

DMTCS Proceedings Series Volume AE

EuroComb 2005

Held at Technische Universität, Berlin, on September 5-9, 2005.

Program Committee Chair: Stefan Felsner

1365–8050 © 2005 DMTCS, Nancy, France Discrete Mathematics and Theoretical Computer Science http://www.dmtcs.org/proceedings/dmAEind.html

Preface

This volume contains extended abstracts of all the invited and contributed talks that will be presented at EuroComb 2005, to be held at Technische Universität Berlin, September 5–9. The selection process was done by the Progamm Commitee with the help of many subreferees, thanks to all of them. The contributions in this volume are mostly extended abstracts, it is expected that full and final versions of most of the papers will appear elsewhere. In particular we plan special issues of DISCRETE APPLIED MATHEMATICS and of EUROPEAN JOURNAL OF COMBINATORICS related to EuroComb 2005, invitations for submission to these issues will be enunciated during the conference.

For the help in the coordination of the selection process and for setting up the present volume thanks go to Dan Král', Krisztián Tichler, Patrick Baier and Jens Gustedt (editor of dmtcs).

The publication of this volume is made possible by the support of DFG (Deutsche Forschungsgemeinschaft) and by the European network COMBSTRU.

i

Stefan Felsner

Programm Committee

GRAHAM BRIGHTWELL (London) REINHARD DIESTEL (Hamburg) STEFAN FELSNER (Berlin, chair) ANDRÁS FRANK (Budapest) GIL KALAI (Jerusalem) CHRISTIAN KRATTENTHALER (Wien) MONIQUE LAURENT (Amsterdam) TOMASZ ŁUCZAK (Poznan) JAROSLAV NEŠETŘIL (Praha) ALEXANDER POTT (Magdeburg) ORIOL SERRA (Barcelona) CARSTEN THOMASSEN (Lyngby) EMO WELZL (Zürich)

Table of Contents

Abstracts of invited talks

I. Bruce Reed The Evolution of The Mixing Time	_ viii
II. Gábor Tardos Toward an extremal theory of ordered graphs	_ viii
III. Nati Linial Lifts of Graphs	_ viii
IV. Mireille Bousquet-Mélou On the shape of binary trees	_ ix
V. Lex Schrijver New code bounds with noncommutative algebra and semidefinite programming	_ ix
VI. Ron Aharoni Menger's theorem for infinite graphs	_ x
VII. László Lovász Graph Algebras	_ x
VIII. Hein van der Holst Some recent results in topological graph theory	_ xi
IX. Günter M. Ziegler On the Complexity of Space Tilings	_ xi
X. Madhu Sudan Modelling errors and recovery for communication	_ xii

Abstracts of contributed presentations

11. Colin J. H. McDiarmid and Tobias Müller Colouring random geometric graphs	1
12. Isolde Adler, Georg Gottlob and Martin Grohe	1
Hypertree-Width and Related Hypergraph Invariants	5

ii

13.	Kazuyuki Amano and Jun Tarui Monotone Boolean Functions with s Zeros Farthest from Threshold Functions 11
14.	Richard P. Anstee and Peter Keevash 17 Pairwise Intersections and Forbidden Configurations 17
15.	David Défossez A sufficient condition for bicolorable hypergraphs 21
16.	Oleg Pikhurko, Joel Spencer and Oleg Verbitsky Decomposable graphs and definitions with no quantifier alternation 25
17.	Martin Kutz Weak Positional Games on Hypergraphs 31
18.	Christian Bey Quadratic LYM inequalities 37
19.	Peter Bella, Daniel Král', Bojan Mohar and Katarína Quittnerová Labeling planar graphs with a condition at distance two 41
20.	Bruce Reed and David R. Wood 45 Fast separation in a graph with an excluded minor 45
21.	Vladimir Deineko, Peter Jonsson, Mikael Klasson and Andrei Krokhin Supermodularity on chains and complexity of maximum constraint satisfaction51
22.	Dan Romik Permutations with short monotone subsequences 57
23.	Tomasz Bartnicki, Jarosław Grytczuk and Hal Kierstead 63 The game of arboricity 63
24.	William Evans and Mohammad Ali Safari 67 Directed One-Trees 67
25.	Joshua Cooper, Benjamin Doerr, Joel Spencer and Gábor Tardos 73 Deterministic Random Walks on the Integers 73
26.	John Talbot Chromatic Turán problems 77
27.	Daniel GonçalvesOn the $L(p, 1)$ -labelling of graphs81
28.	Martin Charles Golumbic, Marina Lipshteyn and Michal Stern Representations of Edge Intersection Graphs of Paths in a Tree 87
29.	Iliya Bouyukliev, Veerle Fack and Joost Winne 93 Hadamard matrices of order 36 93

