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Preface

Over four decades, Andrei Suslin has conducted inspirational research at St. Pe-
tersburg University (LOMI) and Northwestern University. Andrei’s impact on
algebraic K-theory, motivic cohomology, central simple algebras, cohomology of
groups, and representation theory have fundamentally changed these subjects.
Many of the best results in these areas are due to Andrei, many more were
achieved using his ideas and guidance. Andrei’s influence extends beyond his
published achievements, for he has been most generous in sharing his ideas and
insights. With great admiration, this volume of Documenta Mathematica
is dedicated to him.

St. Petersburg memories, Sasha Merkurjev

The Boarding School # 45 was a unique special place. It collected talented
pupils in the North-West region of the Soviet Union. It was the only way
into mathematics for many people living outside of big cities. Suslin taught at
this school during 3 years when he was an undergraduate student. His style
made a tremendous impact on me that I have never experienced later. Not
only on me – for example, I just recently met my class-mate Sasha Koldobskiy
(he is professor at the University of Missouri) and he shares the same feelings.
Needless to say that already at that time I decided to study algebra. Such early
decisions were not exceptional: Nikita Karpenko asked me to be his advisor
when he was a 9th year student at the School # 45.
Andrei’s passion for mathematics and his systematic approach were a model
for us. We saw him reading algebra books like Bourbaki commutative algebra
in a bus or metro. During short breaks between lessons he draw complicated
diagrams in the notebook (standard thin 2 kopeks notebooks where Andrei
used to record all his math) – that time Andrei was working on a problem in
finite geometry and combinatorics. I guess that work was not successful and at
the beginning of the senior year Andrei realized that he has nothing yet done
for the diploma work to be completed in 9 months. That is how he turned to
Serre’s conjecture concerning modules over polynomial rings.
During boring meetings we had to sit at, Andrei would ask me to give him
problems to solve from recent mathematical olympiads, and often my list ended
before the meeting was over. Andrei was a winner of the International Mathe-
matical Olympiad in 1967.
The “olympiad spirit” has an interesting consequence: Andrei considers every
mathematical problem as a personal challenge. That is why there are not so
many Suslin’s conjectures: by making a conjecture Andrei admits that he failed
to prove it himself.

Documenta Mathematica · Extra Volume Suslin (2010)



2 Preface

Andrei’s impact of mathematicians has been tremendous, not only his own
graduate students but on many others fortunate to be around him. I remember
spontaneous seminars (for many hours) Andrei started when people randomly
get together in his room at LOMI. I remember his lectures on the foundations
of motivic cohomology in the late 80’s, when it was rather an improvisation at
the board than lectures. Two of Andrei’s graduate students, Vanya Panin and
Serge Yagunov, are organizers of this birthday celebration; other people who
can call Andrei an informal advisor include Sasha Smirnov, Sasha Nenashev,
myself, . . . During these seminars Andrei generously shared his ideas. (Markus
Rost is another personality of this type.)

Immediately after his graduation, Andrei was hired as an assistant professor
at the University (so he has never been a graduate student). He worked on
Serre’s conjecture and tried to hide from the rest of the university world – at
least he did not propose themes for students’ work, and I was not able to get
him as thesis advisor.

Andrei liked to work at night – this habit comes from the time when he lived
in an apartment shared by several families (with one bathroom and kitchen),
so he could only work in the kitchen after midnight.

The most funny story about Andrei (unfortunately not for publishing) is that
once he was a member of the Congress of the Young Communist League (he
was the only doctor of sciences in the country younger 28) and he was given a
speech to read about Brezhnev helping him to prove Serre’s Conjecture. As an
exchange he was promised a separate apartment but it did not work out.

Perspective of a friend and colleague, Eric Friedlander

Andrei has been my close friend for many years. We first met in Oberwolfach
in the late 1970’s. Andrei’s English was perfect; not only did he speak and
understand the language, but he understood subtle nuances which astonished
me. We talked mathematics, but also about many other matters. This was the
time his mathematical legend was already being established.

Perhaps few remember that Andrei was an “all Leningrad” gymnast. This
showed when he lectured, for he seemed more poised at the blackboard. Some
of us have never learned, despite much trying, to imitate his style of speaking
slowly, writing very large symbols on the blackboard, all the while conveying
elegantly and efficiently the essence of his mathematics.

A few years later, Andrei and I both visited University of Paris 7. An early
memory of that year followed Andrei’s talk and gold medal at the College de
France. We wandered around Paris at 7:30pm looking for dinner. All restau-
rants were empty, but all were reserved for the night, just as had been the case of
restaurants in the USSR. One morning Andrei called me to say that during the
night he proved the Quillen-Lichtenbaum Conjecture for algebraically closed
fields of positive characteristic and asked if I would photocopy his manuscript
at IHES. Andrei stood at the entrance of the peripherique on the fringe of

Documenta Mathematica · Extra Volume Suslin (2010)



Preface 3

Paris, handing through my car window his coffee-stained manuscript as the car
briefly paused before quickly merging into traffic. What did this Russian to
American exchange look like to an observer? When he first talked about this
result in a Paris seminar, the audience broke tradition to give him an ovation.
The 1986 ICM in Berkeley was the “Mathematical Congress of Absent Rus-
sians”. The world mathematical community eagerly anticipated the remark-
able, almost mythical creators of so much new mathematics. Sadly, Andrei
was among those not allowed to attend, but I was given a manuscript of his
plenary address. This manuscript consisted of page after page of new results
on algebraic K-theory. After spending time with Andrei in Paris, I had the
privilege of visiting the Suslin family in their St. Petersburg apartment; my
achievement was explaining the colloquial English in a popular cartoon series,
not quite equal to Andrei’s explanations of mathematical lectures given in Rus-
sian which we attended in Novosibirsk. Food memories include the delicious
”Russian salad” and the rich soup of cepes (from the woods near the Suslin
dacha) prepared by Olga Suslina. A measure of time passing has been watching
Andrei’s daughters Olga and Maria grow from young girls to successful adults
with children of their own.
Andrei visited M.I.T. and the University of Chicago in the early 1990’s. To
my overwhelming delight and benefit, Andrei decided to join the Northwestern
faculty in 1995. A frequent image which comes to mine is of Andrei pacing
outside my office ignoring whatever weather Chicago was throwing us, while I
stayed warm and dry by scribbling on a blackboard. The best of those times
was our extended effort to prove finite generation of certain cohomology rings;
this was a question that I had thought about for years, and the most important
step I took towards its solution was to consult Andrei. Vladimir Voevodsky
was briefly our colleague at Northwestern. Indeed, a few years earlier, I had
arranged for Andrei to meet Vladimir, recognizing that their different styles
and powerful mathematical talents could be blended together in a very fruitful
manner.
So many mathematicians over the years have benefited from Andrei’s insights
and confidence. If someone mentioned a result, then typically Andrei would
say he is sure it is right. On the other hand, should he need the result he
would produce his own proof – typically improving the statement as well as
the proof – or find a counter-example. With me, perhaps Andrei was a bit
more relaxed for he would occasionally tell me something was nonsense and
even occasionally admit after extended discussion that he was wrong. Those
interactions are among my best memories of our days together at Northwestern.
Andrei’s generosity extended to looking after me on the ski slopes, willingness
to drive to the airport at an awful hour, and other matters of daily life. Our
friendship has been the most remarkable aspect of my mathematical career.

I. Fesenko, E. Friedlander, A. Merkurjev, U. Rehmann
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Infinitesimal Deformations and the ℓ-Invariant

To Andrei Alexandrovich Suslin, for his 60th birthday

Denis Benois

Received: November 11, 2009

Revised: January 22, 2010

Abstract. We give a formula for the generalized Greenberg’s ℓ-invariant
which was constructed in [Ben2] in terms of derivatives of eigenvalues of
Frobenius.

2000 Mathematics Subject Classification: 11R23, 11F80, 11S25, 11G40,
14F30
Keywords and Phrases: p-adic representation, (ϕ,Γ)-module, L-function

Introduction

0.1. Let M be a pure motive over Q with coefficients in a number field E.
Assume that the L-function L(M, s) is well defined. Fixinig an embedding
ι : E →֒ C we can consider it as a complex-valued Dirichlet series L(M, s) =
∞∑
n=0

ann
−s which converges for s≫ 0 and is expected to admit a meromorphic

continuation to C with a functional equation of the form

Γ(M, s)L(M, s) = ε(M, s) Γ(M∗(1),−s)L(M∗(1),−s)

where Γ(M, s) is the product of some Γ-factors and the ε-factor has the form
ε(M, s) = abs.
Assume that M is critical and that L(M, 0) 6= 0. Fix a finite place λ|p of E
and assume that the λ-adic realization Mλ of M is semistable in the sense
of Fontaine [Fo3]. The (ϕ,N)-module Dst(Mλ) associated to Mλ is a finite
dimensional Eλ-vector space equipped with an exhaustive decreasing filtration
FiliDst(Mλ), a Eλ-linear bijective frobenius ϕ : Dst(Mλ) −→ Dst(Mλ) and
a nilpotent monodromy operator N such that N ϕ = pϕN. We say that a
(ϕ,N)-submodule D of Dst(Mλ) is regular if

Dst(Mλ) = D ⊕ Fil0Dst(Mλ)

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



6 Denis Benois

as Eλ-vector spaces. The theory of Perrin-Riou [PR] suggests that to any reg-
ular D one can associate a p-adic L-function Lp(M,D, s) interpolating rational
parts of special values of L(M, s). In particular, the interpolation formula at
s = 0 should have the form

Lp(M,D, 0) = E(M,D)
L(M, 0)

Ω∞(M)

where Ω∞(M) is the Deligne period of M and E(M,D) is a certain product of
Euler-like factors. Therefore one can expect that Lp(M,D, 0) = 0 if and only
if E(M,D) = 0 and in this case one says that Lp(M,D, s) has a trivial zero at
s = 0.

0.2. According to the conjectures of Bloch and Kato [BK], the Eλ-adic
representation Mλ should have the following properties:

C1) The Selmer groups H1
f (Mλ) and H1

f (M∗
λ(1)) are zero.

C2) H0(Mλ) = H0(M∗
λ(1)) = 0 where we write H∗ for the global Galois

cohomology.
Moreover one expects that
C3) ϕ : Dst(Mλ) −→ Dst(Mλ) is semisimple (semisimplicity conjecture).
We also make the following assumption which is a direct generalization of the
hypothesis U) from [G].

C4) The (ϕ,Γ)-module D†
rig(Mλ) has no saturated subquotients of the form

Um,n where Um,n is the unique crystalline (ϕ,Γ)-module sitting in a non split
exact sequence

0 −→ RL(|x|xm) −→ Um,n −→ RL(x−n) −→ 0, L = Eλ

(see §1 for unexplained notations).

In [Ben2], we extended the theory of Greenberg [G] to L-adic pseudo geometric
representations which are semistable at p and satisfy C1-4). Namely to any
regular D ⊂ Dst(V ) of a reasonably behaved representation V we associated
an integer e > 0 and an element L(V,D) ∈ L which can be seen as a vast
generalization of the L-invariants constructed in [Mr] and [G]. If V = Mλ we
set L(M,D) = L(Mλ, D). A natural formulation of the trivial zero conjecture
states as follows:

Conjecture. Lp(M,D, s) has a zero of order e at s = 0 and

(0.1) lim
s→0

Lp(M,D, s)

se
= E+(M,D)L(M∗(1), D∗)

L(M, 0)

Ω∞(M)
,

where E+(M,D) is the subproduct of E(M,D) obtained by ”excluding zero
factors” and D∗ = Hom(Dst(V )/D,Dst(L(1))) is the dual regular module

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



The ℓ-Invariant 7

(see [Ben2] for more details). We refer to this statement as Greenberg’s
conjecture because if Mλ is ordinary at p it coincides with the conjecture
formulated in [G], p.166. Remark that if Mλ is crystalline at p, Greenberg’s
conjecture is compatible with Perrin-Riou’s theory of p-adic L-functions [Ben3].

0.3. Consider the motive Mf attached to a normalized newform f =
∞∑
n=1

anq
n

of weight 2k on Γ0(Np) with (N, p) = 1. The complex L-function of Mf is

L(f, s) =
∞∑
n=1

ann
−s. The twisted motive Mf(k) is critical. The eigenvalues of ϕ

acting on Dst(Mf,λ(k)) are α = p−kap and β = p1−kap with vp(ap) = k−1. The
unique regular submodule of Dst(Mf,k(k)) is D = Eλd where ϕ(d) = αd and
Lp(Mf (k), D, s) = Lp(f, s+ k) where Lp(f, s) is the classical p-adic L-function
associated to ap via the theory of modular symbols [Mn], [AV]. If ap = pk−1,
the function Lp(f, s) vanishes at s = k. In this case several constructions of the
L-invariant based on different ideas were proposed (see [Co1], [Tm], [Mr], [O],
[Br]). Thanks to the work of many people it is known that they are all equal and
we refer to [Cz3] and [BDI] for further information. As Mf (k) is self-dual (i.e.
Mf (k) ≃M∗

f (1−k)) one has L(M∗
f (1−k), D∗) = L(Mf (k), D) (see also section

0.4 below). Moreover it is not difficult to prove that L(Mf (k), D) coincides with
the L-invariant of Fontaine-Mazur LFM(f) [Mr] ([Ben2], Proposition 2.3.7) and
(0.1) takes the form of the Mazur-Tate-Teitelbaum conjecture

L′
p(f, k) = L(f)

L(f, k)

Ω∞(f)

where we write L(f) for an unspecified L-invariant and Ω∞(f) for the Shimura
period of f [MTT]. This conjecture was first proved by Greenberg and Stevens
in the weight two case [GS1] [GS2]. In the unpublished note [St], Stevens
generalized this approach to the higher weights. Other proofs were found by
Kato, Kurihara and Tsuji (unpublished but see [Cz2]), Orton [O], Emerton
[E] and by Bertolini, Darmon and Iovita [BDI]. The approach of Greenberg
and Stevens is based on the study of families of modular forms and their p-
adic L-functions. Namely, Hida (in the ordinary case) and Coleman [Co1] (in

general) constructed an analytic family fx =
∞∑
n=1

an(x)qn of p-adic modular

forms for x ∈ Cp passing through f with f = f2k. Next, Panchishkin [Pa]
and independently Stevens (unpublished) constructed a two-variable p-adic L-
function L-function Lp(x, s) satisfying the following properties:
• Lp(2k, s) = Lp(f, s).

• Lp(x, x − s) = −
〈
N
〉s−x

Lp(x, s).

• Lp(x, k) = (1− pk−1ap(x)−1)L∗(x) where L∗
p(x) is a p-adic analytic function

such that L∗
p(2k) = L(f, k)/Ω∞(f).

From these properties it follows easily that

L′
p(f, k) = −2 d log ap(2k)

L(f, k)

Ω∞(f)
,

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



8 Denis Benois

where d log ap(x) = ap(x)−1 dap(x)

dx
. Thus the Mazur-Tate-Teitelbaum conjec-

ture is equivalent to the assertion that

(0.2) L(f) = −2 d log ap(2k).

This formula was first proved for weight two by Greenberg and Stevens. In the
higher weight case several proofs of (0.2) have been proposed:
1. By Stevens [St], working with Coleman’s L-invariant LC(f) defined in [Co1].
2. By Colmez [Cz5], working with the Fontaine-Mazur’s L-invariant LFM(f)

defined in [Mr].
3. By Colmez [Cz6], working with Breuil’s L-invariant LBr(f) defined in [Br].
4. By Bertolini, Darmon and Iovita [BDI], working with Teitelbaum’s L-

invariant LT(f) [Tm] and Orton’s L-invariant LO(f) [O].

0.4. In this paper, working with the L-invariant defined in [Ben2] we generalize
(0.2) to some infinitesimal deformations of pseudo geometric representations.
Our result is purely algebraic and is a direct generalization of Theorem 2.3.4
of [GS2] using the cohomology of (ϕ,Γ)-modules instead Galois cohomology.
Let V be a pseudo-geometric representation with coefficients in L/Qp which
satisfies C1-4). Fix a regular submodule D. In view of (0.1) it is convenient
to set

ℓ(V,D) = L(V ∗(1), D∗).

Suppose that e = 1. Conjecturally this means that the p-adic L-function has

a simple trivial zero. Then either Dϕ=p−1

or (D∗)ϕ=p
−1

has dimension 1 over

L. To fix ideas, assume that dimLD
ϕ=p−1

= 1. Otherwise, as one expects
a functional equation relating Lp(M,D, s) and Lp(M

∗(1), D∗,−s) one can
consider V ∗(1) and D∗ instead V and D. We distinguish two cases. In each
case one can express ℓ(V,D) directly in terms of V and D.

• The crystalline case: Dϕ=p−1 ∩ N
(
Dst(V )ϕ=1

)
= {0}. Let D†

rig(V ) be the

(ϕ,Γ)-module over the Robba ring RL associated to V [Ber1], [Cz1]. Set
D−1 = (1 − p−1ϕ−1)D and D0 = D. The two step filtration D−1 ⊂ D0 ⊂
Dst(V ) induces a filtration

F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ D†

rig(V )

such that gr0D
†
rig(V ) ≃ RL(δ) is the (ϕ,Γ)-module of rank 1 associated to a

character δ : Q∗
p −→ L∗ of the form δ(x) = |x|xm with m > 1. The cohomology

of (ϕ,Γ)-modules of rank 1 is studied in details in [Cz4]. Let η : Q∗
p −→ L∗ be

a continuous character. Colmez proved that H1(RL(η)) is a one dimensional
L-vector space except for η(x) = |x|xm with m > 1 and η(x) = x−n with
n 6 0. In the exceptional cases H1(RL(η)) has dimension 2 and can be canon-
ically decomposed into direct sum of one dimensional subspaces

(0.3) H1(RL(η)) ≃ H1
f (RL(η))⊕H1

c (RL(η)), η(x) = |x|xm or η(x) = x−n

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



The ℓ-Invariant 9

([Ben2], Theorem 1.5.7). The condition C1) implies that

(0.4) H1(V ) ≃
⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

for a finite set of primes S. This isomorphism defines a one dimensional
subspace H1(D,V ) of H1(V ) together with an injective localisation map
κD : H1(D,V ) −→ H1(RL(δ)). Then ℓ(V,D) is the slope of Im(κD) with
respect to the decomposition of H1(RL(δ)) into direct sum (0.3). Let

0 −→ V −→ Vx −→ L −→ 0

be an extension in the category of global Galois representations such that

cl(x) ∈ H1(D,V ) is non zero. We equip D†
rig(Vx) with a canonical filtration

{0} ⊂ F−1D
†
rig(Vx) ⊂ F0D

†
rig(Vx) ⊂ F1D

†
rig(Vx) ⊂ D†

rig(Vx)

such that FiD
†
rig(Vx) = FiD

†
rig(V ) for i = −1, 0 and gr1D

†
rig(Vx) ≃ RL. Let

VA,x be an infinitesimal deformation of Vx over A = L[T ]/(T 2) endowed with

a filtration FiD
†
rig(VA,x) such that FiD

†
rig(V ) = FiD

†
rig(VA,x)⊗A L. Write

gr0D
†
rig(VA,x) ≃ RA(δA,x), gr1D

†
rig(VA,x) ≃ RA(ψA,x)

with δA,x, ψA,x : Q∗
p −→ A∗.

Theorem 1. Assume that
d(δA,xψ

−1
A,x)(u)

dT

∣∣∣∣
T=0

6= 0 for u ≡ 1 (mod p2). Then

ℓ(V,D) = − log(u)
d log(δA,xψ

−1
A,x)(p)

d log(δA,xψ
−1
A,x)(u)

∣∣∣∣
T=0

(note that the right hand side does not depend on the choice of u).

• The semistable case: Dϕ=p−1 ⊂ N
(
Dst(V )ϕ=1

)
. Set D−1 = (1− p−1ϕ−1)D,

D0 = D and D1 = N−1(Dϕ=p−1

) ∩Dst(V )ϕ=1. The filtration

D−1 ⊂ D0 ⊂ D1 ⊂ Dst(V )

induces a filtration

F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V )

Then gr0D
†
rig(V ) ≃ RL(δ) and gr1D

†
rig(V ) ≃ RL(ψ) where the characters δ

and ψ are such that δ(x) = |x|xm and ψ(x) = x−n for some m > 1 and

n > 0. Set M = F1D
†
rig(V )/F−1D

†
rig(V ) and consider the map κD : H1(M) −→

H1(RL(ψ)) induced by the projection M −→ RL(ψ). The image of κD is a one
dimensional L-subspace of H1(RL(ψ)) and ℓ(V,D) is the slope of Im(κD) with
respect to (0.3).
Assume that VA is an infinitesimal deformation of V equipped with a filtration

FiD
†
rig(VA) such that FiD

†
rig(V ) = FiD

†
rig(VA) ⊗A L. Write gr0D

†
rig(VA) ≃

RA(δA) and gr1D
†
rig(VA) ≃ RA(ψA).
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10 Denis Benois

Theorem 2. Assume that

(0.5)
d(δAψ

−1
A )(u)

dT

∣∣∣∣
T=0

6= 0 for u ≡ 1 (mod p2).

Then

ℓ(V,D) = − log(u)
d log(δAψ

−1
A ) (p)

d log(δAψ
−1
A )(u)

∣∣∣∣
T=0

.

Remark that in the semistable case ℓ(V,D) = L(V,D).

For classical modular forms the existence of deformations having the above
properties follows from the theory of Coleman-Mazur [CM] together with deep
results of Saito and Kisin [Sa], [Ki]. Applying Theorem 2 to the representation
Mf,λ(k) we obtain a new proof of (0.2) with the Fontaine-Mazur L-invariant.
Remark that the local parameter T corresponds to the weight of a p-adic
modular form and (0.5) holds automatically. In the general case the existence
of deformations satisfying the above conditions should follow from properties
of eigenvarieties of reductive groups [BC].

The formulations of Theorems 1 and 2 look very similar and the proof is
essentially the same in the both cases. The main difference is that in the
crystalline case the ℓ-invariant is global and contains information about the
localisation map H1(V ) −→ H1(Qp, V ). In the proof of Theorem 1 we consider
Vx as a representation of the local Galois group but the construction of Vx
depends on the isomorphism (0.4). In the semistable case the definition of
ℓ(V,D) is purely local and the hypothesis C1-2) can be omitted. However
C1-2) are essential for the formulation of Greenberg conjecture because (0.1)
is meaningless if L(M, 0) = 0. One can compare our results with Hida’s paper
[Hi] where the case of ordinary representations over totally real ground field is
studued.

Here goes the organization of this paper. The §1 contains some background
material. In section 1.1 we review the theory of (ϕ,Γ)-modules and in section
1.2 recall the definition of the ℓ-invariant following [Ben2]. The crystalline and
semistable cases of trivial zeros are treated in §2 and §3 respectively. I would
like to thank Pierre Parent for several very valuable discussions which helped
me with the formulation of Theorem 1 and the referee for pointing out several
inaccuracies in the first version of this paper.

It is a great pleasure to dedicate this paper to Andrei Alexandrovich Suslin on
the occasion of his 60th birthday.

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



The ℓ-Invariant 11

§1. The ℓ-invariant

1.1. (ϕ,Γ)-modules. ([Fo1], [Ber1], [Cz1])

1.1.1. Let p be a prime number. Fix an algebraic closure Qp of Qp and set

GQp = Gal(Qp/Qp). We denote by Cp the p-adic completion of Qp and write
| · | for the absolute value on Cp normalized by |p| = 1/p. For any 0 6 r < 1 set

B(r, 1) = {z ∈ Cp | p−1/r 6 |z| < 1}.

Let χ : GQp −→ Z∗
p denote the cyclotomic character. Set HQp = ker(χ) and

Γ = GQp/HQp . The character χ will be often considered as an isomorphism

χ : Γ
∼→ Z∗

p. Let L be a finite extension of Qp. For any 0 6 r < 1 we denote

by B†,r
rig,L the ring of p-adic functions f(π) =

∑
k∈Z

akπ
k (ak ∈ L) which are

holomorphic on the annulus B(r, 1). The Robba ring over L is defined as RL =⋃
r
B†,r

rig,L. Recall that RL is equipped with commuting, L-linear, continuous

actions of Γ and a frobenius ϕ which are defined by

γ(f(π)) = f((1 + π)χ(γ) − 1), γ ∈ Γ,

ϕ(f(π)) = f((1 + π)p − 1).

Set t = log(1 +π) =

∞∑

n=1

(−1)n−1π
n

n
. Remark that γ(t) = χ(γ) t and ϕ(t) = p t.

A finitely generated free RL-module D is said to be a (ϕ,Γ)-module if it
is equipped with commuting semilinear actions of Γ and ϕ and such that
RLϕ(D) = D. The last condition means simply that ϕ(e1), . . . , ϕ(ed) is a
basis of D if e1, . . . , ed is.
Let δ : Q∗

p −→ L∗ be a continuous character. We will write RL(δ) for the
(ϕ,Γ)-module RLeδ of rank 1 defined by

ϕ(eδ) = δ(p) eδ, γ(eδ) = δ(χ(γ)) eδ, γ ∈ Γ.

For any D we let D(χ) denote the ϕ-module D endowed with the action of Γ
twisted by the cyclotomic character χ.
Fix a topological generator γ ∈ Γ. For any (ϕ,Γ)-module D we denote by
Cϕ,γ(D) the complex

0 −→ D
f−→ D⊕D

g−→ D −→ 0

with f(x) = ((ϕ− 1)x, (γ− 1)x) and g(y, z) = (γ− 1)y− (ϕ− 1)z ([H1], [Cz4]).
We shall write H∗(D) for the cohomology of Cϕ,γ(D). The main properties of
these groups are the following
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12 Denis Benois

1) Long cohomology sequence. A short exact sequence of (ϕ,Γ)-modules

0 −→ D′ −→ D −→ D′′ −→ 0

gives rise to an exact sequence

0 −→ H0(D′) −→ H0(D) −→ H0(D)
∆0

−−→ H1(D′) −→ · · · −→ H2(D′′) −→ 0.

2) Euler-Poincaré characteristic. Hi(D) are finite dimensional L-vector spaces
and

χ(D) =

2∑

i=0

(−1)i dimLH
i(D) = −rg(D).

(see [H1] and [Li]).
3) Computation of the Brauer group. The map

cl(x) 7→ −
(

1− 1

p

)−1

(logχ(γ))−1res(xdt)

is well defined and induces an isomorphism inv : H2(RL(χ))
∼→ L (see [H2]

[Ben1] and [Li]).
4) The cup-products. Let D and M be two (ϕ,Γ)-modules. For all i and j

such that i+ j 6 2 define a bilinear map

∪ : Hi(D)×Hj(M) −→ Hi+j(D⊗M)

by

cl(x) ∪ cl(y) = cl(x ⊗ y) if i = j = 0,

cl(x) ∪ cl(y1, y2) = cl(x⊗ y1, x⊗ y2) if i = 0, j = 1,

cl(x1, x2) ∪ cl(y1, y2) = cl(x2 ⊗ γ(y1)− x1 ⊗ ϕ(y2)) if i = 1, j = 1,

cl(x) ∪ cl(y) = cl(x ⊗ y) if i = 0, j = 2.

These maps commute with connecting homomorphisms in the usual sense.
5) Duality. Let D∗ = HomRL(D,RL). For i = 0, 1, 2 the cup product

(1.1) Hi(D)×H2−i(D∗(χ))
∪−→ H2(RL(χ)) ≃ L

is a perfect pairing ([H2], [Li]).

1.1.2. Recall that a filtered (ϕ,N)-module with coefficients in L is a finite
dimensional L-vector space M equipped with an exhausitive decreasing filtra-
tion FiliM , a linear bijective map ϕ : M −→ M and a nilpotent operator
N : M −→ M such that ϕN = pϕN. Filtered (ϕ,N)-modules form a ⊗-
category which we denote by MFϕ,N . A filtered (ϕ,N)-module M is said to
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be a Dieudonné module if N = 0 on M . Filtered Dieudonné modules form
a full subcategory MFϕ of MFϕ,N . It is not difficult to see that the series
log(ϕ(π)/πp) and log(γ(π)/π) (γ ∈ Γ) converge in RL. Let log π be a transcen-
dental element over the field of fractions of RL equipped with actions of ϕ and
Γ given by

ϕ(log π) = p log π + log

(
ϕ(π)

πp

)
, γ(log π) = log π + log

(
γ(π)

π

)
.

Thus the ring RL,log = RL[log π] is equipped with natural actions of ϕ and

Γ and the monodromy operator N = −
(

1− 1

p

)−1
d

d log π
. For any (ϕ,Γ)-

module D set
Dst(D) = (D⊗RL RL,log[1/t])Γ

with t = log(1+π). ThenDst(D) is a finite dimensional L-vector space equipped
with natural actions of ϕ and N such that Nϕ = pϕN. Moreover, it is equipped
with a canonical exhaustive decreasing filtration FiliDst(D) which is induced

by the embeddings ιn : B†,r
rig,L →֒ L∞[[t]], n ≫ 0 constructed in [Ber1] (see

[Ber2] for more details). Set

Dcris(D) = Dst(D)N=0 = (D[1/t])Γ.

Then
dimLDcris(D) 6 dimLDst(D) 6 rg(D)

and one says that D is semistable (resp. crystalline) if dimLDcris(D) = rg(D)
(resp. if dimLDst(D) = rg(D)). If D is semistable, the jumps of the filtration
FiliDst(D) are called the Hodge-Tate weights of D and the tangent space of D
is defined as tD(L) = Dst(D)/Fil0Dst(D).

We let denote by Mϕ,Γ
pst and Mϕ,Γ

cris the categories of semistable and crystalline
representations respectively. In [Ber2] Berger proved that the functors

( 1.2) Dst : Mϕ,Γ
pst −→MFϕ,N , Dcris : Mϕ,Γ

cris −→MFϕ

are equivalences of ⊗-categories.

1.1.3. As usually, H1(D) can be interpreted in terms of extensions. Namely,
to any cocycle α = (a, b) ∈ Z1(Cϕ,γ(D)) one associates the extension

0 −→ D −→ Dα −→ RL −→ 0

such that Dα = D ⊕ RLe with ϕ(e) = e + a and γ(e) = e + b. This defines a
canonical isomorphism

H1(D) ≃ Ext1(RL,D).
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14 Denis Benois

We say that cl(α) ∈ H1(D) is crystalline if dimLDcris(Dα) = dimLDcris(D)+1
and define

H1
f (D) = {cl(α) ∈ H1(D) | cl(α) is crystalline }.

It is easy to see that H1
f (D) is a subspace of H1(D). If D is semistable (even

potentially semistable), one has

H0(D) = Fil0Dst(D)ϕ=1,N=0,

dimLH
1
f (D) = dimL tD(L) + dimLH

0(D)(1.3)

(see [Ben2], Proposition 1.4.4 and Corollary 1.4.5). Moreover, H1
f (D) and

H1
f (D∗(χ)) are orthogonal complements to each other under duality (1.1)

([Ben2], Corollary 1.4.10).

1.1.4. Let D be semistable (ϕ,Γ)-module of rank d. Assume that Dst(D)ϕ=1 =
Dst(D) and that the all Hodge-Tate weights of D are > 0. Since Nϕ = pϕN this
implies that N = 0 on Dst(D) and D is crystalline. The results of this section
are proved in [Ben2] (see Proposition 1.5.9 and section 1.5.10). The canonical
map DΓ −→ Dcris(D) is an isomorphism and therefore H0(D) ≃ Dcris(D) = DΓ

has dimension d over L. The Euler-Poincaré characteristic formula gives

dimLH
1(D) = d+ dimLH

0(D) + dimLH
0(D∗(χ)) = 2d.

On the other hand dimLH
1
f (D) = d by (1.3). The group H1(D) has the

following explicit description. The map

iD : Dcris(D)⊕Dcris(D) −→ H1(D),

iD(x, y) = cl(−x, logχ(γ) y)

is an isomorphism. (Remark that the sign −1 and logχ(γ) are normalizing
factors.) We let denote iD,f and iD,c the restrictions of iD on the first and
second summand respectively. Then Im(iD,f ) = H1

f (D) and we set H1
c (D) =

Im(iD,c). Thus we have a canonical decomposition

H1(D) ≃ H1
f (D)⊕H1

c (D)

([Ben2], Proposition 1.5.9).

Now consider the dual module D∗(χ). It is crystalline, Dcris(D
∗(χ))ϕ=p

−1

=
Dcris(D

∗(χ)) and the all Hodge-Tate weights of D∗(χ) are 6 0. Let

[ , ]D : Dcris(D
∗(χ))×Dcris(D) −→ L

denote the canonical pairing. Define

iD∗(χ) : Dcris(D
∗(χ)) ⊕Dcris(D

∗(χ)) −→ H1(D∗(χ))

by
iD∗(χ)(α, β) ∪ iD(x, y) = [β, x]D − [α, y]D.

As before, let iD∗(χ), f and iD∗(χ), c denote the restrictions of iD on the first

and second summand respectively. From H1
f (D∗(χ)) = H1

f (D)⊥ it follows that

Im(iD∗(χ), f ) = H1
f (D∗(χ)) and we set H1

c (D∗(χ)) = Im(iD∗(χ), c).

Write ∂ for the differential operator (1 + π)
d

dπ
.
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The ℓ-Invariant 15

Proposition 1.1.5. Let RL(|x|xm) be the (ϕ,Γ)-module RLeδ associated to
the character δ(x) = |x|xm (m > 1). Then

i) Dcris(RL(|x|xm)) is the one-dimensional L-vector space generated by

t−meδ. Moreover Dcris(RL(|x|xm)) = Dcris(RL(|x|xm))ϕ=p
−1

and the unique
Hodge-Tate weight of RL(|x|xm) is −m.

ii) H0(RL(|x|xm)) = 0 and H1(RL(|x|xm)) is the two-dimensional

L-vector space generated by α∗
m = −

(
1− 1

p

)
cl(αm) and β∗

m =
(

1− 1

p

)
logχ(γ) cl(βm) where

αm =
(−1)m−1

(m− 1)!
∂m−1

(
1

π
+

1

2
, a

)
eδ

with a ∈ R+
L = RL ∩ L[[π]] such that (1− ϕ) a = (1− χ(γ)γ)

(
1

π
+

1

2

)
and

βm =
(−1)m−1

(m− 1)!
∂m−1

(
b,

1

π

)
eδ

with b ∈ RL such that (1−ϕ)

(
1

π

)
= (1−χ(γ)γ) b.Moreover im,f(1) = α∗

m and

im,c(1) = β∗
m where im denotes the map i defined in 1.1.4 for RL(|x|xm). In

particular,H1
f (RL(|x|xm)) is generated by α∗

m andH1
c (RL(|x|xm)) is generated

by β∗
m.

iii) Let x = cl(u, v) ∈ H1(RL(|x|xm)). Then

x = a cl(αm) + b cl(βm)

with a = res(utm−1dt) and b = res(vtm−1dt).
iv) The map

Resm : RL(|x|xm) −→ L,

Resm(α) = −
(

1− 1

p

)−1

(logχ(γ))−1res
(
αtm−1dt

)

induces an isomorphism invm : H2(RL(|x|xm)) ≃ L. Moreover

invm (ωm) = 1 where ωm = (−1)m
(

1− 1

p

)
logχ(γ)

(m− 1)!
cl
(
∂m−1(1/π)

)

Proof. The assertions i) and ii) are proved in [Cz4], sections 2.3-2.5 and [Ben2],
Theorem 1.5.7 and (16). The assertions iii) and iv) are proved in [Ben2],
Proposition 1.5.4 iii) Corollary 1.5.5.
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1.1.6. In [Fo1], Fontaine worked out a general approach to the classification
of p-adic representations in terms of (ϕ,Γ)-modules. Thanks to the work of
Cherbonnier-Colmez [CC] and Kedlaya [Ke] this approach allows to construct
an equivalence

D†
rig : RepL(GQp) −→Mϕ,Γ

ét

between the category of L-adic representations of GQp and the category Mϕ,Γ
ét

of étale (ϕ,Γ)-modules in the sense of [Ke]. If V is a L-adic representation of
GQp , define

Dst(V ) = Dst(D
†
rig(V )), Dcris(V ) = Dcris(D

†
rig(V )).

Then Dst and Dcris are canonically isomorphic to classical Fontaine’s func-
tors [Fo2], [Fo3] defined using the rings Bst and Bcris ([Ber1], Theorem 0.2).
The continuous Galois cohomology H∗(Qp, V ) = H∗

cont(GQp , V ) is functorially

isomorphic to H∗(D†
rig(V )) ([H1], [Li]). and under this isomorphism

H1
f (D†

rig(V )) ≃ H1
f (Qp, V )

where H1
f (Qp, V ) = ker(H1(Qp, V ) −→ H1(Qp, V ⊗Bcris)) is H1

f of Bloch and

Kato [BK].

1.2. The ℓ-invariant.
1.2.1. The results of this section are proved in [Ben2], 2.1-2.2. Denote by
Q (S)/Q the maximal Galois extension of Q unramified outside S ∪ {∞} and
set GS = Gal(Q (S)/Q). If V is a L-adic representation of GS we write H∗(V )
for the continuous cohomology of GS with coefficients in V . If V is potentially
semistable at p, set

H1
f (Q l, V ) =

{
ker(H1(Ql, V ) −→ H1(Qnr

l , V ) if l 6= p,

H1
f (D†

rig(V )) if l = p.

The Selmer group of Bloch and Kato is defined by

H1
f (V ) = ker

(
H1(V ) −→

⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

)
.

Assume that V satisfies the condition C1-4) of 0.2.
The Poitou-Tate exact sequence together with C1) gives an isomorphism

(1.4) H1(V ) ≃
⊕

l∈S

H1(Ql, V )

H1
f (Ql, V )

.
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Recall that a (ϕ,N)-submodule D of Dst(V ) is said to be regular if the canon-
ical projection D −→ tV (L) is an isomorphism. To any regular D we associate
a filtration on Dst(V )

{0} ⊂ D−1 ⊂ D0 ⊂ D1 ⊂ Dst(V )

setting

Di =





(1− p−1ϕ−1)D +N(Dϕ=1) if i = −1,

D if i = 0,

D + Dst(V )ϕ=1 ∩N−1(Dϕ=p−1

) if i = 1.

By (1.2) this filtration induces a filtration on D†
rig(V ) by saturated (ϕ,Γ)-

submodules

{0} ⊂ F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V ).

Set W = F1D
†
rig(V )/F−1D

†
rig(V ). In [Ben2], Proposition 2.1.7 we proved that

(1.5) W ≃W0 ⊕W1 ⊕M,

where W0 and W1 are direct summands of gr0

(
D†

rig(V )
)

and gr1

(
D†

rig(V )
)

of

ranks dimLH
0(W ∗(χ)) and dimLH

0(W ) respectively. Moreover M seats in a
non split exact sequence

0 −→M0
f−→M

g−→M1 −→ 0

with rg(M0) = rg(M1), gr0

(
D†

rig(V )
)

= M0 ⊕W0 and gr1

(
D†

rig(V )
)

= M1 ⊕
W1. Set

e = rg(W0) + rg(W1) + rg(M0).

Generalizing [G] we expect that the p-adic L-function Lp(V,D, s) has a zero of
order e at s = 0.
If W0 = 0, the main construction of [Ben2] associates to V and D an ele-
ment L(V,D) ∈ L which can be viewed as a generalization of Greenberg’s
L-invariant to semistable representations. Now assume that W1 = 0. Let
D∗ = Hom(Dst(V )/D,Dst(Qp(1))) be the dual regular space. As the decom-
positions (1.5) for the pairs (V,D) and (V ∗(1), D∗) are dual to each other, one
can define

ℓ(V,D) = L(V ∗(1), D∗).

In this paper we do not review the construction of the L-invariant but give a
direct description of ℓ(V,D) in terms of V and D in two important particular
cases.
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1.2.2. The crystalline case: W = W0 (see [Ben2], 2.2.6-2.2.7 and 2.3.3).

In this case W is crystalline, W1 = M = 0 and F0D
†
rig(V ) = F1D

†
rig(V ). From

the decomposition (1.5) it is not difficult to obtain the following description of
H1
f (Qp, V ) in the spirit of Greenberg’s local conditions:

(1.6) H1
f (Qp, V ) = ker

(
H1(F0D

†
rig(V )) −→ H1(W )

H1
f (W )

)
.

Let H1(D,V ) denote the inverse image of H1(F0D
†
rig(V ))/H1

f (Qp, V ) under

the isomorphism (1.4). Thus one has a commutative diagram

(1.7) H1(D,V ) //

''NNNNNNNNNNNN
H1(F0D

†
rig(V ))

��
H1(D†

rig(V ))

where the vertical map is injective ([Ben2], section 2.2.1). From (1.6) it follows
that the composition map

κD : H1(D,V ) −→ H1(F0D
†
rig(V )) −→ H1(W )

is injective. By construction, Dcris(W ) = D/D−1 = Dϕ=p−1

. As D is regular,
the Hodge-Tate weights of W are 6 0. Thus one has a decomposition

iW : Dcris (W )⊕Dcris (W ) ≃ H1
f (W )⊕H1

c (W ) ≃ H1 (W ) .

Denote by pD,f and pD,c the projection of H1 (W ) on the first and the second
direct summand respectively. We have a diagram

Dcris(W )

H1(D,V )

ρD,f
88qqqqqqqqqq

κD //

ρD,c &&MMMMMMMMMM
H1(W )

pD,f

OO

pD,c

��
Dcris(W )

where ρD,c is an isomorphism. Then

ℓ(V,D) = detL

(
ρD,f ◦ ρ−1

D,c | Dcris(W )
)
.
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1.2.3. The semistable case: W = M (see [Ben2], 2.2.3-2.2.4 and 2.3.3). In
this case W is semistable , W0 = W1 = 0 and

(1.8) H1
f (Qp, V ) = ker

(
H1(F1D

†
rig(V )) −→ H1(M1)

)
.

Let H1(D,V ) be the inverse image of H1(F1D
†
rig(V ))/H1

f (Qp, V ) under the

isomorphism (1.4). Consider the exact sequence

H1(M0)
h1(f) // H1(M)

h1(g) // H1(M1)
∆1

// H2(M0) // 0 .

H1(D,V )

κD

OO
κ̄D

88rrrrrrrrrr

By (1.8), the map κ̄D is injective and it is not difficult to prove that the
image of H1(D,V ) in H1(M1) coincides with Im(h1(g)) ([Ben2], section 2.2.3).
Thus in the semistable case the position of H1(D,V ) in H1(M1) is completely
determined by the the restriction of V on the decomposition group at p. By
construction, Dst(M1) = D1/D where (D1/D)ϕ=1 = D1/D and the Hodge-
Tate weights of M1 are > 0. Again, one has an isomorphism

iM1 : Dcris (M1)⊕Dcris (M1) ≃ H1
f (M1)⊕H1

c (M1) ≃ H1 (M1)

which allows to construct a diagram

Dst(M1)

Im(h1(g))

ρD,f
88qqqqqqqqqq

κD //

ρD,c &&MMMMMMMMMM
H1(M1)

pD,f

OO

pD,c

��
Dst(M1).

Then

(1.9) ℓ(V,D) = L(V,D) = detL

(
ρD,f ◦ ρ−1

D,c | Dst(M1)
)
.

From (1.5) it is clear that if e = 1 then either W = W0 with rg(W0) = 1 or
W = M with rg(M0) = rg(M1) = 1. We consider these cases separately in the
rest of the paper.
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§2. The crystalline case

2.1. Let A = L[T ]/(T 2) and let VA be a free finitely generated A-module
equipped with a A-linear action of GS . One says that VA is an infinitesimal
deformation of a p-adic representation V if V ≃ VA⊗AL. Write RA = A⊗LRL
and extend the actions of ϕ and Γ to RA by linearity. A (ϕ,Γ)-module over
RA is a free finitely generated RA-module DA equipped with commuting
semilinear actions of ϕ and Γ and such that RAϕ(DA) = DA. We say that DA

is an infinitesimal deformation of a (ϕ,Γ)-module D over RL if D = DA⊗A L.

2.2. Let V be a p-adic representation of GS which satisfies the conditions C1-
4) and such that W = W0. Moreover we assume that rg(W ) = 1. Thus W is

a crystalline (ϕ,Γ)-module of rank 1 with Dcris(W ) = Dcris(W )ϕ=p
−1

and such
that Fil0Dcris(W ) = 0. This implies that

(2.1) W ≃ RL(δ) with δ(x) = |x|xm, m > 1.

(see for example [Ben2], Proposition 1.5.8). Note that the Hodge-Tate weight
of W is −m. The L-vector space H1(D,V ) is one dimensional. Fix a basis
cl(x) ∈ H1(D,V ). We can associate to cl(x) a non trivial extension

0 −→ V −→ Vx −→ L −→ 0.

This gives an exact sequence of (ϕ,Γ)-modules

0 −→ D†
rig(V ) −→ D†

rig(Vx) −→ RL −→ 0.

From (1.7) it follows that there exists an extension in the category of (ϕ,Γ)-
modules

0 −→ F0D
†
rig(V ) −→ Dx −→ RL −→ 0

which is inserted in a commutative diagram

0 // F0D
†
rig(V ) //

��

Dx
//

��

RL //

=

��

0

0 // D†
rig(V ) // D†

rig(Vx) // RL // 0.

Define a filtration

{0} ⊂ F−1D
†
rig(Vx) ⊂ F0D

†
rig(Vx) ⊂ F1D

†
rig(Vx) ⊂ D†

rig(Vx)

by FiD
†
rig(Vx) = FiD

†
rig(V ) for i = −1, 0 and F1D

†
rig(Vx) = Dx. Set

Wx = F1D
†
rig(Vx)/F−1D

†
rig(Vx).
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Thus one has a diagram

0 // F0D
†
rig(V ) //

��

Dx
//

��

RL //

=

��

0

0 // W // Wx
// RL // 0.

2.3. Let VA,x be an infinitesimal deformation of Vx. Assume that D†
rig(VA,x)

is equipped with a filtration by saturated (ϕ,Γ)-modules over RA:

{0} ⊂ F−1D
†
rig(VA,x) ⊂ F0D

†
rig(VA,x) ⊂ F1D

†
rig(VA,x) ⊂ D†

rig(VA,x)

such that FiD
†
rig(VA,x)⊗AL ≃ FiD†

rig(Vx) for all i. The quotients gr0D
†
rig(VA,x)

and gr1D
†
rig(VA,x) are (ϕ,Γ)-modules of rank 1 over RA and by [BC], Propo-

sition 2.3.1 there exists unique characters δA,x, ψA,x : Q∗
p −→ A∗ such that

gr0D
†
rig(VA,x) ≃ RA(δA,x) and gr1D

†
rig(VA,x) ≃ RA(ψA,x). It is clear that δA,x

(mod T ) = δ and ψA,x (mod T ) = 1. One has a diagram

0 // F0D
†
rig(VA) //

��

F1D
†
rig(VA,x) //

��

RA(ψA) //

=

��

0

0 // WA
// WA,x // RA(ψA) // 0

with WA = gr0D
†
rig(VA,x) and WA,x = F1D

†
rig(VA,x)/F−1D

†
rig(VA,x). Assume

that
d(δA,xψ

−1
A,x)(u)

dT

∣∣∣∣
T=0

6= 0, u ≡ 1 (mod p2)

(as the multiplicative group 1 + p2Zp is procyclic it is enough to assume that
this holds for u = 1 + p2.)

Theorem 1. Let VA,x be an infinitesimal deformation of Vx which satisfies the
above conditions. Then

ℓ(V,D) = − logχ(γ)
d log(δA,xψ

−1
A,x)(p)

d log(δA,xψ
−1
A,x)(χ(γ))

∣∣∣∣
T=0

.

This theorem will be proved in section 2.5. We start with an auxiliary result
which plays a key role in the proof. Set δ(x) = |x|xm (m > 1) and fix a
character δA : Q∗

p −→ A∗ such that δA (mod T ) = δ. Consider the exact
sequence

0 −→ RL(δ) −→ RA(δA) −→ RL(δ) −→ 0

and denote by Biδ the connecting maps Hi(RL(δ)) −→ Hi+1(RL(δ)).

Documenta Mathematica · Extra Volume Suslin (2010) 5–31



22 Denis Benois

Proposition 2.4. One has

invm
(
B1
δ(α

∗
m)
)

= (logχ(γ))−1d logδA(χ(γ))
∣∣
T=0

,

invm
(
B1
δ(β

∗
m)
)

= d logδA(p)
∣∣
T=0

.

Proof. a) Recall that

α∗
m = −

(
1− 1

p

)
(−1)m−1

(m− 1)!
cl

(
∂m−1

(
1

π
+

1

2
, a

)
eδ

)
.

Let eA,δ be a generator of RA(δA) such that eδ = eA,δ (mod T ). Directly from
the definition of the connecting map

B1
δ(α

∗
m) = −

(
1− 1

p

)
(−1)m−1

(m− 1)!
cl

(
1

T

(
(γ − 1)

(
∂m−1

(
1

π
+

1

2

)
eA,δ

)
−

− (ϕ− 1) (∂m−1(a)eA,δ)
))
.

Write

(γ − 1)

(
∂m−1

(
1

π
+

1

2

)
eA,δ

)
− (ϕ− 1) (∂m−1(a)eA,δ) =

=
(
χ(γ)−mδA(χ(γ))− 1

)
∂m−1

(
1

π
+

1

2

)
eA,δ + z

where

z =
(
γ − χ(γ)−m

)
∂m−1

(
1

π
+

1

2

)
δA(χ(γ))eA,δ −

(
δA(p)ϕ− 1

)
∂m−1(a)eA,δ.

Since δA(χ(γ)) ≡ χ(γ)m (mod T ), from the definition of a it follows that z ≡ 0
(mod T ). On the other hand, as a ∈ R+

L and

(
γ − χ(γ)−m

)
∂m−1

(
1

π
+

1

2

)
∈ R+

L

we obtain that z/T ∈ R+
Leδ. Thus the class of z/T in H2(RL(δ)) is zero. On

the other hand, writing δA in the form

δA(u) = um + T
dδA(u)

dT

∣∣∣∣
T=0

one finds that

χ(γ)−mδA(χ(γ))− 1

T
= d log δA(χ(γ))

∣∣
T=0
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and the first formula follows from Proposition 1.1.5 iv).
b) By the definition of B1

δ

B1
δ(β

∗
m) =

(
1− 1

p

)
(−1)m−1 logχ(γ)

(m− 1)!
cl

(
1

T

(
(γ − 1)

(
∂m−1(b)eA,δ

)
−

− (ϕ− 1)
(
∂m−1

(
1/π

)
eA,δ

)))
.

As

δA(p)
(
ϕ− δ(p)−1

) (
∂m−1

(
1/π

))
=

δA(p)

δ(p)
(δ(χ(γ)) γ − 1) ∂m−1(b)

we can write

(γ − 1)
(
∂m−1(b)eA,δ

)
− (ϕ− 1)

(
∂m−1

(
1/π

)
eA,δ

)
=

= −(δ(p)−1δA(p)− 1) ∂m−1
(
1/π

)
+ w

where

w = (δA(χ(γ)) γ − 1) (∂m−1b) eA,δ +
δA(p)

δ(p)
(δ(χ(γ)) γ − 1) (∂m−1b)eA,δ.

Remark that
δ(p)−1δA(p)− 1

T
= −d log δA(p)

∣∣
T=0

On the other hand
res
(
∂m−1(b) tm−1dt

)
= 0

(see [Ben2], proof of Corollary 1.5.6). As res
(
(χ(γ)mγ − 1) ∂m−1(b) tm−1dt

)
=

0, this implies that res
(
γ(∂m−1b) tm−1dt

)
= 0 and we obtain that Resm(w) = 0.

Thus

invm(B1
δ(β

∗
m)) = −dlog δA(p)

∣∣
T=0

Resm(ωm) = dlog δA(p)
∣∣
T=0

and the Proposition is proved.

2.5. We pass to the proof of Theorem 1. By Proposition 1.1.5, H1(W ) is a two
dimensional L-vector space generated by α∗

m and β∗
m. One has a commutative

diagram with exact rows

0

��

0

��

0

��
0 // W //

��

Wx
//

��

RL //

��

0

0 // WA
//

��

WA,x //

��

RA(ψA,x) //

��

0

0 // W //

��

Wx
//

��

RL //

��

0

0 0 0
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Twisting the middle row by ψ−1
A,x and taking into account that ψA,x ≡ 1

(mod T ) we obtain

(2.2) 0

��

0

��

0

��
0 // W //

��

Wx
//

��

RL //

��

0

0 // WA(ψ−1
A,x) //

��

WA,x(ψ−1
A,x) //

��

RA //

��

0

0 // W //

��

Wx
//

��

RL //

��

0

0 0 0

The connecting map ∆0 : H0(RL) −→ H1(W ) sends 1 to y = κD(cl(x)) and
we can write

y = aα∗
m + b β∗

m

with a, b ∈ L. Directly from the definition of the ℓ-invariant one has

(2.3) ℓ(V,D) = b−1a.

The diagram (2.2) gives rise to a commutative diagram

H0(RL)

B0

��

∆0
// H1(W )

B1
W

��
H1(RL)

∆1
// H2(W ).

Since the rightmost vertical row of (2.2) splits, the connecting map B0 is zero
and

aB1
W (α∗

m) + bB1
W (β∗

m) = B1
W (y) = 0.

As WA(ψ−1
A,x) ≃ RA(δA,xψ

−1
A,x), Proposition 2.4 gives

invm(B1
W (α∗

m)) = (log(χ(γ))−1d log(δA,xψ
−1
A,x)(χ(γ))

∣∣
T=0

,

invm(B1
W (β∗

m)) = d log(δA,xψ
−1
A,x)(p)

∣∣
T=0

.

Together with (2.3) this gives the Theorem.
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§3. The semistable case

3.1. In this section we assume that V is a p-adic representation which satisfies
the conditions C1-4) and such that W = M . Thus one has an exact sequence

(3.1) 0 −→M0
f−→W

g−→M1 −→ 0

where M0 and M1 are such that e = rg(M0) = rg(M1). We will assume that
e = 1. Then

M0 = RLeδ ≃ RL(δ), δ(x) = |x|xm, m > 1,

M1 = RLeψ ≃ RL(ψ), ψ(x) = x−n, n > 0

(see for example [Ben2], Lemma 1.5.2 and Proposition 1.5.8). Thus

{0} ⊂ F−1D
†
rig(V ) ⊂ F0D

†
rig(V ) ⊂ F1D

†
rig(V ) ⊂ D†

rig(V )

with gr0D
†
rig(V ) ≃ RL(δ) and gr1D

†
rig(V ) ≃ RL(ψ). Assume that VA is an

infinitesimal deformation of V and that D†
rig(VA) is equipped with a filtration

by saturated (ϕ,Γ)-modules over RA

{0} ⊂ F−1D
†
rig(VA) ⊂ F0D

†
rig(VA) ⊂ F1D

†
rig(VA) ⊂ D†

rig(VA)

such that
FiD

†
rig(VA)⊗L A ≃ FiD†

rig(V ), −1 6 i 6 1.

Then
gr0D

†
rig(VA) ≃ RA(δA), griD

†
rig(VA) ≃ RA(ψA),

where δA, ψA : Q∗
p −→ A∗ are such that δA (mod T ) = δ and ψA (mod T ) = ψ.

As before, assume that

d(δAψ
−1
A )(u)

dT

∣∣∣∣
T=0

6= 0, u ≡ 1 (mod p2).

Theorem 2. Let VA be an infinitesimal deformation of V which satisfies the
above conditions. Then

(3.2) ℓ(V,D) = − logχ(γ)
d log(δAψ

−1
A )(p)

d log(δAψ
−1
A )(χ(γ))

∣∣∣∣
T=0

3.2. Proof of Theorem 2. The classes x∗n = −cl(tneψ, 0) and y∗n =
logχ(γ) cl(0, tneψ) form a basis of H1(M1) and H1

f (M1) is generated by x∗n
(see section 1.1.4). Consider the long cohomology sequence associated to (3.1):

· · · −→ H1(M0)
h1(f)−−−→ H1(W )

h1(g)−−−→ H1(M1)
∆1

−−→ H2(M0) −→ · · · .
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We can also consider the dual sequence 0 −→M∗
1 (χ) −→ W ∗(χ) −→M∗

0 (χ) −→ 0
and write

· · · −→ H0(M∗
0 (χ))

∆0
∗−−→ H1(M∗

1 (χ)) −→ H1(W ∗(χ)) −→ H1(M∗
0 (χ)) −→ · · · .

As M∗
0 (χ) = RLeδ−1χ is isomorphic to RL(x1−m), the cohomology H0(M∗

0 (χ))
is the one dimensional L-vector space generated by ξ = tm−1eδ−1χ. Write

∆0
∗(ξ) = aα∗

n+1 + b β∗
n+1,

where α∗
n+1, β∗

n+1 is the canonical basis of H1(M∗
1 (χ)) ≃ RL(|x|xn+1). From

the duality it follows that Im(∆0
∗) is orthogonal to ker(∆1) under the pairing

H1(RL(|x|xn+1))×H1(RL(x−n))
∪−→ L

Since

α∗
n+1 ∪ x∗n = β∗

n+1 ∪ y∗n = 0, α∗
n+1 ∪ y∗n = −1, β∗

n+1 ∪ x∗n = 1

(see Proposition 1.1.5 ii), we obtain that Im(h1(g)) = ker(∆1) is generated by
ax∗n + by∗n. By the definition of the L-invariant

(3.3) L(V,D) = b−1a.

Set WA = F1D
†
rig(V )/F−1D

†
rig(V ). One has a commutative diagram

0

��

0

��

0

��
0 // RL(ψ−1χ) //

��

W ∗(χ) //

��

RL(δ−1χ) //

��

0

0 // RA(ψ−1
A χ) //

��

W ∗
A(χ) //

��

RA(δ−1
A χ) //

��

0

0 // RL(ψ−1χ) //

��

W ∗(χ) //

��

RL(δ−1χ) //

��

0

0 0 0

Now the theorem can be proved either by twisting this diagram by δAχ
−1 and

applying the argument used in the proof of Theorem 2.3 or by the following
direct computation. One has an anticommutative square

H0(RL(δ−1χ))
∆0

∗ //

B0
δ−1χ

��

H1(RL(ψ−1χ))

B1
ψ−1χ

��
H1(RL(δ−1χ))

∆1
∗ // H2(RL(ψ−1χ)).
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Thus

(3.4) B1
ψ−1χ∆0

∗(ξ) = −∆1
∗B0

δ−1χ(ξ).

From Proposition 2.3 it follows that

(3.5)

invn+1

(
B1
ψ−1χ∆0

∗(ξ)
)

= a invn+1

(
B1
ψ−1χ(α∗

n+1)
)

+ b
(
B1
ψ−1χ(β∗

n+1)
)

=

= −a log(χ(γ))−1d logψA(χ(γ))
∣∣
T=0

− b d logψA(p)
∣∣
T=0

.

Fix a generator eA,δ−1χ of RA(δ−1
A χ). We can assume that eA,δ−1χ is a lifting

of eδ−1χ and set ξA = tm−1eA,δ−1χ. Directly by the definition of the connecting
map

B0
δ−1χ(ξ) =

1

T
cl((ϕ− 1) ξA, (γ − 1) ξA) =

=
1

T
cl((pm−1δ−1

A (p)− 1) ξA, (χ(γ)mδ−1
A (χ(γ)) − 1) ξA) =

= −cl
(
d log δA(p) ξ, d log δA(χ(γ)) ξ

)∣∣
T=0

.

Let ξ̂ be a lifting of ξ in W ∗(χ). Then

∆1
∗B0

δ−1χ(ξ) = −cl
(
d log δA(p) (γ − 1) ξ̂ − d log δA(χ(γ)) (ϕ− 1) ξ̂

)∣∣
T=0

.

On the other hand, ∆0
∗(ξ) = cl((ϕ− 1) ξ̂, (γ− 1) ξ̂) and by Proposition 1.1.5 iii)

res
(
(ϕ− 1) (ξ̂) tndt

)
=

(
1− 1

p

)
a,

res
(
(γ − 1) (ξ̂) tndt

)
= log(χ(γ))

(
1− 1

p

)
b.

Thus,

(3.6) invn+1

(
∆1

∗B0
δ−1χ(ξ)

)
=

= b d log δA(p)
∣∣
T=0

+ a log(χ(γ))−1d log δA(χ(γ))
∣∣
T=0

.

From (3.4), (3.5) and (3.6) we obtain that

a (logχ(γ))−1dlog(δAψ
−1
A )(χ(γ))

∣∣
T=0

= −b d log(δAψ
−1
A ) (p)

∣∣
T=0

.

Together with (3.3) this prove the theorem.

3.4. Remark. It would be interesting to generalize Theorems 1 and 2 to the
case e > 1. For this one should first understand what kind of filtrations on
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D†
rig(V ) appears naturally if V comes from automorphic forms [BC].

3.5. Modular forms. Let f be a normalized newform of weight x0 = 2k
which is split multiplicative at p. Let V = Mf,λ be the λ-adic representation
associated to f by Deligne [D]. The structure of Dst(V ) is well known (see for
example [Cz2]) Namely, Dst(V ) = Ld1 + Ld2 with N(d2) = d1, N(d1) = 0,

ϕ(d2) = pkd2 and ϕ(d1) = pk−1d1. Thus Dst(V (k)) = Ld
(k)
1 + Ld

(k)
2 with

ϕ(d
(k)
2 ) = d

(k)
2 , ϕ(d

(k)
1 ) = p−1d

(k)
1 and D = Dcris(V (k)) = Ld

(k)
1 is the unique

regular subspace of Dst(V (k)). It is clear that D−1 = 0, D1 = Dst(V (k))

and for the associated filtration on D†
rig(V (k)) we have F0D

†
rig(V (k)) = (D ⊗

RL[1/t])∩D†
rig(V (k)), F1D

†
rig(V (k)) = D†

rig(V (k)). In [Ben2], Proposition 2.2.6

it is proved that L(V (k), D) coincides with the L-invariant of Fontaine-Mazur
LFM(f).
In [Co2], Coleman constructed an analytic family of overconvergent modular

forms fx =
∞∑
n=1

an(x)qn on an affinoid disk U containing 2k which satisfies the

following conditions
• For any x ∈ N ∩ U the form fx is classical.
• fx0 = f .
Moreover, one can interpolate the p-adic representations associated to classical
forms fx (x ∈ N ∩U) and construct a two dimensional representation V of GQ

over the Tate algebra O(U) of U such that
• For any integer x ∈ N in U the Galois representation Vx obtained by spe-
cialization of V at x is isomorphic to the λ-adic representation associated to
fx [CM]. In particular, it is semistable with the Hodge-Tate weights (0, x− 1)
[Fa]. By continuity this implies that for all x ∈ U the Hodge-Tate-Sen weights
of Vx are (0, x− 1).

• ∧2Vx ≃ Lx
(
χ1−2k 〈χ〉2k−x

)
where as usually 〈χ〉 denotes the projection of χ

and Lx is the field of coefficients of Vx.

•
(
B
ϕ=ap(x)
cris ⊗̂V

)GQp

is locally free of rank 1 on U [Sa], [Ki].

Let Ox0 denote the local ring of U at x0 and let A = Ox0/(T
2) where T = x−x0

is a local parameter at x0. Then VA = V⊗O(U)Ox0 of V = Vx0 is an infinitesimal
deformation of V = Vx0 . It is not difficult to see that

F0D
†
rig(VA) = RA ⊗L Dcris(D

†
rig(VA))ϕ=ap(x)

is a saturated (ϕ,Γ)-submodule of D†
rig(VA) ( [BC], Lemma 2.5.2 iii)). We

see immediately that F0D
†
rig(VA) ≃ RA(δA) where δA(u) = 1 for u ∈ Z∗

p and

δA(p) = ap(2k) + a′p(2k)T (mod T 2) with ap(2k) = pk−1. Set F1D
†
rig(VA) =

D†
rig(VA). As

〈χ(γ)〉 = exp
(
(2k − x) logχ(γ)

)
= 1− (logχ(γ))T (mod T 2)
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we obtain that

(ψAδA) (p) = 1, (ψAδA) (χ(γ)) = 1− (logχ(γ))T (mod T 2)

Thus ψA(χ(γ)) = 1 − logχ(γ)T (mod T 2) and d logψA(χ(γ))
∣∣
T=0

=

− logχ(γ). Twisting VA by χk we obtain an infinitesimal deformation VA(k) of
V (k). The formula (3.2) writes

L(V (k), D) = −2 d log ap(2k).

In particular we obtain that LFM(f) = −2 d log ap(2k). The first direct proof
of this result was done in [Cz5] using Galois cohomology computations inside
the rings of p-adic periods. Remark that in [Cz6], Colmez used the theory of
(ϕ,Γ)-modules to prove this formula with Breuil’s L-invariant. His approach is
based on the local Langlands correspondence for two-dimensional trianguline
representations.
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Abstract. The goal of this paper is to prove that oniveau spetralsequenes are motivially funtorial for all ohomology theories thatould be fatorized through motives. To this end the motif of a smoothvariety over a ountable �eld k is deomposed (in the sense of Post-nikov towers) into twisted (o)motives of its points; this is generalizedto arbitrary Voevodsky's motives. In order to study the funtorial-ity of this onstrution, we use the formalism of weight strutures(introdued in the previous paper). We also develop this formalism(for general triangulated ategories) further, and relate it with a newnotion of a nie duality (pairing) of (two distint) triangulated ate-gories; this piee of homologial algebra ould be interesting for itself.We onstrut a ertain Gersten weight struture for a triangulatedategory of omotives that ontains DM eff
gm as well as (o)motives offuntion �elds over k. It turns out that the orresponding weight spe-tral sequenes generalize the lassial oniveau ones (to ohomology ofarbitrary motives). When a ohomologial funtor is represented by a

Y ∈ ObjDM eff
− , the orresponding oniveau spetral sequenes anbe expressed in terms of the (homotopy) t-trunations of Y ; this ex-tends to motives the seminal oniveau spetral sequene omputationsof Bloh and Ogus.We also obtain that the omotif of a smooth onneted semi-loalsheme is a diret summand of the omotif of its generi point; o-motives of funtion �elds ontain twisted omotives of their residue�elds (for all geometri valuations). Hene similar results hold for anyohomology of (semi-loal) shemes mentioned.2010 Mathematis Subjet Classi�ation: 14F42, 14C35, 18G40,19E15, 14F20, 14C25, 14C35.Keywords and Phrases: Motives, oniveau, weight struture, t-struture, triangulated ategory, semi-loal sheme, ohomology.
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IntroductionLet k be our perfet base �eld.We reall two very important statements onerning oniveau spetral se-quenes. The �rst one is the alulation of E2 of the oniveau spetral se-quene for ohomologial theories that satisfy ertain onditions; see [5℄ and[8℄. It was proved by Voevodsky that these onditions are ful�lled by any the-ory H represented by a motivi omplex C (i.e. an objet of DM eff

− ; see [25℄);then the E2-terms of the spetral sequene ould be alulated in terms of the(homotopy t-struture) ohomology of C. This result implies the seond one:
H-ohomology of a smooth onneted semi-loal sheme (in the sense of �4.4of [26℄) injets into the ohomology of its generi point; the latter statementwas extended to all (smooth onneted) primitive shemes by M. Walker.The main goal of the present paper is to onstrut (motivially) funtorialoniveau spetral sequenes onverging to ohomology of arbitrary motives;there should exist a desription of these spetral sequenes (starting from E2)that is similar to the desription for the ase of ohomology of smooth varieties(mentioned above).A related objetive is to larify the nature of the injetivity result mentioned;it turned our that (in the ase of a ountable k) the ohomology of a smoothonneted semi-loal (more generally, primitive) sheme is atually a diretsummand of the ohomology of its generi point. Moreover, the (twisted) o-homology of a residue �eld of a funtion �eld K/k (for any geometri valuationof K) is a diret summand of the ohomology of K. We atually prove morein �4.3.
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36 M. V. BondarkoOur main homologial algebra tool is the theory of weight strutures (in trian-gulated ategories; we usually denote a weight struture by w) introdued inthe previous paper [6℄. In this artile we develop it further; this part of thepaper ould be interesting also to readers not aquainted with motives (andould be read independently from the rest of the paper). In partiular, westudy nie dualities (ertain pairings) of (two distint) triangulated ategories;it seems that this subjet was not previously onsidered in the literature at all.This allows us to generalize the onept of adjaent weight and t-strutures (t)in a triangulated ategory (developed in �4.4 of [6℄): we introdue the notionof orthogonal strutures in (two possibly distint) triangulated ategories. If Φis a nie duality of triangulated C,D, X ∈ ObjC, Y ∈ ObjD, t is orthogonalto w, then the spetral sequene S onverging to Φ(X,Y ) that omes fromthe t-trunations of Y is naturally isomorphi (starting from E2) to the weightspetral sequene T for the funtor Φ(−, Y ). T omes from weight trunations of
X (note that those generalize stupid trunations for omplexes). Our approahyields an abstrat alternative to the method of omparing similar spetral se-quenes using �ltered omplexes (developed by Deligne and Paranjape, andused in [22℄, [11℄, and [6℄). Note also that we relate t-trunations in D withvirtual t-trunations of ohomologial funtors on C. Virtual t-trunations forohomologial funtors are de�ned for any (C,w) (we do not need any trian-gulated 'ategories of funtors' or t-strutures for them here); this notion wasintrodued in �2.5 of [6℄ and is studied further in the urrent paper.Now, we explain why we really need a ertain new ategory of omotives (on-taining Voevodsky's DM eff

gm ), and so the theory of adjaent strutures (i.e.orthogonal strutures in the ase C = D, Φ = C(−,−)) is not su�ient for ourpurposes. It was already proved in [6℄ that weight strutures provide a power-ful tool for onstruting spetral sequenes; they also relate the ohomology ofobjets of triangulated ategories with t-strutures adjaent to them. Unfortu-nately, a weight struture orresponding to oniveau spetral sequenes annotexist on DM eff
− ⊃ DM eff

gm sine these ategories do not ontain (any) motivesfor funtion �elds over k (as well as motives of other shemes not of �nite typeover k; still f. Remark 4.5.4(5)). Yet these motives should generate the heartof this weight struture (sine the objets of this heart should orepresent o-variant exat funtors from the ategory of homotopy invariant sheaves withtransfers to Ab).So, we need a ategory that would ontain ertain homotopy limits of objets of
DM eff

gm . We sueed in onstruting a triangulated ategory D (of omotives)that allows us to reah the objetives listed. Unfortunately, in order to ontrolmorphisms between homotopy limits mentioned we have to assume k to beountable. In this ase there exists a large enough triangulated ategory Ds(DM eff
gm ⊂ Ds ⊂ D) endowed with a ertain Gersten weight struture w; itsheart is 'generated' by omotives of funtion �elds. w is (left) orthogonal to thehomotopy t-struture on DM eff

− and (so) is losely onneted with oniveauspetral sequenes and Gersten resolutions for sheaves. Note still: we need kto be ountable only in order to onstrut the Gersten weight struture. So
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Coniveau Spectral Sequences for Motives 37those readers who would just want to have a ategory that ontains reasonablehomotopy limits of geometri motives (inluding omotives of funtion �eldsand of smooth semi-loal shemes), and onsider ohomology theories for thisategory, may freely ignore this restrition. Moreover, for an arbitrary k onean still pass to a ountable homotopy limit in the Gysin distinguished triangle(as in Proposition 3.6.1). Yet for an unountable k ountable homotopy limitsdon't seem to be interesting; in partiular, they de�nitely do not allow toonstrut a Gersten weight struture (in this ase).So, we onsider a ertain triangulated ategory D ⊃ DM eff
gm that (roughly!)'onsists of' (ovariant) homologial funtors DM eff

gm → Ab. In partiular,objets of D de�ne ovariant funtors SmV ar → Ab (whereas another 'big'motivi ategory DM eff
− de�ned by Voevodsky is onstruted from ertainsheaves i.e. ontravariant funtors SmV ar → Ab; this is also true for allmotivi homotopy ategories of Voevodsky and Morel). Besides, DM eff

gm yieldsa family of (weak) oompat ogenerators for D. This is why we all objets of
D omotives. Yet note that the embedding DM eff

gm → D is ovariant (atually,we invert the arrows in the orresponding 'ategory of funtors' in order tomake the Yoneda embedding funtor ovariant), as well as the funtor thatsends a smooth sheme U (not neessarily of �nite type over k) to its omotif(whih oinides with its motif if U is a smooth variety).We also reall the Chow weight struture w′
Chow introdued in [6℄; the orre-sponding Chow-weight spetral sequenes are isomorphi to the lassial (i.e.Deligne's) weight spetral sequenes when the latter are de�ned. w′

Chow ouldbe naturally extended to a weight struture wChow for D. We always havea natural omparison morphism from the Chow-weight spetral sequene for
(H,X) to the orresponding oniveau one; it is an isomorphism for any bira-tional ohomology theory. We onsider the ategory of birational omotives
Dbir i.e. the loalization of D by D(1) (that ontains the ategory of birationalgeometri motives introdued in [15℄; though some of the results of this unpub-lished preprint are erroneous, this makes no di�erene for the urrent paper).It turns our that w and wChow indue the same weight struture w′

bir on Dbir .Conversely, starting from w′
bir one an 'glue' (from slies) the weight struturesindued by w and wChow on D/D(n) for all n > 0. Moreover, these struturesbelong to an interesting family of weight strutures indexed by a single integralparameter! It ould be interesting to onsider other members of this family. Werelate brie�y these observations with those of A. Beilinson (in [3℄ he proposeda 'geometri' haraterization of the onjetural motivi t-struture).Now we desribe the onnetion of our results with related results of F. Deglise(see [9℄, [10℄, and [11℄; note that the two latter papers are not published at themoment yet). He onsiders a ertain ategory of pro-motives whose objetsare naive inverse limits of objets of DM eff

gm (this ategory is not triangulated,though it is pro-triangulated in a ertain sense). This approah allows to ob-tain (in a universal way) lassial oniveau spetral sequenes for ohomologyof motives of smooth varieties; Deglise also proves their relation with the homo-topy t-trunations for ohomology represented by an objet of DM eff
− . Yet for
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38 M. V. Bondarkoohomology theories not oming from motivi omplexes, this method does notseem to extend to (spetral sequenes for ohomology of) arbitrary motives;motivi funtoriality is not obvious also. Moreover, Deglise didn't prove thatthe pro-motif of a (smooth onneted) semi-loal sheme is a diret summandof the pro-motif of its generi point (though this is true, at least in the ase ofa ountable k). We will tell muh more about our strategy and on the relationof our results with those of Deglise in �1.5 below. Note also that our methodsare muh more onvenient for studying funtoriality (of oniveau spetral se-quenes) than the methods applied by M. Rost in the related ontext of ylemodules (see [24℄ and �4 of [10℄).The author would like to indiate the interdependenies of the parts of thistext (in order to simplify reading for those who are not interested in all ofit). Those readers who are not (very muh) interested in (oniveau) spetralsequenes, may avoid most of setion 2 and read only ��2.1 �2.2 (Remark 2.2.2ould also be ignored). Moreover, in order to prove our diret summands results(i.e. Theorem 4.2.1, Corollary 4.2.2, and Proposition 4.3.1) one needs only asmall portion of the theory of weight strutures; so a reader very relutantto study this theory may try to derive them from the results of �3 'by hand'without reading �2 at all. Still, for motivi funtoriality of oniveau spetralsequenes and �ltrations (see Proposition 4.4.1 and Remark 4.4.2) one needsmore of weight strutures. On the other hand, those readers who are moreinterested in the (general) theory of triangulated ategories may restrit theirattention to ��1.1� 1.2 and �2; yet note that the rest of the paper desribes indetail an important (and quite non-trivial) example of a weight struture whihis orthogonal to a t-struture with respet to a nie duality (of triangulatedategories). Moreover, muh of setion �4 ould also be extended to a generalsetting of a triangulated ategory satisfying properties similar to those listedin Proposition 3.1.1; yet the author hose not to do this in order to make thepaper somewhat less abstrat.Now we list the ontents of the paper. More details ould be found at thebeginnings of setions.We start �1 with the reolletion of t-strutures, idempotent ompletions, andPostnikov towers for triangulated ategories. We desribe a method for extend-ing ohomologial funtors from a full triangulated subategory to the whole
C (after H. Krause). Next we reall some results and de�nitions for Voevod-sky's motives (this inludes ertain properties of Tate twists for motives andohomologial funtors). Lastly, we de�ne pro-motives (following Deglise) andompare them with our triangulated ategory D of omotives. This allows toexplain our strategy step by step.�2 is dediated to weight strutures. First we remind the basis of this theory(developed in �[6℄). Next we reall that a ohomologial funtor H from an(arbitrary triangulated ategory) C endowed with a weight struture w ouldbe 'trunated' as if it belonged to some triangulated ategory of funtors (from
C) that is endowed with a t-struture; we all the orresponding piees of H itsvirtual t-trunations. We reall the notion of a weight spetral sequene (intro-
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Coniveau Spectral Sequences for Motives 39dues in ibid.). We prove that the derived exat ouple for a weight spetralsequene ould be desribed in terms of virtual t-trunations. Next we intro-due the de�nition a (nie) duality Φ : Cop×D → A (here D is triangulated, Ais abelian), and of orthogonal weight and t-strutures (with respet to Φ). If wis orthogonal to t, then the virtual t-trunations (orresponding to w) of fun-tors of the type Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via
Φ' by the atual t-trunations of Y (orresponding to t). Hene if w and t areorthogonal with respet to a nie duality, the weight spetral sequene onverg-ing to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) is naturally isomorphi (startingfrom E2) to the one oming from t-trunations of Y . We also mention somealternatives and predeessors of our results. Lastly we ompare weight deom-positions, virtual t-trunations, and weight spetral sequenes orrespondingto distint weight strutures (in possibly distint triangulated ategories).In �3 we desribe the main properties of D ⊃ DM eff

gm . The exat hoie of D isnot important for most of this paper; so we just list the main properties of D(and its ertain enhanement D′) in �3.1. We onstrut D using the formalismof di�erential graded modules in �5 later. Next we de�ne omotives for (ertain)shemes and ind-shemes of in�nite type over k (we all them pro-shemes). Wereall the notion of a primitive sheme. All (smooth) semi-loal pro-shemesare primitive; primitive shemes have all nie 'motivi' properties of semi-loalpro-shemes. We prove that there are no D-morphisms of positive degreesbetween omotives of primitive shemes (and also between ertain Tate twistsof those). In �3.6 we prove that the Gysin distinguished triangle for motivesof smooth varieties (in DM eff
gm ) ould be naturally extended to omotives ofpro-shemes. This allows to onstrut ertain Postnikov towers for omotivesof pro-shemes; these towers are losely related with lassial oniveau spetralsequenes for ohomology.�4 is entral in this paper. We introdue a ertain Gersten weight struturefor a ertain triangulated ategory Ds (DM eff

gm ⊂ Ds ⊂ D). We prove thatPostnikov towers onstruted in �3.6 are atually weight Postnikov towers withrespet to w. We dedue our (interesting) results on diret summands of omo-tives of funtion �elds. We translate these results to ohomology in the obviousway.Next we prove that weight spetral sequenes for the ohomology of X (orre-sponding to the Gersten weight struture) are naturally isomorphi (startingfrom E2) to the lassial oniveau spetral sequenes if X is the motif of asmooth variety; so we all these spetral sequene oniveau ones in the generalase also. We also prove that the Gersten weight struture w (on Ds) is or-thogonal to the homotopy t-struture t on DM eff
− (with respet to a ertain

Φ). It follows that for an arbitrary X ∈ ObjDM s, for a ohomology theoryrepresented by Y ∈ ObjDM eff
− (any hoie of) the oniveau spetral sequenethat onverges to Φ(X,Y ) ould be desribed in terms of the t-trunations of

Y (starting from E2).We also de�ne oniveau spetral sequenes for ohomology of motives overunountable base �elds as the limits of the orresponding oniveau spetral
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40 M. V. Bondarkosequenes over ountable perfet sub�elds of de�nition. This de�nition is om-patible with the lassial one; so we establish motivi funtoriality of oniveauspetral sequenes in this ase also.We also prove that the Chow weight struture for DM eff
gm (introdued in �6 of[6℄) ould be extended to a weight struture wChow on D. The orrespondingChow-weight spetral sequenes are isomorphi to the lassial (i.e. Deligne's)ones when the latter are de�ned (this was proved in [6℄ and [7℄). We ompareoniveau spetral sequenes with Chow-weight ones: we always have a ompar-ison morphism; it is an isomorphism for a birational ohomology theory. Weonsider the ategory of birational omotives Dbir i.e. the loalization of D by

D(1). w and wChow indue the same weight struture w′
bir on Dbir; one almostan glue w and wChow from opies of w′

bir (one may say that these weightstrutures ould almost be glued from the same slies with distint shifts).�5 is dediated to the onstrution of D and the proof of its properties. Weapply the formalism of di�erential graded ategories, modules over them, and ofthe orresponding derived ategories. A reader not interested in these detailsmay skip (most of) this setion. In fat, the author is not sure that thereexists only one D suitable for our purposes; yet the hoie of D does not a�etohomology of (omotives of) pro-shemes and of Voevodsky's motives.We also explain how the di�erential graded modules formalism an be used tode�ne base hange (extension and restrition of salars) for omotives. Thisallows to extend our results on diret summands of omotives (and ohomology)of funtion �elds to pro-shemes obtained from them via base hange. We alsode�ne tensoring of omotives by motives (in partiular, this yields Tate twistfor D), as well as a ertain ointernal Hom (i.e. the orresponding left adjointfuntor).�6 is dediated to properties of omotives that are not (diretly) related withthe main results of the paper; we also make several omments. We reall thede�nition of the additive ategory Dgen of generi motives (studied in [9℄). Weprove that the exat onservative weight omplex funtor orresponding to w(that exists by the general theory of weight strutures) ould be modi�ed toan exat onservative WC : Ds → Kb(Dgen). Next we prove that a ofun-tor Hw → Ab is representable by a homotopy invariant sheaf with transferswhenever is onverts all produts into diret sums.We also note that our theory ould be easily extended to (o)motives with o-e�ients in an arbitrary ring. Next we note (after B. Kahn) that reasonablemotives of pro-shemes with ompat support do exist in DM eff
− ; this obser-vation ould be used for the onstrution of an alternative model for D. Lastlywe desribe whih parts of our argument do not work (and whih do work) inthe ase of an unountable k.A aution: the notion of a weight struture is quite a general formalism fortriangulated ategories. In partiular, one triangulated ategory an supportseveral distint weight strutures (note that there is a similar situation with

t-strutures). In fat, we onstrut an example for suh a situation in thispaper (ertainly, muh simpler examples exist): we de�ne the Gersten weight
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Coniveau Spectral Sequences for Motives 41struture w for Ds and a Chow weight struture wChow for D. Moreover, weshow in �4.9 that these weight strutures are ompatible with ertain weightstrutures de�ned on the loalizations D/D(n) (for all n > 0). These two seriesof weight strutures are de�nitely distint: note that w yields oniveau spetralsequenes, whereas wChow yields Chow-weight spetral sequenes, that general-ize Deligne's weight spetral sequenes for étale and mixed Hodge ohomology(see [6℄ and [7℄). Also, the weight omplex funtor onstruted in [7℄ and [6℄is quite distint from the one onsidered in �6.1 below (even the targets of thefuntors mentioned are ompletely distint).The author is deeply grateful to prof. F. Deglise, prof. B. Kahn, prof. M.Rovinsky, prof. A. Suslin, prof. V. Voevodsky, and to the referee for theirinteresting remarks. The author gratefully aknowledges the support fromDeligne 2004 Balzan prize in mathematis. The work is also supported byRFBR (grants no. 08-01-00777a and 10-01-00287a).
Notation. For a ategory C, A,B ∈ ObjC, we denote by C(A,B) the set of
A-morphisms from A into B.For ategories C,D we write C ⊂ D if C is a full subategory of D.For additive C,D we denote by AddFun(C,D) the ategory of additive funtorsfrom C toD (we will ignore set-theoreti di�ulties here sine they do not a�etour arguments seriously).
Ab is the ategory of abelian groups. For an additive B we will denote by B∗the ategory AddFun(B,Ab) and by B∗ the ategory AddFun(Bop, Ab). Notethat both of these are abelian. Besides, Yoneda's lemma gives full embeddingsof B into B∗ and of Bop into B∗ (these send X ∈ ObjB to X∗ = B(−, X) andto X∗ = B(X,−), respetively).For a ategory C, X, Y ∈ ObjC, we say that X is a retrat of Y if idX ouldbe fatorized through Y . Note that when C is triangulated or abelian then
X is a retrat of Y if and only if X is its diret summand. For any D ⊂ Cthe subategory D is alled Karoubi-losed in C if it ontains all retrats ofits objets in C. We will all the smallest Karoubi-losed subategory of Containing D the Karoubization of D in C; sometimes we will use the sameterm for the lass of objets of the Karoubization of a full subategory of C(orresponding to some sublass of ObjC).For a ategory C we denote by Cop its opposite ategory.For an additive C an objet X ∈ ObjC is alled oompat if C(

∏
i∈I Yi, X) =⊕

i∈I C(Yi, X) for any set I and any Yi ∈ ObjC suh that the produt exists(here we don't need to demand all produts to exist, though they atually willexist below).For X,Y ∈ ObjC we will write X ⊥ Y if C(X,Y ) = {0}. For D,E ⊂ ObjC wewill write D ⊥ E if X ⊥ Y for all X ∈ D, Y ∈ E. For D ⊂ C we will denoteby D⊥ the lass
{Y ∈ ObjC : X ⊥ Y ∀X ∈ D}.Sometimes we will denote by D⊥ the orresponding full subategory of C.Dually, ⊥D is the lass {Y ∈ ObjC : Y ⊥ X ∀X ∈ D}. This onvention is
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42 M. V. Bondarkoopposite to the one of �9.1 of [21℄.In this paper all omplexes will be ohomologial i.e. the degree of all di�eren-tials is +1; respetively, we will use ohomologial notation for their terms.For an additive ategory B we denote by C(B) the ategory of (unbounded)omplexes over it. K(B) will denote the homotopy ategory of omplexes. If
B is also abelian, we will denote by D(B) the derived ategory of B. We willalso need ertain bounded analogues of these ategories (i.e. Cb(B), Kb(B),
D−(B)).
C and D will usually denote some triangulated ategories. We will use theterm 'exat funtor' for a funtor of triangulated ategories (i.e. for a for afuntor that preserves the strutures of triangulated ategories).
A will usually denote some abelian ategory. We will all a ovariant additivefuntor C → A for an abelian A homologial if it onverts distinguished tri-angles into long exat sequenes; homologial funtors Cop → A will be alledohomologial when onsidered as ontravariant funtors C → A.
H : Cop → A will always be additive; it will usually be ohomologial.For f ∈ C(X,Y ), X,Y ∈ ObjC, we will all the third vertex of (any) distin-guished triangle X f→ Y → Z a one of f . Note that di�erent hoies of onesare onneted by non-unique isomorphisms, f. IV.1.7 of [13℄. Besides, in C(B)we have anonial ones of morphisms (see setion �III.3 of ibid.).We will often speify a distinguished triangle by two of its morphisms.When dealing with triangulated ategories we (mostly) use onventions andauxiliary statements of [13℄. For a set of objets Ci ∈ ObjC, i ∈ I, we willdenote by 〈Ci〉 the smallest stritly full triangulated subategory ontaining all
Ci; for D ⊂ C we will write 〈D〉 instead of 〈ObjD〉.We will say that Ci generate C if C equals 〈Ci〉. We will say that Ci weaklyogenerate C if for X ∈ ObjC we have C(X,Ci[j]) = {0} ∀i ∈ I, j ∈ Z =⇒
X = 0 (i.e. if ⊥{Ci[j]} ontains only zero objets).We will all a partially ordered set L a (�ltered) projetive system if for any
x, y ∈ L there exists some maximum i.e. a z ∈ L suh that z ≥ x and z ≥ y. Byabuse of notation, we will identify L with the following ategoryD: ObjD = L;
D(l′, l) is empty whenever l′ < l, and onsists of a single morphism otherwise;the omposition of morphisms is the only one possible. If L is a projetivesystem, C is some ategory, X : L → C is a ovariant funtor, we will denote
X(l) for l ∈ L by Xl. We will write Y = lim←−l∈LXl for the limit of thisfuntor; we will all it the inverse limit of Xl. We will denote the olimit ofa ontravariant funtor Y : L → C by lim−→l∈L Yl and all it the diret limit.Besides, we will sometimes all the ategorial image of L with respet to suhan Y an indutive system.Below I, L will often be projetive systems; we will usually require I to beountable.A subsystem L′ of L is a partially ordered subset in whih maximums exist(we will also onsider the orresponding full subategory of L). We will all L′unbounded in L if for any l ∈ L there exists an l′ ∈ L′ suh that l′ ≥ l.
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Coniveau Spectral Sequences for Motives 43
k will be our perfet base �eld. Below we will usually demand k to be ountable.Note: this yields that for any variety the set of its losed (or open) subshemesis ountable.We also list entral de�nitions and main notation of this paper.First we list the main (general) homologial algebra de�nitions. t-strutures, t-trunations, and Postnikov towers in triangulated ategories are de�ned in �1.1;weight strutures, weight deompositions, weight trunations, weight Postnikovtowers, and weight omplexes are onsidered in �2.1; virtual t-trunations andnie exat omplexes of funtors are de�ned in �2.3; weight spetral sequenesare studied in �2.4; (nie) dualities and orthogonal weight and t-strutures arede�ned in De�nition 2.5.1; right and left weight-exat funtors are de�ned inDe�nition 2.7.1.Now we list notation (and some de�nitions) for motives. DM eff

gm ⊂ DM eff
− ,

HI and the homotopy t-struture forDM eff
gm are de�ned in �1.3; Tate twists areonsidered in �1.4; Dnaive is de�ned in �1.5; omotives (D and D′) are de�nedin �3.1; in �3.2 we disuss pro-shemes and their omotives; in �3.3 we reall thede�nition of a primitive sheme; in �4.1 we de�ne the Gersten weight struture

w on a ertain triangulated Ds; we onsider wChow in �4.7; Dbir and w′
bir arede�ned in �4.9; several di�erential graded onstrutions (inluding extensionand restrition of salars for omotives) are onsidered in �5; we de�ne Dgenand WC : Ds → Kb(Dgen) in �6.1.

1 Some preliminaries on triangulated categories and motives�1.1 we reall the notion of a t-struture (and introdue some notation for it),reall the notion of an idempotent ompletion of an additive ategory; we alsoreall that any small abelian ategory ould be faithfully embedded into Ab (awell-known result by Mithell).In �1.2 we desribe (following H. Krause) a natural method for extending o-homologial funtors from a full triangulated C′ ⊂ C to C.In �1.3 we reall some de�nitions and results of Voevodsky.In �1.4 we reall the notion of a Tate twist; we study the properties of Tatetwists for motives and homotopy invariant sheaves.In �1.5 we de�ne pro-motives (following [9℄ and [10℄). These are not neessaryfor our main result; yet they allow to explain our methods step by step. Wealso desribe in detail the relation of our onstrutions and results with thoseof Deglise.
1.1 t-structures, Postnikov towers, idempotent completions, and

an embedding theorem of MitchellTo �x the notation we reall the de�nition of a t-struture.
Definition 1.1.1. A pair of sublasses Ct≥0, Ct≤0 ⊂ ObjC for a triangulatedategory C will be said to de�ne a t-struture t if (Ct≥0, Ct≤0) satisfy thefollowing onditions:
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44 M. V. Bondarko(i) Ct≥0, Ct≤0 are strit i.e. ontain all objets of C isomorphi to their ele-ments.(ii) Ct≥0 ⊂ Ct≥0[1], Ct≤0[1] ⊂ Ct≤0.(iii) Orthogonality. Ct≤0[1] ⊥ Ct≥0.(iv) t-deomposition. For any X ∈ ObjC there exists a distinguished triangle
A→ X → B[−1]→A[1] (1)suh that A ∈ Ct≤0, B ∈ Ct≥0.We will need some more notation for t-strutures.

Definition 1.1.2. 1. A ategory Ht whose objets are Ct=0 = Ct≥0 ∩ Ct≤0,
Ht(X,Y ) = C(X,Y ) for X,Y ∈ Ct=0, will be alled the heart of t. Reall (f.Theorem 1.3.6 of [2℄) that Ht is abelian (short exat sequenes in Ht omefrom distinguished triangles in C).2. Ct≥l (resp. Ct≤l) will denote Ct≥0[−l] (resp. Ct≤0[−l]).Remark 1.1.3. 1. The axiomatis of t-strutures is self-dual: if D = Cop (so
ObjC = ObjD) then one an de�ne the (opposite) weight struture t′ on D bytaking Dt′≤0 = Ct≥0 and Dt′≥0 = Ct≤0; see part (iii) of Examples 1.3.2 in [2℄.2. Reall (f. Lemma IV.4.5 in [13℄) that (1) de�nes additive funtors C →
Ct≤0 : X → A and C → Ct≥0 : X → B. We will denote A,B by Xt≤0 and
Xt≥1, respetively.3. (1) will be alled the t-deomposition of X . If X = Y [i] for some Y ∈ ObjC,
i ∈ Z, then we will denote A by Y t≤i (it belongs to Ct≤0) and B by Y t≥i+1(it belongs to Ct≥0), respetively. Sometimes we will denote Y t≤i[−i] by t≤iY ;
t≥i+1Y = Y t

≥i+1[−i− 1]. Objets of the type Y t≤i[j] and Y t≥i[j] (for i, j ∈ Z)will be alled t-trunations of Y .4. We denote by Xt=i the i-th ohomology of X with respet to t i.e. (Y t≤i)t≥0(f. part 10 of �IV.4 of [13℄).5. The following statements are obvious (and well-known): Ct≤0 = ⊥Ct≥1;
Ct≥0 = Ct≤−1⊥.Now we reall the notion of idempotent ompletion.
Definition 1.1.4. An additive ategory B is said to be idempotent ompleteif for any X ∈ ObjB and any idempotent p ∈ B(X,X) there exists a deom-position X = Y

⊕
Z suh that p = i ◦ j, where i is the inlusion Y → Y

⊕
Z,

j is the projetion Y ⊕Z → Y .Reall that any additive B an be anonially idempotent ompleted. Its idem-potent ompletion is (by de�nition) the ategory B′ whose objets are (X, p)for X ∈ ObjB and p ∈ B(X,X) : p2 = p; we de�ne
A′((X, p), (X ′, p′)) = {f ∈ B(X,X ′) : p′f = fp = f}.
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Coniveau Spectral Sequences for Motives 45It an be easily heked that this ategory is additive and idempotent omplete,and for any idempotent omplete C ⊃ B we have a natural full embedding
B′ → C.The main result of [1℄ (Theorem 1.5) states that an idempotent ompletionof a triangulated ategory C has a natural triangulation (with distinguishedtriangles being all retrats of distinguished triangles of C).Below we will need the notion of a Postnikov tower in a triangulated ategoryseveral times (f. �IV2 of [13℄)).
Definition 1.1.5. Let C be a triangulated ategory.1. Let l ≤ m ∈ Z.We will all a bounded Postnikov tower for X ∈ ObjC the following data:a sequene of C-morphisms (0 =)Yl → Yl+1 → · · · → Ym = X along withdistinguished triangles

Yi → Yi+1 → Xi (2)for some Xi ∈ ObjC; here l ≤ i < m.2. An unbounded Postnikov tower for X is a olletion of Yi for i ∈ Z thatis equipped (for all i ∈ Z) with: onneting arrows Yi → Yi+1 (for i ∈ Z),morphisms Yi → X suh that all the orresponding triangles ommute, anddistinguished triangles (2).In both ases, we will denote X−p[p] by Xp; we will all Xp the fators of outPostnikov tower.Remark 1.1.6. 1. Composing (and shifting) arrows from triangles (2) for twosubsequent i one an onstrut a omplex whose terms are Xp (it is easily seenthat this is a omplex indeed, f. Proposition 2.2.2 of [6℄). This observationwill be important for us below when we will onsider ertain weight omplexfuntors.2. Certainly, a bounded Postnikov tower ould be easily ompleted to an un-bounded one. For example, one ould take Yi = 0 for i < l, Yi = X for i > m;then X i = 0 if i < l or i ≥ m.Lastly, we reall the following (well-known) result.
Proposition 1.1.7. For any small abelian ategory A there exists an exatfaithful funtor A→ Ab.Proof. By the Freyd-Mithell's embedding theorem, any small A ould be fullyfaithfully embedded into R − mod for some (assoiative unital) ring R. Itremains to apply the forgetful funtor R−mod→ Ab.Remark 1.1.8. 1. We will need this statement below in order to assume thatobjets of A 'have elements'; this will onsiderably simplify diagram hase.Note that we an assume the existene of elements for a not neessarily small
A in the ase when a reasoning deals only with a �nite number of objets of Aat a time.2. In the proof it su�es to have a faithful embedding A → R − mod; thisweaker assertion was also proved by Mithell.
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46 M. V. Bondarko

1.2 Extending cohomological functors from a triangulated sub-
categoryWe desribe a method for extending ohomologial funtors from a full trian-gulated C′ ⊂ C to C (after H. Krause). Note that below we will apply some ofthe results of [17℄ in the dual form. The onstrution requires C′ to be skele-tally small i.e. there should exist a (proper) subset D ⊂ ObjC ′ suh that anyobjet of C′ is isomorphi to some element of D. For simpliity, we will some-times (when writing sums over ObjC ′) assume that ObjC′ is a set itself. Sinethe distintion between small and skeletally small ategories will not a�et ourarguments and results, we will ignore it in the rest of the paper.If A is an abelian ategory, then AddFun(C ′op, A) is abelian also; omplexes init are exat whenever they are exat omponentwisely.Suppose that A satis�es AB5 i.e. it is losed with respet to all small oprod-uts, and �ltered diret limits of exat sequenes in A are exat.Let H ′ ∈ AddFun(C ′op, A) be an additive funtor (it will usually be ohomo-logial).

Proposition 1.2.1. I Let A,H ′ be �xed.1. There exists an extension of H ′ to an additive funtor H : C → A. It isohomologial whenever H is. The orrespondene H ′ → H de�nes an additivefuntor AddFun(C′op, A)→ AddFun(Cop, A).2. Moreover, suppose that in C we have a projetive system Xl, l ∈ L, equippedwith a ompatible system of morphisms X → Xl, suh that the latter systemfor any Y ∈ ObjC′ indues an isomorphism C(X,Y ) ∼= lim−→C(Xl, Y ). Thenwe have H(X) ∼= lim−→H(Xl).II Let X ∈ ObjC be �xed.1. One an hoose a family of Xl ∈ ObjC and fl ∈ C(X,Xl) suh that (fl)indue a surjetion ⊕H ′(Xl) → H(X) for any H ′, A, and H as in assertionI1.2. Let F ′ f ′

→ G′ g′→ H ′ be a (three-term) omplex in AddFun(C ′op, A) thatis exat in the middle; suppose that H ′ is ohomologial. Then the omplex
F

f→ G
g→ H (here F,G,H, f, g are the orresponding extensions) is exat inthe middle also.Proof. I1. Following �1.2 of [17℄ (and dualizing it), we onsider the abelian at-egory C = C′∗ = AddFun(C ′, Ab) (this is Mod C′op in the notation of Krause).The de�nition easily implies that diret limits in C are exatly omponentwisediret limits of funtors. We have the Yoneda's funtor i′ : Cop → C that sends

X ∈ ObjC to the funtor X∗ = (Y 7→ C(X,Y ), Y ∈ ObjC′); it is obviouslyohomologial. We denote by i the restrition of i′ to C′ (i is opposite to a fullembedding).By Lemma 2.2 of [17℄ (applied to the ategory C′op) we obtain that there existsan exat funtor G : C → A that preserves all small oproduts and satis�es
G ◦ i = H ′. It is onstruted in the following way: if for X ∈ ObjC we have an
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Coniveau Spectral Sequences for Motives 47exat sequene (in C)
⊕j∈J X∗

j → ⊕l∈LX∗
l → X∗ → 0 (3)for Xj , Xl ∈ C′, then we set

G(X) = Coker⊕j∈JH ′(Xj)→ ⊕l∈LH ′(Xl). (4)We de�ne H = G ◦ i′; it was proved in lo.it. that we obtain a well-de�nedfuntor this way. As was also proved in lo.it., the orrespondene H ′ 7→ Hyields a funtor; H is ohomologial if H ′ is.2. The proof of lo.it. shows (and mentions) that G respets (small) �lteredinverse limits. Now note that our assertions imply: X∗ = lim−→X∗
l in C.II 1. This is immediate from (4).2. Note that the assertion is obviously valid if X ∈ ObjC ′. We redue thegeneral statement to this ase.Applying Yoneda's lemma to (3) is we obtain (anonially) some morphisms

fl : X → Xl for all l ∈ L and glj : Xl → Xj for all l ∈ L, j ∈ J , suh that: forany l ∈ L almost all glj are 0; for any j ∈ J almost all glj is 0; for any j ∈ Jwe have ∑l∈L glj ◦ fl = 0.Now, by Proposition 1.1.7, we may assume that A = Ab (see Remark 1.1.8).We should hek: if for a ∈ G(X) we have g∗(a) = 0, then a = f∗(b) for some
b ∈ F (X).Using additivity of C′ and C, we an gather �nite sets of Xl and Xj into singleobjets. Hene we an assume that a = G(fl0)(c) for some c ∈ G(Xl) (=
G′(Xl)), l0 ∈ L and that g∗(c) ∈ H(gl0j0)(H(Xj0 )) for some j0 ∈ J , whereas
gl0j0 ◦ fl0 = 0. We omplete Xl0 → Xj0 to a distinguished triangle Y α→
Xl0

gl0j0→ Xj0 ; we an assume that B ∈ ObjC′. We obtain that fl0 ould bepresented as α ◦β for some β ∈ C(X,Y ). Sine H ′ is ohomologial, we obtainthat H(α)(g∗(c)) = 0. Sine Y ∈ ObjC, the omplex F (Y ) → G(Y ) → H(Y )is exat in the middle; hene G(α)(c) = f∗(d) for some d ∈ F (Y ). Then wean take b = F (β)(d).
1.3 Some definitions of Voevodsky: reminderWe use muh notation from [25℄. We reall (some of) it here for the onvenieneof the reader, and introdue some notation of our own.
V ar ⊃ SmV ar ⊃ SmPrV ar will denote the lass of all varieties over k, resp.of smooth varieties, resp. of smooth projetive varieties.We reall that for ategories of geometri origin (in partiular, for SmCor de-�ned below) the addition of objets is de�ned via the disjoint union of varietiesoperation.We de�ne the ategory SmCor of smooth orrespondenes. ObjSmCor =
SmV ar, SmCor(X,Y ) =

⊕
U Z for all integral losed U ⊂ X × Y that are�nite over X and dominant over a onneted omponent of X ; the omposition
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48 M. V. Bondarkoof orrespondenes is de�ned in the usual way via intersetions (yet, we do notneed to onsider orrespondenes up to an equivalene relation).We will write · · · → X i−1 → X i → X i+1 → . . . , for X l ∈ SmV ar, for theorresponding omplex over SmCor.
PreShv(SmCor) will denote the (abelian) ategory of additive ofuntors
SmCor → Ab; its objets are usually alled presheaves with transfers.
Shv(SmCor) = Shv(SmCor)Nis ⊂ PreShv(SmCor) is the abelian ategoryof additive ofuntors SmCor → Ab that are sheaves in the Nisnevih topology(when restrited to the ategory of smooth varieties); these sheaves are usuallyalled sheaves with transfers.
D−(Shv(SmCor)) will be the bounded above derived ategory of
Shv(SmCor).For Y ∈ SmV ar (more generally, for Y ∈ V ar, see �4.1 of [25℄) we onsider
L(Y ) = SmCor(−, Y ) ∈ Shv(SmCor). For a bounded omplex X = (X i)(as above) we will denote by L(X) the omplex · · · → L(X i−1) → L(X i) →
L(X i+1)→ · · · ∈ Cb(Shv(SmCor)).
S ∈ Shv(SmCor) is alled homotopy invariant if for any X ∈ SmV ar theprojetion A1 ×X → X gives an isomorphism S(X) → S(A1 × X). We willdenote the ategory of homotopy invariant sheaves (with transfers) by HI; itis an exat abelian subategory of SmCor by Proposition 3.1.13 of [25℄.
DM eff

− ⊂ D−(Shv(SmCor)) is the full subategory of omplexes whose oho-mology sheaves are homotopy invariant; it is triangulated by lo.it. We willneed the homotopy t-struture on DM eff
− : it is the restrition of the anon-ial t-struture on D−(Shv(SmCor)) to DM eff

− . Below (when dealing with
DM eff

− ) we will denote it by just by t. We have Ht = HI.We reall the following results of [25℄.
Proposition 1.3.1. 1. There exists an exat funtor RC :
D−(Shv(SmCor)) → DM eff

− right adjoint to the embedding DM eff
− →

D−(Shv(SmCor)).2. DM eff
− (Mgm(Y )[−i], F ) = Hi(F )(Y ) (the i-th Nisnevih hyperohomologyof F omputed in Y ) for any Y ∈ SmV ar.3. Denote RC ◦ L by Mgm. Then the orresponding funtor Kb(SmCor) →

DM eff
− ould be desribed as a ertain loalization of Kb(SmCor).Proof. See �3 of [25℄.Remark 1.3.2. 1. In [25℄ (De�nition 2.1.1) the triangulated ategory DM eff

gm(of e�etive geometri motives) was de�ned as the idempotent ompletion of aertain loalization of Kb(SmCor). This de�nition is ompatible with a di�er-ential graded enhanement for DM eff
gm ; f. �5.3 below. Yet in Theorem 3.2.6 of[25℄ it was shown that DM eff

gm is isomorphi to the idempotent ompletion of(the ategorial image) Mgm(Cb(SmCor)); this desription of DM eff
gm will besu�ient for us till �5.
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Coniveau Spectral Sequences for Motives 492. In fat, RC ould be desribed in terms of so-alled Suslin omplexes (seelo.it.). We will not need this below. Instead, we will just note that RC sends
D−(Shv(SmCor))t≤0 to DM eff

−
t≤0.

1.4 Some properties of Tate twistsTate twisting in DM eff
− ⊃ DM eff

gm is given by tensoring by the objet Z(1)(it is often denoted just by −(1)). Tate twist has several desriptions and nieproperties. We will only need a few of them; our main soure is �3.2 of [25℄; amore detailed exposition ould be found in [20℄ (see ��8�9).In order to alulate the tensor produt of X,Y ∈ ObjDM eff
− one should takeany preimagesX ′, Y ′ of X,Y in ObjD−(Shv(SmCor)) with respet to RC (forexample, one ould take X ′ = X , Y ′ = Y ); next one should resolve X,Y bydiret sums of L(Zi) for Zi ∈ SmV ar; lastly one should tensor these resolutionsusing the identity L(Z)⊗L(T ) = L(Z×T ) for Z, T ∈ SmV ar, and apply RC tothe result. This tensor produt is ompatible with the natural tensor produtfor Kb(SmCor).We note that any objet D−(Shv(SmCor))

t≤0 has a resolution onentratedin negative degrees (the anonial resolution of the beginning of �3.2 of [25℄).It follows that DM eff
−

t≤0 ⊗DM eff
−

t≤0 ⊂ DM eff
−

t≤0 (see Remark 1.3.2(2); infat, there is an equality sine Z ∈ ObjHI).Next, we denote A1 \ {0} by Gm. The morphisms pt→ Gm → pt (the point ismapped to 1 in Gm) indue a splitting Mgm(Gm) = Z ⊕ Z(1)[1] for a ertain(Tate) motif Z(1); see De�nition 3.1 of [20℄. For X ∈ ObjDM eff
− we denote

X ⊗ Z(1) by X(1).One ould also present Z(1) as Cone(pt → Gm)[−1]; hene the Tate twistfuntor X 7→ X(1) is ompatible with the funtor − ⊗ (Cone(pt → Gm)[−1])on Cb(SmCor) via Mgm. We also obtain that DM eff
−

t≤0(1) ⊂ DM eff
−

t≤1.Now we de�ne ertain twists for funtors.
Definition 1.4.1. For an G ∈ AddFun(DM eff

gm , Ab), n ≥ 0, we de�ne
G−n(X) = G(X(n)[n]).Note that this de�nition is ompatible with those of �3.1 of [26℄. Indeed, for
X ∈ SmV ar we have G−1(Mgm(X)) = G(Mgm(X × Gm))/G(Mgm(X)) =
Ker(G(Mgm(X × Gm)) → G(Mgm(X))) (with respet to natural morphisms
X × pt→ X ×Gm → X × pt); G−n for larger n ould be de�ned by iterating
−−1.Below we will extend this de�nition to (o)motives of pro-shemes.For F ∈ ObjDM eff

− we will denote by F∗ the funtor X 7→ DM eff
− (X,F ) :

DM eff
gm → Ab.

Proposition 1.4.2. Let X ∈ SmV ar, n ≥ 0, i ∈ Z.1. For any F ∈ ObjDM eff
− we have: F∗−n(Mgm(X)[−i]) is a retrat of

Hi(F )(X ×G×n
m ) (whih an be desribed expliitly).
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50 M. V. Bondarko2. There exists a t-exat funtor Tn : DM eff
− → DM eff

− suh that for any
F ∈ ObjDM eff

− we have F∗−n ∼= (Tn(F ))∗.Proof. 1. Proposition 1.3.1 along with our desription of Z(1) yields the result.2. For F represented by a omplex of F i ∈ ObjShv(SmCor) (i ∈ Z) wede�ne Tn(F ) as the omplex of Tn(F i), where Tn : PreShv(SmCor) →
PreShv(SmCor) is de�ned similarly to −−n in De�nition 1.4.1. Tn(F i) aresheaves sine Tn(Fi)(X), X ∈ SmV ar, is a funtorial retrat of Fi(X ×Gnm).In order to hek that we atually obtain a well-de�ned a t-exat funtor thisway, it su�es to note that the restrition of Tn to Shv(SmCor) is an exatfuntor by Proposition 3.4.3 of [9℄.Now, it su�es to hek that Tn de�ned satis�es the assertion for n = 1. In thisase the statement follows easily from Proposition 4.34 of [26℄ (note that it isnot important whether we onsider Zariski or Nisnevih topology by Theorem5.7 of ibid.).
1.5 Pro-motives vs. comotives; the description of our strategyBelow we will embed DM eff

gm into a ertain triangulated ategory D of omo-tives. Its onstrution (and omputations in it) is rather ompliated; in fat,the author is not sure whether the main properties of D (desribed below)speify it up to an isomorphism. So, before working with o-motives we will(following F. Deglise) desribe a simpler ategory of pro-motives. The latteris not needed for our main results (so the reader may skip this subsetion);yet the omparison of the ategories mentioned would larify the nature of ourmethods.Following �3.1 of [9℄, we de�ne the ategory Dnaive as the additive ategoryof naive i.e. formal (�ltered) pro-objets of DM eff
gm . This means that for any

X : L→ DM eff
gm , Y : J → DM eff

gm we de�ne
Dnaive(lim←−l∈LXl, lim←−j∈J Yj) = lim←−j∈J (lim−→l∈LDM

eff
gm (Xl, Yj)). (5)The main disadvantage ofDnaive is that it is not triangulated. Still, one has theobvious shift for it; following Deglise, one an de�ne pro-distinguished trianglesas (�ltered) inverse limits of distinguished triangles in DM eff
gm . This allows toonstrut a ertain motivi oniveau exat ouple for a motif of a smooth varietyin �4.2 of [10℄ (see also �5.3 of [9℄). This onstrution is parallel to the lassialonstrution of oniveau spetral sequenes (see �1 of [8℄). One starts withertain 'geometri' Postnikov towers in DM eff

gm (Deglise alls them triangulatedexat ouples). For Z ∈ SmV ar we onsider �ltrations ∅ = Zd+1 ⊂ Zd ⊂
Zd−1 ⊂ · · · ⊂ Z0 = Z; Zi is everywhere of odimension ≥ i in Z for all i.Then we have a system of distinguished triangles relating Mgm(Z \ Zi) and
Mgm(Z \ Zi → Z \ Zi+1); this yields a Postnikov tower. Then one passesto the inverse limit of these towers in Dnaive (here the onneting morphisms
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Coniveau Spectral Sequences for Motives 51are indued by the orresponding open embeddings). Lastly, the funtorialform of the Gysin distinguished triangle for motives allows Deglise to identify
Xi = lim←−(Mgm(Z \ Zi → Z \ Zi+1)) with the produt of shifted Tate twists ofpro-motives of all points of Z of odimension i. Using the results of see �5.2of [9℄ (the relation of pro-motives with yle modules of M. Rost, see [24℄) onean also ompute the morphisms that onnet X i with X i+1.Next, for any ohomologial H : DM eff

gm → A, where A is an abelian ategorysatisfying AB5, one an extend H to Dnaive via the orresponding diret limits.Applying H to the motivi oniveau exat ouple one gets the lassial oniveauspetral sequene (that onverges to the H-ohomology of Z). This allowsto extend the seminal results of �6 of [5℄ to a omprehensive desription ofthe oniveau spetral sequene in the ase when H is represented by Y ∈
ObjDM eff

− (in terms of the homotopy t-trunations of Y ; see Theorem 6.4 of[11℄).Now suppose that one wants to apply a similar proedure for an arbitrary
X ∈ ObjDM eff

gm ; say, X = Mgm(Z1 f→ Z2) for Z1, Z2 ∈ SmV ar, f ∈
SmCor(Z1, Z2). One would expet that the desired exat ouple for X ouldbe onstruted from those for Zj , j = 1, 2. This is indeed the ase when f satis-�es ertain odimension restritions; f. �7.4 of [6℄. Yet for a general f it seemsto be quite di�ult to relate the �ltrations of distint Zj (by the orresponding
Zji ). On the other hand, the formalism of weight strutures and weight spe-tral sequenes (developed in [6℄) allows to 'glue' ertain weight Postnikov towersfor objets of a triangulated ategories equipped with a weight struture; seeRemark 4.1.2(3) below.So, we onstrut a ertain triangulated ategory D that is somewhat similarto Dnaive. Certainly, we want distinguished triangles in D to be ompatiblewith inverse limits that ome from 'geometry'. A well-known reipe for this is:one should onsider some ategory D′ where (ertain) ones of morphisms arefuntorial and pass to (inverse) limits in D′; D should be a loalization of D′.In fat, D′ onstruted in �5.3 below ould be endowed with a ertain (Quillen)model struture suh that D is its homotopy ategory. We will never use thisfat below; yet we will sometimes all inverse limits oming from D′ homotopylimits (in D).Now, in Proposition 4.3.1 below we will prove that ohomologial funtors
H : DM eff

gm → A ould be extended to D in a way that is ompatible withhomotopy limits (those oming from D′). So one may say that objets of Dhave the same ohomology as those of Dnaive. On the other hand, we haveto pay the prie for D being triangulated: (5) does not ompute morphismsbetween homotopy limits in D. The 'di�erene' ould be desribed in termsof ertain higher projetive limits (of the orresponding morphism groups in
DM eff

gm ).Unfortunately, the author does not know how to ontrol the orresponding
lim←−

2 (and higher ones) in the general ase; this does not allow to onstruta weight struture on a su�iently large triangulated subategory of D if k
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52 M. V. Bondarkois unountable (yet see �6.5, espeially the last paragraph of it). In the aseof a ountable k only lim←−
1 is non-zero. In this ase the morphisms betweenhomotopy limits in D are expressed by the formula (28) below. This allowsto prove that there are no morphisms of positive degrees between ertain Tatetwists of omotives of funtion �elds (over k). This immediately yields that onean onstrut a ertain weight struture on the triangulated subategory Ds of

D generated by produts of Tate twists of omotives of funtion �elds (in fat,we also idempotent omplete Ds). Now, in order to prove that Ds ontains
DM eff

gm it su�es to prove that the motif of any smooth variety X belongsto Ds. To this end it learly su�es to deompose Mgm(X) into a Postnikovtower whose fators are produts of Tate twists of omotives of funtion �elds.So, we lift the motivi oniveau exat ouple (onstruted in [10℄) from Dnaiveto D. Sine ones in D′ are ompatible with inverse limits, we an onstrut atower whose terms are the homotopy limits of the orresponding terms of thegeometri towers mentioned. In fat, this ould be done for an unountable kalso; the di�ulty is to identify the analogues of Xi in D. If k is ountable,the homotopy limits orresponding to our tower are ountable also. Hene (byan easy well-known result) the isomorphism lasses of these homotopy limitsould be omputed in terms of the orresponding objets and morphisms in
DM eff

gm . This means: it su�es to ompute X i in Dnaive (as was done in [10℄);this yields the result needed. Note that we annot (ompletely) ompute the
D-morphisms X i → X i+1; yet we know how they at on ohomology.The most interesting appliation of the results desribed is the following one.We prove that there are no positive D-morphisms between (ertain) Tate twistsof omotives of smooth semi-loal shemes (or primitive shemes, see below);this generalizes the orresponding result for funtion �elds. It follows thatthese twists belong to the heart of the weight struture on Ds mentioned.Therefore omotives of (onneted) primitive shemes are retrats of omotivesof their generi points. Hene the same is true for the ohomology of theomotives mentioned and also for the orresponding pro-motives. Also, theomotif of a funtion �eld ontains as retrats twisted omotives of its residue�elds (for all geometri valuations); this also implies the orresponding resultsfor ohomology and pro-motives.Remark 1.5.1. In fat, Deglise mostly onsiders pro-objets for Voevodsky's
DMgm and of DM eff

− ; yet the distintions are not important sine the fullembeddings DM eff
gm → DMgm and DM eff

gm → DM eff
− obviously extend to fullembedding of the orresponding ategories of pro-objets. Still, the embeddingsmentioned allow Deglise to extend several nie results for Voevodsky's motivesto pro-motives.2. One of the advantages of the results of Deglise is that he never requires k tobe ountable. Besides, our onstrution of weight Postnikov towers mentionedheavily relies on the funtoriality of the Gysin distinguished triangle for motives(proved in [10℄; see also Proposition 2.4.5 of [9℄).
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Coniveau Spectral Sequences for Motives 53
2 Weight structures: reminder, truncations, weight spectral se-

quences, and duality with t-structuresIn �2.1 we reall basi de�nitions of the theory of weight strutures (it wasdeveloped in [6℄; the onept was also independently introdued in [23℄). Notehere that weight strutures (usually denoted by w) are natural ounterparts of t-strutures. Weight strutures yield weight trunations; those (vastly) generalizestupid trunations in K(B): in partiular, they are not anonial, yet anymorphism of objets ould be extended (non-anonially) to a morphism oftheir weight trunations. We reall several properties of weight strutures in�2.2.We reall virtual t-trunations for a (ohomologial) funtor H : C → A (for Cendowed with a weight struture) in �2.3 (these trunations are de�ned in termsof weight trunations). Virtual t-trunations were introdued in �2.5 of [6℄;they yield a way to present H (anonially) as an extension of a ohomologialfuntor that is positive in a ertain sense by a 'negative' one (as if H belongedto some triangulated ategory of funtors C → A endowed with a t-struture).We study this notion further here, and prove that virtual t-trunations for aohomologial H ould be haraterized up to a unique isomorphism by theirproperties (see Theorem 2.3.1(III4)). In order to give some haraterizationalso for the 'dimension shift' (onneting the positive and the negative virtual
t-trunations of H), we introdue the notion of a nie (strongly exat) omplexof funtors. We prove that omplexes of representable funtors oming fromdistinguished triangles in C are nie, as well as those omplexes that ould beobtained from nie strongly exat omplexes of funtors C′ → A for some smalltriangulated C′ ⊂ C (via the extension proedure given by Proposition 1.2.1).In �2.4 we onsider weight spetral sequenes (introdued in ��2.3�2.4 of [6℄).We prove that the derived exat ouple for the weight spetral sequene T (H)(for H : C → A) ould be naturally desribed in terms of virtual t-trunationsof H . So, one an express T (H) starting from E2 (as well as the orresponding�ltration of H∗) in these terms also. This is an important result, sine the baside�nition of T (H) is given in terms of weight Postnikov towers for objets of C,whereas the latter are not anonial. In partiular, this result yields anonialfuntorial spetral sequenes in lassial situations (onsidered by Deligne; f.Remark 2.4.3 of [6℄; note that we do not need rational oe�ients here).In �2.5 we introdue the de�nition a (nie) duality Φ : Cop × D → A, andof (left) orthogonal weight and t-strutures (with respet to Φ). The latterde�nition generalizes the notion of adjaent strutures introdued in �4.4 of[6℄ (this is the ase C = D, A = Ab, Φ = C(−, )). If w is orthogonal to
t then the virtual t-trunations (orresponding to w) of funtors of the type
Φ(−, Y ), Y ∈ ObjD, are exatly the funtors 'represented via Φ' by the atual
t-trunations of Y (orresponding to t). We also prove that (nie) dualitiesould be extended from C′ to C (using Proposition 1.2.1). Note here that(to the knowledge of the author) this paper is the �rst one whih onsiders'pairings' of triangulated ategories.
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54 M. V. BondarkoIn �2.6 we prove: if w and t are orthogonal with respet to a nie duality, theweight spetral sequene onverging to Φ(X,Y ) (for X ∈ ObjC, Y ∈ ObjD) isnaturally isomorphi (starting from E2) to the one oming from t-trunationsof Y . Moreover even when the duality is not nie, all Epqr for r ≥ 2 and the�ltrations orresponding to these spetral sequenes are still anonially iso-morphi. Here nieness of a duality (de�ned in �2.5) is a somewhat tehnialondition (de�ned in terms of nie omplexes of funtors). Nieness gener-alizes to pairings (C × D → A) the axiom TR3 (of triangulated ategories:any ommutative square in C ould be ompleted to a morphism of distin-guished triangles; note that this axiom ould be desribed in terms of the fun-tor C(−,−) : C×C → Ab). We also disuss some alternatives and predeessorsof our methods and results.In �2.7 we ompare weight deompositions, virtual t-trunations, and weightspetral sequenes orresponding to distint weight strutures (in possibly dis-tint triangulated ategories, onneted by an exat funtor).
2.1 Weight structures: basic definitionsWe reall the de�nition of a weight struture (see [6℄; in [23℄ D. Pauksztellointrodued weight strutures independently and alled them o-t-strutures).
Definition 2.1.1 (De�nition of a weight struture). A pair of sublasses
Cw≤0, Cw≥0 ⊂ ObjC for a triangulated ategory C will be said to de�ne aweight struture w for C if they satisfy the following onditions:(i) Cw≥0, Cw≤0 are additive and Karoubi-losed (i.e. ontain all retrats oftheir objets that belong to ObjC).(ii) "Semi-invariane" with respet to translations.
Cw≥0 ⊂ Cw≥0[1]; Cw≤0[1] ⊂ Cw≤0.(iii) Orthogonality.
Cw≥0 ⊥ Cw≤0[1].(iv) Weight deomposition.For any X ∈ ObjC there exists a distinguished triangle

B[−1]→ X → A
f→ B (6)suh that A ∈ Cw≤0, B ∈ Cw≥0.A simple example of a ategory with a weight struture is K(B) for any addi-tive B: positive objets are omplexes that are homotopy equivalent to thoseonentrated in positive degrees; negative objets are omplexes that are homo-topy equivalent to those onentrated in negative degrees. Here one ould alsoonsider the subategories of omplexes that are bounded from above, below,or from both sides.The triangle (6) will be alled a weight deomposition of X . A weight de-omposition is (almost) never unique; still we will sometimes denote any pair

(A,B) as in (6) by Xw≤0 and Xw≥1. Besides, we will all objets of the type
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Coniveau Spectral Sequences for Motives 55
(X [i])w≤0[j] and (X [i])w≥0[j] (for i, j ∈ Z) weight trunations of X . A shift ofthe distinguished triangle (6) by [i] for any i ∈ Z, X ∈ ObjC (as well as anyits rotation) will sometimes be alled a shifted weight deomposition.In K(B) (shifted) weight deompositions ome from stupid trunations of om-plexes.We will also need the following de�nitions and notation.
Definition 2.1.2. Let X ∈ ObjC.1. The ategory Hw ⊂ C whose objets are Cw=0 = Cw≥0 ∩ Cw≤0,

Hw(Z, T ) = C(Z, T ) for Z, T ∈ Cw=0, will be alled the heart of theweight struture w.2. Cw≥l (resp. Cw≤l, resp. Cw=l) will denote Cw≥0[−l] (resp. Cw≤0[−l],resp. Cw=0[−l]).3. We denote Cw≥l ∩ Cw≤i by C [l,i].4. Xw≤l (resp. Xw≥l) will denote (X [l])w≤0 (resp. (X [l− 1])w≥1).5. w≤iX (resp. w≥iX) will denote Xw≤i[−i] (resp. Xw≥i[−i]).6. w will be alled non-degenerate if
∩lCw≥l = ∩lCw≤l = {0}.7. We onsider Cb = (∪i∈ZC

w≤i) ∩ (∪i∈ZC
w≥i) and all it the lass ofbounded objets of C.For X ∈ Cb we will usually take w≤iX = 0 for i small enough, w≥iX = 0for i large enough.We will also denote by Cb the orresponding full subategory of C.8. We will say that (C,w) is bounded if Cb = C.9. We will all a Postnikov tower for X (see De�nition 1.1.5) a weight Post-nikov tower if all Yi are some hoies for w≥1−iX . In this ase we will allthe omplex whose terms are Xp (see Remark 1.1.6) a weight omplex for

X .We will all a weight Postnikov tower for X negative if X ∈ Cw≤0 andwe hoose w≥jX to be 0 for all j > 0 here.10. D ⊂ ObjC will be alled extension-stable if for any distinguished triangle
A→ B → C in C we have: A,C ∈ D =⇒ B ∈ D.We will also say that the orresponding full subategory is extension-stable.11. D ⊂ ObjC will be alled negative if for any i > 0 we have D ⊥ D[i].
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56 M. V. BondarkoRemark 2.1.3. 1. One ould also dualize our de�nition of a weight Postnikovtower i.e. build a tower from w≤lX instead of w≥lX . Our de�nition of aweight Postnikov tower is more onvenient for our purposes sine in �3.6 belowwe will onsider Yi = j(Z0 \ Zi) instead of = j(Z0 \ Zi → Z0)[−1]. Yet thisdoes not make muh di�erene; see �1.5 of [6℄ and Theorem 2.2.1(12) below. Inpartiular, our de�nition of the weight omplex for X oinides with De�nition2.2.1 of ibid. Note also, that De�nition 1.5.8 of ibid (of a weight Postnikovtower) ontained both 'our' part of the data and the dual part.2. Weight Postnikov towers for objets of C are far from being unique; theirmorphisms (provided by Theorem 2.2.1(15) below) are not unique also (f.Remark 1.5.9 of [6℄). Yet the orresponding weight spetral sequenes for o-homology are unique and funtorial starting from E2; see Theorem 2.4.2 of ibid.and Theorem 2.4.2 below for more detail. In partiular, all possible hoies ofa weight omplex for X are homotopy equivalent (see Theorem 3.2.2(II) andRemark 3.1.7(3) in [6℄).
2.2 Basic properties of weight structuresNow we list some basi properties of notions de�ned. In the theorem belowwe will assume that C is endowed with a �xed weight struture w everywhereexept in assertions 18 � 20.
Theorem 2.2.1. 1. The axiomatis of weight strutures is self-dual: if

D = Cop (so ObjC = ObjD) then one an de�ne the (opposite) weightstruture w′ on D by taking Dw′≤0 = Cw≥0 and Dw′≥0 = Cw≤0.2. We have
Cw≤0 = Cw≥1⊥ (7)and
Cw≥0 = ⊥Cw≤−1. (8)3. For any i ∈ Z, X ∈ ObjC we have a distinguished triangle w≥i+1X →

X → w≤iX (given by a shifted weight deomposition).4. Cw≤0, Cw≥0, and Cw=0 are extension-stable.5. All Cw≤i are losed with respet to arbitrary (small) diret produts(those, whih exist in C); all Cw≥i and Cw=i are additive.6. For any weight deomposition of X ∈ Cw≥0 (see (6)) we have A ∈ Cw=0.7. If A→ B → C → A[1] is a distinguished triangle and A,C ∈ Cw=0, then
B ∼= A⊕ C.8. If we have a distinguished triangle A → B → C for B ∈ Cw=0, C ∈
Cw≤−1 then A ∼= B

⊕
C[−1].
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Coniveau Spectral Sequences for Motives 579. If X ∈ Cw=0, X [−1] → A
f→ B is a weight deomposition (of X [−1]),then B ∈ Cw=0; B ∼= A⊕X.10. Let l ≤ m ∈ Z, X,X ′ ∈ ObjC; let weight deompositions of X [m] and

X ′[l] be �xed. Then any morphism g : X → X ′ an be ompleted to amorphism of distinguished triangles
w≥m+1X −−−−→ X

c−−−−→ w≤mXya
yg

yb

w≥l+1X
′ −−−−→ X ′ d−−−−→ w≤lX ′

(9)This ompletion is unique if l < m.11. Consider some ompletion of a ommutative triangle w≥m+1X →
w≥l+1X → X (that is uniquely determined by the morphisms w≥m+1X →
X and w≥l+1X → X oming from the orresponding shifted weight de-ompositions; see the previous assertion) to an otahedral diagram:

w≤lX
[1]

&&MMMMMMMMMM

[1]

��

Xoo

w≥l+1X

88rrrrrrrrrrr

xxqqqqqqqqqq

w[l+1,m]X
[1] // w≥m+1X

ffLLLLLLLLLL

OO

w≤lX

[1]

��

X

yyrrrrrrrrrrr
oo

w≤mX

ffLLLLLLLLLL

[1]

%%KKKKKKKKKK

w[l+1,m]X

99rrrrrrrrrr [1] // w≥m+1X

OO

Then w[l+1,m]X ∈ C [l+1,m]; all the distinguished triangles of this otahe-dron are shifted weight deompositions.12. For X,X ′ ∈ ObjC, l, l′,m,m′ ∈ Z, l < m, l′ < m′, l > l′, m > m′, on-sider two otahedral diagrams: (11) and a similar one orresponding tothe ommutative triangle w≥m+1X → w≥l+1X → X and w≥m′+1X
′ →

w≥l′+1X → X (i.e. we �x some hoies of these diagrams). Then any
g ∈ C(X,X ′) ould be uniquely extended to a morphism of these dia-grams. The orresponding morphism h : w[l+1,m]X → w[l′+1,m′]X

′ isharaterized uniquely by any of the following onditions:
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58 M. V. Bondarko(i) there exists a C-morphism i that makes the squares
w≥l+1X −−−−→ X
yi

yg

w≥l′+1X
′ −−−−→ X ′

(10)and
w≥l+1X −−−−→ w[l+1,m]Xyi

yh

w≥l′+1X
′ −−−−→ w[l′+1,m′]X

′

(11)ommutative.(ii) there exists a C-morphism j that makes the squares
X −−−−→ w≤mXyg

yj

X ′ −−−−→ w≤m′X ′

(12)and
w[l+1,m]X −−−−→ w≤mXyh

yj

w[l′+1,m′]X
′ −−−−→ w≤m′X ′

(13)ommutative.13. For any hoie of w≥iX there exists a weight Postnikov tower for X (seeDe�nition 2.1.2(9)). For any weight Postnikov tower we have Cone(Yi →
X) ∈ Cw≤−i; X i ∈ Cw=0.14. Conversely, any bounded Postnikov tower (for X) with X i ∈ Cw=0 is aweight Postnikov tower for it.15. For X,X ′ ∈ ObjC and arbitrary weight Postnikov towers for them, any
g ∈ C(X,X ′) an be extended to a morphism of Postnikov towers (i.e.there exist morphisms Yi → Y ′

i , X
i → X ′i, suh that the orrespondingsquares ommute).16. For X,X ′ ∈ Cw≤0, suppose that f ∈ C(X,X ′) an be extended to amorphism of (some of) their negative Postnikov towers that establishesan isomorphism X0 → X ′0. Suppose also that X ′ ∈ Cw=0. Then f yieldsa projetion of X onto X ′ (i.e. X ′ is a retrat of X via f).17. Cb is a Karoubi-losed triangulated subategory of C. w indues a non-degenerate weight struture for it, whose heart equals Hw.
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Coniveau Spectral Sequences for Motives 5918. For a triangulated idempotent omplete C let D ⊂ ObjC be negative.Then there exists a unique weight struture w on the Karoubization Tof 〈D〉 in C suh that D ⊂ Tw=0. Its heart is the Karoubization of thelosure of D in C with respet to (�nite) diret sums.19. For the weight struture mentioned in the previous assertion, Tw≤0 is theKaroubization of the smallest extension-stable sublass of ObjC ontain-ing ∪i≥0D[i]; Tw≥0 is the Karoubization of the smallest extension-stablesublass of ObjC ontaining ∪i≤0D[i].20. For the weight struture mentioned in two previous assertions we alsohave
Tw≤0 = (∪i<0D[i])⊥; Tw≥0 = ⊥(∪i>0D[i]).Proof. 1. Obvious; f. Remark 1.1.3 of [6℄ (and Remark 1.1.2 of ibid. formore detail).2. These are parts 1 and 2 of Proposition 1.3.3 of ibid.3. Obvious (sine [i] is exat up to hange of signs of morphisms); f. Remark1.2.2 of ibid.4. This is part 3 of Proposition 1.3.3 of ibid.5. Obvious from the de�nition and parts 4 of lo.it.6. This is part 6 of Proposition 1.3.3 of ibid.7. This is part 7 of lo.it.8. It su�es to note that C(B,C) = 0, hene the triangle splits.9. This is part 8 of lo.it.10. This is Lemma 1.5.1 of ibid.11. The only non-trivial statement here is that w[l+1,m]X ∈ C [l+1,m] (iteasily implies: the left hand side of the lower ap in (11) also yieldsa shifted weight deomposition). (11) yields distinguished triangles:

T1 = (w≥l+1X → w[l+1,m]X → w≥m+1X [1]) and T2 = (w≤lX →
w[l+1,m]X [1]→ w≤mX [1]). Hene assertion 4 yields the result.12. By assertion 10, g extends uniquely to a morphism of the following dis-tinguished triangles: from T3 = (w≥m+1X → X → w≤mX) to T ′

3 =
(w≥m′+1X

′ → X ′ → w≤m′X), and from T4 = (w≥l+1X → X → w≤lX)to T ′
4 = (w≥l′+1X

′ → X ′ → w≤l′X); next we also obtain a unique mor-phism from T1 (as de�ned in the proof of the previous assertion) to itsanalogue T ′
1. Putting all of this together: we obtain unique morphismsof all of the verties of our otahedra, whih are ompatible with allthe edges of the otahedra expet (possibly) those that belong to T2 (as
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60 M. V. Bondarkode�ned above). We also obtain that there exists unique i and h thatomplete (10) and (11) to ommutative squares.Now, the morphism w≤lX → w[l+1,m]X ould be deomposed into theomposition of morphisms belonging to T1 and T3. Hene in order to ver-ify that we have atually onstruted a morphism of otahedral diagrams,it remains to verify the ommutativity of the squares
w≤mX −−−−→ w≤lXyg

yj

w≤m′X ′ −−−−→ w≤l′X ′

(14)and (13) i.e. we should hek that the two possible ompositions of ar-rows for eah of the squares are equal. Now, assertion 10 implies: theompositions in question for (14) both equal the only morphism q thatmakes the square
X −−−−→ w≤mXyg

yq

X ′ −−−−→ w≤l′X ′ommutative. Similarly, the ompositions for (13) both equal the onlymorphism r that makes the square
w≥l+1X −−−−→ w[l+1,m]Xy

yr

X ′ −−−−→ w≤m′X ′ommutative. Here we use the part of the otahedral axiom that saysthat the square
w≥l+1X −−−−→ w[l+1,m]Xy

y

X −−−−→ w≤mXis ommutative (as well as the orresponding square for (X ′, l′,m′)).Lastly, as we have already noted, the ondition (i) haraterizes huniquely; for similar (atually, exatly dual) reasons the same is truefor (ii). Sine the morphism w[l+1,m]X → w[l′+1,m′]X
′ oming from themorphism of the otahedra onstruted satis�es both of these onditions,it is haraterized by any of them uniquely.13. Immediate from part 2 of (Proposition 1.5.6) of lo.it (and also fromassertion 11).14. Immediate from Remark 1.5.9(2) of ibid.
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Coniveau Spectral Sequences for Motives 6115. Immediate from part 1 (of Remark 1.5.9) of lo.it.16. It su�es to prove that Cone f ∈ Cw≤−1. Indeed, then the distinguishedtriangle X f→ X ′ → Cone f neessarily splits.We omplete the ommutative triangle Xw≤−1 → X ′w≤−1 → X0(= X ′0)to an otahedral diagram. Then we obtain Cone f ∼= Cone(Xw≤−1 →
X ′w≤−1)[1]; hene Cone f ∈ Cw≤−1 indeed.17. This is Proposition 1.3.6 of ibid.18. By Theorem 4.3.2(II1) of ibid., there exists a unique weight struture on
〈D〉 suh that D ⊂ 〈D〉w=0. Next, Proposition 5.2.2 of ibid. yields that
w an be extended to the whole T ; along with part Theorem 4.3.2(II2)of lo.it. it also allows to alulate Tw=0 in this ase.19. Immediate from Proposition 5.2.2 of ibid. and the desription of 〈H〉w≤0and 〈H〉w≥0 in the proof of Theorem 4.3.2(II1) of ibid.20. If X ∈ Tw≤0 then the orthogonality ondition for w immediately yields:
Y ⊥ X for any Y ∈ ∪i<0D[i].Conversely, suppose that for some X ∈ ObjT we have Y ⊥ X for all
Y ∈ ∪i<0D[i]. Then Y ⊥ X also for all Y belonging to the smallestextension-stable sublass of ObjC ontaining ∪i<0D[i]. Hene this is alsotrue for all Y ∈ Tw≥1 (see the previous assertion). Hene (7) yields:
X ∈ Tw≤0. We obtain the �rst part of the assertion.The seond part of the assertion is dual to the �rst one (and easy from(8)).Remark 2.2.2. 1. In the notation of assertion 10, for any a (resp. b) suhthat the left (resp. right) hand square in (9) ommutes there exists some
b (resp. some a) that makes (9) a morphism of distinguished triangles(this is just axiom TR3 of triangulated ategories). Hene for l < m theleft (resp. right) hand side of (9) haraterizes a (resp. b) uniquely.2. Assertions 10 and 12 yield mighty tools for proving that a onstrutiondesribed in terms of weight deompositions is funtorial (in a ertainsense). In partiular, the proofs of funtoriality of weight �ltration andvirtual t-trunations for ohomology (we will onsider these notions be-low) in [6℄ were based on assertion 10.Now we explain what kind of funtoriality ould be obtained using asser-tion lo.it. Atually, suh an argument was already used in the proof ofassertion 12.In the notation of assertion 10 we will say that a and b are ompatiblewith g (with respet to the orresponding weight deompositions). Nowsuppose that for some X ′′ ∈ ObjC, some n ≤ l, g′ ∈ C(X ′, X ′′), and
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62 M. V. Bondarkoa distinguished triangle w≥n+1X
′′ → X ′ → w≤nX ′ we have morphisms

a′ : w≥l+1X
′ → w≥n+1X

′′ and b′ : w≤lX ′ → w≤nX ′′ ompatible with
g′. Then a′ ◦ a and b′ ◦ b are ompatible with g′ ◦ g (with respet tothe orresponding weight deompositions)! Moreover, if n < m then
(a′ ◦ a, b′ ◦ b) is exatly the (unique!) pair of morphisms ompatible with
g′ ◦ g.3. In the notation of assertion 12 we will (also) say that h : w[l+1,m]X →
w[l′+1,m′]X

′ is ompatible with g. Note that h is uniquely haraterizedby (i) (or (ii)) of lo.it.; hene in order to haraterize it uniquely itsu�es to �x g and all the rows in (10) and (11) (or in (12) and (13)).Besides, we obtain that h is funtorial in a ertain sense (f. the reasoningabove).4. Assertion 11 immediately implies: for any l < m the lass of all possible
w≤lX oinides with the lass of possible w≤l(w≤mX), whereas the lassof possible w≥mX oinides with those of w≥m(w≥lX).Besides, assertion 11 also allows to onstrut weight Postnikov towers (f.�1.5 of [6℄). Hene w[i,i]X is just X i[−i] (for any i ∈ Z, X ∈ ObjC), and aweight omplex for any w[l+1,m]X an be assumed to be the orrespondingstupid trunation of the weight omplex of X .5. Assertions 10 and 15 will be generalized in �2.7 below to the situationwhen there are two distint weight strutures; this will also larify theproofs of these statements. Besides, note that our remarks on funtorial-ity are also atual for this setting.Some of the proofs in �2.7 may also help to understand the onept ofvirtual t-trunations (that we will start to study just now) better.

2.3 Virtual t-truncations of (cohomological) functorsTill the end of the setion C will be endowed with a �xed weight struture
w; H : C → A (A is an abelian ategory) will be a ontravariant (usually,ohomologial) funtor. We will not onsider ovariant (homologial) funtorshere; yet ertainly, dualization is absolutely no problem.Now we reall the results of �2.5 of [6℄ and develop the theory further.
Theorem 2.3.1. Let H : C → A be a ontravariant funtor, k ∈ Z, j > 0.I The assignments H1 = Hkj

1 : X → Im(H(w≤kX) → H(w≤k+jX)) and
H2 = Hkj

2 : X → Im(H(w≥kX)→ H(w≥k+jX)) de�ne ontravariant funtors
C → A that do not depend (up to a anonial isomorphism) from the hoie ofweight deompositions. We have natural transformations H1 → H → H2.II Let k′ ∈ Z, j′ > 0. Then there exist the following natural isomorphisms.1. (Hkj

1 )k
′j′

1
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
1 .2. (Hkj

2 )k
′j′

2
∼= H

min(k,k′),max(k+j,k′+j′)−min(k,k′)
2 .
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Coniveau Spectral Sequences for Motives 633. (Hkj
1 )k

′j′

2
∼= (Hk′j′

2 )kj1
∼= Im(H(w[k,k′ ]X)→ H(w[k+j,k′+j′]X)). Here the lastterm is de�ned using the onnetion morphism w[k+j,k′+j′]X → w[k,k′ ]X thatis ompatible with idX in the sense of Remark 2.2.2(3); the last isomorphismis funtorial in the sense desribed in lo.it.III Let H be ohomologial, j = 1; let k be �xed.1. Hl (l = 1, 2) are also ohomologial; the transformations H1 → H → H2extend anonially to a long exat sequene of funtors

· · · → H2 ◦ [1]→ H1 → H → H2 → H1 ◦ [−1]→ . . . (15)(i.e. the sequene is exat when applied to any X ∈ ObjC).2. H1
∼= H whenever H vanishes on Cw≥k+1.3. H ∼= H2 whenever H vanishes on Cw≤k.4. Let H ′ f→ H

g→ H ′′ be a (three-term) omplex of funtors exat in the middlesuh that:(i) H ′, H ′′ are ohomologial.(ii) for any X ∈ ObjC we have Coker g(X) ∼= Ker f(X [−1]) (we do not �xthese isomorphisms).(iii) H ′ vanishes on Cw≥k+1; H ′′ vanishes on Cw≤k.Then H ′ f→ H is anonially isomorphi to H1 → H; H g→ H ′′ is anoniallyisomorphi to H → H2.Proof. I This is Proposition 2.5.1(III1) of [6℄.II Easily follows from Theorem 2.2.1, parts 11 and 12; see Remark 2.2.2.III1. This is Proposition 2.5.1(III2) of [6℄.2. If H vanishes on Cw≥k+1 then for any X we have w≥k+1X = 0; hene H2vanishes. Therefore in the long exat sequene · · · → H2(X [1])→ H1 → H →
H2(X)→ . . . given by assertion II1 we have H2(X [1]) ∼= 0 ∼= H2(X); we obtain
H1
∼= H .Conversely, suppose that H1

∼= H . Let X ∈ ObjCw≥k+1; we an assume that
w≤kX = 0. Then we have H(X) ∼= H1(X) = ImH(w≤kX)→ H(w≤k+1X)) =
0.3. It su�es to apply assertion II1 to the dual funtor Cop → Aop; note that theaxiomatis of abelian ategories, triangulated ategories, and weight struturesare self-dual (see Remark 1.1.3(1) and Theorem 2.2.1(1)).4. We should hek that in the diagram

H ′
1

g−−−−→ H1yh
y

H ′ −−−−→ H

g and h are isomorphisms. Then g◦h−1 will yield the �rst isomorphism desired,whereas dualization will yield the remaining half of the statement.Now, assertion III2 yields that g in isomorphism.
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64 M. V. BondarkoNext, for an X ∈ ObjC we hoose some weight deompositions for X [k] and
X [k + 1] and onsider the diagram
H′′((w≤kX)[1]) −−−−−→ H′(w≤kX)

l
−−−−−→ H(w≤kX) −−−−−→ H′′(w≤kX)

ya

yb

H′′((w≤k+1X)[1]) −−−−−→ H′(w≤k+1X)
m

−−−−−→ H(w≤k+1X) −−−−−→ H′′(w≤k+1X).By our assumptions, H ′′((w≤kX)[1]) ∼= H ′′(w≤kX) ∼= H ′′((w≤k+1X)[1]) ∼= 0;hene l is an isomorphism and m is a monomorphism. Hene the indued map
Im a → Im b is an isomorphism; so h is an isomorphism (sine its appliationto any X ∈ ObjC is an isomorphism).
Definition 2.3.2. [virtual t-trunations of H ℄Let k,m ∈ Z. For a (o)homologial H we will all Hk1

l , l = 1, 2, k ∈ Z, virtual
t-trunations of H . We will often denote them simply by Hl; in this ase wewill assume k = 0 unless k is spei�ed expliitly.We denote the following funtors C → A: Hk1

1 , Hk−1,1
2 , (Hm1

2 )k11 , and X 7→
(H01

1 )−11
2 (X [k]) by τ≤kH , τ≥kH , τ[m+1,k]H , and Hτ=k, respetively. Note thatall of these funtors are ohomologial if H is.Remark 2.3.3. 1. Note that H often lies in a ertain triangulated 'ategory offuntors' D (whose objets are ertain ohomologial funtors C → A). We willaxiomatize this below by introduing the notion of a duality Φ : Cop×D→ A: if

Φ is a duality then for any Y ∈ ObjD we have a ohomologial funtor Φ(−, Y ) :
C → A. It is also often the ase when the virtual t-trunations de�ned areompatible with atual t-trunations with respet to some t-struture t on D(see below). Still, it is very amusing that these t-trunated funtors as well astheir transformations orresponding to t-deompositions (see De�nition 1.1.1)an be desribed without speifying any D and Φ!2. Below we will need an expliit desription of the onneting morphisms in(15). We give it here (following the proof of Proposition 2.5.1 of [6℄).The transformation H1 → H (resp. H → H2) for any k, j an be alulated byapplying H to any possible hoie either of X → w≤kX or of X → w≤k+jX(resp. of w≥kX → X or of w≥k+jX → X) that omes from any possible hoiethe orresponding weight deomposition. The transformation H2 → H1 ◦ [−1]for j = 1 is given by applying H to any possible hoie either of the morphism
w≤k+1X → w≥k+2X [1] or of the morphism w≤kX → w≥k+1X [1] that omesfrom any possible hoie of a weight deomposition of X [k].Here we use the following trivial observation: for A-morphisms X1

f1→ Y1 and
X2

f2→ Y2 any g : X1 → X2 (resp. h : Y1 → Y2) is ompatible with at most onemorphism i : Im f1 → Im f2; if suh an i exists, we will say that it is induedby g (resp. by h). Certainly, here f1 ould be equal to idX1 or f2 ould beequal to idX2 .
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Coniveau Spectral Sequences for Motives 653. For any k, j, and any C-morphism g : X → Y the morphism H1(X) →
H1(Y ) (resp. H2(X) → H2(Y )) is indued by any hoie of either of themorphism w≤kX → w≤kY or of w≤k+jX → w≤k+jY (resp. of the morphism
w≥kX → w≥kY or of w≥k+jX → w≥k+jY ) that is ompatible with g withrespet to the orresponding weight deomposition (in the sense of Remark2.2.2(2)); see the proof of Proposition 2.5.1 of [6℄.We would like to extend assertion III4 of Theorem 2.3.1 to a statement on a(anonial) isomorphism of long exat sequenes of funtors. To this end weneed the following de�nition.
Definition 2.3.4. 1. We will all a sequene of funtors C = · · · → H ′′ ◦
[1]

[1](h)→ H ′ f→ H
g→ H ′′ h→ H ′ ◦ [−1]→ . . . of ontravariant funtors C → Ab astrongly exat omplex if H ′, H,H ′′ are ohomologial and C(X) is a long exatsequene for any X ∈ ObjC; here [1](h) is the transformation indued by h.2. We will also say that a strongly exat omplex C is nie in H if the followingondition is ful�lled:For any distinguished triangle T = A

l→ B
m→ C

n→ A[1] in C the naturalmorphism p:
Ker((H ′(A)

⊕
H(B)

⊕
H ′′(C))




f(A) −H(l) 0
0 g(B) −H ′′(m)

−H ′([−1](n)) 0 h(C)




−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(H(A)
⊕

H ′′(B)
⊕

H ′(C[−1])))
p→ Ker((H ′(A)

⊕
H(B))

f(A)⊕−H(l)−−−−−−−−→ H(A)) is epimorphi. (16)Now we desribe the onnetion of (16) with trunated realizations; our argu-ments will also somewhat larify the meaning of this ondition.
Theorem 2.3.5. 1. Let C be a strongly exat omplex of funtors that is niein H; let H ′ f→ H

g→ H ′′ (a 'piee' of C) satisfy the onditions of assertionIII4 of Theorem 2.3.1. Then C is anonially isomorphi to (15).2. Let X → Y → Z be a distinguished triangle in C. Then C = · · · →
C(−, X)→ C(−, Y )→ C(−, Z)→ . . . is a strongly exat omplex of funtors
C → Ab; it is nie in C(−, Y ).3. Let there exist a (skeletally) small full triangulated C′ ⊂ C suh that the re-strition of a strongly exat omplex C to C ′ is nie in H. For D ∈ ObjCwe onsider the projetive system L(D) whose elements are (E, i) : E ∈
ObjC ′, i ∈ C(D,E); we set (E, i) ≥ (E′, i′) if (E, i) = (E′⊕E′′, i′ ⊕ i′′)for some (E′′, i′′) ∈ L(D).Suppose that for any D ∈ C and for G = H ′ and G = H we have

lim−→L(D)
(ImG(i) : G(E)→ G(D)) = G(D); (17)
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66 M. V. Bondarkohere we also assume that these limits exist. Then C is nie on C also.4. Let C′ ⊂ C be a (skeletally) small triangulated subategory, let A satisfyAB5. Let C′ = · · · → H ′ → H → H ′′ → . . . be a strongly exat omplexof funtors C′ → A. We extend all its terms from C′ to C by the methodof Proposition 1.2.1 and denote the omplex obtained by C; we arry on thenotation for the terms and arrows from C′ to C. Then C is a strongly exatomplex also (and its terms are ohomologial funtors).It is nie in H whenever C′ is.Proof. 1. It su�es to hek that the isomorphism provided by Theorem2.3.1(III4) is ompatible with the oboundaries if (16) is ful�lled. We anassume A = Ab; see Remark 1.1.8. Then (16) transfers into: for any
(x, y) : x ∈ H ′(A), y ∈ H(B), f(A)(x) = H(l)(y) there exists a
z ∈ H ′′(C) suh that g(B)(y) = H ′′(z) and H([−1](n))(x) = h(C)(z). (18)We should prove: if the images of x ∈ H2(X) and of y ∈ H ′′(X) in H ′′

2 (X) o-inide, w ∈ H1(X [−1]) and t = H(X)(y) ∈ H ′(X [−1]) are their oboundaries,then w and t ome from some (single) u ∈ H ′
1(X [−1]).We lift x to some x′ ∈ H(w≥k+1X). Then (16) (if we substitute w≥k+1 for Aand X for B in it) implies the existene of some v ∈ H ′((w≤kX)[−1]) whoseimage in H ′(X [−1]) (resp. in H(w≤kX [−1])) oinides with t (resp. with theoboundary of x′). Hene we an take u being the image of v (in H ′

1(X [−1])).2. Sine the bi-funtor C(−,−) is (o)homologial with respet to both argu-ments, C is a strongly exat omplex indeed. It remains to note: (16) in thisase just means that any ommutative square an be ompleted to a morphismof distinguished triangles; so it follows from the orresponding axiom (TR3) oftriangulated ategories.3. First suppose that A = Ab (or any other abelian ategory equipped withan exat faithful funtor A → Ab that respets small diret limits; note thatbelow we will only need A = Ab). Then we should hek (18).Now note: it su�es to prove that there exist A′, B′ ∈ ObjC ′, l′ ∈ C(A′, B′),
α ∈ C(A,A′), β ∈ C(B,B′), x′ ∈ H ′(A′), g′ ∈ H(B′) suh that:

x = H ′(α)(x′), y = H(β)(y′), l′ ◦ α = β ◦ l, f(A′)(x′) = H(l′)(y′). (19)Indeed, denote C′ = Cone(l′); denote by γ some element of C(C,C′) thatompletes
A −−−−→ B
y

y

A′ −−−−→ B′to a morphism of triangles. Let z′ ∈ H ′′(C′) be some element satisfying theobvious analogue of (18). Then h = H ′′(γ)(h′) is easily seen to satisfy (18).Now we onstrut A′, B′, . . . as desired. Note that in this ase the assumption(17) is equivalent to: for any t ∈ G(D) there exist E ∈ ObjC′, s ∈ G(D), and
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Coniveau Spectral Sequences for Motives 67
r ∈ C(D,E), suh that t = G(r)(s) (sine C′ is additive). So, we an hoose
A′ ∈ ObjC ′, α ∈ C(A,A′), x′ ∈ H ′(A′) suh that x = H ′(α)(x′). We omplete
q = α ⊕ l ∈ C(A,A′⊕B) to a distinguished triangle A → A′⊕B

p=p1⊕p2→
D. Sine H(q)((−H ′(f(A′)(x′), y)) = 0, there exists an s ∈ H(D) suh that
H(p)(s) = (−H ′(f(A′)(x′), y) (reall that H is ohomologial on C). So, wehave H(p2)(s) = y, −H(p1)(s) = f(A′)(X ′), p2 ◦ l = −p1 ◦ α.
D �ts for B′ if it lies in ObjC′. In the general ase using (17) again, we hoose
B′ ∈ ObjC ′, δ ∈ C(D,B′), g′ ∈ H(Y ), suh that s = H(δ)(g′). Then it iseasily seen that taking l′ = −δ ◦ p1, β = δ ◦ p2, we omplete the hoie of a setof data satisfying (19).This argument an be modi�ed to work for a general A. To this end we separatethose parts of the reasoning where we used the fat that H is ohomologialfrom those where we deal with limits; this allows us to 'work as if A = Ab'.We denote Ker(H ′(A)

⊕
H(B))→H(A)) (with respet to the morphism in (16)by S(A,B), and Ker(H ′(A)

⊕

H(B)
⊕

H ′′(C))→H(A)
⊕

H ′′(B)
⊕

H ′(C[−1]) by
T (A,B,C).Then we have a ommutative diagram
lim−→(Im(T (A′, B′, C′)→ T (A,B,C)))

t′−−−−→ lim−→(Im(S(A′, B′)→ S(A,B)))
y

yi

T (A,B,C)
t−−−−→ S(A,B)here the �rst diret limit above is taken with respet to morphisms of triangles

(A → B → C) → (A′ → B′ → C′) for A′, B′, C′ ∈ ObjC′ (the ordering issimilar to those of (17)); the seond limit is taken similarly with respet tomorphisms (A→ B)→ (A′ → B′) for A′, B′ ∈ ObjC ′. Sine the restrition of
C to C′ is nie in H , for all A′, B′, C′ the morphism T (A′, B′, C′)→ S(A′, B′)is epimorphi; hene t′ is epimorphi. Therefore, it su�es to prove that i isepimorphi.Now let us �x A′ = A0 and α = α0. We use the notation introdued above;denote the preimage of Im(H ′(α) : H ′(A′) → H ′(A)) with respet to thenatural morphism S(A,B)→ H ′(A) by J . Then J equals Im(H ′(A′)×H(D)→
S(A,B)). Indeed, here we an apply Proposition 1.1.7 (see Remark 1.1.8) andthen apply the reasoning 'with elements' used above.In any A we obtain: sine Φ(D,Y ) = lim−→(Im(Φ(B′, Y )→ Φ(D,Y ))), we obtainthat G = lim−→(Im(S(A0, B

′, X, Y )→ S(A,B,X, Y ))). Here we use the followingfat (valid in any abelian A): if Ji ⊂ J ′ ∈ ObjA, lim−→Ji = J (for some projetivesystem), u : J ′ → J is an A-epimorphism, then lim−→u(Ji) = J .Now, passing to the limit with respet to (A0, α0) (using (17)) �nishes theproof.4. C is a omplex indeed sine the extension proedure is funtorial.By Proposition 1.2.1(I1), all the terms of C are ohomologial on C. Also, partII2 of lo.it. immediately implies that C is exat (i.e. C(X) is exat for any
X ∈ ObjC). Hene C is a strongly exat omplex.
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68 M. V. BondarkoObviously, if C is nie in H then C′ also is.Conversely, let C′ be nie in H . Then Proposition 1.2.1(II1) implies that H ′and H satisfy (17) (for all D). Hene C is nie in H by assertion 3.
2.4 Weight spectral sequences and filtrations; relation with vir-

tual t-truncations

Definition 2.4.1. For an arbitrary (C,w) let H : C → A be a ohomologialfuntor (A is any abelian ategory).We de�ne W i(H) : C → A as X → Im(H(w≤iX)→ H(X)).By Proposition 2.1.2(2) of [6℄, W i(H)(X) does not depend on the the hoieof the weight deomposition of X [i]; it also de�nes a (anonial) subfuntor of
H(X).Now reall that Postnikov towers yield spetral sequenes for ohomology. Wewill denote H(X [−i]) by Hi(X) (for X ∈ ObjC). We will also use the notationof De�nition 2.3.2.
Theorem 2.4.2. Let k,m ∈ Z.I1. For any weight Postnikov tower for X (see De�nition 2.1.2(9)) there existsa spetral sequene T = T (H,X) with Epq1 (T ) = Hq(X−p) suh that the map
Epq1 → Ep+1q

1 is indued by the morphism X−p−1 → X−p (oming from thetower). We have T (H,X) =⇒ Hp+q(X) for any X ∈ Cb.One an onstrut it using the following exat ouple: Epq1 = Hq(X−p), Dpq
1 =

Hq(Xw≥1−p).2. T is (ovariantly) funtorial in H; it is ontravariantly C-funtorial in Xstarting from E2.3. Denote the step of �ltration given by (El,m−l
1 : l ≥ −k) on Hm(X) by

F−kHm(X). Then F−kHm(X) = (W kHm)(X).II The derived exat ouple for T (H,X) an be naturally alulated in terms ofvirtual t-trunations of H in the following way: Epq2 ∼= E′pq
2 = (Hq)τ=−p(X),

Dpq
2 = D′pq

2 = (τ≥qH)(X [1 − p]); the onneting morphisms of the ouple
((E′

2, D
′
2)) ome from (15).III1. F−kHm(X) = Im((τ≤kHm)(X)→ Hm(X)) (with respet to the onnet-ing morphism mentioned in Theorem 2.3.1(I)).2. For any r ≥ 2, p, q ∈ Z there exists a funtorial isomorphism Epqr

∼=
(F p(τ[−p+2−r,−p+r−2]H)q)p/F p+1(τ[−p+2−r,−p+r−2]H)q)p.Proof. I This is Theorem 2.4.2 of [6℄; see also Remark 2.4.1 of ibid. for thedisussion of exat ouples.In fat, assertion 1 follows easily from well known properties of Postnikov towersand of related spetral sequenes.II Sine virtual t-trunations are funtorial, the exat ouple (D′

2, E
′
2) is fun-torial also.
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Coniveau Spectral Sequences for Motives 69The de�nitions of the derived exat ouple and of the virtual t-trunationsimply immediately that Dpq
2 and their onneting maps are exatly D′pq

2 (andtheir onneting morphisms) spei�ed in the assertion.It remains to ompare E2 with E′
2, and also the onneting maps of exatouples starting and ending in E2 with those for E′

2. It su�es to onsider
p = q = 0. Our strategy is the following one. First we onstrut an isomorphism
E00

2 → E′00
2 ; our onstrution depends on some hoies. Then we prove that theisomorphism onstruted is atually natural (in partiular, it does not dependon the hoies made). Lastly we verify that the isomorphisms of the terms ofthe exat ouples onstruted is ompatible with the onneting morphisms ofthese ouples. Note that in this (last) part of the argument we an make thosehoies (of ertain weight deompositions) that we like.By the de�nition of the derived exat ouple we have: E00

2 is the 0-th ohomol-ogy of the omplex (H(X−j)) (for any hoie of the weight omplex (X i)). E′00
2is the image of H(k) where k ∈ C(w[0,1]X,w[−1,0]X) is any morphism that isompatible with idX with respet to the orresponding weight deompositions(see see Theorem 2.3.1(II3) and Remark 2.2.2(3)). So, we should ompare asubfator of H(X0) with a subobjet of H(w[0,1]X).Now suppose that we are given an otahedral diagram ontaining a ommu-tative triangle w[1,1]X → w[0,1]X → w[−1,1]X (see Theorem 2.2.1(11)). Weould obtain it as follows: �x some w[−1,1]X ; then hoose ertain w[0,1]X =

w≥0(w[−1,1]X) and w[1,1]X = w≥1(w[−1,1]X) (see Remark 2.2.2(4)). For anypossible ompletion of the ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]Xto an otahedral diagram, the remaining verties of the otahedron are ertain
w[−1,0]X , w[0,0]X = X0, and w[−1,−1]X = X−1[1] (by Theorem 2.2.1(11)). Weobtain morphisms w[0,1]X

i→ X0 j→ w[−1,0]X suh that k = j ◦ i. Moreover,
Im(H(X1) → H(X0)) = KerH(i). Hene H(i) indues some monomorphism
α : H(X0)/ Im(H(X1) → H(X0)) to H(w[0,1]X). Besides, Ker(H(X0) →
H(X−1)) = ImH(j); therefore the restrition of α to α−1(ImH(k)) yields anisomorphism β : E00

2 → E′00
2 .Now we verify that the isomorphism onstruted is natural.Note that it atually depends only on w[0,1]X

i→ X0 and ImH(k) (we usedthe remaining data only in order to verify that we atually obtain an iso-morphism). So, suppose that we have X ′ ∈ ObjC, g ∈ C(X,X ′), and somehoie of w≥0X
′, w≥1X

′, and w≥2X
′. We have anonial onneting mor-phisms w≥0X

′ → w≥1X
′ → w≥2X

′ that are ompatible with idX′ with respetto the morphisms w≥lX ′ → X ′ (l = 0, 1, 2). Applying Theorem 2.2.1(11), weobtain a hoie of w[0,1]X
′ i′→ X ′0. We also �x some hoie of H(k′) (in orderto do this we �x some hoie of w≤−1X and of w[−1,0]X). Note that all ofthese hoies are neessarily ompatible with some hoie of the isomorphism

β′ : E00
2 (X ′)→ E′00

2 (X ′) onstruted as above (see 2.2.2(2)).Now we hoose some morphisms gl : w≥lX → w≥lX ′, for −1 ≤ l ≤ 2, ompat-ible with g (see Remark 2.2.2(2)). These hoies ould be extended to somemorphisms a : w[0,1]X → w[0,1]X
′ and b : X0→X ′0 (by extending morphisms
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70 M. V. Bondarkoof arrows to morphism of distinguished triangles).Now we verify the ommutativity of the diagram
w[0,1]X

i−−−−→ X0

ya
yb

w[0,1]X
′ i′−−−−→ X ′0It follows from Theorem 2.2.1(10) applied to the morphism g0 : w≥0X →

w≥0X
′, l = 1, m = 2 (sine both b ◦ i and i′ ◦ a are ompatible with g0).Moreover, Remark 2.2.2(3) yields that H(a) sends H(k) to H(k′). We obtaina ommutative diagram

E00
2

β−−−−→ E′00
2y
y

E00
2 (H,X ′)

β′

−−−−→ E′00
2 (H,X ′)Sine E00

2 (H,−) and E′00
2 (H,−) are Cop-funtorial (and the vertial arrows inthe diagram are exatly those that yield this funtoriality; see Remark 2.3.3(3)),we obtain the naturality in question.Now it remains to prove that the isomorphisms of terms of exat ouples on-struted above is ompatible with the (two remaining) onneting morphismsof these ouples.First onsider the morphisms E00

2 → D10
2 . Reall (by the de�nition of thederived exat ouple) that it is indued by any morphism w≥0X → X0that extends to a weight deomposition of w≥0X (here we onsider E00

2 asa subfator of H(X0)). On the other hand, the morphism E′00
2 → D′10

2 =
Im(H(w≥−1X)→ H(w≥0X)) is indued by any possible hoie of a morphism
w≥0X → w[0,1]X that yields a weight deomposition of w≥0X [1] (by Remark2.3.3(2); see also Remark 2.2.2(3)). Hene it su�es to note that the triangle
w≥0X → w[0,1]X

i→ X0 is neessarily ommutative by Remark 2.2.2.It remains onsider the morphism D1,−1
2 → E00

2 . It is indued by the morphism
X0 → w≥1X (that yields a weight deomposition of w≥0X). The morphism
D′1,−1

2 (= Im(H(w≥1X)[1]) → H(w≥2X)[1])) → E′00
2 is indued by the mor-phism w[0,1]X → w≥2X [1]. Hene it su�es to onstrut a ommutative square

w[0,1]X
i−−−−→ X0

y
y

w≥2X [1] −−−−→ w≥1X [1]By applying Theorem 2.2.1(11) to the ommutative triangle w≥2X → w≥1X →
w≥0X we obtain that there exists suh a ommutative square with a ertain i0

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



Coniveau Spectral Sequences for Motives 71instead of i. Note that (by lo.it.) i0 yields a weight deomposition of w[0,1]X .It su�es to verify that we may take i0 for i i.e. that i0 ould be ompleted toan otahedral diagram one of whose faes yields some hoie of the ommutativetriangle w[1,1]X → w[0,1]X → w[−1,1]X . We take w[1,1]X = Cone i0[−1], hoosesome w[−1,1]X (oming from the same w≤1X as w[0,1]X). By Remark 2.2.2(2)we obtain a unique ommutative triangle w[1,1]X → w[0,1]X → w[−1,1]X thatis ompatible with idw≤1X respet to the orresponding weight deompositions.It remains to apply Theorem 2.2.1(11).III We an assume k = m = 0.1. In the notation of Theorem 2.3.1 we onsider the morphism of spetralsequenes M : T (H1, X)→ T (H,X) (indued by H1 → H). Part II of lo.it.implies: M is an isomorphism on Epq2 for p ≥ −k and Epq2 (T (H1, X)) = 0otherwise. The assertion follows immediately.2. Similarly to the the previous reasoning, we have natural isomorphisms:
Epq2 (T (τ[2−r,r−2]H,X) ∼= Epq2 (T (H,X)) for 2−r ≤ p ≤ r−2 and = 0 otherwise.It easily follows that Epq∞ (T (τ[2−r,r−2]H,X) ∼= Epqr (T (τ[−p+2−r,−p+r−2]H,X).The result follows immediately.Remark 2.4.3. 1. The dual of assertion II is: if we onsider the alternativeexat ouple for our weight spetral sequene (see Remark 2.1.3) then thederived exat ouple an also be desribed in terms of virtual t-trunations (ina way that is dual in an appropriate sense to that of Theorem 2.4.2).2. Possibly, at least a part of (assertion II of) the theorem ould be proved bystudying the funtoriality of the derived exat ouple (and applying Theorem2.3.5(1)).
2.5 Dualities of triangulated categories; orthogonal weight and

t-structuresLet C,D be triangulated ategories. We study ertain pairings of triangulatedategories Cop ×D → A. In the following de�nition we onsider a general A,yet below we will mainly need A = Ab.
Definition 2.5.1. 1. We will all a (ovariant) bi-funtor Φ : Cop ×D → A aduality if it is bi-additive, homologial with respet to both arguments; and isequipped with a (bi)natural transformation Φ(X,Y ) ∼= Φ(X [1], Y [1]).2. We will say that Φ is nie if for any distinguished triangle X → Y → Z theorresponding (strongly exat) omplex of funtors

· · · → Φ(−, X)→ Φ(−, Y )→ Φ(−, Z)
f→ Φ([−1](−), X)→ . . . (20)is nie in Φ(−, Y ) (see De�nition 2.3.4); here f is obtained from the natu-ral morphism Φ(−, Z)→Φ(−, X [1]) by applying the (bi)natural transformationmentioned above.
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72 M. V. Bondarko3. Suppose that C is endowed with a weight struture w, D is endowed with a
t-struture t. Then we will say that w is (left) orthogonal to t with respet to
Φ if the following orthogonality ondition is ful�lled:

Φ(X,Y ) = 0 if: X ∈ Cw≤0 and Y ∈ Dt≥1, or X ∈ Cw≥0 and Y ∈ Dt≤−1.(21)4. If w is de�ned on Cop, t is de�ned on Dop, w is left orthogonal to t (withrespet to some duality); then we will say that the orresponding oppositeweight struture on C is right orthogonal to the opposite t-struture for D.Remark 2.5.2. 1. The axioms of Φ immediately imply that (20) is a stronglyexat omplex of funtors indeed (whether Φ is nie or not).2. Certainly, if Φ is nie then (20) is nie at any term (sine we an 'rotate'distinguished triangles in D).First we prove a statement that will simplify heking the orthogonality ofweight and t-strutures.
Proposition 2.5.3. Let Φ : Cop × D → A be some duality; let (C,w) bebounded. Then w is (left) orthogonal to t whenever there exists a D ⊂ Cw=0suh that any objet of Cw=0 is a retrat of a �nite diret sum of elements of
D and

Φ(X,Y ) = 0 ∀ X ∈ D, Y ∈ Dt≥1 ∪Dt≤−1. (22)Proof. If w is is left orthogonal to t, then (22) for D = Cw=0 follows immedi-ately from the orthogonality ondition.Conversely, let D satisfy the assumptions of our assertion. Hene we have:
Φ(X,Y ) = 0 if X ∈ D[i], i ≥ 0, Y ∈ Dt≥1, or if X ∈ D[i], i ≤ 0, Y ∈ Dt≤−1.Now suppose that for some E,F ⊂ ObjC we have: any objet of Cw≤0 is aretrat of an objet of E, any objet of Cw≥0 is a retrat of an objet of F .Then it obviously su�es to hek that Φ(X,Y ) = 0 if either X ∈ E and
Y ∈ Dt≥1 or X ∈ F and Y ∈ Dt≤−1.Now by Theorem 2.2.1(19), we an take E being the smallest extension-stablesubategory of C ontaining D[i], i ≥ 0; and F being the smallest extension-stable subategory of C ontainingD[i], i ≤ 0. To onlude the proof it remainsto note that for a distinguished triangle X → Y → Z in C, O ∈ ObjD we have:
Φ(X,O) = 0 = Φ(Z,O) =⇒ Φ(Y,O) = 0.When (weight and t-) strutures are orthogonal, virtual t-trunations of
Φ(−, Y ) are given by t-trunations in D. We use the notation of De�nition2.3.2.
Proposition 2.5.4. 1. Let t be orthogonal to w with respet to Φ, k ∈ Z.For Y ∈ ObjD denote the funtor Φ(−, Y ) : C → A by H. Then we havean isomorphism of omplexes (τ≤kH → H → τ≥kH) ∼= (Φ(−, t≤kY ) → H →
Φ(−, t≥k+1Y )) (where the onneting maps of the seond omplex are induedby t-trunations); this isomorphism is natural in Y .
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Coniveau Spectral Sequences for Motives 732. Suppose also that Φ is nie. Then the (strongly exat) omplex of funtorsthat sends X to
· · · → Φ(X, t≤kY )→ Φ(X,Y )→ Φ(X, t≥k+1Y )→ Φ(X [−1], t≤kY )→ . . .(23)(onstruted as in the de�nition of a nie duality) is naturally isomorphi to(15).Proof. 1. Sine t and w orthogonal, Φ(−, t≤kY ) vanishes on Cw≥k+1, whereas

Φ(−, t≥k+1Y ) vanishes on Cw≤k. Moreover, (23) yields that H ′ = Φ(−, t≤kY )and H ′′ = Φ(−, t≥k+1Y ) also satisfy the ondition (iii) of Theorem 2.3.1(III4).Hene the theorem yields the laim.2. Immediate from the previous assertion and Theorem 2.3.5(1).Remark 2.5.5. Note that we atually need quite a partial ase of the 'nienessondition' for Φ in order to prove assertion 2. Hene here (and so, in all theappliations below) we will not need the nieness ondition in its full generality.Possibly, the orresponding partial ase of the ondition is weaker than thewhole assertion; yet heking it does not seem to be muh easier.Also, it seems quite possible that for an arbitrary (not neessarily nie) dualitythere exists some isomorphism of (15) with (23) if we modify the boundarymaps of the seond omplex. Yet there seems to be no way to hoose suh amodi�ation anonially.'Natural' dualities are nie; we will justify this thesis now.
Proposition 2.5.6. 1. If A = Ab, D = C, then Φ : (X,Y ) 7→ C(X,Y ) is anie duality.2. For some duality Φ : Cop × D → A let there exist a (skeletally) small fulltriangulated C′ ⊂ C suh that: the restrition of Φ to C ′op×D is a nie duality(of C′ with D); for any X ∈ ObjD the funtor G = Φ(−, X), Cop → A,satis�es (17). Then Φ is nie also.3. For D, C′ ⊂ C as above, A satisfying AB5, let Φ′ : C′op × D → A be aduality. For any Y ∈ ObjD we extend the funtor Φ′(−, Y ) from C′ to C bythe method of Proposition 1.2.1; we denote the funtor obtained by Φ(−, Y ).Then the orresponding bi-funtor Φ is a duality (Cop × D → A). It is niewhenever Φ′ is.Proof. Immediate from parts 2�4 of Theorem 2.3.5.Remark 2.5.7. 1. Proposition 2.5.6(1) yields an important family of nie dual-ities; this ase was thoroughly studied in [6℄ (in setions 4 and 7). We will saythat w is left (resp. right) adjaent to t if it is left (resp. right) orthogonal to itwith respet to Φ(X,Y ) = C(X,Y ). Note that for w left (resp. right) adjaentto t with respet to this de�nition we neessarily have Cw≤0 = Ct≤0 (resp.
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74 M. V. Bondarko

Cw≥0 = Ct≥0) by Theorem 2.2.1(2) and Remark 1.1.3(2); so this de�nition isatually ompatible with De�nition 4.4.1 of [6℄.One an generalize this family as in �8.3 of ibid.: for A = Ab and an exat
F : D → C we de�ne Φ(X,Y ) = C(X,F (Y )). Certainly, one ould alsodualize this onstrution (in a ertain sense) and onsider F : C → D and
Φ(X,Y ) = C(F (X), Y ).2. Another (general) family of dualities is mentioned in Remark 6.4.1(2) ofibid. All the families of dualities mentioned an be expanded using part 3 ofthe proposition.3. It is also easy to onstrut a duality that is not nie. To this end one anstart with C = D, Φ = C(−,−) and then modify the hoie of distinguishedtriangles in D (without hanging the shift in D, and hanging nothing in C)in a way that would not a�et the properties of funtors to be ohomologial.The simplest way to do this is to prolaim a triangle X f→ Y

g→ Z
h→ X [1] tobe distinguished in D if X −f→ Y

−g→ Z
−h→ X [1] is distinguished in C. Certainly,suh a modi�ation is not very 'serious'; in partiular, one an '�x the problem'by multiplying the isomorphism Φ(X,Y ) ∼= Φ(X [1], Y [1]) by −1.The author does not know whether any duality an be made nie by modifyingthe hoie of the lass of distinguished triangles (in D), or by modifying the iso-morphism mentioned. Note also that the question whether there exists a D forwhih suh a modi�ation an hange the 'equivalene lass' of triangulationsis well-known to be open.

2.6 Comparison of weight spectral sequences with those coming
from (orthogonal) t-truncationsNow we desribe the relation of weight spetral sequenes with orthogonalstrutures.

Theorem 2.6.1. Let w for C and t for D be orthogonal with respet to a duality
Φ; let i, j ∈ Z, X ∈ ObjC, Y ∈ ObjD.1. Consider the spetral sequene S oming from the following exat ouple:

Dpq
2 (S) = Φ(X,Y t≥q[p − 1]), Epq2 (S) = Φ(X,Y t=q[p]) (we start S from

E2). It naturally onverges to Φ(X,Y [p+ q]) if X ∈ Cb.2. Let T be the weight spetral sequene given by Theorem 2.4.2 for thefuntor H : Z 7→ Φ(Z, Y ). Then for all r ≥ 2 we have natu-ral isomorphisms Epqr (T (H,X)) ∼= Epqr (S). There is also an equality
F−kHm(X) = Im(Φ(X, t≤kY [m]) → Hm(X)) (here we use the notationof part I4 of lo.it.) ompatible with this isomorphism.3. Suppose that Φ is also nie. Then the isomorphism mentioned in theprevious assertion extends naturally to the isomorphism of of T with S(starting from E2).
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Coniveau Spectral Sequences for Motives 754. Let · · · → X−j−1 → X−j → X1−j → . . . denote an arbitrary hoie ofthe weight omplex for X. Then we have a funtorial isomorphism
Φ(X,Y t=i[j]) ∼=

(Ker(Φ(X−j , Y [i]) → Φ(X−1−j , Y [i]))/ Im(Φ(X1−j , Y [i]) → Φ(X−j , Y [i])).(24)Proof. 1. The theory of t-strutures easily yields: Y t≥q and Y t=q an befuntorially organized into a ertain Postnikov tower for Y . Hene theusual results on spetral sequenes oming from Postnikov towers (see�IV2, Exerise 2, of [13℄) yield the assertion easily.2. Immediate from Proposition 2.5.4(1) and Theorem 2.4.2(III). Note thatthe latter assertion does not use the 'dimension shift' in (15).3. Proposition 2.5.4(2) and Theorem 2.4.2(II) imply: there is a natural iso-morphism of the derived exat ouple for T with the exat ouple of S('at level 2'). The result follows immediately.4. This is just assertion 2 for E2-terms.Remark 2.6.2. 1. So, we justi�ed parts 4 and 5 of Remark 4.4.3 of [6℄.2. Note that the spetral sequene denoted by S in (Remark 4.4.3(4) and�6.4 of) ibid. started from E1; so it di�ered from our S and T by a ertainshift of indies.3. So, we developed an 'abstrat triangulated alternative' to the method ofomparing similar spetral sequenes that was developed by Deligne andParanjape. The latter method used �ltered omplexes; it was applied in[22℄, [11℄, and in �6.4 of [6℄. The disadvantage of this approah is that oneneeds extra information in order to onstrut the orresponding �lteredomplexes; this makes di�ult to study the naturality of the isomorphismonstruted. Moreover, in some ases the omplexes required annotexist at all; this is the ase for the spherial weight struture and itsadjaent Postnikov t-struture for C = D = SH (the topologial stablehomotopy ategory; see �4.6 of [6℄; yet in this ase one an ompare theorresponding spetral sequenes using topology).4. One ould modify our reasoning to prove a version of the theorem thatdoes not mention weight and t-strutures. To this end instead of onsid-ering a weight Postnikov tower for X and the Postnikov tower omingfrom t-trunations of Y one should just ompare spetral sequenes om-ing from some Postnikov towers for X and Y in the ase when thesePostnikov towers satisfy those 'orthogonality' onditions (with respet toa (nie) duality Φ) that are implied by the orthogonality of strutures
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76 M. V. Bondarkoondition in our situation. Yet it seems di�ult to obtain the naturalityof the isomorphisms in Theorem 2.6.1(3) using this approah.5. Even more generally, it su�es to have an indutive system of Postnikovtowers inD and a projetive system of Postnikov towers in C suh that theorthogonality onditions required are satis�ed in the (double) limit. Thenthe omparison statements for the double limits of the orrespondingspetral sequenes are valid also. A very partial (yet rather important)example of a reasoning of this sort is desribed in �7.4 of [6℄. Besides, thisapproah ould possibly yield the omparison result of �6 of [11℄ (evenwithout assuming k to be ountable as we do here).6. A simple (yet important) ase of (24) is: for any i ∈ Z

X ∈ Cw=i =⇒ ∀Y ∈ ObjD we have Φ(X,Y ) ∼= Φ(X,Y t=i). (25)
2.7 ’Change of weight structures’; comparing weight spectral

sequencesNow we ompare weight deompositions, virtual t-trunations, and weight spe-tral sequenes orresponding to distint weight strutures. In order make ourresults more general (and to apply them below) we will assume that these stru-tures are de�ned on distint triangulated ategories; yet the ase when bothare de�ned on C is also interesting.So, till the end of the setion we will assume: C,D are triangulated ategoriesendowed with weight strutures w and v, respetively; F : C → D is an exatfuntor.
Definition 2.7.1. 1. We will say that F is right weight-exat if F (Cw≥0) ⊂
Dv≥0.2. If F is fully faithful and right weight-exat, we will say that v dominates w.3. We will say that F is left weight-exat if F (Cw≤0) ⊂ Dv≤0.4. F will be alled weight-exat if it is both right and left weight-exat.We will say that w indues v (via F ) if F is a weight-exat loalization funtor.
Proposition 2.7.2. Let F be a right weight-exat funtor; let l ≥ m ∈ Z,
X ∈ ObjD, X ′ ∈ ObjC, g ∈ D(F (X ′), X).1. Let weight deompositions of X [m] with respet to v and X ′[l] with respetto w be �xed. Then g an be ompleted to a morphism of distinguished triangles

F (w≥l+1X
′) −−−−→ F (X ′) −−−−→ F (w≤lX ′)

ya
yg

yb

v≥m+1X −−−−→ X −−−−→ v≤mX

(26)This ompletion is unique if l > m.
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Coniveau Spectral Sequences for Motives 772. For arbitrary weight Postnikov towers Pov(X) for X (with respet to v)and PowX
′ for X ′ (with respet to w), g an be extended to a morphism

F∗(PowX
′)→ Pov(X).3. Let H : D → A be any funtor, k ∈ Z, j > 0. Denote H ◦ F by G. Then(26) allows to extend H(g) naturally to a diagram

Hv
1 (X) −−−−→ H(X) −−−−→ Hv

2 (X)
y

yH(g)

y

Gw1 (X ′) −−−−→ G(X ′) −−−−→ Gw2 (X ′)here we add the weight struture hosen as an index to the notation of Theorem2.3.1(I).Proof. 1. Sine F is right weight-exat, D(F (w≥n+1X
′), v≤mX) = {0} for any

n ≥ m. Hene the omposition morphism F (w≥l+1X
′) → v≤mX is zero; if

l > m then D(F (w≥l+1X
′), (v≤mX)[−1]) = {0}. The result follows easily; seeProposition 1.1.9 of [2℄.2. Assertion 1 (in the ase l = m) yields that there exists a system of morphisms

fi ∈ D(F (w≥iX ′), v≥iX) ompatible with g; we �x suh a system. Applyingthe same assertion for any pair of l,m : l > m, we obtain that fl is ompatiblewith fm (here we use arguments similar to those desribed in Remark 2.2.2).Finally, sine any ommutative square an be extended to a morphism of theorresponding distinguished triangles (an axiom of triangulated ategories), weobtain that we an omplete (uniquely up to a non-anonial isomorphism)the data hosen to a morphism of Postnikov towers (i.e. hoose a ompatiblesystem of morphisms F (X ′i)→ X i).3. Easy from assertion 1; note that for any ommutative square in A
X

f−−−−→ Y
yh

y

Z
g−−−−→ Tif we �x the rows then the morphism g ◦ h : X → T ompletely determines themorphism Im f → Im g indued by h.We easily obtain a omparison morphism of weight spetral sequenes.

Proposition 2.7.3. I Let F,X ′, G be as in the previous proposition; supposealso that H is ohomologial. Set X = F (X ′), g = idX .1. There exists some omparison morphism of the orresponding weight spetralsequenes M : Tv(H,X)→ Tw(G,X ′). Moreover, this morphism is unique andadditively funtorial (in g) starting from E2.2. Let there exist D ⊂ Cw=0 suh that any Y ∈ Cw=0 is a retrat of some
Z ∈ D, and that for any Z ∈ D there exists a hoie of Zw≥1 suh that
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78 M. V. Bondarko

Epq2 Tv(H,F (Zw≥1)) = {0} for all p, q ∈ Z. Then (any hoie of) M yields anisomorphism of the spetral sequene funtors starting from E2.3. Let E be a triangulated ategory endowed with a weight struture u, F ′ : D →
E a right weight-exat funtor; suppose that H = E◦F ′ for some ohomologialfuntor E : E → A. Then we have the following assoiativity property foromparison of weight spetral sequenes: the omposition of M with (any hoieof) a omparison morphisms M ′ : Tu(E,F ′(X))→ Tv(H,X) onstruted as inassertion 1, starting from E2 is anonially isomorphi to (any hoie of asimilarly onstruted) omparison morphism Tu(E,F ′(X))→ Tw(G,X ′).II Let H,X ′, X,G be as above, but suppose that F : C → D is left weight-exat.Then a method dual to the one for assertion I1 yields a transformation N :
Tw(G,X ′) → Tv(H,X); this onstrution satis�es the duals for all propertiesof M desribed in assertion I.Proof. I 1. In order to onstrut some omparison morphism, it su�es toonstrut a morphism of the orresponding exat ouples that is ompatiblewith idX . Hene it su�es to use Proposition 2.7.2(2) to obtain a morphismof the orresponding Postnikov towers, and then apply H to it.Theorem 2.4.2(II) yields that weight spetral sequenes ould be desribed interms of the orresponding virtual t-trunations. Hene Proposition 2.7.2(3)implies all the funtoriality properties of M listed.2. It su�es to prove that M is an isomorphism on E∗∗

2 Tw(G, Y ) for all Y ∈
ObjC.Sine D ⊂ Cw≥0, this assertion is true for any Y ∈ D. Sine Z 7→ E2(T (G,Z))is a ohomologial funtor for any weight struture (see Theorem 2.4.2 and theremark at De�nition 2.3.2), the assertion is also true for any Y ∈ ObjCb. Toonlude it su�es to note that for any H , any Y ∈ ObjC, any �nite 'piee'of E∗∗

2 Tw(G, Y ) oinides with the orresponding piee of E∗∗
2 Tw(G,w[i,j]Y )(for any hoie of w[i,j]Y ) if i is small enough and j is large enough, and thisisomorphism is ompatible with M .3. We reall that omparison morphisms for weight spetral sequenes wereonstruted using Proposition 2.7.2(1). It easily follows that M ′ ◦M is one ofthe possible hoies for a omparison morphism Tu(E,F ′◦F (X))→ Tw(G,X ′).It su�es to apply assertion I1 to onlude that this �xed hoie of a omparisonmorphism oinides with any other possible hoie starting from E2.II We obtain the assertion from assertion I immediately by dualization (seeTheorem 2.2.1(1)); here one should onsider the duals of C, D, and A (andalso 'dualize' the onneting funtors).Remark 2.7.4. M is an isomorphism (starting from E2) also if: there exists aloalization of D suh that H fatorizes through it, v indues a weight stru-ture v′ on it, w indues a weight struture on the ategorial image of C thatoinides with the restrition of v′ to it (sine both weight spetral sequenesare isomorphi to the spetral sequene orresponding to this new weight stru-ture).
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Coniveau Spectral Sequences for Motives 79Yet this onditions are somewhat restritive sine weight strutures do not'desend' to loalizations in general (sine for an exat F ′ : C → E the lasses
F ′
∗(Cw≥1) and F ′

∗(Cw≤0) are not neessarily orthogonal in E).In order to simplify heking right and left weight-exatness of funtors, we willneed the following easy statement.
Lemma 2.7.5. Let w be bounded.1. An exat J : C → D is a right weight-exat whenever there exists a D ⊂
Cw=0 suh that any Y ∈ Cw=0 is a retrat of some X ∈ D, and that for any
X ∈ D we have J(Y ) ∈ Dv≥0.2. An exat J : C → D is a left weight-exat whenever there exists a D ⊂ Cw=0suh that any Y ∈ Cw=0 is a retrat of some X ∈ D, and that for any X ∈ Dwe have J(Y ) ∈ Dv≤0.Proof. It su�es to prove assertion 1, sine assertion 2 is exatly its dual.If J is right weight-exat funtor, then we an take D = Cw=0Now we prove the onverse statement. Sine Dv≥0 is Karoubi-losed andextension-stable in D, Theorem 2.2.1(19) yields that J(Cw≥0) indeed belongsto Dv≥0.
3 Categories of comotives (main properties)We embed DM eff

gm into a ertain big triangulated motivi ategory D; we willall it objets omotives. We will need several properties of D; yet we willnever use its desription diretly. For this reason in �3.1 we only list the mainproperties of D.In �3.2 we assoiate ertain omotives to (disjoint unions of) 'in�nite interse-tions' of smooth varieties over k (we all those pro-shemes). We also introdueertain Tate twists for these omotives.In �3.3 we reall the de�nition of a primitive sheme (note that in the ase ofa �nite k we all a sheme primitive whenever it is smooth semi-loal). Themain motivi property of primitive shemes (proved by M. Walker) is: F (S)injets into F (S0) if S is primitive onneted, S0 is its generi point, and F isa homotopy invariant presheaf with transfers.In �3.4 we study the relation of (omotives of) primitive shemes with thehomotopy t-struture for DM eff
− .In �3.5 we prove that there are no D-morphisms of positive degrees betweenomotives of primitive shemes (and also ertain Tate twists of those); this isalso true for produts of omotives mentioned.In �3.6 we prove that one an pass to ountable homotopy limits in Gysindistinguished triangles; this yields Gysin distinguished triangles for omotivesof pro-shemes. This allows to onstrut ertain Postnikov towers for omotivesof pro-shemes (and their Tate twists), whose fators are twisted produts ofomotives of funtion �elds (over k). The onstrution of the tower is parallelto the lassial onstrution of oniveau spetral sequenes (see �1 of [8℄).
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80 M. V. Bondarko

3.1 Comotives: an ’axiomatic description’We will de�ne D below as the derived ategory of di�erential graded funtors
J → B(Ab); here J yields a di�erential graded enhanement of DM eff

gm (f. [4℄,[19℄, or [7℄), B(Ab) is the di�erential graded ategory of omplexes over Ab.We will also need some ategory D′ that projets to D (a ertain model of D).Derived ategories of di�erential graded funtors were studied in detail in [12℄and [16℄. We will de�ne and study them in �5 below; now we will only list theirproperties that are needed for the proofs of main statements.Below we will also need ertain (�ltered) inverse limits several times. D is atriangulated ategory; so it is no wonder that there are no nie limits in it. Sowe onsider a ertain additive D′ endowed with an additive funtor p : D′ → D.We will all (the images of) inverse limits from D′ homotopy limits in D.The relation of D′ with D is similar to the relation of C(A) with D(A). Inpartiular, D′ is losed with respet to all (small �ltered) inverse limits; we havefuntorial ones of morphisms in D′ that are ompatible with inverse limits.We will need some onventions and de�nitions introdued in Notation; in par-tiular, I, L will be projetive systems; I is ountable.
Proposition 3.1.1. 1. There exists a triangulated ategory D ⊃ DM eff

gm ;all objets of DM eff
gm are oompat in D.2. There exists an additive ategory D′ losed with respet to arbitrary (small�ltered) inverse limits, and an additive funtor p : D′ → D that preserves(small) produts. Moreover, p is surjetive on objets.3. D′ is endowed with a ertain invertible shift funtor [1] that is ompatiblewith the shift on D and respets inverse limits.4. There is a funtorial one of morphisms in D′ de�ned; it is ompatiblewith [1] and respets inverse limits.5. Any triangle of the form X

f→ Y → Cone(f) → X [1] in D′ beomesdistinguished in D.6. The omposition funtor Mgm : Cb(SmCor) → DM eff
gm → D an beanonially fatorized through an additive funtor j : Cb(SmCor)→ D′.Shifts and ones of morphisms in Cb(SmCor) are ompatible with thosein D′ via j.7. For any X ∈ Mgm(Cb(SmCor)) ⊂ ObjD, any Y : L → D′ we have

D(p(lim←−l∈L Yl), X) = lim−→l∈LD(p(Yl), X).8. DM eff
gm weakly ogenerates D (i.e. we have ⊥DM eff

gm = {0}, see Nota-tion).
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Coniveau Spectral Sequences for Motives 819. Let a sequene in ∈ I, n > 0, be inreasing (i.e. in+1 > in for any n > 0)unbounded (see Notation). Then for all funtors X : I → D′, we havefuntorial distinguished triangles in D:
p(lim←−i∈I Xi)→ p(

∏
Xin)

e→ p(
∏

Xin); (27)
e is the produt of idXin⊕−φn : Xin+1 → Xin ; here φn are the morphismsoming from I via X.10. There exists a di�erential graded enhanement for D; see �5.1 below.Remark 3.1.2. 1. Sine below we will prove some statements for D only usingits 'axiomatis' (i.e. the properties listed in Proposition 3.1.1), these resultswould also be valid in any other ategory that ful�lls these properties. Thisould be useful, sine the author is not sure at all that all possible D areisomorphi.2. Moreover, one ould modify the axiomatis of D and onsider instead aategory that would only ontain the triangulated subategory of DM eff

gm gen-erated by motives of smooth varieties of dimension ≤ n (for a �xed n > 0).Our results and arguments below an be easily arried over to this setting (withminor modi�ations; it is also useful here to weaken ondition 8 in the Propo-sition). This makes sense sine these 'geometri piees' of DM eff
gm are self-dualwith respet to Poinare duality (at least, if char k = 0); see �6.4 below. Seealso Remark 4.5.2(2).Alternatively, we an weaken the ondition for the funtor DM eff
gm → D to bea full embedding. For example, it ould be interesting to onsider the versionof D for whih this funtor kills DM eff

gm (n) (for some �xed n > 0).Lastly note that we do not really need ondition 2 in its full generality (below).Now we derive some onsequenes from the axiomatis listed.
Corollary 3.1.3. 1. For any Z ∈ ObjDM eff

gm ⊂ ObjD, any X : L → D′we have D(p(lim←−l∈LXl), Z) = lim−→l∈LD(p(Xl), Z).2. For any T ∈ ObjD, all funtors Y : I → D′ we have funtorial shortexat sequenes
{0} → lim←−

1 D(T, p(Yi)[−1])→ D(T, p(lim←−Yi))→ lim←−D(T, p(Yi))→ {0};here lim←−
1 is the (�rst) derived funtor of lim←− = lim←−I .3. For all funtors X : L → Cb(SmCor), Y : I → Cb(SmCor), we havefuntorial short exat sequenes
{0} → lim←−

1

i∈I(lim−→l∈LD(Mgm(Xl),Mgm(Yi)[−1]))→
D(p(lim←−l∈L j(Xl)), p(lim←−i∈I j(Yi)))→

lim←−i∈I(lim−→l∈LD(Mgm(Xl),Mgm(Yi)))→ {0}.
(28)
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82 M. V. Bondarko4. D is idempotent omplete.Proof. 1. If Z ∈ Mgm(Cb(SmCor)), then the assertion is exatly Proposi-tion 3.1.1(7).It remains to note that any Z ∈ ObjDM eff
gm is a retrat of some objetoming from Cb(SmCor).2. Sine inverse limits and their derived funtors do not hange when wereplae a projetive system by any unbounded subsystem, we an assumethat L onsists of some in as in (27).Now, (27) yields a long exat sequene

· · · →
∏

i∈I
D(T, p(Yi)[−1])

f→
∏

i∈I
D(T, p(Yi)[−1])→ D(T, p(lim←−i∈I Yi))

→
∏

i∈I
D(T, p(Yi))

g→
∏

i∈I
D(T, p(Yi))→ . . . ,here f and g are indued by e in (27).It is easily seen that Ker g ∼= lim←−D(T,Mgm(Ym)).Lastly, Remark A.3.6 of [21℄ allows to identify Coker f with

lim←−
1 D(T,Mgm(Ym)[−1]).3. Immediate from the previous assertions.4. SineD′ is losed with respet to all inverse limits, it is losed with respetto all (small) produts. Then Proposition 3.1.1(2) yields that D is alsolosed with respet to all produts. Now, Remark 1.6.9 of [21℄ yields theresult (in fat, the proof uses only ountable produts).We will often all the objets of D omotives.

3.2 Pro-schemes and their comotivesNow we have ertain inverse limits for objets (oming from) Cb(SmCor);this allows to de�ne (reasonable) omotives for ertain shemes that are not(neessarily) of �nite type over k (and for their disjoint unions). We also de�neertain Tate twists of those.We will all ertain ind-shemes over k pro-shemes. An ind-sheme V/k isa pro-sheme if it is a ountable disjoint union of shemes, suh that eah ofthem is a projetive limit of smooth varieties of dimension ≤ cV for some �xed
cV ≥ 0 (in the ategory of shemes) with onneting morphisms being opendense embeddings. One may say that a pro-sheme is a ountable disjoint unionof ountable intersetions of smooth varieties. Note that (the spetrum of) anyfuntion �eld over k is a pro-sheme; any smooth k-variety is a pro-sheme also.
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Coniveau Spectral Sequences for Motives 83We have the operation of ountable disjoint union for pro-shemes of boundeddimension.Now, we would like to present a (not neessarily onneted) pro-sheme Vas projetive limits of smooth varieties Vi. This is easy if V is onneted(f. Lemma 3.2.9 of [9℄). In the general ase one should allow (formally)zero morphisms between onneted omponents of Vi (for distint i). So weonsider a new ategory SmV ar′ ontaining the ategory of all smooth va-rieties as a (non-full!) subategory. We take ObjSmV ar′ = SmV ar; forany smooth onneted varieties X,Y ∈ SmV ar we have SmV ar′(X,Y ) =
MorV ar(X,Y ) ∪ {0}; the omposition of a zero morphism with any other oneis zero; SmV ar′(⊔iXi,⊔jYj) = ⊔i,jSmV ar′(Xi, Yj). SmV ar′ an be embed-ded into SmCor (ertainly, this embedding is not full).We will write V = lim←−Vi (this is not possible in the ategory of ind-shemes,but works in Pro−SmV ar′). Note that the set of onneted omponents of Vis the indutive limit of the orresponding sets for Vi.Now, for any pro-sheme V = lim←−Vi, any s ≥ 0, we introdue the followingnotation: Mgm(V )(s) = p(lim←−(j(Vi)(s))) ∈ ObjD (see Proposition 3.1.1); wewill denote Mgm(V )(0) by Mgm(V ) and all Mgm(V ) the omotif of V . Thisnotation should be onsidered as formal i.e. we do not de�ne Tate twists on D(till �5.4.3).Obviously, if V ∈ SmV ar, its omotif (and its twists) oinides with its motif(and its twists), so we an use the same notation for them.If A is a ategory losed with respet to �ltered diret limits, H ′ : DM eff

gm → Ais a funtor, we an (formally) extend it to o-motives in question; we set:
H(Mgm(V )(s)[n]) = lim−→H ′(Mgm(Vi)(s)[n]). (29)Remark 3.2.1. 1. For a general H ′ this notation should be onsidered as for-mal. Yet in the ase H ′ = (−, Y ) : D → Ab, Y ∈ ObjDM eff

gm ⊂ ObjD, wehave H(Mgm(V )(i)[n]) = D(Mgm(V )(i)[n], X); see Corollary 3.1.3(1), i.e. (29)yields the value of a well-de�ned funtor D → Ab at Mgm(V )(s)[n]. We willonly need H ′ of this sort till �4.3.More generally, there exists suh an H if A satis�es AB5 and H ′ is ohomo-logial; we will all the orresponding H an extended ohomology theory, seeRemark 4.3.2 below.2. Let V j be a ountable set of pro-shemes (of bounded dimensions). Then
Mgm(⊔V j) =

∏
Mgm(V j) by Proposition 3.1.1(2).Besides, for any H ′ as in (29) we have H(Mgm(⊔V j)(s)[n]) =⊕

H(Mgm(V j)(s)[n]).Below we will need some onventions for pro-shemes.For pro-shemes U = lim←−Ui and V = lim←−Vj we will all an element of
lim←−i∈I(lim−→j∈J SmCor(Ui, Vj)) an open embedding if it an be obtained as adouble limit of open embeddings Ui → Vj (as varieties). If U = V \W forsome pro-shemeW , we will say that W is a losed sub-pro-sheme of V . Notethat in this ase any onneted omponent of W is a losed subsheme of some

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



84 M. V. Bondarkoonneted omponent of V ; yet some omponents of V ould ontain an in�niteset of onneted omponents of W .For V = ⊔V j , V j are onneted pro-shemes, we will all the maximum of thetransendene degrees of funtion �elds of V j the dimension of V (note thatthis is �nite). We will say that a sub-pro-sheme U = ⊔Um, Um are onneted,is everywhere of odimension r (resp. ≥ r, for some �xed r ≥ 0) in V = ⊔V jif for every indued embedding Um → V j the di�erene of their dimensions(de�ned as above) is r (resp. ≥ r).We will all the inverse limit of the sets of points of Vi of a �xed odimension
s ≥ 0 the set of points of V of odimension s (note that any element of this setindeed de�nes a point of some onneted omponent of V ).
3.3 Primitive schemes: reminderIn [29℄ M. Walker proved that primitive shemes in the ase of an in�nite khave 'motivi' properties similar to those of smooth semi-loal shemes (in thesense of �4.4 of [26℄). Sine we don't want to disriminate the ase of a �nite
k, we will modify slightly the standard de�nition of primitive shemes.
Definition 3.3.1. If k is in�nite then a (pro-)sheme is alled primitive if all ofits onneted omponents are a�ne and their oordinate ringsRj satisfy the fol-lowing primitivity riterion: for any n > 0 every polynomial in Rj [X1, . . . , Xn]whose oe�ients generate Rj as an ideal over itself, represents an Rj-unit.If k is �nite, then we will all a pro-sheme primitive whenever all of its on-neted omponents are semi-loal (in the sense of �4.4 of [26℄).Remark 3.3.2. Reall that in the ase of in�nite k all semi-loal k-algebrassatisfy the primitivity riterion (see Example 2.1 of [29℄).Below we will mostly use the following basi property of primitive shemes.
Proposition 3.3.3. Let S be a primitive pro-sheme, let S0 be the olletionof all of its generi points; F is a homotopy invariant presheaf with transfers.Then F (S) ⊂ F (S0); here we de�ne F on pro-shemes as in (29).Proof. We an assume that S is onneted (so it is a smooth primitive sheme).Hene in the ase of in�nite k our assertion follows from Theorem 4.19 of [29℄.Now, if k is �nite, then S0 is semi-loal (by our onvention); so we may applyCorollary 4.18 of [26℄ instead.
3.4 Basic motivic properties of primitive schemesWe will all a primitive pro-sheme just a primitive sheme. We prove ertainmotivi properties of primitive shemes (in the form in whih we will need thembelow).
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Coniveau Spectral Sequences for Motives 85
Proposition 3.4.1. For F ∈ ObjDM eff

− we de�ne H ′(−) = DM eff
− (−, F )on DM eff

gm ; we also de�ne H(Mgm(V )(i)[n]) as in (29). Let S be a primitivesheme, m ≥ 0, i ∈ Z.1. Let F ∈ DM eff
−

t≤−1 (t is the homotopy t-struture, that we onsidered in�1.3). Then H(Mgm(S)(m)[m]) = {0}.2. More generally, for any F ∈ ObjDM eff
− we have H([Mgm(S)(m)[m]) ∼=

F 0
−m(S) where F 0 = F t=0, F 0

−m is the m-th Tate twist of F 0 (see De�nition1.4.1).Proof. 1. We onsider the homotopy invariant presheaf with transfers F−m :
X 7→ DM eff

− (Mgm(X)(m)[m], F ). We should prove that F−m(S) = 0 (herewe extend F−m to pro-shemes in the usual way i.e. as in (29)).(29) also yields that F−m(⊔Si) =
⊕
F−m(Si). Hene by Proposition 3.3.3,it su�es to onsider the ase of S being (the spetrum of) a funtion �eldover k. Sine F−m is represented by an objet of DM eff

−
t≤−1 (see Proposition1.4.2(2)), it su�es to note that any �eld is a Henselian sheme i.e. a point inthe Nisnevih topology.2. By Proposition 1.4.2, for any X ∈ SmV ar we have Mgm(X)(m)[m] ⊥

DM eff
−

t≥1. Hene we an assume F ∈ DM eff
−

t≤0.Next, using assertion 1, we an easily redue the situation to the ase F =
F t=0 ∈ ObjHI (by onsidering the t-deomposition of F [−1]). In this ase thestatement is immediate from Proposition 1.4.2(1).
Lemma 3.4.2. Let U → U ′ be an open dense embedding of smooth varieties.1. We have Cone(Mgm(U)→Mgm(U ′)) ∈ DM eff

−
t≤−1.2. Let S be primitive. Then for any n,m, i ≥ 0 the map

D(Mgm(S)(m)[m],Mgm(U)(n)[n+i])→ D(Mgm(S)(m)[m],Mgm(U ′)(n)[n+i])is surjetive.Proof. 1. We denote Cone(Mgm(U) → Mgm(U ′)) ∈ DM eff
−

t≤−1 by C. Ob-viously, C ∈ DM eff
−

t≤0. Let H denote Ct=0 (H ∈ ObjHI). By Corol-lary 4.19 of [26℄, we have H(U) ⊂ H(U ′). Next, from the long exat se-quene {0}(= DM eff
− (Mgm(U)[1], H)) → DM eff

− (C,H) → DM eff
− (U ′, H) →

DM eff
− (U,H) → . . . we obtain C ⊥ H . Then the long exat sequene

· · · → DM eff
− (Ct≤−1[2], H) → DM eff

− (H,H) → DM eff
− (C,H) → . . . yields

H = 0.2. It su�es to hek that Mgm(S)(m)[m] ⊥ C(n)[n+ i]. Sine Mgm(U)(n)[n]is anonially a retrat of Mgm(U ×Gnm), we an assume that n = 0.Now the laim follows immediately from assertion 1 and Proposition 3.4.1(1).
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86 M. V. Bondarko

3.5 On morphisms between comotives of primitive schemesWe will need the fat that ertain 'positive' morphism groups are zero.Let n,m,≥ 0, i > 0, Y = lim←−Yl (l ∈ L), be any pro-sheme, X be a primitivesheme.
Proposition 3.5.1. 1. The natural homomorphism

D(Mgm(X)(m)[m],Mgm(Y )[n](n))→
→ lim←−l(lim−→X⊂Z,Z∈SmV arDM

eff
gm (Z(m)[m],Mgm(Yl)(n)[n]))is surjetive.2. Mgm(X)(m)[m] ⊥Mgm(Y )[n+ i](n).Proof. Note �rst that by the de�nition of the Tate twist (1), it an be lifted to

Cb(SmCor).1. This is immediate from the short exat sequene (28).2. By Remark 3.2.1(2), we may suppose that Y is onneted. Thenwe apply (28) again. The orresponding lim←−-term is zero by Propo-sition 3.4.1(1). Lastly, the surjetivity proved in Lemma 3.4.2(2)yields that the orresponding lim←−
1-term is zero. Indeed, the groups

D(Mgm(X)(m)[m],Mgm(Yl)[n + i − 1](n)) obviously satisfy the Mittag-Le�er ondition; see �A.3 of [21℄.In fat, one ould easily dedue the assertion from the results of theprevious subsetion and (27) diretly (we do not need muh of the theoryof higher limits in this paper).Remark 3.5.2. In fat, this statement, as well as all other properties of (prim-itive) pro-shemes that we need, are also true for not neessary ountable dis-joint unions of (primitive) pro-shemes. This observation ould be used toextend the main results of the paper to a somewhat larger ategory; yet suhan extension does not seem to be important.
3.6 The Gysin distinguished triangle for pro-schemes; ’Gersten’

Postnikov towers for comotives of pro-schemesWe prove that we an pass to ountable homotopy limits in Gysin distinguishedtriangles.
Proposition 3.6.1. Let Z,X be pro-shemes, Z a losed subsheme of X(everywhere) of odimension r. Then for any s ≥ 0 the natural morphism
Mgm(X \ Z)(s) → Mgm(X)(s) extends to a distinguished triangle (in D):
Mgm(X \ Z)(s)→Mgm(X)(s)→Mgm(Z)(r + s)[2r].
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Coniveau Spectral Sequences for Motives 87Proof. First assume s = 0.We an assume X = lim←−Xi, Z = lim←−Zi for i ∈ I, where Xi, Zi ∈ SmV ar, Ziis losed everywhere of odimension r in Xi for all i ∈ I.We take Yi = j(Xi \Zi → Xi), Y = p(lim←−i∈I Yi). By parts 4 and 5 of Proposi-tion 3.1.1 we have a distinguished triangle Mgm(X \ Z)→Mgm(X)→ Y .It remains to prove that Y ∼= Mgm(Z)(r)[2r]. Proposition 2.4.5 of [9℄ (afuntorial form of the Gysin distinguished triangle for Voevodsky's motives)yields that p(Yi) ∼= Mgm(Zi)(r)[2r]; moreover, the onneting morphisms
p(Yi) → p(Yi+1) are obtained from the orresponding morphisms Mgm(Zi) →
Mgm(Zi+1) by tensoring by Z(r)[2r]. It remains to reall: by Proposition3.1.1(9), the isomorphism lass of a homotopy limit in D an be ompletelydesribed in terms of (objets and morphisms) of D (i.e. we don't have toonsider the lifts of objets and morphisms to D′). This yields the result.Now, sine Mgm(X × Gm) = Mgm(X)

⊕
Mgm(X)(1)[1] for any X ∈ SmV ar(hene this is also true for pro-shemes), the assertion for the ase s = 0 yieldsthe general ase easily.Now we will onstrut a ertain Postnikov tower Po(X) for X being the(twisted) omotif of a pro-sheme Z that will be related to the oniveau spe-tral sequenes (for ohomology) of Z; our method was desribed in �1.5 above.Note that we onsider the general ase of an arbitrary pro-sheme Z (sinein this paper pro-shemes play an important role); yet this ase is not muhdistint from the (partial) ase of Z ∈ SmV ar.

Corollary 3.6.2. We denote the dimension of Z by d (reall the onventionsof �3.2).For all i ≥ 0 we denote by Zi the set of points of Z of odimension i.For any s ≥ 0 there exists a Postnikov tower for X = Mgm(Z)(s)[s] suh that
l = 0, m = d+ 1, Xi

∼=
∏
z∈ZiMgm(z)(i+ s)[2i+ s].Proof. As above, it su�es to prove the statement for s = 0. Sine any produtof distinguished triangles is distinguished, we an assume Z to be onneted.We onsider a projetive system L whose elements are sequenes of losedsubshemes ∅ = Zd+1 ⊂ Zd ⊂ Zd−1 ⊂ · · · ⊂ Z0. Here Z0 ∈ SmV ar, Zl ∈

V ar for l > 0, Z is open in Z0 (see �3.2; Z0 is onneted; in the ase when
Z ∈ SmV ar we only take Z0 = Z); for all j > 0 we have: Zj is everywhere ofodimension ≥ j in Z0; all irreduible omponents of all Zj are everywhere ofodimension ≥ j in Z0; and Zj+1 ontains the singular lous of Zj (for j ≤ d).The ordering in L is given by open embeddings of varieties Uj = Z0 \ Zj for
j > 0. For l ∈ L we will denote the orresponding sequene by ∅ = Z ld+1 ⊂
Z ld ⊂ Z ld−1 ⊂ · · · ⊂ Z l0. Note that L is ountable!By the previous proposition, for any j we have a distinguished triangle
Mgm(lim←−(Z l0 \ Z lj))→Mgm(lim←−(Z l0 \ Z lj+1))→Mgm(lim←−(Z lj \ Z lj+1)(j)[2j]).It remains to ompute the last term; we �x some j.We have lim←−l∈L′

(Z lj \Z lj+1)) ∼=
∏
z∈ZiMgm(z). Indeed, for all l ∈ L the variety

Z lj \ Z lj+1 is the disjoint union of some loally losed smooth subshemes of
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Z l0 of odimension j; for any z0 ∈ Zj for l ∈ L large enough z0 is ontainedin Z lj \ Z lj+1 as an open sub-pro-sheme, and the inverse limit of onnetedomponents of Z lj \ Z lj+1 ontaining z0 is exatly z0. Now, we an apply thefuntor X 7→ Mgm(X)(j)[2j] to this isomorphism. We obtain Mgm(lim←−(Z lj \
Z lj+1)(j)[2j]) ∼=

∏
z∈ZiMgm(z)(i). This yields the result.Remark 3.6.3. 1. Alternatively, one ould onstrut Po(X) for the (twisted)omotif of a pro-sheme T = lim←−T

l as the inverse limit of the Postnikov towersfor T l (onstruted as above yet with �xed Z l0 = T l); ertainly, to this end oneshould pass to the limit in D′. It is easily seen that one would get the sametower this way.2. Certainly, if we shift a Postnikov tower for Mgm(Z)(s)[s] by [j] for some
j ∈ Z, we obtain a Postnikov tower for Mgm(Z)(s)[s+ j]. We didn't formulateassertion 2 for these shifts only beause we wanted Xp to belong to Dw=0

s (seeProposition 4.1.1 below).3. Sine the alulation of X i used Proposition 3.1.1(9), our method annotdesribe onneting morphisms between them (in D). Yet one an alulatethe 'images' of the onneting morphisms in Dnaive; see �1.5 and �6.1.
4 Main motivic resultsThe results of the previous setion ombined with those of �2.2 allow us toonstrut (in �4.1) a ertain Gersten weight struture w on a ertain triangu-lated Ds: DM eff

gm ⊂ Ds ⊂ D. Its main property is that omotives of funtion�elds over k (and their produts) belong to Hw. It follows immediately thatthe Postnikov tower Po(X) provided by Corollary 3.6.2 is a weight Postnikovtower with respet to w. Using this, in �4.2 we prove: if S is a primitive sheme,
S0 is its dense sub-pro-sheme, thenMgm(S) is a diret summand ofMgm(S0);
Mgm(K) (for a funtion �eld K/k) ontains (as retrats) omotives of primitiveshemes whose generi point is K, as well as twisted omotives of residue �eldsof K (for all geometri valuations).In �4.3 we (easily) translate these results to ohomology; in partiular, theohomology of (the spetrum of) K ontains diret summands orrespondingto the ohomology of primitive shemes whose generi point is K, as well astwisted ohomology of residue �elds of K. Here one an onsider any oho-mology theory H : Ds → A; one an obtain suh an H by extending to Dsany ohomologial H ′ : DM eff

gm → A if A satis�es AB5 (by means of Propo-sition 1.2.1). Note: in this ase the ohomology of pro-shemes mentioned isalulated in the 'usual' way.In �4.4 we onsider weight spetral sequenes orresponding to (the Gerstenweight struture) w. We observe that these spetral sequenes generalize natu-rally the lassial oniveau spetral sequenes. Besides, for a �xed H : Ds → Aour (generalized) oniveau spetral sequene onverging to H∗(X) (where X
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Coniveau Spectral Sequences for Motives 89ould be a motif or just an objet of Ds) is Ds-funtorial in X (i.e. it is mo-tivially funtorial for objets of DM eff
gm ); this fat is non-trivial even whenrestrited to motives of smooth varieties.In �4.5 we prove that there exists a nie duality Dop×DM eff

− → Ab (extendingthe bi-funtor DM eff
− (−,−) : DM eff

gm
op ×DM eff

− → Ab); the Gersten weightstruture w (on Ds) is left orthogonal to the homotopy t-struture t on DM eff
−with respet to it. This allows to apply Theorem 2.6.1: in the ase when Homes from Y ∈ ObjDM eff

− we prove the isomorphism (starting from E2)of (the oniveau) T (H,X) with the spetral sequene orresponding to the t-trunations of Y . We desribe ObjDM eff
gm ∩Dw≤i

s in terms of t (for DM eff
− ).We also note that our results allow to desribe torsion motivi ohomology interms of (torsion) étale ohomology (see Remark 4.5.4(4)).In �4.6 we de�ne the oniveau spetral sequene (starting from E2) for oho-mology of a motif X over a not (neessarily) ountable perfet base �eld l as thelimit of the orresponding oniveau spetral sequenes over ountable perfetsub�elds of de�nition forX . This de�nition is ompatible with the lassial one(for X being the motif of a smooth variety); so we obtain motivi funtorialityof lassial oniveau spetral sequenes over a general base �eld.In �4.7 we prove that the Chow weight struture for DM eff

gm (introdued in �6of [6℄) ould be extended to D (ertainly, the orresponding weight struture
wChow di�ers from w). We will all the orresponding weight spetral sequenesChow-weight ones; note that they are isomorphi to lassial (i.e. Deligne's)weight spetral sequenes when the latter are de�ned.In �4.8 we use the results �2.7 to ompare oniveau spetral sequenes withChow-weight ones. We always have a omparison morphism; it is an isomor-phism if H is a birational ohomology theory.In �4.9 we onsider the ategory of birational omotives Dbir (a ertain 'om-pletion' of birational motives of [15℄) i.e. the loalization of D by D(1). Itturns our that w and wChow indue the same weight struture w′

bir on Dbir .Conversely, starting from w′
bir one an glue 'from slies' the weight struturesindued by w and wChow on D/D(n) for all n > 0. Furthermore, these stru-tures belong to an interesting family of weight strutures indexed by a singleintegral parameter; other terms of this family ould be also interesting!

