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Abstract. Motivated by the splitting principle, we define certain
simplicial complexes associated to an associative ring A, which have
an action of the general linear group GL(A). This leads to an exact
sequence, involving Quillen’s algebraic K-groups of A and the symbol
map. Computations in low degrees lead to another view on Suslin’s
theorem on the Bloch group, and perhaps show a way towards possible
generalizations.
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The homology of GLn(A) has been studied in great depth by A.A. Suslin. In
some of his works ([20] and [21] for example), the action of GLn(A) on certain
simplicial complexes facilitated his homology computations.
We introduce three simplicial complexes in this paper. They are motivated by
the splitting principle. The description of these spaces is given below. This
is followed by the little information we possess on their homology. After that
comes the connection with K-theory.
These objects are defined quickly in the context of affine algebraic groups as
follows. Let G be a connected algebraic group1 defined over a field k. The
collection of minimal parabolic subgroups P ⊂ G is denoted by FL(G) and
the collection of maximal k-split tori T ⊂ G is denoted by SPL(G). The
simplicial complex FL(G) has FL(G) as its set of vertices. Minimal parabolics
P0, P1, ..., Pr of G form an r-simplex if their intersection contains a maximal
k-split torus2. The dimension of FL(G) is one less than the order of the Weyl

1Gopal Prasad informed us that we should take G reductive or k perfect. The standard
classification, via root systems, of all parabolic subgroups containing a maximal split torus,
requires this hypothesis.

2John Rognes has an analogous construction with maximal parabolics replacing minimal
parabolics. His spaces, different homotopy types from ours, are connected with K-theory as
well, see [15] .
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group of any T ∈ SPL(G). Dually, we define SPL(G) as the simplicial complex
with SPL(G) as its set of vertices, and T0, T1, ..., Tr forming an r-simplex if
they are all contained in a minimal parabolic. In general, SPL(G) is infinite
dimensional.
That both SPL(G) and FL(G) have the same homotopy type can be deduced
from corollary 7, which is a general principle. A third simplicial complex,
denoted by ET(G), which we refer to as the enriched Tits building, is better
suited for homology computations. This is the simplicial complex whose sim-
plices are (nonempty) chains of the partially ordered set E(G) whose definition
follows. For a parabolic subgroup P ⊂ G, we denote by U(P ) its unipotent
radical and by j(P ) : P → P/U(P ) the given morphism. Then E(G) is the
set of pairs (P, T ) where P ⊂ G is a parabolic subgroup and T ⊂ P/U(P )
is a maximal k-split torus. We say (P ′, T ′) ≤ (P, T ) in E(G) if P ′ ⊂ P and
j(P )−1(T ) ⊂ j(P ′)−1T ′. Note that dim E(G) is the split rank of the quotient
of G/U(G) by its center. Assume for the moment that this quotient is a simple
algebraic group. Then (P, T ) 7→ P gives a map to the cone of the Tits building.
The topology of ET(G) is more complex than the topology of the Tits building,
which is well known to be a bouquet of spheres.
When G = GL(V ), we denote the above three simplicial complexes by FL(V ),
SPL(V ) and ET(V ). These constructions have simple analogues even when
one is working over an arbitrary associative ring A. Their precise definition is
given with some motivation in section 2. Some basic properties of these spaces
are also established in section 2. Amongst them is Proposition 11 which shows
that ET(V ) and FL(V ) have the same homotopy type.
ET(An) has a polyhedral decomposition (see lemma 21). This produces a
spectral sequence (see Theorem 2) that computes its homology. The E1

p,q terms

and the differentials d1p,q are recognisable since they involve only the homology
groups of ET(Aa) for a < n. The differentials drp,q for r > 1 are not understood
well enough, however.
There are natural inclusions ET(An) →֒ ET(Ad) for d > n, and the induced
map on homology factors through

Hm(ET(An))→ H0(En(A), Hm(ET(An)))→ Hm(ET(Ad)).

where En(A) is the group of elementary matrices (see Corollary 9).
For the remaining statements on the homology of ET(An), we assume that A
is a commutative ring with many units, in the sense of Van der Kallen. See
[12] for a nice exposition of the definition and its consequences. Commutative
local rings A with infinite residue fields are examples of such rings. Under this
assumption, En(A) can be replaced by GLn(A) in the above statement.
We have observed that ET(Am+1) has dimensionm. Thus it is natural question
to ask whether

H0(GLm+1(A), Hm(ET(Am+1)))⊗Q→ Hm(ET(Ad))⊗Q

is an isomorphism when d > m + 1. Theorem 3 asserts that this is true for
m = 1, 2, 3. The statement is true in general (see Proposition 29) if a certain
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Compatible Homotopy Question has an affirmative answer. The higher differ-
entials of the spectral sequence can be dealt with if this is true. Proposition 22
shows that this holds in some limited situations.
The computation of H0(GL3(A), H2(ET(A

3))) ⊗ Q is carried out at in the
last lemma of the paper. This is intimately connected with Suslin’s re-
sult (see [21]) connecting K3 and the Bloch group. A closed form for
H0(GL4(A), H3(ET(A

4)) is awaited. This should impact on the study of
K4(A).
We now come to the connection with the Quillen K-groups Ki(A) as obtained
by his plus construction.
GL(A) acts on the geometric realisation |SPL(A∞)| and thus we have the
Borel construction, namely the quotient of |SPL(A∞)|×EGL(A) by GL(A), a
familiar object in the study of equivariant homotopy. We denote this space by
SPL(A∞)//GL(A). We apply Quillen’s plus construction to SPL(A∞)//GL(A)
and a suitable perfect subgroup of its fundamental group to obtain a space
Y (A). Proposition 17 shows that Y (A) is an H-space and that the natural map
Y (A) → BGL(A)+ is an H-map. Its homotopy fiber, denoted by SPL(A∞)+,
is thus also a H-space. The n-th homotopy group of SPL(A∞)+ at its canonical
base point is denoted by Ln(A). There is of course a natural map SPL(A∞)→
SPL(A∞)+. That this map is a homology isomorphism is shown in lemma 16.
This assertion is easy, but not tautological: it relies once again on the triviality
of the action of E(A) on H∗(SPL(A

∞)). As a consequence of this lemma,
Ln(A) ⊗ Q is identified with the primitive rational homology of SPL(A∞), or
equivalently, that of ET(A∞).
We have the inclusion Nn(A) →֒ GLn(A), where Nn(A) is the semidirect prod-
uct of the permutation group Sn with (A×)n. Taking direct limits over n ∈ N,
we obtain N(A) ⊂ GL(A). Let H ′ ⊂ N(A) be the infinite alternating group
and let H be the normal subgroup generated by H ′. Applying Quillen’s plus
construction to the space BN(A) with respect to H , we obtain BN(A)+. Its
n-th homotopy group is defined to be Hn(A

×). From the Dold-Thom theo-
rem, it is easy to see that Hn(A

×) ⊗ Q is isomorphic to the group homology
Hn(A

×) ⊗ Q. When A is commutative, this is simply ∧nQ(A
× ⊗ Q). Proposi-

tion 20 identifies the groups Hn(A
×) with certain stable homotopy groups. Its

proof was shown to us by J. Peter May. It is sketched in the text of the paper
after the proof of the Theorem below.

Theorem 1. Let A be a Nesterenko-Suslin ring. Then there is a long exact
sequence, functorial in A:

· · · → L2(A) → H2(A
×) → K2(A) → L1(A) → H1(A

×) → K1(A) → L0(A) → 0.

We call a ring A Nesterenko-Suslin if it satisfies the hypothesis of Remark 1.13
of their paper [13]. The precise requirement is that for every finite set F , there
is a function fF : F → the center of A so that the sum Σ{fF (s) : s ∈ S} is a
unit of A for every nonempty S ⊂ F . If k is an infinite field, every associative
k-algebra is Nesterenko-Suslin, and so is every commutative ring with many
units in the sense of Van der Kallen. Remark 1.13 of Nesterenko-Suslin [13]
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permits us to ignore unipotent radicals. This is used crucially in the proof of
Theorem 1 (see also Proposition 12).
In the first draft of the paper, we conjectured that this theorem is true without
any hypothesis on A. Sasha Beilinson then brought to our attention Suslin’s pa-
per [22] on the equivalence of Volodin’s K-groups and Quillen’s. From Suslin’s
description of Volodin’s spaces, it is possible to show that these spaces are ho-
motopy equivalent to the total space of the Nn(A)-torsor on FL(An) given in
section 2 of this paper. This requires proposition 1 and a little organisation.
Once this is done, Corollary 9 can also be obtained from Suslin’s set-up. The
statement “X(R) is acyclic” stated and proved by Suslin in [22] now validates
Proposition 12 at the infinite level, thus showing that Theorem 1 is true without
any hypothesis on A. The details have not been included here.
R. Kottwitz informed us that the maximal simplices of FL(V ) are referred to
as “regular stars” in the work of Langlands( see [5]).
We hope that this paper will eventually connect with mixed Tate motives
(see[3],[1]).
The arrangement of the paper is a follows. Section 1 has some topological
preliminaries used through most of the paper. The proofs of Corollary 7 and
Proposition 11 rely on Quillen’s Theorem A. Alternatively, they can both be
proved directly by repeated applications of Proposition 1. The definitions of
SPL(An),FL(An),ET(An) and first properties are given in section two. The
next four sections are devoted to the proof of Theorem 1. The last four sections
are concerned with the homology of ET(An).
The lemmas, corollaries and propositions are labelled sequentially. For in-
stance, corollary 9 is followed by lemma 10 and later by proposition 11; there
is no proposition 10 or corollary 10. The other numbered statements are the
three theorems. Theorems 2 and 3 are stated and proved in sections 7 and 9
respectively. Section 0 records some assumptions and notation, some perhaps
non-standard, that are used in the paper. The reader might find it helpful to
glance at this section for notation regarding elementary matrices and the Borel
construction and the use of “simplicial complexes”.

0. Assumptions and Notation

Rings, Elementary matrices, Elem(W →֒ V ),Elem(V, q), L(V ) and Lp(V )

We are concerned with the Quillen K-groups of a ring A.
We assume that A has the following property: if Am ∼= An as left A-modules,
then m = n. The phrase “A-module” always means left A-module.
For a finitely generated free A-module V , the collection of A-submodules L ⊂ V
so that (i) V/L is free and (ii) L is free of rank one , is denoted by L(V ).
Lp(V ) is the collection of subsets q of cardinality (p+ 1) of L(V ) so that
⊕{L : L ∈ q} → V is a monomorphism whose cokernel is free.
Given an A-submodule W of a A-module V so that the short exact sequence

0→W → V → V/W → 0
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K-Theory and the Enriched Tits Building 463

is split, we have the subgroup Elem(W →֒ V ) ⊂ AutA(V ), defined as follows.
Let H(W ) be the group of automorphisms h of V so that
(idV − h)V ⊂ W ⊂ ker(idV − h). Let W ′ ⊂ V be a submodule that is
complementary to W . Define H(W ′) in the same manner. The subgroup of
AutA(V ) generated byH(W ) andH(W ′) is Elem(W →֒ V ). It does not depend
on the choice of W ′ because H(W ) acts transitively on the collection of such
W ′.
For example, if V = An, and W is the A-submodule generated by any r mem-
bers of the given basis of An, then Elem(W →֒ An) equals En(A) , the subgroup
of elementary matrices in GLn(A), provided of course that 0 < r < n.
If V is finitely generated free and if q ∈ Lp(V ), the above statement implies
that Elem(L →֒ V ) does not depend on the choice of L ∈ q. Thus we denote
this subgroup by Elem(V, q) ⊂ GL(V ).

The Borel Construction

Let X be a topological space equipped with the action of group G. Let EG
be the principal G-bundle on BG (as in [14]). The Borel construction, namely
the quotient of X × EG by the G-action, is denoted by X//G throughout the
paper.

Categories, Geometric realisations, Posets

Every category C gives rise to a simplicial set, namely its nerve (see [14]). Its
geometric realisation is denoted by BC.
A poset (partially ordered set) P gives rise to a category. The B-construction
of this category, by abuse of notation, is denoted by BP . Associated to P
is the simplicial complex with P as its set of vertices; the simplices are finite
non-empty chains in P . The geometric realisation of this simplicial complex
coincides with BP .

Simplicial Complexes, Products and Internal Hom, Barycentric subdivision

Simplicial complexes crop up throughout this paper. We refer to Chapter 3,[18],
for the definition of a simplicial complex and its barycentric subdivision. S(K)
and V(K) denote the sets of vertices and simplices respectively of a simplicial
complex K. The geometric realisation of K is denoted by |K|. The set S(K) is
a partially ordered set (with respect to inclusion of subsets). Note that BS(K)
is simply the (geometric realisation of) the barycentric subdivision sd(K). The
geometric realisations of K and sd(K) are canonically homeomorphic to each
other, but not by a simplicial map.
Given simplicial complexes K1 and K2, the product |K1| × |K2| (in the com-
pactly generated topology) is canonically homeomorphic to B(S(K1)×S(K2)).

The category of simplicial complexes and simplicial maps has a categori-
cal product :
V(K1×K2) = V(K1)×V(K2). A non-empty subset of V(K1×K2) is a simplex
of K1 × K2 if and only if it is contained in S1 × S2 for some Si ∈ S(Ki) for
i = 1, 2. The geometric realisation of the product is not homeomorphic to the
product of the geometric realisations, but they do have the same homotopy
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type. In fact Proposition 1 of section 1 provides a contractible collection of
homotopy equivalences |K1|× |K2| → |K1×K2|. For most purposes, it suffices
to note that there is a canonical map P (K1,K2) : |K1| × |K2| → |K1 × K2|.
This is obtained in the following manner. Let C(K) denote the R-vector space
with basis V(K) for a simplicial complex K. Recall that |K| is a subset of
C(K). For simplicial complexes K1 and K2, we have the evident isomorphism

j : C(K1)⊗R C(K2)→ C(K1 ×K2).

For ci ∈ |Ki| for i = 1, 2 we put P (K1,K2)(c1, c2) = j(c1 ⊗ c2) ∈ C(K1 ×K2).
We note that j(c1 ⊗ c2) belongs to the subset |K1 × K2|. This gives the
canonical P (K1,K2).

Given simplicial complexes K,L there is a simplicial complex Hom(K,L)
with the following property: if M is a simplicial complex, then the set of
simplicial maps K ×M → L is naturally identified with the set of simplicial
maps M → Hom(K,L). This simple verification is left to the reader.

Simplicial maps f : K1 × K2 → K3 occur in sections 2 and 5 of this
paper.

|f | ◦ P (K1,K2) : |K1| × |K2| → |K3|

is the map we employ on geometric realisations. Maps |K1| × |K2| → |K3|
associated to simplicial maps f1 and f2 are seen (by contiguity) to be homotopic
to each other if {f1, f2} is a simplex ofHom(K1×K2,K3). This fact is employed
in Lemma 8.
Simplicial maps f : K1×K2 → K3 are in reality maps V(f) : V(K1)×V(K2)→
V(K3) with the property that V(f)(S1 × S2) is a simplex of K3 whenever S1

and S2 are simplices of K1 and K2 respectively. One should note that such
an f induces a map of posets S(K1)× S(K2)→ S(K3), which in turn induces
a continuous map B(S(K1) × S(K2)) → BS(K3). In view of the natural
identifications, this is the same as giving a map |K1| × |K2| → |K3|. This map
coincides with the |f | ◦ P (K1,K2) considered above.
The homotopy assertion of maps |K1| × |K2| → |K3| associated to f1, f2 where
{f1, f2} is an edge of Hom(K1 ×K2,K3) cannot be proved by the quick poset
definition of the maps (for |K3| has been subdivided and contiguity is not
available any more). This explains our preference for the longwinded |f | ◦
P (K1,K2) definition.

1. Some preliminaries from topology

We work with the category of compactly generated weakly Hausdorff spaces.
A good source is Chapter 5 of [11]. This category possesses products. It
also possesses an internal Hom in the following sense: for compactly generated
Hausdorff X,Y, Z, continuous maps Z → Hom(X,Y ) are the same as continu-
ous maps Z×X → Y , where Z×X denotes the product in this category. This
internal Hom property is required in the proof of Proposition 1 stated below.
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Hom(X,Y ) is the space of continuous maps from X to Y . This space of
maps has the compact-open topology, which is then replaced by the inherited
compactly generated topology. This space Hom(X,Y ) is referred to frequently
as Map(X,Y ), and some times even as Maps(X,Y ) , in the text.
Now consider the following set-up. Let Λ be a partially ordered set assumed
to be Artinian: (i) every non-empty subset in Λ has a minimal element with
respect to the partial order, or equivalently (ii) there are no infinite strictly de-
scending chains λ1 > λ2 > · · · in Λ. The poset Λ will remain fixed throughout
the discussion below.
We consider topological spaces X equipped with a family of closed subsets
Xλ, λ ∈ Λ with the property that Xµ ⊂ Xλ whenever µ ≤ λ.
Given another Y, Yλ, λ ∈ Λ as above, the collection of Λ-compatible contin-
uous f : X → Y (i.e. satisfying f(Xλ) ⊂ Yλ, ∀λ ∈ Λ) will be denoted by
MapΛ(X,Y ). MapΛ(X,Y ) is a closed subset of Hom(X,Y ), and this topolo-
gises MapΛ(X,Y ).
We say that {Xλ} is a weakly admissible covering of X if the three conditions
listed below are satisfied. It is an admissible covering if in addition, each Xλ

is contractible.

(1) For each pair of indices λ, µ ∈ Λ, we have

Xλ ∩Xµ = ∪
ν≤λ,ν≤µ

Xν

(2) If
∂Xλ = ∪

ν<λ
Xν ,

then ∂Xλ →֒ Xλ is a cofibration
(3) The topology on X is coherent with respect to the family of subsets
{Xλ}λ∈Λ, that is, X = ∪λXλ, and a subset Z ⊂ X is closed precisely
when Z ∩Xλ is closed in Xλ in the relative topology, for all λ.

Proposition 1. Assume that {Xλ} is a weakly admissible covering of X. As-
sume also that each Yλ is contractible.
Then the space MapΛ(X,Y ) of Λ-compatible maps f : X → Y is contractible.
In particular, it is non-empty and path-connected.

Corollary 2. If both {Xλ} and {Yλ} are admissible, then X and Y are
homotopy equivalent.

With assumptions as in the above corollary, the proposition yields the existence
of Λ-compatible maps f : X → Y and g : Y → X . Because g ◦ f and f ◦ g
are also Λ-compatible, that they are homotopic to idX and idY respectively is
deduced from the path-connectivity of MapΛ(X,X) and MapΛ(Y, Y ).

Corollary 3. If {Xλ} is admissible, then there is a homotopy equivalence
X → BΛ.

Here, recall that BΛ is the geometric realization of the simplicial complex
associated to the set of nonempty finite chains (totally ordered subsets) in Λ;
equivalently, regarding Λ as a category, BΛ is the geometric realization of its
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nerve. We put Y = BΛ and Yλ = B{µ ∈ Λ : µ ≤ λ} in Corollary 2 to deduce
Corollary 3.
The proof of Proposition 1 is easily reduced to the following extension lemma.

Lemma 4. Let {Xλ}, {Yλ} etc. be as in the above proposition. Let Λ′ ⊂ Λ be a
subset, with induced partial order, so that for any λ ∈ Λ′, µ ∈ Λ with µ ≤ λ, we
have µ ∈ Λ′. Let X ′ = ∪λ∈Λ′Xλ, Y

′ = ∪λ∈Λ′Yλ. Assume given a continuous
map f ′ : X ′ → Y ′ with f ′(Xλ) ⊂ Yλ for all λ ∈ Λ′. Then f ′ extends to a
continuous map f : X → Y with f(Xλ) ⊂ Yλ for all λ ∈ Λ.

