RATIONALLY ISOTROPIC QUADRATIC SPACES ARE LOCALLY ISOTROPIC: II

IVAN PANIN AND KONSTANTIN PIMENOV

Received: September 06, 2009 Revised: April 17, 2010

ABSTRACT. The results of the present article extend the results of [Pa]. The main result of the article is Theorem 1.1 below. The proof is based on a moving lemma from [LM], a recent improvement due to O. Gabber of de Jong's alteration theorem, and the main theorem of [PR]. A purity theorem for quadratic spaces is proved as well in the same generality as Theorem 1.1, provided that R is local. It generalizes the main purity result from [OP] and it is used to prove the main result in [ChP].

1 INTRODUCTION

Let A be a commutative ring and P be a finitely generated projective A-module. An element $v \in P$ is called unimodular if the A-submodule vA of P splits off as a direct summand. If $P = A^n$ and $v = (a_1, a_2, \ldots, a_n)$ then v is unimodular if and only if $a_1A + a_2A + \cdots + a_nA = A$.

Let $\frac{1}{2} \in A$. A quadratic space over A is a pair (P, α) consisting of a finitely generated projective A-module P and an A-isomorphism $\alpha : P \to P^*$ satisfying $\alpha = \alpha^*$, where $P^* = \operatorname{Hom}_R(P, R)$. Two spaces (P, α) and (Q, β) are *isomorphic* if there exists an A-isomorphism $\varphi : P \to Q$ such that $\alpha = \varphi^* \circ \beta \circ \varphi$.

Let (P, φ) be a quadratic space over A. One says that it is *isotropic* over A, if there exists a unimodular $v \in P$ with $\varphi(v) = 0$.

THEOREM 1.1. Let R be a semi-local regular integral domain containing a field. Assume that all the residue fields of R are infinite and $\frac{1}{2} \in R$. Let K be the fraction field of R and (V, φ) a quadratic space over R. If $(V, \varphi) \otimes_R K$ is isotropic over K, then (V, φ) is isotropic over R.

This Theorem is a consequence of the following result.

IVAN PANIN AND KONSTANTIN PIMENOV

THEOREM 1.2. Let k be an infinite perfect field of characteristic different from 2, B a k-smooth algebra. Let p_1, p_2, \ldots, p_n be prime ideals of B, $S = B - \bigcup_{j=1}^n p_j$ and $R := B_S$ be the localization of B with respect to S (note that B_S is a semilocal ring). Let K be the ring of fractions of R with respect to all non-zero divisors and (V, φ) be a quadratic space over R. If $(V, \varphi) \otimes_R K$ is isotropic over K, then (V, φ) is isotropic over R.

For arbitrary discrete valuation rings, Theorem 1.1 holds trivially. It also holds for arbitrary regular local two-dimensional rings in which 2 is invertible, as proved by M. Ojanguren in [O].

To conclude the Introduction let us add a historical remark which might help the general reader. Let R be a regular local ring, G/R a reductive group scheme. The question whether a principal homogeneous space over R which admits a rational section actually admits a section goes back to the foundations of étale cohomology. It was raised by J.-P. Serre and A. Grothendieck (séminaire Chevalley "Anneaux de Chow"). In the geometric case, this question has essentially been solved, provided that G/R comes from a ground field k. Namely, J.-L. Colliot-Thélène and M. Ojanguren in [CT-O] deal with the case where the ground field k is infinite and perfect. There were later papers [Ra1] and [Ra2] by M.S. Raghunathan, which handled the case k infinite but not necessarily perfect. O. Gabber later announced a proof in the general case. One may then raise the question whether a similar result holds for homogeneous spaces. A specific instance is that of projective homogeneous spaces. An even more specific instance is that of smooth projective quadrics (question raised in [C-T], Montpellier 1977). This last case is handled in the present paper. Remark 3.5 deals with the semi-local case.

The key point of the proof of Theorem 1.2 is the combination of the moving lemma in [LM] and Gabber's improvement of the alteration theorem due to de Jong with the generalization of Springer's result in [PR]. Theorem 1.1 is deduced from Theorem 1.2 using D. Popescu's theorem.

