morphism F (w≥l+1X
′) → v≤mX is zero; if

l > m then D(F (w≥l+1X
′), (v≤mX)[−1]) = {0}. The result follows easily; seeProposition 1.1.9 of [2℄.2. Assertion 1 (in the ase l = m) yields that there exists a system of morphisms

fi ∈ D(F (w≥iX
′), v≥iX) ompatible with g; we �x suh a system. Applyingthe same assertion for any pair of l,m : l > m, we obtain that fl is ompatiblewith fm (here we use arguments similar to those desribed in Remark 2.2.2).Finally, sine any ommutative square an be extended to a morphism of theorresponding distinguished triangles (an axiom of triangulated ategories), weobtain that we an omplete (uniquely up to a non-anonial isomorphism)the data hosen to a morphism of Postnikov towers (i.e. hoose a ompatiblesystem of morphisms F (X ′i)→ X i).3. Easy from assertion 1; note that for any ommutative square in A

X
f

−−−−→ Y




y

h





y

Z
g

−−−−→ Tif we �x the rows then the morphism g ◦ h : X → T ompletely determines themorphism Im f → Im g indued by h.We easily obtain a omparison morphism of weight spetral sequenes.
Proposition 2.7.3. I Let F,X ′, G be as in the previous proposition; supposealso that H is ohomologial. Set X = F (X ′), g = idX .1. There exists some omparison morphism of the orresponding weight spetralsequenes M : Tv(H,X)→ Tw(G,X ′). Moreover, this morphism is unique andadditively funtorial (in g) starting from E2.2. Let there exist D ⊂ Cw=0 suh that any Y ∈ Cw=0 is a retrat of some
Z ∈ D, and that for any Z ∈ D there exists a hoie of Zw≥1 suh that
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78 M. V. Bondarko

Epq
2 Tv(H,F (Zw≥1)) = {0} for all p, q ∈ Z. Then (any hoie of) M yields anisomorphism of the spetral sequene funtors starting from E2.3. Let E be a triangulated ategory endowed with a weight struture u, F ′ : D →

E a right weight-exat funtor; suppose that H = E◦F ′ for some ohomologialfuntor E : E → A. Then we have the following assoiativity property foromparison of weight spetral sequenes: the omposition of M with (any hoieof) a omparison morphisms M ′ : Tu(E,F ′(X))→ Tv(H,X) onstruted as inassertion 1, starting from E2 is anonially isomorphi to (any hoie of asimilarly onstruted) omparison morphism Tu(E,F ′(X))→ Tw(G,X ′).II Let H,X ′, X,G be as above, but suppose that F : C → D is left weight-exat.Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G,X ′) → Tv(H,X); this onstrution satis�es the duals for all propertiesof M desribed in assertion I.Proof. I 1. In order to onstrut some omparison morphism, it su�es toonstrut a morphism of the orresponding exat ouples that is ompatiblewith idX . Hene it su�es to use Proposition 2.7.2(2) to obtain a morphismof the orresponding Postnikov towers, and then apply H to it.Theorem 2.4.2(II) yields that weight spetral sequenes ould be desribed interms of the orresponding virtual t-trunations. Hene Proposition 2.7.2(3)implies all the funtoriality properties of M listed.2. It su�es to prove that M is an isomorphism on E∗∗

2 Tw(G, Y ) for all Y ∈
ObjC.Sine D ⊂ Cw≥0, this assertion is true for any Y ∈ D. Sine Z 7→ E2(T (G,Z))is a ohomologial funtor for any weight struture (see Theorem 2.4.2 and theremark at De�nition 2.3.2), the assertion is also true for any Y ∈ ObjCb. Toonlude it su�es to note that for any H , any Y ∈ ObjC, any �nite 'piee'of E∗∗

2 Tw(G, Y ) oinides with the orresponding piee of E∗∗
2 Tw(G,w[i,j]Y )(for any hoie of w[i,j]Y ) if i is small enough and j is large enough, and thisisomorphism is ompatible with M .3. We reall that omparison morphisms for weight spetral sequenes wereonstruted using Proposition 2.7.2(1). It easily follows that M ′ ◦M is one ofthe possible hoies for a omparison morphism Tu(E,F ′◦F (X))→ Tw(G,X ′).It su�es to apply assertion I1 to onlude that this �xed hoie of a omparisonmorphism oinides with any other possible hoie starting from E2.II We obtain the assertion from assertion I immediately by dualization (seeTheorem 2.2.1(1)); here one should onsider the duals of C, D, and A (andalso 'dualize' the onneting funtors).Remark 2.7.4. M is an isomorphism (starting from E2) also if: there exists aloalization of D suh that H fatorizes through it, v indues a weight stru-ture v′ on it, w indues a weight struture on the ategorial image of C thatoinides with the restrition of v′ to it (sine both weight spetral sequenesare isomorphi to the spetral sequene orresponding to this new weight stru-ture).
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Coniveau Spectral Sequences for Motives 79Yet this onditions are somewhat restritive sine weight strutures do not'desend' to loalizations in general (sine for an exat F ′ : C → E the lasses
F ′
∗(C

w≥1) and F ′
∗(C

w≤0) are not neessarily orthogonal in E).In order to simplify heking right and left weight-exatness of funtors, we willneed the following easy statement.
Lemma 2.7.5. Let w be bounded.1. An exat J : C → D is a right weight-exat whenever there exists a D ⊂
Cw=0 suh that any Y ∈ Cw=0 is a retrat of some X ∈ D, and that for any
X ∈ D we have J(Y ) ∈ Dv≥0.2. An exat J : C → D is a left weight-exat whenever there exists a D ⊂ Cw=0suh that any Y ∈ Cw=0 is a retrat of some X ∈ D, and that for any X ∈ Dwe have J(Y ) ∈ Dv≤0.Proof. It su�es to prove assertion 1, sine assertion 2 is exatly its dual.If J is right weight-exat funtor, then we an take D = Cw=0Now we prove the onverse statement. Sine Dv≥0 is Karoubi-losed andextension-stable in D, Theorem 2.2.1(19) yields that J(Cw≥0) indeed belongsto Dv≥0.
3 Categories of comotives (main properties)We embed DM eff

gm into a ertain big triangulated motivi ategory D; we willall it objets omotives. We will need several properties of D; yet we willnever use its desription diretly. For this reason in �3.1 we only list the mainproperties of D.In �3.2 we assoiate ertain omotives to (disjoint unions of) 'in�nite interse-tions' of smooth varieties over k (we all those pro-shemes). We also introdueertain Tate twists for these omotives.In �3.3 we reall the de�nition of a primitive sheme (note that in the ase ofa �nite k we all a sheme primitive whenever it is smooth semi-loal). Themain motivi property of primitive shemes (proved by M. Walker) is: F (S)injets into F (S0) if S is primitive onneted, S0 is its generi point, and F isa homotopy invariant presheaf with transfers.In �3.4 we study the relation of (omotives of) primitive shemes with thehomotopy t-struture for DM eff
− .In �3.5 we prove that there are no D-morphisms of positive degrees betweenomotives of primitive shemes (and also ertain Tate twists of those); this isalso true for produts of omotives mentioned.In �3.6 we prove that one an pass to ountable homotopy limits in Gysindistinguished triangles; this yields Gysin distinguished triangles for omotivesof pro-shemes. This allows to onstrut ertain Postnikov towers for omotivesof pro-shemes (and their Tate twists), whose fators are twisted produts ofomotives of funtion �elds (over k). The onstrution of the tower is parallelto the lassial onstrution of oniveau spetral sequenes (see �1 of [8℄).
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80 M. V. Bondarko

3.1 Comotives: an ’axiomatic description’We will de�ne D below as the derived ategory of di�erential graded funtors
J → B(Ab); here J yields a di�erential graded enhanement of DM eff

gm (f. [4℄,[19℄, or [7℄), B(Ab) is the di�erential graded ategory of omplexes over Ab.We will also need some ategory D
′ that projets to D (a ertain model of D).Derived ategories of di�erential graded funtors were studied in detail in [12℄and [16℄. We will de�ne and study them in �5 below; now we will only list theirproperties that are needed for the proofs of main statements.Below we will also need ertain (�ltered) inverse limits several times. D is atriangulated ategory; so it is no wonder that there are no nie limits in it. Sowe onsider a ertain additive D′ endowed with an additive funtor p : D′ → D.We will all (the images of) inverse limits from D

′ homotopy limits in D.The relation of D′ with D is similar to the relation of C(A) with D(A). Inpartiular, D′ is losed with respet to all (small �ltered) inverse limits; we havefuntorial ones of morphisms in D
′ that are ompatible with inverse limits.We will need some onventions and de�nitions introdued in Notation; in par-tiular, I, L will be projetive systems; I is ountable.

Proposition 3.1.1. 1. There exists a triangulated ategory D ⊃ DM eff
gm ;all objets of DM eff

gm are oompat in D.2. There exists an additive ategory D
′ losed with respet to arbitrary (small�ltered) inverse limits, and an additive funtor p : D′ → D that preserves(small) produts. Moreover, p is surjetive on objets.3. D

′ is endowed with a ertain invertible shift funtor [1] that is ompatiblewith the shift on D and respets inverse limits.4. There is a funtorial one of morphisms in D
′ de�ned; it is ompatiblewith [1] and respets inverse limits.5. Any triangle of the form X

f
→ Y → Cone(f) → X [1] in D

′ beomesdistinguished in D.6. The omposition funtor Mgm : Cb(SmCor) → DM eff
gm → D an beanonially fatorized through an additive funtor j : Cb(SmCor)→ D

′.Shifts and ones of morphisms in Cb(SmCor) are ompatible with thosein D
′ via j.7. For any X ∈ Mgm(Cb(SmCor)) ⊂ ObjD, any Y : L → D

′ we have
D(p(lim

←−l∈L
Yl), X) = lim

−→l∈L
D(p(Yl), X).8. DM eff

gm weakly ogenerates D (i.e. we have ⊥DM eff
gm = {0}, see Nota-tion).
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Coniveau Spectral Sequences for Motives 819. Let a sequene in ∈ I, n > 0, be inreasing (i.e. in+1 > in for any n > 0)unbounded (see Notation). Then for all funtors X : I → D
′, we havefuntorial distinguished triangles in D:

p(lim
←−i∈I

Xi)→ p(
∏

Xin)
e
→ p(

∏

Xin); (27)
e is the produt of idXin

⊕−φn : Xin+1
→ Xin ; here φn are the morphismsoming from I via X.10. There exists a di�erential graded enhanement for D; see �5.1 below.Remark 3.1.2. 1. Sine below we will prove some statements for D only usingits 'axiomatis' (i.e. the properties listed in Proposition 3.1.1), these resultswould also be valid in any other ategory that ful�lls these properties. Thisould be useful, sine the author is not sure at all that all possible D areisomorphi.2. Moreover, one ould modify the axiomatis of D and onsider instead aategory that would only ontain the triangulated subategory of DM eff

gm gen-erated by motives of smooth varieties of dimension ≤ n (for a �xed n > 0).Our results and arguments below an be easily arried over to this setting (withminor modi�ations; it is also useful here to weaken ondition 8 in the Propo-sition). This makes sense sine these 'geometri piees' of DM eff
gm are self-dualwith respet to Poinare duality (at least, if char k = 0); see �6.4 below. Seealso Remark 4.5.2(2).Alternatively, we an weaken the ondition for the funtor DM eff
gm → D to bea full embedding. For example, it ould be interesting to onsider the versionof D for whih this funtor kills DM eff

gm (n) (for some �xed n > 0).Lastly note that we do not really need ondition 2 in its full generality (below).Now we derive some onsequenes from the axiomatis listed.
Corollary 3.1.3. 1. For any Z ∈ ObjDM eff

gm ⊂ ObjD, any X : L → D
′we have D(p(lim

←−l∈L
Xl), Z) = lim

−→l∈L
D(p(Xl), Z).2. For any T ∈ ObjD, all funtors Y : I → D

′ we have funtorial shortexat sequenes
{0} → lim

←−
1
D(T, p(Yi)[−1])→ D(T, p(lim

←−
Yi))→ lim

←−
D(T, p(Yi))→ {0};here lim

←−
1 is the (�rst) derived funtor of lim

←−
= lim
←−I

.3. For all funtors X : L → Cb(SmCor), Y : I → Cb(SmCor), we havefuntorial short exat sequenes
{0} → lim

←−
1

i∈I
(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)[−1]))→

D(p(lim
←−l∈L

j(Xl)), p(lim←−i∈I
j(Yi)))→

lim
←−i∈I

(lim
−→l∈L

D(Mgm(Xl),Mgm(Yi)))→ {0}.

(28)
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82 M. V. Bondarko4. D is idempotent omplete.Proof. 1. If Z ∈ Mgm(Cb(SmCor)), then the assertion is exatly Proposi-tion 3.1.1(7).It remains to note that any Z ∈ ObjDM eff
gm is a retrat of some objetoming from Cb(SmCor).2. Sine inverse limits and their derived funtors do not hange when wereplae a projetive system by any unbounded subsystem, we an assumethat L onsists of some in as in (27).Now, (27) yields a long exat sequene

· · · →
∏

i∈I

D(T, p(Yi)[−1])
f
→

∏

i∈I

D(T, p(Yi)[−1])→ D(T, p(lim
←−i∈I

Yi))

→
∏

i∈I

D(T, p(Yi))
g
→

∏

i∈I

D(T, p(Yi))→ . . . ,here f and g are indued by e in (27).It is easily seen that Ker g ∼= lim
←−

D(T,Mgm(Ym)).Lastly, Remark A.3.6 of [21℄ allows to identify Coker f with
lim
←−

1
D(T,Mgm(Ym)[−1]).3. Immediate from the previous assertions.4. SineD′ is losed with respet to all inverse limits, it is losed with respetto all (small) produts. Then Proposition 3.1.1(2) yields that D is alsolosed with respet to all produts. Now, Remark 1.6.9 of [21℄ yields theresult (in fat, the proof uses only ountable produts).We will often all the objets of D omotives.

