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1. Introduction

Let k be a field, Fieldsk be the category of field extensions K/k, Sets be the
category of sets, and F : Fieldsk → Sets be a covariant functor. Given a tower
of field extensions k ⊂ K ⊂ L, we will denote the image of a ∈ F (K) under the
natural map F (K) → F (L) by aL. Conversely, if b ∈ F (L) lies in the image of
this map, we will say that b descends to K.
Given a field extension K/k and b ∈ F (L), the essential dimension edk(b) of
b is defined as the minimal transcendence degree trdegk(K), as K ranges over
all intermediate subfields k ⊂ K ⊂ L such that b descends to K. Informally
speaking, this is the minimal number of parameters one needs to define b. The
essential dimension edk(F ) of the functor F is the maximal value of edk(b),
as L ranges over all field extensions of k and b ranges over F (L). Informally
speaking, this is the minimal number of parameters required to define any
object of F .
The essential dimension edk(b; p) at a prime p is defined as the minimum of
edk(bL′), taken over all finite field extensions L′/L such that the degree [L′ : L]

1Partially supported by a University Graduate Fellowship at the University of British
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2Partially supported by NSERC Discovery and Accelerator Supplement grants.
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is prime to p. The essential dimension of edk(F ; p) of F at a prime p is the
supremum of edk(b; p) taken over all b ∈ F (L) and over all field extensions L/k.
An important example where the above notions lead to a rich theory is the
nonabelian cohomology functor FG = H1(∗, G), sending a field K/k to the
set H1(K,G) of isomorphism classes of G-torsors over Spec(K), in the fppf
topology. Here G is an algebraic group defined over k. The essential dimension
of this functor can be thought of as a numerical measure of complexity of
G-torsors over fields or, alternatively, as the minimal number of parameters
required to define a versal G-torsor. In the case where G is a finite (constant)
group defined over k, which will be the main focus of this paper, edk(G) is the
minimal number of parameters required to describe all G-Galois extensions.
For details on the notion of essential dimension of a finite group we refer the
reader to [BuR], [Re] or [JLY, Chapter 8], on the notion of essential dimension
of a functor to [BF] or [BRV2] and on essential dimension at a prime p to [Me].
N. Karpenko and A. Merkurjev [KM] recently proved the following formula for
the essential dimension of a (finite) p-group.

Theorem 1.1. Let G be a p-group and k be a field of characteristic 6= p con-
taining a primitive pth root of unity. Then

edk(G; p) = edk(G) = min dim(V ) ,

where the minimum is taken over all faithful k-representations G →֒ GL(V ).

The purpose of this paper is to explore some of the consequences of this theo-
rem. The following notation will be used throughout.
We will fix a prime p and a base field k such that

(1) char(k) 6= p and k contains ζ,

where ζ is a primitive pth root of unity if p ≥ 3 and a primitive 4th root of
unity if p = 2.
For a finite group H , we will denote the intersection of the kernels of all multi-
plicative characters χ : H → k∗ by H ′. In particular, if k contains an eth root
of unity, where e is the exponent of H , then H ′ = [H,H ] is the commutator
subgroup of H .
All p-groups in this paper will be assumed to be finite. Given a p-group G, we
set C(G) to be the center of G and

(2) C(G)p := {g ∈ C(G) | gp = 1}

to be the p-torsion subgroup of C(G). We will view C(G)p and its subgroups
as Fp-vector spaces, and write “dimFp

” for their dimensions. We further set

(3) Ki :=
⋂

[G:H]=pi

H ′ and Ci := Ki ∩C(G)p .

for every i ≥ 0, K−1 := G and C−1 := K−1 ∩ C(G)p = C(G)p.
Our first main result is following theorem. Part (b) may be viewed as a variant
of Theorem 1.1.
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Theorem 1.2. Let G be a p-group, k be a base field satisfying (1) and ρ : G →֒
GL(V ) be a faithful linear k-representation of G. Then

(a) ρ has minimal dimension among the faithful linear representations of G
defined over k if and only if for every i ≥ 0 the irreducible decomposition of ρ
has exactly

dimFp
Ci−1 − dimFp

Ci

irreducible components of dimension pi, each with multiplicity 1.