4.1 The Gersten weight structure for Ds ⊃ DM eff
gmNow we desribe the main weight struture of this paper. Unfortunately, theauthor does not know whether it is possible to de�ne the Gersten weight stru-ture (see below) on the whole D. Yet for our purposes it is quite su�ient tode�ne the orresponding weight struture on a ertain triangulated subategory

Ds ⊂ D ontaining DM eff
gm (and omotives of all pro-shemes).In order to make the hoie of Ds ⊂ D ompatible with extensions of salars,we bound ertain dimensions of objets of Hw.We will denote by H the full subategory of D whose objets are all ountableproduts ∏l∈LMgm(Kl)(nl)[nl]; here Kl are (the spetra of) funtion �elds
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90 M. V. Bondarkoover k, nl ≥ 0; we assume that the transendene degrees of Kl/k and nl arebounded.
Proposition 4.1.1. 1. Let Ds be the Karoubi-losure of 〈H〉 in D. Then
C = Ds an be endowed with a unique weight struture w suh that Hw ontains
H.2. Hw is the idempotent ompletion of H.3. Ds ontains DM eff

gm as well as all Mgm(Z)(l) for Z being a pro-sheme,
l ≥ 0.4. For any primitive S, i ≥ 0, we have Mgm(S)(i)[i] ∈ Dw=0

s .5. Let Z be a pro-sheme, s ≥ 0. Then Mgm(Z)(s)[s] ∈ Dw≤0
s ; the Postnikovtower for Mgm(Z)(s)[s] given by Corollary 3.6.2 is a weight Postnikov towerfor it.Proof. 1. By Proposition 3.5.1(2), H is negative (sine any objet of H isa �nite sum of Mgm(Xi)(mi) for some primitive pro-shemes Xi, mi ∈ Z).Besides, D is idempotent omplete (see Corollary 3.1.3(4)); heneDs andDw=0

salso are. Hene we an apply Theorem 2.2.1(18) (for D = H).2. Also immediate from Theorem 2.2.1(18).3. Mgm(Z)(l) ∈ ObjDs by Corollary 3.6.2; in partiular, this is true for Z ∈
SmV ar. It remains to note that DM eff

gm is the Karoubization of 〈Mgm(U) :
U ∈ SmV ar〉 in D.4. It su�es to note that Mgm(S)(i)[i] belongs both to Dw≤0

s and to Dw≥0
s byTheorem 2.2.1(20). Here we use Proposition 3.5.1(2) again.5. We have X i ∈ Dw=0

s . Hene Theorem 2.2.1(14) yields the result. Note herethat we have Y0 = 0 in the notation of De�nition 2.1.2(9).We will all w the Gersten weight struture, sine it is losely onneted withGersten resolutions of ohomology (f. �4.5 below). By default, below w willdenote the Gersten weight struture.Remark 4.1.2. 1. Hw is idempotent omplete sine Ds is.2. In fat, one ould easily prove similar statements for C being just 〈H〉(instead of its Karoubization in D). Certainly, for this version of C we willonly have C ⊃Mgm(Kb(SmCor)).Besides, note that for any funtion �eldK ′/k, any r ≥ 0, there exists a funtion�eld K/k suh that Mgm(K ′)(r)[r] is a retrat of Mgm(K) (see Corollary 4.2.2below). Hene it su�es take H being the full subategory of D whose objetsare ∏l∈LMgm(Kl) (for bounded transendene degrees of Kl/k).3. The proposition implies that Ds is exatly the Karoubization in D of thetriangulated ategory generated by omotives of all pro-shemes.4. The author does not know whether one an desribe weight deompositionsfor arbitrary objets of DM eff
gm expliitly. Still, one an say something aboutthese weight deompositions and weight omplexes using their funtorialityproperties. In partiular, knowing weight omplexes for X,Y ∈ ObjDM eff

gm(or just ∈ ObjDM s) one an desribe the weight omplex of X → Y up to a
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Coniveau Spectral Sequences for Motives 91homotopy equivalene as the orresponding one (see Lemma 6.1.1 below). Be-sides, let X → Y → Z be a distinguished triangle (in D). Then for any hoieof (Xw≤0, Xw≥1) and (Zw≤0, Zw≥1) there exists a hoie of (Y w≤0, Y w≥1)suh that there exist distinguished triangles Xw≤0 → Y w≤0 → Zw≤0 and
Xw≥1 → Y w≥1 → Zw≥1; see Lemma 1.5.4 of [6℄. In partiular, we obtain that
j maps omplexes (over SmCor) onentrated in degrees ≤ j into Dw≤j

s (wewill prove a stronger statement in Remark 4.5.4(4) below). If X ∈ ObjDM eff
gmomes from a omplex over SmCor whose onneting morphisms satisfy ertainodimension restritions, these observations ould be extended to an expliitdesription of a weight deomposition for it; f. �7.4 of [6℄.

4.2 Direct summand results for comotivesProposition 4.1.1 easily implies the following interesting result.
Theorem 4.2.1. 1. Let S be a primitive sheme; let S0 be its dense sub-pro-sheme. Then Mgm(S) is a diret summand of Mgm(S0).2. Suppose moreover that S0 = S \ T where T is a losed subshemeof S everywhere of odimension r > 0. Then we have Mgm(S0) ∼=
Mgm(S)

⊕
Mgm(T )(r)[2r − 1].Proof. We an assume that S and S0 are onneted.1. By Proposition 4.1.1(5), we have: Mgm(S0),Mgm(S) ∈ Dw≤0

s ;
Mgm(Spec(k(S))) ould be assumed to be the zeroth term of their weightomplexes for a hoie of weight omplexes ompatible with some negativePostnikov weight towers for them; the embedding S0 → S is ompatible with
idMgm(Spec(k(S))) (sine we have a ommutative triangle Spec k(S) → S0 → Sof pro-shemes). Hene Theorem 2.2.1(16) yields the result.2. By Proposition 3.6.1 we have a distinguished triangle Mgm(S0) →
Mgm(S) → Mgm(T )(r)[2r]. By parts 4 and 5 of Proposition 4.1.1 we have
Mgm(S0) ∈ Dw≤0

s , Mgm(S) ∈ Dw=0
s , Mgm(T )(r)[2r] ∈ Dw≤−r

s ⊂ Dw≤−1
s .Hene Theorem 2.2.1(8) yields the result.

Corollary 4.2.2. 1. Let S be a onneted primitive sheme, let S0 be itsgeneri point. Then Mgm(S) is a retrat of Mgm(S0).2. Let K be a funtion �eld over k. Let K ′ be the residue �elds for a geometrivaluation v of K of rank r. Then Mgm(K ′)(r)[r] is a retrat of Mgm(K).Proof. 1. This is just a partial ase of part 1 of the the theorem.2. Obviously, it su�es to prove the statement in the ase r = 1. Next, K isthe funtion �eld of some normal projetive variety over k. Hene there existsa U ∈ SmV ar suh that: k(U) = K, v yields a non-empty losed subshemeof U (sine the singular lous has odimension ≥ 2 in a normal variety). Iteasily follows that there exists a pro-sheme S (i.e. an inverse limit of smoothvarieties) whose only points are the spetra of K and K0. So, S is loal, heneit is primitive.
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92 M. V. BondarkoBy part 2 of the theorem, we have
Mgm(SpecK) = Mgm(S)

⊕
Mgm(SpecK0)(1)[1];this onludes the proof.Remark 4.2.3. 1. Note that we do not onstrut any expliit splitting mor-phisms in the deompositions above. Probably, one annot hoose any anoni-al splittings here (in the general ase); so there is no (automati) ompatibilityfor any pair of related deompositions. Respetively, though omotives of (spe-tra of) funtion �elds ontain tons of diret summands, there seems to be nogeneral way to deompose them into indeomposable summands.2. Yet Proposition 3.6.1 easily yields that Mgm(Spec k(t)) ∼=

Z
⊕∏

EMgm(E)(1)[1]; here E runs through all losed points of A1 (on-sidered as a sheme over k).
4.3 On cohomology of pro-schemes, and its direct summandsThe results proved above immediately imply similar assertions for ohomology.We also onstrut a lass of ohomology theories that respet homotopy limits.
Proposition 4.3.1. Let H : Ds → A be ohomologial, S be a primitivesheme.1. Let S0 be a dense sub-pro-sheme of S. Then H(Mgm(S)) is a diret sum-mand of H(Mgm(S0)).2. Suppose moreover that S0 = S \ T where T is a losed sub-sheme of S of odimension r > 0. Then we have H(Mgm(S0)) ∼=
H(Mgm(S))

⊕
H(Mgm(T )(r)[2r − 1]).3. Let S be onneted, S0 be the generi point of S. Then H(Mgm(S)) is aretrat of H(Mgm(S0)) in A.4. Let K be a funtion �eld over k. Let K ′ be the residue �eld for a geometrivaluation v of K of rank r. Then H(Mgm(K ′)(r)[r]) is a retrat of H(Mgm(K))in A.5. Let H ′ : DM eff
gm → A be a ohomologial funtor, let A satisfy AB5. ThenProposition 1.2.1 allows to extend H ′ to a ohomologial funtor H : D → Athat onverts inverse limits in D′ to the orresponding diret limits in A.Proof. 1. Immediate from Theorem 4.2.1(1).2. Immediate from Theorem 4.2.1(2).3. Immediate from Corollary 4.2.2(1).4. Immediate from Corollary 4.2.2(2).5. Immediate from Proposition 1.2.1; note that DM eff

gm is skeletally small.Here in order to prove that H onverts homotopy limits into diret limits weuse part I2 of lo.it. and Proposition 3.1.1(7).
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Coniveau Spectral Sequences for Motives 93Remark 4.3.2. 1. In the setting of assertion 5 we will all H an extendedohomology theory.Note that for H ′ = DM eff
gm (−, Y ), Y ∈ ObjDM eff

gm , we have H = D(−, Y );see (4).2. Now reall that for any pro-sheme Z, any i ≥ 0, Mgm(Z)(i) (by de�nition)ould be presented as a ountable homotopy limit of geometri motives. More-over, the same is true for all small ountable produts of Mgm(Zl)(i). Heneif H is extended, then the ohomology of ∏Mgm(Zl)(i) is the orrespondingdiret limit; this oinides with the de�nition given by (29) (f. Remark 3.2.1).In partiular, one an apply the results of Proposition 4.3.1 to the usual étaleohomology of pro-shemes mentioned (with values in Ab or in some ategoryof Galois modules).3. If H ′ is also a tensor funtor (i.e. it onverts tensor produt in DM eff
gm intotensor produts in D(A)), then ertainly the ohomology of Mgm(K ′)(r)[r] isthe orresponding tensor produt ofH∗(Mgm(K ′)) withH∗(Z(r)[r]). Note thatthe latter one is a retrat of H∗(Grm); we obtain the Tate twist for ohomologythis way.

4.4 Coniveau spectral sequences for cohomology of (co)motivesLet H : Dop
s → A be a ohomologial funtor, X ∈ ObjDs.

Proposition 4.4.1. 1. Any hoie of a weight spetral sequene T (H,X) (seeTheorem 2.4.2) orresponding to the Gersten weight struture w is anonialand Ds-funtorial in X starting from E2.2. T (H,X) onverges to H(X).3. Let H be an extended theory (see Remark 4.3.2), X = Mgm(Z) for
Z ∈ SmV ar. Then any hoie of T (H,X) starting from E2 is anoniallyisomorphi to the lassial oniveau spetral sequene (onverging to the H-ohomology of Z; see �1 of [8℄).Proof. 1. This is just a partial ase of Theorem 2.4.2(I).2. Immediate sine w is bounded; see part I2 of lo.it.3. Reall that in the proof of Corollary 3.6.2 a ertain Postnikov tower
Po(X) for X was obtained from ertain 'geometri' Postnikov towers (in
j(Cb(SmCor))) by passing to the homotopy limit. Now, the oniveau spe-tral sequene (for the H-ohomology of Z) in �1.2 of [8℄ was onstruted byapplyingH to the same geometri towers and then passing to the indutive limit(in A). Furthermore, Remark 4.3.2(2) yields that the latter limit is (naturally)isomorphi to the spetral sequene obtained via H from Po(X). Next, sine
Po(X) is a weight Postnikov tower for X (see Proposition 4.1.1(5)), we obtainthat the latter spetral sequene is one of the possible hoies for T (H,X).Lastly, assertion 1 yields that all other possible T (H,X) (they depend on thehoie of a weight Postnikov tower for X) starting from E2 are also anoniallyisomorphi to the lassial oniveau spetral sequene mentioned.
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94 M. V. BondarkoRemark 4.4.2. 1. Hene we proved (in partiular) that lassial oniveauspetral sequenes (for ohomology theories that ould be fatorized throughmotives; this inludes étale and singular ohomology of smooth varieties) are
DM eff

gm -funtorial (starting from E2); we also obtain suh a funtoriality forthe oniveau �ltration for ohomology! These fats are far from being obviousfrom the usual de�nition of the oniveau �ltration and spetral sequenes, andseem to be new (in the general ase). So, we justi�ed the title of the paper.We also obtain ertain oniveau spetral sequenes for ohomology of singularvarieties (for ohomology theories that ould be fatorized through DM eff
gm ; inthe ase chark > 0 one also needs rational oe�ients here).2. Assertion 3 of the proposition yields a nie reason to all (any hoie of)

T (H,X) a oniveau spetral sequene (for a general H,A, and X ∈ ObjDs);this will also distinguish (this version of) T from weight spetral sequenesorresponding to other weight strutures. We will give more justi�ation forthis term in Remark 4.5.4 below. So, the orresponding �ltration ould bealled the (generalized) oniveau �ltration.
4.5 An extension of results of Bloch and OgusNow we want to relate oniveau spetral sequenes with the homotopy t-struture (in DM eff

− ). This would be a vast extension of the seminal results of�6 of [5℄ (i.e. of the alulation by Bloh and Ogus of the E2-terms of oniveauspetral sequenes) and of �6 of [11℄.We should relate t (for DM eff
− ) and w; it turns out that they are orthogonalwith respet to a ertain quite natural nie duality.

Proposition 4.5.1. For any Y ∈ ObjDM eff
− we extend H ′ = DM eff

− (−, Y )from DM eff
gm to D ⊃ Ds by the method of Proposition 1.2.1; we de�ne

Φ(X,Y ) = H(X). Then the following statements are valid.1. Φ is a nie duality (see De�nition 2.5.1).2 w is left orthogonal to the homotopy t-struture t (on DM eff
− ) with respetto Φ.3. Φ(−, Y ) onverts homotopy limits (in D′) into diret limits in Ab.Proof. 1. By Proposition 2.5.6(1), the restrition of Φ to DM eff
gm

op ×DM eff
−is a nie duality. It remains to apply part 3 of lo.it.2. In the notation of Proposition 2.5.3, we take for D the set of all smallproduts ∏l∈LMgm(Kl)(nl)[nl] ∈ ObjDs; here Mgm(Kl) denote omotives of(spetra of) some funtion �elds over k, nl ≥ 0 and the transendene degreesof Kl/k are bounded (f. �4.1). Then D,Φ satisfy the assumptions of theproposition by Proposition 3.4.1(2) (see also Remark 4.3.2(2)).3. Immediate from Proposition 4.3.1(3).Remark 4.5.2. 1. Suppose that we have an indutive family Yi ∈ ObjDM eff
−onneted by a ompatible family of morphisms with some Y ∈ DM eff

− suh
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Coniveau Spectral Sequences for Motives 95that: for any Z ∈ ObjDM eff
gm we have DM eff

− (Z, Y ) ∼= lim−→DM eff
− (Z, Yi) (viathese morphisms Yi → Y ). In suh a situation it is reasonable to all Y ahomotopy olimit of Yi.The de�nition of Φ in the proposition easily implies: for anyX ∈ ObjD we have

Φ(X,Y ) = lim−→Φ(X,Yi). So, one may say that all objets of D are 'ompatwith respet to Φ', whereas part 3 of the proposition yields that all objets of
DM eff

− are 'oompat with respet to Φ'. Note that no analogues of these nieproperties an hold in the ase of an adjaent weight and t-struture (de�nedon a single triangulated ategory).2. Now, we ould have replaed DM eff
gm by DMgm everywhere in the 'axiomat-is' of D (in Proposition 3.1.1). Then the orresponding ategory Dgm ouldbe used for our purposes (instead of D), sine our arguments work for it also.Note that we an extend Φ to a nie duality Dop

gm ×DM eff
− → Ab; to this endit su�es for Y ∈ ObjDM eff

− to extend H ′ to DMgm in the following way:
H ′(X(−n)) = DM eff

− (X,Y (n)) for X ∈ ObjDM eff
gm ⊂ ObjDMgm, n ≥ 0.Moreover, the methods of �5.4.3 allow to de�ne an invertible Tate twist funtoron Dgm.

Corollary 4.5.3. 1. If H is represented by a Y ∈ ObjDM eff
− (via our Φ)then for a (o)motif X our oniveau spetral sequene T (H,X) starting from E2ould be naturally expressed in terms of the ohomology of X with oe�ientsin t-trunations of Y (as in Theorem 2.6.1).In partiular, the oniveau �ltration for H∗(X) ould be desribed as in part 2of lo.it.2. For U ∈ ObjDM eff

gm , i ∈ Z, we have U ∈ Dw≤i
s ⇐⇒ U ∈ DM eff

−
t≤i.Proof. 1. Immediate from Proposition 4.5.1.2. By Theorem 2.2.1(20), we should hek whether Z ⊥ U for any Z =∏

l∈LMgm(Kl)(nl)[nl + r], where Kl are funtion �elds over k, nl ≥ 0and the transendene degrees of Kl/k are bounded, r > 0 (see Proposi-tion 4.1.1(2)). Moreover, sine U is oompat in D, it su�es to onsider
Z = Mgm(K ′)(n)[n + r] (K ′/k is a funtion �eld, n ≥ 0). Lastly, Corollary4.2.2(2) redues the situation to the ase Z = Mgm(K) (K/k is a funtion�eld).Hene (25) implies: U ∈ Dw≤i

s whenever for any j > i, any funtion �eld K/k,the stalk of U t=j at K is zero. Now, if U ∈ DM eff
−

t≤i then U t=j = 0 for all
j > i; hene all stalks of U t=j are zero. Conversely, if all stalks of U t=j atfuntion �elds are zero, then Corollary 4.19 of [26℄ yields U t=j = 0 (see alsoCorollary 4.20 of lo.it.); if U t=j = 0 for all j > i then U ∈ DM eff

−
t≤i.Remark 4.5.4. 1. Our omparison statement is true for Y -ohomology of anarbitraryX ∈ ObjDM eff

gm ; this extends to motives Theorem 6.4 of [11℄ (whereasthe latter essentially extends the results of �6 of [5℄). We obtain one morereason to all T (in this ase) the oniveau spetral sequene for (ohomologyof) motives.
Documenta Mathematica · Extra Volume Suslin (2010) 33–117



96 M. V. Bondarko2. If Y ∈ ObjHI, then E2(T ) yields the Gersten resolution for Y (when Xvaries); this is why we alled w the Gersten weight struture.3. Now, let Y represent étale ohomology with oe�ients in Z/lZ, l is prime to
char k (Y is atually unbounded from above, yet this is not important). Thenthe t-trunations of Y represent Z/lZ-motivi ohomology by the (reentlyproved) Beilinson-Lihtenbaum onjeture (see [28℄; this paper is not publishedat the moment). Hene Proposition 2.5.4(1) yields some new formulae for Z/lZ-motivi ohomology of X and for the 'di�erene' between étale and motiviohomology. Note also that the virtual t-trunations (mentioned in lo.it.)are exatly the D2-terms of the alternative exat ouple for T (H,X) and forthe version of the exat ouple used in the urrent paper respetively (i.e.we onsider exat ouples oming from the two possible versions for a weightPostnikov tower for X , as desribed in Remark 2.1.3). See also �7.5 of [6℄ formore expliit results of this sort. It ould also be interesting to study oniveauspetral sequenes for singular ohomology; this ould yield a ertain theory of'motives up to algebrai equivalene'; see Remark 7.5.3(3) of lo.it. for moredetails.5. Assertion 2 of the orollary yields that Dw≤0

s ∩ ObjDM eff
gm is large enoughto reover w (in a ertain sense); in partiular, this assertion is similar tothe de�nition of adjaent strutures (see Remark 2.5.7). In ontrast, Dw≥0

s ∩
ObjDM eff

gm seems to be too small.
4.6 Base field change for coniveau spectral sequences; functo-

riality for an uncountable kIt an be easily seen (and well-known) that for any perfet �eld extension l/kthere exist an extension of salars funtor DM eff
gm k → DM eff

gm l ompatiblewith the extension of salars for smooth varieties (and for Kb(SmCor)). In5.4.2 below we will prove that this funtor ould be expanded to a funtor
Extl/k : Dk → Dl that sends Mgm,k(X) to Mgm,l(Xl) for a pro-sheme X/k;this extension proedure is funtorial with respet to embeddings of base �elds.Moreover, Extl/k maps Dsk into Dsl. Note the existene of base hange foromotives does not follow from the properties of D listed in Proposition 3.1.1;yet one an de�ne base hange for our model of omotives (desribed in �5below) and (probably) for any other possible reasonable version of D.Now we prove that base hange for omotives yields base hange for oniveauspetral sequenes; it also allows to prove that these spetral sequenes aremotivially funtorial for not neessary ountable base �elds.In order to make the limit in Proposition 4.6.1(2) below well-de�ned, we assumethat for any X ∈ ObjDM eff

gm there is a �xed representative Y, Z, p hosen,where: Z, Y ∈ Cb(SmCor), Mgm(Y ) ∼= Mgm(Z), p ∈ Cb(SmCor)(Y, Z) yieldsa diret summand of Mgm(Y ) in DM eff
gm that is isomorphi to X . We alsoassume that all the omponents of (X,Y, p) have �xed expressions in terms ofalgebrai equations over k; so one may speak about �elds of de�nition for X .
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Coniveau Spectral Sequences for Motives 97
Proposition 4.6.1. Let l be a perfet �eld, H : Dl → A be any ohomologialfuntor (for an abelian A). For any perfet k ⊂ l we denote H◦Extl/k : Dk → Aby Hk.1. Let l be ountable. Then for any X ∈ ObjDk the method of Proposition2.7.3(II) yields some morphism Nl/k : Twk(Hk, X) → Twl(H,Extl/k(X)); thismorphism is unique and Dk-funtorial in X starting from E2.The orrespondene (l, k) 7→ Nl/k is assoiative with respet to extensions ofountable �elds (starting from E2); f. part I3 of lo.it.2. Let l be a not (neessarily) ountable perfet �eld, let A satisfy AB5.For X ∈ ObjDM eff

gm l we de�ne Tw(H,X) = lim−→k
Twk(Hk, Xk). Here we takethe limit with respet to all perfet k ⊂ l suh that k is ountable, X is de�nedover k; the onneting morphisms are given by the maps N−/− mentioned inassertion 1; we start our spetral sequenes from E2. Then Tw(H,X) is awell-de�ned spetral sequene that is DM eff

gm l-funtorial in X.3. If X = Mgm,l(Z), Z ∈ SmV ar, H is as an extended theory, and A sat-is�es AB5, the spetral sequene given by the previous assertion is anoniallyisomorphi to the lassial oniveau spetral sequene (for (H,Z); onsideredstarting from E2).Proof. 1. By Proposition 2.7.3(II) it su�es to hek that Extl/k is left weight-exat (with respet to weight strutures in question). We take D being thelass of all small produts ∏l∈LMgm(Kl), where Mgm(Kl) denote omotivesof (spetra of) funtion �elds over k of bounded transendene degree. Propo-sition 4.1.1 and Corollary 4.2.2(2) yield that any X ∈ Ds
w=0
k is a retrat ofsome element of D. It su�es to hek that for any X =
∏
l∈LMgm,k(Kl) wehave Extl/kX ∈ Ds

wl≤0
l ; here we reall that wk is bounded and apply Lemma2.7.5.Now, X is the omotif of a ertain pro-sheme, hene the same is true for

Extl/kX . It remains to apply Proposition 4.1.1(5).2. By the assoiativity statement in the previous assertion, the limit is well-de�ned. Sine A satis�es AB5, we obtain a spetral sequene indeed. Sinewe have k-motivi funtoriality of oniveau spetral sequenes over eah k, weobtain l-motivi funtoriality in the limit.3. Again (as in the proof of Proposition 4.4.1(3)) we reall that the lassialoniveau spetral sequene for this ase is de�ned by applying H to 'geometri'Postnikov towers (oming from elements of L as in the proof of Corollary 3.6.2)and then passing to the limit (in A) with respet to L. Our assertion followseasily, sine eah l ∈ L is de�ned over some perfet ountable k ⊂ l; the limitof the spetral sequenes with respet to the subset of L de�ned over a �xed kis exatly Twk(Hk, Xk) sine H sends homotopy limits to indutive limits in A(being an extended theory).Here we ertainly use the funtoriality of T starting from E2.
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98 M. V. BondarkoRemark 4.6.2. 1. For a general X ∈ ObjDM eff
gm we only have a anonialhoie of base hange maps (for T (Hkl , X)) starting from E2; this is why westart our spetral sequene from the E2-level.2. Assertion 2 of the proposition is also valid for any omotif de�ned over a(perfet) ountable sub�eld of l. Unfortunately, this does not seem to inludeomotives of funtion �elds over l (of positive transendene degrees, if l is notountable).

4.7 The Chow weight structure for DTill the end of the setion, we will either assume that char k = 0, or that wedeal with motives, omotives, and ohomology with rational oe�ients (wewill use the same notation for motives with integral and rational oe�ients;f. �6.3 below).We prove that D supports a weight struture that extends the Chow weightstruture of DM eff
gm (see �6.5 and Remark 6.6.1 of [6℄, and also [7℄).In this subsetion we do not require k to be ountable.

Proposition 4.7.1. 1. There exists a Chow weight struture on DM eff
gm thatis uniquely haraterized by the ondition that all Mgm(P ) for P ∈ SmPrV arbelong to its heart; it ould be extended to a weight struture wChow on D.2. The heart of wChow is the ategory HChow of arbitrary small produts of(e�etive) Chow motives.3. We have X ∈ DwChow≥0 if and only if D(X,Y [i]) = {0} for any Y ∈

ObjChoweff , i > 0.4. There exists a t-struture tChow on D that is right adjaent to wChow (seeRemark 2.5.7). Its heart is the opposite ategory to Choweff ∗ (i.e. it is equiv-alent to (AddFun(Choweff , Ab))op).5. wChow respets produts i.e. Xi ∈ DwChow≤0 =⇒ ∏
Xi ∈ DwChow≤0 and

Xi ∈ DwChow≥0 =⇒ ∏
Xi ∈ DwChow≥0.6. For ∏Xi there exists a weight deomposition: ∏

Xi →
∏
Xw≤0
i →∏

Xw≥1
i .7. If H : D → A is an extended theory, then the funtor that sends X to thederived exat ouple for TwChow (H,X) (see Theorem 2.4.2) onverts all smallproduts into diret sums.Proof. 1. It was proved in (Proposition 6.5.3 and Remark 6.6.1 of) [6℄ thatthere exists a unique weight struture w′

Chow on DM eff
gm suh that Mgm(P ) ∈

Dw′
Chow=0 for all P ∈ SmPrV ar. Moreover, the heart of this struture isexatly Choweff ⊂ DM eff

gm .Now, DM eff
gm is generated by Choweff . It easily follows that {Mgm(P ), P ∈

SmPrV ar} weakly ogenerates D. Then the dual (see Theorem 2.2.1(1)) ofTheorem 4.5.2(I2) of [6℄ yields that w′
Chow ould be extended to a weight stru-ture wChow for D. Moreover, the dual to part II1 of lo.it. yields that for thisextension we have: HwChow is the idempotent ompletion of HChow.
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Coniveau Spectral Sequences for Motives 992. It remains to prove that HChow is idempotent omplete. This is obvioussine Choweff is.3. This is just the dual of (27) in lo.it.4. The dual statement to part I2 of lo.it. (f. Remark 1.1.3(1)) yields theexistene of tChow. Applying the dual of Theorem 4.5.2(II1) of [6℄ we obtainfor the heart of t: HtChow ∼= (Choweff∗ )op.5. Theorem 2.2.1(2) easily yields that DwChow≤0 is stable with respet toproduts. The stability of DwChow≥0 with respet to produts follows fromassertion 3; here we reall that all objets of Choweff are oompat in D.6. Immediate from the previous assertion; note that any small produt ofdistinguished triangles is distinguished (see Remark 1.2.2 of [21℄).7. Sine H is extended, it onverts produts in D into diret sums in A. Henefor any Xi ∈ ObjD there exist a hoie of exat ouples for the orrespondingweight spetral sequenes for Xi and ∏Xi that respets produts i.e suh that
Dpq

1 TwChow (H,
∏
Xi) ∼=

⊕
iD

pq
1 TwChow (H,Xi) and Epq1 TwChow (H,

∏
Xi) ∼=⊕

i E
pq
1 TwChow(H,Xi) (for all p.q ∈ Z; this isomorphism is also ompatiblewith the onneting morphisms of ouples). Sine A satis�es AB5, we obtainthe isomorphism desired for D2 and E2-terms (note that those are uniquelydetermined by H and X).Remark 4.7.2. 1. In Remark 2.4.3 of [6℄ it was shown that weight spetralsequenes orresponding to the Chow weight struture are isomorphi to thelassial (i.e. Deligne's) weight spetral sequenes when the latter are de�ned(i.e. for singular or étale ohomology of varieties). Yet in order to speify thehoie of a weight struture here we will all these spetral sequenes Chow-weight ones.2. All the assertions of the Proposition ould be extended to arbitrary tri-angulated ategories with negative families of oompat weak ogenerators(sometimes one should also demand all produts to exist; in assertion 7 weonly need H to onvert all produts into diret sums).3. Sine (e�etive) Chow motives are oompat in D, HwChow is theategory of 'formal produts' of Choweff i.e. D(

∏
l∈LXl,

∏
i∈I Yi) =∏

i∈I(⊕l∈LChoweff (Xl, Yi)) for Xl, Yl ∈ ObjChoweff ⊂ ObjD (f. Remark4.5.3(2) of [6℄).4. Reall (see �7.1 of ibid.) that DM eff
− supports (adjaent) Chow weightand t-strutures (we will denote them by w′

Chow and t′Chow, respetively). Oneould also hek that these strutures are right orthogonal to the orrespondingChow strutures for D. Hene, applying Proposition 2.5.4(1) repeatedly oneould relate the ompositions of trunations (on Ds ⊂ D) via w and via tChow(resp. via w and via wChow) with trunations via t and via w′
Chow (resp. via

t and via t′Chow) on DM eff
− ; f. �8.3 of [6℄. One ould also apply wChow-trunations and then w-trunations (i.e. ompose trunations in the oppositeorder) when starting from an objet ofDM eff

gm . Reall also that trunations via
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100 M. V. Bondarko

tChow (and their ompositions with t-trunations) are related with unrami�edohomology; see Remark 7.6.2 of ibid.
4.8 Comparing Chow-weight and coniveau spectral sequencesNow we prove that Chow-weight and oniveau spetral sequenes are naturallyisomorphi for birational ohomology theories.
Proposition 4.8.1. 1. wChow for D dominates w (for Ds) in the sense of�2.7.2. Let H : DM eff

gm → A be an extended ohomology theory in the sense ofRemark 4.3.2; suppose that H is birational i.e. that H(Mgm(P )(1)[i]) = 0 forall P ∈ SmPrV ar, i ∈ Z. Then for any X ∈ ObjDs the Chow-weight spetralsequene TwChow(H,X) (orresponding to wChow) is naturally isomorphi start-ing from E2 to (our) oniveau spetral sequene Tw(H,X) via the omparisonmorphism M given by Proposition 2.7.3(I1).Proof. 1. Let D be the lass of all ountable produts ∏l∈LMgm(Kl), where
Mgm(Kl) denote omotives of (spetra of) funtion �elds over k of boundedtransendene degree. Proposition 4.1.1 and Corollary 4.2.2(2) yield that any
X ∈ Dw=0

s is a retrat of some element of D. It su�es to hek that any
X =

∏
l∈LMgm(Kl) belongs to DwChow≥0; here we reall that w is boundedand apply Lemma 2.7.5.By Proposition 4.7.1(5), we an assume that L onsists of a single element.In this ase we have D(Mgm(Kl),Mgm(P )[i]) = 0 (this is a trivial ase ofProposition 3.5.1); hene lo.it. yields the result.2. We take the same D and X as above.Let char k = 0. We hoose Pl ∈ SmPrV ar suh that Kl are their fun-tion �elds. Sine all Mgm(Pl) are oompat in D, we have a naturalmorphism X → ∏

Mgm(Pl). By Proposition 2.7.3(I2), it su�es to hekthat Cone(X → ∏
Mgm(Pl)) ∈ DwChow≥0, H(X) ∼= H(

∏
Mgm(Pl)), and

E∗∗
2 TwChow (H,Cone(X → ∏

Mgm(Pl))) = 0.By Proposition 4.7.1(7) we obtain: it su�es again to verify these statementsin the ase when L onsists of a single element. Now, we have Spec(Kl) =
lim←−Mgm(U) for U ∈ SmV ar, k(U) = Kl. Therefore (27) yields: it su�es toverify assertions required for Z = Mgm(U → P ) instead, where U ∈ SmV ar,
U is open in P ∈ SmPrV ar.The Gysin distinguished triangle for Voevodsky's motives (see Proposition 2.4.5of [9℄) easily yields by indution that Z ∈ ObjDM eff

gm (1).Sine Choweff is − ⊗ Z(1)[2]-stable, we obtain that there exists a wChow-Postnikov tower for Z suh that all of its terms are divisible by Z(1); this yieldsthe vanishing of E∗∗
2 TwChow (H,Z). Lastly, the fat that Z ∈ DM eff

gm
w′
Chow≥0was (essentially) proved by easy indution (using the Gysin triangle) in theproof of Theorem 6.2.1 of [7℄.In the ase char k > 0, de Jong's alterations allow to replae Mgm(Pl) inthe reasoning above by some Chow motives (with rational oe�ients); see
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Coniveau Spectral Sequences for Motives 101Appendix B of [14℄; we will not write down the details here.Remark 4.8.2. Assertion 2 is not very atual for ohomology of smooth varietiessine any Z ∈ SmPrV ar is birationally isomorphi to P ∈ SmPrV ar (at leastfor char k = 0). Yet the statement beomes more interesting when applied for
X = M c

gm(Z).
4.9 Birational motives; constructing the Gersten weight struc-

ture by gluing; other possible weight structuresAn alternative way to prove Proposition 4.8.1(2) is to onsider (following [15℄)the ategory of birational omotives. It satis�es the following properties:(i) All birational ohomology theories fatorize through it.(ii) Chow and Gersten weight strutures indue the same weight struture onit (see De�nition 2.7.1(4)).(iii) More generally, for any n ≥ 0 Chow and Gersten weight strutures indueweight strutures on the loalizations D(n)/D(n + 1) ∼= Dbir (we all theseloalizations slies) that di�er only by a shift.Moreover, one ould 'almost reover' original Chow and Gersten weight stru-tures starting from this single weight struture.Now we desribe the onstrutions and fats mentioned in more detail. Wewill be rather skethy here, sine we will not use the results of this subsetionelsewhere in the paper. Possibly, the details will be written down in anotherpaper.As we will show in �5.4.3 below, the Tate twist funtor ould be extended (asan exat funtor) from DM eff
gm to D; this funtor is ompatible with (small)produts.

Proposition 4.9.1. I The funtor − ⊗ Z(1)[1] is weight-exat with respet to
w on Ds; −⊗ Z(1)[2] is weight-exat with respet to wChow on D (we will saythat w is −⊗ Z(1)[1]-stable, and wChow is −⊗ Z(1)[2]-stable).II Let Dbir denote the loalization of D by D(1); B is the loalization funtor.We denote B(Ds) by Ds,bir.1. wChow indues a weight struture w′

bir on Dbir. Besides, w indues a weightstruture wbir on Ds,bir.2. We have D
wbir≤0
s,bir ⊂ D

w′
bir≤0

bir , D
wbir≥0
s,bir ⊂ D

w′
bir≥0

bir (i.e. the embedding
(Ds,bir , wbir)→ (Dbir , w

′
bir) is weight-exat).3. For any pro-sheme U we have B(Mgm(U)) ∈ Dwbir=0

s,bir .Proof. I This is easy, sine the funtors mentioned obviously map the orre-sponding hearts (of weight strutures) into themselves.II 1. By assertion I, wChow indues a weight struture on D(1) (i.e. D(1) is atriangulated ategory, ObjD(1) ∩DwChow≤0 and ObjD(1) ∩DwChow≥0 yield aweight struture on it). Hene by Proposition 8.1.1(1) of [6℄ we obtain existene
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102 M. V. Bondarko(and uniqueness) of w′
bir . The same argument also implies the existene of some

wbir on Ds,bir .2. Now we ompare wbir with w′
bir . Sine w is bounded, wbir also is (seelo.it.). Hene it su�es to hek that Hwbir ⊂ Hw′

bir (see Theorem2.2.1(19)).Moreover, it su�es to hek that for X =
∏
l∈LMgm(Kl) we have B(X) ∈

D
w′
bir=0

bir (sine D
w′
bir=0

bir is Karoubi-losed in Dbir , here we also apply Propo-sition 4.7.1(2)). As in the proof of Proposition 4.8.1(2), we will onsider thease char k = 0; the ase char k = p is treated similarly. Then we hoose Pl ∈
SmPrV ar suh that Kl are their funtion �elds; we have a natural morphism
X → ∏

Mgm(Pl). It remains to hek that Cone(X → ∏
Mgm(Pl)) ∈ Ds(1).Now, sineDs(1) and the lass of distinguished triangles are losed with respetto small produts, it su�es to onsider the ase when L onsists of a singleelement. In this ase the statement is immediate from Corollary 3.6.2.3. Immediate from Corollary 3.6.2.Remark 4.9.2. 1. Assertion II easily implies Proposition 4.8.1(2).Indeed, any extended birational H (as in lo.it.) ould be fatorized as G ◦Bfor a ohomologial G : Dbir → A. Sine B is weight-exat with respet to

wChow (and its restrition to Ds is weight-exat with respet to w), (the trivialase of) Proposition 2.7.3(I2) implies that for any X ∈ ObjD (any hoie)of Tw′
bir

(G,B(X)) is naturally isomorphi starting from E2 to any hoie of
TwChow (H,X); for any X ∈ ObjDs (any hoie) of Twbir (G,B(X)) is naturallyisomorphi starting from E2 to any hoie of Tw(H,X).It is also easily seen that the isomorphism TwChow (H,X)→ Tw(H,X) is om-patible with the omparison morphism M (see lo.it.).2. The proof of existene of wbir and of assertion 3 works with integral o-e�ients even if char k > 0. Hene we obtain that that the ategory image
B(Mgm(U)), U ∈ SmV ar, is negative. We an apply this statement in C be-ing the idempotent ompletion of B(DM eff

gm ) i.e. in the ategory of birationalomotives. Hene Theorem 2.2.1(18) yields: there exists a weight struture for
C whose heart is the ategory of birational Chow motives (de�ned as in �5 of[15℄). Note also that one an pass to the indutive limit with respet to basehange in this statement (f. �4.6); hene one does not need to require k to beountable.Now we explain that w and wChow ould be 'almost reovered' from
(Dbir , w

′
bir). Exatly the same reasoning as above shows that for any n > 0 theloalization of D by D(n) ould be endowed with a weight struture w′

n om-patible with wChow, whereas the loalization of Ds by Ds(n) ould be endowedwith a weight struture wn ompatible with w.Next, we have a short exat sequene of triangulated ategories D/D(n)
i∗→

D/D(n+ 1)
j∗→ Dbir . Here the notation for funtors omes from the 'lassial'gluing data setting (f. �8.2 of [6℄); i∗ ould be given by − ⊗ Z(1)[s] for any
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Coniveau Spectral Sequences for Motives 103
s ∈ Z, j∗ is just the loalization. Now, if we hoose s = 2 then i∗ is weight-exat with respet to w′

n and w′
n+1; if we hoose s = 1 then the restrition of

i∗ to Ds/Ds(n) is weight-exat with respet to wn and wn+1.Next, an argument similar to the one used in �8.2 of [6℄ shows: for any shortexat sequene D i∗→ C
j∗→ E of triangulated ategories, if D and E are endowedwith weight strutures, then there exist at most one weight struture on C suhthat both i∗ and j∗ are weight-exat (see also Lemma 4.6 of [3℄ for the proofof a similar statement for t-strutures). Hene one an reover wn and w′

nfrom (opies of) w′
bir ; the main di�erene between them is that the �rst oneis −⊗ Z(1)[1]-stable, whereas the seond one is − ⊗ Z(1)[2]-stable. It is quiteamazing that weight strutures orresponding to spetral sequenes of quitedistint geometri origin di�er just by [1] here! If one alls the �ltration of Dby D(n) the slie �ltration (this term was already used by A. Huber, B. Kahn,M. Levine, V. Voevodsky, and other authors for other 'motivi' ategories),then one may say that wn and w′

n ould be reovered from slies; the di�erenebetween them is 'how we shift the slies'.Moreover, Theorem 8.2.3 of [6℄ shows: if both adjoints to i∗ and j∗ exist, thenone an use this gluing data in order to glue (any pair) of weight struturesfor D and E into a weight struture for C. So, suppose that we have a weightstruture wn,s for D/D(n) that is − ⊗ (1)[s]-stable and ompatible with w′
biron all slies (in the sense desribed above; so w′

n = wn,2, wn is the restritionof wn,1 to Ds/Ds(n), and all w1,s oinide with w′
bir). General homologialalgebra (see Proposition 3.3 of [18℄) yields that all the adjoints required doexist in our ase. Hene one an onstrut wn+1,s for D/D(n+ 1) that satis�essimilar properties. So, wn,s exist for all n > 0 and all s ∈ Z. Hene Gerstenand Chow weight strutures (forDs/Ds(n) ⊂ D/D(n)) are members of a rathernatural family of weight strutures indexed by a single integral parameter. Itould be interesting to study other members of it (for example, the one that is

−⊗ Z(1)-stable), though possibly w′
n is the only member of this family whoseheart is oompatly generated.This approah ould allow to onstrut w in the ase of a not neessarilyountable k. Note here that the system of Ds/Ds(n) yields a �ne approx-imation of Ds. Indeed, if X ∈ SmPrV ar, n ≥ dimX , then Poinare du-ality yields: for any Y ∈ ObjDM eff
gm we have DM eff

gm (Y (n),Mgm(X)) ∼=
DM eff

gm (Y ⊗ X(n − dimX)[−2 dimX ],Z); this is zero if n > dimX sine Zis a birational motif. Hene (by Yoneda's lemma) for any n > 0 the full sub-ategory of DM eff
gm generated by motives of varieties of dimension less than nfully embeds into DM eff

gm /DM eff
gm (n) ⊂ D/D(n).It follows that the restritions of wn,s to a ertain series of (su�iently small)subategories of D/D(n) are indued by a single −⊗ (1)[s]-stable weight stru-ture ws for the orresponding subategory of D. Here for the orrespondingsubategory of D/D(n) (or D) one an take the union of the subategoriesof D/D(n) (resp. D) generated (in an appropriate sense) by omotives of(smooth) varieties of dimension ≤ r (with r running through all natural num-
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104 M. V. Bondarkobers). Note that this subategory of D ontains DM eff
gm .We also relate brie�y our results with the (onjetural) piture for t-struturesdesribed in [3℄. There another (geometri) �ltration for motives was onsid-ered; this �ltration (roughly) di�ers from the �ltration onsidered above by (aertain version of) Poinare duality. Now, onjeturally the grn of the ategoryof birational motives with rational oe�ients (f. �4.2 of ibid.) should be (thehomotopy ategory of omplexes over) an abelian semisimple ategory. Hene itsupports a t-struture whih is simultaneously a weight struture. This stru-ture should be the building blok of all relevant weight and t-strutures foromotives. Certainly, this piture is quite onjetural at the present moment.Remark 4.9.3. The author also hopes to arry over (some of) the results of theurrent paper to relative motives (i.e. motives over a base sheme that is not a�eld), relative omotives, and their ohomology. One of the possible methodsfor this is the usage of gluing of weight strutures (see �8.2 of [6℄, espeiallyRemark 8.2.4(3) of lo.it.). Possibly for this situation the 'version of D' thatuses motives with ompat support (see �6.4 below) ould be more appropriate.

5 The construction of D and D′; base change and Tate twistsNow we onstrut our ategories D′ and D using the di�erential graded ate-gories formalism.In �5.1 we reall the de�nitions of di�erential graded ategories, modules overthem, shifts and ones (of morphisms).In �5.2 we reall main properties of the derived ategory of (modules over) adi�erential graded ategory.In �5.3 we de�ne D′ and D as the ategories opposite to the orrespondingategories of modules; then we prove that they satisfy the properties required.In �5.4 we use the di�erential graded modules formalism to de�ne base hangefor motives (extension and restrition of salars). This yields: our results on di-ret summands of omotives (and ohomology) of funtion �elds (proved above)ould be arried over to pro-shemes obtained from them via base hange.We also de�ne tensoring of omotives by motives, as well as a ertain 'o-internal Hom' (i.e. the orresponding left adjoint funtor to X ⊗ − for X ∈
ObjDM eff

gm ). These results do not require k to be ountable.
5.1 DG-categories and modules over themWe reall some basi de�nitions; f. [16℄ and [12℄.An additive ategory A is alled graded if for any P,Q ∈ ObjA there is aanonial deomposition A(P,Q) ∼= ⊕iAi(P,Q) de�ned; this deompositionsatis�es Ai(∗, ∗) ◦ Aj(∗, ∗) ⊂ Ai+j(∗, ∗). A di�erential graded ategory (f.[12℄) is a graded ategory endowed with an additive operator δ : Ai(P,Q) →
Ai+1(P,Q) for all i ∈ Z, P,Q ∈ ObjA. δ should satisfy the equalities δ2 = 0(so A(P,Q) is a omplex of abelian groups); δ(f ◦ g) = δf ◦ g+ (−1)if ◦ δg forany P,Q,R ∈ ObjA, f ∈ Ai(P,Q), g ∈ A(Q,R). In partiular, δ(idP ) = 0.
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Coniveau Spectral Sequences for Motives 105We denote δ restrited to morphisms of degree i by δi.Now we give a simple example of a di�erential graded ategory.For an additive ategory B we onsider the ategory B(B) whose objets arethe same as for C(B) whereas for P = (P i), Q = (Qi) we de�ne B(B)i(P,Q) =∏
j∈ZB(P j , Qi+j). Obviously B(B) is a graded ategory. We will also onsidera full subategory Bb(B) ⊂ B(B) whose objets are bounded omplexes.We set δf = dQ◦f−(−1)if ◦dP , where f ∈ Bi(P,Q), dP and dQ are the di�er-entials in P and Q. Note that the kernel of δ0(P,Q) oinides with C(A)(P,Q)(the morphisms of omplexes); the image of δ−1 are the morphisms homotopito 0.Note also that the opposite ategory to a di�erential graded ategory beomesdi�erential graded also (with the same gradings and di�erentials) if we de�ne

fop ◦ gop = (−1)pq(g ◦ f)op for g, f being omposable homogeneous morphismsof degrees p and q, respetively.For any di�erential graded A we de�ne an additive ategory H(A) (some au-thors denote it by H0(A)); its objets are the same as for A; its morphisms arede�ned as
H(A)(P,Q) = Ker δ0A(P,Q)/ Im δ−1

A (P,Q).In the ase when H(A) is triangulated (as a full subategory of the ategory
K(A) desribed below) we will say that A is a (di�erential graded) enhanementfor H(A).We will also need Z(A): ObjZ(A) = ObjA; Z(A)(P,Q) = Ker δ0A(P,Q).We have an obvious funtor Z(A) → H(A). Note that Z(B(B)) = C(B);
H(B(B)) = K(B).Now we de�ne (left di�erential graded) modules over a small di�erential gradedategory A (f. �3.1 of [16℄ or �14 of [12℄): the objets DG-Mod(A) are thoseadditive funtors of the underlying additive ategories A → B(Ab) that pre-serve gradings and di�erentials for morphisms. We de�ne DG-Mod(A)i(F,G)as the set of transformations of additive funtors of degree i; for h ∈
DG-Mod(A)i(F,G) we de�ne δi(h) = dG ◦ f − (−1)if ◦ dF . We have a naturalYoneda embedding Y : Aop → DG-Mod(A) (one should apply Yoneda's lemmafor the underlying additive ategories); it is easily seen to be a full embeddingof di�erential graded ategories.Now we de�ne shifts and ones in DG-Mod(A) omponentwisely. For F ∈
ObjDG-Mod(A) we set F [1](X) = F (X)[1]. For h ∈ Ker δ0DG-Mod(A)(F,G)we de�ne the objet Cone(h): Cone(h)(X) = Cone(F (X) → G(X)) for all
X ∈ ObjA.Note that for A = B(B) both of these de�nitions are ompatible with theorresponding notions for omplexes (with respet to the Yoneda embedding).We have a natural triangle of morphisms in δ0DG-Mod(A):

P
f→ P ′ → Cone(f)→ P [1]. (30)
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106 M. V. Bondarko

5.2 The derived category of a differential graded categoryWe de�ne K(A) = H(DG-Mod(A)). It was shown in �2.2 of [16℄ that K(A) is atriangulated ategory with respet to shifts and ones of morphisms that werede�ned above (i.e. a triangle is distinguished if it is isomorphi to those of theform (30)).We will say that f ∈ Ker δ0DG-Mod(A)(F,G) is a quasi-isomorphism if for any
X ∈ ObjA it yields an isomorphism F (X) → F (Y ). We de�ne D(A) as theloalization of K(A) with respet to quasi-isomorphisms; so it is a triangulatedategory. Note that quasi-isomorphisms yield a loalizing lass of morphismsin K(A). Moreover, the funtor X → H0(F (X)) : K(A)→ Ab is orepresentedby DG-Mod(A)(X,−) ∈ ObjK(A); hene for any X ∈ ObjA, F ∈ ObjK(A) wehave

D(A)(Y (X), F ) ∼= K(A)(Y (X), F ). (31)Hene we have an embedding H(A)op → D(A).We de�ne C(A) as Z(DG-Mod(A)). It is easily seen that C(A) is losed withrespet to (small �ltered) diret limits, and lim−→Fl is given by X → lim−→Fl(X).Now we reall (brie�y) that di�erential graded modules admit ertain 'resolu-tions' (i.e. any objet is quasi-isomorphi to a semi-free one in the terms of �14of [12℄).
Proposition 5.2.1. There exists a full triangulated K ′ ⊂ K(A) suh that theprojetion K(A)→ D(A) indues an equivalene K ′ ≈ D(A). K ′ is losed withrespet to all (small) oproduts.Proof. See �14.8 of [12℄Remark 5.2.2. In fat, there exists a (Quillen) model struture for C(A) suhthat D(A) its homotopy ategory; see Theorem 3.2 of [16℄. Moreover (for the�rst model strutures mentioned in lo.it) all objets of C(A) are �brant, allobjets oming from A are o�brant. For this model struture two morphismsare homotopi whenever they beome equal in K(A). So, one ould take K ′whose objets are the o�brant objets of C(A).Using these fats, one ould verify most of Proposition 3.1.1 (for D′ and Ddesribed below).
5.3 The construction of D′ and D; the proof of Proposition 3.1.1It was proved in �2.3 of [4] (f. also [19℄ or �8.3.1 of [7℄) that DM eff

gm ould bedesribed as H(A), where A is a ertain (small) di�erential graded ategory.Moreover, the funtor Kb(SmCor) → DM eff
gm ould be presented as H(f),where f : Bb(SmCor) → A is a di�erential graded funtor. We will notdesribe the details for (any of) these onstrutions sine we will not needthem.We de�neD′ = C(A)op, D = D(A)op, p is the natural projetion. We verify thatthese ategories satisfy Proposition 3.1.1. Assertion 10 follows from the fat
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Coniveau Spectral Sequences for Motives 107that any loalization of a triangulated ategory that possesses an enhanementis enhaneable also (see ��3.4�3.5 of [12℄).The embedding H(A)op → D(A) yields DM eff
gm ⊂ D′. Sine all objets omingfrom A are oompat in K(A)op, Proposition 5.2.1 yields that the same is truein D. We obtain assertion 1.

D′ is losed with respet to inverse limits sine C(A) is losed with respet todiret ones. Sine the projetion C(A)→ K(A) respets oproduts (as well asall other (�ltered) olimits), Proposition 5.2.1 yields that p respets produtsalso. We obtain assertion 2.The desriptions of C(A) and D(A) yields all the properties of shifts and onesrequired. This yields assertions 3, 4, and 6. Sine D(A) is a loalization of
K(A), we also obtain assertion 5.Next, sine D(A) is a loalization of K(A) with respet to quasi-isomorphisms,we obtain assertion 8.Reall that �ltered diret limits of exat sequenes of abelian groups are exat.Hene for any X ∈ ObjA ⊂ ObjD′, Y : L→ DG-Mod(A) we have

K(A)(DG-Mod(A)(X,−), lim−→l
Yl) = H0((lim−→Yl)(A))

= H0(lim−→(Yl(A))) = lim−→H0(Yl(A)) = lim−→l
K(A)(DG-Mod(A)(X,−), Yl).Applying (31) we obtain assertion 7.It remains to verify assertion 9 of lo.it. Sine the inverse limit with respetto a projetive system is isomorphi to the inverse limit with respet to any itsunbounded subsystem, and the same is true for lim←−1

in the ountable ase, wean assume that I is the ategory of natural numbers, i.e. we have a sequeneof Fi onneted by morphisms.In this ase we have funtorial morphisms lim←−Fi
f→ ∏

Fl
g→ ∏

Fi as in (27).Hene it su�es to hek that these morphisms yield a distinguished trian-gle in D. Note that g ◦ f = 0; hene g ould be fatorized through a mor-phism h : Cone f → ∏
Fi in D′. Sine for any X ∈ ObjA the morphism

h∗ :
∏

D′ Fi(X) → ConeF (X) is a quasi-isomorphism, h beomes an isomor-phism in D. This �nishes the proof.Remark 5.3.1. 1. Note that the only part of our argument when we needed kto be ountable in the proof of assertion 9 of lo.it.2. The onstrutions of A (i.e. of the 'enhanement' for DM eff
gm mentionedabove) that were desribed in [4℄, [19℄, and in [7℄, are easily seen to be funtorialwith respet to base �eld hange (see below). Still, the onstrutions mentionedare distint and far from being the only ones possible; the author does notknow whether all possible D are isomorphi. Still, this makes no di�erene forohomology (of pro-shemes); see Remark 4.3.2.Moreover, note that assertion 10 of Proposition 3.1.1 was not very importantfor us (without if we would only have to onsider a ertain weakly exat weightomplex funtor in �6.1 below; see �3 of [6℄). The author doubts that thisondition follows from the other parts of Proposition 3.1.1.
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108 M. V. Bondarko

5.4 Base change and Tate twists for comotivesOur di�erential graded formalism yields ertain funtoriality of omotives withrespet to embeddings of base �elds. We onstrut both extension and re-strition of salars (the latter one for the ase of a �nite extension of �eldsonly). The onstrution of base hange funtors uses indution for di�erentialgraded modules. This method also allows to de�ne ertain tensor produts and
Co −Hom for omotives. In partiular, we obtain a Tate twist funtor whihis ompatible with (29) (and a left adjoint to it).We note that the results of this subsetion (probably) ould not be deduedfrom the 'axioms' of D listed in Proposition 3.1.1; yet they are quite natural.
5.4.1 Induction and restriction for differential graded modules:

reminderWe reall ertain results of �14 of [12℄ on funtoriality of di�erential gradedmodules. These extend the orresponding (more or less standard) statementsfor modules over di�erential graded algebras (f. �14.2 of ibid.).If f : A→ B is a funtor of di�erential graded ategories, we have an obviousrestrition funtor f∗ : C(B) → C(A). It is easily seen that f∗ also induesfuntors K(B) → K(A) and D(B) → D(A). Certainly, the latter funtorrespets homotopy olimits (i.e. the diret limits from C(B)).Now, it is not di�ult to onstrut an indution funtor f∗ : DG-Mod(A) →
DG-Mod(B) whih is left adjoint to f∗; see �14.9 of ibid. By Example 14.10 ofibid, for any X ∈ ObjA this funtor sends X∗ = A(X,−) to f(X)∗.
f∗ also indues funtors C(A) → C(B) and K(A) → K(B). Restriting thelatter one to the ategory of semi-free modules K ′ (see Proposition 5.2.1) oneobtains a funtor Lf∗ : D(A) → D(B) whih is also left adjoint to the orre-sponding f∗; see �14.12 of [12℄. Sine all funtors of the type X∗ are semi-freeby de�nition, we have Lf∗(X∗) = A(X,−) = Lf(X)∗. It an also be shownthat Lf∗ respets diret limits of objets of Aop (onsidered as A-modules viathe Yoneda embedding). In the ase of ountable limits this follows easily fromthe de�nition of semi-free modules and the expression of the homotopy olimitin D(A) as lim−→Xi = Cone(

⊕
Xi →

⊕
Xi) (this is just the dual to (27)). Forunountable limits, one ould prove the fat using a 'resolution' of the diretlimit similar to those desribed in �A3 of [21℄.

5.4.2 Extension and restriction of scalars for comotivesNow let l/k be an extension of perfet �elds.Reall that D′ and D were desribed (in �5.3) in terms of modules over a ertaindi�erential graded ategory A. It was shown in [19℄ that the orrespondingversion of A is a tensor (di�erential graded) ategory; we also have an extensionof salars funtor Ak → Al. It is most probable that both of these propertieshold for the version of A desribed in [4℄ (note that they obviously hold for
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Coniveau Spectral Sequences for Motives 109
Bb(SmCor)). Moreover, if l/k is �nite, then we have the funtor of restritionof salars in inverse diretion.So, the indution for the orresponding di�erential graded modules yieldsan exat funtor of extension of salars Extl/k : Dk → Dl. The reasoningabove shows that Extl/k is ompatible with the 'usual' extension of salarsfor smooth varieties (and omplexes of smooth orrespondenes). Moreover,sine Extl/k respets homotopy limits, this ompatibility extends to omotivesof pro-shemes and their produts. It an also be easily shown that Extl/krespets Tate twists.We immediately obtain the following result.
Proposition 5.4.1. Let k be ountable (and perfet), let l ⊃ k be a perfet�eld.1. Let S be a onneted primitive sheme over k, let S0 be its generi point.Then Mgm(Sl) is a retrat of Mgm(S0l) in Dl.2. Let K be a funtion �eld over k. Let K ′ be the residue �eld for a geometrivaluation v of K of rank r. Then Mgm(K ′

l(r)[r]) is a retrat of Mgm(Kl) in
Dl.As in 4.3, this result immediately implies similar statements for any ohomologyof pro-shemes mentioned (onstruted from a ohomologialH : DM eff

gm l → Avia Proposition 1.2.1).Next, if l/k is �nite, indution for di�erential graded modules applied tothe restrition of salars for A's also yields a restrition of salars funtor
Resl/k : Dl → Dk. Similarly to Extl/k, this funtor is ompatible with re-strition of salars for smooth varieties, pro-shemes, and omplexes of smoothorrespondenes; it also respets Tate twists.It follows: l/k is �nite, then Extl/k maps Dsk to Dsl; Resl/k maps Dsl to Dsk.Besides, if we also assume l to be ountable, then both of these funtors respetweight strutures (i.e. they map Ds

w≤0
k to Ds

w≤0
l , Ds

w≥0
k to Ds

w≥0
l , and vieversa).Remark 5.4.2. It seems that one an also de�ne restrition of salars via re-strition of di�erential graded modules (applied to the extension of salars for

A's). To this end one needs to hek the orresponding adjuntion for DM eff
gm ;the orresponding (and related) statement for the motivi homotopy ategorieswas proved by J. Ayoub. This would allow to de�ne Resl/k also in the asewhen l/k is in�nite; this seems to be rather interesting if l is a funtion �eldover k. Note that Resl/k (in this ase) would (probably) also map Ds

w≤0
l to

Ds
w≤0
k and Ds

w≥0
l to Ds

w≥0
k (if l is ountable).

5.4.3 Tensor products and ’co-internal Hom’ for comotives; Tate
twistsNow, for X ∈ ObjA we apply restrition and indution of di�erential gradedmodules for the funtor X ⊗ − : A → A. Indution yields a ertain funtor
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X ⊗− : D→ D, whereas restrition yields its left adjoint whih we will denoteby Co −Hom(X,−) : D → D. Both of them respet homotopy limits. Also,
X⊗− is ompatible with tensoring byX onDM eff

gm . Besides, the isomorphismslasses of these funtors only depend on the quasi-isomorphism lass of X in
DG-Mod(A). Indeed, it is easily seen that both X ⊗ Y and Co−Hom(X,Y )are exat with respet to X if we �x Y ; sine they are obviously zero for X = 0,it remains to note that quasi-isomorphi objets ould be onneted by a hainof quasi-isomorphisms.Now suppose that X is a Tate motif i.e. X = Z(m)[n], m > 0, n ∈ Z. Then weobtain that the formal Tate twists de�ned by (29) are the true Tate twists i.e.they are given by tensoring by X on D. Then reall the Canellation Theoremfor motives: (see Theorem 4.3.1 of [25℄, and [27℄)): X ⊗− is a full embeddingof DM eff

gm into itself. Then one an dedue that X ⊗ − is fully faithful on Dalso (sine all objets of D ome from semi-free modules over A). Moreover,
Co −Hom(X,−) ◦ (X ⊗ −) is easily seen to be isomorphi to the identity on
D (for suh an X).
6 SupplementsWe desribe some more properties of omotives, as well as ertain possiblevariations of our methods and results. We will be somewhat skethy sometimes.In �6.1 we de�ne an additive ategory Dgen of generi motives (a variationof those studied in [9℄). We also prove that the exat onservative weightomplex funtor (that exists by the general theory of weight strutures) ouldbe modi�ed to an exat onservativeWC : Ds → Kb(Dgen). Besides, we proveassertions on retrats of the pro-motif of a funtion �eld K/k, that are similarto (and follow from) those for its omotif.In �6.2 we prove that HI has a nie desription in terms of Hw. This is a sort ofBrown representability: a ofuntor Hw → Ab is representable by a (homotopyinvariant) sheaf with transfers whenever it onverts all small produts intodiret sums. This result is similar to the orresponding results of �4 of [6℄ (onthe onnetion between the hearts of adjaent strutures).In �6.3 we note that our methods ould be used for motives (and omotives)with oe�ients in an arbitrary ommutative unital ring R; the most importantases are rational (o)motives and 'torsion' (o)motives.In �6.4 we note that there exist natural motives of pro-shemes with ompatsupport in DM eff

− . It seems that one ould onstrut alternative D and D′using this observation (yet this probably would not a�et our main resultssigni�antly).We onlude the setion by studying whih of our arguments ould be extendedto the ase of an unountable k.
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6.1 The weight complex functor; relation with generic motivesWe reall that the general formalism of weight strutures yields a onservativeexat weight omplex funtor t : Ds → Kb(Hw); it is ompatible with De�ni-tion 2.1.2(9). Next we prove that one an ompose it with a ertain 'projetion'funtor without losing the onservativity.
Lemma 6.1.1. There exists an exat onservative funtor t : Ds → Kb(Hw)that sends X ∈ ObjDs to a hoie of its weight omplex (oming from anyhoie of a weight Postnikov tower for it).Proof. Immediate from Remark 6.2.2(2) and Theorem 3.3.1(V) of [6℄ (note that
Ds has a di�erential graded enhanement by Proposition 3.1.1(10)).Now, sine all objets of Hw are retrats of those that ome via p from inverselimits of objets of j(Cb(SmCor)), we have a natural additive funtor Hw →
Dnaive (see �1.5). Its ategorial image will be denoted by Dgen; this is aslight modi�ation of Deglise's ategory of generi motives. We will denote the'projetion' Hw→ Dgen and Kb(Hw)→ Kb(Dgen) by pr.
Theorem 6.1.2. 1. The funtor WC = pr ◦ t : Ds → Kb(Dgen) is exat andonservative.2. Let S be a onneted primitive sheme, let S0 be its generi point. Then
pr(Mgm(S)) is a retrat of pr(Mgm(S0)) in Dgen.3. Let K be a funtion �eld over k. Let K ′ be the residue �eld for somegeometri valuation v of K of rank r. Then pr(Mgm(K ′)(r)[r]) is a retrat of
pr(Mgm(K)) in Dgen.Proof. 1. The exatness of WC is obvious (from Lemma 6.1.1). Now we hekthat WC is onservative.By Proposition 3.1.1(8), it su�es to hek: if WC(X) is ayli for some
X ∈ ObjDs, then D(X,Y ) = 0 for all Y ∈ ObjDM eff

gm . We denote the termsof t(X) by X i.We onsider the oniveau spetral sequene T (H,X) for the funtor H =
D(−, Y ) (see Remark 4.4.2). Sine WC(X) is ayli, we obtain that theomplexes D(X−i, Y [j]) are ayli for all j ∈ Z. Indeed, note that the restri-tion of a funtor D(X−i,−) to DM eff

gm ould be expressed in terms of pr(X−i);see Remark 3.2.1. Hene E2(T ) vanishes. Sine T onverges (see Proposition4.4.1(2)) we obtain the laim.2. Immediate from Corollary 4.2.2(1).3. Immediate from Corollary 4.2.2(2).Remark 6.1.3. For X = Mgm(Z), Z ∈ SmV ar, it easily seen that WC(X)ould be desribed as a 'naive' limit of omplexes of motives; f. �1.5.Now, the terms of t(X) are just the fators of (some possible) weight Postnikovtower for X ; so one an alulate them (at least, up to an isomorphism) for
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X = Mgm(Z). Unfortunately, it seems di�ult to desribe the boundary for
t(X) ompletely sine Hw is �ner than Dgen.
6.2 The relation of the heart of w with HI (’Brown repre-

sentability’)In Theorem 4.4.2(4) of [6℄, for a pair of adjaent strutures (w, t) for C(see Remark 2.5.7) it was proved that Ht is a full subategory of Hw∗(=
AddFun(Hwop, Ab)). This result annot be extended to arbitrary orthog-onal strutures sine our de�nition of a duality did not inlude any non-degenerateness onditions (in partiular, Φ ould be 0). Yet for our mainexample of orthogonal strutures the statement is true; moreover, HI has anatural desription in terms of Hw. This statement is very similar to a ertainBrown representability-type result (for adjaent strutures) proved in Theorem4.5.2(II.2) of ibid.Note thatHw is losed with respet to arbitrary small produts; see Proposition4.1.1(2).
Proposition 6.2.1. HI is naturally isomorphi to a full abelian subategory
Hw′

∗ of Hw∗ that onsists of funtors that onvert all produts in Hw intodiret sums (of the orresponding abelian groups).Proof. First, note that for any G ∈ ObjDM eff
− the funtor D→ Ab that sends

X ∈ ObjD to Φ(X,G) (Φ is the duality onstruted in Proposition 4.5.1) isohomologial. Moreover, it onverts homotopy limits into injetive limits (ofthe orresponding abelian groups); hene its restrition to Hw belongs to Hw′
∗.We obtain an additive funtor DM eff

gm → Hw′
∗. In fat, it fatorizes through

HI (by (25)). For G ∈ ObjHI we denote the funtor Hw → Ab obtained by
G′.Next, for any (additive) F : Hwop → Ab we de�ne F ′ : Ds → Ab by:

F ′(X) = (Ker(F (X0)→ F (X−1))/ Im(F (X1)→ F (X0)); (32)here X i is a weight omplex for X . It easily seen from Lemma 6.1.1 that F ′ isa well-de�ned ohomologial funtor. Moreover, Theorem 2.2.1(19) yields that
F ′ vanishes on Dw≤−1

s and on Dw≥1
s (sine it vanishes on Dw=i

s for all i 6= 0).Hene F ′ de�nes an additive funtor F ′′ = F ′ ◦Mgm : SmCorop → Ab i.e. apresheaf with transfers. Sine Mgm(Z) ∼= Mgm(Z × A1) for any Z ∈ SmV ar,
F ′′ is homotopy invariant. We should hek that F ′′ is atually a (Nisnevih)sheaf. By Proposition 5.5 of [26℄, it su�es to hek that F ′′ is a Zariski sheaf.Now, the the Mayer-Vietoris triangle for motives (�2 of [25℄) yields: to anyZariski overing U∐V → U ∪ V there orresponds a long exat sequene
· · · → F ′(Mgm(U ∩ V )[1]) → F ′′(U ∪ V ) → F ′′(U)

⊕

F ′′(V ) → F ′′(U ∩ V ) → . . .SineMgm(U∩V ) ∈ Dw≤0
s by part 5 of Proposition 4.1.1, we have F ′(Mgm(U∩

V )[1]) = {0}; hene F ′′ is a sheaf indeed.
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Coniveau Spectral Sequences for Motives 113So, F 7→ F ′′ yields an additive funtor Hw∗ → HI.Now we hek that the funtor G 7→ G′ (desribed above) and the restritionsof F 7→ F ′′ toHw′
∗ ⊂ Hw∗ yield mutually inverse equivalenes of the ategoriesin question.(24) immediately yields that the funtor HI → HI that sends G ∈ ObjHI to

(G′)′′ is isomorphi to idHI .Now for F ∈ ObjHw′
∗ we should hek: for any P ∈ Dw=0

s we have a natu-ral isomorphism (F ′′)′(P ) ∼= F (P ). Sine Hw is the idempotent ompletionof H , it su�es to onsider P being of the form ∏
l∈LMgm(Kl)(nl)[nl] (here

Kl are funtion �elds over k, nl ≥ 0; nl and the transendene degrees of
Kl/k are bounded); see part 2 of Proposition 4.1.1. Moreover, sine F on-verts produts into diret sums, it su�es to onsider P = Mgm(K ′)(n)[n](K ′/k is a funtion �eld, n ≥ 0). Lastly, part 2 of Corollary 4.2.2 redues thesituation to the ase P = Mgm(K) (K/k is a funtion �eld). Now, by the de�-nition of the funtor G 7→ G′, we have (F ′′)′(Mgm(K)) = lim−→l∈L F

′′(Mgm(Ul)),where K = lim←−l∈L Ul, Ul ∈ SmV ar. We have F ′′(Ul) = KerF (Mgm(K)) →
F (
∏
z∈U1

l
Mgm(z)(1)[1]); here U1

l is the set of points of Ul of odimen-sion 1. Sine F (
∏
z∈U1

l
Mgm(z)(1)[1]) = ⊕z∈U1

l
F (Mgm(z)(1)[1]); we have

lim−→l∈L F (
∏
z∈U1

l
Mgm(z)(1)[1]) = {0}; this yields the result.

6.3 Motives and comotives with rational and torsion coeffi-
cientsAbove we onsidered (o)motives with integral oe�ients. Yet, as was shownin [20℄, one ould do the theory of motives with oe�ients in an arbitraryommutative assoiative ring with a unit R. One should start with the naturallyde�ned ategory of R-orrespondenes: Obj(SmCorR) = SmV ar; for X,Y in

SmV ar we set SmCorR(X,Y ) =
⊕

U R for all integral losed U ⊂ X×Y thatare �nite over X and dominant over a onneted omponent of X . Then oneobtains a theory of motives that would satisfy all properties that are required inorder to dedue the main results of this paper. So, we an de�ne R-omotivesand extend our results to them.A well-known ase of motives with oe�ients are the motives with rationaloe�ients (note that Q is a �at Z-algebra). Yet, one ould also take R = Z/nZfor any n prime to char k.So, the results of this paper are also valid for rational (o)motives and 'torsion'(o)motives.Still, note that there ould be idempotents for R-motives that do not omefrom integral ones. In partiular, for the naturally de�ned rational motiviategories we have DM eff
gm Q 6= DM eff

gm ⊗ Q; also ChoweffQ 6= Choweff ⊗ Q(here ChoweffQ ⊂ DM eff
gm Q denote the orresponding R-hulls). Certainly,this does not matter at all in the urrent paper.

Documenta Mathematica · Extra Volume Suslin (2010) 33–117



114 M. V. Bondarko

6.4 Another possibility for D; motives with compact support of
pro-schemesIn the ase char k = 0, Voevodsky developed a nie theory of motives withompat support that is ompatible with Poinare duality; see Theorem 4.3.7of [25℄. Moreover, the expliit onstrutions of [25℄ yield that the funtor ofmotif with ompat support M c

gm : SmV arop → DM eff
gm is ompatible witha ertain jc : SmV aropfl → C−(Shv(SmCor)) (whih sends X to the Suslinomplex of Lc(X), see �4.2 lo.it.); this observation was kindly ommuniatedto the author by Bruno Kahn). This allows to de�ne jc(V ) for a pro-sheme

V as the orresponding diret limit (in C(Shv(SmCor))).Starting from this observation, one ould try to develop an analogue of ourtheory using the funtor M c
gm. One ould onsider D = DM eff

−
op; then itwould ontain DM eff

gm
op as the full ategory of oompat objets. It seemsthat our arguments ould be arried over to this ontext. One an onstrutsome D′ for this D using ertain di�erential graded ategories.Though motives with ompat support are Poinare dual to ordinary motivesof smooth varieties (up to a ertain Tate twist), we do not have a ovariantembedding DM eff

gm → D (for this 'alternative' D), sine (the whole) DM eff
gm isnot self-dual. Still, DM eff

gm has a nie embedding into (Voevodsky's) self-dualategory DMgm; it ontains an exhausting system of self-dual subategories.Hene this alternative D would yield a theory that is ompatible with (thoughnot 'isomorphi' to) the theory developed above.Sine the alternative version of D is losely related with DM eff
−

op, it seemsreasonable to all its objets omotives (as we did for the objets of 'our' D).These observations show that one an dualize all the diret summands resultsof �4 to obtain their natural analogues for motives of pro-shemes with ompatsupport. Indeed, to prove them we may apply the duals of our arguments in�4 without any problem; see part 2 of Remark 3.1.2. Note that we obtainertain diret summand statements for objets of DM eff
− this way. This is anadvantage of our 'axiomati' approah in �3.1.One ould also take Dop = ∪n∈ZDM

eff
gm (−n) (more preisely, this is the diretlimit of opies of DM eff

gm with onneting morphisms being − ⊗ Z(1)). Thenwe have a ovariant embedding DM eff
gm → DMgm → D.Note that both of these alternative versions of D are not losed with respet toall (ountable) produts, and so not losed with respet to all (�ltered ount-able) homotopy limits; yet they ontain all produts and homotopy limits thatare required for our main arguments.

6.5 What happens if k is uncountableWe desribe whih of the arguments above ould be applied in the ase of anunountable k (and for whih of them the author has no idea how to ahievethis). The author warns that he didn't hek the details thoroughly here.
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Coniveau Spectral Sequences for Motives 115As we have already noted above, it is no problem to de�ne D, D′, or even Dsfor any k. The main problem here that (if k is unountable) the omotives ofgeneri points of varieties (and of other pro-shemes) an usually be presentedonly as unountable homotopy limits of motives of varieties. The general for-malism of inverse limits (applied to the ategories of modules over a di�erentialgraded ategory) allows to extend to this ase all parts of Proposition 3.1.1 ex-pet part 9. This atually means that instead of the short exat sequene (28)one obtains a spetral sequene whose E1-terms are ertain lim←−
j ; here lim←−

j isthe j's derived funtor of lim←−I ; f. Appendix A of [21℄. This does not seem tobe atastrophi; yet the author has absolutely no idea how to ontrol higherprojetive limits in the proof of Proposition 3.5.1; note that part 2 of lo.it.is espeially important for the onstrution of the Gersten weight struture.Besides, the author does not know how to pass to an unountable homotopylimit in the Gysin distinguished triangle. It seems that to this end one eitherneeds to lift the funtoriality of the (usual) motivi Gysin triangle to D′, orto �nd a way to desribe the isomorphism lass of an unountable homotopylimit in D in terms of D-only (i.e. without �xing any lifts to D′; this seems tobe impossible in general). So, one ould de�ne the 'Gersten' weight tower for aomotif of a pro-sheme as as the homotopy limit of 'geometri towers' (as in theproof of Corollary 3.6.2); yet it seems to be rather di�ult to alulate fatorsof suh a tower. It seems that the problems mentioned do not beome simplerfor the alternative versions of D desribed in �6.4. So, urrently the author doesnot know how to prove the diret summand results of �4.2 if k is unountable(they even ould be wrong). The problem here that the splittings of �4.2 arenot anonial (see Remark 4.2.3), so one annot apply a limit argument (as in�4.6) here.It seems that onstruting the Gersten weight struture is easier for Ds/Ds(n)(for some n > 0); see �4.9.Lastly, one an avoid the problems with homotopy limits ompletely by re-striting attention to the subategory of Artin-Tate motives in DM eff
gm (i.e.the triangulated ategory generated by Tate twists of motives of �nite exten-sions of k, as onsidered in [30℄). Note that oniveau spetral sequenes forohomology of suh motives (ould be hosen to be) very 'eonomi'.

References[1℄ Balmer P., Shlihting M. Idempotent ompletion of triangulated ate-gories// Journal of Algebra 236, no. 2 (2001), 819-834.[2℄ Beilinson A., Bernstein J., Deligne P., Faiseaux pervers, Asterisque 100,5�171.[3℄ Beilinson A., Remarks on n-motives and orrespondenes at the generipoint, in: Motives, polylogarithms and Hodge theory, part I, Irvine, CA,1998, Int. Press Let. Ser., 3, I, Int. Press, Somerville, MA, 2002, 35�46.
Documenta Mathematica · Extra Volume Suslin (2010) 33–117



116 M. V. Bondarko[4℄ Beilinson A., Vologodsky V. A guide to Voevodsky motives// Geom. Funt.Analysis, vol. 17, no. 6, 2008, 1709�1787.[5℄ Bloh S., Ogus A. Gersten's onjeture and the homology of shemes//Ann. Si. É. Norm. Sup. v.7 (1994), 181�202.[6℄ Bondarko M.V., Weight strutures vs. t-strutures; weight �ltrations, spe-tral sequenes, and omplexes (for motives and in general), to appear in J.of K-theory, http://arxiv.org/abs/0704.4003[7℄ Bondarko M.V., Di�erential graded motives: weight omplex, weight �ltra-tions and spetral sequenes for realizations; Voevodsky vs. Hanamura//J. of the Inst. of Math. of Jussieu, v.8 (2009), no. 1, 39�97, see alsohttp://arxiv.org/abs/math.AG/0601713[8℄ J.-L. Colliot-Thelène, R.T. Hoobler, B. Kahn, The Bloh-Ogus-GabberTheorem; Algebrai K-Theory, in: Fields Inst. Commun., Vol. 16, Amer.Math. So., Providene, RI, 1997, 31�94.[9℄ Deglise F. Motifs génériques, Rendionti Sem. Mat. Univ. Padova, 119:173�244, see also http://www.math.uiu.edu/K-theory/0690/[10℄ Deglise F. Around the Gysin triangle I, preprint,http://arxiv.org/abs/0804.2415http://www.math.uiu.edu/K-theory/0764/[11℄ Deglise F. Modules homotopiques (Homotopy modules), preprint,http://arxiv.org/abs/0904.4747[12℄ Drinfeld V. DG quotients of DG ategories// J. of Algebra 272 (2004),643�691.[13℄ Gelfand S., Manin Yu., Methods of homologial algebra. 2nd ed. SpringerMonographs in Mathematis. Springer-Verlag, Berlin, 2003. xx+372 pp.[14℄ Huber A., Kahn B. The slie �ltration and mixed Tate motives, Compos.Math. 142(4), 2006, 907�936.[15℄ Kahn B., Sujatha R., Birational motives, I, preprint,http://www.math.uiu.edu/K-theory/0596/[16℄ Keller B., On di�erential graded ategories, International Congress ofMathematiians. Vol. II, 151�190, Eur. Math. So., Zürih, 2006.[17℄ Krause H., Smashing subategories and the telesope onjeture � analgebrai approah // Invent. math. 139, 2000, 99�133.[18℄ Krause H., The stable derived ategory of a noetherian sheme// Comp.Math., 141:5 (2005), 1128�1162.
Documenta Mathematica · Extra Volume Suslin (2010) 33–117

http://arxiv.org/abs/0704.4003
http://arxiv.org/abs/math.AG/0601713
http://www.math.uiuc.edu/K-theory/0690/
http://arxiv.org/abs/0804.2415
http://www.math.uiuc.edu/K-theory/0764/
http://arxiv.org/abs/0904.4747
http://www.math.uiuc.edu/K-theory/0596/


Coniveau Spectral Sequences for Motives 117[19℄ Levine M. Mixed motives, Math. surveys and Monographs 57, AMS, Prov.1998.[20℄ Mazza C., Voevodsky V., Weibel Ch. Leture notes on mo-tivi ohomology, Clay Mathematis Monographs, vol. 2, see alsohttp://www.math.rutgers.edu/~weibel/MVWnotes/prova-hyperlink.pdf[21℄ Neeman A. Triangulated Categories. Annals of Mathematis Studies 148(2001), Prineton University Press, viii+449 pp.[22℄ Paranjape K., Some Spetral Sequenes for Filtered Complexes and Ap-pliations// Journal of Algebra, v. 186, i. 3, 1996, 793�806.[23℄ Pauksztello D., Compat ohain objets in triangulated ategories ando-t-strutures// Central European Journal of Mathematis, vol. 6, n. 1,2008, 25�42.[24℄ Rost M. Chow groups with oe�ients// Do. Math., 1 (16), 319�393,1996.[25℄ Voevodsky V. Triangulated ategory of motives, in: Voevodsky V., SuslinA., and Friedlander E., Cyles, transfers and motivi homology theories,Annals of Mathematial studies, vol. 143, Prineton University Press, 2000,188�238.[26℄ Voevodsky V. Cohomologial theory of presheaves with transfers, samevolume, 87�137.[27℄ Vladimir Voevodsky Canellation Theorem Do. Math. Extra Volume:Andrei A. Suslin's Sixtieth Birthday (2010) 671�685.[28℄ Voevodsky V. On motivi ohomology with Z/l oe�ients, preprint,http://arxiv.org/abs/0805.4430[29℄ Walker M., The primitive topology of a sheme// J. of Algebra 201 (1998),655�685.[30℄ Wildeshaus J., Notes on Artin-Tate motives, preprint,http://www.math.uiu.edu/K-theory/0918/Mikhail V. BondarkoSt. Petersburg StateUniversityDepartment of Mathematisand MehanisBibliotehnaya Pl. 2198904 St. PetersburgRussiambondarko�hotmail.om
Documenta Mathematica · Extra Volume Suslin (2010) 33–117

http://www.math.rutgers.edu/~weibel/MVWnotes/prova-hyperlink.pdf
http://arxiv.org/abs/0805.4430
http://www.math.uiuc.edu/K-theory/0918/


118

Documenta Mathematica · Extra Volume Suslin (2010)



Documenta Math. 119

On Equivariant Dedekind Zeta-Functions at s = 1

Dedicated to Professor Andrei Suslin

Manuel Breuning and David Burns

Received: November 19, 2009

Revised: April 26, 2010

Abstract. We study a refinement of an explicit conjecture of Tate
concerning the values at s = 1 of Artin L-functions. We reinterpret
this refinement in terms of Tamagawa number conjectures and then
use this connection to obtain some important (and unconditional)
evidence for our conjecture.

2010 Mathematics Subject Classification: 11R42, 11R33
Keywords and Phrases: Artin L-functions, equivariant zeta functions,
leading terms

1. Introduction and statement of main results

This article studies a refinement of a conjecture of Tate concerning the values
at s = 1 of Artin L-functions. We recall that Tate’s conjecture was originally
formulated in [26, Chap. I, Conj. 8.2] as an analogue of (Tate’s reformulation
of) the main conjecture of Stark on the leading terms at s = 0 of Artin L-
functions and that the precise form of the ‘regulators’ and ‘periods’ that Tate
introduced in this context were natural generalisations of earlier constructions
of Serre in [24].
The refinement of Tate’s conjecture that we study here was formulated by
the present authors in [5, Conj. 3.3] and predicts an explicit formula for the
leading term at s = 1 of the zeta-function of a finite Galois extension of number
fields L/K in terms of the Euler characteristic of a certain perfect complex of
Gal(L/K)-modules (see (3) for a statement of this formula). In comparison to
Tate’s conjecture, this refinement predicts not only that the quotient by Tate’s
regulator of the leading term at s = 1 of the Artin L-function of a complex
character χ of Gal(L/K) is an algebraic number but also that as χ varies these
algebraic numbers should be related by certain types of integral congruence
relations. We further recall that [5, Conj. 3.3] is also known to imply the
‘Ω(1)-Conjecture’ that was formulated by Chinburg in [13].

Documenta Mathematica · Extra Volume Suslin (2010) 119–146



120 Manuel Breuning and David Burns

In the sequel we write Q(1)L for the motive h0(SpecL)(1), considered as defined
over K and endowed with the natural action of the group ring Q[Gal(L/K)].
We recall that the ‘equivariant Tamagawa number conjecture’ applies in par-
ticular to pairs of the form (Q(1)L,Z[Gal(L/K)]) and was formulated by Flach
and the second named author in [9] as a natural refinement of the seminal
‘Tamagawa number conjecture’ of Bloch and Kato [3]. The main technical
result of the present article is then the following

Theorem 1.1. Let L be a finite complex Galois extension of Q. If Leopoldt’s
Conjecture is valid for L, then [5, Conj. 3.3] is equivalent to the equivariant
Tamagawa number conjecture of [9, Conj. 4] for the pair (Q(1)L,Z[Gal(L/Q)]).

Corollary 1.2. If Leopoldt’s Conjecture is valid for every number field, then
for every Galois extension of number fields L/K the conjecture [5, Conj. 3.3]
is equivalent to the conjecture [9, Conj. 4] for the pair (Q(1)L,Z[Gal(L/K)]).

These results connect the explicit leading term formula of [5, Conj. 3.3] to
a range of interesting results and conjectures. For example, [9, Conj. 4(iv)] is
known to be a consequence of the ‘main conjecture of non-commutative Iwasawa
theory’ that is formulated by Fukaya and Kato in [18, Conj. 2.3.2] and also of
the ‘main conjecture of non-commutative Iwasawa theory for Tate motives’
that is formulated by Venjakob and the second named author in [12, Conj.
7.1]. Corollary 1.2 therefore allows one to regard the study of the explicit
conjecture [5, Conj. 3.3] as an attempt to provide supporting evidence for
these more general conjectures. Indeed, when taken in conjunction with the
philosophy described by Huber and Kings in [19, §3.3] and by Fukaya and Kato
in [18, §2.3.5], Corollary 1.2 suggests that, despite its comparatively elementary
nature, [5, Conj. 3.3] may well play a particularly important role in the context
of the very general conjecture of Fukaya and Kato.
In addition to the above consequences, our proof of Theorem 1.1 also answers
an explicit question posed by Flach and the second named author in [7] (see
Remark 5.1) and combines with previous work to give new evidence in support
of the conjectures made in [5] including the following unconditional results.

Corollary 1.3. If L is abelian over Q, and K is any subfield of L, then both
[5, Conj. 3.3] and [5, Conj. 4.1] are valid for the extension L/K.

Corollary 1.4. There exists a natural infinite family of quaternion extensions
L/Q with the property that, if K is any subfield of L, then both [5, Conj. 3.3]
and [5, Conj. 4.1] are valid for the extension L/K.

We recall (from [5, Prop. 4.4(i)]) that [5, Conj. 4.1] is a natural refinement of
the ‘main conjecture of Stark at s = 0’. For details of connections between
[5, Conj. 3.3 and Conj. 4.1] and other interesting conjectures of Chinburg, of
Gruenberg, Ritter and Weiss and of Solomon see [5, Prop. 3.6 and Prop. 4.4]
and the recent thesis of Jones [20].
The main contents of this article is as follows. In §2 we recall the explicit state-
ment of [5, Conj. 3.3] and in §3 we review (and clarify) certain constructions
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in étale cohomology that are made in [8]. In §4 we make a detailed analysis of
the p-adic completion of the perfect complex that occurs in [5, Conj. 3.3]. In
§5 we prove Theorem 1.1 and in §6 we use Theorem 1.1 to prove Corollaries
1.2, 1.3 and 1.4.
Acknowledgements. It is a pleasure for us to thank Werner Bley and
Matthias Flach and also the referee of [5] for some very useful comments about
this paper. In addition, the first author would like to thank the Isaac Newton
Institute where part of this paper was written.

2. The explicit leading term conjecture

In this section we quickly review [5, Conj. 3.3]. To do this it is necessary to
summarise some background about K-theory and homological algebra.

2.1. K-theory. Let R be an integral domain of characteristic 0, E an ex-
tension of the field of fractions of R, and G a finite group. We denote the
relative algebraic K-group associated to the ring homomorphism R[G]→ E[G]
by K0(R[G], E); a description of K0(R[G], E) in terms of generators and rela-
tions is given in [25, p. 215]. The group K0(R[G], E) is functorial in the pair
(R,E) and also sits inside a long exact sequence of relative K-theory. In this
paper we will use the homomorphisms ∂1R[G],E : K1(E[G])→ K0(R[G], E) and

∂0R[G],E : K0(R[G], E)→ K0(R[G]) from the latter sequence.

Let Z(E[G])× denote the multiplicative group of the centre of the finite dimen-
sional semisimple E-algebra E[G]. The reduced norm induces a homomorphism
nr : K1(E[G])→ Z(E[G])× and we denote its image by Z(E[G])×+. In this pa-
per E will always be either R or Cp for some prime number p. In both cases the
map nr is injective and hence we can use it to identify K1(E[G]) and Z(E[G])×+.
In particular we will consider ∂1R[G],E as a map Z(E[G])×+ → K0(R[G], E). If

E = Cp then Z(E[G])×+ = Z(E[G])×.
For every prime p and embedding j : R → Cp there are induced homomor-
phisms j∗ : K0(Z[G],R) → K0(Zp[G],Cp) and j∗ : Z(R[G])× → Z(Cp[G])×.

In [5, §2.1.2] it is shown that there exists a (unique) homomorphism ∂̂1G :
Z(R[G])× → K0(Z[G],R) which coincides with ∂1Z[G],R on Z(R[G])×+ and is

such that for every prime p and embedding j : R → Cp one has j∗ ◦ ∂̂1G =
∂1Zp[G],Cp

◦ j∗ : Z(R[G])× → K0(Zp[G],Cp).

2.2. Homological algebra. For our homological algebra constructions in
this paper we use the same notations and sign conventions as in [5]. So in
particular by a complex we mean a cochain complex of left R-modules for a
ring R, we use the phrase ‘distinguished triangle’ in the sense specified in [5,
§2.2.1] and by a perfect complex we mean a complex that in the derived category
D(R) is isomorphic to a bounded complex of finitely generated projective left
R-modules. The full triangulated subcategory of D(R) consisting of the perfect
complexes will be denoted by Dperf(R).
Now let R, E and G be as in §2.1. For any object C of D(R[G]) we write
Hev(C) and Hod(C) for the direct sums ⊕i evenHi(C) and ⊕i oddHi(C) where
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i runs over all even and all odd integers respectively. A trivialisation t (over
E) of a complex C in Dperf(R[G]) is an isomorphism of E[G]-modules of the

form t : Hev(C) ⊗R E
∼=−→ Hod(C) ⊗R E. We write χR[G],E(C, t) for the Euler

characteristic in K0(R[G], E) defined in [4, Definition 5.5]. To simplify notation
in the sequel we write χG for χZ[G],R.
We shall interpret certain complexes in the derived category in terms of
Yoneda extension classes as in [8, p. 1353]. To be specific, for any com-
plex E that is acyclic outside degrees 0 and n ≥ 1 we associate the class in
Extn+1

R (Hn(E), H0(E)) given by the truncated complex E′ := τ≤nτ≥0E with

the induced maps H0(E)
∼=−→ H0(E′)→ (E′)0 and (E′)n → Hn(E′)

∼=−→ Hn(E)
considered as a Yoneda extension.

2.3. Notation for number fields. Let L be a number field. We write OL
for the ring of integers of L and S(L) for the set of all places of L. For any place
w ∈ S(L) we denote the completion of L at w by Lw. For a non-archimedean
place w we write Ow for the ring of integers of Lw, mw for the maximal ideal

of Ow and U
(1)
Lw

for the group 1 + mw of principal units in Lw.
If L is an extension of K and v ∈ S(K) then Sv(L) is the set of all places of
L above v. We also use the notation Sf (L) and S∞(L) for the sets of all non-
archimedean and archimedean places, SR(L) for the set of real archimedean
places and SC(L) for the set of complex archimedean places.
From now on let L/K be a Galois extension of number fields with Galois group
G. For w in S(L) we let Gw denote the decomposition group of w. For any place
v in S(K) we set Lv :=

∏
w∈Sv(L) Lw and (if v ∈ Sf (K)) OL,v :=

∏
w∈Sv(L)Ow

and mL,v :=
∏
w∈Sv(L)mw. Note that Lv, OL,v and mL,v are G-modules in an

obvious way.
Let S be a finite subset of S(K). The G-stable set of places of L that lie above
a place in S will also be denoted by S. This should not cause any confusion
because places of K will be called v and places of L will be called w. For a finite
subset S of S(K) which contains all archimedean places we let OL,S be the ring
of S-integers in L. Note that OL,S is a G-module and that if S = S∞(K), then
OL = OL,S.

2.4. The conjecture. Let L/K be a Galois extension of number fields with
Galois groupG. Let S be a finite subset of S(K) which contains all archimedean
places and all places which ramify in L/K and is such that Pic(OL,S) = 0. In
[5, Lemma 2.7(ii)] it is shown that the leading term ζ∗L/K,S(1) at s = 1 of the

S-truncated zeta-function of L/K belongs to Z(R[G])×+. In this subsection

we recall the explicit conjectural description of ∂̂1G(ζ∗L/K,S(1)) formulated in [5,

Conj. 3.3].
For each v ∈ S∞(K) we let exp : Lv → L×

v denote the product of the (real or
complex) exponential maps Lw → L×

w for w ∈ Sv(L). If v ∈ Sf (K), then for
sufficiently large i the exponential map exp : miL,v → L×

v is the product of the

p-adic exponential maps miw → L×
w for w ∈ Sv(L).
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To state [5, Conj. 3.3] we need to choose certain lattices. For each v ∈ Sf :=
S ∩ Sf (K), with residue characteristic p, we choose a full projective Zp[G]-
lattice Lv ⊆ OL,v which is contained in a sufficiently large power of mL,v to
ensure that the exponential map is defined on Lv. Let L be the full projective
Z[G]-sublattice of OL which has p-adic completions

(1) L ⊗Z Zp =

( ∏

v∈Sp(K)\S
OL,v

)
×
( ∏

v∈Sp(K)∩S
Lv
)
.

We set LS :=
∏
v∈S Lv and LS :=

∏
v∈S Lv (where Lv := Lv for each v ∈

S∞(K)) and we let expS denote the map LS → L×
S that is induced by the

product of the respective exponential maps. We also write ∆S for the natural
diagonal embedding from L× to L×

S .
Following the notation of [23, Chap. VIII] we write IL for the group of idèles
of L and regard L× as embedded diagonally in IL. The idèle class group is
CL := IL/L

× and the S-idèle class group is CS(L) := IL/(L
×UL,S), where

UL,S :=
∏
w∈S{1} ×

∏
w/∈S O×

w . We remark that since Pic(OL,S) = 0, the

natural map L×
S → CS(L) is surjective with kernel ∆S(O×

L,S). There is also a

canonical invariant isomorphism invL/K,S : H2(G,CS(L))
∼=−→ 1

|G|Z/Z and we

write eglobS for the element of Ext2Z[G](Z, CS(L)) = H2(G,CS(L)) that is sent

by invL/K,S to 1
|G| .

Let ES be a complex in D(Z[G]) which corresponds (in the sense of the last

paragraph of §2.2) to eglobS . Then by [5, Lemma 2.4] there is a unique morphism
αS : LS [0] ⊕ L[−1] → ES in D(Z[G]) for which H0(αS) is the composite

LS
expS−−−→ L×

S → CS(L) and H1(αS) is the restriction of the trace map trL/Q :
L→ Q to L. Let ES(L) be any complex which lies in a distinguished triangle
in D(Z[G]) of the form

(2) LS [0]⊕ L[−1]
αS−−→ ES

βS−−→ ES(L)
γS−−→ .

To describe the cohomology of ES(L) we set L∞ :=
∏
w∈S∞(L) Lw and

write L0
∞ for the kernel of the map L∞ → R defined by (lw)w∈S∞(L) 7→∑

w∈S∞(L) trLw/R(lw). We write exp∞ for the product of the exponential maps

L∞ → L×
∞, ∆∞ for the diagonal embedding L× → L×

∞ and log∞(O×
L ) for the

full sublattice of L0
∞ comprising elements x of L∞ with exp∞(x) ∈ ∆∞(O×

L ).
In [5, Lemma 3.1] it is shown that ES(L) is a perfect complex of G-modules,
that ES(L) ⊗Q is acyclic outside degrees −1 and 0, that H−1(γS) induces an
identification of H−1(ES(L)) with {x ∈ LS : expS(x) ∈ ∆S(O×

L )} and that
H0(γS) induces an identification of H0(ES(L)) ⊗ Q with ker(trL/Q). In addi-
tion, the projection LS → L∞ induces an isomorphism of Q[G]-modules from
{x ∈ LS : expS(x) ∈ ∆S(O×

L )}⊗Q to log∞(O×
L )⊗Q. With these identifications

the isomorphism ker(trL/Q)⊗QR
∼=−→ L0

∞ = log∞(O×
L )⊗R which is obtained by

restricting the natural isomorphism L⊗Q R
∼=−→ L∞ to ker(trL/Q)⊗Q R gives a

trivialisation µL : H0(ES(L)) ⊗ R
∼=−→ H−1(ES(L))⊗ R of ES(L). In [5, Conj.
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3.3] it is conjectured that

(3) ∂̂1G(ζ∗L/K,S(1)) = −χG(ES(L), µL).

For a discussion of the basic properties of this conjecture see [5, §3]. In par-
ticular for a proof of the fact that this conjecture refines Tate’s conjecture [26,
Chap. I, Conj. 8.2] see [5, Prop. 3.6(i)].

3. Preliminaries concerning étale cohomology

To relate the conjectural equality (3) to [9, Conj. 4] we will use constructions
in étale cohomology that are made in [8]. However, to do this certain aspects
of the exposition in [8] require clarification and so in this section we review the
relevant parts of these constructions.
We fix L/K and S as in §2.4 but for simplicity we also assume henceforth that
S contains at least one non-archimedean place. For each w ∈ S(L) we denote
the algebraic closure of L in Lw by Lhw. For w ∈ Sf (L) we let Ohw be the ring of
integers in Lhw; note that Ohw is the henselization of (the localization of) OL at
w (compare [21, Chap. I, Exam. 4.10(a)]) and that Lhw is the field of fractions
of Ohw.
Similarly, for a place v ∈ S(K) we define Kh

v as the algebraic closure of K in
Kv. The inclusions OK,S ⊂ Kh

v ⊂ Kv induce canonical maps ghv : SpecKh
v →

SpecOK,S , fv : SpecKv → SpecKh
v and gv = ghv ◦ fv : SpecKv → SpecOK,S .

3.1. General conventions. Let X be any scheme and F an étale sheaf on
X , i.e. a sheaf on the étale site Xet. If Y is an étale X-scheme then we denote
by RΓ(Y,F) the complex in the derived category D(Z) which is obtained by
applying the right derived functor of the section functor Γ(Y,−) to the sheaf F ;
thus RΓ(Y,F) is defined up to canonical isomorphism in D(Z). If Y = SpecR
for some commutative ring R, then we will write RΓ(R,F) for RΓ(SpecR,F)
and Hi(R,F) for the cohomology groups Hi(RΓ(R,F)).
Now let v ∈ S(K), w ∈ Sv(L) and let F be an étale sheaf on SpecKh

v .
The Gw-action on SpecLhw induces a Gw-action on the sections Γ(SpecLhw,F)
and hence the complex RΓ(Lhw,F) naturally lies in D(Z[Gw ]). Similarly, if
F is an étale sheaf on SpecOK,S , then RΓ(OL,S ,F) belongs to D(Z[G]).
Finally for v ∈ S(K) and F an étale sheaf on SpecOK,S we can consider⊕

w∈Sv(L)RΓ(Lhw, (g
h
v )∗F) as a complex in D(Z[G]). This is possible because

there is a canonical isomorphism

⊕

w∈Sv(L)
RΓ(Lhw, (g

h
v )∗F) ∼= RΓ

( ∐

w∈Sv(L)
SpecLhw, (g

h
v )∗F

)
,

and
∐
w∈Sv(L) SpecLhw is a Galois covering of SpecKh

v with group G. Of course

the same is true with Lhw and ghv replaced by Lw and gv respectively.
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3.2. Local cohomology. Let v be a place of K and w ∈ Sv(L). Recall
that fv : SpecKv → SpecKh

v corresponds to the inclusion Kh
v → Kv. For

any étale sheaf F on SpecKh
v the canonical map RΓ(Lhw,F) −→ RΓ(Lw, f

∗
vF)

is an isomorphism in D(Z[Gw ]). Indeed, if Lw is an algebraic closure of Lw
and Lhw is the algebraic closure of Lhw in Lw, then the restriction map gives

an isomorphism Gal(Lw/Kv)
∼=−→ Gal(Lhw/K

h
v ). Thus, upon identifying étale

cohomology and Galois cohomology the claimed isomorphism follows.
If F = Gm on (SpecKh

v )et, then f∗
vGm is not isomorphic to the sheaf Gm

on (SpecKv)et. However the complexes RΓ(Lhw,Gm) ∼= RΓ(Lw, f
∗
vGm) and

RΓ(Lw,Gm) are related as follows.

Lemma 3.1. There is a distinguished triangle in D(Z[Gw ])

RΓ(Lhw,Gm) −→ RΓ(Lw,Gm) −→ (L×
w/(L

h
w)×)[0] −→,

whose cohomology sequence in degree 0 identifies with the canonical short ex-
act sequence 0 −→ (Lhw)× −→ L×

w −→ L×
w/(L

h
w)× −→ 0. The Gw-module

L×
w/(L

h
w)× is uniquely divisible and hence cohomologically trivial.

Proof. There is a canonical injection f∗
vGm → Gm of sheaves on (SpecKv)et

such that the sequence

0 −→ f∗
vGm −→ Gm −→ Gm/f

∗
vGm −→ 0

corresponds to the exact sequence 0 → Lhw
× → Lw

× → Lw
×
/Lhw

× → 0 of

Gal(Lw/Kv)-modules. Now Lw
×
/Lhw

×
is uniquely divisible. Also, the isomor-

phism Gal(Lw/Kv) ∼= Gal(Lhw/K
h
v ) combines with Hilbert’s Theorem 90 to

imply H0(Gal(Lw/Lw), Lw
×
/Lhw

×
) = L×

w/(L
h
w)× as Gw-modules. It follows

that L×
w/(L

h
w)× is uniquely divisible and hence cohomologically trivial (as a

Gw-module). In addition, by applying RΓ(Lw,−) to the displayed exact se-
quence we obtain the claimed distinguished triangle. �

Lemma 3.2. There are canonical isomorphisms of Gw-modules

Hi(Lw,Gm) ∼=





L×
w if i = 0,

0 if i = 1,
Br(Lw) if i = 2.

If w is non-archimedean then Hi(Lw,Gm) = 0 for i ≥ 3 and the local in-
variant isomorphism gives a canonical identification Br(Lw) ∼= Q/Z. With
respect to this identification the class of RΓ(Lw,Gm) in Ext3Z[Gw](Q/Z, L

×
w) ∼=

H2(Gw, L
×
w) is the local canonical class.

Proof. This is [8, Prop. 3.5.(a)]. �

3.3. Cohomology with compact support. For any étale sheaf F on
SpecOK,S we define the complex RΓc(OL,S ,F) in D(Z[G]) by

(4) RΓc(OL,S ,F) := cone

(
RΓ(OL,S,F)→

⊕

w∈S
RΓ(Lhw, (g

h
v(w))

∗F)

)
[−1],
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where, for every w ∈ S, v(w) denotes the place of K below w. Thus this
complex lies in a distinguished triangle

(5) RΓc(OL,S ,F) −→ RΓ(OL,S,F) −→
⊕

w∈S
RΓ(Lhw, (g

h
v(w))

∗F) −→ .

In [8, (3)] a complex RΓc(OL,S ,F) is defined just as in (4) but with Lhw and
ghv(w) replaced by Lw and gv(w) respectively. However, the observation made

at the beginning of §3.2 ensures that this definition coincides with that given
above.

3.3.1. The complex RΓc(OL,S,Gm). We define a G-module ChS(L) in the same
way as CS(L) is defined in §2.4 but with Lw replaced by Lhw for each w ∈
S(L) and Ow replaced by Ohw for each w ∈ Sf (L). Then, since we assume
Pic(OL,S) = 0, the natural map

∏
w∈S(Lhw)× → ChS(L) is surjective with kernel

O×
L,S .

Lemma 3.3. There are canonical isomorphisms of G-modules

Hi(RΓc(OL,S ,Gm)) ∼=





ChS(L) if i = 1,
Q/Z if i = 3,
0 otherwise.

Proof. We first note that there are canonical isomorphisms of G-modules

Hi(OL,S ,Gm) ∼=





O×
L,S if i = 0,

0 if i = 1,
ker
(

Br(L)→⊕
w/∈S Br(Lw)

)
if i = 2,⊕

w∈SR(L)
Hi(Lw,Gm) if i ≥ 3,

(cf. [22, Chap. II, Prop. 2.1, Rem. 2.2] and recall that Pic(OL,S) = 0 and
Sf 6= ∅). Now, for every w ∈ S one has (ghv(w))

∗Gm = Gm on (SpecKh
v(w))et

because Kh
v(w) is an algebraic extension of K. The cohomology sequence of the

distinguished triangle (5) with F = Gm thus combines with Lemmas 3.1 and
3.2 and the above displayed isomorphisms to give exact sequences

0→ H0(RΓc(OL,S,Gm))→ O×
L,S →

⊕
w∈S

(Lhw)×

→ H1(RΓc(OL,S ,Gm))→ 0

and

0→ H2(RΓc(OL,S,Gm))→ ker
(

Br(L)→
⊕

w/∈S
Br(Lw)

)

→
⊕

w∈S
Br(Lw)→ H3(RΓc(OL,S ,Gm))→ 0

and an equality Hi(RΓc(OL,S ,Gm)) = 0 for each i ≥ 4. All maps here are
the canonical ones, thus for i = 0 and i = 1 the claimed description follows
immediately and for i = 2 and i = 3 it follows by using the canonical exact
sequence 0→ Br(L)→⊕

w∈S(L) Br(Lw)→ Q/Z→ 0. �
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3.3.2. The complex R̂Γc(OL,S,Gm). Recall that for every w ∈ S there is a
canonical map gv(w) : SpecKv(w) → SpecOK,S of schemes and an inclusion
g∗v(w)Gm → Gm of étale sheaves on SpecKv(w). Thus we can consider the

composite morphism

RΓ(OL,S ,Gm) −→
⊕

w∈S
RΓ(Lw, g

∗
v(w)Gm) −→

⊕

w∈S
RΓ(Lw,Gm)

in D(Z[G]). We then define the complex R̂Γc(OL,S ,Gm) by setting

R̂Γc(OL,S,Gm) := cone

(
RΓ(OL,S,Gm) −→

⊕

w∈S
RΓ(Lw,Gm)

)
[−1].

Lemma 3.4. There are canonical isomorphisms of G-modules

Hi(R̂Γc(OL,S ,Gm)) ∼=





CS(L) if i = 1,
Q/Z if i = 3,
0 otherwise.

The class of R̂Γc(OL,S ,Gm)[1] in Ext3Z[G](Q/Z, CS(L)) ∼= H2(G,CS(L)) is the
global canonical class.

Proof. The computation of the cohomology is similar to the proof of Lemma
3.3, except that the role of (5) is now played by the distinguished triangle

(6) R̂Γc(OL,S ,Gm) −→ RΓ(OL,S ,Gm) −→
⊕

w∈S
RΓ(Lw,Gm) −→

that is induced by the definition of R̂Γc(OL,S ,Gm). In degree 1 we also use the
fact that, since Pic(OL,S) = 0, CS(L) is canonically isomorphic to the cokernel

of the diagonal embedding O×
L,S →

∏
w∈S L

×
w . For the extension class see [8,

Prop. 3.5(b)] (but note that the result and proof in [8] apply to R̂Γc(OL,S ,Gm)
rather than to RΓc(OL,S ,Gm) as incorrectly stated in loc. cit.). �

Lemma 3.5. There is a distinguished triangle in D(Z[G])

RΓc(OL,S,Gm) −→ R̂Γc(OL,S,Gm) −→
⊕

w∈S
(L×

w/(L
h
w)×)[−1] −→

which on cohomology in degree 1 induces the canonical exact sequence

0→ ChS(L)→ CS(L)→
∏

w∈S
L×
w/(L

h
w)× → 0

and on cohomology in degree 3 induces the identity map Q/Z
=−→ Q/Z.

Proof. This follows upon combining the distinguished triangle in Lemma 3.1
for each w ∈ S with the distinguished triangle (5) with F = Gm and the
distinguished triangle (6). �
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4. Pro-p-completion

Let L/K be a Galois extension of number fields, G = Gal(L/K), and S a set of
places of K as in §2.4. We will assume throughout this section that L is totally
complex. We fix a prime number p and also assume henceforth that S contains
all places of residue characteristic p. As in §2.4 we choose lattices Lv for v ∈ Sf
and define L by (1). We fix an algebraic closure K of K containing L and write
KS for the maximal extension of K inside K which is unramified outside S.
For each natural number n we write µpn for the group of pn-th roots of unity

in K and let Zp(1) denote the continuous Gal(KS/K)-module lim←−n µpn where

the limit is taken with respect to p-th power maps. In this section we relate
ES(L) ⊗ Zp to the explicit complex RΓc(OL,S ,Zp(1)) that is defined in [9, p.
522]. For convenience we often abbreviate RΓc(OL,S ,Zp(1)) to RΓc(Zp(1)).
For any abelian group A and natural number m we write A[m] for the kernel
of the endomorphism given by multiplication by m. For each natural number
n we consider the Z/pn[G]-module

∏
w∈S∞(L)(L

×
w)[pn] ⊂ L×

∞. We then define a

Zp[G]-module by setting L(1)p := lim←−n
(∏

w∈S∞(L)(L
×
w)[pn]

)
where the transi-

tion morphisms are the p-th power maps. We set Lp :=
∏
w∈Sp(L) Lw and note

that Lp :=
∏
v∈Sp(K) Lv is a full projective Zp[G]-sublattice of Lp. We write

λp for the natural localization map O×
L ⊗ Zp →

∏
w∈Sp(L) U

(1)
Lw

. Recall that

Leopoldt’s Conjecture for the field L and prime number p is the statement that
λp is injective. With these notations we can now describe the cohomology of
the complex RΓc(OL,S,Zp(1))⊗Zp Qp.

Lemma 4.1. If λp is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p), then there are canonical isomorphisms

Hi(RΓc(OL,S ,Zp(1)))⊗Zp Qp ∼=





L(1)p ⊗Zp Qp if i = 1,

cok(λp)⊗Zp Qp if i = 2,

Qp if i = 3,

0 otherwise.

Before proving Lemma 4.1 we first state the main result of this section and
introduce some further notation.

Proposition 4.2. There is a distinguished triangle in Dperf(Zp[G]) of the form

(7) Lp[0]⊕ Lp[−1] −→ RΓc(OL,S,Zp(1))[2] −→ ES(L) ⊗ Zp −→ .

Now assume that λp is injective (as predicted by Leopoldt’s Conjecture for the
field L and prime p). With respect to the isomorphisms in Lemma 4.1 and the
description of the cohomology groups Hi(ES(L))⊗ Q given in §2.4, the image
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under −⊗Zp Qp of the cohomology sequence of (7) is equal to

0 // L(1)p ⊗Zp Qp
θ1 // H−1(ES(L))⊗Qp

θ2 // Lp
expp // cok(λp)⊗Zp Qp

0 // H0(ES(L))⊗Qp

⊂ // Lp
trLp/Qp // Qp // 0

(8)

where θ1 sends an element (rw ·{exp(2π
√
−1/pn)}n≥0)w∈S∞(L) of L(1)p⊗ZpQp

to the element (rw · 2π
√
−1)w∈S∞(L) of ker(exp∞) ⊗ Qp ⊂ H−1(ES(L)) ⊗ Qp

and θ2 is induced by the projection LS → Lp.

In the proofs of Lemma 4.1 and Proposition 4.2 we will need the complex
RΓc(µpn) := RΓc(OL,S , µpn) for each natural number n. This complex can be
considered in two different ways. On the one hand, since µpn is a continuous
Gal(KS/K)-module, we can consider RΓc(µpn) as the concrete complex of
Z/pn[G]-modules that is constructed using continuous cochains in [9, p. 522].
On the other hand, there is a natural étale sheaf µpn on SpecOK,S and we can
consider the cohomology with compact support as defined in §3.3. However this
will not cause any confusion because it can be shown that these two possible
definitions of RΓc(µpn) agree (up to canonical isomorphism), and whenever it
is necessary to distinguish between these two constructions of RΓc(µpn) we will
emphasize which one we are using.

Proof of Lemma 4.1. Recall that the complex RΓc(Zp(1)) defined in [9, p. 522]
is equal to lim←−nRΓc(µpn), where RΓc(µpn) denotes the complex constructed

using continuous cochains and the transition morphisms are induced by the

p-th power map µpn+1 → µpn . From the exact sequence 0 → µpn → Gm
pn−→

Gm → 0 of étale sheaves on SpecOK,S we obtain the distinguished triangle

(9) RΓc(µpn)
θ−→ RΓc(OL,S,Gm)

pn−→ RΓc(OL,S,Gm) −→

in D(Z[G]). To compute the modules Hi(RΓc(Zp(1))) explicitly we combine
the cohomology sequence of (9) with the identifications of Lemma 3.3 and then
pass to the inverse limit over n. In particular, since each module L×

w/(L
h
w)× is

uniquely divisible (by Lemma 3.1), one obtains in this way canonical isomor-
phisms

(10) Hi(RΓc(Zp(1))) ∼=





lim←−n CS(L)[pn] if i = 1,

lim←−n CS(L)/pn if i = 2,

Zp if i = 3,

0 otherwise.
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To describe this cohomology more explicitly we use the natural exact sequence
of finite G-modules

(11) 0→ (O×
L,S)[pn]

∆S−−→
∏

w∈S
(L×

w)[pn] → CS(L)[pn]

→ O×
L,S/p

n ∆S/p
n

−−−−→
∏

w∈S
L×
w/p

n → CS(L)/pn → 0.

For each place (resp. finite place) w of L we write L×
w⊗̂Zp (resp. O×

Lw
⊗̂Zp)

for the pro-p-completion of L×
w (resp. O×

Lw
). Note that O×

Lw
⊗̂Zp ∼= U

(1)
Lw

if

w ∈ Sp(L), and that O×
Lw
⊗̂Zp is finite if w ∈ Sf (L) \ Sp(L). Hence from the

commutative diagram

O×
L ⊗ Zp //

⊂
��

∏
w∈Sf O

×
Lw
⊗̂Zp

⊂
��

O×
L,S ⊗ Zp

lim←−n∆S/p
n

// ∏
w∈S L

×
w⊗̂Zp

we can deduce that the map lim←−n ∆S/p
n is injective (since λp : O×

L ⊗ Zp →∏
w∈Sp(L) U

(1)
Lw

is injective by assumption), and that cok
(

lim←−n ∆S/p
n
)
⊗ZpQp =

cok(λp)⊗Zp Qp.
Now the limit lim←−n(O×

L,S)[pn] vanishes and one has lim←−n
∏
w∈S(L×

w)[pn] =

lim←−n
∏
w∈S∞(L)(L

×
w)[pn] = L(1)p. By passing to the inverse limit over

n the sequence (11) thus induces identifications lim←−n CS(L)[pn] = L(1)p

and lim←−n CS(L)/pn = cok
(

lim←−n ∆S/p
n
)
. The explicit description of

Hi(RΓc(Zp(1)))⊗ZpQp given in Lemma 4.1 therefore follows from (10) and the

identification cok
(

lim←−n ∆S/p
n
)
⊗Zp Qp = cok(λp)⊗Zp Qp described above. �

The proof of Proposition 4.2 will occupy the rest of this section. As the first
step in this proof we introduce a useful auxiliary complex.

Lemma 4.3. There exists a complex Q in D(Z[G]) which corresponds (in the

sense of the third paragraph of §2.2) to the extension class eglobS and also pos-
sesses all of the following properties.

(i) Q is a complex of Z-torsion-free G-modules of the form Q−1 → Q0 →
Q1 (where the first term is placed in degree −1).

(ii) The morphism αS used in the distinguished triangle (2) is represented
by a morphism of complexes of G-modules α : LS [0]⊕ L[−1]→ Q.

(iii) For each natural number n the complex Q/pn consists of finite projec-
tive Z/pn[G]-modules.

Proof. At the outset we fix a representative of eglobS of the form A
δ−→ B as in [5,

Rem. 3.2] with B a finitely generated projective Z[G]-module. We write d−1

for the composite of expS : LS → CS(L) and the inclusion CS(L) ⊂ A. Since
cok(expS) is finite we may choose a finitely generated free Z[G]-module F and
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a homomorphism π : F → A such that the morphism (d−1, π) : LS ⊕F → A is

surjective. We take Q to be the complex ker((d−1, π))
⊂−→ LS ⊕ F

δ◦(d−1,π)−−−−−−→ B
where the first term is placed in degree −1. Then (d−1, π) restricts to give a
surjection ker(δ ◦ (d−1, π))→ CS(L) which induces an identification of H0(Q)
with CS(L). Via this identification, the morphism from Q to A → B that is
equal to (d−1, π) in degree 0 and to the identity map in degree 1 induces the

identity map on cohomology in each degree and so Q represents eglobS . Further,
we obtain a morphism α as in claim (ii) by defining α0 to be the inclusion

LS ⊂ LS ⊕ F and α1 to be any lift L tr′−→ B of L tr−→ Z through the given
surjection B → Z.
It is easy to see that (LS⊕F )/pn and B/pn are finite and projective as Z/pn[G]-
modules. So to prove claim (iii) it remains to show that ker((d−1, π))/pn

is a finite projective Z/pn[G]-module. The proof of [5, Lemma 3.1] shows
that ker(LS → CS(L)) is finitely generated, from which we can deduce
that ker((d−1, π)) is finitely generated. Since furthermore ker((d−1, π)) is Z-
torsion-free, it follows that ker((d−1, π)) is in fact Z-free. But the exact se-
quence 0 → ker((d−1, π)) → LS ⊕ F → A → 0 implies that the G-module
ker((d−1, π)) is cohomologically trivial, and any cohomologically trivial Z-free
Z[G]-module is a projective Z[G]-module. From this it immediately follows that
ker((d−1, π))/pn is finite and projective as Z/pn[G]-module, as required. �

We now fix a complex Q as in Lemma 4.3, and set Qlim := lim←−nQ/p
n where

the inverse limit is taken with respect to the natural transition morphisms.
To compute the cohomology Hi(Qlim) = lim←−nH

i(Q/pn) we use the short exact

sequence 0→ Q
pn−→ Q→ Q/pn → 0 together with the identifications H0(Q) =

CS(L) and H1(Q) = Z to compute the cohomology of Q/pn and then pass to
the inverse limit over n. We find that (similar to the proof of Lemma 4.1)
H−1(Qlim) = lim←−n CS(L)[pn], H

0(Qlim) = lim←−n CS(L)/pn, H1(Qlim) = Zp, and

Hi(Qlim) = 0 otherwise. Hence, if we assume that Leopoldt’s Conjecture is
valid for L at the prime p and use the same identifications as in the proof of
Lemma 4.1, then we obtain isomorphisms

Hi(Qlim)⊗Zp Qp ∼=





L(1)p ⊗Zp Qp if i = −1,

cok(λp)⊗Zp Qp if i = 0,

Qp if i = 1,

0 otherwise.

(12)

Lemma 4.4. There exists an isomorphism Qlim
∼= RΓc(Zp(1))[2] in D(Zp[G]).

Further, if Leopoldt’s Conjecture is valid for L at the prime p and we use
the isomorphisms in Lemma 4.1 and (12) to identify the cohomology groups
of RΓc(Zp(1))[2] ⊗Zp Qp and Qlim ⊗Zp Qp respectively, then this isomorphism
induces the identity map in each degree of cohomology after tensoring with Qp.
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Proof. Applying RΓc to the short exact sequence 0→ µpn → Gm
pn−→ Gm → 0

and combining the resulting distinguished triangle with the triangle of Lemma
3.5 and the fact that each module L×

w/(L
h
w)× is uniquely divisible (by Lemma

3.1) one obtains the following commutative diagram of distinguished triangles

RΓc(µpn) // RΓc(OL,S,Gm)
pn //

��

RΓc(OL,S ,Gm) //

��
RΓc(µpn) // R̂Γc(OL,S,Gm)

pn // R̂Γc(OL,S ,Gm) //

(13)

Rotating the lower row of (13) (without changing the signs of the maps) gives
the distinguished triangle

R̂Γc(OL,S ,Gm)[1]
pn−→ R̂Γc(OL,S ,Gm)[1]

̺′n−→ RΓc(µpn)[2]→ .

It is not difficult to see that one obtains the same identifications for
Hi(RΓc(µpn)) (and hence also for Hi(RΓc(Zp(1))) = lim←−nH

i(RΓc(µpn))) if

one computes the cohomology using this distinguished triangle instead of the
first row of (13).

Let Q̂ denote the complex

Q−1 → Q0 → Q1 → Q

where Q−1 is placed in degree −1, the first two arrows are the differentials of
Q and the third is the natural map Q1 → H1(Q) = Z ⊂ Q. Associated to the

natural short exact sequence 0 → Q̂
pn−→ Q̂ → Q/pn → 0 is a distinguished

triangle

Q̂
pn−→ Q̂

̺n−→ Q/pn → .

It is easy to see that one obtains the same identifications for Hi(Q/pn) (and
hence also for Hi(Qlim) = lim←−nH

i(Q/pn)) if one computes the cohomology

using this distinguished triangle instead of the short exact sequence 0→ Q
pn−→

Q→ Q/pn → 0.
The second assertion of Lemma 3.4 combines with the fact that Q corresponds

to eglobS to imply the existence of an isomorphism ξ : Q̂ ∼= R̂Γc(OL,S ,Gm)[1] in
D(Z[G]) which induces the identity map on each degree of cohomology.
We now consider the following diagram in D(Z[G])

Q̂
pn //

ξ

��

Q̂
̺n //

ξ

��

Q/pn //

R̂Γc(OL,S,Gm)[1]
pn // R̂Γc(OL,S,Gm)[1]

̺′n // RΓc(µpn)[2] //

(14)

Since the left hand square of (14) commutes there exists an isomorphism

ξn : Q/pn → RΓc(µpn)[2]
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in D(Z[G]) that makes the diagram into an isomorphism of distinguished tri-
angles. In fact the isomorphisms ξn can be chosen to be compatible with the
inverse systems over n, i.e. such that for every n the square

Q/pn
ξn //

����

RΓc(µpn)[2]

����
Q/pn−1

ξn−1 // RΓc(µpn−1)[2]

commutes in D(Z[G]). This can be seen for example as follows: if we com-

pute R̂Γc(OL,S ,Gm) and RΓc(µpn) using the concrete realisation of all chain
complexes given by the Godement resolution of the sheaves (as described, for
example, in [21, Chap. III, Rem. 1.20(c)]), then we obtain a short exact se-
quence

0→ RΓc(µpn)→ R̂Γc(OL,S,Gm)
pn−→ R̂Γc(OL,S ,Gm)→ 0.

Then both the top and the bottom row of (14) are canonically isomorphic to
the distinguished triangles coming from short exact sequences (i.e. the distin-
guished triangles which are constructed using mapping cones), and for such
distinguished triangles the statement is easy to see.
To be able to pass to the inverse limit we must replace the maps ξn in D(Z[G])
by actual maps of complexes. Since both Q/pn and RΓc(µpn)[2] are coho-
mologically bounded complexes of Z/pn[G]-modules, the natural restriction of
scalars homomorphism

(15) HomD(Zp[G])(Q/p
n, RΓc(µpn)[2])→ HomD(Z[G])(Q/p

n, RΓc(µpn)[2])

is bijective (cf. [8, Lemma 17]). Thus for each n the map ξn : Q/pn →
RΓc(µpn)[2] can be represented as Q/pn

∼←− Tn
∼−→ RΓc(µpn)[2] where Tn is

a complex of Zp[G]-modules and Q/pn
∼←− Tn and Tn

∼−→ RΓc(µpn)[2] are
quasi-isomorphisms of complexes of Zp[G]-modules. By choosing a projective
resolution we can assume that Tn is a bounded above complex of projective
Zp[G]-modules. There exists a morphism Tn → Tn−1 in D(Zp[G]) such that
the diagram

Q/pn

����

Tn

���
�
�

∼oo ∼ // RΓc(µpn)[2]

����
Q/pn−1 Tn−1

∼oo ∼ // RΓc(µpn−1)[2]

commutes in D(Zp[G]). Since Tn is a bounded above complex of projective
Zp[G]-modules, the morphism Tn → Tn−1 in D(Zp[G]) can be realised by an
actual map of complexes, and the above diagram will commute up to homo-
topy. The same argument as in [8, p. 1367] shows that after modifying the
horizontal maps in this diagram by homotopies we can assume that the dia-
gram is commutative. Finally, we can add suitable acyclic complexes to the Tn
to guarantee that the maps Tn → Tn−1 are surjective.
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To summarise, we have constructed morphisms of inverse systems of complexes
of Zp[G]-modules (Q/pn) ← (Tn) → (RΓc(µpn)[2]) such that for each n the

composite Q/pn
∼←− Tn ∼−→ RΓc(µpn)[2] considered as a map in D(Z[G]) is equal

to ξn. Furthermore the transition maps in each inverse system are surjective.
Passing to the inverse limit gives morphisms of complexes of Zp[G]-modules

Qlim = lim←−
n

Q/pn ←− lim←−
n

Tn −→ lim←−
n

RΓc(µpn)[2] = RΓc(Zp(1))[2].

Now [8, Lemma 9] implies that these morphisms are quasi-isomorphisms and
that the resulting map Qlim → RΓc(Zp(1))[2] in D(Zp[G]) has the required
properties. �

We now fix a morphism α as in Lemma 4.3(ii). Then, for each natural number
n one has a commutative diagram of morphisms of complexes of G-modules

LS [0]⊕ L[−1]
α //

� _

pn

��

Q
β //

� _

pnpn

��

cone(α)
γ //

� _

pnpn

��
LS [0]⊕ L[−1]

α //

����

Q
β //

����

cone(α)
γ //

����
LS/pn[0]⊕ L/pn[−1]

α/pn // Q/pn
β/pn // cone(α/pn)

γ/pn //

(16)

In this diagram the maps β and γ come from the definition of cone(α) and
so the first (and second) row is an explicit representative of the triangle (2).
Also, the columns are the short exact sequences which result from the fact
that LS , L and all terms of Q (and hence also of cone(α)) are Z-torsion-
free. Now Lp is canonically isomorphic to both lim←−n LS/p

n and lim←−n L/p
n.

Furthermore, as cone(α) is a perfect complex of Z-torsion-free modules, there
is a natural isomorphism cone(α)⊗Zp ∼= lim←−n cone(α)/pn in Dperf(Zp[G]), and

clearly lim←−n cone(α)/pn ∼= lim←−n cone(α/pn) ∼= cone(lim←−n α/p
n) (where in all

cases the limits are taken with respect to the natural transition morphisms).
Hence, upon passing to the inverse limit of the lower row of (16), we obtain a
distinguished triangle in Dperf(Zp[G]) of the form

(17) Lp[0]⊕ Lp[−1]
lim←−n α/p

n

−−−−−−→ Qlim

lim←−n β/p
n

−−−−−−→ cone(α)⊗ Zp
lim←−n γ/p

n

−−−−−−→ .

The distinguished triangle (17) together with the isomorphism Qlim
∼=

RΓc(Zp(1))[2] from Lemma 4.4 show the existence of a triangle of the form
(7).
It remains to show that if Leopoldt’s Conjecture is valid for L at the prime p
and we use the identifications of the cohomology ofQlim given in (12), then after
tensoring with Qp the long exact sequence of cohomology of the triangle (17)
is equal to (8). Now the identifications of the cohomology of the three terms in
(17) come from the columns in (16). In particular we have natural isomorphisms
Hi(Lp[0] ⊕ Lp[−1]) ∼= lim←−nH

i(LS [0] ⊕ LS [−1])/pn and Hi(cone(α) ⊗ Zp) ∼=
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lim←−nH
i(cone(α))/pn for all i, and Hi(Qlim) ∼= lim←−nH

i(Q)/pn for i = 0 and

i = 1. Therefore by considering the cohomology sequences of the second and
third rows in (16), we can easily deduce the explicit description of all maps in (8)
except for the map L(1)p⊗Zp Qp = H−1(Qlim)⊗Zp Qp → H−1(ES(L))⊗Qp =

log∞(O×
L )⊗Qp.

To compute this map we consider the following diagram.

H−1(Q/pn)
H−1(β/pn)//

� _

��

H−1(cone(α)/pn)

H0(LS[0]⊕L[−1])
H0(α) //

pn

��

H0(Q)

pn

��
H−1(cone(α))

� � H
−1(γ) //

��

H0(LS[0]⊕L[−1])
H0(α) // H0(Q)

H−1(cone(α)/pn)

By an easy computation with cochains one shows that if an element of

H0(LS [0] ⊕ L[−1]) lies in the kernel of H0(LS [0] ⊕ L[−1])
pn·H0(α)−−−−−−→ H0(Q),

then its images under the two maps

H0(LS [0]⊕L[−1])
H0(α)−−−−→ H0(Q)← H−1(Q/pn)

H−1(β/pn)−−−−−−−→ H−1(cone(α)/pn)

and

H0(LS [0]⊕ L[−1])
pn−→ H0(LS [0]⊕ L[−1])

H−1(γ)←−−−−− H−1(cone(α))

→ H−1(cone(α)/pn)

coincide (note that the inverse arrows make sense in this context). By consid-
ering the elements (rw · 2π

√
−1/pn)w∈S∞ ∈ L∞ ⊆ LS = H0(LS [0]⊕L[−1]) for

rw ∈ Z we see that the map H−1(Q/pn)→ H−1(cone(α)/pn) sends the image
of (rw · exp(2π

√
−1/pn))w∈S∞(L) ∈ (L×

S )[pn] ⊂ L×
S in CS(L)[pn] = H−1(Q/pn)

to the image of the element (rw ·2π
√
−1)w∈S∞(L) ∈ ker(exp∞) ⊆ H−1(cone(α))

in H−1(cone(α)/pn). Passing to the inverse limit gives the desired description
of θ1. This completes the proof of Proposition 4.2.
q

5. The proof of Theorem 1.1

In this section we prove Theorem 1.1. Let L/K be a Galois extension of number
fields with Galois group G. We define an element of K0(Z[G],R) by setting

TΩ(L/K, 1) := ∂̂1G(ζ∗L/K,S(1)) + χG(ES(L), µL)

where the terms on the right hand side are as in §2.4. The element TΩ(L/K, 1)
depends only upon L/K (see [5, Prop. 3.4]), and the conjectural equality (3)
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asserts that TΩ(L/K, 1) vanishes. We also recall that [9, Conj. 4(iv)] for
the pair (Q(1)L,Z[G]) asserts the vanishing of an element TΩ(Q(1)L,Z[G])
of K0(Z[G],R) that is defined (unconditionally) in [9, Conj. 4(iii)]. To prove
Theorem 1.1 it is therefore enough to prove the following result.

Proposition 5.1. Let L be a complex Galois extension of Q and G =
Gal(L/Q). If Leopoldt’s Conjecture is valid for L and all prime numbers p,
then TΩ(L/Q, 1) = TΩ(Q(1)L,Z[G]).

Remark 5.1. Recall that we write ∂0Z[G],R for the natural homomorphism of K-

groups K0(Z[G],R) → K0(Z[G]). The argument of [5, Prop. 3.6(ii)] combines
with the equality of Proposition 5.1 to imply that if Leopoldt’s Conjecture
is valid, then ∂0Z[G],R(TΩ(Q(1)L,Z[G])) is equal to the element Ω(L/K, 1) of

K0(Z[G]) defined by Chinburg in [13]. Proposition 5.1 therefore answers the
question raised in [7, Question 1.54].

5.1. Preliminaries. From now on let L/Q be a complex Galois extension
with Galois group G. For each p and each embedding j : R → Cp there is
an induced homomorphism j∗ : K0(Z[G],R) → K0(Zp[G],Cp) and it is known
that

⋂
p,j ker(j∗) = {0} where p runs over all primes and j over all embeddings

R → Cp (cf. [5, Lemma 2.1]). To prove Proposition 5.1 it is thus enough to
prove that for all p and j one has

(18) j∗(TΩ(L/Q, 1)) = j∗(TΩ(Q(1)L,Z[G])).

The proof of this equality will occupy the rest of this section.
We fix a prime p and in the sequel assume that Leopoldt’s Conjecture is valid
for L and p. We also fix an embedding j : R → Cp and often suppress it
from our notation; so in particular in a tensor product of the form −⊗R Cp we
consider Cp as an R-module via j. Just as in §4 we will always assume that S
contains all places of residue characteristic p.
In the following we will need to use the language of virtual objects. To this
end we consider the Picard categories V(Zp[G]), V(Cp[G]) and V(Zp[G],Cp[G])
discussed in [4, §5]. We fix a unit object 1V(Cp[G]) of V(Cp[G]) and for each

object X of V(Cp[G]) we fix an inverse, i.e. an object X−1 of V(Cp[G]) together
with an isomorphism X ⊗ X−1 ∼= 1V(Cp[G]) in V(Cp[G]). We also write ι :
π0V(Zp[G],Cp[G]) ∼= K0(Zp[G],Cp) for the group isomorphism described in [4,
Lemma 5.1].
We need to slightly generalise the definition of a trivialised complex and
its Euler characteristic. If P is a perfect complex of Zp[G]-modules and
τ : [Hev(P ⊗Zp Cp)] → [Hod(P ⊗Zp Cp)] an isomorphism in V(Cp[G]), then
we will sometimes call the pair (P, τ) a trivialised complex. Its Euler char-
acteristic χZp[G],Cp(P, τ) is defined as in [4, Definition 5.5] except that [t] is
replaced by τ . Clearly any trivialised complex (P, t) as in §2.2 gives rise to the
trivialised complex (P, [t]) in the new sense, but in general not every triviali-
sation τ : [Hev(P ⊗Zp Cp)] → [Hod(P ⊗Zp Cp)] of P will be of the form [t] for

some isomorphism t : Hev(P ⊗Zp Cp)→ Hod(P ⊗Zp Cp).
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5.2. The element j∗(TΩ(L/Q, 1)). We set RΓc(Zp(1)) := RΓc(OL,S ,Zp(1))
and also Hi

c(Cp(1)) := Hi(RΓc(Zp(1)) ⊗Zp Cp). Furthermore we write

Hev
c (Cp(1)) and Hod

c (Cp(1)) for the direct sums ⊕i evenHi
c(Cp(1)) and

⊕i oddHi
c(Cp(1)) respectively.

We start by defining an isomorphism

ψ : [Hev
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]

∼=−→ [Hod
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]

in V(Cp[G]) which is induced by the identifications from Lemma 4.1, the exact
sequence (8) in Proposition 4.2, and µL. More precisely, we let ψ be the
following composite map.

[H2
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]

α1−→ [Lp ⊗Qp Cp]
α2−→ [H0(ES(L)) ⊗ Cp]⊗ [Cp]
α3−→ [H−1(ES(L)) ⊗ Cp]⊗ [Cp]
α4−→ [L(1)p ⊗Zp Cp]⊗ [im(θ2)⊗Qp Cp]⊗ [Cp]
α5−→ [H1

c (Cp(1))⊕H3
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp].

Here α1 is induced by the isomorphism H2
c (Cp(1)) ∼= cok(λp) ⊗Zp Cp and the

short exact sequence

(19) im(θ2)⊗Qp Cp
� � ⊂ // Lp ⊗Qp Cp

expp // // cok(λp)⊗Zp Cp,

α2 and α4 are induced by the short exact sequences

(20) H0(ES(L)) ⊗ Cp
� � // Lp ⊗Qp Cp

tr // // Cp

and

(21) L(1)p ⊗Zp Cp
� �
θ1⊗QpCp // H−1(ES(L)) ⊗ Cp

θ2⊗QpCp // // im(θ2)⊗Qp Cp

respectively, α3 = [µL ⊗R Cp] ⊗ id, and α5 is induced by the isomorphisms
H1
c (Cp(1)) ∼= L(1)p ⊗Zp Cp and H3

c (Cp(1)) ∼= Cp.
Now by the properties of a Picard category there exists a unique isomorphism

ν : [Hev
c (Cp(1))]

∼=−→ [Hod
c (Cp(1))]

in V(Cp[G]) such that ψ = ν ⊗ id. We will consider this isomorphism as a
trivialisation of the complex RΓc(Zp(1)).

Lemma 5.2. In K0(Zp[G],Cp) one has

j∗(TΩ(L/Q, 1)) = ∂1Zp[G],Cp

(
j∗(ζ∗L/Q,S(1))

)
+ χZp[G],Cp(RΓc(Zp(1)), ν).

Proof. To simplify the notation we will abbreviate ‘χZp[G],Cp ’ to ‘χp’.

It is clear that j∗(∂̂1G(ζ∗L/Q,S(1))) = ∂1Zp[G],Cp
(j∗(ζ∗L/Q,S(1))) (compare §2.1) and

also j∗(χZ[G],R(ES(L), µL)) = χp(ES(L) ⊗ Zp, µL ⊗R Cp). Moreover it follows
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from [4, Prop. 5.6.3] that χp(RΓc(Zp(1)), ν) = χp(RΓc(Zp(1))[2], ν). It is thus
enough to prove that in K0(Zp[G],Cp) one has

(22) χp(ES(L)⊗ Zp, µL ⊗R Cp) = χp(RΓc(Zp(1))[2], ν).

To do this we will apply the additivity criterion of [4, Theorem 5.7] to the exact
triangle (7) in Proposition 4.2. On the complex Lp[0] ⊕ Lp[−1] we consider
the trivialisation given by the identity map id : Lp ⊗Zp Cp → Lp ⊗Zp Cp, on
RΓc(Zp(1))[2] we consider the trivialisation ν, and on ES(L)⊗Zp we consider
the trivialisation µL ⊗R Cp. Note that the additivity criterion in [4] is only
stated for trivialisations as defined in §2.2, however it is easy to check that it
remains valid for generalised trivialisations as defined in §5.1.
In our context, the map a in [4, Theorem 5.7] is the map Lp[0] ⊕ Lp[−1] →
RΓc(Zp(1))[2] in the distinguished triangle (7), and Σ = Cp[G]. There-
fore ker(HevaΣ) = im(θ2) ⊗Qp Cp and ker(HodaΣ) = L0

p ⊗Qp Cp where

L0
p = ker(trLp/Qp : Lp → Qp). To apply the additivity criterion we must

show that the following diagram commutes in V(Cp[G]).

[cok(λp)⊗Zp Cp]
⊗[im(θ2)⊗Qp Cp]⊗ [L0

p ⊗Qp Cp]
sev //

ν⊗id⊗[−id]

��

[Lp ⊗Qp Cp]⊗ [H0(ES(L)) ⊗ Cp]

id⊗[µL⊗RCp]

��
[L(1)p ⊗Zp Cp ⊕ Cp]

⊗[im(θ2)⊗Qp Cp]⊗ [L0
p ⊗Qp Cp]

sod // [Lp ⊗Qp Cp]⊗ [H−1(ES(L)) ⊗ Cp]

Here the horizontal maps are induced by the even respectively odd part of the
cohomology sequence (8) after tensoring with Cp, i.e. the top horizontal map
sev is induced by the short exact sequence (19) and the isomorphism

(23) H0(ES(L))⊗ Cp ∼= L0
p ⊗Qp Cp,

and the bottom horizontal map sod is induced by (21) and

(24) L0
p ⊗Qp Cp

� � ⊂ // Lp ⊗Qp Cp
tr // // Cp.

To see the commutativity of the above diagram we will show that the auto-
morphism

κ := (id⊗ [µL ⊗R Cp])
−1 ◦ (sod) ◦ (ν ⊗ id⊗ [−id]) ◦ (sev)−1

of [Lp ⊗Qp Cp] ⊗ [H0(ES(L)) ⊗ Cp] is the identity map. For this we use the
isomorphism

[Lp ⊗Qp Cp]⊗ [H0(ES(L)) ⊗ Cp] ∼= [L0
p ⊗Qp Cp]⊗ [Cp]⊗ [L0

p ⊗Qp Cp]

which is induced by the short exact sequence (24) and the isomorphism (23).
Using ν ⊗ id⊗ [−id] = ψ ⊗ [−id] and the definition of ψ, it is easy to see that
then κ becomes the automorphism of [L0

p ⊗Qp Cp]⊗ [Cp] ⊗ [L0
p ⊗Qp Cp] which

is given by (using the obvious abuse of notation)

a⊗ b⊗ c 7→ [−id](c)⊗ b⊗ a,
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i.e. the morphism in V(Cp[G]) which swaps the two copies of [L0
p⊗Qp Cp] com-

posed with the map [−id] on one of the two copies. It now follows from the
general properties of a determinant functor (see e.g. [15, §4.9]), that this auto-
morphism (and hence also κ) is the identity morphism as required.
The additivity criterion [4, Theorem 5.7] now implies that

χp(RΓc(Zp(1))[2], ν) = χp(Lp[0]⊕ Lp[−1], id) + χp(ES(L)⊗ Zp, µL ⊗R Cp).

Since clearly χp(Lp[0] ⊕ Lp[−1], id) = 0 this completes the proof of (22) and
hence of Lemma 5.2. �

5.3. The element j∗(TΩ(Q(1)L,Z[G])). The motive Q(1)L is pure of weight
−2. The argument of [10, §2] therefore shows that

(25) j∗(TΩ(Q(1)L,Z[G])) = ∂1Zp[G],Cp

(
j∗(ζ∗L/Q,S(1))

)
+ ι
(
([RΓc(Zp(1))], ω)

)

with ω the composite morphism

[RΓc(Zp(1))⊗Zp Cp]
ϑ̃p⊗QpCp−−−−−−→ [Ξ(Q(1)L)⊗Q Cp]

ϑ∞⊗RCp−−−−−−→ 1V(Cp[G])

where ϑ̃p and ϑ∞ are as defined in [10, p. 479, resp. p. 477]. Indeed, whilst the
argument of [10, §2] is phrased solely in terms of abelian groups G it extends
immediately to the general case upon replacing graded determinants by virtual
objects and then (25) is the non-abelian generalisation of the equality [10, (11)].
Given the observations of [7, §1.1, §1.3] it is also a straightforward exercise to

explicate the space Ξ(Q(1)L) and the morphisms ϑ̃p and ϑ∞. To describe the
result we introduce further notation. We write Σ(L) for the set of all complex
embeddings L→ C and consider

⊕
Σ(L) C as a G×Gal(C/R)-module where G

acts via L and Gal(C/R) acts diagonally. We write HB for the G×Gal(C/R)-

submodule
⊕

Σ(L) 2π
√
−1 · Z of

⊕
Σ(L) C and let H+

B and
(⊕

Σ(L) C
)+

denote

the G-submodules comprising elements invariant under the action of Gal(C/R).
We also set H1

f := im(λp)⊗Zp Qp. Then ω is equal to the composite

[RΓc(Zp(1))⊗Zp Cp] ∼= [H1
c (Cp(1))]−1 ⊗ [H2

c (Cp(1))]⊗ [H3
c (Cp(1))]−1

∼= [H1
c (Cp(1))]−1 ⊗

(
[H1

f ⊗Qp Cp]⊗ [H2
c (Cp(1))]

)

⊗ [H1
f ⊗Qp Cp]

−1 ⊗ [H3
c (Cp(1))]−1

∼=
(
[H+

B ⊗ Cp]
−1 ⊗ [L⊗Q Cp]

)

⊗
(
[O×

L ⊗ Cp]
−1 ⊗ [Cp]

−1
)

∼=
[∏

S∞(L)
Cp
]
⊗
[∏

S∞(L)
Cp
]−1

∼= 1V(Cp[G])

(26)
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where the maps are defined as follows. The first, second and fifth maps are
clear. The third map is induced by the exact sequence

0→ L(1)p ⊗Zp Cp
∼=−→ H1

c (Cp(1))
0−→ H1

f ⊗Qp Cp
⊂−→

∏

w∈Sp(L)
U

(1)
Lw
⊗Zp Cp

π−→ H2
c (Cp(1))→ 0→ 0→ H3

c (Cp(1))
∼=−→ Cp → 0,

where π is induced by the identification H2
c (Cp(1)) ∼= cok(λp) ⊗Zp Cp

from Lemma 4.1 (this sequence is the cohomology sequence of the dis-
tinguished triangle of [10, (3)] with M = Q(1)L and A = Q[G]), to-
gether with the isomorphism L(1)p ∼= H+

B ⊗ Zp that sends an ele-

ment
(
nw · {exp(2π

√
−1/pn)}n≥0

)
w∈S∞(L)

in L(1)p to the element
(
nwσ ·

σ̂(2π
√
−1)

)
σ∈Σ(L)

in H+
B ⊗ Zp (where wσ denotes the place of L correspond-

ing to σ, and σ̂ : Lwσ → C is the unique continuous extension of σ), the
isomorphism

(27)
∏

w∈Sp(L)
U

(1)
Lw
⊗Zp Cp ∼=

( ∏

w∈Sp(L)
Lw

)
⊗Qp Cp = L⊗Q Cp

induced by the p-adic logarithm maps U
(1)
Lw
→ Lw, and the isomorphism λp⊗Zp

Cp : O×
L ⊗ Cp ∼= H1

f ⊗Qp Cp. The fourth map is induced by (the image under

−⊗R Cp of) the short exact sequence

(28) O×
L ⊗ R

� � Reg //
∏

S∞(L)
R // // R

where Reg : O×
L ⊗ R → ∏

S∞(L)R denotes the usual regulator map u ⊗ r 7→
r · (2 log|σw(u)|)w∈S∞(L) (here σw is a complex embedding of L corresponding
to the place w), the natural isomorphism

(29)
(⊕

Σ(L)
C
)+ ∼= L⊗Q R

and (the image under −⊗R Cp of) the short exact sequence

(30) H+
B ⊗ R � � ⊂ //

(⊕
Σ(L)

C
)+

// //
∏

S∞(L)
R

in which the second arrow sends each element (zσ)σ∈Σ(L) of
(⊕

Σ(L)C
)+

to

(zσw + zσw )w∈S∞(L) in
∏
S∞(L)R (where σw and σw denote the two complex

embeddings of L corresponding to the place w).

5.4. Completion of the proof. Let

ψ′ : [Hev
c (Cp(1))]⊗ [H1

f ⊗Qp Cp]
∼=−→ [Hod

c (Cp(1))]⊗ [H1
f ⊗Qp Cp]
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denote the composite isomorphism

[H2
c (Cp(1))]⊗ [H1

f ⊗Qp Cp]
α′

1−→ [L⊗Q Cp]

α′
2−→
[(⊕

Σ(L)
C
)+
⊗R Cp

]

α′
3−→ [H+

B ⊗ Cp]⊗
[∏

S∞(L)
Cp
]

α′
4−→ [L(1)p ⊗Zp Cp]⊗ [O×

L ⊗ Cp]⊗ [Cp]

α′
5−→ [H1

c (Cp(1))⊕H3
c (Cp(1))]⊗ [H1

f ⊗Qp Cp]

where α′
1 is induced by the short exact sequence

H1
f ⊗Qp Cp

� � //
∏

w∈Sp(L)
U

(1)
Lw
⊗Zp Cp // // H2

c (Cp(1))

and the isomorphism (27), the map α′
2 is induced by the isomorphism (29), the

map α′
3 is induced by (the image under − ⊗R Cp of) the short exact sequence

(30), α′
4 is induced by (the image under −⊗R Cp of) the short exact sequence

(28) and the isomorphism H+
B ⊗ Cp ∼= L(1)p ⊗Zp Cp, and α′

5 is induced by the

isomorphisms H1
c (Cp(1)) ∼= L(1)p ⊗Zp Cp, H

3
c (Cp(1)) ∼= Cp and O×

L ⊗ Cp ∼=
H1
f ⊗Qp Cp.

Let ν′ : [Hev
c (Cp(1))]

∼=−→ [Hod
c (Cp(1))] be the unique isomorphism in

V(Cp[G]) such that ν′ ⊗ id = ψ′. We recall that the Euler characteristic
χZp[G],Cp(RΓc(Zp(1)), ν′) is defined to be ι

(
([RΓc(Zp(1))], λ)

)
, where λ is the

composite isomorphism

[RΓc(Cp(1))] ∼= [Hev
c (Cp(1))]⊗ [Hod

c (Cp(1))]−1

ν′⊗id−−−→ [Hod
c (Cp(1))]⊗ [Hod

c (Cp(1))]−1 ∼= 1V(Cp[G])

in V(Cp[G]) (compare [4, Definition 5.5]). Now by comparing ω and λ one can
show that

(31) ι
(
([RΓc(Zp(1))], ω)

)
= χZp[G],Cp(RΓc(Zp(1)), ν′).

The isomorphism (27) restricts to an isomorphism

ϕ : H1
f ⊗Qp Cp ∼= im(θ2)⊗Qp Cp

of Cp[G]-modules and we will show below that the following diagram in
V(Cp[G]) is commutative.

[Hev
c (Cp(1))]⊗ [H1

f ⊗Qp Cp]
id⊗[ϕ] //

ν′⊗id

��

[Hev
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]

ν⊗id

��
[Hod

c (Cp(1))]⊗ [H1
f ⊗Qp Cp]

id⊗[ϕ] // [Hod
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]
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From this diagram it follows that ν = ν′. In view of Lemma 5.2 and equations
(25) and (31) this implies the required equality (18) and hence Proposition 5.1.
It now only remains to show that the above diagram in V(Cp[G]) is commuta-
tive. For this we consider the following diagram.

[H2
c (Cp(1))]⊗ [H1

f ⊗Qp Cp]
id⊗[ϕ] //

α′
1

��

[H2
c (Cp(1))]⊗ [im(θ2)⊗Qp Cp]

α1

��
[L⊗Q Cp]

α′
3◦α′

2
��

[L⊗Q Cp]

α3◦α2

��
[H+

B ⊗ Cp]⊗
[(∏

S∞(L)
R
)
⊗R Cp

]

β1

��

[H−1(ES(L))⊗ Cp]⊗ [Cp]

α4

��
[L(1)p ⊗Zp Cp]

⊗[im(θ2)⊗Qp Cp]⊗ [Cp]

β2

��

[L(1)p ⊗Zp Cp]
⊗[im(θ2)⊗Qp Cp]⊗ [Cp]

α5

��
[H1

c (Cp(1))⊕H3
c (Cp(1))]

⊗[H1
f ⊗Qp Cp]

id⊗[ϕ] // [H1
c (Cp(1))⊕H3

c (Cp(1))]
⊗[im(θ2)⊗Qp Cp]

Here the maps αi and α′
i are as above. The map β1 is induced by the isomor-

phism L(1)p ⊗Zp Cp ∼= H+
B ⊗ Cp and the short exact sequence

(32) im(θ2)⊗Qp Cp
� � //

(∏
S∞(L)

R
)
⊗R Cp // // Cp

which is obtained by applying − ⊗R Cp to the short exact sequence (28) and
using the identification O×

L ⊗ Cp ∼= im(θ2)⊗Qp Cp, and the map β2 is induced

by the isomorphisms H1
c (Cp(1)) ∼= L(1)p ⊗Zp Cp, H

3
c (Cp(1)) ∼= Cp and ϕ.

By definition the composite of the right vertical maps is ψ = ν⊗id. Furthermore
it is not difficult to see that β2 ◦ β1 = α′

5 ◦ α′
4, hence the composite of the left

vertical maps is ψ′ = ν′ ⊗ id.
Clearly the bottom square is commutative. The isomorphism of short exact
sequences

H1
f ⊗Qp Cp

� � //

ϕ

��

∏
w∈Sp(L)

U
(1)
Lw
⊗Zp Cp // //

∼=
��

H2
c (Cp(1))

∼=
��

im(θ2)⊗Qp Cp
� � // L⊗Q Cp // // cok(λp)⊗Zp Cp

implies that the top square is commutative. The commutativity of the middle
rectangle follows from the properties of a determinant functor applied to the
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following commutative diagram of short exact sequences.

L(1)p ⊗Zp Cp
� �
θ1⊗QpCp //

∼=
��

H−1(ES(L)) ⊗ Cp
θ2⊗QpCp // //

� _

��

im(θ2)⊗Qp Cp� _

��

H+
B ⊗ Cp

� � // L⊗Q Cp // //

tr

����

(∏
S∞(L)

R
)
⊗R Cp

����
Cp Cp

Here the top horizontal and right vertical short exact sequences are (21) and
(32) respectively. The middle horizontal short exact sequence comes from com-
bining (30) with the isomorphism (29), and the middle vertical short exact
sequence comes from combining (20) with the isomorphism µL ⊗R Cp. The
commutativity of this diagram is easily checked.

6. The proofs of Corollaries 1.2, 1.3 and 1.4

In this section we use Theorem 1.1 to prove Corollaries 1.2, 1.3 and 1.4.

6.1. The proof of Corollary 1.2. Let F/E be a Galois extension of num-
ber fields and set Γ := Gal(F/E). Let L be a totally complex finite Ga-
lois extension of Q containing F and set G := Gal(L/Q). We write π for
the natural composite homomorphism K0(Z[G],R) → K0(Z[Gal(L/E)],R) →
K0(Z[Γ],R) where the first arrow is restriction and the second projection. Then
it is known that π(TΩ(L/Q, 1)) = TΩ(F/E, 1) and π(TΩ(Q(1)L,Z[G])) =
TΩ(Q(1)F ,Z[Γ]) (see [5, Prop. 3.5] and [9, Prop. 4.1]). In particular, to prove
that TΩ(F/E, 1) = TΩ(Q(1)F ,Z[Γ]) it is enough to prove that TΩ(L/Q, 1) =
TΩ(Q(1)L,Z[G]). Given this observation, Corollary 1.2 is an immediate con-
sequence of Theorem 1.1.

6.2. The proof of Corollary 1.3. By the functorial properties of the con-
jectures (see [5, Prop. 3.5 and Rem. 4.2]) it suffices to consider the case K = Q
and L totally complex. Since L is abelian over Q, Leopoldt’s Conjecture is
known to be valid for L and all primes p [6]. In addition, the validity of [9,
Conj. 4(iv)] for the pair (Q(1)L,Z[Gal(L/Q)]) has been proved by Flach and
the second named author in [11, Cor. 1.2]. (The proof of [11, Cor. 1.2] re-
lies on certain 2-adic results of Flach in [16] and unfortunately the relevant
results in [16] are now known to contain errors. However, in [17] Flach has
recently provided the necessary corrections so that, in particular, the result
of [11, Cor. 1.2] is valid as stated.) Given the validity of [9, Conj. 4(iv)] for
(Q(1)L,Z[Gal(L/Q)]), the first assertion of Corollary 1.3 follows immediately
from Theorem 1.1.
We now assume that [5, Conj. 3.3] is valid for L/Q. Then [5, Theorem 5.2]
implies that [5, Conj. 4.1] is valid for L/Q if and only if [5, Conj. 5.3] is valid
for L/Q. Also, in [5, Rem. 5.4] it is shown that [5, Conj. 5.3] is equivalent to
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the earlier conjecture [2, Conj. 4.1]. To prove the second assertion of Corollary
1.3 we therefore need only note that [2, Conj. 4.1] is proved for abelian exten-
sions L/Q of odd conductor in [2, Cor. 6.2] and for abelian extensions L/Q of
arbitrary conductor in [11, Theorem 1.1] (see in particular the discussion at
the end of [11, §3.1]).
This completes the proof of Corollary 1.3.

Remark 6.1. By using the main result of Bley in [1] one can prove an analogue
of Corollary 1.3 for certain classes of abelian extensions of imaginary quadratic
fields.

6.3. The proof of Corollary 1.4. Let p, q and r be distinct (odd) rational
primes which satisfy p ≡ r ≡ −q ≡ 3 (mod 4) and are such that the Legendre
symbols (pq ) and ( rq ) are both equal to −1. Then if ℓ is any odd prime such

that ( ℓ
pr ) = −( ℓq ) = 1 Chinburg has shown that there exists a unique totally

complex field Lp,q,r,ℓ which contains Q(
√
pr,
√
q), is Galois over Q with group

isomorphic to the quaternion group of order 8 and is such that Lp,q,r,ℓ/Q is
ramified precisely at p, q, r, ℓ and infinity (cf. [14, Prop. 4.1.3]). We observe
that the primes p = 3, q = 5 and r = 7 satisfy the congruence conditions
described above and will now prove that the conjectures [5, Conj. 3.3] and [5,
Conj. 4.1] are both valid for any extension of the form L3,5,7,ℓ/K. To do this
we set Lℓ := L3,5,7,ℓ and Gℓ := Gal(L3,5,7,ℓ/Q).
We note first that Lℓ/K is tamely ramified and we recall that for any tamely
ramified extension of number fields F/E the element TΩloc(F/E, 1) that is
defined in [5, §5.1.1] vanishes (by [5, Prop. 5.7(i)]) and hence that the conjec-
tures [5, Conj. 3.3] and [5, Conj. 4.1] are equivalent for F/E (by [5, Theorem
5.2]). It therefore suffices for us to prove that [5, Conj. 3.3] is valid for all
extensions Lℓ/K. We recall that this is equivalent to asserting that the ele-
ment TΩ(Lℓ/K, 1) of K0(Z[Gal(Lℓ/K)],R) that is defined in [5, §3.2] vanishes.
Taking account of the functorial behaviour described in [5, Prop. 3.5(i)] it is
therefore enough to prove that each element TΩ(Lℓ/Q, 1) vanishes.
We claim next that TΩ(Lℓ/Q, 1) belongs to the subgroup K0(Z[Gℓ],Q)tor
of K0(Z[Gℓ],R). Indeed, since TΩloc(Lℓ/Q, 1) vanishes the equality of [5,
Theorem 5.2] implies TΩ(Lℓ/Q, 1) = ψ∗

Gℓ
(TΩ(Lℓ/Q, 0)) where ψ∗

Gℓ
is the

involution of K0(Z[Gℓ],R) defined in [5, §2.1.4] and TΩ(Lℓ/Q, 0) the ele-
ment of K0(Z[Gℓ],R) defined in [5, §4]. Now ψ∗

Gℓ
preserves the subgroup

K0(Z[Gℓ],Q)tor and from [5, Prop. 4.4(ii)] one knows that TΩ(Lℓ/Q, 0) be-
longs to K0(Z[Gℓ],Q)tor if the ‘strong Stark conjecture’ of Chinburg is valid
for Lℓ/Q. It thus suffices to recall that, since every complex character of Gℓ is
rational valued, the strong Stark conjecture for Lℓ/Q has been proved by Tate
in [26, Chap. II].
We write Fℓ for the maximal abelian extension of Q in Lℓ (and note that
Fℓ/Q is biquadratic). Then, since the element TΩ(Lℓ/Q, 1) belongs to
K0(Z[Gℓ],Q)tor, the result of [10, Lemma 4] implies TΩ(Lℓ/Q, 1) vanishes
if it belongs to the kernels of both the natural projection homomorphism
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q : K0(Z[Gℓ],R) → K0(Z[Gal(Fℓ/Q)],R) and the connecting homomorphism
∂0Z[Gℓ],R : K0(Z[Gℓ],R)→ K0(Z[Gℓ]).

Now from [5, Prop. 3.6(ii)] one knows that TΩ(Lℓ/Q, 1) belongs to ker(∂0Z[Gℓ],R)

if Chinburg’s ‘Ω1-Conjecture’ [13, Question 3.2] is valid for Lℓ/Q. In addition,
the equality of [13, (3.2)] shows that the Ω1-Conjecture is valid for Lℓ/Q if
the ‘Ω3-Conjecture’ [13, Conj. 3.1] and ‘Ω2-Conjecture’ [13, Question 3.1] are
both valid for Lℓ/Q. But Chinburg proves the Ω3-Conjecture for Lℓ/Q in [14]
and, since Lℓ/Q is tamely ramified, the validity of the Ω2-Conjecture for Lℓ/Q
follows directly from [13, Theorems 3.2 and 3.3].
At this stage it suffices to prove that TΩ(Lℓ/Q, 1) belongs to ker(q). But, by
[5, Prop. 3.5(ii)], this is equivalent to asserting that [5, Conj. 3.3] is valid for
the extension Fℓ/Q and since Fℓ/Q is abelian this follows from Corollary 1.3.
This completes the proof of Corollary 1.4.
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Abstract. We study structure properties of reductive group schemes
defined over a local ring and splitting over its étale quadratic exten-
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1 Introduction

In the present paper we prove the Grothendieck-Serre conjecture on rationally
trivial torsors for group schemes of type F4 whose generic fiber has trivial g3
invariant. The Grothendieck-Serre conjecture [Gr58], [Gr68], [S58] asserts that
if R is a regular local ring and if G is a reductive group scheme defined over
R then a G-torsor over R is trivial if and only if its fiber at the generic point
of Spec (R) is trivial. In other words the kernel of a natural map H1

ét(R,G)→
H1
ét(K,G) where K is a quotient field of R is trivial.

1Partially supported by the Canada Research Chairs Program and an NSERC research
grant
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Many people contributed to this conjecture by considering various particular
cases. If R is a discrete valuation ring the conjecture was proved by Y. Nis-
nevich [N]. If R contains a field k and G is defined over k this is due to J.-L.
Colliot-Thélène, M. Ojanguren [CTO] when k is infinite perfect and it is due
to M. S. Raghunathan [R94], [R95] when k is infinite. The case of tori was
done by J.-L. Colliot-Thélène and J.-L. Sansuc [CTS]. For certain simple sim-
ply connected group of classical type the conjecture was proved by Ojanguren,
Panin, Suslin and Zainoulline [PS], [OP], [Z], [OPZ]. For a recent progress on
isotropic group schemes we refer to preprints [PSV], [Pa09], [PPS].2

In the paper we deal with a still open case related to group schemes of type F4.
Recall that if G is a group of type F4 defined over a field k of characteristic
6= 2, 3 one can associate (cf. [S93], [GMS03], [PetRac], [Ro]) cohomological in-
variants f3(G), f5(G) and g3(G) of G in H3(k, µ2), H5(k, µ2) and H3(k,Z/3Z)
respectively. The group G can be viewed as the automorphism group of a cor-
responding 27-dimensional Jordan algebra J . The invariant g3(G) vanishes if
and only if J is reduced, i.e. it has zero divisors. The main result of the paper
is the following.

Theorem 1. Let R be a regular local ring containing a field of characteristic 0.
Let G be a group scheme of type F4 over R such that its fiber at the generic point
of Spec (R) has trivial g3 invariant. Then the canonical mapping H1

ét(R,G)→
H1
ét(K,G) where K is a quotient field of R has trivial kernel.

We remark that for a group scheme G of type F4 we have Aut (G) ≃ G, so that
by the twisting argument the above theorem is equivalent to the following:

Theorem 2. Let R be as above and let G0 be a split group scheme of type
F4 over R. Let H1

ét(R,G0){g3=0} ⊂ H1
ét(R,G0) be the subset consisting of

isomorphism classes [T ] of G0-torsors such that the corresponding twisted group
(T G0)K has trivial g3 invariant. Then a canonical mapping

H1
ét(R,G0){g3=0} → H1

ét(K,G0)

is injective, i.e. two G0-torsors in H1
ét(R,G0){g3=0} are isomorphic over R if

and only if they are isomorphic over K.

The characteristic restriction in the theorem is due to the fact that the purity
result [ChP] is used in the proof and the latter is based on the use of the
main result in [P09] on rationally isotropic quadratic spaces which was proven
in characteristic zero only (the resolution of singularities is involved in that
proof). We remark that if the Panin’s result is true in full generality (except
probably characteristic 2 case) then our arguments can be easily modify in such
way that the theorem holds for all regular local rings where 2 is invertible.3

2We also remark that experts know the proof of the conjecture for group schemes of type
G2 but it seems to us that a proof is not available in the literature.

3I. Panin has informed the author that his main theorem in [P09] holds for quadratic
spaces defined over a regular local ring containing an infinite perfect field.
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The proof of the theorem heavily depends on the fact that group schemes of
type F4 with trivial g3 invariant are split by an étale quadratic extension of the
ground ring R. This is why the main body of the paper consists of studying
structure properties of simple group schemes of an arbitrary type over R (resp.
K) splitting by an étale quadratic extension S/R (resp. L/K) which is of
independent interest.

We show that the structure of such group schemes is completely determined
by a finite family of units in R which we call structure constants of G. These
constants depend on a chosen maximal torus T ⊂ G defined overR and splitting
over S. Such a torus is not unique in G. Giving two tori T and T ′ we find
formulas which express structure constants of G related to T in terms of that
of related to T ′ and this leads us quickly to the proof of the main theorem.
Of course we are using a group point view. It seems plausible that our proof
can be carried over in terms of Jordan algebras and their trace quadratic forms,
but we do not try to do it here.
The paper is divided into four parts. We begin by introducing notation, termi-
nology that are used throughout the paper as well as by reminding properties
of algebraic groups defined over a field and splitting by a quadratic field exten-
sion. This is followed by two sections on explicit formulas for cohomological
invariants f3 and f5 in terms of structure constants for groups of type F4 and
their classification. In the third part of the paper we study structure properties
of group schemes splitting by an étale quadratic extension of the ground ring.
The proof of the main theorem is the content of the last section.
Notation. Let R be a (commutative) ring. We let G0 denote a split reductive
group scheme over R and we let T0 ⊂ G0 denote a maximal split torus over
R. We denote by Σ(G0, T0) the root system of G0 with respect to T0. We use
standard terminology related to algebraic groups over rings. For the definition
of reductive group schemes (and in particular split reductive group schemes),
maximal tori, root systems of split group schemes and their properties we refer
to [SGA3].
We number the simple roots as in [Bourb68].

Acknowledgments. We thank the referee for useful comments and remarks
which helped to improve the exposition.

2 Lemma on representability of units by quadratic forms

Throughout the paper R denotes a (commutative) ring where 2 is invertible and
R× denotes the group of invertible elements of R. Also, all fields considered in
the paper have characteristic 6= 2.

If R is a local ring with the maximal ideal M we let k = R = R/M . Similarly,
if V is a free module on rank n over R we let V = V ⊗R R = V ⊗R k and for
a vector v ∈ V we set v = v ⊗ 1. If R is a regular local ring it is a unique
factorization domain ([Ma, Theorem 48, page 142]). Throughout the paper a
quotient field of R will be denoted by K.
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Let f =
∑n

i=1 aix
2
i be a quadratic form over R where a1, . . . , an ∈ R× given

on a free R-module V . If I ⊂ {1, . . . , n} is a non-empty subset we denote by
fI =

∑
i∈I aix

2
i the corresponding subform of f . If v = (v1, . . . , vn) ∈ V we set

fI(v) =
∑

i∈I aiv
2
i . Finally, let g =

∏
I fi where the product is taken over all

non-empty subsets of {1, . . . , n}. For a vector v we set g(v) =
∏
I fI(v).

Lemma 3. Let f and g be as above. Assume that (the residue field) k is infinite.
Let a ∈ R× be a unit such that f(v) = a for some vector v ∈ V . Then there
exists a vector u ∈ V such that f(u) = a and g(u) is a unit.

Proof. If n = 1, v has the required properties. Hence me may assume n ≥ 2.
If w ∈ V is a vector whose length f(w) with respect to f is a unit we denote
by τw an orthogonal reflection with respect to w given by

τw(x) = x− 2f(x,w)f(w)−1w

for all vectors x in V . Since orthogonal reflections preserve length of vectors it
suffices to find vectors w1, . . . , ws ∈ V such that g(τw1 · · · τws(v)) is a unit. For
that, in turn, it suffices to find w1, . . . , ws ∈ V such that g(τw1

· · · τws(v)) 6= 0.
It follows that we can pass to a vector space V over k. Consider a quadric

Qa = { x ∈ V | f(x) = a }

defined over k. We have v ∈ Qa(k), hence Qa(k) 6= ∅ implying Qa is a rational
variety over k.
Let U ⊂ V be an open subset given by g(x) 6= 0. It is easy to see that
Qa ∩ U 6= ∅ (indeed, if we pass to an algebraic closure k̄ of k then obviously
we have U(k̄) ∩ Qa(k̄) 6= ∅). Since k is infinite, k-points of Qa are dense in
Qa. Hence Qa(k) ∩ U is nonempty. Take a vector w ∈ Qa(k) ∩ U . Since the
orthogonal group O(f) acts transitively on vectors of Qa there exists s ∈ O(f)
such that w = s(v). It remains to note that orthogonal reflections generate
O(f ).

3 Algebraic groups splitting by quadratic field extensions

The aim of this section is to remind structure properties of a simple simply con-
nected algebraic group G defined over a field K and splitting over its quadratic
extension L/K. There is nothing special in type F4 and we will assume in this
section that G is of an arbitrary type of rank n. The only technical restriction
which we need later on to simplify the exposition of the material on the struc-
ture of such groups relates to the Weyl group W of G. Namely, we will assume
that W contains −1, i.e. an element which takes an arbitrary root α into −α.4

Let τ be the nontrivial automorphism of L/K. If BL ⊂ GL is a Borel subgroup
over L in GL in generic position then BL ∩ τ(BL) = T is a maximal torus in

4For groups G splitting over a quadratic extension of the ground field and whose whose
Weyl group doesn’t contain −1 the Galois descent data looks more complicated; for instance,
Lemma 4 doesn’t hold for them.
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GL. Clearly, it is defined over K and splitting over L (because it is contained
in BL and all tori in BL are L-split).

Lemma 4. T is anisotropic over K.

Proof. The Galois group of L/K acts in a natural way on characters of T and
hence on the root system Σ = Σ(GK , T ) of GK with respect to TK . Thus we
have a natural embedding Gal (L/F ) →֒ W which allows us to view τ as an
element of W . Since the intersection of two Borel subgroups BL and τ(BL) is
a maximal torus in GL, one of them, say τ(BL), is the opposite Borel subgroup
to the second one BL with respect to the ordering on Σ determined by the
pair (TL, BL). One knows that W contains a unique element which takes BL
to τ(BL) = B−

L . Since −1 ∈ W such an element is necessary −1. Of course
this implies τ = −1, hence τ acts on characters of T as −1. In particular T is
K-anisotropic.

Our Borel subgroup BL determines an ordering of the root system Σ of GL,
hence the system of simple roots Π = {α1, . . . , αn}. Let Σ+ (resp. Σ−) be the
set of positive (resp. negative) roots. Let us choose a Chevalley basis [St]

{Hα1 , . . .Hαn , Xα, α ∈ Σ} (5)

in the Lie algebra gL = L(GL) of GL corresponding to the pair (TL, BL). Recall
that elements from (5) are eigenvectors of TL with respect to the adjoint repre-
sentation ad : G→ End (gL) satisfying some additional relations; in particular
for each t ∈ TL we have

tXαt
−1 = α(t)Xα (6)

where α ∈ Σ and tHαit
−1 = Hαi . A Chevalley basis is unique up to signs and

automorphisms of gL which preserve BL and TL (see [St], §1, Remark 1).
Since GL is a Chevalley group over L, the structure of G(L) as an abstract
group, i.e. its generators and relations, is well known. For more details and
proofs of all standard facts aboutG(L) used in this paper we refer to [St]. Recall
that G(L) is generated by the so-called root subgroups Uα = 〈xα(u) | u ∈ L〉,
where α ∈ Σ and T is generated by the one-parameter subgroups

Tα = T ∩Gα = Imhα

Here Gα is the subgroup generated by U±α and hα : Gm,L → TL is the cor-
responding cocharacter (coroot) of T . Furthermore, since GL is a simply con-
nected group, the following relations hold in GL (cf. [St], Lemma 28 b), Lemma
20 c) ):

(i) T ≃ Tα1 × · · · × Tαn ;

(ii) for any two roots α, β ∈ Σ and t, u ∈ L we have

hα(t)xβ(u)hα(t)−1 = xβ(t〈β,α〉u)
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where 〈β, α〉 = 2 (β, α)/(α, α) and

hα(t)Xβhα(t)−1 = t〈β,α〉Xβ (7)

If ∆ ⊂ Σ+ is a subset, we letG∆ denote the subgroup generated by U±α, α ∈ ∆.
We shall now describe explicitly the K-structure of G, i.e. the action of τ on
the generators {xα(u), α ∈ Σ} of GL. As we already know τ(α) = −α for any

α ∈ Σ and this implies Tα ≃ R(1)
L/K(Gm,L) (see [V, 4.9, Example 6]).

Let α ∈ Σ. Since τ(α) = −α there exists a constant cα ∈ L× such that τ(Xα) =
cαX−α. It follows that the action of τ on G(L) is determined completely by the
family {cα, α ∈ Σ}. We call these constants by structure constants of G with
respect to T and Chevalley basis (5). Of course, they depend on the choice of
T and a Chevalley basis. We summarize their properties in the following two
lemmas (for their proofs we refer to [Ch, Lemmas 4.4, 4.5, 4.11]).

Lemma 8. Let α ∈ Σ. Then we have

(i) c−α = c−1
α ;

(ii) cα ∈ K×;

(iii) if β ∈ Σ is a root such that α+ β ∈ Σ, then cα+β = −cα cβ; in particular,
the family {cα, α ∈ Σ} is determined completely by its subfamily {cα1 , . . . , cαn}.

Lemma 9. (i) τ [xα(u) ] = x−α(cατ(u)) for every u ∈ L and every α ∈ Σ.

(ii) Let L = K(
√
d). Then the subgroup Gα of G is isomorphic to SL (1, D)

where D is a quaternion algebra over K of the form D = (d, cα).

4 Moving tori

We follow the notation of the previous section. The family {cα, α ∈ Σ} deter-
mining the action of τ on G(L) depends on a chosen Borel subgroup BL and the
corresponding Chevalley basis. Given another Borel subgroup and Chevalley
basis we get another family of constants and we now are going to describe the
relation between the old ones and the new ones.
Let B′

L ⊂ GL be a Borel subgroup over L such that the intersection T ′ =
B′
L ∩ τ(B′

L) is a maximal K-anisotropic torus. Clearly both tori T and T ′ are
isomorphic over K (because both of them are isomorphic to the direct prod-

uct of n copies of R
(1)
L/K(Gm,L)). Furthermore, there exists a K-isomorphism

λ : T → T ′ preserving positive roots, i.e. which takes (Σ′)+ = Σ(G, T ′)+

into Σ+ = Σ(G, T )+. Any such isomorphism can be extended to an inner
automorphism

ig : G −→ G, x→ g x g−1

for some g ∈ G(Ks), where Ks is a separable closure of K, which takes BL
into B′

L ( see [Hum], Theorem 32.1 ). Note that g is not unique since for any
t ∈ T (Ks) the inner conjugation by gt also extends λ and it takes BL into B′

L.
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Lemma 10. The element g can be chosen in G(L).

Proof. Take an arbitrary g′ ∈ G(Ks) such that ig′ extends λ and ig′(BL) = B′
L.

Since the restriction ig′ |T is a K-defined isomorphism, we have

tσ = (g′)−1+σ ∈ T (Ks)

for any σ ∈ Gal (Ks/K). The family {tσ, σ ∈ Gal (Ks/F )} determines a
cocycle ξ = (tσ) ∈ Z1(K,T ). Since T splits over L, resL(ξ) viewed as a cocycle
in T is trivial, by Hilbert’s Theorem 90. It follows there is z ∈ T (Ks) such that
tσ = z1−σ, σ ∈ Gal (Ks/L). Then g = g′z is stable under Gal (Ks/L). This
implies g ∈ G(L) and clearly we have gBLg

−1 = B′
L.

Let g be an element from Lemma 10 and let t = g−1+τ . Since t ∈ T (L), it can
be written uniquely as a product t = hα1(t1) · · ·hαn(tn), where t1, . . . , tn ∈ L×

are some parameters.

Lemma 11. We have t1, . . . , tn ∈ K×.

Proof. We first note that, by the construction of t, we have t τ(t) = 1. Since
τ acts on characters of T as multiplication by −1 we have τ(hαi(ti)) =
hαi(1/τ(ti)) for every i = 1, . . . , n. Also, the equality t τ(t) = 1 implies
hαi(ti)hαi(1/τ(ti)) = 1, hence ti = τ(ti).

The set

{H ′
α1

= gHα1g
−1, . . . , H ′

αn = gHαng
−1, X ′

α = gXαg
−1, α ∈ Σ} (12)

is a Chevalley basis related to the pair (T ′, B′
L). Let {c′α, α ∈ Σ} be the corre-

sponding structure constants of G with respect to T ′ and Chevalley basis (12).

Lemma 13. For every root α ∈ Σ′ one has c′α = t
−〈α,α1〉
1 · · · t−〈α,αn〉

n · cα.

Proof. Apply τ to the equality X ′
α = gXαg

−1 and use relation (7).

Our element g constructed in Lemma 10 has the property g−1+τ ∈ T (L).
Conversely, it is easy to see that an arbitrary g ∈ G(L) with this property
gives rise to a new pair (B′

L, T
′) and hence to the new structure constants {c′α}

which are given by the formulas in Lemma 13. Thus we have

Lemma 14. Let g ∈ G(L) be an element such that t = g−1+τ ∈ T (L). Then
T ′ = gTg−1 is a K-defined maximal torus splitting over L and the restriction
of the inner automorphism ig to T is a K-defined isomorphism. The structure
constants {c′α} related to T ′ are given by the formulas in Lemma 13.

Example 15. Let G, T be as above and let Σ = Σ(G, T ). Take an element

g = x−α(−cαv)xα

( −τ(v)

1− cαvτ(v)

)
(16)
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where α ∈ Σ is an arbitrary root and v ∈ L× is such that 1− cαvτ(v) 6= 0. One
easily checks that

g−1+τ = hα

(
1

1− cαvτ(v)

)

and hence g gives rise to a new torus T ′ = gTg−1 and to a new structure
constants.

Definition 17. We say that we apply an elementary transformation of T
with respect to a root α and a parameter v ∈ L× when we move from T to
T ′ = gTg−1 where g is given by (16) and 1− cαvτ(v) 6= 0.

Remark 18. The main property of an elementary transformation with respect
to a root α is that the new structure constant c′β with respect to T ′ doesn’t
change (up to squares) if β is orthogonal to α or 〈β, α〉 = ±2 and it is equal to
(1−cαvτ(v))cβ (up to squares) if 〈β, α〉 = ±1. Thus in the context of algebraic
groups this an analogue of an elementary chain equivalence of quadratic forms.

Remark 19. An arbitrary reduced norm in the quaternion algebra D = (d, cα)
can be written as a product of two elements of the form 1− cαvτ(v), hence in
the case 〈β, α〉 = ±1 we can change cβ by any reduced norm in D.

5 Cohomological interpretation

While considering cohomological invariants of G of type F4 sometimes it is
convenient to consider G as a twisting group. Let Gad be the corresponding
adjoint group. Note that groups of type F4 are simply connected and adjoint so
that for them we have G = Gad. Let G0 (resp. Gad0 ) be a K-split simple simply
connected (resp. adjoint) group of the same type as Gad and let T0 ⊂ G0 (resp.
T ad0 ⊂ Gad0 ) be a maximal K-split torus. We denote by c ∈ Aut(G0) an element
such that c2 = 1 and c(t) = t−1 for every t ∈ T0 (it is known that such an
automorphism exists, see e.g. [DG], Exp. XXIV, Prop. 3.16.2, p. 355). We
assume additionally that c ∈ NGad0 (T ad0 ).

Remark 20. In general case c can not be lifted to NG0(T0). However it is
known that if G0 has type D4 or F4 such an element can be chosen inside the
normalizer NG0(T0) of T0. So when we deal with such groups we will assume
that c ∈ NG0(T0).

Lemma 21. Let t ∈ T ad0 (K) and let aτ = ct. Then ξ = (aτ ) is a cocycle in
Z1(L/K,Gad0 (L)).

Proof. We need to check that aττ(aτ ) = 1. Indeed,

aτ τ(aτ ) = ct τ(ct) = ctct = t−1t = 1

as required.
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For further reference we note that every cocycle η ∈ Z1(K,Gad0 ) acts by inner
conjugation on bothG0 andGad0 and hence we can twist ηG0, ηGad0 both groups.
Since Gad0 is adjoint the character group of T ad0 is generated by simple roots
{α1, . . . , αn} of the root system Σ = Σ(Gad0 , T ad0 ) of Gad0 with respect to T ad0 .
Choose a decomposition T ad0 = Gm × · · · × Gm such that the canonical em-
beddings πi : Gm → T ad0 onto the ith factor, i = 1, . . . , n, are the cocharacters
dual to α1, . . . , αn.

Proposition 22. Let G be as above with structure constants cα1 , . . . , cαn . Let
ξ = (aτ ) where aτ = ct and t =

∏
i πi(cαi). Then the twisted group ξG0 is

isomorphic to G over K.

Proof. It is known that cXαc
−1 = X−α and according to (6) we have tXαt

−1 =
α(t)Xα for every root α ∈ Σ. Since the cocharacters π1, . . . , πn are dual to the
roots α1, . . . , αn, we have 〈πi, αj 〉 = δij , hence

πi(cαi)Xαiπi(cαi)
−1 = cαiXαi

and
πi(cαi)Xαjπi(cαi)

−1 = Xαj

if i 6= j. Thus for the twisted group ξG0 the structure constant for the simple
root αi, i = 1, . . . , n, is cαi because

Xαi → aτXαia
−1
τ = (c

∏

i

πi(cαi))Xαi(c
∏

i

πi(cαi))
−1 = cαiX−αi .

If α ∈ Σ is an arbitrary root, then by Lemma 8 the structure constant cα
of ξG0 can be expressed uniquely in terms of the constants cα1 , . . . , cαn , so
that the twisted group ξG0 has the same structure constants as G. It follows
that the Lie algebras L(G) and L(ξG0) of G and ξG0 have the same Galois
descent data. This yields L(G) ≃ L(ξG0) and as a consequence we obtain that
their automorphism groups (and in particular their connected components) are
isomorphic over K as well.

Remark 23. Assume that R is a domain where 2 is invertible with a field of
fractions K and G0 is a split group scheme over R. Let S = R(

√
d) be an étale

quadratic extension of R where d is a unit in R. Let τ be the generator of
Gal (S/R). Assume that cα1 , . . . , cαn ∈ R×. Then we may view ξ = (aτ ) where
aτ = c

∏
i πi(cαi) as a cocycle in Z1(S/R,Gad0 (S)) and hence the twisted group

ξG0 is a group scheme over R whose fiber at the generic point of Spec (R) is
isomorphic to GK .

As an application of the above proposition we get

Lemma 24. Let G and G′ be groups over K and splitting over L with structure
constants {cα1 , . . . , cαn} and {cα1u1, . . . , cαnun} where u1, . . . , un are in the
image of the norm map NL/K : L× → K×. Then G and G′ are isomorphic
over K.
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Proof. Let ui = NL/K(vi). By Proposition 22, we have G and G′ are twisted
forms of G0 by means of cocycles ξ = (aτ ) and ξ′ = (a′τ ) with coefficients in
Gad0 (S) where aτ = c

∏
i πi(cαi) and a′τ = c

∏
i πi(cαiui). Since T ad0 is a K-

split torus and since πi is a K-defined morphism we have τ(πi(vi)) = πi(τ(vi)).
Also, we have c2 = 1 and cπi(vi)c

−1 = πi(v
−1
i ). Then it easily follows

aτ =

(∏

i

πi(vi)

)
a′τ

(∏

i

πi(vi)

)−τ

and this implies ξ is equivalent to ξ′.

The statement of the lemma can be equivalently reformulated as follows.

Corollary 25. Let T ⊂ G be a maximal torus with the structure constants
{cα1 , . . . , cαn} and let u1, . . . , un ∈ NL/K(L×). Then G contains a maximal
torus T ′ whose structure constants are {cα1u1, . . . , cαnun}.

6 Strongly inner forms of type D4

For later use we need some classification results on strongly inner forms of
type 1D4; in other words we need an explicit description of the image of
H1(K,G0) → H1(K,Aut(G0)) where G0 is a simple simply connected group
over a field K of type D4.
For an arbitrary cocycle ξ ∈ Z1(K,G0) the twisted group G = ξG0 is iso-
morphic to Spin(f) where f is an 8-dimensional quadratic form having trivial
discriminant and trivial Hasse-Witt invariant. By Merkurjev’s theorem [M], f
belongs to I3 where I is the fundamental ideal of even dimensional quadratic
forms in the Witt group W (K). We may assume that f represents 1 (because
Spin(f) ≃ Spin(af) for a ∈ K×). Since dim f = 8, by the Arason-Pfister
Hauptsatz, f is a 3-fold Pfister form over K and as a consequence we obtain
G is splitting over a quadratic extension L/K of K, say L = K(

√
d).

Lemma 26. There exist parameters u1, . . . , u4 ∈ K× such that G ≃ ηG0 where
η is of the form η = (aτ ) and aτ = c

∏
i hαi(ui).

Proof. By Remark 20 we may assume that c ∈ NG0(T0). Let ξ′ be the image
of ξ in H1(K,Gad0 ) and let c′ be the image of c in Gad0 . By Proposition 22, we
may assume that ξ′ is of the form ξ′ = (a′τ ) where a′τ = c′

∏
i πi(cαi) and cαi

are structure constants of Gad = ξ′Gad0 with respect to some maximal torus in
Gad defined over K and splitting over L.
The element c gives rise to a cocycle λ = (bτ ) ∈ Z1(L/K,G0(L)) where bτ = c.
Twisting G0 by λ yields a commutative diagram

H1(K,G0)
f1−−−−→ H1(K, λG0)

y
y

H1(K,Gad0 )
f2−−−−→ H1(K, λG0)
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where f1 and f2 are the canonical bijections. Let f2(ξ′) = ξ′′. It is of the form
ξ′′ = (a′′τ ) where a′′τ =

∏
i πi(cαi); hence f2(ξ′) takes values in a maximal torus

T ad = λT ad0 of λ(Gad0 ) defined over K and splitting over L.
Let Z be the center of G0. We have an exact sequence

0→ Z → λT0 → T ad → 1

It induces a morphism f3 : H1(K,T ad) → H2(K,Z). Since c′ and ξ′ can be
lifted to G0, we have f3(ξ

′′) = 0. Hence ξ′′ has a lifting into the torus λT0, say
η̃ ∈ H1(L/K, λT0). Going back to H1(K,T0) we see that η = f−1

1 (η̃) has the
required property.

Since we are interesting in the description of G = ξG0 we may assume without
loss of generality that ξ = η. It is known that Z ≃ µ2 × µ2 (see [PR94, §6.5]),
hence Z contains three elements of order 2. They give rise to three homo-
morphisms φi : G0 → SO(f0) where i = 1, 2, 3 and f0 is a split 8-dimensional
quadratic form. The images φi(ξ), i = 1, 2, 3, of ξ in Z1(K, SO(f0)) corre-
spond to three quadratic form f1, f2, f3 and we are going to give an explicit
description of fi in terms of the parameters u1, u2, u3, u4 and d.

Lemma 27. Up to numbering we have f1 = u3f , f2 = u4f and f3 = u3u4f
where f = 〈〈 d, v1, v2 〉〉 and v1 = u1u

−1
3 u−1

4 , v2 = u2. In particular G is split
over a field extension E/K if and only if so is fE.

Proof. One easily checks that Z is generated by

hα1(−1)hα3(−1) and hα1(−1)hα4(−1).

We now rewrite the cocycle ξ = (aτ ) in the form

aτ = chα1(v1)hα2(v2)z1z2

where v1 = u1u
−1
3 u−1

4 , v2 = u2 and

z1 = hα1(u3)hα3(u3), z2 = hα1(u4)hα4(u4).

Using relation (7) we find that the structure constants of G with respect to the
twisted torus T = ξT0 up to squares are cα2 = v1 and cα1 = cα3 = cα4 = v2.
Also, applying the same twisting argument as in [ChS, 4.1] we find that up to
numbering we have f1 = u3f , f2 = u4f and f3 = u3u4f where

f = 〈〈 d, v1, v2 〉〉 = 〈〈 d, cα1 , cα2 〉〉 .

We are now going to show that we don’t change the equivalence class [ξ] if we
multiply the parameters u3, u4 in the expression for ξ by elements in K× rep-
resented by f . Let V, V1, V2, V3 be 8-dimensional vector space over K equipped
with the quadratic forms f, f1, f2, f3.
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Proposition 28. Let w1, w2 ∈ V be two anisotropic vectors and let a =
f(w1), b = f(w2). Let ξ′ = (a′τ ) where a′τ = chα1(v1)hα2(v2)z′1z

′
2 and

z′1 = hα1(au3)hα3(au3), z′2 = hα1(bu4)hα4(bu4).

Then ξ′ is equivalent to ξ.

Proof. Consider two embeddings ψ1 ψ2 : µ2 → G0 given by

−1→ hα1(−1)hα3(−1)

and
−1→ hα1(−1)hα4(−1).

Up to numbering we may assume that

ξG0/ψ1(µ2) ≃ SO(f1) and ξG0/ψ2(µ2) ≃ SO(f2).

We also have a canonical bijection H1(K,G0) → H1(K, ξG0) (translation by
ξ) under which ξ′ goes to η = (hα1(a)hα3(a)hα1(b)hα4(b)) and we need to show
that η is trivial in H1(K, ξG0).
We now note that η is the product of two cocycles η1 = (hα1(a)hα3(a)) and
η2 = (hα1(b)hα4(b)) first of which being in the image of ψ∗

1 : H1(K,µ2) →
H1(K, ξG0) induced by ψ1 and the second one being in the image of ψ∗

2 :
H1(K,µ2) → H1(K, ξG0) induced by ψ2. We may identify H1(K,µ2) =
K×/(K×)2. It is known that Kerψ∗

1 (resp. Kerψ∗
2) consists of spinor norms

of f1 (resp. f2). Thus the statement of the proposition is amount to saying
that a, b are spinor norms for the twisted group G = ξG0 with respect to the
quadratic forms f1 and f2 respectively. Since spinor norms of fi are gener-
ated by fi(s1)fi(s2) where s1, s2 ∈ Vi are anisotropic vectors and since fi is
proportional to f we are done.

Remark 29. Assume that R and S are as in Remark 23. Take a cocycle ξ =
(aτ ) in Z1(S/R,G0(S)) given by aτ = chα1(u1) · · ·hα4(u4) where u1, . . . , u4 ∈
R×. Then arguing literally verbatim we find that the twisted group G =
ξG0 is isomorphic to Spin(f) where f is a 3-fold Pfister form given by f =
〈〈 d, u2, u1u3u4 〉〉 and that for all units a, b ∈ R× represented by f the cocycle
ξ′ from Proposition 28 is equivalent to ξ.

Proposition 30. Let G be as above and let f = 〈〈 d, v1, v2 〉〉 be the correspond-
ing 3-fold Pfister form. Assume that f has another presentation f = 〈〈 d, a, b 〉〉
over K. Then there exists a maximal torus T ′ ⊂ G defined over K and splitting
over L such that structure constants of G with respect to T ′ (up to squares) are
c′α1

= a and c′α2
= b.

Proof. We proved in Lemma 27 that the structure constants of G with respect
to the torus T = ξT0 are cα1 = v2 and cα1 = v1. We now construct a sequence of
elementary transformations of T with respect to the roots α1 and α2 such that
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at the end we arrive to a torus with the required structure constants. Recall
that, by Remarks 18 and 19, an application of an elementary transformation
of T with respect to α1 (resp. α2) does not change cα1 (resp. cα2) modulo
squares and multiplies cα2 (resp. cα1) by a reduced norm from the quaternion
algebra (d, cα1) (resp. (d, cα2)).
By Witt cancellation we may write a in the form a = w1cα1 +w2cα2−w3cα1cα2

where w1, w2, w3 ∈ NL/K(L×). By Corollary 25, passing to another maximal
torus and Chevalley basis (if necessary) we may assume without loss of gen-
erality that w1 = w2 = 1 and hence we may assume that a is of the form
a = cα1(1 − w3cα2) + cα2 where w3 is still in NL/K(L×).
If 1 − w3cα2 = 0 then a = cα2 and we pass to the last paragraph of the
proof. Otherwise applying a proper elementary transformation with respect to
α2 we pass to a new torus with structure constants c′α1

= cα1(1 − w3cα2) and
c′α2

= cα2 . Thus abusing notation without loss of generality we may assume

a = cα1 + cα2 = cα1(1− (−cα1)−1cα2).

Applying again a proper elementary transformation with respect to α1 we can
pass to a torus whose second structure constant is (−cα1)−1cα2 , so that we may
assume a = cα1(1 − cα2). Lastly, applying an elementary transformation with
respect to α2 we pass to a torus such that a = cα1 .
We finally observe that from

〈〈 d, cα1 , cα2 〉〉 = 〈〈 d, a, b 〉〉 = 〈〈 d, cα1 , b 〉〉

it follows that b is of the form b = wcα2 where w ∈ Nrd (d, cα1). So a proper
elementary transformation with respect to α1 completes the proof.

7 Alternative formulas for f3 and f5 invariants

We are going to apply the previous technique to produce explicit formulas for
the f3 and f5 invariants of a group G of type F4 over a field K of characteristic
6= 2 with trivial g3 invariant. Recall (cf. [S93], [GMS03], [PetRac]) that given
such G one can associate the cohomological invariants f3(G) ∈ H3(K,µ2) and
f5(G) ∈ H5(K,µ2) with the following properties (cf. [Sp], [Ra]):

(a) The group G is split over a field extension E/K if and only if f3(G) is
trivial over E;

(b) The group G is isotropic over a field extension E/K if and only if f5(G) is
trivial over E.

These two invariants f3, f5 are symbols given in terms of the trace quadratic
form of the Jordan algebra J corresponding to G and hence we may associate
to them 3-fold and 5-fold Pfister forms. Abusing notation we denote them by
the same symbols f3(G) and f5(G). It is well known that f3(G) and f5(G)
completely classify groups of type F4 with trivial g3 invariant (see [Sp], [S93])
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and we would like to produce explicit formulas of f3(G) and f5(G) in group
terms only in order to generalize them later on to the case of local rings.
It follows from (a) that our group G is splitting by a quadratic extension.
Indeed, if f3(G) = (d) ∪ (a) ∪ (b) then passing to L = K(

√
d) we get GL has

trivial f3 invariant and as a consequence G is L-split by property (a).
We next construct a subgroup H in G of type D4 and compute structure
constants of G and H . By Proposition 22 we may view G as a twisted group
ξG0 where ξ = (aτ ), aτ = c

∏4
i=1 hαi(ui) and u1, . . . , u4 ∈ K× where G0 is a

split group of type F4. Looking at the tables in [Bourb68] we find that the
subroot system Σ′ in Σ(G0, T0) generated by the long roots has type D4. One
checks that

β1 = −ǫ1 − ǫ2, β2 = α1, β3 = α2, β4 = ǫ3 + ǫ4

is its basis. Since ǫ3 + ǫ4 = α2 + 2α3 and ǫ1 + ǫ2 = 2α1 + 3α2 + 4α3 + 2α4, it
follows that the cocharacters hǫ3+ǫ4 and hǫ1+ǫ2 are equal to

hǫ3+ǫ4 = hα2 + hα3 and hǫ1+ǫ2 = 2hα1 + 3hα2 + 2hα3 + hα4

so that
hǫ3+ǫ4(u) = hα2(u)hα3(u) (31)

and
hǫ1+ǫ2(u) = hα1(u2)hα2(u3)hα3(u2)hα4(u) (32)

for all parameters u ∈ L×.
These relations shows that aτ can be rewritten in the form

aτ = chα1(v1)hα2(v2) [hǫ1+ǫ2(v3)hα2(v3)] [hǫ3+ǫ4(v4)hα2(v4)] (33)

where v1, v2, v3, v4 ∈ K×.
Let H0 be the subgroup in G0 generated by Σ′. It is stable with respect to
the conjugation by aτ , hence G contains the subgroup H = ξH0 of type D4.
Using (7) we easily find that modulo squares in K× one has cα3 = v2v3 and
cα4 = v4 and cα1 = v2, cα2 = v1; in particular cα1 , cα2 don’t depend on v3, v4
modulo squares.
Recall that two n-fold Pfister forms, say g1 and g2, are isomorphic over the
ground field K if and only if g1 is hyperbolic over the function field of K(g2)
of g2.

Theorem 34. One has f3(G) = (d) ∪ (cα1) ∪ (cα2).

Proof. Let f = 〈〈 d, cα1 , cα2 〉〉 and let E be the function field of f . According
to property (a), it suffices to show that G is split over E or H is split over E.
But in Lemma 27 we showed that H ≃ Spin(f) and so we are done.

The following proposition shows that the structure constants cα3 are cα4 of G
are well defined modulo values of f = f3(G) = 〈〈 d, cα1 , cα2 〉〉.
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Proposition 35. Let a, b ∈ K× be represented by f over K. Then there exists
a maximal torus T ′ ⊂ G defined over K and splitting over L such that modulo
squares G has structure constants cα1 , cα2 , acα3 , bcα4 with respect to T ′.

Proof. According to Proposition 28, if multiply the parameters v3, v4 in the
expression (33) by a, b respectively we obtain a cocycle equivalent to ξ, so the
result follows.

Theorem 36. One has f5(G) = (d) ∪ (cα1) ∪ (cα2) ∪ (cα3) ∪ (cα4).

Proof. Let g = 〈〈 d, cα1 , cα2 , cα3 , cα4 〉〉. Arguing as in Theorem 34 and using
property (b) we may assume that g is split and we have to prove that G is
isotropic. Since g is split we may write cα4 in the form

cα4 = a−1(1− bcα3) (37)

where a, b are represented by f = 〈〈 d, cα1 , cα2 〉〉. Our aim is to pass (with the
use of elementary transformations) to a new torus T ′ ⊂ G defined over K and
splitting over L such that the new structure constant c′α4

related to T ′ is equal
to 1 modulo squares. The last would imply that the corresponding subgroup
Gα4 of G is isomorphic to SL2 by Lemma 9 (ii) and this would show that G is
isotropic as required.

By Proposition 35 there exists a maximal torus T ′ in G such that two last
structure constants related to T ′ are c′α3

= bcα3 and c′α4
= acα4 . Then by (37)

we have c′α4
= 1 − c′α3

. Applying a proper elementary transformation with
respect to α3 we pass to the third torus T ′′ for which c′′α4

= 1 modulo squares
and we are done.

8 Classification of groups of type F4 with trivial g3 invariant

The theorem below is due to T. Springer [Sp]. In this section we produce an
alternative short proof which can be easily adjusted to the case of local rings.

Theorem 38. Let G0 be a split group of type F4 over a field K. A mapping

H1
ét(K,G0){g3=0} → H3(K,µ2)×H5(K,µ2)

given by G→ (f3(G), f5(G)) is injective.

We need the following preliminary result.

Proposition 39. Let G be a group of type F4 defined over K and splitting over
L with structure constants cα1 , . . . , cα4 with respect to a torus T . Let a ∈ K× be
represented by g = 〈〈 d, cα1 , cα2 , cα3 〉〉 over K. Then there is a maximal torus
T ′ ⊂ G such that the corresponding structure constants are cα1 , cα2 , cα3 , acα4

modulo squares.
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Proof. Write a in the form a = a1(1 − a2cα3) where a1, a2 are represented by
f = 〈〈 d, cα1 , cα2 〉〉. By Proposition 35 the structure constants cα3 and cα4

are well defined modulo values of f . Hence passing to another maximal torus
in G we may assume without loss of generality that a1 = a2 = 1 so that
a = 1− cα3 . Since 1− cα3 is a reduced norm in the quaternion algebra (d, cα3)
a proper elementary transformation with respect to α3 lead us to a torus whose
first three structure constants are the same modulo squares and the last one is
(1− cα3)cα4 .

Proof of Theorem 38. Let G,G′ be two groups of type F4 over K such that
f3(G) = f3(G′) and f5(G) = f5(G′). Choose a quadratic extension L/K split-
ting f3(G). It splits both G and G′. Our strategy is to show that G,G′ contain
maximal tori defined over K and splitting over L with the same structure
constants.
Choose arbitrary maximal tori T ⊂ G, T ′ ⊂ G′ defined over K and split-
ting over L. Let cα1 , . . . , cα4 and c′α1

, . . . , c′α4
be the corresponding structure

constants. As we know, G,G′ contain subgroups H,H ′ of type D4 over K gen-
erated by the long roots. By Theorem 34 we have f3(G) = (d) ∪ (cα1) ∪ (cα2)
and f3(G′) = (d) ∪ (c′α1

) ∪ (c′α2
), hence

〈〈 d, cα1 , cα2 〉〉 = 〈〈 d, c′α1
, c′α2

〉〉.

Then according to Proposition 30 applied to H ′ and f = 〈〈 d, cα1 , cα2 〉〉 we may
assume without loss of generality that cα1 = c′α1

and cα2 = c′α2
.

We next show that up to choice of maximal tori in G and G′ we also may
assume that cα3 = c′α3

. Since f5(G) = f5(G′) we get

〈〈 d, cα1 , cα2 , cα3 , cα4 〉〉 = 〈〈 d, cα1 , cα2 , c
′
α3
, c′α4
〉〉. (40)

By Witt cancellation we can write c′α3
in the form c′α3

= a1cα3+a2cα4−a3cα3cα4

where a1, a2, a3 are values of f . By Proposition 35 we may assume without loss
of generality that a1 = a2 = 1. Arguing as in Proposition 30 we may pass to
another maximal torus in G′ such that the corresponding structure constants
are

c′α1
= cα1 , c

′
α2

= cα2 , c
′
α3

= cα3 .

Finally, from (40) it follows that c′α4
= acα4 for some a ∈ K× represented by

g = 〈〈 d, cα1 , cα2 , cα3 〉〉. Application of Proposition 39 completes the proof.

9 Group schemes splitting by étale quadratic extensions

We now pass to a simple simply connected group scheme G of an arbitrary
type of rank n defined over a local ring R where 2 is invertible and splitting by
an étale quadratic extension S = R(

√
u) ≃ R[t]/(t2 − u) of R where u ∈ R×.

We assume that R is a domain with a quotient field K and with a residue field
k and we assume u is not square in K×. We also denote L = S ⊗R K and
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l = S⊗R k. Abusing notation we denote the nontrivial automorphisms of S/R,
L/K and l/k by the same letter τ .
Let g be the Lie algebra of G. As usual we set

gS = g⊗R S, gK = g⊗R K, gL = g⊗R L

and
g = gk = g⊗R k, gS = gl = gS ⊗S l.

Let bS be a Borel subalgebra in gS . We say that it is in a generic position if
bS∩τ(bS) is a Cartan subalgebra in gl. This amounts to saying that bS∩τ(bS)
has dimension n over l.
We will systematically use below the fact that in a split simple Lie algebra
defined over a field the intersection of two Borel subalgebras contains a split
Cartan subalgebra; in particular this intersection has dimension at least n.

Lemma 41. The Lie algebra gS contains Borel subalgebras in generic position.

Proof. Let B and B be the varieties of Borel subalgebras in the split Lie algebras
gS and gl respectively. Passing to residues we have a canonical mapping B → B
whose image is dense (because gS is split). Let U ⊂ B be an open subset in
Zariski topology consisting of Borel subalgebras bl such that bl ∩ τ(bl) has
dimension n. Since B(S) is dense in B there exists a Borel subalgebra bS in gS
over S whose image in B is contained in U .

Lemma 42. Let bS ⊂ gS be a Borel subalgebra in generic position. Then a
submodule tS = bS ∩ τ(bS) of bS has rank n.

Proof. Let MS ⊂ S be a maximal ideal. Our subalgebra tS is given as an
intersection of two free submodules in gS of codimensions m, where m is the
number of positive roots in gS , each of them being a direct summand in gS. So
tS consists of all solutions of a linear system of m equations in m+n variables.
The space of solutions of this system modulo M coincides with the intersection
bS ∩ τ(bS) and hence it has dimension n. This implies that the linear system
has a minor of size m×m whose determinant is a unit in S and we are done.

Our next aim is to show that the Galois descent data for the generic fiber GK
of G described in previous sections can be pushed down at the level of R. As
usual we will assume that the Weyl group of G contains −1.

Proposition 43. Let bS ⊂ gS be a Borel subalgebra in generic position and
let tS = bS ∩ τ(bS). Then tS is a split Cartan subalgebra of gS contained in
bS.

Proof. Let uS be the ideal in bS consisting of nilpotent elements. It is com-
plimented in bS by a split Cartan algebra and hence bS/uS is isomorphic to a
split Cartan subalgebra in bS. We want to show that a canonical projection
p : bS → bS/uS restricted at tS is an isomorphism.
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Let bL = bS⊗SL be a generic fiber of bS . We already know that tL = bL∩τ(bL)
has dimension n over L, so it is a split Cartan algebra in gL. Since tS embeds
into tL, it is a commutative Lie subalgebra contained in bS and consisting of
diagonalizable semisimple elements. So injectivity of p follows.
As for surjectivity, it suffices to prove it modulo maximal ideal MR ⊂ R. In
the course of proving of Lemma 42 we saw that tS is the space of solutions of
the linear system of m equations in m + n variables whose matrix modulo M
has rank m. It follows tS modulo M has dimension n and we are done.

Let now tS be as in Proposition 43 and let t = t
〈 τ〉
S be the invariant subspace.

By descent we have t ⊗R S = tS , hence t is an R-defined Cartan subalgebra
splitting over S. Let BS be a Borel subgroup in GS corresponding to bS . The
connected component of the automorphism group of a pair (bS , tS) gives rise
to a maximal torus TS in BS . It is R-defined and S-split because so is t. Let
us choose a Chevalley basis

{Hα1 , . . .Hαn , Xα, α ∈ Σ}

in gS corresponding to (TS , BS). Since W contains −1, we know that τ acts on
the root system Σ = Σ(GS , TS) as −1. Now repeating verbatim the arguments
in [Ch] we easily find that for every root α ∈ Σ there exists a constants cα ∈ R
such that τ(Xα) = cαX−α and hence the action of τ on G(S) is determined
completely by the family {cα, α ∈ Σ}. We call these constants by structure
constants of G with respect to T .
As in [Ch] one checks that the structure constants satisfy the relations given
in Lemmas 8, 9. Also, as in Example 15 we may obviously define the notion
of an elementary transformation with respect to a root α ∈ Σ (because root
subgroups Uα are defined over S).

Remark 44. We note that the structure constants { cα | α ∈ Σ } are units in
R. Indeed, by our construction we have surjections bS → bS and bS ∩ τ(bS)→
bS ∩ τ(bS). Hence the residues of cα are structure constants of G = G⊗R k in
the corresponding basis.

10 Proof of Theorem 2

Let R be a ring satisfying all hypothesis in Theorem 2. As usual we denote
its quotient field by K. Let G0 be a split group of type F4 over R and let
[ξ] ∈ H1(R,G0){g3=0}. We first claim that the twisted group G = ξG0 is split
by an étale quadratic extension of R. The proof is based on the following.

Lemma 45. There exist u, v, w ∈ R× such that f3(GK) = (u) ∪ (v) ∪ (w).

Proof. Let f3(GK) = (a) ∪ (b) ∪ (c) where a, b, c ∈ K×. By [ChP] the functor
of 3-fold Pfister forms satisfies purity, hence it suffices to show that f3(G) is
unramified at prime ideals of R of height 1.
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Let p ⊂ R be a prime ideal of height 1 and let v = vp be the corresponding
discrete valuation on K with the residue field k(v) = R/p. We need to show
that the image of f3(GK) under the boundary map ∂v,K : H3(K,Z/2) →
H2(k(v),Z/2) is trivial. Consider the following commutative diagram:

H1(R,G0)
φ1−−−−→ H1(K,G0)

RG0,K−−−−→ H3(K,µ⊗2
6 )

∂v,K−−−−→ H2(k(v), µ6)
y

y
y =

y

H1(Rv, G0)
φ2−−−−→ H1(Kv, G0)

RG0,Kv−−−−−→ H3(Kv, µ
⊗2
6 )

∂v,Kv−−−−→ H2(k(v), µ6)

Here RG0 is the Rost invariant for G0 (see [GMS03]). Since g3(GK) = 0 and
since GK = (ξG0)K we have f3(GK) = RG0,K(φ1(ξ)). By [G00, Theorem 2],
we also have ∂v,Kv ◦RG0,Kv ◦ φ2 = 0. This yields immediately (∂v,K ◦RG0,K ◦
φ1)(ξ) = 0 as required.

Proposition 46. G is split by an étale quadratic extension of R.

Proof. By Lemma 45 we have f3(GK) = (u) ∪ (v) ∪ (w) where u, v, w ∈ R×.
Take S = R(

√
u) and we claim GS is split. One of the following two cases

occurs.
If u ∈ (K×)2 then we have f3(GK) = 0. It follows RG0([ξK ]) = f3(GK) = 0.
Since the kernel of the Rost invariant for split groups of type F4 defined over K
is trivial we have [ξK ] = 0. Since by [CTO], [R94], [R95] Grothendieck–Serre
conjecture holds for G0 we conclude ξ = 0, i.e. G is already split over R.
Assume now that u 6∈ (K×)2. Let L be a quotient field of S. Arguing along
the same lines we first get RG0([ξL]) = 0 and then GS is split.

The following lemma is an R-analogue of Corollary 25.

Lemma 47. Let T ⊂ G be a maximal torus with the structure constants
{cα1 , . . . , cα4} and let u1, . . . , u4 ∈ NS/R(S×). Then G contains a maximal
torus T ′ whose structure constants are {cα1u1, . . . , cαnu4}.

Proof. Apply the same argument as in Lemma 24 with the use of Remark 23.

Proof of Theorem 2. Let [ξ], [ξ′] ∈ H1(R,G0){g3=0} be two classes and let G,G′

be the corresponding twisted group schemes over R. Assume that the generic
fibers GK , G

′
K of G and G′ are isomorphic over K. If GK is K-split, there

is nothing to prove, because Grothendieck-Serre conjecture is already proven
for G0, and so we may assume that GK , G

′
K are not split over K (and hence

G,G′ are not split over R) which amounts to saying that f3(GK) 6= 0 and
f3(G′

K) 6= 0.

By Proposition 46 there exists an étale quadratic extension S = R(
√
d), where

d ∈ R×, splitting G. Of course, it is split G′ as well. It now suffices to show
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that G,G′ contain maximal tori T, T ′ defined over R and splitting over S and
such that the corresponding structure constants for G and G′ are the same.
Let T, T ′ be arbitrary R-defined and S-splitting maximal tori in G,G′. Let
cα1 , . . . , cα4 and c′α1

, . . . , c′α4
be structure constants of G,G′ with respect to T

and T ′. By Theorem 34 we have f3(GK) = (d) ∪ (cα1) ∪ (cα2) and f3(G′
K) =

(d) ∪ (c′α1
) ∪ (c′α2

). Since f3(GK) = f3(G′
K) we get

〈〈 d, cα1 , cα2 〉〉K
K≃ 〈〈 d, c′α1

, c′α2
〉〉K

and hence

〈〈 d, cα1 , cα2 〉〉
R≃ 〈〈 d, c′α1

, c′α2
〉〉.

We first claim that up to choice of T and T ′ we may assume that cα1 =
c′α1

and cα2 = c′α2
. The proof of the claim is completely similar to that of

Proposition 30. Namely, by Witt cancellation and by Lemma 3 we may write
c′α1

in the form c′α1
= w1cα1 +w2cα2 −w3cα1cα2 where w1, w2, w3 ∈ NS/R(S×)

and w1cα1−w3cα1cα2 is a unit in R. By Lemma 47, passing to another maximal
torus in G (if necessary) we may assume that w1 = w2 = 1 and then c′α1

=
cα1(1− w3cα2) + cα2 where w3 is still in NS/R(S×) and 1− w3cα2 is a unit in
R. The rest of the proof is the same as in Proposition 30.
We next claim that up to choice of T and T ′ we may additionally assume that
cα3 = c′α3

. To prove it we are just copying the related part of the proof of
Theorem 38. Arguing as in Proposition 22 we conclude that up to equivalence
ξ and ξ′ are of the form ξ = (aτ ) and ξ′ = (a′τ ) where aτ = c

∏n
i=1 hαi(ui) and

a′τ = c
∏n
i=1 hαi(u

′
i), so that, by Remark 29, G and G′ contain simple simply

connected subgroups H and H ′ generated by long roots such that H ≃ H ′ ≃
Spin (f) where f = 〈〈 d, cα1 , cα2 〉〉. Furthermore arguing as in Proposition 35
with the use of the second part of Remark 29 we see that the structure constants
cα3 , cα4 , c

′
α3
, c′α4

are well defined modulo units in R represented by f .
Since f5(GK) = f5(G′

K) we get

〈〈 d, cα1 , cα2 , cα3 , cα4 〉〉
K≃ 〈〈 d, cα1 , cα2 , c

′
α3
, c′α4
〉〉

and hence

〈〈 d, cα1 , cα2 , cα3 , cα4 〉〉
R≃ 〈〈 d, cα1 , cα2 , c

′
α3
, c′α4
〉〉. (48)

By Witt cancellation we can write c′α3
in the form c′α3

= a1cα3+a2cα4−a3cα3cα4

where a1, a2, a3 are units in R represented by f and a1cα3 − a3cα3cα4 is also
a unit in R. Since cα3 , cα4 are defined modulo values of f passing to another
maximal torus in G we may assume without loss of generality that a1 = a2 = 1.
The rest of the proof is the same as in Proposition 30.
Finally we claim that we may assume that cα4 = c′α4

. Indeed, from (48)
and Witt cancellation we conclude that c′α4

is of the form c′α4
= acα4 where

a is a unit in R represented by 〈〈 d, cα1 , cα2 , cα3 〉〉. Copying the proof of
Proposition 39 we easily complete the proof of the claim. Thus Theorem 2
is proven.
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[S58] J.-P. Serre, Espaces fibrés algébriques, in Anneaux de Chow et appli-
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Abstract. Our starting point is Mumford’s conjecture, on represen-
tations of Chevalley groups over fields, as it is phrased in the pref-
ace of Geometric Invariant Theory. After extending the conjecture
appropriately, we show that it holds over an arbitrary commutative
base ring. We thus obtain the first fundamental theorem of invari-
ant theory (often referred to as Hilbert’s fourteenth problem) over
an arbitrary Noetherian ring. We also prove results on the Grosshans
graded deformation of an algebra in the same generality. We end with
tentative finiteness results for rational cohomology over the integers.
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1 Introduction

The following statement may seem quite well known:

Theorem 1. Let k be a Dedekind ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AG is
then a finitely generated k-algebra.

1LMJL - Laboratoire de Mathématiques Jean Leray, CNRS/Université de Nantes. The
author acknowledges the hospitality and support of CRM Barcelona during the tuning of the
paper.

2The project started in Nantes, the author being the first visitor in the MATPYL program
of CNRS’ FR 2962 “Mathématiques des Pays de Loire”.
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Indeed, R. Thomason proved [21, Theorem 3.8] the statement for any Noethe-
rian Nagata ring k. Thomason’s paper deals with quite a different theme, that
is the existence of equivariant resolutions by free modules. Thomason proves
that equivariant sheaves can be resolved by equivariant vector bundles. He thus
solves a conjecture of Seshadri [19, question 2 p.268]. The affirmative answer
to Seshadri’s question is explained to yield Theorem 1 in the same paper [19,
Theorem 2 p.263]. The finesse only illustrates that the definition of geometric
reductivity in [19] does not suit well an arbitrary base. Indeed, Seshadri does
not follow the formulation in Mumford’s book’s introduction [GIT, Preface],
and uses polynomials instead [19, Theorem 1 p.244]. This use of a dual in
the formulation seems to be why one requires Thomason’s result [21, Corollary
3.7]. One can rather go back to the original formulation in terms of symmetric
powers as illustrated by the following:

Definition 2. Let k be a ring and let G be an algebraic group over k. The
group G is power-reductive over k if the following holds.

Property (Power reductivity). Let L be a cyclic k-module with trivial G-
action. Let M be a rational G-module, and let ϕ be a G-module map from M
onto L. Then there is a positive integer d such that the d-th symmetric power
of ϕ induces a surjection:

(SdM)G → SdL.

We show in Section 3 that power-reductivity holds for Chevalley group schemes
G, without assumption on the commutative ring k. Note that this version of
reductivity is exactly what is needed in Nagata’s treatment of finite generation
of invariants. We thus obtain:

Theorem 3. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. The subring of invariants AG is
then a finitely generated k-algebra.

There is a long history of cohomological finite generation statements as well,
where the algebra of invariants AG = H0(G,A) is replaced by the whole algebra
H∗(G,A) of the derived functors of invariants. Over fields, Friedlander and
Suslin’s solution in the case of finite group schemes [8] lead to the conjecture in
[13], now a theorem of Touzé [22]. In Section 5, we generalize to an arbitrary
(Noetherian) base Grosshans’ results on his filtration [9]. These are basic tools
for obtaining finite generation statements on cohomology. In Section 6, we
apply our results in an exploration of the case when the base ring is Z. Section
4 presents results of use in Section 5 and Section 3. Our results support the
hope that Touzé’s theorem extends to an arbitrary base.
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2 Power reductivity and Hilbert’s 14th

2.1 Power surjectivity

To deal with the strong form of integrality we encounter, we find it convenient
to make the following definition.

Definition 4. A morphism of k-algebras: φ : S → R is power-surjective if
every element of R has a power in the image of φ. It is universally power-
surjective if for every k-algebra A, the morphism of k-algebras A⊗φ is power-
surjective, that is: for every k-algebra A, for every x in A⊗R, there is a positive
integer n so that xn lies in the image of A⊗ φ.

If k contains a field, one does not need arbitrary positive exponents n, but only
powers of the characteristic exponent of k (compare [20, Lemma 2.1.4, Exercise
2.1.5] or Proposition 41 below). Thus if k is a field of characteristic zero, any
universally power-surjective morphism of k-algebras is surjective.

2.2 Consequences

We start by listing consequences of power reductivity, as defined in the intro-
duction (Definition 2).

Convention 5. An algebraic group over our commutative ring k is always as-
sumed to be a flat affine group scheme over k. Flatness is essential, as we
tacitly use throughout that the functor of taking invariants is left exact.

Proposition 6 (Lifting of invariants). Let k be a ring and let G be a power-
reductive algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If J is
an invariant ideal in A, the map induced by reducing mod J :

AG → (A/J)G

is power-surjective.

For an example over Z, see 2.3.2.

Remark 7. Let G be power reductive and let φ : A→ B be a power-surjective
G-map of k-algebras. One easily shows that AG → BG is power-surjective.

Theorem 8 (Hilbert’s fourteenth problem). Let k be a Noetherian ring and
let G be an algebraic group over k. Let A be a finitely generated commutative
k-algebra on which G acts rationally through algebra automorphisms. If G is
power-reductive, then the subring of invariants AG is a finitely generated k-
algebra.

Proof. We apply [20, p. 23–26]. It shows that Theorem 8 relies entirely on the
conclusion of Proposition 6, which is equivalent to the statement [20, Lemma
2.4.7 p. 23] that, for a surjective G-map φ : A→ B of k-algebras, the induced
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map on invariants AG → BG is power-surjective. To prove that power reduc-
tivity implies this, consider an invariant b in B, take for L the cyclic module
k.b and for M any submodule of A such that φ(M) = L. We conclude with a
commuting diagram:

(SdM)G //

Sdφ

��

(SdA)G //

��

AG

φG

��
SdL // (SdB)G // BG.

Theorem 9 (Hilbert’s fourteenth for modules). Let k be a Noetherian ring
and let G be a power-reductive algebraic group over k. Let A be a finitely
generated commutative k-algebra on which G acts rationally, and let M be a
Noetherian A-module, with an equivariant structure map A⊗M →M . If G is
power-reductive, then the module of invariants MG is Noetherian over AG.

Proof. As in [14, 2.2], consider either the symmetric algebra of M on A, or
the ‘semi-direct product ring’ A ⋉M as in Proposition 57, whose underlying
G-module is A ⊕M , with product given by (a1,m1)(a2,m2) = (a1a2, a1m2 +
a2m1).

2.3 Examples

2.3.1

Let k = Z. Consider the group SL2 acting on 2 × 2 matrices

(
a b
c d

)
by

conjugation. Let L be the line of homotheties in M := M2(Z). Write V #

to indicate the dual module HomZ(V,Z) of a Z-module V . The restriction:
M# → L# extends to

Z[M ] = Z[a, b, c, d]→ Z[λ] = Z[L].

Taking SL2-invariants:

Z[a, b, c, d]SL2 = Z[t,D]→ Z[λ],

the trace t = a+ d is sent to 2λ, so λ does not lift to an invariant in M#. The
determinant D = ad − bc is sent to λ2 however, illustrating power reductivity
of SL2.

2.3.2

Similarly, the adjoint action of SL2 on sl2 is such that u(a) :=

(
1 a
0 1

)
sends

X,H, Y ∈ sl2 respectively to X+aH−a2Y,H−2aY, Y . This action extends to
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the symmetric algebra S∗(sl2), which is a polynomial ring in variables X,H, Y .
Take k = Z again. The mod 2 invariant H does not lift to an integral invariant,
but H2 + 4XY is an integral invariant, and it reduces mod 2 to the square H2

in F2[X,H, Y ]. This illustrates power reductivity with modules that are not
flat, and the strong link between integral and modular invariants.

2.3.3

Consider the group U of 2×2 upper triangular matrices with diagonal 1: this is
just an additive group. Let it act onM with basis {x, y} by linear substitutions:
u(a) sends x, y respectively to x, ax + y. Sending x to 0 defines M → L, and
since (S∗M)U = k[x], power reductivity fails.