3.2 Pro-schemes and their comotivesNow we have ertain inverse limits for objets (oming from) Cb(SmCor);this allows to de�ne (reasonable) omotives for ertain shemes that are not(neessarily) of �nite type over k (and for their disjoint unions). We also de�neertain Tate twists of those.We will all ertain ind-shemes over k pro-shemes. An ind-sheme V/k isa pro-sheme if it is a ountable disjoint union of shemes, suh that eah ofthem is a projetive limit of smooth varieties of dimension ≤ cV for some �xed
cV ≥ 0 (in the ategory of shemes) with onneting morphisms being opendense embeddings. One may say that a pro-sheme is a ountable disjoint unionof ountable intersetions of smooth varieties. Note that (the spetrum of) anyfuntion �eld over k is a pro-sheme; any smooth k-variety is a pro-sheme also.
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Coniveau Spectral Sequences for Motives 83We have the operation of ountable disjoint union for pro-shemes of boundeddimension.Now, we would like to present a (not neessarily onneted) pro-sheme Vas projetive limits of smooth varieties Vi. This is easy if V is onneted(f. Lemma 3.2.9 of [9℄). In the general ase one should allow (formally)zero morphisms between onneted omponents of Vi (for distint i). So weonsider a new ategory SmV ar′ ontaining the ategory of all smooth va-rieties as a (non-full!) subategory. We take ObjSmV ar′ = SmV ar; forany smooth onneted varieties X,Y ∈ SmV ar we have SmV ar′(X,Y ) =
MorV ar(X,Y ) ∪ {0}; the omposition of a zero morphism with any other oneis zero; SmV ar′(⊔iXi,⊔jYj) = ⊔i,jSmV ar′(Xi, Yj). SmV ar′ an be embed-ded into SmCor (ertainly, this embedding is not full).We will write V = lim

←−
Vi (this is not possible in the ategory of ind-shemes,but works in Pro−SmV ar′). Note that the set of onneted omponents of Vis the indutive limit of the orresponding sets for Vi.Now, for any pro-sheme V = lim

←−
Vi, any s ≥ 0, we introdue the followingnotation: Mgm(V )(s) = p(lim

←−
(j(Vi)(s))) ∈ ObjD (see Proposition 3.1.1); wewill denote Mgm(V )(0) by Mgm(V ) and all Mgm(V ) the omotif of V . Thisnotation should be onsidered as formal i.e. we do not de�ne Tate twists on D(till �5.4.3).Obviously, if V ∈ SmV ar, its omotif (and its twists) oinides with its motif(and its twists), so we an use the same notation for them.If A is a ategory losed with respet to �ltered diret limits, H ′ : DM eff

gm → Ais a funtor, we an (formally) extend it to o-motives in question; we set:
H(Mgm(V )(s)[n]) = lim

−→
H ′(Mgm(Vi)(s)[n]). (29)Remark 3.2.1. 1. For a general H ′ this notation should be onsidered as for-mal. Yet in the ase H ′ = (−, Y ) : D → Ab, Y ∈ ObjDM eff

gm ⊂ ObjD, wehave H(Mgm(V )(i)[n]) = D(Mgm(V )(i)[n], X); see Corollary 3.1.3(1), i.e. (29)yields the value of a well-de�ned funtor D → Ab at Mgm(V )(s)[n]. We willonly need H ′ of this sort till �4.3.More generally, there exists suh an H if A satis�es AB5 and H ′ is ohomo-logial; we will all the orresponding H an extended ohomology theory, seeRemark 4.3.2 below.2. Let V j be a ountable set of pro-shemes (of bounded dimensions). Then
Mgm(⊔V j) =

∏

Mgm(V j) by Proposition 3.1.1(2).Besides, for any H ′ as in (29) we have H(Mgm(⊔V j)(s)[n]) =
⊕

H(Mgm(V j)(s)[n]).Below we will need some onventions for pro-shemes.For pro-shemes U = lim
←−

Ui and V = lim
←−

Vj we will all an element of
lim
←−i∈I

(lim
−→j∈J

SmCor(Ui, Vj)) an open embedding if it an be obtained as adouble limit of open embeddings Ui → Vj (as varieties). If U = V \W forsome pro-sheme W , we will say that W is a losed sub-pro-sheme of V . Notethat in this ase any onneted omponent of W is a losed subsheme of some
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84 M. V. Bondarkoonneted omponent of V ; yet some omponents of V ould ontain an in�niteset of onneted omponents of W .For V = ⊔V j , V j are onneted pro-shemes, we will all the maximum of thetransendene degrees of funtion �elds of V j the dimension of V (note thatthis is �nite). We will say that a sub-pro-sheme U = ⊔Um, Um are onneted,is everywhere of odimension r (resp. ≥ r, for some �xed r ≥ 0) in V = ⊔V jif for every indued embedding Um → V j the di�erene of their dimensions(de�ned as above) is r (resp. ≥ r).We will all the inverse limit of the sets of points of Vi of a �xed odimension
s ≥ 0 the set of points of V of odimension s (note that any element of this setindeed de�nes a point of some onneted omponent of V ).
3.3 Primitive schemes: reminderIn [29℄ M. Walker proved that primitive shemes in the ase of an in�nite khave 'motivi' properties similar to those of smooth semi-loal shemes (in thesense of �4.4 of [26℄). Sine we don't want to disriminate the ase of a �nite
k, we will modify slightly the standard de�nition of primitive shemes.
Definition 3.3.1. If k is in�nite then a (pro-)sheme is alled primitive if all ofits onneted omponents are a�ne and their oordinate ringsRj satisfy the fol-lowing primitivity riterion: for any n > 0 every polynomial in Rj [X1, . . . , Xn]whose oe�ients generate Rj as an ideal over itself, represents an Rj-unit.If k is �nite, then we will all a pro-sheme primitive whenever all of its on-neted omponents are semi-loal (in the sense of �4.4 of [26℄).Remark 3.3.2. Reall that in the ase of in�nite k all semi-loal k-algebrassatisfy the primitivity riterion (see Example 2.1 of [29℄).Below we will mostly use the following basi property of primitive shemes.
Proposition 3.3.3. Let S be a primitive pro-sheme, let S0 be the olletionof all of its generi points; F is a homotopy invariant presheaf with transfers.Then F (S) ⊂ F (S0); here we de�ne F on pro-shemes as in (29).Proof. We an assume that S is onneted (so it is a smooth primitive sheme).Hene in the ase of in�nite k our assertion follows from Theorem 4.19 of [29℄.Now, if k is �nite, then S0 is semi-loal (by our onvention); so we may applyCorollary 4.18 of [26℄ instead.
3.4 Basic motivic properties of primitive schemesWe will all a primitive pro-sheme just a primitive sheme. We prove ertainmotivi properties of primitive shemes (in the form in whih we will need thembelow).
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Coniveau Spectral Sequences for Motives 85
Proposition 3.4.1. For F ∈ ObjDM eff

− we de�ne H ′(−) = DM eff
− (−, F )on DM eff

gm ; we also de�ne H(Mgm(V )(i)[n]) as in (29). Let S be a primitivesheme, m ≥ 0, i ∈ Z.1. Let F ∈ DM eff
−

t≤−1 (t is the homotopy t-struture, that we onsidered in�1.3). Then H(Mgm(S)(m)[m]) = {0}.2. More generally, for any F ∈ ObjDM eff
− we have H([Mgm(S)(m)[m]) ∼=

F 0
−m(S) where F 0 = F t=0, F 0

−m is the m-th Tate twist of F 0 (see De�nition1.4.1).Proof. 1. We onsider the homotopy invariant presheaf with transfers F−m :
X 7→ DM eff

− (Mgm(X)(m)[m], F ). We should prove that F−m(S) = 0 (herewe extend F−m to pro-shemes in the usual way i.e. as in (29)).(29) also yields that F−m(⊔Si) =
⊕

F−m(Si). Hene by Proposition 3.3.3,it su�es to onsider the ase of S being (the spetrum of) a funtion �eldover k. Sine F−m is represented by an objet of DM eff
−

t≤−1 (see Proposition1.4.2(2)), it su�es to note that any �eld is a Henselian sheme i.e. a point inthe Nisnevih topology.2. By Proposition 1.4.2, for any X ∈ SmV ar we have Mgm(X)(m)[m] ⊥

DM eff
−

t≥1. Hene we an assume F ∈ DM eff
−

t≤0.Next, using assertion 1, we an easily redue the situation to the ase F =
F t=0 ∈ ObjHI (by onsidering the t-deomposition of F [−1]). In this ase thestatement is immediate from Proposition 1.4.2(1).
Lemma 3.4.2. Let U → U ′ be an open dense embedding of smooth varieties.1. We have Cone(Mgm(U)→Mgm(U ′)) ∈ DM eff

−
t≤−1.2. Let S be primitive. Then for any n,m, i ≥ 0 the map

D(Mgm(S)(m)[m],Mgm(U)(n)[n+i])→ D(Mgm(S)(m)[m],Mgm(U ′)(n)[n+i])is surjetive.Proof. 1. We denote Cone(Mgm(U) → Mgm(U ′)) ∈ DM eff
−

t≤−1 by C. Ob-viously, C ∈ DM eff
−

t≤0. Let H denote Ct=0 (H ∈ ObjHI). By Corol-lary 4.19 of [26℄, we have H(U) ⊂ H(U ′). Next, from the long exat se-quene {0}(= DM eff
− (Mgm(U)[1], H)) → DM eff

− (C,H) → DM eff
− (U ′, H) →

DM eff
− (U,H) → . . . we obtain C ⊥ H . Then the long exat sequene

· · · → DM eff
− (Ct≤−1[2], H) → DM eff

− (H,H) → DM eff
− (C,H) → . . . yields

H = 0.2. It su�es to hek that Mgm(S)(m)[m] ⊥ C(n)[n+ i]. Sine Mgm(U)(n)[n]is anonially a retrat of Mgm(U ×Gn
m), we an assume that n = 0.Now the laim follows immediately from assertion 1 and Proposition 3.4.1(1).
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3.5 On morphisms between comotives of primitive schemesWe will need the fat that ertain 'positive' morphism groups are zero.Let n,m,≥ 0, i > 0, Y = lim
←−

Yl (l ∈ L), be any pro-sheme, X be a primitivesheme.
Proposition 3.5.1. 1. The natural homomorphism

D(Mgm(X)(m)[m],Mgm(Y )[n](n))→

→ lim
←−l

(lim
−→X⊂Z,Z∈SmV ar

DM eff
gm (Z(m)[m],Mgm(Yl)(n)[n]))is surjetive.2. Mgm(X)(m)[m] ⊥Mgm(Y )[n+ i](n).Proof. Note �rst that by the de�nition of the Tate twist (1), it an be lifted to

Cb(SmCor).1. This is immediate from the short exat sequene (28).2. By Remark 3.2.1(2), we may suppose that Y is onneted. Thenwe apply (28) again. The orresponding lim
←−

-term is zero by Propo-sition 3.4.1(1). Lastly, the surjetivity proved in Lemma 3.4.2(2)yields that the orresponding lim
←−

1-term is zero. Indeed, the groups
D(Mgm(X)(m)[m],Mgm(Yl)[n + i − 1](n)) obviously satisfy the Mittag-Le�er ondition; see �A.3 of [21℄.In fat, one ould easily dedue the assertion from the results of theprevious subsetion and (27) diretly (we do not need muh of the theoryof higher limits in this paper).Remark 3.5.2. In fat, this statement, as well as all other properties of (prim-itive) pro-shemes that we need, are also true for not neessary ountable dis-joint unions of (primitive) pro-shemes. This observation ould be used toextend the main results of the paper to a somewhat larger ategory; yet suhan extension does not seem to be important.

3.6 The Gysin distinguished triangle for pro-schemes; ’Gersten’
Postnikov towers for comotives of pro-schemesWe prove that we an pass to ountable homotopy limits in Gysin distinguishedtriangles.

Proposition 3.6.1. Let Z,X be pro-shemes, Z a losed subsheme of X(everywhere) of odimension r. Then for any s ≥ 0 the natural morphism
Mgm(X \ Z)(s) → Mgm(X)(s) extends to a distinguished triangle (in D):
Mgm(X \ Z)(s)→Mgm(X)(s)→Mgm(Z)(r + s)[2r].
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Coniveau Spectral Sequences for Motives 87Proof. First assume s = 0.We an assume X = lim
←−

Xi, Z = lim
←−

Zi for i ∈ I, where Xi, Zi ∈ SmV ar, Ziis losed everywhere of odimension r in Xi for all i ∈ I.We take Yi = j(Xi \Zi → Xi), Y = p(lim
←−i∈I

Yi). By parts 4 and 5 of Proposi-tion 3.1.1 we have a distinguished triangle Mgm(X \ Z)→Mgm(X)→ Y .It remains to prove that Y ∼= Mgm(Z)(r)[2r]. Proposition 2.4.5 of [9℄ (afuntorial form of the Gysin distinguished triangle for Voevodsky's motives)yields that p(Yi) ∼= Mgm(Zi)(r)[2r]; moreover, the onneting morphisms
p(Yi) → p(Yi+1) are obtained from the orresponding morphisms Mgm(Zi) →
Mgm(Zi+1) by tensoring by Z(r)[2r]. It remains to reall: by Proposition3.1.1(9), the isomorphism lass of a homotopy limit in D an be ompletelydesribed in terms of (objets and morphisms) of D (i.e. we don't have toonsider the lifts of objets and morphisms to D

′). This yields the result.Now, sine Mgm(X × Gm) = Mgm(X)
⊕

Mgm(X)(1)[1] for any X ∈ SmV ar(hene this is also true for pro-shemes), the assertion for the ase s = 0 yieldsthe general ase easily.Now we will onstrut a ertain Postnikov tower Po(X) for X being the(twisted) omotif of a pro-sheme Z that will be related to the oniveau spe-tral sequenes (for ohomology) of Z; our method was desribed in �1.5 above.Note that we onsider the general ase of an arbitrary pro-sheme Z (sinein this paper pro-shemes play an important role); yet this ase is not muhdistint from the (partial) ase of Z ∈ SmV ar.
Corollary 3.6.2. We denote the dimension of Z by d (reall the onventionsof �3.2).For all i ≥ 0 we denote by Zi the set of points of Z of odimension i.For any s ≥ 0 there exists a Postnikov tower for X = Mgm(Z)(s)[s] suh that
l = 0, m = d+ 1, Xi