(b) edk(G; p) = edk(G) =
∑∞

i=0(dimFp
Ci−1 − dimFp

Ci)p
i.

Note that Ki = Ci = {1} for large i (say, if pi ≥ |G|), so only finitely many
terms in the above infinite sum are non-zero. We also remark that the minimal
number of irreducible components in a faithful representations of a finite group
(but not necessarily a p-group) was studied in [Ta, Na], see also [Lo, Section
4].
We will prove Theorem 1.2 in section 2; the rest of the paper will be devoted
to its applications. The main results we will obtain are summarized below.

Classification of p-groups of essential dimension ≤ p.

Theorem 1.3. Let p be a prime, k be as in (1) and G be a p-group such that
G′ 6= {1}. Then the following conditions are equivalent.

(a) edk(G) ≤ p,

(b) edk(G) = p,

(c) The center C(G) is cyclic and G has a subgroup H of index p such that
H ′ = {1}.

Note that the assumption that G′ 6= {1} is harmless. Indeed, if G′ = {1} then
by Theorem 1.2(b) edk(G) = rank (G); cf. also [BuR, Theorem 6.1] or [BF,
section 3].

Essential dimension of p-groups of nilpotency class 2.

Theorem 1.4. Let G be a p-group of exponent e and k be a field of charac-
teristic 6= p containing a primitive e-th root of unity. Suppose the commutator
subgroup [G,G] is central in G. Then

(a) edk(G; p) = edk(G) ≤ rank C(G) + rank [G,G](p⌊m/2⌋ − 1), where pm is
the order of G/C(G).

(b) Moreover, if [G,G] is cyclic then |G/C(G)| is a complete square and equality
holds in (a). That is, in this case

edk(G; p) = edk(G) =
√

|G/C(G)|+ rank C(G)− 1 .
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Essential dimension of a quotient group. C. U. Jensen, A. Ledet and N.
Yui asked if edk(G) ≥ edk(G/N) for every finite group G and normal subgroup
N ⊳ G; see [JLY, p. 204]. The following theorem shows that this inequality is
false in general.

Theorem 1.5. Let p be a prime and k be a field of characteristic 6= p containing
a primitive pth root of unity. For every real number λ > 0 there exists a p-group
G and a central subgroup H of G such that edk(G/H) > λ edk(G).

Essential dimension of SLn(Z). G. Favi and M. Florence [FF] showed that
edk(GLn(Z)) = n for every n ≥ 1 and edk(SLn(Z)) = n − 1 for every odd
n. For details, including the definitions of edk(GLn(Z)) and edk(SLn(Z)), see
Section 5. For even n Favi and Florence showed that edk(SLn(Z)) = n− 1 or
n and left the exact value of edk(SLn(Z)) as an open question. In this paper
we will answer this question as follows.

Theorem 1.6. Suppose k is a field of characteristic 6= 2. Then

edk(SLn(Z); 2) = edk(SLn(Z)) =

{

n− 1, if n is odd,

n, if n is even

for any n ≥ 3.

Acknowledgement. Theorems 1.4(b) and 1.5 first appeared in the unpub-
lished preprint [BRV1] by P. Brosnan, the second author and A. Vistoli. We
thank P. Brosnan and A. Vistoli for allowing us to include them in this pa-
per. Theorem 1.4(b) was, in fact, a precursor to Theorem 1.1; the techniques
used in [BRV1] were subsequently strengthened and refined by Karpenko and
Merkurjev [KM] to prove Theorem 1.1. The proof of Theorem 1.4(b) in Sec-
tion 4 may thus be viewed as a result of reverse engineering. We include it
here because it naturally fits into the framework of this paper, because Theo-
rem 1.4(b) is used in a crucial way in [BRV2], and because a proof of this result
has not previously appeared in print.
We are also grateful to R. Lötscher for pointing out and helping us correct an
inaccuracy in the proof of Lemma 2.1.

