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Abstract. We construct two families of refinements of the (projec-
tivized) support variety of a finite dimensional module M for a finite
group scheme G. For an arbitrary finite group scheme, we associate
a family of non-maximal rank varieties Γj(G)M , 1 ≤ j ≤ p − 1, to
a kG-module M . For G infinitesimal, we construct a finer family of
locally closed subvarieties V a(G)M of the variety of one parameter
subgroups of G for any partition a of dimM . For an arbitrary finite
group scheme G, a kG-module M of constant rank, and a cohomol-
ogy class ζ in H1(G,M) we introduce the zero locus Z(ζ) ⊂ Π(G).
We show that Z(ζ) is a closed subvariety, and relate it to the non-
maximal rank varieties. We also extend the construction of Z(ζ) to
an arbitrary extension class ζ ∈ ExtnG(M,N) whenever M and N are
kG-modules of constant Jordan type.
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0. Introduction

In the remarkable papers [21], D. Quillen identified the spectrum of the (even
dimensional) cohomology of a finite group SpecH•(G, k) where k is some field
of characteristic p dividing the order of the group. The variety SpecH•(G, k)
is the “control space” for certain geometric invariants of finite dimensional kG-
modules. These invariants, cohomological support varieties and rank varieties,
were initially introduced and studied in [1] and [6]. Over the last twenty five
years, many authors have been investigating these varieties inside SpecH•(G, k)
in order to provide insights into the structure, behavior, and properties of kG-
modules. The initial theory for finite groups has been extended to a much
more general family of finite group schemes, starting with the work of [13] for
p-restricted Lie algebras. The resulting theory of support varieties for modules
for finite group schemes satisfies all of the axioms of a “support data” of tensor

1partially supported by the NSF # DMS 0909314
2partially supported by the NSF # DMS 0800950

Documenta Mathematica · Extra Volume Suslin (2010) 197–222



198 Eric M. Friedlander and Julia Pevtsova

triangulated categories as defined in [2]. Thus, for example, this theory pro-
vides a classification of tensor–ideal, thick subcategories of the stable module
category of a finite group scheme G.
In this present paper, we embark on a different perspective of geometric invari-
ants for kG-modules for a finite group scheme G. We introduce a new family of
invariants, “generalized support varieties”, which stratify the support variety
of a finite dimensional kG-module M . The construction comes from consid-
ering ranks of nilpotent operators on M which leads to an alternative name
non-maximal rank varieties. As finer invariants, they capture more structure
of a module M and can distinguish between modules with the same support
varieties. In particular, the generalized support varieties are always proper sub-
varieties of the control space SpecH•(G, k) whereas the support variety often
coincides with the entire control space. On the other hand, they necessarily lack
certain good behavior with respect to tensor products and distinguished trian-
gles in the stable module category of kG. However, as we shall try to convince
the reader, these varieties provide interesting and useful tools in the further
study of the representation theory of finite groups and their generalizations.
Since the module category of a finite group scheme G is wild except for very
special G, our goals are necessarily more modest than the classification of all
(finite dimensional) kG-modules. Two general themes that we follow when
introducing our new varieties associated to representations are the formula-
tion of invariants which distinguish various known classes of modules and the
construction of modules with specified invariants.
In Section 1, we summarize some of our earlier work, and that of others, con-
cerning support varieties of kG-modules. We emphasize the formulation of
support varieties in terms of π-points, since the fundamental structure under-
lying our new invariants is the scheme Π(G) of equivalence classes of π-points.
Also in this section, we recall maximal Jordan types of kG-modules and the
non-maximal subvariety Γ(G)M ⊂ M refining the support variety Π(G)M for
a finite dimensional kG-module M .
If G is an infinitesimal group scheme, one formulation of support varieties
is in terms of the affine scheme V (G) of infinitesimal subgroups of G. For
any Jordan type a =

∑p
i=1 ai[i] and any finite dimensional kG-module M

(with G infinitesimal), we associate in Section 2 subvarieties V ≤a(G)M and
V a(G)M of V (G). Determination of these refined support varieties is enabled
by earlier computations of the global p-nilpotent operator ΘG : M⊗k[V (G)] →
M ⊗ k[V (G)] which was introduced and studied in [17].
We require a refinement of one of the main theorems of [18] recalled as Theorem
1.5. Section 3 outlines the original proof due to A. Suslin and the authors, and
points out the minor modifications required to establish the fact that whether
or not a kG-module has maximal j-rank at a π-point depends only upon the
equivalence class of that π-point (Theorem 3.6). This is the key result needed
to establish that the non-maximal rank varieties are well–defined for all finite
group schemes.
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In Section 4, we consider closed subvarieties Γj(G)M ⊂ Π(G) for any finite
group scheme, finite dimensional kG-module M , and integer j, 1 ≤ j < p, the
non-maximal rank varieties. We establish some properties of these varieties
and work out a few examples to suggest how these invariants can distinguish
certain non-isomorphic kG-modules.
In the concluding Section 5, we employ π-points to associate a closed subvariety
Z(ζ) ⊂ Π(G) to a cohomology class ζ ∈ H1(G,M) provided that M is a kG-
module of constant rank. One of the key properties of Z(ζ) is that Z(ζ) = ∅
if and only if the extension 0 → M → Eζ → k → 0 satisfies the condition
that Eζ is also a kG-module of constant rank. We show that Z(ζ) is often
homeomorphic to Γ1(G)Eζ

which allows us to conclude that Z(ζ) is closed.
Taking M to be an odd degree Heller shift of the trivial module k, we recover
the familiar zero locus of a class in H2n(G, k) in the special case M = k.
Finally, we generalize this construction to extension classes ξ ∈ ExtnG(M,N)
for kG-modules M and N of constant Jordan type and any n ≥ 0.
We abuse terminology in this paper by referring to a (Zariski) closed subset
of an affine or projective variety as a subvariety. Should one wish, one could
always impose the reduced scheme structure on such “subvarieties”.
We would like to thank Jon Carlson for pointing out to us that maximal ranks
do not behave well under tensor product, Rolf Farnsteiner for his insights into
components of the Auslander-Reiten quiver, and the referee for several useful
comments. The second author gratefully acknowledges the support of MSRI
during her postdoctoral appointment there.

1. Recollection of Π-point schemes and support varieties

Throughout, k will denote an arbitrary field of characteristic p > 0. Unless
explicit mention is made to the contrary, G will denote a finite group scheme
over k with finite dimensional coordinate algebra k[G]. We denote by kG the
Hopf algebra dual to k[G], and refer to kG as the group algebra of G. Thus,
(left) kG-modules are naturally equivalent to (left) k[G]-comodules, which are
equivalent to (left) rational G-modules (see [20, ch.1]). If M is a kG-module
and K/k is a field extension, then we denote by MK the KG-module obtained
by base change.
We shall identify H∗(G, k) with H∗(kG, k).

Definition 1.1. ([16]) The Π-point scheme of a finite group scheme G is the
k-scheme of finite type whose points are equivalence classes of π-points of G
and whose scheme structure is defined in terms of the category of kG-modules.
In more detail,

(1) A π-point of G is a (left) flat map of K-algebras αK : K[t]/tp → KG
for some field extension K/k with the property that there exists a
unipotent abelian subgroup scheme i : CK ⊂ GK defined over K such
that αK factors through i∗ : KCK → KGK = KG.
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(2) If αK : K[t]/tp → KG, βL : L[t]/tp → LG are two π-points of G,
then αK is said to be a specialization of βL, provided that for any fi-
nite dimensional kG-module M , α∗

K(MK) being free as K[t]/tp-module
implies that β∗

L(ML) is free as L[t]/tp-module.
(3) Two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG are said to

be equivalent, written αK ∼ βL, if they satisfy the following condition
for all finite dimensional kG-modules M : α∗

K(MK) is free as K[t]/tp-
module if and only if β∗

L(ML) is free as L[t]/tp-module.
(4) A subset V ⊂ Π(G) is closed if and only if there exists a finite dimen-

sional kG-module M such that V equals

Π(G)M = {[αK ] |α∗
K(MK) is not free as K[t]/tp −module}

The closed subset Π(G)M ⊂ Π(G) is called the Π-support of M .
(5) The topological space Π(G) of equivalence classes of π-points can be

endowed with a scheme structure based on representation theoretic
properties of G (see [16, §7]).

We denote by

H•(G, k) =

{
H∗(G, k), if p = 2,

Hev(G, k) if p > 2.

