Monotone Boolean Functions with s Zeros Farthest from Threshold Functions

Kazuyuki Amano¹ and Jun Tarui²

- ¹ Graduate School of Information Sciences, Tohoku University, Sendai 980-8579 Japan ama@ecei.tohoku.ac.jp
- ² Department of Information and Communication Engineering, University of Electro-Communications Chofu, Tokyo 182-8585 Japan tarui@ice.uec.ac.jp

Let T_t denote the t-threshold function on the n-cube: $T_t(x)=1$ if $|\{i:x_i=1\}|\geq t$, and 0 otherwise. Define the distance between Boolean functions g and h, d(g,h), to be the number of points on which g and h disagree. We consider the following extremal problem: Over a monotone Boolean function g on the n-cube with s zeros, what is the maximum of $d(g,T_t)$? We show that the following monotone function p_s maximizes the distance: For $x\in\{0,1\}^n$, $p_s(x)=0$ if and only if N(x)< s, where N(x) is the integer whose n-bit binary representation is x. Our result generalizes the previous work for the case $t=\lceil n/2\rceil$ and $s=2^{n-1}$ by Blum, Burch, and Langford [BBL98-FOCS98], who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the previous work for the same t and s by Amano and Maruoka [AM02-ALT02].

1 Introduction and Overview

For a Boolean function h and a class \mathcal{C} of Boolean functions, we consider the following extremal problem: what is the maximum distance between $g \in \mathcal{C}$ and h? Equivalently, under the uniform distribution on $\{0,1\}^n$, how small can the correlation between $g \in \mathcal{C}$ and h be? The distance between Boolean functions g and h, d(g,h), is defined to be the number of points on which g and h disagree. A Boolean function $g:\{0,1\}^n \to \{0,1\}$ is monotone if, for $x,y \in \{0,1\}^n$, $x \le y \Rightarrow g(x) \le g(y)$, where for $x,y \in \{0,1\}^n$, $x \le y$ if and only if $x_i \le y_i$ for all $i=1,\ldots,n$. A Boolean function is fair if it outputs 1 on exactly half of its inputs. The starting point of our work is the fact that among all fair monotone Boolean functions, a single variable function $g(x) = x_i$ is farthest from the majority function; this was conjectured by Blum, Burch, and Langford [BBL98], and was proved by Amano and Maruoka [AM02].

The main concern of the work of Blum, Burch, and Langford is *learning* of monotone Boolean functions. They gave the following simple algorithm for weakly learning a monotone Boolean function under the uniform distribution: Given samples $(x_1,g(x_1)),(x_2,g(x_2)),\ldots,(x_m,g(x_m))$, output, as a hypothesis, a function that is most correlated with those samples among *three* functions $\{0,1,\text{Majority}\}$, where 0 and 1 are constant functions. With high probability the output of the algorithm has correlation at least $\Omega(1/\sqrt{n})$ with g. Blum, Burch, and Langford showed, using the Kruskal-Katona theorem about the minimum size of a shadow, that any fair monotone Boolean function g has correlation at least $\Omega(1/\sqrt{n})$ with Majority. They conjectured that in fact a single variable function $g(x) = x_i$ is a fair monotone function

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

that is farthest from Majority. Amano and Maruoka proved this conjecture also using the Kruskal-Katona theorem.

In this paper we give a generalization in which we consider any threshold function, not just Majority, and any monotone function with a prescribed number of zeros, not just a fair one. Our proof is self-contained; we do not use the Kruskal-Katona theorem.

Let T_t denote the t-threshold function: for $x \in \{0,1\}^n$, $T_t(x) = 1$ if $|\{i: x_i = 1\}| \ge t$, and 0 otherwise. Throughout the paper t is an integer; it will be convenient to allow t to be negative; for $t \le 0$, T_t is the constant 1 function on the n-cube. The majority function is function T_t with $t = \lceil n/2 \rceil$. For a Boolean function g, let $\sharp_0(g)$ and $\sharp_1(g)$ respectively denote the number of points on which g = 0 and on which g = 1. Similarly, for Boolean functions g and g, and g, and g, let g denote the number of points g such that g(g) = g and g and g.