2. Proof of Theorem 1.2

Throughout this section we assume k to be as in (1). An important role in the
proof will be played by the p-torsion subgroup C(G)p of the center of G and
by the descending sequences

K−1 = G ⊃ K0 ⊃ K1 ⊃ K2 ⊃ . . . and

C−1 = C(G)p ⊃ C0 ⊃ C1 ⊃ C2 ⊃ . . .

of characteristic subgroups of G defined in (3). To simplify the notation, we
will write C for C−1 = C(G)p for the rest of this section. We will repeatedly
use the well-known fact that

(4) A normal subgroup N of G is trivial if and only if N ∩ C is trivial.
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We begin with three elementary lemmas.

Lemma 2.1. Ki =
⋂

dim(ρ)≤pi ker(ρ), where the intersection is taken over all

irreducible representations ρ of G of dimension ≤ pi.

Proof. Let j ≤ i. Recall that every irreducible representation ρ of G of dimen-
sion pj is induced from a 1-dimensional representation χ of a subgroup H ⊂ G
of index pj ; see [LG-P, (II.4)] for p ≥ 3 (cf. also [Vo]) and [LG-P, (IV.2)] for
p = 2. (Note that our assumption (1) on the base field k is crucial here. In the
case where k = C a more direct proof can be found in [Se, Section 8.5]).

Thus ker(ρ) = ker(indGH χ) =
⋂

g∈G g ker(χ)g
−1, and since each g ker(χ)g−1

contains (gHg−1)′, we see that ker(ρ) ⊃ Kj ⊃ Ki. The opposite inclusion is
proved in a similar manner. �

Lemma 2.2. Let ρ : G → GL(V ) an irreducible representation of a p-group G.
Then

(a) ρ(C) consists of scalar matrices. In other words, the restriction of ρ to C
decomposes as χ ⊕ . . . ⊕ χ (dim(V ) times), for some multiplicative character
χ : C → Gm. We will refer to χ as the character associated to ρ.

(b) Ci =
⋂

dim(ψ)≤pi ker(χψ), where the intersection is taken over all irreducible

G-representations ψ of dimension ≤ pi and χψ : C → Gm denotes the character
associated to ψ. In particular, if dim(ρ) ≤ pi then χρ vanishes on Ci.

Proof. (a) follows from Schur’s lemma. (b) By Lemma 2.1

Ci = C ∩
⋂

dim(ψ)≤pi

ker(ψ) =
⋂

dim(ψ)≤pi

(C ∩ ker(ψ)) =
⋂

dim(ψ)≤pi

ker(χψ) .

�

Lemma 2.3. Let G be a p-group and ρ = ρ1 ⊕ . . .⊕ ρm be the direct sum of the
irreducible representations ρi : G → GL(Vi). Let χi := χρi : C → Gm be the
character associated to ρi.

(a) ρ is faithful if and only if χ1, . . . , χm span C∗ as an Fp-vector space.

(b) Moreover, if ρ is of minimal dimension among the faithful representations
of G then χ1, . . . , χm form an Fp-basis of C∗.

Proof. (a) By (4), Ker(ρ) is trivial if and only if Ker(ρ) ∩ C = ∩mi=1 Ker(χi)
is trivial. On the other hand, ∩mi=1 Ker(χi) is trivial if and only if χ1, . . . , χm
span C∗.