The cohomological support variety |G|M of a kG-module M is the
closed subspace of SpecH•(G, k) defined as the variety of the ideal
AnnH•(G,k) Ext

∗
G(M,M) ⊂ H•(G, k).

Theorem 1.2. [16, 7.5] Let G be a finite group scheme, and M be a finite
dimensional kG-module. Denote by ProjH•(G, k) the projective k-scheme as-
sociated to the commutative, graded k-algebra H•(G, k). Then there is an iso-
morphism of k-schemes

ΦG : ProjH•(G, k) ≃ Π(G)

which restricts to a homeomorphism of closed subspaces

Proj(|G|M ) ≃ Π(G)M

for all finite dimensional kG-modules M .

We (implicitly) identify ProjH•(G, k) with Π(G) via this isomorphism.
We consider the stable module category stmod kG. Recall that the Heller shift
Ω(M) of M is the kernel of the minimal projective cover P (M) ։ M , and
the inverse Heller shift Ω−1(M) is the cokernel of the embedding of M into its
injective hull, M →֒ I(M).
The objects of stmod kG are finite dimensional kG-modules. The morphisms
are equivalence classes where two morphisms are equivalent if they differ by a
morphism which factors through a projective module,

Homstmod kG(M,N) = HomkG(M,N)/PHomkG(M,N).

The stable module category has a tensor triangulated structure: the triangles
are induced by exact sequences, the shift operator is given by the inverse Heller
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operator Ω−1, and the tensor product is the standard tensor product in the
category of kG-modules. Two kG-modules M , N are stably isomorphic if and
only if they are isomorphic as kG-modules up to a projective direct summand.
The association M 7→ Π(G)M fits the abstractly defined “theory of supports”
for the stable module category of G (as defined in [2]). Some of the basic
properties of this theory are summarized in the next theorem (see [16]).

Theorem 1.3. Let G be a finite group scheme and let M,N be finite dimen-
sional kG-modules.

(1) Π(G)M = ∅ if and only if M is projective as a kG-module.
(2) Π(G)M⊕N = Π(G)M ∪ Π(G)N .
(3) Π(G)M⊗N = Π(G)M ∩ Π(G)N .
(4) Π(G)M = Π(G)ΩM .
(5) If M → N → Q → Ω−1M is an exact triangle in the stable module

category stmod(kG) then Π(G)N ⊂ Π(G)M ∪Π(G)Q.
(6) If p does not divide the dimension of M , then Π(G)M = Π(G).

The last property of Theorem 1.3 indicates that M 7→ Π(G)M is a somewhat
crude invariant.
We next recall the use of Jordan types in order to refine this theory. The
isomorphism type of a finite dimensional k[t]/tp-module M is said to be the
Jordan type of M . We denote the Jordan type of M by JType(M), and write
JType(M) =

∑p
i=1 ai[i]; in other words, as a k[t]/tp-moduleM ≃

⊕p
i=1([i])

⊕ai

where [i] = k[t]/ti. Thus, we may (and will) view a Jordan type JType(M) as
a partition of m = dimM into subsets each of which has cardinality ≤ p.
We shall compare Jordan types using the dominance order. Let n = [nk ≥
. . . ≥ n2 ≥ n1], m = [mk ≥ . . . ≥ m2 ≥ m1] be two partitions of N . Then n
dominates m, written n ≥ m, iff

(1.3.1)

k∑

i=j

ni ≥
k∑

i=j

mi.

for all j, 1 ≤ j ≤ k. For k[t]/tp-modules M,N , we say that JType(M) ≥
JType(N) if the partition corresponding to JType(M) dominates the partition
corresponding to JType(N). The dominance order on Jordan types can be
reformulated in the following way.

Lemma 1.4. Let M , N be k[t]/tp-modules of dimension m. Then JType(M) ≥
JType(N) if and only if

rk(tj ,M) ≥ rk(tj , N)

for all j, 1 ≤ j < p, where rk(tj ,M) denotes the rank of the operator tj on M .
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Proof. If JType(M) =
p∑

i=1

ai[i], then

(1.4.1) rk(tj ,M) =

p∑

i=j+1

ai(i− j).

The statement now follows from [10, 6.2.2]. �

The following theorem plays a key role in our formulation of geometric in-
variants for a kG-module M that are finer than the Π-support Π(G)M . In
Section 3, we outline the proof of this theorem in order to prove the re-
lated, but sharper, Theorem 3.6. We say that a π-point αK has maximal
Jordan type for a kG-module M if there does not exist a π-point βL such that
JType(α∗

K(MK)) < JType(β∗
L(ML)).

Theorem 1.5. [18, 4.10] Let G be a finite group scheme over k and M a finite
dimensional kG-module. Let αK : K[t]/tp → KG be a π-point of G which
has maximal Jordan type for M . Then for any π-point βL : L[t]/tp → LG
which specializes to αK , the Jordan type of α∗

K(MK) equals the Jordan type of
β∗
L(ML); in particular, if αK ∼ βL, then the Jordan type of α∗

K(MK) equals
the Jordan type of β∗

L(ML).

The following class of kG-modules was introduced in [8] and further studied in
[7], [9], [4], [5].

Definition 1.6. A finite dimensional kG-module M is said to be of constant
Jordan type if the Jordan type of α∗

K(MK) is the same for every π-point αK of
G. By Theorem 1.5, M has constant Jordan type a if and only if for each point
of Π(G) there is some representative αK of that point with JType(α∗

K(M)) = a.

Theorem 1.5 justifies the following definition (see [18, 5.1]).

Definition 1.7. ([18, 5.1]) Let M be a finite dimensional representation of a
finite group scheme G. We define Γ(G)M ⊂ Π(G) to be the subset of equiva-
lence classes of π-points αK : K[t]/tp → KG such that JType(α∗

K(MK)) is not
maximal among Jordan types JType(β∗

L(ML)) where βL runs over all π-points
of G.

To conclude this summary, we recall certain properties of the associationM 7→
Γ(G)M .

Proposition 1.8. Let G be a finite group scheme and let M,N be finite di-
mensional kG-modules. Then Γ(G)M ⊂ Π(G) is a closed subvariety satisfying
the following properties:

(1) If M and N are stably isomorphic, then Γ(G)M = Γ(G)N .
(2) Γ(G)M ⊂ Π(G)M with equality if and only if Π(G)M 6= Π(G).
(3) Γ(G)M is empty if and only if M has constant Jordan type.
(4) If M has constant Jordan type, then Γ(G)M⊕N = Γ(G)N .
(5) If Π(G) is irreducible, then N has constant non-projective Jordan type

if and only if Γ(G)M⊗N = Γ(G)M for any kG-module M .
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(6) If Π(G) is irreducible, then

Γ(G)M⊗N = (Γ(G)M ∪ Γ(G)N ) ∩ (Π(G)M ∩ Π(G)N ).

Proof. If M and N are stably isomorphic then M = N ⊕ P or N = M ⊕ P
with P projective. Since projective modules have constant Jordan type, (1)
becomes a special case of (4). The fact that Γ(G)M ⊂ Π(G) is closed is proved
in [18, 5.2]. Properties (2) and (3) follow essentially from definitions. Property
(4) follows from the additivity of the dominance order. Properties (5) and (6)
are the statements of [8, 4.9] and [8, 4.7] respectively. �

2. Generalized support varieties for infinitesimal group schemes

Before considering refinements of Γ(G)M ⊂ Π(G) in Section 3 for a general fi-
nite group schemeG, we specialize in this section to infinitesimal group schemes
and work with the affine variety V (G). First, we recall some definitions and
several fundamental results from [23], [24].
A finite group scheme is called infinitesimal if its coordinate algebra k[G] is
local. Important examples of infinitesimal group schemes are Frobenius kernels
of algebraic groups (see [20]). An infinitesimal group scheme is said to have
height less or equal to r if for any x in Rad(k[G]), xpr

= 0.
Let Ga be the additive group, and Ga(r) be the r-th Frobenius kernel of Ga. A
one-parameter subgroup of height r of G over a commutative k-algebra A is a
map of group schemes over A of the form µ : Ga(r),A → GA. Here, Ga(r),A, GA

are group schemes over A defined as the base changes from k to A of Ga(r), G.

Let k[Ga(r)] = k[T ]/T pr

, and kGa(r) = k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1), indexed

so that the Frobenius map F : Ga(r) → Ga(r) satisfies F∗(ui) = ui−1, i >
0;F∗(u0) = 0. We define

(2.0.1) ǫ : k[u]/up → kGa(r) = k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1)

to be the map sending u to ur−1. Thus, ǫ is a map of group algebras but not
of Hopf algebras in general. In fact, the map ǫ is induced by a group scheme
homomorphism if and only if r = 1 in which case ǫ is an isomorphism.