iii

30.	Louis Esperet, Mickaël Montassier and André Raspaud Linear choosability of graphs	99
31.	Michael J. Pelsmajer, Marcus Schaefer and Daniel Štefankovič Removing Even Crossings	105
32.	Christian Deppe and Holger SchnettlerOn the $\frac{3}{4}$ -Conjecture for Fix-Free Codes	111
33.	Richard Anstee, Balin Fleming, Zoltán Füredi and Attila Sali Color critical hypergraphs and forbidden configurations	117
34.	Drago Bokal, Gašper Fijavž and Bojan Mohar Minor-monotone crossing number	123
35.	Veerle Fack, Svetlana Topalova and Joost Winne On the enumeration of uniquely reducible double designs	129
36.	Noga Alon and Jarosław Grytczuk Nonrepetitive colorings of graphs	133
37.	Paul Bonsma A characterization of extremal graphs with no matching-cut	135
38.	Gyula Pap Packing non-returning A-paths algorithmically	139
39.	Eric Rémila Structure of spaces of rhombus tilings in the lexicograhic case	145
40.	Andrew D. King, Bruce A. Reed and Adrian R. Vetta An upper bound for the chromatic number of line graphs	151
41.	Matěj Stehlík Connected τ -critical hypergraphs of minimal size	157
42.	Francisco Javier Zaragoza Martínez The Windy Postman Problem on Series-Parallel Graphs	161
43.	Gohar Kyureghyan Crooked Maps in Finite Fields	167
44.	Javier Barajas and Oriol Serra Distance graphs with maximum chromatic number	171
45.	Márton Makai Matroid matching with Dilworth truncation	175
46.	Audrey Lee and Ileana Streinu Pebble Game Algorithms and (k, l) -Sparse Graphs	181

