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Abstract. Our starting point is Mumford’s conjecture, on represen-
tations of Chevalley groups over fields, as it is phrased in the pref-
ace of Geometric Invariant Theory. After extending the conjecture
appropriately, we show that it holds over an arbitrary commutative
base ring. We thus obtain the first fundamental theorem of invari-
ant theory (often referred to as Hilbert’s fourteenth problem) over
an arbitrary Noetherian ring. We also prove results on the Grosshans
graded deformation of an algebra in the same generality. We end with
tentative finiteness results for rational cohomology over the integers.
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1 Introduction

The following statement may seem quite well known:

Theorem 1. Let k be a Dedekind ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AG is
then a finitely generated k-algebra.

1LMJL - Laboratoire de Mathématiques Jean Leray, CNRS/Université de Nantes. The
author acknowledges the hospitality and support of CRM Barcelona during the tuning of the
paper.

2The project started in Nantes, the author being the first visitor in the MATPYL program
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172 V. Franjou and W. van der Kallen

Indeed, R. Thomason proved [21, Theorem 3.8] the statement for any Noethe-
rian Nagata ring k. Thomason’s paper deals with quite a different theme, that
is the existence of equivariant resolutions by free modules. Thomason proves
that equivariant sheaves can be resolved by equivariant vector bundles. He thus
solves a conjecture of Seshadri [19, question 2 p.268]. The affirmative answer
to Seshadri’s question is explained to yield Theorem 1 in the same paper [19,
Theorem 2 p.263]. The finesse only illustrates that the definition of geometric
reductivity in [19] does not suit well an arbitrary base. Indeed, Seshadri does
not follow the formulation in Mumford’s book’s introduction [GIT, Preface],
and uses polynomials instead [19, Theorem 1 p.244]. This use of a dual in
the formulation seems to be why one requires Thomason’s result [21, Corollary
3.7]. One can rather go back to the original formulation in terms of symmetric
powers as illustrated by the following:

Definition 2. Let k be a ring and let G be an algebraic group over k. The
group G is power-reductive over k if the following holds.

Property (Power reductivity). Let L be a cyclic k-module with trivial G-
action. Let M be a rational G-module, and let ϕ be a G-module map from M
onto L. Then there is a positive integer d such that the d-th symmetric power
of ϕ induces a surjection:

(SdM)G → SdL.

We show in Section 3 that power-reductivity holds for Chevalley group schemes
G, without assumption on the commutative ring k. Note that this version of
reductivity is exactly what is needed in Nagata’s treatment of finite generation
of invariants. We thus obtain:

Theorem 3. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AG is
then a finitely generated k-algebra.

There is a long history of cohomological finite generation statements as well,
where the algebra of invariants AG = H0(G,A) is replaced by the whole algebra
H∗(G,A) of the derived functors of invariants. Over fields, Friedlander and
Suslin’s solution in the case of finite group schemes [8] lead to the conjecture in
[13], now a theorem of Touzé [22]. In Section 5, we generalize to an arbitrary
(Noetherian) base Grosshans’ results on his filtration [9]. These are basic tools
for obtaining finite generation statements on cohomology. In Section 6, we
apply our results in an exploration of the case when the base ring is Z. Section
4 presents results of use in Section 5 and Section 3. Our results support the
hope that Touzé’s theorem extends to an arbitrary base.
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Power Reductivity over an Arbitrary Base 173

2 Power reductivity and Hilbert’s 14th

2.1 Power surjectivity

To deal with the strong form of integrality we encounter, we find it convenient
to make the following definition.

Definition 4. A morphism of k-algebras: φ : S → R is power-surjective if
every element of R has a power in the image of φ. It is universally power-
surjective if for every k-algebra A, the morphism of k-algebras A⊗φ is power-
surjective, that is: for every k-algebra A, for every x in A⊗R, there is a positive
integer n so that xn lies in the image of A⊗ φ.

If k contains a field, one does not need arbitrary positive exponents n, but only
powers of the characteristic exponent of k (compare [20, Lemma 2.1.4, Exercise
2.1.5] or Proposition 41 below). Thus if k is a field of characteristic zero, any
universally power-surjective morphism of k-algebras is surjective.

2.2 Consequences

We start by listing consequences of power reductivity, as defined in the intro-
duction (Definition 2).

Convention 5. An algebraic group over our commutative ring k is always as-
sumed to be a flat affine group scheme over k. Flatness is essential, as we
tacitly use throughout that the functor of taking invariants is left exact.

Proposition 6 (Lifting of invariants). Let k be a ring and let G be a power-
reductive algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If J is
an invariant ideal in A, the map induced by reducing mod J :

AG → (A/J)G

is power-surjective.

For an example over Z, see 2.3.2.

Remark 7. Let G be power reductive and let φ : A→ B be a power-surjective
G-map of k-algebras. One easily shows that AG → BG is power-surjective.

Theorem 8 (Hilbert’s fourteenth problem). Let k be a Noetherian ring and
let G be an algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If G is
power-reductive, then the subring of invariants AG is a finitely generated k-
algebra.

Proof. We apply [20, p. 23–26]. It shows that Theorem 8 relies entirely on the
conclusion of Proposition 6, which is equivalent to the statement [20, Lemma
2.4.7 p. 23] that, for a surjective G-map φ : A→ B of k-algebras, the induced
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174 V. Franjou and W. van der Kallen

map on invariants AG → BG is power-surjective. To prove that power reduc-
tivity implies this, consider an invariant b in B, take for L the cyclic module
k.b and for M any submodule of A such that φ(M) = L. We conclude with a
commuting diagram:

(SdM)G //

Sdφ

��

(SdA)G //

��

AG

φG

��

SdL // (SdB)G // BG.

Theorem 9 (Hilbert’s fourteenth for modules). Let k be a Noetherian ring
and let G be a power-reductive algebraic group over k. Let A be a finitely
generated commutative k-algebra on which G acts rationally, and let M be a
Noetherian A-module, with an equivariant structure map A⊗M →M . If G is
power-reductive, then the module of invariants MG is Noetherian over AG.

Proof. As in [14, 2.2], consider either the symmetric algebra of M on A, or
the ‘semi-direct product ring’ A ⋉M as in Proposition 57, whose underlying
G-module is A ⊕M , with product given by (a1,m1)(a2,m2) = (a1a2, a1m2 +
a2m1).

2.3 Examples

2.3.1

Let k = Z. Consider the group SL2 acting on 2 × 2 matrices

(

a b
c d

)

by

conjugation. Let L be the line of homotheties in M := M2(Z). Write V #

to indicate the dual module HomZ(V,Z) of a Z-module V . The restriction:
M# → L# extends to

Z[M ] = Z[a, b, c, d] → Z[λ] = Z[L].

Taking SL2-invariants:

Z[a, b, c, d]SL2 = Z[t,D] → Z[λ],

the trace t = a+ d is sent to 2λ, so λ does not lift to an invariant in M#. The
determinant D = ad − bc is sent to λ2 however, illustrating power reductivity
of SL2.