∼=
∏

z∈Zi Mgm(z)(i+ s)[2i+ s].Proof. As above, it su�es to prove the statement for s = 0. Sine any produtof distinguished triangles is distinguished, we an assume Z to be onneted.We onsider a projetive system L whose elements are sequenes of losedsubshemes ∅ = Zd+1 ⊂ Zd ⊂ Zd−1 ⊂ · · · ⊂ Z0. Here Z0 ∈ SmV ar, Zl ∈
V ar for l > 0, Z is open in Z0 (see �3.2; Z0 is onneted; in the ase when
Z ∈ SmV ar we only take Z0 = Z); for all j > 0 we have: Zj is everywhere ofodimension ≥ j in Z0; all irreduible omponents of all Zj are everywhere ofodimension ≥ j in Z0; and Zj+1 ontains the singular lous of Zj (for j ≤ d).The ordering in L is given by open embeddings of varieties Uj = Z0 \ Zj for
j > 0. For l ∈ L we will denote the orresponding sequene by ∅ = Z l

d+1 ⊂

Z l
d ⊂ Z l

d−1 ⊂ · · · ⊂ Z l
0. Note that L is ountable!By the previous proposition, for any j we have a distinguished triangle

Mgm(lim
←−

(Z l
0 \ Z

l
j))→Mgm(lim

←−
(Z l

0 \ Z
l
j+1))→Mgm(lim

←−
(Z l

j \ Z
l
j+1)(j)[2j]).It remains to ompute the last term; we �x some j.We have lim

←−l∈L′
(Z l

j \Z
l
j+1))

∼=
∏

z∈Zi Mgm(z). Indeed, for all l ∈ L the variety
Z l
j \ Z

l
j+1 is the disjoint union of some loally losed smooth subshemes of
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88 M. V. Bondarko

Z l
0 of odimension j; for any z0 ∈ Zj for l ∈ L large enough z0 is ontainedin Z l

j \ Z
l
j+1 as an open sub-pro-sheme, and the inverse limit of onnetedomponents of Z l

j \ Z
l
j+1 ontaining z0 is exatly z0. Now, we an apply thefuntor X 7→ Mgm(X)(j)[2j] to this isomorphism. We obtain Mgm(lim

←−
(Z l

j \

Z l
j+1)(j)[2j])

∼=
∏

z∈Zi Mgm(z)(i). This yields the result.Remark 3.6.3. 1. Alternatively, one ould onstrut Po(X) for the (twisted)omotif of a pro-sheme T = lim
←−

T l as the inverse limit of the Postnikov towersfor T l (onstruted as above yet with �xed Z l
0 = T l); ertainly, to this end oneshould pass to the limit in D

′. It is easily seen that one would get the sametower this way.2. Certainly, if we shift a Postnikov tower for Mgm(Z)(s)[s] by [j] for some
j ∈ Z, we obtain a Postnikov tower for Mgm(Z)(s)[s+ j]. We didn't formulateassertion 2 for these shifts only beause we wanted Xp to belong to D

w=0
s (seeProposition 4.1.1 below).3. Sine the alulation of X i used Proposition 3.1.1(9), our method annotdesribe onneting morphisms between them (in D). Yet one an alulatethe 'images' of the onneting morphisms in D

naive; see �1.5 and �6.1.
4 Main motivic resultsThe results of the previous setion ombined with those of �2.2 allow us toonstrut (in �4.1) a ertain Gersten weight struture w on a ertain triangu-lated Ds: DM eff

gm ⊂ Ds ⊂ D. Its main property is that omotives of funtion�elds over k (and their produts) belong to Hw. It follows immediately thatthe Postnikov tower Po(X) provided by Corollary 3.6.2 is a weight Postnikovtower with respet to w. Using this, in �4.2 we prove: if S is a primitive sheme,
S0 is its dense sub-pro-sheme, then Mgm(S) is a diret summand of Mgm(S0);
Mgm(K) (for a funtion �eld K/k) ontains (as retrats) omotives of primitiveshemes whose generi point is K, as well as twisted omotives of residue �eldsof K (for all geometri valuations).In �4.3 we (easily) translate these results to ohomology; in partiular, theohomology of (the spetrum of) K ontains diret summands orrespondingto the ohomology of primitive shemes whose generi point is K, as well astwisted ohomology of residue �elds of K. Here one an onsider any oho-mology theory H : Ds → A; one an obtain suh an H by extending to Dsany ohomologial H ′ : DM eff

gm → A if A satis�es AB5 (by means of Propo-sition 1.2.1). Note: in this ase the ohomology of pro-shemes mentioned isalulated in the 'usual' way.In �4.4 we onsider weight spetral sequenes orresponding to (the Gerstenweight struture) w. We observe that these spetral sequenes generalize natu-rally the lassial oniveau spetral sequenes. Besides, for a �xed H : Ds → Aour (generalized) oniveau spetral sequene onverging to H∗(X) (where X
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Coniveau Spectral Sequences for Motives 89ould be a motif or just an objet of Ds) is Ds-funtorial in X (i.e. it is mo-tivially funtorial for objets of DM eff
gm ); this fat is non-trivial even whenrestrited to motives of smooth varieties.In �4.5 we prove that there exists a nie duality D

op×DM eff
− → Ab (extendingthe bi-funtor DM eff

− (−,−) : DM eff
gm

op ×DM eff
− → Ab); the Gersten weightstruture w (on Ds) is left orthogonal to the homotopy t-struture t on DM eff

−with respet to it. This allows to apply Theorem 2.6.1: in the ase when Homes from Y ∈ ObjDM eff
− we prove the isomorphism (starting from E2)of (the oniveau) T (H,X) with the spetral sequene orresponding to the t-trunations of Y . We desribe ObjDM eff

gm ∩D
w≤i
s in terms of t (for DM eff

− ).We also note that our results allow to desribe torsion motivi ohomology interms of (torsion) étale ohomology (see Remark 4.5.4(4)).In �4.6 we de�ne the oniveau spetral sequene (starting from E2) for oho-mology of a motif X over a not (neessarily) ountable perfet base �eld l as thelimit of the orresponding oniveau spetral sequenes over ountable perfetsub�elds of de�nition forX . This de�nition is ompatible with the lassial one(for X being the motif of a smooth variety); so we obtain motivi funtorialityof lassial oniveau spetral sequenes over a general base �eld.In �4.7 we prove that the Chow weight struture for DM eff
gm (introdued in �6of [6℄) ould be extended to D (ertainly, the orresponding weight struture

wChow di�ers from w). We will all the orresponding weight spetral sequenesChow-weight ones; note that they are isomorphi to lassial (i.e. Deligne's)weight spetral sequenes when the latter are de�ned.In �4.8 we use the results �2.7 to ompare oniveau spetral sequenes withChow-weight ones. We always have a omparison morphism; it is an isomor-phism if H is a birational ohomology theory.In �4.9 we onsider the ategory of birational omotives Dbir (a ertain 'om-pletion' of birational motives of [15℄) i.e. the loalization of D by D(1). Itturns our that w and wChow indue the same weight struture w′
bir on Dbir .Conversely, starting from w′

bir one an glue 'from slies' the weight struturesindued by w and wChow on D/D(n) for all n > 0. Furthermore, these stru-tures belong to an interesting family of weight strutures indexed by a singleintegral parameter; other terms of this family ould be also interesting!
4.1 The Gersten weight structure for Ds ⊃ DM eff

gmNow we desribe the main weight struture of this paper. Unfortunately, theauthor does not know whether it is possible to de�ne the Gersten weight stru-ture (see below) on the whole D. Yet for our purposes it is quite su�ient tode�ne the orresponding weight struture on a ertain triangulated subategory
Ds ⊂ D ontaining DM eff

gm (and omotives of all pro-shemes).In order to make the hoie of Ds ⊂ D ompatible with extensions of salars,we bound ertain dimensions of objets of Hw.We will denote by H the full subategory of D whose objets are all ountableproduts ∏

l∈L Mgm(Kl)(nl)[nl]; here Kl are (the spetra of) funtion �elds
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90 M. V. Bondarkoover k, nl ≥ 0; we assume that the transendene degrees of Kl/k and nl arebounded.
Proposition 4.1.1. 1. Let Ds be the Karoubi-losure of 〈H〉 in D. Then
C = Ds an be endowed with a unique weight struture w suh that Hw ontains
H.2. Hw is the idempotent ompletion of H.3. Ds ontains DM eff

gm as well as all Mgm(Z)(l) for Z being a pro-sheme,
l ≥ 0.4. For any primitive S, i ≥ 0, we have Mgm(S)(i)[i] ∈ D

w=0
s .5. Let Z be a pro-sheme, s ≥ 0. Then Mgm(Z)(s)[s] ∈ D

w≤0
s ; the Postnikovtower for Mgm(Z)(s)[s] given by Corollary 3.6.2 is a weight Postnikov towerfor it.Proof. 1. By Proposition 3.5.1(2), H is negative (sine any objet of H isa �nite sum of Mgm(Xi)(mi) for some primitive pro-shemes Xi, mi ∈ Z).Besides, D is idempotent omplete (see Corollary 3.1.3(4)); heneDs andD

w=0
salso are. Hene we an apply Theorem 2.2.1(18) (for D = H).2. Also immediate from Theorem 2.2.1(18).3. Mgm(Z)(l) ∈ ObjDs by Corollary 3.6.2; in partiular, this is true for Z ∈

SmV ar. It remains to note that DM eff
gm is the Karoubization of 〈Mgm(U) :

U ∈ SmV ar〉 in D.4. It su�es to note that Mgm(S)(i)[i] belongs both to D
w≤0
s and to D

w≥0
s byTheorem 2.2.1(20). Here we use Proposition 3.5.1(2) again.5. We have X i ∈ D

w=0
s . Hene Theorem 2.2.1(14) yields the result. Note herethat we have Y0 = 0 in the notation of De�nition 2.1.2(9).We will all w the Gersten weight struture, sine it is losely onneted withGersten resolutions of ohomology (f. �4.5 below). By default, below w willdenote the Gersten weight struture.Remark 4.1.2. 1. Hw is idempotent omplete sine Ds is.2. In fat, one ould easily prove similar statements for C being just 〈H〉(instead of its Karoubization in D). Certainly, for this version of C we willonly have C ⊃Mgm(Kb(SmCor)).Besides, note that for any funtion �eldK ′/k, any r ≥ 0, there exists a funtion�eld K/k suh that Mgm(K ′)(r)[r] is a retrat of Mgm(K) (see Corollary 4.2.2below). Hene it su�es take H being the full subategory of D whose objetsare ∏

l∈L Mgm(Kl) (for bounded transendene degrees of Kl/k).3. The proposition implies that Ds is exatly the Karoubization in D of thetriangulated ategory generated by omotives of all pro-shemes.4. The author does not know whether one an desribe weight deompositionsfor arbitrary objets of DM eff
gm expliitly. Still, one an say something aboutthese weight deompositions and weight omplexes using their funtorialityproperties. In partiular, knowing weight omplexes for X,Y ∈ ObjDM eff

gm(or just ∈ ObjDM s) one an desribe the weight omplex of X → Y up to a
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Coniveau Spectral Sequences for Motives 91homotopy equivalene as the orresponding one (see Lemma 6.1.1 below). Be-sides, let X → Y → Z be a distinguished triangle (in D). Then for any hoieof (Xw≤0, Xw≥1) and (Zw≤0, Zw≥1) there exists a hoie of (Y w≤0, Y w≥1)suh that there exist distinguished triangles Xw≤0 → Y w≤0 → Zw≤0 and
Xw≥1 → Y w≥1 → Zw≥1; see Lemma 1.5.4 of [6℄. In partiular, we obtain that
j maps omplexes (over SmCor) onentrated in degrees ≤ j into D

w≤j
s (wewill prove a stronger statement in Remark 4.5.4(4) below). If X ∈ ObjDM eff

gmomes from a omplex over SmCor whose onneting morphisms satisfy ertainodimension restritions, these observations ould be extended to an expliitdesription of a weight deomposition for it; f. �7.4 of [6℄.
4.2 Direct summand results for comotivesProposition 4.1.1 easily implies the following interesting result.
Theorem 4.2.1. 1. Let S be a primitive sheme; let S0 be its dense sub-pro-sheme. Then Mgm(S) is a diret summand of Mgm(S0).2. Suppose moreover that S0 = S \ T where T is a losed subshemeof S everywhere of odimension r > 0. Then we have Mgm(S0) ∼=
Mgm(S)

⊕

Mgm(T )(r)[2r − 1].Proof. We an assume that S and S0 are onneted.1. By Proposition 4.1.1(5), we have: Mgm(S0),Mgm(S) ∈ D
w≤0
s ;

Mgm(Spec(k(S))) ould be assumed to be the zeroth term of their weightomplexes for a hoie of weight omplexes ompatible with some negativePostnikov weight towers for them; the embedding S0 → S is ompatible with
idMgm(Spec(k(S))) (sine we have a ommutative triangle Spec k(S) → S0 → Sof pro-shemes). Hene Theorem 2.2.1(16) yields the result.2. By Proposition 3.6.1 we have a distinguished triangle Mgm(S0) →
Mgm(S) → Mgm(T )(r)[2r]. By parts 4 and 5 of Proposition 4.1.1 we have
Mgm(S0) ∈ D

w≤0
s , Mgm(S) ∈ D

w=0
s , Mgm(T )(r)[2r] ∈ D

w≤−r
s ⊂ D

w≤−1
s .Hene Theorem 2.2.1(8) yields the result.