2.4 Equivalence of power reductivity with property (Int)

Following [14], we say that a group G satisfies (Int) if (A/J)G is integral over
the image of AG for every A and J with G action. Note that if (A/J)G

is a Noetherian AG-module (compare Theorem 9), it must be integral over
the image of AG. As explained in [14, Theorem 2.8], when k is a field, the
property (Int) is equivalent to geometric reductivity, which is equivalent to
power-reductivity by [20, Lemma 2.4.7 p. 23]. In general, property (Int) is still
equivalent to power-reductivity. But geometric reductivity in the sense of [19]
looks too weak.

Proposition 10. An algebraic group G has property (Int) if, and only if, it is
power-reductive.

Proof. By Proposition 6, power reductivity implies property (Int). We prove
the converse. Let φ : M → L be as in the formulation of power reductivity
in Definition 2. Choose a generator b of L. Property (Int) gives a polynomial
tn + a1t

n−1 + · · · + an with b as root, and with ai in the image of S∗(ϕ) :
(S∗M)G → S∗L. As b is homogeneous of degree one, we may assume ai ∈
Siϕ((SiM)G). Write ai as rib

i with ri ∈ k. Put r = 1 + r1 + · · · rn. Then

rbn = 0, and r(n−1)! annihilates bn!. Since a
n!/i
i lies in the image of Sn!ϕ :

(Sn!M)G → Sn!L, the cokernel of this map is annihilated by r
n!/i
i . Together

r(n−1)! and the r
n!/i
i generate the unit ideal. So the cokernel vanishes.

Example 11. Let G be a finite group, viewed as an algebraic group over k.
Then A is integral over AG, because a is a root of

∏
g∈G(x− g(a)). (This goes

back to Emmy Noether [18].) Property (Int) follows easily. Hence G is power
reductive.

3 Mumford’s conjecture over an arbitrary base

This section deals with the following generalization of the Mumford conjecture.
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Theorem 12 (Mumford conjecture). A Chevalley group scheme is power-
reductive for every base.

By a Chevalley group scheme over Z, we mean a connected split reductive
algebraic Z-group GZ, and, by a Chevalley group scheme over a ring k, we
mean an algebraic k-group G = Gk obtained by base change from such a GZ.
We want to establish the following:

Property. Let k be a commutative ring. Let L be a cyclic k-module with
trivial G-action. Let M be a rational G-module, and let ϕ be a G-module map
from M onto L. Then there is a positive integer d such that the d-th symmetric
power of ϕ induces a surjection:

(SdM)G → SdL.

3.1 Reduction to local rings

We first reduce to the case of a local ring. For each positive integer d, consider
the ideal in k formed by those scalars which are hit by an invariant in (SdM)G,
and let:

Id(k) := {x ∈ k | ∃m ∈ N, xm.SdL ⊂ Sdϕ((SdM)G)}

be its radical. Note that these ideals form a monotone family: if d divides d′,
then Id is contained in Id′ . We want to show that Id(k) equals k for some d.
To that purpose, it is enough to prove that for each maximal ideal M in k, the
localized Id(k)(M) equals the local ring k(M) for some d. Notice that taking
invariants commutes with localization. Indeed the whole Hochschild complex
does and localization is exact. As a result, the localized Id(k)(M) is equal to
the ideal Id(k(M)). This shows that it is enough to prove the property for a
local ring k.

For the rest of this proof, k denotes a local ring with residual characteristic p.

3.2 Reduction to cohomology

As explained in Section 3.5, we may assume that G is semisimple simply con-
nected. Replacing M if necessary by a submodule that still maps onto L, we
may assume that M is finitely generated.
We then reduce the desired property to cohomological algebra. To that ef-
fect, if X is a G-module, consider the evaluation map on the identity idX :
Homk(X,X)# → k (we use V # to indicate the dual module Homk(V,k) of a
module V ). If X is k-free of finite rank d, then Sd(Homk(X,X)#) contains
the determinant. The determinant is G-invariant, and its evaluation at idX is
equal to 1. Let b a k-generator of L and consider the composite:

ψ : Homk(X,X)# → k→ k.b = L.
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Its d-th power Sdψ sends the determinant to bd. Suppose further that ψ lifts to
M by a G-equivariant map. Then, choosing d to be the k-rank of X , the d-th
power of the resulting map Sd(Homk(X,X)#)→ SdM sends the determinant
to a G-invariant in SdM , which is sent to bd through Sdϕ. This would establish
the property.

Homk(X,X)#

ψ

��xxr r
r

r
r

r

M ϕ
// L

The existence of a lifting would follow from the vanishing of the extension
group:

Ext1G((Homk(X,X)#,Kerϕ),

or, better, from acyclicity, i.e. the vanishing of all positive degree Ext-groups.
Inspired by the proof of the Mumford conjecture in [6, (3.6)], we choose X to be
an adequate Steinberg module. To make this choice precise, we need notations,
essentially borrowed from [6, 2].

3.3 Notations

We decide as in [11], and contrary to [12] and [6], that the roots of the standard
Borel subgroup B are negative. The opposite Borel group B+ of B will thus
have positive roots. We also fix a Weyl group invariant inner product on the
weight lattice X(T ). Thus we can speak of the length of a weight.

For a weight λ in the weight lattice, we denote by λ as well the corresponding
one-dimensional rational B-module (or sometimes B+-module), and by ∇λ
the costandard module (Schur module) indGBλ induced from it. Dually, we
denote by ∆λ the standard module (Weyl module) of highest weight λ. So
∆λ = indGB+(−λ)#. We shall use that, over Z, these modules are Z-free [11, II
Ch. 8].

We let ρ be half the sum of the positive roots of G. It is also the sum of the
fundamental weights. As G is simply connected, the fundamental weights are
weights of B.

Let p be the characteristic of the residue field of the local ring k. When p is
positive, for each positive integer r, we let the weight σr be (pr − 1)ρ. When
p is 0, we let σr be rρ. Let Str be the G-module ∇σr = indGBσr; it is a usual
Steinberg module when k is a field of positive characteristic.

3.4

We shall use the following combinatorial lemma:

Lemma 13. Let R be a positive real number. If r is a large enough integer, for
all weights µ of length less than R, σr + µ is dominant.
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So, if r is a large enough integer to satisfy the condition in Lemma 13, for all
G-modules M with weights that have length less than R, all the weights in
σr ⊗M are dominant. Note that in the preceding discussion, the G-module M
is finitely generated. Thus the weights of M , and hence of Kerϕ, are bounded.
Thus, Theorem 12 is implied by the following proposition.

Proposition 14. Let R be a positive real number, and let r be as in Lemma
13 . For all local rings k with characteristic p residue field, for all G-module
N with weights of length less than R, and for all positive integers n:

ExtnG((Homk(Str, Str)
#, N) = 0 .

Proof. First, the result is true when k is a field. Indeed, we have chosen Str
to be a self-dual Steinberg module, so, for each positive integer n:

ExtnG((Homk(Str, Str)
#, N) = Hn(G,Str ⊗ Str ⊗N) = Hn(B,Str ⊗ σr ⊗N).

Vanishing follows by [6, Corollary (3.3’)] or the proof of [6, Corollary (3.7)].
Suppose now that N is defined over Z by a free Z-module, in the following
sense: N = NZ⊗Z V for a Z-free GZ-module NZ and a k-module V with trivial
G action. We then use the universal coefficient theorem [4, A.X.4.7] (see also
[11, I.4.18]) to prove acyclicity in this case.
Specifically, let us note YZ := HomZ((Str)Z, (Str)Z) ⊗ NZ, so that, using base
change (Proposition 16 for λ = σr):

ExtnG((Homk(Str, Str)
#, N) = Hn(G, YZ ⊗ V ).

This cohomology is computed [7, II.3] (see also [11, I.4.16]) by taking the
homology of the Hochschild complex C(G, YZ ⊗ V ). This complex is isomor-
phic to the complex obtained by tensoring with V the integral Hochschild
complex C(GZ, YZ). Since the latter is a complex of torsion-free abelian
groups, we deduce, by the universal coefficient theorem applied to tensor-
ing with a characteristic p field k, and the vanishing for the case of such
a field, that: Hn(GZ, YZ) ⊗ k = 0, for all positive n. We apply this when
k is the residue field of Z(p); note that if p = 0 the residue field k is just
Q. Since the cohomology Hn(GZ, YZ) is finitely generated [11, B.6], the
Nakayama lemma implies that: Hn(GZ, YZ) ⊗ Z(p) = 0, for all positive n.
And Hn(GZ, YZ)⊗Z(p) = Hn(GZ, YZ⊗Z(p)) because localization is exact. The
complex C(GZ, YZ ⊗ Z(p)) is a complex of torsion-free Z(p)-modules, we thus
can apply the universal coefficient theorem to tensoring with V . The vanishing
of Hn(G, YZ ⊗ Z(p) ⊗ V ) = Hn(G, YZ ⊗ V ) follows.
For the general case, we proceed by descending induction on the highest weight
of N . To perform the induction, we first choose a total order on weights
of length less than R, that refines the usual dominance order of [11, II 1.5].
Initiate the induction with N = 0. For the induction step, consider the highest
weight µ in N and let Nµ be its weight space. By the preceding case, we
obtain vanishing for ∆µZ

⊗Z Nµ. Now, by Proposition 21, ∆µZ
⊗Z Nµ maps to
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N , and the kernel and the cokernel of this map have lower highest weight. By
induction, they give vanishing cohomology. Thus Homk(Str, Str)⊗N is in an
exact sequence where three out of four terms are acyclic, hence it is acyclic.

This concludes the proof of Theorem 12.

3.5 Reduction to simply connected group schemes

Let ZZ be the center of GZ and let Z be the corresponding subgroup of G. It is
a diagonalisable group scheme, so MZ → L is also surjective. We may replace
M with MZ and G with G/Z, in view of the general formula MG = (MZ)G/Z ,
see [11, I 6.8(3)]. So now G has become semisimple, but of adjoint type rather
than simply connected type. So choose a simply connected Chevalley group
scheme G̃Z with center Z̃Z so that G̃Z/Z̃Z = GZ. We may now replace G with
G̃.

Remark 15. Other reductions are possible, to enlarge the supply of power
reductive algebraic groups. For instance, if G has a normal subgroup N so
that both N and G/N are power reductive, then so is G (for a proof, use
Remark 7). And if k → R is a faithfully flat extension so that GR is power
reductive, then G is already power reductive. So twisted forms are allowed,
compare the discussion in [19, p. 239].

4 Generalities

This section collects known results over an arbitrary base, their proof, and
correct proofs of known results over fields, for use in the other sections. The
part up to subsection 4.3 is used, and referred to, in the previous section.

4.1 Notations

Throughout this paper, we let G be a semisimple Chevalley group scheme over
the commutative ring k. We keep the notations of Section 3.3. In particular, the
standard parabolic B has negative roots. Its standard torus is T , its unipotent
radical is U . The opposite Borel B+ has positive roots and its unipotent radical
is U+. For a standard parabolic subgroup P its unipotent radical is Ru(P ).
For a weight λ in X(T ), ∇λ = indGBλ and ∆λ = indGB+(−λ)#.

4.2

We first recall base change for costandard modules.

Proposition 16. Let λ be a weight, and denote also by λ = λZ ⊗ k the B-
module k with action by λ. For any ring k, there is a natural isomorphism:

indGZ

BZ
λZ ⊗ k ∼= indGBλ

In particular, indGBλ is nonzero if and only if λ is dominant.
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Proof. First consider the case when λ is not dominant. Then indGBλ vanishes
when k is a field [11, II.2.6], so both indGZ

BZ
λZ and the torsion in R1indGZ

BZ
λZ

must vanish. Then indGBλ vanishes as well for a general k by the universal
coefficient theorem.
In the case when λ is dominant, R1indGZ

BZ
λZ vanishes by Kempf’s theorem [11,

II 8.8(2)]. Thus, by [11, I.4.18b)]: indGZ

BZ
λZ ⊗ k ∼= indGBλ.

Proposition 17 (Tensor identity for weights). Let λ be a weight, and denote
again by λ the B-module k with action by λ. Let N be a G-module. There is
a natural isomorphism:

indGB(λ⊗N) ∼= (indGBλ) ⊗N.

Remark 18. The case when N is k-flat is covered by [11,
I.4.8]. We warn the reader against Proposition I.3.6 in the
1987 first edition of the book. Indeed, suppose we always had
indGB(M ⊗ N) ∼= (indGBM) ⊗ N . Take k = Z and N = Z/pZ. The uni-
versal coefficient theorem would then imply that R1indGBM never has torsion.
Thus RiindGBM would never have torsion for positive i. It would make [1, Cor.
2.7] contradict the Borel–Weil–Bott theorem.

Proof. Recall that for a B-module M one may define indGB(M) as (k[G]⊗M)B ,
where k[G]⊗M is viewed as a G×B-module with G acting by left translation
on k[G], B acting by right translation on k[G], and B acting the given way on
M . Let Ntriv denote N with trivial B action. There is a B-module isomorphism
ψ : k[G] ⊗ λ⊗N → k[G] ⊗ λ⊗Ntriv, given in non-functorial notation by:

ψ(f ⊗ 1⊗ n) : x 7→ f(x)⊗ 1⊗ xn.

So ψ is obtained by first applying the comultiplication N → k[G] ⊗ N , then
the multiplication k[G]⊗k[G]→ k[G]. It sends (k[G]⊗λ⊗N)B to (k[G]⊗λ⊗
Ntriv)B = (Z[GZ]⊗ZλZ⊗ZNtriv)B. Now recall from the proof of Proposition 16
that the torsion in R1indGZ

BZ
λZ vanishes. By the universal coefficient theorem

we get that (Z[GZ]⊗Z λZ⊗ZNtriv)B equals (k[G]⊗λ)B ⊗Ntriv. To make these
maps into G-module maps, one must use the given G-action on N as the action
on Ntriv. So B acts on N , but not Ntriv, and for G it is the other way around.
One sees that (k[G] ⊗ λ)B ⊗Ntriv is just (indGBλ)⊗N .

Proposition 19. For a G-module M , there are only dominant weights in
MU+

.

Proof. Let λ be a nondominant weight. Instead we show that −λ is no weight
of MU , or that HomB(−λ,M) vanishes. By the tensor identity of Propo-
sition 17: HomB(−λ,M) = HomB(k, λ ⊗ M) = HomG(k, indGB(λ ⊗ M)) =
HomG(k, indGBλ⊗M) which vanishes by Proposition 16.

Proposition 20. Let λ be a dominant weight. The restriction (or evaluation)
map indGBλ→ λ to the weight space of weight λ is a T -module isomorphism.
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Proof. Over fields of positive characteristic this is a result of Ramanathan [12,
A.2.6]. It then follows over Z by the universal coefficient theorem applied to
the complex indGZ

BZ
λZ → λZ → 0. For a general k, apply proposition 16.

Proposition 21 (Universal property of Weyl modules). Let λ be a dominant
weight. For any G-module M , there is a natural isomorphism

HomG(∆λ,M) ∼= HomB+(λ,M).

In particular, if M has highest weight λ, then there is a natural map from
∆λZ

⊗Z Mλ to M , its kernel has lower weights, and λ is not a weight of its
cokernel.

Proof. By the tensor identity Proposition 17: indGB+(−λ⊗M) ∼= indGB+(−λ)⊗
M . Thus HomG(∆λ,M) = HomG(k, indGB+(−λ)⊗M) = HomB+(k,−λ⊗M) =
HomB+(λ,M). If M has highest weight λ, then Mλ = HomB+(λ,M). Tracing
the maps, the second part follows from Proposition 20.

4.3 Notations

We now recall the notations from [13, §2.2]. Let the Grosshans height function
ht : X(T )→ Z be defined by:

ht γ =
∑

α>0

〈γ, α∨〉.

For a G-module M , let M≤i denote the largest G-submodule with weights
λ that all satisfy: htλ ≤ i. Similarly define M<i = M≤i−1. For instance,
M≤0 = MG. We call the filtration

0 ⊆M≤0 ⊆M≤1 · · ·

the Grosshans filtration, and we call its associated graded the Grosshans graded
grM of M . We put: hull∇(grM) = indGBM

U+

.
Let A be a commutative k-algebra on which G acts rationally through k-algebra
automorphisms. The Grosshans graded algebra grA is given in degree i by:

griA = A≤i/A<i.

4.4 Erratum

When k is a field, one knows that grA embeds in a good filtration hull, which
Grosshans calls R in [10], and which we call hull∇(grA):

hull∇(grA) = indGBA
U+

.

When k is a field of positive characteristic p, it was shown by Mathieu [16, Key
Lemma 3.4] that this inclusion is power-surjective: for every b ∈ hull∇(grA),
there is an r so that bp

r

lies in the subalgebra grA.
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This result’s exposition in [13, Lemma 2.3] relies on [12, Sublemma A.5.1].
Frank Grosshans has pointed out that the proof of this sublemma is not con-
vincing beyond the reduction to the affine case. Later A. J. de Jong actually
gave a counterexample to the reasoning. The result itself is correct and has
been used by others. As power surjectivity is a main theme in this paper, we
take the opportunity to give a corrected treatment. Mathieu’s result will be
generalized to an arbitrary base k in Section 5.

Proposition 22. Let k be an algebraically closed field of characteristic p > 0.
Let both A and B be commutative k-algebras of finite type over k, with B finite
over A. Put Y = Spec(A), X = Spec(B). Assume X → Y gives a bijection
between k valued points. Then for all b ∈ B there is an m with bp

m ∈ A.

Proof. The result follows easily from [15, Lemma 13]. We shall argue instead
by induction on the Krull dimension of A.
Say B as an A-module is generated by d elements b1, . . . , bd. Let p1, . . . ps be
the minimal prime ideals of A.

Suppose we can show that for every i, j we have mi,j so that bp
mi,j

j ∈ A+ piB.

Then for every i we have mi so that bp
mi ∈ A + piB for every b ∈ B. Then

bp
m1+···ms ∈ A + p1 · · · psB for every b ∈ B. As p1 · · · ps is nilpotent, one finds

m with bp
m ∈ A for all b ∈ B. The upshot is that it suffices to prove the

sublemma for the inclusion A/pi ⊂ B/piB. [It is an inclusion because there is
a prime ideal qi in B with A ∩ qi = pi.] Therefore we further assume that A is
a domain.
Let r denote the nilradical of B. If we can show that for all b ∈ B there is m
with bp

m ∈ A+ r, then clearly we can also find a u with bp
u ∈ A. So we may as

well replace A ⊂ B with A ⊂ B/r and assume that B is reduced. But then at
least one component of Spec(B) must map onto Spec(A), so bijectivity implies
there is only one component. In other words, B is also a domain.
Choose t so that the field extension Frac(A) ⊂ Frac(ABp

t

) is separable. (So it

is the separable closure of Frac(A) in Frac(B).) As X → Spec(ABp
t

) is also

bijective, we have that Spec(ABp
t

) → Spec(A) is bijective. It clearly suffices

to prove the proposition for A ⊂ ABpt . So we replace B with ABp
t

and further
assume that Frac(B) is separable over Frac(A).
Now X → Y has a degree which is the degree of the separable field extension.
There is a dense subset U of Y so that this degree is the number of elements
in the inverse image of a point of U . [Take a primitive element of the field
extension, localize to make its minimum polynomial monic over A, invert the
discriminant.] Thus the degree must be one because of bijectivity. So we must
now have that Frac(B) = Frac(A).
Let c = { b ∈ B | bB ⊂ A } be the conductor of A ⊂ B. We know it
is nonzero. If it is the unit ideal then we are done. Suppose it is not. By
induction applied to A/c ⊂ B/c (we need the induction hypothesis for the
original problem without any of the intermediate simplifications) we have that
for each b ∈ B there is an m so that bp

m ∈ A+ c = A.
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4.5

This subsection prepares the ground for the proof of the theorems in Section
5. We start with the ring of invariants k[G/U ] of the action of U by right
translation on k[G].

Lemma 23. The k-algebra k[G/U ] is finitely generated.

Proof. We have:

k[G/U ] =
⊕

λ∈X(T )

k[G/U ]−λ =
⊕

λ∈X(T )

(k[G]⊗ λ)B =
⊕

λ∈X(T )

∇λ.

By Proposition 16, this equals the sum ⊕λ∇λ over dominant weights λ only.
When G is simply connected, every fundamental weight is a weight, and the
monoid of dominant λ is finitely generated. In general, some multiple of a
fundamental weight is in X(T ) and there are only finitely many dominant
weights modulo these multiples. So the monoid is still finitely generated by
Dickson’s Lemma [5, Ch. 2 Thm. 7]. The maps ∇λ ⊗ ∇µ → ∇λ+µ are
surjective for dominant λ, µ, because this is so over Z, by base change and
surjectivity for fields [11, II, Proposition 14.20]. This implies the result.

In the same manner one shows:

Lemma 24. If the k-algebra AU is finitely generated, so is hull∇ grA =
indGBA

U+

.

Proof. Use that AU
+

is isomorphic to AU as k-algebra.

Lemma 25. Suppose k is Noetherian. If the k-algebra A with G action is
finitely generated, then so is AU .

Proof. By the transfer principle [9, Ch. Two]:

AU = HomU (k,A) = HomG(k, indGUA) = (A⊗ k[G/U ])G.

Now apply Lemma 23 and Theorem 3.

Lemma 26. If M is a G-module, there is a natural injective map

grM →֒ hull∇(grM) = indGBM
U+

.

Proof. By Lemma 19, the weights of MU+

are dominant. If one of them, say λ,
has Grosshans height i, the universal property of Weyl modules (Proposition

21) shows that (MU+

)λ is contained in a G-submodule with weights that do not

have a larger Grosshans height. So the weight space (MU+

)λ is contained in

M≤i, but notM<i. We conclude that the T -module⊕i(griM)U
+

may be identi-

fied with the T -module MU+

. It remains to embed griM into indGB(griM)U
+

.
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The T -module projection of griM onto (griM)U
+

may be viewed as a B-

module map, and then, it induces a G-module map griM → indGB((griM)U
+

),

which restricts to an isomorphism on (griM)U
+

by Proposition 20. So its kernel
has weights with lower Grosshans height, and must therefore be zero.

In the light of Lemma 26, one may write:

Definition 27. A G-module M has good Grosshans filtration if the embedding
of grM into hull∇(grM) is an isomorphism.

It is worth recording the following characterization, just like in the case where
k is a field.

Proposition 28 (Cohomological criterion). For a G-module M , the following
are equivalent.

i. M has good Grosshans filtration.

ii. H1(G,M ⊗ k[G/U ]) vanishes.

iii. Hn(G,M ⊗ k[G/U ]) vanishes for all positive n.

Proof. Let M have good Grosshans filtration. We have to show that M ⊗
k[G/U ] is acyclic. First, for each integer i, griM ⊗ k[G/U ] is a direct sum of
modules of the form indGBλ ⊗ indGBµ ⊗ N , where G acts trivially on N . Such
modules are acyclic by [11, B.4] and the universal coefficient theorem. As each
griM ⊗ k[G/U ] is acyclic, so is each M≤i ⊗ k[G/U ], and thus M ⊗ k[G/U ] is
acyclic.
Conversely, suppose that M does not have good Grosshans filtration. Choose i
so that M<i has good Grosshans filtration, but M≤i does not. Choose λ so that
Hom(∆λ, hull(griM)/ griM) is nonzero. Note that λ has Grosshans height be-
low i. As Hom(∆λ, hull(griM)) vanishes, Ext1G(∆λ, griM) = H1(G, griM ⊗
∇λ) does not. Since M<i ⊗ k[G/U ] = ⊕µ dominantM<i ⊗ ∇µ is acyclic,

H1(G,M≤i ⊗ ∇λ) is nonzero as well. Now use that Hom(∆λ,M/M≤i) van-
ishes, and conclude that H1(G,M ⊗ k[G/U ]) does not vanish.

5 Grosshans graded, Grosshans hull and powers

5.1

When G is a semisimple group over a field k, Grosshans has introduced a
filtration on G-modules. As recalled in Section 4.3, it is the filtration associated
to the function defined onX(T ) by: ht γ =

∑
α>0〈γ, α∨〉. Grosshans has proved

some interesting results about its associated graded, when the G-module is a k-
algebra A with rational G action. We now show how these results generalize to
an arbitrary Noetherian base k, and we draw some conclusions about H∗(G,A).
All this suggests that the finite generation conjecture of [13] (see also [14])
deserves to be investigated in the following generality.
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Problem. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A be a finitely generated commutative k-algebra on which G acts
rationally through algebra automorphisms. Is the cohomology ring H∗(G,A) a
finitely generated k-algebra?

Let k be an arbitrary commutative ring.

Theorem 29 (Grosshans hull and powers). The natural embedding of grA in
hull∇(grA) is power-surjective.

This will then be used to prove:

Theorem 30 (Grosshans hull and finite generation). If the ring k is Noethe-
rian, then the following are equivalent.

i. The k-algebra A is finitely generated;

ii. For every standard parabolic P , the k-algebra of invariants ARu(P ) is
finitely generated;

iii. The k-algebra grA is finitely generated;

iv. The k-algebra hull∇(grA) is finitely generated.

Remark 31. Consider a reductive Chevalley group scheme G. As the Grosshans
height is formulated with the help of coroots α∨, only the semisimple part of
G is relevant for it. But of course everything is compatible with the action of
the center of G also. We leave it to the reader to reformulate our results for
reductive G. We return to the assumption that G is semisimple.

Theorem 32. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, there is a positive integer n so that:

n hull∇(grA) ⊆ grA.

In particular Hi(G, grA) is annihilated by n for positive i.

This is stronger than the next result.

Theorem 33 (generic good Grosshans filtration). Let A be a finitely generated
commutative k-algebra. If k is Noetherian, there is a positive integer n so
that A[1/n] has good Grosshans filtration. In particular Hi(G,A) ⊗ Z[1/n] =
Hi(G,A[1/n]) vanishes for positive i.

Remark 34. Of course A[1/n] may vanish altogether, as we are allowed to take
the characteristic for n, when that is positive.

Theorem 35. Let A be a finitely generated commutative k-algebra. If k is
Noetherian, for each prime number p, the algebra map grA → gr(A/pA) is
power-surjective.
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5.2

We start with a crucial special case. Let k = Z. Let λ ∈ X(T ) be dominant.
Let S′ be the graded algebra with degree n part:

S′
n = ∇nλ = Γ(G/B,L(nλ)).

Let us view ∆λ as a submodule of ∇λ with common λ weight space (the
‘minimal admissible lattice’ embedded in the ‘maximal admissible lattice’).
Let S be the graded subalgebra generated by ∆λ in the graded algebra S′. If
we wish to emphasize the dependence on λ, we write S′(λ) for S′, S(λ) for S.
Consider the map

G/B → PZ(Γ(G/B,L(λ))#)

given by the ‘linear system’ ∇λ on G/B. The projective scheme Proj(S′)
corresponds with its image, which, by direct inspection, is isomorphic to G/P ,

where P is the stabilizer of the weight space with weight −λ of ∇#
λ . Indeed

that weight space is the image of B/B, compare Proposition 20 and [11, II.8.5].
The inclusion φ : S →֒ S′ induces a morphism from an open subset of Proj(S′)
to Proj(S). This open subset is called G(φ) in [EGA II, 2.8.1].

Lemma 36. The morphism Proj(S′) → Proj(S) is defined on all of G/P =
Proj(S′).

Proof. As explained in [EGA II, 2.8.1], the domain G(φ) contains the principal
open subset D+(s) of Proj(S′) for any s ∈ S1. Consider in particular a gen-
erator s of the λ weight space of ∇λ. It is an element in S1, and, by Lemma
20, it generates the free k-module Γ(P/P,L(λ)). Thus, the minimal Schubert
variety P/P is contained in D+(s). We then conclude by homogeneity: s is
also U+ invariant, so in fact the big cell Ω = U+P/P is contained in D+(s),
and the domain G(φ) contains the big cell Ω. Then it also contains the Weyl
group translates wΩ, and thus it contains all of G/P .

Lemma 37. The graded algebra S′ is integral over its subalgebra S.

Proof. We also put a grading on the polynomial ring S′[z], by assigning de-
gree one to the variable z. One calls Proj(S′[z]) the projective cone of
Proj(S′) [EGA II, 8.3]. By [EGA II, 8.5.4], we get from Lemma 36 that
Φ̂ : Proj(S′[z]) → Proj(S[z]) is everywhere defined. Now by [EGA II, Th
(5.5.3)], and its proof, the maps Proj(S′[z])→ SpecZ and Proj(S[z])→ SpecZ
are proper and separated, so Φ̂ is proper by [EGA II, Cor (5.4.3)]. But now
the principal open subset D+(z) associated to z in Proj(S′[z]) is just Spec(S′),
and its inverse image is the principal open subset associated to z in Proj(S[z]),
which is Spec(S) (compare [EGA II, 8.5.5]). So Spec(S)→ Spec(S′) is proper,
and S′ is a finitely generated S-module by [EGA III, Prop (4.4.2)].

Lemma 38. There is a positive integer t so that tS′ is contained in S.

Proof. Clearly S′ ⊗Q = S ⊗Q, so the result follows from Lemma 37.
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Let p be a prime number. Recall from 4.4 the result of Mathieu [16, Key
Lemma 3.4] that, for every element b of S′/pS′, there is a positive r so that
bp
r ∈ (S + pS′)/(pS′) ⊆ S′/pS′.

By Lemma 38 and Proposition 41 below this implies

Lemma 39. The inclusion S → S′ is universally power-surjective.

5.3

We briefly return to power surjectivity for a general commutative ring k.

Definition 40. Let t be a positive integer and let f : Q → R a k-algebra
homomorphism. We say that f is t-power-surjective if for every x ∈ R there is
a power tn with xt

n ∈ f(Q).

Proposition 41. Let f : Q → R be a k-algebra homomorphism and Y a
variable.

• If f ⊗ k[Y ] : Q[Y ] → R[Y ] is power-surjective, then Q → R/pR is p-
power-surjective for every prime p;

• Assume t is a positive integer such that tR ⊂ f(Q). If Q → R/pR
is p-power-surjective for every prime p dividing t, then f is universally
power-surjective.

Proof. First suppose f ⊗ k[Y ] : Q[Y ] → R[Y ] is power-surjective. Let x ∈
R/pR. We have to show that xp

n

lifts to Q for some n. As R[Y ]→ (R/pR)[Y ]
is surjective, the compositeQ[Y ]→ (R/pR)[Y ] is also power-surjective. Choose
n prime to p and m so that (x + Y )np

m

lifts to Q[Y ]. Rewrite (x + Y )np
m

as
(xp

m

+ Y p
m

)n and note that the coefficient nxp
m

of Y (n−1)pm must lift to Q.
Now use that n is invertible in k/pk.

Next suppose tR ⊂ f(Q) and Q→ R/pR is p-power-surjective for every prime
p dividing t. Let C be a k-algebra. We have to show that f⊗C : Q⊗C → R⊗C
is power-surjective. Since f ⊗ C : Q ⊗ C → R ⊗ C satisfies all the conditions
that f : Q → R does, we may as well simplify notation and suppress C. For
x ∈ R we have to show that some power lifts to Q. By taking repeated powers
we can get x in f(Q) + pR for every prime p dividing t. So if p1,. . . ,pm are
the primes dividing t, we can arrange that x lies in the intersection of the
f(Q) + piR, which is f(Q) + p1 · · · pmR. Now by taking repeated p1 · · · pm-th
powers, one pushes it into f(Q) + (p1 · · · pm)nR for any positive n, eventually
into f(Q) + tR ⊆ f(Q).

5.4

We come back to the k-algebra A, and consider the inclusion grA →֒
hull∇(grA), as in Theorem 29.
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Notations 42. Let λ be a dominant weight and let b ∈ AU+

be a weight vector
of weight λ. Then we define ψb : S′(λ) ⊗ k → hull∇(grA) as the algebra map

induced by the B-algebra map S′(λ) ⊗ k → AU
+

which sends the generator
(choose one) of the λ weight space of ∇λ to b.

Lemma 43. For each c in the image of ψb, there is a positive integer s so that
cs ∈ grA.

Proof. The composite of S ⊗ k→ S′ ⊗ k with ψb factors through grA, so this
follows from Lemma 39.

Proof of Theorem 29. For every b ∈ hull∇(grA), there are b1,. . . , bs of re-
spective weights λ1,. . . , λs so that b lies in the image of ψb1 ⊗ · · · ⊗ ψbs . As⊗s

i=1 S(λi)→
⊗s

i=1 S
′(λi) is universally power-surjective by lemma 39, lemma

43 easily extends to tensor products.

Lemma 44. Suppose k is Noetherian. If hull∇(grA) is a finitely generated
k-algebra, so is grA.

Proof. Indeed, hull∇(grA) is integral over grA by Theorem 29. Then it is
integral over a finitely generated subalgebra of grA, and it is a Noetherian
module over that subalgebra.

Lemma 45. If grA is finitely generated as a k-algebra, then so is A.

Proof. Say j1, . . . , jn are nonnegative integers and ai ∈ A≤ji are such that the
classes ai +A<ji ∈ grji A generate grA. Then the ai generate A.

Lemma 46. Suppose k is Noetherian. If AU is a finitely generated k-algebra,
so is A.

Proof. Combine Lemmas 24, 44, 45.

Lemma 47. Let P be a standard parabolic subgroup. Suppose k is Noetherian.
Then A is a finitely generated k-algebra if and only if ARu(P ) is one.

Proof. Let V be the intersection of U with the semisimple part of the standard
Levi subgroup of P . Then U = V Ru(P ) and AU = (ARu(P ))V . Suppose that
A is a finitely generated k-algebra. Then AU = (ARu(P ))V is one also by
Lemma 25, and so is ARu(P ) by Lemma 46 (applied with a different group and
a different algebra).

Conversely, if ARu(P ) is a finitely generated k-algebra, Lemma 25 (with that
same group and algebra) implies that AU = (ARu(P ))V is finitely generated,
and thus A is as well, by Lemma 46.

Proof of Theorem 30. Combine Lemmas 47, 25, 24, 44, 45.
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Proof of Theorem 32. Let k be Noetherian and let A be a finitely generated
k-algebra. By Theorem 30, the k-algebra hull∇(grA) is finitely generated.
So we may choose b1,. . . ,bs, so that ψb1 ⊗ · · · ⊗ ψbs has image hull∇(grA).
By extending Lemma 38 to tensor products, we can argue as in the proof of
Lemma 43 and Theorem 29, and see that there is a positive integer n so that
n hull∇(grA) ⊆ grA. Now, hull∇(grA)⊗ k[G/U ] is acyclic by Proposition 28,
and thus its summand hull∇(grA) is acyclic as well. It follows that Hi(G, grA)
is a quotient of Hi−1(G, hull∇(grA)/ grA), which is annihilated by n.

Proof of Theorem 33. Take n as in Theorem 32, and use that localization is
exact.

Proof of Theorem 35. It suffices to show that the composite:

grA→ gr(A/pA)→ hull∇(gr(A/pA))

is power-surjective. It coincides with the composite

grA→ hull∇(gr(A))→ hull∇(gr(A/pA)).

Now AU
+ → (A/pA)U

+

is p-power-surjective by a combination of Theorem 12,
Proposition 6, Proposition 41 and the transfer principle [9, Ch. Two] as used
in 25. After inducing up, hull∇(gr(A)) → hull∇(gr(A/pA)) is still p-power-
surjective, indeed the same p-power is sufficient. And grA → hull∇(gr(A)) is
power-surjective by Theorem 29.

6 Finiteness properties of cohomology algebras

In this section we study finiteness properties of H∗(G,A), primarily when the
base ring k is Z. We shall always assume that the commutative algebra A is
finitely generated over the ring k, with rational action of a Chevalley group
scheme G. Further, M will be a noetherian A-module with compatible G-
action. Torsion will refer to torsion as an abelian group, not as an A-module.
We say that V has bounded torsion if there is a positive integer that annihilates
the torsion subgroup Vtors.

Lemma 48. A noetherian module over a graded commutative ring has bounded
torsion.

Recall that we call a homomorphism f : R→ S of graded commutative algebras
noetherian if f makes S into a noetherian left R-module. Recall that CFG
refers to cohomological finite generation. The main result of this section is the
following.

Theorem 49 (Provisional CFG). Suppose k = Z.

• Every Hm(G,M) is a noetherian AG-module.
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• If H∗(G,A) is a finitely generated algebra, then H∗(G,M) is a noetherian
H∗(G,A)-module.

• H∗(G, grA) is a finitely generated algebra.

• If H∗(G,A) has bounded torsion, then the reduction Heven(G,A) →
Heven(G,A/pA) is power-surjective for every prime number p.

• If Heven(G,A) → Heven(G,A/pA) is noetherian for every prime number
p, then H∗(G,A) is a finitely generated algebra.

Remark 50. Note that the first statement would fail badly, by [11, I 4.12], if
one replaced G with the additive group scheme Ga. This may explain why our
proof is far from elementary.

We hope to show in the future that Heven(G,A)→ Heven(G,A/pA) is noethe-
rian for every prime number p. The theorem suggests to ask:

Problem. Let k be a Noetherian ring and let G be a Chevalley group scheme
over k. Let A, Q be finitely generated commutative k-algebras on which G acts
rationally through algebra automorphisms. Let f : A→ Q be a power-surjective
equivariant homomorphism. Is H∗(G,A)→ H∗(G,Q) power-surjective?

We will need the recent theorem of Touzé [22, Thm 1.1], see also [22, Thm 1.5],

Theorem 51 (CFG over a field). If k is a field, then H∗(G,A) is a finitely
generated k-algebra and H∗(G,M) is a noetherian H∗(G,A)-module.

Remark 52. If k is a commutative ring and V is a Gk-module, then the co-
multiplication V → V ⊗k k[G] gives rise to a comultiplication V → V ⊗Z Z[G]
through the identification V ⊗kk[G] = V ⊗ZZ[G]. So one may view V as a GZ-
module. Further H∗(Gk, V ) is the same as H∗(GZ, V ), because the Hochschild
complexes are the same. So if k is finitely generated over a field F , then the
conclusions of the (CFG) theorem still hold, because H∗(G,A) = H∗(GF , A).
We leave it to the reader to try a limit argument to deal with the case where
k is essentially of finite type over a field.

First let the ring k be noetherian. We are going to imitate arguments of
Benson–Habegger [3]. We thank Dave Benson for the reference.

Lemma 53. Let m > 1, n > 1. The reduction Heven(G,A/mnA) →
Heven(G,A/nA) is power-surjective.

Proof. We may assume m is prime. By the Chinese Remainder Theorem we
may then also assume that n is a power of that same prime. (If n is prime
to m the Lemma is clear.) Let x ∈ Heven(G,A/nA). We show that some
power xm

r

of x lifts. Arguing as in the proof of Proposition 41 we may assume
x is homogeneous. Let I be the kernel of A/mnA → A/nA. Note that m
annihilates I, hence also H∗(G, I). Further I is an A/nA-module and the
connecting homomorphism ∂ : Hi(G,A/nA)→ Hi+1(G, I) satisfies the Leibniz
rule. So ∂(xm) = mxm−1∂(x) = 0 and xm lifts.
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Proposition 54. If H∗(G,A) has bounded torsion, then Heven(G,A) →
Heven(G,A/pA) is power-surjective for every prime number p.

Proof. Assume H∗(G,A) has bounded torsion. Write Hpos for
⊕

i>0 Hi. Let p
be a prime number. Choose a positive multiple n of p so that nHpos(G,A) = 0
and nAtors = 0. We have an exact sequence

· · · → Hi(G,Ators)→ Hi(G,A)→ Hi(G,A/Ators)→ · · · .

Multiplication by n2 is zero on Hpos(G,A/Ators), so Hpos(G,A/Ators) →֒
Hpos(G,A/n2A+ Ators). We have exact sequences

0→ A/Ators
×n2

−→ A→ A/n2A→ 0

and

0→ A/n2A+Ators
×n2

−→ A/n4A→ A/n2A→ 0.

Consider the diagram

H2i(G,A) //

��

H2i(G,A/n2A)
∂1 // H2i+1(G,A/Ators)� _

��
H2i(G,A/n4A) // H2i(G,A/n2A)

∂2 // H2i+1(G,A/n2A+Ators)

If x ∈ H2j(G,A/n2A), put i = jn2. The image n2xn
2−1∂2(x) in

H2i+1(G,A/n2A + Ators) of xn
2

vanishes, hence ∂1(xn
2

) vanishes in

H2i+1(G,A/Ators), and xn
2

lifts to H2i(G,A). As Heven(G,A/n2A) →
Heven(G,A/pA) is power-surjective by Lemma 53, we conclude that for every
homogeneous y ∈ Heven(G,A/pA) some power lifts all the way to Heven(G,A).
We want to show more, namely that Heven(G,A)→ Heven(G,A/pA) is univer-
sally power-surjective. By Proposition 41 we need to show that the power of
y may be taken of the form yp

r

. Localize with respect to the multiplicative
system S = (1 + pZ) in Z. The p-primary torsion is not affected and all
the other torsion disappears, so n may be taken a power of p. The proofs
then produce that some yp

r

lifts to Heven(G,S−1A). Now just remove the
denominator, which acts trivially on y.

We now restrict to the case k = Z. (More generally, one could take for k a
noetherian ring so that for every prime number p the ring k/pk is essentially
of finite type over a field.)

Proposition 55. Suppose k = Z. If H∗(G,A) has bounded torsion, then
H∗(G,A) is a finitely generated algebra.

Proof. By Theorem 33 we may choose a prime number p and concentrate on
the p-primary part. Say by tensoring Z and A with Z(p). So now Hpos(G,A)
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is p-primary torsion and A is a Z(p)-algebra. We know that Heven(G,A) →
Heven(G,A/pA) is power-surjective. By power surjectivity and the (CFG) The-
orem 51, we choose an AG-subalgebra C of H∗(G,A), generated by finitely
many homogeneous elements, so that C → H∗(G,A/pA) is noetherian. Again
by the (CFG) Theorem 51 it follows that H∗(G,A/pA)→ H∗(G,A/pA+Ators)
is noetherian, so that C → H∗(G,A/pA+Ators) is also noetherian.
Let N be the image of Hpos(G,A/Ators) in Hpos(G,A/pA + Ators)). As a C-
module, it is isomorphic to Hpos(G,A/Ators)/pH

pos(G,A/Ators). Choose ho-
mogeneous vi ∈ Hpos(G,A/Ators) so that their images generate N . Say V is
the C-span of the vi. We have Hpos(G,A/Ators) + V ⊆ pHpos(G,A/Ators) + V .
Iterating this we get Hpos(G,A/Ators) + V ⊆ prHpos(G,A/Ators) + V for any
r > 0. But H∗(G,A) and H∗(G,Ators) have bounded torsion, so H∗(G,A/Ators)
also has bounded torsion. It follows that Hpos(G,A/Ators) = V . We conclude
that Hpos(G,A/Ators) is a noetherian C-module.
Now let us look at Hpos(G,Ators). Filter Ators ⊇ pAtors ⊇ p2Ators ⊇ · · · ⊇ 0. By
the (CFG) theorem Hpos(G, piAtors/p

i+1Ators) is a noetherian H∗(G,A/pA)-
module, hence a noetherian C-module. So Hpos(G,Ators) is also a noetherian
C-module and thus H∗(G,A) is one. It follows that H∗(G,A) is a finitely
generated AG-algebra. And AG itself is finitely generated by Theorem 3.

Proposition 56. Let k = Z. Then H∗(G, grA) is a finitely generated algebra.

Proof. By Theorem 32 the algebra H∗(G, grA) has bounded torsion, so Propo-
sition 55 applies.

Proposition 57. Let k = Z. Then Hm(G,M) is a noetherian AG-module.

Proof. Form the ‘semi-direct product ring’ A⋉M whose underlying G-module
is A ⊕M , with product given by (a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1). It
suffices to show that Hm(G,A ⋉ M) is a noetherian H0(G,A ⋉ M)-module.
In other words, we may forget M and just ask if Hm(G,A) is a noetherian
AG-module. Now H∗(G, grA) is a finitely generated algebra and H0(G, grA) =
gr0A , so in the spectral sequence

E(A) : Eij1 = Hi+j(G, gr−iA)⇒ Hi+j(G,A)

the
⊕

i+j=t E
ij
1 are noetherian AG-modules for each t. So for fixed t there are

only finitely many nonzero Ei,t−i1 and the result follows.

Proposition 58. Let k = Z. If Heven(G,A)→ Heven(G,A/pA) is noetherian
for every prime number p, then H∗(G,A) is a finitely generated algebra.

Proof. We argue as in the proof of Proposition 55. We may no longer
know that H∗(G,A) has bounded torsion, but for every m > 0 we know
that Hm(G,A/Ators) is a noetherian AG-module, hence has bounded tor-
sion. Instead of Hpos(G,A/Ators) + V ⊆ pHpos(G,A/Ators) + V , we use
Hm(G,A/Ators)+V ⊆ pHm(G,A/Ators)+V . We find that Hm(G,A/Ators) ⊆ V
for all m > 0 and thus Hpos(G,A/Ators) = V again. Finish as before.
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Corollary 59. Let k = Z. If Heven(G,A) → Heven(G,A/pA) is power-
surjective for every prime number p, then H∗(G,A) is a finitely generated al-
gebra.

Proposition 60. Let k = Z. If H∗(G,A) is a finitely generated algebra, then
H∗(G,M) is a noetherian H∗(G,A)-module.

Proof. Let H∗(G,A) be a finitely generated algebra. So it has bounded torsion
and Heven(G,A)→ Heven(G,A/pA) is power-surjective for every prime number
p. We argue again as in the proof of Proposition 55.
By Theorem 33, applied to A ⋉ M , we may choose a prime number p and
concentrate on the p-primary part, so Hpos(G,M) is p-primary torsion and A
is a Z(p)-algebra. Write C = H∗(G,A). By power surjectivity and the (CFG)
Theorem 51, C → H∗(G,A/pA) is noetherian. Again by the (CFG) Theorem
51 it follows that H∗(G,M/pM +Mtors) is a noetherian H∗(G,A/pA)-module,
hence a noetherian C-module.
Let N be the image of Hpos(G,M/Mtors) in Hpos(G,M/pM + Mtors)). As a
C-module, it is isomorphic to Hpos(G,M/Mtors)/pH

pos(G,M/Mtors). Choose
homogeneous vi ∈ Hpos(G,M/Mtors) so that their images generate N . Say V is
the C-span of the vi. We have Hm(G,M/Mtors) + V ⊆ pHm(G,M/Mtors) + V
for m > 0. Iterating this we get Hm(G,M/Mtors)+V ⊆ prHm(G,M/Mtors)+V
for any r > 0, m > 0. But Hm(G,M/Mtors) is a noetherian AG-module, hence
has bounded torsion. It follows that Hm(G,M/Mtors) ⊆ V for all m > 0, and
Hpos(G,M/Mtors) = V . So Hpos(G,M/Mtors) is a noetherian C-module.
Now let us look at Hpos(G,Mtors). Filter Mtors ⊇ pMtors ⊇ p2Mtors ⊇
· · · ⊇ 0. By the (CFG) theorem Hpos(G, piMtors/p

i+1Mtors) is a noetherian
H∗(G,A/pA)-module, hence a noetherian C-module. So Hpos(G,Mtors) is also
a noetherian C-module and thus H∗(G,M) is one.

Theorem 49 has been proven.
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scientifiques de l’École Normale Supérieure Sér. 4, 12, no. 1 (1979), 85–
100.

[2] Henning Haahr Andersen and Upendra Kulkarni, Sum formulas for re-
ductive algebraic groups. Adv. Math. 217, no. 1 (2008), 419–447.

[3] David J. Benson and Nathan Habegger, Varieties for modules and a
problem of Steenrod. Journal of Pure and Applied Algebra 44 (1987),
13–34.
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Abstract. We construct two families of refinements of the (projec-
tivized) support variety of a finite dimensional module M for a finite
group scheme G. For an arbitrary finite group scheme, we associate
a family of non-maximal rank varieties Γj(G)M , 1 ≤ j ≤ p − 1, to
a kG-module M . For G infinitesimal, we construct a finer family of
locally closed subvarieties V a(G)M of the variety of one parameter
subgroups of G for any partition a of dimM . For an arbitrary finite
group scheme G, a kG-module M of constant rank, and a cohomol-
ogy class ζ in H1(G,M) we introduce the zero locus Z(ζ) ⊂ Π(G).
We show that Z(ζ) is a closed subvariety, and relate it to the non-
maximal rank varieties. We also extend the construction of Z(ζ) to
an arbitrary extension class ζ ∈ ExtnG(M,N) whenever M and N are
kG-modules of constant Jordan type.

2010 Mathematics Subject Classification: 16G10, 20C20, 20G10

0. Introduction

In the remarkable papers [21], D. Quillen identified the spectrum of the (even
dimensional) cohomology of a finite group Spec H•(G, k) where k is some field
of characteristic p dividing the order of the group. The variety Spec H•(G, k)
is the “control space” for certain geometric invariants of finite dimensional kG-
modules. These invariants, cohomological support varieties and rank varieties,
were initially introduced and studied in [1] and [6]. Over the last twenty five
years, many authors have been investigating these varieties inside Spec H•(G, k)
in order to provide insights into the structure, behavior, and properties of kG-
modules. The initial theory for finite groups has been extended to a much
more general family of finite group schemes, starting with the work of [13] for
p-restricted Lie algebras. The resulting theory of support varieties for modules
for finite group schemes satisfies all of the axioms of a “support data” of tensor

1partially supported by the NSF # DMS 0909314
2partially supported by the NSF # DMS 0800950
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triangulated categories as defined in [2]. Thus, for example, this theory pro-
vides a classification of tensor–ideal, thick subcategories of the stable module
category of a finite group scheme G.
In this present paper, we embark on a different perspective of geometric invari-
ants for kG-modules for a finite group scheme G. We introduce a new family of
invariants, “generalized support varieties”, which stratify the support variety
of a finite dimensional kG-module M . The construction comes from consid-
ering ranks of nilpotent operators on M which leads to an alternative name
non-maximal rank varieties. As finer invariants, they capture more structure
of a module M and can distinguish between modules with the same support
varieties. In particular, the generalized support varieties are always proper sub-
varieties of the control space Spec H•(G, k) whereas the support variety often
coincides with the entire control space. On the other hand, they necessarily lack
certain good behavior with respect to tensor products and distinguished trian-
gles in the stable module category of kG. However, as we shall try to convince
the reader, these varieties provide interesting and useful tools in the further
study of the representation theory of finite groups and their generalizations.
Since the module category of a finite group scheme G is wild except for very
special G, our goals are necessarily more modest than the classification of all
(finite dimensional) kG-modules. Two general themes that we follow when
introducing our new varieties associated to representations are the formula-
tion of invariants which distinguish various known classes of modules and the
construction of modules with specified invariants.
In Section 1, we summarize some of our earlier work, and that of others, con-
cerning support varieties of kG-modules. We emphasize the formulation of
support varieties in terms of π-points, since the fundamental structure under-
lying our new invariants is the scheme Π(G) of equivalence classes of π-points.
Also in this section, we recall maximal Jordan types of kG-modules and the
non-maximal subvariety Γ(G)M ⊂ M refining the support variety Π(G)M for
a finite dimensional kG-module M .
If G is an infinitesimal group scheme, one formulation of support varieties
is in terms of the affine scheme V (G) of infinitesimal subgroups of G. For
any Jordan type a =

∑p
i=1 ai[i] and any finite dimensional kG-module M

(with G infinitesimal), we associate in Section 2 subvarieties V ≤a(G)M and
V a(G)M of V (G). Determination of these refined support varieties is enabled
by earlier computations of the global p-nilpotent operator ΘG : M⊗k[V (G)]→
M ⊗ k[V (G)] which was introduced and studied in [17].
We require a refinement of one of the main theorems of [18] recalled as Theorem
1.5. Section 3 outlines the original proof due to A. Suslin and the authors, and
points out the minor modifications required to establish the fact that whether
or not a kG-module has maximal j-rank at a π-point depends only upon the
equivalence class of that π-point (Theorem 3.6). This is the key result needed
to establish that the non-maximal rank varieties are well–defined for all finite
group schemes.
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In Section 4, we consider closed subvarieties Γj(G)M ⊂ Π(G) for any finite
group scheme, finite dimensional kG-module M , and integer j, 1 ≤ j < p, the
non-maximal rank varieties. We establish some properties of these varieties
and work out a few examples to suggest how these invariants can distinguish
certain non-isomorphic kG-modules.
In the concluding Section 5, we employ π-points to associate a closed subvariety
Z(ζ) ⊂ Π(G) to a cohomology class ζ ∈ H1(G,M) provided that M is a kG-
module of constant rank. One of the key properties of Z(ζ) is that Z(ζ) = ∅
if and only if the extension 0 → M → Eζ → k → 0 satisfies the condition
that Eζ is also a kG-module of constant rank. We show that Z(ζ) is often
homeomorphic to Γ1(G)Eζ which allows us to conclude that Z(ζ) is closed.
Taking M to be an odd degree Heller shift of the trivial module k, we recover
the familiar zero locus of a class in H2n(G, k) in the special case M = k.
Finally, we generalize this construction to extension classes ξ ∈ ExtnG(M,N)
for kG-modules M and N of constant Jordan type and any n ≥ 0.
We abuse terminology in this paper by referring to a (Zariski) closed subset
of an affine or projective variety as a subvariety. Should one wish, one could
always impose the reduced scheme structure on such “subvarieties”.
We would like to thank Jon Carlson for pointing out to us that maximal ranks
do not behave well under tensor product, Rolf Farnsteiner for his insights into
components of the Auslander-Reiten quiver, and the referee for several useful
comments. The second author gratefully acknowledges the support of MSRI
during her postdoctoral appointment there.

1. Recollection of Π-point schemes and support varieties

Throughout, k will denote an arbitrary field of characteristic p > 0. Unless
explicit mention is made to the contrary, G will denote a finite group scheme
over k with finite dimensional coordinate algebra k[G]. We denote by kG the
Hopf algebra dual to k[G], and refer to kG as the group algebra of G. Thus,
(left) kG-modules are naturally equivalent to (left) k[G]-comodules, which are
equivalent to (left) rational G-modules (see [20, ch.1]). If M is a kG-module
and K/k is a field extension, then we denote by MK the KG-module obtained
by base change.
We shall identify H∗(G, k) with H∗(kG, k).

Definition 1.1. ([16]) The Π-point scheme of a finite group scheme G is the
k-scheme of finite type whose points are equivalence classes of π-points of G
and whose scheme structure is defined in terms of the category of kG-modules.
In more detail,

(1) A π-point of G is a (left) flat map of K-algebras αK : K[t]/tp → KG
for some field extension K/k with the property that there exists a
unipotent abelian subgroup scheme i : CK ⊂ GK defined over K such
that αK factors through i∗ : KCK → KGK = KG.
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(2) If αK : K[t]/tp → KG, βL : L[t]/tp → LG are two π-points of G,
then αK is said to be a specialization of βL, provided that for any fi-
nite dimensional kG-module M , α∗

K(MK) being free as K[t]/tp-module
implies that β∗

L(ML) is free as L[t]/tp-module.
(3) Two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG are said to

be equivalent, written αK ∼ βL, if they satisfy the following condition
for all finite dimensional kG-modules M : α∗

K(MK) is free as K[t]/tp-
module if and only if β∗

L(ML) is free as L[t]/tp-module.
(4) A subset V ⊂ Π(G) is closed if and only if there exists a finite dimen-

sional kG-module M such that V equals

Π(G)M = {[αK ] |α∗
K(MK) is not free as K[t]/tp −module}

The closed subset Π(G)M ⊂ Π(G) is called the Π-support of M .
(5) The topological space Π(G) of equivalence classes of π-points can be

endowed with a scheme structure based on representation theoretic
properties of G (see [16, §7]).

We denote by

H•(G, k) =

{
H∗(G, k), if p = 2,

Hev(G, k) if p > 2.

The cohomological support variety |G|M of a kG-module M is the
closed subspace of Spec H•(G, k) defined as the variety of the ideal
AnnH•(G,k) Ext∗G(M,M) ⊂ H•(G, k).

Theorem 1.2. [16, 7.5] Let G be a finite group scheme, and M be a finite
dimensional kG-module. Denote by Proj H•(G, k) the projective k-scheme as-
sociated to the commutative, graded k-algebra H•(G, k). Then there is an iso-
morphism of k-schemes

ΦG : Proj H•(G, k) ≃ Π(G)

which restricts to a homeomorphism of closed subspaces

Proj(|G|M ) ≃ Π(G)M

for all finite dimensional kG-modules M .

We (implicitly) identify Proj H•(G, k) with Π(G) via this isomorphism.
We consider the stable module category stmod kG. Recall that the Heller shift
Ω(M) of M is the kernel of the minimal projective cover P (M) ։ M , and
the inverse Heller shift Ω−1(M) is the cokernel of the embedding of M into its
injective hull, M →֒ I(M).
The objects of stmod kG are finite dimensional kG-modules. The morphisms
are equivalence classes where two morphisms are equivalent if they differ by a
morphism which factors through a projective module,

Homstmod kG(M,N) = HomkG(M,N)/PHomkG(M,N).

The stable module category has a tensor triangulated structure: the triangles
are induced by exact sequences, the shift operator is given by the inverse Heller
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operator Ω−1, and the tensor product is the standard tensor product in the
category of kG-modules. Two kG-modules M , N are stably isomorphic if and
only if they are isomorphic as kG-modules up to a projective direct summand.
The association M 7→ Π(G)M fits the abstractly defined “theory of supports”
for the stable module category of G (as defined in [2]). Some of the basic
properties of this theory are summarized in the next theorem (see [16]).

Theorem 1.3. Let G be a finite group scheme and let M,N be finite dimen-
sional kG-modules.

(1) Π(G)M = ∅ if and only if M is projective as a kG-module.
(2) Π(G)M⊕N = Π(G)M ∪ Π(G)N .
(3) Π(G)M⊗N = Π(G)M ∩ Π(G)N .
(4) Π(G)M = Π(G)ΩM .
(5) If M → N → Q → Ω−1M is an exact triangle in the stable module

category stmod(kG) then Π(G)N ⊂ Π(G)M ∪Π(G)Q.
(6) If p does not divide the dimension of M , then Π(G)M = Π(G).

The last property of Theorem 1.3 indicates that M 7→ Π(G)M is a somewhat
crude invariant.
We next recall the use of Jordan types in order to refine this theory. The
isomorphism type of a finite dimensional k[t]/tp-module M is said to be the
Jordan type of M . We denote the Jordan type of M by JType(M), and write
JType(M) =

∑p
i=1 ai[i]; in other words, as a k[t]/tp-module M ≃⊕p

i=1([i])⊕ai

where [i] = k[t]/ti. Thus, we may (and will) view a Jordan type JType(M) as
a partition of m = dimM into subsets each of which has cardinality ≤ p.
We shall compare Jordan types using the dominance order. Let n = [nk ≥
. . . ≥ n2 ≥ n1], m = [mk ≥ . . . ≥ m2 ≥ m1] be two partitions of N . Then n
dominates m, written n ≥ m, iff

(1.3.1)

k∑

i=j

ni ≥
k∑

i=j

mi.

for all j, 1 ≤ j ≤ k. For k[t]/tp-modules M,N , we say that JType(M) ≥
JType(N) if the partition corresponding to JType(M) dominates the partition
corresponding to JType(N). The dominance order on Jordan types can be
reformulated in the following way.

Lemma 1.4. Let M , N be k[t]/tp-modules of dimension m. Then JType(M) ≥
JType(N) if and only if

rk(tj ,M) ≥ rk(tj , N)

for all j, 1 ≤ j < p, where rk(tj ,M) denotes the rank of the operator tj on M .
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Proof. If JType(M) =
p∑
i=1

ai[i], then

(1.4.1) rk(tj ,M) =

p∑

i=j+1

ai(i− j).

The statement now follows from [10, 6.2.2]. �

The following theorem plays a key role in our formulation of geometric in-
variants for a kG-module M that are finer than the Π-support Π(G)M . In
Section 3, we outline the proof of this theorem in order to prove the re-
lated, but sharper, Theorem 3.6. We say that a π-point αK has maximal
Jordan type for a kG-module M if there does not exist a π-point βL such that
JType(α∗

K(MK)) < JType(β∗
L(ML)).

Theorem 1.5. [18, 4.10] Let G be a finite group scheme over k and M a finite
dimensional kG-module. Let αK : K[t]/tp → KG be a π-point of G which
has maximal Jordan type for M . Then for any π-point βL : L[t]/tp → LG
which specializes to αK , the Jordan type of α∗

K(MK) equals the Jordan type of
β∗
L(ML); in particular, if αK ∼ βL, then the Jordan type of α∗

K(MK) equals
the Jordan type of β∗

L(ML).

The following class of kG-modules was introduced in [8] and further studied in
[7], [9], [4], [5].

Definition 1.6. A finite dimensional kG-module M is said to be of constant
Jordan type if the Jordan type of α∗

K(MK) is the same for every π-point αK of
G. By Theorem 1.5, M has constant Jordan type a if and only if for each point
of Π(G) there is some representative αK of that point with JType(α∗

K(M)) = a.

Theorem 1.5 justifies the following definition (see [18, 5.1]).

Definition 1.7. ([18, 5.1]) Let M be a finite dimensional representation of a
finite group scheme G. We define Γ(G)M ⊂ Π(G) to be the subset of equiva-
lence classes of π-points αK : K[t]/tp → KG such that JType(α∗

K(MK)) is not
maximal among Jordan types JType(β∗

L(ML)) where βL runs over all π-points
of G.

To conclude this summary, we recall certain properties of the association M 7→
Γ(G)M .

Proposition 1.8. Let G be a finite group scheme and let M,N be finite di-
mensional kG-modules. Then Γ(G)M ⊂ Π(G) is a closed subvariety satisfying
the following properties:

(1) If M and N are stably isomorphic, then Γ(G)M = Γ(G)N .
(2) Γ(G)M ⊂ Π(G)M with equality if and only if Π(G)M 6= Π(G).
(3) Γ(G)M is empty if and only if M has constant Jordan type.
(4) If M has constant Jordan type, then Γ(G)M⊕N = Γ(G)N .
(5) If Π(G) is irreducible, then N has constant non-projective Jordan type

if and only if Γ(G)M⊗N = Γ(G)M for any kG-module M .
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(6) If Π(G) is irreducible, then

Γ(G)M⊗N = (Γ(G)M ∪ Γ(G)N ) ∩ (Π(G)M ∩ Π(G)N ).

Proof. If M and N are stably isomorphic then M = N ⊕ P or N = M ⊕ P
with P projective. Since projective modules have constant Jordan type, (1)
becomes a special case of (4). The fact that Γ(G)M ⊂ Π(G) is closed is proved
in [18, 5.2]. Properties (2) and (3) follow essentially from definitions. Property
(4) follows from the additivity of the dominance order. Properties (5) and (6)
are the statements of [8, 4.9] and [8, 4.7] respectively. �

2. Generalized support varieties for infinitesimal group schemes

Before considering refinements of Γ(G)M ⊂ Π(G) in Section 3 for a general fi-
nite group schemeG, we specialize in this section to infinitesimal group schemes
and work with the affine variety V (G). First, we recall some definitions and
several fundamental results from [23], [24].
A finite group scheme is called infinitesimal if its coordinate algebra k[G] is
local. Important examples of infinitesimal group schemes are Frobenius kernels
of algebraic groups (see [20]). An infinitesimal group scheme is said to have
height less or equal to r if for any x in Rad(k[G]), xp

r

= 0.
Let Ga be the additive group, and Ga(r) be the r-th Frobenius kernel of Ga. A
one-parameter subgroup of height r of G over a commutative k-algebra A is a
map of group schemes over A of the form µ : Ga(r),A → GA. Here, Ga(r),A, GA
are group schemes over A defined as the base changes from k to A of Ga(r), G.

Let k[Ga(r)] = k[T ]/T p
r

, and kGa(r) = k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1), indexed

so that the Frobenius map F : Ga(r) → Ga(r) satisfies F∗(ui) = ui−1, i >
0;F∗(u0) = 0. We define

(2.0.1) ǫ : k[u]/up → kGa(r) = k[u0, . . . , ur−1]/(u
p
0, . . . , u

p
r−1)

to be the map sending u to ur−1. Thus, ǫ is a map of group algebras but not
of Hopf algebras in general. In fact, the map ǫ is induced by a group scheme
homomorphism if and only if r = 1 in which case ǫ is an isomorphism.

Theorem 2.1. [23] Let G be an infinitesimal group scheme of height ≤ r. Then
there is an affine group scheme V (G) which represents the functor sending a
commutative k-algebra A to the set Homgr.sch/A(Ga(r),A, GA).

Thus, a point v ∈ V (G) naturally corresponds to a 1-parameter subgroup

µv : Ga(r),k(v) // Gk(v)

where k(v) is the residue field of v.

Theorem 2.2. [24] (1). The closed subspaces of V (G) are the subsets of the
form

V (G)M = {v ∈ V (G) | ǫ∗µ∗
v(Mk(v)) is not free as a module over k(v)[u]/up}

for some finite dimensional kG-module M .
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(2). There is a natural p-isogeny V (G) −→ Spec H•(G, k) which restricts to a
homeomorphism V (G)M ≃ |G|M for any finite dimensional kG-module M .

Theorem 1.2 implies that the spaces Π(G) and Projk[V (G)] are also homeo-
morphic (see [16] for a natural direct relationship between Π(G) and V (G) for
an infinitesimal group scheme).
Let µv∗ : k(v)Ga(r) → k(v)G be the map on group algebras induced by the one-
parameter subgroup µv : Ga(r) → G. We denote by θv the nilpotent element
of k(v)G which is the image u under the composition

k(v)[u]/up
ǫ // k(v)[u0, . . . , ur−1]/(u

p
0, . . . , u

p
r−1)

µv∗ // k(v)G .

So, θv = µv∗(ur−1) ∈ k(v)G. For a given kG-module M we also let

θv : Mk(v) →Mk(v)

denote the associated p-nilpotent endomorphism. Thus, JType(ǫ∗µ∗
v(Mk(v)))

is the Jordan type of θv on Mk(v).

Definition 2.3. Let M be a kG-module of dimension m. We define the local
Jordan type function

(2.3.1) JTypeM : V (G) → N×p,

by sending v to (a1, . . . , ap), where (θv)∗(Mk(v)) ≃
∑p

i=1 ai[i].

Definition 2.4. For a given a = (a1, . . . , ap) ∈ N×p, we define

V a(G)M = {v ∈ V (G) | JTypeM (v) = a},

V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a}.

As we see in the following example, V a(G)M is a generalization of a nilpotent
orbit of the adjoint representation (and V ≤a(G)M is a generalization of an orbit
closure).

Example 2.5. Let G = GLN(1) and let M be the standard N -dimensional
representation of GLN . Then JTypeM sends a p-nilpotent matrix X to its
Jordan type as an endomorphism of M . Consequently, JTypeM has image
inside N×p consisting of those p-tuples a = (a1, . . . , ap) such that

∑
i ai · i = N .

The locally closed subvarieties V a(G)M ⊂ Np(glN ) are precisely the adjoint
GLN -orbits inside the p-nilpotent cone Np(glN ) of the Lie algebra glN .

Example 2.6. Let ζ ∈ H2i+1(G, k) be a non-zero cohomology class of odd
degree. Let Lζ be the Carlson module defined as the kernel of the map
Ω2i+1(k)→ k corresponding to ζ (see [3, II.5.9]). The module Ω2i+1(k) has con-
stant Jordan typem[p]+[p−1]. Let a = m[p]+[p−2] and b = (m−1)[p]+2[p−1].
Then the image of JTypeLζ equals {a, b} ⊂ N×p. Moreover, V a(G)Lζ is open

in V (G), with complement V b(G)Lζ .
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Remark 2.7. An explicit determination of the global p-nilpotent operator ΘM :
M ⊗ k[V (G)] → M ⊗ k[V (G)] of [17, 2.4] immediately determines the local
Jordan type function JTypeM . Namely, to any v ∈ V (G) we associate the
nilpotent linear operator θv : Mk(v) → Mk(v) defined by θv = ΘM ⊗k(v)[V (G)]

k(v). The local Jordan type of M at the point v is precisely the Jordan type
of the linear operator θv.
The reader should consult [17] for many explicit examples of kG-modules M
for each of the four families of examples of infinitesimal group schemes: (i.) G
of height 1, so that M is a p-restricted module for Lie(G); (ii.) G = Ga(r); (iii.)
GLn(r); and (iv.) SL2(2).

We provide a few elementary properties of these refined support varieties.

Proposition 2.8. Let M be a kG-module of dimension m and let a =
(a1, . . . , ap) such that

∑p
i=1 ai · i = m.

(1) If m = p · m′, then V (G)\ V (G)M = V (0,...,0,m′)(G)M ; otherwise,
V (G) = V (G)M .

(2) M has constant Jordan type if and only if V (G)M = V a(G)M for some
a ∈ N×p (in which case a is the Jordan type of M).

(3) V ≤a(G)M = {v ∈ V (G) | JTypeM (v) ≤ a} is a closed subvariety of
V (G).

(4) V a(G)M is a locally closed subvariety of V (G), open in V ≤a(G)M .
(5) V ≤b(G)M ⊆ V ≤a(G)M , if b ≤ a, where “ ≤ ” is the dominance

order on Jordan types.

Proof. Properties (1) and (2) follow immediately from the definitions of V (G)M
and of constant Jordan type. Property (5) is immediate.
To prove (3) we utilize θv = ΘM ⊗k(v)[V (G)] k(v) : Mk(v) →Mk(v) described in

Remark 2.7. Applying Nakayama’s Lemma as in [17, 4.11] to Ker{Θj
M}, 1 ≤

j < p, we conclude that rk(θjv,M), 1 ≤ j ≤ p − 1, is lower semi-continuous.
Consequently, (1.3.1) and Lemma 1.4 imply that V ≤a(G)M is closed.
Property (4) follows from the observation that V a(G)M is the complement

inside V ≤a(G)M of the finite union V <a(G)M = ∪a′<aV
≤a′ , which is closed by

(3). �

It is often convenient to consider the stable Jordan type of a k[t]/tp-module M :
if a1[1] + . . . + ap[p] is the Jordan type of M , then the stable Jordan type of
M is a1[1] + . . .+ ap−1[p− 1] (equivalently, the isomorphism class of M in the
stable module category stmod k[u]/up). We define the stable local Jordan type
function

JType
M

: V (G)→ N×p−1, v 7→ (a1, . . . , ap−1)

by sending v to the stable Jordan type of θ∗v(Mk(v)).

The following proposition relates the Jordan type function for a module M and
its Heller twist.
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Proposition 2.9. For a stable Jordan type a =
∑p−1

i=1 ai[i], denote by a⊥ the
“flip” of a,

a⊥ =

p−1∑

i=1

ap−i[i].

Then

JType
Ω(M)

(v) = JType
M

(v)⊥, v ∈ V (G).

Proof. For any v ∈ V (G), µ∗
v : (k(v)G −mod) → (k(v)Ga(r) −mod) is exact.

Moreover, ǫ∗ : (kGa(r) −mod)→ (k[u]/up −mod) is also exact. Consequently,
the existence of a short exact sequence of the form 0 → ΩM → P → M → 0
with JTypeP (v) = N [p] for some N implies the assertion. �

Example 2.10. Let g be a restricted Lie algebra with restricted enveloping
algebra u(g) (which is isomorphic to the group algebra of an infinitesimal
group scheme of height 1). Let ζ be an even dimensional cohomology class
in H•(u(g), k), and Lζ be the Carlson module defined by ζ. Then Lζ has two
local Jordan types: it is generically projective (that is, the local Jordan type
is m[p] on a dense open set), and has the type r[p] + [p− 1] + [1] on the hyper-
surface 〈ζ = 0〉 in Spec H•(u(g), k). Let M be a g-module of constant Jordan
type a. Then the module Lζ ⊗M has two local Jordan types: it is generically
projective, and has the “stably palindromic” type a+ a⊥ + [proj] on 〈ζ = 0〉.

We conclude this section with the following cautionary example which shows
why the construction of our local Jordan type function does not apply to kG-
modules M for finite groups G.

Example 2.11. ([18, 2.3]) Let E = Z/p×Z/p, and write kE = k[x, y]/(xp, yp).
Let M = kE/(x− y2). Then

α : k[t]/tp → kE, t 7→ x

and

α′ : k[t]/tp → kE, t 7→ x− y2

are equivalent as π-points of E. However, the Jordan type of α∗(M) equals

[p−1
2 ] + [p+1

2 ], whereas the Jordan type of α′∗(M) is p[1].

3. Maximal j–rank for arbitrary finite group schemes

We begin with the following definition.

Definition 3.1. Let G be a finite group scheme, αK : K[t]/tp → KG be a
π-point of G, and j a positive integer with 1 ≤ j < p. Then αK is said to
be of maximal j-rank for some finite-dimensional kG-module M provided that
the rank of αK(tj) = αK(t)j : MK → MK is greater or equal to the rank of
βL(tj) : ML →ML for any π-point βL : L[t]/tp → LG.
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The purpose of this section is to establish in Theorem 3.6 that maximality
of j-rank at αK implies maximal j-rank at βL for any βL ∼ αK . The proof
consists of repeating almost verbatim the proof by A. Suslin and the authors
in [18] of Theorem 1.5, so that we merely indicate here the explicit places at
which the proof of Theorem 1.5 should be modified in order to prove Theorem
3.6.
The following theorem provides the key step.

Theorem 3.2. Let k be an infinite field, M be a finite-dimensional k-vector
space, and α, α1, . . . , αn, β1, . . . , βn be a family of commuting nilpotent k-linear
endomorphisms of M . Let 1 ≤ j ≤ p− 1, and assume that

rkαj ≥ rk(α+ λ1α1 + . . .+ λnαn)j

for any field extension K/k and any n-tuple (λ1, . . . , λn) ∈ Kn. Then

rkαj = rk(α+ α1β1 + . . .+ αnβn)j .

In particular, if p(x, x1, . . . , xn) is any polynomial without constant or linear
term then

rkαj = rk(α+ p(α, α1, . . . , αn))j .

Proof. For j = 1, this is [18, 1.9]. For general j, the statement follows by
applying Corollary 1.11 of [18]. �

For any π-point αK : K[t]/tp → KG, we denote by rk(αK(tj),MK) the rank
of the K-linear endomorphism αK(tj) : MK →MK .
In the next 3 propositions, we consider the special cases in which G is an
elementary abelian p-group, an abelian finite group scheme, and an infinitesimal
finite group scheme. In this manner, we follow the strategy of the proof of
Theorem 1.5.

Proposition 3.3. Let E be an elementary abelian p-group of rank r, let M
be a finite dimensional kE-module, and let αK be a π-point of E which is of
maximal j-rank for M . Then for any βL ∼ αK ,

rk(αK(tj),MK) = rk(βL(tj),ML).

Proof. The proof of [18, 2.7] applies verbatim provided one replaces references
to [18, 1.12] by references to [18, 1.9]. �

Proposition 3.4. Let C be an abelian finite group scheme over k, let M be a
finite dimensional kC-module, and let αK be a π-point of C which is of maximal
j-rank for M . Then for any βL ∼ αK ,

rk(αK(tj),MK) = rk(βL(tj),ML).

Proof. The proof of [18, 2.9] applies verbatim provided one replaces references
to [18, 2.7] by references to Proposition 3.3 and references to [18, 1.12] by
references to Theorem 3.2. �
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Proposition 3.5. Let G be an infinitesimal group scheme over k and let M
be a finite dimensional kG-module. Let βL : L[t]/tp → LG be a π-point of G
with the property that the j-rank of β∗

L(ML) is maximal for M . Then for any
π-point αK : K[t]/tp → KG which specializes to βL,

rk(αK(tj),MK) = rk(βL(tj),ML).

Proof. The proof of [18, 3.5] applies verbatim provided one replaces references
to [18, 2.9] by references to Proposition 3.4. �

We now state and prove the assertion that maximality of j-rank at αK implies
maximality of j-rank at βL for any βL ∼ αK . This statement for all j, 1 ≤ j < p,
implies the maximality of Jordan type as asserted in Theorem 1.5.

Theorem 3.6. Let G be a finite group scheme over k and let M be a finite
dimensional kG-module. Let αK : K[t]/tp → KG be a π-point of G which
is of maximal j-rank for M . Then for any π-point βL : L[t]/tp → LG that
specializes to αK , we have

rk(αK(tj),MK) = rk(βL(tj),ML).

Proof. The proof of [18, 4.10] applies verbatim provided one replaces refer-
ences to [18, 2.9] by references to Proposition 3.4 and references to [18, 3.5] by
references to Proposition 3.5. �

We can now generalize the modules of constant j-rank as defined for infinitesimal
group schemes in [17] to all finite group schemes.

Definition 3.7. A finite dimensional kG-module M is said to be of constant j-
rank, 1 ≤ j < p, if for any two π-points αK : K[t]/tp → KG, βL : L[t]/tp → LG,
we have

rk(αK(tj),MK) = rk(βL(tj),ML).

Remark 3.8. By Theorem 3.6, M has constant j-rank n if and only if for each
point of Π(G) there is some π-point representative αK with rk(αK(tj),MK) =
n.

Evidently, a kG-module has constant Jordan type if and only if it has constant
j-rank for all j, 1 ≤ j < p (see (1.3.1)).
We shall say that M is a module of constant rank if it has constant 1-rank.
Every module of constant Jordan type has, by definition, constant rank. On
the other hand, there are numerous examples of modules of constant rank which
do not have constant Jordan type. For example, if ζ ∈ H2i+1(G, k) is non-zero
and p > 2, then the Carlson module Lζ is a kG-module of constant rank but
not of constant Jordan type.
We finish this section with a cautionary example that illustrates that not all
properties of maximal or constant Jordan type have natural analogues for max-
imal or constant rank. Recall that a generic Jordan type of a kG-module M is
the Jordan type at a π-point which represents a generic point of Π(G). By the
main theorem of [18], it is well-defined. If Π(G) is irreducible, we can there-
fore refer to the generic Jordan type of M . We can similarly define a generic
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j-rank of a kG-module to be rk(αK(tj),MK) for a π-point α of G representing
a generic point of Π(G). By [18, 4.2], generic j-rank is well-defined.

Example 3.9. Throughout this example we are using the formula for the tensor
product of Jordan types (see, for example, [8, Appendix]).

(1). Let a =
∑
ai[i], b =

∑
bi[i] be two Jordan types (or partitions) such that∑

ai · i =
∑
bi · i. In [8, 4.1] the authors showed that a ≥ b implies a⊗c ≥ b⊗c

for any Jordan type c. The analogous statement is not true for ranks.
Indeed, let a = 3[2], b = [3] + 3[1], and c = [2]. Then

rk a = 3 > rk b = 2.

Since a⊗ c = 3[3] + 3[1] and b⊗ c = [4] + 4[2], we have

rk a⊗ c = 6 < rk b⊗ c = 7.

(2). Part (1) of this example illustrates a common failure of the upper semi-
continuity property of the ranks of partitions with respect to tensor product.
Since this fails for partitions, it is reasonable to expect the same property to
fail for maximal ranks of modules. The following is an explicit realization by
kG-modules of this failure of upper semi-continuity. This example also shows
that M⊗N can fail to have maximal rank at a π-point at which both M and N
have maximal rank. This should be contrasted with the situation for maximal
Jordan types ( [8, 4.2]).
Let G = G×2

a(1) so that kG ≃ k[x, y]/(xp, yp). Consider the kG-module M of

Example [8, 2.4], pictured as follows:
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Recall that Π(G) ≃ Proj H•(G, k) ≃ P1. A point [λ1 : λ2] on P1 is represented
by a π-point α : k[t]/tp → kG such that α(t) = λ1x+ λ2y.
For p > 5, the module M has two Jordan types: the generic type 4[3] + 1[1]
and the singular type 3[3] + 2[2], which occurs at [1 : 0] and [0 : 1] (see [8,
2.4]). Hence, M has constant rank. We compute possible local Jordan types
of M ⊗M using the fact that µv∗ : k(v)[t]/(tp) → k(v)G is a map of Hopf
algebras for any v ∈ V (G):

(i) (4[3] + 1[1])⊗2 = 16[5] + 24[3] + 17[1],
(ii) (3[3] + 2[2])⊗2 = 9[5] + 12[4] + 13[3] + 12[2] + 13[1].

By [18, 4.4], the first type is the generic Jordan type of M ⊗M . Hence, the
generic (and maximal) rank of M ⊗M is 112. On the other hand, the rank
of the second type is 110. Hence, the rank of M at the points [1 : 0], [0 : 1] is
maximal, but the rank of M ⊗M is not.
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(3). Yet another result in [8], a direct consequence of the result on the tensor
products of maximal types mentioned in (2), states that a tensor product of
modules of constant Jordan type is a module of constant Jordan type. This
distinguishes the family of modules of constant Jordan type from the modules
of constant rank, for which this property fails. Let M be the same as in (2).
The calculation above shows that M is of constant rank but M ⊗M is not.

We also give an example of a different nature, avoiding point by point calcula-
tions of Jordan types. This example was pointed out to us by the referee. Let
M be a cyclic kG-module of dimension less than p (e.g., M = k[x, y]/(x2, y)).
We have a short exact sequence 0→ ΩM → kG→ M → 0. This implies that
the Jordan type of ΩM at any π-point necessarily has p blocks, and, hence,
ΩM has constant rank. Since ΩM ⊗Ω−1k ≃M ⊕ [proj], we conclude that the
tensor product of two modules of constant rank produces a module which is
not of constant rank.

4. non-maximal rank varieties for arbitrary finite group schemes

In this section, we introduce the non-maximal rank varieties Γj(G)M for an
arbitrary finite group scheme, finite dimensional kG-module M , and integer
j, 1 ≤ j < p. The non-maximal rank varieties, a type of generalized support
variety defined for any finite dimensional module over any finite group scheme,
are defined in terms of ranks of local p-nilpotent operators. These are well
defined thanks to Theorem 3.6. After verifying a few simple properties of these
varieties, we investigate various explicit examples.

Definition 4.1. Let G be a finite group scheme, and let M be a finite dimen-
sional kG-module. Set

Γj(G)M = {[αK ] ∈ Π(G) | rk(αK(tj),MK) is not maximal},
the non-maximal j-rank variety of M .

Our first example demonstrates that {Γj(G)M} is a finer collection of geometric
invariants than Π(G)M .

Example 4.2. Let G = GL(3,Fp) with p > 3. By [21], the irreducible com-
ponents of Π(G) are indexed by the conjugacy classes of maximal elementary
p-subgroups of G which are represented by subgroups of the unipotent group
U(3,Fp) of strictly upper triangular matrices. There are 3 such conjugacy
classes, represented by the following subgroups:










1 a b
0 1 a
0 0 1



 a, b ∈ Fp

















1 a b
0 1 0
0 0 1



 a, b ∈ Fp

















1 0 b
0 1 a
0 0 1



 a, b ∈ Fp







Let M be the second symmetric power of the standard 3-dimensional (rational)
representation of G. Then the generic Jordan type of M indexed by the first
of these maximal elementary abelian subgroups of G is [3] + 3[1], whereas
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the Jordan types indexed by each of the other conjugacy classes of maximal
elementary abelian p–subgroups are [2] + 4[1].
Thus, Π(G)M = Π(G) provides no information about M .
On the other hand, Γ(G)M = Γ1(G)M = Γ2(G)M equals the union of the two
irreducible components of Π(G) corresponding to the second and third maximal
elementary abelian p–subgroups, whereas Γi(G)M = ∅ for i > 2.

Our second example shows that Γi(G)M and Γj(M) can be different, proper
subsets of Π(G).

Example 4.3. In [18, 4.13] A. Suslin and the authors constructed an example of
a finite group G and a finite dimensional G-module M , such that Π(G) = X∪Y
has two irreducible components and the generic Jordan types of M at the
generic points of X and Y respectively are incomparable. Let G and M satisfy
this property, and let αK and βL be generic π-points of X and Y respectively.
If JType(α∗

K(MK)) and JType(β∗
L(ML)) are incomparable, then Lemma 1.4

implies that there exist i 6= j such that rk(αK(ti),MK) > rk(βL(ti),ML) but
rk(αK(tj),MK) < rk(βL(tj),ML). Hence, Γi(G)M is a proper subvariety that
contains the irreducible component Y whereas Γj(G)M is a proper subvariety
that contains the irreducible component X .

Our third example is a simple computation for a general finite group scheme.
It provides another possible “pattern” for the varieties Γi(G)M .

Example 4.4. Let ζ1 ∈ Hn1(G, k) be an even dimensional class, and ζ2 ∈
Hn2(G, k) be an odd dimensional class. Consider Lζ = Lζ1,ζ2 , the kernel of the
map

ζ1 + ζ2 : Ωn1k ⊕ Ωn2k → k

The local Jordan type of Lζ at a π-point α is given in the following table:



r[p] + [p− 1], α∗(ζ1) 6= 0
r[p] + [p− 2] + [1], α∗(ζ1) = 0, α∗(ζ2) 6= 0
(r − 1)[p] + 2[p− 1] + [1], α∗(ζ1) = α∗(ζ2) = 0

Hence, Γ1(G)Lζ = . . . = Γp−2(G)Lζ = Z(ζ1), whereas Γp−1(G)Lζ = Z(ζ1) ∩
Z(ζ2), where Z(ζ1) denotes the zero locus of a class ζ1 ∈ H•(G, k) and Z(ζ2)

for ζ2 ∈ Hodd(G, k) is defined in (5.3).

We next verify a few elementary properties of M 7→ Γj(G)M . Some of them
are analogous to the properties of Γ(G)M stated in Prop 1.8.

Proposition 4.5. Let G be a finite group scheme and M a finite dimensional
kG-module.

(1) Γj(G)M is a proper closed subset of Π(G) for 1 ≤ j < p.
(2) Γj(G)M = ∅ if and only if M has constant j-rank.
(3) If M and N are stably isomorphic, then Γj(G)M = Γj(G)N
(4) If M is a module of constant j-rank, then Γj(G)M⊕N = Γj(G)N .
(5) Γj(G)M = Γj(G)Ω2(M).
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(6) Γ(G)M = ∪1≤j<pΓj(G)M .
(7) If M has the Jordan type m[p] at some generic π-point, then

Γ1(G)M = . . . = Γp−1(G)M = Π(G)M .

Proof. By definition, Γj(G)M ⊂ Π(G) can never equal Π(G), so it is a proper
subvariety. Moreover, assertions (2) and (6) also immediately follow from defi-
nitions and Lemma 1.4. Assertion (4) follows from the additivity of ranks and
of the functor α∗

K : KG − mod → K[t]/tp − mod induced by a π-point αK .
Property (3) is proved exactly as in the proof of Proposition 1.8(1).
For (5), observe that a π-point αK induces an exact functor on the module
categories and hence commutes with the Heller operator Ω. The statement
now follows from the observation that for K[t]/tp-modules, applying Ω2 does
not change the stable Jordan type.
To prove that Γj(G)M ⊂ Π(G) is closed as asserted in (1), we repeat the proof
of [18, 5.2] establishing that Γ(G)M is closed. Indeed, the reduction in that
proof to the special case in which G is infinitesimal applies without change.
The proof in the special case of G infinitesimal uses the affine scheme of 1-
parameter subgroups; this proof applies with only one minor change: the set of
equations on the ranks of powers of fA : A[t]/tp → EndA(M) (in the notation
of that proof) is replaced by the set of equations on rank of only one, the j-th,
power of fA.
If M is generically projective as in (7), then Γ(G)M = Π(G)M . Let αK 6∈
Γ(G)M so that the Jordan type of α∗

K(M) is m[p], and let βL ∈ Γ(G)M . Let∑
bi[i] be the Jordan type of β∗

L(ML). The statement follows easily from the
formula (1.4.1): we have

rk(αK(tj),MK) = m(p− j) >
p∑

i=j+1

bi(i− j) = rk(βL(tj),ML),

where the inequality in the middle follows by downward induction on j from

the assumption mp = dimM =
p∑
i=1

bii. Thus, Γj(G)M = Γ(G)M for each

j, 1 ≤ j < p.
�

Example 4.6. We point out that the “natural” analog of 1.8(5) is not true for
modules of constant rank. Namely, Γ1(G)M⊗N does not have to be equal to
Γ1(G)N for M of constant rank. Indeed, let M be as in Example 3.9. Then M
has constant rank and Γ1(E)M = ∅. But Γ1(E)M⊗M 6= ∅ since M ⊗M is not
a module of constant rank.

Using a recent result of R. Farnsteiner [12, 3.3.2], we verify below that the
non-maximal subvarieties Γi(G)M ⊂ Π(G) of an indecomposable kG-module
M do not change when we replace M by any N in the same component as M of
the stable Auslander-Reiten quiver of G. This is a refinement of a result of J.
Carlson and the authors [8, 8.7] which asserts that if M is an indecomposable
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module of constant Jordan type than any N in the same component of the
stable Auslander-Reiten quiver of G as M is also of constant Jordan type.

Proposition 4.7. Let k be an algebraically closed field, and G be a finite group
scheme over k. Let Θ ⊂ Γs(G) be a component of the stable Auslander-Reiten
quiver of G. For any two modules M,N in Θ, and any j, 1 ≤ j ≤ p− 1,

Γj(G)M = Γj(G)N

Proof. Recall that Π(G) is connected. If dim Π(G) = 0, then Π(G) is a single
point so that Γj(G)M is empty for any kG-module M .
Now, assume that Π(G) is positive dimensional. Since k is assumed to be
algebraically closed, to show that Γj(G)M = Γj(G)N , it’s enough to show that
their k-valued points are the same. For this reason, we shall only consider
π-points defined over k.
Let M be a kG-module in the component Θ, and write the Jordan type of
α∗(M) as

∑p
i=1 αi(M)[i]. By [12, 3.1.1], each component Θ determines non-

negative integer valued functions di on the set of π-points (possibly different on
equivalent π-points) and a positive, integer valued function f on the modules
occurring in Θ such that

(4.7.1)

{
αi(M) = di(α)f(M) for 1 ≤ i ≤ p− 1

αp(M) = 1
p (dimM − dp(α)f(M))

Assume [β] ∈ Γj(G)M , so that there exists a π-point α : k[t]/tp → kG such that
rk(αj(t),M) > rk(βj(t),M). By (1.4.1), this is equivalent to the inequality

p∑

j=i+1

αi(M)(i− j) >
p∑

j=i+1

βi(M)(i − j).

Using formula (4.7.1), we rewrite this inequality as

p−1∑

j=i+1

di(α)f(M)(i − j) +
1

p
(dimM − dp(α)f(M))(p − j) >

p−1∑

j=i+1

di(β)f(M)(i − j) +
1

p
(dimM − dp(β)f(M))(p − j).

Simplifying, we obtain
(4.7.2)

(

p−1∑

j=i+1

di(α)(i−j)− p− j
p

dp(α))f(M) > (

p−1∑

j=i+1

di(β)(i−j)− p− j
p

dp(β))f(M).

Now, let N be any other indecomposable kG-module in the component Θ. Mul-
tiplying the inequality (4.7.2) by the positive, rational function f(N)/f(M),
we obtain the same inequality as (4.7.2) with M replaced by N . Thus,
[β] ∈ Γj(G)N . Interchanging the roles of M and N , we conclude that
Γj(G)M = Γj(G)N . �
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For an infinitesimal group scheme G, the closed subvarieties Γj(G)M ⊂ Π(G)
admit an affine version V j(G) ⊂ V (G) defined as follows

Definition 4.8. Let G be an infinitesimal group scheme, M a finite dimen-
sional kG-module, and j a positive integer, 1 ≤ j < p. We define

V j(G)M = {v ∈ V (G)| rk(θjv,Mk(v)) is not maximal} ∪ {0} ⊂ V (G).

(see §2 for notations). So defined, V j(G)M − {0} equals pr−1(Γj(G)M ), where
pr : V (G)− {0} → Π(G) is the natural (closed) projection (see [16]).

Remark 4.9. We can express V j(G)M in terms of the locally closed subvari-
eties V a(G)M introduced in §2. Namely, V j(G)M is the union of V a(G)M ⊂
V (G) indexed by the Jordan types a with

∑p
i=1 ai · i = dim(M) satisfying

the condition that there exists some Jordan type b with V b(G)M 6= {0} and∑p
i>j bi(i − j) >

∑p
i>j ai(i− j).

Our first representative example of V j(G)M is a continuation of (2.5).

Example 4.10. Let G = GLN(1), let M be the standard representation of
GLN , and assume p does not divide N . Recall that V (GLN(1)) ≃ Np, where
Np is the p-restricted nullcone of the Lie algebra glN ([24, §6]). The maximal
Jordan type of M is r[p] + [N − rp], where rp is the greatest non-negative
multiple of p which is less or equal to N (see [18, 4.15]). Hence, the maximal
j-rank equals r(p − j) + (N − rp− j) if N − rp > j and r(p − j) otherwise.
For simplicity, assume k is algebraically closed so that we only need to consider
k-rational points of Np. For any X ∈ Np, θX : M → M is simply the endo-
morphism X itself. Consequently, if N − rp ≤ j, V j(G)M ⊂ Np consists of
0 together with those non-zero p-nilpotent N ×N matrices with the property
that their Jordan types have strictly fewer than r blocks of size p; if N−rp > j,
then V j(G)M consists of 0 together with 0 6= X ∈ Np whose Jordan type is
strictly less than r[p] + [N − rp].
Hence, the pattern for varieties V j(M) in this case looks like

{0} 6= V 1(G)M = . . . = V n(G)M ⊂ V n+1(G)M = . . . = V p−1(G)M ⊂ V (G)

where n = N − rp.

Computing examples of V j(G)M is made easier by the presence of other struc-
ture. For example, if G = G(r), the rth-Frobenius kernel of the algebraic group
G and if the kG-module M is the restriction of a rational G-module, then we
verify in the following proposition that V j(G)M is G-stable, and thus a union
of G-orbits inside V (G).

Lemma 4.11. Let G be an algebraic group, and let G be the rth Frobenius kernel
of G for some r ≥ 1. If M is a finite dimensional rational G-module, then each
V j(G)M , 1 ≤ j < p, is a G-stable closed subvariety of V (G).

Proof. Composition with the adjoint action of G on G determines an action

G × V (G) → V (G).
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Observe that for any field extension K/k and any x ∈ G(K), the pull-back of
MK via the conjugation action γx : GK → GK is isomorphic to MK as a KG-
module. Thus, the Jordan type of (µ◦ ǫ)∗(MK) equals that of (γx ◦µ◦ ǫ)∗(MK)
for any 1-parameter subgroup µ : Ga(r),K → GK . �

Using Lemma 4.11, we carry out our second computation of V j(G)M with G
infinitesimal, this time for G of height 2.

Example 4.12. Let G = SL2(2). For simplicity, assume k is algebraically
closed. Recall that

V (G) = {(α0, α1) |α1, α2 ∈ sl2, αp1 = αp2 = [α1, α2] = 0},
the variety of pairs of commuting p-nilpotent matrices ([23]). The algebraic
group SL2 acts on V (G) by conjugation (on each entry).

Let e =

[
0 1
0 0

]
. An easy calculation shows that the non-trivial orbits of

V (G) with respect to the conjugation action are parameterized by P1, where
[s0 : s1] ∈ P1 corresponds to the orbit represented by the pair (s0e, s1e).
Let Sλ be a simple SL2-module of highest weight λ, 0 ≤ λ ≤ p2 − 1. Since
Sλ is a rational SL2-module, the non-maximal rank varieties V j(G)Sλ are SL2-
stable by Proposition 4.11. Hence, to compute the non-maximal rank varieties
for Sλ it suffices to compute the Jordan type of Sλ at the orbit representa-
tives (s0e, s1e). By the explicit formula ([17, 2.6.5]), the Jordan type of Sλ
at (s0e, s1e) is given by the Jordan type of the nilpotent operator s1e + sp0e

(p)

(here, e(p) is the divided power generator of k SL2(2) as described in [17, 1.4]).

The non-maximal rank varieties V j(G)Sλ depend upon which of the following
three conditions λ satisfies.

(1) 0 ≤ λ ≤ p− 1 . In this case, the Jordan type of e ∈ k SL2(2) as an

operator on Sλ is [λ + 1]. On the other hand, the action of e(p) is
trivial. Hence, if j ≥ λ + 1, then the action (s1e + sp0e

(p))j is trivial
for any pair (s0, s1). For 1 ≤ j ≤ λ, the j-rank is maximal (and
equals λ + 1 − j) whenever s1 6= 0. We conclude that for j > λ, we
have V j(G)Sλ = 0, and for 1 ≤ j ≤ λ, V j(G)Sλ is the orbit of V (G)
parametrized by [1 : 0].

(2) p ≤ λ < p2 − 1 . Let λ = λ0 + pλ1. By the Steinberg tensor product

theorem, we have Sλ = Sλ0⊗S(1)
λ1

. Observe that e acts trivially on S
(1)
λ1

and e(p) acts trivially on Sλ0 . Moreover, the Jordan type of e(p) as an

operator on S
(1)
λ1

is the same as the Jordan type of e as an operator on

Sλ1 . Hence, the Jordan type of s1e+sp0e
(p) as an operator on Sλ0⊗S(1)

λ1

is [λ0 + 1] ⊗ [λ1 + 1] when s0s1 6= 0. If s0 = 0 or s1 = 0 we get the
types [λ0 + 1]⊗ (triv) or (triv)⊗ [λ1 + 1] respectively.
(a) For 0 < λ0, λ1 < p−1, the tensor product formula for Jordan types

(see [8, Appendix]) implies that the j-rank of [λ0 + 1]⊗ [λ1 + 1] is
strictly greater than that of [λ0 + 1]⊗ (triv) or (triv)⊗ [λ1 + 1] for

Documenta Mathematica · Extra Volume Suslin (2010) 197–222



216 Eric M. Friedlander and Julia Pevtsova

j ≤ λ1 + λ0. Hence, the non-maximal j-rank variety in the case
when j ≤ λ1 +λ0 is a union of two orbits, parameterized by [1 : 0]
and [0 : 1]. If j > λ1 +λ0, then the non-maximal j-rank variety is
trivial since the j-rank is 0 at every point.

(b) If λ0 = 0, then Sλ ≃ S
(1)
λ1

. Hence, the computation for Sλ for
λ < p implies that the non-maximal j-rank variety in this case is
the orbit corresponding to [0 : 1] for j ≤ λ1 and is trivial otherwise.

(c) For λ0 = p−1 or λ1 = p−1, the non-maximal j-rank variety is the
same as the support variety for any j, since the support variety is
a proper subvariety of V (G) in this case. The support varieties for
these modules were computed in [24, §7] (see also [17, 1.17(4)]).

(3) λ = p2 − 1 . In this case, Sλ is the Steinberg module for SL2(2). Hence,

it is projective, so the non-maximal rank varieties are all trivial.

We summarize our calculations in the table below. Let λ = λ0 + pλ1, and
λ = λ0 + λ1. If j > λ, then V j(G)Sλ = 0. For j ≤ λ, we have

V j(G)Sλ =



















{(α0, 0)} ∪ {(0, α1)} if 0 < λ0, λ1 < p− 1

{(α0, 0)} if λ0 6= 0, λ1 = 0 or λ0 = p− 1, λ1 6= p− 1

{(0, α1)} if λ0 = 0, λ1 6= 0 or λ0 6= p− 1, λ1 = p− 1

0 if λ0 = λ1 = p− 1.

where α0, α1 run over all nilpotent matrices in sl2. In particular, for a given
λ = λ0 + pλ1 we get the following pattern for M = Sλ:

V (G) ⊃ V 1(G)M = · · · = V λ̄(G)M ⊃ V λ̄+1(G)M = · · · = V p−1(G)M = {0}.
Observe that the only simple modules of constant rank are the trivial module
and the Steinberg module. An interested reader may find it instructive to
compare this calculation to the calculation of support varieties for SL2(2) ([17,
1.18(4)], see also [24, §7]).

5. Subvarieties of Π(G) associated to individual Ext-classes

For M a kG-module of constant rank, we associate to a cohomology class ζ in
H1(G,M) a closed subvariety Z(ζ) ⊂ Π(G) which generalizes the construction
of the zero locus Z(ζ) ⊂ Spec H•(G, k) of a homogeneous cohomology class.
We show that this construction is closely related to the non-maximal rank
variety, and establish some “realization” results for non-maximal varieties as
an application. Unless otherwise indicated, throughout this section G will
denote an arbitrary finite group scheme over k.

Lemma 5.1. Let M be a finite dimensional kG-module, and let ζ be a coho-
mology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0→M → Eζ → k→ 0.

For any π-point αK : K[t]/tp → KG, the following are equivalent:

(i) the cohomology class α∗
K(ζK) ∈ H1(K[t]/tp,MK) is trivial.

(ii) rk(α∗
K(t), Eζ) = rk(α∗

K(t),M).
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(iii) JType(α∗
K(Eζ,K)) = JType(α∗

K(MK)) + 1[1].

Proof. Recall that α∗
K(−) is exact (by definition, αK is flat); moreover, the

sequence α∗
K(ζ̃) splits if and only if α∗

K(ζ) = 0 in H1(K[t]/tp,K). Thus, it
suffices to prove that a short exact sequence 0→M → E → K → 0 of K[t]/tp-
modules splits if and only if rk(t,M) = rk(t, E) if and only if JType(E) =
JType(M)+1[1]. Let b =

∑p
i=1 bi[i] be the Jordan type of E and a =

∑p
i=1 ai[i]

be the Jordan type of M . Then this short exact sequence splits if and only if
the map E → k factors through the summand b1[1] of E which occurs if and
only if bi = ai, i > 1 which is equivalent to rk(t,M) = rk(t, E). �

Proposition 5.2. Let M be a kG-module of constant rank, and let ζ be a
cohomology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0→M → Eζ → k→ 0.

(1) If Eζ has constant rank equal to that of M , then α∗
K(ζK) ∈

H1(K[t]/tp,M) is trivial for every π-point αK : K[t]/tp → KG.
(2) If Eζ has constant rank greater than that of M , then α∗

K(ζK) ∈
H1(K[t]/tp,M) is non-trivial for every π-point αK : K[t]/tp → KG.

(3) If Eζ does not have constant rank, then α∗
K(ζ) is trivial if and only if

[αK ] ∈ Γ1(G)Eζ ⊂ Π(G).
(4) For any two equivalent π-points αK , βL of G, α∗

K(ζK) is trivial if and
only if β∗

L(ζL) is trivial.

Proof. Assertions (1) and (2) follow immediately from Lemma 5.1. Assertion
(3) also follows from Lemma 5.1: if Eζ does not have constant rank, then
the complement of Γ1(G)Eζ in Π(G) consists of those equivalence classes of
π-points αK satisfying Lemma 5.1(ii.).
To prove that the vanishing of α∗

K(ζK) depends only upon the equivalence
class of αK , we examine each of the three cases considered above. In case (1),
α∗
K(ζK) = 0 for all π-points αK : on the other hand, in case (2) α∗

K(ζK) 6= 0
for all π-points αK . Finally, the assertion in case (3) follows immediately from
Theorem 3.6. �

Proposition 5.2(4) justifies the following definition.

Definition 5.3. For M a module of constant rank, and ζ ∈ H1(G,M), we
define

(5.3.1) Z(ζ) ≡ {[αK ] | α∗
K(ζ) = 0} ⊂ Π(G).

For ζ ∈ Hm(G, k), we define

(5.3.2) Z(ζ) ≡ {[αK ] | α∗
K(ζ) = 0} ⊂ Π(G).

Since Hm(G, k) ≃ H1(G,Ω1−mk), the definition of (5.3.2) is a special case of
that of (5.3.1). For m = 2n even, Z(ζ) corresponds under the isomorphism
Π(G) ≃ Proj H•(G, k) with the hypersurface 〈ζ = 0〉 in Spec H•(G, k).
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Remark 5.4. We point out that Definition 5.3 is not as straight-forward as it
might appear.

• Let G = Z/p × Z/p with p > 2, write kG = k[x, y]/(xp, yp) and con-
sider M = kG/(x − y2) as in Example 2.11. Consider the short exact
sequence

0→ Rad(M)→M → k → 0,

with associated extension class ζ ∈ H1(G,Rad(M)). Consider the
equivalent π-points α, α′ : k[t]/tp → kG of Example 2.11. Then,
α∗(ζ) 6= 0, yet α′∗(ζ) = 0. Thus, the “zero locus” of ζ is not a well
defined subset of Π(G).

• Let ζ ∈ H2n(G, k) represented by ζ̂ : Ω2nk → k. By definition of Lζ ,
we have an extension

ξ̃ : 0→ Lζ → Ω2nk
ζ̂→ k → 0,

corresponding to a cohomology class ξ ∈ H1(G,Lζ). Then for any π-

point αK : K[t]/tp → KG, α∗
K(ξ̃) splits if and only if α∗

K(Lζ) is free if
and only if [αK ] 6∈ Π(G)Lζ if and only of α∗

K(ζ) 6= 0. Thus, the zero
locus of ξ equals the complement of the zero locus of ζ (and thus is
open in Π(G)).
• For ζ ∈ H2n+1(G, k), one could define Z(ζ) as the zero locus of the

Bockstein of ζ provided one is in a situation in which the Bockstein is
defined and well behaved. See the discussion of the Bockstein following
Example 5.6.

We recall from [7] that a short exact sequence of kG modules

ξ̃ : 0→M → E → Q→ 0

is said to be locally split if α∗
K(ξ̃) splits for every π-point αK : K[t]/tp → KG

of G.

Proposition 5.5. Let M be a module of constant rank, and let ζ be a coho-
mology class in H1(G,M). Consider the corresponding extension

ζ̃ : 0→M → Eζ → k→ 0.

Then

Z(ζ) =

{
Π(G), if ζ̃ is locally split

Γ1(G)Eζ , if ζ̃ is not locally split.

In particular, Z(ζ) ⊂ Π(G) is closed.

Proof. Observe that ζ̃ is split at [αK ] if and only if α∗
K(ζ) = 0. We first consider

ζ such that Eζ has constant rank. Then by Proposition 5.2.1, Z(ζ) equals Π(G)

if ζ̃ is locally split and Z(ζ) = ∅ by Proposition 5.2.2 if ζ̃ is not locally split.
Alternatively, if Eζ does not have constant rank, then Proposition 5.2.3 gives
the asserted description of Z(ζ).
Because Γ1(G)Eζ ⊂ Π(G) is closed by Proposition 4.5 and of course Π(G) is
itself closed in Π(G), we conclude that Z(ζ) is closed inside Π(G). �
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We remark that ζ ∈ H1(G,M) can be non-zero and yet Z(ζ) = ∅. To say
Z(ζ) = ∅ is to say that α∗

K(ζ) = 0 for all π-points αK . Consider, for example,

an even dimensional non-trivial cohomology class ζ ∈ H2n(G, k) which is a
product of odd dimensional classes. Since the product of any two odd classes
in H∗(k[t]/tp, k) is zero, α∗

K(ζ) = 0 for all π-points αK of G. On the other hand,

ζ can be identified with a cohomology class in H1(G,Ω1−2n(k)) ≃ H2n(G, k).
Since Ω1−2n(k) is a module of constant Jordan type (see [8]), the class ζ satisfies
the requirements of Proposition 4.5.
A more interesting example is the following.

Example 5.6. Let G be a finite group scheme with the property that the

dimension of Π(G) is at least 1. Let ζ′ ∈ Ĥ
−i

(G, k), i > 0, be an element in
the negative Tate cohomology of G. As shown in [8, 6.3], α∗

K(ζ′) = 0 for any π-

point αK . Then ζ′ corresponds to ζ ∈ H1(G,Ωi+1(k)) under the isomorphism

Ĥ
−i

(G, k) ≃ H1(G,Ωi+1(k)); by the naturality of this isomorphism, α∗
K(ζ) =

0 ∈ Ĥ
−i

(K[t]/tp,K) for any π-point αK .

Thus, ζ 6= 0, ζ̃ is locally split, and Z(ζ) = ∅ for this choice of ζ ∈
H1(G,Ωi+1(k)).

For any field extension K/k, let RK = W2(K) denote the Witt vectors of length
2 for K. Assume that G over k embeds into an Rk-group scheme GRk so that
G = GRk×SpecRk Spec k ⊂ GRk , thereby inducing by base change GK ⊂ GRK .

Then we may define the Bockstein β : Hi(GK ,K)→ Hi+1(GK ,K) for i > 0 as
the connecting homomorphism for the short exact sequence of GRK -modules

(5.6.1) 0→ K → RK → K → 0.

(The reader is referred to [11, 3.4] for a discussion of this Bockstein.) Since
any π-point αK : K[t]/tp → KG lifts to a map α̃K : RK [t]/tp → RKGRK of
R-algebras, α∗ : H∗(G,K) → H∗(K[t]/tp,K) commutes with this Bockstein.

Since β : H2d−1(K[t]/tp,K)→ H2d(K[t]/tp,K) is an isomorphism, we conclude

that if x ∈ H2d−1(G, k), then α∗
K(x) vanishes if and only if α∗

K(β(x)) = 0,

where β(x) ∈ H2d(G, k). Thus, for such G lifting to GRk and for p > 2, when
considering Z(ζ) for homogeneous classes in H∗(G, k), it suffices to restrict
attention to the subalgebra H•(G, k) of even dimensional classes.
As we see in the following family of examples, Γ1(G)M can be an arbitrary
closed subset even when the support variety of M is all of Π(G).

Proposition 5.7. Let G be a finite group scheme over k. Let ζi ∈
Hni+1(G, k) ≃ H1(G,Ω−ni(k)), ni ≥ 0. Let M = ⊕ri=1Ω−ni(k), and set
ζ = ⊕iζi ∈ H1(G,M) = ⊕i H1(G,Ω−ni(k)). Let

0→M → Eζ → k → 0

be the corresponding extension. Then

(1) If Z(ζ) 6= Π(G), then Γ1(G)Eζ = Z(ζ) = Z(ζ1) ∩ . . . ∩ Z(ζr).

(2) If each ni is even so that each ζi ∈ Hni+1(G, k) has odd degree, then
Π(G)Eζ = Π(G).
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Proof. (1). If Z(ζ) 6= Π(G), then Proposition 5.5 implies that Γ1(G)Eζ =
Z(ζ). Since ζ = ⊕ζi, we further conclude that Z(ζ) = {[αK ] | α∗

K(ζ) = 0} =
{[αK ] | α∗

K(ζi) = 0 for all i} =
⋂
i

Z(ζi). Hence, Γ1(G)Eζ =
⋂
i

Z(ζi).

(2). Assume now that each ni is even so that each Ω−ni(k) has constant Jordan
type of the form mi[p] + [1]. Thus, the generic Jordan type of Eζ is of the form
m[p] + [2] + (r − 1)[1] at generic points [αK ] ∈ Π(G) such that α∗

K(ζ) 6= 0 and
of the form m[p] + (r + 1)[1] otherwise. Therefore, Π(G)Eζ = Π(G). �

As we see below, the construction of Eζ in Proposition 5.7 above is in fact a
generalized Carlson module Lζ (as defined in [8]) “in disguise”. In the Example
5.8 we consider homogeneous classes ζi of even degree.

Example 5.8. Let ζ = (ζ1, . . . , ζr), where ζi ∈ H2di(G, k) ≃
Hom(Ω2di(k), k), 1 ≤ i ≤ r with di ≥ 0. Let Lζ be the kernel of the
map ζ =

∑
ζi :

⊕
Ω2di(k)→ k, so that we have an exact sequence:

0 // Lζ // ⊕Ω2di(k)
ζ1+···+ζr // k // 0

This short exact sequence represents an exact triangle in stmod kG. Shifting
the triangle by Ω−1 we obtain a triangle

k // Ω−1(Lζ) // ⊕Ω2di−1(k) // Ω−1(k)

Hence, ζ corresponds to a short exact sequence

0 // k // Fζ // ⊕Ω2di−1(k) // 0

with the middle term stably isomorphic to Ω−1(Lζ). Taking the dual of this
short exact sequence, we obtain the the short exact sequence which defines Eζ
in Proposition 5.7:

0 // ⊕Ω1−2dik // Eζ // k // 0 .

Hence, Eζ is stably isomorphic to Ω−1(L#
ζ ).

Our final result extends the construction of closed zero loci to extension classes
ξ ∈ ExtnG(N,M) with both M, N of constant Jordan type. In other words,
Proposition 5.9 introduces the (closed) support variety Z(ξ) of such an exten-
sion class.

Proposition 5.9. Let G be a finite group scheme and N,M finite di-
mensional kG-modules of constant Jordan type. Let ξ ∈ ExtnG(N,M) ≃
Ext1(Ωn−1(N),M) for some n 6= 0, and consider the corresponding extension

ξ̃ : 0→M → Eξ → Ωn−1(N)→ 0.

(1) If αK , βL are equivalent π-points of G, then α∗
K(ξ̃) splits if and only if

βL(ξ̃) splits.
(2) If

Z(ξ) ≡ {[αK ] | α∗
K(ξ̃) splits} ⊂ Π(G),
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then

Z(ξ) =

{
Π(G), if ξ̃ is locally split

Γ1(G)Eξ , if ξ̃ is not locally split.

Proof. There is a natural isomorphism

Ext1G(Ωn−1(N),M) ≃ H1(G, (Ωn−1(N))# ⊗M)

sending the extension class ξ to the cohomology class ζ ∈ H1(G, (Ωn−1(N))#⊗
M) (where (Ωn−1(N))# is the linear dual of Ωn−1(N)). Hence, α∗

K(ξ̃) splits if

and only α∗
K(ζ̃) splits for any π-point αK of G.

By [9, 5.2], (Ωn−1(N))# has constant Jordan type. Thus, by [9, 4.3],
(Ωn−1(N))# ⊗M also has constant Jordan type. Consequently, the assertion
of the Proposition for ξ follows from Proposition 4.5 for ζ.

�
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Abstract. We study properties of Suslin homology and cohomology
over non-algebraically closed base fields, and their p-part in charac-
teristic p. In the second half we focus on finite fields, and consider
finite generation questions and connections to tamely ramified class
field theory.
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1 Introduction

Suslin and Voevodsky defined Suslin homology (also called singular homol-
ogy) HS

i (X,A) of a scheme of finite type over a field k with coefficients in
an abelian group A as Tori(Cork(∆∗, X), A). Here Cork(∆i, X) is the free
abelian group generated by integral subschemes Z of ∆i ×X which are finite
and surjective over ∆i, and the differentials are given by alternating sums of
pull-back maps along face maps. Suslin cohomology Hi

S(X,A) is defined to
be ExtiAb(Cork(∆∗, X), A). Suslin and Voevodsky showed in [22] that over a
separably closed field in which m is invertible, one has

Hi
S(X,Z/m) ∼= Hi

et(X,Z/m) (1)

(see [2] for the case of fields of characteristic p).
In the first half of this paper, we study both the situation that m is a power
of the characteristic of k, and that k is not algebraically closed. In the second

1Supported in part by NSF grant No.0901021
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half, we focus on finite base fields and discuss a modified version of Suslin
homology, which is closely related to etale cohomology on the one hand, but is
also expected to be finitely generated. Moreover, its zeroth homology is Zπ0(X),
and its first homology is expected to be an integral model of the abelianized
tame fundamental group.
We start by discussing the p-part of Suslin homology over an algebraically
closed field of characteristic p. We show that, assuming resolution of singular-
ities, the groups HS

i (X,Z/pr) are finite abelian groups, and vanish outside the
range 0 ≤ i ≤ dimX . Thus Suslin cohomology with finite coefficients is etale
cohomology away from the characteristic, but better behaved than etale coho-
mology at the characteristic (for example, H1

et(A
1,Z/p) is not finite). Moreover,

Suslin homology is a birational invariant in the following strong sense: If X has
a resolution of singularities p : X ′ → X which is an isomorphism outside of the
open subset U , then HS

i (U,Z/pr) ∼= HS
i (X,Z/pr). It was pointed out to us by

N.Otsubo that this can be applied to generalize a theorem of Spiess-Szamuely
[20] to include p-torsion:

Theorem 1.1 Let X be a smooth, connected, quasi-projective variety over an
algebraically closed field and assume resolution of singularities. Then the al-
banese map

albX : HS
0 (X,Z)0 → AlbX(k)

from the degree-0-part of Suslin homology to the k-valued points of the Albanese
variety induces an isomorphism on torsion groups.

Next we examine the situation over non-algebraically closed fields. We redefine
Suslin homology and cohomology by imposing Galois descent. Concretely, if
Gk is the absolute Galois group of k, then we define Galois-Suslin homology to
be

HGS
i (X,A) = H−iRΓ(Gk,Cork̄(∆∗

k̄, X̄)×A),

and Galois-Suslin cohomology to be

Hi
GS(X,A) = ExtiGk(Cork̄(∆∗

k̄, X̄), A).

Ideally one would like to define Galois-Suslin homology via Galois homology,
but we are not aware of such a theory. With rational coefficients, the newly
defined groups agree with the original groups. On the other hand, with finite
coefficients prime to the characteristic, the proof of (1) in [22] carries over
to show that Hi

GS(X,Z/m) ∼= Hi
et(X,Z/m). As a corollary, we obtain an

isomorphism between HGS
0 (X,Z/m) and the abelianized fundamental group

πab1 (X)/m for any separated X of finite type over a finite field and m invertible.
The second half of the paper focuses on the case of a finite base field. We work
under the assumption of resolution of singularities in order to see the picture of
the properties which can expected. The critical reader can view our statements
as theorems for schemes of dimension at most three, and conjectures in gen-
eral. A theorem of Jannsen-Saito [11] can be generalized to show that Suslin
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homology and cohomology with finite coefficients for any X over a finite field is
finite. Rationally, HS

0 (X,Q) ∼= H0
S(X,Q) ∼= Qπ0(X). Most other properties are

equivalent to the following Conjecture P0 considered in [7]: For X smooth and
proper over a finite field, CH0(X, i) is torsion for i 6= 0. This is a particular
case of Parshin’s conjecture that Ki(X) is torsion for i 6= 0. Conjecture P0

is equivalent to the vanishing of HS
i (X,Q) for i 6= 0 and all smooth X . For

arbitrary X of dimension d, Conjecture P0 implies the vanishing of HS
i (X,Q)

outside of the range 0 ≤ i ≤ d and its finite dimensionality in this range. Com-
bining the torsion and rational case, we show that HS

i (X,Z) and Hi
S(X,Z) are

finitely generated for all X if and only if Conjecture P0 holds.
Over a finite field and with integral coefficients, it is more natural to impose
descent by the Weil group G generated by the Frobenius endomorphism ϕ
instead of the Galois group [14, 3, 4, 7]. We define arithmetic homology

Har
i (X,A) = TorGi (Cork̄(∆∗

k̄, X̄), A)

and arithmetic cohomology

Hi
ar(X,Z) = ExtiG(Cork̄(∆∗

k̄, X̄),Z).

We show that Har
0 (X,Z) ∼= H0

ar(X,Z) ∼= Zπ0(X) and that arithmetic homology
and cohomology lie in long exact sequences with Galois-Suslin homology and
cohomology, respectively. They are finitely generated abelian groups if and
only if Conjecture P0 holds.
The difference between arithmetic and Suslin homology is measured by a
third theory, which we call Kato-Suslin homology, and which is defined as
HKS
i (X,A) = Hi((Cork̄(∆∗

k̄
, X̄) ⊗ A)G). By definition there is a long exact

sequence

· · · → HS
i (X,A)→ Har

i+1(X,A)→ HKS
i+1(X,A)→ HS

i−1(X,A)→ · · · .

It follows that HKS
0 (X,Z) = Zπ0(X) for any X . As a generalization of the

integral version [7] of Kato’s conjecture [12], we propose

Conjecture 1.2 The groups HKS
i (X,Z) vanish for all smooth X and i > 0.

Equivalently, there are short exact sequences

0→ HS
i+1(X̄,Z)G → HS

i (X,Z)→ HS
i (X̄,Z)G → 0

for all i ≥ 0 and all smooth X . We show that this conjecture, too, is equivalent
to Conjecture P0. This leads us to a conjecture on abelian tamely ramified
class field theory:

Conjecture 1.3 For every X separated and of finite type over Fq, there is a
canonical injection

Har
1 (X,Z)→ πt1(X)ab

with dense image.
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It might even be true that the relative group Har
1 (X,Z)◦ := ker(Har

1 (X,Z) →
Zπ0(X)) is isomorphic to the geometric part of the abelianized fundamental
group defined in SGA 3X§6. To support our conjecture, we note that the
generalized Kato conjecture above implies HS

0 (X,Z) ∼= Har
1 (X,Z) for smooth

X , so that in this case our conjecture becomes a theorem of Schmidt-Spiess
[19]. In addition, we show (independently of any conjectures)

Proposition 1.4 If 1/l ∈ Fq, then Har
1 (X,Z)∧l ∼= πt1(X)ab(l) for arbitrary X.

In particular, the conjectured finite generation of Har
1 (X,Z) implies the con-

jecture away from the characteristic. We also give a conditional result at the
characteristic.
Notation: In this paper, scheme over a field k means separated scheme of finite
type over k. The separable algebraic closure of k is denoted by k̄, and if X is
a scheme over k, we sometimes write X̄ or Xk̄ for X ×k k̄.
We thank Uwe Jannsen for interesting discussions related to the subject of this
paper, and Shuji Saito and Takeshi Saito for helpful comments during a series
of lectures I gave on the topic of this paper at Tokyo University.

2 Motivic homology

Suslin homology HS
i (X,Z) of a scheme X over a field k is defined as the ho-

mology of the global sections CX∗ (k) of the complex of etale sheaves CX∗ (−) =
Cork(− ×∆∗, X). Here Cork(U,X) is the group of universal relative cycles of
U ×Y/U [23]. If U is smooth, then Cork(U,X) is the free abelian group gener-
ated by closed irreducible subschemes of U ×X which are finite and surjective

over a connected component of U . Note that CX∗ (−) = CX
red

∗ (−), and we will
use that all contructions involving CX∗ agree for X and Xred without further
notice.
More generally [1], motivic homology of weight n are the extension groups in
Voevodsky’s category of geometrical mixed motives

Hi(X,Z(n)) = HomDM−
k

(Z(n)[i],M(X)),

and are isomorphic to

Hi(X,Z(n)) =

{
H2n−i

(0) (An, CX∗ ) n ≥ 0

Hi−2n−1(C∗
( c0(X×(An−{0}))

c0(X×{1})
)
(k)) n < 0.

Here cohomology is taken for the Nisnevich topology. There is an obvious ver-
sion with coefficients. Motivic homology is a covariant functor on the category
of schemes of finite type over k, and has the following additional properties,
see [1] (the final three properties require resolution of singularities)

a) It is homotopy invariant.
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b) It satisfies a projective bundle formula

Hi(X × P1,Z(n)) = Hi(X,Z(n))⊕Hi−2(X,Z(n− 1)).

c) There is a Mayer-Vietoris long exact sequence for open covers.

d) Given an abstract blow-up square

Z ′ −−−−→ X ′
y

y

Z −−−−→ X

there is a long exact sequence

· · · → Hi+1(X,Z(n))→ Hi(Z
′,Z(n))→

Hi(X
′,Z(n))⊕Hi(Z,Z(n))→ Hi(X,Z(n))→ · · · (2)

e) If X is proper, then motivic homology agrees with higher Chow groups
indexed by dimension of cycles, Hi(X,Z(n)) ∼= CHn(X, i− 2n).

f) If X is smooth of pure dimension d, then motivic homology agrees with
motivic cohomology with compact support,

Hi(X,Z(n)) ∼= H2d−i
c (X,Z(d− n)).

In particular, if Z is a closed subscheme of a smooth scheme X of pure
dimension d, then we have a long exact sequence

· · · → Hi(U,Z(n))→ Hi(X,Z(n))→ H2d−i
c (Z,Z(d− n))→ · · · . (3)

In order to remove the hypothesis on resolution of singularities, it would be
sufficient to find a proof of Theorem 5.5(2) of Friedlander-Voevodsky [1] that
does not require resolution of singularities. For all arguments in this paper
(except the p-part of the Kato conjecture) the sequences (2) and (3) and the
existence of a smooth and proper model for every function field are sufficient.

2.1 Suslin cohomology

Suslin cohomology is by definition the dual of Suslin homology, i.e. for an
abelian group A it is defined as

Hi
S(X,A) := ExtiAb(CX∗ (k), A).

We have Hi
S(X,Q/Z) ∼= Hom(HS

i (X,Z),Q/Z), and a short exact sequence of
abelian groups gives a long exact sequence of cohomology groups, in particular
long exact sequences

· · · → Hi
S(X,Z)→ Hi

S(X,Z)→ Hi
S(X,Z/m)→ Hi+1

S (X,Z)→ · · · . (4)
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and

· · · → Hi−1
S (X,Q/Z)→ Hi

S(X,Z)→ Hi
S(X,Q)→ Hi

S(X,Q/Z)→ · · · .

Consequently, Hi
S(X,Z)Q ∼= Hi

S(X,Q) if Suslin-homology is finitely generated.
If A is a ring, then Hi

S(X,A) ∼= ExtiA(CX∗ (k) ⊗ A,A), and we get a spectral
sequence

Es,t2 = ExtsA(HS
t (X,A), A)⇒ Hs+t

S (X,A). (5)

In particular, there are perfect pairings

HS
i (X,Q)×Hi

S(X,Q)→ Q

HS
i (X,Z/m)×Hi

S(X,Z/m)→ Z/m.

Lemma 2.1 There are natural pairings

Hi
S(X,Z)/tor×HS

i (X,Z)/tor→ Z

and

Hi
S(X,Z)tor ×HS

i−1(X,Z)tor → Q/Z.

Proof. The spectral sequence (5) gives a short exact sequence

0→ Ext1(HS
i−1(X,Z),Z)→ Hi

S(X,Z)→ Hom(HS
i (X,Z),Z)→ 0. (6)

The resulting map Hi
S(X,Z)/tor ։ Hom(HS

i (X,Z),Z) induces the first pair-
ing. Since Hom(HS

i (X,Z),Z) is torsion free, we obtain the map

Hi
S(X,Z)tor →֒ Ext1(HS

i−1(X,Z),Z) ։

Ext1(HS
i−1(X,Z)tor,Z)

∼← Hom(HS
i−1(X,Z)tor,Q/Z)

for the second pairing. 2

2.2 Comparison to motivic cohomology

Recall that in the category DM−
k of bounded above complexes of homotopy

invariant Nisnevich sheaves with transfers, the motive M(X) of X is the com-
plex of presheaves with transfers CX∗ . Since a field has no higher Nisnevich
cohomology, taking global sections over k induces a canonical map

HomDM−
k

(M(X), A[i])→ HomDM−(Ab)(C
X
∗ (k), A[i]),

hence a natural map

Hi
M (X,A)→ Hi

S(X,A). (7)
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If X is a schene over L ⊇ k, then even though the cohomology groups do not
depend on the base field, the map does. For example, if L/k is an extension of
degree d, then the diagram of groups isomorphic to Z,

H0
M (Spec k,Z) H0

S(Spec k,Z)
∥∥∥

y×d

H0
M (SpecL,Z) −−−−→ H0

S(SpecL,Z)

shows that the lower horizontal map is multiplication by d. We will see below
that conjecturally (7) is a map between finitely generated groups which is
rationally an isomorphism, and one might ask if its Euler characteristic has
any interpretation.

3 The mod p Suslin homology in characteristic p

We examine the p-part of Suslin homology in characteristic p. We assume
that k is perfect and resolution of singularities exists over k in order to obtain
stronger results. We first give an auxiliary result on motivic cohomology with
compact support:

Proposition 3.1 Let d = dimX.
a) We have Hi

c(X,Z/p
r(n)) = 0 for n > d.

b) If k is algebraically closed, then Hi
c(X,Z/p

r(d)) is finite, Hi
c(X,Qp/Zp(d))

is of cofinite type, and the groups vanish unless d ≤ i ≤ 2d.

Proof. By induction on the dimension and the localization sequence, the state-
ment for X and a dense open subset of X are equivalent. Hence replacing X by
a smooth subscheme and then by a smooth and proper model, we can assume
that X is smooth and proper. Then a) follows from [8]. If k is algebraically
closed, then

Hi(X,Z/p(d)) ∼= Hi−d(XNis, ν
d) ∼= Hi−d(Xet, ν

d),

by [8] and [13]. That the latter group is finite and of cofinite type, respectively,
can be derived from [16, Thm.1.11], and it vanishes outside of the given range
by reasons of cohomological dimension. 2

Theorem 3.2 Let X be separated and of finite type over k.
a) The groups Hi(X,Z/pr(n)) vanish for all n < 0.
b) If k is algebraically closed, then the groups HS

i (X,Z/pr) are finite, the groups
HS
i (X,Qp/Zp) are of cofinite type, and both vanish unless 0 ≤ i ≤ d.

Proof. If X is smooth, then Hi(X,Z/pr(n)) ∼= H2d−i
c (X,Z/pr(d − n)) and we

conclude by the Proposition. In general, we can assume by (2) and induction

Documenta Mathematica · Extra Volume Suslin (2010) 223–249



230 Thomas Geisser

on the number of irreducible components that X is integral. Proceeding
by induction on the dimension, we choose a resolution of singularities X ′ of
X , let Z be the closed subscheme of X where the map X ′ → X is not an
isomorphism, and let Z ′ = Z ×X X ′. Then we conclude by the sequence (2).
2

Example. If X ′ is the blow up of a smooth scheme X in a smooth sub-
scheme Z, then the strict transform Z ′ = X ′ ×X Z is a projective bundle over
Z, hence by the projective bundle formula HS

i (Z,Z/pr) ∼= HS
i (Z ′,Z/pr) and

HS
i (X,Z/pr) ∼= HS

i (X ′,Z/pr). More generally, we have

Proposition 3.3 Assume X has a desingularization p : X ′ → X which is
an isomorphism outside of the dense open subset U . Then HS

i (U,Z/pr) ∼=
HS
i (X,Z/pr). In particular, the p-part of Suslin homology is a birational in-

variant.

The hypothesis is satisfied if X is smooth, or if U contains all singular points
of X and a resolution of singularities exists which is an isomorphism outside of
the singular points.

Proof. If X is smooth, then this follows from Proposition 3.1a) and the local-
ization sequence (3). In general, let Z be the set of points where p is not an
isomorphism, and consider the cartesian diagram

Z ′ −−−−→ U ′ −−−−→ X ′
y

y
y

Z −−−−→ U −−−−→ X.

Comparing long exact sequence (2) of the left and outer squares,

→ HS
i (Z

′,Z/pr) −−−−−→ HS
i (U

′,Z/pr)⊕HS
i (Z,Z/p

r) −−−−−→ HS
i (U,Z/p

r) →
∥

∥

∥

∥

∥

∥





y

→ HS
i (Z

′,Z/pr) −−−−−→ HS
i (X

′,Z/pr)⊕HS
i (Z,Z/p

r) −−−−−→ HS
i (X,Z/pr) →

we see that HS
i (U ′,Z/pr) ∼= HS

i (X ′,Z/pr) implies HS
i (U,Z/pr) ∼=

HS
i (X,Z/pr). 2

Example. If X is a node, then the blow-up sequence gives HS
i (X,Z/pr) ∼=

HS
i−1(k,Z/pr)⊕HS

i (k,Z/pr), which is Z/pr for i = 0, 1 and vanishes otherwise.
Reid constructed a normal surface with a singular point whose blow-up is a
node, showing that the p-part of Suslin homology is not a birational invariant
for normal schemes.

Corollary 3.4 The higher Chow groups CH0(X, i,Z/pr) and the logarithmic
de Rham-Witt cohomology groups Hi(Xet, ν

d
r ), for d = dimX, are birational

invariants.
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Proof. Suslin homology agrees with higher Chow groups for proper X , and
with motivic cohomology for smooth and proper X . 2

Note that integrally CH0(X) is a birational invariant, but the higher Chow
groups CH0(X, i) are generally not.
Suslin and Voevodsky [22, Thm.3.1] show that for a smooth compactification
X̄ of the smooth curve X , HS

0 (X,Z) is isomorphic to the relative Picard group
Pic(X̄, Y ) and that all higher Suslin homology groups vanish. Proposition 3.3
implies that the kernel and cokernel of Pic(X̄, Y ) → Pic(X̄) are uniquely p-
divisible. Given U with compactification j : U → X , the normalization X∼ of
X in U is the affine bundle defined by the integral closure of OX in j∗OU . We
call X normal in U if X∼ → X is an isomorphism.

Proposition 3.5 If X is normal in the curve U , then HS
i (U,Z/p) ∼=

HS
i (X,Z/p).

Proof. This follows by applying the argument of Proposition 3.3 to X ′ the
normalization of X , Z the closed subset where X ′ → X is not an isomorphism,
Z ′ = X ′ ×X Z and U ′ = X ′ ×X U . Since X is normal in U , we have Z ⊆ U
and Z ′ ⊆ U ′. 2

3.1 The albanese map

The following application was pointed out to us by N.Otsubo. Let X be a
smooth connected quasi-projective variety over an algeraically closed field k of
characteristic p. Then Spiess and Szamuely defined in [20] an albanese map

albX : HS
0 (X,Z)0 → AlbX(k)

from the degree-0-part of Suslin homology to the k-valued points of the Al-
banese variety in the sense of Serre. They proved that if X is a dense open
subscheme in a smooth projective scheme over k, then albX induces an isomor-
phism of the prime-to-p-torsion subgroups. We can remove the last hypothesis:

Theorem 3.6 Assuming resolution of singularities, the map albX induces an
isomorphism on torsion groups for any smooth, connected, quasi-projective va-
riety over an algebraically closed field.

Proof. In view of the result of Spiess and Szamuely, it suffices to consider
the p-primary groups. Let T be a smooth and projective model of X . Since
both sides are covariantly functorial and albX is functorial by construction, we
obtain a commutative diagram

HS
0 (X,Z)0

albX−−−−→ AlbX(k)
y

y

HS
0 (T,Z)0

albT−−−−→ AlbT (k)
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The lower map is an isomorphism on torsion subgroups by Milne [15]. To show
that the left vertical map is an isomorphism, consider the map of coefficient
sequences

HS
1 (X,Z)⊗Qp/Zp −−−−→ HS

1 (X,Qp/Zp) −−−−→ pH
S
0 (X,Z) −−−−→ 0

y
y

y

HS
1 (T,Z)⊗Qp/Zp −−−−→ HS

1 (T,Qp/Zp) −−−−→ pH
S
0 (T,Z) −−−−→ 0

The right vertical map is an isomorphism because the middle map
vertical map is an isomorphism by Proposition 3.3, and because
HS

1 (T,Z) ⊗ Qp/Zp ∼= CH0(T, 1) ⊗ Qp/Zp vanishes by [6, Thm.6.1]. Fi-
nally, the map AlbX(k) → AlbT (k) is an isomorphism on p-torsion groups
because by Serre’s description [18], the two Albanese varieties differ by a torus,
which does not have any p-torsion k-rational points in characteristic p, 2

4 Galois properties

Suslin homology is covariant, i.e. a separated map f : X → Y of finite type
induces a map f∗ : Cork(T,X) → Cork(T, Y ) by sending a closed irreducible
subscheme Z of T ×X , finite over T , to the subscheme [k(Z) : k(f(Z))] · f(Z)
(note that f(Z) is closed in T × Y and finite over T ). On the other hand,
Suslin homology is contravariant for finite flat maps f : X → Y , because f
induces a map f∗ : Cork(T, Y ) → Cork(T,X) by composition with the graph
of f in Cork(Y,X) (note that the graph is a universal relative cycle in the
sense of [23]). We examine the properties of Suslin homology under change of
base-fields.

Lemma 4.1 Let L/k be a finite extension of fields, X a scheme over k and Y
a scheme over L. Then CorL(Y,XL) = Cork(Y,X) and if X is smooth, then
CorL(XL, Y ) = Cork(X,Y ). In particular, Suslin homology does not depend
on the base field.

Proof. The first statement follows because Y ×L XL
∼= Y ×k X . The second

statement follows because the map XL → X is finite and separated, hence a
closed subscheme of XL×L Y ∼= X ×k Y is finite and surjective over XL if and
only if it is finite and surjective over X . 2

Given a scheme over k, the graph of the projection XL → X in XL ×X gives
elements ΓX ∈ Cork(X,XL) and ΓtX ∈ Cork(XL, X).

4.1 Covariance

Lemma 4.2 a) If X and Y are separated schemes of finite type over k, then
the two maps

CorL(XL, YL)→ Cork(X,Y )
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induced by composition and precomposition, respectively, with ΓtY and ΓX agree.
Both maps send a generator Z ⊆ XL ×k Y ∼= X ×k YL to its image in X × Y
with multiplicity [k(Z) : k(f(Z))], a divisor of [L : k].
b) If F/k is an infinite algebraic extension, then limL/k CorL(XL, YL) = 0.

Proof. The first part is easy. If Z is of finite type over k, then k(Z) is a finitely
generated field extension of k. For every component Zi of ZF , we obtain a
map F → F ⊗k k(Z) → k(Zi), and since F is not finitely generated over k,
neither is k(Zi). Hence going up the tower of finite extensions L/k in F , the
degree of [k(WL) : k(Z)], for WL the component of ZL corresponding to Zi,
goes to infinity. 2

4.2 Contravariance

Lemma 4.3 a) If X and Y are schemes over k, then the two maps

Cork(X,Y )→ CorL(XL, YL)

induced by composition and precomposition, respectively with ΓY and ΓtX agree.
Both maps send a generator Z ⊆ X × Y to the cycle associated to ZL ⊆
X×kYL ∼= XL×kY . If L/k is separable, this is a sum of the integral subschemes
lying over Z with multiplicity one. If L/k is Galois with group G, then the maps
induce an isomorphism

Cork(X,Y ) ∼= CorL(XL, YL)G.

b) Varying L, CorL(XL, YL) forms an etale sheaf on Spec k with stalk M =
colimL CorL(XL, YL) ∼= Cork̄(Xk̄, Yk̄), where L runs through the finite exten-
sions of k in a separable algebraic closure k̄ of k. In particular, CorL(XL, YL) ∼=
MGal(k̄/L).

Proof. Again, the first part is easy. If L/k is separable, ZL is finite and
etale over Z, hence ZL ∼=

∑
i Zi, a finite sum of the integral cycles ly-

ing over Z with multiplicity one each. If L/k is moreover Galois, then
Cork(X,Y ) ∼= CorL(XL, YL)G and Cork̄(Xk̄, Yk̄) ∼= colimL/k CorL(XL, YL) by
EGA IV Thm. 8.10.5. 2

The proposition suggests to work with the complex CX∗ of etale sheaves on
Spec k given by

CX∗ (L) := CorL(∆∗
L, XL) ∼= Cork(∆∗

L, X).

Corollary 4.4 If k̄ is a separable algebraic closure of k, then HS
i (Xk̄, A) ∼=

colimL/kH
S
i (XL, A), and there is a spectral sequence

Es,t2 = lim
L/k

sHt
S(XL, A)⇒ Hs+t

S (Xk̄, A).
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The direct and inverse system run through finite separable extensions L/k, and
the maps in the systems are induced by contravariant functoriality of Suslin
homology for finite flat maps.

Proof. This follows from the quasi-isomorphisms

RHomAb(C
X
∗ (k̄),Z) ∼= RHomAb(colim

L
CX

∗ (L),Z) ∼= R lim
L

RHomAb(C
X
∗ (L),Z).

2

4.3 Coinvariants

If Gk is the absolute Galois group of k, then Cork̄(X̄, Ȳ )Gk can be identified
with Cork(X,Y ) by associating orbits of points of X̄ ×k̄ Ȳ with their image in
X ×k Y . However, this identification is neither compatible with covariant nor
with contravariant functoriality, and in particular not with the differentials in
the complex CX∗ (k). But the obstruction is torsion, and we can remedy this
problem by tensoring with Q: Define an isomorphism

τ : (Cork̄(X̄, Ȳ )Q)Gk → Cork(X,Y )Q.

as follows. A generator 1Z̄ corresponding to the closed irreducible subscheme
Z̄ ⊆ X̄ × Ȳ is sent to 1

gZ
1Z , where Z is the image of Z̄ in X × Y and g the

number of irreducible components of Z ×k k̄, i.e. gZ is the size of the Galois
orbit of Z̄.

Lemma 4.5 The isomorphism τ is functorial in both variables, hence it induces
an isomorphism of complexes

(CX∗ (k̄)Q)Gk
∼= CX∗ (k)Q.

Proof. This can be proved by explicit calculation. We give an alternate proof.
Consider the composition

Cork(X,Y )→ Cork̄(X̄, Ȳ )Gk → Cork̄(X̄, Ȳ )Gk
τ−→ Cork(X,Y )Q.

The middle map is induced by the identity, and is multiplication by gZ on the
component corresponding to Z. All maps are isomorphisms upon tensoring
with Q. The first map, the second map, and the composition are functorial,
hence so is τ . 2

5 Galois descent

Let k̄ be the algebraic closure of k with Galois group Gk, and let A be a con-
tinuous Gk-module. Then CX∗ (k̄)⊗A is a complex of continuous Gk-modules,
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and if k has finite cohomological dimension we define Galois-Suslin homology
to be

HGS
i (X,A) = H−iRΓ(Gk, C

X
∗ (k̄)⊗A).

By construction, there is a spectral sequence

E2
s,t = H−s(Gk, H

S
t (X̄, A))⇒ HGS

s+t(X,A).

The case X = Spec k shows that Suslin homology does not agree with Galois-
Suslin homology, i.e. Suslin homology does not have Galois descent. We define
Galois-Suslin cohomology to be

Hi
GS(X,A) = ExtiGk(CX∗ (k̄), A). (8)

This agrees with the old definition if k is algebraically closed. Let τ∗ be
the functor from Gk-modules to continuous Gk-modules which sends M to
colimLM

GL , where L runs through the finite extensions of k. It is easy to see
that Riτ∗M = colimH H

i(H,M), with H running through the finite quotients
of Gk.

Lemma 5.1 We have Hi
GS(X,A) = HiRΓGkRτ∗ HomAb(CX∗ (k̄), A). In par-

ticular, there is a spectral sequence

Es,t2 = Hs(Gk, R
tτ∗ HomAb(CX∗ (k̄), A))⇒ Hs+t

GS (X,A). (9)

Proof. This is [17, Ex. 0.8]. Since CX∗ (k̄) is a complex of free Z-modules,
HomAb(CX∗ (k̄),−) is exact and preserves injectives. Hence the derived functor
of τ∗ HomAb(CX∗ (k̄),−) is Rtτ∗ applied to HomAb(CX∗ (k̄),−). 2

Lemma 5.2 For any abelian group A, the natural inclusion CX∗ (k) ⊗ A →
(CX∗ (k̄)⊗A)Gk is an isomorphism.

Proof. Let Z be a cycle corresponding to a generator of C∗(k). If Z ⊗k k̄ is
the union of g irreducible components, then the corresponding summand of
C∗(k̄) is a free abelian group of rank g on which the Galois group permutes
the summands transitively. The claim is now easy to verify. 2

Proposition 5.3 We have

HGS
i (X,Q) ∼= HS

i (X,Q)

Hi
GS(X,Q) ∼= Hi

S(X,Q).

Proof. By the Lemma, HS
i (X,Q) = Hi(C

X
∗ (k) ⊗ Q) ∼= Hi((C

X
∗ (k̄) ⊗ Q)Gk).

But the latter agrees with HGS
i (X,Q) because higher Galois cohomology

is torsion. Similarly, we have Rtτ∗ Hom(CXi (k̄),Q) = 0 for t > 0, and
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Hs(Gk, τ∗ Hom(CX∗ (k̄),Q)) = 0 for s > 0. Hence Hi
GS(X,Q) is isomorphic

to the ith cohomology of

HomGk(CX∗ (k̄),Q) ∼= HomAb(CX∗ (k̄)Gk ,Q) ∼= HomAb(CX∗ (k),Q).

The latter equality follows with Lemma 4.5. 2

Theorem 5.4 If m is invertible in k and A is a finitely generated m-torsion
Gk-module, then

Hi
GS(X,A) ∼= Hi

et(X,A).

Proof. This follows with the argument of Suslin-Voevodsky [22]. Indeed, let
f : (Sch/k)h → Etk be the canonical map from the large site with the h-
topology of k to the small etale site of k. Clearly f∗f∗F ∼= F , and the proof
of Thm.4.5 in loc.cit. shows that the cokernel of the injection f∗f∗F → F is
uniquely m-divisible, for any homotopy invariant presheaf with transfers (like,
for example, CXi : U 7→ Cork(U ×∆i, X)). Hence

Extih(F∼
h , f

∗A) ∼= Extih(f∗f∗F∼
h , f

∗A) ∼= ExtiEtk(f∗F∼
h , A) ∼= ExtiGk(F(k̄), A).

Then the argument of section 7 in loc.cit. together with Theorem 6.7 can be
descended from the algebraic closure of k to k. 2

Duality results for the Galois cohomology of a field k lead via theorem 5.4 to
duality results between Galois-Suslin homology and cohomology over k.

Theorem 5.5 Let k be a finite field, A a finite Gk-module, and A∗ =
Hom(A,Q/Z). Then there is a perfect pairing of finite groups

HGS
i−1(X,A)×Hi

GS(X,A∗)→ Q/Z.

Proof. According to [17, Example 1.10] we have

ExtrGk(M,Q/Z) ∼= Extr+1
Gk

(M,Z) ∼= H1−r(Gk,M)∗

for every finite Gk-module M , and the same holds for any torsion module by
writing it as a colimit of finite modules. Hence

ExtrGk(CX∗ (k̄),Hom(A,Q/Z)) ∼= ExtrGk(CX∗ (k̄)⊗A,Q/Z) ∼=
H1−r(Gk, C

X
∗ (k̄)⊗A)∗ = HGS

r−1(X,A)∗.

2

The case of non-torsion sheaves is discussed below.
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Theorem 5.6 Let k be a local field with finite residue field and separable clo-
sure ks. For a finite Gk-module A let AD = Hom(A, (ks)×). Then we have
isomorphisms

Hi
GS(X,AD) ∼= Hom(HGS

i−2(X,A),Q/Z).

Proof. According to [17, Thm.2.1] we have

ExtrGk(M, (ks)×) ∼= H2−r(Gk,M)∗

for every finite Gk-module M . This implies the same statement for torsion
modules, and the rest of the proof is the same as above. 2

6 Finite base fields

From now on we fix a finite field Fq with algebraic closure F̄q. To obtain the
following results, we assume resolution of singularities. This is needed to use
the sequences (2) and (3) to reduce to the smooth and projective case on the
one hand, and the proof of Jannsen-Saito [11] of the Kato conjecture on the
other hand (however, Kerz and Saito announced a proof of the prime to p-part
of the Kato conjecture which does not require resolution of singularities). The
critical reader is invited to view the following results as conjectures which are
theorems in dimension at most 3.
We first present results on finite generation in the spirit of [11] and [7].

Theorem 6.1 For any X/Fq and any integer m, the groups HS
i (X,Z/m) and

Hi
S(X,Z/m) are finitely generated.

Proof. It suffices to consider the case of homology. If X is smooth and proper
of dimension d, then HS

i (X,Z/m) ∼= CH0(X, i,Z/m) ∼= H2d−i
c (X,Z/m(d)),

and the result follows from work of Jannsen-Saito [11]. The usual devisage
then shows that Hj

c (X,Z/m(d)) is finite for all X and d ≥ dimX , hence
HS
i (X,Z/m) is finite for smooth X . Finally, one proceeds by induction on the

dimension of X with the blow-up long-exact sequence to reduce to the case X
smooth. 2

6.1 Rational Suslin-homology

We have the following unconditional result:

Theorem 6.2 For every connected X, the map HS
0 (X,Q) → HS

0 (Fq,Q) ∼= Q
is an isomorphism.

Proof. By induction on the number of irreducible components and (2) we can
first assume that X is irreducible and then reduce to the situation where X
is smooth. In this case, we use (3) and the following Proposition to reduce to
the smooth and proper case, where HS

0 (X,Q) = CH0(X)Q ∼= CH0(Fq)Q. 2
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Proposition 6.3 If n > dimX, then Hi
c(X,Q(n)) = 0 for i ≥ n+ dimX.

Proof. By induction on the dimension and the localization sequence for motivic
cohomology with compact support one sees that the statement for X and a
dense open subscheme of X are equivalent. Hence we can assume that X is
smooth and proper of dimension d. Comparing to higher Chow groups, one
sees that this vanishes for i > d + n for dimension (of cycles) reasons. For
i = d+ n, we obtain from the niveau spectral sequence a surjection

⊕

X(0)

Hn−d
M (k(x),Q(n− d)) ։ Hd+n

M (X,Q(n)).

But the summands vanish for n > d because higher Milnor K-theory of finite
fields is torsion. 2

By definition, the groups Hi(X,Q(n)) vanish for i < n. We will consider the
following conjecture Pn of [5]:

Conjecture Pn: For all smooth and projective schemes X over the finite field
Fq, the groups Hi(X,Q(n)) vanish for i 6= 2n.

This is a special case of Parshin’s conjecture: If X is smooth and projective of
dimension d, then

Hi(X,Q(n)) ∼= H2d−i
M (X,Q(d− n)) ∼= Ki−2n(X)(d−n)

and, according to Parshin’s conjecture, the latter group vanishes for i 6= 2n.
By the projective bundle formula, Pn implies Pn−1.

Proposition 6.4 a) Let U be a curve. Then HS
i (U,Q) ∼= HS

i (X,Q) for any
X normal in U .
b) Assume conjecture P−1. Then Hi(X,Q(n)) = 0 for all X and n < 0, and
if X has a desingularization p : X ′ → X which is an isomorphism outside of
the dense open subset U , then HS

i (U,Q) ∼= HS
i (X,Q). In particular, Suslin

homology and higher Chow groups of weight 0 are birational invariant.
c) Under conjecture P0, the groups HS

i (X,Q) are finite dimensional and vanish
unless 0 ≤ i ≤ d.
d) Conjecture P0 is equivalent to the vanishing of HS

i (X,Q) for all i 6= 0 and
all smooth X.

Proof. The argument is the same as in Theorem 3.2. To prove b), we have to
show that Hi

c(X,Q(n)) = 0 for n > d = dimX under P−1, and for c) we have
to show that Hi

c(X,Q(d)) is finite dimensional and vanishes unless d ≤ i ≤ 2d
under P0. By induction on the dimension and the localization sequence we
can assume that X is smooth and projective. In this case, the statement is
Conjecture P−1 and P0, respectively, plus the fact that HS

0 (X,Q) ∼= CH0(X)Q
is a finite dimensional vector space. The final statement follows from the exact
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sequence (3) and the vanishing of Hi
c(X,Q(n)) = 0 for n > d = dimX under

P−1. 2

Proposition 6.5 Conjecture P0 holds if and only if the map Hi
M (X,Q) →

Hi
S(X,Q) of (7) is an isomorphism for all X/Fq and i.

Proof. The second statement implies the first, because if the map is an iso-
morphism, then Hi

S(X,Q) = 0 for i 6= 0 and X smooth and proper, and hence
so is the dual HS

i (X,Q). To show that P0 implies the second statement, first
note that because the map is compatible with long exact blow-up sequences,
we can by induction on the dimension assume that X is smooth of dimension
d. In this case, motivic cohomology vanishes above degree 0, and the same
is true for Suslin cohomology in view of Proposition 6.4d). To show that for
connected X the map (7) is an isomorphism of Q in degree zero, we consider
the commutative diagram induced by the structure map

H0
M (Fq,Q) −−−−→ H0

S(Fq,Q)
y

y

H0
M (X,Q) −−−−→ H0

S(X,Q)

This reduces the problem to the case X = SpecFq, where it can be directly
verified. 2

6.2 Integral coefficients

Combining the torsion results [11] with the rational results, we obtain the
following

Proposition 6.6 Conjecture P0 is equivalent to the finite generation of
HS
i (X,Z) for all X/Fq.

Proof. If X is smooth and proper, then according to the main theorem of
Jannsen-Saito [11], the groups HS

i (X,Q/Z) = CH0(X, i,Q/Z) are isomorphic
to etale homology, and hence finite for i > 0 by the Weil-conjectures. Hence
finite generation of HS

i (X,Z) implies that HS
i (X,Q) = 0 for i > 0.

Conversely, we can by induction on the dimension assume that X is smooth
and has a smooth and proper model. Expressing Suslin homology of smooth
schemes in terms of motivic cohomology with compact support and again
using induction, it suffices to show that Hi

M (X,Z(n)) is finitely generated for
smooth and proper X and n ≥ dimX . Using the projective bundle formula
we can assume that n = dimX , and then the statement follows because
Hi
M (X,Z(n)) ∼= CH0(X, 2n− i) is finitely generated according to [7, Thm 1.1].

2

Documenta Mathematica · Extra Volume Suslin (2010) 223–249



240 Thomas Geisser

Recall the pairings of Lemma 2.1. We call them perfect if they identify one
group with the dual of the other group. In the torsion case, this implies that
the groups are finite, but in the free case this is not true: For example, ⊕IZ
and

∏
I Z are in perfect duality.

Proposition 6.7 Let X be a separated scheme of finite type over a finite field.
Then the following statements are equivalent:

a) The groups HS
i (X,Z) are finitely generated for all i.

b) The groups Hi
S(X,Z) are finitely generated for all i.

c) The groups Hi
S(X,Z) are countable for all i.

d) The pairings of Lemma 2.1 are perfect for all i.

Proof. a)⇒ b)⇒ c) are clear, and c)⇒ a) follows from [9, Prop.3F.12], which
states that if A is not finitely generated, then either Hom(A,Z) or Ext(A,Z)
is uncountable.

Going through the proof of Lemma 2.1 it is easy to see that a) im-
plies d). Conversely, if the pairing is perfect, then torH

S
i (X,Z) is finite.

Let A = Hi
S(X,Z)/tor and fix a prime l. Then A/l is a quotient of

Hi
S(X,Z)/l ⊆ Hi

S(X,Z/l), and which is finite by Theorem 6.1. Choose lifts
bi ∈ A of a basis of A/l and let B be the finitely generated free abelian
subgroup of A generated by the bi. By construction, A/B is l-divisible, hence
HS
i (X,Z)/tor = Hom(A,Z) ⊆ Hom(B,Z) is finitely generated. 2

6.3 The algebraically closure of a finite field

Suslin homology has properties similar to a Weil-cohomology theory. Let X1

be separated and of finite type over Fq, Xn = X ×Fq Fqn and X = X1 ×Fq F̄q.
From Corollary 4.4, we obtain a short exact sequence

0→ lim1Ht+1
S (Xn,Z)→ Ht

S(X,Z)→ limHt
S(Xn,Z)→ 0.

The outer terms can be calculated with the 6-term lim-lim1-sequence associated
to (6). The theorem of Suslin and Voevodsky implies that

limHi
S(X,Z/lr) ∼= Hi

et(X,Zl)

for l 6= p = charFq. For X is proper and l = p, we get the same result from [6]

Hi
S(X,Z/pr) ∼= Hom(CH0(X, i, Z/pr),Z/pr) ∼= Hi

et(X,Z/p
r).

We show that this is true integrally:
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Proposition 6.8 Let X be a smooth and proper curve over the algebraic clo-
sure of a finite field k of characteristic p. Then the non-vanishing cohomology
groups are

Hi
S(X,Z) ∼=





Z i = 0

limr HomGS(µpr ,PicX)×∏l 6=p Tl PicX(−1) i = 1∏
l 6=p Zl(−1) i = 2.

Here HomGS denotes homomorphisms of group schemes.

Proof. By properness and smoothness we have

HS
i (X,Z) ∼= H2−i

M (X,Z(1)) ∼=





PicX i = 0;

k× i = 1;

0 i 6= 0, 1.

Now
Ext1(k×,Z) = Hom(colim

p6|m
µm,Q/Z) ∼=

∏

l 6=p
Zl(−1)

and since PicX is finitely generated by torsion,

Ext1(PicX,Z) ∼= Hom(colim
m

m PicX,Q/Z) ∼=
lim HomGS(m PicX,Z/m) ∼= lim

m
HomGS(µm,m PicX)

by the Weil-pairing. 2

Proposition 6.9 Let X be smooth, projective and connected over the algebraic
closure of a finite field. Assuming conjecture P0, we have

Hi
S(X,Z) ∼=

{
Z i = 0∏
lH

i
et(X,Zl) i ≥ 1.

In particular, the l-adic completion of Hi
S(X,Z) is l-adic cohomology

Hi
et(X,Zl) for all l.

Proof. Let d = dimX . By properness and smoothness we have

HS
i (X,Z) ∼= H2d−i

M (X,Z(d)).

Under hypothesis P0, the groups HS
i (X,Z) are torsion for i > 0, and

HS
0 (X,Z) = CH0(X) is the product of a finitely generated group and a torsion

group. Hence for i ≥ 1 we get by (6) that

Hi
S(X,Z) ∼= Ext1(HS

i−1(X,Z),Z) ∼= Hom(HS
i−1(X,Z)tor,Q/Z)

∼= Hom(H2d−i+1
M (X,Z(d))tor,Q/Z) ∼= Hom(H2d−i

et (X,Q/Z(d)),Q/Z)

∼= Hom(colim
m

H2d−i
et (X,Z/m(d)),Q/Z) ∼= lim

m
Hom(H2d−i

et (X,Z/m(d)),Z/m).
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By Poincare-duality, the latter agrees with limHi
et(X,Z/m) ∼=

∏
lH

i
et(X,Zl).

2

7 Arithmetic homology and cohomology

We recall some definitions and results from [3]. Let X be separated and of
finite type over a finite field Fq, X̄ = X ×Fq F̄q and G be the Weil-group
of Fq. Let γ : TG → TĜ be the functor from the category of G-modules to

the category of continuous Ĝ = Gal(Fq)-modules which associated to M the
module γ∗ = colimmM

mG, where the index set is ordered by divisibility. It
is easy to see that the forgetful functor is a left adjoint of γ∗, hence γ∗ is
left exact and preserves limits. The derived functors γi∗ vanish for i > 1,
and γ1∗M = R1γ∗M = colimMmG, where the transition maps are given by
MmG → MmnG, x 7→

∑
s∈mG/mnG sx. Consequently, a complex M · of G-

modules gives rise to an exact triangle of continuous Ĝ-modules

γ∗M
· → Rγ∗M

· → γ1∗M
·[−1]. (10)

If M = γ∗N is the restriction of a continuous Ĝ-module, then γ∗M = N and
γ1∗M = N ⊗ Q. In particular, Weil-etale cohomology and etale cohomology
of torsion sheaves agree. Note that the derived functors γ∗ restricted to the
category of Ĝ-modules does not agree with the derived functors of τ∗ considered
in Lemma 5.1. Indeed, Riτ∗M = colimLH

i(GL,M) is the colimit of Galois
cohomology groups, whereas Riγ∗M = colimmH

i(mG,M) is the colimit of
cohomology groups of the discrete group Z.

7.1 Homology

We define arithmetic homology with coefficients in the G-module A to be

Har
i (X,A) := TorGi (CX∗ (k̄), A).

A concrete representative is the double complex

CX∗ (k̄)⊗A 1−ϕ−→ CX∗ (k̄)⊗A,

with the left and right term in homological degrees one and zero, respectively,
and with the Frobenius endomorphism ϕ acting diagonally. We obtain short
exact sequences

0→ HS
i (X̄, A)G → Har

i (X,A)→ HS
i−1(X̄, A)G → 0. (11)

Lemma 7.1 The groups Har
i (X,Z/m) are finite. In particular, Har

i (X,Z)/m
and mH

ar
i (X,Z) are finite.
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Proof. The first statement follows from the short exact sequence (11). In-
deed, if m is prime to the characteristic, then we apply (1) together with finite
generation of etale cohomology, and if m is a power of the characteristic, we
apply Theorem 3.2 to obtain finiteness of the outer terms of (11). The final
statements follows from the long exact sequence

· · · → Har
i (X,Z)

×m−→ Har
i (X,Z)→ Har

i (X,Z/m)→ · · ·

2

If A is the restriction of a Ĝ-module, then (10), applied to the complex of
continuous Ĝ-modules CX∗ (k̄)⊗A, gives upon taking Galois cohomology a long
exact sequence

· · · → HGS
i (X,A)→ Har

i+1(X,A)→ HGS
i+1(X,AQ)→ HGS

i−1(X,A)→ · · ·

With rational coefficients this sequence breaks up into isomorphisms

Har
i (X,Q) ∼= HS

i (X,Q)⊕HS
i−1(X,Q). (12)

7.2 Cohomology

In analogy to (8), we define arithmetic cohomology with coefficients in the
G-module A to be

Hi
ar(X,A) = ExtiG(CX∗ (k̄), A). (13)

Note the difference to the definition in [14], which does not give well-behaved
(i.e. finitely generated) groups for schemes which are not smooth and proper.
A concrete representative is the double complex

Hom(CX∗ (k̄), A)
1−ϕ−→ Hom(CX∗ (k̄), A),

where the left and right hand term are in cohomological degrees zero and one,
respectively. There are short exact sequences

0→ Hi−1
S (X̄, A)G → Hi

ar(X,A)→ Hi
S(X̄, A)G → 0. (14)

The proof of Lemma 7.1 also shows

Lemma 7.2 The groups Hi
ar(X,Z/m) are finite. In particular, mH

i
ar(X,Z)

and Hi
ar(X,Z)/m are finite.

Lemma 7.3 For every G-module A, we have an isomorphism

Hi
ar(X,A) ∼= Hi

GS(X,Rγ∗γ
∗A).
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Proof. Since MG = (γ∗M)Ĝ, arithmetic cohomology is the Galois cohomology
of the derived functor of γ∗ HomAb(CX∗ (k̄),−) on the category of G-modules.
By Lemma 5.1, it suffices to show that this derived functor agrees with the
derived functor of τ∗ HomAb(CX∗ (k̄), γ∗−) on the category of G-modules. But
given a continuous Ĝ-modules M and a G-module N , the inclusion

τ∗ HomAb(M,γ∗N) ⊆ γ∗ HomAb(γ∗M,N)

induced by the inclusion γ∗N ⊆ N is an isomorphism. Indeed, if f : M → N
is H-invariant and m ∈M is fixed by H ′, then f(m) is fixed by H ∩H ′, hence
f factors through γ∗N . 2

Corollary 7.4 If A is a continuous Ĝ-module, then there is a long exact
sequence

· · · → Hi
GS(X,A)→ Hi

ar(X,A)→ Hi−1
GS (X,AQ)→ Hi+1

GS (X,A)→ · · · .

Proof. This follows from the Lemma by applying the long exact
Ext∗

Ĝ
(CX∗ (k̄),−)-sequence to (10). 2

7.3 Finite generation and duality

Lemma 7.5 There are natural pairings

Hi
ar(X,Z)/tor×Har

i (X,Z)/tor→ Z

and
Hi

ar(X,Z)tor ×Har
i−1(X,Z)tor → Q/Z.

Proof. From the adjunction HomG(M,Z) ∼= HomAb(MG,Z) and the fact that
L(−)G = R(−)G[−1], we obtain by deriving a quasi-isomorphism

RHomG(CX∗ (k̄),Z) ∼= RHomAb(CX∗ (k̄)⊗LG Z,Z).

Now we obtain the pairing as in Lemma 2.1 using the resulting spectral sequence

ExtsAb(Har
t (X,Z),Z)⇒ Hs+t

ar (X,Z).

2

Proposition 7.6 For a given separated scheme X of finite type over Fq, the
following statements are equivalent:

a) The groups Har
i (X,Z) are finitely generated.

b) The groups Hi
ar(X,Z) are finitely generated.
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c) The groups Hi
ar(X,Z) are countable.

d) The pairings of Lemma 7.5 are perfect.

Proof. This is proved exactly as Proposition 6.7, with Theorem 6.1 replaced
by Lemma 7.1. 2

We need a Weil-version of motivic cohomology with compact support. We de-
fine Hi

c(XW ,Z(n)) to be the ith cohomology of RΓ(G,RΓc(X̄,Z(n))), where
the inner term is a complex defining motivic cohomology with compact sup-
port of X̄ . We use this notation to distinguish it from arithmetic homol-
ogy with compact support considered in [4], which is the cohomology of
RΓ(G,RΓc(X̄et,Z(n))). However, if n ≥ dimX , which is the case of most
importance for us, both theories agree.
Similar to (3) we obtain for a closed subscheme Z of a smooth scheme X of
pure dimension d with open complement U a long exact sequence

· · · → Har
i (U,Z)→ Har

i (X,Z)→ H2d+1−i
c (ZW ,Z(d))→ · · · . (15)

The shift by 1 in degrees occurs because arithmetic homology is defined using
homology of G, whereas cohomology with compact support is defined using
cohomology of G.

Proposition 7.7 The following statements are equivalent:

a) Conjecture P0.

b) The groups Har
i (X,Z) are finitely generated for all X.

Proof. a) ⇒ b): By induction on the dimension of X and the blow-up square,
we can assume that X is smooth of dimension d, where

Har
i (X,Z) ∼= H2d+1−i

c (XW ,Z(d)).

By localization for H∗
c (XW ,Z(d)) and induction on the dimension we can re-

duce the question to X smooth and projective. In this case Z(d) has etale
hypercohomological descent over an algebraically closed field by [6], hence
Hj
c (XW ,Z(d)) agrees with the Weil-etale cohomology Hj

W (X,Z(d)) considered
in [3]. These groups are finitely generated for i > 2d by [3, Thm.7.3,7.5].
By conjecture P0, and the isomorphism Hi

W (X,Z(d))Q ∼= CH0(X, 2d − i)Q ⊕
CH0(X, 2d−i+1)Q of Thm.7.1c) loc.cit., these groups are torsion for i < 2d, so
that the finite group Hi−1(Xet,Q/Z(d)) surjects onto Hi

W (X,Z(d)). Finally,
H2d
W (X,Z(d)) is an extension of the finitely generated group CH0(X̄)G by the

finite group H2d−1(X̄et,Z(d))G ∼= H2d−2(X̄et,Q/Z(d))G.
b) ⇒ a) Consider the special case that X is smooth and projec-
tive. Then as above, Har

i (X,Z) ∼= H2d+1−i
W (X,Z(d)). If this group

is finitely generated, then we obtain from the coefficient sequence that
H2d+1−i
W (X,Z(d)) ⊗ Zl ∼= limH2d+1−i(Xet,Z/lr(d)), and the latter group is

torsion for i > 1 by the Weil-conjectures. Now use (12). 2
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Theorem 7.8 For connected X, the map Har
0 (X,Z) → Har

0 (Fq,Z) ∼= Z is an
isomorphism. In particular, we have Har

0 (X,Z) ∼= Zπ0(X).

Proof. The proof is similar to the proof of Theorem 6.2. Again we use induc-
tion on the dimension and the blow-up sequence to reduce to the situation
where X is irreducible and smooth. In this case, we can use (15) and the
following Proposition to reduce to the smooth and proper case, where we have
Har

0 (X,Z) = CH0(X̄)G ∼= Z. 2

Proposition 7.9 If n > dimX, then Hi
c(XW ,Z(n)) = 0 for i > n+ dimX.

Proof. By induction on the dimension and the localization sequence for motivic
cohomology with compact support one sees that the statement for X and a
dense open subscheme of X are equivalent. Hence we can assume that X is
smooth and proper of dimension d. In this case, Hi

c(XW ,Z(n)) is an extension
of Hi

M (X̄,Z(n))G by Hi−1
M (X̄,Z(n))G. These groups vanish for i − 1 > d +

n for dimension (of cycles) reasons. For i = d + n + 1, we have to show
that Hd+n

M (X̄,Z(n))G vanishes. From the niveau spectral sequence for motivic
cohomology we obtain a surjection

⊕

X̄(0)

Hn−d
M (k(x),Z(n − d)) ։ Hd+n

M (X̄,Z(n)).

The summands are isomorphic to KM
n−d(F̄q). If n > d + 1, then they vanish

because higher Milnor K-theory of the algebraical closure of a finite field
vanishes. If n = d + 1, then the summands are isomorphic to (F̄q)×, whose
coinvariants vanish. 2

8 A Kato type homology

We construct a homology theory measuring the difference between Suslin
homology and arithmetic homology. The cohomological theory can be de-
fined analogously. Kato-Suslin-homology HKS

i (X,A) with coefficients in the
G-module A is defined as the ith homology of the complex of coinvariants
(CX∗ (k̄) ⊗ A)G. If A is trivial as a G-module, then Lemma 5.2 gives a short
exact sequence of double complexes

0 −−−−→ CX∗ (k)⊗A −−−−→ CX∗ (k̄)⊗A −−−−→ 0
y 1−ϕ

y
y

0 −−−−→ CX∗ (k̄)⊗A −−−−→ (CX∗ (k̄)⊗A)G −−−−→ 0

and hence a long exact sequence

· · · → HS
i (X,A)→ Har

i+1(X,A)→ HKS
i+1(X,A)→ HS

i−1(X,A)→ · · · .
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By Theorem 7.8 we have HKS
0 (X,Z) ∼= Har

0 (X,Z) ∼= Zπ0(X). The following is
a generalization of the integral version [7] of Kato’s conjecture [12].

Conjecture 8.1 (Generalized integral Kato-conjecture) If X is smooth, then
HKS
i (X,Z) = 0 for i > 0.

Equivalently, the canonical map HS
i (X,Z) ∼= Har

i+1(X,Z) is an isomorphism for
all smooth X and all i ≥ 0, i.e. there are short exact sequences

0→ HS
i+1(X̄,Z)G → HS

i (X,Z)→ HS
i (X̄,Z)G → 0.

Theorem 8.2 Conjecture 8.1 is equivalent to conjecture P0.

Proof. If Conjecture 8.1 holds, then

HS
i (X,Q) ∼= Har

i+1(X,Q) ∼= HS
i+1(X,Q)⊕HS

i (X,Q)

implies the vanishing of HS
i (X,Q) for i > 0.

Conversely, we first claim that for smooth and proper Z, the canonical map
Hi
c(Z,Z(n)) → Hi

c(ZW ,Z(n)) is an isomorphism for all i if n > dimZ, and
for i ≤ 2n if n = dimZ. Indeed, if n ≥ dimZ then the cohomology of Z(n)
agrees with the etale hypercohomology of Z(n), see [6], hence satisfies Galois
descent. But according to (the proof of) Proposition 6.4b), these groups are
torsion groups, so that the derived funtors RΓGk and RΓG agree.
Using localization for cohomology with compact support and induction on the
dimension, we get next that Hi

c(Z,Z(n)) ∼= Hi
c(ZW ,Z(n)) for all i and all Z

with n > dimZ. Now choose a smooth and proper compactification C of X .
Comparing the exact sequences (3) and (15), we see with the 5-Lemma that the
isomorphism HS

i (C,Z) ∼= H2d−i
c (C,Z(d)) → Har

i+1(C,Z) ∼= H2d−i
c (CW ,Z(d))

for C implies the same isomorphism for X and i ≥ 0. 2

9 Tamely ramified class field theory

We propose the following conjecture relating Weil-Suslin homology to class field
theory:

Conjecture 9.1 (Tame reciprocity) For any X separated and of finite type
over a finite field, there is a canonical injection to the tame abelianized funda-
mental group with dense image

Har
1 (X,Z)→ πt1(X)ab.

Note that the group Har
1 (X,Z) is conjecturally finitely generated. At this

point, we do not have an explicit construction (associating elements in the
Galois groups to algebraic cycles) of the map. One might even hope that
Har

1 (X,Z)◦ := ker(Har
1 (X,Z)→ Zπ0(X) is finitely generated and isomorphic to
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the abelianized geometric part of the tame fundamental group defined in SGA
3X§6.
Under Conjecture 8.1, HS

0 (X,Z) ∼= Har
1 (X,Z) for smooth X , and Conjecture

9.1 is a theorem of Schmidt-Spiess [19].

Proposition 9.2 a) We have Har
1 (X,Z)∧l ∼= πt1(X)ab(l). In particular, the

prime to p-part of Conjecture 9.1 holds if Har
1 (X,Z) is finitely generated.

b) The analog statement holds for the p-part if X has a compactification T
which has a desingularization which is an isomorphism outside of X.

Proof. a) By Theorem 7.8, Har
0 (X,Z) contains no divisible subgroup. Hence if

l 6= p, we have by Theorems 5.4 and 5.5

Har
1 (X,Z)∧l ∼= limHar

1 (X,Z/lr) ∼= limHGS
0 (X,Z/lr)

∼= limH1
et(X,Z/l

r)∗ ∼= πt1(X)ab(l).

b) Under the above hypothesis, we can use the duality result of [6] for the
proper scheme T to get with Proposition 3.3

Har
1 (X,Z)⊗ Zp ∼= limHGS

0 (X,Z/pr) ∼= limHGS
0 (T,Z/pr)

∼= limH1
et(T,Z/p

r)∗ ∼= π1(T )ab(p) ∼= πt1(X)ab(p).

2
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Abstract. The u-invariant and the Hasse number ũ of a field F of
characteristic not 2 are classical and important field invariants per-
taining to quadratic forms. They measure the suprema of dimensions
of anisotropic forms over F that satisfy certain additional properties.
We prove new relations between these invariants and a new charac-
terization of fields with finite Hasse number (resp. finite u-invariant
for nonreal fields), the first one of its kind that uses intrinsic proper-
ties of quadratic forms and which, conjecturally, allows an ‘algebro-
geometric’ characterization of fields with finite Hasse number.
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1. Introduction

Throughout this paper, fields are assumed to be of characteristic different from
2 and quadratic forms over a field are always assumed to be finite-dimensional
and nondegenerate. The u-invariant of a field F is one of the most important
field invariants pertaining to quadratic forms. The definition as introduced by
Elman and Lam [EL1] is as follows:

u(F ) := sup{dimϕ |ϕ is an anisotropic torsion form over F} ,
where ‘torsion’ means torsion when considered as an element in the Witt ring
WF . Note that over a formally real field (or real field for short) torsion forms
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are exactly the forms of total signature zero, whereas over a nonreal field, all
forms are torsion.
If F is a real field, for a form ϕ over F to be isotropic, it is clearly necessary for
ϕ to be indefinite at each ordering of F , i.e., for ϕ to be totally indefinite or t.i.
for short. This leads to another field invariant, the Hasse number ũ defined as

ũ(F ) := sup{dimϕ |ϕ is an anisotropic t.i. form} .
One puts ũ(F ) = 0 if there are no anisotropic t.i. forms over F . Clearly,
u(F ) ≤ ũ(F ), with equality in the case of nonreal fields since being totally
indefinite is then an empty condition.
In the present paper, we focus on finiteness criteria for u and ũ and on upper
bounds on ũ in terms of u for fields with finite ũ. To formulate these results,
we need to introduce further properties. We refer to [L3] for all undefined
terminology and basic facts about quadratic forms.
Recall that a quadratic form of type 〈1,−a1〉⊗ . . .⊗〈1,−an〉 (ai ∈ F ∗) is called
an n-fold Pfister form, and we write 〈〈a1, . . . , an〉〉 for short. PnF (resp. GPnF )
denotes the set of all isometry classes of n-fold Pfister forms (resp. of forms
similar to n-fold Pfister forms). A form ϕ is a Pfister neighbor if there exists
a Pfister form π and a ∈ F ∗ such that ϕ ⊂ aπ and dimϕ > 1

2 dimπ. Pfister
forms are either hyperbolic or anisotropic, and if ϕ is a Pfister neighbor of a
Pfister form π then ϕ is anisotropic iff π is anisotropic. Recall that the n-fold
Pfister forms generate additively InF , the n-th power of the fundamental ideal
IF of classes of even-dimensional forms in the Witt ring WF . The Arason-
Pfister Hauptsatz [AP], APH for short, states that if ϕ ∈ InF , then dimϕ < 2n

implies that ϕ is hyperbolic, and dimϕ = 2n implies ϕ ∈ GPnF .
Let F be a real field and let XF denote its space of orderings. XF is a compact
totally disconnected Hausdorff space with a subbasis of the topology given by
the clopen sets H(a) = {P ∈ XF | a >P 0}, a ∈ F ∗. ϕ is called positive (resp.
negative) definite at P ∈ XF if sgnP (ϕ) = dimϕ (resp. sgnP (ϕ) = − dimϕ),
and indefinite at P if it is not definite at P . A totally positive definite (t.p.d.)
form is a form that is positive definite at each P ∈ XF .
If ϕ is a form over F , we denote by DF (ϕ) those elements in F ∗ represented by
ϕ, by DF (n) (n ∈ N) those elements in F ∗ that can be written as a sum of n
squares, and we write DF (∞) =

⋃
n∈NDF (n) for the nonzero sums of squares

in F . If F is nonreal then F ∗ = DF (∞), and if F is real then DF (∞) is the
set of all totally positive elements in F .
The Pythagoras number p(F ) of a field F is the smallest n such that DF (n) =
DF (∞) if such an n exists, otherwise p(F ) =∞.
If F is real, then x ∈ DF (ϕ) clearly implies that x >P 0 (resp. x <P 0) if ϕ is
positive (resp. negative) definite at P . If the converse also holds, i.e. if

DF (ϕ) = {x ∈ F ∗ | x >P 0 (resp. x <P 0) if ϕ is
positive (resp. negative) definite at P}

then ϕ is called signature-universal (sgn-universal for short). Over a real field,
a form is universal (in the usual sense) if and only if it is t.i. and sgn-universal.
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One readily sees that if ũ(F ) < ∞ then any form ϕ with dimϕ ≥ ũ(F ) is
sgn-universal.
The following properties of fields will be used repeatedly.

Definition 1.1. (i) F is said to satisfy the strong approximation property
SAP if given any disjoint closed subsets U, V of XF there exists a ∈ F ∗

such that U ⊂ H(a) and V ⊂ H(−a).
(ii) A form ϕ over a real field F is said to have effective diagonalization

ED if it has a diagonalization 〈a1, . . . , an〉 such that H(ai) ⊂ H(ai+1)
for 1 ≤ i ≤ n− 1. F is said to be ED if each form over F has ED.

(iii) F is said to have property S1 if for every binary torsion form β over F
one has DF (β) ∩DF (∞) 6= ∅.

(iv) F is said to have property PN(n) for some n ∈ N if each form of
dimension 2n + 1 over F is a Pfister neighbor.

Note that if F is a nonreal field, i.e., F has no orderings, then F ∗ = DF (∞)
and all forms over F are torsion, so F is SAP, ED and S1.
The paper is structured as follows. In §2 we give a new proof of the fact that
ED is equivalent to SAP plus S1, a result originally due to Prestel-Ware [PW].
In §3 we prove that for a field, having finite Hasse number is equivalent to
having finite u-invariant plus having property ED. This result is originally due
to Elman-Prestel [EP], but we give a proof that also allows us to derive various
estimates for ũ in terms of u that are better than any previously known such
estimates. In §4, we prove that having finite Hasse number is equivalent to
having property PN(n) for some n ≥ 2, in which case we give estimates on
ũ in terms of n. Since property PN(2) is equivalent to F being linked (see
Lemma 4.3), we will thus also recover as corollary a famous result on the u-
invariant and the Hasse number of linked fields due to Elman-Lam [EL2], [E]
(Corollary 4.12). We also explain how our results, conjecturally, provide an
‘algebro-geometric’ criterion for the finiteness of ũ (resp. u in case of nonreal
fields).

Acknowledgment. I am grateful to the referee for various suggestions that
helped to streamline the paper considerably. The revised version of this paper
has been completed during a stay at Emory University. I thank Skip Garibaldi
and Emory University for their hospitality during that stay.

2. ED equals SAP plus S1

The following theorem is due to Prestel-Ware [PW]. We give a new proof based
mainly on the study of binary forms.

Theorem 2.1. F has ED if and only if F has SAP and S1.

To prove this, we use alternative descriptions of the properties involved.

Lemma 2.2. Let F be a real field.
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(i) F is SAP if and only if for all a, b ∈ F ∗ there exists c ∈ F ∗ such that
H(c) = H(a) ∩ H(b) (or, equivalently, there exists d ∈ F ∗ such that
H(d) = H(a) ∪H(b)).

(ii) F is ED if and only if for all a, b ∈ F ∗, there exist c, d ∈ F ∗ such
that 〈a, b〉 ∼= 〈c, d〉 and H(c) = H(a) ∩H(b) (or, equivalently, H(d) =
H(a) ∪H(b)).

(iii) F has property S1 if and only if, for all a ∈ F ∗, s ∈ DF (∞), and
x ∈ DF (〈1, as〉), there exists t ∈ DF (∞) such that tx ∈ DF (〈1, a〉).

Proof. (i) This is well known, see, e.g., [L1, Prop. 17.2].
(ii) The ‘only if’ is nothing else but ED for binary forms. As for the converse,
we use induction on the dimension n of forms. Forms of dimension ≤ 2 have
ED by assumption. So let ϕ be a form of dimension n ≥ 3. Then we can write
ϕ = 〈a1, . . . , an〉 and we may assume that 〈a2, . . . , an〉 is already an ED. Write
〈a1, a2〉 ∼= 〈b1, b2〉 with H(b1) = H(a1)∩H(a2) (so 〈b1, b2〉 is an ED of 〈a1, a2〉).
Then ϕ ∼= 〈b1, b2, a3, . . . , an〉. Now let 〈c2, . . . , cn〉 be an ED of 〈b2, a3, . . . , an〉.
Then one readily checks that 〈b1, c2, . . . , cn〉 is an ED of ϕ.
(iii) ‘if’: Let 〈u, v〉 ∼= u〈1, uv〉 be torsion. Then uv = −s with s ∈ DF (∞). Put
a = −s. Then 〈1,−1〉 ∼= 〈1, as〉 which is hyperbolic and hence represents u.
But then, by assumption, there exists t ∈ DF (∞) such that tu is represented
by 〈1, a〉 ∼= 〈1,−s〉 and hence t is represented by u〈1,−s〉 ∼= 〈u, v〉.
‘only if’: x ∈ DF (〈1, sa〉) implies that there exists y ∈ F ∗ such that 〈1, sa〉 ∼=
〈x, y〉. Now the torsion form xa〈s,−1〉 represents some u ∈ DF (∞) by S1.
Hence 〈sa,−a〉 ∼= 〈xu,−xus〉 and hence

〈1, sa,−a〉 ∼= 〈1, xu,−xus〉 ∼= 〈−a, x, y〉
Thus, 〈1, a〉 = 〈x, xus,−xu, y〉 in WF , so x〈1, us,−u, xy〉 is isotropic and there
exists v ∈ DF (〈1, us〉)∩DF (〈u,−xy〉). Note that us ∈ DF (∞), so v ∈ DF (∞).
Hence, 〈1, us〉 ∼= 〈v, vus〉 and 〈−u, xy〉 ∼= 〈−v, vuxy〉, and we get 〈1, a〉 ∼=
x〈vus, vuxy〉 ∼= 〈xvus, vuy〉, thus xt ∈ DF (〈1, a〉) with t := vus ∈ DF (∞). �

Proof of Theorem 2.1. ‘only if’: Clearly, ED implies SAP. Now let 〈a, b〉 be
any binary torsion form. Then sgnP (〈a, b〉) = 0, so H(a) ∩ H(b) = ∅, and by
ED, there exists c ∈ −DF (∞) and d ∈ DF (∞) such that 〈a, b〉 ∼= 〈c, d〉, in
particular, d is a totally positive element represented by 〈a, b〉 and we have
established S1.
‘if’: Let F be SAP and S1. We will verify the alternative description of ED
from Lemma 2.2(ii). Let 〈a, b〉 be any binary form. By SAP, there exists
d′ ∈ F ∗ such that H(a) ∪H(b) = H(d′). Then 〈a, b,−d′〉 is t.i., thus the form
ϕ ∼= 〈a, b,−d′,−d′ab〉 ∼= −d′〈〈ad′, bd′〉〉 has total signature zero and is therefore

torsion. Hence, there exists some n ∈ F such that for σn ∼= 〈〈−1〉〉⊗n ∼= 〈1, 1〉⊗n,
we have that σn ⊗ 〈a, b,−d′,−d′ab〉 ∈ GPn+2F is hyperbolic. But then
its Pfister neighbor σn ⊗ 〈a, b〉 ⊥ 〈−d′〉 is isotropic. It follows that there
exist u, v ∈ DF (σn) ⊂ DF (∞) such that d′ ∈ DF (〈ua, vb〉), and hence
ad′u ∈ DF (〈1, abuv〉). Now uv ∈ DF (∞), and by Lemma 2.2(iii), there ex-
ists w ∈ DF (∞) such that ad′uw ∈ DF (〈1, ab〉), i.e. d := d′uw ∈ DF (〈a, b〉).
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In particular, there exists c ∈ F ∗ such that 〈a, b〉 ∼= 〈c, d〉. Since uw ∈ DF (∞),
we have H(d) = H(d′) = H(a) ∪H(b) as required. �

3. Relations between the Hasse number and the u-invariant

In this section, we will only consider real fields since for nonreal fields u = ũ,
and most of the statements below are trivially true. It is quite possible for a
real field F that u(F ) is finite but ũ(F ) is infinite. Elman-Prestel [EP, Th. 2.5]
gave the following necessary and sufficient criterion for the finiteness of ũ(F ):

Theorem 3.1. ũ(F ) <∞ if and only if u(F ) <∞ and F has ED.

The main purpose of this section is to give a new and elementary proof of this
statement that in the case of ED-fields will allow us at the same time to derive
upper bounds for ũ in terms of u that considerably improve previous upper
bounds obtained by Elman-Prestel [EP, Prop. 2.7] and Hornix [Hor1, Th. 3.9].
The following remark is well known and will be useful.

Remark 3.2. For any field F , if p(F ) > 2n then ũ(F ) ≥ u(F ) ≥ 2n+1. In
particular, p(F ) ≤ u(F ) ≤ ũ(F ).

Proposition 3.3. Suppose that F has ED and that there exists an n-
dimensional t.p.d. sgn-universal form ρ. Then

ũ(F ) ≤ n

2
(u(F ) + 2) .

Proof. We may clearly assume that u(F ) (and hence p(F )) is finite. The form
p(F ) × 〈1〉 is t.p.d. and sgn-universal, so we may assume that n ≤ p(F ). If
n = 1 then F is obviously pythagorean and u(F ) = 0. Since F has ED, any
t.i. form ϕ over F contains a binary torsion form β as a subform. But then β
is isotropic as u(F ) = 0, hence ϕ is isotropic. It follows that ũ(F ) = 0 and the
above inequality is clearly satisfied. So we may assume that 2 ≤ n ≤ p(F ) = p
and we have ũ(F ) ≥ u(F ) ≥ p ≥ n by Remark 3.2.
It suffices to consider the case ũ(F ) > u(F ). Let ϕ0 be any anisotropic t.i.
form with dimϕ0 > u(F ), and write dimϕ0 = m = rn+ k + 1 with r ≥ 1 and
0 ≤ k ≤ n− 1. Since F is ED and thus SAP, we may assume after scaling that
0 ≤ sgnP ϕ0 ≤ dimϕ0 − 2 = rn+ k − 1 for all orderings P on F .
Let ϕ1 = a0(ϕ0 ⊥ −ρ)an, where a0 is chosen such that 0 ≤ sgnP ϕ1 for all
orderings P .
If iW denotes the Witt index, we have iW (ϕ0 ⊥ −ρ) ≤ n − 1, for otherwise
one could write ϕ0

∼= ρ ⊥ τ for some form τ . Since ϕ0 is t.i. and since F has
ED, this implies that there exists x ∈ DF (∞) such that −x is represented by
τ . But then the form ϕ0 contains the subform ρ ⊥ 〈−x〉 which is isotropic as
ρ is t.p.d. and sgn-universal, clearly a contradiction. This implies that

dimϕ1 ≥ dimϕ0 + n− 2(n− 1) = (r − 1)n+ (k + 1) + 2 .

Note also that sgnP (ϕ0 ⊥ −ρ) = sgnP ϕ0 − n for each ordering P . Hence, one
obtains

sgnP ϕ1 ≤ max{(r − 1)n+ k − 1, n}
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for each ordering P . Note that if r ≥ 2, then ϕ1 is again t.i. as 0 ≤ sgnP ϕ1 <
dimϕ1 for all orderings P . Applying this procedure altogether r− 1 times, we
get a form ϕr−1 which is anisotropic, t.i., and such that

dimϕr−1 ≥ n+ (k + 1) + 2(r − 1) ,

0 ≤ sgnP ϕr−1 ≤ max{n+ k − 1, n} for all orderings P .

We therefore have

dimϕr−1 − sgnP ϕr−1 ≥ min{2r, k + 2r − 1} .
Since dimϕr−1−sgnP ϕr−1 is even, this yields dimϕr−1−sgnP ϕr−1 ≥ 2r for all
orderings P . By ED, the anisotropic form ϕr−1 contains a torsion subform ϕt
of dimension ≥ 2r. Hence u(F ) ≥ 2r and thus u(F )+2 ≥ 2(r+1). On the other
hand, by assumption m = rn+k+1 ≤ n(r+1). These two inequalities together
imply m ≤ n

2 (u(F ) + 2). It follows readily that ũ(F ) ≤ n
2 (u(F ) + 2). �

Proof of Theorem 3.1. The ‘only if’ part is easy and left to the reader. As
for the ‘if’ part, we have ∞ > u(F ) ≥ p(F ) by Lemma 3.2, and if we put

ρ = p(F ) × 〈1〉, then Proposition 3.3 immediately yields ũ(F ) ≤ p(F )
2 (u(F ) +

2) <∞. �

For a real field F , let m̃(F ) be the smallest integer n ≥ 1 such that there
exists an n-dimensional t.p.d. sgn-universal form, and m̃(F ) = ∞ if there are
no t.p.d. sgn-universal forms (cf. [GV] where an analogous invariant m(F )
for anisotropic universal forms was introduced). If p(F ) < ∞, we have that
p(F ) × 〈1〉 is sgn-universal. Hence m̃(F ) ≤ p(F ). With this new invariant,
Proposition 3.3 immediately implies

Corollary 3.4. Suppose that ũ(F ) <∞. Then

ũ(F ) ≤ m̃(F )

2
(u(F ) + 2) .

Next, we give another bound which will lead to further improvements.

Proposition 3.5. Suppose that u(F ) <∞ and that F has ED (or, equivalently,
that ũ(F ) <∞). Let ρ = 〈1〉 ⊥ ρ′ be a t.p.d. m-fold Pfister form, m ≥ 1, such
that its pure part ρ′ is sgn-universal. Then

ũ(F ) ≤ 2m−2(u(F ) + 6) .

If m = 2 then ũ(F ) ≤ u(F ) + 4.

Proof. If m = 1, then dim ρ′ = 1 and the assumptions imply that F is
pythagorean, hence ũ = u = 0 and there is nothing to show. So we may assume
m ≥ 2. Furthermore, if d is an integer such that 2d ≤ p(F ) = p ≤ 2d+1−1, then
we may assume that m ≤ d+1. For we have that (2d+1−1)×〈1〉 is the pure part
of 〈〈−1, . . . ,−1〉〉 ∈ Pd+1F and it is totally positive definite and sgn-universal.
We proceed similarly as before, but this time we put ũ = ũ(F ) = r2m + k + 1
with r ≥ 0 and 0 ≤ k ≤ 2m − 1.
If r = 0 then we have ũ ≤ 2m. If 2d + 1 ≤ p ≤ 2d+1 − 1 then u ≥ 2d+1 ≥ 2m

by Remark 3.2, and thus necessarily u = ũ and there is nothing to show.
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Suppose that p = 2d so that in particular u ≥ 2d. Our previous bound yields
ũ ≤ 2d−1(u + 2). If m = d + 1, then 2d−1(u + 2) < 2m−2(u + 6) and there is
nothing to show. If m ≤ d, then we have ũ = k + 1 ≤ 2m ≤ 2d ≤ u and thus
ũ = u, again there is nothing to show. So we may assume that r ≥ 1.
Let ϕ0 be an anisotropic t.i. form of dimension ũ. As before, we may this time
assume that dimϕ0 − 2 = r2m + k − 1 ≥ sgnP ϕ0 ≥ 0 for all orderings P .
We claim that iW (ϕ0 ⊥ −ρ) ≤ 2m − 2. Indeed, otherwise ϕ0 would contain
a subform ρ̃ of dimension 2m − 1 with ρ̃ ⊂ ρ. Now it is well known that all
codimension 1 subforms of a Pfister form are similar to its pure part. Hence, ϕ0

would contain a subform similar to ρ′, and since ϕ0 is t.i. and by ED, ϕ0 would
contain a subform similar to ρ′ ⊥ 〈−x〉 for some x ∈ DF (∞). By assumption,
ρ′ ⊥ 〈−x〉 is isotropic, a contradiction.
Thus, we obtain as in the proof of the previous lemma an anisotropic t.i. form
ϕ1 such that

dimϕ1 ≥ (r − 1)2m + k + 1 + 4 ,

0 ≤ sgnP ϕ1 ≤ max{(r − 1)2m + k − 1, 2m} ,
and reiterating this construction r − 1 times, we get an anisotropic t.i. form
ϕr−1 such that

dimϕr−1 ≥ 2m + k + 1 + 4(r − 1) ,

0 ≤ sgnP ϕr−1 ≤ max{2m + k − 1, 2m} for all orderings P .

This yields dimϕr−1−sgnP ϕr−1 ≥ 4r−2 for all orderings P , and thus, by ED,
the existence of an anisotropic torsion subform ϕt of ϕr−1 with dimϕt ≥ 4r−2.
In particular, u + 6 ≥ 4(r + 1). On the other hand, ũ ≤ 2m(r + 1) and thus
ũ ≤ 2m−2(u+ 6).
Now if m = 2, we have dimϕr−1 ≥ 4r + k + 1 = dimϕ0 and 0 ≤ sgnP ϕr−1 ≤
max{4 + k − 1, 4}. In particular, since all the forms ϕi are anisotropic and
t.i., it follows readily from the construction and the fact that ũ = 4r + k + 1
that dimϕ0 = dimϕ1 = . . . = ϕr−1 = ũ. Note also that 0 ≤ k ≤ 3, so that by
repeating our construction one more time, we obtain an anisotropic t.i. form ϕr
such that dimϕr = ũ and sgnP ϕr ≤ 4 for all orderings P . Thus, ϕr contains
a torsion subform of dimension ≥ ũ− 4 and therefore ũ ≤ u+ 4. �

Proposition 3.6. Suppose that I3t F = 0, and that u(F ) < ∞ and F has ED
(or, equivalently, that ũ(F ) <∞). If there exists a t.p.d. sgn-universal binary
form ρ over F , then u(F ) = ũ(F ).

Proof. By [ELP, Th. H], I3t F = 0 implies that ũ = ũ(F ) is even. By Propo-
sition 3.3, ũ ≤ u + 2. So let us assume that ũ 6= u, i.e. ũ = u + 2.
The proof of Proposition 3.3 then shows that there exists an anisotropic t.i.
form ϕ (which is nothing but the form ϕr−1 in the proof) with dimϕ = ũ
and which contains a torsion subform ϕt, dimϕt = dimϕ − 2 = u. Af-
ter scaling, we may assume that ϕt ⊥ 〈1〉 ⊂ ϕ. Let d = d±ϕt. Then
ϕt ⊥ 〈1,−d〉 ∈ I2F , and since sgnP ϕt = 0 and sgnP ϕt ⊥ 〈1,−d〉 ∈ 4Z, it
follows that ϕt ⊥ 〈1,−d〉 ∈ I2t F . As dimϕt ⊥ 〈1,−d〉 = u + 2, this form
must be isotropic. Thus, ϕt ⊥ 〈1〉 ∼= ψ ⊥ 〈d〉. Comparing discriminants and
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signatures, it follows that ψ ∈ I2t F . So 〈1,−x〉 ⊗ ψ ∈ I3t F = 0 for all x ∈ F ∗,
thus ψ ∼= xψ which implies that ψ is universal, hence the subform ψ ⊥ 〈d〉 of
ϕ is isotropic, a contradiction. �

The following is an immediate consequence.

Corollary 3.7. Suppose that p(F ) = 2 and ũ(F ) < ∞. If I3t F = 0 then
u(F ) = ũ(F ). In particular, if u(F ) ≤ 6 or ũ(F ) ≤ 8, then ũ(F ) = u(F ).

Remark 3.8. Let F be a real field with ũ(F ) <∞. Suppose that d is an integer
with 2d + 1 ≤ p ≤ 2d+1 − 1. The Pfister form 〈〈−1, . . . ,−1〉〉 ∈ Pd+1F is t.p.d.
and its pure part is sgn-universal, so we can use Proposition 3.5 for m = d+ 1.
For p = 2d + 1, d ≥ 1, we get 2d−1(u + 6)− p

2 (u + 2) = 2d+1 − 1
2u− 1. In this

case, Proposition 3.3 gives a better bound when u ≤ 2d+2−4 (note that we will
have u ≥ 2d+1), the bounds are the same for u = 2d+2 − 2, and for u ≥ 2d+2

Proposition 3.5 gives a sharper bound.
Summarizing our best bounds in the various cases, we obtain

(i) p(F ) = 1 if and only if ũ(F ) = u(F ) = 0.
(ii) If p(F ) = 2 then ũ(F ) ≤ u(F ) + 2. If in addition I3t F = 0 then

ũ(F ) = u(F ) = 2n for some integer n ≥ 1.
(iii) If p(F ) = 3 then ũ(F ) ≤ u(F ) + 4.
(iv) If p(F ) = 2m then ũ(F ) ≤ 2m−1(u(F ) + 2).
(v) If p(F ) = 2m+1 then ũ(F ) ≤ (2m−1+ 1

2 )(u(F )+2) if u(F ) ≤ 2m+2−2,

and ũ(F ) ≤ 2m−1(u(F ) + 6) if u(F ) ≥ 2m+2 − 2.
(vi) If 2m + 2 ≤ p(F ) ≤ 2m+1 − 1, then ũ(F ) ≤ 2m−1(u(F ) + 6).

Remark 3.9. It is difficult to say at this point how good our bounds really
are. In fact, we know extremely little about fields with u(F ) < ũ(F ) < ∞.
The only values which could be realized so far are fields where u(F ) = 2n and
ũ(F ) = 2n+ 2 for any n ≥ 2 (see [L2], [Hor2], [H3]), and fields with u(F ) = 8
and ũ(F ) = 12, see [H2, Cor. 6.4].

For the balance of this section, we finish with stating results about all possible
pairs of values for (p(F ), u(F )) for real fields, in particular real fields satisfying
SAP but not S1 or vice versa (such fields will always have ũ = ∞). The con-
struction of such fields with prescribed values (p, u) uses Merkurjev’s method
of iterated function fields and is rather technical. We omit the proof and refer
the interested reader to [H4].

Theorem 3.10. Let N ′ be the set of pairs of integers (p, u) such that either
p = 1 and u = 0 or u = 2n ≥ 2m ≥ p ≥ 2 for some integers m and n. Let
N = N ′ ∪ {(p,∞); p ≥ 2 or p =∞}.

(i) If F is a real field, then (p(F ), u(F )) ∈ N .
(ii) Let E be a real field and let (p, u) ∈ N . Then there exists a real

field extension F/E such that F is non-SAP, F has property S1 and
(p(F ), u(F )) = (p, u). In particular, ũ(F ) =∞.

(iii) If F is a real SAP field with ũ(F ) = ∞, then u(F ) ≥ 4 and
(p(F ), u(F )) ∈ N .
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(iv) Let E be a real field and let (p, u) ∈ N with u ≥ 4. Then there exists a
real field extension F/E such that F is SAP, F does not have property
S1 and (p(F ), u(F )) = (p, u). In particular, ũ(F ) =∞.

4. Linkage of fields and the Pfister neighbor property

The purpose of this section is to derive a criterion for the finiteness of the
Hasse number. Real fields with finite Hasse number are relatively scarce but
interesting nonetheless. But our results are just as valid for nonreal fields, we
thus get also a criterion for the finiteness of u for nonreal fields.
Recall that the field F is said to have the Pfister neighbor propery PN(n), n ≥
0, if every form of dimension 2n+ 1 over F is a Pfister neighbor. This property
is a somewhat stronger version of the notion of n-linkage whose definition we
now recall:

Definition 4.1. Let n ≥ 1 be an integer. A field F is called n-linked if to any
n-fold Pfister forms π1 and π2 over F there exist a1, a2 ∈ F ∗ and an (n − 1)-
fold Pfister form σ such that πi ∼= 〈〈ai〉〉 ⊗ σ, i = 1, 2. F is called linked if F is
2-linked.

Remark 4.2. (i) Trivially, every field is 1-linked and satisfies PN(0) and PN(1).
(ii) Let n ≥ 2. Every isotropic form of dimension 2n+1 is a Pfister neighbor. In
fact, if dimϕ = 2n+1 and ϕ is isotropic, then ϕ ∼= H ⊥ ψ with dimψ = 2n−1.
Then ϕ ⊥ −ψ ∼= π ∈ Pn+1F , where π denotes the hyperbolic (n+1)-fold Pfister
form. So in particular, if F is nonreal and u(F ) ≤ 2n, then F has property
PN(n)

Lemma 4.3. Let n ≥ 2.

(i) If F is n-linked then F is m-linked for all m ≥ n and In+2
t F = 0.

(ii) F is n-linked iff to each form ϕ ∈ InF there exists a form π ∈ PnF
such that ϕ ≡ π mod In+1F iff to each anisotropic ϕ ∈ InF there exist
τ ∈ Pn−1F and an even-dimensional form σ such that ϕ ∼= τ ⊗ σ.

(iii) F has property PN(n) if and only if there exists to every form ϕ over
F a form ψ such that dimψ ≤ 2n if dimϕ even (resp. dimψ ≤ 2n − 1
if dimϕ odd) such that ϕ ≡ ψ mod In+1F .

(iv) If F has property PN(n) then F is n-linked. In particular, In+2
t F = 0.

Furthermore, F is ED.
(v) F has property PN(2) iff F is linked.

Proof. (i) and (ii) are well known, see [EL2, § 2], [H1].
(iii) ‘only if’: If dimϕ ≤ 2n, then put ψ ∼= ϕ. So suppose dimϕ ≥ 2n + 1.
Write ϕ ∼= ψ ⊥ τ with dimψ = 2n + 1. By PN(n), ψ is a Pfister neighbor and
there exists ψ′, dimψ′ = 2n − 1 such that ψ ⊥ −ψ′ ∼= π ∈ GPn+1F . Then, in
WF , we have

ϕ ≡ ϕ− π ≡ ψ′ ⊥ τ mod In+1F .

Now dimψ′ ⊥ τ = dimϕ−2 and the result follows by an easy induction on the
dimension.

Documenta Mathematica · Extra Volume Suslin (2010) 251–265



260 Detlev W. Hoffmann

‘if’: Let dimϕ = 2n + 1. By assumption, there exists a form ψ, dimψ = 2n− 1
(possibly after adding hyperbolic planes) such that ϕ ⊥ −ψ ∈ In+1F . Then
dim(ϕ ⊥ −ψ) = 2n+1 and thus ϕ ⊥ −ψ ∈ GPn+1F by APH, which implies
that ϕ is a Pfister neighbor.
(iv) To show that F is n-linked, let ϕ ∈ InF . By (iii), there exists ψ such that
dimψ = 2n (possibly after adding hyperbolic planes) and ϕ ≡ ψ mod In+1F .
But clearly ψ ∈ InF , and thus ψ ∈ GPnF by APH. Let x ∈ F ∗ be such that
xψ ∈ PnF . We then have ψ ≡ xψ mod In+1F , and n-linkage together with
In+2
t F = 0 follows from (i) and (ii).

Now n-linked fields, n ≥ 2, are easily seen to be SAP. So to establish ED,
it suffices to establish property S1 by Theorem 2.1. Let 〈a, b〉 be any torsion
form. Let γ ∼= 〈1, . . . , 1︸ ︷︷ ︸

2n−1

〉. Then by PN(n), the form γ ⊥ 〈−a,−b〉 is a t.i. Pfister

neighbor of a Pfister form π ∈ Pn+1F . Since π contains γ which is a Pfister

neighbor (and in fact subform) of σn ∼= 〈1, 1〉⊗n, one necessarily has that σn
divides π, so there exists c ∈ F ∗ such that π ∼= σn ⊗ 〈1, c〉. Now π contains
a t.i. Pfister neighbor and is therefore also t.i. and hence torsion. But then
ρ ∼= 〈1, 1〉 ⊗ σn ⊗ 〈1, c〉 ∈ Pn+2F is torsion as well and therefore hyperbolic by
(i). Now σn ⊥ γ ⊥ 〈−a,−b〉 is a Pfister neighbor of ρ. Since ρ is hyperbolic, its
neighbor σn ⊥ γ ⊥ 〈−a,−b〉 is isotropic. Hence there exists x ∈ DF (〈a, b〉) ∩
DF (σn ⊥ γ). But clearly, DF (σn ⊥ γ) ⊂ DF (∞) which shows that the binary
torsion form 〈a, b〉 represents the totally positive element x.
(v) This follows immediately from the fact that a field is linked iff the classes
of quaternion algebras form a subgroup in Br(F ) together with the character-
ization of 5-dimensional Pfister neighbors by their Clifford invariant (see [Kn,
p. 10]). �

The following observation is essentially due to Fitzgerald [F, Lemma 4.5(ii)].

Lemma 4.4. Suppose that ũ(F ) ≤ 2n. Let ϕ be a form over F of dimension
2n + 1. Then ϕ is a Pfister neighbor. In particular, F has PN(n).

Proof. By Remark 4.2(ii) the result is clear if ϕ is isotropic. Thus, we may
assume ϕ anisotropic, so necessarily F must be real. Since ũ(F ) < ∞ implies
that F is SAP, we may assume that after scaling, sgnP (ϕ) ≥ 0 for all P ∈ XF ,
and that there exists c ∈ F ∗ such that H(c) = {P ∈ XF | sgnP (ϕ) = dimϕ}.
In particular, the Pfister form 〈〈−1, . . . ,−1︸ ︷︷ ︸

n

,−c〉〉 ∈ Pn+1F is positive definite

at all those P ∈ XF at which ϕ is positive definite, and it has signature zero
at all those P ∈ XF at which ϕ is indefinite. Let ψ ∼= (π ⊥ −ϕ)an. It follows
that | sgnP (ψ)| ≤ 2n − 1 for all P ∈ XF . But since ũ(F ) ≤ 2n, the anisotropic
form ψ must therefore have dimψ ≤ 2n, so in particular,

iW (π ⊥ −ϕ) = 1
2 (dim(π ⊥ −ϕ)− dimψ) ≥ 1

2 (2n+1 + 1) ,

and therefore iW (π ⊥ −ϕ) ≥ 2n + 1 = dimϕ, which implies that ϕ ⊂ π. In
particular, ϕ is a Pfister neighbor of π. �
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Theorem 4.5. If a field F has property PN(n), n ≥ 2, then either u(F ) ≤
ũ(F ) ≤ 2n, or 2n+1 ≤ u(F ) ≤ ũ(F ) ≤ 2n+1 + 2n − 2.

Proof. Let F be a field with property PN(n) for some n ≥ 2. Suppose that
ũ(F ) > 2n, i.e. there exists an anisotropic t.i. ϕ with dimϕ = m > 2n. By
Lemma 4.3(iv), F has ED and so ϕ can be diagonalized as ϕ ∼= 〈a1, . . . , am〉
with −a1, am ∈ DF (∞). By removing some of the ai, 2 ≤ i ≤ m−1 if necessary,
we will retain a t.i. form, so we may assume that ϕ is t.i. and dimϕ = 2n + 1.
But then, by PN(n), ϕ is a Pfister neighbor of some π ∈ Pn+1F which in turn
is torsion and anisotropic as its Pfister neighbor ϕ is t.i. and anisotropic. This
shows that 2n+1 ≤ u(F ) ≤ ũ(F ).
Now suppose that ũ(F ) > 2n+1 + 2n − 2. By a similar argument as above, we
conclude that there exists an anisotropic t.i. form ϕ with dimϕ = 2n+1+2n−1.
By Lemma 4.3(iii), there exists an anisotropic form ψ of dimension ≤ 2n − 1
such that ϕ ≡ ψ mod In+1F . Let π ∼= (ϕ ⊥ −ψ)an ∈ In+1F . Then by
dimension count and since ϕ is anisotropic, we have 2n+1 ≤ dimπ ≤ 2n+2 − 2.
Since F is (n + 1)-linked, Lemma 4.3(ii) implies dimπ = 2n+1, and thus, by
APH, π ∈ GPn+1F . Also, by dimension count, we have ϕ ∼= π ⊥ ψ.
After scaling, we may assume that π ∈ Pn+1F , so that sgnP (π) ∈ {0, 2n+1}.
Now ϕ is t.i., and since F has ED by Lemma 4.3(iv), we can write ψ ∼= 〈a, . . .〉
with a <P 0 whenever sgnP (π) = 2n+1. But then π ⊥ 〈a〉 is a t.i. subform
of ϕ. On the other hand, π ⊥ 〈a〉 is also a Pfister neighbor of π ⊗ 〈1, a〉 ∈
Pn+2F . Since π ⊥ 〈a〉 is t.i., this implies that π⊗〈1, a〉 is torsion and therefore
hyperbolic since In+2

t F = 0 by Lemma 4.3(ii). But then the Pfister neighbor
π ⊥ 〈a〉 is isotropic and therefore also ϕ, a contradiction. �

Remark 4.6. (i) The above proof also shows that if F has PN(n), n ≥ 2, then
the case ũ(F ) ≤ 2n occurs iff there are no anisotropic torsion (n+1)-fold Pfister
forms iff In+1

t F = 0.
(ii) If we were only considering nonreal fields then the proofs could be shortened
by essentially deleting arguments referring to or making use of ED, signatures,
etc..

Corollary 4.7. ũ(F ) < ∞ if and only if F has PN(n) for some n ≥ 2. In
particular, if F is nonreal then u(F ) <∞ if and only if F has PN(n) for some
n ≥ 2

Proof. The ‘if’-part in the first statement follows from Theorem 4.5, the con-
verse from Lemma 4.4. The statement for nonreal fields is then clear because
in that case u = ũ. �

Remark 4.8. If F is real, then we still get a sufficient criterion for the finiteness
of u(F ) even if ũ(F ) = ∞. Indeed, for real F , one has that if u(F (

√
−1))

is finite then u(F ) is finite, more precisely, one has u(F ) < 4u(F (
√
−1)) (see

[EKM, Th. 37.4]). Thus, we get the following: If F (
√
−1) has property PN(n)

for some n ≥ 2, then u(F ) < 2n+3 + 2n+2 − 8.
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Conjecture 4.9. If a field F has property PN(n), n ≥ 2, then u(F ) ≤ ũ(F ) ≤
2n, or u(F ) = ũ(F ) = 2n+1.

Corollary 4.10. For n ≥ 2, PN(n) implies PN(m) for all m ≥ n + 2.
Furthermore, the following are equivalent:

(i) Conjecture 4.9 holds.
(ii) For n ≥ 2, PN(n) implies PN(n+ 1).

Proof. If n ≥ 2, then PN(n) implies that ũ(F ) ≤ 2n+2, and PN(m) for m ≥
n+ 2 follows from Lemma 4.4.
Now suppose that F has PN(n) and that Conjecture 4.9 holds. Then PN(n+1)
follows from Lemma 4.4. Conversely, suppose that n ≥ 2 and that PN(n)
implies PN(n + 1). Then we have u(F ) ≤ ũ(F ) ≤ 2n or 2n+1 ≤ u(F ) ≤
ũ(F ) ≤ 2n+1 + 2n − 2 because of PN(n), and also u(F ) ≤ ũ(F ) ≤ 2n+1 or
2n+2 ≤ u(F ) ≤ ũ(F ) ≤ 2n+2 + 2n+1 − 2 because of PN(n + 1). Putting the
two together, we obtain u(F ) ≤ ũ(F ) ≤ 2n or u(F ) = ũ(F ) = 2n+1. �

The only evidence we have as to the veracity of Conjecture 4.9 is the following.

Lemma 4.11. PN(2) implies PN(3). In particular, if F has PN(2), then
u(F ) ≤ ũ(F ) ≤ 4 or u(F ) = ũ(F ) = 8.

Proof. Suppose F has PN(2) and let ϕ be any 9-dimensional form over F .
Write ϕ ∼= α ⊥ β with dimα = 5. Since α is a Pfister neighbor, there exists
π ∈ GP2F such that π ⊂ α ⊂ ϕ (see, e.g., [L3, Ch. X, Prop. 4.19]). Write
ϕ ∼= π ⊥ γ. Then dim γ = 5 and γ is also a Pfister neighbor, so there exists
ρ ∈ GP2F such that ρ ⊂ γ. Hence, there exist a, b, c, d, e, f, g ∈ F ∗ such that
ϕ ∼= a〈〈b, c〉〉 ⊥ d〈〈e, f〉〉 ⊥ 〈g〉.
Since PN(2) implies that F is linked by Lemma 4.3(v), we may assume that
b = e, and after scaling (which doesn’t change the property of being a Pfister
neighbor), we may also assume a = 1, so

ϕ ∼= 〈〈b, c〉〉 ⊥ d〈〈b, f〉〉 ⊥ 〈g〉 ⊂ 〈〈b〉〉 ⊗ (〈〈c〉〉 ⊥ d〈〈f〉〉 ⊥ 〈g〉) .
Now δ ∼= 〈〈c〉〉 ⊥ d〈〈f〉〉 ⊥ 〈g〉 has dimension 5 and is therefore again a Pfister
neighbor, so as above there exist h, k, l,m ∈ F ∗ such that δ ∼= h〈〈k, l〉〉 ⊥ 〈m〉.
We thus get that

ϕ ⊂ 〈〈b〉〉 ⊗ δ ∼= h〈〈b, k, l〉〉 ⊥ m〈〈b〉〉 ⊂ h〈〈b, k, l,−hm〉〉 ∈ GP4F ,

which shows that ϕ is a Pfister neighbor.
The remaining statement now follows from Corollary 4.10. �

Since linked fields are exactly the fields that have PN(2), one readily recovers
the following result due to Elman and Lam [EL2] and Elman [E, Th. 4.7]. We
leave it as an exercise to the reader to fill in the details.

Corollary 4.12. Let F be a linked field. Then u(F ) = ũ(F ) ∈ {0, 1, 2, 4, 8}.
In particular, I4t F = 0. Furthermore, let n ∈ {0, 1, 2}. Then ũ(F ) ≤ 2n iff
In+1
t F = 0.
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Note that u(F ) = ũ(F ) = 0 can only occur when F is real, whereas u(F ) =
ũ(F ) = 1 implies that F is nonreal.

Remark 4.13. It is not difficult to see that the iterated power series field F =
C((X1))((X2)) . . . ((Xn)) is a (nonreal) field with property PN(n) and u(F ) =
2n+1.
Using Merkurjev’s method of iterated function fields, it is also possible to con-
struct to any n ≥ 2 a real field F with property PN(n) and ũ(F ) = 2n+1. For
details, see [H4].

Remark 4.14. Merkurjev [M] constructed to each positive integer n a field F
with I3F = 0 and u(F ) = 2n (resp. a field F with I3F = 0 and u(F ) = ∞).
Trivially, such a (nonreal) field is 3-linked. So the n-linkage property, n ≥ 3,
does not give any indication on how large u might be, whereas the stronger
property PN(n) does.

We finish this paper with some remarks on a possible geometric interpretation of
the property PN(n) which can be formulated in the language of Chow groups.
We refer to [Kar], [EKM, §80].
Let ϕ be a (nondegenerate) quadratic form of dimension n + 2 ≥ 3, and let
X = Xϕ be the smooth projective n-dimensional quadric {ϕ = 0} over F . We

call X (an)isotropic if ϕ is (an)isotropic. Let F denote the algebraic closure of
F and let X = XF . Let l0 be the class of a rational point in CHn(X), the Chow

group of 0-dimensional cycles, and let 1 ∈ CH0(X) be the class of X . A Rost
correspondence on X is an element ρ ∈ CHn(X ×X) which, over F , is equal
to l0 × 1 + 1 × l0 ∈ CHn(X ×X). A Rost projector is a Rost correspondence
that is also an idempotent in the ring of correspondences on X . It is known
that if a quadric has a Rost correspondence, then it has in fact also a Rost
projector (see [Kar, Rem. 1.4]). The study of Rost correspondences/projectors
has proven to be crucial in the motivic theory of quadrics.
It is known that if X is isotropic, then l0 × 1 + 1 × l0 is actually the unique
Rost projector on X (see [Kar, Lem. 5.1]). For anisotropic forms, the situation
is much more complicated.
The following is known:

Theorem 4.15. Let ϕ be an anisotropic form over F of dimension ≥ 3.

(i) If Xϕ possesses a Rost projector, then dimϕ = 2n + 1 for some n ≥ 1
(see Karpenko [Kar, Prop. 6.2, 6.4]).

(ii) If ϕ is a Pfister neighbor of dimension 2n + 1 then Xϕ has a unique
Rost projector (considered as element in CHr(Xϕ ×Xϕ), r = 2n − 1)
(see Izhboldin-Vishik [IV, Th. 1.12] for char(F ) = 0, Elman-Karpenko-
Merkurjev [EKM, Cor. 80.11] in the general case).

In view of part (i), it is natural to ask whether or not the converse of part (ii)
also holds. This is still an open problem (see also [Kar, Conj. 1.6]):

Conjecture 4.16. If an anisotropic quadric Xϕ possesses a Rost correspondence,
then ϕ is a Pfister neighbor of dimension 2n + 1 for some n ≥ 1.
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Of course, by Theorem 4.15(ii), to prove the conjecture, one may assume that
dimϕ = 2n + 1 for some n ≥ 1. Since 3-dimensional forms are always Pfister
neighbors, trivially the conjecture holds in that case. The conjecture is also
true in the cases n = 2, 3 as shown by Karpenko (see [Kar, Prop. 10.8, Th. 1.7]):

Theorem 4.17. Let ϕ be an anisotropic form over F of dimension 2n + 1,
n = 2, 3. If Xϕ possesses a Rost correspondence, then ϕ is a Pfister neighbor.

It is now natural to introduce the property RP (n) for n ≥ 1:

RP (n): F has the property RP (n) for n ≥ 1 if every form ϕ over F of dimen-
sion 2n + 1 has a Rost projector.

In view of the above, we immediately get

Proposition 4.18. Let n ≥ 1.

(i) PN(n) implies RP (n).
(ii) If n ≤ 3, then RP (n) implies PN(n).

(iii) If Conjecture 4.16 holds, then RP (n) implies PN(n) for all n ∈ N.