2 AUXILIARY RESULTS

Let k be a field. To prove Theorem 1 we need auxiliary results. We start recalling the notion of transversality as it is defined in [LM, Def.1.1.1].

DEFINITION 2.1. Let $f : X \to Z$, $g : Y \to Z$ be morphisms of k-smooth schemes. We say that f and g are transverse if

- 1. $Tor_q^{\mathfrak{O}_Z}(\mathfrak{O}_Y,\mathfrak{O}_X) = 0$ for all q > 0.
- 2. The fibre product $X \times_Z Y$ is a k-smooth scheme.

LEMMA 2.2. Let $f: X \to Z$ and $g: Y \to Z$ be transverse, and $pr_Y: Y \times_Z X \to Y$ and $h: T \to Y$ be transverse, then f and $g \circ h$ are transverse.

This is just Lemma 1 from [Pa].

517

Since this moment and till Remark 2.6 (including that Remark) let k be an infinite perfect field of characteristic different from 2. Let U be a smooth irreducible quasi-projective variety over k and let $j: u \to U$ be a closed point of U. In particular, the field extension k(u)/k is finite. It is also separable since k is perfect. Thus u = Spec(k(u)) is a k-smooth variety.

LEMMA 2.3. Let U be as above. Let Y be a k-smooth irreducible variety of the same dimension as U. Let $v = \{v_1, v_2, \ldots, v_s\} \subset U$ be a finite set of closed points. Let $q: Y \to U$ be a projective morphism such that $q^{-1}(v) \neq \emptyset$. Assume $q: Y \to U$ and $j_v: v \hookrightarrow U$ are transverse. Then q is finite étale over an affine neighborhood of the set $v \subset U$.

Proof. There is a $v_i \in v$ such that $q^{-1}(v_i) \neq \emptyset$. By [Pa, Lemma 2] q is finite étale over a neighborhood V_i of the point $v_i \in U$. This implies that $V_i \subset q(Y)$. It follows that q(Y) = U, since q is projective and U is irreducible. Whence for each $i = 1, 2, \ldots, s$ one has $q^{-1}(v_i) \neq \emptyset$. By [Pa, Lemma 2] for each $m = 1, 2, \ldots, s$ the morphism q is finite étale over a neighborhood V_m of the point $v_m \in U$. Since U is quasi-projective, q is finite étale over an affine neighborhood V of the set $v \subset U$.

Let U be as above. Let $p: \mathfrak{X} \to U$ be a smooth projective k-morphism. Let $X = p^{-1}(u)$ be the fibre of p over u. Since p is smooth the k(u)-scheme X is smooth. Since k(u)/k is separable X is smooth as a k-scheme. Thus for a morphism $f: Y \to \mathfrak{X}$ of a k-smooth scheme Y it makes sense to say that f and the embedding $i: X \hookrightarrow \mathfrak{X}$ are transverse. So one can state the following

LEMMA 2.4. Let $p: \mathfrak{X} \to U$ be as above, let $j_v: v \hookrightarrow U$ be as in Lemma 2.3 and let $X = p^{-1}(v)$ be as above. Let Y be a k-smooth irreducible variety with $\dim(Y) = \dim(U)$. Let $f: Y \to \mathfrak{X}$ be a projective morphism such that $f^{-1}(X) \neq \emptyset$. Suppose that f and the closed embedding $i: X \hookrightarrow \mathfrak{X}$ are transverse. Then the morphism $q = p \circ f: Y \to U$ is finite étale over an affine neighborhood of the set v.

Proof. For each i = 1, 2, ..., s the extension k(u)/k is finite. Since k is perfect, the scheme v is k-smooth. The morphism $p : \mathcal{X} \to U$ is smooth. Thus the morphism j_v and the morphism p are transverse. Morphisms j_v and $q = p \circ f$ are transverse by Lemma 2.2, since j_v and f are transverse. One has $q^{-1}(v) = f^{-1}(\mathcal{X}) \neq \emptyset$. Now Lemma 2.3 completes the proof of the Lemma.