Corollary 4.2.2. 1. Let S be a onneted primitive sheme, let S0 be itsgeneri point. Then Mgm(S) is a retrat of Mgm(S0).2. Let K be a funtion �eld over k. Let K ′ be the residue �elds for a geometrivaluation v of K of rank r. Then Mgm(K ′)(r)[r] is a retrat of Mgm(K).Proof. 1. This is just a partial ase of part 1 of the the theorem.2. Obviously, it su�es to prove the statement in the ase r = 1. Next, K isthe funtion �eld of some normal projetive variety over k. Hene there existsa U ∈ SmV ar suh that: k(U) = K, v yields a non-empty losed subshemeof U (sine the singular lous has odimension ≥ 2 in a normal variety). Iteasily follows that there exists a pro-sheme S (i.e. an inverse limit of smoothvarieties) whose only points are the spetra of K and K0. So, S is loal, heneit is primitive.
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92 M. V. BondarkoBy part 2 of the theorem, we have
Mgm(SpecK) = Mgm(S)

⊕

Mgm(SpecK0)(1)[1];this onludes the proof.Remark 4.2.3. 1. Note that we do not onstrut any expliit splitting mor-phisms in the deompositions above. Probably, one annot hoose any anoni-al splittings here (in the general ase); so there is no (automati) ompatibilityfor any pair of related deompositions. Respetively, though omotives of (spe-tra of) funtion �elds ontain tons of diret summands, there seems to be nogeneral way to deompose them into indeomposable summands.2. Yet Proposition 3.6.1 easily yields that Mgm(Spec k(t)) ∼=
Z
⊕∏

E Mgm(E)(1)[1]; here E runs through all losed points of A1 (on-sidered as a sheme over k).
4.3 On cohomology of pro-schemes, and its direct summandsThe results proved above immediately imply similar assertions for ohomology.We also onstrut a lass of ohomology theories that respet homotopy limits.
Proposition 4.3.1. Let H : Ds → A be ohomologial, S be a primitivesheme.1. Let S0 be a dense sub-pro-sheme of S. Then H(Mgm(S)) is a diret sum-mand of H(Mgm(S0)).2. Suppose moreover that S0 = S \ T where T is a losed sub-sheme of S of odimension r > 0. Then we have H(Mgm(S0)) ∼=
H(Mgm(S))

⊕

H(Mgm(T )(r)[2r − 1]).3. Let S be onneted, S0 be the generi point of S. Then H(Mgm(S)) is aretrat of H(Mgm(S0)) in A.4. Let K be a funtion �eld over k. Let K ′ be the residue �eld for a geometrivaluation v of K of rank r. Then H(Mgm(K ′)(r)[r]) is a retrat of H(Mgm(K))in A.5. Let H ′ : DM eff
gm → A be a ohomologial funtor, let A satisfy AB5. ThenProposition 1.2.1 allows to extend H ′ to a ohomologial funtor H : D → Athat onverts inverse limits in D

′ to the orresponding diret limits in A.Proof. 1. Immediate from Theorem 4.2.1(1).2. Immediate from Theorem 4.2.1(2).3. Immediate from Corollary 4.2.2(1).4. Immediate from Corollary 4.2.2(2).5. Immediate from Proposition 1.2.1; note that DM eff
gm is skeletally small.Here in order to prove that H onverts homotopy limits into diret limits weuse part I2 of lo.it. and Proposition 3.1.1(7).
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Coniveau Spectral Sequences for Motives 93Remark 4.3.2. 1. In the setting of assertion 5 we will all H an extendedohomology theory.Note that for H ′ = DM eff
gm (−, Y ), Y ∈ ObjDM eff

gm , we have H = D(−, Y );see (4).2. Now reall that for any pro-sheme Z, any i ≥ 0, Mgm(Z)(i) (by de�nition)ould be presented as a ountable homotopy limit of geometri motives. More-over, the same is true for all small ountable produts of Mgm(Zl)(i). Heneif H is extended, then the ohomology of ∏Mgm(Zl)(i) is the orrespondingdiret limit; this oinides with the de�nition given by (29) (f. Remark 3.2.1).In partiular, one an apply the results of Proposition 4.3.1 to the usual étaleohomology of pro-shemes mentioned (with values in Ab or in some ategoryof Galois modules).3. If H ′ is also a tensor funtor (i.e. it onverts tensor produt in DM eff
gm intotensor produts in D(A)), then ertainly the ohomology of Mgm(K ′)(r)[r] isthe orresponding tensor produt ofH∗(Mgm(K ′)) withH∗(Z(r)[r]). Note thatthe latter one is a retrat of H∗(Gr

m); we obtain the Tate twist for ohomologythis way.
4.4 Coniveau spectral sequences for cohomology of (co)motivesLet H : Dop

s → A be a ohomologial funtor, X ∈ ObjDs.
Proposition 4.4.1. 1. Any hoie of a weight spetral sequene T (H,X) (seeTheorem 2.4.2) orresponding to the Gersten weight struture w is anonialand Ds-funtorial in X starting from E2.2. T (H,X) onverges to H(X).3. Let H be an extended theory (see Remark 4.3.2), X = Mgm(Z) for
Z ∈ SmV ar. Then any hoie of T (H,X) starting from E2 is anoniallyisomorphi to the lassial oniveau spetral sequene (onverging to the H-ohomology of Z; see �1 of [8℄).Proof. 1. This is just a partial ase of Theorem 2.4.2(I).2. Immediate sine w is bounded; see part I2 of lo.it.3. Reall that in the proof of Corollary 3.6.2 a ertain Postnikov tower
Po(X) for X was obtained from ertain 'geometri' Postnikov towers (in
j(Cb(SmCor))) by passing to the homotopy limit. Now, the oniveau spe-tral sequene (for the H-ohomology of Z) in �1.2 of [8℄ was onstruted byapplyingH to the same geometri towers and then passing to the indutive limit(in A). Furthermore, Remark 4.3.2(2) yields that the latter limit is (naturally)isomorphi to the spetral sequene obtained via H from Po(X). Next, sine
Po(X) is a weight Postnikov tower for X (see Proposition 4.1.1(5)), we obtainthat the latter spetral sequene is one of the possible hoies for T (H,X).Lastly, assertion 1 yields that all other possible T (H,X) (they depend on thehoie of a weight Postnikov tower for X) starting from E2 are also anoniallyisomorphi to the lassial oniveau spetral sequene mentioned.
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94 M. V. BondarkoRemark 4.4.2. 1. Hene we proved (in partiular) that lassial oniveauspetral sequenes (for ohomology theories that ould be fatorized throughmotives; this inludes étale and singular ohomology of smooth varieties) are
DM eff

gm -funtorial (starting from E2); we also obtain suh a funtoriality forthe oniveau �ltration for ohomology! These fats are far from being obviousfrom the usual de�nition of the oniveau �ltration and spetral sequenes, andseem to be new (in the general ase). So, we justi�ed the title of the paper.We also obtain ertain oniveau spetral sequenes for ohomology of singularvarieties (for ohomology theories that ould be fatorized through DM eff
gm ; inthe ase chark > 0 one also needs rational oe�ients here).2. Assertion 3 of the proposition yields a nie reason to all (any hoie of)

T (H,X) a oniveau spetral sequene (for a general H,A, and X ∈ ObjDs);this will also distinguish (this version of) T from weight spetral sequenesorresponding to other weight strutures. We will give more justi�ation forthis term in Remark 4.5.4 below. So, the orresponding �ltration ould bealled the (generalized) oniveau �ltration.
4.5 An extension of results of Bloch and OgusNow we want to relate oniveau spetral sequenes with the homotopy t-struture (in DM eff

− ). This would be a vast extension of the seminal results of�6 of [5℄ (i.e. of the alulation by Bloh and Ogus of the E2-terms of oniveauspetral sequenes) and of �6 of [11℄.We should relate t (for DM eff
− ) and w; it turns out that they are orthogonalwith respet to a ertain quite natural nie duality.

Proposition 4.5.1. For any Y ∈ ObjDM eff
− we extend H ′ = DM eff

− (−, Y )from DM eff
gm to D ⊃ Ds by the method of Proposition 1.2.1; we de�ne

Φ(X,Y ) = H(X). Then the following statements are valid.1. Φ is a nie duality (see De�nition 2.5.1).2 w is left orthogonal to the homotopy t-struture t (on DM eff
− ) with respetto Φ.3. Φ(−, Y ) onverts homotopy limits (in D

′) into diret limits in Ab.Proof. 1. By Proposition 2.5.6(1), the restrition of Φ to DM eff
gm

op ×DM eff
−is a nie duality. It remains to apply part 3 of lo.it.2. In the notation of Proposition 2.5.3, we take for D the set of all smallproduts ∏l∈L Mgm(Kl)(nl)[nl] ∈ ObjDs; here Mgm(Kl) denote omotives of(spetra of) some funtion �elds over k, nl ≥ 0 and the transendene degreesof Kl/k are bounded (f. �4.1). Then D,Φ satisfy the assumptions of theproposition by Proposition 3.4.1(2) (see also Remark 4.3.2(2)).3. Immediate from Proposition 4.3.1(3).Remark 4.5.2. 1. Suppose that we have an indutive family Yi ∈ ObjDM eff
−onneted by a ompatible family of morphisms with some Y ∈ DM eff

− suh
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Coniveau Spectral Sequences for Motives 95that: for any Z ∈ ObjDM eff
gm we have DM eff

− (Z, Y ) ∼= lim
−→

DM eff
− (Z, Yi) (viathese morphisms Yi → Y ). In suh a situation it is reasonable to all Y ahomotopy olimit of Yi.The de�nition of Φ in the proposition easily implies: for anyX ∈ ObjD we have

Φ(X,Y ) = lim
−→

Φ(X,Yi). So, one may say that all objets of D are 'ompatwith respet to Φ', whereas part 3 of the proposition yields that all objets of
DM eff

− are 'oompat with respet to Φ'. Note that no analogues of these nieproperties an hold in the ase of an adjaent weight and t-struture (de�nedon a single triangulated ategory).2. Now, we ould have replaed DM eff
gm by DMgm everywhere in the 'axiomat-is' of D (in Proposition 3.1.1). Then the orresponding ategory Dgm ouldbe used for our purposes (instead of D), sine our arguments work for it also.Note that we an extend Φ to a nie duality D

op
gm ×DM eff

− → Ab; to this endit su�es for Y ∈ ObjDM eff
− to extend H ′ to DMgm in the following way:

H ′(X(−n)) = DM eff
− (X,Y (n)) for X ∈ ObjDM eff

gm ⊂ ObjDMgm, n ≥ 0.Moreover, the methods of �5.4.3 allow to de�ne an invertible Tate twist funtoron Dgm.
Corollary 4.5.3. 1. If H is represented by a Y ∈ ObjDM eff

− (via our Φ)then for a (o)motif X our oniveau spetral sequene T (H,X) starting from E2ould be naturally expressed in terms of the ohomology of X with oe�ientsin t-trunations of Y (as in Theorem 2.6.1).In partiular, the oniveau �ltration for H∗(X) ould be desribed as in part 2of lo.it.2. For U ∈ ObjDM eff
gm , i ∈ Z, we have U ∈ D

w≤i
s ⇐⇒ U ∈ DM eff

−
t≤i.Proof. 1. Immediate from Proposition 4.5.1.2. By Theorem 2.2.1(20), we should hek whether Z ⊥ U for any Z =

∏

l∈LMgm(Kl)(nl)[nl + r], where Kl are funtion �elds over k, nl ≥ 0and the transendene degrees of Kl/k are bounded, r > 0 (see Proposi-tion 4.1.1(2)). Moreover, sine U is oompat in D, it su�es to onsider
Z = Mgm(K ′)(n)[n + r] (K ′/k is a funtion �eld, n ≥ 0). Lastly, Corollary4.2.2(2) redues the situation to the ase Z = Mgm(K) (K/k is a funtion�eld).Hene (25) implies: U ∈ D

w≤i
s whenever for any j > i, any funtion �eld K/k,the stalk of U t=j at K is zero. Now, if U ∈ DM eff

−
t≤i then U t=j = 0 for all

j > i; hene all stalks of U t=j are zero. Conversely, if all stalks of U t=j atfuntion �elds are zero, then Corollary 4.19 of [26℄ yields U t=j = 0 (see alsoCorollary 4.20 of lo.it.); if U t=j = 0 for all j > i then U ∈ DM eff
−

t≤i.Remark 4.5.4. 1. Our omparison statement is true for Y -ohomology of anarbitraryX ∈ ObjDM eff
gm ; this extends to motives Theorem 6.4 of [11℄ (whereasthe latter essentially extends the results of �6 of [5℄). We obtain one morereason to all T (in this ase) the oniveau spetral sequene for (ohomologyof) motives.
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96 M. V. Bondarko2. If Y ∈ ObjHI, then E2(T ) yields the Gersten resolution for Y (when Xvaries); this is why we alled w the Gersten weight struture.3. Now, let Y represent étale ohomology with oe�ients in Z/lZ, l is prime to
char k (Y is atually unbounded from above, yet this is not important). Thenthe t-trunations of Y represent Z/lZ-motivi ohomology by the (reentlyproved) Beilinson-Lihtenbaum onjeture (see [28℄; this paper is not publishedat the moment). Hene Proposition 2.5.4(1) yields some new formulae for Z/lZ-motivi ohomology of X and for the 'di�erene' between étale and motiviohomology. Note also that the virtual t-trunations (mentioned in lo.it.)are exatly the D2-terms of the alternative exat ouple for T (H,X) and forthe version of the exat ouple used in the urrent paper respetively (i.e.we onsider exat ouples oming from the two possible versions for a weightPostnikov tower for X , as desribed in Remark 2.1.3). See also �7.5 of [6℄ formore expliit results of this sort. It ould also be interesting to study oniveauspetral sequenes for singular ohomology; this ould yield a ertain theory of'motives up to algebrai equivalene'; see Remark 7.5.3(3) of lo.it. for moredetails.5. Assertion 2 of the orollary yields that Dw≤0

s ∩ ObjDM eff
gm is large enoughto reover w (in a ertain sense); in partiular, this assertion is similar tothe de�nition of adjaent strutures (see Remark 2.5.7). In ontrast, Dw≥0

s ∩
ObjDM eff

gm seems to be too small.
4.6 Base field change for coniveau spectral sequences; functo-

riality for an uncountable kIt an be easily seen (and well-known) that for any perfet �eld extension l/kthere exist an extension of salars funtor DM eff
gm k → DM eff

gm l ompatiblewith the extension of salars for smooth varieties (and for Kb(SmCor)). In5.4.2 below we will prove that this funtor ould be expanded to a funtor
Extl/k : Dk → Dl that sends Mgm,k(X) to Mgm,l(Xl) for a pro-sheme X/k;this extension proedure is funtorial with respet to embeddings of base �elds.Moreover, Extl/k maps Dsk into Dsl. Note the existene of base hange foromotives does not follow from the properties of D listed in Proposition 3.1.1;yet one an de�ne base hange for our model of omotives (desribed in �5below) and (probably) for any other possible reasonable version of D.Now we prove that base hange for omotives yields base hange for oniveauspetral sequenes; it also allows to prove that these spetral sequenes aremotivially funtorial for not neessary ountable base �elds.In order to make the limit in Proposition 4.6.1(2) below well-de�ned, we assumethat for any X ∈ ObjDM eff

gm there is a �xed representative Y, Z, p hosen,where: Z, Y ∈ Cb(SmCor), Mgm(Y ) ∼= Mgm(Z), p ∈ Cb(SmCor)(Y, Z) yieldsa diret summand of Mgm(Y ) in DM eff
gm that is isomorphi to X . We alsoassume that all the omponents of (X,Y, p) have �xed expressions in terms ofalgebrai equations over k; so one may speak about �elds of de�nition for X .
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Coniveau Spectral Sequences for Motives 97
Proposition 4.6.1. Let l be a perfet �eld, H : Dl → A be any ohomologialfuntor (for an abelian A). For any perfet k ⊂ l we denote H◦Extl/k : Dk → Aby Hk.1. Let l be ountable. Then for any X ∈ ObjDk the method of Proposition2.7.3(II) yields some morphism Nl/k : Twk

