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Let Tt denote the t-threshold function on the n-cube: Tt(x) = 1 if |{i : xi = 1}| ≥ t, and 0 otherwise. Define the
distance between Boolean functions g and h, d(g, h), to be the number of points on which g and h disagree. We con-
sider the following extremal problem: Over a monotone Boolean function g on the n-cube with s zeros, what is the
maximum of d(g, Tt)? We show that the following monotone function ps maximizes the distance: For x ∈ {0, 1}n,
ps(x) = 0 if and only if N(x) < s, where N(x) is the integer whose n-bit binary representation is x. Our result gen-
eralizes the previous work for the case t = dn/2e and s = 2n−1 by Blum, Burch, and Langford [BBL98-FOCS98],
who considered the problem to analyze the behavior of a learning algorithm for monotone Boolean functions, and the
previous work for the same t and s by Amano and Maruoka [AM02-ALT02].

1 Introduction and Overview
For a Boolean function h and a class C of Boolean functions, we consider the following extremal problem:
what is the maximum distance between g ∈ C and h? Equivalently, under the uniform distribution on
{0, 1}n, how small can the correlation between g ∈ C and h be? The distance between Boolean functions
g and h, d(g, h), is defined to be the number of points on which g and h disagree. A Boolean function
g : {0, 1}n → {0, 1} is monotone if, for x, y ∈ {0, 1}n, x ≤ y ⇒ g(x) ≤ g(y), where for x, y ∈ {0, 1}n,
x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. A Boolean function is fair if it outputs 1 on exactly half
of its inputs. The starting point of our work is the fact that among all fair monotone Boolean functions, a
single variable function g(x) = xi is farthest from the majority function; this was conjectured by Blum,
Burch, and Langford [BBL98], and was proved by Amano and Maruoka [AM02].

The main concern of the work of Blum, Burch, and Langford is learning of monotone Boolean func-
tions. They gave the following simple algorithm for weakly learning a monotone Boolean function under
the uniform distribution: Given samples (x1, g(x1)), (x2, g(x2)), . . . , (xm, g(xm)), output, as a hypothe-
sis, a function that is most correlated with those samples among three functions {0, 1,Majority}, where
0 and 1 are constant functions. With high probability the output of the algorithm has correlation at least
Ω(1/

√
n) with g. Blum, Burch, and Langford showed, using the Kruskal-Katona theorem about the min-

imum size of a shadow, that any fair monotone Boolean function g has correlation at least Ω(1/
√

n) with
Majority. They conjectured that in fact a single variable function g(x) = xi is a fair monotone function
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that is farthest from Majority. Amano and Maruoka proved this conjecture also using the Kruskal-Katona
theorem.

In this paper we give a generalization in which we consider any threshold function, not just Majority,
and any monotone function with a prescribed number of zeros, not just a fair one. Our proof is self-
contained; we do not use the Kruskal-Katona theorem.

Let Tt denote the t-threshold function: for x ∈ {0, 1}n, Tt(x) = 1 if |{i : xi = 1}| ≥ t, and 0
otherwise. Throughout the paper t is an integer; it will be convenient to allow t to be negative; for t ≤ 0,
Tt is the constant 1 function on the n-cube. The majority function is function Tt with t = dn/2e. For a
Boolean function g, let ]0(g) and ]1(g) respectively denote the number of points on which g = 0 and on
which g = 1. Similarly, for Boolean functions g and h, and a, b ∈ {0, 1}, let ]ab(g, h) denote the number
of points x such that g(x) = a and h(x) = b.

The problem we consider is the following: Among all monotone g : {0, 1}n → {0, 1} with ]0(g) = s
(0 ≤ s < 2n), what is the maximum of d(g, Tt)? Maximizing d(g, h) for a fixed function h and a
function g with ]0(g) = s is equivalent to maximizing ]01(g, h) since for any g and h, d(g, h) = ]0(h)−
]0(g) + 2]01(g, h). For 0 ≤ s < 2n, define the monotone function ps : {0, 1}n → {0, 1} as follows.
For x ∈ {0, 1}n, ps(x) = 0 if and only if N(x) < s, where N(x) is the integer whose n-bit binary
representation is x.