Tamon Stephen On the Grone-Merris conjecture	187
Ross J. Kang, Tobias Müller and Jean-Sébastien Sereni Improper colouring of (random) unit disk graphs	193
Daniela Kühn and Deryk Osthus K_{ℓ}^{-} -factors in graphs	199
Kathie Cameron and Jack Edmonds Finding a Strong Stable Set or a Meyniel Obstruction in any Graph	203
Kenji Kashiwabara and Masataka Nakamura NBC Complexes of Convex Geometries	207
Adrian Kosowski, Michał Małafiejski, and Paweł Żyliński Packing Three-Vertex Paths in a Subcubic Graph	213
Anna Lladó Largest cliques in connected supermagic graphs	219
Anthony Bonato and Jeannette Janssen Infinite limits and folding	223
Gyula O.H. Katona Excluded subposets in the Boolean lattice	229
Miri Priesler and Michael Tarsi Multigraph decomposition into multigraphs with two underlying edges	231
Frank Göring Mader Tools	235
Zoran Nikoloski and Narsingh Deo and Ludek Kucera Degree-correlation of Scale-free graphs	239
Jaroslav Nešetřil and Yared Nigussie Density of universal classes of series-parallel graphs	245
Gordana Manić and Yoshiko Wakabayashi Packing triangles in low degree graphs and indifference graphs	251
Hortensia Galeana-Sánchez and Mucuy-Kak Guevara Semikernels modulo F in Digraphs	257
Ross M. Richardson, Van H. Vu and Lei Wu Random Inscribing Polytopes	263
Dmitri G. Fon-Der-Flaass and Anna E. Frid On infinite permutations	267
	On the Grone-Merris conjecture Ross J. Kang, Tobias Müller and Jean-Sébastien Sereni Improper colouring of (random) unit disk graphs Daniela Kühn and Deryk Osthus K_{ℓ}^- -factors in graphs Kathie Cameron and Jack Edmonds Finding a Strong Stable Set or a Meyniel Obstruction in any Graph Menzie Käshiwabara and Masataka Nakamura NBC Complexes of Convex Geometries Adrian Kosowski, Michał Małafiejski, and Paweł Żyliński Packing Three-Vertex Paths in a Subcubic Graph Anna Lladó Largest cliques in connected supermagic graphs Anthony Bonato and Jeannette Janssen Infinite limits and folding Gyula O.H. Katona Excluded subposets in the Boolean lattice Multigraph decomposition into multigraphs with two underlying edges Frank Göring Mader Tools Jaroslav Nešetřil and Yared Nigussie Density of universal classes of series-parallel graphs Gordana Manić and Yoshiko Wakabayashi Packing triangles in low degree graphs and indifference graphs Hortensia Galeana-Sánchez and Mucuy-Kak Guevara Semikernels modulo F in Digraphs Ross M. Richardson, Van H. Vu and Lei Wu Random Inscribing Polytopes

v

64.	Daniela Kühn and Deryk Osthus Matchings and Hamilton cycles in hypergraphs	273
65.	Rajneesh Hegde and Kamal Jain A Min-Max theorem about the Road Coloring Conjecture	279
66.	Van H. Vu and Lei Wu Improving the Gilbert-Varshamov bound for q-ary codes	285
67.	Tomoki Nakamigawa Equivalent Subgraphs of Order 3	289
68.	Gyula O.H. Katona and Krisztián Tichler An extremal problem on trees and database theory	293
69.	Miroslava Cimráková and Veerle Fack On minimal blocking sets of the generalized quadrangle	299
70.	Tomáš Kaiser and Riste Škrekovski Cycles intersecting edge-cuts of prescribed sizes	303
71.	Stefanie Gerke, Martin Marciniszyn and Angelika Steger A Probabilistic Counting Lemma for Complete Graphs	309
72.	Francesc Aguiló and Alícia Miralles Frobenius' Problem	317
73.	Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Discrepancy of Products of Hypergraphs	323
74.	Martin Marciniszyn, Dieter Mitsche and Miloš Stojaković Balanced Avoidance Games on Random Graphs	329
75.	Vladimir Blinovsky Sets of integers without $k + 1$ coprimes and with specified divisors	335
76.	Robert Berke and Tibor Szabó Relaxed Two-Coloring of Cubic Graphs	341
77.	Gyula Y. Katona Hamiltonian Chains in Hypergraphs	345
78.	Jun Tarui On the Minimum Number of Completely 3-Scrambling Permutations	351
79.	Pascal Ochem Negative results on acyclic improper colorings	357
80.	Tomáš Dvořák, Petr Gregor and Václav Koubek Spanning paths in hypercubes	363

vi

Gábor Simonyi and Gábor Tardos Local chromatic number and topology	. 375
Hong-Jian Lai, Yehong Shao, Ju Zhou and Hehui WuEvery 3-connected, essentially 11-connected line graph is hamiltonian	. 379
Manuel Bodirsky, Omer Giménez, Mihyun Kang and Marc Noy On the number of series parallel and outerplanar graphs	- 383
Guillaume Fertin and André Raspaud Acyclic Coloring of Graphs of Maximum Degree Δ	. 389
Iadimir K. Leontiev Hamiltonian cycles in torical lattices	397
Philippe Nadeau Walks reaching a line	401
	Iong-Jian Lai, Yehong Shao, Ju Zhou and Hehui Wu Every 3-connected, essentially 11-connected line graph is hamiltonian Ianuel Bodirsky, Omer Giménez, Mihyun Kang and Marc Noy On the number of series parallel and outerplanar graphs Guillaume Fertin and André Raspaud Acyclic Coloring of Graphs of Maximum Degree Δ Hamiltonian cycles in torical lattices hilippe Nadeau

vii

Abstracts of invited talks

I.