(b) Assume the contrary, say χm is a linear combination of χ1, . . . , χm−1. Then
part (a) tells us that ρ1 ⊕ . . .⊕ ρm−1 is a faithful representation of G, contra-
dicting the minimality of dim(ρ). �

We are now ready to proceed with the proof of Theorem 1.2. Part (b) is an
immediate consequence of part (a) and Theorem 1.1. We will thus focus on
proving part (a). In the sequel for each i ≥ 0 we will set

δi := dimFp
Ci−1 − dimFp

Ci
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and

∆i := δ0 + δ1 + · · ·+ δi = dimFp
C − dimFp

Ci ,

where the last equality follows from C−1 = C.
Our proof will proceed in two steps. In Step 1 we will construct a faithful rep-
resentation µ of G such that for every i ≥ 0 exactly δi irreducible components
of µ have dimension pi. In Step 2 we will show that dim(ρ) ≥ dim(µ) for any
other faithful representation ρ of G, and moreover equality holds if and only if
ρ has exactly δi irreducible components of dimension pi, for every i ≥ 0.

Step 1: We begin by constructing µ. By definition,

C = C−1 ⊃ C0 ⊃ C1 ⊃ . . . ,

where the inclusions are not necessarily strict. Dualizing this flag of Fp-vector
spaces, we obtain a flag

(0) = (C∗)−1 ⊂ (C∗)0 ⊂ (C∗)1 ⊂ . . .

of Fp-subspaces of C
∗, where

(C∗)i := {χ ∈ C∗ |χ is trivial on Ci} ≃ (C/Ci)
∗.

Let Ass(C) ⊂ C∗ be the set of characters of C associated to irreducible repre-
sentations ofG, and let Assi(C) be the set of characters associated to irreducible
representations of dimension pi. Lemma 2.2(b) tells us that

Ass0(C) ∪ Ass1(C) ∪ · · · ∪Assi(C) spans (C
∗)i

for every i ≥ 0. Hence, we can choose a basis χ1, . . . , χ∆0
of (C∗)0 from

Ass0(C), then complete it to a basis χ1, . . . , χ∆1
of (C∗)1 by choosing the last

∆1 −∆0 characters from Ass1(C), then complete this basis of (C∗)1 to a basis
of (C∗)2 by choosing ∆2 − ∆1 additional characters from Ass2(C), etc. We
stop when Ci = (0), i.e., ∆i = dimFp

C.
By the definition of Assi(C), each χj is the associated character of some irre-
ducible representation µj of G. By our construction

µ = µ1 ⊕ · · · ⊕ µdimFp (C)

has the desired properties. Indeed, since χ1, . . . , χdimFp (C) form a basis of C∗,

Lemma 2.3 tells us that µ is faithful. On the other hand, by our construction
exactly

δi − δi−1 = dimFp
C∗
i − dimFp

C∗
i−1 = dimFp

Ci−1 − dimFp
Ci

of the characters χ1, . . . , χc come from Assi(C). Equivalently, exactly

dimFp
Ci−1 − dimFp

C

of the irreducible representations µ1, . . . , µc are of dimension pi.

Step 2: Let ρ : G → GL(V ) be a faithful linear representation of G of the
smallest possible dimension,

ρ = ρ1 ⊕ . . .⊕ ρc
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be its irreducible decomposition, and χi : C → Gm be the character associated
to ρi. By Lemma 2.3(b), χ1, . . . , χc form a basis of C∗. In particular, c =
dimFp

C and at most dimFp
C−dimFp

Ci of the characters χ1, . . . , χc can vanish
on Ci. On the other hand, by Lemma 2.2(b) every representation of dimension
≤ pi vanishes on Ci. Thus if exactly di of the irreducible representations
ρ1, . . . , ρc have dimension pi then

d0 + d1 + d2 + . . .+ di ≤ dimFp
C − dimFp

Ci

for every i ≥ 0. For i ≥ 0, set Di := d0 + · · ·+ di = number of representations
of dimension ≤ pi among ρ1, . . . , ρc. We can now write the above inequality as

(5) Di ≤ ∆i for every i ≥ 0.