Conjecturally and in view of Theorem 4.5, we therefore get an ‘algebro-
geometric’ criterion for the finiteness of the Hasse number:

Corollary 4.19. If Conjecture 4.16 holds, then ũ(F ) <∞ (resp. u(F ) <∞
for nonreal F ) if and only if F has property RP (n) for some n ≥ 2.
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Abstract. Let F be a field of characteristic zero and let ft,n be
the stabilization homomorphism from the nth integral homology of
SLt(F ) to the nth integral homology of SLt+1(F ). We prove the
following results: For all n, ft,n is an isomorphism if t ≥ n+ 1 and is
surjective for t = n, confirming a conjecture of C-H. Sah. fn,n is an
isomorphism when n is odd and when n is even the kernel is isomorphic
to the (n + 1)st power of the fundamental ideal of the Witt Ring of
F . When n is even the cokernel of fn−1,n is isomorphic to the nth
Milnor-Witt K-theory group of F . When n is odd, the cokernel of
fn−1,n is isomorphic to the square of the nth Milnor K-group of F .
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1. Introduction

Given a family of groups {Gt}t∈N with canonical homomorphisms Gt → Gt+1,
we say that the family has homology stability if there exist constants K(n)
such that the natural maps Hn(Gt,Z) → Hn(Gt+1,Z) are isomorphisms for
t ≥ K(n). The question of homology stability for families of linear groups over
a ring R - general linear groups, special linear groups, symplectic, orthogo-
nal and unitary groups - has been studied since the 1970s in connection with
applications to algebraic K-theory, algebraic topology, the scissors congruence
problem, and the homology of Lie groups. These families of linear groups are
known to have homology stability at least when the rings satisfy some appro-
priate finiteness condition, and in particular in the case of fields and local rings
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([4],[26],[27],[25], [5],[2], [21],[15],[14]). It seems to be a delicate - but inter-
esting and apparently important - question, however, to decide the minimal
possible value of K(n) for a particular class of linear groups (with coefficients
in a given class of rings) and the nature of the obstruction to extending the
stability range further.
The best illustration of this last remark are the results of Suslin on the integral
homology of the general linear group of a field in the paper [23]. He proved
that, for an infinite field F , the maps Hn(GLt(F ),Z) → Hn(GLt+1(F ),Z) are
isomorphisms for t ≥ n (so that K(n) = n in this case), while the cokernel of
the map Hn(GLn−1(F ),Z) → Hn(GLn(F ),Z) is naturally isomorphic to the
nth Milnor K-group, KM

n (F ). In fact, if we let

Hn(F ) := Coker(Hn(GLn−1(F ),Z)→ Hn(GLn(F ),Z)),

his arguments show that there is an isomorphism of graded rings H•(F ) ∼=
KM

• (F ) (where the multiplication on the first term comes from direct sum of
matrices and cross product on homology). In particular, the non-negatively
graded ring H•(F ) is generated in dimension 1.
Recent work of Barge and Morel ([1]) suggested that Milnor-WittK-theory may
play a somewhat analogous role for the homology of the special linear group.
The Milnor-Witt K-theory of F is a Z-graded ring KMW

• (F ) surjecting natu-
rally onto Milnor K-theory. It arises as a ring of operations in stable motivic
homotopy theory. (For a definition see section 2 below, and for more details see
[17, 18, 19].) Let SHn(F ) := Coker(Hn(SLn−1(F ),Z) → Hn(SLn(F ),Z)) for
n ≥ 1, and let SH0(F ) = Z [F×] for convenience. Barge and Morel construct
a map of graded algebras SH•(F )→ KMW

• (F ) for which the square

SH•(F ) //

��

KMW
• (F )

��
H•(F ) // KM

• (F )

commutes.
A result of Suslin ([24]) implies that the map H2(SL2(F ),Z) = SH2(F ) →
KMW

2 (F ) is an isomorphism. Since positive-dimensional Milnor-Witt K-theory
is generated by elements of degree 1, it follows that the map of Barge and
Morel is surjective in even dimensions greater than or equal to 2. They ask the
question whether it is in fact an isomorphism in even dimensions.
As to the question of the range of homology stability for the special linear
groups of an infinite field, as far as the authors are aware the most general re-
sult to date is still that of van der Kallen [25], whose results apply to much more
general classes of rings. In the case of a field, he proves homology stability for
Hn(SLt(F ),Z) in the range t ≥ 2n+1. On the other hand, known results when
n is small suggest a much larger range. For example, the theorems of Mat-
sumoto and Moore imply that the maps H2(SLt(F ),Z) → H2(SLt+1(F ),Z)
are isomorphisms for t ≥ 3 and are surjective for t = 2. In the paper
[22] (Conjecture 2.6), C-H. Sah conjectured that for an infinite field F (and
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more generally for a division algebra with infinite centre), the homomorphism
Hn(SLt(F ),Z)→ Hn(SLt+1(F ), ) is an isomorphism if t ≥ n+ 1 and is surjec-
tive for t = n.
The present paper addresses the above questions of Barge/Morel and Sah in
the case of a field of characteristic zero. We prove the following results about
the homology stability for special linear groups:

Theorem 1.1. Let F be a field of characteristic 0. For n, t ≥ 1, let ft,n be the
stabilization homomorphism Hn(SLt(F ),Z)→ Hn(SLt+1(F ),Z)

(1) ft,n is an isomorphism for t ≥ n+ 1 and is surjective for t = n.
(2) If n is odd fn,n is an isomorphism
(3) If n is even the kernel of fn,n is isomorphic to In+1(F ).
(4) For even n the cokernel of fn−1,n is naturally isomorphic to KMW

n (F ).
(5) For odd n ≥ 3 the cokernel of fn−1,n is naturally isomorphic to

2KM
n (F ).

Proof. The proofs of these statements can be found below as follows:

(1) Corollary 5.11.
(2) Corollary 6.12.
(3) Corollary 6.13.
(4) Corollary 6.11.
(5) Corollary 6.13

�

Our strategy is to adapt Suslin’s argument for the general linear group in [23] to
the case of the special linear group. Suslin’s argument is an ingenious variation
on the method of van der Kallen in [25], in turn based on ideas of Quillen.
The broad idea is to find a highly connected simplicial complex on which the
group Gt acts and for which the stabilizers of simplices are (approximately) the
groups Gr, with r ≤ t, and then to use this to construct a spectral sequence
calculating the homology of the Gn in terms of the homology of the Gr. Suslin
constructs a family E(n) of such spectral sequences, calculating the homology
of GLn(F ). He constructs partially-defined products E(n)×E(m)→ E(n+m)
and then proves some periodicity and decomposabilty properties which allow
him to conclude by an easy induction.
Initially, the attempt to extend these arguments to the case of SLn(F ) does not
appear very promising. Two obstacles to extending Suslin’s arguments become
quickly apparent.
The main obstacle is Suslin’s Theorem 1.8 which says that a certain inclusion of
a block diagonal linear group in a block triangular group is a homology isomor-
phism. The corresponding statement for subgroups of the special linear group
is emphatically false, as elementary calculations easily show. Much of Suslin’s
subsequent results - in particular, the periodicity and decomposability proper-
ties of the spectral sequences E(n) and of the graded algebra S•(F ) which plays
a central role - depend on this theorem. And, indeed, the analogous spectral
sequences and graded algebra which arise when we replace the general linear
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with the special linear group do not have these periodicity and decomposability
properties.
However, it turns out - at least when the characteristic is zero - that the failure
of Suslin’s Theorem 1.8 is not fatal. A crucial additional structure is available
to us in the case of the special linear group; almost everything in sight in a
Z[F×]-module. In the analogue of Theorem 1.8, the map of homology groups
is a split inclusion whose cokernel has a completely different character as a
Z[F×]-module than the homology of the block diagonal group. The former is
‘additive ’, while the latter is ‘multiplicative ’, notions which we define and
explore in section 4 below. This leads us to introduce the concept of ‘AM
modules’, which decompose in a canonical way into a direct sum of an additive
factor and a multiplicative factor. This decomposition is sufficiently canonical
that in our graded ring structures the additive and multiplicative parts are
each ideals. By working modulo the messy additive factors and projecting onto
multiplicative parts, we recover an analogue of Suslin’s Theorem 1.8 (Theorem
4.23 below), which we then use to prove the necessary periodicity (Theorem
5.10) and decomposability (Theorem 6.8) results.
A second obstacle to emulating the case of the general linear group is the van-
ishing of the groups H1(SLn(F ),Z). The algebra H•(F ), according to Suslin’s
arguments, is generated by degree 1. On the other hand, SH1(F ) = 0 =
H1(SL1(F ),Z) = 0. This means that the best we can hope for in the case of
the special linear group is that the algebra SH•(F ) is generated by degrees 2
and 3. This indeed turns out to be essentially the case, but it means we have
to work harder to get our induction off the ground. The necessary arguments
in degree n = 2 amount to the Theorem of Matsumoto and Moore, as well as
variations due to Suslin ([24]) and Mazzoleni ([11]). The argument in degree
n = 3 was supplied recently in a paper by the present authors ([8]).
We make some remarks on the hypothesis of characteristic zero in this paper:
This assumption is used in our definition of AM-modules and the derivation
of their properties in section 4 below. In fact, a careful reading of the proofs
in that section will show that at any given point all that is required is that
the prime subfield be sufficiently large; it must contain an element of order
not dividing m for some appropriate m. Thus in fact our arguments can easily
be adapted to show that our main results on homology stability for the nth
homology group of the special linear groups are true provided the prime field is
sufficiently large (in a way that depends on n). However, we have not attempted
here to make this more explicit. To do so would make the statements of the
results unappealingly complicated, and we will leave it instead to a later paper
to deal with the case of positive characteristic. We believe that an appropriate
extension of the notion of AM-module will unlock the characteristic p > 0
case.
As to our restriction to fields rather than more general rings, we note that
Daniel Guin [5] has extended Suslin’s results to a larger class of rings with
many units. We have not yet investigated a similar extension of the results
below to this larger class of rings.
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2. Notation and Background Results

2.1. Group Rings and Grothendieck-Witt Rings. For a group G, we
let Z [G] denote the corresponding integral group ring. It has an additive Z-
basis consisting of the elements g ∈ G, and is made into a ring by linearly
extending the multiplication of group elements. In the case that the group G
is the multiplicative group, F×, of a field F , we will denote the basis elements
by 〈a〉, for a ∈ F×. We use this notation in order, for example, to distinguish
the elements 〈1− a〉 from 1 − 〈a〉, or 〈−a〉 from −〈a〉, and also because it
coincides, conveniently for our purposes, with the notation for generators of the
Grothendieck-Witt ring (see below). There is an augmentation homomorphism
ǫ : Z [G] → Z, 〈g〉 7→ 1, whose kernel is the augmentation ideal IG, generated
by the elements g − 1. Again, if G = F×, we denote these generators by
〈〈a〉〉 := 〈a〉 − 1.
The Grothendieck-Witt ring of a field F is the Grothendieck group, GW(F ),
of the set of isometry classes of nondgenerate symmetric bilinear forms under
orthogonal sum. Tensor product of forms induces a natural multiplication on
the group. As an abstract ring, this can be described as the quotient of the
ring Z

[
F×/(F×)2

]
by the ideal generated by the elements 〈〈a〉〉 · 〈〈1 − a〉〉,

a 6= 0, 1. (This is just a mild reformulation of the presentation given in Lam,
[9], Chapter II, Theorem 4.1.) Here, the induced ring homomorphism Z [F×]→
Z
[
F×/(F×)2

]
→ GW(F ), sends 〈a〉 to the class of the 1-dimensional form with

matrix [a]. This class is (also) denoted 〈a〉. GW(F ) is again an augmented
ring and the augmentation ideal, I(F ), - also called the fundamental ideal - is
generated by Pfister 1-forms, 〈〈a〉〉. It follows that the n-th power, In(F ), of
this ideal is generated by Pfister n-forms 〈〈a1, . . . , an〉〉 := 〈〈a1〉〉 · · · 〈〈an〉〉.
Now let h := 〈1〉+ 〈−1〉 = 〈〈−1〉〉 + 2 ∈ GW(F ). Then h · I(F ) = 0, and the
Witt ring of F is the ring

W (F ) :=
GW(F )

〈h〉 =
GW(F )

h · Z .

Since h 7→ 2 under the augmentation, there is a natural ring homomorphism
W (F )→ Z/2. The fundamental ideal I(F ) of GW(F ) maps isomorphically to
the kernel of this ring homomorphism under the map GW(F ) → W (F ), and
we also let I(F ) denote this ideal.
For n ≤ 0, we define In(F ) := W (F ). The graded additive group I•(F ) =
{In(F )}n∈Z is given the structure of a commutative graded ring using the
natural graded multiplication induced from the multiplication on W (F ). In
particular, if we let η ∈ I−1(F ) be the element corresponding to 1 ∈ W (F ),
then multiplication by η : In+1(F )→ In(F ) is just the natural inclusion.

2.2. Milnor K-theory and Milnor-Witt K-theory. The Milnor ring of
a field F (see [12]) is the graded ring KM

• (F ) with the following presentation:
Generators: {a} , a ∈ F×, in dimension 1.
Relations:

(a) {ab} = {a}+ {b} for all a, b ∈ F×.
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(b) {a} · {1− a} = 0 for all a ∈ F× \ {1}.
The product {a1} · · · {an} in KM

n (F ) is also written {a1, . . . , an}. So KM
0 (F ) =

Z and KM
1 (F ) is an additive group isomorphic to F×.

We let kM• (F ) denote the graded ring KM
• (F )/2 and let in(F ) :=

In(F )/In+1(F ), so that i•(F ) is a non-negatively graded ring.
In the 1990s, Voevodsky and his collaborators proved a fundamental and deep
theorem - originally conjectured by Milnor ([13]) - relating Milnor K-theory to
quadratic form theory:

Theorem 2.1 ([20]). There is a natural isomorphism of graded rings kM• (F ) ∼=
i•(F ) sending {a} to 〈〈a〉〉.
In particular for all n ≥ 1 we have a natural identification of kMn (F ) and
in(F ) under which the symbol {a1, . . . , an} corresponds to the class of the form
〈〈a1, . . . , an〉〉.
The Milnor-Witt K-theory of a field is the graded ring KMW

• (F ) with the
following presentation (due to F. Morel and M. Hopkins, see [17]):
Generators: [a], a ∈ F×, in dimension 1 and a further generator η in dimension
−1.
Relations:

(a) [ab] = [a] + [b] + η · [a] · [b] for all a, b ∈ F×

(b) [a] · [1− a] = 0 for all a ∈ F× \ {1}
(c) η · [a] = [a] · η for all a ∈ F×

(d) η · h = 0, where h = η · [−1] + 2 ∈ KMW
0 (F ).

Clearly there is a unique surjective homomorphism of graded rings KMW
• (F )→

KM
• (F ) sending [a] to {a} and inducing an isomorphism

KMW
• (F )

〈η〉
∼= KM

• (F ).

Furthermore, there is a natural surjective homomorphism of graded rings
KMW

• (F ) → I•(F ) sending [a] to 〈〈a〉〉 and η to η. Morel shows that there
is an induced isomorphism of graded rings

KMW
• (F )

〈h〉
∼= I•(F ).

The main structure theorem on Milnor-Witt K-theory is the following theorem
of Morel:

Theorem 2.2 (Morel, [18]). The commutative square of graded rings

KMW
• (F ) //

��

KM
• (F )

��
I•(F ) // i•(F )

is cartesian.
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Thus for each n ∈ Z we have an isomorphism

KMW
n (F ) ∼= KM

n (F )×in(F ) I
n(F ).

It follows that for all n there is a natural short exact sequence

0→ In+1(F )→ KMW
n (F )→ KM

n (F )→ 0

where the inclusion In+1(F )→ KMW
n (F ) is given by

〈〈a1, . . . , an+1〉〉 7→ η[a1] · · · [an].

Similarly, for n ≥ 0, there is a short exact sequence

0→ 2KM
n (F )→ KMW

n (F )→ In(F )→ 0

where the inclusion 2KM
n (F )→ KMW

n (F ) is given (for n ≥ 1) by

2{a1, . . . , an} 7→ h[a1] · · · [an].

Observe that, when n ≥ 2,

h[a1][a2] · · · [an] = ([a1][a2]− [a2][a1])[a3] · · · [an] = [a21][a2] · · · [an].

(The first equality follows from Lemma 2.3 (3) below, the second from the
observation that [a21] · · · [an] ∈ Ker(KMW

n (F ) → In(F )) = 2KM
n (F ) and the

fact, which follows from Morel’s theorem, that the composite 2KM
n (F ) →

KMW
n (F )→ KM

n (F ) is the natural inclusion map.)
When n = 0 we have an isomorphism of rings

GW(F ) ∼= W (F )×Z/2 Z ∼= KMW
0 (F ).

Under this isomorphism 〈〈a〉〉 corresponds to η[a] and 〈a〉 corresponds to η[a]+
1. (Observe that with this identification, h = η[−1] + 2 = 〈1〉 + 〈−1〉 ∈
KMW

0 (F ) = GW(F ), as expected.)
Thus each KMW

n (F ) has the structure of a GW(F )-module (and hence also of a
Z [F×]-module), with the action given by 〈〈a〉〉 · ([a1] · · · [an]) = η[a][a1] · · · [an].
We record here some elementary identities in Milnor-Witt K-theory which we
will need below.

Lemma 2.3. Let a, b ∈ F×. The following identities hold in the Milnor-Witt
K-theory of F :

(1) [a][−1] = [a][a].
(2) [ab] = [a] + 〈a〉[b].
(3) [a][b] = −〈−1〉[b][a].

Proof.

(1) See, for example, the proof of Lemma 2.7 in [7].
(2) 〈a〉b = (η[a] + 1)[b] = η[a][b] + [b] = [ab]− [a].
(3) See [7], Lemma 2.7.

�
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2.3. Homology of Groups. Given a group G and a Z [G]-module M ,
Hn(G,M) will denote the nth homology group of G with coefficients in
the module M . B•(G) will denote the right bar resolution of G: Bn(G)
is the free right Z [G]-module with basis the elements [g1| · · · |gn], gi ∈ G.
(B0(G) is isomorphic to Z [G] with generator the symbol [ ].) The boundary
d = dn : Bn(G)→ Bn−1(G), n ≥ 1, is given by

d([g1| · · · |gn]) =

n−1∑

i=o

(−1)i[g1| · · · |ĝi| · · · |gn] + (−1)n[g1| · · · |gn−1] 〈gn〉 .

The augmentation B0(G)→ Z makes B•(G) into a free resolution of the trivial
Z [G]-module Z, and thus Hn(G,M) = Hn(B•(G)⊗Z[G] M).
If C• = (Cq , d) is a non-negative complex of Z [G]-modules, then E•,• :=
B•(G) ⊗Z[G] C• is a double complex of abelian groups. Each of the two fil-
trations on E•,• gives a spectral sequence converging to the homology of the
total complex of E•,•, which is by definition, H•(G,C). (see, for example,
Brown, [3], Chapter VII).
The first spectral sequence has the form

E2
p,q = Hp(G,Hq(C)) =⇒ Hp+q(G,C).

In the special case that there is a weak equivalence C• → Z (the complex
consisting of the trivial module Z concentrated in dimension 0), it follows that
H•(G,C) = H•(G,Z).
The second spectral sequence has the form

E1
p,q = Hp(G,Cq) =⇒ Hp+q(G,C).

Thus, if C• is weakly equivalent to Z, this gives a spectral sequence converging
to H•(G,Z).
Our analysis of the homology of special linear groups will exploit the action of
these groups on certain permutation modules. It is straightforward to compute
the map induced on homology groups by a map of permutation modules. We
recall the following basic principles (see, for example, [6]): If G is a group and
if X is a G-set, then Shapiro’s Lemma says that

Hp(G,Z[X ]) ∼=
⊕

y∈X/G
Hp(Gy,Z),

the isomorphism being induced by the maps

Hp(Gy ,Z)→ Hp(G,Z[X ])

described at the level of chains by

Bp ⊗Z[Gy] Z→ Bp ⊗Z[G] Z[X ], z ⊗ 1 7→ z ⊗ y.
Let Xi, i = 1, 2 be transitive G-sets. Let xi ∈ Xi and let Hi be the stabiliser
of xi, i = 1, 2. Let φ : Z[X1]→ Z[X2] be a map of Z[G]-modules with

φ(x1) =
∑

g∈G/H2

nggx2, with ng ∈ Z.
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Then the induced map φ• : H•(H1,Z)→ H•(H2,Z) is given by the formula

φ•(z) =
∑

g∈H1\G/H2

ngcorH2

g−1H1g∩H2
resg

−1H1g
g−1H1g∩H2

(
g−1 · z

)
(1)

There is an obvious extension of this formula to non-transitive G-sets.

2.4. Homology of SLn(F ) and Milnor-Witt K-theory. Let F be an
infinite field.
The theorem of Matsumoto and Moore ([10], [16]) gives a presentation of the
group H2(SL2(F ),Z). It has the following form: The generators are symbols
〈a1, a1〉, ai ∈ F×, subject to the relations:

(i) 〈a1, a2〉 = 0 if ai = 1 for some i
(ii) 〈a1, a2〉 = 〈a−1

2 , a1〉
(iii) 〈a1, a2b2〉+ 〈a2, b2〉 = 〈a1a2, b2〉+ 〈a1, a2〉
(iv) 〈a1, a2〉 = 〈a1,−a1a2〉
(v) 〈a1, a2〉 = 〈a1, (1− a1)a2〉

It can be shown that for all n ≥ 2, KMW
n (F ) admits a (generalised) Matsumoto-

Moore presentation:

Theorem 2.4 ([7], Theorem 2.5). For n ≥ 2, KMW
n (F ) admits the following

presentation as an additive group:
Generators: The elements [a1][a2] · · · [an], ai ∈ F×.
Relations:

(i) [a1][a2] · · · [an] = 0 if ai = 1 for some i.
(ii) [a1] · · · [ai−1][ai] · · · [an] = [a1] · · · [a−1

i ][ai−1] · · · [an]

(iii) [a1] · · · [an−1][anbn] + [a1] · · · [̂an−1][an][bn] = [a1] · · · [an−1an][bn] +
[a1] · · · [an−1][an]

(iv) [a1] · · · [an−1][an] = [a1] · · · [an−1][−an−1an]
(v) [a1] · · · [an−1][an] = [a1] · · · [an−1][(1− an−1)an]

In particular, it follows when n = 2 that there is a natural isomorphism
KMW

2 (F ) ∼= H2(SL2(F ),Z). This last fact is essentially due to Suslin ([24]).
A more recent proof, which we will need to invoke below, has been given by
Mazzoleni ([11]).
Recall that Suslin ([23]) has constructed a natural surjective homomorphism
Hn(GLn(F ),Z)→ KM

n (F ) whose kernel is the image of Hn(GLn−1(F ),Z).
In [8], the authors proved that the map H3(SL3(F ),Z) → H3(GL3(F ),Z) is
injective, that the image of the composite H3(SL3(F ),Z)→ H3(GL3(F ),Z)→
KM

3 (F ) is 2KM
3 (F ) and that the kernel of this composite is precisely the image

of H3(SL2(F ),Z).
In the next section we will construct natural homomorphisms Tn ◦ ǫn :
Hn(SLn(F ),Z) → KMW

n (F ), in a manner entirely analogous to Suslin’s con-
struction. In particular, the image of Hn(SLn−1(F ),Z) is contained in the
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kernel of Tn ◦ ǫn and the diagrams

Hn(SLn(F ),Z) //

��

KMW
n (F )

��
Hn(GLn(F ),Z) // KM

n (F )

commute. It follows that the image of T3 ◦ ǫ3 is 2KM
3 (F ) ⊂ KMW

3 (F ), and its
kernel is the image of H3(SL2(F ),Z).

3. The algebra S̃(F •)

In this section we introduce a graded algebra functorially associated to F which
admits a natural homomorphism to Milnor-Witt K-theory and from the ho-
mology of SLn(F ). It is the analogue of Suslin’s algebra S•(F ) in [24], which
admits homomorphisms to Milnor K-theory and from the homology of GLn(F ).
However, we will need to modify this algebra in the later sections below, by
projecting onto the ‘multiplicative ’ part, in order to derive our results about
the homology of SLn(F ).
We say that a finite set of vectors v1, . . . , vq in an n-dimensional vector space V
are in general position if every subset of size min(q, n) is linearly independent.
If v1, . . . , vq are elements of the n-dimensional vector space V and if E is an
ordered basis of V , we let [v1| · · · |vq]E denote the n × q matrix whose i-th
column is the components of vi with respect to the basis E .

3.1. Definitions. For a field F and finite-dimensional vector spaces V and
W , we let Xp(W,V ) denote the set of all ordered p-tuples of the form

((w1, v1), . . . , (wp, vp))

where (wi, vi) ∈ W ⊕ V and the vi are in general position. We also define
X0(W,V ) := ∅. Xp(W,V ) is naturally an A(W,V )-module, where

A(W,V ) :=

(
IdW Hom(V,W )

0 GL(V )

)
⊂ GL(W ⊕ V )

Let Cp(W,V ) = Z[Xp(W,V )], the free abelian group with basis the elements
of Xp(W,V ). We obtain a complex, C•(W,V ), of A(W,V )-modules by intro-
ducing the natural simplicial boundary map

dp+1 : Cp+1(W,V ) → Cp(W,V )

((w1, v1), . . . , (wp+1, vp+1)) 7→
p+1∑

i=1

(−1)i+1((w1, v1), . . . , ̂(wi, vi), . . . , (wp+1, vp+1))

Lemma 3.1. If F is infinite, then Hp(C•(W,V )) = 0 for all p.
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Proof. If

z =
∑

i

ni((w
i
1, v

i
1), . . . , (wip, v

i
p)) ∈ Cp(W,V )

is a cycle, then since F is infinite, it is possible to choose v ∈ V such that
v, vi1, . . . , v

i
p are in general position for all i. Then z = dp+1((−1)psv(z)) where

sv is the ‘partial homotopy operator’ defined by sv((w1, v1), . . . , (wp, vp)) =
{

((w1, v1), . . . , (wp, vp), (0, v)), if v, v1, . . . vp are in general position,
0, otherwise

�

We will assume our field F is infinite for the remainder of this section. (In later
sections, it will even be assumed to be of characteristic zero.)
If n = dimF (V ), we let H(W,V ) := Ker(dn) = Im(dn+1). This is an

A(W,V )-submodule of Cn(W,V ). Let S̃(W,V ) := H0(SA(W,V ), H(W,V )) =
H(W,V )SA(W,V ) where SA(W,V ) := A(W,V ) ∩ SL(W ⊕ V ).
If W ′ ⊂ W , there are natural inclusions Xp(W

′, V ) → Xp(W,V ) inducing a
map of complexes of A(W ′, V )-modules C•(W ′, V )→ C•(W,V ).

When W = 0, we will use the notation, Xp(V ), Cp(V ), H(V ) and S̃(V ) instead

of Xp(0, V ), Cp(0, V ), H(0, V ) and S̃(0, V )
Since, A(W,V )/SA(W,V ) ∼= F×, any homology group of the form

Hi(SA(W,V ),M), where M is a A(W,V )-module,

is naturally a Z[F×]-module: If a ∈ F× and if g ∈ A(W,V ) is any element
of determinant a, then the action of a is the map on homology induced by
conjugation by g on A(W,V ) and multiplication by g on M . In particular, the

groups S̃(W,V ) are Z[F×]-modules.
Let e1, . . . , en denote the standard basis of Fn. Given a1, . . . , an ∈ F×, we let
⌊a1, . . . , an⌉ denote the class of dn+1(e1, . . . , en, a1e1 + · · ·+ anen) in S̃(Fn). If
b ∈ F×, then 〈b〉 · ⌊a1, . . . , an⌉ is represented by

dn+1(e1, . . . , bei, . . . , en, a1e1 + · · · aibei · · ·+ anen)

for any i. (As a lifting of b ∈ F×, choose the diagonal matrix with b in the
(i, i)-position and 1 in all other diagonal positions.)

Remark 3.2. Given x = (v1, . . . , vv, v) ∈ Xn+1(Fn), let A = [v1| · · · |vn] ∈
GLn(F ) of determinant detA and let A′ = diag(1, . . . , 1, detA). Then B =
A′A−1 ∈ SLn(F ) and thus x is in the SLn(F )-orbit of

(e1, . . . , en−1, detAen, A
′w) with w = A−1v,

and hence dn+1(x) represents the element 〈detA〉 ⌊w⌉ in S̃(Fn).

Theorem 3.3. S̃(Fn) has the following presentation as a Z[F×]-module:
Generators: The elements ⌊a1, . . . , an⌉, ai ∈ F×
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Relations: For all a1, . . . , an ∈ F× and for all b1, . . . , bn ∈ F× with bi 6= bj for
i 6= j

⌊b1a1, . . . , bnan⌉ − ⌊a1, . . . , an⌉ =
n∑

i=1

(−1)n+i
〈
(−1)n+iai

〉
⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , an(bn − bi), bi⌉.

Proof. Taking SLn(F )-coinvariants of the exact sequence of Z[GLn(F )]-
modules

Cn+2(Fn)
dn+2 // Cn+1(Fn)

dn+1 // H(Fn) // 0

gives the exact sequence of Z[F×]-modules

Cn+2(Fn)SLn(F )
dn+2 // Cn+1(Fn)SLn(F )

dn+1 // S̃(Fn) // 0.

It is straightforward to verify that

Xn+1(Fn) ∼=
∐

a=(a1,...,an),ai 6=0

GLn(F ) · (e1, . . . , en, a)

as a GLn(F )-set. It follows that

Cn+1(Fn) ∼=
⊕

a

Z[GLn(F )] · (e1, . . . , en, a)

as a Z[GLn(F )]-module, and thus that

Cn+1(Fn)SLn(F )
∼=
⊕

a

Z[F×] · (e1, . . . , en, a)

as a Z[F×]-module.
Similarly, every element of Xn+2(Fn) is in the GLn(F )-orbit of a unique el-
ement of the form (e1, . . . , en, a, b · a) where a = (a1, . . . , an) with ai 6= 0 for
all i and b = (b1, . . . , bn) with bi 6= 0 for all i and bi 6= bj for all i 6= j, and
b · a := (b1a1, . . . , bnan). Thus

Xn+2(Fn) ∼=
∐

(a,b)

GLn(F ) · (e1, . . . , en, a, b · a)

as a GLn(F )-set and

Cn+2(Fn)SLn(F )
∼=
⊕

(a,b)

Z[F×] · (e1, . . . , en, a, b · a)

as a Z[F×]-module.
So dn+1 induces an isomorphism

⊕Z[F×] · (e1, . . . , en, a)

〈dn+2(e1, . . . , en, a, b · a)|(a, b)〉
∼= S̃(Fn).

Now dn+2(e1, . . . , en, a, b · a) =
n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a, b · a) + (−1)i
(
(e1, . . . , en, b · a)− (e1, . . . , en, a)

)
.
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Applying the idea of Remark 3.2 to the terms (e1, . . . , êi, . . . , en, a, b · a) in
the sum above, we let Mi(a) := [e1| · · · |êi| · · · |en|a] and δi = detMi(a) =
(−1)n−iai. Since

Mi(a)−1 =




1 . . . 0 −a1/ai 0 . . . 0

0
. . .

...
...

...
...

...
0 . . . 1 −ai−1/ai 0 . . . 0
0 . . . 0 −ai+1ai 1 . . . 0

0 . . . 0
... 0

. . . 0
0 . . . 0 −an/ai 0 . . . 1
0 . . . 0 1/ai 0 . . . 0




it follows that dn+1(e1, . . . , êi, . . . , en, a, b·a) represents 〈δi〉 ⌊wi⌉ ∈ S̃(Fn) where

wi = Mi(a)−1(b · a) = (a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , an(bn − bi), bi). This
proves the theorem. �

3.2. Products. If W ′ ⊂W , there is a natural bilinear pairing

Cp(W
′, V )× Cq(W )→ Cp+q(W ⊕ V ), (x, y) 7→ x ∗ y

defined on the basis elements by

((w
′
1, v1), . . . , (w

′
p, vp)) ∗ (w1, . . . , wq) :=

(
(w

′
1, v1), . . . , (w

′
p, vp), (w1, 0), . . . , (wq , 0)

)
.

This pairing satisfies dp+q(x ∗ y) = dp(x) ∗ y + (−1)px ∗ dq(y).
Furthermore, if α ∈ A(W ′, V ) ⊂ GL(W ⊕ V ) then (αx) ∗ y = α(x ∗ y), and if
α ∈ GL(V ) ⊂ A(W ′, V ) ⊂ GL(W ⊕ V ) and β ∈ GL(W ) ⊂ GL(W ⊕ V ), then
(αx) ∗ (βy) = (α · β)(x ∗ y). (However, if W ′ 6= 0 then the images of A(W ′, V )
and GL(W ) in GL(W ⊕ V ) don’t commute.)
In particular, there are induced pairings on homology groups

H(W ′, V )⊗H(W )→ H(W ⊕ V ),

which in turn induce well-defined pairings

S̃(W ′, V )⊗H(W )→ S̃(W,V ) and S̃(V )⊗ S̃(W )→ S̃(W ⊕ V ).

Observe further that this latter pairing is Z[F×]-balanced: If a ∈ F×, x ∈ S̃(W )

and y ∈ S̃(V ), then (〈a〉x) ∗ y = x ∗ (〈a〉 y) = 〈a〉 (x ∗ y). Thus there is a well-
defined map

S̃(V )⊗Z[F×] S̃(W )→ S̃(W ⊕ V ).

In particular, the groups {H(Fn)}n≥0 form a natural graded (associative) al-

gebra, and the groups {S̃(Fn)}n≥0 = S̃(F •) form a graded associative Z[F×]-
algebra.
The following explicit formula for the product in S̃(F •) will be needed below:

Lemma 3.4. Let a1, . . . , an and a′1, . . . , a
′
m be elements of F×. Let b1, . . . , bn,

b′1, . . . , b
′
m be any elements of F× satisfying bi 6= bj for i 6= j and b′s 6= b′t for

s 6= t.
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Then

⌊a1, . . . , an⌉ ∗ ⌊a
′
1, . . . , a

′
m⌉ =

=
n
∑

i=1

m
∑

j=1

(−1)m+n+i+j
〈

(−1)i+jaia
′
j

〉

×

×⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, a
′
1(b

′
1 − b′j), . . . , ̂a′

j(b
′
j − b′j), . . . , b

′
j⌉

+(−1)n
n
∑

i=1

(−1)i+1
〈

(−1)i+1ai

〉

⌊a1(b1 − bi), . . . , ̂ai(bi − bi), . . . , bi, b
′
1a

′
1, . . . , b

′
ma′

m⌉

+(−1)m
m
∑

j=1

(−1)j+1
〈

(−1)j+1a′
j

〉

⌊b1a1, . . . , bnan, a
′
1(b

′
1 − b′j), . . . , ̂a′

j(b
′
j − b′j), . . . , b

′
j⌉

+⌊b1a1, . . . , bnan, b
′
1a

′
1, . . . , b

′
ma′

m⌉

Proof. This is an entirely straightforward calculation using the defini-
tion of the product, Remark 3.2, the matrices Mi(a), Mj(a

′) as in
the proof of Theorem 3.3, and the partial homotopy operators sv with
v = (a1b1, . . . , anbn, a

′
1b

′
1, . . . , a

′
mb

′
m). �

3.3. The maps ǫV . If dimF (V ) = n, then the exact sequence of GL(V )-
modules

0 // H(V ) // Cn(V )
dn // Cn−1(V )

dn−1 // · · · d1 // C0(V ) = Z // 0

gives rise to an iterated connecting homomorphism

ǫV : Hn(SL(V ),Z)→ H0(SL(V ), H(V )) = S̃(V ).

Note that the collection of groups {Hn(SLn(F ),Z)} form a graded Z[F×]-
algebra under the graded product induced by exterior product on homology,
together with the obvious direct sum homomorphism SLn(F ) × SLm(F ) →
SLn+m(F ).

Lemma 3.5. The maps ǫn : Hn(SLn(F ),Z)→ S̃(Fn), n ≥ 0, give a well-defined
homomorphism of graded Z[F×]-algebras; i.e.

(1) If a ∈ F× and z ∈ Hn(SLn(F ),Z), then ǫn(〈a〉 z) = 〈a〉 ǫn(z) in S̃(Fn),
and

(2) If z ∈ Hn(SLn(F ),Z) and w ∈ Hm(SLm(F ),Z) then

ǫn+m(z × w) = ǫn(z) ∗ ǫm(w) in S̃(Fn+m).

Proof.

(1) The exact sequence above is a sequence of GL(V )-modules and hence
all of the connecting homomorphisms δi : Hn−i+1(SL(V ), Im(di)) →
Hn−i(SL(V ),Ker(di)) are F×-equivariant.

(2) Let Cτ• (V ) denote the truncated complex.

Cτp (V ) =

{
Cp(V ), p ≤ dimF (V )

0, p > dimF (V )
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Thus H(V ) → Cτ• (V ) is a weak equivalence of complexes (where we regard
H(V ) as a complex concentrated in dimension dim (V )). Since the complexes
Cτ• (V ) are complexes of free abelian groups, it follows that for two vector spaces
V and W , the map H(V )⊗ZH(W )→ T•(V,W ) is an equivalence of complexes,
where T•(V,W ) is the total complex of the double complex Cτ• (V ) ⊗Z Cτ• (W ).
Now T•(V,W ) is a complex of SL(V ) × SL(W )-modules, and the product ∗
induces a commutative diagram of complexes of SL(V )× SL(W )-complexes:

H(V )⊗Z H(W ) //

∗
��

Cτ• (V )⊗ Cτ• (W )

∗
��

H(V ⊕W ) // Cτ• (V ⊕W )

which, in turn, induces a commutative diagram

Hn(SL(V ),Z)⊗ Hm(SL(W ),Z)
ǫV ⊗ǫW //

×

��

H0(SL(V ),H(V ))⊗ H0(SL(W ),H(W ))

×

��
Hn+m(SL(V )× SL(W ),Z⊗ Z)

ǫT• //

��

H0(SL(V )× SL(W ),H(V )⊗H(W ))

��
Hn+m(SL(V ⊕W ),Z)

ǫV⊕W // H0(SL(V ⊕W ),H(V ⊕W ))

(where n = dim (V ) and m = dim (W )).
�

Lemma 3.6. If V = W ⊕W ′ with W ′ 6= 0, then the composite

Hn(SL(W ),Z) // Hn(SL(V ),Z)
ǫV // S̃(V )

is zero.

Proof. The exact sequence of SL(V )-modules

0→ Ker(d1)→ C1(V )→ Z→ 0

is split as a sequence of SL(W )-modules via the map Z → C1(V ),m 7→ m · e
where e is any nonzero element of W ′. It follows that the connecting homo-
morphism δ1 : Hn(SL(W ),Z)→ Hn−1(SL(W ),Ker(d1)) is zero. �

Let SHn(F ) denote the cokernel of the map Hn(SLn−1(F ),Z)→Hn(SLn(F ),Z).

It follows that the maps ǫn give well-defined homomorphisms SHn(F )→ S̃(Fn),

which yield a homomorphism of graded Z[F×]-algebras ǫ• : SH•(F )→ S̃(F •).

3.4. The maps DV . Suppose now that W and V are vector spaces and that
dim (V ) = n. Fix a basis E of V . The group A(W,V ) acts transitively on
Xn(W,V ) (with trivial stabilizers), while the orbits of SA(W,V ) are in one-to-
one correspondence with the points of F× via the correspondence

Xn(W,V )→ F×, ((w1, v1), . . . , (wn, vn)) 7→ det ([v1| · · · |vn]E) .
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Thus we have an induced isomorphism

H0(SA(W,V ), Cn(W,V ))
det
∼=

// Z[F×].

Taking SA(W,V )-coinvariants of the inclusion H(W,V ) → Cn(W,V ) then
yields a homomorphism of Z[F×]-modules

DW,V : S̃(W,V )→ Z[F×].

In particular, for each n ≥ 1 we have a homomorphism of Z[F×]-modules

Dn : S̃(Fn)→ Z[F×].

We will also set D0 : S̃(F 0) = Z → Z equal to the identity map. Here Z is a
trivial F×-module.
We set

An =





Z, n = 0
IF× , n odd
Z[F×], n > 0 even

We have An ⊂ Z[F×] for all n and we make A• into a graded algebra by using
the multiplication on Z[F×].

Lemma 3.7.

(1) The image of Dn is An.
(2) The maps D• : S̃(F •)→ A• define a homomorphism of graded Z[F×]-

algebras.
(3) For each n ≥ 0, the surjective map Dn : S̃(Fn) → An has a Z[F×]-

splitting.

Proof.

(1) Consider a generator ⌊a1, . . . , an⌉ of S̃(Fn).
Let e1, . . . , en be the standard basis of Fn. Let a := a1e1+· · ·+anen.

Then

⌊a1, . . . , an⌉ = dn+1(e1, . . . , en, a)

=

n∑

i=1

(−1)i+1(e1, . . . , êi, . . . , en, a) + (−1)n(e1, . . . , en).

Thus

Dn(⌊a1, . . . , an⌉) =

n∑

i=1

(−1)i+1 〈det ([e1| · · · |êi| · · · |en|a])〉+ (−1)n 〈1〉

=

{
〈a1〉 − 〈−a2〉+ · · ·+ 〈an〉 − 〈1〉 , n odd
〈−a1〉 − 〈a2〉+ · · · − 〈an〉+ 〈1〉 , n > 0 even

Thus, when n is even, Dn(⌊−1, 1,−1, . . . ,−1, 1⌉) = 〈1〉 andDn maps
onto Z[F×].

When n is odd, clearly, Dn(⌊a1, . . . , an⌉) ∈ IF× . However, for any
a ∈ F×, Dn(⌊a,−1, 1, . . . ,−1, 1⌉) = 〈〈a〉〉 ∈ An = IF× .
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(2) Note that Cn(Fn) ∼= Z[GLn(F )] naturally. Let µ be the homomor-
phism of additive groups

µ : Z[GLn(F )]⊗ Z[GLm(F )] → Z[GLn+m(F )],

A⊗B 7→
(
A 0
0 B

)

The formula Dm+n(x ∗ y) = Dn(x) ·Dm(y) now follows from the com-
mutative diagram

H(Fn)⊗H(Fm)
∗ //

��

H(Fn+m)

��
Cn(Fn)⊗ Cm(Fm)

∗ //

∼=
��

Cn+m(Fn+m)

∼=
��

Z[GLn(F )]⊗ Z[GLm(F )]
µ //

det⊗ det

��

Z[GLn+m(F )]

det

��
Z[F×]⊗ Z[F×]

· // Z[F×]

(3) When n is even the maps Dn are split surjections, since the image is a
free module of rank 1.

It is easy to verify that the map D1 : S̃(F ) → A1 = IF× is an

isomorphism. Now let E ∈ S̃(F 2) be any element satisfying D2(E) =
〈1〉 (eg. we can take E = ⌊−1, 1⌉). Then for n = 2m + 1 odd, the

composite S̃(F ) ∗ E∗m → S̃(Fn)→ IF× = An is an isomorphism.

�

We will let S̃(W,V )+ = Ker(DW,V ). Thus S̃(Fn) ∼= S̃(Fn)+ ⊕An as a Z[F×]-
module by the results above.
Observe that it follows directly from the definitions that the image of ǫV is
contained in S̃(V )+ for any vector space V .

3.5. The maps Tn.

Lemma 3.8. If n ≥ 2 and b1, . . . , bn are distinct elements of F× then

[b1][b2] · · · [bn] =

n∑

i=1

[b1− bi] · · · [bi−1− bi][bi][bi+1− bi] · · · [bn− bi] in KMW
n (F ).
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Proof. We will use induction on n starting with n = 2: Suppose that b1 6= b2 ∈
F×. Then

[b1 − b2]([b1]− [b2])

=

(
[b1] + 〈b1〉

[
1− b2

b1

])(
−〈b1〉

[
b2
b1

])
by Lemma 2.3 (2)

= −〈b1〉[b1]

[
b2
b1

]
since [x][1− x] = 0

= [b1]([b1]− [b2]) by Lemma 2.3(2) again

= [b1]([−1]− [b2]) by Lemma 2.3 (1)

= [b1](−〈−1〉[−b2])
= [−b2][b1] by Lemma 2.3 (3).

Thus

[b1][b2 − b1] + [b1 − b2][b2] = −〈−1〉[b2 − b1][b1] + [b1 − b2][b2]

= −([b1 − b2]− [−1])[b1] + [b1 − b2][b2]

= −[b1 − b2]([b1]− [b2]) + [−1][b1]

= −[−b2][b1] + [−1][b1] = ([−1]− [−b2])[b1]

= −〈−1〉[b2][b1] = [b1][b2]

proving the case n = 2.
Now suppose that n > 2 and that the result holds for n− 1. Let b1, . . . , bn be
distinct elements of F×.We wish to prove that
( n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]
)

[bn] =

n∑

i=1

[b1 − bi] · · · [bi] · · · [bn − bi].

We re-write this as:
n−1∑

i=1

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn]− [bn − bi]) = [b1 − bn] · · · [bn−1 − bn][bn].

Now

[b1 − bi] · · · [bi] · · · [bn−1 − bi]([bn]− [bn − bi])

= (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]
(

[bi]([bn]− [bn − bi])
)

= (−〈−1〉)n−i[b1 − bi] · · · [bn−1 − bi]
(

[bi − bn][bn]

)

= [b1 − bi] · · · [bi − bn] · · · [bn−1 − bi][bn].

So the identity to be proved reduces to
( n−1∑

i=1

[b1 − bi] · · · [bi − bn] · · · [bn−1 − bi]
)

[bn] = [b1 − bn] · · · [bn−1 − bn][bn].
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Letting b′i = bi− bn for 1 ≤ i ≤ n− 1, then bj − bi = b′j − b′i for i, j ≤ n− 1 and
this reduces to the case n− 1. �

Theorem 3.9.

(1) For all n ≥ 1, there is a well-defined homomorphism of Z[F×]-modules

Tn : S̃(Fn)→ KMW
n (F )

sending ⌊a1, . . . , an⌉ to [a1] · · · [an].
(2) The maps {Tn} define a homomorphism of graded Z[F×]-algebras

S̃(F •)→ KMW
• (F ): We have

Tn+m(x ∗ y) = Tn(x) · Tm(y), for all x ∈ S̃(Fn), y ∈ S̃(Fm).

Proof.

(1) By Theorem 3.3, in order to show that Tn is well-defined we must prove
the identity

[b1a1] · · · [bnan]− [a1] · · · [an] =
n∑

i=1

(−〈−1〉)n+i〈ai〉[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [an(bn − bi][bi]

in KMW
n (F ).

Writing [biai] = [ai] + 〈ai〉[bi] and [aj(bj − bi)] = [aj ] + 〈aj〉[bj − bi]
and expanding the products on both sides and using (3) of Lemma 2.3
to permute terms, this identity can be rewritten as

∑

∅6=I⊂{1,...,n}
(−〈−1〉)sgn(σI)〈ai1 · · ·aik〉[aj1 ] · · · [ajs ][bi1 ] · · · [bik ] =

∑

∅6=I⊂{1,...,n}
(−〈−1〉)sgn(σI )〈ai1 · · · aik〉[aj1 ] · · · [ajs ]×

×
( k∑

t=1

[bi1 − bit ] · · · [bit ] · · · [bik − bit ]
)

where I = {i1 < · · · < ik} and the complement of I is {j1 < · · · < js}
(so that k + s = n) and σI is the permutation

(
1 . . . s s+ 1 . . . n
j1 . . . js i1 . . . ik

)
.

The result now follows from the identity of Lemma 3.8.
(2) We can assume that x = ⌊a1, . . . , an⌉ and y = ⌊a′1, . . . , a′m⌉ with

ai, a
′
j ∈ F×. From the definition of Tn+m and the formula of Lemma

3.4,
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Tn+m(x ∗ y) =
n
∑

i=1

m
∑

j=1

(−1)n+m+i+j
〈

(−1)i+jaia
′
j

〉

×

× [a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][a
′
1(b

′
1 − b′j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ]

+(−1)n
n
∑

i=1

(−1)i+1
〈

(−1)i+1ai

〉

[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi][b
′
1a

′
1] · · · [b

′
ma′

m]

+(−1)m
m
∑

j=1

(−1)j+1
〈

(−1)j+1a′
j

〉

[b1a1] · · · [bnan][a
′
1(b

′
1 − b′j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ]

+[b1a1] · · · [bnan][bi][b
′
1a

′
1] · · · [b

′
ma′

m]

which factors as X · Y with X =
n
∑

i=1

(−1)n+i+1
〈

(−1)i+1ai

〉

[a1(b1 − bi)] · · · [ ̂ai(bi − bi)] · · · [bi] + [b1a1] · · · [bnan]

= [a1] · · · [an] = Tn(x) by part (1)

and Y =
m
∑

j=1

(−1)m+j+1
〈

(−1)j+1a′
j

〉

[a′
1(b

′
1 − b′j)] · · · [ ̂a′

j(b
′
j − b′j)] · · · [b

′
j ] + [b′1a

′
1] · · · [b

′
ma′

m]

= [a′
1] · · · [a

′
m] = Tm(y) by (1) again.

�

Note that T1 is the natural surjective map S̃(F ) ∼= IF× → KMW
1 (F ), ⌊a⌉ ↔

〈〈a〉〉 7→ [a]. It has a nontrivial kernel in general.
Note furthermore that SH2(F ) = H2(SL2(F ),Z). It is well-known ([24],[11],
and [7]) that H2(SL2(F ),Z) ∼= KM

2 (F )×kM2 (F ) I
2(F ) ∼= KMW

2 (F ).
In fact we have:

Theorem 3.10. The composite T2 ◦ ǫ2 : H2(SL2(F ),Z) → KMW
2 (F ) is an

isomorphism.

Proof. For p ≥ 1, let X̄p(F ) denote the set of all p-tuples (x1, . . . , xp) of points
of P1(F ) and let X̄0(F ) = ∅. We let C̄p(F ) denote the GL2(F ) permuta-
tion module Z[X̄p(F )] and form a complex C̄•(F ) using the natural simplicial
boundary maps, d̄p. This complex is acyclic and the map F 2 \ {0} → P1(F ),
v 7→ v induces a map of complexes C•(F 2)→ C̄•(F ).
Let H̄2(F ) := Ker(d̄2 : C̄2(F )→ C̄1(F )) and let S̄2(F ) = H0(SL2(F ), H̄2(F )).
We obtain a commutative diagram of SL2(F )-modules with exact rows:

C4(F 2)

��

d4 // C3(F 2)

��

d3 // H(F 2)

��

// 0

C̄4(F )
d̄4 // C̄3(F )

d̄3 // H̄2(F ) // 0
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Taking SL2(F )-coinvariants gives the diagram

H0(SL2(F ), C4(F 2))

��

d4 // H0(SL2(F ), C3(F 2))

��

d3 // S̃(F 2)

φ

��

// 0

H0(SL2(F ), C̄4(F ))
d̄4 // H0(SL2(F ), C̄3(F ))

d̄3 // S̄2(F ) // 0

Now the calculations of Mazzoleni, [11], show that H0(SL2(F ), C̄3(F )) ∼=
Z[F×/(F×)2] via

class of (∞, 0, a) 7→ 〈a〉 ∈ Z[F×/(F×)2],

where a ∈ P1(F ) = e1 + ae2 and ∞ := e1. Furthermore S̄2(F ) ∼= GW(F ) in
such a way that the induced map Z[F×/(F×)2]→ GW(F ) is the natural one.
Since ⌊a, b⌉ = d3(e1, e2, ae1 + be2), it follows that φ(⌊a, b⌉) = 〈a/b〉 = 〈ab〉 in
GW(F ).
Associated to the complex C̄•(F ) we have an iterated connecting homomor-
phism ω : H2(SL2(F ),Z) → S̄2(F ) = GW(F ). Observe that ω = φ ◦ ǫ2. In
fact, (Mazzoleni, [11], Lemma 5) the image of ω is I2(F ) ⊂ GW(F ).

On the other hand, the module S̃(F 2)+ is generated by the elements
[[a, b]] := ⌊a, b⌉−D2(⌊a, b⌉)·E (where E, as above, denotes the element ⌊−1, 1⌉).
Note that T2([[a, b]]) = T2(⌊a, b⌉) = [a][b] since T2(E) = [−1][1] = 0 in
KMW

2 (F ).
Furthermore,

φ([[a, b]]) = φ(⌊a, b⌉)−D2(⌊a, b⌉)φ(E)

= 〈ab〉 − (〈−a〉 − 〈b〉+ 〈1〉)〈−1〉
= 〈ab〉 − 〈a〉+ 〈−b〉 − 〈−1〉
= 〈ab〉 − 〈a〉 − 〈b〉+ 〈1〉
= 〈〈a, b〉〉

(using the identity 〈b〉+ 〈−b〉 = 〈1〉+ 〈−1〉 in GW(F )).
Using these calculations we thus obtain the commutative diagram

H2(SL2(F ),Z)
ǫ2 //

ω

''NNNNNNNNNNN
S̃(F 2)+

φ

��

T2 // KMW
2 (F )

yyssssssssss

I2(F )

Now, the natural embedding F× → SL2(F ), a 7→ diag(a, a−1) := ã induces a
homomorphism, µ:

2∧(
F×) ∼= H2(F×,Z) → H2(SL2(F ),Z),

a ∧ b 7→
(

[ã|b̃]− [b̃|ã]
)
⊗ 1 ∈ B2(SL2(F ))⊗Z[SL2(F )] Z.
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Mazzoleni’s calculations (see [11], Lemma 6) show that µ(
∧2

(F×)) = Ker(ω)

and that there is an isomorphism µ(
∧2 (F×)) ∼= 2 ·KM

2 (F ) given by µ(a∧ b) 7→
2{a, b}.
On the other hand, a straightforward calculation shows that ǫ2 (µ(a ∧ b)) =

〈a〉 ⌊b, 1

ab
⌉ − ⌊b, 1

b
⌉ − 〈a〉 ⌊1, 1

a
⌉+ 〈b〉 ⌊1, 1

b
⌉+ ⌊a, 1

a
⌉ − 〈b〉 ⌊a, 1

ab
⌉ := Ca,b

Now by the diagram above,

T2(Ca,b) = T2(ǫ2 (µ(a ∧ b))) ∈ Ker(KMW
2 (F )→ I2(F )) ∼= 2KM

2 (F ).

Recall that the natural embedding 2KM
2 (F )→ KMW

2 (F ) is given by 2{a, b} 7→
[a2][b] = [a][b]− [b][a] and the composite

2KM
2 (F ) // KMW

2 (F )
κ2 // KM

2 (F )

is the natural inclusion map. Since

κ2 (T2(Ca,b)) =

{
b,

1

ab

}
−
{
b,

1

b

}
−
{

1,
1

a

}
+

{
1,

1

b

}
+

{
a,

1

a

}
−
{
a,

1

ab

}

= {a, b} − {b, a} = 2{a, b},
it follows that we have a commutative diagram with exact rows

0 // µ(
∧2 (F×)) //

∼=
��

H2(SL2(F ),Z)
ω //

T2◦ǫ2
��

I2(F ) //

=

��

0

0 // 2KM
2 (F ) // KMW

2 (F ) // I2(F ) // 0

proving the theorem. �

4. AM-modules

From the results of the last section, it follows that there is a Z[F×]-
decomposition

S̃(F 2) ∼= KMW
2 (F )⊕ Z[F×]⊕?

It is not difficult to determine that the missing factor is isomorphic to the
1-dimensional vector space F (with the tautological F×-action). However,
as we will see, this extra term will not play any role in the calculations of
Hn(SLk(F ),Z).
As Z[F×]-modules, our main objects of interest (Milnor-Witt K-theory, the
homology of the special linear group, the powers of the fundamental ideal in
the Grothendieck-Witt ring) are what we call below ‘multiplicative ’; there
exists m ≥ 1 such that, for all a ∈ F×, 〈am〉 acts trivially. This is certainly not
true of the vector space F above. In this section we formalise this difference,
and use this formalism to prove an analogue of Suslin’s Theorem 1.8 ([23]) (see
Theorem 4.23 below).
Throughout the remainder of this article, F will denote a field of characteristic
0.
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Let SF ⊂ Z[F×] denote the multiplicative set generated by the elements
{〈〈a〉〉 = 〈a〉 − 1 | a ∈ F× \ {1}}. Note that 0 6∈ SF , since the elements of SF
map to units under the natural ring homomorphism Z[F×]→ F . We will also
let S+Q ⊂ Z[Q×] denote the multiplicative set generated by {〈〈a〉〉 = 〈a〉−1 | a ∈
Q× \ {±1}}.
Definition 4.1. A Z[F×]-module M is said to be multiplicative if there exists
s ∈ S+Q with sM = 0.

Definition 4.2. We will say that a Z[F×]-module is additive if every s ∈ S+Q
acts as an automorphism on M .

Example 4.3. Any trivial Z[F×]-module M is multiplicative , since 〈〈a〉〉 an-
nihilates M for all a 6= 1.

Example 4.4. GW(F ), and more generally In(F ), is multiplicative since 〈〈a2〉〉
annihilates these modules for all a ∈ F×.

Example 4.5. Similarly, the groups Hn(SLn(F ),Z) are multiplicative since
they are annihilated by the elements 〈〈am〉〉.
Example 4.6. Any vector space over F , with the induced action of Z[F×], is
additive since all elements of SF act as automorphisms.

Example 4.7. More generally, if V is a vector space over F , then for all
r ≥ 1, the rth tensor power TrZ(V ) = TrQ(V ) is an additive module since,

if a ∈ Q \ {±1}, 〈a〉 acts as multiplication by ar and hence 〈〈a〉〉 acts as
multiplication by ar− 1. For the same reasons, the rth exterior power,

∧r
Z(V ),

is an additive module.

Remark 4.8. Observe that if 〈〈am〉〉 acts as an automorphism of the Z[F×]-
module M for some a ∈ F×, m > 1, then so does 〈〈a〉〉, since 〈〈am〉〉 =
〈〈a〉〉(

〈
am−1

〉
+ · · ·+ 〈a〉+ 1) = (

〈
am−1

〉
+ · · ·+ 〈a〉+ 1)〈〈a〉〉 in Z[F×].

Lemma 4.9. Let
0→M1 →M →M2 → 0

be a short exact sequence of Z[F×]-modules.
Then M is multiplicative if and only if M1 and M2 are.

Proof. Suppose M is multiplicative . If s ∈ S+Q satisfies sM = 0, it follows that
sM1 = sM2 = 0.
Conversely, if M1 and M2 are multiplicative then there exist s1, s2 ∈ S+Q with

siMi = 0 for i = 1, 2. It follows that sM = 0 for s = s1s2 ∈ S+Q . �

Lemma 4.10. Let
0→ A1 → A→ A2 → 0

be a short exact sequence of Z[F×]-modules. If A1 and A2 are additive modules,
then so is A.

Proof. This is immediate from the definition. �
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Lemma 4.11. Let φ : M → N be a homomorphism of Z[F×]-modules.

(1) If M and N are multiplicative , then so are Ker(φ) and Coker(φ).
(2) If M and N are additive , then so are Ker(φ) and Coker(φ).

Proof. (1) This follows from Lemma 4.9 above.
(2) If s ∈ S+Q , then s acts as an automorphism of M and N , and hence of

Coker(φ) and Ker(φ).
�

Corollary 4.12. Let C = (C•, d) be a complex of Z[F×]-modules. If C• is
additive (i.e. if each Cn is an additive module), then each Hn(C) is an additive
module. If each Cn is multiplicative then each Hn(C) is a multiplicative module.

Lemma 4.13. Let M be a multiplicative Z[F×]-module and A an additive
Z[F×]-module. Then HomZ[F×](M,A) = 0 and HomZ[F×](A,M) = 0.

Proof. Let f : M → A be a Z[F×]-homomorphism. Every s ∈ S+Q acts as an

automorphism of A. However, there exists s ∈ S+Q with sM = 0. Thus, for

m ∈M , 0 = f(sm) = sf(m) =⇒ f(m) = 0.
Let g : A → M be a Z[F×]-homomorphism. Again, choose s ∈ S+Q acting as
an automorphism of A and annihilating M . If a ∈ A, then there exists b ∈ a
with a = sb. Hence g(a) = sg(b) = 0 in M . �

Lemma 4.14. If P is a Z[F×]-module and if A is an additive submodule and
M a multiplicative submodule, then A ∩M = 0.

Proof. There exists s ∈ Z[Q×] which annihilates any submodule of M but is
injective on any submodule of A. �

Lemma 4.15.

(1) If

0 // M // H
π // A // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A
additive then the sequence splits (over Z[F×]).

(2) Similarly, if

0 // A // H // M // 0

is an exact sequence of Z[F×]-modules with M multiplicative and A
additive then the sequence splits.

Proof. As above we can find s ∈ Z[Q×] such that s ·M = 0 and s acts as an
automorphism of A.

(1) Then sH is a Z[F×]-submodule of H and π induces an isomorphism
sH ∼= A, since π(sH) = sπ(H) = sA = A and if π(sh) = 0 then
sπ(h) = 0 in A, so that π(h) = 0 and h ∈M .

(2) We have sH = A and multiplication by s gives an automorphism, α,
of A. Thus the Z[F×]-homomorphism H → A, h 7→ α−1(s · h) splits
the sequence.
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�

Definition 4.16. We will say that a Z[F×]-module H is an AM module if
there exists a multiplicative Z[F×]-module M and an additive Z[F×] module
A and an isomorphism of Z[F×]-modules H ∼= A⊕M .

Lemma 4.17. Let H be an AM module and let φ : H → A⊕M be an isomor-
phism of Z[F×]-modules, with M multiplicative and A additive .
Then

φ−1(A) =
⋃

A′⊂H,A′additive

A′ and φ−1(M) =
⋃

M ′⊂H,M ′multiplicative

M ′

Proof. Let M ′ ⊂ H be multiplicative. Then the composite

M ′ // H
φ // A⊕M // A

is zero by Lemma 4.13, and thus M ′ ⊂ φ−1(M).
An analogous argument can be applied to φ−1(A). �

It follows that the submodules φ−1(A) and φ−1(M) are independent of the
choice of φ, A and M . We will denote the first as HA and the second as HM.
Thus if H is an AM module then there is a canonical decomposition H =
HA⊕HM, where HA (resp. HM) is the maximal additive (resp. multiplicative
) submodule of H . We have canonical projections

πA : H → HA, πM : H → HM.

Lemma 4.18. Let H be a AM module. Suppose that H is also a module over
a ring R and that the action of R commutes with that of Z[F×]. Then HA and
HM are R-submodules of H.

Proof. Let r ∈ R. Then the composite

HA
r· // H

πM // HM

is a Z[F×]-homomorphism and thus is 0 by Lemma 4.13. It follows that r·HA ⊂
Ker(πM) = HA. �

Lemma 4.19. Let f : H → H ′ be a Z[F×]-homomorphism of AM modules.
Then there exist Z[F×]-homomorphisms fA : HA → H ′A and fM : HM →
H ′M such that f = fA ⊕ fM.
Suppose that H and H ′ are modules over a ring R and that the R-action com-
mutes with the Z[F×]-action in each case. If f is an R-homomorphism, then
so are fA and fM.

Proof. This is immediate from Lemmas 4.13 and 4.18. �

Lemma 4.20. If

0 // L
j // H

π // K // 0

is a short exact sequence of Z[F×]-modules and if L and K are AM modules,
then so is H.
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Proof. Let H̃ = π−1(KM). Then the exact sequence

0→ L→ H̃ → KM → 0

gives the exact sequence

0→ L

LM
→ H̃

j(LM)
→ KM → 0.

Since L/LM ∼= LA is additive , this latter sequence is split, by Lemma 4.15
(2).

So H̃/j(LM) is a AM module, and there is a Z[k×]-isomorphism

H̃/j(LM)
φ

∼=
// LA ⊕KM.

Let φ̄ be the composite

H̃ // H̃/j(LM)
φ // LA ⊕KM.

Let Hm = φ̄−1(KM) ⊂ H̃ ⊂ H . Then, we have an exact sequence

0→ LM → Hm → KM → 0

so that Hm is multiplicative .
On the other hand, since H̃/Hm

∼= LA and H/H̃ ∼= KA, we have a short exact
sequence

0→ LA →
H

Hm
→ KA → 0.

This implies that H/Hm is additive , and thus H is AM by Lemma 4.15
(1). �

Lemma 4.21. Let (C•, d) be a complex of Z[k×]-modules. If each Cn is AM,
then H•(C) is AM, and furthermore

H•(CA) = H•(C)A
H•(CM) = H•(C)M

Proof. The differentials d decompose as d = dA ⊕ dM by Lemma 4.19. �

Theorem 4.22. Let (Er, dr) be a first quadrant spectral sequence of Z[k×]-
modules converging to the Z[k×]-module H• = {Hn}n≥0.
If for some r0 ≥ 1 all of the modules Er0p,q are AM, then the same holds for all
the modules Erp,q for all r ≥ r0 and hence for the modules E∞

p,q.
Furthermore, H• is AM and the spectral sequence decomposes as a direct sum
Er = ErA ⊕ErM (r ≥ r0) with ErA converging to H•A and ErM converging
to H•M.
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Proof. Since Er+1 = H(Er, dr) for all r, the first statement follows from Lemma
4.21.
Since Er is a first quadrant spectral sequence (and, in particular, is bounded),
it follows that for any fixed (p, q), E∞

p,q = Erp,q for all sufficiently large r. Thus
E∞ is also AM.
Now Hn admits a filtration 0 = F0Hn ⊂ · · · ⊂ FnHn = Hn with corresponding
quotients grpHn

∼= E∞
p,n−p.

Since all the quotients are AM, it follows by Lemma 4.20, together with an
induction on the filtration length, that Hn is AM.
The final two statements follow again from Lemma 4.21. �

If G is a subgroup of GL(V ), we let SG denote G ∩ SL(V ).

Theorem 4.23. Let V , W be finite-dimensional vector spaces over F and let
G1 ⊂ GL(W ), G2 ⊂ GL(V ) be subgroups and suppose that G2 contains the
group F× of scalar matrices.
Let M be a subspace of HomF (V,W ) for which G1M = M = MG2.
Let

G =

(
G1 M
0 G2

)
⊂ GL(W ⊕ V ).

Then, for i ≥ 1, the groups Hi(SG,Z) are AM and the natural embedding
j : S(G1 ×G2)→ SG induces an isomorphism

Hi(S(G1 ×G2),Z) ∼= Hi(SG,Z)M.

Proof. We begin by noting that the groups Hi(SG,Z) are Z[F×]-modules: The
action of F× is derived from the short exact sequence

1 // SG // G
det // F× // 1

We have a split extension of groups (split by the map j) which is F×-stable:

0 // M // SG
π // S(G1 ×G2) // 1.

The resulting Hochschild-Serre spectral sequence has the form

E2
p,q = Hp(S(G1 ×G2),Hq(M,Z)) =⇒ Hp+q(SG,Z).

This spectral sequence exists in the category of Z[F×]-modules and all differ-
entials and edge homomorphisms are Z[F×]-maps.
Since the map π is split by j it induces a split surjection on integral homology
groups. Thus

Hn(S(G1 ×G2),Z) = E2
n,0 = E∞

n,0 for all n ≥ 0.

Observe furthermore that the Z[F×]-module Hn(S(G1 ×G2),Z) is multiplica-
tive : Given a ∈ F×, the element

ρa :=

(
IdW 0

0 a · IdV

)
∈ G
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has determinant am ( m = dimF (V )) and centralizes S(G1 × G2). It follows
that 〈am〉 acts trivially on Hn(S(G1 ×G2),Z) for all n; i.e. 〈〈am〉〉 annihilates
Hn(S(G1 ×G2),Z).
Recall (Example 4.7 above) that for q ≥ 1, the modules Hq(M,Z) =

∧q
Z(M),

with the Z[F×]-action derived from the action of F by scalars on M , are addi-
tive modules.
Now if a ∈ F×, then conjugation by ρa is trivial on S(G1 × G2) but acts on
M as scalar multiplication by a. It follows that for q > 0, 〈〈am〉〉 acts as an
automorphism on Hp(S(G1 × G2),Hq(M,Z)) for all a ∈ Q \ {±1}. Thus, for
q > 0, the groups Hp(S(G1 ×G2),Hq(M,Z)) are additive Z[F×]-modules; i.e.,
all E2

p,q are additive for q > 0. It follows at once that the groups E∞
p,q are

additive for all q > 0. Thus, from the convergence of the spectral sequence,
we have a short exact sequence

0→ H → Hn(SG,Z)→ E∞
n,0 = j (Hn(S(G1 ×G2),Z))→ 0

and H has a filtration whose graded quotients are all additive .
So Hn(SG,Z) is AM as claimed, and Hn(SG,Z)M

∼= Hn(S(G1 ×G2),Z).
�

Corollary 4.24. Suppose that W ′ ⊂ W . Then there is a corresponding in-
clusion SA(W ′, V )→ SA(W,V ). This inclusion induces an isomorphism

Hn(SA(W ′, V ),Z)M ∼=
// Hn(SA(W,V ),Z)M

∼= Hn(SL(V ),Z)

for all n ≥ 1.

5. The spectral sequences

Recall that F is a field of characteristic 0 throughout this section.
In this section we use the complexes C•(W,V ) to construct spectral sequences

converging to 0 in dimensions less than n = dimF (V ), and to S̃(W,V ) in
dimension n. By projecting onto the multiplicative part, we obtain spectral se-
quences with good properties: the terms in the E1-page are just the kernels and
cokernels of the stabilization maps ft,n : Hn(SLt(F ),Z) → Hn(SLt+1(F ),Z).
We then prove that the higher differentials are all zero. Since the spectral se-
quences converge to 0 in low degrees, this already implies the main stability
result (Corollary 5.11); the maps ft,n are isomorphisms for t ≥ n + 1 and are
surjective for t = n. The remainder of the paper is devoted to an analysis of
the case t = n− 1, which requires some more delicate calculations.
Let Cτ• (W,V ) denote the truncated complex.

Cτp (W,V ) =

{
Cp(W,V ), p ≤ dimF (V )

0, p > dimF (V )

Thus

Hp(Cτ• (W,V )) =

{
0, p 6= n
H(W,V ), p = n

where n = dimF (V ).
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Thus the natural action of SA(W,V ) on Cτ• (W,V ) gives rise to a spectral se-
quence E(W,V ) which has the form

E1
p,q = Hp(SA(W,V ), Cτq (W,V )) =⇒ Hp+q−n(SA(W,V ), H(W,V )).

The groups Cτq (W,V ) are permutation modules for SA(W,V ) and thus the E1-

terms (and the differentials d1) can be computed in terms of the homology of
stabilizers.
Fix a basis {e1, . . . , en} of V . Let Vr be the span of {e1, . . . , er} and let V ′

s be
the span of {en−s, . . . , en}, so that V = Vr ⊕ V ′

n−r if 0 ≤ r ≤ n.
For any 0 ≤ q ≤ n − 1, the group SA(W,V ) acts transitively on the basis of
Cτq (W,V ) and the stabilizer of

(
(0, e1), . . . , (0, eq)

)

is SA(W ⊕ Vq, V ′
n−q).

Thus, for q ≤ n− 1,

E1
p,q = Hp(SA(W,V ), Cτq (W,V )) ∼= Hp(SA(W ⊕ Vq, V ′

n−q),Z)

by Shapiro’s Lemma.
By the results in section 4 we have:

Lemma 5.1. The terms E1
p,q in the spectral sequence E(W,V ) are AM for

q > 0, and

(E1
p,q)M = Hp(SL(V ′

n−q),Z) ∼= Hp(SLn−q(F ),Z).

For q = n, the orbits of SA(W,V ) on the basis of Cτn(W,V ) are in bijective
correspondence with F× via

(
(w1, v1), . . . , (wn, vn)

)
7→ det ([v1| · · · |vn]E) .

The stabilizer of any basis element of Cτn(W,V ) is trivial. Thus

E1
p,n =

{
Z[F×], p = 0
0, p > 0

Of course, E1
p,q = 0 for q > n.

The first column of the E1-page of the spectral sequence E(W,V ) has the form

E1
0,q =





Z, q < n
Z[F×], q = n
0, q > n

and the differentials are easily computed: For q < n

d10,q : E1
0,q → E1

0,q =

{
IdZ, q is odd
0, q is even

and

d10,n : Z[F×]→ Z =

{
augmentation , n odd
0, n even
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It follows that E2
0,q = 0 for q 6= n and

E2
0,n =

{
IF× , n odd
Z[F×], n even

Note that the composite

S̃(W,V )
edge // E∞

0,n ⊂ E2
0,n = An

is just the map DW,V of section 3 above.

Lemma 5.2. The map DW,V is a split surjective homomorphism of Z[F×]-
modules.

Proof. If W = 0, this is Lemma 3.7 (1) and (3), since V ∼= Fn.
In general the natural map of complexes Cτ• (V ) → Cτ• (W,V ) gives rise to a
commutative diagram of Z[F×]-modules

S̃(V ) //

DV ""DD
DD

DD
DD

S̃(W,V )

DW,V{{www
ww

ww
ww

An
�

We let S̃(W,V )+ := Ker(DW,V : S̃(W,V ) → An), so that S̃(W,V ) ∼=
S̃(W,V )+ ⊕An for all W,V .

Corollary 5.3. In the spectral sequence E(W,V ), we have E2
0,q = E∞

0,q for all
q ≥ 0.
All higher differentials dr0,q : Er0,q → Err−1,q+r are zero.

It follows that the spectral sequences E(W,V ) decompose as a direct sum of
two spectral sequences

E(W,V ) = E0(W,V )⊕ E+(W,V )

where E0(W,V ) is the first column of E(W,V ) and E+(W,V ) involves only the
terms Erp,q with q > 0.

The spectral sequence E0(W,V ) converges in degree d to
{

0, d 6= n
An, d = n

The spectral sequence E+(W,V ) converges in degree d to




0, d < n

S̃(W,V )+, d = n
Hd−n(SA(W,V ), H(W,V )), d > n

By Lemma 5.1 above, all the terms of the spectral sequence E+(W,V ) are AM.
We thus have

Corollary 5.4.
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(1) The Z[F×]-modules S̃(W,V )+ are AM.

(2) The graded submodule S̃(F •)+A ⊂ S̃(F •) is an ideal.

Proof.

(1) This follows from Theorem 4.22.

(2) This follows from Lemma 4.18, since S̃(F •)+ is an ideal in S̃(F •) by
Lemma 3.7 (2).

�

Corollary 5.5. The natural embedding H(V ) → H(W,V ) induces an iso-
morphism

S̃(V )+M
∼= // S̃(W,V )+M.

Proof. The map of complexes of SL(V )-modules Cτ• (V ) → Cτ• (W,V ) gives
rise to a map of spectral sequences E+(V ) → E+(W,V ) and hence a map
E+(V )M → E+(W,V )M. The induced map on the E1-terms is

Hp(SLn−q(F ),Z)
Id //

∼=
��

Hp(SLn−q(F ),Z)

∼=
��

Hp(SL(V ), Cτq (V ))M
// Hp(SA(W,V ), Cτq (W,V ))M

and thus is an isomorphism.
It follows that there is an induced isomorphism of abutments

S̃(V )+M
∼= S̃(W,V )+M

and
Hk(SL(V ), H(V ))M

∼= Hk(SA(W,V ), H(W,V ))M.

�

For convenience, we now define

S̃(W,V )M :=
S̃(W,V )

S̃(W,V )+A

(even though S̃(W,V ) is not an AM module).
This gives:

Corollary 5.6.

S̃(W,V )M
∼= S̃(W,V )+M ⊕An ∼= S̃(V )+M ⊕An ∼= S̃(V )M

as Z[F×]-modules, and S̃(F •)M is a graded Z[F×]-algebra.

Lemma 5.7. For any k ≥ 1, the corestriction map

cor : Hi(SLk(F ),Z)→ Hi(SLk+1(F ),Z)

is F×-invariant;i.e. if a ∈ F× and z ∈ Hi(SLk(F ),Z), then

cor(〈a〉 z) = 〈a〉 cor(z) = cor(z).
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Proof. Of course, cor is a homomorphism of Z[F×]-modules. However, for
a ∈ F×,

〈
ak
〉

acts trivially on Hi(SLk(F ),Z) while
〈
ak+1

〉
acts trivially on

Hi(SLk+1(F ),Z) so that

cor(〈a〉 z) = cor(
〈
ak+1

〉
z) =

〈
ak+1

〉
cor(z) = cor(z).

�

Lemma 5.8. For 0 ≤ q < n, the differentials of the spectral sequence
E+(W,V )M

d1p,q : (E1
p,q)M

∼= Hp(SLn−q(F ),Z)→ (E1
p,q−1)M

∼= Hp(SLn−q+1(F ),Z)

are zero when q is even and are equal to the corestriction map when q is odd.

Proof. d1 is derived from the map dq : Cτq (W,V )→ Cτq−1(W,V ) of permutation
modules. Here

dq
(
(0, e1), . . . , (0, eq)

)
=

q∑

i=1

(−1)i+1
(
(0, e1), . . . , (̂0, ei), . . . , (0, eq)

)

=

q∑

i=1

(−1)i+1φi
(
(0, e1), . . . , (0, eq−1)

)

where φi ∈ SA(W,V ) can be chosen to be of the form

φi =

(
IdW 0

0 ψi

)
, ψi =

(
σi 0
0 τi

)
∈ GL(V )

with σi ∈ GL(Vq) a permutation matrix of determinant ǫi and τi ∈ GL(V ′
n−q)

also of determinant ǫi.
φi normalises SA(W ⊕Vq, V ′

n−q,) and SL(V ′
n−q). Thus for z ∈ Hp(SL(V ′

n−q),Z),

d1(z) =

q∑

i=1

(−1)i+1cor(τiz)

=

q∑

i=1

(−1)i+1cor(〈ǫi〉 z)

=

q∑

i=1

(−1)i+1cor(z) =

{
cor(z), q odd
0, q even

�

Let E := ⌊−1, 1⌉ ∈ S̃(F 2)M. E is represented by the element

Ẽ := d3(e1, e2, e2−e1) = (e2, e2−e1)−(e1, e2−e1)+(e1, e2) ∈ H(F 2) ⊂ Cτ2 (F 2).

Multiplication by Ẽ induces a map of complexes of GLn−2(F )-modules

Cτ• (Fn−2)[2]→ Cτ• (Fn)

There is an induced map of spectral sequences E(Fn−2)[2] → E(Fn),
which in turn induces a map E+(Fn−2)[2] → E+(Fn), and hence a map
E+(Fn−2)M[2]→ E+(Fn)M.
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By the work above, the E1-page of E+(Fn)M has the form

E1
p,q = Hp(SLn−q(F ),Z) (p > 0)

while the E1-page of E+(Fn−2)M[2] has the form

E′1
p,q =

{
Hp(SL(n−2)−(q−2)(F ),Z) = Hp(SLn−q(F ),Z), q ≥ 2, p > 0
0, q ≤ 1 or p = 0

Lemma 5.9. For q ≥ 2 (and p > 0), the map

E′1
p,q
∼= Hp(SLn−q(F ),Z)→ E1

p,q = Hp(SLn−q(F ),Z)

induced by Ẽ ∗ − is the identity map.

Proof. There is a commutative diagram

E′1
p,q = Hp(SLn−q(F ), Z) //

(Ẽ∗−)M

��

Hp(SA(F q−2, Fn−q), Z)
∼= //

Ẽ∗−

��

Hp(SLn−2(F ),Cτq−2(F
n−2))

Ẽ∗−

��
E1
p,q = Hp(SLn−q(F ), Z) // Hp(SA(F q, Fn−q), Z)

∼= // Hp(SLn(F ),Cτq (F
n))

We number the standard basis of Fn−2 e3, . . . , en so that the inclusion
SLn−2(F )→ SLn(F ) has the form

A 7→
(
I2 0
0 A

)
.

So we have a commutative diagram of inclusions of groups

SLn−q(F ) //

=

��

SA(F q−2, Fn−q) //

��

SLn−2(F )

��
SLn−q(F ) // SA(F q, Fn−q) // SLn(F ).

Let B• = B•(SLn(F )) be the right bar resolution of SLn(F ). We can use it to
compute the homology of any of the groups occurring in this diagram.
Suppose now that q ≥ 2 and we have a class, w, in E′1

p,q = Hp(SLn−q(F ),Z)
represented by a cycle

z ⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z.

Its image in Hp(SLn−2(F ), Cτq−2(Fn−2)) is represented by z⊗ (e3, . . . , eq). The
image of this in Hp(SLn(F ), Cτq (Fn)) is

z ⊗
[
Ẽ ∗ (e3, . . . , eq)

]

= z ⊗ [(e2, e2 − e1, e3, . . .)− (e1, e2 − e1, e3, . . .) + (e1, e2, e3, . . .)]

= z ⊗ [(g1 − g2 + 1)(e1, e2, e3, . . .)] ∈ Bp ⊗Z[SLn(F )] Cτq (Fn)
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where

g1 =




0 −1 0 . . . 0
1 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1



, g2 =




1 −1 0 . . . 0
0 1 0 . . . 0

0 0 1 0
...

...
... 0

. . . 0
0 0 0 . . . 1



∈ SLn(F ).

This corresponds to the element in Hp(SLn−q(F ),Z) represented by

z(g1 − g2 + 1)⊗ 1 ∈ Bp ⊗Z[SLn−q(F )] Z

Since the elements gi centralize SLn−q(F ) it follows that this is (g1−g2+1)·w =
w. �

Recall that the spectral sequence E+(Fn)M converges in degree n to S̃(Fn)+M.
Thus there is a filtration

0 = Fn,−1 ⊂ Fn,0 ⊂ Fn,1 ⊂ · · ·Fn,n = S̃(Fn)+M

with
Fn,i
Fn,i−1

∼= E∞
n−i,i.

The E1-page of E+(Fn)M has the form

0 0 0 . . . 0

0 H1(SL2(F ),Z)

��

H2(SL2(F ),Z)

��

. . . Hn(SL2(F ),Z)

��
...

...

cor

��

...

cor

��

. . . ...

cor

��
0 H1(SLn−2(F ),Z)

0

��

H2(SLn−2(F ),Z)

0

��

. . . Hn(SLn−2(F ),Z)

0

��
0 H1(SLn−1(F ),Z)

cor

��

H2(SLn−1(F ),Z)

cor

��

. . . Hn(SLn−1(F ),Z)

cor

��
0 H1(SLn(F ),Z) H2(SLn(F ),Z) . . . Hn(SLn(F ),Z)

Theorem 5.10.

(1) The higher differentials d2, d3, . . . , in the spectral sequence E+(Fn)M
are all 0.

(2) S̃(Fn−2)M
∼= E ∗ S̃(Fn−2)M and this latter is a direct summand of

S̃(Fn)M.
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Proof.

(1) We will use induction on n. For n ≤ 2 the statement is true for trivial
reasons.

On the other hand, if n > 2, by Lemma 5.9, the map

Ẽ ∗ − : E+(Fn−2)M[2]→ E+(Fn)M

induces an isomorphism on E1-terms for q ≥ 2. By induction (and the

fact that E′1
p,q = 0 for q ≤ 1), the result follows for n.

(2) The map of spectral sequences E+(Fn−2)M[2] → E+(Fn)M induces a
homomorphism on abutments

S̃(Fn−2)+M
E∗− // S̃(Fn)+M

By Lemma 5.9 again, it follows that the composite

S̃(Fn−2)+M
E∗− // S̃(Fn)+M

//
(
S̃(Fn)+M

)
/Fn,1

is an isomorphism.
Thus S̃(Fn−2)+M

∼= E ∗ S̃(Fn−2)+M and

S̃(Fn)+M
∼=
(
E ∗ S̃(Fn−2)+M

)
⊕Fn,1.

�

As a corollary we obtain the following general homology stability result for the
homology of special linear groups:

Corollary 5.11.
The corestriction maps Hp(SLn−1(F ),Z) → Hp(SLn(F ),Z) are isomorphisms
for p < n− 1 and are surjective when p = n− 1.

Proof. Using (1) of Theorem 5.10 and Lemma 5.8, we have (for the spectral
sequence E+(Fn)M) that E∞

p,q = E2
p,q =

Ker(d1)

Im(d1)
=

{
Ker(Hp(SLn−q(F ),Z)→ Hp(SLn−q+1(F ),Z)) q odd
Coker(Hp(SLn−q−1(F ),Z)→ Hp(SLn−q(F ),Z)) q even

But the abutment of the spectral sequence is 0 in dimensions less than n. It
follows that E∞

p,q = 0 whenever p+ q ≤ n− 1. �

Remark 5.12. Note that in the spectral sequence E+(Fn)M,

E∞
n,0 = Coker(Hn(SLn−1(F ),Z)→ Hn(SLn(F ),Z)) = SHn(F ).

Clearly, the edge homomorphism Hn(SLn(F ),Z) → E∞
n,0 → S̃(Fn)M is just

the iterated connecting homomorphism ǫn of section 3 above. Thus we have:

Corollary 5.13. The maps

ǫ• : SH•(F )→ S̃(F •)M

define an injective homomorphism of graded Z[F×]-algebras.
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Corollary 5.14. S̃(F 2)M = F2,1 ⊕ Z[F×]E and for all n ≥ 3,

S̃(Fn)M = (E ∗ S̃(Fn−2)M)⊕Fn,1 ∼= S̃(Fn−2)M ⊕Fn,1.
Proof. Clearly S̃(F 2)+M = F1,2, while for n ≥ 3 we have

S̃(Fn)M =

{
S̃(Fn)+M ⊕ Z[F×]E∗n2 n even

S̃(Fn)+M ⊕
(
S̃(F ) ∗ E∗n−1

2

)
n odd

�

Corollary 5.15. For all n ≥ 3,

S̃(Fn)M
∼=
{
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F2,1 ⊕ Z[F×] n even
Fn,1 ⊕Fn−2,1 ⊕ · · · ⊕ F3,1 ⊕ IF× n odd

as a Z[F×]-module.

Note that F1,1 = S̃(F ) = IF× , and for all n ≥ 2, Fn,1 fits into an exact
sequence associated to the spectral sequence E+(Fn)M:

0→ E∞
n,0 = Fn,0 → Fn,1 → E∞

n−1,1 → 0.

Corollary 5.16. For all n ≥ 2 we have an exact sequence

Hn(SLn−1(F ),Z)→ Hn(SLn(F ),Z)→ Fn,1 →
Hn−1(SLn−1(F ),Z)→ Hn−1(SLn(F ),Z)→ 0.

Lemma 5.17. For all n ≥ 2, the map Tn induces a surjective map Fn,1 →
KMW
n (F ).

Proof. First observe that since KMW
n (F ) is generated by the elements of the

form [a1] · · · [an] it follows from the definition of Tn that Tn : S̃(Fn) →
KMW
n (F ) is surjective for all n ≥ 1.

Next, since KMW
• (F ) is multiplicative, T• factors through an algebra homo-

morphism S̃(F •)M → KMW
• (F ). The lemma thus follows from Corollary 5.14

and the fact that T2(E) = 0. �

Lemma 5.18. F2,1 = F2,0 and T2 : F2,1 → KMW
2 (F ) is an isomorphism.

Proof. Since H1(SL1(F ),Z) = 0, F2,1 = F2,0 = E∞
2,0 = ǫ2(H2(SL2(F ),Z)).

Now apply Theorem 3.10. �

It is natural to define elements [a, b] ∈ F2,0 ⊂ S̃(F 2)M by [a, b] := T−1
2 ([a][b]).

Lemma 5.19. In S̃(F 2)M we have the formula

[a, b] = ⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E.
Proof. The results above show that the maps T2 and D2 induce an isomorphism

(T2, D2) : S̃(F 2)M
∼= KMW

2 (F )⊕ Z[F×].

Since D2(⌊a⌉ ∗ ⌊b⌉) = 〈〈a〉〉〈〈b〉〉, while D2(E) = 1, the result follows. �

Theorem 5.20.

Documenta Mathematica · Extra Volume Suslin (2010) 267–315



Homology stability for SLn(F ) 303

(1) The product ∗ respects the filtrations on S̃(Fn); i.e. for all n,m ≥ 1
and i, j ≥ 0

Fn,i ∗ Fm,j ⊂ Fn+m,i+j .
(2) For n ≥ 1, let ǫn+1,1 denote the composite Fn+1,1 → E∞

n,1 = E2
n,1 →

Hn(SLn(F ),Z). For all a ∈ F× and for all n ≥ 1 the following diagram
commutes:

Fn,0
⌊a⌉∗ // Fn+1,1

ǫn+1,1

��
Hn(SLn(F ),Z)

ǫn

OO

〈〈a〉〉· // Hn(SLn(F ),Z)

Proof.

(1) The filtration on S̃(Fn)M is derived from the spectral sequence E(Fn).
This is the spectral sequence of the double complex B•⊗SLn(F )Cτ• (Fn),
regarded as a filtered complex by truncating Cτ• (Fn) at i for i = 0, 1, . . ..
Since the product ∗ is derived from a graded bilinear pairing on the
complexes Cτ• (Fn), the result easily follows.

(2) The spectral sequence E(Fn+1) calculates

H•(SLn+1(F ), Cτ (Fn+1)) ∼= H•(SLn+1(F ), H(Fn+1)[n+ 1]

(where [n+ 1] denotes a degree shift by n+ 1).
Let C[1, n] denote the truncated complex

Cτ1 (Fn+1)
d1 // Cτ0 (Fn+1)

and let Z1 denote the kernel of d1. Then

H•(SLn+1(F ), C[1, n]) ∼= H•(SLn+1(F ), Z1)[1].

If Fi denotes the filtration on H•(SLn+1(F ), Cτ (Fn+1)) associated to
the spectral sequence E(Fn+1), then from the definition of this filtra-
tion, F1Hk(SLn+1(F ), Cτ (Fn+1)) =

Im(Hk(SLn+1(F ), C[1, n])→ Hk(SLn+1(F ), Cτ (Fn+1))).

In particular,

Fn+1,1
∼= Im(Hn+1(SLn+1(F ), C[1, n])→ Hn+1(SLn+1(F ), Cτ (Fn+1)))

and with this identification the diagram

Hn+1(SLn+1(F ), C[1, n]) // Fn+1,1

ǫn+1,1

��
Hn(SLn+1(F ), Z1)

∼=

OO

// Hn(SLn+1(F ), Cτ1 (Fn+1))

commutes (and Hn(SLn+1(F ), Cτ1 (Fn+1)) ∼= Hn(SA(F, Fn),Z) by
Shapiro’s Lemma, of course).
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We consider SLn(F ) ⊂ SA(F, Fn) ⊂ SLn+1(F ) ⊂ GLn+1(F ) where
the first inclusion is obtained by inserting a 1 in the (1, 1) posi-
tion. Let B• denote a projective resolution of Z over Z[GLn+1(F )].
Let z ∈ Hn(SLn(F ),Z) be represented by x ⊗ 1 ∈ Bn ⊗Z[SLn(F )]

Z = Bn ⊗Z[SLn(F )] Cτ0 (Fn). Then ⌊a⌉ ∗ ǫn(z) is represented by
z ⊗ [(ae1) − (e1)] ∈ Bn ⊗SLn+1(F ) Z1 which maps to the element of

Hn(SLn+1(F ), Cτ1 (Fn+1)) represented by z(g − 1) ⊗ (e1) where g =
diag(a, 1, . . . , 1, a−1). But this is just the image of 〈〈a〉〉z under the
map Hn(SLn(F ),Z)→ Hn(SA(F, Fn),Z) ∼= Hn(SLn+1(F ), Cτ1 (Fn+1)).

�

Lemma 5.21. The map T3 : F3,1 → KMW
3 (F ) is an isomorphism.

Proof. Consider the short exact sequence

0→ E∞
3,0 → F3,1 → E∞

2,1 → 0.

Here ǫ3 induces an isomorphism

E∞
3,0
∼= Coker(H3(SL2(F ),Z)→ H3(SL3(F ),Z)).

By the main result of [8] (Theorem 4.7 - see also section 2.4 of this article), T3
thus induces an isomorphism E∞

3,0
∼= 2KM

3 (F ) ⊂ KMW
3 (F ).

On the other hand,

E∞
2,1
∼= Ker(H2(SL2(F ),Z)→ H2(SL3(F ),Z)) ∼= I3(F )

Thus we have a commutative diagram

0 // E∞
3,0

T3
∼=

��

// F3,1

T3

��

ρ // I3(F )

α

��

// 0

0 // 2KM
3 (F ) // KMW

3 (F )
p3 // I3(F ) // 0

where the vertical arrows are surjections.
Now the inclusion I3(F )→ KMW

2 (F ) is given by 〈〈a, b, c〉〉 7→ 〈〈a〉〉[b][c]. Thus
the inclusion j : I3(F ) → H2(SL2(F ),Z) is given by 〈〈a, b, c〉〉 7→ 〈〈a〉〉〈b, c〉
where 〈b, c〉 = ǫ−1

2 ([b, c]). Thus for all a, b, c ∈ F× we have

j ◦ ρ(⌊a⌉ ∗ [b, c]) = ǫ3,1(⌊a⌉ ∗ [b, c]) = 〈〈a〉〉〈b, c〉
using Theorem 5.20 (2), and thus ρ(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉 ∈ I3(F ). It follows
from the diagram that

α(〈〈a, b, c〉〉) = α ◦ ρ(⌊a⌉ ∗ [b, c]) = p3 ◦ T3(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉
so that α is the identity map, and the result follows. �

Lemma 5.22. For all a ∈ F×, ⌊a⌉ ∗E = E ∗ ⌊a⌉ in S̃(F 3)M.

Proof. By the calculations above, F3,1 = S̃(F 3)+M = Ker(D3). Thus
Ra := ⌊a⌉ ∗E−E ∗ ⌊a⌉ ∈ F3,1. But then T3(Ra) = 0 since T2(E) = 0 and thus
Ra = 0 by the previous lemma. �
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Lemma 5.23.

(1) For all a, b, c ∈ F×

⌊a⌉ ∗ [b, c] = [a, b] ∗ ⌊c⌉ in S̃(F 3)M.

(2) For all a, b, c ∈ F×

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ = ⌊c⌉ ∗ ⌊a⌉ ∗ ⌊b⌉ in S̃(F 3)M.

(3) For all a, b, c, d ∈ F×

[a, b] ∗ [c, d] = [a, c−1] ∗ [b, d] in S̃(F 4)M.

Proof. The calculations above have established that the map

(T3, D3) : S̃(F 3)M → KMW
3 (F )⊕ IF×

is an isomorphism.

(1) This follows from the identities

T3(⌊a⌉ ∗ [b, c]) = [a][b][c] = T3([a, b] ∗ ⌊c⌉)
and

D3(⌊a⌉ ∗ [b, c]) = 〈〈a, b, c〉〉 = D3([a, b] ∗ ⌊c⌉)
(2) This follows from the fact that [a][b][c] = [c][a][b] in KMW

3 (F ).

(3) We begin by observing that, since S̃(F ) ∼= IF× as a Z[F×]-module we
have 〈〈a〉〉⌊b⌉ = ⌊ab⌉ − ⌊a⌉ − ⌊b⌉ = 〈〈b〉〉⌊a⌉ for all a, b ∈ F×.

For x1, . . . , xn ∈ F× and i, j ≥ 1 with i+ j = n we set

Li,j(x1, . . . , xn) := 〈〈x1〉〉 · · · 〈〈xi〉〉 (⌊xi+1⌉ ∗ · · · ∗ ⌊xn⌉) ∈ S̃(F j)M.

By the observation just made, we have

Li,j(x1, . . . , xn) = Li,j(xσ(1), . . . , xσ(n))

for any permutation σ of 1, . . . , n.
So

[a, b] ∗ [c, d] = (⌊a⌉ ∗ ⌊b⌉ − 〈〈a〉〉〈〈b〉〉E) ∗ (⌊c⌉ ∗ ⌊d⌉ − 〈〈c〉〉〈〈d〉〉E)

= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − 2L2,2(a, b, c, d) ∗ E + 〈〈a〉〉〈〈b〉〉〈〈c〉〉〈〈d〉〉E∗2

Let R = [a, b] ∗ [c, d]− [a, c−1] ∗ [b, d].
So R =

⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉ − 2(L2,2(a, b, c, d)− L2,2(a, c
−1, b, d)) ∗E

+〈〈a〉〉〈〈d〉〉
[

(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E
]

∗ E.

However, since [b, c] = [c−1, b] in S̃(F 2)M we have (by Lemma 5.19)

(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E = ⌊b⌉ ∗ ⌊c⌉ − ⌊c−1⌉ ∗ ⌊b⌉.
Thus 〈〈a〉〉〈〈d〉〉

[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]
∗ E =

(L2,2(a, b, c, d)− L2,2(a, c−1, b, d)) ∗ E
and hence R =

⌊a⌉∗⌊b⌉∗⌊c⌉∗⌊d⌉−⌊a⌉∗⌊c−1⌉∗⌊b⌉∗⌊d⌉−(L2,2(a, b, c, d)−L2,2(a, c−1, b, d))∗E.
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Now

(L2,2(a, b, c, d)− L2,2(a, c−1, b, d)) ∗ E
= ⌊a⌉ ∗ ⌊d⌉ ∗

[
(〈〈b〉〉〈〈c〉〉 − 〈〈c−1〉〉〈〈b〉〉)E

]

= ⌊a⌉ ∗ ⌊d⌉ ∗
[
⌊b⌉ ∗ ⌊c⌉ − ⌊c−1⌉ ∗ ⌊b⌉

]

= ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊b⌉ ∗ ⌊c⌉)− ⌊a⌉ ∗ (⌊d⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉)
= ⌊a⌉ ∗ ⌊b⌉ ∗ ⌊c⌉ ∗ ⌊d⌉ − ⌊a⌉ ∗ ⌊c−1⌉ ∗ ⌊b⌉ ∗ ⌊d⌉

using (2) in the last step.

�

Theorem 5.24. For all n ≥ 2 there is a homomorphism µn : KMW
n (F )→ Fn,1

such that the composite Tn ◦ µn is the identity map.

Proof. For n ≥ 2 and a1, . . . , an ∈ F×, let {{a1, . . . , an}} :=
{

[a1, a2] ∗ · · · ∗ [an−1, an], n even
⌊a1⌉ ∗ [a2, a3] ∗ · · · ∗ [an−1, an], n odd

}
∈ Fn,1 ⊂ S̃(Fn)M.

By Lemma 5.23 (1) and (3), as well as the definition of [x, y], the elements
{{a1, . . . , an}} satisfy the ‘Matsumoto-Moore’ relations (see Section 2.4 above),
and thus there is a well-defined homomorphism of groups

µn : KMW
n (F )→ Fn,1, [a1] · · · [an] 7→ {{a1, . . . , an}}.

Since Tn({{a1, . . . , an}}) = [a1] · · · [an], the result follows. �

Corollary 5.25. The subalgebra of SH2•(F ) generated by SH2(F ) =
H2(SL2(F ),Z) is isomorphic to KMW

2• (F ) and is a direct summand of SH2•(F ).

Proof. This is immediate from Theorems 3.10 and 5.24. �

6. Decomposabilty

Recall that F is a field of characteristic 0 throughout this section.
In [24], Suslin proved that Hn(GLn(F ),Z)/Hn(GLn−1(F ),Z) ∼= KM

n (F ). This
is, in particular, a decomposability result. It says that Hn(GLn(F ),Z) is gen-
erated, modulo the image of Hn(GLn−1(F ),Z) by products of 1-dimensional
cycles. In this section we will prove analogous results for the special linear
group, with Milnor-Witt K-theory replacing Milnor K-theory. To do this, we
prove the decomposability of the algebra S̃(F •)M (for n ≥ 3). Theorem 6.2 is
an analogue of Suslin’s Proposition 3.3.1. The proof is essentially identical, and
we reproduce it here for the convenience of the reader. From this we deduce our
decomposability result (Theorem 6.8), which requires still a little more work
than in the case of the general linear group.

Lemma 6.1. For any finite-dimensional vector spaces W and V , the image of
the pairing

S̃(W,V )⊗H(W )→ S̃(W ⊕ V )M(2)
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coincides with the image of the pairing

S̃(V )⊗ S̃(W )→ S̃(W ⊕ V )M(3)

Proof. The image of the pairing (2) is equal to the image of

S̃(W,V )M ⊗H(W )→ S̃(W ⊕ V )M

which coincides with the image of

S̃(V )M ⊗ S̃(W )M → S̃(W ⊕ V )M

by the isomorphism of Corollary 5.6. �

Let S̃(Fn)dec ⊂ S̃(Fn)M be the Z[F×]-submodule of decomposable elements ;

i.e. S̃(Fn)dec is the image of

⊕
p+q=n,p,q>0

(
S̃(F p)M ⊗ S̃(F q)M

)
∗ // S̃(Fn)M.

More generally, note that if V = V1 ⊕ V2 = V ′
1 ⊕ V ′

2 and if dimF (Vi) =

dimF (V ′
i ) for i = 1, 2, then the image of S̃(V1)⊗ S̃(V2)→ S̃(V ) coincides with

S̃(V ′
1 )⊗ S̃(V ′

2)→ S̃(V ). This follows from the fact that there exists φ ∈ SL(V )
with φ(Vi) = V ′

i for i = 1, 2.

Therefore S̃(Fn)dec is the image of

⊕
Fn=V1⊕V2,Vi 6=0

(
S̃(V1)M ⊗ S̃(V2)M

)
∗ // S̃(Fn)M.

If x =
∑

i ni(x
i
1, . . . , x

i
p) ∈ Cp(V ) and y =

∑
jmj(y

j
1, . . . , y

j
q) ∈ Cq(V ) and if

(xi1, . . . , x
i
p, y

j
1, . . . , y

j
q) ∈ Xp+q(V ) for all i, j, then we let

x⊛ y :=
∑

i,j

nimj(x
i
1, . . . , x

i
p, y

j
1, . . . , y

j
q) ∈ Cp+q(V ).

Of course, if x ∈ Cp(V1) and y ∈ Cq(V2) with V = V1 ⊕ V2, then x⊛ y = x ∗ y.
Furthermore, when x⊛ y is defined, we have

d(x⊛ y) = d(x) ⊛ y + (−1)px⊛ d(y).

Theorem 6.2. Let n ≥ 1. For any a1, . . . , an, b ∈ F× and for any 1 ≤ i ≤ n
⌊a1, . . . , bai, . . . , an⌉ ∼= 〈b〉 ⌊a1, . . . , an⌉ (mod S̃(Fn)dec).

Proof. Let a = a1e1 + · · ·+ baiei + · · · anen.
We have

⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉
= d(e1, . . . , ei, . . . , en, a)− d(e1, . . . , biei, . . . , en, a)

= d

(
(e1, . . . , ei−1) ⊛ ((ei)− (bei)) ⊛ (ei+1, . . . , en, a)

)

= d(e1, . . . , ei−1) ⊛ ((ei)− (bei)) ⊛ (ei+1, . . . , en, a)

+ (−1)i(e1, . . . , ei−1) ⊛ ((ei)− (bei)) ⊛ d(ei+1, . . . , en, a)
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Let u = a1e1 + · · ·+ ai−1ei−1 + baiei = a−∑n
j=i+1 ajej.Then

(−1)i−1(e1, . . . , ei−1) = d
(
(e1, . . . , ei−1) ⊛ (u)

)
− d(e1, . . . , ei−1) ⊛ (u)

and

(ei+1, . . . , en, a) = d
(
(u) ⊛ (ei+1, . . . , en, a)

)
+ (u) ⊛ d(ei+1, . . . , en, a).

Thus ⌊a1, . . . , bai, . . . , an⌉ − 〈b〉 ⌊a1, . . . , an⌉ = X1 −X2 +X3 where

X1 = d(e1, . . . , ei−1) ⊛
(
(ei)− (bei)

)
⊛ d(u, ei+1, . . . , en, a),

X2 = d(e1, . . . , ei−1, u) ⊛
(
(ei)− (bei)

)
⊛ d(ei+1, . . . , en, a), and

X3 = d(e1, . . . , ei−1) ⊛

[(
(ei)− (bei)

)
⊛ (u) + (u) ⊛

(
(ei)− (bei)

)]
⊛

⊛ d(ei+1, . . . , en, a)

We show that each Xi is decomposable: Let V ⊂ Fn be the span of
u, ei+1, . . . , en (which is also equal to the span of a, ei+1, . . . , en), and let V ′ be
the span of e1, . . . , ei−1. Then Fn = V ′ ⊕ V and d(u, ei+1, . . . , en, a) ∈ H(V )
while
d(e1, . . . , ei−1) ⊛

(
(ei)− (bei)

)
∈ H(V, V ′).

Thus X1 lies in the image of

H(V, V ′)⊗H(V )
∗ // S̃(Fn)M

and so is decomposable.
Similarly, if we let W be the span of e1, . . . , ei and W ′ the span of ei+1, . . . , en,
then

d(e1, . . . , ei−1, u) ⊛
(
(ei) − (bei)

)
, d(e1, . . . , ei−1) ⊛

[(
(ei) − (bei)

)
⊛ (u) + (u) ⊛

(
(ei) − (bei)

)]

belongs to H(W ) and d(ei+1, . . . , en, a) ∈ H(W,W ′).Thus X2, X3 lie in the
image of

H(W )⊗H(W,W ′)
∗ // S̃(Fn)M

and are also decomposable. �

Let S̃(Fn)ind := S̃(Fn)M/S̃(Fn)dec.

The main goal of this section is to show that S̃(Fn)ind = 0 for all n ≥ 3
(Theorem 6.8 below).

Lemma 6.3. For all n ≥ 3, S̃(Fn)ind is a multiplicative Z[F×]-module.

Proof. We have

An ∼=
{

Z[F×]E∗n/2, n even

S̃(F ) ∗ E∗(n−1)/2, n odd

and these modules are decomposable for all n ≥ 3. It follows that the map

S̃(Fn)+M → S̃(Fn)ind

is surjective for all n ≥ 3. �
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Remark 6.4. Since E ∗ S̃(Fn−2)M ⊂ S̃(Fn)dec, in fact we have that Fn,1 →
S̃(Fn)ind is surjective.

Theorem 6.2 shows that for all a1, . . . , an ∈ F×

⌊a1, . . . , an⌉ ∼=
〈∏

i

ai

〉
⌊1, . . . , 1⌉ (mod S̃(Fn)dec).

In other words the map

Z[F×]→ S̃(Fn)ind, α 7→ α⌊1, . . . , 1⌉
is a surjective homomorphism of Z[F×]-modules. Thus, we are required to

establish that ⌊1, . . . , 1⌉ ∈ S̃(Fn)dec for all n ≥ 3.

For convenience below, we will let Σ̃n(F ) denote the free Z[F×]-module on the

symbols
[
a1, . . . , an

]
, a1, . . . , an ∈ F×. Let pn : Σ̃n(F )→ S̃(Fn) be the Z[F×]-

module homomorphism sending
[
a1, . . . , an

]
to ⌊a1, . . . , an⌉. We will say that

σ ∈ S̃(Fn) is represented by σ̃ ∈ Σ̃n(F ) if pn(σ̃) = σ.

Note that Σ̃•(F ) can be given the structure of a graded Z[F×]-algebra by
setting [

a1, . . . , an
]
·
[
an+1, . . . , an+m

]
:=
[
a1, . . . , an+m

]
;

i.e., we can identify Σ̃•(F ) with the tensor algebra over Z[F×] on the free
module with basis

[
a
]
, a ∈ F×.

Let Π• : Σ̃•(F ) → Z[F×][x] be the homomorphism of graded Z[F×]-algebras
sending

[
a
]

to 〈a〉x.
For all n ≥ 1 we have a commutative square of surjective homomorphisms of
Z[F×]-modules

Σ̃n(F )
Πn //

pn

��

Z[F×] · xn

γn

��
S̃(Fn) // S̃(Fn)ind

where γn(xn) = ⌊1, . . . , 1⌉.
Lemma 6.5. If n is odd and n ≥ 3 then S̃(Fn)ind = 0; i.e.,

S̃(Fn)M = S̃(Fn)dec.

Proof. From the fundamental relation in S̃(Fn) (Theorem 3.3), if b1, . . . , bn are

distinct elements of F×, then 0 ∈ S̃(Fn) is represented by Rb :=

[
b1, . . . , bn

]
−

[
1, . . . , 1

]
−

n∑

j=1

(−1)
n+j

〈
(−1)

n+j
〉 [

b1 − bj , . . . , ̂bj − bj , . . . , bn − bj , bj
]

in ∈ Σ̃n(F ).
Now Πn(Rb) =




〈
∏

i

bi

〉
− 〈1〉 −

n∑

j=1

(−1)
n+j 〈

(bj − b1) · · · (bj − bj−1) · (bj+1 − bj) · · · (bn − bj ) · bj
〉


 x
n
.
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We choose bi = i, i = 1, . . . , n. Then

Πn(Rb) =


〈n!〉 − 〈1〉 −

n∑

j=1

(−1)n+j 〈j!(n− j)!〉


xn = −〈1〉xn since n is odd.

It follows that −⌊1, . . . , 1⌉ = 0 in S̃(Fn)ind as required. �

The case n even requires a little more work.
The maps {pn}n do not define a map of graded algebras. However, we do have
the following:

Lemma 6.6. For 1 6= a ∈ F×, let

L(x) := 〈−1〉
[
1− x, 1

]
− 〈x〉

[
1− 1

x
,

1

x

]
+
[
1, 1
]
∈ Σ̃2(F ).

Then for all a1, . . . , an ∈ F× \ {1}, the product

n∏

i=1

⌊1, ai⌉ = ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ ∈ S̃(F 2n)

is represented by
∏
i L(ai) ∈ Σ̃2n(F ).

Proof. For convenience of notation, we will represent standard basis elements
of Cq(F

n) as n× q matrices [v1| · · · |vq].
Let e = (1, . . . , 1) and let σi(C) denote the sum of the entries in the ith row
of the n× n matrix C. By Remark 3.2, if A ∈ GLn(F ) and [A|e] ∈ Xn+1(Fn)

then dn+1([A|e]) represents 〈detA〉 ⌊σ1(A−1), . . . , σn(A−1)⌉ ∈ S̃(Fn).

Now, for a 6= 1, ⌊1, a⌉ is represented in S̃(F 2) by

d3

([
1 0 1
0 1 a

])
=

[
0 1
1 a

]
−
[
1 1
0 a

]
+

[
1 0
0 1

]
= T1(a)−T2(a)+T3(a) ∈ C2(F 2).

From the definition of the product ∗, it follows that ⌊1, a1⌉ ∗ · · · ∗ ⌊1, an⌉ is
represented by

Z :=
∑

j=(j1,...,jn)∈(1,2,3)n

(−1)k(j)



Tj1(a1)

. . .

Tjn(an)


 =

∑

j

(−1)k(j)T (j, a).

where k(j) := |{i ≤ n|ji = 2}|
Since ai 6= 1 for all i, the vector e = (1, . . . , 1) is in general position with respect
to the columns of all these matrices. Thus we can use the partial homotopy
operator se to write this cycle as a boundary:

Z =
∑

j

(−1)k(j)d2n+1 ([T (j, a)|e]) .
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By the remarks above

d2n+1 ([T (j, a)|e]) =

〈∏

i

detTji(ai)

〉
×

×⌊σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn(an)), σ2(Tjn(an))⌉.

This is represented by
〈∏

i

detTji(ai)

〉
×

×
[
σ1(Tj1(a1)), σ2(Tj1(a1)), σ1(Tj2(a2)), . . . , σ1(Tjn(an)), σ2(Tjn(an))

]

=

n∏

i=1

(
〈detTji(ai)〉

[
σ1(Tji(ai)), σ2(Tji(ai))

])
∈ Σ̃2n(F ).

Thus Z is represented by

∑

j

(−1)k(j)
n∏

i=1

(
〈detTji(ai)〉

[
σ1(Tji(ai)), σ2(Tji(ai))

])
=

=
n∏

i=1

( 3∑

j=1

(−1)j+1 〈det Tj(ai)〉
[
σ1(Tj(ai)), σ2(Tj(ai))

])
=

n∏

i=1

L(ai) ∈ Σ̃2n(F ).

�

Observe that all of our multiplicative modules (and in particular S̃(Fn)M) have
the following property: they admit a finite filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mt = M such that each of the associated quotients Mr/Mr−1 is annihilated by
I(F×)kr for some kr ≥ 1. From this observation it easily follows that

Lemma 6.7.

S̃(Fn)ind = 0⇐⇒ S̃(Fn)ind/(I(F×)r · S̃(Fn)ind) = 0 for all r ≥ 1.

Theorem 6.8. S̃(Fn)ind = 0 for all n ≥ 3.

Proof. The case n odd has already been dealt with in Lemma 6.5
For the even case, by Lemma 6.7 it will be enough to prove that for all r ≥ 1

Z[F×/(F×)r]⊗Z[F×] S̃(Fn)ind = 0.

Fix r ≥ 1. If a ∈ (F×)r \ {1}, then

Π2(L(a)) =

(
〈a− 1〉 −

〈
1− 1

a

〉
+ 〈1〉

)
x2 = 〈1〉x2 ∈ Z[F×/(F×)r]x2

since

1− 1

a
=
a− 1

a
≡ a− 1 (mod (F×)r).
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Now let n > 1 and choose a1, . . . , an ∈ (F×)r \ {1}. Let σ = ⌊1, a1⌉ ∗ · · · ∗
⌊1, an⌉ ∈ S̃(F 2n), so that σ 7→ 0 in S̃(F 2n)ind. By Lemma 6.6, σ is represented

by σ̃ =
∏n
i=1 L(ai) in Σ̃2n(F ) and thus

Π2n(σ̃) =

n∏

i=1

(
Π2(L(ai))

)
= 〈1〉 ∈ Z[F×/(F×)r]x2n

so that the image of σ in Z[F×/(F×)r]⊗Z[F×] S̃(F 2n)ind is 1⊗⌊1, . . . , 1⌉. This
proves the theorem. �

Corollary 6.9. For all n ≥ 2, the map Tn induces an isomorphism Fn,1 ∼=
KMW
n (F ).

Proof. Since, by the computations above, S̃(F 2)M = S̃(F )∗2 + Z[F×]E it fol-

lows, using Theorem 6.8 and induction on n, that S̃(F •)M is generated as a

Z[F×]-algebra by {⌊a⌉ ∈ S̃(F )|1 6= a ∈ F×} and E.

Thus E is central in the algebra S̃(F •)M and for all n ≥ 2,

S̃(Fn)M
E ∗ S̃(Fn−2)M

is generated by the elements of the form ⌊a1⌉ ∗ · · · ∗ ⌊an⌉, and hence also by the
elements {{a1, . . . , an}} since [a, b] ≡ ⌊a⌉ ∗ ⌊b⌉ (mod 〈E〉) for all a, b ∈ F×.
Since

Fn,1 ∼=
S̃(Fn)M

E ∗ S̃(Fn−2)M
by Corollary 5.14, it follows that Fn,1 is generated by the elements
{{a1, . . . , an}}, and thus that the homomorphisms µn of Theorem 5.24
are surjective. �

Corollary 6.10. For all n ≥ 3,

S̃(Fn)M
∼=
{

KMW
n (F )⊕KMW

n−2 (F )⊕ · · · ⊕KMW
2 (F )⊕ Z[F×] n even

KMW
n (F )⊕KMW

n−2 (F )⊕ · · · ⊕KMW
3 (F )⊕ IF× n odd

as a Z[F×]-module.

Corollary 6.11. For all even n ≥ 2 the cokernel of the map

Hn(SLn−1(F ),Z)→ Hn(SLn(F ),Z)

is isomorphic to KMW
n (F ).

Proof. Recall that ǫ2 induces an isomorphism H2(SL2(F ),Z) ∼= F2,1 = F2,0.

Let 〈a, b〉 denote the generator ǫ−1
2 ([a, b]) of H2(SL2(F ),Z). Then for even n

{{a1, . . . , an}} = [a1, a2] ∗ · · · ∗ [an−1, an]

= ǫ2(〈a1, a2〉) ∗ · · · ∗ ǫ2(〈an−1, an〉)
= ǫn(〈a1, a2〉 × · · · × 〈an−1, an〉)

by Lemma 3.5 (2).
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Since Fn,1 is generated by the elements {{a1, . . . , an}}, it follows that Fn,1 =
ǫn(Hn(SLn(F ),Z)) = E∞

n,0 = Fn,0, proving the result. �

Corollary 6.12. For all odd n ≥ 1 the maps

Hn(SLk(F ),Z)→ Hn(SLk+1(F ),Z)

are isomorphisms for k ≥ n.
Proof. In view of Corollary 5.11, the only point at issue is the injectivity of

Hn(SLn(F ),Z)→ Hn(SLn+1(F ),Z).

But the proof of Corollary 6.11 shows that the term

Fn+1,1/E
∞
n+1,0

∼= E∞
n,1 = Ker(Hn(SLn(F ),Z)→ Hn(SLn+1(F ),Z))

in the spectral sequence E+(Fn+1)M is zero. �

Corollary 6.13. If n ≥ 3 is odd, then

Coker(Hn(SLn−1(F ),Z)→ Hn(SLn(F ),Z)) ∼= 2KM
n (F )

Ker(Hn−1(SLn−1(F ),Z)→ Hn−1(SLn(F ),Z)) ∼= In(F ).

Proof. Since we have already proved this result for n = 3 above, we will assume
that n ≥ 5 (n odd).
Let a1, . . . , an ∈ F× and let z ∈ Hn−1(SLn−1(F ),Z) satisfy ǫn−1(z) =
{{a2, . . . , an}} ∈ Fn−1,0

∼= KMW
n−1 (F ). Thus {{a1, . . . , an}} = ⌊a1⌉ ∗ ǫn−1(z)

and hence ǫn,1({{a1, . . . , an}}) = 〈〈a1〉〉z by Theorem 5.20 (2). It follows that
the diagram

Fn,1
ǫn,1 //

Tn∼=
��

Hn−1(SLn−1(F ),Z)

Tn−1◦ǫn−1

��
KMW
n (F )

η // KMW
n−1 (F )

commutes.
Now Ker(ǫn,1) = Im(ǫn : Hn(SLn(F ),Z) → Fn,1). Since Im(ǫ3) =

T−1
3 (2KM

3 (F )) and Im(ǫn−3) = Fn−3,1 = T−1
n−3(KMW

n−3 (F )) we have

Tn(Im(ǫn)) = Im(Tn ◦ ǫn) ⊃ 2KM
3 (F ) ·KMW

n−3 (F ) = 2KM
n (F ) ⊂ KMW

n (F )

(using the fact that T• and ǫ• are algebra homomorphisms).
Thus we get a commutative diagram

KMW
n (F )

2KM
n (F )

T−1
n //

η∼=
��

Fn,1
Ker(ǫn,1)

Tn−1◦ǫn−1◦ǫn,1zzttttttttt

In(F )

from which it follows that the map T−1
n in this diagram is an isomorphism, and

hence Im(ǫn) = Ker(ǫn,1) ∼= 2KM
n (F ) and Im(ǫn,1) ∼= In(F ). �
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Introduction

Given a simple algebraA with centre F , the group SKi(A) is defined for i = 1, 2
as the kernel of the reduced norm

Nrdi : Ki(A)→ Ki(F ).

The definition of Nrd1 is classical, and Nrd2 was defined by Suslin in [47, Cor.
5.7]. For further reference, let us recall these definitions in a uniform way: let
X be the Severi-Brauer variety of A. After Quillen [42, Th. 8.4], there is an
isomorphism

d−1⊕

r=0

Ki(A
⊗r)

∼−→ Ki(X) (d = deg(A))

for any i ≥ 0. The reduced norm is then given by the composition

Ki(A)→ Ki(X)→ H0(X,Ki) ∼←− Ki(F )

where the right isomorphism is obvious for i = 1 and is due to Suslin [47, Cor.
5.6] for i = 2.
Of course, this definition also makes sense for i = 0: in this case, Nrd0 is simply
multiplication by the index of A:

K0(A) ≃ Z
ind(A)−−−−→ Z ≃ K0(F )

and SK0(A) = 0.
[For i > 2, a reduced norm satisfying reasonable properties cannot exist (Rost,
Merkurjev [33, p. 81, Prop. 4]): the right generalisation is in the framework of
motivic cohomology, see [22].]
The groups SK1(A) and SK2(A) remain mysterious and are known only in
very special cases. Here are a few elementary properties they enjoy:

(1) SKi(A) is Morita-invariant.
(2) ind(A)SKi(A) = 0 (from Morita invariance, reduce to the case where

A is division, and then use a transfer argument thanks to a maximal
commutative subfield of A).

(3) The cup-product K1(F )⊗K1(A)→ K2(A) induces a map

K1(F )⊗ SK1(A)→ SK2(A).

(4) Let v be a discrete valuation of rank 1 on F , with residue field k, and
assume that A spreads as an Azumaya algebra A over the discrete
valuation ring Ov. It can be shown that the map SK1(A) → SK1(A)
is surjective and that, if K2(Ov)→ K2(F ) is injective, there is a short
exact sequence

SK2(A)→ SK2(A)
∂−−→ SK1(Ak)

with

∂({f} · x) = v(f)x̄

for f ∈ F ∗ and x ∈ SK1(A).
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(5) Let A(t) = F (t)⊗F A, and similarly A(x) = F (x)⊗F A for any closed
point x ∈ A1

F . Then there is an isomorphism

SK1(A)
∼−→ SK1(A(t))

due to Platonov and an exact sequence

0→ SK2(A)→ SK2(A(t))→
⊕

x∈A1
F

SK1(A(x)).

From (3) and (4), one deduces that SK1(A) is a direct summand of SK2(A(t))
via the map x 7→ {t} · x: in particular, the latter group is nonzero as soon as
the former is. More intriguing is the Calmès symbol

cal : Λ2

(
K1(A)

ind(A)K1(A)

)
→ SK2(A)

a ∧ b 7→ Nrd(a) · b− a · Nrd(b).

The image of this symbol is not detected by residues.
Let us now review known results about SK1 and SK2. If F is a global field,
then SKi(A) = 0 for i = 1, 2: this is classical for i = 1 as a consequence of
class field theory, while for i = 2 it is due to Bak and Rehmann using the
Merkurjev-Suslin theorem [2]. In the sequel, I concentrate on more general
fields F and always assume that the index of A is invertible in F .

0.A. SK1. The first one to give an example where SK1(A) 6= 0 was Platonov
[41]. In his example, F is provided with a discrete valuation of rank 2 and the
Brauer group of the second residue field is nontrivial; in particular, cd(F ) ≥ 4.
Over general fields, a striking and early result for SK1 is Wang’s theorem:

Theorem 1 (Wang [58]). If the index of A is square-free, then SK1(A) = 0.

The most successful approach to SK1(A) for other A has been to relate it to
Galois cohomology groups. This approach was initiated by Suslin, who (based
on Platonov’s results) conjectured the existence of a canonical homomorphism

SK1(A)→ H4(F, µ⊗3
n )/[A] ·H2(F, µ⊗2

n )

where n is the index of A, supposed to be prime to charF [49, Conj. 1.16]. In
[49], Suslin was only able to partially carry over this project: he had to assume
that µn3 ⊂ F and then could only construct twice the expected map, assuming
the Bloch-Kato conjecture in degree 3.
The next result in this direction is due to Rost in the case of a biquaternion
algebra:

Theorem 2 (Rost [33, th. 4]). If A is a biquaternion algebra, there is an exact
sequence

0→ SK1(A)→ H4(F,Z/2)→ H4(F (Y ),Z/2)

where Y is the quadric defined by an ‘Albert form’ associated to A.
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The surprise here is that Rost gets in particular a finer map than the one
expected by Suslin, as he does not have to mod out by multiples of [A].
Merkurjev generalised Rost’s theorem to the case of a simple algebra of degree
4 but not necessarily of exponent 2:

Theorem 3 (Merkurjev [35, th. 6.6]). If A has degree 4, there is an exact
sequence

0→ SK1(A)→ H4(F,Z/2)/2[A] ·H2(F,Z/2)→ H4(F (Y ),Z/2)

where Y is the generalised Severi-Brauer variety SB(2, A), a twisted form of
the Grassmannian G(2, 4).

Note that the right map makes sense because AF (Y ) has exponent 2.
Merkurjev’s exact sequence is obtained from Rost’s by descent from F (Z) to
F , where Z = SB(A⊗2). The point is that neither SK1(A) nor the kernel of
the right map in Theorem 3 changes when one passes from F to F (Z).
More recently, Suslin revisited his homomorphism of [49] in [50], where he
constructs an (a priori different) homomorphism using motivic cohomology
rather than Chern classes in K-theory. He compares it with the one of Rost-
Merkurjev and proves the following amazing theorem:

Theorem 4 (Suslin [50, Th. 6]). For any central simple algebra A of degree 4,
there exists a commutative diagram of isomorphisms

SK1(A)
ϕ−−−−→
∼

Ker(H4(F, µ⊗3
4 )→ H4(F (X), µ⊗3

4 ))

[A] ·H2(F, µ⊗2
4 )

|| τ ′

y

SK1(A)
ψ−−−−→
∼

Ker(H4(F, µ⊗3
2 )→ H4(F (Y ), µ⊗3

2 ))

2[A] ·H2(F, µ⊗2
2 )

where X = SB(A), Y = SB(2, A), ϕ is Suslin’s homomorphism just mentioned
and ψ is Merkurjev’s isomorphism from Theorem 3.

0.B. SK2. Concerning SK2(A), the first result (over an arbitrary base field)
was the following theorem of Rost and Merkurjev:

Theorem 5 (Rost [43], Merkurjev [31]). For any quaternion algebra A,
SK2(A) = 0.

Rost and Merkurjev used this theorem as a step to prove the Milnor conjecture
in degree 3; conversely, this conjecture and techniques of motivic cohomology
were used in [21, th. 9.3] to give a very short proof of Theorem 5. We revisit
this proof in Remark 7.3, in the spirit of the techniques developed here.
The following theorem is more recent. In view of the still fluctuant status of the
Bloch-Kato conjecture for odd primes, we assume its validity in the statement.
(See §2.A for the Bloch-Kato conjecture.)

Theorem 6 (Kahn-Levine [22, Cor. 2], Merkurjev-Suslin [38, Th. 2.4]). As-
sume the Bloch-Kato conjecture in degree ≤ 3. For any central simple algebra
A of square-free index, SK2(A) = 0.
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From Theorems 1 and 6, we get by a well-known dévissage argument a re-
finement of the elementary property (2) given above: for any A and i = 1, 2,
ind(A)∏

li
SKi(A) = 0, where the li are the distinct primes dividing ind(A).

On the other hand, Baptiste Calmès gave a version of Rost’s theorem 2 for
SK2 of biquaternion algebras:

Theorem 7 (Calmès [5]). Under the assumptions of Theorem 2, assume fur-
ther that F contains a separably closed field. Then there is an exact sequence

Ker(A0(Z,K2)→ K2(F ))→ SK2(A)→ H5(F,Z/2)→ H5(F (Y ),Z/2)

where Z is a hyperplane section of Y .

(Note that in the case of SK1, the corresponding group Ker(A0(Z,K1) →
K1(F )) is 0 by a difficult theorem of Rost.)
Finally, let us mention the construction of homomorphisms à la Suslin

SK1(A)→ H4(F,Q/Z(3))/[A] ·K2(F )(0.1)

SK2(A)→ H5(F,Q/Z(4))/[A] ·KM
3 (F )(0.2)

in [22, §6.9], using an étale version of the Bloch-Lichtenbaum spectral sequence
for the motive associated to A. The second map depends on the Bloch-Kato
conjecture in degree 3 and assumes, as in Theorem 7, that F contains a sep-
arably closed field. This construction goes back to 1999 (correspondence with
M. Levine), although the targets of (0.1) and (0.2) were only determined in
[22, Prop. 6.9.1].

0.C. The results. Calmès’ proof of Theorem 7 is based in part on the meth-
ods of [18]. In this paper, I propose to generalise his construction to arbitrary
central simple algebras, with the same technique. The methods will also shed
some light on the difference between Suslin’s conjecture and the theorems of
Rost and Merkurjev. The main new results are the following:

Theorem A. Let F be a field and A a simple algebra with centre F and index
e, supposed to be a power of a prime l different from charF . Then, for any
divisor r of e, there is a complex

0→ SK1(A)
σ1
r−→ H4(F,Q/Z(3))/r[A] ·K2(F )→ A0(Y [r], H4

ét(Q/Z(3)))

where Y [r] is the generalised Severi-Brauer variety SB(r, A) and the groups
A0(Y [r],−) denote unramified cohomology. If the Bloch-Kato conjecture holds
in degree 3 for the prime l, these complexes refine into complexes

0→ SK1(A)→ H4(F, µ⊗3
e/r)/r[A] ·H2(F, µ⊗2

e/r)→ A0(Y [r], H4
ét(µ

⊗3
e/r))).

They are exact for r = 1, 2 and e = 4.

I don’t know, and don’t conjecture, that these complexes are exact in general.
The map of theorem A coincides with those of Rost and Merkurjev, which is
the way we get their nontriviality for l = 2 [34].
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Theorem B. Let F , A, e and Y [r] be as in Theorem A; assume the Bloch-Kato
conjecture in degree ≤ 3 at the prime l and that F contains a separably closed
subfield. Then, for any divisor r of e, there is a complex

0→ SK2(A)
σ2
r−→ H5(F,Q/Z(4))/r[A] ·KM

3 (F )→ A0(Y [r], H5
ét(Q/Z(4))).

If, moreover, the Bloch-Kato conjecture holds in degree 4 for the prime l, these
complexes refine into complexes

0→ SK2(A)→ H5(F, µ⊗4
e/r)/r[A] ·H3(F, µ⊗3

e/r)→ A0(Y [r], H5
ét(µ

⊗4
e/r))).

For l = 2, the maps starting from SK2(A) are nontrivial in general for r = 1, 2
(unless ind(A) ≤ 2).

Theorem C. For any smooth F -variety X, define

SK1(X,A) = lim−→HomF (X,SLn(A))ab

where SLn(A) is the reductive group representing the functor R 7→ SLn(A⊗F
R). Then there exists a natural transformation

cA(X) : SK1(X,A)→ H5
ét(X,Z(3)).

Restricted to fields, cA is the universal invariant with values in H5
ét(Z(3)) ≃

H4
ét(Q/Z(3)) in the sense of Merkurjev [35].

Loosely speaking, cA is defined out of the “positive” generator of the group
H5

ét(SL1(A),Z(3))/H5
ét(F,Z(3)) which turns out to be infinite cyclic, much

like the Rost invariant is defined out of the “positive” generator of the infinite
cyclic group H3

ét(SL1(A),Z(2)) ≃ H4
ét(BSL1(A),Z(2)) (see [8, App. B]). This

replies [35, Rk. 5.8] in the same way as what was done for the Arason invariant
in [8].

Theorem D. Let K be the function field of SL1(A). If ind(A) = 4, we have

SK1(AK)/SK1(A) ≃ Z/2.

In Conjecture 10.16 we conjecture that SK1(AK)/SK1(A) is cyclic for any A.

Theorem E. If exp(A) = 2 < ind(A), then

Inv4(SL1(A), H∗(Q/Z(∗ − 1))) ≃ Z/2

where the former group is Merkurjev’s group of invariants of SL1(A) with val-
ues in H4(−,Q/Z(3)) [35]. In particular the invariant of Theorem C is non-
trivial in this case, and equals the invariant σ1

2 of Theorem A.

Theorems A, B and C were obtained around 2001/2002, except for the exactness
and nontriviality statements for r = 1, which follow from the work of Suslin
[50]. They were presented at the 2002 Talca-Pucón conference on quadratic
forms [20]. Theorems A and C are used by Tim Wouters in recent work [60].
Theorems D and E were obtained while revising this paper for publication.
This paper is organised as follows. We set up notation in Section 1. In Section
2, we recall the slice spectral sequences in the case of geometrically cellular
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varieties. Sections 3 to 5 are technical. In particular, Section 3 recalls the
diagrams of exact sequences from [18, §5], trying to keep track of where the
Bloch-Kato conjecture is used; we deduce a simple proof of Suslin’s theorem [50,
Th. 1], as indicated by himself in the introduction of [50] (see Remark 3.2). In
Section 6 we get our first main result, Theorem 6.1, which constructs functorial
injections sending a part of lower K-theory of some projective homogeneous
varieties into a certain subquotient of the Galois cohomology of the base field.
We apply this result in Section 7 to twisted flag varieties, thus getting Theorems
A and B (see Corollaries 7.4 and 7.5); in Remark 7.3, we revisit the proof
of Theorem 5 given in [21]. In Section 8, we push the main result of [22]
one step further. In Section 9, we do some preliminary computations on the
slice spectral sequences associated to a reductive group G: the main result is
that, if G is simple simply connected of inner type Ar for r ≥ 2, then the
complex α∗c3(G) of [14] is quasi-isomorphic to Z[−1] (see Theorem 9.5 for a
more complete statement). In section 10, the approach of Merkurjev in [35]
plays a central rôle: we prove Theorem C, see Theorem 10.7, Theorem D, see
Corollary 10.15 and part of Theorem E, see Proposition 10.11. We conclude
with some incomplete computations in Section 11 trying to evaluate the group
SK1(AK)/SK1(A) in general, where K is the function field of SL1(A): see
Theorem 11.9 and Corollary 11.10. At the end of this section we complete the
proof of Theorem E, see Corollary 11.12.
This paper contains results which are mostly 8 to 9 years old. The main reason
why it was delayed so much is that I tried to compare the 3 ways to construct
homomorphisms à la Suslin indicated above: in (0.1)–(0.2), Theorems A and B
and Theorem C, and to prove their nontriviality in some new cases. In the first
version of this work, I wrote that I had been mostly unsuccessful. Since then
the situation has changed a bit with Theorems D and E: they were potentially
already in the first version, but Wouters’ work [60] was an eye-opener for this.
The easy comparisons are, for Theorems A and B, with the Rost and Calmès
homomorphisms of Theorems 2 and 7, and with the new Suslin homomorphism
of Theorem 4. We can now also compare those of Theorems A and C in certain
cases as in Theorem E, see also Corollary 10.10 and [60, §4]. A complete
comparison of all invariants still seems challenging1: I give some comments on
these comparison issues in Subsection 7.F and Remark 10.12.
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1. Notation

If X is a projective homogeneous variety, we denote as in [18] by Ei the étale F -
algebra corresponding to the canonical Z-basis of CHi(Xs) given by Schubert
cycles, where Xs = X ⊗F Fs and Fs is a separable closure of F .
The motivic cohomology groups used in this paper are (mostly) the Hom groups
in Voevodsky’s categoryDM eff

−,ét(F ) of [54, §3.3] (étale topology). In particular,

the exponential characteristic p of F is inverted in this category by [54, Prop.
3.3.3 2)], so that those groups are Z[1/p]-modules. Very occasionally we shall
use Hom groups in the category DM eff

− (F ) (Nisnevich topology).
Let (Q/Z)′ =

⊕
l 6=pQl/Zl. We abbreviate the étale cohomology groups

Hi
ét(X, (Q/Z)′(j)) with the notation Hi(X, j).

Unless otherwise specified, all cohomology groups appearing are étale cohomol-
ogy groups, with the exception of cycle cohomology groups in the sense of Rost
[44]. The latter are denoted by Ap(X,Mq), where M∗ is the relevant cycle
module. By Gersten’s conjecture [44, Cor. 6.5], these groups are canonically
isomorphic to the Zariski cohomology groups Hp

Zar(X,Mq), where Mq is the
Zariski sheaf on X associated to Mq; we shall occasionally but rarely use this
isomorphism, implicitly or explicitly.

2. Motivic cohomology of smooth geometrically cellular
varieties updated

2.A. The Bloch-Kato conjecture and the Beilinson-Lichtenbaum
conjecture. At the referee’s request, I recall these two conjectures and their
equivalence:

2.1. Conjecture (Milnor, Bloch, Kato). Let n ≥ 0, m ≥ 1 be two integers.
Then, for any field F of characteristic not dividing m, the “norm residue sym-
bol”

KM
n (F )/m→ Hn(F, µ⊗n

m )

(first defined by Tate in [52]) is bijective.

2.2. Conjecture (Suslin-Voevodsky). Let n ≥ 0, m ≥ 1, i ∈ Z be three
integers. Then, for any field F of characteristic not dividing m and any smooth
F -scheme X, the change of topology map

Hi
Nis(X,Z/m(n))→ Hi

ét(X,Z/m(n))

is bijective for i ≤ n and injective for i = n + 1, where Z/m(n) is the mod m
version of the n-th motivic complex of Suslin-Voevodsky.

Conjecture 2.2 appears in [51] where (among other places like [54]) the com-
plexes Z(n) are introduced. It therefore cannot be literally attributed to Beilin-
son and Lichtenbaum, although it is indeed a common part of conjectures they
made in the eighties on the properties of the still conjectural complexes Z(n).
Voevodsky observed in [56] that the special case X = SpecF , i = n of Conjec-
ture 2.2 is a reformulation of Conjecture 2.1. Conversely:
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2.3. Theorem ([51, 10], see also [19]). Conjecture 2.1 (for the pair (n,m))
implies Conjecture 2.2 (for the triples (n,m, i)).

We shall actually use in this paper the following variant of Conjecture 2.2 with
integral coefficients:

2.4. Proposition. Conjecture 2.2 for m a power of a prime l is equivalent
to the following: let n ≥ 0, i ∈ Z be two integers. Then, for any field F of
characteristic 6= l and any smooth F -scheme X, the change of topology map

Hi
Nis(X,Z(n))→ Hi

ét(X,Z(n))

is bijective for i ≤ n+ 1 and injective for i = n+ 2 after localising at l.

The equivalence is an easy consequence of the fact that the map in Proposition
2.4 is an isomorphism after tensoring with Q for any i ∈ Z [53, Prop. 5.28].
The special case X = SpecF , i = n + 1 of Proposition 2.4 enunciates that
Hn+1

ét (F,Z(n))⊗Z(l) = 0: this is called “Hilbert’s theorem 90 in degree n” and
is actually equivalent (for all F ) to the above conjectures.
At the time of writing, the status of Conjecture 2.1 is as follows. For n = 0
it is trivial, for n = 1 it is Kummer theory ( ⇐⇒ Hilbert’s theorem 90), for
n = 2 it is the Merkurjev-Suslin theorem [36], for m a power of 2 it is due to
Voevodsky [56]. In general it seems now to be fully proven as a combination
of works by several authors, merging in [57] (see [59] for an overview).
In this paper, we use these conjectures for n = 2 (resp. n = 3) when dealing
with SK1 (resp. SK2) and Q/Z coefficients, and for n = 3 (resp. n = 4) when
dealing with SK1 (resp. SK2) and finite coefficients.

2.B. The slice spectral sequences. In [18], we constructed spectral se-
quences for the étale motivic cohomology of smooth geometrically cellular va-
rieties. These results were limited in two respects:

(1) the ground field F was assumed to be of characteristic 0;
(2) the spectral sequences had a strange abutment, which was nevertheless

sufficient for applications.

The results of [14] solved both issues. The first one was due to the fact that
[18] worked with motives with compact support in Voevodsky’s triangulated
category of motives [54], which are known to be geometric only in characteristic
0: indeed, it was shown that the motive with compact supports of a cellular
variety X is a pure Tate motive in the sense of [14], from which it was deduced
by duality that the motive of X (without supports) is also pure Tate if X is
smooth. In [14, Prop. 4.11], we prove directly that, over any field, the motive
of X is pure Tate if X is smooth and cellular.
The second issue was more subtle and is discussed in [14, Remark 6.3]. The
short answer is that by considering a different filtration than the one used in
[18], one gets the “right” spectral sequence.
We summarize this discussion by stating the following theorem, which follows
from [14, (3.2) and Prop. 4.11] and replaces [18, Th. 4.4]:
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2.5. Theorem. Let X be a smooth, equidimensional, geometrically cellular
variety over a perfect field F . For all n ≥ 0, there is a spectral sequence
E(X,n):

(2.1) Ep,q2 (X,n) = Hp−q
ét (F,CHq(Xs)⊗ Z(n− q))⇒ Hp+q

ét (X,Z(n)).

Note that, by cellularity, each CHq(Xs) is a permutation Galois module. These
spectral sequences have the following properties:

(i) Naturality. (2.1) is covariant in F and contravariant in X (varying
among smooth, equidimensional, geometrically cellular varieties) under
any maps (even finite correspondences).

(ii) Products. There are pairings of spectral sequences

Ep,qr (X,m)× Ep′,q′r (X,n)→ Ep+p
′,q+q′

r (X,m+ n)

which coincide with the usual cup-product on the E2-terms and the
abutments.

(iii) Transfer. For any finite extension E/F and any n ≥ 0, there is a
morphism of spectral sequences

Ep,qr (XE , n)→ Ep,qr (X,n)

which coincides with the usual transfer on the E2-terms and the abut-
ment.

(iv) Covariance for closed equidimensional immersions. For any
closed immersion i : Y →֒ X of pure codimension c, where X and
Y are smooth, geometrically cellular, there is a morphism of spectral
sequences

Ep−c,q−cr (Y, n− c) i∗−→ Ep,qr (X,n)

“abutting” to the Gysin homomorphisms

Hp+q−2c
ét (Y,Z(n− c)) i∗→ Hp+q

ét (X,Z(n)).

If X is split, then (2.1) degenerates at E2.

The only nonobvious point in this theorem is (ii) (products). In [14, p. 915],
it is claimed that there are pairings of slice spectral sequences for the tensor
product of two arbitrary motives M and N . This is not true in general: I thank
Evgeny Shinder for pointing out this issue. However, these pairings certainly
exist if M or N is a mixed Tate motive: the argument is essentially the same as
the one that proves that the Künneth maps of [14, Cor. 1.6] are isomorphisms
in this case [14, Lemma 4.8]. For the reader’s convenience, we outline the
construction. We take the notation of [14]:
Given the way the slice spectral sequence is constructed in [14, §3] (bottom of
p. 914), to get a morphism of filtrations, we need to get morphisms

ν≤q+q′ (M ⊗M ′)→ ν≤qM ⊗ ν≤q′M ′

for two motives M,M ′ and two integers q, q′.
From the canonical maps M → ν≤qM and M ′ → ν≤q′M ′, we get a morphism

M ⊗M ′ → ν≤qM ⊗ ν≤q′M ′
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and we would like to prove that its composition with ν>q+q
′

(M⊗M ′)→M⊗M ′

is 0. This will be true provided

ν>q+q
′

(ν≤qM ⊗ ν≤q′M ′) =

Hom(Z(q + q′ + 1), ν≤qM ⊗ ν≤q′M ′)(q + q′ + 1) = 0.

This is false in general (for example M = M ′ = h1(C), q = q′ = 0, where C
is a curve of genus > 0 over an algebraically closed field), but it is true if M
or M ′ is a mixed Tate motive. Indeed, we may reduce to M = Z(a) for some
integer a. Then

ν≤qM =

{
0 if q < a

Z(a) if q ≥ a
hence Hom(Z(q + q′ + 1), ν≤qM ⊗ ν≤q′M ′) = 0 if q < a, and if q ≥ a we get

Hom(Z(q + q′ + 1), ν≤qM ⊗ ν≤q′M ′)

= Hom(Z(q + q′ + 1),Z(a)⊗ ν≤q′M ′)

= Hom(Z(q + q′ + 1− a), ν≤q′M
′) = 0

because q + q′ + 1− a > q′.
Dealing with the spectral sequences for étale motivic cohomology, it will suffice
that M or N is geometrically mixed Tate in the sense of [14, §5] to have these
products.

2.6. Remark. As stressed in §1, the spectral sequences of Theorem 2.5 are
spectral sequences of Z[1/p]-modules, where p is the exponential characteristic
of F . Thus all results of this paper are “away from p”. It is nevertheless
possible to extend the methods to p-algebras in characteristic p, at some cost:
this is briefly discussed in Appendix A. I am grateful to Tim Wouters for a
discussion leading to this observation.

2.C. Vanishing of E2-terms. Since this issue may be confusing, we include
here an estimate in the case of the spectral sequences (2.1) and of the coniveau
spectral sequences, which will be used in the next section (compare [18, p. 161]).
It shows that these two spectral sequences live in somewhat complementary
regions of the E2-plane.

2.7. Proposition. a) In the spectral sequence (2.1), we have Ea,b2 (X,n) = 0
in the following cases:

(ai) a ≤ b, b ≥ n− 1, except a = b = n.
(aii) a = n+ 1 under the Bloch-Kato conjecture in degree n− b.
Moreover, Ea,b2 (X,n) is uniquely divisible for a ≤ b and b < n− 1.
b) Let X be a smooth variety. In the coniveau spectral sequence for étale motivic
cohomology

Ea,b1 =
⊕

x∈X(a)

Hb−a(k(x),Z(n − a))⇒ Ha+b(X,Z(n))

we have Ea,b1 = 0 in the following cases:
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(bi) a ≥ b, a ≥ n− 1, except a = b = n.
(bii) b = n+ 1 under the Bloch-Kato conjecture in degree n− a.
Moreover, Ea,b2 (X,n) is uniquely divisible for a ≥ b and a < n− 1.
Finally, for b = n, the natural map

Aa(X,KM
n )[1/p]→ Ea,n2

is surjective under the Bloch-Kato conjecture in degrees ≤ n− a, and bijective
under the Bloch-Kato conjecture in degrees ≤ n− a+ 1.

Proof. For (ai), we use that Ea,b2 (X,n) = Ha−b
ét (F,CHb(Xs) ⊗ Z(n − b)) ≃

Ha−b−1
ét (F,CHb(Xs) ⊗Q/Z(n− b)) for n− b < 0 (by definition of Zét(n − b)

for n− b < 0, see [14, Def. 3.1]), and also that Z(0) = Z and Z(1) = Gm[−1].
(aii) follows from Hilbert 90 in degree n − b (see §2.A after Proposition 2.4).
The proofs of (bi) and (bii) are similar. The divisibility claims reduce to the
unique divisibility of Hi

ét(K,Z(r)) for i ≤ 0 (r > 0, K/F a function field): this
is obvious for i < 0, while for i = 0 we may reduce to finitely generated fields
as in [17, proof of Th. 3.1 a)]. Finally, the last claim follows from a diagram
chase in the comparison map between the Gersten complexes for Nisnevich and
étale cohomology with Z(n) coefficients. �

3. Weight 3 and weight 4 étale motivic cohomology

In this section, we examine in more detail the diagrams obtained in [18] by
mixing the slice and coniveau spectral sequences, and expand the results in
weight 4. In order to stress the irrelevance of Gersten’s conjecture, we replace
the notation Hp(X,Hq) or Hp(X,Kq) used in [18] by the notation Ap(X,Hq)
or Ap(X,Kq) (see §1).

3.A. Weight 3. Let X be a projective homogeneous F -variety. In [18, §5.4],
we drew a commutative diagram with some exactness properties, by mixing
the coniveau spectral sequence and the spectral sequence of [18, Th. 4.4] for
étale motivic cohomology in weight 3. We can now use the spectral sequence
(2.1) to get the same diagram over any perfect field. To get the diagram of [18,
§5.4], we made the blanket assumption in [18] that all groups were localised at
2, because calculations relied on the Bloch-Kato conjecture in degree 3, which
was only proven for l = 2.
In this paper, we are also interested in making the dependence on this conjec-
ture explicit. How much exactness remains in this diagram if we don’t wish to
use it in degree 3? Using Proposition 2.7, we see that at least the following
part of the diagram of [18, §5.4] remains exact by only using the Bloch-Kato
conjecture in degree ≤ 2 (= the Merkurjev-Suslin theorem): the exponential
characteristic p is implicitly inverted in this diagram as well as in the next one,
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(3.2).

(3.1)

H4(F,Z(3))
y

0→ A1(X,KM
3 ) −−−−→ H4(X,Z(3)) −−−−→ A0(X,H4(Z(3)))

y

K2(E1)
yd3,12 (3)

A0(X,H4(Z(3))) H4(F, 3)
y

y ցη4

A2(X,KM
3 ) −−−−→ H5(X,Z(3)) → A0(X,H4(3))

ցξ4
y

y

E∗
2 CH3(X)

y

H6(X,Z(3)).

The group A0(X,H4(Z(3))), which appears twice in this diagram, is of course
torsion, as well as H4(F,Z(3)), and their l-primary components are 0 under
the Bloch-Kato conjecture in degree 3 for the prime l.

3.B. Weight 4. In weight 4, we cannot avoid using the Bloch-Kato conjecture
in degree 3. There is a commutative diagram, which was only written down in
a special case in [18]:

(3.2)

H5(X,Z(4))→ K3(E2)ind KM
3 (E1)

Z
ZZ~
d3,23 (4)

yd4,12 (4)

A0(X,H5(Z(4))) H5(F, 4)
y

y Z
ZZ~
η5

A2(X,KM
4 ) −−−−→ H6(X,Z(4)) → A0(X,H5(4))

Z
ZZ~
ξ5

y
y

K2(E2) H3(X,KM
4 )

�
��=

d4,33 (4)

yd4,32 (4)

y

H6(F, 4) H4(E1, 3) H7(X,Z(4)).
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In this diagram, the differentials appearing correspond to the spectral sequence
(2.1) in weight 4. The path snaking from A0(X,H5(Z(4))) to H7(X,Z(4)) is
exact (it comes from the coniveau spectral sequence for weight 4 étale motivic

cohomology: see Proposition 2.7). The differential d4,33 (4) is only defined on

the kernel of d4,32 (4) and the differential d3,23 (4) takes values in the cokernel of

d3,22 (4). The column is a complex, exact at H6(X,Z(4)); its exactness proper-
ties at H5(F, 4) and K2(E2) involve the differentials d3 in an obvious sense.
All these exactness properties depend on the Bloch-Kato conjecture in degree
i for any field E and any i ≤ 3, and also on Hilbert’s theorem 90 in degree i
under the same conditions (which follows from the Bloch-Kato conjecture, see
§2.A).
The map η5 is the natural map from the Galois cohomology of the ground field
to the unramified cohomology of X .

3.C. The groups Ker η4 and Ker η5.

3.1. Definition. For i = 1, 2, we denote by Ker ηi+3 the homology of the
complex

KM
i+1(E1)

di+2,1
2 (X,i+2)−−−−−−−−−→ Hi+3(F, i + 2)

ηi+3

−−−→ A0(X,Hi+3(i + 2)).

Diagram (3.1) yields an exact sequence

A0(X,H4(Z(3)))→ Ker ξ4 → Ker η4 → 0

hence an isomorphism

(3.3) Ker ξ4
∼−→ Ker η4

under the Bloch-Kato conjecture in degree ≤ 3.
If F contains an algebraically closed subfield, then K3(E2)ind is divisible and

the differential d3,23 (4) is 0 since it is a priori torsion [18, Prop. 4.6]. Then
diagram (3.2) yields an exact sequence

A0(X,H5(Z(4)))→ Ker ξ5 → Ker η5 → 0

under the Bloch-Kato conjecture in degree ≤ 3 and an isomorphism

(3.4) Ker ξ5
∼−→ Ker η5

under the Bloch-Kato conjecture in degree ≤ 4.

3.2. Remark. Let us recover Suslin’s theorem [50, Th. 1] from (3.3). The point
is simply that the coniveau spectral sequence for Nisnevich motivic cohomology
yields an isomorphism

A2(X,KM
3 )

∼−→ H5
Nis(X,Z(3))

(cf. [50, Lemma 9]). The differential d3,12 (3) was computed in [18, Th. 7.1] for
Severi-Brauer varieties.
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4. Some K-cohomology groups

4.A. A1(X,K3) and A0(X,K3). Recall from [18, Prop. 4.5] that

(4.1) Ai(X,KM
3 )

∼−→ Ai(X,K3) for i > 0.

For A1(X,K3), we have:

4.1. Proposition. Let X be a projective homogeneous variety over F , and
K/F a regular extension. Under the Bloch-Kato conjecture in degree 3, the
map

A1(X,K3)→ A1(XK ,K3)

has p-primary torsion kernel, where p is the exponential characteristic of F .
More precisely, the kernel of this map is torsion and its l-primary part vanishes
for l 6= p if the Bloch-Kato conjecture holds at the prime l in degree 3.

Proof. Up to passing to its perfect closure, we may assume F perfect. By
Diagram (3.1) and (4.1), there is a canonical map

A1(X,K3)→ K2(E1)

where E1 is a certain étale F -algebra associated to X , whose kernel is contained
in H4

ét(F,Z(3)): hence the l-primary part of this kernel vanishes under the
condition in Proposition 4.1. The result now follows from [47, th. 3.6]. �

Let still X be a projective homogeneous F -variety. As in [18, §5.1], for all i ≥ 0
we write Ei for the étale F -algebra determined by the Galois-permutation basis
of CHi(Xs) given by Schubert cycles (see §1).

4.2. Theorem. a) For i ≤ 2, the map Ki(F )→ A0(X,Ki) is bijective.
b) Under the Bloch-Kato conjecture in degree 3, the cokernel of the homomor-
phism

K3(F )→ A0(X,K3)

is torsion, and its prime-to-the-characteristic part is

(1) finite if F is finitely generated over its prime subfield;
(2) 0 in the following cases:

(i) F contains a separably closed subfield;
(ii) the map CH1(XE1)→ CH1(Xs) is surjective.

More precisely, under the Bloch-Kato conjecture in degree 3 for the prime l,
the above is true after localisation at l.

Proof. a) is well-known and is quoted for reference purposes: it is obvious for
i = 0, 1 (since X is proper geometrically connected), and for i = 2 it is a
theorem of Suslin [47, Cor. 5.6].
b) After [17, Th. 3 a)] (see also [27, Th. 16.4]), the homomorphism KM

3 (K)→
K3(K) is injective for any field K. Consider the commutative diagram with
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exact rows

0 −−−−→ KM
3 (F ) −−−−→ K3(F ) −−−−→ K3(F )ind −−−−→ 0
y

y
y

0 −−−−→ A0(X,KM
3 ) −−−−→ A0(X,K3) −−−−→ A0(X,K ind

3 ).

As X is a rational variety, the right vertical map is bijective [8, lemma 6.2]. It
therefore suffices to prove the claims of theorem 4.2 for the left vertical map.
Let us first assume F perfect: then we can use Theorem 2.5. Mixing the weight
3 coniveau spectral sequence for étale motivic cohomology with the spectral
sequence (2.1) in weight 3, we get modulo the Bloch-Kato conjecture in degree
3 the following commutative diagram with exact rows:

0
y

KM
3 (F )
y Z

ZZ~
α

0→A1(X,H2(Z(3))) −−−−→ H3(X,Z(3)) → A0(X,KM
3 )→0

Z
ZZ~
β

y

K3(E1)indy

0.

For the reader’s convenience, let us explain where the Bloch-Kato conjecture
in degree 3 is necessary. The weight 3 spectral sequence (2.1) gives a priori an
exact sequence

H0(E1,Z(2))
d1,12 (X,3)−−−−−−→ H3(F,Z(3))→ H3(X,Z(3))

→ H1(E1,Z(2))→ H4(F,Z(3)).

Recall that all groups are étale cohomology groups here. The group
H0(E1,Z(2)) is conjecturally 0; it is uniquely divisible in any case, see proof

of Proposition 2.7. Since the differential d1,12 (X, 3) is torsion (proof as in [18,
Prop. 4.6]), it must be 0. The identification of H1(E1,Z(2)) with K3(E1)ind
only depends on the Merkurjev-Suslin theorem. On the other hand, the bijec-
tivity of KM

3 (F ) → H3(F,Z(3)) and the vanishing of H4(F,Z(3)) depend on
the Bloch-Kato conjecture in degree 3. This takes care of the vertical exact
sequence. Similarly, the Bloch-Kato conjecture in degree 3 is necessary to iden-
tify the last term of the horizontal exact sequence (stemming from the coniveau
spectral sequence) with A0(X,KM

3 ).
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The diagram above gives an isomorphism

Cokerα ≃ Cokerβ.

Let us show that Cokerβ is m-torsion for some m > 0. The group K3(E1)ind
appearing in the diagram is really

H0(F,CH1(Xs)⊗H1(Fs,Z(2)))

via Shapiro’s lemma, the isomorphism H1(K,Z(2)) ≃ K3(K)ind for any field
and Galois descent for K3(K)ind [37, 23]. A standard computation shows that
the corestriction map

H0(E1, CH
1(Xs)⊗H1(Fs,Z(2)))

Cor−−→ H0(F,CH1(Xs)⊗H1(Fs,Z(2)))

is split surjective. On the other hand, since CH1(Xs) is finitely generated, there
exists a finite extension E/F such that CH1(XE) → CH1(Xs) is surjective.
Without loss of generality, we may assume that E contains all the residue
fields of the étale algebra E1. A transfer argument then shows that the map
CH1(XE1)→ CH1(Xs) has cokernel killed by some integer m > 0. Hence the
composition

CH1(XE1)⊗H1(E1,Z(2))→ CH1(Xs)⊗H1(E1,Z(2))
∼−→ CH1(Xs)⊗H0(E1, H

1(Fs,Z(2)))

≃ H0(E1, CH
1(Xs)⊗H1(Fs,Z(2)))

has cokernel killed by m, and the same holds for the composition

CH1(XE1)⊗H1(E1,Z(2))→ H0(E1, CH
1(Xs)⊗H1(Fs,Z(2)))

Cor−−→ H0(F,CH1(Xs)⊗H1(Fs,Z(2))).

But this composition factors via cup-product as

CH1(XE1)⊗H1(E1,Z(2)) = A1(XE1 , H
2(Z(1)))⊗H1(E1,Z(2))

→ A1(XE1 , H
2(Z(3)))

Cor−−→ A1(X,H2(Z(3)))

β−−→ H0(F,CH1(Xs)⊗H1(Fs,Z(2)))

which proves the claim.
Coming back the the case where F is not necessarily perfect, let F ′ be its
perfect (radicial?) closure and α′ the map α “viewed over F ′”. Then a trans-
fer argument shows that the natural map Cokerα → Cokerα′ has p-primary
torsion kernel and cokernel, where p is the exponential characteristic of F . In
particular, Cokerα is torsion, and its prime-to-p part is killed by some m.
The integer m equals 1 provided CH1(XE1) → CH1(Xs) is surjective, which
proves 2) (ii) in Theorem 4.2. In general, the map

K3(F0)ind/m→ K3(F )ind/m

is bijective, where F0 is the field of constants of F [37, 23]. If F0 is separably
closed, then K3(F0)ind/m = 0 (ibid.), which proves 2) (i); if F is finitely
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generated, then F0 is a finite field or a number field with ring of integers A and
K3(F0)ind is a quotient of K3(A); in both cases it is finitely generated, which
proves 1). �

4.3. Example. X is a conic curve. Then Cokerβ is isomorphic to the cokernel
of the map

⊕

x∈X(1)

K3(F (x))ind
(NF(x)/F )−−−−−−−→ K3(F )ind.

Even in the case F = Q, K3(Q)ind ≃ Z/24, I am not able either to produce
an example where this map is not onto, or to prove that it is always onto.
As a first try, one might restrict to points of degree 2 on X . To have an
idea of how complex the situation is, the reader may refer to [15, §8]. In
particular, Theorem 8.1 (iv) of loc. cit. shows that the map is onto provided
X has a quadratic splitting field of the form Q(

√−p), where p is prime and
≡ −1 (mod 8). If X corresponds to the Hilbert symbol (a, b), with a, b two
coprime integers, the theorem of the arithmetic progression shows that there

are infinitely many p ≡ −1 (mod 8) such that p ∤ ab and

(−p
l

)
= −1 for all

primes l | ab. Since −p is a square in Q2, this implies that (a, b)Q(
√−p) = 0 if

and only if (a, b)Q2 = 0. Thus the above map is surjective if X(Q2) 6= ∅, but I
don’t know the answer in the other case.

4.B. Ai(X,KM
4 ) and Ai(X,K4).

4.4. Theorem. a) For any smooth variety X, the natural map

ϕi : Ai(X,KM
4 )→ Ai(X,K4)

is bijective for i ≥ 3 and surjective for i = 2 with kernel killed by 2.
b) Suppose that F contains a separably closed subfield. Then ϕ2 is bijective.

Proof. a) By definition, both groups are cohomology groups of the respective
Gersten complexes

· · · →
⊕

x∈X(i)

KM
4−i(F (x))→ . . .

· · · →
⊕

x∈X(i)

K4−i(F (x))→ . . .

Therefore, Theorem 4.4 is obvious for i ≥ 3, and ϕ2 is surjective. Using the
Adams operations on algebraicK-theory, we see that, for any field K, the exact
sequence

0→ KM
3 (K)→ K3(K)→ K3(K)ind → 0

is split up to 2-torsion. It follows that 2 Kerϕ2 = 0.
b) We have an exact sequence

⊕

x∈X(1)

K3(F (x))ind
ψ−−→ A2(X,KM

4 )
ϕ2−−→ A2(X,K4)→ 0.
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By assumption, each group K3(F (x))ind is divisible (compare the proof of The-
orem 4.2). Since their images in A2(X,KM

4 ) are killed by 2, they are 0. �

4.5. Remark. I don’t know if the condition on F is necessary for the bijectivity
of ϕ2. Note that ψ factors through the group A1(X,H2(Z(3))) appearing in
the proof of Theorem 4.2.

5. An approximation of cycle cohomology

Let M∗ be a cycle module in the sense of Rost [44] and let X be projective
homogeneous. There are cup-products

(5.1) CHp(X)⊗Mq−p(F )→ Ap(X,Mq).

which are isomorphisms when X is split, by [8, Prop. 3.7].
Assume now that X is not necessarily split. Let Y be a splitting variety for X :
if Xs = Gs/P where G is a semi-simple F -algebraic group and P is a parabolic
subgroup of Gs, we may take Y such that Ys = Gs/B for B a Borel subgroup
contained in P . Then XF (y) is cellular for any point y ∈ Y . It is possible to
define a map

(5.2) Ap(X,Mq)
ξ̃p,q−−→ A0(YEp ,Mq−p)

which is an isomorphism after tensoring with Q and corresponds to the inverse
of (5.1) when X is split. When q− p ≤ 2 and M∗ = KM

∗ , this map refines into
a map

(5.3) Ap(X,KM
q )

ξp,q−−→ KM
q−p(Ep)

thanks to Suslin’s theorem [47, Cor. 5.6] for q− p = 2 and trivially for q− p =
0, 1. In this paper, we shall only construct such a map in the substantially
simpler inner case where all algebras Ep are split, which is sufficient for our
needs.
We note that, if X is split, the functor K 7→ CHp(XK) from field extensions
of F to abelian groups is constant, with finitely generated free value. When
X is arbitrary, we shall authorise ourselves of this to denote by CHp(Xs) the
common value of CHp(XK) for all splitting fields K of X .
For Y a splitting variety of X as above, consider the Rost spectral sequence
[44, §8]

Ep,q2 = Ap(Y,Rqπ∗M∗)⇒ Ap+q(X × Y,M∗)

where π is the projection X × Y → Y and the Rqπ∗M∗ are the higher direct
images of M∗ in the sense of Rost [44, §7]. Using the fact that (5.1) is an
isomorphism in the split case, we get canonical isomorphisms

Rqπ∗M∗ = CHq(Xs)⊗M∗−q

hence an edge homomorphism

Ap(X × Y,Mq)→ E0,p
2 = CHp(Xs)⊗A0(Y,Mq−p).
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In the inner case, the composition of this map with the obvious map

Ap(X,Mq)→ Ap(X × Y,Mq) is the desired map ξ̃p,q of (5.2).
In the special case M∗ = KM

∗ , a functoriality argument shows that the map
ξ2,3 (resp. ξ2,4) of (5.3) coincides with the map ξ4 of Diagram (3.1) (resp. with
the map ξ5 of Diagram (3.2)).

6. A general K-theoretic construction

Let X be projective homogeneous, and let K be a splitting field for X such
that K/F is geometrically rational (for example, take for K the function field
of the corresponding full flag variety, see beginning of §5). We assume as in
the previous section that the associated algebras Ep are split: this is probably

not essential. We write K∗(X)(i) for the coniveau filtration on K∗(X), and
K∗(X)(i/i+1) for its successive quotients.

6.A. The first steps of the coniveau filtration.

6.1. Theorem. For i ≤ 2,
a) The map

Ki(F )⊕Ki(X)(1) → Ki(X)

is an isomorphism.
b) The maps

Ker(Ki(X)(2) → Ki(XK)(2))→ Ker(Ki(X)(1) → Ki(XK)(1))

→ Ker(Ki(X)→ Ki(XK))

are isomorphisms. (For i = 2, we assume the Bloch-Kato conjecture in degree
3 for the torsion primes of X.)
c) There are canonical monomorphisms

Ker(Ki(X)(2/3) → Ki(XK)(2/3)) −֒→ Ker ηi+3

where Ker ηi+3 was introduced in Definition 3.1. (If i = 2, we assume the
Bloch-Kato conjecture in degree 3 for the torsion primes of X, and also that F
contains a separably closed field.) These homomorphisms are contravariant in
X.

Proof. a) By Theorem 4.2 a), the composition

Ki(F )→ Ki(X)→ A0(X,Ki)

is bijective; hence this composition yields a splitting to the exact sequence

0→ Ki(X)(1) → Ki(X)→ A0(X,Ki).

b) It suffices to show that the maps Ki(X)(j/j+1) → Ki(XK)(j/j+1) are in-
jective for j = 0, 1. For j = 0, this is clear from a) (reapplying Theorem 4.2
a)).
For j = 1, by the (Brown-Gersten-)Quillen spectral sequence it suffices to show
that the map

A1(X,Ki+1)→ A1(XK ,Ki+1)
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is injective. For i = 0, the statement (concerning Pic) is classical; for i = 1, it
follows from [32, Theorem] and for i = 2 it follows from Proposition 4.1.
c) The BGQ spectral sequence gives a map

Ki(X)(2/3)
∼−→ E2,−i−2

∞ →֒ Coker(A0(X,Ki+1)
d0,−i−1
2−−−−−→ A2(X,Ki+2)).

The differential d0,−i−1
2 is 0 by Theorem 4.2. Therefore, we get an injection

Ker(Ki(X)(2/3) → Ki(XK)(2/3)) →֒ Ker(A2(X,Ki+2)→ A2(XK ,Ki+2)).

Clearly, the right-hand-side kernel is equal to Ker ξ2,i+2, where ξ2,i+2 is the
map defined in the previous section. As observed at the end of this section,
this map coincides with the map ξi+3 of diagrams (3.1) and (3.2) (for i = 1, 2;
similarly for i = 0). The result then follows from (3.3) and (3.4) (and their
analogue for i = 0). �

6.B. The reduced norm and projective homogeneous varieties.

6.2. Proposition. Let B be a central simple F -algebra, and let F be a locally
free sheaf on X, provided with an action of B. For i ≤ 2, consider the map

uF : Ki(B)→ Ki(X)

induced by the exact functor

P (B)→ P (X)(6.1)

M 7→ F ⊗B M
where P (B) (resp. P (X)) denotes the category of finitely generated [projective]
B-modules (resp. of locally free OX-sheaves of finite rank).
a) The composition

Ki(B)
uF−→ Ki(X)→ A0(X,Ki)

∼←− Ki(F )

equals rkB(F) NrdB, where rkB(F) :=
rk(F)

deg(B)
.

b) The map

ũF : Ki(B)→ Ki(X)

defined by x 7→ uF(X) − rkB(F) NrdB(x) has image contained in Ki(X)(1).
The composition

Ki(B)
ũF−→ Ki(X)(1) → A1(X,Ki+1)

ξ1,i+1

−→ Ki(E1) = CH1(X)⊗Ki(F )

where ξ1,i+1 is as in Section 5, equals c1(F)⊗NrdB.

Proof. Observe that NrdB is characterised by the commutation of the diagram

Ki(BL)
∼−−−−→ Ki(L)

x
x

Ki(B)
NrdB−−−−→ Ki(F )
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for any extension L/F that splits B and such that L = F (Y ), where Y is a
smooth projective geometrically rational F -variety and the upper isomorphism
is given by Morita theory. Indeed, this diagram then refines to a diagram of
the form

A0(Y,Ki(B ⊗F OY ))
∼−−−−→ A0(Y,Ki)x ≀

x

Ki(B)
NrdB−−−−→ Ki(F )

see [47, Cor. 5.6] for the right vertical isomorphism.
It is therefore sufficient to check Proposition 6.2 after extending scalars to
L = K(Y ), where Y is the Severi-Brauer variety of B. Thus, we may assume
X and B split.
By Morita, uF then corresponds to the map Ki(F ) → Ki(X) given by cup-
product with [F ⊗B S] ∈ K0(X), where S is a simple B-module. a) is now
obvious, the first statement of b) follows, and the second one is also obvious
since ξi,1 commutes with products in the split case. �

From Proposition 6.2 and Theorem 6.1 a), it follows that the restriction of uF
and ũF to SKi(B) induce the same map: SKi(B) → Ki(X)(2), that we shall
still denote by uF . If L/F is chosen as in the proof of Proposition 6.2, then
clearly the composition SKi(B)→ Ki(X)(2) → Ki(XL)(2) is 0. This yields:

6.3. Definition. Let L/F be a geometrically rational extension splitting both
X and B. We denote by σiF : SKi(B)→ Kerηi+3 the composition

SKi(B)
uF−→ Ker(Ki(X)(2/3) → Ki(XL)(2/3)) −֒→ Ker ηi+3

where the second map is that of Theorem 6.1 c).

7. Twisted flag varieties

In this section, we define maps from SKi(A) to Galois cohomology as promised
in Theorems A and B. We use the results of the previous section. In order
to get these maps, it is enough to deal with generalised Severi-Brauer varieties
(twisted Grassmannians); however, we start with the apparently greater gener-
ality of twisted flag varieties. The reason for doing this is the hope to be able
to compare the various maps with each other in the future, see Subsection 7.F.

7.A. K-theory of twisted flag varieties. Let A be a simple algebra of
degree d, with centre F . For r = (r1, . . . , rk) with d ≥ r1 > · · · > rk ≥ 0,
let Y [r] = SB(r;A) be the twist of the flag variety G(r1, . . . , rk; d) by a 1-
cocycle defining A: its function field is generic among extensions K/F such
that AK acquires a chain I1 ⊃ · · · ⊃ Ik of left ideals of respective K-dimensions
dr1, . . . , drk. If s is a subset of r, there is an obvious projection

Y [r] → Y [s].

The variety Y [r] carries a chain of locally free sheaves

(7.1) AY [r] −→→ Jr1 −→→ . . . −→→ Jrk

Documenta Mathematica · Extra Volume Suslin (2010) 317–369



SK1 and SK2 of Central Simple Algebras 339

where AY [r] is the constant sheaf with value A: if A is split, (7.1) corresponds by
Morita theory to the tautological flag Ad

Y [r] →→ Vr1 . . .→→ Vrk onG(r1, . . . , rk; d)

(Jrj is the quotient of End(Ad)Y [r] by the sheaf of ideals consisting of endo-

morphisms vanishing on Ker(Ad
Y [r] → Vrj )).

There is an action of A on this chain. More generally, for any partition
α = (α1, . . . , αm) of |α| =

∑
αi with α1 ≥ · · · ≥ αm ≥ 0, with associated

Schur functor Sα, the sheaf Sα(Vrj ) on G(r1, . . . , rk; d) defines by faithfully

flat descent a sheaf Sα(Jrj ) of A⊗|α|-algebras on Y [r] [26, §4].
By Levine-Srinivas-Weyman [26, Th. 4.6], we have an isomorphism

(7.2)
⊕

α

K∗(A⊗|α|)
(uα)−→ K∗(Y [r])

where α = (α1, . . . , αk) is a family of partitions, with 0 ≤ αji ≤ ri − ri+1,
|α| = ∑ |αj | and uα is induced by the exact functor

P (A|α])→ P (Y [r])

M 7→ Sα(J )⊗A|α| M

with Sα(J ) = Sα
1

(J1) ⊗ · · · ⊗ Sαk(Jk). Actually our choice of generators is
not the one of [26], but rather the same as in Panin [40, Th. 7.1], who proves
the same results by a different method.

7.B. Maps from SKi to Galois cohomology. We now apply Definition
6.3 with F = Jrj for each j: in the above notation, this corresponds to the

case αj
′

= 0 for j′ 6= j and αj = (1, 0, . . . ). We find maps

(7.3) σirj : SKi(A)→ Kerηi+1
Y [r] .

We now proceed to compute the differential di+2,1
2 (Y [r], i+ 2) involved in Def-

inition 3.1. Using the multiplicativity of (2.1) (Th. 2.5 (ii)), we reduce to

computing the differential d1,12 (Y [r], 1) (cf. [18, lemma 6.1]). We have an exact
sequence [18, 5.2]

CH1(Y [r]
s )GF

d1,12 (Y [r],1)−−−−−−−→ Br(F )→ Br(Y [r]).

The group CH1(Y
[r]
s ) has a basis consisting of the first Chern classes of the

bundles Vrj : in particular, GF acts trivially on it. For j ∈ [1, k], write Y [rj ] for
the twisted Grassmannian (generalised Severi-Brauer variety) corresponding to
rj . Then we have a commutative diagram

(7.4)

CH1(Y
[r]
s )

d1,12 (Y [r],1)−−−−−−−→ Br(F ) −−−−→ Br(Y [r])
x ||

x

Z=CH1(Y
[rj]
s )

d1,12 (Y [rj ],1)−−−−−−−−→ Br(F ) −−−−→ Br(Y [rj ]).
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This shows that CH1(Y
[r]
s ) is generated by the images of the maps

CH1(Y
[rj ]
s ) → CH1(Y

[r]
s ) for j = 1, . . . , k, and thus there is no loss of gen-

erality in assuming k = 1 for the computation of the differential, which we do
now. Let us simplify the notation by writing r for rj . We have the following

7.1. Lemma ([39, Cor. 2.7]). Ker(Br(F )→ Br(Y [r])) = 〈r[A]〉. �

Hence we get d1,12 (Y [r], 1)(1) = r[A] (up to a unit), and therefore from Diagram
(7.4):

d1,12 (Y [r], 1)(Vrj ) = rj [A] (up to a unit).

We conclude:

7.2. Corollary. a) The maps (7.3) give rise to commutative diagrams of
complexes (i = 1, 2):

0→SKi(A)
σirj−→ Hi+4(F,Z(i + 2))

gcd(rj)[A] ·Hi+1(F,Z(i + 1))
→A0(Y [r]), Hi+4(Z(i + 2)))

||
x p∗

x

0→SKi(A)
σirj−→ Hi+4(F,Z(i + 2))

rj [A] ·Hi+1(F,Z(i + 1))
→A0(Y [rj ]), Hi+4(Z(i + 2)))

where Y [rj] = SB(rj , A) is the generalised Severi-Brauer variety of ideals of
rank rj, and the middle vertical map is the natural surjection.
b) If j = k and rk divides the other rj, then both vertical maps are isomor-
phisms.

Proof. The only thing to remain proven is b). The generic fibre of p : Y [r] →
Y [rk] is then easily seen to be the split flag variety G(r1 − rk, . . . , rk−1− rk; d);
in particular it is rational and the claim follows. �

7.3. Remark. By construction, this homomorphism for i = 2 factors through
an injection

SK2(A) −֒→ K2(Y [r])(2).

If A is a quaternion algebra, the only choice for Y [r] is the conic corresponding
to A and K2(Y

[r])(2) = 0. This is a variant of the proof of Theorem 5 given in
[21].

As seen above, for i = 1, the definition of σirj only involves the Merkurjev-Suslin

theorem, while for i = 2 it involves the Bloch-Kato conjecture in degree 3 (for
the primes dividing d). If we are ready to grant the Bloch-Kato conjecture one
degree further, we get a refinement of these maps:

7.4. Corollary. Assume the Bloch-Kato conjecture in degree i+ 2 (i = 1, 2).
Assume also for simplicity that rj divides d. The the complexes on the bottom
row of Corollary 7.2 refine into complexes

(7.5) SK1(A)→ H4(F, µ⊗3
d/rj

)/rj [A] ·H2(F, µ⊗2
d/rj

)→ A0(Y [rj], H4(µ⊗3
d/rj

))
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(7.6) SK2(A)→ H5(F, µ⊗4
d/rj

)/rj [A] ·H3(F, µ⊗3
d/rj

)→ A0(Y [rj ], H5(µ⊗4
d/rj

)).

Proof. Use the fact that d/rKer ηi = 0 (transfer argument), and that the map
H4(F, µ⊗3

d/rj
)→ H4(F,Q/Z(3)) = H5(F,Z(3)) (resp. the map H5(F, µ⊗4

d/rj
)→

H5(F,Q/Z(4)) = H6(F,Z(4))) is injective under the Bloch-Kato conjecture in
degree 3 (resp. 4). �

7.C. Examples: maps à la Suslin and à la Rost-Merkurjev. The case
of Suslin corresponds to rj = 1 for any A. More precisely, the way Suslin
constructs his map in [50, §3] shows that it coincides with the one here for
rj = 1, compare Remark 3.2. Similarly, the cases of Rost-Merkurjev correspond
to d = 4, rj = 2. Using the work of Calmès [5, §2.5], one can check that in the
case of a biquaternion algebra we get back Rost’s map for SK1 (resp. Calmès’
map for SK2). This implies:

7.5. Corollary. a) For i = 1, the bottom sequence in Corollary 7.2 is exact
for rj = 1, 2 and deg(A) = 4.
b) The maps σ1

1 and σ1
2 are nonzero in general if 4 | ind(A).

Proof. a) Let us first assume rj = 1. Then, as explained above, the map σ1
1

coincides with Suslin’s map in [50, §3], and the exactness is loc. cit., Th. 3.
Suppose now that rj = 2. If A is a biquaternion algebra, the exactness is Rost’s
theorem [33, Th. 4]. If exp(A) = 4, we reduce to the biquaternion case by the
same argument as in [35, proof of Th. 6.6].
b) This follows from a) by a standard argument, cf. [34]. �

7.D. Some properties of the maps σir. For simplicity, we replace rj by r;
we still assume that r divides d.

7.6. Lemma. If r = d, the maps (7.5) and (7.6) are 0.

Proof. In this case the variety Y [r] has a rational point, hence the two ker-
nels are 0. (Alternately, the coefficients of the cohomology groups involved in
Corollary 7.4 are 0!) �

7.7. Proposition. Let a ∈ F ∗. Then, for all r | d, the diagram

SK1(A)
σ1
r−−−−→ H4(F, µ⊗3

d/r)/r[A] ·H2(F, µ⊗2
d/r)

·{a}
y ·{a}

y

SK2(A)
σ2
r−−−−→ H5(F, µ⊗4

d/r)/r[A] ·H3(F, µ⊗3
d/r)

commutes, where the vertical maps are cup-product by {a} and the horizontal
maps are those of (7.5) and (7.6).
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Proof. Since the spectral sequences of [18, Th. 4.4] are multiplicative, it suffices
to chek that the diagram

SK1(A)
σ1
r−−−−→ Ker ξ4

Y [r]

·{a}
y ·{a}

y

SK2(A)
σ2
r−−−−→ Ker ξ5

Y [r]

commutes. This in turn reduces to the compatibility of the BGQ spectral
sequence and the isomorphisms (7.2) with products. �

Similarly:

7.8. Proposition. Let A be a discrete valuation F -algebra, with quotient field
K and residue field E. Then the diagrams

SK2(AK)
σ2
r−−−−→ H5(K,µ⊗4

d/r)/r[A] ·H3(K,µ⊗3
d/r)

∂

y ∂

y

SK1(AE)
σ1
r−−−−→ H4(E, µ⊗3

d/r)/r[A] ·H2(E, µ⊗2
d/r)

commutes, where the homomorphisms ∂ are induced by the residue maps in
K-theory and Galois cohomology respectively.

Proof. Similar. �

Using Corollary 7.5 b), Proposition 7.7 and Proposition 7.8, we find that σ2
1

and σ2
2 are nontrivial when 4 | ind(A).

7.E. A refinement. In this subsection, where we keep the previous notation,
we assume that A is a division algebra, d is a power of a prime l and r[A] = 0:
for r strictly dividing d, this is possible if and only if the exponent ε of A is
smaller than d (and then we may choose for r any l-power between ε and d/l).
Then we can compute K1(X)(1/2) and extend the map

SKi(A)→ Ki(X)(2)

of the previous section to a map

Ki(A)→ Ki(X)(2).

This approach corresponds to that of Rost in the case where A is a biquaternion
algebra [33].
Let H be the class of a hyperplane section in K0(Y

[r]).

7.9. Proposition. For i ≤ 2,
a) The composition

Ki(F )
·H−−→ Ki(Y

[r])(1) → A1(Y [r],Ki+1)
ξ1,i+1

−−−−→ Ki(F )
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is the identity.
b) The induced map

Ki(F )→ Ki(Y
[r])(1/2)

is an isomorphism.
c) Let J be the tautological bundle on Y [r]. Then the image of the map

Φ[r] : Ki(A)→ Ki(Y
[r])(1)

x 7→ ũJ (x) −Nrd(x) ·H

(see Proposition 6.2 b)) sits into Ki(X)(2).

Proof. By Lemma 7.1, the map

CH1(Y [r])→ CH1(Y [r]
s )

is bijective. In particular, c1(H) = h in CH1(Y
[r]
s ). We then get a) by multi-

plicativity. b) follows from a) and the fact that the maps

Ki(Y
[r])(1/2) → H1(Y [r],Ki+1)

ξ1,i+1

−−−−→ Ki(F )

are injective. c) follows immediately from a). �

7.F. The comparison issue. For s | r | d, let Y [r,s] = SB(r, s, A) be as in
7.A with the two projections

Y [r,s]

�
��=

pr Z
ZZ~
ps

Y [r] Y [s].

We have corresponding diagrams (i = 1, 2)

Ker ηi+3
Y [r]

�
��>σir

Z
ZZ~

p∗r

SKi(A) Ker ηi+3
Y [r,s]

Z
ZZ~

σis
�
��>p∗s

Ker ηi+3
Y [s]

The comparison issue is to know whether this diagram commutes: if this is the
case, then the maps σir and σis are compatible in an obvious sense thanks to
Corollary 7.2 b). In view of Theorem 6.1 c), this commutation is equivalent to
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the commutation of the diagram

Ki(Y
[r])(2)

�
��>uJr

Z
ZZ~

p∗r

SKi(A) Ki(Y
[r,s])(2)

Z
ZZ~
uJs

�
��>p∗s

Ki(Y
[s])(2)

or to the vanishing of the map

uJr − uJs : SKi(A)→ Ki(Y
[r,s])(2).

We may also consider the sheaf Ir,s = Ker(Ir → Is); then the above amounts
to the vanishing of the map

uIr,s : Ki(A)→ Ki(Y
[r,s])

on the subgroup SKi(A). In [50, Th. 4], Suslin obtains this commutation (or
vanishing) for (s, r, d) = (1, 2, 4) in a very sophisticated and roundabout way.
I have no idea how to prove it in general.

8. Motivic cohomology of some Severi-Brauer varieties

In this section, unlike in the rest of the paper, we write H∗(X,Z(n)) (resp.
H∗

ét(X,Z(n)) for motivic cohomology of some smooth variety X computed in
the Nisnevich (resp. étale) topology. We also use Zariski cohomology with
coefficients into sheafified étale cohomology groups instead of cycle cohomology,
as those are the groups that come naturally.

8.1. Theorem. Let A have prime index l, and let X be its Severi-Brauer va-
riety. Let ZA be the Nisnevich sheaf with transfers defined in [22, 5.3]. Let
n ≥ 0, and assume the Bloch-Kato conjecture in degrees ≤ n+ 1. Then:
a) There is an exact sequence

0→ Hn(F,ZA(n))
Nrd−→ Hn(F,Z(n))

·[A]−→ Hn+3
ét (F,Z(n + 1))

→ H0(X,Hn+3
ét (Z(n + 1)))→ 0.
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b) There is a cross of exact sequences

0
y

H1(X,Hn+3
ét (Z(n+ 1)))
y

0→Hn+4
ét (F,Z(n + 1))→ Hn+4(X, Z̄(n+ 1)) →H0(X,Hn+2

ét (Z(n))
y ·[A]

y

H0(X,Hn+4
ét (Z(n+ 1))) Hn+5

ét (F,Z(n+ 1))

where Z̄(n) is the cone of the morphism Z(n) → Rα∗α∗Z(n), with α the pro-
jection of the big étale site onto the big Nisnevich site.

Proof. This is an extension of [22, Th. 8.1.4 and 8.2.2], and it is proven by
the same method. The exact sequence of a) is part 2 of Theorem 8.1.4 of loc.
cit. (where the differential is identified with the cup-product with [A] in 8.2),
except that in [22, Th. 8.1.4 (2)], the last term is Hn+3

ét (F (X),Z(n + 3)) and
there is no surjectivity claimed.
To prove a) and b) we look at the spectral sequence (8.4) of [22]. Let d =
dimX(= l − 1). In the proof of Theorem 8.1.4 and in 8.2, the following was
established:

• Ep,q2 = 0 for −q /∈ [0, d], p < d− 1, p = d or (p, q) = (d− 1,−d).
• The differential

d2 : Coker(Hn(F,ZA(n))→ Hn
ét(F,Z(n))) ≃ Ed−1,1−d

2

→ Ed+1,−d
2 ≃ Hn+3

ét (F,Z(n + 1))

is injective, and induced by the cup-product Hn
ét(F,Z(n))

·[A]−→
Hn+3

ét (F,Z(n + 1)).

The abutment of this spectral sequence on the diagonal p+ q = N is

Hom(Z(d)[2d], M̄ (X)(n+ 1)[n+ 2 +N ])

computed in DM eff(F ), where

M̄(X) = cone(M(X)→ Rα∗α
∗M(X)).

Note that M̄(X)(n+ 1) ≃M(X)⊗ Z̄(n+ 1) (by a projection formula). Hence
the abutment may be rewritten (by Poincaré duality)

Hn+2+N(X, Z̄(n+ 1)).
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The Bloch-Kato conjecture in degree n + 1 identifies Z̄(n + 1) with
τ>n+2(Rα∗α∗Z(n)). The hypercohomology spectral sequence then gives

Hn+2+N (X, Z̄(n+ 1)) = 0 for N ≤ 0

Hn+3(X, Z̄(n+ 1)) ≃ H0(X,Hn+3
ét (Z(n + 1)))

and for N = 2 an exact sequence

0→ H1(X,Hn+3
ét (Z(n+ 1)))→ Hn+4(X, Z̄(n+ 1))

→ H0(X,Hn+4
ét (Z(n+ 1))).

Consider the differentials dd−1,q
2 : Ed−1,q

2 → Ed+1,q−1
2 for −q ≤ d− 1. We have

Ep,q2 = Hom(Z, Z̄A⊗(−q+1) (n+ 1− d− q)[n+ 2− 2d+ p− q])
where Z̄A⊗(−q+1) = cone(ZA⊗(−q+1) → Rα∗α∗ZA⊗(−q+1)). Therefore

Ed−1,q
2 = Hom(Z, Z̄A⊗(−q+1) (n+ 1− d− q)[n+ 1− d− q])

= Coker(Hn+1−d−q(F,ZA(n+1−d− q))→ Hn+1−d−q(F,Z(n+1−d− q)))
and

Ed+1,q−1
2 = Hom(Z, Z̄A⊗(−q+2) (n+ 2− d− q)[n+ 4− d− q])

= Hn+4−d−q
ét (F,Z(n + 2− d− q))).

The computation of [22, 8.2] identifies dd−1,q
2 with the map induced by cup-

product by [A]. By the above, we get that dd−1,q
2 is injective. The computation

of [22, 8.2] also identifies dd+1,q−1
2 with the cup-product by [A]. This gives both

a) and b). �

9. Étale motivic cohomology of reductive groups

9.A. The slice spectral sequence for a reductive group. Let X be
a smooth F -variety. There are spectral sequences [14, (3.1), (3.2)], similar to
those of Theorem 2.5:

(9.1) Ep,q2 (X,n)Nis = HomDMeff
− (F )(cq(X),Z(n− q)[p− q])⇒ Hp+q

Nis (X,Z(n))

(9.2)

Ep,q2 (X,n)ét = HomDMeff
−,ét(F )(α

∗cq(X),Z(n− q)[p− q])⇒ Hp+q
ét (X,Z(n))

where cq(X) are complexes of Nisnevich sheaves with transfers associated to
X (canonically in the derived category) and α is the projection from the étale
site of smooth F -varieties to the Nisnevich site. These spectral sequences have
the same formal properties as (2.1): transfers, and products if the motive of X
is mixed Tate (resp. geometrically mixed Tate), cf. discussion in the proof of
Th. 2.5 (ii).
Let X = G be a connected reductive group over F , with maximal torus T
defined over F . Set Y = G/T . Assume first G and T split. In [14, Prop. 9.3],
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it was shown that cq(G) is dual, in the derived category, to the complex of
constant Nisnevich sheaves cq(G) (denoted by K(G, q) in loc. cit.) given by

(9.3) 0→ Λq(T ∗)→ Λq−1(T ∗)⊗ CH1(Y )→ . . .

· · · → T ∗ ⊗ CHq−1(Y )→ CHq(Y )→ 0

in which T ∗ is the group of characters of T , CHq(Y ) is in degree 0 and the
maps are induced by intersection products and the characteristic map γ : T ∗ →
CH1(X) (compare [8, 3.14]). Thus (9.1) may be rewritten in this case as

Ep,q2 (G,n)Nis = Hp−q
Nis (F, cq(G)⊗ Z(n− q))⇒ Hp+q

Nis (G,Z(n)).

Since cq(G) is concentrated in degrees ≤ 0, cq(G)⊗Z(n− q) is concentrated in
degrees≤ n−q and Ep,q2 (G,n)Nis = 0 for p > n. We also have Ep,q2 (G,n)Nis = 0
for q > n, since Z(n− q) = 0 in this case. For (p, q) = (n, n) this yields

9.1. Lemma (cf. Grothendieck [13, p. 21, Rem. 2]). If G is split, we have
isomorphisms En,n2 (G,n)Nis ≃ Ep,q∞ (G,n)Nis ≃ H2n(G,Z(n)), hence an exact
sequence

T ∗ ⊗ CHn−1(Y )→ CHn(Y )→ CHn(G)→ 0.

We shall also use:

9.2. Lemma. Suppose G split, simply connected and absolutely simple. Then,
for all n > 0, CHn(G) is killed by (n − 1)! and by the torsion index tG of G
[7, §5]. In particular, CHi(G) = 0 for i = 1, 2. If G is of type Ar or Cr,
CHi(G) = 0 for all i > 0.

Proof. The first fact follows from K0(G) = Z, cf. [8, Proof of Prop. 3.20 (iii)].
For the second one, Demazure proves in [7, Prop. 5] that the cokernels of the
characteristic maps γn : Sn(T ∗) → CHn(Y ) are killed by tG: the claim then
follows from Lemma 9.1 and a small diagram chase. The last fact follows from
[7, Lemme 5], which says that tG = 1 for G of type Ar or Cr. (This also follows
from Suslin [48, Th. 2.7 and 2.12].) �

We now relax the assumption that G is split, and would like to study the
spectral sequences (9.2). If we knew that

(9.4) α∗cq(G) ≃ cq(Gs)
in the derived category of complexes of étale sheaves (or GF -modules), this
would allow us to rewrite (9.2) in the form

Ep,q2 (G,n)ét = Hp−q
ét (F, cq(Gs)⊗ Z(n− q))⇒ Hp+q

ét (G,Z(n))

as for the split case, in the Nisnevich topology.
I don’t know how to prove (9.4), but at least the proof of [14, Prop. 9.3]
shows that the two complexes have isomorphic cohomology sheaves. Hence
they are quasi-isomorphic at least in the case where the cohomology of cp(Gs)
is concentrated in at most one degree. We shall therefore make-do with (9.2)
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and be saved by the fact that, for low values of q and for the groups G we are
interested in, the latter fact is true. For simplicity, we shall write

HomDMeff
−,ét(F )(α

∗cq(G),Z(n− q)[p− q]) = Extp−qét (α∗cq(G),Z(n − q)).

We always have c0(Gs) = CH0(Ys) = Zπ0(Gs). Suppose that G is semi-simple,
simply connected. Then c is bijective and one finds [8]

c1(Gs) = 0(9.5)

c2(Gs) = S2(T ∗
s )W [1](9.6)

where W is the Weyl group of Gs. If G is absolutely simple, then rkS2(T ∗
s )W =

1 (with trivial Galois action).
We note that the unit section of G splits off from (9.2) spectral sequences

Ẽp,q2 (G,n)⇒ H̃p+q
ét (G,Z(n))

with

Ẽp,q2 (G,n) =

{
Extp−qét (α∗cq(G),Z(n − q)) for q > 0

0 for q = 0

and Hp+q
ét (G,Z(n)) = Hp+q

ét (F,Z(n)) ⊕ H̃p+q
ét (G,Z(n)) via the unit section.

These spectral sequences are modules over (9.2).
From the above spectral sequence in weight 3, the corresponding coniveau
spectral sequence, (9.5) and (9.6), we get a commutative diagram analogous to
(3.1):
(9.7)

0
y

0→ A2(G,KM
3 ) −−−−→ H̃5(G,Z(3)) →Ã0(G,H4(3))

y α

y

Ext−1
ét (α∗c3(G),Z) CH3(G)

d̃2,32 (G,3)

y
y

H2(F,Gm ⊗ S2(T ∗
s )W )

∼−−−−→ Ext2ét(α
∗c2(G),Z(1)) H̃6(G,Z(3))
y

H̃6(G,Z(3))
y

Ext0ét(α
∗c3(G),Z)

In this diagram, the column and the row forking downwards are both exact.
The groups marked with a˜are, as above, the direct summands of the corre-
sponding groups without a˜defined by the unit section of G.
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9.B. An invariant computation. In this subsection, we want to compute
S3(T ∗

s )W when G is absolutely simple simply connected. We start with the
case of type Ar. It is then convenient to think of Gs as SLr+1 embedded into
GLr+1. The maximal torus Ts of Gs is then a subtorus of a maximal torus S
of GLr+1, conjugate to its canonical maximal subtorus. The character group
S∗ is free of rank r + 1, with basis (e1, . . . , er+1), and T ∗

s is the quotient of S∗

by Zσ1, with σ1 =
∑
ei.

The Weyl group W of Gs coincides with that of GLr+1; it is isomorphic to
Sr+1 and permutes the ei. Let σi be the i-th symmetric function in the ei: by
the symmetric functions theorem, we have

S(S∗)W = Z[σ1, . . . , σr+1].

It is clear that the sequence

(9.8) 0→ σ1S(S∗)→ S(S∗)→ S(T ∗
s )→ 0

is exact.

9.3. Lemma. If r ≥ 2, the map S3(S∗)W → S3(T ∗
s )W is surjective; S3(T ∗

s )W

is free of rank 1, with basis the image σ̄3 of σ3. If r = 1, S3(T ∗
s )W = 0.

Proof. Suppose first r ≥ 2. In view of (9.8), for the first assertion it suf-
fices to check that H1(W,S2(S∗)) = 0. A basis of S2(S∗) is given by
(e21, . . . , e

2
r+1, e1e2, . . . ). The group W permutes the squares and the rectan-

gular products transitively; the isotropy group of e21 is Sr while the isotropy
group of e1e2 is Sr−1. By Shapiro lemma, we get

H1(W,S2(S∗)) ≃ H1(Sr,Z)⊕H1(Sr−1,Z) = 0.

For the second assertion, we use (9.8) again and get an exact sequence (thanks
to the symmetric functions theorem)

0→ σ1〈σ2
1 , σ2〉 → 〈σ3

1 , σ1σ2, σ3〉 → S(T ∗
s )W → 0.

If r = 1, the same calculation gives the result. �

In the other cases, an application of the theory of exponents [4, V.6.2, Prop. 3
and tables of Ch. VI] gives

9.4. Lemma. If G is not of type Ar, S
3(T ∗

s )W = 0. �

9.C. Some facts about the cq(Gs). Part a) of the following theorem is a
version of S. Gille’s theorem [11, th. 1.5]2:

9.5. Theorem. Let G be semi-simple and simply connected. Then:
a) For q ≥ 3, Hr(cq(Gs)) = 0 for r = −q,−q + 1, and H−q+2(cq(Gs)) is
torsion-free.
b) Suppose G simple. For q = 3, H−1(c3(Gs)) ≃ S3(T ∗

s )W and H0(c3(Gs))
≃ CH3(Gs).
c) If G is simple of type Ar, with r ≥ 2, then c3(Gs) ≃ Z(χ)[1], generated by

2For q = 3 and G of type Ar, it was obtained in 2001/2002. The general case was inspired
by Gille’s work.
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σ̄3 (see Lemma 9.3) where χ is the quadratic character of GF corresponding to
its (possibly trivial) outer action on the Dynkin diagram of G. If G is of type
A1, c

3(Gs) = 0. If G is not of type Ar, c
3(Gs) = CH3(Gs)[0].

Proof. a) For two split reductive groups G,H and n ≥ 0, we have the Künneth
formula

(9.9) cn(G×H) ≃
⊕

p+q=n

cp(G)
L
⊗ cq(H)

in the derived category [14, Lemma 4.8], since M(G) and M(H) are mixed Tate
motives. Thus we may assume G to be simple. Consider now the commutative
diagram

Λq−2(T∗
s )⊗S2(T∗

s )
W

e→Λq−3(T∗
s )⊗S2(T∗

s )
W⊗T∗

sy f

y

Λq(T∗
s )→ Λq−1(T∗

s )⊗T∗
s → Λq−2(T∗

s )⊗S2(T∗
s ) → Λq−3(T∗

s )⊗S3(T∗
s )y|| 1⊗γ

y≀ 1⊗γ2

y 1⊗γ3

y

Λq(T∗
s )→Λq−1(T∗

s )⊗CH1(Ys)→Λq−2(T∗
s )⊗CH2(Ys)→ Λq−3(T∗

s )⊗CH3(Ys)

where the bottom row is the beginning of cq(Gs), the middle row is the q-th
Koszul complex for T ∗

s , γi are induced by the characteristic map, the top row is
S2(T ∗

s )W tensored with the beginning of the (q− 2)-nd Koszul complex for T ∗
s ,

the middle column is obtained by tensoring the exact sequence of free abelian
groups

0→ S2(T ∗
s )W → S2(T ∗

s )→ CH2(Ys)→ 0

with Λq−2(T ∗
s ) and, finally, f is induced by the product S2(T ∗

s )W ⊗ T ∗
s →

S3(T ∗
s ). The middle row is universally exact as the Koszul complex of a free

module, and the middle column is (split) short exact.
Since G is simple, S2(T ∗

s )W is a rank 1 direct summand of S2(T ∗
s ), which

implies that f is injective and remains so after tensoring with Z/m for any m.
The same is true for e by the acyclicity of Koszul complexes. A diagram chase
then gives the result.
b) For q = 3, let us rewrite part of the above diagram, for clarity:

0→Λ3(T ∗
s )→ Λ2(T ∗

s )⊗ T ∗
s → T ∗

s ⊗ S2(T ∗
s ) → S3(T ∗

s ) →0

||
y 1⊗γ

y 1⊗γ2

y γ3

y

0→Λ3(T ∗
s )→Λ2(T ∗

s )⊗ CH1(Ys)→T ∗
s ⊗ CH2(Ys)→CH3(Ys)→0.

The two left vertical maps are isomorphisms; by (9.6), 1⊗γ2 is surjective, with
kernel T ∗

s ⊗ S2(T ∗
s )W ; also, by [7, p. 292, Cor. 2] Kerγ3 is the Q-span of
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T ∗
s S

2(T ∗
s )W + S3(T ∗

s )W in S3(Ts)
∗. Using Lemma 9.1, it follows that

Hi(c3(Gs)) =





0 for i = −3

Kerϕ for i = −2

Cokerϕ for i = −1

CH3(Gs) for i = 0

where ϕ is the map

T ∗
s ⊗ S2(T ∗

s )W → 〈T ∗
s S

2(T ∗
s )W + S3(T ∗

s )W 〉Q,
〈−〉Q denoting the Q-span. We have seen in a) that Kerϕ = 0 and Cokerϕ is
torsion-free. We may factor ϕ as a composition

T ∗
s ⊗ S2(T ∗

s )W
ϕ̃−→ T ∗

s S
2(T ∗

s )W + S3(T ∗
s )W −֒→ 〈T ∗

s S
2(T ∗

s )W + S3(T ∗
s )W 〉Q.

Thus Cokerϕ is an extension of the finite group

〈T ∗
s S

2(T ∗
s )W + S3(T ∗

s )W 〉Q
T ∗
s S

2(T ∗
s )W + S3(T ∗

s )W

by a group isomorphic to S3(T ∗
s )W /S3(T ∗

s )W ∩ T ∗
s S

2(T ∗
s )W ; but

S3(T ∗
s )W ∩ T ∗

s S
2(T ∗

s )W ⊆ (T ∗
s S

2(T ∗
s )W )W = T ∗W

s S2(T ∗
s )W = 0.

Thus, the map S3(T ∗
s )W → Coker ϕ̃ is bijective. To conclude, we use the fact

that S3(T ∗
s )W is pure in S3(T ∗

s ) (the quotient is torsion-free), which follows
from Lemmas 9.3 and 9.4: since Cokerϕ is torsion-free, this implies that it is
isomorphic to S3(T ∗

s )W .
c) now follows from b), Lemmas 9.3, 9.4 and 9.2. For G of type Ar with
r ≥ 2, the claim on the Galois action follows from the well-known fact that
the nontrivial outer automorphism of the Dynkin diagram of Gs maps ēi to
−ēr+1−i, where ēi is the image of ei in T ∗

s . �

Here is a complement to Theorem 9.5:

9.6. Lemma. Let r ≥ 2, and consider the embedding ι : SLr+1 →֒ SLr+2 given
by u 7→ ( u 0

0 1 ). Then the induced morphism ι∗ : ci(SLr+2) → ci(SLr+1) is a
quasi-isomorphism for i = 2, 3.

Proof. Let Tr+1, Tr+2 be the diagonal tori of SLr+1 and SLr+2 respectively. It

suffices to check that Si(T ∗
r+2)

Sr+2
∼−→ Si(T ∗

r+1)Sr+1 for i = 2, 3. This follows
from the computations in the proof of Lemma 9.3. �

9.7. Remark. For G of type Cr , CH
i(Gs) = 0 for all i > 0, and for general G,

CH3(Gs) is a 2-torsion group (see Lemma 9.2). Marlin computed CH∗(Gs)
for G of type Br, Dr, G2 or F4 in [29]: he finds CH3(Gs) = Z/2 in each case.
I don’t know the value of CH3(Gs) for G of type E6, E7, E8: is it also Z/2?

10. The generic element

In this section we prove Theorem C, see (10.2), (10.3) and Theorem 10.7,
Theorem D, see Corollary 10.15, and part of Theorem E, see Proposition 10.11.
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10.A. The cohomological generic element. Let G be an absolutely sim-
ple simply connected group. From Theorem 9.5 and Diagram (9.7), we first
deduce:

10.1. Corollary. If G is not of inner type Ar for r ≥ 2, we have

A2(G,KM
3 ) = H̃5(G,Z(3)) = 0; the group Ã0(G,H4(3)) is isomorphic to the

kernel of the étale motivic cycle map CH3(G)→ H6(G,Z(3)) (hence is at most
Z/2 except perhaps for types E6, E7, E8, see Remark 9.7).

Proof. All claims follow from the diagram and the fact that we have
H−1(F, c3(Gs)) = 0 in these cases (note that obviously

Ker(CH3(G)→ H6(G,Z(3)) = Ker(CH3(G)→ H̃6(G,Z(3))).

�

10.2. Proposition. If G is of inner type Ar with r ≥ 2, the map α in Diagram
(9.7) is 0.

Proof. We haveG = SL1(A) for some central simple algebraA. IfCH3(G) = 0,
there is nothing to prove; by Merkurjev [35, Prop. 4.3], this happens if and only
if ind(A) is odd. Suppose now ind(A) even. If A is a quaternion algebra, we have

Ã0(G,H4(3)) = 0 by [35, Lemma 5.1]. In general, we proceed as in [35, proof of
Prop. 4.3]. Note that α really comes from a map α′ : A0(G,H4(3))→ CH3(G)
and that α = 0 if and only if α′ = 0. Let K/F be a field extension such that
ind(AK) = 2, so that AK = Mn(Q) for some quaternion division algebra Q
over K and GK = SLn(Q). Set H = SL1(Q) and X = GK/H . By loc. cit.,
the generic fibre of the projection GK → X is HE , with E = K(X). We then
have a commutative diagram

A0(G,H4(3)) −−−−→ A0(GK , H
4(3)) −−−−→ A0(HE , H

4(3))

α′

y α′

y α′=0

y

CH3(G) −−−−→ CH3(GK) −−−−→ CH3(HE)

and the bottom horizontal maps are isomorphisms by loc. cit. (see [35, Rk
4.4]). �

From now on, we suppose G of inner type Ar with r ≥ 2, i.e. deg(A) > 2 if
G = SL1(A). ThenH−1(F, c3(Gs)) is canonically isomorphic to Z, H2(F,Gm⊗
S2(T ∗

s )W ) ≃ Br(F ) and H0(F, c3(Gs)) = 0. For the reader’s convenience, let
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us redraw Diagram (9.7) in this case, taking Proposition 10.2 into account:

(10.1)

0
y

0→A2(G,KM
3 ) −−−−→ H̃5(G,Z(3))→Ã0(G,H4(3))→0

y

Z

d̃2,32 (G,3)

y

Br(F )
y

H̃6(G,Z(3))
y

0

Since A0(G,H4(3)) and Br(F ) are torsion, we recover Merkurjev’s result that
A2(G,KM

3 ) = A2(G,K3) is infinite cyclic [35, Lemma 5.7]. We also find

10.3. Theorem. The group H̃5(G,Z(3)) is infinite cyclic and the group

Ã0(G,H4(3)) is cyclic of order (H̃5(G,Z(3)) : A2(G,KM
3 )).

10.4. Definition. Let G = SL1(A). We denote by cA the “positive” generator

of H̃5(G,Z(3)) ⊂ H5(G,Z(3)), that is, the generator that maps to a positive

multiple of 1 ∈ Z, and by c̄A its image in Ã0(G,H4(3)) ⊂ A0(G,H4(3)) (c̄A
generates Ã0(G,H4(3))).

10.5. Lemma. Let still G = SL1(A), and let p1, p2, µ : G×F G→ G be repec-
tively the first projection, the second projection and the multiplication map.
Then

µ∗cA = p∗1cA + p∗2cA.

Proof. Since H̃5(G,Z(3))→ H−1(F, c3(Gs)) is injective for any group G, it is
sufficient to show that the maps µ∗ and p∗1 + p∗2 from c3(Gs) to c3(Gs ×Fs Gs)
are equal.3

The Künneth formula (9.9) gives an isomorphism

c3(Gs)⊕ c3(Gs)
∼−→ c3(Gs ×Fs Gs)

induced by p∗1 ⊕ p∗2, since c1(Gs) = 0.
Let C = c3(Gs). The inclusion ι1 : G × {1} → G × G induces a map ι∗1 :
C ⊕ C → C; since p1 ◦ ι1 = Id and p1 ◦ ι1 is the trivial map, ι∗1 is the first

3Note that morphisms between reductive groups preserving the unit sections act on the

spectral sequences (9.2) by preserving the spectral sequences Ẽ
p,q
r . This applies to µ and to

the maps ι1 and ι2 further below.
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projection. Similarly, ι2 : {1}×G→ G×G induces the second projection. We
conclude that µ∗ : C → C ⊕ C is the diagonal map, using the left and right
unit formulas µ ◦ ι1 = µ ◦ ι2 = Id. �

Let X be a smooth F -variety. To any morphism f : X → SL1(A), we associate
the pull-back of cA:

cA(f) = f∗cA ∈ H5(X,Z(3)).

Lemma 10.5 shows that we have

cA(fg) = cA(f) + cA(g)

for two maps f, g, where fg := µ ◦ (f, g).
Recall that deg(A) > 2. Consider the embedding ιn : SL1(A) →֒ SLn(A) given
by u 7→ ( u 0

0 1 ). Noting that SLn(A) = SL1(Mn(A)), Lemma 9.6 shows that

cMn(A)(ιn) = cA.

In particular, ι∗n : H̃5(SLn(A),Z(3)) → H̃5(SL1(A),Z(3)) is an isomor-
phism. So, if f is a morphism from X to SLn(A), we may define cA(f) =
(ι∗n)−1cMn(A)(f), and this definition is “stable”. We record this as:

10.6. Proposition. If deg(A) > 2, the maps

H̃5(SLn(A),Z(3))→ H̃5(SL1(A),Z(3))

Ã0(SLn(A), H5(Z(3)))→ Ã0(SL1(A), H5(Z(3)))

induced by the inclusion SL1(A) →֒ SLn(A) are isomorphisms. �

In particular, suppose X = SpecR affine. Then HomF (X,SLn(A)) =
SLn(A⊗F R). Define SL(A⊗F R) = lim−→SLn(A⊗F R) as usual, and

SK1(X,A) = SL(A⊗F R)ab.

For X smooth in general, we may similarly define

SL(X,A) = lim−→HomF (X,SLn(A)), SK1(X,A) = SL(X,A)ab.

The above discussion then yields a homomorphism

(10.2) SK1(X,A)→ H5(X,Z(3))

which is contravariant in X .
In particular, for X = SpecL, L/F a function field, we get a homomorphism

(10.3) c̄A(L) : SK1(AL)→ H5(L,Z(3))
∼←− H4(L, 3).

The following theorem was (embarrassingly) pointed out by Philippe Gille,
whom I thank here.

10.7. Theorem. In (10.3), L 7→ c̄A(L) defines the universal invariant of
SL1(A) of degree 4 with values in H4(3), in the sense of Merkurjev [35, Def.
2.1].
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Proof. Let G be an algebraic group and let M be a cycle module of bounded
exponent as in [35, p. 133]. By [35, Th. 2.3], we have an isomorphism

Invd(G,M)
∼−→ A0(G,Md)mult, d ∈ Z

induced by evaluation on the generic point of G, where the left group is the
group of invariants of G with values in Md as in [35, Def. 2.1] and the right
group is the multipicative part of A0(G,Md) as in [35, 1.3].
We cannot apply this directly to Md(K) = Hd(K, d − 1), which is not of
bounded exponent. However, any cycle module M∗ such that Md(K) is torsion
prime to charF for any d ∈ Z and any function field K/F may be written as
the filtering direct limit of its torsion sub-cycle modules mM∗, m ≥ 1. Then
the maps

lim−→ Invd(G,mM)→ Invd(G,M)tors

lim−→A0(G,mMd)mult → A0(G,Md)mult

are bijective, so that [35, Th. 2.3] extends to an isomorphism

(10.4) Invd(G,M)tors
∼−→ A0(G,Md)mult

for any torsion cycle module M (excluding the characteristic of F ) and any
d ∈ Z.
In the case G = SL1(A), any invariant of G, evaluated at a function field K,
factors through G(K)ab = SK1(AK), which is of exponent bounded by ind(A)
(see introduction), so any invariant is a torsion invariant.
(This argument extends to any simply connected semisimple group G by [35,
Cor. 2.6] and a transfer argument. On the other hand, Inv1(Gm,KM

∗ ) = Z as
the construction of [35, beg. of 2.3] shows.)
Thanks to Theorem 10.3, the only thing which remains to be proven is that

Ã0(G,H4(3)) = A0(G,H4(3))mult (notation as in [35, 1.3]): this follows from
Lemma 10.5. �

10.8. Remark. The above proof yields a little more: if eSK1(AK) = 0 for all

K/F , then e Invd(SL1(A),M) = 0 for any cycle module M and any d ∈ Z. In

particular, eÃ0(G,H4(3)) = 0. This will be amplified in Lemma 10.13 below.

A delicate issue is the behaviour of cA and c̄A under extension of scalars: in
other words, the universal invariant of Theorem 10.7 might cease to be uni-
versal after extending the base field. This is directly related to the differential

d̃2,32 (G, 3) in Diagram (10.1). Here is at least one case where this does not
happen:

10.9. Lemma. Let L/F be an extension such that exp(AL) = exp(A). Then

H̃5(G,Z(3))
∼−→ H̃5(GL,Z(3))

Ã0(G,H5(Z(3))) −→→ Ã0(GL, H
5(Z(3))).

In particular, the image of cA (resp. c̄A) under extension of scalars equals cAL
(resp. c̄AL).
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Proof. We shall show in Corollary 11.3 that d̃2,32 (G, 3)(1) is a multiple of [A] ∈
Br(F ). The claim then follows from a diagram chase with (10.1). �

The following corollary to Theorem 10.7 is a special case of [60, Prop. 4.1].

10.10. Corollary. Assume A of degree d = ln (l prime) and of exponent
ε < d. Let r be such that ε | r | d/l. Then there is an integer m(A, r) such that

σ1
r = m(A, r)c̄A

where σ1
r is the invariant in (7.3) (see §7.D). �

As in [60, proof of Prop. 4.3], one might learn more on m(A, r) by considering
the generic algebra of degree d and exponent ε. We shall content ourselves with

10.11. Proposition (cf. [34]). For ε = 2 < ind(A), Ã0(SL1(A), H4(3)) 6= 0
and m(A, 2) is odd.

Proof. 1) If A is a biquaternion algebra, the Rost invariant of Theorem 2 is
nontrivial [34, proof of Cor.] and, by Remark 10.8 and the remark after Theo-

rem 6 in the introduction, Ã0(SL1(A), H4(3)) is cyclic of order ≤ 2. Hence this
group is cyclic of order 2 and the Rost invariant coincides with c̄A (recovering
[35, Th. 5.4]). Thus m(A, 2) = 1 in this case.
2) If ind(A) = 4, let D be the division algebra similar to A, so that A = Mn(D)
for some n ≥ 1. By Morita invariance of algebraic K-theory, the invariant σ1

2

is the same for A and D. On the other hand, Proposition 10.6 yields an
isomorphism

Ã0(SL1(A), H4(3))
∼−→ Ã0(SL1(D), H4(3))

so 1) extends to this case.
3) In general, let L = F (SB(4, A)), so that ind(AL) = 4. By 2), c̄AL 6= 0, hence
c̄A 6= 0 by Lemma 10.9. Since σ1

r commutes with any extension of scalars by
construction, we have m(A, 2) = m(AL, 2) in Z/2, which shows that m(A, 2) is
odd. �

We shall show in Corollary 11.12 that actually Ã0(SL1(A), H4(3)) ≃ Z/2 in
Proposition 10.11.

10.12. Remark. Let r be a divisor of d = deg(A). Let us write H4(3)/r[A] for
the degree 4 part of the cycle module given by

K 7→ Hn(K,n− 1)/r[A]

:= Coker(Hn−2(K,µ⊗n−2
r )

·r[A]−→ Hn(K,Q/Z(n− 1))).

It is tempting to conjecture that the map

A0(SL1(A), H4(3))mult → A0(SL1(A), H4(3)/r[A])mult

is surjective, which would provide a relationship between the invariant cA and
the invariant σ1

r of Corollary 7.2 in general.4 However, since A0(−)mult is left

4Since this was written, Wouters has resolved this question in the negative, [60, Prop.
4.2].
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exact rather than right exact, this does not look straightforward at all. A
description of the kernel of cup-product with r[A] seems a major issue to solve
(cf. (3.3)).

10.B. The K-theoretic generic element. In the universal case X =
SL1(A), we may write SK1(SL1(A), A) = SK1(A) ⊕ S̃K1(SL1(A), A) using
the unit section of SL1(A). The induced morphism

S̃K1(SL1(A), A)→ H̃5(SL1(A),Z(3))

is surjective, hence split surjective since H̃5(SL1(A),Z(3)) = Z. An explicit
splitting sends cA to the class of the inclusions ιn : SL1(A) →֒ SLn(A).

10.13. Lemma. a) For any smooth F -variety Y , the map

H0(Y, SK1(OY ⊗F A))→ SK1(F (Y )⊗F A)

is surjective; the image of cF (Y )⊗FA is contained in A0(Y,H4(3)).
b) For Y = SL1(A) and K = F (Y ), the map cAK induces a surjection

(10.5) SK1(AK)/SK1(A) −→→ Ã0(SL1(A), H4(3))

sending the generic element to c̄A.

Proof. The first assertion of a) is classical (Rost, cf. [6, p. 38]), and the second
one follows from this and the construction of cA. For b), let η = SpecK be
the generic point of SL1(A). It defines an element η̄ ∈ SK1(AK): the generic
element. By construction, we have

cAK (η̄) = c̄A

from which b) follows. �

We want to better understand the map (10.5). This is possible if A is biquater-
nion:

10.14. Theorem. If A is a biquaternion algebra, (10.5) is an isomorphism and
both sides are isomorphic to Z/2.

Proof. By Lemma 10.9 and Proposition 10.11, we have a commutative diagram
of injections

0 −−−−→ SK1(A)
c̄A−−−−→ H5(F,Z(3))

a

y b

y

0 −−−−→ SK1(AK)
c̄AK−−−−→ H5(K,Z(3)).

Since SL1(A) has a rational point, a and b have compatible retractions and
this diagram induces a third injection

(10.6) 0 −−→ SK1(AK)/SK1(A) −−→ H5(K,Z(3))/H5(F,Z(3))

which is obviously also induced by (10.5). This proves the first claim. The
second one follows from [35, Th. 5.4] (or part 1) of the proof of Proposition
10.11). �
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10.15. Corollary. If ind(A) = 4, then SK1(AK)/SK1(A) ≃ Z/2.

Proof. If A is biquaternion, this follows from Theorem 10.14. In general, let
L = F (SB(A⊗2)). By [35, Prop. 6.3], the maps SK1(A) → SK1(AL) and
SK1(AK)→ SK1(AKL) are isomorphisms, so we are reduced to the biquater-
nion case. �

In an earlier version of this paper, I had conjectured that (10.5) is always an
isomorphism. In the light of the proof of Theorem 10.14, this seems a bit
optimistic unless all primes factors of ind(A) occur at most with exponent
2. In general, a computation of cq(SL1(A)) for all q > 1 will yield higher
cohomological invariants for SK1(A). A still optimistic but more reasonable
conjecture is that these future invariants will detect all of SK1(A). Based on
this expectation, we propose

10.16. Conjecture. If K = F (SL1(A)), the group SK1(AK)/SK1(A) is
cyclic, generated by the generic element.

10.17. Remark. The homomorphism

cA : Hom(SL1(A),SL1(A))→ H5(SL1(A),Z(3))

also behaves well with respect to composition: for f ∈ Hom(SL1(A),SL1(A)),

we have cA(f) ∈ H̃5(SL1(A),Z(3)) if and only if f(1) = 1. If this is the case,
set cA(f) = n(f)cA. Then, clearly, n(g ◦ f) = n(g)n(f). Can one describe this
“degree” map in a more näıve fashion?

11. Some computations

We now try and evaluate the groups SK1(AK)/SK1(A), where K is the func-

tion field of SL1(A), and Ã0(SL1(A), H4(3)): our main results in this direction
are Theorem 11.9 and Corollaries 11.10 and 11.12, the latter completing the
proof of Theorem E. Unfortunately we are not able to prove the nontriviality
of either of these groups when ind(A) is odd (not squarefree) by the present
methods.
We assume that n = deg(A) is of the form lm, l prime.

11.A. Comparing some quotients. First we have already noted:

11.1. Lemma. |Ã0(SL1(A), H4(3))| ≤ ind(A)/l.

Proof. This follows from Lemma 10.13 b) and the fact that SK1(AK) has
exponent ≤ ind(A)/l. �

See Corollary 11.12 for a refinement of this lemma when A is of exponent l.
Let G = SL1(A). We note the isomorphisms

A2(G,KM
3 )

∼−→ A2(G,K3)

K2(F )
∼−→ A0(G,K2).
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The first one is trivial and the second one is [8, Cor. B.3]. By the second one,
the BGQ spectral sequence yields an injection

(11.1) K1(G)(2/3) −֒→ A2(G,K3).

11.2. Proposition. If G is split, with r ≥ 2, the maps H̃5(G,Z(3)) → Z and

A2(G,KM
3 )→ H̃5(G,Z(3)) from (10.1) are both bijective. The same is true of

the map (11.1).

Proof. Mixing the coniveau spectral sequence for Nisnevich motivic cohomol-
ogy with the slice spectral sequence (9.1) (also for Nisnevich motivic cohomol-
ogy) yields a diagram similar to (10.1) and mapping to it:

(11.2)

A2(G,KM
3 )

∼−−−−→ H̃5
Zar(G,Z(3))

≀
y

Z

This proves the first two claims of Proposition 11.2 at once. For the last one, we
notice that if G is split then all its Chow groups are 0 by Lemma 9.2, hence all
differentials leaving from A2(G,K3) in the BGQ spectral sequence vanish. �

Note that the horizontal map in (11.2) is an isomorphism for any G, whether
split or not.

11.3. Corollary. In Diagram (10.1) for G = SL1(A), we have

d̃2,32 (G, 3)(1) = t[A]

for some integer t, where [A] is the class of A in Br(F ). In particular, (Z :

H̃5(G,Z(3))) divides the exponent of [A].

Proof. Let K be the function field of the Severi-Brauer variety of A. Then A
splits over K. The first statement now follows from Proposition 11.2 and Amit-
sur’s theorem [1] that Ker(Br(F )→ Br(K)) = 〈[A]〉. The second statement is
obvious. �

11.4. Corollary. In general,

(Z : A2(G,KM
3 )) = (A2(Gs,K

M
3 ) : A2(G,KM

3 ))

| (K1(Gs)
(2/3) : K1(G)(2/3)).

Proof. This follows immediately from Proposition 11.2. �
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The following diagram is a little more precise and may be helpful to the reader
(G = SL1(A)):

(11.3)

SK1(AK)

SK1(A)
−→→Ã0(G,H4(3))

K1(Gs)
(2/3)

K1(G)(2/3)

≀
x onto

y

0 → H̃5(G,Z(3))

A2(G,KM
3 )
→Z/A2(G,KM

3 )→Z/tZ→0

where t is as in Corollary 11.3.