(Hk, X) → Twl
(H,Extl/k(X)); thismorphism is unique and Dk-funtorial in X starting from E2.The orrespondene (l, k) 7→ Nl/k is assoiative with respet to extensions ofountable �elds (starting from E2); f. part I3 of lo.it.2. Let l be a not (neessarily) ountable perfet �eld, let A satisfy AB5.For X ∈ ObjDM eff

gm l we de�ne Tw(H,X) = lim
−→k

Twk
(Hk, Xk). Here we takethe limit with respet to all perfet k ⊂ l suh that k is ountable, X is de�nedover k; the onneting morphisms are given by the maps N−/− mentioned inassertion 1; we start our spetral sequenes from E2. Then Tw(H,X) is awell-de�ned spetral sequene that is DM eff

gm l-funtorial in X.3. If X = Mgm,l(Z), Z ∈ SmV ar, H is as an extended theory, and A sat-is�es AB5, the spetral sequene given by the previous assertion is anoniallyisomorphi to the lassial oniveau spetral sequene (for (H,Z); onsideredstarting from E2).Proof. 1. By Proposition 2.7.3(II) it su�es to hek that Extl/k is left weight-exat (with respet to weight strutures in question). We take D being thelass of all small produts ∏

l∈L Mgm(Kl), where Mgm(Kl) denote omotivesof (spetra of) funtion �elds over k of bounded transendene degree. Propo-sition 4.1.1 and Corollary 4.2.2(2) yield that any X ∈ Ds
w=0
k is a retrat ofsome element of D. It su�es to hek that for any X =

∏

l∈LMgm,k(Kl) wehave Extl/k X ∈ Ds
wl≤0
l ; here we reall that wk is bounded and apply Lemma2.7.5.Now, X is the omotif of a ertain pro-sheme, hene the same is true for

Extl/k X . It remains to apply Proposition 4.1.1(5).2. By the assoiativity statement in the previous assertion, the limit is well-de�ned. Sine A satis�es AB5, we obtain a spetral sequene indeed. Sinewe have k-motivi funtoriality of oniveau spetral sequenes over eah k, weobtain l-motivi funtoriality in the limit.3. Again (as in the proof of Proposition 4.4.1(3)) we reall that the lassialoniveau spetral sequene for this ase is de�ned by applying H to 'geometri'Postnikov towers (oming from elements of L as in the proof of Corollary 3.6.2)and then passing to the limit (in A) with respet to L. Our assertion followseasily, sine eah l ∈ L is de�ned over some perfet ountable k ⊂ l; the limitof the spetral sequenes with respet to the subset of L de�ned over a �xed kis exatly Twk
(Hk, Xk) sine H sends homotopy limits to indutive limits in A(being an extended theory).Here we ertainly use the funtoriality of T starting from E2.
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98 M. V. BondarkoRemark 4.6.2. 1. For a general X ∈ ObjDM eff
gm we only have a anonialhoie of base hange maps (for T (Hkl

, X)) starting from E2; this is why westart our spetral sequene from the E2-level.2. Assertion 2 of the proposition is also valid for any omotif de�ned over a(perfet) ountable sub�eld of l. Unfortunately, this does not seem to inludeomotives of funtion �elds over l (of positive transendene degrees, if l is notountable).
4.7 The Chow weight structure for DTill the end of the setion, we will either assume that char k = 0, or that wedeal with motives, omotives, and ohomology with rational oe�ients (wewill use the same notation for motives with integral and rational oe�ients;f. �6.3 below).We prove that D supports a weight struture that extends the Chow weightstruture of DM eff

gm (see �6.5 and Remark 6.6.1 of [6℄, and also [7℄).In this subsetion we do not require k to be ountable.
Proposition 4.7.1. 1. There exists a Chow weight struture on DM eff

gm thatis uniquely haraterized by the ondition that all Mgm(P ) for P ∈ SmPrV arbelong to its heart; it ould be extended to a weight struture wChow on D.2. The heart of wChow is the ategory HChow of arbitrary small produts of(e�etive) Chow motives.3. We have X ∈ D
wChow≥0 if and only if D(X,Y [i]) = {0} for any Y ∈

ObjChoweff , i > 0.4. There exists a t-struture tChow on D that is right adjaent to wChow (seeRemark 2.5.7). Its heart is the opposite ategory to Choweff ∗ (i.e. it is equiv-alent to (AddFun(Choweff , Ab))op).5. wChow respets produts i.e. Xi ∈ D
wChow≤0 =⇒

∏

Xi ∈ D
wChow≤0 and

Xi ∈ D
wChow≥0 =⇒

∏

Xi ∈ D
wChow≥0.6. For ∏

Xi there exists a weight deomposition: ∏

Xi →
∏

Xw≤0
i →

∏

Xw≥1
i .7. If H : D → A is an extended theory, then the funtor that sends X to thederived exat ouple for TwChow

(H,X) (see Theorem 2.4.2) onverts all smallproduts into diret sums.Proof. 1. It was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6℄ thatthere exists a unique weight struture w′
Chow on DM eff

gm suh that Mgm(P ) ∈

D
w′

Chow=0 for all P ∈ SmPrV ar. Moreover, the heart of this struture isexatly Choweff ⊂ DM eff
gm .Now, DM eff

gm is generated by Choweff . It easily follows that {Mgm(P ), P ∈
SmPrV ar} weakly ogenerates D. Then the dual (see Theorem 2.2.1(1)) ofTheorem 4.5.2(I2) of [6℄ yields that w′

Chow ould be extended to a weight stru-ture wChow for D. Moreover, the dual to part II1 of lo.it. yields that for thisextension we have: HwChow is the idempotent ompletion of HChow.
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Coniveau Spectral Sequences for Motives 992. It remains to prove that HChow is idempotent omplete. This is obvioussine Choweff is.3. This is just the dual of (27) in lo.it.4. The dual statement to part I2 of lo.it. (f. Remark 1.1.3(1)) yields theexistene of tChow. Applying the dual of Theorem 4.5.2(II1) of [6℄ we obtainfor the heart of t: HtChow
∼= (Choweff

∗ )op.5. Theorem 2.2.1(2) easily yields that D
wChow≤0 is stable with respet toproduts. The stability of DwChow≥0 with respet to produts follows fromassertion 3; here we reall that all objets of Choweff are oompat in D.6. Immediate from the previous assertion; note that any small produt ofdistinguished triangles is distinguished (see Remark 1.2.2 of [21℄).7. Sine H is extended, it onverts produts in D into diret sums in A. Henefor any Xi ∈ ObjD there exist a hoie of exat ouples for the orrespondingweight spetral sequenes for Xi and ∏

Xi that respets produts i.e suh that
Dpq

1 TwChow
(H,

∏

Xi) ∼=
⊕

iD
pq
1 TwChow

(H,Xi) and Epq
1 TwChow

(H,
∏

Xi) ∼=
⊕

i E
pq
1 TwChow

(H,Xi) (for all p.q ∈ Z; this isomorphism is also ompatiblewith the onneting morphisms of ouples). Sine A satis�es AB5, we obtainthe isomorphism desired for D2 and E2-terms (note that those are uniquelydetermined by H and X).Remark 4.7.2. 1. In Remark 2.4.3 of [6℄ it was shown that weight spetralsequenes orresponding to the Chow weight struture are isomorphi to thelassial (i.e. Deligne's) weight spetral sequenes when the latter are de�ned(i.e. for singular or étale ohomology of varieties). Yet in order to speify thehoie of a weight struture here we will all these spetral sequenes Chow-weight ones.2. All the assertions of the Proposition ould be extended to arbitrary tri-angulated ategories with negative families of oompat weak ogenerators(sometimes one should also demand all produts to exist; in assertion 7 weonly need H to onvert all produts into diret sums).3. Sine (e�etive) Chow motives are oompat in D, HwChow is theategory of 'formal produts' of Choweff i.e. D(
∏

l∈LXl,
∏

i∈I Yi) =
∏

i∈I(⊕l∈LChoweff (Xl, Yi)) for Xl, Yl ∈ ObjChoweff ⊂ ObjD (f. Remark4.5.3(2) of [6℄).4. Reall (see �7.1 of ibid.) that DM eff
− supports (adjaent) Chow weightand t-strutures (we will denote them by w′

Chow and t′Chow, respetively). Oneould also hek that these strutures are right orthogonal to the orrespondingChow strutures for D. Hene, applying Proposition 2.5.4(1) repeatedly oneould relate the ompositions of trunations (on Ds ⊂ D) via w and via tChow(resp. via w and via wChow) with trunations via t and via w′
Chow (resp. via

t and via t′Chow) on DM eff
− ; f. �8.3 of [6℄. One ould also apply wChow-trunations and then w-trunations (i.e. ompose trunations in the oppositeorder) when starting from an objet ofDM eff

gm . Reall also that trunations via
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100 M. V. Bondarko

tChow (and their ompositions with t-trunations) are related with unrami�edohomology; see Remark 7.6.2 of ibid.
4.8 Comparing Chow-weight and coniveau spectral sequencesNow we prove that Chow-weight and oniveau spetral sequenes are naturallyisomorphi for birational ohomology theories.
Proposition 4.8.1. 1. wChow for D dominates w (for Ds) in the sense of�2.7.2. Let H : DM eff

gm → A be an extended ohomology theory in the sense ofRemark 4.3.2; suppose that H is birational i.e. that H(Mgm(P )(1)[i]) = 0 forall P ∈ SmPrV ar, i ∈ Z. Then for any X ∈ ObjDs the Chow-weight spetralsequene TwChow
(H,X) (orresponding to wChow) is naturally isomorphi start-ing from E2 to (our) oniveau spetral sequene Tw(H,X) via the omparisonmorphism M given by Proposition 2.7.3(I1).Proof. 1. Let D be the lass of all ountable produts ∏l∈L Mgm(Kl), where

Mgm(Kl) denote omotives of (spetra of) funtion �elds over k of boundedtransendene degree. Proposition 4.1.1 and Corollary 4.2.2(2) yield that any
X ∈ D

w=0
s is a retrat of some element of D. It su�es to hek that any

X =
∏

l∈LMgm(Kl) belongs to D
wChow≥0; here we reall that w is boundedand apply Lemma 2.7.5.By Proposition 4.7.1(5), we an assume that L onsists of a single element.In this ase we have D(Mgm(Kl),Mgm(P )[i]) = 0 (this is a trivial ase ofProposition 3.5.1); hene lo.it. yields the result.2. We take the same D and X as above.Let char k = 0. We hoose Pl ∈ SmPrV ar suh that Kl are their fun-tion �elds. Sine all Mgm(Pl) are oompat in D, we have a naturalmorphism X →

∏

Mgm(Pl). By Proposition 2.7.3(I2), it su�es to hekthat Cone(X →
∏

Mgm(Pl)) ∈ D
wChow≥0, H(X) ∼= H(

∏

Mgm(Pl)), and
E∗∗

2 TwChow
(H,Cone(X →

∏

Mgm(Pl))) = 0.By Proposition 4.7.1(7) we obtain: it su�es again to verify these statementsin the ase when L onsists of a single element. Now, we have Spec(Kl) =
lim
←−

Mgm(U) for U ∈ SmV ar, k(U) = Kl. Therefore (27) yields: it su�es toverify assertions required for Z = Mgm(U → P ) instead, where U ∈ SmV ar,
U is open in P ∈ SmPrV ar.The Gysin distinguished triangle for Voevodsky's motives (see Proposition 2.4.5of [9℄) easily yields by indution that Z ∈ ObjDM eff

gm (1).Sine Choweff is − ⊗ Z(1)[2]-stable, we obtain that there exists a wChow-Postnikov tower for Z suh that all of its terms are divisible by Z(1); this yieldsthe vanishing of E∗∗
2 TwChow

(H,Z). Lastly, the fat that Z ∈ DM eff
gm

w′
Chow≥0was (essentially) proved by easy indution (using the Gysin triangle) in theproof of Theorem 6.2.1 of [7℄.In the ase char k > 0, de Jong's alterations allow to replae Mgm(Pl) inthe reasoning above by some Chow motives (with rational oe�ients); see
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Coniveau Spectral Sequences for Motives 101Appendix B of [14℄; we will not write down the details here.Remark 4.8.2. Assertion 2 is not very atual for ohomology of smooth varietiessine any Z ∈ SmPrV ar is birationally isomorphi to P ∈ SmPrV ar (at leastfor char k = 0). Yet the statement beomes more interesting when applied for
X = M c

gm(Z).
4.9 Birational motives; constructing the Gersten weight struc-

ture by gluing; other possible weight structuresAn alternative way to prove Proposition 4.8.1(2) is to onsider (following [15℄)the ategory of birational omotives. It satis�es the following properties:(i) All birational ohomology theories fatorize through it.(ii) Chow and Gersten weight strutures indue the same weight struture onit (see De�nition 2.7.1(4)).(iii) More generally, for any n ≥ 0 Chow and Gersten weight strutures indueweight strutures on the loalizations D(n)/D(n + 1) ∼= Dbir (we all theseloalizations slies) that di�er only by a shift.Moreover, one ould 'almost reover' original Chow and Gersten weight stru-tures starting from this single weight struture.Now we desribe the onstrutions and fats mentioned in more detail. Wewill be rather skethy here, sine we will not use the results of this subsetionelsewhere in the paper. Possibly, the details will be written down in anotherpaper.As we will show in �5.4.3 below, the Tate twist funtor ould be extended (asan exat funtor) from DM eff
gm to D; this funtor is ompatible with (small)produts.