2.3.2

Similarly, the adjoint action of SL2 on sl2 is such that u(a) :=

(

1 a
0 1

)

sends

X,H, Y ∈ sl2 respectively to X+aH−a2Y,H−2aY, Y . This action extends to
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the symmetric algebra S∗(sl2), which is a polynomial ring in variables X,H, Y .
Take k = Z again. The mod 2 invariant H does not lift to an integral invariant,
but H2 +4XY is an integral invariant, and it reduces mod 2 to the square H2

in F2[X,H, Y ]. This illustrates power reductivity with modules that are not
flat, and the strong link between integral and modular invariants.

2.3.3

Consider the group U of 2×2 upper triangular matrices with diagonal 1: this is
just an additive group. Let it act onM with basis {x, y} by linear substitutions:
u(a) sends x, y respectively to x, ax + y. Sending x to 0 defines M → L, and
since (S∗M)U = k[x], power reductivity fails.

2.4 Equivalence of power reductivity with property (Int)

Following [14], we say that a group G satisfies (Int) if (A/J)G is integral over
the image of AG for every A and J with G action. Note that if (A/J)G

is a Noetherian AG-module (compare Theorem 9), it must be integral over
the image of AG. As explained in [14, Theorem 2.8], when k is a field, the
property (Int) is equivalent to geometric reductivity, which is equivalent to
power-reductivity by [20, Lemma 2.4.7 p. 23]. In general, property (Int) is still
equivalent to power-reductivity. But geometric reductivity in the sense of [19]
looks too weak.

Proposition 10. An algebraic group G has property (Int) if, and only if, it is
power-reductive.

Proof. By Proposition 6, power reductivity implies property (Int). We prove
the converse. Let φ : M → L be as in the formulation of power reductivity
in Definition 2. Choose a generator b of L. Property (Int) gives a polynomial
tn + a1t

n−1 + · · · + an with b as root, and with ai in the image of S∗(ϕ) :
(S∗M)G → S∗L. As b is homogeneous of degree one, we may assume ai ∈
Siϕ((SiM)G). Write ai as rib

i with ri ∈ k. Put r = 1 + r1 + · · · rn. Then

rbn = 0, and r(n−1)! annihilates bn!. Since a
n!/i
i lies in the image of Sn!ϕ :

(Sn!M)G → Sn!L, the cokernel of this map is annihilated by r
n!/i
i . Together

r(n−1)! and the r
n!/i
i generate the unit ideal. So the cokernel vanishes.

Example 11. Let G be a finite group, viewed as an algebraic group over k.
Then A is integral over AG, because a is a root of

∏

g∈G(x− g(a)). (This goes
back to Emmy Noether [18].) Property (Int) follows easily. Hence G is power
reductive.

3 Mumford’s conjecture over an arbitrary base

This section deals with the following generalization of the Mumford conjecture.
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Theorem 12 (Mumford conjecture). A Chevalley group scheme is power-
reductive for every base.

By a Chevalley group scheme over Z, we mean a connected split reductive
algebraic Z-group GZ, and, by a Chevalley group scheme over a ring k, we
mean an algebraic k-group G = Gk obtained by base change from such a GZ.
We want to establish the following:

Property. Let k be a commutative ring. Let L be a cyclic k-module with
trivial G-action. Let M be a rational G-module, and let ϕ be a G-module map
from M onto L. Then there is a positive integer d such that the d-th symmetric
power of ϕ induces a surjection:

(SdM)G → SdL.

3.1 Reduction to local rings

We first reduce to the case of a local ring. For each positive integer d, consider
the ideal in k formed by those scalars which are hit by an invariant in (SdM)G,
and let:

Id(k) := {x ∈ k | ∃m ∈ N, xm.SdL ⊂ Sdϕ((SdM)G)}

be its radical. Note that these ideals form a monotone family: if d divides d′,
then Id is contained in Id′ . We want to show that Id(k) equals k for some d.
To that purpose, it is enough to prove that for each maximal ideal M in k, the
localized Id(k)(M) equals the local ring k(M) for some d. Notice that taking
invariants commutes with localization. Indeed the whole Hochschild complex
does and localization is exact. As a result, the localized Id(k)(M) is equal to
the ideal Id(k(M)). This shows that it is enough to prove the property for a
local ring k.

For the rest of this proof, k denotes a local ring with residual characteristic p.

3.2 Reduction to cohomology

As explained in Section 3.5, we may assume that G is semisimple simply con-
nected. Replacing M if necessary by a submodule that still maps onto L, we
may assume that M is finitely generated.
We then reduce the desired property to cohomological algebra. To that ef-
fect, if X is a G-module, consider the evaluation map on the identity idX :
Homk(X,X)# → k (we use V # to indicate the dual module Homk(V,k) of a
module V ). If X is k-free of finite rank d, then Sd(Homk(X,X)#) contains
the determinant. The determinant is G-invariant, and its evaluation at idX is
equal to 1. Let b a k-generator of L and consider the composite:

ψ : Homk(X,X)# → k → k.b = L.
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Power Reductivity over an Arbitrary Base 177

Its d-th power Sdψ sends the determinant to bd. Suppose further that ψ lifts to
M by a G-equivariant map. Then, choosing d to be the k-rank of X , the d-th
power of the resulting map Sd(Homk(X,X)#) → SdM sends the determinant
to a G-invariant in SdM , which is sent to bd through Sdϕ. This would establish
the property.

Homk(X,X)#

ψ

��xxr
r

r

r

r

r

M ϕ
// L

The existence of a lifting would follow from the vanishing of the extension
group:

Ext1G((Homk(X,X)#,Kerϕ),

or, better, from acyclicity, i.e. the vanishing of all positive degree Ext-groups.
Inspired by the proof of the Mumford conjecture in [6, (3.6)], we chooseX to be
an adequate Steinberg module. To make this choice precise, we need notations,
essentially borrowed from [6, 2].

3.3 Notations

We decide as in [11], and contrary to [12] and [6], that the roots of the standard
Borel subgroup B are negative. The opposite Borel group B+ of B will thus
have positive roots. We also fix a Weyl group invariant inner product on the
weight lattice X(T ). Thus we can speak of the length of a weight.

For a weight λ in the weight lattice, we denote by λ as well the corresponding
one-dimensional rational B-module (or sometimes B+-module), and by ∇λ

the costandard module (Schur module) indGBλ induced from it. Dually, we
denote by ∆λ the standard module (Weyl module) of highest weight λ. So
∆λ = indGB+(−λ)#. We shall use that, over Z, these modules are Z-free [11, II
Ch. 8].

We let ρ be half the sum of the positive roots of G. It is also the sum of the
fundamental weights. As G is simply connected, the fundamental weights are
weights of B.

Let p be the characteristic of the residue field of the local ring k. When p is
positive, for each positive integer r, we let the weight σr be (pr − 1)ρ. When
p is 0, we let σr be rρ. Let Str be the G-module ∇σr

= indGBσr; it is a usual
Steinberg module when k is a field of positive characteristic.