11.B. The map Br(F ) → H̃6(G,Z(3)). In order to better understand the

differential d̃2,32 (G, 3) in the future, we note:

11.5. Proposition. Let G = SL1(A).
a) We have an exact sequence

0→ A1(G,H4(3))→ H̃6(G,Z(3))/CH3(G)→ Ã0(G,H5(3)).

b) The composition

Br(F )→ H̃6(G,Z(3))→ H̃6(G,Z(3))/CH3(G)→ Ã0(G,H5(3))

from Diagram (10.1) is 0, and so is the map H̃6(G,Z(3))/CH3(G) →
Ã0(G,H5(3)). Hence we have in fact an exact sequence

0→ CH3(G)→ H̃6(G,Z(3))→ A1(G,H4(3))→ 0.

Proof. a) follows from the coniveau spectral sequence for the étale motivic
cohomology of G. b) The second vanishing follows from the first, since

Br(F ) → H̃6(G,Z(3)) is surjective. For the first vanishing, given the defi-

nition of the homomorphism Br(F ) → H̃6(G,Z(3)), it suffices to show that
the map α∗ci(V )→ α∗ci(G) induces 0 on homology sheaves for i = 1, 2, 3 if V
is a suitable open subset V of G.
Let B be a Borel subgroup containing Ts ⊂ Gs. Consider the big cell Ū0 ⊂
Gs/B: it is an affine space, hence all its Chow groups are 0. Observe that U0 is
defined over a finite extension of F , hence it has only a finite number of Galois
conjugates: then their intersection Ū is defined over F , and its geometric Chow
groups are still 0. Let U be the inverse image of Ū in Ys: then U is defined
over F and all its geometric Chow groups are 0. Hence, for all p > 0, the étale
complex α∗cp(U) is concentrated in degrees < 0.
We now take for V the inverse image of U (viewed as an open subset of Y ) in
G. As in [14, Prop. 9.3], we have for all N ≥ 0 a spectral sequence

Ep,q1 (Vs) = Hq(cN−p(Us))⊗ Λp(T ∗
s )⇒ Hp+q(cN (Vs))

which maps to the corresponding spectral sequence Ep,qr (Gs) for Gs (that yields
the complexes (9.3)). For N > 0, we have Ep,q1 (Gs) = 0 for q 6= 0 and
Ep,q1 (Vs) = 0 for q = 0, hence all maps Hi(cN (Vs)) → Hi(cN (Gs)) are 0.
This completes the proof of b). �
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11.C. A Chern class computation. We use Gillet’s convention for higher
Chern classes [12].

11.6. Lemma. For a smooth variety X, consider the higher Chern class

c3,1 : K1(X)→ A2(X,K3).

Then 2d0,−2
2 = 0 and the diagram

K1(X)(2)
c3,1−−−−→ A2(X,K3)

2←−−−− A2(X,K3)/d
0,−2
2 A0(X,K2)

y
x

K1(X)(2/3)
∼−−−−→ E2,−3

∞

commutes, where d0,−2
2 and E2,−3

∞ are relative to the BGQ spectral sequence for
X.

Proof. The BGQ spectral sequence for X may be considered as the coniveau
spectral sequence for X relative to algebraic K-theory. For a given i ≥ 0,
consider the corresponding coniveau spectral sequence ′Ep,qr relative to U 7→
H∗(U,Ki) (for U running through open subsets of X). By [12, pp. 239–
240], the i-th Chern class Ci defines a morphism of spectral sequences Ep,qr →
′Ep,qr (r ≥ 1) converging to the higher Chern classes ci,−p−q : K−p−q(X) →
Hp+q+i(X,Ki).
The group ′Ep,q1 is 0 for q 6= −i and ′Ep,−i1 =

⊕
x∈X(p) Ki−p(F (x)). Hence

′Ep,q2 = 0 for q 6= −i and ′Ep,−i2 = Hp(X,Ki) = ′Ep,−i∞ . By [12, Th. 3.9],

the map from Ep,−i1 to ′Ep,−i1 induced by Ci equals (−1)p(i−1)!
(i−p−1)! ci−p,i−p on each

summand Ki−p(F (x)). In particular, for i = 3, c1,1 is the identity for fields
and we get a commutative diagram

E0,−2
2

d0,−2
2−−−−→ E2,−3

2y 2

y

0 −−−−→ ′E2,−3
2 = E2,−3

2

which proves the first claim of the lemma; the second one follows from the
morphism of spectral sequences. �

11.D. Some computations, continued. The group A1(G,H4(3)) of Propo-
sition 11.5 is mysterious and would require a further analysis: we shall refrain
from starting it in this paper and will concentrate on computing the index
(K1(Gs)

(2/3) : K1(G)(2/3)), which can be done in some interesting cases.
For this, we may try and look at the map K1(G)→ K1(Gs) and use the results
of Levine [25] and Suslin [48]. In particular, we have an isomorphism [25, Th.
4.3]

K1(G) ≃ K1(F )⊕
r⊕

i=1

K0(A
⊗i)
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where r = rkG = degA − 1. If G (equivalently A) is split, the summand
K0(A⊗i) ≃ Z is generated by the class of Λi(ρr), where ρr is the standard
representation of G = SLr+1 into GLr+1. While Levine thinks of ρr as a
representation, Suslin thinks of it as the generic matrix and denotes it by αr+1:
the two viewpoints are of course equivalent.
If we pass to the separable closure, we get a commutative diagram

K1(G)(2/3)
γ3−−−−→ A2(G,K3)

y
y

K1(Gs)
(2/3) γ3−−−−→ A2(Gs,K3) ≃ Z.

11.7. Lemma. Suppose G = SLn, with n = r + 1.
a) All [Λi(ρr)] belong to K1(G)(1) and the image of [Λi(ρr)] in A

1(G,K2) = Z
is
(
n−2
i−1

)
.

b) For all i, [Λi(ρr)] −
(
n−2
i−1

)
[ρr] ∈ K1(G)(2) and its image in A2(G,K3) = Z

is
(
n−3
i−2

)
.

Proof. (It may not be the most direct, but it works.) For the first assertion of
a), we need to show that [Λi(ρr)]|F (SLn)) = 0 or, which amounts to the same,

that Λi(αn) is a product of commutators, where αn is the generic matrix with
determinant 1. For this, it suffices to see that det Λi(αn) = 1. But, for any
matrix u, det Λi(u) is a certain power of det(u), hence the claim.
For the second assertion of a) and for b), we first do a Chern class computation.
Let γ̄j = γj([ρr]) = γj([αn]), where γj is the j-th gamma operation in K-theory.
Note the formula (cf. [48, p. 65])

∑
[Λi(αn)]ui =

∑
γ̄iu

i(1 + u)n−i.

Also, from [46, 1.3.4 a) p. 277 and Remark p. 297] (see also [45, IV.6]), we find

c2,1(γ̄j) =





0 for j > 2

−c2,1(αn) for j = 2

c2,1(αn) for j = 1

and

c3,1(γ̄j) =





0 for j > 3

2c3,1(αn) for j = 3

−3c3,1(αn) for j = 2

c3,1(αn) for j = 1

from which we deduce

(11.4)
∑

c2,1([Λi(αn)])ui = c2,1(αn)(u(1 + u)n−1 − u2(1 + u)n−2)

= c2,1(αn)u(1 + u)n−2 = c2,1(αn)
∑(

n− 2

i− 1

)
ui =: c2,1(αn)ϕ(u)
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and

∑
c3,1([Λi(αn)])ui

= c3,1(αn)(u(1 + u)n−1 − 3u2(1 + u)n−2 + 2u3(1 + u)n−3)

= c3,1(αn)u(1 + u)n−3(1 + u)

hence

(11.5)
∑

c3,1([Λi(αn)])ui − c3,1(αn)ϕ(u) = −2c3,1(αn)u2(1 + u)n−3

= −2c3,1(αn)
∑(

n− 3

i− 2

)
ui.

We now use the fact that, for i ≥ 1, Ai(SLn,Ki+1) is generated by ci+1,1([αn])
[48, Th. 2.9]. By an analogue of Lemma 11.6, the edge homomorphism
K1(X)(1) → A1(X,K2) of the BGQ spectral sequence coincides with −c2,1
for any smooth variety X . With (11.4), this proves the second part of a) and
the first part of b). Then the second part of b) follows from Lemma 11.6 and
(11.5). �

Let G not be necessarily split anymore. Let ei be the positive generator of
the summand K0(A

⊗i): ei 7→ ind(A⊗i)[Λi(αn)]. Lemma 11.7 shows that
ind(A)

ind(A⊗i)ei −
(
n−2
i−1

)
e1 ∈ K1(G)(2) and that its image in A2(Gs,K3) = Z is

ind(A)
(
n−3
i−2

)
.

11.8. Lemma. vl(
(
n−2
i−1

)
) = vl(i). (Recall that n = lm.)

Proof. For an integer e, let sl(e) be the sum of the digits of e written in base
l. It is well-known that

vl

(
a

b

)
=
sl(b) + sl(a− b)− sl(a)

l− 1
.

Clearly, we have sl(l
m−2) = m(l−1)−1. Let t = vl(i) and write i−1 =

∑
ajl

j ,
with 0 ≤ aj ≤ l−1, aj = l−1 for j < t and at < l−1. Then lm−i−1 =

∑
bjl

j

with bj = l − 1 for j < t, bt = l − 2 − at and bj = l − 1 − aj for t < j ≤ m.
Hence

sl(i− 1) + sl(l
m − i− 1)− sl(lm − 2) =

2t(l − 1) + (m− t)(l − 1)− 1− (m(l − 1)− 1) = t(l − 1).

�

11.9. Theorem. We have

(K1(Gs)
(2/3) : K1(G)(2/3)) =

{
inf(l2tind(A⊗lt)) if l > 2

inf(l2t−1ind(A⊗lt)) if l = 2.
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Proof. Since the index (K1(Gs)
(2/3) : K1(G)(2/3)) a priori divides ind(A)

(transfer argument), to evaluate it we may tensor both groups with Zl,
as well as A2(G,K3) and A2(Gs,K3). Note also that, since K1(G)(1/2)

→֒ A1(G,K2) ≃ Z is torsion-free, x ∈ K1(G)(1) ⊗ Zl and mx ∈ K1(G)(2) ⊗ Zl
for some m ∈ Zl − {0} implies x ∈ K1(G)(2) ⊗ Zl. This will allow us to divide
freely by l-units below.
By Lemma 11.7, we have

(11.6)
n

ind(A⊗i)
(
n−2
i−1

)ei − e1 7→ n

(
n−3
i−2

)
(
n−2
i−1

) =
n(i− 1)

n− 2

under the composite map K1(G)(2/3)⊗Zl → K1(Gs)
(2/3)⊗Zl ∼−→ A2(Gs,K3)⊗

Zl
∼−→ Zl (note that the coefficient of ei is an l-integer by Lemma 11.8).

Let x =
∑
λiei ∈ K1(G)(2) ⊗ Zl (with λi ∈ Zl). In Ql, write

λi = µi
n

ind(A⊗i)
(
n−2
i−1

)

so that

(11.7) x =
∑

µi

(
n

ind(A⊗i)
(
n−2
i−1

)ei − e1
)

+
∑

µie1

hence x ∈ K1(G)(2) ⊗ Zl if and only if
∑
µi = 0. Note that

x 7→
∑

µi
n(i− 1)

n− 2
=
∑

µi
n(i− 1)

n− 2
+

n

n− 2

∑
µi =

∑
iµi

n

n− 2
.

Since vl(µi) ≥ −vl
(

n

ind(A⊗i)
(
n−2
i−1

)
)

, we have

vl(iµi
n

n− 2
) ≥

{
2vl(i) + vl(ind(A⊗i)) if l > 2

2vl(i) + vl(ind(A⊗i))− 1 if l = 2

(see Lemma 11.8).
This proves the inequality ≥ in Theorem 11.9. To get equality, let s = inf{t |
l2tind(A⊗lt) is minimum}. Suppose first that l > 2. Choose λls = 1, µ2ls =
−µls and λi = 0 otherwise, and we are done.
Suppose now that l = 2. We can then argue as above by taking µ3·2s = −µ2s

provided 3 · 2s < n = 2m, i.e. s ≤ m − 2; s = m is clearly impossible

and s = m − 1 may occur only when 22m−3ind(A⊗2m−1

) < 2m, i.e. when

2mind(A⊗2m−1

) ≤ 4. This means m = 1 or m = 2, exp(A) = 2. In the first
case we clearly have equality. In the second one we may compute directly

2e2 − e1 7→ 2

e3 − e1 7→ 4

which shows that (K1(Gs)
(2/3) : K1(G)(2/3)) = 2. So equality still holds in this

case. �
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11.10. Corollary. a) If ind(A) = exp(A), then (K1(Gs)
(2/3) : K1(G)(2/3))

= ind(A).
b) Suppose exp(A) = l. If l > 2 we have

(K1(Gs)
(2/3) : K1(G)(2/3)) =

{
l if ind(A) = l

l2 if ind(A) > l

while if l = 2 we always have (K1(Gs)
(2/3) : K1(G)(2/3)) = 2.

Proof. a) is obvious, since in this case necessarily ind(A⊗lt) = lq−t for all t ≤ q,
if ind(A) = lq. For b), we have (K1(Gs)

(2/3) : K1(G)(2/3)) = inf(ind(A), l2)
(for l = 2) or inf(ind(A), 2) (for l = 2) and the result immediately follows. �

11.11. Remark. An easier computation gives (K1(Gs)
(1/2) : K1(G)(1/2)) =

lcm(i · ind(A⊗i)) = ind(A). Since A1(G,K2)
∼−→ A1(Gs,K2) [8, Cor. B.3],

this yields (A1(G,K2) : K1(G)(1/2)) = ind(A).

The first part of the following corollary was (embarrassingly) pointed out by
Wouters [60, 2.4 (c)]:

11.12. Corollary. If A is of exponent l, then Ã0(SL1(A), H4(3)) is cyclic
of order dividing 2 if l = 2 and dividing l2 if l > 2. If moreover l = 2 and

ind(A) > 2, then Ã0(SL1(A), H4(3)) ≃ Z/2 and the invariants cA of Theorem
10.7 and σ1

2 of §7.D coincide. In general

|Ã0(SL1(A), H4(3))| ≤
{

exp(A)2 if l is odd

exp(A)2/2 if l = 2.

Proof. The first statement follows from Corollary 11.10, Diagram (11.3) and
Theorem 10.3. The second one then follows from Proposition 10.11. The last
one follows from taking lt = exp(A) in Theorem 11.9. �

11.13. Question. Let l be odd. Is it true that Ã0(SL1(A), H4(3)) ≃ Z/l if A is
of exponent l and index > l?

Appendix A. A cancellation theorem over imperfect fields

A.1. Theorem. Let F be a field and M,N ∈ DM eff
− (F ) where N is a mixed

Tate motive (see [14, Def. 4.1]). Then the map − ⊗ Z(1) induces an isomor-
phism

HomDM (M,N)
∼−→ HomDM (M(1), N(1)).

Proof. It is enough to prove this for M = C∗(X)[i], X a smooth variety and
i ∈ Z, and N = Z(n), n ≥ 0. By [54, Prop. 3.2.3] and [55], the left hand side is
functorially isomorphic to Bloch’s higher Chow group CHn(X, 2n+ i). By [30,
Th. 15.12] (projective bundle formula in DM), the right hand side is a direct
summand of CHn+1(X ×P1, 2n+ 2 + i). By the projective bundle formula for
higher Chow groups ([3, Th. 7.1], [24, Cor. 5.4]), the latter decomposes as a
direct sum

CHn+1(X ×P1, 2n+ 2 + i) ≃ CHn+1(X, 2n+ 2 + i)⊕ CHn(X, 2n+ i).
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Moreover, the constructions of the projective bundle isomorphisms in [30] and
[3, 24] show that the latter two are compatible via the isomorphism between
motivic cohomology and higher Chow groups in [55]. This proves the theorem.

�

Theorem A.1 is sufficient to extend to imperfect fields the construction of the
slice spectral sequences in the form of (9.1), i.e. for motivic cohomology com-
puted in the Nisnevich topology (= Bloch’s higher Chow groups). It is not
sufficient, however, to obtain a version of the étale spectral sequences of (9.2)
which is interesting at p, since p is automatically inverted in DM eff

−,ét(F ) (see

Remark 2.6). In order to achieve this, one may presumably proceed by working
directly on Bloch’s cycle complexes, as follows:
By the work of Geisser-Levine [9], the étale hypercohomology of Bloch’s cycle
complexes provides an interesting theory modulo p. The first thing to do is to
find a version of the slice filtration directly on the cycle complexes of a given
smooth F -variety X : this can be achieved by using the “homotopy coniveau
filtration” (which is at the basis of the construction of the Bloch-Lichtenbaum
spectral sequence), see [28] and [22, §4].
This will give spectral sequences comparable to those of Theorem 2.5 and (9.2).
The issue is then to identify the E2-terms. This can presumably be done by
a slightly tedious imitation of the computations in [14] and §9, where the te-
diousness comes from the fact that one is limited to work with smooth varieties
rather than general motives.
In the course of the computation, the following ingredients will certainly appear:
étale versions of the localisation theorem for higher Chow groups (see e.g. the
proof of [14, Prop. 4.11]) and of Bloch’s projective bundle theorem. They
should be obtained much as in [16, Th. 4.2 and Th. 5.1]. Hopefully a partial
purity statement similar to [16, Th. 4.2] will be sufficient for the applications.
We leave this programme to the interested reader.
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de Jussieu
UPMC
UFR 929
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1. Introduction

Throughout this note (besides of §3 and §4) F is a field of characteristic 6= 2.
The basic reference for the material related to involutions on central simple
algebras is [13]. The degree degA of a (finite-dimensional) central simple F -
algebra A is the integer

√
dimF A; the index indA of A is the degree of a central

division algebra Brauer-equivalent to A. An orthogonal involution σ on A is
hyperbolic, if the hermitian form A × A → A, (a, b) 7→ σ(a) · b on the right
A-module A is so. This means that the variety X

(
(degA)/2; (A, σ)

)
of §2 has

a rational point.
The main result of this paper is as follows (the proof is given in §7):

Theorem 1.1 (Main theorem). A non-hyperbolic orthogonal involution σ on
a central simple F -algebra A remains non-hyperbolic over the function field of
the Severi-Brauer variety of A.

1Partially supported by the Collaborative Research Centre 701 of the Bielefeld University
and by the Max-Planck-Institut für Mathematik in Bonn
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To explain the statement of Abstract, let us note that the function field L of
the Severi-Brauer variety of a central simple algebra A is a splitting field of A,
that is, the L-algebra AL is Brauer-trivial.
A stronger version of Theorem 1.1, where the word “non-hyperbolic” (in each
of two appearances) is replaced by “anisotropic”, is, in general, an open con-
jecture, cf. [11, Conjecture 5.2].
Let us recall that the index of a central simple algebra possessing an orthogonal
involution is a power of 2. Here is the complete list of indices indA and coindices
coindA = degA/ indA of A for which Theorem 1.1 is known (over arbitrary
fields of characteristic 6= 2), given in the chronological order:

• indA = 1 — trivial;
• coindA = 1 (the stronger version) — [11, Theorem 5.3];
• indA = 2 — [5] and independently (the stronger version) [16, Corollary

3.4];
• coindA odd — [7, appendix by Zainoulline] and independently [12, Theorem

3.3];
• indA = 4 and coindA = 2 — [19, Proposition 3];
• indA = 4 — [8, Theorem 1.2].

Let us note that Theorem 1.1 for any given (A, σ) with coindA = 2 implies
the stronger version of Theorem 1.1 for this (A, σ): indeed, by [12, Theorem

3.3], if coindA = 2 and σ becomes isotropic over the function field of the
Severi-Brauer variety, then σ becomes hyperbolic over this function field and
the weaker version applies. Therefore we get

Theorem 1.2. An anisotropic orthogonal involution on a central simple F -
algebra of coindex 2 remains anisotropic over the function field of the Severi-
Brauer variety of the algebra. �

Sivatski’s proof of the case with degA = 8 and indA = 4, mentioned above, is
based on the following theorem, due to Laghribi:

Theorem 1.3 ([14, Théorème 4]). Let ϕ be an anisotropic quadratic form of
dimension 8 and of trivial discriminant. Assume that the index of the Clifford
algebra C of ϕ is 4. Then ϕ remains anisotropic over the function field F (X1)
of the Severi-Brauer variety X1 of C.

The following alternate proof of Theorem 1.3, given by Vishik, is a prototype of
our proof of Main theorem (Theorem 1.1). Let Y be the projective quadric of
ϕ and let X2 be the Albert quadric of a biquaternion division algebra Brauer-
equivalent to C. Assume that ϕF (X1) is isotropic. Then for any field extension
E/F , the Witt index of ϕE is at least 2 if and only if X2(E) 6= ∅. By [21,
Theorem 4.15] and since the Chow motive M(X2) of X2 is indecomposable, it
follows that the motive M(X2)(1) is a summand of the motive of Y . The
complement summand of M(Y ) is then given by a Rost projector on Y in the
sense of Definition 5.1. Since dimY + 1 is not a power of 2, it follows that Y
is isotropic (cf. [6, Corollary 80.11]).
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After introducing some notation in §2 and discussing some important general
principles concerning Chow motives in §3, we produce in §4 a replacement
of [21, Theorem 4.15] (used right above to split off the summand M(X2)(1)
from the motive of Y ) valid for more general (as projective quadrics) algebraic
varieties (see Proposition 4.6). In §5 we reproduce some recent results due to
Rost concerning the modulo 2 Rost correspondences and Rost projectors on
more general (as projective quadrics) varieties. In §6 we apply some standard
motivic decompositions of projective homogeneous varieties to certain varieties
related to a central simple algebra with an isotropic orthogonal involution. We
also reproduce (see Theorem 6.1) some results of [9] which contain the needed
generalization of indecomposability of the motive of an Albert quadric used in
the previous paragraph. Finally, in §7 we prove Main theorem (Theorem 1.1)
following the strategy of [8] and using results of [9] which were not available at
the time of [8].

Acknowledgements. Thanks to Anne Quéguiner for asking me the question
and to Alexander Vishik for telling me the alternate proof of Theorem I am
also grateful to the referee for finding several insufficiently explained points in
the manuscript.

2. Notation

We understand under a variety a separated scheme of finite type over a field.
Let D be a central simple F -algebra. The F -dimension of any right ideal in D
is divisible by degD; the quotient is the reduced dimension of the ideal. For
any integer i, we write X(i;D) for the generalized Severi-Brauer variety of the
right ideals in D of reduced dimension i. In particular, X(0;D) = SpecF =
X(degD;D) and X(i,D) = ∅ for i < 0 and for i > degD.
More generally, let V be a right D-module. The F -dimension of V is then
divisible by degD and the quotient rdimV = dimF V/ degD is called the
reduced dimension of V . For any integer i, we write X(i;V ) for the projective
homogeneous variety of the D-submodules in V of reduced dimension i (non-
empty iff 0 ≤ i ≤ rdimV ). For a finite sequence of integers i1, . . . , ir, we write
X(i1 ⊂ · · · ⊂ ir;V ) for the projective homogeneous variety of flags of the D-
submodules in V of reduced dimensions i1, . . . , ir (non-empty iff 0 ≤ i1 ≤ · · · ≤
ir ≤ rdimV ).
Now we additionally assume that D is endowed with an orthogonal involution
τ . Then we write X(i; (D, τ)) for the variety of the totally isotropic right ideals
in D of reduced dimension i (non-empty iff 0 ≤ i ≤ degD/2).
If moreover V is endowed with a hermitian (with respect to τ) form h, we
write X(i; (V, h)) for the variety of the totally isotropic D-submodules in V of
reduced dimension i.
We refer to [10] for a detailed construction and basic properties of the above va-
rieties. We only mention here that for the central simple algebra A := EndD V
with the involution σ adjoint to the hermitian form h, the varieties X(i; (A, σ))
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and X(i; (V, h)) (for any i ∈ Z) are canonically isomorphic. Besides, degA =
rdimV , and the following four conditions are equivalent:

(1) σ is hyperbolic;
(2) X((degA)/2; (A, σ))(F ) 6= ∅;
(3) X((rdimV )/2; (V, h))(F ) 6= ∅;
(4) h is hyperbolic.

3. Krull-Schmidt principle

The characteristic of the base field F is arbitrary in this section.
Our basic reference for Chow groups and Chow motives (including notation)
is [6]. We fix an associative unital commutative ring Λ (we shall take Λ = F2

in the application) and for a variety X we write CH(X ; Λ) for its Chow group
with coefficients in Λ. Our category of motives is the category CM(F,Λ) of
graded Chow motives with coefficients in Λ, [6, definition of §64]. By a sum of
motives we always mean the direct sum.
We shall often assume that our coefficient ring Λ is finite. This simplifies
significantly the situation (and is sufficient for our application). For instance,
for a finite Λ, the endomorphism rings of finite sums of Tate motives are also
finite and the following easy statement applies:

Lemma 3.1. An appropriate power of any element of any finite associative (not
necessarily commutative) ring is idempotent.

Proof. Since the ring is finite, any its element x satisfies xa = xa+b for some
a ≥ 1 and b ≥ 1. It follows that xab is an idempotent. �

Let X be a smooth complete variety over F . We call X split, if its integral
motive M(X) ∈ CM(F,Z) (and therefore its motive with any coefficients) is
a finite sum of Tate motives. We call X geometrically split, if it splits over a
field extension of F . We say that X satisfies the nilpotence principle, if for any
field extension E/F and any coefficient ring Λ, the kernel of the change of field
homomorphism End(M(X))→ End(M(X)E) consists of nilpotents. Any pro-
jective homogeneous variety is geometrically split and satisfies the nilpotence
principle, [3, Theorem 8.2].

Corollary 3.2 ([9, Corollary 2.2]). Assume that the coefficient ring Λ is finite.
Let X be a geometrically split variety satisfying the nilpotence principle. Then
an appropriate power of any endomorphism of the motive of X is a projector.

We say that the Krull-Schmidt principle holds for a given pseudo-abelian cat-
egory, if every object of the category has one and unique decomposition in a
finite direct sum of indecomposable objects. In the sequel, we are constantly
using the following statement:

Corollary 3.3 ([4, Corollary 35], see also [9, Corollary 2.6]). Assume that the
coefficient ring Λ is finite. The Krull-Schmidt principle holds for the pseudo-
abelian Tate subcategory in CM(F,Λ) generated by the motives of the geomet-
rically split F -varieties satisfying the nilpotence principle. �
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Remark 3.4. Replacing the Chow groups CH(−; Λ) by the reduced Chow
groups CH(−; Λ) (cf. [6, §72]) in the definition of the category CM(F,Λ), we
get a “simplified” motivic category CM(F,Λ) (which is still sufficient for the
main purpose of this paper). Working within this category, we do not need the
nilpotence principle any more. In particular, the Krull-Schmidt principle holds
(with a simpler proof) for the pseudo-abelian Tate subcategory in CM(F,Λ)
generated by the motives of the geometrically split F -varieties.

4. Splitting off a motivic summand

The characteristic of the base field F is still arbitrary in this section.
In this section we assume that the coefficient ring Λ is connected. We shall
often assume that Λ is finite.
Before climbing to the main result of this section (which is Proposition 4.6),
let us do some warm up.
The following definition of [9] extends some terminology of [20]:

Definition 4.1. Let M ∈ CM(F,Λ) be a summand of the motive of a smooth
complete irreducible variety of dimension d. The summand M is called upper,
if CH0(M ; Λ) 6= 0. The summand M is called lower, if CHd(M ; Λ) 6= 0. The
summand M is called outer, if it is simultaneously upper and lower.

For instance, the whole motive of a smooth complete irreducible variety is an
outer summand of itself. Another example of an outer summand is the motive
given by a Rost projector (see Definition 5.1).
Given a correspondence α ∈ CHdimX(X×Y ; Λ) between some smooth complete
irreducible varieties X and Y , we write multα ∈ Λ for the multiplicity of α,
[6, definition of §75]. Multiplicity of a composition of two correspondences is the
product of multiplicities of the composed correspondences (cf. [11, Corollary

1.7]). In particular, multiplicity of a projector is idempotent and therefore
∈ {0, 1} because the coefficient ring Λ is connected.
Characterizations of outer summands given in the two following Lemmas are
easily obtained:

Lemma 4.2 (cf. [9, Lemmas 2.8 and 2.9]). Let X be a smooth complete irreducible
variety. The motive (X, p) given by a projector p ∈ CHdimX(X×X ; Λ) is upper
if and only if mult p = 1. The motive (X, p) is lower if and only if mult pt = 1,
where pt is the transpose of p.

Lemma 4.3 (cf. [9, Lemma 2.12]). Assume that a summand M of the motive of
a smooth complete irreducible variety of dimension d decomposes into a sum of
Tate motives. Then M is upper if and only if the Tate motive Λ is present in
the decomposition; it is lower if and only if the Tate motive Λ(d) is present in
the decomposition.

The following statement generalizes (the finite coefficient version of) [21, Corol-

lary 3.9]:
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Lemma 4.4. Assume that the coefficient ring Λ is finite. Let X and Y be
smooth complete irreducible varieties such that there exist multiplicity 1 corre-
spondences

α ∈ CHdimX(X × Y ; Λ) and β ∈ CHdimY (Y ×X ; Λ).

Assume that X is geometrically split and satisfies the nilpotence principle. Then
there is an upper summand of M(X) isomorphic to an upper summand of
M(Y ). Moreover, for any upper summand MX of M(X) and any upper sum-
mand MY of M(Y ), there is an upper summand of MX isomorphic to an upper
summand of MY .

Proof. By Corollary 3.2, the composition p := (β ◦ α)◦n for some n ≥ 1 is a
projector. Therefore q := (α◦β)◦2n is also a projector and the summand (X, p)
of M(X) is isomorphic to the summand (Y, q) of M(Y ). Indeed, the morphisms
α : M(X) → M(Y ) and β′ := β ◦ (α ◦ β)◦(2n−1) : M(Y ) → M(X) satisfy the
relations β′ ◦ α = p and α ◦ β′ = q.
Since mult p = (multβ · multα)n = 1 and similarly mult q = 1, the summand
(X, p) of M(X) and the summand (Y, q) of M(Y ) are upper by Lemma 4.2.
We have proved the first statement of Lemma 4.4. As to the second statement,
let

p′ ∈ CHdimX(X ×X ; Λ) and q′ ∈ CHdimY (Y × Y ; Λ)

be projectors such that MX = (X, p′) and MY = (Y, q′). Replacing α and β
by q′ ◦ α ◦ p′ and p′ ◦ β ◦ q′, we get isomorphic upper motives (X, p) and (Y, q)
which are summands of MX and MY . �

Remark 4.5. Assume that the coefficient ring Λ is finite. Let X be a geo-
metrically split irreducible smooth complete variety satisfying the nilpotence
principle. Then the complete motivic decomposition of X contains precisely
one upper summand and it follows by Corollary 3.3 (or by Lemma 4.4) that an
upper indecomposable summands of M(X) is unique up to an isomorphism.
(Of course, the same is true for the lower summands.)

Here comes the needed replacement of [21, Theorem 4.15]:

Proposition 4.6. Assume that the coefficient ring Λ is finite. Let X be a
geometrically split, geometrically irreducible variety satisfying the nilpotence
principle and let M be a motive. Assume that there exists a field extension
E/F such that

(1) the field extension E(X)/F (X) is purely transcendental;
(2) the upper indecomposable summand of M(X)E is also lower and is a

summand of ME.

Then the upper indecomposable summand of M(X) is a summand of M .

Proof. We may assume that M = (Y, p, n) for some irreducible smooth com-
plete F -variety Y , a projector p ∈ CHdimY (Y × Y ; Λ), and an integer n.
By the assumption (2), we have morphisms of motives f : M(X)E → ME

and g : ME → M(X)E with mult(g ◦ f) = 1. By [9, Lemma 2.14], in order to
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prove Proposition 4.6, it suffices to construct morphisms f ′ : M(X)→M and
g′ : M →M(X) (over F ) with mult(g′ ◦ f ′) = 1.
Let ξ : SpecF (X) → X be the generic point of the (irreducible) variety X .
For any F -scheme Z, we write ξZ for the morphism ξZ = (ξ × idZ) : ZF (X) =
SpecF (X)×Z → X ×Z. Note that for any α ∈ CH(X ×Z), the image ξ∗Z(α) ∈
CH(ZF (X)) of α under the pull-back homomorphism ξ∗Z : CH(X × Z,Λ) →
CH(ZF (X),Λ) coincides with the composition of correspondences α ◦ [ξ], [6,
Proposition 62.4(2)], where [ξ] ∈ CH0(XF (X),Λ) is the class of the point ξ:

(∗) ξ∗Z(α) = α ◦ [ξ].

In the commutative square

CH(XE × YE ; Λ)
ξ∗YE−−−−→ CH(YE(X); Λ)

resE/F

x resE(X)/F (X)

x

CH(X × Y ; Λ)
ξ∗Y−−−−→ CH(YF (X); Λ)

the change of field homomorphism resE(X)/F (X) is surjective1 because of the
assumption (1) by the homotopy invariance of Chow groups [6, Theorem 57.13]

and by the localization property of Chow groups [6, Proposition 57.11]. Moreover,
the pull-back homomorphism ξ∗Y is surjective by [6, Proposition 57.11]. It follows
that there exists an element f ′ ∈ CH(X × Y ; Λ) such that ξ∗YE (f ′

E) = ξ∗YE (f).
Recall that mult(g ◦ f) = 1. On the other hand, mult(g ◦ f ′

E) = mult(g ◦
f). Indeed, mult(g ◦ f) = deg ξ∗XE (g ◦ f) by [6, Lemma 75.1], where deg :
CH(XE(X)) → Λ is the degree homomorphism. Furthermore, ξ∗XE (g ◦ f) =
(g ◦f)◦ [ξE ] by (∗). Finally, (g ◦f)◦ [ξE ] = g ◦ (f ◦ [ξE ]) and f ◦ [ξE ] = ξ∗YE (f) =
ξ∗YE (f ′

E) by the construction of f ′.
Replacing f ′ be the composition p ◦ f ′, we get a morphism f ′ : M(X) → M .
Since the composition g ◦ f ′

E is not changed, we still have mult(g ◦ f ′
E) = 1.

Since mult(g ◦ f ′
E) = 1 and the indecomposable upper summand of M(X)E

is lower, we have mult((f ′
E)t ◦ gt) = 1. Therefore we may apply the above

procedure to the dual morphisms

gt : M(X)E → (Y, p, dimX − dimY − n)E

and (f ′
E)t : (Y, p, dimX − dimY − n)E →M(X)E .

This way we get a morphism g′ : M →M(X) such that mult((f ′)t ◦ (g′)t) = 1.
It follows that mult(g′ ◦ f ′) = 1. �

Remark 4.7. Replacing CM(F,Λ) by CM(F,Λ) in Proposition 4.6, we get a
weaker version of Proposition 4.6 which is still sufficient for our application.
The nilpotence principle is no more needed in the proof of the weaker version.
Because of that, there is no more need to assume that X satisfies the nilpotence
principle.

1In fact, resE(X)/F (X) is even an isomorphism, but we do not need its injectivity (which

can be obtained with a help of a specialization).
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5. Rost correspondences

In this section, X stands for a smooth complete geometrically irreducible vari-
ety of a positive dimension d.
The coefficient ring Λ of the motivic category is F2 in this section. We write
Ch(−) for the Chow group CH(−;F2) with coefficients in F2. We write degX/F
for the degree homomorphism Ch0(X)→ F2.

Definition 5.1. An element ρ ∈ Chd(X ×X) is called a Rost correspondence
(on X), if ρF (X) = χ1× [XF (X)]+[XF (X)]×χ2 for some 0-cycle classes χ1, χ2 ∈
Ch0(XF (X)) of degree 1. A Rost projector is a Rost correspondence which is a
projector.

Remark 5.2. Our definition of a Rost correspondence differs from the defini-
tion of a special correspondence in [17]. Our definition is weaker in the sense
that a special correspondence on X (which is an element of the integral Chow
group CHd(X × X)) considered modulo 2 is a Rost correspondence but not
any Rost correspondence is obtained this way. This difference gives a reason
to reproduce below some results of [17]. Actually, some of the results below
are formally more general than the corresponding results of [17]; their proofs,
however, are essentially the same.

Remark 5.3. Clearly, the set of all Rost correspondences on X is stable un-
der transposition and composition. In particular, if ρ is a Rost correspon-
dence, then its both symmetrizations ρt ◦ ρ and ρ ◦ ρt are (symmetric) Rost
correspondences. Writing ρF (X) as in Definition 5.1, we have (ρt ◦ ρ)F (X) =

χ1× [XF (X)] + [XF (X)]×χ1 (and (ρ ◦ ρt)F (X) = χ2× [XF (X)] + [XF (X)]×χ2).

Lemma 5.4. Assume that the variety X is projective homogeneous. Let ρ ∈
Chd(X × X) be a projector. If there exists a field extension E/F such that
ρE = χ1 × [XE ] + [XE ] × χ2 for some 0-cycle classes χ1, χ2 ∈ Ch0(XE) of
degree 1, then ρ is a Rost projector.

Proof. According to [3, Theorem 7.5], there exist some integer n ≥ 0 and for
i = 1, . . . , n some integers ri > 0 and some projective homogeneous varieties
Xi satisfying dimXi + ri < d such that for M =

⊕n
i=1M(Xi)(ri) the motive

M(X)F (X) decomposes as F2 ⊕M ⊕ F2(d). Since there is no non-zero mor-
phism between different summands of this three terms decomposition, the ring
EndM(X) decomposes in the product of rings

EndF2 × EndM × EndF2(d) = F2 × EndM × F2.

Let χ ∈ Ch0(XF (X)) be a 0-cycle class of degree 1. We set

ρ′ = χ× [XF (X)] + [XF (X)]× χ ∈ F2 × F2

⊂ F2 × EndM × F2 = EndM(X)F (X) = Chd(XF (X) ×XF (X))

and we show that ρF (X) = ρ′. The difference ε = ρF (X)−ρ′ vanishes over E(X).
Therefore ε is a nilpotent element of EndM . Choosing a positive integer m
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with εm = 0, we get

ρF (X) = ρmF (X) = (ρ′ + ε)m = (ρ′)m + εm = (ρ′)m = ρ′. �

Lemma 5.5. Let ρ ∈ Chd(X ×X) be a projector. The motive (X, ρ) is isomor-
phic to F2 ⊕ F2(d) iff ρ = χ1 × [X ] + [X ] × χ2 for some some 0-cycle classes
χ1, χ2 ∈ Ch0(X) of degree 1.

Proof. A morphism F2 ⊕ F2(d)→ (X, ρ) is given by some

f ∈ Hom
(
F2,M(X)

)
= Ch0(X) and f ′ ∈ Hom

(
F2(d),M(X)

)
= Chd(X).

A morphism in the inverse direction is given by some

g ∈ Hom(M(X),F2) = Ch0(X) and g′ ∈ Hom(M(X),F2(d)) = Chd(X).

The two morphisms F2⊕F2(d)↔ (X, ρ) are mutually inverse isomorphisms iff
ρ = f × g+ f ′× g′ and degX/F (fg) = 1 = degX/F (f ′g′). The degree condition

means that f ′ = [X ] = g and degX/F (f) = 1 = degX/F (g′). �

Corollary 5.6. If X is projective homogeneous and ρ is a projector on X
such that

(X, ρ)E ≃ F2 ⊕ F2(d)

for some field extension E/F , then ρ is a Rost projector. �

A smooth complete variety is called anisotropic, if the degree of its any closed
point is even.

Lemma 5.7 ([17, Lemma 9.2], cf. [18, proof of Lemma 6.2]). Assume that X
is anisotropic and possesses a Rost correspondence ρ. Then for any inte-
ger i 6= d and any elements α ∈ Chi(X) and β ∈ Chi(XF (X)), the im-
age of the product αF (X) · β ∈ Ch0(XF (X)) under the degree homomorphism
degXF (X)/F (X) : Ch0(XF (X))→ F2 is 0.

Proof. Let γ ∈ Chi(X ×X) be a preimage of β under the surjection

ξ∗X : Chi(X ×X)→ Chi(SpecF (X)×X)

(where ξ∗X is as defined in the proof of Proposition 4.6). We consider the 0-cycle
class

δ = ρ · ([X ]× α) · γ ∈ Ch0(X ×X).

Since X is anisotropic, so is X × X , and it follows that deg(X×X)/F δ = 0.

Therefore it suffices to show that deg(X×X)/F δ = degXF (X)/F (X)(αF (X) · β).

We have deg(X×X)/F δ = deg(X×X)F (X)/F (X)(δF (X)) and

δF (X) = (χ1 × [XF (X)] + [XF (X)]× χ2) · ([XF (X)]× αF (X)) · γF (X) =

(χ1 × [XF (X)]) · ([XF (X)]× αF (X)) · γF (X)

(because i 6= d) where χ1, χ2 ∈ Ch0(XF (X)) are as in Definition 5.1. For the
first projection pr1 : XF (X) ×XF (X) → XF (X) we have

deg(X×X)F (X)/F (X) δF (X) = degXF (X)/F (X)(pr 1)∗(δF (X))
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and by the projection formula

(pr 1)∗(δF (X)) = χ1 · (pr 1)∗
(
([XF (X)]× αF (X)) · γF (X)

)
.

Finally,

(pr 1)∗
(
([XF (X)]×αF (X)) · γF (X)

)
= mult

(
([XF (X)]×αF (X)) · γF (X)

)
· [XF (X)]

and

mult
(
([XF (X)]× αF (X)) · γF (X)

)
= mult

(
([X ]× α) · γ

)
.

Since multχ = degXF (X)/F (X) ξ
∗
X(χ) for any element χ ∈ Chd(X × X) by [6,

Lemma 75.1], it follows that

mult
(
([X ]× α) · γ

)
= deg(αF (X) · β). �

For anisotropic X , we consider the homomorphism deg/2 : Ch0(X) → F2

induced by the homomorphism CH0(X)→ Z, α 7→ deg(α)/2.

Corollary 5.8. Assume that X is anisotropic and possesses a Rost corre-
spondence. Then for any integer i 6= d and any elements α ∈ Chi(X) and

β ∈ Chi(X) with βF (X) = 0 one has (deg/2)(α · β) = 0.

Proof. Let β′ ∈ CHi(X) be an integral representative of β. Since βF (X) = 0,

we have β′
F (X) = 2β′′ for some β′′ ∈ CHi(XF (X)). Therefore

(deg/2)(α · β) = degXF (X)/F (X)

(
αF (X) · (β′′ mod 2)

)
= 0

by Lemma 5.7. �

Corollary 5.9. Assume that X is anisotropic and possesses a Rost corre-
spondence ρ. For any integer i 6∈ {0, d} and any α ∈ Chi(X) and β ∈ Chi(X)
one has

(deg/2)
(
(α× β) · ρ

)
= 0.

Proof. Let α′ ∈ CHi(X) and β′ ∈ CHi(X) be integral representatives of α and
β. Let ρ′ ∈ CHd(X ×X) be an integral representative of ρ. It suffices to show
that the degree of the 0-cycle class (α′ × β′) · ρ′ ∈ CH0(X ×X) is divisible by
4.
Let χ1 and χ2 be as in Definition 5.1. Let χ′

1, χ
′
2 ∈ CH0(XF (X)) be integral

representatives of χ1 and χ2. Then ρ′F (X) = χ′
1 × [XF (X)] + [XF (X)]× χ′

2 + 2γ

for some γ ∈ CHd(XF (X) ×XF (X)). Therefore (since i 6∈ {0, d})
(α′
F (X) × β′

F (X)) · ρ′F (X) = 2(α′
F (X) × β′

F (X)) · γ.
Applying the projection pr1 onto the first factor and the projection formula,
we get twice the element α′

F (X) · (pr 1)∗
(
([XF (X)]× β′

F (X)) · γ
)

whose degree is

even by Lemma 5.7 (here we use once again the condition that i 6= d). �

Lemma 5.10. Assume that X is anisotropic and possesses a Rost correspon-
dence ρ. Then (deg/2)(ρ2) = 1.
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Proof. Let χ1 and χ2 be as in Definition 5.1. Let χ′
1, χ

′
2 ∈ CH0(XE) be integral

representatives of χ1 and χ2. The degrees of χ′
1 and χ′

2 are odd. Therefore,
the degree of the cycle class

(χ′
1 × [XF (X)] + [XF (X)]× χ′

2)2 = 2(χ′
1 × χ′

2) ∈ CH0(XF (X) ×XF (X))

is not divisible by 4.
Let ρ′ ∈ CHd(X ×X) be an integral representative of ρ. Since ρ′F (X) is χ′

1 ×
[XF (X)] + [XF (X)]× χ′

2 modulo 2, (ρ′F (X))
2 is (χ′

1 × [XF (X)] + [XF (X)]× χ′
2)2

modulo 4. Therefore (deg/2)(ρ2) = 1. �

Theorem 5.11 ([17, Theorem 9.1], see also [18, proof of Lemma 6.2]). Let X be
an anisotropic smooth complete geometrically irreducible variety of a positive
dimension d over a field F of characteristic 6= 2 possessing a Rost correspon-
dence. Then the degree of the highest Chern class cd(−TX), where TX is the
tangent bundle on X, is not divisible by 4.

Proof. In this proof, we write c•(−TX) for the total Chern class ∈ Ch(X) in the
Chow group with coefficient in F2. It suffices to show that (deg/2)(cd(−TX)) =
1.
Let SqX• : Ch(X)→ Ch(X) be the modulo 2 homological Steenrod operation,
[6, §59]. We have a commutative diagram

Chd(X ×X)

Chd(X)

Ch0(X ×X)

Ch0(X) Ch0(X)

F2

wwooooooo(pr1)∗

��

SqX×X
d

��

SqXd

wwooooooo(pr1)∗

��

deg/2

''OOOOOOO (pr2)∗

''OOOOOOOOO

deg/2 wwooooooooo

deg/2

Since (pr 1)∗(ρ) = [X ] and SqXd ([X ]) = cd(−TX) [6, formula (60.1)], it suffices to
show that

(deg/2)
(

SqX×X
d (ρ)

)
= 1.

We have SqX×X
• = c•(−TX×X) ·Sq•

X×X , where Sq• is the cohomological Steen-
rod operation, [6, §61]. Therefore

SqX×X
d (ρ) =

d∑

i=0

cd−i(−TX×X) · SqiX×X(ρ).

The summand with i = d is SqdX×X(ρ) = ρ2 by [6, Theorem 61.13]. By Lemma
5.10, its image under deg/2 is 1.
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Since c•(−TX×X) = c•(−TX) × c•(−TX) and Sq0 = id, the summand with
i = 0 is 


d∑

j=0

cj(−TX)× cd−j(−TX)


 · ρ.

Its image under deg/2 is 0 because

(deg/2)
((
c0(−TX)× cd(−TX)

)
· ρ
)

= (deg/2)(cd(−TX)) =

(deg/2)
((
cd(−TX)× c0(−TX)

)
· ρ
)

while for j 6∈ {0, d}, we have (deg/2)
((
cj(−TX) × cd−j(−TX)

)
· ρ
)

= 0 by

Corollary 5.9.
Finally, for any i with 0 < i < d the ith summand is the sum

d−i∑

j=0

(
cj(−TX)× cd−i−j(−TX)

)
· SqiX×X(ρ).

We shall show that for any j the image of the jth summand under deg/2
is 0. Note that the image under deg/2 coincides with the image under the
composition (deg/2) ◦ (pr 1)∗ and also under the composition (deg/2) ◦ (pr 2)∗
(look at the above commutative diagram). By the projection formula we have

(pr 1)∗
((
cj(−TX)× cd−i−j(−TX)

)
· SqiX×X(ρ)

)
=

cj(−TX) · (pr 1)∗
((

[X ]× cd−i−j(−TX)
)
· SqiX×X(ρ)

)

and the image under deg/2 is 0 for positive j by Corollary 5.8 applied to

α = cj(−TX) and β = (pr1)∗
((

[X ] × cd−i−j(−TX)
)
· SqiX×X(ρ)

)
. Corollary

5.8 can be indeed applied, because since ρF (X) = χ1 × [XF (X)] + [XF (X)]× χ2

and i > 0, we have Sqi(X×X)F (X)
(ρ)F (X) = 0 and therefore βF (X) = 0.

For j = 0 we use the projection formula for pr 2 and Corollary 5.8 with α =
cd−i(−TX) and β = (pr 2)∗

(
SqiX×X(ρ)

)
. �

Remark 5.12. The reason of the characteristic exclusion in Theorem 5.11 is
that its proof makes use of Steenrod operations on Chow groups with coeffi-
cients in F2 which (the operations) -are not available in characteristic 2.

We would like to mention

Lemma 5.13 ([17, Lemma 9.10]). Let X be an anisotropic smooth complete equidi-
mensional variety over a field of arbitrary characteristic. If dimX + 1 is not a
power of 2, then the degree of the integral 0-cycle class cdimX(−TX) ∈ CH0(X)
is divisible by 4.

Corollary 5.14 ([17, Corollary 9.12]). In the situation of Theorem 5.11, the
integer dimX + 1 is a power of 2. �
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6. Motivic decompositions of some isotropic varieties

The coefficient ring Λ is F2 in this section. Throughout this section, D is a
central division F -algebra of degree 2r with some positive integer r.
We say that motives M and N are quasi-isomorphic and write M ≈ N , if there
exist decompositions M ≃M1 ⊕ · · · ⊕Mm and N ≃ N1 ⊕ · · · ⊕Nn such that

M1(i1)⊕ · · · ⊕Mm(im) ≃ N1(j1)⊕ · · · ⊕Nn(jn)

for some (shift) integers i1, . . . , im and j1, . . . , jn.
We shall use the following

Theorem 6.1 ([9, Theorems 3.8 and 4.1]). For any integer l = 0, 1, . . . , r, the
upper indecomposable summand Ml of the motive of the generalized Severi-
Brauer variety X(2l;D) is lower. Besides of this, the motive of any finite direct
product of any generalized Severi-Brauer varieties of D is quasi-isomorphic to
a finite sum of Ml (with various l).

For the rest of this section, we fix an orthogonal involution on the algebra D.

Lemma 6.2. Let n be an positive integer. Let h be a hyperbolic hermitian form
on the right D-module D2n and let Y be the variety X(n degD; (D2n, h)) (of the
maximal totally isotropic submodules). Then the motive M(Y ) is isomorphic
to a finite sum of several shifted copies of the motives M0,M1, . . . ,Mr.

Proof. By [10, §15] the motive of the variety Y is quasi-isomorphic to the
motive of the “total” variety

X(∗;Dn) =
∐

i∈Z

X(i;Dn) =

2rn∐

i=0

X(i;Dn)

of D-submodules in Dn (the range limit 2rn is the reduced dimension of the
D-module Dn). (Note that in our specific situation we always have i = j in the
flag varieties X(i ⊂ j;Dn) which appear in the general formula of [10, Sled-

stvie 15.14].) Furthermore, M(X(∗;Dn)) ≈ M(X(∗;D))⊗n by [10, Sled-

stvie 10.19]. Therefore the motive of Y is a direct sum of the motives of
products of generalized Severi-Brauer varieties of D. (One can also come to
this conclusion by [2] computing the semisimple anisotropic kernel of the con-
nected component of the algebraic group Aut(D2n, h).) We finish by Theorem
6.1. �

As before, we write Ch(−) for the Chow group CH(−;F2) with coefficients in
F2. We recall that a smooth complete variety is called anisotropic, if the degree
of its any closed point is even (the empty variety is anisotropic). The following
statement is a particular case of [9, Lemma 2.21].

Lemma 6.3. Let Z be an anisotropic F -variety with a projector p ∈ ChdimZ(Z×
Z) such that the motive (Z, p)L ∈ CM(L,F2) for a field extension L/F is
isomorphic to a finite sum of Tate motives. Then the number of the Tate
summands is even. In particular, the motive in CM(F,F2) of any anisotropic
F -variety does not contain a Tate summand.
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Proof. Mutually inverse isomorphisms between (Z, p)L and a sum of, say,
n Tate summands, are given by two sequences of homogeneous elements
a1, . . . , an and b1, . . . , bn in Ch(ZL) with pL = a1 × b1 + · · · + an × bn and
such that for any i, j = 1, . . . , n the degree deg(aibj) is 0 for i 6= j and 1 ∈ F2

for i = j. The pull-back of p via the diagonal morphism of Z is therefore a
0-cycle class on Z of degree n (modulo 2). �

Lemma 6.4. Let n be an integer ≥ 0. Let h′ be a hermitian form on the
right D-module Dn such that h′L is anisotropic for any finite odd degree field
extension L/F . Let h be the hermitian form on the right D-module Dn+2 which
is the orthogonal sum of h′ and a hyperbolic D-plane. Let Y ′ be the variety of
totally isotropic submodules of Dn+2 of reduced dimension 2r (= indD). Then
the complete motivic decomposition of M(Y ′) ∈ CM(F,F2) (cf. Corollary 3.3)
contains one summand F2, one summand F2(dim Y ′), and does not contain
any other Tate motive.

Proof. Since Y ′(F ) 6= ∅, M(Y ′) contains an exemplar of the Tate motive F2

and an exemplar of the Tate motive F2(dimY ′).
According to [10, Sledstvie 15.14] (see also [10, Sledstvie 15.9]), M(Y ′) is
quasi-isomorphic to the sum of the motives of the products

X(i ⊂ j;D)×X(j − i; (Dn, h′))

where i, j run over all integers (the product is non-empty only if 0 ≤ i ≤ j ≤ 2r).
The choices i = j = 0 and i = j = 2r give two exemplars of the Tate motive F2

(up to a shift). The variety obtained by any other choice of i, j but i = 0, j = 2r

is anisotropic because the algebra D is division. The variety with i = 0, j = 2r

is anisotropic by the assumption involving the odd degree field extensions.
Lemma 6.3 terminates the proof. �

7. Proof of Main theorem

We fix a central simple algebraA of index > 1 with a non-hyperbolic orthogonal
involution σ. Since the involution is an isomorphism of A with its dual, the
exponent of A is 2; therefore, the index of A is a power of 2, say, indA = 2r for
a positive integer r. We assume that σ becomes hyperbolic over the function
field of the Severi-Brauer variety of A and we are looking for a contradiction.
According to [12, Theorem 3.3], coindA = 2n for some integer n ≥ 1. We assume
that Main theorem (Theorem 1.1) is already proven for all algebras (over all
fields) of index < 2r as well as for all algebras of index 2r and coindex < 2n.
Let D be a central division algebra Brauer-equivalent to A. Let X0 be the
Severi-Brauer variety of D. Let us fix an (arbitrary) orthogonal involution τ
on D and an isomorphism of F -algebras A ≃ EndD(D2n). Let h be a hermitian
(with respect to τ) form on the right D-module D2n such that σ is adjoint to
h. Then hF (X0) is hyperbolic. Since the anisotropic kernel of h also becomes
hyperbolic over F (X0), our induction hypothesis ensures that h is anisotropic.
Moreover, hL is hyperbolic for any field extension L/F such that hL is isotropic.
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It follows by [1, Proposition 1.2] that hL is anisotropic for any finite odd degree
field extension L/F .
Let Y be the variety of totally isotropic submodules in D2n of reduced di-
mension n degD. (The variety Y is a twisted form of the variety of maximal
totally isotropic subspaces of a quadratic form studied in [6, Chapter XVI].) It
is isomorphic to the variety of totally isotropic right ideals in A of reduced
dimension (degA)/2 (=n2r). Since σ is hyperbolic over F (X0) and the field
F is algebraically closed in F (X0) (because the variety X0 is geometrically
integral), the discriminant of σ is trivial. Therefore the variety Y has two con-
nected components Y+ and Y− corresponding to the components C+ and C−
(cf. [6, Theorem 8.10]) of the Clifford algebra C(A, σ). Note that the varieties
Y+ and Y− are projective homogeneous under the connected component of the
algebraic group Aut(D2n, h) = Aut(A, σ).
The central simple algebras C+ and C− are related with A by the formula [13,
(9.14)]:

[C+] + [C−] = [A] ∈ Br(F ).

Since [C+]F (X0) = [C−]F (X0) = 0 ∈ Br(F (X0)), we have [C+], [C−] ∈ {0, [A]}
and it follows that [C+] = 0, [C−] = [A] up to exchange of the indices +,−.
By the index reduction formula for the varieties Y+ and Y− of [15, page 594], we
have: indDF (Y+) = indD, indDF (Y−) = 1.
Below we will work with the variety Y+ and not with the variety Y−. One
reason of this choice is Lemma 7.1. Another reason of the choice is that we
need DF (Y+) to be a division algebra when applying Proposition 4.6 in the
proof of Lemma 7.2.

Lemma 7.1. For any field extension L/F one has:

a) Y−(L) 6= ∅ ⇔ DL is Brauer-trivial ⇔ DL is Brauer-trivial and σL is
hyperbolic;

b) Y+(L) 6= ∅ ⇔ σL is hyperbolic.

Proof. Since σF (X0) is hyperbolic, Y (F (X0)) 6= ∅. Since the varieties Y+ and
Y− become isomorphic over F (X0), each of them has an F (X0)-point. More-
over, X0 has an F (Y−)-point. �

For the sake of notation simplicity, we write Y for Y+ (we will not meet the
old Y anymore).
The coefficient ring Λ is F2 in this section. We use the F -motives M0, . . . ,Mr

introduced in Theorem 6.1. Note that for any field extension E/F such that
DE is still a division algebra, we also have the E-motives M0, . . . ,Mr.

Lemma 7.2. The motive of Y decomposes as R1 ⊕ R2, where R1 is quasi-
isomorphic to a finite sum of several copies of the motives M0, . . . ,Mr−1, and
where (R2)F (Y ) is isomorphic to a finite sum of Tate motives including one
exemplar of F2.

Proof. According to Lemma 6.2, the motive M(Y )F (Y ) is isomorphic to a sum
of several shifted copies of the F (Y )-motives M0, . . . ,Mr (introduced in The-
orem 6.1). Since YF (Y ) 6= ∅, a (non-shifted) copy of the Tate motive F2 shows
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up. If for some l = 0, . . . , r − 1 there is at least one copy of Ml (with a shift
j ∈ Z) in the decomposition, let us apply Proposition 4.6 taking as X the
variety Xl = X(2l;D), taking as M the motive M(Y )(−j), and taking as E
the function field F (Y ).
Since DE is a division algebra, condition (2) of Proposition 4.6 is fulfilled. Since
indDF (X) < 2r, the hermitian form hF (X) is hyperbolic by the induction hy-
pothesis; therefore the variety YF (X) is rational (see Remark 7.1) and condition
(1) of Proposition 4.6 is fulfilled as well.
It follows that the F -motive Ml is a summand of M(Y )(−j). Let now M
be the complement summand of M(Y )(−j). By Corollary 3.3, the complete
decomposition of MF (Y ) is the complete decomposition of M(Y )(−j)F (Y ) with
one copy of Ml erased. If MF (Y ) contains one more copy of a shift of Ml (for
some l = 0, . . . , r − 1), we once again apply Proposition 4.6 to the variety Xl

and an appropriate shift of M . Doing this until we can, we get the desired
decomposition in the end. �

Now let us consider a minimal right D-submodule V ⊂ D2n such that V
becomes isotropic over a finite odd degree field extension of F (Y ). We set
v = dimD V . Clearly, v ≥ 2 (because DF (Y ) is a division algebra). For v > 2,
let Y ′ be the variety X(2r; (V, h|V )) of totally isotropic submodules in V of

reduced dimension 2r (that is, of “D-dimension” 1). Writing F̃ for an odd

degree field extension of F (Y ) with isotropic VF̃ , we have Y ′(F̃ ) 6= ∅ (because
DF̃ is a division algebra). Therefore there exists a correspondence of odd
multiplicity (that is, of multiplicity 1 ∈ F2) α ∈ ChdimY (Y × Y ′).
If v = 2, then h|V becomes hyperbolic over (an odd degree extension of) F (Y ).
Therefore h|V becomes hyperbolic over F (X0), and our induction hypothesis
actually insures that n = v = 2. In this case we simply take Y ′ := Y (our
component).
The variety Y ′ is projective homogeneous (in particular, irreducible) of dimen-
sion

dimY ′ = 2r−1(2r − 1) + 22r(v − 2)

which is equal to a power of 2 minus 1 only if r = 1 and v = 2. Moreover,
the variety Y ′ is anisotropic (because the hermitian form h is anisotropic and
remains anisotropic over any finite odd degree field extension of the base field).
Surprisingly, we can however prove the following

Lemma 7.3. There is a Rost projector (Definition 5.1) on Y ′.

Proof. By the construction of Y ′, there exists a correspondence of odd multi-
plicity (that is, of multiplicity 1 ∈ F2) α ∈ ChdimY (Y ×Y ′). On the other hand,
since hF (Y ′) is isotropic, hF (Y ′) is hyperbolic and therefore there exist a rational
map Y ′ 99K Y and a multiplicity 1 correspondence β ∈ ChdimY ′(Y ′× Y ) (e.g.,
the class of the closure of the graph of the rational map). Since the summand
R2 of M(Y ) given by Lemma 7.2 is upper (cf. Definition 4.1 and Lemma 4.3),
by Lemma 4.4 there is an upper summand of M(Y ′) isomorphic to a summand
of R2.
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Let ρ ∈ ChdimY ′(Y ′ × Y ′) be the projector giving this summand. We claim
that ρ is a Rost projector. We prove the claim by showing that the motive
(Y ′, ρ)F̃ is isomorphic to F2 ⊕ F2(dim Y ′), cf. Corollary 5.6, where F̃ /F (Y ) is

a finite odd degree field extension such that V becomes isotropic over F̃ .
Since (R2)F (Y ) is a finite sum of Tate motives, the motive (Y ′, ρ)F̃ is also a finite
sum of Tate motives. Since (Y ′, ρ)F̃ is upper, the Tate motive F2 is included
(Lemma 4.3). Now, by the minimal choice of V , the hermitian form (h|V )F̃
satisfies the condition on h in Lemma 6.4: (h|V )F̃ is an orthogonal sum of a
hyperbolic DF̃ -plane and a hermitian form h′ such that h′L is anisotropic for

any finite odd degree field extension L/F̃ of the base field F̃ . Indeed, otherwise
– if h′L is isotropic for some such L, the module VL contains a totally isotropic
submodule W of D-dimension 2; any D-hyperplane V ′ ⊂ V , considered over
L, meets W non-trivially; it follows that V ′

L is isotropic and this contradicts
to the minimality of V . (This is a very standard argument in the theory of
quadratic forms over field which we applied now to a hermitian form over a
division algebra.)
Therefore, by Lemma 6.4, the complete motivic decomposition of Y ′

F̃
has one

copy of F2, one copy of F2(dim Y ′), and no other Tate summands. By Corollary
3.3 and anisotropy of the variety Y ′ (see Lemma 6.3), it follows that

(Y ′, ρ)F̃ ≃ F2 ⊕ F2(dim Y ′). �

If we are away from the case where r = 1 and v = 2, then Lemma 7.3 contra-
dicts to Corollary 5.14 thus proving Main theorem (Theorem 1.1). Note that
Corollary 5.14 is a formal consequence of Theorem 5.11 and Lemma 5.13. We
can avoid the use of Lemma 5.13 by showing that deg cdimY ′(−TY ′) is divisible
by 4 for our variety Y ′. Indeed, if v > 2, then let K be the field F (t1, . . . , tv2r )
of rational functions over F in v2r variables. Let us consider the (generic)
diagonal quadratic form 〈t1, . . . , tv2r 〉 on the K-vector space Kv2r . Let Y ′′

be the variety of 2r-dimensional totally isotropic subspaces in Kv2r . The de-
gree of any closed point on Y ′′ is divisible by 22

r

. In particular, the integer
deg cdimY ′′(−TY ′′) is divisible by 22

r

. Since over an algebraic closure K̄ of K
the varieties Y ′ and Y ′′ become isomorphic, we have

deg cdimY ′(−TY ′) = deg cdimY ′′(−TY ′′).

If v = 2 and r > 1, we can play the same game, taking as Y ′′ a component of the
variety of 2r-dimensional totally isotropic subspaces of the (generic) diagonal
quadratic form (of trivial discriminant) 〈t1, . . . , tv2r−1, t1 . . . tv2r−1〉, because
the degree of any closed point on Y ′′ is divisible by 22

r−1.
Finally, the remaining case where r = 1 and v = 2 needs a special argument
(or reference). Indeed, in this case, the variety Y ′ is a conic, and therefore
Lemma 7.3 does not provide any information on Y ′. Of course, a reference to
[16] allows one to avoid consideration of the case of r = 1 (and any v) at all.
Also, [13, §15.B] covers our special case of r = 1 and v = 2. Finally, to stay
with the methods of this paper, we can do this special case as follows: if the
anisotropic conic Y ′ becomes isotropic over (an odd degree extension of) the
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function field of the conic X0, then X0 becomes isotropic over the function field
of Y ′ and, therefore, of Y ; but this is not the case because the algebra DF (Y )

is not split by the very definition of Y (we recall that X0 is the Severi-Brauer
variety of the quaternion algebra D).
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Appendix A.

Hyperbolicity of Symplectic and Unitary Involutions
by Jean-Pierre Tignol

The purpose of this note is to show how Karpenko’s results in [4] and [6] can be
used to prove the following analogues for symplectic and unitary involutions:

Theorem A.1. Let A be a central simple algebra of even degree over an arbi-
trary field F of characteristic different from 2 and let L be the function field
over F of the generalized Severi–Brauer variety X2(A) of right ideals of dimen-
sion 2 degA (i.e., reduced dimension 2) in A (see [7, (1.16)]). If a symplectic
involution σ on A is not hyperbolic, then its scalar extension σL = σ ⊗ idL on
AL = A⊗F L is not hyperbolic. Moreover, if A is a division algebra then σL is
anisotropic.

By a standard specialization argument, it suffices to find a field extension L′/F
such that AL′ has index 2 and σL′ is not hyperbolic to prove the first part. If
A is a division algebra we need moreover σL′ anisotropic.

Theorem A.2. Let B be a central simple algebra of exponent 2 over an arbi-
trary field K of characteristic different from 2, and let τ be a unitary involution
on B. Let F be the subfield of K fixed under τ and let M be the function field
over F of the Weil transfer RK/F (X(B)) of the Severi–Brauer variety of B. If
τ is not hyperbolic, then its scalar extension τM = τ ⊗ idM on BM = B ⊗F M
is not hyperbolic. Moreover, if B is a division algebra, then τM is anisotropic.
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Again, by a standard specialization argument, it suffices to find a field extension
M ′/F such that BM ′ is split and τM ′ is not hyperbolic (τM ′ anisotropic if B
is a division algebra).

A.1. Symplectic involutions. Consider the algebra of iterated twisted Lau-
rent series in two indeterminates

Â = A((ξ))((η; f))

where f is the automorphism of A((ξ)) that maps ξ to −ξ and is the identity
on A. Thus, ξ and η anticommute and centralize A. Let x = ξ2 and y = η2;

the center of Â is the field of Laurent series F̂ = F ((x))((y)). Moreover, ξ and

η generate over F̂ a quaternion algebra (x, y)F̂ , and we have Â = A⊗F (x, y)F̂ .

Let σ̂ be the involution on Â extending σ and mapping ξ to −ξ and η to
−η. This involution is the tensor product of σ and the canonical (conjugation)
involution on (x, y)F̂ . Since σ is symplectic, it follows that σ̂ is orthogonal.

Proposition A.3. If σ is anisotropic (resp. hyperbolic), then σ̂ is anisotropic
(resp. hyperbolic).

Proof. If σ is hyperbolic, then A contains an idempotent e such that σ(e) =

1 − e, see [7, (6.7)]. Since (A, σ) ⊂ (Â, σ̂), this idempotent also lies in Â and
satisfies σ̂(e) = 1 − e, hence σ̂ is hyperbolic. Now, suppose σ̂ is isotropic and

let a ∈ Â be a nonzero element such that σ̂(a)a = 0. We may write

a =

∞∑

i=z

aiη
i

for some ai ∈ A((ξ)) with az 6= 0. The coefficient of η2z in σ̂(a)a is
(−1)zfz(σ̂(az)az), hence σ̂(az)az = 0. Now, let

az =

∞∑

j=y

ajzξ
j

with ajz ∈ A and ayz 6= 0. The coefficient of ξ2y in σ̂(az)az is (−1)yσ(ayz)ayz,
hence σ(ayz)ayz = 0, which shows σ is isotropic. �

Proof of Theorem A.1. Substituting for (A, σ) its anisotropic kernel, we may

assume σ is anisotropic. Proposition A.3 then shows (Â, σ̂) is anisotropic. Let

L′ be the function field over F̂ of the Severi–Brauer variety of Â. By Karpenko’s

theorem in [6], the algebra with involution (ÂL′ , σ̂L′) is not hyperbolic. There-
fore, it follows from Proposition A.3 that (AL′ , σL′) is not hyperbolic. In par-
ticular, AL′ is not split since every symplectic involution on a split algebra is

hyperbolic. On the other hand, ÂL′ is split, hence AL′ is Brauer-equivalent to
(x, y)L′ . We have thus found a field L′ such that AL′ has index 2 and σL′ is
not hyperbolic, and the first part of Theorem A.1 follows. If A is a division

algebra, then Â also is division. Karpenko’s theorem in [4] then shows that σ̂L′

is anisotropic, hence σL′ is anisotropic since (AL′ , σL′) ⊂ (ÂL′ , σ̂L′). �
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Remark A.4. The last assertion in Theorem A.1 also holds if charF = 2, as a
result of another theorem of Karpenko [5]2: if (A, σ) is a central division algebra
with symplectic involution over a field F of characteristic 2 and Q = [x, y)F (x,y)

is a “generic” quaternion algebra where x and y are independent indeterminates
over F , then A ⊗F Q is a central division algebra over F (x, y) and we may
consider on this algebra the quadratic pair (σ⊗γ, f⊗) where γ is the conjugation
involution on Q and f⊗ is defined in [7, (5.20)]. By [5, Theorem 3.3], this
quadratic pair remains anisotropic over the function field L′ of the Severi–
Brauer variety of A⊗Q, hence σL′ also is anisotropic, while AL′ has index 2.

A.2. Unitary involutions. The proof of Theorem A.2 follows a line of ar-
gument similar to the proof of Theorem A.1. Since the exponent of B is 2, the
algebra B carries an orthogonal involution ν. Let g = ν ◦ τ , which is an outer
automorphism of B, and consider the algebra of twisted Laurent series

B̃ = B((ξ; g)).

It is readily checked that B̃ carries an involution τ̃ extending τ such that

τ̃ (ξ) = ξ. To describe the center F̃ of B̃, pick an element u ∈ B̃ such that

ν(u) = τ(u) = u and g2(b) = ubu−1 for all b ∈ B,
see [2, Lemma 3.1], and let x = u−1ξ2. Then F̃ = F ((x)), and B̃ is central

simple over F̃ by [1, Theorem 11.10]. By computing the dimension of the space
of τ̃ -symmetric elements as in [3, Proposition 1.9], we see that τ̃ is orthogonal.

The algebra with involution (B̃, τ̃ ) can be alternatively described as follows: let
β be the Brauer class of the central simple F -algebraB1 = B⊕Bζ where ζ2 = u

and ζb = g(b)ζ for all b ∈ B. Then (B̃, τ̃) is the unique orthogonal quadratic
extension of (B, τ)F̃ with Brauer class βF̃ + (K,x)F̃ , see [3, Proposition 1.9].

Proposition A.5. If τ is anisotropic (resp. hyperbolic), then τ̃ is anisotropic
(resp. hyperbolic).

Proof. If τ is hyperbolic, then τ̃ also is hyperbolic because (B, τ) ⊂ (B̃, τ̃ ). If
τ̃ is isotropic, a leading term argument as in Proposition A.3 shows that τ is
isotropic. �

Proof of Theorem A.2. Substituting for (B, τ) its anisotropic kernel, we may
assume τ is anisotropic, hence τ̃ also is anisotropic. Let M ′ be the function

field over F̃ of the Severi–Brauer variety of B̃. By Karpenko’s theorem in [6],

the algebra with involution (B̃M ′ , τ̃M ′ ) is not hyperbolic, hence (BM ′ , τM ′ ) is

not hyperbolic. On the other hand, B̃M ′ is split, and BM ′ is the centralizer

of K in B̃M ′ , hence BM ′ is split. We have thus found an extension M ′/F
such that BM ′ is split and τM ′ is not hyperbolic, which proves the first part

of Theorem A.2. If B is a division algebra, then B̃ also is a division algebra,
and Karpenko’s theorem in [4] shows that τ̃M ′ is anisotropic. Then τM ′ is

anisotropic since (BM ′ , τM ′) ⊂ (B̃M ′ , τ̃M ′). �

2I am grateful to N. Karpenko for calling my attention on this reference.
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Remark A.6. As for symplectic involutions, the last assertion in Theorem A.2
also holds if charF = 2, with almost the same proof: take ℓ ∈ K such that

τ(ℓ) = ℓ + 1, and consider the quadratic pair (τ̃ , f) on B̃ where f is defined

by f(s) = TrdB̃(ℓs) for any τ̃ -symmetric element s ∈ B̃. If B is a division

algebra, then B̃ is a division algebra, hence Karpenko’s Theorem 3.3 in [5]
shows that the quadratic pair (τ̃ , f) remains anisotropic after scalar extension
to M ′. Therefore, τM ′ is anisotropic.
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Introduction

Voevodsky [22] has defined an analog of the classical Postnikov tower in the
setting of motivic stable homotopy theory by replacing the simplicial suspension
Σs := − ∧ S1 with P1-suspension ΣP1 := − ∧ P1; we call this construction the
motivic Postnikov tower.
Let SH(k) denote the motivic stable homotopy category of P1-spectra. One of
the main results on motivic Postnikov tower in this setting is

Theorem 1. Let k be a field of characteristic zero. For E ∈ SH(k), the slices
snE have the natural structure of an HZ-module, and hence determine objects
in the category of motives DM(k).

The statement is a bit imprecise, as the following expansion will make clear:
Röndigs-Østvær [19, 20] have shown that the homotopy category of strict HZ-
modules is equivalent to the category of motives, DM(k). Additionally, Vo-
evodsky [22] and the author [11] have shown that the 0th slice of the sphere
spectrum S in SH(k) is isomorphic to HZ. Each E ∈ SH(k) has a canonical
structure of a module over the sphere spectrum S, and thus the slices snE
acquire an HZ-module structure, in SHS1(k). This has been refined to the
model category level by Pelaez [17], showing that the slices of a P1-spectrum
E have a natural structure of a strict HZ-module, hence are motives.
Let SptS1(k) denote the category of S1-spectra, with its homotopy category
(for the A1 model structure) SHS1(k). The analog for motives is the cat-
egory complexes of presheaves with transfer and its A1-homotopy category
DM eff (k), the category of effective motives over k. We consider the motivic
Postnikov tower inSHS1(k), and ask the questions:

(1) Is there a ring object in SptS1(k), HZeff , such that the homotopy

category of HZeff modules is equivalent to the category of effective
motives DMeff (k)?

(2) What properties (if any) need an S1-spectrum E have so that the
slices snE have a natural structure of Eilenberg-Maclane spectra of a
homotopy invariant complex of presheaves with transfer?

Naturally, if HZeff exists as in (1), we are asking the slices in (2) to be (strict)

HZeff modules. Of course, a natural candidate for HZeff would be the 0-S1-
spectrum of HZ, Ω∞

P1HZ, but as far as I know, this property has not yet been
investigated.
As we shall see, the 0-S1-spectrum of a P1-spectrum does have the property
that its (S1) slices are motives, while one can give examples of S1-spectra for
which the 0th slice does not have this property. This suggests a relation of the
question of the structure of the slices of an S1-spectrum with a motivic version
of the recognition problem:

(3) How can one tell if a given S1-spectrum is an n-fold P1-loop spectrum?

In this paper, we prove two main results about the “motivic” structure on the
slices of S1-spectra:
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Theorem 2. Suppose char k = 0. Let E be an S1-spectrum. Then for each
n ≥ 1, there is a tower

. . .→ ρ≥p+1snE → ρ≥psnE → . . .→ snE

in SHS1(k) with the following properties:

(1) the tower is natural in E.
(2) Let sp,nE be the cofiber of ρ≥p+1snE → ρ≥psnE. Then there is a ho-

motopy invariant complex of presheaves with transfers π̂p((snE)(n))∗ ∈
DM eff

− (k) and a natural isomorphism in SHS1(k),

EMA1(π̂p((snE)(n))∗) ∼= sp,nE,

where EMA1 : DM eff
− (k) → SHS1(k) is the Eilenberg-Maclane spec-

trum functor.

This result is proven in section 9.
One can say a bit more about the tower appearing in theorem 2. For in-
stance, holimp fib(ρ≥psnE → snE) is weakly equivalent to zero, so the spectral
sequence associated to this tower is weakly convergent. If snE is globally
N -connected (i.e., there is an N such that snE(X) is N -connected for all
X ∈ Sm/k) then the spectral sequence is strongly convergent. The “π̂p” ap-

pears in the notation due to the construction of π̂p((snE)(n))∗(X) arising from
a “Bloch cycle complex” of codimension n cycles on X ×∆∗ with coefficients
in πp(Ω

nsnE).
In other words, the higher slices of an arbitrary S1-spectrum have some sort of
transfers “up to filtration”. The situation for the 0th slice appears to be more
complicated, but for a P1-loop spectrum we have at least the following result:

Theorem 3. Suppose char k = 0. Take E ∈ SHP1(k). Then for all m, the
homotopy sheaf πm(s0ΩP1E) has a natural structure of a homotopy invariant
sheaf with transfers.

We actually prove a more precise result (corollary 8.5) which states that the
0th slice s0ΩP1E is itself a presheaf with transfers, with values in the stable
homotopy category SH, i.e., s0ΩP1E has “transfers up to homotopy”. This
raises the question:

(4) Is there an operad acting on s0ΩnP1E which shows that s0ΩnP1E admits
transfers up to homotopy and higher homotopies up to some level?

Part of the motivation for this paper came out of discussions with Hélène Es-
nault concerning the (admittedly vague) question: Given a smooth projective
variety X over some field k, that admits a 0-cycle of degree 1, are there “mo-
tivic” properties of X that lead to the existence of a k-point, or conversely, that
give obstructions to the existence of a k-point? The fact that the existence of
0-cycles of degree 1 has something to do with the transfer maps from 0-cycles
on XL to 0-cycles on X , as L runs over finite field extensions of k, while the
lack of a transfer map in general appears to be closely related to the subtlety
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of the existence of k-points led to our inquiry into the “motivic” nature of the
spaces ΩnP1ΣnP1X+, or rather, their associated S1-spectra.

Notation and conventions. Throughout this paper the base-field k will
be a field of characteristic zero. Sm/k is the category of smooth finite type
k-schemes. We let Spc• denote the category of pointed space, i.e., pointed
simplicial sets, and H• the homotopy category of Spc•, the unstable homo-
topy category. Similarly, we let Spt denote the category of spectra and SH
its homotopy category, the stable homotopy category. We let Spc•(k) denote
the category of pointed spaces over k, that is, the category of Spc•-valued
presheaves on Sm/k, and SptS1(k) the category of S1-spectra over k, that
is, the category of Spt-valued presheaves on Sm/k. We let SptP1(k) de-
note the category of P1-spectra over k, which we take to mean the category
of ΣP1-spectrum objects over SptS1(k). Concretely, an object is a sequence
(E0, E1, . . .), En ∈ SptS1(k), together with bonding maps ǫn : ΣP1En → En+1.
Regarding the categories SptS1(k), SHS1(k) and SH(k), we will use the no-
tation spelled out in [11]. In addition to this source, we refer the reader to
[8, 14, 15, 20, 22]. Relying on these sources for details, we remind the reader
that H•(k) is the homotopy category of the category of Spc•(k), for the so-
called A1-model structure. Similarly SHS1(k) and SptP1(k) have model struc-
tures, which we call the A1-model structures, and SHS1(k), SH(k) are the

respective homotopy categories. For details on the category DMeff (k), we
refer the reader to [3, 5].
We will be passing from the unstable motivic (pointed) homotopy category over
k, H•(k), to the motivic homotopy category of S1-spectra over k, SHS1(k), via
the infinite (simplicial) suspension functor

Σ∞
s : H•(k)→ SHS1(k)

For a smooth k-scheme X ∈ Sm/k and a subscheme Y of X (sometimes closed,
sometimes open), we let (X,Y ) denote the homotopy push-out in the diagram

Y //

��

X

Spec k

and as usual write X+ for (X ∐ Spec k, Spec k). We often denote Spec k by ∗.
For an object S of H•(k), we often use S to denote Σ∞

s S ∈ SHS1(k) when the
context makes the meaning clear; we also use this convention when passing to
various localizations of SHS1(k).
We let [n] denote the set {0, . . . , n} with the standard total order, and
let Ord denote the category with objects [n], n = 0, 1, . . . and morphisms
the order-preserving maps of sets. Let ∆n denote the algebraic n-simplex
Spec k[t0, . . . , tn]/

∑
i ti − 1, with vertices vn0 , . . . , v

n
n , where vni is defined by

tj = 0 for j 6= i. As is well-known, sending g : [n] → [m] to the affine-linear
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extension ∆(g) : ∆n → ∆m of the map on the set of vertices, vnj 7→ vmg(j) defines

the cosimplicial k-scheme n 7→ ∆n.
We recall that, for a category C, the category of pro-objects in C, pro-C, has as
objects functors f : I → C, i ∈ I, where I is a small left-filtering category, a
morphism (f : I → C) → (g : J → C) is a pair (ρ : I → J, θ : f → g ◦ ρ), with
the evident composition, and we invert morphisms of the form

(ρ : I → J, id : f := g ◦ ρ→ g ◦ ρ)

if ρ : I → J has image a left co-final subcategory of J . In this paper we use
categories of pro-objects to allow us to use various localizations of smooth finite
type k-schemes. This is a convenience rather than a necessity, as all maps and
relations lift to the level of finite type k-schemes.
I am very grateful to the referee for making a number of perceptive and useful
comments, which led to the correction of some errors and an improvement of
the exposition.
Dedication. This paper is warmly dedicated to Andrei Suslin, who has given
me more inspiration than I can hope to tell.

1. Infinite P1-loop spectra

We first consider the case of the 0-S1-spectrum of a P1-spectrum. We recall
some constructions and results from [20]. We let

Ω∞
P1 : SH(k)→ SHS1(k)

Ω∞
P1,mot : DM(k)→ DM eff (k)

be the (derived) 0-spectrum (resp. 0-complex) functor, let

EMA1 : DM(k)→ SH(k)

EM eff
A1 : DMeff (k)→ SHS1(k)

the respective Eilenberg-Maclane spectrum functors. The functors Ω∞
P1 , Ω∞

P1,mot

are right adjoints to the respective infinite suspension functors

Σ∞
P1 : SHS1(k)→ SH(k)

Σ∞
P1,mot : DM eff (k)→ DM(k)

and the functors EMA1 , EMeff
A1 are similarly right adjoints to the “lineariza-

tion” functors

Ztr : SH(k)→ DM(k)

Ztr : SHS1(k)→ DM eff (k)

induced by the functor Ztr from simplicial presheaves on Sm/k to presheaves
with transfer on Sm/k sending the representable presheaf HomSm/k(−, X)

to the free presheaf with transfers ZtrX := HomSmCor(k)(−X), and taking the
Kan extension. The discussion in [20, §2.2.1] show that both these adjoint pairs
arise from Quillen adjunctions on suitable model categories (followed by a chain
of Quillen equivalences), where on the model categories, the functors EMA1 ,
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EM eff
A1 are just forgetful functors and the functors Ω∞ just take a sequence

E0, E1, . . . to E0. Thus one has

(1.1) EM eff
A1 ◦ Ω∞

P1,mot
∼= Ω∞

P1 ◦ EMA1

as one has an identity of the two functors on the model categories.

Theorem 1.1. Fix an integer n ≥ 0. Then there is a functor

Moteff (sn) : SH(k)→ DM eff (k)

and a natural isomorphism

ϕn : EM eff
A1 ◦Moteff (sn)→ seffn ◦Ω∞

P1

of functors from SH(k) to SHS1(k).

In other words, for E ∈ SH(k), there is a canonical lifting of the slice seffn (Ω∞
P1E)

to a motive Moteff (sn)(E).

Proof. By Pelaez [18, theorem 3.3], there is a functor

Mot(sn) : SH(k)→ DM(k)

and a natural isomorphism

Φn : EMA1 ◦Mot(sn)→ sn

i.e., the slice snE lifts canonically to a motive Mot(sn)(E). Now apply the
0-complex functor to define

Moteff (sn) := Ω∞
P1,mot ◦Mot(sn).

We have canonical isomorphisms

EM eff
A1 ◦ Ω∞

P1,mot ◦Mot(sn) ∼= Ω∞
P1 ◦ EMA1 ◦Mot(sn)

∼= Ω∞
P1 ◦ sn

∼= seffn ◦ Ω∞
P1 .

Indeed, the first isomorphism is (1.1) and the second is Pelaez’s isomorphism
Φn. For the third, we have given in [11] an explicit model for sn in terms of
the functors seffm as follows: given a P1-spectrum E, represented as a sequence
of S1-spectra E0, E1, . . . together with bonding maps ΣP1En → En+1, suppose
that E is fibrant. In particular, the adjoints En → ΩP1En+1 of the bonding
maps are weak equivalences and E0 = Ω∞

P1E. It follows from [11, theorem 9.0.3]

that snE is represented by the sequence (seffn E0, s
eff
n+1E1, . . . , s

eff
n+mEm, . . .),

with certain bonding maps (defined in [11, §8.3]). In addition, by [11, theorem
4.1.1] this new sequence is termwise weakly equivalent to its fibrant model.
This defines the natural isomorphism Ω∞

P1snE ∼= seffn E0
∼= seffn ΩP1E. �

In other words, the slices of an infinite P1-loop spectrum are effective motives.
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2. An example

We now show that the 0th slice of an S1-spectrum is not always a motive. In
fact, we will give an example of an Eilenberg-Maclane spectrum whose 0th slice
does not admit transfers.
For this, note the following:

Lemma 2.1. Let p : Y → X be a finite Galois cover in Sm/k, with Galois
group G. Let F be a presheaf with transfers on Sm/k. Then the composition

p∗ ◦ p∗ : F(Y )→ F(Y )

is given by

p∗ ◦ p∗(x) =
∑

g∈G
g∗(x)

Proof. Letting Γp ⊂ Y ×X be the graph of p, and Γg ⊂ Y × Y the graph of
g : Y → Y for g ∈ G, one computes that

Γtp ◦ Γp =
∑

g∈G
Γg,

whence the result. �

Now let C be a smooth projective curve over k, having no k-rational points.
We assume that C has genus g > 0, so every map A1

F → CF over a field F ⊃ k
is constant (C is A1-rigid).
Let ZC be the representable presheaf:

ZC(Y ) := Z[HomSm/k(Y,C)].

ZC is automatically a Nisnevich sheaf; since C is A1-rigid, ZC is also homotopy
invariant. Furthermore ZC is a birational sheaf, that is, for each dense open
immersion U → Y in Sm/k, the restriction map ZC(Y )→ ZC(U) is an isomor-
phism. To see this, it suffices to show that HomSm/k(Y,C)→ HomSm/k(U,C)
is an isomorphism, and for this, take a morphism f : U → C. Then the projec-
tion to Y of the closure Γ̄ of the graph of f in Y ×C is proper and birational.
But since Y is regular, each fiber of Γ̄→ Y is rationally connected, hence maps
to a point of C, and thus Γ̄ → Y is birational and 1-1. By Zariski’s main
theorem, Γ̄→ Y is an isomorphism, hence f extends to f̄ : Y → C, as claimed.
Next, ZC satisfies Nisnevich excision. This is just a general property of bira-
tional sheaves. In fact, let

V
jV

//

f|V

��

Y

f

��

U
jU

// X

be an elementary Nisnevich square, i.e., the square is cartesian, f is étale, jU
and jV are open immersions, and f induces an isomorphism Y \ V → X \ U .
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We may assume that U and V are dense in X and Y . Let F be a birational
sheaf on Sm/k, and apply F to this diagram. This gives us the square

F(X)
j∗U //

f∗

��

F(U)

f∗
|V

��

F(Y )
j∗V

// F(V )

As the horizontal arrows are isomorphisms, we have the exact sequence

0→ F(X)→ F(U)⊕F(Y )→ F(V )→ 0.

Thus, F transforms elementary Nisnevich squares to distinguished triangles in
D(Ab); by definition, F therefore satisfies Nisnevich excision.
Let EM s(ZC) denote presheaf of Eilenberg-Maclane spectra on Sm/k asso-
ciated to ZC , that is, for U ∈ Sm/k, EMs(ZC)(U) ∈ Spt is the Eilenberg-
Maclane spectrum associated to the abelian group ZC(U). Since ZC is homo-
topy invariant and satisfies Nisnevich excision, EMs(ZC) is weakly equivalent
as a presheaf on Sm/k to its fibrant model in SHS1(k) (EM s(ZC) is quasi-
fibrant)2. In addition, the canonical map

EMs(ZC)→ s0(EM s(ZC))

is an isomorphism in SHS1(k). Indeed, since EM s(ZC) is quasi-fibrant, a
quasi-fibrant model for s0(EM s(ZC)) may be computed by the method of [11,
§5] as follows: Take Y ∈ Sm/k and let F = k(Y ). Let ∆n

F,0 be the semi-local
algebraic n-simplex over F , that is,

∆n
F,0 = Spec(O∆n

F
,v); v = {v0, . . . , vn}.

The assignment n 7→ ∆n
F,0 forms a cosimplicial subscheme of n 7→ ∆n

F and for

a quasi-fibrant S1-spectrum E, there is a natural isomorphism in SH
s0(E)(Y ) ∼= E(∆∗

F,0),

where E(∆∗
F,0) denotes the total spectrum of the simplicial spectrum n 7→

E(∆n
F,0). If now E happens to be a birational S1-spectrum, meaning that j∗ :

E(Y )→ E(U) is a weak equivalence for each dense open immersion j : U → Y
in Sm/k, then the restriction map

j∗ : E(∆∗
Y )→ E(∆∗

F,0) ∼= s0(E)(Y )

is a weak equivalence. Thus, as E is quasi-fibrant and hence homotopy invari-
ant, we have the sequence of isomorphisms in SH

E(Y )→ E(∆∗
Y )→ E(∆∗

F,0) ∼= s0(E)(Y ),

and hence E → s0(E) is an isomorphism in SHS1(k). Taking E = EM s(ZC)
verifies our claim.

2The referee has pointed out that, using the standard model (ZC , BZC , . . . , BnZC , . . .)
for EMs(ZC), EMs(ZC) is actually fibrant in the projective model structure.
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Finally, ZC does not admit transfers. Indeed, suppose ZC has transfers. Let
k → L be a Galois extension such that C(L) 6= ∅; let G be the Galois group.
Since ZC(k) = {0} (as we have assumed that C(k) = ∅), the push-forward map

p∗ : ZC(L)→ ZC(k)

is the zero map, hence p∗ ◦ p∗ = 0. But for each L-point x of C, lemma 2.1
tells us that

p∗ ◦ p∗(x) =
∑

g∈G
xg 6= 0,

a contradiction.
Thus the homotopy sheaf

π0(s0EM s(ZC)) = π0(EM s(ZC)) = ZC

does not admit transfers, giving us the example we were seeking.
Even if we ask for transfers in a weaker sense, namely, that there is a functorial
separated filtration F ∗ZC admitting transfers on the associated graded gr∗FZC ,
a slight extension of the above argument shows that this is not possible as long
as the filtration on ZC(L) is finite. Indeed, p∗p∗ would send FnZC(L) to
Fn+1ZC(L), so (p∗p∗)N = 0 for some N ≥ 1, and hence N ·∑g∈G x

g = 0, a
contradiction.

3. Co-transfer

In this section, k will be an arbitrary perfect field. We recall how one uses the
deformation to the normal bundle to define the “co-transfer”

(P1
F , 1F )→ (P1

F (x), 1F )

for a closed point x ∈ A1
F ⊂ P1

F , with chosen generator f ∈ mx/m
2
x. For later

use, we work in a somewhat more general setting: Let S be a smooth finite
type k-scheme and x a regular closed subscheme of P1

S \{1} ⊂ P1
S , such that the

projection x → S is finite. Let mx ⊂ OP1
S

be the ideal sheaf of x. We assume

that the invertible sheaf mx/m
2
x on x is isomorphic to the trivial invertible

sheaf Ox, and we choose a generator f ∈ Γ(x,mx/m
2
x) over Ox.

We will eventually replace S with a semi-local affine scheme, S = SpecR, for
R a smooth semi-local k-algebra, essentially of finite type over k, for instance,
R = F a finitely generated separable field extension of k. Although this will
take us out of the categoryH(k), this will not be a problem: when we work with
a smooth scheme Y which is essentially of finite type over k, we will consider
Y as a pro-object in H(k), and we will be interested in functors on H(k) of
the form HomH(k)(Y,−), which will then be a well-defined filtered colimit of
co-representable functors.
Let (X0 : X1) be the standard homogeneous coordinates on P1. We let s :=
X1/X0 be the standard parameter on P1, and as usual, write 0 = (1 : 0),
∞ = (0 : 1), 1 = (1 : 1). We often write 0, 1,∞ for the subschemes 0X , 1X ,∞X

of P1
X .
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Let µ : Wx → P1
S ×A1 be the blow-up of P1

S ×A1 along (x, 0) with exceptional
divisor E. Let sx, C0 be the proper transforms sx = µ−1[x × A1], C0 =

µ−1[P1× 0]. Let t be the standard parameter on A1 and let f̃ be a local lifting

of f to a section of mx; the rational function f̃ /t restricts to a well-defined
rational parameter on E, independent of the choice of lifting, and thus defines
a globally defined isomorphism

f/t : E → P1
x.

We identify E with P1
x by sending sx ∩E to 0, C0 ∩E to 1 and the section on

E defined by f/t = 1 to ∞. Denote this isomorphism by

ϕf : P1
x → E;

we write (0, 1,∞) for (sx∩E,C0∩E, f/t = 1), when the context makes it clear
we are referring to subschemes of E.

We let W
(sx)
x , E(0), (P1

F )(0) be following homotopy push-outs

W (sx)
x := (Wx,Wx \ sx),

E(0) := (E,E \ 0),

(P1
S)(0) := (P1

S ,P
1
S \ 0).

Since (A1
x, 0) ∼= ∗ in H•(k), the respective identity maps induce isomorphisms

(E, 1)→ E(0),

(P1
S , 1)→ (P1

S)(0).

Composing with the isomorphism ϕf : (P1
x, 1)→ (E, 1), the inclusion E →Wx

induces the map

i0,f : (P1
x, 1)→W (sx)

x .

The proof of the homotopy purity theorem of Morel-Voevodsky [15, theorem
2.23] yields as a special case that i0,f is an isomorphism in H•(k). This enables
us to define the “co-transfer map” as follows:

Definition 3.1. Let x ⊂ P1
S \ 1S be a closed subscheme, smooth over k and

finite over S, and suppose that mx/m
2
x is a free Ox-module with generator f .

The map

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in H•(k) is defined to be the composition

(P1
S , 1)

i1−→W (sx)
x

i−1
0,f−−→ (P1

x, 1).

Let X ∈ H•(k) be a P1-loop space, i.e., X ∼= Ω1
PY := Maps•(P1,Y) for some

Y ∈ H•(k). For x ⊂ P1
S and f as above, one has the transfer map

X (x)→ X (S)

in H• defined by pre-composing with the co-transfer map

co-trx,f : (P1
S , 1)→ (P1

x, 1).
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We will find modification of this construction useful in the sequel, namely, in
the proof of lemma 5.9 and lemma 5.11. Let s1 := 1S × A1 ⊂ P1

S × A1; as
Wx → P1

S × A1 is an isomorphism over a neighborhood of s1, we view s1 as a
closed subscheme of Wx. We write W for Wx, etc., when the context makes
the meaning clear.

Lemma 3.2. Let x ⊂ P1
S \ 1S be a closed subscheme, smooth over k. Suppose

that x→ S is finite and étale. Then the identity on W induces an isomorphism

(W,C0 ∪ s1)→W (sx)

in H•(k).

Proof. As s1 ∼= A1
S , with C0 ∩ s1 = 0S, the inclusion C0 → C0 ∪ s1 is an

isomorphism in H(k). Thus, we need to show that (W,C0) → W (sx) is an
isomorphism in H•(k). As W (sx) = (W,W \ sx), we need to show that C0 →
W \ sx is an isomorphism in H(k). To aid in the proof, we will prove a more
general result, namely, let U ⊂ P1

S be a open subscheme containing x. We
consider W as a scheme over P1

S via the composition

W
µ−→ P1

S × A1
S

p1−→ P1
S

and for a subscheme Z of W , let ZU denote the pull-back Z ×P1
S
U . Then we

will show that

C0U → WU \ sx
is an isomorphism in H(k).
We first reduce to the case in which x→ S is an isomorphism (in Sm/k). For
this, we have the étale map q : P1

x → P1
S and the canonical x-point of P1

x, which
we write as x̃. Let U(x) ⊂ P1

x be a Zariski open neighborhood of x̃ such that
q−1(x) ∩ U(x) = {x̃}. This gives us the elementary Nisnevich square

U(x) :=

U(x) \ x̃ //

��

U(x)

��

P1
S \ x // P1

S ;

for each P1
S-scheme Z → P1

S we thus have the elementary Nisnevich square
U(x) ×P1

S
Z, giving a Nisnevich cover of Z.

Let V ⊂ P1
S be an open subscheme with x ∩ V = ∅. Then WV → V ×S A1

S

is an isomorphism and WV ∩ sx = ∅. Similarly C0V → V is an isomorphism,
and thus C0V → WV is an isomorphism in H(k). Replacing S with x, and
considering the map of elementary Nisnevich squares

U(x) ×P1
S
C0U → U(x) ×P1

S
(WU \ sx)

induced by C0 → W \ sx, we achieve the desired reduction. A similar Mayer-
Vietoris argument allows us to replace S with a Zariski open cover of S, so,
changing notation, we may assume that x is the point 0 := (1 : 0) of P1

S .

Documenta Mathematica · Extra Volume Suslin (2010) 393–443



404 Marc Levine

Using the open cover of P1
S by the affine open subsets U0 := P1

S \1, U1 := P1
S \0

and arguing as above, we may assume that U is a subset of U0, which we
identify with A1

S by sending (0,∞) to (0, 1). We may also assume that 0S ⊂ U .
Using coordinates (t1, t2) for A2, (t1, t2, t3) for A3, the scheme WU0 \ s0 is
isomorphic to the closed subscheme of A3

S defined by t2 = t1t3, with µ being
the projection (t1, t2, t3) 7→ (t1, t2). C0U0 is the subscheme of WU0 \ s0 defined
by t3 = 0. The projection p13 : WU0 \s0 → A2

S is thus an isomorphism, sending
C0 to A1

S × 0.
Let y = U \ U0, so y is a closed subset disjoint from 0S. Then

p13(µ−1(y × A1)) = y × A1 ⊂ A2
S ,

hence p13 : WU \ s0 → A2
S identifies WU \ s0 with U × A1 and identifies C0U

with U × 0. Thus C0U → WU \ s0 is an isomorphism in H(k), completing the
proof. �

Lemma 3.3. With hypotheses as in lemma 3.2, the inclusion E → W and
isomorphism ϕf : P1 → E induces an isomorphism

ĩ0,f : (P1
x, 1)→ (Wx, C0 ∪ s1)

in H•(k).

Proof. We have the commutative diagram

(P1
x, 1)

ĩ0,f
//

i0,f
&&MMMMMMMMMM

(W,C0 ∪ s1)

��

W (sx).

The diagonal arrow is an isomorphism in H•(k) by Morel-Voevodsky; the ver-
tical arrow is an isomorphism by lemma 3.2. �

Definition 3.4. Let x ⊂ P1
S \ 1S be a closed subscheme, smooth over k and

finite and étale over S. Suppose that mx/m
2
x is a freeOx-module with generator

f . The map

˜co-trx,f : (P1
S , 1)→ (P1

x, 1)

in H•(k) is defined to be the composition

(P1
S , 1)

i1−→ (W,C0 ∪ s1)
ĩ−1
0,f−−→ (P1

x, 1).

Remark 3.5. Given S, x, f as in definition 3.4, we have

˜co-trx,f = co-trx,f .
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This follows directly from the commutative diagram

(P1
S , 1)

i1 // (W,C0 ∪ s1)

id

��

(P1
x, 1)

ĩ0,f
oo

(P1
S , 1)

i1
// W (sx) (P1

x, 1).
i0,f

oo

We examine some properties of co-trx,f . For any ordering (a, b, c) of {0, 1,∞},
we let τab,c denote the automorphism of P1 that fixes a and exchanges b and c.

For u ∈ k×, we let µ(u) be the automorphism of P1 that fixes 0 and ∞ and
sends 1 to u. We first prove the following elementary result

Lemma 3.6. The automorphism ρ := τ01,∞ ◦µ(−1)◦ τ01,∞ ◦ τ10,∞ of (P1, 1) is the
identity in H•(k).

Proof. τ01,∞ρτ
0
1,∞ is the automorphism of (P1,∞) given by the matrix

(
1 0
−1 1

)
∈ GL2(k).

Noting that elementary matrices of the form
(

1 0
λ 1

)

all fix ∞ and thus define automorphisms of (P1,∞) that are A1-homotopic to
the identity, we see that τ01,∞ρτ

0
1,∞ = id on (P1,∞) in H•(k), and thus ρ = id

on (P1, 1) in H•(k). �

Lemma 3.7. 1. The map co-tr0,−s : (P1, 1)→ (P1, 1) is the identity.

2. The map co-tr∞,−s−1 : (P1, 1) → (P1, 1) is the map in H•(k) induced
by the automorphism τ10,∞.

3. The map co-tr∞,s−1 : (P1, 1)→ (P1, 1) is the identity.

Proof. Since τ1∗0,∞(−s) = −s−1, (2) follows from (1) by applying τ10,∞. Next,
we show that (2) implies (3). It follows directly from the definition of co-tr∗,∗
that

co-tr∞,s−1 = τ01,∞ ◦ µ(−1) ◦ τ01,∞ ◦ co-tr∞,−s−1 .

Thus, assuming (2), we have

co-tr∞,s−1 = τ01,∞ ◦ µ(−1) ◦ τ01,∞ ◦ τ10,∞
in H•(k); (3) then follows from lemma 3.6.
We now prove (1). Identify A1 with P1 \ {1} sending 0 to 0 and 1 to ∞. The
blow-up W := W0 is thus identified with an open subscheme of the blow-up
µ̄ : W̄ → P1 × P1 of P1 × P1 at (0, 0).
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The curve C0 on W̄ has self-intersection -1, and can thus be blown down via a
morphism

ρ̄ : W̄ → W̄ ′.

Letting q : W̄ → P1 be the composition

W̄
µ̄−→ P1 × P1 p2−→ P1,

the fact that q(C0) = 0 implies that q descends to a morphism

q̄′ : W̄ ′ → P1.

As the complement W̄∞ := W̄ \W is disjoint from C0 and ρ̄ is proper, we
have the open subscheme W ′ := W̄ ′ \ ρ̄(W̄∞) of W̄ ′ and the proper birational
morphism

ρ : W →W ′,

with ρ(C0) ∼= Spec k and with the restriction W \C0 →W ′ \ ρ(C0) an isomor-
phism. In addition, q̄′ restricts to the proper morphism

q′ : W ′ → P1 \ 1.

In addition, q′ is a smooth and projective morphism with geometric fibers
isomorphic to P1. Finally, we have

q′−1(0) = ρ(E).

Let ∆ ⊂ P1 × P1 \ {1} be the restriction of the diagonal in P1 × P1, giving
us the proper transform µ−1[∆] on W and the image ∆′ = ρ(µ−1[∆]) on W ′.
Similarly, let s′0 = ρ(s0), s′1 = ρ(s1); note that ρ(C0) ⊂ s′1. It is easy to check
that s′0, ∆′ and s′1 give disjoint sections of q′ : W ′ → P1 \ 1, hence there is a
unique isomorphism (over P1 \ 1) of W ′ with P1 × P1 \ 1 sending (s′0, s

′
1,∆

′) to
(0, 1,∞)× P1 \ 1. We have in addition the commutative diagram

(3.1) (P1, 1)
i0,−s

//

i′0 &&MMMMMMMMMM
(W,W \ s0)

ρ

��

(P1, 1)
i1oo

i′1xxqqqqqqqqqq

(W ′,W ′ \ s′0)

where i′0 is the canonical identification of P1 with the fiber of W ′ over 0, sending
(0, 1,∞) into (s′0, s

′
1,∆

′), and i′1 is defined similarly.
We claim that the isomorphism ρ : E → q′−1(0) is a pointed isomorphism

ρ : (E, 0, 1,∞)→ (q′−1(0), q′−1(0) ∩ s′0, q′−1(0) ∩ s′1, q′−1(0) ∩∆′).

Indeed, by definition 0 = E ∩ s0 and 1 = E ∩ C0. Since ρ(s0) = s′0 and
ρ(C0) ⊂ s′1, we need only show that ρ(∞) ⊂ ∆′. To distinguish the two factors
of P1, we write

x1 = p∗1(s), x2 = p∗2(s)

where s is the standard parameter on P1. Using this notation, ∞ is the sub-
scheme of E defined by the equation −x1/t = 1, where t is the standard
parameter on A1

S = P1
S \ 1S. As our identification of P1 \ 1S with A1 sends

0 ∈ A1 to 0 ∈ P1, 1 ∈ A1 to ∞ in P1, the standard parameter t goes over to
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the rational function x2/(x2− 1) on P1. As the image of x2/(x2− 1) in m0/m
2
0

is the same as the image of −x2 in m0/m
2
0, ∞ is defined by x1/x2 = 1 on E,

which is clearly the subscheme defined by E ∩∆. Via the isomorphism ρ, this
goes over to q′−1(0) ∩∆′, as desired.
It follows from the proof of [15, theorem 2.2.3] that all the morphisms in the
diagram (3.1) are isomorphisms in H•(k); as i′−1

0 ◦ i′1 is clearly the identity, the
lemma is proved. �

The proof of the next result is easy and is left to the reader.

Lemma 3.8. Let S′ → S be a morphism of smooth finite type k-schemes. Let
x be a closed subscheme of P1

S \ {1}, finite over S. Let x′ = x ×S S′ ⊂ P1
S′ .

We suppose we have a generator f for mx/m
2
x, and let f ′ be the extension to

mx′/m2
x′ . If either S′ → S is smooth, or S → S′ is flat and x → S is étale,

then the diagram

(P1
S′ , 1)

co-trx′,f′
//

��

(P1
x′ , 1)

��

(P1
S , 1)

co-trx,f
// (P1

x, 1)

is defined and commutes.

4. Co-group structure on P1

In this section, k will be an arbitrary perfect field. Let Gm = A1\{0}, which we
consider as a pointed scheme with base-point 1. We recall the Mayer-Vietoris
square for the standard cover of P1:

Gm
t∞ //

t0

��

A1

j∞

��

A1
j0

// P1.

Here j0, j∞, t0, t∞ are defined by j0(t) = (1 : t), j∞(t) = (t : 1), t0(t) = t and
t∞(t) = t−1. This gives us the isomorphism in H•(k) of P1 with the homotopy
push-out in the diagram

(4.1) Gm
t∞ //

t0

��

A1

A1;

the contractibility of A1 gives us the canonical isomorphism

(4.2) α : S1 ∧Gm
∼−→ (P1, 1).
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This, together with the standard co-group structure on S1, σ : S1 → S1 ∨ S1,
makes (P1, 1) a co-group object in H•(k); let

σP1 := σ ∧ idGm : (P1, 1)→ (P1, 1) ∨ (P1, 1)

be the co-multiplication. In this section, we discuss a more algebraic description
of this structure.
Let f := (f0, f∞) be a pair of generators for m0/m

2
0, m∞/m2

∞. giving us the
collapse map

co-tr{0,∞},f : (P1, 1)→ (P1, 1) ∨ (P1, 1).

Lemma 4.1. Let s be the standard parameter X1/X0 on P1. For f = (−s, s−1),
we have σP1 = co-tr{0,∞},f in H•(k).

Proof. We first unwind the definition of σP1 in some detail. As above, we
identify P1 with the push-out in the diagram (4.1) and thus (P1, 1) is isomorphic
to the push-out in the diagram

(Gm, 1) ∨ (Gm, 1)
(id,id)

//

(t0∨t∞)

��

(Gm, 1)

(A1, 1) ∨ (A1, 1).

Let I denote a simplicial model of the interval admitting a “mid-point” 1/2, for
example, we can take I = ∆1

1∨0 ∆1. The isomorphism α : S1 ∧Gm → (P1, 1)
in H•(k) arises via a sequence of comparison maps between push-outs in the
following diagrams (we point P1, A1 and Gm with 1):

Gm ∨Gm
(id,id)

//

(t0∨t∞)

��

Gm

A1 ∨A1

←

0+ ∧Gm ∨ 1+ ∧Gm
(ι0,ι1)

//

t0∨t∞
��

I+ ∧Gm

0+ ∧ A1 ∨ 1+ ∧ A1

↓(4.3)

0+ ∧Gm ∨ 1+ ∧Gm
(ι0,ι1)

//

��

I+ ∧Gm

∗
the first map is induced by the evident projections and the second by contract-
ing A1 to ∗. Thus, the open immersion Gm → P1, t 7→ (1 : t), goes over to the
map

{1/2}+ ∧Gm → I+ ∧Gm → S1 ∧Gm,

the second map given by the bottom diagram in (4.3). This gives us the
isomorphism

ρ : (P1,Gm)→ S1 ∧Gm ∨ S1 ∧Gm
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in H•(k), yielding the commutative diagram

(P1, 1)
α
∼

//

π

��

S1 ∧Gm

σ∧id

��

(P1,Gm) ρ

∼ // S1 ∧Gm ∨ S1 ∧Gm,

where π is the canonical quotient map and α is the isomorphism (4.2).
If we consider the middle diagram in (4.3), we find a similarly defined isomor-
phism (in H•(k))

ǫ : (P1,Gm)→ (A1,Gm)t0 ∨ (A1,Gm)t∞ ,

where the subscripts t0, t∞ refer to the morphism Gm → A1 used.
The map from the middle diagram to the last diagram in (4.3) furnishes the
commutative diagram of isomorphisms in H•(k):

(A1,Gm)t0 ∨ (A1,Gm)t∞
β

//

ϑ
**UUUUUUUUUUUUUUUU

S1 ∧Gm ∨ S1 ∧Gm

α∨α
��

(P1, 1) ∨ (P1, 1).

Putting this all together gives us the commutative diagram in H•(k):

(4.4) (P1, 1) α

∼ //

γ

��

S1 ∧Gm

σ∧id

��

(P1,Gm) ρ

∼ //

∼ǫ

��

S1 ∧Gm ∨ S1 ∧Gm

α∨α
��

(A1,Gm)t0 ∨ (A1,Gm)t∞

β

∼

44iiiiiiiiiiiiiiiii

ϑ

∼ // (P1, 1) ∨ (P1, 1).

Letting δ := ϑ ◦ ǫ, we thus need to show that the map δ ◦ γ : (P1, 1) →
(P1, 1) ∨ (P1, 1) is given by co-tr{0,1},f .

Write (A1,Gm) := (A1,Gm)t0 . Letting η be the inverse on Gm, η(t) = t−1,
we identify (A1,Gm) with (A1,Gm)t∞ via the isomorphism (id, η). The maps
j0 : A1 → P1, j∞ : A1 → P1 induce the isomorphisms in H•(k)

j̄0 : (A1,Gm)→ (P1, j∞(A1))

j̄∞ : (A1,Gm)→ (P1, j0(A1))

giving together the isomorphism τ : (P1, 1) ∨ (P1, 1) → (A1,Gm) ∨ (A1,Gm),
defined as the composition:

(P1, 1)∨(P1, 1)
id∨id−−−→ (P1, j∞(A1))∨(P1, j0(A1))

j̄−1
0 ∨j̄−1

∞−−−−−−→ (A1,Gm)∨(A1,Gm).
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By comparing with the push-out diagrams in (4.3), we see that τ is the inverse
to ϑ. As τ10,∞ exchanges j0 and j∞, this gives the identity

(4.5) ϑ = ϑ0 ∨ τ10,∞ ◦ ϑ0,
where ϑ0 is the composition

(A1,Gm)
j0

// (P1, j∞(A1)) (P1, 1).∼
idoo

Let W → P1 × A1 be the blow-up at ({0,∞}, 0) with exceptional divisor E.
Let g be the trivialization g := (−s,−s−1) of m0/m

2
0×m∞/m2

∞. We have the
composition of isomorphisms in H•(k)

(4.6) (P1,Gm)
i1−→ (W,W \ s{0,∞})

i0←− (E,C0 ∩ E)
ϕg←−− (P1, 1) ∨ (P1, 1).

The open cover (j0, j∞) : A1 ∐ A1 → P1 of P1 gives rise to an open cover of
W : Let µ′ : W ′ → A1×A1 be the blow-up at (0, 0), then we have the lifting of
(j0, j∞) to the open cover

(j′0, j
′
∞) : W ′ ∐W ′ →W.

The cover (j0, j∞) induces the excision isomorphism in H•(k)

(ĵ0, ĵ∞) : (A1,Gm) ∨ (A1,Gm)→ (P1,Gm);

it is easy to see that (ĵ0, ĵ∞) is inverse to the isomorphism ǫ in diagram (4.4).
Similarly, letting s′ ⊂ W ′ be the proper transform of 0 × A1 to W ′, the cover
(j′0, j

′
∞) induces the excision isomorphism in H•(k)

(j̃′0, j̃
′
∞) : (W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′)→ (W,W \ s{0,∞}).

This extends to a commutative diagram of isomorphisms in H•(k)

(4.7) (A1,Gm) ∨ (A1,Gm)

i1∨i1
��

(ĵ0,ĵ∞)
// (P1,Gm)

i1

��

(W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′) (j̃′0,j̃
′
∞)

// (W,W \ s{0,∞})

(E′, E′ ∩ C′
0) ∨ (E′, E′ ∩ C′

0)

i0∨i0

OO

(j̃′E0,j̃
′
E∞)

// (E,E ∩ C0)

i0

OO

(P1, 1) ∨ (P1, 1)

ϕ−s∨ϕ−s

OO

(P1, 1) ∨ (P1, 1).

ϕg

OO

Indeed, the commutativity is obvious, except on the bottom square. On the
first summand (P1, 1), the commutativity is also obvious, since both ϕ−s and ϕg
are defined on this factor using the generator −s for m0/m

2
0, and on the second

factor, the map j̃∞ sends −s to −s−1, which gives the desired commutativity.
Examining the push-out diagram (4.3), we see that the map

(ĵ0, ĵ∞) : (A1,Gm) ∨ (A1,Gm)→ (P1,Gm)
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is inverse to the map ǫ in diagram (4.4).
Let W0 → P1 × A1 be the blow-up along (0, 0), E0 the exceptional divisor,
C0

0 the proper transform of P1 × 0. The inclusion j0 induces the excision
isomorphism in H•(k)

j : (A1,Gm)→ (P1, j∞(A1))

and gives us the commutative diagram

(P1, 1) ∨ (P1, 1)

��

(A1,Gm) ∨ (A1,Gm)

ϑ0∨ϑ0

33ffffffffffffffffffffff

i1∨i1
��

(j∨j)
// (P1, j∞(A1)) ∨ (P1, j∞(A1))

i1∨i1
��

(W ′,W ′ \ s′) ∨ (W ′,W ′ \ s′) (j̃∨j̃)
// (W0,W0 \ s0) ∨ (W0,W0 \ s0)

(E′, E′ ∩ C′
0) ∨ (E′, E′ ∩ C′

0)

i0∨i0

OO

(j̃E′∨j̃E′ )
// (E0, E0 ∩ C0

0 ) ∨ (E0, E0 ∩ C0
0 )

i0∨i0

OO

(P1, 1) ∨ (P1, 1)

ϕ−s∨ϕ−s

OO

(P1, 1) ∨ (P1, 1).

ϕ−s∨ϕ−s

OO

By lemma 3.7 the composition along the right-hand side of this diagram is the
identity on (P1, 1)∨(P1, 1), and thus the composition along the left-hand side is
ϑ0∨ϑ0 : (A1,Gm)∨ (A1,Gm)→ (P1, 1)∨ (P1, 1). Referring to diagram (4.4), as

ǫ = (ĵ0, ĵ∞)−1, it follows from (4.5) that the composition along the right-hand
side of (4.7) is the map (id ∨ τ10,∞) ◦ δ. As the right-hand side of (4.7) is the
deformation diagram used to define co-tr{0,∞},g, we see that

co-tr{0,∞},g = (id ∨ τ10,∞) ◦ σP1 .

Noting that f and g differ only by the trivialization at ∞, changing s−1 to
−s−1, we thus have

co-tr{0,∞},f = (id ∨ τ01,∞ ◦ µ(−1) ◦ τ01,∞) ◦ co-tr{0,∞},g.

By lemma 3.6, we have

co-tr{0,∞},f = (id ∨ τ10,∞) ◦ co-tr{0,∞},g = σP1 .

�

5. Slice localizations and co-transfer

In general, the co-transfer maps do not have the properties necessary to give
a loop-spectrum ΩP1E an action by correspondences. However, if we pass to
a certain localization of SHS1(k) defined by the slice filtration, the co-transfer
maps both extend to arbitrary correspondences and respect the composition
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of correspondences. This will lead to the action of correspondences on s0ΩP1E
we wish to construct. In this section, k will be an arbitrary perfect field.
We have the localizing subcategory ΣnP1SHS1(k), generated (as a localizing sub-
category) by objects of the form ΣnP1E, for E ∈ SHS1(k). We let SHS1(k)/fn
denote the localization of SHS1(k) with respect to ΣnP1SHS1(k):

SHS1(k)/fn = SHS1(k)/ΣnP1SHS1(k).

Remark 5.1. Pelaez [17, corollary 3.2.40] has shown that there is a model
structure on SptS1(k) with homotopy category equivalent to SHS1(k)/fn; in
particular, this localization of SHS1(k) does exist.

Remark 5.2. In the proofs of some of the next few results we will use the
following fact, which relies on our ground field k being perfect: Let V ⊂ U
be a Zariski open subset of some U ∈ Sm/k. Then we can filter U by open
subschemes

V = UN+1 ⊂ UN ⊂ . . . ⊂ U0 = U

such that U i+1 = U i \ Ci, with Ci ⊂ U i smooth and having trivial normal
bundle in U i for i = 0, . . . , N . Indeed, let C = U \ V , with reduced scheme
structure. As k is perfect, there is a dense open subscheme Csm of C which is
smooth over k, and there is a non-empty open subscheme C1 ⊂ Csm such that
the restriction of IC/I2C to C1 is a free sheaf of rank equal to the codimension
of C1 in U . We let U1 = U \ C1, and then proceed by noetherian induction.

Lemma 5.3. Let V → U be a dense open immersion in Sm/k, n ≥ 1 an integer.
Then the induced map

ΣnP1V+ → ΣnP1U+

is an isomorphism in SHS1(k)/fn+1.

Proof. Filter U by open subschemes

V = UN+1 ⊂ UN ⊂ . . . ⊂ U0 = U

as in remark 5.2. Write U i+1 = U i \ Ci, with Ci having trivial normal bundle
in Ui, of rank say ri, for i = 0, . . . , N .
By the Morel-Voevodsky purity theorem [15, theorem 2.23], the cofiber of
U i+1 → U i is isomorphic in H•(k) to ΣriP1Ci+, and thus the cofiber of

ΣnP1U
i+1
+ → ΣnP1U i+ is isomorphic to Σri+nP1 Ci+. Since V is dense in U , we

have ri ≥ 1 for all i, proving the lemma. �

Take W ∈ Sm/k. By excision and homotopy invariance, we have a canonical
isomorphism

ψW,r : ArW /A
r
W \ 0W → ΣrP1W+

in H•(k). The action of the group-scheme GLr/k on Ar gives an action of the
group of sections GLr(W ) on ArW /A

r
W \ 0W , giving us for each g ∈ GLr(W )

the isomorphism

ψgW,r :=: ψW,r ◦ g : ArW /A
r
W \ 0W → ΣrP1W+.

Lemma 5.4. For each g ∈ GLr(W ), we have ψgW,r = ψW,r in SHS1/fr+1.
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Proof. The action GLr×Ar → Ar composed with ψW,r gives us the morphism
in H•(k)

ΨW : (W ×GLr)+ ∧ (Ar/Ar \ 0)→ ΣrP1W+;

for each section g ∈ GLr(W ), composing with the corresponding section sg :
W →W ×GLr gives the map

ΨW ◦ sg : W+ ∧ (Ar/Ar \ 0)→ ΣrP1W+

which is clearly equal to ψgW,r.

The open immersion j : W ×GLr →W ×Ar
2

is by lemma 5.3 an isomorphism
in SHS1(k)/f1; as (Ar/Ar \ 0) ∼= ΣrP1 Spec k+, we see that the induced map

j ∧ id : (W ×GLr)+ ∧ (Ar/Ar \ 0)→ (W × Ar
2

)+ ∧ (Ar/Ar \ 0)

is an isomorphism in SHS1(k)/fr+1, and thus the projection

(W ×GLr)+ ∧ (Ar/Ar \ 0)→W+ ∧ (Ar/Ar \ 0)

is also an isomorphism in SHS1(k)/fr+1. From this it follows that the maps

sg ∧ id, sid ∧ id : W+ ∧ (Ar/Ar \ 0)→ (W ×GLr)+ ∧ (Ar/Ar \ 0)

are equal in SHS1(k)/fr+1, hence ψgW,r = ψW,r in SHS1/fr+1. �

As application we have the following result

Proposition 5.5. 1. Let S be in Sm/k. Let x ⊂ P1
S\1S be a closed subscheme,

smooth over k and finite over S, such that the co-normal bundle mx/m
2
x is

trivial. Then the maps

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in SHS1(k)/f2 are independent of the choice of generator f for mx/m
2
x. If

S = SpecOX,x for x a finite set of points on some X ∈ Sm/k, the analogous
independence holds, this time as morphisms in pro-SHS1(k)/f2.

2. Let g : P1 → P1 be a k-automorphism, with g(1) = 1. Then
g : (P1, 1)→ (P1, 1) is the identity in SHS1(k)/f2.

3. Take a, b ∈ P1(k), with a 6= b and a, b 6= 1. The canonical iso-
morphism a ∐ b → Spec k ∐ Spec k gives the canonical identification
(P1
a,b, 1) ∼= (P1, 1)∨ (P1, 1). Then for each choice of generator f for ma,b/m

2
a,b,

the map
co-tra,b,f : (P1, 1)→ (P1

a,b, 1) ∼= (P1, 1) ∨ (P1, 1)

is equal in SHS1(k)/f2 to the co-multiplication σP1 .

Proof. (1) Suppose that we have generators f, f ′ for mx/m
2
x. There is thus a

unit a ∈ O∗
x with f ′ = af . Note that co-trx,f ′ = g ◦co-trx,f , where g : P1

x → P1
x

is the automorphism τ01,∞µ(a)τ11,∞. By lemma 5.4, the map

µ(a) = ψaSpeck,1 ◦ ψ−1
Speck,1 : (P1,∞)→ (P1,∞)

is the identity in SHS1(k)/f2, whence (1).
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For (2), we may replace 1 with ∞. The affine group of isomorphisms g : P1 →
P1 with g(∞) =∞ is generated by the matrices of the form

(
u 0
0 1

)
,

(
1 0
λ 1

)
,

with u ∈ k× and λ ∈ k. Clearly the automorphisms of the second type act as
the identity on (P1,∞) in H•(k); the automorphisms of the first type act by
the identity on (P1,∞) in SHS1(k)/f2 by lemma 5.4.
(3). Let g : P1 → P1 be the automorphism sending (0, 1,∞) to (a, 1, b). Choose
a generator f for ma,b/m

2
a,b, then g∗f gives a generator for m0,∞/m2

0,∞. The
automorphism g extends to an isomorphism g̃ : W0,∞ → Wa,b, giving us a
commutative diagram

(P1, 1)
i1 //

g

��

(W0,∞,W0,∞ \ s0,∞)

g̃

��

(P1
0,∞, 1)

i0,g∗f
oo

β

��

(P1, 1)
i1

// (Wa,b,Wa,b \ sa,b) (P1
a,b, 1)

i0,f
oo

where β : P1
0,∞ → P1

a,b is canonical isomorphism over (0,∞) → (a, b). This

gives us the identity in H•(k):

co-tra,b,f ◦ g = β ◦ co-tr0,∞,g∗f .

By (1), the maps co-tra,b,g∗f and co-tr0,∞,f are independent (in SHS1(k)/f2)
of the choice of f and by (2), g is the identity in SHS1(k)/f2. For suitable f ,
lemma 4.1 tells us co-tr0,∞,f = σP1 , completing the proof of (3). �

As the map

co-trx,f : (P1
S , 1)→ (P1

x, 1)

in SHS1(k)/f2 is independent of the choice of generator f ∈ mx/m
2
x; we denote

this map by co-trx.
We have one additional application of lemma 5.4.

Lemma 5.6. Let W ⊂ U be a codimension ≥ r closed subscheme of U ∈ Sm/k,
let w1, . . . , wm be the generic points of W of codimension = r in U . Then there
is a canonical isomorphism of pro-objects in in SHS1/fr+1

(U,U \W ) ∼= ⊕mi=1ΣrP1wi+.

Specifically, letting mi ⊂ OU,wi be the maximal ideal, this isomorphism is in-
dependent of any choice of isomorphism mi/m

2
i
∼= k(wi)

r.

Proof. Let w = {w1, . . . .wm} and let OU,w denote the semi-local ring of w in
U . Consider the projective system V := {Vα} consisting of open subschemes
of U of the form Vα = U \Cα, where Cα is a closed subset of W containing no
generic point wi of W .
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Take Vα ∈ V . By applying remark 5.2, and noting that U \Vα has codimension
≥ r + 1 in U , the argument used in the proof of lemma 5.3 shows that the
cofiber of

(Vα, Vα \W )→ (U,U \W )

is in Σr+1
P1 SHS1(k). On the other hand, the collection of Vα ∈ V such that

Vα ∩ W is smooth and has on each connected component a trivial normal
bundle in Vα forms a cofinal subsystem V ′ in V . For each Vα ∈ V ′, we have
Vα ∩W = ∐mi=1W

α
i , with wi the unique generic point of Wα

i , and we have the
isomorphism

(Vα, Vα \W ) ∼=
m∨

i=1

ΣrP1Wα
i+

in H•(k). Since wi is equal to the projective limit of the Wα
i , we have the

desired isomorphism of pro-objects in SHS1(k)/fr+1.
We need only verify that the resulting isomorphism (U,U \W ) ∼= ⊕mr=1ΣrP1wi+
is independent of any choices. Let V = SpecOU,W , and let O denote the
henselization of w in V . We have the canonical excision isomorphism (of pro-
objects in H•(k))

(V, V \ V ∩W ) ∼= (SpecO, SpecO \ w).

A choice of isomorphism mw/m
2
w
∼= k(w)r gives the isomorphism in pro-H•(k)

ΣrP1w+
∼= (SpecO, SpecO \ w);

this choice of isomorphism is thus the only choice involved in constructing our
isomorphism (U,U \W ) ∼= ⊕mi=1ΣrP1wi+. Explicitly, the choice of isomorphism
mw/m

2
w
∼= k(w)r is reflected in the isomorphism (SpecO, SpecO\w) ∼= ΣrP1w+

through the identification of the exceptional divisor of the blow-up of V × A1

along w×0 with Prw. The desired independence now follows from lemma 5.4. �

The computation which is crucial for enabling us to introduce transfers on the
higher slices of S1-spectra is the following:

Lemma 5.7. Let µn : (P1,∞) → (P1,∞) be the map µn(t0 : t1) = (tn0 : tn1 ).
Assume the characteristic of k is prime to n!. Then in SHS1(k)/f2, µn is
multiplication by n.

Proof. The proof goes by induction on n, starting with n = 1, 2. The case
n = 1 is trivial. For n = 2, lemma 5.6 gives us the canonical isomorphisms in
SHS1(k)/f2

(P1,P1 \ {±1}) α±1−−→ (P1,∞) ∨ (P1,∞); (P1,P1 \ {1}) α1−→ (P1,∞).

In addition, we have the commutative diagram

(P1,∞) //

µ2

��

(P1,P1 \ {±1})
µ2

��

(P1,∞) // (P1,P1 \ {1})
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The bottom horizontal arrow is an isomorphism in H•(k). We claim the dia-
gram

(P1,P1 \ {±1})
µ2

��

α±1
// (P1,∞) ∨ (P1,∞)

(id,id)

��

(P1,P1 \ {1}) α1

// (P1,∞)

commutes in SHS1(k)/f2. Indeed, the isomorphism α±1 arises from the Morel-
Voevodsky homotopy purity isomorphism identifying (P1,P1\{±1}) canonically
with the Thom space of the tangent space T (P1)±1 of P1 at ±1, followed by
the isomorphism

Th(T (P1)±1) ∼= ΣP1(±1+) = (P1,∞) ∨ (P1,∞)

induced by a choice of basis for T (P1)±1 (which plays no role in SHS1(k)/f2).
Similarly the map α1 arises from a canonical isomorphism of (P1,P1 \{1}) with
Th(T (P1)1) followed by the isomorphism

Th(T (P1)1)→ (P1,∞)

induced by a choice of basis. As the map µ2 is étale over 1, the differential

dµ2 : T (P1)±1 → T (P1)1

is isomorphic to the sum map

A1 ⊕ A1 → A1.

As this sum map induces (id, id) on the Thom spaces, we have verified our
claim.
Using proposition 5.5 and we see that this diagram together with the isomor-
phisms α±1 and α1 gives us the factorization of µ2 (in SHS1(k)/f2) as

(P1,∞)
σ−→ (P1,∞) ∨ (P1,∞)

(id,id)−−−−→ (P1,∞).

Here σ is the co-multiplication (using ∞ instead of 1 as base-point). Since
(id, id) ◦ σ is multiplication by 2, this takes care of the case n = 2.
In general, we consider the map ρn : (P1,∞) → (P1,∞) sending (t0 : t1) to
(w0 : w1) := (tn0 : tn1 − t0tn−1

1 + tn0 ). We may form the family of morphisms

ρn(s) : (P1 × A1,∞× A1)→ (P1 × A1,∞× A1)

sending (t0 : t1, s) to (tn0 : tn1 − st0tn−1
1 + stn0 ). By homotopy invariance, we

have ρn(0) = ρn(1), and thus ρn = µn in H•(k).
As above, we localize around w := w1/w0 = 1. Note that ρ−1

n (1) = {0, 1}. We
replace the target P1 with the henselization O at w = 1, and see that P1×ρn O
breaks up into two components via the factorization w − 1 = t(tn−1 − 1),
t = t1/t0. On the component containing 1, the map ρn is isomorphic to a
hensel local version of µn−1, and on the component containing 0, the map ρn
is isomorphic to the identity.

Documenta Mathematica · Extra Volume Suslin (2010) 393–443



Slices and Transfers 417

Using Nisnevich excision and proposition 5.5(1), we thus have the following
commutative diagram (in SHS1(k)/f2)

(P1,∞) //

ρn

��

(P1,P1 \ {0, 1})
ρn

��

∼ // (P1,∞) ∨ (P1,∞)

µn−1∨id

��

(P1,∞) // (P1,P1 \ {1}) ∼
// (P1,∞)

By proposition 5.5(2), the upper row is the co-multiplication (in SHS1(k)/f2),
and thus

ρn = µn−1 + id

in SHS1(k)/f2. As ρn = µn inH•(k), our induction hypothesis gives µn = n·id,
and the induction goes through. �

While we are on the subject, we might as well note that

Remark 5.8. The co-group ((P1, 1), σP1) in SHS1(k)/f2 is co-commutative.

As pointed out by the referee, every object in SHS1(k)/f2 is a co-commutative
co-group, since SHS1(k)/f2 is a triangulated category and hence each object
is a double suspension. In addition, the co-group structure ((P1, 1), σP1) is
isomorphic in H•(k) to the co-group structure on S1 ∧ Gm induced by the
co-group structure on S1, so the “triangulated” co-group structure on P1

agrees with the one we have given.
One should, however, be able to reproduce our entire theory “modulo Σ2

P1” in
the unstable category. We have not done this here, as we do not at present have
available a theory of the motivic Postnikov tower in the H•(k). We expect that,
given such a theory, the results of this section would hold in the unstable setting
and in particular, that the co-group ((P1, 1), σP1) would be co-commutative
“modulo Σ2

P1”.

We now return to our study of properties of the co-transfer map in SHS1(k)/f2.
We will find it convenient to work in the setting of smooth schemes essentially
of finite type over k; as mentioned at the beginning of §3, we consider schemes
Y essentially of finite type over k as pro-objects in H(k), SHS1(k), etc. In the
end, we use scheme essentially of finite type over k only as a tool to construct
maps in pro-SHS1(k)/fn+1 between objects of SHS1(k)/fn+1; this will in the
end give us morphisms in SHS1(k)/fn+1, as the functor SHS1(k)/fn+1 →
pro-SHS1(k)/fn+1 is fully faithful,
Suppose we have a semi-local smooth k-algebra A, essentially of finite type,
and a finite extension A→ B, with B smooth over k. Suppose further that B
is generated as an A-algebra by a single element x ∈ B:

B = A[x].

We say in this case that B is a simply generated A-algebra.
Let f̃ ∈ A[T ] be the monic minimal polynomial of x, giving us the point x′ of

A1
A = SpecA[T ] with ideal (f̃). We identify A1

A with P1
A \ {1} as usual, giving
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us the subscheme x of P1
A \ {1}, smooth over k and finite over SpecA, in fact,

canonically isomorphic to SpecB over SpecA via the choice of generator x. Let

ϕx : x→ SpecB

be this isomorphism. We let f be the generator of mx/m
2
x determined by f̃ .

Via the composition

(P1
A, 1)

co-trx,f−−−−−→ (P1
x, 1)

ϕx×id−−−−→ (P1
B, 1)

we have the morphism

co-trx : (P1
A, 1)→ (P1

B, 1)

in pro-H•(k).

Lemma 5.9. Suppose that SpecB → SpecA is étale over each generic point
of SpecA. Then the map co-trx : (P1

A, 1) → (P1
B, 1) in pro-SHS1(k)/f2 is

independent of the choice of generator x for B over A.

Via this result, we may write co-trB/A for co-trx.

Proof. We use a deformation argument; we first localize to reduce to the case
of an étale extension A→ B. For this, let a ∈ A be a non-zero divisor, and let
x be a generator for B as an A-algebra. Then x is a generator for B[a−1] as
an A[a−1]-algebra and by lemma 3.8 we have the commutative diagram

P1
A[a−1]

//

co-trx

��

P1
A

co-trx

��

P1
B[a−1]

// P1
B,

with horizontal arrows isomorphisms in pro-SHS1(k)/f2. Thus, we may assume
that A→ B is étale.
Suppose we have generators x 6= x′ for B over A; let d = [B : A]. Let s be
an indeterminate, let x(s) = sx+ (1 − s)x′ ∈ B[s], and consider the extension

B̃s := A[s][x(s)] of A[s], considered as a subalgebra of B[s]. Clearly B̃s is finite
over A[s].
Let mA ⊂ A be the Jacobson radical, and let A(s) be the localization of A[s]
at the ideal (mAA[s] + s(s− 1)). In other words, A(s) is the semi-local ring of
the set of closed points {(0, a), (1, a)} in A1× SpecA, as a runs over the closed

points of SpecA. Define B(s) := B⊗AA(s) and Bs := B̃s⊗AA(s) ⊂ B(s). Let
y = (1, a) be a closed point of A(s), with maximal ideal my, and let xy be the
image of x in B(s)/myB(s). Clearly xy is in the image of Bs → B(s)/myB(s),
hence Bs → B(s)/myB(s) is surjective. Similarly, Bs → B(s)/myB(s) is
surjective for all y of the form (0, a); by Nakayama’s lemma Bs = B(s). Also,
B(s) and A(s) are regular and B(s) is finite over A(s), hence B(s) is flat over
A(s) and thus B(s) is a free A(s)-module of rank d. Finally, B(s) is clearly
unramified over A(s), hence A(s)→ B(s) is étale.
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Using Nakayama’s lemma again, we see that B(s) is generated as an A(s)
module by 1, x(s), x(s)2, . . . , x(s)d−1. It follows that x(s) satisfies a monic
polynomial equation of degree d over A(s), thus x(s) admits a monic minimal
polynomial fs of degree d over A(s). Sending T to x(s) defines an isomorphism

ϕs : A(s)[T ]/(fs)→ B(s).

We let xs ⊂ A1
A(s) = P1

A(s)\{1} be the closed subscheme of P1
A(s) corresponding

to fs; the isomorphism ϕs gives us the isomorphism

ϕs : xs → SpecB(s).

Thus, we may define the map

co-trx(s) : (P1
A(s), 1)→ (P1

B(s), 1)

giving us the commutative diagram

(P1
A, 1)

co-trx′

��

i0 // (P1
A(s), 1)

co-trx(s)

��

(P1
A, 1)

co-trx

��

i1oo

(P1
B, 1)

i0
// (P1

B(s), 1) (P1
B, 1)

i1
oo

By lemma 5.3, the map (P1
A(s), 1) → (P1

A[s], 1) is an isomorphism in

pro-SHS1(k)/f2. By homotopy invariance, it follows that the maps i0, i1 are
isomorphisms in pro-SHS1(k)/f2, inverse to the map (P1

A(s), 1) → (P1
A, 1) in-

duced by the projection SpecA(s) → SpecA. Therefore co-trx′ = co-trx, as
desired. �

Lemma 5.10. co-trA/A = id(P1
A,1)

.

Proof. We may choose 0 as the generator for A over A, which gives us the point
x = 0 ∈ P1

A. The result now follows from lemma 3.7. �

Lemma 5.11. Let A→ C be a finite simply generated extension and A ⊂ B ⊂ C
a sub-extension, with B also simply generated over A. We suppose that A, B
and C are smooth over k, that A→ B and A→ C are étale over each generic
point of SpecA, and B → C is étale over each generic point of SpecB. Then

co-trC/A = co-trC/B ◦ co-trB/A.
Proof. This is another deformation argument. As in the proof of lemma 5.9,
we may assume that A → B, B → C and A → C are étale extensions; we
retain the notation from the proof of lemma 5.9. Let y be a generator for C
over A, x a generator for B over A. These generators give us corresponding
closed subschemes y, x ⊂ P1

A and yB ⊂ P1
B. Let y(s) = sy + (1 − s)x, giving

y(s) ⊂ P1
A(s). Note that y(1) = y, y(0)red = x

As in the proof of lemma 5.9, the element y(s) of C(s) is a generator over A(s)
after localizing at the points of SpecA(s) lying over s = 1. The subscheme y(s)
in a neighborhood of s = 0 is not in general regular, hence y(s) is not a generator
of C(s) over A(s). However, let µ : W := Wx → P1 ×A1 be the blow-up along
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{(x, 0)}, and let ỹ ⊂WA(s) be the proper transform µ−1[y]. An elementary local
computation shows that this blow-up resolves the singularities of y(s), and that
ỹ is étale over A(s); the argument used in the proof of lemma 5.9 goes through
to show that A(s)(ỹ) ∼= C(s). In addition, let C0 be the proper transform
to WA(s) of P1 × 0 and E the exceptional divisor, then ỹ(0) is disjoint from

C0. Finally, after identifying E with P1
A[x] = P1

B (using the monic minimal

polynomial of x as a generator for mx), we may consider ỹ(0) as a closed
subscheme of P1

B; the isomorphism A(s)(ỹ) ∼= C(s) leads us to conclude that
A(ỹ(1)) = B(ỹ(0)) = C. By lemma 5.9, we may use ỹ(0) to define co-trC/B.
The map co-trC/A in pro-SHS1(k)/f2 is defined via the diagram

(P1
A, 1)→ (P1

A,P
1
A \ y) ∼= (P1

C , 1)

where the various choices involved lead to equal maps. By lemma 5.3,
WA(s) → WA[s] is an isomorphism in pro-SHS1(k)/f2; by homotopy invari-
ance, the projection WA(s) →W is also an isomorphism pro-SHS1(k)/f2.

The inclusions i1 : P1
A → WA(s), i0 : P1

A[x] → WA(s) induce isomorphisms (in

pro-SHS1(k)/f2)

(P1
A,P

1
A \ y) = (P1

A,P
1
A \ y(1)) ∼= (WA(s),WA(s) \ ỹ(s)) ∼= (P1

A[x],P
1
A[x] \ ỹ(0)).

As in the proof of lemma 5.9, we can use homotopy invariance to see that
co-trC/A is also equal to the composition

(P1
A, 1)→ (P1

A,P
1
A \ y)

i1−→ (WA(s),WA(s) \ ỹ(s))

i−1
0−−→ (P1

A[x],P
1
A[x] \ ỹ(0)) ∼= (P1

C , 1).

Now let s1A(s) be the transform to WA(s) of the 1-section. By lemma 3.3, the

inclusion i0 : (P1
A[x], 1)→ (WA(s), C0 ∪ s1A(s)) is an isomorphism in pro-H•(k).

The above factorization of co-trC/A shows that co-trC/A is also equal to the
composition

(P1
A, 1)

i1−→ (WA(s), C0 ∪ s1A(s))
i−1
0−−→ (P1

A[x], 1)→ (P1
A[x] \ ỹ(0)) ∼= (P1

C , 1).

Using remark 3.5, this latter composition is co-trC/B ◦ (co-trB/A), as desired.
�

Remark 5.12. 1. Suppose we have simply generated finite generically étale
extensions A1 → B1, A2 → B2, with Ai smooth, semi-local and essentially of
finite type over k. Then

co-trB1×B2/A1×A2
= co-trB1/A1

∨ co-trB2/A2

where we make the evident identification (P1
B1×B2

, 1) = (P1
B1
, 1)∨ (P1

B2
, 1) and

similarly for A1, A2.

2. Let B1, B2 be simply generated finite generically étale A algebras and
let B = B1 ×B2. As a special case of lemma 5.11, we have

co-trB/A = (co-trB1/A ∨ co-trB2/A) ◦ σP1
A
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Indeed, we may factor the extension A → B as A
δ−→ A × A → B1 × B2 = B.

We then use (1) and note that σP1
A

= co-trA×A/A by lemma 4.1.

Next, we make a local calculation. Let (A,m) be a local ring of essentially finite
type and smooth over k. Let s ∈ m be a parameter, let B = A[T ]/T n−s and let
t ∈ B be the image of T . Set Y = SpecB, X = SpecA, Z = SpecA/(s), W =

SpecB/(t); the extension A → B induces an isomorphism α : W
∼−→ Z. We

write co-trY/X for co-trB/A, etc. This gives us the diagram in pro-SHS1(k)/f2

P1
Z

iZ // P1
X

co-trY/X

��

P1
W iW

//

α

OO

P1
Y .

Lemma 5.13. Suppose that n! is prime to char k. In pro-SHS1(k)/f2 we have

co-trY/X ◦ iZ ◦ α = n× iW .
Proof. First, suppose we have a Nisnevich neighborhood f : X ′ → X of Z in
X , giving us the Nisnevich neighborhood g : Y ′ := Y ×X X ′ → Y of W in Y .
As

co-trY/X ◦ f = g ◦ co-trY ′/X′

we may replace X with X ′, Y with Y ′. Similarly, we reduce to the case of A
a hensel DVR, i.e., the henselization of 0 ∈ A1

F for some field F , Z = W = 0,
with s the image in A of the canonical coordinate on A1

F .
The map co-trY/X is defined by the closed immersion

Y
iY−→ A1

X = P1
X \ 1X ⊂ P1

X

where iY is the closed subscheme of A1 = SpecA[T ] defined by T n−s, together
with the isomorphism

(P1
X ,P

1
X \ Y ) ∼= P1

Y

furnished by the blow-up µ : WY → A1
X × A1 of A1

X × A1 along (Y, 0). The
composition co-trY/X ◦ iZ ◦ α is given by the composition

(P1
W , 1) ∼= (P1

W ,P
1
W \ 0W )

α−→ (P1
Z ,P

1
Z \ 0Z)

iZ−→ (P1
X ,P

1
X \ 0X)

id←− (P1
X , 1)→ (P1

X ,P
1
X \ Y ) ∼= (P1

Y , 1).

In both cases, the isomorphisms (in pro-SHS1(k)/f2) are independent of a
choice of trivialization of the various normal bundles. Let U → P1

X be the
hensel local neighborhood of 0Z in P1

X , SpecOh
P1
X ,0Z

. Let p : U → X be the

map induced by the projection pX : P1
X → X and let UZ = p−1(Z), with

inclusion iZ : UZ → U . We may use excision to rewrite the above description
of co-trY/X ◦ iZ ◦ α as a composition as

(P1
W , 1) ∼= (P1

Z , 1) ∼= (UZ , UZ \ 0Z)
iZ−→ (U,U \ Y ) ∼= (P1

Y , 1).
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Similarly, letting i0 : X → X × P1 be the 0-section, the map iW may be given
by the composition

(P1
W , 1) ∼= (X,X \ Z)

i0−→ (U,U \ Y ) ∼= (P1
Y , 1);

again, the isomorphisms in pro-SHS1(k)/f2 are independent of choice of trivi-
alizations of the various normal bundles.
We write (s, t) for the parameters on U induced by the functions s, T on A1

X .
We change coordinates in U by the isomorphism (s, t) 7→ (s − tn, t). This
transforms Y to the subscheme s = 0, is the identity on the 0-section, and
transforms s = 0 to tn + s = 0. Replacing s with −s, we have just switched
the roles of Y and UZ . Let

ϕ : UZ → U

be the map ϕ(t) = (tn, t). After making our change of coordinates, the map
co-trY/X ◦ iZ ◦ α is identified with

(P1
W , 1) ∼= (UZ , UZ \ 0Z)

ϕ−→ (U,U \ UZ) ∼= (P1
Y , 1)

while the description of iW becomes

(P1
W , 1) ∼= (X,X \ Z)

i0−→ (U,U \ UZ) ∼= (P1
Y , 1);

here we are using lemma 5.4 to conclude that the automorphism (x0 : x1) 7→
(−x0 : x1) of P1

W induces the identity on (P1
W ,∞) in pro-SHS1(k)/f2.

We now construct an A1-family of maps (UZ , UZ \ 0Z)→ (U,U \ UZ). Let

Φ : UZ × A1 → U

be the map Φ(t, v) = (tn, vt). Note that Φ defines a map of pairs

Φ : (UZ , UZ \ 0Z)× A1 → (U,U \ UZ).

Clearly Φ(−, 1) = ϕ while Φ(−, 0) factors as

UZ
µn−−→ UZ

β−→ X
i0−→ U

where µn is the map t 7→ tn and β is the isomorphism β(t) = s. Thus, we can
rewrite co-trY/X ◦ iZ ◦ α as

(P1
W , 1) ∼= (X,X \ Z)

µn−−→ (X,X \ Z)
i0−→ (U,U \ UZ) ∼= (P1

Y , 1)

We identify X with the hensel neighborhood of 0Z in P1
Z . Using excision again,

we have the commutative diagram in pro-H•(k)

(X,X \ Z)
µn

//

��

(X,X \ Z)

��

(P1
Z ,P

1
Z \ 0Z)

µn
// (P1

Z ,P
1
Z \ 0Z)

(P1
Z ,∞)

µZn //

OO

(P1
Z ,∞)

OO
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where the vertical arrows are all isomorphisms. By lemma 5.7 the bottom map
is multiplication by n, which completes the proof. �

Lemma 5.14. Let A → B be a finite simple étale extension, A as above. Let
X = SpecA, Y = SpecB, let ix : x → X be the closed point of X and
iy : y → Y the inclusion of y := x×X Y . Then

co-trY/X ◦ ix = iy ◦ co-try/x.
Proof. Take an embedding of Y in A1

X = P1
X \ 1X ⊂ P1

X ; the fiber of Y → A1
X

over x→ X is thus an embedding y → A1
x = P1

x \ 1x ⊂ P1
x. The result follows

easily from the commutativity of the diagram

P1
x \ y //

��

P1
x

��

P1
X \ Y // P1

X

�

Proposition 5.15. Let A → B be a finite generically étale extension, with A
a DVR and B a semi-local principal ideal ring. Let X = SpecA, Y = SpecB,
let ix : x → X be the closed point of X and iy : y → Y the inclusion of
y := x ×X Y . Write y = {y1, . . . , yr}, with each yi irreducible. Let ni denote
the ramification index of yi; suppose that ni! is prime to chark for each i. Then

co-trY/X ◦ ix =

r∑

i=1

ni · iyi ◦ co-tryi/x.

Proof. We note that every such extension is simple. By passing to the henseliza-
tion A→ Ah, we may assume A is hensel. By remark 5.12(2), we may assume
that r = 1. Let A → B0 ⊂ B be the maximal unramified subextension. As
co-trB/A = co-trB/B0

◦ co-trB0/B, we reduce to the two cases A = B0, B = B0.
We note that a finite separable extension of hensel DVRs A → B with trivial
residue field extension degree and ramification index prime to the characteristic
is isomorphic to an extension of the form tn = s for some s ∈ mA \m2

A. Thus,
the first case is lemma 5.13, the second is lemma 5.14. �

Consider the functor

(P1
?, 1) : Sm/k→ SHS1(k)/f2

sending X to (P1
X , 1) ∈ SHS1(k)/f2, which we consider as a SHS1(k)/f2-valued

presheaf on Sm/kop (we could also write this functor as X 7→ Σ∞
P1X+). We

proceed to extend (P1
?, 1) to a presheaf on SmCor(k)op; we will assume that

char k = 0, so we do not need to worry about inseparability.
We first define the action on the generators of HomSmCor(X,Y ), i.e., on irre-
ducible W ⊂ X × Y such that W → X is finite and surjective over some com-
ponent of X . As SHS1(k)/f2 is an additive category, it suffices to consider the
case of irreducible X . Let U ⊂ X be a dense open subscheme. Then the map
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(P1
U , 1)→ (P1

X , 1) induced by the inclusion is an isomorphism in SHS1(k)/f2.
We may therefore define the morphism

(P1
?, 1)(W ) : (P1

X , 1)→ (P1
Y , 1)

in SHS1(k)/f2 as the composition (in pro-SHS1(k)/f2)

(P1
X , 1) ∼= (P1

k(X), 1)
co-trk(W )/k(X)−−−−−−−−−→ (P1

k(W ), 1)
p2−→ (P1

Y , 1).

We extend linearly to define (P1
?, 1) on HomSmCor(X,Y ).

Suppose that Γf ⊂ X × Y is the graph of a morphism f : X → Y . It follows
from lemma 5.10 that co-trk(Γf )/k(X) is the inverse to the isomorphism p1 :

(P1
k(Γf )

, 1)→ (P1
k(X), 1). Thus, the composition

(P1
k(X), 1)

co-trk(Γf )/k(X)−−−−−−−−−−→ (P1
k(Γf )

, 1)
p2−→ (P1

Y , 1)

is the map induced by the restriction of f to Spec k(X). Since (P1
k(X), 1) →

(P1
X , 1) is an isomorphism in pro-SHS1(k)/f2, it follows that (P1

?, 1)(Γf ) = f ,
i.e., our definition of (P1

?, 1) on HomSmCor(X,Y ) really is an extension of its
definition on HomSm/k(X,Y ).
The main point is to check functoriality.

Lemma 5.16. Suppose chark = 0. For α ∈ HomSmCor(X,Y ), β ∈
HomSmCor(Y, Z), we have

(P1
?, 1)(β ◦ α) = (P1

?, 1)(β) ◦ (P1
?, 1)(α)

Proof. It suffices to consider the case of irreducible finite correspondences W ⊂
X × Y , W ′ ⊂ Y × Z. If W is the graph of a flat morphism, the result follows
from lemma 3.8.
As the action of correspondences is defined at the generic point, we may re-
place X with η := Spec k(X). Then W becomes a closed point of Yη and the
correspondence Wη : η → Y factors as p2 ◦ iWη ◦ pt1, where p1 : Wη → η and
p2 : Yη → Y are the projections.
Let W ′

η ⊂ Yη × Z be the pull-back of W ′. As we have already established
naturality with respect to pull-back by flat maps, we reduce to showing

(P1
?, 1)(W ′

η ◦ iWη ) = (P1
?, 1)(W ′

η) ◦ (P1
?, 1)(iWη).

Since Y is quasi-projective, we can find a sequence of closed subschemes of Yη

Wη = W0 ⊂W1 ⊂ . . . ⊂Wd−1 ⊂Wd = Yη

such that Wi is smooth of codimension d−i on Yη. Using again the fact the co-tr
is defined at the generic point, and that we have already proven functoriality
with respect to composition of morphisms, we reduce to the case of Y = SpecO
for some DVR O, and iη the inclusion of the closed point η of Y .
Let W ′′ → W ′ be the normalization of W ′. Using functoriality with respect to
morphisms in Sm/k once more, we may replace Z with W ′′ and W ′ with the
transpose of the graph of the projection W ′′ → Y . Changing notation, we may
assume that W ′ is the transpose of the graph of a finite morphism Z → Y .
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This reduces us to the case considered in proposition 5.15; this latter result
completes the proof. �

We will collect the results of this section, generalized to higher loops, in theo-
rem 6.1 of the next section.

6. Higher loops

The results of these last sections carry over immediately to statements about
the n-fold smash product (P1, 1)∧n for n ≥ 1. For clarity and completeness, we
list these explicitly in an omnibus theorem.
Let R be a semi-local k-algebra, smooth and essentially of finite type over k,
and let x ⊂ P1

R and f be as in section 3. For n ≥ 1, define

co-trnx,f : ΣnP1 SpecR+ → ΣnP1x+

to be the map Σn−1
P1 (co-trx,f ) (in pro-H•(k)).

Similarly, let A be a semi-local k-algebra, smooth and essentially of finite type
over k. Let B = A[x] be a simply generated finite generically étale A-algebra.
For n ≥ 1, define

co-trnx : ΣnP1 SpecA+ → ΣnP1 SpecB+

to be the map Σn−1
P1 (co-trx) (in pro-SHS1(k)/fn+1).

Theorem 6.1. 1. co-trn0,−s = id.

2. Let R → R′ be a flat extension of smooth semi-local k-algebras, es-
sentially of finite type over k. Let x be a smooth closed subscheme of P1

R \ {1},
finite and generically étale over R. Let x′ = x ×R R′ ⊂ P1

R′ . Let f be a
generator for mx/m

2
x, and let f ′ be the extension to mx′/m2

x′. Suppose that
either R→ R′ is smooth or that x→ SpecR is étale. Then the diagram

ΣnP1 SpecR′
+

co-trn
x′,f′

//

��

ΣnP1x′+

��

ΣnP1 SpecR+
co-trnx,f

// ΣnP1x+

is well-defined and commutes.

3. The co-group structure Σn−1
P1 (σP1) on (P1, 1)∧n is given by the map

co-trn{0,∞},(−s,s−1) : (P1, 1)∧n → (P1, 1)∧n ∨ (P1, 1)∧n.

4. The co-group ((P1, 1)∧n,Σn−1
P1 (σP1)) in SHS1(k)/fn+1 is co-commutative.

5. For an extension A → B as above, the map co-trnx : ΣnP1 SpecA+ →
ΣnP1 SpecB+ is independent of the choice of x, and is denoted co-trnB/A.
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6. Suppose that char k = 0. The SHS1(k)/fn+1-valued presheaf on Sm/kop

ΣnP1?+ : Sm/k → SHS1(k)/fn+1

extends to an SHS1(k)/fn+1-valued presheaf on SmCor(k)op, by sending a
generator W ⊂ X × Y of HomSmCor(X,Y ) to the morphism ΣnP1X+ → ΣnP1Y+
in SHS1(k)/fn+1 determined by the diagram

ΣnP1 Spec k(X)+
∼ //

co-trnk(W )/k(X)

��

ΣnP1X+

ΣnP1 Spec k(W )+

p2

��

ΣnP1Y+

in pro-SHS1(k)/fn+1. The assertion that

ΣnP1 Spec k(X)+ → ΣnP1X+

is an isomorphism in pro-SHS1(k)/fn+1 is part of the statement. We write the
map in SHS1(k)/fn+1 associated to α ∈ HomSmCor(X,Y ) as

co-trn(α) : ΣnP1X+ → ΣnP1Y+.

7. Supports and co-transfers

In this section, we assume that char k = 0. We consider the following situation.
Let i : Y → X be a codimension one closed immersion in Sm/k, and let Z ⊂ X
be a pure codimension n closed subset of X such that i−1(Z) ⊂ Y also has
pure codimension n. We let T = i−1(Z), X(Z) = (X,X \Z), Y (T ) = (Y, Y \T ),
so that i induces the map of pointed spaces

i : Y (T ) → X(Z).

Let z be the set of generic points of Z, OX,z the semi-local ring of z in X ,

Xz = SpecOX,z and X
(z)
z = (Xz , Xz \ z). We let t be the set of generic points

of T , and let OX,t be the semi-local ring of t in X , Xt = SpecOX,t. Set

Yt := Xt ×X Y and let Y
(t)
t = (Yt, Yt \ t).

Lemma 7.1. There are canonical isomorphisms in pro-SHS1(k)/fn+1

X(Z) ∼= X(z)
z
∼= ΣnP1z+; Y (T ) ∼= Y

(t)
t
∼= ΣnP1t+.

Proof. This follows from lemma 5.6. �

Thus, the map i : Y (T ) → X(Z) gives us the map in pro-SHS1(k)/fn+1:

(7.1) i : ΣnP1t+ → ΣnP1z+.

On the other hand, we can define a map

(7.2) ico-tr : ΣnP1t+ → ΣnP1z+
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as follows: Let Zt = Z ∩ Xt ⊂ Xt. Since Y has codimension one in X and
intersects Z properly, t is a collection of codimension one points of Z, and thus
Zt is a semi-local reduced scheme of dimension one. Let p : Z̃t → Zt be the
normalization, and let t̃ ⊂ Z̃t be the set of points lying over t ⊂ Zt. Write t̃ as
a union of closed points, t̃ = ∐j t̃j . For each j, we let nj denote the multiplicity

at t̃j of the pull-back Cartier divisor Yt ×Xt Z̃t, and let tj = p(t̃j). This gives
us the commutative diagram

∐j t̃j t̃
ĩ //

p

��

Z̃t

p

��

z
j

oo

����
��

��
��

t
i

// Z.

Note that j is an isomorphism in pro-SHS1(k)/f1. We define ico-tr to be the
composition

ΣnP1t+

∏
j njco-tr

n
t̃j/t−−−−−−−−−→ ⊕jΣnP1 t̃j+ = ΣnP1 t̃+

Σn
P1
ĩ

−−−→ ΣnP1Z̃+

Σn
P1
j−1

−−−−−→ ΣnP1z+

in pro-SHS1(k)/fn+1.

Lemma 7.2. The morphisms (7.1) and (7.2)are equal in pro-SHS1(k)/fn+1.

Proof. Using Nisnevich excision, we may replace X with the henselization of
X along t; we may also assume that t is a single point. Via a limit argument,
we may then replace X with a smooth affine scheme of dimension n + 1 over
k(t); Z is thus a reduced closed subscheme of X of pure dimension one over
k(t). We may also assume that Y is the fiber over 0 of a morphism X → A1

k(t)

for which the restriction to Z is finite.
As we are working in pro-SHS1(k)/fn+1, we may replace (X,Z) with (X ′, Z ′)
if there is a morphism f : X → X ′ over A1

k(t) which makes (X, t) a hensel

neighborhood of (X ′, f(t)) and such that the restriction of f to fZ : Z → Z ′ is
birational. Using Gabber’s presentation lemma [6, lemma 3.1], we may assume
that X = An+1

k(t) , that t is the origin 0 and that Y is the coordinate hyperplane

Xn+1 = 0. We write F for k(t) and write simply 0 for t.
After a suitable linear change of coordinates in An+1

F , we may assume that each
coordinate projection

q : An+1
F → ArF

q(x1, . . . , xn+1) = (xi1 , . . . , xir ),

r = 1, . . . , n, restricts to a finite morphism on Z, and that Z → q(Z) is bira-
tional if r ≥ 2.
We now reduce to the case in which Z is contained in the coordinate subspace
X ′ = A2

F defined by X1 = . . . = Xn−1 = 0. For this, consider the map

m : A1 × An+1
F → A1 × An+1

F

m(t, x1, . . . , xn+1) = (t, tx1, . . . , txn−1, xn, xn+1)
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Let Z = m(A1 × Z) ⊂ A1 × An+1
F . By our finiteness assumptions, Z is a

(reduced) closed subscheme of A1 × An+1
F , and each fiber Zt ⊂ t × An+1

F is
birationally isomorphic to Z ×F F (t). Consider the inclusion map

(A1 × Y )(A
1×0) → (A1 ×X)(Z)

The maps

i0, i1 : Y (0) → (A1 × Y )(A
1×0)

are clearly isomorphisms in pro-H•(k), and the maps

i1 : X(Z) → (A1 ×X)(Z)

i0 : X(Z0) → (A1 ×X)(Z)

are easily seen to be isomorphisms in pro-SHS1(k)/fn+1. Combining this with
the commutative diagram

Y (0) //

i1
��

X(Z)

i1

��

(A1 × Y )(A
1×0) // X(Z)

Y (0) //

i0

OO

X(Z0)

i0

OO

shows that we can replace Z with Z0 ⊂ X ′.
Having done this, we see that the map Y (0) → X(Z) is just the n − 1-fold P1

suspension of the map

(Y ∩X ′)(0) → (X ′)(Z)

This reduces us to the case n = 1.
Since p2 : Z → A1

F is finite, we may take X = P1 × A1
F instead of A1 × A1

F .

Then the map Y (0) → X(Z) is isomorphic to (P1 × 0,∞ × 0) → X(Z). We
extend this to the isomorphic map

(P1 × A1
F ,∞× A1

F )→ X(Z) = (P1 × A1
F ,P

1 × A1
F \ Z).

Let s be the generic point of A1
F , Zs the fiber of p2 over s. Then the inclusions

(P1 × 0,∞× 0)
j0−→(P1 × A1

F ,∞× A1
F )

js←− (P1 × s,∞× s)

(P1 × A1
F ,P

1 × A1
F \ Z)

js←− (P1 × s,P1
s \ Zs)

are isomorphisms in pro-SHS1(k)/f2, and thus the map

i0 : Y (0) ∼= (P1 × 0,∞× 0)→ X(Z) = (P1 × A1
F ,P

1 × A1
F \ Z)

is isomorphic in pro-SHS1(k)/f2 to the collapse map

(P1 × s,∞× s)→ (P1 × s,P1
s \ Zs).

Therefore, the map

i : ΣP10+ → ΣP1z+
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we need to consider is equal to the co-transfer map

co-trZs/s : ΣP1s+ → ΣP1zs+

composed with the (canonical) isomorphisms

ΣP10+
i0−→ ΣP1A1

+
∼= ΣP1s+, ΣP1zs+ ∼= ΣP1z+;

the latter isomorphism arising by noting that zs is a generic point of Z over F .
The result now follows directly from proposition 5.15. �

Definition 7.3. 1. Take X,X ′ ∈ Sm/k, and let Z ⊂ X , Z ′ ⊂ X ′ be pure
codimension n closed subsets. Take a generator A ∈ HomSmCor(X,X

′), A ⊂
X×X ′. Let q : AN → A be the normalization of A. Let z be the set of generic
points of Z, let a be the set of generic points of A∩X×Z ′ and let a′ = q−1(a).
Suppose that

(1) AN → X is étale on a neighborhood of a′

(2) pX(a) is contained in Z.

Let OAN ,a be the semi-local ring of a′ in AN , and let ANa′ = SpecOAN ,a′ ; define
Xz similarly. Define

co-trn(W ) : X(Z) → X ′(Z′)

to be the map in SHS1(k)/fn+1 given by the following composition:

X(Z) ∼= X(z)
z
∼= ΣnP1z+

co-trn
a′/z−−−−−−→ ΣnP1a′+ ∼= A

N(a′)
a′

pX′−−→ X ′(Z′).

2. Let HomSmCor(X,X
′)Z,Z′ ⊂ HomSmCor(X,X

′) be the subgroup generated
by A satisfying (a) and (b). We extend the definition of the morphism co-trn(A)
to HomSmCor(X,X

′)Z,Z′ by linearity.

Note that we implicitly invoke lemma 7.1 to ensure that the isomorphisms used
in the definition of co-trn(A) exist and are canonical; condition (1) implies in
particular that AN is smooth in a neighborhood of a′, so we may use lemma 7.1

for the isomorphism ΣnP1a′+ ∼= A
N(a′)
a′ .

Lemma 7.4. Take X,X ′, X ′′ ∈ Sm/k, and let Z ⊂ X, Z ′ ⊂ X ′ and Z ′′ ⊂ X ′′

be pure codimension n closed subsets. Take α ∈ HomSmCor(X,X
′)Z,Z′ ,

α′ ∈ HomSmCor(X
′, X ′′)Z′,Z′′ . Then

1. α′ ◦ α is in HomSmCor(X,X
′′)Z,Z′′

2. co-trn(α′) ◦ co-trn(α) = co-trn(α′ ◦ α).

Proof. For (1), we may assume that α and α′ are generators A and A′. We
may replace X,X ′ and X ′′ with the respective strict henselizations along z, z′

and z′′. Write z = {z1, . . . , zr}, z′ = {z′1, . . . , z′s}, z′′ = {z′′1 , . . . , z′′t }. Then the
normalizationsAN and A′N break up as a disjoint union of graphs of morphisms

fjk : Xzk → X ′
z′j

; gij : X ′
z′j
→ X ′′

z′′i
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and A′◦A is thus the sum of the graphs of the compositions gij ◦fjk. Therefore,
each irreducible component of the normalization of the support of A′◦A is étale
over X . This verifies condition (1) of definition 7.3; the condition (2) is easy
and is left to the reader.
(2) follows directly from theorem 6.1(6). �

Proposition 7.5. Let i : ∆1 → ∆ be a closed immersion of quasi-projective
schemes in Sm/k, take X,X ′ ∈ Sm/k and α ∈ HomSmCor(X,X

′). Let Z ⊂
X ×∆, Z ′ ⊂ X ′ ×∆ be closed codimension n subsets. Suppose that

(1) Z1 := Z ∩ X × ∆1 and Z ′
1 := Z ′ ∩ X ′ × ∆1 have codimension n in

X ×∆1, X
′ ×∆1, respectively.

(2) α× id∆ is in HomSmCor(X ×∆, X ′ ×∆)Z,Z′

(3) α× id∆1 is in HomSmCor(X ×∆1, X
′ ×∆1)Z1,Z′

1

Then the diagram in SHS1(k)/fn+1

(X ×∆1)(Z1)

id×i
��

co-trn(α×id)
// (X ′ ×∆1)(Z

′
1)

id×i
��

(X ×∆)(Z)

co-trn(α×id)
// (X ′ ×∆)(Z

′)

commutes.

Proof. Since ∆ is by assumption quasi-projective, we may factor ∆1 → ∆ as a
sequence of closed codimension 1 immersions

∆1 = ∆d → ∆d−1 → . . .→ ∆1 → ∆0 = ∆

such that each closed immersion ∆i → ∆ satisfies the conditions of the propo-
sition. This reduces us to the case of a codimension one closed immersion.
We may replace X ×∆, X ′ ×∆, etc., with the respective semi-local schemes
about the generic points of Z1 and Z ′

1. As ∆1 has codimension one on ∆,
it follows that the normalizations ZN , Z ′N of Z and Z ′ are smooth over k.
Let ĩ : z̃ → ZN , ĩ′ : z̃′ → Z ′N be the points of ZN , Z ′N lying over Z1, Z

′
1,

respectively, which we write as a disjoint union of closed points

z̃ = ∐j z̃j; z̃′ = ∐j z̃′j.
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By lemma 7.1 and lemma 7.2, we may rewrite the diagram in the statement of
the proposition as

ΣnP1Z1+

∑
jmjco-tr

n
z̃j/Z1

��

co-trn(α×id
ZN
1

)
// ΣnP1Z ′

1+

∑
jm

′
jco-tr

n
z̃′
j
/Z′

1

��

ΣnP1 z̃+

ĩ

��

ΣnP1 z̃′+

ĩ′

��

ΣnP1ZN
co-trn(α×id

ZN
)
// ΣnP1Z ′N

where α × idZN , α × idZ1 denote the correspondences induced by α × id∆

and α × id∆1 , and the mj ,m
′
j are the relevant intersection multiplicities. The

commutativity of this diagram follows from theorem 6.1(6). �

8. Slices of loop spectra

Take E ∈ SHS1(k). Following Voevodsky’s remarks in [22], Neeman’s version
of Brown representability [16] gives us the motivic Postnikov tower

. . .→ fn+1E → fnE → . . .→ f0E = E,

where fnE → E is universal for morphisms from an object of ΣnP1SHS1(k)
to E. The layer snE is the nth slice of E, and is characterized up to unique
isomorphism by the distinguished triangle

(8.1) fn+1E → fnE → snE → Σsfn+1E.

The fact that this distinguished triangle determines snE up to unique isomor-
phism rather than just up to isomorphism follows from

(8.2) HomSHS1(k)(Σ
n+1
P1 SHS1(k), snE) = 0

To see this, just use the universal property of fn+1E → E and the long exact
sequence of Homs associated to the distinguished triangle (8.1). In particular,
using the description of HomSHS1(k)/fn+1

(−,−) via right fractions we have

Lemma 8.1. For all F,E ∈ SHS1(k) and n ≥ 0, the natural map

HomSHS1(k)(F, snE)→ HomSHS1(k)/fn+1
(F, snE)

is an isomorphism.

See also [21, proposition 5-3]
We recall the de-looping formula [11, theorem 7.4.2]

sn(ΩP1E) ∼= ΩP1(sn+1E)

for n ≥ 0.
Take F ∈ Spc•(k). For E ∈ SptS1(k), we have Homint(F,E) ∈ SH, which for
F = X+ is just E(X), and in general is formed as the homotopy limit associated
to the description of F as a homotopy colimit of representable objects.
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This gives us the “internal Hom” functor

HomSHS1(k)(F,−) : SHS1(k)→ SHS1(k)

and more generally

HomSHS1 (k)/fn+1
(F,−) : SHS1(k)/fn+1 → SHS1(k),

with natural transformation

HomSHS1(k)(F,−)→ HomSHS1 (k)/fn+1
(F,−).

These have value on E ∈ SptS1(k) defined by taking a fibrant model Ẽ of E
(in SHS1(k) or SHS1(k)/fn+1, as the case may be) and forming the presheaf
on Sm/k

X 7→ Homint(F ∧X+, Ẽ).

Putting the de-looping formula together with lemma 8.1 gives us

Proposition 8.2. For E ∈ SHS1(k) we have natural isomorphisms

s0(ΩnP1E) ∼= ΩnP1snE ∼= HomSHS1(k)/fn+1
((P1, 1)∧n, snE)

Proof. Indeed, the first isomorphism is just the de-looping isomorphism re-
peated n times. For the second, we have

ΩnP1snE ∼= HomSHS1(k)((P
1, 1)∧n, snE)

∼= HomSHS1(k)/fn+1
((P1, 1)∧n, snE)

the second isomorphism following from lemma 8.1. �

Definition 8.3. Suppose that chark = 0. Take E ∈ SHS1(k), take α ∈
HomSmCor(X,Y ) and let n ≥ 1 be an integer. The transfer

TrY/X(α) : (ΩnP1snE)(Y )→ (ΩnP1snE)(X)

is the map in SH defined as follows:

(ΩnP1snE)(Y ) = HomSHS1(k)(Y+,Ω
n
P1snE)

∼= HomSHS1(k)(Σ
n
P1Y+, snE)

∼= HomSHS1(k)/fn+1
(ΣnP1Y+, snE)

co-trn(α)∗−−−−−−−→ HomSHS1(k)/fn+1
(ΣnP1X+, snE)

∼= HomSHS1(k)(X+,Ω
n
P1snE)

∼= (ΩnP1snE)(X).

Theorem 8.4. Suppose that chark = 0. For E ∈ SHS1(k), the maps Tr(α)
extend the presheaf

ΩnP1snE : Sm/kop → SH
to an SH-valued presheaf with transfers

ΩnP1snE : SmCor(k)op → SH
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Proof. This follows from the definition of the maps Tr(α) and theorem 6.1,
the main point being that the maps Tr(α) factor through the internal Hom in
SHS1(k)/fn+1. �

Corollary 8.5. Suppose that char k = 0. For E ∈ SHS1(k), there is an
extension of the presheaf

s0ΩP1E : Sm/kop → SH
to an SH-valued presheaf with transfers

s0ΩP1E : SmCor(k)op → SH.
Proof. This is just the case n = 1 of theorem 8.4, together with the de-looping
isomorphism

s0ΩP1E ∼= ΩP1s1E.

�

Remark 8.6. The corollary is actually the main result, in that one can deduce
theorem 8.4 from corollary 8.5 (applied to Ωn−1

P1 E) and the de-looping formula

ΩnP1snE ∼= s0ΩnP1E = s0ΩP1(Ωn−1
P1 E).

As the maps co-trn(α) are defined by smashing co-tr1(α) with an identity map,
this procedure does indeed give back the maps

Tr(α) : ΩnP1snE(Y )→ ΩnP1snE(X)

as defined above.

proof of theorem 3. The weak transfers defined above give rise to homotopy
invariant sheaves with transfers in the usual sense by taking the sheaves of
homotopy groups of the motivic spectrum in question. �

For instance, corollary 8.5 gives the sheaf πm(s0ΩP1E) the structure of a homo-
topy invariant sheaf with transfers, in particular, an effective motive. In fact,
these are birational motives in the sense of Kahn-Huber-Sujatha [7, 10], as s0F
is a birational S1-spectrum for each S1-spectrum F . The classical Postnikov
tower thus gives us a spectral sequence

E2
p,q := H−p(XNis, πq(s0ΩP1E)) =⇒ πp+q(s0ΩP1E(X))

with E2 term a “generalized motivic cohomology” of X . As the sheaves
πq(s0ΩP1E) are motives, we may replace Nisnevich cohomology with Zariski
cohomology; as the sheaves πq(s0ΩP1E) are birational, i.e., Zariski locally con-
stant, the higher Zariski cohomology vanishes, giving us

πn(s0ΩP1E(X)) ∼= H0(XZar, πn(s0ΩP1E)) = πn(s0ΩP1E(k(X)).

In short, we have shown that the 0th slice of a P1-loop spectrum has transfers
in the weak sense. We have already seen in section 2 that this does not hold for
an arbitrary object of SHS1(k); in the next section we will see that the higher
slices of an arbitrary S1-spectrum do have transfers, albeit in an even weaker
sense than the one used above.

Documenta Mathematica · Extra Volume Suslin (2010) 393–443



434 Marc Levine

9. Transfers on the generalized cycle complex

We begin by recalling from [11, theorem 7.1.1] models for fnE(X) and snE(X)
that are reminiscent of Bloch’s higher cycle complex [1]. To simplify the nota-
tion, we will always assume that we have taken a model E ∈ SptS1(k) which is
quasi-fibrant. For W a closed subset of some Y ∈ Sm/k, E(W )(Y ) will denote
the homotopy fiber of the restriction map E(Y )→ E(Y \W ).
We make use of the cosimplicial scheme n 7→ ∆n := Spec k[t0, . . . , tn]/

∑
i ti−1.

A face F of ∆n is a subscheme defined by ti1 = . . . = tir = 0.

For a scheme X of finite type and locally equi-dimensional over k, let S(n)X (m)
be the set of closed subsets W of X ×∆m of codimension ≥ n, such that, for
each face F of ∆n, W ∩X × F has codimension ≥ n on X × F (or is empty).

We order S(n)X (m) by inclusion.
For X ∈ Sm/k, we let

E(n)(X,m) := lim−→
W∈S(n)

X (m)

E(W )(X ×∆m).

Similarly, for 0 ≤ n ≤ n′, we define

E(n/n′)(X,m) := lim−→
W∈S(n)

X (m),W ′∈S(n′)
X (m)

E(W\W ′)(X ×∆m \W ′)

The conditions on the intersections of W with X × F for faces F means that

m 7→ S(n)X (m) form a cosimplicial set, denoted S(n)X , for each n and that S(n
′)

X

is a cosimplicial subset of S(n)X for n ≤ n′. Thus the restriction maps for E

make m 7→ E(n)(X,m) and m 7→ E(n/n′)(X,m) simplicial spectra, denoted

E(n)(X,−) and E(n/n′)(X,−). We denote the associated total spectra by

|E(n)(X,−)| and |E(n/n′)(X,−)|.
The inclusion S(n

′)
X (m)→ S(n)X (m) for n ≤ n′ and the evident restriction maps

give the sequence

|E(n′)(X,−)| → |E(n)(X,−)| → |E(n/n′)(X,−)|
which is easily seen to be a weak homotopy fiber sequence.
We note that |E(0)(X,−)| = E(X × ∆∗); as E is homotopy invariant, the
canonical map

E(X)→ |E(0)(X,−)|
is thus a weak equivalence. We therefore have the tower in SH
(9.1) . . .→ |E(n+1)(X,−)| → |E(n)(X,−)| → . . .→ |E(0)(X,−)| ∼= E(X)

with nth layer isomorphic to |E(n/n+1)(X,−)|. We call this tower the homotopy
coniveau tower for E(X). In this regard, one of the main results from [11] states

Theorem 9.1 ([11, theorem 7.1.1]). There is a canonical isomorphism of the
tower (9.1) with the motivic Postnikov tower evaluated at X:

. . .→ fn+1E(X)→ fnE(X)→ . . .→ f0E(X) = E(X),
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giving a canonical isomorphism

snE(X) ∼= |E(n/n+1)(X,−)|.
We can further modify this description of snE(X) as follows: Since sn is an
idempotent functor, we have

snE(X) ∼= sn(snE)(X) ∼= |(snE)(n/n+1)(X,−)|.
Note that |(snE)(n/n+1)(X,−)| fits into a weak homotopy fiber sequence

|(snE)(n+1)(X,−)| → |(snE)(n)(X,−)| → |(snE)(n/n+1)(X,−)|.
Using theorem 9.1 in reverse, we have the isomorphism in SH

|(snE)(n+1)(X,−)| ∼= fn+1(snE)(X).

But as fn+1 ◦ fn ∼= fn+1, we see that fn+1(snE) ∼= 0 in SHS1(k) and thus

|(snE)(n)(X,−)| ∼= |(snE)(n/n+1)(X,−)| ∼= snE(X).

We may therefore use the simplicial model |(snE)(n)(X,−)| for snE(X).
We will need a refinement of this construction, which takes into account the
interaction of the support conditions with a given correspondence.

Definition 9.2. Let A ⊂ Y ×X be a generator in HomSmCor(Y,X); for each
m, we let A(m) ∈ HomSmCor(Y × ∆m, X × ∆m) denote the correspondence

A × id∆m . Let S(n)X,A(m) be the subset of S(n)X (m) consisting of those W ′ ∈
S(n)X (m) such that

(1) W := pY×∆m(A×∆m ∩ Y ×W ′) is in S(n)Y (m).
(2) A(m) is in HomSmCor(Y ×∆m, X ×∆m)W,W ′ .

For an arbitrary α ∈ HomSmCor(Y,X), write

α =
r∑

i=1

niAi

with the Ai generators and the ni non-zero integers and define

S(n)X,α(m) := ∩ri=1S(n)X,Ai
(m).

If we have in addition to α a finite correspondence β ∈ HomSmCor(Z, Y ), we let

S(n)X,α,β(m) ⊂ S(n)X,α(m) be the set of W ⊂ X ×∆m such that W is in S(n)X,α(m)

and pY×X×∆m

Y×∆m (Y ×W ∩ |α| ×∆m) is in S(n)Y,β(m).

For f : Y → X a flat morphism, one has

S(n)X,Γf
(m) = S(n)X (m)

and for g : Z → Y a flat morphism, and α ∈ HomSmCor(Y,X), one has

S(n)X,α,Γg
(m) = S(n)X,α(m)
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Note that m 7→ S(n)X,α(m) and m 7→ S(n)X,α,β(m) define cosimplicial subsets of

m 7→ S(n)X (m). We define the simplicial spectra E(n)(X,−)α and E(n)(X,−)α,β

using the support conditions S(n)X,α(m) and S(n)X,α,β(m) instead of S(n)X (m):

E(n)(X,m)α := lim−→
W∈S(n)

X,α(m)

E(W )(X ×∆m)

E(n)(X,m)α,β := lim−→
W∈S(n)

X,α,β(m)

E(W )(X ×∆m),

giving us the sequence of simplicial spectra

E(n)(X,−)α,β → E(n)(X,−)α → E(n)(X,−).

The main “moving lemma” [12, theorem 2.6.2(2)] yields

Proposition 9.3. For X ∈ Sm/k affine, and E ∈ SptS1(k) quasi-fibrant, the
maps

|E(n)(X,−)α,β| → |E(n)(X,−)α| → |E(n)(X,−)|
are weak equivalences.

We proceed to the main construction of this section. Consider the simplicial
model |(snE)(n)(X,−)| for snE(X). For each m, we may consider the classical
Postnikov tower (or rather, its dual version) for the spectrum (snE)(n)(X,m),
which we write as

. . .→ τ≥p+1(snE)(n)(X,m)→ τ≥p(snE)(n)(X,m)→ . . .→ (snE)(n)(X,m),

where

τ≥p+1(snE)(n)(X,m)→ (snE)(n)(X,m)

is the p-connected cover of (snE)(n)(X,m). The pth layer in this tower
is of course the pth suspension of the Eilenberg-Maclane spectrum on
πp((snE)(n)(X,m)). Taking a functorial model for the p-connected cover, we
have for each p the simplicial spectrum

m 7→ τ≥p+1(snE)(n)(X,m)

giving us the tower of total spectra
(9.2)

. . . → |τ≥p+1(snE)(n)(X,−)| → |τ≥p(snE)(n)(X,−)| → . . . → |(snE)(n)(X,−)|.

The pth layer in this tower are then (up to suspension) the Eilenberg-Maclane
spectrum on the chain complex πp(snE)(n)(X, ∗), with differential as usual the
alternating sum of the face maps.
The chain complexes πp(snE)(n)(X, ∗) are evidently functorial for smooth maps

and inherit the homotopy invariance property from (snE)(n)(X, ∗) (see [12,
theorem 3.3.5]). Somewhat more surprising is

Lemma 9.4. The complexes πp(snE)(n)(X, ∗) satisfy Nisnevich excision.
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Proof. Let W ⊂ X ×∆m be a closed subset in S(n)X (m), and let w be the set
of generic points of W having codimension exactly n on X ×∆m. Then

snE
(W )(X ×∆m) ∼= snE(ΣnP1w+) ∼= ΩnP1(snE)(w) ∼= s0(ΩnP1E)(w).

This gives us the following description of πp((snE)(n)(X,m)):

πp((snE)(n)(X,m)) ∼= ⊕wπp(s0(ΩnP1E)(w))

where the direct sum is over the set T (n)
X (m) of generic points of the irreducible

W ∈ S(n)X (m) having codimension exactly n in X ×∆m.
Now let i : Z → X be a closed subset with open complement j : U → X . For
each m, we thus have the exact sequence

0→ ⊕
w∈Z×∆m∩T (n)

X (m)
πp(s0(ΩnP1E)(w))→ ⊕

w∈T (n)
X (m)

πp(s0(ΩnP1E)(w))

→ ⊕
w∈T (n)

X (m)∩U×∆m
πp(s0(ΩnP1E)(w))→ 0

Define the subcomplex πp(snE)(n)(X, ∗)Z of πp(snE)(n)(X, ∗) and quotient

complex πp(snE)(n)(UX , ∗) of πp(snE)(n)(X, ∗) by taking supports in

{W ∈ S(n)X (m) | W ⊂ Z ×∆m}, resp. {W ∩ U ×∆m | W ∈ S(n)X (m)}.
We thus have the term-wise exact sequence of complexes

0→ πp(snE)(n)(X, ∗)Z → πp(snE)(n)(X, ∗)→ πp(snE)(n)(UX , ∗)→ 0

Claim. The inclusion

πp(snE)(n)(UX , ∗) ι−→ πp(snE)(n)(U, ∗)
is a quasi-isomorphism.

Proof of the claim. This follows using the localization technique [13, theorem
8.10] (for details, see [11, theorem 3.2.1]). In a few words, one takes an integer

N and a W ∈ S(n)U (N). We assume that (idU × ∆(σ))(W ) = W for each
permutation σ of the vertices of ∆N , where ∆(σ) : ∆N → ∆N is the affine-

linear extension of σ. For m ≤ N , let T (n)
X (m)W ⊂ T (n)

X (m) be the set of points
w such that w ∈ (idU ×∆(g))∗(W ) for some injective g : [m]→ [N ], and set

πp(snE)(n)(U,m)W := ⊕
w∈T (n)

X (m)W
πp(snE)(n)(U,m) ⊂ πp(snE)(n)(U,m).

For m > N set πp(snE)(n)(U,m)W = 0. This gives us the subcomplex

πp(snE)(n)(U, ∗)W ⊂ πp(snE)(n)(U, ∗);
clearly πp(snE)(n)(U, ∗) is the colimit of the subcomplexes πp(snE)(n)(U, ∗)W .

Similarly, we have the subcomplex πp(snE)(n)(UX , ∗)W of πp(snE)(n)(UX , ∗)
and the inclusion

ιW : πp(snE)(n)(UX , ∗)W → πp(snE)(n)(U, ∗)W ,
with πp(snE)(n)(UX , ∗) the colimit of the πp(snE)(n)(UX , ∗)W .
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In [11, theorem 3.2.1], we have the formal sums of maps of simplices

ψW (m) =
∑

i

niψW (m)i; ψW (m)i : ∆m → ∆m

ΨW (m) =
∑

i

miΨW (m)i; ΨW (m)i : ∆m+1 → ∆m

for m = 0, . . . , N , such that the pull-back by the maps ψW (m) define a map of
complexes

ψ∗
W : πp(snE)(n)(U, ∗)W → πp(snE)(n)(UX , ∗).

Additionally, the pull-back by the ΨW (m) define homotopies of the map ι ◦
ψW with the inclusion πp(snE)(n)(U, ∗)W → πp(snE)(n)(U, ∗) and similarly of

ψW ◦ ιW with the inclusion πp(snE)(n)(UX , ∗)W → πp(snE)(n)(UX , ∗). The
claim follows easily from this. �

We therefore have the quasi-isomorphism
(9.3)

πp(snE)(n)(X, ∗)Z → cone
(
πp(snE)(n)(X, ∗) j∗−→ πp(snE)(n)(U, ∗)

)
[−1].

Now let

U ′ //

��

X ′

p

��

U // X

be an elementary Nisnevich square, i.e., the square is cartesian, p is étale and
induces an isomorphism p : Z ′ := X ′ \ U ′ → Z. Clearly p induces an isomor-
phism

p∗ : πp(snE)(n)(X, ∗)Z → πp(snE)(n)(X ′, ∗)Z′ ;

using the localization quasi-isomorphism (9.3), it follows that p∗ induces a
quasi-isomorphism

cone
(
πp(snE)(n)(X, ∗) j∗−→ πp(snE)(n)(U, ∗)

)
[−1]

p∗−→ cone
(
πp(snE)(n)(X ′, ∗) j∗−→ πp(snE)(n)(U ′, ∗)

)
[−1],

proving the lemma. �

We will use the results of section 7 to give X 7→ πp(snE)(n)(X, ∗) the structure
of a complex of homotopy invariant presheaves with transfer on Sm/k, i.e. a
motive.
For this, we consider the complexes πp(snE)(n)(X, ∗)α, πp(snE)(n)(X, ∗)α,β
constructed above. The refined support condition are constructed so that, for

each W ∈ S(n)X,α(m), α× id∆m is in HomSmCor(Y ×∆m, X ×∆m)W ′,W , where

W ′ = pY×∆m(Y ×∆m ×W ∩ |α× id∆m |).
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We may therefore use the morphism co-trn(α× id∆m) to define the map

TrY/X(α)(m) : πp((snE)(n)(X,m))α → πp(snE)(n)(Y,m).

By proposition 7.5, the maps TrY/X(m) define a map of complexes

TrY/X(α) : πp(snE)(n)(X, ∗)α → πp(snE)(n)(Y, ∗).
Similarly, given β ∈ HomSmCor(Z, Y ), we have the map of complexes

TrY/X(α)β : πp(snE)(n)(X, ∗)α,β → πp(snE)(n)(Y, ∗)β.
Note that, due to possible cancellations occurring when one takes the compo-
sition α ◦ β, we have only an inclusion

S(n)X,α,β(m) ⊂ S(n)X,α◦β(m)

giving us a natural comparison map

ια,β : πp(snE)(n)(X, ∗)α,β →: πp(snE)(n)(X, ∗)α◦β.
Using our moving lemma again, we see that ια,β is a quasi-isomorphism in case
X is affine.

Lemma 9.5. Suppose chark = 0. For

α ∈ HomSmCor(Z, Y ), β ∈ HomSmCor(Z, Y ),

we have
TrZ/Y (β) ◦ TrY/X(α)β = TrZ/X(α ◦ β) ◦ ια,β .

Proof. This follows from lemma 7.4. �

We have already noted that complexes πp(snE)(n)(X, ∗) are functorial in X
for flat morphisms in Sm/k, in particular for smooth morphisms in Sm/k.

Let S̃m/k denote the subcategory of Sm/k with the same objects and with
morphisms the smooth morphisms. The transfer maps we have defined on
the refined complexes, together with the moving lemma 7.4 yield the following
result:

Theorem 9.6. Suppose char k = 0. Consider the presheaf

πp(snE)(n)(−, ∗)) : S̃m/kop → C−(Ab)

on S̃m/kop. Let

ι : S̃m/k→ SmCor(k)

be the evident inclusion and let

Q : C−(Ab)→ D−(Ab)

be the evident additive functor. There is a complex of presheaves with transfers

π̂p((snE)(n))∗ : SmCor(k)op → C−(Ab)

and an isomorphism of functors from S̃m/kop to D−(Ab)

Q ◦ πp(snE)(n)(−, ∗)) ∼= Q ◦ π̂p((snE)(n))∗ ◦ ι.
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Proof. We give a rough sketch of the construction here; for details we refer the
reader to [9, proposition 2.2.3], which in turn is an elaboration of [12, theorem
7.4.1]. The construction of π̂p((snE)(n))∗ is accomplished by first taking a ho-

motopy limit over the complexes πp(snE)(n)(X, ∗)α. These are then functorial
on SmCor(k)op, up to homotopy equivalences arising from the replacement
of the index category for the homotopy limit with a certain cofinal subcate-
gory. One then forms a regularizing homotopy colimit that is strictly functorial
on SmCor(k)op, and finally, one replaces this presheaf with a fibrant model.
The moving lemma for affine schemes (proposition 9.3) implies that the homo-
topy limit construction yields for each affine X ∈ Sm/k a complex canonically
quasi-isomorphic to πp(snE)(n)(X, ∗); this property is inherited by the regular-

izing homotopy colimit. As the complexes πp(snE)(n)(X, ∗) satisfy Nisnevich
excision (lemma 9.4) and are homotopy invariant for all X, this implies that
π̂p((snE)(n))∗(X) is canonically isomorphic to πp(snE)(n)(X, ∗) in D−(Ab) for
all X ∈ Sm/k. By construction, this isomorphism is natural with respect to
smooth morphisms in Sm/k. �

Corollary 9.7. Suppose chark = 0. π̂p((snE)(n))∗ is a homotopy invariant
complex of presheaves with transfer.

Proof. By theorem 9.6, we have the isomorphism in D−(Ab)

π̂p((snE)(n))∗(X) ∼= πp(snE)(n)(X, ∗).
for all X ∈ Sm/k, natural with respect to smooth morphisms. As the presheaf
πp(snE)(n)(−, ∗) is homotopy invariant, so is π̂p((snE)(n))∗. �

proof of theorem 2. As in the proof of theorem 9.6, the method of [12, theorem
7.4.1], shows that the tower (9.2) extends to a tower

(9.4) . . .→ ρ≥p+1snE → ρ≥psnE → . . .→ snE

in SHS1(k) with value (9.2) atX ∈ Sm/k, and with the cofiber of ρ≥p+1snE →
ρ≥psnE naturally isomorphic to EMeff

A1 (π̂p((snE)(n))∗). By lemma 9.4 and

corollary 9.7, the presheaves π̂p((snE)(n))∗ define objects in DM eff
− (k). Thus,

we have shown that the layers in the tower (9.4) have a motivic structure,
proving theorem 2. �

10. The Friedlander-Suslin tower

As the reader has surely noticed, the lack of functoriality for the simplicial
spectra E(n)(X,−) creates annoying technical problems when we wish to extend
the construction of the homotopy coniveau tower to a tower in SHS1(k). In
their work on the spectral sequence from motivic cohomology to K-theory,
Friedlander and Suslin [4] have constructed a completely functorial version of
the homotopy coniveau tower, using “quasi-finite supports”. Unfortunately, the
comparison between the Friedlander-Suslin version and E(n)(X,−) is proven in
[4] only for K-theory and motivic cohomology. In this last section, we recall the
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Friedlander-Suslin construction and form the conjecture that the Friedlander-
Suslin tower is naturally isomorphic to the homotopy coniveau tower.

Let Q(n)
X (m) be the set of closed subsets W of An×X×∆m such that, for each

irreducible component W ′ of W , the projection W ′ → X ×∆m is quasi-finite.
For E ∈ SptS1(k), we let

E
(n)
FS (X,m) := lim−→

W∈Q(n)
X (m)

E(W )(An ×X ×∆m)

As the condition defining Q(n)
X (m) are preserved under maps

idAn × f × g : An ×X ′ ×∆m′ → An ×X ×∆m,

where f : X ′ → X is an arbitrary map in Sm/k, and g : ∆m′ → ∆m is

a structure map in ∆∗, the spectra E
(n)
FS (X,m) define a simplicial spectrum

E
(n)
FS (X,−) and these simplicial spectra, for X ∈ Sm/k, extend to a presheaf

of simplicial spectra on Sm/k:

E
(n)
FS (?,−) : Sm/kop → ∆opSpt.

Similarly, if we take the linear embedding in : An → An+1 = An × A1, x 7→
(x, 0), the pull-back by in× id preserves the support conditions, and thus gives
a well-defined map of simplicial spectra

i∗n : E
(n+1)
FS (X,−)→ E

(n)
FS (X,−),

forming the tower of presheaves on Sm/k

(10.1) . . .→ E
(n+1)
FS (?,−)→ E

(n)
FS (?,−)→ . . . .

We may compare E
(n)
FS (X,−) and E(n)(X,−) using the method of [4] as follows:

The simplicial spectra E(n)(X,−) are functorial for flat maps in Sm/k, in the
evident manner. They satisfy homotopy invariance, in that the pull-back map

p∗ : E(n)(X,−)→ E(n)(A1 ×X,−)

induces a weak equivalence on the total spectra. We have the evident inclusion
of simplicial sets

Q(n)
X (−) →֒ S(n)An×X(−)

inducing the map

ϕX,n : E
(n)
FS (X,−)→ E(n)(An ×X,−).

Together with the weak equivalence p∗ : |E(n)(X,−)| → |E(n)(An×X,−)|, the
maps ϕX,n induce a map of towers of total spectra in SH

(10.2) ϕX,∗ : |E(∗)
FS(X,−)| → |E(∗)(X,−)|.

Conjecture 10.1. For each X ∈ Sm/k and each quasi-fibrant E ∈ SptS1(k),
the map (10.2) induces an isomorphism in SH of the towers of total spectra.
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Combined with the weak equivalence given by homotopy invariance and the
results of [11], this would give us an isomorphism in SHS1(k):

fnE ∼= |E(n)
FS (?,−)|.

As transfers in some form or other are used in the arguments relating the
Friedlander-Suslin complex to the Bloch-type complexes in the known cases, a
weaker form of the conjecture might be more reasonable:

Conjecture 10.2. For each X ∈ Sm/k and each quasi-fibrant E ∈ SptS1(k)
with s0E ∼= 0 in SHS1(k), the map (10.2) induces an isomorphism in SH of
the towers of total spectra.
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1. Introduction

Let k be a field, Fieldsk be the category of field extensions K/k, Sets be the
category of sets, and F : Fieldsk → Sets be a covariant functor. Given a tower
of field extensions k ⊂ K ⊂ L, we will denote the image of a ∈ F (K) under the
natural map F (K)→ F (L) by aL. Conversely, if b ∈ F (L) lies in the image of
this map, we will say that b descends to K.
Given a field extension K/k and b ∈ F (L), the essential dimension edk(b) of
b is defined as the minimal transcendence degree trdegk(K), as K ranges over
all intermediate subfields k ⊂ K ⊂ L such that b descends to K. Informally
speaking, this is the minimal number of parameters one needs to define b. The
essential dimension edk(F ) of the functor F is the maximal value of edk(b),
as L ranges over all field extensions of k and b ranges over F (L). Informally
speaking, this is the minimal number of parameters required to define any
object of F .
The essential dimension edk(b; p) at a prime p is defined as the minimum of
edk(bL′), taken over all finite field extensions L′/L such that the degree [L′ : L]

1Partially supported by a University Graduate Fellowship at the University of British
Columbia.

2Partially supported by NSERC Discovery and Accelerator Supplement grants.
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is prime to p. The essential dimension of edk(F ; p) of F at a prime p is the
supremum of edk(b; p) taken over all b ∈ F (L) and over all field extensions L/k.
An important example where the above notions lead to a rich theory is the
nonabelian cohomology functor FG = H1(∗, G), sending a field K/k to the
set H1(K,G) of isomorphism classes of G-torsors over Spec(K), in the fppf
topology. Here G is an algebraic group defined over k. The essential dimension
of this functor can be thought of as a numerical measure of complexity of
G-torsors over fields or, alternatively, as the minimal number of parameters
required to define a versal G-torsor. In the case where G is a finite (constant)
group defined over k, which will be the main focus of this paper, edk(G) is the
minimal number of parameters required to describe all G-Galois extensions.
For details on the notion of essential dimension of a finite group we refer the
reader to [BuR], [Re] or [JLY, Chapter 8], on the notion of essential dimension
of a functor to [BF] or [BRV2] and on essential dimension at a prime p to [Me].
N. Karpenko and A. Merkurjev [KM] recently proved the following formula for
the essential dimension of a (finite) p-group.

Theorem 1.1. Let G be a p-group and k be a field of characteristic 6= p con-
taining a primitive pth root of unity. Then

edk(G; p) = edk(G) = min dim(V ) ,

where the minimum is taken over all faithful k-representations G →֒ GL(V ).

The purpose of this paper is to explore some of the consequences of this theo-
rem. The following notation will be used throughout.
We will fix a prime p and a base field k such that

(1) char(k) 6= p and k contains ζ,

where ζ is a primitive pth root of unity if p ≥ 3 and a primitive 4th root of
unity if p = 2.
For a finite group H , we will denote the intersection of the kernels of all multi-
plicative characters χ : H → k∗ by H ′. In particular, if k contains an eth root
of unity, where e is the exponent of H , then H ′ = [H,H ] is the commutator
subgroup of H .
All p-groups in this paper will be assumed to be finite. Given a p-group G, we
set C(G) to be the center of G and

(2) C(G)p := {g ∈ C(G) | gp = 1}
to be the p-torsion subgroup of C(G). We will view C(G)p and its subgroups
as Fp-vector spaces, and write “dimFp” for their dimensions. We further set

(3) Ki :=
⋂

[G:H]=pi

H ′ and Ci := Ki ∩C(G)p .

for every i ≥ 0, K−1 := G and C−1 := K−1 ∩ C(G)p = C(G)p.
Our first main result is following theorem. Part (b) may be viewed as a variant
of Theorem 1.1.
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Theorem 1.2. Let G be a p-group, k be a base field satisfying (1) and ρ : G →֒
GL(V ) be a faithful linear k-representation of G. Then

(a) ρ has minimal dimension among the faithful linear representations of G
defined over k if and only if for every i ≥ 0 the irreducible decomposition of ρ
has exactly

dimFp Ci−1 − dimFp Ci

irreducible components of dimension pi, each with multiplicity 1.

(b) edk(G; p) = edk(G) =
∑∞

i=0(dimFp Ci−1 − dimFp Ci)p
i.

Note that Ki = Ci = {1} for large i (say, if pi ≥ |G|), so only finitely many
terms in the above infinite sum are non-zero. We also remark that the minimal
number of irreducible components in a faithful representations of a finite group
(but not necessarily a p-group) was studied in [Ta, Na], see also [Lo, Section
4].
We will prove Theorem 1.2 in section 2; the rest of the paper will be devoted
to its applications. The main results we will obtain are summarized below.

Classification of p-groups of essential dimension ≤ p.

Theorem 1.3. Let p be a prime, k be as in (1) and G be a p-group such that
G′ 6= {1}. Then the following conditions are equivalent.

(a) edk(G) ≤ p,
(b) edk(G) = p,

(c) The center C(G) is cyclic and G has a subgroup H of index p such that
H ′ = {1}.

Note that the assumption that G′ 6= {1} is harmless. Indeed, if G′ = {1} then
by Theorem 1.2(b) edk(G) = rank (G); cf. also [BuR, Theorem 6.1] or [BF,
section 3].

Essential dimension of p-groups of nilpotency class 2.

Theorem 1.4. Let G be a p-group of exponent e and k be a field of charac-
teristic 6= p containing a primitive e-th root of unity. Suppose the commutator
subgroup [G,G] is central in G. Then

(a) edk(G; p) = edk(G) ≤ rank C(G) + rank [G,G](p⌊m/2⌋ − 1), where pm is
the order of G/C(G).

(b) Moreover, if [G,G] is cyclic then |G/C(G)| is a complete square and equality
holds in (a). That is, in this case

edk(G; p) = edk(G) =
√
|G/C(G)|+ rank C(G)− 1 .
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Essential dimension of a quotient group. C. U. Jensen, A. Ledet and N.
Yui asked if edk(G) ≥ edk(G/N) for every finite group G and normal subgroup
N ⊳ G; see [JLY, p. 204]. The following theorem shows that this inequality is
false in general.

Theorem 1.5. Let p be a prime and k be a field of characteristic 6= p containing
a primitive pth root of unity. For every real number λ > 0 there exists a p-group
G and a central subgroup H of G such that edk(G/H) > λ edk(G).

Essential dimension of SLn(Z). G. Favi and M. Florence [FF] showed that
edk(GLn(Z)) = n for every n ≥ 1 and edk(SLn(Z)) = n − 1 for every odd
n. For details, including the definitions of edk(GLn(Z)) and edk(SLn(Z)), see
Section 5. For even n Favi and Florence showed that edk(SLn(Z)) = n− 1 or
n and left the exact value of edk(SLn(Z)) as an open question. In this paper
we will answer this question as follows.

Theorem 1.6. Suppose k is a field of characteristic 6= 2. Then

edk(SLn(Z); 2) = edk(SLn(Z)) =

{
n− 1, if n is odd,

n, if n is even

for any n ≥ 3.

Acknowledgement. Theorems 1.4(b) and 1.5 first appeared in the unpub-
lished preprint [BRV1] by P. Brosnan, the second author and A. Vistoli. We
thank P. Brosnan and A. Vistoli for allowing us to include them in this pa-
per. Theorem 1.4(b) was, in fact, a precursor to Theorem 1.1; the techniques
used in [BRV1] were subsequently strengthened and refined by Karpenko and
Merkurjev [KM] to prove Theorem 1.1. The proof of Theorem 1.4(b) in Sec-
tion 4 may thus be viewed as a result of reverse engineering. We include it
here because it naturally fits into the framework of this paper, because Theo-
rem 1.4(b) is used in a crucial way in [BRV2], and because a proof of this result
has not previously appeared in print.
We are also grateful to R. Lötscher for pointing out and helping us correct an
inaccuracy in the proof of Lemma 2.1.

2. Proof of Theorem 1.2

Throughout this section we assume k to be as in (1). An important role in the
proof will be played by the p-torsion subgroup C(G)p of the center of G and
by the descending sequences

K−1 = G ⊃ K0 ⊃ K1 ⊃ K2 ⊃ . . . and

C−1 = C(G)p ⊃ C0 ⊃ C1 ⊃ C2 ⊃ . . .
of characteristic subgroups of G defined in (3). To simplify the notation, we
will write C for C−1 = C(G)p for the rest of this section. We will repeatedly
use the well-known fact that

(4) A normal subgroup N of G is trivial if and only if N ∩ C is trivial.
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We begin with three elementary lemmas.

Lemma 2.1. Ki =
⋂

dim(ρ)≤pi ker(ρ), where the intersection is taken over all

irreducible representations ρ of G of dimension ≤ pi.
Proof. Let j ≤ i. Recall that every irreducible representation ρ of G of dimen-
sion pj is induced from a 1-dimensional representation χ of a subgroup H ⊂ G
of index pj ; see [LG-P, (II.4)] for p ≥ 3 (cf. also [Vo]) and [LG-P, (IV.2)] for
p = 2. (Note that our assumption (1) on the base field k is crucial here. In the
case where k = C a more direct proof can be found in [Se, Section 8.5]).

Thus ker(ρ) = ker(indGH χ) =
⋂
g∈G g ker(χ)g−1, and since each g ker(χ)g−1

contains (gHg−1)′, we see that ker(ρ) ⊃ Kj ⊃ Ki. The opposite inclusion is
proved in a similar manner. �

Lemma 2.2. Let ρ : G→ GL(V ) an irreducible representation of a p-group G.
Then

(a) ρ(C) consists of scalar matrices. In other words, the restriction of ρ to C
decomposes as χ ⊕ . . . ⊕ χ (dim(V ) times), for some multiplicative character
χ : C → Gm. We will refer to χ as the character associated to ρ.

(b) Ci =
⋂

dim(ψ)≤pi ker(χψ), where the intersection is taken over all irreducible

G-representations ψ of dimension ≤ pi and χψ : C → Gm denotes the character
associated to ψ. In particular, if dim(ρ) ≤ pi then χρ vanishes on Ci.

Proof. (a) follows from Schur’s lemma. (b) By Lemma 2.1

Ci = C ∩
⋂

dim(ψ)≤pi
ker(ψ) =

⋂

dim(ψ)≤pi
(C ∩ ker(ψ)) =

⋂

dim(ψ)≤pi
ker(χψ) .

�

Lemma 2.3. Let G be a p-group and ρ = ρ1⊕ . . .⊕ ρm be the direct sum of the
irreducible representations ρi : G → GL(Vi). Let χi := χρi : C → Gm be the
character associated to ρi.

(a) ρ is faithful if and only if χ1, . . . , χm span C∗ as an Fp-vector space.

(b) Moreover, if ρ is of minimal dimension among the faithful representations
of G then χ1, . . . , χm form an Fp-basis of C∗.

Proof. (a) By (4), Ker(ρ) is trivial if and only if Ker(ρ) ∩ C = ∩mi=1 Ker(χi)
is trivial. On the other hand, ∩mi=1 Ker(χi) is trivial if and only if χ1, . . . , χm
span C∗.

(b) Assume the contrary, say χm is a linear combination of χ1, . . . , χm−1. Then
part (a) tells us that ρ1 ⊕ . . .⊕ ρm−1 is a faithful representation of G, contra-
dicting the minimality of dim(ρ). �

We are now ready to proceed with the proof of Theorem 1.2. Part (b) is an
immediate consequence of part (a) and Theorem 1.1. We will thus focus on
proving part (a). In the sequel for each i ≥ 0 we will set

δi := dimFp Ci−1 − dimFp Ci
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and

∆i := δ0 + δ1 + · · ·+ δi = dimFp C − dimFp Ci ,

where the last equality follows from C−1 = C.
Our proof will proceed in two steps. In Step 1 we will construct a faithful rep-
resentation µ of G such that for every i ≥ 0 exactly δi irreducible components
of µ have dimension pi. In Step 2 we will show that dim(ρ) ≥ dim(µ) for any
other faithful representation ρ of G, and moreover equality holds if and only if
ρ has exactly δi irreducible components of dimension pi, for every i ≥ 0.

Step 1: We begin by constructing µ. By definition,

C = C−1 ⊃ C0 ⊃ C1 ⊃ . . . ,
where the inclusions are not necessarily strict. Dualizing this flag of Fp-vector
spaces, we obtain a flag

(0) = (C∗)−1 ⊂ (C∗)0 ⊂ (C∗)1 ⊂ . . .
of Fp-subspaces of C∗, where

(C∗)i := {χ ∈ C∗ |χ is trivial on Ci} ≃ (C/Ci)
∗.

Let Ass(C) ⊂ C∗ be the set of characters of C associated to irreducible repre-
sentations ofG, and let Assi(C) be the set of characters associated to irreducible
representations of dimension pi. Lemma 2.2(b) tells us that

Ass0(C) ∪ Ass1(C) ∪ · · · ∪Assi(C) spans (C∗)i

for every i ≥ 0. Hence, we can choose a basis χ1, . . . , χ∆0 of (C∗)0 from
Ass0(C), then complete it to a basis χ1, . . . , χ∆1 of (C∗)1 by choosing the last
∆1 −∆0 characters from Ass1(C), then complete this basis of (C∗)1 to a basis
of (C∗)2 by choosing ∆2 − ∆1 additional characters from Ass2(C), etc. We
stop when Ci = (0), i.e., ∆i = dimFp C.
By the definition of Assi(C), each χj is the associated character of some irre-
ducible representation µj of G. By our construction

µ = µ1 ⊕ · · · ⊕ µdimFp (C)

has the desired properties. Indeed, since χ1, . . . , χdimFp (C) form a basis of C∗,

Lemma 2.3 tells us that µ is faithful. On the other hand, by our construction
exactly

δi − δi−1 = dimFp C
∗
i − dimFp C

∗
i−1 = dimFp Ci−1 − dimFp Ci

of the characters χ1, . . . , χc come from Assi(C). Equivalently, exactly

dimFp Ci−1 − dimFp C

of the irreducible representations µ1, . . . , µc are of dimension pi.

Step 2: Let ρ : G → GL(V ) be a faithful linear representation of G of the
smallest possible dimension,

ρ = ρ1 ⊕ . . .⊕ ρc
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be its irreducible decomposition, and χi : C → Gm be the character associated
to ρi. By Lemma 2.3(b), χ1, . . . , χc form a basis of C∗. In particular, c =
dimFp C and at most dimFp C−dimFp Ci of the characters χ1, . . . , χc can vanish
on Ci. On the other hand, by Lemma 2.2(b) every representation of dimension
≤ pi vanishes on Ci. Thus if exactly di of the irreducible representations
ρ1, . . . , ρc have dimension pi then

d0 + d1 + d2 + . . .+ di ≤ dimFp C − dimFp Ci

for every i ≥ 0. For i ≥ 0, set Di := d0 + · · ·+ di = number of representations
of dimension ≤ pi among ρ1, . . . , ρc. We can now write the above inequality as

(5) Di ≤ ∆i for every i ≥ 0.

Our goal is to show that dim(ρ) ≥ dim(µ) and that equality holds if and only
if exactly δi of the irreducible representations ρ1, . . . , ρdimFp (C) have dimension

pi. The last condition translates into di = δi for every i ≥ 0, which is, in turn
equivalent to Di = ∆i for every i ≥ 0.
Indeed, setting D−1 := 0 and ∆−1 := 0, we have,

dim(ρ)− dim(µ) =

∞∑

i=0

(di − δi)pi =

∞∑

i=0

(Di −∆i)p
i −

∞∑

i=0

(Di−1 −∆i−1)pi

=
∞∑

i=0

(Di −∆i)(p
i − pi+1) ≥ 0 ,

where the last inequality follows from (5). Moreover, equality holds if and only
if Di = ∆i for every i ≥ 0, as claimed. This completes the proof of Step 2 and
thus of Theorem 1.2. �

3. Proof of Theorem 1.3

Since K0 = G′ is a non-trivial normal subgroup of G, we see that K0 ∩ C(G)
and thus C0 = K0 ∩ C(G)p is non-trivial. This means that in the summation
formula of Theorem 1.2(b) at least one of the terms

(dimFp Ci−1 − dimFp Ci)p
i

with i ≥ 1 will be non-zero. Hence, edk(G) ≥ p; this shows that (a) and (b)
are equivalent. Moreover, equality holds if and only if (i) dimFp C−1 = 1, (ii)
dimFp C0 = 1 and (iii) C1 is trivial. Since we are assuming K0 = G′ 6= {1}
and hence, C0 = K0 ∩ C(G)p 6= {1} by (4), (ii) follows from (i) and thus can
be dropped.
It now suffices to prove that (i) and (iii) are equivalent to condition (c) of the
theorem. Since C−1 = C(G)p, (i) is equivalent to C(G) being cyclic. On the
other hand, (iii) means that

(6) K1 =
⋂

[G:H]=p

H ′
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intersects C(G)p trivially. Since K1 is a normal subgroup of G, (4) tells us that
(iii) holds if and only if K1 = {1}.
It remains to show that K1 = {1} if and only if H ′ = {1} for some subgroup
H of G of index p. One direction is obvious: if H ′ = {1} for some H of index p
then the intersection (6) is trivial. To prove the converse, assume the contrary:
the intersection (6) is trivial but H ′ 6= {1} for every subgroup H of index p.
Since every such H is normal in G (and so is H ′), (4) tells us that that H ′ 6= {1}
if and only if H ′ ∩ C(G) 6= {1}. Since C(G) is cyclic, the latter condition is
equivalent to C(G)p ⊂ H ′. Thus

C(G)p ⊂ K1 =
⋂

[G:H]=p

H ′ ,

contradicting our assumption that K1 = {1}.
To sum up, we have shown that (c) is equivalent to conditions (i) and (iii)
above, and that these conditions are in turn, equivalent to (a) (or to (b)). This
completes the proof of Theorem 1.3.

Remark 3.1. p-groups that have a faithful representation of degree p over a
field k, satisfying (1) are described in [LG-P, II.4, III.4, IV.2]; see also [Vo].
Combining this description with Theorem 1.1 yields the following variant of
Theorem 1.3.
Let k be a field satisfying (1) and G be a p-group such that G′ 6= {1}. Then
the following conditions are equivalent:

(a) edk(G) ≤ p,
(b) edk(G) = p,

(c) G is isomorphic to a subgroup of Z/pα ≀ Z/p = (Z/pα)p ⋊ Z/p, for some
α ≥ 1 such that k contains a primitive root of unity of degree pα. �

4. Proof of Theorems 1.4 and 1.5

Proof of Theorem 1.4. Since the commutator K0 = [G,G] is central, C0 =
K0 ∩ C(G)p is of dimension rank [G,G] and the p0 term in the formula of
Theorem 1.2 is (rank C(G) − rank [G,G]).
Let Q = G/C(G) which is abelian by assumption. Let h1, ..., hs be generators
of [G,G], where s = rank [G,G], so that

[G,G] = Z/pe1h1 ⊕ · · · ⊕ Z/pe1h1 ,

written additively. For g1, g2 ∈ G the commutator can then be expressed as

[g1, g2] = β1(g1, g2)h1 + . . .+ βs(g1, g2)hs .

Note that each βi(g1, g2) depends on g1, g2 only modulo the center C(G). Thus
each βi descends to a skew-symmetric bilinear form

Q×Q→ Z/pei

which, by a slight abuse of notation, we will continue to denote by βi. Let pm

be the order of Q. For each form βi there is an isotropic subgroup Qi of Q of
order at least p⌊(m+1)/2⌋ (or equivalently, of index at most p⌊m/2⌋ inQ); see [AT,
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Corollary 3]. Pulling these isotropic subgroups back to G, we obtain subgroups
G1, . . . , Gs of G of index ≤ p⌊m/2⌋ with the property that G′

i = [Gi, Gi] lies
in the subgroup of C(G) generated by h1, . . . , hi−1, hi+1, . . . , hs. In particular,
G′

1 ∩ · · · ∩ G′
s = {1}. Thus, all Ki (and hence, all Ci) in (3) are trivial for

i ≥ ⌊m/2⌋, and Theorem 1.2 tells us that

edk(G) = dimFp C−1 − dimFp C0 +

⌊m/2⌋∑

j=1

(dimFp Cj−1 − dimFp Cj)p
j ≤

dimFp C−1 − dimFp C0 +

⌊m/2⌋∑

j=1

(dimFp Cj−1 − dimFp Cj) · p⌊m/2⌋ =

rank C(G) + rank [G,G](p⌊m/2⌋ − 1) .

(b) In general, the skew-symmetric bilinear forms βi may be degenerate. How-
ever, if [G,G] is cyclic, i.e., s = 1, then we have only one form, β1, which is
easily seen to be non-degenerate. For notational simplicity, we will write β
instead of β1. To see that β is non-degenerate, suppose g := g (modulo C(G))
lies in the kernel of β for some g ∈ G. Then by definition

β(g, g1) = gg1g
−1g−1

1 = 1

for every g1 ∈ G. Hence, g is central in G, i.e., g = 1 in Q = G/C(G), as
claimed.
We conclude that the order of Q = G/C(G) is a perfect square, say p2i, and

Q contains a maximal isotropic subgroup I ⊂ Q of order pi =
√
|G/C(G)|; see

[AT, Corollary 4]. The preimage of I in G is a maximal abelian subgroup of
index pi. Consequently, K0 = [G,G],K1, . . . ,Ki−1 are all of rank 1 and Ki is

trivial, where pi =
√
|G/C(G)|. Moreover, since all of these groups lie in [G,G]

and hence, are central, we have Ci = (Ki)p and thus

dimFp(C0) = dimFp(C1) = . . . = dimFp(Ci−1) = 1 and dimFp(Ci) = 0 .

Specializing the formula of Theorem 1.4 to this situation, we obtain part (b).
�

Proof of Theorem 1.5. Let Γ be the non-abelian group of order p3 given by
generators x, y, z and relations xp = yp = zp = [x, z] = [y, z] = 1,
[x, y] = z. Choose a multiplicative character χ : H → k∗ of the subgroup
A = 〈x, z〉 ≃ (Z/pZ)2 which is non-trivial on the center 〈z〉 of Γ and consider

the p-dimensional induced representation IndΓ
A(χ). Since the center 〈z〉 of Γ

does not lie in the kernel of IndΓ
A(χ), we conclude that IndΓ

A(χ) is faithful. Thus
we have constructed a faithful p-dimensional representation of Γ defined over
k. Consequently

(7) edk(Γ) ≤ p .
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Taking the direct sum of n copies of this representation, we obtain a faithful
representation of Γn of dimension np. Thus for any n ≥ 1 we have

(8) edk Γn ≤ np .
(We remark that both (7) and (8) are in fact equalities. Indeed, if ζp2 is a
primitive root of unity of degree p2 then

edk(Γ) ≥ edk(ζp2 )(Γ) =
√
p2 + 1− 1 = p ,

where the middle equality follows from Theorem 1.4(b). Hence, we have
edk(Γ) = p. Moreover, by [KM, Theorem 5.1], edk Γn = n · edk(Γ) = np.
However, we will only need the upper bound (8) in the sequel.)
The center of Γ is 〈z〉; denote it by C. The center of Γn is then isomorphic
to Cn. Let Hn be the subgroup of Cn consisting of n-tuples (c1, . . . , cn) such
that c1 · · · cn = 1. The center C(Γn/Hn) of Γn/Hn is clearly cyclic of order p
(it is generated by the class of the element (z, 1, . . . , 1) modulo Hn), and the
commutator [Γn/Hn,Γ

n/Hn] is central. Hence,

(9) edk(Γn/Hn) ≥ edk(ζ2)(Γ
n/Hn) =

√
p2n + 1− 1 = pn ,

where the middle equality follows from Theorem 1.4(b). Setting G = Γn

and H = Hn, and comparing (8) with (9), we see that the desired inequal-
ity edk(G/H) > λ edk(G) holds for suitably large n. �

5. Proof of Theorem 1.6

Recall that the essential dimension of the group GLn(Z) over a field k, or
edk(GLn(Z)) for short, is defined as the essential dimension of this functor

H1(∗,GLn(Z)) : K → {K-isomorphism classes of n-dimensional K-tori} ,
where K/k is a field extension. Similarly edk(SLn(Z)) is defined as the essential
dimension of the functor

H1(∗, SLn(Z)) : K → {K-isomorphism classes of n-dimensional K-tori
with φT ⊂ SLn(Z) } ,

where φT : Gal(K)→ GLn(Z) is the natural representation of the Galois group
of K on the character lattice of T . The essential dimensions edk(GLn(Z); p) and
edk(SLn(Z); p) are respectively the essential dimensions of the above functors
at a prime p.
G. Favi and M. Florence [FF] showed that for Γ = GLn(Z) or SLn(Z),

(10) edk(Γ) = max{edk(F )|F finite subgroup of Γ}.
From this they deduced that

edk(GLn(Z)) = n, and edk(SLn(Z)) =

{
n− 1, if n is odd,

n− 1 or n, if n is even.