The problem we consider is the following: Among all monotone $g:\{0,1\}^n \to \{0,1\}$ with $\sharp_0(g)=s$ $(0 \le s < 2^n)$, what is the maximum of $d(g,T_t)$? Maximizing d(g,h) for a fixed function h and a function g with $\sharp_0(g)=s$ is equivalent to maximizing $\sharp_{01}(g,h)$ since for any g and $h,d(g,h)=\sharp_0(h)-\sharp_0(g)+2\sharp_{01}(g,h)$. For $0 \le s < 2^n$, define the monotone function $p_s:\{0,1\}^n \to \{0,1\}$ as follows. For $x \in \{0,1\}^n$, $p_s(x)=0$ if and only if N(x)< s, where N(x) is the integer whose n-bit binary representation is x.

Theorem Let $g: \{0,1\}^n \to \{0,1\}$ be monotone with $\sharp_0(g) = s$. Then, for any integer t,

$$\sharp_{01}(g, T_t) \le \sharp_{01}(p_s, T_t)$$
, and hence $d(g, T_t) \le d(p_s, T_t)$.

2 Proof of Theorem

For an integer $i \geq 0$, let b(i) be the number of 1's in the binary representation of the integer i. Let $0 \leq l \leq m$. For an integer t, define $f_t(l,m)$ to be the number of integers i such that $l \leq i < m$ and $b(i) \geq t$. Note that for $t \leq 0$, $f_t(l,m) = f_0(l,m) = m - l$. Also note that the following hold: $f_t(l,m) \leq f_{t-1}(l,m)$; for $0 \leq k < 2^r$, $f_t(0,k) = f_{t-1}(2^r, 2^r + k)$; $\sharp_{01}(p_s, T_t) = f_t(0,s)$.

It turns out that the main work we do to prove the theorem is an analysis of $f_t(l,m)$. This aspect of our proof is somewhat similar to a proof of the edge-isoperimetric inequality on the Boolean cube explained in the book by Bollobas [Bo86, \S 16 Isoperimetric Problems]. We now state a key lemma, Lemma 1, and two auxiliary lemmas, Lemmas 2 and 3. We will give a proof of the theorem using Lemma 1, and then give proofs of the three lemmas.

Lemma 1 For $0 \le l \le m$ and any integer t,

$$f_t(0,m) + f_{t-1}(0,l) \le f_t(0,m+l).$$

Lemma 2 For $k, l \ge 0$ and any integer t,

$$f_t(0,k) \le f_t(l,l+k).$$

Lemma 3 For $k, l, q \ge 0$ such that $l + k \le 2^q$ and for any integer t,

$$f_t(l, l+k) \le f_t(2^q - k, 2^q).$$

Proof of Theorem using Lemma 1. The proof is by induction on n. The base case n=1 is trivial. For induction assume that n>1 and that the assertion holds for n-1. Let g_0 and g_1 be the Boolean functions on the (n-1)-cube obtained from g by fixing the first bit to be g_0 and g_1 to the Boolean functions of the g_0 -cube obtained from g_0 by fixing the first bit to be g_0 and g_1 to the Boolean functions of the g_0 -cube obtained from g_0 by fixing the first bit to be g_0 and g_1 to g_1 and g_2 in g_2 and g_3 and g_4 in g_4 and g_4 and g_4 in g_4 and g_4 and g_4 and g_4 is monotone, g_4 and g_4 are g_4 and g_4 and g_4 and g_4 are g_4 and g_4 and g_4 are g_4 and g_4 and g_4 are g_4 are g_4 and g_4 are g_4 are g_4 and g_4 are g_4 and g_4 are g_4 and g_4 are g_4 and g_4 are g_4 are g_4 and g_4 are g_4 are g_4 are g_4 are g_4 and g_4 are g_4 are g_4 are g_4 are g_4 and g_4 are g_4 a