3.4

We shall use the following combinatorial lemma:

Lemma 13. Let R be a positive real number. If r is a large enough integer, for
all weights µ of length less than R, σr + µ is dominant.
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So, if r is a large enough integer to satisfy the condition in Lemma 13, for all
G-modules M with weights that have length less than R, all the weights in
σr ⊗M are dominant. Note that in the preceding discussion, the G-module M
is finitely generated. Thus the weights of M , and hence of Kerϕ, are bounded.
Thus, Theorem 12 is implied by the following proposition.

Proposition 14. Let R be a positive real number, and let r be as in Lemma
13 . For all local rings k with characteristic p residue field, for all G-module
N with weights of length less than R, and for all positive integers n:

ExtnG((Homk(Str, Str)
#, N) = 0 .

Proof. First, the result is true when k is a field. Indeed, we have chosen Str
to be a self-dual Steinberg module, so, for each positive integer n:

ExtnG((Homk(Str, Str)
#, N) = Hn(G,Str ⊗ Str ⊗N) = Hn(B,Str ⊗ σr ⊗N).

Vanishing follows by [6, Corollary (3.3’)] or the proof of [6, Corollary (3.7)].
Suppose now that N is defined over Z by a free Z-module, in the following
sense: N = NZ⊗Z V for a Z-free GZ-module NZ and a k-module V with trivial
G action. We then use the universal coefficient theorem [4, A.X.4.7] (see also
[11, I.4.18]) to prove acyclicity in this case.
Specifically, let us note YZ := HomZ((Str)Z, (Str)Z) ⊗ NZ, so that, using base
change (Proposition 16 for λ = σr):

ExtnG((Homk(Str, Str)
#, N) = Hn(G, YZ ⊗ V ).

This cohomology is computed [7, II.3] (see also [11, I.4.16]) by taking the
homology of the Hochschild complex C(G, YZ ⊗ V ). This complex is isomor-
phic to the complex obtained by tensoring with V the integral Hochschild
complex C(GZ, YZ). Since the latter is a complex of torsion-free abelian
groups, we deduce, by the universal coefficient theorem applied to tensor-
ing with a characteristic p field k, and the vanishing for the case of such
a field, that: Hn(GZ, YZ) ⊗ k = 0, for all positive n. We apply this when
k is the residue field of Z(p); note that if p = 0 the residue field k is just
Q. Since the cohomology Hn(GZ, YZ) is finitely generated [11, B.6], the
Nakayama lemma implies that: Hn(GZ, YZ) ⊗ Z(p) = 0, for all positive n.
And Hn(GZ, YZ)⊗Z(p) = Hn(GZ, YZ ⊗Z(p)) because localization is exact. The
complex C(GZ, YZ ⊗ Z(p)) is a complex of torsion-free Z(p)-modules, we thus
can apply the universal coefficient theorem to tensoring with V . The vanishing
of Hn(G, YZ ⊗ Z(p) ⊗ V ) = Hn(G, YZ ⊗ V ) follows.
For the general case, we proceed by descending induction on the highest weight
of N . To perform the induction, we first choose a total order on weights
of length less than R, that refines the usual dominance order of [11, II 1.5].
Initiate the induction with N = 0. For the induction step, consider the highest
weight µ in N and let Nµ be its weight space. By the preceding case, we
obtain vanishing for ∆µZ

⊗Z Nµ. Now, by Proposition 21, ∆µZ
⊗Z Nµ maps to
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N , and the kernel and the cokernel of this map have lower highest weight. By
induction, they give vanishing cohomology. Thus Homk(Str, Str)⊗N is in an
exact sequence where three out of four terms are acyclic, hence it is acyclic.

This concludes the proof of Theorem 12.

3.5 Reduction to simply connected group schemes

Let ZZ be the center of GZ and let Z be the corresponding subgroup of G. It is
a diagonalisable group scheme, so MZ → L is also surjective. We may replace
M with MZ and G with G/Z, in view of the general formulaMG = (MZ)G/Z ,
see [11, I 6.8(3)]. So now G has become semisimple, but of adjoint type rather
than simply connected type. So choose a simply connected Chevalley group
scheme G̃Z with center Z̃Z so that G̃Z/Z̃Z = GZ. We may now replace G with
G̃.

Remark 15. Other reductions are possible, to enlarge the supply of power
reductive algebraic groups. For instance, if G has a normal subgroup N so
that both N and G/N are power reductive, then so is G (for a proof, use
Remark 7). And if k → R is a faithfully flat extension so that GR is power
reductive, then G is already power reductive. So twisted forms are allowed,
compare the discussion in [19, p. 239].

4 Generalities

This section collects known results over an arbitrary base, their proof, and
correct proofs of known results over fields, for use in the other sections. The
part up to subsection 4.3 is used, and referred to, in the previous section.

4.1 Notations

Throughout this paper, we let G be a semisimple Chevalley group scheme over
the commutative ring k. We keep the notations of Section 3.3. In particular, the
standard parabolic B has negative roots. Its standard torus is T , its unipotent
radical is U . The opposite Borel B+ has positive roots and its unipotent radical
is U+. For a standard parabolic subgroup P its unipotent radical is Ru(P ).
For a weight λ in X(T ), ∇λ = indGBλ and ∆λ = indGB+(−λ)#.

4.2

We first recall base change for costandard modules.

Proposition 16. Let λ be a weight, and denote also by λ = λZ ⊗ k the B-
module k with action by λ. For any ring k, there is a natural isomorphism:

indGZ

BZ
λZ ⊗ k ∼= indGBλ

In particular, indGBλ is nonzero if and only if λ is dominant.
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Proof. First consider the case when λ is not dominant. Then indGBλ vanishes
when k is a field [11, II.2.6], so both indGZ

BZ
λZ and the torsion in R1indGZ

BZ
λZ

must vanish. Then indGBλ vanishes as well for a general k by the universal
coefficient theorem.
In the case when λ is dominant, R1indGZ

BZ
λZ vanishes by Kempf’s theorem [11,

II 8.8(2)]. Thus, by [11, I.4.18b)]: indGZ

BZ
λZ ⊗ k ∼= indGBλ.

Proposition 17 (Tensor identity for weights). Let λ be a weight, and denote
again by λ the B-module k with action by λ. Let N be a G-module. There is
a natural isomorphism:

indGB(λ⊗N) ∼= (indGBλ) ⊗N.

Remark 18. The case when N is k-flat is covered by [11,
I.4.8]. We warn the reader against Proposition I.3.6 in the
1987 first edition of the book. Indeed, suppose we always had
indGB(M ⊗ N) ∼= (indGBM) ⊗ N . Take k = Z and N = Z/pZ. The uni-
versal coefficient theorem would then imply that R1indGBM never has torsion.
Thus RiindGBM would never have torsion for positive i. It would make [1, Cor.
2.7] contradict the Borel–Weil–Bott theorem.

Proof. Recall that for a B-moduleM one may define indGB(M) as (k[G]⊗M)B ,
where k[G]⊗M is viewed as a G×B-module with G acting by left translation
on k[G], B acting by right translation on k[G], and B acting the given way on
M . LetNtriv denote N with trivial B action. There is a B-module isomorphism
ψ : k[G] ⊗ λ⊗N → k[G] ⊗ λ⊗Ntriv, given in non-functorial notation by:

ψ(f ⊗ 1⊗ n) : x 7→ f(x)⊗ 1⊗ xn.