For details, see [FF, Theorem 5.4].
Favi and Florence also proved that edk(SL2(Z)) = 1 if k contains a primitive
12th root of unity and asked whether edk(SLn(Z)) = n − 1 or n in the case
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where n ≥ 4 is even; see [FF, Remark 5.5]. In this section we will prove
Theorem 1.6 which shows that the answer is always n.
A minor modification of the arguments in [FF] shows that (10) holds also for
essential dimension at a prime p:

(11) edk(Γ; p) = max{edk(F ; p)|F a finite subgroup of Γ},
where Γ = GLn(Z) or SLn(Z). The finite groups F that Florence and Favi used
to find the essential dimension of GLn(Z) and SLn(Z) (n odd) are (Z/2Z)n and
(Z/2Z)n−1 respectively. Thus edk(GLn(Z); 2) = edk(GLn(Z)) = n for every
n ≥ 1 and edk(SLn(Z); 2) = edk(SLn(Z)) = n− 1 if n is odd.
Our proof of Theorem 1.6 will rely on part (b) of the following easy corollary
of Theorem 1.2.

Corollary 5.1. Let G be a p-group, and k be as in (1).

(a) If C(G)p ⊂ Ki then edk(G) is divisible by pi+1.

(b) If C(G)p ⊂ G′ then edk(G) is divisible by p.

(c) If C(G)p ⊂ G(i), where G(i) denotes the ith derived subgroup of G, then
edk(G) is divisible by pi.

Proof. (a) C(G)p ⊂ Ki implies C−1 = C0 = · · · = Ci. Hence, in the formula
of Theorem 1.2(b) the p0, p1, . . . , pi terms appear with coefficient 0. All other
terms are divisible by pi+1, and part (a) follows.
(b) is an immediate consequence of (a), since K0 = G′.
(c) By [H, Theorem V.18.6] G(i) is contained in the kernel of every pi−1-
dimensional representation of G. Lemma 2.1 now tells us that G(i) ⊂ Ki−1

and part (c) follows from part (a). �

Proof of Theorem 1.6. We assume that n = 2d ≥ 4 is even. To prove The-
orem 1.6 it suffices to find a 2-subgroup F of SLn(Z) of essential dimension
n.
Diagonal matrices and permutation matrices generate a subgroup of GLn(Z)
isomorphic to µn2 ⋊Sn. The determinant function restricts to a homomorphism

det: µn2 ⋊ Sn → µ2

sending ((ǫ1, . . . , ǫn), τ)) ∈ µn2 ⋊ Sn to the product ǫ1ǫ2 · · · ǫn · sign(τ). Let Pn
be a Sylow 2-subgroup of Sn and Fn be the kernel of det : µn2 ⋊ Pn → µ2. By
construction Fn is a finite 2-group contained in SLn(Z). Theorem 1.6 is now a
consequence of the following proposition.

Proposition 5.2. If char(k) 6= 2 then edk(F2d) = 2d for any d ≥ 2.

To prove the proposition, let

D2d = {diag(ǫ1, . . . , ǫ2d) | each ǫi = ±1 and ǫ1ǫ2 · · · ǫ2d = 1}
be the subgroup of “diagonal” matrices contained in F2d.
Since D2d ≃ µ2d−1

2 has essential dimension 2d − 1, we see that edk(F2d) ≥
edk(D2d) = 2d− 1. On the other hand the inclusion F2d ⊂ SL2d(Z) gives rise
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to a 2d-dimensional representation of F2d, which remains faithful over any field
k of characteristic 6= 2. Hence, edk(F2d) ≤ 2d. We thus conclude that

(12) edk(F2d) = 2d− 1 or 2d.

Using elementary group theory, one easily checks that

(13) C(F2d) ⊂ [F2d, F2d] ⊂ F ′
2d .

Thus, if k′ ⊃ k is a field as in (1), edk′(F2d) is even by Corollary 5.1; since
edk(F2d) ≥ edk′(F2d), (12) now tells us that edk(F2d) = 2d. This completes
the proof of Proposition 5.2 and thus of Theorem 1.6. �

Remark 5.3. The assumption that d ≥ 2 is essential in the proof of the
inclusion (13). In fact, F2 ≃ Z/4Z, so (13) fails for d = 1.

Remark 5.4. Note that for any integers m,n ≥ 2, Fm+n contains the direct
product Fm × Fn. Thus

edk(Fm+n) ≥ edk(Fm × Fn) = edk(Fm) + edk(Fn) ,

where the last equality follows from [KM, Theorem 5.1]. Thus Proposition 5.2
only needs to be proved for d = 2 and 3 (or equivalently, n = 4 and 6); all
other cases are easily deduced from these by applying the above inequality
recursively, with m = 4. In particular, the group-theoretic inclusion (13) only
needs to be checked for d = 2 and 3. Somewhat to our surprise, this reduction
does not appear to simplify the proof of Proposition 5.2 presented above to any
significant degree.

Remark 5.5. It is interesting to note that while the value of edk(SL2(Z))
depends on the base field k (see [FF, Remark 5.5]), for n ≥ 3, the value of
edk(SLn(Z)) does not (as long as char(k) 6= 2).
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an action of the general linear group GL(A). This leads to an exact
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The homology of GLn(A) has been studied in great depth by A.A. Suslin. In
some of his works ([20] and [21] for example), the action of GLn(A) on certain
simplicial complexes facilitated his homology computations.
We introduce three simplicial complexes in this paper. They are motivated by
the splitting principle. The description of these spaces is given below. This
is followed by the little information we possess on their homology. After that
comes the connection with K-theory.
These objects are defined quickly in the context of affine algebraic groups as
follows. Let G be a connected algebraic group1 defined over a field k. The
collection of minimal parabolic subgroups P ⊂ G is denoted by FL(G) and
the collection of maximal k-split tori T ⊂ G is denoted by SPL(G). The
simplicial complex FL(G) has FL(G) as its set of vertices. Minimal parabolics
P0, P1, ..., Pr of G form an r-simplex if their intersection contains a maximal
k-split torus2. The dimension of FL(G) is one less than the order of the Weyl

1Gopal Prasad informed us that we should take G reductive or k perfect. The standard
classification, via root systems, of all parabolic subgroups containing a maximal split torus,
requires this hypothesis.

2John Rognes has an analogous construction with maximal parabolics replacing minimal
parabolics. His spaces, different homotopy types from ours, are connected with K-theory as
well, see [15] .
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group of any T ∈ SPL(G). Dually, we define SPL(G) as the simplicial complex
with SPL(G) as its set of vertices, and T0, T1, ..., Tr forming an r-simplex if
they are all contained in a minimal parabolic. In general, SPL(G) is infinite
dimensional.
That both SPL(G) and FL(G) have the same homotopy type can be deduced
from corollary 7, which is a general principle. A third simplicial complex,
denoted by ET(G), which we refer to as the enriched Tits building, is better
suited for homology computations. This is the simplicial complex whose sim-
plices are (nonempty) chains of the partially ordered set E(G) whose definition
follows. For a parabolic subgroup P ⊂ G, we denote by U(P ) its unipotent
radical and by j(P ) : P → P/U(P ) the given morphism. Then E(G) is the
set of pairs (P, T ) where P ⊂ G is a parabolic subgroup and T ⊂ P/U(P )
is a maximal k-split torus. We say (P ′, T ′) ≤ (P, T ) in E(G) if P ′ ⊂ P and
j(P )−1(T ) ⊂ j(P ′)−1T ′. Note that dim E(G) is the split rank of the quotient
of G/U(G) by its center. Assume for the moment that this quotient is a simple
algebraic group. Then (P, T ) 7→ P gives a map to the cone of the Tits building.
The topology of ET(G) is more complex than the topology of the Tits building,
which is well known to be a bouquet of spheres.
When G = GL(V ), we denote the above three simplicial complexes by FL(V ),
SPL(V ) and ET(V ). These constructions have simple analogues even when
one is working over an arbitrary associative ring A. Their precise definition is
given with some motivation in section 2. Some basic properties of these spaces
are also established in section 2. Amongst them is Proposition 11 which shows
that ET(V ) and FL(V ) have the same homotopy type.
ET(An) has a polyhedral decomposition (see lemma 21). This produces a
spectral sequence (see Theorem 2) that computes its homology. The E1

p,q terms

and the differentials d1p,q are recognisable since they involve only the homology
groups of ET(Aa) for a < n. The differentials drp,q for r > 1 are not understood
well enough, however.
There are natural inclusions ET(An) →֒ ET(Ad) for d > n, and the induced
map on homology factors through

Hm(ET(An))→ H0(En(A), Hm(ET(An)))→ Hm(ET(Ad)).

where En(A) is the group of elementary matrices (see Corollary 9).
For the remaining statements on the homology of ET(An), we assume that A
is a commutative ring with many units, in the sense of Van der Kallen. See
[12] for a nice exposition of the definition and its consequences. Commutative
local rings A with infinite residue fields are examples of such rings. Under this
assumption, En(A) can be replaced by GLn(A) in the above statement.
We have observed that ET(Am+1) has dimension m. Thus it is natural question
to ask whether

H0(GLm+1(A), Hm(ET(Am+1)))⊗Q→ Hm(ET(Ad))⊗Q

is an isomorphism when d > m + 1. Theorem 3 asserts that this is true for
m = 1, 2, 3. The statement is true in general (see Proposition 29) if a certain
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Compatible Homotopy Question has an affirmative answer. The higher differ-
entials of the spectral sequence can be dealt with if this is true. Proposition 22
shows that this holds in some limited situations.
The computation of H0(GL3(A), H2(ET(A3))) ⊗ Q is carried out at in the
last lemma of the paper. This is intimately connected with Suslin’s re-
sult (see [21]) connecting K3 and the Bloch group. A closed form for
H0(GL4(A), H3(ET(A4)) is awaited. This should impact on the study of
K4(A).
We now come to the connection with the Quillen K-groups Ki(A) as obtained
by his plus construction.
GL(A) acts on the geometric realisation |SPL(A∞)| and thus we have the
Borel construction, namely the quotient of |SPL(A∞)|×EGL(A) by GL(A), a
familiar object in the study of equivariant homotopy. We denote this space by
SPL(A∞)//GL(A). We apply Quillen’s plus construction to SPL(A∞)//GL(A)
and a suitable perfect subgroup of its fundamental group to obtain a space
Y (A). Proposition 17 shows that Y (A) is an H-space and that the natural map
Y (A) → BGL(A)+ is an H-map. Its homotopy fiber, denoted by SPL(A∞)+,
is thus also a H-space. The n-th homotopy group of SPL(A∞)+ at its canonical
base point is denoted by Ln(A). There is of course a natural map SPL(A∞)→
SPL(A∞)+. That this map is a homology isomorphism is shown in lemma 16.
This assertion is easy, but not tautological: it relies once again on the triviality
of the action of E(A) on H∗(SPL(A∞)). As a consequence of this lemma,
Ln(A) ⊗ Q is identified with the primitive rational homology of SPL(A∞), or
equivalently, that of ET(A∞).
We have the inclusion Nn(A) →֒ GLn(A), where Nn(A) is the semidirect prod-
uct of the permutation group Sn with (A×)n. Taking direct limits over n ∈ N,
we obtain N(A) ⊂ GL(A). Let H ′ ⊂ N(A) be the infinite alternating group
and let H be the normal subgroup generated by H ′. Applying Quillen’s plus
construction to the space BN(A) with respect to H , we obtain BN(A)+. Its
n-th homotopy group is defined to be Hn(A×). From the Dold-Thom theo-
rem, it is easy to see that Hn(A×) ⊗ Q is isomorphic to the group homology
Hn(A×) ⊗ Q. When A is commutative, this is simply ∧nQ(A× ⊗ Q). Proposi-

tion 20 identifies the groups Hn(A×) with certain stable homotopy groups. Its
proof was shown to us by J. Peter May. It is sketched in the text of the paper
after the proof of the Theorem below.

Theorem 1. Let A be a Nesterenko-Suslin ring. Then there is a long exact
sequence, functorial in A:

· · · → L2(A) → H2(A
×) → K2(A) → L1(A) → H1(A

×) → K1(A) → L0(A) → 0.

We call a ring A Nesterenko-Suslin if it satisfies the hypothesis of Remark 1.13
of their paper [13]. The precise requirement is that for every finite set F , there
is a function fF : F → the center of A so that the sum Σ{fF (s) : s ∈ S} is a
unit of A for every nonempty S ⊂ F . If k is an infinite field, every associative
k-algebra is Nesterenko-Suslin, and so is every commutative ring with many
units in the sense of Van der Kallen. Remark 1.13 of Nesterenko-Suslin [13]
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permits us to ignore unipotent radicals. This is used crucially in the proof of
Theorem 1 (see also Proposition 12).
In the first draft of the paper, we conjectured that this theorem is true without
any hypothesis on A. Sasha Beilinson then brought to our attention Suslin’s pa-
per [22] on the equivalence of Volodin’s K-groups and Quillen’s. From Suslin’s
description of Volodin’s spaces, it is possible to show that these spaces are ho-
motopy equivalent to the total space of the Nn(A)-torsor on FL(An) given in
section 2 of this paper. This requires proposition 1 and a little organisation.
Once this is done, Corollary 9 can also be obtained from Suslin’s set-up. The
statement “X(R) is acyclic” stated and proved by Suslin in [22] now validates
Proposition 12 at the infinite level, thus showing that Theorem 1 is true without
any hypothesis on A. The details have not been included here.
R. Kottwitz informed us that the maximal simplices of FL(V ) are referred to
as “regular stars” in the work of Langlands( see [5]).
We hope that this paper will eventually connect with mixed Tate motives
(see[3],[1]).
The arrangement of the paper is a follows. Section 1 has some topological
preliminaries used through most of the paper. The proofs of Corollary 7 and
Proposition 11 rely on Quillen’s Theorem A. Alternatively, they can both be
proved directly by repeated applications of Proposition 1. The definitions of
SPL(An),FL(An),ET(An) and first properties are given in section two. The
next four sections are devoted to the proof of Theorem 1. The last four sections
are concerned with the homology of ET(An).
The lemmas, corollaries and propositions are labelled sequentially. For in-
stance, corollary 9 is followed by lemma 10 and later by proposition 11; there
is no proposition 10 or corollary 10. The other numbered statements are the
three theorems. Theorems 2 and 3 are stated and proved in sections 7 and 9
respectively. Section 0 records some assumptions and notation, some perhaps
non-standard, that are used in the paper. The reader might find it helpful to
glance at this section for notation regarding elementary matrices and the Borel
construction and the use of “simplicial complexes”.

0. Assumptions and Notation

Rings, Elementary matrices, Elem(W →֒ V ),Elem(V, q), L(V ) and Lp(V )

We are concerned with the Quillen K-groups of a ring A.
We assume that A has the following property: if Am ∼= An as left A-modules,
then m = n. The phrase “A-module” always means left A-module.
For a finitely generated free A-module V , the collection of A-submodules L ⊂ V
so that (i) V/L is free and (ii) L is free of rank one , is denoted by L(V ).
Lp(V ) is the collection of subsets q of cardinality (p+ 1) of L(V ) so that
⊕{L : L ∈ q} → V is a monomorphism whose cokernel is free.
Given an A-submodule W of a A-module V so that the short exact sequence

0→W → V → V/W → 0
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is split, we have the subgroup Elem(W →֒ V ) ⊂ AutA(V ), defined as follows.
Let H(W ) be the group of automorphisms h of V so that
(idV − h)V ⊂ W ⊂ ker(idV − h). Let W ′ ⊂ V be a submodule that is
complementary to W . Define H(W ′) in the same manner. The subgroup of
AutA(V ) generated byH(W ) andH(W ′) is Elem(W →֒ V ). It does not depend
on the choice of W ′ because H(W ) acts transitively on the collection of such
W ′.
For example, if V = An, and W is the A-submodule generated by any r mem-
bers of the given basis of An, then Elem(W →֒ An) equals En(A) , the subgroup
of elementary matrices in GLn(A), provided of course that 0 < r < n.
If V is finitely generated free and if q ∈ Lp(V ), the above statement implies
that Elem(L →֒ V ) does not depend on the choice of L ∈ q. Thus we denote
this subgroup by Elem(V, q) ⊂ GL(V ).

The Borel Construction

Let X be a topological space equipped with the action of group G. Let EG
be the principal G-bundle on BG (as in [14]). The Borel construction, namely
the quotient of X × EG by the G-action, is denoted by X//G throughout the
paper.

Categories, Geometric realisations, Posets

Every category C gives rise to a simplicial set, namely its nerve (see [14]). Its
geometric realisation is denoted by BC.
A poset (partially ordered set) P gives rise to a category. The B-construction
of this category, by abuse of notation, is denoted by BP . Associated to P
is the simplicial complex with P as its set of vertices; the simplices are finite
non-empty chains in P . The geometric realisation of this simplicial complex
coincides with BP .

Simplicial Complexes, Products and Internal Hom, Barycentric subdivision

Simplicial complexes crop up throughout this paper. We refer to Chapter 3,[18],
for the definition of a simplicial complex and its barycentric subdivision. S(K)
and V(K) denote the sets of vertices and simplices respectively of a simplicial
complex K. The geometric realisation of K is denoted by |K|. The set S(K) is
a partially ordered set (with respect to inclusion of subsets). Note that BS(K)
is simply the (geometric realisation of) the barycentric subdivision sd(K). The
geometric realisations of K and sd(K) are canonically homeomorphic to each
other, but not by a simplicial map.
Given simplicial complexes K1 and K2, the product |K1| × |K2| (in the com-
pactly generated topology) is canonically homeomorphic to B(S(K1)×S(K2)).

The category of simplicial complexes and simplicial maps has a categori-
cal product :
V(K1×K2) = V(K1)×V(K2). A non-empty subset of V(K1×K2) is a simplex
of K1 × K2 if and only if it is contained in S1 × S2 for some Si ∈ S(Ki) for
i = 1, 2. The geometric realisation of the product is not homeomorphic to the
product of the geometric realisations, but they do have the same homotopy
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type. In fact Proposition 1 of section 1 provides a contractible collection of
homotopy equivalences |K1|× |K2| → |K1×K2|. For most purposes, it suffices
to note that there is a canonical map P (K1,K2) : |K1| × |K2| → |K1 × K2|.
This is obtained in the following manner. Let C(K) denote the R-vector space
with basis V(K) for a simplicial complex K. Recall that |K| is a subset of
C(K). For simplicial complexes K1 and K2, we have the evident isomorphism

j : C(K1)⊗R C(K2)→ C(K1 ×K2).

For ci ∈ |Ki| for i = 1, 2 we put P (K1,K2)(c1, c2) = j(c1 ⊗ c2) ∈ C(K1 ×K2).
We note that j(c1 ⊗ c2) belongs to the subset |K1 × K2|. This gives the
canonical P (K1,K2).

Given simplicial complexes K,L there is a simplicial complex Hom(K,L)
with the following property: if M is a simplicial complex, then the set of
simplicial maps K ×M → L is naturally identified with the set of simplicial
maps M → Hom(K,L). This simple verification is left to the reader.

Simplicial maps f : K1 × K2 → K3 occur in sections 2 and 5 of this
paper.

|f | ◦ P (K1,K2) : |K1| × |K2| → |K3|
is the map we employ on geometric realisations. Maps |K1| × |K2| → |K3|
associated to simplicial maps f1 and f2 are seen (by contiguity) to be homotopic
to each other if {f1, f2} is a simplex ofHom(K1×K2,K3). This fact is employed
in Lemma 8.
Simplicial maps f : K1×K2 → K3 are in reality maps V(f) : V(K1)×V(K2)→
V(K3) with the property that V(f)(S1 × S2) is a simplex of K3 whenever S1

and S2 are simplices of K1 and K2 respectively. One should note that such
an f induces a map of posets S(K1)× S(K2)→ S(K3), which in turn induces
a continuous map B(S(K1) × S(K2)) → BS(K3). In view of the natural
identifications, this is the same as giving a map |K1| × |K2| → |K3|. This map
coincides with the |f | ◦ P (K1,K2) considered above.
The homotopy assertion of maps |K1| × |K2| → |K3| associated to f1, f2 where
{f1, f2} is an edge of Hom(K1 ×K2,K3) cannot be proved by the quick poset
definition of the maps (for |K3| has been subdivided and contiguity is not
available any more). This explains our preference for the longwinded |f | ◦
P (K1,K2) definition.

1. Some preliminaries from topology

We work with the category of compactly generated weakly Hausdorff spaces.
A good source is Chapter 5 of [11]. This category possesses products. It
also possesses an internal Hom in the following sense: for compactly generated
Hausdorff X,Y, Z, continuous maps Z → Hom(X,Y ) are the same as continu-
ous maps Z×X → Y , where Z×X denotes the product in this category. This
internal Hom property is required in the proof of Proposition 1 stated below.
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Hom(X,Y ) is the space of continuous maps from X to Y . This space of
maps has the compact-open topology, which is then replaced by the inherited
compactly generated topology. This space Hom(X,Y ) is referred to frequently
as Map(X,Y ), and some times even as Maps(X,Y ) , in the text.
Now consider the following set-up. Let Λ be a partially ordered set assumed
to be Artinian: (i) every non-empty subset in Λ has a minimal element with
respect to the partial order, or equivalently (ii) there are no infinite strictly de-
scending chains λ1 > λ2 > · · · in Λ. The poset Λ will remain fixed throughout
the discussion below.
We consider topological spaces X equipped with a family of closed subsets
Xλ, λ ∈ Λ with the property that Xµ ⊂ Xλ whenever µ ≤ λ.
Given another Y, Yλ, λ ∈ Λ as above, the collection of Λ-compatible contin-
uous f : X → Y (i.e. satisfying f(Xλ) ⊂ Yλ, ∀λ ∈ Λ) will be denoted by
MapΛ(X,Y ). MapΛ(X,Y ) is a closed subset of Hom(X,Y ), and this topolo-
gises MapΛ(X,Y ).
We say that {Xλ} is a weakly admissible covering of X if the three conditions
listed below are satisfied. It is an admissible covering if in addition, each Xλ

is contractible.

(1) For each pair of indices λ, µ ∈ Λ, we have

Xλ ∩Xµ = ∪
ν≤λ,ν≤µ

Xν

(2) If
∂Xλ = ∪

ν<λ
Xν ,

then ∂Xλ →֒ Xλ is a cofibration
(3) The topology on X is coherent with respect to the family of subsets
{Xλ}λ∈Λ, that is, X = ∪λXλ, and a subset Z ⊂ X is closed precisely
when Z ∩Xλ is closed in Xλ in the relative topology, for all λ.

Proposition 1. Assume that {Xλ} is a weakly admissible covering of X. As-
sume also that each Yλ is contractible.
Then the space MapΛ(X,Y ) of Λ-compatible maps f : X → Y is contractible.
In particular, it is non-empty and path-connected.

Corollary 2. If both {Xλ} and {Yλ} are admissible, then X and Y are
homotopy equivalent.

With assumptions as in the above corollary, the proposition yields the existence
of Λ-compatible maps f : X → Y and g : Y → X . Because g ◦ f and f ◦ g
are also Λ-compatible, that they are homotopic to idX and idY respectively is
deduced from the path-connectivity of MapΛ(X,X) and MapΛ(Y, Y ).

Corollary 3. If {Xλ} is admissible, then there is a homotopy equivalence
X → BΛ.

Here, recall that BΛ is the geometric realization of the simplicial complex
associated to the set of nonempty finite chains (totally ordered subsets) in Λ;
equivalently, regarding Λ as a category, BΛ is the geometric realization of its
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nerve. We put Y = BΛ and Yλ = B{µ ∈ Λ : µ ≤ λ} in Corollary 2 to deduce
Corollary 3.
The proof of Proposition 1 is easily reduced to the following extension lemma.

Lemma 4. Let {Xλ}, {Yλ} etc. be as in the above proposition. Let Λ′ ⊂ Λ be a
subset, with induced partial order, so that for any λ ∈ Λ′, µ ∈ Λ with µ ≤ λ, we
have µ ∈ Λ′. Let X ′ = ∪λ∈Λ′Xλ, Y

′ = ∪λ∈Λ′Yλ. Assume given a continuous
map f ′ : X ′ → Y ′ with f ′(Xλ) ⊂ Yλ for all λ ∈ Λ′. Then f ′ extends to a
continuous map f : X → Y with f(Xλ) ⊂ Yλ for all λ ∈ Λ.

Proof. Consider the collection of pairs (Λ′′, f ′′) satisfying:
(a) Λ′ ⊂ Λ′′ ⊂ Λ
(b) µ ∈ Λ, λ ∈ Λ′′, µ ≤ λ implies µ ∈ Λ′′

(c) f ′′ : ∪{Xµ|µ ∈ Λ′′} → Y is a continuous map
(d) f ′′(Xµ) ⊂ Yµ for all µ ∈ Λ′′

(e) f ′|Xµ = f ′′|Xµ for all µ ∈ Λ′

This collection is partially ordered in a natural manner. The coherence con-
dition on the topology of X ensures that every chain in this collection has an
upper bound. The presence of (Λ′, f ′) shows that it is non-empty. By Zorn’s
lemma, there is a maximal element (Λ′′, f ′′) in this collection. The Artinian
hypothesis on Λ shows that if Λ′′ 6= Λ, then its complement possesses a mini-
mal element µ. Let D′′ be the domain of f ′′. The minimality of µ shows that
D′′ ∩Xµ = ∂Xµ. By condition (d) above, we see that f ′′(∂Xµ) is contained in
the contractible space Yµ. Because ∂Xµ →֒ Xµ is a cofibration, it follows that
f ′′|∂Xµ extends to a map g : Xµ → Yµ. The f ′′ and g patch together to give
a continuous map h : D′′ ∪ Xµ → Y . Since the pair (Λ′′ ∪ {µ}, h) evidently
belongs to this collection, the maximality of (Λ′′, f ′′) is contradicted. Thus
Λ′′ = Λ and this completes the proof.

�

The proof of the Proposition follows in three standard steps.
Step 1: Taking Λ′ = ∅ in Lemma 4 we deduce that MapΛ(X,Y ) is nonempty.
Step 2: For the path-connectivity of MapΛ(X,Y ) , we replace X by X × [0, 1]
and replace the original poset Λ by the product Λ×{{0}, {1}, {0, 1}}, with the
product partial order, where the second factor is partially ordered by inclusion.
The subsets of X × I (resp.Y ) indexed by (λ, 0), (λ, 1), (λ, {0, 1}) are Xλ ×
{0}, Xλ × {1} and Xλ × [0, 1] (resp. Yλ in all three cases).
We then apply the lemma to the sub-poset Λ× {{0}, {1}}.
Step 3: Finally, for the contractibility of MapΛ(X,Y ), we first choose f0 ∈
MapΛ(X,Y ) and then consider the two maps MapΛ(X,Y ) × X → Y given
by (f, x) 7→ f(x) and (f, x) 7→ f0(x). Putting (MapΛ(X,Y ) × X)λ =
MapΛ(X,Y ) × Xλ for all λ ∈ Λ, we see that both the above maps are Λ-
compatible. The path-connectivity assertion in Step 2 now gives a homotopy
between the identity map of MapΛ(X,Y ) and the constant map f 7→ f0. This
completes the proof of Proposition 1.
We now want to make some remarks about equivariant versions of the above
statements.
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Given X, {Xλ;λ ∈ Λ} as above, an action of a group G on X is called Λ-
compatible if G also acts on the poset Λ so that for all g ∈ G, λ ∈ Λ, we have
g(Xλ) = Xgλ.
Under the conditions of Proposition 1, suppose {Xλ}, {Yλ} admit Λ-compatible
G-actions. There is no G-equivariant f ∈ MapΛ(X,Y ) in general. However,
if f ∈ MapΛ(X,Y ) and gX , gY denote the actions of g ∈ G on X and Y
respectively, we see that , then gY ◦ f ◦ g−1

X is also a Λ-compatible map. By
Proposition 1, we see that this map is homotopic to f . Thus gY ◦ f and f ◦ gX
are homotopic to each other. In particular, Hn(f) : Hn(X) → Hn(Y ) is a
homomorphism of G-modules.
In the sequel a better version of this involving the Borel construction is needed.
We recall the Borel construction of equivariant homotopy quotient spaces. Let
EG denote a contractible CW complex on which G has a proper free cellular
action; for our purposes, it suffices to fix a choice of this space EG to be the
geometric realization of the nerve of the translation category of G (the category
with vertices [g] indexed by the elements of G, and unique morphisms between
ordered pairs of vertices ([g], [h]), thought of as given by the left action of hg−1).
The classifying space BG is the quotient space EG/G.
If X is any G-space, let X//G denote the homotopy quotient of X by G, ob-
tained using the Borel construction, i.e.,

(1) X//G = (X × EG)/G,

where EG is as above, and G acts diagonally. Note that the natural quotient
map

qX : X × EG→ X//G

is a Galois covering space, with covering group G.

If X and Y are G-spaces, then considering G-equivariant maps f̃ : X ×EG→
Y ×EG compatible with the projections to EG, giving a commutative diagram

X × EG

$$JJJJJJJJJ
f̃ // Y × EG

zzttttttttt

EG

is equivalent to considering maps f : X//G→ Y//G compatible with the maps
qX : X//G→ BG, qY : Y//G→ BG, giving a commutative diagram

X//G

qX
##GGGGGGGG

f // Y//G

qY
{{wwwwwwww

BG

Proposition 5. Assume that, in the situation of proposition 1, there are Λ-
compatible G-actions on X and Y . Let EG be as above, and consider the Λ-
compatible families {Xλ × EG}, which is a weakly admissible covering family
for X×EG, and {Yλ×EG}, which is an admissible covering family for Y ×EG.
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Then there is a G-equivariant map f̃ : X × EG → Y × EG, compatible with
the projections to EG, such that

(i) f̃(Xλ × EG) ⊂ (Yλ × EG) for all λ ∈ Λ
(ii) if g̃ : X × EG → Y × EG is another such equivariant map, then

there is a G-equivariant homotopy between f̃ and g̃, compatible with
the projections to EG

(iii) The space of such equivariant maps X × EG→ Y × EG, as in (i), is
contractible.

Proof. We show the existence of the desired map, and leave the proof of other
properties, by similar arguments, to the reader.
Let MapΛ(X,Y ) be the contractible space of Λ-compatible maps from X to
Y ; note that it comes equipped with a natural G-action, so that the canon-
ical evaluation map X × MapΛ(X,Y ) → Y is equivariant. This induces
X × MapΛ(X,Y ) × EG → Y × EG. There is also a natural G-equivariant
map π : X × MapΛ(X,Y ) × EG → X × EG. This map π has equivariant
sections, since the projection MapΛ(X,Y )×EG→ EG is a G-equivariant map
between weakly contractible spaces, so that the map on quotients modulo G is
a weak homotopy equivalence (i.e., (MapΛ(X,Y )×EG)/G is another “model”
for the classifying space BG = EG/G). However BG is a CW complex, so the
map has a section. �

As another preliminary, we note some facts (see lemma 6 below) which are
essentially corollaries of Quillen’s Theorem A (these are presumably well-known
to experts, though we do not have a specific reference).
If P is any poset, let C(P ) be the poset consisting of non-empty finite chains
(totally ordered subsets) of P . If f : P → Q is a morphism between posets (an
order preserving map) there is an induced morphism C(f) : C(P ) → C(Q).
If S is a simplicial complex (literally, a collection of finite non-empty subsets
of the vertex set), we may regard S as a poset, partially ordered with respect
to inclusion; then the classifying space BS is naturally homeomorphic to the
geometric realisation |S| (and gives the barycentric subdivision of |S|). A sim-
plicial map f : S → T between simplicial complexes (that is, a map on vertex
sets which sends simplices to simplices, not necessarily preserving dimension)
is also then a morphism of posets. We say that a poset P is contractible if its
classifying space BP is contractible.

Lemma 6. (i) Let f : P → Q be a morphism between posets. Suppose
that for each X ∈ C(Q), the fiber poset C(f)−1(X) is contractible. Then
Bf : BP → BQ is a homotopy equivalence.
(ii) Let f : S → T be a simplicial map between simplicial complexes. Sup-
pose that for any simplex σ ∈ T , the fiber f−1(σ), considered as a poset, is
contractible. Then |f | : |S| → |T | is a homotopy equivalence.

Proof. We first prove (i). For any poset P , there is morphism of posets ϕP :
C(P ) → P , sending a chain to its first (smallest) element. If a, b ∈ P with
a ≤ b, and C is a chain in ϕ−1

P (b), then {a} ∪ C is a chain in ϕ−1
P (a). This
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gives an order preserving map of posets ϕ−1
P (b)→ ϕ−1

P (a) (i.e., a “base-change”
functor). This makes C(P ) prefibred over P , in the sense of Quillen (see page
96 in [19], for example). Also, ϕ−1

P (a) has the minimal element (initial object)
{a}, and so its classifying space is contractible.
Hence Quillen’s Theorem A (see [19], page 96) implies that B(ϕP ) is a homo-
topy equivalence, for any P .
Now let f : P → Q be a morphism between posets. Let C(f) : C(P )→ C(Q)
be the corresponding morphism on the posets of (finite, nonempty) chains.
If A ⊂ B are two chains in C(Q), there is an obvious order preserving map
C(f)−1(B)→ C(f)−1(A). Again, this makes C(f) : C(P )→ C(Q) prefibred.
Since we assumed that BC(f)−1(A) is contractible, for all A ∈ C(Q), Quillen’s
Theorem A implies that BC(f) is a homotopy equivalence.
We thus have a commutative diagram of posets and order preserving maps

C(P )
C(f)→ C(Q)

ϕP ↓ ↓ ϕQ
P

f→ Q

where three of the four sides yield homotopy equivalences on passing to clas-
sifying spaces. Hence Bf : BP → BQ is a homotopy equivalence, proving
(i).
The proof of (ii) is similar. This is equivalent to showing that Bf : BS → BT
is a homotopy equivalence. Since f : S → T , regarded as a morphism of posets,
is naturally prefibered, and by assumption, Bf−1(σ) is contractible for each
σ ∈ T , Quillen’s Theorem A implies that Bf is a homotopy equivalence. �

We make use of Propositions 1 and 5 in the following way.
Let A, B be sets, Z ⊂ A × B a subset such that the projections p : Z → A,
q : Z → B are both surjective. Consider simplicial complexes SZ(A), SZ(B)
on vertex sets A, B respectively, with simplices in SZ(A) being finite nonempty
subsets of fibers q−1(b), for any b ∈ B, and simplices in SZ(B) being finite,
nonempty subsets of fibers p−1(a), for any a ∈ A.
Consider also a third simplicial complex SZ(A,B) with vertex set Z, where a
finite non-empty subset Z ′ ⊂ Z is a simplex if and only it satisfies the following
condition:

(a1, b1), (a2, b2) ∈ Z ′ ⇒ (a1, b2) ∈ Z.
Note that the natural maps on vertex sets p : Z → A, q : Z → B induce
canonical simplicial maps on geometric realizations

|p| : |SZ(A,B)| → |SZ(A)|, |q| : |SZ(A,B)| → |SZ(B)|.
Corollary 7. (1) With the above notation, the simplicial maps

|p| : |SZ(A,B)| → |SZ(A)|, |q| : |SZ(A,B)| → |SZ(B)|
are homotopy equivalences. In particular, |SZ(A)|, |SZ(B)| are homo-
topy equivalent.
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(2) If a group G acts on A and on B, so that Z is stable under the diagonal
G action on A × B, then the homotopy equivalences |p|, |q| are G-
equivariant homotopy equivalences. Hence there exists a natural G-
equivariant homotopy equivalence between |SZ(A)|×EG and |SZ(B)|×
EG.

Proof. Since the situation is symmetric with respect to the sets A, B, it suffices
to show |p| is a homotopy equivalence. Note that in the context of a G-action
as stated, the G-equivariance of |p| is clear.
Let Λ be the poset of all simplices of SZ(A), thought of as subsets of A, and
ordered by inclusion. Clearly Λ is Artinian.
Apply Corollary 2 with X = |SZ(A,B)|, Y = |SZ(A)|, Λ as above, and the
following Λ-admissible coverings: for σ ∈ Λ, let Yσ be the (closed) simplex in
Y = |SZ(A)| determined by σ (clearly {Yσ} is admissible); take Xσ = |p|−1(Yσ)
(this is evidently weakly admissible). For admissibility of {Xσ}, we need to
show that each Xσ is contractible.
In fact, regarding the sets of simplices SZ(A,B) and SZ(A) as posets, and
SZ(A,B) → SZ(A) as a morphism of posets, Xσ is the geometric realization
of the simplicial complex determined by ∪τ≤σp−1(τ).
The corresponding map of posets

p−1({τ |τ ≤ σ})→ {τ |τ ≤ σ}
has contractible fiber posets – if we fix an element x ∈ p−1(τ), and p−1(τ)(≥ x)
is the sub-poset of elements bounded below by x, then y 7→ y∪x is a morphism
of posets rx : p−1(τ) → p−1(τ)(≥ x) which gives a homotopy equivalence on
geometric realizations (it is left adjoint to the inclusion of the sub-poset). But
the sub-poset has a minimal element, and so its realization is contractible.
The poset {τ |τ ≤ σ} is obviously contractible, since it has a maximal element.
Hence, applying lemma 6(ii), Xσ is contractible.
Since the map |p| : X → Y is Λ-compatible, it is the unique such map upto
Λ-compatible homotopy, and is a homotopy equivalence. �

We note that the argument with Quillen’s Theorem A in fact implies directly
that SZ(A,B) → SZ(A) is a homotopy equivalence; the uniqueness assertion
is not, apparently, a formal consequence of Quillen’s Theorem A.

2. Flag Spaces

In this section, we discuss various constructions of spaces (generally simplicial
complexes) defined using flags of free modules, and various maps, and homotopy
equivalences, between these. These are used as building blocks in the proof of
Theorem 1.
Let A be a ring, and let V be a free (left) A-module of rank n. Define a
simplicial complex FL(V ) as follows.
Its vertex set is

FL(V ) =
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= {F = (F0, F1, . . . , Fn) | 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V are A-submodules,

and each quotient Fi/Fi−1 is a free A-module of rank 1}.
We think of this vertex set as the set of “full flags” in V .
To describe the simplices in FL(V ), we need another definition. Let

SPL(V ) = {{L1, . . . , Ln} | Li ⊂ V is a free A-submodule of rank 1, and

the induced map ⊕ni=1Li → V is an isomorphism}.
Note that {L1, . . . , Ln} is regarded as an unordered set of free A-submodules of
rank 1 of L (i.e., as a subset of cardinality n in the set of all free A-submodules
of rank 1 of V ). We think of SPL(V ) as the “set of unordered splittings of V
into direct sums of free rank 1 modules”.
Given α ∈ SPL(V ), say α = {L1, . . . , Ln}, we may choose some ordering
(L1, . . . , Ln) of its elements, and thus obtain a full flag in V (i.e., an element
in FL(V )), given by

(0, L1, L1 ⊕ L2, · · · , L1 ⊕ · · · ⊕ Ln = V ) ∈ FL(V ).

Let

[α] ⊂ FL(V )

be the set of n! such full flags obtained from α.
We now define a simplex in FL(V ) to be any subset of such a set [α] of vertices,
for any α ∈ SPL(V ). Thus, FL(V ) becomes a simplicial complex of dimen-
sion n! − 1, with the sets [α] as above corresponding to maximal dimensional
simplices.
Clearly Aut (V ) ∼= GL n(A) acts on the simplical complex FL(V ) through sim-
plicial automorphisms, and thus acts on the homology groups H∗(FL(V ),Z)
(and other similar invariants of FL(V )).
Next, remark that if F ∈ FL(V ) is any vertex of FL(V ), we may associate
to it the free A-module gr F (V ) = ⊕ni=1Fi/Fi−1. If (F, F ′) is an ordered pair
of distinct vertices, which are joined by an edge in FL(V ), then we obtain a
canonical isomorphism (determined by the edge)

ϕF,F ′ : gr F (V )
∼=−→ gr F ′(V ).

One way to describe it is by considering the edge as lying in a simplex [α],
for some α = {L1, . . . , Ln} ∈ SPL(V ); this determines an identification of
gr F (V ) with ⊕iLi, and a similar identification of gr F ′(V ), and thereby an
identification between grF (V ) and grF ′(V ). Note that from this description
of the maps ϕF.F ′ , it follows that if F, F ′, F ′′ form vertices of a 2-simplex in
FL(V ), i.e., there exists some α ∈ SPL(V ) such that F, F ′, F ′′ ∈ [α], then we
also have

ϕF,F ′′ = ϕF ′,F ′′ ◦ ϕF,F ′ .

The isomorphism ϕF,F ′ depends only on the (oriented) edge in FL(V ) deter-
mined by (F, F ′), and not on the choice of the simplex [α] in which it lies. One
way to see this is to use that, for any two such filtrations F , F ′ of V there is a
canonical isomorphism gr pF gr qF ′(V ) ∼= gr qF ′gr pF (V ) (Schur-Zassenhaus lemma)
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for each p, q. But in case F , F ′ are flags which are connected by an edge,
then there is also a canonical isomorphism gr F gr F ′(V ) ∼= gr F ′(V ) (in fact the
F -filtration induced on gr pF ′(V ) has only 1 non-trivial step, for each p), and
similarly there is a canonical isomorphism gr F ′grF (V ) ∼= gr F (V ). These three
canonical isomorphisms combine to give the isomorphism ϕF,F ′ .
Hence there is a well-defined local system gr(V ) of A-modules on the geometric
realization |FL(V )| of the simplicial complex FL(V ), whose fibre over a vertex
F is gr F (V ).
Notice further that this local system gr(V ) comes equipped with a natural
Aut(V ) action, compatible with the natural actions on FL(V ) and FL(V ).
Indeed, any element g ∈ Aut(V ) gives a bijection on the set of full flags FL(V ),
with

F = (0 = F0, F1, . . . , Fn = V ) ∈ FL(V ))

mapping to

gF = (0 = gF0, gF1, . . . , gFn = V ).

This clearly gives an induced isomorphism ⊕iFi/Fi−1
∼= ⊕igFi/gFi−1, identi-

fying the fibers of the local system over F and gF in a specific way. It is easy to
see that if α = {L1, . . . , Ln} ∈ SPL(V ), then gα = {gL1, . . . , gLn} ∈ SPL(V ),
giving the action of Aut (V ) on SPL(V ), so that if a pair of vertices F, F ′ of
FL(V ) lie on an edge contained in [α], then gF, gF ′ lie on an edge contained in
[gα], and so the induced identification ϕF,F ′ is compatible with ϕgF,gF ′ . This
induces the desired action of Aut(V ) on the local system.
Further, note that if F, F ′ ∈ FL(V ) are connected by an edge in FL(V ), then we
may realize ϕF,F ′ by the action of a suitable element of Aut (V ), which preserves
a simplex [α] in which the edge lies, and permutes the lines in the splitting
α ∈ SPL(V ). Thus, given any edge-path joining vertices F, F ′ in FL(V ), the
induced composite isomorphism gr F (V ) → gr F ′(V ) is again realized by the
action of an element of Aut (V ). In particular, given an edge-path loop based
as F ∈ FL(V ), the induced automorphism of gr F (V ) is induced by the action
on gr F (V ) of an element of the isotropy group of F in Aut (V ), which is the
“Borel subgroup” corresponding to the flag F .
Hence, the monodromy group of the local system gr(V ) is clearly contained in
Nn(A), defined as a semidirect product

(2) Nn(A) = (A× × · · · ×A×) ⋉ Sn

where Sn is the permutation group; we regard Nn(A) as a subgroup of
Aut (⊕iLi) in an obvious way.
Now we make infinite versions of the above constructions.
Let A∞ be the set of sequences (a1, a2, . . . , an, . . .) of elements of A, all but
finitely many of which are 0, considered as a free A-module of countable rank.
There is a standard inclusion in : An →֒ A∞ of the standard free A-module
of rank n as the submodule of sequences with am = 0 for all m > n. The
induced inclusion i : An → An+1 is the usual one, given by i(a1, . . . , an) =
(a1, . . . , an, 0).

Documenta Mathematica · Extra Volume Suslin (2010) 459–513



K-Theory and the Enriched Tits Building 473

We may thus view A∞ as being given with a tautological flag, consisting of the
A-submodules in(An). We define a simplicial complex FL(A∞), with vertex
set FL(A∞) equal to the set of flags 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ A∞ where
Vi/Vi−1 is a free A-module of rank 1, for each i ≥ 1, and with Vn = i(An) for
all sufficiently large n. Thus FL(A∞) is naturally the union of subsets bijective
with FL(An). To make FL(A∞) into a simplicial complex, we define a simplex
to be a finite set of vertices in some subset FL(An) which determines a simplex
in the simplicial complex FL(An); this property does not depend on the choice
of n, since the natural inclusion FL(An) →֒ FL(An+1), regarded as a map on
vertex sets, identifies FL(An) with a subcomplex of FL(An+1), such that any
simplex of FL(An+1) with vertices in FL(An) is already in the subcomplex
FL(An).
We consider GL(A) ⊂ Aut(A∞) as the union of the images of the obvious
maps in : GLn(A) →֒ Aut (A∞), obtained by automorphisms which fix all
the basis elements of A∞ beyond the first n. We clearly have an induced ac-
tion of GL(A) on the simplicial complex FL(A∞), and hence on its geometric
realisation |FL(A∞)| through homeomorphisms preserving the simplicial struc-
ture. The inclusion FL(An) →֒ FL(A∞) as a subcomplex is clearly GLn(A)-
equivariant.
Next, observe that there is a local system gr(A∞) on FL(A∞) whose fiber
over a vertex F = (F0 = 0, F1, . . . , Fn, . . . ) is grF (V ) = ⊕iFi/Fi−1. This has
monodromy contained in

N(A) = ∪nNn(A) ⊂ GL(A),

where we may also view N(A) as the semidirect product of

(A×)∞ = diagonal matrices in GL(A)

by the infinite permutation group S∞. This local system also carries a natural
GL(A)-action, compatible with the GL(A)-action on FL(A∞).
Next, we prove a property (Corollary 9) about the action of elementary matrices
on homology, which is needed later. The corollary follows immediately from
the lemma below.
For the statement and proof of the lemma, we suggest that the reader browse
the remarks on Hom(K1×K2,K3) in section 0, given simplicial complexes Ki

for i = 1, 2, 3. The notation Elem(V ′ →֒ V ′ ⊕ V ′′) that appears in the lemma
has also been introduced in section 0 under the heading “elementary matrices”.

Lemma 8. Let V ′, V ′′ be two free A-modules of finite rank, i′ : V ′ → V ′⊕V ′′,
i′′ : V ′′ → V ′ ⊕ V ′′ the inclusions of the direct summands. Consider the two
natural maps

(3) α, β : FL(V ′)× FL(V ′′)→ FL(V ′ ⊕ V ′′)

given by

α : ((F ′
1, . . . , F

′
r = V ′), (F ′′

1 , . . . , F
′′
s )) 7→

(i′(F ′
1), . . . , i′(F ′

r) = i′(V ′), i′(V ′) + i′′(F ′′
1 ), . . . , i′(V ′) + i′′(F ′′

s ) = V ′ ⊕ V ′′),
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β : ((F ′
1, . . . , F

′
r = V ′), (F ′′

1 , . . . , F
′′
s )) 7→

(i′′(F ′′
1 ), . . . , i′′(F ′′

s ) = i′′(V ′′), i′′(V ′′) + i′(F ′
1), . . . , i′′(V ′′) + i′(F ′

r) = V ′⊕ V ′′).

(A) α and β are vertices of a one-simplex of Hom(FL(V ′)× FL(V ′′),FL(V ′ ⊕
V ′′)).
(B) The maps |FL(V ′)| × |FL(V ′′)| → |FL(V ′ ⊕ V ′′)| induced by α, β are ho-
motopic to each other.
(C) Let c : |FL(V ′)| × |FL(V ′′)| → |FL(V ′ ⊕ V ′′)| denote the map produced by
α. Denote the action of g ∈ GL(V ′ ⊕ V ′′) on |FL(V ′ ⊕ V ′′)| by |FL(g)|. Then
c and |FL(g)| ◦ c are homotopic to each other, if g ∈ Elem(V ′ →֒ V ′ ⊕ V ′′) ⊂
GL(V ′ ⊕ V ′′).

Proof. Part (A). By the definition of Hom(K1 ×K2,K3) in section 0, we only
have to check that α(σ′ × σ′′) ∪ β(σ′ × σ′′) is a simplex of FL(V ′ ⊕ V ′′) for
all simplices σ′ of FL(V ′) and all simplices σ′′ of FL(V ′′). Clearly it suffices
to prove this for maximal simplices, so we assume that both σ′ and σ′′ are
maximal.
Note that if we consider any maximal simplex σ′ in FL(V ′), it corresponds
to a splitting {L′

1, . . . , L
′
r} ∈ SPL(V ′). Similarly any maximal simplex σ′′ of

FL(V ′′) corresponds to a splitting {L′′
1 , . . . , L

′′
s} ∈ SPL(V ′′). This determines

the splitting {i′(L′
1), . . . , i′(L′

r), i
′′(L′′

1), . . . , i′′(L′′
s )} of V ′⊕V ′′, giving rise to a

maximal simplex τ of FL(V ′ ⊕ V ′′), and clearly α(σ′ × σ′′) and β(σ′ × σ′′) are
both contained in τ . Thus their union is a simplex.
(B) follows from (A). We now address (C). We note that c = g ◦ c for all
g ∈ id + HomA(V ′′, V ′). Denoting by d the map produced by β we see that
d = g ◦ d for all g ∈ id + HomA(V ′, V ′′). Because c, d are homotopic to each
other, we see that c and g ◦c are in the same homotopy class when g is in either
of the two groups above. These groups generate Elem(V ′ →֒ V ′ ⊕ V ′′), and so
this proves (C). �

Corollary 9. (i) The group En+1(A) of elementary matrices acts trivially
on the image of the natural map

i∗ : H∗(FL(A⊕n),Z)→ H∗(FL(A⊕n+1),Z).

(ii) The action of the group E(A) of elementary matrices on H∗(FL(A∞),Z)
is trivial.

Proof. We put V ′ = An and V ′′ = A in the previous lemma. The c in part (B)
of the lemma is precisely the i being considered here. By (C) of the lemma,
g ◦ i is homotopic to i for all g ∈ Elem(An →֒ An+1) = En+1(A). This proves
(i). The direct limit of the r-homology of |FL(An)|, taken over all n, is the r-th
homology of |FL(A∞|. Thus (i) implies (ii).

�

We will find it useful below to have other “equivalent models” of the spaces
FL(V ), FL(A∞), by which we mean other simplicial complexes, also defined
using collections of appropriate A-submodules, such that there are natural
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homotopy equivalences between the different models of the same homotopy
type, compatible with the appropriate group actions, etc.
We apply corollary 7 as follows. Let V ∼= An. We put A = SPL(V ), B =
FL(V ) and Z = {α, F ) : F ∈ [α]}. The simplicial complex SZ(B) of corollary 7
is FL(V ) by its definition. The simplicial complex SZ(A) is our definition of
SPL(V ). The homotopy equivalence of SPL(V ) and FL(V ) follows from this
corollary.
We define SPL(A∞) to be the collection of sets S satisfying
(a) L ∈ S implies that L is a free rank one A-submodule of A∞,
(b)⊕{L : L ∈ S} → A∞ is an isomorphism, and
(c) the symmetric difference of S and the standard collection:
{A(1, 0, 0, ...), A(0, 1, 0, ...), · · · } is a finite set.
Corollary 7 is then applied to the subset Z ⊂ SPL(A∞)× FL(A∞) consisting
of the pairs (S, F ) so that there is a bijection h : S → N so that for every
L ∈ S,
L ⊂ Fh(L) and L→ grFh(L) is an isomorphism.

The above Z defines SPL(A∞). The desired homotopy equivalence of the geo-
metric realisations of SPL(A∞) and FL(A∞) comes from the same corollary.
We also find it useful to introduce a third model of the homotopy types of
FL(V ) and FL(A∞), the “enriched Tits buildings” ET(V ) and ET(A∞). The
latter is defined in the last remark of this section.
Let V ∼= An as a left A-module. Let E(V ) be the set consisting of ordered pairs

(F, S) = ((0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V ), (S1, S2, . . . , Sr)) ,

where F is a partial flag in V , which means that Fi ⊂ V is an A-submodule,
such that Fi/Fi−1 is a nonzero free module for each i, and Si ∈ SPL(Fi/Fi−1)
is an unordered collection of free A-submodules of Fi/Fi−1 giving rise to a direct
sum decomposition ⊕L∈SiL ∼= Fi/Fi−1. Thus S is a collection of splittings of
the quotients Fi/Fi−1 for each i.
We may put a partial order on the set E(V ) in the following way: (F, S) ≤
(F ′, T ) if the filtration F is a refinement of F ′, and the data S, T of direct sum
decompositions of quotients are compatible, in the following natural sense —
if F ′

i−1 = Fj−1 ⊂ Fj ⊂ · · ·Fl = F ′
i , then Ti must be partitioned into subsets,

which map to the sets Sj , Sj+1, . . . , Sl under the appropriate quotient maps.
In particular, (F ′, T ) has only finitely many possible predecessors (F, S) in the
partial order.
We have a simplicial complex ET (V ) := NE(V ), the nerve of the partially
ordered set E(V ) considered as a category, so that simplices are just nonempty
finite chains of elements of the vertex (po)set E(V ).
Note that maximal elements of E(V ) are naturally identified with elements
of SPL(V ), while minimal elements are naturally identified with elements of
FL(V ). Simplices in FL(V ) are nonempty finite subsets of FL(V ) which have a
common upper bound in E(V ), and similarly simplices in SPL(V ) are nonempty
finite subsets of SPL(V ) which have a common lower bound in E(V ).
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We now show that ET(V ) = BE(V ), the classifying space of the poset E(V ), is
another model of the homotopy type of |FL(V )|.
In a similar fashion, we may define a poset E(A∞), and a space ET(A∞), giving
another model of the homotopy type of |FL(A∞)|.
We first have a lemma on classifying spaces of certain posets. For any poset
(P,≤), and any S ⊂ P , let

L(S) = {x ∈ P | x ≤ s ∀ s ∈ S}, U(S) = {x ∈ P | s ≤ x ∀ s ∈ S}
be the upper and lower sets of S in P , respectively. Let Pmin denote the
simplicial complex with vertex set Pmin given by minimal elements of P , and
where a nonempty finite subset S ⊂ Pmin is a simplex if U(S) 6= ∅. Let |Pmin|
denote the geometric realisation of Pmin.

Lemma 10. Let (P,≤) be a poset such that
(a) ∀ s ∈ P , the set L({s}) is finite
(b) if ∅ 6= S ⊂ P with L(S) 6= ∅, then the classifying space BL(S) of L(S) (as
a subposet) is contractible.

Then |Pmin| is naturally homotopy equivalent to BP .

Proof. We apply Proposition 1. Take

Λ = {L(S)| ∅ 6= S ⊂ P and L(S) 6= ∅}.
This is a poset with respect to inclusion. All λ ∈ Λ are finite subsets of P ,
so Λ is Artinian. By assumption, the subsets B(λ) ⊂ BP , for λ ∈ Λ, are
contractible. On the other hand, the sets λ ∩ Pmin give simplices in |Pmin|.
Thus, both the spaces BP and |Pmin| have Λ-admissible coverings, and are
thus homotopy equivalent. �

Remark. If a poset P has g.c.d. in the sense that ∅ 6= S ⊂ P and ∅ 6=
L(S) implies L(S) = L(t) for some t ∈ P , then condition (b) of the lemma is
immediately satisfied. However E(V ) does not enjoy the latter property.
For example, if V = A3 with basis e1, e2, e3, let s = {Ae1, Ae2, Ae3} and
t = {Ae1, A(e1 + e2), Ae3} and let S = {s, t} ⊂ SPL(V ) ⊂ E(V ). Then L(S)
has three minimal elements and two maximal elements. In particular, g.c.d.
(s, t) does not exist. In this example, B(L(S)) is an oriented graph in the shape
of the letter M.

Proposition 11. If V is a free A module of finite rank, the poset E(V ) satisfies
the hypotheses of lemma 10. Thus, |FL(V )| is naturally homotopy equivalent
to ET(V ) = B(E(V )).

Proof. Clearly the condition (a) of lemma 10 holds, so it suffices to prove (b).
We now make a series of observations.

(i) Regard SPL(V ) as the set of maximal elements of the poset E(V ).
We observe that for any s ∈ E(V ), if H(s) = SLP (V ) ∩ U({s}), then
we have that L({s}) = L(H(s)). This is easy to see, once one has
unravelled the definitions.
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Thus, it suffices to show that for sets S of the type ∅ 6= S ⊂
SPL(V ) ⊂ E(V ), we have that B(L(S) is contractible. We assume
henceforth that S ⊂ SPL(V ).

(ii) Given a submodule W ⊂ V which determines a partial flag 0 ⊂W ⊂ V ,
we have a natural inclusion of posets

E(W )× E(V/W ) ⊂ E(V ),

where on the product, we take the partial order

(a1, a2) ≤ (b1, b2)⇔ a1 ≤ b1 ∈ E(W ) and a2 ≤ b2 ∈ E(V/W ).

Note that α ∈ E(V ) lies in the sub-poset E(W )× E(V/W ) precisely
when W is one of the terms in the partial flag associated to α. Hence,
if α lies in the sub-poset, so does the entire set L({α}).

(iii) With notation as above, if ∅ 6= S ⊂ SPL(V ) ⊂ E(V ), and L(S) has
nonempty intersection with the image of E(W )×E(V/W ) ⊂ E(V ), then
clearly there exist nonempty subsets S′(W ) ⊂ SPL(W ), S′′(W ) ⊂
SPL(V/W ) such that

(4) L(S) ∩ (E(W ) × E(V/W )) = L(S′(W ))× L(S′′(W ))

(iv) If ∅ 6= S ⊂ SPL(V ), then each s ∈ S is a subset of

L(V ) = {L ⊂ V |L is a free direct summand of rank 1 of V },
the set of lines in V . Let

T (S) = ∩s∈Ss = lines common to all members of S,

so that T (S) ⊂ L(V ). Let M(S) denote the direct sum of the elements
of T (S), so that M(S) is a free A-module of finite rank, and 0 ⊂
M(S) ⊂ V is a partial flag, in the sense explained earlier; further,
T (S) may be regarded also as an element of SPL(M(S)) ⊂ E(M(S)).

(v) We now claim the following: if ∅ 6= S ⊂ SPL(V ) and b ∈ L(S), then
there exists a unique subset f(b) ⊂ T (S) such that if M(b) is the
(direct) sum of the lines in f(b), then

b = (f(b), b′) ∈ SPL(M(b))× E(V/M(b)) ⊂ E(M(b))× E(V/M(b)) ⊂ E(V ).

Indeed, if

b = ((0 = W0 ⊂W1 ⊂ · · · ⊂Wh = V ), (t1, t2, . . . , th)}
where ti ∈ SPL(Wi/Wi−1), then since b ∈ L(S), we must have that
t1 ⊂ s for all s ∈ S, which implies that t1 ⊂ T (S). Take M(b) = W1,
t1 = f(b) ∈ SPL(M(b)).

Let P(T (S)) be the poset of nonempty subsets of T (S), with respect
to inclusion. Then b 7→ f(b) gives an order-preserving map f : L(S)→
P(T (S)).

(vi) For any b ∈ L(S), we have

L(b) = L({f(b)})× L(b′) ⊂ E(M(b))× E(V/M(b)),

so that if b1 ∈ L(b), then ∅ 6= f(b1) ⊂ f(b).
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We will now complete the proof of Proposition 11. We proceed by induction
on the rank of V . Suppose S ⊂ SPL(V ) is nonempty, and L(S) 6= ∅.
If M(S) = V , then S = {s} for some s, and L(S) = L({s}) is a cone, hence
contractible. So assume M(S) 6= V .
If T ⊂ T (S) is non-empty, and M(T ) ⊂ V the (direct) sum of the lines in T ,
then in the notation of (4) above, with W = M(T ), we have S′(W ) = {T },
and so f−1(T ) = {T } × L(S′′(W ))) for some S′′(W ) ⊂ SPL(V/W ).
Now by induction, we have that L(S′′(W )) is contractible, provided it is non-
empty. Hence the non-empty fiber posets of f are contractible. If ∅ 6= T ⊂
T ′ ⊂ T (S), then there is a morphism of posets f−1(T ) → f−1(T ′) given as
follows: if b ∈ f−1(T ), and

b = ((0 = W0 ⊂W1 ⊂ · · · ⊂Wh = V ), (t1, t2, . . . , th)}
where ti ∈ SPL(Wi/Wi−1), then since b ∈ f−1(T ), we must have t1 = T ,
W1 = M(T ). Now define b′ ∈ f−1(T ′) using the partial flag

0 = W ′ ⊂W1 +M(T ′) ⊂W2 +M(T ′) ⊂ · · · ⊂Wh +M(T ′) = V

and elements t′i ∈ SPL(Wi + M(T ′)/Wi−1 + M(T ′)) induced by the ti. This
is easily seen to be well-defined, and gives a morphism of posets f−1(T ) →
f−1(T ′). In particular, if T ⊂ T ′ ⊂ T (S) and f−1(T ) is non-empty, then so is
f−1(T ′).
Now take any b ∈ L(S) and put T = f(b), T ′ = T (S) in the above to deduce
that f−1(T (S)) 6= ∅. By (iii) above, we see that every f−1X is nonempty (and
therefore contractible as well) for every nonempty X ⊂ T (S).
We see that all the fiber posets f−1(T ) considered above are nonempty.
This makes f pre-cofibered, in the sense of Quillen (see [19], page 96), with
contractible fibers. Hence by Quillen’s Theorem A, f induces a homotopy
equivalence on classifying spaces. But P(T (S)) is contractible (for example,
since T (S) is the unique maximal element). �

Remark. Proposition 5 and the remarks preceding it apply to the above
Proposition. In particular, we obtain homotopy equivalences f : ET(V ) →
FL(V ) so that the induced maps on homology are GL(V )-equivariant.

Remark. We now define the poset E(A∞) and show that ET(A∞) = BE(A∞)
is homotopy equivalent to |FL(A∞|.
We have already observed that a short exact sequence of free modules of finite
rank

0→ V ′ → V → V ′′ → 0

induces a natural inclusion E(V ′) × E(V ′′) →֒ E(V ) of posets. In particular,
when V ′′ ∼= A, this yields an inclusion E(V ′) →֒ E(V ).
We have ... ⊂ An ⊂ An+1 ⊂ ... ⊂ A∞ as in the definition of FL(A∞). From
the above, we obtain a direct system of posets

...E(An) →֒ E(An+1) →֒ ...

and we define E(A∞) to be the direct limit of this system of posets.
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We put P = E(A∞) in lemma 10. We note that α ≤ β, α ∈ E(A∞), β ∈ E(An)
implies that α ∈ E(An). It follows that P = E(A∞) satisfies the requirements
of the lemma because each E(An) does. It is clear that Pmin = FL(A∞), and
furthermore that Pmin = FL(A∞). This yields the homotopy equivalence of
|FL(A∞)| with ET(A∞).
By Proposition 5, it follows that ET(A∞)//GL(A) and |FL(A∞)|//GL(A) are
also homotopy equivalent to each other.
It has already been remarked that Corollary 7 gives the homotopy equivalence
of |SPL(A∞| with |FL(A∞)|. Combined with Proposition 5, this gives the
homotopy equivalence of |SPL(A∞|//GL(A) with |FL(A∞)|//GL(A). The re-
marks preceding that proposition, combined with corollary 9, show that the
action of E(A) on the homology groups of |SPL(A∞)| is trivial.

3. homology of the Borel constrcuction

Let V be a free A-module of rank n. Fix β ∈ SPL(V ) and let N(β) ⊂ GL(V )
be the stabiliser of β (when V = An and β is the standard splitting, then N(β)
is the subgroup Nn(A) of the last section). That there is a GL(V )-equivariant
N(β)-torsor on |FL(V )| has been observed in the previous section. In a similar
manner, one may construct a GL(V )-equivariant N(β)-torsor on ET(V ). This
gives rise to a N(β)-torsor on ET(V )//GL(V ). Because BN(β) is a classifying
space for such torsors, we obtain a map ET(V )//GL(V )→ BN(β), well defined
up to homotopy.
On the other hand, the inclusion of β in ET(V ) gives rise to an inclusion
BN(β) = {β}//N(β) →֒ ET(V )//GL(V ). It is clear that the composite
BN(β) →֒ ET(V )//GL(V ) → BN(β) is homotopic to the identity. Thus
BN(β) is a homotopy retract of ET(V )//GL(V ), but not homotopy equivalent
to ET(V )//GL(V ). Nevertheless we have the following statement:

Proposition 12. The map BN(β) → ET(V )//GL(V ) induces an isomor-
phism on integral homology, provided A is as in theorem 1.

Proof. Fix a basis for V , identifying GL(V ) with GLn(A). Let β ∈ SPL(V )
be the element naturally determined by this basis. Regarded as a vertex of
ET(V ), let (β, ∗) 7→ β under the natural map

π : ET(V )//GL(V )→ ET(V )/GL(V )

from the homotopy quotient to the geometric quotient, where ∗ ∈ EGL(V ) is
the base point (corresponding to the vertex labelled by the identity element of
GL(V )).
For any x ∈ ET(V ), let H(x) ⊂ GL(V ) be the isotropy group of x for the
GL(V )-action on ET(V ). Note that since

ET(V )//GL(V ) = (ET(V )× EGL(V )) /GL(V ),

the fiber π−1(π((x, ∗)) may be identified with EGL(V )/H(x), which has the
homotopy type of BH(x).
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In particular, the fiber π−1(β) has the homotopy type of BNn(A), Further,
the principal Nn(A) bundle on EGL(V )/H(β) is naturally identified with the
universal Nn(A)-bundle on BNn(A) – its pullback to {β}×EGL(V ) is the triv-
ial Nn(A)-bundle, regarded as an Nn(A)-equivariant principal bundle, where
Nn(A) acts on itself (the fiber of the trivial bundle) by translation. This means
that the composite

π−1(β)→ ET(V )/GL(V )→ BNn(A)

is a homotopy equivalence, which is homotopic to the identity, if we identify
EGL(V )/H(β) with BNn(A).

Thus, the lemma amounts to the assertion that π−1(β) → ET(V )//GL(V )
induces an isomorphism in integral homology.
Fix α ∈ FL(V ) with α ≤ β in the poset E(V ). Let

P = {λ ∈ E(V )|α ≤ λ ≤ β}.

One sees easily that (i) BP is contractible, and (ii) the map BP →
ET(V )/GL(V ) is a homoemorphism. The first assertion is obvious, since P
has a maximal (as well as a minimal) element, so that BP is a cone. For the
second assertion, we first note that an element b ∈ P ⊂ E(V ) is uniquely de-
termined by the ranks of the modules in the partial flag in V associated to b.
Conversely, given any increasing sequence of numbers n1 < . . . < nh = rankV ,
there does exist an element of P whose partial flag module ranks are these
integers. Given any element b ∈ E(V ), there exists an element g ∈ GL(V ) so
that g(b) = b′ ∈ P ; the element b′ is the unique one determined by the sequence
of ranks associated to b. Finally, one observes that if b ∈ P , and g ∈ GL(V )
such that g(b) ∈ P , then in fact g(b) = b: this is a consequence of the unique-
ness of the element of P with a given sequence of ranks. These observations
imply that BP → ET(V )/GL(V ) is bijective; it is now easy to see that it is a
homeomorphism.
We may view ET(V )//GL(V ) as the quotient of BP ×EGL(V ) by the equiv-
alence relation

(5) (x, y) ∼ (x′, y′)⇔ x = x′, and y′ = g(y) for some g ∈ H(x).

The earlier map π : ET(V )//GL(V ) → ET(V )/GL(V ) may be viewed now as
the map induced by the projection BP × EGL(V )→ BP . We may, with this
identification, also identify β with β.
Next, we construct a “good” fundamental system of open neighbourhoods of
an arbitrary point x ∈ BP , which we need below. Such a point x lies in the
relative interior of a unique simplex σ(x) (called the carrier of x) corresponding
to a chain λ0 < λ1 < · · · < λr. Then one sees that the stabiliser H(x) ⊂ GL(V )
is given by

H(x) =

r⋂

i=0

H(λi),
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since any element of GL(V ) which stabilizes the simplex σ(x) must stabilize
each of the vertices (for example, since the GL(V ) action preserves the partial
order).
Let star (x) be the union of the relative interiors of all simplices in BP con-
taining σ(x) (this includes the relative interior of σ(x) as well, so it contains
x). It is a standard property of simplicial complexes that star (x) is an open
neighbourhood of x in BP . Then if z ∈ star (x), clearly σ(z) contains σ(x),
and so H(z) ⊂ H(x).
Next, for such a point z, and any y ∈ EGL(V ), it makes sense to consider the
path

t 7→ (tz + (1− t)x, y) ∈ σ(z)× EGL(V ) ⊂ BP × EGL(V )

(where we view the expression tz+(1−t)x as a point of σ(z), using the standard
barycentric coordinates). In fact this path is contained in star (x) × {y}, and
gives a continuous map

H(x) : star (x) × EGL(V )× I → star (x)× EGL(V )

which exhibits {x} × EGL(V ) as a strong deformation retract of star (x) ×
EGL(V ). Further, this is compatible with the equivalence relation ∼ in (5)
above, so that we obtain a strong deformation retraction

H(x) : π−1(star (x)) × I → π−1(star (x)).

In a similar fashion, we can construct a fundamental sequence of open neigh-
bourhoods Un(x) of x in BP , with U1(x) = star (x), and set

Un(x) = H(x)(star (x) × EGL(V )× [0, 1/n)).

The same deformation retraction H determines, by reparametrization, a defor-
mation retraction

Hn(x) : π−1(Un(x)) × I → π−1(Un(x))

of π−1(Un(x) onto π−1(x).
Thus, if P ′ = P \ β, then

π−1(star (β)) = ET(V )//GL(V ) \ π−1(BP ′),

and from what we have just shown above, the inclusion

π−1(β)→ π−1(star (β)) = ET(V )//GL(V ) \ π−1(BP ′)

is a homotopy equivalence. To simplify notation, we let X = ET(V )//GL(V ),
so that we have the map π : X → BP , and X0 = X \ π−1(BP ′). Let π0 =
π |X0 : X0 → BP .
We are reduced to showing, with this notation, that the inclusion of the (dense)
open subset

X0 → X

induces an isomorphism in integral homology. Equivalently, it suffices to show
that this inclusion induces an isomorphism on cohomology with arbitrary con-
stant coefficients M . By the Leray spectral sequence, this is a consequence of

Documenta Mathematica · Extra Volume Suslin (2010) 459–513



482 M. V. Nori and V. Srinivas

showing that the maps of sheaves

Riπ∗MX → Riπ0
∗MX0

is an isomorphism, which is clear on stalks x ∈ BP \ BP ′. Now consider
stalks at a point x ∈ BP ′. For any point x′ ∈ star (x), note that x lies in
some face of σ(x′) (the carrier of x′). We had defined a fundamental system of
neighbourhoods Un(x) of x in BP ; explicitly we have

Un(x) = {tx′ + (1 − t)x|0 ≤ t < 1/n and x′ ∈ star (x)}.
Here, as before, we make sense of the above expression tx′ + (1 − t)x using
barycentric coordinates in σ(x′).
Define

zn(x) =
1

2n
β + (1− 1

2n
)x.

Note that z ∈ BP \BP ′ = star (β). Further, observe that Un(x)∩BP \BP ′ is
contractible, contains the point z, and for any w ∈ Un(x)∩BP \BP ′, contains
the line segment joining z and w (this makes sense, in terms of barycentric
coordinates of any simplex containing both zn(x) and w; this simplex is either
the carrier of w, or the cone over it with vertex β, of which σ(w) is a face).
This implies H(w) ⊂ H(zn(x)) = H(x) ∩ H(β), for all w ∈ Un(x). A minor
modification of the proof (indicated above) that π−1(x) ⊂ π−1(Un(x)) is a
strong deforamtion retract, yields the statement that

π−1(zn(x))→ π−1(Un(x) \BP ′)

is a strong deformation retract. Hence, the desired isomorphism on stalks
follows from:

(6) B(H(x) ∩H(β))→ B(H(x)) induces isomorphisms in integral homology.

We now show how this statement, for the appropriate rings A, is reduced to
results of [13].
First, we discuss the structure of the isotropy groups H(x) encountered above.
Let λ ∈ P , given by

λ = (F, S) = ((0 = F0 ⊂ F1 ⊂ · · · ⊂ Fr = V ), (S1, S2, . . . , Sr)) ,

where we also have α ≤ λ ≤ β for our chosen elements α ∈ FL(V ) and
β ∈ SPL(V ). We may choose a basis for each of the lines in the splitting β;
then α ∈ FL(V ) uniquely determines an order among these basis elements,
and thus a basis for the underlying free A-module V , such that the i-th sub-
module in the full flag α is the submodule generated by the first i elements in
β. Now the stabilizer H(α) may be viewed as the group of upper triangular
matrices in GLn(A), while H(β) is the group generated by the diagonal sub-
group in GLn(A) and the group of permutation matrices, identified with the
permutation group Sn.
In these terms, H(λ) has the following structure. The filtration F = (0 = F0 ⊂
F1 ⊂ · · · ⊂ Fr = V ) is a sub-filtration of the full flag α, and so determines a
“unipotent subgroup” U(λ) of elements fixing the elements of this partial flag,
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and acting trivially on the graded quotients Fi/Fi−1. These are represented as
matrices of the form 



In1 ∗ ∗ · · · ∗
0 In2 ∗ · · · ∗
0 0 In3 · · · ∗

...
. . .

...
0 · · · Inr




where ni = rank (Wi/Wi−1), Ini is the identity matrix of size ni; these are the
matrices which are strictly upper triangular with respect to a certain “ladder”.
Next, we may consider the group S(λ) ⊂ Sn of permutation matrices, supported
within the corresponding diagonal blocks, of the form




A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0

...
. . .

...
0 · · · Ar




where each Aj is a permutation matrix. Finally, we have the diagonal matrices
Tn(A) ⊂ GLn(A), which are contained in H(λ) for any such λ. In fact H(λ) =
U(λ)Tn(A)S(λ), where the group Tn(A)S(λ) normalizes the subgroup U(λ),
making H(λ) a semidirect product of U(λ) and Tn(A)S(λ). We also have that
S(λ) normalizes U(λ)Tn(A).
In particular, H(α) has trivial associated permutation group S(α) = {In},
while H(β) has trivial unipotent group U(β) = {In} associated to it.
Now if x ∈ BP , and σ(x) is the simplex associated to the chain λ0 < · · · < λr
in the poset P , then it is easy to see that H(x) is the semidirect product of
U(x) := U(λr) and Tn(A)S(x), with S(x) := S(λ0), since as seen earlier, H(x)
is the intersection of the H(λi). In other words, the “unipotent part” and the
“permutation group” associated to H(x) are each the smallest possible ones
from among the corresponding groups attached to the vertices of the carrier of
x. Again we have that S(x) normalizes U(x)Tn(A).
We return now to the situation in (6). We see that the groups H(x) =
U(x)Tn(A)S(x) and H(x) ∩ H(β) = Tn(A)S(x) both have the same associ-
ated permutation group S(x), which normalizes U(x)Tn(A) as well as Tn(A).
By comparing the spectral sequences

E2
p,q = Hp(S(x), Hq(U(x)Tn(A),Z))⇒ Hp+q(H(x),Z),

E2
p,q = Hp(S(x), Hq(Tn(A),Z))⇒ Hp+q(H(x) ∩H(β),Z)

we see that it thus suffices to show that the inclusion

(7) Tn(A) ⊂ U(x)Tn(A)

induces an isomorphism on integral homology.
Now lemma 13 below finishes the proof. �
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To state lemma 13 we use the following notation. Let I = {i0 = 0 < i1 < i2 <
· · · < ir = n} be a subsequence of {0, 1, . . . , n}, so that I determines a partial
flag

0 ⊂ Ai1 ⊂ Ai2 ⊂ · · · ⊂ Air = An,

where Aj ⊂ An as the submodule generated by the first j basis vectors. Let
U(I) be the “unipotent” subgroup of GLn(A) stabilising this flag, and acting
trivially on the associated graded A-module, and let G(I) ⊂ GLn(A) be the
subgroup generated by U(I) and Tn(A) = (A×)n, the subgroup of diagonal
matrices. Then Tn(A) normalises U(I), and G(I) is the semidirect product of
U(I) and Tn(A).

Lemma 13. Let A be a Nesterenko-Suslin ring. For any I as above, the ho-
momorphism G(I)→ G(I)/U(I) ∼= Tn(A) induces an isomorphism on integral
homology H∗(G(I),Z)→ H∗(Tn(A),Z).

Proof. We work by induction on n, where there is nothing to prove when n = 1,
since we must have G(I) = T1(A) = A× = GL1(A). Next, if n > 1, and
I = {0 < n}, then U(I) is the trivial group, so there is nothing to prove.
Hence we may assume n > 1, r ≥ 2, and thus 0 < i1 < n. There is then a
natural homomorphism G(I)→ G(I ′), where I ′ = {0 < i2−i1 < · · · < ir−i1 =
n− i1}, and G(I ′) ⊂ GLn−i1(A). Let n′ = n− i1. The induced homomorphism
Tn(A)→ Tn′(A) is naturally split, with kernel Ti1(A) ⊂ GLi1(A) ⊂ GLn(A).
Let

U1(I) = ker (U(I)→ U(I ′)) = ker (G(I)→ GLi1(A)×GLn′(A)) .

Then U1(I) is a normal subgroup of G(I), from the last description, and

G(I)/U1(I) ∼= U(I ′) · Tn(A) = Ti1(A) ×G(I ′).

Now U1(I) may be identified with Mi1,n′(A), the additive group of matrices
of size i1 × n′ over A; this matrix group has a natural action of GLi1(A),
and thus of the diagonal matrix group Ti1(A), and the resulting semidirect
product of Ti1(A) with U1(A) is a subgroup of G(I) (in fact, it is the kernel of
G(I)→ G(I ′)). This matrix group Mi1,n′(A) is isomorphic, as Ti1(A)-modules,
to the direct sum

⊕i1i=1A
n′

(i),

where An
′

(i) is the free A-module of rank n′, with a Ti1(A)-action given by
the the “i-th diagonal entry” character Ti1(A) → A×. Thus, the semidirect
product Ti1(A)U1(I) has a description as a direct product

Ti1(A)U1(i) ∼= H ×H × · · · ×H = Hni

with H = An
′ ·A× equal to the naturally defined semidirect product of the free

A module An
′

with A×, where A× operates by scalar multiplication.
Proposition 1.10 and Remark 1.13 in the paper [13] of Nesterenko and Suslin

implies immediately that H → H/An
′ ∼= A× induces an isomorphism on inte-

gral homology.
We now use the following facts.
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(i) If H ⊂ K ⊂ G are groups, with H , K normal in G, and if K → K/H
induces an isomorphism in integral homology, so does G→ G/H ; this
follows at once from a comparison of the two spectral sequences

E2
r,s = Hr(G/K,Hs(K,Z))⇒ Hr+s(G,Z),

E2
r,s = Hr(G/K,Hs(K/H,Z))⇒ Hr+s(G/H,Z).

(ii) If Hi ⊂ Gi are normal subgroups, for i = 1, . . . , n, such that
Gi → Gi/Hi induce isomorphisms on integral homology, then for
G =

∏n
i=1Gi, H =

∏n
i=1Hi, the map G → G/H induces an isomor-

phism on integral homology. This follows from the Kunneth formula.

The fact (ii) implies that Ti1(A)U1(I) → Ti1(A) induces an isomorphism
on integral homology. Then (i) implies that G(I) → Ti1(A) × G(I ′) in-
duces an isomorphism on integral homology. By induction, we have that
G(I ′) → G(I ′)/U(I ′) induces an isomorphism on integral homology. Hence
Ti1(A) × G(I ′) → Ti1 × G(I ′)/U(I ′) also induces an isomorphism on integral
homology. Thus, we have shown that the composition G(I) → G(I)/U(I) =
Tn(A) induces an isomorphism on integral homology. �

4. SPL(A∞)+ and the groups Ln(A)

We first note that there is a small variation of Quillen’s plus construction.
Let (X, x) be a pointed CW complex, (X0, x) a contractible pointed subcom-
plex, G a group of homeomorphisms of X which acts transitively on the path
components of X , and let H be a perfect subgroup of G, such that H stabilizes
X0.
Then X//G is clearly path connected, and comes equipped with
(i) a natural map θ : X//G → BG = EG/G, induced by the projection
X × EG→ EG
(ii) a map (X0 × EG)/H → X//G, induced by the H-stable contractible set
X0 ⊂ X
(iii) a homotopy equivalence BH → (X0 ×EG)/H , such that the composition

BH → X//G
θ→ BG is homotopic to the natural map BH → BG

(iv) a natural map (X, x) →֒ (X//G, x0) determined by the base point of EG.
Note that, in particular, there is a natural inclusion H →֒ π1(X//G, x0), which
gives a section over H ⊂ G of the surjection θ∗ : π1(X//G, x0)→ π1(BG, ∗) =
G.

Lemma 14. In the above situation, there is a pointed CW complex (Y, y), to-
gether with a map f : (X//G, x0)→ (Y, y) such that
(i) the natural composite map

H →֒ π1(X//G, x0)
f→ π1(Y, y)

is trivial
(ii) if g : (X//G, x0)→ (Z, z) such that H is in the kernel of

π1(X//G, x0)→ π1(Z, z)
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then g factors through f , uniquely upto a pointed homotopy
(iii) f induces isomorphisms on integral homology; more generally, if L is any
local system on Y , the map on homology with coefficients H∗(X//G, f∗L) →
H∗(Y, L) is an isomorphism
(iv) h : (X, x) → (X ′, x′) is a pointed map of such CW complexes with G-
actions, such that h is G-equivariant, then there is a map (Y, y) → (Y ′, y′),
making (X, x) 7→ (Y, y) is functorial (on the category of pointed CW complexes
with suitable G actions, and equivariant maps), and f yields a natural trans-
formation of functors.

The pair (Y, y) is obtained by applying Quillen’s plus construction to

(X//G, x0) with respect to the perfect normal subgroup H̃ of π1(X//G, x0)
which is generated by H . Part (ii) of the lemma is in fact the universal prop-
erty of the plus construction. As is well-known, this may be done in a functorial
way. We sometimes write (Y, y) = (X//G, x0)

+ to denote the above relation-
ship.
In what follows, the pair (G,H) is invariably (GLn(A), An) for 5 ≤ n ≤ ∞.
Here An is the alternating group contained in Nn(A). The normal subgroups
of GLn(A) generated by An and En(A) coincide with each other. It follows
that if we take X = X0 to be a point, the Y given by the above lemma is just
the “original” BGLn(A)+.
Recall that there is a natural action of GL(A) on the simplicial complex
SPL(A∞), and hence on its geometric realization |SPL(A∞)|. We apply
lemma 14 with G = GL(A), H = A∞ the infinite alternating group, X =
|SPL(A∞)|, and X0 = {x0} is the vertex of X fixed by N(A) and obtain the
pointed space

(Y (A), y) = (|SPL(A∞)|//G), x0)+.

Taking X ′ to be a singleton in (iii) of the above lemma, we get a canonical map

ϕ : (Y (A), y)→ (BGL(A)+, ∗)
of pointed spaces.
Let (SPL(A∞)+, z) denote the homotopy fibre of ϕ. We define

Ln(A) = πn(SPL(A∞)+, z) ∀ n ≥ 0.

The homotopy sequence of the fibration SPL(A∞)+ → Y (A) → BGL(A)+

combined with the path-connectedness of Y (A) yields:

Corollary 15. There is an exact sequence

· · · → Kn+1(A)→ Ln(A)→ πn(Y (A), y)→ Kn(A) · · ·
· · · → L1(A)→ π1(Y (A), y)→ K1(A)→ L0(A)→ 0

where L0(A) is regarded as a pointed set.

Lemma 16. The natural map |SPL(A∞)| → SPL(A∞)+ induces an isomor-
phism on integral homology.
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Proof. We may identify the universal covering of BGL(A)+ with BE(A)+,
where BE(A)+ is the plus construction (see lemma 14) applied to BE(A) with
respect to the infinite alternating group (or, what is the same thing, with

respect to E(A) itself). Let ϕ̃ : Ỹ → BE(A)+ be the corresponding pullback
map obtained from ϕ.
We first note that SPL(A∞)+ is also naturally identified with the homotopy

fiber of ϕ̃. There is then a homotopy pullback ϕ̂ : Ŷ → BE(A) of ϕ̃ with
respect to BE(A) → BE(A)+. Thus, our map SPL(A∞) → SPL(A∞)+ may
be viewed as the natural map on fibers associated to a map

(8) SPL(A∞)//E(A)→ Ŷ

of Serre fibrations over BE(A).
From a Leray-Serre spectral sequence argument, we see that since (from
lemma 14) BE(A) → BE(A)+ induces a isomorphism on integral homology,

so does Ŷ → Ỹ . Since also SPL(A∞)//E(A) → Ỹ is a homology isomor-

phism (from lemma 14 again), we see that SPL(A∞)//E(A) → Ŷ induces an
isomorphism on integral homology.
Now we use that the map (8) is a map between two total spaces of Serre
fibrations over a common base, inducing a homology isomorphism on these total
spaces. We also know that the monodromy representation of π1(BE(A)) =

E(A) on the homology of the fibers is trivial, in both cases: for Ŷ this is
because it is a pullback from a Serre fibration over a simply connected base,
while for SPL(A∞), this is one of the key properties we have already established
(see the finishing sentence of section 2). The proof is now complete modulo
the remark below, which is a straightforward consequence of the Leray-Serre
spectral sequence of a fibration. �

Remark. Let p : E → B and p′ : E′ → B be fibrations with fibers F and
F ′ respectively over the base-point b ∈ B. Let v : E → E′ be a map so that
p′ ◦ v = p. Assume that B is path-connected. Then E → E′ is a homology
isomorphism implies F → F ′ is a homology isomorphism under the following
additional assumption:
M 6= 0 implies H0(π1(B, b),M) 6= 0 for every π1(B, b)-subquotient M of
Hi(F ), Hj(F

′) for all i, j.

5. The H-space structure

Recall that BGL(A)+ has an H-space structure in a standard way, obtained
from the direct sum operation on free modules of finte rank; this was con-
structed in [6].
The aim of this section is to prove the proposition below.

Proposition 17. The space Y (A) has an H-space structure, such that Y (A)→
BGL(A)+ is homotopic to an H-map, for the standard H-space structure on
BGL(A)+.
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We first remark that if V is a free A-module of finite rank, then
|SPL(V )|//GL(V ) is homeomorphic to the classifying space of the following
category SPL(V ): its objects are simplices in SPL(V ) (thus, certain finite
nonempty subsets of SPL(V )), and morphisms σ → τ are defined to be ele-
ments g ∈ GL(V ) such that g(σ) ⊂ τ , that is, such that g(σ) is a face of the
simplex τ of SPL(V ).
Let Aut(V ) be the category with a single object ∗, with morphisms given by el-
ements of GL(V ), so that the classifying space BAut(V ) is the standard model
for BGL(V ). There is a functor FV : SPL(V ) → Aut(V ), mapping every
obeject σ to ∗, and mappng an arrow σ → τ in SPL(V ) to the corresponding
element g ∈ GLV (). The fiber F−1

V (∗) is the poset of simplices of SPL(V ),
whose classifying space is thus homeomorphic to |SPL(V )|.
It is fairly straightforward to verify that BSPL(V ) is homeomorphic to
|SPL(V )|//GL(V ) (where we have used the classifying space of the transla-
tion category of GL(V ) as the model for the contractible space E(GL(V ))).

One way to think of this is to consider the category S̃PL(V ), whose objects
are pairs (σ, h) with σ a simplex of SPL(V ), and h ∈ GL(V ), with a unique
morphism (σ, h) → (τ, g) precisely when g−1h(σ) ⊂ τ . It is clear that by con-
sidering the full subcategories of objects of the form (σ, g), where g ∈ GL(V )
is a fixed element, each of which is naturally equivalent to the poset of sim-

plices in SPL(V ), that the classifying space of S̃PL(V ) is homeomorphic to
|SPL(V )|×E(GL(V ))). Now it is a simple matter to see (e.g., use the criterion

of Quillen, given in [19], lemma 6.1, page 89) that BS̃PL(V ) → BSPL(V ),
given by (σ, h) 7→ h−1(σ), is a covering space which is a principal GL(V )-
bundle, where the deck transformations are given by the natural action of
GL(V ) on |SPL(V )| × E(GL(V )).
L(V ) denotes the collection of A-submodules L ⊂ V so that L is free of rank
one and V/L is a free module. Now we note that if V ′, V ′′ are free A-modules
of finite rank, we note that there is a natural inclusion L(V ′) ⊔ L(V ′′) →֒
L(V ′ ⊕ V ′′). This in turn yields a natural map

ϕV ′,V ′′ : SPL(V ′)× SPL(V ′′)→ SPL(V ′ ⊕ V ′′),

given by ϕV ′,V ′′(s, t) = s ⊔ t.
It follows easily from the definition of SPL that the above map on vertices
induces a simplicial map

ΦV ′,V ′′ : SPL(V ′)× SPL(V ′′)→ SPL(V ′ ⊕ V ′′).

As explained in section 0, at the level of geometric realisations, this has two
descriptions. The first description may be used to show that the counterpart
of lemma 8(C) is valid for SPL, namely the homotopy class of the inclusion

|SPL(V ′)| × |SPL(V ′′)| → |SPL(V ′ ⊕ V ′′)|
remains unaffected by composition with the action of g ∈ Elem(V ′ →֒ V ′⊕V ′′)
on |SPL(V ′ ⊕ V ′′)|.
The second description however is more useful in this context. Let us abbreviate
notation and denote the (partially ordered) set of simplices of SPL(V ) simply
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by S(V ). The desired map S(V ′) × S(V ′′) → S(V ′ ⊕ V ′′) is given simply by
(σ, τ) 7→ ϕV ′,V ′′(σ× τ). The resulting map B(S(V ′)×S(V ′′))→ BS(V ′⊕V ′′)
is the second description of

|SPL(V ′)| × |SPL(V ′′)| → |SPL(V ′ ⊕ V ′′)|
for (a) BC′ × BC′′ ∼= B(C′ × C′′) and (b) BS(V ) is simply the barycentric
subdivision of |SPL(V )|.
This latter description also allows us to go a step further and define the func-
tor SPL(V ′) × SPL(V ′′) → SPL(V ′ ⊕ V ′′), given on objects by (σ, τ) 7→
ϕV ′,V ′′(σ × τ) as before; on morphisms, it is given by the natural map
GL (V ′)×GL (V ′′)→ GL(V ′ ⊕ V ′′). Hence on classifying spaces, it induces a
product

|SPL(V ′)|//GL(V ′)×|SPL(V ′′)|//GL(V ′′)→ |SPL(V ′⊕V ′′)|//GL(V ′⊕V ′′)|.
This is clearly compatible with the product

BGL(V ′)×BGL(V ′′)→ BGL(V ′ ⊕ V ′′)

under the natural maps induced by the functors SPL → Aut for the three free
modules.
One verifies that SPL(A) =

∐
V SPL(V ), with respect to the bifunctor

+ : SPL(A)× SPL(A)→ SPL(A)

induced by direct sums on free modules, and the functors ΦV ′,V ′′ , form a sym-
metric monoidal category.
An equivalent category, also denoted SPL(A) by abuse of notation, is that
whose objects are pairs (V, σ), where V is a free A-module of finite rank, and
σ ∈ SPL(V ) a simplex, and where morphisms (V, σ)→ (W, τ) are isomorphisms
f : V →W of A-modules such that f(σ) is a face of τ .
For the purposes of stabilization, we slightly modify the above to consider the
related maps

ϕm,n : SPL(Am)× SPL(An)→ SPL(A∞)

given by mapping the basis vector ei ∈ Am in the first factor to the basis vector
e2i−1 ∈ A∞, for each 1 ≤ i ≤ m, and the basis vector ej ∈ An in the second
factor to the basis vector e2j ∈ A∞. A pair of splittings of Am, An determine
one for the free module spanned by the images of the two sets of basis vectors;
now one extends this to a splitting of A∞ by adjoining the remaining basis
vectors of A∞ (that is, adjoining those vectors not in the span of the earlier
images). If our first two splittings are those given by the basis vectors, which
correspond to the base points in |SPL(Am)| and |SPL(An)|, the resulting point
in SPL(A∞) is again the base point of |SPL(A)|.
The corresponding functors

Φm,n : SPL(Am)× SPL(An)→ SPL(A∞)

are compatible with similar functors

Aut(Am)×Aut(An)→ Aut(A∞)
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which, on classifying spaces, yield the diagram of product maps, preserving
base points,

|SPL(Am)//GLn(A)| × |SPL(An)|//GLn(A) → |SPL(A∞|//GL(A)
↓ ↓

BGLm(A) ×BGLn(A) → BGL(A)

where the bottom arrow is the one used in [6] to define the H-space structure
on BGL(A)+.
As we increase m, n, the corresponding diagrams are compatible with respect
to the obvious stabilization maps |SPL(Am)| →֒ |SPL(Am+1)|, |SPL(An) →֒
|SPL(An+1)|. Hence we obtain on the direct limits a diagram

|SPL(A∞)//GL(A)| × |SPL(A∞)|//GL(A) → |SPL(A∞|//GL(A)
↓ ↓

BGL(A)×BGL(A) → BGL(A)

From lemma 14, it follows that there is an induced diagram at the level of plus
constructions

Y (A)× Y (A) → Y (A)
↓ ↓

BGL(A)+ ×BGL(A)+ → BGL(A)+

Here we have, as remarked above, taken the homotopy equivalent model
|SPL(A∞|//GL(A) for the homotopy type earlier denoted Y (A). We abuse
notation and use the same symbol to denote this model as well.
It is shown in [6] that the botton arrow defines an H-space structure on
BGL(A). We claim that, by analogous arguments, the top arrow also defines
an H-space structure on Y (A). Granting this, the map Y (A) → BGL(A)+ is
then an H-map between path connected H-spaces, and so the homotopy fiber
Z(A) has the homotopy type of an H-group as well (and this was what we set
out to prove here).
To show that the product Y (A)× Y (A)→ Y (A) defines an H-space structure,
we need to show that left or right translation on Y (A) (with respect to this
product) by the base point is homotopic to the identity. This is also the main
point in [6], for the case of BGL(A)+. We first show:

Lemma 18. An arbitrary inclusion j : {1, 2, . . . , n} →֒ N determines an in-
clusion of A-modules An → A∞, given on basis vectors by ei 7→ ej(i), which
induces a map

|SPL(An)|//GLn(A)→ Y (A)

which is homotopic (preserving the base point) to the map induced by standard
inclusion in : An → A∞.

Proof. We can find an automorphism g of A∞ contained in the infinite alter-
nating group A∞, such that g ◦ j = in, where g acts on A∞ by permuting the
basis vectors (note that the induced self-map of |SPL(A∞)| × EGL(A) fixes
the base point). Regarding g as an element of π1(|SPL(A∞)|//GL(A)), this
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implies that the maps (in)∗ and j∗, considered as elements of the set of pointed
homotopy classes of maps

[|SPL(An)|//GLn(A), |SPL(A∞)|//GL(A)] ,

are related by g∗(j∗) = (in)∗, where g∗ denotes the action of the fundamental
group of the target on the set of pointed homotopy classes of maps. However,
g is in the kernel of the map on fundamental groups associated to the map

|SPL(A∞)|//GL(A)→ (|SPL(A∞|//GL(A))+.

Hence the induced maps

|SPL(An)|//GL(A)→ (|SPL(A∞)|//GL(A))+

determined by in and j are homotopic. �

Corollary 19. The map Y (A)→ Y (A) defined by an arbitrary injective map
α : N →֒ N is homotopic, preserving the base point, to the identity.

Proof. We first note that if for n ≥ 5, we let Yn(A) = (|SPL(An)|//GLn(A))+

be the result of applying lemma 14 to |SPL(An)|//GLn(A) for the alternating
group An, then there are natural maps Yn(A)→ Y (A), preserving base points,
and inducing an isomorphism lim−→

n

π∗(Yn(A)) = π∗(Y (A)).

We claim that if αn : {1, 2 . . . , n} →֒ N is the inclusion induced by restricting
α, then the induced map (αn)∗ : Yn(A) → Y (A) is homotopic, preserving the
base points, to the natural map Yn(A) → Y (A). This follows from lemma 18,
combined with the defining universal property of the plus construction, given
in lemma 14.
This implies that the map α : Y (A) → Y (A) must then induce isomorphisms
on homotopy groups, and hence is a homotopy equivalence, by Whitehead’s
theorem.
Thus, we have a map from the set of such injective maps α to the group of
base-point preserving homotopy classes of self-maps of Y (A). This is in fact a
homomorphism of monoids, where the operation on the injective self-maps of
N is given by composition of maps.
Now we use a trick from [6]: any homomorphism of monoids from the monoid
of injective self-maps of N to a group is a trivial homomorphism, mapping all
elements of the monoid to the identity. This is left to the reader to verify (or
see [6]). �

We note that the above monoidal category SPL(A) can be used to give another,
perhaps more insightful construction of the homotopy type Y (A), analogous to
Quillen’s S−1S construction for BGL(A)+. We sketch the argument below.
We first take SPL0(A) to be the full subcategory of SPL(A) consisting of
pairs (V, σ) where σ ∈ SPL(V ), i.e.,σ is a 0-simplex in SPL(V ). This full
subcategory is in fact a monoidal subcategory, which is a groupoid (all ar-
row are isomorphisms). Also, SPL(A) is a symmetric monoidal category, in
that the sum operation is commutative upto coherent natural isomorphisms.
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Then, using Quillen’s results (see Chapter 7 in [19], particularly Theorem 7.2),
one can see that SPL0(A)−1SPL(A) is a monoidal category whose classify-
ing space is a connected H-space, which is naturally homology equivalent to
|SPL(A∞)|//GL(A). This then forces this classifying space to be homotopy
equivalent to Y (A), such that the H-space operations are compatible upto ho-
motopy. This is analogous to the identification made in Theorem 7.4 in [19]
of S−1S with K0(R) × BGL(R)+ for a ring R, and appropriate S. (We do
not get the factor K0 appearing in our situation since we work only with free
modules).

6. Theorem 1 and the groups Hn(A×)

Proof of Theorem 1. In view of Proposition 17, we see that SPL(A∞)+, the
homotopy fiber of the H-map Y (A)→ BGL(A)+, is a H-space as well. It follows
that L0(A) = π0(SPL(A∞)+) is a monoid. Furthermore, the arrow K1(A) →
L0(A) in Corollary 15 is a monoid homomorphism. Thus this corollary produces
an exact sequence of Abelian groups.
SPL(An) has a canonical base point fixed under the action of Nn(A). As in
sections 3 and 4, this gives a natural inclusion BNn(A)→ SPLn(A)//GLn(A).
This is a homology isomorphism by lemma 12. Taking direct limits over all
n ∈ N, we see that BN(A)→ SPL(A∞)//GL(A) is a homology isomorphism.
Applying Quillen’s plus construction with respect to the normal subgroup of
N(A) generated by the infinite alternating group, we obtain a space BN(A)+.
ThatBN(A)+ has a canonical H-space structure follows easily by the method of
the previous section. Now the map BN(A)+ → Y (A) obtained by lemma 14(ii)
is a homology isomorphism of simple path-connected CW complexes and is
therefore a homotopy equivalence (see [4]) Theorem 4.37, page 371 and The-
orem 4.5, page 346). This gives the isomorphism Hn(A×) → Ln(A). The
theorem now follows from corollary 15.
We now turn to the description of the groups. Let X = B(A×). Let X+ =
X ⊔ {∗} be the pointed space with ∗ as its base-point. Let QX+ be the direct
limit of ΩnΣnX+ where Σ denotes reduced suspension.

Proposition 20. Hn(A×) ∼= πn(QX+).

This statement was suggested to us by Proposition 3.6 of [17].
A complete proof of the proposition was shown us by Peter May. A condensed
version of what we learnt from him is given below.
Theorem 2.2, page 67 of [8] asserts that α∞ : C∞X+ → QX+ is a group
completion. This is proved in pages 50-59, [10]. The C∞ here is a particular
case of the construction 2.4, page 13 of [9], given for any operad. For C∞(Y ),
where Y is a pointed space, the easiest definition to work with is found in
May’s review of [16]. It runs as follows. Let V = ∪∞n=0R

n. Let Ck(Y ) be the
collection of ordered pairs (c, f) where c ⊂ V has cardinality k and f : c→ Y
is any function. We identify (c, f) with (c′, f ′) if
(i) c′ ⊂ c, (ii) f |c′ = f ′, and (iii) f(a) = ∗ for all a ∈ c, a /∈ c′. Here ∗ stands for
the base-point of Y . Then C∞Y is the space obtained from the disjoint union
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of the Ck(Y ), k ≥ 0 by performing these identifications. This is a H-space.
In our case, when Y = X ⊔ {∗}, it is clear that C∞Y is the disjoint union of
all the Ck(X) as a topological space. Thanks to “infinite codimension” one
gets easily the homotopy equivalence of Ck(X) with Xk//Sk where Sk is the
permutation group of {1, 2, .., k}. Now assume that X is any path-connected
space equipped with a nondegenerate base-point x ∈ X . This x gives an
inclusion of Xn →֒ Xn+1. Denote by X∞ the direct limit of the Xn. Thus X∞

is a pointed space equipped with the action of the infinite permutation group
S∞ = ∪nSn. Put Z = X∞//S∞. As in section 4, we obtain Z+ by the use of
the infinite alternating group. As in section 5, we see that this is a H-space. It
is an easy matter to check that the group completion of ⊔kCkX is homotopy
equivalent to Z× Z+. This shows that πn(QX+) ∼= πn(Z+) for all n > 0.
The proposition is the particular case: X = B(A×).

7. Polyhedral structure of the enriched Tits building

From what has been shown so far, we see that it is of interest to determine
the stable rational homology of the flag complexes |FL(An)| (or equivalently,
of |SPL(An)|, or ET(An)). We will construct a spectral sequence that, in
principle, gives an inductive procedure to do so.
But first we introduce some notation and a definition for posets.
Let P be a poset. For p ∈ P , we put e(p) = BL(p) where L(p) = {q ∈ P |q ≤ p}
and ∂e(p) = BL′(p) where L′(p) = L(p) \ {p}. If ∂e(p) is homeomorphic to a
sphere for every p ∈ P , we say the poset P is polyhedral. We denote by d(p)
the dimension of e(p). When P is polyhedral, the space BP gets the structure
of a CW complex with {e(p) : p ∈ P} as the closed cells. Its r-skeleton is BPr
where Pr = {p ∈ P : d(p) ≤ r}. The homology of BP is then computed by the
associated complex of cellular chains Cell•(BP ), where

Cellr(BP ) =
⊕

{p| dim e(p)=r}
Hr(e(p), ∂e(p),Z).

Lemma 21. E(An) is a polyhedral poset in the above sense. Its dimension is
n− 1.

Proof. First consider the case when p ∈ SPL(An) is a maximal element in
E(An). Then p is an unordered collection of n lines in An (here, as in §2, a
“line” denotes a free A-submodule of rank 1 which is a direct summand, and
the set of lines in An is denoted by L(An)). Note that the subset p ⊂ L(An) of
cardinality n determines a poset p̃, whose elements are chains q• = {q1 ⊂ q2 ⊂
· · · ⊂ qr = p} of nonempty subsets, where r• ≤ q• if each qi is an rj for some j,
i.e., the “filtration” r• “refines” q•. We claim that, from the definition of the
partial order on E(An), the poset p̃ is naturally isomorphic to the poset L(p).
Indeed, an element q ∈ E(An) consists of a pair, consisting of a partial flag

0 = W0 ⊂W1 ⊂ · · · ⊂Wr = An
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such that Wi/Wi−1 is free, and a sequence t1, . . . , tr with ti ∈ SPL(Wi/Wi−1).
The condition that this element of E(An) lies in L(p) is that each Wi is a
direct sum of a subset of the lines in p, say qi ⊂ p, giving the chain of subsets
q1 ⊂ q2... ⊂ qr = p; the splitting ti is uniquely determined by the lines in
qi \ qi−1.
Let ∆(p) be the (n− 1)-simplex with p as its set of vertices. Now the chains of
non-empty subsets of p correspond to simplices in the barycentric subdivison
sd∆(p), where the barycentre b corresponds to the chain {p}. Hence, from the
definition of p̃, it is clear that it is isomorphic to the poset whose elements are
simplices in the barycentric subdivision of ∆n with b as a vertex, with partial
order given by reverse inclusion. Hence Bp̃ is naturally identified with the
subcomplex of the second barycentric subdivision sd2∆(p) which is the union
of all simplices containing the barycentre. This explicit description implies in
particular that BL′(p) is homeomorphic to Sn−2 (with a specific triangulation).
Before proceeding to the general case, we set up the relevant notation for
orientations. For a set q of cardinality r, we put det(q) = ∧rZ[q] where Z[q]
denotes the free Abelian group with q as basis. we observe that there is a
natural isomorphism:

Hn−1(e(p), ∂e(p)) ∼= Hn−1(∆(p), ∂∆(p)) = det(p).

Now let p ∈ E(An) be arbitrary, corresponding to a partial flag

0 = W0 ⊂W1 ⊂ · · · ⊂Wr = An.

and splittings ti ∈ SPL(Wi/Wi−1). Then the natural map
r∏

i=1

E(Wi/Wi−1)→ E(An)

is an embedding of posets, where the product has the ordering given by
(a1, . . . , ar) ≤ (b1, . . . , br) precisely when ai ≤ bi in E(Wi/Wi−1) for each i.
One sees that, by the definition of the partial order in E(An), the induced map

r∏

i=1

L(ti)→ L(p)

is bijective. Hence there is a homeomorphism of pairs

(BL(p), BL′(p)) =

r∏

i=1

(BL(ti), BL
′(ti)),

and so BL′(p) ∼= Sn−r−1, and BL(p) is an n− r-cell. �

We now proceed to construct the desired spectral sequence. We use the fol-
lowing notation: if p ∈ E(V ), where V is a free A-module of finite rank, and
W1 ⊂ V is the smallest non-zero submodule in the partial flag associated to
p, define t(p) = rankW1 − 1. Clearly t : E(V ) → Z is monotonic. Hence
FrE(V ) = {p ∈ E(V )|t(p) ≤ r} is a sub-poset. Define

FrET(V ) = BFrE(V ) = ∪{e(p)|t(p) ≤ r},
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so that

F0ET(V ) ⊂ F1ET(V ) ⊂ · · ·Fn−1ET(V ) = ET(V )

is an increasing finite filtration of the CW complex ET(V ) by subcomplexes.
Hence there is an associated spectral sequence

E1
r,s = Hr+s(FrET(V ), Fr−1ET(V ),Z)⇒ Hr+s(ET(V ),Z).

Our objective now is to recognise the above E1 terms.
It is convenient to use the complexes of cellular chains for these sub CW-
complexes, which are thus sub-chain complexes of Cell•(ET(V )). For simplicity
of notation, we write Cell•(V ) for Cell•(ET(V )). We have the description

E1
r,s = Hr+s(grFr Cell•(V )).

We will now exhibit grFr Cell•(V ) as a direct sum of complexes. Let W ⊂ V
be a submodule such that W,V/W are both free, and rankW = r + 1. Let
q ∈ SPL(W ). The we have an inclusion of chain complexes

Cell•(e(q)) ⊗ Cell•(V/W ) ⊂ Cell•(W )⊗ Cell•(V/W ) ⊂ FrCell•(V ).

It is clear that

imageCell•(∂e(q))⊗ Cell•(V/W ) ⊂ Fr−1Cell•(V ),

so that we have an induced homomorphism of complexes

(Cell•(e(q))/Cell•(∂e(q)))⊗ Cell•(V/W )→ grFr Cell•(V ).

Composing with the natural chain homomorphism

Hr(e(q), ∂e(q),Z)[r] → (Cell•(e(q))/Cell•(∂e(q)))

for each q, we finally obtain a chain map

I :
⊕

(W,q∈SPL(W ))

Hr(e(q), ∂e(q),Z)[r] ⊗ Cell•(V/W )→ grFr Cell•(V ).

Finally, it is fairly straightforward to verify that I is an isomorphism of com-
plexes.
We deduce that the E1 terms have the following description:

E1
r,s =

⊕

rankW = r + 1
q ∈ SPL(W )

det(q)⊗Hs(Cell•(V/W ),Z).

We define Lr(V ) to be the collection of q ⊂ L(V ) of cardinality (r + 1) for
which (a) and (b) below hold:
(a) ⊕{L : L ∈ q} → V is injective. Its image will be denoted by W (q)
(b) V/W (q) is free of rank (n− r − 1).
Summarising the above, we obtain:
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Theorem 2. There is a spectral sequence with E1 terms

E1
r,s =

⊕

q ∈ Lr(V )

det(q) ⊗Hs(ET(V/W (q)),Z).

that converges to Hr+s(ET(V )). We note that E1
r,s = 0 whenever (r + s) ≥

(n− 1) with one exception: (r, s) = (n− 1, 0). Here V ∼= An.

8. Compatible homotopy

It is true 3 that i : ET(W )×ET(V/W ) →֒ ET(V ) has the property that g ◦ i is
freely homotopic (not preserving base points) to i whenever g ∈ Elem(W →֒ V ).
There are several closed subsets of ET(An) with the property that homotopy
class of the inclusion morphism into ET(An) remains unaffected by composition
with the action of g ∈ En(A). To prove that the union of a finite collection of
such closed subsets has the same property, one would require the homotopies
provided for any two members of the collection to agree on their intersection.
This is the problem we are concerned with in this section.
We proceed to set up the notation for the problem.
With q ∈ Lr(V ) as in theorem 2, we shall define the subspaces U(q) ⊂ ET(V )
as follows. Let W (q) = ⊕{L|L ∈ q}. We regard q as an element of SPL(W (q))
and thus obtain the cell e(q) = BL(q) ⊂ ET(W (q)). This gives the inclusion
ET′(q) = e(q)× ET(V/W (q)) ⊂ ET(W (q))× ET(V/W (q)) ⊂ ET(V ).
We put U(q) = ∪{ET′(t)|∅ 6= t ⊂ q}.

Main Question: Let i : U(q) →֒ ET(V ) denote the inclusion. Is it true
that g ◦ i is homotopic to i for every g ∈ Elem(V, q)?
We focus on the apparently weaker question below.
Compatible Homotopy Question: Let M ⊂ V be a submodule complementary
to W (q). Let g′ ∈ GL((W (q)) be elementary, i.e. g′ ∈ Elem(W (q), q). Define
g ∈ GL(V ) by gm = m for all m ∈ M and gw = g′w for all w ∈ W (q). Is it
true that g ◦ i is homotopic to i?
Assume that the second question has an affirmative answer in all cases. In
particular, this holds when M = 0. Here V = W (q) and g = g′ is an arbitrary
element of Elem(V, q). Let t be a non-empty subset of q. Then U(t) ⊂ U(q). We
deduce that j : U(t) →֒ ET(V ) is homotopic to g ◦ j for all g ∈ Elem(V, q). But
Elem(V, t) = Elem(V, q). Thus the Main Question has an affirmative answer
for (q, i) replaced by (t, j), which of course, up to a change of notation, covers
the general case.

Proposition 22. The compatible homotopy question has an affirmative answer
if q ∈ Lr(V ) and r ≤ 2.

The rest of this section is devoted to the proof of this proposition. To proceed,
we will require to introduce the class C.

3this only requires the analogue of lemma 8(A) for the enriched Tits building. More
general statements are contained in lemmas 23 and 24 .
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This is our set-up. Let X be a finite set, let Vx be a finitely generated free
module for each x ∈ X and let V = ⊕{Vx : x ∈ X}.
Let s = Πx∈Xs(x) ∈ Πx∈XSPL(Vx). For each x ∈ X , we regard s(x) as
a subset of L(V ) and put Fs = ∪{s(x)|x ∈ X}. Thus Fs ∈ SPL(V ).
The collection of maps f : Πx∈XET(Vx) → ET(V ) with the property that
f(Πx∈XBL(s(x))) ⊂ BL(Fs) for all s ∈ Πx∈XSPL(Vx) is denoted by C. See
lemma 10 and proposition 11 and its proof for relevant notation.
Every maximal chain C of subsets of X (equivalently every total ordering of
X) gives a member i(C) ∈ C. For instance, if X = {1, 2, ..., n} and C consists
of the sets {1, 2, ..., k} for 1 ≤ k ≤ n, we put
Dk = ⊕ki=1Vi and E = Πn

i=1ET(Di/Di−1), denote by
u : Πx∈XET(Vx) → E and v : E → ET(V ) the natural isomorphism and
natural inclusion respectively, and put i(C) = v ◦ u.

Lemma 23. The above space C is contractible.

Proof. The aim is to realise C as the space of Λ-compatible maps for a suitable
Λ and appeal to Proposition 1. Let Λ(x) = {L(S)|∅ 6= S ⊂ SPL(Vx), ∅ 6=
L(S)}. Proposition 11 asserts that the subspaces {Bλ(x) : λ(x) ∈ Λ(x)} give
an admissible cover of ET(Vx).
For λ = Πx∈Xλ(x) ∈ Λ = Πx∈XΛ(x), we put I(λ) = Πx∈XBλ(x) and deduce
that {I(λ) : λ ∈ Λ} gives an admissible cover of Πx∈XET(Vx).
We define next a closed J(λ) ⊂ ET(V ) for every λ ∈ Λ with the properties:
(A): J(λ) ⊂ J(µ) whenever λ ≤ µ and
(B): J(λ) is contractible for every λ ∈ Λ.
For each λ(x) ∈ Λ(x), let Uλ(x) be its set of upper bounds in SPL(Vx). It
follows that that LUλ(x)) = λ(x). As observed before, we have
F : Πx∈XSPL(Vx)→ SPL(V ). Thus given λ = Πxλ(x) ∈ Λ,
we set H(λ) = F (Πx∈XUλ(x)) ⊂ SPL(V ) and then put J(λ) = BLH(λ) ⊂
ET(V ).
The space of Λ-compatible maps Πx∈XET(Vx) → ET(V ) is seen to coincide
with C. That the J(λ) satisfy property (A) stated above is straightforward.
The contractibility of J(λ) for all λ ∈ Λ is guaranteed by proposition 11 once
it is checked that these sets are nonempty. But we have already noted that C
is nonempty. Let f ∈ C. Now I(λ) 6= ∅ and f(I(λ)) ⊂ J(λ) implies J(λ) 6= ∅.
Thus the J(λ) are contractible, and as said earlier, an application of Proposi-
tion 1 completes the proof of the lemma.

�

We remark that the class C of maps Πn
i=1ET(Wi) → ET(⊕ni=1Wi) has been

defined in general.
We will continue to employ the notation: V = ⊕{Vx : x ∈ X} all through this
section. Let P be a partition of X . Each p ∈ P is a subset of X and we put

Vp = ⊕{Vx|x ∈ p} and ET(P ) = Π{ET(Vp)|p ∈ P}.
When Q ≤ P is a partition of X (i.e. Q is finer than P ), we shall define the
contractible collection C(Q,P ) of maps f : ET(Q)→ ET(P ) by demanding (a)
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that f is the product of maps f(p)

f(p) : Π{ET(Vq) : q ⊂ p and q ∈ Q} → ET(Vp)

and also (b) each f(p) is in the class C. For this one should note that Vp =
⊕{Vq : q ∈ Q and q ⊂ p}.
We observe next that there is a distinguished collection D(Q,P ) ⊂ C(Q,P ).
To see this, recall that we had the embedding i(C) for every maximal chain C
of subsets of X (alternatively, for every total ordering of X). Given Q ≤ P ,
denote the set of total orderings of {q ∈ Q : q ⊂ p} by T (p), for every p ∈ P .
The earlier C 7→ i(C) now yields, after taking a product over p ∈ P ,
i : Π{T (p) : p ∈ P} → C(Q,P ), and we denote by D(Q,P ) ⊂ C(Q,P ) the
image of i.
The lemma below is immediate from the definitions.

Lemma 24. Given partitions R ≤ Q ≤ P of X, if f is in C(R,Q) (resp. in
D(R,Q))and g is in C(Q,P ) (resp. in D(Q,P )), then it follows that g ◦ f is in
C(R,P ) (resp. D(R,P )).

We will soon have to focus on the fixed points of certain unipotent g ∈ GL(V )
on ET(V ). For instance, if x, y ∈ X and x 6= y, we may consider g = idV + h
where h(V ) ⊂ Vy and h(Vz) = 0 for all z ∈ X, z 6= x. Let C be a chain of subsets
of X , so that X ∈ C. This chain C gives rise to a partition P (C) of X and
also i(C) ∈ D(P (C), {X}) in a natural manner. Let Cx = ∩{S ∈ C : x ∈ S}.
Then Cx ∈ C because C is a chain. Define Cy in a similar manner. We say
the chain C is (x, y)-compatible if Cy ⊂ Cx and Cx 6= Cy . This condition on
C ensures that the embedding i(C) : ET(P (C))→ ET(V ) has its image within
the fixed points of the above g ∈ GL(V ).
Now let Q be a partition of X so that q ∈ Q, x ∈ q implies y /∈ q. We
shall define next the class of (x, y)-compatible C maps ET(Q) → ET(V ) in
the following manner. Let Λ be the set of chains C of subsets of X so that
X ∈ C and Q ≤ P (C) (i.e. Q is finer than the partition P (C)). For each
C ∈ Λ, let Z(C) be the collection of i(C) ◦ f where f ∈ C(Q,P (C)). Finally,
let Z = ∪{Z(C) : C ∈ Λ}. This set Z is defined to be the collection of (x, y)-
compatible maps of class C from ET(Q) to ET(V ). Every z ∈ Z is a map
z : ET(Q)→ ET(V ) whose image is contained in the fixed points of the above
g on ET(V ). Furthermore, in view of lemma 24, this collection of maps is
contained in C(Q, {X}).
Lemma 25. Let Q be a partition of X that separates x and y. Then the collec-
tion of (x, y)-compatible class C maps ET(Q)→ ET(V ) is contractible.

Proof. In view of the fact that each C(Q,P ) is contractible, by cor 3, it follows
that the space of (x, y)-compatible chains is homotopy equivalent to BΛ, where
Λ is the poset of chains C in the previous paragraph. It remains to show that
BΛ is contractible.
We first consider the case where Q is the set of all singletons of X . Let S be
the collection of subsets S ⊂ X so that y ∈ S and x /∈ S. For S ∈ S, let
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F(S) be the collection of chains C of subsets of X so that S ∈ C and X ∈ C.
We see that Λ is precisely the union of F(S) taken over all S ∈ S. Let D be
a finite subset of S. We see that the intersection of the BF(S), taken over
S ∈ D, is nonempty if and only if D is a chain. Furthermore, when D is a
chain, this intersection is clearly a cone, and therefore contractible. By cor 3,
we see that BΛ has the same homotopy type as the classifying space of the
poset of chains of S. But this is simply the barycentric subdivision of BS. But
the latter is a cone as well, with {y} as vertex. This completes the proof that
BΛ is contractible, when Q is the finest possible partition of X .
We now come to the general case, when Q is an arbitrary partition of X that
separates x, y. So we have x′, y′ ∈ Q with x ∈ x′, y ∈ y′ and x′ 6= y′. The set
Λ is identified with the collection of chains C′ of subsets of Q so that
(a) Q ∈ C′, and (b) there is some L ∈ C′ so that x′ /∈ L and y′ ∈ L.
Thus the general case follows from the case considered first: one replaces
(X, x, y) by (Q, x′, y′). �

In a similar manner, we may define, for every ordered r-tuple (x1, x2, ..., xr)
of distinct elements of X , the set of (x1, x2, ..., xr)-compatible chains C–we
demand that for each 0 < i < r, there is a member S of the chain so that xi /∈ S
and xi+1 ∈ S. Let Q be a partition of X that separates x1, x2, ..., xr. Then
the poset of chains C , compatible with respect to this ordered r-tuple, and for
which Q ≤ i(P ), is also contractible. One may see this through an inductive
version of the proof of the above lemma. A corollary is that the collection of
(x1, ..., xr)-compatible class C maps ET(Q) → ET(V ) is also contractible. We
skip the proof. This result is employed in the proof of Proposition 22 for r = 2
(which has already been verified in the above lemma), and for r = 3, with
#(Q) ≤ 4. Here it is a simple verification that the poset of chains that arises
as above has its classifying space homeomorphic to a point or a closed interval.

We are now ready to address the proposition. For this purpose, we as-
sume that there is c ∈ X so that Vx ∼= A for all x ∈ X \ {c}. To obtain
consistency with the notation of the proposition, we set q = X \ {c}. The
closed subset U(q) ⊂ ET(V ) in the proposition is the union of ET′(t) taken
over all ∅ 6= t ⊂ q. For such t, we have W (t) = V (t) = ⊕{Vx : x ∈ t}. Recall
that ET′(t) is the product of the cell e(t) ⊂ ET(V (t)) with ET(V/V (t)). To
proceed, it will be necessary to give a contractible class of maps D → ET(V )
for certain closed subsets D ⊂ U(q).
The closed subsets D ⊂ U(q) we consider have the following shape. For each
∅ 6= t ⊂ q, we first select a closed subset D(t) ⊂ e(t) and then take D to be the
union of the D(t) × ET(V/V (t)), taken over all such t. This D remains unaf-
fected if D(t) is replaced by its saturation sD(t). Here sD(t) is the collection
of a ∈ e(t) for which {a} × ET(V/V (t)) is contained in D.
When ∅ 6= t ⊂ q, we denote by p(t) the partition of X consisting of all the
singletons contained in t, and in addition, the complement X \ t. Then there
is a canonical identification j(t) : ET(p(t))→ ET(V/V (t)).
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A map f : D → ET(V ) is said to be in class C if for every ∅ 6= t ⊂ q and for
every a ∈ sD(t), the map ET(p(t))→ ET(V ) given by b 7→ f(a, j(t)b) belongs
to C(p(t), {X}). By lemma 24, we see that it suffices to impose this condition
on all a ∈ D(t), rather than all a ∈ sD(t).
We observe that for every a ∈ e(t), the map ET(p(t)) → ET(V ) given by
b 7→ (a, j(t)b) belongs to C(p(t), {X}). As a consequence, we see that the
inclusion D →֒ ET(V ) is of class C.
When concerned with (x, y)-compatible maps, we will assume that D(t) = ∅
whenever t and {x, y} are disjoint. Under this assumption, a map f : D →
ET(V ) is said to be (x, y)-compatible of class C if ET(p(t)) → ET(V ) given
by b 7→ f(a, j(t)b) is a (x, y)-compatible map in C(p(t), {X}) for all pairs (a, t)
such that a ∈ sD(t).
In a similar manner, we define (x, y, z)-compatible maps of class C as well. For
this, it is necessary to assume that D(t) is empty whenever the partition p(t)
does not separate (x, y, z), equivalently if {x, y, z} \ t has at least two elements.

Lemma 26. Assume furthermore that D(t) is a simplicial subcomplex of e(t).
Then the space of maps D → ET(V ) in class C is contractible. The same is true
of the space of such maps that are (x, y)-compatible, or (x, y, z)-compatible.

Proof. We denote by d the cardinality of {t : D(t) 6= ∅}. We proceed by
induction on d, beginning with d = 0 where the space of maps is just one
point.
We choose t0 of maximum cardinality so that D(t0) 6= ∅. Let D′ be the union
of D(t) × ET(V/V (t)) taken over all t 6= t0. Let C(D′) and C(D) denote the
space of class C maps D′ → ET(V ) and D → ET(V ) respectively. By the
induction hypothesis, C(D′) is contractible. We observe that the intersection
of D′ and e(t0)×ET(V/V (t0)) has the form G×ET(V/V (t0) where G ⊂ e(t0)
is a subcomplex. Furthermore, G∪D(t0) is the saturated set sD(t0) described
earlier.
For a closed subset H ⊂ e(t0), denote the space of C-maps H×ET(V/V (t0))→
ET(V ) by A(H). Note that A(H) = Maps(H, C(p(t0), {X})). By lemma 23, the
space C(p(t0), {X}) is itself contractible. It follows that A(H) is contractible.
In particular, both A(G) and A(sD(t0)) are contractible. The natural map
A(sD(t0)) → A(G) is a fibration, because the inclusion G →֒ sD(t0) is a
cofibration. The fibers of A(sD(t0)) → A(G) are thus contractible. It follows
that

A(sD(t0))×A(G) C(D′)→ C(D′)

which is simply C(D)→ C(D′), enjoys the same properties: it is also a fibration
with contractible fibers. Because C(D′) is contractible, we deduce that C(D) is
itself contractible. This completes the proof of the first assertion of the lemma.
The remaining assertions follow in exactly the same manner by appealing to
lemma 25. �

Proof of Proposition 22. Choose x 6= y with x, y ∈ q. Let g = idV + α where
α(V ) ⊂ Vy and α(Vk) = 0 for all k 6= x ∈ X . To prove the proposition, it
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suffices to show that g ◦ i is homotopic to i where i : U(q) → ET(V ) is the
given inclusion. This notation x, y, α, g will remain fixed throughout the proof.

Case 1. Here q = {x, y}. Now x, y are separated by the partitions p(t)
for every non-empty t ⊂ q. By the second assertion of the above lemma, there
exists f : U(q)→ ET(V ) of class C and (x, y)-compatible. The given inclusion
i : U(q)→ ET(V ) is also of class C. By the first assertion of the same lemma,
f is homotopic to i. Now the image of f is contained in the fixed-points of g
and so we get g ◦ f = f . It follows that g ◦ i is homotopic to i. This completes
the proof of the proposition when 1 = r = #(q)− 1.

Case 2. Here q = {x, y, z} with x, y, z all distinct.
We take Y1 to be the union of e(t) × ET(V/V (t)) taken over all t ⊂ q, t 6=
{z}, t 6= ∅. We put Y2 = ET(Vz)× ET(V/Vz) and Y3 = Y1 ∩ Y2. We note that
U(q) = Y1 ∪ Y2.
The given inclusion i : U(q) → ET(V ) restricts to ik : Yk → ET(V ) for k =
1, 2, 3. The required homotopy is a path γ : I → Maps(U(q),ET(V )) so that
γ(0) = i and γ(1) = g◦i. Equivalently we require paths γk in Maps(Yk,ET(V ))
for k = 1, 2 so that
(a) γk(0) = ik and γk(1) = g ◦ ik for k = 1, 2 and
(b) both γ1 and γ2 restrict to the same path in Maps(Y3,ET(V )).
In view of the fact that Y3 →֒ Y1 is a cofibration, the weaker conditions (a′)
and (b′) on fundamental groupoids suffice for the existence of such a γ:
(a′): γk ∈ π1(Maps(Yk,ET(V )); ik, g ◦ ik) for k = 1, 2
(b′): both γ1 and γ2 restrict to the same element of π1((Maps(Y3,ET(V )); i3, g◦
i3)
We have the spaces: Zk = Maps(Yk,ET(V )) for k = 1, 2, 3.These spaces come
equipped with the data below:
(A)The GL(V )-action on ET(V ) induces a GL(V )-action on Zk
(B)The maps of class C give contractible subspaces Ck ⊂ Zk for k = 1, 2, 3.
(C) We have ik ∈ Ck for k = 1, 2, 3.
(D) The natural maps Zk → Z3 for k = 1, 2 are GL(V )-equivariant, they take
ik to i3 and restrict to maps Ck → C3.
Note that the GL(V )-action on Zk turns the disjoint union:
Gk = ⊔{π1(Zk; ik, hik)|h ∈ GL(V )} into a group: given ordered pairs (hj , vj) ∈
Gk, i.e. hj ∈ GL(V ) and vj ∈ π1(Zk; ik, hjik) for j = 1, 2, we get h1v2 ∈
π1(Zk;h1ik, h1h2ik) and obtain thereby v = (h1v2).v1 ∈ π1(Zk; ik, h1h2ik) and
this produces the required binary operation (h1, v1) ∗ (h2, v2) = (h1h2, v).
The projection Gk → GL(V ) is a group homomorphism. The following elemen-
tary remark will be used in an essential manner when checking condition (b′).
The data (H,F,∆) where
(i) H ⊂ GL(V ) is a subgroup,
(ii)F ∈ Zk is a fixed-point of H , and
(iii)∆ ∈ π1(Zk;F, ik)
produces the lift H → Gk of the inclusion H →֒ GL(V ) by h 7→ (h, (h∆).∆−1).
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Finally we observe that there are natural homomorphisms Gk → G3 induced by
Zk → Z3 for k = 1, 2.
Construction of γ1.
The partitions p(t) for t 6= {z} separate x, y. By lemma 26, we have a (x, y)-
compatible class C-map f : Y1 → ET(V ). Both i1 and f belong to C1 and
thus we get δ ∈ π1(C1; f, i1). Now f is fixed by our g ∈ GL(V ), so we also get
gδ ∈ π1(gC1; f, gi1). The path (gδ).δ−1 is the desired γ1 ∈ π1(Z1; i1, gi1).
Construction of γ2.
Recall that g = idV + α. We choose m : Vx → Vz and n : Vz → Vy so
that nm(a) = α(a) for all a ∈ Vx. We extend m,n by zero to nilpotent
endomorphisms of V , once again denoted by m,n : V → V and put u =
idV + n, v = idV +m and note that g = uvu−1v−1.
Note that the partition p({z}) separates both the pairs (x, z) and (z, y).
We thus obtain f ′, f ′′ ∈ C2 so that f ′ is (x, z)-compatible and f ′′ is (y, z)-
compatible and also δ′ ∈ π1(C2; f ′, i2) and δ′′ ∈ π1(C2; f ′′, i2). Noting that
f ′, f ′′ are fixed by v, u respectively, we obtain
ǫ′ = (vδ′).δ′−1 ∈ π1(Z2; i2, vi2) and
ǫ′′ = (uδ′′).δ′′−1 ∈ π1(Z2; i2, ui2).
Thus v′ = (v, ǫ′) and u′ = (u, ǫ′′) both belong to G2. We obtain γ2 by
u′ ∗ v′ ∗ u′−1 ∗ v′−1 = (g, γ2) ∈ G2
Checking the validity of (b′).
Let γ13, γ23 ∈ π1(Z3; i3, gi3) be the images of γ1 and γ2 respectively. We have
to show that γ13 = γ23.
Consider the spacesH,H′,H′′ consisting of ordered pairs (f3, δ3), (f ′

3, δ
′
3), (f

′′
3 , δ

′′
3 )

respectively, where f3, f
′
3, f

′′
3 are all in C3,

f3 is (x, y)-compatible, f ′
3 is (x, z)-compatible, and f ′′

3 is (y, z)-compatible, and
δ3, δ

′
3, δ

′′
3 are all paths in C3 that originate at f3, f

′
3, f

′′
3 respectively, and they

all terminate at i3. By lemma 26, we see that the spaces H,H′,H′′ are all
contractible.
For t = {x, z}, {y, z}, {x, y, z}, the partition p(t) separates (x, y, z). Note that
Y3 is contained in the union of these three ET′(t). By lemma 26, there is a
(x, y, z)-compatible F ∈ C3. Let ∆ be a path in C3 that originates at F and
terminates at i3. We see that (F,∆) ∈ H ∩H′ ∩H′′.
Note that H → π1(Z3; i3, gi3) given by (f3, δ3) 7→ (gδ3).δ−1

3 is a constant map
becauseH is contractible. The (f, δ) employed in the construction of γ1 restricts
to an element of H. Also, (F,∆) belongs to H. It follows that γ13 = (g∆).∆−1.
In a similar manner, we deduce that if ǫ′3, ǫ

′′
3 denote the images of ǫ′, ǫ′′ in the

fundamental groupoid of Z3, then
ǫ′3 = (v∆).∆−1 ∈ π1(Z3; i3, vi3) and ǫ′′3 = (u∆).∆−1 ∈ π1(Z3; i3, ui3)
Thus G2 → G3 takes v′, u′ ∈ G2 to (v, (v∆).∆−1), (u, (u∆).∆−1) ∈ G3 respec-
tively. It follows that their commutator [u′, v′] maps to (g, γ23) ∈ G3 under this
homomorphism.
We apply the remark preceeding the construction of γ1 to the subgroup H gen-
erated by u, v and F and ∆ as above. We conclude that γ23 equals (g∆).∆−1.
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That the latter equals γ13 has already been shown. Thus γ13 = γ23 and this
completes the proof of the Proposition.

9. Low dimensional stabilisation of homology

This section contains applications of corollary 9, proposition 22 and Theorem 2
to obtain some mild information on the homology groups of ET(V ). The no-
tation L(V ),Lr(V ),W (q), det(q) introduced to state Theorem 2 will be freely
used throughout. The spectral sequence in theorem 2 with coefficients in an
Abelian group M will be denoted by SS(V ;M). When V = An, this is further
abbreviated to SS(n;M), or even to SS(n) when it is clear from the context
what M is.
The concept of a commutative ring with many units is due to Van der Kallen.
An exposition of the definition and consequences of this term is given in
[12]. We note that this class of rings includes semilocal rings with infinite
residue fields. The three consequences of this hypothesis on A are listed as
I,II,III below. These statements are followed by some elementary deductions.
Throughout this section, we will assume that our ring A has this property.

I: SLn(A) = En(A).
This permits a better formulation of Lemma 8 in many instances.
Ia: Let 0 → W → P → Q → 0 be an exact sequence of free A-modules
with of ranks a, a+ b, b. Let d = g.c.d.(a, b). The group H of automorphisms
of this exact sequence that induce homotheties on both W and Q may be
regarded as a subgroup of GL(P ). This group acts trivially on the image of
the embedding i : ET(W ) × ET(Q) → ET(P ). Furthermore {det(g)|g ∈ H}
equals (A×)d. Thus, if a, b are relatively prime, by lemma 8, we see that g ◦ i
is freely homotopic to i for all g ∈ GL(V ).
We shall take rank(W ) = 1 in what follows. Here ET(W )×ET(Q) is canonically
identified with ET(Q). The induced ET(Q) → ET(P ) gives rise on homology
to an arrow Hm(ET(Q))→ Hm(ET(P )) which has a factoring:

Hm(ET(Q)) ։ H0(PGL(Q), Hm(ET(Q)))→
→ H0(PGL(P ), Hm(ET(P )) →֒ Hm(ET(P )).

The kernel of Hm(ET(Q)) → Hm(ET(P )) does not depend on the choice of
the exact sequence. Denoting this kernel by KHm(Q) ⊂ Hm(ET(Q)) therefore
gives rise to unambiguous notation. We abbreviate Hm(ET(An)),KHm(An)
to Hm(n),KHm(n) respectively.
Ib: In the spectral sequence SS(n), we have:

(1) H0(PGLn−1(A), Hm(n− 1)) ∼= H0(PGLn(A), E1
0,m).

(2) E∞
0,m is the image of Hm(n− 1)→ Hm(n).

(3) E1
0,m → E∞

0,m factors as follows:

E1
0,m ։ E2

0,m ։ H0(PGLn(A), E1
0,m) ։ E∞

0,m.

(4) If H0(PGLn(A), Epp,m+1−p) = 0 for all p ≥ 2, then

the given arrow H0(PGLn(A), E1
0,m)→ E∞

0,m is an isomorphism.
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(5) Assume that Hm(n − 2) → Hm(n − 1) is surjective. Then the arrow
E2

0,m → H0(PGLn(A), E1
0,m) in (3) above is an isomorphism.

The factoring in part (3) above is a consequence of the factoring of
Hm(ET(Q))→ Hm(ET(P )) in part I(a).
For part (4), one notes that the composite
E2

2,m−1 → E2
0,m → H0(PGLn(A), E1

0,m) vanishes because

H0(PGLn(A), E2
2,m−1) itself vanishes. Thus we obtain a factoring:

E2
0,m → E3

0,m → H0(PGLn(A), E1
0,m). Proceeding inductively, we obtain

the factoring:
E2

0,m → E∞
0,m → H0(PGLn(A), E1

0,m). In view of (3), we see that part (4)
follows.
For part (5), it suffices to note that for every L0, L1 ∈ L(An) with n > 1, there
is some L2 ∈ L(An) with the property that both {L0, L2} and {L1, L2} belong
to L1(An). This fact is contained in consequence III of many units.

II: A is a Nesterenko-Suslin ring.
Let r > 0, p ≥ 0. Put N = (p + 1)! and n = r + p + 1. Let Fr be the
category with free rank A-modules of rank r as objects; the morphisms in Fr
are A-module isomorphisms. Let F be a functor from Fr to the category of
Z[ 1

N ] -modules. Assume that F (a.idD) = idFD for every a ∈ A× and for every
object D of Fr. In other words, the natural action of GLr(A) on F (Ar) factors
through the action of PGLr(A).
For a free A-module V of rank n, define Ind′F (V ) by

Ind′F (V ) = ⊕{det(q)⊗ F (V/W (q)) : q ∈ Lp(V )}.
An alternative description of Ind′F (V ) is as follows. Fix some q ∈ Lp(V ). Let
G(q) be the stabiliser of q in GL(V ). Then det(q) and F (V/W (q)) are G(q)-
modules in a natural manner. We have a natural isomorphism of Z[GL(V )]-
modules:

Ind′F (V ) ∼= Z[GL(V )]⊗Z[G(q)] [det(q)⊗Z F (V/W (q))].

IIa: If Hi(PGLr(A), F (Ar)) = 0 for all i < m, then
Hi(PGLn(A), Ind′F (An)) = 0 for all i < p+m. Furthermore,

Hp+m(PGLn(A), Ind′F (An)) ∼= Hm(PGLr(A), F (Ar))⊗ Symp(A×))

By Shapiro’s lemma, the result of [13] cited earlier, and the fact that the group
homology Hi(M,C) is isomorphic to C ⊗ Λi(M) for all commutative groups
M and Z[1/i!]-modules C given trivial M -action, IIa reduces to the statement:
Let Σ(q) denote the group of permutations of a set q of (p+ 1) elements. Let
M be an Abelian group on which (p+ 1)! acts invertibly. Then
H0(Σ(q), det(q)⊗Λi(M q)) vanishes when i < p and is isomorphic to Symp(M)
when i = p.

III: The standard application of the many units hypothesis, see ( [20] for
instance) is that general position is available in the precise sense given below.
Let V ∼= An. We denote by K(V ) the simplicial complex whose set of vertices
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is L(V ). A subset S ⊂ L(V ) of cardinality (r + 1) is an r-simplex of K(V ) if
every T ⊂ S of cardinality t+ 1 ≤ n belongs to Lt(V ). If L ⊂ K(V ) is a finite
simplicial subcomplex, then there is some e ∈ L(V ) with the property that
s ∪ {e} is a (r + 1)-simplex of K(V ) for every r-simplex s of L. This gives an
embedding Cone(L) →֒ K(V ) with e as the vertex of the cone. Thus K(V ) is
contractible. The complex of oriented chains of this simplicial complex will be

denoted by C•(V ). Thus the reduced homologies H̃i(C•(V )) vanish for all i.
The group D(V ) = Zn−1C•(V ) = Bn−1C•(V ) comes up frequently.
IIIa:

(1) Let p < n. Let M be a Z[1/N ]-module where N = (p + 1)!.
Then Hj(PGL(V ), Cp ⊗M) vanishes for j < p and is isomorphic to
Symp(A×)⊗M when j = p.

(2) Hj(PGL(V ), Cn ⊗M) vanishes for all j ≥ 0 and for all Z[1/(n+ 1)!]-
modules M .

(3) H0(PGL(V ), D(V ) ⊗M) for any Abelian group M is isomorphic to
M/2M if n is even, and vanishes if when n is odd

(4) H0(PGL(V ), BpC•(V ) ⊗M) = 0 for every Z[1/2]-module M and for
every 0 ≤ p < n.

(5) H1(PGL(V ), ZpC•(V ) ⊗M) = 0 for every Z[1/(p + 2)!]- module M
and 1 ≤ p ≤ n− 2.

Note that (1) above follows from IIa when F is the constant functor M .
For (2), one observes that PGL(V ) acts transitively on the set of n-simplices of
the simplicial complex K(V ). The stabiliser of an n-simplex is the permutation
group Σ on (n+ 1) letters. The claim now follows from Shapiro’s lemma.
The presentation Cp+2(V ) ⊗M → Cp+1(V ) ⊗M → BpC•(V ) ⊗M → 0 and
the observation H0(PGL(V ), Cp+1(V )⊗M) ∼= M/2M whenever p < n suffice
to take care of (3) and (4).
For assertion (5), one applies the long exact sequence of group homology to the
short exact sequence:
0→ Zp+1C•(V )⊗M → Cp+1(V )⊗M → ZpC•(V )⊗M → 0.
One therefore obtains the exact sequence:
H1(PGL(V ), Cp+1(V ) ⊗ M) → H1(PGL(V ), ZpC•(V ) ⊗ M) →
H0(PGL(V ), Zp+1C•(V ) ⊗ M). The end terms here vanish by (1) and
(4).
IIIb:

(1) ET(V ) is connected.
(2) E2

0,0 = Z, E2
n−1,0 = D(V ), E2

m,0 = 0 if m 6= 0, n − 1 for the spectral
sequence SS(V ).

(3) H1(ET(V )) ∼= Z/2Z if rank(V ) > 2.

Note that (1) is a consequence of (2). Part (2) is deduced by induction on
rank(V ) = n. The induction hypothesis enables the identification of the E1

m,0

terms of the spectral sequence for V (together with differentials) with the
Cm(V ) (together with boundary operators) when m < n. Thus (2) follows.

Documenta Mathematica · Extra Volume Suslin (2010) 459–513



506 M. V. Nori and V. Srinivas

For part (3), consider the spectral sequence SS(3). Here E2
2,0 = D(A3) and

H0(PGL3(A), D(A3)) = 0 by IIIa(3). Thus the hypothesis of Ib(4) holds for
SS(3). Consequently,
H1(3) ∼= E∞

1,0
∼= H0(PGL2(A), H1(2)) = H0(PGL2(A), D(A2)) ∼= Z/2Z,

the last isomorphism given by IIIa(3) once again. The isomorphism H1(n) ∼=
Z/2Z for n > 3 is contained in the lemma below for N = 1.

Lemma 27. Let M be an Abelian group. Let N ∈ N. For 0 < r < N , we are
given m(r) ≥ 0 so that Hr(d;M)→ Hr(d+ 1;M)
is a surjection if d = r +m(r) + 1 , and
an isomorphism if d > r +m(r) + 1.
Let m(N) = max{0,m(1) + 1,m(2) + 1, ...,m(N − 1) + 1}.
Then HN (d;M)→ HN (d+ 1;M) is
(a) an isomorphism if d > N +m(N) + 1,
(b) is a surjection if d = N +m(N) + 1.
(c) The surjection in (b) above factors through an isomorphism
H0(PGLd(A), HN (d))→ HN (d+ 1;M) if if M is a Z[1/2]-module.

Proof. Consider the spectral sequence SS(V ;M) that computes the homology
of ET(V ) with coefficients in M . Here V is free of rank N + h + 2, where
h ≥ m(N). We make the following claim:
Claim:If E2

s,r 6= 0 and 0 < s and r < N , then s + r ≥ N + 1 + h − m(N).

Furthermore, when equality holds, H0(PGL(V ), E2
s,r ⊗ Z[1/2]) = 0.

We assume the claim and prove the lemma. We take h = m(N). All the E2
s,r

with s + r = N are zero except possibly for (s, r) = (0, N). Part (b) of the
lemma now follows from Ib(2). We consider next the E2

s,r with s+ r = N + 1
and s ≥ 2 (or equivalently with r < N). It follows that Ess,r is a quotient of

E2
s,r. The second assertion of the claim now show that H0(PGL(V ), Ess,r) = 0

if M is a Z[1/2]-module. Part (c) of the lemma now follows from Ib(4).
We take h > m(N) and prove part (a) by induction on h. The inductive
hypothesis implies that HN (N + h;M)→ HN (N + h+ 1;M) is surjective. By
Ib(5), it follows that HN (N + 1 +h;M)→ E2

0,N is an isomorphism. Now there

are no nonzero E2
s,r with s + r = N + 1 and s ≥ 2. Thus E2

0,N = E∞
0,N . It

follows that HN (N + 1 + h;M)→ HN (N + 2 + h;M) is an isomorphism.
It only remains to prove the claim. We address this matter now.
For r = 0, both assertions of the claim are valid by IIIb(2)and IIIa(3).
So assume now that 0 < r < N . Let SH(r) = Hr(d;M) for d = r +m(r) + 2.
In view of our hypothesis, the chain complex
E1

0,r ← E1
1,r ← ...← E1

p−1,r ← E1
p,r

for N + h+ 1 = p+ r +m(r) + 1 is identified with
C0(V ) ⊗ SH(r) ← ... ← Cp−1(V ) ⊗ SH(r) ← ⊕{det(q) ⊗
Hr(ET(V/W (q));M)|q ∈ Lp(V )}.
As in IIIb(2), it follows that E2

s,r = 0 whenever 0 < s < p. Furthermore, we

deduce the following exact sequence for E2
p,r:

Documenta Mathematica · Extra Volume Suslin (2010) 459–513



K-Theory and the Enriched Tits Building 507

⊕{det(q) ⊗ KHr(V/W (q);M)|q ∈ Lp} → E2
p,r → ZpC• ⊗ SH(r) → 0. By

IIIa(4), we see that H0(PGL(V ), E2
p,r) = 0 if M is a Z[1/2]-module.

Note that p + r = N + h −m(r) ≥ N + 1 + h −M(N). This completes the
proof of the claim, and therefore, the proof of the lemma as well.

�

The Proposition below is an application of Proposition 22. The notation here
is that of Theorem 2. We regard Brp,q and Zrp,q as subgroups of E1

p,q for all
r > 1. The notation KHm(Q) has been introduced in Ia, the first application
of many units.

Proposition 28. Let rank(V ) = n. Let M be a Z[1/2]-module. In the spectral
sequence SS(V ;M), we have:

(1) ⊕{det(q)⊗KHm(V/W (q))|q ∈ L1(V )} ⊂ B∞
1,m if n > 1.

(2) E∞
1,m = 0 if n > 2 and M is a Z[1/6]-module.

(3) If, in addition, it is assumed that
Hm+1(n− 2;M)→ Hm+1(n− 1;M) is surjective, then
⊕{det(q)⊗KHm(V/W (q))|q ∈ L2(V )} ⊂ B∞

2,m.

Proof. Let q ∈ Lr(V ). We have U(q) ⊂ ET(V ) as in Proposition 22. The
spectral sequence of Theorem 2 was constructed from an increasing filtration of
subspaces of ET(V ). Intersecting this filtration with U(q) we obtain a spectral
sequence that computes the homology of U(q). Its terms will be denoted by
Eab,c(q). One notes that E1

b,m(q) is the direct sum of det(u)⊗Hm(ET(V/W (u)))

taken over all u ⊂ q of cardinality (b+ 1).
We denote the terms of the spectral sequence in theorem 2 by Eab,c(V ). The

given data also provides a homomorphism Eab,c(q) → Eab,c(V ) of E1-spectral

sequences. We assume that M is a Z[1/(r + 1)!]-module.
We choose a basis e1, e2, ..., en of V so that
q = {Aei : 1 ≤ i ≤ r + 1}. Let G ⊂ GL(V ) be the subgroup of g ∈ GL(V ) so
that
(A) g(q) = q, (B)g(ei) = ei for all i > r + 1, (C), the matrix entries of g are
0, 1,−1 and (D) det(g) = 1. Now G acts on the pair U(q) ⊂ ET(V ). Thus
the above homomorphism of spectral sequences is one such in the category of
G-modules.We observe:
(a) G is a group of order 2(r + 1)!
(b) there are no nonzero G-invariants in E1

i,m(q) for i > 0, and consequently
the same holds for all G-subquotients, in particular for Eai,m(q) for all a > 0 as
well.
Proof of part 1. Take r = 1. Proposition 22 implies that the image of
Hm(U(q)) → Hm(ET(V )) has trivial G-action. In view of (b) above, this
shows that E∞

1,m(q) → E∞
1,m(V ) is zero. But E∞

1,m(q) = Z∞
1,m(q) = det(q) ⊗

KHm(V/W (q)). It follows that det(q)⊗KHm(V/W (q)) ⊂ B∞
1,m(V ). Part (1)

follows.
Proof of part (2). We take r = 2. Here we have
Z∞
1,m(q) = Z2

1,m(q). Appealing to Proposition 22 and observation (b) once
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again, we see that the image of the homomorphism Z2
1,m(q)→ Z2

1,m(V ) is con-
tained in B∞

1,m. Part (2) therefore follows from the claim below.

Claim: ⊕{Z2
1,m(q)|q ∈ L2(V )} → Z2

1,m(V ) is surjective.
Denote the image ofHm(n−2;M)→ Hm(n−1;M) by I. A simple computation
produces the exact sequences:
0→ ⊕{det(u)⊗KHm(V/W (u) : u ∈ L1(V ), u ⊂ q} → Z2

1,m(q)→ det(q)⊗I →
0, and
0→ ⊕{det(u)⊗KHm(V/W (u) : u ∈ L1(V )} → Z2

1,m(V )→ Z1C•(V )⊗ I → 0.

The claim now follows from the above description of Z2
1,m(q) and Z2

1,m(V ).
Thus part (2) is proved.
Proof of part (3).We take r = 2 once again. The surjectivity of Hm+1(n −
2;M) → Hm+1(n − 1;M) implies that E2

0,m+1(q) has trivial G-action. By

observation (b), we see that d22,m : E2
2,m(q) → E2

0,m+1(q) is zero. It follows

that E∞
2,m(q) = Z2

2,m(q) here. Proposition 22 and observation (b) once again

show that the image of Z2
2,m(q) → Z2

2,m(V ) is contained in B∞
2,m(V ). Because

Z2
2,m(q) = det(q)⊗KHm(V/W (q)), part (3) follows.

This completes the proof of the Proposition. �

Theorem 3. Let Hm(n;M) denote Hm(ET(An);M) where M is a Z[1/6]-
module. We have:
(1) H1(n;M) = 0 for all n > 2,
(2) H0(GL3(A), H2(3;M))→ H2(n;M) is an isomorphism for all n ≥ 4,
(3) H0(GL4(A), H3(4;M))→ H3(n;M) is an isomorphism for all n ≥ 5,
(4) H0(GL2m−2(A), Hm(2m − 2;M)) → Hm(n;M) is an isomorphism for all
n > 2m− 2.

Proof. Part (1) has already been proved.
Proof of part 2. For this, we study SS(V ;M) where rank(V ) = 4. We first
note that
(i) E2

3,0 = D(V ) and therefore H0(PGL(V ), E2
3,0) = 0.

(ii) E2
1,1 = E1

1,1 = ⊕{det(q) ⊗ D(V/W (q)) : q ∈ L1(V )}, and therefore

H1(PGL(V ), E2
1,1) = 0 by IIa.

(iii) E2
u,v = 0 except when (u, v) = (0, 0), (0, 2), (1, 1), (3, 0). We have E∞

1,1 = 0
by proposition 28 and thus obtain the short exact sequence:
0→ E3

3,0 → E2
3,0 → E2

1,1 → 0.

By (i) and (ii) above, we see that H0(PGL(V ), E3
3,0) = 0. By Ib(1,4), we see

that H0(PGL3(A), H2(3;M)) → H2(4;M) is an isomorphism. In particular,
H2(4;M) receives the trivial PGL4(A)-action. Taking N = 2 and m(1) = 0 in
lemma 27, we see that H2(4;M)→ H2(n;M) is an isomorphism for all n ≥ 4.
This proves part (2).
Proof of part 3. We inspect SS(V ;M) where V = A5. We note that
(1) E∞

1,2 and E∞
2,1 both vanish. This follows from proposition 28, once it is

noted that KH1(2;M) = H1(2;M).
(2) E2

0,2 = H2(4;M) has the trival PGL(V )-action.
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(3) Hi(PGL(V ), E2
2,1) = 0 for all i < 3. This follows from IIa and IIIa(3) after

observing that H1(2;M) ∼= D(A2)⊗M .
(4) From (2) and (3) we see that d22,1 = 0.

(5) We deduce that E2
2,1
∼= E2

0,4/E
3
0,4 and E2

1,2 = E3
1,2
∼= E3

0,4/E
4
0,4 from obser-

vations (1) and (4).
(6) H1(PGL(V ), E2

1,2) = 0.
To see this, first note the the short exact sequence:
0→ P → E2

1,2 → Q→ 0, where
P = ⊕{det(q)⊗KH2(V/W (q) : q ∈ L1(V )} and Q = H2(4;M)⊗ Z1C•(V ).
The vanishing of H1(PGL3(A), Q) follows from IIIa(5). By IIa, the vanishing
of H1(PGL3(A), P ) is reduced to the vanishing of H0(PGL3(A),KH2(A3).
Now let I be the augmentation ideal of the group algebra R[PGL3(A)] where
R = Z[1/6]. In view of the fact that PGL3(A)ab is 3-torsion, we see that
I = I2. It follows that for all Z[1/6]-modules N equipped with PGL3(A)-
action, we have IN = I2N , or equivalently, H0(PGL3(A), IN) = 0. We apply
this remark to N = H2(3;M). By part (2) of the proposition, we see that
KH2(3;M) = IN . This proves that H0(PGL3(A),KH2(A3)) = 0. We have
completed the proof of observation 6.
(7) H0(PGL(V ), E4

4,0) = 0.

In view of the filtration of (5), it suffices to check that H1(PGL(V ), E2
a,b) = 0

for (a, b) = (1, 2) and (2, 1) (which has been seen in observations (3) and (6))
and also that H0(PGL(V ), E2

4,0) = 0 (and this is clear because E2
4,0 = D(V )).

(8) H0(PGL4(A), H3(4;M))→ H3(V ;M) is an isomorphism.
That H0(PGL4(A), H3(4;M))→ E∞

0,3 is an isomorphism follows from observa-
tion (7) and Ib(4). Now E∞

a,b = 0 whenever a+ b = 3 and (a, b) 6= (3, 0). This

proves (8).
(9) H3(5;M)→ H3(n;M) is an isomorphism for all n ≥ 5.
This follows from lemma 27 by taking N = 3 and m(1) = m(2) = 0. This
finishes the proof of part (3).
Part (4) now follows from the same lemma and induction.

�

Remark. It can be checked that parts (1,2,4) of the above theorem are valid
for Z[1/2]-modules M . In part (3), it is true that H3(n;M) ∼= H3(n + 1;M)
for n > 4 and also that H0(PGL4(A), H3(4;M)→ H3(5;M) is a surjection.

Proposition 29. Assume that the Compatible Homotopy Question has an af-
firmative answer. Then, for all Z[1/r!]-modules M and for all d > r + 1,
H0(PGLr+1(A), Hr(r + 1;M))→ Hr(d;M) is an isomorphism.

Proof. For r = 1, this statement has been checked in IIIb(3) and lemma 27.
Let N > 1. We assume that the above statement has been proved for all r < N .
Let M be a Z[1/N !]-module. In lemma 27, may may now take m(1) = m(2) =
... = m(N − 1) = 0. From this lemma, we obtain:

H0(PGLN+2(A), HN (N + 2;M))→ HN (N ′;M)
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is an isomorphism for all N ′ > N + 2. So the proposition is proved once it is
checked that

H0(PGLN+1(A), HN (N + 1;M))→ HN (N + 2;M)

is an isomorphism. To prove this, we consider the spectral sequence SS(V ;M)
where V = AN+2. We will prove:
(i) E2

a,b = 0 or a = 0 or a + b = N or (a, b) = (N + 1, 0). Furthermore the

action of PGL(V ) on E2
0,b is trivial when b < N .

(ii) if a > 0 and b > 0, then Hi(PGL(V ), E2
a,b) = 0 for i = 0, 1.

(iii) E∞
a,b = 0 when a > 0 and b > 0.

(iv) E2
a,b
∼= Eb+1

N+1,0/E
b+2
N+1,0 whenever a > 0, b > 0 and a+ b = N .

We first observe that (iv) is true for any spectral sequence of PGL(V )-
modules where (i),(ii) and (iii) hold. Next note that (ii) and (iv) imply that

H0(PGL(V ), EN+1
N+1,0) is contained in H0(PGL(V ), E2

N+1,0). And since the
latter is zero, we see that the former also vanishes.
We deduce that both arrows H0(PGL(V ), E1

0,N )→ E∞
0,N → HN (N +2;M) are

isomorphisms exactly as in earlier proofs. Thus it only remains to prove (i),
(ii) and (iii).
Proof of (i). This is contained in the proof of lemma 27.
Proof of (ii). 0→ P → E2

a,b → Q→ 0 is exact, where

P = ⊕{det(q) ⊗ KHb(V/W (q)|q ∈ La(V )}, and Q = ZaC• ⊗ Hb(b + 2;M)
as in the proof of the lemma 27. The required vanishing of Hi(PGL(V ), T )
for i = 0, 1 holds for T = Q by IIIa(5). For T = P and a > 1, the required
vanishing follows from II(a). For T = P and a = 1, this is deduced from the
vanishing of H0(PGLN (A),KHN−1) (see the proof of observation (6) in the
proof of theorem 3).
Proof of (iii). We follow the steps of the proof of Proposition 28. We first
choose q ∈ LN−1(V ) and consider the inclusion U(q) →֒ ET(V ). As in that
proof we get a homomorphism of E1 spectral sequences of G-modules with
G ⊂ SL(V ) as given there. The terms of these spectral sequences are denoted
by Eab,c(q) and Eab,c(V ) respectively. From the inductive hypothesis, we deduce:

(i′) E2
a,b(q) = 0 or a = 0 or a+ b = N or (a, b) = (N + 1, 0). Furthermore the

action of G on E2
0,b(q) is trivial when b < N .

(ii′) if a > 0, h > 0, then H0(G,Eha,b(q)) = 0.
These observations together imply
(iii′) Z∞

a,b(q) = Z2
a,b(q) when a > 0 and b > 0.

For a > 0, b > 0, we obtain E∞
a,b(q) → E∞

a,b(V ) is zero, from the affirmative

answer to the Compatible Homotopy Question. For such (a, b),
the image of x(q) : Z2

a,b(q) → Z2
a,b(V ) is thus contained in B∞

a,b(V ). As in

the proof of proposition 28, we see that the sum of the images of x(q), taken
over all q ∈ LN−1(V ), is all of Z2

a,b(V ). It follows that Z2
a,b(V ) = B∞

a,b(V ) and

thus E∞
a,b(V ) = 0 whenever a > 0, b > 0. This proves assertion (iii) and this

completes the proof of the Proposition.
�
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10. a double complex

We will continue to assume that A is a commutative ring with many units. The
paper [2] of Beilinson, Macpherson and Schechtman introduces a Grassmann
complex, intersection and projection maps, and a torus action. The terms of
the double-complex constructed below may be obtained from the quotients by
the torus action of the objects of [2]. The arrows of the double-complex are
signed sums of their intersection and projection maps.
D(V ), C•(V ) etc. are as in the previous section. When rank(V ) = n, we have
the resolution:
0← D(V )← Cn(V )← Cn+1(V )....
We put Cr(V ) = H0(PGL(V ), Cr(V )) when r ≥ n and define Cr(V ) to be
zero otherwise. We put Cr(A

n) = Cr(n). We observe that the above res-
olution of D(V ) tensored with the rationals is a projective resolution in the
category of Q[PGL(V )]-modules. It follows that Hi(PGLn(A), D(An))⊗Q ∼=
Hn+i(C(n)•)⊗Q. We denote by ∂′ : Cr(n)→ Cr−1(n) the boundary operator
of C(n)•. We will now define ∂′′ : Cr(n)→ Cr(n− 1).
Let V ∼= An. Let (L0, L1, ..., Lr) be an ordered (r + 1)-tuple in L(V ) that
gives rise to a r-simplex of K(V ) (see consequence III of many units for
notation). We define ∂i(L0, L1, ..., Lr) ∈ Cr−1(V/Li) by ∂i(L0, L1, ..., Lr) =
(L0, .., Li−1, Li+1, ..., Lr) where Lj = Lj + Li/Li ∈ L(V/Li) whenever j 6= i.
Now let

gr(L0, L1, ..., Lr) = Σri=0(−1)i∂(L0, L1, ..., Lr) ∈ ⊕{Cr−1(V/L) : L ∈ L(V )}.
The above gr : Cr(V ) → ⊕{Cr−1(V/L) : L ∈ L(V )} anti-commutes with
the boundary operator. The functor M → H0(PGL(V ),M) takes gr to ∂′′ :
Cr(n)→ Cr−1(n− 1). This defines ∂′′.
We put Fr(A) = ⊕{Cr(n) : n ≥ 1} and define ∂ : Fr(A) → Fr−1(A) by
∂ = ∂′ + ∂′′. The exact relation between the homology of F•(A) and groups
Ln(A) is as yet unclear. However, we do have:

Lemma 30. H3(F•(A))⊗Q ∼= L2(A) ⊗Q ∼= H3(C•(2))⊗Q.

We sketch a proof. In view of the H-space structure, Li(A)⊗Q is the primitive
homology of ET(An) with Q coefficients for n large. The vanishing of H1(n;Q)
for n > 2 implies that the primitive homology is all of Hi(n;Q) for i = 2, 3 and
n large. By theorem 3, we get Li(A) ⊗ Q ∼= H0(PGLi+1(A), Hi(i + 1;Q)) for
i = 2, 3. For the computation of H0(PGL(V ), H2(ET(V );Q)) where V = A3,
we recall the exact sequence obtained from SS(V ;Q):
0→ H2(ET(V );Q)→ D(V )⊗Q→ D2(V ) = ⊕{D(V/L) : L ∈ L(V )} → 0.
This identifies L2(A) ⊗ Q with the cokernel of H1(PGL(V ), D(V )) ⊗ Q →
H1(PGL(V ), D2(V ))⊗Q. In view of IIa and the above remarks, this is readily
identified with H3(F•(A))⊗Q.That gives the first isomorphism of the lemma.
For the second isomorphism, what one needs is:
Claim: The arrow H4(C•(3))→ H3(C•(2)) induced by ∂′′ is zero.
The proof of this claim, which we address now, was already known to Spencer
Bloch. Let V = A3. Given an ordered 5-tuple (L0, ..., L4) with the Li ∈ L(V )
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as vertices of a 4-simplex in K(V ) (i.e. in general position), they belong to
a conic C and the projection from the points Li induces an isomorphism pi :
C → P(V/Li). We put (M0, ...,M4) = (p0L0, p0L1, ..., p0L4). Let qi = pi ◦ p−1

0 .
With the ∂i as in the definition of g4, we see that ∂i(L0, ..., L4) ∈ C3(V/Li)
and qi∂i(L0, ..., L4) ∈ C3(V/L0) both give rise to the same element of C3(2).
It follows that ∂(M0,M1, ...,M4) 7→ ∂′′(L0, ..., L4) under the map C3(V/L0)→
C3(2). Thus ∂′′(L0, ..., L4) 7→ 0 ∈ H3(C•(2). This proves the claim and the
lemma.
Thus we have shown that
L2(A)⊗Q ∼= coker(C4(A2)→ C3(A2)).
The Bloch group tensored with Q is the homology of

C4(A2)→ C3(A2)→ Λ2(A×)⊗Q.

Thus this discussion amounts to a proof of Suslin’s theorem on the Bloch group.
It remains to obtain a closed form for L3(A)⊗Q by this method.
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Abstract. The results of the present article extend the results of
[Pa]. The main result of the article is Theorem 1.1 below. The proof
is based on a moving lemma from [LM], a recent improvement due
to O. Gabber of de Jong’s alteration theorem, and the main theorem
of [PR]. A purity theorem for quadratic spaces is proved as well in
the same generality as Theorem 1.1, provided that R is local. It
generalizes the main purity result from [OP] and it is used to prove
the main result in [ChP].

1 Introduction

Let A be a commutative ring and P be a finitely generated projectiveA-module.
An element v ∈ P is called unimodular if the A-submodule vA of P splits off
as a direct summand. If P = An and v = (a1, a2, . . . , an) then v is unimodular
if and only if a1A+ a2A+ · · ·+ anA = A.
Let 1

2 ∈ A. A quadratic space over A is a pair (P, α) consisting of a finitely
generated projective A-module P and an A-isomorphism α : P → P ∗ satisfying
α = α∗, where P ∗ = HomR(P,R). Two spaces (P, α) and (Q, β) are isomorphic
if there exists an A-isomorphism ϕ : P → Q such that α = ϕ∗ ◦ β ◦ ϕ.
Let (P, ϕ) be a quadratic space over A. One says that it is isotropic over A, if
there exists a unimodular v ∈ P with ϕ(v) = 0.

Theorem 1.1. Let R be a semi-local regular integral domain containing a field.
Assume that all the residue fields of R are infinite and 1

2 ∈ R. Let K be the
fraction field of R and (V, ϕ) a quadratic space over R. If (V, ϕ) ⊗R K is
isotropic over K, then (V, ϕ) is isotropic over R.

This Theorem is a consequence of the following result.
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Theorem 1.2. Let k be an infinite perfect field of characteristic different from
2, B a k-smooth algebra. Let p1, p2, . . . , pn be prime ideals of B, S = B−∪nj=1pj
and R := BS be the localization of B with respect to S (note that BS is a semi-
local ring). Let K be the ring of fractions of R with respect to all non-zero
divisors and (V, ϕ) be a quadratic space over R. If (V, ϕ) ⊗R K is isotropic
over K, then (V, ϕ) is isotropic over R.

For arbitrary discrete valuation rings, Theorem 1.1 holds trivially. It also
holds for arbitrary regular local two-dimensional rings in which 2 is invertible,
as proved by M. Ojanguren in [O].
To conclude the Introduction let us add a historical remark which might help
the general reader. Let R be a regular local ring, G/R a reductive group
scheme. The question whether a principal homogeneous space over R which
admits a rational section actually admits a section goes back to the founda-
tions of étale cohomology. It was raised by J.-P. Serre and A. Grothendieck
(séminaire Chevalley “Anneaux de Chow”). In the geometric case, this ques-
tion has essentially been solved, provided that G/R comes from a ground field
k. Namely, J.-L. Colliot-Thélène and M. Ojanguren in [CT-O] deal with the
case where the ground field k is infinite and perfect. There were later papers
[Ra1] and [Ra2] by M.S. Raghunathan, which handled the case k infinite but
not necessarily perfect. O. Gabber later announced a proof in the general case.
One may then raise the question whether a similar result holds for homogeneous
spaces. A specific instance is that of projective homogeneous spaces. An even
more specific instance is that of smooth projective quadrics (question raised
in [C-T], Montpellier 1977). This last case is handled in the present paper.
Remark 3.5 deals with the semi-local case.
The key point of the proof of Theorem 1.2 is the combination of the moving
lemma in [LM] and Gabber’s improvement of the alteration theorem due to
de Jong with the generalization of Springer’s result in [PR]. Theorem 1.1 is
deduced from Theorem 1.2 using D. Popescu’s theorem.

2 Auxiliary results

Let k be a field. To prove Theorem 1 we need auxiliary results. We start
recalling the notion of transversality as it is defined in [LM, Def.1.1.1].

Definition 2.1. Let f : X → Z, g : Y → Z be morphisms of k-smooth
schemes. We say that f and g are transverse if

1. TorOZq (OY ,OX) = 0 for all q > 0.

2. The fibre product X ×Z Y is a k-smooth scheme.

Lemma 2.2. Let f : X → Z and g : Y → Z be transverse, and prY : Y ×ZX →
Y and h : T → Y be transverse, then f and g ◦ h are transverse.

This is just Lemma 1 from [Pa].

Documenta Mathematica · Extra Volume Suslin (2010) 515–523



Rationally Isotropic Quadratic Spaces . . . 517

Since this moment and till Remark 2.6 (including that Remark) let k be an
infinite perfect field of characteristic different from 2. Let U be a smooth
irreducible quasi-projective variety over k and let j : u→ U be a closed point
of U . In particular, the field extension k(u)/k is finite. It is also separable
since k is perfect. Thus u = Spec(k(u)) is a k-smooth variety.

Lemma 2.3. Let U be as above. Let Y be a k-smooth irreducible variety of the
same dimension as U . Let v = {v1, v2, . . . , vs} ⊂ U be a finite set of closed
points. Let q : Y → U be a projective morphism such that q−1(v) 6= ∅. Assume
q : Y → U and jv : v →֒ U are transverse. Then q is finite étale over an affine
neighborhood of the set v ⊂ U .

Proof. There is a vi ∈ v such that q−1(vi) 6= ∅. By [Pa, Lemma 2] q is
finite étale over a neighborhood Vi of the point vi ∈ U . This implies that
Vi ⊂ q(Y ). It follows that q(Y ) = U , since q is projective and U is irreducible.
Whence for each i = 1, 2, . . . , s one has q−1(vi) 6= ∅. By [Pa, Lemma 2] for
each m = 1, 2, . . . , s the morphism q is finite étale over a neighborhood Vm of
the point vm ∈ U . Since U is quasi-projective, q is finite étale over an affine
neighborhood V of the set v ⊂ U .

Let U be as above. Let p : X → U be a smooth projective k-morphism. Let
X = p−1(u) be the fibre of p over u. Since p is smooth the k(u)-scheme X
is smooth. Since k(u)/k is separable X is smooth as a k-scheme. Thus for a
morphism f : Y → X of a k-smooth scheme Y it makes sense to say that f and
the embedding i : X →֒ X are transverse. So one can state the following

Lemma 2.4. Let p : X → U be as above, let jv : v →֒ U be as in Lemma
2.3 and let X = p−1(v) be as above. Let Y be a k-smooth irreducible variety
with dim(Y ) = dim(U). Let f : Y → X be a projective morphism such that
f−1(X) 6= ∅. Suppose that f and the closed embedding i : X →֒ X are trans-
verse. Then the morphism q = p ◦ f : Y → U is finite étale over an affine
neighborhood of the set v.

Proof. For each i = 1, 2, . . . , s the extension k(u)/k is finite. Since k is perfect,
the scheme v is k-smooth. The morphism p : X → U is smooth. Thus the
morphism jv and the morphism p are transverse. Morphisms jv and q = p ◦ f
are transverse by Lemma 2.2, since jv and f are transverse. One has q−1(v) =
f−1(X) 6= ∅. Now Lemma 2.3 completes the proof of the Lemma.

For a k-smooth variety W let CHd(W ) be the group of dimension d algebraic
cycles modulo rational equivalence onW (see [Fu]). The next lemma is a variant
of the proposition [LM, Prop. 3.3.1] for the Chow groups Chd := CHd/2CHd

of algebraic cycles modulo rational equivalence with Z/2Z-coefficients.

Lemma 2.5 (A moving lemma). Suppose that k is an infinite perfect field (the
characteristic of k is different from 2 as above). Let W be a k-smooth scheme
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and let i : X →֒W be a k-smooth closed subscheme. Then Cdd(W ) is generated
by the elements of the form f∗([Y ]) where Y is an irreducible k-smooth variety
of dimension d, [Y ] ∈ Cdd(Y ) is the fundamental class of Y , f : Y → W is
a projective morphism such that f and i are transverse and f∗ : Chd(Y ) →
Chd(W ) is the push-forward.

Proof. The group Chd(W ) is generated by cycles of the form [Z], where Z ⊂
W is a closed irreducible subvariety of dimension d. Since k is perfect of
characteristic different from 2, applying a recent result due to Gabber [I, Thm.
1.3], one can find a k-smooth irreducible quasi-projective variety Z ′ and a
proper morphism π : Z ′ → Z with k-smooth quasi-projective variety Z ′ and
such that the degree [k(Z ′) : k(Z)] is odd. The morphism p is necessary
projective, since the k-variety Z ′ is quasi-projective and p is a proper morphism
(see [Ha, Ch.II, Cor.4.8.e]). Write π′ for the composition Z ′ → Z →֒ W .
Clearly, π′

∗([Z ′]) = [Z] ∈ Cdd(W ). The lemma is not proved yet, since π′ and
i are not transverse.
However to complete the proof it remains to repeat literally the proof of propo-
sition [LM, Prop. 3.3.1]. The proof of that proposition does not use the reso-
lution of singularities. Whence the lemma.

Remark 2.6. Note that at the end of the previous proof we actually used a
Chow version of [LM, Prop. 3.3.1] instead of Prop. 3.3.1 itself.

The following theorem proved in [PR] is a generalization of a theorem of
Springer. See [La, Chap.VII, Thm.2.3] for the original theorem by Springer.

Theorem 2.7. Let R be a local Noetherian domain which has an infinite residue
field of characteristic different from 2. Let R ⊂ S be a finite R-algebra which
is étale over R. Let (V, ϕ) be a quadratic space over R such that the space
(V, ϕ) ⊗R S contains an isotropic unimodular vector. If the degree [S : R] is
odd then the space (V, ϕ) already contains a unimodular isotropic vector.

Remark 2.8. Theorem 2.7 is equivalent to the main result of [PR], since the
R-algebra S from Theorem 2.7 one always has the form R[T ]/(F (T )), where
F (T ) is a separable polynomial of degree [S : R] (see [AK, Chap.VI, Defn.6.11,
Thm.6.12]).

Repeating verbatim the proof of Theorem 2.7 given in [PR] we get the following
result.

Theorem 2.9. Let R be a semi-local Noetherian integral domain SUCH THAT
ALL ITS residue fields ARE INFINITE of characteristic different from 2. Let
R ⊂ S be a finite R-algebra which is étale over R. Let (V, ϕ) be a quadratic
space over R such that the space (V, ϕ)⊗R S contains an isotropic unimodular
vector. If the degree [S : R] is odd then the space (V, ϕ) already contains a
unimodular isotropic vector.
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3 Proofs of Theorems 1.2 and 1.1

Proof of Theorem 1.2. Let k be an infinite perfect field of characteristic dif-
ferent from 2. Let p1, p2, . . . , pn be prime ideals of B, S = B − ∪nj=1pj and
R = BS be the localization of B with respect to S.

Clearly, it is sufficient to prove the theorem in the case when B is an integral
domain. So, in the rest of the proof we will assume that B is an integral domain.
We first reduce the proof to the localization at a set of maximal ideals. To do
that we follow the arguments from [CT-O, page 101]. Clearly, there exist f ∈ S
and a quadratic space (W,ψ) over Bf such that (W,ψ) ⊗Bf BS = (V, ϕ). For
each index j let mj be a maximal ideal of B containing pj and such that
f /∈ mj. Let T = B − ∪nj=1mj . Now BT is a localization of Bf and one has
Bf ⊂ BT ⊂ BS = R. Replace R by BT .

From now on and until the end of the proof of Theorem 1.2 we assume that
R = OU,{u1,u2,...,un} is the semi-local ring of a finite set of closed points u =
{u1, u2, . . . , un} on a k- smooth d-dimensional irreducible affine variety U .

Let X ⊂ PR(V ) be a projective quadric given by the equation ϕ = 0 in the
projective space PR(V ) = Proj(S∗(V ∨)). Let X = p−1(u) be the scheme-
theoretic pre-image of u under the projection p : X → Spec(R). Shrinking U
we may assume that u is still in U and the quadratic space (V, ϕ) is defined over
U . We still write X for the projective quadric in PU (V ) given by the equation
ϕ = 0 and still write p : X → U for the projection. Let η : Spec(K) → U be
the generic point of U and let Xη be the generic fibre of p : X→ U . Since the
equation ϕ = 0 has a solution over K there exists a K-rational point y of Xη.
Let Y ⊂ X be its closure in X and let [Y ] ∈ Chd(X) be the class of Y in the
Chow groups with Z/2Z-coefficients.

Since p is smooth the scheme X is k(u)-smooth. Since k(u)/k is a finite étale
algebra X is smooth as a k-scheme. By Lemma 2.5 there exist a finite family of
integers nr ∈ Z and a finite family of projective morphisms fr : Yr → X (with
k-smooth irreducible Yr’s of dimension dim(U)) which are transverse to the
closed embedding i : X →֒ X and such that

∑
nrfr,∗([Yr]) = [Y ] in Chd(X).

Shrinking U we may assume that for each index r one has f−1
r (X) 6= ∅. By

Lemma 2.4 for any index r the morphism qr = p ◦ fr : Yr → U is finite étale
over an affine neighborhood U ′ of the set u. Shrinking U we may assume that
U ′ = U . Let deg : Ch0(Xη)→ Z/2Z be the degree map. Since deg(y) = 1 and∑
nrfr,∗[Yr] = [Y ] ∈ Chd(X) there exists an index r such that the degree of the

finite étale morphism qr : Yr → U is odd. Without loss of generality we may
assume that the degree of q1 is odd. The existence of the Y1-point f1 : Y1 → X

of X shows that we are under the hypotheses of Theorem 2.9. Hence shrinking
U once more we see that there exists a section s : U → X of the projection
X→ U . Theorem 1.2 is proven.

Proof of Theorem 1.1. LetR be a regular semi-local integral domain containing
a field. Let k be the prime field of R. By Popescu’s theorem R = lim−→Bα, where
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the Bα’s are smooth k-algebras (see [P] or [Sw]). Let canα : Bα → R be the
canonical k-algebra homomorphism. We first observe that we may replace the
direct system of the Bα’s by a system of essentially smooth semi-local k-algebras
which are integral domains. In fact, if mj is a maximal ideal of R, we can take
pα,j := can−1

α (mj), Sα := Bα−∪nj=1pα,j and replace each Bα by (Bα)Sα , Note
that in this case the canonical morphisms canα : Bα → R take maximal ideals
to maximal ones and every Bα is a regular semi-local k-algebra.
We claim that Bα is an integral domain. In fact, since Bα is a regular semi-
local k-algebra it is a product

∏s
i=1Bα,i of regular semi-local integral domains

Bα,i. The ideal qα := can−1
α (0) ⊂ Bα is prime and is contained in each of the

maximal ideals can−1
α (mj) of the ring Bα. The latter ideal runs over all the

maximal ideals of Bα. Thus the prime ideal qα is contained in all maximal
ideals of Bα =

∏s
i=1Bα,i. Since qα is prime after reordering the indices it must

be of the form q1 ×
∏s
i=2Bα,i. If s ≥ 2 then the latter ideal is not contained

in a maximal ideal of the form
∏s−1
i=1 Bα,i ×m for a maximal ideal m of Bα,s.

Whence s = 1 and Bα is indeed an integral domain.
There exists an index α and a quadratic space ϕα overBα such that ϕα⊗BαR ∼=
ϕ. For each index β ≥ α we will write ϕβ for the Bβ-space ϕα⊗BαBβ. Clearly,
ϕβ ⊗Bβ R ∼= ϕ. The space ϕK is isotropic. Thus there exists an element f ∈ R
such that the space (Vf , ϕf ) is isotropic. There exists an index β ≥ α and a
non-zero element fβ ∈ Bβ such that canβ(fβ) = f and the space ϕβ localized
at fβ is isotropic over the ring (Bβ)fβ .
If char(k) = 0 or if char(k) = p > 0 and the field k is infinite perfect, then by
Theorem 1.2 the space ϕβ is isotropic. Whence the space ϕ is isotropic too.
If char(k) = p > 0 and the field k is finite, then choose a prime number l
different from 2 and from p and take the field kl which is the composite of all
l-primary finite extensions k′ of k in a fixed algebraic closure k̄ of k. Note that
for each field k′′ which is between k and kl and is finite over k the degree [k′′ : k]
is a power of l. In particular, it is odd. Note as well that kl is a perfect infinite
field. Take the kl-algebra kl ⊗k Bβ . It is a semi-local essentially kl-smooth
algebra, which is not an integral domain in general. The element 1⊗ fβ is not
a zero divisor. In fact, kl is a flat k-algebra and the element f is not a zero
divisor in Bβ.
The quadratic space kl⊗kϕβ localized at 1⊗fβ is isotropic over (kl⊗kBβ)1⊗fβ =
kl ⊗k (Bβ)fβ and 1⊗ fβ is not a zero divisor in kl ⊗k Bβ . By Theorem 1.2 the
space kl⊗kϕβ is isotropic over kl⊗kBβ . Whence there exists a finite extension
k ⊂ k′ ⊂ kl of k such that the space k′ ⊗k ϕβ is isotropic over k′ ⊗k Bβ . Thus
the space k′⊗kϕ is isotropic over k′⊗kR. Now k′⊗kR is a finite étale extension
of R of odd degree. All residue fields of R are infinite. By Theorem 2.9 the
space ϕ is isotropic over R.

To state the first corollary of Theorem 1.1 we need to recall the notion of
unramified spaces. Let R be a Noetherian integral domain and K be its fraction
field. Recall that a quadratic space (W,ψ) over K is unramified if for every
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height one prime ideal ℘ of R there exists a quadratic space (Vp, ϕ℘) over R℘
such that the spaces (V℘, ϕ℘)⊗R℘ K and (W,ψ) are isomorphic.

Corollary 3.1 (A purity theorem). Let R be a regular local ring containing
a field of characteristic different from 2 and such that the residue field of R is
infinite. Let K be the field of fractions of R. Let (W,ψ) be a quadratic space
over K which is unramified over R. Then there exists a quadratic space (V, ϕ)
over R extending the space (W,ψ), that is the spaces (V, ϕ) ⊗R K and (W,ψ)
are isomorphic.

Proof. By the purity theorem [OP, Theorem A] there exists a quadratic space
(V, ϕ) overR and an integer n ≥ 0 such that (V, ϕ)⊗RK ∼= (W,ψ) ⊥ HnK , where
HK is a hyperbolic plane. If n > 0 then the space (V, ϕ)⊗RK is isotropic. By
Theorem 1.1 the space (V, ϕ) is isotropic too. Thus (V, ϕ) ∼= (V ′, ϕ′) ⊥ HR for
a quadratic space (V ′, ϕ′) over R. Now Witt’s Cancellation theorem over a field
[La, Chap.I, Thm.4.2] shows that (V ′, ϕ′)⊗R K ∼= (W,ψ) ⊥ Hn−1

K . Repeating
this procedure several times we may assume that n = 0, which means that
(V, ϕ)⊗R K ∼= (W,ψ).

Remark 3.2. Corollary 3.1 is used in the proof of the main result in [ChP]. The
main result in [ChP] holds now in the case of a local regular ring R containing
a field provided that the residue field of R is infinite and 1

2 ∈ R.

Corollary 3.3. Let R be a semi-local regular integral domain containing a
field. Assume that all the residue fields of R are infinite and 1

2 ∈ R. Let K be
the fraction field of R. Let (V, ϕ) be a quadratic space over R and let u ∈ R×

be a unit. Suppose the equation ϕ = u has a solution over K then it has a
solution over R, that is there exists a vector v ∈ V with ϕ(v) = u (clearly the
vector v is unimodular).

Proof. It is very standard. However for the completeness of the exposition let
us recall the arguments from [C-T, Proof of Prop.1.2]. Let (R,−u) be the
rank one quadratic space over R corresponding to the unit −u. The space
(V, ϕ)K ⊥ (K,−u) is isotropic thus the space (V, ϕ) ⊥ (R,−u) is isotropic by
Theorem 1.1. By the lemma below there exists a vector v ∈ V with ϕ(v) = u.
Clearly v is unimodular.

Lemma 3.4. Let (V, ϕ) be as above. Let (W,ψ) = (V, ϕ) ⊥ (R,−u). The space
(W,ψ) is isotropic if and only if there exists a vector v ∈ V with ϕ(v) = u.

Proof. It is standard. See [C-T, the proof of Proposition 1.2.].

Remark 3.5. It would be nice to extend the result of Corollary 3.1 to the semi-
local case. The difficulty is to extend the purity theorem [OP, Theorem A] to
that semi-local case.
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localement triviaux. Publ. Math. IHES No. 75, (1992), 97–122

[Fu] W. Fulton. Intersection theory. Springer-Verlag, 1984.

[Ha] R. Hartshorne. Algebraic Geometry. Graduate Texts in Math., 52,
Springer-Verlag, Berlin-New York, 1977.

[I] L. Illusie. On Gabber’s refined uniformization [Ga1],
http://www.math.u-psud.fr/ illusie/ Talks at the Univ. Tokyo, Jan.
17, 22, 31, Feb. 7, 2008.

[La] T.Y. Lam. Introduction to quadratic forms over fields. Graduate Stud-
ies in Mathematics, vol. 67. American Mathematical Society, Provi-
dence, RI, 2005.

[LM] M. Levine, F. Morel. Algebraic Cobordism, Springer Monographs
in Mathematics, Springer-Verlag 2007. xii+244 pp. ISBN: 978-3-540-
36822-9; 3-540-36822-1

[O] M. Ojanguren. Unités représentées par des formes quadratiques ou par
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Abstract. A main theme of the paper is a conjecture of Bloch-Kato on
the image ofp-adic regulator maps for a proper smooth varietyX over an
algebraic number fieldk. The conjecture for a regulator map of particular
degree and weight is related to finiteness of two arithmetic objects: One is
thep-primary torsion part of the Chow group in codimension2 of X . An-
other is an unramified cohomology group ofX . As an application, for a
regular modelX of X over the integer ring ofk, we prove an injectivity
result on the torsion cycle class map of codimension2 with values in a new
p-adic cohomology ofX introduced by the second author, which is a can-
didate of the conjectural étale motivic cohomology with finite coefficients
of Beilinson-Lichtenbaum.
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1 Introduction

Let k be an algebraic number field and letGk be the absolute Galois group Gal(k/k),
wherek denotes a fixed algebraic closure ofk. LetX be a projective smooth variety
overk and putX := X ⊗k k. Fix a primep and integersr,m ≥ 1. A main theme

1supported by Grant-in-Aid for Scientific Research B-18340003 and S-19104001
2supported by JSPS Postdoctoral Fellowship for Research Abroad and EPSRC grant
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of this paper is a conjecture of Bloch and Kato concerning theimage of thep-adic
regulator map

regr,m : CHr(X,m)⊗Qp −→ H1
cont(k,H

2r−m−1
ét (X,Qp(r)))

from Bloch’s higher Chow group to continuous Galois cohomology of Gk ([BK2]
Conjecture 5.3). See§3 below for the definition of this map in the case(r,m) = (2, 1).
This conjecture affirms that its image agrees with the subspace

H1
g (k,H2r−m−1

ét (X,Qp(r))) ⊂ H1
cont(k,H

2
ét(X,Qp(2)))

defined in loc. cit. (see§2.1 below), and plays a crucial role in the so-called Tama-
gawa number conjecture on special values ofL-functions attached toX . In terms of
Galois representations, the conjecture means that a1-extension of continuousp-adic
representations ofGk

0 −→ H2r−m−1
ét (X,Qp(r)) −→ E −→ Qp −→ 0

arises from a1-extension of motives overk

0 −→ h2r−m−1(X)(r) −→M −→ h(Spec(k)) −→ 0,

if and only if E is a de Rham representation ofGk. There has been only very few
known results on the conjecture. In this paper we consider the following condition,
which is the Bloch-Kato conjecture in the special case(r,m) = (2, 1):

H1: The image of the regulator map

reg := reg2,1 : CH2(X, 1)⊗Qp −→ H1
cont(k,H

2
ét(X,Qp(2))).

agrees withH1
g (k,H2

ét(X,Qp(2))).

We also consider a variant:

H1∗: The image of the regulator map withQp/Zp-coefficients

regQp/Zp : CH2(X, 1)⊗Qp/Zp −→ H1
Gal(k,H

2
ét(X,Qp/Zp(2)))

agrees withH1
g (k,H2

ét(X,Qp/Zp(2)))Div (see§2.1 for H1
g (k,−)). Here for an

abelian groupM ,MDiv denotes its maximal divisible subgroup.

We will show thatH1 always impliesH1∗, which is not straight-forward. On the
other hand the converse holds as well under some assumptions. See Remark 3.2.5
below for details.

Fact 1.1 The conditionH1 holds in the following cases:
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(1) H2(X,OX) = 0 ([CTR1], [CTR2], [Sal]).

(2) X is the self-product of an elliptic curve overk = Q with square-free conductor
and without complex multiplication, andp ≥ 5 ([Md], [Fl], [LS], [La1]) .

(3) X is the elliptic modular surface of level4 overk = Q andp ≥ 5 ([La2]).

(4) X is a Fermat quartic surface overk = Q or Q(
√
−1) andp ≥ 5 ([O]).

A main result of this paper relates the conditionH1∗ to finiteness of two arithmetic
objects. One is thep-primary torsion part of the Chow group CH2(X) of algebraic cy-
cles of codimension two onX modulo rational equivalence. Another is an unramified
cohomology ofX , which we are going to introduce in what follows.

Let ok be the integer ring ofk, and putS := Spec(ok). We assume the following:

Assumption 1.2 There exists a regular schemeX which is proper and flat overS
and whose generic fiber isX . Moreover,X has good or semistable reduction at each
closed point ofS of characteristicp.

Let K = k(X) be the function field ofX . For an integerq ≥ 0, let X q be the
set of all pointsx ∈ X of codimensionq. Fix an integern ≥ 0. Roughly speak-
ing, the unramified cohomology groupHn+1

ur (K,Qp/Zp(n)) is defined as the sub-
group ofHn+1

ét (Spec(K),Qp/Zp(n)) consisting of those elements that are “unrami-
fied” along ally ∈ X 1. For a precise definition, we need thep-adic étale Tate twist
Tr(n) = Tr(n)X introduced in [SH]. This object is defined inDb(Xét,Z/pr), the
derived category of bounded complexes of étale sheaves ofZ/pr-modules onX , and
expected to coincide withΓ (2)X

ét ⊗LZ/pr. HereΓ (2)X
ét denotes the conjectural étale

motivic complex of Beilinson-Lichtenbaum [Be], [Li1]. We note that the restriction
of Tr(n) to X [p−1] := X ⊗Z Z[p−1] is isomorphic toµ⊗n

pr , whereµpr denotes the
étale sheaf ofpr-th roots of unity.ThenHn+1

ur (K,Qp/Zp(n)) is defined as the kernel
of the boundary map of étale cohomology groups

Hn+1
ét (Spec(K),Qp/Zp(n)) −→

⊕

x∈X 1

Hn+2
x (Spec(OX,x),T∞(n)),

whereT∞(n) denoteslim−→ r≥1 Tr(n). There are natural isomorphisms

H1
ur(K,Qp/Zp(0)) ≃ H1

ét(X,Qp/Zp) and H2
ur(K,Qp/Zp(1)) ≃ Br(X )p-tors,

where Br(X ) denotes the Grothendieck-Brauer groupH2
ét(X,Gm), and for an abelian

groupM , Mp-tors denotes itsp-primary torsion part. An intriguing question is as to
whether the groupHn+1

ur (K,Qp/Zp(n)) is finite, which is related to several signifi-
cant theorems and conjectures in arithmetic geometry (see Remark 4.3.1 below). In
this paper we are concerned with the casen = 2. A crucial role will be played by the
following subgroup ofH3

ur(K,Qp/Zp(2)):

H3
ur(K,X ;Qp/Zp(2))

:= Im
(
H3

ét(X,Qp/Zp(2))→ H3
ét(Spec(K),Qp/Zp(2))

)
∩H3

ur(K,Qp/Zp(2)).
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It will turn out that CH2(X)p-tors andH3
ur(K,X ;Qp/Zp(2)) are cofinitely generated

overZp if Coker(regQp/Zp)Div is cofinitely generated overZp (cf. Proposition 3.3.2,
Lemma 5.2.3). Our main finiteness result is the following:

Theorem 1.3 LetX be as in Assumption1.2, and assumep ≥ 5. Then:

(1) H1∗ implies thatCH2(X)p-tors andH3
ur(K,X ;Qp/Zp(2)) are finite.

(2) Assume that the reduced part of every closed fiber ofX /S has simple nor-
mal crossings onX , and that the Tate conjecture holds in codimension1 for
the irreducible components of those fibers(see the beginning of§7 for the pre-
cise contents of the last assumption). Then the finiteness ofCH2(X)p-tors and
H3

ur(K,X ;Qp/Zp(2)) impliesH1∗.

We do not need Assumption 1.2 to deduce the finiteness of CH2(X)p-tors from H1∗,
by the alteration theorem of de Jong [dJ] (see also Remark 3.1.2 (3) below). How-
ever, we need a regular proper modelX as above crucially in our computations on
H3

ur(K,X ;Qp/Zp(2)). The assertion (2) is a converse of (1) under the assumption of
the Tate conjecture. We obtain the following result from Theorem 1.3 (1) (see also the
proof of Theorem 1.6 in§5.1 below):

Corollary 1.4 H3
ur(K,X ;Qp/Zp(2)) is finite in the four cases in Fact1.1 (under

the assumption1.2).

We will also prove variants of Theorem 1.3 over local integerrings (see Theorems
3.1.1, 5.1.1 and 7.1.1 below). As for the finiteness ofH3

ur(K,Qp/Zp(2)) over local
integer rings, Spiess proved thatH3

ur(K,Qp/Zp(2)) = 0, assuming thatok is anℓ-adic
local integer ring withℓ 6= p and that eitherH2(X,OX) = 0 or X is a product of two
smooth elliptic curves overS ([Spi] §4). In [SSa], the authors extended his vanishing
result to a more general situation thatok is ℓ-adic local withℓ 6= p and thatX has
generalized semistable reduction. Finally we have to remark that there exists a smooth
projective surfaceX with pg(X) 6= 0 over a local fieldk for which the conditionH1∗
does not hold and such that CH2(X)tors is infinite [AS].

We next explain an application of the above finiteness resultto a cycle class map
of arithmetic schemes. Let us recall the following fact due to Colliot-Thélène, Sansuc,
Soulé and Gros:

Fact 1.5 ([CTSS], [Gr]) Let X be a proper smooth variety over a finite field of
characteristicℓ > 0. Letp be a prime number, which may be the same asℓ. Then the
cycle class map restricted to thep-primary torsion part

CH2(X)p-tors−→ H4
ét(X,Z/p

r(2))

is injective for a sufficiently larger > 0. HereZ/pr(2) denotesµ⊗2
pr if ℓ 6= p. Oth-

erwiseZ/pr(2) denotesWrΩ2
X,log[−2] withWrΩ2

X,log theétale subsheaf of the loga-
rithmic part of the Hodge-Witt sheafWrΩ2

X ([Bl1], [Il]) .
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In this paper, we study an arithmetic variant of this fact. Weexpect that a similar
result holds for proper regular arithmetic schemes, i.e., regular schemes which are
proper flat of finite type over the integer ring of a number fieldor a local field. To be
more precise, letk, ok andX be as before and letX be as in Assumption 1.2. The
p-adic étale Tate twistTr(2) = Tr(2)X mentioned before replacesZ/pr(2) in Fact
1.5, and there is a cycle class map

̺2r : CH2(X )/pr −→ H4
ét(X,Tr(2)).

We are concerned with the induced map

̺2p-tors,r : CH2(X )p-tors −→ H4
ét(X,Tr(2)).

It is shown in [SH] that the group on the right hand side is finite. So the injectivity
of this map is closely related with the finiteness of CH2(X )p-tors. The second main
result of this paper concerns the injectivity of this map:

Theorem 1.6 (§5) Assume thatH2(X,OX) = 0. ThenCH2(X )p-tors is finite and
̺2p-tors,r is injective for a sufficiently larger > 0.

The finiteness of CH2(X )p-tors in this theorem is originally due to Salberger [Sal],
Colliot-Thélène and Raskind [CTR1], [CTR2]. Note that there exists a projective
smooth surfaceV over a number field withH2(V,OV ) = 0 for which the map

CH2(V )p-tors −→ H4
ét(V, µ

⊗2
pr )

is not injective for some bad primep and anyr ≥ 1 [Su] (cf. [PS]). Our result suggests
that we are able to recover the injectivity of torsion cycle class maps by considering
a proper regular model ofV over the ring of integers ink. The fundamental ideas of
Theorem 1.6 are the following. A crucial point of the proof ofFact 1.5 in [CTSS] and
[Gr] is Deligne’s proof of the Weil conjecture [De2]. In the arithmetic situation, the
role of the Weil conjecture is replaced by the conditionH1, which implies the finite-
ness of CH2(X)p-tors andH3

ur(K,X ;Qp/Zp(2)) by Theorem 1.3 (1). The injectivity
result in Theorem 1.6 is derived from the finiteness of those objects.

This paper is organized as follows. In§2, we will review some fundamental facts
on Galois cohomology groups and Selmer groups which will be used frequently in
this paper. In§3, we will prove the finiteness of CH2(X)p-tors in Theorem 1.3 (1).
In §4, we will reviewp-adic étale Tate twists briefly and then provide some funda-
mental lemmas on cycle class maps and unramified cohomology groups. In§5, we
will first reduce Theorem 1.6 to Theorem 1.3 (1), and then reduce the finiteness of
H3

ur(K,X ;Qp/Zp(2)) in Theorem 1.3 (1) to Key Lemma 5.4.1. In§6, we will prove
that key lemma, which will complete the proof of Theorem 1.3 (1). §7 will be devoted
to the proof of Theorem 1.3 (2). In the appendix A, we will include an observation
that the finiteness ofH3

ur(K,Qp/Zp(2)) is deduced from the Beilinson–Lichtenbaum
conjectures on motivic complexes.
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Notation

1.6. For an abelian groupM and a positive integern, nM andM/n denote the

kernel and the cokernel of the mapM
×n−→M , respectively. See§2.3 below for other

notation for abelian groups. For a fieldk, k denotes a fixed separable closure, andGk
denotes the absolute Galois group Gal(k/k). For a discreteGk-moduleM ,H∗(k,M)
denote the Galois cohomology groupsH∗

Gal(Gk,M), which are the same as the étale
cohomology groups of Spec(k) with coefficients in the étale sheaf associated withM .

1.7. Unless indicated otherwise, all cohomology groups of schemes are taken over
the étale topology. For a schemeX , an étale sheafF onX (or more generally an
object in the derived category of sheaves onXét) and a pointx ∈ X , we often write
H∗
x(X,F ) for H∗

x(Spec(OX,x),F ). For a pure-dimensional schemeX and a non-
negative integerq, letXq be the set of all points onX of codimensionq. For a point
x ∈ X , let κ(x) be its residue field. For an integern ≥ 0 and a noetherian excellent
schemeX , CHn(X) denotes the Chow group of algebraic cycles onX of dimension
n modulo rational equivalence. IfX is pure-dimensional and regular, we will often
write CHdim(X)−n(X) for this group. For an integral schemeX of finite type over
Spec(Q), Spec(Z) or Spec(Zℓ), we define CH2(X, 1) as the cohomology group, at
the middle, of the Gersten complex of MilnorK-groups

KM
2 (L) −→

⊕

y∈X1

κ(y)× −→
⊕

x∈X2

Z,

whereL denotes the function field ofX . As is well-known, this group coincides with
a higher Chow group ([Bl3], [Le2]) by localization sequences of higher Chow groups
([Bl4], [Le1]) and the Nesterenko-Suslin theorem [NS] (cf.[To]).

1.8. In§§4–7, we will work under the following setting. Letk be an algebraic number
field or its completion at a finite place. Letok be the integer ring ofk and putS :=
Spec(ok). Let p be a prime number, and letX be a regular scheme which is proper
flat of finite type overS and satisfies the following condition:

Assumption 1.8.1 If p is not invertible inok, thenX has good or semistable re-
duction at each closed point ofS of characteristicp.

This condition is the same as Assumption 1.2 whenk is a number field.
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1.9. Letk be an algebraic number field, and letX → S = Spec(ok) be as in 1.8. In
this situation, we will often use the following notation. For a closed pointv ∈ S, let
ov (resp.kv) be the completion ofok (resp.k) at v, and letFv be the residue field of
kv. We put

Xv := X ⊗ok ov, Xv := X ⊗ok kv, Yv := X ⊗ok Fv

and writejv : Xv →֒ Xv (resp.iv : Yv →֒ Xv) for the natural open (resp. closed)
immersion. We putYv := Yv ×Fv Fv, and writeΣ for the set of all closed point onS
of characteristicp.

1.10. Letk be anℓ-adic local field withℓ a prime number, and letX → S = Spec(ok)
be as in 1.8. In this situation, we will often use the following notation. LetF be the
residue field ofk and put

X := X ⊗ok k, Y := X ⊗ok F.

We write j : X →֒ X (resp.i : Y →֒ X ) for the natural open (resp. closed)
immersion. Letkur be the maximal unramified extension ofk, and letour be its integer
ring. We put

X
ur := X ⊗ok o

ur, Xur := X ⊗ok k
ur, Y := Y ×F F.

2 Preliminaries on Galois Cohomology

In this section, we provide some preliminary lemmas which will be frequently used
in this paper. Letk be an algebraic number field (global field) or its completion at a
finite place (local field). Letok be the integer ring ofk, and putS := Spec(ok). Let p
be a prime number. Ifk is global, we often writeΣ for the set of the closed points on
S of characteristicp.

2.1 Selmer Group

LetX be a proper smooth variety over Spec(k), and putX := X ⊗k k. If k is global,
we fix a non-empty open subsetU0 ⊂ S \ Σ for which there exists a proper smooth
morphismXU0 → U0 with XU0 ×U0 k ≃ X . Forv ∈ S1, let kv andFv be as in the
notation 1.9. In this section we are concerned withGk-modules

V := Hi(X,Qp(n)) and A := Hi(X,Qp/Zp(n)).

ForM = V or A and a non-empty open subsetU ⊂ U0, letH∗(U,M) denote the
étale cohomology groups with coefficients in the smooth sheaf onUét associated to
M .

Definition 2.1.1 (1) Assume thatk is local. LetH1
f (k, V ) andH1

g (k, V ) be as
defined in[BK2] (3.7). For ∗ ∈ {f, g}, we define

H1
∗ (k,A) := Im

(
H1

∗ (k, V ) −→ H1(k,A)
)
.
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(2) Assume thatk is global. ForM ∈ {V,A} and a non-empty open subsetU ⊂ S,
we define the subgroupH1

f,U (k,M) ⊂ H1
cont(k,M) as the kernel of the natural

map

H1
cont(k,M) −→

∏

v∈U1

H1
cont(kv,M)

H1
f (kv,M)

×
∏

v∈S\U

H1
cont(kv,M)

H1
g (kv,M)

.

If U ⊂ U0, we have

H1
f,U (k,M) = Ker

(
H1(U,M) −→

∏
v∈S\U H

1
cont(kv,M)/H1

g (kv,M)
)
.

We define the groupH1
g (k,M) andH1

ind(k,M) as

H1
g (k,M) := lim−→

U⊂U0

H1
f,U (k,M), H1

ind(k,M) := lim−→
U⊂U0

H1(U,M),

whereU runs through all non-empty open subsets ofU0. These groups are
independent of the choice ofU0 andXU0 (cf. [EGA4] 8.8.2.5).

(3) If k is local, we defineH1
ind(k,M) to beH1

cont(k,M) for M ∈ {V,A}.

Note thatH1
ind(k,A) = H1(k,A).

2.2 p-adic Point of Motives

We provide a key lemma fromp-adic Hodge theory which play crucial roles in this
paper (see Corollary 2.2.3 below). Assume thatk is ap-adic local field, and that there
exists a regular schemeX which is proper flat of finite type overS = Spec(ok) with
X ⊗ok k ≃ X and which has semistable reduction. Leti andn be non-negative
integers. Put

V i := Hi+1(X,Qp), V i(n) := V i ⊗Qp Qp(n),

and
Hi+1(X, τ≤nRj∗Qp(n)) := Qp ⊗Zp lim←−

r≥1

Hi+1(X, τ≤nRj∗µ
⊗n
pr ),

wherej denotes the natural open immersionX →֒ X . There is a natural pull-back
map

α : Hi+1(X, τ≤nRj∗Qp(n)) −→ Hi+1(X,Qp(n)).

LetHi+1(X, τ≤rRj∗Qp(n))0 be the kernel of the composite map

α′ : Hi+1(X, τ≤nRj∗Qp(n))
α−→ Hi+1(X,Qp(n)) −→

(
V i+1(n)

)Gk .

For this group, there is a composite map

α : Hi+1(X, τ≤nRj∗Qp(n))0 −→ F 1Hi+1(X,Qp(n)) −→ H1
cont(k, V

i(n)).
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Here the first arrow is induced byα, the second is an edge homomorphism in a
Hochschild-Serre spectral sequence

Eu,v2 := Hu
cont(k, V

v(n)) =⇒ Hu+v
cont (X,Qp(n))(≃ Hu+v(X,Qp(n))),

andF • denotes the filtration onHi+1(X,Qp(n)) resulting from this spectral se-
quence. To provide with Corollary 2.2.3 below concerning the image ofα, we need
some strong results inp-adic Hodge theory. We first recall the following comparison
theorem of log syntomic complexes andp-adic vanishing cycles due to Tsuji, which
extends a comparison result of Kurihara [Ku] to semistable families. LetY be the
closed fiber ofX → S and letι : Y →֒X be the natural closed immersion.

Theorem 2.2.1 ([Ts2] Theorem 5.1) For integersn, r with 0 ≤ n ≤ p − 2 and
r ≥ 1, there is a canonical isomorphism

η : slogr (n) ∼−→ ι∗ι
∗(τ≤nRj∗µ

⊗n
pr ) in Db(Xét,Z/p

r),

whereslogr (n) = slogr (n)X is the log syntomic complex defined by Kato[Ka2].

Put
H∗(X, slogQp

(n)) := Qp ⊗Zp lim←−
r≥1

H∗(X, slogr (n)),

and defineHi+1(X, slogQp
(n))0 as the kernel of the composite map

Hi+1(X, slogQp
(n)) ∼−→

η
Hi+1(X, τ≤nRj∗Qp(n))

α′

−→
(
V i+1(n)

)Gk ,

where we have used the properness ofX overS. There is an induced map

η : Hi+1(X, slogQp
(n))0 ∼−→

η
Hi+1(X, τ≤nRj∗Qp(n))0

α−→ H1
cont(k, V

i(n)).

Concerning this map, we have the following fact due to Langerand Nekovář:

Theorem 2.2.2 ([La3], [Ne2] Theorem 3.1) Im(η) agrees withH1
g (k, V i(n)).

As an immediate consequence of these facts, we obtain

Corollary 2.2.3 Assume thatp ≥ n+ 2. ThenIm(α) = H1
g (k, V i(n)).

Remark 2.2.4 (1) Theorem2.2.2 is an extension of thep-adic point conjecture
raised by Schneider in the good reduction case[Sch]. This conjecture was
proved by Langer-Saito[LS] in a special case and by Nekovář [Ne1] in the
general case.

(2) Theorem2.2.2holds unconditionally onp, if we defineHi+1(X, slogQp
(n)) using

Tsuji’s version of log syntomic complexesSr̃ (n) (r ≥ 1) in [Ts1] §2.
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2.3 Elementary Facts on Zp-Modules

For an abelian groupM , let MDiv be its maximal divisible subgroup. For a torsion
abelian groupM , let Cotor(M) be the cotorsion partM/MDiv.

Definition 2.3.1 LetM be aZp-module.

(1) We say thatM is cofinitely generated overZp (or simply, cofinitely generated),
if its Pontryagin dualHomZp(M,Qp/Zp) is a finitely generatedZp-module.

(2) We say thatM is cofinitely generated up to a finite-exponent group, ifMDiv is
cofinitely generated andCotor(M) has a finite exponent.

(3) We say thatM is divisible up to a finite-exponent group, ifCotor(M) has a
finite exponent.

Lemma 2.3.2 Let 0 → L → M → N → 0 be a short exact sequence ofZp-
modules.

(1) Assume thatL, M andN are cofinitely generated. Then there is a positive
integerr0 such that for anyr ≥ r0 we have an exact sequence of finite abelian
p-groups

0→ prL→ prM → prN → Cotor(L)→ Cotor(M)→ Cotor(N)→ 0.

Consequently, taking the projective limit of this exact sequence with respect to
r ≥ r0 there is an exact sequence of finitely generatedZp-modules

0→ Tp(L)→ Tp(M)→ Tp(N)→ Cotor(L)→ Cotor(M)→ Cotor(N)→ 0,

where for an abelian groupA, Tp(A) denotes itsp-adic Tate module.

(2) Assume thatL is cofinitely generated up to a finite-exponent group. Assume
further thatM is divisible, and thatN is cofinitely generated and divisible.
ThenL andM are cofinitely generated.

(3) Assume thatL is divisible up to a finite-exponent group. Then for a divisible
subgroupD ⊂ N and its inverse imageD′ ⊂ M , the induced map(D′)Div →
D is surjective. In particular, the natural mapMDiv → NDiv is surjective.

(4) If LDiv = NDiv = 0, then we haveMDiv = 0.

Proof. (1) There is a commutative diagram with exact rows

0 // L //

×pr
��

M //

×pr
��

N //

×pr
��

0

0 // L // M // N // 0.

Documenta Mathematica · Extra Volume Suslin (2010) 525–594



p-adic Regulator and Finiteness 535

One obtains the assertion by applying the snake lemma to thisdiagram, noting
Cotor(A) ≃ A/pr for a cofinitely generatedZp-moduleA and a sufficiently large
r ≥ 1.

(2) Our task is to show that Cotor(L) is finite. By a similar argument as for (1),
there is an exact sequence for a sufficiently larger ≥ 1

0 −→ prL −→ prM −→ prN −→ Cotor(L) −→ 0,

where we have used the assumptions onL andM . Hence the finiteness of Cotor(L)
follows from the assumption thatN is cofinitely generated.

(3) We have only to show the caseD = NDiv . For aZp-moduleA, we have

ADiv = Im
(
HomZp(Qp, A)→ A

)

by [J1] Lemma (4.3.a). Since Ext1
Zp(Qp, L) = 0 by the assumption onL, the follow-

ing natural map is surjective:

HomZp(Qp,M) −→ HomZp(Qp, N).

By these facts, the natural mapMDiv → NDiv is surjective.
(4) For aZp-moduleA, we have

ADiv = 0⇐⇒ HomZp(Qp, A) = 0

by [J1] Remark (4.7). The assertion follows from this fact and the exact sequence

0 −→ HomZp(Qp, L) −→ HomZp(Qp,M) −→ HomZp(Qp, N).

This completes the proof of the lemma. �

2.4 Divisible Part of H1(k,A)

Let the notation be as in§2.1. We prove here the following general lemma, which will
be used frequently in§§3–7:

Lemma 2.4.1 Under the notation in Definition2.1.1we have

Im
(
H1

ind(k, V )→ H1(k,A)
)

= H1(k,A)Div ,

Im
(
H1
g (k, V )→ H1(k,A)

)
= H1

g (k,A)Div .

Proof. The assertion is clear ifk is local. Assume thatk is global. Without loss of
generality we may assume thatA is divisible. We prove only the second equality and
omit the first one (see Remark 2.4.9 (2) below). LetU0 ⊂ S be as in§2.1. We have

Im
(
H1
f,U (k, V )→ H1(U,A)

)
= H1

f,U (k,A)Div (2.4.2)

for non-empty openU ⊂ U0. This follows from a commutative diagram with exact
rows
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0 // H1
f,U (k, V ) //

��

H1(U, V ) //

α

��

∏

v∈S\U
H1

cont(kv, V )/H1
g (kv, V )

β

��

0 // H1
f,U (k,A) // H1(U,A) //

∏

v∈S\U
H1(kv, A)/H1

g (kv, A)

and the facts that Coker(α) is finite and that Ker(β) is finitely generated overZp. By
(2.4.2), the second equality of the lemma is reduced to the following assertion:

lim−→
U⊂U0

(
H1
f,U (k,A)Div

)
=

(
lim−→
U⊂U0

H1
f,U (k,A))

)
Div . (2.4.3)

To show this equality, we will prove the following sublemma:

Sublemma 2.4.4 For an open subsetU ⊂ U0, put

CU := Coker
(
H1
f,U0

(k,A)→ H1
f,U (k,A)

)
.

Then there exists a non-empty open subsetU1 ⊂ U0 such that the quotientCU/CU1 is
divisible for any open subsetU ⊂ U1.

We first finish our proof of (2.4.3) admitting this sublemma. Let U1 ⊂ U0 be a
non-empty open subset as in Sublemma 2.4.4. Noting thatH1

f,U (k,A) is cofinitely
generated, there is an exact sequence of finite groups

Cotor
(
H1
f,U1

(k,A)
)
−→ Cotor

(
H1
f,U (k,A)

)
−→ Cotor(CU/CU1) −→ 0

for openU ⊂ U1 by Lemma 2.3.2 (1). By this exact sequence and Sublemma 2.4.4,
the natural map Cotor(H1

f,U1
(k,A))→ Cotor(H1

f,U (k,A)) is surjective for any open
U ⊂ U1, which implies that the inductive limit

lim−→
U⊂U0

Cotor(H1
f,U (k,A))

is a finite group. The equality (2.4.3) follows easily from this.

Proof of Sublemma 2.4.4.We need the following general fact:

Sublemma 2.4.5 LetN = {Nλ}λ∈Λ be an inductive system of cofinitely generated
Zp-modules indexed by a filtered setΛ such thatCoker(Nλ → Nλ′) is divisible for
any twoλ, λ′ ∈ Λ with λ′ ≥ λ. Let L be a cofinitely generatedZp-module and
{fλ : Nλ → L}λ∈Λ beZp-homomorphisms compatible with the transition maps of
N . Then there existsλ0 ∈ Λ such thatCoker

(
Ker(fλ0) → Ker(fλ)

)
is divisible for

anyλ ≥ λ0.
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Proof of Sublemma 2.4.5.Let f∞ : N∞ → L be the limit offλ. The assumption on
N implies that for any twoλ, λ′ ∈ Λ with λ′ ≥ λ, the quotient Im(fλ′)/Im(fλ) is
divisible, so that

Cotor(Im(fλ))→ Cotor(Im(fλ′)) is surjective. (2.4.6)

By the equality Im(f∞) = lim−→ λ∈Λ Im(fλ), there is a short exact sequence

0 −→ lim−→
λ∈Λ

(
Im(fλ)Div

)
−→ Im(f∞) −→ lim−→

λ∈Λ
Cotor(Im(fλ)) −→ 0,

and the last term is finite by the fact (2.4.6) and the assumption thatL is cofinitely
generated. Hence we get

lim−→
λ∈Λ

(
Im(fλ)Div

)
= Im(f∞)Div .

Since Im(f∞)Div has finite corank, there exists an elementλ0 ∈ Λ such that
Im(fλ)Div = Im(f∞)Div for anyλ ≥ λ0. This fact and (2.4.6) imply the equality

Im(fλ) = Im(fλ0) for anyλ ≥ λ0. (2.4.7)

Now letλ ∈ Λ satisfyλ ≥ λ0. Applying the snake lemma to the commutative diagram

Nλ0
//

fλ0

��

Nλ //

fλ

��

Nλ/Nλ0
//

��

0

0 // L L // 0,

we get an exact sequence

Ker(fλ0) −→ Ker(fλ0) −→ Nλ/Nλ0

0−→ Coker(fλ0) ∼−→ Coker(fλ),

which proves Sublemma 2.4.5, beucaseNλ/Nλ0 is divisible by assumption. �

We now turn to the proof of Sublemma 2.4.4. For non-empty openU ⊂ U0, there is a
commutative diagram with exact rows

H1(U0, A) → H1(U,A) →
⊕

v∈U0\U

A(−1)GFv
βU−→H2(U0, A)

rU0





y

rU





y

αU





y

0→
⊕

v∈S\U0

H1
/g(kv, A)→

⊕

v∈S\U

H1
/g(kv, A)→

⊕

v∈U0\U

H1
/g(kv, A),

where we put
H1
/g(kv, A) := H1(kv, A)/H1

g (kv, A)

for simplicity. The upper row is obtained from a localization exact sequence of étale
cohomology and the isomorphism

H2
v (U0, A) ≃ H1(kv, A)/H1(Fv, A) ≃ A(−1)GFv for v ∈ U0 \ U,
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where we have used the fact that the action ofGk onA is unramified atv ∈ U0. The
mapαU is obtained from the facts thatH1

g (kv, A) = H1(kv, A)Div if v 6∈ Σ and that
H1(Fv, A) is divisible (recall thatA is assumed to be divisible). It gives

Ker(αU ) =
⊕

v∈U0\U

(
A(−1)GFv

)
Div . (2.4.8)

Now letφU be the composite map

φU : Ker(αU ) →֒
⊕

v∈U0\U
A(−1)GFv

βU−→ H2(U0, A),

and let
ψU : Ker(φU ) −→ Coker(rU0 )

be the map induced by the above diagram. Note that

CU ≃ Ker(ψU ), since H1
f,U (k,A) = Ker(rU ).

By (2.4.8), the inductive system{Ker(αU )}U⊂U0 and the maps{φU}U⊂U0 satisfy
the assumptions in Sublemma 2.4.5. Hence there exists a non-empty open subset
U ′ ⊂ U0 such that Ker(φU )/Ker(φU ′ ) is divisible for any openU ⊂ U ′. Then
applying Sublemma 2.4.5 again to the inductive system{Ker(φU )}U⊂U ′ and the maps
{ψU}U⊂U ′ , we conclude that there exists a non-empty open subsetU1 ⊂ U ′ such that
the quotient

Ker(ψU )/Ker(ψU1 ) = CU/CU1

is divisible for any open subsetU ⊂ U1. This completes the proof of Sublemma 2.4.4
and Lemma 2.4.1. �

Remark 2.4.9 (1) By the argument after Sublemma2.4.4, Cotor(H1
g (k,A)) is

finite ifA is divisible.

(2) One obtains the first equality in Lemma2.4.1 by replacing the local terms
H1
/g(kv, A) in the above diagram withCotor(H1(kv, A)).

2.5 Cotorsion Part of H1(k,A)

Assume thatk is global, and let the notation be as in§2.1. We investigate here the
boundary map

δU0 : H1(k,A) −→
⊕

v∈(U0)1

A(−1)GFv

arising from a localization exact sequence of étale cohomology and the purity for dis-
crete valuation rings. Concerning this map, we prove the following standard lemma,
which will be used in our proof of Theorem 1.3:
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Lemma 2.5.1 (1) The map

δU0,Div : H1(k,A)Div −→
⊕

v∈(U0)1

(
A(−1)GFv

)
Div

induced byδU0 has cofinitely generated cokernel.

(2) The map

δU0,Cotor : Cotor(H1(k,A)) −→
⊕

v∈(U0)1

Cotor
(
A(−1)GFv

)

induced byδU0 has finite kernel and cofinitely generated cokernel.

We have nothing to say about the finiteness of the cokernel of these maps.

Proof. For a non-empty openU ⊂ U0, there is a commutative diagram of cofinitely
generatedZp-modules

H1(U,A)Div
γU //

_�

��

⊕

v∈U0\U

(

(A(−1)GFv
)

Div
_�

��
H1(U0, A) // H1(U,A)

αU // ⊕
v∈U0\U A(−1)GFv

βU // H2(U0, A),

where the lower row is obtained from a localization exact sequence of étale cohomol-
ogy and the purity for discrete valuation rings, andγU is induced byαU . Let

fU : Cotor(H1(U,A)) −→
⊕

v∈U0\U
Cotor

(
A(−1)GFv

)

be the map induced byαU . By a diagram chase, we obtain an exact sequence

Ker(fU ) −→ Coker(γU ) −→ Coker(αU ) −→ Coker(fU ) −→ 0.