Theorem 2.1. [23] Let G be an infinitesimal group scheme of height ≤ r. Then
there is an affine group scheme V (G) which represents the functor sending a
commutative k-algebra A to the set Homgr.sch/A(Ga(r),A, GA).

Thus, a point v ∈ V (G) naturally corresponds to a 1-parameter subgroup

µv : Ga(r),k(v) // Gk(v)

where k(v) is the residue field of v.

Theorem 2.2. [24] (1). The closed subspaces of V (G) are the subsets of the
form

V (G)M = {v ∈ V (G) | ǫ∗µ∗
v(Mk(v)) is not free as a module over k(v)[u]/up}

for some finite dimensional kG-module M .
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(2). There is a natural p-isogeny V (G) −→ SpecH•(G, k) which restricts to a
homeomorphism V (G)M ≃ |G|M for any finite dimensional kG-module M .

Theorem 1.2 implies that the spaces Π(G) and Projk[V (G)] are also homeo-
morphic (see [16] for a natural direct relationship between Π(G) and V (G) for
an infinitesimal group scheme).
Let µv∗ : k(v)Ga(r) → k(v)G be the map on group algebras induced by the one-
parameter subgroup µv : Ga(r) → G. We denote by θv the nilpotent element
of k(v)G which is the image u under the composition

k(v)[u]/up ǫ
// k(v)[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1)

µv∗
// k(v)G .

So, θv = µv∗(ur−1) ∈ k(v)G. For a given kG-module M we also let

θv : Mk(v) → Mk(v)

denote the associated p-nilpotent endomorphism. Thus, JType(ǫ∗µ∗
v(Mk(v)))

is the Jordan type of θv on Mk(v).

Definition 2.3. Let M be a kG-module of dimension m. We define the local
Jordan type function

(2.3.1) JTypeM : V (G) → N
×p,

by sending v to (a1, . . . , ap), where (θv)
∗(Mk(v)) ≃

∑p
i=1 ai[i].

Definition 2.4. For a given a = (a1, . . . , ap) ∈ N×p, we define

V a(G)M = {v ∈ V (G) | JTypeM (v) = a},

V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a}.

As we see in the following example, V a(G)M is a generalization of a nilpotent
orbit of the adjoint representation (and V ≤a(G)M is a generalization of an orbit
closure).

Example 2.5. Let G = GLN(1) and let M be the standard N -dimensional
representation of GLN . Then JTypeM sends a p-nilpotent matrix X to its
Jordan type as an endomorphism of M . Consequently, JTypeM has image
inside N×p consisting of those p-tuples a = (a1, . . . , ap) such that

∑
i ai · i = N .

The locally closed subvarieties V a(G)M ⊂ Np(glN ) are precisely the adjoint
GLN -orbits inside the p-nilpotent cone Np(glN ) of the Lie algebra glN .

Example 2.6. Let ζ ∈ H2i+1(G, k) be a non-zero cohomology class of odd
degree. Let Lζ be the Carlson module defined as the kernel of the map
Ω2i+1(k) → k corresponding to ζ (see [3, II.5.9]). The module Ω2i+1(k) has con-
stant Jordan typem[p]+[p−1]. Let a = m[p]+[p−2] and b = (m−1)[p]+2[p−1].
Then the image of JTypeLζ

equals {a, b} ⊂ N×p. Moreover, V a(G)Lζ
is open

in V (G), with complement V b(G)Lζ
.
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Remark 2.7. An explicit determination of the global p-nilpotent operator ΘM :
M ⊗ k[V (G)] → M ⊗ k[V (G)] of [17, 2.4] immediately determines the local
Jordan type function JTypeM . Namely, to any v ∈ V (G) we associate the
nilpotent linear operator θv : Mk(v) → Mk(v) defined by θv = ΘM ⊗k(v)[V (G)]

k(v). The local Jordan type of M at the point v is precisely the Jordan type
of the linear operator θv.
The reader should consult [17] for many explicit examples of kG-modules M
for each of the four families of examples of infinitesimal group schemes: (i.) G
of height 1, so that M is a p-restricted module for Lie(G); (ii.) G = Ga(r); (iii.)
GLn(r); and (iv.) SL2(2).

We provide a few elementary properties of these refined support varieties.

Proposition 2.8. Let M be a kG-module of dimension m and let a =
(a1, . . . , ap) such that

∑p
i=1 ai · i = m.

(1) If m = p · m′, then V (G)\ V (G)M = V (0,...,0,m′)(G)M ; otherwise,
V (G) = V (G)M .

(2) M has constant Jordan type if and only if V (G)M = V a(G)M for some
a ∈ N×p (in which case a is the Jordan type of M).

(3) V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a} is a closed subvariety of
V (G).

(4) V a(G)M is a locally closed subvariety of V (G), open in V ≤a(G)M .
(5) V ≤b(G)M ⊆ V ≤a(G)M , if b ≤ a, where “ ≤ ” is the dominance

order on Jordan types.

Proof. Properties (1) and (2) follow immediately from the definitions of V (G)M
and of constant Jordan type. Property (5) is immediate.
To prove (3) we utilize θv = ΘM ⊗k(v)[V (G)] k(v) : Mk(v) → Mk(v) described in

Remark 2.7. Applying Nakayama’s Lemma as in [17, 4.11] to Ker{Θj
M}, 1 ≤

j < p, we conclude that rk(θjv,M), 1 ≤ j ≤ p − 1, is lower semi-continuous.
Consequently, (1.3.1) and Lemma 1.4 imply that V ≤a(G)M is closed.
Property (4) follows from the observation that V a(G)M is the complement

inside V ≤a(G)M of the finite union V <a(G)M = ∪a′<aV
≤a′

, which is closed by
(3). �

It is often convenient to consider the stable Jordan type of a k[t]/tp-module M :
if a1[1] + . . . + ap[p] is the Jordan type of M , then the stable Jordan type of
M is a1[1] + . . .+ ap−1[p− 1] (equivalently, the isomorphism class of M in the
stable module category stmod k[u]/up). We define the stable local Jordan type
function

JType
M

: V (G) → N
×p−1, v 7→ (a1, . . . , ap−1)

by sending v to the stable Jordan type of θ∗v(Mk(v)).

The following proposition relates the Jordan type function for a module M and
its Heller twist.
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Proposition 2.9. For a stable Jordan type a =
∑p−1

i=1 ai[i], denote by a⊥ the
“flip” of a,

a⊥ =

p−1∑

i=1

ap−i[i].

Then

JType
Ω(M)

(v) = JType
M
(v)⊥, v ∈ V (G).

Proof. For any v ∈ V (G), µ∗
v : (k(v)G −mod) → (k(v)Ga(r) −mod) is exact.

Moreover, ǫ∗ : (kGa(r) −mod) → (k[u]/up −mod) is also exact. Consequently,
the existence of a short exact sequence of the form 0 → ΩM → P → M → 0
with JTypeP (v) = N [p] for some N implies the assertion. �

Example 2.10. Let g be a restricted Lie algebra with restricted enveloping
algebra u(g) (which is isomorphic to the group algebra of an infinitesimal
group scheme of height 1). Let ζ be an even dimensional cohomology class
in H•(u(g), k), and Lζ be the Carlson module defined by ζ. Then Lζ has two
local Jordan types: it is generically projective (that is, the local Jordan type
is m[p] on a dense open set), and has the type r[p] + [p− 1] + [1] on the hyper-
surface 〈ζ = 0〉 in Spec H•(u(g), k). Let M be a g-module of constant Jordan
type a. Then the module Lζ ⊗M has two local Jordan types: it is generically
projective, and has the “stably palindromic” type a+ a⊥ + [proj] on 〈ζ = 0〉.

We conclude this section with the following cautionary example which shows
why the construction of our local Jordan type function does not apply to kG-
modules M for finite groups G.

Example 2.11. ([18, 2.3]) Let E = Z/p×Z/p, and write kE = k[x, y]/(xp, yp).
Let M = kE/(x− y2). Then

α : k[t]/tp → kE, t 7→ x

and

α′ : k[t]/tp → kE, t 7→ x− y2

are equivalent as π-points of E. However, the Jordan type of α∗(M) equals

[p−1
2 ] + [p+1

2 ], whereas the Jordan type of α′∗(M) is p[1].

3. Maximal j–rank for arbitrary finite group schemes

We begin with the following definition.