Proposition 4.9.1. I The funtor − ⊗ Z(1)[1] is weight-exat with respet to
w on Ds; −⊗ Z(1)[2] is weight-exat with respet to wChow on D (we will saythat w is −⊗ Z(1)[1]-stable, and wChow is −⊗ Z(1)[2]-stable).II Let Dbir denote the loalization of D by D(1); B is the loalization funtor.We denote B(Ds) by Ds,bir.1. wChow indues a weight struture w′

bir on Dbir. Besides, w indues a weightstruture wbir on Ds,bir.2. We have D
wbir≤0
s,bir ⊂ D

w′
bir≤0

bir , D
wbir≥0
s,bir ⊂ D

w′
bir≥0

bir (i.e. the embedding
(Ds,bir , wbir)→ (Dbir , w

′
bir) is weight-exat).3. For any pro-sheme U we have B(Mgm(U)) ∈ D

wbir=0
s,bir .Proof. I This is easy, sine the funtors mentioned obviously map the orre-sponding hearts (of weight strutures) into themselves.II 1. By assertion I, wChow indues a weight struture on D(1) (i.e. D(1) is atriangulated ategory, ObjD(1) ∩D

wChow≤0 and ObjD(1) ∩D
wChow≥0 yield aweight struture on it). Hene by Proposition 8.1.1(1) of [6℄ we obtain existene
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102 M. V. Bondarko(and uniqueness) of w′
bir . The same argument also implies the existene of some

wbir on Ds,bir .2. Now we ompare wbir with w′
bir . Sine w is bounded, wbir also is (seelo.it.). Hene it su�es to hek that Hwbir ⊂ Hw′

bir (see Theorem2.2.1(19)).Moreover, it su�es to hek that for X =
∏

l∈L Mgm(Kl) we have B(X) ∈

D
w′

bir=0
bir (sine D

w′
bir=0

bir is Karoubi-losed in Dbir , here we also apply Propo-sition 4.7.1(2)). As in the proof of Proposition 4.8.1(2), we will onsider thease char k = 0; the ase char k = p is treated similarly. Then we hoose Pl ∈
SmPrV ar suh that Kl are their funtion �elds; we have a natural morphism
X →

∏

Mgm(Pl). It remains to hek that Cone(X → ∏

Mgm(Pl)) ∈ Ds(1).Now, sineDs(1) and the lass of distinguished triangles are losed with respetto small produts, it su�es to onsider the ase when L onsists of a singleelement. In this ase the statement is immediate from Corollary 3.6.2.3. Immediate from Corollary 3.6.2.Remark 4.9.2. 1. Assertion II easily implies Proposition 4.8.1(2).Indeed, any extended birational H (as in lo.it.) ould be fatorized as G ◦Bfor a ohomologial G : Dbir → A. Sine B is weight-exat with respet to
wChow (and its restrition to Ds is weight-exat with respet to w), (the trivialase of) Proposition 2.7.3(I2) implies that for any X ∈ ObjD (any hoie)of Tw′

bir
(G,B(X)) is naturally isomorphi starting from E2 to any hoie of

TwChow
(H,X); for any X ∈ ObjDs (any hoie) of Twbir

(G,B(X)) is naturallyisomorphi starting from E2 to any hoie of Tw(H,X).It is also easily seen that the isomorphism TwChow
(H,X)→ Tw(H,X) is om-patible with the omparison morphism M (see lo.it.).2. The proof of existene of wbir and of assertion 3 works with integral o-e�ients even if char k > 0. Hene we obtain that that the ategory image

B(Mgm(U)), U ∈ SmV ar, is negative. We an apply this statement in C be-ing the idempotent ompletion of B(DM eff
gm ) i.e. in the ategory of birationalomotives. Hene Theorem 2.2.1(18) yields: there exists a weight struture for

C whose heart is the ategory of birational Chow motives (de�ned as in �5 of[15℄). Note also that one an pass to the indutive limit with respet to basehange in this statement (f. �4.6); hene one does not need to require k to beountable.Now we explain that w and wChow ould be 'almost reovered' from
(Dbir , w

′
bir). Exatly the same reasoning as above shows that for any n > 0 theloalization of D by D(n) ould be endowed with a weight struture w′

n om-patible with wChow, whereas the loalization of Ds by Ds(n) ould be endowedwith a weight struture wn ompatible with w.Next, we have a short exat sequene of triangulated ategories D/D(n)
i∗→

D/D(n+ 1)
j∗

→ Dbir . Here the notation for funtors omes from the 'lassial'gluing data setting (f. �8.2 of [6℄); i∗ ould be given by − ⊗ Z(1)[s] for any
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Coniveau Spectral Sequences for Motives 103
s ∈ Z, j∗ is just the loalization. Now, if we hoose s = 2 then i∗ is weight-exat with respet to w′

n and w′
n+1; if we hoose s = 1 then the restrition of

i∗ to Ds/Ds(n) is weight-exat with respet to wn and wn+1.Next, an argument similar to the one used in �8.2 of [6℄ shows: for any shortexat sequene D i∗→ C
j∗

→ E of triangulated ategories, if D and E are endowedwith weight strutures, then there exist at most one weight struture on C suhthat both i∗ and j∗ are weight-exat (see also Lemma 4.6 of [3℄ for the proofof a similar statement for t-strutures). Hene one an reover wn and w′
nfrom (opies of) w′

bir ; the main di�erene between them is that the �rst oneis −⊗ Z(1)[1]-stable, whereas the seond one is − ⊗ Z(1)[2]-stable. It is quiteamazing that weight strutures orresponding to spetral sequenes of quitedistint geometri origin di�er just by [1] here! If one alls the �ltration of Dby D(n) the slie �ltration (this term was already used by A. Huber, B. Kahn,M. Levine, V. Voevodsky, and other authors for other 'motivi' ategories),then one may say that wn and w′
n ould be reovered from slies; the di�erenebetween them is 'how we shift the slies'.Moreover, Theorem 8.2.3 of [6℄ shows: if both adjoints to i∗ and j∗ exist, thenone an use this gluing data in order to glue (any pair) of weight struturesfor D and E into a weight struture for C. So, suppose that we have a weightstruture wn,s for D/D(n) that is − ⊗ (1)[s]-stable and ompatible with w′

biron all slies (in the sense desribed above; so w′
n = wn,2, wn is the restritionof wn,1 to Ds/Ds(n), and all w1,s oinide with w′

bir). General homologialalgebra (see Proposition 3.3 of [18℄) yields that all the adjoints required doexist in our ase. Hene one an onstrut wn+1,s for D/D(n+1) that satis�essimilar properties. So, wn,s exist for all n > 0 and all s ∈ Z. Hene Gerstenand Chow weight strutures (forDs/Ds(n) ⊂ D/D(n)) are members of a rathernatural family of weight strutures indexed by a single integral parameter. Itould be interesting to study other members of it (for example, the one that is
−⊗ Z(1)-stable), though possibly w′

n is the only member of this family whoseheart is oompatly generated.This approah ould allow to onstrut w in the ase of a not neessarilyountable k. Note here that the system of Ds/Ds(n) yields a �ne approx-imation of Ds. Indeed, if X ∈ SmPrV ar, n ≥ dimX , then Poinare du-ality yields: for any Y ∈ ObjDM eff
gm we have DM eff

gm (Y (n),Mgm(X)) ∼=

DM eff
gm (Y ⊗ X(n − dimX)[−2 dimX ],Z); this is zero if n > dimX sine Zis a birational motif. Hene (by Yoneda's lemma) for any n > 0 the full sub-ategory of DM eff

gm generated by motives of varieties of dimension less than nfully embeds into DM eff
gm /DM eff

gm (n) ⊂ D/D(n).It follows that the restritions of wn,s to a ertain series of (su�iently small)subategories of D/D(n) are indued by a single −⊗ (1)[s]-stable weight stru-ture ws for the orresponding subategory of D. Here for the orrespondingsubategory of D/D(n) (or D) one an take the union of the subategoriesof D/D(n) (resp. D) generated (in an appropriate sense) by omotives of(smooth) varieties of dimension ≤ r (with r running through all natural num-
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104 M. V. Bondarkobers). Note that this subategory of D ontains DM eff
gm .We also relate brie�y our results with the (onjetural) piture for t-struturesdesribed in [3℄. There another (geometri) �ltration for motives was onsid-ered; this �ltration (roughly) di�ers from the �ltration onsidered above by (aertain version of) Poinare duality. Now, onjeturally the grn of the ategoryof birational motives with rational oe�ients (f. �4.2 of ibid.) should be (thehomotopy ategory of omplexes over) an abelian semisimple ategory. Hene itsupports a t-struture whih is simultaneously a weight struture. This stru-ture should be the building blok of all relevant weight and t-strutures foromotives. Certainly, this piture is quite onjetural at the present moment.Remark 4.9.3. The author also hopes to arry over (some of) the results of theurrent paper to relative motives (i.e. motives over a base sheme that is not a�eld), relative omotives, and their ohomology. One of the possible methodsfor this is the usage of gluing of weight strutures (see �8.2 of [6℄, espeiallyRemark 8.2.4(3) of lo.it.). Possibly for this situation the 'version of D' thatuses motives with ompat support (see �6.4 below) ould be more appropriate.

5 The construction of D and D
′; base change and Tate twistsNow we onstrut our ategories D′ and D using the di�erential graded ate-gories formalism.In �5.1 we reall the de�nitions of di�erential graded ategories, modules overthem, shifts and ones (of morphisms).In �5.2 we reall main properties of the derived ategory of (modules over) adi�erential graded ategory.In �5.3 we de�ne D

′ and D as the ategories opposite to the orrespondingategories of modules; then we prove that they satisfy the properties required.In �5.4 we use the di�erential graded modules formalism to de�ne base hangefor motives (extension and restrition of salars). This yields: our results on di-ret summands of omotives (and ohomology) of funtion �elds (proved above)ould be arried over to pro-shemes obtained from them via base hange.We also de�ne tensoring of omotives by motives, as well as a ertain 'o-internal Hom' (i.e. the orresponding left adjoint funtor to X ⊗ − for X ∈
ObjDM eff

gm ). These results do not require k to be ountable.
5.1 DG-categories and modules over themWe reall some basi de�nitions; f. [16℄ and [12℄.An additive ategory A is alled graded if for any P,Q ∈ ObjA there is aanonial deomposition A(P,Q) ∼= ⊕iA

i(P,Q) de�ned; this deompositionsatis�es Ai(∗, ∗) ◦ Aj(∗, ∗) ⊂ Ai+j(∗, ∗). A di�erential graded ategory (f.[12℄) is a graded ategory endowed with an additive operator δ : Ai(P,Q) →
Ai+1(P,Q) for all i ∈ Z, P,Q ∈ ObjA. δ should satisfy the equalities δ2 = 0(so A(P,Q) is a omplex of abelian groups); δ(f ◦ g) = δf ◦ g+ (−1)if ◦ δg forany P,Q,R ∈ ObjA, f ∈ Ai(P,Q), g ∈ A(Q,R). In partiular, δ(idP ) = 0.
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Coniveau Spectral Sequences for Motives 105We denote δ restrited to morphisms of degree i by δi.Now we give a simple example of a di�erential graded ategory.For an additive ategory B we onsider the ategory B(B) whose objets arethe same as for C(B) whereas for P = (P i), Q = (Qi) we de�ne B(B)i(P,Q) =
∏

j∈Z
B(P j , Qi+j). Obviously B(B) is a graded ategory. We will also onsidera full subategory Bb(B) ⊂ B(B) whose objets are bounded omplexes.We set δf = dQ◦f−(−1)if ◦dP , where f ∈ Bi(P,Q), dP and dQ are the di�er-entials in P and Q. Note that the kernel of δ0(P,Q) oinides with C(A)(P,Q)(the morphisms of omplexes); the image of δ−1 are the morphisms homotopito 0.Note also that the opposite ategory to a di�erential graded ategory beomesdi�erential graded also (with the same gradings and di�erentials) if we de�ne

fop ◦ gop = (−1)pq(g ◦ f)op for g, f being omposable homogeneous morphismsof degrees p and q, respetively.For any di�erential graded A we de�ne an additive ategory H(A) (some au-thors denote it by H0(A)); its objets are the same as for A; its morphisms arede�ned as
H(A)(P,Q) = Ker δ0A(P,Q)/ Im δ−1

A (P,Q).In the ase when H(A) is triangulated (as a full subategory of the ategory
K(A) desribed below) we will say that A is a (di�erential graded) enhanementfor H(A).We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Ker δ0A(P,Q).We have an obvious funtor Z(A) → H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).Now we de�ne (left di�erential graded) modules over a small di�erential gradedategory A (f. �3.1 of [16℄ or �14 of [12℄): the objets DG-Mod(A) are thoseadditive funtors of the underlying additive ategories A → B(Ab) that pre-serve gradings and di�erentials for morphisms. We de�ne DG-Mod(A)i(F,G)as the set of transformations of additive funtors of degree i; for h ∈
DG-Mod(A)i(F,G) we de�ne δi(h) = dG ◦ f − (−1)if ◦ dF . We have a naturalYoneda embedding Y : Aop → DG-Mod(A) (one should apply Yoneda's lemmafor the underlying additive ategories); it is easily seen to be a full embeddingof di�erential graded ategories.Now we de�ne shifts and ones in DG-Mod(A) omponentwisely. For F ∈
ObjDG-Mod(A) we set F [1](X) = F (X)[1]. For h ∈ Ker δ0DG-Mod(A)(F,G)we de�ne the objet Cone(h): Cone(h)(X) = Cone(F (X) → G(X)) for all
X ∈ ObjA.Note that for A = B(B) both of these de�nitions are ompatible with theorresponding notions for omplexes (with respet to the Yoneda embedding).We have a natural triangle of morphisms in δ0DG-Mod(A):