So ψ is obtained by first applying the comultiplication N → k[G] ⊗ N , then
the multiplication k[G]⊗k[G] → k[G]. It sends (k[G]⊗λ⊗N)B to (k[G]⊗λ⊗
Ntriv)

B = (Z[GZ]⊗ZλZ⊗ZNtriv)
B. Now recall from the proof of Proposition 16

that the torsion in R1indGZ

BZ
λZ vanishes. By the universal coefficient theorem

we get that (Z[GZ]⊗Z λZ⊗ZNtriv)
B equals (k[G]⊗λ)B ⊗Ntriv. To make these

maps into G-module maps, one must use the given G-action on N as the action
on Ntriv. So B acts on N , but not Ntriv, and for G it is the other way around.
One sees that (k[G] ⊗ λ)B ⊗Ntriv is just (indGBλ)⊗N .

Proposition 19. For a G-module M , there are only dominant weights in
MU+

.

Proof. Let λ be a nondominant weight. Instead we show that −λ is no weight
of MU , or that HomB(−λ,M) vanishes. By the tensor identity of Propo-
sition 17: HomB(−λ,M) = HomB(k, λ ⊗ M) = HomG(k, ind

G
B(λ ⊗ M)) =

HomG(k, ind
G
Bλ⊗M) which vanishes by Proposition 16.

Proposition 20. Let λ be a dominant weight. The restriction (or evaluation)
map indGBλ→ λ to the weight space of weight λ is a T -module isomorphism.
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Proof. Over fields of positive characteristic this is a result of Ramanathan [12,
A.2.6]. It then follows over Z by the universal coefficient theorem applied to
the complex indGZ

BZ
λZ → λZ → 0. For a general k, apply proposition 16.

Proposition 21 (Universal property of Weyl modules). Let λ be a dominant
weight. For any G-module M , there is a natural isomorphism

HomG(∆λ,M) ∼= HomB+(λ,M).

In particular, if M has highest weight λ, then there is a natural map from
∆λZ

⊗Z Mλ to M , its kernel has lower weights, and λ is not a weight of its
cokernel.

Proof. By the tensor identity Proposition 17: indGB+(−λ⊗M) ∼= indGB+(−λ)⊗
M . Thus HomG(∆λ,M) = HomG(k, ind

G
B+(−λ)⊗M) = HomB+(k,−λ⊗M) =

HomB+(λ,M). If M has highest weight λ, then Mλ = HomB+(λ,M). Tracing
the maps, the second part follows from Proposition 20.

4.3 Notations

We now recall the notations from [13, §2.2]. Let the Grosshans height function
ht : X(T ) → Z be defined by:

ht γ =
∑

α>0

〈γ, α∨〉.

For a G-module M , let M≤i denote the largest G-submodule with weights
λ that all satisfy: htλ ≤ i. Similarly define M<i = M≤i−1. For instance,
M≤0 =MG. We call the filtration

0 ⊆M≤0 ⊆M≤1 · · ·

the Grosshans filtration, and we call its associated graded the Grosshans graded
grM of M . We put: hull∇(grM) = indGBM

U+

.
Let A be a commutative k-algebra on which G acts rationally through k-algebra
automorphisms. The Grosshans graded algebra grA is given in degree i by:

griA = A≤i/A<i.

4.4 Erratum

When k is a field, one knows that grA embeds in a good filtration hull, which
Grosshans calls R in [10], and which we call hull∇(grA):

hull∇(grA) = indGBA
U+

.

When k is a field of positive characteristic p, it was shown by Mathieu [16, Key
Lemma 3.4] that this inclusion is power-surjective: for every b ∈ hull∇(grA),
there is an r so that bp

r

lies in the subalgebra grA.
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This result’s exposition in [13, Lemma 2.3] relies on [12, Sublemma A.5.1].
Frank Grosshans has pointed out that the proof of this sublemma is not con-
vincing beyond the reduction to the affine case. Later A. J. de Jong actually
gave a counterexample to the reasoning. The result itself is correct and has
been used by others. As power surjectivity is a main theme in this paper, we
take the opportunity to give a corrected treatment. Mathieu’s result will be
generalized to an arbitrary base k in Section 5.

Proposition 22. Let k be an algebraically closed field of characteristic p > 0.
Let both A and B be commutative k-algebras of finite type over k, with B finite
over A. Put Y = Spec(A), X = Spec(B). Assume X → Y gives a bijection
between k valued points. Then for all b ∈ B there is an m with bp

m

∈ A.

Proof. The result follows easily from [15, Lemma 13]. We shall argue instead
by induction on the Krull dimension of A.
Say B as an A-module is generated by d elements b1, . . . , bd. Let p1, . . . ps be
the minimal prime ideals of A.

Suppose we can show that for every i, j we have mi,j so that bp
mi,j

j ∈ A+ piB.

Then for every i we have mi so that bp
mi

∈ A + piB for every b ∈ B. Then
bp

m1+···ms
∈ A + p1 · · · psB for every b ∈ B. As p1 · · · ps is nilpotent, one finds

m with bp
m

∈ A for all b ∈ B. The upshot is that it suffices to prove the
sublemma for the inclusion A/pi ⊂ B/piB. [It is an inclusion because there is
a prime ideal qi in B with A ∩ qi = pi.] Therefore we further assume that A is
a domain.
Let r denote the nilradical of B. If we can show that for all b ∈ B there is m
with bp

m

∈ A+ r, then clearly we can also find a u with bp
u

∈ A. So we may as
well replace A ⊂ B with A ⊂ B/r and assume that B is reduced. But then at
least one component of Spec(B) must map onto Spec(A), so bijectivity implies
there is only one component. In other words, B is also a domain.
Choose t so that the field extension Frac(A) ⊂ Frac(ABp

t

) is separable. (So it

is the separable closure of Frac(A) in Frac(B).) As X → Spec(ABp
t

) is also

bijective, we have that Spec(ABp
t

) → Spec(A) is bijective. It clearly suffices

to prove the proposition for A ⊂ ABp
t

. So we replace B with ABp
t

and further
assume that Frac(B) is separable over Frac(A).
Now X → Y has a degree which is the degree of the separable field extension.
There is a dense subset U of Y so that this degree is the number of elements
in the inverse image of a point of U . [Take a primitive element of the field
extension, localize to make its minimum polynomial monic over A, invert the
discriminant.] Thus the degree must be one because of bijectivity. So we must
now have that Frac(B) = Frac(A).
Let c = { b ∈ B | bB ⊂ A } be the conductor of A ⊂ B. We know it
is nonzero. If it is the unit ideal then we are done. Suppose it is not. By
induction applied to A/c ⊂ B/c (we need the induction hypothesis for the
original problem without any of the intermediate simplifications) we have that
for each b ∈ B there is an m so that bp

m

∈ A+ c = A.
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4.5

This subsection prepares the ground for the proof of the theorems in Section
5. We start with the ring of invariants k[G/U ] of the action of U by right
translation on k[G].