Proof. Consider the collection of pairs (Λ′′, f ′′) satisfying:
(a) Λ′ ⊂ Λ′′ ⊂ Λ
(b) µ ∈ Λ, λ ∈ Λ′′, µ ≤ λ implies µ ∈ Λ′′

(c) f ′′ : ∪{Xµ|µ ∈ Λ′′} → Y is a continuous map
(d) f ′′(Xµ) ⊂ Yµ for all µ ∈ Λ′′

(e) f ′|Xµ = f ′′|Xµ for all µ ∈ Λ′

This collection is partially ordered in a natural manner. The coherence con-
dition on the topology of X ensures that every chain in this collection has an
upper bound. The presence of (Λ′, f ′) shows that it is non-empty. By Zorn’s
lemma, there is a maximal element (Λ′′, f ′′) in this collection. The Artinian
hypothesis on Λ shows that if Λ′′ 6= Λ, then its complement possesses a mini-
mal element µ. Let D′′ be the domain of f ′′. The minimality of µ shows that
D′′ ∩Xµ = ∂Xµ. By condition (d) above, we see that f ′′(∂Xµ) is contained in
the contractible space Yµ. Because ∂Xµ →֒ Xµ is a cofibration, it follows that
f ′′|∂Xµ extends to a map g : Xµ → Yµ. The f ′′ and g patch together to give
a continuous map h : D′′ ∪ Xµ → Y . Since the pair (Λ′′ ∪ {µ}, h) evidently
belongs to this collection, the maximality of (Λ′′, f ′′) is contradicted. Thus
Λ′′ = Λ and this completes the proof.

�

The proof of the Proposition follows in three standard steps.
Step 1: Taking Λ′ = ∅ in Lemma 4 we deduce that MapΛ(X,Y ) is nonempty.
Step 2: For the path-connectivity of MapΛ(X,Y ) , we replace X by X × [0, 1]
and replace the original poset Λ by the product Λ×{{0}, {1}, {0, 1}}, with the
product partial order, where the second factor is partially ordered by inclusion.
The subsets of X × I (resp.Y ) indexed by (λ, 0), (λ, 1), (λ, {0, 1}) are Xλ ×
{0}, Xλ × {1} and Xλ × [0, 1] (resp. Yλ in all three cases).
We then apply the lemma to the sub-poset Λ× {{0}, {1}}.
Step 3: Finally, for the contractibility of MapΛ(X,Y ), we first choose f0 ∈
MapΛ(X,Y ) and then consider the two maps MapΛ(X,Y ) × X → Y given
by (f, x) 7→ f(x) and (f, x) 7→ f0(x). Putting (MapΛ(X,Y ) × X)λ =
MapΛ(X,Y ) × Xλ for all λ ∈ Λ, we see that both the above maps are Λ-
compatible. The path-connectivity assertion in Step 2 now gives a homotopy
between the identity map of MapΛ(X,Y ) and the constant map f 7→ f0. This
completes the proof of Proposition 1.
We now want to make some remarks about equivariant versions of the above
statements.
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Given X, {Xλ;λ ∈ Λ} as above, an action of a group G on X is called Λ-
compatible if G also acts on the poset Λ so that for all g ∈ G, λ ∈ Λ, we have
g(Xλ) = Xgλ.
Under the conditions of Proposition 1, suppose {Xλ}, {Yλ} admit Λ-compatible
G-actions. There is no G-equivariant f ∈ MapΛ(X,Y ) in general. However,
if f ∈ MapΛ(X,Y ) and gX , gY denote the actions of g ∈ G on X and Y
respectively, we see that , then gY ◦ f ◦ g

−1
X is also a Λ-compatible map. By

Proposition 1, we see that this map is homotopic to f . Thus gY ◦ f and f ◦ gX
are homotopic to each other. In particular, Hn(f) : Hn(X) → Hn(Y ) is a
homomorphism of G-modules.
In the sequel a better version of this involving the Borel construction is needed.
We recall the Borel construction of equivariant homotopy quotient spaces. Let
EG denote a contractible CW complex on which G has a proper free cellular
action; for our purposes, it suffices to fix a choice of this space EG to be the
geometric realization of the nerve of the translation category of G (the category
with vertices [g] indexed by the elements of G, and unique morphisms between
ordered pairs of vertices ([g], [h]), thought of as given by the left action of hg−1).
The classifying space BG is the quotient space EG/G.
If X is any G-space, let X//G denote the homotopy quotient of X by G, ob-
tained using the Borel construction, i.e.,

(1) X//G = (X × EG)/G,

where EG is as above, and G acts diagonally. Note that the natural quotient
map

qX : X × EG→ X//G

is a Galois covering space, with covering group G.

If X and Y are G-spaces, then considering G-equivariant maps f̃ : X ×EG→
Y ×EG compatible with the projections to EG, giving a commutative diagram

X × EG

$$JJJJJJJJJ

f̃
// Y × EG

zzttttttttt

EG

is equivalent to considering maps f : X//G→ Y//G compatible with the maps
qX : X//G→ BG, qY : Y//G→ BG, giving a commutative diagram

X//G

qX
##GGGGGGGG

f
// Y//G

qY
{{wwwwwwww

BG

Proposition 5. Assume that, in the situation of proposition 1, there are Λ-
compatible G-actions on X and Y . Let EG be as above, and consider the Λ-
compatible families {Xλ × EG}, which is a weakly admissible covering family
for X×EG, and {Yλ×EG}, which is an admissible covering family for Y ×EG.
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Then there is a G-equivariant map f̃ : X × EG → Y × EG, compatible with
the projections to EG, such that

(i) f̃(Xλ × EG) ⊂ (Yλ × EG) for all λ ∈ Λ
(ii) if g̃ : X × EG → Y × EG is another such equivariant map, then

there is a G-equivariant homotopy between f̃ and g̃, compatible with
the projections to EG

(iii) The space of such equivariant maps X × EG→ Y × EG, as in (i), is
contractible.

Proof. We show the existence of the desired map, and leave the proof of other
properties, by similar arguments, to the reader.
Let MapΛ(X,Y ) be the contractible space of Λ-compatible maps from X to
Y ; note that it comes equipped with a natural G-action, so that the canon-
ical evaluation map X × MapΛ(X,Y ) → Y is equivariant. This induces
X × MapΛ(X,Y ) × EG → Y × EG. There is also a natural G-equivariant
map π : X × MapΛ(X,Y ) × EG → X × EG. This map π has equivariant
sections, since the projection MapΛ(X,Y )×EG→ EG is a G-equivariant map
between weakly contractible spaces, so that the map on quotients modulo G is
a weak homotopy equivalence (i.e., (MapΛ(X,Y )×EG)/G is another “model”
for the classifying space BG = EG/G). However BG is a CW complex, so the
map has a section. �

As another preliminary, we note some facts (see lemma 6 below) which are
essentially corollaries of Quillen’s Theorem A (these are presumably well-known
to experts, though we do not have a specific reference).
If P is any poset, let C(P ) be the poset consisting of non-empty finite chains
(totally ordered subsets) of P . If f : P → Q is a morphism between posets (an
order preserving map) there is an induced morphism C(f) : C(P ) → C(Q).
If S is a simplicial complex (literally, a collection of finite non-empty subsets
of the vertex set), we may regard S as a poset, partially ordered with respect
to inclusion; then the classifying space BS is naturally homeomorphic to the
geometric realisation |S| (and gives the barycentric subdivision of |S|). A sim-
plicial map f : S → T between simplicial complexes (that is, a map on vertex
sets which sends simplices to simplices, not necessarily preserving dimension)
is also then a morphism of posets. We say that a poset P is contractible if its
classifying space BP is contractible.

Lemma 6. (i) Let f : P → Q be a morphism between posets. Suppose
that for each X ∈ C(Q), the fiber poset C(f)−1(X) is contractible. Then
Bf : BP → BQ is a homotopy equivalence.
(ii) Let f : S → T be a simplicial map between simplicial complexes. Sup-
pose that for any simplex σ ∈ T , the fiber f−1(σ), considered as a poset, is
contractible. Then |f | : |S| → |T | is a homotopy equivalence.

Proof. We first prove (i). For any poset P , there is morphism of posets ϕP :
C(P ) → P , sending a chain to its first (smallest) element. If a, b ∈ P with
a ≤ b, and C is a chain in ϕ−1

P (b), then {a} ∪ C is a chain in ϕ−1
P (a). This
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gives an order preserving map of posets ϕ−1
P (b)→ ϕ−1

P (a) (i.e., a “base-change”
functor). This makes C(P ) prefibred over P , in the sense of Quillen (see page
96 in [19], for example). Also, ϕ−1

P (a) has the minimal element (initial object)
{a}, and so its classifying space is contractible.
Hence Quillen’s Theorem A (see [19], page 96) implies that B(ϕP ) is a homo-
topy equivalence, for any P .
Now let f : P → Q be a morphism between posets. Let C(f) : C(P )→ C(Q)
be the corresponding morphism on the posets of (finite, nonempty) chains.
If A ⊂ B are two chains in C(Q), there is an obvious order preserving map
C(f)−1(B)→ C(f)−1(A). Again, this makes C(f) : C(P )→ C(Q) prefibred.
Since we assumed that BC(f)−1(A) is contractible, for all A ∈ C(Q), Quillen’s
Theorem A implies that BC(f) is a homotopy equivalence.
We thus have a commutative diagram of posets and order preserving maps

C(P )
C(f)
→ C(Q)

ϕP ↓ ↓ ϕQ

P
f
→ Q

where three of the four sides yield homotopy equivalences on passing to clas-
sifying spaces. Hence Bf : BP → BQ is a homotopy equivalence, proving
(i).
The proof of (ii) is similar. This is equivalent to showing that Bf : BS → BT
is a homotopy equivalence. Since f : S → T , regarded as a morphism of posets,
is naturally prefibered, and by assumption, Bf−1(σ) is contractible for each
σ ∈ T , Quillen’s Theorem A implies that Bf is a homotopy equivalence. �

We make use of Propositions 1 and 5 in the following way.
Let A, B be sets, Z ⊂ A × B a subset such that the projections p : Z → A,
q : Z → B are both surjective. Consider simplicial complexes SZ(A), SZ(B)
on vertex sets A, B respectively, with simplices in SZ(A) being finite nonempty
subsets of fibers q−1(b), for any b ∈ B, and simplices in SZ(B) being finite,
nonempty subsets of fibers p−1(a), for any a ∈ A.
Consider also a third simplicial complex SZ(A,B) with vertex set Z, where a
finite non-empty subset Z ′ ⊂ Z is a simplex if and only it satisfies the following
condition:

(a1, b1), (a2, b2) ∈ Z ′ ⇒ (a1, b2) ∈ Z.

Note that the natural maps on vertex sets p : Z → A, q : Z → B induce
canonical simplicial maps on geometric realizations

|p| : |SZ(A,B)| → |SZ(A)|, |q| : |SZ(A,B)| → |SZ(B)|.

Corollary 7. (1) With the above notation, the simplicial maps

|p| : |SZ(A,B)| → |SZ(A)|, |q| : |SZ(A,B)| → |SZ(B)|

are homotopy equivalences. In particular, |SZ(A)|, |SZ(B)| are homo-
topy equivalent.
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(2) If a group G acts on A and on B, so that Z is stable under the diagonal
G action on A × B, then the homotopy equivalences |p|, |q| are G-
equivariant homotopy equivalences. Hence there exists a natural G-
equivariant homotopy equivalence between |SZ(A)|×EG and |SZ(B)|×
EG.

Proof. Since the situation is symmetric with respect to the sets A, B, it suffices
to show |p| is a homotopy equivalence. Note that in the context of a G-action
as stated, the G-equivariance of |p| is clear.
Let Λ be the poset of all simplices of SZ(A), thought of as subsets of A, and
ordered by inclusion. Clearly Λ is Artinian.
Apply Corollary 2 with X = |SZ(A,B)|, Y = |SZ(A)|, Λ as above, and the
following Λ-admissible coverings: for σ ∈ Λ, let Yσ be the (closed) simplex in
Y = |SZ(A)| determined by σ (clearly {Yσ} is admissible); takeXσ = |p|−1(Yσ)
(this is evidently weakly admissible). For admissibility of {Xσ}, we need to
show that each Xσ is contractible.
In fact, regarding the sets of simplices SZ(A,B) and SZ(A) as posets, and
SZ(A,B) → SZ(A) as a morphism of posets, Xσ is the geometric realization
of the simplicial complex determined by ∪τ≤σp

−1(τ).
The corresponding map of posets

p−1({τ |τ ≤ σ})→ {τ |τ ≤ σ}

has contractible fiber posets – if we fix an element x ∈ p−1(τ), and p−1(τ)(≥ x)
is the sub-poset of elements bounded below by x, then y 7→ y∪x is a morphism
of posets rx : p−1(τ) → p−1(τ)(≥ x) which gives a homotopy equivalence on
geometric realizations (it is left adjoint to the inclusion of the sub-poset). But
the sub-poset has a minimal element, and so its realization is contractible.
The poset {τ |τ ≤ σ} is obviously contractible, since it has a maximal element.
Hence, applying lemma 6(ii), Xσ is contractible.
Since the map |p| : X → Y is Λ-compatible, it is the unique such map upto
Λ-compatible homotopy, and is a homotopy equivalence. �

We note that the argument with Quillen’s Theorem A in fact implies directly
that SZ(A,B) → SZ(A) is a homotopy equivalence; the uniqueness assertion
is not, apparently, a formal consequence of Quillen’s Theorem A.

2. Flag Spaces

In this section, we discuss various constructions of spaces (generally simplicial
complexes) defined using flags of free modules, and various maps, and homotopy
equivalences, between these. These are used as building blocks in the proof of
Theorem 1.
Let A be a ring, and let V be a free (left) A-module of rank n. Define a
simplicial complex FL(V ) as follows.
Its vertex set is

FL(V ) =
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= {F = (F0, F1, . . . , Fn) | 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V are A-submodules,

and each quotient Fi/Fi−1 is a free A-module of rank 1}.

We think of this vertex set as the set of “full flags” in V .
To describe the simplices in FL(V ), we need another definition. Let

SPL(V ) = {{L1, . . . , Ln} | Li ⊂ V is a free A-submodule of rank 1, and

the induced map ⊕n
i=1Li → V is an isomorphism}.

Note that {L1, . . . , Ln} is regarded as an unordered set of free A-submodules of
rank 1 of L (i.e., as a subset of cardinality n in the set of all free A-submodules
of rank 1 of V ). We think of SPL(V ) as the “set of unordered splittings of V
into direct sums of free rank 1 modules”.
Given α ∈ SPL(V ), say α = {L1, . . . , Ln}, we may choose some ordering
(L1, . . . , Ln) of its elements, and thus obtain a full flag in V (i.e., an element
in FL(V )), given by

(0, L1, L1 ⊕ L2, · · · , L1 ⊕ · · · ⊕ Ln = V ) ∈ FL(V ).

Let

[α] ⊂ FL(V )

be the set of n! such full flags obtained from α.
We now define a simplex in FL(V ) to be any subset of such a set [α] of vertices,
for any α ∈ SPL(V ). Thus, FL(V ) becomes a simplicial complex of dimen-
sion n! − 1, with the sets [α] as above corresponding to maximal dimensional
simplices.
Clearly Aut (V ) ∼= GL n(A) acts on the simplical complex FL(V ) through sim-
plicial automorphisms, and thus acts on the homology groups H∗(FL(V ),Z)
(and other similar invariants of FL(V )).
Next, remark that if F ∈ FL(V ) is any vertex of FL(V ), we may associate
to it the free A-module gr F (V ) = ⊕n

i=1Fi/Fi−1. If (F, F ′) is an ordered pair
of distinct vertices, which are joined by an edge in FL(V ), then we obtain a
canonical isomorphism (determined by the edge)

ϕF,F ′ : gr F (V )
∼=
−→ gr F ′(V ).

One way to describe it is by considering the edge as lying in a simplex [α],
for some α = {L1, . . . , Ln} ∈ SPL(V ); this determines an identification of
gr F (V ) with ⊕iLi, and a similar identification of gr F ′(V ), and thereby an
identification between grF (V ) and grF ′(V ). Note that from this description
of the maps ϕF.F ′ , it follows that if F, F ′, F ′′ form vertices of a 2-simplex in
FL(V ), i.e., there exists some α ∈ SPL(V ) such that F, F ′, F ′′ ∈ [α], then we
also have

ϕF,F ′′ = ϕF ′,F ′′ ◦ ϕF,F ′ .

The isomorphism ϕF,F ′ depends only on the (oriented) edge in FL(V ) deter-
mined by (F, F ′), and not on the choice of the simplex [α] in which it lies. One
way to see this is to use that, for any two such filtrations F , F ′ of V there is a
canonical isomorphism gr pF gr

q
F ′(V ) ∼= gr qF ′gr

p
F (V ) (Schur-Zassenhaus lemma)
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for each p, q. But in case F , F ′ are flags which are connected by an edge,
then there is also a canonical isomorphism gr F gr F ′(V ) ∼= gr F ′(V ) (in fact the
F -filtration induced on gr pF ′(V ) has only 1 non-trivial step, for each p), and
similarly there is a canonical isomorphism gr F ′grF (V ) ∼= gr F (V ). These three
canonical isomorphisms combine to give the isomorphism ϕF,F ′ .
Hence there is a well-defined local system gr(V ) of A-modules on the geometric
realization |FL(V )| of the simplicial complex FL(V ), whose fibre over a vertex
F is gr F (V ).
Notice further that this local system gr(V ) comes equipped with a natural
Aut(V ) action, compatible with the natural actions on FL(V ) and FL(V ).
Indeed, any element g ∈ Aut(V ) gives a bijection on the set of full flags FL(V ),
with

F = (0 = F0, F1, . . . , Fn = V ) ∈ FL(V ))

mapping to

gF = (0 = gF0, gF1, . . . , gFn = V ).

This clearly gives an induced isomorphism ⊕iFi/Fi−1
∼= ⊕igFi/gFi−1, identi-

fying the fibers of the local system over F and gF in a specific way. It is easy to
see that if α = {L1, . . . , Ln} ∈ SPL(V ), then gα = {gL1, . . . , gLn} ∈ SPL(V ),
giving the action of Aut (V ) on SPL(V ), so that if a pair of vertices F, F ′ of
FL(V ) lie on an edge contained in [α], then gF, gF ′ lie on an edge contained in
[gα], and so the induced identification ϕF,F ′ is compatible with ϕgF,gF ′ . This
induces the desired action of Aut(V ) on the local system.
Further, note that if F, F ′ ∈ FL(V ) are connected by an edge in FL(V ), then we
may realize ϕF,F ′ by the action of a suitable element of Aut (V ), which preserves
a simplex [α] in which the edge lies, and permutes the lines in the splitting
α ∈ SPL(V ). Thus, given any edge-path joining vertices F, F ′ in FL(V ), the
induced composite isomorphism gr F (V ) → gr F ′(V ) is again realized by the
action of an element of Aut (V ). In particular, given an edge-path loop based
as F ∈ FL(V ), the induced automorphism of gr F (V ) is induced by the action
on gr F (V ) of an element of the isotropy group of F in Aut (V ), which is the
“Borel subgroup” corresponding to the flag F .
Hence, the monodromy group of the local system gr(V ) is clearly contained in
Nn(A), defined as a semidirect product

(2) Nn(A) = (A× × · · · ×A×)⋉ Sn

where Sn is the permutation group; we regard Nn(A) as a subgroup of
Aut (⊕iLi) in an obvious way.
Now we make infinite versions of the above constructions.
Let A∞ be the set of sequences (a1, a2, . . . , an, . . .) of elements of A, all but
finitely many of which are 0, considered as a free A-module of countable rank.
There is a standard inclusion in : An →֒ A∞ of the standard free A-module
of rank n as the submodule of sequences with am = 0 for all m > n. The
induced inclusion i : An → An+1 is the usual one, given by i(a1, . . . , an) =
(a1, . . . , an, 0).
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We may thus view A∞ as being given with a tautological flag, consisting of the
A-submodules in(A

n). We define a simplicial complex FL(A∞), with vertex
set FL(A∞) equal to the set of flags 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ A∞ where
Vi/Vi−1 is a free A-module of rank 1, for each i ≥ 1, and with Vn = i(An) for
all sufficiently large n. Thus FL(A∞) is naturally the union of subsets bijective
with FL(An). To make FL(A∞) into a simplicial complex, we define a simplex
to be a finite set of vertices in some subset FL(An) which determines a simplex
in the simplicial complex FL(An); this property does not depend on the choice
of n, since the natural inclusion FL(An) →֒ FL(An+1), regarded as a map on
vertex sets, identifies FL(An) with a subcomplex of FL(An+1), such that any
simplex of FL(An+1) with vertices in FL(An) is already in the subcomplex
FL(An).
We consider GL(A) ⊂ Aut(A∞) as the union of the images of the obvious
maps in : GLn(A) →֒ Aut (A∞), obtained by automorphisms which fix all
the basis elements of A∞ beyond the first n. We clearly have an induced ac-
tion of GL(A) on the simplicial complex FL(A∞), and hence on its geometric
realisation |FL(A∞)| through homeomorphisms preserving the simplicial struc-
ture. The inclusion FL(An) →֒ FL(A∞) as a subcomplex is clearly GLn(A)-
equivariant.
Next, observe that there is a local system gr(A∞) on FL(A∞) whose fiber
over a vertex F = (F0 = 0, F1, . . . , Fn, . . . ) is grF (V ) = ⊕iFi/Fi−1. This has
monodromy contained in

N(A) = ∪nNn(A) ⊂ GL(A),

where we may also view N(A) as the semidirect product of

(A×)∞ = diagonal matrices in GL(A)

by the infinite permutation group S∞. This local system also carries a natural
GL(A)-action, compatible with the GL(A)-action on FL(A∞).
Next, we prove a property (Corollary 9) about the action of elementary matrices
on homology, which is needed later. The corollary follows immediately from
the lemma below.
For the statement and proof of the lemma, we suggest that the reader browse
the remarks on Hom(K1×K2,K3) in section 0, given simplicial complexes Ki

for i = 1, 2, 3. The notation Elem(V ′ →֒ V ′ ⊕ V ′′) that appears in the lemma
has also been introduced in section 0 under the heading “elementary matrices”.