P
f
→ P ′ → Cone(f)→ P [1]. (30)
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106 M. V. Bondarko

5.2 The derived category of a differential graded categoryWe de�ne K(A) = H(DG-Mod(A)). It was shown in �2.2 of [16℄ that K(A) is atriangulated ategory with respet to shifts and ones of morphisms that werede�ned above (i.e. a triangle is distinguished if it is isomorphi to those of theform (30)).We will say that f ∈ Ker δ0DG-Mod(A)(F,G) is a quasi-isomorphism if for any
X ∈ ObjA it yields an isomorphism F (X) → F (Y ). We de�ne D(A) as theloalization of K(A) with respet to quasi-isomorphisms; so it is a triangulatedategory. Note that quasi-isomorphisms yield a loalizing lass of morphismsin K(A). Moreover, the funtor X → H0(F (X)) : K(A)→ Ab is orepresentedby DG-Mod(A)(X,−) ∈ ObjK(A); hene for any X ∈ ObjA, F ∈ ObjK(A) wehave

D(A)(Y (X), F ) ∼= K(A)(Y (X), F ). (31)Hene we have an embedding H(A)op → D(A).We de�ne C(A) as Z(DG-Mod(A)). It is easily seen that C(A) is losed withrespet to (small �ltered) diret limits, and lim
−→

Fl is given by X → lim
−→

Fl(X).Now we reall (brie�y) that di�erential graded modules admit ertain 'resolu-tions' (i.e. any objet is quasi-isomorphi to a semi-free one in the terms of �14of [12℄).
Proposition 5.2.1. There exists a full triangulated K ′ ⊂ K(A) suh that theprojetion K(A)→ D(A) indues an equivalene K ′ ≈ D(A). K ′ is losed withrespet to all (small) oproduts.Proof. See �14.8 of [12℄Remark 5.2.2. In fat, there exists a (Quillen) model struture for C(A) suhthat D(A) its homotopy ategory; see Theorem 3.2 of [16℄. Moreover (for the�rst model strutures mentioned in lo.it) all objets of C(A) are �brant, allobjets oming from A are o�brant. For this model struture two morphismsare homotopi whenever they beome equal in K(A). So, one ould take K ′whose objets are the o�brant objets of C(A).Using these fats, one ould verify most of Proposition 3.1.1 (for D

′ and Ddesribed below).
5.3 The construction of D

′ and D; the proof of Proposition 3.1.1It was proved in �2.3 of [4] (f. also [19℄ or �8.3.1 of [7℄) that DM eff
gm ould bedesribed as H(A), where A is a ertain (small) di�erential graded ategory.Moreover, the funtor Kb(SmCor) → DM eff

gm ould be presented as H(f),where f : Bb(SmCor) → A is a di�erential graded funtor. We will notdesribe the details for (any of) these onstrutions sine we will not needthem.We de�neD′ = C(A)op, D = D(A)op, p is the natural projetion. We verify thatthese ategories satisfy Proposition 3.1.1. Assertion 10 follows from the fat
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Coniveau Spectral Sequences for Motives 107that any loalization of a triangulated ategory that possesses an enhanementis enhaneable also (see ��3.4�3.5 of [12℄).The embedding H(A)op → D(A) yields DM eff
gm ⊂ D

′. Sine all objets omingfrom A are oompat in K(A)op, Proposition 5.2.1 yields that the same is truein D. We obtain assertion 1.
D

′ is losed with respet to inverse limits sine C(A) is losed with respet todiret ones. Sine the projetion C(A)→ K(A) respets oproduts (as well asall other (�ltered) olimits), Proposition 5.2.1 yields that p respets produtsalso. We obtain assertion 2.The desriptions of C(A) and D(A) yields all the properties of shifts and onesrequired. This yields assertions 3, 4, and 6. Sine D(A) is a loalization of
K(A), we also obtain assertion 5.Next, sine D(A) is a loalization of K(A) with respet to quasi-isomorphisms,we obtain assertion 8.Reall that �ltered diret limits of exat sequenes of abelian groups are exat.Hene for any X ∈ ObjA ⊂ ObjD′, Y : L→ DG-Mod(A) we have

K(A)(DG-Mod(A)(X,−), lim
−→l

Yl) = H0((lim
−→

Yl)(A))

= H0(lim
−→

(Yl(A))) = lim
−→

H0(Yl(A)) = lim
−→l
K(A)(DG-Mod(A)(X,−), Yl).Applying (31) we obtain assertion 7.It remains to verify assertion 9 of lo.it. Sine the inverse limit with respetto a projetive system is isomorphi to the inverse limit with respet to any itsunbounded subsystem, and the same is true for lim
←−1

in the ountable ase, wean assume that I is the ategory of natural numbers, i.e. we have a sequeneof Fi onneted by morphisms.In this ase we have funtorial morphisms lim
←−

Fi
f
→

∏

Fl
g
→

∏

Fi as in (27).Hene it su�es to hek that these morphisms yield a distinguished trian-gle in D. Note that g ◦ f = 0; hene g ould be fatorized through a mor-phism h : Cone f →
∏

Fi in D
′. Sine for any X ∈ ObjA the morphism

h∗ :
∏

D′ Fi(X) → ConeF (X) is a quasi-isomorphism, h beomes an isomor-phism in D. This �nishes the proof.Remark 5.3.1. 1. Note that the only part of our argument when we needed kto be ountable in the proof of assertion 9 of lo.it.2. The onstrutions of A (i.e. of the 'enhanement' for DM eff
gm mentionedabove) that were desribed in [4℄, [19℄, and in [7℄, are easily seen to be funtorialwith respet to base �eld hange (see below). Still, the onstrutions mentionedare distint and far from being the only ones possible; the author does notknow whether all possible D are isomorphi. Still, this makes no di�erene forohomology (of pro-shemes); see Remark 4.3.2.Moreover, note that assertion 10 of Proposition 3.1.1 was not very importantfor us (without if we would only have to onsider a ertain weakly exat weightomplex funtor in �6.1 below; see �3 of [6℄). The author doubts that thisondition follows from the other parts of Proposition 3.1.1.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



108 M. V. Bondarko

5.4 Base change and Tate twists for comotivesOur di�erential graded formalism yields ertain funtoriality of omotives withrespet to embeddings of base �elds. We onstrut both extension and re-strition of salars (the latter one for the ase of a �nite extension of �eldsonly). The onstrution of base hange funtors uses indution for di�erentialgraded modules. This method also allows to de�ne ertain tensor produts and
Co −Hom for omotives. In partiular, we obtain a Tate twist funtor whihis ompatible with (29) (and a left adjoint to it).We note that the results of this subsetion (probably) ould not be deduedfrom the 'axioms' of D listed in Proposition 3.1.1; yet they are quite natural.
5.4.1 Induction and restriction for differential graded modules:

reminderWe reall ertain results of �14 of [12℄ on funtoriality of di�erential gradedmodules. These extend the orresponding (more or less standard) statementsfor modules over di�erential graded algebras (f. �14.2 of ibid.).If f : A→ B is a funtor of di�erential graded ategories, we have an obviousrestrition funtor f∗ : C(B) → C(A). It is easily seen that f∗ also induesfuntors K(B) → K(A) and D(B) → D(A). Certainly, the latter funtorrespets homotopy olimits (i.e. the diret limits from C(B)).Now, it is not di�ult to onstrut an indution funtor f∗ : DG-Mod(A) →
DG-Mod(B) whih is left adjoint to f∗; see �14.9 of ibid. By Example 14.10 ofibid, for any X ∈ ObjA this funtor sends X∗ = A(X,−) to f(X)∗.
f∗ also indues funtors C(A) → C(B) and K(A) → K(B). Restriting thelatter one to the ategory of semi-free modules K ′ (see Proposition 5.2.1) oneobtains a funtor Lf∗ : D(A) → D(B) whih is also left adjoint to the orre-sponding f∗; see �14.12 of [12℄. Sine all funtors of the type X∗ are semi-freeby de�nition, we have Lf∗(X

∗) = A(X,−) = Lf(X)∗. It an also be shownthat Lf∗ respets diret limits of objets of Aop (onsidered as A-modules viathe Yoneda embedding). In the ase of ountable limits this follows easily fromthe de�nition of semi-free modules and the expression of the homotopy olimitin D(A) as lim
−→

Xi = Cone(
⊕

Xi →
⊕

Xi) (this is just the dual to (27)). Forunountable limits, one ould prove the fat using a 'resolution' of the diretlimit similar to those desribed in �A3 of [21℄.
5.4.2 Extension and restriction of scalars for comotivesNow let l/k be an extension of perfet �elds.Reall that D′ and D were desribed (in �5.3) in terms of modules over a ertaindi�erential graded ategory A. It was shown in [19℄ that the orrespondingversion of A is a tensor (di�erential graded) ategory; we also have an extensionof salars funtor Ak → Al. It is most probable that both of these propertieshold for the version of A desribed in [4℄ (note that they obviously hold for
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Coniveau Spectral Sequences for Motives 109
Bb(SmCor)). Moreover, if l/k is �nite, then we have the funtor of restritionof salars in inverse diretion.So, the indution for the orresponding di�erential graded modules yieldsan exat funtor of extension of salars Extl/k : Dk → Dl. The reasoningabove shows that Extl/k is ompatible with the 'usual' extension of salarsfor smooth varieties (and omplexes of smooth orrespondenes). Moreover,sine Extl/k respets homotopy limits, this ompatibility extends to omotivesof pro-shemes and their produts. It an also be easily shown that Extl/krespets Tate twists.We immediately obtain the following result.
Proposition 5.4.1. Let k be ountable (and perfet), let l ⊃ k be a perfet�eld.1. Let S be a onneted primitive sheme over k, let S0 be its generi point.Then Mgm(Sl) is a retrat of Mgm(S0l) in Dl.2. Let K be a funtion �eld over k. Let K ′ be the residue �eld for a geometrivaluation v of K of rank r. Then Mgm(K ′

l(r)[r]) is a retrat of Mgm(Kl) in
Dl.As in 4.3, this result immediately implies similar statements for any ohomologyof pro-shemes mentioned (onstruted from a ohomologialH : DM eff

gm l → Avia Proposition 1.2.1).Next, if l/k is �nite, indution for di�erential graded modules applied tothe restrition of salars for A's also yields a restrition of salars funtor
Resl/k : Dl → Dk. Similarly to Extl/k, this funtor is ompatible with re-strition of salars for smooth varieties, pro-shemes, and omplexes of smoothorrespondenes; it also respets Tate twists.It follows: l/k is �nite, then Extl/k maps Dsk to Dsl; Resl/k maps Dsl to Dsk.Besides, if we also assume l to be ountable, then both of these funtors respetweight strutures (i.e. they map Ds

w≤0
k to Ds

w≤0
l , Ds

w≥0
k to Ds

w≥0
l , and vieversa).Remark 5.4.2. It seems that one an also de�ne restrition of salars via re-strition of di�erential graded modules (applied to the extension of salars for

A's). To this end one needs to hek the orresponding adjuntion for DM eff
gm ;the orresponding (and related) statement for the motivi homotopy ategorieswas proved by J. Ayoub. This would allow to de�ne Resl/k also in the asewhen l/k is in�nite; this seems to be rather interesting if l is a funtion �eldover k. Note that Resl/k (in this ase) would (probably) also map Ds

w≤0
l to

Ds
w≤0
k and Ds

w≥0
l to Ds

w≥0
k (if l is ountable).

5.4.3 Tensor products and ’co-internal Hom’ for comotives; Tate
twistsNow, for X ∈ ObjA we apply restrition and indution of di�erential gradedmodules for the funtor X ⊗ − : A → A. Indution yields a ertain funtor
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X ⊗− : D→ D, whereas restrition yields its left adjoint whih we will denoteby Co −Hom(X,−) : D → D. Both of them respet homotopy limits. Also,
X⊗− is ompatible with tensoring byX onDM eff

gm . Besides, the isomorphismslasses of these funtors only depend on the quasi-isomorphism lass of X in
DG-Mod(A). Indeed, it is easily seen that both X ⊗ Y and Co−Hom(X,Y )are exat with respet to X if we �x Y ; sine they are obviously zero for X = 0,it remains to note that quasi-isomorphi objets ould be onneted by a hainof quasi-isomorphisms.Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n ∈ Z. Then weobtain that the formal Tate twists de�ned by (29) are the true Tate twists i.e.they are given by tensoring by X on D. Then reall the Canellation Theoremfor motives: (see Theorem 4.3.1 of [25℄, and [27℄)): X ⊗− is a full embeddingof DM eff

gm into itself. Then one an dedue that X ⊗ − is fully faithful on Dalso (sine all objets of D ome from semi-free modules over A). Moreover,
Co −Hom(X,−) ◦ (X ⊗ −) is easily seen to be isomorphi to the identity on
D (for suh an X).
6 SupplementsWe desribe some more properties of omotives, as well as ertain possiblevariations of our methods and results. We will be somewhat skethy sometimes.In �6.1 we de�ne an additive ategory D

gen of generi motives (a variationof those studied in [9℄). We also prove that the exat onservative weightomplex funtor (that exists by the general theory of weight strutures) ouldbe modi�ed to an exat onservative WC : Ds → Kb(Dgen). Besides, we proveassertions on retrats of the pro-motif of a funtion �eld K/k, that are similarto (and follow from) those for its omotif.In �6.2 we prove that HI has a nie desription in terms of Hw. This is a sort ofBrown representability: a ofuntor Hw → Ab is representable by a (homotopyinvariant) sheaf with transfers whenever it onverts all small produts intodiret sums. This result is similar to the orresponding results of �4 of [6℄ (onthe onnetion between the hearts of adjaent strutures).In �6.3 we note that our methods ould be used for motives (and omotives)with oe�ients in an arbitrary ommutative unital ring R; the most importantases are rational (o)motives and 'torsion' (o)motives.In �6.4 we note that there exist natural motives of pro-shemes with ompatsupport in DM eff
− . It seems that one ould onstrut alternative D and D