Lemma 23. The k-algebra k[G/U ] is finitely generated.

Proof. We have:

k[G/U ] =
⊕

λ∈X(T )

k[G/U ]−λ =
⊕

λ∈X(T )

(k[G]⊗ λ)B =
⊕

λ∈X(T )

∇λ.

By Proposition 16, this equals the sum ⊕λ∇λ over dominant weights λ only.
When G is simply connected, every fundamental weight is a weight, and the
monoid of dominant λ is finitely generated. In general, some multiple of a
fundamental weight is in X(T ) and there are only finitely many dominant
weights modulo these multiples. So the monoid is still finitely generated by
Dickson’s Lemma [5, Ch. 2 Thm. 7]. The maps ∇λ ⊗ ∇µ → ∇λ+µ are
surjective for dominant λ, µ, because this is so over Z, by base change and
surjectivity for fields [11, II, Proposition 14.20]. This implies the result.

In the same manner one shows:

Lemma 24. If the k-algebra AU is finitely generated, so is hull∇ grA =
indGBA

U+

.

Proof. Use that AU
+

is isomorphic to AU as k-algebra.

Lemma 25. Suppose k is Noetherian. If the k-algebra A with G action is
finitely generated, then so is AU .

Proof. By the transfer principle [9, Ch. Two]:

AU = HomU (k,A) = HomG(k, ind
G
UA) = (A⊗ k[G/U ])G.

Now apply Lemma 23 and Theorem 3.

Lemma 26. If M is a G-module, there is a natural injective map

grM →֒ hull∇(grM) = indGBM
U+

.

Proof. By Lemma 19, the weights ofMU+

are dominant. If one of them, say λ,
has Grosshans height i, the universal property of Weyl modules (Proposition

21) shows that (MU+

)λ is contained in a G-submodule with weights that do not

have a larger Grosshans height. So the weight space (MU+

)λ is contained in

M≤i, but notM<i. We conclude that the T -module⊕i(griM)U
+

may be identi-

fied with the T -module MU+

. It remains to embed griM into indGB(griM)U
+

.
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The T -module projection of griM onto (griM)U
+

may be viewed as a B-

module map, and then, it induces a G-module map griM → indGB((griM)U
+

),

which restricts to an isomorphism on (griM)U
+

by Proposition 20. So its kernel
has weights with lower Grosshans height, and must therefore be zero.

In the light of Lemma 26, one may write:

Definition 27. A G-moduleM has good Grosshans filtration if the embedding
of grM into hull∇(grM) is an isomorphism.

It is worth recording the following characterization, just like in the case where
k is a field.

Proposition 28 (Cohomological criterion). For a G-module M , the following
are equivalent.

i. M has good Grosshans filtration.

ii. H1(G,M ⊗ k[G/U ]) vanishes.

iii. Hn(G,M ⊗ k[G/U ]) vanishes for all positive n.

Proof. Let M have good Grosshans filtration. We have to show that M ⊗
k[G/U ] is acyclic. First, for each integer i, griM ⊗ k[G/U ] is a direct sum of
modules of the form indGBλ ⊗ indGBµ ⊗ N , where G acts trivially on N . Such
modules are acyclic by [11, B.4] and the universal coefficient theorem. As each
griM ⊗ k[G/U ] is acyclic, so is each M≤i ⊗ k[G/U ], and thus M ⊗ k[G/U ] is
acyclic.
Conversely, suppose thatM does not have good Grosshans filtration. Choose i
so thatM<i has good Grosshans filtration, butM≤i does not. Choose λ so that
Hom(∆λ, hull(griM)/ griM) is nonzero. Note that λ has Grosshans height be-
low i. As Hom(∆λ, hull(griM)) vanishes, Ext1G(∆λ, griM) = H1(G, griM ⊗
∇λ) does not. Since M<i ⊗ k[G/U ] = ⊕µ dominantM<i ⊗ ∇µ is acyclic,

H1(G,M≤i ⊗ ∇λ) is nonzero as well. Now use that Hom(∆λ,M/M≤i) van-
ishes, and conclude that H1(G,M ⊗ k[G/U ]) does not vanish.

5 Grosshans graded, Grosshans hull and powers

5.1

When G is a semisimple group over a field k, Grosshans has introduced a
filtration on G-modules. As recalled in Section 4.3, it is the filtration associated
to the function defined onX(T ) by: ht γ =

∑

α>0〈γ, α
∨〉. Grosshans has proved

some interesting results about its associated graded, when the G-module is a k-
algebra A with rational G action. We now show how these results generalize to
an arbitrary Noetherian base k, and we draw some conclusions about H∗(G,A).
All this suggests that the finite generation conjecture of [13] (see also [14])
deserves to be investigated in the following generality.
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Problem. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. Is the cohomology ring H∗(G,A) a
finitely generated k-algebra?

Let k be an arbitrary commutative ring.

Theorem 29 (Grosshans hull and powers). The natural embedding of grA in
hull∇(grA) is power-surjective.

This will then be used to prove:

Theorem 30 (Grosshans hull and finite generation). If the ring k is Noethe-
rian, then the following are equivalent.

i. The k-algebra A is finitely generated;

ii. For every standard parabolic P , the k-algebra of invariants ARu(P ) is
finitely generated;

iii. The k-algebra grA is finitely generated;

iv. The k-algebra hull∇(grA) is finitely generated.

Remark 31. Consider a reductive Chevalley group scheme G. As the Grosshans
height is formulated with the help of coroots α∨, only the semisimple part of
G is relevant for it. But of course everything is compatible with the action of
the center of G also. We leave it to the reader to reformulate our results for
reductive G. We return to the assumption that G is semisimple.

Theorem 32. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, there is a positive integer n so that:

n hull∇(grA) ⊆ grA.

In particular Hi(G, grA) is annihilated by n for positive i.

This is stronger than the next result.

Theorem 33 (generic good Grosshans filtration). Let A be a finitely generated
commutative k-algebra. If k is Noetherian, there is a positive integer n so
that A[1/n] has good Grosshans filtration. In particular Hi(G,A) ⊗ Z[1/n] =
Hi(G,A[1/n]) vanishes for positive i.

Remark 34. Of course A[1/n] may vanish altogether, as we are allowed to take
the characteristic for n, when that is positive.

Theorem 35. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, for each prime number p, the algebra map grA → gr(A/pA) is
power-surjective.
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5.2

We start with a crucial special case. Let k = Z. Let λ ∈ X(T ) be dominant.
Let S′ be the graded algebra with degree n part:

S′
n = ∇nλ = Γ(G/B,L(nλ)).