Lemma 8. Let V ′, V ′′ be two free A-modules of finite rank, i′ : V ′ → V ′⊕V ′′,
i′′ : V ′′ → V ′ ⊕ V ′′ the inclusions of the direct summands. Consider the two
natural maps

(3) α, β : FL(V ′)× FL(V ′′)→ FL(V ′ ⊕ V ′′)

given by

α : ((F ′
1, . . . , F

′
r = V ′), (F ′′

1 , . . . , F
′′
s )) 7→

(i′(F ′
1), . . . , i

′(F ′
r) = i′(V ′), i′(V ′) + i′′(F ′′

1 ), . . . , i
′(V ′) + i′′(F ′′

s ) = V ′ ⊕ V ′′),
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β : ((F ′
1, . . . , F

′
r = V ′), (F ′′

1 , . . . , F
′′
s )) 7→

(i′′(F ′′
1 ), . . . , i

′′(F ′′
s ) = i′′(V ′′), i′′(V ′′) + i′(F ′

1), . . . , i
′′(V ′′) + i′(F ′

r) = V ′⊕ V ′′).

(A) α and β are vertices of a one-simplex of Hom(FL(V ′)× FL(V ′′),FL(V ′ ⊕
V ′′)).
(B) The maps |FL(V ′)| × |FL(V ′′)| → |FL(V ′ ⊕ V ′′)| induced by α, β are ho-
motopic to each other.
(C) Let c : |FL(V ′)| × |FL(V ′′)| → |FL(V ′ ⊕ V ′′)| denote the map produced by
α. Denote the action of g ∈ GL(V ′ ⊕ V ′′) on |FL(V ′ ⊕ V ′′)| by |FL(g)|. Then
c and |FL(g)| ◦ c are homotopic to each other, if g ∈ Elem(V ′ →֒ V ′ ⊕ V ′′) ⊂
GL(V ′ ⊕ V ′′).

Proof. Part (A). By the definition of Hom(K1 ×K2,K3) in section 0, we only
have to check that α(σ′ × σ′′) ∪ β(σ′ × σ′′) is a simplex of FL(V ′ ⊕ V ′′) for
all simplices σ′ of FL(V ′) and all simplices σ′′ of FL(V ′′). Clearly it suffices
to prove this for maximal simplices, so we assume that both σ′ and σ′′ are
maximal.
Note that if we consider any maximal simplex σ′ in FL(V ′), it corresponds
to a splitting {L′

1, . . . , L
′
r} ∈ SPL(V ′). Similarly any maximal simplex σ′′ of

FL(V ′′) corresponds to a splitting {L′′
1 , . . . , L

′′
s} ∈ SPL(V ′′). This determines

the splitting {i′(L′
1), . . . , i

′(L′
r), i

′′(L′′
1), . . . , i

′′(L′′
s )} of V

′⊕V ′′, giving rise to a
maximal simplex τ of FL(V ′ ⊕ V ′′), and clearly α(σ′ × σ′′) and β(σ′ × σ′′) are
both contained in τ . Thus their union is a simplex.
(B) follows from (A). We now address (C). We note that c = g ◦ c for all
g ∈ id + HomA(V

′′, V ′). Denoting by d the map produced by β we see that
d = g ◦ d for all g ∈ id +HomA(V

′, V ′′). Because c, d are homotopic to each
other, we see that c and g ◦c are in the same homotopy class when g is in either
of the two groups above. These groups generate Elem(V ′ →֒ V ′ ⊕ V ′′), and so
this proves (C). �

Corollary 9. (i) The group En+1(A) of elementary matrices acts trivially
on the image of the natural map

i∗ : H∗(FL(A
⊕n),Z)→ H∗(FL(A

⊕n+1),Z).

(ii) The action of the group E(A) of elementary matrices on H∗(FL(A
∞),Z)

is trivial.

Proof. We put V ′ = An and V ′′ = A in the previous lemma. The c in part (B)
of the lemma is precisely the i being considered here. By (C) of the lemma,
g ◦ i is homotopic to i for all g ∈ Elem(An →֒ An+1) = En+1(A). This proves
(i). The direct limit of the r-homology of |FL(An)|, taken over all n, is the r-th
homology of |FL(A∞|. Thus (i) implies (ii).

�

We will find it useful below to have other “equivalent models” of the spaces
FL(V ), FL(A∞), by which we mean other simplicial complexes, also defined
using collections of appropriate A-submodules, such that there are natural
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homotopy equivalences between the different models of the same homotopy
type, compatible with the appropriate group actions, etc.
We apply corollary 7 as follows. Let V ∼= An. We put A = SPL(V ), B =
FL(V ) and Z = {α, F ) : F ∈ [α]}. The simplicial complex SZ(B) of corollary 7
is FL(V ) by its definition. The simplicial complex SZ(A) is our definition of
SPL(V ). The homotopy equivalence of SPL(V ) and FL(V ) follows from this
corollary.
We define SPL(A∞) to be the collection of sets S satisfying
(a) L ∈ S implies that L is a free rank one A-submodule of A∞,
(b)⊕{L : L ∈ S} → A∞ is an isomorphism, and
(c) the symmetric difference of S and the standard collection:
{A(1, 0, 0, ...), A(0, 1, 0, ...), · · · } is a finite set.
Corollary 7 is then applied to the subset Z ⊂ SPL(A∞)× FL(A∞) consisting
of the pairs (S, F ) so that there is a bijection h : S → N so that for every
L ∈ S,
L ⊂ Fh(L) and L→ grF

h(L) is an isomorphism.

The above Z defines SPL(A∞). The desired homotopy equivalence of the geo-
metric realisations of SPL(A∞) and FL(A∞) comes from the same corollary.
We also find it useful to introduce a third model of the homotopy types of
FL(V ) and FL(A∞), the “enriched Tits buildings” ET(V ) and ET(A∞). The
latter is defined in the last remark of this section.
Let V ∼= An as a left A-module. Let E(V ) be the set consisting of ordered pairs

(F, S) = ((0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V ), (S1, S2, . . . , Sr)) ,

where F is a partial flag in V , which means that Fi ⊂ V is an A-submodule,
such that Fi/Fi−1 is a nonzero free module for each i, and Si ∈ SPL(Fi/Fi−1)
is an unordered collection of free A-submodules of Fi/Fi−1 giving rise to a direct
sum decomposition ⊕L∈Si

L ∼= Fi/Fi−1. Thus S is a collection of splittings of
the quotients Fi/Fi−1 for each i.
We may put a partial order on the set E(V ) in the following way: (F, S) ≤
(F ′, T ) if the filtration F is a refinement of F ′, and the data S, T of direct sum
decompositions of quotients are compatible, in the following natural sense —
if F ′

i−1 = Fj−1 ⊂ Fj ⊂ · · ·Fl = F ′
i , then Ti must be partitioned into subsets,

which map to the sets Sj , Sj+1, . . . , Sl under the appropriate quotient maps.
In particular, (F ′, T ) has only finitely many possible predecessors (F, S) in the
partial order.
We have a simplicial complex ET (V ) := NE(V ), the nerve of the partially
ordered set E(V ) considered as a category, so that simplices are just nonempty
finite chains of elements of the vertex (po)set E(V ).
Note that maximal elements of E(V ) are naturally identified with elements
of SPL(V ), while minimal elements are naturally identified with elements of
FL(V ). Simplices in FL(V ) are nonempty finite subsets of FL(V ) which have a
common upper bound in E(V ), and similarly simplices in SPL(V ) are nonempty
finite subsets of SPL(V ) which have a common lower bound in E(V ).
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We now show that ET(V ) = BE(V ), the classifying space of the poset E(V ), is
another model of the homotopy type of |FL(V )|.
In a similar fashion, we may define a poset E(A∞), and a space ET(A∞), giving
another model of the homotopy type of |FL(A∞)|.
We first have a lemma on classifying spaces of certain posets. For any poset
(P,≤), and any S ⊂ P , let

L(S) = {x ∈ P | x ≤ s ∀ s ∈ S}, U(S) = {x ∈ P | s ≤ x ∀ s ∈ S}

be the upper and lower sets of S in P , respectively. Let Pmin denote the
simplicial complex with vertex set Pmin given by minimal elements of P , and
where a nonempty finite subset S ⊂ Pmin is a simplex if U(S) 6= ∅. Let |Pmin|
denote the geometric realisation of Pmin.

Lemma 10. Let (P,≤) be a poset such that
(a) ∀ s ∈ P , the set L({s}) is finite
(b) if ∅ 6= S ⊂ P with L(S) 6= ∅, then the classifying space BL(S) of L(S) (as
a subposet) is contractible.

Then |Pmin| is naturally homotopy equivalent to BP .

Proof. We apply Proposition 1. Take

Λ = {L(S)| ∅ 6= S ⊂ P and L(S) 6= ∅}.

This is a poset with respect to inclusion. All λ ∈ Λ are finite subsets of P ,
so Λ is Artinian. By assumption, the subsets B(λ) ⊂ BP , for λ ∈ Λ, are
contractible. On the other hand, the sets λ ∩ Pmin give simplices in |Pmin|.
Thus, both the spaces BP and |Pmin| have Λ-admissible coverings, and are
thus homotopy equivalent. �

Remark. If a poset P has g.c.d. in the sense that ∅ 6= S ⊂ P and ∅ 6=
L(S) implies L(S) = L(t) for some t ∈ P , then condition (b) of the lemma is
immediately satisfied. However E(V ) does not enjoy the latter property.
For example, if V = A3 with basis e1, e2, e3, let s = {Ae1, Ae2, Ae3} and
t = {Ae1, A(e1 + e2), Ae3} and let S = {s, t} ⊂ SPL(V ) ⊂ E(V ). Then L(S)
has three minimal elements and two maximal elements. In particular, g.c.d.
(s, t) does not exist. In this example, B(L(S)) is an oriented graph in the shape
of the letter M.

Proposition 11. If V is a free A module of finite rank, the poset E(V ) satisfies
the hypotheses of lemma 10. Thus, |FL(V )| is naturally homotopy equivalent
to ET(V ) = B(E(V )).

Proof. Clearly the condition (a) of lemma 10 holds, so it suffices to prove (b).
We now make a series of observations.

(i) Regard SPL(V ) as the set of maximal elements of the poset E(V ).
We observe that for any s ∈ E(V ), if H(s) = SLP (V ) ∩ U({s}), then
we have that L({s}) = L(H(s)). This is easy to see, once one has
unravelled the definitions.
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Thus, it suffices to show that for sets S of the type ∅ 6= S ⊂
SPL(V ) ⊂ E(V ), we have that B(L(S) is contractible. We assume
henceforth that S ⊂ SPL(V ).

(ii) Given a submoduleW ⊂ V which determines a partial flag 0 ⊂W ⊂ V ,
we have a natural inclusion of posets

E(W )× E(V/W ) ⊂ E(V ),

where on the product, we take the partial order

(a1, a2) ≤ (b1, b2)⇔ a1 ≤ b1 ∈ E(W ) and a2 ≤ b2 ∈ E(V/W ).

Note that α ∈ E(V ) lies in the sub-poset E(W )× E(V/W ) precisely
when W is one of the terms in the partial flag associated to α. Hence,
if α lies in the sub-poset, so does the entire set L({α}).

(iii) With notation as above, if ∅ 6= S ⊂ SPL(V ) ⊂ E(V ), and L(S) has
nonempty intersection with the image of E(W )×E(V/W ) ⊂ E(V ), then
clearly there exist nonempty subsets S′(W ) ⊂ SPL(W ), S′′(W ) ⊂
SPL(V/W ) such that

(4) L(S) ∩ (E(W ) × E(V/W )) = L(S′(W ))× L(S′′(W ))

(iv) If ∅ 6= S ⊂ SPL(V ), then each s ∈ S is a subset of

L(V ) = {L ⊂ V |L is a free direct summand of rank 1 of V },

the set of lines in V . Let

T (S) = ∩s∈Ss = lines common to all members of S,

so that T (S) ⊂ L(V ). Let M(S) denote the direct sum of the elements
of T (S), so that M(S) is a free A-module of finite rank, and 0 ⊂
M(S) ⊂ V is a partial flag, in the sense explained earlier; further,
T (S) may be regarded also as an element of SPL(M(S)) ⊂ E(M(S)).

(v) We now claim the following: if ∅ 6= S ⊂ SPL(V ) and b ∈ L(S), then
there exists a unique subset f(b) ⊂ T (S) such that if M(b) is the
(direct) sum of the lines in f(b), then

b = (f(b), b′) ∈ SPL(M(b))× E(V/M(b)) ⊂ E(M(b))× E(V/M(b)) ⊂ E(V ).

Indeed, if

b = ((0 = W0 ⊂W1 ⊂ · · · ⊂Wh = V ), (t1, t2, . . . , th)}

where ti ∈ SPL(Wi/Wi−1), then since b ∈ L(S), we must have that
t1 ⊂ s for all s ∈ S, which implies that t1 ⊂ T (S). Take M(b) = W1,
t1 = f(b) ∈ SPL(M(b)).

Let P(T (S)) be the poset of nonempty subsets of T (S), with respect
to inclusion. Then b 7→ f(b) gives an order-preserving map f : L(S)→
P(T (S)).

(vi) For any b ∈ L(S), we have

L(b) = L({f(b)})× L(b′) ⊂ E(M(b))× E(V/M(b)),

so that if b1 ∈ L(b), then ∅ 6= f(b1) ⊂ f(b).
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We will now complete the proof of Proposition 11. We proceed by induction
on the rank of V . Suppose S ⊂ SPL(V ) is nonempty, and L(S) 6= ∅.
If M(S) = V , then S = {s} for some s, and L(S) = L({s}) is a cone, hence
contractible. So assume M(S) 6= V .
If T ⊂ T (S) is non-empty, and M(T ) ⊂ V the (direct) sum of the lines in T ,
then in the notation of (4) above, with W = M(T ), we have S′(W ) = {T },
and so f−1(T ) = {T } × L(S′′(W ))) for some S′′(W ) ⊂ SPL(V/W ).
Now by induction, we have that L(S′′(W )) is contractible, provided it is non-
empty. Hence the non-empty fiber posets of f are contractible. If ∅ 6= T ⊂
T ′ ⊂ T (S), then there is a morphism of posets f−1(T ) → f−1(T ′) given as
follows: if b ∈ f−1(T ), and

b = ((0 = W0 ⊂W1 ⊂ · · · ⊂Wh = V ), (t1, t2, . . . , th)}

where ti ∈ SPL(Wi/Wi−1), then since b ∈ f−1(T ), we must have t1 = T ,
W1 = M(T ). Now define b′ ∈ f−1(T ′) using the partial flag

0 = W ′ ⊂W1 +M(T ′) ⊂W2 +M(T ′) ⊂ · · · ⊂Wh +M(T ′) = V

and elements t′i ∈ SPL(Wi +M(T ′)/Wi−1 +M(T ′)) induced by the ti. This
is easily seen to be well-defined, and gives a morphism of posets f−1(T ) →
f−1(T ′). In particular, if T ⊂ T ′ ⊂ T (S) and f−1(T ) is non-empty, then so is
f−1(T ′).
Now take any b ∈ L(S) and put T = f(b), T ′ = T (S) in the above to deduce
that f−1(T (S)) 6= ∅. By (iii) above, we see that every f−1X is nonempty (and
therefore contractible as well) for every nonempty X ⊂ T (S).
We see that all the fiber posets f−1(T ) considered above are nonempty.
This makes f pre-cofibered, in the sense of Quillen (see [19], page 96), with
contractible fibers. Hence by Quillen’s Theorem A, f induces a homotopy
equivalence on classifying spaces. But P(T (S)) is contractible (for example,
since T (S) is the unique maximal element). �

Remark. Proposition 5 and the remarks preceding it apply to the above
Proposition. In particular, we obtain homotopy equivalences f : ET(V ) →
FL(V ) so that the induced maps on homology are GL(V )-equivariant.

Remark. We now define the poset E(A∞) and show that ET(A∞) = BE(A∞)
is homotopy equivalent to |FL(A∞|.
We have already observed that a short exact sequence of free modules of finite
rank

0→ V ′ → V → V ′′ → 0

induces a natural inclusion E(V ′) × E(V ′′) →֒ E(V ) of posets. In particular,
when V ′′ ∼= A, this yields an inclusion E(V ′) →֒ E(V ).
We have ... ⊂ An ⊂ An+1 ⊂ ... ⊂ A∞ as in the definition of FL(A∞). From
the above, we obtain a direct system of posets

...E(An) →֒ E(An+1) →֒ ...

and we define E(A∞) to be the direct limit of this system of posets.
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We put P = E(A∞) in lemma 10. We note that α ≤ β, α ∈ E(A∞), β ∈ E(An)
implies that α ∈ E(An). It follows that P = E(A∞) satisfies the requirements
of the lemma because each E(An) does. It is clear that Pmin = FL(A∞), and
furthermore that Pmin = FL(A∞). This yields the homotopy equivalence of
|FL(A∞)| with ET(A∞).
By Proposition 5, it follows that ET(A∞)//GL(A) and |FL(A∞)|//GL(A) are
also homotopy equivalent to each other.
It has already been remarked that Corollary 7 gives the homotopy equivalence
of |SPL(A∞| with |FL(A∞)|. Combined with Proposition 5, this gives the
homotopy equivalence of |SPL(A∞|//GL(A) with |FL(A∞)|//GL(A). The re-
marks preceding that proposition, combined with corollary 9, show that the
action of E(A) on the homology groups of |SPL(A∞)| is trivial.

3. homology of the Borel constrcuction

Let V be a free A-module of rank n. Fix β ∈ SPL(V ) and let N(β) ⊂ GL(V )
be the stabiliser of β (when V = An and β is the standard splitting, then N(β)
is the subgroup Nn(A) of the last section). That there is a GL(V )-equivariant
N(β)-torsor on |FL(V )| has been observed in the previous section. In a similar
manner, one may construct a GL(V )-equivariant N(β)-torsor on ET(V ). This
gives rise to a N(β)-torsor on ET(V )//GL(V ). Because BN(β) is a classifying
space for such torsors, we obtain a map ET(V )//GL(V )→ BN(β), well defined
up to homotopy.
On the other hand, the inclusion of β in ET(V ) gives rise to an inclusion
BN(β) = {β}//N(β) →֒ ET(V )//GL(V ). It is clear that the composite
BN(β) →֒ ET(V )//GL(V ) → BN(β) is homotopic to the identity. Thus
BN(β) is a homotopy retract of ET(V )//GL(V ), but not homotopy equivalent
to ET(V )//GL(V ). Nevertheless we have the following statement:

Proposition 12. The map BN(β) → ET(V )//GL(V ) induces an isomor-
phism on integral homology, provided A is as in theorem 1.