Theorem Let g : {0, 1}n → {0, 1} be monotone with ]0(g) = s. Then, for any integer t,

]01(g, Tt) ≤ ]01(ps, Tt), and hence d(g, Tt) ≤ d(ps, Tt).

2 Proof of Theorem
For an integer i ≥ 0, let b(i) be the number of 1’s in the binary representation of the integer i. Let
0 ≤ l ≤ m. For an integer t, define ft(l,m) to be the number of integers i such that l ≤ i < m
and b(i) ≥ t. Note that for t ≤ 0, ft(l,m) = f0(l,m) = m − l. Also note that the following hold:
ft(l,m) ≤ ft−1(l,m); for 0 ≤ k < 2r, ft(0, k) = ft−1(2r, 2r + k); ]01(ps, Tt) = ft(0, s).

It turns out that the main work we do to prove the theorem is an analysis of ft(l,m). This aspect of our
proof is somewhat similar to a proof of the edge-isoperimetric inequality on the Boolean cube explained
in the book by Bollobas [Bo86, § 16 Isoperimetric Problems]. We now state a key lemma, Lemma 1, and
two auxiliary lemmas, Lemmas 2 and 3. We wll give a proof of the theorem using Lemma 1, and then
give proofs of the three lemmas.

Lemma 1 For 0 ≤ l ≤ m and any integer t,

ft(0,m) + ft−1(0, l) ≤ ft(0,m + l).

Lemma 2 For k, l ≥ 0 and any integer t,

ft(0, k) ≤ ft(l, l + k).

Lemma 3 For k, l, q ≥ 0 such that l + k ≤ 2q and for any integer t,

ft(l, l + k) ≤ ft(2q − k, 2q).
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Proof of Theorem using Lemma 1. The proof is by induction on n. The base case n = 1 is trivial. For
induction assume that n > 1 and that the assertion holds for n−1. Let g0 and g1 be the Boolean functions
on the (n− 1)-cube obtained from g by fixing the first bit to be 0 and 1 respectively; i.e., for e = 0, 1, and
for x ∈ {0, 1}n−1, ge(x) = g(ex). Let m = ]0(g0) and l = ]0(g1). Clearly, m + l = s, and since g is
monotone, m ≥ l. Thus we have

]01(g, Tt) = ]01(g0, Tt) + ]01(g1, Tt−1)
≤ ]01(pm, Tt) + ]01(pl, Tt−1)
= ft(0,m) + ft−1(0, l)
≤ ft(0,m + l)
= ]01(ps, Tt),

where the first inequality is by the inductive assumption and the second inequality is by Lemma 1. 2

Proofs of Lemmas 2 and 3. For 0 ≤ i < 2q, the q-bit binary representation of i has bit 1 at position j
(1 ≤ j ≤ q) if and only if the q-bit binary representation of 2q − 1 − i has bit 0 at position j. Hence
Lemma 2 readily yields Lemma 3.

Now we prove Lemma 2. The assertion is trivial when l = k = 0. Assume that l + k ≥ 1 and let
r = blog2(l + k)c so that we have 2r ≤ l + k < 2r+1. The proof is by induction on r; more precisely,
we prove Lemma 2 by inductively assuming that the assertion of Lemma 2 holds and the corresponding
assertion of Lemma 3 holds.

In the base case when r = 0, we have l + k = 1 and thus either (i) l = 0, k = 1 or (ii) l = 1, k = 0; in
both cases the claim is immediate. For induction assume that r > 0 and that for r− 1 the assertion holds,
and hence the corresponding assertion of Lemma 3 also holds.