For a k-smooth variety W let $CH_d(W)$ be the group of dimension d algebraic cycles modulo rational equivalence on W (see [Fu]). The next lemma is a variant of the proposition [LM, Prop. 3.3.1] for the Chow groups $Ch_d := CH_d/2CH_d$ of algebraic cycles modulo rational equivalence with $\mathbb{Z}/2\mathbb{Z}$ -coefficients.

LEMMA 2.5 (A moving lemma). Suppose that k is an infinite perfect field (the characteristic of k is different from 2 as above). Let W be a k-smooth scheme

and let $i: X \hookrightarrow W$ be a k-smooth closed subscheme. Then $Cd_d(W)$ is generated by the elements of the form $f_*([Y])$ where Y is an irreducible k-smooth variety of dimension d, $[Y] \in Cd_d(Y)$ is the fundamental class of Y, $f: Y \to W$ is a projective morphism such that f and i are transverse and $f_*: Ch_d(Y) \to Ch_d(W)$ is the push-forward.

Proof. The group $Ch_d(W)$ is generated by cycles of the form [Z], where $Z \subset W$ is a closed irreducible subvariety of dimension d. Since k is perfect of characteristic different from 2, applying a recent result due to Gabber [I, Thm. 1.3], one can find a k-smooth irreducible quasi-projective variety Z' and a proper morphism $\pi : Z' \to Z$ with k-smooth quasi-projective variety Z' and such that the degree [k(Z') : k(Z)] is odd. The morphism p is necessary projective, since the k-variety Z' is quasi-projective and p is a proper morphism (see [Ha, Ch.II, Cor.4.8.e]). Write π' for the composition $Z' \to Z \to W$. Clearly, $\pi'_*([Z']) = [Z] \in Cd_d(W)$. The lemma is not proved yet, since π' and i are not transverse.

However to complete the proof it remains to repeat literally the proof of proposition [LM, Prop. 3.3.1]. The proof of that proposition does not use the resolution of singularities. Whence the lemma.

REMARK 2.6. Note that at the end of the previous proof we actually used a Chow version of [LM, Prop. 3.3.1] instead of Prop. 3.3.1 itself.

The following theorem proved in [PR] is a generalization of a theorem of Springer. See [La, Chap.VII, Thm.2.3] for the original theorem by Springer.

THEOREM 2.7. Let R be a local Noetherian domain which has an infinite residue field of characteristic different from 2. Let $R \subset S$ be a finite R-algebra which is étale over R. Let (V, φ) be a quadratic space over R such that the space $(V, \varphi) \otimes_R S$ contains an isotropic unimodular vector. If the degree [S : R] is odd then the space (V, φ) already contains a unimodular isotropic vector.

REMARK 2.8. Theorem 2.7 is equivalent to the main result of [PR], since the R-algebra S from Theorem 2.7 one always has the form R[T]/(F(T)), where F(T) is a separable polynomial of degree [S:R] (see [AK, Chap.VI, Defn.6.11, Thm.6.12]).

Repeating verbatim the proof of Theorem 2.7 given in $[\mathrm{PR}]$ we get the following result.

THEOREM 2.9. Let R be a semi-local Noetherian integral domain SUCH THAT ALL ITS residue fields ARE INFINITE of characteristic different from 2. Let $R \subset S$ be a finite R-algebra which is étale over R. Let (V, φ) be a quadratic space over R such that the space $(V, \varphi) \otimes_R S$ contains an isotropic unimodular vector. If the degree [S : R] is odd then the space (V, φ) already contains a unimodular isotropic vector.

3 Proofs of Theorems 1.2 and 1.1

Proof of Theorem 1.2. Let k be an infinite perfect field of characteristic different from 2. Let p_1, p_2, \ldots, p_n be prime ideals of $B, S = B - \bigcup_{j=1}^n p_j$ and $R = B_S$ be the localization of B with respect to S.