Definition 3.1. Let G be a finite group scheme, αK : K[t]/tp → KG be a
π-point of G, and j a positive integer with 1 ≤ j < p. Then αK is said to
be of maximal j-rank for some finite-dimensional kG-module M provided that
the rank of αK(tj) = αK(t)j : MK → MK is greater or equal to the rank of
βL(t

j) : ML → ML for any π-point βL : L[t]/tp → LG.
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The purpose of this section is to establish in Theorem 3.6 that maximality
of j-rank at αK implies maximal j-rank at βL for any βL ∼ αK . The proof
consists of repeating almost verbatim the proof by A. Suslin and the authors
in [18] of Theorem 1.5, so that we merely indicate here the explicit places at
which the proof of Theorem 1.5 should be modified in order to prove Theorem
3.6.
The following theorem provides the key step.

Theorem 3.2. Let k be an infinite field, M be a finite-dimensional k-vector
space, and α, α1, . . . , αn, β1, . . . , βn be a family of commuting nilpotent k-linear
endomorphisms of M . Let 1 ≤ j ≤ p− 1, and assume that

rkαj ≥ rk(α+ λ1α1 + . . .+ λnαn)
j

for any field extension K/k and any n-tuple (λ1, . . . , λn) ∈ Kn. Then

rkαj = rk(α+ α1β1 + . . .+ αnβn)
j .

In particular, if p(x, x1, . . . , xn) is any polynomial without constant or linear
term then

rkαj = rk(α+ p(α, α1, . . . , αn))
j .

Proof. For j = 1, this is [18, 1.9]. For general j, the statement follows by
applying Corollary 1.11 of [18]. �

For any π-point αK : K[t]/tp → KG, we denote by rk(αK(tj),MK) the rank
of the K-linear endomorphism αK(tj) : MK → MK .
In the next 3 propositions, we consider the special cases in which G is an
elementary abelian p-group, an abelian finite group scheme, and an infinitesimal
finite group scheme. In this manner, we follow the strategy of the proof of
Theorem 1.5.

Proposition 3.3. Let E be an elementary abelian p-group of rank r, let M
be a finite dimensional kE-module, and let αK be a π-point of E which is of
maximal j-rank for M . Then for any βL ∼ αK ,

rk(αK(tj),MK) = rk(βL(t
j),ML).

Proof. The proof of [18, 2.7] applies verbatim provided one replaces references
to [18, 1.12] by references to [18, 1.9]. �

Proposition 3.4. Let C be an abelian finite group scheme over k, let M be a
finite dimensional kC-module, and let αK be a π-point of C which is of maximal
j-rank for M . Then for any βL ∼ αK ,

rk(αK(tj),MK) = rk(βL(t
j),ML).

Proof. The proof of [18, 2.9] applies verbatim provided one replaces references
to [18, 2.7] by references to Proposition 3.3 and references to [18, 1.12] by
references to Theorem 3.2. �
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Proposition 3.5. Let G be an infinitesimal group scheme over k and let M
be a finite dimensional kG-module. Let βL : L[t]/tp → LG be a π-point of G
with the property that the j-rank of β∗

L(ML) is maximal for M . Then for any
π-point αK : K[t]/tp → KG which specializes to βL,

rk(αK(tj),MK) = rk(βL(t
j),ML).

Proof. The proof of [18, 3.5] applies verbatim provided one replaces references
to [18, 2.9] by references to Proposition 3.4. �

We now state and prove the assertion that maximality of j-rank at αK implies
maximality of j-rank at βL for any βL ∼ αK . This statement for all j, 1 ≤ j < p,
implies the maximality of Jordan type as asserted in Theorem 1.5.

Theorem 3.6. Let G be a finite group scheme over k and let M be a finite
dimensional kG-module. Let αK : K[t]/tp → KG be a π-point of G which
is of maximal j-rank for M . Then for any π-point βL : L[t]/tp → LG that
specializes to αK , we have

rk(αK(tj),MK) = rk(βL(t
j),ML).

Proof. The proof of [18, 4.10] applies verbatim provided one replaces refer-
ences to [18, 2.9] by references to Proposition 3.4 and references to [18, 3.5] by
references to Proposition 3.5. �

We can now generalize themodules of constant j-rank as defined for infinitesimal
group schemes in [17] to all finite group schemes.

Definition 3.7. A finite dimensional kG-module M is said to be of constant j-
rank, 1 ≤ j < p, if for any two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG,
we have

rk(αK(tj),MK) = rk(βL(t
j),ML).

Remark 3.8. By Theorem 3.6, M has constant j-rank n if and only if for each
point of Π(G) there is some π-point representative αK with rk(αK(tj),MK) =
n.

Evidently, a kG-module has constant Jordan type if and only if it has constant
j-rank for all j, 1 ≤ j < p (see (1.3.1)).
We shall say that M is a module of constant rank if it has constant 1-rank.
Every module of constant Jordan type has, by definition, constant rank. On
the other hand, there are numerous examples of modules of constant rank which
do not have constant Jordan type. For example, if ζ ∈ H2i+1(G, k) is non-zero
and p > 2, then the Carlson module Lζ is a kG-module of constant rank but
not of constant Jordan type.
We finish this section with a cautionary example that illustrates that not all
properties of maximal or constant Jordan type have natural analogues for max-
imal or constant rank. Recall that a generic Jordan type of a kG-module M is
the Jordan type at a π-point which represents a generic point of Π(G). By the
main theorem of [18], it is well-defined. If Π(G) is irreducible, we can there-
fore refer to the generic Jordan type of M . We can similarly define a generic
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j-rank of a kG-module to be rk(αK(tj),MK) for a π-point α of G representing
a generic point of Π(G). By [18, 4.2], generic j-rank is well-defined.

Example 3.9. Throughout this example we are using the formula for the tensor
product of Jordan types (see, for example, [8, Appendix]).

(1). Let a =
∑

ai[i], b =
∑

bi[i] be two Jordan types (or partitions) such that∑
ai · i =

∑
bi · i. In [8, 4.1] the authors showed that a ≥ b implies a⊗c ≥ b⊗c

for any Jordan type c. The analogous statement is not true for ranks.
Indeed, let a = 3[2], b = [3] + 3[1], and c = [2]. Then

rk a = 3 > rk b = 2.

Since a⊗ c = 3[3] + 3[1] and b⊗ c = [4] + 4[2], we have

rk a⊗ c = 6 < rk b⊗ c = 7.

(2). Part (1) of this example illustrates a common failure of the upper semi-
continuity property of the ranks of partitions with respect to tensor product.
Since this fails for partitions, it is reasonable to expect the same property to
fail for maximal ranks of modules. The following is an explicit realization by
kG-modules of this failure of upper semi-continuity. This example also shows
that M⊗N can fail to have maximal rank at a π-point at which both M and N
have maximal rank. This should be contrasted with the situation for maximal
Jordan types ( [8, 4.2]).
Let G = G

×2
a(1) so that kG ≃ k[x, y]/(xp, yp). Consider the kG-module M of

Example [8, 2.4], pictured as follows:
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Recall that Π(G) ≃ ProjH•(G, k) ≃ P1. A point [λ1 : λ2] on P1 is represented
by a π-point α : k[t]/tp → kG such that α(t) = λ1x+ λ2y.
For p > 5, the module M has two Jordan types: the generic type 4[3] + 1[1]
and the singular type 3[3] + 2[2], which occurs at [1 : 0] and [0 : 1] (see [8,
2.4]). Hence, M has constant rank. We compute possible local Jordan types
of M ⊗ M using the fact that µv∗ : k(v)[t]/(tp) → k(v)G is a map of Hopf
algebras for any v ∈ V (G):

(i) (4[3] + 1[1])⊗2 = 16[5] + 24[3] + 17[1],
(ii) (3[3] + 2[2])⊗2 = 9[5] + 12[4] + 13[3] + 12[2] + 13[1].

By [18, 4.4], the first type is the generic Jordan type of M ⊗ M . Hence, the
generic (and maximal) rank of M ⊗ M is 112. On the other hand, the rank
of the second type is 110. Hence, the rank of M at the points [1 : 0], [0 : 1] is
maximal, but the rank of M ⊗M is not.
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(3). Yet another result in [8], a direct consequence of the result on the tensor
products of maximal types mentioned in (2), states that a tensor product of
modules of constant Jordan type is a module of constant Jordan type. This
distinguishes the family of modules of constant Jordan type from the modules
of constant rank, for which this property fails. Let M be the same as in (2).
The calculation above shows that M is of constant rank but M ⊗M is not.