′using this observation (yet this probably would not a�et our main resultssigni�antly).We onlude the setion by studying whih of our arguments ould be extendedto the ase of an unountable k.
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Coniveau Spectral Sequences for Motives 111
6.1 The weight complex functor; relation with generic motivesWe reall that the general formalism of weight strutures yields a onservativeexat weight omplex funtor t : Ds → Kb(Hw); it is ompatible with De�ni-tion 2.1.2(9). Next we prove that one an ompose it with a ertain 'projetion'funtor without losing the onservativity.
Lemma 6.1.1. There exists an exat onservative funtor t : Ds → Kb(Hw)that sends X ∈ ObjDs to a hoie of its weight omplex (oming from anyhoie of a weight Postnikov tower for it).Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6℄ (note that
Ds has a di�erential graded enhanement by Proposition 3.1.1(10)).Now, sine all objets of Hw are retrats of those that ome via p from inverselimits of objets of j(Cb(SmCor)), we have a natural additive funtor Hw →
D

naive (see �1.5). Its ategorial image will be denoted by D
gen; this is aslight modi�ation of Deglise's ategory of generi motives. We will denote the'projetion' Hw→ D

gen and Kb(Hw)→ Kb(Dgen) by pr.
Theorem 6.1.2. 1. The funtor WC = pr ◦ t : Ds → Kb(Dgen) is exat andonservative.2. Let S be a onneted primitive sheme, let S0 be its generi point. Then
pr(Mgm(S)) is a retrat of pr(Mgm(S0)) in D

gen.3. Let K be a funtion �eld over k. Let K ′ be the residue �eld for somegeometri valuation v of K of rank r. Then pr(Mgm(K ′)(r)[r]) is a retrat of
pr(Mgm(K)) in D

gen.Proof. 1. The exatness of WC is obvious (from Lemma 6.1.1). Now we hekthat WC is onservative.By Proposition 3.1.1(8), it su�es to hek: if WC(X) is ayli for some
X ∈ ObjDs, then D(X,Y ) = 0 for all Y ∈ ObjDM eff

gm . We denote the termsof t(X) by X i.We onsider the oniveau spetral sequene T (H,X) for the funtor H =
D(−, Y ) (see Remark 4.4.2). Sine WC(X) is ayli, we obtain that theomplexes D(X−i, Y [j]) are ayli for all j ∈ Z. Indeed, note that the restri-tion of a funtor D(X−i,−) to DM eff

gm ould be expressed in terms of pr(X−i);see Remark 3.2.1. Hene E2(T ) vanishes. Sine T onverges (see Proposition4.4.1(2)) we obtain the laim.2. Immediate from Corollary 4.2.2(1).3. Immediate from Corollary 4.2.2(2).Remark 6.1.3. For X = Mgm(Z), Z ∈ SmV ar, it easily seen that WC(X)ould be desribed as a 'naive' limit of omplexes of motives; f. �1.5.Now, the terms of t(X) are just the fators of (some possible) weight Postnikovtower for X ; so one an alulate them (at least, up to an isomorphism) for
Documenta Mathematica · Extra Volume Suslin (2010) 33–117



112 M. V. Bondarko

X = Mgm(Z). Unfortunately, it seems di�ult to desribe the boundary for
t(X) ompletely sine Hw is �ner than D

gen.
6.2 The relation of the heart of w with HI (’Brown repre-

sentability’)In Theorem 4.4.2(4) of [6℄, for a pair of adjaent strutures (w, t) for C(see Remark 2.5.7) it was proved that Ht is a full subategory of Hw∗(=
AddFun(Hwop, Ab)). This result annot be extended to arbitrary orthog-onal strutures sine our de�nition of a duality did not inlude any non-degenerateness onditions (in partiular, Φ ould be 0). Yet for our mainexample of orthogonal strutures the statement is true; moreover, HI has anatural desription in terms of Hw. This statement is very similar to a ertainBrown representability-type result (for adjaent strutures) proved in Theorem4.5.2(II.2) of ibid.Note thatHw is losed with respet to arbitrary small produts; see Proposition4.1.1(2).
Proposition 6.2.1. HI is naturally isomorphi to a full abelian subategory
Hw′

∗ of Hw∗ that onsists of funtors that onvert all produts in Hw intodiret sums (of the orresponding abelian groups).Proof. First, note that for any G ∈ ObjDM eff
− the funtor D→ Ab that sends

X ∈ ObjD to Φ(X,G) (Φ is the duality onstruted in Proposition 4.5.1) isohomologial. Moreover, it onverts homotopy limits into injetive limits (ofthe orresponding abelian groups); hene its restrition to Hw belongs to Hw′
∗.We obtain an additive funtor DM eff

gm → Hw′
∗. In fat, it fatorizes through

HI (by (25)). For G ∈ ObjHI we denote the funtor Hw → Ab obtained by
G′.Next, for any (additive) F : Hwop → Ab we de�ne F ′ : Ds → Ab by:

F ′(X) = (Ker(F (X0)→ F (X−1))/ Im(F (X1)→ F (X0)); (32)here X i is a weight omplex for X . It easily seen from Lemma 6.1.1 that F ′ isa well-de�ned ohomologial funtor. Moreover, Theorem 2.2.1(19) yields that
F ′ vanishes on D

w≤−1
s and on D

w≥1
s (sine it vanishes on D

w=i
s for all i 6= 0).Hene F ′ de�nes an additive funtor F ′′ = F ′ ◦Mgm : SmCorop → Ab i.e. apresheaf with transfers. Sine Mgm(Z) ∼= Mgm(Z × A1) for any Z ∈ SmV ar,

F ′′ is homotopy invariant. We should hek that F ′′ is atually a (Nisnevih)sheaf. By Proposition 5.5 of [26℄, it su�es to hek that F ′′ is a Zariski sheaf.Now, the the Mayer-Vietoris triangle for motives (�2 of [25℄) yields: to anyZariski overing U
∐

V → U ∪ V there orresponds a long exat sequene
· · · → F ′(Mgm(U ∩ V )[1]) → F ′′(U ∪ V ) → F ′′(U)

⊕
F ′′(V ) → F ′′(U ∩ V ) → . . .SineMgm(U∩V ) ∈ D

w≤0
s by part 5 of Proposition 4.1.1, we have F ′(Mgm(U∩

V )[1]) = {0}; hene F ′′ is a sheaf indeed.
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Coniveau Spectral Sequences for Motives 113So, F 7→ F ′′ yields an additive funtor Hw∗ → HI.Now we hek that the funtor G 7→ G′ (desribed above) and the restritionsof F 7→ F ′′ toHw′
∗ ⊂ Hw∗ yield mutually inverse equivalenes of the ategoriesin question.(24) immediately yields that the funtor HI → HI that sends G ∈ ObjHI to

(G′)′′ is isomorphi to idHI .Now for F ∈ ObjHw′
∗ we should hek: for any P ∈ D

w=0
s we have a natu-ral isomorphism (F ′′)′(P ) ∼= F (P ). Sine Hw is the idempotent ompletionof H , it su�es to onsider P being of the form ∏

l∈LMgm(Kl)(nl)[nl] (here
Kl are funtion �elds over k, nl ≥ 0; nl and the transendene degrees of
Kl/k are bounded); see part 2 of Proposition 4.1.1. Moreover, sine F on-verts produts into diret sums, it su�es to onsider P = Mgm(K ′)(n)[n](K ′/k is a funtion �eld, n ≥ 0). Lastly, part 2 of Corollary 4.2.2 redues thesituation to the ase P = Mgm(K) (K/k is a funtion �eld). Now, by the de�-nition of the funtor G 7→ G′, we have (F ′′)′(Mgm(K)) = lim

−→l∈L
F ′′(Mgm(Ul)),where K = lim

←−l∈L
Ul, Ul ∈ SmV ar. We have F ′′(Ul) = KerF (Mgm(K)) →

F (
∏

z∈U1
l
Mgm(z)(1)[1]); here U1

l is the set of points of Ul of odimen-sion 1. Sine F (
∏

z∈U1
l
Mgm(z)(1)[1]) = ⊕z∈U1

l
F (Mgm(z)(1)[1]); we have

lim
−→l∈L

F (
∏

z∈U1
l
Mgm(z)(1)[1]) = {0}; this yields the result.

6.3 Motives and comotives with rational and torsion coeffi-
cientsAbove we onsidered (o)motives with integral oe�ients. Yet, as was shownin [20℄, one ould do the theory of motives with oe�ients in an arbitraryommutative assoiative ring with a unit R. One should start with the naturallyde�ned ategory of R-orrespondenes: Obj(SmCorR) = SmV ar; for X,Y in

SmV ar we set SmCorR(X,Y ) =
⊕

U R for all integral losed U ⊂ X×Y thatare �nite over X and dominant over a onneted omponent of X . Then oneobtains a theory of motives that would satisfy all properties that are required inorder to dedue the main results of this paper. So, we an de�ne R-omotivesand extend our results to them.A well-known ase of motives with oe�ients are the motives with rationaloe�ients (note that Q is a �at Z-algebra). Yet, one ould also take R = Z/nZfor any n prime to char k.So, the results of this paper are also valid for rational (o)motives and 'torsion'(o)motives.Still, note that there ould be idempotents for R-motives that do not omefrom integral ones. In partiular, for the naturally de�ned rational motiviategories we have DM eff
gm Q 6= DM eff

gm ⊗ Q; also ChoweffQ 6= Choweff ⊗ Q(here ChoweffQ ⊂ DM eff
gm Q denote the orresponding R-hulls). Certainly,this does not matter at all in the urrent paper.
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6.4 Another possibility for D; motives with compact support of
pro-schemesIn the ase char k = 0, Voevodsky developed a nie theory of motives withompat support that is ompatible with Poinare duality; see Theorem 4.3.7of [25℄. Moreover, the expliit onstrutions of [25℄ yield that the funtor ofmotif with ompat support M c

gm : SmV arop → DM eff
gm is ompatible witha ertain jc : SmV aropfl → C−(Shv(SmCor)) (whih sends X to the Suslinomplex of Lc(X), see �4.2 lo.it.); this observation was kindly ommuniatedto the author by Bruno Kahn). This allows to de�ne jc(V ) for a pro-sheme

V as the orresponding diret limit (in C(Shv(SmCor))).Starting from this observation, one ould try to develop an analogue of ourtheory using the funtor M c
gm. One ould onsider D = DM eff

−
op; then itwould ontain DM eff

gm
op as the full ategory of oompat objets. It seemsthat our arguments ould be arried over to this ontext. One an onstrutsome D

′ for this D using ertain di�erential graded ategories.Though motives with ompat support are Poinare dual to ordinary motivesof smooth varieties (up to a ertain Tate twist), we do not have a ovariantembedding DM eff
gm → D (for this 'alternative' D), sine (the whole) DM eff

gm isnot self-dual. Still, DM eff
gm has a nie embedding into (Voevodsky's) self-dualategory DMgm; it ontains an exhausting system of self-dual subategories.Hene this alternative D would yield a theory that is ompatible with (thoughnot 'isomorphi' to) the theory developed above.Sine the alternative version of D is losely related with DM eff

−
op, it seemsreasonable to all its objets omotives (as we did for the objets of 'our' D).These observations show that one an dualize all the diret summands resultsof �4 to obtain their natural analogues for motives of pro-shemes with ompatsupport. Indeed, to prove them we may apply the duals of our arguments in�4 without any problem; see part 2 of Remark 3.1.2. Note that we obtainertain diret summand statements for objets of DM eff

− this way. This is anadvantage of our 'axiomati' approah in �3.1.One ould also take Dop = ∪n∈ZDM eff
gm (−n) (more preisely, this is the diretlimit of opies of DM eff

gm with onneting morphisms being − ⊗ Z(1)). Thenwe have a ovariant embedding DM eff
gm → DMgm → D.Note that both of these alternative versions of D are not losed with respet toall (ountable) produts, and so not losed with respet to all (�ltered ount-able) homotopy limits; yet they ontain all produts and homotopy limits thatare required for our main arguments.

6.5 What happens if k is uncountableWe desribe whih of the arguments above ould be applied in the ase of anunountable k (and for whih of them the author has no idea how to ahievethis). The author warns that he didn't hek the details thoroughly here.
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Coniveau Spectral Sequences for Motives 115As we have already noted above, it is no problem to de�ne D, D′, or even Dsfor any k. The main problem here that (if k is unountable) the omotives ofgeneri points of varieties (and of other pro-shemes) an usually be presentedonly as unountable homotopy limits of motives of varieties. The general for-malism of inverse limits (applied to the ategories of modules over a di�erentialgraded ategory) allows to extend to this ase all parts of Proposition 3.1.1 ex-pet part 9. This atually means that instead of the short exat sequene (28)one obtains a spetral sequene whose E1-terms are ertain lim
←−

j ; here lim
←−

j isthe j's derived funtor of lim
←−I

; f. Appendix A of [21℄. This does not seem tobe atastrophi; yet the author has absolutely no idea how to ontrol higherprojetive limits in the proof of Proposition 3.5.1; note that part 2 of lo.it.is espeially important for the onstrution of the Gersten weight struture.Besides, the author does not know how to pass to an unountable homotopylimit in the Gysin distinguished triangle. It seems that to this end one eitherneeds to lift the funtoriality of the (usual) motivi Gysin triangle to D
′, orto �nd a way to desribe the isomorphism lass of an unountable homotopylimit in D in terms of D-only (i.e. without �xing any lifts to D

′; this seems tobe impossible in general). So, one ould de�ne the 'Gersten' weight tower for aomotif of a pro-sheme as as the homotopy limit of 'geometri towers' (as in theproof of Corollary 3.6.2); yet it seems to be rather di�ult to alulate fatorsof suh a tower. It seems that the problems mentioned do not beome simplerfor the alternative versions of D desribed in �6.4. So, urrently the author doesnot know how to prove the diret summand results of �4.2 if k is unountable(they even ould be wrong). The problem here that the splittings of �4.2 arenot anonial (see Remark 4.2.3), so one annot apply a limit argument (as in�4.6) here.It seems that onstruting the Gersten weight struture is easier for Ds/Ds(n)(for some n > 0); see �4.9.Lastly, one an avoid the problems with homotopy limits ompletely by re-striting attention to the subategory of Artin-Tate motives in DM eff
gm (i.e.the triangulated ategory generated by Tate twists of motives of �nite exten-sions of k, as onsidered in [30℄). Note that oniveau spetral sequenes forohomology of suh motives (ould be hosen to be) very 'eonomi'.
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