Let us view ∆λ as a submodule of ∇λ with common λ weight space (the
‘minimal admissible lattice’ embedded in the ‘maximal admissible lattice’).
Let S be the graded subalgebra generated by ∆λ in the graded algebra S′. If
we wish to emphasize the dependence on λ, we write S′(λ) for S′, S(λ) for S.
Consider the map

G/B → PZ(Γ(G/B,L(λ))
#)

given by the ‘linear system’ ∇λ on G/B. The projective scheme Proj(S′)
corresponds with its image, which, by direct inspection, is isomorphic to G/P ,

where P is the stabilizer of the weight space with weight −λ of ∇#
λ . Indeed

that weight space is the image of B/B, compare Proposition 20 and [11, II.8.5].
The inclusion φ : S →֒ S′ induces a morphism from an open subset of Proj(S′)
to Proj(S). This open subset is called G(φ) in [EGA II, 2.8.1].

Lemma 36. The morphism Proj(S′) → Proj(S) is defined on all of G/P =
Proj(S′).

Proof. As explained in [EGA II, 2.8.1], the domain G(φ) contains the principal
open subset D+(s) of Proj(S′) for any s ∈ S1. Consider in particular a gen-
erator s of the λ weight space of ∇λ. It is an element in S1, and, by Lemma
20, it generates the free k-module Γ(P/P,L(λ)). Thus, the minimal Schubert
variety P/P is contained in D+(s). We then conclude by homogeneity: s is
also U+ invariant, so in fact the big cell Ω = U+P/P is contained in D+(s),
and the domain G(φ) contains the big cell Ω. Then it also contains the Weyl
group translates wΩ, and thus it contains all of G/P .

Lemma 37. The graded algebra S′ is integral over its subalgebra S.

Proof. We also put a grading on the polynomial ring S′[z], by assigning de-
gree one to the variable z. One calls Proj(S′[z]) the projective cone of
Proj(S′) [EGA II, 8.3]. By [EGA II, 8.5.4], we get from Lemma 36 that
Φ̂ : Proj(S′[z]) → Proj(S[z]) is everywhere defined. Now by [EGA II, Th
(5.5.3)], and its proof, the maps Proj(S′[z]) → SpecZ and Proj(S[z]) → SpecZ
are proper and separated, so Φ̂ is proper by [EGA II, Cor (5.4.3)]. But now
the principal open subset D+(z) associated to z in Proj(S′[z]) is just Spec(S′),
and its inverse image is the principal open subset associated to z in Proj(S[z]),
which is Spec(S) (compare [EGA II, 8.5.5]). So Spec(S) → Spec(S′) is proper,
and S′ is a finitely generated S-module by [EGA III, Prop (4.4.2)].

Lemma 38. There is a positive integer t so that tS′ is contained in S.

Proof. Clearly S′ ⊗Q = S ⊗Q, so the result follows from Lemma 37.
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Let p be a prime number. Recall from 4.4 the result of Mathieu [16, Key
Lemma 3.4] that, for every element b of S′/pS′, there is a positive r so that
bp

r

∈ (S + pS′)/(pS′) ⊆ S′/pS′.

By Lemma 38 and Proposition 41 below this implies

Lemma 39. The inclusion S → S′ is universally power-surjective.

5.3

We briefly return to power surjectivity for a general commutative ring k.

Definition 40. Let t be a positive integer and let f : Q → R a k-algebra
homomorphism. We say that f is t-power-surjective if for every x ∈ R there is
a power tn with xt

n

∈ f(Q).

Proposition 41. Let f : Q → R be a k-algebra homomorphism and Y a
variable.

• If f ⊗ k[Y ] : Q[Y ] → R[Y ] is power-surjective, then Q → R/pR is p-
power-surjective for every prime p;

• Assume t is a positive integer such that tR ⊂ f(Q). If Q → R/pR
is p-power-surjective for every prime p dividing t, then f is universally
power-surjective.

Proof. First suppose f ⊗ k[Y ] : Q[Y ] → R[Y ] is power-surjective. Let x ∈
R/pR. We have to show that xp

n

lifts to Q for some n. As R[Y ] → (R/pR)[Y ]
is surjective, the compositeQ[Y ] → (R/pR)[Y ] is also power-surjective. Choose
n prime to p and m so that (x + Y )np

m

lifts to Q[Y ]. Rewrite (x + Y )np
m

as
(xp

m

+ Y p
m

)n and note that the coefficient nxp
m

of Y (n−1)pm must lift to Q.
Now use that n is invertible in k/pk.

Next suppose tR ⊂ f(Q) and Q→ R/pR is p-power-surjective for every prime
p dividing t. Let C be a k-algebra. We have to show that f⊗C : Q⊗C → R⊗C
is power-surjective. Since f ⊗ C : Q ⊗ C → R ⊗ C satisfies all the conditions
that f : Q → R does, we may as well simplify notation and suppress C. For
x ∈ R we have to show that some power lifts to Q. By taking repeated powers
we can get x in f(Q) + pR for every prime p dividing t. So if p1,. . . ,pm are
the primes dividing t, we can arrange that x lies in the intersection of the
f(Q) + piR, which is f(Q) + p1 · · · pmR. Now by taking repeated p1 · · · pm-th
powers, one pushes it into f(Q) + (p1 · · · pm)nR for any positive n, eventually
into f(Q) + tR ⊆ f(Q).

5.4

We come back to the k-algebra A, and consider the inclusion grA →֒
hull∇(grA), as in Theorem 29.
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Notations 42. Let λ be a dominant weight and let b ∈ AU
+

be a weight vector
of weight λ. Then we define ψb : S

′(λ) ⊗ k → hull∇(grA) as the algebra map

induced by the B-algebra map S′(λ) ⊗ k → AU
+

which sends the generator
(choose one) of the λ weight space of ∇λ to b.

Lemma 43. For each c in the image of ψb, there is a positive integer s so that
cs ∈ grA.

Proof. The composite of S ⊗ k → S′ ⊗ k with ψb factors through grA, so this
follows from Lemma 39.

Proof of Theorem 29. For every b ∈ hull∇(grA), there are b1,. . . , bs of re-
spective weights λ1,. . . , λs so that b lies in the image of ψb1 ⊗ · · · ⊗ ψbs . As
⊗s

i=1 S(λi) →
⊗s

i=1 S
′(λi) is universally power-surjective by lemma 39, lemma

43 easily extends to tensor products.

Lemma 44. Suppose k is Noetherian. If hull∇(grA) is a finitely generated
k-algebra, so is grA.

Proof. Indeed, hull∇(grA) is integral over grA by Theorem 29. Then it is
integral over a finitely generated subalgebra of grA, and it is a Noetherian
module over that subalgebra.

Lemma 45. If grA is finitely generated as a k-algebra, then so is A.

Proof. Say j1, . . . , jn are nonnegative integers and ai ∈ A≤ji are such that the
classes ai +A<ji ∈ grji A generate grA. Then the ai generate A.

Lemma 46. Suppose k is Noetherian. If AU is a finitely generated k-algebra,
so is A.

Proof. Combine Lemmas 24, 44, 45.

Lemma 47. Let P be a standard parabolic subgroup. Suppose k is Noetherian.
Then A is a finitely generated k-algebra if and only if ARu(P ) is one.

Proof. Let V be the intersection of U with the semisimple part of the standard
Levi subgroup of P . Then U = V Ru(P ) and A

U = (ARu(P ))V . Suppose that
A is a finitely generated k-algebra. Then AU = (ARu(P ))V is one also by
Lemma 25, and so is ARu(P ) by Lemma 46 (applied with a different group and
a different algebra).