Clearly, it is sufficient to prove the theorem in the case when B is an integral domain. So, in the rest of the proof we will assume that B is an integral domain. We first reduce the proof to the localization at a set of maximal ideals. To do that we follow the arguments from [CT-O, page 101]. Clearly, there exist $f \in S$ and a quadratic space (W, ψ) over B_f such that $(W, \psi) \otimes_{B_f} B_S = (V, \varphi)$. For each index j let m_j be a maximal ideal of B containing p_j and such that $f \notin m_j$. Let $T = B - \bigcup_{j=1}^n m_j$. Now B_T is a localization of B_f and one has $B_f \subset B_T \subset B_S = R$. Replace R by B_T .

From now on and until the end of the proof of Theorem 1.2 we assume that $R = \mathcal{O}_{U,\{u_1,u_2,\ldots,u_n\}}$ is the semi-local ring of a finite set of closed points $u = \{u_1, u_2, \ldots, u_n\}$ on a k- smooth d-dimensional irreducible affine variety U.

Let $\mathfrak{X} \subset \mathbf{P}_R(V)$ be a projective quadric given by the equation $\varphi = 0$ in the projective space $\mathbf{P}_R(V) = \operatorname{Proj}(S^*(V^{\vee}))$. Let $X = p^{-1}(u)$ be the schemetheoretic pre-image of u under the projection $p: \mathfrak{X} \to \operatorname{Spec}(R)$. Shrinking Uwe may assume that u is still in U and the quadratic space (V, φ) is defined over U. We still write \mathfrak{X} for the projective quadric in $\mathbf{P}_U(V)$ given by the equation $\varphi = 0$ and still write $p: \mathfrak{X} \to U$ for the projection. Let $\eta: \operatorname{Spec}(K) \to U$ be the generic point of U and let \mathfrak{X}_η be the generic fibre of $p: \mathfrak{X} \to U$. Since the equation $\varphi = 0$ has a solution over K there exists a K-rational point y of \mathfrak{X}_η . Let $Y \subset \mathfrak{X}$ be its closure in \mathfrak{X} and let $[Y] \in Ch_d(\mathfrak{X})$ be the class of Y in the Chow groups with $\mathbb{Z}/2\mathbb{Z}$ -coefficients.

Since p is smooth the scheme X is k(u)-smooth. Since k(u)/k is a finite étale algebra X is smooth as a k-scheme. By Lemma 2.5 there exist a finite family of integers $n_r \in \mathbb{Z}$ and a finite family of projective morphisms $f_r: Y_r \to \mathcal{X}$ (with k-smooth irreducible Y_r 's of dimension dim(U)) which are transverse to the closed embedding $i: X \to \mathcal{X}$ and such that $\sum n_r f_{r,*}([Y_r]) = [Y]$ in $Ch_d(\mathcal{X})$. Shrinking U we may assume that for each index r one has $f_r^{-1}(X) \neq \emptyset$. By Lemma 2.4 for any index r the morphism $q_r = p \circ f_r: Y_r \to U$ is finite étale over an affine neighborhood U' of the set u. Shrinking U we may assume that U' = U. Let $deg: Ch_0(\mathcal{X}_\eta) \to \mathbb{Z}/2\mathbb{Z}$ be the degree map. Since deg(y) = 1 and $\sum n_r f_{r,*}[Y_r] = [Y] \in Ch_d(\mathcal{X})$ there exists an index r such that the degree of the finite étale morphism $q_r: Y_r \to U$ is odd. Without loss of generality we may assume that the degree of q_1 is odd. The existence of the Y_1 -point $f_1: Y_1 \to \mathcal{X}$ of \mathcal{X} shows that we are under the hypotheses of Theorem 2.9. Hence shrinking U once more we see that there exists a section $s: U \to \mathcal{X}$ of the projection $\mathcal{X} \to U$. Theorem 1.2 is proven.