Our goal is to show that dim(ρ) ≥ dim(µ) and that equality holds if and only
if exactly δi of the irreducible representations ρ1, . . . , ρdimFp (C) have dimension

pi. The last condition translates into di = δi for every i ≥ 0, which is, in turn
equivalent to Di = ∆i for every i ≥ 0.
Indeed, setting D−1 := 0 and ∆−1 := 0, we have,

dim(ρ)− dim(µ) =

∞
∑

i=0

(di − δi)p
i =

∞
∑

i=0

(Di −∆i)p
i −

∞
∑

i=0

(Di−1 −∆i−1)p
i

=
∞
∑

i=0

(Di −∆i)(p
i − pi+1) ≥ 0 ,

where the last inequality follows from (5). Moreover, equality holds if and only
if Di = ∆i for every i ≥ 0, as claimed. This completes the proof of Step 2 and
thus of Theorem 1.2. �

3. Proof of Theorem 1.3

Since K0 = G′ is a non-trivial normal subgroup of G, we see that K0 ∩ C(G)
and thus C0 = K0 ∩ C(G)p is non-trivial. This means that in the summation
formula of Theorem 1.2(b) at least one of the terms

(dimFp
Ci−1 − dimFp

Ci)p
i

with i ≥ 1 will be non-zero. Hence, edk(G) ≥ p; this shows that (a) and (b)
are equivalent. Moreover, equality holds if and only if (i) dimFp

C−1 = 1, (ii)
dimFp

C0 = 1 and (iii) C1 is trivial. Since we are assuming K0 = G′ 6= {1}
and hence, C0 = K0 ∩ C(G)p 6= {1} by (4), (ii) follows from (i) and thus can
be dropped.
It now suffices to prove that (i) and (iii) are equivalent to condition (c) of the
theorem. Since C−1 = C(G)p, (i) is equivalent to C(G) being cyclic. On the
other hand, (iii) means that

(6) K1 =
⋂

[G:H]=p

H ′
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intersects C(G)p trivially. Since K1 is a normal subgroup of G, (4) tells us that
(iii) holds if and only if K1 = {1}.
It remains to show that K1 = {1} if and only if H ′ = {1} for some subgroup
H of G of index p. One direction is obvious: if H ′ = {1} for some H of index p
then the intersection (6) is trivial. To prove the converse, assume the contrary:
the intersection (6) is trivial but H ′ 6= {1} for every subgroup H of index p.
Since every such H is normal in G (and so isH ′), (4) tells us that that H ′ 6= {1}
if and only if H ′ ∩ C(G) 6= {1}. Since C(G) is cyclic, the latter condition is
equivalent to C(G)p ⊂ H ′. Thus

C(G)p ⊂ K1 =
⋂

[G:H]=p

H ′ ,

contradicting our assumption that K1 = {1}.
To sum up, we have shown that (c) is equivalent to conditions (i) and (iii)
above, and that these conditions are in turn, equivalent to (a) (or to (b)). This
completes the proof of Theorem 1.3.

Remark 3.1. p-groups that have a faithful representation of degree p over a
field k, satisfying (1) are described in [LG-P, II.4, III.4, IV.2]; see also [Vo].
Combining this description with Theorem 1.1 yields the following variant of
Theorem 1.3.
Let k be a field satisfying (1) and G be a p-group such that G′ 6= {1}. Then
the following conditions are equivalent:

(a) edk(G) ≤ p,

(b) edk(G) = p,

(c) G is isomorphic to a subgroup of Z/pα ≀ Z/p = (Z/pα)p ⋊ Z/p, for some
α ≥ 1 such that k contains a primitive root of unity of degree pα. �

4. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Since the commutator K0 = [G,G] is central, C0 =
K0 ∩ C(G)p is of dimension rank [G,G] and the p0 term in the formula of
Theorem 1.2 is (rank C(G) − rank [G,G]).
Let Q = G/C(G) which is abelian by assumption. Let h1, ..., hs be generators
of [G,G], where s = rank [G,G], so that

[G,G] = Z/pe1h1 ⊕ · · · ⊕ Z/pe1h1 ,

written additively. For g1, g2 ∈ G the commutator can then be expressed as

[g1, g2] = β1(g1, g2)h1 + . . .+ βs(g1, g2)hs .