We also give an example of a different nature, avoiding point by point calcula-
tions of Jordan types. This example was pointed out to us by the referee. Let
M be a cyclic kG-module of dimension less than p (e.g., M = k[x, y]/(x2, y)).
We have a short exact sequence 0 → ΩM → kG → M → 0. This implies that
the Jordan type of ΩM at any π-point necessarily has p blocks, and, hence,
ΩM has constant rank. Since ΩM ⊗Ω−1k ≃ M ⊕ [proj], we conclude that the
tensor product of two modules of constant rank produces a module which is
not of constant rank.

4. non-maximal rank varieties for arbitrary finite group schemes

In this section, we introduce the non-maximal rank varieties Γj(G)M for an
arbitrary finite group scheme, finite dimensional kG-module M , and integer
j, 1 ≤ j < p. The non-maximal rank varieties, a type of generalized support
variety defined for any finite dimensional module over any finite group scheme,
are defined in terms of ranks of local p-nilpotent operators. These are well
defined thanks to Theorem 3.6. After verifying a few simple properties of these
varieties, we investigate various explicit examples.

Definition 4.1. Let G be a finite group scheme, and let M be a finite dimen-
sional kG-module. Set

Γj(G)M = {[αK ] ∈ Π(G) | rk(αK(tj),MK) is not maximal},

the non-maximal j-rank variety of M .

Our first example demonstrates that {Γj(G)M} is a finer collection of geometric
invariants than Π(G)M .

Example 4.2. Let G = GL(3,Fp) with p > 3. By [21], the irreducible com-
ponents of Π(G) are indexed by the conjugacy classes of maximal elementary
p-subgroups of G which are represented by subgroups of the unipotent group
U(3,Fp) of strictly upper triangular matrices. There are 3 such conjugacy
classes, represented by the following subgroups:










1 a b

0 1 a

0 0 1



 a, b ∈ Fp

















1 a b

0 1 0
0 0 1



 a, b ∈ Fp

















1 0 b

0 1 a

0 0 1



 a, b ∈ Fp







Let M be the second symmetric power of the standard 3-dimensional (rational)
representation of G. Then the generic Jordan type of M indexed by the first
of these maximal elementary abelian subgroups of G is [3] + 3[1], whereas
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the Jordan types indexed by each of the other conjugacy classes of maximal
elementary abelian p–subgroups are [2] + 4[1].
Thus, Π(G)M = Π(G) provides no information about M .
On the other hand, Γ(G)M = Γ1(G)M = Γ2(G)M equals the union of the two
irreducible components of Π(G) corresponding to the second and third maximal
elementary abelian p–subgroups, whereas Γi(G)M = ∅ for i > 2.

Our second example shows that Γi(G)M and Γj(M) can be different, proper
subsets of Π(G).

Example 4.3. In [18, 4.13] A. Suslin and the authors constructed an example of
a finite group G and a finite dimensional G-module M , such that Π(G) = X∪Y
has two irreducible components and the generic Jordan types of M at the
generic points of X and Y respectively are incomparable. Let G and M satisfy
this property, and let αK and βL be generic π-points of X and Y respectively.
If JType(α∗

K(MK)) and JType(β∗
L(ML)) are incomparable, then Lemma 1.4

implies that there exist i 6= j such that rk(αK(ti),MK) > rk(βL(t
i),ML) but

rk(αK(tj),MK) < rk(βL(t
j),ML). Hence, Γi(G)M is a proper subvariety that

contains the irreducible component Y whereas Γj(G)M is a proper subvariety
that contains the irreducible component X .

Our third example is a simple computation for a general finite group scheme.
It provides another possible “pattern” for the varieties Γi(G)M .

Example 4.4. Let ζ1 ∈ Hn1(G, k) be an even dimensional class, and ζ2 ∈
Hn2(G, k) be an odd dimensional class. Consider Lζ = Lζ1,ζ2 , the kernel of the
map

ζ1 + ζ2 : Ωn1k ⊕ Ωn2k → k

The local Jordan type of Lζ at a π-point α is given in the following table:



r[p] + [p− 1], α∗(ζ1) 6= 0
r[p] + [p− 2] + [1], α∗(ζ1) = 0, α∗(ζ2) 6= 0
(r − 1)[p] + 2[p− 1] + [1], α∗(ζ1) = α∗(ζ2) = 0

Hence, Γ1(G)Lζ
= . . . = Γp−2(G)Lζ

= Z(ζ1), whereas Γp−1(G)Lζ
= Z(ζ1) ∩

Z(ζ2), where Z(ζ1) denotes the zero locus of a class ζ1 ∈ H•(G, k) and Z(ζ2)

for ζ2 ∈ Hodd(G, k) is defined in (5.3).

We next verify a few elementary properties of M 7→ Γj(G)M . Some of them
are analogous to the properties of Γ(G)M stated in Prop 1.8.

Proposition 4.5. Let G be a finite group scheme and M a finite dimensional
kG-module.

(1) Γj(G)M is a proper closed subset of Π(G) for 1 ≤ j < p.
(2) Γj(G)M = ∅ if and only if M has constant j-rank.
(3) If M and N are stably isomorphic, then Γj(G)M = Γj(G)N
(4) If M is a module of constant j-rank, then Γj(G)M⊕N = Γj(G)N .
(5) Γj(G)M = Γj(G)Ω2(M).
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(6) Γ(G)M = ∪1≤j<pΓ
j(G)M .

(7) If M has the Jordan type m[p] at some generic π-point, then
Γ1(G)M = . . . = Γp−1(G)M = Π(G)M .

Proof. By definition, Γj(G)M ⊂ Π(G) can never equal Π(G), so it is a proper
subvariety. Moreover, assertions (2) and (6) also immediately follow from defi-
nitions and Lemma 1.4. Assertion (4) follows from the additivity of ranks and
of the functor α∗

K : KG − mod → K[t]/tp − mod induced by a π-point αK .
Property (3) is proved exactly as in the proof of Proposition 1.8(1).
For (5), observe that a π-point αK induces an exact functor on the module
categories and hence commutes with the Heller operator Ω. The statement
now follows from the observation that for K[t]/tp-modules, applying Ω2 does
not change the stable Jordan type.
To prove that Γj(G)M ⊂ Π(G) is closed as asserted in (1), we repeat the proof
of [18, 5.2] establishing that Γ(G)M is closed. Indeed, the reduction in that
proof to the special case in which G is infinitesimal applies without change.
The proof in the special case of G infinitesimal uses the affine scheme of 1-
parameter subgroups; this proof applies with only one minor change: the set of
equations on the ranks of powers of fA : A[t]/tp → EndA(M) (in the notation
of that proof) is replaced by the set of equations on rank of only one, the j-th,
power of fA.
If M is generically projective as in (7), then Γ(G)M = Π(G)M . Let αK 6∈
Γ(G)M so that the Jordan type of α∗

K(M) is m[p], and let βL ∈ Γ(G)M . Let∑
bi[i] be the Jordan type of β∗

L(ML). The statement follows easily from the
formula (1.4.1): we have

rk(αK(tj),MK) = m(p− j) >

p∑

i=j+1

bi(i− j) = rk(βL(t
j),ML),

where the inequality in the middle follows by downward induction on j from

the assumption mp = dimM =
p∑

i=1

bii. Thus, Γj(G)M = Γ(G)M for each

j, 1 ≤ j < p.
�

Example 4.6. We point out that the “natural” analog of 1.8(5) is not true for
modules of constant rank. Namely, Γ1(G)M⊗N does not have to be equal to
Γ1(G)N for M of constant rank. Indeed, let M be as in Example 3.9. Then M
has constant rank and Γ1(E)M = ∅. But Γ1(E)M⊗M 6= ∅ since M ⊗M is not
a module of constant rank.

Using a recent result of R. Farnsteiner [12, 3.3.2], we verify below that the
non-maximal subvarieties Γi(G)M ⊂ Π(G) of an indecomposable kG-module
M do not change when we replace M by any N in the same component as M of
the stable Auslander-Reiten quiver of G. This is a refinement of a result of J.
Carlson and the authors [8, 8.7] which asserts that if M is an indecomposable
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module of constant Jordan type than any N in the same component of the
stable Auslander-Reiten quiver of G as M is also of constant Jordan type.