Conversely, if ARu(P ) is a finitely generated k-algebra, Lemma 25 (with that
same group and algebra) implies that AU = (ARu(P ))V is finitely generated,
and thus A is as well, by Lemma 46.

Proof of Theorem 30. Combine Lemmas 47, 25, 24, 44, 45.
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Proof of Theorem 32. Let k be Noetherian and let A be a finitely generated
k-algebra. By Theorem 30, the k-algebra hull∇(grA) is finitely generated.
So we may choose b1,. . . ,bs, so that ψb1 ⊗ · · · ⊗ ψbs has image hull∇(grA).
By extending Lemma 38 to tensor products, we can argue as in the proof of
Lemma 43 and Theorem 29, and see that there is a positive integer n so that
n hull∇(grA) ⊆ grA. Now, hull∇(grA)⊗ k[G/U ] is acyclic by Proposition 28,
and thus its summand hull∇(grA) is acyclic as well. It follows that Hi(G, grA)
is a quotient of Hi−1(G, hull∇(grA)/ grA), which is annihilated by n.

Proof of Theorem 33. Take n as in Theorem 32, and use that localization is
exact.

Proof of Theorem 35. It suffices to show that the composite:

grA→ gr(A/pA) → hull∇(gr(A/pA))

is power-surjective. It coincides with the composite

grA→ hull∇(gr(A)) → hull∇(gr(A/pA)).

Now AU
+

→ (A/pA)U
+

is p-power-surjective by a combination of Theorem 12,
Proposition 6, Proposition 41 and the transfer principle [9, Ch. Two] as used
in 25. After inducing up, hull∇(gr(A)) → hull∇(gr(A/pA)) is still p-power-
surjective, indeed the same p-power is sufficient. And grA → hull∇(gr(A)) is
power-surjective by Theorem 29.

6 Finiteness properties of cohomology algebras

In this section we study finiteness properties of H∗(G,A), primarily when the
base ring k is Z. We shall always assume that the commutative algebra A is
finitely generated over the ring k, with rational action of a Chevalley group
scheme G. Further, M will be a noetherian A-module with compatible G-
action. Torsion will refer to torsion as an abelian group, not as an A-module.
We say that V has bounded torsion if there is a positive integer that annihilates
the torsion subgroup Vtors.

Lemma 48. A noetherian module over a graded commutative ring has bounded
torsion.

Recall that we call a homomorphism f : R → S of graded commutative algebras
noetherian if f makes S into a noetherian left R-module. Recall that CFG
refers to cohomological finite generation. The main result of this section is the
following.

Theorem 49 (Provisional CFG). Suppose k = Z.

• Every Hm(G,M) is a noetherian AG-module.
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• If H∗(G,A) is a finitely generated algebra, then H∗(G,M) is a noetherian
H∗(G,A)-module.

• H∗(G, grA) is a finitely generated algebra.

• If H∗(G,A) has bounded torsion, then the reduction Heven(G,A) →
Heven(G,A/pA) is power-surjective for every prime number p.

• If Heven(G,A) → Heven(G,A/pA) is noetherian for every prime number
p, then H∗(G,A) is a finitely generated algebra.

Remark 50. Note that the first statement would fail badly, by [11, I 4.12], if
one replaced G with the additive group scheme Ga. This may explain why our
proof is far from elementary.

We hope to show in the future that Heven(G,A) → Heven(G,A/pA) is noethe-
rian for every prime number p. The theorem suggests to ask:

Problem. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A, Q be finitely generated commutative k-algebras on which G acts
rationally through algebra automorphisms. Let f : A→ Q be a power-surjective
equivariant homomorphism. Is H∗(G,A) → H∗(G,Q) power-surjective?

We will need the recent theorem of Touzé [22, Thm 1.1], see also [22, Thm 1.5],

Theorem 51 (CFG over a field). If k is a field, then H∗(G,A) is a finitely
generated k-algebra and H∗(G,M) is a noetherian H∗(G,A)-module.

Remark 52. If k is a commutative ring and V is a Gk-module, then the co-
multiplication V → V ⊗k k[G] gives rise to a comultiplication V → V ⊗Z Z[G]
through the identification V ⊗kk[G] = V ⊗ZZ[G]. So one may view V as a GZ-
module. Further H∗(Gk, V ) is the same as H∗(GZ, V ), because the Hochschild
complexes are the same. So if k is finitely generated over a field F , then the
conclusions of the (CFG) theorem still hold, because H∗(G,A) = H∗(GF , A).
We leave it to the reader to try a limit argument to deal with the case where
k is essentially of finite type over a field.

First let the ring k be noetherian. We are going to imitate arguments of
Benson–Habegger [3]. We thank Dave Benson for the reference.

Lemma 53. Let m > 1, n > 1. The reduction Heven(G,A/mnA) →
Heven(G,A/nA) is power-surjective.

Proof. We may assume m is prime. By the Chinese Remainder Theorem we
may then also assume that n is a power of that same prime. (If n is prime
to m the Lemma is clear.) Let x ∈ Heven(G,A/nA). We show that some
power xm

r

of x lifts. Arguing as in the proof of Proposition 41 we may assume
x is homogeneous. Let I be the kernel of A/mnA → A/nA. Note that m
annihilates I, hence also H∗(G, I). Further I is an A/nA-module and the
connecting homomorphism ∂ : Hi(G,A/nA) → Hi+1(G, I) satisfies the Leibniz
rule. So ∂(xm) = mxm−1∂(x) = 0 and xm lifts.
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Proposition 54. If H∗(G,A) has bounded torsion, then Heven(G,A) →
Heven(G,A/pA) is power-surjective for every prime number p.

Proof. Assume H∗(G,A) has bounded torsion. Write Hpos for
⊕

i>0 H
i. Let p

be a prime number. Choose a positive multiple n of p so that nHpos(G,A) = 0
and nAtors = 0. We have an exact sequence

· · · → Hi(G,Ators) → Hi(G,A) → Hi(G,A/Ators) → · · · .

Multiplication by n2 is zero on Hpos(G,A/Ators), so Hpos(G,A/Ators) →֒
Hpos(G,A/n2A+ Ators). We have exact sequences

0 → A/Ators
×n2

−→ A→ A/n2A→ 0

and

0 → A/n2A+Ators
×n2

−→ A/n4A→ A/n2A→ 0.

Consider the diagram

H2i(G,A) //

��

H2i(G,A/n2A)
∂1

// H2i+1(G,A/Ators)� _

��

H2i(G,A/n4A) // H2i(G,A/n2A)
∂2

// H2i+1(G,A/n2A+Ators)

If x ∈ H2j(G,A/n2A), put i = jn2. The image n2xn
2−1∂2(x) in

H2i+1(G,A/n2A + Ators) of xn
2

vanishes, hence ∂1(x
n2

) vanishes in

H2i+1(G,A/Ators), and xn
2

lifts to H2i(G,A). As Heven(G,A/n2A) →
Heven(G,A/pA) is power-surjective by Lemma 53, we conclude that for every
homogeneous y ∈ Heven(G,A/pA) some power lifts all the way to Heven(G,A).
We want to show more, namely that Heven(G,A) → Heven(G,A/pA) is univer-
sally power-surjective. By Proposition 41 we need to show that the power of
y may be taken of the form yp

r

. Localize with respect to the multiplicative
system S = (1 + pZ) in Z. The p-primary torsion is not affected and all
the other torsion disappears, so n may be taken a power of p. The proofs
then produce that some yp

r

lifts to Heven(G,S−1A). Now just remove the
denominator, which acts trivially on y.