$$\sharp_{01}(g, T_t) = \sharp_{01}(g_0, T_t) + \sharp_{01}(g_1, T_{t-1})
\leq \sharp_{01}(p_m, T_t) + \sharp_{01}(p_l, T_{t-1})
= f_t(0, m) + f_{t-1}(0, l)
\leq f_t(0, m + l)
= \sharp_{01}(p_s, T_t),$$

where the first inequality is by the inductive assumption and the second inequality is by Lemma 1. \Box

Proofs of Lemmas 2 and 3. For $0 \le i < 2^q$, the q-bit binary representation of i has bit 1 at position j $(1 \le j \le q)$ if and only if the q-bit binary representation of $2^q - 1 - i$ has bit 0 at position j. Hence Lemma 2 readily yields Lemma 3.

Now we prove Lemma 2. The assertion is trivial when l=k=0. Assume that $l+k\geq 1$ and let $r=\lfloor \log_2(l+k)\rfloor$ so that we have $2^r\leq l+k<2^{r+1}$. The proof is by induction on r; more precisely, we prove Lemma 2 by inductively assuming that the assertion of Lemma 2 holds *and* the corresponding assertion of Lemma 3 holds.

In the base case when r=0, we have l+k=1 and thus either (i) l=0, k=1 or (ii) l=1, k=0; in both cases the claim is immediate. For induction assume that r>0 and that for r-1 the assertion holds, and hence the corresponding assertion of Lemma 3 also holds.

CASE 1:
$$2^r \le l$$
: In this case $2^r \le l \le l + k < 2^{r+1}$ and
$$f_t(l, l+k) = f_{t-1}(l-2^r, l+k-2^r) > f_{t-1}(0, k) > f_t(0, k),$$

where the first inequality is by the inductive assumption.

CASE 2: $l < 2^r$ and $k < 2^r$:

$$\begin{split} f_t(l,l+k) &= f_t(l,2^r) + f_t(2^r,l+k) \\ &= f_t(l,2^r) + f_{t-1}(0,l+k-2^r) \\ &\geq f_t(l+k-2^r,k) + f_{t-1}(0,l+k-2^r) \\ &\geq f_t(l+k-2^r,k) + f_t(0,l+k-2^r) \\ &= f_t(0,k), \end{split}$$

where the first inequality is by Lemma 3.

CASE 3: $l < 2^r$ and $k \ge 2^r$: In this case $l < 2^r \le 2^r + l \le l + k$ and

$$f_{t}(l, l+k) = [f_{t}(l, 2^{r}) + f_{t}(2^{r}, 2^{r} + l)] + f_{t}(2^{r} + l, l+k)$$

$$= [f_{t}(l, 2^{r}) + f_{t-1}(0, l)] + f_{t}(2^{r} + l, l+k)$$

$$\geq [f_{t}(0, l) + f_{t}(l, 2^{r})] + f_{t}(2^{r} + l, l+k)$$

$$= f_{t}(0, 2^{r}) + f_{t}(2^{r} + l, l+k)$$

$$= f_{t}(0, 2^{r}) + f_{t-1}(l, l+k-2^{r})$$

$$\geq f_{t}(0, 2^{r}) + f_{t-1}(0, k-2^{r})$$

$$= f_{t}(0, 2^{r}) + f_{t}(2^{r}, k)$$

$$= f_{t}(0, k),$$

where the second inequality is by the inductive assumption. \Box

Proof of Lemma 1. The asertion is trivial when l=m=0. Asume that $m\geq 1$ and let $r=\lfloor \log_2 m\rfloor$ so that we have $2^r\leq m<2^{r+1}$. The proof is by induction on r. In the base case when r=0 we have m=1, and l=0 or l=1; in both cases the claim is immediate. For induction assume that r>0 and that the claim holds for r-1.