Proof. Fix a basis for V , identifying GL(V ) with GLn(A). Let β ∈ SPL(V )
be the element naturally determined by this basis. Regarded as a vertex of
ET(V ), let (β, ∗) 7→ β under the natural map

π : ET(V )//GL(V )→ ET(V )/GL(V )

from the homotopy quotient to the geometric quotient, where ∗ ∈ EGL(V ) is
the base point (corresponding to the vertex labelled by the identity element of
GL(V )).
For any x ∈ ET(V ), let H(x) ⊂ GL(V ) be the isotropy group of x for the
GL(V )-action on ET(V ). Note that since

ET(V )//GL(V ) = (ET(V )× EGL(V )) /GL(V ),

the fiber π−1(π((x, ∗)) may be identified with EGL(V )/H(x), which has the
homotopy type of BH(x).
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In particular, the fiber π−1(β) has the homotopy type of BNn(A), Further,
the principal Nn(A) bundle on EGL(V )/H(β) is naturally identified with the
universal Nn(A)-bundle on BNn(A) – its pullback to {β}×EGL(V ) is the triv-
ial Nn(A)-bundle, regarded as an Nn(A)-equivariant principal bundle, where
Nn(A) acts on itself (the fiber of the trivial bundle) by translation. This means
that the composite

π−1(β)→ ET(V )/GL(V )→ BNn(A)

is a homotopy equivalence, which is homotopic to the identity, if we identify
EGL(V )/H(β) with BNn(A).

Thus, the lemma amounts to the assertion that π−1(β) → ET(V )//GL(V )
induces an isomorphism in integral homology.
Fix α ∈ FL(V ) with α ≤ β in the poset E(V ). Let

P = {λ ∈ E(V )|α ≤ λ ≤ β}.

One sees easily that (i) BP is contractible, and (ii) the map BP →
ET(V )/GL(V ) is a homoemorphism. The first assertion is obvious, since P
has a maximal (as well as a minimal) element, so that BP is a cone. For the
second assertion, we first note that an element b ∈ P ⊂ E(V ) is uniquely de-
termined by the ranks of the modules in the partial flag in V associated to b.
Conversely, given any increasing sequence of numbers n1 < . . . < nh = rankV ,
there does exist an element of P whose partial flag module ranks are these
integers. Given any element b ∈ E(V ), there exists an element g ∈ GL(V ) so
that g(b) = b′ ∈ P ; the element b′ is the unique one determined by the sequence
of ranks associated to b. Finally, one observes that if b ∈ P , and g ∈ GL(V )
such that g(b) ∈ P , then in fact g(b) = b: this is a consequence of the unique-
ness of the element of P with a given sequence of ranks. These observations
imply that BP → ET(V )/GL(V ) is bijective; it is now easy to see that it is a
homeomorphism.
We may view ET(V )//GL(V ) as the quotient of BP ×EGL(V ) by the equiv-
alence relation

(5) (x, y) ∼ (x′, y′)⇔ x = x′, and y′ = g(y) for some g ∈ H(x).

The earlier map π : ET(V )//GL(V ) → ET(V )/GL(V ) may be viewed now as
the map induced by the projection BP × EGL(V )→ BP . We may, with this
identification, also identify β with β.
Next, we construct a “good” fundamental system of open neighbourhoods of
an arbitrary point x ∈ BP , which we need below. Such a point x lies in the
relative interior of a unique simplex σ(x) (called the carrier of x) corresponding
to a chain λ0 < λ1 < · · · < λr. Then one sees that the stabiliser H(x) ⊂ GL(V )
is given by

H(x) =
r⋂

i=0

H(λi),
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since any element of GL(V ) which stabilizes the simplex σ(x) must stabilize
each of the vertices (for example, since the GL(V ) action preserves the partial
order).
Let star (x) be the union of the relative interiors of all simplices in BP con-
taining σ(x) (this includes the relative interior of σ(x) as well, so it contains
x). It is a standard property of simplicial complexes that star (x) is an open
neighbourhood of x in BP . Then if z ∈ star (x), clearly σ(z) contains σ(x),
and so H(z) ⊂ H(x).
Next, for such a point z, and any y ∈ EGL(V ), it makes sense to consider the
path

t 7→ (tz + (1− t)x, y) ∈ σ(z)× EGL(V ) ⊂ BP × EGL(V )

(where we view the expression tz+(1−t)x as a point of σ(z), using the standard
barycentric coordinates). In fact this path is contained in star (x) × {y}, and
gives a continuous map

H(x) : star (x) × EGL(V )× I → star (x)× EGL(V )

which exhibits {x} × EGL(V ) as a strong deformation retract of star (x) ×
EGL(V ). Further, this is compatible with the equivalence relation ∼ in (5)
above, so that we obtain a strong deformation retraction

H(x) : π−1(star (x)) × I → π−1(star (x)).

In a similar fashion, we can construct a fundamental sequence of open neigh-
bourhoods Un(x) of x in BP , with U1(x) = star (x), and set

Un(x) = H(x)(star (x) × EGL(V )× [0, 1/n)).

The same deformation retraction H determines, by reparametrization, a defor-
mation retraction

Hn(x) : π
−1(Un(x)) × I → π−1(Un(x))

of π−1(Un(x) onto π−1(x).
Thus, if P ′ = P \ β, then

π−1(star (β)) = ET(V )//GL(V ) \ π−1(BP ′),

and from what we have just shown above, the inclusion

π−1(β)→ π−1(star (β)) = ET(V )//GL(V ) \ π−1(BP ′)

is a homotopy equivalence. To simplify notation, we let X = ET(V )//GL(V ),
so that we have the map π : X → BP , and X0 = X \ π−1(BP ′). Let π0 =
π |X0 : X0 → BP .
We are reduced to showing, with this notation, that the inclusion of the (dense)
open subset

X0 → X

induces an isomorphism in integral homology. Equivalently, it suffices to show
that this inclusion induces an isomorphism on cohomology with arbitrary con-
stant coefficients M . By the Leray spectral sequence, this is a consequence of
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showing that the maps of sheaves

Riπ∗MX → Riπ0
∗MX0

is an isomorphism, which is clear on stalks x ∈ BP \ BP ′. Now consider
stalks at a point x ∈ BP ′. For any point x′ ∈ star (x), note that x lies in
some face of σ(x′) (the carrier of x′). We had defined a fundamental system of
neighbourhoods Un(x) of x in BP ; explicitly we have

Un(x) = {tx
′ + (1 − t)x|0 ≤ t < 1/n and x′ ∈ star (x)}.

Here, as before, we make sense of the above expression tx′ + (1 − t)x using
barycentric coordinates in σ(x′).
Define

zn(x) =
1

2n
β + (1−

1

2n
)x.

Note that z ∈ BP \BP ′ = star (β). Further, observe that Un(x)∩BP \BP ′ is
contractible, contains the point z, and for any w ∈ Un(x)∩BP \BP ′, contains
the line segment joining z and w (this makes sense, in terms of barycentric
coordinates of any simplex containing both zn(x) and w; this simplex is either
the carrier of w, or the cone over it with vertex β, of which σ(w) is a face).
This implies H(w) ⊂ H(zn(x)) = H(x) ∩ H(β), for all w ∈ Un(x). A minor
modification of the proof (indicated above) that π−1(x) ⊂ π−1(Un(x)) is a
strong deforamtion retract, yields the statement that

π−1(zn(x))→ π−1(Un(x) \BP ′)

is a strong deformation retract. Hence, the desired isomorphism on stalks
follows from:

(6) B(H(x) ∩H(β))→ B(H(x)) induces isomorphisms in integral homology.

We now show how this statement, for the appropriate rings A, is reduced to
results of [13].
First, we discuss the structure of the isotropy groups H(x) encountered above.
Let λ ∈ P , given by

λ = (F, S) = ((0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V ), (S1, S2, . . . , Sr)) ,

where we also have α ≤ λ ≤ β for our chosen elements α ∈ FL(V ) and
β ∈ SPL(V ). We may choose a basis for each of the lines in the splitting β;
then α ∈ FL(V ) uniquely determines an order among these basis elements,
and thus a basis for the underlying free A-module V , such that the i-th sub-
module in the full flag α is the submodule generated by the first i elements in
β. Now the stabilizer H(α) may be viewed as the group of upper triangular
matrices in GLn(A), while H(β) is the group generated by the diagonal sub-
group in GLn(A) and the group of permutation matrices, identified with the
permutation group Sn.
In these terms, H(λ) has the following structure. The filtration F = (0 = F0 ⊂
F1 ⊂ · · · ⊂ Fr = V ) is a sub-filtration of the full flag α, and so determines a
“unipotent subgroup” U(λ) of elements fixing the elements of this partial flag,
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and acting trivially on the graded quotients Fi/Fi−1. These are represented as
matrices of the form




In1
∗ ∗ · · · ∗

0 In2
∗ · · · ∗

0 0 In3
· · · ∗

...
. . .

...
0 · · · Inr




where ni = rank (Wi/Wi−1), Ini
is the identity matrix of size ni; these are the

matrices which are strictly upper triangular with respect to a certain “ladder”.
Next, we may consider the group S(λ) ⊂ Sn of permutation matrices, supported
within the corresponding diagonal blocks, of the form




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0

...
. . .

...
0 · · · Ar




where each Aj is a permutation matrix. Finally, we have the diagonal matrices
Tn(A) ⊂ GLn(A), which are contained in H(λ) for any such λ. In fact H(λ) =
U(λ)Tn(A)S(λ), where the group Tn(A)S(λ) normalizes the subgroup U(λ),
making H(λ) a semidirect product of U(λ) and Tn(A)S(λ). We also have that
S(λ) normalizes U(λ)Tn(A).
In particular, H(α) has trivial associated permutation group S(α) = {In},
while H(β) has trivial unipotent group U(β) = {In} associated to it.
Now if x ∈ BP , and σ(x) is the simplex associated to the chain λ0 < · · · < λr

in the poset P , then it is easy to see that H(x) is the semidirect product of
U(x) := U(λr) and Tn(A)S(x), with S(x) := S(λ0), since as seen earlier, H(x)
is the intersection of the H(λi). In other words, the “unipotent part” and the
“permutation group” associated to H(x) are each the smallest possible ones
from among the corresponding groups attached to the vertices of the carrier of
x. Again we have that S(x) normalizes U(x)Tn(A).
We return now to the situation in (6). We see that the groups H(x) =
U(x)Tn(A)S(x) and H(x) ∩ H(β) = Tn(A)S(x) both have the same associ-
ated permutation group S(x), which normalizes U(x)Tn(A) as well as Tn(A).
By comparing the spectral sequences

E2
p,q = Hp(S(x), Hq(U(x)Tn(A),Z))⇒ Hp+q(H(x),Z),

E2
p,q = Hp(S(x), Hq(Tn(A),Z))⇒ Hp+q(H(x) ∩H(β),Z)

we see that it thus suffices to show that the inclusion

(7) Tn(A) ⊂ U(x)Tn(A)

induces an isomorphism on integral homology.
Now lemma 13 below finishes the proof. �
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To state lemma 13 we use the following notation. Let I = {i0 = 0 < i1 < i2 <
· · · < ir = n} be a subsequence of {0, 1, . . . , n}, so that I determines a partial
flag

0 ⊂ Ai1 ⊂ Ai2 ⊂ · · · ⊂ Air = An,

where Aj ⊂ An as the submodule generated by the first j basis vectors. Let
U(I) be the “unipotent” subgroup of GLn(A) stabilising this flag, and acting
trivially on the associated graded A-module, and let G(I) ⊂ GLn(A) be the
subgroup generated by U(I) and Tn(A) = (A×)n, the subgroup of diagonal
matrices. Then Tn(A) normalises U(I), and G(I) is the semidirect product of
U(I) and Tn(A).

Lemma 13. Let A be a Nesterenko-Suslin ring. For any I as above, the ho-
momorphism G(I)→ G(I)/U(I) ∼= Tn(A) induces an isomorphism on integral
homology H∗(G(I),Z)→ H∗(Tn(A),Z).

Proof. We work by induction on n, where there is nothing to prove when n = 1,
since we must have G(I) = T1(A) = A× = GL1(A). Next, if n > 1, and
I = {0 < n}, then U(I) is the trivial group, so there is nothing to prove.
Hence we may assume n > 1, r ≥ 2, and thus 0 < i1 < n. There is then a
natural homomorphism G(I)→ G(I ′), where I ′ = {0 < i2−i1 < · · · < ir−i1 =
n− i1}, and G(I ′) ⊂ GLn−i1(A). Let n

′ = n− i1. The induced homomorphism
Tn(A)→ Tn′(A) is naturally split, with kernel Ti1(A) ⊂ GLi1(A) ⊂ GLn(A).
Let

U1(I) = ker (U(I)→ U(I ′)) = ker (G(I)→ GLi1(A)×GLn′(A)) .

Then U1(I) is a normal subgroup of G(I), from the last description, and

G(I)/U1(I) ∼= U(I ′) · Tn(A) = Ti1(A) ×G(I ′).

Now U1(I) may be identified with Mi1,n′(A), the additive group of matrices
of size i1 × n′ over A; this matrix group has a natural action of GLi1(A),
and thus of the diagonal matrix group Ti1(A), and the resulting semidirect
product of Ti1(A) with U1(A) is a subgroup of G(I) (in fact, it is the kernel of
G(I)→ G(I ′)). This matrix group Mi1,n′(A) is isomorphic, as Ti1(A)-modules,
to the direct sum

⊕i1
i=1A

n′

(i),

where An′

(i) is the free A-module of rank n′, with a Ti1(A)-action given by
the the “i-th diagonal entry” character Ti1(A) → A×. Thus, the semidirect
product Ti1(A)U1(I) has a description as a direct product

Ti1(A)U1(i) ∼= H ×H × · · · ×H = Hni

with H = An′

·A× equal to the naturally defined semidirect product of the free
A module An′

with A×, where A× operates by scalar multiplication.
Proposition 1.10 and Remark 1.13 in the paper [13] of Nesterenko and Suslin

implies immediately that H → H/An′ ∼= A× induces an isomorphism on inte-
gral homology.
We now use the following facts.
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(i) If H ⊂ K ⊂ G are groups, with H , K normal in G, and if K → K/H
induces an isomorphism in integral homology, so does G→ G/H ; this
follows at once from a comparison of the two spectral sequences

E2
r,s = Hr(G/K,Hs(K,Z))⇒ Hr+s(G,Z),

E2
r,s = Hr(G/K,Hs(K/H,Z))⇒ Hr+s(G/H,Z).

(ii) If Hi ⊂ Gi are normal subgroups, for i = 1, . . . , n, such that
Gi → Gi/Hi induce isomorphisms on integral homology, then for
G =

∏n
i=1 Gi, H =

∏n
i=1 Hi, the map G → G/H induces an isomor-

phism on integral homology. This follows from the Kunneth formula.

The fact (ii) implies that Ti1(A)U1(I) → Ti1(A) induces an isomorphism
on integral homology. Then (i) implies that G(I) → Ti1(A) × G(I ′) in-
duces an isomorphism on integral homology. By induction, we have that
G(I ′) → G(I ′)/U(I ′) induces an isomorphism on integral homology. Hence
Ti1(A) × G(I ′) → Ti1 × G(I ′)/U(I ′) also induces an isomorphism on integral
homology. Thus, we have shown that the composition G(I) → G(I)/U(I) =
Tn(A) induces an isomorphism on integral homology. �

4. SPL(A∞)+ and the groups Ln(A)

We first note that there is a small variation of Quillen’s plus construction.
Let (X, x) be a pointed CW complex, (X0, x) a contractible pointed subcom-
plex, G a group of homeomorphisms of X which acts transitively on the path
components of X , and let H be a perfect subgroup of G, such that H stabilizes
X0.
Then X//G is clearly path connected, and comes equipped with
(i) a natural map θ : X//G → BG = EG/G, induced by the projection
X × EG→ EG
(ii) a map (X0 × EG)/H → X//G, induced by the H-stable contractible set
X0 ⊂ X
(iii) a homotopy equivalence BH → (X0 ×EG)/H , such that the composition

BH → X//G
θ
→ BG is homotopic to the natural map BH → BG

(iv) a natural map (X, x) →֒ (X//G, x0) determined by the base point of EG.
Note that, in particular, there is a natural inclusion H →֒ π1(X//G, x0), which
gives a section over H ⊂ G of the surjection θ∗ : π1(X//G, x0)→ π1(BG, ∗) =
G.

Lemma 14. In the above situation, there is a pointed CW complex (Y, y), to-
gether with a map f : (X//G, x0)→ (Y, y) such that
(i) the natural composite map

H →֒ π1(X//G, x0)
f
→ π1(Y, y)

is trivial
(ii) if g : (X//G, x0)→ (Z, z) such that H is in the kernel of

π1(X//G, x0)→ π1(Z, z)
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then g factors through f , uniquely upto a pointed homotopy
(iii) f induces isomorphisms on integral homology; more generally, if L is any
local system on Y , the map on homology with coefficients H∗(X//G, f∗L) →
H∗(Y, L) is an isomorphism
(iv) h : (X, x) → (X ′, x′) is a pointed map of such CW complexes with G-
actions, such that h is G-equivariant, then there is a map (Y, y) → (Y ′, y′),
making (X, x) 7→ (Y, y) is functorial (on the category of pointed CW complexes
with suitable G actions, and equivariant maps), and f yields a natural trans-
formation of functors.

The pair (Y, y) is obtained by applying Quillen’s plus construction to

(X//G, x0) with respect to the perfect normal subgroup H̃ of π1(X//G, x0)
which is generated by H . Part (ii) of the lemma is in fact the universal prop-
erty of the plus construction. As is well-known, this may be done in a functorial
way. We sometimes write (Y, y) = (X//G, x0)

+ to denote the above relation-
ship.
In what follows, the pair (G,H) is invariably (GLn(A), An) for 5 ≤ n ≤ ∞.
Here An is the alternating group contained in Nn(A). The normal subgroups
of GLn(A) generated by An and En(A) coincide with each other. It follows
that if we take X = X0 to be a point, the Y given by the above lemma is just
the “original” BGLn(A)

+.
Recall that there is a natural action of GL(A) on the simplicial complex
SPL(A∞), and hence on its geometric realization |SPL(A∞)|. We apply
lemma 14 with G = GL(A), H = A∞ the infinite alternating group, X =
|SPL(A∞)|, and X0 = {x0} is the vertex of X fixed by N(A) and obtain the
pointed space

(Y (A), y) = (|SPL(A∞)|//G), x0)
+.

Taking X ′ to be a singleton in (iii) of the above lemma, we get a canonical map

ϕ : (Y (A), y)→ (BGL(A)+, ∗)

of pointed spaces.
Let (SPL(A∞)+, z) denote the homotopy fibre of ϕ. We define

Ln(A) = πn(SPL(A
∞)+, z) ∀ n ≥ 0.

The homotopy sequence of the fibration SPL(A∞)+ → Y (A) → BGL(A)+

combined with the path-connectedness of Y (A) yields:

Corollary 15. There is an exact sequence

· · · → Kn+1(A)→ Ln(A)→ πn(Y (A), y)→ Kn(A) · · ·

· · · → L1(A)→ π1(Y (A), y)→ K1(A)→ L0(A)→ 0

where L0(A) is regarded as a pointed set.