The Evolution of The Mixing Time

Bruce Reed

Random walks on Markov chains are used in random algorithms for approximately counting. The time complexity of such algorithms depends crucially on the mixing time of the corresponding chain. We determine the mixing time of the random graph $G_{n,p}$ to within a constant factor for all values of $p > 1 + \epsilon$. Of particular interest is the case when ϵ approaches 0. This is joint work with N. Fountoulakis. The talk is aimed at a general audience and will be much more accessible than this abstract.

II.

Toward an extremal theory of ordered graphs

Gábor Tardos

Pattern avoidance raises very interesting extremal enumerative and structural problems in many different contexts from Turán-type extremal graph theory to Davenport-Schinzel theory. This survey talk concentrates to 0-1 matrices and (the closely related concepts of) ordered graphs. An ordered graph is simple graph together with a linear order on its vertices.

III.

Lifts of Graphs

NATI LINIAL

A graph H is called an *n*-lift of a graph G if $V(H) = V(G) \times [n]$ and E(H) consists of a perfect matching between the sets $\{u\} \times [n]$ and $\{v\} \times [n]$ for every edge uv in E(G). (This is a special case of covering maps from topology). When the above perfect matchings are selected at random, we speak of random lifts. In this talk I will survey a number of papers that concerning lifts of graphs. Among the main results to be covered are:

viii

- Several theorems pertaining to the typical properties of random lifts, and how they reflect the properties of G.
- An application of graph lifts to the construction of graphs with nearly optimal spectral gap.
- Connections of graph lifts to PCP theory.

This talk is based on papers written jointly with: Alon Amit, Yonatan Bilu, Yotam Drier, Jirka Matousek, and Eyal Rozenman.

IV.

On the shape of binary trees

MIREILLE BOUSQUET-MÉLOU

Take a random binary tree with n nodes, and embed it in Z2 in a canonical way: that is, the root of the tree sits at the origin (0,0), and each right [left] son of a node lies one unit above and one unit to the right [left] of its father.

Using techniques from enumerative combinatorics and complex analysis, we shall study the typical shape of this canonical embedding for large binary trees of a given size. This includes questions like: how high, how wide is the embedding? What are the horizontal and vertical profiles of the tree? That is, how many nodes lie at a given abscissa or ordinate?

The results dealing with the horizontal profile are not new, while those dealing with the vertical profile are recent (http://fr.arxiv.org/abs/math.CO/0501266). Their main motivation lies in the connection between embeddings of binary trees and the ISE (Integrated SuperBrownian Excursion). However, the emphasis will be put on the enumeration rather than on the probability during this talk.

V.

New code bounds with noncommutative algebra and semidefinite programming

Lex Schrijver

The linear programming bound of Delsarte is a classical upper bound on the size of a code of given word length and given minimum distance. With semidefinite programming this bound can be strengthened, yielding several improved upper

ix

bounds for concrete pairs of word length and minimum distance. Basic ingredient is the block diagonalization of the Terwilliger algebra of the Hamming cube. In the talk we will explain the method.

VI.

Menger's theorem for infinite graphs

Ron Aharoni

We prove that Menger's theorem is valid for infinite graphs, in the following strong form: given two sets of vertices, A and B, in a possibly infinite digraph, there exist a set C of disjoint A-B paths, and a set S of vertices separating A from B, such that S consists of a choice of precisely one vertex from each path in C. This settles an old conjecture of Erdős.

Joint work with Eli Berger.

VII.