Proposition 4.7. Let k be an algebraically closed field, and G be a finite group
scheme over k. Let Θ ⊂ Γs(G) be a component of the stable Auslander-Reiten
quiver of G. For any two modules M,N in Θ, and any j, 1 ≤ j ≤ p− 1,

Γj(G)M = Γj(G)N

Proof. Recall that Π(G) is connected. If dimΠ(G) = 0, then Π(G) is a single
point so that Γj(G)M is empty for any kG-module M .
Now, assume that Π(G) is positive dimensional. Since k is assumed to be
algebraically closed, to show that Γj(G)M = Γj(G)N , it’s enough to show that
their k-valued points are the same. For this reason, we shall only consider
π-points defined over k.
Let M be a kG-module in the component Θ, and write the Jordan type of
α∗(M) as

∑p
i=1 αi(M)[i]. By [12, 3.1.1], each component Θ determines non-

negative integer valued functions di on the set of π-points (possibly different on
equivalent π-points) and a positive, integer valued function f on the modules
occurring in Θ such that

(4.7.1)

{
αi(M) = di(α)f(M) for 1 ≤ i ≤ p− 1

αp(M) = 1
p (dimM − dp(α)f(M))

Assume [β] ∈ Γj(G)M , so that there exists a π-point α : k[t]/tp → kG such that
rk(αj(t),M) > rk(βj(t),M). By (1.4.1), this is equivalent to the inequality

p∑

j=i+1

αi(M)(i− j) >

p∑

j=i+1

βi(M)(i − j).

Using formula (4.7.1), we rewrite this inequality as

p−1∑

j=i+1

di(α)f(M)(i − j) +
1

p
(dimM − dp(α)f(M))(p − j) >

p−1∑

j=i+1

di(β)f(M)(i − j) +
1

p
(dimM − dp(β)f(M))(p − j).

Simplifying, we obtain
(4.7.2)

(

p−1∑

j=i+1

di(α)(i−j)−
p− j

p
dp(α))f(M) > (

p−1∑

j=i+1

di(β)(i−j)−
p− j

p
dp(β))f(M).

Now, let N be any other indecomposable kG-module in the component Θ. Mul-
tiplying the inequality (4.7.2) by the positive, rational function f(N)/f(M),
we obtain the same inequality as (4.7.2) with M replaced by N . Thus,
[β] ∈ Γj(G)N . Interchanging the roles of M and N , we conclude that
Γj(G)M = Γj(G)N . �

Documenta Mathematica · Extra Volume Suslin (2010) 197–222



214 Eric M. Friedlander and Julia Pevtsova

For an infinitesimal group scheme G, the closed subvarieties Γj(G)M ⊂ Π(G)
admit an affine version V j(G) ⊂ V (G) defined as follows

Definition 4.8. Let G be an infinitesimal group scheme, M a finite dimen-
sional kG-module, and j a positive integer, 1 ≤ j < p. We define

V j(G)M = {v ∈ V (G)| rk(θjv,Mk(v)) is not maximal} ∪ {0} ⊂ V (G).

(see §2 for notations). So defined, V j(G)M − {0} equals pr−1(Γj(G)M ), where
pr : V (G)− {0} → Π(G) is the natural (closed) projection (see [16]).

Remark 4.9. We can express V j(G)M in terms of the locally closed subvari-
eties V a(G)M introduced in §2. Namely, V j(G)M is the union of V a(G)M ⊂
V (G) indexed by the Jordan types a with

∑p
i=1 ai · i = dim(M) satisfying

the condition that there exists some Jordan type b with V b(G)M 6= {0} and∑p
i>j bi(i − j) >

∑p
i>j ai(i− j).

Our first representative example of V j(G)M is a continuation of (2.5).

Example 4.10. Let G = GLN(1), let M be the standard representation of
GLN , and assume p does not divide N . Recall that V (GLN(1)) ≃ Np, where
Np is the p-restricted nullcone of the Lie algebra glN ([24, §6]). The maximal
Jordan type of M is r[p] + [N − rp], where rp is the greatest non-negative
multiple of p which is less or equal to N (see [18, 4.15]). Hence, the maximal
j-rank equals r(p − j) + (N − rp− j) if N − rp > j and r(p − j) otherwise.
For simplicity, assume k is algebraically closed so that we only need to consider
k-rational points of Np. For any X ∈ Np, θX : M → M is simply the endo-
morphism X itself. Consequently, if N − rp ≤ j, V j(G)M ⊂ Np consists of
0 together with those non-zero p-nilpotent N ×N matrices with the property
that their Jordan types have strictly fewer than r blocks of size p; if N−rp > j,
then V j(G)M consists of 0 together with 0 6= X ∈ Np whose Jordan type is
strictly less than r[p] + [N − rp].
Hence, the pattern for varieties V j(M) in this case looks like

{0} 6= V 1(G)M = . . . = V n(G)M ⊂ V n+1(G)M = . . . = V p−1(G)M ⊂ V (G)

where n = N − rp.

Computing examples of V j(G)M is made easier by the presence of other struc-
ture. For example, if G = G(r), the rth-Frobenius kernel of the algebraic group
G and if the kG-module M is the restriction of a rational G-module, then we
verify in the following proposition that V j(G)M is G-stable, and thus a union
of G-orbits inside V (G).

Lemma 4.11. Let G be an algebraic group, and let G be the rth Frobenius kernel
of G for some r ≥ 1. If M is a finite dimensional rational G-module, then each
V j(G)M , 1 ≤ j < p, is a G-stable closed subvariety of V (G).

Proof. Composition with the adjoint action of G on G determines an action

G × V (G) → V (G).

Documenta Mathematica · Extra Volume Suslin (2010) 197–222



Generalized Support Varieties for Finite Group Schemes 215

Observe that for any field extension K/k and any x ∈ G(K), the pull-back of
MK via the conjugation action γx : GK → GK is isomorphic to MK as a KG-
module. Thus, the Jordan type of (µ◦ ǫ)∗(MK) equals that of (γx ◦µ◦ ǫ)∗(MK)
for any 1-parameter subgroup µ : Ga(r),K → GK . �

Using Lemma 4.11, we carry out our second computation of V j(G)M with G
infinitesimal, this time for G of height 2.

Example 4.12. Let G = SL2(2). For simplicity, assume k is algebraically
closed. Recall that

V (G) = {(α0, α1) |α1, α2 ∈ sl2, α
p
1 = αp

2 = [α1, α2] = 0},

the variety of pairs of commuting p-nilpotent matrices ([23]). The algebraic
group SL2 acts on V (G) by conjugation (on each entry).

Let e =

[
0 1
0 0

]
. An easy calculation shows that the non-trivial orbits of

V (G) with respect to the conjugation action are parameterized by P1, where
[s0 : s1] ∈ P1 corresponds to the orbit represented by the pair (s0e, s1e).
Let Sλ be a simple SL2-module of highest weight λ, 0 ≤ λ ≤ p2 − 1. Since
Sλ is a rational SL2-module, the non-maximal rank varieties V j(G)Sλ

are SL2-
stable by Proposition 4.11. Hence, to compute the non-maximal rank varieties
for Sλ it suffices to compute the Jordan type of Sλ at the orbit representa-
tives (s0e, s1e). By the explicit formula ([17, 2.6.5]), the Jordan type of Sλ

at (s0e, s1e) is given by the Jordan type of the nilpotent operator s1e + sp0e
(p)

(here, e(p) is the divided power generator of k SL2(2) as described in [17, 1.4]).

The non-maximal rank varieties V j(G)Sλ
depend upon which of the following

three conditions λ satisfies.

(1) 0 ≤ λ ≤ p− 1 . In this case, the Jordan type of e ∈ k SL2(2) as an

operator on Sλ is [λ + 1]. On the other hand, the action of e(p) is
trivial. Hence, if j ≥ λ + 1, then the action (s1e + sp0e

(p))j is trivial
for any pair (s0, s1). For 1 ≤ j ≤ λ, the j-rank is maximal (and
equals λ + 1 − j) whenever s1 6= 0. We conclude that for j > λ, we
have V j(G)Sλ

= 0, and for 1 ≤ j ≤ λ, V j(G)Sλ
is the orbit of V (G)

parametrized by [1 : 0].