Proof of Theorem 1.1. Let R be a regular semi-local integral domain containing a field. Let k be the prime field of R. By Popescu's theorem $R = \lim_{k \to \infty} B_{\alpha}$, where

the B_{α} 's are smooth k-algebras (see [P] or [Sw]). Let $can_{\alpha} : B_{\alpha} \to R$ be the canonical k-algebra homomorphism. We first observe that we may replace the direct system of the B_{α} 's by a system of essentially smooth semi-local k-algebras which are integral domains. In fact, if m_j is a maximal ideal of R, we can take $p_{\alpha,j} := can_{\alpha}^{-1}(m_j), S_{\alpha} := B_{\alpha} - \bigcup_{j=1}^n p_{\alpha,j}$ and replace each B_{α} by $(B_{\alpha})_{S_{\alpha}}$, Note that in this case the canonical morphisms $can_{\alpha} : B_{\alpha} \to R$ take maximal ideals to maximal ones and every B_{α} is a regular semi-local k-algebra.

We claim that B_{α} is an integral domain. In fact, since B_{α} is a regular semilocal k-algebra it is a product $\prod_{i=1}^{s} B_{\alpha,i}$ of regular semi-local integral domains $B_{\alpha,i}$. The ideal $q_{\alpha} := can_{\alpha}^{-1}(0) \subset B_{\alpha}$ is prime and is contained in each of the maximal ideals $can_{\alpha}^{-1}(m_j)$ of the ring B_{α} . The latter ideal runs over all the maximal ideals of B_{α} . Thus the prime ideal q_{α} is contained in all maximal ideals of $B_{\alpha} = \prod_{i=1}^{s} B_{\alpha,i}$. Since q_{α} is prime after reordering the indices it must be of the form $q_1 \times \prod_{i=2}^{s} B_{\alpha,i}$. If $s \geq 2$ then the latter ideal is not contained in a maximal ideal of the form $\prod_{i=1}^{s-1} B_{\alpha,i} \times m$ for a maximal ideal m of $B_{\alpha,s}$. Whence s = 1 and B_{α} is indeed an integral domain.

There exists an index α and a quadratic space φ_{α} over B_{α} such that $\varphi_{\alpha} \otimes_{B_{\alpha}} R \cong \varphi$. For each index $\beta \geq \alpha$ we will write φ_{β} for the B_{β} -space $\varphi_{\alpha} \otimes_{B_{\alpha}} B_{\beta}$. Clearly, $\varphi_{\beta} \otimes_{B_{\beta}} R \cong \varphi$. The space φ_K is isotropic. Thus there exists an element $f \in R$ such that the space (V_f, φ_f) is isotropic. There exists an index $\beta \geq \alpha$ and a non-zero element $f_{\beta} \in B_{\beta}$ such that $can_{\beta}(f_{\beta}) = f$ and the space φ_{β} localized at f_{β} is isotropic over the ring $(B_{\beta})_{f_{\beta}}$.

If char(k) = 0 or if char(k) = p > 0 and the field k is infinite perfect, then by Theorem 1.2 the space φ_{β} is isotropic. Whence the space φ is isotropic too.

If char(k) = p > 0 and the field k is finite, then choose a prime number l different from 2 and from p and take the field k_l which is the composite of all l-primary finite extensions k' of k in a fixed algebraic closure \bar{k} of k. Note that for each field k'' which is between k and k_l and is finite over k the degree [k'':k] is a power of l. In particular, it is odd. Note as well that k_l is a perfect infinite field. Take the k_l -algebra $k_l \otimes_k B_\beta$. It is a semi-local essentially k_l -smooth algebra, which is not an integral domain in general. The element $1 \otimes f_\beta$ is not a zero divisor. In fact, k_l is a flat k-algebra and the element f is not a zero divisor in B_β .