Note that each βi(g1, g2) depends on g1, g2 only modulo the center C(G). Thus
each βi descends to a skew-symmetric bilinear form

Q×Q→ Z/pei

which, by a slight abuse of notation, we will continue to denote by βi. Let p
m

be the order of Q. For each form βi there is an isotropic subgroup Qi of Q of
order at least p⌊(m+1)/2⌋ (or equivalently, of index at most p⌊m/2⌋ inQ); see [AT,
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Corollary 3]. Pulling these isotropic subgroups back to G, we obtain subgroups
G1, . . . , Gs of G of index ≤ p⌊m/2⌋ with the property that G′

i = [Gi, Gi] lies
in the subgroup of C(G) generated by h1, . . . , hi−1, hi+1, . . . , hs. In particular,
G′

1 ∩ · · · ∩ G′
s = {1}. Thus, all Ki (and hence, all Ci) in (3) are trivial for

i ≥ ⌊m/2⌋, and Theorem 1.2 tells us that

edk(G) = dimFp
C−1 − dimFp

C0 +

⌊m/2⌋
∑

j=1

(dimFp
Cj−1 − dimFp

Cj)p
j ≤

dimFp
C−1 − dimFp

C0 +

⌊m/2⌋
∑

j=1

(dimFp
Cj−1 − dimFp

Cj) · p
⌊m/2⌋ =

rank C(G) + rank [G,G](p⌊m/2⌋ − 1) .

(b) In general, the skew-symmetric bilinear forms βi may be degenerate. How-
ever, if [G,G] is cyclic, i.e., s = 1, then we have only one form, β1, which is
easily seen to be non-degenerate. For notational simplicity, we will write β
instead of β1. To see that β is non-degenerate, suppose g := g (modulo C(G))
lies in the kernel of β for some g ∈ G. Then by definition

β(g, g1) = gg1g
−1g−1

1 = 1

for every g1 ∈ G. Hence, g is central in G, i.e., g = 1 in Q = G/C(G), as
claimed.
We conclude that the order of Q = G/C(G) is a perfect square, say p2i, and

Q contains a maximal isotropic subgroup I ⊂ Q of order pi =
√

|G/C(G)|; see
[AT, Corollary 4]. The preimage of I in G is a maximal abelian subgroup of
index pi. Consequently, K0 = [G,G],K1, . . . ,Ki−1 are all of rank 1 and Ki is

trivial, where pi =
√

|G/C(G)|. Moreover, since all of these groups lie in [G,G]
and hence, are central, we have Ci = (Ki)p and thus

dimFp
(C0) = dimFp

(C1) = . . . = dimFp
(Ci−1) = 1 and dimFp

(Ci) = 0 .

Specializing the formula of Theorem 1.4 to this situation, we obtain part (b).
�

Proof of Theorem 1.5. Let Γ be the non-abelian group of order p3 given by
generators x, y, z and relations xp = yp = zp = [x, z] = [y, z] = 1,
[x, y] = z. Choose a multiplicative character χ : H → k∗ of the subgroup
A = 〈x, z〉 ≃ (Z/pZ)2 which is non-trivial on the center 〈z〉 of Γ and consider

the p-dimensional induced representation IndΓA(χ). Since the center 〈z〉 of Γ

does not lie in the kernel of IndΓA(χ), we conclude that Ind
Γ
A(χ) is faithful. Thus

we have constructed a faithful p-dimensional representation of Γ defined over
k. Consequently

(7) edk(Γ) ≤ p .
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Taking the direct sum of n copies of this representation, we obtain a faithful
representation of Γn of dimension np. Thus for any n ≥ 1 we have

(8) edk Γ
n ≤ np .