(2) p ≤ λ < p2 − 1 . Let λ = λ0 + pλ1. By the Steinberg tensor product

theorem, we have Sλ = Sλ0
⊗S

(1)
λ1

. Observe that e acts trivially on S
(1)
λ1

and e(p) acts trivially on Sλ0
. Moreover, the Jordan type of e(p) as an

operator on S
(1)
λ1

is the same as the Jordan type of e as an operator on

Sλ1
. Hence, the Jordan type of s1e+sp0e

(p) as an operator on Sλ0
⊗S

(1)
λ1

is [λ0 + 1] ⊗ [λ1 + 1] when s0s1 6= 0. If s0 = 0 or s1 = 0 we get the
types [λ0 + 1]⊗ (triv) or (triv)⊗ [λ1 + 1] respectively.
(a) For 0 < λ0, λ1 < p−1, the tensor product formula for Jordan types

(see [8, Appendix]) implies that the j-rank of [λ0 +1]⊗ [λ1 +1] is
strictly greater than that of [λ0 +1]⊗ (triv) or (triv)⊗ [λ1+1] for
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j ≤ λ1 + λ0. Hence, the non-maximal j-rank variety in the case
when j ≤ λ1+λ0 is a union of two orbits, parameterized by [1 : 0]
and [0 : 1]. If j > λ1 +λ0, then the non-maximal j-rank variety is
trivial since the j-rank is 0 at every point.

(b) If λ0 = 0, then Sλ ≃ S
(1)
λ1

. Hence, the computation for Sλ for
λ < p implies that the non-maximal j-rank variety in this case is
the orbit corresponding to [0 : 1] for j ≤ λ1 and is trivial otherwise.

(c) For λ0 = p−1 or λ1 = p−1, the non-maximal j-rank variety is the
same as the support variety for any j, since the support variety is
a proper subvariety of V (G) in this case. The support varieties for
these modules were computed in [24, §7] (see also [17, 1.17(4)]).

(3) λ = p2 − 1 . In this case, Sλ is the Steinberg module for SL2(2). Hence,

it is projective, so the non-maximal rank varieties are all trivial.

We summarize our calculations in the table below. Let λ = λ0 + pλ1, and
λ = λ0 + λ1. If j > λ, then V j(G)Sλ

= 0. For j ≤ λ, we have

V
j(G)Sλ

=



















{(α0, 0)} ∪ {(0, α1)} if 0 < λ0, λ1 < p− 1

{(α0, 0)} if λ0 6= 0, λ1 = 0 or λ0 = p− 1, λ1 6= p− 1

{(0, α1)} if λ0 = 0, λ1 6= 0 or λ0 6= p− 1, λ1 = p− 1

0 if λ0 = λ1 = p− 1.

where α0, α1 run over all nilpotent matrices in sl2. In particular, for a given
λ = λ0 + pλ1 we get the following pattern for M = Sλ:

V (G) ⊃ V 1(G)M = · · · = V λ̄(G)M ⊃ V λ̄+1(G)M = · · · = V p−1(G)M = {0}.

Observe that the only simple modules of constant rank are the trivial module
and the Steinberg module. An interested reader may find it instructive to
compare this calculation to the calculation of support varieties for SL2(2) ([17,
1.18(4)], see also [24, §7]).

5. Subvarieties of Π(G) associated to individual Ext-classes

For M a kG-module of constant rank, we associate to a cohomology class ζ in
H1(G,M) a closed subvariety Z(ζ) ⊂ Π(G) which generalizes the construction
of the zero locus Z(ζ) ⊂ SpecH•(G, k) of a homogeneous cohomology class.
We show that this construction is closely related to the non-maximal rank
variety, and establish some “realization” results for non-maximal varieties as
an application. Unless otherwise indicated, throughout this section G will
denote an arbitrary finite group scheme over k.

Lemma 5.1. Let M be a finite dimensional kG-module, and let ζ be a coho-
mology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.

For any π-point αK : K[t]/tp → KG, the following are equivalent:

(i) the cohomology class α∗
K(ζK) ∈ H1(K[t]/tp,MK) is trivial.

(ii) rk(α∗
K(t), Eζ) = rk(α∗

K(t),M).
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(iii) JType(α∗
K(Eζ,K)) = JType(α∗

K(MK)) + 1[1].

Proof. Recall that α∗
K(−) is exact (by definition, αK is flat); moreover, the

sequence α∗
K(ζ̃) splits if and only if α∗

K(ζ) = 0 in H1(K[t]/tp,K). Thus, it
suffices to prove that a short exact sequence 0 → M → E → K → 0 of K[t]/tp-
modules splits if and only if rk(t,M) = rk(t, E) if and only if JType(E) =
JType(M)+1[1]. Let b =

∑p
i=1 bi[i] be the Jordan type of E and a =

∑p
i=1 ai[i]

be the Jordan type of M . Then this short exact sequence splits if and only if
the map E → k factors through the summand b1[1] of E which occurs if and
only if bi = ai, i > 1 which is equivalent to rk(t,M) = rk(t, E). �

Proposition 5.2. Let M be a kG-module of constant rank, and let ζ be a
cohomology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.

(1) If Eζ has constant rank equal to that of M , then α∗
K(ζK) ∈

H1(K[t]/tp,M) is trivial for every π-point αK : K[t]/tp → KG.
(2) If Eζ has constant rank greater than that of M , then α∗

K(ζK) ∈
H1(K[t]/tp,M) is non-trivial for every π-point αK : K[t]/tp → KG.

(3) If Eζ does not have constant rank, then α∗
K(ζ) is trivial if and only if

[αK ] ∈ Γ1(G)Eζ
⊂ Π(G).

(4) For any two equivalent π-points αK , βL of G, α∗
K(ζK) is trivial if and

only if β∗
L(ζL) is trivial.

Proof. Assertions (1) and (2) follow immediately from Lemma 5.1. Assertion
(3) also follows from Lemma 5.1: if Eζ does not have constant rank, then
the complement of Γ1(G)Eζ

in Π(G) consists of those equivalence classes of
π-points αK satisfying Lemma 5.1(ii.).
To prove that the vanishing of α∗

K(ζK) depends only upon the equivalence
class of αK , we examine each of the three cases considered above. In case (1),
α∗
K(ζK) = 0 for all π-points αK : on the other hand, in case (2) α∗

K(ζK) 6= 0
for all π-points αK . Finally, the assertion in case (3) follows immediately from
Theorem 3.6. �

Proposition 5.2(4) justifies the following definition.

Definition 5.3. For M a module of constant rank, and ζ ∈ H1(G,M), we
define

(5.3.1) Z(ζ) ≡ {[αK ] | α∗
K(ζ) = 0} ⊂ Π(G).

For ζ ∈ Hm(G, k), we define

(5.3.2) Z(ζ) ≡ {[αK ] | α∗
K(ζ) = 0} ⊂ Π(G).

Since Hm(G, k) ≃ H1(G,Ω1−mk), the definition of (5.3.2) is a special case of
that of (5.3.1). For m = 2n even, Z(ζ) corresponds under the isomorphism
Π(G) ≃ ProjH•(G, k) with the hypersurface 〈ζ = 0〉 in SpecH•(G, k).
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Remark 5.4. We point out that Definition 5.3 is not as straight-forward as it
might appear.

• Let G = Z/p × Z/p with p > 2, write kG = k[x, y]/(xp, yp) and con-
sider M = kG/(x − y2) as in Example 2.11. Consider the short exact
sequence

0 → Rad(M) → M → k → 0,

with associated extension class ζ ∈ H1(G,Rad(M)). Consider the
equivalent π-points α, α′ : k[t]/tp → kG of Example 2.11. Then,
α∗(ζ) 6= 0, yet α′∗(ζ) = 0. Thus, the “zero locus” of ζ is not a well
defined subset of Π(G).

• Let ζ ∈ H2n(G, k) represented by ζ̂ : Ω2nk → k. By definition of Lζ ,
we have an extension

ξ̃ : 0 → Lζ → Ω2nk
ζ̂
→ k → 0,

corresponding to a cohomology class ξ ∈ H1(G,Lζ). Then for any π-

point αK : K[t]/tp → KG, α∗
K(ξ̃) splits if and only if α∗

K(Lζ) is free if
and only if [αK ] 6∈ Π(G)Lζ

if and only of α∗
K(ζ) 6= 0. Thus, the zero

locus of ξ equals the complement of the zero locus of ζ (and thus is
open in Π(G)).

• For ζ ∈ H2n+1(G, k), one could define Z(ζ) as the zero locus of the
Bockstein of ζ provided one is in a situation in which the Bockstein is
defined and well behaved. See the discussion of the Bockstein following
Example 5.6.

We recall from [7] that a short exact sequence of kG modules

ξ̃ : 0 → M → E → Q → 0

is said to be locally split if α∗
K(ξ̃) splits for every π-point αK : K[t]/tp → KG

of G.

Proposition 5.5. Let M be a module of constant rank, and let ζ be a coho-
mology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0 → M → Eζ → k → 0.