Lemma 16. The natural map |SPL(A∞)| → SPL(A∞)+ induces an isomor-
phism on integral homology.
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Proof. We may identify the universal covering of BGL(A)+ with BE(A)+,
where BE(A)+ is the plus construction (see lemma 14) applied to BE(A) with
respect to the infinite alternating group (or, what is the same thing, with

respect to E(A) itself). Let ϕ̃ : Ỹ → BE(A)+ be the corresponding pullback
map obtained from ϕ.
We first note that SPL(A∞)+ is also naturally identified with the homotopy

fiber of ϕ̃. There is then a homotopy pullback ϕ̂ : Ŷ → BE(A) of ϕ̃ with
respect to BE(A) → BE(A)+. Thus, our map SPL(A∞) → SPL(A∞)+ may
be viewed as the natural map on fibers associated to a map

(8) SPL(A∞)//E(A)→ Ŷ

of Serre fibrations over BE(A).
From a Leray-Serre spectral sequence argument, we see that since (from
lemma 14) BE(A) → BE(A)+ induces a isomorphism on integral homology,

so does Ŷ → Ỹ . Since also SPL(A∞)//E(A) → Ỹ is a homology isomor-

phism (from lemma 14 again), we see that SPL(A∞)//E(A) → Ŷ induces an
isomorphism on integral homology.
Now we use that the map (8) is a map between two total spaces of Serre
fibrations over a common base, inducing a homology isomorphism on these total
spaces. We also know that the monodromy representation of π1(BE(A)) =

E(A) on the homology of the fibers is trivial, in both cases: for Ŷ this is
because it is a pullback from a Serre fibration over a simply connected base,
while for SPL(A∞), this is one of the key properties we have already established
(see the finishing sentence of section 2). The proof is now complete modulo
the remark below, which is a straightforward consequence of the Leray-Serre
spectral sequence of a fibration. �

Remark. Let p : E → B and p′ : E′ → B be fibrations with fibers F and
F ′ respectively over the base-point b ∈ B. Let v : E → E′ be a map so that
p′ ◦ v = p. Assume that B is path-connected. Then E → E′ is a homology
isomorphism implies F → F ′ is a homology isomorphism under the following
additional assumption:
M 6= 0 implies H0(π1(B, b),M) 6= 0 for every π1(B, b)-subquotient M of
Hi(F ), Hj(F

′) for all i, j.

5. The H-space structure

Recall that BGL(A)+ has an H-space structure in a standard way, obtained
from the direct sum operation on free modules of finte rank; this was con-
structed in [6].
The aim of this section is to prove the proposition below.

Proposition 17. The space Y (A) has an H-space structure, such that Y (A)→
BGL(A)+ is homotopic to an H-map, for the standard H-space structure on
BGL(A)+.
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We first remark that if V is a free A-module of finite rank, then
|SPL(V )|//GL(V ) is homeomorphic to the classifying space of the following
category SPL(V ): its objects are simplices in SPL(V ) (thus, certain finite
nonempty subsets of SPL(V )), and morphisms σ → τ are defined to be ele-
ments g ∈ GL(V ) such that g(σ) ⊂ τ , that is, such that g(σ) is a face of the
simplex τ of SPL(V ).
Let Aut(V ) be the category with a single object ∗, with morphisms given by el-
ements of GL(V ), so that the classifying space BAut(V ) is the standard model
for BGL(V ). There is a functor FV : SPL(V ) → Aut(V ), mapping every
obeject σ to ∗, and mappng an arrow σ → τ in SPL(V ) to the corresponding
element g ∈ GLV (). The fiber F−1

V (∗) is the poset of simplices of SPL(V ),
whose classifying space is thus homeomorphic to |SPL(V )|.
It is fairly straightforward to verify that BSPL(V ) is homeomorphic to
|SPL(V )|//GL(V ) (where we have used the classifying space of the transla-
tion category of GL(V ) as the model for the contractible space E(GL(V ))).

One way to think of this is to consider the category S̃PL(V ), whose objects
are pairs (σ, h) with σ a simplex of SPL(V ), and h ∈ GL(V ), with a unique
morphism (σ, h) → (τ, g) precisely when g−1h(σ) ⊂ τ . It is clear that by con-
sidering the full subcategories of objects of the form (σ, g), where g ∈ GL(V )
is a fixed element, each of which is naturally equivalent to the poset of sim-

plices in SPL(V ), that the classifying space of S̃PL(V ) is homeomorphic to
|SPL(V )|×E(GL(V ))). Now it is a simple matter to see (e.g., use the criterion

of Quillen, given in [19], lemma 6.1, page 89) that BS̃PL(V ) → BSPL(V ),
given by (σ, h) 7→ h−1(σ), is a covering space which is a principal GL(V )-
bundle, where the deck transformations are given by the natural action of
GL(V ) on |SPL(V )| × E(GL(V )).
L(V ) denotes the collection of A-submodules L ⊂ V so that L is free of rank
one and V/L is a free module. Now we note that if V ′, V ′′ are free A-modules
of finite rank, we note that there is a natural inclusion L(V ′) ⊔ L(V ′′) →֒
L(V ′ ⊕ V ′′). This in turn yields a natural map

ϕV ′,V ′′ : SPL(V ′)× SPL(V ′′)→ SPL(V ′ ⊕ V ′′),

given by ϕV ′,V ′′(s, t) = s ⊔ t.
It follows easily from the definition of SPL that the above map on vertices
induces a simplicial map

ΦV ′,V ′′ : SPL(V ′)× SPL(V ′′)→ SPL(V ′ ⊕ V ′′).

As explained in section 0, at the level of geometric realisations, this has two
descriptions. The first description may be used to show that the counterpart
of lemma 8(C) is valid for SPL, namely the homotopy class of the inclusion

|SPL(V ′)| × |SPL(V ′′)| → |SPL(V ′ ⊕ V ′′)|

remains unaffected by composition with the action of g ∈ Elem(V ′ →֒ V ′⊕V ′′)
on |SPL(V ′ ⊕ V ′′)|.
The second description however is more useful in this context. Let us abbreviate
notation and denote the (partially ordered) set of simplices of SPL(V ) simply
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by S(V ). The desired map S(V ′) × S(V ′′) → S(V ′ ⊕ V ′′) is given simply by
(σ, τ) 7→ ϕV ′,V ′′(σ× τ). The resulting map B(S(V ′)×S(V ′′))→ BS(V ′⊕V ′′)
is the second description of

|SPL(V ′)| × |SPL(V ′′)| → |SPL(V ′ ⊕ V ′′)|

for (a) BC′ × BC′′ ∼= B(C′ × C′′) and (b) BS(V ) is simply the barycentric
subdivision of |SPL(V )|.
This latter description also allows us to go a step further and define the func-
tor SPL(V ′) × SPL(V ′′) → SPL(V ′ ⊕ V ′′), given on objects by (σ, τ) 7→
ϕV ′,V ′′(σ × τ) as before; on morphisms, it is given by the natural map
GL (V ′)×GL (V ′′)→ GL(V ′ ⊕ V ′′). Hence on classifying spaces, it induces a
product

|SPL(V ′)|//GL(V ′)×|SPL(V ′′)|//GL(V ′′)→ |SPL(V ′⊕V ′′)|//GL(V ′⊕V ′′)|.

This is clearly compatible with the product

BGL(V ′)×BGL(V ′′)→ BGL(V ′ ⊕ V ′′)

under the natural maps induced by the functors SPL → Aut for the three free
modules.
One verifies that SPL(A) =

∐
V SPL(V ), with respect to the bifunctor

+ : SPL(A)× SPL(A)→ SPL(A)

induced by direct sums on free modules, and the functors ΦV ′,V ′′ , form a sym-
metric monoidal category.
An equivalent category, also denoted SPL(A) by abuse of notation, is that
whose objects are pairs (V, σ), where V is a free A-module of finite rank, and
σ ∈ SPL(V ) a simplex, and where morphisms (V, σ)→ (W, τ) are isomorphisms
f : V →W of A-modules such that f(σ) is a face of τ .
For the purposes of stabilization, we slightly modify the above to consider the
related maps

ϕm,n : SPL(Am)× SPL(An)→ SPL(A∞)

given by mapping the basis vector ei ∈ Am in the first factor to the basis vector
e2i−1 ∈ A∞, for each 1 ≤ i ≤ m, and the basis vector ej ∈ An in the second
factor to the basis vector e2j ∈ A∞. A pair of splittings of Am, An determine
one for the free module spanned by the images of the two sets of basis vectors;
now one extends this to a splitting of A∞ by adjoining the remaining basis
vectors of A∞ (that is, adjoining those vectors not in the span of the earlier
images). If our first two splittings are those given by the basis vectors, which
correspond to the base points in |SPL(Am)| and |SPL(An)|, the resulting point
in SPL(A∞) is again the base point of |SPL(A)|.
The corresponding functors

Φm,n : SPL(Am)× SPL(An)→ SPL(A∞)

are compatible with similar functors

Aut(Am)×Aut(An)→ Aut(A∞)
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which, on classifying spaces, yield the diagram of product maps, preserving
base points,

|SPL(Am)//GLn(A)| × |SPL(An)|//GLn(A) → |SPL(A∞|//GL(A)
↓ ↓

BGLm(A) ×BGLn(A) → BGL(A)

where the bottom arrow is the one used in [6] to define the H-space structure
on BGL(A)+.
As we increase m, n, the corresponding diagrams are compatible with respect
to the obvious stabilization maps |SPL(Am)| →֒ |SPL(Am+1)|, |SPL(An) →֒
|SPL(An+1)|. Hence we obtain on the direct limits a diagram

|SPL(A∞)//GL(A)| × |SPL(A∞)|//GL(A) → |SPL(A∞|//GL(A)
↓ ↓

BGL(A)×BGL(A) → BGL(A)

From lemma 14, it follows that there is an induced diagram at the level of plus
constructions

Y (A)× Y (A) → Y (A)
↓ ↓

BGL(A)+ ×BGL(A)+ → BGL(A)+

Here we have, as remarked above, taken the homotopy equivalent model
|SPL(A∞|//GL(A) for the homotopy type earlier denoted Y (A). We abuse
notation and use the same symbol to denote this model as well.
It is shown in [6] that the botton arrow defines an H-space structure on
BGL(A). We claim that, by analogous arguments, the top arrow also defines
an H-space structure on Y (A). Granting this, the map Y (A) → BGL(A)+ is
then an H-map between path connected H-spaces, and so the homotopy fiber
Z(A) has the homotopy type of an H-group as well (and this was what we set
out to prove here).
To show that the product Y (A)× Y (A)→ Y (A) defines an H-space structure,
we need to show that left or right translation on Y (A) (with respect to this
product) by the base point is homotopic to the identity. This is also the main
point in [6], for the case of BGL(A)+. We first show:

Lemma 18. An arbitrary inclusion j : {1, 2, . . . , n} →֒ N determines an in-
clusion of A-modules An → A∞, given on basis vectors by ei 7→ ej(i), which
induces a map

|SPL(An)|//GLn(A)→ Y (A)

which is homotopic (preserving the base point) to the map induced by standard
inclusion in : An → A∞.

Proof. We can find an automorphism g of A∞ contained in the infinite alter-
nating group A∞, such that g ◦ j = in, where g acts on A∞ by permuting the
basis vectors (note that the induced self-map of |SPL(A∞)| × EGL(A) fixes
the base point). Regarding g as an element of π1(|SPL(A∞)|//GL(A)), this
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implies that the maps (in)∗ and j∗, considered as elements of the set of pointed
homotopy classes of maps

[|SPL(An)|//GLn(A), |SPL(A
∞)|//GL(A)] ,

are related by g∗(j∗) = (in)∗, where g∗ denotes the action of the fundamental
group of the target on the set of pointed homotopy classes of maps. However,
g is in the kernel of the map on fundamental groups associated to the map

|SPL(A∞)|//GL(A)→ (|SPL(A∞|//GL(A))+.

Hence the induced maps

|SPL(An)|//GL(A)→ (|SPL(A∞)|//GL(A))+

determined by in and j are homotopic. �

Corollary 19. The map Y (A)→ Y (A) defined by an arbitrary injective map
α : N →֒ N is homotopic, preserving the base point, to the identity.

Proof. We first note that if for n ≥ 5, we let Yn(A) = (|SPL(An)|//GLn(A))
+

be the result of applying lemma 14 to |SPL(An)|//GLn(A) for the alternating
group An, then there are natural maps Yn(A)→ Y (A), preserving base points,
and inducing an isomorphism lim

−→
n

π∗(Yn(A)) = π∗(Y (A)).

We claim that if αn : {1, 2 . . . , n} →֒ N is the inclusion induced by restricting
α, then the induced map (αn)∗ : Yn(A) → Y (A) is homotopic, preserving the
base points, to the natural map Yn(A) → Y (A). This follows from lemma 18,
combined with the defining universal property of the plus construction, given
in lemma 14.
This implies that the map α : Y (A) → Y (A) must then induce isomorphisms
on homotopy groups, and hence is a homotopy equivalence, by Whitehead’s
theorem.
Thus, we have a map from the set of such injective maps α to the group of
base-point preserving homotopy classes of self-maps of Y (A). This is in fact a
homomorphism of monoids, where the operation on the injective self-maps of
N is given by composition of maps.
Now we use a trick from [6]: any homomorphism of monoids from the monoid
of injective self-maps of N to a group is a trivial homomorphism, mapping all
elements of the monoid to the identity. This is left to the reader to verify (or
see [6]). �

We note that the above monoidal category SPL(A) can be used to give another,
perhaps more insightful construction of the homotopy type Y (A), analogous to
Quillen’s S−1S construction for BGL(A)+. We sketch the argument below.
We first take SPL0(A) to be the full subcategory of SPL(A) consisting of
pairs (V, σ) where σ ∈ SPL(V ), i.e.,σ is a 0-simplex in SPL(V ). This full
subcategory is in fact a monoidal subcategory, which is a groupoid (all ar-
row are isomorphisms). Also, SPL(A) is a symmetric monoidal category, in
that the sum operation is commutative upto coherent natural isomorphisms.
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Then, using Quillen’s results (see Chapter 7 in [19], particularly Theorem 7.2),
one can see that SPL0(A)

−1SPL(A) is a monoidal category whose classify-
ing space is a connected H-space, which is naturally homology equivalent to
|SPL(A∞)|//GL(A). This then forces this classifying space to be homotopy
equivalent to Y (A), such that the H-space operations are compatible upto ho-
motopy. This is analogous to the identification made in Theorem 7.4 in [19]
of S−1S with K0(R) × BGL(R)+ for a ring R, and appropriate S. (We do
not get the factor K0 appearing in our situation since we work only with free
modules).

6. Theorem 1 and the groups Hn(A
×)

Proof of Theorem 1. In view of Proposition 17, we see that SPL(A∞)+, the
homotopy fiber of the H-map Y (A)→ BGL(A)+, is a H-space as well. It follows
that L0(A) = π0(SPL(A

∞)+) is a monoid. Furthermore, the arrow K1(A) →
L0(A) in Corollary 15 is a monoid homomorphism. Thus this corollary produces
an exact sequence of Abelian groups.
SPL(An) has a canonical base point fixed under the action of Nn(A). As in
sections 3 and 4, this gives a natural inclusion BNn(A)→ SPLn(A)//GLn(A).
This is a homology isomorphism by lemma 12. Taking direct limits over all
n ∈ N, we see that BN(A)→ SPL(A∞)//GL(A) is a homology isomorphism.
Applying Quillen’s plus construction with respect to the normal subgroup of
N(A) generated by the infinite alternating group, we obtain a space BN(A)+.
ThatBN(A)+ has a canonical H-space structure follows easily by the method of
the previous section. Now the map BN(A)+ → Y (A) obtained by lemma 14(ii)
is a homology isomorphism of simple path-connected CW complexes and is
therefore a homotopy equivalence (see [4]) Theorem 4.37, page 371 and The-
orem 4.5, page 346). This gives the isomorphism Hn(A

×) → Ln(A). The
theorem now follows from corollary 15.
We now turn to the description of the groups. Let X = B(A×). Let X+ =
X ⊔ {∗} be the pointed space with ∗ as its base-point. Let QX+ be the direct
limit of ΩnΣnX+ where Σ denotes reduced suspension.

Proposition 20. Hn(A
×) ∼= πn(QX+).

This statement was suggested to us by Proposition 3.6 of [17].
A complete proof of the proposition was shown us by Peter May. A condensed
version of what we learnt from him is given below.
Theorem 2.2, page 67 of [8] asserts that α∞ : C∞X+ → QX+ is a group
completion. This is proved in pages 50-59, [10]. The C∞ here is a particular
case of the construction 2.4, page 13 of [9], given for any operad. For C∞(Y ),
where Y is a pointed space, the easiest definition to work with is found in
May’s review of [16]. It runs as follows. Let V = ∪∞n=0R

n. Let Ck(Y ) be the
collection of ordered pairs (c, f) where c ⊂ V has cardinality k and f : c→ Y
is any function. We identify (c, f) with (c′, f ′) if
(i) c′ ⊂ c, (ii) f |c′ = f ′, and (iii) f(a) = ∗ for all a ∈ c, a /∈ c′. Here ∗ stands for
the base-point of Y . Then C∞Y is the space obtained from the disjoint union
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of the Ck(Y ), k ≥ 0 by performing these identifications. This is a H-space.
In our case, when Y = X ⊔ {∗}, it is clear that C∞Y is the disjoint union of
all the Ck(X) as a topological space. Thanks to “infinite codimension” one
gets easily the homotopy equivalence of Ck(X) with Xk//Sk where Sk is the
permutation group of {1, 2, .., k}. Now assume that X is any path-connected
space equipped with a nondegenerate base-point x ∈ X . This x gives an
inclusion of Xn →֒ Xn+1. Denote by X∞ the direct limit of the Xn. Thus X∞

is a pointed space equipped with the action of the infinite permutation group
S∞ = ∪nSn. Put Z = X∞//S∞. As in section 4, we obtain Z+ by the use of
the infinite alternating group. As in section 5, we see that this is a H-space. It
is an easy matter to check that the group completion of ⊔kCkX is homotopy
equivalent to Z× Z+. This shows that πn(QX+) ∼= πn(Z

+) for all n > 0.
The proposition is the particular case: X = B(A×).

7. Polyhedral structure of the enriched Tits building

From what has been shown so far, we see that it is of interest to determine
the stable rational homology of the flag complexes |FL(An)| (or equivalently,
of |SPL(An)|, or ET(An)). We will construct a spectral sequence that, in
principle, gives an inductive procedure to do so.
But first we introduce some notation and a definition for posets.
Let P be a poset. For p ∈ P , we put e(p) = BL(p) where L(p) = {q ∈ P |q ≤ p}
and ∂e(p) = BL′(p) where L′(p) = L(p) \ {p}. If ∂e(p) is homeomorphic to a
sphere for every p ∈ P , we say the poset P is polyhedral. We denote by d(p)
the dimension of e(p). When P is polyhedral, the space BP gets the structure
of a CW complex with {e(p) : p ∈ P} as the closed cells. Its r-skeleton is BPr

where Pr = {p ∈ P : d(p) ≤ r}. The homology of BP is then computed by the
associated complex of cellular chains Cell•(BP ), where

Cellr(BP ) =
⊕

{p| dim e(p)=r}

Hr(e(p), ∂e(p),Z).

Lemma 21. E(An) is a polyhedral poset in the above sense. Its dimension is
n− 1.