Graph Algebras

László Lovász

We consider graphs with k nodes labeled $1, \ldots, k$ and any number of unlabeled nodes. We form the product of two such graphs by gluing together their labeled nodes. (In other words, we consider decomposing along a cutset of nodes as factorization.) By extending this to quantum graphs (formal linear combinations of such k-labeled graphs), we get a commutative algebra. Every graph parameter defines a bilinear form on this algebra and through this, a factor algebra.

This factor algebra is often finite dimensional and is very useful in studying the graph parameter. For example, it was proved by Freedman, Lovász and Schrijver that the parameter can be represented as the number of homomorphisms into a fixed weighted graph (e.g., the number of 4-colorings) if and only if this factor algebra is finite dimensional for every k, its dimension grows only exponentially with k, and the inner product is positive definite.

Further applications of this algebraic setup include a characterization of generalized quasirandom graphs by Vera Sós and the author.

The construction has an analogue using edge-cuts in place of node-cuts, which leads to non-commutative algebras and where many questions are still unsettled. There is a corresponding class of graph parameters, called edge-coloring models, which were characterized by Balázs Szegedy using these algebras, in a way analogous to (but much more involved than) the characterization of homomorphism functions mentioned above.

VIII.

Some recent results in topological graph theory

HEIN VAN DER HOLST

Each graph can be embedded in 3-space. The problem becomes more interesting if we put restrictions on the type of embedding. For example, a linkless embedding of a graph is one where each pair of vertex-disjoint circuits has linking number equal to zero. The class of all graphs that have a linkless embeddingisclosed undertaking minors. Robertson, Seymour, and Thomas gave the forbidden minors for this class of graphs. Open remained how to find a linkless embedding in polynomial time. In the talk we start with discussing an algorithm to find a linkless embedding. Instead of embedding the graph in 3-space, we could also consider mapping properties of certain superstructures of the graph in 3-space, and, indeed, if this superstructure has not the right mapping properties in 3-space, see whether it has the right one in 4-space, etc. Recently, we introduced for a graph G a new graph parameter $\sigma(G)$, which is defined as the smallest d such that superstructures of G have a zero intersection mapping in *d*-space. The nicest property of this graph parameter is its independence of the superstructure and thus depends on the graph only. For d=2 and d=3, $\sigma(G) \leq d$ if and only if G is outerplanar and planar, respectively. The graphs G with $\sigma(G) \leq 4$ are exactly those that have a linkless embedding. In the second part of the talk we will discuss this new graph parameter.

Partly joint work with R.Pendavingh.

IX.

On the Complexity of Space Tilings

Günter M. Ziegler

In planar tilings the tiles can have at most six vertices on average, and every vertex is in at most six tiles on average — assuming that we restrict our attention to tilings that are nice enough, so that "on average" makes sense. Moreover, the maximum value of six cannot be achieved simultaneously for the two conditions.

xi

In this lecture I want to discuss analogous problems for tilings of three-space: We will see tilings where the tiles do have many vertices, and tilings where all vertices lie in many tiles — but can both conditions can be achieved simultaneously?

Х.

Modelling errors and recovery for communication

Madhu Sudan

The theory of error-correction has had two divergent schools of thought, going back to the works of Shannon and Hamming. In the Shannon school, error is presumed to have been effected probabilistically. In the Hamming school, the error is modeled as effected by an all-powerful adversary. The two schools lead to drastically different limits. In the Shannon model, a binary channel with error-rate close to, but less than, 50% is useable for effective communication. In the Hamming model, a binary channel with an error-rate of more than 25% prohibits unique recovery of the message.

In this talk, we describe the notion of list-decoding, as a bridge between the Hamming and Shannon models. This model relaxes the notion of recovery to allow for a "list of candidates". We describe results in this model, and then show how these results can be applied to get unique recovery under "computational restrictions" on the channel's ability, a model initiated by R. Lipton in 1994.

Based on joint works with V. Guruswami, and with S. Micali, C. Peikert and D. Wilson.