Taking the inductive limit with respect to all non-empty open subsetsU ⊂ U0, we
obtain an exact sequence

Ker(δU0,Cotor)→ Coker(δU0,Div)→ lim−→
U⊂U0

Coker(αU )→ Coker(δU0,Cotor)→ 0,

where we have used Lemma 2.4.1 to obtain the equalities

Ker(δU0,Cotor) = lim−→
U⊂U0

Ker(fU ) and Coker(δU0,Div) = lim−→
U⊂U0

Coker(γU ).

Since lim−→U⊂U0 Coker(αU ) is a subgroup ofH2(U0, A), it is cofinitely generated.
Hence the assertions in Lemma 2.5.1 are reduced to showing that Ker(δU0,Cotor) is
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finite. We prove this finiteness assertion. The lower row of the above diagram yields
exact sequences

Cotor(H1(U0, A)) −→ Cotor(H1(U,A)) −→ Cotor(Im(αU )) −→ 0, (2.5.2)

Tp(Im(βU )) −→ Cotor(Im(αU )) −→
⊕

v∈U0\U
Cotor

(
A(−1)GFv

)
, (2.5.3)

where the second exact sequence arises from the short exact sequence

0 −→ Im(αU ) −→
⊕

v∈U0\U
A(−1)GFv −→ Im(βU ) −→ 0

(cf. Lemma 2.3.2 (1)). Taking the inductive limit of (2.5.2)with respect to all non-
empty openU ⊂ U0, we obtain the finiteness of the kernel of the map

Cotor(H1(k,A)) −→ lim−→
U⊂U0

Cotor(Im(αU )).

Taking the inductive limit of (2.5.3) with respect to all non-empty openU ⊂ U0, we
see that the kernel of the map

lim−→
U⊂U0

Cotor(Im(αU )) −→
⊕

v∈(U0)1

Cotor
(
A(−1)GFv

)
,

is finite, because we have

lim−→
U⊂U0

Tp(Im(βU )) ⊂ Tp(H2(U0, A))

and the group on the right hand side is a finitely generatedZp-module. Thus
Ker(δU0,Cotor) is finite and we obtain Lemma 2.5.1. �

2.6 Local-Global Principle

Let the notation be as in§2.1. If k is local, then the Galois cohomological dimension
cd(k) is 2 (cf. [Se] II.4.3). In the case thatk is global, we have cd(k) = 2 either
if p ≥ 3 or if k is totally imaginary. Otherwise,Hq(k,A) is finite 2-torsion for
q ≥ 3 (cf. loc. cit. II.4.4 Proposition 13, II.6.3 Theorem B). As for the second Galois
cohomology groups, the following local-global principle due to Jannsen [J2] plays a
fundamental role in this paper (see also loc. cit.§7 Corollary 7):

Theorem 2.6.1 ([J2] §4 Theorem 4) Assume thatk is global and thati 6= 2(n−1).
LetP be the set of all places ofk. Then the map

H2(k,Hi(X,Qp/Zp(n))) −→
⊕

v∈P
H2(kv, H

i(X,Qp/Zp(n)))

has finite kernel and cokernel, and the map

H2(k,Hi(X,Qp/Zp(n))Div) −→
⊕

v∈P
H2(kv, H

i(X,Qp/Zp(n))Div)

is bijective.
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We apply these facts to the filtrationF • on H∗(X,Qp/Zp(n)) resulting from the
Hochschild-Serre spectral sequence

Eu,v2 = Hu(k,Hv(X,Qp/Zp(n))) =⇒ Hu+v(X,Qp/Zp(n)). (2.6.2)

Corollary 2.6.3 Assume thatk is global and thati 6= 2n. Then:

(1) F 2Hi(X,Qp/Zp(n)) is cofinitely generated up to a finite-exponent group.

(2) For v ∈ P , putXv := X ⊗k kv. Then the natural maps

F 2Hi(X,Qp/Zp(n)) −→
⊕

v∈P
F 2Hi(Xv,Qp/Zp(n)),

F 2Hi(X,Qp/Zp(n))Div −→
⊕

v∈P
F 2Hi(Xv,Qp/Zp(n))Div

have finite kernel and cokernel(and the second map is surjective).

Proof. Let ok be the integer ring ofk, and putS := Spec(ok). Note that the set of all
finite places ofk agrees withS1.

(1) The groupH2(kv, H
i−2(X,Qp/Zp(n))Div) is divisible and cofinitely gener-

ated for anyv ∈ S1, and it is zero ifp 6 | v andX has good reduction atv, by the local
Poitou-Tate duality [Se] II.5.2 Théorème 2 and Deligne’sproof of the Weil conjecture
[De2] (see [Sat2] Lemma 2.4 for details). The assertion follows from this fact and
Theorem 2.6.1.

(2) We prove the assertion only for the first map. The assertion for the second
map is similar and left to the reader. For simplicity, we assume that

(♯) p ≥ 3 or k is totally imaginary.

Otherwise one can check the assertion by repeating the same arguments as below in the
category of abelian groups modulo finite abelian groups. By (♯), we have cdp(k) = 2
and there is a commutative diagram

H2(k,Hi−2(X,Qp/Zp(n))) //

����

⊕

v∈S1

H2(kv, H
i−2(X,Qp/Zp(n)))

����

F 2Hi(X,Qp/Zp(n)) //
⊕

v∈S1

F 2Hi(Xv,Qp/Zp(n)),

where the vertical arrows are edge homomorphisms of Hochschild-Serre spectral se-
quences and these arrows are surjective. Since

H2(kv, H
i−2(X,Qp/Zp(n))) = 0 for archimedean placesv

by (♯), the top horizontal arrow has finite kernel and cokernel by Theorem 2.6.1. Hence
it is enough to show that the right vertical arrow has finite kernel. For anyv ∈ S1, the

Documenta Mathematica · Extra Volume Suslin (2010) 525–594



542 S. Saito and K. Sato

v-component of this map has finite kernel by Deligne’s criterion [De1] (see also [Sat2]
Remark 1.2). Ifv is prime top andX has good reduction atv, then thev-component
is injective. Indeed, there is an exact sequence resulting from a Hochschild-Serre
spectral sequence and the fact that cd(kv) = 2:

Hi−1(Xv,Qp/Zp(n))
d→ Hi−1(X,Qp/Zp(n)))Gkv

→ H2(kv, H
i−2(X,Qp/Zp(n)))→ F 2Hi(Xv,Qp/Zp(n)).

The edge homomorphismd is surjective by the commutative square

Hi−1(Yv,Qp/Zp(n)) // //

��

Hi−1(Yv,Qp/Zp(n)))GFv

≀
��

Hi−1(Xv,Qp/Zp(n))
d // Hi−1(X,Qp/Zp(n)))Gkv .

HereYv denotes the reduction ofX at v andYv denotesYv ⊗Fv Fv. The left (resp.
right) vertical arrow arises from the proper base-change theorem (resp. proper smooth
base-change theorem), and the top horizontal arrow is surjective by the fact that
cd(Fv) = 1. Thus we obtain the assertion. �

3 Finiteness of Torsion in a Chow Group

Let k, S, p andΣ be as in the beginning of§2, and letX be a proper smooth geomet-
rically integral variety over Spec(k). We introduce the following technical condition:

H0: The groupH3
ét(X,Qp(2))Gk is trivial.

If k is global,H0 always holds by Deligne’s proof of the Weil conjecture [De2]. When
k is local,H0 holds if dim(X) = 2 or if X has good reduction (cf. [CTR2]§6); it is
in general a consequence of the monodromy-weight conjecture.

3.1 Finiteness of CH2(X)p-tors

The purpose of this section is to show the following result, which is a generaliza-
tion of a result of Langer [La4] Proposition 3 and implies thefiniteness assertion on
CH2(X)p-tors in Theorem 1.3 (1):

Theorem 3.1.1 AssumeH0, H1∗ and eitherp ≥ 5 or the equality

H1
g (k,H2(X,Qp/Zp(2)))Div = H1(k,H2(X,Qp/Zp(2)))Div . (∗g)

ThenCH2(X)p-tors is finite.

Documenta Mathematica · Extra Volume Suslin (2010) 525–594



p-adic Regulator and Finiteness 543

Remark 3.1.2 (1) (∗g) holds ifH2(X,OX) = 0 or if k is ℓ-adic local with
ℓ 6= p.

(2) Crucial facts to this theorem are Lemmas3.2.2, 3.3.5and3.5.2below. The short
exact sequence in Lemma3.2.2is an important consequence of the Merkur’ev-
Suslin theorem[MS].

(3) In Theorem3.1.1, we do not need to assume thatX has good or semistable
reduction at any prime ofk dividing p (cf. 1.8.1), because we do not need this
assumption in Lemma3.5.2by the alteration theorem of de Jong[dJ].

3.2 Regulator Map

We recall here the definition of the regulator maps

regΛ : CH2(X, 1)⊗ Λ −→ H1
ind(k,H2(X,Λ(2))) (3.2.1)

with Λ = Qp or Qp/Zp, assumingH0. The general framework on étale Chern class
maps and regulator maps is due to Soulé [So1], [So2]. We include here a more ele-
mentary construction of regΛ, which will be useful in this paper. LetK := k(X) be
the function field ofX . Take an open subsetU0 ⊂ S \ Σ = S[p−1] and a smooth
proper schemeXU0 overU0 satisfyingXU0 ×U0 Spec(k) ≃ X . For an open subset
U ⊂ U0, putXU := XU0 ×U0 U and define

N1H3(XU , µ
⊗2
pr ) := Ker

(
H3(XU , µ

⊗2
pr )→ H3(K,µ⊗2

pr )
)
.

Lemma 3.2.2 For an open subsetU ⊂ U0, there is an exact sequence

0 −→ CH2(XU , 1)/pr −→ N1H3(XU , µ
⊗2
pr ) −→ prCH2(XU ) −→ 0

See§1.7 for the definition ofCH2(XU , 1).

Proof. The following argument is due to Bloch [Bl], Lecture 5. We recall it for the
convenience of the reader. There is a localization spectralsequence

Eu,v1 =
⊕

x∈(XU)u

Hu+v
x (XU , µ

⊗2
pr ) =⇒ Hu+v(XU , µ

⊗2
pr ). (3.2.3)

By the relative smooth purity, there is an isomorphism

Eu,v1 ≃
⊕

x∈(XU )u

Hv−u(x, µ⊗2−u
pr ), (3.2.4)

which implies thatN1H3(XU , µ
⊗2
pr ) is isomorphic to the cohomology of the Bloch-

Ogus complex

H2(K,µ⊗2
pr ) −→

⊕

y∈(XU )1

H1(y, µpr ) −→
⊕

x∈(XU )2

Z/pr.
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By Hilbert’s theorem 90 and the Merkur’ev-Suslin theorem [MS], this complex is
isomorphic to the Gersten complex

KM
2 (K)/pr −→

⊕

y∈(XU )1

κ(y)×/pr −→
⊕

x∈(XU )2

Z/pr.

On the other hand, there is an exact sequence obtained by a diagram chase

0 −→ CH2(XU , 1)⊗ Z/pr −→ CH2(XU , 1;Z/pr) −→ prCH2(XU ) −→ 0.

Here CH2(XU , 1;Z/pr) denotes the cohomology of the above Gersten complex and
it is isomorphic toN1H3(XU , µ

⊗2
pr ). Thus we obtain the lemma. �

Put
M q := Hq(X,Λ(2)) with Λ ∈ {Qp,Qp/Zp}.

For an open subsetU ⊂ U0 letH∗(U,M q) be the étale cohomology with coefficients
in the smooth sheaf associated withM q. There is a Leray spectral sequence

Eu,v2 = Hu(U,Mv) =⇒ Hu+v(XU , Λ(2)).

By Lemma 3.2.2, there is a natural map

CH2(XU , 1)⊗ Λ −→ H3(XU , Λ(2)).

Noting thatE0,3
2 is zero or finite byH0, we define the map

reg
XU ,Λ

: CH2(XU , 1)⊗ Λ −→ H1(U,M2)

as the composite of the above map with an edge homomorphism ofthe Leray spectral
sequence. Finally we define regΛ in (3.2.1) by passing to the limit over all non-empty
openU ⊂ U0. Our construction of regΛ does not depend on the choice ofU0 or XU0 .

Remark 3.2.5 By Lemma2.4.1, H1 always impliesH1∗. If k is local,H1∗ con-
versely impliesH1. If k is global, one can check thatH1∗ impliesH1, assuming that
the groupKer(CH2(XU0)→ CH2(X)) is finitely generated up to torsion and that the
Tate conjecture for divisors holds for almost all closed fibers ofXU0/U0.

3.3 Proof of Theorem 3.1.1

We start the proof of Theorem 3.1.1, which will be completed in §3.5 below. By
Lemma 3.2.2, there is an exact sequence

0 −→ CH2(X, 1)⊗Qp/Zp
φ−→ N1H3(X,Qp/Zp(2)) −→ CH2(X)p-tors−→ 0,

(3.3.1)
where we put

N1H3(X,Qp/Zp(2)) := Ker(H3(X,Qp/Zp(2))→ H3(K,Qp/Zp(2))).

In view of (3.3.1), Theorem 3.1.1 is reduced to the followingtwo propositions:
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Proposition 3.3.2 (1) If k is local, thenCH2(X)p-tors is cofinitely generated
overZp.

(2) Assume thatk is global, and thatCoker
(
regQp/Zp

)
Div is cofinitely generated

overZp. ThenCH2(X)p-tors is cofinitely generated overZp.

Proposition 3.3.3 AssumeH0, H1∗ and eitherp ≥ 5 or (∗g). Then we have

Im(φ) = N1H3(X,Qp/Zp(2))Div .

We will prove Proposition 3.3.2 in§3.4 below, and Proposition 3.3.3 in§3.5 below.

Remark 3.3.4 (1) If k is local, thenH3(X,Qp/Zp(2)) is cofinitely gener-
ated. Hence Proposition3.3.2 (1)immediately follows from the exact sequence
(3.3.1).

(2) Whenk is global, thenH1(k,A)Div/H
1
g (k,A)Div withA := H2(X,Qp/Zp(2))

is cofinitely generated by Lemma2.4.1. HenceH1∗ implies the second assump-
tion of Proposition3.3.2 (2).

Let F • be the filtration onH∗(X,Qp/Zp(2)) resulting from the Hochschild-Serre
spectral sequence (2.6.2). The following fact due to Salberger will play key roles in
our proof of the above two propositions:

Lemma 3.3.5 ([Sal] Main Lemma 3.9) The following group has a finite exponent:

N1H3(X,Qp/Zp(2)) ∩ F 2H3(X,Qp/Zp(2)).

3.4 Proof of Proposition 3.3.2

For (1), see Remark 3.3.4 (1). We assume thatk is global, and prove (2). Put

H3 := H3(X,Qp/Zp(2)) and Γ := φ(CH2(X, 1)⊗Qp/Zp) ⊂ H3

(cf. (3.3.1)). LetF • be the filtration onH3 resulting from the spectral sequence
(2.6.2), and putN1H3 := N1H3(X,Qp/Zp(2)). We haveΓ ⊂ (F 1H3)Div =
(H3)Div byH0, and there is a filtration onH3

0 ⊂ Γ + (F 2H3)Div ⊂ (F 1H3)Div ⊂ H3.

By (3.3.1), the inclusionN1H3 ⊂ H3 induces an inclusion CH2(X)p-tors ⊂ H3/Γ .
We show that the image of this inclusion is cofinitely generated, using the above fil-
tration onH3. It suffices to show the following lemma:

Lemma 3.4.1 (1) The kernel ofCH2(X)p-tors→ H3/(Γ + (F 2H3)Div) is finite.

(2) The image ofCH2(X)p-tors→ H3/(F 1H3)Div is finite.
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(3) The second assumption of Proposition3.3.2 (2)implies that the group

M := (F 1H3)Div/(Γ + (F 2H3)Div)

is cofinitely generated.

Proof. (1) There is an exact sequence

0 −→ N1H3 ∩ (F 2H3)Div

Γ ∩ (F 2H3)Div
−→ CH2(X)p-tors−→

H3

Γ + (F 2H3)Div
.

Hence (1) follows from Lemma 3.3.5 and Corollary 2.6.3 (1).
(2) LetU0 andXU0 → U0 be as in§3.2. For non-empty openU ⊂ U0, there is a

commutative diagram up to a sign

N1H3(XU ,Qp/Zp(2)) //
_�

��

CH2(XU )⊗ Zp

̺

��
H3(XU ,Qp/Zp(2)) // H4(XU ,Zp(2))

by the same argument as for [CTSS],§1, Proposition 1. Here the top arrow is the
composite ofN1H3(XU ,Qp/Zp(2)) → CH2(XU )p-tors (cf. Lemma 3.2.2) with the
natural inclusion. The bottom arrow is a Bockstein map and the right vertical arrow is
the cycle class map ofXU . Taking the inductive limit with respect to all non-empty
U ⊂ U0, we see that the left square of the following diagram commutes (up to a sign):

N1H3 //
_�

��

CH2(X)⊗ Zp

̺ind

��

̺cont

((QQQQQQQQQQQQQ

H3 // H4
ind(X,Zp(2)) // H4

cont(X,Zp(2)),

whereH∗
cont(X,Zp(2)) denotes the continuous étale cohomology [J1] and the bottom

right arrow is by definition the inductive limit, with respect toU ⊂ U0, of the natural
restriction map

H4(XU ,Zp(2)) = H4
cont(XU ,Zp(2)) −→ H4

cont(X,Zp(2)).

The right triangle of the diagram commutes by the definition of cycle classes in loc.
cit. Theorem (3.23). This diagram and the exact sequence (3.3.1) yield a commutative
diagram (up to a sign)

CH2(X)p-tors
//

��

CH2(X)⊗ Zp

̺cont

��
H3/(F 1H3)Div

� � // H4
cont(X,Zp(2)),
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where the bottom arrow is injective byH0 and loc. cit. Theorem (5.14). Now the
assertion follows from that fact that Im(̺cont) is finitely generated overZp ([Sa] The-
orem (4-4)).

(3) Put

N := (F 1H3)Div/{Γ + (F 2H3 ∩ (F 1H3)Div)} = Coker
(
regQp/Zp

)
Div,

which is cofinitely generated by assumption and fits into an exact sequence

(F 2H3 ∩ (F 1H3)Div)/(F 2H3)Div −→M −→ N −→ 0.

The first group in this sequence has a finite exponent by Corollary 2.6.3 (1),N is
divisible and cofinitely generated, andM is divisible. HenceM is cofinitely generated
by Lemma 2.3.2 (2). This completes the proof of Lemma 3.4.1 and Proposition 3.3.2.
�

3.5 Proof of Proposition 3.3.3

We put

NF 1H3(X,Qp/Zp(2)) := N1H3(X,Qp/Zp(2)) ∩ F 1H3(X,Qp/Zp(2)).

Note thatN1H3(X,Qp/Zp(2))Div = NF 1H3(X,Qp/Zp(2))Div by H0. There is an
edge homomorphism of the spectral sequence (2.6.2)

ψ : F 1H3(X,Qp/Zp(2)) −→ H1(k,H2(X,Qp/Zp(2))). (3.5.1)

The composite ofφ in (3.3.1) andψ agrees with regQp/Zp . Hence by Lemma 3.3.5, the
assertion of Proposition 3.3.3 is reduced to the following lemma, which generalizes
[LS] Lemma (5.7) and extends [La1] Lemma (3.3):

Lemma 3.5.2 Assume eitherp ≥ 5 or (∗g) (but we do not assumeH1∗). Then we
have

ψ(NF 1H3(X,Qp/Zp(2))Div) ⊂ H1
g (k,H2(X,Qp/Zp(2))).

We start the proof of this lemma. The assertion is obvious under the assumption
(∗g). Hence we are done ifk is ℓ-adic local withℓ 6= p (cf. Remark 3.1.2 (1)). It
remains to deal with the following two cases:

(1) k is p-adic local withp ≥ 5.

(2) k is global andp ≥ 5.

PutA := H2(X,Qp/Zp(2)) for simplicity. We first reduce the case (2) to the case
(1). Suppose thatk is global. Then there is a commutative diagram

NF 1H3(X,Qp/Zp(2))Div
//

��

H1(k,A)

��∏

v∈S1

NF 1H3(Xv,Qp/Zp(2))Div
//
∏

v∈S1

H1(kv, A),
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where the vertical arrows are natural restriction maps. By this diagram and the defini-
tion ofH1

g (k,A), the case (2) is reduced to the case (1).
We prove the case (1). We first reduce the problem to the case whereX has

semistable reduction. By the alteration theorem of de Jong [dJ], there exists a proper
flat generically finite morphismX ′ → X such thatX ′ is projective smooth overk and
has a proper flat regular model over the integral closureo′ of ok in Γ (X ′,OX′) with
semistable reduction. Put

L := Frac(o′) and A′ := H2(X ′ ⊗L k,Qp/Zp(2)).

Then there is a commutative diagram whose vertical arrows are natural restriction
maps

NF 1H3(X,Qp/Zp(2))Div
//

��

H1(k,A) //

��

H1(k,A)/H1
g (k,A)

��
NF 1H3(X ′,Qp/Zp(2))Div

// H1(L,A′) // H1(L,A′)/H1
g (L,A′).

Our task is to show that the composite of the upper row is zero.BecauseX ′ andX
are proper smooth varieties overk, the restriction mapr : A→ A′ has a quasi-section
s : A′ → A with s ◦ r = d · idA, whered denotes the extension degree of the function
field of X ′ ⊗L k over that ofX. Hence by the functoriality ofH1

g (k,A) in A, the
right vertical arrow in the above diagram has finite kernel, and the problem is reduced
to showing that the composite of the lower row is zero. Thus weare reduced to the
case thatX has a proper flat regular modelX overS = Spec(ok) with semistable
reduction. We prove this case in what follows.

Let j : X →֒ X be the natural open immersion. There is a natural injective map

αr : H3(X, τ≤2Rj∗µ
⊗2
pr ) � � // H3(X,µ⊗2

pr )

induced by the natural morphismτ≤2Rj∗µ
⊗2
pr → Rj∗µ

⊗2
pr . By Corollary 2.2.3, it

suffices to show the following two lemmas (see also Remark 3.5.6 below):

Lemma 3.5.3 N1H3(X,µ⊗2
pr ) ⊂ Im(αr) for anyr ≥ 1.

Lemma 3.5.4 Put

H3(X, τ≤2Rj∗Qp/Zp(2)) := lim−→
r≥1

H3(X, τ≤2Rj∗µ
⊗2
pr ),

and defineH3(X, τ≤2Rj∗Qp/Zp(2))0 as the kernel of the natural map

H3(X, τ≤2Rj∗Qp/Zp(2))→ H3(X,Qp/Zp(2)).

Then the canonical map

H3(X, τ≤2Rj∗Qp(2))0 −→ H3(X, τ≤2Rj∗Qp/Zp(2))0

has finite cokernel, whereH3(X, τ≤2Rj∗Qp(2))0 is as we defined in§2.2.
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To prove Lemma 3.5.3, we need the following fact due to Hagihara, whose latter
vanishing will be used later in§6:

Lemma 3.5.5 ([SH] A.2.4, A.2.6) Letn, r andc be integers withn ≥ 0 andr, c ≥
1. Then for anyq ≤ n+ c and any closed subschemeZ ⊂ Y with codimX (Z) ≥ c,
we have

Hq
Z(X, τ≤nRj∗µ

⊗n
pr ) = 0 = Hq+1

Z (X, τ≥n+1Rj∗µ
⊗n
pr ).

Proof of Lemma 3.5.3.We compute the local-global spectral sequence

Eu,v1 =
⊕

x∈X a

Hu+v
x (X, τ≤2Rj∗µ

⊗2
pr ) =⇒ Hu+v(X, τ≤2Rj∗µ

⊗2
pr ).

By the first part of Lemma 3.5.5 and the smooth purity for points onX , we have

Eu,v1 =

{
Hv(K,µ⊗2

pr ) (if u = 0)⊕
x∈Xu H

v−u(x, µ⊗2−u
pr ) (if v ≤ 2).

Repeating the same computation as in the proof of Lemma 3.2.2, we obtain

N1H3(X,µ⊗2
pr ) ≃ E1,2

2 = E1,2
∞ →֒ H3(X, τ≤2Rj∗µ

⊗2
pr ),

which implies Lemma 3.5.3. �

Remark 3.5.6 Lemma3.5.3extends a result of Langer-Saito([LS] Lemma(5.4))
to regular semistable families and removes the assumption in [La1] Lemma(3.1)con-
cerning Gersten’s conjecture for algebraicK-groups. Therefore the same assumption
in loc. cit. TheoremA has been removed as well.

Proof of Lemma 3.5.4.By the Bloch-Kato-Hyodo theorem on the structure ofp-adic
vanishing cycles ([BK1], [Hy]), there is a distinguished triangle of the following form
in Db(Xét) (cf. [SH], (4.3.3)):

τ≤2Rj∗µ
⊗2
pr −→ τ≤2Rj∗µ

⊗2
pr+s −→ τ≤2Rj∗µ

⊗2
ps −→ (τ≤2Rj∗µ

⊗2
pr )[1]

Taking étale cohomology groups, we obtain a long exact sequence

· · · → Hq(X, τ≤2Rj∗µ
⊗2
pr )→ Hq(X, τ≤2Rj∗µ

⊗2
pr+s)→ Hq(X, τ≤2Rj∗µ

⊗2
ps )

→ Hq+1(X, τ≤2Rj∗µ
⊗2
pr )→ · · · . (3.5.7)

We claim thatHq(X, τ≤2Rj∗µ
⊗2
pr ) is finite for anyq and r. Indeed, the claim is

reduced to the caser = 1 by the exactness of (3.5.7) and this case follows from the
Bloch-Kato-Hyodo theorem mentioned above and the properness ofX overS. Hence
taking the projective limit of (3.5.7) with respect tor and then taking the inductive
limit with respect tos we obtain a long exact sequence

· · · → Hq(X, τ≤2Rj∗Zp(2)) → Hq(X, τ≤2Rj∗Qp(2)) → Hq(X, τ≤2Rj∗Qp/Zp(2))

→ Hq+1(X, τ≤2Rj∗Zp(2)) → · · · ,
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whereHq(X, τ≤2Rj∗Zp(2)) is finitely generated overZp for anyq. The assertion in
the lemma easily follows from this exact sequence and a similar long exact sequence
of étale cohomology groups ofX. The details are straight-forward and left to the
reader. �

This completes the proof of Lemma 3.5.2, Proposition 3.3.3 and Theorem 3.1.1.

4 Cycle Class Map and Unramified Cohomology

Let k, S, p,X andK be as in the notation 1.8. In particular, we always assume that
X satisfies 1.8.1. In this section we give a brief review ofp-adic étale Tate twists and
provide some preliminary results on cycle class maps. The main result of this section
is Corollary 4.4.3 below.

4.1 p-adic Étale Tate Twist

Let n andr be positive integers. We recall here the fundamental properties (S1)–
(S7) listed below of the objectTr(n) = Tr(n)X ∈ Db(Xét,Z/pr) introduced by
the second author [SH]. The properties(S1), (S2), (S3) and (S4) characterizes
Tr(n) uniquely up to a unique isomorphism inDb(Xét,Z/pr).

(S1) There is an isomorphismt : Tr(n)|V ≃ µ⊗n
pr onV := X [p−1].

(S2) Tr(n) is concentrated in[0, n].

(S3) LetZ ⊂ X be a locally closed regular subscheme of pure codimensionc with
ch(Z) = p. Leti : Z → X be the natural immersion. Then there is a canonical
Gysin isomorphism

Gysni : WrΩn−cZ,log[−n− c] ∼−→ τ≤n+cRi
!Tr(n) in Db(Zét,Z/p

r),

whereWrΩqZ,log denotes théetale subsheaf of the logarithmic part of the Hodge-
Witt sheafWrΩqZ ([Bl1], [Il]).

(S4) For x ∈X andq ∈ Z≥0, we defineZ/pr(q) ∈ Db(xét,Z/pr) as

Z/pr(q) :=

{
µ⊗q
pr (if ch(x) 6= p)

WrΩqx,log[−q] (if ch(x) = p).

Then fory, x ∈X with c := codim(x) = codim(y)+1, there is a commutative
diagram

Hn−c+1(y,Z/pr(n− c+ 1))
−∂val

//

Gysniy
��

Hn−c(x,Z/pr(n− c))
Gysnix

��
Hn+c−1
y (X,Tr(n))

δloc
// Hn+c

x (X,Tr(n)).
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Here forz ∈ X , Gysniz is induced by the Gysin map in(S3) (resp. the abso-
lute purity [RZ], [Th], [FG]) if ch(z) = p (resp.ch(z) 6= p). The arrowδloc

denotes the boundary map of a localization exact sequence and ∂val denotes the
boundary map of Galois cohomology groups due to Kato[KCT] §1.

(S5) LetY be the union of the fibers ofX /S of characteristicp. We define théetale
sheafνn−1

Y,r onY as

νn−1
Y,r := Ker

(
∂val :

⊕
y∈Y 0 iy∗WrΩn−1

y,log −→
⊕

x∈Y 1 ix∗WrΩn−2
x,log

)
,

where fory ∈ Y , iy denotes the canonical mapy →֒ Y . Let i and j be as
follows:

V = X [p−1] � � j // X Y.? _ioo

Then there is a distinguished triangle inDb(Xét,Z/pr)

i∗ν
n−1
Y,r [−n− 1]

g−→ Tr(n)
t′−→ τ≤nRj∗µ

⊗n
pr

σ−→ i∗ν
n−1
Y,r [−n],

wheret′ is induced by the isomorphismt in (S1) and the acyclicity property
(S2). The arrowg arises from the Gysin morphisms in(S3), σ is induced by
the boundary maps of Galois cohomology groups(cf. (S4)).

(S6) There is a canonical distinguished triangle of the following form inDb(Xét):

Tr+s(n) −→ Ts(n)
δs,r−→ Tr(n)[1]

ps

−→ Tr+s(n)[1].

(S7) Hi(X,Tr(n)) is finite for anyr andi (by the properness ofX ).

Whenk is p-adic local withp ≥ n+ 2 andX is smooth overS, theni∗Tr(n) is
isomorphic to the syntomic complexSr(n) of Kato [Ka1], which is the derived image
of a syntomic sheaf of Fontaine-Messing [FM]. This fact follows from a result of
Kurihara [Ku] and(S5). Therefore our objectTr(n) extends the syntomic complexes
to the global situation. Note also thati∗Tr(n) is not the log syntomic complexslogr (n)
unlessn > dim(X ), because the latter object is isomorphic toτ≤ni∗Rj∗µ

⊗n
pr by

Theorem 2.2.1.

Remark 4.1.1 The above properties ofTr(n) deeply rely on the computation on
theétale sheaf ofp-adic vanishing cycles due to Bloch-Kato[BK1] and Hyodo[Hy] .

Lemma 4.1.2 Put

Hq(X,TZp(n)) := lim←−
r≥1

Hq(X,Tr(n)), Hq(X,T∞(n)) := lim−→
r≥1

Hq(X,Tr(n))
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andHq(X,TQp(n)) := Hq(X,TZp(n))⊗ZpQp. Then there is a long exact sequence
of Zp-modules

· · · −→ Hq(X,TZp(n)) −→Hq(X,TQp(n))−→Hq(X,T∞(n))

−→Hq+1(X,TZp(n))−→ · · · ,

whereHq(X,TZp(n)) is finitely generated overZp,Hq(X,T∞(n)) is cofinitely gen-
erated overZp, andHq(X,TQp(n)) is finite-dimensional overQp.

Proof. The assertions immediately follow from(S6) and (S7). The details are
straight-forward and left to the reader. �

4.2 Cycle Class Map

Let us review the definition of the cycle map

̺nr : CHn(X )/pr −→ H2n(X,Tr(n)).

Consider the local-global spectral sequence

Eu,v1 =
⊕

x∈X u

Hu+v
x (X,Tr(n)) =⇒ Hu+v(X,Tr(n)). (4.2.1)

By (S3) and the absolute cohomological purity [FG] (cf. [RZ], [Th]), we have

Eu,v1 ≃
⊕

x∈X u

Hv−u(x,Z/pr(n− u)) for v ≤ n. (4.2.2)

This implies that there is an edge homomorphismEn,n2 → H2n(X,Tr(n)) with

En,n2 ≃ Coker
(
∂val :

⊕
y∈X n−1 H1(y,Z/pr(1)) −→

⊕
x∈X n H0(x,Z/pr)

)

= CHn(X )/pr,

where∂val is as in(S4). We define̺ n
r as the composite map

̺nr : CHn(X )/pr ≃ En,n2 −→ H2n(X,Tr(n)).

In what follows, we restrict our attention to the casen = 2.

Lemma 4.2.3 LetZ ⊂X be a closed subscheme of pure codimension1, and letK
be the function field ofX . Put

N1Hi(X,Tr(2)) := Ker
(
Hi(X,Tr(2))→ Hi(K,µ⊗2

pr )
)
,

N2Hi
Z(X,Tr(2)) := Ker

(
Hi
Z(X,Tr(2))→

⊕
z∈Z0 Hi

z(X,Tr(2))
)
.
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(1) N1H3(X,Tr(2)) is isomorphic to the cohomology of the Gersten complex
modulopr

KM
2 (K)/pr −→

⊕

y∈X 1

κ(y)×/pr −→
⊕

x∈X 2

Z/pr,

and there is an exact sequence

0 −→ CH2(X, 1)/pr −→ N1H3(X,Tr(2)) −→ prCH2(X ) −→ 0.

See§1.7 for the definition ofCH2(X, 1).

(2) There are isomorphisms

H3
Z(X,Tr(2)) ≃ Ker

(
∂val :

⊕
z∈Z0 κ(z)×/pr →

⊕
x∈Z1 Z/pr

)
,

N2H4
Z(X,Tr(2)) ≃ Coker

(
∂val :

⊕
z∈Z0 κ(y)×/pr →

⊕
x∈Z1 Z/pr

)

= CHd−2(Z)/pr,

whered denotes the Krull dimension ofX .

Proof. (1) follows from a similar argument as for the proof of Lemma 3.2.2, using the
spectral sequence

Eu,v1 =
⊕

x∈X u

Hu+v
x (X,Tr(2)) =⇒ Hu+v(X,Tr(2)) ((4.2.1) withn = 2)

(4.2.4)
and the purity isomorphism

Eu,v1 ≃
⊕

x∈X u

Hv−u(x,Z/pr(2− u)) for v ≤ 2 ((4.2.1) withn = 2).

(4.2.5)

More precisely, sinceEu,v1 = 0 for (u, v) with u > v and v ≤ 2, we have
N1H3(X,Tr(2)) ≃ E1,2

2 , which is isomorphic to the cohomology of the Gersten
complex in the assertion by Hilbert’s theorem 90, the Merkur’ev-Suslin theorem [MS]
and(S4). One can prove (2) in the same way as for (1), using the spectral sequence

Eu,v1 =
⊕

x∈X u∩Z
Hu+v
x (X,Tr(2)) =⇒ Hu+v

Z (X,Tr(2))

and the purity isomorphism

Eu,v1 ≃
⊕

x∈Zu−1

Hv−u(x,Z/pr(2− u)) for v ≤ 2

instead of (4.2.4) and (4.2.5). The details are straight-forward and left to the reader.�
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Corollary 4.2.6 prCH2(X ) is finite for any r ≥ 1, and CH2(X )p-tors is
cofinitely generated.

Proof. The finiteness ofprCH2(X ) follows from the exact sequence in Lemma
4.2.3 (1) and(S7) in §4.1. The second assertion follows from Lemma 4.1.2 and the
facts that CH2(X )p-tors is a subquotient ofH3(X,T∞(2)). �

4.3 Unramified Cohomology

Let K be the function field ofX . We define the unramified cohomology groups
Hn+1

ur (K,Z/pr(n)) andHn+1
ur (K,Qp/Zp(n)) as follows:

Hn+1
ur (K,Z/pr(n)) := Ker

(
Hn+1(K,µ⊗n

pr )→
⊕

y∈X 1 Hn+2
y (X,Tr(n))

)
,

Hn+1
ur (K,Qp/Zp(n)) := lim−→

r≥1

Hn+1
ur (K,Z/pr(n)).

We mention some remarks on these groups:

Remark 4.3.1 (1) For n = 0, we have

H1
ur(K,Z/p

r(0)) = H1(X,Z/pr) and H1
ur(K,Qp/Zp(0)) = H1(X,Qp/Zp).

If k is global, thenH1
ur(K,Qp/Zp(0)) is finite by a theorem of Katz-Lang[KL] .

(2) For n = 1, we have

H2
ur(K,Z/p

r(1)) = prBr(X ) and H2
ur(K,Qp/Zp(1)) = Br(X )p-tors.

If k is global, the finiteness ofH2
ur(K,Qp/Zp(1)) is equivalent to the finiteness

of the Tate-Shafarevich group of the Picard variety ofX (cf. [G] III, [Ta1]) .

(3) For n = d := dim(X ), Hd+1
ur (K,Qp/Zp(d)) agrees with a group considered

by Kato[KCT] , who conjectures that

Hd+1
ur (K,Qp/Zp(d)) = 0 if p 6= 2 or k has no embedding intoR.

His conjecture is a generalization, to higher-dimensionalproper arithmetic
schemes, of the corresponding classical fact on the Brauer groups of local and
global integer rings. Thed = 2 case is proved in[KCT] and thed = 3 case is
proved in[JS].

We restrict our atttention to the casen = 2 in what follows. The following standard
proposition relatesH3

ur(K,Z/p
r(2)) with the cycle class map̺2r, which will be useful

later.
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Proposition 4.3.2 For a positive integerr, there is an exact sequence

0 −→ N1H3(X,Tr(2)) −−−−→ H3(X,Tr(2)) −→ H3
ur(K,Z/p

r(2))

−→ CH2(X )/pr
̺2r−−−−→ H4(X,Tr(2)) .

Consequently, taking the inductive limit onr ≥ 1, we get an exact sequence

0 −→ N1H3(X,T∞(2)) −−−−→ H3(X,T∞(2)) −→ H3
ur(K,Qp/Zp(2))

−→ CH2(X )⊗Qp/Zp
̺2Qp/Zp−−−−→ H4(X,T∞(2)) .

(4.3.3)

Proof. Consider the spectral sequence (4.2.4). SinceEu,v1 = 0 for (u, v) with u > v
andv ≤ 2 by (4.2.5), there is an exact sequnece

0→ E1,2
2 → H3(X,Tr(2))→ E0,3

2 → E2,2
2 → H4(X,Tr(2)).

One obtains the assertion by rewriting theseE2-terms by similar arguments as for the
proof of Lemma 4.2.3 (1). �

Remark 4.3.4 Because the groupsH∗(X,T∞(2)) are cofinitely generated by
Lemma4.1.2, the sequence(4.3.3)implies thatH3

ur(K,Qp/Zp(2)) is cofinitely gener-
ated if and only ifCH2(X )⊗Qp/Zp is cofinitely generated.

We next prove thatH3
ur(K,Qp/Zp(2)) is related with the torsion part of the cokernel

of a cycle class map, assuming its finiteness. This result will not be used in the rest of
this paper, but shows an arithmetic meaning ofH3

ur(K,Qp/Zp(2)). See also Appendix
B below for a zeta value formula for threefolds over finite fields using unramified
cohomology.

Proposition 4.3.5 Assume thatH3
ur(K,Qp/Zp(2)) is finite. Then the order of

Coker
(
̺2Zp : CH2(X )⊗ Zp −→ H4(X,TZp(2))

)
p-tors

agrees with that ofH3
ur(K,Qp/Zp(2)).

Proof. Note thatH4(X,TZp(2)) is finitely generated overZp by Lemma 4.1.2, so
that Coker(̺2Zp)p-tors is finite. Consider the following commutative diagram with exact
rows (cf. Lemma 4.1.2):

0 → CH2(X )p-tors → CH2(X ) ⊗ Zp
b→ CH2(X ) ⊗ Qp → CH2(X ) ⊗ Qp/Zp → 0

a

y ̺2
Zp

y ̺2
Qp

y ̺2
Qp/Zp

y

0 → Cotor(H3(X,T∞(2))) → H4(X,TZp (2))
c→ H4(X,TQp (2)) → H4(X,T∞(2)),

where the arrowa denotes the map obtained from the short exact sequence in Lemma
4.2.3 (1) and the arrowsb andc are natural maps. See Lemma 4.4.2 below for the
commutativity of the left square. By the finiteness ofH3

ur(K,Qp/Zp(2)), we see that

Coker(a) ≃ gr0NH
3(X,T∞(2)) := H3(X,T∞(2))/N1H3(X,T∞(2))
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(cf. Lemma 4.2.3 (1)) and that the natural map Ker(̺2Qp) → Ker(̺2Qp/Zp) is zero (cf.
(4.3.3)). The latter conclusion further implies that the kernel of the induced map
Im(b)→ Im(c) is divisible. Noting these facts, we obtain a short exact sequence

0 −→ gr0NH
3(X,T∞(2)) −→ Coker(̺2Zp)p-tors−→ Ker(̺2Qp/Zp) −→ 0

by a diagram chase on the above diagram. Comparing this sequence with (4.3.3), we
obtain the assertion. �

4.4 Torsion Cycle Class Map of Codimension Two

We defineH3
ur(K,X ;Qp/Zp(2)) as the following subgroup ofH3

ur(K,Qp/Zp(2)):

Im
(
H3(X,Qp/Zp(2))→ H3(K,Qp/Zp(2))

)
∩H3

ur(K,Qp/Zp(2)).

In this subsection we relate the finiteness of this group withthe injectivity of torsion
cycle class maps of codimension two (see Corollary 4.4.3 below), which will be used
in the proof of Theorem 1.6. We start with the following proposition.

Proposition 4.4.1 Assume that the quotient

gr0NH
3(X,T∞(2)) := H3(X,T∞(2))/N1H3(X,T∞(2))

is finite. Then there exists a positive integerr0 such that the kernel of the map

̺2p-tors,r : CH2(X )p-tors−→ H4(X,Tr(2))

agrees with(CH2(X )p-tors)Div for anyr ≥ r0.

We need the following lemma to prove this proposition (cf. [CTSS] Proposition 1):

Lemma 4.4.2 For integersr, s > 0, there is a commutative diagram up to a sign

N1H3(X,Ts(2))
αs //

_�

��

psCH2(X )

̺2s,r
��

H3(X,Ts(2))
δs,r // H4(X,Tr(2)),

whereαs denotes the boundary map in the short exact sequence of Lemma4.2.3 (1)
and̺2s,r denotes the cycle class map̺2r restricted topsCH2(X ). The arrowδs,r is
the connecting morphism of the distinguished triangle in(S6):

Tr+s(2) −→ Ts(2)
δs,r−→ Tr(2)[1]

ps

−→ Tr+s(2)[1].

Proof of Lemma 4.4.2.Note thatN1H3(X,Ts(2)) is generated by the image of
H3
Z(X,Ts(2)) for closed subsetsZ ⊂ X of pure codimension1. We fix such a
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Z, and endow it with the reduced subscheme structure. There isa diagram which
commutes obviously

H3
Z(X,Ts(2))

δs,r //

canonical
��

H4
Z(X,Tr(2))

canonical
��

H3(X,Ts(2))
δs,r // H4(X,Tr(2)).

We show that the image of the upperδs,r lies in the subgroup

N2H4
Z(X,Tr(2)) = Ker

(
H4
Z(X,Tr(2))→

⊕
z∈Z0 H4

z (X,Tr(2))
)

≃ Coker
(
∂val :

⊕
z∈Z0 κ(z)×/pr →

⊕
x∈Z1 Z/pr

)

= CHd−2(Z)/pr (d := dim(X ))

(cf. Lemma 4.2.3). Indeed, there is a commutative diagram with exact bottom row

H3
Z(X,Ts(2))

δs,r //

��

H4
Z(X,Tr(2))

��⊕

z∈Z0

H3
z (X,Tr+s(2)) // //

⊕

z∈Z0

H3
z (X,Ts(2))

δs,r //
⊕

z∈Z0

H4
z (X,Tr(2)),

whose bottom left arrow is surjective by the purity in(S3) and Hilbert’s theorem 90:

H3
z (X,Tt(2)) ≃ H1(z,Z/pt(1)) ≃ κ(z)×/pt for t = r + s, s.

Hence the lowerδs,r is the zero map and the image of the upperδs,r is contained in
N2H4

Z(X,Tr(2)). Now the composite map

H3
Z(X,Ts(2))

δs,r−→ N2H4
Z(X,Tr(2)) ≃ CHd−2(Z)/pr −→ CH2(X )/pr

agrees, up to a sign, with the composite map

H3
Z(X,Ts(2))→ N1H3(X,Ts(2))

αs−→ psCH2(X ) →֒ CH2(X ) ։ CH2(X )/pr

by (S4) and computations on boudary maps (see [CTSS] Proof of Proposition 1, Step
6). We obtain the commutativity in question from these facts, because the cycle class
map̺2r for cycles onZ is given by the composite map

CHd−2(Z)/pr ≃ N2H4
Z(X,Tr(2)) →֒ H4

Z(X,Tr(2))→ H4(X,Tr(2))

by definition. �

Proof of Proposition 4.4.1.The following argument is essentially the same as the
proof of [CTSS] Corollaire 3. Taking the inductive limit of the diagram in Lemma
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4.4.2 with respect tos ≥ 1, we obtain a diagram whose square commutes up to a sign
and whose bottom row is exact

N1H3(X,T∞(2))
α∞ //

_�

��

CH2(X )p-tors

̺2p-tors,r

��
H3(X,T∞(2))

×pr // H3(X,T∞(2))
δ∞,r // H4(X,Tr(2)).

Since Ker(α∞) is divisible by Lemma 4.2.3 (1), this diagram induces the following
commutative diagram up to a sign:

Cotor(N1H3(X,T∞(2)))
α∞ //
∼

_�

��

Cotor(CH2(X )p-tors)

̺2p-tors,r

��
Cotor(H3(X,T∞(2)))

×pr // Cotor(H3(X,T∞(2)))
δ∞,r // H4(X,Tr(2)),

where the bottom row remains exact, and the injectivity of the central vertical arrow
follows from the finiteness of gr0NH

3(X,T∞(2)). Because Cotor(H3(X,T∞(2)))
is finite by (S7) and Lemma 4.1.2, the mapδ∞,r is injective for anyr for which pr

annihilates Cotor(H3(X,T∞(2))). Thus we obtain Proposition 4.4.1. �

Corollary 4.4.3 If H3
ur(K,X ;Qp/Zp(2)) is finite, then there is a positive integer

r0 such thatKer(̺2p-tors,r) = (CH2(X )p-tors)Div for anyr ≥ r0.

Proof. Since gr0NH
3(X,T∞(2)) is a subgroup ofH3

ur(K,X ;Qp/Zp(2)) (cf. (4.3.3)),
the assumption implies that gr0

NH
3(X,T∞(2)) is finite. Hence the assertion follows

from Proposition 4.4.1. �

Remark 4.4.4 If k is ℓ-adic local withℓ 6= p, then we haveT∞(2) = Qp/Zp(2) by
definition and

H3(X,T∞(2)) = H3(X,Qp/Zp(2)) ≃ H3(Y,Qp/Zp(2))

by the proper base-change theorem, whereY denotes the closed fiber ofX /S. The
last group is finite by Deligne’s proof of the Weil conjecture[De2]. Hence̺ 2

p-tors,r for
X is injective for a sufficiently larger ≥ 1 by Proposition4.4.1. On the other hand,
if k is global orp-adic local, thenH3(X,T∞(2)) is not in general finite. Therefore
we need to consider the finiteness of the groupH3

ur(K,X ;Qp/Zp(2)) to investigate
the injectivity of̺ 2

p-tors,r.

5 Finiteness of an Unramified Cohomology Group

Let k, S, p,X andK be as in the notation 1.8. We always assume 1.8.1 throughout
this and the next section.

Documenta Mathematica · Extra Volume Suslin (2010) 525–594



p-adic Regulator and Finiteness 559

5.1 Finiteness of H3
ur(K,X ;Qp/Zp(2))

In this and the next section, we prove the following result, which implies the finiteness
of H3

ur(K,X ;Qp/Zp(2)) in Theorem 1.3 (1). See the beginning of§3 forH0.

Theorem 5.1.1 AssumeH0, H1∗ and eitherp ≥ 5 or the equality

H1
g (k,H2(X,Qp/Zp(2)))Div = H1(k,H2(X,Qp/Zp(2)))Div . (∗g)

ThenH3
ur(K,X ;Qp/Zp(2)) is finite.

In this section we reduce Theorem 5.1.1 to Key Lemma 5.4.1 stated in§5.4 below. We
will prove the key lemma in§6. We first prove Theorem 1.6 admitting Theorem 5.1.1.

Proof of Theorem 1.6.The assumptionH2(X,OX) = 0 impliesH1∗ and (∗g) (cf.
Fact 1.1, Remark 3.2.5, Remark 3.1.2 (1)). HenceH3

ur(K,X ;Qp/Zp(2)) is finite by
Theorem 5.1.1. By Corollary 4.4.3, there is a positive integerr0 such that

Ker(̺2p-tors,r) = (CH2(X )p-tors)Div for anyr ≥ r0.

Thus it remains to check that CH2(X )p-tors is finite, which follows from the finiteness
of CH2(X)p-tors (cf. Theorem 3.1.1) and [CTR2] Lemma 3.3. This completes the
proof. �

5.2 Proof of Theorem 5.1.1, Step 1

We reduce Theorem 5.1.1 to Proposition 5.2.2 below. LetN1H3(X,Qp/Zp(2)) (resp.
gr0NH

3(X,Qp/Zp(2))) be the kernel (resp. the image) of the natural map

H3(X,Qp/Zp(2)) −→ H3(K,Qp/Zp(2)).

In view of Lemma 4.2.3, there is a commutative diagram with exact rows

N1H3(X,Qp/Zp(2)) →֒ H3(X,Qp/Zp(2)) → gr0NH
3(X,Qp/Zp(2))

δ1

y δ2

y d

y
⊕
v∈S1

N2H4
Yv

(X,T∞(2)) →֒ ⊕
v∈S1

H4
Yv

(X,T∞(2))→ ⊕
v∈S1

⊕
y∈Y 0

v

H4
y (X,T∞(2)),

(5.2.1)

where the arrowsδ2 andd arise from boundary maps of localization exact sequences
andδ1 is induced by the right square. Note that we have

Ker(d) = H3
ur(K,X ;Qp/Zp(2)).

Proposition 5.2.2 AssumeH0, H1∗ and eitherp ≥ 5 or (∗g). Then we have

Ker(d)Div = 0.
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The proof of this proposition will be started in§5.3 below and finished in the next
section. We first finish the proof of Theorem 5.1.1, admittingProposition 5.2.2. It
suffices to show the following lemma (see also Remark 3.3.4 (2)):

Lemma 5.2.3 (1) If k is local, thenKer(d) is cofinitely generated overZp.

(2) Assume thatk is global, and thatCoker
(
regQp/Zp

)
Div is cofinitely generated

over Zp, whereregQp/Zp denotes the regulator map(3.2.1). ThenKer(d) is
cofinitely generated overZp.

Proof. (1) is obvious, becauseH3(X,Qp/Zp(2)) is cofinitely generated. We prove
(2). We use the notation fixed in 1.9. By Lemma 4.1.2,H3(X,T∞(2)) is cofinitely
generated. Hence it suffices to show Coker(δ1) is cofinitely generated, whereδ1 is as
in (5.2.1). There is a commutative diagram

CH2(X, 1)⊗Qp/Zp

∂

��

// N1H3(X,Qp/Zp(2))

δ1

��⊕

v∈S1

CHd−2(Yv)⊗Qp/Zp //∼ ⊕

v∈S1

N2H4
Yv (X,T∞(2)),

where the bottom isomorphism follows from Lemma 4.2.3 (2) and ∂ is the boundary
map of the localization sequence of higher Chow groups. See (3.3.1) for the top
arrow. SinceN2H4

Yv
(X,T∞(2)) is cofinitely generated for anyv ∈ S1, it suffices to

show that for a sufficiently small non-empty open subsetU ⊂ S, the cokernel of the
boundary map

∂U : CH2(X, 1)⊗Qp/Zp −→
⊕

v∈(U)1

CHd−2(Yv)⊗Qp/Zp

is cofinitely generated. Note that CHd−2(Yv) = CH1(Yv) if Yv is smooth. Now let
U be a non-empty open subset ofS \ Σ for which X ×S U → U is smooth. Put
A := H2(X,Qp/Zp(2)), viewed as a smooth sheaf onUét. There is a commutative
diagram up to a sign

CH2(X, 1)⊗Qp/Zp

∂U

��

regQp/Zp // H1(k,A)

δU

��⊕

v∈U1

CH1(Yv)⊗Qp/Zp
τU //

⊕

v∈U1

A(−1)GFv .

See§2.5 forδU . The bottom arrowτU is defined as the composite map

CH1(Yv)⊗Qp/Zp →֒ H2(Yv,Qp/Zp(1))
ǫ→ H2(Yv,Qp/Zp(1))GFv = A(−1)GFv ,
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where the first injective map is the cycle class map for divisors onYv. Note that
Coker(∂U ) is divisible and that Ker(τU ) has a finite exponent by the isomorphisms

Ker(ǫ) ≃ H1(Fv, H
1(Yv,Qp/Zp(1))) ≃ H1(Fv,Cotor(H1(X,Qp/Zp(1))))

for v ∈ U1, where the first isomorphism follows from the Hochschild-Serre spec-
tral sequence forYv, and the second follows from Deligne’s proof of the Weil con-
jecture [De2] and the proper smooth base-change theoremH1(Yv,Qp/Zp(1)) ≃
H1(X,Qp/Zp(1)). Hence to prove that Coker(∂U ) is cofinitely generated, it suffices
to show that the map

∂′ := τU ◦ ∂U : CH2(X, 1)⊗Qp/Zp −→
⊕

v∈U1

(
A(−1)GFv

)
Div

has cofinitely generated cokernel (cf. Lemma 2.3.2 (2)). Finally Coker(regQp/Zp)Div

is cofinitely generated by assumption, which implies that∂′ has cofinitely generated
cokernel by Lemma 2.5.1 (1). Thus we obtain Lemma 5.2.3. �

5.3 Proof of Theorem 5.1.1, Step 2

We construct a key commutative diagram (5.3.3) below and prove Lemma 5.3.5, which
play key roles in our proof of Proposition 5.2.2. We need somepreliminaries. We
suppose thatk is global until the end of Lemma 5.3.1. LetΣ ⊂ S be the set of the
closed points onS of characteristicp. For non-empty openU ⊂ S, put

XU := X ×S U and XU [p−1] := XU ×S (S \Σ).

Let jU : XU [p−1]→ XU be the natural open immersion. There is a natural injective
map

αU,r : H3(XU , τ≤2RjU∗µ
⊗2
pr ) � � // H3(XU [p−1], µ⊗2

pr )

induced by the canonical morphismτ≤2RjU∗µ
⊗2
pr → RjU∗µ

⊗2
pr .

Lemma 5.3.1 We haveN1H3(XU [p−1], µ⊗2
pr ) ⊂ Im(αU,r).

Proof. We compute the local-global spectral sequence

Eu,v1 =
⊕

x∈(XU )u

Hu+v
x (XU , τ≤2RjU∗µ

⊗2
pr ) =⇒ Hu+v(XU , τ≤2RjU∗µ

⊗2
pr ).

By the absolute cohomological purity [FG] and Lemma 3.5.5 (1), we have

Eu,v1 ≃
{
Hv(K,µ⊗2

pr ) (if u = 0)⊕
x∈(XU [p−1])u H

v−u(x, µ⊗2−u
pr ) (if v ≤ 2).

Repeating the same computation as in the proof of Lemma 3.2.2, we obtain

N1H3(XU [p−1], µ⊗2
pr ) ≃ E1,2

2 = E1,2
∞ →֒ H3(XU , τ≤2RjU∗µ

⊗2
pr ),
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which completes the proof of Lemma 5.3.1. �

Now we suppose thatk is either local or global, and put

W :=





H3(X,Qp/Zp(2)) (if k is ℓ-adic local withℓ 6= p)

H3(X, τ≤2Rj∗Qp/Zp(2)) (if k is p-adic local)

lim−→
Σ⊂U⊂S

H3(XU , τ≤2RjU∗Qp/Zp(2)) (if k is global),

(5.3.2)

wherej in the second case denotes the natural open immersionX →֒ X , and the
limit in the last case is taken over all non-empty open subsetsU ⊂ S which contain
Σ. By Lemma 3.5.3 and Lemma 5.3.1, there are inclusions

N1H3(X,Qp/Zp(2)) ⊂ W ⊂ H3(X,Qp/Zp(2))

and a commutative diagram

NF 1H3(X,Qp/Zp(2))Div
� � //

ν
**VVVVVVVVVVVVVVVVV

(W 0)Div

ω

��
H1(k,H2(X,Qp/Zp(2))).

(5.3.3)

HereNF 1H3(X,Qp/Zp(2)) is as we defined in§3.5, and we put

W
0 := Ker

(
W −→ H3(X,Qp/Zp(2))

)
. (5.3.4)

The arrowsω andν are induced by the edge homomorphism (3.5.1). We show here
the following lemma, which extends Lemma 3.5.2 under Assumption 1.8.1:

Lemma 5.3.5 Assume eitherp ≥ 5 or (∗g). Then we have

Im(ω) ⊂ H1
g (k,H2(X,Qp/Zp(2))).

Remark 5.3.6 We will prove the equalityIm(ω) = H1
g (k,H2(X,Qp/Zp(2)))Div

under the same assumptions, later in Lemma7.2.2.

The following corollary of Lemma 5.3.5 will be used later in§5.4:

Corollary 5.3.7 AssumeH0, H1∗ and eitherp ≥ 5 or (∗g). Then we have

Im(ν) = Im(ω) = H1
g (k,H2(X,Qp/Zp(2)))Div .

Proof of Lemma5.3.5. The assertion under the second condition is rather obvious.In
particular, we are done ifk is ℓ-adic local withℓ 6= p (cf. Remark 3.1.2 (1)). Ifk is
p-adic local withp ≥ 5, the assertion follows from Corollary 2.2.3 and Lemma 3.5.4.
Before proving the global case, we show the following sublemma:
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Sublemma 5.3.8 Let k be anℓ-adic local field withℓ 6= p. Let X be a proper
smooth scheme overS := Spec(ok). PutA := Hi(X,Qp/Zp(n)) and

Hi+1
ur (X,Qp/Zp(n)) := Im

(
Hi+1(X,Qp/Zp(n))→ Hi+1(X,Qp/Zp(n))

)
.

Then we have

H1
f (k,A) ⊂ Im

(
F 1Hi+1(X,Qp/Zp(n)) ∩Hi+1

ur (X,Qp/Zp(n))→ H1(k,A)
)

and the quotient is annihilated by#(A/ADiv), whereF • denotes the filtration induced
by the Hochschild-Serre spectral sequence(2.6.2).

Proof. PutΛ := Qp/Zp, and letF be the residue field ofk. By the proper smooth
base-change theorem,Gk acts onA through the quotientGF. It suffices to show the
following two claims:

(i) We have

Im
(
F 1Hi+1(X,Λ(n)) ∩Hi+1

ur (X,Λ(n))→ H1(k,A)
)

= H1(F, A),

whereH1(F, A) is regarded as a subgroup ofH1(k,A) by an inflation map.

(ii) We have
H1
f (k,A) ⊂ H1(F, A)

and the quotient is annihilated by#(A/ADiv).

We show these claims. LetY be the closed fiber ofX /S, and consider a commutative
diagram with exact rows

0 // H1(F,Hi(Y ,Λ(n))) //
_�

σ1

��

Hi+1(Y,Λ(n)) //

σ2

��

Hi+1(Y ,Λ(n)))GF

≀ σ3

��
0 // H1(k,A) // Hi+1(X,Λ(n))/F 2 // Hi+1(X,Λ(n)))Gk ,

where the exactness of the upper (resp. lower) row follows from the fact that cd(GF) =
1 (resp. cd(Gk) = 2). The arrowsσ1 andσ3 are induced by the isomorphism

H∗(Y , Λ(n)) ≃ H∗(X,Λ(n)) (proper smooth base-change theorem).

The arrowσ2 is induced by

σ′
2 : Hi+1(Y, Λ(n)) ≃ Hi+1(X, Λ(n)) −→ Hi+1(X,Λ(n)).

Since Im(σ′
2) = Hi+1

ur (X,Λ(n)) by definition, the claim (i) follows from the above
diagram. The second assertion immediately follows from thefact thatH1

f (k,A) =

Im(H1(F, A)Div → H1(k,A)). This completes the proof of Sublemma 5.3.8. �
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We prove Lemma 5.3.5 in the case thatk is global withp ≥ 5. Let W andW 0 be as
in (5.3.2) and (5.3.4), respectively, and put

A := H2(X,Qp/Zp(2)).

Note that(W 0)Div = WDiv by H0. By a similar argument as for Lemma 2.4.1, we
have

WDiv = lim−→
Σ⊂U⊂S

H3(XU , τ≤2RjU∗Qp/Zp(2))Div .

Here the limit is taken over all non-empty open subsetsU ⊂ S which containΣ,
andjU denotes the natural open immersionXU [p−1] →֒ XU . By this equality and
the definition ofH1

g (k,A) (cf. Definition 2.1.1), it suffices to show the following
sublemma:

Sublemma 5.3.9 Let U be an open subset ofS containingΣ, and fix an open
subsetU ′ of U \ Σ for which XU ′ → U ′ is smooth(and proper). Put WU :=
H3(XU , τ≤2RjU∗Qp/Zp(2)). Then for anyx ∈ (WU )Div , its diagonal image

x = (xv)v∈S1 ∈
∏

v∈(U ′)1

H1(kv, A)

H1
f (kv, A)

×
∏

v∈S\U ′

H1(kv, A)

H1
g (kv, A)

is zero.

Proof. Since(WU )Div is divisible, it suffices to show thatx is killed by a positive
integer independent ofx. By Lemma 5.3.8,xv with v ∈ (U ′)1 is killed by#(A/ADiv).
Next we computexv with v ∈ Σ. Let Xv andjv : Xv →֒Xv be as in 1.9, and put

Wv := H3(Xv, τ≤2Rjv∗Qp/Zp(2)).

By H0 overk, we have

Im
(
(WU )Div → Wv

)
⊂ Ker

(
Wv → H3(X,Qp/Zp(2)

)
Div.

Hence Corollary 2.2.3 and Lemma 3.5.4 imply thatxv = 0 for v ∈ Σ. Finally,
because the product of the other components

∏

v∈S\(U ′∪Σ)

H1(kv, A)

H1
g (kv, A)

is a finite group, we see that all local components ofx are annihilated by a positive
integer independent ofx. Thus we obtain the sublemma and Lemma 5.3.5. �

5.4 Proof of Theorem 5.1.1, Step 3

We reduce Proposition 5.2.2 to Key Lemma 5.4.1 below. We replace the conditions in
Proposition 5.2.2 with another condition
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N1: We haveIm(ω) = Im(ν) in (5.3.3), and Coker
(
regQp/Zp

)
Div is

cofinitely generated overZp. Here regQp/Zp denotes the regulator map
(3.2.1).

Indeed, assumingH0, H1∗ and eitherp ≥ 5 or (∗g), we see thatN1 holds by
Corollary 5.3.7 and the fact that the quotientH(k,A)Div/H

1
g (k,A)Div , with A =

H2(X,Qp/Zp(2)), is cofinitely generated overZp for (cf. Lemma 2.4.1). Thus
Proposition 5.2.2 is reduced to the following:

Key Lemma 5.4.1 AssumeH0 andN1. Then we haveKer(d)Div = 0.

This lemma will be proved in the next section.

6 Proof of the Key Lemma

The notation remains as in the previous section. We always assume 1.8.1 throughout
this section. The aim of this section is to prove Key Lemma 5.4.1.

6.1 Proof of Key Lemma 5.4.1

Let
d : H3(X,Qp/Zp(2)) −→

⊕

v∈S1

⊕

y∈(Yv)0

H4
y (X,T∞(2))

be the map induced byd in (5.2.1). Put

Θ := H3(X,Qp/Zp(2))
/(
N1H3(X,Qp/Zp(2))Div

)

and letΘ̃ ⊂ Θ be the image of Ker(d). Note that we have

Θ̃ = Ker
(
Θ→ gr0NH

3(X,Qp/Zp(2))
d→
⊕

v∈S1

⊕
y∈(Yv)0 H

4
y (X,T∞(2))

)

and a short exact sequence

0 −→ Cotor(N1H3(X,Qp/Zp(2))) −→ Θ̃ −→ Ker(d) −→ 0.

If k is global, the assumption of Proposition 3.3.2 (2) is satisfied by the conditionN1.
Hence Cotor(N1H3(X,Qp/Zp(2))) is finite in both casesk is local and global (cf.
Proposition 3.3.2, (3.3.1)). By the above short exact sequence and Lemma 2.3.2 (3),
our task is to show

Θ̃Div = 0, assuming H0 and N1.

Let F • be the filtration onH3(X,Qp/Zp(2)) resulting from the Hochschild-Serre
spectral sequence (2.6.2). We define the filtrationF • on Θ as that induced by
F •H3(X,Qp/Zp(2)), and define the filtrationF •Θ̃ ⊂ Θ̃ as the pull-back ofF •Θ.
SinceH0 implies the finiteness of gr0F Θ̃, it suffices to show

(F 1Θ̃)Div = 0, assumingN1. (6.1.1)

The following lemma will play key roles:
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Lemma 6.1.2 Suppose thatk is local. Then the following composite map has finite
kernel:

d2 : H2(k,H1(X,Qp/Zp(2)) −→ H3(X,Qp/Zp(2))
d−→
⊕

y∈Y 0

H4
y (X,T∞(2)).

Here the first map is obtained by the Hochschild-Serre spectral sequence(2.6.2)and
the fact thatcd(k) = 2 (cf. §2.6). Consequently, the groupF 2H3(X,Qp/Zp(2)) ∩
Ker(d) is finite.

Admitting this lemma, we will prove (6.1.1) in§§6.2–6.3. We will prove Lemma 6.1.2
in §6.4.

6.2 Proof of (6.1.1) in the Local Case

We prove (6.1.1) assuming thatk is local and that Lemma 6.1.2 holds. LetF be the
residue field ofk. By Lemma 6.1.2,F 2Θ̃ is finite. We prove that Im(F 1Θ̃ → gr1FΘ)

is finite, which is exactly the finiteness of gr1
F Θ̃ and implies (6.1.1). LetW andW 0

be as in (5.3.2) and (5.3.4), respectively.N1 implies

gr1FΘ ≃ F 1H3(X,Qp/Zp(2))
/(

(W 0)Div + F 2H3(X,Qp/Zp(2))
)
. (6.2.1)

If p 6= ch(F), then the group on the right hand side is clearly finite. Ifp = ch(F),
then Lemma 6.2.2 below implies that the image ofF 1Θ̃ → gr1FΘ is a subquotient of
Cotor(W 0), which is finite by the proof of Lemma 3.5.4. Thus we are reduced to

Lemma 6.2.2 If p = ch(F), thenKer(d) ⊂ W .

We do not need to assumeH0 orN1 in this lemma.

Proof. Let the notation be as in 1.10. Note thatW = H3(X, τ≤2Rj∗Qp/Zp(2)) by
definition. There is a commutative diagram with distinguished rows inDb(X,Z/pr)

Tr(2) //

t

��

Rj∗µ
⊗2
pr

// Ri∗Ri!Tr(2)[1] //

Ri∗Ri!(t)[1]

��

Tr(2)[1]

t[1]

��
τ≤2Rj∗µ

⊗2
pr

// Rj∗µ
⊗2
pr

// Ri∗Ri!(τ≤2Rj∗µ
⊗2
pr )[1]

// (τ≤2Rj∗µ
⊗2
pr )[1],

wheret is as in(S5) in §4.1. The central square of this diagram gives rise to the left
square of the following commutative diagram (whose rows arenot exact):

H3(X,Qp/Zp(2)) −→ H4
Y (X,T∞(2)) −→

⊕

y∈Y 0

H4
y(X,T∞(2))

∥

∥

∥





y





y

H3(X,Qp/Zp(2))
ǫ1−→ H0(Y, i∗R3j∗Qp/Zp(2))

ǫ2−→
⊕

y∈Y 0

H0(y, i∗R3j∗Qp/Zp(2)).

(6.2.3)
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Here the middle and the right vertical arrow is obtained fromthe composite morphism

Ri∗Ri!Tr(2)[1]
Ri∗Ri

!(t)[1]−−−−−−−−→ Ri∗Ri!τ≤2Rj∗µ
⊗2
pr [1] ∼←− τ≥3Rj∗µ

⊗2
pr ,

and the right square commutes by the functoriality of restriction maps. The composite
of the upper row isd. We have Ker(ǫ1) = W obviously, andǫ2 is injective by the
second assertion of Lemma 3.5.5. Hence we have Ker(d) ⊂ Ker(ǫ2 ◦ǫ1) = Ker(ǫ1) =
W . �

6.3 Proof of (6.1.1) in the Global Case

We prove (6.1.1) assuming thatk is global and that Lemma 6.1.2 holds. LetW and
W 0 be as in (5.3.2) and (5.3.4), respectively.N1 implies

gr1FΘ ≃ F 1H3(X,Qp/Zp(2))
/(

(W 0)Div + F 2H3(X,Qp/Zp(2))
)
. (6.3.1)

We first prove the following lemma, where we do not assumeH0 orN1:

Lemma 6.3.2 Ker(d) ⊂ W .

Proof. We use the notation in 1.9. By the same argument as for the proof of Lemma
6.2.2, we obtain a commutative diagram analogous to (6.2.3)

H3(X,Qp/Zp(2)) −→ ⊕

v∈S1
H4
Yv

(X,T∞(2)) −→ ⊕

v∈S1

⊕

y∈(Yv )0
H4
y(X,T∞(2))

∥∥∥
y

y

H3(X,Qp/Zp(2))
ǫ1−→ ⊕

v∈Σ

H0(Yv, i
∗
vR

3jv∗Qp/Zp(2))
ǫ2−→ ⊕

v∈Σ

⊕

y∈(Yv )0
H0(y, i∗vR

3jv∗Qp/Zp(2))

The composite of the upper row isd. The assertion follows from the facts that
Ker(ǫ1) = W and thatǫ2 is injective (cf. Lemma 3.5.5). �

We prove (6.1.1). By Lemma 2.3.2 (4), it suffcies to show that

(F 2Θ̃)Div = 0 = (gr1F Θ̃)Div .

SinceF 2H3(X,Qp/Zp(2))∩Ker(d) has a finite exponent (Corollary 2.6.3 (2), Lemma
6.1.2), we have(F 2Θ̃)Div = 0. We show(gr1F Θ̃)Div = 0. By (6.3.1) and Lemma 6.3.2,
we have

gr1F Θ̃ ⊂ Ξ := W
0/((W 0)Div + Z) with Z := W

0 ∩ F 2H3(X,Qp/Zp(2)).

By Corollary 2.6.3 (1), Cotor(Z) has a finite exponent, which implies

(gr1F Θ̃)Div ⊂ ΞDiv = Cotor(W 0)Div = 0

(cf. Lemma 2.3.2 (3)). Thus we obtain (6.1.1).
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6.4 Proof of Lemma 6.1.2

The case thatk is p-adic local follows from [Sat1] Theorem 3.1, Lemma 3.2 (1) (cf.
[Ts3]). More precisely,X is assumed in [Sat1]§3 to have strict semistable reduction,
but one can remove the strictness assumption easily. The details are left to the reader.

We prove Lemma 6.1.2 assuming thatk is ℓ-adic local withℓ 6= p. Note that
in this caseX /S may not have semistable reduction. IfX /S has strict semistable
reduction, then the assertion is proved in [Sat1] Theorem 2.1. We prove the general
case. Put

Λ := Qp/Zp

for simplicity. By the alteration theorem of de Jong [dJ], wetake a proper generically
finite morphismf : X ′ → X such thatX ′ has strict semistable reduction over
the normalizationS′ = Spec(ok′) of S in X ′. sNote thatd2 is the composite of a
composite map

d3 : H2(k,H1(X,Λ(2)) −→ H3(X,Λ(2))
δloc

−→ H4
Y (X, Λ(2))

with a pull-back map

H4
Y (X, Λ(2)) −→

⊕

y∈Y 0

H4
y (X, Λ(2)). (6.4.1)

Here the arrowδloc is the boundary map of a localization exact sequence. There is a
commutative diagram

H2(k,H1(X,Λ(2)))
d3 //

f∗

��

H4
Y (X, Λ(2))

f∗

��
H2(k′, H1(X ′, Λ(2)))

d′
3 // H4

Y ′(X ′, Λ(2)),

whereX ′ := X ′ ⊗ok′
k andY ′ denotes the closed fiber ofX ′/S′. We have already

shown that Ker(d′3) is finite, and a standard norm argument shows that the left vertical
arrow has finite kernel. Thus Ker(d3) is finite as well. It remains to show

Lemma 6.4.2 Im(d3) ∩N2H4
Y (X, Λ(2)) is finite, whereN2H4

Y (X, Λ(2)) denotes
the kernel of the map(6.4.1).

Proof. First we note that

Im(d3) ⊂ Im
(
H1(F, H3

Y
(X ur, Λ(2)))→ H4

Y (X, Λ(2))
)
.

Indeed, this follows from the fact thatd3 factors as follows:

H2(k,H1(X,Λ(2))) ≃ H1(F, H1(kur, H1(X,Λ(2))))

−→ H1(F, H2(Xur, Λ(2))) −→ H1(F, H3
Y

(X ur, Λ(2))) −→ H4
Y (X, Λ(2)).
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Hence it suffices to show the finiteness of the kernel of the composite map

υ : H1(F, H3
Y

(X ur, Λ(2))) −→ H4
Y (X, Λ(2)) −→

⊕

y∈Y 0

H4
y (X, Λ(2)).

There is a commutative diagram with exact rows and columns

CHd−2(Y )⊗ Λ
� _

��

ι // CHd−2(Y )⊗ Λ
� _

��
H1(F,H3

Y
(X ur, Λ(2))) � � //

υ ((QQQQQQQQQQQQQQ
H4

Y (X, Λ(2)) //

��

H4
Y
(X ur, Λ(2))

��
⊕

y∈Y 0

H4
y(X, Λ(2)) //

⊕

η∈(Y )0

H4
η(X

ur, Λ(2)),

whose columns arise from the isomorphisms

N2H4
Y (X, Λ(2)) ≃ CHd−2(Y )⊗ Λ, N2H4

Y
(X ur, Λ(2)) ≃ CHd−2(Y )⊗ Λ

with d := dim(X ) (see Lemma 4.2.3 (2), noting thatT∞(2) = Λ(2) in this situa-
tion). The middle exact row arises from the Hochschild-Serre spectral sequence for
the coveringX ur → X . A diagram chase shows that Ker(υ) ≃ Ker(ι), and we are
reduced to showing the finiteness of Ker(ι). Because the natural restriction map

CHd−2(Y )/CHd−2(Y )tors→ CHd−2(Y )/CHd−2(Y )tors

is injective by the standard norm argument, the finiteness ofKer(ι) follows from the
following general lemma:

Lemma 6.4.3 Lete be a positive integer and letZ be a scheme which is separated of
finite type overF := F with dim(Z) ≤ e. Then the groupCHe−1(Z)/CHe−1(Z)tors

is a finitely generated abelian group.

Proof of Lemma6.4.3. Obviously we may suppose thatZ is reduced. We first reduced
the problem to the case whereZ is proper. Take a dense open immersionZ →֒ Z ′

with Z
′
is proper. WritingZ ′′ for Z ′ \ Z, there is an exact sequence

CHe−1(Z ′′) −→ CHe−1(Z ′) −→ CHe−1(Z) −→ 0,

where CHe−1(Z ′′) is finitely generated free abelian group becausedim(Z ′′) ≤ e− 1.
Let f : Z̃ → Z be the normalization. Sincef is birational and finite, one easily sees
that the cokernel off∗ : CHe−1(Z̃) → CHe−1(Z) is finite. Thus we may assumeZ
is a proper normal variety of dimensione overF . SinceF is algebraically closed,Z
has anF -rational point. Now the theory of Picard functor (cf. [Mu]§5) implies the
functorial isomorphisms CHe−1(Z) ≃ PicZ/F (F ), where PicZ/F denotes the Picard
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functor forZ/F . This functor is representable by a group scheme and fits intothe
exact sequence of group schemes

0 −→ PicτZ/F −→ PicZ/F −→ NSZ/F −→ 0,

where PicτZ/F is quasi-projective overF and the reduce part of NSZ/F is associated
with a finitely generated abelian group. SinceF is the algebraic closure of a finite
field, the group PicτZ/F (F ) is torsion. Lemma 6.4.3 follows immediately from these
facts. �

This completes the proof of Lemma 6.4.2, Lemma 6.1.2 and the key lemma 5.4.1.�

7 Cokernel of the Regulator Map

Let k, S, p,X andK be as in the notation 1.8. We always assume 1.8.1 throughout
this section. For a proper smooth geometrically integral varietyZ over a finite fieldF.
we say thatthe Tate conjecture holds in codimension1 for Z, if the étale cycle class
map

CH1(Z)⊗Qℓ −→ H2(Z ⊗F F,Qℓ(1))GF

is surjective for a prime numberℓ 6= ch(F) ([Ta1], [Ta2]). By [Mi1] Theorems
4.1 and 6.1, this condition is independent ofℓ 6= ch(F) and equivalent to that the
Grothendieck-Brauer group Br(Z) = H2(Z,Gm) is finite.

7.1 Statement of the Result

Let C be the category ofZp-modules modulo the Serre subcategory consisting of
p-primary torsion abelian groups of finite-exponent. In thissection, we prove the
following result, which implies Theorem 1.3 (2) (see the beginning of§3 forH0):

Theorem 7.1.1 AssumeH0 and eitherp ≥ 5 or the equality

H1
g (k,H2(X,Qp/Zp(2)))Div = H1(k,H2(X,Qp/Zp(2)))Div . (∗g)

Assume further the following conditions:

T: The reduced part of every closed fiber ofX /S has simple normal crossings on
X , and the Tate conjecture holds in codimension1 for the irreducible compo-
nents of those fibers.

F: Cotor(CH2(X)p-tors) has a finite exponent.

Then there exists a short exact sequence inC

0 −→ CH2(X)p-tors−→
H1
g (k,H2

ét(X,Qp/Zp(2)))

Im(regQp/Zp)
−→ H3

ur(K,X ;Qp/Zp(2)).

Moreover the image of the last map containsH3
ur(K,X ;Qp/Zp(2))Div .

This result is a generalization of Theorems 3.1.1 and 5.1.1 under the assumptionT.
The formulation of Theorem 7.1.1 in this final version was much inspired by discus-
sions with Masanori Asakura.
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7.2 Proof of Theorem 7.1.1

Let
d : H3(X,Qp/Zp(2)) −→

⊕

v∈S

⊕

y∈(Yv)0

H4
y (X,T∞(2)).

be the map induced byd in (5.2.1). LetW be as in (5.3.2) and letW 0 be as in (5.3.4).
We need the following two lemmas:

Lemma 7.2.1 Assume thatT holds. Then we have

WDiv ⊂ Ker(d) + F 2H3(X,Qp/Zp(2)).

Lemma 7.2.2 Assume eitherp ≥ 5 or (∗g). Then we have

Im(ω) = H1
g (k,H2(X,Qp/Zp(2)))Div ,

whereω is as in(5.3.3).

Lemma 7.2.1 will be proved in§§7.4–7.5 below, and Lemma 7.2.2 will be proved in
§7.3 below. We prove Theorem 7.1.1 in this subsection, admitting these lemmas. Let

H3 := H3(X,Qp/Zp(2)), N1H3 ⊂ H3 and F iH3 ⊂ H3

be as in§3.4, and put

NF 1H3 := N1H3 ∩ F 1H3 and A := H2(X,Qp/Zp(2)).

We see that
Cotor(N1H3) has a finite exponent (7.2.3)

by the exact sequence (3.3.1) and the assumptionF, and moreover that

Cotor(NF 1H3) has a finite exponent (7.2.4)

byH0.
We work inC for a while to simplify the arguments. ByH0, (3.3.1) and Lemma

3.3.5, there is a short exact sequence inC

0 −→ CH2(X)p-tors−→ H1(k,A)/Im(regQp/Zp) −→ H1(k,A)/NF −→ 0,

whereNF denotes the image ofNF 1H3 in H1(k,A). By the assumption ‘p ≥ 5
or (∗g)’ and Lemma 3.5.2, the composite map(NF 1H3)Div → F 1H3 → H1(k,A)
factors throughH1

g (k,A). Therefore we obtain a short exact sequence inC

0 −→ CH2(X)p-tors−→ H1
g (k,A)/Im(regQp/Zp) −→ H1

g (k,A)/NFDiv −→ 0,

whose exactness follows from (7.2.4) and the fact that the natural map(NF 1H3)Div →
NFDiv is surjective (cf. Corollary 2.6.3 (1) and Lemma 2.3.2 (3)).It remains to con-
struct an injective map

α : H1
g (k,A)/NFDiv →֒ H3

ur(K,X ;Qp/Zp(2)) in C
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whose image containsH3
ur(K,X ;Qp/Zp(2))Div .

We work in the usual categoryZp-modules in what follows. There areZp-
homomorphisms

H3
ur(K,X ;Qp/Zp(2)) � � ι // H3/N1H3

π (finite-exponent kernel)
����

H3/(N1H3 + F 2H3),

(7.2.5)

whereι is induced by the definition ofH3
ur(K,X ;Qp/Zp(2)) and Ker(π) has a finite

exponent by Lemma 3.3.5 (i.e.,π is an isomorphism inC ). On the other hand, there
is a diagram ofZp-submodules ofH3

(N1H3)Div
� � //

_�

��

N1H3 ∩WDiv
� � //

J
j

wwppppppppppp
WDiv

� � 7.2.1 //
_�

��

Ker(d) + F 2H3

N1H3 � � // Ker(d) � � 6.2.2 and 6.3.2 // W ,

where the inclusion Ker(d) ⊂ W is obvious whenk is ℓ-adic local withℓ 6= p. Since
N1H3 ∩WDiv is divisible up to a finite-exponent group by (7.2.3), we have

WDiv/(N
1H3 ∩WDiv) ≃ (W /N1H3)Div (7.2.6)

by Lemma 2.3.2 (3). Now for a subgroupM ⊂ H3, let M be its image into
H3/(N1H3 +F 2H3). Then we haveWDiv ⊂ Ker(d) ⊂ W by the above diagram, and
moreover

WDiv =
(

Ker(d)
)

Div = (W )Div (7.2.7)

by (7.2.6) and the fact that Ker(π) has a finite exponent (cf. Lemma 2.3.2 (3)). Noting
that Coker(H1

g (k,A)) has a finite exponent (Remark 2.4.9 (1)), we define the desired
mapα in C as that induced by the following diagram:

H1
g (k,A)/NFDiv

α // H3
ur(K,X ;Qp/Zp(2))

π◦ι
����

H1
g (k,A)Div/NFDiv

?�

OO

τ // // (W )Div
� � // Ker(d),

where the right vertical map is surjective by the definition of H3
ur(K,X ;Qp/Zp(2))

and has finite-exponent kernel by the diagram (7.2.5). The arrow τ is obtained from
Lemma 7.2.2, which is surjective byH0 and has finite-exponent kernel by (7.2.4). By
the last fact,α is injective inC . Finally Im(α) containsH3

ur(K,X ;Qp/Zp(2))Div by
the surjectivity ofτ and (7.2.7). Thus we obtain Theorem 7.1.1 assuming Lemmas
7.2.1 and 7.2.2.
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7.3 Proof of Lemma 7.2.2

If k is local, then the assertion follows from Corollary 2.2.3 and Lemma 3.5.4. We
show the inclusion Im(ω) ⊃ H1

g (k,H2(X,Qp/Zp(2)))Div , assuming thatk is global
(the inclusion in the other direction has been proved in Lemma 5.3.5). PutA :=
H2(X,Qp/Zp(2)). By Lemma 2.3.2 (3), it is enough to show the following:

(i) The image of the composite map

W 0 � � // F 1H3(X,Qp/Zp(2))
ψ // H1(k,A)

containsH1
g (k,A)Div , where the arrowψ is as in(3.5.1).

(ii) The kernel of this composite map is cofinitely generated up toa finite-exponent
group.

(ii) follows from Corollary 2.6.3 (1). We prove (i) in what follows. We use the notation
fixed in 1.9. LetU ⊂ S be a non-empty open subset which containsΣ and for which
XU → U is smooth outside ofΣ. Let jU : XU [p−1] → XU be the natural open
immersion. PutU ′ := U \Σ andΛ := Qp/Zp. Forv ∈ Σ, put

Mv := F 1H3(Xv, Λ(2))/(H3(Xv, τ≤2R(jv)∗Λ(2))0)Div ,

where the superscript0 means the subgroup of elements which vanishes in

H3(X,Λ(2)) ≃ H3(Xv ⊗kv kv, Λ(2)).

We construct a commutative diagram with exact rows

0 // Ker(rU ) //

cU

��

F 1H3(XU [p−1], Λ(2))
rU //

ψU

��

⊕

v∈Σ
Mv

bΣ

��

0 // Ker(aU ) // H1(U,A)
aU //

⊕

v∈Σ
H1
/g(kv, A),

whereF 1onH3(XU [p−1], Λ(2)) means the filtration resulting from the Hochschild-
Serre spectral sequence (3.2.3) forXU [p−1], andψU is an edge homomorphism of
that spectral sequence. The arrowsrU andaU are natural pull-back maps, and we put

H1
/g(kv, A) := H1(kv, A)/H1

g (kv, A).

The existence ofbΣ follows from the local case of Lemma 7.2.2, andcU denotes the
map induced by the right square. Note that Ker(aU ) containsH1

f,U (k,A). Now let

c : W
† := lim−→

Σ⊂U⊂S
Ker(rU ) −→ lim−→

Σ⊂U⊂S
Ker(aU )

be the inductive limit ofcU , whereU runs through all non-empty open subsets ofS
which containsΣ and for whichXU → U is smooth outside ofΣ. Because the group
on the right hand side containsH1

g (k,A), it remains to show that
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(iii) Coker(c) has a finite exponent.

(iv) W † is contained inW 0.

(iv) is rather straight-forward and left to the reader. We prove (iii). ForU ⊂ S as
above, applying the snake lemma to the above diagram, we see that the kernel of the
natural map

Coker(cU ) −→ Coker(ψU )

is a subquotient of Ker(bΣ). By the local case of Lemma 7.2.2, we have

Ker(bΣ) ≃
⊕

v∈Σ
Im(F 2H3(Xv, Λ(2))→Mv)

and the group on the right hand side is finite by Lemma 7.5.1 below. On the other
hand Coker(ψU ) is zero ifp ≥ 3, and killed by2 if p = 2. Hence passing to the limit,
we see that Coker(c) has a finite exponent. This completes the proof of Lemma 7.2.2.

7.4 Proof of Lemma 7.2.1, Step 1

We start the proof of Lemma 7.2.1. Our task is to show the inclusion

d(WDiv) ⊂ d(F 2H3(X,Qp/Zp(2))). (7.4.1)

If k is global, then the assertion is reduced to the local case, because the natural map

F 2H3(X,Qp/Zp(2)) −→
⊕

v∈S1

F 2H3(Xv,Qp/Zp(2))

has finite cokernel by Corollary 2.6.3 (2).
Assume now thatk is local. In this subsection, we treat the case thatk is ℓ-adic

local with ℓ 6= p. We use the notation fixed in 1.10. Recall thatY has simple normal
crossings onX by the assumptionT. Note thatd factors as

H3(X,Qp/Zp(2)) −→ H4
Y (X,Qp/Zp(2))

ι−→
⊕

y∈Y 0

H4
y (X,Qp/Zp(2)),

and that Im(d) ⊂ Im(ι). There is a short exact sequence

0→ H1(F, H3
Y

(X ur,Qp/Zp(2)))→ H4
Y (X,Qp/Zp(2))

→ H4
Y

(X ur,Qp/Zp(2))GF → 0

arising from a Hochschild-Serre spectral sequence. We haveKer(ι) ≃ CHd−2(Y ) ⊗
Qp/Zp with d := dim(X ) by Lemma 4.2.3 (2). Hence to show the inclusion (7.4.1),
it suffices to prove

Proposition 7.4.2 (1) Assume thatT holds. Then the composite map

CHd−2(Y )⊗Qp/Zp −→ H4
Y (X,Qp/Zp(2)) −→ H4

Y
(X ur,Qp/Zp(2))GF

(7.4.3)
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is an isomorphism up to finite groups. Consequently, we have

Im(ι) ≃ H1(F, H3
Y

(X ur,Qp/Zp(2)))

up to finite groups.

(2) The image of the composite map

H2(k,H1(X,Qp/Zp(2))) −→ H3(X,Qp/Zp(2)) −→ H4
Y (X,Qp/Zp(2))

containsH1(F, H3
Y

(X ur,Qp/Zp(2)))Div .

We first show the following lemma:

Lemma 7.4.4 (1) Consider the Mayer-Vietoris spectral sequence obtained from
the absolute purity(cf. [RZ], [Th], [FG])

Eu,v1 = H2u+v−2(Y (−u+1),Qp/Zp(u + 1)) =⇒ Hu+v

Y
(X ur,Qp/Zp(2)),

(7.4.5)

whereY (q) denotes the disjoint union ofq-fold intersections of distinct irre-
ducible components of the reduced part ofY . Then there are isomorphisms up
to finite groups

H1(F, H3
Y

(X ur,Qp/Zp(2))) ≃ H1(F, E−1,4
2 ),

H4
Y

(X ur,Qp/Zp(2))GF ≃ (E0,4
2 )GF .

(2) As aGF-module,H0(kur, H2(X,Qp)) has weight≤ 2.

Proof of Lemma 7.4.4.(1) SinceEu,v1 = 0 for any(u, v) with u > 0 or 2u + v < 2,
there is a short exact sequence

0 −→ E0,3
2 −→ H3

Y
(X ur,Qp/Zp(2))) −→ E−1,4

2 −→ 0, (7.4.6)

and the edge homomorphism

E0,4
2

� � // H4
Y

(X ur,Qp/Zp(2))), (7.4.7)

where we haveE−1,4
2 = Ker(d−1,4

1 ) andE0,4
2 = Coker(d−1,4

1 ) andd−1,4
1 is the Gysin

mapH0(Y (2),Qp/Zp) → H2(Y (1),Qp/Zp(1))). Note thatEu,v1 is pure of weight
v − 4 by Deligne’s proof of the Weil conjecture [De2], so thatHi(F, Eu,v∞ ) (i = 0, 1)
is finite unlessv = 4. The assertions immediately follow from these facts.

(2) By the alteration theorem of de Jong [dJ], we may assume that X is pro-
jective and has semistable reduction overS. If X is a surface, then the assertion is
proved in [RZ]. Otherwise, take a closed immersionX →֒ PNS =: P. By [JS] Propo-
sition 4.3 (b), there exists a hyperplaneH ⊂ P which is flat overS and for which
Z := X ×P H is regular with semistable reduction overS. The restriction map
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H2(X,Qp) → H2(Z,Qp) (Z := Z ×ok k) is injective by the weak and hard Lef-
schetz theorems. Hence the claim is reduced to the case of surfaces. This completes
the proof of the lemma. �

Proof of Proposition 7.4.2.(1) Note that the composite map (7.4.3) in question has
finite kernel by Lemma 6.4.3 and the arguments in the proof of Lemma 6.4.2. We
prove that (7.4.3) has finite cokernel, assumingT. By the Kummer theory, there is a
short exact sequence

0 −→ Pic(Y (1))⊗Qp/Zp −→ H2(Y (1),Qp/Zp(1)) −→ Br(Y (1))p-tors−→ 0

(7.4.8)

and the differential mapd−1,4
1 of the spectral sequence (7.4.5) factors through the

Gysin map

H0(Y (2),Qp/Zp) −→ Pic(Y (1))⊗Qp/Zp,

whose cokernel is CHd−2(Y ) ⊗ Qp/Zp. Hence in view of the computations in the
proof of Lemma 7.4.4 (1), the Gysin map

CHd−2(Y )⊗Qp/Zp → H4
Y

(X ur,Qp/Zp(2))

(cf. Lemma 4.2.3 (2)) factors through the map (7.4.7) and we obtain a commutative
diagram

CHd−2(Y )⊗Qp/Zp
(7.4.3) //

��

H4
Y

(X ur,Qp/Zp(2))GF

(CHd−2(Y )⊗Qp/Zp)GF // (E0,4
2 )GF ,

(7.4.7)

OO

where the left vertical arrow has finite cokernel (and kernel) by Lemma 6.4.3 and a
standard norm argument. The right vertical arrow has finite cokernel (and is injective)
by Lemma 7.4.4 (1). Thus it suffices to show that the bottom horizontal arrow has
finite cokernel. By the exact sequence (7.4.8), there is a short exact sequence

0 −→ CHd−2(Y )⊗Qp/Zp −→ E0,4
2 −→ Br(Y (1))p-tors−→ 0.

Our task is to show that
(
Br(Y (1))p-tors

)
GF is finite, which follows from the assumption

T and the finiteness of the kernel of the natural map

H1(GF,Pic(Y (1))⊗Qp/Zp) −→ H1(GF, H
2(Y (1),Qp/Zp(1)))

(cf. Lemma 7.6.2 in§7.6 below). Thus we obtain the assertion.
(2) Since cd(kur) = 1, there is a short exact sequence

0 → H1(kur,H1(X,Qp/Zp(2))) → H2(Xur,Qp/Zp(2)) → H2(X,Qp/Zp(2))
Gkur → 0
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arising from a Hochschild-Serre spectral sequence. By Lemma 7.4.4 the last group
has weight≤ −2, and we have isomorphisms up to finite groups

H2(k,H1(X,Qp/Zp(2))) ≃ H1(F, H1(kur, H1(X,Qp/Zp(2))))

≃ H1(F, H2(Xur,Qp/Zp(2))). (7.4.9)

Now we plug the short exact sequence (7.4.6) into the localization exact sequence

H2(Xur,Qp/Zp(2)) −→ H3
Y

(X ur,Qp/Zp(2)))
α−→ H3(X ur,Qp/Zp(2)).

Note thatH3(X ur,Qp/Zp(2)) ≃ H3(Y ,Qp/Zp(2)), so that it has weight≤ −1 (cf.
[De2]). LetEu,v2 be as in (7.4.5). SinceE−1,4

2 is pure of weight0, the induced map

E−1,4
2 −→ H3(X ur,Qp/Zp(2)))/α(E0,3

2 )

has finite image. Hence the composite map

H2(Xur,Qp/Zp(2)) −→ H3
Y

(X ur,Qp/Zp(2))) −→ E−1,4
2

has finite cokernel, and the following map has finite cokernelas well:

H1(F, H2(Xur,Qp/Zp(2))) −→ H1(F, E−1,4
2 ).

Now Proposition 7.4.2 (2) follows from this fact together with (7.4.9) and the first
isomorphism in Lemma 7.4.4 (1). �

Remark 7.4.10 LetJ be the set of the irreducible components ofY (2) and put

∆ := Ker
(
g′ : ZJ → NS(Y (1))

)
with NS(Y (1)) :=

⊕

y∈Y 0

NS(Yy),

where fory ∈ Y 0, Yy denotes the closure{y} ⊂ Y andNS(Yy) denotes its Ńeron-
Severi group. The arrowg′ arises from the Gysin mapZJ → Pic(Y (1)). One can
easily show, assumingT and using Lemma7.6.2 in §7.6 below, that the corank of
H1(F, E−1,4

2 ) overZp is equal to the rank of∆ overZ. Hence Proposition7.4.2 (2)
implies the inequality

dimQp(H2(k,H1(X,Qp(2))) ≥ dimQ(∆⊗Q), (7.4.11)

which will be used in the next subsection.

7.5 Proof of Lemma 7.2.1, Step 2

We prove Lemma 7.2.1, assuming thatk is p-adic local (see 1.10 for notation). We
first show the following lemma:

Lemma 7.5.1 We have

F 2H3(X,Qp/Zp(2)) ⊂ H3(X, τ≤2Rj∗Qp/Zp(2)) (= W ).
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Proof of Lemma 7.5.1.There is a distinguished triangle inDb(Xét,Z/pr) by §4.1
(S5)

i∗ν1Y,r[−3]
g // Tr(2)

t′ // τ≤2Rj∗µ
⊗2
pr

σ // i∗ν1Y,r[−2]. (7.5.2)

ApplyingRi! to this triangle, we obtain a distinguished triangle inDb(Yét,Z/pr)

ν1Y,r[−3]
Gys2i // Ri!Tr(2)

Ri!(t) // i∗(τ≥3Rj∗µ
⊗2
pr )[−1] // ν1Y,r[−2], (7.5.3)

where Gys2i := Ri!(g) and we have used the natural isomorphism

i∗(τ≥3Rj∗µ
⊗2
pr )[−1] ≃ Ri!(τ≤2Rj∗µ

⊗2
pr ).

Now let us recall the commutative diagram (6.2.3):

H3(X,Qp/Zp(2)) −→ H4
Y (X,T∞(2)) −→

⊕

y∈Y 0

H4
y(X,T∞(2))

∥

∥

∥





y
λ





y

H3(X,Qp/Zp(2))
ǫ1−→ H0(Y, i∗R3j∗Qp/Zp(2))

ǫ2−→
⊕

y∈Y 0

H0(y, i∗R3j∗Qp/Zp(2)),

where the middle and the right vertical arrows are induced byRi!(t) in (7.5.3). By
the proof of Lemma 6.2.2, we haveH3(X, τ≤2Rj∗Qp/Zp(2)) = Ker(ǫ2ǫ1). Hence
it suffices to show the image of the composite map

d2 : H2(k,H1(X,Qp/Zp(2)) −→ H3(X,Qp/Zp(2))
d−→
⊕

y∈Y 0

H4
y (X,T∞(2))

is contained in Ker(λ). By the distinguished triangle (7.5.3), Ker(λ) agrees with the
image of the Gysin map

Gys :=
⊕

y∈Y 0

Gys2iy :
⊕

y∈Y 0

H1(y,W∞ Ω1
y,log) →֒

⊕

y∈Y 0

H4
y (X,T∞(2)).

On the other hand,d2 factors into the following maps up to a sign, by the commuta-
tivity of the central square in [SH] (4.4.2):

H2(k,H1(X,Qp/Zp(2))) ≃ H1(F, H1(kur, H1(X,Qp/Zp(2))))

−→ H1(F, H2(Xur,Qp/Zp(2)))
σ−→ H1(F, H0(Y , ν1

Y ,∞))

−→ H1
(
F,
⊕

η∈Y 0 H
0(η,W∞Ω1

η,log)
)
−→

⊕
y∈Y 0 H1(y,W∞Ω1

y,log)

Gys−→
⊕

y∈Y 0 H4
y (X,T∞(2)),

whereν1
Y ,∞ := lim−→r

ν1
Y ,r

. Thus we obtain the assertion. �
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We start the proof of Lemma 7.2.1, i.e., the inclusion (7.4.1), assuming thatk is p-
adic local. The triangle (7.5.2) gives rise to the upper exact row of the following
commutative diagram with exact rows (cf. [SH] (4.4.2)):

H3(X,Tr(2)) // H3(X, τ≤2Rj∗µ
⊗2
pr )

−σ //

��

H1(Y, ν1Y,r)

Gys2i
��

H3(X,Tr(2)) // H3(X,µ⊗2
pr ) // H4

Y (X,Tr(2)),

whereσ (resp. Gys2i ) is as in (7.5.2) (resp. (7.5.3)). Hence the mapd restricted to
W = H3(X, τ≤2Rj∗Qp/Zp(2)) factors as

W −→ H1(Y, ν1Y,∞) −→ H4
Y (X,T∞(2)) −→

⊕

y∈Y 0

H4
y (X,T∞(2)),

whereν1Y,∞ := lim−→r
ν1Y,r. By Lemmas 7.5.1 and 6.1.2, it suffices to show that the

corank of
Im
(
H1(Y, ν1Y,∞)→

⊕
y∈Y 0 H4

y (X,T∞(2))
)

(7.5.4)

is not greater thandimQp H
2(k,H1(X,Qp(2))). We pursue an analogy to the case

p 6= ch(F) by replacingH4
Y (X,Qp/Zp(2)) with H1(Y, ν1Y,∞). There is an exact

sequence

0 −→ H1(F, H0(Y , ν1
Y ,∞)) −→ H1(Y, ν1Y,∞) −→ H1(Y , ν1

Y ,∞)GF −→ 0

arising from a Hochschild-Serre spectral sequence. By [Sat3] Corollary 2.2.7, there is
a Mayer-Vietoris spectral sequence

Ea,b1 = Ha+b(Y (1−a),W∞Ω1+a

Y (1−a),log
) =⇒ Ha+b(Y , ν1

Y ,∞).

Note thatEa,b1 is of weightb − 1 so thatHi(F, Ea,b1 ) is finite unlessb = 1. Thus we
obtain isomorphisms up to finite groups

H1(F, H0(Y , ν1
Y ,∞)) ≃ H1(F, E−1,1

2 ), (7.5.5)

H1(Y , ν1
Y ,∞)GF ≃ (E0,1

2 )GF (7.5.6)

with E−1,1
2 = Ker(d−1,1

1 ) andE0,1
2 = Coker(d−1,1

1 ), whered−1,1
1 is the Gysin map

H0(Y (2),Qp/Zp) −→ H1(Y (1),W∞Ω1
Y (1),log

).

There is an exact sequence ofGF-modules (cf. (7.6.1) below)

0 −→ Pic(Y (1))⊗Qp/Zp −→ H1(Y (1),W∞ Ω1
Y (1),log

) −→ Br(Y (1))p-tors −→ 0.
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Hence we see that the group (7.5.4) coincides with the image of H1(F, H0(Y , ν1Y,∞))
up to finite groups by the conditionT, the same computation as for Proposition
7.4.2 (1) and [CTSS] p. 782 Théorème 3. Now we are reduced toshowing

dimQp H
2(k,H1(X,Qp(2))) ≥ corank

(
H1(F, H0(Y , ν1

Y ,∞))
)

= corank
(
H1(F, E−1,1

2 )
)
,

where the last equality follows from (7.5.5). As is seen in Remark 7.4.10, the right
hand side is equal todimQ(∆ ⊗ Q) under the conditionT. On the other hand, by
[J2] Corollary 7, the left hand side does not change when one replacesp with another
primep′. Thus the desired inequality follows from (7.4.11). This completes the proof
of Lemma 7.2.1 and Theorem 7.1.1. �

7.6 Appendix to Section 7

Let Z be a proper smooth variety over a finite fieldF. For a positive integerm, we
define the objectZ/mZ(1) ∈ Db(Zét,Z/mZ) as

Z/mZ(1) := µm′ ⊕ (WrΩ1
Z,log[−1])

where we factorizedm asm′ · pr with (p,m′) = 1. There is a distinguished triangle
of Kummer theory forGm := Gm,Z in Db(Zét)

Z/mZ(1) −→ Gm
×m−→ Gm −→ Z/mZ(1)[1].

So there is a short exact sequence ofGF-modules

0 −→ Pic(Z)/m −→ H2(Z,Z/mZ(1)) −→ mBr(Z) −→ 0,

whereZ := Z ⊗F F. Taking the inductive limit with respect tom ≥ 1, we obtain a
short exact sequence ofGF-modules

0 −→ Pic(Z)⊗Q/Z
α−→ H2(Z,Q/Z(1)) −→ Br(Z) −→ 0. (7.6.1)

Concerning the arrowα, we prove the following lemma, which has been used in this
section.

Lemma 7.6.2 The mapH1(F,Pic(Z) ⊗ Q/Z) → H1(F, H2(Z,Q/Z(1)) induced
byα has finite kernel.

Proof. Note that Pic(Z) ⊗ Q/Z ≃ (NS(Z)/NS(Z)tors) ⊗ Q/Z. By a theo-
rem of Matsusaka [Ma] Theorem 4, the group Div(Z)/Div(Z)num is isomorphic to
NS(Z)/NS(Z)tors, where Div(Z) denotes the group of Weil divisors onZ, Div(Z)num

denotes the subgroup of Weil divisors numerically equivalent to zero. By this fact
and the fact that NS(Z) is finitely generated, there exists a finite family{Ci}i∈I of
proper smooth curves overF which are finite overZ and for which the kernel of the
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natural map NS(Z) →⊕
i∈I NS(Ci) with Ci := Ci ⊗F F is torsion. Now consider

a commutative diagram

H1(F,NS(Z)⊗Q/Z) //

��

H1(F, H2(Z,Q/Z(1))),

��⊕

i∈I
H1(F,NS(Ci)⊗ Q/Z) //∼ ⊕

i∈I
H1(F, H2(Ci,Q/Z(1))).

By a standard norm argument, one can easily show that the leftvertical map has finite
kernel. The bottom horizontal arrow is bijective, because Br(Ci) = 0 for any i ∈ I
by Tsen’s theorem (cf. [Se] II.3.3). Hence the top horizontal arrow has finite kernel
and we obtain the lemma. �

A Relation with Conjectures of Beilinson and Lichtenbaum

Let k, p, S,X andK be as in the notation 1.8. We always assume 1.8.1 in what
follows. The Zariski siteZZar on a schemeZ always means(ét/Z)Zar, andZét means
the usual small étale site. The main result of this appendixis Proposition A.1.3 below.

A.1 Motivic Complex and Conjectures

Let Z(2)Zar = Z(2)X
Zar be the motivic complex onXZar defined by using Bloch’s

cycle complex, and letZ(2)ét be its étale sheafification, which are, by works of Levine
([Le1], [Le2]), considered as strong candidates for motivic complexes of Beilinson-
Lichtenbaum ([Be], [Li1]) in Zariski and étale topology, respectively (see also [Li2],
[Li3]). We put

H∗
Zar(X,Z(2)) := H∗

Zar(X,Z(2)Zar), H∗
ét(X,Z(2)) := H∗

ét(X,Z(2)ét).

In this appendix, we observe that the finiteness ofH3
ur(K,Qp/Zp(2)) is deduced from

the following conjectures on motivic complexes:

Conjecture A.1.1 Let ǫ : Xét → XZar be the natural continuous map of sites.
Then:

(1) (Beilinson-Lichtenbaum conjecture). We have

Z(2)Zar
∼−→ τ≤2Rǫ∗Z(2)ét in D(XZar).

(2) (Hilbert’s theorem90). We haveR3ǫ∗Z(2)ét = 0.

(3) (Kummer theory onX [p−1]ét). We have(Z(2)ét)|X [p−1] ⊗L Z/pr ≃ µ⊗2
pr .

This conjecture holds ifX is smooth overS by a result of Geisser [Ge1] Theorem
1.2 and the Merkur’ev-Suslin theorem [MS] (see also [GL2] Remark 5.9).
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Conjecture A.1.2 Letγ2 be the canonical map

γ2 : CH2(X ) = H4
Zar(X,Z(2)) −→ H4

ét(X,Z(2)).

Then thep-primary torsion part ofCoker(γ2) is finite.

This conjecture is based on Lichtenbaum’s conjecture [Li1]thatH4
ét(X,Z(2)) is a

finitely generated abelian group (by the properness ofX /S). The aim of this ap-
pendix is to prove the following:

Proposition A.1.3 If ConjecturesA.1.1 andA.1.2 hold, thenH3
ur(K,Qp/Zp(2))

is finite.

This proposition is reduced to the following lemma:

Lemma A.1.4 (1) If ConjectureA.1.1 holds, then forr ≥ 1 there is an exact
sequence

0 −→ Coker(αr) −→ H3
ur(K,Z/p

r(2)) −→ Ker(̺2r) −→ 0,

whereαr denotes the map

αr : prCH2(X ) −→ prH
4
ét(X,Z(2))

induced byγ2, and̺2r denotes the cycle class map

̺2r : CH2(X )/pr −→ H4
ét(X,Tr(2)).

(2) If ConjecturesA.1.1 andA.1.2 hold, thenCoker(αQp/Zp) andKer(̺2Qp/Zp) are

finite, whereαQp/Zp := lim−→ r≥1 αr and̺2Qp/Zp := lim−→ r≥1 ̺
2
r .

To prove this lemma, we need the following sublemma, which isa variant of Geisser’s
arguments in [Ge1]§6 and provides a Kummer theory on the wholeX extending
Conjecture A.1.1 (3):

Sublemma A.1.5 Put Z/pr(2)ét := Z(2)ét ⊗L Z/pr. If ConjectureA.1.1 holds,
then there is a unique isomorphism

Z/pr(2)ét
∼−→ Tr(2) in D(Xét,Z/p

r)

that extends the isomorphism in ConjectureA.1.1 (3).

We prove Sublemma A.1.5 in§A.2 below and Lemma A.1.4 in§A.3 below.

A.2 Proof of Sublemma A.1.5

By Conjecture A.1.1 (3), we have only to consider the case where p is not invertible
onS. Let us note that
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(∗) Z/pr(2)ét is concentrated in degrees≤ 2

by Conjecture A.1.1 (1) and (2). LetV , Y , i andj be as follows:

V := X [p−1] � � j // X Y,? _ioo

whereY denotes the union of the fibers ofX /S of characteristicp. In étale topology,
we defineRi! andRj∗ for unbounded complexes by the method of Spaltenstein [Spa].
We will prove

τ≤3Ri
!Z/pr(2)ét ≃ ν1Y,r[−3] in D(Yét,Z/p

r), (A.2.1)

using (∗) (see(S5) in §4.1 for ν1Y,r). We first prove Sublemma A.1.5 admitting this

isomorphism. Since(Z(2)ét)|V ⊗L Z/pr ≃ µ⊗2
pr by Conjecture A.1.1 (3), we obtain a

distinguished triangle from (A.2.1) and (∗)

i∗ν
1
Y,r[−3] −→ Z/pr(2)ét −→ τ≤2Rj∗µ

⊗2
pr −→ i∗ν

1
Y,r[−2].

Hence comparing this distinguished triangle with that of(S5) in §4.1, we obtain the
desired isomorphism in the sublemma, whose uniqueness follows from [SH] Lemmas
1.1 and 1.2 (1).

In what follows, we prove (A.2.1). PutK := Z(2)Zar ⊗L Z/pr and L :=
Z/pr(2)ét for simplicity. Let ǫ : Xét → XZar be as in Conjecture A.1.1. In Zariski
topology, we defineRi!Zar andRjZar∗ for unbounded complexes in the usual way by
the finiteness of cohomological dimension. BecauseL = ǫ∗K is concentrated
in degrees≤ 2 by (∗), there is a commutative diagram with distinguished rows in
Db(Xét,Z/pr)

ǫ∗K // τ≤2ǫ
∗RjZar∗j∗ZarK

//

α

��

(τ≤3ǫ
∗iZar∗Ri!ZarK )[1] //

β

��

ǫ∗K [1]

L // τ≤2Rjét∗j∗étL
// (τ≤3iét∗Ri!étL )[1] // L [1],

where the upper (resp. lower) row is obtained from the localization triangle in the
Zariski (resp. étale) topology and the arrowsα andβ are canonical base-change mor-
phisms. Sinceα is an isomorphism ([MS], [SV], [GL2]),β is an isomorphism as well.
Hence (A.2.1) is reduced to showing

τ≤3Ri
!
ZarK ≃ ǫY ∗ν

1
Y,r[−3] in ∈ D(YZar,Z/p

r), (A.2.2)

whereǫY : Yét→ YZar denotes the natural continuous map of sites and we have used
the base-change isomorphismǫ∗iZar∗ = iét∗ǫ∗Y ([Ge1] Proposition 2.2 (a)). Finally we
show (A.2.2). Consider the local-global spectral sequencein the Zariski topology

Eu,v1 =
⊕

x∈X u∩Y
Ru+vix∗(Ri!xRi

!
ZarK ) =⇒ Ru+vi!ZarK ,
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where forx ∈ Y , ix denotes the natural mapx→ Y . We have

Eu,v1 ≃
{⊕

x∈X u∩Y ix∗ǫx∗WrΩ2−u
x,log (if v = 2)

0 (otherwise)

by the localization sequence of higher Chow groups [Le1] andresults of Geisser-
Levine ([GL1] Proposition 3.1, Theorem 7.1), where forx ∈ Y , ǫx denotes the nat-
ural continuous mapxét → xZar of sites. By this description ofE1-terms and the
compatibility of boundary maps ([GL2] Lemma 3.2, see also [Sz] Appendix), we ob-
tain (A.2.2). This completes the proof of Sublemma A.1.5.

A.3 Proof of Lemma A.1.4

(1) By Sublemma A.1.5, there is an exact sequence

0 −→ H3
ét(X,Z(2))/pr −→ H3

ét(X,Tr(2)) −→ prH
4
ét(X,Z(2)) −→ 0.

By Conjecture A.1.1 (1) and (2), we have

H3
ét(X,Z(2)) ≃ H3

Zar(X,Z(2)) ≃ CH2(X, 1).

Thus we get an exact sequence

0 −→ CH2(X, 1)/pr −→ H3
ét(X,Tr(2)) −→ prH

4
ét(X,Z(2)) −→ 0.

On the other hand, there is an exact sequence

0→ N1H3
ét(X,Tr(2))→ H3

ét(X,Tr(2))→ H3
ur(K,Z/p

r(2))→ Ker(̺2r)→ 0

by Proposition 4.3.2 (see Lemma 4.2.3 forN1). In view of these facts and the short
exact sequence in Lemma 4.2.3 (1), we get the desired exact sequence.

(2) By Conjecture A.1.1 (1) and (2), the mapγ2 in Conjecture A.1.2 is injective.
Hence we get an exact sequence

0 −→ Coker(αr) −→ prCoker(γ2) −→ CH2(X )/pr
γ2/pr−→ H4

ét(X,Z(2))/pr.

Noting that the composite ofγ2/pr and the injective map

H4
ét(X,Z(2))/pr � � // H4

ét(X,Tr(2))

obtained from Sublemma A.1.5 coincides with̺2r, we get a short exact sequence

0 −→ Coker(αr) −→ prCoker(γ2) −→ Ker(̺2r) −→ 0,

which implies the finiteness of Coker(αQp/Zp) and Ker(̺2Qp/Zp) under Conjecture
A.1.2. This completes the proof of Lemma A.1.4 and Proposition A.1.3. �
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B Zeta Value of Threefolds over Finite Fields

In this appendix B, all cohomology groups of schemes are taken over the étale topol-
ogy. LetX be a projective smooth geometrically integral threefold over a finite field
Fq, and letK be the function field ofX (the case of fourfolds is treated in a recent
paper of Kohmoto [Ko]). We define the unramified cohomologyHn+1

ur (K,Q/Z(n))
in the same way as in 1.8. We show that the groups

H2
ur(K,Q/Z(1)) = Br(X) and H3

ur(K,Q/Z(2))

are related with the value of the Hasse-Weil zeta functionζ(X, s) ats = 2:

ζ∗(X, 2) := lim
s→2

ζ(X, s)(1 − q2−s)−̺2 , where ̺2 := ords=2 ζ(X, s).

Let
θ : CH2(X) −→ Hom(CH1(X),Z)

be the map induced by the intersection pairing and the degreemap

CH2(X)× CH1(X) −→ CH3(X) = CH0(X)
deg−→ Z.

The mapθ has finite cokernel by a theorem of Matsusaka [Ma] Theorem 4. We define

R := |Coker(θ)|.

We prove the following formula (compare with the formula in [Ge2]):

Theorem B.1 Assume thatBr(X) andH3
ur(K,Q/Z(2)) are finite. Thenζ∗(X, 2)

equals the following rational number up to a sign:

qχ(X,OX ,2) · |H
3
ur(K,Q/Z(2))|
|Br(X)| ·R ·

3∏

i=0

|CH2(X, i)tors|(−1)i ·
1∏

i=0

|CH1(X, i)tors|(−1)i ,

where CH2(X, i) and CH1(X, i) denote Bloch’s higher Chow groups[Bl3] and
χ(X,OX , 2) denotes the following integer:

χ(X,OX , 2) :=
∑

i,j

(−1)i+j (2 − i) dimFq H
j(X,ΩiX) (0 ≤ i ≤ 2, 0 ≤ j ≤ 3).

This theorem follows from a theorem of Milne ([Mi2] Theorem 0.1) and Proposition
B.2 below. For integersi, n ≥ 0, we define

Hi(X, Ẑ(n)) :=
∏

all ℓ

Hi(X,Zℓ(n)),

whereℓ runs through all prime numbers, andHi(X,Zp(n)) (p := ch(Fq)) is defined
as

Hi(X,Zp(n)) := lim←−
r≥1

Hi−n(X,WrΩnX,log).
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Proposition B.2 (1) We have

Hi(X, Ẑ(2)) ≃
{

CH2(X, 4− i)tors (i = 0, 1, 2, 3)

(CH1(X, i− 6)tors)
∗ (i = 6, 7),

(B.3)

where for an abelian groupM , we put

M∗ := Hom(M,Q/Z).

Furthermore,CH1(X, j)tors andCH2(X, j)tors are finite for anyj ≥ 0, and we
have

CH1(X, j)tors = 0 for j ≥ 2 and CH2(X, j)tors = 0 for j ≥ 4.

(2) Assume thatBr(X) is finite. Then we have

H5(X, Ẑ(2))tors≃ Br(X)∗,

and the cycle class map

CH2(X)⊗ Zℓ −→ H4(X,Zℓ(2))

has finite cokernel for any prime numberℓ.

(3) Assume thatBr(X) andH3
ur(K,Q/Z(2)) are finite. Then the following map

given by the cup product with the canonical element1 ∈ Ẑ ≃ H1(Fq, Ẑ) has
finite kernel and cokernel:

ǫ4 : H4(X, Ẑ(2)) −→ H5(X, Ẑ(2)),

and we have the following equality of rational numbers:

|Ker(ǫ4)|
|Coker(ǫ4)| =

|H3
ur(K,Q/Z(2))| · |CH2(X)tors|

|Br(X)| ·R .

Proof of Proposition B.2.(1) By standard arguments on limits, there is a long exact
sequence

· · · −→ Hi(X, Ẑ(2)) −→ Hi(X, Ẑ(2))⊗Z Q −→ Hi(X,Q/Z(2))

−→ Hi+1(X, Ẑ(2)) −→ · · · .

By [CTSS] p. 780 Théorème 2, p. 782 Théorème 3, we see that

Hi(X, Ẑ(2)) andHi(X,Q/Z(2)) are finite fori 6= 4, 5.

Documenta Mathematica · Extra Volume Suslin (2010) 525–594



p-adic Regulator and Finiteness 587

Hence we have

Hi(X, Ẑ(2)) ≃ Hi−1(X,Q/Z(2)) for i 6= 4, 5, 6.

On the other hand, there is an exact sequence

0 −→ CH2(X, 5− i)⊗Q/Z −→ Hi−1(X,Q/Z(2)) −→ CH2(X, 4− i)tors−→ 0

for i ≤ 3 ([MS], [SV], [GL1], [GL2]), where CH2(X, 5 − i) ⊗ Q/Z must be zero
because it is divisible and finite. Thus we get the isomorphism (B.3) for i ≤ 3, the
finiteness of CH2(X, j)tors for j ≥ 1 and the vanishing of CH2(X, j)tors for j ≥ 4.
The finiteness of CH2(X, 0)tors = CH2(X)tors (cf. [CTSS] p. 780 Théorème 1) follows
from the exact sequence

0 −→ CH2(X, 1)⊗Q/Z −→ N1H3(X,Q/Z(2)) −→ CH2(X)tors−→ 0

(cf. Lemma 3.2.2), where we put

N1H3(X,Q/Z(2)) := Ker(H3(X,Q/Z(2))→ H3(K,Q/Z(2))).

As for the casei = 6, 7 of (B.3), we have

Hi(X, Ẑ(2))∗ ≃ H7−i(X,Q/Z(1))

by a theorem of Milne [Mi2] Theorem 1.14 (a). It remains to show

CH1(X, j)tors≃ H1−j(X,Q/Z(1)) for j ≥ 0,

which can be checked by similar arguments as before.
(2) We haveH5(X, Ẑ(2))∗ ≃ H2(X,Q/Z(1)) and an exact sequence

0 −→ CH1(X)⊗Q/Z −→ H2(X,Q/Z(1)) −→ Br(X) −→ 0. (B.4)

Hence we have(H5(X, Ẑ(2))tors)
∗ ≃ Br(X), assuming Br(X) is finite. To show the

second assertion forℓ 6= ch(Fq), it is enough to show that the cycle class map

CH2(X)⊗Qℓ −→ H4(X,Qℓ(2))Γ

is surjective, whereΓ := Gal(Fq/Fq). The assumption on Br(X) implies the bijec-
tivity of the cycle class map

CH1(X)⊗Qℓ
∼−→ H2(X,Qℓ(1))Γ

by [Ta2] Proposition (4.3) (see also [Mi1] Theorem 4.1), andthe assertion follow from
[Ta2] Proposition (5.1). As for the caseℓ = ch(Fq), one can easily pursue an analogy
using crystalline cohomology, whose details are left to thereader.

(3) The finiteness assumption on Br(X) implies the conditionSS(X, 1, ℓ) in
[Mi2] for all prime numbersℓ by loc. cit. Proposition 0.3. HenceSS(X, 2, ℓ) holds
by the Poincaré duality, andǫ4 has finite kernel and cokernel by loc. cit. Theorem 0.1.
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To show the equality assertion, we put

ĈH2(X) := lim←−
n≥1

CH2(X)/n,

and consider the following commutative square (cf. [Mi3] Lemma 5.4):

ĈH2(X)
Θ //

α

��

Hom(CH1(X), Ẑ)

H4(X, Ẑ(2))
ǫ4 // H5(X, Ẑ(2)),

β

OO

where the top arrowΘ denotes the map induced byθ. The arrowα denotes the cycle
class map of codimension2, andβ denotes the Pontryagin dual of the cycle class map
with Q/Z-coefficients in (B.4). The arrowα is injective (cf. (4.3.3)) and we have

|Coker(α)| = |H3
ur(K,Q/Z(2))|

by the finiteness assumption onH3
ur(K,Q/Z(2)) and (2) (cf. Proposition 4.3.5). The

arrowβ is surjective and we have

Ker(β) = H5(X, Ẑ(2))tors
(2)≃ Br(X)∗,

by Milne’s lemma ([Mi3] Lemma 5.3) and the isomorphism CH1(X) ⊗ Ẑ ≃
H2(X, Ẑ(1)) (cf. [Ta2] Proposition (4.3)), where we have used again the finiteness
assumption on Br(X). Therefore in view of the finiteness of Ker(ǫ4), the mapΘ has
finite kernel and we obtain

Ker(Θ) = ĈH2(X)tors = CH2(X)tors,

where we have used the finiteness of CH2(X)tors in (1). Finally the assertion follows
from the following equality concerning the above diagram:

|Ker(Θ)|
|Coker(Θ)| =

|Ker(α)|
|Coker(α)| ·

|Ker(ǫ4)|
|Coker(ǫ4)| ·

|Ker(β)|
|Coker(β)|

This completes the proof of Proposition B.2 and Theorem B.1. �
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Invent. Math.105, 221–245 (1991)

[CTSS] Colliot-Thélène, J.-L., Sansuc, J.-J., Soulé, C.: Torsion dans le groupe de
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1 Introduction

In [Dr1], Drinfeld has introduced the analogues of Shimura varieties for GLd
over a global field F of positive characteristic. Following a suggestion of U.
Stuhler the corresponding varieties for an inner form of GLd, i.e. the group of
invertible elements A∗ of a central simple algebra A of dimension d2 over F ,
have been introduced by Laumon, Rapoport and Stuhler in [LRS]. For d = 2
these are the analogues of Shimura curves. In this paper we show that some of
these varieties (for different A) are twists of each other.
Let us recall the latter in the simplest case (i.e. over Q and by neglecting level
structure). Let D be an indefinite quaternion algebra over Q and D a maximal
order in D. The Shimura curve SD is the (coarse) moduli space corresponding
to the moduli problem

(S → SpecZ) 7→ abelian surfaces over S with D-action.
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By fixing an isomorphism D ⊗ R ∼= M2(R) the group of units D∗ acts on the
symmetric space H∞ : = P1

/R−P1(R) (the upper and lower half plane) through
linear transformations. The curve SD ⊗Q R admits the following concrete de-
scription

SD ⊗Q R = D∗\H∞. (1)

If p is a prime number which is ramified in D then there is a similar explicite
description over Qp. For that let D be the definite quaternion algebra over Q
given by the local data D⊗Qℓ ∼= D⊗Qℓ for all prime numbers ℓ different from
p and D⊗Qp ∼= M2(Qp). Let D denote a maximal Z[ 1p ]-order in D and denote

by Qnr
p the quotient field of the ring of Witt vectors of W (Fp). The Theorem

of Cherednik-Drinfeld asserts that

SD ⊗Q Qp = D∗\(Hp ⊗Qp Q
nr
p ). (2)

(see [Ce], [Dr2] or [BC]). Here D∗
acts on Qnr

p via γ 7→ Frob− ordp(Nrd(γ))
p and on

the p-adic upper half plane Hp : = P1
/Qp
− P1(Qp) via linear transformations.

Now let F be a global field of positive characteristic, i.e. F is the function field
of a smooth proper curve X over a finite field Fq. The analogues of Shimura
curves over F are the moduli spaces ofA-elliptic sheaves as introduced in [LRS].
In this paper we generalize this notion slightly by making systematically use
of hereditary orders. Let ∞ ∈ X be a fixed closed point. For simplicity
we assume in the introduction that deg(∞) = 1. Let A be a central simple
F -algebra of dimension d2 and let A be a locally principal hereditary OX -
order in A. The condition locally principal means that the radical Rad(Ax) of

Ax : = A ⊗OX ÔX,x is a principal ideal for every closed point x ∈ X . There
exists a positive integer e = ex(A) such that Rad(Ax)e is the ideal Ax̟x

generated by a uniformizer ̟x of X at x. The number ex(A) divides d for al l
x and is equal to 1 for almost all x. We assume in the following that e∞(A) = d.
If A is unramified at∞ then this amounts to require that A∞ is isomorphic to
the subring of matrices in Md(ÔX,∞) which are upper triangular modulo ̟∞.
Roughly, an A-elliptic sheaf with pole ∞ is a locally free A-module of rank
1 together with a meromorphic A-linear Frobenius having a simple pole at ∞
and a simple zero. The precise definition is as follows.
An A-elliptic sheaf over an Fq-scheme S is a pair E = (E , t) consisting of a
locally free right A⊠OS-module of rank 1 and an injective homomorphism of
A⊠OS-modules

t : (idX ×FrobS)∗(E ⊗A A(−1

d
∞)) −→ E

such that the cokernel of t is supported on the graph Γz ⊆ X ×SpecFq S of a
morphism z : S → X (called the zero) and is – when considered as a sheaf on
S ∼= Γz – a locally free OS-module of rank d.
Here A(− 1

d∞) denotes the two-sided ideal in A given by A(− 1
d∞)x = Ax for

all x 6=∞ and A(− 1
d∞)∞ = Rad(A∞). This definition differs, but, as will be
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proved in the appendix, is equivalent to the one given in [LRS]1. Unlike in loc.
cit. we do not require the zero z to be disjoint from the pole ∞ nor from the
closed points which are ramified in A. Also we allow∞ to be ramified in A. For
an arbitrary effective divisor I on X there is the notion of a level-I-structure
on E. We will show (Theorem 4.11) that the moduli stack of A-elliptic sheaves
with level-I-structure Eℓℓ∞A,I is a Deligne- Mumford stack which is locally of
finite type and of relative dime nsion d− 1 over X − I. If I 6= 0, it is a smooth
and quasiprojective scheme over X ′ − I where X ′ denotes the complement of
set of closed points x ∈ X with ex(A) > 1.
Let B be another central simple F -algebra of dimension d2 and assume that
there exists a closed point p ∈ X − {∞} such that the local invariants of B
are given by inv∞(B) = inv∞(A) + 1

d , invp(B) = invp(A) − 1
d and invx(B) =

invx(A) for all x 6=∞, p. Let B be a locally principal hereditary OX -order in B
with ex(B) = ex(A) for all x. Our main result is that the moduli stack EℓℓpB,I
is a twist of Eℓℓ∞A,I . To state this more precisely we assume for simplicity that
deg(p) = 1 and I = 0 (see 4.24 and 4.25 for the general statement). We have

EℓℓpB ∼= (Eℓℓ∞A ⊗Fq Fq)/ < wp ⊗ Frobq > . (3)

Here wp is a certain modular automorphism of Eℓℓ∞A (in the case d = 2 it is
the analogue of the Atkin-Lehner involution at p for a modular or a Shimura
curve).
We explain briefly our strategy for proving (3). We consider invertible A-B-
bimodules L together with a meromorphic Frobenius Φ having a simple zero
at ∞ and simple pole at p. More precisely, for an Fq-scheme S, we consider
pairs L = (L,Φ) where L is an invertible A ⊠ OS-B ⊠ OS-bimodule and Φ is
an isomorphism of bimodules

Φ : (idX ×FrobS)∗(L ⊗A A(−1

d
p)) −→ L⊗A A(−1

d
∞).

These will be called invertible Frobenius bimodules of slope D = 1
d∞ − 1

dp

and their moduli space will be denoted by SEDA,B. We will show in section
4.4 that it is a torsor over SpecFq of the finite group of modular automor-

phisms of Eℓℓ∞A and compute it explicitely (it is instructive to view SEDA,B as
an analogue of the moduli space of supersingular elliptic curves with a fixed
ring of endomorphisms). In section 4.5 we construct a canonical tensor product
Eℓℓ∞A ×SEDA,B → EℓℓpB, (E,L) 7→ E⊗AL. The isomorphism (3) is then a simple
consequence.
From the global result (3) we deduce that the uniformization at ∞ and the
analogue of the Cherednik-Drinfeld uniformization for the moduli spaces Eℓℓ∞A,I
are equivalent. In fact an analogue of the uniformization result (1) for Eℓℓ∞A,I
has been proved by Blum and Stuhler in [BS] (in case where the level I is prime
to ∞). On the other hand Hausberger has shown in [Hau] (again under the

1In [LRS], the authors work with hereditary orders A with A∞ ∼= Md(ÔX,∞) and
parabolic structures at ∞ on E instead.
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assumption that ∞ does not divide the level I) that there is also an analogue
of the Cherednik-Drinfeld theorem.
We describe briefly the contents of each section. In section 2 and 3 we discuss
hereditary orders in central simple algebras over local fields and global function
fields. We show in particular that any hereditary order is Morita equivalent
to a (locally) principal hereditary order. This is the reason why it suffices to
consider A-elliptic sheaves for locally principal A. In section 4 we introduce
A-elliptic sheaves and study their moduli spaces and sections 2.6 and 4.4 are
devoted to invertible Frobenius bimodules. In section 3.3 we introduce the
notion of a special A-module. If E = (E , t) is an A-elliptic sheaf then Coker(t)
is special. The stack CohA,sp of special A-modules plays a key role in the study
of the bad fibers of the characteristic morphism char : Eℓℓ∞A,I → X in section
4.3. In fact CohA,sp is an Artin stack and char admits a canonical factorization
Eℓℓ∞A,I → CohA,sp → X . We shall show that the first map is smooth and the
second semistable. In section 4.5 we construct the tensor product of an A-
elliptic sheaf (with level-I-structure) and an invertible Frobenius bimodules
(with level-I-structure) and prove our main result (Theorems 4.24 and 4.25).
Finally, in section 4.6 we discuss the application to uniformization of Eℓℓ∞A,I by
Drinfeld’s symmetric spaces and its coverings.
Acknowledgements. I thank E. Lau and T. Zink for helpful conversations. Part
of this work has been done during a stay at the Max-Planck-Institute in Bonn
in the Winter 2004/05, so I am grateful for the hospitality.

Notation As an orientation for the reader we collect here a few basic nota-
tions which are used in the entire work. However most notations listed below
will be introduced again somewhere in this work.
For a scheme S we let |S| be the set of closed points of S. The category of
S-schemes is denoted by Sch /S. If S = Spec k for a field k then we also write
Sch /k.
The algebraic closure of a field k is denote by k. If k is finite then kn ⊂ k
denotes the extension of degree n of k.
In chapters 3, 4 and in 5.2, X denotes a smooth proper curve over some base
field k. In chapter 3, k is an arbitrary perfect field of cohomological dimension
1, whereas in chapter 3 k is the finite field Fq. The function field of X is
denoted by F . For Y, Z ∈ Sch /k we write X × Y for their product over k.
For a closed point x ∈ X we denote by k(x) its residue field and by deg(x)
the degree [k(x) : k]. If S is a k(x)-scheme, then xS will denote the morphism
S → Spec k(x) →֒ X . If S = Spec k′ is a field then we also write xk′ instead of
xSpeck′ .
For a non-zero effective divisor I on X , we denote the corresponding closed
subscheme of X by I as well. If M is a sheaf of OX -modules then we use MI

for M⊗OX OI .
In chapter 4, for S ∈ Sch /Fq we denote by FrobS its Frobenius endomorphism
(over Fq). In the case where S = Spec k′ for some algebraic extension field k′

of Fq we also sometimes write Frobq for FrobSpeck′ and Frobenius in the Galois
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group G(k′/Fq). If S ∈ Sch /Fq and E is a sheaf of OX×S-modules then τE
denotes the sheaf (idX ×FrobS)∗(E).
We denote by A the Adele ring of F and for a finite set of closed points T of
X we let AT denote the Adele ring outside of T .
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2 Local theory of hereditary orders

2.1 Basic definitions

Let X be a scheme and A a quasi-coherent sheaf of OX -algebras. We denote
by ModA the category of sheaves of right A-modules. Let B be another quasi-
coherent OX -algebra. An A-B-bimodule I is an OX -module with a left A- and
right B-action which are compatible with the OX -action.
A and B are said to be (Morita) equivalent (notation: A ≃ B) if there exists
a quasi-coherent A-B-bimodule I and a quasi-coherent B-A-bimodule J such
that the following equivalent conditions hold:
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(i) There exists bimodule isomorphisms

I ⊗B J −→ A, J ⊗A I −→ B.

(ii) The functors

· ⊗A I : ModA −→ ModA, · ⊗B J : ModB −→ ModA

are equivalences of categories and mutually quasi-invers.
In this case I and J are called invertible bimodules and J is called the inverse
of I. The group of isomorphism classes of invertible A-A-bimodules will be
denoted by Pic(A).
Now assume that X is a Dedekind scheme that is a one-dimensional connected
regular noetherian scheme with function field K, i.e. SpecK → X is the generic
point. Let A be a central simple algebra over K. An OX-order in A is a sheaf
of OX -algebras A with generic fiber A which is coherent and locally free as an
OX -module. If B is an OX -order in another central simple K-algebra then it
is easy to see that an invertible A-B-bimodule is a coherent and locally free
OX -module.
The OX -order A in A is called maximal if for any open affine U = SpecR ⊆ X
the set of sections Γ(U,A) is a maximal R-order in A. A is called hereditary
if its sections Γ(U,A) over any open affine U = SpecR ⊆ X is a hereditary
R-order in A that is any left ideal in Γ(U,A) is projective (equivalently any
right ideal is projective; compare ([Re], (10.7)). Let E be a locally free OX -
module of finite rank which has a left or right A-action compatible with the
OX -action. Then the set of sections of E over any affine open U = SpecR ⊆ X
are a projective Γ(U,A)-module.
If X is affine, i.e. the spectrum of a Dedekind ring O we usually identify A
with its sections Γ(X,A). An O-lattice is a finitely generated torsionfree (hence
projective) O-module. A (left or right) A-lattice is a (left or right) A-module
which is an O-lattice. By ([Re], (10.7)) A is hereditary if and only if every (left
or right) A-lattice is projective.

2.2 Structure theory

Let O be a henselian discrete valuation ring with maximal ideal p and residue
field k = O/p. Let ̟ ∈ p be a fixed prime element. We will recall the structure
theory of hereditaryO-orders in central simple K-algebras (a reference for what
follows is [Re], section 39). Since we are only interested in applications to the
case where O is the henselisation or completion of a local ring in a global field
we will assume for simplicity that k is perfect and of cohomological dimension
≤ 1.
Let A be a hereditary O-order in a central simple K-algebra A of dimension
n2. Its Jacobson radical will be denoted by P = PA. By ([Re], 39.1 and
exercise 6 on p. 365) P is an invertible two-sided ideal and any other two-
sided invertible fractional ideal is an integral power of P. Let B be a central
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simple K-algebra equivalent to A and B be a maximal order in B. We denote
its radical by M = PB. Let I be an invertible A-B-bimodule. Its inverse is
J : = HomK(I,K). Let I be a A-B-stable lattice in I, i.e. aI, Ib⊆I for all
a ∈ A, b ∈ B. Such a lattice exists. In fact if L⊆I is any O-lattice then the
O-module generated by the set {axb | a ∈ A, x ∈ L, b ∈ B} is a A-B-stable
lattice. There exists a positive integer t – called the type of A – such that
PtI = IM (see [Re], 39.18 (i)). It is also equal to the number of isomorphism
classes of indecomposable left (or right) A-lattices. IfM is an indecomposable
left A-lattice then {PiM| i = 0, 1, . . . , t − 1} is a full set of representatives of
the set of indecomposable left A-lattices. For i ∈ Z we set Ii : = P−iI and
Ji : = HomO(I−i,O). The sequences {Ii | i ∈ Z} and {Ji | i ∈ Z} satisfy the
following conditions:

(i) PIi = Ii−1, IiM = Ii−t, JiP = Ji−1, MJi = Ji−t for all i ∈ Z.

(ii) Let Ai : = {x ∈ A | xIi⊆Ii} = {x ∈ A | J−ix⊆J−i}. Then A1, . . . ,At
are the different maximal orders containing A and we have A = A1∩ . . .∩
At (note that Ai = Aj if i ≡ j mod t). The lattice Ii is an invertible
Ai-B-bimodule with inverse J−i. Note that Ai = Aj if i ≡ j mod t.

(iii) Let A : = A/P,B : = B/M and let

A(i)
: = Im(A → EndB(Ii/Ii−1)) ∼= Im(A → EndB(J−i/J−i−1))

for i = 1, . . . , t. Then, considered as a A(i)
-B-bimodule, Ii/Ii−1 is invert-

ible with inverse J−i/J−i−1. We have

A ∼= A(1) × . . .×A(t)

and A(i) ∼= Mni(k
′) for i = 1, . . . , t. Here k′ is the center of B and

ni = rankB(Ii/Ii−1). The numbers (n1, . . . , nt) are called the invariants
of A. They are well-defined up to cyclic permutation.

Definition 2.1. The positive integer e = e(A) with Pe = ̟A will be called
the index of A.

We will see below (Lemma 2.4) that e(A) does not change under finite étale
base change. If d is the order of [A] in Br(F ) (hence d = [k′ : k]) and t is the
type of A then e = dt.
Recall ([BF], p. 216) that A is said to be principal if every two-sided invertible
ideal of A is a principal ideal or equivalently if there exists Π ∈ P with AΠ =
ΠA = P. For example A is principal if it is a maximal O-order in A or if
e(A) = n. This is a consequence of the following characterization of principal
orders.

Lemma 2.2. Let A be a hereditary order in a central simple K-algebra A of
dimension n2. The following conditions are equivalent.
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(i) A is a principal order.
(ii) If (n1, . . . , nt) are the invariants of A then n1 = . . . = nt.
(iii) LetM1, . . . ,Mt be a full set of representatives of the isomorphism classes
of indecomposable right A-lattices. Then there exists an integer f ∈ N such
that

A ∼= (M1 ⊕ . . .⊕Mt)
f

as right A-modules. In this case we have f = n1 = . . . = nt and n = ef .

Proof. (i) ⇔ (ii) see ([BF], Theorem 1.3.2, p. 217).
(i) ⇔ (iii) Since A is principal if and only if A ∼= P as right A-modules this
follows from the fact that the map [M] 7→ [MP] is a cyclic permutation of the
set isomorphism classes of indecomposable right A-lattices ([Re], 39.23).
For the last assertion note that if A is principal then on the one hand

dimk(A/P) =
t∑

j=1

dimk(A(j)
) =

t∑

j=1

dn2
j = tdn2

i = en2
i

for i ∈ {1, . . . , t}. On the other hand since Mj/MjP is an irreducible A(j)
-

module we have

dimk(A/P) = f

t∑

j=1

dimk(Mj/MjP) = ftdni = feni

Therefore we get f = ni. Finally because of

n2 = dimk(A/̟A) =
e−1∑

i=0

dimk(Pi/Pi+1) = e dimk(A/P)

we obtain ef = n. �

Suppose that A is principal. We denote the subgroup of A∗ of elements x ∈ A∗

with xA = Ax by N(A). For x ∈ N(A) there exists a unique m ∈ Z with
xA = Pm and we set vA(x) = m

e . We have a commuative diagram with exact
rows

1 −−−−→ O∗ −−−−→ K∗ vK−−−−→ Z −−−−→ 0
y

y
y

1 −−−−→ A∗ −−−−→ N(A)
vA−−−−→ 1

eZ −−−−→ 0

where vK denoted the normalized valuation of K and the vertical maps are the
natural inclusions.
Next we consider the special case where A = EndK(V ) for a finite-dimensional
K-vector space V (i.e. A is split). A lattice chain in V is a sequence ofO-lattices
L⋆ = {Li | i ∈ Z} such that
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(i) Li ⊆ Li+1 for all i ∈ Z.

(ii) There exists a positive integer e, the period of L⋆, such that Li−e = ̟Li
for all i ∈ Z.

The ring
A = End(L⋆) : = {f ∈ A | f(Li)⊆Li ∀i ∈ Z} (4)

is a hereditary O-order in A of index (= type) e with invariants ni =
dimk(Li/Li−1). We have:

P−m
A = Endm(L⋆) : = {f ∈ A | f(Li)⊆Li+m ∀i ∈ Z}. (5)

Any hereditary O-order in A is of the form (4) for some lattice chain.

2.3 Étale base change

We keep the notation and assumption of the last section. Let A be a central
simple algebra and A an O-order in A with radical P.

Lemma 2.3. The following conditions are equivalent:
(i) A is hereditary.
(ii) There exists a two-sided invertible ideal M in A such that A/M is semisim-
ple and Me = ̟A for some e ≥ 1.
Moreover if M is as in (ii) then M = P.

Proof. (i) ⇒ (ii) follows from ([Re], (39.18) (iii) ) (for M = P).
(ii) ⇒ (i) In view of ([Re], (39.1)) it suffices to show that M = P. The
inclusion M⊇P is a consequence of the assumption that A/M is semisimple.
The converse inclusion follows from ([Re], exercise 1). �

Lemma 2.4. Let K ′/K be a finite unramified extension and O′ the integral
closure of O in K ′. Then A is hereditary (resp. principal) if only if A ⊗O O′

is hereditary (resp. principal). In this case P⊗OO′ is the radical of the latter.

Proof. We will prove only the statement for hereditary orders and leave the
case of principal orders to the reader. If A is hereditary then M : = P⊗O O′

satisfies the condition (ii) of Lemma 2.3. Hence A⊗O O′ is hereditary.
To prove the converse let P be a left A-lattice. We have to show that

HomA(P , ·) : ModA → ModO

is an exact functor or – since O′ is a faithfully flat O-algebra – that

HomA(P , ·)⊗O O′ ∼= HomA⊗OO′(P ⊗O O′, · ⊗O O′)

is exact. However the assumption implies that P⊗OO′ is a projective A⊗OO′-
module. �
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2.4 Morita equivalence

Let A be a central simple algebra and A a hereditary O-order in A with radical
P. If A′ is another O-order in A containing A then A′ is hereditary as well
and PA′⊆P.

Lemma 2.5. Let A1, . . . ,As be a collection of O-orders in A containing A with
radicals P1, . . . ,Ps. If A1 ∩ . . . ∩ As = A then P1 + . . .+ Ps = P.

Proof. Clearly P1 + . . .+Ps⊆P. By Lemma 2.4 to prove equality we may pass
to a finite unramified extension K ′/K. Hence we can assume A = EndK(V )
for some finite-dimensional K vector space V and that there exists a lattice
chain L⋆ = {Li | i ∈ Z} in V with period e = e(A) such that

A = {f ∈ A | f(Li)⊆Li ∀i ∈ Z}, P = {f ∈ A | f(Li)⊆Li−1 ∀i ∈ Z}.

Clearly it is enough to consider the case where s = e and Ai = {f ∈ A |
f(Li)⊆Li}, i = 1, . . . , e are the different maximal orders containing A. We
proceed by induction on e so we can assume that e > 1 and that the radical

P′ = {f ∈ A | f(Li)⊆Li−1 ∀ i 6≡ 0, 1 mod e and f(Li)⊆Li−2 ∀ i ≡ 1 mod e},

of B : = A1 ∩ . . . ∩Ae−1 is = P1 + . . .+ Pe−1.
Let f ∈ P. Consider the diagram of k-vector spaces

L1/L0
f //

� _

��

L0/L−1

Le/L0
g //___ L0/L−e

OOOO

where the vertical maps are induced by L1 →֒ Le and id : L0 → L0 respectively
and the upper horizontal map by f . There exists a dotted arrow g making
the diagram commutative. Let g ∈ HomO(Le,L0) = Pe be a “lift” of g.
Then g(x) ≡ f(x) mod L−1 for every x ∈ L1. Therefore (f − g)(L1)⊆L−1

and (f − g)(Li)⊆f(Li) + g(Le)⊆Li−1 + L0 = Li−1 for i = 2, . . . , e − 1 and
consequently f − g ∈ P′. This proves P⊆P′ + Pe = P1 + . . .+ Pe−1 + Pe.

�

Corollary 2.6. Let A be a hereditary O-order of type t with radical P in
the central simple K-algebra A and let A1, . . . ,At denote the different maximal
orders containing A. Then

A1 + . . .+At = P−t+1

is a two-sided invertible ideal.
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Proof. By ([Re], section 39, exercise 10) and Lemma 2.5 above we have

P = P1 + . . .+ Pt = PtA1 + . . .+ PtAt = Pt(A1 + . . .+At)

hence A1 + . . .+At = P−t+1. �

Let B be another central simple K-algebra which is equivalent to A and let B
a maximal order in B with radical M. Let I be an invertible A-B-bimodule,
J : = HomK(I,K) and let {Ii | i ∈ Z} and {Ji | i ∈ Z} be as in section 2.2.

Lemma 2.7. Consider Ii ⊗B Jj (resp. Ji ⊗A Ij) as a submodule of (Ii ⊗B
Jj)⊗O K = I ⊗B J (resp. J ⊗A I).
(a)

∑
i+j=−t+1 Ii ⊗B Jj ∼= A as an A-A-bimodule.

(b) Ji ⊗A Ij is an invertible bimodule. If i + j = 0 then Ji ⊗A Ij ∼= B (as
B-B-bimodule). We have

Ji+1 ⊗A Ij = Ji ⊗A Ij+1 =

{
M−1(Ji ⊗A Ij) if i+ j ≡ 0 mod r;
Ji ⊗A Ij if i+ j 6≡ 0 mod r

Proof. (a) Under the identification I ⊗B J = HomK(J,K)⊗B J = HomB(J, J)
the submodule Ii ⊗B Jj corresponds to HomB(J−i,Jj). Hence if we fix an
A-A-bimodule isomorphism I ⊗B J ∼= A so that HomB(J0,J0) is mapped to
A0 then for arbitrary i, j ∈ Z with i + j = 0 the module HomB(J−i,Jj) is
mapped to Ai. It follows

∑
i+j=0 Ii ⊗B Jj ∼= A1 + . . . + Ar hence together

with Lemma 2.5 the assertion.
(b) The proof of the first two statements is similar and will be left to the reader.
For the last statement note that

Coker(Ji ⊗A Ij → Ji+1 ⊗A Ij) ∼= Ji+1/Ji ⊗A Ij ∼= Ji+1/Ji ⊗A Ij/Ij−1

By (iii) above we have

Ji+1/Ji ⊗A Ij/Ij−1
∼= Ji+1/Ji ⊗A(j) Ij/Ij−1

∼= B

if i+ j ≡ 0 mod t and Ji+1/Ji ⊗A Ij/Ij−1 = 0 if i+ j 6≡ 0 mod t. �

Corollary 2.8. The assignment

M 7→ {M⊗A Ii | i ∈ Z}

defines an equivalence between the category of right A-lattices and the category
of increasing chains {Mi | i ∈ Z} of right B-lattices such that MiM =Mi−t
for all i ∈ Z. A quasi-inverse is given by

{Mi | i ∈ Z} 7→
∑

i+j=−t+1

Mi ⊗B Jj .

Here the sum is taken inside of (
⋃
i∈ZMi)⊗B J .
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Proposition 2.9. Let A1 and A2 be hereditary O-orders in central simple
K-algebras A1 and A2. The following conditions are equivalent:

(i) A1 and A2 are Morita equivalent.

(ii) A1 and A2 are equivalent and A1 and A2 have the same index.

Proof. We will show only that (ii) implies (i). The proof of the converse
is easier and will be left to the reader. Suppose that A1 and A2 have the
same period. Let D be a central division algebra over K equivalent to A1

and A2 and D be the maximal O-order in D. For ν = 1, 2 we fix increasing

sequences of Aν-D- and D-Aν -bimodules {I(ν)i | i ∈ Z} and {I(ν)i | i ∈ Z} as

in 2.2. Put I(ν) =
⋃
i∈Z I

(ν)
i and J (ν) =

⋃
i∈Z J

(ν)
i . The assumption implies

that X : =
∑
i+j=−t+1 I

(1)
i ⊗D J (2)

j is an A1-A2-lattice (the summation takes

place in I(1) ⊗D J (2)) and Y : =
∑
i+j=−t+1 I

(2)
i ⊗D J (1)

j a A2-A1-lattice. By
Corollary 2.8 above the assignment M 7→ M⊗A1 cX defines an equivalence
between the category of right A1-lattices and the category of right A2-lattices.
A quasi-inverse is given by N 7→ N ⊗A2 Y. This implies that A1 and A2

are Morita equivalent. In fact using Lemma 2.7 it is easy to see that the
X ⊗A2 Y ∼= A1 and Y ⊗A1 X ∼= A2. �

Recall that a right A-lattice M is called stably free if there exists integers
r ≥ 1, s ≥ 0 such that Mr ∼= As.

Lemma 2.10. Let A is a principal O-order of index e in a central simple K-
algebra of dimension n2. Let M1, . . . ,Mt be representatives of isomorphism
classes of indecomposable right A-lattices. For a right A-lattice M 6= 0 the
following conditions are equivalent.

(i) M is stably free.

(ii) M∼= (M1 ⊕ . . .⊕Mt)
r for some positive integer r.

(iii) D : = EndA(M) is a principal O-order of index e in a central simple
K-algebra D.

Moreover in this case A and D are Morita equivalent and M is an invertible
D-A-bimodule. If rankOM = rne then dimK(D) = (er)2.

Proof. The equivalence of (i) and (ii) follows immediately from Lemma 2.2.

(ii) ⇔ (iii) By Lemma 2.4 we may pass to a finite unramified extension K ′/K.
Therefore we can assume that A = EndK(V ) for an n-dimensional K-vector
space V and A = End(L⋆) for a lattice chain L⋆ with period e in V . There
exists r1, . . . , re ≥ 0 with

M∼= Lr11 ⊕ . . .⊕ Lr1e
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Since HomA(Li,Lj) ∼= pµ with i− j ≤ µe < i− j + e we have

EndA(M) ∼=




Mr1,r1(O) Mr1,r2(O) . . . Mr1,re(O)
Mr2,r1(p) Mr2,r2(O) . . . Mr2,re(O)

...
...

. . .
...

Mre,r1(p) Mre,r2(p) . . . Mre,re(O)




By ([Re], 39.14) the order on the right is a hereditary order in Mm(K) where
m =

∑e
i=1 ri. Its index is = e if and only if ri ≥ 1 for all i ∈ {1, . . . , e} and in

this case the invariants are (r1, . . . , re). The equivalence of (ii) and (iii) follows.
The proof of the last assertion will be left to the reader. �

Corollary 2.11. Let A be as in 2.10 and let M be a stably free A-module.
We have:

(a) rankOM is a multiple of en.

(b)M is free if and only if rankOM is a multiple of n2. In particular if e = n
then M is free.

Proof. If A ∼= Mm(D) where D is the central division algebra equivalent to A
then rankOMi = md2 with d2 = dimK(D). Hence if M∼= (M1 ⊕ . . .⊕Mt)

r

for r ∈ N then rankOM = rtmd2 = ren. The second assertion is obvious.
�

Corollary 2.12. Let A and B be a principal orders in central simple K-
algebras A and B and assume that dimK(A) = dimK(B) = n2 and e(A) =
e(B) = e. Let I be an A-B-bimodule. The following conditions are equivalent:

(i) I is an invertible A-B-bimodule.

(ii) I is a free left A-module of rank 1.

(iii) I is a free right B-module of rank 1.

Proof. (i) ⇒ (iii) We show first that I is a lattice. Let J be an inverse of I
and B−torJ its B-torsion (A-)submodule. Since B−torJ ⊗A I →֒ J ⊗A I ∼= B
we have B−torJ ⊗A I = 0 and therefore B−torJ = B−torJ ⊗A I ⊗B J = 0. For
m ∈ J ,m 6= 0 we get Bm ∼= B as left B-module and therefore

I ∼= I ⊗B Bm →֒ I ⊗B J ∼= A.

Hence I is a lattice. Let D : = EndB(I) ⊇ A. Thus I is a D-B-bimodule and
so I ⊗B J ∼= A is a D-A-bimodule. But EndA(AA) = A and therefore D = A.
By 2.10 and 2.11, I is a free B-module of rank 1.

(iii) ⇒ (i) By 2.10, D is a principal order of index e in a central simple K-
algebra D of dimension d2 and I is an invertible D-B-bimodule. Since D ⊇ A
this implies D = A. �
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Corollary 2.13. Let A be a hereditary O-order in central simple K-algebra
A of index e. Then there exists a principal O-order D in a central simple K-
algebra which is Morita equivalent to A. In fact that D can be chosen such that
rankO(D) = e2.

Proof. Let A′ be a principal O-order of index e in A′ : = Me(A) (since e2

divides dimK(A′) and e is a multiple of the order of [A′] = [A] in Br(F ) such
an order clearly exists). By Proposition 2.9 A′ is Morita equivalent to A. The
second assertion follows immediately from 3.11. �

2.5 Maximal tori

Let A be a central simple K-algebra of dimension n2 and A a hereditary O-
order in A with radical P. In this section we consider commutative étale
O-subalgebras of A. Note that a commutative finite flat O-algebra T is étale
if and only if Rad(T ) = ̟T .

Lemma 2.14. Let T be a commutative étale O-subalgebra of A. Then we have
Rad(T ) = T ∩P.

Proof. Since T is a direct product of local O-algebras T =
∏ Ti and Rad(T ) =∏

Rad(Ti) it suffices to prove the assertion for each factor. Thus we may
assume that T is a local ring. Hence Rad(T ) is the maximal ideal of T which
implies T ∩ P ⊆ Rad(T ). On the other hand, by the assumption, we have
Rad(T ) = ̟T hence Rad(T ) ⊆ T ∩P. �

A commutative étale O-subalgebra T of A is called maximal torus if rankO T =
n. It follows immediately from the structure theory for hereditary O-orders in
central simple K-algebras ([Re], 39.14) that there exists a maximal torus in A.
We have the following characterization of maximal tori:

Lemma 2.15. Let T be a commutative étale O-subalgebra of A. The following
conditions are equivalent.
(i) T is a maximal torus.
(ii) T is a maximal commutative étale O-subalgebras of A.
(iii) T = ZA(T ) = {x ∈ A | xt = tx ∀t ∈ T }.
(iv) T /Rad(T ) is a maximal commutative separable k-subalgebra of A/P.

Proof. The simple proof of the equivalence of the first three conditions will be
left to the reader.
(iii) ⇔ (iv) By 2.14 above we have Rad(T ) = T ∩ P = ̟T . Thus it follows
from Lemma 5.1 of the appendix that (iv) holds if and only if rankO T =
dimk(T /̟T ) = n. �
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Lemma 2.16. (a) If k = Fq and A is a maximal order in A then A admits a
maximal torus isomorphic to On, the ring of integers of the unramified exten-
sion of degree n of K.
(b) Let O′ be a finite étale local O-algebra and T be a maximal torus in A.
Then T ⊗O O′ is a maximal torus in A⊗O O′.
(c) For any two maximal tori T , T ′ of A there exists a finite étale local O-
algebra O′ such that T ⊗O O′ and T ′ ⊗O O′ are conjugated (by some a ∈
(A⊗O O′)∗).

Proof. (a) and (b) are obvious.
To prove (c) we may pass to a finite unramified extension of K if necessary so
that A = EndK(V ) and A = End(L⋆) where V is a finite-dimensional K-vector
space and L⋆ is a lattice chain in V . We may also assume that T ∼= On ∼=
T ′ where n = dim(V ). Let e be the period of L⋆ and let Li : = Li/Li−1.
Consider the A : = A/P-module L : =

⊕e
i=1 Li. As a T : = T /Rad(T )- and

T ′
: = T ′/Rad(T ′)-module it is free of rank 1 (by Lemma 5.3 of the appendix).

Hence there exists an isomorphism Θ : T → T ′
such that Θ(t̄)x = t̄x for all

t̄ ∈ T , x ∈ L. We choose a lifting Θ of Θ i.e. an isomorphism of O-algebras
Θ : T → T ′ which reduces to Θ modulo ̟. Then for any i ∈ Z we h ave

Θ(t)x = tx for all t ∈ T , x ∈ Li (6)

Since L0 is a free T - and T ′-module of rank 1 there exists f ∈ AutO(L0) ⊆ A∗

such that f(tx) = Θ(t)f(x) for all t ∈ T , x ∈ L0. Hence Θ(t) = ftf−1 for all
t ∈ T and therefore T ′ = fT f−1. We claim that f ∈ A∗, i.e. f(Li) = Li for
all i ∈ Z. For that it is enough to see that f(Li) ⊆ Li for all i = 1, 2, . . . e and
in fact for i = 1 (by induction). Note that f(L1) ⊆ f(Le) = ̟−1f(L0) = Le.
Choose i ∈ {1, 2, . . . , e} minimal with f(L1) ⊆ Li and assume that i ≥ 2. Then
f induces a nontrivial T -linear homomorphism f̄ : L1 −→ Li such that

f̄(tx) = Θ(t)f̄(x) = tf̄(x) for all t ∈ T , x ∈ Li.

On the other hand since L is a free T -module of rank 1 we have HomT (L1,Li)
= 0, a contradiction. This proves f ∈ A∗. �

We need the following two simple Lemmas in section 3.3.

Lemma 2.17. Suppose that A is principal and let T be a maximal torus in A.
Let M be a A-lattice and put T : = T /Rad(T ). The following conditions are
equivalent.
(i) M is stably free.
(ii) M/PM is a free T -module.

The proof will be left to the reader.

Lemma 2.18. Assume that A is principal and let T be a maximal torus in
A. Let 0 →M′ →M → N → 0 be a short exact sequence of A-modules and
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assume thatM is a stably free A-lattice and ̟N = 0. The following conditions
are equivalent.
(i) M′ is stably free.
(ii) N is a free T -module.

Proof. By using the exact sequence

0 −→ Ker(N ⊗A P→ N )→M′/PM′ −→M/PM−→ N/PN −→ 0

we see that

[M′/PM′] = [M/PM] + [Ker(N ⊗A P→ N )]− [N/PN ]

= [M/PM] + [N ⊗A P]− [N ]

in the Grothendieck group K0(T ). Note that [N ] = [N ⊗A P] if and only if
N is a free T -module. Hence (ii) is equivalent to the equality [M′/PM′] =
[M/PM] in K0(T ). The assertion follows from 2.17. �

2.6 Local theory of invertible Frobenius bimodules

Let O be a henselian discrete valuation ring with quotient field K, maximal
ideal (̟) = p and residue field k = O/p. We assume that k is finite of
characteristic p. Let vK be the normalized valuation of K. We denote by inv
the canonical isomorphism Br(K) → Q/Z of class field theory. Let O′ be a
finite étale local O-algebra with quotient field K ′. By σ ∈ G(K ′/K) we denote
Frobenius isomorphism (i.e. σ(x) ≡ x♯(k) mod p). For an O′-module M we
write σM for M ⊗O′,σ O′ (or equivalently σM = M with the new O′-action
x ·m = σ(x)m).
Let A be a central simple K-algebra of dimension d2 and A a principal O-order
in A with radical P and index e = e(A) (note that we have e inv(A) = 0). Let
M be a free right AO′ -module of rank 1 together with an isomorphism of
AO′ -modules

φ : σMPm −→M
for some m ∈ Z. We set

B : = EndAO′ (M, φ) = {f ∈ EndAO′ (M) | φ ◦ f = σf ◦ φ}.

Lemma 2.19. The O-algebra B is a principal order of index e in the central
simple K-algebra B : = BK of dimension d2. We have

inv(B) = inv(A) +
m

e
mod Z (7)

Proof. Let φK′ : = φ ⊗O′ idK′ : σ(MK′) → MK′ . By Lemma 2.10
the O′-algebra B′ : = EndAO′ (M) is a principal O′-order of index e in
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B′ : = EndAK′ (MK′). Define a σ-linear isomorphism ψ : B′ → B′ by

ψ(f) : = φ−1
K′ ◦ f ◦ φK′ . We have

B = {b ∈ B′ | ψ(b) = b} and B′ ∼= BO′ .

Together with Lemma 2.4 this implies the first statement. The proof of the
second assertion will be left to the reader. �

Conversely suppose that we have given a second central simple K-algebra B
of dimension d2 and a principal O-order B in B of index e. We also assume
that [K ′ : K] is a multiple of the order of [B ⊗Aopp] in Br(K). Let m be any
integer such that (7) holds.

Lemma 2.20. There exists an invertible BO′-AO′-bimoduleM and an isomor-
phism of bimodules

φ : σMPm −→M.

Proof. By Proposition 2.9 the principal orders BO′ and AO′ are Morita equiv-
alent. Let M be an invertible BO′-AO′-bimodule. Then σM is invertible as
well. Hence there exists an isomorphism φ′ : σMPm′ →M for some m′ ∈ Z.
By 2.19 we have

inv(B) = inv(A) +
m′

e
mod Z

and therefore m ≡ m′ mod e. Put φ : = ̟
m′−m
e φ′. �

For the rest of this section we assume that O is an Fq-algebra (q = pr for
some r ∈ Z) and let k′ be an (possibly infinite) algebraic extension of k whose
degree (over k) is a multiple of e. Let O′ : = O⊗Fq k

′ and σ : = idO ⊗Frobq ∈
G(O′/O). For ρ ∈ HomFq(k, k

′) ∼= Homk′ (k ⊗Fq k
′, k′) we denote the kernel of

O′ → k ⊗Fq k
′ → k′ by p′ρ and we set O′

ρ : = O′
p′
ρ
. Then O′

ρ is a (pro-)finite

(pro-)étale local O-algebra whose degree is a multiple of e and O′ ∼=
⊕

ρ O′
ρ.

Similarly

AO′ =
⊕

ρ

A′
ρ with A′

ρ = AO′
ρ

and PO′ = Rad(AO′) is equal to the product
∏
ρ P′

ρ where P′
ρ denotes the

maximal invertible two-sided ideal Ker(AO′ → A′
ρ/Rad(A′

ρ)) of AO′ . For the
distinguished element ι : = incl : k →֒ k′ in HomFq(k, k

′) we put p′ = p′ρ and
P′ : = P′

ι. Let M be a free right AO′-module of rank 1. For m ∈ Z the AO′-
module σ(M(P′)m) is also free of rank 1. Hence there exists an isomorphism

φ : σ(M(P′)m) −→M.

If we set

B : = EndAO′ (M, φ) = {f ∈ EndAO′ (M) | φ ◦ f = ◦ φ}.
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then one can deduce easily from Lemma 2.19 that B is a principal O-order of
index e in the central simple K-algebra B = BK and that equation (7) holds.
Conversely given such a principal O-order B of index e and m ∈ Z such that
(7) holds there exists a pair (M, φ) as above with B = EndAO′ (M, φ). To see
this letM be any invertible BO′-AO′-bimodule. Since σM is invertible as well
we have

σ(M
∏

ρ

(P′
ρ)
mρ) ∼=M (8)

for certain mρ ∈ Z. Since σ(P′
ρ)
∼= P′

Frobq ◦ρ we may assume – after replacing
M by MA for a suitable invertible two-sided AO′-ideal A – that mρ = 0 for
all ρ ∈ HomFq (k, k

′) except ρ = ι. As in the proof of Lemma 2.20 we deduce

inv(B) = inv(A) +
mι

e
mod Z

hence mι
∼= m mod e and therefore (P′)mι ∼= (P′)m. Hence there also exists

an isomorphism σ(M(P′)m) ∼=M.

Definition 2.21. A pair (M, φ) consisting of an invertible BO′-AO′-bimodule
M and an isomorphism φ : σ(M(P′)m) → M is called an invertible φ-A-B-
bimodule of slope −me over O′.

We have seen that an invertible BO′-AO′-bimodule of a given slope r ∈ Q exists
and only if r = inv(A) − inv(B) mod Z. It is also easy to see that any two
invertible BO′-AO′-bimodules of the same slope differ (up to isomorphism) by
a fractional A-ideal. This implies that if k′′ is an algebraic extension of k′ and
O′′ = O ⊗Fq k

′′ then any φ-A-B-bimodule over O′′ is obtained by base change
from an φ-A-B-bimodule over O′.

Remark 2.22. Assume that [k′ : k] = e and let n = [k′ : Fq]. Let (M, φ)
be an invertible BO′-AO′-bimodule of slope −me . For r ∈ Z/nZ we put P′

r =
σrP′. We have

∏
r∈Z/nZ P′

r = Pe
O′ = pAO′ . For each two-sided invertible

ideal A′ of AO′ and r ∈ Z/nZ, the map φ induces isomorphisms (σ
rM)A′ →

(σ
r−1M)A′P′

r
m

which will be also denoted by φ. Consider the map

φn :M = (σ
nM)

φ−→ (σ
n−1M)P′

n
m φ−→ . . . −→M

∏

r∈Z/nZ

P′m
r =Mpm (9)

Since (9) is BO′-AO′-bilinear and commutes with φ there exists an element
x ∈ K with vK(x) = m such that (9) is given by multiplication with x. This
fact will be used later when we discuss level structure at the pole of A-elliptic
sheaves.

3 Global theory of hereditary orders

In this section we study hereditary orders in a central simple algebras over a
function field of one variable (though most results hold also for number fields).
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We shall show that two hereditary orders are Morita equivalent if their generic
fibers are equivalent and all their local indices are the same. Furthermore any
such hereditary order is Morita equivalent to a locally principal one. We will
then study the Picard group of a locally principal order A and introduce the
notion of A-degree of a locally free A-module of finite rank. In the final part
we will introduce the notion of a special A-module.
In this chapter k denotes a fixed perfect field of cohomological dimension ≤ 1
and X a smooth projective geometrically connected curve over k with function
field F . For x ∈ |X | we denote by Ox the completion of OX,x and by Fx the
quotient field of Ox. The maximal ideal of Ox will be denoted by px. If V is a
coherentOX -module then we set Vx = V⊗OXOx and if V is a finite-dimensional
F -vector space we put Vx = V ⊗F Fx.

3.1 Morita equivalence.

Let V be a finite-dimensional F -vector space. The set of locally free coherent
OX -modules V with generic fiber Vη = V is in one-to-one correspondence with
the set of Ox-lattices Vx in Vx for all x ∈ |X | such that there exists an F -basis
B of V with Vx =

∑
b∈B Oxb for almost all x. Consequently if U⊆X is an

open subscheme then there is a one-to-one correspondence between coherent
and locally free OX -modules V and coherent and locally free OU -module VU
and together with an Ox-lattice Vx in VU ⊗ Fx for all x ∈ X − U .
Let A be a central simple F -algebra and A a hereditary OX -order in A. We put
ex(A) : = e(Ax). There are only finitely many points x ∈ |X | with ex(A) > 1.
Define the divisor Disc(A) as Disc(A) : =

∑
x∈|X| (ex(A) − 1)x. If k is finite

and x ∈ |X | then invx(A) denotes the image of the class of Ax under the
canonical isomorphism of class field theory Br(Fv)→ Q/Z.

Proposition 3.1. Let A1, A2 be central simple algebras over F and let A1 and
A2 be hereditary OX-orders in A1 and A2 respectively. The following conditions
are equivalent.
(i) A1 and A2 are equivalent.
(ii) A1 and A2 are equivalent and (A1)x and (A2)x are equivalent for all x ∈
|X |.
(iii) A1 and A2 are equivalent and Disc(A1) = Disc(A2).
Moreover if k is a finite field then the above conditions are also equivalent to:
(iv) invx(A1) = invx(A2) for all x ∈ |X | and Disc(A1) = Disc(A2).

Proof. (i) ⇒ (ii) is clear. (ii) ⇔ (iii) follows from Proposition 2.9 and (iii)
⇔ (iv) from the Theorem of Brauer–Hasse–Noether. It remains to show that
(ii) implies (i). Let U be an affine open subscheme of X contained in the
complement of Disc(A1) = Disc(A2) in X . By ([Re], 21.7) A1|U and A2|U are
Morita equivalent. Let IU be an invertible A1|U -A2|U -bimodule and let Ix be
an invertible (A1)x-(A2)x-bimodule for each x ∈ X − U . Since there is only
one invertible (A1)x-(A2)x-bimodule up to isomorphism we may assume that
Ix⊗Fx = IU ⊗Fx i.e. that Ix is a lattice in IU ⊗Fx. It is easy to see that the
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locally free OX -module I corresponding to IU and the Ix, x ∈ X − U is then
an invertible A1-A2-bimodule. �

A locally principal OX-order A is a hereditary OX -order in a central simple
F -algebra A such that Ax is principal for all x ∈ |X |. The rank of A is its rank
as an OX -module, hence = dimF (A). If A is a hereditary OX -order in A then
it is locally principal if for example Ax is either maximal or ex(A) = d for all
x ∈ |Disc(A)|.
Suppose that A is a locally principal OX -order of rank d2. We define two
positive integers e(A), δ(A) by

e(A) : = lcm{ex(A) | x ∈ |X |} (10)

δ(A) : = lcm{ numerator of ex(A)
deg(x) | x ∈ |X |}

According to Lemma 2.2 we have δ(A) | e(A) | d. If A is locally principal then
one can easily see that

deg(A) = −d
2

2

∑

x∈|X|
(1− 1

ex(A)
) deg(x).

In particular if B is a second locally principal OX -order of rank d2 with
Disc(A) = Disc(B) then

deg(A) = deg(B). (11)

Corollary 3.2. Let A be a hereditary OX-order in a central simple F -algebra
A. Then there exists a locally principal OX -order D which is Morita equivalent
to A. In fact D can be chosen such that rankOX (D) = e(A)2.

Proof. That A is equivalent to a locally principal OX -order follows easily from
the corresponding local statement 2.13. In fact if B : = Me(A) then for all
x ∈ |Disc(A)| we can pick a principal Ox-order Bx in Bx equivalent to Ax. If
U : = X − |Disc(A)| and BU is a maximal OU -order in B then there exists a
uniquely determined hereditary OX -order B in B with B ⊗OX Ox = Bx for all
x ∈ |Disc(A)| and B|U = BU . The order B is locally principal and equivalent
to A by 3.1.
Thus to prove the second statement we may assume that A is locally prin-
cipal. Let I be a locally stably free A-module which is of rank de as an
OX -module. By Lemma 2.10 and 3.1 above it follows that D : = EndA(I) is
a locally principal OX -order in EndA(Iη). Moreover D is equivalent to A and
rankOX (D) = e(A)2. �

3.2 Locally free A-modules
The Picard group of a locally principal order. In this section A
denotes a locally principal OX -order of rank d2. We are going to compute the
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Picard group of A. We define

Div(A) : = {
∑

x∈|X|
nxx ∈ Div(X)⊗Q | ex(A)nx ∈ Z ∀x ∈ |X |}.

Note that deg(Div(A)) = 1
δ(A)Z. For a divisor D =

∑
x∈|X| nxx ∈ Div(A)) we

denote by A(D) the invertible A-A-bimodule given by A(D)|X−|D| = A|X−|D|
and A(D)x = P

−nxex(A)
Ax for all x ∈ |X |. If D ∈ Div(X) then A(D) = A ⊗OX

OX(D).

Proposition 3.3. The sequence

0 −→ F ∗/k∗
div−→ Div(A)

D 7→A(D)−→ Pic(A) −→ 0

is exact.

Proof. This follows from ([Re], 40.9). �

We also need to consider the group of isomorphism classes of invertible A-A-
bimodules with level structure and give a description of it as an idele class
group. Let I =

∑
x nxx be an effective divisor on X . The corresponding

finite closed subscheme of X will be also denoted by I. A level-I-structure on
an invertible A-A-bimodule L is an isomorphism β : AI → LI of right AI -
modules. We denote by PicI(A) the set of isomorphism classes of invertible
A-A-bimodules with level-I-structure. If (L1, β1), (L2, β2) are invertible A-
A-bimodules with level-I-structures we define the level-I-structure β1β2 on
L1 ⊗A L2 as the composite

β1β2 : AI β2−−−−→ (L2)I = AI ⊗AI (L2)I
β1⊗id−−−−→ (L1 ⊗A L2)I (12)

thus defining a group structure on PicI(A). Note that unlike Pic(A), PicI(A)
is in general not abelian. In fact we have a short exact sequence

0 −→ Γ(I,AI)∗/k∗ −→ PicI(A) −→ Pic(A) −→ 0 (13)

where the first map is given by a ∈ Γ(I,AI)∗ 7→ (A, la : AI a·−→ AI) .
Let UI(A) : = Ker(

∏
x∈|X| A∗

x →
∏
x∈|X| (Ax/pnxx Ax)∗ = Γ(I,AI)∗) and let

CI(A) : = (
∏′
x∈|X| N(Ax))/UI(A)F ∗

where
∏′
x∈|X| N(Ax)) denotes the restricted direct product of the groups

{N(Ax))}x∈|X| with respect to {A∗
x}x∈|X|. Given a = {ax}x ∈

∏′
x∈|X| N(Ax)

we put div(a) =
∑

x∈|X| vAx(ax)x. Left multiplication by a induces a level-I-

structure βa : AI → A(div(a))I .

Corollary 3.4. The assignement a 7→ (A(div(a)), βa) induces an isomor-
phism CI(A) ∼= PicI(A).
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Relative divisors and invertible bimodules. Let S be a k-scheme and
let π : X × S → S be the projection. We need to define the bimodule A(D)
also for elements of a certain group of relative divisors Div(A ⊠OS). For the
latter we use the following ad hoc definition. Assume first that S is of finite
type over k. Let S be the collection of all connected components of x×S where
x runs through all closed points of X . Thus if S′ ∈ S there exists a unique
closed point x : = π(S′) with S′ ⊆ x× S. We set

Div(A⊠OS) : =
⊕

S′∈S

1

eπ(S′)(A)
Z.

Let R be the integral closure of k in Γ(S,OS). Note that for x ∈ |X | the set
of open and closed subschemes of x× S corresponds to the set of idempotents
in k(x) ⊗k Γ(S,OS). If f : S1 → S2 is a morphism of k-schemes there is an
obvious notion of a pull-back f∗ : Div(A ⊠ OS2) → Div(A ⊠ OS1). For an
arbitrary k-scheme we define Div(A⊠OS) as the direct limit of Div(A⊠OS′)
over the category of pairs (S′, g) consisting of a k-scheme S′ of finite type and
a morphism g : S → S′ in Sch /k.
Let S ∈ Sch /k. A k-morphism xS : S → X which factors as S → Spec k(x)→
X for some x ∈ |X | yields an element – denoted by xS as well – of the group
Div(A⊠OS). For that we can assume that S is of finite type. Since the graph
ΓxS = (xS , idS) : S −→ X × S is an open and closed subscheme of x × S it is
a disjoint union of connected components and we define xS ∈ Div(A⊠OS) to
be the sum of these components.
There exists a unique homomorphism

Div(A⊠OS)→ Pic(A⊠OS), D 7→ (A⊠OS)(D) (14)

compatible with pull-backs which agrees with the previously defined map in
case S = Spec k′ for a finite extension k′/k. It suffices to define (14) for

1
ex(A)D, where D is a connected component of x × S for some x ∈ |X |. It is

also enough to consider the case where S is connected and of finite type over
k. Let R be the integral closure of k in Γ(S,OS). Then SpecR is connected
and finite over Spec k, i.e. R is an artinian finite local k-algebra. Let k′ denotes
the residue field of R. Since k is perfect the canonical projection R → k′ has
a unique section. Therefore the structural morphism S → Spec k factors as
S → Spec k′ → Spec k. Thus by replacing k, X and A by k′ and Xk′ and
A⊠ k′ respectively we can assume that the residue field of R is k. However, in
this case, x × S is connected for all x ∈ |X |, hence D = x× S with x = π(D).
S o we are forced to define (A⊠OS)( 1

ex(A)D) : = π∗(A( 1
ex(A)x)).

A-rank and A-degree. Let f : S → X be a morphism. For E in f∗(A) Mod
and F in Modf∗(A) we put E ⊗A F : = E ⊗f∗(A) F . If D =

∑
x∈|X| nxx ∈

Div(A) we set E(D) : = E ⊗A f∗(A(D)) and F(D) : = f∗(A(D) ⊠OS)⊗A F .
Let S be a k-scheme. We denote by AVect(S) (resp. VectA(S)) the category co-
herent and locally free left (resp. right) A⊠OS-modules. For F in AVect(S) or
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VectA(S) let rankAF be the locally constant function s 7→ rankA⊠k(s)(F|X×s)
on S (hence rankAF can be viewed as an element of Zπ0(S)). For a posi-
tive integer r we denote by AVectr(S) (resp. VectrA(S)) the subcategory of
F ∈ AVect(S) (resp. F ∈ VectA(S)) with rankAF = r.
Let F be a locally free A⊠OS-module of rank r. Define detA F as the image of
the isomorphism class of F (viewed as an element of H1(X ×S,GLr(A⊠OS))
under the map

H1
zar(X × S,GLr(A⊠OS) −→ H1

zar(X × S,O∗) = Pic(X × S)

induced by the reduced norm Nrd : Mr(A)→ F . We obtain a locally constant
function

degA(F) : S → 1

d
Z, s 7→ deg((detA F)|X×s)

It is easy to see that

degA(F) =
1

d2
(deg(F)− rankA(F) deg(A)).

In particular since deg(A(D)) = deg(A) + d2 deg(D) we have

degA(A(D)) = deg(D)

for D ∈ Div(A).

Lemma 3.5. (a) Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
coherent and locally free A⊠OS-modules. Then

degA(F2) = degA(F1) + degA(F3).

(b) Let E be an object of VectrA(S) and F be an object of AVects(S). Then

1

d2
(deg(E ⊗A F)− rs deg(A)) = r degA(F) + s degA(E).

(c) Let B be a second locally principal OX-order of rank d2 equivalent to A.
Let E be an object of VectrA(S) and let I be an invertible A-B-bimodule. Then

degB(E ⊗A I) = degA(E) + r degA(I).

(d) Let E be an object of AVectr(S) and D ∈ Div(A). Then

degA(E(D)) = degA(E) + r deg(D)

Proof. (a) is obvious, (c) follows from (b) and (11) and (d) is a special case of
(c). Note that by 2.12 the bimodule L in (c) is a locally-free left A- and right
B-module of rank 1.
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For (b) it is enough to consider the case when S is a connected k-scheme of
finite type and therefore – by chosing a fixed closed point s ∈ S and taking the
base change Spec k(s)→ Spec k – to consider the case S = Spec k. If

E

E ′′
88qqqqq

&&MMM
MM

E ′

(15)

is a diagram of locally free A ⊠ OS-modules of the same rank r and injective
A⊠OS-linear homomorphisms then it is easy to see that (b) holds for E if and
only if it holds for E ′. Since E|U ∼= Ar|U for some non-empty open subscheme
U⊆X there exists a diagram (15) with E ′ = Ar. The assertion follows. �

It follows from 3.3 or 3.5 (b) that degA : Pic(A) → Q is a homomorphism.
We denote its kernel by Pic0(A). Also if I ∈ Div(X) we let PicI,0(A) be the
subgroup of (L, β) ∈ PicI(A) with degA(L) = 0. The image degA(Pic(A)) is
equal to 1

δ(A)Z.

Remark 3.6. Let A,B be locally principal OX -order of rank d2 and suppose
that A and B are equivalent. The set of isomorphism classes of invertible
A-B-bimodule has a simple transitive left Pic(A)-action. Hence for any two
invertible A-B-bimodule I,J the degrees degA(J ) and degA(I) differ by a
multiple of 1

δ(A) . Call A and B strongly Morita equivalent if there exists an

invertible A-B-bimodule I with degA(I) = 0. It is easy to see that a given
equivalence class of locally principal OX -orders of rank d2 decomposes into e

δ
strong equivalence classes (where e and δ are defined in (10)).

3.3 Special A-modules
Let A be a locally principal OX -order of rank d2. If g : U → X is an étale
morphism then a maximal torus in AU : = g∗(A) is a maximal commutative
étale OU -subalgebra of AU .

Definition 3.7. A right A ⊠ OS-module K is called special of rank r if the
following holds:

(i) K is coherent as an OX×S-module and the map Supp(K) →֒ X×S → S is
an isomorphism. Hence Supp(K) is the image of the graph of a morphism
N = N(K) : S → X and K is the direct image of a N∗(A)-module – also
denoted by K – by the graph ΓN = (N, idS) : S → X × S.

(ii) Consider K as a sheaf on S as in (i). For any étale morphism g : U → X
and maximal torus T of AU , (gS)∗(K) is a locally free (NU )∗(T )-module
of rank r. Here gS (resp. NU ) denote the base change of g (resp. N) with
respect to N (resp. g).
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We denote by CohrA,sp the stack over k such that for each S ∈ Sch /k,
CohrA,sp(S) is the groupoid of special A ⊠ OS-modules of rank r. The mor-
phism K 7→ N(K) will be denoted by N : CohrA,sp → X.

Remarks 3.8. (a) By Lemma 2.16 it suffices to check condition (ii) for a fixed
étale covering {Ui → U} and maximal tori Ti of AUi .
(b) Let K be as in 3.7 satisfying (i) and assume that N(K) : S → X factors
through X− |Disc(A)|. Then K is special of rank r if and only if K is a locally
free of rank rd as an OS-module.
(c) Let A′ be another locally principal OX -order of rank d2 equivalent to A and
let I be an invertible A-A′-bimodule. Tensoring with I maps CohrA,sp isomor-
phically to CohrA′,sp. This follows easily from the fact that, locally on X , A and
A′ are isomorphic. More generally if A are equivalent on some open subscheme
U ⊆ X and I is a A-A′-bimodule which is invertible on U then tensoring with
I yields an isomorphism · ⊗A I : CohrA,sp×XU → CohrA′,sp×XU .

Except in the appendix, we need to consider only the case r = 1. In the fol-
lowing we investigate the geometric properties of CohA,sp : = CohrA,sp. Recall
that a morphism f : Y → X is said to be semistable if its generic fiber is
smooth and for any y ∈ Y there exists an étale neighbourhood Y ′ of y, an
open affine neighbourhood SpecR of x = f(y) and a smooth X-morphism

Y ′ g−→ SpecR[T1, . . . , Tr]/(T1 · · ·Tr − ̟) for some r ≥ 1, where ̟ is a local
parameter at x. Equivalently, Y is a smooth k-scheme, the generic fiber Yη
is smooth over F and the closed fiber Yx is a reduced divisor with normal
crossings for all x ∈ |X |. Therefore if f is semistable it is flat.
We have the following simple Lemma whose proof will be left to the reader:

Lemma 3.9. Let Y1
f−→ Y2

g−→ X be morphism of schemes such that f is
smooth and surjective. Then g is semistable if and only if g ◦ f is semistable.

Let Y be an algebraic stack over k. We will call a morphism f : Y → X
semistable if there exists a scheme Y and a presentation P : Y → Y (i.e. P is
smooth and surjective) such that f ◦ P : Y → X is semistable. It follows from
3.9 that if this holds then any presentation P ′ : Y ′ → Y (with Y ′ a scheme) has
this property. In particular if Y is a scheme the two notions of semistability
agree.
Our aim in this section is to prove the following result.

Proposition 3.10. CohA,sp is an algebraic stack over Fq. The morphism
N : CohA,sp → X is semistable of relative dimension −1. Its restriction to the
open subset X − Disc(A) is smooth. Consequently CohA,sp is locally of finite
type and smooth over Fq.

Proof. The last assertion follows from ([Lau], 3.2.1). Since the assertion is
étale local on X we may assume that X = SpecR is affine with R a principal
ideal domain, |Disc(A)| = {p} and the generic fiber of A is ∼= Md(F ). By
3.2 we may also assume that ep(A) = d. Let ̟ be a generator of p. Then
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Γ(SpecR,A) is isomorphic to the R-subalgebra of Md(R) of matrices which
are upper triangular modulo p. Hence Γ(SpecR,A) can be identified with the
R-algebra Rd{Π} defined by the relations

Π(x1, . . . , xd) = (x2, . . . , xd, x1)Π, Πd = ̟.

Let Coh�
A,sp(S) denote the groupoid of pairs (K, α) where K ∈ CohA,sp(S)

and α : OnS → N∗(K) is an isomorphism. The action of Π on K yields – by
transport of structure via α – a map OnS → OnS of the form (x1, . . . , xd) 7→
(x2a1, . . . , xdad−1, x1ad) for some (a1, . . . , ad) ∈ Γ(S,OS) such that a1 · · · ad =
N∗(̟). Thus the assignement (K, α) 7→ (N, a1, . . . , ad) defines an isomorphism

Coh�
A,sp ∼= SpecR[T1, . . . , Td]/(T1 · · ·Td −̟)

Finally the forgetful morphism Coh�
A,sp → CohA,sp is a presentation. In fact

it induces an isomorphism Gdm\Coh�
A,sp ∼= CohA,sp. Here the Gdm action on

Coh�
A,sp is defined by the natural Gdm(S)-action on the set of isomorphisms

α : OnS → N∗(K). �

We finish this section with the following criterion for an A ⊠OS-module E to
be a locally free.

Lemma 3.11. Let U ⊆ X be a non-empty open subscheme such that E|U×S is
a locally free AU ⊠OS-module. The following conditions are equivalent.
(i) E is a locally free A⊠OS-module of rank r.
(ii) For x ∈ |X − U | and any pair of k-morphism g : S′ → S and xS′ : S′ →
Spec k(x) → X the quotient g∗(E)/g∗(E)(− 1

ex(A)xS′) is a special A-module of

rank r.
(iii) For x ∈ |Disc(A)| − U and any pair of k-morphism g : S′ → S and
xS′ : S′ → Spec k(x) → X the quotient g∗(E)/g∗(E)(− 1

ex(A)xS′) is a special

A-module of rank r.

Proof. That (i) implies (ii) follows from Lemma 2.17 and the equivalence of
(ii) and (iii) from 3.8 (b) above.
(ii)⇒ (i) We may assume that S is affine, hence that S and of finite type over k.
For y ∈ |X×S| we have to show that E ⊗O(X×S),y is a free (A⊗OX O(X×S),y-
module. It follows from ([Laf], I.2, lemme 4) that we may even replace S by
the image s of y → X × S → S. It follows from ([Laf], I.2, lemme 4). Thus it
is enough to prove (i) if S = Spec k is the algebraic closure of k. However in
this case the assertion follows from 2.11 and 2.17. �

We have the following generalization of ([Lau], Lemma 1.2.6).

Lemma 3.12. Let 0 → E ′ → E → K → 0 be a short exact sequence of right
A ⊠ OS-modules. We assume K is coherent as an OX×S-module, the map
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Supp(K) →֒ X × S → S is an isomorphism and K is as an OS-module locally
free of rank rd. We also assume that E is a locally free A⊠OS-module of rank
r. Then the following conditions are equivalent.
(i) E ′ is a locally free A⊠OS-module of rank r.
(ii) K is special of rank r.

Proof. Again by using Lafforgues Lemma ([Laf], I.2.4) (applied to A and max-
imal tori in A) it suffices to consider the case where k is algebraically closed
and S = Spec k. The assertion follows then from Lemma 2.18. �

4 The moduli space of A-elliptic sheaves

4.1 A-elliptic sheaves

In this chapter X denotes a smooth projective geometrically connected curve
over the finite field Fq of characteristic p, F the function field of X . We also
fix a closed point ∞ ∈ |X |. Let A be a locally principal OX -order of rank d2

and let A be its generic fiber. We make the following

Assumption 4.1. e∞(A) = d.

Definition 4.2. Let S be an Fq-scheme. An A-elliptic sheaf over S with pole
∞ is a triple E = (E ,∞S , t), where E is a locally free right A⊠OS-module of
rank 1, where ∞S : S → X is an Fq-morphism with ∞S(S) = {∞} and where

t : τ (E(−1

d
∞S)) −→ E

is an injective A⊠OS-linear homomorphism such that the following condition
holds:
(*) The map Supp(Coker(t)) →֒ X × S → S is an isomorphism. Considered
as a sheaf on S, K is a locally free OS-module of rank d.
Hence Supp(Coker(t)) is the image of the graph of a Fq-morphism ι0 : S → X
called the zero (or characteristic) of E.
We denote by Eℓℓ∞A the stack over Fq such that for each S ∈ Sch /k, Eℓℓ∞A (S) is
the category whose objects are A-elliptic sheaves over S and whose morphisms
are isomorphisms between A-elliptic sheaves.

For n ∈ 1
dZ we define Eℓℓ∞A,n to be the open and closed substack of A-elliptic

sheaves E = (E ,∞S , t) with fixed degree degA(E) = n. The functor which
maps an A-elliptic sheaf over E = (E ,∞S , t) over S to its zero ι0 : S → X
defines a morphism char : Eℓℓ∞A → X (called the characteristic morphism).
Similarly E = (E ,∞S , t) 7→ ∞S defines a morphism pole : Eℓℓ∞A → Spec k(∞).
By Lemma 3.12, Coker(t) is a special A-module of rank 1. This fact allows
us to compare the above condition (*) with the condition spéciale in ([Hau],
section 3) (see also 5.11 (b) below). It follows that the characteristic morphism
factors as

char : Eℓℓ∞A −→ CohA,sp
N−→ X (16)
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We will see in the proof of Theorem 4.11 below that the first arrow is smooth.

Remarks 4.3. (a) The concept of an A-elliptic sheaf is due to Laumon,
Rapoport and Stuhler ([LRS], section 2). The definition given above is dif-
ferent but, as will be explained in the appendix, equivalent to the one given
in ([LRS], section 2). In fact our Definition 4.2 is slightly more general. Their
notion corresponds to an A-elliptic sheaf where (i) A is a division algebra which
is unramified at ∞, (ii) A|X−{∞} is a maximal order in A and (iii) the zero
ι0 is disjoint from |Disc(A)|, i.e. ι0 factors through X − |Disc(A)| →֒ X (the
latter condition was weakened in [BS] and [Hau] to require only that ι0 factors
through (X − |Disc(A)|) ∪ {∞} ∪ {x ∈ |X | | invx(A) = 1

d}).
(b) Let A be the subsheaf of Md(OX) of matrices which are upper triangular

modulo∞. In this case Eℓℓ∞A is isomorphic to the stack Eℓℓ(d)X of elliptic sheaves
of rank d (hence above X − {∞} it is isomorphic to the stack of Drinfeld
modules of rank d; compare ([BS], section 3)). In fact by Proposition 5.10 of
the appendix we have Eℓℓ∞A ∼= PEℓℓ∞Md(OX ) and the latter is isomorphic to the

stack of Eℓℓ(d)X by Morita equivalence.
(c) If A is a division algebra then A-elliptic sheaves are special cases of right
A-shtukas of rank 1 ([Laf], 1.1). Recall that an A-shtuka of rank 1 is a diagram

E j

&&MMMMM

E ′
τE

t 88qqqqq

where E , E ′ are locally free right A⊠OS-modules of rank 1 and where j and t
are injective A ⊠OS-linear homomorphism such that the cokernels of j and t
and of the dual morphisms j∨ and t∨ satisfy condition (*) above (actually, it
follows from Lemma 3.12 (compare also the proof of 4.14 (b) below) that it is
enough to require that the cokernels of j and t satisfies (*)). Hence we have
Coker(j),Coker(t) ∈ CohA,sp(S). In fact if E = (E ,∞S , t) ∈ Eℓℓ∞A (S) is an
A-elliptic sheaf with zero ι0 : S → X then the diagram

E(− 1
d∞S)

j

))SSSSSS

E
τ (E(− 1

d∞S))

t
55kkkkkk

(17)

is an A-shtuka with pole ∞S and zero ι0. Therefore we have a 2-cartesian
square

Eℓℓ∞A −−−−→ Sht1Aypole

y

Spec k(∞) −−−−→ CohA,sp

(18)
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Here the second vertical arrow is given by mapping an A-shtuka (E , E ′, j, t)
to Coker(j). The lower horizontal arrow is defined by A/A(− 1

d∞Speck(∞)) ∈
CohA,sp(Spec k(∞)). It is easy to see that it is representable and a closed
immersion. Hence the morphism Eℓℓ∞A → Sht1A given by (17) is a closed im-
mersion.

(d) One could consider A-elliptic sheaves more generally for a hereditary OX -
order A. However since any hereditary OX -order is Morita equivalent to a
locally principal OX -order we do not obtain new moduli spaces in this way.

(e) If we consider Eℓℓ∞A as a k(∞)- rather than a Fq-stack we can (and will)
drop ∞S from the definition. More precisely for S ∈ Sch /k(∞) the objects of
Eℓℓ∞A (S) are just pairs E = (E , t) such that (E ,∞S , t) is an A-elliptic sheaf as
in 4.2 where ∞S is composite S → Spec k(∞) →֒ X .

(f) Define an automorphism of stacks θ : Eℓℓ∞A → Eℓℓ∞A by

θ(E ,∞S , t) = (E(
1

d
τ∞S), τ∞S , t(

1

d
τ∞S)) (19)

where τ∞S =∞S ◦ FrobS . We have θ(Eℓℓ∞A,n) = Eℓℓ∞A,n+ 1
d

for all n ∈ 1
dZ and

θdeg(∞)(E) = E ⊗A A( 1
d∞) for all A-elliptic sheaves E.

(g) Let A′ be a locally principal OX -order which is Morita equivalent to A and
let L be an invertible A-A′-bimodule. Then

E = (E ,∞S , t) 7→ E ⊗A L : = (E ⊗A L,∞S , t⊗A idL)

defines an isomorphism between Eℓℓ∞A and Eℓℓ∞A′ . If m = degA(L) then it maps
the substack Eℓℓ∞A,n isomorphically onto the substack Eℓℓ∞A,m+n. In particular
E 7→ E ⊗A L defines an action of the abelian group Pic(A) on Eℓℓ∞A .

We define Pic(A)[θ] to be the group generated by its subgroup Pic(A) and the
element θ which satisfies the relations θdeg(∞) = A( 1

d∞) and θL = Lθ for all
L ∈ Pic(A). Thus Pic(A)[θ] acts on Eℓℓ∞A . The group Pic(A)[θ] is an extension
of Z/ deg(∞)Z ∼= G(k(∞)/Fq) by Pic(A). The map degA : Pic(A) → 1

dZ
extends to a homomorphism degA : Pic(A)[θ]→ 1

dZ by defining degA(θ) = 1
d .

Definition 4.4. The group of modular automorphisms W(A,∞) is defined as
the kernel of degA : Pic(A)[θ]→ 1

dZ.

W(A,∞) stabilizes the substack Eℓℓ∞A,n for all n ∈ 1
dZ. There exists a canonical

homomorphism

W(A,∞)→ G(k(∞)/Fq) (20)

so that pole : Eℓℓ∞A → Spec k(∞) is W(A,∞)-equivariant. The kernel of (20)

is Pic0(A) and the image is of order δ(A) deg(∞)
d (thus (20) is surjective if and

only if degA : Pic(A)→ 1
dZ is surjective).
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4.2 Level structure

We reformulate now the notion of a level structure on an A-elliptic sheaf given
in ([LRS], 2.7 and 8.4) in our framework. Let I =

∑
x nxx be an effective

divisor on X . We recall first from ([LRS], 2.7; see also [Dr3]) the notion of a
level-I-structure when ∞ does not divide I, i.e. n∞ = 0.

Definition 4.5. Suppose that ∞ 6∈ |I|. Let E = (E ,∞S , t) be an A-elliptic
sheaf over an Fq-scheme S with zero ι0 : S → X disjoint from I i.e. ι0(S)∩I =
∅. A level-I-structure on E is an AI ⊠OS-linear isomorphism

α : AI ⊠OS −→ E|I×S ⊗A A(
1

d
∞)

compatible with t, i.e. the diagram

τE|I×S
t|I×S //E|I×S

AI ⊠OS
τα

__

α

@@

commutes.

We denote by Eℓℓ∞A,I the stack of A-elliptic sheaves with level I-structure and

for n ∈ 1
dZ by Eℓℓ∞A,I,n the open and closed substack of A-elliptic sheaves

with level I-structure with fixed degree degA = n. Again we obtain morphisms
char : Eℓℓ∞A,I → X−I and pole : Eℓℓ∞A,I → Spec k(∞). The automorphism (19)
of Remark 4.3 (f) extends canonically to an automorphism θ : Eℓℓ∞A,I → Eℓℓ∞A,I .
The right action of Pic(A) on Eℓℓ∞A lifts to a right action of PicI(A) on Eℓℓ∞A,I
as follows. If (L, β) is an invertible A-A-bimodule with level-I-structure and
(E,α) an A-elliptic sheaf with level-I-structure (E,α) over S then we define
(E,α) ⊗ (L, β) : = (E ⊗ L, α • β) with

α•β : AI ⊠OS β⊠id−→ LI ⊠OS = (AI ⊠OS)⊗AL⊠OS α⊠id−→ (E ⊗AL)|I×S . (21)

As before we have θdeg(∞)(E,α) = (E,α) ⊗ (A( 1
d∞), id).

Suppose now that |I| = {∞}, i.e. I = n∞ with n > 0. Let k(∞)d be a fixed
extension of degree d of k(∞). According to section 2.6 there exists a pair
(M∞, φ∞) consisting of a free right A∞⊗Fq k(∞)d-moduleM∞ of rank 1 and
an isomorphism

φ∞ : σ(M∞P) −→M∞

where P denotes the maximal invertible two-sided ideal of A∞ ⊗Fq k(∞)d cor-
responding to the inclusion k(∞) →֒ k(∞)d. Let MI denote the sheaf of
AI ⊗Fq k(∞)d-modules associated to the M∞/M∞pn∞. The map φ∞ induces
an isomorphism

φI : τ (MI(−
1

d
∞d)) −→MI

where ∞d denotes the morphism ∞k(∞)d : Spec k(∞)d → Spec k(∞) →֒ X .
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Definition 4.6. Let E = (E ,∞S , t) be an A-elliptic sheaf over an Fq-scheme
S with zero ι0 : S → X disjoint from I.
(a) Suppose that I = n∞ with n > 0. Let E = (E ,∞S , t) be an A-elliptic
sheaf over an Fq-scheme S with zero ι0 : S → X disjoint from I. A level-
I-structure on E consist of a pair (λ, α) where λ : S → Spec k(∞)d is an
Fq-morphism of schemes which lifts the pole ∞S and where α is an AI∞ ⊠OS-
linear isomorphism

α : (idI ×λ)∗(MI) −→ E|I×S
such that the diagram

(τ (E(− 1
d∞S))|I×S

t|I×S // E|I×S

(idI ×λ)∗(τ (MI(− 1
d∞d)))

(idI ×λ)∗(φI) //

τ (α(− 1
d∞S))

OO

(idI ×λ)∗(MI)

α

OO

commutes.
(b) Suppose that I is an arbitrary effective divisor on X with ∞ ∈ |I| and write
I = n∞ + I∞ = I∞ + I∞ with n > 0 such that ∞ does not divide I∞. A
level-I-structure on E is a triple (αf , λ, α∞) consisting of a level-I∞-structure
αf and a level-I∞-structure (λ, α∞).

Let I be an effective divisor on X with ∞ ∈ |I|. Again we define Eℓℓ∞A,I as the
stack of A-elliptic sheaves with level-I-structure (E , t, αf , λ, α∞) and denote
for n ∈ 1

dZ by Eℓℓ∞A,I,n the substack where degA(E) = n. There are canonical
morphisms

char : Eℓℓ∞A,I → X − I, pole : Eℓℓ∞A,I → Spec k(∞)d

(the latter is given by (E,αf , λ, α∞) 7→ λ; it lifts the morphism pole : Eℓℓ∞A →
Spec k(∞)).

Modular automorphisms. Next we are going to extend the definition of
the automorphisms (19) and define a natural right action of a certain idele
class group on Eℓℓ∞A,I (thus lifting the action of PicI(A) when ∞ 6∈ |I|). Define
θ : Eℓℓ∞A,I → Eℓℓ∞A,I by

θ(E ,∞S , t, αf , λ, α∞) = (E(
1

d
τ∞S), τ∞S , t(

1

d
τ∞S), αf ,

τλ, α♯∞) (22)

where α♯∞ is the composite

(idI ×τλ)∗(MI)
φI(

1
d
τ∞d)−→ (idI ×λ)∗(MI(

1

d
τ∞d))

α∞( 1
d
τ∞S)−→ E(

1

d
τ∞S)|I×S .
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Write I = n∞ + I∞ = I∞ + I∞ with n > 0 and ∞ 6∈ |I∞|. Let D∞ be a
principal order in a central F -algebra D∞ of dimension d2 such that

e(D∞) = e(A∞) and inv(D∞) = inv(A∞) +
1

d
.

We have seen in section 2.6 that

D∞ ∼= EndA∞⊗Fq k(∞)d(M∞, φ∞).

We choose an isomorphism (thus making (M∞, φ∞) into an invertible φ-D∞-
A∞-bimodule of slope − 1

d). Let

UI(A
∞ ×D∞) : = Ker(

∏

x∈|X|−{∞}

A∗
x ×D∗

∞ → Γ(I∞,AI∞ )∗ × (D∞/pn∞D∞)∗)

and define

CI(A∞ ×D∞) : = (
∏′
x∈|X|−{∞} N(Ax))×N(D∞)/UI(A∞ ×D∞)F ∗

For a = (af , a∞) = ({ax}x 6=∞, a∞) ∈ (
∏′
x∈|X|−{∞} N(Ax)) × N(D∞) let

div(a) =
∑

x∈|X|−{∞} vAx(ax)x + vD∞(a∞)∞ ∈ Div(A). Let (E,αf , λ, α∞)

∈ Eℓℓ∞A,I . Left multiplication by af on
∏′
x∈|X|−{∞} N(Ax) induces a level-

I∞-structure αf · af on E(div(a)). Similarly left multiplication by a∞ onM∞
yields a level-I∞-structure α∞ · a∞ on E ⊗A(div(a)). One easily verifies that

(E,αf , λ, α∞) · a : = (E ⊗A(div(a)), αf · af , λ, α∞ · a∞)

yields a right (
∏′
x∈|X|−{∞} N(Ax)) × N(D∞)-action on Eℓℓ∞A,I and that it

factors through CI(A∞ ×D∞).
The canonical projection CI(A∞ × D∞) → CI∞(A) (given on the ∞-factor

by N(D∞)
vD∞−→ 1

dZ
∼= N(A∞)/A∗

∞) followed by the isomorphism CI∞(A) →
PicI∞(A) from 3.4 yields also a CI(A∞×D∞)-action on Eℓℓ∞A,I∞ and one checks
that the forgetful morphism of stacks Eℓℓ∞A,I −→ Eℓℓ∞A,I∞ commutes with the
CI(A∞ ×D∞)-actions.
By Remark 2.22, there exists a prime element ̟∞ ∈ O∞ such that the class
ξ ∈ CI(A∞ × D∞) of the idele ({1}x 6=∞, ̟∞) satisfies θd deg(∞)(E) = E · ξ for
all E ∈ Eℓℓ∞A,I(S).
If ∞ does not divide the level I we define the group PicI(A)[θ] similar to
Pic(A)[θ] in the last section. PicI(A)[θ] contains PicI(A) as a subgroup and
the element θ lies in the center and satisfies the relation θdeg(∞) = (A( 1

d∞), id).
Let degA : PicI(A)[θ] → 1

dZ be given by (L, β) 7→ degA(L) on PicI(A) and
degA(θ) = 1

d .
Assume that∞ divides I and write I = n∞+ I∞ = I∞ + I∞ as above. Define
CI(A∞×D∞)[θ] as the group generated by CI(A∞×D∞) and a central element
θ satisfying the relation θd deg(∞) = ξ. The homomorphism CI(A∞ × D∞) →
CI∞(A) ∼= PicI∞(A)

degA−→ 1
dZ extends to a homomorphism degA : CI(A∞ ×

D∞)[θ]→ 1
dZ by setting degA(θ) = 1

dZ.
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Definition 4.7. Let I be an effective divisor on X. The group of modular
automorphisms W(A, I,∞) of Eℓℓ∞A,I is defined as follows:

W(A, I,∞) : =

{
Ker(degA : PicI(A)[θ] → 1

dZ) if ∞ 6∈ |I|,
Ker(degA : CI(A∞ ×D∞)[θ]→ 1

dZ) if ∞ ∈ |I|.

Remarks 4.8. (a) If ∞ 6∈ |I| (resp. ∞ ∈ |I|) there exists a canonical ho-
momorphism W(A, I,∞)→ G(k(∞)/Fq) (resp. W(A, I,∞)→ G(k(∞)d/Fq))
with kernel PicI,0(A) (resp. CI(A∞ × D∞)0) such that Eℓℓ∞A,I → Spec k(∞)
(resp. Eℓℓ∞A,I → Spec k(∞)d) is W(A, I,∞)-equivariant.
(b) Let I < J be effective divisors on X there exists a canonical projection
W(A, J,∞)→W(A, I,∞) such that the forgetful morphism Eℓℓ∞A,J −→ Eℓℓ∞A,I
is W(A, J,∞)-equivariant.
(c) The map x 7→ xθ−d degA(x) induces an isomorphism

CI(A∞ × D∞)/ξZ∞ ∼= W(A, I,∞).

This fact will be used in section 4.6.

We have (compare ([LRS], 8.10) and ([Laf], I.3.5))

Lemma 4.9. Let I < J be effective divisors on X. Over X − J the forgetful
morphism

Eℓℓ∞A,J −→ Eℓℓ∞A,I
is representable and is a finite, étale Galois covering. Its Galois group is ∼=
Ker(W(A, J,∞)→W(A, I,∞)). If ∞ 6∈ |J | − |I| it is ∼= Ker(A∗

J → A∗
I).

Corollary 4.10. Let A′ be a locally principal OX-suborder of A with the same
generic fiber A and denote by ι : Y →֒ X the reduced closed subscheme with
|Y | = {x ∈ |X | | ex(A′) > ex(A′)}. Note that ∞ 6∈ Y . Let I be an effective
divisors disjoint from Y and put J : = I + Y . Then over X − J the forgetful
morphism factors canonically as

Eℓℓ∞A,J −→ Eℓℓ∞A′,I −→ Eℓℓ∞A,I . (23)

Both maps are representable and finite and étale. Moreover the first arrow is
Galois.

Proof. Let P : = Im(A′|Y → A|Y ). Then the diagram

A′ −−−−→ ι∗(P)
y

y

A −−−−→ ι∗(AY )

is cartesian. Here we view J as a closed subscheme of X and denote by ι :
J → X the inclusion. For E = (E , t,∞S , α) in Eℓℓ∞A,J(S) we decompose α into
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a level-I-structure αI and a level-Y -structure αY . Define E ′ by the cartesian
square

E ′ //

��

ι∗(P)

��
E // ι∗(E|Y×S)

αY
−1

// ι∗(AY )

Then E ′ is a locally free A′⊠OS-module of rank 1. The first morphism in (23)
is induced by E 7→ E ′ whereas the second by E ′ 7→ E ′ ⊗A′ A. The proof of the
remaining assertions is left to the reader. �

4.3 The coarse moduli scheme

Our aim now is to prove the following theorem.

Theorem 4.11. (a) Eℓℓ∞A,I is a Deligne-Mumford stack over Fq. It is locally
of finite type over X. The morphism char : Eℓℓ∞A,I → X − I is semistable of
relative dimension d− 1.
(b) The open and closed substack Eℓℓ∞A,I,0 of Eℓℓ∞A,I is of finite type over X ′ : =
X − (Disc(A) ∪ I). It admits a coarse moduli scheme which will be denote by
Ell∞A,I . The structural map Eℓℓ∞A,I,0|X′ → Ell∞A,I is an isomorphism if I 6= 0.
(c) The morphism char : Ell∞A,I → X ′ is quasiprojective and smooth of relative
dimension d− 1. In particular Ell∞A,I is a smooth, quasiprojective Fq-scheme.

Remark 4.12. This is known if A is a division algebra or A = Md(F ) and if
we restrict Eℓℓ∞A,I to the open subset X ′ ([LRS], Theorem 4.1 and [Dr1]). In
fact if we assume that A is a division algebra and let S denote the subset of
Disc(A) consisting of all points p ∈ Disc(A) − {∞} with invpA = 1 and of ∞
if inv∞A = 0 then Eℓℓ∞A,I,0 admits a coarse moduli scheme Ell∞A,I over X ∪ S
which is projective and semistable of relative dimension d − 1 (at the pole ∞
this is proved in [BS]; at p ∈ S−{∞} it is proved in certain cases by [Hau] and
can be deduce in general from the first case using the main result of section
4.5).

The proof of 4.11 consists essentially of two parts. In the first part one shows
that Eℓℓ∞A → X is a Deligne-Mumford stack and semistable. In the second
part one proves that for I 6= 0, Eℓℓ∞A,I,n is a quasiprojective scheme over X ′ by

showing that for a large m the map Eℓℓ∞,stab
A,mI,n → Eℓℓ∞A,I,n is surjective. Here

Eℓℓ∞,stab
A,I denotes the substack of A-elliptic sheaves whose underlying vector

bundle is I-stable. It is a consequence of a theorem of Seshadri that Eℓℓ∞,stab
A,I

is a quasiprojective scheme. For the surjectivity one can follow the arguments
in ([LRS], section 5) so we will omit the proof.
The proof of the first part is also mainly a reproduction of the corresponding
arguments in ([LRS], section 4; compare also ([Laf] Chapitre I), [La] and ([Lau],
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1.3 and 1.4)) so we will be rather brief and elaborate only on those steps were
essential modification have to be made. We follow ([Lau], 1.2) and work with
the factorization (16), i.e. we consider Eℓℓ∞A,I mostly over CohA,sp rather than
over X . Let InjA,sp be the stack over k(∞) such that for each S ∈ Sch /k(∞),
InjA,sp(S) is the groupoid of injective morphisms j : E ′ → E locally free right
A⊠OS-modules of rank 1 with Coker(j) ∈ CohA,sp(S).

Lemma 4.13. (a) The two morphism

InjA,sp −→ Vect1A,0×CohA,sp

given by (j : E ′ → E) 7→ (E ,Coker(j)) and (j : E ′ → E) 7→ (E ′,Coker(j)) are
representable and quasiaffine of finite type and smooth of relative dimension d.
Consequently InjA,sp is algebraic, smooth and of finite type over Fq.
(b) The two morphism

InjA,sp −→ Vectd
2

X

given by E and E ′ are representable and quasiprojective and in particular of
finite type.

The proof of (a) for the first morphism is literally the same as ([Lau], 1.3.2).
The statement for second morphism can be deduce from that for the first as
in ([Lau], 1.3.2). We need to remark only that for a short exact sequence
0 → E ′ → E → K → 0 of right A ⊗ OS-modules with E ′, E ∈ Vect1A(S) and
K ∈ CohA,sp(S) the third term of the dual sequence of Aopp⊗OS-modules 0→
E∨ → E ′∨ → Ext1A⊗OS(K,A⊠OS)→ 0 lies, by Lemma 3.12, in CohAopp,sp(S).
(b) follows from ([Laf], I.2.2 and I.2.8). �

Consider now the following obvious diagram of stacks

Eℓℓ∞A −−−−→ Vect1A⊗Fqk(∞)
y

y

InjA,sp −−−−→ (Vect1A×Vect1A)⊗Fq k(∞)
y

CohA,sp

(24)

where the right vertical arrow in the (2-cartesian) square is the graph of the
endomorphism Frob ◦θ−1 : Vect1A⊗Fqk(∞) → Vect1A⊗Fqk(∞) (for the defini-
tion of θ−1 compare 4.3 (f); if deg(∞) = 1 it is given by E 7→ E(− 1

d∞)). By

([Laf], I.2.5) the stack Vect1A is algebraic, locally of finite type and smooth over
Fq. Together with Proposition 3.10, Lemma 4.9 and Lemma 4.13 above the
same argument as in ([LRS], section 4; see also ([Laf], I.2.5) and ([Lau], I.3.5))
imply part (a) of
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Lemma 4.14. (a) Let I be an effective divisor on X. The morphism Eℓℓ∞A,I
→ CohA,sp is algebraic, locally of finite type and smooth of relative dimension
d. The morphism char : Eℓℓ∞A,I → X is semistable of relative dimension d− 1.
(b) Eℓℓ∞A is a Deligne-Mumford stack, locally of finite type and smooth over Fq.
Moreover if I 6= 0 then Eℓℓ∞A,I |X′ is isomorphic to an algebraic space.

Proof of (b). Everything is clear if we replace “Deligne-Mumford” by “alge-
braic”. To prove that Eℓℓ∞A is indeed a Deligne-Mumford stack we use ([LM],
8.1). If we replace the lower vertical map in (24) by InjA,sp → Spec k(∞)
then, by Lemma 4.13 and ([La], Lemma on p. 60), the diagonal morphism
Eℓℓ∞A → Eℓℓ∞A ×Fq Eℓℓ∞A is unramified. Note that for E ∈ Eℓℓ∞A,I(S) with zero
S → X ′ we have Aut(E) = Fq

∗ if I = 0 or Aut(E) = 1 otherwise. Hence the
last assertion follows from ([LM], 8.1.1). �

Remarks 4.15. (a) Note that by 4.3 (f) we could have defined Ell∞A also as the
coarse moduli scheme of the quotient Eℓℓ∞A /θZ or of Eℓℓ∞A,n for any n ∈ 1

dZ.
(b) Let I →֒ X be a reduced closed subscheme with ∞ 6∈ I and let A be the
subsheaf of M2(OX) of matrices which are upper triangular modulo I. Then
by using 4.10 and 4.3 (b) it is easy to see that the Ell∞A is isomorphic to the
(open) Drinfeld modular curve Y0(I) = Y∞

0 (I).
(c) If A is a central division algebra which is unramified at ∞ and A|X−{∞}
is a maximal order in A then char : Ell∞A → X is proper (see [LRS], Theorem
6.1 and [Hau], 6.4). In the general case this is not true anymore even if A is a
division algebra. In fact if d = 2 and A is ramified only at ∞ and at p ∈ |X |
and if A is a maximal OX -order in A then we will show in section 4.5 that EllpA
is a twist of the affine curve Y∞

0 (p)→ X .

4.4 Invertible Frobenius bimodules

We consider now two locally principal OX -ordersA and B, both of rank d2 with
Disc(A) = Disc(B) and assume that e(A) = d = e(B). We denote by A and B
the generic fibers of A and B respectively. Let D =

∑
x∈|X| mxx ∈ Div(A) be

a divisor such that
∑
x∈|X| mx = 0. We consider the following moduli problem

associated to A,B, D.

Definition 4.16. Let S be an Fq-scheme. An invertible Frobenius A-B-
bimodule (or Φ-A-B-bimodule for short) over S of slope D is a tuple L =
(L, (xS)x∈|D|,Φ) where L is an invertible A ⊠ OS-B ⊠ OS-bimodule which is
locally free of rank 1 as a left A ⊠ OS- and right B ⊠ OS-module, where for
x ∈ |D|, xS : S → X is a morphism in Sch /Fq which factors through x → X
and where Φ is a bimodule isomorphism

Φ : τ (L(DS)) −→ L.

with DS : =
∑

x∈|D| mxxS . The morphisms xS are called the poles of L.
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Note we have degA(L) = degB(L). Note also that (A ⊠ OS)(DS) ⊗A L =
L ⊗B (B ⊠OS)(DS). Thus the notion L(DS) is unambiguous.
Obviously the concept of invertible Φ-A-B-bimodules of slope D defines a
stack which we denote by SEDA,B. It is equipped with canonical morphisms

SEDA,B → Spec k(x) for all x ∈ |D|. For n ∈ 1
dZ let SEDA,B,n be the substack

of (L, (xS)x∈T ,Φ) ∈ SEDA,B(S) with degA(L) = n. There is a canonical left

Pic(A)- and right Pic(B)-action on SEDA,B compatible with degA (in fact the
left and right action are the same if we identify the two groups under the
canonical isomorphism Pic(A) ∼= Div(A) /F ∗ ∼= Pic(B)).
For x ∈ |D| we define an automorphism θx : SEDA,B → SEDA,B by

θx(L, (x′S)x′∈|D|,Φ) = (L(−mx
τxS), τxS , (x

′
S)x′∈|D|,x′ 6=x,Φ(−mx

τx)). (25)

The automorphisms θx for different x ∈ |D| commute with each other and with
the Pic(A)- and Pic(B)-action. We have θx(SEDA,B,n) = SEDA,B,n−mx for all

n ∈ 1
dZ and θ

deg(x)
x (L) = A(−mxx)⊗L = L⊗B(−mxx) for all L ∈ SEDA,B(S).

Moreover if |D| = {x1, . . . , xm} and if we put ΘD : = θx1 ◦ . . . ◦ θxm then
ΘD(L) = Frob∗

S(L) for all S ∈ Sch /Fq and L ∈ SEDA,B(S). Hence ΘD =
FrobSEDA,B .

Level structure. Let L = (L, (xS)x∈|D|,Φ) ∈ SEDA,B(S). We view L as a
right B-module only and proceed as in section 4.2. Let I be an effective divisor
on X . Assume first that |I| ∩ |D| = ∅. Then a level-I-structure on L is an
isomorphism of right BI ⊠ OS-modules β : BI ⊠ OS −→ L|I×S such that the
diagram

τL|I×S
Φ|I×S //L|I×S

AI ⊠OS
τβ

__

α

@@

commutes.
Next assume that I = nx with n > 0 for some x ∈ |D|. Put e = ex(A),m = mx

and let k(x)e be an extension of degree e of k(x). If m > 0 we denote by M =
(Mx, φx) a fixed invertible φ-Ax-Bx-bimodule of slope −m over Ox ⊗Fq k(x)e.
In case m < 0, M = (Mx, φx) denotes a φ-Bx-Ax-bimodule of slope m over
Ox ⊗Fq k(x)e. Thus if m > 0 (resp. m < 0) then φx is an isomorphism

φx : σ(MxP
me) −→Mx (resp. φx : σ(P−meMx) −→Mx)

where P denotes the maximal ideal of Bx ⊗Fq k(x)e corresponding to the in-
clusion k(x) →֒ k(x)e. As in 4.2 the pair (Mx, φx) induces a pair (MI , φI)
consisting of AI ⊗Fq k(x)e-BI ⊗Fq k(x)e-bimodule and an isomorphism φI :
τ (MI(mxe)) −→ MI where xe is the map Spec k(x)e → x →֒ X . A level-
I-structure on L consists of a pair (µ, β) where µ : S → Spec k(x)e is an
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Fq-morphism which lifts xS and an isomorphism of right BI ⊠OS-modules β.
If m < 0, then β is a map

β : (idI ×µ)∗(MI) −→ L|I×S (26)

such that
τ (L(D))|I×S //L|I×S

(idI ×µ)∗(τ (MI(mxe))

OO

//(idI ×µ)∗(MI)

OO

commutes. If m > 0 then

β : BI ⊠OS −→ (idI ×µ)∗(MI)⊗A L|I×S (27)

and

τ ((idI ×µ)∗(MI)⊗A L|I×S)
φI⊗Φ|I×S //(idI ×µ)∗(MI)⊗A L|I×S

BI ⊠OS
τβ

ff

β

88

should commute.
For an arbitrary effective divisor I on X we write I = I0 +

∑
x∈|I|∩|D| nxx

= I0 +
∑

x∈|I|∩|D| Ix with |I0| ∩ |D| = ∅ and nx > 0 for x ∈ |I| ∩ |D|. Then a

level-I-structure on L is a tuple (β0, (µx, βx)x∈|I|∩|D|) consisting of a level-I0-
structure β0 and level-Ix-structures (µx, βx) for all x ∈ |I| ∩ |D|. This yields
stacks SEDA,B,I ,SEDA,B,I,n equipped with forgetful morphisms

SEDA,B,I → SEDA,B, SEDA,B,I → Spec k(x)ex(A) for all x ∈ |I| ∩ |D|

(the latter lifts the morphism SEDA,B → Spec k(x)).