Proof. First consider the case when p ∈ SPL(An) is a maximal element in
E(An). Then p is an unordered collection of n lines in An (here, as in §2, a
“line” denotes a free A-submodule of rank 1 which is a direct summand, and
the set of lines in An is denoted by L(An)). Note that the subset p ⊂ L(An) of
cardinality n determines a poset p̃, whose elements are chains q• = {q1 ⊂ q2 ⊂
· · · ⊂ qr = p} of nonempty subsets, where r• ≤ q• if each qi is an rj for some j,
i.e., the “filtration” r• “refines” q•. We claim that, from the definition of the
partial order on E(An), the poset p̃ is naturally isomorphic to the poset L(p).
Indeed, an element q ∈ E(An) consists of a pair, consisting of a partial flag

0 = W0 ⊂W1 ⊂ · · · ⊂Wr = An
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such that Wi/Wi−1 is free, and a sequence t1, . . . , tr with ti ∈ SPL(Wi/Wi−1).
The condition that this element of E(An) lies in L(p) is that each Wi is a
direct sum of a subset of the lines in p, say qi ⊂ p, giving the chain of subsets
q1 ⊂ q2... ⊂ qr = p; the splitting ti is uniquely determined by the lines in
qi \ qi−1.
Let ∆(p) be the (n− 1)-simplex with p as its set of vertices. Now the chains of
non-empty subsets of p correspond to simplices in the barycentric subdivison
sd∆(p), where the barycentre b corresponds to the chain {p}. Hence, from the
definition of p̃, it is clear that it is isomorphic to the poset whose elements are
simplices in the barycentric subdivision of ∆n with b as a vertex, with partial
order given by reverse inclusion. Hence Bp̃ is naturally identified with the
subcomplex of the second barycentric subdivision sd2∆(p) which is the union
of all simplices containing the barycentre. This explicit description implies in
particular that BL′(p) is homeomorphic to Sn−2 (with a specific triangulation).
Before proceeding to the general case, we set up the relevant notation for
orientations. For a set q of cardinality r, we put det(q) = ∧rZ[q] where Z[q]
denotes the free Abelian group with q as basis. we observe that there is a
natural isomorphism:

Hn−1(e(p), ∂e(p)) ∼= Hn−1(∆(p), ∂∆(p)) = det(p).

Now let p ∈ E(An) be arbitrary, corresponding to a partial flag

0 = W0 ⊂W1 ⊂ · · · ⊂Wr = An.

and splittings ti ∈ SPL(Wi/Wi−1). Then the natural map
r∏

i=1

E(Wi/Wi−1)→ E(A
n)

is an embedding of posets, where the product has the ordering given by
(a1, . . . , ar) ≤ (b1, . . . , br) precisely when ai ≤ bi in E(Wi/Wi−1) for each i.
One sees that, by the definition of the partial order in E(An), the induced map

r∏

i=1

L(ti)→ L(p)

is bijective. Hence there is a homeomorphism of pairs

(BL(p), BL′(p)) =

r∏

i=1

(BL(ti), BL′(ti)),

and so BL′(p) ∼= Sn−r−1, and BL(p) is an n− r-cell. �

We now proceed to construct the desired spectral sequence. We use the fol-
lowing notation: if p ∈ E(V ), where V is a free A-module of finite rank, and
W1 ⊂ V is the smallest non-zero submodule in the partial flag associated to
p, define t(p) = rankW1 − 1. Clearly t : E(V ) → Z is monotonic. Hence
FrE(V ) = {p ∈ E(V )|t(p) ≤ r} is a sub-poset. Define

FrET(V ) = BFrE(V ) = ∪{e(p)|t(p) ≤ r},

Documenta Mathematica · Extra Volume Suslin (2010) 459–513



K-Theory and the Enriched Tits Building 495

so that

F0ET(V ) ⊂ F1ET(V ) ⊂ · · ·Fn−1ET(V ) = ET(V )

is an increasing finite filtration of the CW complex ET(V ) by subcomplexes.
Hence there is an associated spectral sequence

E1
r,s = Hr+s(FrET(V ), Fr−1ET(V ),Z)⇒ Hr+s(ET(V ),Z).

Our objective now is to recognise the above E1 terms.
It is convenient to use the complexes of cellular chains for these sub CW-
complexes, which are thus sub-chain complexes of Cell•(ET(V )). For simplicity
of notation, we write Cell•(V ) for Cell•(ET(V )). We have the description

E1
r,s = Hr+s(gr

F
r Cell•(V )).

We will now exhibit grFr Cell•(V ) as a direct sum of complexes. Let W ⊂ V
be a submodule such that W,V/W are both free, and rankW = r + 1. Let
q ∈ SPL(W ). The we have an inclusion of chain complexes

Cell•(e(q)) ⊗ Cell•(V/W ) ⊂ Cell•(W )⊗ Cell•(V/W ) ⊂ FrCell•(V ).

It is clear that

imageCell•(∂e(q))⊗ Cell•(V/W ) ⊂ Fr−1Cell•(V ),

so that we have an induced homomorphism of complexes

(Cell•(e(q))/Cell•(∂e(q)))⊗ Cell•(V/W )→ grFr Cell•(V ).

Composing with the natural chain homomorphism

Hr(e(q), ∂e(q),Z)[r] → (Cell•(e(q))/Cell•(∂e(q)))

for each q, we finally obtain a chain map

I :
⊕

(W,q∈SPL(W ))

Hr(e(q), ∂e(q),Z)[r] ⊗ Cell•(V/W )→ grFr Cell•(V ).

Finally, it is fairly straightforward to verify that I is an isomorphism of com-
plexes.
We deduce that the E1 terms have the following description:

E1
r,s =

⊕

rankW = r + 1
q ∈ SPL(W )

det(q)⊗Hs(Cell•(V/W ),Z).

We define Lr(V ) to be the collection of q ⊂ L(V ) of cardinality (r + 1) for
which (a) and (b) below hold:
(a) ⊕{L : L ∈ q} → V is injective. Its image will be denoted by W (q)
(b) V/W (q) is free of rank (n− r − 1).
Summarising the above, we obtain:
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Theorem 2. There is a spectral sequence with E1 terms

E1
r,s =

⊕

q ∈ Lr(V )

det(q) ⊗Hs(ET(V/W (q)),Z).

that converges to Hr+s(ET(V )). We note that E1
r,s = 0 whenever (r + s) ≥

(n− 1) with one exception: (r, s) = (n− 1, 0). Here V ∼= An.

8. Compatible homotopy

It is true 3 that i : ET(W )×ET(V/W ) →֒ ET(V ) has the property that g ◦ i is
freely homotopic (not preserving base points) to i whenever g ∈ Elem(W →֒ V ).
There are several closed subsets of ET(An) with the property that homotopy
class of the inclusion morphism into ET(An) remains unaffected by composition
with the action of g ∈ En(A). To prove that the union of a finite collection of
such closed subsets has the same property, one would require the homotopies
provided for any two members of the collection to agree on their intersection.
This is the problem we are concerned with in this section.
We proceed to set up the notation for the problem.
With q ∈ Lr(V ) as in theorem 2, we shall define the subspaces U(q) ⊂ ET(V )
as follows. Let W (q) = ⊕{L|L ∈ q}. We regard q as an element of SPL(W (q))
and thus obtain the cell e(q) = BL(q) ⊂ ET(W (q)). This gives the inclusion
ET′(q) = e(q)× ET(V/W (q)) ⊂ ET(W (q))× ET(V/W (q)) ⊂ ET(V ).
We put U(q) = ∪{ET′(t)|∅ 6= t ⊂ q}.

Main Question: Let i : U(q) →֒ ET(V ) denote the inclusion. Is it true
that g ◦ i is homotopic to i for every g ∈ Elem(V, q)?
We focus on the apparently weaker question below.
Compatible Homotopy Question: Let M ⊂ V be a submodule complementary
to W (q). Let g′ ∈ GL((W (q)) be elementary, i.e. g′ ∈ Elem(W (q), q). Define
g ∈ GL(V ) by gm = m for all m ∈ M and gw = g′w for all w ∈ W (q). Is it
true that g ◦ i is homotopic to i?
Assume that the second question has an affirmative answer in all cases. In
particular, this holds when M = 0. Here V = W (q) and g = g′ is an arbitrary
element of Elem(V, q). Let t be a non-empty subset of q. Then U(t) ⊂ U(q). We
deduce that j : U(t) →֒ ET(V ) is homotopic to g ◦ j for all g ∈ Elem(V, q). But
Elem(V, t) = Elem(V, q). Thus the Main Question has an affirmative answer
for (q, i) replaced by (t, j), which of course, up to a change of notation, covers
the general case.

Proposition 22. The compatible homotopy question has an affirmative answer
if q ∈ Lr(V ) and r ≤ 2.

The rest of this section is devoted to the proof of this proposition. To proceed,
we will require to introduce the class C.

3this only requires the analogue of lemma 8(A) for the enriched Tits building. More
general statements are contained in lemmas 23 and 24 .
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This is our set-up. Let X be a finite set, let Vx be a finitely generated free
module for each x ∈ X and let V = ⊕{Vx : x ∈ X}.
Let s = Πx∈Xs(x) ∈ Πx∈XSPL(Vx). For each x ∈ X , we regard s(x) as
a subset of L(V ) and put Fs = ∪{s(x)|x ∈ X}. Thus Fs ∈ SPL(V ).
The collection of maps f : Πx∈XET(Vx) → ET(V ) with the property that
f(Πx∈XBL(s(x))) ⊂ BL(Fs) for all s ∈ Πx∈XSPL(Vx) is denoted by C. See
lemma 10 and proposition 11 and its proof for relevant notation.
Every maximal chain C of subsets of X (equivalently every total ordering of
X) gives a member i(C) ∈ C. For instance, if X = {1, 2, ..., n} and C consists
of the sets {1, 2, ..., k} for 1 ≤ k ≤ n, we put
Dk = ⊕k

i=1Vi and E = Πn
i=1ET(Di/Di−1), denote by

u : Πx∈XET(Vx) → E and v : E → ET(V ) the natural isomorphism and
natural inclusion respectively, and put i(C) = v ◦ u.

Lemma 23. The above space C is contractible.

Proof. The aim is to realise C as the space of Λ-compatible maps for a suitable
Λ and appeal to Proposition 1. Let Λ(x) = {L(S)|∅ 6= S ⊂ SPL(Vx), ∅ 6=
L(S)}. Proposition 11 asserts that the subspaces {Bλ(x) : λ(x) ∈ Λ(x)} give
an admissible cover of ET(Vx).
For λ = Πx∈Xλ(x) ∈ Λ = Πx∈XΛ(x), we put I(λ) = Πx∈XBλ(x) and deduce
that {I(λ) : λ ∈ Λ} gives an admissible cover of Πx∈XET(Vx).
We define next a closed J(λ) ⊂ ET(V ) for every λ ∈ Λ with the properties:
(A): J(λ) ⊂ J(µ) whenever λ ≤ µ and
(B): J(λ) is contractible for every λ ∈ Λ.
For each λ(x) ∈ Λ(x), let Uλ(x) be its set of upper bounds in SPL(Vx). It
follows that that LUλ(x)) = λ(x). As observed before, we have
F : Πx∈XSPL(Vx)→ SPL(V ). Thus given λ = Πxλ(x) ∈ Λ,
we set H(λ) = F (Πx∈XUλ(x)) ⊂ SPL(V ) and then put J(λ) = BLH(λ) ⊂
ET(V ).
The space of Λ-compatible maps Πx∈XET(Vx) → ET(V ) is seen to coincide
with C. That the J(λ) satisfy property (A) stated above is straightforward.
The contractibility of J(λ) for all λ ∈ Λ is guaranteed by proposition 11 once
it is checked that these sets are nonempty. But we have already noted that C
is nonempty. Let f ∈ C. Now I(λ) 6= ∅ and f(I(λ)) ⊂ J(λ) implies J(λ) 6= ∅.
Thus the J(λ) are contractible, and as said earlier, an application of Proposi-
tion 1 completes the proof of the lemma.

�

We remark that the class C of maps Πn
i=1ET(Wi) → ET(⊕n

i=1Wi) has been
defined in general.
We will continue to employ the notation: V = ⊕{Vx : x ∈ X} all through this
section. Let P be a partition of X . Each p ∈ P is a subset of X and we put

Vp = ⊕{Vx|x ∈ p} and ET(P ) = Π{ET(Vp)|p ∈ P}.

When Q ≤ P is a partition of X (i.e. Q is finer than P ), we shall define the
contractible collection C(Q,P ) of maps f : ET(Q)→ ET(P ) by demanding (a)
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that f is the product of maps f(p)

f(p) : Π{ET(Vq) : q ⊂ p and q ∈ Q} → ET(Vp)

and also (b) each f(p) is in the class C. For this one should note that Vp =
⊕{Vq : q ∈ Q and q ⊂ p}.
We observe next that there is a distinguished collection D(Q,P ) ⊂ C(Q,P ).
To see this, recall that we had the embedding i(C) for every maximal chain C
of subsets of X (alternatively, for every total ordering of X). Given Q ≤ P ,
denote the set of total orderings of {q ∈ Q : q ⊂ p} by T (p), for every p ∈ P .
The earlier C 7→ i(C) now yields, after taking a product over p ∈ P ,
i : Π{T (p) : p ∈ P} → C(Q,P ), and we denote by D(Q,P ) ⊂ C(Q,P ) the
image of i.
The lemma below is immediate from the definitions.

Lemma 24. Given partitions R ≤ Q ≤ P of X, if f is in C(R,Q) (resp. in
D(R,Q))and g is in C(Q,P ) (resp. in D(Q,P )), then it follows that g ◦ f is in
C(R,P ) (resp. D(R,P )).

We will soon have to focus on the fixed points of certain unipotent g ∈ GL(V )
on ET(V ). For instance, if x, y ∈ X and x 6= y, we may consider g = idV + h
where h(V ) ⊂ Vy and h(Vz) = 0 for all z ∈ X, z 6= x. Let C be a chain of subsets
of X , so that X ∈ C. This chain C gives rise to a partition P (C) of X and
also i(C) ∈ D(P (C), {X}) in a natural manner. Let Cx = ∩{S ∈ C : x ∈ S}.
Then Cx ∈ C because C is a chain. Define Cy in a similar manner. We say
the chain C is (x, y)-compatible if Cy ⊂ Cx and Cx 6= Cy . This condition on
C ensures that the embedding i(C) : ET(P (C))→ ET(V ) has its image within
the fixed points of the above g ∈ GL(V ).
Now let Q be a partition of X so that q ∈ Q, x ∈ q implies y /∈ q. We
shall define next the class of (x, y)-compatible C maps ET(Q) → ET(V ) in
the following manner. Let Λ be the set of chains C of subsets of X so that
X ∈ C and Q ≤ P (C) (i.e. Q is finer than the partition P (C)). For each
C ∈ Λ, let Z(C) be the collection of i(C) ◦ f where f ∈ C(Q,P (C)). Finally,
let Z = ∪{Z(C) : C ∈ Λ}. This set Z is defined to be the collection of (x, y)-
compatible maps of class C from ET(Q) to ET(V ). Every z ∈ Z is a map
z : ET(Q)→ ET(V ) whose image is contained in the fixed points of the above
g on ET(V ). Furthermore, in view of lemma 24, this collection of maps is
contained in C(Q, {X}).

Lemma 25. Let Q be a partition of X that separates x and y. Then the collec-
tion of (x, y)-compatible class C maps ET(Q)→ ET(V ) is contractible.

Proof. In view of the fact that each C(Q,P ) is contractible, by cor 3, it follows
that the space of (x, y)-compatible chains is homotopy equivalent to BΛ, where
Λ is the poset of chains C in the previous paragraph. It remains to show that
BΛ is contractible.
We first consider the case where Q is the set of all singletons of X . Let S be
the collection of subsets S ⊂ X so that y ∈ S and x /∈ S. For S ∈ S, let
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F(S) be the collection of chains C of subsets of X so that S ∈ C and X ∈ C.
We see that Λ is precisely the union of F(S) taken over all S ∈ S. Let D be
a finite subset of S. We see that the intersection of the BF(S), taken over
S ∈ D, is nonempty if and only if D is a chain. Furthermore, when D is a
chain, this intersection is clearly a cone, and therefore contractible. By cor 3,
we see that BΛ has the same homotopy type as the classifying space of the
poset of chains of S. But this is simply the barycentric subdivision of BS. But
the latter is a cone as well, with {y} as vertex. This completes the proof that
BΛ is contractible, when Q is the finest possible partition of X .
We now come to the general case, when Q is an arbitrary partition of X that
separates x, y. So we have x′, y′ ∈ Q with x ∈ x′, y ∈ y′ and x′ 6= y′. The set
Λ is identified with the collection of chains C′ of subsets of Q so that
(a) Q ∈ C′, and (b) there is some L ∈ C′ so that x′ /∈ L and y′ ∈ L.
Thus the general case follows from the case considered first: one replaces
(X, x, y) by (Q, x′, y′). �

In a similar manner, we may define, for every ordered r-tuple (x1, x2, ..., xr)
of distinct elements of X , the set of (x1, x2, ..., xr)-compatible chains C–we
demand that for each 0 < i < r, there is a member S of the chain so that xi /∈ S
and xi+1 ∈ S. Let Q be a partition of X that separates x1, x2, ..., xr. Then
the poset of chains C , compatible with respect to this ordered r-tuple, and for
which Q ≤ i(P ), is also contractible. One may see this through an inductive
version of the proof of the above lemma. A corollary is that the collection of
(x1, ..., xr)-compatible class C maps ET(Q) → ET(V ) is also contractible. We
skip the proof. This result is employed in the proof of Proposition 22 for r = 2
(which has already been verified in the above lemma), and for r = 3, with
#(Q) ≤ 4. Here it is a simple verification that the poset of chains that arises
as above has its classifying space homeomorphic to a point or a closed interval.

We are now ready to address the proposition. For this purpose, we as-
sume that there is c ∈ X so that Vx

∼= A for all x ∈ X \ {c}. To obtain
consistency with the notation of the proposition, we set q = X \ {c}. The
closed subset U(q) ⊂ ET(V ) in the proposition is the union of ET′(t) taken
over all ∅ 6= t ⊂ q. For such t, we have W (t) = V (t) = ⊕{Vx : x ∈ t}. Recall
that ET′(t) is the product of the cell e(t) ⊂ ET(V (t)) with ET(V/V (t)). To
proceed, it will be necessary to give a contractible class of maps D → ET(V )
for certain closed subsets D ⊂ U(q).
The closed subsets D ⊂ U(q) we consider have the following shape. For each
∅ 6= t ⊂ q, we first select a closed subset D(t) ⊂ e(t) and then take D to be the
union of the D(t) × ET(V/V (t)), taken over all such t. This D remains unaf-
fected if D(t) is replaced by its saturation sD(t). Here sD(t) is the collection
of a ∈ e(t) for which {a} × ET(V/V (t)) is contained in D.
When ∅ 6= t ⊂ q, we denote by p(t) the partition of X consisting of all the
singletons contained in t, and in addition, the complement X \ t. Then there
is a canonical identification j(t) : ET(p(t))→ ET(V/V (t)).
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A map f : D → ET(V ) is said to be in class C if for every ∅ 6= t ⊂ q and for
every a ∈ sD(t), the map ET(p(t))→ ET(V ) given by b 7→ f(a, j(t)b) belongs
to C(p(t), {X}). By lemma 24, we see that it suffices to impose this condition
on all a ∈ D(t), rather than all a ∈ sD(t).
We observe that for every a ∈ e(t), the map ET(p(t)) → ET(V ) given by
b 7→ (a, j(t)b) belongs to C(p(t), {X}). As a consequence, we see that the
inclusion D →֒ ET(V ) is of class C.
When concerned with (x, y)-compatible maps, we will assume that D(t) = ∅
whenever t and {x, y} are disjoint. Under this assumption, a map f : D →
ET(V ) is said to be (x, y)-compatible of class C if ET(p(t)) → ET(V ) given
by b 7→ f(a, j(t)b) is a (x, y)-compatible map in C(p(t), {X}) for all pairs (a, t)
such that a ∈ sD(t).
In a similar manner, we define (x, y, z)-compatible maps of class C as well. For
this, it is necessary to assume that D(t) is empty whenever the partition p(t)
does not separate (x, y, z), equivalently if {x, y, z} \ t has at least two elements.

Lemma 26. Assume furthermore that D(t) is a simplicial subcomplex of e(t).
Then the space of maps D → ET(V ) in class C is contractible. The same is true
of the space of such maps that are (x, y)-compatible, or (x, y, z)-compatible.