Then

Z(ζ) =

{
Π(G), if ζ̃ is locally split

Γ1(G)Eζ
, if ζ̃ is not locally split.

In particular, Z(ζ) ⊂ Π(G) is closed.

Proof. Observe that ζ̃ is split at [αK ] if and only if α∗
K(ζ) = 0. We first consider

ζ such that Eζ has constant rank. Then by Proposition 5.2.1, Z(ζ) equals Π(G)

if ζ̃ is locally split and Z(ζ) = ∅ by Proposition 5.2.2 if ζ̃ is not locally split.
Alternatively, if Eζ does not have constant rank, then Proposition 5.2.3 gives
the asserted description of Z(ζ).
Because Γ1(G)Eζ

⊂ Π(G) is closed by Proposition 4.5 and of course Π(G) is
itself closed in Π(G), we conclude that Z(ζ) is closed inside Π(G). �
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We remark that ζ ∈ H1(G,M) can be non-zero and yet Z(ζ) = ∅. To say
Z(ζ) = ∅ is to say that α∗

K(ζ) = 0 for all π-points αK . Consider, for example,

an even dimensional non-trivial cohomology class ζ ∈ H2n(G, k) which is a
product of odd dimensional classes. Since the product of any two odd classes
in H∗(k[t]/tp, k) is zero, α∗

K(ζ) = 0 for all π-points αK of G. On the other hand,

ζ can be identified with a cohomology class in H1(G,Ω1−2n(k)) ≃ H2n(G, k).
Since Ω1−2n(k) is a module of constant Jordan type (see [8]), the class ζ satisfies
the requirements of Proposition 4.5.
A more interesting example is the following.

Example 5.6. Let G be a finite group scheme with the property that the

dimension of Π(G) is at least 1. Let ζ′ ∈ Ĥ
−i
(G, k), i > 0, be an element in

the negative Tate cohomology of G. As shown in [8, 6.3], α∗
K(ζ′) = 0 for any π-

point αK . Then ζ′ corresponds to ζ ∈ H1(G,Ωi+1(k)) under the isomorphism

Ĥ
−i
(G, k) ≃ H1(G,Ωi+1(k)); by the naturality of this isomorphism, α∗

K(ζ) =

0 ∈ Ĥ
−i
(K[t]/tp,K) for any π-point αK .

Thus, ζ 6= 0, ζ̃ is locally split, and Z(ζ) = ∅ for this choice of ζ ∈
H1(G,Ωi+1(k)).

For any field extensionK/k, let RK = W2(K) denote the Witt vectors of length
2 for K. Assume that G over k embeds into an Rk-group scheme GRk

so that
G = GRk

×SpecRk
Spec k ⊂ GRk

, thereby inducing by base change GK ⊂ GRK
.

Then we may define the Bockstein β : Hi(GK ,K) → Hi+1(GK ,K) for i > 0 as
the connecting homomorphism for the short exact sequence of GRK

-modules

(5.6.1) 0 → K → RK → K → 0.

(The reader is referred to [11, 3.4] for a discussion of this Bockstein.) Since
any π-point αK : K[t]/tp → KG lifts to a map α̃K : RK [t]/tp → RKGRK

of
R-algebras, α∗ : H∗(G,K) → H∗(K[t]/tp,K) commutes with this Bockstein.

Since β : H2d−1(K[t]/tp,K) → H2d(K[t]/tp,K) is an isomorphism, we conclude

that if x ∈ H2d−1(G, k), then α∗
K(x) vanishes if and only if α∗

K(β(x)) = 0,

where β(x) ∈ H2d(G, k). Thus, for such G lifting to GRk
and for p > 2, when

considering Z(ζ) for homogeneous classes in H∗(G, k), it suffices to restrict
attention to the subalgebra H•(G, k) of even dimensional classes.
As we see in the following family of examples, Γ1(G)M can be an arbitrary
closed subset even when the support variety of M is all of Π(G).

Proposition 5.7. Let G be a finite group scheme over k. Let ζi ∈
Hni+1(G, k) ≃ H1(G,Ω−ni(k)), ni ≥ 0. Let M = ⊕r

i=1Ω
−ni(k), and set

ζ = ⊕iζi ∈ H1(G,M) = ⊕iH
1(G,Ω−ni(k)). Let

0 → M → Eζ → k → 0

be the corresponding extension. Then

(1) If Z(ζ) 6= Π(G), then Γ1(G)Eζ
= Z(ζ) = Z(ζ1) ∩ . . . ∩ Z(ζr).

(2) If each ni is even so that each ζi ∈ Hni+1(G, k) has odd degree, then
Π(G)Eζ

= Π(G).
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Proof. (1). If Z(ζ) 6= Π(G), then Proposition 5.5 implies that Γ1(G)Eζ
=

Z(ζ). Since ζ = ⊕ζi, we further conclude that Z(ζ) = {[αK ] | α∗
K(ζ) = 0} =

{[αK ] | α∗
K(ζi) = 0 for all i} =

⋂
i

Z(ζi). Hence, Γ
1(G)Eζ

=
⋂
i

Z(ζi).

(2). Assume now that each ni is even so that each Ω−ni(k) has constant Jordan
type of the form mi[p]+ [1]. Thus, the generic Jordan type of Eζ is of the form
m[p] + [2] + (r − 1)[1] at generic points [αK ] ∈ Π(G) such that α∗

K(ζ) 6= 0 and
of the form m[p] + (r + 1)[1] otherwise. Therefore, Π(G)Eζ

= Π(G). �

As we see below, the construction of Eζ in Proposition 5.7 above is in fact a
generalized Carlson module Lζ (as defined in [8]) “in disguise”. In the Example
5.8 we consider homogeneous classes ζi of even degree.

Example 5.8. Let ζ = (ζ1, . . . , ζr), where ζi ∈ H2di(G, k) ≃
Hom(Ω2di(k), k), 1 ≤ i ≤ r with di ≥ 0. Let Lζ be the kernel of the
map ζ =

∑
ζi :

⊕
Ω2di(k) → k, so that we have an exact sequence:

0 // Lζ //
⊕

Ω2di(k)
ζ1+···+ζr

// k // 0

This short exact sequence represents an exact triangle in stmod kG. Shifting
the triangle by Ω−1 we obtain a triangle

k // Ω−1(Lζ) //
⊕

Ω2di−1(k) // Ω−1(k)

Hence, ζ corresponds to a short exact sequence

0 // k // Fζ //
⊕

Ω2di−1(k) // 0

with the middle term stably isomorphic to Ω−1(Lζ). Taking the dual of this
short exact sequence, we obtain the the short exact sequence which defines Eζ

in Proposition 5.7:

0 //
⊕

Ω1−2dik // Eζ // k // 0 .

Hence, Eζ is stably isomorphic to Ω−1(L#
ζ ).

Our final result extends the construction of closed zero loci to extension classes
ξ ∈ ExtnG(N,M) with both M, N of constant Jordan type. In other words,
Proposition 5.9 introduces the (closed) support variety Z(ξ) of such an exten-
sion class.

Proposition 5.9. Let G be a finite group scheme and N,M finite di-
mensional kG-modules of constant Jordan type. Let ξ ∈ ExtnG(N,M) ≃
Ext1(Ωn−1(N),M) for some n 6= 0, and consider the corresponding extension

ξ̃ : 0 → M → Eξ → Ωn−1(N) → 0.

(1) If αK , βL are equivalent π-points of G, then α∗
K(ξ̃) splits if and only if

βL(ξ̃) splits.
(2) If

Z(ξ) ≡ {[αK ] | α∗
K(ξ̃) splits} ⊂ Π(G),
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then

Z(ξ) =

{
Π(G), if ξ̃ is locally split

Γ1(G)Eξ
, if ξ̃ is not locally split.

Proof. There is a natural isomorphism

Ext1G(Ω
n−1(N),M) ≃ H1(G, (Ωn−1(N))# ⊗M)

sending the extension class ξ to the cohomology class ζ ∈ H1(G, (Ωn−1(N))#⊗
M) (where (Ωn−1(N))# is the linear dual of Ωn−1(N)). Hence, α∗

K(ξ̃) splits if

and only α∗
K(ζ̃) splits for any π-point αK of G.

By [9, 5.2], (Ωn−1(N))# has constant Jordan type. Thus, by [9, 4.3],
(Ωn−1(N))# ⊗M also has constant Jordan type. Consequently, the assertion
of the Proposition for ξ follows from Proposition 4.5 for ζ.

�
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