(We remark that both (7) and (8) are in fact equalities. Indeed, if ζp2 is a
primitive root of unity of degree p2 then

edk(Γ) ≥ edk(ζ
p2

)(Γ) =
√

p2 + 1− 1 = p ,

where the middle equality follows from Theorem 1.4(b). Hence, we have
edk(Γ) = p. Moreover, by [KM, Theorem 5.1], edk Γ

n = n · edk(Γ) = np.
However, we will only need the upper bound (8) in the sequel.)
The center of Γ is 〈z〉; denote it by C. The center of Γn is then isomorphic
to Cn. Let Hn be the subgroup of Cn consisting of n-tuples (c1, . . . , cn) such
that c1 · · · cn = 1. The center C(Γn/Hn) of Γ

n/Hn is clearly cyclic of order p
(it is generated by the class of the element (z, 1, . . . , 1) modulo Hn), and the
commutator [Γn/Hn,Γ

n/Hn] is central. Hence,

(9) edk(Γ
n/Hn) ≥ edk(ζ2)(Γ

n/Hn) =
√

p2n + 1− 1 = pn ,

where the middle equality follows from Theorem 1.4(b). Setting G = Γn

and H = Hn, and comparing (8) with (9), we see that the desired inequal-
ity edk(G/H) > λ edk(G) holds for suitably large n. �

5. Proof of Theorem 1.6

Recall that the essential dimension of the group GLn(Z) over a field k, or
edk(GLn(Z)) for short, is defined as the essential dimension of this functor

H1(∗,GLn(Z)) : K → {K-isomorphism classes of n-dimensional K-tori} ,

whereK/k is a field extension. Similarly edk(SLn(Z)) is defined as the essential
dimension of the functor

H1(∗, SLn(Z)) : K → {K-isomorphism classes of n-dimensional K-tori
with φT ⊂ SLn(Z) } ,

where φT : Gal(K) → GLn(Z) is the natural representation of the Galois group
ofK on the character lattice of T . The essential dimensions edk(GLn(Z); p) and
edk(SLn(Z); p) are respectively the essential dimensions of the above functors
at a prime p.
G. Favi and M. Florence [FF] showed that for Γ = GLn(Z) or SLn(Z),

(10) edk(Γ) = max{edk(F )|F finite subgroup of Γ}.

From this they deduced that

edk(GLn(Z)) = n, and edk(SLn(Z)) =

{

n− 1, if n is odd,

n− 1 or n, if n is even.

For details, see [FF, Theorem 5.4].
Favi and Florence also proved that edk(SL2(Z)) = 1 if k contains a primitive
12th root of unity and asked whether edk(SLn(Z)) = n − 1 or n in the case
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where n ≥ 4 is even; see [FF, Remark 5.5]. In this section we will prove
Theorem 1.6 which shows that the answer is always n.
A minor modification of the arguments in [FF] shows that (10) holds also for
essential dimension at a prime p:

(11) edk(Γ; p) = max{edk(F ; p)|F a finite subgroup of Γ},

where Γ = GLn(Z) or SLn(Z). The finite groups F that Florence and Favi used
to find the essential dimension of GLn(Z) and SLn(Z) (n odd) are (Z/2Z)n and
(Z/2Z)n−1 respectively. Thus edk(GLn(Z); 2) = edk(GLn(Z)) = n for every
n ≥ 1 and edk(SLn(Z); 2) = edk(SLn(Z)) = n− 1 if n is odd.
Our proof of Theorem 1.6 will rely on part (b) of the following easy corollary
of Theorem 1.2.

Corollary 5.1. Let G be a p-group, and k be as in (1).

(a) If C(G)p ⊂ Ki then edk(G) is divisible by pi+1.

(b) If C(G)p ⊂ G′ then edk(G) is divisible by p.