Proof. We denote by d the cardinality of {t : D(t) 6= ∅}. We proceed by
induction on d, beginning with d = 0 where the space of maps is just one
point.
We choose t0 of maximum cardinality so that D(t0) 6= ∅. Let D′ be the union
of D(t) × ET(V/V (t)) taken over all t 6= t0. Let C(D′) and C(D) denote the
space of class C maps D′ → ET(V ) and D → ET(V ) respectively. By the
induction hypothesis, C(D′) is contractible. We observe that the intersection
of D′ and e(t0)×ET(V/V (t0)) has the form G×ET(V/V (t0) where G ⊂ e(t0)
is a subcomplex. Furthermore, G∪D(t0) is the saturated set sD(t0) described
earlier.
For a closed subset H ⊂ e(t0), denote the space of C-maps H×ET(V/V (t0))→
ET(V ) by A(H). Note that A(H) = Maps(H, C(p(t0), {X})). By lemma 23, the
space C(p(t0), {X}) is itself contractible. It follows that A(H) is contractible.
In particular, both A(G) and A(sD(t0)) are contractible. The natural map
A(sD(t0)) → A(G) is a fibration, because the inclusion G →֒ sD(t0) is a
cofibration. The fibers of A(sD(t0)) → A(G) are thus contractible. It follows
that

A(sD(t0))×A(G) C(D
′)→ C(D′)

which is simply C(D)→ C(D′), enjoys the same properties: it is also a fibration
with contractible fibers. Because C(D′) is contractible, we deduce that C(D) is
itself contractible. This completes the proof of the first assertion of the lemma.
The remaining assertions follow in exactly the same manner by appealing to
lemma 25. �

Proof of Proposition 22. Choose x 6= y with x, y ∈ q. Let g = idV + α where
α(V ) ⊂ Vy and α(Vk) = 0 for all k 6= x ∈ X . To prove the proposition, it
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suffices to show that g ◦ i is homotopic to i where i : U(q) → ET(V ) is the
given inclusion. This notation x, y, α, g will remain fixed throughout the proof.

Case 1. Here q = {x, y}. Now x, y are separated by the partitions p(t)
for every non-empty t ⊂ q. By the second assertion of the above lemma, there
exists f : U(q)→ ET(V ) of class C and (x, y)-compatible. The given inclusion
i : U(q)→ ET(V ) is also of class C. By the first assertion of the same lemma,
f is homotopic to i. Now the image of f is contained in the fixed-points of g
and so we get g ◦ f = f . It follows that g ◦ i is homotopic to i. This completes
the proof of the proposition when 1 = r = #(q)− 1.

Case 2. Here q = {x, y, z} with x, y, z all distinct.
We take Y1 to be the union of e(t) × ET(V/V (t)) taken over all t ⊂ q, t 6=
{z}, t 6= ∅. We put Y2 = ET(Vz)× ET(V/Vz) and Y3 = Y1 ∩ Y2. We note that
U(q) = Y1 ∪ Y2.
The given inclusion i : U(q) → ET(V ) restricts to ik : Yk → ET(V ) for k =
1, 2, 3. The required homotopy is a path γ : I → Maps(U(q),ET(V )) so that
γ(0) = i and γ(1) = g◦i. Equivalently we require paths γk in Maps(Yk,ET(V ))
for k = 1, 2 so that
(a) γk(0) = ik and γk(1) = g ◦ ik for k = 1, 2 and
(b) both γ1 and γ2 restrict to the same path in Maps(Y3,ET(V )).
In view of the fact that Y3 →֒ Y1 is a cofibration, the weaker conditions (a′)
and (b′) on fundamental groupoids suffice for the existence of such a γ:
(a′): γk ∈ π1(Maps(Yk,ET(V )); ik, g ◦ ik) for k = 1, 2
(b′): both γ1 and γ2 restrict to the same element of π1((Maps(Y3,ET(V )); i3, g◦
i3)
We have the spaces: Zk = Maps(Yk,ET(V )) for k = 1, 2, 3.These spaces come
equipped with the data below:
(A)The GL(V )-action on ET(V ) induces a GL(V )-action on Zk

(B)The maps of class C give contractible subspaces Ck ⊂ Zk for k = 1, 2, 3.
(C) We have ik ∈ Ck for k = 1, 2, 3.
(D) The natural maps Zk → Z3 for k = 1, 2 are GL(V )-equivariant, they take
ik to i3 and restrict to maps Ck → C3.
Note that the GL(V )-action on Zk turns the disjoint union:
Gk = ⊔{π1(Zk; ik, hik)|h ∈ GL(V )} into a group: given ordered pairs (hj , vj) ∈
Gk, i.e. hj ∈ GL(V ) and vj ∈ π1(Zk; ik, hjik) for j = 1, 2, we get h1v2 ∈
π1(Zk;h1ik, h1h2ik) and obtain thereby v = (h1v2).v1 ∈ π1(Zk; ik, h1h2ik) and
this produces the required binary operation (h1, v1) ∗ (h2, v2) = (h1h2, v).
The projection Gk → GL(V ) is a group homomorphism. The following elemen-
tary remark will be used in an essential manner when checking condition (b′).
The data (H,F,∆) where
(i) H ⊂ GL(V ) is a subgroup,
(ii)F ∈ Zk is a fixed-point of H , and
(iii)∆ ∈ π1(Zk;F, ik)
produces the lift H → Gk of the inclusion H →֒ GL(V ) by h 7→ (h, (h∆).∆−1).
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Finally we observe that there are natural homomorphisms Gk → G3 induced by
Zk → Z3 for k = 1, 2.
Construction of γ1.
The partitions p(t) for t 6= {z} separate x, y. By lemma 26, we have a (x, y)-
compatible class C-map f : Y1 → ET(V ). Both i1 and f belong to C1 and
thus we get δ ∈ π1(C1; f, i1). Now f is fixed by our g ∈ GL(V ), so we also get
gδ ∈ π1(gC1; f, gi1). The path (gδ).δ−1 is the desired γ1 ∈ π1(Z1; i1, gi1).
Construction of γ2.
Recall that g = idV + α. We choose m : Vx → Vz and n : Vz → Vy so
that nm(a) = α(a) for all a ∈ Vx. We extend m,n by zero to nilpotent
endomorphisms of V , once again denoted by m,n : V → V and put u =
idV + n, v = idV +m and note that g = uvu−1v−1.
Note that the partition p({z}) separates both the pairs (x, z) and (z, y).
We thus obtain f ′, f ′′ ∈ C2 so that f ′ is (x, z)-compatible and f ′′ is (y, z)-
compatible and also δ′ ∈ π1(C2; f ′, i2) and δ′′ ∈ π1(C2; f ′′, i2). Noting that
f ′, f ′′ are fixed by v, u respectively, we obtain
ǫ′ = (vδ′).δ′−1 ∈ π1(Z2; i2, vi2) and
ǫ′′ = (uδ′′).δ′′−1 ∈ π1(Z2; i2, ui2).
Thus v′ = (v, ǫ′) and u′ = (u, ǫ′′) both belong to G2. We obtain γ2 by
u′ ∗ v′ ∗ u′−1 ∗ v′−1 = (g, γ2) ∈ G2
Checking the validity of (b′).
Let γ13, γ23 ∈ π1(Z3; i3, gi3) be the images of γ1 and γ2 respectively. We have
to show that γ13 = γ23.
Consider the spacesH,H′,H′′ consisting of ordered pairs (f3, δ3), (f ′

3, δ
′

3), (f
′′

3 , δ
′′

3 )

respectively, where f3, f
′
3, f

′′
3 are all in C3,

f3 is (x, y)-compatible, f ′
3 is (x, z)-compatible, and f ′′

3 is (y, z)-compatible, and
δ3, δ

′
3, δ

′′
3 are all paths in C3 that originate at f3, f

′
3, f

′′
3 respectively, and they

all terminate at i3. By lemma 26, we see that the spaces H,H′,H′′ are all
contractible.
For t = {x, z}, {y, z}, {x, y, z}, the partition p(t) separates (x, y, z). Note that
Y3 is contained in the union of these three ET′(t). By lemma 26, there is a
(x, y, z)-compatible F ∈ C3. Let ∆ be a path in C3 that originates at F and
terminates at i3. We see that (F,∆) ∈ H ∩H′ ∩H′′.
Note that H → π1(Z3; i3, gi3) given by (f3, δ3) 7→ (gδ3).δ

−1
3 is a constant map

becauseH is contractible. The (f, δ) employed in the construction of γ1 restricts
to an element of H. Also, (F,∆) belongs to H. It follows that γ13 = (g∆).∆−1.
In a similar manner, we deduce that if ǫ′3, ǫ

′′
3 denote the images of ǫ′, ǫ′′ in the

fundamental groupoid of Z3, then
ǫ′3 = (v∆).∆−1 ∈ π1(Z3; i3, vi3) and ǫ′′3 = (u∆).∆−1 ∈ π1(Z3; i3, ui3)
Thus G2 → G3 takes v′, u′ ∈ G2 to (v, (v∆).∆−1), (u, (u∆).∆−1) ∈ G3 respec-
tively. It follows that their commutator [u′, v′] maps to (g, γ23) ∈ G3 under this
homomorphism.
We apply the remark preceeding the construction of γ1 to the subgroup H gen-
erated by u, v and F and ∆ as above. We conclude that γ23 equals (g∆).∆−1.
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That the latter equals γ13 has already been shown. Thus γ13 = γ23 and this
completes the proof of the Proposition.

9. Low dimensional stabilisation of homology

This section contains applications of corollary 9, proposition 22 and Theorem 2
to obtain some mild information on the homology groups of ET(V ). The no-
tation L(V ),Lr(V ),W (q), det(q) introduced to state Theorem 2 will be freely
used throughout. The spectral sequence in theorem 2 with coefficients in an
Abelian group M will be denoted by SS(V ;M). When V = An, this is further
abbreviated to SS(n;M), or even to SS(n) when it is clear from the context
what M is.
The concept of a commutative ring with many units is due to Van der Kallen.
An exposition of the definition and consequences of this term is given in
[12]. We note that this class of rings includes semilocal rings with infinite
residue fields. The three consequences of this hypothesis on A are listed as
I,II,III below. These statements are followed by some elementary deductions.
Throughout this section, we will assume that our ring A has this property.

I: SLn(A) = En(A).
This permits a better formulation of Lemma 8 in many instances.
Ia: Let 0 → W → P → Q → 0 be an exact sequence of free A-modules
with of ranks a, a+ b, b. Let d = g.c.d.(a, b). The group H of automorphisms
of this exact sequence that induce homotheties on both W and Q may be
regarded as a subgroup of GL(P ). This group acts trivially on the image of
the embedding i : ET(W ) × ET(Q) → ET(P ). Furthermore {det(g)|g ∈ H}
equals (A×)d. Thus, if a, b are relatively prime, by lemma 8, we see that g ◦ i
is freely homotopic to i for all g ∈ GL(V ).
We shall take rank(W ) = 1 in what follows. Here ET(W )×ET(Q) is canonically
identified with ET(Q). The induced ET(Q) → ET(P ) gives rise on homology
to an arrow Hm(ET(Q))→ Hm(ET(P )) which has a factoring:

Hm(ET(Q)) ։ H0(PGL(Q), Hm(ET(Q)))→

→ H0(PGL(P ), Hm(ET(P )) →֒ Hm(ET(P )).

The kernel of Hm(ET(Q)) → Hm(ET(P )) does not depend on the choice of
the exact sequence. Denoting this kernel by KHm(Q) ⊂ Hm(ET(Q)) therefore
gives rise to unambiguous notation. We abbreviate Hm(ET(An)),KHm(An)
to Hm(n),KHm(n) respectively.
Ib: In the spectral sequence SS(n), we have:

(1) H0(PGLn−1(A), Hm(n− 1)) ∼= H0(PGLn(A), E
1
0,m).

(2) E∞
0,m is the image of Hm(n− 1)→ Hm(n).

(3) E1
0,m → E∞

0,m factors as follows:

E1
0,m ։ E2

0,m ։ H0(PGLn(A), E
1
0,m) ։ E∞

0,m.

(4) If H0(PGLn(A), E
p
p,m+1−p) = 0 for all p ≥ 2, then

the given arrow H0(PGLn(A), E
1
0,m)→ E∞

0,m is an isomorphism.
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(5) Assume that Hm(n − 2) → Hm(n − 1) is surjective. Then the arrow
E2

0,m → H0(PGLn(A), E
1
0,m) in (3) above is an isomorphism.

The factoring in part (3) above is a consequence of the factoring of
Hm(ET(Q))→ Hm(ET(P )) in part I(a).
For part (4), one notes that the composite
E2

2,m−1 → E2
0,m → H0(PGLn(A), E

1
0,m) vanishes because

H0(PGLn(A), E
2
2,m−1) itself vanishes. Thus we obtain a factoring:

E2
0,m → E3

0,m → H0(PGLn(A), E
1
0,m). Proceeding inductively, we obtain

the factoring:
E2

0,m → E∞
0,m → H0(PGLn(A), E

1
0,m). In view of (3), we see that part (4)

follows.
For part (5), it suffices to note that for every L0, L1 ∈ L(An) with n > 1, there
is some L2 ∈ L(An) with the property that both {L0, L2} and {L1, L2} belong
to L1(An). This fact is contained in consequence III of many units.

II: A is a Nesterenko-Suslin ring.
Let r > 0, p ≥ 0. Put N = (p + 1)! and n = r + p + 1. Let Fr be the
category with free rank A-modules of rank r as objects; the morphisms in Fr

are A-module isomorphisms. Let F be a functor from Fr to the category of
Z[ 1

N
] -modules. Assume that F (a.idD) = idFD for every a ∈ A× and for every

object D of Fr. In other words, the natural action of GLr(A) on F (Ar) factors
through the action of PGLr(A).
For a free A-module V of rank n, define Ind′F (V ) by

Ind′F (V ) = ⊕{det(q)⊗ F (V/W (q)) : q ∈ Lp(V )}.

An alternative description of Ind′F (V ) is as follows. Fix some q ∈ Lp(V ). Let
G(q) be the stabiliser of q in GL(V ). Then det(q) and F (V/W (q)) are G(q)-
modules in a natural manner. We have a natural isomorphism of Z[GL(V )]-
modules:

Ind′F (V ) ∼= Z[GL(V )]⊗Z[G(q)] [det(q)⊗Z F (V/W (q))].

IIa: If Hi(PGLr(A), F (Ar)) = 0 for all i < m, then
Hi(PGLn(A), Ind

′F (An)) = 0 for all i < p+m. Furthermore,

Hp+m(PGLn(A), Ind
′F (An)) ∼= Hm(PGLr(A), F (Ar))⊗ Symp(A×))

By Shapiro’s lemma, the result of [13] cited earlier, and the fact that the group
homology Hi(M,C) is isomorphic to C ⊗ Λi(M) for all commutative groups
M and Z[1/i!]-modules C given trivial M -action, IIa reduces to the statement:
Let Σ(q) denote the group of permutations of a set q of (p+ 1) elements. Let
M be an Abelian group on which (p+ 1)! acts invertibly. Then
H0(Σ(q), det(q)⊗Λi(M q)) vanishes when i < p and is isomorphic to Symp(M)
when i = p.

III: The standard application of the many units hypothesis, see ( [20] for
instance) is that general position is available in the precise sense given below.
Let V ∼= An. We denote by K(V ) the simplicial complex whose set of vertices
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is L(V ). A subset S ⊂ L(V ) of cardinality (r + 1) is an r-simplex of K(V ) if
every T ⊂ S of cardinality t+ 1 ≤ n belongs to Lt(V ). If L ⊂ K(V ) is a finite
simplicial subcomplex, then there is some e ∈ L(V ) with the property that
s ∪ {e} is a (r + 1)-simplex of K(V ) for every r-simplex s of L. This gives an
embedding Cone(L) →֒ K(V ) with e as the vertex of the cone. Thus K(V ) is
contractible. The complex of oriented chains of this simplicial complex will be

denoted by C•(V ). Thus the reduced homologies H̃i(C•(V )) vanish for all i.
The group D(V ) = Zn−1C•(V ) = Bn−1C•(V ) comes up frequently.
IIIa:

(1) Let p < n. Let M be a Z[1/N ]-module where N = (p + 1)!.
Then Hj(PGL(V ), Cp ⊗M) vanishes for j < p and is isomorphic to
Symp(A×)⊗M when j = p.

(2) Hj(PGL(V ), Cn ⊗M) vanishes for all j ≥ 0 and for all Z[1/(n+ 1)!]-
modules M .

(3) H0(PGL(V ), D(V ) ⊗M) for any Abelian group M is isomorphic to
M/2M if n is even, and vanishes if when n is odd

(4) H0(PGL(V ), BpC•(V ) ⊗M) = 0 for every Z[1/2]-module M and for
every 0 ≤ p < n.

(5) H1(PGL(V ), ZpC•(V ) ⊗M) = 0 for every Z[1/(p + 2)!]- module M
and 1 ≤ p ≤ n− 2.

Note that (1) above follows from IIa when F is the constant functor M .
For (2), one observes that PGL(V ) acts transitively on the set of n-simplices of
the simplicial complex K(V ). The stabiliser of an n-simplex is the permutation
group Σ on (n+ 1) letters. The claim now follows from Shapiro’s lemma.
The presentation Cp+2(V ) ⊗M → Cp+1(V ) ⊗M → BpC•(V ) ⊗M → 0 and
the observation H0(PGL(V ), Cp+1(V )⊗M) ∼= M/2M whenever p < n suffice
to take care of (3) and (4).
For assertion (5), one applies the long exact sequence of group homology to the
short exact sequence:
0→ Zp+1C•(V )⊗M → Cp+1(V )⊗M → ZpC•(V )⊗M → 0.
One therefore obtains the exact sequence:
H1(PGL(V ), Cp+1(V ) ⊗ M) → H1(PGL(V ), ZpC•(V ) ⊗ M) →
H0(PGL(V ), Zp+1C•(V ) ⊗ M). The end terms here vanish by (1) and
(4).
IIIb:

(1) ET(V ) is connected.
(2) E2

0,0 = Z, E2
n−1,0 = D(V ), E2

m,0 = 0 if m 6= 0, n − 1 for the spectral
sequence SS(V ).

(3) H1(ET(V )) ∼= Z/2Z if rank(V ) > 2.

Note that (1) is a consequence of (2). Part (2) is deduced by induction on
rank(V ) = n. The induction hypothesis enables the identification of the E1

m,0

terms of the spectral sequence for V (together with differentials) with the
Cm(V ) (together with boundary operators) when m < n. Thus (2) follows.
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For part (3), consider the spectral sequence SS(3). Here E2
2,0 = D(A3) and

H0(PGL3(A), D(A3)) = 0 by IIIa(3). Thus the hypothesis of Ib(4) holds for
SS(3). Consequently,
H1(3) ∼= E∞

1,0
∼= H0(PGL2(A), H1(2)) = H0(PGL2(A), D(A2)) ∼= Z/2Z,

the last isomorphism given by IIIa(3) once again. The isomorphism H1(n) ∼=
Z/2Z for n > 3 is contained in the lemma below for N = 1.

Lemma 27. Let M be an Abelian group. Let N ∈ N. For 0 < r < N , we are
given m(r) ≥ 0 so that Hr(d;M)→ Hr(d+ 1;M)
is a surjection if d = r +m(r) + 1 , and
an isomorphism if d > r +m(r) + 1.
Let m(N) = max{0,m(1) + 1,m(2) + 1, ...,m(N − 1) + 1}.
Then HN (d;M)→ HN (d+ 1;M) is
(a) an isomorphism if d > N +m(N) + 1,
(b) is a surjection if d = N +m(N) + 1.
(c) The surjection in (b) above factors through an isomorphism
H0(PGLd(A), HN (d))→ HN (d+ 1;M) if if M is a Z[1/2]-module.

Proof. Consider the spectral sequence SS(V ;M) that computes the homology
of ET(V ) with coefficients in M . Here V is free of rank N + h + 2, where
h ≥ m(N). We make the following claim:
Claim:If E2

s,r 6= 0 and 0 < s and r < N , then s + r ≥ N + 1 + h − m(N).

Furthermore, when equality holds, H0(PGL(V ), E2
s,r ⊗ Z[1/2]) = 0.