Modular automorphisms. Let T : = {x ∈ |D| | mx > 0}. If |I| ∩ T = ∅
then there is a canonical left PicI(A)-action on SEDA,B,I lifting the Pic(A)-

action on SEDA,B. We want to extend this to a natural left action of an idele

class group CI(AT×BT ) on SEDA,B,I for arbitrary I (similarly to the right action

of CI(A∞ × D∞)-action on Eℓℓ∞A,I∞ defined in 4.2). Write I = IT + IT with

|IT | ∩ T = ∅ and |IT | ⊆ T . Put

UI(AT × BT ) : = Ker(
∏

x∈|X|−T
A∗
x ×

∏

x∈T
B∗
x → Γ(IT ,AIT )∗ × Γ(IT ,BIT )∗)

and define

CI(AT × BT ) : =
∏′
x∈|X|−T N(Ax)×∏x∈T N(Bx)/UI(AT × BT )F ∗.
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There is a canonical epimorphism CI(AT × BT ) −→ Pic(A) given on the
class [g] represented by g = ({ax}x∈|X|−T , {bx}x∈T ) ∈ ∏′

x∈|X|−T N(Ax)) ×∏
x∈T N(Bx) by A(div(g)) where

div(g) =
∑

x∈|X|−T
vAx(ax)x +

∑

x∈T
vBx(ax)x

The kernel of the composition CI(AT × BT ) → Pic(A)
degA−→ Q will be denoted

by CI(AT × BT )0.
Let g = (aT , bT ) = ({ax}x 6∈T , {bx}x∈T ) ∈ ∏′

x∈|X|−T N(Ax)) ×∏x∈T N(Bx)

and L = (L, β0, (µx, βx)x∈|I|∩|D|) ∈ SEDA,B,I(S). Left multiplication by aT on

the target of β0 and βx for x ∈ |IT | (respectively by bT on the target of βx
for x ∈ |IT |) yields a level-I-structure on A(div(g)) ⊗ L. This defines a left
action of

∏′
x∈|X|−T N(Ax))×∏x∈T N(Bx) on SEDA,B,I which factors through

CI(AT × BT ).

4.17. Similar to (22), for x ∈ |D| there exists a canonical lift of (25) to an
automorphism θx : SEDA,B,I → SEDA,B,I having the following properties:

(i) The following diagram commutes

SEDA,B,I
θx−−−−→ SEDA,B,Iy

y

Spec k(x)∗
Frobq−−−−→ Spec k(x)∗

where ∗ = 1 or ∗ = ex(A) depending on whether x 6∈ |I| or x ∈ |I|.

(ii) For n ∈ 1
dZ we have θx(SEDA,B,I,n) = SEDA,B,I,n−mx .

(iii) The automorphisms θx for different x ∈ |D| commute with each other
and with the CI(AT × BT )-action.

(iv) For x ∈ |D| there exists ξx ∈ CI(AT × BT ) such that θ
deg(x)
x (L) = ξxL

(resp. θ
ex(A) deg(x)
x (L) = ξxL) for all L ∈ SEDA,B,I(S).

(v) If |D| = {x1, . . . , xm} put ΘD : = θx1 ◦ . . .◦θxm . Then ΘD = FrobSEDA,B,I .

Let G be the group of automorphism of SEDA,B,I generated by CI(AT × BT )

and the set {θx | x ∈ |D|}. For g ∈ G the degree m ∈ 1
dZ of g is defined by

gSEDA,B,I,n = SEDA,B,I,n+m for all n ∈ 1
dZ. Let G0 be the subgroup of elements

of degree 0. Since the degree of θx, x ∈ |D| is −mx we have ΘD ∈ G0.

Definition 4.18. Suppose that SEDA,B,I,0 6= ∅. We define W(A,B, I,D) to be

the group of automorphisms of SEDA,B,I,0 of the form g|SEDA,B,I,0 for g ∈ G0.
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Remark 4.19. Assume that SEDA,B,I,0 6= ∅. For all x ∈ |D| there exists canon-
ical homomorphisms W(A,B, I,D)→ G(k(x)∗/Fq) where ∗ = ∅ or ∗ = ex(A)
depending on whether x 6∈ |I| or x ∈ |I|. It is surjective since ΘD is mapped
to Frobk(x)∗ by property (v) above. The kernel of the homomorphism

W(A,B, I,D) −→
∏

x∈|D|−|I|
G(k(x)/Fq)×

∏

x∈|D|∩|I|
G(k(x)ex(A))/Fq) (28)

is CI(AT × BT )0.
It is easy to see that (28) is surjective provided that δ(A) = d (i.e. degA :
Pic(A)→ 1

dZ is surjective). Under this conditionW(A,B, I,D) can be defined
in a similar way as 4.7, i.e. as the subgroup of degA = 0 elements in the abstract
group CI(AT ×BT )[θx, x ∈ |D|] generated by CI(AT ×BT ) and a set of central
element {θx | x ∈ |D|} with degA(θx) = −mx and such that the relations (iv)
above hold.

Tensor product and Inverse. There is also a notion of a tensor product
of invertible Frobenius bimodules and of an inverse. These constructions are
needed in the proof of Proposition 4.20 below. Let C be a third locally principal

OX -order of rank d2 with Disc(C) = Disc(A). Let D1 =
∑

x∈|X| m
(1)
x x,D2 =

∑
x∈|X| m

(2)
x x ∈ Div(A) with

∑
x∈|X| m

(i)
x = 0 for i = 1, 2. Let Y = SpecFq

if |D1| ∩ |D2| = ∅ or Y = Spec(
⊗

x∈|D1|∩|D2| k(x)) otherwise. We view SED1

A,B
and SED2

B,C as stacks over Y . Let S ∈ Sch /Y and let L = (L, (xS)x∈|D|,Φ) ∈
SED1

A,B(S), M = (M, (xS)x∈|D2|,Ψ) ∈ SED2

B,C(S) (hence for x ∈ |D1| ∩ |D2|, the
morphisms xS for L and M agree and are equal to the canonical morphism
S → Spec k(x)→ X). Define

L⊗M = (L ⊗M, (xS)x∈|D1+D2|,Φ⊗B Ψ) ∈ SED1+D2

A,C (S).

Thus we get a morphism of stacks

⊗ : SED1

A,B ×Y SED2

B,C −→ SED1+D2

A,C (29)

which is compatible with degrees.
The inverse L−1 of L = (L, (xS)x∈|D|,Φ) ∈ SEDA,B(S) is defined as

L−1 = (L∨, (xS)x∈|D|, (Φ
∨)−1) ∈ SE−DB,A(S). (30)

We leave it to the reader to extend the Definition (29) and (30) to invertible
Frobenius bimodules with level-I-structure (see also the next section where the
tensor product of an A-elliptic sheaf with level-I-structure with a Frobenius
bimodule with level-I-structure is defined).

Moduli spaces. Let D =
∑
x∈|X| mxx ∈ Div(A), D 6= 0 be such that∑

x∈|X| mx = 0 and let I ∈ Div(X) with I ≥ 0. Our aim is to prove the
following result.
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Proposition 4.20. (a) SEDA,B,I 6= ∅ if and only if

∑

x∈|X|
invx(B)x = (

∑

x∈|X|
invx(A)x) +D mod Div(X). (31)

(b) SEDA,B,I is a Deligne-Mumford stack which is étale over Fq. The open and

closed substack SEDA,B,I,n is finite over Fq for all n ∈ 1
dZ.

(c) SEDA,B,I,0 admits a coarse moduli space SEDA,B,I . The structural morphism

SEDA,B,I,0 → SEDA,B,I is an isomorphims if I 6= 0.

(d) Suppose that SEDA,B,I,0 6= ∅. Then SEDA,B,I → SpecFq is a W(A,B, I,D)-

torsor. In particular SEDA,B,I is a finite, étale Fq-scheme.

We begin with the proof of (a). Since SEDA,B,I is locally of finite presentation it

suffices to show that SEDA,B,I(SpecFq) 6= ∅ if and only if (32) holds. We write

X, A etc. for X ⊗Fq Fq, A ⊗ Fq etc. Let σ : = idX ⊗Frobq : X → X and

let π : X → X be the projection. Define div(π) : Div(X) ⊗ Q → Div(X) ⊗ Q
by div(π)(

∑
i nix̄i) =

∑
i niπ(x̄i) (Note that deg(div(π)(D)) 6= deg(D) in

general). Part (a) of Proposition 4.20 follows from the following slighty more
general result.

Lemma 4.21. Let D ∈ Div0(A). The following conditions are equivalent:
(i) There exists an invertible A-B-bimodule L such that τ (L(D)) ∼= L.
(ii) We have

∑

x∈|X|
invx(B)x = (

∑

x∈|X|
invx(A)x) + div(π)(D) mod Div(X). (32)

Proof. That (i) implies (ii) can be easily deduced from the corresponding local
result. To show the converse we consider first the special case div(π)(D) ∈
Div(X), i.e. A ≃ B. Then D can be written as a sum of divisors of the form
π∗(D1), D1 ∈ Div0(X) and of the form 1

ex(A) (x − σ(x)) for x ∈ |X |. Hence we

can assume that either D = 1
ex(A) (x− σ(x)) or D = pr∗(D1). In the first case

the assertion is obvious. In the second case it follows from the fact that the
homomorphism of abelian varieties

id−Frob : JacX → JacX

is an isogeny hence faithfully flat.
Returning to the general case note that by 3.1 at least A and B are Morita
equivalent. Let L be an arbitrary invertible A-B-bimodule. Then τL is also

invertible hence τ (L(D
′
)) ∼= L for some D

′ ∈ Div0(A). It follows that the

congruence (32) holds with D
′

instead of D as well and therefore div(π)(D −
D

′
) ∈ Div(X). Hence by what we have shown above we may alter L by some

element of Pic(A) so that τ (L(D)) ∼= L. �
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To prove the other assertions of 4.20 we first note that for a connected S ∈
Sch /Fq and L ∈ SEDA,B,I,n(S) the group of automorphisms Aut(L) of L is

= Fq
∗ if I = 0 or = 1 otherwise. Hence for I > 0 the presheaf SEDA,B,I defined

by
SEDA,B,I,n(S) : = isomorphism classes of objects of SEDA,B,I,0(S)

is a fppf sheaf and the canonical morphism SEDA,B,I,n −→ SEDA,B,I,n is an iso-

morphism. We put SEDA,B,I = SEDA,B,I,0. For I > 0, 4.20 (c), (d) follows
from:

Lemma 4.22. Suppose that I 6= 0 and SEDA,B,I,0 6= ∅. Then SEDA,B,I is a
W(A,B, I,D)-torsor.

Proof. Assume first that D = 0, A = B. It follows from ([Laf], I.3, Théorème
2) that the map

(f : S → SpecFq) 7→ f∗ : PicI(A)→ SE0A,A,I(S)

yields an isomorphism between SE0A,A,I and the trivial PicI(A)-torsor over Fq.

In particular SE0
A,A,I is isomorphic to the trivial PicI,0(A)-torsor.

Now let D 6= 0. To simplify the notation we assume |D| ∩ |I| = ∅ so that
CI(AT × BT )0 ∼= PicI,0(A) (the proof in the general case is analogous). Let

S ∈ Sch /Fq be connected and let L1, L2 ∈ SEDA,B,I(S). If L1 and L2 have

the same poles then ξ = L2 ⊗ L−1
1 ∈ SE0

A,A,I(S) ∼= PicI,0(A) by the remark
above, hence ξL1 = L2. In general there exists suitable rx ∈ Z such that L2

and (
∏
x∈|D| θ

rx
x )(L1) have the same poles, hence ξ(

∏
x∈|D| θ

rx
x )(L1) = L2 for

some ξ ∈ PicI(A). Thus wL1 = L2 for w = ξ(
∏
x∈|D| θ

rx
x ) ∈ G0.

Let w ∈ W(A,B, I,D), L ∈ SEDA,B,I(S) such that wL = L. Write w =
ξ
∏
x∈|D| θ

rx
x with ξ ∈ PicI(A) and rx ∈ Z. By 4.17 (ii), for x ∈ |D| and

the pole xS of wL = L we have xS ◦ FrobrxS = xS , hence deg(x) | rx. By
4.17 (iv) it follows that w ∈ PicI,0(A). However wL = L implies that w
corresponds to (wL) ⊗ L−1 = L ⊗ L−1 ∈ SE0

A,A,I,0(S) under the canonical

bijection PicI(A) ∼= SE0
A,A,I,0(S), i.e. w = 1. This proves that for a con-

nected S ∈ Sch /Fq, SEDA,B,I(S) is either empty or W(A,B, I,D) acts simply
transitively on it.
To finish the proof we have to show that SEDA,B,I,0 6= ∅ implies that

SEDA,B,I(SpecFq) 6= ∅. This is a consequence of the fact that SEDA,B,I,0 is
locally of finite presentation. �

Similarly one shows that SEDA,B,I,n is a Im(G0 → Aut(SEDA,B,I,n))-torsor for all

n ∈ 1
dZ. In particular each SEDA,B,I,n is a finite étale Fq-scheme. This proves

(b) for I 6= 0.
It remains to consider the case I = 0. Choose an auxiliary level J ∈ Div(X)
with J > 0 and |D| ∩ |J | = ∅. A similar argument as in 4.3 shows that

SEDA,B,n ∼= Γ(J,AJ)∗\ SEDA,B,J,n
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Hence SEDA,B is a Deligne-Mumford stack. Moreover as in 4.3 one shows that

the quotient SEDA,B : = (Γ(J,AJ )∗/Fq
∗)\ SEDA,B,J is a coarse moduli scheme

of SEDA,B,0 and that SEDA,B,0 ∼= Fq
∗\ SEDA,B. Finally since W(A,B, D) ∼=

W(A,B, J,D)/(Γ(J,AJ)∗/Fq
∗) it follows from Lemma 4.22 that SEDA,B is a

W(A,B, D)-torsor over Fq. This completes the proof of 4.20.

Remarks 4.23. (a) Let D =
∑
x∈|X| mxx ∈ Div(A), D 6= 0 be such that∑

x∈|X| mx = 0. Condition (31) is not sufficient for SEDA,B,I,0 6= ∅ (compare

Remark 3.6). However if additionally we have
∑
x∈|X| Zmx = 1

dZ then by
taking suitable products of θx’s we obtain elements g in the center of G of
arbitrary degree m ∈ 1

dZ. Thus SEDA,B,I,m 6= ∅ implies SEDA,B,I,0 6= ∅. We also
see that an automorphism g ∈ G of degree zero is uniquely determined by its
restriction to SEDA,B,I,0, i.e. we have W(A,B, I,D) = G0.

(b) Suppose that SEDA,B,I,0 6= ∅. One can describe the W(A,B, I,D)-torsor

SEDA,B,I /Fq explicitely as follows. For L ∈ SEDA,B,I,0(Fq) let

ψL :W(A,B, I,D)× SpecFq =
∐

w∈W(A,B,I,D)

SpecFq → SEDA,B,I

be given on the w-component by the morphism corresponding to wL. By 4.17
(v) the diagram

W(A,B, I,D)× SpecFq
ψL×id−−−−→ SEDA,B,I × SpecFqyΘ−1

D ×Frobq

yid×Frobq

W(A,B, I,D)× SpecFq
ψL×id−−−−→ SEDA,B,I × SpecFq

commutes. Thus ψL induces an isomorphism

SEDA,B,I ∼= (W(A,B, I,D)× SpecFq)/ < Θ−1
D × Frobq >

4.5 Twists of moduli spaces of A-elliptic sheaves

In this section A denotes a locally principal OX -order of rank d2 with generic
fiber A such that e∞(A) = d. We also assume that there is a second closed
point p 6= ∞ such that ep(A) = d and we put D : = 1

d∞− 1
dp. Let B be a

locally principal OX -order of rank d2 with Disc(B) = Disc(A) and such that
for the generic fiber B of B we have

∑

x∈|X|
invx(B)x = (

∑

x∈|X|
invx(A)x) +D mod Div(X).

In order to show that the moduli spaces Ell∞A,I and EllpB,I are twists of each other

we are going to define a canonical tensor product Eℓℓ∞A,I × SEDA,B,I → EℓℓpB,I .
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We introduce more notation. Recall that the notion of level structure at ∞
for objects of Eℓℓ∞A,I and SEDA,B,I and at p for objects of EℓℓpB,I and SEDA,B,I
depend on the choice of certain local Frobenius bimodules. In order to define
the tensor product (33) below these choices have to be compatibly matched.
For ∞ let M = (M∞, φ∞) be an invertible φ-B∞-A∞-bimodule of slope − 1

d .
For p we choose an invertible φ-Ap-Bp-bimodule N = (Np, φp) also of slope
− 1
d . We use M to define level structure at ∞ and N to define level structure

at p. By Remark 2.22 there exists prime elements ̟∞ ∈ O∞ and ̟p ∈ Op

such that
φd deg(∞)
∞ = ̟∞, φ

d deg(p)
p = ̟p.

Now fix a level I ∈ Div(X), I ≥ 0. We put

k(∞)⋆ =

{
k(∞) if ∞ 6∈ |I|,
k(∞)d if ∞ ∈ |I|, k(p)♯ =

{
k(p) if p 6∈ |I|,
k(p)d if p ∈ |I|.

There exists a canonical map W(A, I,∞) → W(A,B, I,D) induced by
CI(A∞×B∞)[θ]→ CI(A∞×B∞)[θ∞, θp] given by θ 7→ θ−1

∞ . Using the diagram
with exact rows

0 // CI(A∞ × B∞)0 //

��

W(A, I,∞) //

��

G(k(∞)⋆/Fq)

��
0 // CI(A∞ × B∞)0 // W(A,B, I,D) // G(k(∞)⋆/Fq)×G(k(p)♯/Fq)

it is easy to see that W(A, I,∞) → W(A,B, I,D) is injective and is equal to
the kernel of the canonical projection W(A,B, I,D)→ G(k(p)♯/Fq) (compare
4.19). Recall that CI(A∞ × B∞)0 ∼= PicI,0(A) if ∞ does not divide I. In the
following we will consider W(A, I,∞) as a subgroup of W(A,B, I,D). From
Proposition 4.20 we deduce that SEDA,B,I is aW(A, I,∞)-torsor over Spec k(p)♯.
By 4.17 (iv) there exist ξ∞, ξp ∈ CI(A∞ × B∞)0 such that

θ[k(∞)⋆:Fq]
∞ = ξ∞, θ

[k(p)♯:Fq]
p = ξp

ξ∞ and ξp are given as follows. Let Π∞ ∈ B∞ (resp. Πp ∈ Ap) be a generator
of the radical of B∞ (resp. of Ap). If ∞ 6∈ |I| (resp. ∞ ∈ |I|) then ξ∞ denotes
the class in CI(A∞ × B∞) of the idele ({1}x 6=∞,Π−1

∞ ) (resp. ({1}x 6=∞, ̟−1
∞ ))

in CI(A∞ × B∞). If p 6∈ |I| (resp. p ∈ |I|) then ξp denotes the class in
CI(A∞×B∞) of the idele ({1}x 6=p,Πp) (resp. ({1}x 6=p, ̟p)) in CI(A∞×B∞).
The tensor product

⊗ : Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I −→ EℓℓpB,I , (E,L) 7→ E ⊗ L (33)

is a morphism of Spec k(p)⋆-stacks having the following properties:

(i) The morphism (33) is compatible with degA and degB, i.e. for m,n ∈ 1
dZ

it induces a morphism

Eℓℓ∞A,I,m ⊗k(∞)⋆ SEDA,B,I,n −→ EℓℓpB,I,m+n.
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(ii) The morphism of stacks

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I −→ EℓℓpB,I ⊗k(p)♯ SEDA,B,I , (E,L) 7→ (E ⊗ L,L)

is an isomorphism with quasi-inverse

EℓℓpB,I ⊗k(p)♯ SEDA,B,I −→ Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I , (E,L) 7→ (E ⊗L−1, L).

(iii) The following diagram commutes

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

θ⊗θ∞

��

⊗

**UUUUUUUUUUUUUUUU

Eℓℓ∞B,I

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

⊗
44iiiiiiiiiiiiiiii

(iv) For ξ ∈ CI(A∞ × B∞) the following diagram commutes

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

ξ⊗ξ−1

��

⊗

**UUUUUUUUUUUUUUUU

Eℓℓ∞B,I

Eℓℓ∞A,I ⊗k(∞)⋆ SEDA,B,I

⊗
44iiiiiiiiiiiiiiii

.

To define (33) let S ∈ Sch /Fq and let∞S : S → X , pS : S → X be morphisms
in Sch /Fq which factor through ∞ → X and p → X respectively. Let E =
(E ,∞S , t) be an A-elliptic sheaf over S with zero z : S → X and let L = (L,Φ)
be an invertible A-B-bimodule of slope 1

d (∞S − pS). Define

E ⊗ L : = (E ⊗A L, pS, t⊗A Φ).

Note that E ⊗A L(− 1
dpS) = E(− 1

d∞S) ⊗A L( 1
d(∞S − pS)). One easily checks

that t⊗A Φ is an injective B⊠OS-linear homomorphism with Coker(t⊗A Φ) ∼=
Coker(t)⊗AL. It follows from 3.8 (c) that E⊗L is a B-elliptic sheaf with pole
p and zero z. Thus we have defined (33) if I = 0.
When considering additionally level-I-structure, it is enough to treat separately
the three cases ∞, p 6∈ |I|, |I| = {∞} and |I| = {p}. In the first case if E
carries a level-I-structure α and L a level-I-structure β then one defines a
level-I-structure α • β on E ⊗ L as in (21).
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Suppose now I = n∞, n > 0 and let E = (E ,∞S , t), L = (L,Φ,∞S , pS) be
as above. Let (α, λ), (µ, β) be level-I-structures on E and L respectively such
that λ = µ : S → Spec k(∞)d lifts ∞S . Thus

α : (idI ×λ)∗(MI)
∼=−→ E|I×S , β : BI ⊠OS

∼=−→ (idI ×µ)∗(MI)⊗A L|I×S .
Let α • β be the composition

α • β : BI ⊠OS β−→ (idI ×µ)∗(MI)⊗A L|I×S α⊗id−→ (E ⊗A L)|I×S
Finally let I = np, n > 0 and let α and (µ, β) be level-I-structures on E and
L. In this case level-I-structures on E and L are given by

α : AI ⊠OS −→ E|I×S , β : (idI ×µ)∗(NI) −→ L|I×S
where µ : S → Spec k(p)d is a lift of pS. We set

α • β : (idI ×µ)∗(NI) β−→ L|I×S = AI ⊗A L|I×S α⊗id−→ (E ⊗A L)|I×S .
In both cases one easily checks that α • β defines a level-I-structure on E ⊗L.
Thus we have defined (33). The straight forward but tedious verification of the
properties (i)–(iv) will be left to the reader.
Recall that Ell∞A,I , EllpB,I and SEDA,B,I denote the coarse moduli spaces of

Eℓℓ∞A,I,0, EℓℓpB,I,0 and SEDA,B,I,0 respectively (these are fine moduli spaces if
I 6= 0). By (i)–(iv), (33) induces an W(A, I,∞)-equivariant isomorphism of
Fq-schemes

Ell∞A,I ⊗k(∞)⋆ SEDA,B,I −→ EllpB,I ⊗k(p)♯ SEDA,B,I . (34)

Here the (free) action of the finite group W(A, I,∞) on the right is given by
id⊗ξ, ξ ∈ W(A, I,∞) →֒ W(A,B, I,D) whereas on the left it is given by
ξ−1 ⊗ ξ. Consequently by passing to quotients under the action and using the
fact that SEDA,B,I /k(p)♯ is a W(A, I,∞)-torsor we obtain:

Theorem 4.24. The isomorphism (34) induces an isomorphism of k(p)♯-
schemes

(Ell∞A,I ⊗k(∞)⋆ SEDA,B,I)/W(A, I,∞) ∼= EllpB,I
We shall give now another formulation of this result. Note that

Θ
[k(p)♯:Fq]
D = θ

[k(p)♯:Fq ]
∞ ξp = FrobSEDA,B,I /k(p)♯

In particular Θ
−[k(p)♯:Fq]
D lies inW(A, I,∞) and is equal to = θ[k(p)♯:Fq]ξ−1

p . The

fact that (34) is in particular Θ
[k(p)♯:Fq]
D -equivariant implies that the following

diagram commutes

Ell∞A,I ⊗k(∞)⋆ SEDA,B,I
(34) //

θ[k(p)♯:Fq ]ξ−1
p

⊗FrobSE /k(p)♯

��

EllpB,I ⊗k(p)♯ SEDA,B,I

id⊗FrobSE /k(p)♯

��
Ell∞A,I ⊗k(∞)⋆ SEDA,B,I

(34) // EllpB,I ⊗k(p)♯ SEDA,B,I
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Fix L ∈ SEDA,B,I(Fq). Its poles correspond to Fq-embeddings λ : k(∞)⋆ → Fq,

µ : k(p)♯ → Fq. By taking base change of the above diagram with respect to

the morphism SpecFq → SEDA,B,I corresponding to L we obtain:

Theorem 4.25. Let m = [k(p)♯ : Fq]. Thus m = deg(p) if p 6∈ |I| and
m = d deg(p) otherwise. The isomorphism · ⊗ L : Ell∞A,I ⊗k(∞)⋆,λFq →
EllpB,I ⊗k(p)♯,µFq induces an isomorphism of k(p)♯-schemes

(Ell∞A,I ⊗k(∞)⋆,λFq)/ < θmξ−1
p ⊗ Frobmq > ∼= EllpB,I .

Remark 4.26. A pair (λ, µ) ∈ HomFq (k(∞)⋆,Fq) × HomFq (k(p)♯,Fq) will be

called admissible for (A,B, I) if there exists L ∈ SEDA,B,I(Fq) with poles λ
and µ. The surjectivity of the homomorphism W(A,B, I,D)→ G(k(∞)⋆/Fq)
implies that for all λ there exists a µ such that (λ, µ) is admissible.

4.6 Application to uniformization

Let A be locally principal OX -order of rank d2 with generic fiber A such that
e∞(A) = d. Let I ∈ Div(X) denote an effective divisor. For a closed point

x ∈ |X | − |I| we denote by Êll
∞
A,I/ Spf(Ox) the formal completion of Ell∞A,I

along the fiber at x of the characteristic morphism Ell∞A,I → X− I. Also for an
arbitrary x ∈ |X | we let Ell∞,an

A,I /Fx denote the rigid analytic space associated
to Ell∞A,I ×X SpecFx. There exists two types of uniformization of Ell∞A,I , i.e.

explicite descriptions of Êll
∞
A,I/ Spf(O∞) and Ell∞,an

A,I /Fx as (finite unions of)
certain quotients of Drinfeld’s symmetric spaces and its coverings. These are
called uniformization at the pole and Cherednik-Drinfeld uniformization. The
first concerns the point x = ∞ (under the assumption inv∞A = 0) whereas
the second the points p ∈ |X | − {∞} with invpA = 1

d . By using Theorem 4.25
we show that the two types of uniformization are equivalent (see Proposition
4.28 below).
In order to introduce the quotients of symmetric spaces appearing in the uni-
formization results below we have to introduce more notation. Fix a closed
point x ∈ X . We denote by Ônr

x the completion of the strict henselisation

of Ox and by F̂ nr
x its function field. For each positive integer m we denote by

Fx,m the unramified extension of degree m of Fx in F̂ nr
x and let Ox,m be its ring

of integers. Note that the projection Ox,m → k(x)m has a canonical section,

i.e. k(x)m ⊆ Fx,m. Similarly k(x) ⊂ Ônr
x . Denote by Dx the central division

algebra over Fx with invariant 1
d and let Dx be the maximal order in Dx. We

also fix a uniformizer ̟x ∈ Ox and an element Πx ∈ Dx with Πd
x = ̟x. Let

σ denote the automorphism on Ox,m and Ônr
x which induces the Frobq on the

residue fields.
Let Ωdx be Drinfeld’s (d − 1)-dimensional symmetric space over Fx and

Ω̂dx/ Spf(Ox) its canonical formal model (see e.g. [Ge]). The rigid analytic vari-

ety Ωdx parametrizes certain formal groups. The formal scheme Ω̂dx is equipped
with a canonical GLd(Fx)-action.
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We define an action of GLd(Fx) on Ω̂dx⊗̂OxOx,m = Ω̂dx ⊗k(x) k(x)m and

Ω̂dx⊗̂OxÔnr
x = Ω̂dx ⊗k(x) k(x) by letting g ∈ GLd(Fx) act canonically on

Ω̂dx and by σ−vx(det(g)) on Ox,m and Ox respectively. There exists a tower
. . .Σdn+1,x → Σdn,x → . . . → Σd1,x → Σd0,x = Ωdx ⊗Fx Fx,d of finite étale Galois

coverings ([Ge], IV.1). Each Σdn,x carries a GLd(Fx)/̟Z
x- and D∗

x/̟
Z
x-action

and the covering maps Σdn+1,x → Σdn,x are equivariant. Finally for n ≥ 0

we equip Σdn,x ⊗Fx,d F̂ nr
x = Σdn,x ⊗k(x)d k(x) with a GLd(Fx)- and Dx-action

by letting g ∈ GLd(Fx) (or inDx) act canonically on the first factor and by
σ−vx(Nrd(g) on the second factor.

Rigid analytic Drinfeld-Stuhler varieties. Suppose that inv∞A = 0
and fix an isomorphism A∞ ∼= Md(F∞). We write I = n∞+I∞ with∞ 6∈ |I∞|.
Assume first that n = 0. We define

Ŝh
∞
A,I : = A∗\

(
A∗(A∞)/UI(A∞)× Ω̂d∞

)
.

This is formal scheme over Spf(O∞).

Next assume ∞ ∈ |I| and write I = n∞+ I∞ with ∞ 6∈ |I∞|. Then we define

Sh∞
A,I : = A∗\

(
A∗(A∞)/UI∞(A∞)× Σdn,∞

)
.

This is rigid analytic space over F∞.

There exists a canonical right action of the group CI(A∞ × D∞) on

Ŝh
∞
A,I and Sh∞

A,I which is defined as follows. Let a = ({ax}x 6=∞, d∞) ∈
(
∏′
x∈|X|−{∞} N(Ax))×N(D∞) and assume first n = 0. Then the right action

of the class [a] ∈ CI(A∞ × D∞) of a on Ŝh
∞
A,I is given by right multiplication

by {ax}x 6=∞ on A∗(A∞)/UI(A∞). Now assume that n > 0. Then [a] acts on
Sh∞

A,I by right multiplication of {ax}x 6=∞ on A∗(A∞)/UI∞(A∞) and letting

d−1
∞ act on Σdn,∞.

There are canonical morphism

pole : Ŝh
∞
A,I → Spec k(∞) if n = 0, (35)

pole : Sh∞
A,I → Spec k(∞)d if n > 0. (36)

which we are going to defined now. Denote by l = l∞ : A∗(A∞) → Z the
composite

l∞ : A∗(A∞)
Nrd−→ F ∗(A∞)

div−→
⊕

x 6=∞
Zx

deg−→ Z.

Note that for a ∈ A∗ ⊂ A∗(A∞) we have l∞(a) = − deg(∞)v∞(Nrd(a)). First
assume n = 0. Let

A∗(A∞)/UI(A∞)× Ω̂d∞ −→ Spec k(∞) (37)
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be given on the component ηUI(A∞)× Ω̂d∞ by

Ω̂d∞ −−−−→ Spec k(∞)
Frob−l(η)

q−−−−−−→ Spec k(∞). (38)

Clearly, (38) factors through Ŝh
∞
A,I , hence it induces (35).

Now suppose n > 0. Since k(∞)d ⊆ F∞,d, we get a map Σdn,∞ → SpecF∞,d →
Spec k(∞)d. Note that for g ∈ GLd(F∞) the diagram

Σdn,∞
g·−−−−→ Σdn,∞y

y

Spec k(∞)d
Frob−v∞(det(g))

q−−−−−−−−−−→ Spec k(∞)d

(39)

commutes. We define

A∗(A∞)/UI(A∞)× Σdn,∞ → Spec k(∞)d (40)

on the component corresponding to ηUI(A∞) ∈ A∗(A∞)/UI(A∞) by

Σdn,∞ −−−−→ Spec k(∞)d
Frob−l(η)

q−−−−−−→ Spec k(∞)d.

The commutativity of (39) implies that (40) factors through Sh∞
A,I , i.e. it yields

the map (36).

Cherednik-Drinfeld varieties. Let ξ̃ = {ξ̃x}x 6=∞ ∈ (
∏′
x∈|X|−{∞}N(Ax))

and let ξ ∈ CI(A∞ × D∞) be the idele class represented by ({ξ̃x}x 6=∞, 1) ∈
(
∏′
x∈|X|−{∞} N(Ax)) × N(D∞). We assume that ξ is a central element in

CI(A∞ ×D∞) and that m = −d degA(ξ) = −l∞(ξ̃) 6= 0. We define

Ŝh
ξ

A,I,∞ : = A∗\
(
A∗(A∞)/UI(A∞)ξ̃Z × Ω̂d∞ ⊗k(∞) k(∞)

)
if n = 0,

ShξA,I,∞ : = A∗\
(
A∗(A∞)/UI∞(A∞)ξ̃Z × Σdn,∞ ⊗k(∞)d k(∞)

)
if n > 0.

As above one defines a right action of CI(A∞ × D∞) on Ŝh
ξ

A,I,∞ and Sh ξA,I,∞
by letting a = ({ax}x 6=∞, d∞) ∈ (

∏′
x∈|X|−{∞} N(Ax)) ×N(D∞) act by right

multiplication by {ax}x 6=∞ on A∗(A∞)/UI(A∞) and letting d−1
∞ act on

Ω̂d∞⊗̂O∞Ônr
∞ (if n = 0) and Σdn,∞ ⊗F∞,d

F̂ nr
∞ (if n > 0). Note that ξ acts

trivially.
Let k(ξ) denote the fixed field of Frobmq in k(∞). There are canonical mor-
phisms

Ŝh
ξ

A,I,∞ → Spec k(ξ) if n = 0, (41)

ShξA,I,∞ → Spec k(ξ) if n > 0. (42)
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Their definition is similar to the definition of (35) and (35). For example (41)
is induced by the maps

η(UI(A∞)ξ̃Z)× Ω̂d∞ ⊗k(∞) k(∞) −−−−→ Spec k(ξ)
Frob−l(η)

q−−−−−−→ Spec k(ξ).

The rigid analytic varieties Sh∞
A,I and ShξA,I,∞ are twists of each other. More

precisely we have the following result.

Lemma 4.27. (a) There exists a canonical isomorphism of formal schemes over
Spf(O∞) (resp. rigid analytic varieties over F∞)

Ŝh
∞
A,I ⊗k(∞)k(∞)/ < ξ ⊗ Frobmq > ∼= Ŝh

ξ

A,I,∞ for n = 0, resp. (43)

Sh∞
A,I ⊗k(∞)dk(∞)/ < ξ ⊗ Frobmq > ∼= ShξA,I,∞ for n > 0. (44)

Here Ŝh
∞
A,I ⊗k(∞)k(∞) (resp. Sh∞

A,I ⊗k(∞)dk(∞)d) denotes the base change to

k(∞) of the morphism (35) (resp. (36)).

(b) Let ξ∞ ∈ CI(A∞ ×D∞) be the class of the idele ({1}x 6=∞,Π−1
∞ ) (if n = 0)

resp. of ({1}x 6=∞, ̟−1
∞ ) (if n > 0). Then we have

Ŝh
ξ

A,I,∞⊗k(ξ)k(ξ)/ < ξ∞ ⊗ Frobdeg(∞)
q >∼= Ŝh

∞
A,I for n = 0, resp. (45)

ShξA,I,∞⊗k(ξ)k(ξ)/ < ξ∞ ⊗ Frobd deg(∞)
q >∼= Sh∞

A,I for n > 0. (46)

Proof. We prove only the existence of (43). The other cases are similar and
will be left to the reader. For ηUI(A∞) ∈ A∗(A∞)/UI(A∞) we denote the base

change of the map (38) to k(∞) by (ηUI(A∞)× Ω̂d∞)⊗k(∞) k(∞). Let

(ηUI(A∞)× Ω̂d∞)⊗k(∞) k(∞)
id⊗Frobl(η)q−−−−−−−−→ Ω̂d∞ ⊗k(∞) k(∞) (47)

and let
(
A∗(A∞)/UI(A∞)× Ω̂d∞

)
⊗k(∞)k(∞)→ A∗(A∞)/UI(A∞)×(Ω̂d∞⊗k(∞)k(∞))

(48)
be made up of all the morphisms (45). One easily checks that it is A∗-
equivariant and that the following diagram commutes:

(A∗(A∞)/UI(A∞)× Ω̂d∞)⊗ k(∞)
(48)−−−−→ A∗(A∞)/UI(A∞)× (Ω̂d∞ ⊗ k(∞))

y·ξ⊗Frobmq

y·ξ̃⊗id

(A∗(A∞)/UI(A∞)× Ω̂d∞)⊗ k(∞)
(48)−−−−→ A∗(A∞)/UI(A∞)× (Ω̂d∞ ⊗ k(∞))

Hence (48) induces the isomorphism (43). �
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Note that, since ξ∞ acts trivially on Ŝh
∞
A,I (resp. Sh∞

A,I), the CI(A∞ × D∞)-

action on Ŝh
∞
A,I (resp. Sh∞

A,I) induces a right W(A, I,∞)-action (by Remark
4.8 (c)). In terms of the latter, Lemma 4.27 (a) can be reformulated as follows:

Ŝh
∞
A,I ⊗k(∞)k(∞)/ < ξθm ⊗ Frobmq > ∼= Ŝh

ξ

A,I,∞ for n = 0, resp. (49)

Sh∞
A,I ⊗k(∞)dk(∞)/ < ξθm ⊗ Frobmq > ∼= ShξA,I,∞ for n > 0. (50)

Uniformisation at the pole. Suppose that inv∞ A = 0 and assume first
that∞ does not divide the level I. Then there exists an isomorphism of formal
schemes over Spf(O∞)

Êll
∞
A,I/ Spf(O∞) ∼= Ŝh

∞
A,I (51)

which is compatible with the W(A, I,∞)-action and the morphisms pole.
Now assume ∞ ∈ |I|. Then it is expected

Ell∞,an
A,I / SpecF∞ ∼= Sh∞

A,I . (52)

Again, (52) should be compatible with the W(A, I,∞)-action and the mor-
phisms pole.
We say that Ell∞A,I admits uniformization at the pole if (51) (resp. (52)) holds.
Suppose that ∞ 6∈ |I|. (51) has been proved in ([BS], 4.4) if A is a division
algebra or A = Md(F ). As in loc. cit. the general case can be easily deduced
from ([St], Corollary, p. 531 and Theorem 1, p. 538) or ([Ge], III.3.1.1). If
∞ ∈ |I| then (52) in known in the case of Drinfeld modular varieties (i.e.
A = Md(F )) the uniformization (52) is proved in [Dr4].

Cherednik-Drinfeld uniformization: Let p ∈ |X | − {∞} and assume
that invpA = 1

d . Let B be a locally principal OX -order of rank d2 with
Disc(B) = Disc(A) and such that the local invariants of the generic fiber B of
B are given by inv∞(B) = inv∞(A) + 1

d , invp(B) = 0 and invx(B) = invx(A)
for all x ∈ |X | − {∞, p}. We fix an isomorphism Bp

∼= Md(Fp) and isomor-
phisms Bx ∼= Ax for all x ∈ |X | − {∞, p}. Using the latter we can identify

the groups CI(A∞ × B∞) and CI(Bp ×Ap). Since ξ∞ acts trivially on Ŝh
ξ∞

B,I,p
(resp. Shξ∞B,I,p) we obtain a right W(A, I,∞) ∼= CI(Bp × Ap)/ξZ∞-action on

Ŝh
ξ∞

B,I,p (resp. Shξ∞B,I,p). We also fix an isomorphism k(∞)⋆ ∼= k(ξ∞) ⊂ k(p)

such that the pair (k(∞)⋆ ∼= k(ξ∞) →֒ k(p), k(p)♯ →֒ k(p)) is admissible in the
sense of Remark 4.26 (k(∞)⋆ and k(p)♯ are defined as in the last section) and
define

pole : Ŝh
ξ∞

A,I,∞
(41)−→ Spec k(ξ∞) ∼= Spec k(∞)⋆ if n = 0,

pole : Shξ∞A,I,∞
(42)−→ Spec k(ξ∞) ∼= Spec k(∞)⋆ if n > 0.
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Assume that p 6∈ |I| (resp. p ∈ |I|). Then we expect that there is a canonical
isomorphism of formal schemes over Spf(Op) (resp. of rigid analytic spaces over
Fp)

Êll
∞
A,I/ Spf(Op) ∼= Ŝh

ξ∞

B,I,p if p 6∈ |I|, (53)

Ell∞,an
A,I /Fp

∼= Shξ∞B,I,∞ if p ∈ |I| (54)

compatible with W(A, I,∞)-action and the morphisms pole.
We say that Ell∞A,I admits Cherednik-Drinfeld uniformization if (53) (resp.
(54)) holds. Both (53) and (54) are proved in ([Hau], 8.1 and 8.3) in the
case deg(∞) = 1, inv∞A = 0 and ∞ 6∈ |I|. Under these assumptions the

formal scheme Ŝh
ξ∞

B,I,p and the rigid analytic variety Shξ∞B,I,∞ have the following
simpler description

Ŝh
ξ∞

B,I,p = B∗\
(
B∗(Ap,∞)/UI(B∞,p)× Ω̂dp ⊗k(p) k(p)

)
if n = 0,

Shξ∞B,I,p = B∗\
(
B∗(Ap,∞)/UI(B∞,p)× Σdn,p ⊗k(p)d k(p)

)
if n > 0,

where n denotes now the exact multiple of p occuring in I.
By combining Theorem 4.25, (49), (50) and Lemma 4.27 (b) we obtain:

Proposition 4.28. Let p ∈ |X | − {∞} and let A and B be locally principal
OX-orders of rank d2 with Disc(B) = Disc(A) such that the local invariants of
the generic fibers A and B are given by inv∞(A) = 0, inv∞(B) = 1

d , invp(A) =
1
d , invp(B) = 0 and invx(B) = invx(A) for all x ∈ |X | − {∞, p}. The following
conditions are equivalent:
(i) Ell∞A,I admits uniformization at the pole.

(ii) EllpB,I admits Cherednik-Drinfeld uniformization.

By applying 4.28 to the results of [BS] and [Hau] we obtain further cases where
Ell∞A,I admits uniformization at the pole or Cherednik-Drinfeld uniformization.
For example if inv∞(A) = 0, ∞ ∈ |I| and if there exists a point p ∈ |X | − {∞}
such that invp(A) = 1

d and deg(p) = 1
d then Ell∞A,I admits uniformization at the

pole. Conversely Cherednik-Drinfeld uniformization for Ell∞A,I holds whenever
if p does not divide the level.

5 Appendix

5.1 Commutative subalgebras in semisimple algebras

Let k be a perfect field and A a finite-dimensional semisimple k-algebra. We
collect a few facts about maximal separable and commutative subalgebras of
A for which we could not find any references.
Let Z denote the center of A. By Wedderburns Theorem we have Z ∼= k1×. . .×
kr for some finite separable extensions ki/k. For a finite Z-module M , rankZM
denotes the (not necessarily constant) rank of the corresponding locally free
OSpecZ-module.
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Lemma 5.1. Let T be a commutative separable k-subalgebra of A. The following
conditions are equivalent.
(i) T = ZA(T ) = {x ∈ A | tx = xt ∀t ∈ T }.
(ii) T is a maximal commutative separable k-subalgebra of A.
(iii) T ⊇ Z and (rankZ T )2 = rankZ A.
Moreover if A = Endk1(V1) × . . . × Endkr (Vr) where Vi a finite-dimensional
ki-vector space for i = 1, . . . , r, then (i) – (iii) are equivalent to
(iv) V1 ⊕ . . .⊕ Vr is a free T -module of rank 1.

A commutative separable k-subalgebra T of A satisfying the equivalent condi-
tions (i) – (iii) above will be called a maximal torus of A.

Lemma 5.2. Let T1, T2 be two maximal tori of A. Then there exists a finite
extension k′/k such that T1 ⊗k k′ and T2 ⊗k k′ are conjugated in A⊗k k′.
A finite A-module M is called a generator of ModA if the functor

HomA(M, ·) : ModA −→ Modk

is faithfull. M is called a minimal generator if dimk(M) is minimal. Assume
now that A is split, i.e. A = Endk1(V1) × . . . × Endkr (Vr) as in condition (iv)
of Lemma 5.1 and let T be a maximal torus in A. We have

Lemma 5.3. Let M be a finite A-module. The following conditions are equiv-
alent.
(i) M is a minimal generator.
(ii) M ∼= V1 ⊕ . . .⊕ Vr
(iii) M is a free T -module of rank 1.

5.2 A-elliptic sheaves according to Laumon-Rapoport-Stuhler

The aim of this section is to show that under suitable assumptions on A the
moduli stack Eℓℓ∞A defined in section 4.1 is isomorphic to the stack defined in
([LRS], 2.4).
Firstly, we establish an equivalence between certain parabolic vector bundles
and locally free modules of a hereditary algebra. We use the following notations
and assumptions. Let k be a perfect field of cohomological dimension ≤ 1 and
let X be a smooth connected curve over k and F is the function field of X .
We also fix a closed point ∞ ∈ X . To simplify the notation we assume that
deg(∞) = 1 (see Remark 5.11 below for the case deg(∞) > 1).
Let A′ be a locally principal OX -order of rank d2 with generic fiber A′. We
assume that e∞(A′) = 1, i.e. A′

∞ ∼= Md(O∞). To begin with we introduce the
notion of a parabolic A′-modules and parabolic vector bundles with A′-action
(compare [Yo]). A filtered object in a category C is a functor C⋆ : Z → C.
Morphisms of filtered objects are natural transformations. Here we regard the
ordered set Z as a category in the usual way. The set of objects is Z and for
i, j ∈ Z we have

♯(Mor(i, j)) =

{
1 if i ≤ j
0 otherwise.

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



648 Michael Spieß

For i ∈ Z the morphism Ci → Ci+1 will be denoted by ji = jCi . For a filtered
object C⋆ in C and n ∈ Z the shifted filtered object C[n]⋆ is defined as the

composite Z
+n−→ Z → C. A morphism φ : C⋆ → D⋆ of filtered objects induces

a morphism φ[n] : C[n]⋆ → D[n]⋆.
Recall that for S ∈ Sch /k we have set A′ Mod(S) : = A′⊠OS Mod (resp.
ModA′(S) : = ModA′⊠OS).

Definition 5.4. Let S be a k-scheme.
(a) For e ∈ Z with e ≥ 1 let PModA′,e(S) denote the category of pairs (F⋆, ψ⋆)
consisting of a filtered ModA′(S)-object F⋆ and an isomorphism ψ⋆ : F [e]⋆ →
F⋆(∞) : = F⋆ ⊗OX×S (OX(∞) ⊠ OS) such that the restriction of ji : F →
Fi+1 to X − {∞} × S is an isomorphism and such that the following diagram
commutes

Fi+e

ψi

��

Fi

ji+e−1◦...◦ji
77ooooooooooo

id⊗ι ''OOOOOOOOOO

Fi(∞)

(55)

where ι : OX×S →֒ OX(∞) ⊠OS is the inclusion. Morphisms in PModA′,e(S)
are morphisms of filtered objects compatible with the isomorphisms ψ.
(b) Let PCohrA′,sp,e(S) denote the groupoid of (K⋆, ψ⋆) in PModA′,e(S) such
that Ki ∈ CohrA′,sp(S) and N(K⋆) : = N(Ki) = N(Ki+1) for all i ∈ Z.
(c) For e, r ∈ Z with e, r ≥ 1 and e | rd. We denote by PVectrA′,e(S) the full
subcategory of (F⋆, ψF⋆) in PModA′,e(S) such that Fi ∈ VectrA′(S) for all i ∈ Z
and such that Coker(j⋆ : F⋆ → F [1]⋆) ∈ PCohsA′,sp,e(S) with s = rd

e .
Similarly one defines A′ PMode(S) and A′ PVectre(S) using left A′ ⊠ OS-
modules.

Note that for (F⋆, ψ⋆) in PModA′,e(S) with Fi ∈ VectrA′(S) for all i ∈ Z, the
commutativity of diagram (55) implies that ji : Fi → Fi+1 is injective and
Coker(ji) is a sheaf on ∞×S. For A′ = OX we write ModX , PModX,e, VectX
etc. for ModOX , PModOX ,e(S), VectOX etc.
Let E⋆ ∈ PModA′,e(S) and F⋆ ∈ A′ PMode(S). We are going to define now a
tensor product (E⋆ ⊗A′ F⋆)⋆. For i ∈ Z we set

Ti(E⋆,F⋆) : =
⊕

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ.

For i ∈ Z with we define homomorphisms

αi : Ti(E⋆,F⋆) −→ Ti+1(E⋆,F⋆), βi : Ti(E⋆,F⋆) −→ Ti+1(E⋆,F⋆)
as the direct sums of the inclusions jλ ⊗ id : Eλ ⊗A′ Fµ → Eλ+1 ⊗A′ Fµ (resp.
id⊗jµ : Eλ ⊗A′ Fµ → Eλ ⊗A′ Fµ+1). Also let

γi : Ti(E⋆,F⋆) −→ Ti(E⋆,F⋆)

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 649

be the isomorphism given on the summand Eλ ⊗A′ Fµ by

Eλ ⊗A′ Fµ ∼= Eλ(∞)⊗A′ Fµ(−∞)
ψ−1⊗ψ−1

−→ Eλ+e ⊗A′ Fµ−e.

Finally let
δi : Ti−1(E⋆,F⋆)⊕ Ti(E⋆,F⋆) −→ Ti(E⋆,F⋆)

be given on the summand Ti−1(E⋆,F⋆) by αi−1 − βi−1 and by id − γi on
Ti(E⋆,F⋆). We define

∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ = Coker(δi) (56)

There are canonical morphisms

∑

λ+µ=i−1,λ,µ∈Z

Eλ ⊗A′ Fµ −→
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ. (57)

The isomorphisms

Eλ+d ⊗A′ Fµ ψ⊗id−→ (Eλ ⊗A′ Fµ)(∞), Eλ ⊗A′ Fµ+d id⊗ψ−→ (Eλ ⊗A′ Fµ)(∞)

induces an isomorphism

∑

λ+µ=i+d,λ,µ∈Z

Eλ ⊗A′ Fµ −→ (
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ)(∞). (58)

Definition 5.5. The tensor product (E⋆⊗A′ F⋆)⋆ ∈ PModX,e(S) is defined as
the collection of OX×S-modules

(E⋆ ⊗A′ F⋆)i =
∑

λ+µ=i,λ,µ∈Z

Eλ ⊗A′ Fµ

(for i ∈ Z) together with the maps (57) and (58).

Lemma 5.6. Let E⋆ ∈ PVectrA′,e(S) and F⋆ ∈ A′ PVectre(S). Then (E⋆⊗A′F⋆)⋆
lies in PVectrd

2

X,e(S). In particular
∑

λ+µ=i,λ,µ∈Z Eλ ⊗A′ Fµ is a locally free

OX×S-module of rank rd2 for all i ∈ Z.

Proof. For A′ = OX this follows immediately from the fact that a parabolic
OX×S-module is a parabolic vector bundle if and only if it is parabolically
flat ([Yo], Proposition 3.1). The general case can be deduce from this special
case by Morita equivalence. More precisely since the question is local we can
replace X by an étale neighbourhood of ∞ and therefore can assume that
A′ ∼= Md(OX). Let I be an invertible A′-OX -bimodule and J its inverse.
Since (E⋆ ⊗A′ F⋆)⋆ = ((E⋆ ⊗A′ I)⊗OX (J ⊗A′ F⋆))⋆ the assertion follows from
the case A′ = OX . �
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Let A be another locally principal OX -order of rank d2 and assume that
e∞(A) = d and A|U and A′|U are Morita equivalent where U = X − {∞}.
There exists an increasing families of A-A′-bimodules {Ii | i ∈ Z} and
of A′-A-bimodules {Ji | i ∈ Z} such that (Ii)|U = (Ii+1)U =: IU and
(Ji)|U = (Ji+1)U =: JU for all i ∈ Z, IU is an invertible AU -A′

U -bimodule
with inverse JU and such that {(Ii)∞ | i ∈ Z} and {(Ji)∞ | i ∈ Z} are as in
2.2. It follows from Corollary 2.12 that Ii and Jj are locally free A′-modules
of rank 1. Also we have

A(
1

d
∞)⊗A Ii = Ii+1, Ji ⊗A A(

1

d
∞) = Ji+1

for all i ∈ Z.

Proposition 5.7. Put VectA = Vect1A and PVectA′ = PVect1A′,d. The mor-
phisms

· ⊗A I⋆ : VectA −→ PVectA′ , (· ⊗A′ J⋆)d−1 : PVectA′ −→ VectA (59)

given by E 7→ E ⊗A I⋆ : = {F ⊗A Ii | i ∈ Z} and E⋆ 7→
∑
λ+µ=d−1 Eλ ⊗A′ Jµ

are mutually inverse isomorphisms of stacks. Define θ : VectA → VectA and
θ′ : PVectA′ → PVectA′ by θ(E) = E( 1

d∞) and θ′(E⋆, ψ⋆) = (E [1]⋆, ψ[1]⋆).
Then the diagrams

VectA
⊗AI⋆−−−−→ PVectA′ PVectA′

(·⊗A′J⋆)d−1−−−−−−−−→ VectAyθ
yθ′

yθ′
yθ

VectA
⊗AI⋆−−−−→ PVectA′ PVectA′

(·⊗A′J⋆)d−1−−−−−−−−→ VectA

(60)

are 2-commutative.

Proof. In view of 5.6 we only have to show that the second morphism is well-
defined. By 5.6 and 3.11 we have to prove that for E⋆ ∈ PVectA′(S) the
quotient

(
∑

λ+µ=0,λ,µ∈Z

Eλ ⊗A′ Jµ)/(
∑

λ+µ=−1,λ,µ∈Z

Eλ ⊗A′ Jµ) ∼=
∑

λ+µ=0,λ,µ∈Z

Eλ ⊗A′ Jµ

is a special A-module on S ∼= ∞× S where E⋆ : = Coker(E⋆[−1] →֒ E⋆) ∈A′

PModd(S). However this follows from:

Lemma 5.8. The assignement K⋆ 7→
∑

λ+µ=d−1 Kλ⊗A′Jµ defines a morphism

(· ⊗A′ J⋆)d−1 : PCoh1
A′,sp,d −→ Coh1

A,sp .

Proof. By Lafforgue’s Lemma ([Laf], I.2.4) (applied to a maximal tori in A) it
suffices to consider the case where S = Spec k and k is an algebraically closed
field. If N(K⋆) 6=∞ then the assertion follows from Remarks 3.8 (b), (c). Now

Documenta Mathematica · Extra Volume Suslin (2010) 595–654



Twists of Drinfeld–Stuhler Modular Varieties 651

assume N(K⋆) = ∞. Let O = O∞, K = F∞. Since the question is local with
respect to the étale topology we can replace X by SpecO where O = O∞.
Then A′ ∼= Md(O) and A ∼= End(L⋆) for a lattice chain L⋆ of period d in
Kd. Morita equivalence allows us to replace A′ by O, i.e. we can assume that
A′ = O. ThenMi : = Γ(SpecO,Ki) is a onedimensional k-vector space for all
i ∈ Z and we have to show that

∑

i+j=0

Mi ⊗O Jj (61)

is a free T = T ⊗ k-module of rank 1 where T ∼= Od is any maximal torus in
A. If 1 = e1 + . . .+ ed is a decomposition of 1 ∈ T into primitive idempotents
we obtain a corresponding decompositon of (61) into

∑

i+j=0

Mi ⊗O J (ν)
j , ν = 1, . . . , d

where J (ν)
j : = Jjeν . Since Jj is free of rank 1 as a T -module, J⋆(ν) is a

shifted parabolic line bundle (compare [Yo]) for each ν ∈ {1, . . . , d}. Therefore

(M⋆ ⊗O J⋆(ν))⋆ ∼=M⋆[m] for some m ∈ Z. Consequently

∑

i+j=0

Mi ⊗O J (ν)
j
∼=Mm

is a onedimensional k-vector space. It follows that (61) is a free T ⊗OR-module
of rank 1. �

Now assume that k = Fq and that A′ is a maximal OX -order in a central
division algebra A′ of dimension d2 with A′

∞ ∼= Md(F∞). Let us recall the
definition of an A′-elliptic sheaf given in ([LRS], 2.2) and ([BS], 4.4.1) (here we
do not require deg(∞) = 1).

Definition 5.9. Let S ∈ Sch /Fq. An A′-elliptic sheaf E′ = (Ei, ji, ti)i∈Z with
pole ∞ in the sense of [LRS] consists of a commutative diagram

. . . −−−−→ Ei−1
ji−1−−−−→ Ei ji−−−−→ Ei+1 −−−−→ . . .

xti−2

xti−1

xti

. . . −−−−→ τE i−2
ji−1−−−−→ τE i−1

ji−1−−−−→ τE i −−−−→ . . .

where Ei are locally free OX×S-modules of rank d2 additionally equipped with
a right action of A′ compatible with the OX -action. The maps are injective
A′ ⊠OS-linear homomorphisms.
Furthermore the following conditions should hold:
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(i) (Periodicity) Ei+e deg(∞) = Ei(∞) : = Ei ⊗OX×S (O(∞) ⊠ OS) where the
canonical embedding of Ei on the right side corresponds on the left to the com-

postion Ei
j→֒ . . .

j→֒ Ei+d′deg(∞).
(ii) The quotient sheaf Ei/ji−1(Ei−1) is a locally free sheaf of rank d on the
graph of a morphism ι∞,i : S → X.
(iii) There exists a morphism z : S → X − |Disc(A′)| – called the zero or
characteristic of E′ – such that for all i ∈ Z, Coker(ti) is supported on the
graph of a morphism z and is a direct image of a locally free OS-module of
rank d by Γz = (z, idS) : S −→ X × S.
We first remark that condition (iii) implies that Ei is actually a locally free
A′⊠OS-module. This follows from ([Laf], I.4, proposition 7) or can be deduced
from Lemma 3.11 together with ([LRS], 2.6). Secondly condition (i) implies
that ι∞,i(S) = {∞} and we have

ι∞,i ◦ FrobS = ι∞,i+1

for all i ∈ Z. For that consider the two filtrations of Ei+1/ti−1(τE i−1)

0⊆Ei/ti−1(τE i−1)⊆Ei+1/ti−1(τE i−1),

0⊆ti(τE i)/ti−1(τE i−1)⊆Ei+1/ti−1(τE i−1).

The first shows that the support of Ei+1/ti−1(τE i−1) is Γz + Γι∞,i+1 and the
second that it is Γz + Γι∞,i◦FrobS .
Suppose again that deg(∞) = 1. Hence the stack PEℓℓ∞A′(S) of A′-elliptic
sheaves as defined in 5.9 is isomorphic to the stack of triples E′ = (E⋆, t⋆)
where E⋆ = (E⋆, ψ⋆) ∈ PVectA′(S) and t⋆ : τE [−1]⋆ → E⋆ is a morphism in
PVectA′(S) such that (iii) above holds for Coker(t⋆).
We show that the isomorphisms (59) yield isomorphisms between PEℓℓ∞A′ and
Eℓℓ∞A |X−|Disc(A′)| = Eℓℓ∞A ×X (X − |Disc(A′)|). Define

· ⊗A I⋆ : Eℓℓ∞A |X−|Disc(A′)|(S) −→ PEℓℓ∞A′(S)

by (E , t) 7→ (E ⊗A I⋆, t ⊗A I⋆). The commutativity of the first diagram (60)
shows that t⊗A I⋆ is a map τE ⊗A I⋆[−1]→ E ⊗A I⋆. That E′ has property
(iii) above follows from Remark 3.8 (c). Conversely, we define

(· ⊗A′ J⋆)d−1 : PEℓℓ∞A′(S) −→ Eℓℓ∞A |X−|Disc(A′)|(S)

by (E⋆, t⋆) 7→ ((E⋆ ⊗A′ J⋆)d−1, (t⋆ ⊗A′ J⋆)d−1). Again the commutativity
of the second diagram of (60) implies that (t⋆ ⊗A′ J⋆)d−1 is a morphism
τ (E(− 1

d∞S))→ E where E = (E⋆⊗A′J⋆)d−1. Finally condition (*) of Definition
4.2 follows Lemma 5.8. We deduce from 5.7:

Proposition 5.10. Let S be a k-scheme. The morphisms

· ⊗AI⋆ : Eℓℓ∞A |X−|Disc(A′)| −→ PEℓℓ∞A′ , (62)

(· ⊗A′ J⋆)d−1 : PEℓℓ∞A′ −→ Eℓℓ∞A |X−|Disc(A′)| (63)

are mutually inverse isomorphisms.
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Remarks 5.11. (a) In order to extend 5.10 to the case deg(∞) > 1 we have to
modify Definition 5.4 (b) as follows. For S ∈ Sch /k let PVectA′(S) denote the
category of triples (F⋆, ψF⋆ ,∞S) where ∞S : S → X is a k-morphism which
factors through ∞ → X and (F⋆, ψF⋆) is an element of PModA′,ddeg(∞)(S)

such that Fi ∈ Vect1A′(S) for all i ∈ Z and such that the sheaf Coker(ji)
is a locally free sheaf of rank d on the graph of ∞S ◦ FrobiS : S → X . To
define isomorphisms similar to (59) we consider increasing families ofA⊠k(∞)-
A′ ⊠ k(∞)-bimodules {Ii | i ∈ Z} and A′ ⊠ k(∞)-A ⊠ k(∞)-bimodules {Ji |
i ∈ Z} with the following properties:

(i) A( 1
d∞i) ⊗A Ii = Ii+1, Ji ⊗A A( 1

d∞i) = Ji+1 for all i ∈ Z. Here ∞0

denotes the canonical morphism Spec k(∞)→ X and∞i : =∞0◦Frobi :
Spec k(∞)→ X .

(i) IU = (Ii)|U×Fq k(∞) is an invertible AU⊠k(∞)-A′
U⊠k(∞)-bimodule with

inverse JU = (Ji)|U×Fq k(∞).

(iii) For all i ∈ Z, Ii and Jj are locally free A′ ⊠ k(∞)-modules of rank 1.

As in 5.7 one defines isomorphisms

· ⊗AI⋆ : VectA×Fqk(∞) −→ PVectA′ ,

(· ⊗A′ J⋆)d−1 : PVectA′ −→ VectA×Fqk(∞)

which then yield the isomorphisms (62), (63) above.
(b) Let p be a closed point of X such that invp(A′) = 1

d . In [Hau], Hausberger
constructed a flat proper model of Eℓℓ∞A′ over (X−|Disc(A′)|)∪{p} by extend-
ing the definition of the moduli problem 5.9 of Laumon-Rapoport-Stuhler to
characteristic p. By using ([Hau], 2.16) it is easy to see using that his condition
spéciale ([Hau], section 3) corresponds to our condition (*).
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1 Introduction

The classical Artin-Hasse function was defined in 1928 in [1] in order to find
Ergängungsätze for the global reciprocity law in the cyclotomic field Q(ζ),
where ζ is a primitive root of unity of order pn. The Artin-Hasse functions
turned out to be a convenient tool for describing the arithmetic of the multi-
plicative group of a local field. Using them, I.R. Shafarevich constructed in [2]
a canonical basis, which gives the decomposition of elements up to pnth powers.
When in the early 1960s Lubin and Tate constructed formal groups with com-
plex multiplication in a local field to define the reciprocity relation explicitly,
the role of Artin-Hasse functions became clear. They turned out to be the iso-

morphism between the canonical formal group with logarithm x+ xp

p + xp
2

p2 + ...

and the multiplicative formal group (see [3]).
S.V. Vostokov in [4] generalized Artin-Hasse functions in the multiplicative case
using the Frobenius operator ∆, defined on the ring of Laurent series over the
ring of Witt vectors, to the function E∆:

E∆(f(x)) = exp

(
1 +

∆

p
+

∆2

p2
+ ...

)
(f(x)),

1The work is supported by RFBR (grant no. 08-01-00777a); the second author also
acknowledges support from SFB 478.
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656 V. Valtman and S. Vostokov

where ∆ acts on x as raising to the power p, and on the coefficients of the ring
of Witt vectors as the usual Frobenius. The map E∆ induces a homomorphism
from the additive group of the ring of power series to the multiplicative group.
In addition, [4] contains the definitions of the inverse operator function l∆:

l∆(f(x)) =

(
1− ∆

p

)
log f(x), f(x) ≡ 1 (mod x),

which induces the inverse homomorphism.
To find explicit formulas for the Hilbert pairing on the Lubin-Tate formal
groups, the work [5] generalized Artin-Hasse functions E∆(f(x)) and their in-
verse functions l∆(f(x)) to the Lubin-Tate formal groups. Using them, explicit
formulas for the Hilbert pairing for formal Lubin-Tate modules were obtained
in [4], [5]. They played a key role in the construction of the arithmetic of formal
modules (see [5]).
The Artin-Hasse functions for Honda formal groups were defined in the work [6].
In the construction of generalised Artin-Hasse functions one uses the existence
of a classification of this type of formal groups. Until 2002 such a classification
was known in two cases only:

1. Lubin-Tate formal groups, i.e. formal groups of minimal height defined
over the ring of integers of a local field isomorphic to the endomorphism
ring of a formal group;

2. Honda formal groups, i.e. formal groups over the ring of Witt vectors of
a finite field.

In 2002 M. Bondarko and S. Vostokov [6] obtained an explicit classification of
formal groups in arbitrary local fields.
To study the arithmetic of the formal modules in an arbitrary local field and
to derive explicit formulas for the generalized Hilbert pairing on these modules
we should extend Artin-Hasse functions and the inverse maps on these formal
modules. This paper contains a solution of this problem.

2 Notation

Suppose that K/Q is a local field with ramification index e and ring of integers
OK . By N we will denote its inertia subfield, and by O the ring of integers of
N ; σ will denote the Frobenius map on N .
Define a linear operator ∆ : O[[x]]→ O[[x]] which acts as follows: ∆(

∑
aix

i) =∑
σ(ai)x

pi.
Consider the ring W = O[[t]]. We can extend the action of σ on O[[t]] by
defining σ(t) = tp. Then we can define ∆ on W [[x]] just as on O[[x]]. Let
ψ : W → OK be a homomorphism satisfying ψ(t) = π and ψ|O = idO. Define

a map φ0 : OK →W by the formula: φ0(
e−1∑
i=0

wiπ
i) =

e−1∑
i=0

wit
i, where wi ∈ O.
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V = N((t)) will denote the field of fractions of W . We can easily extend ψ on
it. We can also extend ∆ on V [[x]].
Denote by RO the set of Teichmüller representatives in the ring O.
Let F1 and F2 be isomorphic formal groups over OK with logarithms λ1 and
λ2 respectively. Suppose that F1 is a p-typical formal group. We will denote
the isomorphism between them by f(x) = λ−1

1 (λ2(x)) ∈ OK [[x]]. Since F1 is
p-typical, we get λ1(x) = Λ1(∆)x, where Λ1(∆) ∈ OK [[∆]]∆.
We use the following convention: sometimes we write λ or Λ or F without an
index if the index is equal to 1.

Lemma 1. There exists a formal group F ∈ W [[x, y]] with p-typical logarithm
λ ∈ xV [[x]] such that the following two statements are true:

1. ψ(λ) = λ.

2. ψ(F ) = F .

Proof. Let G(R) be a universal formal group. Then the homomorphism be-
tween G and F can be factored through W . This is what we wanted.

From now on we fix some F and λ from the lemma above. Since λ is p-typical,
we can write it in the form λ(x) = Λ(∆)x, where Λ(∆) ∈ V [[∆]]∆.

3 Definition of l

Define the function l : xW [[x]]→ xV [[x]] by formula

l(g(x)) = Λ
−1

(∆)λ(g(x)). (1)

This is an analog of the inverted Artin-Hasse function.

Theorem 1. l(xW [[x]]) ⊂ xW [[x]]. Moreover, l is a bijection from xW [[x]]
onto xW [[x]].

Proof. We begin by proving several lemmas.

Lemma 2. Let f1, f2 ∈ xW [[x]] be such that l(f1), l(f2) ∈ W [[x]]. Then
l(f1 +F f2) = l(f1) + l(f2) ∈ xW [[x]].

Proof. l(f1 +F f2) = Λ
−1

(∆)(λ(f1 +F f2)) = Λ
−1

(∆)(λ(f1) + λ(f2)) = l(f1) +
l(f2).

Lemma 3. Suppose that f ∈ xW [[x]] is such that l(f) ∈ xW [[x]] and a ∈ W is
such that a = θtn, where θ ∈ RO. Suppose that m ∈ N and g(x) = f(axm).
Then l(g(x)) = l(f(x))(axm) ∈ xW [[x]].

Proof. Denote y = axm. We know that σ(θ) = θp and σ(t) = tp, so ∆(y) = yp.
So ∆ acts on f(x) just as on f(y). This implies the statement of the lemma.
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By definition λ(x) = Λ(∆)x, so l(x) = Λ(∆)−1λ(x) = Λ(∆)−1Λ(∆)x = x. So
l(x) = x ∈W [[x]]. From the previous lemma we get l(xn) = xn ∈W [[x]].
Then, l([pm]xn) = l(xn +F x

n +F + · · ·+F x
n) = pml(xn) = pmxn.

Now, suppose that f(x) = akx
k + ak+1x

k+1 + . . . is an element of xkW [[x]],
where k > 0. Then ak (as any element of W ) can be written in the form

ak =

∞∑

i=0

pi
∞∑

j=0

tjri,j , (2)

where ri,j ∈ RO. Define gk by the formula:

gk(x) =

∞∑

i=0

[pi]

∞∑

j=0

tjri,jx
k, (3)

where overlined sums are taken using the F formal group law.

Lemma 4. gk(x) is a convergent series and gk(x) ∈ xkW [[x]].

Proof. The second part of the lemma follows from the definition, so we will
prove only the first part.

Denote Ul =
l∑

i=0

[pi]
∞∑
j=0

tjri,jx
k. We will increase l and look at the coefficient

at xt. Consider the cooefficients of x1, x2 . . .xl of λ
−1

and λ. Denote by
Q the maximal degree of p in the denominators of these coefficients. Then

Ul = λ(
l∑
i=0

pi
∞∑
j=0

λ
−1

(tjri,jx
k)). If we add a term with l ≥ 2Q, the coefficient

will increase by a multiple of pl−2Q. Therefore, the coefficient will converge.

We now prove Theorem 1.
We have fk+1 = f −F gk ∈ xk+1W [[x]], since we have constructed gk so that
it starts with the same term as f . Then we can construct gk+1 ∈ xk+1W [[x]]

and so on. So any f ∈ xW [[x]] can be written as f(x) =
∞∑
k=1

gk. (As above, the

line over the sum symbol denotes that we use F group law.)
Then

l(f(x)) = l

( ∞∑

k=1

gk(x)

)
=

∞∑

k=1

l(gk(x)) =

∞∑

k=1

∞∑

i=0

∞∑

j=0

pj l(ri,j,kt
ixk) =

=

∞∑

k=1

∞∑

i=0

∞∑

j=0

pjri,j,kt
ixk ∈ xW [[x]]. (4)

This proves the first part of the theorem. The bijectivity of l follows from
formulas (3) and (4): l is a bijection between xW [[x]] and all {(ri,j,k)}.
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Now we can introduce the function E : xW [[x]]→ xW [[x]] as l
−1

. Immediately
from the definition we get the formula

E(f(x)) = λ
−1

(Λ(∆)f(x)). (5)

Theorem 2. l is an isomorphism xW [[x]]F into xW [[x]]+ and E is its inverse.

Proof. From Lemma (2) we get that l is a homomorphism. And from Theorem
(1) it is a bijection.

4 Definition of E

Suppose that φ : OK →W is any map such that the following statements hold:

1. φψ = idOK .

2. φ(x+ y) = φ(x) + φ(y).

3. φ|ON = idON .

Such a map exists, because we can take φ = φ0. Then we can extend φ on
W [[x]] by taking φ(axn) = φ(a)φ(xn).
Now define the map E : xOK [[x]]→ xOK [[x]] by the following formula:

E(f(x)) = ψ(E(φ(x))). (6)

Note that it is possible that we will get different E, if we take different φ.

Lemma 5. Suppose that f(x) ∈ xOK [[x]], and f(x) − akx
k ∈ xk+1OK [[x]].

Then E(f(x))− akxk ∈ xk+1OK [[x]].

Proof. Denote φ(f(x)) by h(x). Then h(x)−φ(ak)xk ∈ xk+1W [[x]]. Now, from
formula (4) we derive E(h(x))−ψ(ak)xk ∈ xk+1W [[x]]. Therefore, ψ(E(h(x)))
starts with ψ(φ(ak))xk = akx

k.

Theorem 3. E is an isomorphism xOK [[x]]+ into xOK [[x]]F .

Proof. 1. E is a homomorphism: E(f1 + f2) = ψ(E(φ(f1 + f2))) =
ψ(E(φ(f1) + φ(f2))) = ψ(E(φ(f1)) +F E(φ(f2))) = ψ(E(φ(f1))) +F

ψ(E(φ(f2))) = E(f1) +F E(f2).

2. Injectivity is obvious from Lemma 5.

3. It remains to prove that E is a surjection. Let f(x) ∈ xkOK [[x]]. Suppose
that it starts with akx

k. Then we can take gk(x) = akx
k: E(gk(x)) then

also starts with akx
k. Then denote fk+1(x) = f(x) −F gk(x). It starts with

bk+1x
k+1, so we can construct gk+1 and so on. Then put g(x) =

∑
gk(x), so

E(g(x)) =
∑
gk(x) = f(x).

Moreover, we can define an isomorphism xOK [[x]]+ into xOK [[x]]F2 by the
formula

ˆE(g(x)) = f(E(g(x))) (7)
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der ln-ten Potenzreste im Körper der ln-ten Einheitswurzeln, Hamb.
Abh. 6 (1928), 146–162.

2. I.R. Shafarevich, On p-extentions, Rec. Math. [Mat. Sbornik] N.S.,
20(62):2 (1947), 351–363.

3. J. Lubin, J. Tate, Formal complex multiplication in local fields, Ann.
Math. 81 (1965), 380–387.

4. S.V. Vostokov, Explicit form of the law of reciprocity, Math USSR Izv.,
1979, 43:3, 557–588.

5. S.V. Vostokov, Norm pairing in formal modules, Math USSR Izv., 1980,
15(1), 25–51.

6. S.V. Vostokov, M.V. Bondarko, An explicit classification of formal
groups over local fields, Tr. Mat. Inst. Steklova, 241, Nauka, Moscow,
2003, 43–67.

7. O.V. Demchenko, Formal Honda groups: the arithmetic of the group of
points, Algebra i analiz, 12:1 (2000), 115–133.

Vitaly Valtman,
Faculty of Mathematics

and Mechanics
St. Petersburg State University
St. Petersburg, Russia
valtmanva@gmail.com

Sergey Vostokov,
Faculty of Mathematics

and Mechanics
St. Petersburg State University
St. Petersburg, Russia
sergei.vostokov@gmail.com

Documenta Mathematica · Extra Volume Suslin (2010) 655–660



Documenta Math. 661

Rationality of Integral Cycles

Alexander Vishik

Received: January 31, 2010

Revised: March 5, 2010

Abstract. In this article we provide the sufficient condition for a
Chow group element to be defined over the ground field. This is
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1 Introduction

In many situations it is important to know, if the element of the Chow group
of some variety which exists over algebraic closure is actually defined over k.
In particular, this question arises while studying various discrete invariants
of quadrics. An effective tool here is the method introduced in [9] which, in
particular, gives that for an element of codimension m with Z/2-coefficients, it
is sufficient to check that it is defined over the function field of a sufficiently
large quadric (of dimension > 2m). This approach was successfully applied to
various questions from quadratic form theory. In particular, to the construction
of fields with the new values of the u-invariant (see [11]). The above core result
can be extended in various directions. One of them due to K.Zainoulline (see
[13]) establishes similar statement for the quadric substituted by a norm-variety
of Rost for the pure symbol in KM

n (k)/p (p-prime) and for Chow groups with
Z/p-coefficients. This is a generalisation of the case of a Pfister quadric, which
is a norm-variety for the pure symbol modulo 2.
But all the mentioned results are dealing with Chow groups with torsion co-
efficients. In the current article I would like to address similar question for
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integral Chow groups. The results obtained are similar to the Z/2-case, but
one requires an additional condition on Q (aside from its size) saying that Q
has a projective line defined over the generic point of Q. Although, the “generic
quadric” does not have this property, such quadrics are quite widespread. If
one imposes stronger conditions on a quadric, one can show that the map

CHm(Y )→ CHm(Yk(Q))

is surjective. In particular, this happens for a Pfister quadric, and m < 2r−1−1.
This latter result can be used to show that (modulo 2) and degree r cohomo-
logical invariants of algebraic varieties do not effect rationality of Chow group
elements of codimension up to 2r−1 − 2.
The main tool we use is “Symmetric Operations” in Algebraic Cobordism (see
[10]). These are “formal halves” of the “negative parts” of Steenrod operations
(mod 2 ) there. If one does not care about 2-torsion effects, one can use more
simple Landweber-Novikov operations instead. But the symmetric operations
provide the only (known) way to get “clean” results on rationality.
Acknowledgements: I would like to thank the referee for the very useful sug-
gestions. The support of the EPSRC Responsive Mode grant EP/G032556/1
is gratefully acknowledged.

2 Symmetric operations

For any field k of characteristic 0, M.Levine and F.Morel have defined the
Algebraic Cobordism theory Ω∗, which is the universal generalised oriented
cohomology theory on the category Sm/k of smooth quasi-projective varieties
over k (see [3, Theorem 1.2.6]), which means that for any other such theory A∗

there is unique map of theories Ω∗ → A∗. For a given smooth quasi-projective
X , the ring Ω∗(X) is additively generated by the classes [v : V → X ] with V -
smooth and v-projective, modulo some relations. The value of Ω∗ on Spec(k)
coincides with MU2∗(pt) = L - the Lazard ring - see [3, Theorem 1.2.7]. Since
Chow groups form a generalised oriented cohomology theory, one has a canon-
ical map pr : Ω∗ → CH∗ (given by [v : V → X ] 7→ v∗(1V ) ∈ CHdim(V )(X))
which is surjective, and moreover, CH∗(X) = Ω∗(X)/L>0 · Ω∗(X) - see [3,
Theorem 1.2.19]. Thus, one can reconstruct Chow groups if the Algebraic
Cobordism is known. On Ω∗ we have the action of Landweber-Novikov op-
erations - [3, Example 4.1.25]. Such operations can be parametrised by the
polynomials g ∈ L[σ1, σ2, . . .], with

SgL.−N.([v : V → X ]) := v∗(g(c1, c2, . . .) · 1V ) ∈ Ω∗(X),

where ci = ci(−TV +v∗TX) is the i-th Chern class of the virtual normal bundle
of v. If one does not mind moding out the 2-torsion, then all the results
of the next section can be obtained using the Landweber-Novikov operations
only. But to obtain precise statements one needs more subtle “Symmetric
operations”. These operations were introduced in [8] and [10]. It is convenient

Documenta Mathematica · Extra Volume Suslin (2010) 661–670



Rationality of Integral Cycles 663

to parametrise them by q(s) ∈ L[[s]], where Φs
r

: Ωd(X) → Ω2d+r(X). The
operation Φq(s) is constructed as follows. For a smooth morphism W → U , let
�̃(W/U) denotes the blow-up of W ×U W at the diagonal W . For a smooth

variety W denote: �̃(W ) := �̃(W/ Spec(k)). Denote as C̃2(W ) and C̃2(W/U)

the quotient variety of �̃(W ), respectively, �̃(W/U) by the natural Z/2-action.
These are smooth varieties. Notice that they have natural line bundle L, which
lifted to �̃ becomes O(1) - see [4], or [10, p.492]. Let ρ̃ := c1(L) ∈ Ω1(C̃2).
If [v] ∈ Ωd(X) is represented by v : V → X , then v can be decomposed as

V
g→ W

f→ X , where g is a regular embedding, and f is smooth projective.
One gets natural morphisms:

C̃2(V )
α→֒ C̃2(W )

β←֓ C̃2(W/X)
γ→ X.

Now, Φq(s)([v]) := γ∗β∗α∗(q(ρ̃)). Denote as φq(s)([v]) the composition pr ◦
Φq(s)([v]). As was proven in [10, Theorem 2.24], Φq(s) gives a well-defined
operation Ω∗(X) → Ω∗(X). I should note that in [10] and [9] we use slightly
different parametrisation for symmetric operations. To stress this difference I
used the different name for the uniformiser. In [10] the parameter is t and its
relation to our s is given by: t = [−1]Ω(s), where [−1]Ω(s) ∈ L[[s]] is the inverse
in terms of the universal formal group law. The difference basically amounts
to signs, and with the new choice the formulae are just a little bit nicer.
It was proven in [8] that the Chow-trace of Φ is the half of the Chow-trace of
certain Landweber-Novikov operation.

Proposition 2.1 ([8, Propositions 3.8, 3.9], [10, Proposition 3.14]) For [v] ∈
Ωd(X),

(1) 2φs
r

([v]) = pr(−Sr+dL−N ([v])), for r > 0;

(2) 2φs
0

([v]) = pr([v]2 − SdL−N([v])),

where we denote SσrL−N as SrL−N .

The additive properties of φ are given by the following:

Proposition 2.2 ([10, Proposition 2.8])

(1) Operation φs
r

is additive for r > 0;

(2) φs
0

(x+ y) = φs
0

(x) + φs
0

(y) + pr(x · y).

Let [v] ∈ Ω∗(X) be some cobordism class, and [u] ∈ L be the class of a smooth
projective variety U over k of positive dimension. We will use the notation

η2(U) for the (minus) Rost invariant
deg(cdim(U)(−TU ))

2 ∈ Z (see [4]).

Proposition 2.3 ([10, Proposition 3.15]) In the above notations, let r =
(codim(v)− 2 dim(u)). Then, for any i > max(r; 0),

φs
i−r

([v] · [u]) = −η2(U) · (pr ◦ SiL−N)([v]).
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The following proposition describes the behaviour of Φ with respect to pull-
backs and regular push-forwards. For q(s) =

∑
i>0 qis

i ∈ CH∗(X)[[s]] let us

define φq(s) :=
∑

i>0 qiφ
si . For a vector bundle V denote c(V)(s) :=

∏
i(s+λi),

where λi ∈ CH1 are the roots of V . This is the usual total Chern class of V .

Proposition 2.4 ([10, Propositions 3.1, 3.4]) Let f : Y → X be some mor-
phism of smooth quasi-projective varieties, and q(s) ∈ CH∗(X)[[s]]. Then

(1) f∗φq(s)([v]) = φf
∗q(s)(f∗[v]);

(2) If f is a regular embedding, then φq(s)(f∗([w])) = f∗(φf
∗q(s)·c(Nf )(s)([w])),

where Nf is the normal bundle of the embedding.

And, consequently, for f - a regular embedding:

(3) φq(s)(f∗([1Y ]) · [v]) = φq(s)·f∗(c(Nf )(s))([v])

3 Rationality of cycles over function fields of quadrics

Let k be a field of characteristic 0, Y be a smooth quasi-projective variety, and
Q be a smooth projective quadric defined over k. For y ∈ CHm(Yk) we say
that y is k-rational, if it belongs to the image of the natural restriction map:

CHm(Y )→ CHm(Yk).

The following result shows that rationality of y can be checked over the function
field of Q provided Q is sufficiently large and a little bit “special”.

Theorem 3.1 In the above notations, suppose that m < dim(Q)/2, and
i1(Q) > 1. Then

y is defined over k ⇔ y|k(Q) is defined over k(Q).

With stronger conditions on Q we can prove more subtle result.

Proposition 3.2 Let Q be smooth projective quadric with i1(Q) > m <
dim(Q)/2. Then the map CHm(Y ) ։ CHm(Yk(Q)) is surjective, for all smooth
quasi-projective Y .

Applying it to the case of a Pfister quadric, we get:

Corollary 3.3 Let Qα be an r-fold Pfister quadric. Then the map

CHm(Y ) ։ CHm(Yk(Qα))

is surjective, for all smooth quasi-projective Y , and all m < 2r−1 − 1.
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Proof: In this case, i1(Qα) = 2r−1, and dim(Qα)/2 = 2r−1 − 1 (actually,
the case of a Pfister quadric is the only one where the second inequality in
Proposition 3.2 is needed). �

This immediately implies:

Theorem 3.4 Let k be any field of characteristic 0, and r ∈ N, then there
exists a field extension F/k such that:

• KM
r (F )/2 = 0;

• The map CHm(Y ) → CHm(YF ) is surjective, for all m < 2r−1 − 1, for
all smooth quasi-projective Y defined over k.

Proof: Take F - the standard Merkurjev’s tower of fields, that is, F := lim−→Fi,

where Fi+1 = F ′
i , and for any field G, the extension G′ of G is defined as

lim−→G(×i∈IQi), where the latter limit is taken over all finite sets I of r-fold

Pfister quadrics defined over G. Then KM
r (F )/2 = 0, and it is sufficient to

prove the respective property for the map CHm(YE) → CHm(YE(Qα)), where
Qα is an r-fold Pfister quadric. It remains to apply Corollary 3.3. �

This result shows that (mod 2) and degree > r cohomological invariants of
smooth algebraic varieties could not affect rationality of cycles of codimension
up to 2r−1− 2. As the example of a Pfister quadric itself shows, this boundary
is sharp.

Remark: The above Corollary can also be proven by other means. Namely,
the computations of M.Rost ([6, Theorem 5], see also [2, Theorem 8.1], or [10,
Theorem 4.1]) show:

Proposition 3.5 (M.Rost) Let Qα be r-fold Pfister quadric over the field k.
Then, for any field extension F/k, the map

CHn(Qα) ։ CHn(Qα|F )

is surjective, for any n < dim(Qα)/2 = 2r−1 − 1.

It is remarkable that the respective map

Ωn(Qα) →֒ Ωn(Qα|F )

on algebraic cobordism groups is instead injective, for any n - see [10, Theorem
4.1].
Combined with the following general result Proposition 3.5 gives our Corollary
3.3.
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Proposition 3.6 (R.Elman, N.Karpenko, A. Merkurjev, [1, Lemma 88.5]) Let
X,Y be smooth varieties over k, such that, for any field extension F/k, and
for any n 6 m, the map:

CHn(X) ։ CHn(XF )

is surjective. Then, the map:

CHm(Y ) ։ CHm(Yk(X))

is surjective as well.

Here I should point out, that although one gets a different “elementary” proof of
Corollary 3.3, it involves a quite non-trivial ingredient - the Rost computation
of the Chow groups of Pfister quadrics. The Pfister quadrics and also few small-
dimensional quadrics are the only ones for which such computation is known.
In particular, to prove the whole Proposition 3.2 using this method one needs
an analogue of Proposition 3.5.

Both Theorem 3.1 and Proposition 3.2 are consequences of the following state-
ment.

Proposition 3.7 Let Q be a smooth projective quadric of dimension > 2m
with i1(Q) > 1, E/k be field extension such that iW (qE) > m, and Y be a
smooth quasi-projective k-variety. Then, for any y ∈ CHm(Yk(Q)) there exists
x ∈ CHm(Y ) such that xE(Q) = yE(Q).

Proof: Consider y ∈ CHm(Yk(Q)). Using the surjections

Ωm(Y ×Q)
pr
։ CHm(Y ×Q) ։ CHm(Yk(Q)),

we can lift y to some element v ∈ Ωm(Y ×Q).
Since iW (QE) > m, qE = (⊥mi=0 H) ⊥ q′, for some quadratic form q′ de-
fined over E. Consider the cobordism motive of our quadric QE (see [5], or
[12]) By [7, Proposition 2] and [12, Corollary 2.8], we have that MΩ(QE) =
(⊕mi=0L(i)[2i])⊕M ′, where

M ′ = MΩ(Q′)(m+ 1)[2m+ 2]⊕ (⊕mi=0L(dim(Q)− i)[2 dim(Q)− 2i]),

where L(j)[2j] is the cobordism Tate-motive (see [12]). Moreover, we can
always choose the generator of L ∼= Ω∗(L(i)[2i]) ⊂ Ω∗(QE) to be hi. Let us
denote the passage k → E as . Then, our element v ∈ Ωm(Y ×Q) restricted
to E can be presented as v =

∑m
i=0 v

i · hi + v′, where vi ∈ Ωm−i(YE), and
v′ ∈ Ωm(MΩ(Y )⊗M ′). Applying the composition

Ωm(Y ×QE)→ CHm(Y ×QE)→ CHm(YE(Q))
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to v we get pr(v0)E(Q). On the other hand, from commutativity of the diagram

Ωm(Y ×QE) −−−−→ CHm(Y ×QE) −−−−→ CHm(YE(Q))x
x

x

Ωm(Y ×Q) −−−−→ CHm(Y ×Q) −−−−→ CHm(Yk(Q))

it must coincide with yE(Q). Thus, it is sufficient to show that pr(v0) ∈
CHm(YE) is defined over k.

Lemma 3.8 In the above situation, let e : P →֒ Q be a linear embedding of
smooth quadrics, with dim(P ) = m. Let ρ : MΩ(Q) → MΩ(Q) be cobordism-
motivic endomorphism of Q. Let v ∈ Ωm(Y ×Q). Then

(id× e)∗(id× ρ)∗(v) =

m∑

i=0




i∑

j=0

αi,j · vj

 · hi,

where αi,j ∈ Li−j . Moreover, αi,i ∈ Z is visible on the level of Chow groups:
ρCH(hi) = αi,i · hi.

Proof: By dimensional reasons, any map from MΩ(P ) to M ′ is zero. Thus,
(id×e)∗(id×ρ)∗(v) =

∑m
j=0 v

j ·(e◦ρ)∗(hj). Clearly, ρ∗(hj) =
∑
i>j αi,j ·hi+β′

j,

where αi,j ∈ Li−j , and β′
j ∈ Ωj(M ′). Again, by the same reasons, e∗(β′

j) = 0,
and we get the first statement. Projecting to CH∗ we get the description of
αi,i. �

Lemma 3.9 In the situation of Proposition 3.7, let e : P →֒ Q be a linear
embedding of smooth quadrics, where dim(P ) = m, and v ∈ Ωm(Y ×Q). Then
there exist w, z ∈ Ωm(Y × P ) such that: w =

∑m
i=0 w

i · hi, z =
∑m

i=0 z
i · hi,

and

1) wi = vi;

2) zi =
∑i

j=0 αi,j · vj, where αi,j ∈ Li−j;

3) α0,0 = 1, and αi,i = 0, for all odd i.

Proof: Since i1(Q) > 1, the (Chow) motive of Q is decomposable, and if N is
indecomposable direct summand containing Z (when restricted to k), then N
does not contain Z(i)[2i], for any odd i, by the result of R.Elman, N.Karpenko,
A.Merkurjev - [1, Proposition 83.2] (here Z(j)[2j] is the Tate-motive in the
Chow-motivic category - see [5], or [12]).
Let ρCH ∈ EndChow(k)(M

CH(Q)) be the projector corresponding to N . Then
ρ∗CH(1) = 1, and ρ∗CH(hi) = 0, for any odd i. Using the surjective map pr :
Ω∗ ։ CH∗, we can lift ρCH to a cobordism-motivic morphism ρ : MΩ(Q) →
MΩ(Q). Take z := (id× (e ◦ ρ))∗(v), and w := (id× e)∗(v). �
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In the above notations, let u =
∑m

i=0 αi,iv
i · hi ∈ Ωm(Y × PE). Then:

Lemma 3.10 For any 0 6 k 6 [m/2], the element pr(Φs
m−2k

(π∗(hk · (z− u))))
is a linear combination of pr(SjL−N (vj)) with even coefficients.

Proof: We have: π∗(hk · (z − u)) =
∑m

i=1

∑
06j<i[Pm−k−i] · αi,j · vj , where

[Pl] ∈ L is the class of an l-dimensional quadric. Thus, by Proposition 2.3,

pr(Φs
m−2k

(π∗(hk · (z − u)))) = −
m∑

i=1

∑

06j<i

η([Pm−k−i] · αi,j) · pr(SjL−N (vj)).

But 2 · η is multiplicative, Pm−k−i is a quadric (possibly, zero-dimensional),
and dim(αi,j) > 0. Thus, all the coefficients are even. �

Lemma 3.11 If w ∈ Ωm(Y × P ) decomposes over E as w =
∑m
i=0(wi · hi),

then any linear combination of pr(SiL−N (wi)) with even coefficients is defined
over k.

Proof: Consider the projection Y × P π→ Y . It is sufficient to observe that,
for all 0 6 i 6 m, the elements pr(SiL−Nπ∗(hm−i · w)) = 2pr(SiL−N (wi)) +

2
∑

06j<i η(Pi−j)pr(S
j
L−N (wj)) are defined over k. �

Denote as η(x) the power series
∑

i>0 η(Pi) · xi, where η(Pl) =
deg(cl(−TPl ))

2 is
the (minus) Rost invariant of an l-dimensional quadric Pl.

Proposition 3.12 Let Y be smooth quasi-projective variety, P - smooth pro-
jective quadric of dimension m, and z ∈ Ωm(Y × P ) such element that
z =

∑m
i=0 z

i · hi, where zi ∈ Ωm−i(YE). Then, for any polynomial f ∈ Z[x] of
degree 6 [m/2], the linear combination

m∑

j=0

gm−j · pr(SjL−N (zj)),

is defined over k, where g(x) =
∑
l gl ·xl is “the degree 6 m part” of the product

f(x) · η(x).

Proof: Let f ∈ Z[x] be some polynomial of degree 6 [m/2], and fi be its

coefficients. Consider the element y := pr(
∑

i fi · Φs
m−2i

(π∗(hi · z))). Then

y =
∑

i fi
∑

j pr(Φ
sm−2i

([Pm−i−j ] · zj)), where [Pl] is the class of quadric of
dimension l in L. By Proposition 2.3, this expression is equal to

−
∑

i

∑

j

fi · η(Pm−i−j) · pr(SjL−N (zj)) = −
m∑

j=0

gm−j · pr(SjL−N (zj)),
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where the polynomial g(x) =
∑

l gl · xl is the degree 6 m part of the product
f(x) · η(x), where η(x) =

∑
r>0 η(Pr) · xr. �

It follows from Proposition 3.12, and Lemmas 3.9, 3.10 and 3.11 that, for any
f ∈ Z[x] of degree 6 [m/2], the element

m∑

j=0

gm−j · pr(SjL−N (uj)) =

m∑

j=0

gm−jαj,j · pr(SjL−N (vj))

is defined over k. Now it is sufficient to find a polynomial f ∈ Z[x] of degree
6 [m/2] such that the polynomial g(x) := (f(x)·η(x))6m has an odd coefficient
at xm and even coefficients at all the smaller monomials of the same pairity.
We can pass to Z/2-coefficients, where we have:

Lemma 3.13 There exists such polynomial f ∈ Z/2[x] of degree 6 [m/2] that
(f(x) · η(x))6m (mod2) = xm + terms of parity (m− 1).

Proof: Recall that ηl = η(Pl) = (−1)l (2l)!
l!(l+1)! , and η(x) (mod2) =

∑
i>0 x

2i−1 =

γ−1, where γ = 1 +
∑

i>0 x
2i . We will use some facts about these power series

obtained in [11].
In the case m = 2n+ 1 - odd, consider f(x) := (γm)6n (= am in the notations
of [11]). Since γm = (γm)6n + (γm)>n, we have that

((γm)6n · γ−1)6n = γ2n6n

contains only terms of even degree. But by [11, Corollary 3.10 and (1)],

((γm)6n · γ−1)62n+1 = ((γm)6n · γ−1)6n + x2n + x2n+1.

Hence, (f · γ−1)<m consists of terms of even degree, and (f · γ−1)m = xm.
In the case m = 2n - even, it remains to take f(x) := am−1 · x. �

Remark: Actually, the above polynomial f is unique. Moreover, it is ex-
actly the polynomial δ appearing in the proof of [11, Proposition 3.5], where a
completely different selection criterion was used!

Proposition 3.7 is proven.
�
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1 Introduction

Let SmCor(k) be the category of finite correspondences between smooth
schemes over a field k. Denote by Gm the scheme A1 − {0}. One defines
the sheaf with transfers S1

t by the condition that Ztr(Gm) = S1
t ⊕ Z where

Z is split off by the projection to the point and the point 1. For any scheme
Y consider the sheaf with transfers FY = Hom(S1

t , S
1
t ⊗ Ztr(Y )) which maps

a smooth scheme X to Hom(S1
t ⊗ Ztr(X), S1

t ⊗ Ztr(Y )). The main result
of this paper is Corollary 4.9 which asserts that for any Y the obvious map
Ztr(Y )→ FY defines a quasi-isomorphism of singular simplicial complexes

C∗(Ztr(Y ))→ C∗(FY )
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as complexes of presheaves i.e. for any X the map of complexes of abelain
groups

C∗(Ztr(Y ))(X)→ C∗(FY )(X)

is a quasi-isomorphism. We then deduce from this result the ”Cancellation
Theorem” for triangulated motives which asserts that if k is a perfect field
then for any K,L in DM eff

− (k) the map

Hom(K,K ′)→ Hom(K(1),K ′(1))

is bijective.
This result was previously known in two particular situations. For varieties
over a field k with resolution of singularities it was proved in [4]. For K ′ being
the motivic complex Z(n)[m] and any field k it was proved in [5]. Both proofs
are very long.
The main part of our argument does not use the assumption that we work with
smooth schemes over a field and we give it for separated schemes of finite type
over a noetherian base. To be able to do it we define in the first section the
category of finite correspondences for separated schemes of finite type over a
base. The definition is a straightforward generalization of the definition for
schemes over a field based on the constructions of [2] and can be skipped. In
the second section we define intersection of relative cycles with Cartier divisors
and prove the properties of this construction which we need. In the third we
prove our main theorem 4.6 and deduce from it the cancellation theorem over
perfect fileds 4.10.
In this paper we say “a relative cycle” instead of “an equidimensional relative
cycle”. All schemes are separated. The letter S is typically reserved for the
base scheme which is assumed to be noetherian. All the standard schemes P1,
A1 etc. are over S. When no confusion is possible we write XY instead of
X ×S Y .
I would like to thank Pierre Deligne who explained to me how to compute the
length function.

2 Finite correspondences

For a scheme X of finite type over a noetherian scheme S we denote by c(X/S)
the group of finite relative cycles on X over S. In [2] this group was denoted
by cequi(X/S, 0). If S is regular or if S is normal and the characteristic of X is
zero, c(X/S) is the free abelian group generated by closed irreducible subsets
of X which are finite over S and surjective over a connected component of S.
For the general definition see [2, after Lemma 3.3.9]. A morphism f : S′ → S
defines the pull-back homomorphism c(X/S) → c(XS′/S′) which we denote
by cycl(f).
For two schemes X,Y of finite type over S we define the group c(X,Y ) of finite
correspondences from X to Y as c(XY/X).
Let us recall the following construction from [2, §3.7]. Let X ′ → X → S be
morphisms of finite type, W a relative cycle on X ′ over X and Z a relative
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cycle on X over S. Then one defines a cycle Cor(W ,Z) on X ′ as follows. Let
Zi be the components of the support of Z present with multiplicites ni and
ei : Zi → X the corresponding closed embeddings. Let e′i : Zi ×X X ′ → X ′

denote the projections. We set

Cor(W ,Z) =
∑

i

ni(e
′
i)∗cycl(ei)(W)

where (e′i)∗ is the (proper) push-forward on cycles.

Let X , Y be schemes of finite type over S and

f ∈ c(X,Y ) = c(XY/X)

g ∈ c(Y, Z) = c(Y Z/Y )

finite correspondences. Let

pX : XY → Y

pY : XY Z → XZ

be the projections. We define the composition g ◦ f by the formula:

g ◦ f = (pY )∗Cor(cycl(pX)(g), f) (2.1)

This operation is linear in both arguments and thus defines a homomorphism
of abelian groups

c(X,Y )⊗ c(Y, Z)→ c(X,Z)

The lemma below follows immediately from the definition of Cor(−,−) and
the fact that the (proper) push-forward commutes with the cycl(−) homomor-
phisms ([2, Prop. 3.6.2]).

Lemma 2.1 Let Y → X → S be a sequence of morphisms of finite type, p :
Y → Y ′ a morphism over X, Y ∈ Cycl(Y/X, r)⊗Q and X ∈ Cycl(X/S, s)⊗Q.
Assume that p is proper on the support of Y. Then

p∗Cor(Y,X ) = Cor(p∗(Y,X )).

Lemma 2.2 For any f ∈ c(X,Y ), g ∈ c(Y, Z), h ∈ c(Z, T ) one has

(h ◦ g) ◦ f = h ◦ (g ◦ f).
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Proof: Consider the following diagram

XT
4←−−−− XY T −−−−→ Y T

7

x 8

x 2

x

XZT
9←−−−− XY ZT −−−−→ Y ZT −−−−→ ZT −−−−→ T

y
y

y
y

XZ
5←−−−− XY Z

9−−−−→ Y Z
1−−−−→ Z

y
y

XY
3−−−−→ Y

y

X

where the morphisms are the obvious projections. Note that all the squares
are cartesian. We will also use the projection 6 : XZ → Z.
We have f ∈ c(XY/X), g ∈ c(Y Z/Y ) and h ∈ c(ZT/Z). The compositions
are given by:

g ◦ f = 5∗Cor(cycl(3)(g), f)

h ◦ g = 2∗Cor(cycl(1)(h), g)

(h ◦ g) ◦ f = 4∗Cor(cycl(3)(h ◦ g), f) = 4∗Cor(cycl(3)(2∗Cor(cycl(1)(h), g)), f)

h ◦ (g ◦ f) = 7∗Cor(cycl(6)(h), g ◦ f) = 7∗Cor(cycl(6)(h), 5∗Cor(cycl(3)(g), f))

We have:
4∗Cor(cycl(3)(2∗Cor(cycl(1)(h), g)), f) =

= 4∗Cor(8∗cycl(3)Cor(cycl(1)(h), g), f) =

= 4∗8∗Cor(cycl(3)Cor(cycl(1)(h), g), f) =

= 4∗8∗Cor(Cor(cycl(1 ◦ 9)(h), cycl(3)(g)), f)

where the first equality holds by [2, Prop. 3.6.2], the second by Lemma 2.1 and
the third by [2, Th. 3.7.3]. We also have:

7∗Cor(cycl(6)(h), 5∗Cor(cycl(3)(g), f)) =

= 7∗9∗Cor(cycl(6 ◦ 5)(h), Cor(cycl(3)(g), f))

by [2, Lemma 3.7.1]. We conclude that (h ◦ g) ◦ f = h ◦ (g ◦ f) by [2, Prop.
3.7.7].

We denote by Cor(S) the category of finite correspondences whose objects are
schemes of finite type over S, morphisms are finite correspondences and the
composition of morphisms is defined by (2.1).
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For a morphism of schemes f : X → Y let Γf be its graph considered as an
element of c(XY/X). One verifies easily that Γgf = Γg ◦ Γf and we get a
functor Sch/S → Cor(S). Below we use the same symbol for a morphism of
schemes and its graph considered as a finite correspondence.
The external product of cycles defines pairings

c(X,Y )⊗ c(X ′, Y ′)→ c(XX ′, Y Y ′)

and one verifies easily using the results of [2] that this pairing extends to a
tensor structure on Cor(S) with X ⊗ Y := XY .

3 Intersecting relative cycles with divisors

Let X be a noetherian scheme and D a Cartier divisor on X i.e. a global
section of the sheaf M∗/O∗. One defines the cycle cycl(D) associated with
D as follows. Let Ui be an open covering of X such that DUi is of the form
fi,+/fi,− ∈M∗(Ui). Then cycl(D) is determined by the property that

cycl(D)|Ui = cycl(f−1
i,+(0))− cycl(f−1

i,−(0))

where on the right hand side one considers the cycles associated with closed
subschemes ([2, ]). One defines the support of D as the closed subset
supp(D) := supp(cycl(D)).
We say that a cycle Z =

∑
nizi on X intersects D properly if the points zi

do not belong to supp(D). Let Zi be the closure of zi considered as a reduced
closed subscheme and ei : Zi → X the closed embedding. If Z and D intersect
properly we define their intersection (Z, D) as the cycle

(Z, D) :=
∑

ni(ei)∗(cycl(e∗i (D)))

If p : X → S is a morphism of finite type and Z is a relative cycle of relative
dimension d over S, we say that D intersects Z properly relative to p (or
properly over S) if the dimension of fibers of supp(D) ∩ supp(Z) over S is
≤ d − 1. This clearly implies that Z intersects D properly and (Z, D) is
defined.

Proposition 3.1 Let p : X → S be a morphism of finite type, Z a relative
equidimensional cycle of relative dimension d on X over S and D a Cartier
divisor on X which intersects Z properly over S. Then:

1. (Z, D) is a relative cycle of relative dimension d− 1 over S,

2. let f : S′ → S be a morphism, X ′ = (X ×S S′)red and let qred : X ′ → X
be the restriction of the projection to X ′. If q∗red(D) is well defined then

f∗(cycl(Z), D) = (f∗(cycl(Z)), q∗red(D)). (3.1)

where f∗ refers to the pull-back of relative cycles as defined in [2].
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Proof: Let Z =
∑

i nizi where zi are points on the generic fibers of p and
ni 6= 0. As usually we denote by [zi] the reduced closed subschemes with generic
points zi.
Since our problem is local in the Zariski topology on X and additive in D we
may assume that D = D(f) where f ∈ O(X) is a function on X which is not
zero divisor. The condition that D intersects Z properly over S is equivalent
to the condition that for each i and each point y of S the restriction of f to
([zi]×SSpec(ky))red is not a zero divisor. Localizing around [zi] we may assume
that the restriction of f to (X ×S Spec(ky))red is not a zero divisor for any y.
Under these assumptions q∗red(D) is well defined for any f : S′ → S. The
proposition follows now from Lemma 3.2.

Lemma 3.2 Let Z be an integral scheme, S a reduced scheme, p : Z → S an
equidimensional morphism and Spec(k)

s0→ Spec(R)
s1→ S a fat point over a

point s : Spec(k) → S of S (see [2, p.23]). Let Zs = Z ×S Spec(k) and let
q : Zs → Z be the projection. Let f ∈ O(Z) be a function such that the image
of f in O(Zs)red is not a zero divisor. Then

(s0, s1)∗(D(f)) = ((s0, s1)∗(η), f ◦ qred) (3.2)

where η is the generic point of Z considered as a cycle on Z and qred :
Zs,red → Z is the restriction of q to the maximal reduced subscheme of Zs.

Proof: Observe first the cycles on both sides of (3.2) are supported in points
of codimension 1 of Zs. Let z be such a point. We want to show that the
multiplicities of the left and right hand sides of (3.2) in z coincide.
To compute (s0, s1)∗(η) one considers the surjection ψ : OZR → H such that
ker(ψ) is supported in the closed fiber of ZR → Spec(R) and H is flat over
R. Let pj be the minimal prime ideals of OZs and Ai = OZs/pi. Then by
definition (see [2, Lemma 3.1.2]),

(s0, s1)∗(η) =
∑

j

lengthAj(q
∗
0(H)⊗Aj)pj

Therefore, for a point z of codimension 1 on Zs we have

mltz(((s0, s1)∗(η), f ◦ qred)) =

=
∑

j

lengthAj(q
∗
0(H)⊗Aj)lengthOZs,z((Aj/fj)⊗OZs,z)

where fj is the restriction of f ◦ qred to [pj ].
Let F = OZ/fOZ . We have D(f) =

∑
i lengthOZ,yi (F ⊗OZ,yi)yi where yi are

the generic points of the scheme Y = f−1(0). Let Fi = F⊗O[yi]. By definition,
we have

(s0, s1)∗(D(f)) =
∑

i

lengthOZ,yi (F ⊗OZ,yi)Cycl(q
∗
0(Gi)).
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where Gi is a quotient of q∗1(Fi) which is flat over R and such that the ker-
nel of the projection φi : q∗1(Fi) → Gi is supported in the closed fiber of
ZR → Spec(R). Our conditions imply that this cycle is supported in points of
codimension 1 of Zs and for such a point z the multiplicity of (s0, s1)∗(D(f))
in z equals

mltz((s0, s1)∗(D(f))) =
∑

i

lengthOZ,yi (F ⊗OZ,yi) lengthOZs,z (q∗0(Gi)⊗OZs,z) (3.3)

Let K∨
0 (Zs) be the Grothendieck group of the bounded derived category of

complexes of coherent sheaves Zs whose cohomology are supported in codimen-
sion ≥ 1. Then the formula

lZs,z(M) = lengthOZs,z (M ⊗OZs,z)

defines an additive functional on this group and we need to show that

lZs,z(
∑

i

lengthOZ,yi (F ⊗OZ,yi) q
∗
0(Gi)) =

= lZs,z(
∑

j

lengthAj(q
∗
0(H)⊗Aj)Aj/fj)

Let fs be the image of f in OZs and let Ks = cone(OZs
·fs→ OZs). Since

fj are not zero divisors, we have Aj/fj = Aj ⊗ LK and the additivity
of length implies that lZs,z(M ⊗ LKs) is zero on any M which is sup-
ported in codimension ≥ 1. Since this condition holds for the difference
q∗0(H)− (

∑
j lengthAj(q

∗
0(H)⊗Aj)Aj) we conclude that

lZs,z(
∑

j

lengthAj(q
∗
0(H)⊗Aj)Aj/fj) = lZs,z(q

∗
0(H)⊗ LKs) =

= lZs,z(Lq
∗
0(cone(H

f→ H)) = lZs,z(cone(q
∗
0(H)

f→ q∗0(H))) (3.4)

Let u be a generator of the maximal ideal of R. Then ker(φi) and ker(ψ) are
just the u-torsion elements in q∗1(Fi) and OZR respectively. In particular, Gi
are H-modules i.e. Gi = Gi ⊗H . Therefore, both (3.3) and (3.4) are zero if z
does not belong to Ws = Spec(q∗0(H)) ⊂ Zs and for z ∈Ws we have

mltz((s0, s1)∗(D(f))) = lWs,z(
∑

i

lengthOZ,yi (F ⊗OZ,yi)Lq
∗
W (h∗(Gi)))

and

mltz(((s0, s1)∗(η), f ◦ qred)) = lWs,z(Lq
∗
W (cone(H

f→ H)))

where qW : Ws → Spec(H) and h : Spec(H) → Spec(ZR) are the obvious
morphisms. We claim that the difference

M = cone(H
f→ H)− (

∑

i

lengthOZ,yi (F ⊗OZ,yi)h
∗(Gi))
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as an element of K0 of H-modules is supported in points of Spec(H) of codi-
mension at ≥ 2 and therefore

lWs,z(Lq
∗
W (M)) = 0

by Lemma 3.4. Indeed, both sides are zero in the generic points of the generic
and of the closed fiber. The restriction of f to the generic fiber ZK of ZR is not
a zero divisor since the map qK : ZK → Z is flat (because S is reduced) and
since Z is integral f is not a zero divisor in OZ . Therefore, the generic fiber

of cone(H
f→ H) coincides with q∗K(F ) which, as an element of K0, coincides

with
∑

i lengthOZ,yi (F ⊗OZ,yi) q∗K(Fi) up to codimension ≥ 2.

Lemma 3.3 Let p : W → Spec(R) be a flat morphism such that R is a discrete
valuation ring, let s : Spec(k) → Spec(R) be a morphism whose image is the
closed point of Spec(R), Ws = W ×Spec(R) Spec(k) and let qW : Ws → W be
the projection. Let further M be a coherent sheaf on W supported in the closed
fiber of p. Then

Lq∗W (M) ∼= q∗W (M)⊕ q∗W (M)[1]

Proof: Let s = is′ be the factorization of s where i : Spec(R/m)→ Spec(R)
is the closed embedding and s′ : Spec(k) → Spec(R/m) a flat morphism and
let qW = q′iq

′ be the corresponding factorization of qW . Then it is sufficient to
show that Lq∗i (M) ∼= q∗i (M)⊕ q∗i (M)[1]. Since (qi)∗ is an exact full embedding
it is further sufficient to show that (qi)∗Lq∗i (M) ∼= (qi)∗q∗i (M)⊕ (qi)∗q∗i (M)[1].
The functor (qi)∗q∗i is isomorphic to the functor (−)⊗B where B = OW /p∗(m).
Therefore, (qi)∗Lq∗i is isomorphic to the functor (−)⊗FB. Since R is a discrete
valuation ring m is a principal ideal. Let u be a generator of m. Since p is flat
the image of u in OW is not a zero divisor. Therefore

(−)⊗ LB = cone((−)
u→ (−))

IfM is supported in the closed fiber of p thenM⊗B = M and the multiplication
by u on M equals zero.

Lemma 3.4 Under the assumptions of Lemma 3.3 let M be a coherent sheaf
on W supported in codimension ≥ 2 and let w be a point of codimension 1 on
Ws. Then

lengthOWs,w(Lq∗W (M)⊗OWs,w) = 0 (3.5)

Proof: It is sufficient to show that (3.5) holds for M = OW /p where p is a
prime ideal of codimension ≥ 2. There are two types of prime ideals satisfying
this condition - the ideals lying over the generic point and the ideals lying over
the closed point. If p lies over the generic point and has codimension ≥ 2 then
the closed fiber of the corresponding closed subscheme has codimension at least
2 and Lq∗W (M)⊗OWs,w = 0 since w is of codimension 1.
If p lies in the closed fiber an has codimension ≥ 1 there then q∗W (M) has finite
length in w and (3.5) follows by additivity of length from Lemma 3.3.
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Corollary 3.5 Let X ′ f→ X → S be morphisms of finite type, Z a relative
cycle on X over S and W a relative cycle on X ′ over X of dimension 0. Let
further D be a Cartier divisor on X ′ which intersectsW properly over X. Then
D intersects Cor(W ,Z) properly over S and one has:

(Cor(W ,Z), D) = Cor((W , D),Z) (3.6)

Proof: It is a straightforward corollary of the definition of Cor(−,−) and
(3.1).

Lemma 3.6 Let f : X ′ → X be a morphism of schemes of finite type over S,
Z a relative cycle on X ′ such that f is proper on supp(Z) and D a Cartier
divisor on X. Assume that f∗(D) is defined and Z intersects f∗(D) properly
over S. Then f∗(Z) intersects D properly over S and one has:

f∗(Z, f∗(D)) = (f∗(Z), D) (3.7)

Proof: Let d be the relative dimension of Z over S. To see that f∗(Z)
intersects D properly over S we need to check that the dimension of the fibers
of supp(D)∩ supp(f∗(Z)) over S is ≤ d− 1. This follows from our assumption
and the inclusion

supp(D) ∩ supp(f∗(Z)) ⊂ supp(D) ∩ f(supp(Z)) =

= f(f−1(supp(D)) ∩ supp(Z)) = f(supp(f∗(D)) ∩ supp(Z))

To verify (3.7) it is sufficient to consider the situation locally around the generic
points of f(supp(f∗(D))∩supp(Z)). Therefore we may assume that D = D(g)
is the divisor of a regular function g and Z = z is just one point with the
closure Z. Replacing X ′ by Z and X by f(Z) we may assume that X , X ′

are integral, f is surjective and X is local of dimension 1. Let A = O(X),
B = O(X ′). Consider the function lg : M 7→ lA(M ⊗ LA/g) on K0(A −mod).
This function vanishes on modules with the support in the closed point which
implies that

lg(B) = deg(f)lg(A) = deg(f)lA(A/g)

On the other hand lg(A) = lA(B/(f∗(g))). Let x′i be the closed points of X ′,
k′i their residue fields and k the residue field of the closed point of X . Let
further Mi be the part of B/(f∗(g)) supported in x′i. One can easily see that
lA(B/(f∗(g))) =

∑
i[k

′
i : k]lB(Mi). Combining our equalities we get:

deg(f)lA(A/g) =
∑

i

[k′i : k]lB(Mi) (3.8)

which is equivalent to (3.7).
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4 Cancellation theorem

Consider a finite correspondence

Z ∈ c(GmX,GmY ) = c(GmXGmY/GmX).

Let f1, f2 be the projections to the first and the second copy of Gm respectively
and let gn denote the rational function (fn+1

1 − 1)/(fn+1
1 − f2) on GmXGmY .

Lemma 4.1 For any Z there exists N such that for all n ≥ N the divisor of
gn intersects Z properly over X and the cycle (Z, D(gn)) is finite over X.

Proof: Let f̄1 × q̄ : C̄ → P1X be a finite morphism which extends the
projection supp(Z) → GmX . Let N be an integer such that the rational
function f̄N1 /f2 is regular in a neighborhood of f̄−1

1 (0) and the rational function
f2/f̄

N
1 is regular in a neighborhood of f̄−1

1 (∞). Then for any n ≥ N one has:

1. the restriction of gnf2 to supp(Z) is regular on a neighborhood of f̄−1
1 (0)

and equals 1 on f̄−1
1 (0)

2. the restriction of gn to supp(Z) is regular a neighborhood of f̄−1
1 (∞) and

equals 1 on f̄−1
1 (∞)

Conditions (1),(2) imply that the divisor of gn intersects Z properly over X
and that the relative cycle (Z, D(gn)) is finite over X .

If (Z, D(gn)) is defined as a finite relative cycle we let ρn(Z) ∈ c(X,Y ) denote
the projection of (Z, D(gn)) to XY .

Remark 4.2 Note that we can define a finite correspondence ρg(Z) : X → Y
for any function g satisfying the conditions (1),(2) in the same way as we
defined ρn = ρgn . In particular, if n and m are large enough then the function
tgn + (1− t)gm defines a finite correspondence h = hn,m : XA1 → Y such that
h|X×{0} = ρm(Z) and h|X×{1} = ρn(Z), i.e. we get a canonical A1-homotopy
from ρm(Z) to ρn(Z).

Lemma 4.3 (i) For a finite correspondence W : X → Y and any n ≥ 1 one
has ρn(IdGm ⊗W) =W

(ii) Let eX be the composition GmX
pr−→ X

{1}×Id−−−−−→ GmX. Then ρn(eX) = 0
for any n ≥ 0.

Proof: The cycle on GmXGmY over GmX which represents IdGm ⊗W is
∆∗(Gm×W) where ∆ is the diagonal embedding GmXY → GmXGmY . The
cycle (∆∗(Gm ×W), gn) is ∆∗(D ⊗W) where D is the divisor of the function
(tn+1 − 1)/(tn+1 − t) on Gm. The push-forward of ∆∗(D ⊗W) to XY is the
cycle deg(D)W . Since deg(D) = 1 we get the first statement of the lemma.
The cycle Z on GmXGmX representing eX is the image of the embedding
GmX → GmXGmX which is diagonal on X and of the form t 7→ (t, 1) on Gm.
This shows that the restriction of gn to supp(Z) equals 1 and (Z, D(gn)) = 0.
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Lemma 4.4 Let Z : GmX → GmY be a finite correspondence such that
ρn(Z) is defined. Then for any finite correspondence W : X ′ → X,
ρn(Z ◦ (IdGm ⊗W)) is defined and one has

ρn(Z ◦ (IdGm ⊗W)) = ρn(Z) ◦W (4.1)

Proof: Let us show that (4.1) holds. In the process it will become clear that
the left hand side is defined. We can write ρn(Z) ◦W as the composition

X ′ W−→ X
(Z,D(gn))−−−−−−→ GmGmY

pr−→ Y

and ρn(Z ◦ (IdGm ⊗W)) as the composition

X ′ Y−→ GmGmY
pr−→ Y

where Y = (Z ◦ (IdGm ⊗W), D(gn)). Consider the diagram

GmX
′GmY

p1←−−−− GmX
′XGmY −−−−→ GmXGmYy

y

X ′X
p2−−−−→ X

y

X ′

where the arrows are the obvious projections. If we consider Z as a cycle of
dimension 1 over X then the cycle Z ◦ (IdGm ⊗W), considered as a cycle over
X ′, is (p1)∗Cor(cycl(p2)(Z),W) and we have

((p1)∗Cor(cycl(p2)(Z),W), D(gn)) =

= (p1)∗(Cor(cycl(p2)(Z),W), D(gn)) = (p1)∗Cor((cycl(p2)(Z), D(gn)),W) =

= (p1)∗Cor(cycl(p2)(Z, D(gn)),W)

where the first equality holds by (3.7), the second by (3.6) and the third by
(3.1).
The last expression represents the compositionW◦(Z, D(gn)) and we conclude
that

ρn(Z) ◦W = ρn(Z ◦ (IdGm ⊗W))

Lemma 4.5 Let Z : GmX → GmY be a finite correspondence such that ρn(Z)
is defined. Then for any morphism of schemes f : X ′ → Y ′, ρn(Z ⊗ f) is
defined and one has

ρn(Z ⊗ f) = ρn(Z)⊗ f (4.2)
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Proof: Consider the diagram

GmXX
′GmY Y

′ p1←−−−− GmXX
′GmY −−−−→ GmXGmYy

y

XX ′ p2−−−−→ X

where p1 is defined by the embedding X ′ f×Id−−−→ X ′Y ′ and the rest of the
morphisms are the obvious projections. Consider Z as a cycle over X . Then
ρn(Z ⊗ f) is given by the composition

GmXX
′ Y1−−→ GmGmY

pr−→ Y Y ′

where Y1 = ((p1)∗cycl(p2)(Z), gn) and ρn(Z)⊗ f by the composition

GmXX
′ Y2−−→ GmGmY

pr−→ Y Y ′

where Y2 = (p1)∗(cycl(p2)((Z, gn))). The equality Y1 = Y2 follows from (3.7)
and (3.1).

For our next result we need to use presheaves with transfers. A presheaf with
transfers on Sch/S is an additive contravariant functor from Cor(S) to the
category of abelian groups. For X in Sch/S we let Ztr(X) denote the functor
represented by X on Cor(S). One defines tensor product of presheaves with
transfers in the usual way such that Ztr(X) ⊗ Ztr(Y ) = Ztr(X × Y ). To
simplify notations we will write X instead of Ztr(X) and identify morphisms
Ztr(X) → Ztr(Y ) with finite correspondences X → Y . Note in particular
that Gm denotes the presheaf with transfers Ztr(Gm) not the presheaf with
transfers represented by Gm as a scheme. To preserve compatibility with the
notation XY for the product of X and Y we write FG for the tensor product
of presheaves with transfers F and G.
Let S1

t denote the presheaf with transfers ker(Gm → S). We consider it as a
direct summand of Gm with respect to the projection Id− e where e is defined

by the composition Gm → S
1−→ Gm. In the following theorem we let f ∼= g

denote that the morphisms f and g are A1-homotopic.

Theorem 4.6 Let F be a presheaf with transfers such that there is an epimor-
phism X → F for a scheme X. Let φ : S1

t ⊗ F → S1
t Y be a morphism. Then

there exists a unique up to an A1-homotopy morphism ρ(φ) : F → Y such that
IdS1

t
⊗ ρ(φ) ∼= φ.

Proof: Let us fix an epimorphism p : X → F . Then the morphism φ defines
a finite correspondence Z : GmX → GmY and for n sufficiently large we may
consider ρn(Z) : X → Y . Lemma 4.4 implies immediately that ρn(Z) vanishes
on ker(p) and therefore it defines a morphism ρn(φ) : F → X .
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Consider a morphism φ of the form IdS1
t
⊗ ψ. Then Z is of the form

(IdGm − e) ⊗ W where W : X → Y corresponds to ψ. By Lemma 4.3 we
have ρn(Z) = W and therefore ρn(IdS1

t
⊗ ψ) = ψ for any n ≥ 1. If ρ, ρ′ are

two morphims such that IdS1
t
⊗ ρ ∼= φ and IdS1

t
⊗ ρ′ ∼= φ then for a sufficiently

large n we have

ρ = ρn(IdS1
t
⊗ ρ) ∼= ρn(IdS1

t
⊗ ρ′) = ρ′

This implies the uniqueness part of the theorem.
To prove the existence let us show that for a sufficiently large n one has
IdS1

t
⊗ ρn(φ) ∼= φ. Let φ̃ be the morphism GmF → GmY defined by φ and let

φ̃∗ : FGm → YGm

be the morphism obtained from φ̃ by the obvious permutation.

Lemma 4.7 The morphisms φ̃ ⊗ (IdGm − e) and (IdGm − e) ⊗ φ̃∗ are A1-
homotopic.

Proof: One can easily see that these two morphisms are obtained from the
morphisms

φ⊗ IdS1
t
, IdS1

t
⊗ φ∗ : S1

t FS
1
t → S1

t Y S
1
t

by using the standard direct sum decomposition. One can see further that
φ⊗ IdS1

t
= σY (IdS1

t
⊗φ∗)σF where σF and σY are the permutations of the two

copies of S1
t in S1

t FS
1
t and S1

t Y S
1
t respectively. Lemma 4.8 below implies now

that φ⊗ IdS1
t

∼= IdS1
t
⊗ φ∗.

Lemma 4.8 The permutation on S1
t S

1
t is A1-homotopic to {−1}Id⊗ Id where

{−1} : S1
t → S1

t is defined by the morphism Gm
x 7→x−1

−−−−−→ Gm.

Proof: The same arguments as the ones used in [1, p.142] show that for any

scheme X and any pair of invertible functions f, g on X the morphism X
f⊗g−−−→

S1
t S

1
t is A1-homotopic to the morphism g ⊗ f−1. This implies immediately

that the permutation on S1
t S

1
t is A1-homotopic to the morphism Id⊗({−1}Id)

where {−1}Id : S1
t → S1

t is the morphism defined by the map Gm
x 7→x−1

−−−−−→ Gm.

For a sufficiently large n we have

ρn(φ⊗ (IdGm − e)) = ρn(φ)⊗ (IdGm − e)
by Lemma 4.5. On the other hand

ρn((IdGm − e)⊗ φ∗) = φ∗

by Lemma 4.3. By Lemma 4.7 we conclude that

φ∗ ∼= ρn(φ) ⊗ (IdGm − e)
which is equivalent to IdS1

t
⊗ ρn(φ) ∼= φ. Theorem 4.6 is proved.
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Corollary 4.9 Denote by FY the presheaf

X 7→ Hom(S1
tX,S

1
t Y )

and consider the obvious map Y → FY . Then for any X the corresponding
map of complexes of abelian groups

C∗(Y )(X)→ C∗(FY )(X)

is a quasi-isomorphism

Proof: Let ∆n ∼= An be the standard algebraic simplex and ∂∆n the sub-
presheaf in ∆n which is the union of the images of the face maps ∆n−1 → ∆n.
Then the n-th homology group of the complex C∗(F )(X) for any F is the group
of homotopy classes of maps from X⊗ (∆n/∂∆n) to F . Our result now follows
directly from 4.6.

Corollary 4.10 Let k be a perfect field. Then for any K,L in DM eff
− (k)

the map Hom(K,L)→ Hom(K(1), L(1)) is a bijection.

Proof: Since DM eff
− is generated by objects of the form X it is enough to

check that for smooth schemes X,Y over k and n ∈ Z one has

Hom(S1
tX,S

1
t Y [n]) = Hom(X,Y [n])

By Corollary 4.9 we know that the map

Y → FY = Hom(S1
t , S

1
t Y )

is an isomorphism in DM . Let us show now that for any sheaf with transfers
F and any X one has

HomDM (S1
tX,F [n]) = HomDM (X,Hom(S1

t , F )[n]) (4.3)

The left hand side of (4.3) is the hypercohomology group Hn(GmX,C∗(F ))
modulo the subgroup Hn(X,C∗(F )). The right hand side is the hyper-
cohomology group Hn(X,C∗Hom(Gm, F )) modulo similar subgroup. Let
p : GmX → X be the projection. It is easy to see that (4.3) asserts that
Rp∗(C∗(F )) ∼= C∗(p∗(F )). There is a spectral sequence which converges to the
cohomology sheaves of Rp∗(C∗(F )) and starts with the higher direct images
Rip∗(Hj(C∗(F ))). We need to verify that Rip∗(Hj(C∗(F ))) = 0 for i > 0
and that p∗(Hj(C∗(F ))) = Hj(C∗(p∗(F ))). Both statements follow from [3,
Prop. 4.34, p.124] and the comparison of Zariski and Nisnevich cohomology
for homotopy invariant presheaves with transfers.
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Tate motives, which is a p-adic analogue of Grothendieck’s conjecture
about a special element in the motivic Galois group. The bounds come
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theory.
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1 Introduction.

For the multiple zeta values (MZV’s)

ζ(k1, . . . , kd) :=
∑

n1<···<nd

1

nk11 · · ·nkdd

(
= lim

C∋z→1
Lik1,...,kd(z)

)

(k1, . . . , kd−1 ≥ 1, kd ≥ 2), Zagier conjectures the dimension of the space of
MZV’s

Zw := 〈ζ(k1, . . . , kd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd−1 ≥ 1, kd ≥ 2〉Q ⊂ R,

and Z0 := Q (Here, 〈· · · 〉Q means the Q-vector space spanned by · · · ) as follows.

Conjecture 1 (Zagier) Let Dn+3 = Dn+1 + Dn, D0 = 1, D1 = 0, D2 = 1

(that is, the generating function
∑∞

n=0Dnt
n is

1

1− t2 − t3 ). Then, for w ≥ 0

we have

dimQ Zw = Dw.

Terasoma, Goncharov, and Deligne-Goncharov proved the upper bound:

Theorem 1.1 (Terasoma [T], Goncharov [G1], Deligne-Goncharov [DG]) For
w ≥ 0, we have

dimQ Zw ≤ Dw.
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Deligne-Goncharov also proved an upper bound for dimensions of multiple L-
value (MLV) spaces. ([DG])
On the other hand, Furusho defined p-adic MZV’s [Fu1] by using Coleman’s
iterated integral theory:

ζp(k1, . . . , kd) := lim
Cp∋z→1

′Liak1,...,kd(z).

where Lia is the p-adic multiple polylogarithm defined by Coleman’s iterated
integral, and a is a branching parameter (For the notations lim′, see [Fu1,
Notation 2.12]). For kd ≥ 2, RHS converges, and the limit value is independent
of a and lands in Qp ([Fu1, Theorem 2.13, 2.18, 2.25]). Put

Zpw := 〈ζp(k1, . . . , kd) | d ≥ 1, k1+· · ·+kd = w, k1, . . . , kd−1 ≥ 1, kd ≥ 2〉Q ⊂ Qp,

and Zp0 := Q. Note that for kd = 1, p-adic MZV’s may converge, however, these
are Q-linear combinations of p-adic MZV’s corresponding to the same weight
indices with kd ≥ 2 (See, [Fu1, Theorem 2.22]). The following conjecture is
proposed.

Conjecture 2 (Furusho-Y.) Let dn+3 = dn+1 + dn, d0 = 1, d1 = 0, d2 = 0

(that is, the generating function
∑∞

n=0 dnt
n is

1− t2
1− t2 − t3 ). Then, for w ≥ 0

we have
dimQ Z

p
w = dw.

From the fact ζp(2) = 0 and the motivic point of views (see, Remark 3.7, p-adic
analogue of Grothendieck’s conjecture about an element of a motivic Galois
group (Conjecture 4), and Proposition 3.12), it seems natural to conjecture as
above.

Remark 1.2 The conjecture implies that dimQ Z
p
w is independent of p. On the

other hand, ζp(2k + 1) 6= 0 is equivalent to the higher Leopoldt conjecture in
the Iwasawa theory. For a regular prime p, or a prime p satisfying (p− 1) | 2k,
we have ζp(2k+ 1) 6= 0. However, it is not known if ζp(2k+ 1) is zero or not in
general. Thus, it is non-trivial that dimQ Z

p
w is independent of p (See also [Fu1,

Example 2.19 (b)]). It seems that the above conjecture contains the “Leopoldt
conjecture for higher depth”.

For Conjecture 2, we will prove the following result.

Theorem 1.3 For w ≥ 0, we have

dimQ Z
p
w ≤ dw.

We can also define p-adic multiple L-values for N -th roots of unity ζ1, . . . , ζd
and k1, . . . , kd ≥ 1, (kd, ζd) 6= (1, 1) and a prime ideal p ∤ N above p in the
cyclotomoic field Q(µN ),

Lp(k1, . . . , kd; ζ1, . . . , ζd) ∈ Q(µN)p,

Documenta Mathematica · Extra Volume Suslin (2010) 687–723



690 Go Yamashita

by Coleman’s iterated integral as Furusho did for MZV’s (See, Section 2.1).
Here, Q(µN )p is the completion of Q(µN ) at the finite place p. Put

Zp
w[N ] :=〈Lp(k1, . . . , kd; ζ1, . . . , ζd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd ≥ 1,

ζN1 = · · · = ζNd = 1, (kd, ζd) 6= (1, 1)〉Q ⊂ Q(µN )p,

and Zp
0 [N ] := Q.

This Zpw[1] is equal to the above Zpw. We will also prove bounds for the dimen-
sions of p-adic MLV’s.

Theorem 1.4 For w ≥ 0, we have

dimQ Z
p
w[N ] ≤ d[N ]w.

Here, d[N ]w is defined as follows:

1. For N = 1, d[1]n+3 = d[1]n+1 + d[1]n (n ≥ 0), d[1]0 = 1, d[1]1 = 0,

d[1]2 = 0, that is, the generating function is
1− t2

1− t2 − t3 (This d[1]n is

equal to the above dn).

2. For N = 2, d[2]n+2 = d[2]n+1 + d[2]n (n ≥ 1), d[2]0 = 1, d[2]1 = 1,

d[2]2 = 1, that is, the generating function is
1− t2

1− t− t2 .

3. For N ≥ 3, d[N ]n+2 =
(
ϕ(N)

2 + ν
)
d[N ]n+1 − (ν − 1)d[N ]n (n ≥ 0),

d[N ]0 = 1, d[N ]1 = ϕ(N)
2 + ν − 1, that is, the generating function is

1− t
1−

(
ϕ(N)

2 + ν
)
t+ (ν − 1)t2

. Here, ϕ(N) := #(Z/NZ)×, and ν is the

number of prime divisors of N .

Remark 1.5 It is not known that dimQ Z
p
w[N ] is independent of p.

Remark 1.6 In the proof of the above bounds, we use some kinds of (pro-
)varieties, which are related to the algebraic K-theory. For N > 4, the above
bounds are not best possible in general, because in the proof, we use smaller
varieties in general than varieties, which give the above bounds. The gap of
dimensions is related to the space of cusp forms of weight 2 on X1(N) if N is
a prime. See also [DG, 5.27][G2].

In the proof of the above theorem, we use a special element in motivic Galois
group of the category of mixed Tate motives like in the complex case ([DG]).
We also propose a p-adic analogue of Grothendieck’s conjecture on this special
element (see Section 3 for the details):
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Conjecture 3 (= Conjecture 4 in Section 3, p-adic analogue of
Grothendieck’s conjecture) The element ϕp ∈ Uω(Q(µN )p) is Q-Zariski dense.
That means that if a subvariety X of Uω over Q satisfies ϕp ∈ X(Q(µN)p),
then X = Uω.

Finally, we will give the plan of this paper. First, we define the p-adic MLV’s,
twisted p-adic multiple polylogarithms (twisted p-adic MPL’s), and p-adic Drin-
fel’d associator for twisted p-adic MPL’s in Section 2. Next, assuming results of
Section 4, we will show bounds for dimensions of p-adic MLV-spaces in the sense
of Deligne [D1][DG], by using the motivic fundamental groupoid constructed in
[DG] in Section 3.2. Lastly, we show bounds for dimensions of Furusho’s p-adic
MLV-spaces, by comparing the two p-adic MLV-spaces in the Tannakian inter-
pretation in Section 3.3. In Section 4, we construct the crystalline realization
of mixed Tate motives, and prove a comparison isomorphism, by using p-adic
Hodge theory. In the end of this article, we propose some questions.

We fix conventions. We use the notation γ′γ for a composition of paths, which
means that γ followed by γ′. Similarly, we use the notation g′g for a product of
elements in a motivic Galois group, which means that the action of g followed
by the one of g′.

Acknowledgement. In the proof of the main theorem, a crucial ingredient
is the algebraic K-theory, the area of mathematics to which Professor Andrei
A. Suslin greatly contributed. It is great pleasure for the author to dedicate
this paper to Professor Andrei A. Suslin.

He sincerely thanks to Hidekazu Furusho for introducing to the author the the-
ory of multiple zeta values and the theory of Grothendieck-Teichmüller group,
and for helpful discussions. He also expresses his gratitude to Professor Pierre
Deligne for helpful discussions for the crystalline realization. The last chapter
of this paper is written during the author’s staying at IHES from January/2006
to July/2006. He also thanks to the hospitality of IHES. Finally, he thanks the
referee for kind comments.

2 p-adic Multiple L-values.

In this section, we define twisted p-adic multiple polylogarithms (twisted p-adic
MPL), p-adic multiple L-values (p-adic MLV), p-adic KZ-equation for twisted
p-adic MPL, and p-adic Drinfel’d associator for twisted p-adic MPL, similarly
as Furusho’s definitions in [Fu1]. We discuss the fundamental properties of
them.

Fix a prime ideal p in Q(µN ), and an embedding ιp : Q(µN ) →֒ Cp. Put
S := {0,∞} ∪ µN , UN := P1

Q(µN ) \ S, and UN := UN ⊗Q(µN ) Cp (The variety

UN is defined over Q, however, we use UN over Q(µN ) for the purpose of
bounding dimensions in the next section).
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2.1 The Twisted p-adic Multiple Polylogarithm.

We use the same notations as in [Fu1]: the tube ]x[⊂ P1
Cp

of x ∈ (UN )Fp(Fp),
the algebra A(U) of rigid analytic functions on U , and the algebra AaCol of
Coleman functions on UN with a branching parameter a.

Definition 2.1 For p ∤ N , k1, . . . , kd ≥ 1, and ζ1 . . . , ζd ∈ µN , we define
the (one variable) twisted p-adic multiple polylogarithm (twisted p-adic MPL)
Lia(k1,...,kd;ζ1,...,ζd)(z) ∈ AaCol attached to a ∈ Cp by the following integrals in-
ductively:

Lia(1;ζ1)(z) := − loga(ιp(ζ1)− z) :=

∫ z

0

dt

ιp(ζ1)− t ,

Lia(k1,...,kd;ζ1,...,ζd)(z) :=





∫ z

0

1

t
Lia(k1,...,(kd−1);ζ1,...,ζd)(t)dt kd 6= 1,

∫ z

0

1

ιp(ζd)− tLia(k1,...,k(d−1);ζ1,...,ζd−1)(t)dt kd = 1.

Here, loga is the logarithm with a branching parameter a, which means
loga(p) = a.

Remark 2.2 For |z|p < 1, it is easy to see that

Lia(k1,...,kd;ζ1,...,ζd)(z) =
∑

0<n1<···<nd

ιp(ζ−n1
1 ζn1−n2

2 · · · ζnd−1−nd
d )znd

nk11 · · ·nkdd
.

Inductively, we can easily verify that Lia(k1,...,kd;ζ1,...,ζd)(z)|]0[ ∈ A(]0[),

Lia(k1,...,kd;ζ1,...,ζd)(z)|]∞[ ∈ A(]∞[)[loga t−1], and Lia(k1,...,kd;ζ1,...,ζd)(z)|]ιp(ζ)[ ∈
A(]ιp(ζ)[)[loga(z − ιp(ζ))] for ζ ∈ µN .

Proposition 2.3 Fix k1, . . . , kd ≥ 1, and N -th roots of unity ζ1, . . . , ζd ∈ µN .
Then the convergence of lim

Cp∋z→1

′Lia(k1,...,kd;ζ1,...,ζd)(z) is independent of branches

a ∈ Cp. Moreover, if it converges in Cp, the limit value is independent of
branches a ∈ Cp and lands in Q(µN )p (For the notation lim′, see [Fu1, Notation
2.12]).

Proof The same as [Fu1, Theorem 2.13, Theorem 2.25].

Definition 2.4 When the limit lim′
Cp∋z→1 Lia(k1,...,kd;ζ1,...,ζd)(z) converges, we

define the corresponding p-adic multiple L-value to be its limit value:

Lp(k1, . . . , kd; ζ1, . . . , ζd) := lim
Cp∋z→1

′Lia(k1,...,kd;ζ1,...,ζd)(z)

For example, Lp(1; ζ) = − loga(ιp(ζ) − 1) (1 6= ζ ∈ µN ) is independent of a,
since loga(z) does not depend on a for |z| = 1. (Recall that we assume p ∤ N .)
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2.2 The p-adic Drinfel’d Associator for Twisted p-adic Multiple
Polylogarithms.

Let A∧
Cp

:= Cp〈〈A,Bζ | ζ ∈ µN 〉〉 be the non-commutative formal power series
ring with Cp coefficients generated by variables A and Bζ for ζ ∈ µN . For a
word W consisting of A and {Bζ}ζ∈µN , we call the sum of all exponents of A
and {Bζ}ζ∈µN the weight of W , and the sum of all exponents of {Bζ}ζ∈µN the
depth of W .

Definition 2.5 Fix a prime ideal p above p in Q(µN ) and an embedding
ιp : Q(µN ) →֒ Cp. The p-adic Knizhnik-Zamolodchikov equation (p-adic KZ-
equation) is the differential equation

dG

dz
(z) =


A
z

+
∑

ζ∈µN

Bζ
z − ιp(ζ)


G(z),

where G(z) is an analytic function in variable z ∈ UN with values in A∧
Cp
.

Here, G =
∑

W GW (z)W is ‘analytic’ means each of whose coefficient GW (z)
is locally p-adically analytic.

Proposition 2.6 Fix a ∈ Cp. Then, there exist unique solutions
Ga0(z), Ga1(z) ∈ AaCol⊗̂A∧

Cp
, which are locally analytic on P1(Cp) \ S and

satisfy Ga0(z) ≈ zA (z → 0), and Ga1(z) ≈ (1− z)B1 (z → 1).

Here, the notations uA means
∑∞

n=0
1
n! (A loga u)n. Note that it depends on a.

For the notations Ga0(z) ≈ zA (z → 0), see [Fu1, Theorem 3.4].

Remark 2.7 We do not have the symmetry z 7→ 1−z on UN . Thus, we do not
have a simple relation between Ga0(z) and Ga1(z) as in [Fu1, Proposition 3.8].
On the other hand, we have the symmetry z 7→ z−1 on UN . Thus, we have

a unique locally analytic solution Ga∞(z) with Ga∞(z) ≈ (z−1)
−A−∑

ζ∈µN
Bζ

(z →∞), and have a relation

Ga∞(A, {Bζ}ζ∈µN )(z) = Ga0(−A−
∑

ζ∈µN
Bζ , {Bζ−1}ζ∈µN )(z−1).

However, when we define a Drinfel’d associator by using Ga0 and Ga∞ similarly
as below (Definition 2.8), there appears

lim
Cp∈z→∞

′Lia(k1,...,kd;ζ1,...,ζd)(z)

in the coefficient of that Drinfel’d associator. What we want is limCp∈z→1
′.

Thus, we use the boundary condition at z = 1.
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Proof The uniqueness is easy. In [Fu1], he cites Drinfel’d’s paper [Dr] for
the existence of a solution of the KZ-equation. Here, we give an alternative
proof of the existence without using the quasi-triangular quasi-Hopf algebra
theory and the quasi-tensor category theory. In fact, we put Ga0(z) to be∑

W (−1)depth(W )LiaW (z)W . Here, for a word W , we define LiaW (z) inductively
as following: LiaAn(z) := 1

n! (loga z)n, LiaAW (z) :=
∫ z
0

1
tLiaW (t)dt, for W 6= An

(n ≥ 0), LiaBζW (z) :=
∫ z
0

1
ιp(ζ)−tLiaW (t)dt, for ζ ∈ µN . It is easy to verify

that
∑

W (−1)depth(W )LiaW (z)W satisfies the p-adic KZ-equation. As for the
boundary condition Ga0(z) ≈ zA (z → 0), it is easy to show that

∑

W :W 6=W ′A,W ′ 6=∅
(−1)depth(W )LiaW (z)W

satisfies the above boundary condition.
Thus, it remains to show that LiaW ′An(z)→ 0 (z → 0) for n > 0, W ′ 6= ∅. For
LiaBζAn ,

LiaBζAn(z) =

∫ z

0

1

ιp(ζ)− tLiaAn(t)dt =
1

n!

∫ z

0

ζ−1
∞∑

k=0

(ζ−1t)k(loga t)ndt,

in |z| < 1. Since
∫ z
0 t

k loga tdt = zk+1

k+1 loga z− zk+1

(k+1)2 , we have
∫ z
0 t

k loga tdt→ 0

(z → 0). Inductively, we have
∫ z
0
tk(loga t)ndt → 0 (z → 0). Thus, we showed

LiaBζAn(z) → 0 (z → 0). For general LiaW ′A(z)’s, we can inductively show

LiaW ′A(z) → 0 (z → 0) by using the following fact for f(z) = Lia∗∗(z): For
a locally analytic function f(z) satisfying f(0) = 0, we have

∫ z
0

1
t f(t)dt → 0

(z → 0),
∫ z
0

1
ιp(ζ)−tf(t)dt→ 0 (z → 0).

As for Ga1(z), the same argument works, by replacing LiaAn(z) := 1
n! (loga z)n

by LiaBn1 (z) := 1
n! (loga(1 − z))n, and

∫ z
0 by

∫ z
1 .

Definition 2.8 We define the p-adic Drinfel’d associator for twisted p-adic
multiple polylogarithms to be Φp

KZ(A, {Bζ}ζ∈µN ) := Ga1(z)−1Ga0(z). It is in
A∧

Cp
= Cp〈〈A, {Bζ}ζ∈µN 〉〉, and independent of a by the same argument in

[Fu1, Remark 3.9, Theorem 3.10].

By the same arguments as in [Fu1], we can show the following propositions.

Proposition 2.9 limCp∈z→1
′Lia(k1,...,kd;ζ1,...,ζd)(z) converges when (kd, ζd) 6=

(1, 1).

Proof See, [Fu1, Theorem 2.18] for the case where N = 1.

For W in A · A∧
Cp
· Bζ or Bζ′ · A∧

Cp
· Bζ (ζ′ 6= 1), we define Lp(W ) to be

limCp∈z→1
′LiaW (z).
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Proposition 2.10 (Explicit Formulae) The coefficient Ip(W ) of W in the p-
adic Drinfel’d associator for twisted p-adic MPL’s is the following: When W is
written as Br1V A

s for (r, s ≥ 0), V is in A ·A∧
Cp
·Bζ or Bζ′ ·A∧

Cp
·Bζ (ζ′ 6= 1),

Ip(W ) = (−1)depth(W )(−1)a+b
∑

0≤a≤r,0≤b≤s
Lp(f(Ba1 ◦Br−a1 V As−b ◦Ab)).

In particular, when W is in A · A∧
Cp
· Bζ or Bζ′ · A∧

Cp
· Bζ (ζ′ 6= 1),

Ip(W ) = (−1)depth(W )Lp(W ). Here, f : A∧
Cp
→ A∧

Cp
is the composition of

A∧
Cp

։ A∧
Cp
/(B1 ·A∧

Cp
+A∧

Cp
·A), A∧

Cp
/(B1 ·A∧

Cp
+A∧

Cp
·A)

∼→ Cp ·1+A ·A∧
Cp
·B1,

and Cp · 1 +A · A∧
Cp
·B1 →֒ A∧

Cp
.

For the definition of the shuffle product ◦, see [Fu0, Definition 3.2.2].

Proof See, [Fu1, Theorem 3.28] for the case where N = 1. Note we use
Gai (A − α,B1 − β, {Bζ}ζ∈µN ,ζ 6=1)(z) = z−α(1 − z)−βGai (A, {Bζ}ζ∈µN )(z) for
i = 0, 1.

Proposition 2.11 Suppose limCp∈z→1
′Lia(k1,...,kd−1,1;ζ1,...,ζd−1,1)(z) con-

verges. Then, the limit value is a p-adic regularized MLV, that is,
Lp(k1, . . . , kd−1, 1; ζ1, . . . , ζd−1, 1) = (−1)depth(W )Ip(W ). In particular,
Lp(k1, . . . , kd−1, 1; ζ1, . . . , ζd−1, 1) can be written as a Q-linear combination of
p-adic MLV’s corresponding to the same weight indices with (kd, ζd) 6= (1, 1).

Proof See, [Fu1, Theorem 2.22] for the case where N = 1.

Definition 2.12 We define the p-adic multiple L-value space of weight w
Zp
w[N ] to be the finite dimensional Q-linear subspace of Q(µN )p generated by the

all p-adic MLV’s of indices of weight w, ζN1 = · · · = ζNd = 1. Put Zp
0 [N ] := Q.

We define Zp
• [N ] to be the formal direct sum of Zp

w[N ] for w ≥ 0.

Remark 2.13 By Proposition 2.11, we see that

Zp
w[N ] :=〈Lp(k1, . . . , kd; ζ1, . . . , ζd) | d ≥ 1, k1 + · · ·+ kd = w, k1, . . . , kd ≥ 1,

ζN1 = · · · = ζNd = 1, (kd, ζd) 6= (1, 1)〉Q
= 〈Ip(W ) | the weight of W is w〉Q ⊂ Q(µN)p.

Proposition 2.14 We have ∆(Φp
KZ) = Φp

KZ⊗̂Φp
KZ. In particular, the graded

Q-vector space Zp
• [N ] has a Q-algebra structure, that is, Zp

a [N ] · Zp
b [N ] ⊂

Zp
a+b[N ] for a, b ≥ 0.

Proof See, [Fu1, Proposition 3.39, Theorem 2.28] for the case where N = 1.
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Proposition 2.15 (Shuffle Product Formulae) For W,W ′ ∈ (A · A∧
Cp
· Bζ) ∪

∪ζ′ 6=1(Bζ′ · A∧
Cp
·Bζ), we have

Lp(W ◦W ′) = Lp(W )Lp(W ′).

Proof This follows from Proposition 2.10 and Proposition 2.14. See, [Fu1,
Corollary 3.42] for the case where N = 1.

3 Bounds for Dimensions of p-adic Multiple L-value spaces.

In this section, we show Theorem 1.4, by the method of Deligne-Goncharov
[DG], assuming results of Section 4. First, we recall some facts about the mo-
tivic fundamental groupoids in [DG]. Next, we show that bounds for dimensions
of p-adic MLV-spaces in the sense of Deligne [D1][DG]. Lastly, we show that
p-adic MLV-spaces in the previous section is equal to p-adic MLV-spaces in the
sense of Deligne by the Tannakian interpretations.

3.1 The Motivic Fundamental Groupoids of UN .

Deligne-Goncharov constructed the category MT(Z[µN , { 1
1−ζw }w|N ]) of mixed

Tate motives over Z[µN , { 1
1−ζw }w|N ], the fundamental MT(Z[µN , { 1

1−ζw }w|N ])-

group πM
1 (UN , x) and the fundamental MT(Z[µN , { 1

1−ζw }w|N ])-groupoid PM
y,x

for UN not only for rational base points x, y, but also for tangential base points
x, y [DG, Theorem 4.4, Proposition 5.11]. Here, w | N runs through primes
w dividing N , and ζw is a w-th root of unity (Since UN is defined over Q,
πM
1 (UN , x), PM

y,x are also MAT(Q(µN )/Q)-schemes. However, we do not use
this fact. Here, MAT(Q(µN )/Q) is the category of mixed Artin-Tate motives
for Q(µN )/Q). For T -schemes, T -group schemes, and T -groupoids for a Tan-
nakian category T , see [D1, §5, §6], [D2, 7.8], and [DG, 2.6].

First, we recall some facts about them. Let

G := π1(MT(Z[µN , {
1

1− ζw
}w|N ])) ∈ pro-MT(Z[µN , {

1

1− ζw
}w|N ])

be the fundamental MT(Z[µN , { 1
1−ζw }w|N ])-group [D1, §6][D2, Definition 8.13].

Then, by its action on Q(1), we have a surjection G ։ Gm (Here, we regard
Gm as an MT(Z[µN , { 1

1−ζw }w|N ])-group). The kernel U of the map G → Gm
is a pro-unipotent group. Then, we have an isomorphism [DG, 2.8.2]:

Lie(Uab) ∼=
∏

n

Ext1MT(Z[µN ,{ 1
1−ζw

}w|N ])(Q(0),Q(n))∨ ⊗Q(n)

∈ pro-MT(Z[µN , {
1

1− ζw
}w|N ]).
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The extension group is related to the algebraic K-theory [DG, 2.1.3]:

Ext1MT(Z[µN ,{ 1
1−ζw

}w|N ])(Q(0),Q(n)) =





0 n ≤ 0,

Z[µN , { 1
1−ζw }w|N ]× ⊗Z Q n = 1,

K2n−1(Q(µN ))⊗Z Q n ≥ 2.

Let ω be the canonical fiber functor ω : MT(Z[µN , { 1
1−ζw }w|N ]) → VectQ,

which sends a motive M to ⊕nHom(Q(n),GrW−2n(M)). Here, Wm(M) is the
weight filtration of M . Let Gω := ω(G) = Aut⊗(MT(Z[µN , { 1

1−ζw }w|N ]), ω)

be the motivic Galois gruop of MT(Z[µN , { 1
1−ζw }w|N ]) with respect to the

canonical fiber functor ω (For the de Rham realization MdR of a motive M ∈
MT(Q(µN )), we have MdR = ω(M)⊗Q Q(µN ) [DG, Proposition 2.10]). Then,
the ω-realization of the exact sequence 0→ U → G→ Gm → 0 is split by the
action of Gm, which gives the grading by weights,

Gω = Gm ⋉ Uω.

Here, Uω := ω(U). Let τ denote the splitting Gm → Gω. The
pro-unipotent group Uω is equipped with the grading {(Uω)n}n. Put
(LieUω)gr := ⊕n(LieUω)n. Then, (LieUω)gr is a free Lie algebra, since we have
Ext2MT(Z[µN ,{ 1

1−ζw
}w|N ])(Q(0),Q(n)) = K2n−2(Q(µN ))⊗Z Q = 0 [DG, Proposi-

tion 2.3]. Thus, the generating function of the universal envelopping algebra of
(LieUω)gr is

∑∞
n=0 f(t)n, where

f(t)

=





t3 + t5 + t7 + · · · = t3

1−t2 N = 1,

t+ t3 + t5 + · · · = t
1−t2 N = 2,(

ϕ(N)
2 + ν − 1

)
t+ ϕ(N)

2 t2 + ϕ(N)
2 t3 + · · · = ϕ(N)

2
t

1−t + (ν − 1)t N ≥ 3.

Therefore, we have

∞∑

n=0

f(t)n =
1

1− f(t)
=





1− t2
1− t2 − t3 N = 1,

1− t2
1− t− t2 N = 2,

1− t
1−

(
ϕ(N)

2 + ν
)
t+ (ν − 1)t2

N ≥ 3.

That is the generating function of d[N ]n’s in Section 1.
Let PM

y,x be the fundamental MT(Z[µN , { 1
1−ζw }w|N ])-groupoid of UN at (tan-

gential) base points x and y. We consider only tangential base points λx at
x ∈ S := {0,∞}∪ µN with tangent vectors λ in roots of unity under the iden-
tification the tangent space at x with Ga. Then, PM

λ′
y ,λx

depends only on x and
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y, by the triviality of a Kummer Q(1)-torsor [DG, 5.4]. Let PM
y,x denote PM

λ′
y ,λx

.

We have the following structures of the system of MT(Z[µN , { 1
1−ζw }w|N ])-

schemes {PM
y,x}x,y∈S [DG, 5.5, 5.7]:

[The system of groupoids in the level of motives]

(1)M The Tate object Q(1),

(2)M For x, y ∈ S, the fundamental MT(Z[µN , { 1
1−ζw }w|N ])-groupoid PM

y,x,

(3)M The composition of paths,

(4)M For x ∈ S, a morphism of MT(Z[µN , { 1
1−ζw }w|N ])-group scheme (the

local monodromy around x):

Q(1)→ PM
x,x,

(5)M An equivariance under the dihedral group Z/2Z⋉ µN .

By applying a fiber functor F to the category of K-vector spaces, where K is
a field of characteristic 0, we get the following structure [DG, 5.8]:
[The system of groupoids under the fiber functor F ]

(1)F A vector space K(1) of dimension 1,

(2)F For x, y ∈ S, a scheme PFy,x over K,

(3)F a system of morphisms of schemes PFz,y × PFy,x → PFz,x making PFy,x’s a

groupoid. The group schemes PFx,x are pro-unipotent,

(4)F For x ∈ S, a morphism

(additive group K(1))→ PFx,x.

That is equivalent to giving K(1)→ LiePFx,x,

(5)F An Z/2Z⋉ µN -equivariance.

In particular, we take the canonical fiber functor ω as F , and we consider the
following weakened structure (forgetting the conditions at infinity) [DG, 5.8].
Note that in the realization ω, the weight filtrations split and give the grading,
and that all πω1 (UN , x)-groupoids are trivial since H1(UN ,OUN ) = 0. Let L be
the Lie algebra freely generated by symbols A, and {Bζ}ζ∈µN . Let Π be the
pro-unipotent group

Π := lim←−
n

exp(L/degree ≥ n).

Then, we have the following structure [DG, 5.8]:

[The (weakened) system of groupoids under the canonical fiber functor ω]
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(1)ω The vector space Q,

(2)ω A copy Π0,0 of Π, and the trivial Π0,0-torsor Π1,0. The twist of Π0,0 by
this torsor is a new copy of Π, denoted by Π1,1,

(3)ω The group law of Π,

(4)ω The morphism

Q→ L∧ : 1 7→ A, Q→ L∧ : 1 7→ B1.

for x = 0, 1 respectively. Here, L∧ := lim←−n L/(degree ≥ n),

(5)ω The action µN on Π0,0, which induces on the Lie algebra Bζ 7→ Bσζ .

Let Hω be the group scheme of automorphisms of Q and Π preserving the
above structure (1)ω-(5)ω. The action of Hω on the one dimensional vector
space (1)ω gives a morphism Hω ։ Gm. Let Vω be the kernel. The grading
gives a splitting,

Hω = Gm ⋉ Vω .

Also let τ denote the splitting Gm → Vω. The action Gω on the above structure
factors through Hω, which sends Uω to Vω .

1 // Uω //

��

Gω //

��

Gm //

=

��

1

1 // Vω // Hω
// Gm // 1.

Let ι denote both of Gω → Hω, and Uω → Vω . The above diagram
comes from MT(Z[µN , { 1

1−ζw }w|N ])-schemes (splitting does not come from

MT(Z[µN , { 1
1−ζw }w|N ])-schemes), however we do not use this fact (see, [DG,

5.12.1]). For the details of affine T -schemes, where T is a Tannakian category,
see [D1, §5, §6], [D2, 7.8], and [DG, 2.6].
By the Proposition 5.9 in [DG], the map

η : Vω → Π1,0 (v 7→ v(γdR))

is bijective. Here, γdR is the neutral element of Π1,0, that is, γdR is the canonical
path from 0 to 1 in the realization of ω.

3.2 The p-adic MLV-space in the Sense of Deligne.

We will discuss the crystalline realization of mixed Tate motives, and now we
assume the results of Section 4 (See, Remark 4.8). We use the word “crys-
talline”, not “rigid” for the purpose of fixing terminologies.
In [D1], Deligne has found the p-adic zeta values (i.e., the p-adic MZV’s of
depth 1), and the p-adic differential equation of p-adic polylogarithms in the
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study of crystalline aspects of the fundamental group of UN modulo depth ≥ 2
[D1, 19.6]. Deligne-Goncharov proposed that the coefficients of the image of

ϕp := F−1
p τ(q)−1 ∈ Uω(Q(µN )p)

by the map

η · ι : Uω(Q(µN )p)→ Vω(Q(µN )p)
∼→ Π(Q(µN )p) ⊂ Q(µN)p〈〈A, {Bζ}ζ∈µN 〉〉

“seem” to be p-adic analogies of MZV’s [DG, 5.28]. Here, τ is the splitting
Gm → Gω, Fp is the Frobenius endomorphism at p, q is the cardinality of
the residue field at p, and Π(Q(µN )p) is the Q(µN )p-valued points of Π in
the previous subsection. Note that we have the Frobenius endomorphism on
Mω ⊗Q(µN )p ∼= Mcrys for M ∈ MT(Z[µN , { 1

1−ζw }w|N ]) by Remark 4.8. Here,
Mcrys is the crystalline realization of M .

Definition 3.1 We define the p-adic multiple L-values in the sense of Deligne
of weight w to be the coefficients IDp (W ) of words W of weight w in ηι(ϕp) ∈
Π(Q(µN )p) ⊂ Q(µN )p〈〈A, {Bζ}ζ∈µN 〉〉. We define the p-adic L-value spaces in
the sense of Deligne of weight w Zp,D

w [N ] to be the finite dimensional Q-linear
subspace of Q(µN )p generated by all p-adic MLV’s in the sense of Deligne of

indices of weight w. By the definition, we have Zp,D
0 [N ] = Q. We define

Zp,D
• [N ] to be the formal direct sum of Zp,D

w [N ] for w ≥ 0.

On the othe hand, we call p-adic MLV’s defined in Section 2.1 p-adic MLV’s in
the sense of Furusho.

Remark 3.2 If we calculate the action of Frobenius F−1
p on (P1,0)ω , we get

the following KZ-like p-adic differential equation by the same arguments as in
[D1, 19.6]:

dG(t) =

− qG(t)


dt

t
A+

∑

ζ∈µN

dt

t− ιp(ζ)
ζ(Φp

D)−1Bζζ(Φ
p
D)




+


d(tq)

tq
A+

∑

ζ∈µN

d(tq)

tq − ιp(ζ)
Bζ


G(t).

Here, ζ(Φp
D) means the action of ζ on Φp

D determined by ζ(A) = A and ζ(Bζ′) =
Bζζ′ . Here, Φp

D is the Deligne associator (See, the subsection of Tannakian
interpretions, and Proposition 3.10).
The coefficient of a word W in the solution of the above p-adic differential
equation is qw(W )IDp (W ) in the limit t→ 1, that is, p-adic MLV’s in the sense

of Deligne (multiplied by qw(W )). (More precisely, we have to consider the
effect (1 − t)−B1 of the tangential base point in taking the limit). The first
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term in RHS is multiplied by G from the left, and the second term in RHS is
multiplied by G from the right. Thus, the inductive procedure of determining
coefficients is more complicated.

In [D1, 19.6], Deligne calculated the Frobenius action on πω1 (UN , 10) = (P1,0)ω
modulo depth ≥ 2, however, we get the above p-adic differential equation by
the same arguments. Here we give a sketch. We use some notations in [D1].
The above equation arises from the horizontality of Frobenius ([D1, 19.6.2]):

F−1
p (e−1∇e) = G−1∇G.

Here, e is the identity element. The above F−1
p and G are F∗ and v in [D1]

respectively. On the LHS, we have [D1, 12.5, 12.12, 12.15]

e−1∇e = −α = −


dt
t
A+

∑

ζ∈µN

dt

t− ιp(ζ)
Bζ


 .

Here, α is the Maurer-Cartan form ([D1, 12.5.5]). On the RHS, since the
connection is the one of F̃ ∗(P1,0)ω, we have ∇e = −F̃ ∗α, where F̃ ∗ means the
Frobenius lift t 7→ tq. Combining these and ∇G = dG+ (∇e)G, we get

− qG


dt
t
A+

∑

ζ∈µN

dt

t− ιp(ζ)
F−1
p (Bζ)


 =

dG−


d(tq)

tq
A+

∑

ζ∈µN

d(tq)

tq − ιp(ζ)
Bζ


G.

This gives the equation (For F−1
p (Bζ), see the proof of Proposition 3.10).

Example 1 From the p-adic differential equation in the above Remark 3.2,
the coefficient of Ak−1B in ηι(F−1

p τ(p)−1) in the case where N = 1 is the limit
value at z = 1 of the p-adic analytic continuation of the following analytic
function on |z|p < 1 [D1, 19.6]:

∑

p∤n

zn

nk
.

That limit value is (1− p−k)ζp(k). From the condition p ∤ n in the summation,
we lose the Euler factor at p for p-adic MZV’s of depth 1 in the sense of Deligne.

Proposition 3.3 For a, b ≥ 0, we have

Zp,D
a [N ] · Zp,D

b [N ] ⊂ Zp,D
a+b[N ].

Documenta Mathematica · Extra Volume Suslin (2010) 687–723



702 Go Yamashita

Proof The group Π(Q(µN )p) is the subgroup of group-like elements in
Q(µN )p〈〈A, {Bζ}ζ∈µN 〉〉, and ηι(ϕp) is an element of Π(Q(µN )p) by the defini-
tion. Thus, we have ∆(ηι(ϕp)) = ηι(ϕp)⊗̂ηι(ϕp). This implies the proposition.

Proposition 3.4 For w ≥ 0, we have

dimQ Z
p,D
w [N ] ≤ d[N ]w.

Proof Let Uω = SpecR and ηι(Uω) = SpecS. The algebras R =
∏
nR

n

and S =
∏
n S

n are graded algebras over Q. Here, the grading of R and
S come from the grading of Uω. Then, ηι(ϕp) ∈ ηι(Uω)(Q(µN )p) gives a
homomorphism ψp : S → Q(µN )p. The coefficients of ηι(ϕp) of weight w are
contained in ψp(Sw). Thus, we have Zp,D

w [N ] ⊂ ψp(Sw). By the surjection

ι : Uω ։ ι(Uω)(⊂ Vω
η∼= Π), the dimension of Sw is at most the one of the w-th

graded part of the universal envelopping algebra of (LieUω)gr. That dimension
is d[N ]w. We are done.

Remark 3.5 As remarked in [DG, 5.27], ι : LieUω → LieVω is not injective for
N > 4 in general. Thus, the above bounds are not best possible for N > 4 in
general. The kernel is related to the space of cusp forms of weight 2 on X1(N)
if N is a prime. See also [G2].

Remark 3.6 In the complex case [DG], dch(σ) is in (P1,0)ω ⊗ C = Π(C)
∼←

Vω(C). (Here, dch(σ) is the “droit chemin” from 0 to 1 in the Betti realization
with respect to σ : Q(µN) →֒ C.) Thus, Deligne-Goncharov relate dch(σ) to the
motivic Galois group Uω for the purpose of bounds for the dimensions in [DG,
Proposition 5.18, 5.19, 5.20, 5.21, 5.22]. (The point is that Vω is too big, and
Uω is small enough.) However, in the p-adic situation, ϕp is contained a priori
in a small enough variety, i.e., we have ϕp ∈ Uω(Q(µN )p) by the definition.
Thus, the bounds from K-theory of p-adic MLV’s in the sense of Deligne are
almost trivial.

We give remarks on ζp(2).

Remark 3.7 By Proposition 3.4 and Example 1, we have ζp(2) = 0, since

dimQ Z
p,D
2 [1] = 0. It is another proof of that well-known fact. To bound

dimensions, Deligne-Goncharov used ι(Uω)×A1 in the complex case [DG, 5.20,
5.21, 5.22, 5.23, 5.24, 5.25]. This affine line corresponds to “π2”, and we need
this affine line simply because π2 is not in Q. In the p-adic case, we do not
need such an affine line, simply because the image of F−1

p in (Gm)ω (i.e., p) is
in Q. This gives a motivic interpretation of ζp(2) = 0.

Remark 3.8 It is well-known that ζp(2m) = 0. However, it is non-trivial
because we do not know how to show directly

“
∑

Cp∋z→1

zn

n2m
= 0”
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(We add a double quotation in the above, since we have to take p-adic an-
alytic continuation). The well-known proof of ζp(2m) = 0 is following (also
see, [Fu1, Example 2.19(a)]): By the Coleman’s comparison [C], we have
limCp∋z→1 Liak(z) = (1 − p−k)−1Lp(k, ω

1−k) for k ≥ 2. Here, Lp is the p-
adic L-function of Kubota-Leopoldt, ω is the Teichmüller character. This is
the values of the p-adic L-function at positive integers. On the other hand,
the p-adic L-function interpolates the values of usual L-functions at negative
integers, thus, Lp(z, ω

1−k) is constantly zero for even k. Therefore, we have
ζp(2m) = 0. That proof is indirect.

Furusho informed to the author that 2-, and 3-cycle relations induce ζp(2m) = 0
similarly as in [D1, §18] (In the notations in [D1, §18], we can take γ =(the
unique Frobenius invariant path from 0 to 1) (see, the next subsection,) and
x = 0). These relations come from the geometry of P1 \ {0, 1,∞}. Thus, it
seems that it comes from “the same origin” that ‘ζp(2) = 0 from cycle relations’
and ‘ζp(2) = 0 from the bounds by K-theory’. Furusho also comments that
we may translate ‘ζp(2m) = 0 from cycle relations’ into ‘ζp(2m) = 0 from p-
adic differential equation’, i.e., we may show that ζp(2k) = 0 directly from the
p-adic analytic function

∑
n≥1

zn

n2m .

3.3 The Tannakian Interpretations of Two p-adic MLV’s.

Besser proved that there exists a unique Frobenius invariant path in the fun-
damental groupoids of certain p-adic analytic spaces [B, Corollary 3.2]. Fur-
thermore, Besser showed the existence of Frobenius invariant path on p-adic
analytic spaces is equivalent to the Coleman’s integral theory [B, §5].

Let γcrys be the unique Frobenius invariant path in (P1,0)crys. To a differ-

ential form ω, the path γcrys associates the Colman integration
∫ 1

0 ω. Let
γdR ∈ (P1,0)ω be the canonical path from 0 to 1 under the realization ω.
Furusho proved the path αF := γ−1

dRγcrys ∈ πcrys
1 (UN , 10) is equal to the

p-adic Drinfel’d associator ΦpKZ for p-adic MZV’s, that is, for N = 1 in
[Fu2]. By the same argument, we can verify that αF = Φp

KZ for p-adic
MLV’s. Briefly, we review the argument. For details, see [Fu2] (See also
[Ki, Proposition 4]). The coefficient of a word Akd−1Bζd · · ·Ak1−1Bζ1 in
αF = γ−1

dRγcrys ∈ π
crys
1 (UN , 10) ⊂ Q(µN )p〈〈A, {Bζ}ζ∈µN 〉〉 for (kd, ζd) 6= (1, 1)

is an iterated integral

∫ 1

0

dt

t
· · ·
∫ t

0

dt

t

∫ t

0

dt

t− ιp(ζd)

∫ t

0

dt

t
· · ·
∫ t

0

dt

t

∫ t

0

dt

t− ιp(ζ1)

by the characterization of γcrys with respect to Coleman’s integration theory
(Here, the succesive numbers of dt/t are kd−1, kd−1−1, · · · , k2−1 and k1−1).
For words beginning from A or ending B1, the coefficients are regularized p-adic
MLV’s, because the coefficients in αF are the one in lim′

Cp∋z→1(1−z)−B1G0(z)
by using the tangential base point. Thus, αF is the p-adic Drinfel’d associator
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Φp
KZ for twisted p-adic MPL’s in Section 2.2:

αF := γ−1
dRγcrys = Φp

KZ =
∑

W

Ip(W )W.

On the other hand, ηι(ϕp) ∈ Π0,0(Q(µN )p) = πcrys
1 (UN , 10) is γ−1

dRϕp(γdR) by

the definition (Recall that Vω
η∼= Π1,0 and Π0,0

∼= Π1,0 : 1 7→ γdR). Briefly, p-
adic MLV’s in the sense of Furusho come from αF = γ−1

dRγcrys, and p-adic MLV’s
in the sense of Deligne come from αD := γ−1

dRϕp(γdR). That is the Tannakian
interpretations of p-adic MLV’s. In [Fu2], he calls Φp

D := γ−1
dRF

−1
p (γdR) the

Deligne associator.

Remark 3.9 In both of complex and p-adic cases, the iterated integrals appear
in the theory of MZV’s. However, the iterated integrals come from different
origins in the complex case and the p-adic case.
In the complex case, the iterated integrals appear in the comparison map be-
tween the Betti fundamental group πB

1 ⊗Q C tensored by C of P1 \ {0, 1,∞}
and the de Rham fundamental group πdR

1 ⊗QC tensored by C of P1 \ {0, 1,∞}.
The difference between the Q-structure πB

1 and the Q-structure πdR
1 under the

comparison πB
1 ⊗Q C ∼= πdR

1 ⊗Q C is expressed by iterated integrals.
In the p-adic case, iterated integrals do not appear in the comparison map
between the de Rham fundamental group πdR

1 ⊗Q Qp tensored by Qp and the
crystalline fundamental group πcrys

1 . Furthermore, there is no Q-structure on
πcrys
1 . For p-adic MZV’s in the sense of Deligne, iterated integrals appear in the

difference between the Q-structure πdR
1 and the Q-structure F−1

p (πdR
1 ) in P crys

1,0

under the comparison P crys
1,0
∼= P dR

1,0 ⊗Q Qp = πdR
1 ⊗Q Qp. For p-adic MZV’s in

the sense of Furusho, they appear in the difference between Q-structure πdR
1

and the Q-structure απdR
1 in πcrys

1 under the comparison πcrys
1
∼= πdR

1 ⊗Q Qp.
Here, α is a unique element in πcrys

1 such that γdR ·α ∈ P crys
1,0 is invariant under

the Frobenius (Thus, α is equal to αF ).
From this, it seems difficult to find a “motivic Drinfel’d associator”, which is
an origin of both complex and p-adic MZV’s, and a motivic element, which
is an origin of linear relations of both complex and p-adic MZV’s. Note also
that roughly speaking, the complex Drinfel’d associator is the differenc between
Betti and de Rham realizations ([DG, 5.19]), and the p-adic Drinfel’d associator
is the Frobenius element at p.

Example 2 1. (Kummer torsor) Let K(x)ω be the fundamental groupoid
from 1 to x on Gm with respect to the realization ω. Deligne calculated
in [D1, 2.10] the action of F−1

p on K(x)ω ⊂ K(x)crys:

F−1
p (γdR) = γdR + loga x1−p.

Here, γdR is the canonical de Rham path from 1 to x, and + means the
right action of πcrys

1 (Gm, 1) = Q(1)crys = Qp(1) on K(x)crys. From this,
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we have

F−1
p (γdR + loga x) = γdR + loga x1−p + p loga x = γdR + loga x.

Thus, γdR + loga x is Frobenius invariant, that is, the unique crystalline
path γcrys from 1 to x.

2. (Polylogarithm torsor) Let P1,k(ζ)ω be the k-th polylogarithm torsor with
respect to the realization ω for ζ ∈ µN (see, [D1, Definition 16.18]). The
polylogarithm torsors are not fundamental groupoids, but quotients of
fundamental groupoids. However, we use the terminology “Z(k)-torsor
of Z(k)-paths from 0 to ζ” in [D1, 13.15]. Here, we consider as Q(k)ω-
torsor not as Z(k)ω-torsor, and we do not multiply 1

(k−1)! on the integral

structure unlike as [D1]. Deligne calculated in [D1, 19.6, 19.7] the action
of F−1

p on P1,k(ζ)ω ⊂ P1,k(ζ)crys:

F−1
p (γdR) = γdR + pk(1− p−k)Nk−1Liak(ζ)

(That is, F−1
p τ(p)−1(γdR) = γdR +(1−p−k)Nk−1Liak(ζ)). Here, + means

the right action of Q(k)crys = Qp(k) on P1,k(ζ)crys. From this, we have

F−1
p (γdR −Nk−1Liak(ζ)) = γdR + pk(1− p−k)Nk−1Liak(ζ) − pkNk−1Liak(ζ)

= γdR −Nk−1Liak(ζ).

Thus, γdR −Nk−1Liak(ζ) is Frobenius invariant, that is, the unique crys-
talline path γcrys from 0 to ζ.

3. In the case where N = 1, the coefficient of Ak−1B in Φp
KZ is −ζp(k) and

the one of Ak−1B in ηι(F−1
p τ(p)−1) is (1 − p−k)ζp(k), from the above

example.

4. (Furusho) The coefficient ofAb−1BAa−1B in F−1
p τ(p)−1 in the case where

N = 1 is
(

1

pa+b
− 1

)
ζp(a, b)−

(
1

pa
− 1

)
ζp(a)ζp(b)

+

a−1∑

r=0

(−1)r
(

1

pb+r
− 1

)(
b− 1 + r

b− 1

)
ζp(a− r)ζp(b+ r)

+ (−1)a+1
b−1∑

s=0

(
1

pa+s
− 1

)(
a− 1 + s

a− 1

)
ζp(a+ s)ζp(b− s),

for b > 1.

The following proposition combined with Proposition 3.4 gives a proof of The-
orem 1.4. The author learned the following proposition from Furusho’s calu-
culation Example 2(4).
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Proposition 3.10 For w ≥ 0, we have

Zp
w[N ] = Zp,D

w [N ].

Proof The effect of τ(q) is the multiplication by qw on p-adic MLV’s of
weight w in the sense of Deligne. Thus, Zp,D

w [N ] is not changed when we replace
F−1
p ∈ Gω(Q(µN )p) by ϕp = F−1

p τ(q)−1 ∈ Gω(Q(µN )p) in αD = γ−1
dRϕp(γdR).

Let JD
p (W ) be the coefficient of a word W in Φp

D := γ−1
dRF

−1
p (γdR). We have

Zp,D
w [N ] = 〈JD

p (W ) | the weight of W is w〉Q ⊂ Q(µN )p

(We recall that the coefficient of a word W in αF is Ip(W )). We have

αF = γ−1
dRγcrys = γ−1

dRF
−1
p (γdR) · (F−1

p (γdR))−1F−1
p (γcrys) = Φp

DF
−1
p (αF )

=

(∑

W

JD
p (W )W

)(∑

W

Ip(W )F−1
p (W )

)

(By a theorem of Besser [B, Theorem 3.1], we see that αF and αD determine
each other from the above formula).
We compute the action F−1

p on a word W . Let γdR,ζ be the canonical path
from 0 to ζ under the realization ω, that is, γdR,1 = γdR, γdR,ζ = ζ(γdR,1).
Here, ζ(γdR,1) is the action of ζ ∈ µN on Π. Then, Bζ = (γdR,ζ)

−1A · γdR,ζ
([DG, (5.11.3)]). Thus, we have F−1

p (A) = qA and

F−1
p (Bζ) = (F−1

p (γdR,ζ))
−1qAF−1

p (γdR,ζ) = qζ(Φp
D)−1Bζζ(Φ

p
D)

= q

(∑

W

JD
p (ζ−1(W ))W

)−1

Bζ

(∑

W

JD
p (ζ−1(W ))W

)
.

Here, the action of ζ ∈ µN on words is given by ζ(A) = A, and ζ(Bζ′) = Bζζ′ .
From the above formula about αF , we have

αF = Φp
DF

−1
p (αF ) =

(∑

W

JD
p (W )W

)(∑

W

Ip(W )F−1
p (W )

)

=

(∑

W

JD
p (W )W

)
 ∑

W=AkdBζd ···Ak1Bζ1Ak0
qk0+···+kd+dIp(W )Akd

·
(∑

W

JD
p (ζ−1

d (W ))W

)−1

Bζd

(∑

W

JD
p (ζ−1

d (W ))W

)
· · ·

·
(∑

W

JD
p (ζ−1

1 (W ))W

)−1

Bζ1

(∑

W

JD
p (ζ−1

1 (W ))W

)
Ak0


 ,
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There, by using Proposition 2.14 and Proposition 3.3, for a word W of weight
w we have

(1− qw)Ip(W )− JD
p (W ) ∈

∑

w=w′+w′′:w′<w,w′′<w

Zp
w′ · Zp,D

w′′ .

By induction, we have Zp
w = Zp,D

w .

Finally, we remark on some conjectures. The following conjecture is a p-adic
analogue of Grothendieck’s conjecture [DG, 5.20], which says that aσ ∈ Gω(C)
is Q-Zariski dense (weakly, a0σ := aστ(2π

√
−1)−1 ∈ Uω(C) is Q-Zariski dense).

Here, aσ is the “difference” between the Betti realization with respect to σ and
the de Rham realization (For elements aσ and a0σ, see [DG, Proposition 2.12]
and [D1, 8.10 Proposition]).

Conjecture 4 The element ϕp ∈ Uω(Q(µN )p) is Q-Zariski dense. That
means that if a subvariety X of Uω over Q satisfies ϕp ∈ X(Q(µN)p), then
X = Uω.

Remark 3.11 We have the Chebotarev density theorem for usual Galois
groups. So, the author expects that there may be “Chebotarev density like”
theorem for the Frobenius element in the motivic Galois group varying the
prime number p. It will be interesting to study for this “Chebotarev den-
sity like” theorem varying p, adèle valued points of the motivic Galois group,
and possible relations among “Chebotarev density like” theorem varying p,
Grothendieck’s conjecture about the motivic element, and the above p-adic
analogue of Grothendieck’s conjecture about the Frobenius element.

The following conjecture in the case N = 1 (i.e. p-adic MZV’s) is proposed by
Furusho (non published).

Conjecture 5 All linear relations among p-adic MLV’s are linear combina-
tions of linear relations among p-adic MLV’s with same weights.

The following proposition is obvious (cf. [DG, 5.27]).

Proposition 3.12 We consider the following statements:

1. The inequality in Theorem 1.4 is an equality (For N = 1, this is Conjec-
ture 2).

2. The map ι : Uω → Vω is injective.

3. Conjecture 4.

4. Conjecture 5.

Then, (1) is equivalent to the combination of (2) and (3), and implies (4).
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Remark 3.13 The statement (2) is true for N = 2, 3, 4. For N > 4, the
statement (2) is false in general. The kernel is related to the space of cusp
forms of weight 2 on X1(N) if N is a prime. See, [DG, 5.27][G2].

4 Crystalline Realization of Mixed Tate Motives.

In this section, we consider the construction of the crystalline realization of
mixed Tate motives, and Berthelot-Ogus isomorphism for the de Rham and
crystalline realizations of mixed Tate motives.

4.1 Crystalline Realization.

Let k be a number field, v be a finite place of k, and Gk be the absolute
Galois group of k. First, we define the crystalline inertia group at v. Let p be a
prime divided by v. Let Rep

Qp
(Gk), and Repcrys,v

Qp
(Gk) be the category of finite

dimensional representations of Gk over Qp, and the subcategory of crystaline
representations of Gk at v.

Definition 4.1 (crystalline inertia group) The inclusion Repcrys,v

Qp
(Gk) →֒

Rep
Qp

(Gk) induces the map of Tannaka dual groups with respect to the for-

getful fiber functor. We define a crystalline inertia group Icrysv (⊂ Gk,p :=
Aut⊗(Rep

Qp
(Gk))) at v to be its kernel.

Here, Gk,p is the (algebraic group over Qp)-closure of Gk. The group Icrysv is a
pro-algebraic group over Qp. Note that by the definition, the action of Gk on
Mp is crystalline at v if and only if the action of Icrysv on Mp is trivial.
We recall Bloch-Kato’s group H1

f . Let O(v) be the localization at v of the ring
of integers of k, and kv be the completion of k with respect to v. For a finite
dimensional representation V of Gkv over Qℓ, they defined [BK, §3]

H1
f (kv, V ) :=

{
ker(H1(kv, V )→ H1(kurv , V )) v ∤ ℓ,

ker(H1(kv, V )→ H1(kv, Bcrys ⊗ V )) v | ℓ.

Here, kurv is the maximal unramified extension of kv, and Bcrys is the
Fontaine’s p-adic period ring (See, [Fo1]). For a prime ℓ not divided by v,
HomGal(kv/kurv )(Qℓ(m),Qℓ(m+ n)) is trivial for n ≥ 2. Thus, we have

H1
f (kv,Qℓ(n)) =

{
O×

(v) ⊗Qℓ n = 1,

H1(kv,Qℓ(n)) n ≥ 2.

In the crystalline case, we have from the calculations

H1
f (kv,Qp(n)) =

{
O×

(v) ⊗Qp n = 1,

H1(kv,Qp(n)) n ≥ 2,
(4.1)
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(See, [BK, Example 3.9]) monodromy informaions of Icrysv on mixed Tate mo-
tives. We recall that the fact H1

f (kv,Qp(n)) = H1(kv,Qp(n)) for n ≥ 2, v | p
follows from

dimQp H
1
f (kv,Qp(n))

= dimQp DdR(Qp(n))/Fil0DdR(Qp(n)) + dimQp H
0(kv,Qp(n))

= [kv : Qp] + 0 = −χ(Qp(n)) = dimQp H
1(kv,Qp(n))

(See, [BK, Corollary 3.8.4, Example 3.9]). Here, DdR is the Fontaine’s functor
([Fo2]), and χ(V ) is the Euler characteristic of V for a Galois representation V .
Thus, it holds without assuming that kv is unramified over Qp. Let H1

f (k, V ) be

the inverse image of H1
f (kv, V ) via the restriction map H1(k, V )→ H1(kv, V ).

Theorem 4.2 (cf. [DG, Proposition 1.8]) Let k be a number field, and v be a
finite place of k. Take a mixed Tate motive M in MT(k). Then, the following
statements are equivalent.

1. The motive M is unramified at v, that is, M ∈MT(O(v)).

2. For a prime ℓ not divided by v, the ℓ-adic realization Mℓ of M is an
unramified representation at v.

3. For all prime ℓ not divided by v, the ℓ-adic realization Mℓ of M is an
unramified representation at v.

4. For the prime p divided by v, the p-adic realization Mp of M is a crys-
talline representation at v.

Proof The equivalence of (1), (2), and (3) is proved in [DG, Proposition 1.8].
We show that (1) is equivalent to (4). The proof is a crystalline analogue of [DG,
Proposition 1.8]. The Kummer torsor K(a) for a ∈ k×⊗Q is crystalline at v, if
and only if a ∈ O×

(v)⊗Q (See, the isomorphism (4.1)H1
f (kv,Qp(1)) ∼= O×

(v)⊗Qp).
Since Kummer torsors generate Ext1MT(k)(Q(0),Q(1)), it suffices to show that
the following statement: For a mixed Tate motive M ∈ MT(k), the action of
Icrysv onMp is trivial if the action of Icrysv onW−2nMp/W−2(n+2)Mp is trivial for
each n ∈ Z. Assume that the action of Icrysv on W−2nMp/W−2(n+2)Mp is trivial
for each n ∈ Z. We show that the action of Icrysv on W−2nMp/W−2(n+r)Mp

is trivial by the induction on r. For r = 2, it is the hypothesis. For
r > 2, the induction hypothesis assure that the action of Icrysv is trivial on
W−2n/W−2(n+r−1) and W−2(n+1)/W−2(n+r). Thus, the action of σ ∈ Icrysv is
of the form 1 + ν(σ), where ν(σ) is the composite:

W−2n/W−2(n+r) ։ GrW−2n

µ(σ)−→ GrW−2(n+r−1) →֒ W−2n/W−2(n+r).

We have µ(σ1σ2) = µ(σ1) + µ(σ2). This µ is compatible with the action of
Gk,p. It suffices to show that the map µ(σ) : GrW−2n → GrW−2(n+r−1) is trivial.
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This follows from

HomGk,p(Icrysv ,Hom(Qp(n),Qp(n+ r − 1)))

∼= Ext1Rep
Qp

(Icrysv )(Qp(n),Qp(n+ r − 1))Gk,p/I
crys
v

∼= Ext1Rep
Qp

(Gk,p)
(Qp(n),Qp(n+ r − 1))/Ext1Rep

Qp
(Gk,p/I

crys
v )

∼= Ext1Rep
Qp

(Gk)
(Qp(n),Qp(n+ r − 1))/Ext1Repcrys,v

Qp
(Gk)

∼= H1(k,Qp(r − 1))/H1
f (k,Qp(r − 1)) = 0,

where we abbreviate Ext1Rep
Qp

(Gk,p/I
crys
v )(Qp(n),Qp(n + r − 1)) and

Ext1Repcrys,v
Qp

(Gk)
(Qp(n),Qp(n+r−1)) as Ext1Rep

Qp
(Gk,p/I

crys
v ) and Ext1Repcrys,v

Qp
(Gk)

respectively by a typesetting reason. The second isomorphism follows from
the fact that Ext2Repcrys,v

Qp
(Gk) = 0, and the action of Icrysv on Qp(r − 1) is

trivial, and the last equality follows from the isomorphism (4.1). (We have
Ext2Repcrys,v

Qp
(Gk)

= 0 from the elemental theory of the category of filtered

ϕ-modules. In fact, RHom is calculated by a complex, which is concentrated
only in degree 0 and 1.)

Remark 4.3 If we have a full sub-Tannakian category MT(O(v))
good of MT(k)

satisfying

Ext1MT(O(v))good
(Q(0),Q(1)) ∼=

{
O×

(v) ⊗Q, n = 1,

Ext1MT(k)(Q(0),Q(n)), n ≥ 2,

and

Ext2MT(O(v))good
(Q(0),Q(n)) = 0 for any n,

then by introducing the “motivic inertia group” at v

IMv := ker{Aut⊗(ωMT(k))→ Aut⊗(ωMT(O(v))good )},

we can prove the similar result for MT(O(v))
good, that is, M is in MT(O(v))

if and only if M is in MT(O(v))
good by the “motivic analogue” of the above

proof.
In a naive way, we cannot define “M⊗O(v)

k(v)” the reduction at v of an object
M in MT(O(v)), since MT(O(v)) is not defined by a “geometrical way”. So, the
author hopes that this remark will be useful to construct “the reduction at v”
of object in MT(O(v)). If we “geometrically” construct a full sub-Tannakian

category MT(O(v))
good of MT(k) satisfying the above conditions, then we can

get a good definition of “the reduction at v”. Here, the word “geometrically”
means that returning the definition of Voevodsky’s category DM(k). See also
the proof of Theorem 4.6.
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Definition 4.4 For a mixed Tate motive M ∈MT(O(v)) unramified at v, we
define the crystalline realization Mcrys,v to be Dcrys(Mp). Here Dcrys is the
Fontaine’s functor (Bcrys ⊗Qp −)Gkv , and Mp is the p-adic realization of M .

Note that Mp is a crystalline representaion of Gkv by Theorem 4.2, so we have
dimk0,v Mcrys,v = dimQpMp = dimQMω. Here, k0,v is the fraction field of the
ring of Witt vectors with coefficients in the residue field k(v) of O(v). Note also
that the pair (Mcrys,v,Mcrys,v ⊗k0.v kv) gives an admissible filtered ϕ-module
in the sense of Fontaine ([Fo1], [Fo2]). The crystalline realization is functorial,
and defines a fiber functor MT(O(v)) → Vectk0,v , which factors through the

category of admissible filtered ϕ-modules MFad
k0,v (ϕ).

Remark 4.5 By using the fact that H1
st(kv,Qp(1)) = H1(kv,Qp(1)) and in-

troducing “semistable inertia group” at v, we can show that Mp is a semistable
representation of Gkv for any mixed Tate motive M in MT(k), similarly as
the proof of Theorem 4.2. Thus, we can define the crystalline realization
(or semistable realization) Mcrys,v to be Dst(Mp) = (Bst ⊗Qp Mp)

Gkv for all

M ∈ MT(k), and get a functor MT(k) → MFad
k0,v (ϕ,N) to the category of

admissible filtered (ϕ,N)-modules.

4.2 Comparison Isomorphism.

In this subsection, we prove a “Berthelot-Ogus like” comparison isomorphism
between the crystalline realization and the de Rham realization. We defined
the crystalline realization by using Fontaine’s functor, so we need another “ge-
ometrical” construction of the crystalline realization to compare it with the de
Rham realization (it is not obvious that the other construction is functorial).

For preparing the following theorem, we briefly recall that Voevodsky’s category
DM(k) (see, [V]), Levine’s category MT(k) (see, [L]), and Deligne-Goncharov’s
category MT(O(v)) (see, [DG]). Let k be a field. First, let SmCor(k) be
the additive category whose objects are smooth separated scheme over k,
and morphisms Hom(X,Y ) are free abelian group generated by reduced ir-
reducible closed subschemes Z of X×Y , which are finite over X and dominate
a connected component of X . Then, Voevodsky’s tensor triangulated category
DM(k) is constructed from the category of bounded complexes Kb(SmCor(k))
of SmCor(k) by localizing the thick subcategory generated by [X ×A1]→ [X ]
(homotopy invariance), and [U ∩V ]→ [U ]⊕ [V ]→ [X ] for X = U ∪V (Mayer-
Vietoris), adding images of direct factors of idempotents, and inverting formally
Z(1).

Let k be a number field. Then, the vanishing conjecture of Beilinson-Soulé
holds for k. From the vanishing conjecture of Beilinson-Soulé, Levine con-
structed the Tannakian category of mixed Tate motives MT(k) from DMT(k)
by taking a heart with respect to a t-structure. Here, DMT(k) is the sub-tensor
triangulated category of DM(k)Q generated by Q(n)’s.
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For a finite place v of k, let O(v) denote the localization of k at v. Deligne-
Goncharov defined the full subcategory MT(O(v)) of mixed Tate motives un-
ramified at v in MT(k), whose objects are mixed Tate motives M in MT(k) such
that for each subquotient E of M , which is an extension of Q(n) by Q(n+ 1),
the extension class of E in

Ext1MT(k)(Q(n),Q(n+ 1))
∼=←− Ext1MT(k)(Q(0),Q(1)) ∼= k× ⊗Q

is in O×
(v)⊗Q(⊂ k×⊗Q). The following theorem is the comparison isomorphism

between crystalline realization and de Rham realization. However, we defined
the crystalline realization by using p-adic étale realization. So, the content
of the following theorem is the comparison isomorphism between p-adic étale
realization and the pair of crystalline and de Rham realizations.

Theorem 4.6 (Berthelot-Ogus isomorphism) For any mixed Tate motive M
in MT(O(v)), we have a canonical isomorphism

kv ⊗k0,v Mcrys,v
∼= kv ⊗kMdR.

Remark 4.7 (Hyodo-Kato isomorphism) After choosing a uniformizer π of kv,
we can prove a canonical isomorphism

kv ⊗k0,v Mcrys,v
∼= kv ⊗kMdR

for any mixed Tate motive M in MT(k) by the same way (cf. Remark 4.5).

Remark 4.8 From the functorial isomorphism Mcrys,v ⊗k0,v kv ∼= MdR ⊗k kv,
we have Gω ⊗Q kv ∼= Gcrys ⊗k0,v kv. Here, G := π1(MT(O(v))) ∈ pro-MT(O(v))
is the fundamental MT(O(v))-group (See, [D1, §6][D2, Definition 8.13]). Thus,

we can consider the Frobenius element F−1
p ∈ Gω(kv) if k0,v = kv (For example,

in the case where k is Q(µN ) and v is a prime ideal not dividing (N)).

Proof First, we observe the following thing. Let X and Y be smooth schemes
over k, and Γ be an integral closed subschemes of X × Y , which is finite sur-
jective over a component of X . Then, by using de Jong’s alterations, there
exists a finite extension k′ of k, a prime ideal w over v, semistable pairs
(cf. [dJ]) (X ,D) and (Y, E) over O(w), such that fX : (X \ D)k′ → X and
fY : (Y \ E)k′ → Y are generically étale alterations of X , and Y , respec-

tively. Put [Γ̃′
k′ ] := (fX × fY )![Γ ⊗k k′]. Here, (fX × fY )! : CH∗(Γ ⊗k k′) →

CH∗(Γ⊗k k′ ×(X×kY )⊗kk′ ((X \D)k′ × (Y \ E)k′ )) is the Fulton-MacPherson’s

refined Gysin map. Let Γ̃k′ denote the closure of Γ̃′
k′ in Xk′×Yk′ , Then, we have

Γ̃k′ ∩ (Xk′ ×Ek′) ⊂ Γ̃k′ ∩ (Dk′ ×Yk′ ). After choosing a uniformizer π′ ∈ k′w, we
have the comparison isomorphisms Bst ⊗k′0,w Hm

log-crys((X \D)k′(w)) ∼= Bst ⊗Qp

Hm
ét ((X \ D)k), and Bst ⊗k′0,w Hm

log-crys((Y \ E)k′(w)) ∼= Bst ⊗Qp H
m
ét ((Y \ E)k)
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proved in [Y]. By Γ̃k′ ∩ (Xk′ ×Ek′) ⊂ Γ̃k′ ∩ (Dk′ ×Yk′ ), we can define the cycle
classes (cf. [Y])

cl(Γ̃k) ∈ H2 dimY
ét (Xk × Yk, (Xk × Ek)!, (Dk × Yk)∗),

and
cl(Γ̃k′) ∈ H2 dimY

dR (Xk′ × Yk′ , (Xk′ × Ek′)!, (Dk′ × Yk′)∗).

Then, by using these cycle classes, we get a commutative diagram ([Y])

k′w ⊗k′0,w Dst,k′w(Hm
ét ((Y \ E)k))

∼= //

[Γ̃k]
∗

��

k′w ⊗k′ Hm
dR((Y \ E)k′)

[Γ̃k′ ]
∗

��
k′w ⊗k′0,w Dst,k′w(Hm

ét ((X \ D)k))
∼= // k′w ⊗k′ Hm

dR((X \ D)k′ ),

where we used Hyodo-Kato isomorphism [Y].
Let [ΞX ] ∈ CH(Xk′ ×(Xk′×Xk′ ) (X × X )) be (fX × fX)!([∆Xk′ ]), where fX is

the morphism Xk′ → Xk′ , (f × f)! means Fulton-MacPherson’s refined Gysin
homomorphism, and ∆Xk′ is the diagonal class of Xk′ . We define [ΞY ] by
the same way, then by using these cycle classes and the compatibility of the
comparison isomorphism with cycle classes, we get commutative diagrams

D
st,k′w

(Hmét ((X \ D)
k
))
k′w

fX∗ // //

∼=

��

D
st,k′w

(Hmét (X
k
))
k′w

� � f∗X // Dst,k′w
(Hmét ((X \ D)

k
))
k′w

∼=

��
HmdR((X \ D)

k′ )k′w

fX∗ // // HmdR(X
k′ )k′w

� � f∗X // HmdR((X \ D)
k′ )k′w

,

D
st,k′w

(Hm
ét

((Y \ E)
k
))
k′w

fY ∗ // //

∼=

��

D
st,k′w

(Hm
ét

(Y
k
))
k′w

� � f∗Y // Dst,k′w
(Hm

ét
((Y \ E)

k
))
k′w

∼=

��
HmdR((Y \ E)

k′ )k′w

fY ∗ // // HmdR(Y
k′ )k′w

� � f∗Y // HmdR((Y \ E)
k′ )k′w

k,

where we abbreviate k′w ⊗k′0,w Dst,k′w (−) and k′w ⊗k′ Hm
dR(−) as Dst,k′w(−)k′w

and Hm
dR(−)k′w respectively by a typesetting reason. So, we get isomorphisms

k′w ⊗k′0,w Dst,k′w(Hm
ét (Xk)) ∼= k′w ⊗k′ Hm

dR(Xk′ ),

and
k′w ⊗k′0,w Dst,k′w(Hm

ét (Yk)) ∼= k′w ⊗k′ Hm
dR(Yk′ ).

By using the following commutative diagrams

Hm
ét ((Y \ E)k)

fY ∗ // //

[Γ̃k]
∗

��

Hm
ét (Yk) � � f∗

Y // Hm
ét ((Y \ E)k)

[Γ̃k]
∗

��
Hm

ét ((X \ D)k)
fX∗ // // Hm

ét (Xk) � � f
∗
X // Hm

ét ((X \ D)k),
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and

Hm
dR((Y \ E)k′ )

fY ∗ // //

[Γ̃k′ ]
∗

��

Hm
dR(Yk′ )

� � f∗
Y // Hm

dR((Y \ E)k′ )

[Γ̃k′ ]
∗

��
Hm

dR((X \ D)k′ )
fX∗ // // Hm

dR(Xk′)
� � f

∗
X // Hm

dR((X \ D)k′ ),

we finally get a commutative diagram

k′w ⊗k′0,w Dst,k′w(Hm
ét (Yk))

∼= //

restriction of [Γ̃k]
∗

��

k′w ⊗k′ Hm
dR(Yk′ )

restriction of [Γ̃k′ ]
∗

��
k′w ⊗k′0,w Dst,k′w (Hm

ét (Xk))
∼= // k′w ⊗k′ Hm

dR(Xk′).

Now, take a triple (X•, f, n) for the given motive M in MT(O(v)), such that

f(X•)(n) represents M , where X• ∈ Kb(SmCor(k)), n ∈ Z, and f is an idem-
potent in Kb(SmCor(k)). We will proceed the above construction successively
for the complex X• in SmCor(k), by replacing the finite extension k′ one by
one (Here, X• is bounded. So, we can start from the first non-empty place
and make the above construction and the above commutative diagram. Next,
we make the above construction and commutative diagram in the next place
after a finite base extension. We replace the first place by the finite base ex-
tension...). By using ((X •,D•), {Γ•

j•}j•), we can define sequences ((C•)•ét, d
•
ét),

and ((C•)•dR, d
•
dR) of cohomological complexes, where (C•)iét and (C•)idR calcu-

late the étale cohomology and de Rham cohomology of X i
k

and X ik respectively,

and diét and didR are defined by {Γi
k,j•
}j• , and {Γik,j•}j• respectively. Note

that we do not define the crystalline version ((C•)icrys, d
•
crys). Even if we de-

fine it by taking integral models of Γ•
j ’s, we do not have di+1

crys ◦ dicrys = 0
for the sequence of complexes (C•)•crys in general, because of the lack of the
uniqueness of the extensions Γ•

j ’s (cf. [DG, Lemma 1.5.1]). So, we cannot
define a crystalline realization by using (C•)•crys at least in the present situa-
tion (Note that we do not need to get d•crys by integral models of Γ•

j ’s in this

proof). On the other hand, we have di+1
ét/dR ◦ diét/dR = 0 for the sequence of

complexes (C•)•ét/dR, because they live on the generic fiber (cf. [DG, Lemma

1.5.1]) and we have the uniqueness (Note that the above construction and the
above commutative diagram work after replacing Hm by RΓ, because we do
not use integral models of Γ•

j ’s, but only use the generic fiber of them. See
[DG, 1.5] for the de Rham part (C•)•dR). Therefore, we get an isomorphism
k′w ⊗k′0,w Mcrys,w

∼= k′w ⊗k′0,w Dst,k′w(Mp) ∼= k′w ⊗k′ MdR,k′
∼= k′w ⊗kMdR .

Now, we use the condition that M is in MT(O(v)). The p-adic realization
Mp is crystalline at v by Thoerem 4.2. So, we have Mcrys,w

∼= k′0,w ⊗k0,v
Mcrys,v. Therefore, we have an isomorphism k′w ⊗k0,v Mcrys,v

∼= k′w ⊗kMdR. In
general, for any element τ ∈ Gal(k′w/kv), we have an isomorphism k′,τw ⊗k0,v
Mcrys,v

∼= k′,τw ⊗kMdR by using the triple {(X •,τ ,D•,τ ), f τ , n}. Thus, we have
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an isomorphism kv ⊗k0,v Mcrys,v
∼= kv ⊗k MdR by the descent. Since Mp is

crystalline at v, this isomorphism does not depend on the choice of π′, and
we can show that this isomorphism does not depend on the choice of good
reduction models and this isomorphism is functorial by using the standard
product argument.

4.3 Some Remarks and Questions.

The crystalline realization to the category of ϕ-modules (not to the category
of admissible filtered ϕ-modules) is split, because we have

Ext1MT(O(v))
(Q(0),Q(n)) = 0

for n ≤ 0 and Ext1Modk0,v (ϕ)
(k0,v(0), k0,v(n)) = 0 for n > 0.

So, we can expect that the crystalline realization MT(O(v))→ Vectk0,v factors
through MT(k(v)). Note that the weight filtration of mixed Tate motives over
a finite field is split by Quillen’s calculations of K-groups of finite fields ([Q]).
Thus, they are sums of Q(n)’s.

The weight filtration is motivic, and both of the de Rham realization and the
crystalline realization are split. However, the splittings do not coincide, that is,
the splitting of the crystalline realization does not coincide to the splitting of the
de Rham realization via the Berthelot-Ogus isomorphism of Theorem 4.6. The
iterated integrals and p-adic MLV’s appear in the difference of these splittings.
See also Remark 3.9.

Remark 4.9 We have Ext1Modk0,v (ϕ)
(k0,v(0), k0,v(0)) ∼= Qp 6= 0, and this gap

corresponds to the “near critical strip case” of Beilinson’s conjecture and Bloch-
Kato’s Tamagawa number conjecture, that is, we need not only regulator maps,
but also Chow groups to formulate these conjectures near the critical strip case
(that is, the case where the weight of motive is 0 or −2). In this case, this
corresponds to the “dual” of the fact that the image of the Dirichlet regula-
tor is not a lattice of Rr1+r2 , but a lattice of a hyperplane of Rr1+r2 . The
author does not know a direct proof of the fact that the non-trivial exten-
sion in Ext1Modk0,v (ϕ)

(k0,v(0), k0,v(0)) = Qp does not occur in the crystalline

realization.

Example 3 (Kummer torsor) Let K be a finite extension of Qp, K0 be the
fraction field of the ring of Witt vectors with coefficient in the residue field of
K. Let z ∈ 1 + πOK . Let

0→ Qp(1)→ V (z)p → Qp(0)→ 0

be the extension of p-adic realization corresponding to z. Fix e0 a generator
of Qp(1) corresponding {ζn}n, and e1 the generator of Qp(0) corresponding 1.
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Then, the action of Galois group is the following:

{
ge0 = χ(g)e0,

ge1 = e1 + ψz(g)e0.

Here, χ is the p-adic cyclotomic character, and ψz is characterized by g(z1/p
n

) =

ζ
ψz(g)
n z1/p

n

.
Then, V (z)crys ∼= (Bcrys ⊗Qp V (z)p)

GK has the following basis:

{
t−1 ⊗ e0 =: x0,

e1 − t−1 log[z]⊗ e0 =: x1.

Here, t := log[ζ], log[z] ∈ Bcrys. Thus, the Frobenius action is the following:

{
φ(x0) = 1

px0,

φ(x1) = x1.

The filtration after K⊗K0 is the following:





Fil−1V (z)dR = V (z)dR = 〈x0, x1〉K ,
Fil0V (z)dR = 〈x1 + (log z)x0〉K ,
Fil1V (z)dR = 0

(In BdR, we have t−1 log z
[z] ∈ Fil0BdR). Thus, we have splittings:

V (z)crys = 〈x0〉K0 ⊕ 〈x1〉K0 = K0(1)⊕K0(0),

V (z)dR = 〈x0〉K ⊕ 〈x1 + (log z)x0〉K = K(1)⊕K(0).

These splittings do not coincide in general.
We will recover the calculation φ−1(0) = log z1−p in [D1, 2.9, 2.10]. In this case,
we assume K = K0. By the above calculation, the Kummer torsor K(z)dR is

K(z)dR = −(x1 + (log z)x0) +Kx0

(For the purpose of making satisfy ∇(u) = du − dz
z in [D1, 2.10], we use the

above sign convention). Then, we have

φ−1(0)↔ φ−1(−(x1 + (log z)x0) + 0) = −(x1 + p(log z)x0)

= −(x1 + (log z)x0) + (1− p)(log z)x0

= −(x1 + (log z)x0) + (log z1−p)x0

↔ log z1−p.

This coincides the calculation in [D1, 2.10]. Here, ↔ is the identification via
K(z)dR = −(x1 + (log z)x0) +Kx0 ∼= K.
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Next, we define polylogarithm extensions. In the following, we consider the
case where k is a cyclotimic field Q(µN ) for N ≥ 1. For ζ ∈ µN , let Uζ ∈
pro-MT(Q(µN )) be the kernel of πM

1 (P1\{0, 1∞}, ζ)→ πM
1 (Gm, ζ). We define

Logζ to be the abelianization of Uζ Tate-twisted by (−1). We define Polζ with
Tate twist (1) to be the push-out in the following diagram (see also, [D1, §16]):

1 // Uζ //

����

πM
1 (P1 \ {0, 1,∞}, ζ) //

����

πM
1 (Gm, ζ) //

=

��

1

0 // Logζ(1) // Polζ(1) // Q(1) // 0.

(4.2)
For n ≥ 1, we also define Poln,ζ to be the push-out under Logζ = Πn≥0Q(n)→
Q(n) (see also, [D1, §16]):

0 // Logζ //

����

Polζ //

����

Q(0) //

=

��

0

0 // Q(n) // Poln,ζ // Q(0) // 0.

The extension class [Poln,ζ ] lives in Ext1MT(Q(µN ))(Q(0),Q(n)) ∼=
K2n−1(Q(µN ))Q. Let µ0

N be the group of primitive N -th roots of unity.
Recall that Huber-Wildeshaus constructed motivic polylogarithm classes
polζ ∈

∏
n≥2K2n−1(Q(µN ))Q (not extensions of motives) in [HW].

Proposition 4.10 Let n be an integer greater than or equal to 2, and ζ
be an N -th root of unity. Then, the n-th component of Huber-Wildeshaus’
motivic polylogarithm class polζ (see, [HW, Definition 9.4]) is equal to

(−1)n−1 n!
Nn−1 [Poln,ζ] under the identification

K2n−1(Q(µN ))Q ∼= Ext1MT(Q(µN ))(Q(0),Q(n)).

In particular, the extension classes {[Poln,ζ]}ζ∈µ0
N

generate K2n−1(Q(µN ))Q.

Proof It is sufficient to show the equality after taking the Hodge realization.
This follows from [D1, §3, §16, §19] and [HW, Theorem 9.5, Corolary 9.6]. Note
that we consider as Q(n)ω-torsor not as Z(n)ω-torsor, and we do not multiply

1
(n−1)! on the integral structure unlike as [D1] (See also Example (2, 2)).

Fix a place v ∤ N of Q(µN ). Put K := Q(µN )v. Let p be the prime devied
by v. Note that K is unramified over Qp. Let σ denote the Frobenius endo-
morphism on K. For a mixed Tate motive [0 → Q(n) → M → Q(0) → 0] ∈
Ext1MT(O(v))

(Q(0),Q(n)), the pair Msyn := (Mcrys,v,MdR ⊗Q(µN ) K) defines a

extension of filtered ϕ-modules:

0→ K(n)→Msyn → K(0)→ 0.
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Here, K(i) is the Tate object in the category of filtered ϕ-modules over K.
Thus, we have a map

rn : K2n−1(O(v))Q ∼= Ext1MT(O(v))
(Q(0),Q(n))

→ Ext1
MFfK

(K(0),K(n)) ∼= H1
syn(K,K(n)).

See, [Ba] for the last isomorphism. We call rn the n-th syntomic regulator map.
Recall that H1

syn is a finite dimensional Qp-vector space, not a K-vector space.

We fix an isomorphism H1
syn(K,K(n)) ∼= K as Qp-vector spaces for n ≥ 1 as

follows.

H1
syn(K,K(n))

∼= coker(K(n)crys
a 7→(ā,(1−ϕ)(a))−→ (K(n)dR/Fil0K(n)dR)⊕K(n)crys)

∼= coker(K
a 7→(a,(1−p−nσ)(a))−→ K ⊕K)

[(a,b)] 7→b−(1−p−nσ)(a)∼= K.

In general, note that for a filtered ϕ-module D and for

[(x, y)] ∈ coker(D
a 7→(ā,(1−ϕD)(a))−→ (D/Fil0D)⊕D) ∼= Ext1

MFfK
(K(0), D),

the corresponding extension E of K(0) by D is the following: E = D ⊕Ke0
{

FiliE = FiliD + 〈x+ e0〉K for i ≤ 0,

FiliE = FiliD for i > 0,

{
ϕE(a) = ϕD(a) for a ∈ D,
ϕE(e0) = e0 + y.

Proposition 4.11 The syntomic regulator map

r1 : K1(O(v))Q ∼= O×
(v) ⊗Q→ H1

syn(K,K(1)) ∼= K

is given by z 7→ −(1− 1
p ) log z. For n ≥ 2, the syntomic regulator map

rn : K2n−1(Q(µN ))Q → H1
syn(K,K(n)) ∼= K

sends [Poln,ζ ] to −Nn−1(1− 1
pn )Lian(ζ).

Note that Coleman’s p-adic polylogarithm (1 − 1
pn )Lian(ζ) is often written by

ℓ
(p)
n (ζ), and does not depend on the chice of a.
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Remark 4.12 In the above proposition, we used the homomorphism induced
by crystalline realizations and the isomorphism between K-theory and Ext1MT

as a regulator. For a purely K-theoretic definition of a regulator and its calcu-
lation, see [BdJ].

Remark 4.13 If we use an identification

coker(K
a 7→(a,(1−p−nσ)(a))−→ K ⊕K)

[(a,b)] 7→a−(1−p−nσ)−1(b)∼= K

(note that 1 − p−nσ is a bijection on K for n ≥ 1), then the above formula
changes as the following: the map

r1 : K1(O(v))Q ∼= O×
(v) ⊗Q→ H1

syn(K,K(1)) ∼= K

is given by z 7→ log z. For n ≥ 2, the map

rn : K2n−1(Q(µN ))Q → H1
syn(K,K(n)) ∼= K

sends [Poln,ζ ] to Nn−1Lian(ζ).

Proof The first assertion follows from Example (3). The second assertion
follows from the following structure of (Poln,ζ)syn = ((Poln,ζ)crys, (Poln,ζ)dR):
(Poln,ζ)crys = 〈x0, x1〉K

{
ϕ(x0) = 1

pn x0,

ϕ(x1) = x1 −Nn−1(1 − p−n)Lian(ζ),





Fil−n(Poln,ζ)dR = 〈x0, x1〉K ,
Fili(Poln,ζ)dR = 〈x1〉K for − n < i ≤ 0,

Fil1(Poln,ζ)dR = 0.

This structure follows from Example (2).

Remark 4.14 We have an isomorphism

Bcrys ⊗Qp (PM
y,x)p ∼= Bcrys ⊗K0 (PM

y,x)crys.

Here, PM
y,x is a fundamental groupoid of P1 \ {0,∞} ∪ µN . This induces an

isomorphism
Bcrys ⊗Qp (Polζ)p ∼= Bcrys ⊗K0 (Polζ)crys.

Thus, we have the following commutative diagram for n ≥ 2:

K2n−1(Q(µN ))Q //

((QQQQQQQQQQQQQ
H1(K,Qp(n))

∼=
��

[Poln,ζ ] � //


&&MMMMMMMMMMM
[(Poln,ζ)p]_

��
H1

syn(K,K(n)) [(Poln,ζ)syn].
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Here, K denotes Qp(µN ), ζ is in µN , and p does not divide N . The horizontal
map sends the extension class [Poln,ζ ] to the one [(Poln,ζ)p], and the oblique
map sends the extension class [Poln,ζ] to the one [(Poln,ζ)syn].
The fact that [(Poln,ζ)p] is sent to [(Poln,ζ)syn] was first shown by T. Tsuji.
Unfortunately, no preprint is available yet. His method is totally different. He
does not use motivic theory or motivic π1. He used the classical characteri-
zation (or the definition) of p-adic and syntomic polylogarithm sheaves as a
specified extension (via residue isomorphisms etc.) of the constant sheaf by
Log, and checked the characterization coincides via the p-adic Hodge compar-
ison isomorphism.

Finally, we’d like to propose some very vague questions. If we take the Hodge
(resp. ℓ-adic) realization of the lower line of (4.2), and specialize it to the
roots of unity, then we get the special values of polylogarithms (resp. the
Soulé elements). This fact is important of Bloch-Kato’s Tamagawa number
conjecture ([BK]) for Tata motives. Furthermore, the Soulé elements form an
Euler system, which has a power to show a half of Iwasawa main conjecture.
The Soulé elements are sent to the Kubota-Leopoldt’s p-adic L-function via
Bloch-Kato’s dual exponentioal map.

Question 1 Can we “suitably lift” this theory to the upper line of (4.2)?

More concretely:

Question 2 This will give a theory between non-commutative extensions of
cyclotomic fields and multiple zeta values?

(It seems that Massey products play some roles instead of Ext1.)

Question 3 This is related with Ihara’s higher cyclotomic fields, Anderson-
Ihara’s higher circular units ([AI]), and Ozaki’s non-commutative Iwasawa the-
ory?

(Ozaki considered the maximal pro-p extensions unramified outside p of the
cyclotmic fields, and its graded quotients of the lower central series, and he
showed that Iwasawa class number formura for each graded quotient.)
Wojtkoviak studied ([W]) ℓ-adic iterated integrals, which specialize to the Soulé
elements at the roots of unity in the case where the depth is one.

Question 4 What are the properties and axioms of “iterated integrals of Euler
system”?

There are many difficulties to establish the above theory. It seems that the
origin of the difficulties is that there are no good analytic properties for the
zeta function in the higher depth cases. The above things are questions above
“non-commutative Iwasawa theory in the mixed Tate sense”.
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Next, we propose some very vague questions about “non-commutative class
field theory in the mixed Tate sense”. We have the universal mixed Tate
representation

Gal(k/k) −→ GAf (Af )

for any number field k and ring of S-integers OS , where GAf is the motivic
Galois group of MT(OS) with respect to the finite adele realization.

Question 5 Can we relate this with an automorphic representation of GA?

(We also note that X∗(Uω) ∼= X∗(Uab
ω ) ∼= X∗(LieUab

ω ) ∼=
⊕n≥1Ext1MT(OS)(Q(0),Q(n)) ∼= K2n−1(OS)Q.) It seems that the concept
of the automorphic representation is not good for unipotent groups. So, the
author thinks that it will not be successful to consider automorphic repre-
sentations. He also thinks that this corresponds that we cannot consider the
L-factors and the functional equations in the higher depth cases. We modify
the above question as follows (it becomes more vague):

Question 6 Can we find some “automorphy” in the lattice Gω(Q) →֒ Gω(A)?

Manin studied the iterated integrals of modular forms ([M]). However, the
analytic properties of them (e.g. “automorphy in the higher depth cases”) are
not clarified.

Question 7 Are there some kinds of relations among a ∈ Gω(C), F−1
p ∈

Gω(kp,0), and Frobp ∈ GApf
(Apf ) for p /∈ S?

The lower bounds of (p-adic) multiple zeta value spaces are (p-adic) transcen-
dental number theoritic problem. The author thinks that we cannot show the
lower bounds by using only algebraic arithmetic geometry, and that we need
(p-adic) transcendental number theory (or ergodic theory) to show them. How-
ever, we might be able to attack the following weaker statement by using only
algebraic arithmetic geometry.

Question 8 By finding some kinds of “automorphy” in the case where k = Q,
and OS = Z, can we show that the lower bounds of the dimensions of the
p-adic multiple zeta value spaces for p ≤ ∞ except p0 are equivalent to the
lower bounds of the dimensions of the p-adic multiple zeta value spaces for all
p ≤ ∞?

Take a 2-step unipotent quotient of Uω. Then, we can consider the adelic theta
theory for this group.

Question 9 Can we describe explicitly the theta theory for (p-adic) multiple
L-values?

Question 10 By studying this, can we formulate a conjecture about the pre-
cise dimensions of (p-adic) multiple L-value spaces?
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