The quadratic space $k_l \otimes_k \varphi_\beta$ localized at $1 \otimes f_\beta$ is isotropic over $(k_l \otimes_k B_\beta)_{1 \otimes f_\beta} = k_l \otimes_k (B_\beta)_{f_\beta}$ and $1 \otimes f_\beta$ is not a zero divisor in $k_l \otimes_k B_\beta$. By Theorem 1.2 the space $k_l \otimes_k \varphi_\beta$ is isotropic over $k_l \otimes_k B_\beta$. Whence there exists a finite extension $k \subset k' \subset k_l$ of k such that the space $k' \otimes_k \varphi_\beta$ is isotropic over $k' \otimes_k B_\beta$. Thus the space $k' \otimes_k \varphi$ is isotropic over $k' \otimes_k R$. Now $k' \otimes_k R$ is a finite étale extension of R of odd degree. All residue fields of R are infinite. By Theorem 2.9 the space φ is isotropic over R.

To state the first corollary of Theorem 1.1 we need to recall the notion of unramified spaces. Let R be a Noetherian integral domain and K be its fraction field. Recall that a quadratic space (W, ψ) over K is unramified if for every

height one prime ideal \wp of R there exists a quadratic space $(V_{\mathfrak{p}}, \varphi_{\wp})$ over R_{\wp} such that the spaces $(V_{\wp}, \varphi_{\wp}) \otimes_{R_{\wp}} K$ and (W, ψ) are isomorphic.

COROLLARY 3.1 (A purity theorem). Let R be a regular local ring containing a field of characteristic different from 2 and such that the residue field of R is infinite. Let K be the field of fractions of R. Let (W, ψ) be a quadratic space over K which is unramified over R. Then there exists a quadratic space (V, φ) over R extending the space (W, ψ) , that is the spaces $(V, \varphi) \otimes_R K$ and (W, ψ) are isomorphic.

Proof. By the purity theorem [OP, Theorem A] there exists a quadratic space (V,φ) over R and an integer $n \ge 0$ such that $(V,\varphi) \otimes_R K \cong (W,\psi) \perp \mathbb{H}^n_K$, where \mathbb{H}_K is a hyperbolic plane. If n > 0 then the space $(V, \varphi) \otimes_R K$ is isotropic. By Theorem 1.1 the space (V, φ) is isotropic too. Thus $(V, \varphi) \cong (V', \varphi') \perp \mathbb{H}_R$ for a quadratic space (V', φ') over R. Now Witt's Cancellation theorem over a field [La, Chap.I, Thm.4.2] shows that $(V', \varphi') \otimes_R K \cong (W, \psi) \perp \mathbb{H}_K^{n-1}$. Repeating this procedure several times we may assume that n = 0, which means that $(V,\varphi)\otimes_R K\cong (W,\psi).$

REMARK 3.2. Corollary 3.1 is used in the proof of the main result in [ChP]. The main result in [ChP] holds now in the case of a local regular ring R containing a field provided that the residue field of R is infinite and $\frac{1}{2} \in R$.

COROLLARY 3.3. Let R be a semi-local regular integral domain containing a field. Assume that all the residue fields of R are infinite and $\frac{1}{2} \in R$. Let K be the fraction field of R. Let (V, φ) be a quadratic space over R and let $u \in \mathbb{R}^{\times}$ be a unit. Suppose the equation $\varphi = u$ has a solution over K then it has a solution over R, that is there exists a vector $v \in V$ with $\varphi(v) = u$ (clearly the vector v is unimodular).

Proof. It is very standard. However for the completeness of the exposition let us recall the arguments from [C-T, Proof of Prop.1.2]. Let (R, -u) be the rank one quadratic space over R corresponding to the unit -u. The space $(V,\varphi)_K \perp (K,-u)$ is isotropic thus the space $(V,\varphi) \perp (R,-u)$ is isotropic by Theorem 1.1. By the lemma below there exists a vector $v \in V$ with $\varphi(v) = u$. Clearly v is unimodular.

LEMMA 3.4. Let (V, φ) be as above. Let $(W, \psi) = (V, \varphi) \perp (R, -u)$. The space (W, ψ) is isotropic if and only if there exists a vector $v \in V$ with $\varphi(v) = u$.

Proof. It is standard. See [C-T, the proof of Proposition 1.2.].

REMARK 3.5. It would be nice to extend the result of Corollary 3.1 to the semilocal case. The difficulty is to extend the purity theorem [OP, Theorem A] to that semi-local case.