CASE 1: 2r ≤ l : In this case 2r ≤ l ≤ l + k < 2r+1 and

ft(l, l + k) = ft−1(l − 2r, l + k − 2r) ≥ ft−1(0, k) ≥ ft(0, k),

where the first inequality is by the inductive assumption.

CASE 2: l < 2r and k < 2r :

ft(l, l + k) = ft(l, 2r) + ft(2r, l + k)
= ft(l, 2r) + ft−1(0, l + k − 2r)
≥ ft(l + k − 2r, k) + ft−1(0, l + k − 2r)
≥ ft(l + k − 2r, k) + ft(0, l + k − 2r)
= ft(0, k),

where the first inequality is by Lemma 3.
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CASE 3: l < 2r and k ≥ 2r : In this case l < 2r ≤ 2r + l ≤ l + k and

ft(l, l + k) = [ ft(l, 2r) + ft(2r, 2r + l) ] + ft(2r + l, l + k)
= [ ft(l, 2r) + ft−1(0, l) ] + ft(2r + l, l + k)
≥ [ ft(0, l) + ft(l, 2r) ] + ft(2r + l, l + k)
= ft(0, 2r) + ft(2r + l, l + k)
= ft(0, 2r) + ft−1(l, l + k − 2r)
≥ ft(0, 2r) + ft−1(0, k − 2r)
= ft(0, 2r) + ft(2r, k)
= ft(0, k),

where the second inequality is by the inductive assumption. 2

Proof of Lemma 1. The asertion is trivial when l = m = 0. Asume that m ≥ 1 and let r = blog2 mc
so that we have 2r ≤ m < 2r+1. The proof is by induction on r. In the base case when r = 0 we have
m = 1, and l = 0 or l = 1; in both cases the claim is immediate. For induction assume that r > 0 and
that the claim holds for r − 1.

CASE 1: 2r ≤ l :

ft(0,m) + ft−1(0, l) = ft(0, 2r) + ft(2r,m) + ft−1(0, 2r) + ft−1(2r, l)
= ft(0, 2r) + ft−1(0,m− 2r) + ft−1(0, 2r) + ft−2(0, l − 2r)
= ft(0, 2r) + ft−1(0, 2r) + ft−1(0,m− 2r) + ft−2(0, l − 2r)
≤ ft(0, 2r) + ft−1(0, 2r) + ft−1(0,m + l − 2r+1)
= ft(0,m + l),

where the inequality is by the inductive assumption.

CASE 2: l < 2r, (m− 2r) + l ≤ 2r :

ft(0,m) + ft−1(0, l) = ft(0, 2r) + ft(2r,m) + ft−1(0, l)
= ft(0, 2r) + ft−1(0,m− 2r) + ft−1(0, l)
≤ ft(0, 2r) + ft−1(0,m− 2r) + ft−1(m− 2r,m− 2r + l)
= ft(0, 2r) + ft−1(0,m− 2r + l)
= ft(0, 2r) + ft(2r,m + l)
= ft(0,m + l),

where the inequality is by Lemma 2.
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CASE 3: l < 2r, m + l > 2r+1 : We have the following derivation where Lemma 3 is used in the
form (1) for the inequality below.

ft−1((m + l)− 2r+1, l) ≤ ft−1(m− 2r, 2r) (1)

ft(0,m) + ft−1(0, l)
= ft(0, 2r) + ft(2r,m) + ft−1(0, (m + l)− 2r+1) + ft−1((m + l)− 2r+1, l)
= ft(0, 2r) + ft−1(0,m− 2r) + ft−1(0, (m + l)− 2r+1) + ft−1((m + l)− 2r+1, l)
≤ ft(0, 2r) + ft−1(0,m− 2r) + ft−1(m− 2r, 2r) + ft−1(0, (m + l)− 2r+1)
= ft(0, 2r) + ft−1(0, 2r) + ft−1(0, (m + l)− 2r+1)
= ft(0, 2r) + ft(2r, 2r+1) + ft(2r+1,m + l)
= ft(0,m + l). 2
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