We assume the claim and prove the lemma. We take h = m(N). All the E2
s,r

with s + r = N are zero except possibly for (s, r) = (0, N). Part (b) of the
lemma now follows from Ib(2). We consider next the E2

s,r with s+ r = N + 1
and s ≥ 2 (or equivalently with r < N). It follows that Es

s,r is a quotient of

E2
s,r. The second assertion of the claim now show that H0(PGL(V ), Es

s,r) = 0
if M is a Z[1/2]-module. Part (c) of the lemma now follows from Ib(4).
We take h > m(N) and prove part (a) by induction on h. The inductive
hypothesis implies that HN (N + h;M)→ HN (N + h+ 1;M) is surjective. By
Ib(5), it follows that HN (N +1+h;M)→ E2

0,N is an isomorphism. Now there

are no nonzero E2
s,r with s + r = N + 1 and s ≥ 2. Thus E2

0,N = E∞
0,N . It

follows that HN (N + 1 + h;M)→ HN (N + 2 + h;M) is an isomorphism.
It only remains to prove the claim. We address this matter now.
For r = 0, both assertions of the claim are valid by IIIb(2)and IIIa(3).
So assume now that 0 < r < N . Let SH(r) = Hr(d;M) for d = r +m(r) + 2.
In view of our hypothesis, the chain complex
E1

0,r ← E1
1,r ← ...← E1

p−1,r ← E1
p,r

for N + h+ 1 = p+ r +m(r) + 1 is identified with
C0(V ) ⊗ SH(r) ← ... ← Cp−1(V ) ⊗ SH(r) ← ⊕{det(q) ⊗
Hr(ET(V/W (q));M)|q ∈ Lp(V )}.
As in IIIb(2), it follows that E2

s,r = 0 whenever 0 < s < p. Furthermore, we

deduce the following exact sequence for E2
p,r:
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⊕{det(q) ⊗ KHr(V/W (q);M)|q ∈ Lp} → E2
p,r → ZpC• ⊗ SH(r) → 0. By

IIIa(4), we see that H0(PGL(V ), E2
p,r) = 0 if M is a Z[1/2]-module.

Note that p + r = N + h −m(r) ≥ N + 1 + h −M(N). This completes the
proof of the claim, and therefore, the proof of the lemma as well.

�

The Proposition below is an application of Proposition 22. The notation here
is that of Theorem 2. We regard Br

p,q and Zr
p,q as subgroups of E1

p,q for all
r > 1. The notation KHm(Q) has been introduced in Ia, the first application
of many units.

Proposition 28. Let rank(V ) = n. Let M be a Z[1/2]-module. In the spectral
sequence SS(V ;M), we have:

(1) ⊕{det(q)⊗KHm(V/W (q))|q ∈ L1(V )} ⊂ B∞
1,m if n > 1.

(2) E∞
1,m = 0 if n > 2 and M is a Z[1/6]-module.

(3) If, in addition, it is assumed that
Hm+1(n− 2;M)→ Hm+1(n− 1;M) is surjective, then
⊕{det(q)⊗KHm(V/W (q))|q ∈ L2(V )} ⊂ B∞

2,m.

Proof. Let q ∈ Lr(V ). We have U(q) ⊂ ET(V ) as in Proposition 22. The
spectral sequence of Theorem 2 was constructed from an increasing filtration of
subspaces of ET(V ). Intersecting this filtration with U(q) we obtain a spectral
sequence that computes the homology of U(q). Its terms will be denoted by
Ea

b,c(q). One notes that E1
b,m(q) is the direct sum of det(u)⊗Hm(ET(V/W (u)))

taken over all u ⊂ q of cardinality (b+ 1).
We denote the terms of the spectral sequence in theorem 2 by Ea

b,c(V ). The

given data also provides a homomorphism Ea
b,c(q) → Ea

b,c(V ) of E1-spectral

sequences. We assume that M is a Z[1/(r + 1)!]-module.
We choose a basis e1, e2, ..., en of V so that
q = {Aei : 1 ≤ i ≤ r + 1}. Let G ⊂ GL(V ) be the subgroup of g ∈ GL(V ) so
that
(A) g(q) = q, (B)g(ei) = ei for all i > r + 1, (C), the matrix entries of g are
0, 1,−1 and (D) det(g) = 1. Now G acts on the pair U(q) ⊂ ET(V ). Thus
the above homomorphism of spectral sequences is one such in the category of
G-modules.We observe:
(a) G is a group of order 2(r + 1)!
(b) there are no nonzero G-invariants in E1

i,m(q) for i > 0, and consequently
the same holds for all G-subquotients, in particular for Ea

i,m(q) for all a > 0 as
well.
Proof of part 1. Take r = 1. Proposition 22 implies that the image of
Hm(U(q)) → Hm(ET(V )) has trivial G-action. In view of (b) above, this
shows that E∞

1,m(q) → E∞
1,m(V ) is zero. But E∞

1,m(q) = Z∞
1,m(q) = det(q) ⊗

KHm(V/W (q)). It follows that det(q)⊗KHm(V/W (q)) ⊂ B∞
1,m(V ). Part (1)

follows.
Proof of part (2). We take r = 2. Here we have
Z∞
1,m(q) = Z2

1,m(q). Appealing to Proposition 22 and observation (b) once
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again, we see that the image of the homomorphism Z2
1,m(q)→ Z2

1,m(V ) is con-
tained in B∞

1,m. Part (2) therefore follows from the claim below.

Claim: ⊕{Z2
1,m(q)|q ∈ L2(V )} → Z2

1,m(V ) is surjective.
Denote the image ofHm(n−2;M)→ Hm(n−1;M) by I. A simple computation
produces the exact sequences:
0→ ⊕{det(u)⊗KHm(V/W (u) : u ∈ L1(V ), u ⊂ q} → Z2

1,m(q)→ det(q)⊗I →
0, and
0→ ⊕{det(u)⊗KHm(V/W (u) : u ∈ L1(V )} → Z2

1,m(V )→ Z1C•(V )⊗ I → 0.

The claim now follows from the above description of Z2
1,m(q) and Z2

1,m(V ).
Thus part (2) is proved.
Proof of part (3).We take r = 2 once again. The surjectivity of Hm+1(n −
2;M) → Hm+1(n − 1;M) implies that E2

0,m+1(q) has trivial G-action. By

observation (b), we see that d22,m : E2
2,m(q) → E2

0,m+1(q) is zero. It follows

that E∞
2,m(q) = Z2

2,m(q) here. Proposition 22 and observation (b) once again

show that the image of Z2
2,m(q) → Z2

2,m(V ) is contained in B∞
2,m(V ). Because

Z2
2,m(q) = det(q)⊗KHm(V/W (q)), part (3) follows.

This completes the proof of the Proposition. �

Theorem 3. Let Hm(n;M) denote Hm(ET(An);M) where M is a Z[1/6]-
module. We have:
(1) H1(n;M) = 0 for all n > 2,
(2) H0(GL3(A), H2(3;M))→ H2(n;M) is an isomorphism for all n ≥ 4,
(3) H0(GL4(A), H3(4;M))→ H3(n;M) is an isomorphism for all n ≥ 5,
(4) H0(GL2m−2(A), Hm(2m − 2;M)) → Hm(n;M) is an isomorphism for all
n > 2m− 2.

Proof. Part (1) has already been proved.
Proof of part 2. For this, we study SS(V ;M) where rank(V ) = 4. We first
note that
(i) E2

3,0 = D(V ) and therefore H0(PGL(V ), E2
3,0) = 0.

(ii) E2
1,1 = E1

1,1 = ⊕{det(q) ⊗ D(V/W (q)) : q ∈ L1(V )}, and therefore

H1(PGL(V ), E2
1,1) = 0 by IIa.

(iii) E2
u,v = 0 except when (u, v) = (0, 0), (0, 2), (1, 1), (3, 0). We have E∞

1,1 = 0
by proposition 28 and thus obtain the short exact sequence:
0→ E3

3,0 → E2
3,0 → E2

1,1 → 0.

By (i) and (ii) above, we see that H0(PGL(V ), E3
3,0) = 0. By Ib(1,4), we see

that H0(PGL3(A), H2(3;M)) → H2(4;M) is an isomorphism. In particular,
H2(4;M) receives the trivial PGL4(A)-action. Taking N = 2 and m(1) = 0 in
lemma 27, we see that H2(4;M)→ H2(n;M) is an isomorphism for all n ≥ 4.
This proves part (2).
Proof of part 3. We inspect SS(V ;M) where V = A5. We note that
(1) E∞

1,2 and E∞
2,1 both vanish. This follows from proposition 28, once it is

noted that KH1(2;M) = H1(2;M).
(2) E2

0,2 = H2(4;M) has the trival PGL(V )-action.
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(3) Hi(PGL(V ), E2
2,1) = 0 for all i < 3. This follows from IIa and IIIa(3) after

observing that H1(2;M) ∼= D(A2)⊗M .
(4) From (2) and (3) we see that d22,1 = 0.

(5) We deduce that E2
2,1
∼= E2

0,4/E
3
0,4 and E2

1,2 = E3
1,2
∼= E3

0,4/E
4
0,4 from obser-

vations (1) and (4).
(6) H1(PGL(V ), E2

1,2) = 0.
To see this, first note the the short exact sequence:
0→ P → E2

1,2 → Q→ 0, where
P = ⊕{det(q)⊗KH2(V/W (q) : q ∈ L1(V )} and Q = H2(4;M)⊗ Z1C•(V ).
The vanishing of H1(PGL3(A), Q) follows from IIIa(5). By IIa, the vanishing
of H1(PGL3(A), P ) is reduced to the vanishing of H0(PGL3(A),KH2(A

3).
Now let I be the augmentation ideal of the group algebra R[PGL3(A)] where
R = Z[1/6]. In view of the fact that PGL3(A)ab is 3-torsion, we see that
I = I2. It follows that for all Z[1/6]-modules N equipped with PGL3(A)-
action, we have IN = I2N , or equivalently, H0(PGL3(A), IN) = 0. We apply
this remark to N = H2(3;M). By part (2) of the proposition, we see that
KH2(3;M) = IN . This proves that H0(PGL3(A),KH2(A

3)) = 0. We have
completed the proof of observation 6.
(7) H0(PGL(V ), E4

4,0) = 0.

In view of the filtration of (5), it suffices to check that H1(PGL(V ), E2
a,b) = 0

for (a, b) = (1, 2) and (2, 1) (which has been seen in observations (3) and (6))
and also that H0(PGL(V ), E2

4,0) = 0 (and this is clear because E2
4,0 = D(V )).

(8) H0(PGL4(A), H3(4;M))→ H3(V ;M) is an isomorphism.
That H0(PGL4(A), H3(4;M))→ E∞

0,3 is an isomorphism follows from observa-
tion (7) and Ib(4). Now E∞

a,b = 0 whenever a+ b = 3 and (a, b) 6= (3, 0). This

proves (8).
(9) H3(5;M)→ H3(n;M) is an isomorphism for all n ≥ 5.
This follows from lemma 27 by taking N = 3 and m(1) = m(2) = 0. This
finishes the proof of part (3).
Part (4) now follows from the same lemma and induction.

�

Remark. It can be checked that parts (1,2,4) of the above theorem are valid
for Z[1/2]-modules M . In part (3), it is true that H3(n;M) ∼= H3(n + 1;M)
for n > 4 and also that H0(PGL4(A), H3(4;M)→ H3(5;M) is a surjection.

Proposition 29. Assume that the Compatible Homotopy Question has an af-
firmative answer. Then, for all Z[1/r!]-modules M and for all d > r + 1,
H0(PGLr+1(A), Hr(r + 1;M))→ Hr(d;M) is an isomorphism.

Proof. For r = 1, this statement has been checked in IIIb(3) and lemma 27.
Let N > 1. We assume that the above statement has been proved for all r < N .
Let M be a Z[1/N !]-module. In lemma 27, may may now take m(1) = m(2) =
... = m(N − 1) = 0. From this lemma, we obtain:

H0(PGLN+2(A), HN (N + 2;M))→ HN (N ′;M)
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is an isomorphism for all N ′ > N + 2. So the proposition is proved once it is
checked that

H0(PGLN+1(A), HN (N + 1;M))→ HN (N + 2;M)

is an isomorphism. To prove this, we consider the spectral sequence SS(V ;M)
where V = AN+2. We will prove:
(i) E2

a,b = 0 or a = 0 or a + b = N or (a, b) = (N + 1, 0). Furthermore the

action of PGL(V ) on E2
0,b is trivial when b < N .

(ii) if a > 0 and b > 0, then Hi(PGL(V ), E2
a,b) = 0 for i = 0, 1.

(iii) E∞
a,b = 0 when a > 0 and b > 0.

(iv) E2
a,b
∼= Eb+1

N+1,0/E
b+2
N+1,0 whenever a > 0, b > 0 and a+ b = N .

We first observe that (iv) is true for any spectral sequence of PGL(V )-
modules where (i),(ii) and (iii) hold. Next note that (ii) and (iv) imply that

H0(PGL(V ), EN+1
N+1,0) is contained in H0(PGL(V ), E2

N+1,0). And since the
latter is zero, we see that the former also vanishes.
We deduce that both arrowsH0(PGL(V ), E1

0,N )→ E∞
0,N → HN (N+2;M) are

isomorphisms exactly as in earlier proofs. Thus it only remains to prove (i),
(ii) and (iii).
Proof of (i). This is contained in the proof of lemma 27.
Proof of (ii). 0→ P → E2

a,b → Q→ 0 is exact, where

P = ⊕{det(q) ⊗ KHb(V/W (q)|q ∈ La(V )}, and Q = ZaC• ⊗ Hb(b + 2;M)
as in the proof of the lemma 27. The required vanishing of Hi(PGL(V ), T )
for i = 0, 1 holds for T = Q by IIIa(5). For T = P and a > 1, the required
vanishing follows from II(a). For T = P and a = 1, this is deduced from the
vanishing of H0(PGLN (A),KHN−1) (see the proof of observation (6) in the
proof of theorem 3).
Proof of (iii). We follow the steps of the proof of Proposition 28. We first
choose q ∈ LN−1(V ) and consider the inclusion U(q) →֒ ET(V ). As in that
proof we get a homomorphism of E1 spectral sequences of G-modules with
G ⊂ SL(V ) as given there. The terms of these spectral sequences are denoted
by Ea

b,c(q) and Ea
b,c(V ) respectively. From the inductive hypothesis, we deduce:

(i′) E2
a,b(q) = 0 or a = 0 or a+ b = N or (a, b) = (N + 1, 0). Furthermore the

action of G on E2
0,b(q) is trivial when b < N .

(ii′) if a > 0, h > 0, then H0(G,Eh
a,b(q)) = 0.

These observations together imply
(iii′) Z∞

a,b(q) = Z2
a,b(q) when a > 0 and b > 0.

For a > 0, b > 0, we obtain E∞
a,b(q) → E∞

a,b(V ) is zero, from the affirmative

answer to the Compatible Homotopy Question. For such (a, b),
the image of x(q) : Z2

a,b(q) → Z2
a,b(V ) is thus contained in B∞

a,b(V ). As in

the proof of proposition 28, we see that the sum of the images of x(q), taken
over all q ∈ LN−1(V ), is all of Z2

a,b(V ). It follows that Z2
a,b(V ) = B∞

a,b(V ) and

thus E∞
a,b(V ) = 0 whenever a > 0, b > 0. This proves assertion (iii) and this

completes the proof of the Proposition.
�
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10. a double complex

We will continue to assume that A is a commutative ring with many units. The
paper [2] of Beilinson, Macpherson and Schechtman introduces a Grassmann
complex, intersection and projection maps, and a torus action. The terms of
the double-complex constructed below may be obtained from the quotients by
the torus action of the objects of [2]. The arrows of the double-complex are
signed sums of their intersection and projection maps.
D(V ), C•(V ) etc. are as in the previous section. When rank(V ) = n, we have
the resolution:
0← D(V )← Cn(V )← Cn+1(V )....
We put Cr(V ) = H0(PGL(V ), Cr(V )) when r ≥ n and define Cr(V ) to be
zero otherwise. We put Cr(A

n) = Cr(n). We observe that the above res-
olution of D(V ) tensored with the rationals is a projective resolution in the
category of Q[PGL(V )]-modules. It follows that Hi(PGLn(A), D(An))⊗Q ∼=
Hn+i(C(n)•)⊗Q. We denote by ∂′ : Cr(n)→ Cr−1(n) the boundary operator
of C(n)•. We will now define ∂′′ : Cr(n)→ Cr(n− 1).
Let V ∼= An. Let (L0, L1, ..., Lr) be an ordered (r + 1)-tuple in L(V ) that
gives rise to a r-simplex of K(V ) (see consequence III of many units for
notation). We define ∂i(L0, L1, ..., Lr) ∈ Cr−1(V/Li) by ∂i(L0, L1, ..., Lr) =
(L0, .., Li−1, Li+1, ..., Lr) where Lj = Lj + Li/Li ∈ L(V/Li) whenever j 6= i.
Now let

gr(L0, L1, ..., Lr) = Σr
i=0(−1)

i∂(L0, L1, ..., Lr) ∈ ⊕{Cr−1(V/L) : L ∈ L(V )}.

The above gr : Cr(V ) → ⊕{Cr−1(V/L) : L ∈ L(V )} anti-commutes with
the boundary operator. The functor M → H0(PGL(V ),M) takes gr to ∂′′ :
Cr(n)→ Cr−1(n− 1). This defines ∂′′.
We put Fr(A) = ⊕{Cr(n) : n ≥ 1} and define ∂ : Fr(A) → Fr−1(A) by
∂ = ∂′ + ∂′′. The exact relation between the homology of F•(A) and groups
Ln(A) is as yet unclear. However, we do have:

Lemma 30. H3(F•(A))⊗Q ∼= L2(A) ⊗Q ∼= H3(C•(2))⊗Q.

We sketch a proof. In view of the H-space structure, Li(A)⊗Q is the primitive
homology of ET(An) with Q coefficients for n large. The vanishing of H1(n;Q)
for n > 2 implies that the primitive homology is all of Hi(n;Q) for i = 2, 3 and
n large. By theorem 3, we get Li(A) ⊗ Q ∼= H0(PGLi+1(A), Hi(i + 1;Q)) for
i = 2, 3. For the computation of H0(PGL(V ), H2(ET(V );Q)) where V = A3,
we recall the exact sequence obtained from SS(V ;Q):
0→ H2(ET(V );Q)→ D(V )⊗Q→ D2(V ) = ⊕{D(V/L) : L ∈ L(V )} → 0.
This identifies L2(A) ⊗ Q with the cokernel of H1(PGL(V ), D(V )) ⊗ Q →
H1(PGL(V ), D2(V ))⊗Q. In view of IIa and the above remarks, this is readily
identified with H3(F•(A))⊗Q.That gives the first isomorphism of the lemma.
For the second isomorphism, what one needs is:
Claim: The arrow H4(C•(3))→ H3(C•(2)) induced by ∂′′ is zero.
The proof of this claim, which we address now, was already known to Spencer
Bloch. Let V = A3. Given an ordered 5-tuple (L0, ..., L4) with the Li ∈ L(V )
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as vertices of a 4-simplex in K(V ) (i.e. in general position), they belong to
a conic C and the projection from the points Li induces an isomorphism pi :
C → P(V/Li). We put (M0, ...,M4) = (p0L0, p0L1, ..., p0L4). Let qi = pi ◦ p

−1
0 .

With the ∂i as in the definition of g4, we see that ∂i(L0, ..., L4) ∈ C3(V/Li)
and qi∂i(L0, ..., L4) ∈ C3(V/L0) both give rise to the same element of C3(2).
It follows that ∂(M0,M1, ...,M4) 7→ ∂′′(L0, ..., L4) under the map C3(V/L0)→
C3(2). Thus ∂′′(L0, ..., L4) 7→ 0 ∈ H3(C•(2). This proves the claim and the
lemma.
Thus we have shown that
L2(A)⊗Q ∼= coker(C4(A

2)→ C3(A
2)).

The Bloch group tensored with Q is the homology of

C4(A
2)→ C3(A

2)→ Λ2(A×)⊗Q.

Thus this discussion amounts to a proof of Suslin’s theorem on the Bloch group.
It remains to obtain a closed form for L3(A)⊗Q by this method.
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