Documenta Mathematica · Extra Volume Suslin (2010) 515-523

Ivan Panin and Konstantin Pimenov

4 ACKNOWLEDGEMENTS

The work was supported by the Presidium of the RAS Program "Fundamental Research in modern mathematics", the joint DFG-RFBR grant 09-01-91333 NNIO-a, and the RFBR-grant 10-01-00551. The Authors thanks very much J.-L. Colliot-Thélène for explaining Gabber's modification of the de Jong alteration theorem, M. Levine for his comments concerning the proof of proposition [LM, Prop. 3.3.1] and N. Durov for his stimulating interest in the present work.

References

522

- [AK] A. Altman, S. Kleiman. Introduction to Grothendieck duality theory. Lect. Notes in Math. 146, Springer, 1970.
- [ChP] V. Chernousov, I. Panin. Purity of G₂-torsors. C. R. Acad. Sci., Paris, Sér. I, Math. vol. 345, No. 6, pp. 307-312 (2007)
- [C-T] J.-L. Colliot-Thélène. Formes quadratiques sur les anneaux semilocaux réguliers. Colloque sur les Formes Quadratiques, 2 (Montpellier, 1977). Bull. Soc. Math. France Mém. No. 59, (1979), 13–31.
- [CT-O] J.-L. Colliot-Thélène, M. Ojanguren. Espaces principaux homogènes localement triviaux. Publ. Math. IHES No. 75, (1992), 97–122
- [Fu] W. Fulton. Intersection theory. Springer-Verlag, 1984.
- [Ha] *R. Hartshorne.* Algebraic Geometry. Graduate Texts in Math., 52, Springer-Verlag, Berlin-New York, 1977.
- [I] L. Illusie. On Gabber's refined uniformization [Ga1], http://www.math.u-psud.fr/ illusie/ Talks at the Univ. Tokyo, Jan. 17, 22, 31, Feb. 7, 2008.
- [La] T.Y. Lam. Introduction to quadratic forms over fields. Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence, RI, 2005.
- [LM] M. Levine, F. Morel. Algebraic Cobordism, Springer Monographs in Mathematics, Springer-Verlag 2007. xii+244 pp. ISBN: 978-3-540-36822-9; 3-540-36822-1
- [O] M. Ojanguren. Unités représentées par des formes quadratiques ou par des normes réduites. Algebraic K-theory, Part II (Oberwolfach, 1980), pp. 291–299, Lecture Notes in Math., 967, Springer, Berlin-New York, 1982.
- [OP] M. Ojanguren, I. Panin. A purity theorem for the Witt group, Ann. scient. Éc. Norm. Sup. 4ème série, 32 (1999), 71–86

- [Pa] I. Panin, Rationally isotropic quadratic spaces are locally isotropic. Invent. math. 176, 397-403 (2009).
- [P] D. Popescu. General Néron desingularization and approximation, Nagoya Math. Journal, 104 (1986), 85–115.
- [PR] I. Panin, U. Rehmann. A variant of a Theorem by Springer. Algebra i Analyz, vol.19 (2007), 117-125. www.math.uiuc.edu/K-theory/0671/2003
- [Ra1] M.S. Raghunathan. Principal bundles admitting a rational section. Invent. Math. 116 (1994), no. 1-3, 409–423.
- [Ra2] M.S. Raghunathan. Erratum: "Principal bundles admitting a rational section" [Invent. Math. 116 (1994), no. 1-3, 409–423]. Invent. Math. 121 (1995), no. 1, 223.
- [Sw] R.G. Swan. Néron-Popescu desingularization. In Algebra and Geometry (Taipei, 1995), Lect. Algebra Geom. vol. 2, Internat. Press, Cambridge, MA, 1998, 135 - 192.

Ivan Panin Steklov Institute of Mathematics St.Petersburg Russia paniniv@gmail.com Konstantin Pimenov St.Petersburg State University St.Petersburg Russia kip302002@yahoo.com

Documenta Mathematica \cdot Extra Volume Suslin (2010)

524