(c) If C(G)p ⊂ G(i), where G(i) denotes the ith derived subgroup of G, then
edk(G) is divisible by pi.

Proof. (a) C(G)p ⊂ Ki implies C−1 = C0 = · · · = Ci. Hence, in the formula
of Theorem 1.2(b) the p0, p1, . . . , pi terms appear with coefficient 0. All other
terms are divisible by pi+1, and part (a) follows.
(b) is an immediate consequence of (a), since K0 = G′.
(c) By [H, Theorem V.18.6] G(i) is contained in the kernel of every pi−1-
dimensional representation of G. Lemma 2.1 now tells us that G(i) ⊂ Ki−1

and part (c) follows from part (a). �

Proof of Theorem 1.6. We assume that n = 2d ≥ 4 is even. To prove The-
orem 1.6 it suffices to find a 2-subgroup F of SLn(Z) of essential dimension
n.
Diagonal matrices and permutation matrices generate a subgroup of GLn(Z)
isomorphic to µn2 ⋊Sn. The determinant function restricts to a homomorphism

det: µn2 ⋊ Sn → µ2

sending ((ǫ1, . . . , ǫn), τ)) ∈ µn2 ⋊ Sn to the product ǫ1ǫ2 · · · ǫn · sign(τ). Let Pn
be a Sylow 2-subgroup of Sn and Fn be the kernel of det : µn2 ⋊ Pn → µ2. By
construction Fn is a finite 2-group contained in SLn(Z). Theorem 1.6 is now a
consequence of the following proposition.

Proposition 5.2. If char(k) 6= 2 then edk(F2d) = 2d for any d ≥ 2.

To prove the proposition, let

D2d = {diag(ǫ1, . . . , ǫ2d) | each ǫi = ±1 and ǫ1ǫ2 · · · ǫ2d = 1}

be the subgroup of “diagonal” matrices contained in F2d.
Since D2d ≃ µ2d−1

2 has essential dimension 2d − 1, we see that edk(F2d) ≥
edk(D2d) = 2d− 1. On the other hand the inclusion F2d ⊂ SL2d(Z) gives rise
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to a 2d-dimensional representation of F2d, which remains faithful over any field
k of characteristic 6= 2. Hence, edk(F2d) ≤ 2d. We thus conclude that

(12) edk(F2d) = 2d− 1 or 2d.

Using elementary group theory, one easily checks that

(13) C(F2d) ⊂ [F2d, F2d] ⊂ F ′
2d .

Thus, if k′ ⊃ k is a field as in (1), edk′(F2d) is even by Corollary 5.1; since
edk(F2d) ≥ edk′(F2d), (12) now tells us that edk(F2d) = 2d. This completes
the proof of Proposition 5.2 and thus of Theorem 1.6. �

Remark 5.3. The assumption that d ≥ 2 is essential in the proof of the
inclusion (13). In fact, F2 ≃ Z/4Z, so (13) fails for d = 1.

Remark 5.4. Note that for any integers m,n ≥ 2, Fm+n contains the direct
product Fm × Fn. Thus

edk(Fm+n) ≥ edk(Fm × Fn) = edk(Fm) + edk(Fn) ,

where the last equality follows from [KM, Theorem 5.1]. Thus Proposition 5.2
only needs to be proved for d = 2 and 3 (or equivalently, n = 4 and 6); all
other cases are easily deduced from these by applying the above inequality
recursively, with m = 4. In particular, the group-theoretic inclusion (13) only
needs to be checked for d = 2 and 3. Somewhat to our surprise, this reduction
does not appear to simplify the proof of Proposition 5.2 presented above to any
significant degree.

Remark 5.5. It is interesting to note that while the value of edk(SL2(Z))
depends on the base field k (see [FF, Remark 5.5]), for n ≥ 3, the value of
edk(SLn(Z)) does not (as long as char(k) 6= 2).
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