We now restrict to the case k = Z. (More generally, one could take for k a
noetherian ring so that for every prime number p the ring k/pk is essentially
of finite type over a field.)

Proposition 55. Suppose k = Z. If H∗(G,A) has bounded torsion, then
H∗(G,A) is a finitely generated algebra.

Proof. By Theorem 33 we may choose a prime number p and concentrate on
the p-primary part. Say by tensoring Z and A with Z(p). So now Hpos(G,A)
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is p-primary torsion and A is a Z(p)-algebra. We know that Heven(G,A) →
Heven(G,A/pA) is power-surjective. By power surjectivity and the (CFG) The-
orem 51, we choose an AG-subalgebra C of H∗(G,A), generated by finitely
many homogeneous elements, so that C → H∗(G,A/pA) is noetherian. Again
by the (CFG) Theorem 51 it follows that H∗(G,A/pA) → H∗(G,A/pA+Ators)
is noetherian, so that C → H∗(G,A/pA+Ators) is also noetherian.
Let N be the image of Hpos(G,A/Ators) in Hpos(G,A/pA + Ators)). As a C-
module, it is isomorphic to Hpos(G,A/Ators)/pH

pos(G,A/Ators). Choose ho-
mogeneous vi ∈ Hpos(G,A/Ators) so that their images generate N . Say V is
the C-span of the vi. We have Hpos(G,A/Ators) + V ⊆ pHpos(G,A/Ators) + V .
Iterating this we get Hpos(G,A/Ators) + V ⊆ prHpos(G,A/Ators) + V for any
r > 0. But H∗(G,A) and H∗(G,Ators) have bounded torsion, so H∗(G,A/Ators)
also has bounded torsion. It follows that Hpos(G,A/Ators) = V . We conclude
that Hpos(G,A/Ators) is a noetherian C-module.
Now let us look at Hpos(G,Ators). Filter Ators ⊇ pAtors ⊇ p2Ators ⊇ · · · ⊇ 0. By
the (CFG) theorem Hpos(G, piAtors/p

i+1Ators) is a noetherian H∗(G,A/pA)-
module, hence a noetherian C-module. So Hpos(G,Ators) is also a noetherian
C-module and thus H∗(G,A) is one. It follows that H∗(G,A) is a finitely
generated AG-algebra. And AG itself is finitely generated by Theorem 3.

Proposition 56. Let k = Z. Then H∗(G, grA) is a finitely generated algebra.

Proof. By Theorem 32 the algebra H∗(G, grA) has bounded torsion, so Propo-
sition 55 applies.

Proposition 57. Let k = Z. Then Hm(G,M) is a noetherian AG-module.

Proof. Form the ‘semi-direct product ring’ A⋉M whose underlying G-module
is A ⊕M , with product given by (a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1). It
suffices to show that Hm(G,A ⋉ M) is a noetherian H0(G,A ⋉ M)-module.
In other words, we may forget M and just ask if Hm(G,A) is a noetherian
AG-module. Now H∗(G, grA) is a finitely generated algebra and H0(G, grA) =
gr0A , so in the spectral sequence

E(A) : Eij1 = Hi+j(G, gr−iA) ⇒ Hi+j(G,A)

the
⊕

i+j=t E
ij
1 are noetherian AG-modules for each t. So for fixed t there are

only finitely many nonzero Ei,t−i1 and the result follows.

Proposition 58. Let k = Z. If Heven(G,A) → Heven(G,A/pA) is noetherian
for every prime number p, then H∗(G,A) is a finitely generated algebra.

Proof. We argue as in the proof of Proposition 55. We may no longer
know that H∗(G,A) has bounded torsion, but for every m > 0 we know
that Hm(G,A/Ators) is a noetherian AG-module, hence has bounded tor-
sion. Instead of Hpos(G,A/Ators) + V ⊆ pHpos(G,A/Ators) + V , we use
Hm(G,A/Ators)+V ⊆ pHm(G,A/Ators)+V . We find that Hm(G,A/Ators) ⊆ V
for all m > 0 and thus Hpos(G,A/Ators) = V again. Finish as before.
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Corollary 59. Let k = Z. If Heven(G,A) → Heven(G,A/pA) is power-
surjective for every prime number p, then H∗(G,A) is a finitely generated al-
gebra.

Proposition 60. Let k = Z. If H∗(G,A) is a finitely generated algebra, then
H∗(G,M) is a noetherian H∗(G,A)-module.

Proof. Let H∗(G,A) be a finitely generated algebra. So it has bounded torsion
and Heven(G,A) → Heven(G,A/pA) is power-surjective for every prime number
p. We argue again as in the proof of Proposition 55.
By Theorem 33, applied to A ⋉ M , we may choose a prime number p and
concentrate on the p-primary part, so Hpos(G,M) is p-primary torsion and A
is a Z(p)-algebra. Write C = H∗(G,A). By power surjectivity and the (CFG)
Theorem 51, C → H∗(G,A/pA) is noetherian. Again by the (CFG) Theorem
51 it follows that H∗(G,M/pM +Mtors) is a noetherian H∗(G,A/pA)-module,
hence a noetherian C-module.
Let N be the image of Hpos(G,M/Mtors) in Hpos(G,M/pM +Mtors)). As a
C-module, it is isomorphic to Hpos(G,M/Mtors)/pH

pos(G,M/Mtors). Choose
homogeneous vi ∈ Hpos(G,M/Mtors) so that their images generate N . Say V is
the C-span of the vi. We have Hm(G,M/Mtors) + V ⊆ pHm(G,M/Mtors) + V
form > 0. Iterating this we get Hm(G,M/Mtors)+V ⊆ prHm(G,M/Mtors)+V
for any r > 0, m > 0. But Hm(G,M/Mtors) is a noetherian AG-module, hence
has bounded torsion. It follows that Hm(G,M/Mtors) ⊆ V for all m > 0, and
Hpos(G,M/Mtors) = V . So Hpos(G,M/Mtors) is a noetherian C-module.
Now let us look at Hpos(G,Mtors). Filter Mtors ⊇ pMtors ⊇ p2Mtors ⊇
· · · ⊇ 0. By the (CFG) theorem Hpos(G, piMtors/p

i+1Mtors) is a noetherian
H∗(G,A/pA)-module, hence a noetherian C-module. So Hpos(G,Mtors) is also
a noetherian C-module and thus H∗(G,M) is one.

Theorem 49 has been proven.

References

[1] Henning Haahr Andersen, Cohomology of line bundles on G/B. Annales
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