Case 1: $2^r \leq l$:

$$f_{t}(0,m) + f_{t-1}(0,l) = f_{t}(0,2^{r}) + f_{t}(2^{r},m) + f_{t-1}(0,2^{r}) + f_{t-1}(2^{r},l)$$

$$= f_{t}(0,2^{r}) + f_{t-1}(0,m-2^{r}) + f_{t-1}(0,2^{r}) + f_{t-2}(0,l-2^{r})$$

$$= f_{t}(0,2^{r}) + f_{t-1}(0,2^{r}) + f_{t-1}(0,m-2^{r}) + f_{t-2}(0,l-2^{r})$$

$$\leq f_{t}(0,2^{r}) + f_{t-1}(0,2^{r}) + f_{t-1}(0,m+l-2^{r+1})$$

$$= f_{t}(0,m+l),$$

where the inequality is by the inductive assumption.

CASE 2:
$$l < 2^r, (m-2^r) + l < 2^r$$
:

$$f_{t}(0,m) + f_{t-1}(0,l) = f_{t}(0,2^{r}) + f_{t}(2^{r},m) + f_{t-1}(0,l)$$

$$= f_{t}(0,2^{r}) + f_{t-1}(0,m-2^{r}) + f_{t-1}(0,l)$$

$$\leq f_{t}(0,2^{r}) + f_{t-1}(0,m-2^{r}) + f_{t-1}(m-2^{r},m-2^{r}+l)$$

$$= f_{t}(0,2^{r}) + f_{t-1}(0,m-2^{r}+l)$$

$$= f_{t}(0,2^{r}) + f_{t}(2^{r},m+l)$$

$$= f_{t}(0,m+l),$$

where the inequality is by Lemma 2.

CASE 3: $l < 2^r$, $m + l > 2^{r+1}$: We have the following derivation where Lemma 3 is used in the form (1) for the inequality below.

$$f_{t-1}((m+l)-2^{r+1},l) \le f_{t-1}(m-2^r,2^r)$$
 (1)

$$\begin{split} &f_{t}(0,m)+f_{t-1}(0,l)\\ &=& f_{t}(0,2^{r})+f_{t}(2^{r},m)+f_{t-1}(0,(m+l)-2^{r+1})+f_{t-1}((m+l)-2^{r+1},l)\\ &=& f_{t}(0,2^{r})+f_{t-1}(0,m-2^{r})+f_{t-1}(0,(m+l)-2^{r+1})+f_{t-1}((m+l)-2^{r+1},l)\\ &\leq& f_{t}(0,2^{r})+f_{t-1}(0,m-2^{r})+f_{t-1}(m-2^{r},2^{r})+f_{t-1}(0,(m+l)-2^{r+1})\\ &=& f_{t}(0,2^{r})+f_{t-1}(0,2^{r})+f_{t-1}(0,(m+l)-2^{r+1})\\ &=& f_{t}(0,2^{r})+f_{t}(2^{r},2^{r+1})+f_{t}(2^{r+1},m+l)\\ &=& f_{t}(0,m+l).\; \Box \end{split}$$

Acknowledgements

The authors thank the anonymous referees for helpful comments.

References

- [AM02] K. Amano and A. Maruoka. On Learning Monotone Boolean Functions under the Uniform Distribution, *Proc. of ALT02: The 13th International Conference on Algorithmic Learning Theory*: Lecture Notes in Computer Science, vol. 2533, pp. 57–68, Springer-Verlag, 2002; a journal version to appear in *Theoretical Computer Science*.
- [BBL98] A. Blum, C. Burch, and L. Langford. On Learning Monotone Boolean Functions, *Proc. of FOCS98: The 39th Annual IEEE Symposium on Foundations of Computer Science*, pp. 408–415, IEEE Press, 1998.
- [Bo86] B. Bollobas. *Combinatorics*, Cambridge University Press, 1986.